
Directed Degree Sequences

Dissertation zur Erlangung des akademischen Grades
doctor rerum naturalium (Dr. rer. nat.)

Martin-Luther-Universität Halle-Wittenberg
Naturwissenschaftliche Fakultät III

Agrar- und Ernährungswissenschaften, Geowissenschaften und Informatik
(Institut für Informatik)

eingereicht von M. Sc. Annabell Berger
geb. am 27. Mai 1974 in Jena

Halle (Saale), 10. Oktober 2011

1. Reviewer: Prof. Dr. Matthias Müller-Hannemann
2. Reviewer: Prof. Dr. Dieter Rautenbach

Day of the defense: December, 12th 2011

Ein kleiner Einblick in diese

Doktorarbeit für interessierte

Laien

“Wohin Du auch gehst, geh mit deinem ganzen Herzen.” (Konfuzius)

Meine Arbeit beschäftigt sich mit mathematischen Objekten, die man Digraphen

nennt. Hier habe ich einen Digraphen gemalt.

Er besteht aus sogenannten Knoten und Pfeilen. Die Knoten sind die kleinen schwarzen

Kreise, die durch Pfeile miteinander verbunden werden können. Dabei müssen bestimm-

te Regeln eingehalten werden. Zwei Knoten dürfen mit höchstens einem Pfeil in einer

Richtung miteinander verbunden werden. Somit ist es zwar erlaubt, dass zwei entge-

gengesetzt gerichtete Pfeile zwischen zwei Knoten existieren. Jedoch sind in die gleiche

Richtung zeigende Pfeile verboten. Hier sehen Sie ein Bild von allen erlaubten und nicht

i

erlaubten Möglichkeiten, Pfeile zu zeichnen.

Zählen Sie nun die Anzahl der eingehenden Pfeile und die Anzahl der ausgehenden

Pfeile an einem bestimmten Knoten in unserem Digraphen.

In unserer Zeichnung enden zwei Pfeile in dem gelb markierten Knoten mit ihrer Pfeil-

spitze und zwei Pfeile beginnen dort. Wir ordnen diesem Knoten ein Zahlenpaar
(

2
2

)

zu. Nun bestimmen wir das jeweils passende Zahlenpaar für jeden anderen Knoten in

unserem Digraphen.

Wir erhalten eine Folge von Zahlenpaaren. Für unseren Digraphen ist das die Fol-

ge
(

2
2

)
,
(

0
1

)
,
(

1
3

)
,
(

0
2

)
,
(

2
0

)
,
(

2
1

)
,
(

2
0

)
. Damit wir uns besser über solche Folgen unterhalten

können, geben wir ihnen einen besonderen Namen. Wir bezeichnen sie als Digraph-

Folgen. In meiner Arbeit beschäftige ich mich mit Digraph-Folgen, aber interessanter

Weise muss ich das Problem genau umgekehrt betrachten. Damit meine ich, man gibt

mir eine beliebige Digraph-Folge und ich muss herausfinden, ob es einen passenden

ii

Digraphen gibt. Wenn wir also die Digraph-Folge
(

2
2

)
,
(

0
1

)
,
(

1
3

)
,
(

0
4

)
,
(

2
0

)
,
(

2
1

)
,
(

2
0

)
betrach-

ten, können wir schon einen passenden Digraphen zeichnen. Die Frage ist aber, gibt es

ein Rezept, mit dessen Hilfe für jede Digraph-Folge ein passender Digraph konstruiert

werden kann? Die Antwort kann ich bejahen und das ist schon seit 30 Jahren bekannt.

Etwas schwieriger wird es, wenn weitere Anforderungen gestellt werden, die in dem

Digraphen erfüllt sein sollen. Man könnte beispielsweise fragen, ob es für eine Digraph-

Folge einen Digraphen gibt, der keine Kreise enthält. Dazu sollte ich erklären, was das

Wort Kreis in einem Digraphen überhaupt bedeutet. Vielleicht sind sie schon einmal

bei einer Wanderung “im Kreis gelaufen” und zu ihrem Ausgangspunkt zurückgekehrt,

weil sie sich verlaufen haben? Ganz ähnlich verhält es sich mit Kreisen auf einem Di-

graphen. Stellen Sie sich vor, sie könnten auf einem Digraphen von Knoten zu Knoten

spazieren gehen. Dabei dürfen sie immer auf den Pfeilen in ihrer natürlichen Richtung

laufen. Die Pfeile sind sozusagen Einbahnstraßen. Wenn es möglich ist, von einem Kno-

ten wegzulaufen, etwas herum zu spazieren und am Ende wieder am Startknoten zu

landen, dann sind Sie im Kreis gelaufen. In unserem Digraphen oben gibt es keinen

Kreis, der gelaufen werden könnte. Deswegen zeichne ich Ihnen ein Beispiel, wo ein

solcher Kreis (rot hervorgehoben) vorhanden ist.

In meiner Arbeit habe ich versucht, eine Lösung zu finden für die folgende Aufgabe:

Gegeben sei eine Digraph-Folge. Kann ich ein Rezept finden, was mir einen passen-

den Digraphen ohne Kreise konstruiert oder mir mit hundertprozentiger Sicherheit

sagt, dass es keinen Digraphen ohne Kreise für diese Folge gibt? Ich konnte diese Auf-

gabe zwar für jede beliebige Digraph-Folge lösen, allerdings war ich lange Zeit nicht

vollständig zufrieden mit dieser Lösung. Der Grund besteht darin, dass es Digraph-

Folgen gibt, bei der meine vorgeschlagene Konstruktion für den Bau eines passenden

Digraphen in einigen Fällen zu lange dauert. Bis kurz vor Abgabe meiner Arbeit wuss-

te ich nicht, ob eine bessere Lösung existiert und ich diese nur nicht finden kann.

iii

André Nichterlein (Nic11), ein Mathematiker aus Berlin, hat diese Frage vor kurzem

beantworten können. Er zeigte, dass es sich um ein “schweres” Problem handelt. Viele

Mathematiker und Informatiker gehen heute davon aus, dass so geartete Probleme kei-

ne effiziente Lösung für alle auftretenden Fälle besitzen. Für eine bestimmte Art von

Digraph-Folgen konnte ich jedoch eine sehr elegante, schöne Lösung finden, die sehr

leicht umgesetzt werden kann. Kehren wir zu unserem Beispiel zurück. Bestimmen wir

die Digraph-Folge des zuletzt gezeichneten Digraphen.

Es handelt sich um exakt die gleiche Digraph-Folge wie für den Digraphen in un-

serem ersten Beispiel. Klar ist aber auch, dass es sich hierbei um zwei verschiedene

Digraphen handeln muss, denn im ersten konnten wir keinen Kreis finden. An dieser

Stelle möchte ich kurz den Gedanken unterbrechen und erklären, wie ich überhaupt

zu solchen Fragen kam, die zugegebenermassen zuerst einmal wie eine sehr verspielte

Knobelei aussehen.

Die Verbindung zur Wirklichkeit findet sich in dem Objekt des Digraphen. Stellen

Sie sich die Knoten als Bahnhöfe vor und die Pfeile als Bahnstrecken zwischen zwei

Bahnhöfen, dann erhalten wir ein Bahnnetz. Oder denken Sie sich die Knoten als Men-

schen und einen Pfeil zwischen zwei Menschen, wenn einer der beiden die Meinung

vertritt, er sei mit dem anderen befreundet. Natürlich ist in einem solchen Digraphen

der Pfeil meistens auch in der anderen Richtung vorhanden. Weiterhin könnte man auch

die verschiedenen im Körper ablaufenden chemischen Reaktionen, die teilweise vonein-

ander abhängen, in einem Digraphen darstellen. Betrachten wir mal ein ganz anderes,

durch das Darwinjahr wieder mehr ins Bewusstsein getretene Thema. Verschiedene Fin-

kenarten auf den Galapagosinseln. Genau genommen gibt es 17 Galapagosinseln und

13 verschiedene Finkenarten, die auf diesen Inseln leben. Wir ordnen jeder Finkenart

genau einen Knoten und jeder Insel genau einen Knoten zu und verbinden eine Fin-

iv

kenart durch einen Pfeil genau dann mit einer Insel, wenn diese Finkenart auf dieser

Insel lebt. Dann erhalten wir einen Digraphen mit einer zugehörigen Digraph-Folge.

Hier zeichne ich nur ein schematisches Beispiel für den Digraphen, da das Original zu

groß wäre.

Solche Digraphen aus der realen Welt werden heute zu verschiedenen Zwecken von

verschiedenen Wissenschaftlern in Physik, Informatik, Biologie, Soziologie und Chemie

untersucht. Man möchte mehr über die Struktur dieser Digraphen erfahren, um kom-

plexe Zusammenhänge besser verstehen zu lernen. Der Wunsch dieser Wissenschaftler

besteht darin, ganz besondere Auffälligkeiten in den Digraphen zu finden. Es stellt

sich die Frage, wie identifiziert man eigentlich “Extravaganzen”. Das ist im Allgemei-

nen nur möglich, wenn man Kenntnis von einer Art Normalität besitzt, mit der man

vergleichen und zu der man eine besondere Abweichung feststellen kann. Solche Nor-

malitäten könnten bei Digraphen andere, sozusagen zufällig gewürfelte Digraphen, zu

exakt der gleichen Digraph-Folge sein. Stellen Sie sich beispielsweise vor, Sie stellen

fest, dass der Digraph der Darwinfinken keinen Kreis enthält. Ein ungenauer Betrach-

ter könnte das für eine Auffälligkeit halten. Beschäftigt man sich jedoch näher mit

der zugehörigen Digraph-Folge, dann kann man leicht feststellen, dass kein passender

Digraph einen Kreis enthalten kann. Die Erklärung dieses Phänomens liegt in der Tat-

sache, dass jedes Zahlenpaar der zugehörigen Digraph-Folge
(

0
1

)
,
(

0
2

)
,
(

0
1

)
,
(

0
1

)
,
(

2
0

)
,
(

2
0

)
,
(

1
0

)

eine Null enthält. Das bedeutet, ein passender Digraph enthält entweder nur Knoten

mit eingehenden Pfeilen oder nur Knoten mit ausgehenden Pfeilen. Knoten in einem

Kreis müssen jedoch mindestens einen eingehenden Pfeil und einen ausgehenden Pfeil

enthalten, denn sonst kann man den Knoten nicht wieder verlassen. Die Kreisfreiheit

v

liegt sozusagen in der “Natur” der Digraph-Folge der Darwinfinken. Würde man diese

Eigenschaft nicht so einfach herausfinden können, wäre aber in der Lage 100 weitere

Digraphen der Digraph-Folge der Darwinfinken möglichst zufällig zu erzeugen, dann

würde man bei jedem dieser Digraphen feststellen, dass er keinen Kreis enthält und

schlussfolgern, dass es sich nicht um eine Besonderheit beim Digraphen der Darwinfin-

ken handeln kann. Genau mit dieser Frage:

“Wie erzeugt man weitere Digraphen für eine Digraph-Folge – und zwar so,

dass jeder Digraph mit der gleichen Wahrscheinlichkeit konstruiert wird?”

beschäftigt sich meine Arbeit auch. Sie werden vielleicht einsehen, dass es nicht immer

möglich ist, alle Digraphen zu malen und einen zufällig auszuwählen. Häufig gibt es

einfach zu viele und selbst “die beste Rechentechnik der Welt” kann das ab einer be-

stimmten Größe der Digraphen nicht mehr leisten. Digraphen aus der realen Welt haben

oft Tausende, manchmal gar Millionen von Knoten. Man bedient sich hier einer sehr

schönen, einfachen Idee. Man nimmt in einem Digraphen sehr kleine Veränderungen

vor und achtet dabei darauf, dass die Digraph-Folge erhalten bleibt. Man kann z.B. die

Pfeilenden zweier nicht benachbarter Pfeile miteinander vertauschen, falls das nicht un-

seren Regeln – wie man Pfeile malen darf – widerspricht. In unserem Beipielbild können

Sie die Enden der Pfeile von Knoten 1 zu 5 und 6 zu 7 miteinander vertauschen. Wir

erhalten die neuen Pfeile von Knoten 1 zu 7 und 6 zu 5.

Das besondere an solch einem Tausch ist, dass die Anzahl der eingehenden Pfeile und

der ausgehenden Pfeile an keinem Knoten verändert werden. Somit erhalten wir einen

neuen Digraphen zur gleichen Digraph-Folge. Die Pfeilenden der Pfeile von Knoten 3

nach 7 und von Knoten 1 nach 6 dürfen wir nicht tauschen, da ein neuer Pfeil von

3 nach 6 entstehen würde, welcher aber schon vorhanden ist. Nun könnte man einen

solchen Tausch der Pfeilenden sehr oft wiederholen. Es stellt sich heraus, dass man –

vi

unter Beachtung einiger, kleiner Regeln – bei sehr vielen Digraph-Folgen auf diese Art

alle Digraphen erzeugen kann. Allerdings – und das ist der Haken an der Sache – müsste

man diese Pfeilendenvertauschungen unendlich oft wiederholen, wenn man sicher sein

möchte, dass jeder Digraph mit der gleichen Wahrscheinlichkeit erzeugt wird, was ja

die eigentliche Aufgabe gewesen ist. Ich habe in meiner Arbeit bewiesen, für welche

Typen von Digraph-Folgen dieses Ergebnis stimmt und ich habe auch herausgefunden,

welche weiteren kleinen Veränderungen in Digraphen, für die das Pfeilendentauschen

nicht ausreicht, vorgenommen werden müssen. Was ich leider nicht beweisen konnte,

ist, ob es möglich ist, nach relativ kurzer Anzahl der Vertauschungen aufzuhören, weil

man weiß, dass man nur winzige Abweichungen vom gewünschten Ergebnis messen

würde. Manchmal kann man das bei anderen Problemen tatsächlich zeigen. Eines die-

ser Probleme kennt jeder. Es handelt sich um das Kartenmischen beim Kartenspiel. Vor

einiger Zeit haben Wissenschaftler ausgerechnet, wie of man “Riffeln” muss, um einen

wirklich gut durchmischten Kartenstapel von 52 Karten zu erhalten. Riffeln bedeutet,

man hebt einen Stapel ab und lässt die Karten beider Stapel einigermassen abwechselnd

zu einem neuen Stapel fließen. Man sagt, 7 Mal sollte man nacheinander mindestens

riffeln, mehr als 12 Mal braucht man nicht und es wurde gezeigt, dass sechs Mal nicht

ausreichen (AZ04). Die Analogie zu unserem Problem besteht darin: Einmal Riffeln

entspricht einmal Pfeilendentauschen in unserem Digraphen. Wir verändern jedes Mal

den aktuellen Zustand des Kartenstapels bzw. des Digraphen ein wenig. Beim Karten-

mischen kann man beweisen, dass man nicht unendlich lange Riffeln muss, um gut zu

mischen. Beim unserem Problem ist es ein offene Frage, die noch beantwortet werden

muss. In der praktischen Anwendung geht es beim zufälligen Erzeugen eines Digraphen

häufig ähnlich zu, wie zu Hause beim Kartenspiel. Man riffelt einige Male und wenn

man den Eindruck hat, der Stapel ist gut gemischt, hört man auf. Überprüfen wird es

kaum Einer.

vii

viii

Acknowledgements

Meinem Doktorvater Matthias: Unsere Diskussionen sind zu einem er-

schreckend wichtigen Ritual geworden. Danke für diesen produktiven Spaß!

Ivo Hedtke: Du hast mir den LATEX-Himmel gezeigt. Auch wenn ich nicht

weiß, ob ich dort jemals hinkomme. Danke!

Jessica Jacobs: Many thanks for your helpful “native speaker comments”.

x

Contents

Ein kleiner Einblick in diese Doktorarbeit für interessierte Laien i

List of Figures xiii

1 Degree Sequences – an introduction to a classic topic in theory as well

as in practice 1

1.1 Dag Sequences in Brief . 2

1.2 Uniformly Sampling Digraph Realizations in Brief 5

2 Fundamental Notions and Notation 9

3 Digraph Sequences – Realization and Characterization 15

3.1 Digraph Realizations . 15

3.2 Digraph Characterizations . 18

4 Dag Sequences 25

4.1 Dag Realizations . 25

4.1.1 Opposed Sequences . 27

4.1.2 General Dag Realization . 38

4.2 How to Attack the NP-complete Dag Realization Problem in Practice . 49

4.3 Randomized Algorithms . 54

4.4 Characterization of Strongly Opposed Sequences 59

5 Uniform Sampling of Digraph Realizations 75

5.1 Popular Variants for Sampling Graph and Digraph Realizations 75

5.2 Random Walk on the State Digraph of Digraph Realizations 81

5.2.1 Symmetric differences of two different digraph realizations 83

xi

CONTENTS

5.2.2 Random Walks . 89

5.3 Arc-Swap Sequences . 91

5.4 Characterization of Arc-Swap Sequences 91

5.5 Practical Insights and Applications . 102

6 Conclusion and Future Work 107

References 111

xii

List of Figures

1.1 A possible dag realization G for sequence S. 2

2.1 Example: Two digraph realizations G and G′ with the same digraph

sequence. 13

2.2 Decomposition of the symmetric difference G∆G′ of Figure 2.1 into the

minimum number of alternating directed cycles. 13

4.1 Proof of Theorem 4.2: Details of the directed acyclic digraph G. 30

4.2 Proof of Theorem 4.2: G∗ with directed cycles. 32

4.3 Proof of Theorem 4.2: Digraph G∗∗ without directed cycles. 33

4.4 Recursion tree for Example 4.4. 43

4.5 Case 1: no underlying undirected path between q and vi in G. 46

4.6 Case 2: one unique underlying undirected path P between q and vi. . . 46

4.7 A larger source q′ is not connected with vertex vi. 47

4.8 A larger source q′ is not connected with vertex vi and there exists an

underlying path P between q to vj . 48

4.9 Percentage of (non-trivial) lexmax sequences for systematically gener-

ated (blue squares) and randomly generated sequences (red triangles)

with 9 tuples and different m ∈ {5, . . . , 35}. 50

4.10 Percentage of systematic generated sequences S with their difference

d(S) to opposed with 9 tuples and m ∈ {9, . . . , 35}. 51

4.11 Percentage of randomized generated sequences S with their difference

d(S) to opposed with 9 tuples and m ∈ {9, . . . , 35}. 52

4.12 Fraction of systematic non lexmax sequences with 9 tuples and different

densities m ∈ {9, . . . , 35} and varying difference to opposed d(S). 53

xiii

LIST OF FIGURES

4.13 Bounding graph GS for sequence S :=
(

0
3

)
,
(

0
1

)
,
(

1
2

)
,
(

2
3

)
,
(

4
4

)
,
(

1
1

)
,
(

1
0

)
,
(

2
0

)
,
(

3
0

)
. 55

4.14 Success probability p(m) for all non-trivial sequences with 9 tuples with

four versions of randomized algorithms, and the fraction of lexmax se-

quences. 58

4.15 Success probability p(m) for all non-reducible non-lexmax sequences of

9 tuples with four versions of randomized algorithms and percentage of

non-reducible non-lexmax sequences in the set of all non-trivial sequences. 59

5.1 Example of a state digraph. 76

5.2 Example of digraphs where no 2-swap operation can be applied. 78

5.3 Digraph class where the switching algorithm fails. 78

5.4 Further digraph class where the switching algorithm fails. 79

5.5 Transforming G from Figure 2.1 into G′ by a sequence of swap operations. 83

5.6 Alternating oriented cycles (G∆G′)i and (G∆G′)j of symmetric differ-

ence G∆G′. 84

5.7 Symmetric differenceG∆G′ which only possesses one type of path, namely

Q, from Proposition 5.1. 85

5.8 Case 1 (i) and (ii) from Proposition 5.2 with exactly four different vertices. 86

5.9 The four distinct cases of Lemma 5.2. 88

5.10 Lemma 5.4 case b): arc (v1, v4) /∈ A(G) ∪A(G∗). 94

5.11 Lemma 5.4 case b): arc (v1, v4) ∈ A(G) ∩A(G∗). 95

5.12 Lemma 5.4 Induction step: P contains no arc from G〈V ′〉 or its reorien-

tation. 95

5.13 Lemma 5.4 Induction step: P contains exactly one arc from G〈V ′〉 and

its reorientation . 96

5.14 Lemma 5.4 Induction step: Two adjacent arcs from G〈V ′〉 and its reori-

entation in G∆G∗. 97

5.15 Lemma 5.4 Induction step: Two non-adjacent arcs from G〈V ′〉 and its

reorientation in G∆G∗. 98

5.16 An example for the symmetric differences G∆G∗ and G
′
∆G∗. Exactly

one arc (v1, v2) ∈ G∆G′ is contained in G∆G∗. 99

xiv

1

Degree Sequences – an

introduction to a classic topic in

theory as well as in practice

The realization of graphs and digraphs with prescribed degree sequences has attracted

researchers for several decades tracing back to Havel, Hakimi, Erdős, Gallai, Gale,

Ryser, Fulkerson, Chen, Kleitman and Wang (Hav55, Hak62, EG60, Gal57, Rys57,

Ful60, Che66, KW73). Clearly, this problem is a classical graph theoretic problem. On

a second view it is much more than a problem in graph theory because it has been

considered in several different scientific communities with completely different notions

such that many results were reinvented repeatedly until today. This shows the relevance

of these problems in theory as well as in practice. We started to deal with several arising

new problems in this context as a physicist asked for a solution of a “little problem”. He

works in the field of network analysis and wanted a random solution for the following

problem:

Problem 1.1 (dag realization problem). Given is a finite sequence S :=
(
a1

b1

)
, . . . ,

(
an
bn

)

with ai, bi ∈ Z+
0 . Does there exist an acyclic digraph (without parallel arcs) G = (V,A)

with the labeled vertex set V := {v1, . . . , vn} such that we have indegree d−G(vi) = ai and

outdegree d+
G(vi) = bi for all vi ∈ V ?

If the answer is “yes”, we call sequence S dag sequence and the acyclic digraph G

(a so-called “dag”) a dag realization. Consider for example the dag realization G in

Figure 1.1 for the given dag sequence
(

0
2

)
,
(

0
1

)
,
(

1
3

)
,
(

2
2

)
,
(

2
1

)
,
(

2
0

)
,
(

2
0

)
.

1

1. DEGREE SEQUENCES – AN INTRODUCTION TO A CLASSIC
TOPIC IN THEORY AS WELL AS IN PRACTICE

Figure 1.1: A possible dag realization G for sequence S.

Unless explicitly stated, we assume that a sequence does not contain any zero tuples
(

0
0

)
. Moreover, we will tacitly assume that

∑n
i=1 ai =

∑n
i=1 bi, as this is obviously a

necessary condition for any realization to exist, since the number of ingoing arcs must

equal the number of outgoing arcs. Furthermore, we denote tuples
(
ai
bi

)
with ai > 0 and

bi = 0 as sink tuples, those with ai = 0 and bi > 0 as source tuples, and the remaining

ones with ai > 0 and bi > 0 as stream tuples.

The physicist did not only want one arbitrary solution of the dag realization prob-

lem. Instead, he additionally demanded a randomly picked solution from the set of

all dag realizations taken with the same probability. To the best of our knowledge

there is no previous work dealing with this problem. Therefore, we started to study

the problem in two different ways:

1. Is a given dag sequence realizable? How can we get a dag realization?

2. What is known about the so-called uniform sampling of graph or digraph realiza-

tions?

Let us first consider question 1.

1.1 Dag Sequences in Brief

Very recently Nichterlein (Nic11) proved the NP-completeness of the dag realization

problem. Let us focus on related problems, i. e. , a relaxation which is solvable in

polynomial running time and an NP-complete generalization. The digraph realization

problem is a relaxed version of the dag realization problem without the condition of

2

1.1 Dag Sequences in Brief

acyclicity. The corresponding sequence of a “yes”-instance we denote as digraph se-

quence and the digraph G is called a digraph realization. This problem can either be

solved in polynomial running time using a recursive algorithm (KW73) or by a complete

characterization (Gal57, Rys57, Ful60, Che66) leading to n inequalities which have to

be checked. Now, we consider a generalization of our problem.

Problem 1.2 (f -factor dag problem). Given is a sequence S :=
(
a1

b1

)
, . . . ,

(
an
bn

)
and a

digraph G′ = (V,A) with a labeled vertex set V := {v1, . . . , vn}. Does there exist an

acyclic subdigraph G = (V,A′) of G′ with d−G(vi) = ai and d+
G(vi) = bi for all vi ∈ V ?

The difference to our dag realization problem is, that there the digraphG′ is always a

complete digraph. The hardness of this generalization can easily be seen by considering

sequence S :=
(

0
1

)
,
(

1
1

)
, . . . ,

(
1
1

)
,
(

1
0

)
. It possesses only one unique dag realization (up to

isomorphy), namely a Hamiltonian path. Hence, a polynomial time algorithm solving

our f -factor dag realization problem, could find in the same way a directed Hamiltonian

path on digraph G′.

Theorem 1.1 (f -factor dag problem). The f -factor dag problem is NP-complete.

Again, a relaxation of the f -factor dag problem to the f -factor problem – by omit-

ting the property of acyclicity – leads to a polynomial time algorithm (Tut81). We

solved the dag realization problem for special classes of sequences, made several ex-

periments for unsolved classes and now as a result we can give important structural

insights. In the following, we give an overview about our scientific results for question 1.

a) We show how to solve the dag realization problem for an important class of

sequences – so called opposed sequences – in linear time. For that, we give a

recursive algorithm (Section 4.4).

b) We give a complete characterization for a special subclass of opposed sequences

–strongly opposed sequences. This means we can show that it is sufficient to check

n inequalities, where n is the number of tuples of a given sequence S. It turns

out that we can apply in the case of strongly opposed sequence exactly the same

classical characterizations as for general digraph sequences. Hence, a strongly

opposed sequence (with some further necessary conditions) is a dag sequence if

and only if it can also be realized as a digraph.

3

1. DEGREE SEQUENCES – AN INTRODUCTION TO A CLASSIC
TOPIC IN THEORY AS WELL AS IN PRACTICE

c) We have a general result for all sequences which significantly improves upon a

straightforward exponential time algorithm but which may still run in exponential

time (Subsection 4.1.2).

d) We had a conjecture (when the complexity of the dag realization problem was

still open) that a combination of the general algorithm in c) and a certain strat-

egy leads to a polynomial time algorithm for all sequences. We disproved our

conjecture by constructing a counter-example. On the other hand, we show in

experiments that a large fraction of systematically constructed dag sequences can

be efficiently solved by this strategy. Another striking observation is that this

simple disproved linear-time algorithm solves a set of real-world instances from

different domains, namely ordered binary decision diagrams (OBDDs), train and

flight schedules, as well as instances derived from food-web networks without

any exception. The vertex degrees of OBBDs always correspond to opposed

sequences. Likewise, we observe that the dag sequences corresponding to the

train and flight schedules are opposed as well. Hence, we have a linear-time algo-

rithm for their corresponding sequences with a). To explore possible reasons for

the observation that so many non-opposed sequences are solved successfully by

our strategy we started several experiments leading to interesting insights. This

motivates us to develop characteristics like dag density and “distance to provably

easy sequences” which can indicate how easy or difficult a given sequence can be

realized.

e) We propose a randomized algorithm which exploits our structural insight on topo-

logical sortings and uses a number of reduction rules. We compare this algorithm

with other straightforward randomized algorithms in extensive experiments. We

observe that it clearly outperforms all other variants and behaves surprisingly

well for almost all instances.

f) We summarize our insights of d) and e) in a “strategy for practitioners”. In

systematic experiments we show that a combination of the lexmax strategy and

our randomized algorithm can efficiently solve the dag realization problem for

almost all sequences.

4

1.2 Uniformly Sampling Digraph Realizations in Brief

1.2 Uniformly Sampling Digraph Realizations in Brief

Let us now consider the problem of uniformly sampling graph or digraph realizations.

It also remains open in a practical sense. In a break-through paper (Fulkerson Prize

2006), Jerrum, Sinclair, and Vigoda (JSV04) presented a polynomial-time approxi-

mation scheme for a famous problem, i.e., determining the permanent (the number of

perfect matchings in bipartite graphs) which is known to be]P -hard (Val79). A part of

their solution is to sample perfect matchings uniformly. The connection to our digraph

realization problem can be seen by applying the following steps.

1. Reduce it to a directed f -factor problem on an underlying complete digraph.

2. Transform it into an undirected f -factor problem on an undirected bipartite

graph.

3. Modify it to a perfect matching problem on a bipartite graph via a construction

by Tutte (replace each vertex by a certain bipartite graph), see (Tut52).

Hence, their approach can be used to sample arbitrary bipartite graphs and arbi-

trary digraphs with a given (di)graph sequence in O(n14 log4 n) via the above-mentioned

reduction which is far from practical. Bezakova et al. (BBV07) improve these upper

bounds to O(n11 log5 n). The reduction to a perfect matching problem is different to all

other natural approaches which are extensively used by scientists in physics, biology or

chemistry. The reason may be that this reduction is not only too slow for practical use

but also quite complicated. It is a very impressive work to have proven the complexity

status of this problem, but it is not something that one would implement. However, it

is the only known approach with provable polynomial running time. Further popular

variants are the configuration model (also called pairing model) and the switching algo-

rithm – mostly formulated for undirected graphs – for which we give more details and

discuss recent work in the following chapters. Here, we focus on the switching algorithm

which is known for the uniform sampling problem of graph realizations. The idea is as

follows: It starts with a given graph realization and replaces two non-adjacent edges

{a, b}, {c, d} either by {a, c}, {b, d} or by {a, d}, {b, c}, provided that both new edges

have not been contained in the current graph realization before this so-called swap op-

eration. In the latter case one has to maintain the actual graph realization. Note, that

5

1. DEGREE SEQUENCES – AN INTRODUCTION TO A CLASSIC
TOPIC IN THEORY AS WELL AS IN PRACTICE

the degrees of vertices a, b, c and d remain unchanged during this procedure. Hence,

the graph sequence does not change. It was proven (via Markov chains, more details

follow in the next chapters) that there exists a sequence of swap operations between

each pair of different graph realizations for one given sequence. If one numbers the

steps of swap operations from 1 to t, one can prove that the distribution of all graph

realizations tends for t → ∞ to the uniform distribution. To get this result, it is very

important to choose each pair of non-adjacent edges with the same probability and also

to count the swap operations which were rejected because at least one edge was already

contained in the actual graph realization. It is easy to give counter-examples if these

conditions are not satisfied. The question for us was to find out if we get an analogous

result for digraph realizations. At the beginning of our work we were confronted with

several popular claims arising from the community of complex network analysis, which

were as follows:

� It is sufficient to perform only 2-swaps in the directed case, i. e. , replace two

arcs (a, b), (c, d) by (a, d), (c, b) provided that both arcs have not been contained

before.

� This method samples a digraph realization uniformly at random and quickly.

We conclude this section with a summary of our scientific results, answering some

of the above formulated claims, by “yes – sometimes”, “no – in general” and “we don’t

know how fast this process converges”.

� For the case of digraph realizations we explain that a popular switching algorithm

fails in general, because it is not possible to find a sequence of swap operations

for each pair of digraph realizations of a digraph sequence.

� We prove that a sequence of swap operations and a further operation 3-cycle

reorientation, i. e. , simply reorient the arcs of a directed induced 3-cycle, can

be constructed for each pair of different digraph realizations. Applying classical

results from Markov chains (random walks on graphs) we show that an infinite

number of such steps lead to a uniform distribution for all digraph realizations

of a given digraph sequence. We were not able to show the rapidity of the con-

vergence. After proving these results, we realized that Rao et al. (RJB96) have

6

1.2 Uniformly Sampling Digraph Realizations in Brief

already considered the problem in the context of 0, 1-matrices. They introduced

structurally equivalent operations (3-cycles correspond to so-called hexagons),

but work on a different Markov chain.

� We study under which conditions it is possible to apply only swap operations

leading to a provable uniform sampling. We denote this class of sequences by arc

swap sequences. Such sequences can be identified in O(m2) time using matching

techniques.

� We prove that a certain state digraph for digraph sequences which are not arc

swap sequences – (in a state digraph each vertex corresponds to a digraph realiza-

tion for one given digraph sequence) – decomposes into a number of isomorphic

strongly connected components. We can also efficiently determine the number of

these components. These results give a theoretical foundation to compute certain

network characteristics for example the motif content (MSOI+02) on unlabeled

digraphs only using swap operations. However, for other network characteris-

tics, for example betweenness centrality on arcs (KLP+05), this generally leads

to incorrect estimations.

In our work we concentrate on two representations of our problem — the graph-

theoretic approach and matrices with entries “one” and “zero”. We do not want to

prevent other views on our problem. The following short overview about further for-

mulations of the digraph realization problem or its sampling variant shows the natural-

ness of these problems. At different times, they arose in several communities and have

attracted many researchers.

Matrices of zeros and ones with row and column sum vectors. Let A be a

matrix of m rows and n columns and let the entries of A be the integers 0 and 1. Fur-

thermore, we denote by ri the ith row sum and by ci the ith column sum. We consider

the row sum vector R := (r1, . . . , rm) and the column sum vector C := (c1, . . . , cn).

