Comparative phylogeographic and population genetic analyses of three tropical pioneer trees, *Macaranga winkleri*, *M. winkleriella* and *M. tanarius* (Euphorbiaceae)

Dissertation

zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.)

vorgelegt der

Naturwissenschaftlichen Fakultät I Biowissenschaften der Martin-Luther-Universität Halle-Wittenberg

von

Diplom-Biologin Christina Baier geb. am 25.01.1981 in Hünfeld, Deutschland

Gutachter /in1. Prof. Isabell Hensen, MLU Halle-Wittenberg2. Dr. Frank Blattner, IPK Gatersleben3. Prof. Kurt Weising, Universität Kassel

Halle (Saale), 14.07.2011

Table of Contents

List of abbreviations	.vi
1 Introduction	1
1.1 General features of the genus <i>Macaranga</i> Thou. (Euphorbiaceae)	1
1.1.1 Systematic classification of the genus	1
1.1.2 Ant-plant associations	3
1.1.3 Myrmecophytism in <i>Macaranga</i>	3
1.1.4 Different types of ant-plant associations in the genus <i>Macaranga</i>	4
 Myrmecophytic <i>Macaranga</i> species Myrmecophilic <i>Macaranga</i> species	4 5 5
1.2 Objectives of the study	5
1.3 The species under study	. 11
Macaranga winkleri Pax & K. Hoffm. (section Winklerianae) Macaranga winkleriella Whitmore (section Winklerianae) Macaranga tanarius (L.) Müll.Arg. (Tanarius group)	. 11 . 11 . 12
1.4 Geological evolution of the Sunda Shelf	. 13
1.5 Molecular markers	. 13
1.5.1 Microsatellites	. 13
Terms	. 13
Occurrence in the genome Microsatellite motifs	. 14 . 14
Genesis and evolution of microsatellites	. 14
Mutation models of microsatellites	. 14
Microsatellites - the marker of choice	. 15
Drawbacks of microsatellites markers	. 15
1.5.2 Chloroplast DNA sequences	. 16
<i>rpl16</i> intron <i>atp</i> B- <i>rbc</i> L intergenic spacer Ccmp5	. 16 . 17 . 17
1.6 Statistical methods	. 17
Haplotype analysis Statistical parsimony network	. 17 . 17

	Principal coordinate analysis	18
	Analysis of molecular variance	18
	Mantel test	18
	Assignment analysis using Bayesian clustering approaches	19
2	Chloroplast analysis	21
	2.1 Materials and Methods	21
	2.1.1 Sampling and molecular methods	21
	Sampling	21
	DNA isolation	21
	PCR amplification and sequencing of non-coding chloroplast regions	23
	<i>rpL16</i> intron	24
	atpB-rbcL	25
		25
	Sequence analysis and alignment	26
	2.1.2 Data analyses	27
	Statistical parsimony networks based on the chloroplast sequence analyses	27
	Neighbor-joining analysis	27
	Principal coordinate analysis	27
	Assignment analysis with chloroplast sequences	28
	Determining the number of populations (K)	29
	Analysis of molecular variance	30
	Haplotype and nucleotide diversity analysis	30
	Analysis of spatial-genetic correlation	31
	2.2 Results of the chloroplast analysis	32
	2.2.1 Sequence analysis and alignment	32
	atpB-rbcL	32
	rpL16	33
	Ccmp5	33
	2.2.2 Statistical parsimony networks based on the chloroplast sequence analyses	33
	Network of Macaranga tanarius	33
	Network of Macaranga winkleri, M. winkleriella and related Macaranga species	35
	Network based on sequences of the atpB-rbcL intergenic spacer of dif	ferent
	Macaranga species	37
	2.2.3 Neighbor-joining analysis	37
	2.2.4 Principal coordinate analysis	39
	Macaranga winkleri	39

ii

Ма	caranga tanarius
2.2.5 mode	Assignment analysis in <i>M. winkleri</i> and <i>M. tanarius</i> assuming the non-admixture 39
2.2.6	Analysis of molecular variance
2.2.7	Haplotype and nucleotide diversity analysis
2.2.8	Analysis of spatial genetic correlation
2.3 Dis	scussion of the chloroplast data 49
2.3.1	Phylogeography of <i>Macaranga winkleri</i>
Ger of t	netic differentiation of <i>M. winkleri</i> for Sarawak/Brunei vs. Sabah and west vs. east he Crocker Range
Tw Ma	o colonisation scenarios for <i>Macaranga winkleri</i>
2.3.2	Phylogeography of <i>Macaranga winkleriella</i> 56
2.3.3	Phylogeography of <i>Macaranga tanarius</i> 56
The Pos Pio	e Crocker Range - a geographic barrier for <i>Macaranga tanarius</i> ?
2.3.4	Comparison of Macaranga winkleri and Macaranga tanarius
3 Micro	osatellite analysis63
3.1 Ma	aterials and Methods
3.1.1	Development of microsatellite markers and transfer of markers within the genus 63
3.1.2 the ge	Test of the newly developed primer pairs and test for cross-amplification within enus <i>Macaranga</i>
Mi	crosatellite genotyping analysis
3.1.3	Assignment analysis using the SSR data
De	termining the number of populations (K) 69
3.1.4	Principal coordinate analysis
3.1.5	Analysis of genetic diversity and differentiation
3.2 Re	sults of the microsatellite analysis71
3.2.1	Assignment analyses using the SSR data71
Ass	signment analysis in Macaranga winkleri assuming the admixture model

	Ass	signment analysis in Macaranga tanarius assuming the admixture model	71
	3.2.2	Bar plots illustrating the assignment analyses of the SSR data	75
	Ba	r plots of <i>M. winkleri</i> assuming the admixture model	75
	Ba	r plots of <i>M. tanarius</i> assuming the admixture model	77
	3.2.3	Principal coordinate analysis	82
	Ma Ma	icaranga winkleri icaranga tanarius	82 83
	3.2.4	Genetic diversity and differentiation	85
	3.3 Dis	scussion of the microsatellite data	88
	3.3.1	Population genetic structure of <i>M. winkleri</i>	88
	Ger ind	netic differentiation in <i>Macaranga winkleri</i> between Sarawak/Brunei vs. Saba lividuals west vs. east of the Crocker Range	th and 89
	3.3.2	Population genetic structure of Macaranga tanarius	92
	Ger Cro	netic differentiation in <i>M. tanarius</i> between individuals west and east o ocker Range, Sarawak/Brunei vs. Sabah, and Borneo vs. Malay Peninsula	of the 93
	3.3.3	Comparison of M. winkleri, M. winkleriella and M. tanarius	94
4	Comb	oined discussion of the microsatellite and chloroplast analyses	99
4	Comb Ma	Dined discussion of the microsatellite and chloroplast analyses	99 99
4	Comb Ma Ma	Dined discussion of the microsatellite and chloroplast analyses Incaranga winkleri	 99 99 99
4	Comt Ma Ma Ma	bined discussion of the microsatellite and chloroplast analyses acaranga winkleri acaranga winkleriella acaranga tanarius	99 99 99 100
4	Comb Ma Ma Cor	Dined discussion of the microsatellite and chloroplast analyses acaranga winkleri acaranga winkleriella acaranga tanarius mparison of Macaranga winkleri and Macaranga tanarius	99 99 99 100 100
4 5	Comb Ma Ma Cor Concl	Dined discussion of the microsatellite and chloroplast analyses acaranga winkleri acaranga winkleriella acaranga tanarius mparison of Macaranga winkleri and Macaranga tanarius lusions	99 99 99 100 100 103
4 5 Ał	Comb Ma Ma Cor Concl	bined discussion of the microsatellite and chloroplast analyses	99 99 99 100 100 103 107
4 5 At Zu	Comb Ma Ma Con Concl ostract	bined discussion of the microsatellite and chloroplast analyses	99 99 99 100 100 103 107 109
4 5 Ał Zu Ac	Comb Ma Ma Cor Concl ostract	bined discussion of the microsatellite and chloroplast analyses	99 99 99 100 100 103 107 109 111
4 5 Al Zu Ac Re	Comb Ma Ma Co: Concl ostract samm know	bined discussion of the microsatellite and chloroplast analyses	99 99 99 100 100 103 107 109 111 113
4 5 Al Zu Ac Re Li	Comb Ma Ma Cor Concl ostract samm knowl ference st of F	bined discussion of the microsatellite and chloroplast analyses	99 99 99 100 100 103 107 107 111 113 123

Appendix A	Neighbor-joining tree of <i>M. winkleri</i> and <i>M. winkleriella</i> 129
Appendix B M. winkleri in	Bar plot of the assignment analysis and geographic distribution of dividuals
Appendix C	Plant material used in this study131
Appendix D TCS haplotyp	<i>Macaranga winkleri</i> individuals and outgroups included in the e network calculation
Appendix E included in the	Sequence information of <i>M. winkleri</i> individuals and outgroups e TCS haplotype network
Appendix F network calcu	Macaranga tanarius individuals included in the TCS haplotype lation
Appendix G sequence varia	Chloroplast regions checked for amplification, sequencing, ation and corresponding primer sequences
Appendix H <i>M. winkleri</i> an	Individuals included in the haplotype network calculation of ad other <i>Macaranga</i> species142
Appendix I chloroplast as	Order of the <i>M. winkleri</i> individuals in the bar plots of the signment analysis
Appendix J both STRUCT	Order of the <i>M. winkleri</i> individuals for all bar plots created for TURE and INSTRUCT analyses
Appendix K STRUCTURE	Order of <i>M. tanarius</i> individuals for all bar plots created for both E and INSTRUCT analyses
Lebenslauf	
Eigenständig	keitserklärung 156

List of abbreviations

- AFLP = Amplified Fragment Length Polymorphism
- bp = base pair(s)
- BP = before present
- dbh = diameter at breast height
- DIC = deviance information criterion
- DNA = deoxyribonucleic acid
- dNTP = deoxynucleoside triphosphate
- e.g. = for example
- et al. = et alia, and others
- HT = haplotype
- i.e. = id est, that
- IAM = Infinite allele model
- ITS = internal transcribed spacer
- MCMC = Markov chain Monte Carlo
- min = minute
- msp. = morphospecies
- Mya = million years ago
- na = not applicable
- PAA = polyacrylamide
- PCoA = principal coordinate analysis
- PCR = polymerase chain reaction
- RFLP = restriction fragment length polymorphism
- R_h = haplotypic richness
- s = second
- SMM = stepwise mutation model
- spp. = species (plural)
- SSLPs = simple sequence length polymorphisms
- SSR(s) = simple sequence repeat(s)
- STR(s) = short tandem repeat(s)
- TE = Tris EDTA (Ethylenediaminetetraacetic acid)
- vs. = versus

1 Introduction

1.1 General features of the genus *Macaranga* Thou. (Euphorbiaceae)

Macaranga is a genus of paleotropical trees, treelets and rarely lianas, which comprises 257 dioecious species. Many species are conspicuous large-leafed pioneers (Whitmore 2008). Habitats include forest understorey and completely open scrub vegetation, canopy openings in primary and secondary forests, early successional forest communities and logged forests (Slik 2001). *Macaranga* is distributed from West Africa eastwards to Fiji (Whitmore 1969). The genus' diversity centres are on the islands of Borneo and New Guinea, where almost half of the species occur (Whitmore 2008).

Macaranga species exhibit enormous morphological diversity. Stems can be glaucous or glabrous, hollow or solid, between 4 and 30 meters tall and from 8 to 65 cm in diameter at breast height (dbh). Leaves vary hugely in size and may be simple or lobed and are often peltate (see Figure 1-1). *Macaranga* shows differently shaped stipules from small and narrowly triangular, to large and ovate and sometimes recurved (see Figure 1-2) (Slik 2001). Staminate and pistillate inflorescences consist of numerous small and inconspicuous flowers. Main pollinators of *Macaranga* are thrips, followed by bugs and other insects (Moog 2002). Many *Macaranga* species flower episodically, few continuously (Davies & Ashton 1999, Moog 2002, Moog et al. 2002, Howlett & Davidson 2003). The often colourful arilli of the seeds indicate, that fruits are eaten by birds (Ridley 1930). Small mammals are supposed to aid with the dispersal of *Macaranga* fruit (Whitmore 1969), furthermore seeds are sometimes ballistically dispersed (Davies 2001).

Many *Macaranga* species live in association with ants from the genera *Crematogaster* and *Camponotus* (Fiala et al. 1989). Within the genus *Macaranga* different types of ant-plant mutualisms exist. The genus comprises the full range from species not ant-inhabited, but myrmecophilic, to occasionally colonised species, and to obligate ant-plants. Some species produce food bodies mostly under the stipules; others provide extrafloral nectaries for the ants (Fiala et al. 1999).

1.1.1 Systematic classification of the genus

Macaranga belongs to the flowering plant family Euphorbiaceae. In current molecular studies this family has been placed in the core eudicots in the order Malpighiales (Bremer et al. 2009). Within the Euphorbiaceae the genus *Macaranga* is placed in the tribe Acalypheae in the subfamily Acalyphoideae (Webster 1994, Wurdack et al. 2005).

The genus *Macaranga* appears as a monophyletic group (Blattner et al. 2001, Slik & Van Welzen 2001, Kulju et al. 2007). Kulju et al. (2007) show that *Mallotus* sensu stricto is a sister group of *Macaranga* and that *Macaranga* is embedded in *Mallotus* sensu stricto and *Cordemoya* sensu lato. According to Whitmore (2008) the genus *Macaranga* is organised in

Figure 1-1. Peltate leaves of five species of *Macaranga*, clockwise from upper right; *M. tanarius*, (peltate not lobed, under surface glabrous to velvety hairy, gland-dotted), *M. bancana* (peltate, 3-lobed, seedlings not lobed), *M. winkleri* (peltate, not lobed, basal veins usually at a 90° or more angle with the midrib), *M. hosei* (deeply cordate to peltate, 3-lobed) and *M. gigantea* (shallowly to deeply 3-lobed, very large, up to 50 by 50 cm).

Figure 1-2. Stipules of four species of *Macaranga*, left to right; *M. bancana* (stipules recurved, completely surrounding the twigs, usually red), *M. winkleri* (erect stipules conspicuously longer than wide and red), *M. tanarius* (erect and persistent stipules, green to reddish) and *M. hosei* (stipules erect, persistent, surrounding the twigs, apex rounded).

four sections (*Pachystemon*, *Pruinosae*, *Winklerianae* and *Pseudorottlera*) and 14 informal species groups.

1.1.2 Ant-plant associations

Myrmecophytes, in the definition of Warburg (1892), are plants that form some sort of a steady and regular relationship with ants. He further classified the myrmecophytes into plants offering food (myrmecotrophic) or lodging (myrmecodomic) or both (myrmecoxenic).

In current usage, **myrmecophytes** are Warburg's myrmecodomic plus myrmecoxenic plants, that are permanently inhabited by specialised ant colonies, which protect their hosts against herbivores and climbers. For reviews see Davidson and Mckey (1993) and Heil and McKey (2003). Myrmecotrophic plants sensu Warburg are currently called **myrmecophiles** (Webber et al. 2007). They only attract ants from the vicinity by offering food. Especially in the case of plants with extrafloral nectaries, the visiting ants protect the plants (Bentley 1977, Koptur 1992).

As a term for the other half of the plant-ant association has been lacking, Quek et al. (2004) introduced the term 'phytoecy' to denote the obligate lifelong inhabitation of live plant cavities.

Myrmecophytes have evolved in diverse tropical plant lineages, such as *Acacia* and *Leonardoxa* (both Fabaceae). Extensive radiations occur, for example in the neotropical genera *Cecropia* (Cecropiaceae) and *Tococa* (Melastomataceae), both with approximately 40 myrmecophytic species (Davies 2001). The system of the pioneer species *Cecropia* associated with ant species of the genus *Azteca* is ecologically very similar to *Macaranga*. For a review of neotropical ant-plant associations see Oliveira and Freitas (2004). The only genera known from the oriental tropics showing a prominent radiation are *Macaranga* and *Neonauclea* (Rubiaceae) (Blattner et al. 2001, Razafimandimbison et al. 2005).

1.1.3 Myrmecophytism in Macaranga

In western Malesia there are 30 myrmecophytic *Macaranga* species, belonging to three sections. The most species-rich section is *Pachystemon* which includes about 25 species, 23 of which are myrmecophytes. Section *Pruinosae* consists of nine species (Whitmore 2008), five of them are myrmecophytic (Quek et al. 2004). Section *Winklerianae* comprises only two species, both are myrmecophytic (Whitmore 1975). On the ant side, at least eight distinct (morpho)species of *Crematogaster*, subgenus *Decacrema*, were found to colonise *Macaranga* myrmecophytes (Fiala et al. 1999, Feldhaar et al. 2010) one non-*Decacrema* ant and three species of *Camponotus* (Maschwitz et al. 1996).

Young *Macaranga* seedlings are first colonised when they are only about 10 cm tall. By then they have only one internode suitable for colonisation (Fiala 1996).

After their mating flight, ant queens search for an unoccupied plant. They recognise the host species by surface structure and volatiles (Jürgens et al. 2006). When an unoccupied plant is found, ant queens shed their wings, chew an entrance hole into an internode, seal it from inside and start laying eggs. When the workers emerge they reopen the entrance or chew new holes (Fiala et al. 1999).

In the genus *Macaranga* different types of ant-plant association occur. These will be explored in the next section.

1.1.4 Different types of ant-plant associations in the genus Macaranga

In the genus *Macaranga* food is offered to the ants by extrafloral nectaries, food bodies and honeydew: Extrafloral nectaries are nectar-secreting glands that are not involved in pollination and can play an important role in a plant's defense against herbivores (Heil et al. 2001a). In *Macaranga tanarius* they are located on the upper part of the leaf blade and on the leaf margins (Heil et al. 2000).

Food bodies are small epidermal and subepidermal structures with different shapes. They contain carbohydrates, lipids and proteins. Food body production in myrmecophytic species (see below) is usually concentrated on protected parts of the plant, such as recurved stipules, while in non-myrmecophytic plants food bodies are also offered on leaves and stems (Fiala & Maschwitz 1992). In myrmecophytic *Macaranga* species ants feed on honeydew excretions, produced by sap-sucking scale insects (Hemiptera, Coccoidea) (Ueda et al. 2008).

1. Myrmecophytic Macaranga species

The ants live mainly on food bodies and on honeydew produced by scale insects, while extrafloral nectaries do not play a role in most obligate myrmecophytes. The ants find shelter in the stem of *Macaranga*. In exchange for the provision of food and nesting sites (domatia) the ant-partners protect their plants against competition by climbers and damages by herbivores (Fiala et al. 1989) and also against fungal infection (Heil et al. 1999).

