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1. INTRODUCTION 

Vegetable oils and fats are naturally occurring triglycerides (TAGs) and fatty acids that 

contribute an appropriate oil phase for the production of most of the food items and as well as 

in the manufacturing of cosmetic and pharmaceutical products. Generally, edible fats 

composed of more than hundred different TAGs and their physical properties strongly depend 

upon the fatty acid composition. The phase behavior of water-natural triglyceride-surfactant 

systems got little attention because of the low solubilization of these TAGs by common 

surfactants at ambient conditions. The application of fats in diverse areas can be increased by 

improving their composition through physical or chemical processes. The modifications of fat 

contents of higher melting points make it possible for versatile utilization of it in the 

manufacturing of cookies, chocolate, margarines and shortenings. The use of fats in the form 

of emulsions fine particles for dressing of food items and as a drug delivery carrier system are 

of much interest in application for the emulsified fat particles. Hence, the idea of particles 

formation from emulsion for their use in the mentioning areas drew an attention and needed 

to be addressed.  

The drop formation of individual materials has been studies exclusively in a number of 

chemical processes and application and their solidification behavior were observed 

thoroughly. They can be produced by different processes like the use of an orifice or 

capillary, atomization and in granulation formation e.g. in the fertilizer industry. However, 

the drop formation of emulsified fats has not been addressed significantly so far. Also, 

numerous studies are available on the isothermal crystallization kinetics of pure fats as well 

as mixture of fats and effects of different additives that influence the fat crystallization in the 

bulk system. But, solidification or crystallization of emulsified fats in the form of fine drops 

in a direct contact coolant at temperatures below the freezing point is rare been addressed and 

attempted. Therefore, this work emphases the drop formation of emulsified fats in a direct 

contact coolant water system. The main problem in the bulk crystallization system is that it is 

very difficult to control according to the desired requirements. The advantage of emulsion 

drop to particle technology in comparison with the bulk solidification or crystallization is, 

that it is easy to handle, store, and transport, and produce particles of desired size or it can 

easily be modified according to the application of interest. 
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The significance of the process is that the particles of the emulsified fats were produced 

taking into account of the size and the shape of the particles obtained in the coolant. The 

operating parameters of the process were optimized in order to obtain the particles of smaller 

size range in the window of current operating conditions. Refined palm oil was chosen as a 

model emulsified fat and span 20 as an emulsifier for the generation of drops to particles 

from the emulsified fat. The selection of palm oil was done due to interest of human health 

and the world market. Nearly 90% of palm oil produced in the world is used as an ingredient 

in the production of margarine, deep fat frying, shortening, ice creams, chocolate and rest 

10% is employed in soap and oleo-chemical manufacturing like, fatty acids, methyl esters, 

fatty nitrogenous derivates, surfactants and detergents [Idr93]. 

The main objective and motive behind this work is to achieve spherical emulsion particles in 

a direct contact cooling system. To achieve this goal, work is categorized into two parts. The 

first part is comprises the observations obtained during the emulsification process of the fat 

by a magnetic stirrer and a rotor stator system. The stability, characterization, viscosity 

effects in the form of water concentration, and effect of different energy input were 

examined. In the second part, the formation or generation of emulsion drops to particles were 

observed based on the information and knowledge gathered in the first part. The effects of 

different capillary size, reduction in the interfacial tension between the coolant and an 

emulsion drops, effect of emulsion temperature on the particle size was measured. In this 

part, the generation of emulsion drops that turn to solid particles compared with the 

conventional fat crystallization was explored and examined. The process was then modified 

by reducing the interfacial tension of working materials in order to obtain the smaller 

particles. Finally, the crystallization mechanism within the solid particles was discussed with 

the literature. 
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2. BACKGROUND 

2.1 Phase change materials 

2.1.1 Theory of phase change materials 

The materials used for the storage of thermal energy at short span of temperature are called 

phase change materials (PCM). These materials absorb and release the thermal energy in the 

form of heat during the loading and unloading of PCM storage, respectively. The phase of 

these materials shifts from solid to liquid with the slight gradient of temperature. The PCMs 

are commonly used for the transportation of temperature control boxes, prevention and 

protection from thermal shocks, storage and usage of solar energy and the thermal comfort in 

the buildings. The smaller temperature interval influences the loading and unloading capacity 

of PCMs significantly; hence, the properties of the PCM play an important role for the proper 

design of the system. The storage energy is termed as phase change enthalpy. Keeping in 

view the application of the system, the performance of the PCM may affected considerably 

even at small subcooling change [Gün07]. 

Phase change materials have been extensively studied for the number of applications in the 

past few decades. Inaba et al. [Ina96, Ina99] studied the tetradecane droplets behavior in the 

ethylene glycol solution and also meso-erythritol droplets were investigated in the silicone oil 

for their solidification. Nakao et al. [Nak04] observed the solidification of hexadecane 

droplets in the water and the water-ethylene glycol systems while Iqbal and Ulrich [Iqb10] 

reported the palm oil emulsion mechanism in the water coolant system. Although PCM have 

a wide range of potential applications in different fields but still their use in the form of 

emulsion is limited, especially in the area of pharmaceutical industries. Hence, the palm oil 

which is widely used in the food industry is considered as a PCM and its solidification 

behavior and droplets formation was observed.  

Palm oil is a lipid extracted from the fleshy orange red mesocarp of the fruits of the oil palm 

tree which contains 45% to 55% oil. Two distinct oils are produced by oil palms namely: 

palm kernel oil (PKO) and palm oil, both of which are important in the world trade [Pur83]. 

Palm kernel oil is the minor oil obtained from the seed of the palm fruit which contains about 
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50% oil. It is a hard, light yellow in color and having similar taste of coconut oil. It is widely 

use in edible fats, confectionaries and baked goods, ice creams, mayonnaise, manufacture of 

toilet soaps, soap powders and detergents [Oye68]. Palm oil may be fractionated into two 

major fractions: liquid oil (65– 70%) palm olein (m.p. 18–20 ◦C) and a solid fraction (30–

35%) stearin (m.p. 48–50 ◦C). The other fractions such as mid-fraction and the double 

fractionated palm olein (super olein) are obtained with more sophisticated oil processing. 

Palm mid-fraction, which has properties somewhere in between olein and stearin, contains 

60% palmitic and 40% oleic acid, and is used as a cocoa-butter equivalent [Gun83, Tan81, 

Tan89]. Palm olein and super olein are more unsaturated and are obtained from refining, 

bleaching and deodorization of palm oil. The fractionation of palm oil increases the 

monounsaturated oleic acid with the reduction of palmitic acid as well as the quantities of 

oleic and linoleic acids [Gun86].   

Table 2.1  Physicochemical properties of palm oil and its fractions [Has88]. 

Properties Palm oil Palm olein Palm stearin 

Melting point (oC) 34.2 21.6 44.5-56.2 

Relative density 

50oC/water at 25oC 

0.89- 0.92 0.91- 0.92 0.88- 0.89 

Refractive index 1.46 1.47 1.45 

Moisture and 

Impurities (%) 

0.1 0.1 0- 0.15 

Iodine value 47- 55.83 55.0- 61.54 21.6- 49.4 

Saponification value 

(mg KOH/g) 

196- 208.2 189- 198 193- 206 

Unsaponifiable matter 

(%) 

0.01- 0.5 0.001- 0.5 0.1- 1.0 

 
Around the globe, 90% of palm oil is used for edible purposes e.g., margarine, deep fat 

frying, shortening, ice creams, cocoa butter substitutes in chocolate; the remaining 10% is 

used for soap and oleo-chemical manufacturing like, fatty acids, methyl esters, fatty 
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nitrogenous derivates, surfactants and detergents [Idr93]. The physicochemical properties of 

palm oil and its fractions are given in the Table 2.1. Palm olein, super olein and red palm oil 

have similar major fatty acids e.g. palmitic, oleic and linoleic acids as outlined in the Table 

2.2. But the palm olein and super olein have more oleic and linoleic acids than that of palm 

stearin. In fact, palm olein and super olein are more unsaturated. Hydrogenation is not 

necessary due to the semisolid texture of palm oil at room temperature.   

Table 2.2 Fatty acid composition of palm oil and its fractions [Gun86, Kin84]. 
Fatty acid Red palm oil Palm olein Super olein Palm stearin 

Lauric (12:0) 0-0.2 0.1-0.2 0.4 0.1-0.2 

Myristic (14:0) 0.8-1.3 0.9-1.0 1.4 1.0-1.3 

Palmitic (16:0) 43.1-46.3 39.5-40.8 31.5 46.5-68.9 

Stearic (18:0) 4.0-5.5 3.9-4.4 3.2 4.4-5.5 

Oleic (18:1) 36.7-40.8 42.7-43.9 49.2 19.9-38.4 

Linoleic (18:2) 9.4-11.9 10.6-11.4 13.7 4.1-9.3 

Linolenic (18:3) 0.1-0.4 0-0.4 0.3 0.1-0.2 

Arachidic (20:0) 0.1-0.4 0.1-0.3 0.4 0.1-0.3 

Saturates 50.2 45.8 36.6 52.1-76.2 

Monounsaturates 39.2 42.5 49.2 19.9-38.6 

Polyunsaturates 10.5 11.6 14.0 4.2-9.5 

 

Margarines and shortenings comprises both of liquid oil and solid fat products which are 

semisolids. Palm oil is an excellent choice for the production of margarines and shortening 

due to naturally semi-solid property at ambient temperature. Palm oil has the distinct property 

among other vegetable oils and fats due to its balanced fatty acid composition. Both palm oil 
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and palm kernel oil have large number of TAG molecules. The high melting TAG molecules 

influences the crystal habit and determine the crystal form. 

2.1.2 Emulsions of the phase change materials 

Emulsions comprise the systems in which droplets of one liquid dispersed in another liquid 

which is completely immiscible. They are generally classified into two types, namely: w/o 

and o/w emulsions. In the first type emulsions, water droplets dispersed in the oil phase, and 

in the second type oil droplets distributed in the water medium. Food emulsions lies in the 

first type while water in the crude oil in the petroleum industry belong to the second category 

[Cla05]. Emulsions can also be further classified into more complex forms like w/o/w or 

o/w/o emulsions. These complex emulsions referred as double emulsions. The PCMs have 

been studied exclusively in general and their emulsions were investigated in particular. 

Kousksou et al. [Kou09] reported the thermal analysis of different PCMs. They investigated 

the emulsions of hexadecane, octadecane, distilled water and NH4CL-H2O binary eutectic 

systems. The thermal and physical properties of phase change emulsions based on n-

tetradecane were studied by a number of researchers [Ina95, Ina96a, and Zhe00]. The other 

parameters like preparation method, suitable surfactant, mass ratio, microstructure etc. of n-

tetradecane based phase change emulsions were monitored by Hui et al. [Hui05]. 

As described earlier in the Chapter 2.1.1, palm oil is also considered as one of the PCM 

material among others. The uses of palm oil in the form emulsion for various applications 

were studied. Palm oil is generally expressed different physical forms that can be obtained by 

mixing the various fractions altogether or with some other oil blends to achieve the required 

physical characteristics. Depending on the desired function, palm oil can be used as the 

dispersed medium or the dispersed phase. At present, the most important palm oil emulsions 

are w/o type, commonly used in the margarine [Cho96]. The dispersion stability of an 

emulsion is the important consideration for their use in any process. The emulsion must be 

stable, non coalescence and have well resistance for cream formation during the course of 

their employment in any process. The palm oil emulsion can be prepared by different 

emulsification process in order to avoid the crystallization, especially, droplet size and 

particularly structure of the TAGs present in the oil [Ahm96].  
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2.1.3 Preparation and stabilization of emulsions 

According to the Chapter 2.1.2, emulsions are the systems of two immiscible liquids. When 

these liquids mix with each other with some mechanical means, they constitute an emulsion 

which can eventually separate again into two different liquid after some time. Generally 

emulsions can be produced by different systems like: high pressure systems, membrane 

systems, ultrasonic systems, rotor systems and disc like systems described briefly in 

somewhere [Urb06]. The high pressure system is still widely used for the manufacturing of 

emulsions. Numerous studies are available for the production of different type of emulsions 

with various manufacturing procedure in order to increase the efficiency of the process e.g. 

high pressure homogenizer [Dic88], membrane emulsification [Nak91], micro- channel 

emulsification [Kaw97], turbo-mixer [Lin01]. Micro-channel and membrane emulsification 

techniques are used for the production of double emulsions.  

Emulsions are thermodynamically instable systems and tend to destabilize because of several 

factors. Their stability depends on different processes like creaming, coalescence and the 

flocculation. Coalescence is an irreversible process which tends to its final stage after the 

formation of larger droplets due to the fusion of smaller droplets during the emulsion process 

or thereafter. This can be reduced by the reduction of the interfacial tensions using 

surfactants. The molecular structure of the surfactant plays a dynamic role in the reduction of 

the interfacial tension which is time dependent. Surfactants can be used both in the oil or an 

aqueous phases depending on the requirements of the emulsion to be produced [Lin01, 

Lam05].  

