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währende Unterstützung während meiner Promotionszeit bedanken. Seine Ratschläge
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umfassenden Wissen über Strömungsmechanik geholfen hat und die hier präsentierten
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Kollegen der Arbeitsgruppe numerische Mathematik an der Martin-Luther-Universität
und denen der Abteilung Modellierung am Institut für Troposphärenforschung für das
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Zusammenfassung

Wir entwickeln neue Verfahren für die Lösung der kompressiblen Euler-Gleichungen,
welche die zu Grunde liegenden Gleichungen bei der numerischen Wettervorhersage sind.
Zu diesem Zweck untersuchen wir die zwei Hauptschwierigkeiten, die bei der Integration
der kompressiblen Gleichungen auftreten.

Der erste Aspekt ist, dass Schallwellen auf Grund der Kompressibilität auftreten.
Man ist an einer genauen Wiedergabe von physikalischen Prozessen wie Advektion und
Schwerewellen interessiert, welche viel langsamer als Schallwellen sind. Wenn man ein ex-
plizites Verfahren benutzt, beschränkt also die Akustik auf Grund der CFL-Bedingung
die maximale Zeitschrittweite. Um diese Einschränkung durch die meteorologisch un-
wichtigen Moden zu vermeiden, werden split-explizite Verfahren benutzt, d.h., die rechte
Seite der Euler-Gleichungen wird in langsame und schnelle Prozesse aufgeteilt, die mit
unterschiedlichen Verfahren integriert werden. Operator-Splitting ist in vielen opera-
tionellen Wetter-Modellen implementiert, aber die benutzten split-expliziten Methoden
benötigen eine künstliche Dämpfung, um stabil zu sein. Wir haben ein split-explizites
Verfahren der Ordnung 2 entwickelt, das auch ohne diese künstliche Dämpfung stabil
ist, d.h., im Gegensatz zu den verbreiteten Modellen können wir die originalen Euler-
Gleichungen mit einem split-expliziten Verfahren lösen, das große Zeitschritte benutzt.

Der zweite Aspekt ist die Implementierung der Orografie. Während alle operationellen
Wetter-Modelle bodenfolgende Koordinaten benutzen, nutzen wir ein kartesisches Gitter
bei dem die Orografie aus dem Gitter herausgeschnitten ist. Einerseits hat dieser Ansatz
den Vorteil, dass keine künstlichen Kräfte wie bei bodenfolgenden Koordinaten auftreten,
wo der Druckgradient in der Nähe von Bergen groß wird. Andererseits können beliebig
kleine Zellen auftauchen, wenn man angeschnittene Zellen benutzt. Das führt auf Grund
des CFL-Kriteriums zu strengen Zeitschrittbegrenzungen, falls man explizite Verfahren
benutzt. Aber angeschnittene Zellen gibt es nur in einem kleinen Bereich des Rechenge-
biets. Deshalb haben wir partiell-implizite Verfahren entwickelt. In angeschnitten Zellen
enthält die Jacobimatrix alle Prozesse wie Advektion, Diffusion und Akustik, während
in den vollen Zellen der freien Atmosphäre nur die Akustik in der Jacobimatrix benutzt
wird. Somit sind diese Verfahren linear-implizit in den angeschnittenen und semi-explizit
in den vollen Zellen. Sie können stabil mit Zeitschrittweiten rechnen, die durch das CFL-
Kriterium in der freien Atmosphäre beschränkt sind. Des Weiteren benutzen wir in den
angeschnittenen Zellen eine vereinfachte Jacobimatrix, um Speicherplatz und Rechen-
zeit zu sparen. Diese Verfahren sind in der freien Atmosphäre genauso stabil und genau
wie das split-explizite Verfahren aber sie können außerdem fast ohne Mehraufwand mit
angeschnittenen Zellen rechnen.

Die meisten der Ergebnisse, die in dieser Dissertation vorgestellt werden, sind in [13],
[14] und [15] publiziert.



Abstract

We develop new methods for the solution of the compressible Euler equations which are
the governing equations in numerical weather prediction. For this purpose we investigate
the two main difficulties when integrating the compressible equations.

The first aspect is that sound waves occur as a consequence of the compressibility
of the model. While one is interested in an accurate representation of physical processes
like advection and gravity waves, these processes are much slower than sound waves. If
an explicit method is used, the acoustics restricts the maximum time step size due to the
CFL condition. In order to avoid this restriction from those meteorologically irrelevant
modes split-explicit methods are used, i.e. the right-hand side of the Euler equations is
split up into the slow and fast processes which are integrated with different methods. This
operator splitting is implemented in several operational weather models but the existing
split-explicit methods need artificial damping in order to be stable. We developed a
second-order split-explicit method that is stable without any artificial damping, i.e. in
contrast to the widely used models we can stably integrate the original compressible
Euler equations with a split-explicit method which uses large time steps.

The second aspect is the implementation of orography. While all operational weather
models use terrain-following coordinates, we use a Cartesian grid where the orography
is cut out. On the one hand this ansatz has the advantage that no artificial forces occur
as is the case with terrain-following coordinates because near mountains the pressure
derivative becomes large. On the other hand arbitrary small cells can occur when using
cut cells. This results in very harsh time step restrictions for explicit methods due to the
CFL criterion. But cut cells only appear in a small region of the domain. Therefore we
developed partially implicit methods. In cut cells the Jacobian incorporates advection,
diffusion and acoustics while in the full cells of the free atmosphere only the acoustic
part is used, i.e. the methods are linearly implicit in the cut cell regions and semi-explicit
in the free regions. They can stably compute with time step sizes restricted only by the
CFL condition in the free atmosphere. In addition we use a simplified Jacobian in the
cut cell regions in order to save memory and gain computational efficiency. In the free
atmosphere these methods are as stable and accurate as the split-explicit method but
furthermore they can compute with cut cells with nearly no additional effort.

Most of the results presented in this thesis are published in [13], [14] and [15].
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1 Introduction

Weather services use a massively parallel environment to forecast the weather. Because
they are easy to parallelize explicit methods are very popular in numerical weather pre-
diction models. In compressible models the highest-frequency modes like sound waves
are often not the physical modes of interest. In order to avoid time step restrictions for
explicit methods due to the Courant-Friedrichs-Lewy (CFL) criterion for those meteo-
rologically irrelevant modes, a widely used ansatz is operator splitting. The differential
equation is split up into two parts where the slow part is integrated with an accurate
explicit method and a time step size restricted by the CFL number of the low-frequency
modes while for the integration of the high-frequency modes a simpler method is used
that fulfils the CFL criterion for the high-frequency modes. This can be an implicit
method or an explicit method which uses smaller time steps.

A widespread method was introduced in [18] which uses a leapfrog time discretization
for the slow part and the computationally very efficient forward-backward scheme (FB)
from [5] for the high-frequency modes. In [29] divergence damping was introduced which
stabilizes split-explicit schemes by damping acoustic modes. Then the time-splitting idea
was improved in [44] by using a second-order two-stage Runge-Kutta method (RK2) for
the low-frequency modes instead of the leapfrog method together with the same forward-
backward scheme for the high-frequency modes and divergence damping for stabilization.
It was shown that RK2 is stable and as accurate as the leapfrog method but compu-
tationally more efficient. In [45] the two-stage Runge-Kutta method was replaced by
a three-stage Runge-Kutta method (RK3) in order to use this method together with
higher-order spatial discretizations (RK2 does not run stably with even-order spatial
discretizations) and to improve stability and accuracy. In [24] it was demonstrated that
RK3 is second-order in time for nonlinear problems. These two split-explicit Runge-
Kutta methods RK2 and RK3 by Wicker and Skamarock are widely used, e.g. in the
Weather Research and Forecasting Model WRF of the National Center for Atmospheric
Research NCAR ([28], [31]) and in the operational model COSMO provided by the Ger-
man Weather Service DWD.

The disadvantage of these Runge-Kutta methods is the fact that the high-frequency
modes still constrain the maximum time step size if no additional damping term such as
divergence damping is used. In a linear test equation, even with the use of the analytical
solution for the high-frequency modes (i.e. with an infinite number of small time steps),
there is the constraint cs∆t/∆x < π where cs is the speed of sound, ∆t the time step size
and ∆x the spatial step size. In contrast the maximum CFL number of advection for RK3
is
√
3, which means that in case of maximum wind speeds below 190 m s−1 the acoustic

modes constrain the maximum time step size independent of the number of small time
steps per large time step. One approach to avoid this problem if one does not want to use
an additional damping term is to use another fast integrator. We found out that using a
method introduced in [27] removes the stability constraints caused by the acoustic modes
if the number of small time steps per large time step is sufficiently large. On the other
hand this fast integrator is at least twice as expensive as the forward-backward integrator
and the scheme is stable only for large time steps, i.e. there is a region of medium time
steps for which the scheme becomes unstable. Another approach was done in [16] where



1 INTRODUCTION 14

RK3 was combined with the trapezoidal rule (TR) for the fast modes instead of the
forward-backward scheme and the same time step sizes for both parts were used which is
possible because the trapezoidal scheme is unconditionally stable. Tests with the shallow
water equations in [16] showed that this approach is stable and only a little less accurate
in comparison to RK3. But in [16] a rather simple test equation was used to determine
stability. In contrast we use a more sophisticated test equation which shows that RK3 is
not stable when TR is used as an integrator for the acoustics. In spite of the fact that
it seems to be stable for the shallow water equations our tests with the compressible
Euler equations verify our results from linear stability: RK3 with TR is not suitable
for the application in atmospheric models. A possible ansatz to use RK3 anyhow with
the guarantee of unconditional stability with respect to the acoustics, is to employ some
off-centering to TR, i.e. to use a θ method. But then the order goes down to 1. In [43] the
idea of split-explicit Runge-Kutta methods was generalized. The scheme also incorporates
linear combinations of numerical solutions and the lengths of the integration intervals
for the fast part is not determined by the nodes of the underlying Runge-Kutta method.
These generalizations result in a method which has a CFL condition with respect to
acoustics which is twice as large as the condition for RK3, if no artificial damping is
used. That ansatz is quite similar to our ansatz but in contrast to the method published
in [43], which is third-order and still has a limitation from the acoustics, we constructed
a second-order method that has no limitations from acoustics with that ansatz (not
presented in this thesis).

The split-explicit method which we present in this thesis is stable without the use of
any artificial damping. It can use the computationally very efficient forward-backward
scheme with small time steps as integrator for the high-frequency modes like Klemp,
Wilhelmson, Wicker and Skamarock did before. The scheme is also stable when the
trapezoidal rule is used with the same time step size as for the advection. In contrast
to [44], [45] and [43] there is no limitation for the time step size of the split-explicit
method which arises from the acoustics if TR or FB with sufficiently small time steps
is used as fast integrator, only the advection determines the maximum time step size.
The underlying method comes from the class of peer methods which is a subclass of
general linear methods. General linear methods were introduced in [3], good overviews
can be found in [9] and [12]. Peer methods are a very comprehensive class of general
linear methods, they include the common Runge-Kutta methods and linear multi-step
methods. They can be interpreted as cyclic multi-stage multi-step methods, which means
that everyone of the stages of a peer method is a linear multi-step method. The new
feature of peer methods is that they possess several stages like Runge-Kutta methods,
but all of theses stages have the same properties, no extraordinary solution variable is
used. These methods combine positive features of both, Runge-Kutta and linear multi-
step methods. They have the same order in every stage so they have no order reduction
even for very stiff systems and are implemented as one option for integration methods in
the KARDOS code ([8]). Because of the generality of this class of methods they proved to
be applicable to many different kinds of problems. Linearly-implicit peer methods were
introduced in [41], their order does not depend on what is used as Jacobian. Explicit peer
methods were successfully used in [42] and [26] amongst others. Since this is common for
weather codes we consider peer methods with constant time step sizes. The split-explicit
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Figure 1: Orography modelled with terrain-following coordinates (top left) and cut cells (top
middle). Pressure (top right) and cloud (bottom left) in a model with terrain-following coor-
dinates. Mont Blanc modelled with resolutions of 7 km (bottom middle) and 1 km (bottom
right), Mont Blanc images from [4].

peer method, which we use for the integration of the compressible Euler equations, was
introduced in [13].

For the representation of orography terrain-following coordinates are established in
operational weather models. Figure 1 shows a mountain with terrain-following coordi-
nates and with a Cartesian grid using cut cells. As can be seen terrain-following coordi-
nates have the advantage that the cells nearly retain their size even if they are close to
the mountain, i.e. an explicit method can be used. On the other hand numerical errors
can be induced around steep slopes where the Jacobian of the coordinate transforma-
tion is almost singular. Furthermore terrain-following coordinates can cause anomalous
vertical dispersion. This is illustrated by Figure 1: The horizontal wind should trans-
port the cloud to the right. But the different levels of the terrain-following grid over
the mountain force the cloud to distribute over two cells, i.e. the density of the cloud
decreases only because of the grid structure. Because the volume which is occupied by
the cloud increases the number of aerosols in the cloud increases. Aerosols act as con-
densation nuclei in clouds. The increased number of aerosols in the cloud results in the
formation of more but smaller droplets. This artificial behaviour induced by the grid
can prevent precipitation or forces the cloud to vanish due to the smaller density of the
water vapour. Another disadvantage of terrain-following coordinates is that the stratified
atmosphere generates artificial forces due to the grid: The horizontal pressure derivative
in a vertically stratified atmosphere is zero, i.e. it is small in practical applications. This
behaviour is reproduced by a Cartesian grid but the lower layers of a terrain-following
grid have a slope so that the numerical pressure derivative becomes artificially large as
illustrated by Figure 1. As proposed in [34] the condition that such numerical forces
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remain reasonably small for the operational model of the DWD is δh < δz with δz being
the layer thickness and δh the change of orography between one grid point and the next,
i.e. the stratification should be weak and the terrain smooth. This condition is violated in
most operational models, even for larger-scale operational hydrostatic applications. On
fine meshes the model orography tends to be steeper than on coarser meshes. Therefore
artificial circulations driven by numerical errors can be substantial ([36]). In the course
of time the spatial resolutions of numerical weather prediction models increase so that
terrain will be resolved better in the future which will result in steeper gradients. This
is illustrated by Figure 1, Mont Blanc is modelled with the resolution of the COSMO-
EU model which is used by the DWD for the operative weather prediction over Europe
and with a three times higher resolution than the DWD uses for the weather prediction
over Germany. So this high resolution might be used in some years’ time for numerical
weather prediction. As can be seen Mont Blanc is much smoother with the COSMO-
EU resolution but despite that coarse resolution Mont Blanc has steep gradients. With
the high resolution the gradients become even steeper and the described problems with
terrain-following coordinates become more stringent. They can be reduced by introduc-
ing a spatially homogeneous reference profile and computing only with the deviation
from this profile as this is also done in this thesis. But for operational applications on
large areas it will not be possible to choose a horizontally homogeneous atmospheric
reference state in the way indicated. Therefore operational applications will always suf-
fer from numerically generated artificial forces near mountains ([34]). For these reasons
the DWD developed a cut cell model called LM-Z besides its operational model. The
Regional Atmospheric Modeling System RAMS ([22]) originally used terrain-following
coordinates and a cut cells option was added later. The Ocean-Land-Atmosphere Model
OLAM ([38]) which was developed from RAMS uses cut cells only. The All Scale Atmo-
spheric Model ASAM ([11]) is another model which uses a Cartesian grid with cut cells
instead of terrain-following coordinates.

The main problem when using cut cells is that arbitrary small cells can occur and
therefore the maximum time step size is restricted by the CFL condition for these small
cells. A similar problem occurs when computing on the sphere with a latitude-longitude
grid because of the pole singularities. One ansatz to avoid this problem is filtering as
done in [34], [7], [17] and in OLAM. In contrast to that ansatz we integrate the com-
pressible equations without any filtering. For this purpose we use partially implicit peer
methods. While split-explicit methods are computationally very efficient when advanc-
ing the numerical solution from one time step to another, linearly implicit methods can
use large time step sizes even if cut cells are present. The presented class of partially
implicit peer methods in this thesis combines the advantages of both, the computational
efficiency and accuracy of split-explicit peer methods and the stability of linearly implicit
peer methods. The idea of partially implicit methods is that the Jacobian is only used
where it is necessary for stability, i.e. they are a mixture of semi-explicit and linearly
implicit methods. Because we compute with time steps that are restricted by the CFL
condition in the free atmosphere we only need the full Jacobian in cut cells, i.e. in a very
small part of the domain. In the full cells advection and diffusion are treated explicitly,
only the acoustic part is integrated implicitly. Therefore partially implicit methods are
nearly as efficient as split-explicit methods which use a one-step implicit integrator for
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the acoustics. In cut cells we use a Jacobian which uses a lower-order spatial discretiza-
tion of advection in order to save memory and gain computational efficiency. Because
we use peer methods which retain the order independently of what is used as Jacobian,
these two simplifications of the Jacobian, ignoring the advection and diffusion parts of
the Jacobian in the free atmosphere and using a lower-order approximation of advec-
tion in cut cells, have no influence on the order of the peer methods but they require a
careful consideration of the linear stability theory in order to derive methods which are
stable despite these simplifications. One of the derived partially implicit peer methods
was presented in [15].

To sum up, this thesis describes how the two main problems when integrating the
compressible Euler equations are solved: The first problem, the appearance of fast sound
waves which should not restrict the maximum time step size, is solved with a split-
explicit peer method which can stably integrate the compressible equations without any
artificial damping. The second problem of arbitrary small cells due to the representation
of orography with cut cells is solved by using partially implicit peer methods which are as
accurate and efficient as the split-explicit peer method because they use the full Jacobian
in cut cells only, while in the remaining region the Jacobian only incorporates acoustics.
This thesis is organized as follows:

In Section 2 we formulate the classes of split-explicit and linearly implicit peer meth-
ods.

In Section 3 we derive the order conditions for the considered peer methods with
constant time step sizes.

In Section 4 we describe the linear stability theory and show the amplitude and phase
properties of the presented peer methods and some other methods for comparison.

In Section 5 we give detailed information on how the compressible Euler equations
are implemented.

Three order tests and five numerical tests with the compressible Euler equations and
the shallow water equations are presented in Section 6.

Finally we give some conclusions in Section 7.
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2 Formulation of the methods

2.1 Split-explicit Runge-Kutta methods

In order to make the idea of split-explicit methods easier to understand and because
the lack of stability of split-explicit Runge-Kutta methods is our main motivation for
the consideration of split-explicit peer methods, we consider split-explicit Runge-Kutta
methods as a preliminary step to the introduction of split-explicit peer methods. With
these we want to solve autonomous split differential equations

ẏ = N(y) + Ly, t ∈ [t0, te], y(t0) = y0 ∈ Rn (1)

where N represents the nonlinear slow part and L the linear fast part. We introduce split-
explicit Runge-Kutta methods in a more technical way than Wicker and Skamarock did
in [44] and [45] because we do not restrict ourselves to one integrator for the fast part
of (1) but our formulation of the split-explicit scheme contains the fast part as an initial
value problem. With this view we can focus on the properties of the main solver for
the slow part, i.e. on the underlying Runge-Kutta and peer methods. Furthermore this
approach will simplify the derivation of order conditions for split-explicit peer methods.