Clearly, we have
∑m

i=1 ri =
∑n

i=1 ci. The search for a matrix with given row sum vector

R and column sum vector C, where m = n, corresponds to the digraph realization

problem with at most one loop for each vertex if we consider matrix A as an adjacency

matrix of a digraph realization. Forbidding entries ‘one’ on the diagonal leads exactly

to the digraph realization problem. On the other hand, matrix A can be seen as the

7

1. DEGREE SEQUENCES – AN INTRODUCTION TO A CLASSIC
TOPIC IN THEORY AS WELL AS IN PRACTICE

adjacency matrix of a bipartite graph where row indices correspond to vertices of one

independent vertex set and column indices to vertices of the second one. Let us consider

the powers Ak of the adjacency matrix. An entry Akij of matrix Ak maps to the number

of directed walks from vertex vi to vertex vj of length k. For acyclic digraphs (dags)

the length of a walk is upper bounded by n − 1. In other words, each directed walk

is already a directed path. Otherwise, we would find directed cycles. Hence, we have

Ak = 0 for all k ≥ n. This is one possible definition of nilpotent matrices. We conclude

that the adjacency matrix of a dag is a nilpotent matrix. Hence, the dag realization

problem is the problem of finding a nilpotent matrix for given row and column sums.

Sometimes, these matrices are also called Binary Contingency Tables corresponding to

a bipartite graph realization problem.

Integer linear programming. Given is the row sum vector R := (r1, . . . , rn) ∈ Zn

and the column sum vector C := (c1, . . . , cn) ∈ Zn.
We define the variables xij ∈ {0, 1} for all i, j ∈ {1, . . . , n} with i 6= j and demand

n∑

j=1

xij = ai for all i ∈ {1, . . . , n} and

n∑

i=1

xij = bj for all j ∈ {1, . . . , n}.

This is a formulation for the digraph realization problem. We add further vari-

ables y1, . . . , yn ∈ {1, . . . , n} and demand that these variables are pairwise different (to

express these conditions further inequalities are required) and

yi − yk ≤ n(1− xik)

for all i 6= k.

This can be interpreted as the condition that there has to be a topological ordering of

the vertices. Hence, the increasing ordering of all variables corresponds to a topological

sorting. Clearly, the digraph has to be acyclic. Hence, all these constraints give a

formulation for the dag realization problem.

8

2

Fundamental Notions and

Notation

In this section, we recall basic notions on graphs and digraphs and fix our notation.

We define Nn := {1, . . . , n}.

Graphs, forests and trees. A graph G is a tuple G = (V,E) consisting of a vertex

set V and the set E of edges. Particularly, the edge set E is a subset of all 2-subsets

M := {{u, v}| u, v ∈ V } from V . A graph G′ = (V ′, E′) is called subgraph of graph

G if we have V ′ ⊆ V and E′ ⊆ E. We denote graph G as simple graph, if there does

not exist an edge {v, v} ∈ E with v ∈ V. Note, that we here exclude the case of more

than one edge between a vertex u and a vertex v, because in our definition set E is

not a multi-set. Let us consider two different types of so-called walks. We denote the

alternating sequence W = v1, e1, v2, e2, . . . , ek−1, vk of vertices and edges as

1. undirected walk if ei = {vi, vi+1} ∈ E is fulfilled for all i ∈ {1, . . . , k − 1};

2. alternating walk if we have ei ∈ E ∧ ei+1 /∈ E for either all odd indices or all even

indices i ∈ {1, . . . , k − 1}.

We denote the number k − 1 of edges in a walk W as its length l(W). The notion

“l(W)-walk” means a walk of length l(W). A walk W is called path P , if all vertices

are pairwise different. Hence, we distinguish between undirected paths and alternating

paths. A walk W is denoted as cycle C, if we have v1 = vk. Again, we get the notion of

undirected cycles and alternating cycles. A graph G which does not possess a subgraph

9

2. FUNDAMENTAL NOTIONS AND NOTATION

which is a cycle, is called forest. We define the following equivalence relation ∼path⊂
V × V with

u ∼path v ⇔ there exists an undirected path from vertex u to vertex v .

Clearly, this equivalence relation decomposes the set of vertices V in several equivalence

classes V1, . . . , Vl with Vi ⊆ V. We call a subgraph Gi = (Vi, Ei) consisting of vertex set

Vi and its corresponding induced edge set Ei as component of G. A forest which consists

of only one component is denoted as tree. A graph G is a tree if and only if it has only

one component and exactly |V |−1 edges. We extend this characterization to forests: A

graph is a forest if and only if each of its components is a tree. Obviously, a graph can

only be a forest if the number of edges |Ei| in each component Gi = (Vi, Ei) is exactly

|Ei| − 1. Hence, the number of edges in a forest is smaller or equals
∑l

i=1 |Ei| ≤ n− 1.

Neighborhood sets, vertex degrees and f-factors in graphs. We define a

neighborhood set NG(V ′) for a graph G = (V,E) as the set of incident edges {u, v} ∈ E
for all vertices v ∈ V ′ where V ′ ⊂ V. In particular, we denote by NG(v) := NG({v}) the

set of all incident edges of vertex v ∈ V. Furthermore, we define a vertex degree function

dG : V 7→ {0, . . . , n−1} which assigns to each vertex v the number dG(v) := |NG(v)| of

its incident edges. We denote dG(v) as the vertex degree of vertex v. Finally, we define

a function f : V 7→ {0, . . . , n − 1} which assigns to each vertex v an integer between

0 and n − 1. We call a subgraph G′ of G simple f -factor of graph G if the condition

dG(v) = f(v) is fulfilled for all v ∈ V. The f -factor problem is the decision problem:

Given a function f , does there exist a simple f -factor in graph G?

Digraphs, subdigraphs and special structures in digraphs. A digraph G is a

tuple G = (V,A) consisting of a vertex set V and the set A of directed arcs. Particularly,

the arc set A ⊆ V ×V is a subset of all ordered vertex pairs, but we exclude the existence

of loops (v, v) ∈ A. In the case of loops, we call G digraph with loops. A subdigraph

G′ = (V ′, A′) of digraph G is a digraph with V ′ ⊆ V and A′ ⊆ A. Let H be a subdigraph

of G. We say that H = (VH , AH) is an induced subdigraph of G if every arc of A with

both end-vertices in VH is also in AH . We write H = G 〈VH〉 .
Note, that we here exclude the case of more than one arc beginning at a ver-

tex u and ending at a vertex v, because in our definition set A is not a multi-set.

10

Let us now consider three different types of a so-called walk, namely directed walks,

oriented walks and alternating oriented walks. We denote an alternating sequence

W = v1, a1, v2, a2, . . . , ak−1, vk of vertices and arcs

1. as directed walk, if ai = (vi, vi+1) ∈ A is fulfilled for all i ∈ {1, . . . , k − 1},

2. as oriented walk, if we either have (ai = (vi, vi+1) for odd indices ∧ ai+1 =

(vi+2, vi+1) for even indices) or (ai = (vi+1, vi) for odd indices ∧ ai+1 = (vi+1, vi+2)

for even indices), and

3. as alternating oriented walk, if walk W is an oriented walk and we have ai ∈
A∧ ai+1 6∈ A for all either all odd indices i ∈ {1, . . . , k− 1} or for all even indices

i ∈ {1, . . . , k − 1}.

We denote the number k − 1 of arcs in a walk W as its length l(W). The notion

“l(W)-walk” means a walk of length l(W). A walk W is called path P , if all vertices

are pairwise different. Hence, we distinguish between directed paths, oriented paths

and alternating oriented paths. A walk W is denoted as cycle C, if we have v1 = vk.

Analogously to the case of paths we get the notions for directed cycles, oriented cycles

and alternating oriented cycles. For simplicity, we sometimes omit the arcs ai in a cycle

C = v1, a1, v2, a2, . . . , ak−1, v1 and use the shorter form C = v1, v2, . . . , v1 if it is clear

from the context which cycle is specified.

A digraph G which does not possess a subdigraph which is a directed cycle is called

directed acyclic graph (dag) or acyclic digraph. We define the following equivalence

relation ∼upath⊂ V × V with

u ∼upath v ⇔ there exists an underlying undirected path from vertex u to vertex v .

Clearly, this equivalence relation decomposes the set of vertices V in several equivalence

classes V1, . . . , Vl with Vi ⊆ V. We call a subdigraph Gi = (Vi, Ai) consisting of vertex

set Vi and its corresponding induced arc set Ai as weak component of G. A further

equivalence relation ∼dpath⊂ V × V with

u ∼dpath v ⇔ there exists a directed path from vertex u to vertex v and from v to vertex u

decomposes a digraph in strong components of G.

A Hamiltonian path in digraph G is a directed path P containing all vertices v ∈ V
of G.

11

2. FUNDAMENTAL NOTIONS AND NOTATION

Neighborhood sets and vertex degrees. Let N−G (V ′) be the set of all incoming

arcs (u, v) ∈ A for all vertices v ∈ V ′ in a digraph G. We denote N−G (V ′) as incoming

neighborhood set of vertex subset V ′ ⊂ V. Analogously, we define the outgoing neigh-

borhood set N+
G (V ′) for all outgoing arcs (v, u) ∈ A for all vertices v ∈ V ′. For a digraph

G with loops we additionally define a loop set LG(V ′) containing all loops of a vertex

subset V ′ ⊂ V. In particular, we denote with LG(v) := LG({v}) the set of loops for

vertex v, with N−G (v) := N−G ({v}) and N+
G (v) := N+

G ({v}) the sets of all incoming

and outgoing arcs at vertex v ∈ V. Furthermore, we define a vertex indegree function

d−G : V 7→ {0, . . . , n−1} which assigns to each vertex v the number d−G(v) := |N−G (v)| of

its incoming arcs. We denote d−G(v) as the indegree of vertex v. Analogously, we define

the vertex outdegree function d+
G : V 7→ {0, . . . , n− 1}, which assigns to each vertex V

the number d+
G(v) := |N+

G (v)| of its outgoing arcs. We call d+
G(v) the outdegree of v ∈ V.

For digraphs with loops we have d−G := |N−G (v)|+ |LG(v)| and d+
G := |N+

G (v)|+ |LG(v)|.
A vertex v is denoted as sink if the conditions d+

G(v) = 0 and d−G(v) > 0 are fulfilled.

Conversely, a vertex v ∈ V is denoted as source if we have d+
G(v) > 0 and d−G(v) = 0. A

vertex v ∈ V with d+
G(v) > 0 and d−G(v) > 0 is called stream vertex.

Symmetric differences of graphs and digraphs. For two graph realizations G,

G′, the symmetric difference of their edge sets E(G) and E(G′) is denoted as G∆G′ :=

(E(G) \ E(G′)) ∪ (E(G′) \ E(G)). A graph is called Eulerian if every vertex has even

degree. Note that the symmetric difference G∆G′ of two graph realizations G,G′ is

Eulerian. Each component is nothing else but one alternating cycle.

The symmetric difference G∆G′ of two digraph realizations G 6= G′ is defined

analogously to the undirected case. Consider for example the digraph realizations G

and G′ with A(G) := {a1 = (v1, v2), a2 = (v3, v4)} and A(G′) := {a3 = (v1, v4), a4 =

(v3, v2)} consisting of exactly two arcs. Then the symmetric difference is the alternating

oriented 4-cycle C := (v1, a1, v2, a4, v3, a2, v4, a3, v1) where (vi, vi+1) ∈ A(G) for i ∈
{1, 3} and (vi+1, vi) ∈ A(G′) for i ∈ {2, 4} taking indices i mod 4. In contrast to the

undirected case where each component of the symmetric difference is one alternating

cycle, one weak component of the symmetric difference of two digraph realizations may

decompose into more than one alternating oriented cycle, see Figures 2.1 and 2.2.

12

1

2

3

4

5

6

7

in G

in G’

Figure 2.1: Example: Two digraph realizations G and G′ with the same digraph sequence.

1

4 2
3

5

4
3

2

4 5

67

C C
21

Figure 2.2: Decomposition of the symmetric difference G∆G′ of Figure 2.1 into the

minimum number of alternating directed cycles.

Topological sorting. A topological ordering of the vertex set V from a dag G =

(V,A) is the enumeration of all vertices with respect to the relation Rtop ⊆ V × V. We

define:

vRtopw ⇔ there exists no directed path starting in w and ending in v.

Since our digraph is a dag — we have no directed cycle — we get for each pair of

vertices v, w two possibilities. Either there exists at least one directed path from v

to w, then it follows vRtopw because the acyclicity implies that there does not exist

a directed path from w to v. The second possibility is that there is no directed path

from vertex w to v and vice versa. Hence, we get vRtopw and wRtopv. In a dag we

can compare all vertex pairs with respect to this relation. Hence, we can determine an

enumeration for vertex set V such that we have viRtopvj if i < j. This enumeration is

called topological sorting. Note, that it is possible to arrange all vertices in a chain,

although relation Rtop is not antisymmetric and not transitive. To see this, consider

for example a dag consisting of vertex set V := {v1, v2, v3} and the single arc (v1, v3).

Clearly, we have v3Rtopv2 and v2Rtopv1 but it does not follow v3Rtopv1.

Types of lexicographical sortings. In our scenario we need two different notions

for a lexicographical relation. The first we call lexicographical relation with respect to

the first component ≤lex1⊂ Z+ × Z+ with

13

2. FUNDAMENTAL NOTIONS AND NOTATION

(
a

b

)
<lex1

(
a′

b′

)
⇔ a < a′ or (a = a′ ∧ b < b′).

By lexicographical relation with respect to the second component ≤lex2⊂ Z+ × Z+

we denote the relation which is defined as

(
a

b

)
<lex2

(
a′

b′

)
⇔ b < b′ or (b = b′ ∧ a < a′).

Note, that
(
a
b

)
=lex

(
a′
b′
)

if and only if a = a′ and b = b′. The lexicographical ordering

(in both cases) is a total ordering, i. e., reflexive, antisymmetric and transitive. Hence,

it is possible to number all tuples of a sequence S such that we have
(
ai
bi

)
≤lex1

(aj
bj

)
if

and only if i < j (the same is true for ≤lex2). Such a labeling of a sequence we denote

by increasing lexicographical sorting with respect to the first/second component. If we

number the tuples of an increasing lexicographical sequence in the opposite direction

we call this numbering decreasing lexicographical sequence.

Adjacency matrices and nilpotent matrices. The neighborhoods of vertices in a

digraph can be represented by an (n× n)-matrix, the so-called adjacency matrix. The

matrix A := (Aij)i,j∈Nn is defined by

Aij :=

{
1 if (vi, vj) ∈ A
0 otherwise.

Hence, the adjacency matrix of a digraph has “zero” entries on its diagonal. Let us

consider the powers Ak of an adjacency matrix. An entry (Akij) of matrix Ak maps to the

number of directed walks from vertex vi to vertex vj of length k. For acyclic digraphs

(dags) the length of a walk is upper bounded by n−1. In other words each directed walk

is already a directed path. Otherwise, we would find directed cycles. Hence, we have

Ak = 0 for all k ≥ n. This is exactly the definition of nilpotent matrices. We conclude,

that each adjacency matrix of a dag is a nilpotent matrix. In particular, there exists

a vertex ordering v1, . . . , vn such that the corresponding adjacency matrix is an upper

triangular matrix with zero entries on its diagonal. On the other hand, this ordering is

also a topological sorting of the vertices because we have viRtopvj for i < j, i. e., there

is no directed path from vertex vj to vertex vi.

14

3

Digraph Sequences – Realization

and Characterization

“That is what learning is. You suddenly understand something you’ve understood all

your life, but in a new way.” (Doris Lessing)

3.1 Digraph Realizations

In 1973, Kleitman and Wang (KW73) proposed two different algorithms to construct

a digraph realization (defined in Chapter 1) for a given digraph sequence. These al-

gorithms are extensions for the graph realization problem of the undirected version of

Havel (Hav55) and Hakimi (Hak62) which is defined as follows. For a given finite se-

quence S := (a1), . . . , (an) with ai ∈ N one has to decide if there exists a labeled graph

G = (V,E) such that each integer ai possesses a corresponding vertex vi with degree

dG(vi) = ai. In this case, we call graph G graph realization and we call the undirected

sequence S graph sequence. The Havel-Hakimi-Algorithm works as follows. It greedily

realizes a sequence (if possible) by determining the adjacent edge set of a selected vertex

step by step. For an undirected sequence S = (a1), . . . , (an) one chooses an arbitrary

start of this sequence, say ai. Then one determines the ai largest entries aj1 , . . . , ajai

(without ai) in S. If these ai entries exist, one builds the edge set of a realization

G = (V,E) with labeled vertex set V by inserting the edges {vi, vj1}, . . . , {vi, vjai}. In

sequence S each integer aj1 , . . . , ajai has to be reduced by one and ai can be deleted

afterwards. This step is repeated until sequence S is empty or one gets stuck. In

15

3. DIGRAPH SEQUENCES – REALIZATION AND
CHARACTERIZATION

the latter case, it is proven that S is not a graph sequence. Kleitman and Wang did

not have their main focus on the digraph realization problem. Indeed, they gave the

proof for an extension of the so-called k-factor conjecture of Kundu (Kun73). The

k-factor conjecture is about the question whether there exists for a given undirected se-

quence S = (a1), . . . , (an) a graph realization with a given f -factor as a subgraph where

f(v) = k is a constant for all v ∈ V. Kundu proved the existence of a k-factor if and only

if sequence S′ := (a′1 = a1 − k), . . . , (a′n = an − k) is also a graph sequence. Kleitman

and Wang give a constructive proof which results in an algorithm for an extension of

the k-factor conjecture. They consider the question whether there exists for a given

undirected sequence a graph realization with an f -factor as a subgraph such that we

have f(vi) = k for a given vertex subset vi ∈ V ′ ⊂ V and f(vi) = k+1 for the remaining

vertices vi ∈ V \V ′. The algorithm works in two steps. First they determine graph real-

izations G and G′ from sequence S and sequence S′ := (a′1 = a1−p1), . . . , (a′n = an−pn)

with pi = k (for vi ∈ V ′) or pi = k + 1 (for vi ∈ V \ V ′) by using a slight modification

of the algorithm by Havel and Hakimi. The difference to the general variant where we

choose arbitrary ai, is the necessity first to choose numbers with ai = a′i. Then they

have to swap some arcs in the graph realization G of S as long as the graph realiza-

tion G′ of S′ is a subgraph of G. Clearly, such a graph realization also contains the

demanded f -factor. The directed variant of the problem is as follows. Does there exist

for a given digraph sequence S =
(
a1

b1

)
, . . . ,

(
an
bn

)
a subdigraph H with vertex outdegrees

d+
H(vi) = k for a subset i ∈ I ⊂ Nn and vertex outdegrees d+

H(vj) = aj for all j ∈ N \ I?

Analogously to the undirected case, Kleitman and Wang prove that this is true if and

only if sequence S′ =
(a′1
b′1

)
, . . . ,

(a′n
b′n

)
with a′i = ai − k for i ∈ I, a′j = 0 for j ∈ N \ I

and bi ≥ b′i for all i ∈ Nn is a digraph sequence. The proofs are similar to the undi-

rected case. Therefore, they developed two different algorithms for realizing digraph

sequences (KW73). We summarize their results and formulate their theorems with a

slight, but easy extension for the reverse implication.

Theorem 3.1 (digraph realization with arbitrary tuple choice (KW73)).

Let S =
(
a1

b1

)
, . . . ,

(
an
bn

)
be a sequence and

(
ai
bi

)
a tuple with bi > 0. Let Mi be the set of

all stream and sink tuples of S without tuple
(
ai
bi

)
. Furthermore, let

(al1
bl1

)
, . . . ,

(al|Mi|
bl|Mi|

)
be

a decreasing lexicographical sorting by the first component of tuples in Mi. Sequence S

is a digraph sequence if and only if the following conditions are true:

1. |Mi| ≥ bi and

16

3.1 Digraph Realizations

2. sequence Si :=
(ai1
bi1

)
, . . . ,

(ain
bin

)
with

bij :=




bj if i 6= j

0 otherwise
and aij :=




aj − 1 if i ∈ {l1, . . . , lbi}
aj otherwise

is a digraph sequence.

This theorem is the analogous version of the algorithm of Havel and Hakimi. For

a digraph sequence the algorithm constructs a digraph G = (V,A) using a repeated

application of this theorem on the current sequence Si. Hence, it is possible to construct

in each step the arcs (vi, vlj) with j ∈ {1, . . . , bi} or if condition 1. or 2. is not fulfilled,

we can conclude that sequence S is not a digraph sequence. There exists an interesting

insight of LaMar (LaM09). He developed a “parallel” version of the realization algo-

rithm for sequences S :=
(
a1

b1

)
, . . . ,

(
an
bn

)
, where ai = bi and

∑n
i=1 ai is even. The idea

is to consider two sequences, namely sequence S and a further sequence S, where the

roles of ai and bi are swapped. LaMar proved that it is possible for an arbitrary tuple
(
ai
bi

)
in sequence S and

(
bi
ai

)
in sequence S to construct identical ai-subsets M ′ ⊂ Mi.

Hence, in each step one can simultaneously build all ai(= bi) incoming and outgoing

arcs of vertex vi for a digraph realization G. Each directed cycle C = (u, v, u) of length

2 can be replaced by the undirected edge {u, v} which results in a graph realization of

sequence S∗ := (a1), . . . , (an). In this sense the algorithm for such digraph sequences

of LaMar is nothing else but the realization algorithm of Havel and Hakimi. Kleitman

and Wang also give a second algorithm for constructing realizations. Here, the choice

of a tuple
(
ai
bi

)
is not arbitrary but one does not need a lexicographical sorting of the

candidate set M .

Theorem 3.2 (digraph realization with a special tuple choice (KW73)).

Let S =
(
a1

b1

)
, . . . ,

(
an
bn

)
be a sequence and

(
ai
bi

)
a largest stream or sink tuple with respect

to the lexicographical ordering by the second component. Furthermore, we define the set

M consisting of all stream tuples and sink tuples of S without tuple
(
ai
bi

)
. Consider a

decreasing sorting of tuples
(al1
bl1

)
, . . . ,

(al|M|
bl|M|

)
in M such that we have i < j if and only

if ali ≥ alj . Sequence S is a digraph sequence if and only if:

1. |M | ≥ bi and

2. sequence S′ :=
(a′1
b′1

)
, . . . ,

(a′n
b′n

)
with

17

3. DIGRAPH SEQUENCES – REALIZATION AND
CHARACTERIZATION

b′j :=




bj if i 6= j

0 otherwise
and a′j :=




aj − 1 if j ∈ {l1, . . . , lbi}
aj otherwise

is a digraph sequence.

Note that both theorems can be used to realize source-sink-sequences (defined in

Chapter 1). We would like to point out that the algorithms of Kleitman and Wang

are relatively unknown until today. So it is not surprising that these ideas have been

reinvented several times. The proofs of Theorem 3.1 and Theorem 3.2 are elementary.

Starting with a digraph realization G for sequence S, they show that there also exists

a digraph realization where the vertex vi is connected with vertices vl1 , . . . , vlbi by a

directed arc. The deletion of all these arcs leads to a digraph realization of sequence

S′ (in Theorem 3.2) or Si (in Theorem 3.1), respectively.

3.2 Digraph Characterizations

Four authors, namely David Gale (Gal57), Herbert J. Ryser (Rys57), Delbert Ray

Fulkerson (Ful60) and Wai-Kai Chen (Che66) gave sufficient and necessary conditions

which completely characterize digraph sequences. Actually, none of the mentioned

authors has found the following theorem in its general form. Gale and Ryser dealt with

other problems. However, their insights are fundamental for characterizing digraph

sequences. Fulkerson gave a partial result and Chen formulated and proved the final

details. Therefore, we cite the following theorem as the result of all four authors.

Theorem 3.3 (Characterization of digraph sequences (Ful60, Rys57, Che66, Gal57)).

Let S :=
(
a1

b1

)
, . . . ,

(
an
bn

)
be a sequence in decreasing lexicographical order with respect to

the first component. S is a digraph sequence if and only if the following conditions are

fulfilled:
k∑

i=1

min(bi, k − 1) +
n∑

i=k+1

min(bi, k) ≥
k∑

i=1

ai

for all k ∈ {1, . . . , n}.

Ryser’s (Rys57) and Gale’s (Gal57) view led to additional insights. In 1957, they

independently published some results for a version of the digraph realization problem.

They knew a famous result from 1935 by P. Hall (Hal35) for the following problem.

Given are a finite set X := {x1, . . . , xn} and a collection of subsets Si ⊂ X with

18

3.2 Digraph Characterizations

i ∈ {1, . . . , n}. The question is under which conditions one can select a distinct element

xi from each subset Si. Hall formulated sufficient and necessary conditions for this

case. More precisely, the existence of these elements is ensured if and only if the union

of an arbitrary choice of k sets Sl1 , . . . , Slk contains a k-subset of X. Gale considered

this problem as a kind of transportation model and extended it to a flow problem on

a digraph, which can completely be characterized by exponentially many inequalities.

The proof was given using the well-known “max flow and min cut” theorem of Ford

and Fulkerson (FF56) which was published some months earlier in the same year.

As a possible application he formulated the following version of the digraph problem.

Given are two undirected sequences of non-negative numbers S := (a1, a2, . . . , an) and

S′ := (b1, . . . , bn′) such that we have ai ≥ ai+1 for all i ∈ {1, . . . , n−1} and the condition
∑n

i=1 ai =
∑n′

i=1 bi holds. Does there exist an (n× n′)-matrix M with entries in {0, 1}
such that we have for the sum of the ith row at most value bi and for the jth column

sum at least value ai. Such a matrix M can be interpreted as an adjacency matrix of a

digraph with at most one loop per vertex. Clearly, the ith row sum and the jth column

sum are exactly the vertex outdegree d+
G(vi) and indegree d−G(vj) in the corresponding

digraph. At the same time, Ryser investigated combinatorial properties of matrices

with entries zero and one. Apart from the small difference that he considered the

problem version demanding exact values bi and aj for the ith row sum and the jth

column sum, he found the same connections. On the other hand, he came up with

an inductive proof without using any result from flow theory. Furthermore, his view

also allows other insights about the sets of all such sequence pairs with n tuples and

m :=
∑n

i=1 ai entries. To explain these results, let us give a definition for a special

kind of matrix – “Ferrers diagram” – which was first given by Sylvester (SF82) in 1882.

He refers to a solution method of Norman Macleod Ferrers (1829-1903) for a partition

problem which was stated by Adams in a Tripos Paper of 1847. Ferrers has never

published his idea but Sylvester wrote in his work “The above proof of the theorem

of reciprocity is due to Dr. Ferrers,... . It was never been made public by its author,

but first promulgated by myself ... in 1853.” (VrAM04, Ven13, Kim99, Fer). Since we

need different types of such matrices, we here change this notion into canonical Ferrers

matrix.

Definition 3.1 (canonical Ferrers matrix for sequence S). Given is a sequence S =(
a1

b1

)
, . . . ,

(
an
bn

)
with ai ≥ ai+1 for all i ∈ {1, . . . , n− 1}. We construct an (n× n)-matrix

19

3. DIGRAPH SEQUENCES – REALIZATION AND
CHARACTERIZATION

F := (Fij)i,j∈Nn with

Fij :=





1 if j ≤ bi
0 if j > bi.

For a construction of F one has to fill bi entries “one” in row i starting on the left

side. The rest of this row is set to “zero”. The resulting jth column sum we denote by

a∗j . On the other hand, F can be seen as the adjacency matrix of a digraph with at most

one loop per vertex with vertex indegrees a∗1, . . . , a
∗
n and vertex outdegrees b1, . . . , bn.We

call sequence S∗ :=
(a∗1
b1

)
, . . . ,

(a∗n
bn

)
the corresponding sequence of the canonical Ferrers

matrix F. Note that sequence S∗ may contain
(

0
0

)
tuples.

Example 3.1 (canonical Ferrers matrix F). Given is sequence

S :=

(
6

2

)
,

(
6

3

)
,

(
6

4

)
,

(
5

3

)
,

(
5

2

)
,

(
3

7

)
,

(
1

4

)
,

(
1

4

)
,

(
0

4

)
.

The canonical Ferrers matrix F is







1 1 0 0 0 0 0 0 0 b1 = 2

1 1 1 0 0 0 0 0 0 b2 = 3

1 1 1 1 0 0 0 0 0 b3 = 4

1 1 1 0 0 0 0 0 0 b4 = 3

1 1 0 0 0 0 0 0 0 b5 = 2

1 1 1 1 1 1 1 0 0 b6 = 7

1 1 1 1 0 0 0 0 0 b7 = 4

1 1 1 1 0 0 0 0 0 b8 = 4

1 1 1 1 0 0 0 0 0 b9 = 4

9 9 7 5 1 1 1 0 0 a∗i

Note, that the a∗i are decreasingly sorted.

Ryser and Gale actually proved the existence of a matrix M with ith row sum bi

and jth column sum aj if and only if we have
∑k

i=1 ai ≤
∑k

i=1 a
∗
i for all k ∈ {1, . . . , n}.

The corresponding digraph of adjacency matrix F can be seen as one “largest” possible

digraph for a given “outdegree sequence” b1, . . . , bn which is realizable. Therefore, the

corresponding sequence S∗ bounds the set of non-realizable sequences with outdegree

sequence b1, . . . , bn. It is therefore called threshold sequence. There exist very interesting

20

3.2 Digraph Characterizations

equivalent characterizations of threshold sequences. An overview is given in the book

of Mahadev and Peled (MP95).

Theorem 3.4 (characterization of digraph sequences with loops (Rys57, Gal57)).

Let S :=
(
a1

b1

)
, . . . ,

(
an
bn

)
be a sequence such that ai ≥ ai+1 for all i ∈ {1, . . . , n−1}. Then

sequence S is a digraph sequence with loops if and only if the following conditions are

fulfilled:

(1.) There exists a canonical Ferrers matrix F with corresponding sequence S∗ =(a∗1
b1

)
, . . . ,

(a∗n
bn

)
and

(2.)
∑k

i=1 a
∗
i ≥

∑k
i=1 ai for all k ∈ {1, . . . , n}.

The most important contribution of Ryser and Gale is a polynomial time algorithm

to decide the realizability of a sequence because only the n inequalities of condition

(2.) have to be checked. This is in fact the progress compared with the classical result

of Hall allowing a complete characterization of a sequence but ignoring the costs to

find one. This nice property has led to the natural question whether it is also possible

to characterize digraph sequences where loops are forbidden in a digraph realization.

Hence, the adjacency matrix of such a digraph realization must have only zeros on its

diagonal. We modify the canonical Ferrers matrix and define a diagonal-free Ferrers

matrix.

Definition 3.2 (diagonal-free Ferrers matrix for sequence S).

Let S :=
(
a1

b1

)
, . . . ,

(
an
bn

)
be a sequence in decreasing lexicographical order with respect to

the first component. We construct an (n× n)-matrix F := (Fij)i,j∈Nn with

Fij :=





1 if (j ≤ bi ∧ i < j) ∨ (j ≤ bi + 1 ∧ i > j)

0 otherwise.

Let again a∗i denote the ith column sum of F . We call sequence S∗ =
(a∗1
b1

)
, . . . ,

(a∗n
bn

)
the

corresponding sequence of the diagonal-free Ferrers matrix F .

Note again that sequence S∗ may contain
(

0
0

)
tuples. Let us consider the following

example.

Example 3.2 (diagonal-free Ferrers matrix F). Given is the sequence

S :=

(
6

4

)
,

(
6

3

)
,

(
6

2

)
,

(
5

3

)
,

(
5

2

)
,

(
3

7

)
,

(
1

4

)
,

(
1

4

)
,

(
0

4

)

21

3. DIGRAPH SEQUENCES – REALIZATION AND
CHARACTERIZATION

in decreasing lexicographical order with respect to the first component. Then we get the

diagonal-free Ferrers matrix F







0 1 1 1 1 0 0 0 0 b1 = 4

1 0 1 1 0 0 0 0 0 b2 = 3

1 1 0 0 0 0 0 0 0 b3 = 2

1 1 1 0 0 0 0 0 0 b4 = 3

1 1 0 0 0 0 0 0 0 b5 = 2

1 1 1 1 1 0 1 1 0 b6 = 7

1 1 1 1 0 0 0 0 0 b7 = 4

1 1 1 1 0 0 0 0 0 b8 = 4

1 1 1 1 0 0 0 0 0 b9 = 4

8 8 7 6 2 0 1 1 0 a∗i

Note, that the column sums a∗i do not necessarily build a decreasing sequence of

integers in contrast to the column sums of the canonical Ferrers matrix. However, we

find an analogous characterization as in Theorem 3.4.

Theorem 3.5 (characterization of digraph sequences without loops).

Let S :=
(
a1

b1

)
, . . . ,

(
an
bn

)
be a sequence in decreasing lexicographical order. Then sequence

S is a digraph sequence if and only if the following conditions are fulfilled:

(1.) There exists a diagonal-free Ferrers matrix F with corresponding sequence S∗ =(a∗1
b1

)
, . . . ,

(a∗n
bn

)
and

(2.)
∑k

i=1 a
∗
i ≥

∑k
i=1 ai for all k ∈ {1, . . . , n}.