As mentioned above, stability is a very important factor and the parameter for the production 

and the application of an emulsion. Hence, it is noteworthy that the coalescence and 

sedimentation processes are the cause for the destabilization of w/o emulsions while 

instability in w/o/w occurs due to the creaming [Mar07].  

Generally, emulsions can be stabilized with emulsifiers when used individually or may be by 

the mixture of different emulsifiers depending on the productions and the type of the 

emulsions. Furthermore, emulsifiers have more interaction with the continuous phase than the 

dispersed one. Hence the nonionic emulsifiers are widely used for stabilization of emulsions. 
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Numerous studies are available in the literature: Span series (sorbitan esters) with higher 

hydrophobic than hydrophilic character (low HLB) is widely used for w/o emulsion 

production [Mar07], mixture of span and tween series [Por04]. Moreover, Berg et al. [Ber04] 

studied the microstructure of w/o emulsion with other emulsifiers; Gasperlin et al. [Gas94] 

observed the structure of semisolid w/o emulsions stabilize by silicone emulsifier.  

2.2  Drop formation 

2.2.1 Theory of the drop formation 

After the industrial revolution during the last century, diverse studies are done and presented 

in the literature in order to describe the procedure and the expressions for the prediction of 

drop formation from nozzles in liquid-liquid systems. Among the various studies, some are 

cited according to chronological order. By neglecting the kinetic and drag forces, Harkins and 

Brown [Har19] performed a fundamental study and observed the drop formation very slowly 

and developed an expression that predicted the so called “static drop volume”. When the drop 

formation occurred rapidly, both the kinetic and drag forces play significant role that were 

studied in details during the 50’s ( e.g. Hay50, Sie56, Uey57, Nul58 ). Later on, Scheele and 

Meister [Sch68a, Sch68b] studied thoroughly the drop formation and predicted the drop 

volume and jetting velocity. 

When a liquid is injected through a single nozzle into another immiscible liquid at very low 

flow rate, the drop formed at the tip of the nozzle called static drop volume, but at higher 

velocity, the series of the drops formed after necking and detaching from the nozzle [Rao66, 

Sch68a]. There are four major forces that involved in the drop formation mechanism. These 

forces are, namely: the buoyancy force due to the density difference between the two liquids, 

the inertial or kinetic force to separate the drop from the nozzle, the interfacial tension force 

and the drag force that are responsible to keep the drop on the nozzle tip. When these forces 

are at equilibrium then it can be expressed by the Equation 2.1: 

FB + FI = FS + FD         (Eq. 2.1)  

These forces are:   

The buoyancy force,              FB = VFSgΔρ      (Eq. 2.2) 
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Substituting the Equations 2.2 – 2.5 in the Equation 2.1 with the appropriate expressions for 

the forces, the resultant expression may be written for the volume VFS of the drop formed at 

the nozzle tip at equilibrium state: 

The additional volume “VFN” of the liquid that flows out the nozzle tip during the drop break 

up was calculated by the Equation 2.7: 

Thus the final drop volume “VF” calculated by Scheeler and Meister [Sch68a] after 

introducing the correction factor “F” proposed by Harkin-Brown [Har19] is:  

Subsituting the approriate values of Equations 2.6 & 2.7 respectively, in the Equation 2.8a, is 

left with the result as described below in the Equation 2.8 in its modified versions: 

The Equation 2.8 was derived when the velocity profile obtained is parabolic for the liquid 

through the nozzle and for the plane velocity profile, the term 4/3 in the Equation 2.3 should 

be considered as unity. The values used for the correction factor “F” for the liquid that remain 

partly at the tip of the nozzle after the detachment of the drop in the Equation 2.8 is described 

by the Figure 2.1. Then, later in the late 70’s Horvath et al. [Hor78] derived an approximate 

expression for the estimation of the correction factor “F” values: 

The inertial force,         (Eq. 2.3) 

The interfacial force,    FS = σDN       (Eq. 2.4) 

The drag force,   FD = 3πµUFDFS        (Eq. 2.5) 

VFS   = +   -         (Eq. 2.6) 

VFN =  (          (Eq. 2.7) 

VF = F(VFS + VFN) (Eq. 2.8a)

VF = F[ +   -  + 4.5 (  ]   (Eq. 2.8) 
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described briefly in the very next Chapter 2.2.3, the capillary number is the most important to 

characterize the viscous stresses and the capillary pressure. The capillary number (Ca) for the 

droplet formation with relative to the continuous phase flow field is expressed by the 

Equation 2.10 and is consistent for the classic approach for the deformation and breakup of 

detached droplets in linear flow [Sto94].  

The importance of the inertial and viscous forces is defined in terms of characteristic velocity 

of the flow and is described by the Reynolds number (Re), but, when the inertial force and the 

capillary pressure are more important than that of viscous stresses, Webber number (We) is 

frequently used to characterize the droplet breakup process. Generally, inertial force is least 

important in the microfluidics droplet breakup mechanism. Furthermore, the parameter which 

distinguishes the relative importance between the buoyancy and surface tension is given by 

Bond number (Bo) while Ohnesorge number (Oh) relates the viscous stresses and the surface 

deformation of the droplets. Typical values of these dimensionless numbers in microfluidics 

are: Ca varies 10-3 to 101; Re << 1; Bo ≈ 10-3, respectively [Chr07], the Oh value for the 

emulsions was observed by Chaleepa [Cha10] and figured out that Oh < 1 for low viscous 

emulsions and Oh > 1 for high viscosity. The general expressions for the dimensionless 

numbers are given by the Equations 2.10 - 2.14.  

 

In recent years, the precisely controlled droplet size and the polydispersity of the emulsion is 

demanded in various important applications. Few attempts were made to reduce the 

Ca =            (Eq. 2.10) 

Re =            (Eq. 2.11) 

We = Re Ca           (Eq. 2.12) 

Bo =             (Eq. 2.13) 

Oh =             (Eq. 2.14) 
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polydispersity of the emulsions. In these days droplet based applications are widely employed 

in microanalysis, protein crystallization, on-chip separation etc. [Tan08]. The uniform sized 

particles from emulsions gained many attentions for the transportation of the hydrophilic, 

hydrophobic drugs in the form of microspheres. The preparation of biodegradable micro-

particles carriers like lactose, albumin, protein peptides and gelatin have received much more 

attentions for the controlled release of drug targeting [Men03, Wei08, Tro04]. 

2.2.3 Formation of smaller drops 

Scheele and Meister [Sch68a, Sch68b] stated that “Flow into the drop during the necking 

process can contribute significantly to the final drop volume and must be treated 

independently. Any empirical incorporation of this phenomenon into one of the force terms 

will cause errors in the dependence of drop volume on flow rate, nozzle diameter, and 

physical properties… ” Then after more than two decades, Skelland and Slaymaker [Ske90] 

studied the model proposed by the Scheele and Meister [Sch68a] for the liquid-liquid systems 

to observe the effects of the surface active agents on the drop size. They noted the drop sizes 

produced from the single nozzle in the nonjetting region and reported that the said model for 

predicting drop size give satisfactory agreement in the presence of the surface active agent.  

On the other hand, after the development of the microfabrication techniques, the micro-

structured devices were manufactured along-with the capillaries of very small dimensions. 

These capillaries were employed for the injection of emulsifying liquid into another 

immiscible liquid to obtain the smaller or narrower size distribution emulsions droplets 

[Chr07].  Furthermore, Serra and Chang [Ser08] reviewed the latest developments in the 

microfludic processes for the production of polymer particles. The most common methods 

used to obtain series of single smaller droplets are depicted in the Figure 2.2.  Moreover, the 

use of capillary devices avoids the clogging or the blockage of the device whenever placed in 

the centre of the tools so that the droplets never meet the walls of the device.  

The size of the droplet adversely affects the mass transfer processes. The smaller is the size 

of the droplet, the larger would be the surface area for mass transfer. So the mechanism of 

droplet formation from the microchannel has much importance for the better understanding of 

the mass transfer mechanism on micro level [Xu05]. 
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2.3.2 Solidification/Crystallization of emulsion drops 

Many materials are purified by the layer crystallization processes with higher melting points 

at ambient conditions. Therefore, it is the need of the hour to produce solidified materials 

which have the advantage of handling, storage and transportation especially the toxic 

compounds. Hence, Kallies et al. [Kal93] studied the direct solidification of particles during 

the drops formation from the melted material by layer crystallization. They noted that the 

solidification of single drops in colder atmosphere, nucleation starts from the surface which is 

directly in contact with the colder sites. Other parameters like, shape of the particles, surface 

roughness, stability was also observed. The complete solidification was occurred from 

outside to inside. Later, Inaba et al. [Ina96, Ina99] examined the drops solidification of 

different materials in the coolant and observed the similar behavior as described earlier in 

Chapter 2.1.1 in details. 

Fat crystallization in the emulsion has many interests for both physical and food scientists 

because some emulsified fats in food crystallize at the ambient conditions [Sat99]. Emulsion 

crystallization has great potential not only for particle formation in the material science but is 

also important for the new purification processes. Davey et al. [Dav96] showed that the 

impure m-chloronitrobenzene crystallizes and purified in a single stage. Crystallization in the 

emulsions occurred when the conditions changed through cooling, chilling or supersaturation, 

so that the free energy of a solid phase is lower than the free energy of liquid [Har01]. In case 

of cooling, high degree of supercooling is required from microscopic to macroscopic size. It 

is to be believed that in the bulk of the melt, some impurities present in the bulk may be the 

starting point of the nucleation prior the supercooling to be reached which make the 

crystallization more rapidly. Skoda and Tempel [Sko63] noted when the dispersed droplets 

are very small then the number of droplets exceeds the number of impurities present in the 

bulk. Therefore, the fat droplets would be free of any impurity and hence crystallize through 

homogeneous mechanism. The Chapter 2.3.3 described the crystallization mechanisms in 

details.   

Crystallization in emulsions is not as simple as it is described above. Crystallization in the 

emulsions droplets is influenced by diverse factors. These factors includes: the size of 

droplets, collisions between the droplets, impurity inside the droplets, the type of surfactants 
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to be used in general and the effects of the oil-water interface in particular, are significant 

[Shi08]. As cited in the literature, oil-water interface plays a vital role in the crystallization 

process in the emulsion. Moreover, the surfactant at the oil-water interface in a bulk system 

prevail the interfacial freezing. In addition, it is figured out that the interfacial freezing act as 

a template for further crystallization. Hence, surfactant itself has great attention in the 

crystallization [Lei04, Slo05, Wil06, Slo07, Hen07]. 

Additives have been widely used in the modification of crystal morphology where the 

chemical interactions like van der Waals, ionic and hydrogen bonding between the additive 

and the crystal surface are responsible for the change. In fat systems, these chemical 

interactions are not as much significant as in ionic and inorganic systems [Cha10]. 

As described in the above paragraphs, emulsion crystallization is greatly influenced by the 

impurities or additives. Both the nucleation and the crystal growth in the emulsion are 

affected by the additives present. Therefore, Kaneko et al. [Kan99] extensively elaborated the 

effect of sucrose ester in the crystallization kinetics of hexadecane while diacylglycerols 

influence to the oil phase was noted by Awad et al. [Awa01a]. Similarly, the additives in the 

emulsion and its consequential effects on the crystallization were thoroughly studied and 

illustrated by number of researchers; like, monoglycerides and triglycerides effects on semi-

crystalline emulsion droplets stabilized with sodium caseinate [Dav00, Dav01], effect of 

additives on polymorphic forms of palm oil crystallization [Awa01], crystallization rapidness 

of palm kernel oil in oil-in-water emulsion by hydrophobic emulsifier additives [Awa02]. 

The crystallization behavior, polymorphic forms at various conditions, other parameters that 

highly influence the crystallization in the emulsion in the bulk as well as in the droplets forms 

have been studied broadly and summarized briefly in this section. The comprehensive detail 

of crystallization mechanisms within the emulsion is largely described in the Chapter 2.3.3.  

2.3.3 Crystallization mechanism 

There are common misunderstandings and misconceptions about the crystallization mechan-

ism of emulsified fats. More often, it is wrongly assumed that fat crystallizes through a 

homogeneous mechanism. But the fact of the matter is that the homogeneous mechanism is 

only dominant when the size of the particle is reduced so that only single nuclei are present 
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per droplet. Therefore, the overall mechanism may depend on the composition, purity of the 

fat as well as the structure of the emulsion. It is also noted that the kinetics of crystallization 

varied with the mechanism involved [Mul01, Klo00].    

In the last decade and beyond, few attempts were made from different groups regarding the 

effect of polydispersity on the crystallization mechanism of emulsified fats. Perepezko et al. 

[Per02] studied the solidification of series of long-normal distribution size class of particles 

while Kashchiev et al. [Kas98] developed a theory which takes into account the effects of the 

polydispersity of emulsion crystallization kinetics and especially the effects of volume vs 

surface nucleation. They showed that the polydispersity enhanced the crystallization rate. 

