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Chapter 1

Introduction

1.1 Motivation: Topology and Dynamics
Networks are useful abstractions of complex systems since they allow analyzing system
properties by statistical and graph-theoretical methods.

In some cases the graph is known and the dynamics are not and we can attempt to predict
dynamical properties from the topology. In other cases the dynamics are known but the topology
is not, as in gene regulatory networks where one tries to infer the topology from the gene
expression patterns (e.g. [60]).

This work will mostly focus on the cases where topology and some dynamical properties of a
system are known and the goal is to understand which part of the dynamics can be explained
by the topology and which part is due to other influences. As most systems are engineered or
evolved to fulfill a certain function one can also ask the opposite question: To what extent is the
topology functional and what part of it is random? Recent work has shown that an important
aspect of the shaping of topology by dynamic requirements may be the necessity for robust
systems [72, 77].

Often it is impossible to tell whether the topology shapes the dynamics or the other way
round as a co-evolution is undergoing. A striking example are food webs, where the time
scales of topology changes and dynamics are similar [27, 125, 166]. Another example are
train networks, where on the one hand the schedule is constructed according to the available
track and train capacities and the passenger demands. On the other hand, passenger demand
as well as track construction / capacity adaption of tracks (allowing higher speed or higher
train densities) and the acquisition of more trains is highly influenced by the load put on
the system by the schedule. In such cases it is impossible to disentangle the complicated
mutual relationship between topology and dynamics. Nevertheless it turned out to be fruitful
to explore the topological requirements of the dynamics as well as the dynamical consequences
of topology. The aim is then to transfer “building principles” and “optimization techniques”
from one domain to another.

There is a history of analyzing the topological consequences of dynamical requirements. An
early example is the research by Milgram on the few degrees of separation in social networks
[106]. Although this study could well explain the phenomenon of short average path lengths,
the question whether these are an “optimization goal” of social dynamics or just a by-product of

1



2 CHAPTER 1. INTRODUCTION

some other requirement remains unclear.
The two seminal papers that opened up a vast avenue of research by exploring complex

networks across many disciplines have been the simple model of small-world graphs by Watts
and Strogatz (1998) [163] and the concept of scale-free graphs constructed via preferential
attachment, formulated by Albert and Barabási (1999) [10]. The study by Watts and Strogatz
is particularly remarkable for our purposes, as it constitutes the first nontrivial relationship
between network topology and dynamics. Watts and Strogatz analyze the spread of infectious
diseases as a function of the number of shortcuts in the network (or, more precisely, the
rewiring probability). In 2001 Vespigniani described the disappearing of the epidemic threshold
in scale-free networks in an analytical way [128].

In general, one can analyze the relationship between topology and dynamics on very
different scales. At very weak coupling, the dynamics are governed by the dynamics of the
individual nodes. Many studies in nonlinear dynamics adopt this point of view. At high coupling,
the global network properties (like the connectivity, features of the degree distribution, etc.)
can be expected to affect the collective dynamics. However, universal principles have only
been derived for comparatively simple dynamics. The most important example are the studies
on synchronization of phase oscillators by Arenas et al. [5] and Kurths et al. [132]. These
findings can be seen as a “topology-refined” re-investigation of Kuramoto’s formal treatment
(1984) [83] of Winfree’s observation (1974) [167] that synchronization sets in spontaneously,
when a critical coupling is exceeded (see also [163, 152]).

The organization of dynamics on graphs can also be discussed on an intermediate scale,
where small groups of nodes explain features of the collective behavior.

We will pursue this view of network motifs throughout this thesis.

1.2 Networks and Graphs
Many complex systems can be described as graphs, ranging from technical systems, as streets
[32], air transportation [54] or the internet [129], over biological systems, for example metabolic
networks [136], protein-protein interaction networks [142], food webs [126] or ant galleries
[28], up to social networks, e.g. e-mail networks [38] or the contact network of Brazilian soccer
players [124].

We use term network for such a system, consisting of topology and additional information
such as dynamical data, annotations and context information. The term graph represents the
underlying, purely mathematical object, consisting of nodes and edges. Throughout this work
we will consider simple graphs, i.e. parallel edges or self-links are forbidden. Edges can be
either directed or undirected. In the case of a directed graph two different types of edges are
possible: i) an edge pointing from one node to another ii) a bi-directional edge that can be seen
as the overlay of two opposing edges connecting the same two nodes. In a metabolic network
this could be a reversible reaction.

Sometimes it is helpful to have graphs available that are random. For example when the
impact of the degree distribution on properties of a graph is of interest.

A broad range of random graph models exists two of which are presented here:
i) The Erdős-Rényi (ER) random graphs [40] can be defined by only a number of nodes N and

a number of edges M . They are random in every other property, this can be expressed by the
fact that the probability p that two nodes are connected is the same for every pair of nodes. They
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can be created by randomly deciding for every pair of links whether they should be connected or
not. The probability can be obtained with p = M

N(N−1) , for sparse graphs this is asymptotically
equivalent to M times picking two random nodes and connecting them if they are not already
connected, the second method being much faster (because by definition for sparse graphs M is
much smaller than N(N − 1)). This model is very simple and shows a narrow distribution of
node degrees (i.e. the number of edges at a given node P (k) =

(
N−1
k

)
pk(1− p)n−1−k), k being

the degree of a node. It is widely used because it is well suited for analytical calculations. We
will also use this model in Chapter 2 to predict motif counts and motif fluctuations.

ii) The Barabási–Albert (BA) model[10] that generates random graphs with a scale-free
degree distribution (i.e. following a power law of the form P (k) ∼ k−3). The algorithm works
by starting with two connected nodes and then iteratively adding further nodes. The special
properties of the resulting graphs come from the fact that the new nodes are not randomly
attached to the existing nodes but by preferential attachment. The probability that the new
node is connected to an existing node is positively related to the degree of that node, forming
a system with positive feedback. The resulting graphs show short path lengths and a broad
degree distribution, two properties that render them more realistic than ER graphs, while
remaining simple enough so that some analytical calculations can be performed.

1.3 Motifs

1.3.1 Motif Classification

Generally, motifs are subgraphs that appear more often than expected in a network [109].
Similarly subgraphs that appear less often then expected can be called “anti-motifs”.

Most authors consider only induced subgraphs. Given a graph G = (V1, E1), a subgraph
H = (V2, E2) is called induced subgraph if and only if V2 ⊆ V1 and if for any pair of nodes
v, w ∈ V2, (v, w) ∈ E1 if and only if (v, w) ∈ E2. This can be rephrased as any set of n nodes
can only form one n-node-subgraph at a time and of all the possible subgraphs the one with
maximal number of edges is selected. Subgraph number 13 in Table 1.1 contains only subgraph
13 and none of the other 12 subgraphs.

The other possible definition is non-induced subgraphs, here a set of n nodes can take part
in different n-node subgraphs, for example subgraph 13 in Table 1.1 contains all the other 12
subgraphs. In a model of induced subgraphs the addition of an edge can destroy an already
existing subgraph, whereas in the non-induced model an already existing subgraph cannot
be destroyed by the addition of edges. This property can be exploited for the fast search for
large motifs, by “growing” motifs from smaller ones by the addition of edges. It is then possible
to abort unsuccessful search paths early in the process [123]. This is done by estimating the
statistical over-representation of a motif occurrence, that is more or less strongly depending on
the statistical over-representation of its constituting sub-motifs.

In this thesis we will mostly consider weakly connected directed 3-node subgraphs. When
accounting for all automorphisms 13 different such subgraphs can be identified. It is common
to refer to subgraphs by their id, which is formed by reading the adjacency matrix for the
subgraph as a binary string. Of all possible node relabellings the one yielding the smallest
motif id is chosen.
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motif
number

1 2 3 4 5 6

motif id 36
=4+32

6
=2+4

12
=4+8

74
=2+8+64

14
=2+4+8

78
=2+4+
8+64

adjacency
matrix

0 0 1
0 0 1
0 0 0

0 1 1
0 0 0
0 0 0

0 0 1
1 0 0
0 0 0

0 1 0
1 0 0
1 0 0

0 1 1
1 0 0
0 0 0

0 1 1
1 0 0
1 0 0

motif

motif
number

7 8 9 10 11 12 13

motif id
38

=2+4+32
98

=2+32+64

108
=4+8+
32+64

46
=2+4+
8+32

102
=2+4+
32+64

110
=2+4+8+
32+64

238
=2+4+8+

32+64+128

adjacency
matrix

0 1 1
0 0 1
0 0 0

0 1 0
0 0 1
1 0 0

0 0 1
1 0 1
1 0 0

0 1 1
1 0 1
0 0 0

0 1 1
0 0 1
1 0 0

0 1 1
1 0 1
1 0 0

0 1 1
1 0 1
1 1 0

motif

Table 1.1: A list of all directed induced 3-node subgraphs.
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1.3.2 Motif Significance Analysis
When trying to understand the impact of dynamics on topology on a statistical level, the most
important question is which topological features observed in a system are non-random. This
question can be answered by comparing the topology of the system to the topology of others,
where we know that the dynamics does not shape the topology.

The motif signature of a network (for three-node subgraphs also called the triad significance
profile, TSP) is the pattern of over- and under-representations of few-node subgraphs in a
network. It has become a standard method of analyzing complex networks. More formally, it is
the (normalized) z-score of the motif counts.

The z-score is defined as:
Zm =

cm − µm
σm

,

where for every subgraph cm is the motif count in the original network, µm is the expectation
value of cm in a set of suitable reference networks and σm is the standard deviation of cm in the
reference networks. Obtaining the appropriate ensemble of reference networks is addressed in
the next section.

1.3.3 Null Models
To assess the deviations from randomness of some observed features of a system we need to
relate them to the features of systems that are in some sense normal. With this aim a null
model is used that copies some constraints to the system but is not shaped by the dynamics.

The complexity of such constraints can range from just having the same number of nodes
and edges as the original network, which can be achieved by creating an ER-graph up to a
complex set of rules that ensure that for example a train schedule is feasible and does fulfill all
capacity limitations. In such circumstances the fair sampling of graph instances fulfilling the
constraints is highly non-trivial.

The most promising steps come from the area of mixing algorithms [134]. Here the two
main problems are the accessibility of valid realizations by rewiring steps and the fair sampling
i.e. that every valid realization is selected with the same probability. Another problem is that
the number of mixing steps that have to be performed is not known, even for the simplest
cases. Analytical estimates yield upper bounds of mixing times that are higher by many
orders of magnitude (e.g O(N11log5N) in [18]) than what can be observed numerically (e.g.
O(N) in [108]). This big difference arises from the possibility of graphs that are difficult to
mix in the sense that the state graph where every node is a network realization and every
edge represents the possibility to get from one representation to the other in one mixing step
contains bottlenecks. The existence of such bottlenecks could not be disproved yet.

Another approach is the stubs model or configuration model [104, 108]. Here half-edges are
constructed so that all degree constrains are fulfilled. Then the task is to connect all half-edges
(stubs) without creating self-links or parallel edges. Therefore a simple greedy algorithm is
used. It has been shown that in this model one should not track back when a conflict occurs but
rather restart, as otherwise correlations in the degrees are introduced into the graph. There
have been attempts to circumvent this problem by working on classes of equally-correlated
nodes [4]. In general the frequent restarts that are necessary make the stubs method very
slow.
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In [89] it is shown that some of the degree correlations observed are not an artifact of
the graph construction method but rather intrinsic to broad degree distributions. When not
only the degree sequence but also the degree-degree correlations are prescribed the problem
of introduced degree-degree correlations does not exist, an algorithm performing this task
is shown in [164]. It may still be possible that higher-order correlations are systematically
introduced so that the ensemble of allowed configurations is not sampled in a fair way.

In all chapters of this work a (constrained) mixing algorithm is used. As no realistic minimal
mixing times are available from theory case by case decisions have to be taken. When one is
only interested in a z-score there is an easy way of doing this: i) Mix a set of copies of the start
network for a certain number of steps (e.g. 10 ·N ) and compute the z-score. ii) Mix the networks
again for the same number of steps and observe if the z-score has changed. If the z-score
remains the same (up to a small fluctuation) the mixing time was long enough, otherwise one
can simply go on and mix the networks for a longer time until the z-score converges.

Please note that the convergence of the z-score does not indicate that the mixed networks
are random, they may still be biased, but in a way that does not affect motif counts anymore.

1.3.4 Counting Motifs
Conceptually there are two different methods to count motifs:

• Iterate over every triplet of nodes, compare the adjacency matrix to the adjacency matrix
of every motif and increase the corresponding counter.

• Implement specific code for every motif. Properties of the wanted motif can be used to
continue to expand the motif match only in situations where the motif match is still
achievable.

Which method is faster depends on the number of possible motifs and on the probability of
finding a motif.

The advantage of the first method is its compact code. The task of checking whether a
selected subgraph is equal to a searched motif corresponds to the graph isomorphism problem,
for which no algorithm is known that scales as a polynomial function or better with the graph
size. But this is not relevant to the present problem as the considered subgraphs are of very
small, constant size.

The advantage of the second approach is the possibility to count only the motifs one is
interested in with the benefit of reduced overhead. Also the code is much simpler and easier to
debug. The disadvantage lies in the necessity to write specialized code for every subgraph one
is interested in.

In this work this problem is circumvented by using a meta programming approach. The
specialized counting code for every motif is generated by a meta program, that has only to be
written once.

Taking the adjacency matrix of the wanted subgraph two tasks are performed:

1. A search-path through the subgraph is selected (e.g. the order in which the nodes of the
wanted subgraph are mapped onto the graph).

2. Automorphisms of the subgraph are identified. These have to be broken to avoid counting
a motif several times.
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Listing 1 The automatically generated code for the motif with the id 46 (comments added).

package motifs . analyzer . three ;
import motifs . analyzer . Analyzer ;
/ / auto generated
/ / 0−>1 / / 0−>2
/ / 2−>1 / / 2−>0
/ / way i s
/ / 0−>1 / / 0−>2
/ / symmetries :
/ / 2−>0
public c lass m3id46Analyser extends Analyzer {

publ ic void run ( ) {
motifCount =0;
int [ ] [ ] o l=network . outLinks ;
/ / I terate over a l l nodes which have outgoing edges
for ( int node0=0;node0<o l . length ; node0 ++){

/ / I terate over a l l o f node0 ’ s outgoing edges
for ( int a=0;a<o l [ node0 ] . length ; a++) {

int node1=o l [ node0 ] [ a ] ;
i f ( node0 == node1|| / / Do not allow a node twice in a motif
contains ( o l [ node1 ] , node0 ) ) / / Do not allow addit ional edges
continue ;

/ / I terate over a l l o f node0 ’ s outgoing edges
for ( int b=0;b<o l [ node0 ] . length ; b++) {

int node2=o l [ node0 ] [ b ] ;
i f ( node1 == node2 || / / Do not allow a node

node0 == node2 || / / twice in a motif
node2< node0 || / / break the symmetry
! contains ( o l [ node2 ] , node1)|| / / check for required edges
! contains ( o l [ node2 ] , node0)||
contains ( o l [ node1 ] , node2 ) ) / / Do not allow addit ional edges

continue ;

motifCount ++; / / Found a motif instance
}

}
}

}
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For efficiency reasons and due to the used data structure (an adjacency list) it is advantageous
to build a search path that does not require backward edges. Heuristically it may be of
advantage to check nodes that underlay stronger constraints first, e.g. a node that must have
several outgoing edges to form a subgraph. These two ideas are implemented in the current
version. Further improvements depending on the network topology are possible. Here the
meta programming approach is particularly helpful, as different heuristic search strategies
can be quickly compared without changing large amounts of code manually. The symmetry is
broken by requesting that all nodes of a automorphism class (that yield the same topology after
relabeling) have increasing node IDs. An example for motif 46 is presented in the listing 1.
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1.4 Outline
The aim of this work is to illuminate the interplay between topology and dynamics, with an
emphasis on robustness and local network structures. To achieve this goal existing analysis
methods are applied and extended. New methods are developed, implemented and applied to a
set of network problems spanning a broad range of disciplines.

The thesis is organized as follows:
Chapter 2 introduces an analytical prediction of motif counts and motif fluctuations in ran-

dom graphs. This is achieved by computing appropriate edge probabilities and combining them
to motif probabilities. The derived equations can be used to predict motif signatures resulting
from some non-standard graph properties. This is shown on the example of modular graphs,
the predictions are compared to standard mixing techniques and a reference implementation
of modularity-preserving mixing. The results of this chapter will be published in [46].

Chapter 3 discusses some common issues occurring while performing motif analyzes and
uses the findings from Chapter 2 to give insight into the underlying combinatorical mechanisms.
The false results occurring when not preserving the number of bi-directional edges in a graph
are analytically predicted. Appropriate null models for some common cases including flow
networks and bi-bipartite graphs are discussed. The results of this chapter will be published in
[43].

Chapter 4 treats the network of long distance train connections. Especially the connection
between robustness and efficiency is analyzed. The main result is a positive correlation between
synchronization (the clustering of arrival/departure events in time) and delay propagation.
The findings are compared to topological features of the underlying connection network, the
high synchronization mainly occurs on average-sized stations. Then the connection between
synchronization and dynamical robustness is further investigated in a simple model of delay
propagation where the main result can be replicated. Possible implications on the process of
train schedule generation are discussed. The results of this chapter have been published in
[45].

Chapter 5 analyzes some real-world social networks, namely co-authorship networks.
Hereby two authors are connected if they published a common paper. Additionally the corre-
sponding citation data is obtained and the (local) motif properties of successful authors are
analyzed. To achieve this different normalization schemes are discussed and tested against a
set of randomized data. We find that some constellations of publications are systematically
more successful than others and discuss possible reasons for this phenomenon. The results of
this chapter have been published in [81].

Chapter 6 studies a model system of social dynamics. The effect of the local rewiring rules
on the global topology is assessed. We show that successful and unsuccessful agents show
systematically different local motif neighborhoods. Additionally novel (local) motif analysis
techniques are employed to predict the success of social agents. The results of this chapter will
be published in [44].

Chapter 7 introduces software tools that have been developed during the work on this thesis.
Especially interactive network analysis software for some use cases is shown.

Chapter 8 finally summarizes the work and gives an outlook of future challenges.
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Chapter 2

Subgraph Fluctuations in
Random Graphs

Summary
The pattern of over- and under-representations of three-node subgraphs has become a standard
method of characterizing complex networks and evaluating, how an intermediate level of
organization contributes to network function.

Understanding statistical properties of subgraph counts in random graphs, their fluctuations
and their inter-dependencies with other topological attributes is an important prerequisite
for such investigations. Here we introduce a formalism for predicting subgraph fluctuations
induced by perturbations of uni-directional and bi-directional edge densities. On this basis
we predict the over- and under-representation of subgraphs arising from a density mismatch
between a network and the corresponding pool of randomized graphs serving as null model.
Such mismatches occur for example in modular and hierarchical graphs.

The results presented in this chapter have been achieved in cooperation with Matthias
Müller-Hannemann and Marc-Thorsten Hütt and will be published in: “Statistical description
of subgraph fluctuations in random graphs” [46].

2.1 Introduction
Network science, i.e. the discipline studying and interpreting a broad range of complex systems
from a network perspective, has an enormous impact on how we perceive (and analytically
approach) social, biological and technical systems. One of the most fascinating theoretical
challenges of network science is the inter-dependence of network properties observed at dif-
ferent scales: Clustering depends on modularity, heavy-tailed degree sequences can induce
degree-degree correlations [89, 127], a modular structure influences our expectations of be-
tweenness centralities and other edge- or node-based properties. The severest impact of these
inter-dependencies probably occurs when attempting to interpret the composition of a network
in terms of few-node subgraphs. On this level, we can expect a very strong influence of global
network properties, unless we adjust our null model (i.e. the set of random expectations) to

11
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match these global properties. It is therefore essential to understand this interplay from first
principles. Here we discuss two types of correlations between network properties: (1) how
single-edge fluctuations influence fluctuations in three-node subgraph frequencies; (2) how
global network properties affect three-node subgraphs frequencies.

Network motifs have first been introduced as a method for analyzing transcriptional
regulatory systems [109]. A comparison of the transcriptional regulatory network of the
bacterium E. coli with random graphs has revealed that three characteristic local node/link
patterns appear substantially more frequent than expected at random[148]: feed-forward loops
(FFLs), single-input modules (SIMs) and densely overlapping regulons (DORs). The benefit
from an identification of over-represented node/link patterns is two-fold: (i) one can formulate
models of the dynamics encoded by such few-node devices; (ii) one can discuss selected examples
of such motif occurrences in detail. In this way, feed-forward loops and single-input modules
could, in subsequent work [3, 97, 148], be linked to specific dynamical functions (like noise
buffering (FFL) and the implementation of temporal programs (SIM)).

To a certain extent, the analysis of such node/link patterns is a balance between an au-
tomatized, statistical view on a complex network and the discussion of individual cases. An
interesting example of this balance is the discussion of various types of feed-forward loops in
transcriptional regulatory networks. Once the statistical over-representation of this node/link
pattern had been established [3, 148], the specific forms of feed-forward loops occurring in the
networks could be further analyzed. One classification scheme is to enumerate all distributions
of signs on the links ("activating" and "inhibitory") and see, whether the two paths (directly
and via the third, intermediate node) from the top-level node to the bottom-level node in the
feed-forward loop both provide the same signal (both activating or both inhibiting; coherent
FFL) or provide conflicting signals (incoherent FFL). Surprisingly, not all variants of these
coherent and incoherent FFLs seem to occur in equal proportions in transcriptional regulatory
networks. Instead there seems to be a strong bias towards only one type of coherent FFL and
one type of incoherent FFL [73].