To solve split differential equation (1) we propose a scheme where an explicit Runge-
Kutta method is used for the slow part N of the right-hand side while the solution of
the linear ordinary differential equation with a constant slow part, i.e. ẏ = C + Ly,
is defined implicitly by a differential equation so that in the absence of L the explicit
Runge-Kutta method is recovered. For simplicity of notation we will denote the weights
bi as the s+1-st row of A from the Butcher tableau, e.g. for RK3 the Butcher tableau is

0
1/3 1/3
1/2 0 1/2

0 0 1

and therefore we have aij = 0 except a21 = 1/3, a32 = 1/2 and a43 = 1. The nodes
c1 = 0, c2 = 1/3, c3 = 1/2 and c4 = 1 are the points on the time axis where the
numerical solution approximates the analytical solution, ∆t is the time step size. The
ith stage (for 2 ≤ i ≤ s + 1 with y

(1)
m := y

(s+1)
m−1 ) of a split-explicit Runge-Kutta method

is then:

Solve Żi =
1

ci

i−1∑
j=1

aijN(y(j)m ) + LZi (2)

with initial value Zi(0) = y
(s+1)
m−1 (3)

and define y(i)m = Zi(ci∆t). (4)

The considered split-explicit Runge-Kutta methods in [44] and [45] fit into this for-
mulation if the forward-backward scheme FB is used for the integration of (2) as will be
explained in detail in Section 5.4. Another approach is used in [19] where the integration

of (2) does not start at y
(s+1)
m−1 but at y

(i−1)
m for the ith stage. This approach has the
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advantage that the sum of the integration intervals is not
∑

ci but only 1 in case of
non-negative ascending nodes. Therefore it is computationally more efficient but on the
other hand it has worse stability properties. However, we will focus on the generalization
of the Wicker and Skamarock approach in the remainder. As we will see in Section 4.3
the use of Runge-Kutta methods with this ansatz results in split-explicit methods which
need artificial damping like diffusion to compute stably. This is the main motivation
for considering peer methods as underlying methods for the slow part of split differen-
tial equations in order to obtain a stable method which does not need any additional
damping.

2.2 Split-explicit peer methods

Explicit two-step peer methods for first-order differential equations ẏ = f(y) were con-
sidered in [1], [39] and [42], in parallel form also in [40] and [26]. In this thesis we also
imply values of the numerical solution from the current time step. For constant step sizes
these methods are given by

Ym = BYm−1 + SYm +∆tAFm−1 +∆tRFm (5)

with the notations

Ym := (Ymi)
s
i=1 ∈ Rs×n with Ymi ≈ y(tmi) = y(tm + ci∆t),

Fm :=
(
f(Ymi)

)s

i=1
∈ Rs×n

and B, S,A,R ∈ Rs×s where S and R are strictly lower triangular matrices to obtain
explicit methods.

Remark 1 For the integration of ẏ = f(y) the use of the numerical solution from the
current time level, i.e. S ̸= 0, does not lead to a more general class of peer methods
than the case S = 0 because every peer method with S ̸= 0 can be generated from a peer
method with S = 0. This can be seen by subtracting SYm from (5) and then multiplying
both sides with (I − S)−1. Therefore in former applications of peer methods S = 0 was
used. However, because of the following splitting approach the use of S ̸= 0 leads to a
more general class of split-explicit peer methods and therefore we use these additional
degrees of freedom.

To solve split differential equation (1) we propose a scheme where the explicit peer
method is used for the slow part N while the solution of ẏ = C+Ly is defined implicitly
by a differential equation so that in the absence of L the explicit peer method is recovered.
A further generalization is done by allowing the lengths of the integration intervals αi to
be independent of the nodes ci in contrast to split-explicit Runge-Kutta methods where
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αi = ci. The ith stage (for 1 ≤ i ≤ s) of such a method reads:

Solve Żi =
1

αi

( s∑
j=1

aijN(Ym−1,j) +
i−1∑
j=1

rijN(Ymj)
)
+ LZi (6)

with initial value Zi(0) =
s∑

j=1

bijYm−1,j +
i−1∑
j=1

sijYmj (7)

and define Ymi = Zi(αi∆t). (8)

In case of L = 0 such a method obviously is an explicit peer method with B = (bij),
S = (sij), A = (aij) and R = (rij).

Remark 2 Every split-explicit Runge-Kutta method can be written as a split-explicit
peer method. For example RK3 reads

c = α =

1/3
1/2
1

 , B =

0 0 1
0 0 1
0 0 1

 , S = 0, A =

0 0 1/3
0 0 0
0 0 0

 , R =

 0 0 0
1/2 0 0
0 1 0


as a peer method. The split-explicit scheme with the leapfrog method for the slow part,
used in [29] and [30], also can be written as a peer method with

c =

(
1/2
1

)
, α =

(
1
1

)
, B =

(
1 0
0 1

)
, S = 0, A =

(
0 1
0 0

)
, R =

(
0 0
1 0

)
.

The same holds for the generalized split-explicit Runge-Kutta methods from [43], they are
a subclass of split-explicit peer methods, too.

2.3 Linearly implicit peer methods

Linearly implicit peer methods were discussed in [41], [23] and [8] amongst others. With
them we want to solve autonomous first-order differential equations

ẏ = f(y), t ∈ [t0, te], y(t0) = y0 ∈ Rn. (9)

For the derivation of linearly implicit peer methods we start with explicit peer methods
and add the function evaluation of the solution from the current stage:

Ymi =
s∑

j=1

b̃ijYm−1,j +
i−1∑
j=1

s̃ijYmj +∆t

s∑
j=1

ãijf(Ym−1,j) + ∆t

i−1∑
j=1

r̃ijf(Ymj) + ∆tγf(Ymi).

Because we consider singly implicit methods, i.e. use the same γ in every stage, we add
no index to it. We solve the occurring nonlinear system of equations with one Newton
step, i.e. we apply Newton’s method to g(y) = 0 with

g(y) = y −∆tγf(y)−
s∑

j=1

b̃ijYm−1,j −
i−1∑
j=1

s̃ijYmj −∆t

s∑
j=1

ãijf(Ym−1,j)−∆t

i−1∑
j=1

r̃ijf(Ymj),

g′(y) = I −∆tγJ



2 FORMULATION OF THE METHODS 21

where J = f ′(y) and I is the identity matrix. We have to solve the linear system

g′(Y start
mi )(Ymi − Y start

mi ) = −g(Y start
mi ),

for the starting value we use

Y start
mi := −1

γ

( s∑
j=1

gijYm−1,j +
i−1∑
j=1

hijYmj

)
.

Instead of using the function evaluation and Jacobian of this starting value we use

f(Y start
mi ) =

1

∆tγ

( s∑
j=1

b̂ijYm−1,j +

i−1∑
j=1

ŝijYmj +∆t

s∑
j=1

âijf(Ym−1,j) + ∆t

i−1∑
j=1

r̂ijf(Ymj)
)
,

J = f ′(y(tm)).

These choices lead to the equation

(I −∆tγJ)
(
Ymi +

1

γ

( s∑
j=1

gijYm−1,j +

i−1∑
j=1

hijYmj

))
=

1

γ

( s∑
j=1

gijYm−1,j +

i−1∑
j=1

hijYmj

)

+
s∑

j=1

(̃bij + b̂ij)Ym−1,j +

i−1∑
j=1

(s̃ij + ŝij)Ymj +∆t
s∑

j=1

(ãij + âij)f(Ym−1,j) + ∆t

i−1∑
j=1

(r̃ij + r̂ij)f(Ymj).

With bij := b̃ij + b̂ij, sij := s̃ij + ŝij, aij := ãij + âij and rij := r̃ij + r̂ij we finally obtain
the considered class of linearly implicit peer methods

(I −∆tγJ)Ymi =
s∑

j=1

bijYm−1,j +
i−1∑
j=1

sijYmj +∆t

s∑
j=1

aijf(Ym−1,j) + ∆t

i−1∑
j=1

rijf(Ymj)

+ ∆t
s∑

j=1

gijJYm−1,j +∆t
i−1∑
j=1

hijJYmj.

In compact matrix notation the considered methods read

Ym(I−∆tγJ)T = BYm−1+SYm+∆tAFm−1+∆tRFm+∆tGYm−1J
T +∆tHYmJ

T (10)

with B = (bij), S = (sij), A = (aij), R = (rij), G = (gij) and H = (hij).

Remark 3 While we use formulation (10) for the derivation of order conditions and
stability theory the methods are implemented in the equivalent formulation

(I −∆tγJ)Ŷmi =
s∑

j=1

(
bij +

gij

γ

)
Ym−1,j +

i−1∑
j=1

(
sij +

hij

γ

)
Ymj +∆t

s∑
j=1

aijf(Ym−1,j) + ∆t

i−1∑
j=1

rijf(Ymj)

Ymi = Ŷmi −
s∑

j=1

gij

γ
Ym−1,j −

i−1∑
j=1

hij

γ
Ymj

in order to avoid the matrix-vector multiplications with the Jacobian in (10).
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Remark 4 When applying a split-explicit peer method to the split differential equation
(1) and using the trapezoidal rule for the integration of the occurring differential equations
this results in(
I − αi∆t

2
L
)
Ymi =

s∑
j=1

bijYm−1,j +
i−1∑
j=1

sijYmj +∆t
s∑

j=1

aijf(Ym−1,j) + ∆t
i−1∑
j=1

rijf(Ymj)

+ ∆t
s∑

j=1

(αi

2
bij − aij

)
LYm−1,j +∆t

i−1∑
j=1

(αi

2
sij − rij

)
LYmj

where f(y) = N(y) + Ly, i.e. a split-explicit peer method with the trapezoidal rule as
integrator for the fast differential equation is equivalent to a non-singly linearly implicit
peer method with J = L, γi =

αi

2
, gij =

αi

2
bij − aij and hij =

αi

2
sij − rij. As we will see in

Section 4.3 the presented split-explicit peer method is suitable for the integration of the
compressible Euler equations in the free atmosphere. But when cut cells occur it is not
sufficiently stable even if we use the above formulation with the Jacobian incorporating not
only acoustics but also advection. This and the fact that this formulation is not singly
implicit are the main reasons why we use the split-explicit peer method as underlying
method and only change the implicit coefficients γ, gij and hij in order to derive a
linearly implicit peer method which has the same good properties of the split-explicit peer
method in the free atmosphere but furthermore it is stable in the cut cell regions, too.
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3 Order theory

3.1 Order of consistency for split-explicit peer methods

We now derive order conditions for split-explicit peer methods. Consistency of split-
explicit peer methods is discussed by considering the local residuals obtained by substi-
tuting the analytical solution into the method, i.e. we consider

Solve
˙̃
Zi =

1

αi

( s∑
j=1

aijN(y(tm−1,j)) +
i−1∑
j=1

rijN(y(tmj))
)
+ LZ̃i (11)

with initial value Z̃i(0) =
s∑

j=1

bijy(tm−1,j) +
i−1∑
j=1

sijy(tmj) (12)

where y is the analytical solution. We are interested only in the error of the slow part of
the split differential equation (1) and therefore we assume that we can solve (11) exactly.
Then the residuals are

∆mi := y(tmi)− Z̃i(αi∆t), i = 1, . . . , s.

We define the order of consistency of a split-explicit peer method by the order of the
local residuals:

Definition 1 A split-explicit peer method (8) has order of consistency p if

max
i

∆mi = O((∆t)p+1).

Because a peer method has the same order in every stage the derivation of order con-
ditions is much easier than for split-explicit Runge-Kutta methods. On the other hand
the splitting ansatz makes the derivation of order conditions more complicated than for
ordinary peer methods. Furthermore our splitting ansatz only allows the construction of
reasonable methods of order 2.

Theorem 1 A split-explicit peer method (8) has order of consistency p ≤ 2 if

AB(k) = 0, k = 0, . . . , p,

ÂB(k) = 0, k = 1, . . . , p

with

ABi(k) := cki −
s∑

j=1

bij(cj − 1)k −
i−1∑
j=1

sijc
k
j − k

s∑
j=1

aij(cj − 1)k−1 − k

i−1∑
j=1

rijc
k−1
j ,

ÂBi(k) :=
(
ci − αi

)k − s∑
j=1

bij(cj − 1)k −
i−1∑
j=1

sijc
k
j for i = 1, . . . , s.

The condition αi = 0 for i = 1, . . . , s is necessary for order 3.
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Proof: For simplicity of notation we consider only values from the current time step, i.e.
sij and rij. The inclusion of values from the other time level, i.e. terms with bij and aij,

is straightforward. For Z̃i(t) we obtain the expansion

Z̃i(αi∆t) = Z̃i(0) + αi∆t
˙̃
Zi(0) +

(αi∆t)2

2
¨̃
Zi(0) +

(αi∆t)3

6

˙̈
Z̃i(0) +O((∆t)4). (13)

In order to get shorter equations we use the abbreviations y := y(tm), ẏ := ẏ(tm),
N := N(y(tm)), N

′ := N ′(y(tm)), etc. Because for the definition of split-explicit peer
methods the slow part of the ordinary differential equation (6) is constant it holds

˙̃
Zi = C + LZ̃i with C =

1

αi

( i−1∑
j=1

rijN(y(tmj))
)
,

¨̃
Zi = L

˙̃
Zi,

˙̈
Z̃i = L2 ˙̃Zi

The expansion of Z̃i at 0 is

Z̃i(0) =
∑

sijy(tmj)

=
∑

sijy +∆t
∑

sijcj ẏ + (∆t)2
∑

sij
c2j
2
ÿ + (∆t)3

∑
sij

c3j
6
˙̈y +O((∆t)4).

The first-order term in (13) fulfils

αi∆t
˙̃
Zi(0) =∆t

∑
rijN(y(tmj)) + αi∆tLZ̃i(0)

=∆t
∑

rij

(
N +N ′(y(tmj)− y) +

1

2
N ′′(y(tmj)− y)2

)
+ αi∆tL

∑
sijy(tmj)

+O((∆t)4)

=∆t
∑

rij

(
N +N ′(cj∆tẏ +

(cj∆t)2

2
ÿ) +

1

2
N ′′(cj∆tẏ)2

)
+ αi∆tL

∑
sij

(
y + cj∆tẏ +

(cj∆t)2

2
ÿ
)
+O((∆t)4)

=∆t
(∑

rijN + αi

∑
sijLy

)
+ (∆t)2

(∑
rijcjN

′ẏ + αi

∑
sijcjLẏ

)
+ (∆t)3

(∑
rij

c2j
2
N ′ÿ +

∑
rij

c2j
2
N ′′ẏ2 + αi

∑
sij

c2j
2
Lÿ

)
+O((∆t)4).

For the second-order term in (13) it holds

(αi∆t)2

2
¨̃
Zi(0) =

αi∆t

2
L
(
αi∆t

˙̃
Zi(0)

)
=(∆t)2

(αi

2

∑
rijLN +

α2
i

2

∑
sijL

2y
)

+ (∆t)3
(
αi

∑
rij

cj
2
LN ′ẏ + α2

i

∑
sij

cj
2
L2ẏ

)
+O((∆t)4).
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The third-order term in (13) satisfies

(αi∆t)3

6

˙̈
Z̃i(0) =

(αi∆t)2

6
L2

(
αi∆t

˙̃
Zi(0)

)
= (∆t)3

(α2
i

6

∑
rijL

2N +
α3
i

6

∑
sijL

3y
)
+O((∆t)4).

The Taylor expansion of the analytical solution at tm is

y(tmi) = y + ci∆tẏ +
(ci∆t)2

2
ÿ +

(ci∆t)3

6
˙̈y +O((∆t)4). (14)

As the above expansions show the preconsistency condition is∑
sij = 1.

This is AB(0).
The difference in the first-order terms between (13) and (14) is

ciẏ −
∑

sijcj ẏ −
∑

rijN − αi

∑
sijLy.

Because y is the analytic solution it satisfies ẏ = N+Ly. Substituting this into the above
difference and using the preconsistency condition AB(0) results in

ciN + ciLy −
∑

sijcjN −
∑

sijcjLy −
∑

rijN − αiLy,

i.e. from the terms incorporating the slow part N the condition AB(1) follows while the

terms with the fast part Ly vanish if ÂB(1) is fulfilled.
The difference of the second-order terms in (13) and (14) is

c2i
2
ÿ −

∑
sij

c2j
2
ÿ −

∑
rijcjN

′ẏ − αi

∑
sijcjLẏ −

αi

2

∑
rijLN − α2

i

2

∑
sijL

2y.

If we substitute ÿ by N ′ẏ +Lẏ the terms incorporating N ′ẏ vanish if AB(2) is satisfied.
It remains

c2i
2
Lẏ −

∑
sij

c2j
2
Lẏ − αi

∑
sijcjLẏ −

αi

2

∑
rijLN − α2

i

2

∑
sijL

2y.

If the order conditions AB(0) and ÂB(1) are fulfilled and because of Lẏ = LN + L2y
the above difference is equivalent to

c2i
2
Lẏ −

∑
sij

c2j
2
Lẏ − αi

∑
sijcjLẏ −

α2
i

2
Lẏ.

Together with AB(1) this results in the order condition ÂB(2).
The difference in the third-order terms between (13) and (14) is

c3i
6
˙̈y −

∑
sij

c3j
6
˙̈y −

∑
rij

c2j
2
N ′ÿ −

∑
rij

c2j
2
N ′′ẏ2 − αi

∑
sij

c2j
2
Lÿ − αi

∑
rij

cj
2
LN ′ẏ

− α2
i

∑
sij

cj
2
L2ẏ − α2

i

6

∑
rijL

2N − α3
i

6

∑
sijL

3y.



3 ORDER THEORY 26

If we substitute ˙̈y by N ′′ẏ2 + N ′ÿ + Lÿ all terms incorporating N ′′ẏ2 and N ′ÿ vanish if

AB(3) is satisfied. With AB(0) and ÂB(1) the last two terms in the above difference

simplify to
α3
i

6

∑
L2ẏ, i.e. it remains

c3i
6
Lÿ −

∑
sij

c3j
6
Lÿ − αi

∑
sij

c2j
2
Lÿ − αi

∑
rij

cj
2
LN ′ẏ − α2

i

∑
sij

cj
2
L2ẏ − α3

i

6
L2ẏ.

When substituting Lÿ by LN ′ẏ + L2ẏ the terms with L2ẏ vanish if ÂB(3) is fulfilled.
The remaining terms belong to LN ′ẏ, i.e. a third-order split-explicit peer method has to
satisfy

c3i
6
−
∑

sij
c3j
6
− αi

∑
sij

c2j
2
− αi

∑
rij

cj
2

= 0.

