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Introduction

Random effects on mainly deterministic systems occur in many areas, for instance in flow

mechanics or interest rate models. Usually Wiener processes are used to describe these ran-

dom effects and a rich analytic toolbox was furnished for this Gaussian martingale process,

on its forefront the stochastic integration calculi of Itô [56], Stratonovič [105] and Skorohod

[102].

But Wiener type disturbances are Markov processes which means that they are no longer

adequate if the data possess any chronological dependency. Indeed, studies have found

that data in a large number of fields, including hydrology, geophysics, air pollution, image

analysis, economics and finance display long-range dependence (e.g. Beran [15], Mandel-

brot & Hudson [75], Peters [85]). To capture this phenomenon, Mandelbrot & van Ness [76]

proposed in 1968 the concept of a fractional Brownian motion which, basically, is a proba-

bilistic Gaussian process indexed by a parameter H ∈ (0, 1). This parameter was named after

the hydrologist Hurst who, together with some collaborators, demonstrated in the pioneering

work [55] that this approach is appropriate to describe statistic time series in a hydrologically

framework. Formally, a fractional Brownian motion is the convolution of Wiener increments

with a power-law kernel. One of the advantages is, that one is able to control the stochastic in-

fluence by varying the parameter H in the interval (0, 1). With the selection H = 1
2 a fractional

Brownian motion becomes a Wiener process which behaves chaotically since its increments

are uncorrelated. Otherwise the increments of a fractional Brownian motion are negatively

(if H < 1
2 ), respectively positively (if H > 1

2 ) correlated and in the last case this process ex-

hibits long-range dependence, that is a certain memory feature, which is characterized by

a spectral density of the incremental process having a singularity of some fractional order

at frequency zero. Long-range dependence effects appear naturally in many situations, for

example, when describing (cp. Shiryaev [101])

• The widths of consecutive annual rings of a tree.

• The temperature at a specific place as a function of time.

• The level of water in a river as a function of time.

• The characters of solar activity as a function of time.

1



Introduction 2

• The values of the log returns of a stock.

Except for the Wiener case, a fractional Brownian motion is neither a semi-martingale nor

Markovian and therefore extensive consequences can be observed if one simply modifies

a stochastic model with replacing a Wiener process by a fractional Brownian motion. For

instance in mathematical finance, Wiener processes are widely used to describe the move-

ment of share prices (e.g. Prüss et al. [91]), but it is empirically demonstrated to be incorrect

in a number of ways. As already mentioned, a fractional Brownian motion is in general not a

semi-martingale, so particularly there cannot be a martingale measure (except for the case

H = 1
2 ), which by general results (e.g. Rogers [92], Cheridito [24]) means that there must be

arbitrage. But this case is excluded by assumption in the common models. Nevertheless,

fractional Brownian motions are of great interest in financial modeling (e.g. Elliott & van der

Hoek [41], Hu [54], Necula [79], Jumarie [58], Liu & Yang [70, 71], Øksendal [83]), to say it

with the words of Esko Valkeila: “As we all know, fractional Brownian motions cannot be used

in finance, because it produces arbitrage. But as we also know, boys like to do forbidden

things.” As a consequence financial mathematicians tend to enlarge the common models

with transaction costs and it was shown that in this richer framework fractional Brownian

motions do no longer necessarily produce arbitrage (e.g. Guasoni [50]). In addition, recent

studies detected a few more ways to exclude arbitrage (e.g. Bender et al. [14]). However,

the Wiener toolbox was not applicable for the theory around fractional Brownian motions,

which made it necessary to establish a fully new stochastic calculus. This was done by many

authors, among them Mandelbrot & van Ness [76], Lin [69], Dai & Heyde [28], Decreusefond

& Üstünel [32, 33], Norros et al. [80], Duncan et al. [35, 37, 36], Alòs et al. [2, 1, 3], Pipiras &

Taqqu [86], Krvavych & Mishura [66], Coutin et al. [26], Decreusefond [30, 31], Tudor [107],

Lakhel et al. [68], Bender [13], Carmona et al. [23], Nualart [81, 82], Biagini et al. [19, 18, 17],

Gradinaru et al. [49], Tudor [108], Jolis [57], Elliott & van der Hoek [42], and the progress is

still going on.

In addition to long-range dependence, it has been found that many processes in finance (e.g.

Bhansali et al. [16]) and 2-D turbulence in particular exhibit a high degree of intermittency,

that is the clustering of extreme values at high frequencies of a certain order, so for instance

a multiplicative cascade process (e.g. Davis et al. [29]). Intermittency can be loosely de-

scribed as the characteristic of a dynamic system, whose substantially regular behavior is

interspersed by infrequent and compendious chaotic phases. Intermittency effects occur, for

example, when describing (cp. Shiryaev [101])

• Financial turbulence, e.g. the empirical volatility of a stock.

• The prices of electricity in a liberated electricity market.

In 1999, Anh et al. proposed in [6] a two parameter process called fractional Riesz-Bessel

motion, which may exhibit both, long-range dependence and second-order intermittency. In



Introduction 3

other words, the presence of a fractional Riesz-Bessel motion affords a possibility to study

both effects simultaneously. This study was undertaken by Anh et al. [8]. While a Wiener

process is a special case of a fractional Brownian motion, the last is on the other hand a

special case of a fractional Riesz-Bessel motion. However, again people were facing the

problem, that the stochastic calculus for fractional Brownian motions did not fit to fractional

Riesz-Bessel motions, since in the past the calculi were tailor-made for each process.

Therefore it would be desirable to have a rigorous stochastic analysis for a satisfactory large

class of stochastic processes, say for stochastic processes with stationary increments and

spectral density. This is the major aim of the present thesis. Once provided, we will present

applications to parabolic problems arising frequently in models concerning linear viscoelastic

material behavior and fractional diffusion.

This thesis is structured as follows. In Chapter 1 we explain some mathematical notations and

function spaces and we introduce briefly the fundamentals of evolutionary integral equations,

which are widely taken from the monograph of Prüss [88].

In Chapter 2 we define real-valued and also vector-valued processes with stationary incre-

ments and prove regularity results for certain classes of those motions. Precisely, we con-

sider two classes of processes characterized by Hypotheses (φ) and (φ0) (see page 24). A

process X with stationary increments and spectral density φ satisfies Hypothesis (φ), if there

is a number γ ∈ (1, 3), such that |λ|γφ(λ) is bounded on the real line R. On the other hand, X

is due to Hypothesis (φ0), if a number γ0 ∈ (1, 3) exists, so that 0 < |λ|γ0φ(λ) <∞ in a certain

neighborhood of zero and if the spectral density φ satisfies a growth condition (this condition

will determine a number θ ≥ 0). As an additional benefit, the numbers γ, γ0 and θ provide in-

formation whether the process X may exhibit long-range dependence or intermittency (see

Remark 2.5). The most employed result of the present thesis is formulated in Theorem 2.11

and reads as

Theorem. The following are true.

(i) Let X be subject to Hypothesis (φ). Then there is a constant cφ > 0, such that the

estimate

E[X(τ)]2 ≤ cφ|τ |γ−1

holds for all τ ∈ R. Moreover, we have equality if |λ|γφ(λ) is constant.

(ii) Let X be subject to Hypothesis (φ0). Then there is a number cφ0 > 0, such that the

estimate

E[X(τ)]2 ≥ cφ0 ·min{|τ |γ0−1+θ, |τ |γ0−1}

holds for all τ ∈ R.
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In particular, we will be able to prove that in case X is centered and satisfies Hypotheses (φ)

and (φ0), the variance Var[X(t)] takes values in the shaded regions of Figure 1.

0.5 1.0 1.5 2.0
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Figure 1. Idealized regions for the values of Var[X(t)], whereX is centered and due

to (φ) and (φ0) with θ = 0 (left) and θ > 0 (right), respectively.

Figure 1 is idealized in the sense that the shaded regions might be thinner, thicker, steeper

or shallower. This depends on the concrete values of the parameters γ, γ0, θ and the con-

stants cφ and cφ0 . The occurrence at time t = 1 when θ > 0 is here exaggerated for the sake

of clarity but, however, is significant and strongly connected to the appearance of intermit-

tency. Regarding long-range dependence the result is also useful, since as a rule of thumb

the process X may display this property only if the function Var[X(t)] increases with super-

linear order. These estimates will be employed frequently in Section 2.2 to obtain multitude

regularity results, so for instance results in the pathwise sense captured by Theorem 2.18

Theorem. The following are true.

(i) Let X be subject to Hypothesis (φ). If γ > 2, then X is mean-square continuous and has

continuous paths almost surely. Moreover, with probability 1, the trajectories of X are

locally Hölder-continuous of any order strictly less than γ−2
2 .

(ii) Let X be a centered Gaussian process subject to Hypothesis (φ). Then X is mean-

square continuous and has continuous paths almost surely. Moreover, with probability

1, the trajectories of X are locally Hölder-continuous of any order strictly less than γ−1
2 .

(iii) Let X be subject to Hypothesis (φ0). If θ < 3 − γ0 then X is almost surely nowhere

mean-square differentiable.

Due to available Lp(Ω)-estimates, deduced from the Kahane-Khintchine inequality (cp. The-

orem A.3), the results in Gaussian case perform consistently better. Regarding temporal

regularity in the Lp(Ω)-sense, Theorem 2.21 yields
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Theorem. Let T > 0, J = [0, T ], p ∈ (0,∞) and 0 < σ < 1.

(i) Suppose X satisfies Hypothesis (φ). If 2σ < γ − 1, then X ∈ 0W
σ
2 (J ;L2(Ω)).

(ii) Suppose X satisfies Hypothesis (φ0). If 2σ ≥ γ0 − 1 + θ, then X 6∈ 0W
σ
2 (J ;L2(Ω)).

(iii) Suppose X is a centered Gaussian process subject to Hypothesis (φ) and let 2 ≤ q <∞.

If 2σ < γ − 1, then X ∈ 0W
σ
p (J ;Lq(Ω)).

(iv) Suppose X is a centered Gaussian process subject to Hypothesis (φ0) and let 1 < q ≤ 2.

If 2σ ≥ γ0 − 1 + θ, then X 6∈ 0W
σ
p (J ;Lq(Ω)).

Then, in Section 2.4, we spare some time with deterministic multipliers and study the ques-

tion: Given a sequence of mutually independent processes (Xn)n∈N, what are necessary and

sufficient conditions on the multiplier b := (bn)n∈N, such that the function

ζ(t, x, ω) :=
∞∑
n=1

bn(t, x)Xn(t, ω)

affiliates to a given regularity class? Having answered this question we accomplish to

stochastic integrals of deterministic integrants with respect to a process X with stationary

increments and a spectral density φ. The result in the real-valued case, stated in Theorem

2.30, holds independently of Hypotheses (φ) or (φ0) and allocates the isometry of Itô-type

E
[(∫

R

f(τ)dX(τ)
)(∫

R

g(τ)dX(τ)
)]

=
∫
R

(Ff)(λ)(Fg)(λ)λ2φ(λ)dλ,

which is true for all functions (or distributions) f and g for which the right hand-side is mean-

ingful and finite. The innovative impact of this isometry is that we do not have to impose a

probabilistic distribution of the motion X. It holds true for any stochastic process with sta-

tionary increments whose spectral density exists, so for instance it is valid for centered Lévy

processes, fractional Brownian motions and fractional Riesz-Bessel motions for any thinkable

choice of parameters (see Section 2.6 for an elaborate treatise of this examples). As a mat-

ter of course, we will present similar results for the vector-valued case (see Theorems 2.32 &

2.33).

The remaining part of this thesis is devoted to parabolic problems with perturbations involv-

ing processes under consideration. In the focus of Chapter 3, there are two types of parabolic

Volterra equations. Letting H be a separable Hilbert space, we first consider the problem

u+ (b ∗Au) = Q1/2X (VE1)

on the half-line R+, where Q1/2X denotes a system independent H-valued process of spec-

tral type φ. With system independence we mean that the eigensystems of the operators Q

and A do not have to coincide. Here we choose the natural framework which is typically in
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the theory of linear viscoelastic material behavior, that is the operator −A behaves as an

elliptic differential operator like the Laplacian, the elasticity operator, or the Stokes operator,

together with appropriate boundary conditions (cp. Prüss [90, Section 5]). The kernel b is

assumed to be the antiderivative of a 3-monotone scalar function, think of the material func-

tions of Newtonian fluids, Maxwell fluids or of power type materials. The explicit assumptions

on the operator A, the kernel b and the process Q1/2X are formulated in Hypotheses (A),

(b) (see page 63f) and (Xφ) (see page 49), respectively. With the aid of the most impor-

tant property, that is the self-adjointness of the operator A, we derive sharp estimates such

that the mild solution’s trajectories are Hölder-continuous in time up to a certain order. The

proven results are consistent with those of Clément et al. [25], where a differentiated version

of problem (VE1) with an A-synchronized white noise disturbance was studied. The terminus

of an A-synchronized perturbation links to coinciding eigensystems of the operators A and

Q. Unless the synchronized case is interesting from a mathematical viewpoint, it seems to

be too restrictive for applications, because this case, roughly speaking, corresponds to dis-

turbances acting solely on the system’s eigenfrequency. However, we will show that the mild

solution’s properties in terms of existence, uniqueness and pathwise regularity do not differ

in both cases. Denoting by L1 the space of nuclear operators (see Section 1.2.2) and setting

ρ :=
2
π

sup{| arg b̂(λ)| : Reλ > 0},

where b̂means the Laplace transform of b, the main result concerning problem (VE1) is stated

in Theorem 3.1 and reads as

Theorem. Let Hypotheses (A), (b) and (Xφ) are valid.

(i) If QA
1−γ
ρ ∈ L1(H), then the mild solution u of (VE1) exists and is mean-square contin-

uous on R+. Moreover, the trajectories of u are continuous on the half-line R+ almost

surely.

(ii) If in addition, there is θ ∈ (0, γ−1
2 ) such that QA

1−γ
ρ

+ 2θ
ρ ∈ L1(H), then the trajectories of

u are locally Hölder-continuous of any order strictly less then θ almost surely.

We then take up a different view point to Volterra equations with noise, i.e. we study the

problem

u+ (gα ∗Au) = (gβ ∗Q1/2Ẋ ) (VE2)

on the half-ray R+, where gκ denotes the Riemann-Liouville kernel of fractional integration;

see (1.4). We then obtain in virtue of Theorem 3.5
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Theorem. Assume Hypotheses (A) and (Xφ) are valid and let α ∈ (0, 2), β > 0, θ ∈ [0, 1],
such that β ∈ (3−γ

2 + θ, 3−γ
2 + θ + α).

(i) If QA
3−2β−γ

α ∈ L1(H) then the mild solution u of (VE2) exists and is mean-square con-

tinuous on R+. Moreover, the trajectories of u are almost surely continuous on R+.

(ii) If QA
3−2β−γ

α
+ 2θ
α ∈ L1(H) then the trajectories of u are locally Hölder-continuous of any

order strictly less then θ almost sure.

Similar results for the special cases whereX is modeled to be aA-synchronized vector-valued

Wiener process or a vector-valued fractional Brownian motion were obtained by Clément et

al. [25], Bonaccorsi [20] and Sp. & Wilke [104]. Results for a system independent vector-

valued fractional Brownian motion are available by Sp. [103]. However, all those cases are

completely covered by our approach.

Finally, in Chapter 4 we put our attention to problems of anomalous diffusion, that is
∂αt u−∆u = 0,

Du|∂G = ψ,

u|t=0 = 0,

(AD)

where α ∈ (0, 2), G ⊂ RN is a domain with a somehow smooth boundary and ψ is a stochastic

boundary perturbation modeled as

ψ(t, xω) =
∞∑
n=1

bn(t, x)Xn(t, ω),

where b := (bn)n∈N is a sequence of appropriate scalar functions and (Xn)n∈N is a sequence

of mutually independent processes of a certain type. The symbol D means the identity map-

ping or the derivative in normal direction, selectively. So the formulation of system (AD)

covers both, the corresponding Dirichlet and the Neumann problem.

Fractional diffusion equations were introduced to describe physical phenomena such as dif-

fusion on porous media with fractal geometry, kinematics in viscoelastic media, relaxation

processes in complex systems (including viscoelastic materials, glassy materials, synthetic

polymers, biopolymers), propagation of seismic waves, anomalous diffusion and turbulence

(see Caputo [22], Glöckle & Nonnenmacher [46], Mainardi & Paradisi [74], Saichev & Za-

slavsky [98], Mainardi & Gorenflo [73, 48], Kobelev et al. [64, 63, 62], Hilfer [53] and the

references therein). These equations are obtained from the classical diffusion equation by

replacing the first or second order derivative by a fractional derivative (see Section 1.1 and

also Oldham & Spanier [84], Samko et al. [99], Miller & Ross [77], Gorenflo & Mainardi [47],

Džrbašjan & Nersesjan [40], Podlubny [87], Butzer & Westphal [21] for different types of frac-

tional derivatives, fractional integrals or fractional operators in general and their properties).
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Even in finance, the fractional diffusion equations are of importance. So for instance in the

theory of tick-by-tick dynamics in financial markets (cf. Scalas et al. [100]), where the gen-

eral scaling form can be obtained as the solution of a certain fractional diffusion equation.

For brevity we designate

Uδ,γ := 0W
αδ
4

2, γ−1
2

(J ;L2(∂G; `2)) ∩ L2, γ−1
2

(
J ; 0W

δ
2
2 (∂G; `2)

)
, δ ≥ 0,

U0
δ,γ := 0W

αδ
4

2 (J ;L2(∂G; `2)) ∩ L2, γ−1
2

(
J ; 0W

δ
2
2 (∂G; `2)

)
, δ ≥ 0.

and also

Zδ := 0W
αδ
4

2 (J ;L2(G;L2(Ω))) ∩ L2

(
J ; 0W

min{ δ
2

;2}
2 (G;L2(Ω))

)
, δ ≥ 0.

Summarizing the explicit assumptions on the disturbance ψ in Hypotheses (ψ) and (ψ0) (see

page 73), our main result is stated in Theorem 4.2 and reads as

Theorem. Assume Hypothesis (ψ) holds. Let 0 ≤ ν < 2(γ−1)
α and in case G 6= RN+ let ν ∈

[0, 2(γ−1)
α ) ∩ [0, 4). Then the following hold if b ∈ U0

ν,γ .

(i) The Dirichlet problem (AD), i.e. D = I, admits a unique solution u in the regularity class

Zν+1. If, in addition, ν ≤ 3 and Hypothesis (ψ0) is valid, then membership of b to the

class Uν,γ is necessary and sufficient.

(ii) The Neumann problem (AD), i.e. D = ∂ν , admits a unique solution u in the regularity

class Zν+3. If, in addition, ν ≤ 1 and Hypothesis (ψ0) is valid, then membership of b to

the class Uν,γ is necessary and sufficient.

Here the number 1 < γ < 3 is determined by Hypothesis (ψ), which is strongly connected to

Hypothesis (φ) introduced earlier in Section 2.2. There are already several results concerning

stochastic boundary value problems (e.g. Rozanov & Sanso [94], Kijima & Suzuki [61], Rößler

et al. [93]), but to the author’s knowledge, results for the fractional diffusion equation with

random boundary conditions are still rare.



Chapter 1

Foundations

In what follows letX and Y be Banach spaces andH be a separable Hilbert space. J ⊂ [0,∞)
will usually mean a bounded or unbounded time interval. We endeavor to denote the norm in

X with ‖ · ‖X , but from time to time we may write ‖ · ‖ or | · |X if it is conducive to brevity. An

inner product will be denoted by (·|·) and if there is any risk of confusion we will add a lower

index to designate the affiliation to a certain inner product space.

By N, R, C we denote the sets of natural, real and complex numbers, respectively, and let

further R+ = [0,∞), C+ = {λ ∈ C : Reλ > 0}, N0 = N ∪ {0}. The symbol B(X;Y ) means the

space of all bounded linear operators from X to Y and we write B(X) = B(X;X) for short.

If A is an operator in X, D(A) and R(A) stand for domain and range of A, respectively, while

ρ(A), σ(A) designate the resolvent set and the spectrum of A.

As usual we employ the star ∗ for the convolution of functions defined on the line R

(f ∗ g)(t) =
∫ ∞
−∞

f(t− τ)g(τ)dτ, t ∈ R, (1.1)

and

(f ∗ g)(t) =
∫ t

0
f(t− τ)g(τ)dτ, t ≥ 0, (1.2)

for f , g supported on the half-rayR+. Observe that (1.1) and (1.2) are equivalent for functions

which vanish on (−∞, 0); therefore there will be no danger of confusion.

For u ∈ L1,loc(R+;X) of exponential growth, i.e.
∫∞

0 e−ωt|u(t)|dt < ∞ with some ω ∈ R, the

Laplace transform of u is defined by

û(λ) =
∫ ∞

0
e−λtu(t)dt, Reλ ≥ ω.

For f ∈ L1(R;X), the Fourier transform of f is the function Ff : R→ X defined by

(Ff)(ξ) =
∫
R

e−iξtf(t)dt.

9
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Throughout this thesis we will denote by χM the characteristic function of the set M , that is

χM (x) = 1 if x ∈M and χM (x) = 0 otherwise.

1.1 Fractional differintegration

The concept of differentiation and integration of noninteger order has a long history. Interest

in this subject was evident almost as soon as the ideas of the classical calculus were known.

Some of the earliest more or less systematic studies seem to have been made in the 18th

and 19th century by Euler, Lagrange, Liouville, Riemann and Holmgren.

Within this thesis we make use of the notion of the (left-sided) fractional differintegral of

order α ∈ (−2, 2) of a test-function φ by ∂αφ being defined as

(∂αφ)(t) :=
d2

(dt)2

∫ t

−∞
g2−α(t− τ)φ(τ)dτ, t ∈ R, (1.3)

where

gκ(t) =
tκ−1

Γ(κ)
, t ≥ 0, κ > 0 (1.4)

denotes the Riemann-Liouville kernel. Note that gκ is of subexponential growth, i.e.∫ ∞
0

e−ωt|gκ(t)|dt <∞

for arbitrary small ω > 0. This means that the Laplace transform ĝκ of gκ is well-defined, and

we have

(∂̂αφ)(λ) = λαφ̂(λ), Reλ > 0

for all test-functions φ supported on (0,∞).

1.2 Function spaces

Aim of this section is to give meaning to function spaces of interest for the present thesis.

Throughout this section X will be a Banach space, if not indicated otherwise.

1.2.1 Sequence spaces

By `p we denote the sequence space of real- or complex-valued sequences a := (an)n∈N

`p =

{
a :

∞∑
n=1

|an|p <∞

}
, 1 ≤ p <∞,
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equipped with the norm

‖a‖p =

[ ∞∑
n=1

|an|p
] 1
p

.

It is well-known that (`p, ‖ · ‖p) is a Banach space and a Hilbert space if and only if p = 2. The

inner product in `2 then reads (a|b)2 =
∑∞

n=1 anbn. As a general reference towards sequence

spaces we refer to Dunford & Schwartz [38, Chapter IV.2].

1.2.2 Spaces of nuclear and Hilbert-Schmidt operators

In what follows let H be a separable Hilbert space. The symbols L1(H) and L2(H) denote

the spaces of nuclear operators and Hilbert-Schmidt operators on H, respectively. Thereby

a bounded operator T on H is called nuclear (that is T ∈ L1(H)) if there are sequences

(x∗n) ⊂ H∗ and (yn) ⊂ H with
∑∞

n=1 ‖x∗n‖‖yn‖ <∞ so that

Tx =
∞∑
n=1

x∗n(x)yn

holds for all x ∈ H. On the other hand a bounded operator T on H is said to be a Hilbert-

Schmidt operator (meaning T ∈ L2(H)), if there is an orthonormal basis (en) ⊂ H, so that

∞∑
n=1

‖Ten‖2 <∞.

If this is true for one orthonormal basis, it is true for any other orthonormal basis of H. We

have

L1(H) ↪→ L2(H) ↪→ B(H).

For an elaborate treatise to these spaces we refer to Dunford & Schwartz [39, Chapter XI.6]

and Da Prato & Zabczyk [27, Appendix C]. In case the operator T : H → H is self-adjoint with

eigenvalues λ = (λn)n∈N, the norms in these spaces can be written as

‖T‖L1(H) = ‖λ‖`1 ,

‖T‖L2(H) = ‖λ‖`2 .

For nuclear operators T on H one can define the trace of T by means of

Tr[T ] =
∞∑
n=1

(Tgn | gn)H,

where (gn)n∈N is an arbitrary orthonormal basis in H. Due to this property nuclear operators

are also called operators of trace class. One can show, that |Tr[T ]| ≤ ‖T‖L1(H) holds for

every T ∈ L1(H) and, moreover, that Tr[T ] = ‖T‖L1(H) if T is positive semi-definite.
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1.2.3 Spaces of continuous, differentiable and Hölder functions

Let U ⊂ X be open, then C(U ;Y ) and Cb(U ;Y ) stand for the spaces of continuous resp.

bounded continuous functions f : X → Y . Those spaces equipped with the norm

‖f‖∞ = sup {|f(x)|Y : x ∈ U}

are Banach spaces. For m ∈ N, the symbol Cmb (U ;Y ) means the space of all m-times contin-

uously differentiable functions f : U → Y with norm

‖f‖m =
∑
|α|≤m

‖Dαf‖∞.