The difference to the version of Ryser and Gale can be found in the necessity to

label sequence S in a decreasing lexicographical order. However, we want to show the

connection between this characterization and Theorem 3.3. Determining the jth col-

umn sums of the diagonal-free Ferrers matrix directly gives us the following equivalent

formulation:

k∑

i=1

a∗i =
k∑

i=1

min(bi, k − 1) +
n∑

i=k+1

min(bi, k) for all k ∈ {1, . . . , n}.

Hence, the characterization of sequences using diagonal-free Ferrers matrices is an

equivalent formulation of Theorem 3.3. However, none of the above mentioned au-

thors formulated this complete result. Fulkerson (Ful60) gave the first characterization

22

3.2 Digraph Characterizations

for digraph sequences in general but his formulation requires exponentially many in-

equalities. He overlooked the idea to sort a sequence in lexicographical order. Instead,

he handled a special case of sequences which can be sorted such that we get ai ≥ ai+1

and bi ≥ bi+1 for all i ∈ {1, . . . , n}. It is remarkable that this sorting is already a lex-

icographical sorting. For this case, Fulkerson was able to give a characterization with

polynomial many inequalities. To the best of our knowledge, Wai-Kai Chen detected

the important detail to sort a sequence in lexicographical order in his article (Che66) of

1966. Interestingly, his work is relatively unknown until today and has been overlooked

for many times. His proof is elementary and not difficult. It is worth to mention that

he handled a more general case of the digraph realization problem. Namely, he parame-

terized the number ` of allowed loops and the number p of allowed parallel arcs between

two vertices. Now he solved completely the characterization problem of digraphs with

at most ` loops and p parallel arcs. On the other hand, the view of Ryser and Gale

on matrices makes it possible to consider further variants of our digraph realization

problem. A matrix M can also be interpreted as the adjacency matrix of an undirected

bipartite graph, where the rows and columns correspond to the two independent vertex

sets. Then the row and column sums are nothing else but the vertex degrees in this

graph.

23

3. DIGRAPH SEQUENCES – REALIZATION AND
CHARACTERIZATION

24

4

Dag Sequences

“Dass etwas schwer ist, muss ein Grund mehr sein, es zu tun.” (Rainer Maria Rilke)

4.1 Dag Realizations

In Chapter 1, we introduced the dag realization problem and stated the complexity

status as NP-complete (Nic11). Now, we want to introduce a special class of so-called

opposed sequences for which we are able to solve the problem in polynomial time, see

also our publications (BM11a, BM11b). The main difficulty for the dag realization

problem is to find out a topological ordering of the sequence. In the case where we

have one, our problem is nothing else but a directed f -factor problem on a complete

digraph. The labeled vertices of this complete digraph are ordered in the given topolog-

ical sorting of our dag problem. This problem can be reduced to a bipartite undirected

f -factor problem which can be solved in polynomial time via a reduction by Tutte

(Tut54) to a bipartite perfect matching problem. It turns out, that a certain ordering

of opposed sequences always leads to a topological ordering of the tuples for at least one

dag realization of a given dag sequence (Corollary 4.1). On the other hand, it is not

necessary to apply the reduction via Tutte if we possess one possible topological order-

ing of a dag sequence. The solution is much easier. Next, we describe our approach.

We denote a dag sequence S :=
(
a1

b1

)
, . . . ,

(
an
bn

)
which possesses a dag realization with a

topological numbering corresponding to the increasing numbering of its tuples by dag

sequence for a given topological order and analogously the realization G = (V,A) by

dag realization for a given topological order. A realization algorithm works as follows.

25

4. DAG SEQUENCES

Consider the first tuple
(aq+1

bq+1

)
from its increasing topological ordered sequence which

is not a source tuple. Then there must exist at least aq+1 largest source tuples with

a smaller number in the given dag sequence. Reduce the aq+1 largest source tuples

by one and set the indegree of tuple
(aq+1

bq+1

)
to 0. That means, we reduce sequence

S :=
(
a1

b1

)
, . . . ,

(aq+1

bq+1

)
, . . . ,

(
an
bn

)
to sequence S′. If we get zero tuples in S′, then we delete

them and denote the new sequence for simplicity by S′. Furthermore, we label this se-

quence with a new numbering starting from one to its length and consider this sorting

as the given topological ordering of S′. We repeat this process until we get an empty

sequence (corresponding to the realizability of S) or get stuck for the given order (cor-

responding to the non-realizability of S). The correctness of our algorithm is proven in

Theorem 4.1.

Theorem 4.1. S is a dag sequence for a given topological order⇔ S′ is a dag sequence

for its topological order.

Proof. ⇐: Trivial.

⇒: We consider a dag realization for the given topological ordering of dag sequence S.

Clearly, we find at least aq+1 sources. This is true, because a first vertex with non-

empty incoming neighborhood set in a topological sorting (a sink or a stream vertex)

of a dag can only possess sources in its incoming neighborhood set. Otherwise, this

numbering is not a topological sorting. Assume, there is no dag realization for the

given topological order, such that aq+1 largest sources are connected with vertex vq+1.

In this case, we consider a dag realization G to this topological order such that the

maximum possible number of largest sources is connected with vertex vq+1. Then we

have two sources vi and vj with (vi, vq+1) /∈ A, (vj , vq+1 ∈ A), bi > bj and i, j < q + 1.

Since bi > 0 and vq+1 is the first non-source tuple, there is a non-source vertex vk

(k > q + 1) with (vi, vk) ∈ A and (vj , vk) /∈ A. We define a new digraph G∗ :=

(G \ {vi, vk}∪ {vj , vq+1})∪ ({vi, vq+1}∪ {vj , vk}). Obviously, G∗ is a dag realization for

the given topological order of sequence S. Contradiction to the assumption that G is a

dag realization with the maximum possible number of largest sources connected with

vertex vq+1. Hence, there exists a dag realization G to the given topological order such

that vertex vq+1 has in its incoming neighborhood set only the aq+1 largest sources

from the set of all sources vi with i < q + 1. We delete the incoming neighborhood

set of vertex vq+1 and yield a dag realization for sequence S′ for its given topological

ordering.

However, up to know we do not know how to determine a topological ordering for

26

4.1 Dag Realizations

an arbitrary dag sequence. On the other hand, we are able to restrict the types of

permutations to a certain class (see Corollary 4.2). We believe, this is the reason why

our algorithmic experiments are quite successful for most sequences in our deterministic

approaches as well as in our proposed randomized algorithm, see Section 4.2.

4.1.1 Opposed Sequences

We now turn towards a special class of sequences. To this end, we first define a new

ordering ≤opp⊂ Z2 × Z2.

Definition 4.1 (opposed relation). Given are c1 :=
(
a1

b1

)
∈ Z2 and c2 :=

(
a2

b2

)
∈ Z2. We

define: c1 ≤opp c2 ⇔ (a1 ≤ a2 ∧ b1 ≥ b2).

Note, that a pair c1 equals c2 with respect to the opposed relation if and only if

a1 = a2 and b1 = b2. The opposed relation is reflexive, transitive and antisymmetric

and therefore a partial order. On the other hand it is not possible to compare all pairs

of tuples c1 and c2. Hence, the opposed order is not a total order. In the following,

we consider a special class of sequences which can easily be handled with respect to

our dag realization problem. We call a sequence S opposed sequence, if it is possible to

sort its stream tuples in such a way, that ai ≤ ai+1 and bi ≥ bi+1 is valid for stream

tuples with indices i and i + 1. In this case, we have the property
(
ai
bi

)
≤opp

(ai+1

bi+1

)
for

all stream tuples. At the beginning of the sequence we insert all source tuples such

that the bi build a decreasing sequence and at the end of sequence S we put all sink

tuples in increasing ordering with respect to the corresponding ai. The notion opposed

sequence describes a sequence, where it is possible to compare all stream tuples among

each other and to put them in a “chain”. Indeed, this is not always possible because the

opposed order is not a total order. With such a labelling we call a sequence increasing

opposed sequence. If we label an increasing opposed sequence in its opposite direction

we call this sequence decreasing opposed sequence. Obviously, it is possible that a

stream tuple is not comparable with a source tuple or a sink tuple. However, these

sequences turn out to be “well-behaved”. Next we follow the classic approach of solving

this problem with an inductive construction of a realization. But it turns out that we

need completely new ideas to save the classic method. We also obtain some interesting

insights, for example we found that an increasing opposed sorting of an opposed dag

sequence is a topological sorting of at least one dag realization, too.

27

4. DAG SEQUENCES

The following theorem is the basis of a realization algorithm. It is similar to an

inductive, greedy-like algorithm as in the classic approach by Havel and Hakimi (Hav55,

Hak62). On the other hand, it differs completely in its details from this algorithm. In

each step, we choose the smallest stream tuple with respect to the opposed relation

and connect it with largest sources — namely with one arc from each source. After

this step, this stream tuple will be a new source. If this step is not possible we are sure

that sequence S is not a dag sequence.

Theorem 4.2 (opposed sequences). Let S be an increasing opposed sequence which is

not a source-sink-sequence. Furthermore, let tuple
(aimin
bimin

)
be the smallest stream tuple

with respect to the opposed ordering. Then sequence S is a dag sequence if and only if

there exist at least aimin source tuples in S and if

S′ :=

(
0

b1 − 1

)
, . . . ,

(
0

baimin
− 1

)
,

(
0

baimin
+1

)
, . . . ,

(
0

bimin−1

)
,

(
0

bimin

)
,

(
aimin+1

bimin+1

)
, . . . ,

(
an
bn

)

is a dag sequence.

Proof. ⇐: Let S′ be a dag sequence. By our assumption, there are at least aimin
source tuples in S. From a dag realization G′ of S′, we construct a new digraph G by

inserting arcs (v1, vimin), . . . , (vaimin , vimin) into G′. Obviously, G is a dag, because new

arcs outgoing from sources, cannot create a directed cycle. On the other hand, G is a

digraph realization, because the conditions d+
G(vi) = bi and d−G(vi) = ai are fulfilled for

all i ∈ {1, . . . , n}.
⇒: Let S be a dag sequence and G a dag realization of S. There exists at least one

source in G, because G is an acyclic digraph. We denote the number of sources in G

by k.

Claim 1: There exists a stream vertex vj with d−G(vj) ≤ k, such that the incoming

neighborhood set N−G (vj) only contains sources. S contains at least aimin ≤ k

source tuples.

Assume this is not the case. We delete all k sources and its outgoing arcs from G.

By that we do not create a new source, because G does not contain a vertex which

possesses only sources as incoming arcs — a contradiction to the assumption that G is

a dag. For the stream vertex with smallest index it follows from
(aimin
bimin

)
<opp

(aj
bj

)
that

d−G(vimin) ≤ d−G(vj) ≤ k. Hence, there are at least aimin source tuples in S.

Claim 2: There exists a dag realization G := (V,A) such that a stream vertex vj

possesses as incoming neighborhood set N−G (vj) exactly the d−G(vj) largest sources.

28

4.1 Dag Realizations

Assume the opposite. By Claim 1, there exists a dag realization G, such that

the incoming neighborhood set N−G (vj) of a stream vertex vj only consists of sources.

We choose such a digraph G with the largest possible number of maximum sources in

N−G (vj). That means, we cannot replace a source vi ∈ N−G (vj) by a source vi∗ /∈ N−G (vj)

with d+
G(vi) < d+

G(vi∗). By our assumptions there are sources vi and vi∗ in G with these

properties. Then there exists a vertex vj′ fulfilling (vi∗, vj′) ∈ A and (vi, vj′) /∈ A. We

set A′ := A\{(vi∗, vj′), (vi, vj)}∪{(vi, vj′), (vi∗, vj)} and get a dag realization possessing

a larger number of maximum sources as G. Contradiction!

Claim 3: There exists a dag realization G := (V,A), such that the smallest stream

vertex vimin ∈ V with respect to the opposed ordering in sequence S possesses

only d−G(vimin) maximum sources in its incoming neighborhood set N−G (vimin).

Assume there does not exist such a dag realization. We consider a dag realization

G, where the incoming neighborhood set N−G (vj) of a vertex stream vj exactly contains

the aj largest sources, see Figure 4.1. By Claim 1 and 2, we can ensure the existence of

such a dag G. Then we can find a vertex vimin with
(d−G(vimin)

d+
G(imin)

)
<opp

(d−G(vj)

d+
G(vj)

)
, such that

the incoming neighborhood set N−G (vimin) does not only possess sources. Otherwise,

we can construct our demanded dag realization by using Claim 2.

In the next steps we show, how to build a dag realization such that N−G (vimin) consists of

d−G(vimin) maximum sources by interchanging arcs and non-arcs in a set of alternating,

oriented 4-cycles of G.

Construction of a digraph realization G∗ with directed cycles, such that

the incoming neighborhood set of vimin consists of maximum sources and

possibly contains stream vertex vj. Let

k′ := |{v−iminl ∈ N
−
G (vimin) ∧ v−iminl is not a source } \ {(vj , vimin)}|

be the cardinality of the incoming neighborhood set of vimin without sources, where we

also ignore the possibly existing arc (vi, vimin). By our assumption d−G(vimin) ≤ d−G(vj),

we can conclude that there exist k′ sources which are not connected with vimin but with

vj . We choose k′ maximum sources q1, . . . , qk′ of this kind. Now, we construct for each

l ∈ {1, . . . , k′} the alternating oriented cycle

(ql, vj , vi−minl
, vimin , ql),

with (ql, vj), (vi−minl
, vimin) ∈ A, (vi−minl

, vj), (ql, vimin) /∈ A and vi−minl
6= vj . We inter-

change the arcs and non-arcs in these cycles and get the digraph G∗, see Figure 4.2,

with the following properties:

29

4. DAG SEQUENCES

Figure 4.1: Proof of Theorem 4.2: Details of the directed acyclic digraph G.

30

4.1 Dag Realizations

1. There exists in G∗ (except for the possibly existing arc (vj , vimin)) no directed

path from vj to vimin .

2. There may exist directed cycles (vi−minl
, vj , v

+
ji
, . . . , vi−minl

) consisting of directed

paths from vj to vi−minl
and arcs from vi−minl

to vj , if there is in G at least one

directed path from vj to vimin , which is not the arc (vj , vimin).

3. There are no parallel arcs in G∗, because if we assume the existence of an arc

(vi−minl
, vj) in G, then vj is connected with a vertex in G which is not a source

in contradiction to our assumption. Now, suppose the existence of a parallel arc

(ql, vimin) in G∗. Then it follows (ql, vimin) ∈ G in contradiction to our choice of

ql as a source which is not connected with vimin in G.

Hence, G∗ is a digraph realization, where vertex vimin is only adjacent to sources,

with the only exception that arc (vj , vimin) could exist. All directed cycles in G∗ use

(see 2.) arcs (vj , v
+
ji

). In a further step, we delete such arcs.

Construction of a dag realization G∗∗ by deleting outgoing arcs of vertex

vj, lying on a directed path to vimin in G. We define the set

N+
G (vj)(vimin) := {v+

jl
| arc (vj , v

+
il

) uses a directed path from vj to vimin in G}.

W. l. o. g. we assume N+
G (vi)(vimin) 6= ∅, otherwise digraph G∗ is the desired dag

realization from S in contradiction to our assumption. We define k′′ := |N+
G (vj)(vimin)\

{vimin}|. We construct a further set of alternating, oriented 4-cycles to interchange their

arcs and non-arcs. We build k′′ of such cycles in the following way:

(vj , vj+l
, vimin , vi+minl

, vj),

where (vj , vj+l
), (vimin , vi+minl

) ∈ A and (vimin , vj+l
), (vj , vi+minl

) /∈ A. Furthermore, we

demand vj+l
∈ N+

G (vj)(vimin) \ {vimin}.
In this construction we redirect all outgoing arcs from vj which are contained in

a directed path to vimin in G (except the arc (vj , vimin)) to vertices of the outgoing

neighborhood set of vimin . On the other hand we redirect k′′ outgoing arcs from vimin to

vertices of the outgoing neighborhood set of vj which were deleted above, see Figure 4.3.

If the arc (vj , vimin) is the unique, directed path from vj to vimin , then k′′ = 0 and

we construct no alternating, oriented 4-cycle. We want to redirect k′′ outgoing arcs

from vj to incident vertices of vimin and k′′ outgoing arcs from vimin to incident vertices

of vj without constructing parallel arcs. The problematic vertices vj for this case are

31

4. DAG SEQUENCES

Figure 4.2: Proof of Theorem 4.2: G∗ with directed cycles.

32

4.1 Dag Realizations

Figure 4.3: Proof of Theorem 4.2: Digraph G∗∗ without directed cycles.

33

4. DAG SEQUENCES

contained in the outgoing neighborhood set N+
G∗(vj) := {vk| (vj , vk) ∈ G∗} from vj

and the outgoing neighborhood set N+
G∗(vimin) := {vk| (vimin , vk) ∈ G∗} from vimin . We

consider two possibilities. Either the set N+
G∗(vimin) \N+

G∗(vj) consists of k′′ elements

— in the case (vj , vimin) /∈ A — or it consists of k′′ + 1 elements, if (vj , vimin) ∈ A.

We consider the set N+
G∗(vj) ∩ N+

G∗(vimin). A vertex vk of this set is not contained

in N+
G (vj)(vimin). Otherwise, there exists in G a directed cycle (vj , vk, vj). We exploit

d+
G(vj) ≤ d+

G(vimin) and get

|N+
G∗(vj) ∩N+

G∗(vimin)| ≤ |N+
G∗(vj)| − |N+

G∗(vj)(vimin)|
≤ |N+

G∗(vimin)| − |N+
G∗(vj)(vimin)|.

Then it follows

|N+
G∗(vimin) \N+

G∗(vj)| = |N+
G∗(vimin)| − |N+

G∗(vj) ∩N+
G∗(vimin)|

≥ |N+
G∗(vj)(vimin)|.

Now, we distinguish between two cases. For (vj , vimin) /∈ A∗, we get k′′ = |N+
G∗(vj)(vimin)|

and for (vj , vimin) ∈ A∗, it follows k′′ + 1 = |N+
G∗(vj)(vimin)|. We interchange the arcs

and non-arcs in all k′′ oriented, alternating 4-cycles and get digraph G∗∗ with the

demanded vertex degree sequence.

Deleting the arc (vj, vimin) with the aid of an alternating oriented 6-cycle.

There exists at least one source q, which is not adjacent with vimin but with vj , because

condition d−G(vimin) ≤ d−G(vj) is valid. We construct the alternating, oriented 6-cycle

(q, vj , vimin , vi+min
, vj , vimin , q) with (vj , vimin), (vi+min

, vj), (vimin , q) /∈ A∗∗, and vi+min
∈

N+
G∗(vimin) \N+

G∗(vj). Such a vertex exists, because we proved the existence of k′′ + 1

vertices of this type. We interchange the arcs and non-arcs in this cycle and get a

digraph with the demanded vertex degree sequence. For simplicity, we call this digraph

still G∗∗. Then digraph G∗∗ possesses the following properties.

1. There do not exist arcs (vj , vj+l
) with vj+l

∈ N+
G∗(vj)(vimin)\{vimin} in G∗∗. Hence,

G∗∗ does not contain a directed cycle (v−imin , vj , vj+l
, . . . , v−imin).

2. There are no parallel arcs (vimin , vj+l
) with vj+l

∈ N+
G∗(vj)(vimin), as otherwise

such an arc is already contained in G. By our assumption v+
jl
∈ N+

G∗(vj)(vimin),

we get a directed cycle in G. Contradiction!

34

4.1 Dag Realizations

3. In G∗∗ there exists no directed path from vj+l
to vimin , because in G we deleted

all incoming arcs from vimin , which are contained in such a path. Hence, an arc

(vimin , vj+l
) cannot close a directed cycle in G∗∗.

4. The special choice of arc (vj , v
+
imin

) in G∗ with v+
imin
∈ N+

G∗(vimin)\N+
G∗(vj) avoids

to construct parallel arcs.

5. Assume there are directed paths from v+
imin

to vj in G∗∗. Then their existence

in G is necessary, because we only added arcs (vimin , v
+
jl

) and (vj−minl
, vj) in the

direction of vj . For the construction of such a directed path, we need the existence

of the arcs (v+
jl
, vj) or (vimin , vi−minl

) in G∗∗ which then are also contained in G.

This is a contradiction to our assumption that G is an acyclic digraph. Hence, the

demanded path already exists in G. We get N+
G∗(vj)(vimin) = ∅ in contradiction

to our assumption.

We can conclude, that digraph G∗∗ is a dag realization of S and the stream vertex with

the smallest index with respect to an opposed ordering has an incoming neighborhood

set which only contains sources. By Claim 2, there exists a dag realization G∗∗∗ where

the incoming neighborhood set only consists of maximum sources. We delete arcs

connecting sources with vertex vimin and get dag G′ with vertex degree sequence S′.

This theorem reduces an opposed dag sequence until we get a source-sink-sequence S′.

By applying Theorem 3.1 for digraph realizations, we can realize sequence S′. Algo-

rithm 1 combines the insights of both theorems and constructs a dag realization for

any opposed sequence which is realizable.

We give an example.

Example 4.1. Given is the increasing opposed sequence S :=
(
a1

b1

)
=
(

0
2

)
,
(
a2

b2

)
=(

0
1

)
,
(
a3

b3

)
=
(

2
3

)
,
(
a4

b4

)
=
(

2
2

)
,
(
a5

b5

)
=
(

2
1

)
,
(
a6

b6

)
=
(

1
0

)
,
(
a7

b7

)
=
(

2
0

)
. We apply the while

loop in line 3 of Algorithm 1 and get iteratively the following sequences:

step 1:
(
a1

b1

)
=
(

0
1

)
,
(
a3

b3

)
=
(

0
3

)
,
(
a4

b4

)
=
(

2
2

)
,
(
a5

b5

)
=
(

2
1

)
,
(
a6

b6

)
=
(

1
0

)
,
(
a7

b7

)
=
(

2
0

)

step 2:
(
a3

b3

)
=
(

0
2

)
,
(
a4

b4

)
=
(

0
2

)
,
(
a5

b5

)
=
(

2
1

)
,
(
a6

b6

)
=
(

1
0

)
,
(
a7

b7

)
=
(

2
0

)

step 3:
(
a3

b3

)
=
(

0
1

)
,
(
a4

b4

)
=
(

0
1

)
,
(
a5

b5

)
=
(

0
1

)
,
(
a6

b6

)
=
(

1
0

)
,
(
a7

b7

)
=
(

2
0

)

step 4:
(
a3

b3

)
=
(

0
1

)
,
(
a4

b4

)
=
(

0
1

)
,
(
a5

b5

)
=
(

0
1

)
,
(
a6

b6

)
=
(

1
0

)
,
(
a7

b7

)
=
(

2
0

)

Now, we have a source-sink-sequence and jump to line 15. We get(
a4

b4

)
=
(

0
1

)
,
(
a5

b5

)
=
(

0
1

)
,
(
a6

b6

)
=
(

1
0

)
,
(
a7

b7

)
=
(

1
0

) (
a5

b5

)
=
(

0
1

)
,
(
a7

b7

)
=
(

1
0

)
. These steps lead to

the arc set

A := {(v1, v3), (v2, v3), (v1, v4), (v3, v4), (v3, v5), (v4, v5), (v3, v7), (v4, v6), (v5, v7)} of a

dag realization G = (V,A).

35

4. DAG SEQUENCES

Algorithm 1 Dag Realization Algorithm for Opposed Sequences

Require: An opposed sequence S in increasing opposed order.

Ensure: A dag realization G = (V,A) of S or the answer that S is not a dag sequence.

1: initialize A← ∅;
2: while (the set of stream tuples in S is not empty) do

3: {application of Theorem 4.2}
4: choose the stream tuple

(aj
bj

)
with smallest index j;

5: if the number of sources in S is smaller than aj then

6: return FALSE;

7: else

8: set bi ← bi − 1 for the aj largest sources
(

0
bl1

)
, . . . ,

(
0
blaj

)
;

9: set aj ← 0;

10: set A← A ∪ {(vl1 , vj), (vl2 , vj), . . . , (vlaj , vj)};
11: delete

(
0
0

)
-tuples in S;

12: end if

13: end while

14: while (the set of source tuples in S is not empty) do

15: {realization of a source-sink-sequence.}
16: choose a largest source tuple

(
0
bj

)
;

17: if the number of sinks in S is smaller than bj then

18: return FALSE;

19: else

20: set ai ← ai − 1 for the bj largest sinks
(ak1

0

)
, . . . ,

(akbj
0

)
;

21: set A← A ∪ {(vj , vk1), (vj , vk2), . . . , (vj , vkbj)};
22: delete

(
0
0

)
-tuples in S;

23: end if

24: end while

25: return True;

36

4.1 Dag Realizations

Using bucket sort, the reordering of a given opposed sequence such that it is in

increasing opposed order requires O(m+n) time. Algorithm 1 can also be implemented

to run in time O(m+n) using a “bucket” technique. The idea is to maintain the source

and sink tuples in buckets (realized as linked lists), one bucket for each outdegree

and indegree, respectively, thus with at most 2n − 2 buckets. Non-empty buckets are

ordered decreasingly, and each bucket has a pointer to its two neighbors in this order.

Moreover, we maintain three pointers, one to the non-empty bucket corresponding to

the source with the largest outdegree, one to the sink with largest indegree, and one

to the source with the smallest outdegree. The stream tuples are kept in a list, sorted

according to the increasing opposed order. Thus line 4 can be done in O(1). With our

data structure, it is easy to execute line 8 in O(aj) time, that is, to select the aj largest

source tuples, to decrease their outdegree by one and to update our data structure

(which means in particular to shift tuples from their current bucket to the next lower

bucket or to delete them). In line 9, the selected stream tuple with index j becomes a

new source and is inserted into our bucketing data structure. This can also be done in

O(aj) time. Likewise, in line 16 choosing the largest source tuple can be done in O(1)

and line 20 in O(bj). In total, this yields O (
∑n

i=1(ai + bi)) = O(m+ n) time.

We point out, that there is the possibility to generalize Theorem 4.2 and to formulate

an algorithm handling the realization of all sequences. The problem is, that the opposed

order is not a total order. Therefore, there does not exist a unique minimal stream tuple

in each sequence. Hence, we get a realization algorithm but destroy the polynomial

running time in general. More details are given in Section 4.1.2. Theorem 4.2 leads to

a further property connected with topological orderings. Let us consider a well-known

algorithm determining a topological ordering of a dag. The iterative deletion of one

current source results in a labeling of vertices representing a feasible topological sorting

for a dag. Applying our theorem we can conclude the following: Each stream tuple
(ai+imin
bi+imin

)
with i ∈ {0, . . . , ns−1} (ns denotes the number of stream tuples) is a minimum

stream tuple in the ith iteration of the while statement in line 2. Clearly, tuple
(ai+imin
bi+imin

)

is in the (i + 1)th iteration of this loop a new source
(

0
bi+imin

)
(under the restriction

that the sequence is not yet a source-sink-sequence). That means, if we consider a dag

realization G which was constructed by Algorithm 1, then we could remove sources

following the increasing opposed sorting. This yields the following corollary.

37

4. DAG SEQUENCES

Corollary 4.1 (topological sorting). An increasing, opposed sorting of an opposed dag

sequence S is a topological sorting of at least one dag realization of S.

Back to our Example 4.1 we can indeed observe that the labeling v1, . . . , v7 is a

topological sorting of our dag realization. This new view enables us to see the dag

realization problem in the case of opposed sequences as dag realization problem for a

given topological order. Hence, our algorithm works similar as in Theorem 4.1. On the

other hand, we have a necessary criterion for determining the realizability of opposed

sequences.

4.1.2 General Dag Realization

In Section 4.4, we introduced a realization algorithm for opposed sequences. Its underly-

ing ideas can be extended to the general case – the realization of arbitrary dag sequences.

This new algorithm does not necessarily possess a polynomial running time. On the

other hand many dag sequences are realizable in polynomial running time using the

following Theorem 4.3 and a further “strategy”. We call a sequence S =
(
a1

b1

)
, . . . ,

(
an
bn

)

with q source tuples and s sink tuples canonically sorted, if and only if the first q tuples

in this labelling are decreasingly sorted source tuples (with respect to the bi) and the

last s tuples are increasingly sorted sink tuples (with respect to the ai.)

Theorem 4.3 (Characterization of dag realizability).
Let S be a canonically sorted sequence containing k > 0 source tuples. Furthermore,
we assume that S is not a source-sink-sequence. We define the set

Vmin :=

{(
ai
bi

)
|

(
ai
bi

)
is a stream tuple, ai ≤ k and there is no stream tuple

(
aj
bj

)
<opp

(
ai
bi

)}
.

S is a dag sequence if and only if Vmin 6= ∅ and there exists an element
(aimin
bimin

)
∈ Vmin

such that

S′ :=
(0

b1 − 1

)
, . . . ,

(0

baimin
− 1

)
,
(0

baimin
+1

)
, . . . ,

(0

bk

)
, . . . ,

(aimin−1

bimin−1

)
,
(0

bimin

)
,
(aimin+1

bimin+1

)
, . . . ,

(an
bn

)

is a dag sequence.

Proof. ⇐: Let S, S′ be a dag sequences with a numbering corresponding to our defi-

nitions and let Vmin 6= ∅. By construction of set Vmin we conclude the existence of at

least aimin source tuples. We consider a dag realization G′ = (V,A′) of S′ and insert

further arcs (v1, vimin), . . . , (vaimin , vimin). We call the new constructed digraph G. Ob-

viously, digraph G is a dag, because all inserted arcs starting at a source cannot build

38

4.1 Dag Realizations

a directed cycle. On the other hand, G is a digraph realization of S, because conditions

d+
G(vi) = bi and d−G(vi) = ai are fulfilled for all i ∈ {1, . . . , n}.
⇒: Let S be a dag sequence with k ≥ 1 source tuples. Furthermore, we consider a

dag realization G of S. The following steps of our proof are analogously to that of

Theorem 4.2. For this reason we refer to its details in most cases. First, we show

Vmin 6= ∅.

Claim 1: There exists a stream vertex vj with d−G(vj) ≤ k, such that the incoming

neighborhood set N−G (vj) only contains sources. It follows Vmin 6= ∅.

Assume this is not the case. We delete all k sources and its adjacent arcs in dag G.

By our assumption, we get a digraph without sources — a contradiction to the acyclicity

of G. Hence, there is a stream vertex vj with an incoming neighborhood set N−G (vj)

which only contains sources. Then it follows d−G(vj) = aj ≤ k. We distinguish between

two possibilities. Either, we have
(aj
bj

)
∈ Vmin or there is a minimum stream tuple

(
al
bl

)

with
(
al
bl

)
<opp

(aj
bj

)
with respect to the opposed ordering. Then we get

(
al
bl

)
∈ Vmin.

Hence, it follows Vmin 6= ∅.

Claim 2: There exists a dag realization G := (V,A) and a stream vertex vj ∈ V,

such that the incoming neighborhood set N−G (vj) only contains d−G(vj) maximum

sources.

The proof can be done analogously to that one of Claim 2 in Theorem 4.2.

Claim 3: There exists a dag realization G := (V,A) and a stream vertex vimin ∈
Vmin such that the incoming neighborhood set N−G (vimin) only contains d−G(vimin)

maximum sources.

Assume there is no such dag realization. By Claim 2, we can conclude the existence

of a stream vertex vj /∈ Vmin with an incoming neighborhood set N−G (vj) which only

contains d−G(vj) maximum sources. Then there is a stream vertex vimin ∈ Vmin with
(d−G(vimin)

d+
G(imin)

)
<opp

(d−G(vj)

d+
G(vj)

)
and an incoming neighborhood set not only containing sources.

Otherwise, we construct by exploiting Claim 2 the desired dag realization G. Now, we

jump in the proof of Claim 3 of Theorem 4.2 and get a contradiction to our assumption.

Hence, it exists a dag realization G∗∗ with a stream vertex vimin ∈ Vmin such that

the incoming neighborhood set N−G (vj) only contains d−G(vimin) sources. By Claim 2,

we conclude the existence of a dag realization G∗∗∗ such that vertex vimin only has

maximum sources as incoming neighborhood set. We delete all incoming arcs of vertex

vimin and get a dag G′ with vertex degree sequence S′.

39

4. DAG SEQUENCES

This theorem gives us further interesting insights. Consider the relation Rtop ⊆
V × V , where we define: vRtopw if and only if there exists no directed path starting in

w and ending in v. For each dag sequence we can find a dag realization with a topologi-

cal ordering such that we have for each pair of tuples with viRtopvj either
(
ai
bi

)
≤opp

(aj
bj

)

or they are not comparable but it never follows
(aj
bj

)
<opp

(
ai
bi

)
. Note, that this is not a

general property for acyclic digraphs. Consider for example digraph G = (V,A) with

V := {v1, . . . , v7} and A = {(v1, v3), (v2, v3), (v3, v4), (v4, v5), (v4, v6), (v4, v7)}. The cor-

responding stream tuples of v3Rtopv4 are
(
a3

b3

)
=
(

2
1

)
and

(
a4

b4

)
=
(

1
3

)
with

(
a4

b4

)
<opp

(
a3

b3

)
.