By computation one can see that this condition together withAB(2), ÂB(2) and ÂB(3) is
equivalent to αi = 0. �
Remark 5 From the stability point of view a method with αi = 0 is not reasonable, i.e.
it is not possible to construct stable third-order split-explicit peer methods with the ansatz
(7) because of the order condition α = 0. This is caused by the absence of function
evaluations in (7), the inclusion of function evaluations allows one to solve the order
conditions for order 3 with α ̸= 0 and therefore the construction of split-explicit peer
methods with order 3 and higher. However, we are interested in methods with order 2
because we use low-order integrators for the fast part and because RK3 is second-order for
nonlinear problems. Therefore we consider the simpler case where no function evaluations
are used as initial values for the fast ordinary differential equation (6) in the remainder.

The order conditions AB(k) = 0 are the traditional order conditions for peer methods

while the conditions ÂB(k) = 0 are new order conditions which result from the splitting
approach. We now want to solve the order conditions to obtain three-stage split-explicit
peer methods which are of order p = s−1 = 2. For this aim we use the coefficient matrix
A to fulfil the traditional order conditions as was done in [1], [40], [39], [42] and [26].
Because we only want methods of order s−1 A has s degrees of freedom remaining which
are expressed with a vector β. The matrix B is used to fulfil the consistency condition
(B + S)1l = 1l, where 1l = (1, . . . , 1)T , and the s − 1 additional split order conditions.
Therefore B is fully determined by the order conditions in contrast to former applications
of peer methods where the coefficients of B were available for stability optimizations or
satisfaction of superconvergence conditions.

With the notations

C := diag(ci), D := diag(1, . . . , s), Vn :=
(
(ci − n)j−1

)s

i,j=1
, V :=

(
(ci − αi)

j−1
)s

i,j=1

one obtains methods with order of consistency p = s− 1 ≤ 2 with

B = (V − SV0)V
−1
1 ,

A =
(
CV0 −B(C − I)V1 − SCV0 −RV0D − βeTs

)
D−1V −1

1 .

This choice of parameters is possible if the nodes are distinct from each other because then
the Vandermonde matrix V1 is regular. Because we choose cs = 1 so that Yms ≈ y(tm+1)
the remaining parameters are c1, c2, α1, α2, α3, β1, β2, β3, s21, s31, s32, r21, r31 and r32.
These will be optimized with respect to stability as explained in Section 5.6.
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3.2 Order of convergence for split-explicit peer methods

We now show the convergence of split-explicit peer methods. When a split-explicit peer
method is applied to (1) with N = L = 0 it holds Ymi =

∑
bijYm−1,j +

∑
sijYmj or

in compact form Ym = BYm−1 + SYm which is equivalent to Ym = (I − S)−1BYm−1.
This leads us to the definition of zero stability for split-explicit peer methods which is
analogously defined as for general linear methods in [9].

Definition 2 A split-explicit peer method (8) is called zero stable if the eigenvalues λ of

B̃ := (I − S)−1B satisfy the conditions

|λ| ≤ 1 and {|λ| = 1 ⇒ λ is simple}.

Definition 3 A split-explicit peer method (8) has order of convergence p, if the global
error εm := Y (tm)− Ym, where Y (tm) is a matrix containing the analytical solution y at
times tmi, has order p, i.e. if there is a constant C with

||Y (tm)− Ym|| ≤ C(∆t)p.

Before we show convergence we need an equation which we prove by induction.

Theorem 2 For all m ∈ N it holds

1 +
m∑
j=0

Xj

j−1∏
k=0

(1 +Xk) =
m∏
k=0

(1 +Xk). (15)

Proof: For m = 0 the equation obviously is correct. Assuming that it is valid for m− 1.
For m we have

1 +
m∑
j=0

Xj

j−1∏
k=0

(1 +Xk) = 1 +
m−1∑
j=0

Xj

j−1∏
k=0

(1 +Xk) +Xm

m−1∏
k=0

(1 +Xk)

=
m−1∏
k=0

(1 +Xk) +Xm

m−1∏
k=0

(1 +Xk)

=
m∏
k=0

(1 +Xk). �

We now show the convergence.

Theorem 3 Let the following conditions for the split-explicit peer method (8) be satis-
fied.

• The method has order of consistency p.

• The method is zero stable.

• The starting values have order p, i.e. y(t0i)− Y0i = O((∆t)p) for i = 1, . . . , s.

Then this method has order of convergence p.
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Proof: For simplicity of notation we perform the proof for scalar equations. Furthermore
we assume that L is regular, i.e. not 0, and αi ̸= 0. These restrictions are not necessary
but they allow us to write down the solutions of (6) and (11) with the exponential
function instead of its Taylor series: The solution of ẏ = C + Ly with y(0) = y0 is

y(t) = y0 + (etL − 1)(y0 + L−1C).

As before we denote Zi the solution of (6) and Z̃i the solution of (11), i.e. it holds

Zi(αi∆t) =
s∑

j=1

bijYm−1,j +
i−1∑
j=1

sijYmj + (eαi∆tL − 1)
( s∑

j=1

bijYm−1,j +
i−1∑
j=1

sijYmj

+ (αiL)
−1
( s∑

j=1

aijN(Ym−1,j) +
i−1∑
j=1

rijN(Ymj)
))

,

Z̃i(αi∆t) =
s∑

j=1

bijy(tm−1,j) +
i−1∑
j=1

sijy(tmj) + (eαi∆tL − 1)
( s∑

j=1

bijy(tm−1,j) +
i−1∑
j=1

sijy(tmj)

+ (αiL)
−1
( s∑

j=1

aijN(y(tm−1,j)) +
i−1∑
j=1

rijN(y(tmj))
))

.

In compact notation with Em := diag
(
eαi∆tL − 1

)
and Ẽm := diag

(
(eαi∆tL − 1)(αiL)

−1
)

they are

Z = BYm−1 + SYm + EmBYm−1 + EmSYm + ẼmAN(Ym−1) + ẼmRN(Ym),

Z̃ = BY (tm−1) + SY (tm) + EmBY (tm−1) + EmSY (tm) + ẼmAN(Y (tm−1)) + ẼmRN(Y (tm)).

It holds

εm =Y (tm)− Ym = Y (tm)− Z = Y (tm)− Z̃ + Z̃ − Z

=∆m +B(Y (tm−1)− Ym−1) + S(Y (tm)− Ym) + EmB(Y (tm−1)− Ym−1)

+EmS(Y (tm)− Ym) + ẼmA(N(Y (tm−1))−N(Ym−1)) + ẼmR(N(Y (tm))−N(Ym))

=∆m +Bεm−1 + Sεm + EmBεm−1

+EmSεm + ẼmA(N(Y (tm−1))−N(Ym−1)) + ẼmR(N(Y (tm))−N(Ym)).

The differences of the function values can be eliminated with the mean value theorem

N(y(tmi))−N(Ymi) = Nmiεmi

where

Nmi :=

∫ 1

0

N ′
(
y(tmi) + θ(Ymi − y(tmi))

)
dθ.

With Nm := diag
(
Nmi

)
we obtain the equation

εm = ∆m +Bεm−1 + Sεm + EmBεm−1 + EmSεm + ẼmANm−1εm−1 + ẼmRNmεm
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which is equivalent to

εm =(I − S)−1∆m + B̃εm−1 + (I − S)−1EmBεm−1 + (I − S)−1EmSεm

+ (I − S)−1ẼmANm−1εm−1 + (I − S)−1ẼmRNmεm.

By recursively substituting the global error in the second term at B̃ with errors from
previous time steps one obtains

εm =

m−1∑
j=0

B̃j(I − S)−1∆m−j + B̃mε0 +

m−1∑
j=0

B̃j(I − S)−1Em−jBεm−1−j

+

m−1∑
j=0

B̃j(I − S)−1Em−jSεm−j +

m−1∑
j=0

B̃j(I − S)−1Ẽm−jANm−1−jεm−1−j +

m−1∑
j=0

B̃j(I − S)−1Ẽm−jRNm−jεm−j .

Because the method is zero stable, i.e. B̃ is power-bounded, there exists a constant C̃
so that

||B̃j(I − S)−1∆m−j|| ≤ C̃||∆m−j||,
||B̃mε0|| ≤ C̃||ε0||,

||B̃j(I − S)−1Em−jBεm−1−j|| ≤ C̃∆t||εm−1−j||,
||B̃j(I − S)−1Em−jSεm−j|| ≤ C̃∆t||εm−j||,

||B̃j(I − S)−1Ẽm−jANm−1−jεm−1−j|| ≤ C̃∆t||εm−1−j||,
||B̃j(I − S)−1Ẽm−jRNm−jεm−j|| ≤ C̃∆t||εm−j||

for sufficiently small time step sizes. The ∆t in the last four inequalities originates from
the first-order terms of the expansions of Em−j and Ẽm−j. The method has order of
consistency p, i.e. ||∆j|| ≤ C(∆t)p+1. Because of

m−1∑
j=0

C̃||∆m−j|| ≤
m−1∑
j=0

C̃C(∆t)p+1 ≤ (te − t0)C̃C(∆t)p

and because the initial values have order p we obtain the inequality for the global error

||εm|| ≤
m∑
j=0

C̆∆t||εj||+ C̆(∆t)p

where C̆ is the maximum of the above constants, i.e. the maximum of the constant from
the initial values, (te − t0)C̃C and 4C̃. Subtracting C̆∆t||εm|| and dividing by 1− C̆∆t
results in

||εm|| ≤
m−1∑
j=0

Ĉ∆t||εj||+ Ĉ(∆t)p (16)

where Ĉ := C̆

1−C̆∆t
. With (16) and equation (15) from Theorem 2 with Xj = Ĉ∆t we

prove the inequality

||εm|| ≤
(m−1∏

j=0

(1 + Ĉ∆t)
)
Ĉhp
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by induction: For m = 0 the inequality is correct because the initial values have order p.
Let the inequality holds for all j with 0 ≤ j ≤ m− 1. For m we have

||εm|| ≤
m−1∑
j=0

Ĉ∆t||εj||+ Ĉ(∆t)p

≤
(
1 +

m−1∑
j=0

Ĉ∆t

j−1∏
k=0

(1 + Ĉ∆t)
)
Ĉ(∆t)p

=
(m−1∏

j=0

(1 + Ĉ∆t)
)
Ĉ(∆t)p.

Finally we can show convergence of order p:

||εm|| ≤
(m−1∏

j=0

(1 + Ĉ∆t)
)
Ĉ(∆t)p

≤ eĈ∆tmĈ(∆t)p

≤ eĈ(te−t0)Ĉ(∆t)p,

i.e. order of convergence p with constant C := eĈ(te−t0)Ĉ. �

Remark 6 While we used the analytical solution of (6) in order to prove convergence, in
practical applications numerical schemes are used for the integration of (6). Numerical
tests show that the split-explicit methods are second-order if a first-order method with
sufficiently small time step sizes or a second-order method is applied to (6).

3.3 Order of consistency for linearly implicit peer methods

We now present order conditions for linearly implicit peer methods. Thereby we make
no assumptions for J . Consistency of the linearly implicit peer methods is discussed by
considering the local residuals △mi obtained by substituting the exact solution y of (9)
into the method.

△mi := (I −∆tγJ)y(tmi)−
s∑

j=1

bijy(tm−1,j)−
i−1∑
j=1

sijy(tmj)−∆t
s∑

j=1

aij ẏ(tm−1,j)

−∆t

i−1∑
j=1

rij ẏ(tmj)−∆t

s∑
j=1

gijJy(tm−1,j)−∆t

i−1∑
j=1

hijJy(tmj).

Definition 4 A linearly implicit peer method (10) has order of consistency p, if

max
i

||△mi|| = O((∆t)p+1).

Taylor expansions at tm lead to the following theorem.
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Theorem 4 A linearly implicit peer method (10) has order of consistency p, if

AB(k) = 0, k = 0, 1, . . . , p,

ÂB(k) = 0, k = 1, . . . , p

where

ABi(k) := cki −
s∑

j=1

bij(cj − 1)k −
i−1∑
j=1

sijc
k
j − k

s∑
j=1

aij(cj − 1)k−1 − k
i−1∑
j=1

rijc
k−1
j ,

ÂBi(k + 1) := γcki +
s∑

j=1

gij(cj − 1)k +
i−1∑
j=1

hijc
k
j for i = 1, . . . , s.

Proof: Using Taylor expansions for y(tmi), y(tm−1,j), y(tmj), ẏ(tm−1,j) and ẏ(tmj) at tm
results in

△mi =(I −∆tγJ)y(tmi)−
s∑

j=1

bijy(tm−1,j)−
i−1∑
j=1

sijy(tmj)−∆t
s∑

j=1

aij ẏ(tm−1,j)

−∆t

i−1∑
j=1

rij ẏ(tmj)−∆t

s∑
j=1

gijJy(tm−1,j)−∆t

i−1∑
j=1

hijJy(tmj)

=(I −∆tγJ)
∞∑
k=0

(ci∆t)k

k!
y(k)(tm)

−
s∑

j=1

bij

∞∑
k=0

((cj − 1)∆t)k

k!
y(k)(tm)−

i−1∑
j=1

sij

∞∑
k=0

(cj∆t)k

k!
y(k)(tm)

−∆t
s∑

j=1

aij

∞∑
k=0

((cj − 1)∆t)k

k!
y(k+1)(tm)−∆t

i−1∑
j=1

rij

∞∑
k=0

(cj∆t)k

k!
y(k+1)(tm)

−∆t
s∑

j=1

gijJ
∞∑
k=0

((cj − 1)∆t)k

k!
y(k)(tm)−∆t

i−1∑
j=1

hijJ
∞∑
k=0

(cj∆t)k

k!
y(k)(tm)

=(I −∆tγJ)
∞∑
k=0

(ci∆t)k

k!
y(k)(tm)

−
s∑

j=1

bij

∞∑
k=0

((cj − 1)∆t)k

k!
y(k)(tm)−

i−1∑
j=1

sij

∞∑
k=0

(cj∆t)k

k!
y(k)(tm)

−
s∑

j=1

aij

∞∑
k=0

k(cj − 1)k−1(∆t)k

k!
y(k)(tm)−

i−1∑
j=1

rij

∞∑
k=0

kck−1
j (∆t)k

k!
y(k)(tm)

−∆t
s∑

j=1

gijJ
∞∑
k=0

((cj − 1)∆t)k

k!
y(k)(tm)−∆t

i−1∑
j=1

hijJ
∞∑
k=0

(cj∆t)k

k!
y(k)(tm).
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We now separate the parts which incorporate J , i.e. it holds

△mi =
∞∑
k=0

(
cki −

s∑
j=1

bij(cj − 1)k −
i−1∑
j=1

sijc
k
j

− k
s∑

j=1

aij(cj − 1)k−1 − k
i−1∑
j=1

rijc
k−1
j

)(∆t)k

k!
y(k)(tm)

− J

∞∑
k=0

(
γcki +

s∑
j=1

gij(cj − 1)k +
i−1∑
j=1

hijc
k
j

)(∆t)k+1

k!
y(k)(tm)

=
∞∑
k=0

(
ABi(k)

)(∆t)k

k!
y(k)(tm)− J

∞∑
k=0

(
ÂBi(k + 1)

)(∆t)k+1

k!
y(k)(tm). �

Remark 7 The last equation of the previous proof demonstrates that the order conditions
AB(k) = 0 are the conditions of the explicit part of the linearly implicit peer method,

i.e. only these conditions remain in the case of J = 0. The order conditions ÂB(k) = 0
remain when subtracting AB(k) from the Taylor expansion, i.e. the order conditions
decouple into summands with and without J . This is the reason why the linearly implicit
peer methods have the order independently of what is used as J .

The collected order conditions AB(k) = 0 and ÂB(k) = 0 for order p = s − 1 can
be written in compact matrix form analogously to the ansatz in Section 3.1. For this
purpose we use the matrix Γ = γI and the matrices C, D, V0 and V1 defined in Section
3.1. The first condition AB(0) = 0 simply is

(B + S)1l = 1l.

The other conditions, i.e. 1 ≤ k ≤ s− 1, lead to the matrix equations

CV0 −B(C − I)V1 − SCV0 − AV1D −RV0D − βeTs D = 0,

ΓV0 +GV1 +HV0 + β̃eTs = 0

where β and β̃ represent the remaining degrees of freedom. Because V1 is a Vandermonde
matrix it is regular if the nodes ci are different from each other. Therefore a linearly
implicit peer method with

(B + S)1l = 1l,

A =
(
CV0 −B(C − I)V1 − SCV0 −RV0D − βeTs D

)
D−1V −1

1 ,

G = −
(
ΓV0 +HV0 + β̃eTs

)
V −1
1

has order of consistency p = s−1 independently of J . In the remainder we will concentrate
on three-stage methods with order of consistency 2.

In [13] a second-order three-stage split-explicit peer method was used for the inte-
gration of the compressible Euler equations. That method is presented in this thesis,
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too. It is quite accurate and has good stability properties. Therefore we use it for the
explicit part of a linearly implicit peer method. Applying that split-explicit peer method
to the split-differential equation (1) and using the trapezoidal rule for the integration of
the fast part results in a non-singly linearly implicit peer method with J = L, γi =

αi

2
,

gij =
αi

2
bij − aij and hij =

αi

2
sij − rij as explained in Remark 4. We keep the coefficients

which belong to the explicit part, i.e. ci, bij, sij, aij and rij, and use new implicit coeffi-
cients γi, gij and hij in order to find a method with better stability properties. Because
the parameters gij are used to fulfil the order conditions for order 2 the remaining degrees

of freedom for the stability optimization are γ, β̃1, β̃2, β̃3, h21, h31 and h32.
Another linearly implicit peer method presented in this thesis is generated from a

completely new set of parameters. It also has s = 3 stages and order of consistency 2
but it additionally fulfils conditions which guarantee superconvergence, i.e. it has order
of convergence 3.

3.4 Order of convergence for linearly implicit peer methods

We now show convergence for the class of linearly implicit peer methods. We also give a
condition which guarantees superconvergence. The definitions of zero stability and order
of convergence for linearly implicit peer methods are analogous to the definitions for
split-explicit peer methods. Furthermore we define strong zero stability.

Definition 5 A linearly implicit peer method (10) is called zero stable if the eigenvalues

λ of B̃ := (I − S)−1B satisfy the conditions

|λ| ≤ 1 and {|λ| = 1 ⇒ λ is simple}.

If one eigenvalue is 1 and the moduli of the other eigenvalues are strictly smaller than 1
the method is called strongly zero stable.

Definition 6 A linearly implicit peer method (10) has order of convergence p, if the
global error εm := Y (tm)−Ym, where Y (tm) is a matrix containing the analytical solution
y at times tmi, has order p, i.e. if there is a constant C with

||Y (tm)− Ym|| ≤ C(∆t)p.

Because we consider methods with constant time step sizes, convergence follows straight-
forwardly from consistency and zero stability.

Theorem 5 Let the following conditions for the linearly implicit peer method (10) be
satisfied.

• The method has order of consistency p.

• The method is zero stable.

• The starting values have order p, i.e. y(t0i)− Y0i = O((∆t)p) for i = 1, . . . , s.