An important debate in the study of biological systems from a network perspective is the
biological relevance of statistical signals derived from graph representations (see also [110]).
In order to address this question, it is interesting to explore the consistency of large-scale
biological data sets with graph abstractions of biological networks. This has been done in
particular for the gene regulatory network and the metabolic network of yeast and E. coli:
(1) Luscombe et al. [96] showed that the topology of sub-network structures in yeast is specific
for cellular programs triggered by environmental conditions: Slow programs (e.g. cell cycle)
employ a densely interconnected sub-network structure, while programs required to act rapidly
(e.g. DNA repair) employ networks with shorter path lengths and less complex motif content.
(2) Using methods from point process statistics the arrangement of genes on the genome and
their correspondence to the gene regulatory network have been analyzed [151]. (3) Using
the method of control strengths derived from effective networks [99], the agreement of active
metabolic networks (as predicted by flux-balance analysis) and gene expression data [150] has
been studied. (4) With the aim of better understanding the validity of the motif perspective,
the interplay between feed-forward loops and larger-scale structures (subsets formed by all
nodes topologically down-stream of a reference node) in gene regulatory networks has been
explored [101]. The rationale of this analysis has been to explore the interplay of two scales
within the transcriptional regulatory network of E. coli. In particular, in [101] it was shown
that when one scale dominates (high sub-net usage) few regulatory devices on the smaller scale
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are found (low feed-forward loop occurrence).
A strong step towards an automatized statistical view on network motifs has been the

work by [107], where the over- and under-representation of three-node-subgraphs (the motif
signature ore triad significance profile, TSP) compared to randomized networks is analyzed.

This analysis of the TSP has been applied to a wide range of complex networks [30, 72, 77,
81, 148]) and has become synonymous to a motif analysis. Many of the TSPs of real networks
either show no significant over- or under-representation of three-node subgraphs or follow one
of the four patterns (or “superfamilies”) discussed in [107].

A very promising development over the last few years has been that some features of such
motif signatures are found to be related to the robustness of the system (see, e.g., [77, 70])

Avetisov et al. [7] analyze the motif signatures of graphs obtained from a block-hierarchical
adjacency matrix. By introducing randomness (i.e. random flips 1 ↔ 0) in the adjacency
matrix, the authors can also study the robustness of the motif pattern. They find that the
motif signature persists under small amounts of such topological noise. This work is one of
the few examples (together with the comment on spatial networks in [6]) of motif signatures
arising from global organizational features (in this case: the block-hierarchical structure of the
adjacency matrix) of the network. Remarkably, the motif signature is quite similar to one of
the superfamilies from [107].

It is therefore of great interest to better understand the crosstalk between local and global
network properties, as well as the inter-dependencies between the different few-node subgraphs.

For the special case of Erdős-Rényi (ER) random graphs we formulate a simple statistical
description of expectation values for subgraph frequencies. Similar approaches have been
formulated in [63, 74]. By grouping the possible three-node subgraphs into categories, we
are able to understand differences between subgraph counts arising on purely combinatorical
grounds. This description enables us to discuss for the first time the statistical fluctuations
of subgraph counts arising, e.g., from fluctuations in the number of uni-directional and bi-
directional edges.

Both, the expectation values and the standard deviations of subgraph counts enter the
computation of subgraph z-scores, which are frequently employed for quantifying the statistical
over- and under-representation of subgraphs in real networks. We can thus employ our method
to the computation of a motif signature (or triad significance profile, TSP) in all cases, where
fluctuations in the edge density induce a non-zero motif signature for an otherwise random
graph. Modular graphs, as the most important case of this category, are discussed as an
application.

2.2 Subgraph Statistics
In this part we introduce a simple model for the emergence of templates and motifs in random
networks. We discuss the expectation values of motif counts and the corresponding fluctuations.
This yields insight into the correlations from single node-properties to motifs.

2.2.1 Subgraph categories
Throughout this article we will only discuss simple directed graphs with a node number N
and an edge number M . Simple means that parallel edges pointing in the same direction and
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Figure 2.2.1: The three different placements for the three possible types of edges. On the right
the different types of edges that can occupy the placements and their notation for templates
and subgraphs.

self-links are forbidden. Because of these conditions the graph is complete when it contains
M = N(N−1) edges. When two nodes a and b are connected by a single edge they are connected
by a uni-directional edge (u), when the opposing edge is also present they are connected by a
bi-directional edge (b). Finally two nodes can be unconnected. Formally, this can be described
by a non-edge (n).

Between global network properties on the one hand and single-node properties on the other,
motifs can be used to understand networks on a mesoscopic scale. For directed networks, most
studies use 3-node subgraphs, and we will here do the same although the formalism can easily
be extended to higher motif sizes. In this text we distinguish between templates and subgraphs.
Templates are sets of edges with an undefined position relative to each other. Some templates
have two, others three edges:

two: uu,ub,bb
three: uuu,uub,ubb,bbb
These seven templates can form 13 different (induced) subgraphs. A subgraph is obtained

by defining the relative orientations of the edges within a template.
Orientations are defined using ↑ for clockwise and ↓ for counter-clockwise directions of the

edge. Using this shorthand notation, we can summarize the template-subgraph relationships
in a tabular form, see Table 2.2.

As only relative positions and orientations matter, ↓↓↓ is indistinguishable from ↑↑↑. How-
ever ↑↓ o is a different subgraph from ↓↑ o.

2.2.2 Edge Counts
Here we work with the Erdős-Rényi (ER) model of random graphs, where a graph is character-
ized by the number of nodes N and the edge probability p. A graph represented by N and p
contains on average M = p ·N(N − 1)edges. Here we specify a certain number of edges, M and
then use the corresponding edge density (or connectivity) p = M/(N(N − 1)) to characterize
the network in our statistical assessment. For random networks we can estimate some basic
probabilities and counts:

In a directed network model two edges that connect the same two nodes pointing in opposite
directions form a bi-directional edge. The number of bi-directional edges can be estimated by
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template subgraph a subgraph b subgraph c
uun ↑↓ o (1) ↓↑ o (2) ↓↓ o, ↑↑ o (3)

ubn ↓l o (4) ↑l o (5)

bbn ll o (6)

uuu ↓↓↑, ↑↑↓ (7) ↓↓↓, ↑↑↑ (8)

uub ↑↓l (9) ↓↑l (10) ↓↓l, ↑↑l (11)

ubb ↓ll, ↑ll (12)

bbb lll (13)

Table 2.1: The seven templates together with the 13 subgraphs they can form, subgraph
numbers in parentheses correspond to the standard ordering from [107].

template subgraph rm
uun

↓↑ o =⇒ =⇒ 1
4

↑↓ o =⇒ =⇒ 1
4

↓↓ o =⇒ =⇒ 1
2

↑↑ o =⇒ =⇒

Table 2.2: This table illustrates how templates are distributed among their constituting
subgraphs on the example of the template uun.
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the probability, that a single position is selected twice p2, times the number of possible slots
N(N − 1)/2 :

Mbi =
M2

2N(N − 1)
.

The number of uni-directional edges is then given by:

Muni = M − M2

N(N − 1)
.

2.2.3 Subgraph Counts
In order to obtain expectation values for the subgraph counts cm, we formulate a simple model
of subgraphs, where each of the three positions between the three nodes can be in one of three
states:

• uni-directional edge

• bi-directional edge

• no edge

see also Figure 2.2.1.
The edge density of the graph is defined as p = M

N(N−1) , and the probabilities for the three
states are then given by:

pu(p) = 2 · (p− p2)

pb(p) = p2

pn(p) = 1− pu − pb = (1− p)2

By denoting the numbers of uni-directional (um), bi-directional (bm), and non (nm) -edges
for every subgraph m, we can write the expected number cm of type m as

cm = pl · pu(p)
um · pb(p)bm · pn(p)

nm · sm
where the number of possible placements for a subgraph is pl =

(
N
3

)
· 3! and sm are symmetry

factors

sm = rm/ξt

where ξt accounts for the symmetries of the template t and rm represents the ratio by which
the template is split up into subgraphs.

The symmetry factor ξt is the ratio of possible three-symbol permutations of the distinct
permutations obtained in a template. A template containing three distinct symbols exhausts
the full possible 6 permutations, yielding ξt = 1, while a template with two distinct symbols
allows for three permutations, yielding ξt = 6

3 = 2 , and if all three symbols in the template are
equal, we have ξt = 6.

As the symmetry factor rm only accounts for the distribution of the templates on the
subgraphs, see Table 2.3, there must be

∑
rm = 1 for every template, where the sum is over all

subgraphs m in the template t.
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Figure 2.2.2: The probabilities pu, pb and pn as functions of the edge density p.

m 1 2 3 4 5 6 7 8 9 10 11 12 13
t 1 1 1 2 2 3 4 4 5 5 5 6 7
um 2 2 2 1 1 0 3 3 2 2 2 1 0
bm 0 0 0 1 1 2 0 0 1 1 1 2 3
nm 1 1 1 1 1 1 0 0 0 0 0 0 0
rm 4 4 2 2 2 1 4

3 4 4 4 2 1 1
ξt 2 2 2 1 1 2 6 6 2 2 2 2 6
sm 8 8 4 2 2 2 8 24 8 8 4 2 6

Table 2.3: The number of uni (um), bi (bm), and non (nm) edges and the symmetry factors in all
subgraphs.
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Figure 2.2.3: To illustrate the prediction quality of the subgraph counts we show the predicted
(full curve) and numerically observed (dots) counts of the 13 3-node subgraphs in a random
network with N = 100. The connectivity is varied over the whole range (p = 0...100%). The
numerical points are obtained by averaging over 100 random graphs.
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2.2.4 Edge Fluctuations
Changing any one of pu, pb or pn by a small probability ∆ at fixed edge density p results in the
change of the other two probabilities according to:

p̂u(p) = pu(p) + 2∆ = 2 · (p− p2) + 2∆

p̂b(p) = pb(p)−∆ = p2 −∆

p̂n(p) = pn(p)−∆ = 1− pu − pb −∆

This is because the creation of a bi-directional edge needs two uni-directional edges and frees
one place.

To be able to infer the fluctuations of subgraphs it is useful to first derive equations for the
fluctuation of bi-directional edges.

The expectation value of the number of bi-directional edges is cb = p2·N2

2 = 1
2 (MN )2.

In order to estimate the fluctuations in the number of bi-directional edges at low edge
densities (and large numbers of nodes), we take the expectation value and variance λ = nP for
the Poissonian distribution, but substitute the event number n by the number of possible sites
for bi-directional edges,

(
N
2

)
, and the event probability P by the probability of two edges, p2.

For the standard deviation we thus obtain: σbl =
√
cb at low densities.

When the number of edges approaches its maximum value M = N(N −1) these fluctuations
decrease again, which is due to the decreasing number of places that are not yet occupied by
single edges that one would have to hit to not create another bi-directional edge. In this case,
the event probability is substituted by (1 − p)2. It is also clear that σbh must be symmetric
around p = 0.5.

So at high densities we get:

σbh =

√
N2

2
−
√
cb.

As both fluctuations are mutually exclusive, their reciprocal sum yields an analytical expression
for the total fluctuations of bi-directional edges as a function of the edge density p, i.e.

σb =
1

1√
σbl

+ 1√
σbh

This situation is summarized in Figure 2.2.4. These fluctuations directly transfer to
fluctuations of the uni-directional and non-edges. As every additional bi-directional edge means
two uni-edges less, there is a factor of two between their fluctuations, see Figure 2.2.4.

2.2.5 Subgraph Fluctuations
In order to reduce trivial contributions to the subgraph fluctuations, we keep the number M of
edges in the ER graph fixed (which makes the edge density p a secondary quantity, as described
above). Otherwise, the fluctuations in the number of edges at a given pwould partially mask the
conceptually more important (and less trivial) contribution from fluctuations of uni-directional
and bi-directional edges at fixed M .
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Figure 2.2.4: The fluctuations of the number of uni- and bi-directional edges in a random graph
with N = 100 nodes and varying edge density. We show the numerical results together with
the corresponding predictions.
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There are two reasons for the fluctuation of a subgraph count: (i) fluctuations in the number
of bi-directional edges, (ii) fluctuations due to the subdivision of templates (i.e. subgraphs with
the same number of uni-, bi- and non-edges) into subgraphs. This subdivision depends on the
direction of the uni-directional edges, as discussed in Tables 2.1 and 2.2.

Contribution (i): The fluctuation of the number of bi-directional edges can be translated
into the fluctuation of a subgraph count by processing the normal number of subgraphs and
subtracting that from the number of subgraphs one gets by changing the probabilities for uni-,
bi- and no-edges by one standard deviation:

σbm = cm(p̂u, p̂b, p̂n)− cm(pu, pb, pn).

Contribution (ii): The other sources of fluctuations are the fluctuations in the combination of
uni- and bi-directional edges to templates and the distribution of the templates among the
subgraphs. Together they can be estimated by the square root of the subgraph count:

σmm =
√
cm

These sources of fluctuations need to be combined in a pythagorean sum:

σm =
√
σ2
mm + σ2

bm

The resulting fluctuations are shown in Figure 2.2.5.

2.3 Application
Here we will show for a simple example how the theory presented above can be used to better
understand properties of subgraph signatures. The subgraph signature of a network (or, more
specifically for three-node subgraphs, the triad significance profile, TSP) is the pattern of over-
and under-representations of few-node subgraphs in this network. It has become a standard
method of analyzing complex networks. More formally, it is the (normalized) z-score of the
subgraph counts.

To obtain the ensemble of randomized networks a randomization scheme is repeatedly
applied, where typically the in- and out-degree of each node (i.e. the degree-sequence of the
graph) is conserved during the randomization process, as well as the number of bi-directional
edges at each node. The aim of the randomization procedure is to remove any non-random
property (beyond the degree-sequence). In this way deviations of the subgraph counts (in the
real network) from randomness can be detected and functionally interpreted.

Apart from the case where some kind of selective process in the evolution of a network or
some other functional requirement is enriching specific subgraphs, which is the most interesting
case, there are many other reasons for a non-zero z-score.

Here we discuss modularity as one such possible reason. An example of a modular network
is depicted in Figure 2.3.1. If the modular structure is not taken into account during the ran-
domization process and thereby conserved in the pool of randomized networks (i.e. eliminated
from its effect on expected subgraph numbers), a false non-zero z-score appears.

We use a random graph that is composed of five strong modules, where each module is
an ER-network. Additionally a certain amount of inter-module edges is introduced. As the
base networks as well as the inter-module edges are constructed in a motif-blind way, correct
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Figure 2.2.5: The fluctuations of the 13 3-node subgraphs in a random network with N = 100.
The connectivity is varied over the whole range.(M = 0...9900) and the contribution (i) (brown),
contribution (ii) (green), as well as the total expected value (purple) and numerical results
(blue) are shown.
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randomization should yield a flat motif signature with z-scores close to zero. The result of the
application of standard, module-blind randomization techniques can be seen in Figure 2.3.1.
We also show the result of a module-aware randomization scheme that mixes only edges inside
of the modules and inter-module edges. In real world networks the modular structure of a
network is generally not known and it is therefore necessary to detect the modules first, before
adjusting the randomization scheme accordingly.

To better understand the error made by the standard randomization scheme we will
analytically predict the error signature using the formalism introduced above. To this end, it
is essential to notice that, when the modules are destroyed the effective local intra-module
density of the network is reduced by a factor of five.

This is because a network with N∗ = 2N and M∗ = 2M has a density of d∗ = M∗

N∗2 = d
2 . A

network with double size has to have four times the edges to have the same density.
Let N and M be the number of nodes and edges of the whole modular network. Then cm

can be estimated by 5 · cm(N/5,M/5), µm=cm(N,M) and σm by σm(N,M). The general form
when a graph consists of k modules with node counts n1, n2, ..., nk is

cm =

k∑
i=1

cm(ni,
Mni
N

).

When the ratio of inter-module edges ρ is increased this can easily be taken into account:

cm =

k∑
i=1

cm(ni,
(1− ρ)Mni

N
) + cm(N, ρM).

This simplification does not acknowledge for subgraph instances that contain intra- and inter-
module edges. These are relevant mostly for the two-edge subgraphs. We evaluate the number
of these mixed subgraphs dmby taking into account the different edge densities in the module
and between the modules. We therefore introduce probabilities for uni- and bi-directional edges
in the components puc, pbc and outside of the components puo, pbo. Using these probabilities we
can write the expectation value for the additional subgraphs as:

dm = N3


pucpuo + puopuc , where um = 2 ∧ bm = 0

pucpbo + puopbc , where um = 1 ∧ bm = 1

pbcpbo + pbopbc , where um = 0 ∧ bm = 2

0 , else

These additional subgraphs are added to the inter-module and intra-module subgraphs
to obtain the total subgraph counts. Figure 2.3.2 shows the quality of the prediction of the
subgraph counts.
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Figure 2.3.1: Motif z-scores for a network that is composed of five strong modules. (A) Example
of such a random modular graph. Two different randomization-schemes are applied (1) simple
flipping of two edge-endpoints, (2) flipping while preserving the module-structure. As the ana-
lyzed network is random apart from its modularity the z-score using the correct randomization
scheme must be 0. This is shown for different densities: (B) N = 500,M = 2000, ρ = 0.08 and
(C) N = 500,M = 8000, ρ = 0.16.

To verify the quality of the predictions of the z-score of a modular network, we compute the
geometric mean of the difference of the z-score when applying the appropriate module-aware
randomization scheme and the simple randomization scheme. This quantity can both be
computed numerically and analytically, as in Figure 2.3.3.
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Figure 2.3.2: The composition of the 13 3-node subgraphs in a modular network. The ratio
of inter-modular edges is varied and the contribution of intra-module subgraphs (yellow),
inter-module-subgraphs (green), mixed subgraphs (blue) as well as the total expected value
(red) and numerical results (blue) are shown (N=500,M=2000).
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Figure 2.3.3: The sum over the squared errors that occurs from applying different randomiza-
tion schemes over the ratio of inter-module edges (N=500,M=2000). We show the numerical
results for two different randomization schemes together with our prediction.

Conclusion
Statistical properties of random graphs have been studied for decades in several disciplines and
with a wide range of applications in mind. Here we have focused on a topic that in spite of its
practical importance has received comparatively little attention so far, namely the statistical
fluctuations of few-node subgraphs induced by lower-level fluctuations in the numbers of
uni-directional and bi-directional edges.

In this way we can quantitatively understand some of the cross-talk between global and
local network properties. As an example of such a cross-talk we have here presented the
motif signature arising from the modularity of the graph. Using our analytical description of
subgraph fluctuations, we can precisely predict the artefactual motif signature of this otherwise
random graph. By mixing inter-module edges and the different sets of intra-module edges
independently, we can additionally show that the full motif signature is a sole consequence of
the modular graph structure.

Beyond a better understanding of such artifacts, we believe that the classification of three-
node subgraphs into the categories introduced in Section 2.2 has the potential of unraveling
the theoretical background behind the empirical observation that only four variants (or ’super-
families’) of three-node motif signatures are observed across a vast range of complex networks
[107].

It is clear that all subgraphs within the same category will display synchronous fluctuations
distributed among the participants of a category according to few well-understood combinatori-
cal factors. This approach may constitute a solid basis for understanding correlated subgraph
fluctuations and motif-motif covariations. We plan to pursue some of these questions in future
work.



Chapter 3

Artifacts in Statistical Analyses
of Network Motifs

Summary
Network motifs are on a mesoscopic scale between purely local and global network properties.
They can be interpreted as building blocks that shape the dynamic behavior of networks. It is
this promise of potentially explaining emergent properties of complex systems with relatively
simple structures that led to an adaptation of motifs in an ever-growing number of studies and
across disciplines. Here we discuss artifacts in the analysis of network motifs arising from
incongruences between the network under investigation and the pool of random graphs serving
as null model. Our aim is to provide a clear and accessible catalog of such incongruences
and their effect on the motif signature. Specifically, we explore the effect of bidirectional edges,
modularity, self-links, randomization of layered graphs, projections of bipartite graphs, and the
mapping of dynamical data onto motifs.

The results presented in this chapter have been achieved in cooperation with Moritz Beber,
Matthias Müller-Hannemann and Marc-Thorsten Hütt and have been published in: “Artifacts
in statistical analyses of network motifs” [43].

3.1 Introduction
Analyzing few-node subgraphs and network motifs has become an indispensable tool for
understanding complex networks. The conceptual power of network motifs lies in making
accessible an intermediate scale in network organization. It is a priori not clear, on which
topological scale a particular dynamical function is located (i.e., what a typical group size of
nodes is that contributes to the function). Quite clearly (in particular for very large networks)
it is implausible that functional features are a truly collective phenomenon that can only be
understood on the scale of the full network.

While many studies of network topologies focus on global properties (e.g., the degree
distribution — reviewed in [117], modularity [49, 55, 56, 122], degree correlations [31, 116],
and hierarchical structures [12, 36, 69, 157, 135]), some of the dynamical function can be
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explained by small few-node subgraphs serving as devices for specific tasks organized locally in
the graph. A potential signature of the functional role of few-node subgraphs is their statistical
over- or under-representation (compared to a suitable ensemble of random graphs). This
general concept has been developed and worked out by the Alon group [107, 109], particularly
for transcriptional regulatory networks [3, 148].