A further interesting observation is that this property is symmetrical in the following

sense. Note, that for two pairs
(
a1

b1

)
<opp

(
a2

b2

)
we either have a1 < a2 ∧ b1 ≥ b2 or

a1 ≤ a2 ∧ b1 > b2. Hence, we can conclude
(
b2
a2

)
<opp

(
b1
a1

)
. On the other hand it is clear

that the non-comparability of two pairs with respect to the opposed relation is symmet-

rical. If we change in a sequence S =
(
a1

b1

)
, . . . ,

(
an
bn

)
the roles of ai and bi, then we get a

sequence S =
(
b1
a1

)
, . . . ,

(
bn
an

)
such that our property is fulfilled in the opposite direction.

Hence, this ordering gives us a possibility to include the underlying “symmetry of sinks

and sources”.

Corollary 4.2. Let S be a dag sequence. Then there exists a dag realization G = (V,A)

with a topological ordering vl1 , . . . , vlns of all ns vertices corresponding to stream tuples,

such that for li < lj we cannot find
(alj
blj

)
<opp

(ali
bli

)
.

Proof. Assume, S is a dag sequence and for all dag realizations we have for each topo-

logical ordering vl1 , . . . , vlns of all vertices corresponding to stream tuples at least one

pair vliRtopvlj with
(alj
blj

)
<opp

(ali
bli

)
. Consider a dag realization G = (V,A), which was

constructed by repeated application of Theorem 4.3. Hence, we applied this Theorem

exactly lns times. On the other hand, we can conclude
(ali
bli

)
∈ Vmin in the i–th step. But

then we get
(ali
bli

)
<opp

(alj
blj

)
with respect to the definition of Vmin. Contradiction!

Theorem 4.3 proves the existence of a dag realization which contains a vertex cor-

responding to an element of Vmin only possessing maximum sources as incoming neigh-

borhood set. We define a largest possible subset V ′min ⊆ Vmin with the property that

all elements in V ′min are pairwise distinct (w. l. o. g. we can restrict our candidate set

to V ′min). For each
(aij
bij

)
∈ V ′min we construct the reduced sequence S′j , set Sj := S′j

and apply our Theorem 4.3 repeatedly until S′j is a source-sink-sequence or we find out

that S′j is not a dag sequence, because Vmin is empty.

40

4.1 Dag Realizations

Hence, Theorem 4.3 ensures the possibility for reducing a dag sequence into a source-

sink-sequence. The latter can be realized by using Theorem 3.1. The whole algorithm

is summarized in Algorithm 2. We give an example in Figure 4.4.

The bottleneck of this approach is the size of set V ′min. We only find stream tuples in

this set which are not comparable with respect to the opposed relation. In an opposed

dag sequence we have |V ′min| = 1, if sequence S is not a source-sink-sequence, because in

this case there exists a unique minimum stream tuple (up to isomorphic ones). Hence,

Theorem 4.2 is a special case of our Theorem 4.3. However, there are many sequences

which are not opposed but Theorem 4.3 still yields a polynomial time execution of

Algorithm 2. Consider for example dag sequence S :=
(

0
3

)
,
(

0
3

)
,
(

2
2

)
,
(

3
3

)
,
(

1
0

)
,
(

2
0

)
,
(

3
0

)

which is not an opposed sequence, because stream tuples
(

2
2

)
and

(
3
3

)
are not comparable

with respect to the opposed ordering. However, we have |V ′min| = |{
(

2
2

)
}| = 1 and so

we reduce S to S′ =
(

0
2

)
,
(

0
2

)
,
(

0
2

)
,
(

3
3

)
,
(

1
0

)
,
(

2
0

)
,
(

3
0

)
, leading to the realizable source-sink-

sequence
(

0
1

)
,
(

0
1

)
,
(

0
1

)
,
(

0
3

)
,
(

1
0

)
,
(

2
0

)
,
(

3
0

)
.

At the beginning of our work (when the complexity of the dag realization problem

was still open), we conjectured that the choice of the lexicographical largest tuple from

V ′min in line (3) of Algorithm 2 would solve our problem in polynomial time. We

call this approach lexmax strategy and a dag sequence which is realizable with this

strategy lexmax sequence, otherwise we call it non-lexmax sequence. We conjectured

the following.

Conjecture 4.1 (lexmax conjecture). Each dag sequence is a lexmax sequence.

We disproved our own conjecture by a counter-example, see our example in Fig-

ure 4.4. The green marked path corresponds to the lexmax strategy, but is unsuccessful.

More interesting is the insight, that there is no general strategy for choosing a correct

element in V ′min without the consideration of all sinks. To see this, consider the following

example.

Example 4.2. We consider the two sequences

S1 :=

(
0

5

)
,

(
0

5

)
,

(
0

5

)
,

(
0

2

)
,

(
0

2

)
,

(
5

5

)
,

(
5

5

)
,

(
2

2

)
,

(
2

2

)
,

(
1

0

)
,

(
1

0

)
,

(
2

0

)
,

(
6

0

)
,

(
9

0

)

and

S2 :=

(
0

5

)
,

(
0

5

)
,

(
0

5

)
,

(
0

2

)
,

(
0

2

)
,

(
5

5

)
,

(
5

5

)
,

(
2

2

)
,

(
2

2

)
,

(
6

0

)
,

(
6

0

)
,

(
7

0

)
,

41

4. DAG SEQUENCES

Algorithm 2 DagRealization(sequence S)

Require: A canonically sorted sequence S.

Ensure: A Boolean flag indicating whether S is realizable.

1: if S is not a source-sink-sequence then

2: Count the number of sources in S and determine set V ′min.

3: for all
(aj
bj

)
∈ V ′min do

4: Create a working copy S′ of S with tuples
(a′i
b′i

)
=
(
ai
bi

)
;

5: Set b′i ← b′i − 1 for a′j largest sources
(

0
b′i

)
.

6: Set a′j ← 0.

7: Delete
(

0
0

)
-tuples.

8: if DagRealization(S′) then

9: return TRUE;

10: end if

11: end for

12: return FALSE;

13: else

14: while the set of source tuples in S is not empty do

15: {Realization of a source-sink-sequence.}
16: choose a largest source tuple

(
0
bj

)
.

17: if number of sinks in S is smaller than bj then

18: return FALSE;

19: end if ;

20: Set ai ← ai − 1 for bj largest sinks
(
ai
0

)
.

21: Delete
(

0
0

)
-tuples.

22: end while

23: return TRUE;

24: end if

42

4.1 Dag Realizations

S
′
=

(0 2

) ,×
,(1 2

) ,(0 3

) ,(4 4

) ,(1 1

) ,(1 0

) ,(2 0

) ,(3 0

)
S
′
=

(0 2

) ,(0 1

) ,(0 2

) ,(2 3

) ,(4 4

) ,(1 1

) ,(1 0

) ,(2 0

) ,(3 0

)

S
′′
=

(0 2

) ,×
,(0 2

) ,(0 2

) ,(4 4

) ,(1 1

) ,(1 0

) ,(2 0

) ,(3 0

)
S
′′
=

(0 1

) ,(0 1

) ,(0 2

) ,(2 3

) ,(4 4

) ,(0 1

) ,(1 0

) ,(2 0

) ,(3 0

)
S
′′
=

(0 1

) ,(0 1

) ,(0 1

) ,(0 3

) ,(4 4

) ,(1 1

) ,(1 0

) ,(2 0

) ,(3 0

)

S
′′′

=
×
,(0 1

) ,(0 1

) ,(0 3

) ,(4 4

) ,(0 1

) ,(1 0

) ,(2 0

) ,(3 0

)
S
′′′

=
(0 1

) ,(0 1

) ,(0 1

) ,(0 2

) ,(4 4

) ,(0 1

) ,(1 0

) ,(2 0

) ,(3 0

)
S
′′′

=
×
,×

,×
,(0 2

) ,(0 4

) ,(1 1

) ,(1 0

) ,(2 0

) ,(3 0

)
S
′′′

=
(0 1

) ,×
,(0 2

) ,(0 2

) ,(4 4

) ,(0 1

) ,(1 0

) ,(2 0

) ,(3 0

)

S
=

(0 3

) ,(0 1

) ,(1 2

) ,(2 3

) ,(4 4

) ,(1 1

) ,(1 0

) ,(2 0

) ,(3 0

)

(1 2

)
(2 3

)

(1 1

)
(2 3

)
(1 2

)

(2 3

)
(1 1

)
(4 4

)
(1 1

)

(4 4

)
(4 4

)
(1 1

)
(4 4

)

V
′ m
in

=
{(

1 2

) ,
(2 3

) }

V
′ m
in

=
{(

1 1

) ,
(2 3

) }
V

′ m
in

=
{(

1 2

) }

V
′ m
in

=
{(

2 3

) }
V

′ m
in

=
{(

1 1

) ,
(4 4

) }
V

′ m
in

=
{(

1 1

) }

V
′ m
in

=
{(

4 4

) }
V

′ m
in

=
{(

4 4

) }
V

′ m
in

=
{(

1 1

) }
V

′ m
in

=
{(

4 4

) }

no
t

re
al

iz
ab

le
no

t
re

al
iz

ab
le

no
t

re
al

iz
ab

le

re
al

iz
ab

le

S
′′′

′
=

×
,×

,×
,(0 2

) ,(0 4

) ,×
,(1 0

) ,(2 0

) ,(3 0

)
S
′′′

′
=

×
,×

,×
,(0 1

) ,(0 4

) ,(0 1

) ,(1 0

) ,(2 0

) ,(3 0

)
S
′′′

′
=

×
,×

,×
,(0 2

) ,(0 3

) ,(0 1

) ,(1 0

) ,(2 0

) ,(3 0

)
S
′′′

′
=

×
,×

,(0 1

) ,(0 1

) ,(0 4

) ,×
,(1 0

) ,(2 0

) ,(3 0

)

×
,×

,×
,(

0 2

) ,
×
,(

0 1

) ,
×
,(

1 0

) ,
(2 0

)

×
,×

,×
,×

,×
,(

0 1

) ,
×
,×

,(
1 0

)

Figure 4.4: Recursion tree for Example 4.4. The symbol × here denotes tuples of S

which have been deleted after being reduced to
(
0
0

)
. The forth tree level where the original

sequence is reduced to a source-sink sequence is marked with red boxes.

43

4. DAG SEQUENCES

only differing in their sink tuples. Dag sequence S2 only possess one unique topological

sorting of the stream tuples
(

5
5

)
,
(

5
5

)
,
(

2
2

)
,
(

2
2

)
which is the lexmax strategy. In contrast,

dag sequence S1 has many topological possible sortings of the stream tuples but not the

lexmax strategy. Hence, there does not exist one common strategy for these sequences.

Obviously, a more “efficient” algorithm has to consider the kind of sinks, otherwise

it is not possible to choose the right element in V ′min. However, in a series of systematic

experiments (see Section 4.2) for all dag sequences with 7, 8, 9 tuples, we observed

that our lexmax strategy determines a dag realization for a large fraction of all dag

sequences.

Moreover, we can also prove that this strategy is possible for sequences with
∑n

i=1 ai

≤ n − 1. Such sequences are not necessarily opposed what can be seen for the dag

sequence S :=
(

0
1

)
,
(

0
1

)
,
(

2
2

)
,
(

1
1

)
,
(

1
0

)
,
(

1
0

)
. We denote these sequences by forest sequences.

The existence of an efficient solution for forest sequences is not so surprising as there

is a simple approach to construct a dag realization if there is one. First, one can apply

a digraph realization algorithm. When we do not find a digraph realization, there also

cannot be a dag realization. Assume, we have a digraph realization G = (V,A). If G

does not possess a directed cycle, then it is a dag realization and we are ready. Let us

assume G has at least one directed cycle. In this case, there exist at least two weak

components, because the underlying undirected graph is not a forest. Hence, we can

choose an arc (v1, v2) of the directed cycle in the first component and a further arc

(v3, v4) from the second weak component. We construct the new digraph G′ := (V,A′)

with A′ := A\{(v1, v2), (v3, v4)}∪{(v1, v4), (v3, v2)}. We apply a sequence of such steps

(at most n steps) until we get an acyclic dag realization. This is possible because as long

as we can find a directed cycle we also have more than one weak component. (Note, that

the underlying graph is not necessarily a simple graph. It can contain parallel edges

corresponding to directed 2-cycles of the initial dag realization G.) Hence, we can

conclude that each forest sequence which is a digraph sequence is also a dag sequence.

Clearly, this can be decided in polynomial time. Indeed, we found out that each strategy

to choose a tuple in V ′min is successful, see Corollary 4.3 below. First we give a more

general result.

Theorem 4.4 (Realization of forest sequences).

Let S :=
(
a1

b1

)
, . . . ,

(
an
bn

)
be a canonically sorted forest sequence containing k > 0 source

tuples. Furthermore, we assume that S is not a source-sink-sequence. Consider an

44

4.1 Dag Realizations

arbitrary stream tuple
(
ai
bi

)
with ai ≤ k.

S is a dag sequence if and only if

S′ :=

(
0

b1 − 1

)
, . . . ,

(
0

bai
− 1

)
,

(
0

bai+1

)
, . . . ,

(
0

bk

)
, . . . ,

(
ai−1
bi−1

)
,

(
0

bi

)
,

(
ai+1

bi+1

)
, . . . ,

(
an
bn

)

is a dag sequence.

Proof. ⇐: Trivial.

⇒: Let S be a dag sequence with k ≥ 1 source tuples. We consider a dag realization

G such that we have a minimum number of weak components. Clearly, the underlying

undirected graph is then a forest without undirected cycles. Furthermore, we consider

a dag realization G as described where the incoming neighborhood set of vertex vi con-

sists of a maximum possible number of sources. Assume, there is a vertex vi− ∈ N−G (vi)

which is not a source. Then we can conclude that there exists a source q and a vertex

vj with (q, vj) ∈ A but (q, vi) /∈ A, because we have d−G(vi) = ai ≤ k by our assumption.

We distinguish between two cases.

case 1: There exists no underlying undirected path between vertices vj and vi.

case 2: There exists exactly one underlying undirected path P between vertices vj and

vi.

Note, that there cannot be more than one underlying undirected path, because the

underlying graph of G is by our assumption a forest. Let us start with case 1. There

cannot be an underlying undirected path between vertices q and vi, otherwise we would

find the excluded undirected path between vi and vj , because q is adjacent to vj . We

construct the dag G′ = (V,A′) with A′ := A \ {(q, vj), (vi− , vi)} ∪ {(q, vi), (vi− , vj)}.
Consider Figure 4.5. G′ is a dag, because G does not contain an underlying undirected

path between vi and q and not between vi− and vj by our assumptions. Hence, we did

not construct an underlying undirected cycle and clearly no directed cycle.

But then G′ is a dag realization with a minimum number of weak components and

a larger number of sources in the neighborhood set of vi than in dag G. Contradiction!

It remains to consider case 2. Since vertex vi is a stream tuple we define the following

dag G′ = (V,A′) with A′ := A \ {(q, vj), (vi− , vi), (vi, vi+)} ∪ {(q, vi), (vi− , vi+), (vi, vj)}
as can be seen in Figure 4.6.

Note, that vj and vi− are not necessarily distinct vertices. In this case we replace

in A′ vertex vi− by vj . Since we destroyed by our construction all underlying unique

paths in G between vi and q, between vi+ and vi− and between vj and vi, digraph

45

4. DAG SEQUENCES

Figure 4.5: Case 1: no underlying undirected path between q and vi in G.

Figure 4.6: Case 2: one unique underlying undirected path P between q and vi.

46

4.1 Dag Realizations

Figure 4.7: A larger source q′ is not connected with vertex vi.

G′ is indeed acyclic and possesses a minimum number of weak components. On the

other hand vertex vi is connected with a larger number of sources as inG. Contradiction!

Hence, we can assume that there exists a dag realizationG = (V,A) with a minimum

number of weak components such that the incoming neighborhood set of vertex vi only

contains sources. We consider a dag realization such that vertex vi is connected with the

maximum possible number of largest sources. Assume, there is a source q′ > q such that

(q, vi) ∈ A and (q′, vi) /∈ A. Then there exists a further vertex vj with (q′, vj) ∈ A. We

distinguish again between two cases. If there does not exist an underlying undirected

path P between q and vj or between q′ and vi, we define the new dag G′ := (V,A′)

with A′ := A \ {(q, vi), (q′, vj)} ∪ {(q′, vi), (q, vj)} (see Figure 4.7) with a minimum

number of weak components but with one larger source connected with vi than in G.

Contradiction!

Hence, we next assume that there is one underlying undirected path P = q′, vj′ , . . . , vi
between q′ and vi. (A further path between q and vj cannot exist, because in this case

we would find an underlying cycle.) Note, that it is possible that we find vj′ = vj . In

this case we replace in the following steps vj′ by vj . We define the new dag realization

G′ = (V,A′) with A′ := A\{(q, vi), (q′, vj′)}∪{(q′, vi), (q, vj′)} with a minimum number

of weak components, because we destroyed by our construction the underlying unique

paths from q to vj′ and from q′ to vi. Dag G′ possesses one more large source connected

with vi than G. Contradiction! As a last case it remains, that there could exist an

underlying undirected path P = q, . . . , vj from q to vj , see Figure 4.8.

Since q′ is a larger source than q, there exists a further vertex vj′ with (q′, vj′) ∈ A.
Then we construct the dag realization G′ = (V,A′) with A′ := (A \ {(q, vi), (q′, vj′)})∪
{(q′, vi), (q, vj′)}. Indeed, we destroyed in G the unique paths between q and vj′ and

between q′ and vi. Hence, G′ is a dag with a minimum number of weak components

but with one large source more connected to vi than in G. Contradiction!

So, there exists a dag realization G such that vertex vi has in its incoming neighborhood

47

4. DAG SEQUENCES

Figure 4.8: A larger source q′ is not connected with vertex vi and there exists an

underlying path P between q to vj .

set only largest sources. We delete the arcs from these sources to vi in G and get a dag

realization G′ with dag sequence S′.

Note, that sequence S′ may contain zero tuples. In this case, we delete these tuples

and renumber the tuples from this new sequence S′ :=
(a′1
b′1

)
, . . . ,

(a′
n′
b′
n′

)
from 1 to n′.

Clearly, we have
∑n′

i=1 a
′
i ≤ n−ai−1 ≤ n′−1, because we deleted exactly the indegree

of tuple
(
ai
bi

)
in S and it is only possible to delete at most ai occurring zero tuples in S′.

Hence, Theorem 4.4 results in a recursive algorithm. At each step, one has to choose

an arbitrary stream tuple
(
ai
bi

)
with indegree of at least k and then to reduce ai largest

sources by one and to set the indegree ai of this tuple to zero. On the other hand, all

these possible tuples are also contained in the set Vmin of Theorem 4.3. Hence, we get

the following corollary.

Corollary 4.3 (arbitrary tuple choice in Vmin for forest sequences).

Let S :=
(
a1

b1

)
, . . . ,

(
an
bn

)
be a canonically sorted forest sequence containing k > 0 source

tuples. Furthermore, let S′ be defined as in Theorem 4.3 where
(aimin
bimin

)
is an arbitrary

tuple in Vmin.

Then S is a dag sequence if and only if S′ is a dag sequence.

In systematic experiments we found out that a large fraction of sequences can be

solved by the lexmax strategy in polynomial time. We tell this story in the next

Section 4.2. Moreover, we use the structural insights of our main theorem in restricting

the number of possible topological sortings leading to a randomized algorithm which

performs well in practice (Section 4.3).

48

4.2 How to Attack the NP-complete Dag Realization Problem in Practice

4.2 How to Attack the NP-complete Dag Realization Prob-

lem in Practice

Why we became curious. Recall that the complexity status of the dag realization

problem was open until a few weeks ago. To see whether our lexmax Conjecture 4.1

might be true, we generated a set of dag sequences denoted by randomly generated

sequences by the following principle: Starting with a complete acyclic digraph, delete k

of its arcs uniformly at random. We take the degree sequence from the resulting graph.

Note that we only sample uniformly with respect to random dags but not uniformly

degree sequences since degree sequences have different numbers of corresponding dag

realizations.

In a first experiment we created with the described process one million dag sequences

with 20 tuples each, and m =
∑20

i=1 ai = 114. Likewise, we built up another million

dag sequences with 25 tuples and
∑25

i=1 ai = 180. The fact that the lexmax strategy

realized all these test instances without a single failure was quite encouraging. The

lexmax Conjecture 4.1 seemed to be true, only a correctness proof was missing. In

Figure 4.4 we constructed a counter-example (the green path) and in Example 4.2 we

found that no fixed strategy exists if we do not consider the sink tuples.

These observations give rise to several immediate questions: Why did we construct

by our sampling method (for n = 20 and n = 25) only dag sequences which are lexmax

sequences? How many dag sequences are not lexmax sequences?

Therefore, we started with systematic experiments. For small instances with n ∈
{7, 8, 9} tuples we generated systematically the set of all dag sequences with all possible
∑m

i=1 ai =: m, see for an example the case n = 9 in Figure 4.9. More precisely, we

considered only non-trivial sequences, i.e. we eliminated all source-sink sequences and all

sequences with only one stream tuple. We denote this set by systematically generated

sequences. Note that the number of sequences grows so fast in n that a systematic

construction of all sequences with a larger size is impossible.

We observed the following:

1. The fraction of lexmax sequences among the systematically generated sequences

is quite high. For all m it is above 96.5%, see Figure 4.9 (blue squares).

49

4. DAG SEQUENCES

5 10 15 20 25 30 35
95

95.5

96

96.5

97

97.5

98

98.5

99

99.5

100

number m of arcs for a dag realization

p
e

rc
e

n
ta

g
e

 o
f

le
xm

a
x

se
q

u
e

n
ce

s

Figure 4.9: Percentage of (non-trivial) lexmax sequences for systematically generated

(blue squares) and randomly generated sequences (red triangles) with 9 tuples and different

m ∈ {5, . . . , 35}.

2. The fraction of lexmax sequences strongly depends on m. It is largest for sparse

and dense dags.

3. Lexmax sequences are overrepresented among one million randomly generated

sequences (for each m), we observe more than 99% for all densities of dags, see

Figure 4.9 (red triangles).

This leads to the following questions: Given a sequence for which we seek a dag

realization. How should we proceed in practice? As we have seen, the huge majority

of dag sequences are lexmax sequences. Is it possible to find out some characteristic

properties for lexmax sequences or non-lexmax sequences, respectively?

Distance to opposed sequences. Let us exploit our characterization that opposed

sequences are efficiently solvable. We propose the distance to opposed d(S) for each

dag sequence S. Consider for that the topological order of a dag realization G given

by Algorithm 2, if in line 3 elements are chosen in decreasing lexicographical order.

Thus, we obtain one unique dag realization G for S, if existing. Now, we renumber dag

sequence S such that it follows the topological order induced by the execution by this

50

4.2 How to Attack the NP-complete Dag Realization Problem in Practice

10 11 1312 14 15 163 41 2 5 7 8 960
0

10

20

30

40

50

60

70

80

90

difference d to opposed

Figure 4.10: Percentage of systematic generated sequences S with their difference d(S)

to opposed with 9 tuples and m ∈ {9, . . . , 35}.

algorithm, i. e. by the sequence of choices of elements from V ′min. Then the distance to

opposed is defined as the number of pairwise incomparable stream tuples with respect

to this order, more precisely,

d(S) :=

∣∣∣∣
{((

ai
bi

)
,

(
aj
bj

))
|
(
ai
bi

)
,

(
aj
bj

)
incomparable stream tuples w. r .t. ≤opp and i < j

}∣∣∣∣ .

We start this discussion by the following questions and experiments.

Question 1: Do randomly generated sequences possess a preference to a

“small” distance to opposed in comparison with systematically generated

sequences? In Figure 4.10, we show the distribution of systematically generated

sequences (in %) with their distance to opposed, depending on m :=
∑n

i=1 ai. We

compare this scenario with the same situation for the percentage of randomly generated

sequences in Figure 4.11.

Observations: Systematically generated sequences have a slightly larger range of

the “distance to opposed” than randomly generated sequences. Moreover, when we

generate dag sequences systematically, we obtain a significantly larger fraction of in-

stances with a larger distance to opposed than for randomly generated sequences, and

this phenomenon can be observed for all densities.

51

4. DAG SEQUENCES

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0

10

100

90

80

70

60

50

40

30

20

difference d to opposed

Figure 4.11: Percentage of randomized generated sequences S with their difference d(S)

to opposed with 9 tuples and m ∈ {9, . . . , 35}.

Question 2: Do non-lexmax sequences possess a preference for large opposed

distances? Since opposed sequences are easily solvable by Algorithm 1, we conjecture

that sequences with a small distance to opposed might be easier solvable by the lexmax

strategy than those with a large distance to opposed. If this conjecture were true, it

would give us together with our findings for Question 1 one possible explanation for the

observation that the randomly generated sequences have a larger fraction of efficiently

solvable sequences by the lexmax strategy.

Observations: A separate analysis of non-lexmax sequences (that is, the subset of

unsolved instances by the lexmax strategy), displayed in Figure 4.12, gives a clear pic-

ture: yes! For systematically generated sequences with n = 9, we observe in particular

for instances with a middle density that the fraction of non-lexmax sequences becomes

maximal for a relatively large distance to opposed.

Question 3: Can we solve real-world instances by the lexmax strategy? We

consider real-world instances from different domains.

a): Ordered binary decision diagrams (OBDDs): In such networks the outdegree is

two, that is constant. This immediately implies that the corresponding sequences

52

4.2 How to Attack the NP-complete Dag Realization Problem in Practice

difference d to opposed

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1514131211109876543210

Figure 4.12: Fraction of systematic non lexmax sequences with 9 tuples and different

densities m ∈ {9, . . . , 35} and varying difference to opposed d(S).

are opposed sequences, and hence can provably be solved by the lexmax strategy.

b): Food Webs: Such networks are almost hierarchical and therefore have a strong

tendency to be acyclic (“larger animals eat smaller animals”). In our experiments

we analyzed food webs from the Pajek network library (Bat04).

c): Train timetable network: We use timetable data of German Railways from 2011

and form a time-expanded network. Its vertices correspond to departure and

arrival events of trains, a departure vertex is connected by an arc with the arrival

event corresponding to the very next train stop. Moreover, arrival and departure

events at the same station are connected whenever a transfer between trains is

possible or if the two events correspond to the very same train.

d): Flight timetable network: We use the European flight schedule of 2010 and form

a time-expanded network as in c).

The characteristics of our real-world networks b) - d) are summarized in Table 4.1.

Networks of type c) and d) are always opposed. The dag density ρ of a network is

defined as ρ = m/
(
n
2

)
. To compare the distance to opposed for instances of different

sizes, we normalize this value by the theoretical maximum
(
b
2

)
, where b denotes the

number of stream tuples, and so obtain a normalized distance to opposed. Without any

exception, all real-world instances have been realized by the lexmax strategy.

53

4. DAG SEQUENCES

name and kind of network n m b ρ normalized d(S)

burgess shale (b) 142 770 101 0.08 0.40

chengjiang shale (b) 85 559 54 0.16 0.50

florida bay dry (b) 128 2137 125 0.26 0.32

cyprus dry (b) 71 640 68 0.26 0.43

maspalomas (b) 24 82 21 0.30 0.30

rhode river (b) 20 53 17 0.28 0.42

train schedule 2011 (c) 19359 77201 18907 0.0004 0.00

flight schedule 2010 (d) 37800 1324556 32905 0.0019 0.00

Table 4.1: Characteristics of our real-world test instances.

4.3 Randomized Algorithms

The main idea for developing a randomized algorithm is the following. In each trial

use a randomly chosen topological sorting (a random permutation of the tuples) for

a given sequence and then apply the linear-time realization algorithm as described in

Section 4.1 and justified by Theorem 4.1.

Clearly, it is not necessary to permute all tuples in a sequence. Instead we use

a canonically sorted sequence and permute only the stream tuples. We denote this

first naive version of a randomized algorithm by stream tuple permutation algorithm

(Rand I). A random permutation of a sequence of length n can be chosen in O(n) time,

see for example (Dur64). Hence, one trial of the stream tuple permutation algorithm

requires O(m+n) time. This algorithm performs poorly since there are sequences with

only a single realization among (n− 2)! many permutations of n− 2 stream tuples. On

the other hand, it is possible to restrict the number of possible topological sortings by

the following theorem.

Theorem 4.5 (necessary criterion for the realizability of dag sequences).

Let S be a dag sequence. Denote the number of source tuples in S by q and the number

of sink tuples by s. Then it follows ai ≤ min{n − s, i − 1} and bi ≤ min{n − q, n − i}
for all i ∈ Nn for each labeling of S corresponding to a topological order.

Proof. Let S :=
(
a1

b1

)
, . . . ,

(
an
bn

)
be a labeling of S corresponding to a topological sorting

of a dag realization G. Assume, there is a j ∈ Nn with aj > min{n − s, j − 1}. (Case

bj > min{n− q, n− j} can be done analogously.) G is a subdigraph of a complete dag

G∗ with topological sorting v1, . . . , vn. Clearly, we have d−G∗(vj) = j−1. We distinguish

54

4.3 Randomized Algorithms

2

6

5

3

4

4

3

5
1

1

4

4

3

2

2

1

WV
S S

Figure 4.13: Bounding graph GS for sequence S :=
(
0
3

)
,
(
0
1

)
,
(
1
2

)
,
(
2
3

)
,
(
4
4

)
,
(
1
1

)
,
(
1
0

)
,
(
2
0

)
,
(
3
0

)
.

One perfect matching (thick red edges) leads to the topological order
(
1
2

)
,
(
2
3

)
,
(
4
4

)
,
(
1
1

)
which

is realizable, whereas another perfect matching (thick blue edges) gives the topological order(
1
1

)
,
(
1
2

)
,
(
4
4

)
,
(
2
3

)
which is not realizable.

between two cases. If we have min{n− s, j − 1} = n− s, then it follows aj = d−G(vj) >

n− s. Then the incoming neighborhood set N−G (vj) consists of more than n− s vertices

– in contradiction to the fact that N−G (vj) contains at most n− s vertices. Let us now

assume min{n − s, j − 1} = j − 1. Then we get d−G∗(vj) = j − 1 < aj = d−G(vj) – a

contradiction to our assumption that G is a subdigraph of G∗.

Hence, a stream tuple
(
ai
bi

)
can only be at position j in a topological ordering if aj ≤

min{n− s, i− 1} and bj ≤ min{n− q, n− i} is fulfilled. We define a bipartite bounding

graph BS = (VS∪WS , ES) for a given canonically sorted sequence as follows. We define

|S| − q− s vertices vi ∈ VS with i ∈ {q+ 1, . . . , n− s} where each vertex vi corresponds

to an “upper bound tuple”
(min{n−s,i−1}

min{n−q,n−i}
)

for a stream tuple in S. Furthermore, we

define |S| − q− s vertices wi with i ∈ {q+ 1, . . . , n− s} each corresponding to a stream

tuple
(
ai
bi

)
. The edge set ES is built as follows. Two vertices vi and wj are adjacent if

and only if we find for
(aj
bj

)
that aj ≤ min{n − s, i − 1} and bj ≤ min{n − q, n − i}.

In Figure 4.13, we show an example of the bounding graph BS where S is the dag

sequence from the example in Figure 4.4.

A perfect matching in this bounding graph gives us a possible topological sorting

with respect to Theorem 4.5. This means, we assign to each stream tuple
(aj
bj

)
in S

the number i if and only if (vi, wj) is a matching edge in the chosen perfect matching.

Clearly, there does not exist a dag realization of sequence S if BS does not contain a

perfect matching. Unfortunately, the computation of the number of perfect matchings

in a bipartite graph is known to be]P -hard (Val79). On the other hand, there exists

a polynomial-time algorithm for the problem of uniform sampling a perfect matching

within a bipartite graph by Jerrum, Sinclair and Vigoda (JSV04). They use a Markov

55

4. DAG SEQUENCES

chain based algorithm. The number of necessary steps in this algorithm is measured

by the so-called mixing time τε. The mixing time τ(ε) is the minimum number of steps

required by a random walk so that the distribution at this time has a variation distance

δ(t) ≤ ε. The variation distance δ(t) at time t with respect to the initial distribution

P0 measures how close the distribution of the Markov chain after t steps is to the

stationary uniform distribution π. It is defined as δ(t) = 1
2

∑
VG∈VΦ

|Pt(VG)−π(VG)|. A

random walk is said to be rapidly mixing if its mixing time can be bounded from above

by a polynomial in the description length n := |V | and m := |E| of the bipartite graph

G = (V,E), on which a perfect matching has to be sampled. They proved a worst case

mixing time of O(n8(n log n+log 1
ε) log 1

ε). Up to know, we do not know if we really need

a uniform distribution, but we do not want to eliminate certain topological orderings.

Our second version of a randomized algorithm – the bounding permutation algorithm

(Rand II) – chooses in each trial a topological sorting by uniform sampling a perfect

matching in BS and then applies the realization algorithm for a given topological order

(Theorem 4.1). For our experiments with very small instances, we sampled uniformly

by enumerating all permutations of stream tuples.