The degree of specificity of the colonisation is not absolute and varies between species on both sides (Fiala et al. 1999).

Two types of obligate myrmecophytes are distinguished:

a) obligate myrmecophytic Macaranga species (type1)

These plants offer nesting space for ants inside the internodes, which become hollow due to the degeneration of the pith. Myrmecophytes do not survive in the absence of the ant partner and specific ant partners have never been found nesting outside their plants, suggesting that both partners are highly dependent on each other (Heil et al. 2001b). *Macaranga winkleri* and *M. winkleriella* are obligate myrmecophytic species type 1.

b) obligate myrmecophytic species (type 2) previously called transitionals (Fiala 1996)

The stem interior of these species does not become hollow by itself. The ants have to excavate the rather soft pith, forming internal cavities. Often plants are only partly colonised and sometimes the plants are not inhabited at all. Species of this type occur mainly in section *Pruinosae* (e.g. *M. pearsonii*, *M. hosei* and *M. pruinosa*).

2. Myrmecophilic Macaranga species

These plants are not colonised by ants, but visited by a variety of different ant species (Fiala et al. 1994). The plant attracts the ants by offering food in the form of extrafloral nectaries and food bodies. Stems are never inhabited by ants in myrmecophilic plants. Common myrmecophilic species are *M. tanarius* and *M. gigantea* (Fiala 1996). *Macaranga tanarius*, for example, attracts a variety of different ant species by extrafloral nectaries and food bodies (Fiala et al. 1994) and is defended by the ants and other food-body-collecting and nectary-visiting insects against herbivores (Heil et al. 2001a).

3. Species with myrmecophytic and non-myrmecophytic plants

In *M. caladiifolia*, in contrast to other myrmecophytic *Macaranga* species, the colonising ants usually do not need to bite holes into the internodes, since they split open by themselves through growth processes of the plants. Colonising ants are facultative for the plant and are non-specific (Fiala 1996).

1.2 Objectives of the study

This study is part of a broader project together with the University Kassel and the University Würzburg that aimed to investigate speciation mechanisms in *Macaranga* ant-plants and their co-evolution with the corresponding ants. The island of Borneo was chosen as the main study region, since it is one of the genus' diversity hot spots (see Figure 1-3). Analyses of genetic differentiation for myrmecophytic and non-myrmecophytic *Macaranga* species from two myrmecophytic sections (*Pachystemon* and *Pruinosae*) were conducted at the University Kassel, in the working group 'Systematics and Morphology of Plants'. Genetic differentiation of the corresponding ants was analysed at the University Würzburg, working group 'Tropical ants and plants'.

Phylogenetic trees based on sequence analyses of the nuclear ribosomal DNA internal transcribed spacer (ITS) showed that myrmecophytes are mainly restricted to two clades, which correspond to sections *Pachystemon* and *Pruinosae* (Blattner et al. 2001, Davies 2001). Section *Pachystemon* comprises 23 myrmecophytic species and section *Pruinosae* five. High sequence similarity within these two sections was detected, more pronounced still in *Pachystemon*. This lack of genetic differentiation, which is in contrast to morphological and ecological differences, can indicate a rapid and relatively recent radiation of *Macaranga*

species of these sections (Weising et al. 2010). In contrast to this, section Winklerianae is comprised of only two species, both of which are myrmecophytic (see below). A possible mechanism that could have triggered radiations in sections Pachystemon and Pruinosae is the myrmecophytic trait, raising the question of why no signs of an ongoing radiation could be detected in section Winklerianae (Blattner et al. 2001). Since in myrmecophytic Macaranga both partners, the ants and the plants, do not mature without their specific symbionts, Macaranga seeds, germinating too far away from the next source of the specific ant partner cannot establish a new population. When populations become dissected due to geographical or climatic changes, this limited effective dispersal ability might lead to genetically isolated populations. Thus, the obligate association with ants could have triggered allopatric speciation. Assuming that this hypothesis of allopatric speciation is true, a reduced gene flow among populations of myrmecophytic species compared with those of non-myrmecophytic species would be expected. These reduced levels of gene flow would lead to a more pronounced population substructure. The detection of this substructure is expected to be measurable on a large geographical scale, in particular when geographic barriers, e.g. mountain ranges, separate populations. Chloroplasts are generally inherited maternally in angiosperms (Conde et al. 1979). As only seed-mediated gene flow is expected to be influenced by the proximity of the partner ant, a more pronounced difference between

Figure 1-3. Geographical map, giving an overview of the study region.

myrmecophytes and non-myrmecophytes is expected in the chloroplast than in the biparentally inherited nuclear loci.

For section *Pruinosae*, which is comprised of non-myrmecophytic *Macaranga gigantea* and several myrmecophytes, a comparative analysis was conducted using both chloroplast sequences and nuclear microsatellites. For the non-myrmecophytic *M. gigantea* and the myrmecophytic *M. pearsonii* the analysis revealed not only comparative levels of genetic diversity in the microsatellite analysis, but also a similar number of chloroplast haplotypes (Guicking et al. 2011). Therefore, for these species the allopatric speciation hypothesis could not be supported. Also for analyses in section *Pachystemon* the allopatric hypothesis could not be supported (Guicking et al. in preparation).

A third section, *Winklerianae*, (Davies 2001) with ambiguous monophyly (Blattner et al. 2001, Bänfer et al. 2004, Kulju et al. 2007) comprises only two myrmecophytic species, *M. winkleri* and *M. winkleriella*. These two species are investigated in this study.

Macaranga winkleri is endemic to Borneo. It was sampled from various locations in Sarawak, Brunei and Sabah.

Assuming seed dispersal via birds, the ants are expected to surpass shorter dispersal distances, therefore dispersal via seed to new areas, where the ant is not present cannot lead to the establishment of the plant. Seed dispersal from one population to another population, where *M. winkleri*, and thus the colonising ant is present, however is possible. The dependence of the plant species on the ant species and the resulting limited effective dispersal ability might lead to genetically isolated populations when populations become dissected by geographic changes. Thus, a reduced seed-mediated gene flow would be expected, leading to a more pronounced population substructure in myrmecophytic *M. winkleri* than in non-myrmecophytic *M. tanarius* reflected in the chloroplast data (see below).

The main pollinators of *M. winkleri* are thrips from the tribe Tubulifera (*Neoheegeria* spec.) and Terebrantia (mainly genus *Thrips*) (Moog 2002). Assuming a restricted pollen-mediated gene flow due to short flight distances of these small pollinators for *M. winkleri*, a clear geographic differentiation is expected for the nuclear SSR data.

Macaranga winkleriella is endemic to a limestone area in northern Sarawak, a much smaller region than the distribution area of *M. winkleri*. For *M. winkleriella*, low genetic diversity in both the chloroplast and the nuclear DNA could be expected, since small populations are strongly affected by genetic drift and furthermore in fewer individuals also less new alleles originate. Higher genetic diversity could then indicate that *M. winkleriella* is a formerly more widespread species with a larger population size that shrank back to its current habitat. This is however, not very probable because the species is growing on limestone only and is thus restricted to this rare habitat in Borneo.

Alongside *M. winkleri* and *M. winkleriella* a third *Macaranga* species was included in this study, *M. tanarius*, belonging to the *Tanarius* group (Whitmore 2008). This species is a non-myrmecophytic species. It is myrmecophilic, i.e. it is not colonised by ants, but attracts them

by offering food. The ants protect the plant from herbivores. *Macaranga tanarius* is a highly abundant pioneer tree, found in disturbed to very disturbed vegetation and even in the outskirts of towns. In such a successful pioneer tree also good dispersal abilities are expected. Good seed dispersal abilities, which are not restricted by the necessity to co-disperse with an ant partner, or disperse to regions where the ant is already present, should be reflected by high levels of gene flow and low genetic differentiation among populations for the chloroplast data. Gene flow via pollen can be assessed by nuclear microsatellites, which are inherited biparentally. Due to the relatively large size of the pollinating flower bugs, elevated amounts of pollen-mediated gene flow is expected and, therefore, a low genetic differentiation between populations of *M. tanarius*.

For *M. tanarius* individuals from Borneo and Malay Peninsula a strong genetic differentiation is expected in both the chloroplast and microsatellite data, as the individuals are geographically separated, and thus evolving in vicariance.

For all species a young age and/or a recently undergone population bottleneck, would be reflected by generally low levels of genetic diversity and probably low geographic structuring in both the chloroplast and the SSR data. A high tempo of colonisation would be reflected by the occurrence of the same haplotypes or genetically highly similar haplotypes over a broad geographical range.

Previous studies have provided evidence that the biogeography of plants and animals on Borneo is influenced by the occurrence of a central mountain range, dividing Borneo into a southeastern and a northwestern part (Bänfer et al. 2006, Raes et al. 2009). To the north this range runs into the Crocker Range (see Figure 2-16). The Crocker Range is expected to act also as a geographic barrier to dispersal for *M. winkleri* and *M. tanarius*. Due to the assumed limited effective dispersal ability of myrmecophytic *M. winkleri* the barrier is expected to act stronger on this species than on non-myrmecophytic *M. tanarius*. Furthermore *M. tanarius* is found up to higher elevations than *M. winkleri* (2,100 vs. 1,800, respectively), facilitating the dispersal across the barrier.

While palynological and geological evidence indicates the confinement of the rainforest to a number of refugia during the last glacial maximum to the southwestern parts of Borneo, for Sabah a persisting rainforest is assumed (Gathorne-Hardy et al. 2002). Since populations in the southwest underwent genetic bottlenecks while in Sabah the rain forest persisted, a higher genetic diversity is expected for this region compared to Sarawak/Brunei for both *M. tanarius* and *M. winkleri*.

Hypotheses

The following hypotheses are developed based on expected seed and pollen dispersal abilities and the myrmecophytic vs. non-myrmecophytic trait of the species under study.

1) For *M. winkleri* a limited effective dispersal ability is expected due to the dependence on the ant species and, as a result, a pronounced population substructure, especially in the case of geographic barriers.

2) For *M. winkleri* restricted pollen-mediated gene flow is expected, due to assumed short flight distances of the pollinating thrips. Thus, a clear geographic differentiation is expected for the nuclear SSR data.

3) For *M. winkleriella*, low genetic diversity in both the chloroplast and the nuclear DNA is expected, since small populations are affected stronger by genetic drift and also less new alleles originate.

4) For *M. tanarius*, as a successful pioneer tree good seed dispersal abilities are expected. Good seed dispersal abilities, which are not restricted by the necessity to co-disperse with an ant partner, or disperse to regions where the ant is already present, should be reflected by high levels of gene flow and, thus, low genetic differentiation among populations.

5) For *M. tanarius*, elevated amounts of pollen-mediated gene flow are expected due to the relatively large size of the pollinating flower bugs and, therefore, a low genetic differentiation between populations, which should be reflected by the SSR data.

6) The population structure for myrmecophytic *M. winkleri* is expected to be more pronounced than for non-myrmecophytic *M. tanarius*.

7) The Crocker Range is expected to act as a geographic barrier to dispersal, acting stronger on myrmecophytic *M. winkleri* than on non-myrmecophytic *M. tanarius* due to the limited effective dispersal ability of *M. winkleri*.

8) For the *M. tanarius* individuals of Malay Peninsula and Borneo high levels of genetic differentiation are expected in both the chloroplast and SSR data, due to vicariant evolution.

9) Due to the long-term persisting rain forest in Sabah, a higher genetic diversity is expected for this region compared to Sarawak/Brunei for both *M. tanarius* and *M. winkleri* in the microsatellite and chloroplast data.

Figure 1-4. A) Peltate leaves of *M. winkleriella* B) stipules of *M. winkleriella* (photos: Brigitte Fiala).

Figure 1-5. A) *Macaranga winkleri* colonised by its specific ant and characteristic stipules B) Leaves of *M. winkleri* C) Staminate inflorescence of *M. winkleri* D) Typical habitat of *Macaranga* species E) *M. winkleri* tree with adult in picture for scale F) *M. winkleri* in a gap in primary forest G) Fruits of *M. winkleri* H) Uninhabited *M. winkleri* individual, showing herbivore damage and a climber at the stem.

1.3 The species under study

Macaranga winkleri Pax & K. Hoffm. (section Winklerianae)

Macaranga winkleri is a tree measuring up to 15 m, with a dbh of 18 cm (Figure 1-5 E). The stem shows smooth and hooped bark, which is remaining green at maturity. Stipules are narrowly ovate with a long finely acuminate apex and 15-25 x 8-13 mm (Figure 1-5 A). The twigs are hollow and strongly angular when they are young. Leaves are peltate and ovate (Figure 1-5 B). The basal veins usually form an angle of 90 degrees or more with the midrib (Slik 2001). Staminate and pistillate inflorescences are branched (Figure 1-6 C). Male flowers are 1 mm long and female flowers are 1-3 mm long. Fruits of M. winkleri are bilocular and small (2-2.5 x 3-4 mm), the aril is fleshy and violet (Figure 1-6 G). Seeds have a diameter of 1.5 mm and are black (Whitmore 2008). Macaranga winkleri is an obligate myrmecophyte type 1. Thus, the plant cannot survive without its specific ant and vice versa. Figure 1-5 H shows an example of an uninhabited *M. winkleri* individual, which already shows evidence of damages by herbivores and a climber growing around the stem. The Crematogaster partner ant of M. winkleri, morphospecies (msp.) 8 (which does not belong to subgenus Decacrema) and its host are endemic to Borneo (Fiala et al. 1999). Both sides of this relationship seem to be extremely specific. Macaranga winkleri was never found colonised by another ant species and Crematogaster msp. 8 occurred only very rarely in saplings of other Macaranga species but never in larger plants.

Macaranga winkleri can be found at elevations of up to 1,800 m, in gaps in the primary (Figure 1-5 F) and secondary forests, including very disturbed forests after fire. It is often found along forest edges (Figure 1-5 D), the sides of roads and rivers and on land slides (Slik 2001).

Macaranga winkleriella Whitmore (section Winklerianae)

Macaranga winkleriella is a tree or treelet that grows to ca. 4 m tall with a dbh of 7 cm. Leaves are as in *M. winkleri* peltate and ovate Figure 1-4 A. Stipules are broadly ovate and recurved and smaller than in *M. winkleri* (4-6 x 4-6 mm) Figure 1-4 B. Staminate and pistillate inflorescences are branched. Male flowers are 0.75 mm long and female flowers are 2 mm long. Fruits of *M. winkleriella* are also bilocular and slightly larger than the fruits of *M. winkleri* (3 x 4.5-5.5 mm), the colour of the fleshy aril is not verifiable. Seeds have a diameter of 2-2.5 mm (Whitmore 2008). *Macaranga winkleriella* is an early successional species found in disturbed sites in primary and secondary forests. It is found growing on limestone in a very narrow distribution range, namely Mulu in Sarawak (Whitmore 1974). *Macaranga winkleriella*, like *M. winkleri*, is an obligate myrmecophyte type 1 and colonised by *Crematogaster* msp. 8, a non-*Decacrema* species (Federle et al. 1997, Fiala et al. 1999, Federle et al. 2001).

Macaranga tanarius (L.) Müll.Arg. (Tanarius group)

Macaranga tanarius is a shrub to small tree of up to 15 m tall with a dbh up to 20 cm (Figure 1-6 B). The stem is straight with smooth, hooped bark and red latex. Twigs are solid. Leaves are ovate and peltate (Figure 1-6 C). Stipules are erect, persistent and green to reddish (Slik 2001), (Figure 1-6 F). Staminate and pistillate inflorescences are variable (Figure 1-6 D). Both male and female flowers are subtended by bracts of the same range, not more than 5 mm, while the female bracts are longer than the male bracts (1 cm vs. less than 5 mm, respectively). Fruits are sticky and bilobed, up to 10 mm across by 6 mm tall with numerous long slender processes emanating from the upper half (Figure 1-6 E). Seeds are round and verrucous (Whitmore 2008). *Macaranga tanarius* is distributed from India and southern China to Australia and New Guinea. The species occurs in elevations up to 2,100 m, usually in very disturbed vegetation, often along roads (Figure 1-6 A) or streams. It is found on clay loam, sandy and sandstone soils (Slik 2001). *Macaranga tanarius* is a myrmecophilic species as mentioned above, visited by various ant species, unspecialised *Crematogaster* spp. being the most abundant (Fiala et al. 1994).

Figure 1-6. A) Typical habitat of *M. tanarius* B) *M. tanarius* tree habitus C) *M. tanarius* leaf with size comparison (photo: Nicolai Nürk) D) Staminate inflorescence of *M. tanarius* (photo: Birgit Schäfer) E) Fruits of *M. tanarius* (photo: Daniela Guicking) F) Stipules of *M. tanarius*.

1.4 Geological evolution of the Sunda Shelf

For the discussion of the biogeographical history of the species under study the more recent geological evolution of the Sunda Shelf has to be considered. The Malay Peninsula, Borneo, Java and Sumatra lie on the shallow continental Sunda Shelf. By the early Pliocene (~5 Mya) the Sunda Islands connection among the islands and Malay Peninsula had disappeared or had been reduced to narrow corridors. In the Pleistocene the Sunda landscape was again transformed when glacial cycles caused sea-level to drop repeatedly, exposing areas of the Sunda Shelf and creating land bridges. These land bridges reconnected formerly isolated regions of the shelf (Gorog et al. 2004). Voris (2000) showed in maps of the Pleistocene sealevel of Southeast Asia that during this epoch Borneo, Sumatra, Java and the Malay Peninsula were reconnected, when sea level was lowered between 40 m and the maximum lowering, which was 120 m below the present level. At 30 m below the present niveau, Malay Peninsula, Sumatra and Java would have been connected by land while Borneo would have been narrowly isolated. At the same time the dropping sea levels caused considerable fragmentation of the rainforest. Palynological and geological evidence indicate that at the last glacial maximum (~20,000 years BP) Malay Peninsula was covered by savannah, as were Java, parts of Sumatra and the southwestern part of Borneo, confining rainforest to a number of refugia (Gathorne-Hardy et al. 2002). The most recent glacial maximum began to recede at about 17,000 years BP and the current sea levels were reached about 6,000 years ago (Inger & Voris 2001). The latest land bridges which connected Borneo, Java, Sumatra and Malay Peninsula are described as recently as 9,500 years ago (Gorog et al. 2004).

