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Abstract

The objectives of this thesis are to design, analyze and numerically investigate
easily implementable Exponential Peer Methods (EPMs) for ordinary differential
equations (ODEs), where the problem splits into a linear stiff and a nonlinear
non-stiff part. The spatial discretization of time-dependent partial differential

equations (PDEs) in general leads to such systems.

The thesis consists of two parts. The first part concerns EPMs with constant
step size. The first aspect of this part involves an analytical investigation of
consistency and zero stability of the methods. We formulate simplifying conditions
which guarantee order p = s— 1, where s is the number of stages. For the non-stiff
case the order is p = s. A special class of EPMs with only two different arguments
for the exponential functions is studied, and by a special choice of the nodes we
obtain optimally zero-stable methods. We show that the methods solve linear
problems y' = Ty exactly. The second aspect is using the framework of EXPINT
to perform a variety of numerical experiments to test the numerical order which

confirm the theoretically obtained orders and no order reduction is observed.

The second part of the thesis is concerned with EPMs with variable step size.
Conditions for stiff order p are derived. The zero-stability of the methods is inves-
tigated. For a special subclass of methods with only two different arguments of the
p—functions bounds for the step size ratio are given, which ensure zero-stability.
These bounds are fairly large for practical computations. Various strategies for er-
ror estimation and step size control are considered. Numerical tests show that the
step size control works reliably and that for special problem classes the methods

are superior to classical integrators.



Zusammenfassung

Ziele dieser Arbeit sind die Konstruktion, Analyse und numerische Tests von Ex-
ponentiellen Peer-Methoden (EPMs) fiir gewohnliche Differentialgleichungen, die
einen steifen linearen und einen nichtsteifen nichtlinearen Anteil besitzen. Solche
Systeme entstehen i. Allg. bei der Ortsdiskretisierung von zeitabhéngigen par-
tiellen Differentialgleichungen (PDEs).

Die Arbeit besteht aus zwei Teilen. Der erste Teil befasst sich mit EPMs mit
konstanter Schrittweite. Er beinhaltet Untersuchungen der Konsistenz und Null-
stabilitdt der Methoden. Wir formulieren vereinfachende Bedingungen, um Ver-
fahren der Ordnung p = s fiir nichtsteife und p = s — 1 fiir steife Probleme zu

erhalten, wobei s die Anzahl der Stufen ist.

Eine spezielle Klasse von EPMs mit nur zwei unterschiedlichen Argumenten fiir
die Exponentialfunktionen wird untersucht. Durch eine spezielle Wahl der Knoten
erhalten wir optimal nullstabile Verfahren. Wir zeigen, dass die Methoden lineare
Probleme 3/ = Ty exakt 16sen. Unter Verwendung des Programmsystems EXPINT
werden die Methoden implementiert und eine Vielzahl von numerischen Experi-
menten durchgefiithrt. Die numerisch bestimmte Ordnung bestétigt die theoretisch

gewonnenen Aussagen, es wird keine Ordnungsreduktion beobachtet.

Der zweite Teil der Arbeit ist EPMs mit variabler Schrittweite gewidmet. Be-
dingungen fiir die steife Ordnung p werden abgeleitet. Die Nullstabilitdt der
Methoden wird untersucht. Fiir eine spezielle Unterklasse von Methoden mit nur
zwei unterschiedlichen Argumente der p—Funktionen werden Schranken fiir die
Schrittweitenverhéltnisse gegeben, die Nullstabilitdt garantieren. Diese Grenzen
sind flir praktische Rechnungen hinreichend grof. Verschiedene Strategien zur
Fehlerschatzung und Schrittweitensteuerung werden betrachtet. Numerische Un-
tersuchungen zeigen, dass die Schrittweitensteuerung zuverlassig funktioniert und
dass fiir spezielle Problemklassen die Methoden klassischen Integratoren tiberlegen

sind.
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Chapter 1

Introduction

Mathematical modeling of physical, chemical, and biological systems often leads
to one or more ordinary differential equations (ODEs). In general, it is extremely
difficult, if not impossible, to get an analytic solution for ODEs, so these equations
are usually solved numerically by powerful numerical techniques on fast comput-
ers. In particular, the numerical solution of initial value problems (IVPs) for
ODEs has been, and is still being, one of the most active field of investigation
in numerical analysis. Many of the obtained results for numerical integration of
ordinary differential equations have been collected in several books, among which
we quote [2, 4, 18, 19, 29, 33|. ODEs can be classified as stiff or non-stiff, and
may be stiff for some parts of an interval and non-stiff for others. Stiff differential
equations are of great practical importance. For instance, the semi-discretization
of time-dependent partial differential equations (PDEs) in general leads to large

stiff problems.

Over the years, there was a need to improve the properties of numerical so-
lution. Specifically up to the early fifties, the concern about accuracy properties
were considered as the most important for the solution. After that, stability re-
quirements became focal, in particular in connection with the numerical solution

of stiff problems.

Stiffness is one major problem associated with the numerical integration of
differential equations. Stiffness may be due to the problems characterized by a
Jacobian that possesses eigenvalues with large negative real parts. Problems that
consist of highly oscillatory solutions with purely imaginary eigenvalues of large
modulus also are highly demanding for numerical methods. Stiff systems are re-

quiring the development of special integrators scheme, with increased requirements
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to the stability. Stiff and highly oscillatory ODE systems are those ODEs whose
Jacobians have at least one eigenvalue with a very negative real part or very large

imaginary part respectively.

For many years the numerical methods for solving PDEs have been studied. A
great deal of the research focuses on the stability problem in the time integration
of the systems of ODEs which result from the spatial discretization of PDEs.
Numerical methods for solving systems of ordinary differential equations can be

divided into two categories, stiff and non-stiff solvers.

For solving stiff ODEs, implicit methods are mandatory to be used, because of
the weak stability properties of explicit methods. Approval codes for stiff problems
are based on BDF methods (e.g., [21]), implicit Runge-Kutta methods (e.g., [20]),
or linearly-implicit Runge-Kutta methods (e.g., [30]). On the other hand, implicit
methods require the solution of a nonlinear system of equations, at each integration
step, and this is a considerable computational task. In order to overcome this
difficulty, some authors in recent years have proposed various alternatives, such
as the use of the so called Runge-Kutta-Chebyshev methods (see e.g., [1, 50, 51])

with the aim of creating explicit integrators with extended stability domains [39].

Recently, exponential integrators have been introduced as an alternative to
implicit methods for large and stiff or highly oscillatory differential equations.
These integrators are based on the computation of the exponential function (or
related functions) of the Jacobian or an approximation to it, inside the numerical
method (see e.g., [22]).

Exponential integrators have attracted a lot of interest and have been developed
rapidly in the past three decades. They have been applied successfully to numerical
solutions of PDEs. They are especially useful for differential equations coming
from the spatial discretization of partial differential equations, where the problem
often splits into a linear stiff and a nonlinear non-stiff part. Nowadays, they are
some of the powerful tools as well as implicit methods, for numerical solutions of
partial differential equations. Since the first paper about exponential integrators
by Certaine [6], there has been a considerable amount of research on methods of
this type. Until now the emphasis has been on the development of new methods,
see e.g., |5, 36, 40].

To solve the stiff semi-linear time-dependent PDE of the form

ou
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where u € R? T is a linear differential operator (usually of second order) and
G(u,t) is a nonlinear operator, we first discretize the spatial derivatives (the linear
operator 7 ) of a PDE with a spatial derivative approximation method (e.g. Finite
Difference Formulas and spectral method, Chebyshev polynomials and Fourier
spectral methods) to turn the PDE into a system of ODEs

Y~ Tyt glt.(0) = F(1,9(0) (1.2

where y = y(t), y : R — RY, g : R x RY — RY N is a discretization parameter
equal to the number of spatial grid points. The matrix 7' € RV has in general a
large norm for large numbers of grid points. Therefore, the resulting ODE system
is stiff.

Exponential integrators had been constructed to solve semi-linear problems of
the form (1.2). The goal of the exponential integrators is to treat the linear
term exactly and allow the remaining part of the integration to be integrated
numerically using an explicit scheme. They have been introduced in the sixties
of last century, but have not been considered in practical computations, since
they involve the computation of matrix exponential functions. Using modern

techniques, such functions can now be computed quite efficiently.

The main distinctive features of the exponential integrators are as follow:

1. If the linear part is vanished (i.e., T = 0) then the scheme reduces to a

standard explicit scheme and

2. If the nonlinear part is vanished (i.e., g(¢,y(t)) = 0) then the scheme reduces
to the evaluation of the exponential function of the matrix 7" and reproduces

the exact solution of the problem.

Since their introduction in the 1950’s, cf. 8], numerical methods for stiff prob-
lems have been studied extensively, in particular during the last thirty years.
Hundreds of papers, which deal with the construction of efficient integrators and
with the theoretical analysis of such integrators have been published. The idea of
exponential integrators has been successfully applied to various classes of differ-
ential equations. These classes of integrators had been abandoned for a long time
due to their excessive computational expense. Recently, there has been a renewed
interest in exponential integrators that have emerged as a viable alternative for
dealing efficiently with stiffness of ODEs.
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The central topic of this thesis is exponential peer methods (EPMs) as a tool for
solving time-dependent partial differential equations. Exponential peer methods
are based on explicit peer methods, which were introduced by Weiner et al. [52, 53].
The essential property of peer methods is the use of several stages per time step

with same accuracy properties.

Exponential peer methods for the numerical integration of stiff ordinary differ-
ential equations offer good properties like a high classical order and high stage order
and an excellent stability behavior. A subclass of EPMs allows the construction of
high-order schemes that possess favorable stability properties (optimal zero-stable
for constant step sizes and solves linear problems y' = T'y exactly) and exhibit no

order reduction when applied to very stiff problems.

The thesis is organized as follows. Chapter 2 is devoted to give a brief intro-
duction to the concept of stiff problems, the phenomenon of numerical stiffness is
explained, and to exponential integrators as alternative numerical methods devel-
oped to overcome the phenomenon of stiffness. Mathematical background material
that we need later in the thesis is collected. In particular, we introduce Lipschitz
condition and the logarithmic norm. Main effort in exponential integrators is the
computation of exponential matrices. We restrict in this thesis to problems of
not very high dimension and use the methods of the MATLAB package called EX-
PINT by Berland et al. [3] for the computation of the ¢p—functions. We describe
EXPINT, which is used as a tool for testing and comparison of exponential inte-
grators for constant step sizes, in particular the definition of some related function
to exponential integrators called p—function and their computations. For high
dimensions the use of Krylov techniques will be necessary and more efficient, e.g.,
[23, 27, 45], but we will not consider this in this thesis.

Chapter 3 is devoted to give an overview about the derivation, analysis, im-
plementation and evaluation of exponential peer methods for constant step sizes.
Consistency and stability of the methods are investigated, and we formulate sim-
plifying conditions which guarantee order p = s — 1, where s is the number of
stages. For the non-stiff case the order is p = s. Due to the two-step character
of the methods zero-stability has to be discussed. A special class of EPMs of stiff
order p = s — 1 with only two different arguments for the exponential functions is
studied, and by a special choice of the nodes we obtain optimally zero-stable meth-
ods. We show that the methods solve linear problems 3y’ = T'y exactly. Numerical

order tests show the theoretically obtained orders.



Introduction 5

A generalization for the methods presented in Chapter 3, for variable step sizes,
is given in Chapter 4, and the idea of methods with an adaptive step size control is
described. Most practical software for solving ODEs does not use a fixed time step
but rather adjusts the time step during the integration process to try to achieve
some specified error bound. Adaptive step size control is used to control the local
errors of the numerical solution. For optimization purposes smoother step size
controllers are wanted, such that the errors and step sizes also behave smoothly.
Order conditions for the coefficients, which now will depend on the step size ratio,
are derived. Due to the variable step size, zero-stability now leads to restrictions
of the step size ratio in general. We present one subclass which is optimally zero-
stable for all step size sequences. For another special class of methods with only
two different arguments in the p—functions we prove stiff order p = s — 1. For
this class we compute bounds on the step size ratio which guarantee zero-stability
in the non-stiff case. These bounds are fairly large for practical computations. In
the stiff case we show convergence of stiff order p = s — 1 under mild restrictions of
the step size sequence. Furthermore, for the implementation of exponential peer
methods an error estimation is included. Two techniques are considered. One
technique uses interpolation at s — 1 solution points and the other is embedding

in different ways.

The numerical results obtained using the framework of the EXPINT package for
the new methods are reported and analyzed in Chapter 5 for constant and variable
step sizes. In particular, for constant step sizes we compare EPMs with other
exponential integrators implemented in EXPINT package and the results confirm
our theoretical results and show the potential of the new class of exponential

integrators.

For variable step sizes, the constructed methods are tested on problems of
the EXPINT package and we compare EPMs with the results for the standard
MATLAB routines odel5s and ode45. For special problem types the exponential
peer methods turn out to be comparable and superior, but for others the classical
codes are more efficient. The most expensive part in EPMs is the computation of
the p—functions. Better numerical methods for this task will highly improve the

performance of the methods.

Finally, in Chapter 6 we give conclusions and an outlook for future work.



Chapter 2

Exponential Integrators

Introduction

The main purposes of this chapter are threefold. Firstly, we point out the concept
of stiffness of numerical solution of differential equations, which appears often in
practical situations, and we summarize some definitions of stiffness. Secondly, a
MATLAB package called EXPINT |[3], which is designed as a tool for testing and
comparison of exponential integrators, is introduced. The definition of some re-
lated functions to the exponential integrators called p—functions with their com-
putations are shown. Thirdly, a brief history of exponential integrators, which
were introduced as an effective alternative to classical implicit methods for solv-
ing time-dependent differential equations of stiff or highly oscillatory differential

equations, is given.

We start with the review of some mathematical background that is needed later

in this thesis.
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2.1 Initial value problem

We will consider in this thesis the numerical solution of the initial value problem
for a system of ODEs of the form

% = f(t,y(t)) =Ty+g(t,y), tE€E [to,tend) (2.1)

y(to) = yo € R",

where t is the independent variable which represents the time and the dependent
variable y(t) which constitute the solution of the problem. y(t) is a vector valued

function, i.e.,
y:R—=R" and f:[to,tena] X R" — R".

We will always assume that f : [to, tena] X R™ — R™ is well defined and sufficiently
smooth, especially it satisfies a Lipschitz condition with respect to y € R™ with
Lipschitz constant L. These conditions are sufficient to guarantee the existence of

a unique solution y(t) of (2.1) in [to, tena) (Picard’s Theorem).

Definition 2.1 (Lipschitz condition). The function f : [to, tena] X R — R" is
said to satisfy a Lipschitz condition in its second variable if there exists a constant
L > 0 such that for any two points (t,Y) and (t,Z) in the solution space D =
{to <t <tena, Y € R"} the relation

1F(8Y) = ft, 2)[| < LIY = Z],

holds for allY,Z € R", ||.|| is a norm in R™. The constant L is called a Lipschitz

constant for f.

For stiff problems the concept of logarithmic matrix norm is of major impor-

tance,

Definition 2.2 (Logarithmic Norm [9]). Let A, I € R™™"™, where I is the identity
matriz, and h € R™ and || - || be any matriz norm subordinate to a vector norm.

Then the associated logarithmic norm p of A is defined as

w(A) = lim w

h—0t h
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The matrix norm |[|A|| is always positive if A # 0, but the logarithmic norm
1(A) may also take negative values, e.g., when A is negative definite. Therefore,

the logarithmic norm does not satisfy the axioms of a norm.

Basic properties of the logarithmic norm of a matrix include [12]:

L p(A) < [|A]l,

2. u(vA) =~y u(A) for scalar v > 0,
3. pu(A+ B) < p(A) + u(B),

4. [l < et for t >0,

5. j(A) <0 = [|A] < —1/u(4),

6. a(A) < u(A) where a(A) is the maximal real part of the eigenvalues of A.