The space (Cmb (U ;X), ‖ · ‖m) is a Banach space. With C∞(U ;Y ) we denote the function

space containing all smooth functions, meaning all functions which are infinitely often differ-

entiable.

Further, if α ∈ (0, 1), then Cαb (U ;Y ) designates the space of all Hölder-continuous functions

f : U → Y of order α normed by

‖f‖α = ‖f‖∞ + sup
{
|f(x)− f(y)|Y
|x− y|αX

: x, y ∈ U, x 6= y

}
.

Every Hölder-continuous function is uniformly continuous. If α > 1 is not an integer, we set

α = [α] + {α}, where [α] is an integer and 0 < {α} < 1. Then Cαb (U ;Y ) means the space of

all functions f : U → Y , whose [α]-th derivative exists and belongs to C
{α}
b (U ;Y ).

1.2.4 Lebesgue spaces

Let D ⊂ RN be a Lebesgue-measurable set and 1 ≤ p < ∞. Then Lp(D;X) denotes the

space of all (equivalence classes of) Bochner-measurable functions f : D → X so that

‖f‖p :=
[∫

D
|f(x)|pXdx

] 1
p

<∞.

Lp(D;X) is a Banach space when normed by ‖ · ‖p and a Hilbert space if and only if p = 2 and

X is a Hilbert space. In this case we have the L2-inner product

(f | g)L2(D;X) =
∫
D

(f(x) | g(x))Xdx.

Similarly, L∞(D;X) stands for the space of (equivalence classes of) Bochner-measurable

functions f : D → X, with norm

‖f‖∞ := ess sup {|f(x)|X : x ∈ D} .

With this norm, L∞(D;X) is a Banach space. The subscript loc assigned to any of the above

function spaces means the membership to the corresponding space when restricted to com-

pact subsets of its domain.
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1.2.5 Spaces of random variables

Let (Ω,F ,P) be a probability space and H be a separable Hilbert space. A random variable

ξ : Ω→ H is said to be (Bochner-)integrable if∫
Ω
‖ξ(ω)‖HP(dω) <∞

and we define the expectation operator E as the integral

E[ξ] :=
∫

Ω
ξdP.

The symbol L1(Ω,F ,P;H) denotes the set of (all equivalence classes of) H-valued random

variables. Equipped with the norm

‖ξ‖L1(Ω) = E[‖ξ‖H]

the space L1(Ω,F ,P;H) is a Banach space. In a similar way one can define Lp(Ω,F ,P;H),
for arbitrary p > 1 with norms

‖ξ‖Lp(Ω) =
(
E[‖ξ‖pH]

)1/p
, 1 < p <∞,

and

‖ξ‖L∞(Ω) = ess sup {‖ξ‖H : ω ∈ Ω} .

If there is no risk of confusion we will write for short Lp(Ω) instead of Lp(Ω,F ,P;H). Moreover,

for arbitrary elements x, y ∈ H we denote by x⊗ y the linear operator defined by

(x⊗ y)h = x(y | h)H, h ∈ H.

For ξ, η belonging to L2(Ω,F ,P;H) we follow Da Prato & Zabczyk [27] and introduce the

covariance operator of ξ and of (ξ, η) by the formulae

Cov(ξ) := E[(ξ − E[ξ])⊗ (ξ − E[ξ])],

Cov(ξ, η) := E[(ξ − E[ξ])⊗ (η − E[η])].

Note that Cov(ξ) is a symmetric, positive, and nuclear operator with

Tr[Cov(ξ)] = E
[
‖ξ − E[ξ]‖2H

]
=: Var(ξ).

1.2.6 Bessel potential spaces, Besov spaces, Sobolev-Slobodeckij spaces

For an open subset D ⊂ RN , Hm
p (D;X) with m ∈ N denotes the classical Sobolev space, that

is the space of all functions f : D → X having distributional derivatives ∂αf ∈ Lp(D;X) of

order 0 ≤ |α| ≤ m. For 1 ≤ p <∞ the norm in Hm
p (D;X) is given by

‖f‖Hmp (D;X) :=

 ∑
|α|≤m

‖∂αf‖pp

 1
p

.
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Further, for 0 < s < 1, we define the Bessel potential spaces Hsm
p (D;X), by means of complex

interpolation via

Hsm
p (D;X) :=

[
Lp(D;X); Hm

p (D;X)
]
s
.

We will from time to time also use the Besov spaces Bsm
pq (D;X) which can be defined via real

interpolation by

Bsm
pq (D;X) :=

(
Lp(D;X); Hm

p (D;X)
)
s,q
, 0 < s < 1, 1 ≤ p <∞, 1 ≤ q ≤ ∞.

Recall that Bs
pp(D;X) = W s

p (D;X), provided that s 6∈ N, where W s
p (D;X) denotes the

Sobolev-Slobodeckij space. For a general definition of these spaces we refer to Triebel [106]

or Runst & Sickel [97]. Note further, that in case p = 2 and X is a Hilbert or UMD space (see

e.g. Amann [4] for the definition and properties of UMD spaces) we have

Hs
2(D;X) = W s

2 (D;X), s ≥ 0.

With s = [s] + {s}, where [s] is an integer and 0 < {s} < 1, the intrinsic norm in W s
p (RN ;X)

can be written as

‖f‖W s
p (RN ;X) = ‖f‖

W
[s]
p (RN ;X)

+
∑
|α|=[s]

∫
RN

∫
RN

|∂αf(x)− ∂αf(y)|pX
|x− y|N+p{s} dxdy

 1
p

, s > 0. (1.5)

Note, that the second term from the right hand-side of (1.5) defines a semi-norm in

W s
p (RN ;X), which will be abbreviated by [f ]W s

p (RN ;X) if necessary.

Then, by S∗(RN ) we denote the space of tempered distributions, the topological dual of the

Schwartz space S(RN ) and recall that for 1 ≤ p ≤ ∞ and g ∈ Lp(RN ) the operator

Tg(φ) =
∫
RN

g(x)φ(x)dx

defines a tempered distribution, i.e. Tg ∈ S∗(RN ), so Lp ⊂ S∗(RN ) for all 1 ≤ p ≤ ∞. Recall

further, that for f ∈ S∗(RN ) the Fourier transform Ff is well-defined and given by

(Ff)(φ) = f(Fφ) for all φ ∈ S(RN ).

Since F : S(RN ) → S(RN ) is linear, continuous and bijective, the operator Ff = f ◦ F also

admits this property. Hence the Fourier transform is an isomorphism in S∗(RN ).

Let now f ∈ S∗(RN ) andX be a Hilbert or UMD space. Then we have the norm representation

‖f‖Hs2(RN ;X) = ‖(1 + | · |2)
s
2Ff‖L2(RN ;X), s > 0. (1.6)

If U ⊂ RN is a subset of RN , then Hs
2(U ;X) denotes the restriction of the functions f ∈

Hs
2(RN ;X) to the subset U .

In case J = [0, a] is an interval, we denote by 0 Hs
p(J ;X) the space of all functions f : J → X

belonging to Hs
p(J ;X), such that f |t=0 = 0, whenever the trace at t = 0 exists.
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By Ḣ
s
2(R;X) we mean the homogenous Bessel potential space of order s > 0, defined as

Ḣ
s
2(R;X) :=

{
f ∈ S∗(R;X) : ‖| · |sFf‖L2(R;X) <∞

}
. (1.7)

By means of the fractional derivatives (1.3) and Plancherel’s Theorem (cf. Theorem A.1) we

obtain the identity ∫
R

|(Ff)(ξ)|2|ξ|2sdξ =
∫
R

|∂sf(t)|2 dt,

so that we have alternatively

‖f‖Ḣs2(R;X) = ‖∂sf‖L2(R;X) , 0 < s < 2.

For a comprehensive account of the theory of these function spaces we refer to Triebel [106].

Observe, that (1.3), (1.6) and (1.7) allow us to define the (homogenous) Bessel potential

spaces also for negative orders s ∈ (−2, 0).

1.2.7 Weighted spaces

We will further consider weighted L2 and W s
2 spaces. For J := [0, a], a > 0, and a number

µ ≥ 0 they are defined canonically via

L2,µ(J ;X) := {f : J → X : (·)µf ∈ L2(J ;X)} ,

W s
2,µ(J ;X) := {f : J → X : (·)µf ∈W s

2 (J ;X)} .

It is easy to verify that L2(J ;X) = L2,0(J ;X) ↪→ L2,µ1(J ;X) ↪→ L2,µ2(J ;X) holds if and only

if µ1 ≤ µ2. With 0W
s
2,µ(J ;X) we denote the space of all W s

2,µ(J ;X)-functions whose trace at

t = 0 is zero, if it exists.

Thanks to Hardy et al. [52, Theorem 329] we have the useful imbedding result

Lemma 1.1. Let V be a Banach space, 0 < µ < 1, and 0 < σ < µ. Then

0W
σ
2,µ(R+;V ) ↪→ L2,µ−σ(R+;V ).

In view of homogenous Bessel potential spaces we proceed differently. We introduce the

weighted homogeneous Bessel potential space Ḣ
φ
2 (R) with the weight function λ2φ(λ) as the

class containing all tempered distributions f ∈ S∗(R) so that the number

‖f‖
Ḣ
φ
2 (R)

:=
[∫
R

|Ff(λ)|2λ2φ(λ)dλ
]1/2

(1.8)

is finite. It is apparent, that (1.8) defines a norm, if the function φ : D(φ) → R, is almost

everywhere positive and densely defined in R. The space Ḣ
φ
2 (R) is an inner product space

with inner product

(f | g)
Ḣ
φ
2 (R)

:=
∫
R

Ff(λ)Fg(λ)λ2φ(λ)dλ. (1.9)
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Lemma 1.2. If the function φ is even, then the inner product (1.9) of Ḣ
φ
2 (R) is real-valued.

Proof. Let φ be even, i.e. φ(−λ) = φ(λ) holds for every λ ∈ D(φ) and recall a particular

property of the Fourier transform, that is

Ff(λ) =
∫
R

e−itλf(t)dt =
∫
R

eitλf(t)dt = Ff(−λ).

Then, we observe

(f | g)
Ḣ
φ
2 (R)

=
∫
R

Ff(λ)Fg(λ)λ2φ(λ)dλ

=
∫ 0

−∞
Ff(λ)Fg(λ)λ2φ(λ)dλ+

∫ ∞
0
Ff(λ)Fg(λ)λ2φ(λ)dλ

=
∫ ∞

0
Ff(−λ)Fg(−λ)λ2φ(λ)dλ+

∫ ∞
0
Ff(λ)Fg(λ)λ2φ(λ)dλ

=
∫ ∞

0
Ff(λ)Fg(λ)λ2φ(λ)dλ+

∫ ∞
0
Ff(λ)Fg(λ)λ2φ(λ)dλ

=
∫ ∞

0

[
Ff(λ)Fg(λ) + Ff(λ)Fg(λ)

]
λ2φ(λ)dλ

= 2 Re
∫ ∞

0
Ff(λ)Fg(λ)λ2φ(λ)dλ

which yields the claim.

1.3 Evolutionary integral equations

The notion of parabolic problems used in this study is widely taken from the monograph of

Prüss [88].

Let H be a separable Hilbert space, A a closed linear, but in general unbounded operator in

H with dense domain D(A), and let a ∈ L1,loc(R+) be of subexponential growth. Then it is

readily seen that the Laplace transform â(λ) of a exists for Reλ > 0. We consider the Volterra

equation

u(t) + (a ∗Au)(t) = f(t), t ≥ 0, (1.10)

where f : R+ → H is a given function, strongly measurable and locally integrable, at least.

In the sequel we denote by HA the domain of A equipped with the graph norm |x|A :=
|x| + |Ax|. HA is a Banach space since A is closed, and it is continuously embedded into H.

The following notions of solutions of (1.10) are natural. Again we let J ⊂ R+.

Definition 1.3 (Strong and mild solutions). A function u ∈ C(J ;H) is called

(a) strong solution of (1.10) on J if u ∈ C(J ;HA) and (1.10) holds on J ;
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(b) mild solution of (1.10) on J if a ∗ u ∈ C(J ;HA) and u(t) = f(t)−A(a ∗ u)(t) on J .

Obviously, every strong solution of (1.10) is a mild one. The converse is not true, in general.

Definition 1.4 (Parabolicity). Problem (1.10) is called parabolic, if

(i) â(λ) 6= 0 and
1

â(λ)
∈ ρ(A) for all Reλ > 0;

(ii) there is a constant M ≥ 1 such that∣∣∣∣ 1λ(I + â(λ)A)−1

∣∣∣∣ ≤ M

|λ|
for all Reλ > 0.

The notion of sectorial kernels is given by

Definition 1.5 (Sectoriality). Let a ∈ L1,loc(R+) be of subexponential growth and suppose

â(λ) 6= 0 for all Reλ > 0. a is called sectorial with angle θ > 0 (or merely θ-sectorial) if

| arg â(λ)| ≤ θ for all Reλ > 0. (1.11)

Here, arg â(λ) is defined as the imaginary part of a fixed branch of log â(λ), and θ in (1.11)

is allowed to be greater than π. In case a is sectorial, we always choose that branch of

log â(λ) which yields the smallest angle θ; in particular, if â(λ) is real for real λ we choose the

principal branch. In the following, we denote by Σ(ω, θ) the open sector in the complex plane

with vertex ω ∈ R and opening angle 2θ which is symmetric with respect to the real positive

axis. A standard situation leading to parabolic equations is described in

Proposition 1.6 ([88, Proposition 3.1]). Let a ∈ L1,loc(R+) be θ-sectorial for some θ < π,

suppose A is closed linear densely defined, such that ρ(A) ⊃ Σ(0, θ), and

|(µ+A)−1| ≤ M

|µ|
for all µ ∈ Σ(0, θ).

Then (1.10) is parabolic.

The next definition introduces an appropriate notion concerning regularity of kernels.

Definition 1.7 (k-regular kernels). Let a ∈ L1,loc(R+) be of subexponential growth and k ∈
N. a is called k-regular if there is a constant c > 0 such that

|λnâ(n)(λ)| ≤ c|â(λ)|, for all Reλ > 0, 0 ≤ n ≤ k.
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It is not difficult to see that convolutions of k-regular kernels are again k-regular. Further-

more, k-regularity is preserved by integration and differentiation, while sums and differences

of k-regular kernels need not be k-regular. However, if a(t) and b(t) are k-regular and

| arg â(λ)− arg b̂(λ)| ≤ θ < π, Reλ > 0

then a(t) + b(t) is k-regular as well. In general, nonnegative, nonincreasing kernels are not

1-regular, but if the kernel is also convex, then it is 1-regular (cf. [88, Section I.3]). We call

a kernel a ∈ L1,loc(R+) 1-monotone if a(t) is nonnegative and nonincreasing; for k ≥ 2 we

define

Definition 1.8 (k-monotone kernels). Let a ∈ L1,loc(R+) and k ≥ 2. a(t) is called k-monotone

if a ∈ Ck−2(0,∞), (−1)na(n)(t) ≥ 0 for all t > 0, 0 ≤ n ≤ k − 2, and (−1)k−2a(k−2)(t) is

nonincreasing and convex.

Proposition 1.9 ([88, Proposition 3.3]). Let k ≥ 1 and suppose a ∈ L1,loc is (k+1)-monotone.

Then a(t) is k-regular and of positive type, i.e. π2 -sectorial.

IfA is sectorial with angle φA (for a detailed survey we refer to Denk et al. [34, Section 1]), and

a is φa-sectorial, then (1.10) is parabolic provided that φA + φa < π, cf. [90, Proposition 3.1].

An important property of parabolic Volterra equations is the fact that they admit bounded

resolvents whenever the kernel a is 1-regular, see [90, Theorem 3.1]. By a resolvent for

(1.10) we mean a family {S(t)}t≥0 of bounded linear operators inHwhich satisfy the following

conditions:

(S1) S(t) is strongly continuous on R+ and S(0) = I;

(S2) S(t)D(A) ⊂ D(A) and AS(t)x = S(t)Ax for all x ∈ D(A), t ≥ 0;

(S3) S(t)x+A(a ∗ Sx)(t) = x, for all x ∈ H, t ≥ 0.

(S3) is called resolvent equation. One can show that (1.10) admits at most one resolvent,

and if it exists, then (1.10) has a unique mild solution u represented by the variation of

parameters formula

u(t) =
d
dt

∫ t

0
S(t− τ)f(τ)dτ, t ≥ 0, (1.12)

at least for such f for which (1.12) is meaningful. If (1.10) admits an analytic resolvent S(t)
(cf. [88, Section I.1 and I.2]) which is bounded on some sector Σ(0, θ), then (1.10) is parabolic;

the converse is not true in general.



Chapter 2

Processes with stationary

increments

The theory of random processes is a very important and advanced part of modern probability

theory, which is interesting from the mathematical point of view and has many applications.

In practise, one has to deal particularly often with the special case of stationary random pro-

cesses. Such processes naturally arise when one considers a series of observations which

depend on the real-valued or integer-valued argument t (time) and do not undergo any sys-

tematic changes, but only fluctuate in a disordered manner about some constant mean level.

Stationary time series can be expressed as the increment function of a process with station-

ary increments and occur in nearly all areas of modern technology as well as in the physical

and geophysical sciences, mechanics, economics, biology and medicine, and also in many

other applied fields.

This chapter is devoted to collect some fundamental definitions and regularity results, and

to present an innovative approach to construct isometries of Itô-type for stochastic integrals

with respect to processes X with stationary increments and spectral density. As a general

reference to the topic of stationary processes we refer to Yaglom [110] and the references

therein.

2.1 Definitions and Properties

Let (Ω,F ,P) be a probability space and let J be an interval ofR. An arbitrary family {X(t)}t∈J
defined on Ω, such that X(t) : Ω → R is F -measurable for each t ∈ J is called a stochastic

process and we set X(t, ω) = X(t)(ω) for all t ∈ J and ω ∈ Ω. The functions X(·, ω) are called

trajectories of X. For the reader’s convenience we recall some basic definitions of regularity

for a process {X(t)}t∈J ⊂ L2(Ω).

19
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(a) X is mean-square continuous at t0 ∈ J , if

lim
t→t0

E[|X(t)−X(t0)|2] = 0.

(b) X is mean-square continuous on J , if it is mean-square continuous at every point of J .

(c) X is continuous (with probability 1), if its trajectoriesX(·, ω) are continuous almost surely.

(d) X is Hölder-continuous of order α (with probability 1), if its trajectoriesX(·, ω) are Hölder-

continuous of order α almost surely.

Definition 2.1 (Stationary processes). The random process X is called stationary if all its

finite-dimensional distributions (or probability densities) remain the same when shifted along

the time axis, that is if

{X(t)}t∈R
d= {X(t+ τ)}t∈R

holds for all τ ∈ R. Here "
d=" denotes the equality in the finite-dimensional distributions.

The physical meaning of stationarity is quite clear: “It means that a phenomenon, whose

numerical characteristic is the random process X, is stationary in the sense that none of the

observed macroscopic factors influencing this phenomenon change in time. In other words,

X describes the time variation of some characteristics of a steady-state phenomenon, for

which no choice of the time has any advantage over any other choice.” [110, Page 52].

However, in this thesis we will not only focus on stationary motions, but rather on processes

with stationary increments. In what follows we denote by

D3(t;u, v) := E[(X(u)−X(t))(X(v)−X(t))]

the structure function of the real-valued process {X(t)}t∈J ⊂ L2(Ω).

Definition 2.2 (Processes with stationary increments). We call the random process X :=
{X(t)}t∈R ⊂ L2(Ω) a process with stationary increments if

(i) the mean value of its increments depends only on the length of the incremental interval,

i.e.

E[X(t)−X(s)] = E[X(t− s)−X(0)];

(ii) for u, v, t ∈ R the structure function D3(t;u, v) depends only on the differences u− t and

v − t, i.e.

D3(t;u, v) = D3(0;u− t, v − t) =: D2(u− t, v − t).
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At this point the experienced reader may object that Definition 2.2 does not reflect the de-

scription of a process with stationary increments in the narrow sense, that is if

{X(t)−X(s)}t,s∈R
d= {X(t+ τ)−X(s+ τ)}t,s∈R

holds for any τ ∈ R. Therefor we should be more careful and say that the processes under

consideration have stationary increments in the wider sense. However this refinement is

unnecessary in this thesis where more special processes with strictly stationary increments

will not be considered at all. The concept of a random process with stationary increments

was introduced in Kolmogorov [65], who showed that in terms of the geometry of the Hilbert

space L2(Ω), a process with stationary increments in the manner of Definition 2.2 is in a

certain sense equivalent to a screw curve.

Definition 2.2 yields that a real-valued process X with stationary increments is characterized

by a function (the mean of the increments) of one variable

E[X(t+ τ)−X(t)] =: m(τ) (2.1)

and by a function D(·) of one variable

E|X(t+ τ)−X(t)|2 =: D(τ). (2.2)

The function D2(·, ·) can then be obtained via the identity

D2(τ1, τ2) =
1
2

[D(τ1) +D(τ2)−D(|τ1 − τ2|)]. (2.3)

Definition 2.3 (Centered processes). A process X := {X(t)}t∈J is called centered, if

E[X(t)] = 0 holds for all t ∈ J .

Remark 2.4. Observe, that if the process X is centered and X(0) = 0 a.s., then

D(τ) = Var[X(τ)] and D2(τ1, τ2) = Cov[X(τ1), X(τ2)].

Looking for a general form of the function D(τ) = D2(τ, τ) we follow Yaglom [110, Chapter 4]

and begin with the case of differentiable processes X. This case is rather simple, since if X is

a process with stationary increments and its mean square derivative Ẋ exists, this derivative

clearly is a stationary process. Therefore the study of differentiable processes with stationary

increments can always be reduced to the study of stationary processes Y (t) := Ẋ(t). Let

Y (t) =
∫ ∞
−∞

eitλdZY (λ), BY (τ) =
∫ ∞
−∞

eiτλdΦY (λ)

be spectral representations of the process Y itself and of its correlation function BY defined

by BY := E[Y (t + τ)Y (t)]. Hereby ΦY is a bounded nondecreasing function, and ZY is a

random function with uncorrelated increments, such that

E|dZY (λ)|2 = dΦY (λ); (2.4)
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cf. [110, formulae (2.76) & (2.77)] in case of eventually confusions regarding the meaning.

Then it is readily seen that

X(t)−X(0) =
∫ t

0
Y (τ)dτ =

∫ ∞
−∞

[∫ t

0
eiτλdτ

]
dZY (λ).

Hence,

X(t) =
∫ ∞
−∞

eitλ − 1
iλ

dZY (λ) +X(0), (2.5)

D2(τ1, τ2) =
∫ ∞
−∞

(eiτ1λ − 1)(eiτ2λ − 1)
λ2

dΦY (λ),

and therewith

D(τ) = D2(τ, τ) = 2
∫ ∞
−∞

1− cosλτ
λ2

dΦY (λ). (2.6)

Note that, if the point λ = 0 is a jump discontinuity of ZY , i.e.

lim
ε→0

[ZY (ε)− ZY (−ε)] = ξ 6= 0,

where ξ is a random variable, then due to (2.4)

lim
ε→0

[ΦY (ε)− ΦY (−ε)] = E|ξ|2 > 0,

i.e. the point λ = 0 is a jump discontinuity of ΦY also. The contribution of this discontinuity

on the integral (2.6) is evidently equal to

2E|ξ|2 lim
λ→0

1− cosλτ
λ2

= E|ξ|2τ2.

Let us further introduce the functions Z and Φ by

Z(λ2)− Z(λ1) =
∫ λ2

λ1

dZY (λ)
iλ

, Φ(λ2)− Φ(λ1) =
∫ λ2

λ1

dΦY (λ)
λ2

(2.7)

for 0 < λ1 < λ2 or λ1 < λ2 < 0. Then, considering again the real-valued case and interpreting

the integral over R as the limit∫ ∞
−∞

= lim
R→∞,ε→0

{∫ −ε
−R

+
∫ R

ε

}
,

formulae (2.5) and (2.6) can also be written as

X(t) =
∫ ∞
−∞

(eitλ − 1)dZ(λ) +X(0) + ξt, (2.8)

respectively

D(τ) = 4
∫ ∞

0
(1− cosλτ)dΦ(λ) + E|ξ|2τ2. (2.9)

By virtue of (2.7) the spectral distribution Φ is a nondecreasing function on the half-lines

(−∞, 0) and (0,∞) such that ∫ ∞
−∞

λ2dΦ(λ) <∞. (2.10)



CHAPTER 2. PROCESSES WITH STATIONARY INCREMENTS 23

If the correlation function BY (τ) of Y = Ẋ falls off rapidly enough with |τ | (say BY ∈ L2(R)),
then E|ξ|2 = 0 and dΦ(λ) can be replaced in (2.9) by φ(λ)dλ, where φ(λ) = Φ′(λ) ≥ 0 is

the spectral density of the process X. Thus, if the spectral density exists (say when Φ is

absolutely continuous), we can rewrite formula (2.9) into

D(τ) = 4
∫ ∞

0
(1− cosλτ)φ(λ)dλ, (2.11)

where ∫ ∞
0

λ2φ(λ)dλ <∞.