Identifying a statistical over-representation of few-node subgraphs, i.e., network motifs, has
two main advantages:

1. For these specific subgraphs it is then possible to develop detailed mathematical models
of their dynamic function [3, 97].

2. Once the motifs are identified, the individual occurrences, e.g., in the biological network
under investigation, can be discussed and analyzed experimentally [73] mostly on a
technical and methodological level [6, 78] as well as in cross-validations of the proposed
function [103].

Most criticism of motif analyses has focused on the mixing with a randomization procedure
[6, 17, 19, 48]. It has also been argued that the crosstalk between global and local network
properties may affect the statistical assessment of network motifs [65].

In [160] the strong dependence of local and global network properties for scale-free and
hierarchical graphs has been formally explored. Relatedly, [74] has formulated an algorithm
for generating a graph with a prescribed motif composition in the special case of very low
connectivities.

In [59] the crosstalk between two graph properties (assortativity and clustering coefficient)
has been studied by exploring the parameter space with the help of a biased random walk in
the ensemble of all graphs with fixed degree sequence. Particularly for biological networks, it
has been questioned, whether network motifs are indeed of functional relevance [61, 78, 103].

Here, we extend the topological arguments from this list and provide a clear and transparent
catalog of possible artifacts arising from incongruences or mismatches between the network
under investigation and the pool of randomized graphs serving as null model.

Due to the comparison between properties of a real network with a suitable set of random
graphs, an argument involving motifs is a delicate balance between statements formulated
about local graph properties and statistical arguments on a more global scale. More generally,
it is an inescapable difficulty to disentangle the motif layer of organization from other scales
within the network, if one wants to clearly attribute the system features to just the meso-scale
of few-node subgraphs. Key questions are:

1. Do global graph properties distort the content of subgraphs and can a null model account
for this?

2. Is the local function of a network affected by the specific architecture of a motif or does that
function result from a systematic placement of that motif in its network “environment”?
Is the function of isolated motifs comparable to the functioning of motifs contextualized
within a graph?

3. Are absolute numbers of motifs interpretable quantities, when their scaling properties
(with degree, clustering coefficient, connectivity, etc.) are taken into account?
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Here we focus on the first question. The work by [48] has put forward a local argument for motif
correlations induced by a property of the randomization scheme. While this argument (in the
form given in [48]) is true only for graphs without bidirectional links (and therefore a reduced
motif inventory) and for small densities (as otherwise a wider range of randomization steps will
be available), the argument nevertheless shows the possibility of subtle intrinsic correlations
influencing the result of a motif analysis. In [7] an algorithm for constructing modular
hierarchical graphs is described. The authors in particular observe that their constructed
graphs have a non-random motif composition, resembling one of the superfamilies from [107].

In the following, we will summarize and illustrate several technical issues in analyzing
network motifs, both from a topological and a dynamical perspective. We want to systematically
assess how global properties change local properties (for example, the influence of modularity
on motifs). A running example throughout the different types of global-local crosstalk will be
metabolic networks, where all these inter-dependent topological features are very important.
Hence we will often elaborate on the application of a particular issue to such networks.

The organization of the text is as follows: A short overview on motifs, together with the
theoretical framework employed here and the network representation of metabolism in the
next Section; an insight into the effects of local network architecture and local decisions in
Section 3.3; a detailed account of global network structure that strongly influences the meso-
scale in Section 3.4; issues in mapping (dynamical) data onto motifs in Section 3.5; and in
Section 3.6 some aspects of further work that will be necessary.

3.2 Methods

3.2.1 Terminology

The general idea of a motif analysis is to compare few-node subgraph counts obtained from a
real network with the corresponding counts obtained from randomized versions. In the case
of three-node subgraphs, the corresponding z-score can be summarized in a triad significance
profile (TSP) showing the statistical over- or under-representation of each of the subgraphs. The
z-score for subgraphm is defined as: Zm = cm−µm

σm
, where for every subgraph, cm is the subgraph

count in the original network, µm is the expectation value of cm in the random networks and
σm is the standard deviation of cm in the random networks. A typical randomization scheme
preserves the number of incoming, outgoing and bidirectional edges at each node.

3.2.2 Statistical Description of Motif Fluctuations

Here we briefly summarize the formalism described in Chapter 2. We will apply to the examples
given in Section 3.4.1, in order to understand the effects described there also analytically.

The formalism starts from the fact that in Erdős-Rényi (ER) graphs three-node subgraph
frequencies cm can be described by the number of possible selections of three nodes π =

(
N
3

)
· 3!

(where N is the number of nodes in the graph) times the probability that a particular subgraph
is present at this place. This probability can be written as Pu(p)

um · Pb(p)bm · Pn(p)
nm · sm with

the numbers of uni-directional (um), bi-directional (bm), and absent (non) (nm) edges for the
subgraph m. The probabilities for the occurrence of a uni-directional (Pu), bi-directional (Pb),
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Figure 3.2.1: Projection of a metabolic bipartite network (a) onto its metabolite nodes (b). The
reversibility of a reaction is internally stored as a node attribute but represented here with an
additional dashed link, so that substrate and product nodes can still be identified.

and absent (Pn) edge are given by

Pu(p) = 2 · (p− p2)

Pb(p) = p2

Pn(p) = 1− pu − pb = (1− p)2

where p is the link density of the graph, p = M
N(N−1) , M being the number of links in the graph.

The expected number of occurrences of a subgraph m also contains a symmetry factor sm that
can be obtained from the number of permutations possible for that subgraph, as well as the
number of different subgraphs formed from this constellation of um, bm and nm.

This model can be extended to take into account fluctuations of motifs and therefore to
compute z-scores for some simple situations. Details can be found in Chapter 2.

3.2.3 Network Representations of Metabolic Systems
Metabolic networks reflect the sharing of metabolic compounds (metabolites) by all biochemical
reactions that can occur in an organism due to the catalytic action of enzymes. Metabolites
and reactions form distinct sets of nodes that are only interconnected, thus forming a bipartite
network (more involved representations exist, e.g., including enzymes as another category of
nodes [1], or choosing a hyper-graph structure to meticulously represent reaction-compound
relations [169]). Since the mathematical formalisms developed to analyze networks have
been focused on unipartite graphs, metabolic networks are customarily projected onto either
one of the two sets of nodes and the projected unipartite network is then analyzed. In the
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Figure 3.2.2: Projection of a metabolic bipartite network (a) onto its reaction nodes (b). As
in Figure 3.2.1, the reversibility of a reaction is internally stored as a node attribute but
represented here with an additional dashed link, so that substrate and product nodes can still
be identified.

majority, these analyses considered metabolism as an undirected network (see, for example,
[1, 68, 161] and for a critique of the projection of metabolic networks see [110]). The problem
of formulating suitable null models for metabolic systems has recently been discussed in [13].
There the problem of mass balance is studied. One of the first studies on motifs in metabolic
networks [39], also presents a projection method for directed metabolic networks. We retain
the method presented in [39] for projecting the metabolic network onto its metabolite-centric
representation, i.e., connecting each substrate with each product of a certain reaction and
introducing a bidirectional link if the reaction is reversible (see the scheme in Figure 3.2.1).
For a directed representation of the reaction-centric projection, we draw a link between two
reaction nodes if there is a directed path of length two from a source reaction R, through exactly
one metabolite M , to another reaction R′. The link is drawn in the direction of the existing
path (as depicted in Figure 3.2.2).

There are two constraints on the bipartite metabolic network: If a projection onto metabolite
nodes is required, the structure of the network needs to give insight into the substrates and
products of each reaction at any time. That means, we cannot simply introduce bidirectional
edges wherever reversible reactions occur, because then the structure of the network would not
allow the unambiguous identification of their substrates and products. The second requirement
is that reversible reactions form their own category and should be mixed separately from other
reactions just as uni- and bidirectional links. There are at least three ways of realizing these
requirements: Reversible reactions can be split up into their forward and backward direction
which allows a clear identification of products and substrates. During the rewiring process,
they should be regarded as one entity, though. Another approach is to give reversible reactions
a special attribute, they are then mixed only with themselves, and in the projection process
bidirectional links can be introduced again. The last option is to give each link an attribute
that records whether it connects to a substrate or a product.
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3.3 Local Network Properties

3.3.1 Self-Links
Self-links are typically not included in the definition of three-node subgraphs and are, therefore,
not part of a motif analysis, and should be deleted from the graph before the analysis. In fact,
the mfinder tool (see Section 3.2.1) will outright reject a graph containing self-links. Clearly,
any rewiring method must prevent the creation of self-links or the sample of randomized graphs
will have a lower connectivity (density) than the initial one. This functionality is included in all
current motif analysis tools. Nevertheless, self-links can be very meaningful. Prime biological
examples are auto-regulation or fast degradation.

As a first, simple example of possible artifacts in the analysis of motifs, it is instructive to
explore, how an inadvertent inclusion of self-links will affect the result of the motif assessment.
If self-links are considered valid edges for rewiring, they can thus increase the connectivity
of the randomized graph and skew motif counts. Let us consider the following example with
three nodes A, B, and C and two edges A→ A and B → C. A rewiring would then create the
two edges A→ C and B → A. Upon rewiring, another edge was created that may participate
in a few-node subgraph and the relevant connectivity for motif analyses has increased. The
increasing error in the z-scores with an increasing number of self-links is shown in Figure 3.3.1.
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Figure 3.3.1: The increase in the sum over the squares of z-scores for random networks with
100 nodes and 400 links with an increasing number of self-links. The standard deviation of an
ensemble of 100 networks is shown.

In the case of metabolic networks, the underlying biochemical reactions dictate a bipartite
structure consisting of compound and reaction vertices. Currently, the motif analysis is only
(convincingly) defined for unipartite graphs (see, e.g., [75] for a phenomenological extension of
the motif concept to bipartite graphs). The projection schemes discussed in Section 3.2.3 may
introduce self-loops that should be deleted for the above reasons. In this instance, they are not
even biologically meaningful and thus have no place in the network structure.

The distortion of a motif analysis by such faulty inclusion of self-links in the randomization
process is an example of the more general case of a mismatch between the network and the
pool of randomized graphs in terms of link density. In Section 3.4.1 we will discuss another,
quite prominent, graph property, modularity, inducing such a density mismatch.
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3.3.2 Categorizing Bidirectional Edges
A topic that from our perspective has not received sufficient attention in the current debates
about complex networks is the role of bidirectional links. A bidirectional link in a given network
can be viewed as belonging to a unique category of links (as opposed to unidirectional links)
or, alternatively, as the simultaneous occurrence of two unidirectional links with opposite
orientation. It should be noted that in real networks both types of bidirectional links can
in principle occur. It is plausible for example to assume that in gene regulatory networks a
bidirectional link is rather the overlay (or co-occurrence) of two unidirectional links, while for
example in metabolic networks reversible reactions certainly constitute an example of true
bi-directionality as an individual category. In metabolism one also finds, however, the case of
two distinct enzymes being responsible for the two opposing directions of a reaction and, hence,
the other interpretation of bidirectional links.

Typically, the randomization procedure employed for quantifying the over- and under-
representations of few-node subgraphs regard bidirectional links as an individual category of
links in the network (thus applying randomization steps independently to both unidirectional
sub-links and conserving in this way the number of bidirectional links at each node).

Does the distinction between two types of bidirectional links and the related distinction
between two interpretations of the classical randomization scheme affect the observed motif
signature?
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Figure 3.3.2: z-score for a graph with an elevated number of bidirectional links compared to
the expected value µ. Two different randomization-schemes are applied (1) simple flipping of
two edge-endpoints, (2) shuffling uni- and bidirectional links independently thus preserving
the number of bidirectional links in the network. As the analyzed network is random apart
from its number of bidirectional links the z-scores using the correct randomization scheme can
be expected to be close to 0. Obtained from graphs with N = 100 and M = 400, the number of
bidirectional links was forced to 90% instead of the 16% expected for ER graphs.

For a directed graph with N vertices, N (N − 1) is the number of possible edges and
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N (N − 1)/2 is the maximal number of bidirectional edges. If we assume sparse random
graphs (i.e. no mutual exclusion of edges) with M edges, we can write p = M/N(N − 1) as
the probability that a specific edge is present and p2 = M2/ (N(N − 1))

2 is the probability
that a specific edge is bidirectional. For a given number of nodes N and links M the expected
number of bidirectional links is thus B = p2N2/2 = M2/

(
2(N − 1)2

)
. With the average degree

k = M/N we can then write B ≈ k2/2.

If the ratio of bi-directed edges does not correspond to this expectation value, randomization
scheme (1), which consists of a bidirectional link as two independent unidirectional links,
which yield a distorted triad significance profile (TSP), whereas the bi-directionality-preserving
randomization scheme (2) will yield the expected z-scores close to zero. Figure 3.3.3 shows an
example of this difference between the two schemes.
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Figure 3.3.3: The sum over the squared errors that occurs from applying different randomiza-
tion schemes over the ratio of bi-directional links. This network has N = 100 and M = 1980,
leading to a normal ratio of unidirectional edges of 0.802. If this ratio is altered, while keeping
other graph properties random, the normal randomization scheme (1) yields distorted results,
whereas the bi-directionality-preserving randomization scheme (2) yields a correct z-score close
to zero.

The difference between the two motif signatures depends strongly on the connectivity of the
graph. In fact, the difference between the expected value of bidirectional links from connectivity
and the real observed value of bidirectional links in the one scheme (regarding them as two
unidirectional links) generates a gradient indicating, whether the applied randomization
process will rather reduce or increase the number of bidirectional links and, hence, differently
populate the two subcategories of motifs (those containing only unidirectional links and those
containing also bidirectional links).
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3.4 Global Network Properties

3.4.1 Modularity
The first and obvious complication in a trivial motif analysis arises, when a larger-scale pattern
like modularity or a spatial embedding of the network induces a strong deviation between the
original graph and a reference graph obtained by standard randomization procedures. For
spatially organized graphs this has been pointed out in [6]. Here we analyze the fictitious motif
signatures arising from modularity in more detail.

Figure 3.4.1: A graph that is composed of four strong modules.
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Figure 3.4.2: z-score of a graph that is composed of four strong modules. Two different
randomization schemes are applied (1) simple flipping of two edge-endpoints, (2) flipping while
preserving the module-structure. As the analyzed network is random apart from its modularity
the z-score using the correct randomization scheme must be 0. Additionally the analytical
prediction of the z-score is drawn. N = 400, M = 1600, 8% inter-modular links.
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Figure 3.4.3: The sum over the squared errors that occurs from applying different random-
ization schemes over the ratio of inter-module links. Two different randomization schemes
are applied (1) simple flipping of two edge-endpoints, (2) flipping while preserving the module-
structure. As the analyzed network is random apart from its modularity the z-score using the
correct randomization scheme must be 0. Additionally the analytical prediction of the errors is
drawn. N = 400, M = 1600.

We assemble a graph from four dense modules, where each module is a directed ER graph.
Additionally, a few inter-module links are introduced. As the elementary graphs, as well as
the inter-module links are constructed in a motif-blind way, correct randomization should
yield a flat TSP, with all individual z-scores close to zero. The result of the application of
standard randomization techniques can be seen in Figure 3.4.2. We also show the result of
a modularity-aware randomization scheme that mixes intra-module links and inter-module
links separately. In real-world networks the modular structure is generally not known and
thus the quality of this modularity-aware randomization scheme will depend on the quality
of the module detection algorithm employed. In order to better understand the error made
by a randomization scheme without any module information, we will perform an analytical
calculation that yields a prediction of the error signature. To obtain predictions for the number
of subgraphs cm of type m in the original graph, the expectation value of cm in the random
graphs µm, and its standard deviation σm we use a simple model of few-node subgraphs, taken
from Chapter 2.

It is essential to note, that when the modules are destroyed the effective local intra-module
density of the network is reduced by a factor of the number of modules. This is because
compared to a network with N nodes and M edges a network of twice the size with N∗ = 2N
nodes and M∗ = 2M edges has a density of:

d∗ =
M∗

N∗(N∗ − 1)
≈ d

2
.

Let N and M be the number of nodes and edges of the whole modular network consisting
of four modules, as shown in Figure 3.4.1. Then cm can be estimated by 4 · cm(N/4,M/4),
µm = cm(N,M) and σm by σm(N,M). For details see Methods and Chapter 2. This corresponds
to taking the subgraph counts in the four modules, modeled as independent networks and
comparing them to the total network containing all nodes and edges. The resulting prediction
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is plotted in Figure 3.4.2 and fits the experimental results very well.
When all links are inter-modular the effect of the modularity should vanish, Figure 3.4.3

shows that this is the case both in the experiment and in the prediction.
We would like to point out that TSPs of metabolic networks have been used in studies such

as [33, 39, 67]. To our knowledge none of the studies on motifs in metabolism have accounted
for the strong modularity that was discussed early on [136, 143].

3.4.2 Networks with Hierarchies
As modules in networks, hierarchies are defined by constraints on the allowed connectivity. One
type of groups of nodes may not be connected to another particular group of nodes, the group
of nodes may not form any intra-connections, or the network may have a clear “direction”, an
established order of groups of nodes determined by the distance from a set of input nodes. These
restrictions on the allowed connectivity affect the global network structure dramatically and
any rewiring process for producing randomized graphs must account for these specifications,
otherwise the global structure is distorted.

Not only clear-cut examples of hierarchies such as in neural networks (in the sense of
computer science) that have very distinct hierarchies of nodes responsible for aggregating
information from lower tiers, but also less obvious examples like metabolism can be considered
as layered networks. In metabolism we can distinguish an input layer provided by the set of
uptake reactions (and the input then provided by the available nutrients in the environment),
a middle layer where reactions process the nutrients, and an output layer consisting of all
reactions directly contributing to cell growth (i.e. the “biomass vector” often encountered
in constrained-based modeling of metabolic systems). This clear distinction between input,
middle and output layers in metabolic networks is the basis for the parallel to the evolved flow
distribution networks discussed in [70, 71, 72] that are another example of layered organization
(an example flow network is shown in Figure 3.4.4).

Figure 3.4.4: A sample evolved flow network as described in [70, 71, 72].

Distribution of flow has a clear direction from input to output, where input is defined by
nodes with no in-degree and output by nodes with no out-degree. We will use the evolved flow
distribution networks mentioned before to demonstrate the effect of one simple constraint. The
evolved networks have a middle layer that may be intra-connected or connected to the output
nodes, the only restriction is that input nodes may not directly be connected to output nodes.
In Figure 3.4.5 we show the effect on the TSP using such a graph with three layers. Depicted
are TSPs for a standard randomization scheme and for one that has the additional constraint
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disallowing links from input to output nodes applied to randomly initialized flow distribution
networks. Current randomization methods keep the degree of nodes constant, so the only
additional constraint in this case was to disallow links between the input and output layer.
Since no additional motif bias (beyond the bias introduced by the layer structure) has entered
the network generation, the correct null model ought to yield a flat TSP with all z-scores close
to zero.
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Figure 3.4.5: Average z-scores over 1000 randomly initialized flow distribution networks as
described in [70, 71, 72]. The networks contain 20 input nodes, 50 middle nodes, 20 output
nodes, and with the probability of a link being present of 0.3. We show z-scores resulting
from a random ensemble that was created using scheme (1), a standard switch randomization
method, a curve that comes from random ensembles generated with scheme (2) that has the
only additional constraint of disallowing direct links between the input and the output layer.

3.5 Dynamical Data on Motifs
3.5.1 Mapping Dynamical Data onto Motifs
Beyond the purely structural issues, a completely new set of complications arises when dy-
namical data on graphs are discussed. The significance profile obtained from contrasting the
few-node subgraph counts in the observed graph with subgraph counts from a suitable pool of
randomized graphs only yields statistical indicators pointing to graph features that might be of
functional relevance. In biological networks this is particularly tangible, as deviations from
randomness can be interpreted as the influence of the evolutionary shaping of the network.
However, this statistical observation needs to be linked back to the functional level in a more
direct manner in subsequent investigations. Alon and co-workers have done this convincingly
in the case of several three-node subgraphs (in particular the feed-forward loop motif) by
explicitly modeling dynamical processes on such a motif and classifying the signal processing
capacities of such a few-node device [73, 97].

A powerful alternative to this direct modeling (in particular in cases where the dynamics are
not well known or well understood) could be to analyze the systematics of dynamical data within
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a motif, i.e. on each individual node in a motif or distributed across the motif occurrences in the
network. This has for example been done in Chapter 2 for citation frequencies on (undirected)
co-authorship networks and in [101] for gene expression data on transcriptional regulatory
networks. There are several technical difficulties associated with such a study of the role
of nodes within motifs. We consider here the statistical treatment of motif multiplicities in
mapping dynamical data onto networks.

A convenient method to extract the motif dependence of a dynamic process is to extract the
average dynamic observable (i.e. a dynamic robustness) over all nodes that are part of a specific
motif. In the first case, one would add up the dynamic variable of all nodes participating in
the motif at least once and then divide it by the number of unique nodes participating in the
motif. In the second case, one would add up the dynamic variable of all nodes participating
in the motif multiplied by the number of motif instances the considered node participates in.
To obtain the average one has to divide by the total number of occurrence of the given motif
multiplied by the number of nodes per motif.
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Figure 3.5.1: Mean values over three-node subgraphs for a degree-dependent value with the
two different counting schemes. 100 directed ER random graphs with 1000 nodes and a
connectivity of 10 % were used here. Due to the sparsity of the networks, motifs with id 110
and 238 occur extremely rarely so that there is little or no dependence on the counting scheme
used.