Furthermore, Kloek et al. [Klo00] explained the mechanism of crystallization of different 

palm oil emulsions from their kinetic measurements of solid fat content (SFC). They found 

that the kinetics of pure palm oil droplets showed a heterogeneous nucleation mechanism, but 

the mechanism was most likely homogeneous by the addition or dilution of palm oil with 

sunflower oil. Whereas the fats have complex compositions, therefore, self-nucleating 

mechanism for the emulsion nucleation was proposed. They also suggest that the self-

nucleating particles contain some high melting triglyceride fractions. Moreover, similar 

mechanism was observed in the crystallization kinetics of emulsion droplets by the addition 

or depletion of the fraction described elsewhere [Hin00].  

On the other hand, a necessarily diverse mechanism was noted in the crystallization kinetics 

of emulsified hexadecane droplets. It was observed that mechanism is not well in agreement 

with the single exponential function as predicted by the standard nucleation theory, but 

somewhat slower as the crystallization occurred. They left with the conclusion that the 

changes in an emulsion may occur as the crystallization proceeds [Her99]. Meanwhile, 

Hindle et al. [Hin00] also found that the non-exponential nature of emulsion droplet 

crystallization in the hexadecane and cocoa butter emulsions. Contrary to the Herhold et al. 

[Her99], they argued that the result could be illustrated appropriately in terms of concurrent 

mechanisms of direct droplet nucleation.  

It is noteworthy that in an emulsion, the fat first nucleates to α-form and then partially 

converts to β'-form which coexists with the α-form during the remaining entire course of the 

experiment while milk fat in bulk first crystallizes as β'-form and then the α-form [Hin00]. 
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They also noted the α-form during the crystallization of emulsified cocoa butter. Meanwhile, 

Cambell et al. [Cam01] studied the difference in the crystallization kinetics and stability of 

palm oil versus lard emulsions and observed the β-form. More specifically, Lopez et al. 

[Lop00, Lop01] confirmed that emulsified TAGs crystallize through secondary nucleation 

mechanism and that of homogeneous nucleation is not logical as previously described by 

Walstra [Wal94]. They claimed that the α-form crystallization occurred in the bulk very 

straightaway that it could be considered as homogeneous and their properties are similar to 

that homogeneous crystallization, but their claim had no concrete evidence at slow cooling. 

The colloidal aspects of solid for crystals existed in the oil as isolated particles or in the form 

of an oil water interface still has least studied and have much more attraction.  

2.4 Motivation and objectives  

As described earlier in the Chapter 2.1.1 in detail that the PCMs are excellent candidates for 

transportation and storage of the thermally sensitive materials. Their application in food, 

chemical, and pharmaceutical industries is of great importance. Recently, in pharmaceutical 

industries, efforts are made in order to develop carrier systems which ensure the controlled 

and well defined drug release. Solid lipid nanoparticles are considered as alternatives for drug 

carriers [Jas09]. Earlier, numerous studies were conducted on albumin and lactose 

microspheres for drug delivery. They can be prepared of broader range of particle size and 

carry a variety of drugs [Zen95, Har03]. Trotta et al. [Tro04] reported the encapsulation of 

insulin into microspheres and argued the potential application for protein and peptide 

delivery. Similarly, Wei et al. [Wei08] studied the formation of uniform sized amphiphilic 

PELA microspheres by emulsion solvent extraction and premix membrane emulsification. 

They proposed that these microspheres might have great potential for protein drug carrier 

system.  

It is worthwhile to note that all the observations described above were done using or 

combining one or more processes to obtain the microspheres in the working fluid. However, 

limited studies are available to acquire the desired results using direct contact of working 

fluid with other immiscible fluid at various physical properties e.g. (Ina96, Ina99, Nak04).  
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The formation of spherical particles of PCMs by means of single capillary or nozzle in direct 

contact cooling medium is rarely been studied and their solidification mechanism in the 

coolant was seldom observed. The solidification behavior of drops from PCMs is increasing 

the heat transfer resistance between the liquid PCM and the working fluid (thermal energy 

carrier). A direct contact type thermal energy storage system has got much attention in recent 

past and reported elsewhere [Fan04, Nak04]. However, limited research has done so far in 

connection to the direct contact solidification of PCM particles moving in the liquid coolant. 

Therefore, the concept to produce crystalline fine solid particles which encapsulate the 

biodegradable materials and drugs has drawn the great attention. To achieve this, there are 

certain factors that influence greatly and must be copped up with the idea of producing fine 

particles. These factors might be: temperature of the coolant (1); diameter of the nozzle or the 

droplet size (2) velocity of the injected stream (3); height of the cooling medium (4); addition 

of the additives in the coolant medium (5) etc.  

The main motive and objective behind this work was to produce spherical particles of 

emulsions. The process of particles formation goes by emulsion drops coming out from single 

capillary that turned into solid form. To apply this idea and to achieve the desired objective, 

different parameters were studied thoroughly which are listed below: 

a) Preparation and stabilization of water-in-oil (w/o) emulsions by means of 

different methods like a magnetic stirrer and a rotor stator system and their 

effects on the size and shape of the particles produced. 

b) Effect of the surfactant concentration on the formation of uniform coarse 

emulsion. 

c) Velocity/flow rate effects and the solidification/crystallization mechanism of the 

emulsion drop to be solidified at temperature below freezing point.  

d) The effect of water content and the temperature of the emulsion on the size and 

shape of the particles.   

e) The influence of the additives present in the coolant that affects not only on 

shape and morphology of the particles but also on their size. 

f) The effect of capillary diameters on the size of particles. 
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g) The crystallization behavior which occurred inside the particles during 

solidification. The mechanism of fat crystallization in emulsions and the crystal 

structure within the droplet. Pure palm oil droplets described with the 

heterogeneous nucleation mechanism, but can be altered by diluting or making 

impure to the homogeneous. In this case the fat must crystallize via a 

homogeneous. 

The parameters mentioned above were investigated in details and the results obtained based 

on these observations are reported in Chapter 4. The findings of these examinations provided 

a better understanding about the formation and mechanism of the process. The estimations 

obtained are certainly a valuable addition in this field. 
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3. MATERIALS AND METHODS 

This chapter contains a brief description on the strategy and protocol used for the preparation 

of emulsions by different mechanical methods and then the formation of drops from these 

emulsions. The solidification mechanism is also described briefly and the diverse factors are 

observed using different techniques. 

3.1 Materials 

Refined palm oil obtained from Fluka (Sigma-Aldrich Chemie GmbH, Germany) having m.p. 

30-40oC and composition linoleic acid 6-13%, myristic acid 0.5-6%, oleic acid 35-50%, 

palmitic acid 35-48% and stearic acid 3-7% was used as model substance for the preparation 

of emulsions. Sorbitan laurate i-e span 20 received from Merck (Merck Schuchardt OHG, 

Germany) was used as an emulsifier for the stabilization of the emulsions. Berliner Blau 

löslich (Riedel-de Haën AG, Germany) and Alizarin Red S (Fluka Chemie AG, Germany) 

were used as dyes for the microscope analysis of the emulsions and the particles produced 

from the emulsions. Polysorbate Tween 20 (Carl-Roth GmbH, Germany) was used in the 

coolant to reduce the interfacial tension. All the chemicals were used as obtained without 

further purification. Distilled water was used for all the scheme of experiments.  

3.2 Experimental methods 

The experimental section is differentiated into three different Sub-Chapters. These Chapters 

include the preparation methods of emulsions, formation of drops and the solidification of the 

drops in coolant. They are described briefly here:    

3.2.1 Preparation of emulsions 

The emulsions were prepared by two different means namely: magnetic stirrer and the ultra-

turrax rotor stator. The preparation methods of emulsion were adopted as described by Porras 

et al. [Por04] for a magnetic stirrer; and for a rotor stator reported thoroughly by number of 

researchers [Men03, Cla05, Mar07, Urb06]. A brief description of the emulsion preparation 

by a magnetic stirrer and a rotor stator system is given. 
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Magnetic stirrer emulsification 

Water-in-oil (w/o) emulsions batches were prepared using palm oil as a continuous phase, 

water as a dispersed phase, and span 20 as an emulsifier. The span 20 was used for the 

stability of the emulsions. The preparation method was adopted as described by Porras et al. 

[Por04] with some modifications. The emulsion was prepared at different temperatures. Palm 

oil, surfactant and the distilled water were heated from 45- 90oC before they form emulsions. 

Both palm oil and span 20 were heated at a specified temperature and then mixed for “2” 

minutes at “700” rpm using a magnetic stirrer to achieve homogeneity. Water was poured 

drop-wise into the mixture of oil and surfactant. This allows the water to drain off along the 

stirrer and permits repeatable and homogeneous insertion of water into the surfactant-oil 

mixture phase. The mixture was then continuously stirred for 30 minutes. The total volume of 

the emulsion was kept 10 mL. The conditions were kept constant for the entire course of the 

experiment. The parameters which remained under consideration are the concentration of 

surfactant and the quantity of water present. The emulsions prepared were visually stable and 

there was no sedimentation or phase separation for 30 minutes. The emulsifier concentration 

was varied from 0.2 to 5.0% (by volume) to observe the minimum amount of surfactant 

required for the stability and water quantity was changed from 5 to 25 % by volume, too.  

The produced emulsion was then further analyzed by light microscope which is being 

illustrated in Chapter 3.3. 

Rotor stator emulsification 

Generally, rotor-stator systems consist of a rotor and an axially fixed stator around the rotor. 

The rotor stator systems can be operated for continuous and/or discontinues systems. Gear-

rim dispersion geometry is used for the discontinuous systems in general. In gear-rim system, 

inertia and the shearing in the turbulent flow are the major forces which in result is the 

available energy for the effective drop break up. Here, the product throughput lies in the 

centre of the available range while the product stress are classified as medium to high 

depending on the number of revolution and the geometry of the dispenser [Sch04]. Figure 3.1 

showed the gear-rim rotor stator geometry used for the emulsification process. The details of 

other influencing parameters on the emulsification process are described elsewhere [Sch04, 

Urb06]. 
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3.2.3 Solidification of drops 

A brief description of  the solidification of different materials in various coolant media are 

reported in the Chapters 2.1.1 and 2.3.2 and are studied by a number of research groups 

[Ina96, Ina99, Nak04, Iqb10, Iqb11]. They studied the direct contact heat and mass transfer 

between liquid drops and the continuous liquid coolant as well as solid particles and the 

liquid coolant.  Emulsion drops produced by capillary as shown in Figure 3.2 starts ascending 

in stagnant coolant (water). Direct contact solidification of PCMs occurred in two steps in 

which direct heat transfer between the working material and coolant took place. 

In the first step, liquid emulsion drops released from the capillary situated at the bottom of 

the temperature controlled coolant vessel exchanges the heat with the surrounding coolant. 

When the surface temperature of a liquid drop reaches to its solidification temperature, a thin 

solidified layer of the emulsion begins to envelop the emulsion drop. In this first cooling step, 

which is terminated by the start of solidification, the sensible heat of the drop is dissipated 

into the coolant by convective heat transfer inside as well as outside the liquid drop which 

now becomes a particle, a solidified emulsion particle. 

In the second cooling step, which may initiated by the start of solidification of the particle 

surface, the latent heat of solidification released by freezing is transferred by conductive heat 

transfer through the solid enveloping layer forming on the particle and is transferred by 

convective heat transfer from the particle surface to the coolant. At this time, the sensible 

heat transfer rate from liquid PCMs contained in the core of drops is small compared to the 

latent heat of solidification transfer rate. Thus, the heat transfer in the liquid core is of little 

significance [Nak04]. After emulsion drops turned into solidified emulsion particles by 

exchanging the different heats with the coolant were collected at the top of the coolant. These 

particles were stored overnight at 4oC in a refrigerator to note down the agglomeration of the 

particles.  

The particles were then analyzed for further calculations. The solidified emulsion particles 

collected at the top of the coolant is shown in the Figure 3.3. Different hydrophilic dyes were 

used for the preparation of emulsions in order to observe the water droplets distribution and 

solidification mechanism within the solidified particles itself. The use of the different dyes is 
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of the particle diameters. The diameters of 20 to 30 particles were measured and the average 

values were used for further calculations in each set of experiments, similar to the method 

adopted by Nakao et al. [Nak04] where they used 40-60 particles for their measurements and 

average values were calculated in case of solid particles. The solid particles were placed in 

the microscope cell at an aforementioned temperature of the coolant where the particles 

turned down to solid form. The observations were done accordingly as shown in the Figure 

3.4 for the measurement of particles geometry.   

Generally, when particles are not exactly spherical but somewhat ellipsoid in shape, then the 

particle diameter is described by an equivalent diameter. The equivalent diameter was 

calculated by the Equation 3.1 as described by Nakao et al. [Nak04].  

In Equation 3.1, “a”, “b” and “dp” are the major, minor and equivalent diameters of the 

particles, respectively. The equivalent diameter gave the actual size of the non spherical 

particles. Therefore, the size of the particles has been described by an equivalent diameter as 

calculated from the equation so on and so far. Moreover, the interfacial tension of the coolant 

was reduced by adding 0.5% (by volume) surfactant (detergent) in the coolant. The addition 

of surfactant might affect the size of the drops obtained also influence the drops streams 

[Ske90]. The details about the shape, size, major and equivalent diameters of the particle are 

discussed in Chapter 4, Sub-Chapter 4.2.4 and 4.3.1.  

