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Abstract

The objectives of this thesis are to design, analyze and numerically investigate
easily implementable Exponential Peer Methods (EPMs) for ordinary differential
equations (ODEs), where the problem splits into a linear stiff and a nonlinear
non-stiff part. The spatial discretization of time-dependent partial differential
equations (PDEs) in general leads to such systems.

The thesis consists of two parts. The first part concerns EPMs with constant
step size. The first aspect of this part involves an analytical investigation of
consistency and zero stability of the methods. We formulate simplifying conditions
which guarantee order p = s−1, where s is the number of stages. For the non-stiff
case the order is p = s. A special class of EPMs with only two different arguments
for the exponential functions is studied, and by a special choice of the nodes we
obtain optimally zero-stable methods. We show that the methods solve linear
problems y′ = Ty exactly. The second aspect is using the framework of EXPINT
to perform a variety of numerical experiments to test the numerical order which
confirm the theoretically obtained orders and no order reduction is observed.

The second part of the thesis is concerned with EPMs with variable step size.
Conditions for stiff order p are derived. The zero-stability of the methods is inves-
tigated. For a special subclass of methods with only two different arguments of the
ϕ−functions bounds for the step size ratio are given, which ensure zero-stability.
These bounds are fairly large for practical computations. Various strategies for er-
ror estimation and step size control are considered. Numerical tests show that the
step size control works reliably and that for special problem classes the methods
are superior to classical integrators.



Zusammenfassung

Ziele dieser Arbeit sind die Konstruktion, Analyse und numerische Tests von Ex-
ponentiellen Peer-Methoden (EPMs) für gewöhnliche Differentialgleichungen, die
einen steifen linearen und einen nichtsteifen nichtlinearen Anteil besitzen. Solche
Systeme entstehen i. Allg. bei der Ortsdiskretisierung von zeitabhängigen par-
tiellen Differentialgleichungen (PDEs).

Die Arbeit besteht aus zwei Teilen. Der erste Teil befasst sich mit EPMs mit
konstanter Schrittweite. Er beinhaltet Untersuchungen der Konsistenz und Null-
stabilität der Methoden. Wir formulieren vereinfachende Bedingungen, um Ver-
fahren der Ordnung p = s für nichtsteife und p = s − 1 für steife Probleme zu
erhalten, wobei s die Anzahl der Stufen ist.

Eine spezielle Klasse von EPMs mit nur zwei unterschiedlichen Argumenten für
die Exponentialfunktionen wird untersucht. Durch eine spezielle Wahl der Knoten
erhalten wir optimal nullstabile Verfahren. Wir zeigen, dass die Methoden lineare
Probleme y′ = Ty exakt lösen. Unter Verwendung des Programmsystems EXPINT
werden die Methoden implementiert und eine Vielzahl von numerischen Experi-
menten durchgeführt. Die numerisch bestimmte Ordnung bestätigt die theoretisch
gewonnenen Aussagen, es wird keine Ordnungsreduktion beobachtet.

Der zweite Teil der Arbeit ist EPMs mit variabler Schrittweite gewidmet. Be-
dingungen für die steife Ordnung p werden abgeleitet. Die Nullstabilität der
Methoden wird untersucht. Für eine spezielle Unterklasse von Methoden mit nur
zwei unterschiedlichen Argumente der ϕ−Funktionen werden Schranken für die
Schrittweitenverhältnisse gegeben, die Nullstabilität garantieren. Diese Grenzen
sind für praktische Rechnungen hinreichend groß. Verschiedene Strategien zur
Fehlerschätzung und Schrittweitensteuerung werden betrachtet. Numerische Un-
tersuchungen zeigen, dass die Schrittweitensteuerung zuverlässig funktioniert und
dass für spezielle Problemklassen die Methoden klassischen Integratoren überlegen
sind.
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Chapter 1

Introduction

Mathematical modeling of physical, chemical, and biological systems often leads
to one or more ordinary differential equations (ODEs). In general, it is extremely
difficult, if not impossible, to get an analytic solution for ODEs, so these equations
are usually solved numerically by powerful numerical techniques on fast comput-
ers. In particular, the numerical solution of initial value problems (IVPs) for
ODEs has been, and is still being, one of the most active field of investigation
in numerical analysis. Many of the obtained results for numerical integration of
ordinary differential equations have been collected in several books, among which
we quote [2, 4, 18, 19, 29, 33]. ODEs can be classified as stiff or non-stiff, and
may be stiff for some parts of an interval and non-stiff for others. Stiff differential
equations are of great practical importance. For instance, the semi-discretization
of time-dependent partial differential equations (PDEs) in general leads to large
stiff problems.

Over the years, there was a need to improve the properties of numerical so-
lution. Specifically up to the early fifties, the concern about accuracy properties
were considered as the most important for the solution. After that, stability re-
quirements became focal, in particular in connection with the numerical solution
of stiff problems.

Stiffness is one major problem associated with the numerical integration of
differential equations. Stiffness may be due to the problems characterized by a
Jacobian that possesses eigenvalues with large negative real parts. Problems that
consist of highly oscillatory solutions with purely imaginary eigenvalues of large
modulus also are highly demanding for numerical methods. Stiff systems are re-
quiring the development of special integrators scheme, with increased requirements
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to the stability. Stiff and highly oscillatory ODE systems are those ODEs whose
Jacobians have at least one eigenvalue with a very negative real part or very large
imaginary part respectively.

For many years the numerical methods for solving PDEs have been studied. A
great deal of the research focuses on the stability problem in the time integration
of the systems of ODEs which result from the spatial discretization of PDEs.
Numerical methods for solving systems of ordinary differential equations can be
divided into two categories, stiff and non-stiff solvers.

For solving stiff ODEs, implicit methods are mandatory to be used, because of
the weak stability properties of explicit methods. Approval codes for stiff problems
are based on BDF methods (e.g., [21]), implicit Runge-Kutta methods (e.g., [20]),
or linearly-implicit Runge-Kutta methods (e.g., [30]). On the other hand, implicit
methods require the solution of a nonlinear system of equations, at each integration
step, and this is a considerable computational task. In order to overcome this
difficulty, some authors in recent years have proposed various alternatives, such
as the use of the so called Runge-Kutta-Chebyshev methods (see e.g., [1, 50, 51])
with the aim of creating explicit integrators with extended stability domains [39].

Recently, exponential integrators have been introduced as an alternative to
implicit methods for large and stiff or highly oscillatory differential equations.
These integrators are based on the computation of the exponential function (or
related functions) of the Jacobian or an approximation to it, inside the numerical
method (see e.g., [22]).

Exponential integrators have attracted a lot of interest and have been developed
rapidly in the past three decades. They have been applied successfully to numerical
solutions of PDEs. They are especially useful for differential equations coming
from the spatial discretization of partial differential equations, where the problem
often splits into a linear stiff and a nonlinear non-stiff part. Nowadays, they are
some of the powerful tools as well as implicit methods, for numerical solutions of
partial differential equations. Since the first paper about exponential integrators
by Certaine [6], there has been a considerable amount of research on methods of
this type. Until now the emphasis has been on the development of new methods,
see e.g., [5, 36, 40].

To solve the stiff semi-linear time-dependent PDE of the form

∂u

∂t
= T u+ G(u, t), (1.1)
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where u ∈ Rd, T is a linear differential operator (usually of second order) and
G(u, t) is a nonlinear operator, we first discretize the spatial derivatives (the linear
operator T ) of a PDE with a spatial derivative approximation method (e.g. Finite
Difference Formulas and spectral method, Chebyshev polynomials and Fourier
spectral methods) to turn the PDE into a system of ODEs

dy

dt
= Ty + g(t, y(t)) = f(t, y(t)) (1.2)

where y = y(t), y : R 7→ RN , g : R × RN 7→ RN , N is a discretization parameter
equal to the number of spatial grid points. The matrix T ∈ RN×N has in general a
large norm for large numbers of grid points. Therefore, the resulting ODE system
is stiff.

Exponential integrators had been constructed to solve semi-linear problems of
the form (1.2). The goal of the exponential integrators is to treat the linear
term exactly and allow the remaining part of the integration to be integrated
numerically using an explicit scheme. They have been introduced in the sixties
of last century, but have not been considered in practical computations, since
they involve the computation of matrix exponential functions. Using modern
techniques, such functions can now be computed quite efficiently.

The main distinctive features of the exponential integrators are as follow:

1. If the linear part is vanished (i.e., T = 0) then the scheme reduces to a
standard explicit scheme and

2. If the nonlinear part is vanished (i.e., g(t, y(t)) = 0) then the scheme reduces
to the evaluation of the exponential function of the matrix T and reproduces
the exact solution of the problem.

Since their introduction in the 1950’s, cf. [8], numerical methods for stiff prob-
lems have been studied extensively, in particular during the last thirty years.
Hundreds of papers, which deal with the construction of efficient integrators and
with the theoretical analysis of such integrators have been published. The idea of
exponential integrators has been successfully applied to various classes of differ-
ential equations. These classes of integrators had been abandoned for a long time
due to their excessive computational expense. Recently, there has been a renewed
interest in exponential integrators that have emerged as a viable alternative for
dealing efficiently with stiffness of ODEs.
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The central topic of this thesis is exponential peer methods (EPMs) as a tool for
solving time-dependent partial differential equations. Exponential peer methods
are based on explicit peer methods, which were introduced byWeiner et al. [52, 53].
The essential property of peer methods is the use of several stages per time step
with same accuracy properties.

Exponential peer methods for the numerical integration of stiff ordinary differ-
ential equations offer good properties like a high classical order and high stage order
and an excellent stability behavior. A subclass of EPMs allows the construction of
high-order schemes that possess favorable stability properties (optimal zero-stable
for constant step sizes and solves linear problems y′ = Ty exactly) and exhibit no
order reduction when applied to very stiff problems.

The thesis is organized as follows. Chapter 2 is devoted to give a brief intro-
duction to the concept of stiff problems, the phenomenon of numerical stiffness is
explained, and to exponential integrators as alternative numerical methods devel-
oped to overcome the phenomenon of stiffness. Mathematical background material
that we need later in the thesis is collected. In particular, we introduce Lipschitz
condition and the logarithmic norm. Main effort in exponential integrators is the
computation of exponential matrices. We restrict in this thesis to problems of
not very high dimension and use the methods of the Matlab package called EX-
PINT by Berland et al. [3] for the computation of the ϕ−functions. We describe
EXPINT, which is used as a tool for testing and comparison of exponential inte-
grators for constant step sizes, in particular the definition of some related function
to exponential integrators called ϕ−function and their computations. For high
dimensions the use of Krylov techniques will be necessary and more efficient, e.g.,
[23, 27, 45], but we will not consider this in this thesis.

Chapter 3 is devoted to give an overview about the derivation, analysis, im-
plementation and evaluation of exponential peer methods for constant step sizes.
Consistency and stability of the methods are investigated, and we formulate sim-
plifying conditions which guarantee order p = s − 1, where s is the number of
stages. For the non-stiff case the order is p = s. Due to the two-step character
of the methods zero-stability has to be discussed. A special class of EPMs of stiff
order p = s− 1 with only two different arguments for the exponential functions is
studied, and by a special choice of the nodes we obtain optimally zero-stable meth-
ods. We show that the methods solve linear problems y′ = Ty exactly. Numerical
order tests show the theoretically obtained orders.
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A generalization for the methods presented in Chapter 3, for variable step sizes,
is given in Chapter 4, and the idea of methods with an adaptive step size control is
described. Most practical software for solving ODEs does not use a fixed time step
but rather adjusts the time step during the integration process to try to achieve
some specified error bound. Adaptive step size control is used to control the local
errors of the numerical solution. For optimization purposes smoother step size
controllers are wanted, such that the errors and step sizes also behave smoothly.
Order conditions for the coefficients, which now will depend on the step size ratio,
are derived. Due to the variable step size, zero-stability now leads to restrictions
of the step size ratio in general. We present one subclass which is optimally zero-
stable for all step size sequences. For another special class of methods with only
two different arguments in the ϕ−functions we prove stiff order p = s − 1. For
this class we compute bounds on the step size ratio which guarantee zero-stability
in the non-stiff case. These bounds are fairly large for practical computations. In
the stiff case we show convergence of stiff order p = s−1 under mild restrictions of
the step size sequence. Furthermore, for the implementation of exponential peer
methods an error estimation is included. Two techniques are considered. One
technique uses interpolation at s − 1 solution points and the other is embedding
in different ways.

The numerical results obtained using the framework of the EXPINT package for
the new methods are reported and analyzed in Chapter 5 for constant and variable
step sizes. In particular, for constant step sizes we compare EPMs with other
exponential integrators implemented in EXPINT package and the results confirm
our theoretical results and show the potential of the new class of exponential
integrators.

For variable step sizes, the constructed methods are tested on problems of
the EXPINT package and we compare EPMs with the results for the standard
Matlab routines ode15s and ode45. For special problem types the exponential
peer methods turn out to be comparable and superior, but for others the classical
codes are more efficient. The most expensive part in EPMs is the computation of
the ϕ−functions. Better numerical methods for this task will highly improve the
performance of the methods.

Finally, in Chapter 6 we give conclusions and an outlook for future work.



Chapter 2

Exponential Integrators

Introduction

The main purposes of this chapter are threefold. Firstly, we point out the concept
of stiffness of numerical solution of differential equations, which appears often in
practical situations, and we summarize some definitions of stiffness. Secondly, a
Matlab package called EXPINT [3], which is designed as a tool for testing and
comparison of exponential integrators, is introduced. The definition of some re-
lated functions to the exponential integrators called ϕ−functions with their com-
putations are shown. Thirdly, a brief history of exponential integrators, which
were introduced as an effective alternative to classical implicit methods for solv-
ing time-dependent differential equations of stiff or highly oscillatory differential
equations, is given.

We start with the review of some mathematical background that is needed later
in this thesis.
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2.1 Initial value problem

We will consider in this thesis the numerical solution of the initial value problem
for a system of ODEs of the form

dy

dt
= f(t, y(t)) = Ty + g(t, y), t ∈ [t0, tend] (2.1)

y(t0) = y0 ∈ Rn,

where t is the independent variable which represents the time and the dependent
variable y(t) which constitute the solution of the problem. y(t) is a vector valued
function, i.e.,

y : R 7→ Rn and f : [t0, tend]× Rn 7→ Rn.

We will always assume that f : [t0, tend]×Rn 7→ Rn is well defined and sufficiently
smooth, especially it satisfies a Lipschitz condition with respect to y ∈ Rn with
Lipschitz constant L. These conditions are sufficient to guarantee the existence of
a unique solution y(t) of (2.1) in [t0, tend] (Picard’s Theorem).

Definition 2.1 (Lipschitz condition). The function f : [t0, tend] × Rn −→ Rn is
said to satisfy a Lipschitz condition in its second variable if there exists a constant
L > 0 such that for any two points (t, Y ) and (t, Z) in the solution space D =

{t0 ≤ t ≤ tend, Y ∈ Rn} the relation

‖f(t, Y )− f(t, Z)‖ ≤ L‖Y − Z‖,

holds for all Y, Z ∈ Rn, ‖.‖ is a norm in Rn. The constant L is called a Lipschitz
constant for f .

For stiff problems the concept of logarithmic matrix norm is of major impor-
tance,

Definition 2.2 (Logarithmic Norm [9]). Let A, I ∈ Rn×n, where I is the identity
matrix, and h ∈ R+ and ‖ · ‖ be any matrix norm subordinate to a vector norm.
Then the associated logarithmic norm µ of A is defined as

µ(A) = lim
h→0+

‖I + hA‖ − 1

h
.
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The matrix norm ‖A‖ is always positive if A 6= 0, but the logarithmic norm
µ(A) may also take negative values, e.g., when A is negative definite. Therefore,
the logarithmic norm does not satisfy the axioms of a norm.

Basic properties of the logarithmic norm of a matrix include [12]:

1. µ(A) ≤ ‖A‖,

2. µ(γA) = γ µ(A) for scalar γ > 0,

3. µ(A+B) ≤ µ(A) + µ(B),

4. ‖etA‖ ≤ etµ(A) for t ≥ 0,

5. µ(A) < 0 ⇒ ‖A−1‖ ≤ −1/µ(A),

6. α(A) ≤ µ(A) where α(A) is the maximal real part of the eigenvalues of A.

The importance of the logarithmic norm comes from the following theorem [12]:

Theorem 2.1. Let ‖ . ‖ be a given norm. Let ν : [0, tend] −→ R be a piecewise
continuous function satisfying

µ(fζ(t, ζ)) ≤ ν(t), t ∈ [0, tend], ∀ζ

Then for any two solutions Y and Z of (2.1)

‖ Z(t2)− Y (t2) ‖≤ exp

(∫ t2

t1

ν(τ) dτ

)
‖ Z(t1)− Y (t1) ‖,

for all t1, t2 satisfying 0 ≤ t1 ≤ t2 ≤ tend. �

The theorem shows that for µ < 0 the system will be dissipative.

2.2 Stiff ODEs

Stiff problems are encountered in many fields of science and engineering, e.g.,
electrical circuits, chemical reaction kinetics, nuclear reactors, electrical networks
and automatic control, biochemical systems and so on.

One major source of stiff differential equations is the semi-discretization of
partial differential equations. These systems are often stiff and highly expensive
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to solve due to a huge number of components, in particular for multi-dimensional
problems.

Numerical methods in use to solve (2.1) are classified either to explicit or im-
plicit methods. Explicit integrators such as Runge-Kutta and linear multistep
methods are usually used for integration of non-stiff problems since these meth-
ods are forced to take very small integration steps to maintain numerical stability
and significantly the use of adaptive algorithms do not alleviate this problem, and
implicit integrators, which require the solution of nonlinear algebraic systems of
equations at each integration step, are preferred when ODEs are stiff.

Stiff differential equations and highly oscillatory differential equations seriously
defy traditional numerical methods. In the last decade, considerable interest has
been generated in the study of classes of numerical methods for partial differential
equations, with particular emphasis on the stiffness property.

Despite the great progress which has been made in numerical methods so far,
there are still many problems facing them and represent a serious challenge to
them. Such problems do not require to be extensive or complex and some of them
are very simple. Stiffness is one major problem associated with the numerical
integration of differential equations.