The importance of the logarithmic norm comes from the following theorem [12]:

Theorem 2.1. Let || . || be a given norm. Let v : [0,tenq] —> R be a piecewise

continuous function satisfying

p(fe(t.Q)) <v(t), te(0,tenal, V¢
Then for any two solutions Y and Z of (2.1)
to
I Z(t2) = Y (t2) [|< exp (/ v(7) dT) I Z(t) =Y () ],
t1
for all t1, ty satisfying 0 < t; <ty < tepg. U

The theorem shows that for u < 0 the system will be dissipative.

2.2 Stiff ODEs

Stiff problems are encountered in many fields of science and engineering, e.g.,
electrical circuits, chemical reaction kinetics, nuclear reactors, electrical networks

and automatic control, biochemical systems and so on.

One major source of stiff differential equations is the semi-discretization of

partial differential equations. These systems are often stiff and highly expensive
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to solve due to a huge number of components, in particular for multi-dimensional

problems.

Numerical methods in use to solve (2.1) are classified either to explicit or im-
plicit methods. FExplicit integrators such as Runge-Kutta and linear multistep
methods are usually used for integration of non-stiff problems since these meth-
ods are forced to take very small integration steps to maintain numerical stability
and significantly the use of adaptive algorithms do not alleviate this problem, and
implicit integrators, which require the solution of nonlinear algebraic systems of

equations at each integration step, are preferred when ODEs are stiff.

Stiff differential equations and highly oscillatory differential equations seriously
defy traditional numerical methods. In the last decade, considerable interest has
been generated in the study of classes of numerical methods for partial differential

equations, with particular emphasis on the stiffness property.

Despite the great progress which has been made in numerical methods so far,
there are still many problems facing them and represent a serious challenge to
them. Such problems do not require to be extensive or complex and some of them
are very simple. Stiffness is one major problem associated with the numerical

integration of differential equations.

C.F. Curtiss and J.O. Hirschfelder [8] were the first to use the term stiff. They
attempt to give the first definition of stiff systems as: "stiff equations are equa-
tions where certain implicit methods perform better, than using classical explicit
ones". They also proposed a numerical procedure to solve this type of ODEs which

nowadays are known as backward differentiation formula (BDF).

Stiffness is one of the most ambiguous concepts until now widespread in the
numerical solution of initial value ODEs. Some authors propose multiple criteria

for stiffness, we summarize some of them:

Shampine and Gear [15, 44| : By a stiff problem we mean one for which no
solution component is unstable (no eigenvalue has a real part which is at all large
and positive) and at least some component is very stable (at least one eigenvalue
has a real part which is large and negative). Further, we will not call a problem
stiff unless its solution is slowly varying with respect to the most negative real part
of the eigenvalues. (Roughly, we mean that the derivatives of the solution are small
compared to the corresponding derivatives of eA*). Consequently, a problem may
be stiff for some intervals of the independent variable and not for others . Also, the

initial value problem for ODEs is stiff if the Jacobian J;; = g_gii-’ i,7=1,...,N
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has at least one eigenvalue, for which real part is negative with high modulus, while

the solution within the major part of the interval of integration changes slowly.

Dahlquist [11]: Systems containing very fast components as well as very slow

components.

Hairer and Wanner [19]: Stiff equations are problems for which explicit methods

don’t work.

Each of the previous concepts of stiffness reflects certain aspects of the numerical
solution (e.g., impossibility of using explicit methods of integration, large Lipschitz
constants or large norms of Jacobian matrices, big difference among eigenvalues

of Jacobian matrix, etc.).

2.3 EXPINT package

EXPINT [3] is a MATLAB package designed as a tool to facilitate easy testing and
comparison of various exponential integrators, like Runge-Kutta, multistep and
general linear type methods. Berland, Skaflestad and Wright published this pack-
age with three aims : Firstly, to create a uniform environment which enables the
comparison of various integrators; Secondly, to provide tools for easy visualization
of numerical behavior; Thirdly, to be easily modified so that users can include
problems and integrators of their own. EXPINT contains several semi-discretized
PDEs as test problems such as the KdV, Kuramoto-Sivashinsky, Allen-Cahn and
Grey-Scott equations and a collection of well-known exponential integrators imple-
mented with constant step size. The most important part of the EXPINT package

is the evaluation of the ¢p—functions.

Lawson [34] introduced scaling and squaring technique to compute the matrix
exponential. In [37] various methods for the computation of the p—functions are
investigated. For problems of not too large dimensions Padé approximations com-
bined with scaling and squaring has become the standard approach in numerical
software like MATLAB for computing the matrix exponential. EXPINT package
is relying on Padé approximations combined with scaling-and-squaring for the

computation of p—functions.

Fourier spectral methods [48, 49] are used for problems with spatially periodic
boundary conditions to discretize the spatial derivatives of (1.1), and hence to

obtain a stiff system (1.2) of coupled ODEs in time ¢. The resulting linear part
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T of the system is represented by a diagonal matrix, and ¢ represents the action
of the nonlinear operator on y on the grid. On the other side for problems where
the boundary conditions are not periodic, finite difference formulas [35, 48] or
Chebyshev polynomials [48, 49] are used and in this case, the linearized system is

represented by a non-diagonal matrix.

2.4 p—functions

The most commonly related and associated functions with exponential integrators

are p—functions, which are defined as follows (e.g., [40]):

For integers ¢ > 0 and complex numbers z € C, we define ¢, (z) through

po(z) = €7,
1 1
oe (2) = ] /0 =029 1dp 1 >1, (2.2)
and the explicit formula
1 -1
wo=3e-53)
i=0

The p—functions are related by the recurrence relation

L <z);w O for 030, with o (0):%. (2.3)

Per1 (2) =
For small values of ¢ # 0, with z # 0, (2.2) gives

e* —1 e —z2—1 e —22/2—z2—1
o)=L =TT =T

22 23

The importance of the p—functions comes from the following theorem.

Theorem 2.2. The exact solution of the non-autonomous linear initial value prob-

lem

() =Tyt) + 3 alt =t y(tw) = (2.4)
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s given by

y() = @o((t = tm) T) ym + > Mprea((t = t)T) st — 1)

Proof. The general solution of the linear differential equation is given by

y(t) = (u(t) ' C Z a / (r — tn)dr,

where p(t) = po(—tT) is the integrating factor for (2.4) and C' = @o(—t, T)Ym
Now for the integrated term with the substitution 0 = (7 — t,,,)/(t — t,n),

/m ) = t)dr = [ o= T)(r = tn)' dr

m

— (t — b)) /1 @0(((1 )t —t,) —t> T) 6" 4
— =t ot T) [ (1001 T) 000
and by (2.2) with z = (¢t — t,,) T

= (t —tm) " po(—t T) o1 ((t — ) T).

So that, we have

y(t) = ot = ta) T) ym + Y Dora ((t = t)T) gt — 1), W

2.5 Computation of p—functions

The hard part of implementing exponential integrators is the evaluation of (lin-
ear combinations of) p—functions. The accurate and reliable computation of the
matrix exponential function is a long standing problem of numerical analysis. Ac-
cording to Minchev and Wright [36], the main computational challenge in the
implementation of any exponential integrator is the need for fast and computa-

tionally stable evaluations of the exponential and related ¢p—functions.

The efficiency of exponential integrators strongly depends on the numerical

linear algebra used to compute the approximations of the p—function.
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Several methods have been proposed for evaluating these functions [37].

In EXPINT package p—functions for matrices of not too large dimensions are
calculated using Padé approximations combined with scaling and squaring. In this

case the norm of the arguments z = AT is reduced firstly by scaling
z— Z/Qmaz(O,TJrl),
where 7 is the smallest integer number with 2" >|| z ||o. Then ¢,(2) will be
calculated using Padé approximation and taking the inverse transform.
The functions ¢,(2) are evaluated using diagonal (d, d)—Padé approximants,

D)

pe(2) = +0(2),

where the unique polynomials N and DY are

d < Eé (2d+ 0 —PHI(=1) |
—_— Z

(2d + 0)! = 5= g d=N+i— |7

2d+€—2 4
D¢
a(?) 2d+£'§: (=2)

For ¢ = 0, these reduce to the well known diagonal Padé approximations of the
exponential function (e?). In EXPINT d = 6 is used.

Ny(2) =

For small norms of Z, the approximation of Padé approximation is very accurate
and will be considered as exact function ¢,(Z). To reverse the scaling for £ > 0 is

not trivial. It is done by using the relations [3]

20
©(22) = % [w(z)w(z) + > (%2 ),%( )] ,

j=t+1

1 20+1 9 1
Py1(22) = 920+1 [W(Z)W+1(Z)+j§2m%(z)+EWH(Z) :
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2.6 An overview on exponential integrators

Exponential integrators are a well-known class of numerical integration methods
for stiff or highly oscillatory systems of ordinary differential equations, which in-
volve exponential functions e"? (or related functions), where 7' is the Jacobian of
the right hand side f (or an approximation to it) and h is the step size. One ad-
vantage of exponential methods is that they usually have good stability properties,

which make them suitable for solving stiff problems.

Exponential integrators are especially useful for differential equations coming
from the spatial discretization of partial differential equations, where the problem

often splits into a linear stiff and a nonlinear non-stiff part.

They require the evaluation of matrix functions P(T") or matrix-vector products
P(T')b, where T is a negative semi-definite matrix and P is the exponential function

or one of the related "¢—functions".

For problems of moderate size these functions are computed with the methods
of Section 2.4. For very large dimensions Krylov techniques for the computation
of P(T)b are more efficient and frequently used, cf. [23, 27, 45].

2.6.1 A brief history of exponential integrators

Although exponential integrators have a long history in numerical analysis, they
did not play a prominent role in applications for quite a long time because they
depend on explicit use of the exponential and related functions of (large) matrices.
However, in recent years a wide range of results for this problem had been emerged,

although of course much remains to be done.

The historical roots of exponential integrators are easy to identify. In 1967
Lawson [34] proposed the generalized Runge-Kutta processes. The novelty of his
idea was to solve the linear part (y/(t) = Ty(t)) of (2.1) exactly then making a

change of variables, v(t) = elt»=Ty(t) (also known as Lawson transformation).

By differentiation we get
V(t) = el g (e, e T (1))

Apply a numerical method (e.g., Explicit Euler method) to the transformed equa-

tion
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Vi1 = U + hg(tm, ), Um = v(tn)

Transform the approximate solution to the original variable with v,, = y,, and

_ tm—t T
Uy = eOm i) Ty 1y

e(tm—tm+1)Tym+1 = Ym + hg(tm, ym)
e_hTmerl = Ymn + hg(tma ym)

Finally, we get Lawson-Euler method (see Example 2.1)

Y1 = €Y + he" T g(tm, ym)-

These methods have been known later as Integrating Factor (IF) methods. The
same result can be obtained by multiplying the original problem by the integrat-
ing factor e®»~Ty(t), and the methods are represented many times with different
names, e.g., Linearly Exact Runge-Kutta (LERK). The purpose of transforming
the differential equation in this way is to remove the explicit dependence in the
differential equation on the operator 7', except inside the exponential. The ex-
ponential function will damp the behavior of T" removing the stiffness or highly
oscillatory nature of the problem. Generalized Integrating Factor (GIF) methods
[32] were recently constructed by Krogstad as a means of overcoming some of the
undesirable properties of the Lawson schemes. This class of schemes uses approx-
imations of the nonlinear term from previous steps, resulting in an exponential

general linear method.

It is more than half a century ago since the publication of the paper by Cer-
taine [6] on exponential integrators who constructed the first exponential multistep
methods, Exponential Time Differencing (ETD) methods.

[F and ETD methods treat the linear part exactly (and so are necessarily
A—stable), but differ in the assumptions used when handling the nonlinear part.

ETD is based on the variation of constants formula, which is the integral form of

(=0T y(1)) = =T g(t,y(1))

Then

h
Y(tm + h) =6"Tym+e”/ e gt + T, y(tm + 7)) dr
0
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Various schemes can be obtained by approximating the integral with different
quadrature formulas. The simplest method is obtained by approximating the
nonlinearity g over one timestep by its value at the known point (,,,y,) and
solving the rest of the integral explicitly. With the same notation as before the

exponential Euler method (see Example 2.2) becomes

Y1 = "y + hp1 (W T) gty Yum)-

Certaine constructed two exponential integrators based on the Adams-Moulton
methods of order two and three by finding approximations to the integral in the
variation of constants formula, using an algebraic polynomial approximation to the
nonlinear term. In 1969, Norsett [38] constructed ETD based on Adams-Bashforth
methods. ETD schemes based on Runge-Kutta schemes were independently dis-
covered by several authors, e.g., [13, 46]. Calvo and Palencia [5] constructed and
analyzed a related class of k-step methods, where the variation of constants for-
mula is taken over an interval of length kh instead of h. In contrast to exponential
Adams methods, their methods have all parasitic roots on the unit circle. In 2002,
Cox and Matthews [7] derived ETDRK methods as a class of ETD methods based
on the Runge-Kutta time stepping. ETDRK4 suffers from numerical instability
when T' has eigenvalues close to zero. Kassam and Trefethen [31] modified the
ETDRK4 method and studied their instabilities and have found that they can be

removed by evaluating a certain integral on a contour that is separated from zero.

In 1999, Munthe-Kaas [17] used the affine Lie group to solve semi-linear prob-
lems using Lie group schemes. Unfortunately, the RKMK schemes were shown to

exhibit instabilities due to the use of commutators [3].

Recently, exponential Rosenbrock-type methods were considered by Hochbruck
et al. [27], and a class of explicit exponential general linear methods has been
studied by Ostermann et al. [40].

A historical survey is given by Minchev and Wright [36], an actual survey on

exponential integrators can be found in Hochbruck and Ostermann [26].
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2.6.2 Exponential Runge-Kuta methods

For an s—stage exponential integrator of Runge-Kutta type for (1.2), we define

the internal stages and output approximation |[3]:

Y, = hz aij(hT) g(tn—1 + cjh, Y;) + i (BT) yp—1, i=1,...,s,
~ (2.5)
Yo =D bi(hT) g(tn_1 + c;h, Yi) + o1 (hT) Yoy,
=1

where ¢(t,y) = f(t,y) — Ty. This method is A— and L—stable, because it gives
the exact solution of linear problem y/(t) = T y(t) with the exact starting values.

By setting T" = 0 we obtain an explicit Runge-Kutta method with the coefficients
Uil (0) = 1, Q45 (0) = Qi , (%1 (0) =1 and bZ(O) = bl

The matrix functions a;j(h7T) and b;j(hT) are linear combinations of the well
known p—functions. The coefficients are defined to give a high order of the
method.

The functions used in (2.5) are conveniently represented in an extended Butcher

tableau

C1 CLH(Z) cee CL15<Z) UH(Z)
Cs | as1(2) o ass(2) | usa(2)
bi(z) -+ bs(2) | vi(z)

Definition 2.3. The exponential Runge-Kutta method (2.5) has in the it" stage
the stiff stage order q; for (1.2), if with y, = y(t,)

” y(tn -+ Czh) — Y; HS Dihqurl, fOT h S ho

18 satisfied.

It is consistent of stiff order q, if
| y(tn +h) — Yni1 [|< DRI for h < hg

holds.



Exponential Integrators 18

Here the constants D;, D and hg are independent of || T ||. It has non-stiff order

and stage order q, if the constants are allowed to depend on || T ||.