Our third randomized algorithm – the opposed permutation algorithm (Rand III) –

exploits the non-trivial result in Corollary 4.2 about opposed topological sortings. It

uses for one trial, Algorithm 2 with a change in line 3. We replace line 3 by: “Sample

a vj ∈ V ′min uniformly at random.” If possible, we restrict the set of V ′min before

line 3, i.e., we check for the largest vi ∈ V ′min whether the bounds of Lemma 4.4

are respected for later positions. Let k denote the number of recursive calls up to

the current one. Expressed in terms of the original sequence, we have to choose the

(q+k)–th tuple in the topological sorting in the current iteration. If bi = n−(q+k) for

the lexicographical largest tuple
(
ai
bi

)
∈ V ′min, then we set V ′min := {

(
ai
bi

)
}. The reason is

that a larger position is not possible at all for this tuple, because the upper bound for

bi decreases strictly, as shown in Lemma 4.4. At first glance it is not clear whether the

restriction to a subset of permutations within the randomized algorithm really increases

the chance to draw a realizable topological sorting. This version of the algorithm only

constructs dag realizations which possess an opposed topological sorting. Hence, we

also exclude possible topological sortings which are not opposed topological sortings.

However, empirically this idea pays off.

Our fourth randomized version combines the opposed permutation algorithm with

several reduction rules.

1. Exploit symmetric roles of in- and outdegrees. If |V ′min| = 1, the reduction step in

Algorithm 2 is safe (for any realizable sequence). Since the problem is symmetric

56

4.3 Randomized Algorithms

with respect to in- and outdegrees, we can exchange their roles. This suggests to

check the size of V ′min from “both sides”. If either of these sets has size one, the

corresponding reduction step is safe and should be preferably applied.

2. Degree dominance of some tuple. Suppose that some bi is so large that this number

matches the number of available stream and sink tuples, then vertex vi has to

be connected with all current non-sources. Hence, sequence S can be reduced by

deleting a source tuple
(

0
bi

)
or by updating a stream tuple

(
ai
bi

)
to a new sink

(
ai
0

)
,

respectively, and by subtracting one from all aj > 0 with i 6= j. The symmetric

reduction rule can be stated for a dominating ai-value.

3. Dominating total degree of some stream tuple. Suppose there is a stream tuple

with ai + bi = n− 1. Then we can conclude that this tuple has to be connected

with all other tuples. It is unclear which stream tuples come before and which

after
(
ai
bi

)
in some realization. However, we can be sure that it is connected with

all sources and all sinks (in particular ai ≤ q and bi ≤ s must hold). In order to

ensure that later recursive reduction steps do not introduce parallel arcs, we only

apply a more conservative reduction. Namely, we connect the vertex vi only with

sources and sinks for which ai = 1 or bi = 1, respectively.

We additionally apply these rules whenever applicable and call the randomized

algorithm opposed permutation algorithm with reduction rules (Rand IV).

Experiment 1: Which randomized algorithm possesses the best success

probability for one trial? We define the success probability p(m) as the proba-

bility that a given sequence S :=
(
a1

b1

)
, . . . ,

(
an
bn

)
with m :=

∑n
i=1 ai can be realized by

a specified randomized algorithm in one single trial. In this experiment we test the

four versions of our randomized algorithms with all non-trivial sequences (as defined in

Section 4.2) of 9 tuples, see Figure 4.14. Moreover, we display the fraction of lexmax

sequences to compare the deterministic lexmax strategy with our randomized strategy.

Observations: Randomized version 4 (opposed permutation algorithm with reduction

rules) clearly outperforms all other strategies. We also observe that the success prob-

ability p depends on the density m of the dag realisations. Sparse and dense dags

have the best success probability. The deterministic lexmax strategy has almost the

same success probability as our best randomized version. Of course, we can repeat a

randomized algorithm and thereby boost the success rate which is not possible for the

deterministic variant. Nevertheless the good performance of the simple lexmax strategy

57

4. DAG SEQUENCES

5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Rand I
Rand II
Rand III
Rand IV
fraction of lexmax
sequences

number m of arcs of a dag realization

s
u

c
c

e
s

s
 p

ro
b

a
b

il
it

y
 p

(m
)

Figure 4.14: Success probability p(m) for all non-trivial sequences with 9 tuples with

four versions of randomized algorithms, and the fraction of lexmax sequences.

is quite remarkable, it clearly outperforms an arbitrary strategy to choose in line 3 of

Algorithm 2 an element from V ′min (realized in randomized version Rand III).

Experiment 2: We consider the success probability for all randomized al-

gorithms in the case of non-lexmax sequences which are not reducible by

reduction rules 1-3. Noting that an impressively large fraction of sequences is effi-

ciently solvable by the deterministic lexmax strategy combined with our reduction rules,

we should ask: How well do our randomized algorithms perform for the remaining dif-

ficult cases, that is for non-reducible non-lexmax sequences? Actually, this is indeed

the most interesting question, because the best approach for realizing a given sequence

S would be: first to test, whether S is a reducible lexmax sequence. Only if this is

not the case, one would take a randomized algorithm. Hence, we now determine the

success probability p(m) for all non-reducible non-lexmax sequences, see Figure 4.15.

Observations: As in the previous experiment, randomized version Rand IV has the

overall best success probability p, but in sharp contrast we observe a completely dif-

ferent dependence on m. One possible explanation could be that for high densities

our reduction rules have been applied more often. Note that the overall percentage of

58

4.4 Characterization of Strongly Opposed Sequences

5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0

0.1

0.2

0.3

0.4

0.5

0.6

Rand I
Rand II
Rand III
Rand IV
% non-reducible non-
lexmax sequences

number m of arcs in a dag realization

s
u

c
c

e
s

s
 p

ro
b

a
b

il
it

y
 p

(m
)

fo
r

o
n

e
 t

ri
a

l

p
e

rc
e

n
ta

g
e

o

f
n

o
n

-r
e

d
u

c
a

b
le

n

o
n

-l
e

x
m

a
x

 s
e

q
u

e
n

c
e

s

Figure 4.15: Success probability p(m) for all non-reducible non-lexmax sequences of 9

tuples with four versions of randomized algorithms and percentage of non-reducible non-

lexmax sequences in the set of all non-trivial sequences.

non-reducible non-lexmax sequences in the set of all non-trivial sequences with 9 tuples

is so tiny (see the brown curve in Figure 4.15) — in particular for low densities — that

we can realize after two or three trials almost all sequences.

For a given (real-world) sequence we propose the following recipe: Choose Algo-

rithm 2 with lexmax strategy and apply the reduction rules 1-3. If this run is unsuc-

cessful apply version 4 of our randomized algorithms, i. e. the opposed permutation

algorithm with reduction rules. For most dag sequences in practice this will give us a

pretty fair chance to find a realization.

The surprisingly broad success of the lexmax strategy suggests that there might be

further subclasses of instances where it runs provably correct.

4.4 Characterization of Strongly Opposed Sequences

In this section, we want to focus on a special class of opposed sequences which we call

strongly opposed sequences. Such sequences are characterized by the comparability of all

pairs of tuples with respect to the opposed order. Hence, it is possible to sort the whole

sequence S in increasing or decreasing order in the case of strongly opposed sequences.

59

4. DAG SEQUENCES

We want to follow the classical results of a characterization of digraph sequences and

here give a complete characterization of strongly opposed sequences. The conclusions

from this result are quite interesting. We prove that each strongly opposed digraph

sequence is also a dag sequence. This is not the case for opposed sequences in general.

An important point for understanding the ideas of the following Theorem 4.6 is the

consideration of the canonical Ferrers matrix. A decreasing strongly opposed sequence

fulfills the requirement ai ≥ ai+1. Note, that such a sequence starts with the sinks

and ends with the sources. In Theorem 4.5, we proved necessary conditions for dag

sequences. Here, we apply this result for opposed sequences. By Theorem 4.1 an

increasing, opposed sorting of an opposed dag sequence S is a topological sorting of at

least one dag realization of S. Hence, we get the following result.

Corollary 4.4 (necessary criterion for the realizability of opposed sequences).

Let S be an increasing opposed dag sequence. Denote the number of source tuples in

S by q and the number of sink tuples by s. Then it follows ai ≤ min{n− s, i− 1} and

bi ≤ min{n− q, n− i} for all i ∈ Nn.

This means in fact that the corresponding canonical Ferrers matrix F of a sequence

fulfilling the conditions of Corollary 4.4 is an upper triangular matrix with zeros on its

diagonal. In particular, the notions of the canonical Ferrers matrix and the diagonal-

free Ferrers matrix are identical in this case. Moreover, F is the adjacency matrix of

a dag realization, because it is a nilpotent matrix (for more details see Chapter 2).

Clearly, if condition
k∑

i=1

ai ≤
k∑

i=1

a∗i

is also fulfilled for all k ∈ Nn (where a∗i are the column sums of F), then we can conclude

that S is a digraph sequence by Theorem 3.5. In the next theorem we prove that this

condition also characterizes strongly opposed dag sequences (and show later that it

does not hold for general opposed sequences). Note, one important difference in our

statement of the following theorem. We here consider decreasing opposed sequences in

contrast to Corollary 4.4 which is stated with respect to increasing opposed sequences.

The reason is that we decided to maintain the historical notion of Ferrers matrices.

Hence, the indices are numbered in the opposite direction. Furthermore, we have to

interchange the roles of ai and bi in Corollary 4.4.

Theorem 4.6 (characterization of strongly opposed dag sequences).

Let S be a decreasing strongly opposed sequence. Sequence S is a dag sequence if and

only if

60

4.4 Characterization of Strongly Opposed Sequences

(1.) ai ≤ min{n− s, n− i} and bi ≤ min{n− q, i− 1} is valid, and

(2.) the corresponding sequence Sopp :=
(aopp1

bopp1

)
, . . . ,

(aoppn

boppn

)
of the canonical Ferrers ma-

trix F of S is a strongly opposed dag sequence such that the following property is

valid for all k ∈ {1, . . . , n}:
k∑

i=1

ai ≤
k∑

i=1

aoppi .

Proof. ⇒: Let S be a strongly opposed dag sequence. Corollary 4.4 gives us property

(1.), if we interchange the roles of ai and bi. Due to bi ≤ min{n − q, i − 1} there

exists a canonical (n× n)-Ferrers matrix F for sequence S, which is a lower triangular

matrix with zeros on its diagonal. For the column sums of the corresponding sequence

Sopp we get aoppi := |{bj | bj ≥ i, 1 ≤ j ≤ n}|. Clearly, aopp1 ≥ aopp2 ≥ · · · ≥ aoppn

and bopp1 ≤ · · · ≤ boppn with boppi := bi. Hence, Sopp is a decreasing strongly opposed

sequence. F is the adjacency matrix of a dag realization of Sopp because F is nilpotent,

see Section 2. Let us now consider the adjacency matrix A from a dag realization of S. In

the ith row we find for the bi entries Aij1 , . . . , Aijbi which are “one”, a “corresponding”

sequence of “ones”, namely Fil1 , . . . , Filbi , such that the property jt ≥ lt is true for all

t ∈ {1, . . . , bi}. Hence, we get

k∑

j=1

aj =
n∑

i=1




k∑

j=1

Aij


 ≤

n∑

i=1




k∑

j=1

Fij


 =

k∑

j=1

aoppj

for all k ∈ Nn which is exactly condition (2.).

⇐: Let S be a strongly opposed sequence and Sopp the corresponding strongly

opposed sequence (defined in condition (2.)) which is a dag sequence. We construct

the canonical (n × n)-Ferrers matrix F of S. F exists because we have bi ≤ min{n −
q, n− i} by constraint (1.). Then matrix F is a lower triangular matrix with zeros on

its diagonal. Hence, the canonical Ferrers matrix and the diagonal-free Ferrers matrix

are here identical. For the ith column sums si of F it follows si = |{bj | bj ≥ i, 1 ≤ j ≤
n}| = aoppi for all i ∈ Nn.

We show that S is a dag sequence if we have
∑k

i=1 ai ≤
∑k

i=1 a
opp
i for all k ∈ Nn.

We give a proof based on induction by the number of tuples n in sequence S.

� Induction basis: Let n = 2.

There is only one strongly opposed sequence with two tuples, namely S =
(

1
0

)
,
(

0
1

)
,

which fulfills condition (1.). The associated canonical Ferrers matrix is (0 0
1 0) with∑k

i=1 ai =
∑k

i=1 a
opp
i for k ∈ {1, 2} and Sopp = S. Clearly, S is a dag sequence.

61

4. DAG SEQUENCES

Now, we assume that S consists of exactly n tuples. By our assumption (2.), we have

a1 ≤ aopp1 .

� Induction proof case 1: We assume a1 = aopp1 .

Recall that we denote the number of sink tuples in S by s. By property (1.) we

have b1 = 0. We delete the first row and the first column in F and get the lower

(n− 1)× (n− 1) triangular matrix F ∗ with zeros on its diagonal. This corresponds to

the dag realization of the opposed sequence

S∗ :=

(
aopp2

b2

)
, . . . ,

(
aopps

bs

)
,

(
aopps+1

bs+1 − 1

)
, . . . ,

(
aoppn

bn − 1

)
,

because all bi are sorted in increasing ordering. For simplicity, we set S∗ :=
(a∗1
b∗1

)
, . . . ,

(a∗n−1

b∗n−1

)
.

In a next step, we construct with respect to sequence S a sequence S′ with

S′ :=
(
a2

b2

)
, . . . ,

(
as
bs

)
,

(
as+1

bs+1 − 1

)
, . . . ,

(
an

bn − 1

)

and set for simplicity S′ :=
(a′1
b′1

)
, . . . ,

(a′n−1

b′n−1

)
. Note, that S′ may contain zero tuples

(
0
0

)

arising from source tuples
(

0
1

)
in S. We distinguish between two cases.

case a: Assume, the number q′ of sources in S′ is smaller than the number q of sources

in S.

In this case the entries of source tuples
(

0
1

)
in S were decreased by one and we have

at least one zero tuple
(

0
0

)
in S′. On the other hand, the bi are increasingly ordered by

our assumption. It follows bi = 1 for all stream tuples in S. Hence, sequence S′ is a

source-sink-sequence. Additionally, we have by our assumption a1 = aopp1 ,

k∑

i=1

a′i =
k+1∑

i=2

ai ≤
k+1∑

i=2

aoppi =
k∑

i=1

a∗i

for all k ∈ {1, . . . , n− 1}.
Obviously, matrix F ∗ is a lower triangular matrix with a zero diagonal which repre-

sents an adjacency matrix of a digraph realization. By application of Theorem 3.5 we

identify S′ as a digraph sequence. Each digraph realization of a source-sink-sequence is

also a dag realization. Hence, there exists a dag realization G′ with the labeled vertex

set V ′ := {v′1, . . . , v′n−1}. We construct a dag G = (V,A) by inserting a new sink v′0 in

G′ = (V ′, A′) and connect the vertices v′s+1, . . . , v
′
n−1 ∈ V ′ with v′0. Then G is a dag

realization of sequence S, if we define vi := v′i−1 with vi ∈ V and i ∈ {1, . . . , n}. Hence,

S is a dag sequence.

62

4.4 Characterization of Strongly Opposed Sequences

case b: Consider the case q′ = q.

Then we have no zero tuples in S′. We consider the ith column sum a∗i of F ∗. Under

attention of b1 = 0 we have for all i ∈ {1, . . . , n− 1},

a∗i = |{b∗j | b∗j ≥ i, 1 ≤ j ≤ n− 1}|
= |{bj | bj ≥ i+ 1, 2 ≤ j ≤ n}|
= |{bj | bj ≥ i+ 1, 1 ≤ j ≤ n}|
= aoppi+1.

Additionally, we get by our assumption a1 = aopp1 for all k ∈ {1, . . . , n− 1},

k∑

i=1

a′i =
k+1∑

i=2

ai ≤
k+1∑

i=2

aoppi =
k∑

i=1

a∗i . (∗)

In S∗ all b∗i are increasingly sorted and all a∗i are decreasingly sorted, because Sopp is a

decreasing opposed sequence and only one tuple
(aopp1
b1

)
has been deleted. Hence, S∗ is

a strongly opposed dag sequence. On the other hand, F ∗ is a lower triangular matrix

and the canonical Ferrers matrix of S′. We get b′i = b∗i ≤ min{n− q′ − 1, i− 1}.
Obviously, we remove in S exactly one sink tuple, namely

(
a1

b1

)
. It is possible that

σ new sink tuples
(as+1

bs+1

)
, . . . ,

(as+σ
bs+σ

)
are built in S′. Let s′ := s+ σ − 1 be the number

of sink tuples in S′. We have a∗i ≤ min{n − 1 − s′, n − i − 1}, because F ∗ is a lower

triangular matrix. Assume, there is an i0 ∈ {1, . . . , n− 1} with a′i0 > n− 1− s′. Then

we have a1 > n− 1− s′, . . . , ai0 > n− 1− s′ using a1 ≥ · · · ≥ ai0 . We apply (∗) and get

(n− 1− s′) · (i0) <

i0∑

i=1

a′i ≤
i0∑

i=1

a∗i ≤ (n− 1− s′) · (i0).

Contradiction! By our assumption ai+1 ≤ n − i − 1 for all i ∈ {1, . . . , n − 1} we get

a′i = ai+1 ≤ min{n− 1− s′, n− i− 1}.

By the induction hypothesis, it follows that S′ is a dag sequence. Hence, there is a

dag realization G′ = (V ′, A′) with the labelled vertex set {v′1, . . . , v′n−1}. We construct

a dag G = (V,A) by inserting a new sink v′0 in G′ = (V ′, A′) and connect the vertices

v′s+1, . . . , v
′
n−1 ∈ V ′ with v′0. Then G is a dag realization of sequence S, if we define

vi := v′i−1 with vi ∈ V and i ∈ {1, . . . , n}. Hence, S is a dag sequence.

� Induction proof case 2: We assume a1 < aopp1 .

63

4. DAG SEQUENCES

construction of an induction hypothesis: The goal of the following steps is the

construction of a lower triangular matrix F ∗ such that the first column sum is a1. This

matrix shall be built from F by shifting entries “one” of the first column to a larger

column under attention of maintaining a triangular matrix with zeros on its diagonal.

We prove that it is possible to construct such a matrix F ∗. We show all steps by an

example.

Let us start with our example. Given is the decreasing strongly opposed sequence

S :=

(
3

0

)
,

(
3

0

)
,

(
3

0

)
,

(
3

2

)
,

(
3

2

)
,

(
3

4

)
,

(
2

4

)
,

(
0

4

)
,

(
0

4

)

and its canonical Ferrers-matrix F







0 0 0 0 0 0 0 0 0 b1 = 0

0 0 0 0 0 0 0 0 0 b2 = 0

0 0 0 0 0 0 0 0 0 b3 = 0

1 1 0 0 0 0 0 0 0 b4 = 2

1 1 0 0 0 0 0 0 0 b5 = 2

1 1 1 1 0 0 0 0 0 b6 = 4

1 1 1 1 0 0 0 0 0 b7 = 4

1 1 1 1 0 0 0 0 0 b8 = 4

1 1 1 1 0 0 0 0 0 b9 = 4

6 6 4 4 0 0 0 0 0 aoppi

with corresponding sequence

S∗ :=

(
6

0

)
,

(
6

0

)
,

(
4

0

)
,

(
4

2

)
,

(
0

2

)
,

(
0

4

)
,

(
0

4

)
,

(
0

4

)
,

(
0

4

)
.

We define with respect to matrix F the sets D and Z with

D := {k| Fk1 = 1 ∧ ∃l < k with Fkl = 0}

and

Z := {(kl)| k ∈ D ∧ l is the smallest column index with Fkl = 0}.

Hence, we identify in F all entries of the first column which can be shifted to a

column with a larger index l, where the definition of set D ensures that we maintain

the triangular matrix form. In our example, we get the sets D = {4, 5, 6, 7, 8, 9} and

Z = {(43), (53), (65), (75), (85), (95)}. We build a new matrix F ∗ by interchanging

64

4.4 Characterization of Strongly Opposed Sequences

entries Fk1 = 1 with k ∈ D and the corresponding Fkl = 0 with (kl) ∈ Z for exactly

z := min{|Z|, aopp1 − a1} such entries. For this, we sort the elements in Z with respect

to their column indices l in increasing order and number them by (k1l1), . . . , (k|Z|l|Z|).

If two column indices l are identical, we prefer the pair of (kl) and (k′l) with the larger

row index k > k′. We distinguish between two different cases. First, let |Z| ≥ aopp1 −a1.

Then F ∗ is a lower triangular matrix with the first column sum a1, because we are able

to shift all supplemental z = aopp1 − a1 entries “one” and get a lower triangular matrix.

In this case we get our requested construction. This is the case in our example where

we get for the elements in Z the following sorting: (k1l1) = (53), (k2l2) = (43), (k3l3) =

(95), (k4l4) = (85), (k5l5) = (75), (k6l6) = (65). Moreover, we have z = 3 and get the

matrix F ∗







0 0 0 0 0 0 0 0 0 b1 = 0

0 0 0 0 0 0 0 0 0 b2 = 0

0 0 0 0 0 0 0 0 0 b3 = 0

0 1 1 0 0 0 0 0 0 b4 = 2

0 1 1 0 0 0 0 0 0 b5 = 2

1 1 1 1 0 0 0 0 0 b6 = 4

1 1 1 1 0 0 0 0 0 b7 = 4

1 1 1 1 0 0 0 0 0 b8 = 4

0 1 1 1 1 0 0 0 0 b9 = 4

3 6 6 4 1 0 0 0 0 a∗i

It remains to prove that the second case, |Z| < aopp1 − a1, is not possible. Assume

the converse. Then, it follows a∗1 > a1. Let us denote the number of rows corresponding

to a non-sink and starting with an entry F ∗i1 = 0 by k. Then we have

a∗1 := n− k − s where 0 ≤ k < n− s.

In the following we give an upper bound u for
∑n

i=1 ai and a lower bound l for
∑n

i=1 a
∗
i

and show that we have u < l in contradiction to the fact
∑n

i=1 ai =
∑n

i=1 a
∗
i . We start

with some observations.

The upper bound u. With our assumption a1 ≥ a2 ≥ · · · ≥ an and a∗1 − a1 ≥ 1

we get a1 ≤ n − k − s − 1. Hence, we have by assumption ai ≤ min{n − s, n − i} of

condition (1.),

65

4. DAG SEQUENCES

n∑

i=1

ai ≤
(

k+s+1∑

i=1

(n− (k + s+ 1))

)
+ (n− (k + s+ 2)) + (n− (k + s+ 3)) + · · ·+ 1 + 0

= (n− k − s− 1)(k + s+ 1) + (n− k − s− 2) + (n− k − s− 3) + · · ·+ 1

=: u.

Three insights about F ∗. The lower bound l.

1. For a row i starting with F ∗i1 = 1 it follows F ∗il = 1 for all l < i. Otherwise, we

had i ∈ D and F ∗ is not constructed in the right way.

2. For a row i starting with F ∗i1 = 0 it follows F ∗il = 1 for all l < i if we have

F ∗(i−1)1 = 1. The reason is the condition bi−1 ≤ bi and case 1.

3. For a row i starting with F ∗i1 = 0 it follows F ∗il = 1 for an l < i if we have

F ∗(i−1)1 = 0 and F ∗(i−1)l = 1. The reason is the condition bi−1 ≤ bi.

We construct a matrix F ∗ containing a minimum number l of entries “one” with

respect to all three cases.

66

4.4 Characterization of Strongly Opposed Sequences

a∗3a∗1 a∗2

bs+1

b1

bs

bs+k+1

bn

a∗n

0

0

0

1

1

0

0 1 0

1

1 0

0

bs+k

s

k

Clearly, each other construction would contain more entries “one”.

Note, that the rows corresponding to non-sinks are not full rows of a complete lower

triangular matrix where we have ai = min{n− i, n− s} entries for each i ∈ {1, . . . , n}.
Instead in each of the rows s+ 1, s+ 2, . . . , s+ k we have s− 1, s, s+ 1, . . . , s+ k − 2

less than expected entries “one”. Hence, we get

l :=
n∑

i=1

a∗i

=

(
n∑

i=1

min{n− i, n− s}
)
− ((s− 1) + s+ (s+ 1) + · · ·+ (s+ k − 2))

= (n− s) · s+ (n− (s+ 1)) + (n− (s+ 2)) + · · ·+ 1 + 0− k · s−
k−2∑

i=1

i+ 1

67

4. DAG SEQUENCES

We prove that
∑n

i=1 a
∗
i −

∑n
i=1 ai > 0.

n∑

i=1

a∗i −
n∑

i=1

ai ≥ l − u

=

[
(n− s) · s+ (n− s− 1) + (n− s− 2) + · · ·+ 1− k · s−

k−2∑

i=1

i+ 1

]

− [(n− k − s− 1)(k + s+ 1) + (n− k − s− 2) + (n− k − s− 3) + · · ·+ 1]

=

[
(n− s− k) · s+ (n− s− 1) + (n− s− 2) + · · ·+ 1−

k−2∑

i=1

i+ 1

]

− [(n− s− k − 1) · s+ (n− s− k − 1) · (k + 1) + (n− k − s− 2) + (n− k − s− 3) + · · ·+ 1]

=

[
(n− s− 1) + (n− s− 2) + · · ·+ (n− s− k − 1) + (n− s− k − 2) + · · ·+ 1−

k−2∑

i=1

i+ 1

]

− [−s+ k · (n− k − s− 1) + (n− k − s− 1) + (n− k − s− 2) + . . . 1]

=

[
(n− s− 1) + (n− s− 2) + · · ·+ (n− s− k)−

k−2∑

i=1

i+ 1

]

− [−s+ k · (n− k − s− 1)]

= (−1 + 1 + k) + (−2 + 1 + k) + (−3 + 1 + k) + · · ·+ (−k + 1 + k)−
k−2∑

i=1

i+ 1 + s

=

k∑

i=1

i−
k−2∑

i=1

i+ 1 + s

= 2k + s

> 0.

Induction step, construction of the induction hypothesis. In this part we

construct from sequence S a sequence S′ and its corresponding threshold sequence S∗∗

only consisting of n− 1 tuples so that the induction hypothesis can be applied. We do

this by deleting the first column and the first row of matrix F ∗. First, we need some

preparations.

For simplicity, we denote the set of indices of the changed columns in F in com-

parison to F ∗ (without column 1) by L. Let λi denote the number of changed entries

in column i ∈ L. Obviously, we get
∑

i∈L λi = aopp1 − a1. Furthermore, we denote by R

the set of indices of unchanged rows. For our example, we find L = {3, 5} and λ3 = 2

and λ5 = 1. Moreover, we get R = {1, 2, 3, 6, 7, 8}.
For the corresponding sequence S∗ :=

(a∗1
b∗1

)
, . . . ,

(a∗n
b∗n

)
of F ∗ we have

(
a∗i
b∗i

)
:=





(
ai
bi

)
if i = 1

(aoppi +λi
boppi

)
if i ∈ L

(aoppi

boppi

)
otherwise.

68

4.4 Characterization of Strongly Opposed Sequences

We delete the first column and the first line of F ∗ and get the (n−1)×(n−1)-matrix F ∗∗

with corresponding sequence S∗∗ :=
(a∗∗1
b∗∗1

)
, . . . ,

(a∗∗n−1

b∗∗n−1

)
where

(
a∗∗i
b∗∗i

)
:=





(a∗i+1

bi+1−1

)
if i+ 1 ∈ R and bi+1 6= 0

(a∗i+1

b∗i+1

)
otherwise.

Then we construct sequence S′ :=
(a′1
b′1

)
, . . . ,

(a′n−1

b′n−1

)
by modifying sequence S :=

(
a1

b1

)
, . . . ,

(
an
bn

)

in the following way.

(
a′i
b′i

)
:=





(ai+1

bi+1−1

)
if i+ 1 ∈ R and bi+1 6= 0

(ai+1

bi+1

)
otherwise.

That is, we set b′i := b∗∗i for all i ∈ {1, . . . , n− 1}.

case 1: S′ contains at least one zero tuple
(

0
0

)
.

In this case we only shifted entries from the first column to the second column to

construct F ∗ from F. The reason is that zero tuples can only be built from sources(
0
1

)
in S. Clearly, we have bi = 1 for all stream tuples in S, because all bi are sorted

in increasing order. If we observe b′i = 0 for an index i not corresponding to a sink

in S, then it is bi+1 = 1. Hence, the row (i + 1) is unchanged during the construction

of F ∗. It follows (i + 1) ∈ R. From our construction rule for F ∗ –“shift (if necessary)

entries into the columns with smallest indices” we conclude that entries of column 1

were only shifted to column 2. Otherwise, we had b′i = 1. On the other hand, sequence

S′ may only contain sources and sinks, because if we have for one source b′i = 0, then

we get bj = 0 for all stream tuples j ∈ R under consideration of j < i + 1 and our

construction rule. Consider for example the canonical Ferrers matrix F (below) for

sequence S :=
(

4
0

)
,
(

3
0

)
,
(

2
0

)
,
(

1
1

)
,
(

0
1

)
,
(

0
1

)
,
(

0
1

)
,
(

0
2

)
,
(

0
4

)
with

69

4. DAG SEQUENCES







0 0 0 0 0 0 0 0 0 b1 = 0

0 0 0 0 0 0 0 0 0 b2 = 0

0 0 0 0 0 0 0 0 0 bs = 0

1 0 0 0 0 0 0 0 0 b4 = 1

1 0 0 0 0 0 0 0 0 b5 = 1

1 0 0 0 0 0 0 0 0 b6 = 1

1 0 0 0 0 0 0 0 0 b7 = 1

1 1 0 0 0 0 0 0 0 b8 = 2

1 1 1 1 0 0 0 0 0 b9 = 4

6 2 1 1 0 0 0 0 0 aoppi .

The entries F61 and F71 are moved into column 2 by the construction of F ∗ with







0 0 0 0 0 0 0 0 0 b∗1 = 0

0 0 0 0 0 0 0 0 0 b∗2 = 0

0 0 0 0 0 0 0 0 0 b∗3 = 0

1 0 0 0 0 0 0 0 0 b∗4 = 1

1 0 0 0 0 0 0 0 0 b∗5 = 1

0 1 0 0 0 0 0 0 0 b∗6 = 1

0 1 0 0 0 0 0 0 0 b∗7 = 1

1 1 0 0 0 0 0 0 0 b∗8 = 2

1 1 1 1 0 0 0 0 0 b∗9 = 4

4 4 1 1 0 0 0 0 0 a∗i .

Deleting row 1 and column 1 results in a matrix F ∗∗ and sequence S∗∗ :=
(

4
0

)
,
(

1
0

)
,(

1
0

)
,
(

0
0

)
,
(

0
1

)
,
(

0
1

)
,
(

0
1

)
,
(

0
3

)
and S′ :=

(
3
0

)
,
(

2
0

)
,
(

1
0

)
,
(

0
0

)
,
(

0
1

)
,
(

0
1

)
,
(

0
1

)
,
(

0
3

)
.

Note, that only the first two columns were modified. Hence, it follows aopp1 + aopp2 =

a∗1 + a∗2 and aoppi = a∗i for all i ≥ 3. By our assumption it follows for all k ≥ 2

k∑

i=1

a∗i =

k∑

i=1

aoppi ≥
k∑

i=1

ai.

With a∗1 = a1 we have for all k ≥ 1

k∑

i=1

a∗∗i =
k+1∑

i=2

a∗i ≥
k+1∑

i=2

ai =
k∑

i=1

a′i.

70

4.4 Characterization of Strongly Opposed Sequences

We delete all zero tuples of S′ and the corresponding zero tuples with the same

indices from S∗∗. (They exist in S∗ due to the column sum relation.) Furthermore, the

a′i are decreasingly sorted, because we observe a′i = ai+1 for all i ≥ 1. All relations for

our (above proved) column sums of S∗∗ and S′ remain, because we only deleted tuples

a′i = 0 with largest indices. This is clearly the case because our sequence is labelled in

a decreasing opposed order. It follows by Theorem 3.3, that S′ is a digraph sequence

with at most one loop per vertex. S′ is a source-sink-sequence and therefore already a

dag sequence. Then it exists a dag realization G′ = (V ′, A′) with the labelled vertex set

{v′1, . . . , v′n−1}. We build a dag G = (V,A) by inserting a new sink v′0 in G′ = (V ′, A′)

and connect all vertices v′i ∈ V ′ with i+ 1 ∈ R and bi+1 6= 0 with v′0. Then G is a dag

realization of sequence S, if we define vi := v′i−1 for vi ∈ V. Hence, S is a dag sequence.

case 2: S′ does not contain zero tuples
(

0
0

)
.