It can be shown (e.g. von Neumann & Schoenberg [109]) that spectral representations similar

to the above also exists for any nondifferentiable process X with stationary increments, with

the only difference that, in general, the spectral distribution Φ(λ) increases so rapidly as

|λ| → ∞, that the integral (2.10) becomes infinite. Then instead of (2.10) it is only necessary

that, for any λ0 > 0, ∫ −λ0

−∞
dΦ(λ) +

∫ λ0

−λ0

λ2dΦ(λ) +
∫ ∞
λ0

dΦ(λ) <∞.

If, as in this thesis, the processes X is real and its spectral density exists, then φ(λ) = φ(−λ)
and, for any λ0 > 0 it is ∫ λ0

0
λ2φ(λ)dλ+

∫ ∞
λ0

φ(λ)dλ <∞, (2.12)

but the integral
∫∞

0 φ(λ)dλ may be infinite, if X has stationary increments but is not station-

ary itself. We have shown that if X is a process with stationary increments, then X and its

structure function D(·) have the spectral representations (2.8) and (2.9), respectively. Von

Neumann & Schoenberg [109] proved that the converse is also true.

Before turning to regularity, we will give a precise meaning to the spectrum of the process

X. That is the frequency λ is said to belong to the spectrum of X if Φ(λ+ε)−Φ(λ−ε) > 0 for

any ε > 0, where Φ denotes the spectral distribution of X. If X possesses a spectral density

φ, then the spectrum of X is the closure of the set {λ ∈ R : φ(λ) > 0}, or in other words,

the spectrum consists of all frequencies λ which have no vicinity where the spectral density

φ identically vanishes.

We will, in the subsequent section, characterize two classes of processes with stationary

increments. As a first goal we then accomplish to derive estimates on the structure function

D in order to deduce results concerning regularity in the pathwise and in the Lp(Ω)-sense.

2.2 Regularity

From now on we will exclude the case φ ≡ 0, since this case merely corresponds to the

trivial process X ≡ 0 a.s. In view on regularity results, we may classify the processes under
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consideration with respect to their spectral densities. The first class contains all processes

X which satisfy

Hypothesis (φ). X is a real-valued process with stationary increments and X(0) = 0 a.s.

Furthermore, the spectral density φ of X exists and there is a number 1 < γ < 3, so that

sup
λ∈R
|λ|γφ(λ) <∞.

Observe that Hypothesis (φ) does not directly incorporate the spectrum of X. The second

class is abstractly formulated as

Hypothesis (φ0). X is a real-valued process with stationary increments and X(0) = 0 a.s.

Furthermore, the spectral density φ of X exists and there are numbers 1 < γ0 < 3, λ0 > 0
and θ ≥ 0, so that

(a) inf
0<λ<λ0

λγ0φ(λ) > 0,

(b) lim sup
λ→0

|λ|γ0φ(λ) <∞,

(c) φ(τλ) ≥ τ−(γ0+θ)φ(λ) for all λ ∈ (0,∞) and τ ≥ 1.

This particulary means the frequency zero must necessarily be contained in the spectrum of

the process X.

Remark 2.5. Note the following.

1. The restrictions γ0 < 3 and θ ≥ 0 are evident since the spectral density φ must satisfy

condition (2.12). Moreover, the restriction γ < 3 (resp. γ > 1) is nontrivial if λ = 0 is not

contained in the spectrum of X (resp. the spectrum of X is bounded).

2. In view of applications one should always be exerted to choose the number θ preferably

small in order to achieve optimal regularity results (see Theorems 2.18 and 2.21 below).

3. Suppose the process X is subject to Hypothesis (φ0) with the number θ chosen to be as

small as possible.

(a) For any fixed h > 0, the spectral density φh(λ) = 2(1 − cosλh)φ(λ) of the incre-

mental process Xh(t) := [X(t + h) − X(t)] has a singularity at frequency zero if

and only if γ0 > 2. It is frequently claimed in literature, that in this case X displays
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long-range dependence in the sense that the dependence between the increments

[X(1)−X(0)] and [X(n+ 1)−X(n)] decays slowly as n tends to infinity and

∞∑
n=1

Cov[X(1)−X(0), X(n+ 1)−X(n)] =∞.

However, we stress that this is not true in general (cf. Gubner [51]).

(b) If θ > 0, then φ has a significance in its behavior when |λ| → ∞. As a consequence

the correlation of consecutive small increments of X exceeds the correlation of

consecutive large increments (cf. Remark 2.17 below). This phenomena is called

intermittency in turbulence literature (e.g. Frisch [44]).

Example 2.6. Suppose X is a process with stationary increments and X(0) = 0 a.s. Assume

the spectral density φ exists and is of the form

φ(λ) =
1

|λ|α(1 + |λ|s)β
, 1 < α < 3, s ≥ 0, β ≥ 0.

Then X satisfies Hypothesis (φ), whereby the number γ can be chosen in [α, α+ sβ] ∩ [α, 3),
since for this selection

|λ|γφ(λ) =
1

|λ|α−γ(1 + |λ|s)β

is clearly bounded on R. Moreover, X is due to Hypothesis (φ0) with γ0 = α and θ ≥ sβ. This

is apparent because

|λ|γ0φ(λ) =
1

|λ|α−γ0(1 + |λ|s)β

is strictly positive and bounded in a neighborhood of λ = 0 if and only if γ0 = α and

φ(τλ) =
1

(τλ)γ0(1 + |τλ|s)β
= |τ |−(γ0+sβ) 1

λγ0(|τ |−s + |λ|s)β

≥ |τ |−(γ0+sβ) 1
λγ0(1 + |λ|s)β

= |τ |−(γ0+sβ)φ(λ)

obviously holds true for all |τ | ≥ 1.

As we have seen in the previous example, there are processes which are due to both, Hy-

potheses (φ) and (φ0). However, this is not true in general.

Example 2.7. Consider a process X with stationary increments being zero at time zero a.s.

and suppose φ is of the form

φ(λ) =
1− sin(|λ|)
|λ|α

, 1 < α < 3.

Then X is subject to Hypothesis (φ) with γ = α, but |λ|γφ(λ) = 1− sin(|λ|) violates the growth

condition (c) of Hypothesis (φ0) for any θ ≥ 0.
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Vice versa, we find processes which satisfy Hypothesis (φ0), but conflict (φ).

Example 2.8. Consider a spectral density of the form

φ(λ) =
1 + |λ|s

|λ|α
, 2 < α < 3, 0 < s < α− 1.

Then the associated process X might satisfy Hypothesis (φ0) with γ0 = α and θ = 0, but will

surely contradict Hypothesis (φ). This is due to the fact, that the singularity at frequency

zero compensates a singularity at infinity and can therefore not factorized as a power of |λ|,
so that the remainder becomes bounded.

The following proposition clarifies, how Hypotheses (φ) and (φ0) are connected. For brevity

we define

f(λ) := |λ|γφ(λ), g(λ) := |λ|γ0φ(λ), Sf := sup
λ∈R

f(λ), Ig := inf
0<λ<λ0

g(λ). (2.13)

Note that f , g, Sf and Ig depend on the parameters γ, γ0 and λ0, respectively.

Proposition 2.9. Let X satisfy Hypotheses (φ) and (φ0), then γ0 ≤ γ ≤ γ0 + θ and Sf ≥
λγ−γ00 Ig. Moreover, θ = 0 is equivalent to f = g. If this is the case, then the remainders are

nondecreasing on the half-line (0,∞) and satisfy

Ig = lim
λ→0

f(λ) ≤ lim
|λ|→∞

f(λ) = Sf .

Proof. Observe the estimate for |τ | ≥ 1 and λ ∈ (0, λ0)

|λ|−γ |τ |−γSf ≥ |λ|−γ |τ |−γf(τλ) ≥ |λ|−γ0 |τ |−γ0−θg(λ) ≥ |λ|−γ0 |τ |−γ0−θIg,

in particular
Sf
Ig
≥ |λ|γ−γ0 |τ |γ−γ0−θ.

Thus necessarily γ0 ≤ γ ≤ γ0 + θ and Sf ≥ λγ−γ00 Ig. The case θ = 0 corresponds to γ0 = γ

and therewith f = g. If this is the case then f is obviously bounded and f(λ) ≥ Ig in a

neighborhood of λ = 0. Moreover f satisfies the growth condition f(τλ) ≥ f(λ) for all λ > 0
and τ ≥ 1, thus f is nondecreasing on (0,∞) and, since f is an even function, nonincreasing

on (−∞, 0).

Corollary 2.10. Let X satisfy Hypotheses (φ) and (φ0) with θ > 0. Then the choice γ = γ0 is

admissible. If, in addition, lim supλ→∞ λθg(λ) <∞, then any selection γ ∈ [γ0, γ0 + θ] ∩ [γ0, 3)
is feasible.
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Proof. Recall, that by Proposition 2.9 we have γ0 ≤ γ ≤ γ0 + θ. To justify the choice γ = γ0

we have to show that supλ>0 λ
γ0φ(λ) <∞. This can be seen from

|λ|γ0−γf(λ) = |λ|γ0φ(λ) = g(λ).

Turning to the second claim, we need to verify supλ>0 λ
γ0+θφ(λ) <∞, which follows from

|λ|γ0+θ−γf(λ) = |λ|γ0+θφ(λ) = |λ|θg(λ).

Theorem 2.11. The following are true.

(i) Let X be subject to Hypothesis (φ). Then the estimate

D(τ) ≤ cφ|τ |γ−1, cφ := cφ(γ) = 24−γ
∫ ∞

0

sin2(λ)
λγ

dλ · sup
λ∈R
|λ|γφ(λ) (2.14)

holds for all τ ∈ R. Moreover, (2.14) holds with equality if |λ|γφ(λ) is identically constant.

(ii) Let X be subject to Hypothesis (φ0). Then the estimate

D(τ) ≥ cφ0 ·min{|τ |γ0−1+θ, |τ |γ0−1},

cφ0 := cφ0(γ0, λ0) = 24−γ0
∫ λ0/2

0

sin2(λ)
λγ0

dλ · inf
|λ|<λ0

|λ|γ0φ(λ)

holds for all τ ∈ R.

Proof. It is particularly seen from (2.11) that D(τ) = D(−τ) which entails, that this proof can

be reduced to the case τ ≥ 0. If τ = 0 then trivially D(τ) = 0 so that it suffices to prove

the claim for τ > 0. The results then follow from the spectral representation (2.11) of the

function D, because for all τ > 0 it is

D(τ) = 4
∫ ∞

0
(1− cos ξτ)φ(ξ)dξ = 8

∫ ∞
0

sin2

(
ξτ

2

)
φ(ξ)dξ =

16
τ

∫ ∞
0

sin2(λ)φ
(

2λ
τ

)
dλ.

Observe now that
∫∞

0 sin2(λ)/λαdλ exists if 1 < α < 3. Then by means of notations (2.13),

assertion (i) follows with

D(τ) = 24−γτγ−1

∫ ∞
0

sin2 λ

λγ
f

(
2λ
τ

)
dλ ≤

[
24−γSf

∫ ∞
0

sin2 λ

λγ
dλ
]
τγ−1 = cφτ

γ−1,

while for 0 < τ < 1 (ii) is a consequence of the growth condition (φ0)(c), because

D(τ) = 24−γ0τγ0−1

∫ ∞
0

sin2 λ

λγ0
g

(
2λ
τ

)
dλ ≥

[
24−γ0Ig

∫ λ0/2

0

sin2 λ

λγ0
dλ

]
τγ0−1+θ = cφ0τ

γ0−1+θ.

In case τ ≥ 1 assertion (ii) follows with strict positivity of the remainder g in a neighborhood

of λ = 0. Then

D(τ) = 24−γ0τγ0−1

∫ ∞
0

sin2 λ

λγ0
g

(
2λ
τ

)
dλ ≥

[
24−γ0Ig

∫ λ0/2

0

sin2 λ

λγ0
dλ

]
τγ0−1 = cφ0τ

γ0−1.
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Following the latter proof we may outline, that the growth condition (c) of Hypothesis (φ0) is

only involved when |τ | < 1 and that the constant cφ particularly depends on the parameter γ.

This is crucial to remember in situations where the parameter γ is not uniquely determined

by Hypothesis (φ). As an immediate consequence of Theorem 2.11(i) we obtain

Corollary 2.12. Suppose X be subject to Hypothesis (φ) and denote by Γ the set of all

feasible γ. Then the estimate

D(τ) ≤ inf
{
cφ(γ)|τ |γ−1 : γ ∈ Γ

}
holds for all τ ∈ R, with cφ := cφ(γ) from Theorem 2.11(i).

The result of Theorem 2.11(ii) is very convenient with view on applications. The downside of

the simple representation is clearly the fact, that it is not optimal in general. The following

corollary can be deduced in similar fashion as of Theorem 2.11(ii) and yields a lower bound

for the second moment of X(t) which performs much better.

Corollary 2.13. Let X be subject to Hypothesis (φ0) and denote by Λ the set of all admissi-

ble λ0. Then the estimate

D(τ) ≥ sup
R>0,λ0∈Λ

cR( inf
|λ|<λ0

g(λ)
)
·


(
λ0
2R

)θ
τγ0+θ−1 : τ ≤ 2R

λ0

τγ0−1 : τ > 2R
λ0

 , cR := 24−γ0
∫ R

0

sin2 λ

λγ0
dλ

holds true for all τ ∈ R.

Proof. Follow the lines of the proof of Theorem 2.11(ii) to verify

D(τ) = 24−γ0τγ0−1

∫ ∞
0

sin2 λ

λγ0
g

(
2λ
τ

)
dλ.

By now we fix an arbitrary λ0 ∈ Λ and a number R > 0 to proceed with

D(τ) ≥ 24−γ0τγ0−1

∫ R

0

sin2 λ

λγ0
g

(
2λ
τ

)
dλ.

Observe now, that 2R
τ < λ0 if τ > 2R

λ0
and, moreover by (φ0)(c),

g

(
2λ
τ

)
= g

(
2R
λ0τ
· λλ0

R

)
≥
(

2R
λ0τ

)−θ
g

(
λλ0

R

)
,

provided that τ ≤ 2R
λ0

. The claim can then be enforced by employing the remaining arguments

of the proof of Theorem 2.11(ii) for each pair (R, λ0) ∈ (0,∞)× Λ.

If the process X is in particular centered and Gaussian, then we obtain Lp-estimates with the

aid of the Kahane-Khinchine inequality (cf. Theorem A.3).
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Corollary 2.14. Let X be a centered Gaussian process.

(i) If X is subject to Hypothesis (φ), then for every p ∈ (2,∞) there is a constant c > 0 such

that the estimate

E|X(t)−X(s)|p ≤ c|t− s|
p(γ−1)

2

holds for all t, s ∈ R.

(ii) If X is subject to Hypothesis (φ0), then for every p ∈ (1, 2) there is a constant c0 > 0
such that the estimate

E|X(t)−X(s)|p ≥ c0 ·min{|t− s|
p(γ0−1+θ)

2 , |t− s|
p(γ0−1)

2 }

holds for all t, s ∈ R.

Proof. With the aid of the Kahane-Khinchine inequality (cf. Theorem A.3), the claim (i) follows

directly from Theorem 2.11(i) because

E|X(t)−X(s)|p ≤ c
(
E|X(t)−X(s)|2

)p/2 = c (D(t− s))p/2 ≤ c|t− s|p
γ−1

2 ,

holds for all p > 2. Here the constant c > 0 is generic and may depend on p. The second

assertion follows in a similar manner.

We now may take a closer look to the correlation of the increments in case X is centered. We

start with the case of small consecutive increments.

Proposition 2.15. Assume X is centered and satisfies Hypotheses (φ) and (φ0) with γ =
γ0 + θ. Denote by cφ and cφ0 be the constants from Theorem 2.11 and let 0 < τ ≤ 1

2 .

(i) If γ0 < 2− log2(cφ/cφ0)− θ, then the increments [X(t)−X(t− τ)] and [X(t+ τ)−X(t)]
are negative correlated.

(ii) If γ0 > 2 + log2(cφ/cφ0)− θ, then the increments [X(t)−X(t− τ)] and [X(t+ τ)−X(t)]
are positive correlated.

Proof. With the aid of identity (2.3), a direct computation verifies

Cov[X(t)−X(t− τ), X(t+ τ)−X(t)] = E[(X(t)−X(t− τ))(X(t+ τ)−X(t))]

= −E[X(−τ)X(τ)] =
1
2
(
E[X(2τ)− E[X(−τ)]2 − E[X(τ)]2

)
and it is a matter of the stationarity of the increments and the assumption E[X(0)] = 0, that

E[X(−τ)]2 = E[X(0)−X(−τ)]2 = E[X(τ)−X(0)]2 = E[X(τ)]2.
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Thus, we already have

E[(X(t)−X(t− τ))(X(t+ τ)−X(t))] =
1
2

E[X(2τ)]2 − E[X(τ)]2

and we may employ Theorem 2.11 to estimate

cφ0

2
(2τ)γ0−1+θ − cφτγ−1 ≤ E[(X(t)−X(t− τ))(X(t+ τ)−X(t))] ≤

cφ
2

(2τ)γ−1 − cφ0τ
γ0−1+θ.

Recall that γ = γ0 + θ by assumption. Thus

(cφ02γ0+θ−2 − cφ)τγ0+θ−1 ≤ E[(X(t)−X(t− τ))(X(t+ τ)−X(t))] ≤ (cφ2γ0+θ−2 − cφ0)τγ0+θ−1.

and the result is immediate.

Following the same strategy one observes a result for large increments of X.

Proposition 2.16. Assume X is centered and satisfies Hypotheses (φ) and (φ0). Denote by

cφ and cφ0 the constants from Theorem 2.11 and let τ ≥ 1.

(i) If γ0 < 2− log2(cφ/cφ0), then the increments [X(t)−X(t− τ)] and [X(t+ τ)−X(t)] are

negative correlated.

(ii) If γ0 > 2 + log2(cφ/cφ0), then the increments [X(t)−X(t− τ)] and [X(t+ τ)−X(t)] are

positive correlated.

Remark 2.17. Propositions 2.15 and 2.16 show in particular, that if X is centered and sat-

isfies Hypotheses (φ) and (φ0) with θ > 0 and admissible γ ∈ [γ0, γ0 + θ], the correlations of

small and large increments satisfy

E[(X(t)−X(t− τ1))(X(t+ τ1)−X(t))] > E[(X(t)−X(t− τ2))(X(t+ τ2)−X(t))],

with 0 < τ1 ≤ 1
2 and τ2 ≥ 1. A very special situation is described if γ0 < 2 − log2(cφ/cφ0) and

θ > 2 log2(cφ/cφ0). In this case large increments are negative correlated, while consecutive

small increments tend to have the same sign.

The subsequent theorem yields first regularity results in the pathwise sense. Due to the

available Lp-estimates for centered Gaussian processes the results can be enhanced in this

case.

Theorem 2.18. The following are true.

(i) Let X be subject to Hypothesis (φ). If γ > 2, then X is mean-square continuous and

has continuous paths almost sure. Moreover, the trajectories of X are locally Hölder-

continuous of order α < γ−2
2 with probability 1.
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(ii) Let X be a centered Gaussian process subject to Hypothesis (φ). Then X is mean-

square continuous and has continuous paths almost sure. Moreover, the trajectories of

X are locally Hölder-continuous of order α < γ−1
2 with probability 1.

(iii) Let X be subject to Hypothesis (φ0). If θ < 3 − γ0 then X is almost surely nowhere

mean-square differentiable.

Proof. Assertion (i) is immediate by Theorem 2.11(i), which in particular yields

E[X(t)−X(s)]2 ≤ c|t− s|1+(γ−2), t, s ∈ R.

Thus the Kolmogorov-Čentsov-Theorem (cf. Theorem A.4) proves the claim. Regarding (ii)

Corollary 2.14 yields, that for every p ∈ (2,∞) there is a constant c > 0 such that

E|X(t)−X(s)|p ≤ c|t− s|1+
p(γ−1)−2

2 ,

for all s, t ∈ R. Employing the Kolmogorov-Čentsov-Theorem (cf. Theorem A.4) yields the

Hölder-continuity on every bounded subset of R of order α < γ−1
2 −

1
p for every 2 < p < ∞.

In case (iii) the nowhere differentiability in the L2(Ω)-sense follows with

lim
s→t

∣∣∣∣E[X(t)−X(s)]2

|t− s|2

∣∣∣∣ = lim
s→t

E[X(t− s)]2

|t− s|2
≥ c0 lim

s→t
|t− s|γ0−3+θ =∞.

Corollary 2.19. Let X be subject to Hypothesis (φ). If γ > 2, then X is centered.

Proof. Observe that the function m given by (2.1) satisfies

m(τ1) +m(τ2) = m(τ1 + τ2)

and, since γ > 2, the function m is continuous by Theorem 2.18(i), which in turn yields

m(τ) = c1τ where c1 is a constant. Because

D(τ) = (E[X(t+ τ)−X(t)])2 + Var[X(t+ τ)−X(t)] = c2
1τ

2 + Var[X(t+ τ)−X(t)],

where, as a matter of course Var[X(t + τ) − X(t)] ≥ 0, the function D(τ) includes a term

proportional to τ2 in all the cases where c1 6= 0. Theorem 2.11 yields D(τ) ≤ c|τ |γ−1 for all

τ ∈ R with γ − 1 < 2. Hence c1 = 0, which is equivalent to 0 = m(τ) = E[X(t + τ) −X(t)] =
E[X(τ)] for all τ ∈ R.

Corollary 2.20. Let X be a Gaussian process subject to Hypothesis (φ). If γ > 2, then with

probability 1 the trajectories of X are locally Hölder-continuous of order α < γ−1
2 .

Proof. The result is immediate by Corollary 2.19 and Theorem 2.18(ii).
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We are now in the position to formulate first results in the Lp(Ω)-sense.

Theorem 2.21. Let T > 0, J = [0, T ], p ∈ (0,∞) and 0 < σ < 1.

(i) Suppose X satisfies Hypothesis (φ). If 2σ < γ − 1, then X ∈ 0W
σ
2 (J ;L2(Ω)).

(ii) Suppose X satisfies Hypothesis (φ0). If 2σ ≥ γ0 − 1 + θ, then X 6∈ 0W
σ
2 (J ;L2(Ω)).

(iii) Suppose X is a centered Gaussian process subject to Hypothesis (φ) and let 2 ≤ q <∞.

If 2σ < γ − 1, then X ∈ 0W
σ
p (J ;Lq(Ω)).

(iv) Suppose X is a centered Gaussian process subject to Hypothesis (φ0) and let 1 < q ≤ 2.

If 2σ ≥ γ0 − 1 + θ, then X 6∈ 0W
σ
p (J ;Lq(Ω)).

Proof. In view of Theorem 2.11 and Corollary 2.14, assertions (iii) and (iv) will be shown

directly considering the semi-norm [·]σ in 0W
σ
p (J ;Lq(Ω)) and exploiting the stationarity of the

increments. Assertion (iii) follows with

[X]pσ =
∫
J

∫
J

(E|X(t)−X(s)|q)
p
q

|t− s|1+pσ
dsdt ≤ c

∫
J

∫
J

|t− s|
p(γ−1)

2

|t− s|1+pσ
dsdt

= c

∫
J

∫
J
|t− s|

p(γ−1)
2
−1−pσdsdt = 2c

∫ T

0

∫ t

0
(t− s)

p(γ−1)
2
−1−pσdsdt

and the last integral is finite, if and only if σ < γ−1
2 . Turning to (iv) we restrict J to [0, 1] and

achieve analogously

[X]pσ ≥ 2c0

∫ 1

0

∫ t

0
(t− s)

p(γ0−1+θ)
2

−1−pσdsdt

and the right hand-side is finite if and only if σ < γ0−1+θ
2 . To prove assertions (i) and (ii) set

p = q = 2 and repeat the above arguments.