1.5 Molecular markers

1.5.1 Microsatellites

Terms

Microsatellites, also known as simple sequence repeats (SSRs), short tandem repeats (STRs) or simple sequence length polymorphisms (SSLPs), are tandem repeats of sequence units generally less than 5 bp in length (Bruford & Wayne 1993). The microsatellites are usually less than 100 bp long (Lagercrantz et al. 1993). Main types of microsatellites consist of mono-, di-, tri- and tetra nucleotide motifs, but penta- and hexa-nucleotide repeats are also classified as microsatellites, repeats of longer motifs as minisatellites. Microsatellites are considered to be hypervariable in length (Tautz 1989), with variation resulting from differences in the number of repeat units. The variation in length is caused by errors in DNA replication when the DNA polymerase 'slips' while copying the repeated region, thus changing the number of repeats (Jarne & Lagoda 1996). Larger changes are supposed to be the result of unequal crossing over in the nucleus (Strand et al. 1993).

Occurrence in the genome

Microsatellites occur in all nuclear, chloroplast and mitochondrial genomes (Barkley et al. 2009). They are among the most variable types of DNA sequences in the genome. Among fully sequenced eukaryotic genomes, microsatellite density is highest in mammals. The bulk of simple repeats are embedded in non-coding DNA, either in intergenic sequence or in the introns, and thus assumed to evolve neutrally (Ellegren 2004). Assuming neutrality of microsatellites, extensive polymorphism can be explained by a high underlying rate of mutation.

Microsatellite motifs

Most chloroplast microsatellites (chloroplast SSR) are mononucleotide repeats whereas nuclear SSRs usually have dinucleotide repeats (Provan et al. 1999). Dinucleotide repeats are the most abundant repeats in vertebrates as well as in plants. In plant genomes GA/TC repeats are the most common (Lagercrantz et al. 1993). Contrasting distribution of microsatellite motifs in different genomes hint either to interspecific variation in the mechanisms of mutation, repair of specific motifs or to variation in the selective constraints associated with different SSR motifs or to differences in base frequencies in different genomes (Ellegren 2004).

Genesis and evolution of microsatellites

Short repetitive sequences are the starting point for a subsequent microsatellite expansion. The primary repeats can arise from normal base substitutions (e.g. A-G transition in GTATGT to GTGTGT). Additionally a high proportion of new two-repeat loci arise from insertion mutations that are duplications of adjacent sequence. Point mutations can break up perfect repeats and reduce the mutation rates of microsatellite loci. However, interruptions in microsatellites can also be a transitional stage in evolution and be removed by replication slippage or unequal crossing over (Ellegren 2004).

The rate and direction of microsatellite mutations

The mutation rate is affected by microsatellite length, increasing with the number of repeats. The precise correlation (linear, exponential) between the two factors is controversial. It is also possible that the flanking sequence affects the mutation rate. There is no uniform microsatellite mutation rate. Rates vary between loci, alleles and as a consequence perhaps among species (Ellegren 2004). Mutation rates of microsatellites range from 10^{-6} to 10^{-2} per generation and are thus significantly higher than base substitution rates (Schlötterer 2000).

Conflicting reports were made by different authors concerning the effect of length and base composition of the repeat unit on the mutation rate (Ellegren 2004). The existence of a threshold size necessary for a repeat sequence to undergo dynamic mutation was shown by Messier et al. (1996) and Rose and Falush (1998), while Pupko and Graur (1999) presented

contradictory evidence. They found that there is no critical number of repeats beyond which the observed frequencies of microsatellites exceed the frequencies expected in a random DNA sequence of the same size. Xu et al. (2000) showed the dependency of microsatellite mutations on the allele size. The rate of expansion mutations was shown to be constant, while the rate of contraction mutations increases exponentially with allele size.

Mutation models of microsatellites

Microsatellite variants are supposed to be generated in a stepwise manner by the addition or deletion of single repeat units (Valdes et al. 1993). Consequently, microsatellite variants with smaller differences in repeat length should be more closely related than those with larger differences in length. The stepwise mutation model (SMM) postulates that one mutation alters the repetitive part through addition or removal of one repeat of the repetitive unit.

A variety of models for the evolutionary dynamics of microsatellites, deriving from SMM have been presented incompatibilities with the SMM, for example the fact that SSR shows an upper size limit, have been solved by extensions to the model (Ellegren 2004).

The simplest and most general model is the Infinite allele model (IAM). In this model every mutational event creates a new allele, which is independent in size from the progenitor allele (Selkoe & Toonen 2006).

Microsatellites - the marker of choice

Microsatellite markers are single locus, co-dominant markers, generally with a high mutation rate. Polymorphic microsatellite markers are powerful tools for population genetic analysis. In species for which populations are small or have recently experienced a bottleneck, only loci with high mutation rates are likely to be informative (Hedrick 1999).

Furthermore microsatellite markers are used in paternity analysis, forensics and the inference of demographic processes. Due to their high mutation rate, they offer a means for studying the effect of environmental factors on genomic mutation rate (Ellegren 2004).

Once SSR loci have been characterised within a species, SSR polymorphism can be detected by PCR (polymerase chain reaction) using the flanking sequences of the microsatellite as primers. Due to high species specificity of microsatellite markers, cross-contamination by non-target organisms is much less probable than in PCR with universal primers (Selkoe & Toonen 2006). After PCR, the microsatellites can be genotyped by fragment size analysis using high resolution polyacrylamide (PAA) gels. This identification of alleles reduces time and cost compared with sequencing each allele in each individual.

Drawbacks of microsatellites markers

Despite the many advantages of microsatellite markers, they also have several challenges and pitfalls. One drawback is the fact that universal primers are usually not available. Markers

have to be developed for each species or species group. The high effort required for microsatellite marker development was described by Squirrel et al. (2003). Consistent amplification across all samples can only be assured by trial and error. Thus some loci will have to be discarded at the middle or end of genotyping all of the samples in a study due to amplification problems, too high or too low variability or the existence of an additional primer binding site in part of the samples. Another potential problem is the presence of null alleles. Null alleles, are alleles that do not amplify in the PCR due to mutations in the primer-binding site and, thus, are not detectable (Chapuis & Estoup 2007).

The advantage of highly variable markers carries the drawback of undetectable homoplasy by descent, i.e. alleles can have the same allele size and sequence but different genealogical history. Another type of homoplasy is size homoplasy, which occurs when alleles have the same fragment length but differences in base composition. This kind of homoplasy could be detected by sequencing the alleles, although typically this is not done since genotyping is size-based. Another subject to deal with, when using microsatellite markers, is the complex underlying mutational mechanism, which is still being discussed (see above).

1.5.2 Chloroplast DNA sequences

Generally chloroplast DNA is known to be slow in sequence evolution (Palmer 1987) and for a long time considered too conservative for intraspecific studies (Banks & Birky 1985).

Thus, in the past chloroplast DNA was limited to investigations among species, see references in Wagner (1992).

This perspective changed at the beginning of the 1990s (Soltis et al. 1992) after a number of studies found intraspecific and even intrapopulational chloroplast variation (Pleines et al. 2009) using chloroplast DNA. This intraspecific variation was shown to be high enough for population studies on gene flow, as reviewed by McCauley (1995).

In phylogeographic analyses mostly non-coding parts of the organelle genomes are used as markers (Pleines et al. 2009). Most non-coding parts of the plant genomes are free to vary without much restriction from selection, as such they may contain many polymorphic sites (Pleines et al. 2009). Two such non-coding parts, introns and spacers, are a rich and well-appreciated information source for evolutionary studies in plants (Borsch & Quandt 2009).

Chloroplast DNA, as an organelle DNA, has the advantage of uniparental inheritance, thus no recombination occurs.

In this study the following three markers were used:

rpl16 intron

The *rpl16* gene contains two exons separated by an intron varying in length from 1,000 – 1,500 bp in the species studied (Schnabel & Wendel 1998). *Rpl16* encodes ribosomal protein

L16 (Posno et al. 1986), and the intron has been used in several phylogeographic studies (King et al. 2009, Hedenas 2010).

atpB-rbcL intergenic spacer

This region lies between the *atp*B gene and the *rbc*L gene. This marker has been used in many different phylogeographic analyses (Bänfer et al. 2006).

Ccmp5

This marker belongs to a set of consensus chloroplast microsatellite primers (ccmp1-ccmp10). This set of primers was developed with the general aim to amplify SSR regions in the chloroplast genome of dicotyledonous angiosperms (Weising & Gardner 1999).

These microsatellite loci were applied to a small set of *Macaranga* specimens by Vogel et al. (2003) and found to be informative.

1.6 Statistical methods

Haplotype analysis

To describe differentiation and the genetic diversity of populations, several diversity measures can be calculated and evaluated. In this study Nei's index of genetic diversity (H_e) estimated without bias (Nei 1973), the haplotypic richness (R_h) (Mousadik & Petit 1996) and the number and distribution of population-specific haplotypes, so called private haplotypes (Stehlik et al. 2002), were calculated. Furthermore the number of haplotypes per population and the effective number of haplotypes, which is the inverse probability that two randomly chosen haplotypes are identical, were evaluated. Moreover haplotype and nucleotide diversity were calculated.

Statistical parsimony network

Intraspecific gene evolution cannot always be represented by a bifurcating tree. Population genealogies are often multifurcated, where descendant genes coexist with persistent ancestors. Furthermore recombination events (in nuclear genes), hybridisation between lineages and homoplasy generate reticulate relationships. Several network approaches have been developed to estimate intraspecific genealogies and to allow for reticulate relationships. Network approaches can incorporate population processes in the construction or refinement of haplotype relationships. Furthermore, networks have the ability to display the population information in more detail than strictly bifurcating trees. A variety of network methods have been reviewed in Posada and Crandall (2001). Of these network methods, the statistical parsimony network was chosen for this study. This method was chosen as within a species or closely related species single rather then multiple substitutions are assumed, favouring the

parsimony criterion. Network calculations were performed with the software TCS (Clement et al. 2000).

Principal coordinate analysis

A principal coordinate analysis (PCoA) is a means to get access to the genetic structure of data by exploring and visualizing similarities and dissimilarities. PCoA, a derived method of principal component analysis (PCA), is a procedure to simplify multivariate data with minimum loss of information (Cavalli-Sforza et al. 1996). PCoA starts with a pairwise distance matrix and assigns each item a location in a low-dimensional space, thus, reducing the dimensionality. The first axis accounts for as much of the variability in the data as possible, and each succeeding axis accounts for as much of the remaining variability as possible.

PCoA is a standard tool used to detect population structure within species based on genetic data (Schönswetter et al. 2003).

Analysis of molecular variance

Analysis of molecular variance (AMOVA) is a method of estimating population differentiation directly from molecular data and testing hypotheses about such differentiation. The statistics reflect the correlation of haplotypic diversity at different levels of hierarchical subdivisions. A variety of molecular marker data (e.g. RFLP, AFLP and SSR) and direct sequence data may be analysed using this method (Excoffier et al. 1992). GenAlEx was used to perform AMOVA.

Mantel test

The Mantel test (Mantel 1967) is a test of the correlation between two matrices. In this study one matrix contains the genetic distances between all possible pairs of individuals, while a second matrix contains the geographical distance between the individuals. The relationship between these two matrices cannot be assessed by only evaluating the correlation coefficient between the two sets of distances. Therefore a randomization or permutation test has been adopted. To assess significance of any apparent departure from a zero correlation, the rows and columns of one of the matrices are repeatedly subjected to permutation, with the correlation being recalculated after each permutation. The reason for this is that if the null hypothesis of there being no relation between the two matrices cannot be rejected, then permuting the rows and columns of the matrix should be equally likely to produce a smaller or a larger coefficient. The Mantel test is often applied to examine whether genetic differentiation among populations is related to geographical distances, (Excoffier et al. 1992, Hensen et al. 2010). In this study GenAlEx was used to perform the Mantel test.

Assignment analysis using Bayesian clustering approaches

Using Bayesian methods to analyse genetic data is a powerful tool to define boundaries between populations. Knowledge of such boundaries can be important, both for the understanding of population dynamics and for conservation planning (Rowe & Beebee 2007). Statistical inference is a method of extrapolation from a random sample set to a population. That is, it uses randomly sampled data from a population to make inferences about that population. Bayesian inference, a type of statistical inference based on Bayes' theorem, combines observational evidence with more traditional probabilities. In Bayesian inference an unconditional prior probability (degree of confidence) is determined before any data has been observed. When actual data is observed, this observation is used to refine the probability (called the posterior probability) to account for what was actually observed. The posterior probability is recalculated whenever additional observations are made, resulting in a probability that trends towards the real observations (Ivensen 1984).

Two Bayesian clustering programs were used to perform an assignment analysis and detect the number of clusters: STRUCTURE (Pritchard et al. 2000) and INSTRUCT (Gao et al. 2007). STRUCTURE provides the posterior probability, and the log likelihood of the posterior probability is used in determining the optimal number of clusters. INSTRUCT gives the deviance information criterion (DIC) which is a generalization of the Bayesian information criterion. The DIC is based on the logarithm of the likelihood function, and is used in determining the optimal number of clusters for INSTRUCT.

2 Chloroplast analysis

2.1 Materials and Methods

2.1.1 Sampling and molecular methods

Sampling

The sampling area was the Malaysian part of Borneo and, in the case of *Macaranga tanarius*, the Malay Peninsula, Sumatra, Kalimantan, Java and Australia (see Figure 2-1). A total of 561 *Macaranga winkleri*, 353 *Macaranga tanarius*, and 13 *Macaranga winkleriella* were sampled. Furthermore one *M. diepenhorstii*, one *M. pruinosa* and two *M. gigantea* individuals were sampled to include them as outgroups in the analysis. For sampling locations, habitat, geographical coordinates and storage of herbarium samples see Appendix A. The plant material included in this study was mainly collected by myself, Dr. Brigitte Fiala, and Dr. Daniela Guicking. Single samples were also collected by Christina Fey-Wagner, Manfred Türke, Dr. Ute Moog (now Meyer), Dr. Ulrich Maschwitz, Dr. Heike Feldhaar and Dr. Ferry Slik. A part of a leaf was collected from each sampled tree and dried with silica gel containing a moisture indicator. The silica gel was exchanged each day until the leaves were completely dried, in order to avoid DNA degradation caused by leaf decomposition (Weising et al. 2005).

All samples were identified based on species descriptions in Davies (2001) and the key of Slik et al. (2000). Unclear samples were rechecked by Dr. Brigitte Fiala. Two unclear samples were furthermore identified via ITS-sequencing. Corresponding herbarium specimens are stored in the herbaria of the Universities of Kassel (KAS) and Würzburg (WB), Leiden (L) and the IPK Gatersleben (GAT) (see Appendix A).

DNA isolation

The silica dried leaves (each measuring between 1 and 2 cm^2) were ground in a 2 ml tube together with two steel beads, using a FastPrep 120 homogenizer (Savant).

Total genomic DNA-isolation was carried out with the DNeasy Plant Kit (QIAGEN) according to the instructions of the manufacturer. One washing step was added to increase the quality of the DNA. Concentrations were estimated on 1% agarose gels stained with ethidium bromide. Samples showing difficulties in PCR amplification were subsequently purified via the QIAquick PCR purification Kit (QIAGEN) and resuspended in 50 µl 1x TE buffer.

Samples failing amplification were again isolated adding 0.01g PVP (Polyvinylpyrrolidone) per ml lysis buffer, to bind phenolic compounds. DNA stock solution was stored at -20 °C.

	Detected Sequence Variation	/	1	1	1	No	1	1	1	Yes	/	Yes	1	1
M. winkleriella	Sequences	/	1	1	1	Clearly readable	1	1	1	Clearly readable with re-designed sequencing primers	1	Clearly readable with re-designed sequencing primers	1	/
	PCR Amplification	Not tested	Not tested	Not tested	Not tested	Consistent	Not tested	Not tested	Not tested	Consistent	Not tested	Consistent with re-designed forward amplification primer	No	No
	Detected Sequence Variation	No	Detectable only on Licor	No	1	Yes	1	No	No	Yes	No	Yes	/	/
M. tanarius	Sequences	Not clearly readable	Clearly readable only on Licor	Not clearly readable	1	Clearly readable	Not clearly readable	Not clearly readable	Not clearly readable	Clearly readable with re-designed sequencing primers	Clearly Readable	Clearly Readable	/	/
	PCR Amplification	Consistent	Consistent	Consistent	No	Consistent	Inconsistent	Inconsistent	Consistent	Consistent	Consistent	Consistent	No	No
	Detected Sequence Variation	No	Detectable only on Licor	No	1	Yes	1	No	No	Yes	No	Yes	1	/
M. winkleri	Sequences	Not clearly readable	Clearly readable E only on Licor	Not clearly readable	/	Clearly readable	Not clearly readable	Not clearly readable	Not clearly readable	Clearly readable with re-designed sequencing primers	Clearly Readable	Clearly readable with re-designed sequencing primers	1	/
	PCR Amplification	Consistent	Consistent	Consistent	No	Consistent	Inconsistent	Inconsistent	Consistent	Consistent	Consistent	Consistent with re-designed forward amplification primer	No	No
	us Name	ccmp1	ccmp2	ccmp3	ccmp4	ccmp5	ccmp6	ccmp7	ccmp10	atp B-rbc L	trn∠-trn <i>F</i>	rpL16	trnD-trnT	trn S-trn F
	Loc	-	2	ю	4	2ı	9	7	80	თ	10	5	12	13

Table 2-1. The 13 different chloroplast regions tested for PCR amplification and the possibility of obtaining readable sequences and sequence variation for *M. winkleri*, *M. tanarius* and *M. winkleriella*. "/" is used to indicate where a test is not applicable. For *M. winkleriella* some PCR amplification were not tested if no sequence variation was detected in both the *M. winkleri* and *M. tanarius* samples.

Chloroplast microsatellites (Weising and Gardner 1999, Vogel et al. 2003)
 Chloroplast microsatellites (Xu et al. 2000, Bänfer et al. 2006)
 Chloroplast microsatellites (Taberlet et al. 1991, Jakob and Blattner 2006)
 Chloroplast microsatellites (Shaw et al. 2005)

Figure 2-1. Map of the study area indicating the sampling regions for *M. winkleri*, *M. tanarius*, *M. winkleriella*, *M. gigantea*, *M. diepenhorstii* and *M. pruinosa*.