Finding the “correct” counting scheme when dealing with degree-dependent dynamic values
can be even more daunting. Even in the case of dynamics that behaves as a linear function
of the degree, the number of few-node subgraphs a node participates in still depends non-
trivially on the degree. In Figures 3.5.1 and 3.5.2, the difference between degree-dependent
and independent dynamic values as well as single- and multiple-counting are depicted. For
simple illustration purposes we used static values for the nodes in these cases. In Figure 3.5.1
we use the total degree of the node and in Figure 3.5.2 a random value between zero and one
drawn from a uniform distribution. One can see that depending on the counting scheme the
qualitative difference of the average dynamic value varies between motifs.
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Figure 3.5.2: Mean values over three-node subgraphs for a uniform random value (between 0
and 1) with the two different counting schemes. 100 directed ER random graphs with 1000
nodes and a connectivity of 10 % were used here. Since the networks are rather sparse, the
motif with id 238 occurs extremely rarely and thus does not follow the expected statistical
behavior.

3.5.2 Role Constraints
Comparable to explicit modeling of a motif function it may be necessary to explore the role that
individual nodes and links play (on average) within a certain motif in a network. Again, two
points must be considered in such an analysis:

1. The entanglement of node position, node degree, and motif multiplicity.

2. The mean “environment” in the network.

The former point was considered in the previous Section and we only shortly elaborate on an
extreme example here. The latter point is the focus of this section and is covered in more detail.

As an extreme example elucidating point (1), consider the following scenario: a directed star
graph with only outgoing links from the central node. In this graph we only find the V-out triad
(motif id 6). This is an idealized situation of what we might find at hub nodes in the context of
larger graphs. The central node in the graph (that occupies the distributing position in the
V-out triad) clearly has got the most important position, the largest degree, and is part of all
of the triads in the graph. If we consider many such star graphs with a dynamic process on
them and we investigate the role of the individual nodes, obviously degree and multiplicity are
major factors. When considering dynamics or the function of the central node, it is difficult
to determine whether the node’s degree or the composition of surrounding subgraphs can be
regarded as responsible for an observed behavior. In general one finds that motif multiplicities,
qualitatively speaking, scale differently with node properties from motif to motif: V-in and
V-out scale with kin! and kout!, respectively, where kin and kout are the central node’s in- and
out-degree. Feed-forward and feedback loops will scale with degree times clustering coefficient,
etc. When we determine the average dynamics of the central nodes, for example, the outcome
strongly depends on whether multiplicity is regarded as an important feature and taken into
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the average or whether it is considered to distort the signal since nodes are weighted by the
number of motifs they participate in.

In this extreme network environment there are only two types of nodes but what situations
will occur in more complicated scenarios? In order to adequately describe the role of nodes and
links in a motif we need to contrast the average dynamic with that of the network “environment”.
If we considered as the network “environment” the global network, we would simply subtract
an average dynamical value from each average role in the motif. What we propose instead is to
use as an “environment” only those nodes that could in principle (due to their specific degree)
play a role in the considered motif, i.e., only nodes that have an in- and out-degree of at least as
much as required by the role in the motif are considered. Going back to the example of multiple
star graphs where we have only two types of nodes, the average dynamic value for the role in
the motif and the average for the environment are exactly equal and the resulting contribution
of the motif to the dynamic process is zero. When we insert a few links between nodes at the
end points of the star graphs, however, we get a more variate network. More motifs occur and
there will be differences between the average dynamic value on the motifs and the average of
their particular environment.

Figure 3.5.3: Analysis of node essentialities for flow networks evolved towards node robustness
following the scheme from [70, 71, 72] for the motif shown in the top row: (a) node essentialities
for each node position, (b) reduced average essentialities, where the global network was
considered as the “environment“, (c) reduced average essentialities, where suitable node-
specific averages have been subtracted taking the degree constraint of each node into account.
In (c) the role of position two is shown to be the more important one in a flow distribution
dynamic.

The effects described are illustrated in Figure 3.5.3, showing a study of motif 108 in a flow
distribution model [70, 71, 72]. The node essentiality depicted there is the result of a fit to the
distribution of magnitudes of change in the output flow upon removal of that node. It depicts
how through proper consideration of the network “environment”, the role of node two emerges
as the most important one which certainly makes sense in the context of the dynamics being
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flow distribution.

3.6 Conclusions
Conceptually, few-node subgraphs are a means of exploring complex networks by looking at
network properties and network function at a well-defined intermediate scale (or group size of
nodes involved). We have systematically explored biases introduced into motif signatures by
variations of the random background, i.e., of the set of reference graphs serving as null models.
Making visible the cross-talk between global and local network properties is in our opinion an
important prerequisite of any interpretation of motif signatures.

We want to point out that although sometimes real artifacts can be found, most of the time
the boundary between a relevant result and an artifact is rather ambiguous. General features
of networks with a simple explanation will sometimes be most visible in the motif signature.
For example in the case of modularity a clear motif signature is easily obtained, the reason
for this result, the modular structure of the network is much more difficult to detect and to
understand.

A major conceptual step in Systems Biology is to reveal systematic and significant deviations
of a biological system from randomness, and subsequently relate these deviations to specific
functional features. Both, our own analyses [64] and the few attempts found in the literature
of exploring network motifs in metabolism [39], show the immense difficulty of disentangling
contributions to motif patterns coming from the mere network construction (essentially the fact
that metabolic networks are projections of a bipartite graph obtained from a list of metabolic
reactions) and those coming from the evolutionary shaping of the system towards an optimized
function.

Since many of the analysis techniques that are by now standard for unipartite networks
have not yet been formalized for bipartite networks, projection of the bipartite networks will
remain the option of choice for some time. The change of statistical properties of networks that
have been projected can be quite dramatic. Formally, this has been treated in [88] and was
studied in particular for metabolic networks in [110]. Key results are the higher density and
degree, as well as a higher clustering due to the “all-to-all” connections formed. In future work,
we will extend this to directed bipartite networks and investigate the effects on TSPs.

So, in addition to the potential of explaining functional properties of networks, motif signa-
tures could be used as a proxy for detecting more complex properties of networks. On the other
hand, some dynamical systems of networks are highly sensitive to motifs as small functional de-
vices. A whole range of investigations have in several specific models identified a deep relation-
ship between network motifs (or, more generally, the over- and under-representation of few-node
subgraphs) and the robust functioning of systemic processes [70, 71, 72, 76, 77, 97, 103].

In order to understand the generality and fundamental nature of these links between
topology and dynamics, one needs better knowledge of the intrinsic statistical properties of few-
node subgraphs as well as the most minimal dynamical situations, in which such a relationship
between topology and dynamics can occur. With the present investigation we want to contribute
to this understanding of statistical signals obtained from motif analyses. We advocate carefully
chosen null models designed with a profound grasp of the system under investigation. This
also means that once more facts about the system are discovered, the chosen null model may
have to be adapted.



Chapter 4

Phase Synchronization in
Railway Timetables

Summary
Timetable construction belongs to the most important optimization problems in public transport.
Finding optimal or near-optimal timetables under the subsidiary conditions of minimizing
travel times and other criteria is a targeted contribution to the functioning of public transport.
In addition to efficiency (given, e.g., by minimal average travel times), a significant feature of a
timetable is its robustness against delay propagation. Here we study the balance of efficiency
and robustness in long-distance railway timetables (in particular the current long-distance
railway timetable in Germany) from the perspective of synchronization, exploiting the fact that
a major part of the trains run nearly periodically. We find that synchronization is highest at
intermediate-sized stations. We argue that this synchronization perspective opens a new avenue
towards an understanding of railway timetables by representing them as spatio-temporal phase
patterns. Robustness and efficiency can then be viewed as properties of this phase pattern.

The results presented in this chapter have been achieved in cooperation with Lachezar
Krumov, Karsten Weihe, Matthias Müller-Hannemann and Marc-Thorsten Hütt and have been
published in: “Phase synchronization in railway timetables” [45].

4.1 Introduction
Railway timetables should be designed to achieve a maximum level of utilization from a
passenger’s perspective. That is, regular waiting times for connecting trains should be kept to
a minimum. However, this limits the network’s robustness against perturbations: Depending
on the waiting policy among connecting trains, a single delayed train may cause a cascade of
further train delays in remote parts of the network. Minimal regular waiting times (minimal
buffering times) cause maximal risk of such delay propagation. Understanding this trade-
off and limiting the propagation of delays through the networks is a challenge of practical
importance.

43
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Figure 4.1.1: Small excerpt of a periodic event scheduling problem.

The construction of periodic railway timetables is algorithmically difficult and has been
intensively studied as a periodic event scheduling problem (PESP), see for example [147, 130,
90]. The technical and economical side constraints for a valid non-periodic schedule can be
modeled as a feasible differential problem on a directed graph G = (V,E) with lower and upper
edge bounds `, u ∈ QE . In a basic model, the vertex set V corresponds to departure and arrival
events, while the directed edges together with the bound values model constraints (travel times,
minimum headway, minimum transfer times, etc.). One seeks for a vector π ∈ QV , called the
timetable, which assigns to each event j a time-stamp πj satisfying

`e ≤ πj − πi ≤ ue for all e = (i, j) ∈ E.

Thus, lower and upper edge bounds restrict the difference between two time-stamps from below
and above, respectively. For example, `(i,j) = 15 ≤ πj − πi means that event j has to occur at
least 15 time units after event i. See Figure 4.1.1 for a small example.

In a periodic timetable, trains are grouped into lines which are to be operated by some
period T . In the periodic event scheduling problem (with one fixed period T ) one searches for a
vector π ∈ [0, T ) such that for all e = (i, j) ∈ E there exists ke ∈ Z with

`e ≤ πj − πi + T · ke ≤ ue.

For the local public transport in Berlin (Germany), the first optimized periodic timetable used
in daily operation has been obtained using mixed-integer linear programming techniques [91].
Netherlands Railways also have recently introduced a completely new periodic timetable,
generated by a number of sophisticated operations research techniques, including constraint
programming [80]. For countries with a less periodic timetable, including Germany, the
construction process for long-distance timetables is quite complex, and therefore still done to
a large extent manually by experienced engineers. The planning process has a hierarchical
component (international trains are scheduled first), and a behavioral component (keep as
much as possible from the previous year’s schedule).

So far, railway timetables have been studied predominantly as an algorithmic challenge
with the objective of constructing optimal (or near-optimal) connection patterns, minimizing
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resources and overall waiting time. Only recently, there have been first computational studies
aiming at delay resistant periodic timetables [79, 92, 93].

Here we adopt an opposite perspective to timetable construction and analyze the spatio-
temporal patterns induced by the timetable. A suitable language for this study is a representa-
tion of the train arrival/departure events as a spatio-temporal phase pattern. We study the
distribution of synchronization across stations. Synchronization phenomena have received a
lot of attention in traffic modeling over the last few years, in particular for car traffic in cities
and the impact of traffic light synchronization on the formation of traffic jams [26, 85, 86].

In the case of railway timetables, the situation is different in several ways: The “load”
of a station is essentially determined by the number of tracks (giving the maximal number
of simultaneous or nearly simultaneous arrival/departure events). The typical number of
directions (which can be interpreted as the degree of a station in a suitable effective network
representation), from which one can select, is higher for train stations than for typical street
crossings.

If one considers a network of long-distance train connections as a mesh of routes through
a planar system, where trains are started periodically at the endpoints of these routes, the
spatial distances between the intersection sites of these routes determine a spatio-temporal
phase pattern. The free parameters of this pattern are the relative phases of the periodically
started trains. In reality, the travel time between two stations can serve as an additional degree
of freedom allowing for a shaping of the phase pattern beyond this simple thought experiment.

Our main hypothesis is that the rank of the stations sorted according to size is the organizing
parameter (i.e. the “control parameter" from the perspective of self-organized systems [98,
132, 162]), along which synchronization can be understood. In this chapter, we use the notion
buffering time to denote the amount of time available to change between two trains (transfer
time) for the planned schedule, i.e. without induced delays. Our other two observables are
the average buffering time bi at station i and the secondary delays si(p) induced by a primary
(incoming) delay p because trains have to wait for other trains.

The main result of our analysis is that a railway timetable induces a spatio-temporal phase
pattern, and that properties of the phase pattern are linked to the efficiency and the robustness
of the system. We observe that synchronization is highest at intermediate-sized stations.

Here we contribute two points to the general debate:

(1) We show that the current planning of railway timetables (which involves some algorith-
mic construction, some manual curation and the resorting to features from previous timetables)
leads to an unexpected coherence on the level of the spatio-temporal phase pattern.

(2) At the same time, our analysis shows that the general concept of a spatio-temporal phase
pattern is a novel and helpful view for network-based scheduling problems.

The remainder of this chapter is structured as follows. In Section 4.2, we first give a
detailed description of our numerical experiment, and then discuss the results in Section 4.3.
Afterwards, we introduce an avalanche model for delay propagation on graphs (Section 4.4)
helping us to understand the observed relation between synchronization and robustness.
Finally, we conclude with a short summary and an outlook for future work (Section 4.5).
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Figure 4.2.1: Illustration of the dependency graph model (taken from [112]).

4.2 Formalism and Numerical Experiments
The quality of the timetable is related to two distinct (and often conflicting) objectives: The
sum of travel times over all routes should be minimal (efficiency) and typical delays should
minimally increase the overall travel time (robustness). Apart from some freedom to determine
the planned travel time from one station to another (i.e. the prescribed average speed of the
train), the main tuning capacity lies in the interchange time between connecting trains. While
efficiency requires a minimization of interchange time, robustness can be established by using
the interchange time as a buffer for incoming delays.

The secondary delays si observed at each station i across a range of primary delays p have
been obtained by a large-scale numerical experiment performed on the actual timetable of
Deutsche Bahn AG, together with real passenger information. Throughout our investigation we
consider only long-distance train connections (served by the train categories ICE and IC/EC).
To simulate the effects of delays, we use the dependency graph model introduced in [112]
and its implementation within the fully realistic multi-criteria timetable information system
MOTIS [144]. The dependency graph is basically a time-expanded graph model with distinct
nodes for each departure and arrival event in the entire schedule for the current and following
days. In addition, the model includes two further types of nodes: forecast and schedule nodes.

Each node has a time-stamp which can dynamically change. The time-stamps reflect the
current situation, i.e. the expected departure or arrival time subject to all delay information
known up to this point. Schedule nodes are marked with the planned time of an arrival or
departure event, whereas the time-stamp of a forecast node is the current external prediction
for its departure or arrival time.

The nodes are connected by five different types of edges (see Figure 4.2.1). The purpose of
an edge is to model a constraint on the time-stamp of its head node.

• Schedule edges connect schedule nodes to departure or arrival nodes. They carry the
planned time for the corresponding event of the head node (according to the published
schedule).

• Forecast edges connect forecast nodes to departure or arrival nodes. They represent the
time stored in the associated forecast node.

• Standing edges connect arrival events at a certain station to the following departure
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Figure 4.2.2: Data flow in the delay propagation experiment.

event of the same train. They model the condition that the arrival time of train t at
station k plus its minimum standing time must be respected before the train can depart
(to allow for boarding and disembarking of passengers).

• Traveling edges connect a departure node of some train t at a certain station k to the very
next arrival node of this train at station k′.

• Transfer edges connect arrival nodes to departure nodes of other trains at the same
station, if there is a planned transfer between these trains.

The current time-stamp for each departure or arrival node can be defined recursively, for details
see [112].

The MOTIS tool can be used as follows. Given the planned train connection of a passenger
and a concrete delay scenario (for example, a single primary delay of a train), we can query
MOTIS for the fastest train connection towards the passenger’s destination, subject to the
standard waiting rules between connecting trains. In particular, the train waiting regulations
of Deutsche Bahn have been used. From the difference between the planned arrival time at
the destination and the calculated arrival time in the delay scenario we obtain the individual
delay for each passenger.

Passenger information has been available to us for a single day in the form of all travel
agency bookings for that day. While these data are certainly distorted by the fact that most
tickets are sold via vendor machines at the station (and these data have not been available to
us), it is nevertheless helpful to include passenger data for two reasons:

(1) Only routes, which have really been traveled, enter our analysis; in this way we avoid
artifacts, e.g., from back-and-forth contributions.

(2) We can discuss both the average delay per passenger and the cumulative delay over all
affected passengers (as a measure of the total systemic effect).

In Figure 4.2.2, we sketch the data flow within our numerical experiment, where we have
processed 43772 train segments, 2622 stations, 130071 passenger routes, and about 1.9 million
MOTIS queries.

In order to illustrate the raw data obtained from this numerical experiment, we show the
station size distribution (where the station size is given by the number of arrival/departure
events per day) in Figure 4.2.3; and the buffering time distribution in Figure 4.2.4. Both
distributions are essentially unimodal and have a non-negligible tail at large values. The rare
occurrence of low buffering times can be explained by the fact that the timetable information
system does not provide connections where a (station-specific) minimal interchange time is not
reached. It should be noted that this general rule is accompanied by a long list of exceptions for
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Figure 4.2.3: Distribution of daily numbers of arrival/departure (A/D) events.

Figure 4.2.4: Distribution of the average buffering time per station.

specific trains and specific connections. All these constraints and subsidiary conditions have
been included in the numerical experiment, in order to obtain realistic event data.

As a next step we compare these delays with unperturbed features of the timetable. Our
approach for converting the timetable into an event pattern uses the language of phase
synchronization. Let

{
t
(k)
j , j = 1 . . . Tk

}
be the set of arrival/departure (A/D) times t(k)j of the

jth train at station k. The quantity Tk denotes the number of A/D events at station k per day.
These A/D times are now translated into phases

φ
(k)
j (τ) =

2π

r
(t

(k)
j mod τ) (4.2.1)

with the period length τ as a parameter. In our analysis we set this parameter to the maximal
period length observed in the system, i.e., τ = 120 minutes. For each station k we can now
compute the synchronization index (as known from the classical studies of synchronization in
populations of phase oscillators, see [83, 152, 167]; see also the scheme depicted in Figure 4.2.5):
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Figure 4.2.5: Conversion of the arrival/departure times at a station k into the synchronization
index σk.

Figure 4.3.1: Secondary delay as a function of the buffering time for a fixed primary delay p = 5
minutes, raw data.
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j (τ)

∣∣∣∣∣∣ (4.2.2)

The view we want to propagate here, is that the performance (in a very general sense) of a
given timetable of train connections is related to its phase pattern.

4.3 Results
The large-scale numerical experiment described in the previous section in particular yields
realistic values of the secondary (induced) delay s(p) as a function of the primary (input) delay
p. While at low p the value of s(p) is mainly (but indirectly!) shaped by the buffering time b, at
higher p the value is strongly influenced by the number of alternative connections.

On face value, one would expect a negative correlation of the secondary delay s(p) and the
buffering time b in this low-p region. In the raw data, Figure 4.3.1, there is rather a lack of
correlation (or even a slight tendency towards positive correlations), which can be explained as
follows: The buffering time b grows slowly with the station rank, i.e. decreases slightly with
the station size (cf. Figure 4.3.2). At the same time, larger stations (i.e. more A/D events) offer
more alternative routes, effectively reducing the secondary delay, even at low primary delay p.



50 CHAPTER 4. PHASE SYNCHRONIZATION IN RAILWAY TIMETABLES

Figure 4.3.2: Dependence of buffering time b on station rank.

Figure 4.3.3: Secondary delay as a function of
the primary delay for a single train.

Figure 4.3.4: Average secondary delay as a
function of the primary delay for a single
station (here: Frankfurt (Main) central).
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Figure 4.3.5: Correlation of the secondary delay with primary delay of 5 and 30 minutes.

In the example shown in Figure 4.3.3, there are only 4 minutes of buffering time which
induce no delay. When p is in the range of [4, 9] minutes, the secondary delay becomes 4 minutes,
and then jumps to 25 minutes. Figure 4.3.4 shows the average secondary delay at a station,
which is, as a first approximation a linear function. At higher values of p, additional effects can
be expected to set in:

(1) with higher p more alternative routes become accessible,
(2) more passengers will be affected, and
(3) longer avalanches of delayed trains are triggered upon waiting.
These contributions are partially compensated by the waiting policy: Avalanche length is

strongly reduced by maximal waiting times. Also, the second contribution has a smaller (but
still non-zero) effect on the average secondary delay per passenger.

Figure 4.3.5 shows the correlation between the secondary delays for two different values of
the primary delay, namely p=5 minutes and p=30 minutes. There is a wide spread of deviations
from the solid line showing the expectation for the case of a linear s(p). This is indicative of the
multitude of strengths with which these additional, higher-p effects contribute.

The challenge is now to establish in detail the relations between the degree of synchroniza-
tion and the performance of the system (given by low delay propagation, i.e. robustness, and
low overall transfer times, i.e. efficiency).

On the level of our data, the main performance indicators of the system, namely the
efficiency and robustness, are only indirectly accessible via the secondary delays and the
buffering times. We expect that a small s(p) is related to high robustness (a given perturbation
p induces a small effect s), while a small b can be associated with high efficiency (during a full
itinerary only a small amount of time, given by the local buffering times b, is accumulated upon
train interchanges).