C.F. Curtiss and J.O. Hirschfelder [8] were the first to use the term stiff. They
attempt to give the first definition of stiff systems as: "stiff equations are equa-
tions where certain implicit methods perform better, than using classical explicit
ones". They also proposed a numerical procedure to solve this type of ODEs which
nowadays are known as backward differentiation formula (BDF).

Stiffness is one of the most ambiguous concepts until now widespread in the
numerical solution of initial value ODEs. Some authors propose multiple criteria
for stiffness, we summarize some of them:

Shampine and Gear [15, 44] : By a stiff problem we mean one for which no
solution component is unstable (no eigenvalue has a real part which is at all large
and positive) and at least some component is very stable (at least one eigenvalue
has a real part which is large and negative). Further, we will not call a problem
stiff unless its solution is slowly varying with respect to the most negative real part
of the eigenvalues. (Roughly, we mean that the derivatives of the solution are small
compared to the corresponding derivatives of eAx). Consequently, a problem may
be stiff for some intervals of the independent variable and not for others . Also, the
initial value problem for ODEs is stiff if the Jacobian Ji,j = ∂fi

∂yj
, i, j = 1, . . . , N
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has at least one eigenvalue, for which real part is negative with high modulus, while
the solution within the major part of the interval of integration changes slowly.

Dahlquist [11]: Systems containing very fast components as well as very slow
components.

Hairer and Wanner [19]: Stiff equations are problems for which explicit methods
don’t work.

Each of the previous concepts of stiffness reflects certain aspects of the numerical
solution (e.g., impossibility of using explicit methods of integration, large Lipschitz
constants or large norms of Jacobian matrices, big difference among eigenvalues
of Jacobian matrix, etc.).

2.3 EXPINT package

EXPINT [3] is a Matlab package designed as a tool to facilitate easy testing and
comparison of various exponential integrators, like Runge-Kutta, multistep and
general linear type methods. Berland, Skaflestad and Wright published this pack-
age with three aims : Firstly, to create a uniform environment which enables the
comparison of various integrators; Secondly, to provide tools for easy visualization
of numerical behavior; Thirdly, to be easily modified so that users can include
problems and integrators of their own. EXPINT contains several semi-discretized
PDEs as test problems such as the KdV, Kuramoto-Sivashinsky, Allen-Cahn and
Grey-Scott equations and a collection of well-known exponential integrators imple-
mented with constant step size. The most important part of the EXPINT package
is the evaluation of the ϕ−functions.

Lawson [34] introduced scaling and squaring technique to compute the matrix
exponential. In [37] various methods for the computation of the ϕ−functions are
investigated. For problems of not too large dimensions Padé approximations com-
bined with scaling and squaring has become the standard approach in numerical
software like Matlab for computing the matrix exponential. EXPINT package
is relying on Padé approximations combined with scaling-and-squaring for the
computation of ϕ−functions.

Fourier spectral methods [48, 49] are used for problems with spatially periodic
boundary conditions to discretize the spatial derivatives of (1.1), and hence to
obtain a stiff system (1.2) of coupled ODEs in time t. The resulting linear part
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T of the system is represented by a diagonal matrix, and g represents the action
of the nonlinear operator on y on the grid. On the other side for problems where
the boundary conditions are not periodic, finite difference formulas [35, 48] or
Chebyshev polynomials [48, 49] are used and in this case, the linearized system is
represented by a non-diagonal matrix.

2.4 ϕ−functions

The most commonly related and associated functions with exponential integrators
are ϕ−functions, which are defined as follows (e.g., [40]):

For integers ` ≥ 0 and complex numbers z ∈ C, we define ϕ` (z) through

ϕ0 (z) = ez,

ϕ` (z) =
1

(`− 1)!

∫ 1

0

e(1−θ)z θ`−1 dθ, ` ≥ 1, (2.2)

and the explicit formula

ϕ` (z) =
1

z`

(
ez −

`−1∑
i=0

zi

i!

)
.

The ϕ−functions are related by the recurrence relation

ϕ`+1 (z) =
ϕ` (z)− ϕ` (0)

z
for ` ≥ 0, with ϕ` (0) =

1

`!
. (2.3)

For small values of ` 6= 0, with z 6= 0, (2.2) gives

ϕ1 (z) =
ez − 1

z
, ϕ2 (z) =

ez − z − 1

z2
, ϕ3 (z) =

ez − z2/2− z − 1

z3
.

The importance of the ϕ−functions comes from the following theorem.

Theorem 2.2. The exact solution of the non-autonomous linear initial value prob-
lem

y′(t) = T y(t) +

p∑
l=0

al(t− tm)l, y(tm) = ym (2.4)
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is given by

y(t) = ϕ0((t− tm)T ) ym +

p∑
l=0

l!ϕl+1((t− tm)T ) al(t− tm)l+1.

Proof. The general solution of the linear differential equation is given by

y(t) = (µ(t))−1C + (µ(t))−1
p∑
l=0

al

∫ t

tm

µ(τ)(τ − tm)ldτ,

where µ(t) = ϕ0(−t T ) is the integrating factor for (2.4) and C = ϕ0(−tm T )ym.
Now for the integrated term with the substitution θ = (τ − tm)/(t− tm),∫ t

tm

µ(τ)(τ − tm)ldτ =

∫ t

tm

ϕ0(−τ T )(τ − tm)l dτ

= (t− tm)l+1

∫ 1

0

ϕ0

((
(1− θ)(t− tm)− t

)
T
)
θl dθ

= (t− tm)l+1ϕ0(−t T )

∫ 1

0

ϕ0

(
(1− θ)(t− tm)T

)
θl dθ

and by (2.2) with z = (t− tm)T

= (t− tm)l+1ϕ0(−t T )l!ϕl+1((t− tm)T ).

So that, we have

y(t) = ϕ0((t− tm)T ) ym +

p∑
l=0

l!ϕl+1((t− tm)T ) al(t− tm)l+1. �

2.5 Computation of ϕ−functions

The hard part of implementing exponential integrators is the evaluation of (lin-
ear combinations of) ϕ−functions. The accurate and reliable computation of the
matrix exponential function is a long standing problem of numerical analysis. Ac-
cording to Minchev and Wright [36], the main computational challenge in the
implementation of any exponential integrator is the need for fast and computa-
tionally stable evaluations of the exponential and related ϕ−functions.

The efficiency of exponential integrators strongly depends on the numerical
linear algebra used to compute the approximations of the ϕ−function.
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Several methods have been proposed for evaluating these functions [37].

In EXPINT package ϕ−functions for matrices of not too large dimensions are
calculated using Padé approximations combined with scaling and squaring. In this
case the norm of the arguments z = hT is reduced firstly by scaling

z̃ = z/2max(0,r+1),

where r is the smallest integer number with 2r ≥‖ z ‖∞. Then ϕ`(z̃) will be
calculated using Padé approximation and taking the inverse transform.

The functions ϕ`(z̃) are evaluated using diagonal (d, d)−Padé approximants,

ϕ`(z̃) =
N `
d(z̃)

D`
d(z̃)

+O(z̃2d+1),

where the unique polynomials N `
d and D`

d are

N `
d(z̃) =

d!

(2d+ `)!

d∑
i=0

[
i∑

j=0

(2d+ `− j)!(−1)j

j!(d− j)!(`+ i− j)!

]
z̃i,

D`
d(z̃) =

d!

(2d+ `)!

d∑
i=0

(2d+ `− i)!
i!(d− i)!

(−z̃)i.

For ` = 0, these reduce to the well known diagonal Padé approximations of the
exponential function (ez̃). In EXPINT d = 6 is used.

For small norms of z̃, the approximation of Padé approximation is very accurate
and will be considered as exact function ϕ`(z̃). To reverse the scaling for ` > 0 is
not trivial. It is done by using the relations [3]

ϕ`(2z) =
1

22`

[
ϕ`(z)ϕ`(z) +

2∑̀
j=`+1

2

(2`− j)!
ϕj(z)

]
,

ϕ2`+1(2z) =
1

22`+1

[
ϕ`(z)ϕ`+1(z) +

2`+1∑
j=`+2

2

(2`+ 1− j)!
ϕj(z) +

1

`!
ϕ`+1(z)

]
.
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2.6 An overview on exponential integrators

Exponential integrators are a well-known class of numerical integration methods
for stiff or highly oscillatory systems of ordinary differential equations, which in-
volve exponential functions ehT (or related functions), where T is the Jacobian of
the right hand side f (or an approximation to it) and h is the step size. One ad-
vantage of exponential methods is that they usually have good stability properties,
which make them suitable for solving stiff problems.

Exponential integrators are especially useful for differential equations coming
from the spatial discretization of partial differential equations, where the problem
often splits into a linear stiff and a nonlinear non-stiff part.

They require the evaluation of matrix functions P (T ) or matrix-vector products
P (T )b, where T is a negative semi-definite matrix and P is the exponential function
or one of the related "ϕ−functions".

For problems of moderate size these functions are computed with the methods
of Section 2.4. For very large dimensions Krylov techniques for the computation
of P (T )b are more efficient and frequently used, cf. [23, 27, 45].

2.6.1 A brief history of exponential integrators

Although exponential integrators have a long history in numerical analysis, they
did not play a prominent role in applications for quite a long time because they
depend on explicit use of the exponential and related functions of (large) matrices.
However, in recent years a wide range of results for this problem had been emerged,
although of course much remains to be done.

The historical roots of exponential integrators are easy to identify. In 1967
Lawson [34] proposed the generalized Runge-Kutta processes. The novelty of his
idea was to solve the linear part (y′(t) = T y(t)) of (2.1) exactly then making a
change of variables, v(t) = e(tm−t)Ty(t) (also known as Lawson transformation).

By differentiation we get

v′(t) = e(tm−t)Tg(t, e(t−tm)Tv(t))

Apply a numerical method (e.g., Explicit Euler method) to the transformed equa-
tion
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vm+1 = vm + hg(tm, vm), vm = v(tm)

Transform the approximate solution to the original variable with vm = ym and
vm+1 = e(tm−tm+1)Tym+1

e(tm−tm+1)Tym+1 = ym + hg(tm, ym)

e−hTym+1 = ym + h g(tm, ym)

Finally, we get Lawson-Euler method (see Example 2.1)

ym+1 = ehTym + hehTg(tm, ym).

These methods have been known later as Integrating Factor (IF) methods. The
same result can be obtained by multiplying the original problem by the integrat-
ing factor e(tm−t)Ty(t), and the methods are represented many times with different
names, e.g., Linearly Exact Runge-Kutta (LERK). The purpose of transforming
the differential equation in this way is to remove the explicit dependence in the
differential equation on the operator T , except inside the exponential. The ex-
ponential function will damp the behavior of T removing the stiffness or highly
oscillatory nature of the problem. Generalized Integrating Factor (GIF) methods
[32] were recently constructed by Krogstad as a means of overcoming some of the
undesirable properties of the Lawson schemes. This class of schemes uses approx-
imations of the nonlinear term from previous steps, resulting in an exponential
general linear method.

It is more than half a century ago since the publication of the paper by Cer-
taine [6] on exponential integrators who constructed the first exponential multistep
methods, Exponential Time Differencing (ETD) methods.

IF and ETD methods treat the linear part exactly (and so are necessarily
A−stable), but differ in the assumptions used when handling the nonlinear part.
ETD is based on the variation of constants formula, which is the integral form of

(e(tm−t)T y(t))′ = e(tm−t)T g(t, y(t))

Then

y(tm + h) = ehTym + ehT
∫ h

0

e−τ T g(tm + τ, y(tm + τ)) dτ
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Various schemes can be obtained by approximating the integral with different
quadrature formulas. The simplest method is obtained by approximating the
nonlinearity g over one timestep by its value at the known point (tm, ym) and
solving the rest of the integral explicitly. With the same notation as before the
exponential Euler method (see Example 2.2) becomes

ym+1 = ehTym + hϕ1(hT )g(tm, ym).

Certaine constructed two exponential integrators based on the Adams-Moulton
methods of order two and three by finding approximations to the integral in the
variation of constants formula, using an algebraic polynomial approximation to the
nonlinear term. In 1969, Nørsett [38] constructed ETD based on Adams-Bashforth
methods. ETD schemes based on Runge-Kutta schemes were independently dis-
covered by several authors, e.g., [13, 46]. Calvo and Palencia [5] constructed and
analyzed a related class of k-step methods, where the variation of constants for-
mula is taken over an interval of length kh instead of h. In contrast to exponential
Adams methods, their methods have all parasitic roots on the unit circle. In 2002,
Cox and Matthews [7] derived ETDRK methods as a class of ETD methods based
on the Runge-Kutta time stepping. ETDRK4 suffers from numerical instability
when T has eigenvalues close to zero. Kassam and Trefethen [31] modified the
ETDRK4 method and studied their instabilities and have found that they can be
removed by evaluating a certain integral on a contour that is separated from zero.

In 1999, Munthe-Kaas [17] used the affine Lie group to solve semi-linear prob-
lems using Lie group schemes. Unfortunately, the RKMK schemes were shown to
exhibit instabilities due to the use of commutators [3].

Recently, exponential Rosenbrock-type methods were considered by Hochbruck
et al. [27], and a class of explicit exponential general linear methods has been
studied by Ostermann et al. [40].

A historical survey is given by Minchev and Wright [36], an actual survey on
exponential integrators can be found in Hochbruck and Ostermann [26].
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2.6.2 Exponential Runge-Kuta methods

For an s−stage exponential integrator of Runge-Kutta type for (1.2), we define
the internal stages and output approximation [3]:

Yi = h
s∑
j=1

aij(hT ) g(tn−1 + cjh, Yj) + ui1(hT ) yn−1, i = 1, . . . , s,

yn = h
s∑
i=1

bi(hT ) g(tn−1 + cih, Yi) + v1(hT ) yn−1,

(2.5)

where g(t, y) = f(t, y) − T y. This method is A− and L−stable, because it gives
the exact solution of linear problem y′(t) = T y(t) with the exact starting values.
By setting T = 0 we obtain an explicit Runge-Kutta method with the coefficients

ui1(0) = 1, aij(0) = aij, v1(0) = 1 and bi(0) = bi.

The matrix functions aij(hT ) and bj(hT ) are linear combinations of the well
known ϕ−functions. The coefficients are defined to give a high order of the
method.

The functions used in (2.5) are conveniently represented in an extended Butcher
tableau

c1 a11(z) · · · a1s(z) u11(z)
...

...
...

...
cs as1(z) · · · ass(z) us1(z)

b1(z) · · · bs(z) v1(z)

Definition 2.3. The exponential Runge-Kutta method (2.5) has in the ith stage
the stiff stage order qi for (1.2), if with yn = y(tn)

‖ y(tn + cih)− Yi ‖≤ Dih
qi+1, for h ≤ h0

is satisfied.

It is consistent of stiff order q, if

‖ y(tn + h)− yn+1 ‖≤ Dhq+1, for h ≤ h0

holds.
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Here the constants Di, D and h0 are independent of ‖ T ‖. It has non-stiff order
and stage order q, if the constants are allowed to depend on ‖ T ‖.

2.6.3 Exponential general linear methods

The extension to general linear schemes is carried out as follows. A step of length
h in an exponential general linear scheme, requires to import r approximations
into the step, denoted as y[n−1]i , i = 1, . . . , r. The internal stages (as in the Runge-
Kutta case) are written as Yi, i = 1, . . . , s. After the step is completed, r updated
approximations are computed. These are then used in the next step. Each step
in an exponential general linear scheme can be written as [3]

Yi = h
s∑
j=1

aij(hT ) g(tn−1 + cjh, Yj) +
r∑
j=1

uij(hT ) y
[n−1]
j , i = 1, . . . , s,

y
[n]
i = h

s∑
j=1

bij(hT ) g(tn−1 + cjh, Yj) +
r∑
j=1

vij(hT ) y
[n−1]
j , i = 1, . . . , r.

The exponential integrators of Runge-Kutta type are easily seen to be a special
case when r = 1 with ui1(z) = ai0(z), v11(z) = b0(z) and b1j(z) = bj(z).

The coefficient functions are grouped into matrices,

c1 a11(z) · · · a1s(z) u11(z) · · · u1r(z)
...

...
...

...
...

cs as1(z) · · · ass(z) us1(z) · · · usr(z)

b11(z) · · · b1s(z) v11(z) · · · v1r(z)
...

...
...

...
bs1(z) · · · bss(z) vr1(z) · · · vrr(z)

To implement the exponential general linear schemes, the EXPINT package as-
sumes a special structure of the vector y[n−1], the quantities of which are passed
from step to step:

y[n−1] = [yn−1, hgn−2, hgn−3, · · · , hgn−r]T ,

where gn−i = g(yn−i, tn−i). This choice enables both the ETD Adams-Bashforth
and generalized Lawson schemes to be conveniently represented in a single frame-
work [3]. Exponential integrators that do not fit into this framework are the
methods developed in Calvo and Palencia [5].
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The extension from a traditional integrator to an exponential integrator is not
unique. The two simplest choices of exponential integrators of Runge-Kutta type
are the Lawson-Euler and Nørsett-Euler methods.

We give here some examples of exponential integrators implemented in EXPINT
[3] and which we will use for comparison in our numerical tests.

Example 2.1. Lawson-Euler

yn = ϕ0(hL)yn−1 + hϕ0(hL)g(yn−1, tn−1),
0 0 1

ϕ0(hL) ϕ0(hL)

Example 2.2. Nørsett-Euler

yn = ϕ0(hL)yn−1 + hϕ1(hL)g(yn−1, tn−1),
0 0 1

ϕ1(hL) ϕ0(hL)

Example 2.3. ABLawson4
This scheme bases on the Adams-Bashforth scheme of order four. It has stiff
order one and non-stiff order four. Its coefficients are given by

0 1 0 0 0

1 55
12
ϕ0(z) ϕ0(z) −59

24
ϕ2
0(z) 37

24
ϕ3
0(z) −3

8
ϕ4
0(z)

55
12
ϕ0(z) 0 ϕ0(z) −59

24
ϕ2
0(z) 37

24
ϕ3
0(z) −3

8
ϕ4
0(z)

1 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

Example 2.4. Lawson4
Lawson exponential integrator based on Kutta’s classical fourth order method.
The coefficients of Lawson4 are given by

0 1
1
2

1
2
ϕ0(

z
2
) ϕ0(

z
2
)

1
2

0 1
2

ϕ0(
z
2
)

1 0 0 ϕ0(
z
2
) ϕ0(z)

1
6
ϕ0(z) 1

3
ϕ0(

z
2
) 1

3
ϕ0(

z
2
) 1

6
ϕ0(z)

Example 2.5. ETD4RK
The fourth order ETD scheme, ETD4RK, due to Cox and Matthews [7]. The
coefficients of ETD4RK are given by
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0 1
1
2

1
2
ϕ1(

z
2
) ϕ0(

z
2
)

1
2

0 1
2
ϕ1(

z
2
) ϕ0(

z
2
)

1 ϕ1(
z
2
)
(
ϕ0(

z
2
)− 1

)
0 ϕ1(

z
2
) ϕ0(z)

ϕ1(z)− 3ϕ2(z) + 4ϕ3(z) b2(z) b3(z) 4ϕ3(z)− ϕ2(z) ϕ0(z)

where b2(z) = b3(z) = 2ϕ2(z)− 4ϕ3(z).