Note, that the number q′ of sources in S′ equals q by our construction rule. We

show that sequence S′ is a decreasing opposed sequence and F ∗∗ the diagonal-free

(n− 1)× (n− 1)-Ferrers matrix with corresponding sequence S∗∗ such that conditions

(1.) and (2.) are fulfilled and therefore the induction hypothesis.

claim 1: Sequence S′ is a decreasing opposed sequence.

claim 2: Matrix F ∗∗ is the diagonal-free Ferrers matrix for sequence S′.

claim 3: We have column sum relation (2.) for S′ and S∗∗, if the number of sinks in

S′ is s′ = s − 1. Especially, we have a′i ≤ min{(n − 1) − s′, (n − 1) − i} for all

i ∈ {1, . . . , n− 1}.

claim 4: The column sum relation (2.) is fulfilled, if we have for the number s′ of sinks

in S′, s′ > s − 1. Furthermore, the condition a′i ≤ min{(n − 1) − s′, (n − 1) − i}
is fulfilled for all i ∈ {1, . . . , n− 1}.

claim 5: b′i ≤ min{n− 1− q′, i− 1} for all i ∈ {1, . . . , n− 1}.

Proof of claim 1. Assume, there exists (i+ 1) ∈ R with bi+1 > 0 such that we have

b′i−1 > b′i. Then we have i /∈ R, otherwise it follows from our assumption bi−1 ≤ bi, that

b′i−1 ≤ b′i. We can conclude bi = bi+1 and F(i+1)1 = 1. Moreover, i ∈ D and it exists a

corresponding pair (ij) ∈ Z. On the other hand, we have i+ 1 ∈ D and ((i+ 1)j) ∈ Z.
But then we would have chosen ((i+ 1)j) ∈ Z before (ij) ∈ Z by our construction rule.

It follows (i+ 1) /∈ R in contradiction to our assumption.

71

4. DAG SEQUENCES

Proof of claim 2. F ∗∗ is a lower triangular matrix with zeros on its diagonal, because

we find this property for F ∗. Assume, there is a k > l with k, l ∈ {1, . . . , n − 1}
such that we find F ∗∗kl = 1 and F ∗∗k(l−1) = 0. Then we have in F, F(k+1)(l+1) = 0 and

F(k+1)l = 0, because F is a diagonal-free Ferrers matrix. With F ∗(k+1)(l+1) = F ∗∗kl = 1

it follows k + 1 ∈ D and F(k+1)(l+1) ∈ Z is the corresponding entry in contradiction

to our reconstruction rule of Z, where we have to choose the smallest possible index

l for all columns. For the corresponding sequence S∗∗ of F ∗∗ we find b∗∗i = b′i for all

i ∈ {1, . . . , n− 1}. Hence, F ∗∗ is the diagonal-free Ferrers matrix of S′.

Proof of claim 3. Let s′ := s− 1. Then we have

a′i = ai+1 ≤ min{n− s, n− i− 1} = min{(n− 1)− s′, (n− 1)− i}

for all i ∈ {1, . . . , n− 1}. We denote the maximum index within the set L by t. For all

i < t− 1 we find by our construction rule of F ∗∗, a∗∗i = min{n− 1− s′, n− i− 1} ≥ a′i,
because all columns with a smaller index as t (but not the first column) are completely

filled by our reconstruction of F ∗ from F. For the i-th column sum of F ∗∗ and k < t−1

we have
k∑

i=1

a∗∗i ≥
k∑

i=1

a′i.

For n ≥ k ≥ t− 1 we get by our construction and assumption

k∑

i=1

a∗i =
k∑

i=1

aoppi ≥
k∑

i=1

ai.

Due to a∗1 = a1, it follows

k−1∑

i=1

a∗∗i =
k∑

i=2

a∗i ≥
k∑

i=2

ai =
k−1∑

i=1

a′i.

Proof of claim 4. Let s′ > s − 1. Then we can conclude that all shifted entries of

the first column of F are put into the second column because the second column is not

complete. Furthermore, all stream tuples with bi = 1 are now sink tuples in S′. But

then we have aopp1 + aopp2 = a∗1 + a∗2 and aoppi = a∗i for all i ≥ 3. Due to a∗1 = a1 and

k∑

i=1

ai ≤
k∑

i=1

aoppi =

k∑

i=1

a∗i

for all k ≥ 2 we find then
k∑

i=1

a′i ≤
k∑

i=1

a∗∗i

72

4.4 Characterization of Strongly Opposed Sequences

for all k ≥ 1. Assume, there exists an i0 ∈ {1, . . . , n− 1} with a′i0 > n− 1− s′. Then it

follows a′1, . . . , a
′
i0
> n− 1− s′, because all a′i are decreasingly sorted. Hence, we get

(n− 1− s′) · (i0) <

i0∑

i=1

a′i ≤
i0∑

i=1

a∗∗i ≤ (n− 1− s′) · (i0),

because F ∗∗ is the diagonal-free Ferrers matrix of S by claim (2). Contradiction! On

the other hand we have by our assumption a′i = ai+1 ≤ n−i−1 for all i ∈ {1, . . . , n−1}.
Therefore, we get a′i ≤ min{n− 1− s′, n− i− 1}.

Proof of claim 5. By our assumption, we get for all column indices (i+ 1) ∈ R

b′i = bi+1 − 1 ≤ min{n− q, i} − 1 = min{n− q′, i} − 1 ≤ min{n− 1− q′, i− 1}.

For a row (i+1) /∈ R there exists a corresponding matrix entry F(i+1)j with ((i+1)j) ∈
Z. But then we have bi+1 < min{n − q, i} in S. Otherwise, we would get F(i+1)j = 1

and therefore ((i+ 1)j) /∈ Z. Then it follows

b′i = bi+1 ≤ min{n− q, i} − 1 ≤ min{n− q − 1, i− 1} = min{(n− 1)− q′, i− 1}.

Induction step. We apply our induction hypothesis to sequence S′. It follows that

S′ is a dag sequence of length n − 1 by our claims (1)–(5). Let G′ = (V ′, A′) be a

dag realization with the labeled vertex set {v′1, . . . , v′n−1}. We build from G′ = (V ′, A′)

a dag G = (V,A), by adding a new sink v′0 and connecting the vertices v′i ∈ V ′ with

(i+ 1) ∈ R to it. Then G is a dag realization of sequence S, if we define vi := v′i−1 for

all vi ∈ V. Hence, S is a dag sequence.

It is quite interesting to consider the canonical Ferrers matrix of a strongly opposed

dag sequence more closely. The theorems for canonical and diagonal-free matrices are

the same in this case because the diagonal consists of zeros and the triangular upper

matrix only contains zeros. This leads to an easier characterization for strongly opposed

dag sequences.

Corollary 4.5. Let S :=
(
a1

b1

)
, . . . ,

(
an
bn

)
be a decreasing strongly opposed sequence.

Sequence S is a dag sequence if and only if S is a digraph sequence and we have

ai ≤ min{n− s, n− i} and bi ≤ min{n− q, i− 1} for all i ∈ Nn.

Proof. ⇒: If S is a dag sequence then it also is a digraph sequence. Corollary 4.4 proves

the second claim.

73

4. DAG SEQUENCES

⇐: Let S be a digraph sequence with ai ≤ min{n−s, n−i} and bi ≤ min{n−q, i−1} for

all i ∈ Nn. Sequence a1, . . . , an is decreasingly sorted because S is a strongly opposed

sequence. We build the canonical Ferrers matrix F. It is a lower triangular matrix

because we have bi ≤ min{n − q, i − 1}. Theorem 3.3 proves the column sum relation∑k
i=1 ai ≤

∑k
i=1 a

∗
i =

∑k
i=1 a

opp
i for all k ∈ {1, . . . , n}, because S is a digraph sequence.

Hence, all sufficient conditions for Theorem 4.6 are fulfilled and S is a dag sequence.

Corollary 4.5 cannot be extended to opposed sequences in general. The opposed di-

graph sequence S :=
(

4
0

)
,
(

4
0

)
,
(

2
0

)
,
(

1
2

)
,
(

1
4

)
,
(

1
5

)
,
(

0
2

)
is not a dag sequence which can easily

proven with our realization algorithm for opposed sequences Algorithm 1. Moreover,

we try to characterize an opposed sequence similar to Theorem 4.6. We use a possible

topological order for a dag realization which is exactly the opposed order of an opposed

sequence by Corollary 4.5. We start the attempt to construct a special Ferrers matrix

for this sequence analogously to Theorem 4.6. As a result, we get the corresponding

sequence S∗ :=
(

4
0

)
,
(

4
0

)
,
(

2
0

)
,
(

2
2

)
,
(

1
4

)
,
(

0
5

)
,
(

0
2

)
for the lower triangular matrix F with







0 0 0 0 0 0 0 b1 = 0

0 0 0 0 0 0 0 b2 = 0

0 0 0 0 0 0 0 b3 = 0

1 1 0 0 0 0 0 b4 = 2

1 1 1 1 0 0 0 b5 = 4

1 1 1 1 1 0 0 b6 = 5

1 1 0 0 0 0 0 b7 = 2.

4 4 2 2 1 0 0 a∗i

The column sum relation
∑k

i=1 ai ≤
∑k

i=1 a
∗
i is fulfilled for all k ∈ {1, . . . , 7}. But,

we know that sequence S is not a dag sequence. Hence, this kind of characterization is

no longer possible for characterizations of general opposed sequences.

74

5

Uniform Sampling of Digraph

Realizations

“Gott würfelt nicht.” (Albert Einstein)

5.1 Popular Variants for Sampling Graph and Digraph

Realizations

We consider the problem of sampling uniformly at random from the set of all graph

realizations of a graph sequence or from the set of all digraph realizations of a digraph

sequence. A general method to sample random elements from some set of objects is via

rapidly mixing Markov chains (Sin92, Sin93). Every Markov chain can be viewed as a

random walk on a digraph Φ = (VΦ, AΦ), the so-called state digraph. In our context,

its vertex set VΦ (the states) correspond one-to-one to the set of all graph (or digraph)

realizations of a given di(graph) sequence. In Section 5.2 we will define the arc set of

our state digraph. In Figure 5.1 we give an example for a state digraph for digraph

sequence S =
(

0
1

)
,
(

0
1

)
,
(

0
1

)
,
(

1
0

)
,
(

1
0

)
,
(

1
0

)
.

Let us briefly review the basic notions of random walks and their relation to Markov

chains in our context. See (Lov96, JS96, Sin93) for more details. A random walk

(Markov chain) on a digraph Φ = (VΦ, AΦ) with loops is a sequence of vertices

VG0 , VG1 , . . . , VGt , . . . where (VGi , VGi+1) ∈ AΦ. Vertex VG0 represents the initial state.

Denote by d+
Φ(V) the outdegree of vertex V ∈ VΦ. At the tth step we move to an

arbitrary neighbor of VGt with probability
|N+

Φ (VGt)|
d+

Φ(VGt)
or stay at VGt with probability

75

5. UNIFORM SAMPLING OF DIGRAPH REALIZATIONS

Figure 5.1: Example of a state digraph.

|LΦ(VGt)|
d+

Φ(VGt)
, where |N+

Φ (VGt)| denotes the number of neighbors of VGt and LΦ(VGt) the set

of loops (see Chapter 2). Furthermore, we define the distribution of VΦ at time t ∈ Z+

as the function Pt ∈ [0, 1]|VΦ| with

Pt(i) := Prob(vertex VGtcorresponds to digraph realization Gi).

A well-known result (Lov96) is that Pt tends to the uniform stationary distribution

for t → ∞, if the digraph Φ is (1) non-bipartite (that means aperiodic), (2) strongly

connected (i. e. , irreducible), (3) symmetric, and (4) regular. A digraph Φ is dΦ-regular

if all vertices have the same in- and outdegrees dΦ. Here, we will view Markov chains

as random walks on symmetric dΦ-regular digraphs Φ = (VΦ, AΦ) with loops whose

vertices correspond to the state space VΦ of all digraph realizations for a given digraph

sequence. Note, that simply adding a certain number of loops to each vertex VGi con-

structs a regular state digraph. The transition probability on each arc (VG, VG′) ∈ AΦ

will be the constant 1/dΦ.

The variation distance δ(t) at time t with respect to the initial distribution P0 mea-

sures how close the distribution of the Markov chain after t steps is to the stationary

distribution π. It is defined as δ(t) = 1
2

∑
VG∈VΦ

|Pt(VG)−π(VG)|. The mixing time τ(ε)

is the minimum number of steps required by a random walk so that the distribution at

this time has a variation distance δ(t) ≤ ε. A random walk is said to be rapidly mix-

ing if its mixing time can be bounded from above by a polynomial in the description

length n := |VG| and m :=
∑n

i=1 ai of a single digraph realization of digraph sequence

S =
(
a1

b1

)
, . . . ,

(
an
bn

)
.

76

5.1 Popular Variants for Sampling Graph and Digraph Realizations

One popular variant of the Markov chain approach to sample among such (di)graph

realizations is the so-called switching-algorithm. It starts with a given (di)graph real-

ization, and then performs a sequence of 2-swaps. Hence, in a state digraph Φ two

vertices are adjacent if and only if they are different in exactly four arcs, for an ex-

ample consider Figure 5.1. This means, in the undirected case, a 2-swap replaces

two non-adjacent edges {a, b}, {c, d} of a graph realization either by {a, c}, {b, d} or

by {a, d}, {b, c}, provided that both new edges have not been contained in the graph

before the swap operation. Likewise, in the directed case, given two arcs (a, b), (c, d)

with all vertices a, b, c, d being distinct, a 2-swap replaces these two arcs by (a, d), (c, b)

which are currently not included in the digraph realization (the latter is crucial to

avoid parallel arcs). The switching algorithm is usually stopped heuristically after a

certain number of iterations, and then outputs the resulting digraph realization as a

“random element”. The question whether this Markov chain is rapidly mixing is an

open problem.

For undirected graphs, one can prove that this switching algorithm converges to a

random stage. The directed case, however, turns out to be much more difficult. The

following example demonstrates that the switching algorithm does not even converge

to a uniformly random stage.

Example 5.1. Consider the following class of digraphs D = (V,A) with 3n vertices

V = {v1, v2, . . . , v3n}, see Figure 5.2. Roughly speaking, this class consists of induced

directed 3-cycles Ci formed by triples Vi = {v3i+1, v3i+2, v3i+3} of vertices, and arcs

Ai = {(v3i+1, v3i+2), (v3i+2, v3i+3), (v3i+3, v3i+1)} for i ∈ {0, . . . , n − 1}. All vertices of

cycle Ci are connected to all other vertices of cycles with an index larger than i. More

formally, let A′ := {(v, w)| v ∈ Vi, w ∈ Vj , i < j}. We set A := A′ ∪ (∪n−1
i=0 Ai).

It is easy to check that no 2-swap can be applied to this digraph. However, we can

independently reorient each of the n induced directed 3-cycles, leading to 2n/3 many

(isomorphic) digraph realizations of the same digraph sequence. Thus, if we use only

2-swaps to define the possible transitions between digraph realizations, we will be stuck

in a single digraph realization although exponentially many exist.

We give further non-trivial classes of digraphs where the switching algorithm will

fail. Consider the following Figures 5.3 and 5.4. In both cases instances of these

classes cannot be changed to another digraph realization which is only different in the

orientation of the directed 3-cycle by a sequence of 2-swaps.

It is interesting to note that 2-swap operations suffice to sample digraphs with

loops as has been proven by Ryser (Rys57). Kannan et al. (KTV99) showed how

to sample bipartite graphs via Markov chains. They proved polynomial mixing time

77

5. UNIFORM SAMPLING OF DIGRAPH REALIZATIONS

. . .

Figure 5.2: Example of digraphs where no 2-swap operation can be applied.

Figure 5.3: Digraph class where the switching algorithm fails.

for regular and near-regular graphs. Cooper et al. (CDG07) extended this work to

non-bipartite, d-regular graphs and proved a polynomial mixing time for the switch-

ing algorithm. More precisely, they upper bounded the mixing time in these cases by

d15n8(dn log(dn) + log(ε−1)), for graphs with |V | = n. Erdős et al. (EMS10) extended

the results from Kannan et al. to bipartite graphs which are semi-regular, i.e., bipar-

tite graphs in which at least one independent vertex set is regular. They proved a

rapidly mixing Markov chain for these graph types. In a break-through paper, Jerrum,

Sinclair, and Vigoda (JSV04) presented a polynomial-time almost uniform sampling

algorithm for perfect matchings in bipartite graphs. Their approach can be used to

sample arbitrary bipartite graphs and arbitrary digraphs with a specified digraph se-

quence in O(n14 log4 n) via a reduction by Tutte (Tut54). In the context of sampling

binary contingency tables, Bezáková et al. (BBV07) managed to improve the running

time for these sampling problems to O(n11 log5 n), which is still far from practical.

A further popular version to sample a graph realization uniformly at random is the

so-called configuration model (sometimes also called “pairing model”). Mostly, it is

used for regular graphs with n vertices and a constant degree d, see for example Bender

and Canfield (BC78) and Bollabás (Bol80). The idea of this approach is as follows.

1. Replace each of the n vertices by d vertices.

2. Choose a perfect matching of these n · d vertices uniformly.

3. Repeat this process until a simple graph (without parallel edges) is obtained.

78

5.1 Popular Variants for Sampling Graph and Digraph Realizations

Figure 5.4: Further digraph class where the switching algorithm fails.

This algorithm looks very simple. The problem is an exponentially large running

time for large degrees d.

Theorem 5.1 (Bender, Canfield (BC78)). The probability that G is a simple graph

tends to exp 1−d2

4 for n→∞.

There exist several modifications for the configuration model, a most popular one is

to modify step 2., i. e. , choose only edges which do not correspond to loops or parallel

edges. The problems maintain. The distribution only converges to a uniform distri-

bution in the case of regular graph sequences. Provable polynomial running times are

only known for small degrees d. We cite several results with respect to the configu-

ration model. McKay and Wormald (MW90, MW91) use a configuration model and

generate random graphs with degrees bounded by o(n1/2) with uniform distribution

in O(m2dmax) time, where dmax denotes the maximum degree, and m the number of

edges. Steger and Wormald (SW99) introduced a modification of the configuration

model that leads to a fast algorithm and samples asymptotically uniform for degrees

up to o(n1/28). Kim and Vu (KV03) improved the analysis of Steger and Wormald’s al-

gorithm, proving that the output is asymptotically uniform for degrees up to O(n1/3−ε),

for any ε > 0. Bayati et al. (BKS10) recently presented a nearly-linear time algorithm

for counting and randomly generating almost uniformly graph realizations with a given

graph sequence where the maximum degree is restricted to dmax = O(m1/4−τ), and τ

is any positive constant.

Carefully looking at our example in Figure 5.2, we observe that the state digraph

becomes strongly connected if we add a second type of operation to transform one

digraph realization into another: Simply reorient the arcs of an induced directed 3-cycle.

We call this operation 3-cycle reorientation. We give a graph-theoretical proof that 2-

79

5. UNIFORM SAMPLING OF DIGRAPH REALIZATIONS

swaps and 3-cycle reorientations suffice not only in this example, but also in general

for arbitrary digraph sequences. These observations allow us to define a Markov chain,

very similar to the undirected case. The difference is that two digraph realizations

are mutually connected by arcs if and only if their symmetric difference is either an

alternating directed 4-cycle or a 6-cycle with exactly three distinct vertices. This state

digraph becomes regular by adding additional loops. The transition probabilities are

of order O(1/m2), and the diameter can be bounded by O(m), where m denotes the

number of arcs in the digraph sequence.

In the context of (0, 1)-matrices with given marginals (i. e. , digraph sequences in our

terminology), Rao et al. (RJB96) similarly observed that switching operations on so-

called “compact alternating hexagons” are necessary. A compact alternating hexagon

is a (3× 3)-submatrix, which can be interpreted as the adjacency matrix of a directed

3-cycle subdigraph. They define a random walk on a series of digraphs, starting with

a non-regular state digraph which is iteratively updated towards regularity, i. e . their

Markov chain converges asymptotically to the uniform distribution. However, it is

unclear how fast this process converges and whether this is more efficient than starting

directly with a single regular state digraph. Since Rao et al. work directly on matrices,

their transition probabilities are of order O(1/n6), i. e. , by several orders smaller than

in our version.

Very recently, Erdős et al. (EMT09) proposed a similar Markov chain approach

using 2-swaps and 3-swaps. The latter type of operation exchanges a simple directed

3-path or 3-cycle (v1, v2), (v2, v3), (v3, v4) (the first and last vertex may be identical)

by (v1, v3), (v3, v2), (v2, v4), but is a much larger set of operations than ours.

Although in digraphs 2-swaps alone do not suffice to sample uniformly in general,

the corresponding approach is still frequently used in network analysis. One reason for

the popularity of this approach — in addition to its simplicity — might be that it empir-

ically worked in many cases quite well (MKI+04). In this thesis, we study under which

conditions this approach can be applied and provably leads to correct uniform sam-

pling. We call such digraph sequences arc-swap sequences, and give a graph-theoretical

characterization which can be checked in polynomial time. More specifically, we can

recognize arc-swap sequences in O(m2) time using matching techniques. Using a par-

allel Havel-Hakimi algorithm by LaMar (LaM09), originally developed to realize Euler

sequences (for each tuple we have ai = bi) with an even number of arcs, the recognition

problem can even be solved in linear time. This algorithm also allows us to determine

the number of induced directed 3-cycles which appear in every digraph realization.

However, the simpler approach comes with a price: our bound on the diameter of

80

5.2 Random Walk on the State Digraph of Digraph Realizations

the state digraph becomes mn and so is by one order of n worse in comparison with

the alternative of using 2-swaps and 3-cycle reorientations. Since half of the diameter

is a trivial lower bound on the mixing time and the diameter also appears as a factor

in known upper bounds, we conjecture that the classical switching algorithm requires a

mixing time τε with an order of n more steps as the variant with 3-cycle reorientation.

However, it remains as an open problem whether these Markov chains are rapidly

mixing.

In those cases where 2-swaps do not suffice to sample uniformly, the state digraph

decomposes into 2k strongly connected components, where k is the number of induced

directed 3-cycles which appear in every realization. We can also efficiently determine

the number of strongly connected components of the state digraph (of course, without

explicitly constructing this exponentially sized graph). However, all these components

are isomorphic. This can be exploited as follows: For a non-arc-swap sequence, we first

determine all those induced directed 3-cycles which appear in every digraph realization.

By reducing the in- and outdegrees for all vertices of these 3-cycles by one, we then

obtain a new sequence, now guaranteed to be an arc-swap sequence. On the latter we

can either use the switching algorithm or our variant with additional 3-cycle reorienta-

tions on a smaller state digraph with a reduced diameter bound n(m− 3k) or m− 3k,

respectively, yielding an important practical advantage.

Our results (see also our publication (BM10)) give a theoretical foundation to com-

pute certain network characteristics on unlabeled digraphs in a single component using

2-swaps only. For example, this includes the analysis of the motif content (MSOI+02).

Likewise we can still compute the average diameter among all digraph realizations if we

work in a single component. However, for other network characteristics, for example

betweenness centrality on arcs (KLP+05), this leads in general to incorrect estimations.

5.2 Random Walk on the State Digraph of Digraph Re-

alizations

We denote the state digraph (with loops) for our random walk by Φ = (VΦ, AΦ).

Its underlying vertex set Vφ is the set of all digraph realizations of a given digraph

sequence S. For a digraph realization G, we denote by VG the corresponding vertex in

the vertex set VΦ. The arc multi-set AΦ is defined as follows.

a) We connect two vertices VG, VG′ ∈ VΦ, G 6= G′ with arcs (VG, VG′) and (VG′ , VG)

if and only if one of the two following constraints is fulfilled

81

5. UNIFORM SAMPLING OF DIGRAPH REALIZATIONS

1. |G∆G′| = 4

2. |G∆G′| = 6 and G∆G′ contains exactly three different vertices.

b) We set a directed loop (VG, VG)

1. for each pair of non-adjacent arcs (vi1 , vi2), (vi3 , vi4) ∈ A(G), ij ∈ {1, . . . , n}
if and only if (vi1 , vi4) ∈ A(G)∨(vi3 , vi2) ∈ A(G) in the digraph realization G,

2. for each directed 2-path (vi1 , vi2), (vi2 , vi3) ∈ A(G) if and only if one of the

following constraints is true for the digraph realization G,

i) (vi2 , vi1) ∈ A(G) ∨ (vi3 , vi2) ∈ A(G) ∨ (vi1 , vi3) ∈ A(G),

ii) (vi3 , vi1) /∈ A(G),

iii) i3 < i1 ∨ i3 < i2.

3. if G contains no directed 2-path.

Note, that multiple loops are allowed.

Lemma 5.1. The state digraph Φ := (VΦ, AΦ) is non-bipartite, symmetric, and regular.

Proof. In our setting we always connect two distinct vertices in both directions. Hence,

Φ is symmetric. Furthermore, if some digraph realization G contains no directed 2-path,

then each G is a digraph realization of a sequence S, only consisting of sinks and sources.

With our setting Φ contains for each VG ∈ VΦ a directed loop and is therefore non-

bipartite, by item b)3. in our construction. Let us now assume that a digraph realization

G contains a directed 2-path. Either there exists a third arc which completes these two

arcs to a directed 3-cycle or not. In all cases we can guarantee one directed loop at VG :

In the case of a directed 3-cycle C we distinguish two cases. Either b)2.i) is fulfilled or

in C there exists a 2-path with conditions as in b)2.iii). If we have a 2-path which is not

a subpath of a directed 3-cycle then we get condition b)2.ii). Hence, Φ is not bipartite.

For the proof of regularity, we consider at each vertex VG the number of pairs of non-

adjacent arcs in a digraph realization G. This is the number of all possible arc pairs

minus the number of adjacent arcs
(|A(G)|

2

)
−
(∑n

i=1

(
ai
2

)
+
∑n

i=1

(
bi
2

)
+
∑n

i=1 aibi

)
where

∑n
i=1

(
ai
2

)
is the number of all incoming arc pairs at each vertex,

∑n
i=1

(
bi
2

)
is the number

of all outgoing arc pairs at each vertex and
∑n

i=1 aibi is the number of directed 2-paths

in a digraph realization G. Hence, the number of non-adjacent arcs is a constant value

for each digraph realization G. For each of these arc pairs we either set a directed loop

or an incoming and an outgoing arc at each vertex VG ∈ VΦ. For each 2-path in G we

set a loop if it is not part of a directed 3-cycle C = (vi1 , vi2 , vi3 , vi1) which is an induced

subdigraph C = G 〈{vi1 , vi2 , vi3}〉. Otherwise, there exists a digraph realization G′ with

82

5.2 Random Walk on the State Digraph of Digraph Realizations

1

2

3

4

5

6

7

1

2

3

4

5

6

7

1

2

3

4

5

6

7

1

2

3

4

5

6

7

G = G 0

2G

1
G

G = G’
3

swap arcs (5,3) and (2,4)
with (2,3) and (5,4)

swap arcs (1,2) and (3,4)

with (3,2) and (1,4)

swap arcs (6,5) and (4,7)

with (6,7) and (4,5)

Figure 5.5: Transforming G from Figure 2.1 into G′ by a sequence of swap operations.

|G∆G′| = 6 and G∆G′ contains exactly 3 different vertices. Hence, we set for the 2-path

in C with ij < ij′ and ij′ < ij′′ with j, j′, j′′ ∈ {1, 2, 3} the directed arcs (VG, VG′) and

(VG′ , VG) and for both other 2-paths in C a directed loop. Generally, we set for all 2-

paths in a digraph realization an incoming and an outgoing arc at each VG. The number

of 2-paths in each digraph realization is the constant value
∑n

i=1 aibi. Hence, the vertex

indegree (outdegree) at each vertex is dΦ := d+
Φ = d−Φ =

(|A(G)|
2

)
− 2

∑n
i=1

(
ai
2

)
.

In the next section we have to prove that our constructed state digraphs are strongly

connected. This is sufficient to prove the reachability of each digraph realization in-

dependent of the starting digraph realization. Figure 5.5 shows an example how the

digraph realization G from Figure 2.1 can be transformed to the digraph realization G′

by a sequence of swap operations.

5.2.1 Symmetric differences of two different digraph realizations

Proposition 5.1. Let S be a digraph sequence and G and G′ be two different digraph re-

alizations. If G∆G′ is exactly one weak component and |G∆G′| 6= 6, then there exists in

G∆G′ an alternating oriented path of type P or Q, where P = (v1, a1, v2, a2, v3, a3, v4)

with a1 = (v1, v2), a3 = (v3, v4) ∈ A(G) and a2 = (v3, v2) ∈ A(G′) and Q = (w1, b1, w2, b2,

83

5. UNIFORM SAMPLING OF DIGRAPH REALIZATIONS

Figure 5.6: Alternating oriented cycles (G∆G′)i and (G∆G′)j of symmetric difference

G∆G′.

w3, b3, w4) with b1 = (w1, w2), b3 = (w3, w4) ∈ A(G′) and b2 = (w3, w2) ∈ A(G).

Proof. Note that in G∆G′ an alternating oriented cycle of length two is not possible.

Otherwise, there exists an arc (u, v) ∈ A(G)∩A(G′) in contradiction to our assumption

that (u, v) ∈ G∆G′. The symmetric difference G∆G′ may decompose into a number of

alternating oriented cycles (G∆G′)i. We consider a decomposition into the minimum

number of such cycles. (For more details see Chapter 2.) If one of these alternating

oriented cycles (G∆G′)i contains an alternating oriented 3–path P or Q as claimed, we

are done. Otherwise, each vertex is repeated at each third step in (G∆G′)i see Figure

5.6.

Hence, we get the alternating oriented cycles

(G∆G′)i := (vi1 , ai1 , vi2 , ai2 , vi3 , ai3 , vi1 , bi1 , vi2 , bi2 , vi3 , bi3vi1)

where ai1 , ai3 , bi2 ∈ A(G) and ai2 , bi1 , bi3 ∈ A(G′). The cycle cannot be longer, as the

graph induced by G∆G′〈{v1, v2, v3}〉 is already complete. Since |(G∆G′)i| = 6, there

must be (G∆G′)j with i 6= j. (G∆G′)j shares at least one vertex with (G∆G′)i, because

G∆G′ is weakly connected. There must be exactly one vi1 = vj1 , since otherwise these

two cycles were not arc-disjoint. The union of these two cycles is an alternating oriented

cycle, because vertex vj1 is repeated at the third step in cycle (G∆G′)j . Hence, vertex

vj1 possesses there two incoming and two outgoing arcs which makes it possible to

combine the cycle (G∆G′)i at this vertex with cycle (G∆G′)j . Contradiction to the

assumption of the minimality of the decomposition!

Note that the above proposition does not assert that the symmetric difference con-

84

5.2 Random Walk on the State Digraph of Digraph Realizations

Figure 5.7: Symmetric difference G∆G′ which only possesses one type of path, namely

Q, from Proposition 5.1.

tains P and Q. The smallest counter-example (see Figure 5.7) are the digraph realiza-

tionsG = (V,A) andG′ = (V,A′) with V = {v1, v2, v3, v4} andA = {(v1, v3), (v3, v2), (v2,

v4), (v4, v1)} and A′ = {(v1, v2), (v2, v1), (v3, v4), (v4, v3)}. Here, we only find path Q.

Proposition 5.2. Let S be a digraph sequence and G and G′ be two different digraph

realizations. If |G∆G′| = 6, then there exist

a) digraph realizations G0, G1, G2 with G0 := G, G2 := G′ and |Gi∆Gi+1| = 4 for

i ∈ {0, 1} or

b) G and G′ are different in the orientation of exactly one directed 3-cycle.

Proof. First observe that the symmetric difference is weakly connected whenever |G∆G′| =
6. We consider the alternating 6-cycle C := G∆G′.

case 1: C contains at least four different vertices. Assume first that C contains four

different vertices (see Figure 5.8).

The only possibility to realize this scenario is C = (v1, a1, v2, a2, v3, a3, v1, a4, v4, a5

, v3, a6, v1) with a1 = (v1, v2), a3 = (v3, v1), a4 = (v4, v3) ∈ A(G) and a2 =

(v3, v2), a4 = (v4, v1), a6 = (v1, v3) ∈ A(G′). (A permutation of {1, 2, 3} does not

influence the result.) We get the alternating oriented path P = (v4, a5, v3, a3, v1, a1, v2).

(i): Assume (v4, v2) /∈ A(G). It follows (v4, v2) /∈ A(G′). Otherwise, we would get

85

5. UNIFORM SAMPLING OF DIGRAPH REALIZATIONS

Figure 5.8: Case 1 (i) and (ii) from Proposition 5.2 with exactly four different vertices.

(v4, v2) ∈ G∆G′ in contradiction to our assumption. We set

G1 := (G0 \ {(v4, v3), (v1, v2)}) ∪ {(v4, v2), (v1, v3)} and

G2 := (G1 \ {(v4, v2), (v3, v1)}) ∪ {(v4, v1), (v3, v2)}.

We get G2 = G′ and digraph realizations G0, G1, G2 with |Gi∆G′i+1| = 4.

(ii): Assume (v4, v2) ∈ A(G). It follows (v4, v2) ∈ A(G′). Otherwise, we would

get (v4, v2) ∈ G∆G′ in contradiction to our assumption. We set

G1 := (G0 \ {(v4, v2), (v3, v1)}) ∪ {(v4, v1), (v3, v2)} and

G2 := (G1 \ {(v4, v3), (v1, v2)}) ∪ {(v4, v2), (v1, v3)}.

We get G2 = G′ and digraph realizations G0, G1, G2 with |Gi∆G′i+1| = 4.