2.3 Noise

In the analytical treatment it is inconvenient that a process X does in general not have a

derivative. A very elementary method of circumventing the lack of derivative is to smooth X

and to introduce the random function

Xδ(t) :=
1
δ

∫ t+δ

t
X(τ)dτ =

∫
R

X(τ)ϕ1(t− τ)dτ, δ > 0,

where

ϕ1(t) :=

δ−1 : 0 ≤ t ≤ δ,

0 : otherwise.
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The process Xδ has a stationary derivative

Ẋδ(t) =
1
δ

[X(t+ δ)−X(t)] = −
∫
R

X(τ)dϕ1(t− τ),

which is almost surely continuous, but surely nondifferentiable. For δ small enough, the

processes X and Xδ are indistinguishable for many practical purposes. One can replace

ϕ1 by an infinitely differentiable kernel ϕ, which vanishes outside some finite interval and

integrates to 1. Then

∂kt

∫
R

X(τ)ϕ(t− τ)dτ = (−1)k
∫
R

X(τ)ϕ(k)(t− τ)dτ,

which is continuous and stationary for all k ∈ N. Following up this approach, one can interpret

Ẋ(t) = −
∫
R

X(τ)ϕ̇(t− τ)dτ

as being not a random function but a generalized random function in the sense of Schwartz

distributions (e.g. Gelfand & Vilenkin [45]). For practical purposes, it may be desirable to

avoid Schwartz distributions, and one shall be concerned with determining whether finite

differences of the process Ẋδ are reasonable approximations of the noise Ẋ.

2.4 Deterministic multipliers

Throughout this section let J = [0, T ], G ⊂ RN , W = L2(J ;L2(G;L2(Ω))), and Y =
L2(J ;L2(∂G;L2(Ω))). The aim of this section is to deduce the regularity properties of the

function

ζ(t, x, ω) :=
∞∑
k=1

bk(t, x)Xk(t, ω) (2.15)

where (Xi)i∈N are entirely independent processes defined on the probability space (Ω,F ,P)
and satisfying Hypothesis (φ) (see page 24). The scalar functions bi ∈ L2(J ;L2(∂G)), i ∈ N,

are supposed to be deterministic.

Turning to spatial regularity, we furnish a sufficient and necessary conditions on the multiplier

b := (bi)i∈N, so that the boundary disturbance ζ affiliates to the space

Ys := L2(J ; 0W
s
2(∂G;L2(Ω))), s ≥ 0. (2.16)

Note that Y0 is isometrically isomorphic to the basic space Y .

Theorem 2.22. Let s ≥ 0, G ⊂ RN be a domain with C [s]+1-boundary and ζ given by (2.15).

(i) Suppose (Xn)n∈N is a sequence of mutually independent processes with a unique spec-

tral density φ subject to Hypothesis (φ). Then

b ∈ L2, γ−1
2

(J ; 0W
s
2(∂G; `2)) =⇒ ζ ∈ L2(J ; 0W

s
2(∂G;L2(Ω))).
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(ii) Suppose (Xn)n∈N is a sequence of mutually independent processes with a unique spec-

tral density φ subject to Hypothesis (φ0). Then

ζ ∈ L2(J ; 0W
s
2(∂G;L2(Ω))) =⇒ b ∈ L

2,
γ0−1+θ

2

(J ; 0W
s
2(∂G; `2)).

Proof. Without loss of generality we set 0 < s < 1. Starting with claim (i), the presence of

Theorem 2.11(i) and a straight forward computation gives

‖ζ‖Ys =

∥∥∥∥∥∥∥
E

∣∣∣∣∣
∞∑
k=1

bk(t, x)Xk(t)

∣∣∣∣∣
2
 1

2

∥∥∥∥∥∥∥
L2(J ;0W

s
2(∂G))

=

∥∥∥∥∥∥∥
E

 ∞∑
k=1

|bk(t, x)Xk(t)|2 +
∑
k 6=l

bk(t, x)bl(t, x)Xk(t)Xl(t)

 1
2

∥∥∥∥∥∥∥
L2(J ;0W

s
2(∂G))

and with the aid of the independence of Xi and Xj for i 6= j we proceed with

‖ζ‖Ys =

∥∥∥∥∥∥
( ∞∑
k=1

|bk(t, x)|2E|Xk(t)|2
) 1

2

∥∥∥∥∥∥
L2(J ;0W

s
2(∂G))

≤ c

∥∥∥∥∥∥
( ∞∑
k=1

|t
γ−1

2 bk(t, x)|2
) 1

2

∥∥∥∥∥∥
L2(J ;0W

s
2(∂G))

= c‖b‖L
2,
γ−1

2
(J ;0W

s
2(∂G;`2)).

Turning to (ii) we recall that is suffices to prove the claim for J = [0, 1] and obtain in similar

fashion to (i)

‖ζ‖Ys ≥ c0‖b‖L
2,
γ0−1+θ

2

(J ;0W
s
2(∂G;`2)).

Our next aim is to deduce conditions on b, so that the boundary disturbance ζ admits some

time regularity. To this end we provide some technical tools with the subsequent lemmata.

Lemma 2.23. Suppose X is subject to Hypotheses (φ) with |λ|γφ(λ) ≡ const and let b : J →
R a deterministic function. Then there is a constant c > 0, so that

E [b(t)X(t)− b(s)X(s)]2

= c

[(
b(t)t

γ−1
2 − b(s)s

γ−1
2

)2
+ |b(t)b(s)|

(
|t− s|γ−1 −

[
t
γ−1

2 − s
γ−1

2

]2
)]

holds for all s, t ∈ J .

Proof. The claim can be shown directly with the aid of Theorem 2.11(i).

E [b(t)X(t)− b(s)X(s)]2 = E
[
b2(t)X2(t) + b2(s)X2(s)− 2b(t)b(s)X(t)X(s)

]
= b2(t)E[X(t)]2 + b2(s)E[X(s)]2 − 2b(t)b(s)E[X(t)X(s)]

= c
[
b2(t)tγ−1 + b2(s)sγ−1 − b(t)b(s)

(
tγ−1 + sγ−1 − |t− s|γ−1

)]
.
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We then proceed with the elementary manipulations

E [b(t)X(t)− b(s)X(s)]2

= c
[
b2(t)tγ−1 + b2(s)sγ−1 + b(t)b(s)|t− s|γ−1 − b(t)b(s)tγ−1 − b(t)b(s)sγ−1

]
= c

[(
b(t)t

γ−1
2 − b(s)s

γ−1
2

)2
+ b(t)b(s)

(
|t− s|γ−1 −

[
t
γ−1

2 − s
γ−1

2

]2
)]

and the proof is complete.

Lemma 2.24. Suppose X is subject to Hypotheses (φ) and let b : J → R a deterministic

function. Then there is a constant c > 0, so that

E [b(t)X(t)− b(s)X(s)]2 ≤ c
[
b2(t)|t− s|γ−1 + |b(t)− b(s)|2sγ−1

]
holds for all s, t ∈ J .

Proof. The claim can be shown directly with the aid of Theorem 2.11(i).

E [b(t)X(t)− b(s)X(s)]2 = E [b(t)(X(t)−X(s)) +X(s)(b(t)− b(s))]2

≤ 2E[b(t)(X(t)−X(s))]2 + 2E[X(s)(b(t)− b(s))]2

≤ c
[
b2(t)|t− s|γ−1 + |b(t)− b(s)|2sγ−1

]
,

which completes the proof.

Theorem 2.25. Let G ⊂ RN be a domain with boundary of class C1 and ζ given by (2.15).

(i) Suppose (Xn)n∈N is a sequence of mutually independent processes with a unique spec-

tral density φ subject to Hypothesis (φ), so that |λ|γφ(λ) ≡ const and let 0 ≤ 2σ < γ − 1.

b ∈ 0W
σ
2, γ−1

2

(J ;L2(∂G; `2)) =⇒ ζ ∈ 0W
σ
2 (J ;L2(∂G;L2(Ω))).

(ii) Let the assumptions of (i) be valid and assume further that for all s, t ∈ J and x ∈ ∂G it

is (b(t, x)|b(s, x))`2 ≥ 0, then

ζ ∈ 0W
σ
2 (J ;L2(∂G;L2(Ω))) =⇒ b ∈ 0W

σ
2, γ−1

2

(J ;L2(∂G; `2)).

(iii) Suppose (Xn)n∈N is a sequence of mutually independent processes with a unique spec-

tral density φ subject to Hypothesis (φ) and let 0 ≤ 2σ < γ − 1. Then

b ∈ 0W
σ
2 (J ;L2(∂G; `2)) =⇒ ζ ∈ 0W

σ
2 (J ;L2(∂G;L2(Ω))).

Proof. Regarding assertions (i) and (iii), it is due to Lemma 1.1 and Theorem 2.22 with s = 0,

that ζ ∈ Y . So it suffices to compare the relevant semi-norms. In the sequel we denote by
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[·]σ the semi-norm of the space W σ
2 (J ;L2(∂G;L2(Ω))) and by dη the surface measure of ∂G.

Let moreover be ζm the m-th partial sum of ζ, that is

ζm(t, x) =
m∑
k=1

bk(t, x)Xk(t).

Then

[ζm]2σ =
∫
J

∫
J

∫
∂G

E[ζm(t, x)− ζm(s, x)]2

|t− s|1+2σ
dη(x)dsdt

=
∫
J

∫
J

∫
∂G

∑m
k=1 E [bk(t, x)Xk(t)− bk(s, x)Xk(s)]

2

|t− s|1+2σ
dη(x)dsdt. (2.17)

With view on (i), Lemma 2.23 yields

[ζm]2σ = c

∫
J

∫
J

∫
∂G

∑m
k=1(bk(t, x)t

γ−1
2 − bk(s, x)s

γ−1
2 )2

|t− s|1+2σ
dη(x)dsdt+

+ c

∫
J

∫
J

∫
∂G

∑m
k=1 bk(t, x)bk(s, x)

[
|t− s|γ−1 − (t

γ−1
2 − s

γ−1
2 )2

]
|t− s|1+2σ

dη(x)dsdt. (2.18)

Let us now study the second term of the right hand-side of (2.18) separately. It is due to

|t−s|γ−1 ≥ (t
γ−1

2 −s
γ−1

2 )2 for all s, t ∈ J (to see this multiply with s1−γ and substitute z = t/s),

that

∫
J

∫
J

∫
∂G

∑m
k=1 bk(t, x)bk(s, x)

[
|t− s|γ−1 − (t

γ−1
2 − s

γ−1
2 )2

]
|t− s|1+2σ

dη(x)dsdt

≤
∫
J

∫
J

∫
∂G

∑m
k=1 |bk(t, x)bk(s, x)||t− s|γ−1

|t− s|1+2σ
dη(x)dsdt

≤ 1
2

∫
J

∫
J

∫
∂G

∑m
k=1[b2k(t, x) + b2k(s, x)]
|t− s|2+2σ−γ dη(x)dsdt =

∫
J

∫
J

∫
∂G

∑m
k=1 b

2
k(t, x)

|t− s|2+2σ−γ dη(x)dsdt.

Passing to the limitm→∞ forces the existence of constants c1, c2 > 0 (in the sequel generic)

so that

[ζ]2σ ≤ c1[b]2
0Wσ

2,
γ−1

2

(J ;L2(∂G;`2)) + c2

∫
J

∫
J

∫
∂G

∑∞
k=1 b

2
k(t, x)

|t− s|2+2σ−γ dη(x)dsdt

= c1[b]2
0Wσ

2,
γ−1

2

(J ;L2(∂G;`2)) + c2

∫ T

0

∫ t

0

‖b(t, ·)‖2L2(∂G;`2)

|t− s|2+2σ−γ dsdt

= c1[b]2
0Wσ

2,
γ−1

2

(J ;L2(∂G;`2)) +
c2

γ − 1− 2σ

∫ T

0
‖t

γ−1
2
−σb(t, ·)‖2L2(∂G;`2)dt

= c1[b]2
0Wσ

2,
γ−1

2

(J ;L2(∂G;`2)) +
c2

γ − 1− 2σ
‖b‖2L

2,
γ−1

2 −σ
(J ;L2(∂G;`2))

(2.19)
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and assertion (i) is established by Lemma 1.1. Turning (ii) we stress that it suffices to prove

the claim for J = [0, 1] and that Theorem 2.22 yields b ∈ L2, γ−1
2

(J ;L2(∂G; `2)). Note that

(b(s, x)|b(t, x))`2 ≥ 0 implies the existence of a number M > 0 such that for every m > M it

is
∑m

n=1 bn(s, x)bn(t, x) ≥ 0. Choosing m > M we estimate (2.18) by

[ζm]2σ = c

∫
J

∫
J

∫
∂G

∑m
k=1(bk(t, x)t

γ−1
2 − bk(s, x)s

γ−1
2 )2

|t− s|1+2σ
dη(x)dsdt+

+ c

∫
J

∫
J

∫
∂G

∑m
k=1 bk(t, x)bk(s, x)

[
|t− s|γ−1 − (t

γ−1
2 − s

γ−1
2 )2

]
|t− s|1+2σ

dη(x)dsdt

≥ c
∫
J

∫
J

∫
∂G

∑m
k=1(bk(t, x)t

γ−1
2 − bk(s, x)s

γ−1
2 )2

|t− s|1+2σ
dη(x)dsdt.

Passing to the limit m → ∞ enforces (ii). Let us conclude with the proof of assertion (iii). To

this end we may employ Lemma 2.24 to estimate (2.17) by

[ζm]2σ ≤ c
∫
J

∫
J

∫
∂G

∑m
k=1 b

2
k(t, x)

|t− s|2+2σ−γ dη(x)dsdt+

+ c

∫
J

∫
J

∫
∂G

∑m
k=1 |bk(t, x)− bk(s, x)|2sγ−1

|t− s|1+2σ
dη(x)dsdt. (2.20)

The first term from the right hand-side of (2.20) can be treated as presented in (2.19). The

second term from the right hand-side of (2.20) can be handled as∫
J

∫
J

∫
∂G

∑m
k=1 |bk(t, x)− bk(s, x)|2sγ−1

|t− s|1+2σ
dη(x)dsdt

≤ T γ−1

∫
J

∫
J

∫
∂G

∑m
k=1 |bk(t, x)− bk(s, x)|2

|t− s|1+2σ
dη(x)dsdt.

Passing to the limit m→∞ yields the existence of constants c3, c4, c5 > 0 which may depend

on γ, T or σ, so that

[ζm]2σ ≤ c3‖b‖2L
2,
γ−1

2 −σ
(J ;L2(∂G;`2)) + c4[b]2

0Wσ
2 (J ;L2(∂G;`2)) ≤ c5[b]2

0Wσ
2 (J ;L2(∂G;`2)),

where the last estimate is verified by Lemma 1.1 and the remark before.

2.5 Stochastic integration

In what follows let X be a process with stationary increments, so that X has the spectral

density φ and X(t) ∈ L2(Ω) for every t ∈ R, if not indicated otherwise. Furthermore we

presume, that X(0) = 0 a.s. and φ(λ) > 0 almost everywhere.
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2.5.1 The real-valued case

We will start to study the stochastic integral

IX(f) :=
∫
R

f(τ)dX(τ), (2.21)

where the integrand f : R → R is supposed to be deterministic. If one wants to define this

integral as a Riemann-Stieltjes integral, then the class of functions f for which (2.21) is well-

defined is rather limited since then f needs to be a continuous function of bounded variation.

So we need a different idea in order to define the integral (2.21) for a wider class of functions

f . This is the idea of an integral of Itô-type (see [56]). Thus, if f is a step function given by

f(t) =
n∑

i=−n
fiχ[ti,ti+1)(t), (2.22)

where t0 = 0, we define (2.21) to be

IX(f) =
n∑

i=−n
fi[X(ti+1)−X(ti)].

Obviously, IX(af + bg) = aIX(f) + bIX(g) for any a, b ∈ R and step functions f and g. Our

aim is to construct a preferably large class of deterministic integrands f so that IX(f) is a

well-defined random variable with finite second moment.

Remark 2.26. It is readily seen from the construction of IX(f) that

1. if X is centered, then so is IX(f);

2. if X is Gaussian distributed, then so is IX(f).

For the sake of completeness we recall, in the proposition below, how to construct classes of

integrands C for integrals of the form (2.21). This is a generalized version of [86, Proposition

2.1] in this sense, that it is formulated not exclusively for integrals with respect to a fractional

Brownian motion, but with respect to a process X with stationary increments featuring the

spectral density φ.

Proposition 2.27. Suppose that C is a set of deterministic functions defined on R such that

(a) C is an inner product space with an inner product (f | g)C, for f, g ∈ C,

(b) E ⊂ C and (f | g)C = (IX(f) | IX(g))L2(Ω), for f, g ∈ E ,

(c) the set E is dense in C.
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Then there is an isometry between the space C and a linear subspace of

Sp(X) := {Y ∈ L2(Ω) : ‖IX(fn)− Y ‖L2(Ω) → 0, for some (fn) ⊂ E}.

which is an extension of the map f 7→ IX(f), for f ∈ E .

Proof. Let f ∈ C. By (c), there is a sequence (fn) ⊂ E such that fn → f in C. In particular,

(fn) is a Cauchy sequence in C and hence, by (b), (IX(fn)) is a Cauchy sequence in L2(Ω).
Since the space L2(Ω) is complete, there is an element IX(f) ∈ L2(Ω) such that

IX(f) = lim
n→∞

IX(fn),

in the L2(Ω) sense. Moreover, since (IX(fn)) ⊂ Sp(X) and Sp(X) is a closed subset of L2(Ω),
we obtain that IX(f) ∈ Sp(X). We can thus define the map IX from the space C into the

space Sp(X). Observe, that this definition does not depend on an approximating sequence

(fn). This construction of IX and (b) imply that, for f, g ∈ C,

(f | g)C = (IX(f) | IX(g))L2(Ω),

and, since the map IX is linear, we conclude that IX is, in fact, an isometry between the

space C and a linear subspace of Sp(X).

In the sequel we will denote the isometry map IX obtained in the proof above also by

IX(f) =
∫
R

f(τ)dX(τ), (2.23)

for f ∈ C, and the right hand-side of (2.23) is called the integral on the real line R of f with

respect to the process X.

Recall the weighted homogeneous Bessel potential space Ḣ
φ
2 (R), introduced in Section 1.2.7,

with the inner product

(f | g)
Ḣ
φ
2 (R)

:=
∫
R

Ff(λ)Fg(λ)λ2φ(λ)dλ.

Recall also that by Lemma 1.2 the inner product (· | ·)
Ḣ
φ
2 (R)

is well-defined and real-valued

if the function φ is even and almost everywhere positive at least. The next lemma provides

an approximation property of distributions belonging to the spaces Ḣ
φ
2 (R) and is leaned on

Pipiras & Taqqu [86, Lemma 5.1]. It generalizes the results for functions in Ḣ
s
2(R), where

|s| < 1
2 , to distributions in Ḣ

φ
2 (R). However, the proof’s strategy remains the same.

Lemma 2.28. Let the function φ satisfying condition (2.12). If f ∈ Ḣ
φ
2 (R), then there is a

sequence of elementary functions ψn such that

‖Ff −Fψn‖2L2(λ2φ) =
∫
R

|Ff(λ)−Fψn(λ)|2λ2φ(λ)dλ→ 0, as n→∞.
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Proof. Since for x ∈ R it is

f(x) =
1
2

(f(x) + f(−x)) +
1
2

(f(x)− f(−x))

we may prove the lemma in two cases: (1) f is an even function and, (2) f is an odd function.

Case 1: If f is an even function, then Ff is real-valued and Ff(λ) = Ff(−λ). To prove the

claim, we show that, for arbitrary small ε > 0, there is an elementary function ψ such that

‖Ff −Fψ‖L2(λ2φ) < ε. We will provide this approximation in several steps. As a first step, we

approximate Ff by simple functions. For any ε > 0 there is a simple function

Fg(λ) =
k∑
j=1

gjχGj (λ),

where gj ∈ R and Gj ∈ B(R), such that

‖Ff −Fg‖L2(λ2φ) < ε.

Since Ff(λ) = Ff(−λ), we can take the sets Gj to be symmetric around the origin λ = 0. As

a second step, observe that, for a symmetric (around the origin) set G and any ε > 0, there

is a function

Fh(λ) =
m∑
n=1

hnχ[−Hn,Hn](λ),

with hn ∈ R and Hn > 0 such that

‖χG −Fh‖L2(λ2φ) < ε.

It is therefore enough to show, that the function χ[−1,1](λ) can be approximated in L2(λ2φ) by

the Fourier transform of an elementary function. In other words, that for any ε > 0 there is

an elementary function ψ such that

‖χ[−1,1] −Fψ‖L2(λ2φ) < ε.

To construct ψ, observe first that∫
R

|χ[−1,1](λ)−Fψ(λ)|2λ2φ(λ)dλ =
∫
R

|λχ[−1,1](λ)− λFψ(λ)|2φ(λ)dλ

and by (2.12) the measure φ(λ) is finite around λ = ∞. The remaining part of the proof is,

except of a notations, identically to the proof of [86, Lemma 5.1]. The idea is to truncate

the range of λχ[−1,1](λ), perform a periodic extension and observe that its truncated Fourier

series is of the form λFψ(λ), whereFψ is the (continuous) Fourier transform of an elementary

function. We thus construct ψ as follows. First, choose k > 1 so that∫
R

φ(λ)χ{|λ|>k}(λ)dλ <
ε2

2
.
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Now, let U be the function which equals λχ[−1,1](λ) on [−k, k] and is periodically extended

to λ ∈ R. It has the Fourier series
∑∞

n=−∞ une
− iπnλ

k , which converges to U everywhere on

[−k, k] except at the points λ = ±1, where U is discontinuous. Moreover, the partial sum

Um(λ) =
m∑

n=−m
une

− iπnλ
k

can be written as

Um(λ) =
1
k

∫ k

−k
U(λ− ξ)Dm

(
πξ

k

)
dξ,

where

Dm(ξ) =
sin(m+ 1

2)ξ

2 sin( ξ2)
, ξ ∈ R,

is the well-known Dirichlet kernel. The proof of [86, Lemma 5.1] contains the verification of

the following properties of the partial sum Um:

(i) supm supλ |Um(λ)| ≤ c,

(ii) supm |Um(λ)| ≤ c|λ|, for λ small enough,

where the above constants are not necessarily equal the same. By (i) and (ii), the dominated

convergence theorem implies that∫
{|λ|≤k}

|λχ[−1,1](λ)− Um(λ)|2φ(λ)dλ→ 0

as m→∞. In particular, there is an integer M such that∫
{|λ|≤k}

|λχ[−1,1](λ)− UM (λ)|2φ(λ)dλ <
ε2

2
.

Since U(0) = 0 and U(−x) = −U(x), we have that

un =
1
k

∫ k

−k
U(x)e−

iπnλ
k dλ =

2i
k

∫ k

0
U(λ) sin

(
πnλ

k

)
dλ = −ian,

where an ∈ R, n ≥ 1. Hence u0 = 0 and un = ian for n ≤ −1. Thus

UM (λ) =
M∑
n=1

(−ian)
[
e
iπnλ
k − e

−iπnλ
k

]
.

Since

Fχ[−πn/k,πn/k](λ) =
e
iπnλ
k − e−

iπnλ
k

iλ
,

λ−1UM (λ) is the Fourier transform of the elementary function

ψ =
M∑
n=1

anχ[−πn/k,πn/k](λ).
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We thus obtain the required approximation because

‖χ[−1,1] −Fψ‖2L2(λ2φ) =
∫
R

|λχ[−1,1](λ)− UM (λ)|2φ(λ)dλ

≤
∫
{|λ|≤k}

|λχ[−1,1](λ)− UM (λ)|2φ(λ)dλ+
∫
{|λ|>k}

φ(λ)dλ < ε2.

Case 2: If f is an odd function, then Ff = i ImFf and ImFf(−λ) = − ImFf(λ). By

the same arguments as in the previous case, it is enough to show that the function

i(χ[0,1](λ)− χ[−1,0](λ)) can be approximated by the Fourier transform of an elementary func-

tion. Equivalently, for arbitrary small ε > 0, we have to find an elementary function ψ such

that

‖(χ[0,1] − χ[−1, 0])− iFψ‖L2(λ2φ) < ε.

The proof is similar to the previous case and we only outline it. Fix k as in the Case 1 and let

V be the function which equals

λ(χ[0,1](λ)− χ[−1,0](λ)) = |λ|χ[−1,1](λ)

on [−k, k] and is periodically extended to λ ∈ R. Its truncated Fourier series

Vm(λ) =
m∑

n=−m
vne
− 1πnλ

k

converges to V everywhere on [−k, k] except at the points λ = ±1. It is not enough here to

focus on Vm(λ) for small λ because Vm(0) 6= 0. Therefore, instead of dealing with Vm(λ), we

will consider Vm(λ) − Vm(0). This function also converges to V (λ) almost everywhere and

one can show that supm supλ|Vm(λ)−Vm(0)| ≤ c and supm |Vm(λ)−Vm(0)| ≤ c|λ|, for λ small

enough. Moreover,

Vm(λ)− Vm(0) =
m∑
n=1

bn(e
iπnλ
k + e−

iπnλ
k − 2),

for some bn ∈ R, and hence λ−1(Vm(λ)−Vm(0)) = iFψm, where ψm is the elementary function

given by

ψm =
m∑
n=1

bn(χ[0,πn/k) − χ[−πn/k,0)).

The conclusion follows as in Case 1.