On the other hand, the particles were cut down from the centre and thin slices were obtained. 

They were investigated under Keyence (x100, VHX-500F) light microscope for the 

observations of the location or the orientation of the water droplets inside the solidified 

emulsion particles. Prior to this, the particles were frozen by liquid nitrogen so that very thin 

slices can be obtained very easily. The orientation of the droplets then leads to the 

crystallization mechanism of the fat inside the particles below the freezing point. The main 

purpose was to observe the uniformity or evenly distribution of water droplets and then 

comparison with the distribution in the emulsion itself as well as within the particles. 

 

                   (Eq. 3.1) 
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3.3.3 Dye analysis of the emulsions and the drops  

Berliner blau löslich and Alizarin Red S were dissolved in the distilled water for the 

preparation of emulsion and the microscopic analysis of the emulsion itself and the emulsion 

particles. The dye analysis was done to study the structure deep insight the solid particles 

produced out of the emulsion. The emulsions were prepared using both a magnetic stirrer and 

a rotor stator system for their analysis. Keyence (x100, VHX-500F) microscope was used to 

record the images of the emulsions and also employed in the characterization of the solid 

particles. Furthermore, the experiments were repeated using the same procedure in the 

presence of surfactant tween 20 in the coolant. As mentioned earlier in the previous Chapter 

3.3.2 that the reduction in the interfacial tension resulted in the ultimate influence on the 

formation of single particles and the stream of the particles. The use of the detergent in the 

coolant exhibited the reduction in the size of the generated particles. Moreover, the effect of 

the emulsion temperature on the particle geometry was studied. The details are presented in 

the Chapter 4, Sub-Chapter 4.3.        
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4. RESULTS 

This chapter contains the outcome of the different parameters studied in details for the 

preparations of emulsion and the formation of emulsion drops, their solidification behavior, 

surfactant concentration for the stabilization of emulsion, effect of the water quantity present 

in the emulsions, influence of flow rate, and size of the capillary used are described in 

Chapter 4.1. The effect of preparation methods, energy inputs on the size of the droplets and 

on the size and shape of the particles, and the solidification/crystallization mechanism within 

the solidified particles is illustrated briefly in Chapter 4.2. Furthermore, reduction in the size 

of the particles, effect of viscosity, influences of emulsions temperatures, and the use of the 

detergent in the coolant is presented in Chapter 4.3. Finally, the possibility and the range of 

errors is discussed and described thoroughly in Chapter 4.4.  

4.1 Effect of different parameters 

All the results presented and described in this chapter are obtained using a magnetic stirrer 

for the preparation of emulsions. The use of rotor stator equipment for the emulsion manu-

facturing and the comparison between the two processes are being disclosed in Chapter 4.2.   

4.1.1 Surfactant concentrations 

It is well-known that the average diameter of a drop resulting from an orifice, nozzle, or a 

capillary is strongly associated with the parameters of the injection nozzle exit. The injection 

velocity of the liquid through the nozzle determines the formation pattern of drops when 

other parameters such as the nozzle diameter and the physical properties of the emulsion and 

the temperature of the coolant are kept constant. The drops leave the capillary exit and start to 

ascend in the coolant where direct contact heat exchange occurs. The drops turn to the semi-

solid form and then ultimately solidify during their upward movement in the coolant due to 

the density difference between the two materials. The solidified drops are referred as 

emulsion particles henceforth. Figure 4.1 (A) shows a photograph of particles floating on the 

coolant surface which were removed for further measurements. The top and the side view of 

the particle are also shown in Figure 4.1 (B, C). The diameters of the particles were measured 

by light microscopy (x16.5, BH2). The particles obtained were not exactly spherical but were 
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somewhat elliptical in shape. Generally, when the particles are not spherical then the 

diameter of the particles is characterize as an equivalent diameter “dp” as reported by Nakao 

et al. [Nak04] and is given by the Equation 3.1. The equivalent diameter predicts the actual 

size of non spherical particles. So from here onwards, the size of the particles is described by 

an equivalent diameter as calculated from the Equation 3.1. 

 

Figure 4.1 Photographs of the emulsion drops (A) (hence particles), microscope image of 

single particle (B) top view, (C) side view. 

The equivalent diameter of particles at different surfactant concentration was measured at 

various flow rates. The effect of surfactant concentrations on the size of the particles is shown 

in Figure 4.2. The flow rate of injected emulsion stream was varied from 8 to 18 mL/h. The 

surfactant concentration was varied from 0.2 to 5% by volume. Figure 4.2 shows that the 

particles are up to 5 mm in size at 0.2% surfactant, even at low flow rates. The size was 

reduced to 3.5 mm when a surfactant concentration of 2% by volume was used, and there was 

no further decrease in size even when the surfactant concentration was increased to 5%. 

Moreover, there was no severe difference in size up to 1% of surfactant. 

The effects of surfactant concentration and flow rates on the roundness of the produced solid 

particles were monitored. The roundness is the ratio of minor to major diameters of particles 

as described by the Equation 4.1. Figure 4.3 shows the roundness of the particles. The 

particles were roundest in shape at 12 mL/h. The roundness reached 0.83 – 0.85 even at low 

surfactant concentrations. At other flow rates, generally only a roundness of 0.78 – 0.80 was 

observed 

Roundness of the particle =   
௠௜௡௢௥ ௗ௜௔௠௘௧௘௥ ௢௙ ௧௛௘ ௣௔௥௧௜௖௟௘ ሺ௕ሻ
௠௔௝௢௥ ௗ௜௔௠௘௧௘௥ ௢௙ ௧௛௘ ௣௔௥௧௜௖௟௘ ሺ௔ሻ

  (Eq. 4.1) 
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.  

Figure 4.2 Effect of surfactant concentration on the equivalent diameter of the particles at 

different flow rates with a capillary size of 1.0 mm. 

 

Figure 4.3 Effect of surfactant concentration on the roundness of the particles at different 

flow rates with a capillary size of 1.0 mm. 

4.1.2 Water contents 

In order to investigate the effect of water content on the formation and the roundness of 

emulsions particles with 12 mL/h and 2% surfactant concentration by volume at 60oC, the 
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amount of water content was increased from 5% to 25% by volume. It was expected that with 

an increase in water content in the sample, the size of the particles will be higher, because 

more water droplets are available in the prepared emulsion. But from Figure 4.4, it is clear 

that the amount of water content present in the sample has no effect on the size of the 

particles. It is also evident from Figure 4.4 that the particle shapes e.g. roundness remains the 

same when the water amount was increased from 5 to 25% by volume. It has been observed 

that the increasing water content led to a decrease of the surface percentages of modes and a 

parallel increase of the percentages of intermediate droplets sizes. Moreover, liquid spans 

create less interaction between fatty acid chains present in the fats. So due to a short chain of 

span 20, smaller droplets of water formed with liquid spans [Mar07]. Moreover, the 

solidification behavior at lower water contents is similar to that of higher ones present in the 

sample of emulsions.    

 

 

Figure 4.4 Plot of diameters and roundness versus water content at 12 mL/h and 2% (v/v) 

surfactant concentration at 60oC with the capillary size of 1.0 mm. 

As the oil content of the emulsion increases at constant surfactant concentration, droplet size 

increases gradually. The occurrence of a minimum particle size at particular oil contents is 

not uncommon for emulsions containing nonionic surfactants, where the consideration of 

hydrophilic-lipophilic balance (HLB) value is important. These large particles were formed 
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probably as a result of partial coalescence and the type of the palm oil used for the emulsion 

preparation. 

4.1.3 Effect of flow rates 

It is well known that the drop diameter is strongly associated with the drop formation pattern 

at the injection nozzle exit. The injection velocity of liquid through the nozzle determines the 

formation pattern of drops when other parameters are kept constant. When an emulsion is 

injected into another immiscible liquid via a capillary tube at low Reynolds numbers, two 

different drop formation mechanisms are observed: The drops are either formed directly at 

the needle tip (dripping) or they breakup from an extended filament due to Rayleigh 

instabilities (jetting) [Cra04]. Figure 4.5 describes the effect of flow rate on the formation of 

emulsion drops at the injection capillary tip. At low flow rates, single drops were formed at 

the capillary tip and were released at particular intervals. The drops then turn into solid 

particles in the coolant. At the intermediate and higher flow rates from 30 to 50 mL/h, jetting 

phenomena occurred and a group of drops with different sizes were generated. 

 

Figure 4.5 Effect of flow rates on the particle diameter at 15% (v/v) water and 2% (v/v) 

surfactant concentration at 60oC and 1.0 mm capillary size.  

It is noted that, the transition point between the flow domains is of great importance because 

the dynamics of drop formation change significantly. Therefore, it is necessary to define the 
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transition point when the initial rise in velocity of a drop is adequate low so that the drop will 

grow less than one drop diameter at the same time. At low flow rates of the emulsion, the 

drops from the capillary tip may be divided into two stages: static growth at the capillary and 

the necking and detaching.  

4.1.4 Effect of the capillary size 

As described earlier in Chapter 2.2.2, the drop formation is strongly influenced by the 

parameters governing it. These parameters include the effect of viscosity of the working 

fluid, flow rates etc. in general and the capillary diameters in particular. Therefore, the 

capillaries of different diameters (0.5 and 1.0 mm) were used to produce emulsion drops. The 

emulsions were prepared at various temperatures in order to reduce the viscosity of the 

emulsion because a viscous emulsion blocks the capillary of smaller sizes during the course 

of the experiments. Figure 4.6 shows the equivalent diameters and roundness of the particles 

generated at a flow rate of 12 mL/h with two different capillaries mentioned above. 

 

Figure 4.6 Plot of the equivalent diameter and the roundness of the particles generated by 

capillaries of 0.5 and 1.0 mm inner diameter versus temperature at 15% (v/v) 

water content and 2% (v/v) surfactant concentration. 

It is noted that the average size of the smallest particles was 3.3 mm that obtained beyond 

80oC with 1.0 mm and 3.2 mm at 90oC with 0.5 mm capillary pore. Surprisingly, there was 



Chapter 4  Results 
 

37 
 

not much difference in the equivalent diameters of the particles obtained with two capillaries. 

The particles are more rounds in shape at lower temperature with smaller capillary size. The 

roundness was 0.85 at 50oC which decreased to 0.78 at 90oC. This effect is being discussed in 

Chapter 5 in details. 

4.2 Effect of preparation methods 

The emulsions were produced by a magnetic stirrer and a rotor stator system by applying 

different energy inputs as described in the Chapter 3.2.1. The energy was transferred to the 

emulsions in the form of the rotational speeds of the stirrer and rotor. In this Chapter, the 

influence of the energy inputs applied to the emulsion by two different mechanical means for 

emulsions manufacturing and their effects on the droplets sizes, distributed in the emulsions 

is studied thoroughly. Moreover, the effects of the emulsion manufacturing processes on the 

size and the shape of the particles were monitored. The details of these parameters are 

extended to the following Sub-Chapters.   

4.2.1 Results of the magnetic stirrer 

The influence of the energy input through a magnetic stirrer on the emulsion properties is 

shown here. The energy input to the emulsion systems can be increased by increasing the 

rotation of the stirrer. With higher energy input it is possible to produce smaller droplets and 

emulsions with a smaller droplet size distribution [For01]. Figure 4.7 shows the water droplet 

distribution in the water-in-oil (w/o) emulsions produced by a magnetic stirrer at 700 rpm. 

 

Figure 4.7 Light microscopic image of the emulsion prepared by magnetic stirrer at 700 

rpm, 60oC and 30% water by volume. Scale bar: 50 µm. 
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4.2.2 Results of the rotor stator system 

The influence of the energy input on the droplet size distribution in the emulsions produced 

by a rotor stator system (ultra-turrax) is shown here. The energy input is applied in the form 

of tip speed of the ultra-turrax. Smaller water droplets in the emulsion were produced by 

increase speed of the tip. The rotational speed of the rotor was varied from 8000 to 20500 

rpm, 60oC and 30% water concentration by volume. The microscopic images of the produced 

emulsions are shown in the Figure 4.8.   

 

Figure 4.8 Light microscopic images of the emulsions produced by an ultra-turrax at (A) 

8000, (B) 9500, (C) 13500, and (D) 20500 rpm. Scale bar: 50 µm. 

The water droplets distributed in the emulsions produced both by a magnetic stirrer and the 

ultra-turrax were analyzed using the method as described in the Chapter 3.3.1. The droplets 

size obtained was plotted against the number based percentages. This was done to obtain a 

narrow distribution of droplet sizes as shown in the Chapter 4.2.3. 
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4.2.3 Effect of the energy input on the droplet size distribution 

The distribution of droplet sizes in the emulsions is shown in Figure 4.9. From the Figure, it 

is clear that the droplets at 9500 rpm are uniform and sharply distributed around the mean or 

average value. As described earlier, the higher the energy input is the narrower will be the 

size distribution of the droplets. However, the reverse phenomenon was observed as the 

energy input in the form of tip speed was increased. It might be that the coalescence 

increased more than the droplet break-up as the speed was increased. 

 

Figure 4.9 Size distributions of droplets of the produced emulsions. 

Table 4.1 Influence of the energy input on the mean diameter of the droplets in the 

emulsions. 