Then this method has order of convergence p.
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Proof: The proof is similar to the proof of convergence for split-explicit peer methods. �

Under rather general additional assumptions order of convergence p follows from order
of consistency p. For the case of constant step sizes the concept of quasi-consistency was
introduced in [32]. It was shown that a quasi-consistent method of order p + 1 is also
convergent of order p + 1. The assumption of quasi-consistency of order p + 1 is less
stringent than consistency of the same order. It requires consistency of order p and
an additional condition. Formulated for linearly implicit peer methods this additional
condition reads

B̃∞∆m = O((∆t)p+1)

where the matrix
B̃∞ = 1lṽT

is defined in Theorem 6. We will show that this condition together with order of con-
sistency p implies convergence of order p+1 which therefore is called superconvergence.
This idea was applied to peer methods in [42] with the difference that the methods in
[42] are optimally zero stable, i.e. B has one eigenvalue 1 and the other eigenvalues are
0. Our ansatz is a generalization because we only demand strong zero stability, i.e. the
moduli of all but one eigenvalue have to be strictly smaller than 1. As preliminary step
to the proof of superconvergence we need the following theorem.

Theorem 6 If a linearly implicit peer method (10) is strongly zero stable and fulfils the
preconsistency condition (B + S)1l = 1l the limit

B̃∞ := lim
j→∞

B̃j = lim
j→∞

((I − S)−1B)j

exists and B̃∞ = 1lṽT where ṽ is a left eigenvector of B̃∞ to the eigenvalue 1 with ṽ1l = 1.
Furthermore the series

∞∑
j=0

(B̃j − B̃∞)

converges.

Proof: Because S is a strictly lower triangular matrix B̃ exists and the order condition
(B+S)1l = 1l is equivalent to B̃1l = 1l, i.e. B̃ has one eigenvalue 1. The other eigenvalues
have moduli strictly smaller than 1 because the method is strongly zero stable. With the
Jordan normal form W = Q−1B̃Q of B̃ the matrix powers can be written in the form

B̃j = (QWQ−1) · · · (QWQ−1) = QW jQ−1.

Because of the block structure of W every block

Wk = λkIm +Dm,

where λk is the eigenvalue, Im the identity matrix, Dm the secondary diagonal with ones
and m the dimension of the block, can be considered separately. It holds

W j
k = (λkIm +Dm)

j = λj
kIm +

m−1∑
l=1

(
j

l

)
λj−l
k Dl

m.
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For λk = 1, which originates from the consistency condition, W j
k = 1. Because the other

eigenvalues have moduli strictly smaller than 1 it holds

lim
j→∞

W j
k = lim

j→∞

(
λj
kIm +

m−1∑
l=1

(
j

l

)
λj−l
k Dl

m

)
= 0.

So W∞ exists and only has one 1 on the main diagonal, i.e. it has rank 1. Therefore B̃∞

has rank 1 at most, each of the rows of B̃∞ is a multiple of the other rows. From B̃1l = 1l
follows B̃∞1l = 1l, so the sum of each row of B̃∞ is 1 and all rows must be equal. They
are denoted by the vector ṽT , i.e. B̃∞ = 1lṽT and ṽT1l = 1. Furthermore it holds

ṽT B̃∞ = ṽT1lṽT = ṽT ,

i.e. ṽT is a left eigenvector of B̃∞ to the eigenvalue 1.
Because of

∞∑
j=0

(B̃j − B̃∞) =
∞∑
j=0

Q(W j −W∞)Q−1

we consider each of the blocks separately. The block which corresponds to the eigenvalue
1 vanishes. For the other blocks there exist constants Ck so that

||W j
k −W∞

k || = ||(λkIm +Dm)
j − 0|| = ||λj

kIm +
m−1∑
l=1

(
j

l

)
λj−l
k Dl

m|| ≤ Ckj
m−1|λk|j−m+1

holds for sufficiently large j. The series

∞∑
j=0

jm−1|λk|j−m+1

converges because |λk| is strictly smaller than 1, i.e. there exists a positive constant which
is strictly smaller than 1 and an upper bound for

(j + 1)m−1|λk|j+1−m+1

jm−1|λk|j−m+1
= |λk|

(j + 1

j

)m−1

if j is sufficiently large. Therefore the ratio criterion is satisfied, which is sufficient for the
convergence of the series. Because these arguments are valid for all blocks the convergence
of

∞∑
j=0

(B̃j − B̃∞)

is shown. �

With the previous theorem we now can show that two additional conditions guarantee
superconvergence.

Theorem 7 Let the following conditions for the linearly implicit peer method (10) be
satisfied.



3 ORDER THEORY 36

• The method has order of consistency p.

• The method is strongly zero stable.

• The starting values have order p+1, i.e. y(t0i)−Y0i = O((∆t)p+1) for i = 1, . . . , s.

• ṽ from Theorem 6 satisfies ṽT (I − S)−1AB(p+ 1) = ṽT (I − S)−1ÂB(p+ 1) = 0.

Then this method has order of convergence p+ 1.

Proof: For simplicity of notation we again perform the proof for scalar equations. It
holds

(I −∆tγJ)εm = (I −∆tγJ)(Y (tm)− Ym) = (I −∆tγJ)Y (tm)

−BY (tm−1)− SY (tm)−∆tAf(Y (tm−1))−∆tRf(Y (tm))−∆tGJY (tm−1)−∆tHJY (tm)

+BY (tm−1) + SY (tm) + ∆tAf(Y (tm−1)) + ∆tRf(Y (tm)) + ∆tGJY (tm−1) + ∆tHJY (tm)

−BYm−1 − SYm −∆tAFm−1 −∆tRFm −∆tGJYm−1 −∆tHJYm

=∆m +B(Y (tm−1)− Ym−1) + S(Y (tm)− Ym) + ∆tA(f(Y (tm−1))− Fm−1)

+ ∆tR(f(Y (tm))− Fm) + ∆tGJ(Y (tm−1)− Ym−1) + ∆tHJ(Y (tm)− Ym).

The differences of the function values can be eliminated with the mean value theorem

f(y(tmi))− Fmi = Gmiεmi

where

Gmi :=

∫ 1

0

f ′
(
y(tmi) + θ(Ymi − y(tmi))

)
dθ.

With Gm := diag
(
Gmi

)
we obtain the equation

(I−∆tγJ)εm = ∆m+Bεm−1+Sεm+∆tAGm−1εm−1+∆tRGmεm+∆tGJεm−1+∆tHJεm

which is equivalent to

εm = (I − S)−1∆m + B̃εm−1 +∆tÃGm−1εm−1 +∆tR̃Gmεm +∆tG̃Jεm−1 +∆tH̃Jεm

where B̃ = (I − S)−1B, Ã = (I − S)−1A, R̃ = (I − S)−1R, G̃ = (I − S)−1G and

H̃ = (I − S)−1(H + γI). By recursively substituting the global error in the second term
of the above equation with errors from previous time steps one obtains

εm =
m−1∑
j=0

B̃j(I − S)−1∆m−j + B̃mε0 +∆t

m−1∑
j=0

B̃jÃGm−1−jεm−1−j

+∆t

m−1∑
j=0

B̃jR̃Gm−jεm−j +∆t

m−1∑
j=0

B̃jG̃Jεm−1−j +∆t

m−1∑
j=0

B̃jH̃Jεm−j.
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Because the method is zero stable, i.e. B̃ is power-bounded, there exists a constant C̃ so
that

||B̃mε0|| ≤ C̃||ε0||,
||B̃jÃGm−1−jεm−1−j|| ≤ C̃||εm−1−j||,

||B̃jR̃Gm−jεm−j|| ≤ C̃||εm−j||,
||B̃jG̃Jεm−1−j|| ≤ C̃||εm−1−j||,
||B̃jH̃Jεm−j|| ≤ C̃||εm−j||.

This results in

||εm|| ≤||
m−1∑
j=0

B̃j(I − S)−1∆m−j||+ C̃||ε0||+ 4C̃∆t
m∑
j=0

||εm−j||

≤||
m−1∑
j=0

(B̃j − B̃∞)(I − S)−1∆m−j||+ ||
m−1∑
j=0

B̃∞(I − S)−1∆m−j||

+ C̃||ε0||+ 4C̃∆t
m∑
j=0

||εm−j||.

Because of Theorem 6 and the order of consistency p of the method the inequality

||
m−1∑
j=0

(B̃j − B̃∞)(I −S)−1∆m−j|| ≤ ||
m−1∑
j=0

(B̃j − B̃∞)||||(I −S)−1||C1(∆t)p+1 ≤ C2(∆t)p+1

holds with some constants C1 (resulting from the consistency) and C2 (resulting from
the convergence of the series, the norm of (I − S)−1 and C1). The conditions

ṽT (I − S)−1AB(p+ 1) = ṽT (I − S)−1ÂB(p+ 1) = 0

result in
ṽT (I − S)−1∆m−j = O((∆t)p+2)

and together with B̃∞ = 1lṽT this leads to

||
m−1∑
j=0

B̃∞(I − S)−1∆m−j|| = ||
m−1∑
j=0

1lṽT (I − S)−1∆m−j|| ≤
m−1∑
j=0

C3(∆t)p+2 ≤ C4(∆t)p+1.

Because the initial values have order p+ 1 it holds C̃||ε0|| ≤ C5(∆t)p+1. Denoting C̆ the

maximum of the constants 3C2, 3C4, 3C5 and 4C̃ and using the previous inequalities
results in the inequality for the global error

||εm|| ≤
m∑
j=0

C̆∆t||εm−j||+ C̆(∆t)p+1.

The remainder of the proof is analogous to the proof of convergence for split-explicit peer
methods with the exception that the order is p+1 instead of p. �
Remark 8 In the remainder of this thesis order means order of convergence.
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4 Stability investigations

4.1 Linearization of the Euler equations

We now discuss the stability properties of the considered methods. In [44], [45] and
[13] amongst others the authors used a 2 × 2-system incorporating wind and pressure
variables in order to consider the effects of the different physical processes, wind and
sound waves, on the stability of the investigated methods. In contrast to that ansatz we
consider a 3×3-system which also incorporates the density. This approach is closer to the
compressible Euler equations and better takes the effects of a simplified Jacobian into
account. We start with the one-dimensional compressible Euler equations in conservative
form. In some of the numerical tests diffusion is incorporated and the split-explicit Runge-
Kutta method which we consider for comparison with the peer methods needs divergence
damping, in one dimension this is the same as diffusion, in order to be stable. Therefore
we also include a diffusion term with a constant diffusion coefficient ν.

ρ̇ = −∂ρu

∂x
,

˙(ρu) = −∂ρuu

∂x
− ∂p

∂x
+ νρ

∂2u

∂x2
,

˙(ρθ) = −∂ρuθ

∂x
.

Here ρ is the density, u is the wind speed, θ the potential temperature and p the pressure.
The prognostic variables are ρ, ρu and ρθ. The pressure p is given diagnostically by the
equation of state

p =
(Rdρθ

pκ0

) 1
1−κ

where Rd is the gas constant for dry air, κ = Rd/cp, cp the heat capacity of dry air at
constant pressure and p0 is the pressure at ground level. To linearize these nonlinear
equations we replace the pressure from the momentum equation with the chain rule

∂p

∂x
=

∂p

∂ρθ

∂ρθ

∂x
.

It holds
∂p

∂ρθ
=

Rd

pκ0(1− κ)

(Rdρθ

pκ0

) κ
1−κ

=
1

ρθ(1− κ)

(Rdρθ

pκ0

) 1
1−κ

=
c2s
θ

where

cs :=

√
1

ρ(1− κ)

(Rdρθ

pκ0

) 1
1−κ

is the speed of sound. For the other nonlinear terms we use the product rule:

∂ρuu

∂x
= −u2 ∂ρ

∂x
+ 2u

∂ρu

∂x
,

∂ρuθ

∂x
= −uθ

∂ρ

∂x
+ θ

∂ρu

∂x
+ u

∂ρθ

∂x
,

ρ
∂2u

∂x2
=

∂2ρu

∂x2
− u

∂2ρ

∂x2
− 2

ρ

∂ρ

∂x

∂ρu

∂x
+

2u

ρ

∂ρ

∂x

∂ρ

∂x
.
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We now linearize these equations by subtracting some time- and space-independent back-
ground state (denoted by a bar, e.g. ρ′ := ρ− ρ, (ρu)′ := ρu− ρu) and dropping all non-
linear terms, i.e. products of two disturbed quantities. The speed of sound is assumed to
be constant at 340 m s−1. We derive the linearized equations for the disturbed quantities
in compact matrix form ρ̇′

˙(ρu)′
1
θ

˙(ρθ)′

 = −

 0 1 0
−u2 2u c2s
−u 1 u

 ρ′x
(ρu)′x
1
θ
(ρθ)′x

+ ν

 0 0 0
−u 1 0
0 0 0

 ρ′xx
(ρu)′xx
1
θ
(ρθ)′xx

 (17)

where we divided the potential temperature by the background potential temperature
for simplicity of notation. When we compute with split-explicit methods all terms in
the first matrix in (17) with u belong to the advection part (red), i.e. after the spatial
discretization this isN in (1). The other terms (black) in the first matrix and the diffusion
terms (blue) are treated as the fast part, i.e. L. While divergence damping and diffusion
are the same in one dimension this is not the case in two or more dimensions. However,
divergence damping and diffusion will be treated both as fast parts for split-explicit
methods, i.e. in contrast to the advection terms these terms will be advanced with smaller
time steps or an implicit method.

When using linearly implicit methods we will not use the spatial discretization of
(17) as Jacobian but we will make three simplifications for J in order to save memory
and gain computational efficiency:

• We use the conservative form of the Euler equations, i.e. equations with prognostic
variables ρu and ρθ, as the right-hand side because this guarantees conservation
properties, namely conservation of mass, momentum and entropy. Contrariwise we
use the Jacobian which arises from the advection form of the Euler equations, i.e.
instead of an equation for ρu there is an equation for u.

• The transport terms in the Euler equations are discretized with the third-order
upwind scheme. For the Jacobian we use the first-order upwind scheme. Therefore
we will call it simplified Jacobian in the remainder of this thesis.

• We will use the simplified Jacobian in cut cells only, in the free atmosphere the
Jacobian only contains the acoustic part, i.e. advection and diffusion are treated
explicitly. In the remainder of this thesis we will call it partial Jacobian.

We now discuss the effects of these simplifications on the stability (remember that they
have no influence on the order of the peer methods). If we do not use (ρu)′ but ρu′ =
(ρu)′ − uρ′ − ρ′u′ as prognostic variable and drop the product of the two disturbed
quantities ρ′u′, i.e. assume ρu′ = (ρu)′ − uρ′, we obtain the simpler equations ρ̇′

˙(ρu′)
1
θ

˙(ρθ)′

 = −

u 1 0
0 u c2s
0 1 u

 ρ′x
(ρu′)x
1
θ
(ρθ)′x

+ ν

0 0 0
0 1 0
0 0 0

 ρ′xx
(ρu′)xx
1
θ
(ρθ)′xx

 . (18)

This set of equations (18) is simpler than (17) with respect to two aspects: It has less
terms than (17) which results in computational efficiency when solving the resulting
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Figure 2: Variables defined on a one-dimensional staggered grid.

linear system of equations. Table 1 in Section 5.2 shows the memory savings as well in
2D as in 3D. Furthermore it is easier to implement because there are no ρ derivatives
in the momentum and entropy equations and it is not obvious how to implement these
derivatives on a staggered grid. Contrariwise the additional ρ derivative in the mass
equation of (18) can be treated in the same manner as the temperature derivative in the
entropy equation and therefore produces no difficulties. Because of these reasons we will
use (17) as the right-hand side but the derivative of (18) as Jacobian despite the fact
that it originates from the advection form of the Euler equations. In order to investigate
the influence of the second simplification of the Jacobian we perform a von Neumann
stability analysis.

4.2 Linear stability analysis

As this is the case for many weather models we use a staggered grid, i.e. the density and
the potential temperature are cell-centered while the wind is defined on the faces. This
is illustrated by Figure 2. If the grid is periodic we can use the von Neumann stability
analysis by assuming a Fourier series ansatz for the variables, i.e.

ρ′(t, xj+1/2) = ρ′(t)
∑
k

eikxj+1/2 ,

(ρθ)′(t, xj+1/2) = (ρθ)′(t)
∑
k

eikxj+1/2 ,

(ρu)′(t, xj) = (ρu)′(t)
∑
k

eikxj

where k = 2π
L

is the wave number, L = 2∆x, 3∆x, 4∆x, . . . the wavelength and ∆x the
spatial step size. With this approach we investigate the stability for each wave number
separately.

Four different schemes are used for the spatial discretizations of (17) and (18). The
first-order derivatives without the wind speed u involved, i.e. the black terms, belong to
the acoustic part of the compressible equations and are discretized with central differ-
ences, e.g. the spatial discretization of the differential equation ρ̇′ = −(ρu)′x reads

ρ̇′(t)eikxj+1/2 = −(ρu)′(t)eikxj+1 − (ρu)′(t)eikxj

∆x
.

Omitting the time variable and the apostrophe for simplicity of notation and dividing
by eikxj+1/2 results in

ρ̇ = −(ρu)
e

ik∆x
2 − e−

ik∆x
2

∆x
= −D2(ρu)
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with

D2 :=
1

∆x

(
e

ik∆x
2 − e−

ik∆x
2

)
.

The red terms in (17) belong to the advection part. As in the weather codes WRF,
COSMO and others we use the third-order upwind scheme described in [44] for its spa-
tial discretization, e.g. we need to discretize the derivative −2u(ρu)x in the momentum
equation of (17). For a positive wind u the third-order upwind scheme reads

(ρu)j+1/2 :=
1

6

(
2(ρu)j+1 + 5(ρu)j − (ρu)j−1

)
. (19)

Therefore the discretization of −2u(ρu)x at j is

−2u
(ρu)j+1/2 − (ρu)j−1/2

∆x
= − 2u

6∆x

(
2(ρu)j+1 + 3(ρu)j − 6(ρu)j−1 + (ρu)j−2

)
,

i.e. the operator is

D3 :=
1

6∆x

(
2eik∆x + 3− 6e−ik∆x + e−2ik∆x

)
.

The second simplification for the Jacobian of linearly implicit peer methods is to use the
first-order upwind scheme for the advection part, i.e. for the red terms in (18). For u > 0
the first-order upwind scheme is

(ρu)j+1/2 := (ρu)j (20)

and therefore

−u
(ρu)j+1/2 − (ρu)j−1/2

∆x
= − u

∆x

(
(ρu)j − (ρu)j−1

)
,

the resulting operator is

D1 :=
1

∆x

(
1− e−ik∆x

)
.

The diffusion terms, i.e. the blue terms in (17) and (18), will be discretized with second-
order central differences, i.e. with the operator

Dν :=
1

(∆x)2

(
eik∆x − 2 + e−ik∆x

)
.