Lemma 2.29. Let X = {X(t)}t∈R ⊂ L2(Ω) be a process with stationary increments having

the spectral density φ. Then we have for t, s ∈ R and any h ≥ 0

(X(t+ h)−X(t) | X(s+ h)−X(s))L2(Ω) =
(
χ[t,t+h) | χ[s,s+h)

)
Ḣ
φ
2 (R)

.
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Proof. In view of identities (2.3) and (2.11) we obtain

(X(t+ h)−X(t) | X(s+ h)−X(s))L2(Ω)

= D2(t+ h, s+ h) +D2(t, s)−D2(t+ h, s)−D2(t, s+ h)

=
1
2

[D(|t− s+ h|)− 2D(|t− s|) +D(|t− s− h|)]

= 2
∫ ∞

0
{2 cos[(t− s)λ]− cos[(t− s− h)λ]− cos[(t− s+ h)λ]}φ(λ)dλ

= Re
[∫
R

{
2e−i(s−t)λ − e−i(s−t+h)λ − e−i(s−t−h)λ

}
φ(λ)dλ

]
= Re

[∫
R

e−iλs − e−iλ(s+h)

iλ
·
(
e−iλt − e−iλ(t+h)

iλ

)
· λ2φ(λ)dλ

]

= Re
[∫
R

Fχ[s,s+h)(λ)Fχ[t,t+h)(λ)λ2φ(λ)dλ
]

=
(
χ[s,s+h) | χ[t,t+h)

)
Ḣ
φ
2 (R)

since by Lemma 1.2 the inner product in Ḣ
φ
2 (R) is real-valued as soon as φ is even.

We are now in the position to formulate the main result for the stochastic integration with

respect to random processes with stationary increments and spectral density. Note that the

subsequent theorem also allocates an isometry of Itô-type.

Theorem 2.30. Let X = {X(t)}t∈R ⊂ L2(Ω) be a process with stationary increments having

the spectral density φ. Then for f, g ∈ Ḣ
φ
2 (R) it is

E
[(∫

R

f(τ)dX(τ)
)(∫

R

g(τ)dX(τ)
)]

= (f | g)
Ḣ
φ
2 (R)

.

In particular, for integrands f ∈ Ḣ
φ
2 (R) the integral IX(f) given by (2.21) is a well-defined

random variable with

E[IX(f)]2 = ‖f‖2
Ḣ
φ
2 (R)

.

Proof. In view of Lemma 2.28, Proposition 2.27 yields that it suffices to prove the claim for

step functions. For this purpose let f, g ∈ E ⊂ Ḣ
φ
2 (R), that is f, g is of the form (2.22). With
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the aid of Lemma 2.29 we verify

(IX(f) | IX(g))L2(Ω) =

 n∑
j=−n

fj [X(tj+1)−X(tj)] |
n∑

k=−n
gk[X(tk+1)−X(tk)]


L2(Ω)

=
n∑

j=−n

n∑
k=−n

fjgk (X(tj+1)−X(tj) | X(tk+1)−X(tk))L2(Ω)

=
n∑

j=−n

n∑
k=−n

fjgk

(
χ[tj ,tj+1) | χ[tk,tk+1)

)
Ḣ
φ
2 (R)

=

 n∑
j=−n

fjχ[tj ,tj+1) |
n∑

k=−n
gkχ[tk,tk+1)


Ḣ
φ
2 (R)

= (f | g)
Ḣ
φ
2 (R)

,

which completes the proof.

We now turn our attention to a vector-valued process X which is in some sense generated by

a mutually independent sequence of processes (Xn)n∈N having a unique spectral density.

2.5.2 The vector-valued case

LetH be a separable Hilbert space. We want to deduce properties of functions R : R→ B(H)
such that the integral ∫

R

R(t)d(Q1/2X )(t). (2.24)

is well defined. The process Q1/2X is supposed to satisfy

Hypothesis (X). The operator Q belongs to L1(H) is self-adjoint, positive definite and is

diagonal with respect to the orthonormal basis (en)n∈N of H, i.e. Qen = νnen and νn > 0 for

all n ∈ N. X := {X (t)}t∈R is of the form

(X (t)|x) =
∞∑
n=0

Xn(t)(en|x), t ∈ R, x ∈ H, (2.25)

where Xn are mutually independent, real-valued and centered processes defined on the

probability space (Ω,F ,P). Moreover, for every n ∈ N the process Xn features the unique

spectral density φ.

As we will see, X (as in (2.25)) is not a well defined H-valued random variable. However,

due to X (t) : Ω → HQ−1/2 , where HQ−1/2 is the completion of H with respect to the norm

|x|2
Q−1/2 := |Q−1/2x|H, x ∈ H, the process Q1/2X converges in L2(Ω;H). Note that Q1/2 is
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well-defined and belongs to L2(H) and further that the operator −Q is dissipative, which by

general results (e.g. Lumer & Phillips [72, Theorem 2.1]) means that Q is invertible.

Let us deduce the distributional properties of the process Q1/2X , where the covariance oper-

ator Q and the process X satisfy Hypothesis (X). It is obvious that Q1/2X is a process, so it

remains to calculate the mean value and the covariance.

E
(
Q1/2X (t) | x

)
= E

( ∞∑
n=1

√
νnXn(t)en | x

)
=
∞∑
n=1

√
νnE(Xn(t))(en | x) = 0,

for every x ∈ H and t ∈ R. Regarding the covariance we have for all s, t ∈ R(
Cov[Q1/2X (t), Q1/2X (s)]em | en

)
= E

[(
Q1/2X (t) | em

)(
Q1/2X (s) | en

)]
= δmn

√
νmνnE [Xm(t)Xn(s)] .

Thus it is meaningful to define a vector-valued process of a certain spectral type as

Definition 2.31 (Vector-valued processes of spectral type φ). Let Q and X be subject to

Hypothesis (X), then we call the process Q1/2X = {Q1/2X (t)}t∈R defined on (Ω,F ,P) a H-

valued process of spectral type φ.

By the definition of a stochastic integral it is∫
R

R(t)d(Q1/2X )(t) :=
∞∑
n=1

∫
R

R(t)Q1/2endXn(t).

Our next goal is to calculate the covariance operator. For every x, y ∈ H it is

E
[(∫

R

R(t)d(Q1/2X )(t) | x
)
H

(∫
R

R(t)d(Q1/2X )(t) | y
)
H

]
= E

[ ∞∑
k=1

∫
R

(
R(t)Q1/2ek | x

)
H

dXk(t)
∞∑
l=1

∫
R

(
R(t)Q1/2el | y

)
H

dXl(t)

]

= E

[∑
k=l

∫
R

(
R(t)Q1/2ek | x

)
H

dXk(t)
∫
R

(
R(t)Q1/2el | y

)
H

dXl(t)

]

+ 2E

[∑
k<l

∫
R

(
R(t)Q1/2ek | x

)
H

dXk(t)
∫
R

(
R(t)Q1/2el | y

)
H

dXl(t)

]

and with the aid of the independence of Xk and Xl for k 6= l we proceed in view of Theorem
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2.30 with

E
[(∫

R

R(t)d(Q1/2X )(t) | x
)
H

(∫
R

R(t)d(Q1/2X )(t) | y
)
H

]
=
∞∑
n=1

E
[(∫

R

(
R(t)Q1/2en | x

)
H

dXn(t)
)(∫

R

(
R(t)Q1/2en | y

)
H

dXn(t)
)]

=
∞∑
n=1

((
R(·)Q1/2en | x

)
H
|
(
R(·)Q1/2en | y

)
H

)
Ḣ
φ
2 (R)

.

Now we may choose x = y to obtain the variance

E
(∫

R

R(t)d(Q1/2X )(t) | x
)2

H
=
∞∑
n=1

∥∥∥(R(·)Q1/2en | x
)
H

∥∥∥2

Ḣ
φ
2 (R)

for all x ∈ H. Hence, letting (hn)n∈N an arbitrary orthonormal basis in H, then Parseval’s

equation yields

E
∣∣∣∣∫
R

R(t)d(Q1/2X )(t)
∣∣∣∣2
H

=
∞∑
k=1

E
(∫

R

R(t)d(Q1/2X )(t) | hk
)2

H

=
∞∑
k=1

∞∑
n=1

∥∥∥(R(·)Q1/2en | hk
)
H

∥∥∥2

Ḣ
φ
2 (R)

.

Note, thatR ∈ Ḣ
φ
2 (R;B(H)) impliesRQ1/2 ∈ Ḣ

φ
2 (R; L2(H)) as well as

(
RQ1/2en | x

)
H ∈ Ḣ

φ
2 (R)

for all x ∈ H and for all n ∈ N. Resuming, we deduced the following identity.

Theorem 2.32. Let Q1/2X be an H-valued process of spectral type φ. Let further R : R →
B(H) and (hn)n∈N an orthonormal basis in H. Then the identity

E
∣∣∣∣∫
R

R(t)d(Q1/2X )(t)
∣∣∣∣2
H

=
∞∑
k=1

∞∑
n=1

∥∥∥(R(·)Q1/2en | hk
)
H

∥∥∥2

Ḣ
φ
2 (R)

holds and the left hand-side is independent from the choice of the basis (hn)n∈N. In particular

the stochastic integral (2.24) is well defined, if R ∈ Ḣ
φ
2 (R;B(H)).

Suppose now, that there is a second orthonormal system (gn)n∈N in H and scalar functions

r(·, ·) : R× C→ R, so that the operator R(t) decomposes into

R(t)x =
∞∑
n=1

r(t, µn)(x | gn)gn, t ≥ 0, x ∈ H.

Note that the operator valued function R : R→ B(H) particularly admits this property if R(t)



CHAPTER 2. PROCESSES WITH STATIONARY INCREMENTS 47

is self-adjoint and the resolvent set ρ(R(t)) is compact for all t ∈ R. We have∫
R

R(t)d(Q1/2X )(t) =
∞∑
n=1

∫
R

R(t)Q1/2endXn(t)

=
∞∑
n=1

√
νn

∫
R

R(t)endXn(t)

=
∞∑
n=1

√
νn

∫
R

∞∑
k=1

(en | gk)r(t, µk)gkdXn(t)

=
∞∑
n=1

√
νn

∫
R

∑
k,l

(en | gk)r(t, µk)(gk | el)eldXn(t)

=
∑
n,k,l

√
νn(en | gk)(gk | el)

∫
R

r(t, µk)dXn(t)el

and Theorem 2.30 together with the elementary identity (x | y) =
∑

j(x | ej)(y | ej) for

x, y ∈ H, yields

E
∣∣∣∣∫
R

R(t)d(Q1/2X )(t)
∣∣∣∣2
H

=
∑

n,k,l,m

νn(en | gk)(gk | el)(en | gm)(gm | el) (r(·, µk) | r(·, µm))
Ḣ
φ
2 (R)

=
∑
n,k,m

νn(en | gk)(en | gm) (r(·, µk) | r(·, µm))
Ḣ
φ
2 (R)

[∑
l

(gk | el)(gm | el)

]
=
∑
n,k

νn(en | gk)2 (r(·, µk) | r(·, µk))Ḣ
φ
2 (R)

=
∑
k

‖r(·, µk)‖2
Ḣ
φ
2 (R)

[∑
n

(Q1/2en | gk)2

]

=
∑
k

‖r(·, µk)‖2
Ḣ
φ
2 (R)

[∑
n

(en | Q1/2gk)2

]

and we may employ Parseval’s equation |x|2H =
∑

j(x, ej)
2 for x ∈ H to conclude

E
∣∣∣∣∫
R

R(t)d(Q1/2X )(t)
∣∣∣∣2
H

=
∞∑
k=1

|Q1/2gk|2H‖r(·, µk)‖2Ḣφ2 (R)
.

Let us introduce a notation of a shifted, time inverted and truncated function f supported on

R in virtue of

f 〈t〉(τ) := f(t− τ)χ(−∞,t](τ) =

f(t− τ) : −∞ < τ ≤ t;

0 : τ > t.
(2.26)

For brevity we write rn(τ) := r(τ, µn). The latter observations lead us to

E
∣∣∣∣∫
R

(R〈t〉(τ)−R〈s〉(τ))d(Q1/2X )(τ)
∣∣∣∣2
H

=
∞∑
k=1

|Q1/2gk|2H‖r
〈t〉
k − r

〈s〉
k ‖

2

Ḣ
φ
2 (R)

.
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Observe that due to

(Ff 〈t〉)(ξ) =
∫
R

f(t− τ)χ(−∞,t](τ)e−iξτdτ

=
∫
R

f(−s)χ(−∞,0](s)e
−iξ(s+t)ds = e−iξt(Ff 〈0〉)(ξ)

we find for all t ∈ R
‖f 〈t〉‖Ḣσ2 (R) = ‖f 〈0〉‖Ḣσ2 (R) = ‖f‖Ḣσ2 (R+).

Next, deduce that in the case where φ satisfies Hypothesis (φ) (see page 24) we have

Ḣ
2−γ

2
2 (R) ↪→ Ḣ

φ
2 (R),

and therefrom we obtain by designating with c > 0 a generic constant

‖r〈t〉k − r
〈s〉
k ‖

2

Ḣ
φ
2 (R)
≤ c‖r〈t〉k − r

〈s〉
k ‖

2

Ḣ
2−γ

2
2 (R)

= c
∥∥∥∂ 2−γ

2 (r〈t〉k − r
〈s〉
k )
∥∥∥2

L2(R)

= c

∫
R

∣∣∣(∂ 2−γ
2 r
〈t〉
k )(τ)− (∂

2−γ
2 r
〈s〉
k )(τ)

∣∣∣2 dτ

= c

∫
R

∣∣∣(∂ 2−γ
2 r
〈0〉
k )(τ − t)− (∂

2−γ
2 r
〈0〉
k )(τ − s)

∣∣∣2 dτ

= c
∥∥∥(∂

2−γ
2 r
〈0〉
k )(s− t+ ·)− (∂

2−γ
2 r
〈0〉
k )(·)

∥∥∥2

L2(R)

≤ c
∥∥∥∂ 2−γ

2 r
〈0〉
k

∥∥∥2

Bθ2,∞(R)
|t− s|2θ,

where 0 ≤ θ < γ−1
2 and Bθ

2,∞(R) denotes a Besov space with the equivalent norm

‖f‖Bθ2,∞(R) =

[
‖f‖2L2(R) + sup

h6=0

∫
R

|f(y + h)− f(y)|2

|h|2θ
dy

]1/2

and cf. [106, Section 2.3.2] to verify

Hθ
2(R) ↪→ Bθ

2,∞(R).

Finally, with the apparent relation

‖f‖Ḣσ2 (R) + ‖f‖
Ḣ
θ+σ
2 (R)

= ‖∂σf‖Hθ2(R) , −1
2 < σ < 1

2 ,

we derived the estimate

‖r〈t〉k − r
〈s〉
k ‖

2

Ḣ
φ
2 (R)
≤
[
‖rk‖

Ḣ
2−γ

2
2 (R+)

+ ‖rk‖
Ḣ
θ+

2−γ
2

2 (R+)

]2

|t− s|2θ.

Let us consider



CHAPTER 2. PROCESSES WITH STATIONARY INCREMENTS 49

Hypothesis (Xφ). Q1/2X is a H-valued process of spectral type φ and the all elements

of the generating sequence (Xn)n∈N are subject to Hypothesis (φ) (see page 24) with the

unique density φ and the same parameter 1 < γ < 3.

We have then observed

Theorem 2.33. Let Q1/2X be subject to Hypothesis (Xφ). Let further R : R → B(H) and

(gn)n∈N be an orthonormal basis in H, such that R(t) decomposes into

R(t)x =
∞∑
n=1

r(t, µn)(x | gn)gn, t ∈ R, x ∈ H.

Then there is a constant c > 0 such that

E
∣∣∣∣∫
R

R(t)d(Q1/2X )(t)
∣∣∣∣2
H
≤ c

∞∑
k=1

|Q1/2gk|2H‖r(·, µk)‖2
Ḣ

2−γ
2

2 (R)
.

By means of the notation (2.26)

E
∣∣∣∣∫
R

R〈t〉(τ)d(Q1/2X )(τ)
∣∣∣∣2
H
≤ c

∞∑
k=1

|Q1/2gk|2H‖r(·, µk)‖2
Ḣ

2−γ
2

2 (R+)

holds true for all t ∈ R. Moreover, for θ ∈ [0, γ−1
2 ) and s, t ∈ R it is

E
∣∣∣∣∫
R

(R〈t〉(τ)−R〈s〉(τ))d(Q1/2X )(τ)
∣∣∣∣2
H

≤ c
∞∑
k=1

|Q1/2gk|2H
[
‖rk‖

Ḣ
2−γ

2
2 (R+)

+ ‖rk‖
Ḣ
θ+

2−γ
2

2 (R+)

]2

|t− s|2θ.

Concerning integrals evaluated on an interval [0, t0], where t0 > 0, we deduce the following

corollary.

Corollary 2.34. Let Q1/2X be subject to Hypothesis (Xφ). Let further R : R → B(H) and

(gn)n∈N be an orthonormal basis in H, such that R(t) decomposes into

R(t)x =
∞∑
n=1

r(t, µn)(x | gn)gn, t ∈ R, x ∈ H

and let 0 ≤ s ≤ t0. Then there is a constant c > 0 such that

E
∣∣∣∣∫ t0

0
R(τ)d(Q1/2X )(τ)

∣∣∣∣2
H
≤ c

∞∑
k=1

|Q1/2gk|2H‖r(·, µk)‖2
Ḣ

2−γ
2

2 ([0,t0])
.

Moreover, we have

E
∣∣∣∣∫ t0

0
R(t0 − τ)d(Q1/2X )(τ)

∣∣∣∣2
H
≤ c

∞∑
k=1

|Q1/2gk|2H‖r(·, µk)‖2
Ḣ

2−γ
2

2 ([0,t0])
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and by means of notation (2.26)

E
∣∣∣∣∫ t0

0
(R〈t0〉(τ)−R〈s〉(τ))d(Q1/2X )(τ)

∣∣∣∣2
H

≤ c
∞∑
k=1

|Q1/2gk|2H
[
‖rk‖

Ḣ
2−γ

2
2 ([0,t0])

+ ‖rk‖
Ḣ
θ+

2−γ
2

2 ([0,t0])

]2

|t0 − s|2θ.

Proof. The claim follows by employing Theorem 2.33 to the operators Rχ[0,t0], R
〈t0〉χ[0,t0] and

(R〈t0〉 −R〈s〉)χ[0,t0] respectively.

2.6 Examples

2.6.1 Centered Poisson processes

In the probabilistic theory of queues, which has many important applications, the so called

Poisson process Pν is quite useful. It is one of the most well-known Lévy processes.

Definition 2.35 (Poisson process). A real-valued process Pν = {Pν(t)}t∈R defined on a

probability space (Ω,F ,P) is called a Poisson process with intensity ν > 0, if

(i) P{Pν(0) = 0} = 1;

(ii) For τ > 0 the increments Pν(t + τ) − Pν(t) are Poisson distributed with parameter ντ ,

i.e.

P{Pν(t+ τ)− Pν(t) = k} =
e−ντ (ντ)k

k!
, k ∈ N0;

(iii) For s < t < u < v the increments Pν(t) − Pν(s) and Pν(v) − Pν(u) are stochastically

independent.

We shall further assume, that no counted occurrences are simultaneous. As already men-

tioned Poisson processes are suitable to model counting phenomena, so for instance

• the long-term behavior of the number of web page requests arriving at a server, except

for unusual circumstances such as coordinated denial of service attacks or flash crowds;

• the number of telephone calls arriving at a switchboard, or at an automatic phone-

switching system;

• the number of photons hitting a photodetector, when lit by a laser source;

• the execution of trades on a stock exchange, as viewed on a tick by tick basis.
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It is already seen from Definition 2.35(ii) that the number of occurrences counted in any time

interval only depends on the length of the interval which in turn means, that Pν features

stationary increments. Observe further from Definition 2.35(ii), that E[Pν(t)] = νt for all

t ∈ R. Thus the process Pν0 (t) := Pν(t)− νt is a centered Poisson process with intensity ν. It

is the process Pν0 which will be of further interest. It is now readily seen from the stationarity

of the increments and Definition 2.35(i) that

E[Pν0 (−τ)]2 = E[Pν0 (t+ τ)− Pν0 (t)]2 = E[Pν0 (τ)]2,

hence, by Definition 2.35(ii), the structure function D of the process Pν0 is of the form D(τ) =
ν|τ |. Then the function D can also be represented in the form (2.11), where

φ(λ) =
ν

2π|λ|2
. (2.27)

Thus the spectrum of Pν0 contains the whole real line R.

Remark 2.36. Note that every centered Lévy process, that is a centered process with sta-

tionary and independent (or at least uncorrelated) increments, has a spectral density of the

form φ(λ) = c|λ|−2 with a positive constant c > 0, as soon as the density exists. Note further

that the following results only require this particular structure of the spectral density (2.27).

It is apparent by Example 2.6, that Pν0 is subject to Hypotheses (φ) and (φ0) (see page 24)

with γ = γ0 = 2 and θ = 0. Following Remark 2.5, we outline that γ0 = 2 indicates the

absence of long-range dependence and θ = 0 signals that centered Poisson processes (or,

more generally, centered Lévy processes) are not appropriate to study intermittency effects.

Corollary 2.37. Let Pν0 be a centered Poisson process with intensity ν > 0. Then the follow-

ing are true.

(i) The trajectories of Pν0 are almost surely nowhere mean-square differentiable.

(ii) Let T > 0. If and only if 0 < σ < 1
2 . Then Pν0 ∈ 0W

σ
2 ([0, T ];L2(Ω)).

Proof. Assertions (i) and (ii) follow from Theorem 2.18, while (iii) is a consequence of Theorem

2.21.

Concerning stochastic integration we can capture the well-known result (e.g. Applebaum

[11])
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Corollary 2.38. Let Pν0 be a centered Poisson process with intensity ν > 0. Then for all

f, g ∈ L2(R) we have the isometry

E
[(∫

R

f(τ)dPν0 (τ)
)(∫

R

g(τ)dPν0 (τ)
)]

=
ν

2π
(f | g)L2(R).

Proof. The claim is immediate by Theorem 2.30.

Focusing our multiplier results from Theorems 2.22 and 2.25, we denote

ζ(t, x, ω) :=
∞∑
k=1

bk(t, x)Pν0,k(t, ω),

where (Pν0,k)k∈N are entirely independent centered Poisson processes with intensity ν > 0
and the scalar functions bi ∈ L2(J ;L2(∂G)), i ∈ N, are supposed to be deterministic. Denot-

ing b := (bi)i∈N, we directly obtain from Theorems 2.22 and 2.25 the subsequent corollaries.

Corollary 2.39. Let s ≥ 0 and G ⊂ RN be a domain with boundary of class C [s]+1. Then

b ∈ L2,1/2(J ; 0W
s
2(∂G; `2)) ⇐⇒ ζ ∈ L2(J ; 0W

s
2(∂G;L2(Ω))).

Corollary 2.40. Let G ⊂ RN be a domain with boundary of class C1 and 0 < σ < 1
2 . Then

b ∈ 0W
σ
2,1/2(J ;L2(∂G; `2)) =⇒ ζ ∈ 0W

σ
2 (J ;L2(∂G;L2(Ω))).

If, in addition, (b(s, x)|b(t, x))`2 ≥ 0 for every s, t ∈ J , x ∈ ∂G, then the converse is also true.

2.6.2 Fractional Brownian motions

The concept of a fractional Brownian motion was first proposed by Mandelbrot & van Ness

[76] and is formally the convolution of Wiener increments with a power-law kernel. More

abstractly we formulate

Definition 2.41 (Fractional Brownian motion). A real-valued Gaussian process BH =
{BH(t)}t∈R defined on a probability space (Ω,F ,P) is called a fractional Brownian motion

with Hurst parameter 0 < H < 1, if

(i) BH is centered,

(ii) E[BH(t)BH(s)] = c
2

[
|t|sH + |s|2H − |t− s|2H

]
, where c > 0 and t, s ∈ R.
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Observe that in case H = 1
2 Definition 2.41 coincides with the definition of a Wiener process.

Unlike a Wiener process, a fractional Brownian motion with Hurst parameter H 6= 1
2 is neither

a martingale, nor a semi-martingale, nor Markovian.

It follows directly from Definition 2.41, that a fractional Brownian motion is a process with sta-

tionary increments according to Definition 2.2. The first condition holds since the expectation

operator E is linear and BH is centered, because then for all t, s ∈ R it is

E[BH(t)−BH(s)] = 0 = E[BH(t− s)−BH(0)].

The second condition of Definition 2.2 is also satisfied. This can be seen by the very elemen-

tary computation

D3(t;u, v) = E
[
(BH(u)−BH(t))(BH(v)−BH(t))

]
= E

[
BH(u)BH(v)−BH(u)BH(t)−BH(t)BH(v) +BH(t)BH(t)

]
=
c

2
[
|u− t|2H + |v − t|2H − |u− v|2H

]
= E

[
BH(u− t)BH(v − t)

]
= D2(u− t, v − t).