Energy input (rotational speed) 

[rpm] 

Mean diameter (number based) 

[µm] 

700 11.47 

8000 12.32 

9500 10.15 

13500 9.23 

20500 9.21 
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The relation between the energy inputs in the form of rotational speeds of a magnetic stirrer 

and a rotor stator for the production of emulsions and the mean droplet size by number based 

is given in the Table 4.1. The mean diameter of the droplets at 700 and 8000 rpm are 

relatively close to each other contrary to the other speeds. This difference could be due to the 

different manufacturing process of the emulsions. 

4.2.4 Effect of the energy input on the particle size and shape 

The properties of the emulsion were varied by changing the energy input for the emulsion 

preparation and its consequences on the drop formation from the capillary were observed. 

Figure 4.10 describes the particle major and equivalent diameters which were obtained from 

emulsions prepared at different energy inputs. Figure 4.10 shows that the equivalent diameter 

of the particles decreased from around 4.0 to 3.4 mm as the energy inputs in the form of 

rotational speed of the stirrer and the tip speed of the rotor for emulsion preparation increased 

from 700 to 20500 rpm, respectively. So it is evident that the smaller the water droplets in the 

parent emulsion, the smaller are the particles created by the process. The decrease in the 

major diameter also showed similar trends. The properties of the emulsion prepared solely 

affect the size of the particles produced from emulsion drops.  

 

Figure 4.10 Relation between the size of the particles and the rotational speed. 
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Furthermore, the roundness of the particles is plotted as a function of the particle size in 

Figure 4.11 in order to investigate the effect of fine water droplets in the emulsion on the 

drop shape. In addition, the roundness was also plotted as a function of rotational speed of the 

stirrer and the tip of the rotor in Figure 4.12. From here the obvious influence on the shape of 

the solidified particles by the rotational speed can be seen. 

 

Figure 4.11 Relation between roundness and the size of the particles. 

 

Figure 4.12 Plot of roundness of the particles versus rotational speed.  
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It was assumed that the fine water droplets in the emulsion might enhance the particles more 

in spherical rather than elliptical shape. The roundness of the particles increases up to 87-

88% at a speed of 20500 rpm which was 78-80% at 700 rpm [Iqb10]. The higher the tip 

speed is, the smaller are the water droplets in the emulsion and hence the value of the 

roundness is higher.  

4.2.5 Crystallization behavior of the particles 

It is assumed when fats are emulsified, they will crystallize via a homogeneous mechanism. If 

the size of the particle is small, there is one or no nucleus per droplet and hence the dominant 

mechanism will be homogeneous nucleation. In order to observe the crystallization behavior, 

the particles were examined under a microscope. The cross-sectioned microscopic images of 

the particles are shown in the Figure 4.13. A thin layer of the particles was cut down from the 

centre of the particle. These images show the orientation or location of tiny water droplets 

inside the solidified emulsion particles. The water droplets were evenly distributed within the 

particles. Some fine and few coarse droplets in the particles appeared. Near these small 

droplets, the crystallization process occurred and the fat started to crystallize.  

 

Figure 4.13 Cross-sectional images of particles using light microscope. Scale bar: 50 µm. 

Kloek et al. [Klo00] described the crystallization mechanism of various palm oil emulsions 

from kinetic measurements of solid fat contents. It was reported that pure palm oil droplets 

showed a heterogeneous nucleation mechanism which altered to a homogeneous mechanism 

when palm oil was diluted with sunflower oil for 10%. They proposed a self-nucleating 
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mechanism for emulsions because of the complex composition of the fat. Some fat molecules 

will have a higher molecular weight and/or be more saturated and hence have a higher 

melting point. Supercooling is needed to induce crystallization, but the bulk of the fat may 

not be undercooled sufficiently to crystallize. Therefore, the fraction may be and act as a 

nucleus and hence the mechanism would be homogeneous. Thus, Kloek et al. [Klo00] 

proposed self-nucleating particles consist of high melting triglyceride fraction. The drops of 

palm oil emulsion in the coolant behave as self-nucleating particles and hence crystallize. In 

Figure 4.13, pictures “A” and “B” are the cross-sectional images of particles with 30% water 

content by volume in the prepared emulsions by an ultra-turrax at 9500 rpm. They show the 

crystallization behavior within the solidified particles. 

4.3 Size of the particles 

The size of the particles plays a vital role not only in the chemical and process industries but 

also in the pharmaceutical and food industries in order to meet the desires of the market. The 

smaller particles are very effective in carrying the active pharmaceutical ingredients in the 

pharmaceutical fields. So the attempts were made to obtain the possible smaller particles in 

the present and current scenario for the production of the solidified particles. Therefore, 

different parameters namely: interfacial tension, influence of the temperature, and the effect 

of the viscosity of the working material were monitored. Therefore, the effect of above 

mentioned parameters were observed and are presented below in the Sub-Chapters of Chapter 

4.3.  

4.3.1 Reduction in the interfacial tension 

The interfacial tension is one of the principal factors determining the size of the drops from 

the capillary or the orifice. It is the responsible force to keep the drop attached to the capillary 

pore until the interfacial force is higher than the shear force applied. Moreover, the drop 

grows at the capillary pore until the shear force is higher than the interfacial tension force. 

Therefore, hydrophilic detergent or an emulsifier (tween 20) was used in the coolant to 

reduce the interfacial tension between the coolant and the drops so that the two forces will 

attain equilibrium much earlier. The hydrophobic emulsifier (span 20) was used for the 
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emulsion stability. Figures 4.14 and 4.15 illustrate the size and the shape of the particles 

obtained in the presence and absence of the detergent in the coolant. 

 

Figure 4.14 Comparison between the sizes of the particles in the presence and absence of 

detergent in the coolant obtained by 0.5 and 1.0 mm pore size of capillaries 

with 15% water by volume and at 9500 rpm.   

 

Figure 4.15 Comparison between the roundness of the particles in the presence and 

absence of a detergent in the coolant obtained by 0.5 and 1.0 mm pore size of 

capillaries with 15% water by volume and at 9500 rpm. 
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After drop detachment, an adequate amount of surfactant (detergent) present in the coolant 

adsorbs at the hemispherical interface before the critical pressure is reached to form the next 

drop. The adsorption of the surfactant is a kinetic process and is exhibited by the dynamic 

interfacial tension of the given surfactant [Gee07]. Hence, tween 20, a non-ionic surfactant 

was used in the coolant to provide a sufficient amount that adsorbs on the hemispherical 

interface to reduce the interfacial tension between the forming drops at the pore of the 

capillaries used.  

4.3.2 Effect of the temperature 

Temperature plays an important and vital role in the preparation and stabilization of 

emulsions especially water-in-oil emulsions. It influences significantly numerous variables 

such as the viscosity of each phase and the solubility of the non-ionic surfactants in either 

phase. Figure 4.16 shows the effect of temperature of the prepared emulsion on the equivalent 

diameter of the particles.  

 

Figure 4.16 Influence of temperature on the size of the particles at 9500 rpm. 
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So, it is mandatory to observe the influence of temperature on the w/o emulsions stability. It 

is noted that at a higher temperature, the stability of the emulsions is slightly reduced in the 

first hour after preparation. With the time, the effect becomes significant as described by 

Ghannam [Gha05]. On the other hand, the viscosity of either phase reduces significantly with 

temperature. Therefore, the water droplets distributed in the emulsion gained much kinetic 

energy which ultimately raised the water droplet collision with each other. The collision 

between the water droplets then finally leads to the instability of the emulsions with time. 

4.3.3 Effect of the viscosity 

The effect of different rotational speeds of a rotor stator on the viscosity of the emulsions 

prepared was measured. The viscosity initially decreases with the increase of speed and then 

becomes almost constant with a further increase in the rotational speed. Figure 4.17 shows 

the effect of rotational speed on the viscosity of the emulsions produced. 

 

Figure 4.17 The viscosity versus rotational speed with 20% water by volume and at 60oC. 

Figure 4.17 shows that the viscosity of the emulsions stays almost the same if the rpms are 

above 9500 and at 60oC and 20 % water by volume. Therefore, the flow behavior of the 

emulsions and drop formation from the capillary of two different pore sizes was done at 

various temperatures of the emulsions.  The emulsions were prepared at 9500 rpm by a rotor 

stator system.  
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In order to describe the flow behavior, the dimensionless numbers; Reynolds numbers (Re) 

and Ohnesorge numbers (Oh) were plotted against the temperature of the emulsions. Figures 

4.18 and 4.19 show the temperature effects on the dimensionless numbers at different water 

concentrations with a capillary of 0.5 and 1.0 mm pore size.  

 

Figure 4.18 Flow behavior versus temperature of the emulsion at 0.5 mm capillary pore.  

 

Figure 4.19 Flow behavior versus temperature of the emulsion at 1.0 mm capillary pore. 
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The data obtained from the dimensionless numbers are well in agreement with values 

estimated by Cramer et al. [Cra04] of the experiments for the generation of drops through a 

capillary in co-flowing streams. They estimated values of dimensionless numbers as: 0.01 ≤ 

Re ≤ 10, 0.4 ≤ Oh ≤ 2.5.  

The flow behavior of complex fluids like emulsions are affected by number of different 

forces such as viscosity, surface tension, gravity, stress and their consequential effects are 

resulted in the formation of various drops, droplets size and size distributions. Dimensionless 

parameters are generally used to describe, predict and to relate the said effects on the surface 

formation or deformation of the drops at the desired conditions. Figure 4.20 shows the effect 

of velocity on the dimensionless numbers and reveal the effects of various factors.  

 

Figure 4.20 Relation between the flow rate and the dimensional parameters. 

Chaleepa [Cha10] previously reported that with the water contents above 15%, the value of 

Ohnesorge number is below 1.0, which demonstrates that the water concentration above 15% 

in the emulsions has no significance effect on the viscosity and hence the viscosity effect has 

no influence on the flowing emulsions. Therefore, the emulsion above this water concentration 

is characterized as the low viscous fluid [Cha10]. 
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4.4 Error analysis  

An information and knowledge about anything is generally based on the results obtained 

from the experiments and their measurement particularly in physical sciences. Therefore, it is 

important to understand the method to deliberate the data obtained from the experiments and 

how to analyze in order to draw significant conclusions from it. Also, it is necessary to 

distinguish that all measurements of physical quantities are not accurate and have some 

uncertainties. Moreover, an investigation of the possible errors and their impact on the 

measured values is certainly essential because no measurement is error-free. Generally, an 

error or uncertainty in measurements have two fundamental components, namely: the 

numerical value estimated the quantity measured and the degree of uncertainty combine with 

the estimated values. In most of the cases, errors can be categorized into two appropriate 

classes: 

• Systematic errors 

• Random errors 

Systematic errors comprise the errors arises from the measuring apparatus or instruments and 

shift the results in a systematic way to their mean or average values. Also, this may arise 

from the improper use of the equipment. Other sources of systematical errors are the external 

factors which may alter the experimental results. Also, the use of different equipments at 

different places may be affected by various systematic effects.  Systematic errors in this work 

include the measurement uncertainty of the pipette, unusually variations of the thermostats, 

inaccuracies in the speed control of a magnetic stirrer and the rotor stator, inaccuracies in the 

metering of different samples, measurement uncertainty and the reading errors of the 

microscope measurement. Therefore, all experiments were done more than twice and in order 

to minimize the above mentioned uncertainties and reproducibility of the results. In each 

case, variation in the results shows similar trend and the mean values were used like, in case 

of equivalent diameter and the roundness of the particles produced.  

Random errors included errors which fluctuate from one measurement to the other. They 

occurs randomly and in an irregular fashion like, the metrological changes occurred which is 

not possible to control and is inevitable. Also, these errors arise due to some other reasons 

namely, lack of sensitivity of the equipment, extraneous disturbances, imprecise definition 
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and statistical processes. It is also noted that the random errors dislocate the measurements in 

an arbitrary direction while systematic errors are unidirectional. Some systematic errors can 

be eliminated to a large extent while random errors are unavoidable and must be lived with. 

Random errors in the experiments carried out here may occurred when measuring different 

materials with a pipette, transfer of the emulsion in the drop formation, use of syringe pump 

in different circumstance, removal and transportation of emulsion particles and off course 

human error in conducting the experiments.  
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5. DISCUSSION 

In Chapter 5, the effects of different parameters on the preparation of emulsions and the 

generation of emulsion drops via a capillary of various pore sizes were observed and 

presented. The effect of the water concentration in the emulsions on the droplets size and 

hence on the particle size, the effect of surfactant concentrations, the influence of the 

temperature, viscosity and interfacial tensions and the crystallization mechanism within the 

particles were examined, too. This Chapter comprises the deliberations on the results 

demonstrated in Chapter 4 and the comparison with existing data. The available literature will 

be discussed for the observed factors. The reasons behind the effects of the parameters will be 

given and the use of the technique on broader canvas will be shown.  

5.1 Effect of different parameters 

Influences of surfactant concentrations on the stability of the emulsion produced by a 

magnetic stirrer, formation of emulsion particles via capillary, use of different water 

concentration in the emulsions and its consequential effects on the size and shape of the 

particle, and the effect of flow rates on the formation of continuous drop streams were shown 

in Chapter 4.1. The discussion and the correlation of the above mentioned parameters in 

accordance with the literature are presented here in Chapters 5.1.1 - 5.1.4 and 5.2. 