2.6.3 Exponential general linear methods

The extension to general linear schemes is carried out as follows. A step of length
h in an exponential general linear scheme, requires to import r approximations
into the step, denoted as yin_l}, i =1,...,r. The internal stages (as in the Runge-
Kutta case) are written as Y;, i = 1,...,s. After the step is completed, r updated
approximations are computed. These are then used in the next step. Each step

in an exponential general linear scheme can be written as [3]
Yi = hZaZJ(hT) g(tn—l + th7 Y}) + Zulj(hT) y]['n_l]u 1= ]-) D)
=1 =1
= 0D b (hT) gltn1 + csh, Yi) + Y vy (WD) g™, i=1,.,
j=1 j=1

The exponential integrators of Runge-Kutta type are easily seen to be a special

case when r = 1 with u;1(2) = a;0(2), vi1(2) = bo(2) and by;(z) = b;(2).

The coefficient functions are grouped into matrices,

1 | an(z) o ars(2) | unn(z) o0 upe(2)
cs | as1(z) o0 ass(2) | ua(z) o ug(2)
bi1(z) o bis(2) | vi(z) 0 v(2)
ba1(2) o bss(2) | vaa(2) o ve(2)

To implement the exponential general linear schemes, the EXPINT package as-
sumes a special structure of the vector y»~ !, the quantities of which are passed

from step to step:

y[n—l] = [yn—la hgn—Qu hgn—?n ) hgn—r]Ta

where ¢,_; = g(yn—i,tn—;). This choice enables both the ETD Adams-Bashforth
and generalized Lawson schemes to be conveniently represented in a single frame-
work [3]. Exponential integrators that do not fit into this framework are the

methods developed in Calvo and Palencia [5].
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The extension from a traditional integrator to an exponential integrator is not
unique. The two simplest choices of exponential integrators of Runge-Kutta type

are the Lawson-Euler and Ngrsett-Euler methods.

We give here some examples of exponential integrators implemented in EXPINT

[3] and which we will use for comparison in our numerical tests.

Example 2.1. Lawson-Euler

Yn = @o(hL)yn—1 + ho(hL)g(Yn—1,tn-1),

Example 2.2. Ngrsett-Euler

Yn = @o(hL)yn—1 + hr(hL)g(Yn—1,tn-1),

Example 2.3. ABLawson4
This scheme bases on the Adams-Bashforth scheme of order four. It has stiff

order one and non-stiff order four. Its coefficients are given by

0 1 0 0 0
1| Bp(2) po(2) —51w5(2) Siwa(2) —gwp(2)
S0z) 0] pole) —BeRs) Led) —Led)

1 0| 0 0 0 0

0 0] 0 1 0 0

0 0] 0 0 1 0

Example 2.4. Lawson4
Lawson exponential integrator based on Kutta’s classical fourth order method.

The coefficients of Lawson4 are given by

0 1

5 | 5%0(3) wo(3)

% % %(%)

1 0 vo(3) vo(2)
(2)

sv0(2)  300(3) 390(3) § | o
Example 2.5. ETD4RK

The fourth order ETD scheme, ETD/RK, due to Cox and Matthews [7]. The
coefficients of ETD4RK are given by



Exponential Integrators 20

0 1

% %@1(%) vo(3)

3 0 s¢1(3) ¢o(3)

1 @1(5) (900(3) - 1) 0 <P1(§) wo(2)
@1(2) = 3p2(2) +4ps(2)  ba(2)  b3(2)  4ws(z) — wa(2) | o(2)

where by(z) = bs(z) = 2pa(z) — 4ips(2).

Example 2.6. Strehmel-Weiner
One of the earliest exponential Runge-Kutta methods with 4—stages, it has

stiff order three. Its coefficients are given by

0 1

% %‘Pl(é) vo(3)

2 | 2213) —ap2(5) 3%2(3) #o(3)

1| p1(2) = 2p2(2)  —2p2(2) 4ipa(2) ¢o(2)
bi(2) 0 4pa(2) — 8ps(2)  4ps(2) — pa(2) | wo(2)

where by(z) = ¢1(2) — 3pa(2) + 4ps(2).

Example 2.7. Hochbruck-Ostermann
This scheme developed by Hochbruck and Ostermann , with five-stages is
the only known exponential Runge-Kutta method with stiff order four. Its

coefficients are given by

0 1
% %%(%) wo(3)
5| 1B -3 e(3) vo(3)
L1 pi(z) = 202(2)  92(2)  @2(2) vo(2)
21 3¢01(2) —2as —asa as 52 54 ©o(3)
bi(z) 0 0 4dp3(2) — wa(2) 4pa(2) —8ps(2) | wo(2)
where

bi(2) = ¢1(2) — 3pa(2) + 4p3(2)

1 z 1 1 z
a5y = 5902(5) — @3(2) + 5902(2) - 5903(5)
1 z
asq4 = 1902(5) — as2.
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Example 2.8. RKMK4t
This scheme was developed by Munthe-Kaas [17] using a suitable truncation
of the dexp™t operator. It is of non-stiff order four and stiff order two but
suffers from instabilities, especially when non-periodic boundary conditions

are used. Its coefficients are given by

0 1

% %% %) @0(%)

% 591 %) %(1 - 1)901(5) 900(3)

1 0 0 1(2) o(2)
sp(2)(L+3) 5¢1(2) 591(2)  ger(x)(1=3) | po(2)



Chapter 3
Exponential Peer Methods

In this chapter, we will be concerned with the construction, implementation and
numerical analysis of a new class of exponential integrators, exponential peer meth-

ods (EPMs).

The first Section 3.1 will be devoted to give an overview on peer methods. The
definition of the new methods and the basic properties of their coefficients are given
in Section 3.2. Consistency and zero-stability of the methods will be investigated
in Section 3.2.2, and we formulate simplifying conditions which guarantee order
p = s — 1, where s is the number of stages. For the non-stiff case the order is
p = s. Due to the two-step character of the methods, zero-stability has to be
discussed. Finally, in Section 3.3 we consider a special class of EPMs of stiff order
p = s — 1 with only two different arguments for the exponential functions. By
a special choice of the nodes we obtain optimally zero-stable methods. We show

that the methods solve linear problems 3y’ = T'y exactly.
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3.1 Peer methods

Two-step peer methods are a class of time integration schemes for the numeri-
cal solution of non-stiff and stiff IVPs either for sequential or parallel computers,
which were introduced by B. A. Schmitt and R. Weiner [43]. This class has a
two-step character and propagates s different "peer" solution variables with es-
sentially identical characteristics from step to step. All s stage solutions are peers
sharing essentially the same accuracy and stability properties. Linearly-implicit
peer methods have been studied for parallel and sequential implementation e.g., in
[41-43]. They are characterized by a high stage order what makes them attractive

for very stiff systems.

The new feature of peer methods is that they possess several stages like Runge-
Kutta-type methods, but all these stages have the same properties and no ex-
traordinary solution variable is used. These methods combine positive features of
both Runge-Kutta and multistep methods having good stability properties and no
order reduction for very stiff systems. In particular, several explicit peer methods
[52, 53] have been proved to be competitive with standard Runge-Kutta methods

in a wide selection of non-stiff test problems.

We consider the numerical solution of initial value problems for systems of
ODEs of the form,

dy

E = f(tvy)v te [t07tend] (31)

y(to) = yo € R",
where y = y(t), y : R — R" and f: R x R" — R™

The form of the explicit two-step peer methods is as follows. In each time step
from ¢, to ty1 = tm + hay solutions Yy, = y(tmi), i = 1,..., s, are computed as

approximations at the points ¢,,; = t,, + ¢; h,,. The time step consists of s stages,
Ymi = Z bij Ym—l,j + h/m Z aij f (tm—l,ja Ym—l,j)
j=1 j=1
i—1
+hmzrijf(tmjaymj>y 9, = 1,...,8. (32)
j=1

We point out that the right-hand side in (3.2) depends on the stages Y;,,_1 ; of the

previous time step with the contribution from actual stages. Because of r;; = 0 for
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J > i the methods are explicit. We store the stage vectors Y,,; and also f (t,,;, Yin;)

in vectors.
Y1 [t + 1 by Y1)
Y,, = Y’:”Q ER™,  F(tp,Yp) = UG “ Py Yoms) (3.3)
Y'r'ns f(tm + Cs‘ Pns Yins)

Explicit peer methods yield high order approximations Y,,; — y(tmi) = O(hS)), i =

1,...,s, uniformly in all stages. So, dense output is available cheaply.

For stiff problems in [41] linearly-implicit peer methods are considered. They

are given by

(I = b YT Yoni = D b3 Yoot + b O g [Frne1j = T Vi 4]

j=1 j=1
i—1

+ BT Y Gij Y i=1,2,...,s. (3.4)
j=1

Note that for peer methods all stage values are of order p, i.e., the order of consis-
tency is equal to the stage order. A consequence is that in implicit peer methods

no order reduction for stiff problems occurs.

3.2 Exponential peer methods

3.2.1 Definition of exponential peer methods

We consider the initial value problem (3.1). For the formulation of exponential
peer methods we assume as usual in exponential integrators a linearization of the

form

% =f(t,y) =Ty + g(t,y), tE€ [to,tend] (3.5)

y(to) = yo € R",

where ¢g(t,y) = f(t,y) — Ty. Here T' € R™ " is an arbitrary matrix, which is
supposed to carry the stiffness of the system, and which should approximate the
Jacobian f, for stability reasons. In our tests with the EXPINT package [3] T is
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constant over the whole integration interval, in principle, however, T" may change

in every step.

We consider the following class of exponential peer methods and assume a
constant step size h. In this method, a numerical solution Y,,;, 2 =1,2,...,s will
be calculated for the system (3.5) by an s—stage scheme with step size h of the

form

Ymi = (,DO(OéZhT) Z bij Ym—l,j + h Z AU(OéZhT) [fm—l,j — TYm—l,j}

j=1 j=1
i—1
+ 0> Rig(ahT) [ fg — T Vg i=1,2,...,s. (3.6)
j=1
The coefficients
B =)=, A=(Ay)io, R=Ry)i,o, c=(a), and a= (),

are free parameters of the scheme. The idea is to determine the parameters in
such a way that the method is of high order and has good stability properties. In

this chapter we will assume constant step sizes.

The coefficients b;j, ¢; and «; are constant and we assume «; > 0. The ma-
trix functions A;; (hT) and R;; (hT') are linear combinations of ¢—functions, see
Section 2.4. Parallel methods are obtained by the choice R = 0 eliminating any

reference to the stages Y,,; of the actual step.

The values Y,,; approximate the exact solution y(t,, + ¢; h) at points t,,; =
tm + ci h, where the nodes ¢; are assumed to be pairwise distinct. They are chosen
such that ¢, = 1 and the other nodes satisfty 0 < ¢; < 1,7=1,...,s — 1. Further
we denote f,; = f(tm;j, Ym;j). The s stage values Y,,; have the same characteristics
so we call them "peer" [43]. By setting 7" = 0, we obtain explicit peer methods
(3.2).

The compact notation for EPMs is obtained by storing the stages Y,,; into Y,,
and, accordingly, G(Y;,,) :== F(Y,,) — TY,, with (3.3) then (3.6) corresponds to

Y =®(BRI)Ym +hMAR G (Y1) + MR DG (V) ,
where ® is the Kronecker product, and

& = diag(po(a1hT),. .., po(ashT)). (3.7)
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3.2.2 Consistency and convergence

In this section we will derive order conditions for EPMs when applied to stiff
semi-linear problems (3.5). Essential in choosing a numerical method is its order

of consistency and its numerical stability.

We will assume that the stiffness is due to the linear part Ty and that the

nonlinear part satisfies a global Lipschitz condition
lg(t,u) — g(t,v)|| < Lygllu — o], (3.8)

with Lipschitz constant L, of moderate size. We assume that 7" has a bounded

logarithmic norm
w(T) < w. (3.9)

If we use different matrices 7" in different steps, then we will assume (3.9) for all
steps. If the system (3.5) comes from semi-discretization of parabolic equations

then this condition is usually satisfied. Assumption (3.9) implies

leo(RT)|| = (|| < e
< e, (3.10)

see e.g., [28].

Remark 3.1. A consequence of (3.9) is that ||o;(hT)|| and ||hT,(RT)| are uni-
formly bounded for | > 1. This also holds for the matriz coefficients A;;(a;hT)
and R;j(a;hT) which are linear combinations of the ¢;(c;hT), [ > 1.

We are interested in error estimates, which may depend on bounds of derivatives
of the exact solution, on w and L,, but do not depend on the norm of 7. For our
investigations of the order of consistency we always assume that the right hand

side is sufficiently smooth.

The order conditions for exponential peer methods can be derived by replacing
the numerical solutions Y,,; and Y;,,_1; in (3.6) by values of the exact solution y(t)
in the numerical method where f(t,.;,y(tmi)) = ¥/ (tm:). Then the local residual

errors A,,; are

s

Api = Y(tmi) — wo(a;hT) Z bijy(tm—15) — hz Aij(oshT) [y/(tmflaﬂ

j=1 j=1
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i—1

- Ty(tmfl,j)} ~ 1> Ri(aihT) [y’(tmj) - Ty(tmj)], i=1,...,5 (3.11)

j=1
By Taylor expansion of the exact solution y(¢) and /(¢) at the point ¢,,, we have
q

y(tmi) = y(tm + Cih) = Z hr!Ci y(r)(tm) + (9(hq+1)7

r=0

y(tm_Lj) = y(tm_1 + ¢ h) = y(tm + (¢; — 1) h)

q (A 1\T
Z wy(ﬂ (tm) + O(RITY),

T

Il
o

hrer
Dy (1) + O(RTHY,

Y (tm +c; h) m

I
<
I MQ
o

/

~—

y'(tm_l,j) =y (tmo1 + ¢ h) = y'(tm + (¢; — 1) h)

q
h" (c; — 1)"
PG e, + o),

\z
I
o

where the O-term is uniformly bounded due to the smoothness assumption on

the solution.

Substitution into (3.11) yields

—h Z Aij (a; BT { i wy(rﬂ)(tm) — Ti <CJ'_ﬂy(r) (tm)}

r!
j=1 r=0 r=0

—h Z Rij (ai hT) { i CLON Ti CLOVE (tm)} +O(ht*)

rl

j=1 r=0 r=0

r

h
By collecting the coefficients of —'y(r) (t,,) we get
7!

s

Ami = Z {C:I — (,Oo(Oéi hT) Zbij(cj — 1)r - TZAij(ai hT)(C] - 1)T_1

r=0 j=1 7j=1
s i—1
+hT Z Aij (OZZ‘ h T) (Cj - ].)T - T Z Rij (Oéz' h T)C;_l
j=1 j=1
i—1 B
+hT " Rij(ah T)c;} Fy“") (tm) + O(RIHY) (3.12)
j=1
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Here the remainder results from products of the coefficients of the method with
the O(h?*1)-terms of the Taylor expansion of the solution. Due to Remark 3.1 the

remainder is bounded independent of ||7||.

Definition 3.1. The exponential peer method (3.6) is consistent of non-stiff order

p if there are constants hg, C' > 0 such that
1Al < CRPTY for all h < hy, and for all 1 < i < s.

The method is consistent of stiff order p, if C' and hy may depend on w, L, and

bounds for derivatives of the exact solution, but are independent of |T||. O
Note that for exponential peer methods stage order and order are equal. To

determine the coefficients of the method, B, A, R, ¢, and «, such that the method

has high order, it is advantageous to consider the linear case iy = T’y first.

Theorem 3.1. If the exponential peer method satisfies the conditions
Zbij(Cj—l)l = (Ci—Oéi>l, l:(),l,...,q, (313)
j=1

then it is of stiff order of consistency p = q for the linear equation y' = TY.