Moreover, Definition 2.41(ii) yields D(τ) = c|t|2H which can be written in the form (2.11),

where

φ(λ) =
c1

|λ|2H+1
, c1 =

c

4
∫∞

0 (1− cosλ)λ−2H−1dλ
=
cΓ(2H + 1) sin(πH)

2π
. (2.28)

Thus the spectrum of BH incorporates all λ ∈ R and in the fashion of Example 2.6 one verifies

that the process BH satisfies Hypotheses (φ) and (φ0) (see page 24) if and only if γ = γ0 =
2H + 1 and θ = 0. Following Remark 2.5, we outline that γ0 = 2H + 1 indicates the presence

of long-range dependence in all the cases where H > 1
2 and θ = 0 signals that fractional

Brownian motions are not appropriate to study intermittency effects. We summarize the

properties of a fractional Brownian motion in the following corollary.

Corollary 2.42. Let BH be a fractional Brownian motion with Hurst parameter H ∈ (0, 1).
Then the following are true.

(i) BH is mean-square continuous and has continuous paths almost sure.

(ii) The trajectories of BH are locally Hölder-continuous of any order strictly less then H.

(iii) The trajectories of BH are almost surely nowhere mean-square differentiable.

(iv) Let T > 0, 0 < p <∞, 2 ≤ q <∞ and 0 < σ < H. Then BH ∈ 0W
σ
p ([0, T ];Lq(Ω)).

(v) Let T > 0, 0 < p <∞, 1 < q ≤ 2 and H ≤ σ < 1. Then BH 6∈ 0W
σ
p ([0, T ];Lq(Ω)).
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Proof. Assertions (i)-(iii) follow from Theorem 2.18, while (iv) and (v) are consequences of

Theorem 2.21.

The paths ofBH get less zigzagged as H goes from 0 to 1. On this basis, one typically classifies

fractional Brownian motions into antipersistent (in case 0 < H < 1
2 ), chaotic (in case H =

1
2 ) and persistent (in case 1

2 < H < 1). This can be loosely explained by considering the

covariance of two consecutive increments. When 0 < H < 1
2 , the increments of BH tend to

have opposite signs. On the other hand, in case 1
2 < H < 1, the correlation of two consecutive

increments is strictly positive.

The following figures were generated with the aid of a Wolfram Demonstration Project con-

tributed by R. E. Maeder.1

Figure 2.1. A sample path of a fractional Brownian motion with Hurst parameter

H = 0.2.

Figure 2.2. A sample path of a fractional Brownian motion with Hurst parameter

H = 0.5.

Figure 2.3. A sample path of fractional Brownian motion with Hurst parameter

H = 0.9.

1See http://demonstrations.wolfram.com/OneDimensionalFractionalBrownianMotion/.
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Regarding the fractional dimension of the graphs of it due to Falconer [43, Theorem 16.7]

that with probability 1, the Hausdorff and box dimension of the graph (t, BH(t))0≤t≤1 equal

2 − H. Thus, if H is close to zero, the process BH zigzags so much that the dimension of the

graph (t, BH(t))0≤t≤1 is close to the dimension 2 of the unit square. On the other hand BH is

an index-H random field (cf. Angulo et al. [5]) so that the Hausdorff dimension of its image

{BH(t) : t ∈ [0, 1]} equals 1 a.s. for every H ∈ (0, 1).

Concerning stochastic integration we can easily reproduce the results of, e.g., Pipiras & Taqqu

[86], Sp. & Wilke [104] and Biagini et al. [17].

Corollary 2.43. Let BH be a fractional Brownian motion with Hurst parameter 0 < H < 1.

Then for all f, g ∈ Ḣ
1
2
−H

2 (R) we have the isometry

E
[(∫

R

f(τ)dBH(τ)
)(∫

R

g(τ)dBH(τ)
)]

= c1

∫
R

(Ff)(λ)(Fg)(λ)|λ|1−2Hdλ

with the constant c1 from (2.28).

Proof. The claim is immediate by Theorem 2.30.

Note, that by Plancherel’s Theorem (cf. Theorem A.1) our result also covers the well-known

Itô-isometry in case H = 1
2 . Focusing our multiplier results from Chapter 2 we denote

ζ(t, x, ω) :=
∞∑
k=1

bk(t, x)BH
k (t, ω),

where (BH
k )k∈N are entirely independent fractional Brownian motions with Hurst parameter

0 < H < 1 and the scalar functions bi ∈ L2(J ;L2(∂G)), i ∈ N, are supposed to be determinis-

tic. Denoting b := (bi)i∈N, we have in this particular situation

Corollary 2.44. Let s ≥ 0 and G ⊂ RN be a domain with boundary of class C [s]+1. Then

b ∈ L2,H(J ; 0W
s
2(∂G; `2)) ⇐⇒ ζ ∈ L2(J ; 0W

s
2(∂G;L2(Ω))).

as a result of Theorem 2.22 and also by Theorem 2.25

Corollary 2.45. Let G ⊂ RN be a domain with boundary of class C1 and 0 < σ < H. Then

b ∈ 0W
σ
2,H(J ;L2(∂G; `2)) =⇒ ζ ∈ 0W

σ
2 (J ;L2(∂G;L2(Ω))).

If, in addition, (b(s, x)|b(t, x))`2 ≥ 0 for every s, t ∈ J , x ∈ ∂G, then the converse is also true.
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Interpreting the spectral density (2.28) tempts to differentiate BH and claim that the frac-

tional noise ḂH has a spectral density proportional to λ1−2H which suggests that in case

H > 1
2 , there is infinite energy at high frequencies and coincides with the known fact that

white noise (H = 1
2 ) has a flat power spectrum. Thus, for H ∈ [1

2 , 1) fractional white noise

(also called 1/fα-noise with 0 ≤ α = 1 − 2H < 1) interpolates between white noise (1/f0-

noise) and pink noise (1/f1-noise), which is a signal with a frequency spectrum such that the

power spectral density is proportional to the reciprocal of the frequency. The following fig-

ures were generated with the aid of a Matlab routine contributed by the SAMP group, based

at the Department of Engineering Science, Oxford University.2

Figure 2.4. Sample of 1/f0-noise.

Figure 2.5. Sample of 1/f1/2-noise.

2See http://www.eng.ox.ac.uk/samp/powernoise_soft.html.
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Figure 2.6. Sample of 1/f1-noise.

By having power at all frequencies, the total energy of a 1/fα-noise is infinite, so it is apparent

that such a signal only exists as a theoretical model. In practice, approximations are used

where the spectral density decays rapidly for high frequencies. However, 1/fα-noise occurs

widely and has applications in a large number of fields, so for instance:

• White noise is used by some emergency sirens, due to its ability to cut through back-

ground noise, which makes it easier to locate.

• White noise is used extensively in audio synthesis, typically to recreate percussive in-

struments such as cymbals which have high noise content in their frequency domain.

• The sound of a waterfall results from the collision of drops among themselves or with the

water surface. The smaller the drops the more efficient is air friction, so that small drops

are stronger decelerated. At the impact the smaller drops are consequently slower

than bigger ones, such that they contribute only faintly high frequency sound fractures.

Therefrom the sound of a waterfall is approximately pink noise.

• The human auditory system, which processes frequencies in a roughly logarithmic fash-

ion, does not perceive them with equal sensitivity; signals in the 24-kHz octave sound

loudest, and the loudness of other frequencies drops increasingly. While white noise is

de facto equitable loud in every bandwidth, people sense pink noise having this feature

rather than white noise.

Getting more and more general we are now accomplish to fractional Riesz-Bessel motions.
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2.6.3 Fractional Riesz-Bessel motions

Based on a concept of duality of generalized stochastic processes defined on fractional

Sobolev spaces introduced in Ruiz-Medina et al. [96], Anh et al. [6] proved the existence

of a class of stochastic processes defined by the equation

(I −∆)
α
2 (−∆)

β
2X(x) = Ḃ

1
2 (x), x ∈ R,

where Ḃ
1
2 is white noise, or equivalently (in the sense of second order moments) by the

spectral density

φ(λ) =
1

|λ|2β(1 + λ2)α
, (2.29)

where 1
2 < β < 3

2 , α ≥ 0 and λ ∈ R. These processes were named fractional Riesz-Bessel

motions, here denoted by RBβα. It is a Gaussian process with stationary increments, whose

spectral density involves the Fourier transforms of the Riesz kernel and the Bessel kernel.

Comparing the spectral densities (2.28) and (2.29) it can be seen, that a fractional Brownian

motion BH is the special case of a fractional Riesz-Bessel motionRBβα for β = H+ 1
2 and α = 0.

Since this is the case we exclude the case α = 0 in the sequel.

Following Anh & Nguyen [9] we define

Definition 2.46 (Fractional Riesz-Bessel motion). A real-valued Gaussian process RBβα :=
{RBβα(t)}t∈R defined on the probability space (Ω,F ,P) is called a fractional Riesz-Bessel mo-

tion with parameters α > 0 and 1
2 < β < 3

2 , if

(i) P{RBβα(0) = 0} = 1,

(ii) RBβα has stationary increments,

(iii) RBβα has a spectral density of the form (2.29).

It is readily seen, that the spectrum of RBβα covers the real line R. Note further, that the

spectral density of the stationary increments, which behaves as |λ|2−2β as |λ| → 0, has a

singularity at frequency 0, if and only if β > 1. Note further, that the component (1 + λ2)−α

in (2.29) indicates the second-order intermittency, i.e. clustering of extreme values (as |λ| →
∞) of order α+ β.

Observe with the aid of Example 2.6, that the spectral density (2.29) clearly satisfies Hy-

pothesis (φ) (see page 24) with γ ∈ [2β, 2(α + β)] ∩ [2β, 3). Moreover (2.29) is also due to

Hypothesis (φ0) with γ0 = 2β and θ = 2α. Following Remark 2.5, we outline that γ0 = 2β
indicates the presence of long-range dependence in all the cases where β > 1 and θ = 2α
signals that fractional Riesz-Bessel motions are appropriate to study intermittency effects,
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whenever α > 0. We summarize the properties of a fractional Riesz-Bessel motion in the

following corollary.

Corollary 2.47. LetRBβα be a fractional Riesz-Bessel motion with parameters 1
2 < α+β < 3

2 .

(i) For all τ ∈ R the structure function of RBβα satisfies

E[RBβα(τ)]2 ≤ min
{
cφ(γ)|τ |γ−1 : γ ∈ [2β, 2(α+ β)]

}
,

and also

E[RBβα(τ)]2 ≥ cφ0 ·min{|τ |2(α+β)−1, |τ |2β−1},

with the constants

cφ(γ) = 24−γ
∫ ∞

0

sin2(λ)
λγ

dλ, cφ0 = max

{
24−2β

(1 + λ2
0)α

∫ λ0/2

0

sin2(λ)
λ2β

dλ : λ0 > 0

}
.

(ii) If α+ β > 1, then RBβα is a centered process.

(iii) If α+ β > 1, then RBβα is mean-square continuous and has continuous paths a.s.

(iv) If α + β > 1, then the trajectories of RBβα are locally Hölder-continuous of order strictly

less then α+ β − 1
2 .

(v) The trajectories of RBβα are almost surely nowhere mean-square differentiable.

(vi) Let T > 0 and 0 < σ < 1. If and only if σ < α+ β − 1
2 , then RBβα ∈ 0W

σ
2 ([0, T ];L2(Ω)).

(vii) Let α + β > 1, T > 0, 2 ≤ q < ∞, 0 < p < ∞ and 0 < σ < 1. If σ < α + β − 1
2 , then

RBβα ∈ 0W
σ
p ([0, T ];Lq(Ω)).

(viii) Let α + β > 1, T > 0, 1 < q ≤ 2, 0 < p < ∞ and 0 < σ < 1. If σ ≥ α + β − 1
2 , then

RBβα 6∈ 0W
σ
p ([0, T ];Lq(Ω)).

Proof. Assertion (i) follows from Theorem 2.11 and Corollary 2.12, (iii)-(v) are due to Theorem

2.18, (ii) is due to Corollary 2.19, while (vi)-(viii) are consequences of Theorem 2.21.

Figures 2.7 and 2.8 (see below) illustrate the quality of the estimates for the second moments

E[RBβα(t)]2 provided by Corollaries 2.12 and 2.13, respectively. The major observance is, that

in every case an increasing parameter α decelerates the growth of E[RBβα(t)]2 and widens

the shaded region. Although the lower bound seems not to be sharp for small values of α,

it is a matter of fact, that it is approached by the concrete values of E[RBβα(t)]2 as t tends to

infinity. Conversely, the upper bound is meaningful for large values of α as t→∞.
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Figure 2.7. The actual values (dashed) and the predicted region of the second

moments E[X(t)]2 with X = RBβα, where α = 0.1 and β = 0.6 (left) resp. α = 0.89

and β = 0.6 (right).
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Figure 2.8. The actual values (dashed) and the predicted region of the second

moments E[X(t)]2 with X = RBβα, where α = 0.05 and β = 1.2 (left) resp. α = 0.29

and β = 1.2 (right).

The result concerning stochastic integration is rather new and reads as

Corollary 2.48. Let RBβα be a fractional Riesz-Bessel motion. Then for all f, g ∈ Ḣ
φ
2 (R) with

φ given by (2.29), we have the isometry

E
[(∫

R

f(τ)dRBβα(τ)
)(∫

R

g(τ)dRBβα(τ)
)]

=
∫
R

(Ff)(λ)(Fg)(λ)
|λ|2−2β

(1 + λ2)α
dλ.

Proof. The claim is immediate by Theorem 2.30.

Focusing our multiplier results from Chapter 2 we denote

ζ(t, x, ω) :=
∞∑
k=1

bk(t, x)RBβα,k(t, ω),
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where (RBβα,k)k∈N are entirely independent fractional Riesz-Bessel motions with parameters

1 < 2(α + β) < 3 and the scalar functions bi ∈ L2(J ;L2(∂G)), i ∈ N, are supposed to be

deterministic. Denoting b := (bi)i∈N, we have in this particular situation

Corollary 2.49. Let s ≥ 0 and G ⊂ RN be a domain with boundary of class C [s]+1. Then

b ∈ L2,α+β− 1
2
(J ; 0W

s
2(∂G; `2)) ⇐⇒ ζ ∈ L2(J ; 0W

s
2(∂G;L2(Ω))).

as a result of Theorem 2.22 and also by Theorem 2.25

Corollary 2.50. Let G ⊂ RN be a domain with boundary of class C1 and 0 ≤ σ < α+ β − 1
2 .

Then

b ∈ 0W
σ
2 (J ;L2(∂G; `2)) =⇒ ζ ∈ 0W

σ
2 (J ;L2(∂G;L2(Ω))).

In order to illustrate the behavior of the paths of RBβα under a variation of the parameter α

we present Figures 2.9 – 2.12 below, generated with the aid of a simulation proposed by Anh

et al. [1, Section 5.2]. As a turnout it can be seen, that intermittency effects amplifies with an

increasing parameter α. In addition, we see a smoothing effect as the noise profile becomes

somehow “thinner”.

Figure 2.9. A random path of a fractional Riesz-Bessel motion (left) and correspond-

ing noise profile (right) with parameters β = 0.7 and α = 0.1.
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Figure 2.10. A random path of a fractional Riesz-Bessel motion (left) and corre-

sponding noise profile (right) with parameters β = 1.05 and α = 0.1.

Figure 2.11. A random path of a fractional Riesz-Bessel motion (left) and corre-

sponding noise profile (right) with parameters β = 1.05 and α = 0.44.

The paths of a fractional Riesz-Bessel motion become less zigzagged as β goes from 1
2 to

3
2 . Such a smoothing effect can also be seen in Figures 2.1 - 2.3. For the choice α + β > 3

2

a fractional Riesz-Bessel motion is moreover mean-square differentiable (cf. Anh & Nguyen

[10, Proposition 9]). This feature is depicted with the subsequent figure.

Figure 2.12. A random path of a fractional Riesz-Bessel motion (left) and corre-

sponding noise profile (right) with parameters β = 1.05 and α = 300.



Chapter 3

Parabolic Volterra equations

Aim of this chapter is to study different types of parabolic Volterra equations with random

disturbances. Our plan is to present the main result first. Throughout this chapter H is a

separable Hilbert space and Q1/2X is subject to Hypothesis (Xφ) (see page 49). Thus we

have seen in Section 2.6 that the following results will in particular cover the cases, where

the disturbance is modeled to be a centered Lévy process, a fractional Brownian motion BH

with Hurst parameter H ∈ (0, 1), or a fractional Riesz-Bessel motion RBησ with parameters
1
2 < η < 3

2 and σ ≥ 0, such that RBησ is centered.

3.1 Main results

Let A be a closed linear densely defined operator in H, and b ∈ L1(R+) a scalar kernel. Let

us consider the problem

u(t) +
∫ t

0
b(t− τ)Au(τ)dτ = Q1/2X (t), t ≥ 0 (3.1)

in the Hilbert space H. In particular we recall that Hypothesis (Xφ) forces the existence of a

sequence (νn)n∈N ∈ `1(R+) and an orthonormal basis (en)n∈N ⊂ H, such that Qen = νnen for

every n ∈ N.

Because problem (3.1) is motivated from applications of linear viscoelastic material behav-

ior, we consider the operator −A to be an elliptic differential operator like the Laplacian, the

elasticity operator, or the Stokes operator, together with appropriate boundary conditions

(e.g. Prüss [88, Section I.5]). We formulate abstractly

Hypothesis (A). A is an unbounded, self-adjoint, positive definite operator in H with

compact resolvent. Consequently, the eigenvalues µn of A form a strictly positive, nonde-

creasing sequence with limn→∞ µn = ∞, the corresponding eigenvectors (an)n∈N ⊂ H form

63
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an orthonormal basis of H.

Observe, that Hypothesis (A) implies the sectoriality of the operator A with angle φA = 0 (cf.

[34, Section 1]). This observation allows us to define complex powers Az for arbitrary z ∈ C;

cf. [88, Section 8.1].

The kernel b is supposed to be the antiderivative of a 3-monotone scalar function (see

Definition 1.8); more precisely b is subject to

Hypothesis (b): The kernel b is of the form

b(t) = b0 +
∫ t

0
b1(τ)dτ, t > 0, (3.2)

where b0 ≥ 0 and b1(t) is 3-monotone with limt→∞ b1(t) = 0; in addition,

lim
t↓0

1
t

∫ t
0 τb1(τ)dτ

b0 +
∫ t

0 −τ ḃ1(τ)dτ
<∞. (3.3)

In case (A) and (b) are valid, problem (3.1) is well-posed and parabolic; for kernels subject

to (3.2), condition (3.3) is in fact equivalent to parabolicity. Typical examples of kernels

arising from the theory of linear viscoelasticity (cf. [88, Section I.5]), which satisfy Hypothesis

(b) are the material functions of Newtonian fluids (b0 > 0, b1 ≡ 0), Maxwell fluids (b0 = 0,

b1(t) = σ exp{−σt
ν }) and of power type materials (b0 = 0, b1(t) = gα(t), α ∈ (1, 2)). Define

ρ :=
2
π

sup
{
| arg b̂(λ)| : Reλ > 0

}
,

then we obtain the subsequent existence and regularity results for the mild solution of (3.1).

Theorem 3.1. Let Hypotheses (A), (b) and (Xφ) are valid.

(i) IfQA
1−γ
ρ ∈ L1(H), then the mild solution u of (3.1) exists and is mean-square continuous

on R+. Moreover, the trajectories of u are continuous on the half-line R+ almost surely.

(ii) If in addition, there is θ ∈ (0, γ−1
2 ) such that QA

1−γ
ρ

+ 2θ
ρ ∈ L1(H), then the trajectories of

u are locally Hölder-continuous of any order strictly less then θ almost surely.

In advantage to [25] we do not require that the eigensystems of the operators A and Q has

to coincide, that is if an = en for all n ∈ N. If, as in our situation, the eigensystems of A

and Q can be arbitrary orthonormal bases of H it is meaningful to say, that the perturbation

Q1/2X is “system independent”. On the other hand we will say, that the perturbation Q1/2X
is “A-synchronized” if the eigensystems of A and Q coincide. Regarding existence and reg-

ularity it is easily seen from Theorem 3.1 and Theorem 3.5 (see below) that the results are

independent from the choice of the eigensystems.
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Remark 3.2. The case b ≡ const merely corresponds to the stochastic differential equation{
u̇+Au = Q1/2Ẋ , t > 0,

u(0) = 0.

It is then obvious that Theorem 3.1 applies with ρ = 1. Moreover, the notions of strong and

mild solutions in the sense of Definition 1.3 are equivalent in all the cases where b ≡ const.

Example 3.3. Let H = L2(0, π) and consider

u(t) + (b ∗Au) (t) = Q1/2BH(t), t ≥ 0, (3.4)

where b is due to Hypothesis (b). Set A = Am0 , where m ∈ N and A0 = −(d/dx)2 with domain

D(A0) = H2
2(0, π) ∩ 0H2

2(0, π) and let 0 < H < 1, where further Qen = n−νen for n ∈ N.

Observe that A is due to Hypothesis (A) and possesses the eigenvalues µk = k2m for k ∈ N.

Theorem 3.1 yields that for every φb-sectorial kernel b with φb ∈ [π2 , π) (this corresponds to

ρ ∈ [1, 2)) the mild solution u of (3.4) exists and that its trajectories are Hölder-continuous of

any order strictly less than H.

An interesting occurs if it is assumed that Q = I, i.e. for all x ∈ H it is Qx = x, so that

Q1/2BH = BH is only a cylindrical fractional Brownian motion.

Example 3.4. Assume the setting of Example 3.3, but let Q = I. Then the mild solution u of

(3.4) exists for every φb-sectorial kernel b with φb ∈ [π2 ,min{2πmH;π}). Moreover its trajec-

tories are Hölder-continuous of any order θ < H − 2φb
4πm . Note that in this case θ depends on

the sectoriality-angle φb and the exponent m. Highly regular kernels b (this corresponds to φb

near π) cause a loss in time regularity, while an increasing exponentm improves Hölderianity.

Let us take up a different viewpoint to Volterra equations with fractional noise. We consider

the problems

u(t) +
∫ t

0
gα(t− τ)Au(τ)dτ =

∫ t

0
gβ(t− τ)d(Q1/2X )(τ), t ≥ 0 (3.5)

in the Hilbert space H, where the operator A is subject to Hypothesis (A) and gκ denotes the

Riemann-Liouville kernel; see (1.4).

In case (A) is valid and 0 < α < 2, problem (3.5) is well-posed and parabolic.

Theorem 3.5. Assume Hypotheses (A) and (Xφ) are valid and let α ∈ (0, 2), β > 0, θ ∈ [0, 1],
such that β ∈ (3−γ

2 + θ, 3−γ
2 + θ + α).
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(i) If QA
3−2β−γ

α ∈ L1(H), then the mild solution u of (3.5) exists and is mean-square contin-

uous on R+. Moreover, the trajectories of u are almost surely continuous on R+.

(ii) If QA
3−2β−γ

α
+ 2θ
α ∈ L1(H), then the trajectories of u are locally Hölder-continuous of any

order strictly less then θ almost surely.

On the first view Theorem 3.1 seems to be a variant of Theorem 3.5 for the case β = 1 and

more general kernels. However, Hypothesis (b) is too stringent as to countenance standard

kernels gα with α < 1.

Remark 3.6. Note that

1. if one chooses X to be a vector-valued centered Lévy process, then the above results

hold with γ = 2.

2. if one chooses X = BH to be a vector-valued fractional Brownian motion with Hurst

parameter 0 < H < 1 the above results hold with γ = 2H + 1.

3. if one chooses X = RBησ to be a vector-valued fractional Riesz-Bessel motion with

parameters 1
2 < η < 3

2 and σ ≥ 0, then the above results hold true for every

γ ∈ [2η, 2(σ + η)] ∩ [2η, 3).

4. in case X = BH with H = 1
2 , that is a vector-valued Wiener process, Theorem 3.5 cap-

tures the setting of Clément et al. [25, Theorem 4.2]. However, our approach elevates

the upper bound for the feasible β from 1
2 +α to 1

2 +α+θ. This is due to the fact, that we

estimated the scalar kernels rn in terms of their Ḣ
θ
2-norms, instead of their Hθ

2-norms.

Example 3.7. Let H = L2(0, π), X = RBησ, a A-synchronized H-valued fractional Riesz-

Bessel motion with parameters 1 < η + σ < 3
2 , A = Am0 , where A0 = −(d/dx)2 with domain

D(A0) = H2
2(0, π) ∩ 0H1

2(0, π). It is obvious that A is subject to Hypothesis (A) and it is well-

known that the eigenvalues of A are µk = k2m for k ∈ N. The covariance Q is supposed to be

A-synchronized and is given by its spectral decomposition

Qx =
∞∑
k=1

νk(x|ek)ek,

with (νk)k∈N ⊂ (0, 1] such that
∑∞

k=1 νk <∞. For our example we choose νk = k−l, l > 1, and

we obtain
∞∑
k=1

νkµ
3−2β−2η−2σ

α
k <∞ ⇐⇒ β >

3
2
− η − σ − α(l − 1)

4m
;

∞∑
k=1

νkµ
3−2β+2θ−2η−2σ

α
k <∞ ⇐⇒ β >

3
2
− η − σ + θ − α(l − 1)

4m
.
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Obviously the latter two series converge for all

3
2
− η − σ + θ < β <

3
2
− η − σ + θ + α,

hence Theorem 3.5 applies independently from the choice of l and m. Observe that the

temporal regularity increases as η + σ goes from 1 to 3
2 .