When splitting the b-s(p)–plane into four quadrants corresponding of contributions of
high/low delays and buffering times – and, consequently, low/high (−/+) performance –, one can
observe very different usages (i.e., frequencies of occurrence in the data) of the quadrants:

The ++ region, which is the most efficient one as those stations are both efficient (small
buffering time) and robust (small secondary delays), is most densely populated, followed by
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Figure 4.3.6: Secondary delay as a function of the buffering time for a fixed primary delay p = 5
minutes, averaged and connected along the station rank, together with a phenomenological
separation into quadrants according to high/low efficiency (first quadrant label) and high/low
robustness (second label).
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Figure 4.3.7: The synchronization indices of the stations in ascending order of the station rank
in Germany with NR = 100 and an averaging window of 40.

the +− region (high efficiency, low robustness). Very few stations are found in the −− region.
Interestingly we do not find stations in the −+ region. Probably those are quickly eliminated
during the schedule building or avoided during the route search.

In order to better understand the systematic relation between s(p) and b it is again helpful
to use the station size as a control parameter along which local averages can be performed.
The resulting curve is shown in Figure 4.3.6. This curve displays the backbone systematics of
the interplay between efficiency (inverse b) and robustness (inverse s(p)) studied from the raw
data in Figure 4.3.1, when using station size as an ordering parameter.

Figure 4.3.7 shows the synchronization index σ∗k as a function of the station rank k. The
phase data are distorted by the mere number of A/D events. In particular, at few A/D events
large fluctuations of σ are induced. We therefore subtracted from each σk an average σ(R)

k over
NR runs of a null model, where the same number of A/D events has randomly been distributed
in time. This procedure yields the reduced synchronization indices σ∗k=σk − σ(R)

k , shown as the
black curve in Figure 4.3.7.

Furthermore, stations with neighboring ranks will differ (even though they are similar in
size) in a variety of additional parameters. The original reduced synchronization index shows
a strong local fluctuation along the rank. In order to eliminate the variation coming from
these additional differences between similar-sized stations, we compute local averages over the
σ∗k. These values are shown as the red curve in Figure 4.3.7. Remarkably, synchronization is
highest at intermediate station rank, decreasing towards both larger and smaller station sizes.
In order to obtain this result, several processing steps of the raw data have been necessary.
The systematic difference between the synchronization of large, small and intermediate train
stations, respectively, is also seen, when average synchronization indices for each of these three
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Figure 4.3.8: Average σ∗ for small, medium and large stations. The rank is split at 80 and 170
A/D events per day, respectively.

categories are computed directly (Figure 4.3.8).
In order to assess, whether this elevated synchronization of intermediate-size stations is a

property of train timetables beyond this individual case, we also computed the synchronization
indices σ∗k for four other counties, Austria, France, Norway, and the Czech Republic (Fig-
ure 4.3.9). France shows only a very weak signal, whereas the shapes of the synchronization
curves in Austria, Norway and the Czech Republic are very similar to the one observed in
Germany (Figure 4.3.7).

In the following we will show results for the inter-dependencies of our main quantities bk,
sk(p) and σ∗k. In all cases, like before, we compute local averages with respect to the rank. By
grouping the stations according to their position in the b-s(p)–plane, Figure 4.3.6, i.e. according
to their robustness and efficiency, one can now study, whether stations from the same regions
share a common synchronization index σ∗k.

Figure 4.3.10 shows the average σ for the three regions containing stations. The stations
from the most preferable region ++ show extremely low synchronization, while those of the
regions +− and −− are much more synchronized.

In order to show the dependencies among these quantities more directly, Figure 4.3.11
represents all three quantities bk, sk(p) and σ∗k, simultaneously. The smoothing window size
is set to 26. It is clearly visible that most stations are in the regions of low σ∗k, low bk and low
sk(p). Furthermore, there is a clear correlation between sk(p) and σ∗k and consequently, an
anti-correlation between synchronization and robustness.

4.4 Avalanche Model
Can the negative correlation between synchronization and robustness that we observe in the
data also be understood in some minimal model of delay propagation? The general dynamical
mechanism resembles some aspects of avalanches on graphs. While avalanche models are an
important focus of interest in complex systems theory and in particular in the field of self-
organized criticality [66, 8], we do not expect here a power-law distribution of event sizes, as
the elementary processes behind delay propagation are different from the threshold-driven re-
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Norway Czech Republic

Figure 4.3.9: The synchronization in the long-distance train connections of different European
countries with NR = 100 and an averaging window of 40.
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Figure 4.3.10: Average synchronization of the stations grouped together by robustness and
efficiency according to the quadrants in Figure 4.3.6.

distribution schemes encoded, e.g. in the Bak-Tang-Wiesenfeld (BTW) model [9]. Therefore, we
adapt the general concept of an avalanche model to the dynamical needs of delay propagation.

In our passenger delay avalanche model the dynamical variables are the accumulated
delays di(t) at node i as a function of time t. The model has three parameters:

(1) The transmission probability p is the probability that a delay propagates from one node
to an adjacent node, if the threshold is crossed. This probability describes the capacity to buffer
incoming delays via transfer times.

(2) The amplification factor m acknowledges the fact that a single train delay corresponds to
multiple passenger delays; consequently, if a few incoming passengers cause a train with many
outgoing passengers to wait, the total (passenger-based) delay is amplified. This parameter can
be seen as the ratio of these passenger numbers, i.e. the average rate of additionally delayed
passengers due to waiting.

(3) Delays only propagate from a node i to adjacent nodes, when the delay variable di(t)
is above a threshold T , as we assume that only incoming delays higher than this threshold
are capable of triggering delay propagation. In Figure 4.4.1, the general idea of this model
is schematically depicted. Figure 4.4.2 shows that the tail of the size distribution of delay
avalanches is exponential.

In order to analyze the relation between synchronization and robustness within this model,
we compare the average avalanche length for a system, where a single node is periodically
driven, with the case of a stochastically driven node.

We assume that the gradual insertion of delay units into the system corresponds to incoming
delays from other parts of the network entering the sub-network, which is here studied in
detail. A periodic insertion of such delay units then corresponds to highly synchronized
arrival/departure (A/D) events (as only those can give rise to periodic delays), while the
stochastically driven node represents the typical pattern of incoming delays for a station with
less synchronized A/D events.
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Figure 4.3.11: Dependencies of buffering time b, secondary delay s(p), and synchronization
index σ∗k.
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di(t)

Figure 4.4.1: The passenger-delay-avalanche model (PDA-model).

Figure 4.4.2: The distribution of the avalanche lengths for stochastic and periodic drivers with
a driving period of 17, T = 4, m = 0.9, N = 70 nodes and M = 240 edges.
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Figure 4.4.3: The average avalanche length for stochastic and periodic drivers with a driving
period of 17, T = 4, m = 0.9, N = 70 nodes and M = 240 edges.

Figure 4.4.3 shows the distribution of these average avalanche lengths for the two cases.
The periodically driven node (high synchronization of A/D events) coincides with a high average
size of the delay avalanches (i.e. higher vulnerability or lower robustness), while the stochasti-
cally driven node (low synchronization of A/D events) displays a lower average size of delay
avalanches (and therefore a higher robustness). This is in agreement with the relationship
discovered in the real train connection data studied in the previous section.

4.5 Conclusions
In this chapter we have studied railway timetables from a novel and yet unexplored view,
namely that of phase synchronization. For our analysis we investigated the German long-
distance train timetable with respect to three distinct properties: robustness, efficiency and
phase synchronization.

The robustness reflects the stability of the system to small perturbations, while efficiency is
related to short accumulated waiting times per train route. These two properties have been
evolved over the years by gathered experience and heuristic optimization.

When we consider the arrival and departure events of all trains at a given station over a
period of time, 24 hours for example, we can translate those events into phases. Summing over
all different phases we can compute a synchronization index for each station. Then, by exhaus-
tive simulation we produce a primary delay at each station and record the induced secondary
delays. Our results show a clear and surprising correlation between the synchronization index
of a station, its robustness and efficiency.

In the introductory Section 4.1, we have discussed the difference between car traffic in cities
and the impact of traffic light synchronization on the one side and railway timetables on the
other. It would be interesting to compare these two types of traffic in detail, to quantitatively



60 CHAPTER 4. PHASE SYNCHRONIZATION IN RAILWAY TIMETABLES

analyze the number of directions (node degrees) in the context of an effective dimension, and in
particular to study the complexity (given, e.g., by the pattern of elementary decisions needed
to specify the path) of a typical path in the train network compared to the car traffic case. A
suitable methodology could be the framework developed in [139].

The balance between this antagonistic pair of requirements, efficiency and robustness, is
of broad interest across many disciplines, ranging from industrial production to biological
processes. Lack of robustness due to too high efficiency is sometimes called the systemic risk,
which has recently been discussed from a theoretical perspective, for example for complex
economical systems (see [15, 16, 95]).

Starting from an information-theoretical description of resilience in ecology, Ulanowicz et
al. [155] could establish quantitative links between sustainability, efficiency and investments
in diversity. This general framework has been employed to analyze the current bank crisis
from a ecosystem perspective [94]. We believe that a quantitative view on synchronization
of arrival/departure events in the network of long-distance train connections, as presented
here, can similarly serve as a starting point for a theoretical understanding, and subsequently
systemic optimization, of the balance between efficiency and robustness for such timetables
underlying public transportation.

For biological processes this balance between efficiency and robustness has been explored
in a multitude of ways resorting to both analysis of experimental data and the mathemati-
cal modeling of cellular processes. Motivated by graph theory and nonlinear dynamics, an
influential trend in systems biology at the moment is to relate robustness to small regulatory
devices [3, 25], serving e.g. as a noise buffer or providing a suitable amount of redundancy
for maintaining systemic function even under perturbations. In particular such relations
between the architecture of regulatory devices and dynamical functions have been worked out
for circuits of negative feedback loops [131], for feed-forward loops as noise filtering devices in
gene regulation [3, 148], for interlinked feedback loops acting on different time scales [24], for a
particular composition of regulatory units [107] and their relation to robustness [70, 71, 72, 77],
for number of positive and negative feedback loops in regulatory circuits [84].

It could well be that in the network of long-distance train connections such small, motif-like
network components serve as mediators between synchronization, reliability and efficiency.
Exploring the involvement of network topology in shaping this relationship is one of our
principal goals in the continuation of the work presented here.



Chapter 5

Co-Authorship Networks

Summary
Co-authorship networks, where the nodes are authors and a link indicates joint publications,
are very helpful representations for studying the processes that shape the scientific community.
At the same time, they are social networks with a large amount of data available and can thus
serve as vehicles for analyzing social phenomena in general.

Previous work on co-authorship networks concentrates on statistical properties on the scale
of individual authors and individual publications within the network (e.g., citation distribution,
degree distribution), on properties of the network as a whole (e.g., modularity, connectedness), or
on the topological function of single authors (e.g., distance, betweenness).

Here we show that the success of individual authors or publications depends unexpectedly
strongly on an intermediate scale in co-authorship networks. For two large-scale data sets,
CiteSeerX and DBLP, we analyze the correlation of (three- and four-node) network motifs with
citation frequencies. We find that the average citation frequency of a group of authors depends
on the motifs these authors form. In particular, a box motif (four authors forming a closed
chain) has the highest average citation frequency per link. This result is robust across the two
databases, across different ways of mapping the citation frequencies of publications onto the
(uni-partite) co-authorship graph, and over time.

We also relate this topological observation to the underlying social and socio-scientific
processes that have been shaping the networks. We argue that the box motif may be an interesting
category in a broad range of social and technical networks.

The results presented in this chapter have been achieved in cooperation with Lachezar
Krumov, Karsten Weihe, Matthias Müller-Hannemann and Marc-Thorsten Hütt and have been
published in: “Motifs in co-authorship networks and their relation to the impact of scientific
publications” [81].

5.1 Introduction
One of the classical debates in the history of science is, whether the production of knowledge can
be rather viewed as an objective, content-driven process or, conversely, is dominantly shaped

61
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by the underlying social patterns formed by the actors involved. Ever since Thomas Kuhn’s
groundbreaking analysis “The Structure of Scientific Revolutions”, it is accepted that the social
layer contributes heavily to scientific progress. Expectations of peers and the adherence to
agreed-upon terminologies all have a synchronizing effect that may be considered a socially
generated inertia leading to the characteristic discontinuous time course of scientific progress,
Kuhn’s work has become famous for [82]. While the content-driven perspective still allows
for “geniuses”, brilliant individuals responsible for a step-like, discontinuous advancement of
knowledge, the importance of the social layer is an undeniable one.

Nowadays, due to the electronic availability of vast amounts of data on knowledge produc-
tion, the study of complex networks provides a unique opportunity to quantitatively assess the
social contribution to the production of knowledge. From the network perspective the strength
of this social contribution can be re-phrased as follows: Does the underlying interaction network
of authors and publications statistically explain parts of the output pattern of the scientific
community? This question is at the core of our analysis.

A fundamental topic of interest in complex systems theory and in the analysis of complex
networks is currently, how network architecture systematically shapes dynamical processes.
Progress has been made over the last decade in identifying first ordering principles. One
example is the synchronization of oscillators on hierarchical graphs [5]: The time course of
the step-wise path towards a fully synchronized system seems to follow the pattern of gaps
in the spectrum of the graph (or, more precisely, associated Laplacian matrix). Furthermore,
using stylized minimal models has been helpful in revealing some other relationships between
network topology and dynamics (see, e.g., [23, 100, 111]).

An interesting alternative to these simulation-driven studies is to explore the relationship
between network architecture and dynamics from a data-analysis perspective, i.e. to extract
this relationship from large-scale data sets, which can be expected to be produced, at least
partly, by the dynamics of the network at hand. Evidences for network architecture being
a clearly discernible, quantifiable component, contributing to the patterns observed in data,
exist from a diverse range of fields: gene expression patterns, both on the level of whole
transcriptional regulatory networks [58, 96, 99] and on the scale of small regulatory devices
[109, 3], the epidemic spread of diseases [128] and attack tolerance related to a broad degree
distribution [2].

Network motifs, small subgraphs with a specific interaction pattern, have been particularly
successful in providing interesting, unexpected relations between network architecture and
dynamical processes. In particular in systems biology, an influential trend currently relates
features of network performance to such small regulatory devices [3, 25], serving e.g. as a
noise buffer or providing a suitable amount of redundancy for maintaining systemic function
even under perturbations. In particular such relations between the architecture of regulatory
devices and dynamical functions have been worked out for circuits of negative feedback loops
[131], for feed-forward loops as noise filtering devices in gene regulation [3, 148], for interlinked
feedback loops acting on different time scales [24], for a particular composition of regulatory
units [107] and their relation to robustness [70, 71, 72, 77], and for the number of positive and
negative feedback loops in regulatory circuits [84].

Co-authorship networks are a snapshot of the knowledge production system, simultaneously
shaped by the social aspects contributing to scientific activity and the topical organization of
knowledge (see, e.g. [114, 118, 138]). Early studies in the mid-1970s [42], in spite of the limited
access to data, already extracted some surprising statistical properties within co-authorship
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and citation data [87, 156]. A giant leap towards analyzing the large-scale organizational
features of the system came of course with the shift towards electronically available publications
(see, e.g., [20, 118, 168]).

Here we adopt a specific definition of co-authorship networks, where the nodes are authors
and two authors are connected by an edge if, and only if, they have published at least one
paper together. One can debate, whether this (uni-partite) graph is a suitable representation
for this intricate system. Information lost in this representation is the separation of groups
of authors into distinct papers (this information would be retained in the case of a bi-partite
representation) and the grouping of authors beyond the two-author level (e.g., in terms of
institutions; this information could be made accessible in a hyper-graph format). The uni-
partite representation is particularly suited for our purposes, because of the enormous amount
of graph-theoretical methods and empirical intuition available for exploring their statistical
properties. This perspective has already lead to remarkable successes in understanding systems
of scientific collaboration [11, 22, 27, 62, 113, 115, 118, 119, 125, 133, 137, 156, 158, 166, 168].

One of the first large-scale analyses was conducted in [115], leading to a confirmation of the
small-world conjecture and to the interesting finding that, in some scientific fields, the average
network properties are dominated by the many people with few collaborators (e.g., biomedical
research), rather than, as in other fields (e.g., high-energy physics), by the few people with
many.

A very rich topic in the discussion of co-authorship networks is the centrality of authors and
the network’s community structure. Repeated removal of the most central edges (sum of the
betweenness values of the end nodes) is for example used in [49] to determine the community
structures within the network. Alternatively, [121] applies spectral theory to analyze the
community structure. In fact, co-authorship networks have frequently served as an application
example for module detecting algorithms.

While the topology of co-authorship networks is an extremely interesting object of inves-
tigation, we believe that relating the topology to dynamical processes can yield outstanding
insights into the functioning of the scientific system and some aspects of social dynamics.

The search for fundamental relationships between network architecture and dynamical
data is the guiding principle underlying our investigation. In order to identify such relation-
ships for co-authorship networks, we explore the distribution of impact of publications across
few-node subgraphs in the co-authorship networks. The main conceptual idea of few-node
subgraphs as a means of exploring complex networks is that one looks at network properties
and network function at a well-defined intermediate scale between the whole network and
the individual node. In this sense and for sake of brevity we in the following call features of
few-node subgraphs a local graph property, while we denote features of the graph as a whole
(modularity, degree distribution, degree correlations, etc.) as well as whole-graph averages
(average clustering coefficient, average betweenness centrality, etc.) as global graph properties.
We are aware, however, that a thorough distinction between “local” and “global” would be more
involved.

To our knowledge the only study starting to (indirectly) address an intermediate scale of
network organization (between individual authors, together with their role in the network, and
the whole network, together with its community structure) is [57], who explore the connection
between team assembly mechanisms and the structure and performance of collaboration
networks (including co-authorship networks). The parameters of their team assembly model
are the fraction of newcomers in a team and the probability of repeating previous collaborations.
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A bstract. This paper describes the architecture and implementation
of a constraint-based framework for rapid prototyping of distributed ap-
plications such as virtual simulations, collaborations and games. Our
framework integrates threecomponentsbased on (concurrent) constraint
programming ideas: (1) Hybri d cc, a (concurrent) constraint modeling
language for hybrid systems, (2) Si sl , a (discrete) timed constraint lan-
guage for describing interactive services with flexible user interfaces and
(3) Tri veni , a process-algebraic language for concurrent programming.
The framework is realized as a collection of tools implemented in J ava.
The utility of the ideas are illustrated by sketching the implementations
of simple distributed applications.

1 Introduction

The focus of this paper is rapid prototyping in the domain of systems that
include hybrid components, concurrency and reactivity, (virtual/ code) mobility
and distribution. The following systems exemplify the applications of interest:

– Consider the computer simulation aspects of NASA’s Airport Surface
Development and T est Facility (see http:/ / sdtf.arc.nasa.gov/ sdtf), an air-
port operations simulator. A typical virtual simulation in such a context
involves largenumbers of planes in largesections of airspacearound an air-
port.

– Consider theemergingareaof distributed collaborativeapplications. In their
simplest forms (Instant Messaging, MSN Messenger Service, ICQ etc.), this
consists of contact/ buddy lists and automatic notification of presence of
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Figure 5.1.1: (A) The eight possible undirected three- and four-node motifs. (B) Example of a
single occurrence of motif 6 (box motif) based on only four publications and embedded in the
local network generated by these publications.

In this way they have been able to identify a phase transition towards a large connected
component, as well as other structural network properties directly linked to the underlying
process parameters.

The general relation between team properties and impact has also been addressed by [168],
showing that teams produce more frequently cited research than individuals. This trend is
increasing with time, is visible across many disciplines − from the sciences to the humanities
− and includes the very high-impact research, a domain traditionally associated with the
single-author “genius”. Both studies, however, focus on individual publications, rather than
the intermediate network scale of few-node constellations.

5.2 Results
We define the success of a motif as the average citation frequency per edge of all involved publi-
cations. From Google Scholar and CiteSeerX we extracted a database of citation frequencies
for a large subset of publications entering our two co-authorship networks. These citation
frequencies serve as our surrogate measure for the impact of the publication (details: see
Appendix A).

It is not a priori clear, which of the four normalizations, defined in Appendix A, is the
most natural one for the mapping of citation frequencies onto the co-authorship network. In
particular, as soon as one of the normalizing quantities (the number of authors of a publication
or the number of publications per edge) depends on some property of the co-authorship network
(e.g., the degree of a node), which also varies among the motifs shown in Figure 5.1.1, the
normalization will affect the average edge weights in a motif, even when the motif has no direct
shaping influence.

For our main result shown in Figure 5.2.1, the average edge weights for the different
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CiteSeerX (B), according to edge weight definition from eqs. (1) and (3), respectively. In order
to resolve the data behind the averages from (A) and (B), the cumulative distributions of the
edge weights for two of the motifs are shown, namely the box motif (motif 6) and motif 4, for
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motifs from Figure 5.1.1, we selected the normalization that most successfully eliminates these
residual dependencies. In order to understand, which of these normalizations is most suitable
for a given data set, we randomize the citation frequencies of the publications, convert them into
edge weights and re-compute the average edge weights of the motifs in this null-model scenario
of shuffled citation frequencies. A uniform distribution of these null-model edge weights across
the motifs indicates a successful elimination of the residual influences. It should be noted that
in contrast to many network analyses, we do not randomize the network architecture, but
rather shuffle the dynamical data on top of it. In this way we cannot discuss possible deviations
of motif counts from randomness, but only the effect the motifs have in shaping the dynamical
output of the network. The distributions of average edge weights across the motifs for the
remaining normalization schemes is shown in the appendix, Figures A.5.1 and A.5.2.