Using these operators as approximations to the spatial derivatives in (17) results in the
ordinary differential equation ρ̇

˙(ρu)
1
θ

˙(ρθ)

 = −

 0 D2 0
−u2D3 + νuDν 2uD3 − νDν c2sD2

−uD3 D2 uD3

 ρ
(ρu)
1
θ
(ρθ)

 . (21)

For the Jacobian in cut cell regions we instead use the matrix which results from (18)
and belongs to the system ρ̇

˙(ρu)
1
θ

˙(ρθ)

 = −

uD1 D2 0
0 uD1 − νDν c2sD2

0 D2 uD1

 ρ
ρu

1
θ
(ρθ)

 . (22)
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Figure 3: Eigenvalues of M (left) and M̃ (right).

The third simplification for the Jacobian when using linearly implicit peer methods has
an effect in the regions without cut cells. There the Jacobian includes the acoustic part
only, i.e. no advection and diffusion. The corresponding system is ρ̇

˙(ρu)
1
θ

˙(ρθ)

 = −

0 D2 0
0 0 c2sD2

0 D2 0

 ρ
ρu

1
θ
(ρθ)

 . (23)

We now consider the eigenvalues of the above systems. We denote M the matrix of
system (21), which is used for the split-explicit methods and as the right-hand side for

linearly implicit methods. For linearly implicit methods the matrix M̃ of the correspond-
ing system (22) is used as Jacobian in cut cells and in the free atmosphere we use the

discretization (23) with its matrix named M̂ . While the eigenvalues of the matrices from
(17) and (18) are equal if there is no diffusion, namely −u and −u± cs, the eigenvalues
of M are

−uD3 and − uD3 ±
√
c2sD2

2 + u2D2
3 − u2D2D3

whereas the eigenvalues of M̃ are

−uD1 and − uD1 ± csD2

and M̂ has the eigenvalues
0 and ± csD2

if ν = 0.
Figure 3 shows the eigenvalues of M and M̃ . The simplifications of the Jacobian have

no significant influence on the imaginary part because it is dominated by the acoustics
which is treated equally in (21), (22) and (23). In contrast the full but simplified Jacobian
has eigenvalues with real parts which are up to 2.5 times larger than the real parts of the
eigenvalues of the exact Jacobian. Because the acoustic part is discretized with central
differences the eigenvalues of M̂ are purely imaginary. These effects of the simplifications
have to be taken into account when searching for stable linearly implicit methods which
use the approximate Jacobian.
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4.3 Stability properties of split-explicit methods

In order to investigate stability properties of split-explicit methods we apply them to the
system (21). The terms with the third-order operators are treated as the slow part, the
second-order operators belong to the fast part. So we have to solve (1) with

N = −

 0 0 0
−u2D3 2uD3 0
−uD3 0 uD3

 and L = −

 0 D2 0
νuDν −νDν c2sD2

0 D2 0

 .

We show the results for four methods which will be described in detail in Section 5.7.

• RK3-FB is a second-order three-stage split-explicit Runge-Kutta method which
uses the explicit forward-backward Euler scheme for the integration of the fast
part (2) with ns = 30 small time steps ∆τ per large time step ∆t.

• RK3-TR is the same split-explicit Runge-Kutta method which uses the implicit
trapezoidal rule for the integration of the fast part (2) with equal time step sizes
for both parts.

• explPeer-FB is a second-order three-stage split-explicit peer method which uses
the explicit forward-backward Euler scheme for the integration of the fast part (6)
with ns = 30 small time steps ∆τ per large time step ∆t.

• explPeer-TR is the same split-explicit peer method which uses the implicit trape-
zoidal rule for the integration of the fast part (2) with equal time step sizes for
both parts.

If we apply these methods to the 3 × 3-system and perform one integration step with
time step size ∆t we obtain systems Ym = AYm−1 with A called the amplification matrix.
It depends on the method, the CFL numbers Cadv := u∆t

∆x
and Csound := cs

∆t
∆x

, the wave
number k and the diffusion coefficient ν.

Figure 4 shows the stability diagrams for the considered split-explicit methods. On
the horizontal axis the sound CFL number Csound is plotted, the vertical coordinate is
the advection CFL number Cadv. The diagrams show the maxima of the moduli of the
eigenvalues of the amplification matrix for wavelengths between 2∆x and 20∆x, i.e. the
method is stable for some coordinates in the Cadv-Csound-plane if the maximum is at
most 1 at that point. With one exception for all diagrams ν = 0. In each diagram there
is a line with a slope of 1/6. We are only interested in the stability regions below of
this line because there u < cs

6
≈ 56 m s−1 ≈ 200 km h−1 what is sufficient for practical

applications. In [44] the authors argued that even a slope of 1/12 is sufficient.
We can see that the split-explicit peer method is stable for advection CFL numbers

smaller than 1.7 without the need for any artificial damping. It is

Csound =
cs∆t

∆x
= ns

cs∆τ

∆x

and the forward-backward Euler method is stable up to cs∆τ
∆x

. Because the forward-
backward Euler scheme is applied ns times with small time steps ∆τ to the fast part there
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Stability diagram of RK3−FB with divergence damping
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Stability diagram of RK3−TR
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Stability diagram of RK3−TR with off−centering
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Stability diagram of explPeer−FB
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Stability diagram of explPeer−TR
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Figure 4: Stability diagrams for RK3-FB without (top left) and with (top right) divergence
damping, for RK3-TR without (middle left) and with (middle right) off-centering and for
explPeer-FB (bottom left) and explPeer-TR (bottom right). Unstable regions in grey with
contour interval 0.1.
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is the stability limit Csound ≤ ns. The split-explicit peer method in combination with the
forward-backward Euler scheme is stable for sound CFL numbers up to this limit. So the
combination of peer method and forward-backward Euler scheme harmonizes very well
and there is no stability limit for sound CFL numbers if one uses sufficiently small time
step sizes for the integration of the fast part. The same holds for the combination of the
peer method with the trapezoidal rule, there is no stability restriction from the sound
CFL numbers.

As can be seen this is not the case for the split-explicit Runge-Kutta method. With-
out damping it is not sufficiently stable neither with the forward-backward scheme nor
with the trapezoidal rule. It becomes stable if divergence damping is used. We used a
fixed value of 0.025 = ν ∆τ

∆x2 , the same as in [44]. This means that the original differential
equation is artificially altered by the term νuxx which depends on the spatial and tem-
poral discretization and increases with decreasing time step sizes. Such a method cannot
converge in time if the spatial step size is kept constant. Without this damping term the
split-explicit Runge-Kutta method is unstable in the whole region where Csound > π and
therefore the acoustic modes restrict the maximum time step size because cs >> u in
practical applications. In combination with the trapezoidal rule the split-explicit Runge-
Kutta method is unstable, too. The trapezoidal rule has no amplitude error which makes
it critical for the use with problems with eigenvalues lying on the imaginary axis. It is
part of the class of θ-methods where θ = 0 is the explicit Euler scheme, θ = 0.5 is the
trapezoidal rule and θ = 1 is the implicit Euler scheme. When using the Runge-Kutta
method with some little off-centering, e.g. with θ = 0.55, the resulting split-explicit
method is stable. On the other hand the order of this method is reduced to 1 due to the
off-centering.

These results for the split-explicit Runge-Kutta method were the main motivation
for the construction of a time-splitting method which does not suffer from stability
restrictions due to acoustic modes but furthermore does not need any artificial damping
term. As shown above these aims are reached with the split-explicit peer method.

4.4 Stability properties of linearly implicit methods

Because the linearly implicit methods should be as efficient as split-explicit methods in
regions without cut cells but furthermore should be stable in cut cell regions we present
two stability diagrams for each method: One stability diagram shows the results when
applying them to (21) but with M̂ originating from (23) as Jacobian for efficiency reasons,
i.e.

Ym(I−∆tγM̂)T = BYm−1+SYm+∆tAYm−1M
T+∆tRYmM

T+∆tGYm−1M̂
T+∆tHYmM̂

T .

This case mimics the situation in the free atmosphere where are no cut cells and the
methods should be as stable as the split-explicit peer method. For the other stability
diagram the matrix M̃ from (22) is used as Jacobian, i.e.

Ym(I−∆tγM̃)T = BYm−1+SYm+∆tAYm−1M
T+∆tRYmM

T+∆tGYm−1M̃
T+∆tHYmM̃

T .

This case represents the situation in cut cells and because cut cells can become arbitrarily
small the methods should be stable for arbitrary large advection and sound CFL numbers
with the only restriction u < cs

6
.



4 STABILITY INVESTIGATIONS 46

C
sound

C
ad

v

Stability diagram of ROS3Pw with partial Jacobian

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

C
sound

C
ad

v

Stability diagram of ROS3Pw with simplified Jacobian

0 2000 4000 6000 8000 10000
0

200

400

600

800

1000

1200

1400

1600

C
sound

C
ad

v

Stability diagram of implPeer2 with partial Jacobian
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Figure 5: Stability diagrams for ROS3Pw (top), implPeer2 (middle) and implPeer3 (bottom)
with partial Jacobian (left) and simplified Jacobian (right). Unstable regions in grey with
contour interval 0.1.
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We show the results for three methods which will be described in detail in Section
5.7.

• ROS3Pw is a second-order three-stage Rosenbrock W-method.

• implPeer2 is a second-order three-stage linearly implicit peer method which is based
on the split-explicit peer method.

• implPeer3 is a third-order three-stage linearly implicit peer method.

Figure 5 shows the stability diagrams for the linearly implicit methods when there
is no diffusion, i.e. for ν = 0. As can be seen all methods are stable in the region of
interest for arbitrary large CFL numbers if the simplified Jacobian M̃ is used, i.e. the
methods should be stable in regions with cut cells. In the free atmosphere where M̂ is
used as Jacobian both linearly implicit peer methods are as stable as the split-explicit
peer method, i.e. there is no restriction from the acoustic modes and the limit Cadv ≤ 1.7.
The Rosenbrock method has the stability limit Cadv ≤ 0.9, i.e. it can compute stably
with only half of the time step size which the peer methods can use.

4.5 Amplitude and phase properties

We now consider the amplitude and phase properties of the split-explicit and linearly
implicit methods. The analytical solution of

ẏ = My

with M from (21) is
y(tm) = exp(∆tM)y(tm−1).

When we apply the methods to the test equation the amplification matrix A advances
the solution to the next time level, i.e.

Ym = AYm−1.

If there is no diffusion M has one eigenvalue which results from the advection part
and two eigenvalues incorporating advection and acoustics. Let λ be the eigenvalue of
exp(∆tM) which originates from the pure advection part. Then |λ| is the amplification
factor and

arctan Imλ
Reλ

Imλ

is the relative phase speed. Previously we only considered the maximum of the moduli
of the eigenvalues of the amplification matrices A in order to obtain the regions where
the corresponding methods are stable. Each of these amplification matrices has nine
eigenvalues because we consider three-stage methods which are applied to 3×3-systems.
One of these nine eigenvalues corresponds to the advection part which is advanced one
time step, i.e. it corresponds to λ of exp(∆tM). For this eigenvalue amplitude and rela-
tive phase speed are analogously defined as for λ. These values are compared with the
amplitude and relative phase speed of the analytical solution.
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Figure 6: Amplitude for the 4∆x wave (top), the 7∆x wave (middle) and the 10∆x wave
(bottom) for split-explicit methods and linearly implicit methods with partial Jacobian (left)
and for linearly implicit methods with simplified Jacobian (right). The analytic amplitude in
black.
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Figure 7: Relative phase speed for the 4∆x wave (top), the 7∆x wave (middle) and the 10∆x
wave (bottom) for split-explicit methods and linearly implicit methods with partial Jacobian
(left) and for linearly implicit methods with simplified Jacobian (right). The analytic relative
phase speed in black.
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Figure 6 shows the amplitudes for the considered methods and three wave num-
bers, Figure 7 shows the relative phase speeds. Because the split-explicit peer method
explPeer is the underlying method for implPeer2 and we consider the amplitude and
phase properties of the advection part only, implPeer2 with the partial Jacobian has
the same amplitude and phase errors as explPeer, i.e. it adopts the good amplitude and
phase properties of explPeer. We can see that the split-explicit methods and the linearly
implicit peer methods with partial Jacobian have quite similar amplitude and phase
properties while ROS3Pw with partial Jacobian has worse properties and becomes un-
stable for smaller CFL numbers in comparison to the other methods. When the simplified
Jacobian is used for the linearly implicit methods implPeer2 has the best properties. im-
plPeer3 has worse amplitude properties than implPeer2 while ROS3Pw has larger phase
errors. We will see the effects of these properties in Section 6.4. We can also see that the
differences between the methods decrease if waves with larger wavelengths are considered
because for them the eigenvalues are closer to 0.
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5 Implementation

5.1 The compressible Euler equations

We consider the two-dimensional dry compressible Euler equations in conservative form
with diffusion:

∂ρ

∂t
= −∂ρu

∂x
− ∂ρw

∂z
, (24)

∂ρu

∂t
= −∂ρuu

∂x
− ∂ρwu

∂z
− ∂p

∂x
+νρ

(∂2u

∂x2
+

∂2u

∂z2

)
, (25)

∂ρw

∂t
= −∂ρuw

∂x
− ∂ρww

∂z
− ∂p

∂z
− ρg+νρ

(∂2w

∂x2
+

∂2w

∂z2

)
, (26)

∂ρθ

∂t
= −∂ρuθ

∂x
− ∂ρwθ

∂z
. (27)

Here u and w are the horizontal and vertical winds, ρ is the density, θ the potential
temperature, g the acceleration of gravity, ν the diffusion coefficient and p the pressure
which is given diagnostically by the equation of state

p =
(Rdρθ

pκ0

) 1
1−κ

(28)

where Rd is the gas constant for dry air, κ = Rd/cp, cp the heat capacity of dry air at
constant pressure and p0 is the pressure at ground level. The red terms belong to the
advection part, the black terms are the acoustics and the diffusion is marked in blue. We
use a finite volume spatial discretization on an Arakawa C grid, so the winds are defined
on the cell edges while all scalar variables are defined in the cell centers as illustrated by
Figure 8.

Because the atmosphere nearly is in hydrostatic equilibrium and the change of pres-
sure is small in comparison to its absolute value we compute with its deviation from a
background state which is in hydrostatic equilibrium, i.e. this background state satisfies

∂p

∂z
= −ρg.

So instead of computing with the black terms in (26) we implement

−∂(p− p)

∂z
− (ρ− ρ)g.

In order to obtain linear systems of equations when using implicit methods like the
trapezoidal rule for the fast part of split-explicit methods we need a linearized pressure as
shown for the one-dimensional case in Section 4.1. Therefore we use the Exner pressure

π =
(Rdρθ

p0

) κ
1−κ

(29)

and obtain

− Rd

1− κ
π
∂ρθ

∂x
and − Rd

1− κ
π
∂ρθ

∂z
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Figure 8: The positions of the variables on the Arakawa C grid.

instead of

−∂p

∂x
and − ∂p

∂z
,

i.e. we use the equations (24) to (27) as the right-hand side while the Jacobian originates
from

∂ρ

∂t
= −∂ρu

∂x
− ∂ρw

∂z
, (30)

∂ρu

∂t
= −∂ρuu

∂x
− ∂ρwu

∂z
− Rd

1− κ
π
∂ρθ

∂x
+νρ

(∂2u

∂x2
+

∂2u

∂z2

)
, (31)

∂ρw

∂t
= −∂ρuw

∂x
− ∂ρww

∂z
− Rd

1− κ
π
∂ρθ

∂z
− ρg+νρ

(∂2w

∂x2
+

∂2w

∂z2

)
, (32)

∂ρθ

∂t
= −∂ρuθ

∂x
− ∂ρwθ

∂z
. (33)

As for the pressure p in the vertical momentum equation we compute without the back-
ground state, i.e. with

− Rd

1− κ
π
∂(ρθ − ρθ)

∂z
− Rd

1− κ
(π − π)

∂ρθ

∂z
− (ρ− ρ)g.

For simplicity of notation we will use the formulation where the background state is not
subtracted in the remainder of this thesis.

In Section 6.8 we will also present the application of the methods to the dam-break
problem which is a test case for the shallow water equations. These can easily be gener-
ated from the compressible Euler equations by setting θ = 1, removing the gravity term
from the vertical momentum equation (26) and changing the constants in the equation
of state for the pressure. In this formulation the equations for ρ and ρθ are redundant
and the shallow water equations read

∂ρ

∂t
= −∂ρu

∂x
− ∂ρw

∂z
,

∂ρu

∂t
= −∂ρuu

∂x
− ∂ρwu

∂z
− ∂p

∂x
,

∂ρw

∂t
= −∂ρuw

∂x
− ∂ρww

∂z
− ∂p

∂z
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with
p =

g

2
ρ

1
1−κ .

Now ρ is the depth of the water and u and w are the velocities.
The Euler equations are implemented in MATLAB on an Intel Core 2 Quad Q9550

@ 2833 Mhz with 3 GB RAM.

5.2 Implementation with finite volumes

Because we use cut cells for the representation of orography and because of the conserva-
tion properties we use a finite volume discretization for the compressible Euler equations
as many weather services do. In order to illustrate the implementation of cut cells with
finite volumes we use the mass equation (24) as an example for it. Integration of (24)
over the volume V of one cell gives∫

V

ρ̇dV = −
∫
V

div

(
ρu

ρw

)
dV.

Figure 9 shows this cell. Let n5 be the normal vector of edge 5. We use free slip boundary
conditions at the ground level, i.e. at the ground level the wind blows parallel to it. So
it holds (

ρu

ρw

)
· n5 = 0.

By assuming that the variables are constant in the cell Gauss’ divergence theorem leads
to

−
∫
V

div

(
ρu

ρw

)
dV =−

∮
∂V

(
ρu

ρw

)
· nd∂V

=−
∫
(∆x)1

(
ρu

ρw

)
·
(

0

−1

)
dx−

∫
(∆z)2

(
ρu

ρw

)
·
(
1

0

)
dz

−
∫
(∆x)3

(
ρu

ρw

)
·
(
0

1

)
dx−

∫
(∆z)4

(
ρu

ρw

)
·
(
−1

0

)
dz

=(ρw)1(∆x)1 − (ρu)2(∆z)2 − (ρw)3(∆x)3 + (ρu)4(∆z)4.

Using ∫
V

ρ̇dV = ρ̇6V

and dividing by V results in the spatial discretization of the mass equation

ρ̇6 = −(ρu)2
(∆z)2
V

+ (ρu)4
(∆z)4
V

− (ρw)3
(∆x)3
V

+ (ρw)1
(∆x)1
V

.

We now present the spatial discretization of (24) to (27) with finite volumes. For
this purpose we introduce three notations for the variables: If they are written in black
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Figure 9: One cell with orography (left) and four cells (right) of the grid.

without a tilde they are defined at the locations of their indices which are shown in
Figure 9. Tilde variables are obtained by averaging, e.g.

ρ̃23 :=
ρ22 + ρ24

2
.

If the variable is written in red it is generated at the location of its index by the third-order
upwind scheme (19). θ can simply be obtained by dividing ρθ by ρ because both variables
are defined at the same location. For the wind speeds we divide by the arithmetic mean
of the densities, e.g.

u23 :=
2(ρu)23
ρ̃23

=
2(ρu)23
ρ22 + ρ24

.