Example 2.6. Strehmel-Weiner
One of the earliest exponential Runge-Kutta methods with 4−stages, it has
stiff order three. Its coefficients are given by

0 1
1
2

1
2
ϕ1(

z
2
) ϕ0(

z
2
)

1
2

1
2
ϕ1(

z
2
)− 1

2
ϕ2(

z
2
) 1

2
ϕ2(

z
2
) ϕ0(

z
2
)

1 ϕ1(z)− 2ϕ2(z) −2ϕ2(z) 4ϕ2(z) ϕ0(z)

b1(z) 0 4ϕ2(z)− 8ϕ3(z) 4ϕ3(z)− ϕ2(z) ϕ0(z)

where b1(z) = ϕ1(z)− 3ϕ2(z) + 4ϕ3(z).

Example 2.7. Hochbruck-Ostermann
This scheme developed by Hochbruck and Ostermann , with five-stages is
the only known exponential Runge-Kutta method with stiff order four. Its
coefficients are given by

0 1
1
2

1
2
ϕ1(

z
2
) ϕ0(

z
2
)

1
2

1
2
ϕ1(

z
2
)− ϕ2(

z
2
) ϕ2(

z
2
) ϕ0(

z
2
)

1 ϕ1(z)− 2ϕ2(z) ϕ2(z) ϕ2(z) ϕ0(z)
1
2

1
2
ϕ1(

z
2
)− 2a52 − a54 a52 a52 a54 ϕ0(

z
2
)

b1(z) 0 0 4ϕ3(z)− ϕ2(z) 4ϕ2(z)− 8ϕ3(z) ϕ0(z)

where

b1(z) = ϕ1(z)− 3ϕ2(z) + 4ϕ3(z)

a52 =
1

2
ϕ2(

z

2
)− ϕ3(z) +

1

2
ϕ2(z)− 1

2
ϕ3(

z

2
)

a54 =
1

4
ϕ2(

z

2
)− a52.
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Example 2.8. RKMK4t
This scheme was developed by Munthe-Kaas [17] using a suitable truncation
of the dexp−1 operator. It is of non-stiff order four and stiff order two but
suffers from instabilities, especially when non-periodic boundary conditions
are used. Its coefficients are given by

0 1
1
2

1
2
ϕ1(

z
2
) ϕ0(

z
2
)

1
2

z
2
ϕ1(

z
2
) 1

2
(1− z

4
)ϕ1(

z
2
) ϕ0(

z
2
)

1 0 0 ϕ1(z) ϕ0(z)
1
6
ϕ1(z)(1 + z

2
) 1

3
ϕ1(z) 1

3
ϕ1(z) 1

6
ϕ1(z)(1− z

2
) ϕ0(z)



Chapter 3

Exponential Peer Methods

In this chapter, we will be concerned with the construction, implementation and
numerical analysis of a new class of exponential integrators, exponential peer meth-
ods (EPMs).

The first Section 3.1 will be devoted to give an overview on peer methods. The
definition of the new methods and the basic properties of their coefficients are given
in Section 3.2. Consistency and zero-stability of the methods will be investigated
in Section 3.2.2, and we formulate simplifying conditions which guarantee order
p = s − 1, where s is the number of stages. For the non-stiff case the order is
p = s. Due to the two-step character of the methods, zero-stability has to be
discussed. Finally, in Section 3.3 we consider a special class of EPMs of stiff order
p = s − 1 with only two different arguments for the exponential functions. By
a special choice of the nodes we obtain optimally zero-stable methods. We show
that the methods solve linear problems y′ = Ty exactly.
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3.1 Peer methods

Two-step peer methods are a class of time integration schemes for the numeri-
cal solution of non-stiff and stiff IVPs either for sequential or parallel computers,
which were introduced by B. A. Schmitt and R. Weiner [43]. This class has a
two-step character and propagates s different "peer" solution variables with es-
sentially identical characteristics from step to step. All s stage solutions are peers
sharing essentially the same accuracy and stability properties. Linearly-implicit
peer methods have been studied for parallel and sequential implementation e.g., in
[41–43]. They are characterized by a high stage order what makes them attractive
for very stiff systems.

The new feature of peer methods is that they possess several stages like Runge-
Kutta-type methods, but all these stages have the same properties and no ex-
traordinary solution variable is used. These methods combine positive features of
both Runge-Kutta and multistep methods having good stability properties and no
order reduction for very stiff systems. In particular, several explicit peer methods
[52, 53] have been proved to be competitive with standard Runge-Kutta methods
in a wide selection of non-stiff test problems.

We consider the numerical solution of initial value problems for systems of
ODEs of the form,

dy

dt
= f(t, y), t ∈ [t0, tend] (3.1)

y(t0) = y0 ∈ Rn,

where y = y(t), y : R 7→ Rn and f : R× Rn 7→ Rn.

The form of the explicit two-step peer methods is as follows. In each time step
from tm to tm+1 = tm + hm solutions Ymi ∼= y(tmi), i = 1, . . . , s, are computed as
approximations at the points tmi = tm + ci hm. The time step consists of s stages,

Ymi =
s∑
j=1

bij Ym−1,j + hm

s∑
j=1

aij f (tm−1,j, Ym−1,j)

+ hm

i−1∑
j=1

rij f (tmj, Ymj) , i = 1, . . . , s. (3.2)

We point out that the right-hand side in (3.2) depends on the stages Ym−1,j of the
previous time step with the contribution from actual stages. Because of rij = 0 for



Exponential Peer Methods 24

j ≥ i the methods are explicit. We store the stage vectors Ymi and also f (tmj, Ymj)

in vectors.

Ym =


Ym1

Ym2

...
Yms

 ∈ Rns, F (tm, Ym) =


f(tm + c1 hm, Ym1)

f(tm + c2 hm, Ym2)
...

f(tm + cs hm, Yms)

 (3.3)

Explicit peer methods yield high order approximations Ymi− y(tmi) = O(hsm), i =

1, . . . , s, uniformly in all stages. So, dense output is available cheaply.

For stiff problems in [41] linearly-implicit peer methods are considered. They
are given by

(I − hmγTm)Ymi =
s∑
j=1

bij Ym−1,j + hm

s∑
j=1

aij
[
Fm−1,j − T Ym−1,j

]
+ hmTm

i−1∑
j=1

gij Ymj, i = 1, 2, . . . , s. (3.4)

Note that for peer methods all stage values are of order p, i.e., the order of consis-
tency is equal to the stage order. A consequence is that in implicit peer methods
no order reduction for stiff problems occurs.

3.2 Exponential peer methods

3.2.1 Definition of exponential peer methods

We consider the initial value problem (3.1). For the formulation of exponential
peer methods we assume as usual in exponential integrators a linearization of the
form

dy

dt
= f(t, y) = T y + g(t, y), t ∈ [t0, tend] (3.5)

y(t0) = y0 ∈ Rn,

where g(t, y) = f(t, y) − Ty. Here T ∈ Rn×n is an arbitrary matrix, which is
supposed to carry the stiffness of the system, and which should approximate the
Jacobian fy for stability reasons. In our tests with the EXPINT package [3] T is
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constant over the whole integration interval, in principle, however, T may change
in every step.

We consider the following class of exponential peer methods and assume a
constant step size h. In this method, a numerical solution Ymi, i = 1, 2, . . . , s will
be calculated for the system (3.5) by an s−stage scheme with step size h of the
form

Ymi = ϕ0(αihT )
s∑
j=1

bij Ym−1,j + h

s∑
j=1

Aij(αihT )
[
fm−1,j − T Ym−1,j

]
+ h

i−1∑
j=1

Rij(αihT )
[
fmj − T Ymj

]
, i = 1, 2, . . . , s. (3.6)

The coefficients

B = (bij)
s
i,j=1 , A = (Aij)

s
i,j=1 , R = (Rij)

s
i,j=1 , c = (ci)

s
i=1 , and α = (αi)

s
i=1

are free parameters of the scheme. The idea is to determine the parameters in
such a way that the method is of high order and has good stability properties. In
this chapter we will assume constant step sizes.

The coefficients bij, ci and αi are constant and we assume αi ≥ 0. The ma-
trix functions Aij (hT ) and Rij (hT ) are linear combinations of ϕ−functions, see
Section 2.4. Parallel methods are obtained by the choice R = 0 eliminating any
reference to the stages Ymi of the actual step.

The values Ymi approximate the exact solution y(tm + ci h) at points tmi =

tm + ci h, where the nodes ci are assumed to be pairwise distinct. They are chosen
such that cs = 1 and the other nodes satisfy 0 ≤ ci < 1, i = 1, . . . , s− 1. Further
we denote fmj = f(tmj, Ymj). The s stage values Ymi have the same characteristics
so we call them "peer" [43]. By setting T = 0, we obtain explicit peer methods
(3.2).

The compact notation for EPMs is obtained by storing the stages Ymi into Ym
and, accordingly, G(Ym) := F (Ym)− TYm with (3.3) then (3.6) corresponds to

Y = Φ(B ⊗ I)Ym−1 + h(A⊗ I)G (Ym−1) + h(R⊗ I)G (Ym) ,

where ⊗ is the Kronecker product, and

Φ = diag(ϕ0(α1hT ), . . . , ϕ0(αshT )). (3.7)
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3.2.2 Consistency and convergence

In this section we will derive order conditions for EPMs when applied to stiff
semi-linear problems (3.5). Essential in choosing a numerical method is its order
of consistency and its numerical stability.

We will assume that the stiffness is due to the linear part Ty and that the
nonlinear part satisfies a global Lipschitz condition

‖g(t, u)− g(t, v)‖ ≤ Lg‖u− v‖, (3.8)

with Lipschitz constant Lg of moderate size. We assume that T has a bounded
logarithmic norm

µ(T ) ≤ ω. (3.9)

If we use different matrices T in different steps, then we will assume (3.9) for all
steps. If the system (3.5) comes from semi-discretization of parabolic equations
then this condition is usually satisfied. Assumption (3.9) implies

‖ϕ0(hT )‖ = ‖ehT‖ ≤ ehµ(T )

≤ ehω, (3.10)

see e.g., [28].

Remark 3.1. A consequence of (3.9) is that ‖ϕl(hT )‖ and ‖hTϕl(hT )‖ are uni-
formly bounded for l ≥ 1. This also holds for the matrix coefficients Aij(αihT )

and Rij(αihT ) which are linear combinations of the ϕl(αihT ), l ≥ 1.

We are interested in error estimates, which may depend on bounds of derivatives
of the exact solution, on ω and Lg, but do not depend on the norm of T . For our
investigations of the order of consistency we always assume that the right hand
side is sufficiently smooth.

The order conditions for exponential peer methods can be derived by replacing
the numerical solutions Ymi and Ym−1,i in (3.6) by values of the exact solution y(t)

in the numerical method where f(tmi, y(tmi)) = y′(tmi). Then the local residual
errors ∆mi are

∆mi = y(tmi)− ϕ0(αihT )
s∑
j=1

bijy(tm−1,j)− h
s∑
j=1

Aij(αihT )
[
y′(tm−1,j)
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− Ty(tm−1,j)
]
− h

i−1∑
j=1

Rij(αihT )
[
y′(tmj)− Ty(tmj)

]
, i = 1, . . . , s. (3.11)

By Taylor expansion of the exact solution y(t) and y′(t) at the point tm, we have

y
(
tmi
)

= y
(
tm + cih

)
=

q∑
r=0

hrcri
r!

y(r)(tm) +O(hq+1),

y
(
tm−1,j

)
= y
(
tm−1 + cj h

)
= y
(
tm + (cj − 1)h

)
=

q∑
r=0

hr(cj − 1)r

r!
y(r)(tm) +O(hq+1),

y′
(
tm + cj h

)
=

q∑
r=0

hrcrj
r!

y(r+1)(tm) +O(hq+1),

y′
(
tm−1,j

)
= y′

(
tm−1 + cj h

)
= y′

(
tm + (cj − 1)h

)
=

q∑
r=0

hr (cj − 1)r

r!
y(r+1)(tm) +O(hq+1),

where the O-term is uniformly bounded due to the smoothness assumption on
the solution.

Substitution into (3.11) yields

∆mi =

q∑
r=0

(ci h)r

r!
y(r)(tm)− ϕ0 (αi hT )

s∑
j=1

bij

q∑
r=0

(cj − 1)r hr

r!
y(r)(tm)

− h
s∑
j=1

Aij (αi hT )

{
q∑
r=0

(cj − 1)r hr

r!
y(r+1)(tm)− T

q∑
r=0

(cj − 1)r hr

r!
y(r)(tm)

}

− h
i−1∑
j=1

Rij (αi hT )

{
q∑
r=0

(cj h)r

r!
y(r+1)(tm)− T

q∑
r=0

(cj h)r

r!
y(r)(tm)

}
+O(hq+1)

By collecting the coefficients of
hr

r!
y(r)(tm)we get

∆mi =

q∑
r=0

{
cri I − ϕ0(αi hT )

s∑
j=1

bij(cj − 1)r − r
s∑
j=1

Aij(αi hT )(cj − 1)r−1

+hT
s∑
j=1

Aij(αi hT )(cj − 1)r − r
i−1∑
j=1

Rij(αi hT )cr−1j

+hT
i−1∑
j=1

Rij(αi hT )crj

}
hr

r!
y(r)(tm) +O(hq+1) (3.12)
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Here the remainder results from products of the coefficients of the method with
the O(hq+1)-terms of the Taylor expansion of the solution. Due to Remark 3.1 the
remainder is bounded independent of ‖T‖.

Definition 3.1. The exponential peer method (3.6) is consistent of non-stiff order
p if there are constants h0, C > 0 such that

‖∆mi‖ ≤ Chp+1 for all h ≤ h0, and for all 1 ≤ i ≤ s.

The method is consistent of stiff order p, if C and h0 may depend on ω, Lg and
bounds for derivatives of the exact solution, but are independent of ‖T‖. �

Note that for exponential peer methods stage order and order are equal. To
determine the coefficients of the method, B, A, R, c, and α, such that the method
has high order, it is advantageous to consider the linear case y′ = Ty first.

Theorem 3.1. If the exponential peer method satisfies the conditions

s∑
j=1

bij(cj − 1)l = (ci − αi)l, l = 0, 1, . . . , q, (3.13)

then it is of stiff order of consistency p = q for the linear equation y′ = Ty.

Proof. From (3.11), for the equation y′ = Ty the local residual errors will be

∆mi = y(tm + cih)− ϕ0(αihT )
s∑
j=1

bijy(tm + (cj − 1)h)

= ϕ0(cihT )y(tm)− ϕ0(αihT )
s∑
j=1

bijϕ0((cj − 1)hT )y(tm)

Using the relation

ϕ0(z) =

q∑
l=0

zl

l!
+ zq+1ϕq+1(z),

which follows from (2.3), we obtain

∆mi =

q∑
l=0

[
cli −

s∑
j=1

bij(αi + cj − 1)l
]
hlT l

l!
y(tm) + hq+1

{
cq+1
i ϕq+1(cihT )

−
s∑
j=1

bij(αi + cj − 1)q+1ϕq+1

(
(αi + cj − 1)hT

)}
T q+1y(tm)
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With T q+1y(tm) = y(q+1)(tm) the second term is O(hq+1), where the constants are
independent of ‖T‖.

For the coefficients of
hlT l

l!
y(tm) for l = 0, . . . , q we have

cli −
s∑
j=1

bij(αi + cj − 1)l = cli −
s∑
j=1

bij

l∑
k=0

(
l

k

)
(cj − 1)kαl−ki

= cli −
l∑

k=0

(
l

k

)
αl−ki

s∑
j=1

bij(cj − 1)k

= cli −
l∑

k=0

(
l

k

)
αl−ki (ci − αi)k = cli − cli = 0.

The method is therefore of stiff order p = q. �

If we write the equations (3.13) in matrix form for l = 0, . . . , s − 1, we obtain
immediately

Corollary 3.1. Let

B = VαV
−1
1 , (3.14)

where

Vα =
(
1, c− α, . . . , (c− α)s−1

)
=


1 c1 − α1 (c1 − α1)

2 . . . (c1 − α1)
s−1

1 c2 − α2 (c2 − α2)
2 . . . (c2 − α2)

s−1

...
... . . . . . .

...
1 cs − αs (cs − αs)2 . . . (cs − αs)s−1

 ,

V1 =
(
1, c− 1, . . . , (c− 1)s−1

)
=


1 c1 − 1 (c1 − 1)2 . . . (c1 − 1)s−1

1 c2 − 1 (c2 − 1)2 . . . (c2 − 1)s−1

...
... . . .

...
...

1 cs − 1 (cs − αs)2 . . . (cs − 1)s−1

 ,

c =


c1

c2
...
cs

 , α =


α1

α2

...
αs

 , and 1 =


1

1
...
1

 .

Then the exponential peer method has a stiff order p = s − 1 for the equation
y′ = Ty. �
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For α = c we have Vα = 1eT1 , where e1 = (1, 0, . . . , 0)T . If furthermore cs = 1

then eTs V1 = eT1 i.e., eT1 V
−1
1 = eTs , where es = (0, 0, . . . , 1)T . Therefore we have

Corollary 3.2. Let α = c, cs = 1. Then with (3.14) we have B = 1eTs , and

s∑
j=1

bij(cj − 1)l = (cs − 1)l.

Therefore (3.13) is satisfied for all l, the exponential peer method solves the system
y′ = Ty with exact starting values exactly. �

If q = s− 1, then the general solution of (3.13) will be

bij =
s∏

k=1
k 6=j

ck + αi − ci − 1

ck − cj
.