It is clearly visible that not all normalizations yield flat distinction across the motifs for
randomized citation frequencies. However, for both databases and four normalizations, the box
motif (motif 6) has the highest ratio to its null model counterparts in all but one cases. This is
shown in Figure 5.2.2.

Note that the average weight shown in Figure 5.2.2 is the weight per edge in a motif.
Differences in the number of edges between the different motifs thus do not affect this quantity
directly. Also, the unexpectedly high average weight observed for the box motif is not a trivial
consequence of the fact that the box motif needs a minimum of four distinct publications for its
construction. In fact, the box motif is no outlier with respect to the number of publications or
the number of authors per edge (see in the appendix Figure A.5.7).

As the main test of robustness of our finding we construct time-truncated versions of
the co-authorship networks for the past 20 years, where the network for year y includes all
publications up to that year. For all the time-truncated networks the full (i.e., current-day)
set of citations has been used. In Figure 5.2.3 the result from Figure 5.2.1A is thus shown
for the time-truncated networks from 1990 up to 2008. The box motif clearly stands out as
the motif with the highest average edge weight across all years. It should be noted that this
time-resolved analysis of motif-related patterns in citation frequencies reveals some interesting
additional features, for example the change in importance of motif 7 with respect to, e.g., motif
4 (probably associated with a trend towards denser motifs).

A typical example of a box motif occurrence in the co-authorship networks is shown in
Figure 5.1.1B. This example helps us to look deeper into the specific mechanisms behind the
box motif. Topologically, the surprising feature of the box motif is the lack of the two cross-wise
links. The box motif is in this sense an “anti-clustered” motif. This “anti-clustering”, the
lack of the two cross-wise links, is related to a segregation of the two pairs of authors, either
geographically, temporally or with respect to the scientific disciplines. In other words, we
expect that across two of the links strong gradients in space, time or discipline are observed. In
the following we want to explore the nature of this separation from various angles. We can now
ask, whether in those strong-gradient cases the two strong authors are linked or not.

In order to explore this, we define the weight of an author as the total number of citations
of that author. In the third normalization scheme of the edge weight, equation (3), the author
weight then corresponds to the sum of the weights of all edges linked to this author.

We partitioned all occurrences of the box motif into chunks of thousands. The first chunk
comprises the 1,000 motif occurrences with the highest cumulative weight, the second chunk
contains the 1,000 next highest ones, and so on. Figure 5.2.4 shows that, the higher the weight
of a chunk, the more boxes can be found in this chunk such that the two strongest authors are
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Figure 5.2.3: The average weight per motif link over the years for the DBLP database.
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Figure 5.2.5: Relative average link weight per motif. All motif instances are distributed in bins
according to their creation time.

adjacent.
The data available to us does not allow to inspect geography or discipline structure directly.

To substantiate our claim, we made two further computational studies to understand how
important these segregative features are for the success of the box motif.

First, we looked at the construction times of motifs. The edge initiation is given by the year
of the first publication constituting this edge. For an occurrence of a motif, the construction
time is the time between the earliest and the latest year of initiation of an edge within this
occurrence. Figure 5.2.5 shows, for each motif and each construction time, the average weight
of all occurrences of this motif that have the same construction time. It turns out that the
box motif has a significantly stronger tendency than all other motifs for its heavy-weight
occurrences to have high construction times. Thus, the heavy-weight occurrences of the box
motif seem to span a bridge over time.

Second, we looked at the betweenness factors. For each motif, Figure 5.2.6 shows the average
number of shortest paths that use edges of occurrences of a particular motif (normalized by
the number of edges of this motif). Clearly, the box motif edges (together with those of motif 3)
constitute high betweenness values and hence lay often on paths between larger communities
within the network. This is a strong indication that the box motif is, to a certain extend, related
to interdisciplinary collaborations.

5.3 Materials
Our study is based on two large-scale publication databases, DBLP and CiteSeerX as of
May 2008 and October 2009, respectively, each containing several hundreds of thousands
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Figure 5.2.6: Average number of shortest path passing trough a motif link for the 1990 snapshot
of the DBLP (all publications dating before or from 1990).

of publications. Publication lists are converted into a natural graph representation of co-
authorship networks where the authors are nodes and two nodes are connected by an edge if
the corresponding authors have ever published together.

We measure the success of a publication by the number of its citations by other publications.
Citation indices have been acquired from the online search engines CiteSeerX and Google
Scholar. A crucial step is to convert the impact of publications into edge weights in the co-
authorship network. This conversion can be done in several different ways. For an edge e
let P (e) denote the set of publications represented by e. For a publication p, c(p) denotes the
citation frequency of p, and A(p), the set of authors of p. The four edge weight we definitions
are then as follows:

we :=
∑

p∈P (e)

c(p) (5.3.1)

we :=
1

|P (e)|
∑

p∈P (e)

c(p) (5.3.2)

we :=
∑

p∈P (e)

c(p)

|A(p)| − 1
(5.3.3)

we :=
1

|P (e)|
∑

p∈P (e)

c(p)

|A(p)| − 1
(5.3.4)

where |S| denotes the number of elements in the set S.
The citation frequency of a publication can thus contribute to an edge weight either directly

or normalized via the number of authors of that publication. Similarly, the frequencies of all
publications contributing to an edge can either be summed up or averaged. These are the four
variants of converting publication frequencies into edge weights given above.
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5.4 Conclusions
We showed that some aspects of citation data are a consequence of the pattern of collaboration,
rather than of the individual collaborators themselves. The outstanding role of the box
motif, given by the highest average edge weight (derived from the citation frequencies of the
underlying publications), the fact that the two authors in a box motif with the highest weight
are typically adjacent, the high betweenness and long construction time, all give a first insight
into the self-organization processes underlying the production of knowledge. In particular the
segregative function of the box motif seems to be crucial. We believe that the lack of cross-links,
the “anti-clustering”, of the box motif is the main operational feature shaping the dynamical
data.

In this sense the box motif, and the corresponding shaping of the data related to it, seems
comparable with the “strength of weak ties” [52, 53]: High scientific success is on average
associated with publications outside the densely clustered author constellations. It would be
be worthwhile analyzing this also from a game-theoretical perspective, similar to the work
of Goyal and Vega-Rodondo [51] on structural holes [29]. In fact, due to its “anti-clustering"
feature, the box motif occurrences can be seen as small-scale versions of the structural holes
distributed in the network.

There are several obvious ways of continuing this line of research. Following the general
rationale of [57], we believe that a stronger connection between the motif patterns (in particular
the outstanding role of the box motif) and the underlying elementary processes in the system
(selecting authors for a publication, selecting articles to be cited within a publication) can only
be achieved via generative minimal models. We describe a scheme for such a model in the
appendix in A.8. On the level of the analysis of data a natural next quantity to explore are the
conversion rates of motifs as the network evolves. The box motif might be seen as a metastable
configuration as well as a decisive turning point in the individual author’s scientific career.

Seeing co-authorship networks as an example of a social network and at the same time as a
representative of a more generic class of production and distribution systems suggests that,
via its segregative capacity similarly outstanding roles of the box motif can also be observed in
other systems.



Chapter 6

Motifs as Markers of Future
Success in a Model of Social
Dynamics

Summary
Social networks are a fascinating field of exploration, where methods from graph theory and
statistical physics can be put to use for understanding how network properties are related to the
behavior of the social agents.

Here we study subgraph patterns in the Rosvall-Sneppen model of social network dynamics
with the goal of predicting the network fate of individual agents. More precisely we predict the
future degree of a node (which serves as a measure of social success) based on the local subgraph
composition.

The results presented in this chapter have been achieved in cooperation with Marc-Thorsten
Hütt and Kim Sneppen and will be published in: “Motifs as markers of future success in a
model of social dynamics” [44].

6.1 Introduction
The term ’social networking’ for the task of creating connections to the right set of people with
the aim of enhancing one’s own position in a social network has risen in importance over the
last years, especially through the rise of online social network platforms making the already
existing network property of social relations visible to the general public.

However, in most cases successful social networking reveals itself only in retrospect, when
the social fates of all the players involved can be assessed. The electronic availability of
data makes social network studies feasible. In particular for economical networks the last
five years have seen the advent of a whole new, network-based research agenda, where a
general understanding of the interplay between network architectures and collective dynamical
behaviors forms the basis for risk assessment and systemic prediction (see, e.g., [95, 146]). A
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whole research agenda for predicting the large-scale behaviors of social systems (in particular
the spread of epidemic diseases) on the grounds of detailed information on, e.g., movement of
the individuals has recently been proposed [159].

An example of social dynamics studied in much detail over the last two decades are co-
authorship networks and the production of scientific knowledge. Here, data availability, the
clear definition of a social link and quantitative information on success (e.g., via citation fre-
quencies) has turned this example into a model system of network applications. More precisely,
the methods of complex network analysis provide a unique opportunity to quantitatively assess
the social contribution to the production of knowledge. From the network perspective the
strength of this social contribution can be re-phrased as follows: Does the underlying interac-
tion network of authors and publications statistically explain parts of the success pattern of
the scientific output?

While many studies of network topologies focus on global properties (e.g., the degree
distribution — reviewed in [117], modularity [49, 55, 56, 122], degree correlations [31, 102,
116, 154], and hierarchical structures [12, 36, 69, 135, 157]), some of the dynamical function
can be explained by small few-node subgraphs serving as devices for specific tasks organized
locally in the graph. A potential signature of the functional role of few-node subgraphs is
their statistical over- or under-representation (compared to a suitable ensemble of random
graphs). This general concept has been developed and worked out by the Alon group [107, 109],
particularly for transcriptional regulatory networks [3, 148].

Recent results statistically comparing network motifs in co-authorship networks with
citation frequencies revealed an unexpectedly strong influence of the interaction network
on a local scale, see Chapter 5. The key result is that the success of individual authors or
publications correlates strongly with (three and four-node) network motifs. In particular, the
box motif (four authors forming a closed chain) has the highest average citation frequency per
link. This result is robust across two databases, across different possibilities of mapping the
citation frequencies of publications onto the (uni-partite) co-authorship graph, and over time,
and is markedly different from observations in suitably randomized data sets.

Prompted by these findings, we here explore the relationship between social success and
network motifs for a simple model of social dynamics, the Rosvall-Sneppen model, introduced
in [140] and further studied in [141].

We investigate the relationship between subgraph composition and dynamics in the Rosvall-
Sneppen model in three steps: (1) As a first, global analysis we explore, whether the subgraph
composition of the evolved social networks is non-random; (2) we then systematically screen
the subgraph composition in the neighborhoods of nodes with increasing and decreasing social
success (represented by their connectedness), respectively; (3) we use subgraph compositions
obtained in step (2) from training data to predict, whether a node’s degree will increase or
decrease over time, i.e., whether a node is on its way of becoming socially more or less successful
in the near future.

As the subgraph composition is a consequence of an intricate interplay of local and global
network properties (see, e.g., [46, 59]) we formulate an analytical model of both the expected
subgraph numbers and their composition. The model extends the formalism from Chapter 2 to
four-node motifs in undirected graphs.
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6.2 The model
In this chapter we use the model of social dynamics from [140] and [141]. The model is based
on the concept that social rewiring is guided by communication events between social agents
about other social agents. Neighbors of those neighbors that have frequently provided the
most useful (i.e. most recent) information about other agents are selected as the most likely
candidates for establishing a new link.

At every communication step two neighboring agents a and b communicate about a randomly
selected other agent c. The agent with the older information a updates the age of its information
(on c) to the age of the information of its partner b (on c). It will also remember that it got this
information about c from b. After the system is initialized these ’information pointers’ indicate
for every agent who provided the information on this agent. At every rewiring step a random
link in the network is removed and a randomly selected agent, say d has the opportunity
to create a new link. This new link will connect the selected agent d with a neighbor of its
neighbors.

Socially, these model rules mimic the process of ’social networking’. As the agents strive for
better access to information, they will try to enhance their relative positioning in the network.
The main parameter of the model is the communication rate C, which indicates how many
communication steps are made per social (rewiring) step. Striking features of the model are
the emergence of a scale-free degree distribution at not too low communication rates (and a
transition from an Erdős-Rényi graph to a scale-free graph with increasing communication
rate) and a turnover of hubs as a function of time.

In Figure 6.2.1 both features are clearly seen. The four sample networks shown in Fig-
ure 6.2.1A show a trend from rather random (Erdős-Rényi like) networks to networks with a
broader degree distribution with increasing communication rate. In [140] it was numerically
shown that, indeed, at high communication rate the degree distribution approximates a power
law with slope of approximately −2.2. For a subset of nodes, the time courses of the nodes’
degrees are shown for a sample run of the model at high communication rate. Essentially,
one can discern certain time windows (’dynasties’), where a single high-degree node, stands
out. Eventually this node’s degree decays over time with some other node taking over as the
system’s dominant hub (Figure 6.2.1B).

In our analysis we focus on local network properties, i.e. the frequencies of few-node
subgraphs. In this way we generalize the findings from [141], where, e.g., the clustering
coefficient has been discussed. Analyzing the over- and under-representation of three-node
and four-node subgraphs in this system as a function of the communication rate reveals the
first non-trivial property of the network architecture on this scale of observation: As we will
discuss in Section 6.4.1 social rules described above yield a clear motif signature that becomes
more pronounced with increasing communication rate and does slightly resemble one of the
superfamilies for undirected networks described in [107]. A major methodological problem
in interpreting such a motif signature is the shaping of the pattern by the asymmetry in the
three-node subgraphs that induces already a certain pattern of up- and down-regulations
on the four-node level. We therefore construct a statistical theory allowing us to predict the
number of four-node subgraphs given the three-node subgraph frequencies. More details are
given in Section 6.3.

Figure 6.5.1 shows the quality of our prediction for an ER random graph. We use this
formalism to verify that the signal observed in the four-node subgraphs is not induced by the
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signal observed in the three-node subgraphs.
In addition to the motif signature of the full graphs, we also analyze the local subgraph

environment of each individual node. This is discussed in Section 6.4.2.

6.3 Statistical Description of Network Motifs
Similarly to the formalism developed in Chapter 2 for directed graphs, we here introduce a
simple formalism that allows us to predict motif counts in undirected graphs. More specifically,
in a first step, the 3-node motif counts are predicted from 2-node motif counts, edges and
non-edges. The 4-node motif counts can be predicted in the same way, or by using the 3-node
motif counts and the 2-node motif counts together. This last step makes it possible to analyze
the intrinsic correlations between 3- and 4-node motifs.

In this study we are especially interested in the question whether the over-representation
of triangles and the suppression of 3-chains is enough to explain the whole motif signature or
if there is another higher-order effect of the social dynamics on the scale of 4-node motifs.

The maximal number of edges mmaxin a motif with n nodes is mmax(n) =
(
n
2

)
. Every one

of these positions can either be occupied by an edge or not. The probability for a place to
be occupied is p = M

2N(N−1) when M is the total number of edges and N is the total number
of nodes in an undirected graph. The probability that a place is not occupied is denoted by
q = 1 − p. To extend this formalism to include 3-node motifs we introduce the probability
r = p2q that three randomly chosen nodes form a 2-chain and s = p3

3 that three randomly
chosen nodes form a triangle.

The next step is to ’build’ four-node motifs from a three-node motif and additional edges.
We ’grow’ the four-node-motifs from three-node-motifs by adding edges. The expressions for
the growing motif theory can now be used to predict the number of 4-node motifs based on
the number of 2- and 3-node motifs. This is done by estimating p = M/(2N(N − 1)), q = 1− p,
r = 2-chains/((N − 2)(N − 1)N), s = triangles/(2(N − 2)(N − 1)N).

Note that r + s 6= 1, as “incomplete” motifs are not considered. The resulting motif counts
from applying this theory can bee seen in Figure 6.4.2.

6.4 Results

6.4.1 Motif Signature
When the communication rate is low, the “information pointers” are most of the time outdated,
making the social step more of a random process. On the other hand when the communication
rate is high, one approaches the limit of infinite communication, where every decision is locally
the best to be made.

We perform a motif analysis on the resulting networks after 105 social steps with varying
communication rate. Figure 6.4.1 shows that the social dynamics represented by the model lead
to a clear non-random pattern of over- and under-representations of few-node subgraphs. The
pattern is already visible at comparatively low (but non-zero) communication rates, increases
strongly with increasing communication rate and then saturates, yielding a pronounced and
stable motif signature.
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Figure 6.2.1: Basic features of the model. (A) Typical networks for different values of the
communication rate, namely (a) C = 8 (b) C = 79 (c) C = 500 (d) C = 794 chats per rewiring.
(B) Time series of the degree for a randomly picked and randomly colored subset of nodes at
high communication rate (C = 794 chats per rewiring).
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motif 1 2 3 4 5 6 7 8
nodes 3 3 4 4 4 4 4 4
edges 2 3 3 3 4 4 5 6

triangle 0 1 0 0 1 0 1 1
3chain 1 0 1 1 0 1 0 0

symmetry factor 1 1 1/3 1 3 1/4 3/2 1/4
additional edges 0 0 1 1 1 2 2 3

anti-edges 0 0 2 2 2 1 1 0
simple p2qn!

2(n−3)!
p3n!

6(n−3)!
p3q3n!
6(n−4)!

p3q3n!
2(n−4)!

p4q2n!
2(n−4)!

p4q2n!
8(n−4)!

p5qn!
4(n−4)!

p6n!
24(n−4)!

growing rn!
2(n−3)!

sn!
2(n−3)!

pq2rn!
6(n−4)!
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2(n−4)!
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8(n−4)!
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p3sn!
8(n−4)!

Figure 6.3.1: The symmetry factors and probabilities for all 3- and 4-node motifs in an undi-
rected graph. It is important to note that while technically we just substituted p3

3 by s, this can
only be done if the 4-node motif really contains a triangle. Otherwise the resulting information
about the correlations will be wrong as soon as the triangle probability does not correspond to
p3

3 (which is often the case).

The dominant signal in the motif signature observed here is an over-representation of
triangles and motifs containing triangles and an under-representation of sparser motifs. Also,
in the 4-node motifs, significant additional deviations from randomness can be observed.
Disentangling the one effect from the other requires the formalism developed in Section 6.3. We
start from the prevalences of edges and three-node motifs and compute expectations values for
four node-motifs. Figure 6.4.2 demonstrates that the information contained in the three-node
subgraphs does not trivially induce the pattern of over- and under-representation observed in
the four-node subgraphs. If the four-node-motif signature was only the result of the three-node
motifs the curve ‘3-motifs’ should be overlapping with the ‘real’ curve, incidentally the two
signals even seem anti-correlated.

Several studies have recently attempted to understand the distinct categories of motif
compositions (the "superfamilies" from [107]) from a functional perspective. In particular for
directed graphs, some relationships with systemic robustness could be established for different
dynamical processes (see, e.g., [72, 77]). In the light of these investigations, we would like
to emphasize that the motif signature of the evolved networks at high communication rate
resembles the one observed for contact networks derived from protein structures.

In order to better understand the universality of this pattern we measure the distance of
the motif signatures to the signature of a random (initialization) and from the signature of a
network that was obtained from a simulation with very high communication. This is shown
in Figure 6.4.3. For high communication rates the motif signature seems to converge, when
the communication is low the social steps rather act like random mutations, as the basis for
decisions (the “information pointers”) do not reflect reality anymore as they are outdated.

We can now use the formalism introduced in Section 6.3 to predict expected motif preva-
lences and by this proxy motif z-scores for larger motifs. This makes it possible to assess the
impact of dynamics on 3- and 4-node motifs separately.
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Figure 6.3.2: Comparison of predicted with numerically obtained motif counts. The networks
used had N = 100 nodes and connectivities varying over the whole range.
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Figure 6.4.1: The motif signatures of the connection network after 105 social steps for varying
communication rates. The networks were generated with N = 70 nodes and M = 100 edges.
The communication rate is given in chats per rewiring event.
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Figure 6.4.2: The z-score of all undirected motifs with an analytical curve based on 2- and
3-node motifs. The two first points of the signature are equal, as they are the basis for all other
points.
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Figure 6.4.3: To better show that the motif signature actually converges for high communication
rates we here show the sum of the squares of the distances between the motif signatures for
different communication rates towards the start (un-evolved network) and to the resulting
network at very high communication.

6.4.2 Local Subgraph Patterns

Next, we investigate, how the motif signature obtained in Section 6.4.1 is distributed across
the graph. As all nodes retain their identity under randomization, we can compute a motif
signature at each node individually (i.e. the z-score for each subgraph at each node). This
is shown in Figure 6.4.2. It is surprising, how robustly this very local quantity resonates a
common property of the networks.

In order to test the predictability of future hubs in the system, we have converted a set of
simulation runs performed for various communication rates into a database containing the
following information: For several reference degrees (namely k∗ = 18, 20, 22, 24) we enumerate
all pairs (node, time), where this degree is transversed, together with the corresponding slope
(dk/dt) (computed at a window size of ∆T=200/C time steps) and the subgraph composition
around this node at this moment in time. Next, we select the pairs with the 50 highest and
50 lowest (i.e. highest negative) slopes dk/dt as our reference events for the rising and falling
nodes, respectively.