The spatial discretization of the compressible Euler equations with finite volumes reads

ρ̇22 =− (ρu)23
(∆z)23
V22

+ (ρu)21
(∆z)21
V22

− (ρw)32
(∆x)32
V22

+ (ρw)12
(∆x)12
V22

,

˙(ρu)23 =− (ρ̃u)24u24
(∆z)24
V23

+ (ρ̃u)22u22
(∆z)22
V23

− (ρ̃w)33u33
(∆x)33
V23

+ (ρ̃w)13u13
(∆x)13
V23

− p24
(∆z)23
V23

+ p22
(∆z)23
V23

+ νρ̃23∆u,

˙(ρw)32 =− (ρ̃u)33w33
(∆z)33
V32

+ (ρ̃u)31w31
(∆z)31
V32

− (ρ̃w)42w42
(∆x)42
V32

+ (ρ̃w)22w22
(∆x)22
V32

− p42
(∆x)32
V32

+ p22
(∆x)32
V32

− ρ̃32g + νρ̃32∆w,

˙(ρθ)22 =− (ρu)23θ23
(∆z)23
V22

+ (ρu)21θ21
(∆z)21
V22

− (ρw)32θ32
(∆x)32
V22

+ (ρw)12θ12
(∆x)12
V22

.

The Laplace operator ∆ for the diffusion terms is discretized with finite differences
independent of cells are cut by orography or not. The reason why we use the above
discretization of the pressure derivatives instead of

−p24
(∆z)24
V23

+ p22
(∆z)22
V23

and − p42
(∆x)42
V32

+ p22
(∆x)22
V32
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Exact Jacobian Simplified Jacobian Ratio Partial Jacobian Ratio
1D 3D2 + 4D3 = 22 3D2 + 3D1 = 12 55% 3D2 = 6 50%
2D 6D2 + 14D3 = 68 6D2 + 8D1 = 28 41% 6D2 = 12 43%
3D 9D2 + 30D3 = 138 9D2 + 15D1 = 48 35% 9D2 = 18 38%

Table 1: Numbers of entries per grid cell of the different Jacobians.

is because the latter ansatz would cause artificial pressure perturbations in cut cells due
to the different lengths of the edges (∆z)24 and (∆z)22 respectively (∆x)42 and (∆x)22.

This finite volume implementation of the compressible Euler equations in flux form
conserves mass and entropy. If we compute without diffusion, with the pressure p and
periodic boundary conditions the momentum is conserved, too. This is not the case if we
use the Exner pressure π which is the reason why we prefer to use the equations (24) to
(27) as the right-hand side instead of (30) to (33).

5.3 Computation of the Jacobian

We now present the details of the implementation of the Jacobian, which is needed for
linearly implicit methods and the trapezoidal rule. When adapting the simplifications of
the Jacobian from the one-dimensional Euler equations, as explained in Section 4.2, for
two dimensions we obtain the matrix which results from the spatial discretization of

−


u 1 0 0
0 u 0 Rd

1−κ
π

0 0 u 0
0 θ 0 u




ρx
(ρu)x
(ρw)x
(ρθ)x

−


w 0 1 0
0 w 0 0
0 0 w Rd

1−κ
π

0 0 θ w




ρz
(ρu)z
(ρw)z
(ρθ)z

−


0

−ν∆(ρu)
ρg−ν∆(ρw)

0


as Jacobian. The red terms originate from the advection part, the black terms from the
acoustics and the blue terms represent the diffusion. So the whole matrix is used as
Jacobian for linearly implicit methods in cut cell regions while in the free atmosphere
the red and blue terms are neglected. The trapezoidal rule computes with the black and
blue terms.

Table 1 shows the amount of memory which is needed for the Jacobian per grid cell,
i.e. the number of non-zero entries in four rows, respectively three rows in 1D and five
rows in 3D, without the consideration of gravity and diffusion. While central differences
and the first-order upwind scheme need two entries per derivative the third-order upwind
scheme needs at least four entries. Therefore the simplified Jacobian only needs 41% of
the memory needed for the exact Jacobian in 2D. If there are no cut cells the partial
Jacobian is used which only has 43% of the number of entries in comparison to the
simplified Jacobian. Because in numerical weather prediction models orography appears
at ground level, cut cells can be located only there, e.g. in a model with 50 vertical
layers only 2% of the cells in the whole domain are cut cells which is negligible from the
memory point of view. So the right column of Table 1 shows the ratio of memory when
using the full but simplified Jacobian in cut cells only instead of everywhere.

We now state the Jacobian for our spatial discretization with finite volumes. As
explained in Section 4.2 the advection terms are discretized with the first-order upwind
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scheme while the acoustics uses central differences. The diffusion is treated with second-
order finite differences instead of finite volumes. We define

J :=


Jρρ Jρu Jρw 0
0 Juu + J∆u 0 Juθ
Jwρ 0 Jww + J∆w Jwθ

0 Jθu Jθw Jθθ

 (34)

and assume negative wind speeds, i.e. if variables are interpolated with the first-order
upwind scheme they will be shifted to the left (or downwards respectively) to the locations
where they are needed for the advection terms. The notation for averaged variables and
indices is the same as in Section 5.2. For the advection we also need the densities at cell
vertices. This is done again with the arithmetic mean, e.g.

ρ̃33 :=
ρ22 + ρ24 + ρ42 + ρ44

4
.

The means of the Exner pressure are needed for the pressure derivatives, to obtain them
we average the potential temperature, e.g.

π̃23 :=
(Rd(ρ̃θ)23

p0

) κ
1−κ

=
(Rd((ρθ)22 + (ρθ)24)

2p0

) κ
1−κ

.

The locations of the entries of the Jacobian are given in parentheses behind the Jacobian.
For example −(ρu)x at location 22 is discretized with

−(ρu)23
(∆z)23
V22

+ (ρu)21
(∆z)21
V22

which is equivalent to (
− (∆z)23

V22

(∆z)21
V22

)(
(ρu)23
(ρu)21

)
.

Therefore Jρu(22, 23) = − (∆z)23
V22

and Jρu(22, 21) = (∆z)21
V22

, i.e. the Jacobian has these
entries in the row which belongs to ρ22 and in the columns which belong to (ρu)23
respectively (ρu)21. The whole Jacobian is the sum of these components:

Jρρ(22, 24) = −u23
(∆z)23
V22

, Jρρ(22, 22) = u21
(∆z)21
V22

,

Jρρ(22, 42) = −w32
(∆x)32
V22

, Jρρ(22, 22) = w12
(∆x)12
V22

,

Jρu(22, 23) = −(∆z)23
V22

, Jρu(22, 21) =
(∆z)21
V22

,

Jρw(22, 32) = −(∆x)32
V22

, Jρw(22, 12) =
(∆x)12
V22

,

Juu(23, 25) = −(ρ̃u)24
ρ24

(∆z)24
V23

, Juu(23, 23) =
(ρ̃u)22
ρ22

(∆z)22
V23

,

Juu(23, 43) = −(ρ̃w)33
ρ̃33

(∆x)33
V23

, Juu(23, 23) =
(ρ̃w)13
ρ̃13

(∆x)13
V23

,
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Juθ(23, 24) = − Rd

1− κ
π̃23

(∆z)23
V23

, Juθ(23, 22) =
Rd

1− κ
π̃23

(∆z)23
V23

,

Jwρ(32, 42) = −g

2
, Jwρ(32, 22) = −g

2
,

Jww(32, 34) = −(ρ̃u)33
ρ̃33

(∆z)33
V32

, Jww(32, 32) =
(ρ̃u)31
ρ̃31

(∆z)31
V32

,

Jww(32, 52) = −(ρ̃w)42
ρ42

(∆x)42
V32

, Jww(32, 32) =
(ρ̃w)22
ρ22

(∆x)22
V32

,

Jwθ(32, 42) = − Rd

1− κ
π̃32

(∆x)32
V32

, Jwθ(32, 22) =
Rd

1− κ
π̃32

(∆x)32
V32

,

Jθu(22, 23) = −θ24
(∆z)23
V22

, Jθu(22, 21) = θ22
(∆z)21
V22

,

Jθw(22, 32) = −θ42
(∆x)32
V22

, Jθw(22, 12) = θ22
(∆x)12
V22

,

Jθθ(22, 24) = −u23
(∆z)23
V22

, Jθθ(22, 22) = u21
(∆z)21
V22

,

Jθθ(22, 42) = −w32
(∆x)32
V22

, Jθθ(22, 22) = w12
(∆x)12
V22

,

J∆u(23, 25) =
ν

(∆x)2
, J∆u(23, 23) = − 2ν

(∆x)2
− 2ν

(∆z)2
,

J∆u(23, 21) =
ν

(∆x)2
, J∆w(32, 52) =

ν

(∆z)2
,

J∆w(32, 32) = − 2ν

(∆x)2
− 2ν

(∆z)2
, J∆w(32, 12) =

ν

(∆z)2
.

∆x and ∆z in the discretization of the Laplace operator are the spatial resolutions of
the grid in the free atmosphere.

For the presented two-dimensional test cases the size of the Jacobian is small enough
to solve the occurring linear systems of equations analytically with the built-in MATLAB
solver which uses LU decomposition.

5.4 Implementation of split-explicit methods

We now show how split-explicit Runge-Kutta methods (8) are applied to the compressible
Euler equations (24) to (27) with the forward-backward Euler scheme or the trapezoidal
rule for the integration of the fast part (2).

We start with the forward-backward Euler scheme from [5]. A detailed description
can be found in [21]. It consists of a forward Euler step for one part of the differential
equation followed by a backward Euler step for the other part. The backward step is
explicit because only the parts of the Euler equations are needed for it which are known
from the forward step. In order to present the concrete implementation for the Euler
equations we use two indices for the variables: The lower case index denotes the time
level and stage of the underlying split-explicit Runge-Kutta method while the upper case
index indicates the time level of the forward-backward Euler scheme. The initial values
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(3) are

ρ(0) = ρm−1,s+1,

(ρu)(0) = (ρu)m−1,s+1,

(ρw)(0) = (ρw)m−1,s+1,

(ρθ)(0) = (ρθ)m−1,s+1.

One forward Euler step with time step size ∆τ = ∆t
ns

is

(ρu)(n+1) = (ρu)(n) +∆τ
( i−1∑
j=1

aij
ci

(
−∂(ρuu)mj

∂x
− ∂(ρwu)mj

∂z

)
− ∂p(n)

∂x
+ νρ(n)∆u(n)

)
,

(ρw)(n+1) = (ρw)(n) +∆τ
( i−1∑
j=1

aij
ci

(
−∂(ρuw)mj

∂x
− ∂(ρww)mj

∂z

)
− ∂p(n)

∂z
− ρ(n)g + νρ(n)∆w(n)

)
followed by the backward step

ρ(n+1) = ρ(n) +∆τ
(
−∂(ρu)(n+1)

∂x
− ∂(ρw)(n+1)

∂z

)
,

(ρθ)(n+1) = (ρθ)(n) +∆τ

i−1∑
j=1

aij
ci

(
−∂(ρu)(n+1)θmj

∂x
− ∂(ρw)(n+1)θmj

∂z

)
.

The number of forward-backward Euler steps per stage of the underlying Runge-Kutta
method is

ci∆t

∆τ
.

In fact ∆τ is chosen close to ∆t
ns

so that this number is natural. In practice the spatial
derivatives are discretized first and the advection terms, i.e. the terms which are constant
during the forward-backward steps, are computed only once per stage of the underlying
method. Split-explicit peer methods (8) with the forward-backward Euler scheme are
implemented analogously.

When using the trapezoidal rule for integration of the fast parts (2) and (6), the
Euler equations (30) to (33) with the Exner pressure are considered. In principle the
trapezoidal rule uses the same Jacobian, i.e. the black and blue parts of (34), as linearly
implicit methods. Besides the fact that diffusion is treated as the fast part for split-
explicit methods in contrast to linearly implicit methods, which only use the acoustic
parts of (34) in the free atmosphere, there is another difference: This difference results
from the nonlinearity of the pressure derivatives in the momentum equations (31) and
(32) and the derivatives in the temperature equation (33). As explained in Section 5.3
the Jacobian for linearly implicit methods has the entries

Juθ = − Rd

1− κ
π
∆z

V
,

Jwθ = − Rd

1− κ
π
∆x

V
,
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Jθu = −θ
∆z

V
,

Jθw = −θ
∆x

V
.

For split-explicit methods we use linear combinations of π and θ which originate from the
underlying explicit method, e.g. instead of the above entries split-explicit Runge-Kutta
methods use

Luθ := − Rd

1− κ

i−1∑
j=1

aij
ci

πmj
∆z

V
,

Lwθ := − Rd

1− κ

i−1∑
j=1

aij
ci

πmj
∆x

V
,

Lθu := −
i−1∑
j=1

aij
ci

θmj
∆z

V
,

Lθw := −
i−1∑
j=1

aij
ci

θmj
∆x

V

as Jacobian. Because of these differences we use the notation L for the Jacobian for
split-explicit methods. The other entries of L are equal to entries of the Jacobian J for
linearly implicit methods. Because we use equal time step sizes ∆τ = ∆t we have to
solve one linear system of equations

(
I − ci∆t

2
L
)
ymi =

(
I +

ci∆t

2
L
)
ym−1,s+1 +∆t

i−1∑
j=1

aij


0

−∂(ρuu)mj

∂x
− ∂(ρwu)mj

∂z

−∂(ρuw)mj

∂x
− ∂(ρww)mj

∂z

0


in each stage of a split-explicit Runge-Kutta method. The implementation of split-explicit
peer methods with the trapezoidal rule is analogous.

5.5 Initialization of orography

When computing with orography one problem is the initialization of it. A mountain which
is instantaneously inserted into an atmosphere that is at rest will cause perturbations
in the pressure. This is illustrated by Figure 10 which shows the pressure perturbation
cause by the Witch of Agnesi mountain of test case 3. One widespread ansatz to avoid
this problem is to use Rayleigh damping. This means that the computing domain is
expanded and in the additional domain the variables will be artificially forced back
to the background state. Due to the larger domain this approach is not very efficient.
Therefore we use another strategy.

We change the initial atmosphere by computing a wind field that follows the shape of
the mountain. This wind field is obtained by performing one backward Euler step with
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Pressure perturbation
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Figure 10: Pressure perturbation after 20 s (left) and initialized wind field (right).

sufficiently large time step size. We solve

(
I −∆tJ

)
y =


0
ρu
ρw
0


with J the partial Jacobian which only contains the acoustic parts, i.e. the black terms
in (34). Only the winds are updated with this solution, otherwise one would also adopt
the disturbance. The result of this ansatz can be seen in Figure 10. It is quite good and
we do not need to expand the domain in order to damp the disturbance.

5.6 Method search

We now describe how we obtained the coefficients of the considered peer methods. For
the split-explicit peer method our aim was to construct a method (8) with s = 3 stages,
order p = s − 1 = 2 and stability properties comparable to those of the split-explicit
Runge-Kutta method RK3. For these aims we have the coefficient matrices B, S, A,
R and the vectors c and α. As described in Section 3.1 we use s(s − 1) coefficients of
A to satisfy the classical peer order conditions and the remaining s degrees of freedom
are expressed with a vector β. The additional split order conditions are fulfilled by B.
Furthermore we define cs = 1 so that the last stage is an approximation to the analytical
solution at time points tm. Therefore we have the 14 remaining parameters c1, c2, α1,
α2, α3, β1, β2, β3, s21, s31, s32, r21, r31 and r32 as degrees of freedom in the optimization
process.

For the optimization we use a Monte Carlo search strategy in this 14-dimensional
subspace of second-order three-stage split-explicit peer methods: A set of 1000 peer
methods is generated from the degrees of freedom. These methods are evaluated with
the optimization function and from the coefficients of the best method 999 new methods
are randomly generated in a neighbourhood within a radius which decreases in each
iteration step. If the best method does not change during ten steps the algorithm aborts.
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The optimization function consists of two parts: The first aim is stability. The method
should be as stable without any damping as RK3 is with divergence damping, i.e. stability
for advection CFL numbers up to 1.7 and sound CFL numbers up to 90% of ns, when
the forward-backward Euler scheme is used for integration of the acoustic part. This
criterion is verified by considering the maximum eigenvalue of the amplification matrix
A in dependency of the sound CFL number for a fixed number of small time steps ns = 30,
the advection CFL number is chosen as 0 and the minimum of Csound/6 and 1.7. It has
been shown in practice that methods which are stable for these advection CFL numbers
are stable for values between these two extrema, too. Furthermore they are also stable
up to Csound < 0.9ns for other numbers of ns. The second aim is to obtain methods which
have small integration intervals αi of the fast part (6) in order to be computationally
efficient. During the first part of the optimization process the optimization function only
contains the stability aim. If it is fulfilled ||α||1 is optimized while the achieved stability
property remains as a side condition. The stability criteria are verified with the functions

φ̃(Csound) :=

(
||eig(A(0, Csound))||∞

||eig(A(min(Csound/6, 1.7), Csound))||∞

)
and

φ̂ := max{0 ≤ Csound ≤ 27 : ||φ̃(Csound)||∞ ≤ 1} − 27

where eig denotes the eigenvalue function and the CFL numbers Cadv and Csound are the
arguments of the amplification matrix A. Then our optimization function φ is given by

φ :=

{
φ̂ if φ̂ < 0

1/||α1|| if φ̂ = 0

and we optimize with respect to the global maximum of φ. With this search strategy we
found the method explPeer.

For the construction of linearly implicit peer methods (10) we optimize the remaining
degrees of freedom with respect to amplitude and phase errors which are explained in
Section 4.5. As a side condition we claim that the method has to be stable for wind
speeds u < cs/6 in the following situations:

• In the free atmosphere only the acoustic part M̂ is used as Jacobian. The peer
method should be as stable as explPeer, i.e. it should be stable for Cadv < 1.7 and
arbitrary large sound CFL numbers. Because stability is determined numerically
this condition is verified for CFL numbers up to 10000.

• In cut cells the matrix M̃ is used as Jacobian and the peer method should be stable
for arbitrary large advection CFL numbers and sound CFL numbers, in practice
up to 10000.

Let Â be the amplification matrix when the partial Jacobian M̂ is used and Ã is its
notation when the simplified Jacobian M̃ is used. For linearly implicit peer methods we
use the functions

φ̃(Csound) :=


||eig(Â(0, Csound))||∞

||eig(Â(min(Csound/6, 1.7), Csound))||∞
||eig(Ã(0, Csound))||∞

||eig(Ã(Csound/6, Csound))||∞


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and
φ̂ := max{0 ≤ Csound ≤ 10000 : ||φ̃(Csound)||∞ ≤ 1} − 10000

to verify stability. Our optimization function φ is given by

φ :=

{
φ̂ if φ̂ < 0

1/max{erroramp, errorphase} if φ̂ = 0

and we optimize with respect to the global maximum of φ. We found the three-stage
methods implPeer2 and implPeer3. For the second-order peer method implPeer2 we only
optimized the coefficients of the implicit part, i.e. γ, G and H, while the coefficients of
the explicit part are those of explPeer in order to adopt its good stability, amplitude and
phase properties. For implPeer3 we optimized all coefficients and used the conditions for
order of consistency 2 and the additional conditions for superconvergence from Theorem
7 as side conditions, i.e. this method has order of convergence 3.