We consider the following two examples for the choice of c and α.

Case 1 (Corollary 3.2) Let

ci = αi

Then

B =



0 0 0 . . . 0 1

0 0 0 . . . 0 1
...

... . . . . . .
...

...
0 0 0 . . . 0 1

0 0 0 . . . 0 1

0 0 0 . . . 0 1


= 1eTs .

A disadvantage of this choice is that ϕ−functions of s different arguments
have to be calculated. This leads to a high computational effort. To minimize
the number of ϕ−function evaluations, we choose to set the parameter α to
have only two different arguments.

Case 2 Let

αs = 1, αi = α∗, i = 1, . . . , s− 1,

c1 =
(s− 1)(α∗ − 1) + 1− β

1− β
, ci = (s− i)(α∗ − 1) + 1, i = 2, . . . , s.

(3.15)
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Then

B =



β g1 (β) βg2 (β) . . . βgs−1 (β) βgs (β)

0 0 1 . . . 0 0
...

... . . .
. . . ...

...
0 0 0 . . . 1 0

0 0 0 . . . 0 1

0 0 0 . . . 0 1


,

where g1 (0) = 1.

The coefficients bij are determined by Theorem 3.1 for given α and c. We now
will consider the general case (3.5) to obtain conditions for the matrix coefficients
Aij(αihT ) and Rij(αihT ).

From (3.12) with (3.13) we need to show that the coefficients of
hrT r

r!
y(tm) for

r = 0, . . . , q are zeros.

Theorem 3.2. Let the conditions (3.13) be satisfied for l = 0, . . . , q. Let further
Aij(αihT ) and Rij(αihT ) be linear combinations of ϕ1(αihT ), . . . , ϕq+1(αihT ) sat-
isfying the condition

s∑
j=1

Aij(αihT ) (cj − 1)r +
i−1∑
j=1

Rij(αihT )crj

=
r∑
l=0

(
r

l

)
l!αl+1

i (ci − αi)r−l ϕl+1(αihT ) (3.16)

for r = 0, . . . , q. Then the exponential peer method is at least of stiff order of
consistency p = q for (3.5).

Proof. For order q the coefficients of y(r)(tm) in (3.12) should be equal to zero for
r = 0, . . . , q.

For r = 0 using (3.13) and (3.16) we obtain

I − ϕ0(αihT )
s∑
j=1

bij + hT

s∑
j=1

Aij(αihT ) + hT

i−1∑
j=1

Rij(αihT )

= I − ϕ0(αihT ) + αihTϕ1(αihT ) = 0 by (2.3).
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For r = 1, . . . , q holds for the coefficients

cri I − ϕ0(αihT )
s∑
j=1

bij(cj − 1)r − r
s∑
j=1

Aij(αihT )(cj − 1)r−1

+ hT
s∑
j=1

Aij(αihT )(cj − 1)r − r
i−1∑
j=1

Rij(αihT )cr−1j + hT

i−1∑
j=1

Rij(αihT )crj

=cri I − ϕ0(αihT )(ci − αi)r − r
r−1∑
l=0

(
r − 1

l

)
αl+1
i (ci − αi)r−1−ll!ϕl+1(αihT )

+ hT
r∑
l=0

(
r

l

)
αl+1
i (ci − αi)r−ll!ϕl+1(αihT ) by (3.16)

=cri I − ϕ0(αihT )(ci − αi)r − r
r∑
l=1

(
r − 1

l − 1

)
αli(ci − αi)r−l(l − 1)!ϕl(αihT )

+
r∑
l=0

(
r

l

)
αli(ci − αi)r−l(l!ϕl(αihT )− I) by (2.3)

Using the fact l
(
r

l

)
= r

(
r − 1

l − 1

)

=cri I − ϕ0(αihT )(ci − αi)r −
r∑
l=1

αli

(
r

l

)
(ci − αi)r−ll!ϕl(αihT )

+
r∑
l=0

(
r

l

)
αli(ci − αi)r−ll!ϕl(αihT )− cri I = 0. �

Corollary 3.3. Let α = c, cs = 1 and B = 1eTs . Let

s∑
j=1

Aij(cihT )(cj − 1)r+
i−1∑
j=1

Rij(cihT )crj

=r!cr+1
i ϕr+1(cihT ) for r = 0, . . . , q. (3.17)

Then the exponential peer method is consistent of stiff order at least p = q. �

Note that for q = s−1 for any given strictly lower triangular matrix R we can solve
(3.16) for A, due to the regularity of V1. Therefore we can construct exponential
peer methods of any order by increasing the number of stages.

If we allow the bounds to depend on T y(q+1) (non-stiff order), then the order
of the methods will be p = q + 1,
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Theorem 3.3. Let the solution y(t) be (q + 2)-times continuously differentiable.
Let the conditions (3.13) be satisfied for l = 0, . . . , q+1, and (3.16) for l = 0, . . . , q.
Then the method is of non-stiff order p = q + 1.

Proof. The beginning of the proof is identical to the proof of Theorem 3.2. Con-
sidering now one more term in (3.16) gives for the term with hq+1

{
cq+1
i I − ϕ0(αihT )

s∑
j=1

bij (cj − 1)q+1 − (q + 1)
s∑
j=1

Aij(αihT ) (cj − 1)q

− (q + 1)
i−1∑
j=1

Rij(αihT )cqj + hT
i−1∑
j=1

Rij(αihT )cq+1
j

+ hT
s∑
j=1

Aij(αihT ) (cj − 1)q+1

}
hq+1

(q + 1)!
y(q+1) (tm)

=

{
cq+1
i I − ϕ0(αihT ) (ci − αi)q+1

− (q + 1)

q∑
l=0

(
q

l

)
l!αl+1

i (ci − αi)q−lϕl+1(αihT )

}
hq+1

(q + 1)!
y(q+1) (tm)

+O
(
hq+2

)
,

Using the fact
(
q + 1

l + 1

)
=
q + 1

l + 1

(
q

l

)

=

{
cq+1
i I − ϕ0(αihT ) (ci − αi)q+1

−
q+1∑
l=1

(
q + 1

l

)
l!αli(ci − αi)q+1−lϕl(αihT )

}
hq+1

(q + 1)!
y(q+1) (tm)

+O
(
hq+2

)
=

{
cq+1
i I −

q+1∑
l=0

(
q + 1

l

)
l!αli(ci − αi)q+1−lϕl(αihT )

}
hq+1

(q + 1)!
y(q+1) (tm)

+O
(
hq+2

)
,

With ϕl(αihT ) = αihTϕl+1(αihT ) + 1
l!
I we finally obtain

=

{
cq+1
i I −

q+1∑
l=0

(
q + 1

l

)
αli(ci − αi)q+1−l

}
hq+1

(q + 1)!
y(q+1) (tm) +O

(
hq+2

)
= O

(
hq+2

)
.



Exponential Peer Methods 34

So ∆mi = O (hq+2) and the method is of non-stiff order p = q + 1. �

Remark 3.2. Note that ‖Ty(q+1)‖ can be of moderate size although ‖T‖ is very
large, for instance for linear problem y′ = Ty or for special semi-discretized partial
differential equations with homogeneous Dirichlet boundary conditions.

Due to the two-step character for the convergence of the method, we have in
addition to show zero-stability.

3.2.3 Linear stability analysis

We now focus our attention on the basic linear stability requirements that any
numerical method for ODEs has to accomplish. The definition of such properties
we present in this section are formulated according to the formalism of EPMs. To
study stability of a formula, it is often useful to analyze its performance on the
following test problem (Dahlquist test equation [10]):

y′(t) = λy, y(t0) = y0, (3.18)

where λ ∈ C− := {z ∈ C : Re(z) ≤ 0}.

The solution of this simple problem remains bounded when time goes to infinity
and we need to require that the numerical solution possesses an analogous stability
property to that displayed by the exact solution (see e.g., [33]). Let us analyze
the conditions to be imposed on the numerical method in order to reproduce the
same behavior of the exact solution.

By applying the EPM (3.6) to the linear test equation (3.18), we obtain the
following recurrence relation

Ym = M (z)Ym−1 = (M (z))m Y0, z = hT, (3.19)

Here, Ym =
(
Ymi
)s
i=1

and M (z) is the stability matrix, which takes the form, cf.
(3.7)

M (z) = Φ(B ⊗ I).

For zero-stability we consider z = 0.

In 1963, Dahlquist [10] introduced the concept of A−stability. The concept
of A−stability is based on the linear test equation (3.17). When a numerical
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method is A−stable, there are no stability restriction on the step size in the
implementation, which is a desirable property for the integration of stiff systems.

Definition 3.2. The exponential peer method (3.6) is zero-stable if the spectral
radius of the stability matrix at z = 0 is one (i.e., %(M (0)) = 1) and all eigenvalues
on the unit circle are simple. �

From (3.19) we have M (0) = B. from (3.13) for l = 0 we have B1 = 1 i.e., B
has always one eigenvalue λ1 = 1.

Analogously to Adams methods we will consider methods where all other eigen-
values are zero, i.e., the matrix B has the eigenvalues

λ1 = 1, λ2 = λ3 = · · · = λs = 0. (3.20)

The parasitic roots are zero, a property also shared by the exponential general
linear methods of Ostermann et al. [40]. We call such methods optimally zero-
stable. Since the matrix B is constant, zero-stability implies that powers of B are
uniformly bounded.

For the methods of Case 1 and Case 2 obviously hold:

Theorem 3.4. The methods (3.15) with | β |< 1 are zero-stable. With β = 0 they
are optimally zero-stable. �

For convergence consider first the non-stiff case. Then we have

Φ = I +O(h)

for h→ 0. By standard arguments (e.g., [52]) follows

Theorem 3.5. Let the exponential peer method be consistent of non-stiff order p
and zero-stable. Let for the starting values hold Y0i − y(t0 + cih) = O(hp). Then
the method is convergent of non-stiff order p. �

Note that here the O(h)-terms may depend on ‖T‖. For special methods this
can be avoided.

Theorem 3.6. Let the exponential peer method be consistent of stiff order p and
zero-stable. Let for the starting values hold Y0i − y(t0 + cih) = O(hp). Let bij ≥ 0

for all 1 ≤ i, j ≤ s. Then the method is convergent of stiff order p.
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Proof. For the global error

εmi = y(tmi)− Ymi

holds

εmi = ϕ0(αihT )
s∑
j=1

bijεm−1,j + h

s∑
j=1

Aij(αihT )
[
g
(
tm−1,j, y(tm−1,j)

)
− g
(
tm−1,j, Ym−1,j

)]
+ h

i−1∑
j=1

Rij(αihT )
[
g
(
tmj, y(tmj)

)
− g
(
tmj, Ymj

)]
+ ∆mi.

From (3.13) we have for l = 0 the relation
s∑
j=1

bij = 1. By Remark 3.1 the norms

of the matrix coefficients Aij and Rij are bounded by some constants CA and CR.
With (3.10) we have for h ≤ h0, where h0 is independent of ‖T‖

‖ϕ0(αihT )‖ ≤ eαihω ≤ 1 + C∗h,

C∗ independent of ‖T‖. With the assumptions on bij, with the Lipschitz constant
Lg of g (3.8) and with ‖εm−1‖ = maxi ‖εm−1,i‖ we arrive at

‖εmi‖ ≤ (1 + C∗h)‖εm−1‖+ hCALg‖εm−1‖+ hCRLg

i−1∑
j=1

‖εmj‖+ Chp+1.

Here the constants are independent of ‖T‖.

For εmi on the right hand side only quantities εm1, . . . , εm,i−1 from lower stages
appear (R is strictly lower triangular). By induction over the stages we will prove
the relation

‖εmi‖ ≤ (1 + hγi)‖εm−1‖+ δih
p+1,

where γi and δi are independent of ‖T‖.

For i = 1 :

‖εm1‖ ≤ (1 + h(α1C
∗ + CALg))‖εm−1‖+ Chp+1,

i.e., The recurrence relation is satisfied with γ1 = α1C
∗ + CALg, δ1 = C.
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Let the relation be satisfied for j = 1, . . . , l − 1

‖ εmj‖ ≤ (1 + hγj)‖εm−1‖+ δjh
p+1.

Then for i = l :

‖εm−1,l‖ ≤ (1 + h(αlC
∗ + CALg))‖εm−1‖+ hCRLg

l−1∑
j=1

(
(1 + hγj)‖εm−1‖+ δjh

p+1
)

+ Chp+1

≤ (1 + hγl)‖εm−1‖+ δlh
p+1 for h ≤ h0.

The constants γl, δl in the stages depend on the logarithmic norm ω, on CA, CR
and Lg, but are independent of ‖T‖ and therefore uniformly bounded. We finally
arrive at the recursion

‖εm‖ = max
i
‖εmi‖ ≤ (1 + Ĉh)‖εm−1‖+ C̃hp+1

with constants Ĉ and C̃ not depending on ‖T‖. Stiff order of convergence p follows
by standard techniques. �

3.3 A special class of methods

In our numerical tests we will use the framework of EXPINT. Although there exist
relations among ϕ−functions of special arguments, it seems to be advantageous
to have the number of different arguments as small as possible. In this section
we will therefore consider a special class with only two different values of αi. We
consider the methods of Case 2 with αs = 1, cf. Section 3.2.2.

For zero-stability the choice β = 0 in (3.15) is optimal. We have

α =


α∗

...
α∗

1

 , ci = (s− i)(αi − 1) + 1. (3.21)

Furthermore, we will always assume that B is defined by (3.14). By Corollary
3.1 the conditions (3.13) are fulfilled up to s− 1. For this choice we immediately
obtain
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Theorem 3.7. For

s− 2

s− 1
≤ α∗ < 1

the nodes ci are distinct and satisfy 0 ≤ ci ≤ 1 with cs = 1. Due to B = VαV
−1
1

the exponential peer methods are of stiff order p ≥ s− 1 for y′ = Ty. �

With (3.14) and (3.21) the methods are also optimally zero-stable.

Theorem 3.8. The methods defined by (3.14), (3.21) are optimally zero-stable,
the matrix B is given by

B =



0 1 0 . . . 0 0

0 0 1 . . . 0 0
...

...
... . . . ...

...
0 0 0 . . . 1 0

0 0 0 . . . 0 1

0 0 0 . . . 0 1


. (3.22)

Proof. We have with cs = 1

Vα =



1 c1 − α1 (c1 − α1)
2 . . . (c1 − α1)

s−1

1 c2 − α2 (c2 − α2)
2 . . . (c2 − α2)

s−1

...
...

...
...

...
1 cs−1 − αs−1 (cs−1 − αs−1)2 . . . (cs−1 − αs−1)s−1

1 0 0 . . . 0


.

(3.22) is equivalent to

BV1 =



1 c2 − 1 . . . (c2 − 1)s−1

...
...

...
...

1 cs−1 − 1 . . . (cs−1 − 1)s−1

1 0 . . . 0

1 0 . . . 0


This is equal to Vα iff

cs−1 = αs−1,

ci+1 − 1 = ci − αi, i = 1, . . . , s− 1. (3.23)
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Inserting (3.21) immediately proves the statement. �

Corollary 3.4. The methods (3.22) are convergent of stiff order p = s− 1.

Proof. Because of bi,j ≥ 0 ∀ i, j = 1, . . . , s and by using Theorem 3.6 so the
methods are convergent of stiff order p = s− 1. �

Exponential integrators are designed to solve the linear system y′ = Ty exactly.
However, due to their two-step character this is not trivial for peer methods. For
the choice α = c this was shown in Corollary 3.2. Here we will prove this property
also for the choice (3.21).

Theorem 3.9. Let (3.21) be satisfied and let the starting values Y0i be exact. Then
Y1i = e(1+ci)hTy(t0), i.e., we have the exact solution of y′ = Ty.

Proof. By (3.6) we have

Y1i = eαihT

s∑
j=1

bijY0j = eαihT

s∑
j=1

bije
cjhTy(t0)

Due to the structure of B for i = 1, . . . , s− 1 this simplifies to

Y1i = e(ci+1h+αih)Ty(t0)

= e(cih+h)Ty(t0) (by (3.21))

= e(1+ci)hTy(t0),

i.e., Y1i is exact. For the last stage (cs = 1) we have

Y1s = ehTY0s = ehT ehTy(t0) = e2hTy(t0). �

The matrix coefficients A and R can be computed by solving the system of alge-

braic equations (3.16) for r = 0, . . . , s − 1 using Maple. There remain
s(s− 1)

2
free parameters. For simplicity, to get a uniquely defined method, we set free
parameters to zero to obtain an upper triangular matrix A and a strictly lower
triangular matrix R. For this very special choice each stage of the resulting expo-
nential peer method can be interpreted as an exponential multistep method [5],
however with different methods in different stages. Our choice is arbitrary and
may be not the best. For instance it is possible to set R = 0 to obtain parallel
methods.
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With (3.21) and α∗ =
(s− 1)

s
we have computed methods for s = 3, 4, 5, 6, 7

in this way. They are called epm3–epm7. By Theorem 3.2 the methods are of stiff
order and stage order p ≥ s− 1, and by Theorem 3.3 of non-stiff order p = s.

Remark 3.3. Another choice for α and c with also two different arguments is
given in Appendix C.

As example we present the coefficients of epm4 and epm5. The other methods′

coefficients are found in Appendix A.

Example 3.1. Method epm4 with 4 stages of stiff order p ≥ 3:

α =

[
3

4
,
3

4
,
3

4
, 1

]T
, C =

[
1

4
,
1

2
,
3

4
, 1

]T
, B =


0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 1



A =


A11 A12 A13 A14

0 A11 A12 A13

0 0 A11 A12

0 0 0 A44

 , R =


0 0 0 0

A14 0 0 0

A13 A14 0 0

R41 R42 R43 0


where

A11 = −3

4
ϕ2 +

27

4
ϕ3 −

81

4
ϕ4, A12 =

3

4
ϕ1 −

9

8
ϕ2 −

27

2
ϕ3 +

243

4
ϕ4,

A13 =
9

4
ϕ2 +

27

4
ϕ3 −

243

4
ϕ4, A14 = −3

8
ϕ2 +

81

4
ϕ4,

A44 = ϕ1 −
22

3
ϕ2 + 32ϕ3 − 64ϕ4, R41 = 12ϕ2 − 80ϕ3 + 192ϕ4,

R42 = −6ϕ2 + 64ϕ3 − 192ϕ4, R43 =
4

3
ϕ2 − 16ϕ3 + 64ϕ4.