PCR amplification and sequencing of non-coding chloroplast regions

In the chloroplast sequence analysis a subset of the sampled individuals was used:

- i 87 samples of *M. winkleri* from 32 locations, using two to five individuals per location, except in five locations where only one individual was available (see Appendix D).
- ii 13 individuals of *M. winkleriella* and two individuals of *M. gigantea*, one individual each of *M. diepenhorstii* and *M. pruinosa* were included as an outgroup (see Appendix D), as they are found in close positions to *M. winkleri* and *M. winkleriella* in the *Macaranga* haplotype network (Bänfer et al. 2006).
- iii 100 samples of *M. tanarius* (see Appendix F) comprising 80 individuals from Borneo, 17 from the Malay Peninsula and one individual each from Sumatra, Java and Australia. The Bornean individuals included in the chloroplast analysis were from 24 different sampling locations. Between three and five individuals per location were included in the analysis, except for three locations in which only one individual was available. For one sampling site where the three included individuals showed genetic variation, a further five individuals were integrated in the analysis.

Thirteen different chloroplast regions were checked for the possibility of amplification and sequencing and sequence variation (see Table 2-1). All primer sequences, including those for the loci that were not used, are listed in Appendix G.

Figure 2-2. Scaled map of rpL16 intron region based on Shaw et al. (2005). Proportions modified for *M. winkleri* individual 6462. IR B = inverted repeat B. Gene names in italics. Arrows show direction and relative position of the primer binding sites. Numbers refer to primer names in the text.

Locus	Primer	Purpose ⁴	Direction	Primer sequence 5´-3´
rpL16 ¹	rpL16F71	A&S	Forw	GCT ATG CTT AGT GTG TGA CTC GTT G
	rpL16-F2- PCR*	А	Forw	CTCATCGCTTTGCATTATCTGG
	rpL16F71-seq*	S	Forw	GATAGCGAAAGGAACCAGAAGAC
	rpL16R1516-seq*	S	Rev	ATACTAAATCATGGGATTTTTGAGATTT
	rpL16R1516	A&S	Rev	CCC TTC ATT CTT CCT CTA TGT TG
	rpL16R-seq2*	S	Rev	CGG GCG AAT ATT CAC TCT TT
atoB-rbcl ²	atpB-rbcL-F	А	Forw	GAAGTAGTAGGATTGATTCTC
	atpB-rbcL-F-seq*	S	Forw	TAG TAG GAT TGA TTC TCA
	atpB-rbcL-F-seq-mitte*	S	Forw	CTG CCA ATT TTC ACA TCT CGG
	atpB-rbcL-R-seq*	S	Rev	TGC TTT AGT CTC TGT TTG
	atpB-rbcL-R	А	Rev	CAACACTTGCTTTAGTCTCTG
comp5 ³	ccmp5F	A&S	Forw	TGTTCCAATATCTTCTTGTCATTT
Compo	ccmp5R	A	Rev	AGGTTCCATCGGAACAATTAT

Table 2-2. Amplification and sequencing primers for the three loci used in this study.

1. Chloroplast markers (Shaw et al., 2005).

2. Chloroplast markers (Xu et al., 2000; Baenfer et al., 2006).

3. Chloroplast markers (Weising and Gardner, 1999, Vogel et al., 2003).

4. A - Amplification, S - Sequencing, A&S - both Amplification and Sequencing.

* self-designed.

Three non-coding chloroplast regions were chosen: *rpL16*, *atpB-rbcL* and ccmp5. For consistent amplification some of the primers had to be redesigned using sequences of closely related species from the EMBL database (see below). Amplification and sequencing primers for these loci can be found in Table 2-2.

rpL16 intron

In the following description primer codes used in brackets behind the primer name refer to Figure 2-2 and Table 2-2, where the positions and sequence of the primers are given.

To both amplify and sequence *rpL16* intron in *M. tanarius* PCR primers *rpL16*F71 (1) and *rpL16*R1516 (2) were used.

24

The rpL16 region in *M. winkleri* and *M. winkleriella* is approximately 450-650bp longer than in *M. tanarius*, due to an AT-rich insertion. To get overlap in forward and reverse sequences, in addition to the forward and reverse PCR-primer (1, 2) another two sequencing primers were designed: rpL16F71-seq (3) and rpL16R1516-seq (4) on both sides of the AT-rich region (Figure 2-2).

In some *M. winkleri* individuals it was not possible to sequence with rpL16F71 (1). To sequence these individuals another internal reverse sequencing primer was designed: rpL16R-seq2 (5).

As amplification did not work for some *M. winkleri* and *M. winkleriella* individuals different combinations of primers were used to determine which primer contains mismatches. As *rpL16*F71-seq (3) and *rpL16*R1516-seq (4) and *rpL16*F71-seq (3) and *rpL16*R1516 (2) amplified in these individuals, it was determined that the primer showing mismatches is *rpL16*F71 (1). Another forward PCR primer, *rpL16*-F2-PCR (6), was used to replace the one showing mismatches. This primer was designed to bind in a conserved region, using published sequences of *Manihot esculenta*, *Carica papaya* and sequences of *M. winkleri* sequenced with *rpL16*R-seq2 (5).

atpB-rbcL

As locus *atpB-rbcL* showed mostly unreadable sequences in the species under study, the following sequencing primers were designed using a reasonably readable *Macaranga* sequence: atpB-rbcL-F-seq; atpB-rbcL-F-seq-mitte; atpB-rbcL-R-seq (see Table 2-2). All sequencing primers worked. Sequences using sequencing primers *atpB-rbcL*-F-seq and *atpB-rbcL*-F-seq-mitte were overlapping and could be combined; subsequently *atpB-rbcL*-R-seq was not used.

ccmp5

This region is a microsatellite region, which was used for the detection of substructure in the M. *tanarius* parsimony network. For sequencing only the forward primer was used. It was found to be sufficient to get the variable mononucleotide repeat that was the most informative part.

PCR amplifications were performed using a Gene Amp 9700 PCR System (PE Biosystems) thermal cycler and the following profiles:

For *rpL16*:

Initial denaturation at 95 °C for 3 min, followed by 30 cycles of 95 °C for 50 s, 50 °C for 1 min, 68 °C for 1 min 20 s, 70 °C for 8 min, the ramp from annealing temperature to elongation temperature was set to 50%.

For *atp*B-*rbc*L:

Initial denaturation at 95 °C for 5 min, followed by 28 cycles of 95 °C for 48 s, 56 °C for 1 min, 72 °C for 2 min, 72 °C for 7 min.

For ccmp5:

Initial denaturation at 95 °C for 5 min, followed by 35 cycles of 95 °C for 1 min, 59 °C for 1 min, 65 °C for 5 min, 65 °C for 4 min.

For all three markers, PCR amplifications were performed in a volume of 20 μ l, containing 2 to 10 ng of genomic template DNA, 1.13x buffer (containing 15 mM MgCl₂), 0.56 μ M each of forward and reverse primer, 0.11 mM of dNTPs, and 0.23 units of Taq DNA polymerase (QIAGEN). To decrease the formation of primer dimers 0.11x bovine serum albumin (BSA) were added. To facilitate the amplification of GC-rich regions and to increase the specificity (Varadaraj & Skinner 1994) 3% dimethyl sulfoxide (DMSO) and 1.13x Q-solution were added.

In the beginning, the amplicons were purified using Nucleofast 96 PCR plates (Macherey-Nagel), however this purification method resulted in poor sequencing. Therefore, PCR products were subsequently purified by QIAquick PCR purification Kit (QIAGEN), following the manufacturers instructions, and resuspended in 28 μ l warmed 1x TE buffer. Sequencing was performed either on a MegaBACE 1000 (Amersham Biosciences) or on an ABI 3730 XL (Applied Biosciences) capillary sequencer. Sequences will be submitted to EMBL GenBank to make them publicly available.

Sequence analysis and alignment

Sequences were manually edited and assembled into contig sequences using Sequencher 4.7 (Gene Codes Corporation). Sequence alignments were done manually in Se-Al v2.1 (Rambaut 2002). Three alignments were created:

- 1) An alignment for *M. tanarius*. *RpL16* and *atp*B-*rbc*L sequences were concatenated and combined into a single alignment.
- 2) An alignment for *M. winkleri* together with *M. winkleriella*, *M. gigantea*, *M. pruinosa*, and *M. diepenhorstii*, as these species were shown to be closely related to *M. winkleri* in Bänfer et al. (2006). Here *rpL16* and *atpB-rbcL* sequences were concatenated and combined in one alignment as well.
- 3) An alignment, consisting of the available database sequences of different *Macaranga* species, containing the intergenic spacer sequence *atpB-rbcL* together with the new *atpB-rbcL* sequences collected during this study (see Appendix H). This alignment is used in the phylogeographic analysis and to put the new sequences in a broader context.

27

The sequences of the microsatellite region ccmp5 were aligned in a separate alignment to determine the substructure in the samples of alignments 1 and 2.

2.1.2 Data analyses

Statistical parsimony networks based on the chloroplast sequence analyses

The software TCS v1.21 (Clement et al. 2000) was used to perform the statistical parsimony network calculations. TCS is a program that estimates genealogical relationships of the sequences. TCS collapses identical sequences into haplotypes (HT). The frequencies of the haplotypes and an absolute distance matrix are calculated for all pairwise comparisons of haplotypes in the sample. The probability of parsimony is calculated for pairwise differences until the probability exceeds 0.95. The maximum number of mutational connections between pairs of sequences justified by the parsimony criterion is associated with the 95% probability. TCS generates a graphical output file containing the resulting network, where every step represents one mutational step.

In all three alignments the regions that are particularly prone to homoplasy were excluded. In atpB-rbcL sequences, the first and second poly-T/A-repeat were shortened to the same length, as was a poly-A/T-repeat in rpL16. Indels were coded as single mutational steps. In the rpL16 alignment of *M. winkleri* together with *M. winkleriella*, *M. gigantea*, *M. pruinosa* and *M. diepenhorstii*, an AT-rich region in the sequence (between 450-650 bp) was excluded due to hypervariability and therefore unsafe alignment. Parsimony networks with 95% confidence limits were calculated in TCS for all three alignments. In the resulting networks the variation at the previously excluded microsatellite regions and the information of the ccmp5 marker was used to include the genetic diversity within the haplotypes, i.e. to manually create subhaplotypes (Bänfer et al. 2006). The network was re-drawn from the TCS output using Adobe Illustrator CS 11.0.0.

Neighbor-joining analysis

A phenetic analysis of *M. winkleri* and *M. winkleriella* alignment of loci *atpB-rbcL* and *rpL16* with the neighbor-joining cluster algorithm using PAUP v4.0b10 (Swofford 2002) was conducted based on pairwise maximum likelihood distances. The HKY model (Hasegawa et al. 1985) of sequence evolution was then used to compare positions of the root within *M. winkleri*, between a network and a distance-based approach.

Principal coordinate analysis

A principal coordinate analysis (PCoA) was conducted to get access to the genetic structure of the data by exploring and visualizing similarities and dissimilarities. The polymorphic nucleotide positions (without the mononucleotide repeat regions) of the sequences of *M. winkleri* and *M. tanarius* (only the Bornean samples to compare similar geographic scales

in both species) were converted to numeric codes (A = 1, C = 2, G = 3, T = 4, gap = 5). A pairwise genetic distance matrix was calculated for all individuals from the polymorphic sites of the sequences, where two regions can be either identical (= 0) or different (= 1) using GenAlEx 6 (Peakall & Smouse 2006). These distances are then summed over all of the sites. For all *M. winkleri* and *M. tanarius* the PCoA was computed on these distance matrices using GenAlEx 6.

Assignment analysis with chloroplast sequences

Two different Bayesian assignment approaches were used to infer population structure of *M. winkleri* and *M. tanarius* using the programs STRUCTURE 2.3.3 (Pritchard et al. 2000) and INSTRUCT (Gao et al. 2007) on the Computational Biology Service Unit of Cornell University (http://cbsuapps.tc.cornell.edu/index.aspx). The matrices, with numerically coded polymorphic nucleotide positions (see Principal coordinate analysis), were used as input files.

STRUCTURE implements a model-based clustering method assuming Hardy-Weinberg equilibrium and linkage equilibrium within populations. In STRUCTURE a model is assumed in which there are K populations. Each K is characterized by a set of allele frequencies at each locus. The individuals in the samples are probabilistically assigned to K populations. Each individual can be assigned to one or several populations according to the individual's genotypes with corresponding frequencies. INSTRUCT is an alternative clustering program to STRUCTURE that does not assume Hardy-Weinberg equilibrium within populations. Results from both of these programs were compared.

STRUCTURE runs were performed with 1,000,000 iterations and a burn-in period of 250,000 iterations without any prior information on the population of origin of each sampled individual. STRUCTURE requires an additional admixture burn-in period, which was set to 125,000 iterations. Using this admixture burn-in as a starting point for the non-admixture model adds stability and is the suggested methodology in the current version of STRUCTURE. In the non-admixture model, individuals are assumed to be drawn purely from one of K populations, in the admixture model individuals are allowed to have mixed ancestry.

The non-admixture model was used, as we are dealing with plastid sequences, namely chloroplast data, and thus do not expect mixed ancestry. Ten independent simulations were performed in which the number of populations tested, ranged from K = 1 to K = 10.

INSTRUCT runs were performed with the same number of iterations, burn-in, and range of K without prior information also using the non-admixture model, only without the addition of the initial admixture burn-in period.

Determining the number of populations (K)

In STRUCTURE the implemented model choice criterion to detect the true K (or the optimal K) is an estimate of the posterior probability of the data for a given K, Pr(X|K) (Pritchard et al. 2000). This value is used to produce the log likelihood of the data at each step of the Markov chain Monte Carlo (MCMC), denoted $\ln Pr(X|K)$. The mean and variance of these values are computed and half the variance is subtracted from the mean. This gives the model choice criterion which will be referred to as L(K). The number of populations (i.e. the optimal K) is often identified using the maximal value of L(K) returned by STRUCTURE (Falush et al. 2003). Therefore all L(K) for K = 1 to K = 10 over all replicate runs of STRUCTURE were checked for the highest value for *M. winkleri* and *M. tanarius*. Furthermore Falush et al. (2003) proposed that the first value in the plateau phase of the mean L(K) is often the best K. Therefore the average L(K), m(L(K)) and the standard error of ten replicate runs of STRUCTURE were calculated and plotted for the non-admixture model for both species under study using Excel 2004 (Microsoft).

Another method to choose K is the calculation of Delta K (Δ K). This is a computational method to find the first K in the plateau phase, and thus less subjective. Δ K is calculated based on the second-order rate of change of likelihood to choose the optimal number of K (Evanno et al. 2005). Δ K is the mean of the absolute values of L''(K) averaged over the ten replicate runs divided by the standard deviation of L(K),

$$\Delta K = \frac{m \left| L''(K) \right|}{s[L(K)]} ,$$

where, $L'(K) \approx L(K) - L(K-1)$ and $|L''(K)| \approx |L'(K+1) - L'(K)|$.

INSTRUCT can infer the optimal number of subpopulations underlying a sample via the deviance information criteria (DIC) (Spiegelhalter et al. 2002). The DIC value is a direct indication of how well the model fits the data. The larger the value of the DIC, the less well the model fits the data. Therefore, the K, that produced the smallest DIC value was chosen (Gao et al. 2007). In addition, the DIC values were averaged over the replicate runs per K and plotted with referring standard deviation. As with the STRUCTURE results the plot was examined to find the first K in the plateau phase. For an objective determination a second order rate of change was calculated for DIC values similar to the ΔK of STRUCTURE, (denoted ΔK DIC).

For each K (K = 1 to K = 10) the replicate run with the best L(K) in STRUCTURE and the smallest DIC value in INSTRUCT was chosen. For *M. winkleri* and *M. tanarius*, bar plots for the different numbers of clusters (K) were created in Excel, illustrating the assignment of each individual to the different clusters. This was done to visualize the results of the STRUCTURE and INSTRUCT runs for the non-admixture model. A visual inspection was performed for essentially empty clusters, i.e. clusters where individuals are assigned with very low frequency.
Analysis of molecular variance

Genetic structure was estimated through an analysis of molecular variance (AMOVA) (Excoffier et al. 1992) using GenAlEx 6. After 999 random permutations a check of the significance of the variance components was performed.

For both *M. winkleri* and *M. tanarius* two regions were assumed (region 1: Sabah; region 2: Sarawak/Brunei) as proposed by the PCoA for *M. winkleri*. Additionally, AMOVA was performed for *M. winkleri* for the individuals west and east of the Crocker Range and using three populations following the administrative borders, i.e. Sabah, Brunei and Sarawak, which also represent different geographical regions of Borneo.

Haplotype and nucleotide diversity analysis

Multiple intra-population metrics were calculated using Haplotype Analysis v 1.05 (Eliades & Eliades 2009) to compare the genetic structure between *M. winkleri*, *M. tanarius* and *M. winkleriella*, distinguishing Sabah from Sarawak/Brunei. The intra-population metrics that were calculated are listed below.

The **number of haplotypes per population**, to compare the amount of different haplotypes for Sabah and Sarawak/Brunei.

The number of private haplotypes, or the haplotypes that only occur in one region.

The **number of effective haplotypes** and the **haplotype diversity**. The effective number of haplotypes is the inverse probability that two randomly chosen haplotypes are identical.

The **haplotypic richness**, denoted R_h , is the number of haplotypes expected in each population for a rarefied sample size, i.e. the size of the smallest population of the dataset. The haplotypic richness rarefied for the sample size was also calculated for the mitochondrial sequence data of *M. winkleri*'s obligate ant partner *Crematogaster* msp. 8 (Braasch et al. 2008) also distinguishing Sabah from Sarawak/Brunei.

The **genetic diversity** (Nei 1973) presents the amount of genetic diversity within each population (region) ranging from 0 (= no variation) to 1.

Previous studies provided evidence that the biogeography of plants and animals on Borneo is strongly influenced by the occurrence of a central mountain range (Bänfer et al. 2006, Raes et al. 2009). Therefore, these calculations were also performed for individuals both west and east of the Crocker Range, the northern extension of the central mountain range, for *M. winkleri* and *M. tanarius*. For *M. tanarius* one calculation was performed with the information at the microsatellite loci and one without it.

Two additional intraspecific metrics were calculated using DnaSP v5.10.01 (Librado & Rozas 2009) for *M. winkleri*, *M. winkleriella* and *M. tanarius*.

The **haplotype diversity**, which summarizes information on the number and frequency of different variants at a locus regardless of their sequence relationships.

The **nucleotide diversity**, a weighted sequence divergence between individuals in a population, regardless of the number of different haplotypes.