5.1.1 Surfactant concentrations and energy input to the emulsion 

In Chapters 4.2, the results for the effect of energy input to the water-in-oil emulsion 

prepared by a magnetic stirrer and a rotor stator system were presented. The surfactant 

concentration was varied from 0.2 to 5% by volume for the stability. It was observed that 

surfactant concentration of 2% by volume is sufficient for the stability of the emulsion. The 

observations are well in agreement with the results obtained e.g. by Porras et al. [Por04] in 

case of preparation of w/o emulsion with a magnetic stirrer by the use of a mixture of span 

and tween surfactants with an overall concentration of 5% by weight. Similarly, in the case of 

a rotor stator system, the use of a surfactant concentration for the production of stabilized w/o 

and w/o/w emulsions with span series are monitored elsewhere [Mar07]. They used the liquid 

spans (span 20, span 80) concentration 1% by weight and solid span 60 concentration was 
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varied from 0.5 to 5% also by weight for the stability of emulsions. Therefore, it is noted that 

the use of a surfactant concentration in the current work is compatible and in accordance with 

the results reported in literature [Por04, Mar07]. Moreover, the mean diameter of the droplets 

distributed in the w/o emulsions were measured by the method described in the Chapter 3.3.1. 

The results are summarized in the Table 4.1 and show that as the energy input to the emulsion 

increases the droplets size decreases. But the difference in the droplet size between 700 and 

8000 rpm is relatively small as compared to the energy input provided in the form of 

rotational speed. This might be due to the use of different processes for the production of the 

emulsions. However, in other cases, the droplet size decreases with the increase of energy 

input in the form of rotational speed of the rotor. Furthermore, the size distribution of the 

droplets around the mean value shows a narrow distribution at 9500 rpm (see Chapter 4.2.3) 

while at 13500 and 20500 rpm, the droplet size distributions are wider. The reason could be 

that the coalescence increased more than the droplet breakup when the speed was increased. 

Droplet disruption and droplet coalescence in an emulsion are the two reverse physical 

processes. The droplets size of the emulsion produced by homogenizer mainly depends on the 

equilibrium of these processes. Emulsions are likely to be the complex systems in which 

droplets collide with each other in a regular and continuous fashion and repeatedly move 

around. During the homogenization process, droplet-droplet collisions are very high due to 

intensive mechanical agitation of the emulsion. Further, the resistance against the coalescence 

by an emulsifier mainly depends on the concentration, structure, and physicochemical prop-

erties of the emulsifier. Also, the capability of the span to produce w/o emulsions firmly 

depends on the chain-chain interaction between the interfaces of the surfactant and the oil 

used during the emulsion process [Mar07]. 

As mentioned above, the coalescence in the emulsion may occur due to the increase of the 

energy input during the emulsification process at higher speed. With the higher speed and 

much emulsification time (30 min.), fine emulsion can be obtained. According to Pal [Pal96], 

the fine emulsions are more monodisperse. Also, fine emulsions exhibited a greater tendency 

of fine droplets flocculation which ultimately leads to the coalescence of the emulsions. The 

tendency of flocculation could be due to the two mechanisms. Firstly, the Brownian motion 

becomes more important and results to increase droplet-droplet collision of fine droplets 
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which leads to the flocculation and then eventually to the coalescence. Secondly, the droplets 

experience the van der Waals attraction force. Also, the decrease in droplet size induces an 

increase in the surface area. Further, the droplets become less stable and hence flocculate 

[Pal96]. Therefore, from Figure 4.9 and Table 4.1, it can be revealed that with an increase of 

rotational speed, fine emulsions were obtained which then further induce to the coarse 

emulsions due the phenomenon of flocculation and coalescence. Hence, the differences in the 

mean droplet diameters at higher speeds are negligible small compared with the lower ones. 

5.1.2 Influence on the particle size and shape 

The effects of surfactant concentration on the size and shape of particles produced by the 

emulsion drops at different flow rates were presented in Chapter 4.1.1. The results are shown 

in the Figures 4.1 - 4.3. As described earlier in the Chapter 5.1.1, the minimum surfactant 

concentration for the emulsion stability in case of w/o emulsion is reported as 2% by volume 

in accordance with the literature. Figure 4.2 showed the size of solidified particles in terms of 

equivalent diameters produced at various surfactant concentrations (0.2 to 5%) and at diverse 

flow rates (8 to 18 mL/h). Until a flow rate of 18 mL/h, single uniform size drops form at the 

tip of the capillary (1.0 mm) and leave the tip before the formation of the next drop. The 

effects of further increase in the flow rates when dripping to jetting phenomenon were 

observed will be discussed in a later stage. 

It is observed that the particles equivalent diameter at a flow rate of 8 mL/h and a surfactant 

concentration of 0.2% by volume was 5.0 mm. The equivalent diameter of particles decreased 

to 3.5 mm at 2.0% at the same flow rate. At 12 mL/h and 2.0% surfactant concentrations, the 

particles of equivalent diameter 4.0 mm were obtained with a roundness of 83-85% (see 

Figure 4.3). The formation of pure hexadecane particles by 1.0 mm capillary in a coolant 

system was reported by Nakao et al. [Nak04]. They observed the formation pattern of the 

particles at three different flow rates and categorize into three different regions. At low flow 

rate (0.212 m/s), the particles were in a narrow size range 4.5-5.1 mm and were ellipsoid in 

shape rather than spherical, while at another flow rate (0.484 m/s) the particles were of 1.8 to 

2.8 mm and at 1.03 m/s, the particles of two shapes were found one of which have diameters 

less than 3.5 mm and other more than 3.5 mm [Nak04]. Hence, the particles obtained in our 

system with the similar size of the capillary are in the range of 5.0 to 3.5 mm at different 
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It is noteworthy that when a liquid is injected into another immiscible liquid at an appropriate 

low velocity (below the jetting mechanism, like in this case until 18 mL/h), drops form at the 

tip of the capillary and break off after attaining a certain size. When the velocity of the liquid 

through a capillary exceeds the critical velocity, known as jetting velocity, a jet of liquid from 

the tip of the capillary will be formed. The jet breaks up into drops of different sizes and also 

smaller drops may choke the capillary aperture and eventually an unstable stream of drops 

will be produced. Therefore, it is important that the operating velocity of the liquid through 

the capillary should be lower than the jetting velocity in order to obtain uniform sizes of the 

drops. 

The effect of flow rate on the size of particles is shown in the Figure 4.5. Particles of two 

different sizes were obtained at a flow rate of 40 mL/h with a size range of 3-4 mm while at 

50 mL/h particles of three different sizes were collected. The particles were categories into 

three different size ranges: 2.5-3.0, 3.3-3.8 and 3.9-4.4 mm, respectively. In both cases of 

different flow rates, the injection velocity of the emulsion through the capillary of inner 

diameter 1.0 mm was higher than the critical velocity and a dripping to jetting occurred. 

Hence, the jet of emulsion then breaks up into drops of diverse sizes and the resulting 

particles are of different shape and size. Likewise, Fang et al. [Fan04] observed the size of 

wax particles in the range of 3.48-3.63 mm at flow rates of 0.09-0.13 cm3/s with a nozzle of 

inner diameter 0.96 mm in a jetting flow region. Also, Nakao et al. [Nak04] reported similar 

results when drops of hexadecane were solidified in a coolant (water and water- ethylene 

glycol solution) at flow rates of 0.212 -1.03 m/s. The results are slightly differing due to the 

physicochemical properties (viscosity, flow-ability, etc.) of the materials under observations. 

5.1.3 Effect of water concentrations  

In Chapter 4.1.2, the effect of water concentrations on the emulsion particles generated via a 

capillary were investigated. The water concentration was varied from 5 to 25% by volume in 

the emulsions which were used in the formation of emulsion drops. It was noted that as the 

water concentration was increased, no change in the size and the shape of the particles 

occurred. This exhibits that the water concentrations in the emulsions have no effect on the 

drop generation through a capillary using a prepared emulsion. The water concentrations in 

the emulsions have, however, an influence on the rheology of the emulsions. When the water 
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concentration in the emulsion is low (5%), fine droplets are distributed in the emulsions 

which result in a viscosity higher compared to a higher concentrations of water. The smaller 

the droplet size is, the higher is the viscosity of the emulsion [Pal96]. As the water 

concentrations in the emulsions increases, the fine droplets come closer together and 

coalescence of the droplets occurs and this eventually reduces the viscosity of the emulsion. 

The volume fraction of the dispersed phase increases due to the increase of the water 

concentration in the w/o emulsion and hence, the system can be deliberated as a dense 

emulsion. The distance between the droplets in a dense emulsion is smaller and they are 

likely to come closer to each other and so experience the higher attractive force between 

them. Smoluchowski [Smo17] proposed a theory which explains the relation between the 

coalescences rate and the number of droplets to be coalesced resulting from a shearing effect. 

This theory is based on the assumption that all drops move along streamlines and every 

collision results in coalescence according to Equation 5.1: 

Where γ is the shear rate and n(V) is the number density of drops having volumes between V 

and (V+dV). From this equation, the number density of drops (n(V)) is direct proportional to 

the amount of water dispersed in the emulsion. The volume (V) is related to the drop radius 

where the drop is considered as sphere in shape. The emulsion produced by a magnetic stirrer 

with all water concentrations were carried out at the same experimental conditions and thus 

the shear rate remains the same during the complete scheme of the experiment. Therefore, the 

coalescence rate of water droplets is directly related to the quantity of water and the sizes of 

the droplets. Hence, the viscosity of the emulsion decreases as the water concentrations in the 

emulsion increases at constant emulsifier concentration.  

The reduction in viscosity of the emulsion at higher water concentration is due to droplet 

coalescence or flocculation. At a higher water concentration the palm oil emulsion is dense 

and above the maximum packing concentration, the viscosity becomes infinite high and the 

rheology is determined by the thin film of continuous phase between the droplets. Thus the 

rheological properties like the viscosity of the emulsion are according to the ratio of the 

surface tension and radius of the droplet [Pal96]. Therefore, it is expected that, with the 

´)()(]´)()[(´),( 33
1

3
1

VnVnVVVVC s +=
π
γ

    (Eq. 5.1) 
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increase in the drop radius, the surface tension, viscosity, stress and rheological properties 

decreases. Also, Anisa and Nour [Ani10] reported affects of the viscosity on the droplet 

diameter in water-in-oil emulsion and noted that with an increase of the water concentration in 

the dispersed phase, the rheology of the dispersed phase changes considerably due the 

interaction of the droplets. Therefore, coalescence at higher water contents would be faster and 

hence the decrease in the viscosity might broaden the droplet size distribution. Therefore, the 

water concentration in the emulsions discussed in terms of viscosity of the emulsion is not a 

unique factor which governs the drop formation by a capillary. 

On the other hand, it is noteworthy that viscosities of the liquid used for the production of drops 

and the continuous phase have little influence on the volume of a drop breakup. It was found 

that drop necking and the drop breakup is greatly influenced by the viscous force especially in 

the growth, extension and breakup of the liquid stream and the generation of satellite drops 

[Kum70]. During the extension of thread, a longer time elapse is required for drop breakup. 

Whereas, the drop breakup is of weak dependence on the viscosity, but the volume of the drop 

breakup varies with the viscosity ratio of the two materials in an appropriate way. It shows a 

maximum value when the viscosity ratio approaches to “1” [Zha99a]. Furthermore, the effect 

of drop viscosity on the drop breakup was investigated by Cramer et al. [Cra04] in the water/k-

Carrageenan system. The viscosity was varied by changing the concentration of k-Carrageenan 

in the system.  

As the viscosity of the disperse phase increases, the corresponding viscous pressure in the thin 

thread of the disperse phase will be high which opposes the capillary pressure. Therefore, 

thread of the disperse phase is elongated and extended between the drop breakup and the 

capillary exit which leads to the generation of satellite drops. The stream of the same size of 

primary drops of disperse phase at different viscosities was observed at constant flow rate. The 

viscosity analogy between the observations reported by Cramer et al. [Cra04] and that of water 

concentration (viscosity change) in our system is shown in the Figure 5.2. Hence, it is revealed 

that the water concentration in the emulsion has no or negligible small effect on the drops 

generated by the produced emulsions.  
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Figure 5.2 Analogous particle size versus water content (Left) at 12 mL/h using capillary of 

1.0 mm inner diameter in this work and the viscosity effect on the drop size 

(right) [Cra04] using capillary of 0.1 mm inner diameter.   