Example 3.2. Method epm5 with 5 stages of stiff order p ≥ 4:

α =

[
4

5
,
4

5
,
4

5
,
4

5
, 1

]T
, C =

[
1

5
,
2

5
,
3

5
,
4

5
, 1

]T
, B =


0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0 0 0 0 1
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A =


A11 A12 A13 A14 A15

0 A11 A12 A13 A14

0 0 A11 A12 A13

0 0 0 A11 A12

0 0 0 0 A55,

 R =


0 0 0 0 0

A15 0 0 0 0

A14 A15 0 0 0

A13 A14 A15 0 0

R51 R52 R53 R54 0


where

A11 = −4

5
ϕ2 +

176

15
ϕ3 −

384

5
ϕ4 +

1024

5
ϕ5,

A12 =
4

5
ϕ1 −

8

3
ϕ2 −

64

3
ϕ3 + 256ϕ4 −

4096

5
ϕ5,

A13 =
24

5
ϕ2 +

32

5
ϕ3 −

1536

5
ϕ4 +

6144

5
ϕ5,

A14 = −8

5
ϕ2 +

64

15
ϕ3 +

768

5
ϕ4 −

4096

5
ϕ5,

A15 =
4

15
ϕ2 −

16

15
ϕ3 −

128

5
ϕ4 +

1024

5
ϕ5,

A55 = ϕ1 −
125

12
ϕ2 +

875

12
ϕ3 −

625

2
ϕ4 + 625ϕ5,

R51 = 20ϕ2 −
650

3
ϕ3 + 1125ϕ4 − 2500ϕ5,

R52 = −15ϕ2 +
475

2
ϕ3 − 1500ϕ4 + 3750ϕ5,

R53 =
20

3
ϕ2 −

350

3
ϕ3 + 875ϕ4 − 2500ϕ5,

R54 = −5

4
ϕ2 +

275

12
ϕ3 −

375

2
ϕ4 + 625ϕ5.

Here, in Aij, Rij the argument of the ϕ−functions is αihT .

3.4 Numerical experiments

In this section, we illustrate the theoretical results given on the convergence be-
havior of exponential peer methods for constant step sizes.

3.4.1 Starting procedure

Due to the two-step structure with s stages all peer methods require s initial
values Y0i, i = 1, . . . , s at the beginning. We need to know the s approximations
Y0i ≈ y(t1 + (ci − 1)hpeer). So far these starting values have been computed by
one-step methods.
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In order to obtain the required approximations, we perform one time step of
size hstart > 0 of a suitable one-step method with continuous output using the
initial data y0 of the problem at time t = t0. This gives access to a numerical
solution ỹ(t) in the interval [t0, t0 + hstart] [16].

The s starting values for the exponential peer methods are computed by using
Matlab routine ode15s.

s tarth

                                                                                      
peerh

                              
0m in

0 0

m in

y Y
t t

c

=
=

0

0Y s

t 1 1

1Y
s

s

s

t t

c

=
   
    

m ax

m ax

t

c

Figure 3.1: A simplified diagram to illustrate hpeer and hstart.

To avoid computations with negative step sizes we proceed as follows assuming
cmax = max

i
(ci) and cmin = min

i
(c).

From Fig. 3.1 we have

tmax = t̃0 + cmax hpeer & tmax = t0 + hstart

t̃0 + cmax hpeer = t0 + hstart

But t0 = t̃0 + cmin hpeer

t0 − cminhpeer + cmaxhpeer = t0 + hstart

hpeer =
1

cmax − cmin

hstart.

Also

t0i = t̃0 + ci hpeer

t0i = t0 + (ci − cmin) hpeer

t0i = t0 +
ci − cmin

cmax − cmin

hstart.

To perform nsteps with the peer method to reach tend we define,

Y0i := ỹ(t1 + (ci − 1)hpeer) = ỹ

(
t0 +

ci − cmin

cmax − cmin

hstart

)
hpeer =

tend − t1
nsteps

t0 = t1 + cminhpeer − hpeer
t1 = t0 + (1− cmin)hpeer
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Therefore

hpeer =
tend − t0 − (1− cmin)hpeer

nsteps

hpeer =
tend − t0

nsteps + 1− cmin

.

For the methods in our numerical tests cmin = c1 so

hpeer =
tend − t0

nsteps + 1− c1
, t0i = t0 + (ci − c1)hstart, i = 1, . . . , s. �

As test problems, we choose a one-dimensional semi-linear parabolic initial-
boundary value problem, a Schrödinger type equation, the 1D Gray-Scott equation
[3] and the Prothero-Robinson equation.

Problem 3.1. Parabolic test equation [40]
We consider the following parabolic differential equation

ut = uxx − uux + φ(t, x), x ∈ [0, 1], t ∈ [0, tend].

Problem 3.2. Schrödinger type equation

iut = uxx − uux + φ(t, x), x ∈ [0, 1].

In the Problems 3.1 and 3.2 φ(t, x) is chosen to give the exact solution u(t, x) =

x(1− x)e−t. Standard finite differences with N = 200, Dirichlet boundary condi-
tions and exact initial conditions are used. T is defined by the space discretization
of uxx.

Problem 3.3. 1D Gray-Scott equation
The Gray-Scott equation is a reaction-diffusion equation, here in 1D,

ut = D1uxx − uv2 + a(1− u),

vt = D2vxx + uv2 − (a+ b)v,

a = 0.035, b = 0.065, D1 = 2.10−5, D2 = 1.10−5,

with periodic boundary conditions and scaled Gauss curves as initial con-
ditions, see [3]. Fourier space discretization gives a diagonal matrix T of
dimension 128.
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Problem 3.4. Prothero-Robinson equation
This problem usually serves as model problem for stiff equations

u′ = T (u− g(t)) + g′(t).

As an example we consider

g(t) =

(
cos (t)

cos (2t)

)
, T =

(
1 0

a a

)
, a = −104.

The exact solution is u(t) =
(

cos (t) , cos (2t)
)T

. The initial condition is
u(0) = (1, 1)T . This problem is very stiff, ‖ T ‖' 104.

In the following figures we present the accuracy of the numerical solution Y at
tend = 1 versus the time step h varying from 10−3 to 100. The error is computed
by the formula

Error =
‖Y − Yref‖∞
‖Yref‖∞

,

where Yref is a reference solution which is computed with Matlab routine ode15s
and high accuracy. For comparison we included lines with slopes corresponding to
orders p = 3, . . . , 7 into Figures 3.2–3.5.

The results show that the exponential peer methods in general give very accu-
rate results, and for the four test problems compare with order p = s, i.e., with the
non-stiff order. There is no order reduction as in some other methods, cf. Section
5.1.

Although we were only able to prove theoretically stiff order p = s− 1 for the
considered stiff problems the observed order is p = s. An explanation of this fact
can be given by the following two remarks.

Remark 3.4. For ω < 0 and sufficiently small Lipschitz constant L, we obtain
for constant step sizes in the recursion for the global error

‖ εm+1 ‖≤ γ ‖ εm ‖ +C hq+1

with γ = eωα
∗h + hD < 1. With ε0 = 0 this gives

‖ εm+1 ‖≤
C

1− γ
hq+1.
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The method behaves for sufficiently small γ as a method of order p = q + 1, an
effect which is commonly observed in tests with constant step size.

Remark 3.5. Our theorems about the stiff-consistency order regarding (3.5) are
based on the premise (3.9). The systems resulting from the semi-discretization of
PDEs often show special boundedness properties, e.g., for homogeneous or periodic
boundary conditions. Therefore in numerical tests on semi-discretized PDEs with
constant step size in general a higher order of convergence of the methods is ob-
served [3]. A detailed discussion of the exponential Runge-Kutta method for semi-
discretized parabolic equation can be found in Hochbruck-Ostermann [24]. In [27]
exponential Rosenbrock methods are investigated for autonomous systems, where
Tm = fy(ym) is used. Implicit exponential Runge-Kutta methods of collocation type
are found in [25].
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Figure 3.2: Order plot for the EPMs applied to Parabolic test equation
(Prob. 3.1).
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Figure 3.3: Order plot for the EPMs applied to Schrödinger type equation
(Prob. 3.2).
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Figure 3.4: Order plot for the EPMs applied to Gray-Scott (Prob. 3.3).
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Figure 3.5: Order plot for the EPMs applied to Prothero-Robinson equation
(Prob. 3.4).



Chapter 4

Exponential Peer Methods with
Variable Step Sizes

Methods with step size control are currently the default methods for solving ODEs
in major computing software. These methods, which can adapt the step size
to the conditions of the problem, are most useful when the coefficients in the
problem change very rapidly over some time intervals and smoothly otherwise.
In this chapter, we generalize the investigations in Chapter 3 for variable step
sizes. In Section 4.1.1 the formulation for variable step sizes are given. In Section
4.1.2 we derive order conditions for variable step sizes. We show that for all
stage numbers s, methods of stiff order p = s − 1 exist and can be constructed
easily. Two special subclasses are discussed. The zero-stability of the methods,
necessary for convergence, is proved in Section 4.1.3. For a class with only two
different arguments in the ϕ−functions bounds for the step size ratio are derived
which guarantee zero-stability. These bounds are sufficiently large for practical
computations. In Section 4.2 various aspects of the implementation are discussed,
especially possibilities of error estimation and step size control.
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4.1 Exponential peer methods with variable step

sizes

4.1.1 Definition of EPMs with variable step sizes

In this section we generalize the numerical methods presented in Chapter 3 for
variable step sizes for the numerical solution of the initial value problem (3.5).

We consider the class of exponential peer methods with variable step sizes

Ymi = ϕ0(αihmTm)
s∑
j=1

bij Ym−1,j + hm

s∑
j=1

Aij(αihmTm)[fm−1,j − Tm Ym−1,j]

+ hm

i−1∑
j=1

Rij(αihmTm)[fm,j − Tm Ymj], i = 1, 2, . . . , s. (4.1)

Here the coefficients ci and αi are constant and we assume αi ≥ 0, and the coeffi-
cients bij ∈ R will depend on the step size ratio

σm =
hm
hm−1

. (4.2)

The matrix functions Aij (hmTm) and Rij (hmTm) are linear combinations of the
well known ϕ−functions, see Section 2.4. They depend on the step size ratio too.
Parallel methods are obtained by the choice R = 0 eliminating any reference to
the stages Ymi of the actual step.

As in Chapter 3, the values Ymi approximate the exact solution y(tm + cihm)

at points tmi = tm + cihm, where the nodes ci are assumed to be pairwise distinct.
They are chosen such that cs = 1 and the other nodes satisfy 0 ≤ ci < 1, i =

1, . . . , s − 1. Further we denote fm,j = f(tmj, Ymj). By setting Tm = 0 we obtain
explicit peer methods. In this chapter we will consider Tm = T .

4.1.2 Consistency

In this section we will derive order conditions for EPMs (4.1) with variable step
sizes when applied to stiff semi-linear problems (3.5).

Again we will assume that the stiffness in (3.5) is due to the linear part Ty and
that the nonlinear part satisfies a global Lipschitz condition (3.8) with Lipschitz
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constant Lg of moderate size. We assume that T has a bounded logarithmic norm
ω (3.9).

In the case of variable step sizes the local residual errors ∆mi are

∆mi = y(tmi)−ϕ0(αihmTm)
s∑
j=1

bij y(tm−1,j)

−hm
s∑
j=1

Aij(αihmTm)
[
y′(tm−1,j)− Tm y(tm−1,j)

]
−hm

i−1∑
j=1

Rij(αihmTm)
[
y′(tmj)− Tm y(tmj)

]
, i = 1, . . . , s. (4.3)

By Taylor expansion of the exact solution y(t) and y′(t) at the point tm, we have

y
(
tmi
)

= y
(
tm + cihm

)
=

q∑
r=0

hrmc
r
i

r!
y(r)(tm) +O(hq+1

m ),

y
(
tm−1,j

)
= y
(
tm−1 + cj hm−1

)
= y
(
tm + (cj − 1)hm−1

)
= y
(
tm +

(cj − 1)hm
σm

)
by(4.2)

=

q∑
r=0

(cj − 1)r hrm
σrmr!

y(r)(tm) +O(hq+1
m ),

y′
(
tm + cj hm

)
=

q∑
r=0

hrmc
r
j

r!
y(r+1)(tm) +O(hq+1

m ),

y′
(
tm−1,j

)
= y′

(
tm−1 + cj hm−1

)
= y′

(
tm + (cj − 1)hm−1

)
= y′

(
tm +

(cj − 1)hm
σm

)
by(4.2)

=

q∑
r=0

(cj − 1)r hrm
σrmr!

y(r+1)(tm) +O(hq+1
m ),

where the O-term is uniformly bounded due to the smoothness assumption on
the solution.

Substitution into (4.3) yields

∆mi =

q∑
r=0

(ci hm)r

r!
y(r)(tm)− ϕ0 (αihmTm)

s∑
j=1

bij

q∑
r=0

(cj − 1)r hrm
σrm r!

y(r)(tm)

− hm
s∑
j=1

Aij (αihmTm)

q∑
r=0

{
(cj − 1)r

σrm
y(r+1)(tm)− Tm(cj − 1)r y(r)(tm)

}
hrm
r!
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− hm
i−1∑
j=1

Rij (αihmTm)

q∑
r=0

{
crj y

(r+1)(tm)− Tmcrj y(r)(tm)

}
hrm
r!

+O(hq+1
m )

By collecting the coefficients of
hrm
r!
y(r)(tm)we get

∆mi =

q∑
r=0

{
cri I − ϕ0(αihmTm)

s∑
j=1

bij

(cj − 1

σm

)r
− r

s∑
j=1

Aij(αihmTm)(cj − 1)r−1

+hmTm

s∑
j=1

Aij(αihmTm)
(cj − 1

σm

)r
− r

i−1∑
j=1

Rij(αihmTm)cr−1j

+hmTm

i−1∑
j=1

Rij(αi hm Tm)crj

}
hrm
r!
y(r)(tm) +O(hq+1

m ) (4.4)

Here the remainder results from products of the coefficients of the method with
the O(hq+1

m )-terms of the Taylor expansion of the solution. Due to Remark 3.1 the
remainder is bounded independent of ‖Tm‖.

Again we consider the linear case y′ = Ty first.

Theorem 4.1. If the exponential peer method satisfies the conditions

s∑
j=1

bij

(
cj − 1

σm

)l
= (ci − αi)l, l = 0, 1, . . . , q, (4.5)

then it is of stiff order of consistency p = q for the linear equation y′ = Ty.

Proof. From (4.3), for the equation y′ = Ty the local residual errors will be

∆mi = y(tm + cihm)− ϕ0(αihmTm)
s∑
j=1

bijy(tm + (cj − 1)hm−1)

= ϕ0(cihmTm)y(tm)− ϕ0(αihmTm)
s∑
j=1

bijϕ0

(
(cj − 1)

σm
hmTm

)
y(tm).

Using the relation

ϕ0(z) =

q∑
l=0

zl

l!
+ zq+1ϕq+1(z),

we obtain

∆mi =

q∑
l=0

[
cli −

s∑
j=1

bij

(
αi +

cj − 1

σm

)l]
hlmT

l
m

l!
y(tm) + hq+1

m

{
cq+1
i ϕq+1(cihmTm)
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−
s∑
j=1

bij

(
αi +

cj − 1

σm

)q+1

ϕq+1

((
αi +

cj − 1

σm

)
hmTm

)}
T q+1
m y(tm).

With T q+1
m y(tm) = y(q+1)(tm) the second term is O(hq+1

m ), where the constants are
independent of ‖Tm‖.

For the coefficients of
hlmT

l
m

l!
y(tm) for l = 0, . . . , q, we have

cli −
s∑
j=1

bij

(
αi +

cj − 1

σm

)l
= cli −

s∑
j=1

bij

l∑
k=0

(
l

k

)(
cj − 1

σm

)k
αl−ki

= cli −
l∑

k=0

(
l

k

)
αl−ki

s∑
j=1

bij

(
cj − 1

σm

)k

= cli −
l∑

k=0

(
l

k

)
αl−ki (ci − αi)k = cli − cli = 0.

The method is therefore of stiff order p = q for y′ = Ty. �

Writing (4.5) for q = s− 1 as matrix equation and solving for B we obtain

Corollary 4.1. Let

Bm = VαSmV
−1
1 , (4.6)

where

Sm = diag(1, σm, . . . , σ
s−1
m ) =



1 0 0 . . . 0

0 σm 0 . . . 0

0 0 σ2
m . . . 0

...
...

... . . . ...
0 0 0 . . . σs−1m


.

Then the exponential peer method has stiff order p = s−1 for the equation y′ = Ty.
�

Corollary 4.2. Let α = c, cs = 1. Then with (4.6) we have B = 1eTs , and

s∑
j=1

bij

(
cj − 1

σm

)l
= (cs − 1)l.

Therefore (4.5) is satisfied for all l, the exponential peer method solves the system
y′ = Ty with exact starting values exactly. �
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If q = s− 1, then the general solution of (4.5) will be

bij =
s∏

k=1
k 6=j

ck + (αi − ci)σm − 1

ck − cj

For special choices of the nodes ci and the values of αi, we consider the following
two examples for the choice of c and α.

Case 1 (Corollary 4.2) Let c = α. This gives Vα = 1eT1 and with eT1 Sm = eT1 we
have

B =



0 0 . . . 0 1

0 0 . . . 0 1
...

...
...

...
...

0 0 . . . 0 1

0 0 . . . 0 1


= 1eTs ,

where e1 = (1, 0, . . . , 0)T .

An advantage of this choice is that the matrix B will not depend on the
step size ratio σ, so the method will be zero-stable for all step size sequences
(see Theorem 4.4) and a disadvantage of this choice is that ϕ−functions of s
different arguments have to be calculated. This leads to a high computational
effort.

To minimize the number of ϕ-function evaluations, as in Chapter 3 we choose
to set the parameter α to have only two different arguments.

Case 2 Let

αs = 1, αi = α∗, i = 1, . . . , s− 1,

ci = (s− i)(α∗ − 1) + 1, i = 1, . . . , s.
(4.7)

Then

Bm =



b11 (σm) b12 (σm) . . . b1,s−1 (σm) b1s (σm)
...