Proof. From (3.11), for the equation ' = T’y the local residual errors will be

Api = y(tm + cih) — po(a:hT) Z bijy(tm + (¢; — 1)h)

j=1
= wo(cihT)y(tm) — po(cihT) Z bijpo((c; — VAT )y(tm)
j=1
Using the relation
q Zl
po(2) = D o + 2 pgn(2),
1=0

which follows from (2.3), we obtain

g s L
h'T
Ay = E [Ci - E bij(ci +¢j — 1)@ Ty(tm) + hq“{cgﬂ%ﬂ(cihT)

1=0 j=1

= b+ = 1) o ((0% +¢ - 1)hT) }Tqﬂy(tm)
j=1



Exponential Peer Methods 29

With T%y(t,,) = y @V (t,,) the second term is O(h?*!), where the constants are
independent of ||T||.

il

For the coefficients of I (tm) for { =0,...,q we have
s s l I
d=> bylai+e—1)'=d=> by (k) (¢j — Dy
j=1 j=1 k=0
l s
l
= Ci — Z (k}) Czéik Zbij(cj - 1>k
k=0 j=1

I
l
! (k) e —a) = - =o.

k=0

Il
o
|

The method is therefore of stiff order p=¢q. M

If we write the equations (3.13) in matrix form for [ = 0,...,s — 1, we obtain

immediately

Corollary 3.1. Let

B=VaVi, (3.14)
where
L a—a (a—a1))” ... (=)t
Vo= (Lc—a,...,(c—a) ) = 1 co—as (a—an)? ... (c—ag)™! |
Lemay e a) (o)
1L ei—1 (aq—1)% ... (¢q—1)1
Vi=(Le—1,...,(c—1)*") 1 2 — 1 (=12 ... (e _‘1)371 |
1 ¢s—1 (cs—ay)* ... (c,—1)51
c1 o .
| | Ve | | o . 1
Cs o, .

Then the exponential peer method has a stiff order p = s — 1 for the equation
y =Ty. O
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For a = ¢ we have V,, = lel, where e; = (1,0,...,0)T. If furthermore ¢, = 1

then el Vi = e ie., eI V7t = €I, where e, = (0,0, ...,1)T. Therefore we have

Corollary 3.2. Let a =c, ¢, = 1. Then with (3.14) we have B = 1el', and
Zbij(cj - 1)l = (CS — ].)l
j=1

Therefore (3.13) is satisfied for alll, the exponential peer method solves the system

y' = Ty with exact starting values exactly. O

If ¢ = s — 1, then the general solution of (3.13) will be

S
cp+a;—c—1
b= ———
k=1 ko
k#j

We consider the following two examples for the choice of ¢ and «.

Case 1 (Corollary3.2) Let

C;, = QO
Then
0 .01
0 .01
B = | = 1€

01
01

0 .01

A disadvantage of this choice is that p—functions of s different arguments
have to be calculated. This leads to a high computational effort. To minimize
the number of p—function evaluations, we choose to set the parameter « to

have only two different arguments.

Case 2 Let
as =1, a=a, i=1,...,8s—1,
—1)(a" =1 1-—
c1 = (s )(al 5)+ B, =6—-9@-1)+1, i=2,...,s.

(3.15)
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Then
B g1 (ﬁ) Bg2 (5) : Bgs—l (5) 595 (6)
0 0 1 0 0
B= 5 ,
0 1 0
0 0
0 0 1

where ¢; (0) = 1.

The coefficients b;; are determined by Theorem 3.1 for given o and c¢. We now
will consider the general case (3.5) to obtain conditions for the matrix coefficients
Aij (OélhT) and Rij (OélhT)

rrer

. y(t,,) for

From (3.12) with (3.13) we need to show that the coefficients of

r=20,...,q are zeros.

Theorem 3.2. Let the conditions (3.13) be satisfied for 1 =0,...,q. Let further
A;j(a;hT) and R;j(o;hT) be linear combinations of o1(c;hT), . .., pe1(chT) sat-
1sfying the condition

s i—1
> Aij(ihT) (¢; = 1)" + ) Ryj(oihT)c]
7j=1 7j=1
- (Z)l!aﬁ“ (¢; — ) i1 (ashT) (3.16)
1=0

forr = 0,...,q. Then the exponential peer method is at least of stiff order of
consistency p = q for (3.5).

Proof. For order g the coefficients of y(")(¢,,) in (3.12) should be equal to zero for
r=0,...,q.

For r = 0 using (3.13) and (3.16) we obtain

s s i—1
I —o(ashT) > by + BT Y Aij(awhT) + hT > Ryj(ihT)
j=1 j=1 j=1

= I — po(a;hT) + a;h Ty (a;hT) =0 by (2.3).
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For r =1,...,q holds for the coefficients

C:[ — QOQ(CYlhT) Z bij (Cj — 1)T - T Z Aij (OllhT) (Cj — 1)r—1

j=1 Jj=1
S i—1 i—1
+ hTZ Aij(aihT)(Cj - 1)7’ -Tr Z Rz‘j(OéihT)C;_l + hTZ RU(O{Z}LT)C;
j=1 j=1 Jj=1
=c T — po(c;hT)(c TZ ( ) e, — ay) gy (ahT)
+ hTZ ( ) e — o) " (ohT) by (3.16)
r—1 1
=c" — )" — 1) :
=c; I — @o(o;hT)(c rz (l B 1> ;)" (1 = Dlgy(a;hT)
—~ (T | r—1
+ o, (¢ — o Uoi(ohT)—1) by (2.3
;(l)< FlaadT) ~ 1) by (2.3
Using the fact [ r=l
& . -1
=c' I — o(o;hT)(c Q; ( ) — o) (A T)
=1
+ Z < > — o) " (b T) — &1 = 0. [ |
Corollary 3.3. Let a =c¢, ¢, =1 and B = 1el. Let
s i—1
Z Aij (Cth) (Cj - 1)T+ Z Rij (CJLT)C;
j=1 j=1
=rlci o, 1 (ehT)  forr=0,...,q. (3.17)

Then the exponential peer method is consistent of stiff order at least p=q. U

Note that for ¢ = s—1 for any given strictly lower triangular matrix R we can solve
(3.16) for A, due to the regularity of Vj. Therefore we can construct exponential

peer methods of any order by increasing the number of stages.

If we allow the bounds to depend on T 3@ (non-stiff order), then the order
of the methods will be p = ¢ + 1,
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Theorem 3.3. Let the solution y(t) be (q + 2)-times continuously differentiable.
Let the conditions (3.13) be satisfied forl =0,...,q+1, and (3.16) forl =0,...,q
Then the method is of non-stiff order p = q+ 1.

Proof. The beginning of the proof is identical to the proof of Theorem 3.2. Con-

sidering now one more term in (3.16) gives for the term with h?!

{c?“] — @o(a;hT) Z b (c; — 1) —(g+1 Z Aij(a;hT) (¢; — 1)1

j=1 j=1
i—1 i—1
j=1 j=1

+M§?%@qu—wﬂkﬁiﬁmw%)

I
o q+1)!

= {C?Jrl[ — QO()(C‘Q]”LT) (Ci — (Jéi)q+1

4 pat+l
q+1§:(>mwl (¢; — )" 11 (0 T) y (1,,)

p (¢ +1)!
+ O (h1*?) |

: q+1 q+1/(q
U he f = —
sing the fact (l 1) ; 1([)

+1
_jzl <C] ‘; 1>l'ozﬁ(cz ;)1 l¢l(aZhT)}< f;)'y(qﬂ) (t)
+ O (h*?)
g+1 a1
= { q+11 Z ( )l'a ai)q+1—lw(aihT)} E 1)!y(qH) (tm)
+0 (hq“) ,

With ¢ (c;hT) = a;hTp1(c;hT) + Z—I!I we finally obtain

atl +1
_ ) gt q+1 4 IR L hq— (g+1) q+2
_{ I- gj( Jaltei a0 }M+Dw (tn) + O (")

— 0 ().
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So A,,; = O (h??) and the method is of non-stiff order p = ¢ + 1. |

Remark 3.2. Note that ||[Ty' )| can be of moderate size although ||T)|| is very
large, for instance for linear problem y' = Ty or for special semi-discretized partial

differential equations with homogeneous Dirichlet boundary conditions.

Due to the two-step character for the convergence of the method, we have in

addition to show zero-stability.

3.2.3 Linear stability analysis

We now focus our attention on the basic linear stability requirements that any
numerical method for ODEs has to accomplish. The definition of such properties
we present in this section are formulated according to the formalism of EPMs. To
study stability of a formula, it is often useful to analyze its performance on the

following test problem (Dahlquist test equation [10]):

v () =My, y(to) = yo, (3.18)
where A € C~ :={z € C: Re(z) < 0}.

The solution of this simple problem remains bounded when time goes to infinity
and we need to require that the numerical solution possesses an analogous stability
property to that displayed by the exact solution (see e.g., [33]|). Let us analyze
the conditions to be imposed on the numerical method in order to reproduce the

same behavior of the exact solution.

By applying the EPM (3.6) to the linear test equation (3.18), we obtain the

following recurrence relation
Yin =M (2) Y1 = (M (2))™ Yo, z=hT, (3.19)

Here, Y,, = (Ymi)jzl and M (z) is the stability matrix, which takes the form, cf.
(3.7)

M(z)=dBI).

For zero-stability we consider z = 0.

In 1963, Dahlquist [10] introduced the concept of A—stability. The concept

of A—stability is based on the linear test equation (3.17). When a numerical
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method is A—stable, there are no stability restriction on the step size in the

implementation, which is a desirable property for the integration of stiff systems.

Definition 3.2. The exponential peer method (3.6) is zero-stable if the spectral
radius of the stability matriz at z = 0 is one (i.e., o(M (0)) = 1) and all eigenvalues

on the unit circle are simple. [
From (3.19) we have M (0) = B. from (3.13) for { = 0 we have B1 =1 i.e., B
has always one eigenvalue \; = 1.

Analogously to Adams methods we will consider methods where all other eigen-

values are zero, i.e., the matrix B has the eigenvalues
A =1, A =Xd3=--=X,=0. (3.20)

The parasitic roots are zero, a property also shared by the exponential general
linear methods of Ostermann et al. [40]. We call such methods optimally zero-
stable. Since the matrix B is constant, zero-stability implies that powers of B are

uniformly bounded.
For the methods of Case 1 and Case 2 obviously hold:
Theorem 3.4. The methods (3.15) with | B |< 1 are zero-stable. With B = 0 they

are optimally zero-stable. [

For convergence consider first the non-stiff case. Then we have
O =1+0(h)

for h — 0. By standard arguments (e.g., [52]) follows

Theorem 3.5. Let the exponential peer method be consistent of non-stiff order p
and zero-stable. Let for the starting values hold Yo; — y(to + c;h) = O(hP). Then

the method is convergent of non-stiff order p. [

Note that here the O(h)-terms may depend on ||T'||. For special methods this

can be avoided.

Theorem 3.6. Let the exponential peer method be consistent of stiff order p and
zero-stable. Let for the starting values hold Yy, — y(to + c;h) = O(hP). Let b; >0
for all 1 <i,5 <s. Then the method is convergent of stiff order p.



Exponential Peer Methods 36

Proof. For the global error

holds

Emi = po(a;hT) Z bijem-1,; +h Z Aij(aihT) [g(tm—l,p Y(tm-1,))

= j=1
i1

— g(tm-1;, mel,j):| +h Z Rij(ohT) [g(tmja Y(tmi)) — 9(tmy, ij)] + Api.
=1

From (3.13) we have for | = 0 the relation Z b;j = 1. By Remark 3.1 the norms
j=1
of the matrix coefficients A;; and R;; are bounded by some constants C'y and Ckg.

With (3.10) we have for h < hg, where hg is independent of || 7|
leo(@hT)|f < e < 1+ C"h,

C* independent of ||T’||. With the assumptions on b;;, with the Lipschitz constant

L, of g (3.8) and with ||e,,—1| = max; ||e;—1,|| we arrive at
i—1
lemill < (14 C*M)llem-1ll + ACLgllem1ll +hCRLy Y llem;ll + CHP*.
j=1

Here the constants are independent of ||T].

For ¢,,; on the right hand side only quantities &,,1,...,&m -1 from lower stages
appear (R is strictly lower triangular). By induction over the stages we will prove

the relation
lemill < (1+ hy)llem-1ll + &;RP,

where v; and ¢; are independent of ||T°]].

Fori=1:
lemill < (14 h(arC* + CaLy))|lem—1 ] + CRPT,

i.e., The recurrence relation is satisfied with v, = oy C* 4+ C4 Ly, 6, = C.
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Let the relation be satisfied for j =1,...,1 —1

| €mjll < (1 + hy)llemnll + 6;h7HL

Then for i =1 :
-1
lem-1ll < (14 (wC* + CaLg))llemrll + hCrLg > ((1+ hy;)llemr |l + 6;h7)
j=1
+ ChP!

< (14 hy)|lemet|l + 6P for h < hy.

The constants ;, §; in the stages depend on the logarithmic norm w, on C4, Cg
and L,, but are independent of ||T'|| and therefore uniformly bounded. We finally

arrive at the recursion
€| = max ||| < (1+ Ch)|lem_1|| + ChPH

with constants C and C not depending on ||T]|. Stiff order of convergence p follows

by standard techniques. W

3.3 A special class of methods

In our numerical tests we will use the framework of EXPINT. Although there exist
relations among ¢—functions of special arguments, it seems to be advantageous
to have the number of different arguments as small as possible. In this section
we will therefore consider a special class with only two different values of a;. We
consider the methods of Case 2 with a; = 1, cf. Section 3.2.2.

For zero-stability the choice = 0 in (3.15) is optimal. We have

a = E ;o G=(s—i)(ay—1)+ 1. (3.21)

Furthermore, we will always assume that B is defined by (3.14). By Corollary
3.1 the conditions (3.13) are fulfilled up to s — 1. For this choice we immediately

obtain
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Theorem 3.7. For

s —2

<a" <1
S_

the nodes c; are distinct and satisfy 0 < ¢; < 1 with ¢ = 1. Due to B = Vavl_l
the exponential peer methods are of stiff order p > s—1 fory =Ty. 0O
With (3.14) and (3.21) the methods are also optimally zero-stable.

Theorem 3.8. The methods defined by (3.14), (3.21) are optimally zero-stable,
the matrix B is given by

10 .00
01 0
B=|"~" " ] (3.22)
000 ... 10
01
0 .01
Proof. We have with ¢, =1
1 C1 — (g (Cl — 061)2 e (Cl — &1)8_1
1 Co — Qg (CQ — (12)2 R (CQ — O{Q)Sil
v, =
1 Cs—1 — Q51 (Cs—l - O-/s—l)2 s (Cs—l - Oés—l)s*l
1 0 0 . 0
(3.22) is equivalent to
1 Cy — 1 (CQ — 1)8_1
BV, = 1 o1 —1 ... (Cs—l — 1)8_1
1 0
1 0

This is equal to V,, iff

Cs—1 = Og—1,

Ci+1—1:Ci—Oéi, izl,...,s—l. (323)
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Inserting (3.21) immediately proves the statement. H

Corollary 3.4. The methods (3.22) are convergent of stiff order p=s — 1.

Proof. Because of b,; > 0 Vi,j = 1,...,s and by using Theorem 3.6 so the

methods are convergent of stiff order p=s—-1. N

Exponential integrators are designed to solve the linear system 1y’ = Ty exactly.
However, due to their two-step character this is not trivial for peer methods. For
the choice @ = ¢ this was shown in Corollary 3.2. Here we will prove this property
also for the choice (3.21).