5.1.4 Effect of capillary size and the temperature of the emulsion 

The effects of the capillary size used for the generation of emulsion drops at different tem-

peratures were shown in the Chapter 4.1.4. The effects were observed on the size and shape 

of the particles. The size and shape of particles are referred in terms of equivalent diameter 

and roundness of the particles, respectively. As shown earlier in Figure 4.6, the smallest 

particles with 1.0 and 0.5 mm are 3.30 and 3.20 mm at 80 and 90oC, respectively. The water 

concentrations in the emulsion have negligible small changes in the viscosity as described 

briefly in Chapter 5.1.3 despite the increased concentration to 25% by volume at 60oC. This 

indicates that emulsion remains as w/o emulsions until the water concentration increased to 

25% by volume. Besides this, Chaleepa [Cha10], noted that when the water concentration 

was above the 35% in the w/o emulsion, the type of the emulsion altered from w/o to o/w 

emulsion. Therefore, emulsions were prepared at constant water and surfactant concentrations 

as 15% and 2% by volume, respectively, but at different temperatures. Figure 4.6 show that 

the equivalent diameter of the particles decreases as the temperature of the emulsions 

increases. The variations in the equivalent diameters were observed in both sizes of the 

capillary till 80oC while the reverse mechanism was observed at 90oC. The opposite 

mechanism is due the phase inversions of the emulsion at higher temperature. Also, at lower 
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temperature, the viscosity is high for the dense emulsions, but when the temperature 

increases, there will be no further change in the viscosity as reported by Anisa and Nour 

[Ani10].  In addition to the size of the particles, the particles are more rounds in shape when 

they were produced by the 0.5 mm capillary. Hence, it is noted that when the particles are 

small in size they would be more spherical and round in shape. So, in order to obtain smaller 

particles with the same system, tween 20 was used in the coolant to reduce the interfacial 

tension between the drop and the continuous coolant. This effect is discussed in Chapter 5.2. 

5.2 Influence of energy input and interfacial tension 

In Chapter 4.2, Sub Chapters 4.2.1 to 4.2.3 and 4.2.4, the emulsions manufactured by a 

magnetic stirrer and rotor stator system were characterize and the consequences on the drop 

size generated from these emulsions were reported. Figures 4.7 and 4.8 shows the images of 

emulsions produced by magnetic stirrer and rotor stator with 30% (v/v) water concentration 

at 60oC. The water concentration was increased to 30% in both cases in order to characterize 

the emulsion matrix. Figures 4.10 - 4.12 exhibits the effects of rotational speed on the shape 

and the size of particles generated from the emulsion matrix. Figure 4.10 demonstrate the size 

of particles in terms of major and equivalent diameters. As the energy input increases in the 

form of rotational speed during the preparation of emulsions, the corresponding change in the 

size of drops occurred irrespective of the emulsion viscosity as described in Chapter 5.1.3. 

The size of particle was higher at lower energy input (stirring) which starts reducing when the 

higher energy was provided during emulsification up to some certain extent (9500 rpm) 

where droplets in the emulsions were fine and a narrow size distribution was observed. The 

reduction in the size could be due to the fine droplets existing in the emulsions. No further 

decrease in the size was observed at the conditions of interests nevertheless the emulsification 

was done at higher energy input (20500 rpm). This may illustrate that as the rotational speed 

increases, the fine poly disperse droplets in the emulsion arise and no further droplet breakup 

occurs. Also, droplets coalescence and flocculation occurred which eventually increases the 

droplet size rather than decreases it. This could be one of the reasons that the particle size 

remains constant regardless of the fact that an immense supply of energy during emulsifica-

tion takes place.   
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Moreover, the shape of particles was presented in the Figures 4.11 and 4.12 as a function of 

the particle size and the rotational speeds. The particles were obtained from the emulsion as 

mentioned in the above paragraph. Likewise, the size of the particles, the shape was also 

affected by the energy input provided.  However, particles are more spherical in shape with 

increasing the energy input contrary to the size which was the same at higher rotational 

speeds. From Figure 4.11, it is evident that the particles smaller in size exhibited more 

roundness compared with the bigger particles. This indicates that the emulsion rheology is 

not the only factor which determines or governs the size of the drops through the capillary 

produced by theses emulsions. 

Furthermore, it is noted that the interfacial tension is one of the major factors which governs 

the size of the drop from the capillary or the orifice as described in the Chapter 4.3.1. Also, it 

is considerable as the dominant force that keeps the drops attached to the capillary tip before 

the interfacial and shear forces attain equilibrium. The drop at the capillary exit will leave 

earlier if the two forces approach to the equilibrium much faster. Therefore, the interfacial 

tension was reduced by the use of a detergent (tween 20) in the coolant medium. The 

employment of tween 20 in the coolant results on the size and shape of the particles obtained. 

The effects of the detergent on the size and shape of particles is shown in the Figures 4.14 

and 4.15, respectively. From Figure 4.14, the equivalent diameter of particles observed at 50 

and 90oC without an emulsifier (0.5% by volume) in the coolant are 3.8 and 3.2 mm, 

respectively. The equivalent diameter of particles falls to 2.7 and 2.2 mm in the presence of 

tween 20 at the corresponding conditions. These measurements were obtained when the 

capillary size of 1.0 mm used. Likewise, the corresponding observations with capillary of 0.5 

mm were 3.6 to 3.1 and 2.3 to 1.8 in the absence and presence of the detergent in the coolant 

at the specified temperature conditions of the emulsion. 

On the other hand, the shape of the particles obtained at the conditions described in the above 

paragraph is shown in the Figure 4.15. It is recognized that the particle roundness reached to 

89-90% in the presence of an emulsifier when a capillary size of 0.5 mm was used. This 

value lies in the range of 77-78% when there was no emulsifier in the coolant and capillary of 

1.0 mm used. So, from these examinations, it can be revealed that the smallest particles give 

the highest roundness. It is monitored that the drop size decreases to 29-31% and 36-41% by 

the capillary of 1.0 and 0.5 mm inner diameter in the presence of detergent (0.5% by volume) 
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in the coolant. Also, the roundness of the particles obtained was increased to 12-13% in the 

presence of an emulsifier. The percent decreases and increases indicate the reduction in size 

of the drop and the increment in the shape of particles when there was no emulsifier in the 

coolant with the same mentioned capillary sizes. The deviation or the decrease in the drop 

(particle) size in the presence of an emulsifier (detergent) is higher compared to the results 

reported [Ske90]. They noted that in the presence of a different surfactant in liquid-liquid 

system, the drops size predicted by Scheele and Meister [Sch68a, Sch68b]. The deviation 

observed was 12.9% and the difference in the results reported in this work could be due to the 

different liquid-liquid system for drop generations.  

Further, the drop formation from the capillary is related with pressure difference exceeded the 

critical pressure, which determines the pore radius and the interfacial tension. The interfacial 

tension can be decreased by an emulsifier. The interfacial tension and the critical pressure can 

be related by the Equation 5.2 as described by Geerken et al. [Gee07]. Also, the drop size in-

creases if the pressure difference increases at a constant emulsifier concentration. But, when 

the fast emulsifier is used, the drop diameter is nearly independent of the pressure difference. 

Hence, the dynamic interfacial tension is the dominant factor that governs the size of the drop 

from the pore of the capillary in our system, as the pressure difference is kept constant 

without altering the flow rate. Therefore, the drop diameter can be reduced by decreasing the 

interfacial tension using a fast absorbing emulsifier at constant flow rate.   

5.3 Solidification/crystallization mechanism and behavior of the particles 

The solidification/crystallization of emulsion drops in the coolant was presented in Chapter 

4.2.5. Earlier, the crystallization mechanism and behavior of fats and fat emulsions was 

described extensively in Chapter 2.3. The crystallization mechanism occurring within the 

emulsion particles solidified in the coolant is shown in Figure 4.13. Prior to the crystallization 

occurring in the solidified particles, the particles solidify in a direct contact coolant below the 

freezing point of the emulsion. Therefore, it is important to illustrate the drop solidification 

mechanism. 

       (Eq. 5.2) 
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In the solidification, the emulsion drops exchange heat with the coolant and this heat transfer 

results in two steps. At first, the emulsion drops releases heat to the liquid coolant 

surrounding the drop. When the surface of the drop attains a temperature below the solidifi-

cation temperature, it starts solidify with a thin layer of the emulsion which envelops the 

emulsion drop. The sensible heat of the drop depleted into the coolant by convective heat 

transfer inside as well as outside of the emulsion drop. In the second step, the latent heat of 

solidification released by crystallizing the drop. Now heat transferred by conductive heat 

transfer through the solid layer of the emulsion which was developed during the first 

solidification step, and finally released to the coolant by convective heat transfer mechanism. 

In this case, the sensible heat transfer is negligible small compared to the latent heat of 

solidification and hence has little significance. 

The crystallization and the structure inside the solid particle were examined by a light 

microscope and the cross-sectioned images of the solidify emulsion drops are shown in the 

Figure 4.13. As mentioned earlier in Chapter 4.2.5, the images were taken using a thin slice 

of the particle generated from the emulsion with 30% water, 2% emulsifier and the balance is 

the palm oil by volume. From the Figure 4.13, it can be seen that the water droplets which 

originally distributed in the emulsion are also evenly distributed in the particles. The two 

images show water droplets of different sizes, the fine and the coarse droplets which were 

also noted initially in the emulsion matrix. This also confirms the emulsion stability and the 

even distribution of droplets in the emulsion as well as in the particles. Despite the fact that 

the size distribution of droplets exhibits a narrow distribution in the emulsion prepared at 

9500 rpm, but some coarse droplets exist in the emulsion as shown in the Figure 5.3. The 

detail images of the emulsion and the particle cross-sectioned are further annexed in the 

Appendix.  

Generally, pure and mixture of TAGs grow as spherulites which are made of several 

crystalline ribbons that grow radially from a same central nucleus. The ribbons that result the 

spherulite are needle like shape in most of the cases. Irregular structures of spherulite are 

frequently observed due to deformation and the interface with the liquid may diffuse. 

Different morphologies of TAGs spherulites are due to difference of the driving force which 

causes changes to the mechanism of secondary nucleation of crystal layer. Higher driving 
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forces may induce the surface rougher which eventually leads to the secondary nucleation in 

different layers simultaneously. The spherulitic growth of TAGs can be illustrated by the 

surface nucleation theory which is extensively applied to polymer crystallization. The 

progress or the advancement of the spherulite front may be controlled by the secondary 

nucleation at the frontal surfaces of the spherulites [Him06].  

 

Figure 5.3 Droplets distribution at 9500 rpm: (A) light microscope image of emulsion, 

(B) size distribution, (C, D) light microscope images of thin layer of solidified 

particles generated from emulsion. Scale bar: 50 µm. 

Figure 5.3 (B) shows that, there are some coarse particles in the emulsion lying in the range 

of 30 to 63 µm which are depicted in the Figure 5.3 (C, D). The droplets froze in the particles 

of size 50 µm and above are shown in “D” while the fine droplets less than 30 µm are 

exhibiting in “C” of the said Figure. It is also observed that the fine frozen droplets showing 

hairy like structure around the periphery which indicate the crystallization behavior of the fat 

which was emulsified and then solidify in the coolant below the freezing point. It means that 
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the water droplets distributed carryout the crystallization of the emulsified fat surrounding it 

and grow in the form of fine needle like crystals.  

As mentioned and illustrated earlier in Chapters 2.3.3 and 4.2.5, the mechanism of the crys-

tallization of different palm oil emulsions shows the heterogeneous nucleation mechanism 

according to the kinetic measurements of solid fat contents, but the mechanism alters when 

the emulsion matrix was diluted with sunflower oil as described elsewhere [Klo00]. They 

proposed a self-nucleating mechanism for complex fat emulsion matrixes and noted that a 

supercooling is needed to induce the crystallization mechanism. 

On the other hand, Chen et al. [Che02] observed during the isothermal crystallization kinetics 

of pure palm oil that at the end of the crystal growth, spherical crystals could be observed 

below the melting point of the oil similar as observed in the Figure 5.3 (C, D). They indicated 

that this might happen due the existence of the α-crystals inside the β'-crystals (the 

cocrystallization of α and β'-forms).  

 

Figure 5.4 Isothermal crystallization: microscope images of (A) palm oil at 18oC [Che02], 

(B) 80% palm stearin/sesame oil solution at 35oC [Tor00]. 

Figure 5.4 shows the isothermal crystallization of palm oil at the end of the crystallization 

and the analogy of the crystal between the pure palm oil and the crystallization inside the 

particles of water-in-oil emulsion of palm oil can be drawn. Also, Toro-Vazquez et al. 

[Tor00] monitored the crystallization kinetics of palm stearin and sesame oil solution at 

different temperatures and crystallization time after the induction of crystallization. They 

observed that the higher melting temperature triglyceride in the palm stearin/sesame oil 
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solution when once crystallizes under isothermal crystallization; it may boost the 

crystallization of other lower melting triglyceride. Furthermore, the crystallization process 

proceeded as of heterogeneous crystallization. It is assumed that the crystallization within the 

solid particles may follow the mechanism as described. Nevertheless, the crystallization 

mechanism within the emulsion particles is discussed briefly, but it is also noteworthy that 

the mechanism is still and certainly worth for further study and observations.  