...
...

...
...

bs−2,1 (σm) bs−2,2 (σm) . . . bs−2,s−1 (σm) bs−2,s (σm)

0 0 . . . 0 1

0 0 . . . 0 1


In the following we will always assume B to be defined by (4.6).
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We now will consider the general case (3.5) to obtain conditions for the matrix
coefficients Aij(αihT ) and Rij(αihT ).

From (4.4) with (4.5) we need to show that the coefficients of
hrmT

r
m

r!
y(tm) for

r = 0, . . . , q are zeros.

In general we have the following theorem:

Theorem 4.2. Let the conditions (4.5) be satisfied for l = 0, . . . , q. Let further

s∑
j=1

Aij(αihmTm)

(
cj − 1

σm

)r
+

i−1∑
j=1

Rij(αihmTm)crj

=
r∑
l=0

(
r

l

)
l!αl+1

i (ci − αi)r−l ϕl+1(αihmTm) (4.8)

for r = 0, . . . , q. Then the exponential peer method is at least of stiff order p = q

for (3.5).

Proof. For order q the coefficients of y(r)(tm) in (4.4) should be equal to zero for
r = 0, . . . , q.

For r = 0 using (4.5) and (4.8) we obtain

I − ϕ0(αihmTm)
s∑
j=1

bij + hmTm

s∑
j=1

Aij(αihmTm) + hmTm

i−1∑
j=1

Rij(αihmTm)

= I − ϕ0(αihmTm) + αihmTmϕ1(αihmTm) = 0 by (2.3).

For r = 1, . . . , q holds for the coefficients

cri I − ϕ0(αihmTm)
s∑
j=1

bij

(
cj − 1

σm

)r
− r

s∑
j=1

Aij(αihmTm)

(
cj − 1

σm

)r−1

+ hmTm

s∑
j=1

Aij(αihmTm)

(
cj − 1

σm

)r
− r

i−1∑
j=1

Rij(αihmTm)cr−1j

+hmTm

i−1∑
j=1

Rij(αihmTm)crj

=cri I − ϕ0(αihmTm)(ci − αi)r − r
r−1∑
l=0

(
r − 1

l

)
αl+1
i (ci − αi)r−1−ll!ϕl+1(αihmTm)

+ hmTm

r∑
l=0

(
r

l

)
αl+1
i (ci − αi)r−ll!ϕl+1(αihmTm) by (4.8)
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=cri I − ϕ0(αihmTm)(ci − αi)r − r
r∑
l=1

(
r − 1

l − 1

)
αli(ci − αi)r−l(l − 1)!ϕl(αihmTm)

+
r∑
l=0

(
r

l

)
αli(ci − αi)r−l(l!ϕl(αihmTm)− I) by (2.3)

Using the fact l
(
r

l

)
= r

(
r − 1

l − 1

)

=cri I − ϕ0(αihmTm)(ci − αi)r −
r∑
l=1

(
r

l

)
αli(ci − αi)r−ll!ϕl(αihmTm)

+
r∑
l=0

(
r

l

)
αli(ci − αi)r−ll!ϕl(αihmTm)− cri I = 0. �

Corollary 4.3. Let α = c, cs = 1 and B given by (4.6). Let

s∑
j=1

Aij(cihmTm)

(
cj − 1

σm

)r
+

i−1∑
j=1

Rij(cihmTm)crj = r!cr+1
i ϕr+1(cihmTm) (4.9)

for r = 0, . . . , q. Then the exponential peer method is consistent of stiff order at
least p = q.

Note that for q = s − 1 for any given strictly lower triangular matrix R we
can solve (4.8) for A, due to the regularity of V1. Therefore we can construct
exponential peer methods of any order.

If we allow the bounds to depend on Tmy(q+1) (non-stiff order), then the order
of the methods will be p = q + 1,

Theorem 4.3. Let the solution y(t) be (q + 2)-times continuously differentiable.
Let the conditions (4.5) be satisfied for l = 0, . . . , q+ 1, and (4.8) for l = 0, . . . , q.
Then the method is of non-stiff order p = q + 1.

Proof. The beginning of the proof is identical to the proof of Theorem 4.2. Con-
sidering one more term in (4.8) gives for the term with hq+1

m{
cq+1
i I − ϕ0(αihmTm)

s∑
j=1

bij

(
cj − 1

σm

)q+1

− (q + 1)
s∑
j=1

Aij(αihmTm)

(
cj − 1

σm

)q

−(q + 1)
i−1∑
j=1

Rij(αihmTm)cqj + hmTm

i−1∑
j=1

Rij(αihmTm)cq+1
j
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+hmTm

s∑
j=1

Aij(αihmTm)

(
cj − 1

σm

)q+1
}

hq+1
m

(q + 1)!
y(q+1) (tm)

=

{
cq+1
i I − ϕ0(αihmTm) (ci − αi)q+1

−(q + 1)

q∑
l=0

(
q

l

)
l!αl+1

i (ci − αi)q−lϕl+1(αihmTm)

}
hq+1
m

(q + 1)!
y(q+1) (tm) +O

(
hq+2
m

)

Using the fact
(
q + 1

l + 1

)
=
q + 1

l + 1

(
q

l

)

=

{
cq+1
i I − ϕ0(αihmTm) (ci − αi)q+1

−
q+1∑
l=1

(
q + 1

l

)
l!αli(ci − αi)q+1−lϕl(αihmTm)

}
hq+1
m

(q + 1)!
y(q+1) (tm) +O

(
hq+2
m

)
=

{
cq+1
i I −

q+1∑
l=0

(
q + 1

l

)
l!αli(ci − αi)q+1−lϕl(αihmTm)

}
hq+1
m

(q + 1)!
y(q+1) (tm) +O

(
hq+2
m

)
With ϕl(αihmTm) = αihmTmϕl+1(αihmTm) + 1

l!
I we finally obtain

=

{
cq+1
i I −

q+1∑
l=0

(
q + 1

l

)
αli(ci − αi)q+1−l

}
hq+1
m

(q + 1)!
y(q+1) (tm) +O

(
hq+2
m

)
=O

(
hq+2
m

)
.

So ∆mi = O (hq+2
m ) and the method is of non-stiff order p = q + 1. �

Due to the two-step character, for convergence of the method, we have in ad-
dition to show zero-stability.

4.1.3 Stability and convergence

Due to the variable step size, zero-stability now leads to restrictions of the step
size ratio in general. The methods of Case 1 are zero-stable for all step size
sequences. For Case 2, we compute bounds on the step size ratio which guarantee
zero-stability. These bounds are fairly large for practical computations.

Definition 4.1. The exponential peer method (4.1) is called stable (zero-stable) if

‖Bm+lBm+l−1 . . . Bm‖ ≤ K for all m, l ≥ 0. (4.10)
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In general Bm depends on the step ratio σm (i.e. Bm = B(σm)). Therefore,
condition (4.10) will usually lead to restrictions on the step size ratio. The proof
of zero-stability and the computation of corresponding intervals for the step size
ratio is in general a difficult task for linear multi-step and general linear methods.
Here we will consider two special classes of exponential peer methods. The first is
given with the choice of Corollary 4.2.

Theorem 4.4. Let α = c, cs = 1 and B given by (4.6). Then the exponential peer
method is stable for all step size sequences.

Proof. From Bm = 1eTs we have B1 = 1 and therefore Bm+lBm+l−1 · · ·Bm = 1eTs .
�

The choice α = c is optimal with respect to stability. However, this class of meth-
ods requires the computation of ϕ−functions with s different arguments whenever
the step size changes. Because this is in general the most time consuming part in
these methods, we are interested in methods with a smaller number of different
arguments. An efficient class with only two different arguments was proposed in
Section 3.3 for constant step sizes. We will consider here the stability of this class
for variable step sizes.

Theorem 4.5. Let α = (α∗, . . . , α∗, 1)T and ci = (s− i)(αi − 1) + 1, i = 1, . . . , s.
Let B given by (4.6). Then there exist constants σmin < 1 < σmax so that the
exponential peer method is stable for all step size sequences satisfying σmin ≤ σ ≤
σmax.

Proof. In Section 3.3 it was shown that all ci are distinct with cs = 1 and that
the matrix B(1) for constant step sizes has the form

B(1) = ese
T
s + F T

0 =


0 1 0 · · · 0

0 0 1 · · · 0

· · ·
0 0 · · · 0 1

0 0 · · · 0 1


with F0 = (δi−1,j)

s
i,j=1. B(1) is optimally zero-stable, i.e. one eigenvalue is one

and all other eigenvalues are zero. The matrix

Q = 1eT1 + F T
0 Λ
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with Λ = diag(0, 1, ε, . . . , εs−2), with a parameter 0 < ε < 1, transforms B(1) to
Jordan canonical form [12]

Q−1B(1)Q = ψ =



1 0 0 . . . 0 0

0 0 ε . . . 0 0
...

...
... . . . ...

...
0 0 0 . . . 0 ε

0 0 0 . . . 0 0


=:


1 0 . . . 0

0
... ψ̂

0

 . (4.11)

This follows from

B(1)Q = 1eT1 + F T
0 F

T
0 Λ and

Qψ = 1eT1 + εF T
0 ΛF T

0 = 1eT1 + F T
0 F

T
0 Λ.

We now apply this transformation to B(σ). The first column of Q is 1, leading to

Q−1B(σ)Qe1 = e1.

Because the last row of Q is eT1 we obtain

eT1Q
−1B(σ)Q = eTs B(σ)Q = eTsQ = eT1 .

This results in

Q−1B(σ)Q =


1 0 · · · 0

0
... B̂(σ)

0

 ,

where ‖B̂(1)‖ = ‖ψ̂‖ < 1 for 0 < ε < 1. This means, that for an interval
(σmin, σmax) around 1 we have

‖Q−1B(σ)Q‖ = max(‖B̂(σ)‖, 1) = 1

for instance for the norms ‖ · ‖l, l = 1, 2,∞. This implies that for all σj ∈
(σmin, σmax) we have

‖Bm+kBm+k−1 · · ·Bm+1Bm‖ ≤ ‖Q‖ · ‖Q−1‖

for all m, k ≥ 0, i.e. zero-stability. �
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For s = 3, 4, 5 we have computed the following bounds with Maple:

1. s = 3 : ‖B̂(σ)‖1 ≤ 1 for ε = 1/4 and 0 < σ ≤ 2.

2. s = 4 : ‖B̂(σ)‖∞ ≤ 1 for ε = 1/5 and 0 < σ ≤ 1.5.

3. s = 5 : ‖B̂(σ)‖2 ≤ 1 for ε = 1/2 and 0 < σ ≤ 1.3313.

These bounds are sufficiently large for practical computations. Note that σmin = 0

what is a necessary property for practical use of the method.

Remark 4.1. By considering the special case of increasing h in each step by a

constant factor σ we found numerically σmax =
s− 1

s− 2
. So we suppose that there

exists some norm such that

‖B̂‖ ≤ 1 for 0 < σ ≤ s− 1

s− 2
.

Remark 4.2. If we perform s− 1 consecutive steps with constant step size, then(
B(1)

)s−1
= 1eTs , and because of B(σ)1 = 1 all further products will be uniformly

bounded independent of σ. Thus, by trying to keep the step size constant for
some steps the stability of the exponential peer methods is strongly improved. This
strategy is used in our implementation.

We now consider convergence. We denote

Φm = diag
(
ϕ0(αihmTm)

)s
i=1
.

To prove convergence of our methods in addition to consistency we have to show

‖
m∏

j=m+l

Φj(Bj ⊗ I)‖ ≤ K for all 0 ≤ m < m+ l ≤ N − 1, tN = tend. (4.12)

For simplicity of notation in the following we consider scalar equations. In the
non-stiff case we can exploit the property

Φm = I +O(hm).

Then zero-stability ensures convergence. Denote the global error by

εm = Y (tm)− Ym.
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Theorem 4.6. Let the method be consistent of non-stiff order p and zero-stable
for 0 < σm ≤ σmax with σmax > 1. Let the starting values be of order p and let the
coefficients of the method be bounded for σ ≤ σmax. Then the method is convergent
of non-stiff order p.

Proof. With the mean value theorem for vector functions and with (3.9) we have

εm = Bmεm−1 +O(hm)εm−1 +O(hm)εm + ∆m.

For hm → 0 follows

εm = Bmεm−1 +O(hm)εm−1 + (1 +O(hm))∆m

= · · ·

= (Bm · · ·B1)ε0 +
m−1∑
j=0

O(hj+1)(Bm · · ·Bj+2)εj

+
m−1∑
j=0

(Bm · · ·Bj+2)(1 +O(hj+1))∆j+1.

With the assumptions on the starting values, by zero-stability and order of con-
sistency p follows

‖εm‖ ≤ C1h
p
max + C2

m−1∑
j=0

hj+1‖εj‖,

where hmax = max
m

hm.

From this recursion analogously to the proof of Theorem 5.8, p. 408 in [18]
convergence of order p follows. �

Corollary 4.4. The methods of Theorem 4.4 are convergent of non-stiff order p
for all step size sequences. The methods of Theorem 4.5 are convergent of non-stiff
order p with the values of σmax given above. �

In the stiff case the situation is more complicated. For the methods of Theorem
4.4 we have the special structure

ΦjBj =


0 . . . 0 ϕ0(α

∗hjTj)
...

...
...

0 . . . 0 ϕ0(α
∗hjTj)

0 . . . 0 ϕ0(hjTj)
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Relation (4.12) follows here immediately from (3.10). We obtain in standard way

Theorem 4.7. Let the methods in Theorem 4.4 be consistent of stiff order p. Let
the starting values be of order p and let the coefficients of the method be bounded
for σ ≤ σ∗ with σ∗ > 1. Then the method is convergent of stiff order p. �

For the methods considered in Theorem 4.5 we need an additional assumption
for the step size sequences, which is frequently considered for multistep methods
with variable step sizes, cf. [18]:

N−1∑
j=1

|σj − 1| ≤ K1, tN = tend. (4.13)

Then we can prove

Theorem 4.8. Let the methods in Theorem 4.5 be consistent of stiff order p.
Let the starting values be of order p. Let the coefficients bij(σ) be continuously
differentiable and let the coefficients of the method be bounded for σ ≤ σ∗. Let
(4.13) be satisfied, then the method is convergent of stiff order p.

Proof. From the mean value theorem we have

|bij(σ)− bij(1)| ≤ γ|σ − 1|

for all 0 < σ ≤ σ∗ with some constant γ. This yields for the ∞-norm

‖Bm‖ = ‖B(1) +B(σm)−B(1)‖ ≤ 1 + sγ|σm − 1|.

Then we have with γ1 = sγ, β = max(α∗ω, ω)

‖
m∏

j=m+l

Φj(Bj ⊗ I)‖ ≤
m∏

j=m+l

‖Φj‖‖Bj‖

≤
m∏

j=m+l

eβ hj
(

1 + γ1|σj − 1|
)
≤ e

β

(
tm+l−tm

)
e

γ1

m+l∑
j=m

|σj − 1|

≤ K.

With this stability result convergence follows in standard way. �
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4.2 Implementation issues

Variable step size codes adjust the step size in such a way, that the global error
increment is kept below a certain tolerance threshold TOL. This requires a good
estimation of this quantity. The error can be estimated by comparing two different
methods.

We constructed exponential peer methods with variable step size due to Theo-
rems 4.1 and 4.2 with s−stage of stiff order p = s−1. The nodes ci are determined
by Theorem 4.5 with

α∗ =
s− 1

s

For simplicity the free parameters are chosen so that R is strictly lower triangular
and A is upper triangular. For constant step sizes these methods reduce to those
used in Chapter 3.

For error estimation we consider two possibilities

Interpolation
The main idea of this method is to interpolate values Ymi, i = 1, . . . , s − 1,
by an interpolation polynomial P (t) of degree s− 2. We compute a solution
Ỹms = P (tm+1) of order p = s − 2. For implementation purposes using
interpolation, we will use the Newton form of the interpolation polynomial.

Embedding
The main idea of this method is to use two exponential peer schemes of
different order. Basically, one estimates the error by computing the difference
between a solution calculated with a given scheme and the one obtained using
a scheme with a different order of accuracy.

For the time-step control, we use exponential peer methods of order p− 1 and p.
We compute an embedded solution Ỹms.

Here we consider two cases.

(a) We use an (s−1)−stage method with same α∗ and c = (c2, . . . , cs) to compute
Ỹms of order s− 2.
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(b) We solve the equations (4.8) for i = s up to r = s. Because for i = s (4.5) is
also satisfied for l = 0, . . . , s, we have Ỹms of local order p = s. We use Ỹms
for error estimation and continue with Ym1, . . . , Ym,s−1, Ỹms.

In our tests we denote the corresponding s−stage methods by epmsi if interpo-
lation is used and by epmsea or epmseb if embedding of type (a) or (b) is used,
respectively.

The error is estimated by

err =
1√
n

‖Yms − Ỹms‖2
atol + rtol · max(‖Yms‖2, ‖Ỹms‖2)

,

where atol and rtol are the absolute and relative error tolerances respectively.

We then compute fac = err−1/(s−1). With respect to Remark 4.2 the new step
size is computed as follows

hnew =


h, 1 ≤ fac ≤ σmax

σmaxh, fac > σmax

max(0.2, fac)h, fac < 1,

with σmax = (s− 1)/(s− 2). In the last case the step is repeated.

Coefficients for special methods are given in Appendix B.



Chapter 5

Numerical Results

In this section we use the framework of EXPINT [3] to test our methods. We have
adapted our methods to the structure required and we use the computation of the
ϕ−functions implemented in EXPINT.

For the calculation of ϕ`(z) all ϕ(z) with  < ` are needed. This complicated
calculation must be run again if T or the step size h changes. EXPINT is therefore
kept the matrix T and the step size h over the entire integration constant, a typical
approach in implementations of exponential integrators.

EXPINT contains several semidiscretized PDEs as test problems and a collec-
tion of well-known exponential integrators implemented with constant step size.
By N the number of Fourier nodes or the number of inner points in a finite dif-
ference discretization is denoted.

Here we give only a short overview about the problems and for more detailed
information we refer to [3] and the description in the package.

Problem 5.1. Allen-Cahn equation
The Allen-Cahn equation is a parabolic problem, which reads

ut = λuxx + u− u3, x ∈ [−1, 1], λ = 0.001,

u(0, x) = 0.53x+ 0.47 sin(−1.5πx).