Theorem 3.9. Let (3.21) be satisfied and let the starting values Yo; be exact. Then

Yy = eUHedhTy () i.e., we have the exact solution of y = Tly.
Proof. By (3.6) we have

Yy = et Z bijYo; = ™" Z bije" y(to)

j=1 j=1

Due to the structure of B for ¢ = 1,...,s — 1 this simplifies to

i, = el e Ty )
= Ry (1) (by (3.21))

_ 6(1+ci)hTy(t0)’
i.e., Y3, is exact. For the last stage (cs = 1) we have

les — ehTYbS — ehTehTy<t0) — 62hTy(t0). [

The matrix coefficients A and R can be computed by solving the system of alge-
braic equations (3.16) for r = 0,...,s — 1 using MAPLE. There remain M
free parameters. For simplicity, to get a uniquely defined method, we set free
parameters to zero to obtain an upper triangular matrix A and a strictly lower
triangular matrix R. For this very special choice each stage of the resulting expo-
nential peer method can be interpreted as an exponential multistep method [5],
however with different methods in different stages. Our choice is arbitrary and
may be not the best. For instance it is possible to set R = 0 to obtain parallel

methods.
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we have computed methods for s = 3,4,5,6,7

—1
With (3.21) and o* = (s—1)
s
in this way. They are called epm3-epm7. By Theorem 3.2 the methods are of stiff
order and stage order p > s — 1, and by Theorem 3.3 of non-stiff order p = s.

Remark 3.3. Another choice for a and ¢ with also two different arguments is
gwen in Appendiz C.
As example we present the coefficients of epm4 and epm5. The other methods’

coefficients are found in Appendix A.

Example 3.1. Method epm4 with 4 stages of stiff order p > 3:

01 020
T T
1
a: §7§7§71 ) C: 1717§7]‘ ) B: O O 0
44" 4 4°2° 4 00 01
00 01
Ay A Ais A 0 0 0 0
0 A, Ap A A
A — 11 12 13 . R= a0 0 0
0 0 An A Az Ay 00
0 0 0 Au Ry Ry Rys O
where
A __3 +27 _81 A _3 _9 _27 +243
11 = 4902 4903 4904, 12 = 4§01 8@2 5 ¥3 4 P4,
PR T 4o 3,8
13 = 4902 1 ¥3 1 P4, 14 = 8902 1 P4,

22
A44 = Y1 — 3@02 + 32@3 — 64@4, R41 = ]_2(,02 — 80@3 + 192@04,

4
Ry = —6ps + 643 — 192¢, Ry3 = 3%2~ 16¢3 + 64¢p4.

Example 3.2. Method epm5 with 5 stages of stiff order p > 4:

01000

00100
—44441T 0—12341T B=1000 10
o = 57575757 9 - 57575a5a 9 -

00 0O0T1

00 001
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where

All

o O o O

Ap Az A Ass o 0 0

A A Az Au Ais 0 0
0 An A A R=1Ay As 0
0 0 A A Az Ay Ags
0 0 0 As, Rs1 Rsz Rss

4 176 384 1024

A= —= — (g — ——

11 5802‘1‘ 5 P3 5 P4+ 5 Ps5,

4 8 64 4096

Agp = LT 32— s 2564 — ®s,
Aow 24 N 32 1536 n 6144

13 = 5 P2 5 ¥3 5 2 5 ©5,
A= 8 . 64 . 768 4096

14 = 5902 15903 5 P4 5 Ps,
Ao — 4 16 128 N 1024

15 = 15902 15903 5 P4 5 ©5,

125 875 625

Ags = 1 — — — 3 — — 2

B5=P1- ot s 5t 6255,

650
Rs1 = 20 — ¥ + 1125¢4 — 250005,

475
Rsy = ~15¢2 + — 3 — 1500604 + 37505,

20 350
R53 = ?@2 — 7903 + 875904 — 2500@5,
5 275 375
Rsq = _Z_l% + 5903 - 7804 + 62505.

Here, in A;;, R;; the argument of the p—functions is o;hT.

3.4 Numerical experiments

o O O O

Rsy

o O O o O

In this section, we illustrate the theoretical results given on the convergence be-

havior of exponential peer methods for constant step sizes.

3.4.1 Starting procedure

Due to the two-step structure with s stages all peer methods require s initial

values Yy;, 2 = 1,...,s at the beginning. We need to know the s approximations

Yoi = y(t1 + (¢i — 1)hpeer). So far these starting values have been computed by

one-step methods.
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In order to obtain the required approximations, we perform one time step of
size hgqre > 0 of a suitable one-step method with continuous output using the
initial data yg of the problem at time ¢ = 3. This gives access to a numerical
solution g(t) in the interval [to, tg + hstare] [16].

The s starting values for the exponential peer methods are computed by using
MATLAB routine odelbs.

hstart
r e —
tm|n :tO f; —hpfe—er tls =t1 tmax
Yo=Y Yo, Yo
Cin C, C max

FiGURE 3.1: A simplified diagram to illustrate hpeer and hgiare.

To avoid computations with negative step sizes we proceed as follows assuming

Cmax = Max(¢;) and ¢y, = min(c).
A 1

From Fig. 3.1 we have

tmax = g0 + Cmax hpeer & tmax = to + hstart
50 + Cmax hpeer =tp+ hstart
But to = Zf~0 =+ Cmin hpeer

tO - Cminhpeer + Cmaxhpee'r = tO + hstart
1

hpeer - hstart-
Cmax — Cmin

Also
to; = t~0 + ¢ hpeer
tOi = tO + (Ci - Cmin) hpeer
i — Cmin

C
t()i = t() ‘|‘

Cmax — Cmin

hstart .

To perform ng.ps with the peer method to reach ¢.,4 we define,

-~ ~ Ci — Cmin
Yz)i = y(tl + (Ci - 1)h’peer) =Y (to R — h’start)

Cmax — Cmi

tend - tl

hpeer =
nsteps

o =1t + Cminhpeer - hpeer

t1 =19+ (1 - Cmin) hpeer
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Therefore
h . tend - tO - (1 - Cmin) hpeer
peer nsteps
tend — t
hpeer = d 0

Nsteps + 1— Cmin
For the methods in our numerical tests ¢, = ¢1 S0

tend - tO

—_—, ti:t—i—c,;—c hsa'r; ’izl,...,S. O
nsteps—l—]-_cl 0 0 ( 1> tart

hpee'r -

As test problems, we choose a one-dimensional semi-linear parabolic initial-
boundary value problem, a Schrodinger type equation, the 1D Gray-Scott equation

[3] and the Prothero-Robinson equation.

Problem 3.1. Parabolic test equation [40]

We consider the following parabolic differential equation
Up = Upy — Uty + O(t,x), x €[0,1], t€[0,tena]
Problem 3.2. Schrédinger type equation

iUy = Ugy — uly, + P(t, ), x € [0,1].

In the Problems 3.1 and 3.2 ¢(¢, z) is chosen to give the exact solution u(t,z) =
x(1 — z)e”". Standard finite differences with N = 200, Dirichlet boundary condi-
tions and exact initial conditions are used. T is defined by the space discretization

of Uy,

Problem 3.3. 1D Gray-Scott equation

The Gray-Scott equation is a reaction-diffusion equation, here in 1D,

Uy = Dyt — uv® + a(1l — u),
vy = Davye + uv? — (a + b)v,
a=0.035, b=0.065, D;=210"2 Dy=1.10"°,

with periodic boundary conditions and scaled Gauss curves as initial con-
ditions, see [3]. Fourier space discretization gives a diagonal matriz T of

dimension 128.
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Problem 3.4. Prothero-Robinson equation

This problem usually serves as model problem for stiff equations
u'=T(u—g(t)+g(t)

As an example we consider

[ cos(t) (10 o
g(t)_(cos(%))’ T_<a a>’ a=-10.

T
The ezact solution is u(t) = (cos (t),cos (2t)> . The initial condition is

w(0) = (1,1)T. This problem is very stiff, | T ||~ 10%.

In the following figures we present the accuracy of the numerical solution Y at
teng = 1 versus the time step h varying from 1073 to 10°. The error is computed

by the formula

Y = Yeerlloo

Error = ,
Yrerlloc

where Y,.¢ is a reference solution which is computed with MATLAB routine ode15s
and high accuracy. For comparison we included lines with slopes corresponding to

orders p = 3,...,7 into Figures 3.2-3.5.

The results show that the exponential peer methods in general give very accu-
rate results, and for the four test problems compare with order p = s, i.e., with the
non-stiff order. There is no order reduction as in some other methods, cf. Section
5.1.

Although we were only able to prove theoretically stiff order p = s — 1 for the
considered stiff problems the observed order is p = s. An explanation of this fact

can be given by the following two remarks.

Remark 3.4. For w < 0 and sufficiently small Lipschitz constant L, we obtain

for constant step sizes in the recursion for the global error
I emsr 1<y [l em | +C AT
with v = e“*" + h D < 1. With e = 0 this gives

C
| emsr [[< htt

=12,
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The method behaves for sufficiently small v as a method of order p = q+ 1, an

effect which is commonly observed in tests with constant step size.

Remark 3.5. Our theorems about the stiff-consistency order regarding (3.5) are
based on the premise (3.9). The systems resulting from the semi-discretization of
PDEs often show special boundedness properties, e.q., for homogeneous or periodic
boundary conditions. Therefore in numerical tests on semi-discretized PDFEs with
constant step size in general a higher order of convergence of the methods is ob-
served [3]. A detailed discussion of the exponential Runge-Kutta method for semi-
discretized parabolic equation can be found in Hochbruck-Ostermann [24]. In [27]
exponential Rosenbrock methods are investigated for autonomous systems, where
T = fy(ym) is used. Implicit exponential Runge-Kutta methods of collocation type
are found in [25].
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FIGURE 3.2: Order plot for the EPMs applied to Parabolic test equation

(Prob. 3.1).
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FIGURE 3.3: Order plot for the EPMs applied to Schrodinger type equation
(Prob. 3.2).
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FI1GURE 3.4: Order plot for the EPMs applied to Gray-Scott (Prob. 3.3).
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FIGURE 3.5: Order plot for the EPMs applied to Prothero-Robinson equation
(Prob. 3.4).



Chapter 4

Exponential Peer Methods with
Variable Step Sizes

Methods with step size control are currently the default methods for solving ODEs
in major computing software. These methods, which can adapt the step size
to the conditions of the problem, are most useful when the coefficients in the
problem change very rapidly over some time intervals and smoothly otherwise.
In this chapter, we generalize the investigations in Chapter 3 for variable step
sizes. In Section 4.1.1 the formulation for variable step sizes are given. In Section
4.1.2 we derive order conditions for variable step sizes. We show that for all
stage numbers s, methods of stiff order p = s — 1 exist and can be constructed
easily. Two special subclasses are discussed. The zero-stability of the methods,
necessary for convergence, is proved in Section 4.1.3. For a class with only two
different arguments in the p—functions bounds for the step size ratio are derived
which guarantee zero-stability. These bounds are sufficiently large for practical
computations. In Section 4.2 various aspects of the implementation are discussed,

especially possibilities of error estimation and step size control.
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4.1 Exponential peer methods with variable step

sizes

4.1.1 Definition of EPMs with variable step sizes

In this section we generalize the numerical methods presented in Chapter 3 for

variable step sizes for the numerical solution of the initial value problem (3.5).

We consider the class of exponential peer methods with variable step sizes

sz‘ = gOO(Oéihme) Z bz‘j Ym—l,j + hm Z Aij (aihmTM)[fm—Lj - Tm Ym—l,j]

j=1 j=1
i—1

+ hm Z Rij(ozihme)[fmJ - Tm ij], 1= ]_, 2, Loy S, (41)

J=1

Here the coefficients ¢; and «a; are constant and we assume «; > 0, and the coeffi-

cients b;; € R will depend on the step size ratio

(4.2)

The matrix functions A;; (h,,T5,) and R;j (hy,1,,) are linear combinations of the
well known p—functions, see Section 2.4. They depend on the step size ratio too.
Parallel methods are obtained by the choice R = 0 eliminating any reference to

the stages Y,,; of the actual step.

As in Chapter 3, the values Y,,; approximate the exact solution y(t,, + c;hn)
at points t,,; = t,, + ¢;h,,, where the nodes ¢; are assumed to be pairwise distinct.
They are chosen such that ¢ = 1 and the other nodes satisfy 0 < ¢; < 1,1 =
1,...,s — 1. Further we denote f,,; = f(tm;, Ym;). By setting T,, = 0 we obtain

explicit peer methods. In this chapter we will consider 7;, =T

4.1.2 Consistency

In this section we will derive order conditions for EPMs (4.1) with variable step

sizes when applied to stiff semi-linear problems (3.5).

Again we will assume that the stiffness in (3.5) is due to the linear part 7'y and

that the nonlinear part satisfies a global Lipschitz condition (3.8) with Lipschitz
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constant L, of moderate size. We assume that 7" has a bounded logarithmic norm

w (3.9).

In the case of variable step sizes the local residual errors A,,; are

j=1

—hm Z Aij (Oélhme) [y/(tm—l,j) — Tm y(tm—l,j)i|

j=1
i—1

b > Big(@ibunT) [y (k) = T y(tg) |, i = 1,005 (43)

Jj=1

By Taylor expansion of the exact solution y(t) and /(¢) at the point t,,, we have

Y(tmi) =y (tm + cilim) thc’ O (t,,) + O(hL),

Y(tm-15) = y(tm—1 + ¢l 1) =y(tm + (¢ = 1) hyna)
= y(tm LGz Dhn _01) hm) by(4.2)
= - My(r)(tm) +(’)(h$j1),

.
orrl

5D (t) + O(RE),

?//(tm—l,j) = y/(tm—l + ¢ hm—l) = y,(tm + (¢;— 1) hm—l)
= y’(tm L= Dh’”) by(4.2)

m

q r LT
_ Z (C] 1) hmy(r+1)(tm) + O(hgjl),

-
orrl

where the O-term is uniformly bounded due to the smoothness assumption on

the solution.

Substitution into (4.3) yields

q S q
(i hm)’" — 1"y
r=0 ]:1 m

s q
¢ — 1) r r,(r h:n
_ hmZAij (atihon ) Z {(J(j—r)y( +1)(tm) — T(e; — 1) y( )<tm)}_

r!
j=1 r=0 m
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i—1 q

T T T T h:n

— o > Rij (@i Tn) > {c YU () = Ty (b, )}F + O(hH)
j=1 r=0

h
By collecting the coefficients of —Ty(’") (tm)we get
7!

q

Api =) {c?l — o(ihmTy) i bij (Cj — 1)T - rilAij<aihme)(cj -1
j=1 j=

(oF
r=0 m

i—1
1y .
i TmZAU (T, )( - ) —TZRij(aihme)cg !
J=1 Jj=1
i—1 T
]:

Here the remainder results from products of the coefficients of the method with
the O(h%)-terms of the Taylor expansion of the solution. Due to Remark 3.1 the

remainder is bounded independent of ||7,,]|-
Again we consider the linear case iy’ = Ty first.

Theorem 4.1. If the exponential peer method satisfies the conditions

s ._1[
Zbij(cﬂg ):(ci—ai)l, 1=0,1,...,q, (4.5)

then it is of stiff order of consistency p = q for the linear equation y' = TY.

Proof. From (4.3), for the equation 3’ = T'y the local residual errors will be

Ami = y(tm + Czhm) - SDO(Oélhme) Z bz]y<tm + (Cj - 1)hm71>

7j=1

= 0(CihnTn)y(tm) — @o(CihmTn) wa 0<(ng_ 1)hme) Y(tm)-

j=1 m

Using the relation

we obtain

s l
Api = Zq: [Ci - Z bij <04z' + Cja_ 1)
j=1 m

=0
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5 1\t 1
=2 by (ow C]O ) Pa+1 ((a + CJJ )hme) }Tﬁl“ (tm)-
j=1

m m

With T4 y(t,,) = y 9TV (¢,,) the second term is O(hd+!), where the constants are
independent of ||7,,]|.