DnaSP considers gaps in the alignment as missing data; therefore gaps were recoded as single mutation events. For *M. tanarius* the variation at the microsatellite loci was included. Again two calculations were performed, one calculation for all samples and the second was restricted to the individuals from Borneo for better comparability with *M. winkleri*. For *M. winkleri* the haplotypic and nucleotide diversity was also calculated separately for Sabah and for Sarawak/Brunei, as the haplotypic patterns for these two regions show clear differences.

Analysis of spatial-genetic correlation

A Mantel test was performed to look for the existence of a correlation between the geographic and genetic distances using GenAlEx 6. A pairwise individual-by-individual geographic distance using the coordinates of longitude and latitude and a pairwise genetic distance is calculated from the polymorphic regions of the sequences for all *M. winkleri* individuals and again for *M. winkleri* individuals west and east of the Crocker Range. For *M. tanarius* one correlation including only the Bornean individuals and another including all individuals was calculated. In all 9,999 random permutations were performed to check the null hypothesis, that there is no relation between the two matrices.

The results of the Mantel test are illustrated in a scatter plot combining histogram information to illustrate relative data density. The test results are aggregated into fixed sized bins along the geographical distance axis, using frequency analysis. The size of each data point is then relative to the size of each bin. In addition to relative sizes, different colours are used to indicate relevant subsets of the data points.

Regression analysis was performed on each set of Mantel test data. The resulting regression lines are shown directly on the corresponding scatter graph. The corresponding coefficient of determination (\mathbb{R}^2) and the correlation coefficient (\mathbb{R}) are presented for each set of matrices. The correlation coefficient ranges from -1 to 1, while -1 is the highest negative correlation possible, 1 the highest positive correlation and a value of 0 implies that there is no linear correlation between the variables.

2.2 Results of the chloroplast analysis

2.2.1 Sequence analysis and alignment

atpB-rbcL

Sequencing of the *atpB-rbcL* region in 100 *M. tanarius* individuals resulted in sequences with lengths from 799 to 801 bp. The *M. tanarius* alignment has a length of 801 bp. Four variable base positions each with two different bases occurred and additionally an indel of one nucleotide. Three variable microsatellite regions were detected.

Sequencing of the *atpB-rbcL* region in 87 *M. winkleri* individuals resulted in sequences with lengths from 788 to 792 bp. The *M. winkleri* alignment has a length of 801 bp. Two variable base positions each with two different bases occurred and additionally an indel of four nucleotides. Five variable microsatellite regions were detected. Inclusion of 13 *M. winkleriella*, one *M. diepenhorstii*, two *M. gigantea* and one *M. pruinosa* sequence leads to an alignment of 825 bp length. One additional indel of 24 bp and 16 additional variable base positions each with two different bases occurred.

Figure 2-3. Chloroplast haplotype network, including subhaplotypes for *M. tanarius* calculated with TCS. The circle size is representative of the number of individuals in which the haplotype was found. Black dots represent missing intermediates.

rpL16

The length of the *M. tanarius* alignment in rpL16 is 1,023 bp, the sequence lengths were between 1,020 and 1,023 bp. Five variable base positions each with two different bases occurred. One variable microsatellite region was detected.

Sequencing of the *rpL16* region in 87 *M. winkleri* individuals resulted in sequences with lengths of 1,281 to 1,475 bp. The *M. winkleri* alignment had a length of 1,595 bp. 22 variable base positions each with two different bases. Eight variable microsatellite regions were detected.

Inclusion of 13 *M. winkleriella*, one *M. diepenhorstii*, two *M. gigantea* and one *M. pruinosa* sequence lead to an alignment of 1,872 bp length. Six additional variable base positions each with two different bases occurred.

Ccmp5

The length of the *M. tanarius* alignment for *ccmp5* is 20 bp. Length of the sequences were between 17 and 20 bp, thus, four sequence variants could be found, each of which vary in the length of the T/A-repeat.

The alignment of *M. winkleri* together with 13 *M. winkleriella*, one *M. diepenhorstii*, two *M. gigantea* and one *M. pruinosa* sequences leads to an alignment of 20 bp. While all *M. winkleriella* individuals show identical sequences, for *M. winkleri* three of the four variants of the T/A-repeat that are found, in *M. winkleri* also occur in the other included *Macaranga* species.

2.2.2 Statistical parsimony networks based on the chloroplast sequence analyses

Network of Macaranga tanarius

For the alignment of the 100 *M. tanarius* individuals (see Appendix F) TCS calculated a 95% parsimony connection limit of 18 steps resulting in a network of seven HTs. Inclusion of the previously excluded microsatellite regions resulted in subhaplotypes (sequence data see Table 2-3) for HT 1, 3 and 6 (Figure 2-3). Haplotypes 1a, 2, 3a and 4 are found in western Sabah and HT 5 - HT 7 exclusively occurred on Sumatra, Malay Peninsula or Australia. HT 1a comprises 73 individuals occurring in western and eastern Sabah and Sarawak/Brunei (Figure 2-4), but in central Sabah HT 1c occurs. HT 1b comprises three individuals from Samboja, Kalimantan. HT 2 and 3a are found in Kota Belud, Sabah. HT 3b occurs on Java. HT 6a comprises 15 individuals, HT 6b three individuals. Four HTs were not found in the analysed individuals and occur as missing intermediates, three missing intermediates are between HT 1a (Borneo) and HT 7 (Australia) and one between HT 1a (Borneo) and HT 5 (Sumatra).

Region in the se	equence	Haplotypes showing the motif
atpB-rbcL 1st T-stretch:	TTTTTTTTT TTTTTTTTT-	3b;4;5;6a;6b;7 1a;1b;2;3a
atpB-rbcL 2nd T-stretch:	СТТТТТТТТТТ СТТТТТТТТТТ-	5;7 1a;2;3a;3b;4;6a;6b
<i>atp</i> B- <i>rbc</i> L 3rd T-stretch:	СТТТТТТТТ СТТТТТТТТ-	1a;1b;2;3a;3b;4;7 5;6a;6b
<i>rpL</i> A-stretch:	GAAAAAAAAAAA GAAAAAAAAAAA- GAAAAAAAAAA GAAAAAAAA	1a;2;3a;3b;4 1b; 7 6a; 6b 5
ccmp5 T-stretch:	CTTTTTTTTTTTT CTTTTTTTTTTT- CTTTTTTTTTT	1a; 2; 3a; 3b; 4; 6 b 6a 1c 5 7

Table 2-3. Sequence information of the variable microsatellite regions in *M. tanarius*.

Figure 2-4. Geographical distribution of the chloroplast haplotypes of *M. tanarius*. The colour of each population circle corresponds to the HT colour of Figure 2-3.

Network of Macaranga winkleri, M. winkleriella and related Macaranga species

For the alignment of 104 individuals (see Appendix D) comprising 87 *M. winkleri* individuals, 13 *M. winkleriella* individuals, two individuals of *M. gigantea*, and one individual each of *M. diepenhorstii* and *M. pruinosa*, TCS calculated a 95% parsimony connection limit of 18 steps. The network includes 36 HTs, which were combined in HT groups for a clearer arrangement, when individuals from the same or similar area are one or two mutational steps apart. This resulted in 16 HT groups (Figure 2-5). Sequence information of the microsatellite regions is not included in the network and can be seen in Appendix E. In the total network 62 HTs were not found in the analysed individuals and occur as missing intermediates. Considering only the *M. winkleri* individuals 25 missing intermediates are detected. The most common HT group is number 1, comprising 17 individuals occurring in eastern and central Sabah (Figure 2-6).

Figure 2-5. Chloroplast haplotype network of *M. winkleri* and *M. winkleriella* with closely related *Macaranga* individuals as outgroups. Shapes indicate the different species. The size of the circles and squares indicate the number of individuals in which the haplotype was found. Colours represent the haplotype groups. Black dots represent missing intermediates. Double slash with a number indicates the number of missing intermediates. * marks the root of the network for the ingroup. *2 marks the position of the root using the neighbor-joining cluster algorithm.

Figure 2-6. Geographical distribution of the chloroplast haplotypes of *M. winkleri, M. winkleriella* and related *Macaranga* individuals. The colour of each population circle corresponds to the HT colour of Figure 2-5.

Figure 2-7. Statistical parsimony network of different *Macaranga* species based on the *atpB-rbcL* intergenic spacer. Black dots show missing intermediates. Numbers give the HT number. Circle size indicates the number of individuals in which the haplotype was found.

Within *M. winkleri* the highest number of mutational steps can be found between HT 2 and HT 11 (29 steps). Between *M. winkleri* and *M. winkleriella* there are at least nine mutational steps, between *M. winkleri* and *M. diepenhorstii at least* eight mutational steps, between *M. winkleri* and *M. pruinosa* at least eight steps, and between *M. winkleri* and *M. gigantea* at least 14 steps. The putative root of *M. winkleri* in the haplotype network is located between *M. winkleri*, *M. winkleriella* and the outgroup species. The putative root using the neighborjoining cluster algorithm is located between individuals from Sabah and Sarawak/Brunei.

HT group 1 - HT group 3 are the groups found in Sabah, all the other HT groups occur in Sarawak/Brunei, or on the Malay Peninsula.

Network based on sequences of the *atpB-rbcL* intergenic spacer of different *Macaranga* species

TCS calculated a 95% parsimony connection limit of 12 steps using EMBL database sequence information of different *Macaranga* species on locus *atpB-rbcL* combined with *atpB-rbcL* sequences from this study. 123 individuals from 11 different *Macaranga* species from different regions were included (see Appendix H).

HT1 and HT2 comprise most of the *M. winkleri* individuals, 53 and 30 individuals, respectively (Figure 2-7). HT 7 comprises all *M. winkleriella* individuals. HTs 14, 15 and 16 are shared between different species. HT 6 has the most connections, being connected five times, resulting in three loops. These loops could not be resolved using assumptions from coalescence theory (Castelloe & Templeton 1994), as neither the microsatellite information nor the calculation of a neighbor-joining tree (data not shown) yields information that can be used to resolve these loops. The minimum number of mutational steps between *M. winkleri* and *M. pruinosa*, *M. winkleri* and *M. recurvata* and *M. winkleri* and *M. diepenhorstii* is one step.

2.2.3 Neighbor-joining analysis

The neighbor-joining tree shows a clear separation of Sabah and Sarawak/Brunei sequences in *M. winkleri*, except for one individual, 6875 from Brunei, which falls into the Sabah clade (Appendix A).

			Axis	
Species		1	2	3
M. winkleri		75.95%	9.69%	5.18%
	Cumulative:	75.95%	85.63%	90.81%
M. tanarius		33.76%	33.76%	32.49%
	Cumulative:	33.76%	67.51%	100.00%

Table 2-4. Principal coordinate analysis (PCoA) of Macaranga winkleri and M. tanarius. Percentage of variation explained by the first three axes.

Figure 2-8. PCoA plot of the genetic distances of *M. winkleri*. Three clear groupings are differentiated, Sabah, Sarawak/Brunei and the intermediate HT group 4 (made up of the single individual 4396).

Figure 2-9. PCoA plot of the genetic distances of Bornean *M. tanarius* from Brunei, Kalimantan, Sarawak, western Sabah, central Sabah and eastern Sabah. All but three individuals, have the same position in the projection.

2.2.4 Principal coordinate analysis

Macaranga winkleri

In the PCoA of *M. winkleri* the first two axes account for roughly 86% of the variance (Table 2-4). The first axis explains most of the variance (75.95% variance) and the PCoA plot (Figure 2-8) clearly visualizes the existence of two groups: The individuals of Sabah form one group, the individuals of Sarawak/Brunei the other group. The individual that is in between represents HT4 in Figure 2-5 and Figure 2-6.

Macaranga tanarius

In the PCoA for *M. tanarius*, all but three individuals from western Sabah have the same position in the projection (Figure 2-9).

2.2.5 Assignment analysis in *M. winkleri* and *M. tanarius* assuming the non-admixture model

The highest L(K) in *M. winkleri* is detected for K = 6 and in *M. tanarius* the highest L(K) occurs for K = 7 (Table 2-5). The plot of m(L(K)) as a function of K (K = 1 to K = 10) is shown in Figure 2-10A for *M. winkleri* and in Figure 2-11A for *M. tanarius*.

The first K value in the plateau phase, is K = 2 in *M. winkleri* and K = 1 in *M. tanarius* (Figure 2-10A & Figure 2-11A). The calculation of ΔK was used, and the highest value for ΔK is detected for K = 2 in both species (Figure 2-10B & Figure 2-11B).

The smallest DIC value for *M. winkleri* is found for K = 9 and for *M. tanarius* it is detected for K = 2 (Table 2-5). The first K in the plateau phase of the plots of the DIC values averaged over the ten replicate runs of INSTRUCT using the non-admixture model gives K = 2 for

		STRUCTURE			INSTRUCT	
	K with highest log probability of all replicate runs	First K in the plateau phase of the plot of the Mean-Log- Likelihood	K with the highest value for ΔK	K showing the smallest DIC value	First K in the plateau phase of the DIC values	K with the highest value for ΔK DIC
M winkleri	K=6	K=2	K=2	K=9	K=2	K=2
M. tanarius	K=7	K=1	K=2	K=2	N/D	K=2

Table 2-5. *Macaranga winkleri* and *M. tanarius*. Best K values determined with different methods assuming the non-admixture model using STRUCTURE and INSTRUCT.

N/D - Not Discernable

Figure 2-10. Plots for the determination of the optimal K value in *M. winkleri* for all individuals using the non-admixture model.

A) The log probability L(K) averaged over the ten replicate runs m(L(K)) of STRUCTURE. Vertical bars indicate standard deviations.

B) To assess the number of groups (K) supported by the analysis with STRUCTURE, the second order rate of change in the log-likelihood (ΔK) was calculated.

C) The DIC values averaged over the ten replicate runs of INSTRUCT. Standard deviations are indicated by the use of vertical bars. For nearly all number of groups (K) the magnitude of the standard deviations are too small to be seen at this scale.

D) To assess the number of groups (K) supported by the analysis with INSTRUCT, the second order rate of change in the DIC was calculated (ΔK DIC).

M. winkleri and is not discernable for *M. tanarius* (Figure 2-10C & Figure 2-11C). The objective calculation of ΔK DIC indicates an optimal K of 2 for both *M. winkleri* and *M. tanarius* (Figure 2-10D & Figure 2-11D).

Bar plots of the studied *M. winkleri* individuals were created to visualize the STRUCTURE and INSTRUCT results for the non-admixture model (see Figure 2-12) of the runs with the highest L(K) in STRUCTURE and the lowest DIC in INSTRUCT each for K = 2 to K = 10, with the same order of the individuals (see Appendix I).

Figure 2-11. Plots for the determination of the optimal K value in *M. tanarius* for all individuals using the non-admixture model.

A) The log probability L(K) averaged over the ten replicate runs m(L(K)) of STRUCTURE. Vertical bars indicate standard deviations.

B) To assess the number of groups (K) supported by the analysis with STRUCTURE, the second order rate of change in the log-likelihood (ΔK) was calculated.

C) The DIC values averaged over the ten replicate runs of INSTRUCT. Standard deviations are indicated by the use of vertical bars. In nearly all number of groups the magnitude of the standard deviations are too small to be seen at this scale.

D) To assess the number of groups (K) supported by the analysis with INSTRUCT, the second order rate of change in the DIC was calculated (ΔK DIC).

For *M. tanarius* the bar plots for INSTRUCT K = 2, because it shows the smallest DIC value and for STRUCTURE K = 7, because it shows the highest L(K), are illustrated in Figure 2-13.

Comparing the STRUCTURE and INSTRUCT bar plots for the non-admixture model in *M. winkleri* in each K, using the best run per K it can be seen that:

-K = 2 Two clear clusters are created, one for Sabah, the other one for Sarawak/Brunei. STRUCTURE and INSTRUCT give mostly the same result, but individual 4396 (HT4) is assigned with high frequency to Sabah by STRUCTURE and to cluster Sarawak/Brunei by INSTRUCT.

Figure 2-12. *Macaranga winkleri*. The graph represents the bar plot of the run with the highest likelihood of STRUCTURE for a number of populations (K), and the run of INSTRUCT that showed the lowest deviance information criterion (DIC), assuming the non-admixture model. Individuals are in the same order in all bar plots (Appendix I). The * indicates individual 4396 (HT4) from Brunei.

-K = 3 STRUCTURE and INSTRUCT give very similar results, just slightly differing in frequency for some individuals.

-K = 4 INSTRUCT in contrast to STRUCTURE is further subdividing the samples from Sarawak.

-K = 5 both INSTRUCT and STRUCTURE put individual 4396 (HT4) from Brunei in a separate cluster.

-K = 6 STRUCTURE is subdividing the Sarawak population, INSTRUCT is detecting only five populations as it is not detecting the Sarawak subpopulations which it was creating in K = 5.

-K = 7 STRUCTURE further subdivides the Sabah cluster. INSTRUCT gives nearly the same results as for K = 5, only individual 4396 (HT4) is assigned with roughly 30% to a sixth cluster.

-K = 8 STRUCTURE does not subdivide the Sabah cluster and assigns most individuals to five different clusters, individual 4396 (HT4) and individual 6566 from Northern Sarawak (Lambir) are assigned approximately equally to each of three remaining clusters. For INSTRUCT the same five populations are detected as for K = 6 (INSTRUCT).

-K = 9 STRUCTURE gives mostly the same results as for K = 8 only that the subdivision of the Sabah cluster which was shown in K = 7, and lost in K = 8 is again detected. INSTRUCT gives a very similar result to K = 7, detecting mainly five populations. Individual 4396 (HT4) is assigned with roughly 60% to a sixth cluster and with 40% to a seventh cluster, that is to say that two clusters are completely empty.

-K = 10 assigns individuals with high percentage to four clusters. Many individuals of Brunei are assigned with equal probability to another four clusters. Individual 4396 (HT4) and individual 6566 from Northern Sarawak (Lambir) are assigned to the latter plus another one. So in total nine clusters are created by STRUCTURE. INSTRUCT puts the individuals in mostly four clusters. Individual 4396 (HT4) is put into another three clusters, so in total seven clusters are created.

Both STRUCTURE and INSTRUCT put each of the 80 Bornean *M. tanarius* individuals with approximately the same frequency into the number of assumed clusters (Figure 2-13). This is indicative of a group with little or no genetic differentiation, that is, only one major cluster.

Figure 2-13. *Macaranga tanarius*. Assuming no admixture. Exemplarily chosen bar plots of K for: A) the highest L(K) and B) the smallest DIC value.