The Dirichlet boundary conditions are chosen to be u(t,−1) = −1 and
u(t, 1) = 1. The linear part λuxx is discretized using a Chebyshev differ-
entiation matrix resulting in a full matrix T of dimension 64.
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Problem 5.2. Kuramoto-Sivashinsky equation
The Kuramoto-Sivashinsky equation has been used to study many reaction-
diffusion systems, in 1D it is written as

ut = −uxx − uxxxx − uux, x ∈ [0, 32π],

Spectral discretization with periodic boundary conditions and dimension N =

128 is used. Various choices of initial condition are supported, the choice of
smooth initial condition is

u(x, 0) = cos
( x

16

)(
1 + sin

( x
16

))
.

Problem 5.3. Nonlinear Schrödinger equation
The 1D nonlinear Schrödinger equation is

iut = −uxx + (V (x) + λ|u|2)u, x ∈ [−π, π].

Periodic boundary conditions and the initial condition u(0, x) = esin(2x) are

considered. We used λ = 1, V (x) =
1

1 + sin2 x
and a spectral semi-discretization

with N = 256.

Problem 5.4. Hochbruck-Ostermann equation
A semi-linear parabolic problem with homogeneous Dirichlet boundary con-
ditions from [24]

ut = uxx +
1

1 + u2
+ φ(t, x), x ∈ [0, 1].

Problem 5.5. Hyperbolic test equation (cf. [40])

iut = uxx −
1

1 + u2
+ φ(t, x), x ∈ [0, 1].

In the Problems 5.4 and 5.5 φ(t, x) is chosen to give the exact solution u(t, x) =

x(1− x)et for problem 5.4, and u(t, x) = x(1− x)e−t for 5.5. Standard finite dif-
ferences with N = 200, Dirichlet boundary conditions and exact initial conditions
are used. T is defined by the space discretization of uxx.

Furthermore we use the Problems 3.1–3.4 of Section 3.4.
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5.1 Numerical results for constant step sizes

In this section we compare our exponential peer methods with some of the expo-
nential integrators included in EXPINT at these test problems. All calculations
are performed with constant step sizes.

In what follows, we briefly describe the numerical schemes defining the ex-
ponential integrators that have been used in our comparative study. All these
integrators belong to the EXPINT package. See [3] for more information about
these methods.

I ABLawson4 scheme has stiff order one and non-stiff order four and is based on
the Adams-Bashforth scheme of order four (see Example 2.3).

I Lawson4 scheme was developed by Lawson. It is based on the classical fourth
order scheme of Rung-Kutta and this scheme has stiff order one and non-stiff
order four (see Example 2.4).

I ETD4RK scheme was developed by Cox and Matthews [7]. It has four-stages and
it has only stiff order two and non-stiff order four (see Example 2.5).

I Strehmelweiner scheme was developed by Strehmel and Weiner [47]. It is one
of the earliest exponential Runge-Kutta methods with four stages, it has stiff
order three (see Example 2.6).

I hochost4 scheme was developed by Hochbruck and Ostermann [24]. It has
five-stages and is the only known exponential Runge-Kutta method with
stiff and non-stiff order four [3] (see Example 2.7).

I RKMK4t scheme uses a convenient truncation of the dexp−1 operator, leading
to the method of Munthe-Kaas [17], which again is of stiff order two but
suffers from instabilities, especially when non-periodic boundary conditions
are used (see Example 2.8).

I ETD5RKF scheme based on the six stage fifth order scheme of Fehlberg [14]. It
has non-stiff order five and stiff order one. It usually performs worse than
other order four schemes presented here due to bad error constant.

In our figures we will use the same names for the integrators and problems as in
EXPINT.
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In EXPINT package some schemes need some starting values. An exponential
Runge-Kutta scheme can be used for the first r− 1 steps. In our tests the scheme
hochost4 is used for the first r−1 steps e.g., For ABLawson4 scheme the incoming
approximation has the form y[n−1] = [yn−1, hgn−2, hgn−3, hgn−4]

T .

The s starting values for the exponential peer methods are computed by using
Matlab routine ode15s. To avoid computations with negative step sizes we
proceed as follows:

hpeer =
tend − t0

nsteps + 1− c1
, t0i = t0 + (ci − c1)hstart, i = 1, . . . , s.

In the following figures we present the accuracy of the numerical solution Y at
tend = 1 versus the timestep h. The error is computed by

Error =
‖Y − Yref‖∞
‖Yref‖∞

,

where Yref is a reference solution which is computed with Matlab routine ode15s
and high accuracy. For comparison we included lines with slopes corresponding to
orders p = 4, 5 in the figures.

In Figures 5.1–5.10 we compare the 4− and 5−stage peer methods epm4 and
epm5 with exponential integrators of the EXPINT package. The results show that
the peer methods in general give very accurate results.

Some methods, e.g., lawson4 and etd5rkf, suffer from order reduction when
applied to some test problems (see Fig. 3.2–5.10), but for exponential peer meth-
ods no order reduction is observed.
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Figure 5.1: Results for Gray-Scott (Prob. 3.3).
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Figure 5.2: Results for the Allen-Cahn equation (Prob. 5.1).
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Figure 5.3: Results for the Kuramoto-Sivashinsky equation (Prob. 5.2).
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Figure 5.4: Results for the Nonlinear Schrödinger equation (Prob. 5.3).
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Figure 5.5: Results for the Hochbruck-Ostermann equation (Prob. 5.4).
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Figure 5.6: Results for the hyperbolic test equation (Prob. 5.5).
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Figure 5.7: Results for the Schrödinger type equation (Prob. 3.2).
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Figure 5.8: Results for the Parabolic test equation equation (Prob. 3.1).
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Figure 5.9: Results for Prothero-Robinson equation (Prob. 3.4).
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Figure 5.10: Results for Parabolic test equation (Prob. 3.1).
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5.2 Numerical results for variable step sizes

In this section we test exponential peer methods for variable step sizes. The
integrators in EXPINT are implemented with constant step size only. Therefore,
we compare our exponential peer methods with Matlab routines ode15s and
ode45 now at these test problems.

We constructed EPMs with variable step size due to Theorems 4.1 and 4.2 with
s = 3, 4, 5 stages of stiff order p = s− 1. The nodes ci are determined by Theorem

4.5 with α∗ =
s− 1

s
.

The s starting values for the exponential peer methods are computed with
Matlab routine ode15s.

In the following figures we present the accuracy of the numerical solution Y at
tend = 10 versus the computing time. The error is computed by

Error =
‖Y − Yref‖∞

max
i

max(|Yref,i|, 1)
,

where Yref is a reference solution which is computed with Matlab routine ode15s
and high accuracy. We computed numerical solutions for the tolerances atol =

rtol = 10−1 − 10−10.
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Figure 5.11: Results for Gray-Scott Prob. (Prob. 3.3).
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Figure 5.12: Results for the Allen-Cahn equation (Prob. 5.1).
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Figure 5.13: Results for the Kuramoto-Sivashinsky equation (Prob. 5.2).
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Figure 5.14: Results for the Nonlinear Schrödinger equation (Prob. 5.3).
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Figure 5.15: Results for the Schrödinger type equation (Prob. 3.2).
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Figure 5.16: Results for the hyperbolic test equation (Prob. 5.5).
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5.3 Discussion

The tests with constant step size show that the exponential peer methods in general
give more accurate results than the other methods of EXPINT. On the other hand
they require more computations of the ϕ−functions leading to higher expense.

We did not observe an order reduction for EPMs in contrast to most of the
other methods, for instance for the Schrödinger type equation and the Prothero-
Robinson example.

Surprisingly, also the method hochost4 shows an order reduction for the Prothero-
Robinson example.

The numerical tests with step size control show that all our strategies of step size
control work reliably. As expected, with more strict tolerances the error decreases.

For crude tolerances the 3- and 4-stage methods are more efficient than the
5-stage methods which may be due to the larger value of σmax. Matlab routine
ode45 is the most efficient code for the non-stiff Gray-Scott problem, for Allen-
Cahn ode15s is superior.

All methods are comparable for the Kuramoto-Sivashinski equation. Significant
advantage of the exponential peer methods can be observed for problems with large
imaginary parts of the eigenvalues of T as Schrödinger and hyperbolic problems.
This is mainly due to the fact that ode15s is only A−stable for p ≤ 2.

In general the results with step size control show the potential of the new class
of methods. This efficiency depends strongly on the efficient computation of the
ϕ−functions.



Chapter 6

Conclusions

We have constructed and analyzed exponential peer methods with constant and
variable step size. We have derived order conditions, which allow to construct
methods of arbitrary high order, in this thesis we have considered methods up to
7 stages and it is easy to construct methods with more stages.

We have proved that for a wide class of stiff problems an s−stage method is of
stiff order and stage order p ≥ s−1. These results are confirmed by our numerical
tests. In general we observe the non-stiff order p = s for the test problems. A
possible explanation for this can be Remarks 3.4 and 3.5.

We have identified a special class of methods with only two different arguments
in ϕ−functions, which is optimally zero-stable for constant step sizes and solves
linear problems y′ = Ty exactly.

The aim of the present work was to look if peer methods can be used success-
fully in exponential integrators. The results obtained in our numerical tests for
these methods are promising. They indicate that exponential peer methods are a
suitable class especially for problems with large imaginary eigenvalues. In contrast
to many other exponential integrators we did not observe an order reduction.

The results of the exponential peer methods with variable step sizes show that
the proposed kinds of error estimation and step size control work reliably.

The computing time of the exponential peer methods is in general determined
by the computation of the ϕ−functions, which require a large number of squaring
for problems with a large norm of the Jacobian. Here the strategy of trying to
keep the step size constant pays off.
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The situation may change for large scale problems resulting for instance by
semi-discretization of 3-dimensional PDEs. Here the use of Krylov methods for
the approximation of products of ϕ−functions times a vector is advantageous.
This will be the topic of future research.
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Coefficients for EPMs with constant step sizes

We constructed EPMs with constant step sizes due to Theorems 3.1 and 3.2 with
s = 3, 4, 5, 6, 7 stages of stiff order p = s − 1. The nodes ci are determined by

Theorem 3.8 with α∗ =
s− 1

s
.

In the numerical tests for EPM for constant step size we set the free
s(s− 1)

2
coefficients Aij ∀ i > j to be zeros. So the general structure of the matrix A and
R will be in the form

A =


A11 A12 A13 . . . A1s

A21 A22 A23 . . . A2s

...
... . . . . . .

...
As1 As2 . . . . . . Ass

 =



A11 A12 A13 A14 . . . A1,s−1 A1s

0 A11 A12 A13 . . . A1,s−2 A1,s−1

0 0 A11 A12 . . . A1,s−3 A1,s−2
...

... . . . . . . . . . ...
...

0 0 0 0 A11 A12 A13

0 0 0 0 0 A11 A12

0 0 0 0 0 0 Ass


,

R =


R11 R12 R13 . . . R1s

R21 R22 R23 . . . R2s

...
... . . . . . .

...
Rs1 Rs2 . . . . . . Rss

 =



0 0 0 0 . . . 0 0

A1s 0 0 0 . . . 0 0

A1,s−1 A1s 0 0 . . . 0 0

A1,s−2 A1,s−1 A1s 0 . . . 0 0
...

... . . . . . . . . . ...
...

A13 A14 . . . A1,s−1 A1s 0 0

Rs1 Rs2 . . . Rs,s−3 Rs,s−2 Rs,s−1 0


.
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3−stage: Method epm3 with 3 stages of stiff order p ≥ 2:

α =


2
3
2
3

1

 , C =


1
3
2
3

1

 then B =

0 1 0

0 0 1

0 0 1

 ,

A =

A11 A12 A13

0 A11 A12

0 0 A33

 , R =

 0 0 0

A13 0 0

R31 R32 0

 ,

where

A11 = −2

3
ϕ2 +

8

3
ϕ3, A12 = −16

3
ϕ3 +

2

3
ϕ1,

A13 =
2

3
ϕ2 +

8

3
ϕ3, A33 = −9

2
ϕ2 + ϕ1 + 9ϕ3,

R31 = 6ϕ2 − 18ϕ3, R32 = −3

2
ϕ2 + 9ϕ3.

4−stage: Method epm4 with 4 stages of stiff order p ≥ 3:

α =


3
4
3
4
3
4

1

 , C =


1
4
2
4
3
4

1

 then B =


0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 1

 ,

A =


A11 A12 A13 A14

0 A11 A12 A13

0 0 A11 A12

0 0 0 A44

 , R =


0 0 0 0

A14 0 0 0

A13 A14 0 0

R41 R42 R43 0


where

A11 = −3

4
ϕ2 +

27

4
ϕ3 −

81

4
ϕ4, A12 =

3

4
ϕ1 −

9

8
ϕ2 −

27

2
ϕ3 +

243

4
ϕ4,

A13 =
9

4
ϕ2 +

27

4
ϕ3 −

243

4
ϕ4, A14 = −3

8
ϕ2 +

81

4
ϕ4,

A44 = ϕ1 −
22

3
ϕ2 + 32ϕ3 − 64ϕ4, R41 = 12ϕ2 − 80ϕ3 + 192ϕ4,

R42 = 6ϕ2 + 64ϕ3 − 192ϕ4, R43 =
4

3
ϕ2 − 16ϕ3 + 64ϕ4.
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5−stage: Method epm5 with 5 stages of stiff order p ≥ 4:

α =



4
5
4
5
4
5
4
5

1

 , C =



1
5
2
5
3
5
4
5

1

 then B =


0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0 0 0 0 1

 ,

A =


A11 A12 A13 A14 A15

0 A11 A12 A13 A14

0 0 A11 A12 A13

0 0 0 A11 A12

0 0 0 0 A55

 , R =


0 0 0 0 0

A15 0 0 0 0

A14 A15 0 0 0

A13 A14 A15 0 0

R51 R52 R53 R54 0

 ,

where

A11 = −4

5
ϕ2 +

176

15
ϕ3 −

384

5
ϕ4 +

1024

5
ϕ5,

A12 =
4

5
ϕ1 −

8

3
ϕ2 −

64

3
ϕ3 + 256ϕ4 −

4096

5
ϕ5,

A13 =
24

5
ϕ2 +

32

5
ϕ3 −

1536

5
ϕ4 +

6144

5
ϕ5,

A14 = −8

5
ϕ2 +

64

15
ϕ3 +

768

5
ϕ4 −

4096

5
ϕ5,

A15 =
4

15
ϕ2 −

16

15
ϕ3 −

128

5
ϕ4 +

1024

5
ϕ5,

A55 = ϕ1 −
125

12
ϕ2 +

875

12
ϕ3 −

625

2
ϕ4 + 625ϕ5,

R51 = 20ϕ2 −
650

3
ϕ3 + 1125ϕ4 − 2500ϕ5,

R52 = −15ϕ2 +
475

2
ϕ3 − 1500ϕ4 + 3750ϕ5,

R53 =
20

3
ϕ2 −

350

3
ϕ3 + 875ϕ4 − 2500ϕ5,

R54 = −5

4
ϕ2 +

275

12
ϕ3 −

375

2
ϕ4 + 625ϕ5.

6−stage: Method epm6 with 6 stages of stiff order p ≥ 5:

α =



5
6
5
6
5
6
5
6
5
6

1


, C =



1
6
2
6
3
6
4
6
5
6

1


then B =



0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 1


,
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A =



A11 A12 A13 A14 A15 A16

0 A11 A12 A13 A14 A15

0 0 A11 A12 A35 A14

0 0 0 A11 A12 A13

0 0 0 0 A11 A12

0 0 0 0 0 A66


, R =



0 0 0 0 0 0

A16 0 0 0 0 0

A15 A16 0 0 0 0

A14 A15 A16 0 0 0

A15 A14 A15 A16 0 0

R61 R62 R63 R64 R65 0


,

where

A11 = −5

6
ϕ2 +

625

36
ϕ3 −

4375

24
ϕ4 +

3125

3
ϕ5 −

15625

6
ϕ6,

A12 =
5

6
ϕ1 −

325

72
ϕ2 −

625

24
ϕ3 +

15625

24
ϕ4 −

9375

2
ϕ5 +

78125

6
ϕ6,

A13 =
25

3
ϕ2 −

125

18
ϕ3 −

10625

12
ϕ4

25000

3
ϕ5 −

78125

3
ϕ6,

A14 = −25

6
ϕ2 +

875

36
ϕ3 +

6875

12
ϕ4 −

21875

3
ϕ5 +

78125

3
ϕ6,

A15 =
25

18
ϕ2 −

125

12
ϕ3 −

4375

24
ϕ4 + 3125ϕ5 −

78125

6
ϕ6

A16 = − 5

24
ϕ2 +

125

72
ϕ3 +

625

24
ϕ4 −

3125

6
ϕ5 +

15625

6
ϕ6,

A66 = ϕ1 −
137

10
ϕ2 + 135ϕ3 − 918ϕ4 + 3888ϕ5 − 7776ϕ6,

R61 = 30ϕ2 − 462ϕ3 + 3834ϕ4 − 18144ϕ5 + 38880ϕ6,

R62 = −30ϕ2 + 642ϕ3 − 6372ϕ4 + 33696ϕ5 − 77760ϕ6,

R63 = 20ϕ2 − 468ϕ3 − 31104ϕ5 + 5292ϕ4 + 77760ϕ6,

R64 = −15

2
ϕ2 + 183ϕ3 − 2214ϕ4 + 14256ϕ5 − 38880ϕ6,

R65 =
6

5
ϕ2 − 30ϕ3 + 378ϕ4 − 2592ϕ5 + 7776ϕ6.