3.2 Proof of the main results

This section is devoted to the proof of the chapter’s main results. Before doing so we prove

some elementary results needed later on.

Lemma 3.8. Let µ > 0, the function b satisfying Hypothesis (b) with ρ ∈ [1, 2) and denote by

s : R+ → R the solution of the problem

s(t) + µ(b ∗ s)(t) = 1, t ≥ 0

Then the following are true.

(i) |s(t)| ≤ 1 for all t ≥ 0;

(ii) ‖ṡ‖L1(R+) ≤ c;

(iii) ‖s‖L1(R+) ≤ cµ
− 1
ρ ;

(iv) ‖s‖
Ḣ
θ+1

2−σ
2 (R+)

≤ cµ
θ−σ
ρ for σ ∈ (0, 1), θ ∈ [0, σ) and µ ≥ 1,

where c > 0 denotes a constant which is independent of µ.

Proof. Assertion (i) follows from the proof of [88, Corollary 1.2], while (ii) is contained in

[78, Proposition 6] (observe the relation ṡ(t) = −µrµ(t), to connect the notations) and (iii) is

proven in [25, Lemma 3.1]. Turning to (iv) we recall that for all real numbers r and 1 ≤ p <∞
it is trivially Hr

p(R+) ↪→ Ḣ
r
p(R+). For now let θ = 0.

If σ = 1
2 , then by (i) and (iii) we obtain

‖s‖
Ḣ

0
2(R+)

≤ ‖s‖H0
2(R+) = ‖s‖L2(R+) ≤ ‖s‖

1
2

L1(R+) ≤ cµ
− 1

2ρ .

In case σ < 1
2 , we make use of L1/σ(R+) ↪→ Ḣ

1
2
−σ

2 (R+) (cf. [86, Proposition 3.2]). Therewith

assertions (i) and (iii) force

‖s‖
Ḣ

1
2−σ
2 (R+)

≤ c‖s‖L1/σ(R+) ≤ c‖s‖σL1(R+) ≤ cµ
−σ
ρ .
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If σ > 1
2 , then [106, Theorem 2.4.7] provides

[
L1(R+); Hτ

q (R+)
]
δ

= H
1
2
−σ

2 (R+), where δ = 1− σ, τ =
1− 2σ
2− 2σ

, q =
1
τ
.

Consequently, the interpolation inequality yields

‖s‖
Ḣ

1
2−σ
2 (R+)

≤ ‖s‖
H

1
2−σ
2 (R+)

≤ c‖s‖σL1(R+)‖s‖
1−σ
Hτq (R+), c > 0.

In what follows let c > 0 be generic. One may apply [106, Theorem 2.7.1] to verify H1
1(R+) ↪→

Hτ
q (R+), which in presence of (iii) entails

‖s‖
Ḣ

1
2−σ
2 (R+)

≤ c‖s‖σL1(R+)‖s‖
1−σ
H1

1(R+)
≤ cµ−

σ
ρ , µ ≥ 1.

Here the last inequality is verified by (ii) and (iii), because

‖s‖H1
1(R+) = ‖s‖L1(R+) + ‖ṡ‖L1(R+) ≤ c(µ

− 1
ρ + 1) ≤ 2c,

provided that µ ≥ 1. Note that the latter implies, that s ∈ Ḣ
1
2
−σ

2 (R+) for all µ > 0.

Let now θ ∈ [0, σ). Then σ − θ ∈ (0, σ] ⊂ (0, 1) and the desired result follows by repeating the

proof of assertion (iv) with replacing σ by σ − θ.

Lemma 3.9. Let µ > 0, α ∈ (0, 2), β > 0, σ ∈ (0, 1), θ ∈ [0, 1] and denote by r : R+ → R the

solution of the problem

r(t) + µ(gα ∗ r)(t) = gβ(t), t ≥ 0, (3.6)

where gκ means the Riemann-Liouville kernel of fractional integration; see (1.4). Then there

is a constant c > 0 so that

‖r‖
Ḣ
θ+1

2−σ
2 (R+)

≤ cµ
2(1−β+θ−σ)

α ,

whenever β ∈ (1− σ + θ, 1− σ + θ + α).

Proof. By the Paley-Wiener theorem (cf. Theorem A.2), a function f belongs to L2(R) if and

only if f̂ ∈H2(C+), the Hardy space of exponent 2, and the theorem also yields

‖f‖2L2(R) =
1

2π
‖f̂‖2H (C+) =

1
2π

∫
R

∣∣∣f̂(iρ)
∣∣∣2 dρ =

1
2π

∫
R

|(Ff)(ρ)|2 dρ.

Extending the function r trivially by zero for t < 0, we have by means of identity (1.7)

‖r‖2
Ḣ
θ+1

2−σ
2 (R+)

= ‖∂θ+
1
2
−σr‖2L2(R) =

∫
R

|Fr(ρ)|2 |ρ|2θ+1−2σdρ =
∫
R

|r̂(iρ)|2 |ρ|2θ+1−2σdρ.

Observe now, that due to (3.6) we obtain a representation of r in terms of its Laplace trans-

form, that is

r̂(λ) =
ĝβ(λ)

1 + µĝα(λ)
=

λα

λβ(λα + µ)
, Reλ ≥ 0, λ 6= 0.



CHAPTER 3. PARABOLIC VOLTERRA EQUATIONS 69

Hence, we can proceed with

‖r‖2
Ḣ
θ+1

2−σ
2 (R+)

=
∫
R

|r̂(iρ)|2 |ρ|2θ+1−2σdρ

=
∫
R

[
|ρ|α

|ρ|β(|ρ|α + µ)

]2

|ρ|2θ+1−2σdρ

= 2
∫ ∞

0

[
ρα

ρβ(ρα + µ)

]2

ρ2θ+1−2σdρ

= 2µ
2(1−β−σ)

α

∫ ∞
0

[
τ θ+α−β−σ+ 1

2

1 + τα

]2

dτ

and the last integral is finite if and only if 1− σ + θ < β < 1− σ + θ + α.

3.2.1 Proof of Theorem 3.1

It is due to [88, Section I.1], that if (A) and (b) are valid, problem (3.1) admits a resolvent

S(t), so that S ∈ L1(R+;B(H)), S(t) is strongly continuous, is uniformly bounded by 1 and

limt→∞ |S(t)|B(H) = 0. Consequently, the unique mild solution u of problem (3.1) exists and

is defined1 by

u(t) =
∫ t

0
S(t− τ)d(Q1/2X )(τ), t ≥ 0. (3.7)

By means of the spectral decomposition of the operator A, the resolvent family decomposes

into

S(t)x =
∞∑
k=1

sk(t)(x|an)an, t ≥ 0, x ∈ H, (3.8)

where the scalar functions sn(t) := s(t, µn) are the solutions of the scalar problems

sn(t) + µn

∫ t

0
b(t− τ)sn(τ)dτ = 1, t ≥ 0. (3.9)

Observe now, that due to Hypothesis (A) there is a positive integer Nµ ∈ N, so that µn ≥ 1
for all n > Nµ. Then Corollary 2.34 yields the existence of a constant c > 0 (in the sequel

1The notion of a mild solution is well-known for problems of the form (3.1) (e.g. [25]) and can be motivated

from the variation of parameters formula (1.12).
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generic) so that for t ≥ 0 in view of Lemma 3.8 (iv) it is

E |u(t)|2H ≤ c
∞∑
k=1

|Q1/2ak|2H‖sk‖2
Ḣ

2−γ
2

2 ([0,t])

≤ c
∞∑
k=1

|Q1/2ak|2H‖sk‖2
Ḣ

2−γ
2

2 (R+)

≤ c

 Nµ∑
k=1

|Q1/2ak|2H‖sk‖2
Ḣ

2−γ
2

2 (R+)
+

∞∑
k=Nµ+1

|Q1/2ak|2Hµ
1−γ
ρ

k


= c

C(Nµ) +
∞∑

k=Nµ+1

(Qak|ak)Hµ
1−γ
ρ

k


= c

C(Nµ) +
∞∑

k=Nµ+1

(Qak|A
1−γ
ρ ak)H


≤ c

[
C(Nµ) +

∥∥∥QA 1−γ
ρ

∥∥∥
L1(H)

]

(3.10)

holds true. Then for s, t ≥ 0 and 0 < θ < γ−1
2 the estimate

E |u(t)− u(s)|2H ≤ c
∞∑
k=1

|Q1/2ak|2H
[
‖sk‖

Ḣ
2−γ

2
2 (R+)

+ ‖sk‖
Ḣ
θ+

2−γ
2

2 (R+)

]2

|t− s|2θ

≤ c

C(Nµ) +
∞∑

k=Nµ+1

(Qak|ak)Hµ
2θ−γ+1

ρ

k

 |t− s|2θ
≤ c

[
C(Nµ) +

∥∥∥QA 2θ−γ+1
ρ

∥∥∥
L1(H)

]
|t− s|2θ

(3.11)

yields the mean-square continuity of u. Lastly, we may employ the Kahane-Khinchine in-

equality (cf. Theorem A.3) to obtain for all 2 < p <∞

E|u(t)− u(s)|pH ≤ cp
(
E|u(t)− u(s)|2H

) p
2 ≤ cp

[
C(Nµ) +

∥∥∥QA 2θ−γ+1
ρ

∥∥∥] p2
L1(H)

|t− s|pθ (3.12)

and the Kolmogorov-Čentsov-Theorem (cf. Theorem A.4) yields the claimed Hölderianity for

every Θ ∈ (0, θ − 1
p) for all p ∈ (2,∞).

3.2.2 Proof of Theorem 3.5

For α ∈ (0, 2) and β > 0 problem (3.5) admits a resolvent R(t) which decomposes into

R(t)x =
∞∑
k=1

rk(t)(x|an)an, t ≥ 0, x ∈ H, (3.13)

where the scalar fundamental solutions rn(t) := r(t, µn), n ∈ N, of (3.5) can be expressed in

terms of its Laplace transform

r̂n(λ) =
ĝβ(λ)

1 + µnĝα(λ)
=

λα

λβ(λα + µn)
, Reλ ≥ 0, λ 6= 0, µn > 0. (3.14)
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Thus the mild solution u of problem (3.5) exists and is of the form

u(t) =
∫ t

0
R(t− τ)d(Q1/2X )(τ), t ≥ 0. (3.15)

Then Corollary 2.34 ensures the existence of a constant c > 0 (in the sequel generic), so that

in view of Lemma 3.9 we deduce for t ≥ 0

E |u(t)|2H ≤ c
∞∑
k=1

|Q1/2ak|2H‖rk‖2
Ḣ

2−γ
2

2 ([0,t])
≤ c

∞∑
k=1

|Q1/2ak|2H‖rk‖2
Ḣ

2−γ
2

2 (R+)

≤ c
∞∑
k=1

|Q1/2ak|2Hµ
3−2β−γ

α
k = c

∞∑
k=1

(Qak|ak)Hµ
3−2β−γ

α
k

= c

∞∑
k=1

(Qak|A
3−2β−γ

α ak)H = c
∥∥∥QA 3−2β−γ

α

∥∥∥
L1(H)

.

(3.16)

In the same manner

E |u(t)− u(s)|2H ≤ c
∞∑
k=1

|Q1/2ak|2H
[
‖rk‖

Ḣ
2−γ

2
2 (R+)

+ ‖rk‖
Ḣ
θ+

2−γ
2

2 (R+)

]2

|t− s|2θ

≤ c
∞∑
k=1

(Qak|ak)Hµ
3−2β+2θ−γ

α
k |t− s|2θ

≤ c
∥∥∥QA 3−2β+2θ−γ

α

∥∥∥
L1(H)

|t− s|2θ

(3.17)

holds for s, t ∈ R+ and θ ∈ [0, 1] and yields the mean-square continuity of u.

Again we may employ the Kahane-Khinchine inequality (cf. Theorem A.3) to obtain for all

2 < p <∞

E|u(t)− u(s)|pH ≤ cp
(
E|u(t)− u(s)|2H

) p
2 ≤ cp

∥∥∥QA 3−2β+2θ−γ
α

∥∥∥ p2
L1(H)

|t− s|pθ (3.18)

and the Kolmogorov-Čentsov-Theorem (cp. Theorem A.4) yields the claimed Hölderianity for

every Θ ∈ (0, θ − 1
p) for all p ∈ (2,∞). This completes the proof.

3.3 The case α = 2

We conclude with a brief discussion of the case α = 2. Then

r̂n(λ) =
λ2−β

λ2 + µn
, n ∈ N,

(the functions rn where introduced in (3.13)), hence there are poles ±i√µn on the imaginary

axis, and so Lemma 3.9 is not valid in this case. Therefore we proceed differently. It is shown

in [25], that if 1
2 < β < 3 one obtains with the aid of the complex inversion formula for the

Laplace transform

rn(t) = µ
1−β

2
n

[
sin
(
√
µnt+

(2− β)π
2

)
− 1
π

sin((2− β)π)
∫ ∞

0
e−
√
µntτ τ

2−βdτ
1 + τ2

]
,
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where t > 0. This formula shows in particular, that for every t ∈ (0, T ) it is |rn(t)| ≤ cTµ
1−β

2
n ,

where the constant cT may depend on T (in the sequel generic). In case γ > 2 the embedding

L2/(γ−1) ↪→ Ḣ
2−γ

2
2 holds true and we obtain

|rn|Ḣφ2 (0,T )
≤ c|rn|

Ḣ
2−γ

2
2 (0,T )

≤ cT |rn|L2/(γ−1)(0,T ) ≤ cTµ
1−β

2
n ,

for any fixed T > 0 and for all n ∈ N. The condition for local existence in the case α = 2 and

γ > 2 is now immediate and reads as

∞∑
n=1

νnµ
1−β

2
n <∞ ⇐⇒ QA

1−β
2 ∈ L1(H).

Note, that this is not the limiting case of Theorem 3.5(i) as α→ 2.



Chapter 4

Anomalous diffusion

Let α ∈ (0, 2), G ⊂ RN to be a domain with boundary ∂G and J = [0, T ] a bounded time inter-

val. We study the parabolic boundary problem of subdiffusion (if α < 1), normal diffusion (if

α = 1), and superdiffusion (if α > 1) with fractional stochastic disturbances on the boundary.

This problem reads as
∂αt u(t, x)−∆u(t, x) = 0, t ∈ J, x ∈ G,

Du(t, x) = ψ(t, x), t ∈ J, x ∈ ∂G,

u(0, x) = 0, x ∈ G,

(4.1)

in the basic space

V = L2(J ×G× Ω),

where the boundary disturbance is modeled as

ψ(t, x, ω) =
∞∑
k=1

bk(t, x)Xk(t, ω) (4.2)

and is suppose to satisfy

Hypothesis (ψ). (Xi)i∈N are entirely independent processes subject to Hypothesis (φ) (see

page 24) with a unique spectral density φ and 1 < γ < 3. The multiplier b := (bn)n∈N is

deterministic.

From time to time we will strengthen our assumptions and assume

Hypothesis (ψ0). (Xi)i∈N are entirely independent processes with a unique spectral density

φ subject to Hypotheses (φ) (see page 24), so that |λ|γφ(λ) ≡ const. Moreover, the multiplier

b := (bn)n∈N is deterministic and for all s, t ∈ J and x ∈ ∂G we have (b(t, x)|b(s, x))`2 ≥ 0.

73
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Remark 4.1. As shown in Section 2.6, centered Lévy processes and fractional Brownian

motions satisfy Hypothesis (ψ0). A fractional Riesz-Bessel motion RBβη is to Hypothesis (ψ0)

only if η = 0.

In order to circumvent trivial complications, we redefine the fractional derivative operator ∂α

as

(∂αφ)(t) :=
d2

(dt)2

∫ t

0
g2−α(t− τ)φ(τ)dτ, t ∈ R+.

With

Y = L2(J × ∂G× Ω)

we denote the basic space for the boundary process ψ. As to the operator D, we either

choose D = ∂ν which links to the Neumann problem, or D = I to study the Dirichlet problem.

As usual I denotes the identity mapping.

Such problems arise in the theory of normal and anomalous diffusion, where the boundary

conditions prescribe a stochastic inflow in case D = ∂ν , and a stochastic concentration on

the boundary for D = I, respectively. Another typical application of those problems is the

heat conduction in materials with memory (e.g. polymeric fluids or solids).

We are seeking for conditions on the parameter γ (determined by Hypothesis (ψ)) and prop-

erties of the pointwise multiplier b, so that the solution (see Section 4.2.1 for the present

concept of a solution) u of (4.1) affiliates to the space Zδ defined by

Zδ := 0W
αδ
4

2 (J ;L2(G;L2(Ω))) ∩ L2

(
J ;W

min{ δ
2

;2}
2 (G;L2(Ω))

)
, δ ≥ 0. (4.3)

It will turn out, that these spaces are appropriate solution spaces. Note that the class Z4

appears as the maximal regularity class of type L2 associated to problem (4.1). Moreover,

the spaces Zδ, with δ ≥ 4 are tailored to capture results with a higher time regularity. Higher

spacial regularity is not treated in this thesis, since the resulting inevitable, purely technical,

compatibility conditions cannot be motivated from the view of applications. For brevity we

introduce the classes Uδ,γ and U0
δ,γ for the pointwise multiplier b := (bi)i∈N as

Uδ,γ := 0W
αδ
4

2, γ−1
2

(J ;L2(∂G; `2)) ∩ L2, γ−1
2

(
J ;W

δ
2

2 (∂G; `2)
)
, δ ≥ 0,

U0
δ,γ := 0W

αδ
4

2 (J ;L2(∂G; `2)) ∩ L2, γ−1
2

(
J ;W

δ
2

2 (∂G; `2)
)
, δ ≥ 0.

(4.4)

It is then readily seen, that U0
δ,γ ↪→ Uδ,γ .
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4.1 Main results

In what follows let α ∈ (0, 2) and G ⊂ RN be either the N dimensional half-space, given by

RN+ :=
{
x := (x′, y) ∈ RN : x′ ∈ RN−1, y > 0

}
, (4.5)

or a domain with compact boundary ∂G of class C [2/α]+1, if not indicated otherwise.

Theorem 4.2. Assume Hypothesis (ψ) holds. Let 0 ≤ ν < 2(γ−1)
α and in case G 6= RN+ let

ν ∈ [0, 2(γ−1)
α ) ∩ [0, 4). Then the following hold if b ∈ U0

ν,γ , given by (4.4).

(i) The Dirichlet problem (4.1), i.e. D = I, admits a unique solution u in the regularity class

Zν+1 given by (4.3). If, in addition, ν ≤ 3 and Hypothesis (ψ0) is valid, then membership

of b to the class Uν,γ is necessary and sufficient.

(ii) The Neumann problem (4.1), i.e. D = ∂ν , admits a unique solution u in the regular-

ity class Zν+3 given by (4.3). If, in addition, ν ≤ 1 and Hypothesis (ψ0) is valid, then

membership of b to the class Uν,γ is necessary and sufficient.

Note that the additional assumption ν < 4, when G 6= RN+ , is only restrictive in the case of

subdiffusion, if α < γ−1
2 . However, in view of maximal L2-regularity it is not obstructive at all.

If one seeks for strong solutions of problem (4.1) with Dirichlet boundary condition, Theorem

4.2 shows that one necessarily has to assume that γ > 3α+2
2 . On the other hand, in view

of the Neumann problem the above theorem yields the existence of strong solutions, only if

γ > α+2
2 . The following corollaries concern a result on mixed regularity classes with either

full spatial regularity or full temporal regularity. In the Dirichlet case, i.e. D = I, this results

reads as

Corollary 4.3. The Dirichlet problem (4.1) admits a unique solution u and

(i) u ∈ 0W
ϑα
2 (J ;W 2

2 (G;L2(Ω))), ϑ ≥ 0,

(ii) u ∈ 0W
α
2 (J ;W 2ϑ

2 (G;L2(Ω))), ϑ ∈ [0, 1],

provided that

(a) ϑ < γ−1
2α −

3
4 ;

(b) ϑ < 1
4 , in case G 6= RN+ ;

(c) b ∈ U0
4ϑ+3,γ .
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Proof. Set ν = 4ϑ + 3, then clearly 3 ≤ ν < 2(γ−1)
α and, in addition, ν < 4 if G 6= RN+ , thus

Theorem 4.2 yields u ∈ Zν+1. By the mixed derivative theorem we obtain

Zν+1 ↪→ 0W
α(ν+1)

4
θ

2

(
J ;W

ν+1
2

(1−θ)
2 (G;L2(Ω))

)
, θ ∈ [0, 1]

and the choice θ = ν−3
ν+1 proves assertion (i), while θ = 4

ν+1 gives (ii).

In case of a boundary condition of Neumann type, i.e. D = ∂ν , we deduce

Corollary 4.4. The Neumann problem (4.1) admits a unique solution u and

(i) u ∈ 0W
ϑα
2 (J ;W 2

2 (G;L2(Ω))), ϑ ≥ 0,

(ii) u ∈ 0W
α
2 (J ;W 2ϑ

2 (G;L2(Ω))), ϑ ∈ [0, 1],

provided that

(a) ϑ < γ−1
2α −

1
4 ;

(b) ϑ < 3
4 , in case G 6= RN+ ;

(c) b ∈ U0
4ϑ+1,γ .

Proof. Repeat the arguments of the proof of Corollary 4.3 with ν = 4ϑ+ 1.

Here we discuss mainly the L2(Ω)-valued case. The subsequent proposition – which is easy

to prove but never the less useful – covers, in the presence of Theorem 4.2, a result in the

pathwise sense.

Proposition 4.5. Let u belong to the space Zδ given by (4.3) and s ≥ 0 a real number.

(i) If δ > 2
α(2s+ 1), then u ∈ L2(Ω;Cs(J ;L2(G))).

(ii) If 2s+N < δ ≤ 4, then u ∈ L2(Ω;L2(J ;Cs(G))).

(iii) If δ > 4 and s < 4−N
2 , then u ∈ L2(Ω;L2(J ;Cs(G))).

(iv) If δ > max
{

4; 8(2s+N+1)
α(3−2s−N)

}
and s < 3−N

2 , then u ∈ L2(Ω;Cs(J ×G)).

Proof. Fubini’s Theorem yields

Zδ = L2(Ω; 0W
αδ
4

2 (J ;L2(G))) ∩ L2(Ω;L2(J ;W
min{ δ

2
;2}

2 (G)))
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and it is due to Sobolev imbedding that 0W
θ
2(K) ↪→ Cs(K) if s < θ − dimK

2 . Then a simple

computation confirms (i), (ii) and (iii). Turning to (iv) we allude to

Zδ ↪→ L2

(
Ω;W

2αδ
αδ+8

2 (J ×G)
)

if δ > 4,

which is due to the mixed derivative theorem and the claim follows via Sobolev imbedding.

It is worthwhile to mention that in view of Proposition 4.5, there exists a feasible δ for (ii) and

(iii) only if N ≤ 3, and for (iv) only if N ≤ 2. The remaining part of this chapter is devoted

to the proof of Theorem 4.2. It is organized as follows. Next, in Section 4.2.1, we provide

the notion of a weak solution associated to problem (4.1). Then, in Section 4.2.2, we prove

Theorem 4.2 in the half-space setting. By means of spatial localization, which is the aim of

Section 4.2.3, we will carry over the half-space results to domains in Section 4.2.4.