5.7 Coefficients of the methods

We now give an overview of the properties of the methods considered in this thesis and
their coefficients.

The most important properties are shown in Table 2. While all methods have three
stages, implPeer3 is the only method which is third-order due to its superconvergence
property. ROS3Pw has order 3 if it uses an exact Jacobian but with the partial or
the full but simplified Jacobian its order is reduced to 2. In order to be applicable
to the compressible Euler equations with reasonable time step sizes RK3 has to use
divergence damping when using the forward-backward Euler scheme or off-centering for
the trapezoidal rule. Divergence damping alters the Euler equations in such a way that
the error of the numerical scheme diverges for sufficiently small time step sizes. The
effect of the off-centering is the reduction of the order to 1. In contrast to RK3 the
peer method explPeer does not have these disadvantages because it can stably integrate
the compressible Euler equations without the need for artificial damping or off-centering.
Furthermore the sum of the fast integration intervals is 20% smaller when using explPeer
in comparison to RK3. In combination with the forward-backward Euler scheme for the
integration of the fast part this results in computational efficiency.

All presented linearly implicit methods are stable for arbitrary large advection and
sound CFL numbers if the simplified Jacobian is used, which makes them implementable
with cut cell grids. Furthermore they are also stable when the Jacobian only contains
the acoustic part, i.e. the full but simplified Jacobian is needed in cut cell regions only.
Due to the better stability properties of the linearly implicit peer methods with partial
Jacobian they can compute with the double time step size that ROS3Pw can use with
the partial Jacobian.

5.7.1 The split-explicit Runge-Kutta method RK3

Because the second-order three-stage split-explicit Runge-Kutta method RK3 is a widely
used solver for the compressible Euler equations and implemented in several weather
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Method s p ||α||1 Cadv Csound

RK3-FB 3 2 (-) 1.83 1.7 3 (29)
RK3-TR 3 2 (1) 1.83 1.7 1 (∞)

explPeer-FB 3 2 1.44 1.7 30
explPeer-TR 3 2 1.44 1.7 ∞
ROS3Pw 3 2 - 0.9 / ∞ ∞ / ∞
implPeer2 3 2 - 1.7 / ∞ ∞ / ∞
implPeer3 3 3 - 1.7 / ∞ ∞ / ∞

Table 2: Properties of the considered methods. s is the number of stages, p the order of
convergence, ||α||1 the sum of the fast integration intervals for split-explicit methods, Cadv and
Csound are the advection and acoustic stability limits for split-explicit methods and for linearly
implicit methods with partial/simplified Jacobian under the restriction u < cs

6 . Properties
of RK3 with divergence damping respectively off-centering in parentheses. ns = 30 for FB
respectively ns = 1 for TR.

codes we compare our split-explicit peer method with it. Written as a peer method (8)
its coefficients are

c =
(

0.3333333333333333 0.5000000000000000 1.0000000000000000
)T

,

α =
(

0.3333333333333333 0.5000000000000000 1.0000000000000000
)T

,

B =

 0 0 1.0000000000000000
0 0 1.0000000000000000
0 0 1.0000000000000000

 ,

S =

 0 0 0
0 0 0
0 0 0

 ,

A =

 0 0 0.3333333333333333
0 0 0
0 0 0

 ,

R =

 0 0 0
0.5000000000000000 0 0

0 1.0000000000000000 0

 .

5.7.2 The split-explicit peer method explPeer

We constructed the second-order three-stage split-explicit peer method explPeer in order
to obtain a method which can stably integrate the compressible Euler equations without
the need for artificial damping. Its coefficients are

c =
(
−0.0899531627878552 0.4676428830697650 1.0000000000000000

)T
,

α =
(

0.0663272206869391 0.5550418090653669 0.8254622965775626
)T

,
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B =

−0.0967059983845656 0.4915598645202344 0.6051461338643311
−0.0470929826281593 0.2169946581702936 0.5720815963722115
−0.0891437312845480 0.1573830315884013 0.1973233392586685

 ,

S =

 0 0 0
0.2580167280856541 0 0
0.3269306113397434 0.4075067490977347 0

 ,

A =

 0.0721007322008575 −0.1322804288331288 0.1265069173192104
0.0478238719665258 −0.4831372398722279 −0.1163332106046261
0.0325906971440313 0.0702440095890842 0.1286761505892647

 ,

R =

 0 0 0
1.1066883875756954 0 0

−0.5020271673748957 1.0959786066300778 0

 .

5.7.3 The Rosenbrock method ROS3Pw

The three-stage Rosenbrock method ROS3Pw has been developed for parabolic partial
differential equations and parabolic partial differential algebraic equations of index 1
with the aim to obtain a third-order Rosenbrock method which is robust even if only
an approximation of the Jacobian is used. ROS3Pw has been presented in [25] and
was successfully tested with the Navier-Stokes equations amongst others. While popular
Rosenbrock methods like RODAS ([10]), RODASP ([33]) or ROS3P ([20]) are ROW-
methods, i.e. the order decreases to 1, and they are not stable if an approximate Jacobian
is used, ROS3Pw is a W-method. Contrariwise to those ROW-methods ROS3Pw is
second-order and stable if the partial Jacobian is used. For these reasons we decided to
compare the linearly implicit peer methods with ROS3Pw.

We implemented ROS3Pw as a linearly implicit peer method. While peer methods
(10) use the same solution vectors Ymi for the evaluation of the right-hand side f(Ymi)
and the Jacobian-vector products JYmi Rosenbrock methods

(I −∆tγJ)ki = ∆tf
(
Ym−1,s +

i−1∑
j=1

aijkj

)
+∆t

i−1∑
j=1

γijJkj

Yms = Ym−1,s +
s∑

j=1

bjkj

use different solution vectors Ym−1,s +
∑i−1

j=1 aijkj and kj for the evaluation of the right-
hand side and the Jacobian-vector products. In order to write a Rosenbrock method as
a peer method we have to use the solution vectors Ymi := Ym−1,s +

∑i
j=1 ai+1,jkj and

express the slopes ki as linear combinations of Ym−1,i and Ymi. The Butcher tableau of
ROS3Pw is

0
1.577350269189625 1.577350269189625

0.5 0.5

0.105662432702593 0.049038105676657 0.845299461620748
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and therefore

Ym = 1lY T
m−1,s +

1.577350269189625 0 0
0.5 0 0

0.105662432702593 0.049038105676657 0.845299461620748

kT1
kT2
kT3

 .

Obviously it is not possible to solve these equations for ki. For this reason we added an
additional stage, i.e. we implemented the three-stage Rosenbrock method ROS3Pw as a
four-stage linearly implicit peer method. Its coefficients are

c =
(

0 1.5773502691896257 0.5000000000000000 1.0000000000000000
)T

,

γ =
(

0.7886751345948128 0.7886751345948128 0.7886751345948128 0.7886751345948128
)T

,

B =


0 0 0 1.0000000000000000
0 0 0 1.0000000000000000
0 0 0 0.6830127018922192
0 0 0 0.8839745962155612

 ,

S =


0 0 0 0
0 0 0 0

0.3169872981077807 0 0 0
0.0669872981077806 0.0490381056766579 0 0

 ,

A =


0 0 0 1.5773502691896256
0 0 0 0
0 0 0 0
0 0 0 0

 ,

R =


0 0 0 0

1.0000000000000000 0 0 0
0 0 0 0
0 0 0.8452994616207484 0

 ,

G =


0 0 0 −0.7886751345948128
0 0 0 0.2113248654051871
0 0 0 −0.5386751345948128
0 0 0 −0.1933756729740644

 ,

H =


0 0 0 0

−1.0000000000000000 0 0 0
−0.2500000000000000 0 0 0
−0.4122867597285291 −0.1830127018922193 0 0

 .

5.7.4 The linearly implicit peer method implPeer2

The second-order three-stage linearly implicit peer method implPeer2 was found by using
explPeer as the underlying method in order to obtain its good stability properties when
only the partial Jacobian is used. The remaining parameters have been optimized so
that the method is stable for arbitrary large advection CFL numbers when the simplified
Jacobian is used. The coefficients of implPeer2 are

c =
(
−0.0899531627878552 0.4676428830697650 1.0000000000000000

)T
,

γ =
(

0.5167851598100672 0.5167851598100672 0.5167851598100672
)T

,

B =

−0.0967059983845656 0.4915598645202344 0.6051461338643311
−0.0470929826281593 0.2169946581702936 0.5720815963722115
−0.0891437312845480 0.1573830315884013 0.1973233392586685

 ,

S =

 0 0 0
0.2580167280856541 0 0
0.3269306113397434 0.4075067490977347 0

 ,
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A =

 0.0721007322008575 −0.1322804288331288 0.1265069173192104
0.0478238719665258 −0.4831372398722279 −0.1163332106046261
0.0325906971440313 0.0702440095890842 0.1286761505892647

 ,

R =

 0 0 0
1.1066883875756954 0 0

−0.5020271673748957 1.0959786066300778 0

 ,

G =

−0.2873500776711067 0.5010014103242811 −0.7304364924632416
−0.5198912797002499 1.5416287759361538 −1.4010177204289034
−0.3557339562292955 0.7879731539945604 −0.9973424995819653

 ,

H =

 0 0 0
−0.1375049356170674 0 0
0.9103920894669218 −0.8620739474602885 0

 .

5.7.5 The linearly implicit peer method implPeer3

For the construction of the third-order three-stage linearly implicit peer method im-
plPeer3 all coefficients have been optimized in order to obtain a method which has the
same stability properties as implPeer2 but furthermore is third-order due to its super-
convergence property. The coefficients are

c =
(
−0.5777333525760953 0.3002651533615503 1.0000000000000000

)T
,

γ =
(

0.4289052382134347 0.4289052382134347 0.4289052382134347
)T

,

B =

 0.0298493709790728 1.0110127004800935 −0.0408620714591663
0.1860016560477698 0.3448649676740809 −0.2085911976769894

−0.0786622735220804 0.4003790662974256 0.2685200438402068

 ,

S =

 0 0 0
0.6777245739551386 0 0
0.3680084510099432 0.0417547123745046 0

 ,

A =

 0.1522177815016555 −0.1749024319658557 0.1994864629551681
−0.1144213489989192 0.2581057405561797 0.4184501342332333
−0.0594148435598668 0.0083741953087149 0.2433007398619567

 ,

R =

 0 0 0
0.6644497694527152 0 0
0.0008670049082676 1.1629972665721646 0

 ,

G =

−0.2316113862533708 0.1681038871837252 −0.3653977391437892
0.2077381806352361 −0.2186525760535129 −0.3384189571059057

−0.0444597966294304 0.0700417649740132 −0.2241133953266569

 ,

H =

 0 0 0
−0.0795718856892522 0 0
0.4337900898424071 −0.6641639010737678 0

 .
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6 Numerical tests

6.1 Order test 1: Burgers’ equation

We now present some numerical tests to verify the order theory. The first order test is
the inviscid Burgers’ equation

∂u

∂t
= −u

∂u

∂x

with u the wind speed. As initial condition we choose

u(0, x) = 20 + 10 sin50
(πx
L

)
where L = 30 km is the length of the domain and we use periodic boundary conditions.
The spatial step size is ∆x = 200 m and the integration period is te = 200 s. The
reference solution has been computed with implPeer3 with ∆t = 1/300 s, i.e. with a
CFL number of 1/2000.

Figure 11 shows the errors of the considered methods for different CFL numbers in
the discrete L2 norm. This test confirms the results from the order theory. All methods
show the expected order, i.e. order 2 with the exception of the superconvergent third-
order implPeer3. For the linearly implicit methods the partial Jacobian was used but the
results are similar when we use the simplified Jacobian (not shown). Because there is no
acoustics implPeer2 is equal to explPeer if the partial Jacobian is used. RK3 seems to be
third-order for large time step sizes. This may be the case because RK3 fulfils one of the
two order conditions for third-order Runge-Kutta methods and is third-order for linear
problems. This tests shows that RK3 is the most accurate method for large CFL numbers
while implPeer3 becomes the best method for medium and small CFL numbers due to
its superconvergence property. The Rosenbrock method ROS3Pw is the most inaccurate
method for all time step sizes.

6.2 Order test 2: Burgers’ equation with acoustics

To test the order with an example with two different modes the pressure p is added to
the inviscid Burgers’ equation for the second order test:

∂u

∂t
= −u

∂u

∂x
− ∂p

∂x
,

∂p

∂t
= −u

∂p

∂x
− c2s

∂u

∂x
.

cs = 340 m s−1 is the speed of sound. These equations are the linearized version of
the equations which were used in [44] and [45] to determine stability. The pressure is
initialized with

p(0, x) = cs,

all other parameters are equal to those of the first order test.
The errors in the discrete L2 norm of the wind computed with the considered methods

for different CFL numbers are illustrated by Figure 11. The split-explicit methods RK3
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Figure 11: Error of the numerical solution for the Burgers’ equation (left) and for the Burgers’
equation with acoustics (right) in L2 norm against CFL number.

and explPeer use the forward-backward Euler scheme with ns = 30 small time steps per
large time step. The results are quite similar to the first order test, RK3 is the most
accurate method for large CFL numbers while implPeer3 is the best method for small
time step sizes. But there is an important difference: For small CFL numbers the order of
the split-explicit methods decreases to 1 because the forward-backward Euler scheme is
first-order. This behaviour can be prevented by using larger ns for small ∆t. But because
we wanted to show the methods with a ns which is feasible in more realistic test cases
we decided to present the order plot for a fixed number of ns. We show the results for
RK3 without divergence damping, i.e. it becomes unstable for large CFL numbers. The
reason why this is not visible in the order plot is because the first signs of instability
appear after around 900 s but for the order test te = 200 s.

6.3 Order test 3: Rising bubble

For the third order test we compute with the compressible Euler equations. We consider
the rising bubble test case described in Section 6.4 with the only exception of the doubled
spatial step size of ∆x = 250 m. The maximum wind speed which occurs is 27 m s−1. The
reference solution has been computed with implPeer3 with a time step size of ∆t = 0.01
s which corresponds to a CFL number of approximately 1/1000.

With eρu, eρw and eρθ being the errors of ρu, ρw and ρθ in the discrete L2 norm

Figure 12 shows
√
e2ρu + e2ρw + e2ρθ in dependency of the CFL number and the required

CPU time. The results are very similar to the much simpler order test 2, implPeer3 is
the most accurate method and the split-explicit methods are first-order for small CFL
numbers because they use a first-order scheme for the integration of the fast part. Because
of the longer integration period of 1000 s instabilities occur when RK3 is used without
divergence damping. Therefore the error is not plotted for RK3 with large CFL numbers.
We now can see that implPeer3 is the best method for most CFL numbers. For large time
step sizes RK3 is unstable while for small ∆t implPeer3 is more accurate because it is
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Figure 12: Error of the numerical solution for the rising bubble test in L2 norm against CFL
number (left) and CPU time (right).

superconvergent with order 3. Only for medium time step sizes RK3 is the best method
from an accuracy point of view. Figure 12 also shows the error against the CPU time
on an Intel Core 2 Quad Q9550 @ 2833 Mhz with 3 GB RAM. Qualitatively there is no
difference to the error against CFL number plot. But we have to make two restrictions
for this statement: Firstly we implemented the three-stage Rosenbrock method ROS3Pw
as a four-stage peer method. Secondly the occurring linear systems of equations are
solved with the built-in MATLAB solver. With this implementation the effort of using a
linearly implicit method with the partial Jacobian is similar to the effort of integrating
the fast part with the forward-backward Euler scheme with ns = 30 for split-explicit
methods. This may be different when using efficient iterative solvers and the linearly
implicit methods might get even better.
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6.4 Test case 1: Rising bubble

We present the results for five test cases. The first one is the rising bubble which is
described in detail in [2]. As initial condition we have an adiabatic atmosphere with the
exception of an initial thermal of 2 K with radius and height of 2 km, i.e. the potential
temperature is perturbed by

θ′ = 2 cos
(πC

2

)
where

C =

√(x− xc

xr

)2

+
(z − zc

zr

)2

, (35)

xc = 0 km and zc = xr = zr = 2 km. We use a 20 km × 10 km domain with a spatial
resolution of 125 m. A uniform horizontal flow of 20 m s−1 from the left as in [44] and
periodic boundary conditions cause a lateral transport of the bubble which makes the
test more stringent. After the integration period of 1000 s the bubble should be located
in the center of the domain and remain symmetric as shown by Figure 13.

Figure 14 shows the potential temperature after 1000 s. The integration was per-
formed with a time step size of 7 s with the exception of ROS3Pw with partial Jacobian,
because this method is unstable with ∆t = 7 s, instead it computes with 3.5 s. The
maximum wind speed that occurred was approximately 29 m s−1 so that these time step
sizes correspond to CFL numbers of 1.6 and 0.8 for advection, respectively 27 and 13.5
with respect to sound waves. The split-explicit methods use the forward-backward Euler
scheme with ns = 30 small time steps per large time step. Furthermore RK3 has to
use divergence damping with ν = 0.025 in order to be stable. The solutions computed
with the split-explicit methods and the linearly implicit methods with partial Jacobian
are quite good despite the fact that the time step sizes are close to the CFL condition
from linear stability theory. ROS3Pw produces a slightly more symmetric solution than
the two linearly implicit peer methods, but all solutions are rather similar although the
other methods use the double time step size of ROS3Pw. The solutions appear to be
much more accurate than the results published in [44] where a second-order split-explicit
Runge-Kutta method with a five times smaller CFL number, namely 0.32, was used.
When computing with the simplified Jacobian the results are worse than the solutions
computed with the partial Jacobian. The solutions show asymmetries but implPeer2 is
more accurate than ROS3Pw and implPeer3, as is to be expected when considering the
amplitude and phase properties shown in Section 4.5.
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Figure 13: Potential temperature after 0 s, 143 s, 286 s, 429 s, 572 s, 715 s, 858 s and 1000 s
for the rising bubble test case.
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Figure 14: Potential temperature after 1000 s for the rising bubble test computed with (from
top to bottom) RK3 (left) and explPeer (right) with forward-backward Euler scheme, ROS3Pw,
implPeer2 and implPeer3 with partial (left) and simplified (right) Jacobian.
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6.5 Test case 2: Density current

The second test problem is related to the first one. Again there is a balanced initial
atmosphere but for the density current test the bubble is colder than the surrounding
air. The temperature is perturbed by

T ′ = −15 cos
(πC

2

)
with C from (35) but with zc = 3 km and xr = 4 km. In this test there is diffusion
with ν = 75 m2 s−1 as described in [35]. Because the bubble is colder it sinks and after
crashing to the bottom (with free slip vertical boundary conditions) several eddies form
as illustrated by Figure 15. The domain has a width of 36 km and the uniform horizontal
flow of 20 m s−1 from the left should provide a symmetric solution after 900 s, i.e. half
orbit. The spatial resolution is 100 m in both directions.