Species	Population	N ¹	A ²	P ³	N_e ⁴	R_h⁵	H_e ⁶
M. winkleri	Sabah	46	8.0	8.0	3.69	3.16	0.74
	Sarawak/Brunei	41	22.0	22.0	10.57	7.28	0.93
	Mean:	43	15.0	15.0	7.13	5.21	0.84
M. tanarius	Sabah	66	4.0	3.0	1.10	0.50	0.09
	Sarawak/Brunei	11	1.0	0.0	1.00	0.00	0.00
	Mean:	39	2.5	1.5	1.05	0.25	0.04
M. tanarius*	Sabah	66	5.0	4.0	1.13	0.67	0.12
	Sarawak/Brunei	11	1.0	0.0	1.00	0.00	0.00
	Mean:	39	3.0	2.0	1.07	0.33	0.06
M. winkleriella	Mulu (Sarawak)	13	3.0	3.0	1.86	2.00	0.50

Table 2-6. Intra-population genetic diversity values for *M. winkleri*, *M. tanarius* and *M. winkleriella*, distinguishing Sabah from Sarawak/Brunei rarefied for a sample size of 11.

¹ Sample size in each population.

² Number of haplotypes detected in each population.

³ Number of private haplotypes, (= haplotypes that occur only in one region).

⁴ Effective number of haplotypes (inverse probability that 2 randomly chosen haplotypes are identical).

⁵ Haplotypic richness (= number of haplotypes expected in each population for a rarefied sample size, here, i.e. the size of the smallest population of the dataset.

 6 Genetic diversity (Nei's index of genetic diversity (H_e) estimated without bias (Nei, 1973) ranging from zero (no diversity) to one, presents the amount of the diversity within each population.

* Indicates that microsatellite information was included.

Table 2-7. Intra-population genetic diversity values for *M. winkleri* and *M. tanarius* distinguishing samples west and east of the Crocker Range (the haplotypic richness was rarefied for a sample size of 28).

Species	Population	N^1	A ²	P ³	N_e ⁴	R_h⁵	H_e ⁶
M. winkleri	West of Crocker Range	44	23.0	22.0	11.52	15.75	0.93
	East of Crocker Range	43	8.0	7.0	3.62	5.26	0.74
	Mean:	44	15.5	14.5	7.57	10.50	0.84
M. tanarius*	West of Crocker Range	49	4.0	3.0	1.13	1.71	0.12
	East of Crocker Range (Sabah)	28	2.0	1.0	1.07	1.00	0.07
	Mean:	39	3.0	2.0	1.10	1.36	0.10

* Indicates that microsatellite information was included.

2.2.6 Analysis of molecular variance

Discerning the regions Sabah and Sarawak/Brunei for the *M. winkleri* samples, 81% of the variation are detected among these two regions in *M. winkleri* and 19% within these regions, (P = 0.001). When the same two regions in *M. tanarius* are discerned, no significant result can be obtained, but all the haplotypic variation is found in western Sabah.

For *M. winkleri* individuals west and east of the Crocker Range the percentage of molecular variation detected among the populations was 75% and 25% within the populations (P = 0.001). Discerning three populations of *M. winkleri* along the administrative borders, i.e. Sabah, Sarawak and Brunei, 83% of the variation was detected among the populations and 17% within the populations (P = 0.001).

2.2.7 Haplotype and nucleotide diversity analysis

To better analyse the intra-population diversity, several genetic diversity metrics were calculated using Haplotype analysis v1.05. These metrics are summarized in Table 2-6 and Table 2-7 and are further described in this section.

For *M. winkleri* 22 haplotypes are detected for the Sarawak/Brunei population and eight haplotypes for the Sabah population. All of the haplotypes for *M. winkleri* are private haplotypes (22 for Sarawak/Brunei and eight for Sabah). For *M. tanarius* one haplotype was found in Sarawak/Brunei, while four haplotypes are detected in Sabah, three of which are private.

For *M. winkleri* the effective number of haplotypes is 10.57 for Sarawak/Brunei. This is roughly three times the effective number of haplotypes for Sabah, 3.69. Conversely, the effective number of haplotypes for *M. tanarius* is similar in both Sarawak/Brunei, 1.00, and Sabah, 1.10.

The mean value of the haplotypic richness (R_h), rarefied for a sample size of 11, is 5.21 in *M. winkleri*, while for *M. tanarius* it is 0.25 (Table 2-6). The unbiased genetic diversity index (Nei 1973) presents the amount of genetic diversity within each population ranging from 0 (= no variation) to 1. Total genetic diversity for *M. winkleri* (0.80) is 16 times the value of *M. tanarius* (0.05).

In order to distinguish regional haplotypic richness individual calculations were performed for both Sabah and Sarawak/Brunei for *M. winkleri* these are 3.16 and 7.28, respectively. The same regional calculation was performed for the *Crematogaster* msp. 8 sequence data (Braasch 2008). The haplotypic richness was 3.18 in Sabah and 9.04 in Sarawak/Brunei. Considering genetic diversity west and east of the Crocker Range (Table 2-7), the rarefied haplotypic richness for *M. winkleri* is approximately two and a half times west compared to east of the mountain range, while in *M. tanarius* the values are in a similar range west and east of the Crocker Range.

Table 2-8. Intraspecific values for haplotype and nucleotide diversity for all *M. winkleri*, *M. tanarius* and *M. winkleriella* samples. These values were also calculated for *M. tanarius* with only Borneo, for *M. winkleri* with only Sabah and for *M. winkleri* with only Sarawak/Brunei.

Species	Samples	Hd	π [%]	Category of Hd #	Category of π#	Interpretation #
M. winkleri	all individuals	0.914 (±0.015)	0.520 (±0.022)	High Hd	High π	1
M. tanarius	all individuals*	0.449 (±0. 058)	0.065 (±0.010)	Low Hd	Low m	2
M. winkleriella	all individuals	0.385 (±0.132)	0.021 (±0.007)	Low Hd	Low π	2
M. tanarius	only Borneo*	0.167 (±0,056)	0.010 (± 0.003)	Low Hd	Low π	2
M. tanarius	only Borneo	0.074 (±0.040)	0.004 (±0.002)	Low Hd	Low π	2
M. winkleri	only Sabah	0.745 (±0,031)	0.063 (±0.007)	High Hd	Low π	3
M. winkleri	Sarawak / Brunei	0.928 (±0,026)	0.358 (±0.018)	High Hd	Low π	3

Categories and implications (#) after Lowe et al. (2004): Haplotype and nucleotide diversity is low if < 0.5 and high if > 0.5.

Behind the values in brackets the standard deviation is shown.

Asterisk indicates that microsatellite information was included. Numbers in column "Interpretation" are deciphered below the table.

Hd = haplotype diversity

 π = nucleotide diversity

1. Large stable population with long evolutionary history. Secondary contact between differentiated lineages.

2. Recent population bottleneck. Founder effect with single or few organelle lineages.

3. Bottleneck followed by rapid population growth and mutation accumulation.

Genetic vs. geographic distance M. winkleri

Figure 2-14. Plot of genetic vs. geographic distance. Each dot represents one individual of *M. winkleri*. The lines are results of regression analyses. This figure illustrates a combination of a histogram and a scatter plot. Each point in the scatter plot represents one bin of size five along the geographical distance axis and the size of each point is determined by the number of pairwise comparisons in the corresponding bin as specified in the legend.

Abbreviations in the legend as follows: Sab = Sabah, Sar = Sarawak, Bru = Brunei, HT gr = Haplotype group, w = west, e = east.

Haplotype diversity (Hd) and nucleotide diversity (π) were calculated in DnaSP for *M. winkleri*, *M. winkleriella*, and *M. tanarius*. In both measurements, *M. winkleri* has the largest genetic diversity and *M. winkleriella* the smallest (Table 2-8).

When considering only the samples from Borneo, to which *M. winkleri* is endemic, Hd is five times higher in *M. winkleri* than in *M. tanarius* (including the microsatellite information), while π is 50 times higher.

The haplotype and nucleotide diversity is categorized as either low or high, which then allows for the assigned interpretation of the population history, according to Lowe (2004,p. 173). Both categorizations as well as the corresponding interpretation are shown in Table 2-8.

2.2.8 Analysis of spatial genetic correlation

The Mantel test for all samples of *M. winkleri* (Figure 2-14) shows a positive correlation. The coefficient of determination is $R^2 = 0.540$ and the correlation coefficient is R = 0.735 between geographic and genetic distance. The probability that there is no relation between the matrices using 9,999 random permutations is P < 0.001. Considering only the *M. winkleri* individuals west of the Crocker Range, the correlation between geographic and genetic distance is positive ($R^2 = 0.346$; R = 0.588; P < 0.001). *Macaranga winkleri* individuals east of the Crocker Range also show a positive correlation between geographic and genetic distance ($R^2 = 0.163$; R = 0.404, P < 0.001).

The Mantel test for the Bornean individuals of *M. tanarius* shows no significant correlation (P = 0.272). When the *M. tanarius* individuals from Malay Peninsula, Java, Sumatra and Australia are included, the Mantel coefficient of determination is $R^2 = 0,782$ (R = 0.884) and the probability is P < 0.001 (Figure 2-15).

The use of relative sizes (based on frequency analysis) in the scatter plot helps to better understand the calculated regression lines. The larger sized points represent a weighting in the regression analysis of multiple data couples having with the same relationship between geographic and genetic distance.

When visualized in this way, these weighting clusters clearly illustrate the nature of the slope of the regression line. Otherwise, what are clearly statistical outliers would appear equally weighted with higher density data, and it would not be clear visually why these appear to be ignored by the regression analysis.

Figure 2-15. Plot of genetic vs. geographic distance for *Macaranga tanarius*. Each dot represents one individual of *M. tanarius*. Individuals from Sumatra, Java, Malay Peninsula and Australia are included. The line is the regression line. This figure is a combination of a histogram and a scatter plot to better illustrate the large number of comparisons with the same relationship between geographic and genetic distance. Each point in the scatter plot represents one bin of size ten along the geographical distance axis and the size of each point is determined by the number of pairwise comparisons in the corresponding bin as specified in the legend.

Abbreviations in the legend as follows: MP = Malay Peninsula, Sab = Sabah, Ka = Kalimantan, Sar = Sarawak, Bru = Brunei.

2.3 Discussion of the chloroplast data

The aim of the study is to test the hypotheses of a limited effective seed dispersal ability of *M. winkleri* due to the dependence on the ant, and good seed dispersal abilities of *M. tanarius*, which does not depend on an ant partner. Therefore a more pronounced population structure is expected for myrmecophytic *M. winkleri* than for non-myrmecophytic *M. tanarius*. Geographic barriers are expected to act stronger on the myrmecophytic species, due to its limited dispersal ability. *For M. winkleriella*, sister species of *M. winkleri*, low levels of genetic diversity are expected, due to its restricted occurrence. In order to evaluate the validity of the hypotheses phylogeographic analyses, analyses of genetic diversity and of spatial genetic correlation were conducted based on DNA sequences of three chloroplast regions.

2.3.1 Phylogeography of Macaranga winkleri

Macaranga winkleri is a myrmecophytic pioneer species. Both *M. winkleri* and its obligate partner ant, *Crematogaster* msp. 8, are endemic to Borneo. Chloroplast DNA gives valuable information concerning gene flow by seeds (Demesure et al. 1996). Therefore the distribution of the chloroplast haplotypes reflects the gene flow via seed dispersal for *M. winkleri*. Birds and small mammals are described as presumable primary dispersal agents in the genus *Macaranga* (Bänfer et al. 2006, Weising et al. 2010). As the species has small seeds with a violet aril, bird dispersal can be expected. This may result in long-distance dispersals, although these would be rare events, as the seed passage through the intestinal tract of birds is quite fast. Seeds remain in a bird for only few hours or at most a few days (Cruden 1966).

To test the hypothesis of a limited effective dispersal ability due to the dependence on the ant partner, (hypothesis 1, chapter 1.2) in *M. winkleri*, the geographic distribution of the chloroplast haplotypes (Figure 2-6) was analysed. It shows that identical haplotypes occur in the same geographical region. This is in accordance with the hypothesis and can indicate that long distance dispersal of seeds rarely happens. Additionally, it may reflect that long-distance dispersal of the seeds to new areas, where neither the ants nor the plants are present, cannot lead to the establishment of the plant as the colonising ant is missing. This can be explained either by limited dispersal abilities or by philopatric behaviour of the ants (Feldhaar et al. 2010). The authors showed that ant queens rarely disperse over more than a few kilometres.

Genetic differentiation of *M. winkleri* for Sarawak/Brunei vs. Sabah and west vs. east of the Crocker Range

The chloroplast haplotype network of *M. winkleri* (Figure 2-5) shows two groups with a clear split between individuals from Sarawak/Brunei and Sabah. HT group 4 (one individual) from eastern Brunei is found between the two groups, 6 mutational steps away from Sabah and 8 steps from Brunei. In *M. winkleri* no haplotypes are shared between Sabah and

Figure 2-16. Topographical map of the island of Borneo, indicating the central mountain range that separates the island and the Crocker Range to the north, dividing Sabah into a western and eastern part. Map modified after Wikipedia.org.

Sarawak/Brunei, i.e. all haplotypes detected in Sabah are private for this region and all haplotypes detected in Sarawak/Brunei are private for that region. Also the PCoA clearly illustrates this split (Figure 2-8), by showing Sarawak/Brunei and Sabah as two distinct groups. The intermediate position of HT group 4 in the chloroplast network is also obvious in the results of the PCoA, as it is detected between the two groups. The high differentiation between the two groups is reflected by the results of the AMOVA, in which 81% of the differentiation in *M. winkleri* is detected between the individuals of Sabah and those of

Sarawak/Brunei, while within these groups only 19% of differentiation was detected. Accordingly, the results of the assignment analysis using both STRUCTURE and INSTRUCT clearly indicate these two groups, Sarawak/Brunei and Sabah. The intermediate state of HT group 4 becomes again obvious as this individual is assigned to Sarawak/Brunei by STRUCTURE and to Sabah by INSTRUCT for K = 2.

Within the regions, the geographic distribution of the haplotypes (Figure 2-6) suggests isolation by distance effects, as identical haplotypes are found almost exclusively in the same geographic regions. Furthermore a Mantel test was performed to check for spatial genetic correlation for individuals of Sarawak/Brunei vs. Sabah. It resulted in both significant and positive correlations, (R = 0.588, R = 0.404, respectively). Cohen (1988) categorized the power of the correlation coefficient R as follows: "none" (0.0 to 0.09), "small" (0.1 to 0.3), "medium" (0.3 to 0.5) and "large" (0.5 to 1.0). Following this categorization, the correlation of geographic and genetic distance in *M. winkleri* in Sarawak/Brunei is large, while it is medium for Sabah. Thus, for both groups a clear effect of isolation by distance can be detected, with the genetic decline by distance being higher in Sarawak/Brunei than in Sabah. Furthermore the Mantel test indicates isolation between these two groups, as shown by the regression line for all *M. winkleri* individuals (Figure 2-14), which has the largest relationship between geographic and genetic distances (i.e. the highest slope). This means that for the same geographic distance, two individuals from different groups will have a larger expected genetic distance than two individuals from the same groups.

Taken together, each of these analyses for *M. winkleri* indicates a strong genetic differentiation between the groups. In this context the results can further indicate that *M. winkleri* has been evolving separately in both regions for a long time, and that intermediate states have become extinct.

As already discussed the biogeography of plants and animals on Borneo is strongly influenced by a range, which runs to the Crocker Range in the north (Figure 2-16). The central mountain range forms a dispersal barrier for the lowland flora and fauna (Cannon & Manos 2003, Slik et al. 2003, Moyle et al. 2005, Bänfer et al. 2006, Raes et al. 2009). Therefore, it was also analysed whether the Crocker Range is a geographic barrier for *M. winkleri* dividing the individuals in those west and east of the mountain range. Division of the samples of *M. winkleri* into individuals west and east of the Crocker Range results in 22 private haplotypes out of 23 haplotypes in total for the samples west and seven private haplotypes out of eight haplotypes for the samples east of the mountain range. Thus, the separation indicated for the groups Sarawak/Brunei vs. Sabah is more pronounced than for the groups on either side of the mountain range. This is in accordance with the results of the AMOVA. The level of molecular variance among individuals from Sarawak/Brunei vs. Sabah is slightly higher than for the *M. winkleri* individuals west and east of the Crocker Range (81% and 75%, respectively), not indicating the mountain range as a primary barrier to dispersal.

Taken together, the genetic differentiation detected for the groups Sarawak/Brunei vs. Sabah is stronger than for individuals west and east of the Crocker Range, suggesting this to be an

older genetic separation of *M. winkleri*. The Crocker Range, thus, could not be shown to be a strong barrier to dispersal, as hypothesised (hypothesis 7, chapter 1.2).

The split within M. winkleri between Sarawak/Brunei and Sabah may be due to fragmentation into two (or more) separate refugia during arid periods of the Pliocene. When better conditions resumed, the subpopulations again expanded, but have not yet been in genetic exchange, as indicated by the fact that the haplotypes are private for these two regions. This can be explained by a low effective speed of colonisation via seed. M. winkleri does not occur in the southwestern part of Sabah (personal communication by Brigitte Fiala, and personal observation), probably due to anthropogenic deforestation during the last century. Therefore, gene flow among M. winkleri from the subpopulations Sarawak/Brunei and Sabah is probably limited. Between Sabah and Sarawak/Brunei there is a high number of missing intermediate haplotypes, which could reflect haplotypes that became extinct due to anthropogenic deforestation. However, it seems improbable that this large number of missing intermediates is only a reflection of the relatively recent deforestation. Since no intermediate haplotypes were detected, even in proximity of the deforested area, an older separation of the two groups is suggested. The identical chloroplast haplotype detected in *M. winkleri* on both sides of the mountain range can be explained by a refugium in Sabah, located in or near the Crocker Range and the species spreading out to both sides of the range.

However, due to the low abundance of *M. winkleri* in Sabah west of the Crocker Range, only three samples from this region were included in the analyses. This low number is limiting the informative value of the comparison of the genetic differentiation between the groups Sabah vs. Sarawak/Brunei and individuals west and east of the Crocker Range.