7−stage: Method epm6 with 7 stages of stiff order p ≥ 6:

α =



6
7
6
7
6
7
6
7
6
7
6
7

1


& C =



1
7
2
7
3
7
4
7
5
7
6
7

1


then B =



0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

0 0 0 0 0 0 1


,
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A =



A11 A12 A13 A14 A15 A16 A17

0 A11 A12 A13 A14 A15 A16

0 0 A11 A12 A13 A14 A15

0 0 0 A11 A12 A13 A14

0 0 0 0 A11 A12 A13

0 0 0 0 0 A11 A12

0 0 0 0 0 0 A77


,

R =



0 0 0 0 0 0 0

A17 0 0 0 0 0 0

A16 A17 0 0 0 0 0

A15 A16 A17 0 0 0 0

A13 A14 A15 A16 A17 0 0

R71 R72 R73 R74 R75 R76 0


,

where

A11 = −6

7
ϕ2 +

822

35
ϕ3 −

2430

7
ϕ4 +

22032

7
ϕ5 −

116640

7
ϕ6 +

279936

7
ϕ7,

A12 =
6

7
ϕ1 −

33

5
ϕ2 −

126

5
ϕ3 + 1296ϕ4 − 15552ϕ5 + 93312ϕ6 −

1679616

7
ϕ7,

A13 =
4199040

7
ϕ7 −

1516320

7
ϕ6 +

221616

7
ϕ5 −

13446

7
ϕ4 −

306

7
ϕ3 +

90

7
ϕ2,

A14 =
10368

7
ϕ4 −

238464

7
ϕ5 −

60

7
ϕ2 +

564

7
ϕ3 +

1866240

7
ϕ6 −

5598720

7
ϕ7,

A15 = −4698

7
ϕ4 +

143856

7
ϕ5 +

30

7
ϕ2 −

342

7
ϕ3 −

1283040

7
ϕ6 +

4199040

7
ϕ7,

A16 = −46656

7
ϕ5 −

9

7
ϕ2 +

558

35
ϕ3 +

1296

7
ϕ4 +

466560

7
ϕ6 −

1679616

7
ϕ7,

A17 =
6

35
ϕ2 −

78

35
ϕ3 −

162

7
ϕ4 +

6480

7
ϕ5 −

69984

7
ϕ6 +

279936

7
ϕ7,

A77 = ϕ1 −
343

20
ϕ2 +

9947

45
ϕ3 −

16807

8
ϕ4 +

84035

6
ϕ5 −

117649

2
ϕ6 + 117649ϕ7,

R71 = 42ϕ2 −
4263

5
ϕ3 + 9947ϕ4 − 74431ϕ5 + 336140ϕ6 − 705894ϕ7,

R72 = −105

2
ϕ2 +

5733

4
ϕ3 −

158123

8
ϕ4 +

328937

2
ϕ5 −

1596665

2
ϕ6 + 1764735ϕ7,

R73 =
140

3
ϕ2 −

12446

9
ϕ3 + 21266ϕ4 −

581042

3
ϕ5 + 1008420ϕ6 − 2352980ϕ7,

R74 = −105

4
ϕ2 +

1617

2
ϕ3 −

105301

8
ϕ4 +

256907

2
ϕ5 −

1428595

2
ϕ6 + 1764735ϕ7,

R75 =
42

5
ϕ2 −

1323

5
ϕ3 + 4459ϕ4 − 45619ϕ5 + 268912ϕ6 − 705894ϕ7,

R76 = −7

6
ϕ2 +

6713

180
ϕ3 −

5145

8
ϕ4 +

40817

6
ϕ5 −

84035

2
ϕ6 + 117649ϕ7.
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Coefficients for EPMs with variable step sizes

3−stage: Method epm3 with 3 stages of stiff order p ≥ 2:

α =


2
3
2
3

1

 & c =


1
3
2
3

1

 then

B =


1

2
σ(σ − 1) σ(2− σ) 1

2
(σ − 1)(σ − 2)

0 0 1

0 0 1

 ,

A =


A11 A12 A13

0
4

3

σ2 (4ϕ3 − ϕ2)

1 + σ

2

3
ϕ1 +

4

3
(σ − 1)ϕ2 −

16

3
σϕ3

0 0 ϕ1 −
9

2
ϕ2 + 9ϕ3

 ,

R =


0 0 0

4

3

4σϕ3 + ϕ2

1 + σ
0 0

−18ϕ3 + 6ϕ2 9ϕ3 − 3
2
ϕ2 0


where

A11 =
1

3
σ (σ − 1)ϕ1 −

2

3
σ (2σ − 1)ϕ2 +

8

3
σ2ϕ3

A12 =
2

3
σ (2− σ)ϕ1 +

8

3
σ (σ − 1)ϕ2 −

16

3
σ2ϕ3

A13 =
1

3
(σ − 1) (σ − 2)ϕ1 −

2

3
σ (2σ − 3)ϕ2 +

8

3
σ2ϕ3.
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4−stage: Method epm4 with 4 stages of stiff order p ≥ 3:

α =


3
4
3
4
3
4

1

 & C =


1
4
2
4
3
4

1

 then

B =


2
3
σ (2σ − 1) (σ − 1) −σ (2σ − 1) (2σ − 3) 2σ (σ − 1) (2σ − 3) b14
1
6
σ (σ − 1) (σ − 2) −1

2
σ (σ − 1) (σ − 3) 1

2
σ (σ − 2) (σ − 3) b24

0 0 0 1

0 0 0 1

 ,

A =


A11 A12 A13 A14

0 A22 A23 A24

0 0 −9

2

σ3 (ϕ2 − 9ϕ3 + 27ϕ4)

(σ + 1) (2σ + 1)
A34

0 0 0 ϕ1 − 22
3
ϕ2 + 32ϕ3 − 64ϕ4

 ,

R =


0 0 0 0

R21 0 0 0
9

2

(6σ − 3)ϕ3 + ϕ2 − 27σϕ4

σ + 1
−9

8

(6σ − 6)ϕ3 + ϕ2 − 54σϕ4

2σ + 1
0 0

12ϕ2 − 80ϕ3 + 192ϕ4 −6ϕ2 + 64ϕ3 − 192ϕ4 R43 0

 ,

where

b14 = −1

3
(σ − 1) (2σ − 1) (2σ − 3) ,

b24 = −1

6
(σ − 1) (σ − 2) (σ − 3) ,

A11 =
1

2
σ (2σ − 1) (σ − 1)ϕ1 −

3

4
σ
(
−6σ + 1 + 6σ2

)
ϕ2 +

27

4
σ2 (2σ − 1)ϕ3

− 81

4
σ3ϕ4,

A12 = −3

4
σ (2σ − 1) (2σ − 3)ϕ1 +

9

8
σ
(
3 + 12σ2 − 16σ

)
ϕ2 −

27

2
σ2 (3σ − 2)ϕ3

+
243

4
σ3ϕ4,

A13 =
3

2
σ (σ − 1) (2σ − 3)ϕ1 −

9

4
σ
(
6σ2 − 10σ + 3

)
ϕ2 +

27

4
σ2 (6σ − 5)ϕ3

− 243

4
ϕ4σ

3,

A14 = −1

4
(σ − 1) (2σ − 1) (2σ − 3)ϕ1 +

3

8
σ
(
11− 24σ + 12σ2

)
ϕ2

− 27

2
σ2 (σ − 1)ϕ3 +

81

4
σ3ϕ4,
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A22 =
3

8

σ2 ((2σ − 2)ϕ1 + (9− 15σ)ϕ2 + (72σ − 18)ϕ3 − 162σϕ4)

2 + σ
,

A23 = −3

4

σ2 ((2σ − 4)ϕ1 + (18− 15σ)ϕ2 + (72σ − 36)ϕ3 − 162σϕ4)

σ + 1
,

A24 =
3

4
(σ − 1) (σ − 2)ϕ1 +

9

8

(
−5σ2 + 9σ − 2

)
ϕ2 +

27

4
σ (4σ − 3)ϕ3 −

243

4
σ2ϕ4,

A34 =
3

4
ϕ1 +

9

8
(2σ − 3)ϕ2 +

27

4
(1− 3σ)ϕ3 +

243

4
σϕ4,

R21 = −3

4

(σ − 1) (σ − 2)ϕ1 + (−6 + 18σ − 9σ2)ϕ2 + 54σ (σ − 1)ϕ3 − 162σ2ϕ4

(σ + 2) (σ + 1)
,

R43 =
4

3
ϕ2 − 16ϕ3 + 64ϕ4.

5−stage: Method epm5 with 5 stages of stiff order p ≥ 4:

α =



4
5
4
5
4
5
4
5

1

 , C =



1
5
2
5
3
5
4
5

1

 then B =


b11 b12 b13 b14 b15

b21 b22 b23 b24 b25

b31 b32 b33 b34 b35

0 0 0 0 1

0 0 0 0 1

 ,

A =


A11 A12 A13 A14 A15

0 A22 A23 A24 A25

0 0 A33 A34 A35

0 0 0 A44 A45

0 0 0 0 A55

 , R =


0 0 0 0 0

R21 0 0 0 0

R31 R32 0 0 0

R41 R42 R43 0 0

R51 R52 R53 R54 0

 ,

where

b11 =
3

8
σ (σ − 1) (3σ − 1) (3σ − 2) , b22 = −4

3
σ (σ − 1) (σ − 2) (2σ − 1) ,

b13 =
9

4
σ (σ − 1) (3σ − 1) (3σ − 4) , b14 = −3

2
σ (σ − 1) (3σ − 4) (3σ − 2) ,

b15 =
1

8
(σ − 1) (3σ − 1) (3σ − 4) (3σ − 2) , b21 =

1

6
σ (σ − 1) (2σ − 1) (2σ − 3) ,

b12 = −1

2
σ (3σ − 1) (3σ − 4) (3σ − 2) , b23 = σ (σ − 2) (2σ − 1) (2σ − 3) ,

b25 =
1

6
(σ − 1) (σ − 2) (2σ − 1) (2σ − 3) , b24 = −4

3
σ (σ − 1) (σ − 2) (2σ − 3) ,

b31 =
1

2
4σ (σ − 1) (σ − 2) (σ − 3) , b32 = −1

6
σ (σ − 1) (σ − 2) (σ − 4) ,

b33 =
1

4
σ (σ − 1) (σ − 3) (σ − 4) , b34 = −1

6
σ (σ − 2) (σ − 3) (σ − 4) ,

b35 =
1

2
4 (σ − 1) (σ − 2) (σ − 3) (σ − 4) ,
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A11 =
3

10
σ (σ − 1) (3σ − 1) (3σ − 2)ϕ1 −

4

5
σ (2σ − 1)

(
9σ2 − 9σ + 1

)
ϕ2

+
16

15
σ2
(
−54σ + 11 + 54σ2

)
ϕ3 −

384

5
σ3 (2σ − 1)ϕ4 +

1024

5
σ4ϕ5,

A12 = −2

5
σ (3σ − 1) (3σ − 4) (3σ − 2)ϕ1 +

8

15
σ
(
−189σ2 + 84σ + 108σ3 − 8

)
ϕ2

− 64

15
σ2
(
−63σ + 14 + 54σ2

)
ϕ3 +

256

5
σ3 (12σ − 7)ϕ4 −

4096

5
σ4ϕ5,

A13 =
9

5
σ (σ − 1) (3σ − 1) (3σ − 4)ϕ1 −

24

5
σ (3σ − 2)

(
6σ2 − 8σ + 1

)
ϕ2

+
32

5
σ2
(
−72σ + 19 + 54σ2

)
ϕ3 −

1536

5
σ3 (3σ − 2)ϕ4 +

6144

5
σ4ϕ5,

A14 = −6

5
σ (σ − 1) (3σ − 4) (3σ − 2)ϕ1 +

8

5
σ
(
−81σ2 + 52σ + 36σ3 − 8

)
ϕ2

− 64

15
σ2
(
−81σ + 26 + 54σ2

)
ϕ3 +

768

5
σ3 (4σ − 3)ϕ4 −

4096

5
σ4ϕ5,

A15 =
1

10
(σ − 1) (3σ − 1) (3σ − 4) (3σ − 2)ϕ1 −

4

15
σ (6σ − 5)

(
9σ2 − 15σ + 5

)
ϕ2

+
16

15
σ2
(
−90σ + 54σ2 + 35

)
ϕ3 −

128

5
σ3 (6σ − 5)ϕ4 +

1024

5
σ4ϕ5,

A22 =
8σ2

15

{
3 (2σ − 1) (σ − 1)ϕ1 − 2 (5− 24σ + 22σ2)ϕ2 + 8 (2− 21σ + 30σ2)ϕ3

3 + σ

+
−288σ (3σ − 1)ϕ4 + 1536σ2ϕ5

3 + σ

}
,

A23 =
4

5

{
192σ3 (9σ − 2)ϕ4 − 3072σ4ϕ5 − 16σ2 (3− 28σ − 15σ2)ϕ3

σ + 2

+
2σ2 (15− 64σ + 22σ2)φ2 − 3σ2 (2σ − 1) (2σ − 3)ϕ1

σ + 2

}

A24 =
8σ2

5

{
3 (σ − 1) (2σ − 3)ϕ1 − 2 (15− 40σ + 22σ2)ϕ2 + 1536σ2ϕ5

σ + 1

+
8 (6− 35σ + 30σ2)ϕ3 − 96σ (−5 + 9σ)ϕ4

σ + 1

}
,

A25 =
4

15

{
− 3 (σ − 1) (2σ − 1) (2σ − 3)ϕ1 + 2

(
−6 + 55σ + 44σ3 − 96σ2

)
ϕ2

− 16σ
(
−42σ + 11 + 30σ2

)
ϕ3 + 1152σ2 (3σ − 2)ϕ4 − 6144σ3ϕ5

}
,

A33 =
2σ3

5

{
3 (σ − 1)ϕ1 − 2 (17σ − 11)ϕ2 + 16 (−6 + 17σ)ϕ3

(σ + 1) (σ + 2)

+
−192 (7σ − 1)ϕ4 + 3072σϕ5

(σ + 1) (σ + 2)

}
,



Appendix B 89

A34 =
8σ3

5

{
−3 (σ − 2)ϕ1 + 2 (17σ − 22)ϕ2 − 16 (17σ − 12)ϕ3

(σ + 1) (2σ + 1)

+
192 (7σ − 2)ϕ4 − 3072σϕ5

(σ + 1) (2σ + 1)

}
,

A35 =
2

5

{
3 (σ − 1) (σ − 2)ϕ1 − 2

(
−33σ + 10 + 17σ2

)
ϕ2 − 192σ (−3 + 7σ)ϕ4

+ 16
(
2 + 17σ2 − 18σ

)
ϕ3 + 3072σ2ϕ5

}
,

A44 =
σ4

5

{
−96ϕ2 + 1408ϕ3 − 9216ϕ4 + 24576ϕ5

(2σ + 1) (3σ + 1) (σ + 1)

}
,

A45 =
12ϕ1 + 8 (6σ − 11)ϕ2 − 64 (11σ − 6)ϕ3 + 768 (6σ − 1)ϕ4 − 12288σϕ5

15
,

A55 = ϕ1 −
125

12
ϕ2 +

875

12
ϕ3 −

625

2
ϕ4 + 625ϕ5,

R21 =
16 (σ − 1) (2σ − 1) (2σ − 3)ϕ1 − 32 (4σ − 3) (4σ2 − 6σ + 1)ϕ2

5 (3 + σ) (σ + 2) (σ + 1)

+
128σ (−36σ + 11 + 24σ2)ϕ3 − 3072σ2 (4σ − 3)ϕ4 + 24576σ3ϕ5

5 (3 + σ) (σ + 2) (σ + 1)
,

R31 =
−12 (σ − 1) (σ − 2)ϕ1 + 16 (2σ − 1) (5σ − 8)ϕ2 − 128 (12σ2 − 15σ + 2)ϕ3

5 (σ + 1) (σ + 2)

+
4608σ (2σ − 1)ϕ4 − 24576σ4ϕ5

5 (σ + 1) (σ + 2)
,

R32 =
2σ2 (σ − 1) (σ − 2)ϕ1 − 4 (7σ2 − 15σ + 6)ϕ2 + 32 (9σ2 − 12σ + 2)ϕ3

5 (σ + 1) (2σ + 1)

+
−384σ (5σ − 3)ϕ4 + 6144σ2ϕ5

5 (σ + 1) (2σ + 1)
,

R41 =
48ϕ2 + 64 (6σ − 5)ϕ3 − 768 (5σ − 1)ϕ4 + 12288σϕ5

5 (σ + 1)
,

R42 =
−24ϕ2 − 64 (3σ − 4)ϕ3 + 768 (4σ − 1)ϕ4 − 12288σϕ5

5 (2σ + 1)
,

R43 =
16ϕ2 + 64 (2σ − 3)ϕ3 − 768 (3σ − 1)ϕ4 + 12288σϕ5

15 (3σ + 1)
,

R51 = 20ϕ2 −
650

3
ϕ3 + 1125ϕ4 − 2500ϕ5,

R52 = −15ϕ2 +
475

2
ϕ3 − 1500ϕ4 + 3750ϕ5,

R53 =
20

3
ϕ2 −

350

3
ϕ3 + 875ϕ4 − 2500ϕ5,

R54 = −15

12
ϕ2 +

275

12
ϕ3 −

375

2
ϕ4 + 625ϕ5.
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Another special class of methods

In this section we give another special class of methods, where the vector α has
only two different arguments.

α1 = 1, αi = α∗, i = 2, . . . , s,

c1 =
(s− 1)(1− α∗) + 1− β

1− β
, ci = (s− i)(1− α∗) + 1, i = 2, . . . , s, (1)

Then

B =



1 0 0 0 0 0

g1 (β) βg2 (β) βg3 (β) . . . βgs−1 (β) β
... . . . ...

...
...

...

0 . . .
. . . 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0


,

where g1 (0) = 1.

For zero-stability the choice β = 0 in (1) is optimal and we have

α =


1

α∗

...
α∗

 , ci = (s− i)(1− αi) + 1. (2)

In similar manner to Section 3.3 we mention some theorems, where their proofs
are similar to Theorems 3.7-3.9.
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Theorem .1. For

1 ≤ α∗ <
s

s− 1

the nodes ci are distinct and satisfy 0 ≤ ci ≤ 1 with cs = 1. Due to B = VαV
−1
1

the exponential peer methods are of stiff order p ≥ s− 1 for y′ = Ty.

Theorem .2. The methods defined by (3.14), (2) are optimally zero-stable, the
matrix B is given by

B =



1 0 0 0 0 0

1 0 0 . . . 0 0
... . . . ...

...
...

...

0 . . .
. . . 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0


. (3)

Corollary .1. The methods (3) are convergent of stiff order p = s− 1.

Theorem .3. Let (2) be satisfied and let the starting values Y0i be exact. Then
Y1i = e(1+ci)hTy(t0), i.e. the exact solution of y′ = Ty.

We tested this class of methods using the framework of EXPINT [3] with α∗ =
s+ 1

s
and the results are similar to the class discussed in Section 3.3.
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