I Egal/

For the coefficients of ”}| “y(ty,) for 1 =0,...,q, we have
! Zs ¢ —1 : ! ZS Zl l ¢ — 1 * -k
C;, — bij a; + =C — bij Oéi
: Om . k Om
7=1 j=1 k=0
l I s c 1 k
N Ci N (k) @i_k ~ i < ] m >
k=0 j=1

The method is therefore of stiff order p = ¢ for vy =Ty. N

Writing (4.5) for ¢ = s — 1 as matrix equation and solving for B we obtain

Corollary 4.1. Let

By, = VoS, Vi, (4.6)
where
0 0
0 o, 0
Sy = diag(1,0p,..., 05 =10 0 o2
0 0 O o1

Then the exponential peer method has stiff order p = s—1 for the equation iy’ = Ty.
O

Corollary 4.2. Let a = ¢, ¢, = 1. Then with (4.6) we have B = le!', and

>, (C”'O,;l)l = (e 1)

Therefore (4.5) is satisfied for all l, the exponential peer method solves the system

Yy = Ty with exact starting values exactly. O
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If g = s — 1, then the general solution of (4.5) will be

S

b — H ck+(ai—ci)am—1

Cr, — G4

ij
k=1
k#j

For special choices of the nodes ¢; and the values of «;, we consider the following

two examples for the choice of ¢ and «a.

Case 1 (Corollary4.2) Let ¢ = o. This gives V,, = lel and with el S,, = el we

have
0 0 . 1
0 0 . 1
B = : = ]lesT,
0 0 . 1
0 0 . 1

where e; = (1,0,...,0)T.

An advantage of this choice is that the matrix B will not depend on the
step size ratio o, so the method will be zero-stable for all step size sequences
(see Theorem 4.4) and a disadvantage of this choice is that p—functions of s
different arguments have to be calculated. This leads to a high computational
effort.

To minimize the number of ¢-function evaluations, as in Chapter 3 we choose

to set the parameter a to have only two different arguments.

Case 2 Let
as =1, a=a" i=1,...,8s—1,
(4.7)
=6—-9@-1)+1, i=1,...,s.
Then
bll (Um) b12 (Om) s bl,s—l (Um) bls (Um)
Bm = bs—2,1 (Um) bs—2,2 (Jm) cee bs—2,s—1 (Um) bs—2,s (Um)
0 0 . 0 1
0 0 - 0 1

In the following we will always assume B to be defined by (4.6).
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We now will consider the general case (3.5) to obtain conditions for the matrix
coefficients A;;(o,;hT) and R;;(couhT).

T r

h T
From (4.4) with (4.5) we need to show that the coefficients o 2y (b)) for
r!

r=20,...,q are zeros.
In general we have the following theorem:
Theorem 4.2. Let the conditions (4.5) be satisfied for 1 =0,...,q. Let further

s 1 r i—

ZAU(alhme) (CJ ) +
Om

j=1

J

—_

Rij (Oézhme)C;

e

1

<

(rg)l!affl (¢; — ai)“l o1 (b, Ty)  (4.8)

=0

forr=0,...,q. Then the exponential peer method is at least of stiff order p = q
for (3.5).

Proof. For order ¢ the coefficients of y(")(¢,,) in (4.4) should be equal to zero for
r=0,...,q

For r = 0 using (4.5) and (4.8) we obtain

i—1

I — po(aihmTy) ZbUJrh TmZA” (il Tom) + hn T > Rij(ctih T)

Jj=1 Jj=1 Jj=1

For r =1,...,q holds for the coefficients

S 1 r 1 r—1
cf[—goo(aihme)Zbij (CJU ) —TZA,] (c;h T, )( . )

Jj=1 Jj=1

r i—1
—1
+ hp T ZAU (cv;h T, )< ) —rZRij(aihme)cg_l

Om

j=1 j=1
i1

—f-hme Z Rij(aihme)c;
j=1

=ci I — po(ihmTy) rz ( ) l+1 (ci — )" " (ihi Thn)

+h Tmz ( ) Hl - O‘i)r_ll!@l—&-l(aihme) by (4-8)
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—~ (r—1
=c/ I — po(aihyTy) (e — )" —r Z (; B 1)042(01- — o) 1l — Dlor(ihm Ty)
I=1

+> (;) aj(ci — o) (Ui (ihmTn) — 1) by (2.3)

r r—1
ing the fact [ =
Using the fac (l) T(l—l)
r

=ci I — po(aihmT) (e — a;)" — Z <l>a§(ci — ai)’”_ll!gol(aihme)

=1

T 7/. B .
+ Z <l>a§(ci — o) (b T) — il =0. [ |
1=0

T

Corollary 4.3. Let « = ¢, ¢cs =1 and B given by (4.6). Let

® c; — 1
E Aij(cihme) ( ]
j=1 m

rooi-1

) + Z Rij(cihmTin)c; = rlci o (cihm ) (4.9)
j=1

forr =20,...,q. Then the exponential peer method is consistent of stiff order at

least p = q.

Note that for ¢ = s — 1 for any given strictly lower triangular matrix R we
can solve (4.8) for A, due to the regularity of Vj. Therefore we can construct

exponential peer methods of any order.

If we allow the bounds to depend on T},,y%*" (non-stiff order), then the order
of the methods will be p = g + 1,

Theorem 4.3. Let the solution y(t) be (q + 2)-times continuously differentiable.
Let the conditions (4.5) be satisfied for | =0,...,q+ 1, and (4.8) for1 =0,...,q.
Then the method is of non-stiff order p = q+ 1.

Proof. The beginning of the proof is identical to the proof of Theorem 4.2. Con-

sidering one more term in (4.8) gives for the term with h%™

u c; — 1\ > c; —1\?
{C;H_l] — QOO(O,/thTm) Zb” ( JJ ) - (C] + 1) ZAU(athTm) ( jam )

j=1 m j=1

i—1 i—1

—(g+1) Z Rij(aihyT)c§ + hin T Z Rij(ctihn T) et

J=1 J=1
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: C; — 1 o+l hQ+1 1
= m g+1)!

— {cgﬁll — po(ihmT) (¢; — 041-)qJrl

q+1

q

q - hi

—(¢+1) ZZ (Z)”O‘ﬁﬂ(ci —ay)? ZSOZH(%hme)} my(QH) (tm) + O (h3))
=0

: qg+1 q+1/q
the fact =—
Using the fac (l—|—1> l+1(l>

q+1 1
g+1 _ hiLr
- Z ( I )“ai(ci — a;)?*! l@l(@ihme)}(Tl)'y(qH) (tm) + O (hi?)

=1 q )

q+1
+1 hat!
- {Cg-i-l[ _ Z (q l )l!aﬁ(ci . @i)qﬂzw(aihme)} ﬁy(ﬁl) (tm)+ O (hgjz)

1=0 )

With ¢ (ihm ) = aihy Tngre (aihy Thy) + %I we finally obtain

q+1

g+l g+1 L
S (17 et | e ) o )
1=0 ’

=0 (h&F?).
So A, = O (h4F?) and the method is of non-stiff order p = ¢ + 1. [

Due to the two-step character, for convergence of the method, we have in ad-

dition to show zero-stability.

4.1.3 Stability and convergence

Due to the variable step size, zero-stability now leads to restrictions of the step
size ratio in general. The methods of Case 1 are zero-stable for all step size
sequences. For Case 2, we compute bounds on the step size ratio which guarantee

zero-stability. These bounds are fairly large for practical computations.

Definition 4.1. The exponential peer method (4.1) is called stable (zero-stable) if

|BmsiBmai—1--- Bl < K for allm,l > 0. (4.10)
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In general B, depends on the step ratio o, (i.e. B, = B(o,,)). Therefore,
condition (4.10) will usually lead to restrictions on the step size ratio. The proof
of zero-stability and the computation of corresponding intervals for the step size
ratio is in general a difficult task for linear multi-step and general linear methods.
Here we will consider two special classes of exponential peer methods. The first is

given with the choice of Corollary 4.2.

Theorem 4.4. Let o« = ¢, ¢, = 1 and B given by (4.6). Then the exponential peer

method is stable for all step size sequences.

Proof. From B,,, = I[ez we have B1 = 1 and therefore B,,, 1 ;Bynij—1- - By = Ilez.

The choice a = ¢ is optimal with respect to stability. However, this class of meth-
ods requires the computation of p—functions with s different arguments whenever
the step size changes. Because this is in general the most time consuming part in
these methods, we are interested in methods with a smaller number of different
arguments. An efficient class with only two different arguments was proposed in
Section 3.3 for constant step sizes. We will consider here the stability of this class

for variable step sizes.

Theorem 4.5. Let a = (a*,...,a*, )T and ¢; = (s —i)(a; — 1)+ 1,i=1,...,s.
Let B given by (4.6). Then there exist constants Opyim < 1 < Omaz SO that the

exponential peer method is stable for all step size sequences satisfying omin < 0 <

O—T)’L(II‘ .

Proof. In Section 3.3 it was shown that all ¢; are distinct with ¢, = 1 and that

the matrix B(1) for constant step sizes has the form

1 0
0
B(1) = esel + F] =
0 0 1
0 0 1

with Fy = (0;-1,4) ;=1 B(1) is optimally zero-stable, i.e. one eigenvalue is one

and all other eigenvalues are zero. The matrix

Q =lef + FyA
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with A = diag(0,1,¢,...,e°2), with a parameter 0 < & < 1, transforms B(1) to

Jordan canonical form [12]

1 0
10 0
0 € ... 0
Q'BMQ=v=|[: = - . (4.11)
0 ¥
0
0 0

This follows from

B(1)Q = lel + FJFJA and
QY = lel + cFIAFF =1eT + FTETA.

We now apply this transformation to B(c). The first column of @ is 1, leading to

Q71B<O')Q€1 = €1.

Because the last row of Q is el we obtain

IQ'B(0)Q = T B(0)Q = TQ = e].

This results in

10 0
Q_lB(U>Q = 1. =~ )
: B(o)
0
where |[B(1)|| = ||| < 1 for 0 < ¢ < 1. This means, that for an interval

(Cumin, Omaz) around 1 we have
1Q™'B(0)Q|| = max(||B(o)||,1) = 1

for instance for the norms ||-[|;, [ = 1,2,00. This implies that for all ¢; €

(Omin, Omaz) We have

1Btk Binrio—1 -+ Bna Bl < [1QI] - 1Q71]

for all m, k > 0, i.e. zero-stability. W
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For s = 3,4,5 we have computed the following bounds with MAPLE:

1. s=3: ||§(U)||1§1for5:1/4and()<a§2.
2. s=4:||B(0)]jec <lfore=1/5and 0 <o < 15.

3. s=5:|B(0)|s <1fore=1/2and 0 <o < 1.3313.

These bounds are sufficiently large for practical computations. Note that o,,;,, = 0

what is a necessary property for practical use of the method.

Remark 4.1. By considering the special case of increasing h in each step by a
s—1

constant factor o we found numerically e = Pt So we suppose that there
S —

exists some norm such that

~ ~1
1Bl <1 for 0<o<>—.
s—2

Remark 4.2. If we perform s — 1 consecutive steps with constant step size, then
s—1

<B(1)> = lel', and because of B(o)1 = 1 all further products will be uniformly

s’

bounded independent of o. Thus, by trying to keep the step size constant for
some steps the stability of the exponential peer methods is strongly improved. This

strateqy is used in our implementation.

We now consider convergence. We denote

®,, = diag (po(aihmTn));_,.

To prove convergence of our methods in addition to consistency we have to show

I ] @&B;@D| <K forall 0<m<m+I<N—1, ty=tep. (412)

j=m+l

For simplicity of notation in the following we consider scalar equations. In the

non-stiff case we can exploit the property
b, =1+ O(hp).
Then zero-stability ensures convergence. Denote the global error by

em =Y (tm) — Y.
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Theorem 4.6. Let the method be consistent of non-stiff order p and zero-stable
for 0 < 0, < Opmae With Omae > 1. Let the starting values be of order p and let the
coefficients of the method be bounded for o < 0,,4.. Then the method is convergent

of non-stiff order p.

Proof. With the mean value theorem for vector functions and with (3.9) we have
em = Bmem-1+ O(hpn)em_1+ O(hm)em + Ay,
For h,, — 0 follows

Em = Bmgmfl + O<hm)€m71 + (1 + O(hm))Am

m—1
= (Bm -+ Bi)eo + Z O(hj1)(Bm - -~ Bjy2)ej
=0

3

+ D (B Bia)(1 + O(hys1))Ajia.

J

Il
=)

With the assumptions on the starting values, by zero-stability and order of con-

sistency p follows

m—1
||5m|| < C’lhgma; + 02 Z hj—i-l”EjH,
=0

where hp . = max h,,.
m

From this recursion analogously to the proof of Theorem 5.8, p. 408 in [1§]

convergence of order p follows. W

Corollary 4.4. The methods of Theorem 4.4 are convergent of non-stiff order p
for all step size sequences. The methods of Theorem 4.5 are convergent of non-stiff

order p with the values of Gpae given above. [

In the stiff case the situation is more complicated. For the methods of Theorem

4.4 we have the special structure
0 ... 0 QOQ(CY*}L]‘T‘J)

®,;B;

0 ... 0 QOO(Oé*th'j>
0 .. 0 wolhT)
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Relation (4.12) follows here immediately from (3.10). We obtain in standard way

Theorem 4.7. Let the methods in Theorem 4.4 be consistent of stiff order p. Let
the starting values be of order p and let the coefficients of the method be bounded
for o < o* with 0 > 1. Then the method is convergent of stiff order p. U

For the methods considered in Theorem 4.5 we need an additional assumption
for the step size sequences, which is frequently considered for multistep methods

with variable step sizes, cf. [18]:

N-1
Z ‘Uj - 1‘ < K17 tn = tena- (413)

j=1
Then we can prove

Theorem 4.8. Let the methods in Theorem 4.5 be consistent of stiff order p.
Let the starting values be of order p. Let the coefficients b;;(o) be continuously
differentiable and let the coefficients of the method be bounded for o < o*. Let
(4.13) be satisfied, then the method is convergent of stiff order p.

Proof. From the mean value theorem we have
|bij (o) — bij(1)] < ~v]o — 1]
for all 0 < 0 < ¢* with some constant . This yields for the co-norm
[Bmll = [[B(1) + B(om) = B[ < 1+ sy|om — 1].

Then we have with v, = s, f = max(a*w,w)

I TT @Dl < [T 12,115l
j=m+l J=m+l
m+l

m ﬁ(t , ) Ny loj—1
S H €f8hj<1—|—"}/1|0j—1|> Se me e j=m

Jj=m-+l
< K.

With this stability result convergence follows in standard way. W
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4.2 Implementation issues

Variable step size codes adjust the step size in such a way, that the global error
increment is kept below a certain tolerance threshold TOL. This requires a good
estimation of this quantity. The error can be estimated by comparing two different
methods.

We constructed exponential peer methods with variable step size due to Theo-
rems 4.1 and 4.2 with s—stage of stiff order p = s—1. The nodes ¢; are determined
by Theorem 4.5 with

s—1
s

of =

For simplicity the free parameters are chosen so that R is strictly lower triangular
and A is upper triangular. For constant step sizes these methods reduce to those

used in Chapter 3.

For error estimation we consider two possibilities

Interpolation
The main idea of this method is to interpolate values Y,,;, i = 1,...,s — 1,
by an interpolation polynomial P(t) of degree s —2. We compute a solution
?ms = P(ty41) of order p = s — 2. For implementation purposes using

interpolation, we will use the Newton form of the interpolation polynomial.

Embedding
The main idea of this method is to use two exponential peer schemes of
different order. Basically, one estimates the error by computing the difference
between a solution calculated with a given scheme and the one obtained using

a scheme with a different order of accuracy.

For the time-step control, we use exponential peer methods of order p — 1 and p.
We compute an embedded solution EN/mS.
Here we consider two cases.

(a) We use an (s—1)—stage method with same a* and ¢ = (ca, .. ., ¢5) to compute
EN/mS of order s — 2.
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(b) We solve the equations (4.8) for i = s up to r = s. Because for i = s (4.5) is
also satisfied for [ = 0,..., s, we have Y,ns of local order p=s. We use Yins

for error estimation and continue with Y1, ..., Y, s—1, Yins.