Two colonisation scenarios for Macaranga winkleri

The chloroplast haplotype network of *M. winkleri* and *M. winkleriella* allows for two different putative biogeographic histories of the species:

(i) The putative root of the chloroplast haplotype network (indicated by the * in Figure 2-5), suggests this position to be the ancestral one in *M. winkleri*. However, the position of the root is not certain. In statistical parsimony network analyses, the reliability of the method drops with genetic distances and especially with missing intermediates (Woolley et al. 2008). Between *M. winkleri*, *M. winkleriella* and the outgroup, a high number of mutational steps in the form of missing intermediates were detected, decreasing the reliability. Assuming that interior positions in the network represent ancestral haplotypes while tip positions represent derived haplotypes (Castelloe & Templeton 1994) and considering the putative root of the network, the ancestral haplotypes are detected in Sarawak/Brunei, while the more derived ones are detected in Sabah. The spatial distribution of the chloroplast haplotypes together with their positions in the northeast, more detailed from southern and central Sarawak to northeastern Sarawak, then to Brunei, from there to western Sabah, then to Central Sabah and from there to

eastern Sabah. Congruently, Bänfer et al. (2006) inferred a migration for the *kingii* group of *Macaranga* from northeastern Sarawak to eastern Sabah.

The haplotypes are geographically confined, with one exception, HT group 11 (northeastern Sarawak), which is genetically closest to HT group 9 (central Sarawak). This can be explained by long distance dispersal from central Sarawak. In Sabah the haplotype and nucleotide diversity is lower than in Sarawak/Brunei. This is in accordance with the fact that the haplotypes in Sabah are the more derived and younger ones, and populations did not have as much time as in Sarawak/Brunei to accumulate genetic differences. This is further shown in the haplotypic richness, when calculated for Sabah it is only 3.16, while it is approximately two and a half times larger (7.28) in Sarawak/Brunei.

This contradicts the hypothesis of a higher genetic diversity for Sabah compared to Sarawak/Brunei due to the persisting rain forest in Sabah (hypothesis 9, chapter 1.2). A possible explanation could be that the species, which occurs in gaps in primary forest, did not have many suitable habitats (as no gaps or open areas were created during drier phases), and thus had a small population size in Sabah.

(ii) Another putative position of the root of the chloroplast haplotype network (indicated by the *2 in (Figure 2-5) was inferred using the neighbor-joining cluster algorithm. In this case the root is located between individuals from Sabah and Sarawak/Brunei. This location of the root can indicate an early fragmentation of individuals from Sabah and Sarawak/Brunei. In this scenario the chloroplast haplotype network suggests the existence of one (or two) refugia for M. winkleri located in Sabah and four refugia in Sarawak/Brunei. The retreat of M. winkleri into refugia was probably caused by the fragmentation of the rainforest during arid periods in the Pliocene (Morley 2000, Inger & Voris 2001, Quek et al. 2007). When preferable conditions resumed, the species began spreading out anew from their refugia. The small number of haplotype groups and the close genetic relatedness of the latter in Sabah suggest that only a small number of individuals, and thus a small number of chloroplast haplotypes survived in one or two refugia. However, according to Gathorne-Hardy et al. (2002), Sabah was persistently covered with rain forest. For M. winkleri in Sarawak/Brunei the chloroplast haplotype network shows more differentiation, but each haplotype group was detected on a smaller scale than for Sabah. The chloroplast haplotype network suggests the existence of four refugia in Sarawak/Brunei for M. winkleri: one in central/southern Sarawak (HT group 9 and 10), one in northeastern Sarawak (HT group 7), one in western Brunei (HT group 8) and one in eastern Brunei (HT group 5). In Sarawak/Brunei a high number of missing intermediate steps were detected. Missing intermediates can either be haplotypes that were not sampled, or haplotypes that went extinct. Between HT groups 5, 7 and 8 the sampling is geographically dense, thus, it is more probable that the species went through a genetic bottleneck and these chloroplast haplotypes became extinct. The high haplotype diversity of *M. winkleri* (0.928) together with the low nucleotide diversity (0.358%), as categorized by Lowe et al. (2004), in Sarawak/Brunei reflects a rapid population growth, with mutation accumulation after the genetic bottleneck. The haplotype groups detected in central and southern Sarawak (HT group 9 and 10) are separated from the haplotype groups northeast of it by huge deforested areas with plantations, where the species does not occur any more. This may explain the missing intermediates in the chloroplast haplotype network between these groups.

In Sabah only one missing intermediate was detected, indicating a dense sampling and a continuous presence of the species in this region. The value for the haplotype diversity in Sabah (0.745) is smaller than in Sarawak/Brunei, but still clearly categorized as high. In combination with the low nucleotide diversity (0.063%), a genetic bottleneck can be assumed to have also occurred in Sabah, according to Lowe et al. (2004).

Figure 2-17. *Crematogaster* msp. 8 haplotype network calculated with TCS of 135 sequences of mitochondrial DNA redrawn and modified after Braasch (2008). The circle size is representative of the number of individuals in which the haplotype was found. Black dots present missing intermediates.

Macaranga winkleri and its specific ant

In Sabah for *M. winkleri* only three haplotype groups (comprising eight haplotypes in 46 samples) were detected, while in Sarawak/Brunei eight haplotype groups (comprising 22 haplotypes in 41 samples) were detected. Similarly, the number of haplotypes detected in *Crematogaster* msp. 8 (Figure 2-17), based on data of Braasch (2008), is much smaller in Sabah (6 haplotypes in 78 samples) than in Sarawak/Brunei (17 haplotypes in 58 samples). For a better comparability, taking the different sample sizes into account, the rarefied haplotypic richness was calculated for *M. winkleri* and its specific ant. The haplotype richness of *M. winkleri* in Sarawak/Brunei is 7.28 and for *Crematogaster* msp. 8 in the same region is

9.04. In Sabah the haplotype richness of *M. winkleri* is 3.16 and for *Crematogaster* msp. 8 it is 3.18. In both the plant and the ant, the same relationship exists between regions with the haplotype richness in Sarawak/Brunei roughly two and a half times the richness found in Sabah. This is an indication that both the *M. winkleri* and *Crematogaster* msp. 8 populations are younger in Sabah than in Sarawak/Brunei. This was contradictory to the expectations of a higher genetic diversity for this region, due to the persisting forest in Sabah during the Pleistocene (Gathorne-Hardy et al. 2002).

Braasch (2008) found that the population of *Crematogaster* msp. 8 showed a clear split between Sabah and Sarawak/Brunei (Figure 2-17). This is in conjunction with its host plant. The smallest mutational distance detected between the *Crematogaster* msp. 8 individuals of Sabah and those of Sarawak/Brunei, is four steps. These four steps correspond to three missing intermediate haplotypes. Accordingly, in *M. winkleri* 5 missing intermediate steps were detected between Sabah and the intermediate HT group 4, and 7 missing intermediate haplotypes between the intermediate group and Sarawak/Brunei. Just as with *M. winkleri, Crematogaster* msp. 8 has no haplotypes shared between these regions (Braasch 2008). This can indicate for the ant, as with the plant, that intermediate states have become extinct and that the ant has been evolving separately in both regions for a long time. A strong differentiation between Sabah and Sarawak/Brunei was also detected for *Crematogaster* ants by Feldhaar et al. (2010).

Considering the chloroplast haplotype network of *M. winkleri* it is difficult to decide which colonisation scenario of the species (see page 52) is the more probable. In *M. winkleri* the scenarios were created according to assumptions of two putative positions of the root. For the mitochondrial haplotype network of *Crematogaster* msp. 8 no root was presented, thus, this network does not provide further hints to which scenario is the more probable.

Although *Crematogaster* msp. 8 is highly dependent on *M. winkleri*, the level of genetic structure was less pronounced than in other less host-specific *Crematogaster* ants from the subgenus *Decacrema* (Braasch 2008). This hints towards a better dispersal ability of *Crematogaster* msp. 8, compared with the other ant species. This can be explained by the bigger body size of msp. 8 ant queens in comparison to the ants from subgenus *Decacrema* (Feldhaar et al. 2010), providing better mobility. A positive correlation between body size and flight distances of other insects, was shown by Shirai (1995).

To sum up, Figure 2-5 illustrates the genealogical relationship of the chloroplast haplotypes of myrmecophytic *M. winkleri*, indicating two possible colonisation scenarios for the species under study: (i) suggests a stepwise colonisation of Borneo from the southwest to the northeast and (ii) suggests the spread of the species from one or two refugia in Sabah and four refugia in Sarawak/Brunei. Possibly the retreat of the species into refugia was caused by fragmentation of the rainforest during arid periods of the Pliocene. Both scenarios seem equally probable.

Within both regions west and east of the mountain range isolation by distance was detected, indicating limited seed dispersal distances. This limited dispersal is more evident between

regions west and east of the Crocker Range as shown by the Mantel test. This can indicate that the mountain range acts as a geographic barrier to dispersal.

The results for *M. winkleri* and its specific ant are congruent in showing (i) the split between Sabah and Sarawak/Brunei and (ii) the higher haplotypic richness for Sarawak/Brunei than for Sabah.

2.3.2 Phylogeography of Macaranga winkleriella

This species is found growing on limestone in a very narrow distribution range, namely Gunung Mulu National Park in Sarawak (Whitmore 1974). *Macaranga winkleriella* is probably an obligate myrmecophyte type 1 and colonised by msp. 8 of *non-Decacrema Crematogaster* (Fiala et al. 1999).

A low genetic diversity for *M. winkleriella* was hypothesised, (hypothesis 3, chapter 1.3), as small populations are affected more strongly by genetic drift and the chances for new alleles to originate are lower among fewer individuals. The hypothesis is supported by the results, as one haplotype group (two haplotypes), comprising the thirteen *M. winkleriella* individuals, was detected. This is in accordance with studies of Brett and Randall (1995), who showed a small number of haplotypes for a locally endemic species, *Deschampsia mackenzieana* (Poaceae).

The haplotypes of *M. winkleriella* are nine and ten mutational steps away from its sister species *M. winkleri*, specifically *M. winkleri*'s HT group 9 from central Sarawak. The mutational distance for this interspecific relationship is not large, considering that for *M. winkleri* 29 mutational steps were detected on the intraspecific level, which might indicate that they resulted from a more recent split.

To sum up, the individuals of the narrowly endemic *M. winkleriella* included in this analysis comprise a small number of haplotypes (2). They are nine and ten mutational steps away from their sister species *M. winkleri*. A low genetic diversity is also expected for this rare and endemic species.

2.3.3 Phylogeography of Macaranga tanarius

Macaranga tanarius is a non-myrmecophytic pioneer tree. It is the most widespread of all species in the genus, ranging from India to China and south through Thailand and throughout Malesia to New South Wales, Australia, and the Solomon islands.

In the chloroplast haplotype network of 100 individuals of *M. tanarius* (Figure 2-3), from Borneo, Malay Peninsula, Sumatra, Java and Australia, only seven haplotypes excluding and 11 haplotypes including the SSR loci were detected. This low number of haplotypes is also reflected by the haplotype diversity of all *M. tanarius* individuals of 0.449, even when the microsatellite information was included. However, it should be noted that this value is on the

border of the high category according to Lowe et al. (2004). The inclusion of the variation in the faster evolving microsatellite regions did yield small levels of genetic subdivision. HT 1 (occurring exclusively in samples from Borneo) was divided into three subhaplotypes and HT 3 (one sample from the west coast of Sabah and one sample from Java) as well as HT 6 (17 samples from Malay Peninsula) into two subhaplotypes each.

Western Sabah is harbouring the highest number of haplotypes per area (HT 1a, 2, 3a, and 4), but the nucleotide diversity is low, as HT 2, 3a and 4 are only one mutational step away from the most widespread HT 1a. This can indicate a rapid population growth from a small founder population, assuming that there has been sufficient time for the recovery of haplotype variation, but too little time to accumulate larger sequence variation (Lowe et al. 2004). This elevated haplotype diversity may have been uncovered in western Sabah due to the more intensive sampling within this region.

For *M. tanarius* a very low genetic differentiation within Borneo was detected. This is shown by the PCoA results (Figure 2-9), where all but three individuals from western Sabah are projected onto the same point (microsatellites excluded). Furthermore the results of STRUCTURE and INSTRUCT (Figure 2-13) reflect this low genetic differentiation, as neither program detects any population structure in the analysed individuals. The low genetic differentiation and the lack of genetic substructure within the samples from Borneo (Figure 2-3 & Figure 2-4) can be indicative for a young age and a rapid extension of the distribution range of the species. Alternatively, the species could have recently undergone a population bottleneck followed by a fast colonisation. This is in accordance with the fact that this species is a non-myrmecophytic species and, thus, independent of the presence of a colonising ant species. This independence facilitates successful dispersal to new areas. Furthermore the sticky and small seeds of *M. tanarius* may stick easily to the fur of mammals and also to feathers, feet and beaks of birds and can thus be efficiently dispersed.

The nucleotide diversity is low (0.010%) for all Bornean *M. tanarius*. One possible reason for low haplotype and nucleotide diversity in Bornean *M. tanarius* could be a lack of variation in the organelle markers used. However, the three chloroplast markers that were used proved to be highly variable in *M. winkleri*. The ccmp 5 marker was also variable in other *Macaranga* species analysed (Vogel et al. 2003). Therefore the markers should reflect the true situation of low haplotype and nucleotide diversity in this species.

In the chloroplast haplotype network of *M. tanarius* four missing haplotypes were inferred. Missing haplotypes can indicate an extinct or ancestral haplotype, or a haplotype, that was not sampled. Only one missing haplotype was detected between the most common haplotype found on Borneo and the Sumatran haplotype. Three missing haplotypes were detected between Borneo and Australia, which is not surprising as no additional samples of the geographic region in between were included. The haplotypes of the neighbouring islands, Java and Sumatra, are both two mutational steps away from HT 1a. The largest mutational distance that was detected in the chloroplast haplotype network of 100 *M. tanarius* individuals, is only eight steps and was detected between individuals from Malay Peninsula and an Australian

individual (~5,000 km distance). The mutational distance from the main Bornean HT 1a to the Australian haplotype is only 4 mutational steps over a distance of ~3,500 km. Between Borneo and Malay Peninsula 3 and 4 mutational steps were detected on a geographic distance of ~1,600 km.

Genetic differentiation of *M. tanarius* individuals from Borneo and Malay Peninsula

From Borneo to the Malay Peninsula, *M. tanarius* exhibits 3 and 4 mutational steps, indicating a high genetic differentiation compared with the other geographic distances in the chloroplast haplotype network (see above). This is in accordance with the hypothesised high genetic differentiation between individuals from Malay Peninsula and Borneo (hypothesis 8, chapter 1.2) and fits with the findings of Bänfer et al. (2006), who detected a clear separation for the *Macaranga* section *Pachystemon* between Malay Peninsula, Sabah and Sarawak/Brunei. Also Feldhaar et al. (2010) detected genetic differentiation among populations of Malay Peninsula and Borneo for *Crematogaster* ants. The strong genetic differentiation between the island and the mainland, which may correlate with the Pliocene fragmentation of the Sunda block (Gorog et al. 2004).

The Crocker Range - a geographic barrier for Macaranga tanarius ?

To test the hypothesis of the Crocker Range acting as a geographic barrier (hypothesis 7, chapter 1.2) for *M. tanarius*, the haplotypic richness (rarefied for the sample size) for individuals west and east of the mountain range was calculated. In *M. tanarius* the haplotypic richness is higher west than east of the mountain range (1.7 and 1.0, respectively), but still in a similar range suggesting that the species has occurred for a similar amount of time on either side of the range. West of the range, three private haplotypes were detected, and one east of the range. Taking into account the generally low haplotype diversity in this species, this indicates a certain amount of genetic differentiation. However, the haplotypes detected west and east of the range are genetically highly similar (the one private haplotypes east of the range is only different in one fast evolving microsatellite region from the most common haplotype), and no indications for long-term independent evolution were detected. This contradicts the hypothesis of the Crocker Range as a long-term barrier to gene flow. In contrast to this result, Guicking et al. (2011) detected in *M. gigantea* indications for long-term independent evolution.

Possible colonisation route for Macaranga tanarius

Assuming that interior positions in the network represent ancestral haplotypes, while tip positions represent derived haplotypes, the indicated origin of the chloroplast haplotypes for the analysed data set of *M. tanarius* is in Borneo.

The chloroplast haplotype network can indicate a colonisation route of the species from northern Borneo to Sumatra and from there to Malay Peninsula, while Java was also colonised from Borneo. These patterns can be explained by migration across land connections. During Pleistocene cold cycles land bridges existed (Morley 2000, Cannon et al. 2009, Woodruff 2010), as the glacial cycles caused sea levels to drop repeatedly (see geological history of the Sunda Shelf in the Introduction). However, it cannot be determined whether the inclusion of further samples either from the regions of the distribution area that are not included or from

further samples, either from the regions of the distribution area that are not included or from the regions presented with only one sample, would change the network arrangement. For example, tip positions may become inner positions, changing the assumed origin of the chloroplast haplotypes, and thus the colonisation routes of *M. tanarius*.

Pioneer tree habit of Macaranga tanarius

Pioneer species have unique life histories and population structures. They are often characterized as showing early and frequent flowering and the production of small and easily dispersed seeds (Swaine & Whitmore 1988).

This is in accordance with *M. tanarius*, which flowered for the first time after only three years in the greenhouse (personal observation). In Whitmore (2008), *M. tanarius* is said to be flowering frequently throughout the year and producing small fruits. In addition, the nature of the *M. tanarius* seeds lends itself to efficient long-distance seed dispersal by birds and small mammals.

The seed germination of tropical rainforest pioneer trees such as *M. tanarius* is triggered by an increase in red light or the strongly fluctuating temperature of soil exposed to full sunlight for part of the day (Swaine & Whitmore 1988). Thus, both triggers are provided by gap creation. Also for seedling establishment and growth, pioneer trees require full sunlight (Swaine & Whitmore 1988). That is why pioneer trees are found in openings in the forest or in other open areas. As a consequence of logging, road building and other human activities, pioneer trees have become more abundant in many tropical landscapes (Guicking et al. 2011).

Two contrasting models have been set up to explain the genetic structure of pioneer species. Wright (1940) postulated a strong population substructure due to the usually small number of individuals which colonise new areas, while Slatkin (1985) postulated reduced differentiation among populations due to elevated rates of gene flow by frequent local extinction and recolonisation. The low level of genetic structuring of *M. tanarius* is consistent with previous studies on tropical pioneer trees (Alvarez-Buylla & Garay 1994, Muloko-Ntoutoume et al. 2000, Cavers et al. 2005) thus favouring Slatkin's hypothesis and the good seed dispersal abilities hypothesised in this study (hypothesis 4, chapter 1.2). Cavers et al. (2005) for example detected only two chloroplast haplotypes in 101 individuals in the tropical pioneer tree *Vochysia ferruginea* (Vochysiaceae) in Costa Rica in a range of ~350 km.