When processing the simulated data in such a way, we can now perform averages of the
local motif composition for subsets of nodes selected according to the nodes’ future fate in the
social system. Figure 6.4.6 shows such averages for three subsets of nodes, each analyzed at a
fixed degree of t = 24, (a) only rising nodes, (b) only falling nodes, and (c) both sets of nodes
together.

The local motif composition of rising nodes differs strikingly from those of falling nodes
for three subgraphs: the triangle, the four-node star and the box. A typical rising node
has a lower suppression of triangles, a comparatively small number of four-node stars and,
quite pronouncedly, a very low number of box motifs in its local neighborhood. The route
towards social success (represented by a high future degree) is therefore characterized by an
unexpectedly careful balance between not-too-low clustering (less triangle suppression) and
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Figure 6.4.4: Local z-scores for all nodes of a network after 105 rewiring steps at high com-
munication rate (c = 1000 chats per rewiring). The z-score is obtained by generating 1000
randomized networks and computing the motif count for every node in every random graph.
Then the mean value and the standard deviation of these motif counts are used to calculate
the z-score for each node, similarly to the z-score of a whole network. The color goes from red
(high degree) to blue (low degree).

the avoidance of a very low-clustering motif (the box motif, which is ’anti-clustered’ in the sense
of a systematic lack of cross-links among the four social actors involved; see also Chapter 5).

6.5 Predicting the Fate of Agents on the Basis of Local
Topology

We will now try to use motifs as markers for predicting future success, therefore we use the
tagged agents from Figure 6.4.6 and try to predict solely based on there motif environment to
which group they belong.

The prediction has been performed for the ratio of subgraph counts, e.g., r(r)m = N
(r)
m /(N

(a)
m ),

where N (r)
m denotes average number of subgraphs m at the degree k∗ in the ’rising’ category

and N (a)
m denotes average number of subgraphs m in 1000 randomly picked agents at the degree

k∗. The agent is assumed to be rising if rm > sm and falling otherwise.
Establishing a quality measure of a binary classification test in general requires the

simultaneous assessment of the specificity and sensitivity of the method, as well as a monitoring
of true positives and true negatives. Here we ensure that both categories (the “positives” and
“negatives”) contain the same number of events. This is done by choosing the top 100 events for
each category, in the sense that the trend towards increasing/decreasing degree is the strongest.
We can therefore use just one measure to assess the specificity and sensitivity at once. In this
case we choose the

accuracy =
true positives + true negatives

number of events
.
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Figure 6.4.5: Typical time-series of events that are considered as rising or falling, respectively.
The threshold is set at 24 on a system with N = 70 and M = 100.
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Figure 6.4.6: Motif signatures for nodes with increasing and decreasing degree. The motif
environment of the top 100 of the rising and falling agents of the same degree (k∗ = 17). This
data is extracted from a system with (N=70,M=200,C=794 chats per rewiring) and averaged
over five time-series. The z-score of the rising/falling agents is obtained by extracting the motif
counts and standard deviations of 1000 randomly selected agents of the same degree.
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We use a sm that was obtained by an evolutionary optimization process (as only one variable
has to be optimized and the optimization goal, the accuracy is not very rugged the optimization
method does not matter, an optimal sm is achieved in only a few steps, we use a simple
simulated annealing.

In spite of the clearly visible large error bars, it is quite remarkable that the two sets of
nodes (increasing and declining social leaders) show very distinct local subgraph compositions.
On the basis of this observation, we next attempt to predict purely on the basis of the subgraph
environment, whether a node is bound to become the next social leader.

When an individual four-node motif is chosen as a marker for future success, the results
from Figure 6.5.1 suggest that after the triangle the box motif and the semi-clique provide
the most reliable information (highest prediction quality, when the information is taken only
from a single motif). It is intuitively clear that combining the information from several motifs
may increase the prediction quality further. At the same time, motif-motif correlations (in
particular between three-node and four-node motifs) can distort this result substantially. It is
therefore indispensable to explore such correlations more quantitatively, in order to assess the
pure information about future success contained in such a motif (undiluted by, e.g., smaller
patterns in the network).

6.6 Conclusion
We have shown that the simple model of social dynamics induces a specific motif content into
the network, and explained how this motif signature is formed. Additionally, we could show
that successful agents can be distinguished from less successful agents by means of their local
motif neighborhood. We used this knowledge to predict solely on the local motif structure
whether an agent will be rising or falling in degree. The analysis of the prediction quality also
yielded some interesting information about the importance of several motifs to the agent’s
success.

On the level of four-node subgraphs, the segregative function of the box motif and the
semi-clique seem to be crucial. We believe that the lack of cross-links (in particular, the "anti-
clustering", of the box motif, as discussed in Chapter 5) is the main operational feature shaping
the dynamical data. A difficulty in interpreting subgraph patterns is the crosstalk between
statistically related subgraphs. In our investigation we observe that the triangle-plus-line
motif has a similar predictive power as the box motif. This is due to its antagonist role (to
the box motif) of measuring isolated triangles, as opposed to the densely packed triangles in a
clique. In this sense, the triangle-plus-line motif also has an "anti-clustered" structure, just
like the box motif.

In this sense the box motif, and the corresponding shaping of the data related to it, seems
comparable with the “strength of weak ties" [52]. Looking at social systems as complex
networks and analyzing them with graph-theoretical tools has the potential of providing
important building blocks for a quantitative theory of social processes.

By using our understanding of dynamical processes on graphs as a template for analyzing
patterns in data we can in this way uncover unexpected patterns in data and extract fundamen-
tal design principles underlying social dynamics in a formal way. Dramatic recent examples
include suggestions of optimized vaccination strategies (based on the concept that a random
walk will map out the degree sequence of the social network) [34], and the view of obesity as a
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Figure 6.5.1: The prediction quality depending on which motif is used for the prediction. The
communication rate is given in chats per rewiring event and and the prediction is performed at
a degree of k∗ = 17.



84 CHAPTER 6. MOTIFS AS MARKERS OF FUTURE SUCCESS IN SOCIAL DYNAMICS

(social) epidemic propagating on the network of human interactions [35, 41].
The main result of this study is that, socially, there is no additional benefit from forming

densely packed network environments and from striving towards high clustering. Instead, a
pronounced anti-clustering (as represented by the box motif and, less strongly, by the semi-
clique) is indicative of the future social fate.



Chapter 7

Software Tools

7.1 State of the Art
The most important software package for a motif analysis is MFINDER, the software used in
the original works on motifs (e.g., [109]). Motif finding was also implemented for the PAJEK
network analysis software [14].

Graphcrunch [105] is a tool that is specialized in the automatic detection of the best fitting
graph model for a given input network. For this it implements five different graph models,
some of which have tunable parameters. The fitting criterion can be chosen among a series
of graph properties, including the spectrum of shortest paths and subgraph counts. The best
fitting network model (together with the tuned parameter values if it has any) as well as a
measure indicating the quality of the fit is returned.

NetworkWorkbench [153] is a more general framework for network analysis. It implements
many of the standard methods for network generation, analysis and visualization, interfaces
to other graph analysis software packages are provided. Some authors have described and
implemented sampling algorithms that are, especially for larger subgraphs, faster by several
orders of magnitude than total enumeration algorithms. FANMOD [165] was the first software
package implementing unbiased sampling, MAVISTO [145] additionally has the ability to
highlight motifs in labeled networks. Finally, [123] describes and implements a sampling
algorithm that uses a pattern growth approach to efficiently detect larger subgraphs.

7.2 Own Development
During my thesis work, a software package specialized on motifs and networks has been
developed, as the existing packages were not easily extendable. Especially the systematic
manipulation of networks is not part of any of the described software tools and would be
difficult to add. The standard way to use i.e. mfinder is to run it on a network and then parse
the output for the z-score number. It would be possible to extend NetworkWorkbench to include
motif analysis, but at the current state really interactive applications are not possible, also a
way of batch processing large numbers of graphs does not exist at the moment.

The core modules of our software package are:

85



86 CHAPTER 7. SOFTWARE TOOLS

Figure 7.2.1: An extract of the class diagram surrounding motifs.analyzer.Analyzer, some of the
3- and 4-node analyzers are omitted for space reasons. The method getFitness() will return a
single number. The class diagram for motifs.analyzer.AnalyzerInd is almost identical except for
the naming and the return type of getFitness().

• the generation of graphs by a number of standard algorithms

• the counting of motifs in directed and undirected graphs

• the randomization of graphs with various constraints (preservation of bi-directional edges,
preservation of modules...)

• computing other global graph-theoretical measures (diameter, edge density, degree corre-
lation)

• computing local graph-theoretical measures (centrality betweenness, clustering coeffi-
cient, local degree correlation) as well their distribution over the graph

• analyzing the inter-dependencies of such measures

All modules can easily be reconnected to quickly fulfill new tasks. For example all global
network measures (i.e. that return only a single number) are derived from the same super class
motifs.analyzer.Analyzer, (see also 1.3.4) so that a goal-directed walk that increases the number
of triangles in a graph can instantly be changed into decreasing the centrality betweenness.
An extract of the class diagram is shown in Figure .

The same is true for local graph measures that can be evaluated for every node. Here
they return an array of numbers with the length being the number of nodes in the analyzed
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graph and are derived from the super class motifs.analyzer.AnalyzerInd. The rapid proto-
typing is further simplified by the use of class loaders, so that for example a specific motif
count can be requested via a command-line interface. All registered classes derived from
motifs.analyzer.Analyzer are scanned for their static field name and the matching class is then
instantiated. This removes the need for maintenance-intensive glue logic.

All modules can be used via the command line, either via files or pipes. Additionally for
some use cases where an interactive inspection is helpful user interfaces were developed.

Here, the most important of these user interfaces are presented in detail.

7.2.1 Interactive Graph Representation

Our interactive general-purpose graph analysis tool is programmed in Java and optimized for
portability and easy extendability.

Figure 7.2.2: The Interactive Graph Representation showing a generated BA-graph with its
most important widgets open.

The widgets shown in Figure 7.2.2 from top left to bottom right have the following functions:

1. The Sorting widget. It is possible to randomly place the nodes on the panel, to order them
in a grid, arrange them in a circle or to sort them by a spring embedding model, similar
to [47].
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2. The Node Analyzer widget, set to show the in-degree of a selected node (upper panel) and
the corresponding distribution (lower panel).

3. The Motif Analyzer widget, set to show undirected 3- and 4-node subgraph counts.

4. A quick view of node count, average degree, and clustering coefficient.

5. An overview of the weakly connected (disregarding the edge directions) components of
the analyzed graph. Every component is shown with its size, additionally a histogram of
component sizes is displayed.

6. The graph panel, showing the graph currently under analysis. Nodes can be rearranged
by drag and drop. When a node is clicked on a window displaying the neighbors of the
node is shown. This list is editable edges can be removed or added.

7. The z-score analyzer, here set to show undirected 3- and 4-node motif z-scores. It can be
switched to directed 3-node motifs and the randomization method can be set to:

• Edge flipping, not preserving the number of bi-directed edges

• Edge flipping, preserving the number of bi-directed edges

• Edge flipping, preserving the number of bi-directed edges and the modular structure
Additionally, the current motif counts, as well as the average motif count and standard
deviation in the random ensemble can be shown. The high precision mode will compute a
complete z-score several times and then show the average z-score with error bars derived
from the ensemble of obtained z-scores.

8. The (editable) adjacency list of the graph.
All widgets and the graph view are updated in real time when any change on the graph

is performed, this works well up to some 100 nodes. Larger graphs can also be processed, but
the graph representation will be slow. CPU-intensive calculations (especially the z-score and
the spring embedding) are run in parallel background processes, so that the interface always
remains responsive and CPU resources are optimally used.

Graphs can be imported and saved via a simple file format (the adjacency list separated by
tab-stops).

Graphs can also be generated by a number of standard algorithms, see Figure 7.2.3.

7.2.2 Motif Dependencies
For a more general investigation of motif properties, especially motif inter-dependencies another
software tool was implemented.

The concept is to have an ensemble of graphs and to observe their multidimensional drift in
motif space. Additionally the random walk can be biased, transforming it into a goal-directed
walk. This is performed with two vectors, the goal vector gm, representing a point in motif
space, and a weight vector wm, representing the relative importance of the corresponding
dimensions.

Motifs that have zero at their place in the weight vector are ignored for the random walk,
when every entry in the weight vector is set to zero a random walk is the result. Positive
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Figure 7.2.3: The options for generating random graphs, the tab for modular graphs is selected.

values at a place in the weight vector makes the networks drift away from the goal point in
the corresponding dimension. With c being the current motif count vector a goal function d is
defined:

d =
∑
m

(gm − cm)2wm

Every edge flipping event is accepted if d decreases or remains constant. This corresponds to
accepting every enhancement as well as neutral mutations.

The control panel of the tool is depicted in Figure 7.2.4.
The motif projections selected in the controls are then shown in a new window, an example

is shown in Figure 7.2.5. The individual scatter plots are automatically scaled and updated in
real time as the network evolution goes on.

7.2.3 Interactive Motif Signature
When using the standard procedure, the calculation of motif z-scores is computationally
expensive, as a whole ensemble of random graphs has to be created, each of them requiring
a large number of randomization steps. This makes it virtually impossible to observe the
inter-dependencies of the z-scores of individual motifs in an interactive way.

Zm =
cm − µm
σm

When constraining the analysis to graphs with a fixed degree sequence a much faster
approach is viable. Even in a graph with fixed degree sequence large variations of the motif
content are possible. On the other hand, the ensemble of random graphs used for z-score
calculations is the same for every graph of the same degree sequence. This fact can be exploited
by pre-computing the large random ensemble and only manipulating few graphs of the same
degree sequence. The random ensemble is then fixed, σm and µm do not change during the
simulation and the cm of the few graphs that are under manipulation can be processed very
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Figure 7.2.4: The controls for the interactive motif dependency analysis. Random networks can
be generated, the motif projections can be selected and the two vectors directing the evolution
can be set. Additionally the motif-trajectories can be recorded for later analysis and the current
acceptation rate of edge-flips is shown.

Figure 7.2.5: The main view of the interactive motif dependency analysis.
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Figure 7.2.6: A screen shot of the interactive z-score demonstration. The z-score is shown in
real time, the driven graphs (in this case 80 graphs of the same degree sequence are used)
are very sparse and motif id 6 is selected to go to a z-score of −2.5. These settings yield a
motif signature very similar to super family 1 in [107]. The blue line on the bottom shows
the acceptance ratio of the mutation steps and the red line shows the distance of the current
average z-score to the selected goal.
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Figure 7.2.7: A screen shot of the train synchronization analysis tool. Germany is selected,
the null model subtraction is switched on and the smoothing (a moving average) is set to 16
stations.

quickly. The user interface of an implementation of this method can be seen in Figure 7.2.6.
By clicking onto the panel a goal point can be selected, first performing the z-score calculation
backwards (to obtain the necessary motif count for the desired z-score, cm = Zmσm +µm). Then
the adaptive walk is started similarly to the method described in the previous section. The
current motif count, the average motif count and the standard deviation of the motif count in
the random ensemble are shown for every subgraph. The standard deviation of every motif
z-score is shown as error bars and every one of the graphs is shown by a small horizontal green
line.

To asses the evolution, the value of the goal function and the acceptance rate are shown at
the bottom of the screen together with their temporal development in red and blue, respectively.

7.2.4 Interactive Train Synchronization Visualization
To perform the analysis presented in Chapter 4, a specialized tool was implemented.

It reads in arrival/departure event data obtained from MOTIS (for details see Chapter 4).
The synchronization index for every station is computed, a null model is subtracted and the
data is smoothed in real time.

All parameters can be interactively varied. A marker is implemented, one can select a sta-
tion and the wrapped-up arrival/departure events are shown together with the synchronization
index. Additionally the country that should be analyzed can be selected. The stations are place
along the x-axis and sorted along their size. The synchronization index is shown on the y-axis.
Figure 7.2.7 contains a screen shot of the user interface.



Chapter 8

Summary and Future Work

This work has contributed to the field of network and motif analysis in several ways:

1. By the theoretical and phenomenological description of motif signatures that appear as
artifacts of too coarse-grained null models.

2. By the introduction of advanced null models for several systems, e.g. module-aware mixing
in Chapter 3, local z-scores in Chapter 6, the station-size aware expected synchronization
indexes for train departure times and a model of scientific co-operations for Chapter 5.

3. By applying motif analysis to new network-based systems, namely co-author networks
and artificial social networks.

4. By investigating synchronization in a network-based logistical system, namely long
distance passenger train connections.

5. By extending the set of tools available, especially by different counting schemes in
Section 3.5, the application of synchronization measures on not strictly periodical, time-
discrete systems, the analysis of weighted motifs in Chapter 5 and characterizing the
predictive strength of motifs in Chapter 6.

6. By the introduction of an analytical theory that enables us to predict subgraph counts,
subgraph fluctuations and finally motif signatures for a number of situations (e.g. modular
networks in Chapter 3 and networks with a distorted distribution of smaller subgraphs
in Chapter 6) for directed as well as for undirected graphs.

Chapter 2 introduced an analytical theory of motifs, that can be used to predict subgraph counts.
This is achieved by combining the probabilities for every edge of a subgraph and properly
accounting for its symmetries. Additionally, fluctuations of subgraph counts can be predicted.
By grouping subgraphs into templates we can disentangle different reasons for subgraph count
fluctuations. The counts and fluctuations of templates are mostly related to the density of
the network. The fluctuations inside of the templates (i.e. the distribution of templates into
subgraph bins) are anti-correlated as the subgraphs belonging to one template compete for the
same resources. Together, the predictions of the subgraph counts and their fluctuations can be
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used to predict motif signatures, also called triad significance profiles (TSPs). This can help to
better understand the impact of some large-scale topological properties on motif signatures.

There are two logical next steps:
i) investigate the impact of small scale properties (i.e. a node’s degree) on motif signatures.

This is probably possible when assuming statistical independence between the degrees of
adjacent nodes. It is known that this assumption of independence is violated in the case of
broad degree distributions [89]. Also in many practical situations it is known that degrees are
not uncorrelated [116].

ii) explore the intrinsic correlations of motifs, i.e., the reactions of the other motif counts
when one motif is artificially enhanced or reduced, keeping all other graph properties random.
This research could, by analyzing the systematic motif count shifts occurring during the ran-
domization procedure, yield a deeper understanding of the amount of independent information
contained in the superfamilies described in [107] (e.g. Figure 3.4.2 contains only one bit of
information, namely modularity instead of 13 independent bits of information).

Chapter 3 discusses some issues that can arise when performing advanced motif analyses.
Especially the problem of finding appropriate null models is addressed. For the case where
strong global features like modularity are not considered in the null model, analytical predic-
tions for the resulting error are given. This is an important step towards disentangling real
local motif deviations from deviations that result from larger-scale features. Still the next
goal remains to find appropriate null models for such complex situations. A general language
describing the topological constraints that compose a reasonable null model is most probably
not possible, for example because of overlapping modules, but an important source for motif
deviations can be summarized as density fluctuations. This ranges from very small-grained
fluctuations that are not much larger than the considered motifs up to a network consisting of
few modules. The effect has two origins: i) The non-linear scaling of density with the network
size. ii) The scaling of motif counts with the node degree that is fundamentally different
for different classes of motifs. For the case of a known modular structure a randomization
method that preserves modules and their connection pattern could be implemented. There are
several community detection algorithms that could be used for this (e.g. [122, 37, 149]). The
necessary input to the null model is which node belongs to which module. Then a constrained
randomization could be applied, only flipping two links when they are a) both inside the same
module (when all nodes adjacent to the selected links are part of the same module A) or b) if
they both connect the same two modules, (i.e. both links originate in module A and point into
module B). Every algorithm that attempts to partition a graph will need some method to decide
whether further partitioning should be performed. When looking for an “optimal” partitioning
this can, for example, be the increase in modularity, a quantity defined as “the number of edges
falling within groups minus the expected number in an equivalent network with edges placed
at random” [120].

Such attempts may in some cases be useful, but here they are not really necessary. Most
algorithms work by iteratively removing edges and observing the connected components. As
every edge removal step can at most create one more component also the number of modules
can only increase by one. So during one run of the algorithm N increasingly fine partitionings
for a graph with N nodes can be obtained, containing 1...N modules. For every one of these
partitionings randomization can be performed and z-scores can be obtained.

Two limiting cases can easily be understood: i) when the network is partitioned in only
one module the randomization is not constrained, the result is exactly the same as with
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the standard randomization scheme. ii) when the network is partitioned in N modules the
randomization is totally constrained, every network in the random ensemble is identical to the
original network. This will then yield a zero z-score.

If a network has no relevant motif over- or under-representations but only a modular
structure, when refining the partitioning the z-score of every motif should quickly approach
zero. Opposed to that a network with true, distributed motif anomalies would show no such
behavior with motif z-scores remaining far from zero even for relatively high partition counts.
How to deal with overlapping modules (like they can for example be observed in social networks)
remains an open question.

Another topic addressed in this chapter is the counting scheme for motif occurrences. There
are two different ways to count:

i) the standard method: How many occurrences of a subgraph are present in a network.
This number can be very high, in the extreme case at very high density N(N − 1)(N − 2)
subgraphs can be identified in a network with N nodes.

ii) the “single counting” method: How many nodes take part in a subgraph at least once?
This number is bounded by the number of nodes in the graph. Especially when counting local
motifs or when connecting dynamics with topology the results of the two methods are very
different. Method ii) shows a much weaker reactions to the subgraph multiplicities, that is the
scaling of subgraph counts with the local node degree.