4.2 Proof of the main results

4.2.1 Weak solutions

By gκ, we denote the Riemann-Liouville kernel; see (1.4). We call a function u ∈ X weak

solution of the Dirichlet problem (4.1), i.e. D = I, if it satisfies the integral equation

−
∫
G

∫
J
(∂2
t φD)(g2−α ∗ u)dtdx+

∫
G

∫
J
(∆φD)udtdx =

∫
∂G

∫
J
(∂νφD)ψdtdx (4.6)

for all test functions φD in the class

{φD ∈W 2
2 (G;L2(J)) : φD |∂G= 0} ∩ {φD ∈W 2

2 (J ;L2(G)) : φD(T ) = ∂tφD(T ) = 0}. (4.7)

Similarly, we call a function u ∈ V weak solution of the Neumann problem (4.1), i.e. D = ∂ν ,

if is satisfies the integral equation

−
∫
G

∫
J
(∂2
t φN )(g2−α ∗ u)dtdx+

∫
G

∫
J
(∆φN )udtdx =

∫
∂G

∫
J
φNψdtdx (4.8)

for all test functions φN in the class

{φN ∈W 2
2 (G;L2(J)) : ∂νφN |∂G= 0} ∩ {φN ∈W 2

2 (J ;L2(G)) : φN (T ) = ∂tφN (T ) = 0}. (4.9)

Equations (4.6) resp. (4.8) can be obtained by multiplying problem (4.1) with φD resp. φN

and integrating over J and G. Note that by construction every strong solution is also a

weak solution. The converse is not true in general. Observe that the classes (4.7) and (4.9)

are nontrivial and dense in V , since they contain the C∞-functions with compact support in

(0, T )×G.
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In the half-space setting, that is if G = RN+ , one achieves a more explicit representation of a

weak solution of problem (4.1). To this purpose we define the operator

F := (∂αt −∆x′)1/2 (4.10)

acting on the basic space Y with domain

D(F ) = 0W
α
2

2 (J ;L2(RN−1;L2(Ω))) ∩ L2(J ;W 1
2 (RN−1;L2(Ω))). (4.11)

Since the operator ∂αt is sectorial of angle απ
2 and, moreover, commutes with the negative

Laplacian−∆x′ it is due to the Kalton-Weis-Theorem [59, Theorem 6.3], that the operator F is

sectorial of angle απ
4 , hence is the negative generator of an analytic C0-semigroup, provided

0 < α < 2.

Let Λ : {∂ν , I} → {0, 1} be the function which indicates the Neumann problem; precisely

ΛD := Λ(D) = 1 if and only if D = ∂ν . We are now in the position to rewrite problem (4.1) in

coordinates according to (4.5) as the ordinary differential equation{
−∂2

yu(y) + F 2u(y) = 0, y > 0,

(1− ΛD)u(0)− ΛD∂yu(0) = ψ.
(4.12)

The deterministic case (cf. [89, Section 3]) gives raise to call a function u a (weak) solution of

(4.12), if it satisfies

u(y) = e−FyF−ΛDψ, t > 0, (4.13)

where as usual F 0 := I. Here etA denotes the analytic C0-semigroup generated by the

operator A. In particular, this formula depicts the well-posedness of problem (4.1) in the

sense of Hadamard, i.e. the problem admits a unique solution which depends continuously

on the data, in some reasonable topology.

In order to show, that a weak solution of the form (4.13) satisfies the representation formula

(4.6) resp. (4.8), we make use of an approximation argument. We exemplify this argument

for the case of a boundary condition of Dirichlet type. To this end let ψn belong to

D(F
3
2 ) = 0W

3α
4

2 (J ;L2(RN−1;L2(Ω))) ∩ L2(J ;W
3
2

2 (RN−1;L2(Ω)))

for all n ∈ N so that ψn → ψ ∈ Y as n tends to infinity. Theorem 4.2 yields that the function

un(y) = e−Fyψn affiliates to the class Z4, hence is a strong solution of the Dirichlet problem
∂αt un(t, x)−∆un(t, x) = 0, t ∈ J, x ∈ RN+ ,

un(t, x) = ψn(t, x), t ∈ J, x ∈ RN−1,

un(0, x) = 0, x ∈ RN+

for every n ∈ N. It is due to the C0-property of the semigroup e−Fy and Theorem 4.2 that

un → u ∈ Z1 as n → ∞ and in particular by maximal regularity (the functions un are strong

solutions for all n ∈ N) and representation (4.6) we have the validity of the integral equation

−
∫
RN+

∫
J
(∂2
t φD)(g2−α ∗ un)dtdx+

∫
RN+

∫
J
(∆φD)undtdx =

∫
RN−1

∫
J
(∂νφD)ψndtdx
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for all n ∈ N. Passing n to the limit we see that in the half-space setting, a weak solution of

the form (4.13) satisfies equation (4.6). In this sense formulae (4.13) and (4.6) resp. (4.8)

are connected.

We are now in the position to proof the main result in the half-space setting.

4.2.2 Proof of Theorem 4.2: Half-space setting.

Let G = RN+ , given by (4.5). The unique existence of a solution u of problem (4.1) is clear by

(4.13). By Theorems 2.22 and 2.25 we have the implication

b ∈ U0
ν,γ =⇒ ψ ∈ D(F

ν
2 ),

where the operator F is given by (4.10) and

D(F θ) = 0W
αθ
2

2 (J ;L2(RN−1;L2(Ω))) ∩ L2(J ;W θ
2 (RN−1;L2(Ω))), (4.14)

for θ ≥ 0. If, in addition, Hypothesis (ψ0) is valid, then Theorems 2.22 and 2.25 enforce

b ∈ Uν,γ ⇐⇒ ψ ∈ D(F
ν
2 ).

Assertion (i) is proven, if we can show that ψ ∈ D(F
ν
2 ) is equivalent to u ∈ Zν+1. To this end

we denote by z ∈ Ṽ := L2(R×RN+ × Ω) the solution of the problem{
−∂2

yz(y) + F̃ 2z(y) = 0, y > 0,

z(0) = Ψ,

where the process Ψ belongs to Ỹ := L2(R × RN−1 × Ω) so that Ψ |t∈J= ψ holds and we

define

F̃ :=
√
∂αt −∆x′ + I

with domain

D(F̃ ) = 0W
α
2

2 (R;L2(RN−1;L2(Ω))) ∩ L2(R;W 1
2 (RN−1;L2(Ω))).

Recall that by (4.13) z is of the form z(y) := e−F̃ yΨ with y ≥ 0.

In what follows F means the Fourier transform with respect to time t and tangential variable

x′. Let m = m(λ, ξ) =
√
λα + |ξ|2 + 1 with λ = iρ, ρ ∈ R, ξ ∈ RN−1, denote the Fourier symbol

of F̃ (t, x′). Suppressing the argument ω ∈ Ω, Plancherel’s Theorem (cf. Theorem A.1) yields

‖F̃
ν+1
2 z‖2

Ṽ
= ‖F{F̃

ν+1
2 z}‖2

Ṽ
=
∫ ∞

0

∫
R

∫
RN−1

|m
1
2F{F̃

ν
2 z(y)}(λ, ξ)|2dξdρdy

=
∫
R

∫
RN−1

∫ ∞
0
|m|e−2 Remy|F{F̃

ν
2 Ψ}(λ, ξ)|2dydξdρ

=
∫
R

∫
RN−1

|m|
2 Rem

|F{F̃
ν
2 Ψ}(λ, ξ)|2dξdρ.
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Observe now, that due to α ∈ (0, 2) the symbol m takes values in an open sector of the

complex plane, symmetric with respect to the positive real half axis R+, with vertex 0 and

opening angle ϑ < π. This captures the existence of constants c1, c2 > 0, such that

c1|m| ≤ Rem ≤ c2|m|

holds. Therefrom we obtain for ν ∈ [0, 2(γ−1)
α ) ∩ [0, 3]

‖F̃
ν
2 Ψ‖2

Ỹ
≤ c

∫
R

∫
RN−1

|m|
2 Rem

|F{F̃
ν
2 Ψ}(λ, ξ)|2dξdρ = ‖F̃

ν+1
2 z‖2

Ṽ

which is the key to necessity. Turning to sufficiency we deduce for ν ∈ [0, 2(γ−1)
α )

‖F̃
ν+1
2 z‖2

Ṽ
≤ c

∫
R

∫
RN−1

|F{F̃
ν
2 Ψ}(λ, ξ)|2dξdρ = c‖F̃

ν
2 Ψ‖2

Ỹ
,

hence z̄ := z |t∈J∈ Zν+1, where z̄ = z |t∈J denotes the restriction of z to J . Observe now, that

u = z̄ + w, where w ∈ V is the solution of the problem{
−∂2

yw(y) + F 2w(y) = z̄, y > 0,

w(0) = 0,

with F given by (4.10). It is due to [112, Theorem 3.1] that

w ∈ 0W
α+

α(ν+1)
4

2 (J ;L2(G;L2(Ω))) ∩ L2

(
J ; 0W

2
2(G;L2(Ω))

)
= Zν+5,

which in turn yields u ∈ Zν+1 and assertion (i) is proven.

Turning to (ii) let us denote by v the solution of the Dirichlet problem (4.1). Recall that by

(4.13) it is u = F−1v, and so in particular we have

v ∈ Zν+1 ⇐⇒ u ∈ Zν+3

for all 0 ≤ ν < 2(γ−1)
α . Employing (i) completes the proof.

4.2.3 Spatial localization

Let nowG ⊂ RN be a domain with compact boundary ∂G of class C2. In caseG is unbounded

one has to think of an exterior domain. Since the problem under investigation is fully known

in the space RN (e.g. Zacher [113, Theorem 3.1]) and, by the above, in the half-space RN+
the apparent strategy is to localize problem (4.1) and to apply the known results.

In order to prevent the localization with respect to time we do consider the following two

auxiliary problems
∂αt v(t, x) + (λ−∆)v(t, x) = 0, t ∈ J, x ∈ G,

Dv(t, x) = ψ(t, x), t ∈ J, x ∈ ∂G,

v(0, x) = 0, x ∈ G,

(4.15)
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where λ > 0 is chosen later and
∂αt w(t, x)−∆w(t, x) = λv(t, x), t ∈ J, x ∈ G,

Dw(t, x) = 0, t ∈ J, x ∈ ∂G,

w(0, x) = 0, x ∈ G.

(4.16)

Note, that the function u = v + w clearly solves the initial problem (4.1). Our strategy is as

follows. We are going to localize problem (4.15) with respect to space and obtain a solution

on the whole of [0, T ] by choosing λ sufficiently large. Then, depending on the resulting

regularity of v, the regularity of w is known by [113, Theorem 3.4].

Since the technique of localization is well-known (e.g. Denk et al. [34, Section 8]) we just go

briefly through the prearrangements. Let x0 ∈ ∂G be an arbitrary element of the boundary.

Without loss of generality, we may assume that x0 = 0 and the outer normal at x0 satisfies

n(x0) = (0, . . . , 0,−1). This can always be achieved by a composition of a translation and

a rotation in RN . Such affine mappings of RN onto itself clearly leave all function spaces

under consideration invariant. By definition of a C2-boundary there is an open neighborhood

U = U1 × U2 ⊂ RN of x0 with U1 ⊂ RN−1 and U2 ⊂ R as well as a function ζ ∈ C2(U1), such

that

∂G ∩ U =
{
x = (x′, y) ∈ U : y = ζ(x′)

}
,

G ∩ U =
{
x = (x′, y) ∈ U : y > ζ(x′)

}
.

Using now the notation x = (x1, . . . , xN ) we define ϑ : U → RN in virtue of

ϑk(x) =

x′k : k = 1, . . . , N − 1

y − ζ(x′) : k = N
. (4.17)

It is easy to see, that ϑ ∈ C2(U ;RN ) is one-to-one and satisfies G ∩ U = {x ∈ U : ϑN (x) > 0}
as well as ∂G ∩ U = {x ∈ U : ϑN (x) = 0}. Observe, that the function ζ can be extended to a

function in C2(RN−1) with compact support. For brevity we denote the extension of ζ again

by ζ.

Regarding spatial localization, by the boundedness of ∂G, there exists a radius r0 > 0 such

that ∂G is entirely contained in the open ball Br0(0). If G is unbounded we set U0 = {x ∈
RN ; |x| > r0}, otherwise we may assume that G ⊂ Br0(0) and put U0 = ∅. Now, we cover

Br0(0) by finitely many open sets Uj , j = 1, . . . , n, which are subject to

(U1) Uj ∩ ∂G = ∅ and Uj = Brj (xj) for all j = 1, . . . n1.

(U2) Uj ∩ ∂G 6= ∅ for j = n1 + 1, . . . , n and there exists xj ∈ Uj ∩ ∂G and ζj ∈ C2(RN−1)
with compact support such that Uj ∩ ∂G = {x = (x′, y) ∈ Uj : y = ζj(x′)} as well as

Uj ∩G = {x = (x′, y) ∈ Uj : y > ζj(x′)}, and Uj = ϑ−1
j (Brj (xj)).
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In what follows we denote by {ϕj}nj=0 ⊂ C∞(RN ; [0, 1]) a partition of the unity such that∑n
j=0 ϕj(x) ≡ 1 on G and suppϕj ⊂ Uj . Observe now, that v solves (4.15) if and only if

∂αt (ϕjv) + (λ−∆)(ϕjv) = −[∆, ϕj ]v, in J ×G, j = 0, . . . , n

D(ϕjv) = ϕjψ + [D, ϕj ]v, on J × ∂G, j = n1 + 1, . . . , n,

ϕjv |t=0 = 0.

In case j = 0, . . . , n1 we have to consider full-space problems for the functions ϕjv, for which

the existence of the corresponding solution operators SFj is known. One obtains

ϕjv = SFj (−[∆, ϕj ]v) =: hFj (v), j = 0, . . . , n1. (4.18)

For j = n1 + 1, . . . , n, we get problems on crooked half-spaces with inhomogeneous Neumann

or Dirichlet boundary condition. Using the common affine mappings that, in particular, trans-

form xj to the origin combined with an appropriate variable transformation and denoting by

Γy the trace operator at y = 0 leads to
∂αt Θ−1

j (ϕjv) + (λ−∆)ϑjΘ−1
j (ϕjv) = −Θ−1

j [∆, ϕj ]v, J ×RN+ ,

DϑjΘ−1
j (ϕjv) = Θ−1

j (ϕjψ) + Θ−1
j Γy[D, ϕj ]v, J ×RN−1,

Θ−1
j (ϕjv) |t=0 = 0,

that is, to half-space problems for Θ−1
j (ϕjv). Here the pull-back Θjv is defined on intG by

Θjv(x) = v(ϑj(x)) and (λ−∆)ϑj := λ−Θ−1
j ∆Θj as well asDϑj := Θ−1

j DΘj . Choosing the radii

ri, i = 1, . . . , n, sufficiently small, Theorem 4.2 in connection with a perturbation argument

asserts the existence of solution operators SBj for the above problems. So we immediately

get

ϕjv = ΘjSBj

(
−Θ−1

j [∆, ϕj ]v
Θ−1
j (ϕjψ) + Θ−1

j Γy[D, ϕj ]v

)
=: hBj (ψ, v), (4.19)

for j = n1 + 1, . . . , n. Summing now over all j yields the formula

v =
n1∑
j=0

hFj (v) +
n∑

j=n1+1

hBj (ψ, v) =: G(v) +K(ψ), (4.20)

which is necessary for v to be a solution of (4.1). To see that (4.20) is also sufficient we refer

to Zacher [111]. Summarizing, we deduced a fixed point equation (4.20) for v, where the first

sum is determined by the data, and the second contains only terms of lower order. By means

of the contraction principle, this fixed point equation can be solved on J = [0, T ] provided G
is a strict contraction on J . But this can always be arranged by choosing λ sufficiently large.

Before focusing the concrete Neumann or Dirichlet case, we prove an extremely useful result.

Proposition 4.6. Let X = L2(J ×RN+ × Ω) and F =
√
∂αt −∆x′ with domain D(F ) given by

(4.11) in coordinates according to (4.5). Then there is a constant c > 0, such that for ν ≥ 0
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and sufficiently large λ ≥ 0 we have∥∥∥∥(F 2 + λ)
ν+1
4 e−(F 2+λ)

1
2 y

∥∥∥∥2

B
(
D(F

ν
2 );X

) ≤ c(1 + λ
ν
2 ).

Proof. Let g ∈ D(F
ν
2 ) with ν ≥ 0 and Y = L2(J ×RN−1 × Ω). Then by means of Plancherel’s

Theorem (cf. Theorem A.1) and Fourier transform with respect to time and space it is∥∥∥∥(F 2 + λ)
ν+1
4 e−(F 2+λ)

1
2 yg

∥∥∥∥2

X

≤
∫
R+

∫
RN−1

∫
R

∣∣(iτ)α + |ξ|2 + λ
∣∣ ν+1

2 e−2 Re
√

(iτ)α+|ξ|2+λy|g̃(iτ, ξ)|2dτdξdy

=
∫
R

∫
RN−1

(∫
R+

e−2 Re
√

(iτ)α+|ξ|2+λydy
) ∣∣(iτ)α + |ξ|2 + λ

∣∣ ν+1
2 |g̃(iτ, ξ)|2dξdτ.

Observe now that for α ∈ (0, 2) and sufficiency large λ the symbol
√

(iτ)α + |ξ|2 + λ takes

values in the open sector Σ(0, π2 ), so that we have in particular c|
√

(iτ)α + |ξ|2 + λ| ≤
Re
√

(iτ)α + |ξ|2 + λ with a constant c > 0 (in the sequel generic) being independent of λ.

Thus ∥∥∥∥(F 2 + λ)
ν+1
4 e−(F 2+λ)

1
2 yg

∥∥∥∥2

X

≤ c
∫
R

∫
RN−1

[∣∣(iτ)α + |ξ|2 + λ
∣∣ ν4 |g̃(iτ, ξ)|

]2
dξdτ

≤ c
∫
R

∫
RN−1

[
[
∣∣(iτ)α + |ξ|2

∣∣ ν4 + λ
ν
4 ]|g̃(iτ, ξ)|

]2
dξdτ

≤ c‖g‖2
D(F

ν
2 )

+ λ
ν
2 ‖g‖2Y ≤ c(1 + λ

ν
2 )‖g‖2

D(F
ν
2 )

follows and the proof is complete.

4.2.4 Proof of Theorem 4.2: Setting for domains.

This time we are first facing assertion (ii). Let us shortly recall what we have done in the

preview. We split up the initial problem (4.1) in the two auxiliary problems (4.15) and (4.16),

so that it suffices to seek for the regularity of the solution v of the localized version of (4.15).

This is what remains to do. To this purpose we denote by Zλν the space Zν equipped with the

norm

‖ · ‖Zλν := ‖ · ‖Zν + λ‖ · ‖V , (4.21)

with λ from (4.15), where the space Zν is given by (4.3) with an admissible ν. Thanks to our

preview it remains to show, that G is a strict contraction on J for v ∈ Zλν+3. Thus we proceed
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as follows. Let v1 and v2 belong to Zλν+3, then the linearity of the solution operators captures

‖G(v1)− G(v2)‖Zλν+3
≤

n1∑
j=0

∥∥SFj ([∆, ϕj ](v2 − v1))
∥∥
Zλν+3

+

+
n∑

j=n1+1

∥∥∥∥∥SBj
(

Θ−1
j [∆, ϕj ](v2 − v1)

Θ−1
j Γy[D, ϕj ](v1 − v2)

)∥∥∥∥∥
Zλν+3

. (4.22)

Turning to the first sum we observe, that for every ε1 > 0 there is a constant cε1 depending

on ε1, such that by interpolation and Young’s inequality

‖[∆, ϕj ]u‖V ≤ ε‖u‖Zν+3 + cε1‖u‖V ≤ ‖u‖Zλν+3

(
ε1 +

cε1
λ

)
(4.23)

holds for all j = 0, 1, . . . , n and u ∈ Zλν+3. Then by the boundedness of the solution operators

and (4.23) we end up with∥∥SFj ([∆, ϕj ](v2 − v1))
∥∥
Zλν+3

≤ c1‖[∆, ϕj ](v2 − v1)‖V ≤ c1

(
ε1 +

cε1
λ

)
‖v2 − v1‖Zλν+3

. (4.24)

Facing the second sum from (4.22) we get

n∑
j=n1+1

∥∥∥∥∥SBj
(

Θ−1
j [∆, ϕj ](v2 − v1)

Θ−1
j Γy[D, ϕj ](v1 − v2)

)∥∥∥∥∥
Zλν+3

≤ c2

n∑
j=n1+1

‖[∆, ϕj ](v2 − v1)‖V + C(λ)
n∑

j=n1+1

‖Γy[D, ϕj ](v1 − v2)‖
D(F

ν
2 )
,

where C(λ) ∼ λ
ν
4 as λ → ∞, which is due to Proposition 4.6. The first term is fine by (4.24).

For the second we may stress that u ∈ Zν+1 implies Γyu ∈ D(F
ν
2 ). Now we estimate with the

aid of Young’s inequality

‖Γy[D, ϕj ](v1 − v2)‖
D(F

ν
2 )
≤ c3‖v1 − v2‖Zν+1

≤ c4(ε2‖v1 − v2‖Zν+3 + cε2‖v1 − v2‖V )

≤ c4(ε2 +
cε2
λ

)‖v1 − v2‖Zλν+3
.

(4.25)

Hence, we deduced

‖G(v1)− G(v2)‖Zλν+3
≤ c5

[
(n+ 1)

(
ε1 +

cε1
λ

)
+ (n− n1)C(λ)

(
ε2 +

cε2
λ

)]
‖v1 − v2‖Zλν+3

,

where the Lipschitz constant can be made arbitrary small by choosing first ε1 and ε2

sufficiently small and then selecting λ appropriately large (recall that by Proposition 4.6

C(λ) ∼ λ
ν
4 in a neighborhood of infinity and ν < 4 by assumption).

Summarizing we have shown that the solution v of (4.15) belongs to Zν+3. Lastly, it is due to

[112, Theorem 3.1] that the solution w of the auxiliary problem (4.16) in particular belongs

to Zν+7, which immediately results in the fact that the function u = v + w is a solution of the

initial problem (4.1) and, moreover, affiliates to the space Zν+3. This completes the proof

of (ii). The proof of the corresponding Dirichlet problem (i) can be obtained by following the

arguments of the proof of (ii). Therefore we omit it.



Appendix A

Basic essentials

For f ∈ L1(R;X), the Fourier transform of f is the function Ff : R→ X defined by

(Ff)(s) =
∫
R

e−istf(t)dt.

For scalar-valued functions f Plancherel’s Theorem can be found in Rudin [95, Theorem 19.2].

Plancherel’s Theorem is not true for vector-valued functions, except when the space X is a

Hilbert space. The theorem then reads as

Theorem A.1 (Plancherel’s Theorem). Let X be a Hilbert space. Then Ff ∈ L2(R;X)
and ‖Ff‖L2(R;X) =

√
2π‖f‖L2(R;X) for all f ∈ L1(R;X) ∩ L2(R;X). The restriction of F

to L1(R;X)∩L2(R;X) extends to a bounded linear operator F on L2(R;X) and (2π)−1/2F is

an unitary operator on the Hilbert space L2(R;X). Moreover,∫
R

((Ff)(t)|g(t))X dt =
∫
R

(f(t)|(Fg)(−t))X dt

for all f, g ∈ L2(R;X).

For the proof we refer to Arendt et al. [12, Proof of Theorem 1.8.2]. Let C+ := {λ ∈ C : Reλ >
0} and H2(C+;X) be the space of all holomorphic functions g : C+ → X such that

‖g‖2H2(C+;X) := sup
α>0

∫
R

‖g(α+ is)‖2ds <∞.

Let as usual denote f̂ the Laplace transform of the function f . For scalar functions, the

Paley-Wiener Theorem can be found in Rudin [95, Theorem 19.13]. Again the Paley-Wiener

Theorem is not true for vector-valued functions in general, but it is true in the case of a Hilbert

space and then reads
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Theorem A.2 (Paley-Wiener Theorem). Let X be a Hilbert space. Then the map f 7→ f̂ |C+ is

an isometric isomorphism of L2(R+;X) onto H2(C+;X). Moreover, for f ∈ L2(R+;X),

f̂(α+ is) =
α

π

∫
R

(Ff)(r)
α2 + (s− r)2

dr.

As α ↓ 0, ‖f̂(α+ is)− (Ff)(s)‖ → 0 (s)-a.e. and
∫
R
‖f̂(α+ is)− (Ff)(s)‖2ds→ 0.

The proof can be found in Arendt et al. [12, Proof of Theorem 1.8.3].

We are now turning to the Kahane-Khintchine inequality. To circumvent an introduction to

the principle of hypocontractive domination (see Kwapień & Woyczyński [67, Section 3.3])

we rephrase the result of [67, Corollary 3.4.1]. It then reads as

Theorem A.3 (Kahane-Khintchine inequality). Let X be a Banach space and 1 < q < p <∞.

If ξ is a centered Gaussian random variable then(
E
∥∥∥∥x+

√
q − 1
p− 1

yξ

∥∥∥∥p
X

)1/p

≤
(
E ‖x+ yξ‖qX

)1/q
holds for every x, y ∈ X.

In the present thesis we will frequently make use of the case when x = 0, to position ourself

to employ the Kolmogorov-Čentsov Theorem.

Theorem A.4 (Kolmogorov-Čentsov Theorem). Suppose that a process X := {X(t)}t∈[0,T ]

on a probability space (Ω,F ,P) satisfies the condition

E|X(t)−X(s)|α ≤ C|t− s|1+β, s, t ∈ [0, T ],

for some positive constants α, β, and C. Then there exists a continuous modification of X,

which is locally Hölder-continuous with exponent ν for every ν ∈ (0, βα).

A very elementary proof based on Čebyšev’s inequality can be found in Karatzas & Shreve

[60, Proof of Theorem 2.8]. For a more analytic version of the proof we refer to Da Prato &

Zabczyk [27, Proof of Theorem 3.3].
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