We can argue analogously if C contains five our six different vertices.

case 2: C contains exactly three different vertices. Then C is the alternating oriented

cycle C = (v1, a1, v2, a2, v3, a3, v1, a4, v2, a5, v3, a6, v1) with a1 = (v1, v2), a3 =

(v3, v1), a5 = (v2, v3) ∈ A(G) and a2 = (v3, v2), a4 = (v2, v1), a6 = (v1, v3) ∈
A(G′). Hence, G and G′ are different in the orientation of exactly one directed

3-cycle.

86

5.2 Random Walk on the State Digraph of Digraph Realizations

Lemma 5.2. Let S be a digraph sequence and G and G′ be two different digraph

realizations. Then there exist digraph realizations G0, G1, . . . , Gk with G0 := G, Gk :=

G′ and

1. |Gi∆Gi+1| = 4 or

2. |Gi∆Gi+1| = 6

where k ≤ 1
2 |G∆G′| − 1. In case (2), Gi∆Gi+1 consists of a directed 3-cycle and its

opposite orientation.

Proof. We prove the lemma by induction according to the cardinality of the symmetric

difference |G∆G′| = 2κ. For κ := 2 we get |G∆G′| = 4. The correctness of our claim

follows with G1 := G′. For κ := 3 we apply Proposition 5.2. In both of its cases it

follows k ≤ 2.

We assume the correctness of our claim for all κ ≤ `. Let |G∆G′| = 2`+ 2. We can

assume that κ > 3. Assume further, that the symmetric difference consists of λ weakly

connected components (G∆G′)i for i ∈ {1, . . . , λ}.
Consider first the case that for all these components |(G∆G′)i| = 6 and that each

component contains exactly three distinct vertices. Then each of them is a directed

3-cycle and its reorientation. We choose (G∆G′)1, perform a 3-cycle reorientation on it,

and obtain digraph realizationG∗. Thus |G∗∆G′| = 2`−4. By the induction hypothesis,

there are digraph realizations G0 = G∗, G1, . . . , Gk = G′ such that k ≤ 1
2 |G∗∆G′|−1 =

1
2 |G∆G′| − 4. Combining the first 3-cycle reorientation with this sequence of digraph

realizations gives the desired bound. If there is a component |(G∆G′)i| = 6 with at

least four distinct vertices, we can apply Proposition 5.2, case a) to it and handle the

remaining components by induction.

Otherwise, there is a component with |(G∆G′)i| = 4 or |(G∆G′)i| ≥ 8. For the

first case we apply the same idea as before. Swap the arcs in (G∆G′)i and obtain a

digraph G∗. By the induction hypothesis one can find a sequence of digraph realizations

G∗ = G0, . . . , Gk = G′ with k ≤ 1
2 |G∗∆G′| = 1

2 |G∆G′| − 3. So let as consider the case

|(G∆G′)i| ≥ 8. Due to Proposition 5.1, we may assume that there is an alternating

oriented path P = (v1, a1, v2, a2, v3, a3, v4) with a1 = (v1, v2), a3 = (v3, v4) ∈ A(G)

and a2 = (v3, v2) ∈ A(G′). Otherwise, there exists Q = (w1, b1, w2, b2, w3, b3, w4) with

b1 = (w1, w2), b3 = (w3, w4) ∈ A(G′) and b2 = (w3, w2) ∈ A(G). In that case we can

exchange the roles of G and G′ and consider G′∆G. Clearly, a sequence of digraph

realizations G′ = G′0, G
′
1, . . . , G

′
k = G can be reversed and then fulfills the conditions

87

5. UNIFORM SAMPLING OF DIGRAPH REALIZATIONS

Figure 5.9: The four distinct cases of Lemma 5.2.

of the lemma. So from now on we work with P . For the following case distinction

consider Figure 5.9.

case 1: Assume (v1, v4) ∈ A(G′) \A(G).

This implies (v1, v4) ∈ G∆G′. G1 := (G0 \ {(v1, v2), (v3, v4)})∪ {(v3, v2), (v1, v4)}
is a digraph realization of S and it follows |G0∆G1| = 4 and |G1∆G′| = 2`+ 2−
4 = 2(` − 1). Note that after this step, G1∆G′ may consist of several connected

components, but each of them has strictly smaller cardinality. Therefore, we can

apply the induction hypothesis on |G1∆G′|. Thus, we obtain digraph realizations

G1, G2, . . . , Gk with Gk := G′ and |Gi∆Gi+1| = 4 or |Gi∆Gi+1| = 6 where

k − 1 ≤ 1
2 |G1∆G′| − 1. Hence, we get the sequence G0, G1, . . . , Gk with k =

1 + 1
2 |G1∆G′| − 1 = 1

2(|G∆G′| − 4) ≤ 1
2 |G∆G′| − 1 which fulfills 1. and 2.

case 2: Assume (v1, v4) ∈ A(G) ∩A(G′).

This implies (v1, v4) /∈ G∆G′. Consider an alternating oriented cycle

C = (v4, c1, vi, . . . , vj , c2, v1, a1, v2, a2, v3, a3, v4) of (G∆G′)i such that each vertex

has indegree two or outdegree two. Then P is an alternating subpath of C with

c1 = (vi, v4), c2 = (v1, vj) ∈ A(G′). We construct a new alternating oriented

cycle C∗ := (C \ P) ∪ {(v1, v4)} with length |C∗| = |C| − 2. We swap the arcs

in C∗ and get a digraph realization G∗ of S with |G0∆G∗| = |C∗| ≤ 2` and

|G∗∆G′| = |G∆G′| − (|C∗| − 1) + 1 ≤ 2`. According to the induction hypothesis

there exist sequences G1
0 := G,G1

1, . . . , G
1
k1

:= G∗ and G2
0 := G∗, G2

1, . . . , G
2
k2

= G′

with k1 ≤ 1
2 |G0∆G∗| − 1 and k2 ≤ 1

2 |G∗∆G′| − 1. We arrange these sequences

one after another and get a sequence which fulfills 1. and 2. and k = k1 + k2 =

88

5.2 Random Walk on the State Digraph of Digraph Realizations

1
2 |G0∆G∗| − 1 + 1

2 |G∗∆G′| − 1 = 1
2 |G∆G′| − 1.

case 3: Assume (v1, v4) ∈ A(G) \A(G′).

This implies (v1, v4) ∈ G∆G′. The alternating oriented path P can be extended to

an alternating oriented cycle C = (v1, a1, v2, a2, v3, a3, v4, a4, v5, . . . , v2t, a2t, v1),

t ≥ 3 using only arcs from G∆G′. To construct C, start with P , and keep

adding alternating arcs until you reach the start vertex v1 for the first time.

Obviously, you will not get stuck before reaching v1. Note that the arc (v1, v4)

does not belong to C. Therefore, there exists an alternating oriented sub-cycle

C∗ := C ∪ {(v1, v4)} \ P formed by arcs in G∆G′. We swap the arcs in C∗ and

get a digraph realization G∗ of S with |G0∆G∗| = |C∗| ≤ 2` and |G∗∆G′| =

|G∆G′| − |C∗| ≤ 2`. According to the induction hypothesis there exist digraph

sequences G1
0 := G,G1

1, . . . , G
1
k1

:= G∗ and G2
0 := G∗, G2

1, . . . , G
2
k2

= G′ with

k1 ≤ 1
2 |G0∆G∗| − 1 and k2 ≤ 1

2(|G∆G′| − |C∗|)− 1. We arrange these sequences

one after another and get a sequence which fulfills 1. and 2. and k = k1 + k2 =
1
2 |G0∆G∗| − 1 + 1

2(|G∆G′| − |C∗|)− 1 = 1
2(|G∆G′|)− 2.

case 4: Assume (v1, v4) /∈ A(G) ∪ A(G′). This implies (v1, v4) /∈ G∆G′. It exists

the alternating oriented cycle C := (P, (v1, v4)) with (v1, v4) /∈ A(G). G1 :=

(G0 \ {(v1, v2), (v3, v4)}) ∪ {(v3, v2), (v1, v4)} is a digraph realization of S and it

follows |G0∆G1| = 4 and |G1∆G′| = 2`+ 2− 2 = 2`. According to the induction

hypothesis there exist digraph realizations G1, G2, . . . , Gk with Gk := G′ which

fulfill 1. and 2. where k1 := 1 and k2 := k− 1 ≤ 1
2 |G1∆G′| − 1. Hence, we get the

sequenceG0, G1, . . . , Gk with k = k1+k2 = 1+ 1
2 |G1∆G′|−1 = 1

2(|G∆G′|−3+1) =
1
2 |G∆G′| − 1 which fulfills 1. and 2.

Corollary 5.1. State digraph Φ is a strongly connected digraph with loops.

5.2.2 Random Walks

A random walk on Φ = (VΦ, AΦ) can be described by Algorithm 3. We now require a

data structure DS containing all pairs of non-adjacent arcs and all directed 2-paths in

the current digraph realization.

Theorem 5.2. Algorithm 3 is a random walk on state digraph Φ which samples uni-

formly at random a digraph realization G′ = (V,A) of digraph sequence S for τ →∞.

89

5. UNIFORM SAMPLING OF DIGRAPH REALIZATIONS

Algorithm 3 Sampling digraph realizations

Require: digraph sequence S, a digraph realization G = (V,A) of S, a mixing time τ.

Ensure: A sampled digraph realization G′ = (V,A′) of S.

1: t := 0, G′ := G {initialization}
2: while t < τ do

3: Choose an element p from DS uniformly at random.{p is a pair of non-adjacent

arcs or a directed 2-path.}
4: if p is a pair of non-adjacent arcs (vi1 , vi2), (vi3 , vi4) then

5: if (vi1 , vi4), (vi3 , vi2) /∈ A(G′) then

6: {Either walk on Φ to an adjacent digraph realization G′}
7: Delete (vi1 , vi2), (vi3 , vi4) in A(G′).

8: Add (vi1 , vi4), (vi3 , vi2) to A(G′).

9: else

10: {or walk a loop: ‘Do nothing’}
11: end if

12: else

13: {p is a directed 2-path P = (vi1 , vi2 , vi3)}
14: if ((vi3 , vi1) ∈ A(G′))∧ ((vi2 , vi1), (vi3 , vi2), (vi1 , vi3) /∈ A(G′))∧ (i3 > i1)∧ (i3 >

i2) then

15: {Walk on Φ to an adjacent digraph realization G′ with a reoriented directed

3-cycle}
16: Delete (vi1 , vi2), (vi2 , vi3), (vi3 , vi1) in A(G′).

17: Add (vi2 , vi1), (vi3 , vi2), (vi1 , vi3) to A(G′).

18: else

19: {Walk a loop: ‘Do nothing’}
20: end if

21: end if

22: update data structure DS

23: t← t+ 1

24: end while

90

5.3 Arc-Swap Sequences

Proof. Algorithm 3 chooses elements in DS with the same constant probability. For

a vertex VG ∈ VΦ there exist for all these pairs of arcs in A(G′) either incoming and

outgoing arcs on VG′ in Φ or a loop. Let dΦ :=
(|A(G)|

2

)
−2
∑n

i=1

(
ai
2

)
. We get a transition

matrix M for Φ with pij = 1
dΦ

for i, j ∈ A(Φ), i 6= j, pij = 1 −∑{k|(k,l)∈A(Φ), k 6=l}
1
dΦ

for i, j ∈ VΦ, i = j, otherwise we set pij = 0. Since, Φ is a regular, strongly connected,

symmetrical and non-bipartite digraph, the distribution of all digraph realizations in

the tth step converges asymptotically to the uniform distribution.

5.3 Arc-Swap Sequences

In this section, we study under which conditions the simple switching algorithm works

correctly for digraphs. The Markov chain used in the switching algorithm works on the

following simpler state digraph Φ = (Vφ, AΦ). We define AΦ as follows.

a) We connect two vertices VG, VG′ ∈ VΦ, G 6= G′ with arcs (VG, VG′) and (VG′ , VG)

if and only if |G∆G′| = 4 is fulfilled.

b) We set for each pair of non-adjacent arcs (vi1 , vi2), (vi3 , vi4) ∈ A(G), ij ∈ {1, . . . , n}
a directed loop (VG, VG) if and only if (vi1 , vi4) ∈ A(G) ∨ (vi3 , vi2) ∈ A(G).

c) We set one directed loop (VG, VG) for all VG ∈ VΦ.

Lemma 5.3. The state digraph Φ = (VΦ, AΦ) is non-bipartite, symmetric, and regular.

Proof. Since each vertex VG ∈ VΦ contains a loop, Φ is not bipartite. At each time

we set an arc we also do this for its opposite direction. Hence, Φ is symmetric. The

number of incoming and outgoing arcs at each VG equals the number of non-adjacent

arcs in G, which is the constant value
(|A(G)|

2

)
−
(∑n

i=1

(
ai
2

)
+
∑n

i=1

(
bi
2

)
+
∑n

i=1 aibi

)
.

Thus, we get the regularity of Φ.

5.4 Characterization of Arc-Swap Sequences

As shown in Example 5.1, Φ decomposes into several components, but we are able to

characterize digraph sequences S for which strong connectivity is fulfilled in Φ. In fact,

we will show that there are numerous digraph sequences which only require switching

by 2-swaps. In the following we give necessary and sufficient conditions allowing to

identify such digraph sequences in polynomial running time.

91

5. UNIFORM SAMPLING OF DIGRAPH REALIZATIONS

Definition 5.1. Let S be a digraph sequence and let G = (V,A) be an arbitrary digraph

realization. We denote a vertex subset V ′ ⊆ V with |V ′| = 3 as an induced cycle set V ′

if and only if for each digraph realization G∗ = (V,A∗) the induced subdigraph G∗ 〈V ′〉
is a directed 3-cycle.

Definition 5.2. Let S be a digraph sequence and G = (V,A) an arbitrary digraph

realization. We call S an arc-swap-sequence if and only if each subset V ′ ⊆ V of

vertices with |V ′| = 3 is not an induced cycle set.

This definition enables us to use another state digraph for sampling a digraph

realization G for arc-swap-sequences. In Theorem 5.5, we will show that in these cases

we have only to switch the ends of two non-adjacent arcs.

Before, we study how to recognize arc-swap-sequences efficiently. Clearly, we may

not determine all digraph realizations to identify a digraph sequence as an arc-swap-

sequence. Fortunately, we are able to give a characterization of digraph sequences

allowing us to identify an arc-swap-sequence by only considering one digraph realization.

We need a further definition for a special case of symmetric differences.

Definition 5.3. Let S be a digraph sequence and G = (V,A) and G∗ = (V,A∗) arbitrary

digraph realizations. We call G∆G∗ simple symmetric cycle if and only if each vertex

v ∈ V (G∆G∗) possesses indegree d−G∆G∗(v) ≤ 2 and outdegree d+
G∆(v)G∗ ≤ 2, and if

G∆G∗ is an alternating oriented cycle.

Note that the alternating oriented cycle C1 (in Figure 2.2) is not a simple symmetric

cycle, because d+
C1

(v4) = 4. Cycle C1 decomposes into two simple symmetric cycles

C ′1 = (v1, v2, v3, v4, v1) and C ′′1 = (v2, v3, v5, v4, v2).

Theorem 5.3. A digraph sequence S is an arc-swap-sequence if and only if for any

digraph realization G = (V,A) the following property is true:

For each induced, directed 3-cycle G 〈V ′〉 of G there exists a digraph realization G∗ =

(V,A∗) so that G∆G∗ is a simple symmetric cycle and that the induced subdigraph

G∗ 〈V ′〉 is not a directed 3-cycle.

Proof. ⇒: Let S be an arc-swap sequence and G = (V,A) be an arbitrary digraph

realization. With Definition 5.2 it follows that each subset V ′ ⊂ V with |V ′| = 3 is

not an induced cycle set. Hence, there exists for each induced, directed 3-cycle G 〈V ′〉
of G a digraph realization G′ = (V,A′) where the induced subdigraph G′ 〈V ′〉 is not a

directed cycle. If the symmetric difference G∆G′ is not a simple symmetric cycle we

delete as long alternating oriented cycles in G∆G′ as we get an alternating oriented

92

5.4 Characterization of Arc-Swap Sequences

cycle C∗ where each vertex in C∗ has at most indegree two and at most outdegree two.

Furthermore, C∗ shall contain at least one arc (v, v′) ∈ V ′×V ′. This is possible, because

G∆G′ contains at least one such arc. On the other hand the alternating oriented cycle

C∗ does not contain all possible six of such arcs. Otherwise, the induced subdigraph

G′ 〈V ′〉 is a directed cycle. Now, we construct the digraph realization G∗ = (V,A∗) with

A∗ := (A(G) \A(C∗))∪ (A(C∗)∩A(G′)). It follows G∆G∗ = C∗ is a simple symmetric

difference.

⇐: Let G be any digraph realization of digraph sequence S. We only have to consider

3-tuples of vertices V ′ inducing directed 3-cycles in G. With our assumption there exists

for each V ′ a digraph realization G∗ so that G∗ 〈V ′〉 is not a directed 3-cycle. Hence, we

find for each subset V ′ ⊂ V of vertices with |V ′| = 3 a digraph realization G∗ = (V,A),

so that the induced subdigraph G∗ 〈V ′〉 is not a directed 3-cycle. We conclude that S

is an arc-swap sequence.

This characterization allows us to give a simple polynomial-time algorithm to rec-

ognize arc-swap-sequences. All we have to do is to check for each induced 3-cycle of the

given digraph realization, if it forms an induced cycle set. Therefore, we check for each

arc (v, w) in an induced 3-cycle whether there is an alternating oriented walk from v

to w (not using arc (v, w)) which does not include all five remaining arcs of the 3-cycle

and its reorientation. Moreover, each node on this walk has at most indegree 2 and at

most outdegree 2. Such an alternating oriented walk can be found in linear time by

using a reduction to an f -factor problem in a bipartite graph. In this graph we search

for an alternating path by growing alternating trees (similar to matching algorithms in

bipartite graphs, no complications with blossoms will occur), see for example (Sch03).

The trick to ensure that not all five arcs will appear in the alternating cycle is to iterate

over these five arcs and exclude exactly one of them from the alternating path search

between v and w. Of course, this loop stops as soon as one alternating path is found.

Otherwise, no such alternating path exists. A linear-time recognition is possible with

a parallel Havel-Hakimi algorithm of LaMar (LaM09).

Next, we are going to prove that Φ is strongly connected for arc-swap-sequences.

The structure of the proof is similar to the case of Φ, but technically slightly more

involved.

Lemma 5.4. Let S be an arc-swap-sequence and G and G∗ be two different digraph

realizations. Assume V ′ := {v1, v2, v3} ⊆ V such that G〈V ′〉 is an induced directed

3-cycle but G∗〈V ′〉 is not an induced directed 3-cycle. Moreover, assume that G∆G∗

is a simple symmetric cycle. Then there are digraph realizations G0, G1, . . . , Gk with

93

5. UNIFORM SAMPLING OF DIGRAPH REALIZATIONS

Figure 5.10: Lemma 5.4 case b): arc (v1, v4) /∈ A(G) ∪A(G∗).

G0 := G,Gk := G∗, |Gi∆Gi+1| = 4 and k ≤ 1
2 |G∆G∗|.

Proof. We prove this lemma by induction on the cardinality of G∆G∗. The base case

|G∆G∗| = 4 is trivial. Consider next the case |G∆G∗| = 6. We distinguish between

two subcases.

case a) G∆G∗ consists of at least four different vertices.

By Proposition 5.2, case a), there are realizations G = G0, G1, G2 = G∗ with

|Gi∆Gi+1| = 4.

case b) G∆G∗ consists of exactly three vertices.

Observe that G∆G∗ contains at least one arc from G〈V ′〉 or its reorientation but

not all three vertices V ′, as otherwise G∗〈V ′〉 would be an induced 3-cycle. In

fact, it turns out that G∆G∗ contains exactly one arc, say (v2, v3), from G〈V ′〉
and its opposite arc (v3, v2), because G∆G∗ is the alternating oriented cycle

(v2, a2, v3, a3, v4, a4, v2, a5, v3, a6, v4, a7, v2) with v4 6= v1. We have two subcases.

Assume first that (v1, v4) /∈ A(G) ∪A(G∗), see Figure 5.10.

So we can swap the alternating oriented cycle C := (v1, v2, v3, v4, v1) in a single

step and obtain digraph realization G∗∗. We then obtain the alternating oriented

6-cycle C ′ := (v2, v3, v4, v2, v1, v4, v2) which consists of four different vertices. By

Proposition 5.2, case a), we can swap the arcs of this cycle in two steps, thus in

total in three steps as claimed. Otherwise, (v1, v4) ∈ A(G) ∩ A(G∗), see Figure

5.11.

Then we obtain the alternating oriented cycle C := (v1, v4, v2, v3, v1) which can

be swapped in a single step to digraph realization G∗∗. By that, we obtain a new

cycle C ′ := (v1, v3, v4, v2, v3, v4, v1) which consists of four different vertices. By

Proposition 5.2, case a), we can swap the arcs of this cycle in two steps, thus in

total in three steps as claimed.

94

5.4 Characterization of Arc-Swap Sequences

Figure 5.11: Lemma 5.4 case b): arc (v1, v4) ∈ A(G) ∩A(G∗).

Figure 5.12: Lemma 5.4 Induction step: P contains no arc from G〈V ′〉 or its reorienta-

tion.

For the induction step, let us consider |G∆G∗| = 2`+ 2 ≥ 8. Then G∆G∗ contains

between one and five arcs from G〈V ′〉 and its reorientation. By Proposition 5.1, there

is an alternating oriented path P = (w1, b1, w2, b2, w3, b3, w4) in G∆G∗ with (w1, w2) ∈
A(G) \ A(G∗) or (w1, w2) ∈ A(G∗) \ A(G). Suppose that P contains no arc from

G〈V ′〉 and its reorientation. We consider the case (w1, w2) ∈ A(G) \ A(G∗). (The

case (w1, w2) ∈ A(G∗) \ A(G)) can be shown with the same arguments.) Note, that

(w1, w4) /∈ G∆G∗, because G∆G∗ is a simple symmetric cycle with |G∆G∗| ≥ 8.

If (w1, w4) ∈ A(G) ∩ A(G∗), then we consider C := (G∆G∗) ∪ {(w1, w4)} \ P, see

Figure 5.12.

We swap the arcs of C and obtain a digraph realization G∗∗. Clearly, G∆G∗∗

contains an arc from G〈V ′〉 or its reorientation, and it is a simple symmetric cycle.

Moreover, G∗∗〈V ′〉 is not an induced 3-cycle. As |G∆G∗∗| = 2`, we can apply the

induction hypothesis. We obtain a sequence of realizations G = G0, G1, . . . , Gk = G∗∗

95

5. UNIFORM SAMPLING OF DIGRAPH REALIZATIONS

Figure 5.13: Lemma 5.4 Induction step: P contains exactly one arc from G〈V ′〉 and its

reorientation

.

with |Gi∆Gi+1| = 4 and k ≤ 1
2 |G∆G∗∗| ≤ 1

2(|G∆G∗|−2). Finally, we apply a last swap

on the alternating oriented cycle (w1, b1, w2, b2, w3, b3, w4, b4, w1) and thereby transform

G∗∗ to G∗. In total, the number of swap operations is at most 1
2 |G∆G∗|.

The case b4 = (w1, w4) 6∈ A(G) ∪ A(G∗) is similar. This time, we start with a

single swap on the alternating oriented cycle C ′ := (w1, b1, w2, b2, w3, b3, w4, b4, w1) and

afterwards apply induction to the remaining cycle. Hence, in the remainder we may

assume that there is an alternating oriented 3-path P.

Hence, we consider such an alternating oriented 3-path P = (w1, b1, w2, b2, w3, b3, w4)

in G∆G∗ with b1 = (w1, w2) ∈ A(G) \ A(G∗) or b1 = (w1, w2) ∈ A(G∗) \ A(G) but at

least one arc of P is from G〈V ′〉 and its reorientation.

Recall that G∆G∗ contains between one and five arcs from G〈V ′〉 and its reorientation.

We distinguish between three cases:

case I: G∆G∗ contains exactly one of these arcs, say (v1, v2) ∈ A(G)\A(G∗). (The case

that (v2, v1) ∈ A(G∗) \ A(G) is this special arc can be treated analogously.) We

claim that the cycle G∆G∗ must have the form (v1, v2, w3, w4, w5, w3, w4, w5, v1)

see Figure 5.13.

Note that w3, w4, w5 are repeated every third step, as otherwise we would obtain

an alternating oriented path as excluded above. The cycle cannot be longer than

eight, since then we would obtain an alternating oriented 3-path (w3, w4, w5, w6),

excluded above. It might be that w4 = v3, but w3, w5 6= v3, as otherwise the

96

5.4 Characterization of Arc-Swap Sequences

Figure 5.14: Lemma 5.4 Induction step: Two adjacent arcs from G〈V ′〉 and its reorien-

tation in G∆G∗.

symmetric difference would contain more than one arc from G〈V ′〉 and its re-

orientation. If (v1, w3) ∈ A(G) ∪ A(G∗) there is the alternating oriented 4-cycle

C := (v1, w3, w4, w5, v1) which can be swapped. In the remaining 6-cycle the arc

(v1, v2) is contained, so the induction hypothesis can be applied. Otherwise, if

(v1, w3) 6∈ A(G) ∩ A(G∗), we first apply the induction hypothesis to the 6-cycle

C ′ := (v1, v2, w3, w4, w5, w3, v1), and afterwards we swap the remaining 4-cycle

C := (v1, w3, w4, w5, v1).

case II: G∆G∗ contains exactly two arcs from G〈V ′〉 and its reorientation.

Suppose first that these two arcs are adjacent, say (v1, v2), (v3, v2), see Figure 5.14.

Consider the following arcs (v3, w3), (w4, w3), (w4, w5) along the symmetric differ-

ence. If w4 6= v2 there is an alternating oriented path (v2, v3, w3, w4). Depending

whether (w4, v2) ∈ A(G) ∩ A(G∗) or not, we can either swap the alternating

oriented 4-cycle C := (v2, v3, w3, w4, v2) or the remaining part of the symmetric

difference together with (w4, v2) by the induction hypothesis. Hence, we may

assume w4 = v2. Moreover, w5 = v3, as otherwise there would be the alternat-

ing oriented 3-path (v3, w3, w4, w5) excluded above. But then (v2, v3) is also in

the symmetric difference, a contradiction. Thus, the two arcs from G〈V ′〉 and

its reorientation are not adjacent. Then, there are at least two other arcs be-

tween them (otherwise the one arc between them would also be from G〈V ′〉 and

its reorientation). By our assumptions, there is an alternating oriented 3-path

97

5. UNIFORM SAMPLING OF DIGRAPH REALIZATIONS

Figure 5.15: Lemma 5.4 Induction step: Two non-adjacent arcs from G〈V ′〉 and its

reorientation in G∆G∗.

P = (w1, w2, w3, w4) with at least one arc from G〈V ′〉 and its reorientation. In

our scenario it must be exactly one such arc, see Figure 5.15.

Depending whether (w1, w4) ∈ A(G) ∩ A(G∗) or not, we can either swap the

alternating oriented 4-cycle C := (w1, w2, w3, w4, w1) or the remaining part of the

symmetric difference together with (w1, w4) (yielding cycle C ′) by the induction

hypothesis.

case III: G∆G∗ contains between three and five arcs of G〈V ′〉 and its reorientation.

Suppose first that all of them follow consecutively on the alternating oriented

cycle. Consider the last two of these arcs, and append the next arc which must

end in a vertex v4 6∈ V ′. Then we have an alternating oriented 3-path which

contains two arcs from G〈V ′〉 and its reorientation, and the remaining part of

the symmetric difference also has such an arc. Thus we can apply the induction

hypothesis and are done. Otherwise the three to five arcs from G〈V ′〉 and its

reorientation are separated. So no alternating oriented 3-path may contain all of

them, in particular not P . We can proceed as in case II.

Proposition 5.3.

Let S be an arc-swap-sequence and G and G′ be two different digraph realizations. If

|G∆G′| = 6 and G∆G′ consists of exactly three vertices V ′ := {v1, v2, v3}, then there

98

5.4 Characterization of Arc-Swap Sequences

Figure 5.16: An example for the symmetric differences G∆G∗ and G
′
∆G∗. Exactly one

arc (v1, v2) ∈ G∆G′ is contained in G∆G∗.

exist digraph realizations G0, G1, . . . , Gk with G0 := G,Gk := G′, |Gi∆Gi+1| = 4 and

k ≤ 2n+ 2.

Proof. Since S is an arc-swap-sequence, Theorem 5.3 implies the existence of a digraph

realization G∗ such that G∆G∗ is a simple symmetric cycle and G∗〈V ′〉 is not a directed

3-cycle. By Lemma 5.4, there are digraph realizations G0, G1, . . . , Gk′ := G∗ with

|Gi∆Gi+1| = 4 and k′ ≤ 1
2 |G∆G∗| ≤ n, since G∆G∗ is simple. Moreover, we have

|G∗∆G′| ≤ |G∆G∗|+ 4 ≤ 2n+ 4 since G and G′ differ only in their orientation of the

3-cycle induced by V ′. Let us consider the set of possible arcs in G∗∆G′. We distinguish

between the following cases:

1.) a ∈ G∆G∗ ∧ a /∈ G∆G′. A simple case distinction yields a ∈ G′∆G∗.

2.) a ∈ G∆G′ ∧ a ∈ G∆G∗. In this case, it follows a /∈ G′∆G∗.

3.) a ∈ G∆G′ ∧ a /∈ G∆G∗. It follows a ∈ G′∆G∗.

Hence, we can conclude: All arcs which are not contained in G∆G′ but in G∆G∗ are

also arcs in G′∆G∗. Arcs which appear in the alternating oriented 6-cycle G∆G′ and in

the symmetric difference G∆G∗ are not contained in G
′
∆G∗. They are “replaced” by

the remaining arcs of 6-cycle G∆G′. In Figure 5.16 we give an example for a scenario

where exactly one arc from G∆G′ is contained in G∆G∗.

The symmetric difference G∗∆G′ is not necessarily a simple symmetric cycle as

can be seen in Figure 5.16, but can be decomposed into simple symmetric cycles, each

containing at least one arc from G〈V ′〉 and its reorientation. The reason is that vertices

with a larger in- or outdegree than two in G′∆G∗ can only be generated from vertices

in G∆G′. Hence, each simple symmetric cycle has to start (or to end) with an arc from

G∆G′ in G′∆G∗. For each of these simple symmetric cycles we apply our auxiliary

99

5. UNIFORM SAMPLING OF DIGRAPH REALIZATIONS

Lemma 5.4. We obtain a sequence G∗ := G′0, . . . , G
′
k′′ := G′ with |Gi∆Gi+1| = 4 and

k′′ ≤ n+ 2, because we have |G′∆G∗| ≤ 2n+ 4. Combining both sequences we obtain

a sequence with k = k′ + k′′ ≤ 2n+ 2.

Lemma 5.5. Let S be an arc-swap-sequence, and G and G′ be two different digraph

realizations. Then there exist digraph realizations G0, G1, . . . , Gk with G0 := G, Gk :=

G′ and |Gi∆Gi+1| = 4, where k ≤
(

1
2 |G∆G′| − 1

)
· (n+ 1).

Proof. We prove the lemma by induction according to the cardinality of the symmetric

difference |G∆G′| = 2κ. For κ := 2 we get |G∆G′| = 4. The correctness of our claim

follows with G1 := G′.

For κ := 3 we distinguish two cases. If G∆G′ consists of exactly three vertices,

then by Proposition 5.3 we get a sequence of digraph realizations G0, G1, . . . , Gk and

k ≤ 2n+ 2 = 2(n+ 1), as claimed. Otherwise, the symmetric difference G∆G′ consists

of more than three vertices. By Proposition 5.2, case a), there are digraph realizations

G0, G1, G2 = G′.

We assume the correctness of our induction hypothesis for all κ ≤ `. Let |G∆G′| =
2` + 2. We can assume that κ > 3. Suppose first that the symmetric difference G∆G′

decomposes into t simple symmetric cycles of length |(G∆G′)i| = 6. Suppose further

that all these (G∆G′)i consist of exactly three vertices. Clearly, |G∆G′| = 6t. We

apply our Proposition 5.3 to each of these t cycles one after another and get a sequence

of digraph realizations G0, G1, . . . , Gk = G′ with k ≤ 2t(n + 1) ≤ (3t − 1)(n + 1) =(
1
2 |G∆G′| − 1

)
· (n+ 1).

Otherwise, there is a (G∆G′)1 which contains at least four vertices. Swapping the

arcs in (G∆G′)1 leads to a digraph realization G∗. By Proposition 5.2, there are digraph

realizations G = G0, G1, G2 = G∗ with |Gi∆Gi+1| = 4. We can apply the induction

hypothesis on the remaining part of the symmetric difference. Obviously, we obtain

the desired bound in this case.