In our tests we denote the corresponding s—stage methods by epmsi if interpo-
lation is used and by epmsea or epmseb if embedding of type (a) or (b) is used,

respectively.

The error is estimated by

o 1 Hyms - 17ms||2
err = — = ,
Vi atol + rtol - max(||Yims||2, || Yins]|2)

where atol and rtol are the absolute and relative error tolerances respectively.

We then compute fac = err="=D_ With respect to Remark 4.2 the new step

size is computed as follows

h, 1 S fCLC S Omax
hnew = Umazhu fCLC > Omazx

max(0.2, fac)h, fac <1,

with 0,0 = (s — 1)/(s — 2). In the last case the step is repeated.

Coefficients for special methods are given in Appendix B.
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Numerical Results

In this section we use the framework of EXPINT [3] to test our methods. We have
adapted our methods to the structure required and we use the computation of the

p—functions implemented in EXPINT.

For the calculation of ¢,(2) all ¢,(z) with j < ¢ are needed. This complicated
calculation must be run again if T" or the step size h changes. EXPINT is therefore
kept the matrix 7" and the step size h over the entire integration constant, a typical

approach in implementations of exponential integrators.

EXPINT contains several semidiscretized PDEs as test problems and a collec-
tion of well-known exponential integrators implemented with constant step size.
By N the number of Fourier nodes or the number of inner points in a finite dif-

ference discretization is denoted.

Here we give only a short overview about the problems and for more detailed

information we refer to 3] and the description in the package.

Problem 5.1. Allen-Cahn equation

The Allen-Cahn equation is a parabolic problem, which reads

Uy = ANUpe +u—u®, € [-1,1], \=0.001,
u(0,z) = 0.53z 4 0.47 sin(—1.57x).

The Dirichlet boundary conditions are chosen to be u(t,—1) = —1 and
u(t,1) = 1. The linear part My, is discretized using a Chebyshev differ-

entiation matriz resulting in a full matriz T of dimension 64.
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Problem 5.2. Kuramoto-Sivashinsky equation
The Kuramoto-Sivashinsky equation has been used to study many reaction-

diffusion systems, in 1D it is written as
Up = —Ugy — Uggee — Uy, T € [0,327],

Spectral discretization with periodic boundary conditions and dimension N =
128 is used. Various choices of initial condition are supported, the choice of

smooth initial condition s

u(z,0) = cos (11;_6) (1 + sin (%)) :

Problem 5.3. Nonlinear Schrédinger equation

The 1D nonlinear Schrédinger equation is
Z'ut = —Ugg + (V(I’) + )\|U|2)U, S [—7T,7T].

Periodic boundary conditions and the initial condition u(0,r) = ™) qre

1
considered. We used A =1, V(z) =

————— and a spectral semi-discretization
, 1 +sin“z
with N = 256.

Problem 5.4. Hochbruck-Ostermann equation

A semi-linear parabolic problem with homogeneous Dirichlet boundary con-
ditions from [24]

Up = Ugy + +o(t,x), x€]l0,1].

1+ u?

Problem 5.5. Hyperbolic test equation (cf. [40])

Wy = Ugy —

T +o(t,z), x€]l0,1].

In the Problems 5./ and 5.5 ¢(t, x) is chosen to give the exact solution u(t,z) =
x(1 —x)e' for problem 5.4, and u(t,z) = x(1 — x)e™" for 5.5. Standard finite dif-
ferences with N = 200, Dirichlet boundary conditions and exact initial conditions

are used. T is defined by the space discretization of tg,.

Furthermore we use the Problems 3.1-3.4 of Section 3.4.
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5.1 Numerical results for constant step sizes

In this section we compare our exponential peer methods with some of the expo-
nential integrators included in EXPINT at these test problems. All calculations

are performed with constant step sizes.

In what follows, we briefly describe the numerical schemes defining the ex-
ponential integrators that have been used in our comparative study. All these
integrators belong to the EXPINT package. See [3] for more information about
these methods.

» ABLawson4 scheme has stiff order one and non-stiff order four and is based on

the Adams-Bashforth scheme of order four (see Example 2.3).

» Lawson4 scheme was developed by Lawson. It is based on the classical fourth
order scheme of Rung-Kutta and this scheme has stiff order one and non-stiff

order four (see Example 2.4).

» ETD4RK scheme was developed by Cox and Matthews [7]. It has four-stages and

it has only stiff order two and non-stiff order four (see Example 2.5).

» Strehmelweiner scheme was developed by Strehmel and Weiner [47]. It is one
of the earliest exponential Runge-Kutta methods with four stages, it has stiff

order three (see Example 2.6).

» hochost4 scheme was developed by Hochbruck and Ostermann [24]. It has
five-stages and is the only known exponential Runge-Kutta method with

stiff and non-stiff order four [3] (see Example 2.7).

» RKMK4t scheme uses a convenient truncation of the dexp™' operator, leading
to the method of Munthe-Kaas [17], which again is of stiff order two but
suffers from instabilities, especially when non-periodic boundary conditions

are used (see Example 2.8).

» ETDSRKF scheme based on the six stage fifth order scheme of Fehlberg [14]. It
has non-stiff order five and stiff order one. It usually performs worse than

other order four schemes presented here due to bad error constant.

In our figures we will use the same names for the integrators and problems as in

EXPINT.
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In EXPINT package some schemes need some starting values. An exponential
Runge-Kutta scheme can be used for the first » — 1 steps. In our tests the scheme

hochost4 is used for the first » — 1 steps e.g., For ABLawson4 scheme the incoming

n-l] = [yn—la hgn—Za hgn—?n hgn—4]T-

approximation has the form y!

The s starting values for the exponential peer methods are computed by using
MATLAB routine odel5s. To avoid computations with negative step sizes we

proceed as follows:

tend — to :
hpeer = ————, toi =to+ (¢; — c1)hsgart, 1=1,... 5.
peer nsteps + 1 —c 02 0 ( ) 1) start
In the following figures we present the accuracy of the numerical solution Y at

tena = 1 versus the timestep h. The error is computed by

Y = Yierlloo

Error = —————,
[Yreslloo

where Y,.¢ is a reference solution which is computed with MATLAB routine ode15s
and high accuracy. For comparison we included lines with slopes corresponding to

orders p = 4,5 in the figures.

In Figures 5.1-5.10 we compare the 4— and 5—stage peer methods epm4 and
epmb with exponential integrators of the EXPINT package. The results show that

the peer methods in general give very accurate results.

Some methods, e.g., lawson4 and etd5rkf, suffer from order reduction when
applied to some test problems (see Fig. 3.2-5.10), but for exponential peer meth-

ods no order reduction is observed.
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5.2 Numerical results for variable step sizes

In this section we test exponential peer methods for variable step sizes. The
integrators in EXPINT are implemented with constant step size only. Therefore,
we compare our exponential peer methods with MATLAB routines odel5s and

ode45 now at these test problems.

We constructed EPMs with variable step size due to Theorems 4.1 and 4.2 with

s = 3,4, 5 stages of stiff order p = s — 1. The nodes ¢; are determined by Theorem
-1

4.5 with a* = 2=,
s

The s starting values for the exponential peer methods are computed with

MATLAB routine odelbs.

In the following figures we present the accuracy of the numerical solution Y at

tena = 10 versus the computing time. The error is computed by

Y = Yeerlloo

E —
rror max max(|Yesil, 1)’
1

where Y, is a reference solution which is computed with MATLAB routine ode15s
and high accuracy. We computed numerical solutions for the tolerances atol =
rtol =107t — 10719,



Numerical Results

74

10

Error

FIGURE 5.11: Results for

10°

-2

10
-4

10

10

Error

10°

10

10712

FIGURE 5.12: Results for the Allen-Cahn equation (Prob.

107

-6

10

—»%— odel5s
—>-odeds |
—$— epm3eb
—E—epmdea
-O-epmdi ||
—¥— epm5ea

epm5i

-2

10

Time in Sec

Gray-Scott Prob. (Prob.

3.3).

[ —$— epm3eb

[| —k— epm5ea

—>— odel5s

—>-odess

—1- epmdea
- epm4i

epmbi

10

-1

Time in Sec

5.1).



Numerical Results

T T
—>— odel5s
—9— ode45
107 F —¥xepm3eb {
——epmdea
- epmdi
0 —¥—epm5ea ||
—Q— epmb5i
-6
51071 :
m
10° b .
10—10 | a
10*12 | i
1 1 1
10 10° 10"
Time in Sec

FIGURE 5.13: Results for the Kuramoto-Sivashinsky equation (Prob. 5.2).

T T T T
10* | .
10° | .
107 F .
s .
o100 .
10° F E
—>— odel5s
—B—ode45
100 —B% epm3eb |
—=—epmdea
—-©-epmdi
107} —¥—epm5ea 4
epm5i
10° 10 10° 10°

Time in Sec

FIGURE 5.14: Results for the Nonlinear Schrédinger equation (Prob. 5.3).



Numerical Results

76

100 n T T T T 7
107 F i
10 b .
- 10°} .
<l
i
10° b .
—>*—odel5s
10 —B—ode45
10 | %= epm3eb 1
——epmdea
102 —©—epm4i 1
—¥—epm5ea
epmbi
1 1 1 1
10 10° 10 10°

Time in Sec

FIGURE 5.15: Results for the Schrodinger type equation (Prob. 3.2).

10° . . r

10° |

V V'V VvV V'V

AT N7 X7 X7 7 A

Error

107°H = odel5s

—>- ode45
—%% epm3eb
—-epm4dea
—©-epmdi
—¥— epm5ea

10" 10° 10 10

Time in Sec

10

FIGURE 5.16: Results for the hyperbolic test equation (Prob. 5.5).



Numerical Results 77

5.3 Discussion

The tests with constant step size show that the exponential peer methods in general
give more accurate results than the other methods of EXPINT. On the other hand

they require more computations of the p—functions leading to higher expense.

We did not observe an order reduction for EPMs in contrast to most of the
other methods, for instance for the Schrodinger type equation and the Prothero-

Robinson example.

Surprisingly, also the method hochost4 shows an order reduction for the Prothero-

Robinson example.

The numerical tests with step size control show that all our strategies of step size

control work reliably. As expected, with more strict tolerances the error decreases.

For crude tolerances the 3- and 4-stage methods are more efficient than the
5-stage methods which may be due to the larger value of ¢,,,,. MATLAB routine
ode45 is the most efficient code for the non-stiff Gray-Scott problem, for Allen-

Cahn odel5s is superior.

All methods are comparable for the Kuramoto-Sivashinski equation. Significant
advantage of the exponential peer methods can be observed for problems with large
imaginary parts of the eigenvalues of T as Schrédinger and hyperbolic problems.
This is mainly due to the fact that ode15s is only A—stable for p < 2.

In general the results with step size control show the potential of the new class
of methods. This efficiency depends strongly on the efficient computation of the

p—functions.
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Conclusions

We have constructed and analyzed exponential peer methods with constant and
variable step size. We have derived order conditions, which allow to construct
methods of arbitrary high order, in this thesis we have considered methods up to

7 stages and it is easy to construct methods with more stages.

We have proved that for a wide class of stiff problems an s—stage method is of
stiff order and stage order p > s — 1. These results are confirmed by our numerical
tests. In general we observe the non-stiff order p = s for the test problems. A

possible explanation for this can be Remarks 3.4 and 3.5.

We have identified a special class of methods with only two different arguments
in (p—functions, which is optimally zero-stable for constant step sizes and solves

linear problems ¢y’ = Ty exactly.

The aim of the present work was to look if peer methods can be used success-
fully in exponential integrators. The results obtained in our numerical tests for
these methods are promising. They indicate that exponential peer methods are a
suitable class especially for problems with large imaginary eigenvalues. In contrast

to many other exponential integrators we did not observe an order reduction.

The results of the exponential peer methods with variable step sizes show that

the proposed kinds of error estimation and step size control work reliably.

The computing time of the exponential peer methods is in general determined
by the computation of the p—functions, which require a large number of squaring
for problems with a large norm of the Jacobian. Here the strategy of trying to

keep the step size constant pays off.
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The situation may change for large scale problems resulting for instance by
semi-discretization of 3-dimensional PDEs. Here the use of Krylov methods for
the approximation of products of p—functions times a vector is advantageous.

This will be the topic of future research.
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Coefficients for EPMs with constant step sizes

We constructed EPMs with constant step sizes due to Theorems 3.1 and 3.2 with

s = 3,4,5,6,7 stages of stiff order p = s — 1. The nodes ¢; are determined by
-1

Theorem 3.8 with a* = >

S

s(s—1)

In the numerical tests for EPM for constant step size we set the free
coefficients A;; V¢ > j to be zeros. So the general structure of the matrix A and
R will be in the form

Ay A A A o0 A Agg

0 A A A o Aleo Alel
Ay A Aw A, X 011 A12 A13 Al, 2 Al, 1
Ay Avy Ay A, | | 1 A .. 1,.3—3 1,.3—2

A — . — . . . :
. A A A

AL A A 11 12 13

0 0 Ay Aqo

0 0 0 Agg
0 0 0 0 0
R R R R Al 0 0 0 0
R11 Rlz R13 e Rls Ay A, 0 0 0
R = .21 ,22 = ,28 = | A1s2 Aiso1 A 0 0
Rsl R82 Rss . . . . . . .
Az Ay o0 A Ass 0

Rsl R82 RS,S—B RS,S—2 Rs,s—l

o O o O

0
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3—stage: Method epm3 with 3 stages of stiff order p > 2:

2
3
o = % 3 C =
1
Ay A Agg
A= 0 A11 A12
0 0 Ass
where
2 8
A= —= -
11 3802 + 38037
2 8
A3 = = —
13 3902 + 3903,

R3; = 62 — 183,

— WIN W

then B =

S o o o
o O =
=)

16 2

Ap = —— 3+ 21,
12 3S03 3801

9
Ags = —5802 + @1 + 93,

3
R32 = —5902 + 9(,03.

4—stage: Method epm4 with 4 stages of stiff order p > 3:

3 1
2 2
3 2
_ | _ |z
a=fsf, C=|;
1 4
1 1
A A Az A
A 0 An A A
0 0 0 Ay
where
i _3 . 27 B 81
1 = 4902 1 P3 4 P4,
A 9 n 27 243
13 = 4902 4 ¥3 1 P4,
22
Ay =1 — ?@2 + 323 — 64y,

R42 = 6@02 + 64(,03 — 192g04,

then B =

o o o =
o O~ O
—_ = O O

0
0
0
0
0

Ay O
A
Ry

, R=

o O o O

3 9 27

Ajg = —(p1 — —(pg — —
12 44,01 8902 2903‘1—

3 81

Ay =—— —
14 8<P2+ 1 e

R41 = 12902 — 80@3 + 192904,

243
4 Py,

4
Ry3 = 5902 — 163 4 64¢p4.
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5—stage: Method epm5 with 5 stages of stiff order p > 4:

4
5 % 01 000
% % 001 00
a= |21, C=1|32 then B=1]10 0 0 1 0],
4
% = 00001
1 1 0 00O01
An A Az A Ass 0 0 0 0
0 Ay A Ay Ay Ais 0 0 0
A=10 0 An A Ai|, R=|A4 As O 0
0 0 0 AH A12 A13 A14 A15 0
0 0 0 0 Ass Rs1 Rso Rs3 Ry
where
. 4 +176 384 +1024
1 = 5902 15 ©3 5 P4 5 ¥s,
4 8 64 4096
Ao = —p] — —(pg — — 256, —
12 5901 3802 3<P3+ P4 5 P5,
A 24 +32 1536 +6144
13 = 5<P2 5903 5 P4 5 P55
s 8 +64 +768 4096
14 = 5<P2 15903 5 P4 5 P5,
. 4 16 128 +1024
15 = 15802 15803 5 P4 5 P5,
125 875 625
Ass = 1 — — — g — — 2
=1 et oY 4 + 62505,

650
R51 = 20@2 — ?gé?g + 1125@4 — 2500@5,

475
R52 = —15@2 + 7803 - 1500@4 + 37509057
20 350

R53 = 3902 — 7903 + 875904 — 2500@5,
5 275 375
Rsy = 12 + To s T 5 P + 625¢s5.