Chapter 4 has shown interesting connections between robustness and synchronization both
in a real system (the long distance train connections of Germany) and in a simple model of delay
propagation. The robustness was extracted from a fully realistic model of delay propagation.
The synchronization is extracted similarly to the synchronization index in [83]. These findings
could be related to topological features of the underlying network, especially the “size” of a
station (as a proxy the number of departures per day is used).

The next step would be to look into local network properties that take the neighborhood of a
station into account, namely network motifs. The challenge is to find a way to disentangle the
apparent motif effect, that arises from the fast scaling of local motif counts with the degree of a
node from the real, functional motif effect. Two paths of investigation seem possible:

i) building appropriate null models for train networks, hereby the challenge lies in properly
taking into account all the boundary conditions like station and track capacities as well as
scheduling and passenger flow constraints. Then one could compare the local motif signatures
in the “real” network to those in the artificial network.

ii) developing a method for computing self-consistent local z-scores without recurring to a
null model or a set of “motif-blind” networks. For example the expected numbers of subgraphs
in a small neighborhood around a single node could be directly computed taking into account
the connectivities of all connected nodes. Here a deeper understanding of the motif scaling
laws and the interplay of different motifs is necessary. A starting point for this could be the
motif theory presented in Chapter 2.

Chapter 5 deals with success in social networks. The social structure is observed by the
proxy of co-authorships and success is measured by the number of citations a publication
gets. A dependence of the success on the local motif structure could be shown. Especially
the box-motif seems to be strongly associated with success. This is probably the case because
it marks locations in the network that show some kind of separation, which could be tem-
poral, spacial or on the level of scientific domains / communities. An artificial “toy model”
of scientific collaborations is implemented where every topic is located on a 2D topic-plane
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(see Appendix A.1.7). Some features of the real networks can be reproduced, especially the
high edge weight of the box motif. It was also attempted to understand the effect of temporal
separation by relating the time it needs to form a motif to its later success. Here further
investigation is necessary.

Chapter 6 also deals with success in social networks, but follows another approach. We
analyzed how a model of social dynamics shapes the topology of the underlying network. An
over-representation of triangles has been observed before [140], but we show that additionally
a non-trivial motif-signal exists for four-node-motifs, that can not be explained only based on
the deviation of the three-node motifs. The gained insights should be used to look for similar
patterns in real social network data.

Additionally it was possible to predict the future success of a social agent based on the local
topology alone. Here different motifs show different predictive strength, with some motifs
being beneficial to social success and others diminishing it. Is social success also predictable
in real systems? Here the large quantities of dynamic (in the sense of time-resolved) data
produced by online communities may be the key to a deeper understanding of social processes.

The clear advantage of the box motif over other motifs that was found in Chapter 5 can not
be observed in Chapter 6. One reason for this is the homogeneity of the information flow in the
social model analyzed. There is no difference in cost between connecting to an agent that is “far”
or “close” to the connecting agent. Because of this the network structure is very homogenous.
In an advanced model with refined connection costs, an agent that “bridges” the gap between
two communities would be rewarded as he would have access to a larger information base,
therefore have more “recent” information and because of this collect more and more links.

Over all this work has applied motif analysis to a set of network problems, in every case
going further than pure application. We have questioned and extended the existing methods
for two very different reasons. On the one hand to adapt the methods to account for the
special conditions that are different for every system. On the other hand we advanced the
understanding of the underlying systematics inherent to every single network problem.
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Appendix A

Supplementary Material

This Appendix contains supplementary materials to Chapter 5 that provides detailed insight
into the analyzed data, performed analysis and supporting experiments.

It has already been published as supplementary material in the paper [81], co-authored
with Lachezar Krumov, Karsten Weihe, Matthias Müller-Hannemann and Marc-Thorsten Hütt.

A.1 Co-Authorship Networks
Since co-authorship networks include temporal data (via the year of publication), they allow
for the retrospective observation of dynamically growing networks. In [113], evidence for
preferential attachment and a degree distribution approximating a power law were found
in a large range of node degrees (up to 150 cumulated co-authors in physics and up to 600
in biomedicine). Moreover, it is observed that both phenomena start vanishing at roughly
the same number of authors. In addition to an extensive empirical analysis of a variety of
topological measures varying over time, [11] incorporates the fact that edges are also inserted
between old nodes, not only between a new and an old node, respectively (thus deviating from
the formal preferential attachment protocol). They discover that the probability of inserting an
edge is roughly proportional to the product of the node degrees. They also give an explanation
why, nonetheless, a power law distribution of the node degree is observed. In [22], a generative
model is introduced, which explains deviations from the power law distribution of citations
by typical phenomena of scientific collaboration such as distinct topics and the partitioning of
scientific disciplines into subdisciplines.

Central, influential authors are analyzed in [50], where the influence of an author is
measured in terms of the betweenness. Basically, it is shown that influential authors do not
collaborate more often with each other than average authors.

An alternative way of looking at patterns in knowledge production in a network-like fashion
is to analyze the citation of a publication in another work. Such citation networks have for
example been studied in [21]. The work of [21] goes one step beyond the bipartite graph
representation of authors and publications of [133] and equips the graph with additional
directed edges between publications to indicate citation. On this basis, they discuss four
measures for the performance of individual authors: the betweenness measure and three
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observables based on the number of publications and citations. The discrepancies between the
four top-ten lists reveal that the measures evaluate different qualities of the authors. Moreover,
they introduce a new variant of entropy to measure how uniformly the impact of an author is
divided among his/her co-authors, and a strong tendency towards few high-impact and many
low-impact collaborative efforts was found.

A.1.1 Publication Data
We have investigated two publication databases: CiteSeerX and DBLP.

Dumps of the DBLP database in XML format are provided on regular bases by the DBLP
official website: http://dblp.uni-trier.de. Each publication entry provided in the XML dump
contains at least the publication title, the publication year and the list of authors who have
co-authored the corresponding publication. The dump investigated in this work is as of May
2008, which contains 599,734 authors and 978,786 publications.

The CiteSeerX is available for download and synchronization through the CiteSeerX official
website: http://citeseerx.ist.psu.edu. The data download and synchronization is available
through Open Archive Initiative Harvesters. We developed our own harvester to acquire the
publication data available in CiteSeerX as of October 2009. Each publication entry contains at
least the publication title, the publication year and the list of authors. That snapshot of the
online database contains 999,856 authors and 1,247,732 publications.

A.1.2 Citation Indices
In our work we investigate the success of collaboration patterns. We project the success of
a given publication as the number of citations by other publications. That is, successful
innovative and ground breaking publications attract interest by other scientists, who then
later on refer to those publication in their own work.

Hence, the next step for our analyses was to acquire citation indices for the the publications
within the two investigated publication databases. For this purpose we deployed 107 web
crawlers compatible with the online publication search engines CiteSeerX and GoogleScholar
(http://scholar.google.com). All acquired data is publicly available through web interfaces of
both search engines. The web crawlers obeyed the time out policies and request frequencies
provided by the search engines and ran as background processes, being even less intrusive
than a human user.

We requested the title of each publication within the two acquired databases and stored the
responses by both search engines (the responses are provided with citation indices by other
publications). A response is considered a match, if the title (by trimming white spaces and
special characters), the publication year and the list of authors (by trimming white spaces and
special characters) were identical to a publication within one of the acquired databases.

The title of each publication was requested on both search engines. If both of them returned
a match, then the citation index for that publication was set to the maximum of both responses.

We were able to acquire non-empty citation indices for 192,688 of the papers within the
DBLP database, which is around 19% of all publications. That number excludes publications
which were found on the search engines, but still have not been cited by other papers. For
the CiteSeerX databases we found 434,794 papers with citation index of at least one, which
corresponds to 34% of all publication within the acquired database.
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The lower match success by DBLP comes from the fact that it is actually a third party with
respect to the search engines. On the other side, we requested the publications provided by
CiteSeerX by using the Open Archive Initiative (OAI) protocol directly from the CiteSeerX
search engine, leading to a better match ratio.

Note that the citation indices considered are as of their time of acquisition, which for both
databases was short after acquiring the publication data.

A.1.3 Co-Authorship Graph Representation
We use the natural graph representation of co-authorship networks where the authors are the
nodes and two nodes are connected if they have ever published together.

We parsed the publication lists in both databases with the following assumptions:

• A publication is considered unique through its title (trimmed from white spaces) and
publication year. Publications without specified publication year are expelled from our
analysis.

• Multiple publication entries with different publication years, but the same title and
authors, are considered as distinct publications.

• An author is considered unique through her/his first and family names.

• Authors with identical first and family names (as they appear in the database) are
considered the same author.

The above assumption may lead to considering two real world authors as the same author
in our database if they have the same names. On the other side, if an author uses different
signatures on her/his publications, one real world author may be considered as two distinct
authors in our database. There is no way around this problem and its impact was already
investigated by related work cited, see Chapter 5. The number of authors and publications
within both databases presented in the first section are the result of the above assumptions.

Furthermore, both databases contain entries representing online reports and websites,
listed with several hundred authors. To clean up the databases from such entries, we excluded
from our analysis all publications with more than 8 authors. For DBLP those were less than
0.6% of all publications and 1.7% for CiteSeerX.

As we were interested in citation frequencies and their interplay with topology, we also
excluded all publications with none or zero citations, i.e. publications that are not in the
databases or have yet no citations respectively. Thus, our analyses was performed on 190,893
of all 978,786 publication entries within the DBLP snapshot and 430,233 of all 1,247,732
publication entries within CiteSeerX.

After acquiring both databases and available citation indices, we build a graph representa-
tion of each database based on the publication entries with citation index of at least one and
less than 9 authors. Each distinct author is represented by a node and two nodes are connected
if they have ever coauthored a publication.

A.1.4 Motif Analysis
We projected the citation indices as edge weights in four different ways and counted the average
link weight per motif. A motif is considered an induced connected subgraph, i.e. any four nodes



112 APPENDIX A. SUPPLEMENTARY MATERIAL

15

20

25

30

35

40

A
v
er

a
g
e

ed
g
e

w
ei

g
h
t

No normalization DBLP
No normalization SH

8

10

12

14

16

18

20

22

24

26

28

30

A
v
er

a
g
e

ed
g
e

w
ei

g
h
t

Divide by # papers DBLP
Divide by # papers SH

5

10

15

20

25

30

35

A
v
er

a
g
e

ed
g
e

w
ei

g
h
t

Divide by # authors DBLP
Divide by # authors SH

4

5

6

7

8

9

10

11

12

13

14

15

A
v
er

a
g
e

ed
g
e

w
ei

g
h
t

Divide by both DBLP
Divide by both SH

Figure A.1.1: The average link weight per motif for all four edge weight definitions compared
to the null model, denoted by SH, for DBLP.

can form only one of the six four-node undirected motifs. The weight of a motif is the sum of
the weights of its edges. The average link weight per motif is the sum of the weights of all
instances of a particular motif divided by the number of instances and then divided by the
number of edges within that particular motif. Hence, the average link weight per motif is
comparable across the different three- and four-node undirected motifs.

The average link weight per motif for both databases, DBLP and CiteSeerX, and for all four
normalization schemes are shown in Figures A.1.1 and A.1.2.

Furthermore, each co-authorship has an year of appearance, namely the year their work was
published. Naturally, we define the creation time of an edge as the year of the first publication
among a pair of authors. Intuitively, motifs are build up by edges and each edge has a creation
time, hence a motif also has a creation time. We define it as the difference of the creation year
of its first and its latest edge.

A.1.5 Supporting Experiments
To assure that our both databases comply with already investigated co-authorship networks,
we computed a set of network properties usually discussed in related work. These include
degree distribution, citation distribution, clustering coefficient, papers per author and authors
per paper. None of the computed network measures show deviation from already published
results on other collaboration databases, see Figure A.1.3 and Table A.1.

All four distributions follow the power-law form already investigated in many other co-
authorship networks.

To assure that the average link weight per motif presented are long term results, we
retrospectively investigated their evolution over time for the DBLP database. For that purpose
17 snapshots of the database we created, one for each of the years between 1990 and 2007
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Figure A.1.2: The average link weight per motif for all four edge weight definitions compared
to the null model, denoted by SH, for CiteSeerX.

Network Authors per Paper Papers per Author Clustering Coefficient
DBLP 2.74 4.04 0.658

CiteSeerX 2.69 3.26 0.667

Table A.1: Average authors per paper, papers per author and clustering coefficients for the
DBLP and CiteSeerX database. All values comply with results from related work.

respectively. Each snapshot contains only publications published prior or within the year of the
snapshot. We then computed the average weight per motif link for definition 3. One observes
that the box motif prevails over all snapshots, see Figure A.1.4.

The motif weights change slowly and only slightly over the years. Their values drop for
more recent years as the number of fresh publications with none or few citations increases.
Note that the citation indices of the publications for all snapshots are as of 2008, because of
the lack of information which citation in which year was acquired.

Furthermore, we investigated the whole motif weight distributions instead of just looking
at their average values. All eight distributions are monotone and governed by the box motif as
can be seen from Figure A.1.5. The motif weights were computed over the whole database and
with respect to edge weight definition 3.

It is obvious from the commulative distributions that the average values over the motif
weights are well defined and justified. Our next step was to investigate how they change when
one consistently disregards the heaviest box motif instances when computing the mean values.
Again we investigated the whole DBLP database under edge weight definition 3 and take as a
reference motif 4, see Figure A.1.6.

One observes that the average motif link weight reduces gradually for the box motif as well
as the reference motif 4. Hence, the high average value of the box motif is not a result of a few
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Figure A.1.3: Degree and citation distributions of DBLP and CiteSeerX.

extremely heavy instances, but rather constitutes a high number of relatively heavy instances.

Up to now we have shown that our two databases comply with related work on co-authorship
networks, that the results are stable over the years and that computed mean values are justified
and are not influenced by a few extreme values. To conclude, we want to tackle one last question,
namely the number of papers and the number of their authors that constitute the box motifs.

Note that the four edge weight definitions implicitly address that issue, as they integrate
the number of papers between a pair of authors, the number of co-authors on those publication,
or both effects simultaneously. Otherwise, one can assume that the high average value of the
box motif comes from one of those two effects. Recall, that independently of the edge weight
definition, the box motif was still the most successful one. To exclude any doubt, we have
calculated the average number of publications between a pair of authors in all motifs, as well
as the number of co-authors on those publications. The results are displayed in Figure A.1.7.
One clearly sees that the box motif neither profits from high number of papers running through
its edges, nor those publications have significantly few authors. Thus, its prevailing weight is
not a result of any trivial effects one could suspect.

To conclude, in this supplementary work we carried out a set of sanity checks of the analyzed
data, as well as a deeper look on the presented results. We observed that the properties of
the investigated co-authorship networks comply with related work. Furthermore, we showed
that the presented results are well defined and justified, as well as that they do not come from
certain trivial effects.

A.1.6 Application Areas

One clear result of the statistical analysis presented so far is that the box motif is a functionally
interesting − and so far not discussed − building block of complex network. Beyond co-
authorship networks, we believe that there are several areas of application, where box motifs
may contribute similarly significantly to function. Table A.2 lists some of those areas.
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Figure A.1.4: The average weight per motif link over the years for the DBLP database.

Network Type Dynamical Observable Potential Box Motif Role
Acquaintance networks Gossip Sites with maximal re-organization

Metabolic networks Metabolic fluxes New category of enzyme essentiality
Trust networks Recommendations Double reassuring of reliability

Peer-to-Peer Data exchange Alternative paths to target peer
Train Connections Passenger flow Alternative connections to destination

P2P Live Streaming Video/Music/TV on demand Concurrent frame exchange
Routing Package delivery Bandwidth separation along routing paths

Table A.2: Expected applications of the box motif in diverse technological and social networks.

A.1.7 Generative Model
In this section we briefly sketch a possible generative model, which may serve as a convenient
framework for exploring the relation between impact of a publication and topological properties
of the co-authorship network as a function of the underlying elementary processes.

We assume the authors and publications to be distributed on a plane (the “content proximity
plane"). The two elementary processes in the model are the writing of a scientific publication
(paper production) and the citing of already existing publications in new ones (citing articles).
In the case of paper production, the content proximity plane is used with a probability α1 to
select authors from. With probability (1−α1) authors are selected at random for the publication
at hand. In the case, when the plane is used, another parameter, β1, regulates, whether authors
are selected according to impact or proximity.

For the second process, citing articles, the parameters α2 and β2 have the same function for
selecting publications to be cited in the publication at hand, as their counterparts have in the
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Figure A.1.5: The motif weight distributions for all eight motifs within the DBLP database.

Figure A.1.6: The effect on the average motif link weight when one gradually removes the
heaviest instances of that motif.
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Figure A.1.7: The number of papers respectively co-authors per motif edge for the DBLP
database.

author

publication

Figure A.1.8: Schematic representation of the content proximity plane. Distance among authors
and publications enters the computation of the scores, eqs. (1) and (2).

case of selecting authors.
To simulate the two processes, paper production and citing papers, the number of authors

N and the number of publications M has to be selected, as well as two distributions: authors
per paper and citations per paper. Furthermore, to reflect the process of aging we introduce
another parameter A as the maximal number of publications of an author.

Then, the workflow of the generative model is as follows: Choose the number of authors
N and place them in the content proximity plane. Choose the number of publications M . For
each publication choose the number of its authors, k, and place the publication into the content
proximity plane, as well. Then, choose k authors from the plane according to their proximity
and impact, and publish the paper. Finally, choose the number l of existing publications the
new publication should cite and choose those publications similarly according to their proximity
and impact. This process is illustrated in Figure A.1.8.

For a given publication p, we compute a score for each author in the plane. Then, we choose
the k authors who should write p from the distribution of all author scores. The score of an
author a is given by:

Score(a) := α1(Rank(a) + 1)β1e−
∆ap

2 + (1− α1)
1

N
(A.1.1)

where ∆ap is the Euclidian distance between a and p in the proximity plane and Rank(a) is
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the number of citations of all publications already published by a. In other words, α1 balances
between selecting authors according to their impact (large β1) or their proximity in the plane
to p (small β1), and between random assignment of authors to papers.

After an author a has published her/his first publication, it stays in the proximity plane for
the next A publications. Afterwards, the author is marked retired and taken down from the
plane and thus from the list of available authors for further publications.

In analogy to the paper production process, we select the papers each new publication
should cite from the distribution of all paper scores. The score of a paper p is given by:

Score(p) := α2(Rank(p) + 1)β2e−
∆ppnew

2 + (1− α2)
1

M
(A.1.2)

where ∆ppnew
is the Euclidian distance between p and the new publication pnew, and Rank(p)

is the number of citations of p. Hence, α2 balances between citing papers according to their
impact (large β2) or their proximity in the plane (small β2), and between random citation of
papers.

Once all M papers have been published, we extract the collaboration network by connecting
any two authors that have published together and assign the citation frequencies as edge
weights according to definitions 1 through 4. Hence, our model produces weighted co-authorship
networks.

Although our model naturally reflects the paper production and paper citation processes, it
has a rather large (and heterogeneous) parameter space. One has to choose the lifetime of the
authors A, all α1, β1, α2 and β2, as well as the distribution of authors per paper and citations
per paper.

In order to check, whether the empirical findings can in principle be represented in this
simple model, we take the DBLP snapshot from 1990 and approximate the network using
simulated annealing with respect to degree distribution, citation distribution and motif content.
We take the same number of authors and papers as the original network and the empirical
distribution of authors per paper. The distribution of citation per paper cannot be reconstructed
from our database. Therefore, each new paper in our model cites 10 already existing papers.

The co-authorship networks generated by our model allow us to repeat the motif analysis
presented in the main paper. Therefore, we perform two different evolutions based on simulated
annealing. In the first case we aim at the degree distribution, the citation distribution and
motif content of the real world network. The objective function is composed of the differences
with respect to those three measures between the real world and the generated networks. In
the second case the objective function is augmented with another term, which minimizes the
difference between the ratio of the weight of motif 4 (i.e. its average citation frequency) to
the box motif in the real world and the generated network. The results of both evolutions are
shown in Figures A.1.9, A.1.10, A.1.11 and A.1.12.

It is easy to observe that our model not only approximates the real world network very well
with respect to its topological properties, but also it is capable of reconstructing the unexpected
high edge weight of the box motif.

It is a trilling question to explore and determine the size and the form of the whole solution
space. Nevertheless, the preliminary results of our generative model show that the right
combination of simple network processes like aging, paper production, paper citation, as well
as social factors like proximity and impact, can reproduce the success of the box motif, revealed
in our analysis.
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Figure A.1.9: Approximating the DBLP snapshot from 1990. Once with respect to degree
distribution, citation distribution and motif content only, and once augmented with the ratio in
weight of motif 4 to motif 6.
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Figure A.1.10: Approximating the degree distribution of the DBLP snapshot from 1990. Once
with respect to topological properties only and once augmented with the ratio in weight of motif
4 to motif 6.
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Figure A.1.11: Approximating the ciation distribution of the DBLP snapshot from 1990. Once
with respect to topological properties only and once augmented with the ratio in weight of motif
4 to motif 6.
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Figure A.1.12: Approximating the motif content of the DBLP snapshot from 1990. Once with
respect to topological properties only and once augmented with the ratio in weight of motif 4 to
motif 6.
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