It remains the case that there exists a simple symmetric cycle (G∆G′)1 of G∆G′

with |(G∆G′)1| 6= 6. If |(G∆G′)1| = 4, we use a single swap on (G∆G′)1 and obtain

a digraph realization G∗, where |G∗∆G′| = |G∆G′| − 4. By the induction hypothesis,

there is a sequence of digraph realizations G∗ = G1, G2 . . . , Gk = G′ with k − 1 ≤(
1
2 |G∗∆G′| − 1

)
· (n+ 1) =

(
1
2 |G∆G′| − 3

)
· (n+ 1). Otherwise, |(G∆G′)1| ≥ 8. Using

Proposition 5.1, we may assume that there exists an alternating oriented path P =

(v1, v2, v3, v4) in (G∆G′)1 with (v1, v2), (v3, v4) ∈ A(G) and (v3, v2) ∈ A(G′), for the

same reasons as in the proof of Lemma 5.2.

case 1: Assume (v1, v4) ∈ A(G′) \A(G).

100

5.4 Characterization of Arc-Swap Sequences

This implies (v1, v4) ∈ G∆G′. G1 := (G\{(v1, v2), (v3, v4)})∪{(v3, v2), (v1, v4)} is

a digraph realization of S and it follows |G∆G1| = 4 and |G1∆G′| = 2`+ 2− 4 =

2(` − 1). Therefore, we can apply the induction hypothesis on |G1∆G′|. Thus,

we obtain digraph realizations G1, G2, . . . , Gk with Gk := G′ and |Gi∆Gi+1| = 4.

where k − 1 ≤
(

1
2 |G1∆G′| − 1

)
· (n+ 1) =

(
1
2 |G∆G′| − 3

)
· (n+ 1).

case 2: Assume (v1, v4) ∈ A(G) ∩A(G′).

This implies (v1, v4) /∈ G∆G′.We construct a new alternating oriented cycle C∗ :=

((G∆G′)1 \P)∪{(v1, v4)} with length |C∗| = |(G∆G′)1|−2. We swap the arcs in

C∗ and get a digraph realization G∗ of S with |G∆G∗| = |C∗| ≤ 2` and |G∗∆G′| =
|G∆G′| − (|C∗| − 1) + 1 ≤ 2`. According to the induction hypothesis there exist

digraph sequences G1
0 := G,G1

1, . . . , G
1
k1

:= G∗ and G2
0 := G∗, G2

1, . . . , G
2
k2

= G′

with k1 ≤
(

1
2 |G1

0∆G∗| − 1
)
·(n+1) and k2 ≤

(
1
2 |G∗∆G′| − 1

)
·(n+1). We arrange

these digraph sequences one after another and get a sequence with k = k1 + k2 =(
1
2 |G1

0∆G∗| − 1 + 1
2 |G∗∆G′| − 1

)
· (n+ 1) ≤

(
1
2 |G∆G′| − 1

)
· (n+ 1).

case 3: Assume (v1, v4) ∈ A(G) \A(G′).

This implies (v1, v4) ∈ G∆G′. Note that the arc (v1, v4) does not belong to

(G∆G′)1. Therefore, there exists an alternating oriented sub-cycle

C∗ := (G∆G′)1 ∪ {(v1, v4)} \ P formed by arcs in G∆G′. We swap the arcs

in C∗ and get a digraph realization G∗ of S with |G∆G∗| = |C∗| ≤ 2` and

|G∗∆G′| = |G∆G′|−|C∗| ≤ 2`. According to the induction hypothesis there exist

digraph sequences G1
0 := G,G1

1, . . . , G
1
k1

:= G∗ and G2
0 := G∗, G2

1, . . . , G
2
k2

= G′

with k1 ≤
(

1
2 |G∆G∗| − 1

)
· (n + 1) and k2 ≤

(
1
2(|G∆G′| − |C∗|)− 1

)
· (n + 1).

We arrange these digraph sequences one after another and get a sequence with

k = k1+k2 =
(

1
2 |G∆G∗| − 1 + 1

2(|G∆G′| − |C∗|)− 1
)
·(n+1) =

(
1
2(|G∆G′|)− 2

)
·

(n+ 1).

case 4: Assume (v1, v4) /∈ A(G) ∪A(G′).

This implies (v1, v4) /∈ G∆G′. It exists the alternating oriented cycle C :=

(P, (v1, v4)) with (v1, v4) /∈ A(G). G1 := (G\{(v1, v2), (v3, v4)})∪{(v3, v2), (v1, v4)}
is a digraph realization of S and it follows |G∆G1| = 4 and |G1∆G′| = 2` +

2 − 2 = 2`. According to the induction hypothesis there exist digraph real-

izations G1, G2, . . . , Gk with Gk := G′ where k1 := 1 and k2 := k − 1 ≤(
1
2 |G1∆G′| − 1

)
· (n + 1). Hence, we get the sequence G := G0, G1, . . . , Gk with

k = k1 + k2 = 1 +
(

1
2 |G1∆G′| − 1

)
· (n+ 1) ≤

(
1
2 |G∆G′| − 1

)
· (n+ 1).

101

5. UNIFORM SAMPLING OF DIGRAPH REALIZATIONS

Corollary 5.2. State digraph Φ is a strongly connected digraph if and only if a given

digraph sequence S is an arc-swap-sequence.

An arc-swap-sequence implies the connectedness of the state digraph Φ. Therefore,

for such sequences we are able to make random walks on state digraph Φ which can be

implemented easily. We simplify the random walk Algorithm 3 for arc-swap-sequences

by using state digraph Φ. Hence, our data structure DS only contains pairs of non-

adjacent arcs. We can ignore lines 12 to 21 in Algorithm 3. We denote this modified

algorithm as the arc-swap-algorithm.

Theorem 5.4. The arc-swap-algorithm is a random walk on the state digraph Φ which

uniformly samples a digraph realization G = (V,A) of an arc-swap-sequence S for

τ →∞.

Proof. The arc-swap-algorithm chooses all elements in DS with the same constant

probability. For a vertex VG ∈ VΦ there exist for all these pairs of arcs in A(G′) either

incoming and outgoing arcs on VG′ ∈ VΦ or a loop. Define d :=
(|A(G)|

2

)
− 2

∑n
i=1

(
ai
2

)
−∑n

i=1 aibi. We get a transition matrix M for Φ with pij = 1
d for i, j ∈ AΦ, i 6= j,

pii = 1 −∑{k|(k,l)∈AΦ}
1
d for i ∈ VΦ, otherwise we set pij = 0. Since, Φ is a regular,

strongly connected, symmetric, and non-bipartite digraph, the distribution of all di-

graph realizations in a tth step converges asymptotically to the uniform distribution,

see Lovász (Lov96).

5.5 Practical Insights and Applications

Many “practitioners” use the switching algorithm for the purpose of network analysis,

regardless whether the corresponding digraph sequence is an arc-swap-sequence or not.

In this section we would like to discuss under which circumstances this common practice

can be well justified and when it may lead to wrong conclusions.

What would happen if we sample using the state digraph Φ for a digraph sequence

S which is not an arc-swap-sequence? Clearly, we get the insight that Φ has several

connected components, but as we will see Φ consists of at most 2b
|V |
3
c isomorphic

components containing exactly the same digraph realizations up to the orientation of

directed 3-cycles each consisting of an induced cycle set V ′. Fortunately, we can identify

all induced cycle sets using our results in Theorem 5.3 by only considering an arbitrary

digraph realization G.

Proposition 5.4. Let S be a digraph sequence which is not an arc-swap-sequence and

has at least two different induced cycle sets V ′ and V ′′. Then it follows V ′ ∩ V ′′ = ∅.

102

5.5 Practical Insights and Applications

Proof. Without loss of generality we can label the vertices in V ′ with v′1, v
′
2, v
′
3 and in

V ′′ with v′′1 , v
′′
2 , v
′′
3 . Let G be a digraph realization where

{(v′1, v′2), (v′2, v
′
3), (v′3, v

′
1), (v′′1 , v

′′
2), (v′′2 , v

′′
3), (v′′3 , v

′′
1)} ⊂ A(G).

We distinguish between two cases.

a): Assume |V ′ ∩ V ′′| = 1 where v′1 = v′′1 . If arc (v′′3 , v
′
3) ∈ A(G) exists, we find

the alternating oriented 4-cycle (v′′3 , v
′
3, v
′
1, v
′′
2 , v
′′
3) which implies a new digraph

realization G∗ where G∗ 〈V ′〉 is not an alternating oriented cycle in contradiction

to our assumption that V ′ is an induced cycle set. Hence, it follows (v′′3 , v
′
3) /∈

A(G). In this case we find the alternating oriented cycle (v′′3 , v
′
1, v
′
2, v
′
3, v
′′
3).

b): Assume |V ′ ∩ V ′′| = |{v′1, v′2}| = 2 where v′1 = v′′1 and v′2 = v′′2 . If arc (v′′3 , v
′
3) /∈

A(G) we find the alternating oriented 4-cycle (v′1, v
′′
3 , v
′
3, v
′
2, v
′
1) which implies a

new digraph realization G∗ where G∗ 〈V ′〉 is not a directed cycle in contradiction

to our assumption that V ′ is an induced cycle set. Hence, it follows (v′′3 , v
′
3) ∈

A(G). In this case we find the alternating oriented cycle (v′′3 , v
′
3, v
′
1, v
′
2, v
′′
3).

As the induced 3-cycles which appear in every digraph realization are vertex-

disjoint, we can reduce the in- and outdegrees of all vertices in these cycles by one,

and obtain a new digraph sequence which must be an arc-swap sequence.

Theorem 5.5. Let S be a digraph sequence. Then the state digraph Φ consists of at

most 2b
|V |
3
c isomorphic components.

Proof. We assume that S is not an arc-swap-sequence, otherwise we apply Theorem 5.2

and get a strongly connected digraph Φ. With Proposition 5.4 it follows the existence

of at most b |V |3 c induced cycle sets for S. Consider all digraph realizations Gj pos-

sessing a fixed orientation of these induced 3-cycles which implies Gj 〈Vi〉 = Gj
′ 〈Vi〉

for all such digraph realizations. We pick out one of these orientation scenarios and

consider the symmetric difference Gj∆Gj
′

of two such digraph realizations. Since, all

induced 3-cycles are identical in Gj and Gj
′
, we delete all arcs of these induced cycle

sets Vi and get the reduced graphs Gjc and Gj
′
c . Both are digraph realizations of an

arc-swap-sequence S′. This is indeed the case, because Vi := {v1, v2, v3} has to be

an independent set in each digraph realization G′ of S′. Clearly, there cannot exist a

single arc (v1, v2) ∈ A(G′) between v1 and v2, because this results in a digraph real-

ization G of S, where Vi is not an induced cycle set. Assume both arcs (v1, v2) and

(v2, v1) are contained in A(G′). Then Gj∆G′ contains two different simple symmetric

103

5. UNIFORM SAMPLING OF DIGRAPH REALIZATIONS

cycles C1, C2 with one of these arcs in each of them. Note, that C1 cannot consist of

two opposite arcs between vertices of Vi, otherwise it is not simple. We swap the arcs

in C1 and get a digraph realization G′ of S′ with one single arc (v2, v1) between v1

and v2. We can apply this process until we get a digraph realization only containing

one single arc between vertices of induced cycle sets Vi of S. Contradiction, because

then we can add the arcs of one oriented cycle between these vertices in G′ and get

a digraph realization of S where Vi is not an induced cycle set. Hence, each digraph

realization G′ of S′ possesses the independent vertex sets Vi. We conclude that G′

cannot contain a new induced cycle set. Hence, S′ is an arc-swap-sequence. Apply-

ing Lemma 5.5 we obtain, that there exist digraph realizations G0 := Gjc, . . . , Gk :=

Gj
′
c |Gi∆Gi+1| = 4, k ≤ 1

2(|Gjc∆Gj
′
c | − 1)(n + 1). Hence, each induced subdigraph

Φ
〈
{VGj |VGj ∈ Vφ and Gj is a realization for one fixed orientation scenario}

〉
is strong-

ly connected. On the other hand, we get for each fixed orientation scenario exactly the

same digraph realizations Gj . Since, all induced 3-cycles are isomorphic, it follows that

all digraph realizations which are only different in the orientation of such induced cy-

cle sets are isomorphic. By Theorem 5.3, there does not exist an alternating oriented

cycle destroying an induced 3-cycle. Hence, the state digraph Φ consists of exactly 2k

strongly connected isomorphic components where k is the number of induced cycle sets

Vi.

We propose a new sampling algorithm swap-shuffling algorithm.

1. Sample in one component with 2-swaps and 3-cycle reorientations of directed

induced 3-cycles which are not induced cycle sets

2. At the end use a permutation sampling (“card shuffling”) to choose one of the k

isomorphic components uniformly.

The latter point can be applied by using one of the well-known permutation sam-

plings, for example random transpositions. This Markov chain is rapidly mixing (in

O(k2)), see Diaconis and Shahshahani (DM81). In point 1 we propose 3-cycle orien-

tations because we conjecture a rapidly mixing Markov chain which is by one order

smaller than without this operation. Our intuition is guided by the well-known lower

bound for the mixing time τε of a random walk which is half the diameter of the state di-

graph for any ε < 1
2 (see for example chapter 7 of the book by Levin, Peres and Wilmer

(LPW06)). The diameter without 3-cycle reorientations is O(mn), see Theorem 5.5,

and with 3-cycle reorientations we find a diameter of O(m), see Theorem 5.2.

104

5.5 Practical Insights and Applications

Applications in network analysis. Since the switching algorithm samples for non-

arc-swap sequences only in one single component of Φ, one has to be careful to get the

correct estimations for certain network statistics. For network statistics on unlabeled

digraphs, it suffices to sample in a single component which reduces the size of VΦ by a

factor of 2k, the number of components in Φ, where k is the number of induced cycle

sets of the digraph sequence. Examples where this approach is feasible are network

statistics like the average diameter or the motif content over all digraph realizations.

For labelled digraphs, however, the random walk on VΦ systematically over- and under-

samples the probability that an arc is present. Suppose that the random walk starts

with a digraph realization G = (V,A). If an arc (v1, v2) ∈ A(G) belongs to an induced

cycle set, it appears with probability 1 in all digraph realizations of the random walk.

The opposite arc (v2, v1) 6∈ A(G), will never occur. In an unbiased sampling over all

digraph realizations, each of these arcs, however, occurs with probability 1/2. All other

arcs occur with the same probability in a single component of VΦ as in the whole state

digraph. This observation can be used to compute correct probabilities for all arcs.

105

5. UNIFORM SAMPLING OF DIGRAPH REALIZATIONS

106

6

Conclusion and Future Work

“Was wirklich zählt, ist Intuition.” (Albert Einstein)

Dag realization problem. In Chapter 4, we discussed the problem to find a valid

topological sorting of a given dag sequence. The reason is that in this case it is easy

to determine a dag realization. We defined a new relation “opposed” resulting in a

special class of opposed sequences for which we are able to determine one topological

ordering. Furthermore, we can restrict the number of possible topological orderings for

all sequences. On the other hand, it is clear that there is still a gap in our understanding.

Only few days ago, the complexity status was settled as NP-complete by Nichterlein

(Nic11). Hence, several new questions arise, for example:

1. Is the dag realization problem fixed parameter tractable?

2. Can we extend the class of opposed sequences for which the problem is polynomial-

time solvable?

3. Is it possible to characterize dag sequences which are solvable with the lexmax-

strategy such that we are able to estimate the fraction of such sequences with a

given number of n tuples and density m?

A further problem is to uniformly sample a dag realization for a given dag sequence.

The development of a randomized algorithm for a subclass of dag sequences seems to

be a promising option as long as the problem is open. Furthermore, the theoretical

investigation and characterization of subclasses with a large success probability seems

to be an interesting approach.

107

6. CONCLUSION AND FUTURE WORK

Uniform sampling of digraph sequences. In Chapter 5, we proposed a Markov

chain which makes it possible to choose a uniformly sampled solution of each digraph

sequence in theory. In practice, it remains as an open problem whether this chain is

rapidly mixing or not. Up to now, it is not clear whether the well-known proof strategy

“canonical path method” (Sin92) cannot be applied in our scenario or is “only” too

complicated and too difficult to apply. The idea is to find in a given state digraph

GΦ = (VΦ, AΦ) between all pairs of vertices a shortest path such that each no arc is

used by more than |VΦ| paths. In this case, it has been proven that we get a rapidly

mixing Markov chain. Hence, we want to find out in systematic experiments if we

are able to construct canonical paths with such a property or not. Clearly, the state

digraphs are often too large to be handled explicitly. On the other hand, we observe

that the number of digraph realizations not only depends on the size of a given sequence

but also on the property to have a small distance to its threshold sequence. Threshold

sequences can be found in the literature as a special type of graph sequences. An

excellent overview is given in the book of Mahadev and Peled (MP95). However, this

concept can easily be extended to digraph sequences with and without loops. Hence,

we will give a general definition with respect to one of these characteristics.

Definition 6.1 (threshold sequence). Given is a sequence S which is a graph sequence

(digraph sequence, digraph sequence with loops). We denote S by threshold sequence

if and only if there exists exactly one unique graph realization G (digraph realization,

digraph realization with loops).

Clearly, an equivalent characterization is that it is not possible to find an alternating

cycle (alternating oriented cycles) with alternating arcs in G and not in G. The number

of different characterizations for such sequences in the context of undirected graphs is

very impressive leading to relations such as split graphs and to the so-called polytope

of degree sequences. It turns out that a graph sequence S is an extreme point of this

polytope if and only if S is a threshold sequence (Kor73). Here, we concentrate on a

different connection to Ferrers matrices (Chapter 3.2). The corresponding sequence of

a Ferrers matrix only possesses one unique digraph realization (with loops in the case

of canonical Ferrers matrices). In fact, it is proven for graph sequences that a sequence

is a threshold sequence if and only if it is the corresponding sequence for its Ferrers

matrix (HIS81). This result can easily be extended to the directed case using the

argument that no alternating oriented cycle exists. We conjecture that an arbitrary

digraph sequence with a “small distance” to its threshold distance only possesses a

small number of digraph realizations. In such a case one could determine the distance

to its threshold sequence and then estimate the number of digraph realizations. For

108

that, we need a measure for the distance which is known for graph sequences ((PA94)).

We extend this measure to the directed case.

Definition 6.2 (threshold distance). Given are a digraph sequence S =
(
a1

b1

)
, . . . ,

(
an
bn

)
,

its diagonal-free Ferrers matrix F and the corresponding sequence S′ =
(a′1
b1

)
, . . . ,

(a′n
bn

)
.

We define the threshold distance δ(S) :=
∑n

i=1(a′i− ai)+ as the sum of all the positive

differences (a′i − ai)+ := max(a′i − ai, 0) to S′.

We conjecture that one can find a relation between the size of the threshold distance

of S and the number of its digraph realizations.

Further related open problems. An interesting related problem is to find a di-

graph realization of a sequence where directed 2-cycles are forbidden. We denote

this problem by orientation realization problem and denote a corresponding digraph

G := (V,A) as orientation realization. We ask for the complexity status for this prob-

lem. Furthermore, we want to find a solution for the corresponding uniform sampling

problem.

A similar unsolved problem is to find a solution for mixed graphs. A mixed graph

G = (V,M) consists of vertices where each pair of vertices can be connected via one

directed arc, by two opposed directed arcs or by one undirected edge. Directed Arcs

and undirected edges are not allowed simultaneously between the same pairs of vertices.

Hence, one vertex v has an undirected degree dG(v), an indegree d−G(v) and an outdegree

d+
G(v). Now, we state the following problem.

Problem 6.1 (mixed graph realization problem). Given is a finite sequence S :=

a1

b1

c1


 , . . . ,



an

bn

cn


 with ai, bi, ci ∈ Z+

0 . Does there exist a mixed graph G = (V,M)

with the labeled vertex set V := {v1, . . . , vn} such that we have indegree d−G(vi) = ai,

outdegree d+
G(vi) = bi and degree dG(v) = ci for all vi ∈ V ?

Note that a relaxation of the types of mixed graphs – such that between two vertices

undirected edges as well as directed arcs are allowed at the same time – leads to a simple

solution, because one could apply one after another a graph realization algorithm and

then a digraph realization algorithm. Furthermore, the uniform sampling problem for

the mixed graph problem is a very interesting open problem.

109

6. CONCLUSION AND FUTURE WORK

The connection to algebraic graph theory. We consider the set M(G) of all arcs

sets A′ of subdigraphs G′ = (V,A′) (including the empty set) from a given digraph

G = (V,A). It is well known that the sum operation ∆ : M(G)×M(G) 7→M(G) with

A1∆A2 := (A1\A2)∪(A2\A1) together with a scalar multiplication · : GF (2)×M(G) 7→
M(G) with 0 ·A′ = ∅ and 1 ·A′ = A′ for all A′ ∈M(G) form an |A|-dimensional vector

space (M(G),∆, ·) over GF (2) see for example (Die05). The subset C(G) of M(G)

corresponding to all underlying undirected cycles of G together with the sum operation

∆ and · is an (|A| − |V | − 1)-dimensional vector subspace of (M(G),∆, ·) when G is

weakly connected. Clearly, the set of all directed cycles in G form a subset of C(G).

Hence, all arbitrary linear combinations of these directed cycles form a vector subspace,

“the directed cycle space” of (C(G),∆, ·). Hence, our dag realization problem is the

question of finding a digraph realization with a “directed cycle space” of dimension

zero. We believe a consideration of basic questions with respect to this vector subspace

could lead to more insights for our problem. Moreover, it is an elementary problem in

algebraic graph theory.

110

References

[AZ04] M. Aigner and G. M. Ziegler, Proofs from the book, Springer, 2004. vii

[Bat04] V. Batagelj, Pajek datasets: Food webs,

vlado.fmf.uni-lj.si/pub/networks/data/bio/foodweb/foodweb.htm,

2004. 53

[BBV07] I. Bezáková, N. Bhatnagar, and E. Vigoda, Sampling binary contingency

tables with a greedy start, Random Structures and Algorithms 30 (2007),

168–205. 5, 78

[BC78] E. A. Bender and E. R. Canfield, The asymptotic number of labeled graphs

with given degree sequences, Journal of Combinatorial Theory, Series A 24

(1978), no. 3, 296–307. 78, 79

[BKS10] M. Bayati, J. H. Kim, and A. Saberi, A sequential algorithm for generating

random graphs, Algorithmica 58 (2010), no. 4, 860–910. 79

[BM10] A. Berger and M. Müller-Hannemann, Uniform sampling of digraphs with

a fixed degree sequence, Proceedings of the 36th International Confer-

ence on Graph-Theoretic Concepts in Computer Science (Berlin, Heidel-

berg), WG’10, Lecture Notes in Computer Science, vol. 6410, pp. 220–231,

Springer, 2010, full version available as Preprint in Arxiv:0912.0685v3. 81

[BM11a] A. Berger and M. Müller-Hannemann, Dag characterizations of directed

degree sequences, Tech. Report 2011/6, Martin-Luther-Universität Halle-

Wittenberg, Department of Computer Science, 2011. 25

[BM11b] , Dag realisations of directed degree sequences, FCT 2011, LNCS,

vol. 6914, pp. 264–275, Springer, Heidelberg, 2011, full version available

as Technical Report 2011/5, Martin-Luther-Universität Halle-Wittenberg,

Department of Computer Science. 25

111

REFERENCES

[Bol80] B. Bollabas, A probabilistic proof of an asymptotic formula for the number

of labelled regular graphs, European J. Combin. 1 (1980), no. 4, 311 – 316.

78

[CDG07] C. Cooper, M. Dyer, and C. Greenhill, Sampling regular graphs and a peer-

to-peer network, Combinatorics, Probability and Computing 16 (2007),

557–593. 78

[Che66] W. Chen, On the realization of a (p,s)-digraph with prescribed degrees,

Journal of the Franklin Institute 281 (1966), no. 5, 406 – 422. 1, 3, 18, 23

[Die05] R. Diestel, Graph theory (graduate texts in mathematics), Springer, August

2005. 110

[DM81] P. Diaconis and S. Mehrdad, Generating a random permutation with ran-

dom transpositions, Probability Theory and Related Fields 57 (1981), 159–

179. 104

[Dur64] Richard Durstenfeld, Algorithm 235: Random permutation, Commun.

ACM 7 (1964), 420. 54

[EG60] P. Erdős and T. Gallai, Graphs with prescribed degree of vertices (Hungar-

ian), Mat. Lapok 11 (1960), 264–274. 1

[EMS10] P. L. Erdős, I. Miklós, and L. Soukup, Towards random uniform sampling

of bipartite graphs with given degree sequence, arXiv:1004.2612v3, 2010. 78

[EMT09] P. L. Erdős, I. Miklós, and Z. Toroczkai, A simple Havel-Hakimi

type algorithm to realize graphical degree sequences of directed graphs,

arXiv:0905.4913v1, 2009. 80

[Fer] http://www-history.mcs.st-andrews.ac.uk/Biographies/Ferrers.

html, visited september 2011. 19

[FF56] L.R. Jr. Ford and D.R. Fulkerson, On representatives of subsets, Canad. J.

Math. 8 (1956), 399–404. 19

[Ful60] D.R. Fulkerson, Zero-one matrices with zero trace, Pacific J. Math. 10

(1960), 831–836. 1, 3, 18, 22

[Gal57] D. Gale, A theorem on flows in networks, Pacific J.Math. 7 (1957), 1073–

1082. 1, 3, 18, 21

112

http://www-history.mcs.st-andrews.ac.uk/Biographies/Ferrers.html
http://www-history.mcs.st-andrews.ac.uk/Biographies/Ferrers.html

REFERENCES

[Hak62] , On the realizability of a set of integers as degrees of the vertices of

a simple graph, J. SIAM Appl. Math. 10 (1962), 496–506. 1, 15, 28

[Hal35] P. Hall, On representatives of subsets, J. London Math. Soc. 10 (1935),

26–30. 18

[Hav55] V. Havel, A remark on the existence of finite graphs, Casopis Pest. Math.

80 (1955), 477–480. 1, 15, 28

[HIS81] P. L. Hammer, T. Ibaraki, and B. Simeone, Threshold sequences, SIAM

Journal on Algebraic and Discrete Methods 2 (1981), no. 1, 39–49. 108

[JS96] M. Jerrum and A. Sinclair, The Markov chain Monte Carlo method: An

approach to approximate counting and integration, Approximation Algo-

rithms for NP-hard Problems (D.S. Hochbaum, ed.), PWS Publishing,

Boston, 1996, pp. 482–520. 75

[JSV04] M. Jerrum, A. Sinclair, and E. Vigoda, A polynomial-time approximation

algorithm for the permanent of a matrix with nonnegative entries, Journal

of the ACM 51 (2004), 671–697. 5, 55, 78

[Kim99] C. Kimberling, The origin of the Ferrers graphs, The Mathematical Gazette

83 (497) 2 (1999), 194–198. 19

[KLP+05] D. Koschützki, K. A. Lehmann, L. Peeters, S. Richter, D. Tenfelde-Podehl,

and O. Zlotowski, Centrality indices, Network Analysis: Methodological

Foundations (U. Brandes and T. Erlebach, eds.), Lecture Notes in Com-

puter Science, vol. 3418, pp. 16–61, Springer, 2005. 7, 81

[Kor73] M. Koren, Extreme degree sequences of simple graphs, Journal of Combi-

natorial Theory, Series B 15 (1973), no. 3, 213 – 224. 108

[KTV99] R. Kannan, P. Tetali, and S. Vempala, Simple Markov-chain algorithms

for generating bipartite graphs and tournaments, Random Structures and

Algorithms 14 (1999), 293–308. 77

[Kun73] S. Kundu, The k-factor conjecture is true, Discrete Mathematics 6 (1973),

367–376. 16

[KV03] J.H. Kim and V.H. Vu, Generating random regular graphs, STOC 2003,

2003, pp. 213–222. 79

113

REFERENCES

[KW73] D. J. Kleitman and D. L. Wang, Algorithms for constructing graphs and

digraphs with given valences and factors, Discrete Mathematics 6 (1973),

no. 1, 79 – 88. 1, 3, 15, 16, 17

[LaM09] M. D. LaMar, Algorithms for realizing degree sequences for directed graphs,

arXiv.org:0906.0343v1 (2009), no. 1. 17, 80, 93

[Lov96] L. Lovász, Random walks on graphs: A survey, Combinatorics, Paul Erdős

is Eighty (D. Miklós et al., ed.), vol. 2, János Bolyai Mathematical Society,

1996, pp. 353–397. 75, 76, 102

[LPW06] D. A. Levin, Y. Peres, and E. L. Wilmer, Markov chains and mixing times,

American Mathematical Society, 2006. 104

[MKI+04] R. Milo, N. Kashtan, S. Itzkovitz, M.E.J. Newman, and U. Alon, On

the uniform generation of random graphs with arbitrary degree sequences,

arXiv:cond-mat/0312028v2, 30 May 2004, 2004. 80

[MP95] N. V. R. Mahadev and U. N. Peled, Threshold graphs and related topics,

North-Holland, 1995. 21, 108

[MSOI+02] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon,

Network motifs: simple building blocks of complex networks, Science 298

(2002), 824–827. 7, 81

[MW90] B. McKay and N. C. Wormald, Uniform generation of random regular

graphs of moderate degree, J. Algorithms 11 (1990), 52–67. 79

[MW91] , Asymptotic enumeration by degree sequence of graphs with degrees

o(n1/2), Combinatorica 11 (1991), 369–382. 79

[Nic11] A. Nichterlein, Realizing Degree Sequences for Directed Acyclic Graphs is

Hard, arXiv:1110.1510, 2011. iv, 2, 25, 107

[PA94] U. N. Peled and S. Arikati, Degree sequences and majorization, no. 199,

179–212. 109

[RJB96] A.R. Rao, R. Jana, and S. Bandyopadhyay, A Markov chain Monte

Carlo method for generating random (0,1)–matrices with given marginals,

Sankhya: The Indian Journal of Statistics 58 (1996), 225–242. 6, 80

114

REFERENCES

[Rys57] H.J. Ryser, Combinatorial properties of matrices of zeros and ones, Canad

J.Math. 9 (1957), 371–377. 1, 3, 18, 21, 77

[Sch03] A. Schrijver, Combinatorial optimization: Polyhedra and efficiency,

Springer, 2003. 93

[SF82] J. J. Sylvester and F. Franklin, A constructive theory of partitions, arranged

in three acts, an interact and an exodion, American Journal of Mathematics

5 (1882), no. 1, pp. 251–330. 19

[Sin92] A. Sinclair, Improved bounds for mixing rates of Markov chains and multi-

commodity flow, Combinatorics, Probability & Computing 1 (1992), 351–

370. 75, 108

[Sin93] , Algorithms for random generation and counting: A Markov chain

approach, Birkhäuser, 1993. 75

[SW99] A. Steger and N. Wormald, Generating random regular graphs quickly,

Combinatorics, Probability, and Computing 8 (1999), 377–396. 79

[Tut52] W.T. Tutte, The factors of graphs, Canadian J. of Mathematics 4 (1952),

314–328. 5

[Tut54] , A short proof of the factors theorem for finite graphs, Canadian J.

Of Mathematic 6 (1954), 347–352. 25, 78

[Tut81] W. T. Tutte, Graph factors, Combinatorica 1 (1981), no. 1, 79–97. 3

[Val79] L. G. Valiant, The complexity of computing the permanent, Theoretical

Computer Science 8 (1979), no. 2, 189 – 201. 5, 55

[Ven13] J. Venn, Norman Macleod Ferrers, The Dictionary of National Biography

Second Supplement 2 (1913). 19

[VrAM04] J. Venn and rev. A. McConnell, Biography of Norman Macleod Ferrers,

Dictionary of National Biography, Oxford University Press, Oxford, 2004.

19

115

Declaration

Eidesstattliche Erklärung

Hiermit erkläre ich an Eides Statt, dass ich diese Arbeit selbständig und

ohne fremde Hilfe verfasst, andere als die von mir angegebenen Quellen

und Hilfsmittel nicht benutzt und die den benutzten Werken wörtlich oder

inhaltlich entnommenen Stellen als solche kenntlich gemacht habe. Um einen

Doktorgrad habe ich mich bisher nicht beworben.

Halle/Saale, den 10.10.2011

Annabell Berger

	Ein kleiner Einblick in diese Doktorarbeit für interessierte Laien
	List of Figures
	1 Degree Sequences – an introduction to a classic topic in theory as well as in practice
	1.1 Dag Sequences in Brief
	1.2 Uniformly Sampling Digraph Realizations in Brief

	2 Fundamental Notions and Notation
	3 Digraph Sequences – Realization and Characterization
	3.1 Digraph Realizations
	3.2 Digraph Characterizations

	4 Dag Sequences
	4.1 Dag Realizations
	4.1.1 Opposed Sequences
	4.1.2 General Dag Realization

	4.2 How to Attack the NP-complete Dag Realization Problem in Practice
	4.3 Randomized Algorithms
	4.4 Characterization of Strongly Opposed Sequences

	5 Uniform Sampling of Digraph Realizations
	5.1 Popular Variants for Sampling Graph and Digraph Realizations
	5.2 Random Walk on the State Digraph of Digraph Realizations
	5.2.1 Symmetric differences of two different digraph realizations
	5.2.2 Random Walks

	5.3 Arc-Swap Sequences
	5.4 Characterization of Arc-Swap Sequences
	5.5 Practical Insights and Applications

	6 Conclusion and Future Work
	References