6—stage: Method epm6 with 6 stages of stiff order p > 5:

then B =

o

I
— Ut UL D]TT D[UT DUt

I
— DT O DWW DN D=
o O O o o O
o O O o O =
o O O O = O
o O O = O O
o O = O O O
—_— = O O O O

o O O o O
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0 An A Az Ay A Ag 0 0 0 0 0
A - 0 0 An A Az Au R— Ay Agg 0 0 0
0 0 0 An Ap Ayl Ay Az A 0 0 0
0 0 0 0 Apn Ap Ais Ay Ais A 00
0O 0 0 0 0 A Re1 Rez Re3 Res Res 0
where
. 5 N 625 4375 N 3125 15625
HZ TGP T gg ¥ T g AT T3 T T e
Ao 5 _ 325 B 625 n 15625 _ 9375 n 78125
12 = 6@1 7 P2 o4 ¥3 24 P4 B ¥5 6 ¥65
A 2_5 B % _ 10625 25000 _ 78125
BTGP O T Ty YTy T Ty e
A _25 . 875 L 6875 B 21875 . 78125
14 = 6 ©2 36 ©3 12 Pa 3 ¥5 3 ¥6,
25 125 4375 78125
A = —pg — —p3 — 12 —
5= g% T 3T o ¢4+ 31255 ©6
. 5 . 125 . 625 3125 . 15625
16 = 24902 ) P3 Y P4 G 23 6 ©65
137
Ags = 1 — 1—0@ + 1353 — 918, + 38885 — 7776ws,
R61 = 30%02 - 462(,03 + 3834@4 - 18144g05 + 38880306,
Rgo = —30p5 4 64203 — 63724 4+ 336965 — 777604,
R63 = 20(,02 — 468903 — 31104(,05 + 5292904 + 77760(,06,
15
R64 = —7(,02 + 183(,03 - 2214(,04 + 14256g05 - 38880§06,
6
7T—stage: Method epm6 with 7 stages of stiff order p > 6:
g % 01 000O00O0
6 2
= z 0 01 00O00O0
2 $ 0001000
a=|¢ & C=|1 then B=|0 00 01 0 0],
6
= % 000 0O0T1D0
6 6
= = 0 00 O0OO0OO0OT1
1 1 0 00 0O0OO0OT1
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A A Az Ay Az A Aig
0 An Ap Az Au Az Ass
0 0 An A A A Ass
A=1 0 0 0 An A Az A |,
0 0 0 0 Ay A A
0 0 0 0 0 Ay Ap
0 0 0 0 0 0 Axn
0 0 0 0 0 0 0
A 0 0 0 0 0 0
R A A 0 0 0 0 0
Ais A Az 0 0 0 0
Az Ay Ais A Air 00
Rn Rra Rez Ry Ry Rrg O
where
Ay = _9@2 . @@3 _ 2430@4 . 22032@5 _ 116640()06 . 279936(,07,
7 35 7 7 7 7
Ay = ggol — 35—3 Yo — % w3 + 1296 p, — 15552 5 + 93312 g — 1673616 07,
Ay — 4199040 o7 — 1516320 05+ 221616 s — 13446 oy — @ 05+ % .
7 7 7 7 7 7
Ay = 10368 oy — 238464 s — @ s + 5;64 o5 + 1866240 oo — 5598720 o,
7 7 7 7 7 7
Ay = _4698 04 + 143856 05 + @ oy — % oy — 1283040 o6 + 4199040 o,
7 7 7 7 7 7
Ay = _46656 s — g oy + 9558 o5 + 1296 04 + 466560 o6 — 1679616 o,
7 7 35 7 7 7
6 78 162 6480 69984 279936

A = — g — — (pg — — - o —
7= 3 P2 35 ©3 - s+ - Ps - e + - P,
343 9947 16807 84035 117649
A =01 — ——p2 + Y3 — 3 P4+ G Y5 — 5

20 45
4263
Ry = 4209 — @3 + 994704 — 7443105 + 336140005 — 7058947,

105 2733 158123 328937 1596665

06 + 11764907,

06 + 176473507,

Ry = —7802 + 1 P3 — 3 P4 5 Y5 —
140 12446 H&1042

Ry = Tgoz - w3 + 2126604 — w5 + 10084206 — 23529807,

105 1617 105301 256907 1428595

42 1323
Res = —p2 = ———pa + 445001 — 4561905 + 26891245 — 7058044,

7 6713 5145 40817 84035

Rog = —— _ _
76 68024- 130 V3 3 Y4+ 6 Y5 5

06 + 1176497
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Coefficients for EPMs with variable step sizes

3—stage: Method epm3 with 3 stages of stiff order p > 2:

2 1
3 3
_ |2 |2
a=|3z & c= 3 then
1 1
1 1
50(0 —1) 0(2-0) 5(c0—-1)(0c—2)
b= 0 0 1 )
0 0 1
A A Ais
402 (4pz — @) 2 4 16
_ ST T o= 1)y — —
A 3 110 3901‘1‘3(‘7 ) ©2 3U<P3 ,
9
0 0 <P1—§<P2+9<P3
0 0 0
44
R: _0-903+902 O 0
3 140

—18p3 + 62 993 — 29y 0

where

1 2 8
A = 30 (0 —1)p; — 39 (20 — 1) o + =024

3
2 8 16
A12 = 50'(2_0-)301 +§O'(O'— ].)302 — 30'2()03

1 2 8
Ajg = 5(0_ 1) (0 —2)p — §U (20 —3) po + 502903.
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4—stage: Method epm4 with 4 stages of stiff order p > 3:

then

Qe
I
— R e AW
&
Q
I
LSRN

—_

2020 —1)(c—1) —0(20—1)(20—3) 20(0c—1)(20 —3) b

lo(c—1)(c—-2) —lo(c—-1)(c—=3) io(c—2)(c—3) by

B—| 5 2 2
0 0 1
0 0 1
Ay A Ais A
0 Ay Ao Agy
A — 9 3 - 9 27 I
0 o _2° (2 — 93 + 2704) Ay
2 (oc+1)(20+1)
0 0 0 o1 — %802 + 323 — 64y
0 0 0 O
Ry, 0 0 0
R= 9 (60 —3) w3+ 2 —27aps 9 (60 —6) p3 + 2 — 5doipy 0 0
2 oc+1 8 20 +1
12¢9 — 80p3 + 192¢4 —6py + 643 — 1924 Riss 0O

where

b14:—%(0—1)(20—1)(2a—3),

1

b24:—6(a—1)(0—2)(0—3),
1 3 5 27 4
Anz50(20—1)(0—1)%—ZU(—60+1+60’)902+ZU (20 — 1) 3
81,
40—9047
3 9 ) 27 4
A122—10(20—1) (20—3)¢1+§0 (3+120% — 160) p2— 50 (30 —2) o3
L 243
4 0 Py,
3 9 ) 27 4
A13:50(0—1)(20—3)¢1—10(60 —1OU+3)QDQ+ZO' (60 —5) p3
243
— —— 40
4 P40,
1 3 2
Ay ==7(0=1) (20 = 1) (20 = 3) o1 + 2o (11 = 240 +120%) 5
27 81
— 0% (0 — 1) 3+ —0>py,

2 4
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30%((20 —2) o1 + (9 — 150) g + (720 — 18) 3 — 162004)

Agy = = ;
8 240
302 (20 — 4) 1 + (18 — 150) @5 + (720 — 36) 3 — 162004)
Agg = —~ ;
4 o+1
3 9 27 243
A24: Z(U_ 1) (0'—2)%01+§ (—50'2—|—90'—2) Q02+ZO'<40'—3)()03— 702@4,
3 9 27 243
Az = 171 + 3 (20 —3) o2 + 1 (1—=30) s+ %
R — 3(0—=1)(0—=2)p1+(-6+ 180 — 902) @y + 4o (0 — 1) p3 — 1620%¢p,
! (0+2)(c+1) ’
4
Ry3 = 3%2 163 + 64¢py.
5—stage: Method epm5 with 5 stages of stiff order p > 4:
% % bii bz big bia bis
% % ba1r baa Doz Doy Dos
a=121, C=1% then B = |bg; bz bsz bsa b5 |5
s s 00 0 0 1
1 1 0O 0 0 0 1
A A Az Ay Ags 0O 0 0 0 0
0 Ay Asz Ay Ay Ry O O 0 O
A=1 0 0 Az Ass Ass |, R=|Rs Ry, 0 0 O0Of,
0 0 0 Au Ap Ry Ry Riz 0 0
0 0 0 0 Ay Rs1 Rsy Rsz Rsa 0
where
3 4
by = ga(a— 1)(30—1) (30 —2), by = —§0(a— 1)(c—2)(20—1),
9 3
b1z = ZO‘(O’— 1) (30 —1) (30 —4), b1y = —50(0— 1) (30 —4) (30 — 2),
1 1
1915:g(a—1)(30—1)(30—4)(30—2), bgl—éa(a—l)(Za—l)@a—ZB),
1
bio = —50(30— 1) (30 —4) (30 — 2), bys =0 (0 —2) (20 —1) (20 —3),
1 4
b25:6(0’-1)(0'—2)(20’—1)(20'—3), b24:—§O'(0'—1)(0'—2>(20'—3),
1 1
b3 = 540(0—1)(0—2)(0—3), b32:—60(0—1)(0—2)(0—4),
1 1
63321 (c—=1)(c —3)(c —4), b34:_60(0_2)<0_3)(0_4>’
1

bss = =4 (0 —1) (0 —2) (0 —3) (6 —4),

\)
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4
AH:%0(0—1)(30—1)(30—2)@1—50(20—1) (90% — 90 + 1) o

16 384 1024

+ E(ﬁ (=540 + 11 + 540?) @5 — ?0—3 (20 — 1) @4 + T04g05,
2 8

Ay = —zo (30 —1) (30 — 4) (30 — 2) o1 + —0 (—1890? + 840 + 1080° — 8) s

15
64 256 4096
- 1—502 (=630 + 14 + 5407) 5 + ?03 (120 = 7) 4 — Ta4<p5,

24
A13:20(0—1)@0—1)(30—4)@1—30(30—2) (60 — 80 + 1) 2

32 1536 6144
+ 302 (—720 + 19 4 5402) Y3 — TUB (30 —2) s + Ta4g05,
Ay = —50 (c—1)Bc—4) (30 —2)p; + =0 (—810% + 520 + 360° — 8) s

64 768 4096
— 1—502 (=810 + 26 + 5407) 5 + ?03 (40 — 3) 4 — Ta4tp5,
1 4
Az =—(0—1)(30 —1) (30 —4) 30 — 2) p1 — —0 (60 — 5) (9% — 150 + 5) ¢

10 15

16 128 1024

- 1—502 (=900 + 540° + 35) 5 — ?03 (60 —5) @4 + T04g05,
802{3(20— 1) (o —1)p; —2(5— 240 + 2202%) 3 + 8 (2 — 210 + 300?) 3

Ay —
22 15 340

L2880 (30— Dut 1536025
3+0 ’

Aoz = =
23 PR

4{ 19203 (90 — 2) g4 — 3072045 — 1602 (3 — 280 — 1502) 3
5

L 20°(15 =640 +220%) ¢ —30” (20 — 1) (20—3)%}
o+ 2

4, 8 { 3(0— 1) (20 — 3) 1 — 2 (15 — 400 + 2202) 5 + 153602
24 —
5) o+1

, 8(6— 350 +300%) gy — 960 (=5 + 90) o4
o+1 ’

4
Ags = B{ —3(0c—1)(20 — 1) (20 — 3) 1 4+ 2 (—6 + 550 + 440® — 9607) »

— 160 (=420 + 11 + 3007) @3 + 11520° (30 — 2) ¢4 — 614403905},
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33 —
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Ao — 803 | =3 (0 —2) 1 +2 (170 — 22) 3 — 16 (170 — 12) 3
s (0+1)(20+1)
192 (7o — 2) o4 — 307205
(0+1)(20+1) ’
2
Ags = 5{3 (0 —1) (0 —2) 1 —2(=330 + 10 + 1707) 2 — 1920 (=3 + 7o) 4

+16 (2 + 170% — 180) 3 + 307202%},

5 (204+1)(3c+1)(c+1)
12¢01 4 8 (60 — 11) 3 — 64 (110 — 6) 3 + 768 (60 — 1) 4 — 1228805

P { — 96005 + 1408005 — 921604 + 2457605 }
44 = — )

Ags = 1
Ass = @1 — %902 + %903 - %@4 + 6255,
R — 16 (0 — 1) (20 — 1) (20 — 3) 1 — 32 (40 — 3) (40° — 60 + 1) 0y
4 53+0)(0+2)(0+1)
N 1280 (=360 + 11 + 240?) p3 — 307202 (40 — 3) 4 + 24576535
5(3+4+0)(c+2)(c+1) ’
R —12(c = 1) (0 = 2) 1 + 16 (20 — 1) (5o — 8) o — 128 (1202 — 150 + 2) 3
T 5(0+1)(0c+2)
46080 (20 — 1) 4 — 2457605
* 5o+ 1) (0+2) !
R — 202 (0 —1) (6 —2)p1 —4(76* — 150 + 6) g + 32 (90% — 120 + 2) 3
2 5(0+1)(20+1)
—3840 (50 — 3) 4 + 6144525
* 5(c+1)(20+1) ’
R 4802+ 64 (60 — 5) o3 — 768 (50 — 1) @4 + 1228805
41 = 5(0+1) )
R —24p9 — 64 (30 — 4) 3 + 768 (4o — 1) 4 — 1228805
2 5(20 +1) ’
R _ 16p + 64 (20 — 3) 3 — 768 (30 — 1) 4 + 1228805
B 15 (30 + 1) ’

650
R51 = QOQOQ - ?(,03 + 1125g04 - 2500@5,

475
Rsy = ~15¢2 + —~p5 — 150004 + 37505,

20 350
Rs3 = 3902 — ?4,03 + 87504 — 25005,
15 275 375
Rsy = —— o + 3 — ——p4 + 625¢ps.
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Another special class of methods

In this section we give another special class of methods, where the vector o has

only two different arguments.

CK1:1, ai:&*yi:27"'787
—1)(1 —ao* 11—
01:(8 )(1 aﬁ)+ 6’ G=(s—))(l-a)+1Li=2..,s (1)
Then
1 0 0 0 0 0

91 (B) Bga(B) Bgs(B) ... Bgsa(B) B

where ¢ (0) = 1.

For zero-stability the choice f = 0 in (1) is optimal and we have

a=1| |, a=6-9)1-aqa)+1. (2)

In similar manner to Section 3.3 we mention some theorems, where their proofs

are similar to Theorems 3.7-3.9.
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Theorem .1. For

1<a" <

s—1

the nodes c; are distinct and satisfy 0 < ¢; < 1 with ¢ = 1. Due to B = Van1
the exponential peer methods are of stiff order p > s —1 fory =Ty.

Theorem .2. The methods defined by (3.14), (2) are optimally zero-stable, the
matriz B is given by

1 0
1
B= (3)
0
0 1
0 0 10

Corollary .1. The methods (3) are convergent of stiff order p = s — 1.

Theorem .3. Let (2) be satisfied and let the starting values Yy; be exact. Then
Yy = e Ty o), d.e. the exact solution of y' = Ty.

We tested this class of methods using the framework of EXPINT [3] with o™ =
s+1

S

and the results are similar to the class discussed in Section 3.3.
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