The process can be evaluated on the concept of generation of uniform emulsion particles has 

been achieved successfully. The process acquired by optimizing the parameters like emulsion 

stability, coalescence mechanism, drop to particle formation of emulsion and solidification of 

particles. It is also further accomplished with the size of particles being reduced using an 

appropriate emulsifier in the coolant. The crystallization mechanism within the particles was 

also observed, but need further investigation for the complete understanding. It also has 

advantages over the process described in the literature for the production of particles of di-

verse materials [Fan04, Nak04] in context of process parameters and the size of particles 

achieved. However, the crystallization behavior and mechanism is still an open point to be 

addressed.  
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6. CONCLUSIONS AND RECOMMENDATIONS 

The preparation of water-in-palm oil emulsions which has been considered as one of the 

phase change materials (PCMs) by different methods and its effects on the stability and on 

the generation of emulsion drops which turned into the solidified form in a direct contact 

coolant were invested. Based on the observations from the experimental illustrations, fol-

lowing conclusions can be drawn: 

1. The palm oil emulsions prepared by a magnetic stirrer and a rotor stator system were 

stabilized by the use of non-ionic surfactant (span 20). Different concentrations of the 

surfactant were used to stabilize the emulsion. The span 20 concentrations were varied 

from 0.2 to 5% by volume. It was noted that 2% (v/v) of span 20 concentration is the 

minimum concentration required for a sufficient stability of the emulsion.  

2. The prepared emulsions were characterized and the mean size distribution of the 

droplets distributed in the emulsions was monitored. The water droplets distributed in 

the emulsion prepared by a magnetic stirrer at 700 rpm were of 11.47µm while in case 

of rotor stator system, the droplet sizes decreases with increasing energy input and 

narrow size distributions were observed at 9500 rpm. There was not much difference in 

size of droplets at 13500 and 20500 rpm due to the coalescence of fine droplets and the 

breakup of coarse droplets at higher energy inputs. 

3. The size of the drop to particle generated by a capillary of 1.0 mm from the emulsions 

decreases from 4.0 to 3.4 mm at a flow rate of 12 mL/h when the energy input in the 

form of the rotational speed of the stirrer and rotor was increased from 700 to 20500 

rpm. On the other hand, the size of the particles decreases to 3.2 mm by a capillary of 

0.5 mm and an energy input applied to the emulsion was 9500 rpm. It was also 

observed that above 9500 rpm, the emulsion properties remained the same which 

indicates the smaller change in the particle size at two different capillary diameters. 

4. The shape of the particles obtained is referred as the roundness of the particles and 

noted that the smaller particles are more round in shape. It was noted that the roundness 

increases to 87-88% at a particle size of 3.2 mm which was 77-78% at a particle size of 

4.0 mm and above. Therefore, attempts were made to obtain the smaller particles in 

order to acquire the roundest particles. Hence, the interfacial tension between the 

generated drops and the coolant was reduced by the use of an emulsifier in the coolant. 
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5. An emulsifier (hydrophilic) was used in the coolant by an amount of 0.5% by volume 

in order to reduce the interfacial tension between the coolant and the generated drops 

from the capillary. The size of the particles obtained in the presence of an emulsifier 

was reduced by 29-31% and 36-41% of their original sizes by capillaries of inner 

diameters 1.0 and 0.5 mm. In other words, the size of the particles could be reduced 

from 3.8 to 2.7 mm and 2.3 to 1.8 mm in the presence of an emulsifier in the coolant. 

6. Likewise, the particles obtained are more rounds in shape when an emulsifier was 

employed in the coolant. The roundness of the particles increased by a value of 12-13% 

of its value when there was no emulsifier in the coolant. The smallest particles achieved 

the roundness in the range of 89-90%.  

7. At low flow velocities of the emulsion through the capillary (1.0 mm) single drops were 

formed at the capillary exit (dripping) which then leave the tip into the coolant. But, as 

the velocity increases above the critical dripping velocity, a jet stream formed which 

then disintegrated into drops of different sizes. In the jetting regions, particles were 

categorized into three different size ranges: 2.5-3.0, 3.3-3.38 and 3.9-4.4, respectively. 

8. The water concentration in the emulsions was varied from 5-30% by volume in order to 

observe the viscosity effect of the drop formation. It is noteworthy that below the water 

concentration of 35%, the type of the emulsion remains w/o emulsion. It was found that 

when the water content in the emulsion matrix increases, the viscosity of the emulsion 

decreases by coarsening and polydispersity of the droplets. The Ohnesorge Number of 

the palm oil emulsion shows a value below “1” indicating that the water concentration 

or in other words the viscosity has no influence on the flow behavior of the emulsion 

through the capillary.  

9. The drops then exchange the heat with surrounding coolant and turned into the solid 

form. The solidification occurred in two steps, first a thin solid layer of palm oil 

emulsion developed at the surface and envelops the drop, and then in the second step a 

complete solidification of the drop occurred. The sensible heat transfer was of 

negligible small compared with the latent heat of solidification during the solidification 

process and hence has little influence. 

10. The palm oil emulsion particles were cross-sectioned at the centre to obtain a thin slice 

of the solid particle. Microscopy observation of thin slice of emulsion particle showed 

the fat crystallization within the particles. The orientation of water droplets within the 
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particles showed a similar location and a uniform distribution as it was observed in the 

emulsion. It was also found that fine frozen droplets showed hairy like structures 

around the periphery of the droplets indicating the palm oil crystallization which was 

emulsified and solidify below the freezing point. Therefore, it is presumed that the 

water droplets within the emulsion particles accomplish the emulsified fat 

crystallization and grow in the form of needle shape crystals on the periphery. 

11. Moreover, the solid crystalline spherical particles have advantages over the other 

crystal shapes and solid formulations. The crystalline solid spherical particles have 

technological advantages which includes:  

a. good flowability due to uniform size and spherical shape which enables a 

homogeneous and an accurate filling of the active materials;  

b. high physical stability with minimal friction and generation of fine materials 

c. an excellent properties of coating due to spherical shape, smooth active 

surface, low surface to volume area and good ability to bear mechanical 

stresses. The particles can be coated with thin and thick coated materials at 

desired properties and conditions of interest.  

In general, it can be concluded, that surfactant concentration can be minimized for the 

sufficient stability of the water-in-oil emulsions which then used for the generation of the 

emulsion particles. Furthermore, the process can be employed for the generation of fine 

particles with the use of other emulsion matrixes by optimizing the operating parameters like: 

varying the coolant temperature, the use of the capillary of smaller size, use of the additives 

in the emulsion matrix, reducing the interfacial tension between the coolant and the emulsion 

drops from the capillary, use of different coolant materials etc. Also, the current process is 

based on single capillary system for the particles generation which can be design and 

fabricated by the installation of multiple capillaries depending on the desired size of the 

product.  

The concept of formation of emulsion particles, so-called crystalline emulsion particles have 

been acquired and prove successfully. The size of the particles was reduced to reasonably 

small particles by the use of an emulsifier in the coolant. The approach was established by the 

use of palm oil as a model substance and span 20 as an emulsion stabilizer. However, there 
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are some open points to be addressed like: the use of food emulsifier to make it a more 

environmental friendly process for the stability of emulsion and to decrease the interfacial 

tension by some food grade emulsifier. Further studies are needed for the complete 

understanding of the crystallization mechanism. Also, more experiments should be executed 

with some complex materials like milk fat in order to prove and extend the concept on a 

broader canvas. Finally, the process would be the potentially alternative to carry out the 

hydrophilic-hydrophobic materials in a drug delivery system. 
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7. SUMMARY 

Drops, particles or the granulations formation of various materials have been extensively 

studied and prepared in different process and chemical industries for their further applications 

and utilization. Drops are obtained by adopting a route of atomization, use of capillary or an 

orifice, etc. Fats have been employed diversely in the food, pharmaceutical, and cosmetic 

industries. Higher melting fats are considered as phase change materials (PCMs) which 

exhibit either a liquid or solid or semi-solid phase with the slight temperature change around 

the melting points. In food industries, drops are modified by enhancing their melting point 

and are used for the production of chocolate, cookies, margarines and shortenings. 

Generation of fine drops of emulsified fats have the advantage of their use in the dressing of 

food items as well as the alternative use of a drug carrier system for the hydrophilic-

hydrophobic drugs. Therefore, emulsions drops by a capillary were generated and solidified 

in direct contact coolant in order to obtain the fine solid emulsion particles which are main 

objective of this work for their utilization in food and in the pharmaceutical industries.  

The process of emulsion drops to particles generation has been developed by optimizing and 

modifying the parameters which have affects on the process. The parameters include: 

preparation and stabilization of w/o emulsion obtained by different mechanical means, 

viscosity of the emulsion in terms of water concentrations in the emulsion which affect the 

flow behavior, effect of the interfacial tension between emulsion drops and the coolant 

medium, reduction the size of the particles by the use of a detergent in the coolant, 

solidification mechanism of the drops in the coolant and the size and shape of the particles 

were monitored. Key parameters that govern the process are the stability of the emulsions and 

the use of an appropriate capillary size for the formation of particle size of the interest. 

The process comprises mainly two parts namely: preparation of emulsions, and generation 

and solidification of emulsion drops. Palm oil was chosen as a fat model for the production of 

emulsions due to its properties, availability and the health prospective. Non-ionic emulsifier 

span 20 was used as an emulsion stabilizer while tween 20 was introduced as a detergent in 

the coolant to reduce the interfacial tension between the drops and the coolant. Emulsions 

were prepared by a magnetic stirrer and a rotor stator system with different energy inputs. 
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The emulsions were then pumped at various flow rates through a capillary of two different 

sizes and drops were generated. The drops were then solidified by exchanging heat with the 

surrounding coolant.  

The viscosity of palm emulsion matrix was reduced by increasing the water concentration in 

the emulsion and was analyzed by dimensionless numbers. The Ohnesorge number value was 

below “1” at water concentration above 15% indicating the low viscous emulsion which has a 

negligible small effect on the emulsion flow behavior. Furthermore, the size of the particles 

was reduced by the use of a detergent in the coolant. The detergent reduces the interfacial 

tension between the drops and the coolant so that the shear force and the interfacial tension 

force attains equilibrium much earlier which results the decrease of drop size upto 42% of its 

original size when there was no detergent in the coolant. 

The crystallization mechanism within the solid particles was observed and noted that needle 

like crystal grows at the periphery of the droplets which leads to the spherulitic growth of the 

emulsified fats. Different fat spherulites may be illustrated by a mechanism of nucleation of 

crystal layer which induces a rougher surface and thus eventually leads nucleation at different 

layers simultaneously.  

The concept of generation of uniform emulsion particles and their solidification in a coolant 

has proven to be successful. Also, the particles of smaller sizes were obtained by reducing the 

interfacial tension between the working materials. However, there are still some points to be 

addressed and elaborated like e.g.: the use of food emulsifiers in the process, the 

crystallization mechanism within the particles, etc. More experiments are needed with some 

complex oil or fat systems to prove and extend the concept. Finally, the process likely to be a 

potential alternative in drug delivery systems and in food technologies. 
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8. NOTATIONS AND ABBREVIATIONS        

Notations  
 

Units Descriptions 

a [mm] Major diameter of particle 

b [mm] Minor diameter of particle 

Cs (V, V’) [m/s] Coalescence rate 

DFS [cm] Diameter of the attached drop at equilibrium  

DH [cm] Hydraulic diameter of the channel 

dp [mm] Equivalent diameter of particle 

F [-] Harkins-Brown correction factor 

FB [dynes] Buoyant force 

FD  [dynes] Drag force 

FI [dynes] Inertial force 

FS [dynes] Interfacial tension force  

g [cm/sec2] Acceleration of gravity  

G [1/sec] Predominant elongation or shear rate-of-strain  

L [cm] Characteristics length 

n(V) [-] Number of drop 

Q [cc/sec] Volume flow rate of dispersed phase 

UN [cm/sec] Dispersed phase average velocity through the nozzle  

DN [cm] Nozzle inside diameter 

U [cm/sec] Characteristic velocity 

UF [cm/sec] Velocity of the forming drop at the instant necking 
starts 

V [m3] Volume 

VF [cc] Drop volume after break off from the nozzle 

VFN [cc] Volumetric flow out of the nozzle during necking 

VFS [cc] Liquid volume attached to the nozzle when necking 
starts 
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Greek Symbols 

a [cm] Characteristic size of the finger prior to enter the 
junction 

α, β, β' [-] Polymeric forms of fat  

µ [g/cm.sec] Continuous phase viscosity 

w [cm] Characteristic width of the channel  

ρ [g/cc] Density of continuous phase 

ρ' [g/cc] Density of dispersed phase  

σ [g/sec2] Interfacial tension 

 ௢ [mPas] Viscosity of the emulsionߟ

 

Abbreviations  

HLB  Hydrophilic-lipophilic-balance 

PCM  Phase change material 

PMF  Palm mid fraction 

TAG  Triglyceride 

SFC  Solid fat content 

 

Dimensionless Numbers 

 
 

Bo 

 

Bond Number 

Ca  
 

Capillary Number 

Oh  

 

Ohnesorge Number 

Re  

 

Reynolds Number 

We  Re Ca Webber Number 
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Figure 10.6 Relation of interfacial tension between the water and the emulsion prepared at 

different speeds of an ultra-turrax at 60oC and 30% water by volume. 
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Figure 10.7 Cross-sectional images of thin slice of solid particle using light microscope. 

Scale bar: 50µm. 
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