For this test we present the solutions computed with ∆t = 2.5 s, with the exception
of ROS3Pw, which used ∆t = 1.25 s because of its worse stability properties. The
split-explicit methods use FB with ns = 15 while the linearly implicit methods use the
partial Jacobian. Furthermore we compute with implPeer2 and ∆t = 3.5 s in one setting
where we dynamically adapt the Jacobian so that it incorporates advection, diffusion
and acoustics in cells with wind speeds higher than 40 m s−1, while in the remaining
cells the Jacobian only contains the acoustic part. Because in this test the temperature
difference is higher than in the rising bubble test the maximum wind speed is 61 m
s−1. The time step sizes correspond to advection CFL numbers of 2.1 for ∆t = 3.5 s,
1.5 for ∆t = 2.5 s and 0.8 for ∆t = 1.25 s. In the test with the dynamically adapted
Jacobian the threshold of 40 m s−1 corresponds to an advection CFL number of 1.4. So
the CFL numbers are close to the maxima from linear stability theory just like in the
rising bubble test. Figure 16 shows the results: Every solution shows three eddies at each
side where the backward directed (right) eddies are better pronounced. This phenomenon
was also documented in [45] and [13] (there the horizontal mean wind came from the
right). While the backward directed eddies look rather similar for the different methods
the forward directed eddies are better pronounced when computing with smaller time
step sizes but this is only barely visible. Despite the fact that the used CFL numbers
are close to the maxima from stability theory, all solutions are in agreement with the
solution presented in [35] (where the tests were performed without the background wind)
with the exception of the asymmetries caused by the lateral transport. Furthermore no
noise comes from adapting the Jacobian at high wind speeds, i.e. the peer methods with
partial and simplified Jacobian harmonize very well.
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Figure 15: Potential temperature after 0 s, 180 s, 360 s, 540 s, 720 s and 900 s for the density
current test case.
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Figure 16: Potential temperature after 900 s for the density current test computed with (from
top to bottom) RK3 and explPeer with forward-backward Euler scheme, ROS3Pw, implPeer2
and implPeer3 with partial Jacobian and implPeer2 with simplified Jacobian in cells with high
wind speeds only.
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6.6 Test case 3: Flow over a mountain

The third test problem is the flow over a mountain. This problem is described in [6].
There is a mountain with a half-width of 1 km and a height of 400 m as shown in Figure
17. The spatial resolution is 200 m in both directions. A horizontal flow of 10 m s−1 from
the left results in gravity waves in the lee of the mountain as can be seen in Figure 17.

Figure 18 shows the vertical wind after 2160 s. Because of the representation of the
orography with cut cells very small cells appear, the smallest having a size of 0.17% of
the cells in the free regions. Because the initial values, which are needed for the peer
methods, are computed with the explicit method RK3 the time step size needed for
the initialization would be 600 times smaller than the time step size used by the peer
methods. Therefore we close all cells which are smaller than 1% of the cells in the free
atmosphere, i.e. we pretend that the mountain completely cuts out these cells instead of
only 99% of them and assume that this has no significant influence on the solution. We
use a time step size for the initialization of the peer methods which is 100 times smaller
than ∆t. The time step size used for ROS3Pw with simplified Jacobian and the linearly
implicit peer methods is ∆t = 20 s, while ROS3Pw with simplified Jacobian in cut cells
only computes with ∆t = 10 s and the split-explicit methods use ∆t = 0.2 s and FB
with ns = 50. The maximum wind speed that occurs is 14 m s−1 which results in an
advection CFL number of 1.4 in the free atmosphere, respectively 0.7 for ROS3Pw with
simplified Jacobian in cut cells only. In the cut cells the advection CFL number rises
to 140 and the CFL number for the acoustics is up to 4800. Despite those large CFL
numbers all solutions are in very good agreement with the results published in [6] and
no clear difference is visible between the solutions computed with the full but simplified
Jacobian everywhere and in cut cells only. These results verify the linear stability theory
and confirm that the simplified Jacobian is needed in cut cells only.
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Figure 17: Witch of Agnesi mountain with cut cells and vertical wind after 0 s, 360 s, 720 s,
1080 s, 1440 s, 1800 s and 2160 s for the flow over a mountain test case. Contour interval is
0.25 m s−1.
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Figure 18: Vertical wind after 2160 s for the flow over a mountain test computed with (from
top to bottom) RK3 (left) and explPeer (right) with forward-backward Euler scheme, ROS3Pw,
implPeer2 and implPeer3 with simplified Jacobian in cut cells only (left) and everywhere (right).
Contour interval is 0.25 m s−1.
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6.7 Test case 4: Zeppelin test

The fourth test is a more fanciful one and combines the rising bubble test with cut
cells. It provides a more stringent environment to test the effects of different Jacobians
because the rising bubble test showed how sensitive the shape of the bubble is to the
use of different Jacobians. In this test parts of the bubble will be located in cut cells,
i.e. parts of the bubble will be computed with the simplified Jacobian while other parts
are updated with the partial Jacobian. A detailed description of the initial conditions
can be found in [17] but our setup differs a little bit from that one. There is the same
warm bubble as in the rising bubble test with the same grid but the bubble is located
1 km to the left and there is no background wind. The main difference is that there
is a region in the center of the domain which is cut out, i.e. the grey region shown in
Figure 19 is an obstacle. While the inner cells are completely cut out cut cells appear at
the boundaries of this zeppelin, the smallest cells with a size of 0.13% of the full cells.
For the same reason as in the flow over a mountain test we close tiny cells so that the
smallest cells have a minimum size of 1% of the cells in the free atmosphere. The bubble
will crash against the obstacle and will asymmetrically divide into two separate parts as
demonstrated by Figure 19.

ROS3Pw with simplified Jacobian and the linearly implicit peer methods compute
with ∆t = 10 s and the maximum wind speed is approximately 17.5 m s−1, which
results in CFL numbers of 1.4 for advection and 38 for acoustics in the free atmosphere
respectively 140 and 3800 in the smallest cut cells. As before we use the half time step
size for ROS3Pw with simplified Jacobian in cut cells only and a 100 times smaller time
step size for the split-explicit methods. They use FB with ns = 40 for the integration
of the fast part. As in the density current and flow over a mountain tests there is no
qualitative difference between the different methods as shown by Figure 20. So again it
is sufficient to use the full but simplified Jacobian in cut cells only.
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Figure 19: Zeppelin obstacle with cut cells and potential temperature after 0 s, 208 s, 416 s,
624 s, 832 s, 1040 s and 1250 s for the zeppelin test case.
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Figure 20: Potential temperature after 1250 s for the zeppelin test computed with (from top
to bottom) RK3 (left) and explPeer (right) with forward-backward Euler scheme, ROS3Pw,
implPeer2 and implPeer3 with simplified Jacobian in cut cells only (left) and everywhere (right).
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6.8 Test case 5: Dam-break test

For the fifth test we solve the inviscid shallow water equations. These can be derived
from the Euler equations by setting θ = 1 as described in Section 5.1. We present the
results for the two-dimensional dam-break described in [37]. The domain is 1400 m long
in both directions with a dam in the center of the domain. It has broken from 560 m to
840 m, i.e. the water from the side where it has a depth of 10 m flows into the other half
of the domain where the water is 9.5 m deep. Contrariwise to [37] our dam has a width
of the spatial step size ∆x = ∆z = 7 m, i.e. there are uncut cells and cells which are
completely cut out but no cut cells. Therefore the explicit methods can compute with
the same time step sizes which the linearly implicit schemes use. To make the test more
stringent for linearly implicit methods we broaden the dam-break by 7 cm so that cut
cells appear at the edges of the break which have 1% of the size of the uncut cells. This
tiny difference in the setup has no visible influence on the solutions computed by the
linearly implicit methods (not shown). Therefore we compare the results of both kinds
of methods despite the fact that they use a slightly different setup from this test case.
Figure 21 shows the water depth during the first 50 s of the test computed by RK3 with
∆t = 0.1 s.

The results after 50 s are presented in Figure 22. The maximum occurring speed
was 2 m s−1. All methods computed with ∆t = 1 s, i.e. with a CFL number of 0.3 in
the uncut cells. Because of the slightly different setup for the linearly implicit methods
their time step size corresponds to a CFL number of 30 in the cut cells at the edges
of the dam-break. The split-explicit methods use the forward-backward Euler scheme
with ns = 3 small time steps per large time step. When comparing the results we find
that RK3 produces the most accurate solution. It is in good agreement with the solutions
presented in [37] but there a 500 times smaller time step size was used. The discontinuity
in the initial conditions results in a solution which is not very smooth. This behaviour
was also documented in [37] for the inviscid case. In contrast to the RK3 solution the
solutions produced by the other methods are much more damped, especially the solutions
computed with the linearly implicit methods are not as accurate as the solution of RK3.
This fact results from the accuracy of the considered methods, all methods produce as
good solutions as RK3 if the small time step size from [37] is used (not shown). No
difference is visible between the solutions for which the simplified Jacobian was used
everywhere and the solutions of the methods which used the simplified Jacobian only in
the two cut cells at the edges of the dam-break. The linearly implicit methods can stably
compute with the simplified Jacobian in cut cells only, as was the case for the other tests
which incorporate cut cells, too.
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Figure 21: Depth after 0 s, 7 s, 14 s, 21 s, 28s, 35 s, 42 s and 50 s for the dam-break test case.
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Figure 22: Depth after 50 s for the dam-break test computed with (from top to bottom)
RK3 (left) and explPeer (right) with forward-backward Euler scheme, ROS3Pw, implPeer2
and implPeer3 with simplified Jacobian in cut cells only (left) and everywhere (right).
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7 Conclusions

In this thesis we presented a new methodology to describe time-splitting methods for
the solution of the compressible Euler equations. The basic principle of the presented
approach is that we split the Euler equations into the advection part and the acoustics
and make the assumption that one part, the acoustics, of the split differential equation
can be solved analytically so that stability and order investigations can be made for the
underlying method which solves the advection part. With this methodology we considered
split-explicit Runge-Kutta methods and reproduced the known stability results.

We introduced the class of explicit peer methods and used them as the underlying
method for the solution of split differential equations. We presented order conditions
and stability results and finally derived the split-explicit peer method explPeer which
is as accurate and efficient as the common split-explicit Runge-Kutta method RK3.
Particularly linear stability analysis showed that explPeer, even without any artificial
damping, is as stable as RK3 with divergence damping. The derived split-explicit peer
method explPeer also remains stable when using the trapezoidal rule as integrator for
the acoustics in contrast to RK3, which is not sufficiently stable and therefore needs
off-centering which results in a reduction of order down to 1.

The computational effort of explPeer is comparable to RK3: Both have s = 3 stages
and therefore need three evaluations of the expensive, slow part of the right-hand side per
large time step. Because the sum of the fast integration intervals of explPeer ||α||1 = 1.44
is about 20% smaller than the sum of the nodes of RK3 (1/3+1/2+1=11/6) the expense
for the evaluation of the fast part is a slightly lower for the peer method. In general
peer methods have a higher overhead than Runge-Kutta methods because they use more
linear combinations of the numerical solution and its function evaluations but for partial
differential equations this fact is a negligible disadvantage because of the very expensive
right-hand side.

One disadvantage of the peer method might be the memory requirement. Because
only the secondary diagonal of the Butcher tableau of RK3 has non-zero entries RK3
needs the memory capacity for three numerical solutions and function evaluations: One
for the initial value, another for the function evaluation and the third for the updated
fast part. In contrast the peer method needs twice of this memory: s = 3 for the linear
combinations eTi BYm−1 + eTi SYm which are successively updated to Ymi, i.e. in the ith
stage the integration of the fast part starts with the initial value eTi BYm−1 + eTi SYm

and every update is stored at the same place so that in the end eTi BYm−1 + eTi SYm is
overwritten by Ymi. The same holds for the function evaluations so that the memory for
six solutions is needed altogether. Because in practical applications problems are solved in
a massively parallel environment which usually uses domain decomposition techniques
every CPU has to know only the values on its small part of the whole domain and
therefore the requirement for twice of the memory capacity is no relevant disadvantage,
there are enough reserves.

The split-explicit peer method explPeer with the trapezoidal rule can be interpreted
as a linearly implicit peer method whose Jacobian incorporates acoustics only. Unfor-
tunately this linearly implicit peer method is not much more stable when it uses the
simplified Jacobian which additionally includes advection and diffusion. This fact moti-
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vated us to consider linearly implicit peer methods which have the same good stability
properties of explPeer when they use the partial Jacobian which only incorporates acous-
tics, but furthermore they should be stable for arbitrary large CFL numbers if they use
the full but simplified Jacobian. This property is necessary because we use cut cells for
the representation of orography which can result in arbitrary small cells.

We derived order conditions for the class of linearly implicit peer methods which allow
the construction of methods that retain the full order independently of what is used as
Jacobian. Furthermore we presented a condition which is sufficient for superconvergence.
With this order theory we constructed two linearly implicit methods with three stages and
order of consistency 2. They are A-stable in the common sense (not shown). The method
implPeer2 was derived from the coefficients of explPeer, while implPeer3 was constructed
from new coefficients in order to obtain a superconvergent third-order method. For wind
speeds smaller than cs/6 they are stable for arbitrary large advection and acoustic CFL
numbers if the simplified Jacobian is used. They are as stable as explPeer, i.e. stable for
arbitrary large acoustic CFL numbers and Cadv < 1.7, if the Jacobian only incorporates
the acoustic part of the compressible Euler equations. We found these methods with
a genetic algorithm, where we optimized the degrees of freedom with respect to small
amplitude and phase errors with the desired order conditions and stability criteria as
side conditions.

The simplified Jacobian corresponds to the advection form of the Euler equation while
the conservative form was used as the right-hand side to conserve mass, momentum and
entropy. It uses a lower-order spatial discretization. Furthermore it is used in cut cells
only while in the remaining domain the partial Jacobian, which only incorporates the
acoustic part of the Euler equations, is used. Table 1 on page 55 shows the amount of
memory which is needed for the Jacobian per grid cell. The partial Jacobian needs less
memory than the simplified Jacobian and much less than the exact Jacobian. Because in
numerical weather prediction models orography appears at ground level, cut cells can be
located only there, i.e. in a model with 50 vertical layers only 2% of the cells in the whole
domain are cut cells, which is negligible from the memory point of view. Therefore the
amount of memory for the Jacobian in applications where the full but simplified Jacobian
is used in cut cells only is nearly the same as for the partial Jacobian. Furthermore
there is a theoretical speed-up of 2.3 for a matrix-vector multiplication when using the
partial Jacobian instead of the simplified Jacobian. The practical speed-up might be even
larger because there more entries have to be computed and the systems might be worse
conditioned if the simplified Jacobian is used. In comparison to the exact Jacobian the
speed-up would even be 5.7. The computing time for the zeppelin test with the simplified
Jacobian for implPeer2 (without the time needed for computing the initial values) is 608
s with MATLAB on an Intel Core 2 Quad Q9550 @ 2833 Mhz with 3 GB RAM. When
using the full but simplified Jacobian in cut cells only the computation takes 405 s, i.e.
33% of the computing time is saved, which corresponds to a speed-up of 1.5. The times
needed for setting up and solving the linear systems of equations are 310 s respectively
113 s, i.e. the speed-up for this part of the solver is 2.7. When applying explPeer with
the trapezoidal rule to the flow over a mountain test case with a time step size of 0.2
s the computation takes 13146 s (3812 s) where the time in parentheses is needed for
setting up and solving the linear systems of equations. The times for implPeer2 with
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the same time step size are 13251 s (3975 s) when the simplified Jacobian is used in
cut cells only and 20011 s (10560 s) when it is used everywhere. So the speed-up when
using the simplified Jacobian in cut cells only is 1.5 (2.6). The difference in computing
time between the split-explicit method and the partially implicit method is just about
1% (4%), i.e. the partially implicit method is as efficient as the split-explicit method. As
mentioned before the systems were solved with the built-in MATLAB solver which uses
LU decomposition so the results may differ in 3D applications where iterative solvers
are used. On the other hand the theoretical speed-up increases in higher dimensions.
Nevertheless these values give a good insight into what computational time can be saved
when computing with the full but simplified Jacobian in cut cells only. Furthermore the
partial and simplified Jacobians are easier to implement than the exact Jacobian due
to the smaller stencils, which makes the implementation of block-structured grids and
parallelization more comfortable. We gave a detailed insight into the stability analysis
which incorporates the influences of these simplifications.

The application of the split-explicit methods to the compressible Euler equations in
conservative flux-form with a finite volume spatial discretization confirmed the linear
stability results: Both methods stably integrate the test problems. So we found a split-
explicit method for the compressible equations which is as accurate, stable and efficient
as RK3 but without the need for damping. The split-explicit peer method is stable even
for a very high number of small time steps and therefore it is appropriate for solving
low Mach number problems. The use of a time step size which nearly corresponds to the
Courant number from linear stability theory still produces an acceptable solution.

The tests which incorporate orography, i.e. the flow around a mountain test, the
zeppelin test and the dam-break test, all reveal the same results: No differences between
the solutions computed with the simplified Jacobian in cut cells only and the simplified
Jacobian everywhere are visible. Despite the large CFL numbers in cut cells of O(100)
for advection respectively O(5000) for sound waves and advection CFL numbers in the
free atmosphere, which are close to the stability maximum of 1.7, the solutions show
no noise or instabilities, i.e. the results from linear stability theory are valid for the
nonlinear Euler equations. Furthermore the peer methods with the partial and the full
but simplified Jacobian harmonize very well even if the Jacobian is dynamically adapted,
as in the density current test where the wind speed determines whether advection and
diffusion are incorporated in the Jacobian or not. Because of the high wind speeds in the
rising bubble and the density current test there are some differences visible between the
solutions computed with partial and simplified Jacobians. The solutions where advection
is treated explicitly are qualitatively better, i.e. not only from the efficiency point of view
but also because of the accuracy the Jacobian should incorporate advection and diffusion
only where it is necessary for stability. There are two reasonable applications for treating
advection implicitly not only in cut cells but also in cells with high wind speeds: Firstly
in numerical weather prediction models the jet stream has to be implemented which can
reach velocities of more than 100 m s−1. This is much faster than the wind speeds in
the remaining atmosphere, i.e. in explicit models which use no multi-rate schemes the
CFL condition for the jet stream limits the maximum time step size. If the Jacobian
incorporates advection in regions where the jet stream is known to be or in regions with
high wind speeds the time step size is not restricted by the speed of the jet stream which
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results in computational efficiency. Secondly in numerical weather prediction the used
time step sizes are not close to the CFL condition because the occurring wind speeds are
not known a priori. A dynamical adaption of the Jacobian in case of higher wind speeds
allows larger time steps. Furthermore this strategy guarantees that the CFL condition
cannot be violated, i.e. this ansatz not only results in computational efficiency but also
in reliability of the model.
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