To sum up, Figure 2-3 illustrates the genealogical relationship of the chloroplast haplotypes of non-myrmecophytic *M. tanarius*, indicating a young age of the species and a rapid spread of

the distribution range or a recently undergone population bottleneck followed by a rapid colonisation. The geographic distribution of the haplotypes (Figure 2-4) shows the generally low nucleotide diversity, and thus genetic similarity between the *M. tanarius* individuals in the sampled distribution range. The reduced differentiation among populations can indicate elevated rates of gene flow by frequent local extinction and recolonisation. This is in accordance with the independence of the species from colonising ant species.

The colonisation route, indicated by the haplotype network, is from northern Borneo to Sumatra continuing to Malay Peninsula, while Java was also colonised from Borneo. This route may reflect the existence of land bridges between Borneo, Java and Sumatra during Pleistocene cold cycles.

2.3.4 Comparison of Macaranga winkleri and Macaranga tanarius

Comparison of the data of myrmecophytic *M. winkleri* with non-myrmecophytic *M. tanarius* reveals clear differences in the population structure. *Macaranga tanarius* shows a much lower differentiation in the chloroplast markers than *M. winkleri*. The number of effective haplotypes for *M. winkleri* is greater than that for *M. tanarius* (7.13 vs. 1.05). Furthermore the mean genetic diversity, which is measured on a scale from 0 to 1, is much greater for *M. winkleri*, which approaches the maximum measure with 0.84, compared to *M. tanarius*, which is at the extreme opposite end of the scale with 0.04. This diversity is more emphasized by the rarefied haplotypic richness, with a high 13.73 for *M. winkleri* vs. a low 0.24 for *M. tanarius*.

While *M. winkleri* shows effects of isolation by distance, these cannot be detected on the same geographic scale (Borneo) for *M. tanarius*. Thus, in total, while *M. tanarius* shows a low genetic differentiation and a lack of genetic substructure, the data of *M. winkleri* looks clearly different, showing a much higher genetic diversity and in accordance with the expectations (hypothesis 6, chapter 1.2), a much more pronounced population structure.

The differences in genetic diversity between M. winkleri and M. tanarius can indicate

(i) a younger age of *M. tanarius*, compared to *M. winkleri*. However, it is not possible to compare the ages of these species, using available phylogenies of the genus (Blattner et al. 2001, Davies 2001, Slik & Van Welzen 2001, Kulju et al. 2007).

(ii) differences in dispersal abilities of *M. winkleri* and *M. tanarius*. These can be due to different dispersal distances and seed production. The distances of dispersal can vary because of different dispersal agents. Unfortunately studies on the dispersal agents of the species under study are not available, only general information on the genus' dispersal vectors (birds and small mammals), making a precise comparison between the study species difficult. However, the seeds of *M. tanarius* are sticky, which can alleviate long distance dispersal.

(iii) differences caused by the ant-association of *M. winkleri*. Although high levels of gene flow in section *Winklerianae* are expected, as no signs for radiation were detected, the plant

can only establish if the colonising ant species is present. In contrast, the establishment of M. tanarius is independent of a specific ant species, allowing for successful establishment of the plant in new areas. Thus, in *M. tanarius* gene flow is elevated compared to the myrmecophytic M. winkleri, leading to reduced differentiation among populations and fast colonisation. The requirement of the presence of the partner organism in M. winkleri for successful establishment, can explain the geographic structure of the chloroplast haplotypes, as the plants have to establish within flight distance of the Crematogaster msp. 8 ants. However, Guicking et al. (in preparation) could not attribute the population structure of myrmecophytic M. hypoleuca and M. beccariana from section Pachystemon to their association with ants, even though the relationship is highly specific. Using three chloroplast microsatellite markers the detected population structure was no more pronounced than in other Macaranga species. In addition, Guicking et al. (2011) detected a similar number of chloroplast haplotypes and similar levels of genetic diversity for both non-myrmecophytic *M. gigantea* and myrmecophytic *M. pearsonii* (both section *Pruinosae*). Weising et al. (2010) showed the extent of population differentiation within myrmecophytic vs. nonmyrmecophytic species to be in a similar range and concluded that the hypothesis of enhanced allopatric speciation cannot be sustained for the analysed species. In accordance with this, the haplotype diversity detected for myrmecophytic M. winkleri is similar to those for nonmyrmecophytic *M. gigantea* and myrmecophytic *M. pearsonii* (0.914, 0.915 and 0.894, respectively) (Guicking et al. 2011). However, a direct comparison of the values for M. winkleri with the values of the other two species might be misleading, as different chloroplast markers were used and the mutation rate may vary.

Comparing another non-myrmecophytic and ecologically similar species, *M. gigantea*, with *M. tanarius*, for the Bornean samples, the values for haplotype diversity are much smaller (0.915 vs. 0.449, respectively). This suggests that the observed genetic structure and diversity should not be exclusively attributed to the non-myrmecophytic trait of *M. tanarius*, but other factors such as the probably young age of the species should be considered.

Weising et al. (2010) rejected the hypothesis of enhanced allopatric speciation and proposed instead to consider the colonisation by ants as a key innovation that opened a new adaptive zone for both partners, making new habitats available. While the ants that entered the mutualistic association were able to circumvent competition with arboreal ants for nesting space and foraging grounds, the plants that recruited ants could grow more successfully in disturbed or open forest areas, because their partners protect them from competing plants. Therefore, myrmecophytes have a clear advantage in pioneer habitats over plants which are not inhabited by ants. Consequently, *Macaranga* plants could have diversified in their pioneer tree habitats and the ants could have driven the differentiation of the plants by changes in their morphology and behaviour. In turn, changes in plant traits relevant for the mutualistic relationship (e.g. nesting space, food resources) could have driven the differentiation of the plant.

(iv) differences in the habitats the species grow in. *Macaranga winkleri* is a pioneer tree that occurs in open areas and on edges of primary and secondary forest, but is not likely to cross completely deforested areas, while *M. tanarius* is likely to also cross areas of completely disturbed vegetation. This can lead to a stronger effect of the fragmentation of the landscape on *M. winkleri* than on *M. tanarius*. In the last decades the tropical rain forest has been used extensively, and thus the tropical landscape has been fragmented. Fragmentation is likely to lead to reduced gene flow among populations, causing stronger genetic differentiation. Additionally, the effects of genetic drift act more strongly on smaller populations and may cause some genetic variants to disappear completely, thereby reducing genetic variation within the population. The regional genetic patterns in *M. winkleri* could thus be explained by species fragmentation, while populations of *M. tanarius* are still connected via gene flow and those of *M. winkleri* are isolated by deforested areas.

However, it is hard to imagine that the anthropogenic fragmentation of the forest, which has existed for only a few tree generations, has already had such a strong influence on the population structure. For such a significant population differentiation to occur, it may require more time from the interruption of the gene flow caused by this isolation (Weising et al. 2010).

(v) differences in the population history. *M. tanarius* could have undergone a population bottleneck, resulting in low levels of genetic diversity.

To sum up, *M. tanarius* shows a much smaller genetic differentiation than *M. winkleri*. These differences in genetic diversity can indicate (i) a younger age of the population expansion of *M. tanarius* than for *M. winkleri*, (ii) a better dispersal ability of *M. tanarius*, (iii) facilitated dispersal by independence of the ant, in contrast to *M. winkleri*, and (iv) the ability of *M. tanarius* to cross very disturbed vegetation in contrast to *M. winkleri*.

Generally, the population structure of the myrmecophytic species *M. hypoleuca* and *M. beccariana* from section *Pachystemon* cannot be attributed to their association with ants. Comparing the non-myrmecophytic *M. gigantea* and the myrmecophytic *M. pearsonii* from section *Pruinosae* with *M. winkleri* shows very similar values for the haplotype diversity, leading to the conclusion that the hypothesis of enhanced allopatric speciation cannot be sustained for the analysed species. Instead the colonisation by ants can be considered as a key innovation that opened a new adaptive zone, allowing for adaptive radiation and the diversification of the genus in sections *Pachystemon* and *Pruinosae*, but not in *Winklerianae*.

The comparison of the non-myrmecophytic species *M. tanarius* and *M. gigantea* shows great differences in the genetic diversity suggesting that the differences between *M. tanarius* and *M. winkleri* are not only attributed to the non-myrmecophytic vs. myrmecophytic trait, but also putatively to the age of the species, population history or dispersal abilities.

3 Microsatellite analysis

3.1 Materials and Methods

3.1.1 Development of microsatellite markers and transfer of markers within the genus

Nuclear microsatellite markers for *M. tanarius* and *M. winkleri* were created to augment population genetic analyses of these species. Advantages of microsatellite markers are their codominance, hypervariability and reproducibility (Sharma et al. 2007).

In total three rounds of microsatellite development procedures were performed. In the first round (using *M. winkleri* DNA isolated from a silica dried leaf) the enrichment did not work out. In the second round (again using *M. winkleri* DNA isolated from a silica dried leaf), the enrichment procedure was successful using a lower hybridisation temperature for the biotinylated oligonucleotides (see below). However, the 18 designed primer pairs did not yield consistent PCR amplification products. The third round of microsatellite development was successful using DNA isolated from a fresh leaf from both *M. tanarius* and *M. hypoleuca*. The marker development was done in conjunction with the University of Kassel, which had the fresh leaf of *M. hypoleuca* available from their green house. No fresh sample was available for *M. winkleri* as this species cannot be grown in a greenhouse (Brigitte Fiala, personal communication).

The microsatellite enrichment procedures followed a modified protocol of Fischer and Bachmann (1998), as described in detail in Baier et al. (2009), and is summarized as follows:

Using two different equimolar pools of biotinylated oligonucleotides for hybridisation, two microsatellite-enriched genomic libraries were established. The first pool was made up of (GT)12, (CAA)8 and (CAG)8, while the second pool contained (GA)12, with hybridisations performed at 76 °C and 68 °C, respectively. The microsatellite-enriched DNA fragments were then ligated into pGEM-T Easy Vector System I (Promega) and used to transform E. coli DH10B competent cells (Invitrogen). The screening of colonies was performed using X-Gal (5-Bromo-4-chloro-3-indolyl-beta-D-galactopyranoside) and IPTG (Isopropyl-β-Dthiogalactopyranoside), first for the positive (white) colonies which were subsequently screened for microsatellite motifs. Positive clones were identified by colony PCR with vectorspecific primers and subsequent Southern hybridisation with ³²P end-labelled oligonucleotides that carried the microsatellite motifs used for enrichment. PCR products showing strong hybridisation signals were re-amplified and sent to a commercial sequencing facility (GATC Biotech). From the four libraries (two pools for each of the two species), 120 positive clones were sequenced, of which 108 yielded readable sequences. Of these 108 sequences,

		PCR p	roduct								/ariation /	/ Multiple	peaks						
publication	Locus	snµeuej	^{,U} ƏIYUIM	^e lləirəlyuim	enevelevena	essajdap	e _t ouitsipui	!!uosjead	eəjuebin	esnalod Au	_S ui _l enet	winkleri	ellenelkuiw	euerelioui	essə.dəp	etoutsiput	<u>!</u> !uos_lead	^{eəjueb} ið	^{eonəjod} iy
	MactaG12	۶	٩	٩	N/T	N/T	NT N	4/T	ΥT	No								ı	
Baier et al. 2009	MactaG01	Yes	Yes	Yes	Yes	Yes	Yes \	(es)	/es	No	Yes/No	Yes/No	Yes	Yes/No	Yes/No	Yes/No	No/No	Yes/No	
Baier et al. 2009	MactaG09	Yes	No	No	No	Yes	Yes \	(es)	/es	No	Yes/No				Yes/No	Yes/No	Yes/No	Yes/No	
	MactaG04	No	No	No	N/T	ТЛ	TN Z		Ţ	No									
Baier et al. 2009	MactaG07	Yes	Yes	Yes	Yes	Yes	Yes \	(es)	(es	Yes	Yes/No	Yes/No	Yes/No	Yes/No	Yes/No	Yes/Yes	Yes/No	Yes/Yes	Yes/No
	MactaG11	No	No	No	ΝΤ	L/T	NT N	T T	Ţ	No						ı		·	
	MactaG08	No	No	No	ΝΤ	NT T	TN Z	T T	Ţ	No									
	MactaE09	No	No	No	N/T	L/N	NT N	T T	Ţ	No	ı		ı	ı		ı		ı	,
Baier et al. 2009	MactaF10	Yes	Yes	Yes	Yes	Yes	Yes \	(es)	/es	No	fes/Yes*	Yes/Yes	Yes/No	Yes/No	Yes/Yes	Yes/Yes	No/Yes	No/Yes	
	MactaF02	No	No	No	N/T	L/N	NT N	T T	Ţ	No	,		ı	ı		ı			,
	MactaE01	Yes	No	No	No	٩	Yes I	No	No	No	No/No		ı	ı		No/No			,
	MactaE06	No	No	No	N/T	L/N	NT N	T T	Ţ	No	,		·	ı		ı			,
	MactaF09	No	No	No	ΝΤ	ТЛ	T T N		Ţ	No						ı	•	·	
Baier et al. 2009	MactaF03	Yes	No	Yes	No	No	No	No	No	No	Yes/No		Yes/No			ı		·	
	MactaF12	No	No	No	N/T	КТ	T T N	L L	Ţ	No									
Baier et al. 2009	MachyA06	No	Yes	ΝŢ	ΝΤ	ТЛ	T T N	L L	Ţ	No		No/No				ı	•	·	
Baier et al. 2009	MachyA07	No	No	No	N/T	ТХ	T T N	Ţ	ţ	Yes			·		•	·	•		Yes/No
Baier et al. 2009	MachyB07	No	No	ЪТ	N/T	ТХ	T T N	Ţ	ţ	Yes			·		•	·	•		Yes/No
Baier et al. 2009	MachyB10	Yes	Yes	Yes	ΝT	Ч	T T V	Ţ	ţ	Yes	Yes/No	Yes/No	Yes/No			ı	·	ı	Yes/No
Baier et al. 2009	MachyG07	Yes	Yes	No	N/T	Ч	T T V	Ţ	ţ	Yes	Yes	Yes							Yes/No
Baier et al. 2009	MachyH11	Yes	Yes	Yes	N/T	КТ	NT N	Ţ	ţ	Yes	Yes	Yes	Yes	,		ı		ı	Yes/No
	MachyB04	Yes	Yes	ГЛ	N/T	Ϋ́	T V	Ţ	ţ	Yes	No/Yes	No/No							No/No
	MachyB11	Yes	No	ГЛ	ΝT	ГY	T V	Ţ	ţ	Yes	Yes/Yes								No/No
Guicking et al. 2006	Macin8h	Yes	Yes	Yes	N/T	Ϋ́	T V	Ţ	Ţ	Τ'	Yes/No	Yes/No	Yes/No						
Guicking et al. 2006	Macin8n	Yes	Yes	Yes	N/T	Ч	T T N	Ţ	Ļ	Τ'	Yes/No	Yes/No	Yes/No						
Guicking et al. 2006	Macpe6h	Yes	Yes	Yes	N/T	МТ	MT N	Ţ	Ţ	Τ'	Yes/No	Yes/No	Yes/No						
Guicking et al. 2006	Macpe6j	Yes	Yes	Yes	N/T	Ч	T T N	Ţ	Ļ	Τ'	Yes/No	Yes/No	Yes/No						
pers comm. Guicking	Macin11j	No	Yes	Yes	N/T	КТ	T T N	Ţ	Ļ	Τ'		/es/Yes*	Yes/No			·			
pers comm. Guicking	Macin8f	Yes	Yes	Yes	N/T	N/T	NT	V/T N	N/T 1	۲/T	Yes/No	Yes/No	Yes/No			·		ı	
N/T - Not tested. Macta = species of ori	gin <i>M. tanariu</i> s	<i>.</i>																	

Table 3-1. Newly developed primer pairs and corresponding test results for PCR amplification and polymorphism for *M. winkleri, M. tanarius* and *M. winkleriella* plus other 6 *Macaranga* species.

Macta = species of origin *M. tanarius* Machy = species of origin *M. hypoleuca* Macin = species of origin *M. indistincta* Macpe = species of origin *M. pearsonii* * Multiple peaks ocurred in part of the samples. all but one contained a microsatellite. Primer pairs for 15 loci each of *M. tanarius* and *M. hypoleuca* were designed for use in these genetic analyses. Initial design of the primer pairs was performed using Primer3 software (Rozen & Skaletsky 2000), with final adjustments and verification performed manually.

3.1.2 Test of the newly developed primer pairs and test for cross-amplification within the genus *Macaranga*

A test of cross-PCR-amplification was performed for *M. winkleri*, *M. tanarius* and *M. winkleriella* using the following markers: Macin8h, Macin8n (originating from *M. indistincta*), Macpe6h, Macpe6j (originating from *M. pearsonii*) (Guicking et al. 2006). Locus Macin8f, Macin11j (originating from *M. indistincta*) (Daniela Guicking, personal communication). All but one marker (Macin11j, which did not amplify in *M. tanarius*) cross-amplified in the three species under study, (Table 3-1). All markers were showing polymorphism in the genotyping analysis and were, thus, included in the further analyses. Macin11j for *M. winkleri* was excluded at a later state, when the samples began to show multiple peaks (Table 3-1).

Newly designed primer pairs (Baier et al. 2009) were tested for amplification in the species under study, plus other *Macaranga* species for analyses at the University of Kassel (*M. motleyana*, *M. depressa*, *M. indistincta*, *M. pearsonii* and *M. gigantea*). After the PCR, 5 µl of the putative PCR product were checked in a 1.2% agarose gel.

All primer pairs that amplified successfully were further tested for usability as markers in terms of variability and absence of multiple peaks (Table 3-1) including ten individuals per species and primer pair determining the fragment size on a MegaBACE 1000 automatic DNA sequencer (Amersham Biosciences).

Fourteen primer combinations were successfully amplified in *M. winkleri*: MactaG01, MactaG07, MachyA03, MachyA06, MachyB04, MachyB10, MachyG07, MachyH11, Macpe6h, Macpe6j, Macin8f, Macin8h, Macin8n and Macin11j (Table 3-1). Primer combinations showing multiple peaks or lacking variation during genotyping analysis were excluded from further analysis. Eleven primer combinations were subsequently used for the genotyping analysis. Marker Macin11j was later excluded as it was resulting in multiple fragments in the latter analysed part of the samples. Ultimately the following ten microsatellite markers were included in the SSR analysis for *M. winkleri*: MactaG01, MactaG07, MachyB10, MachyG07, MachyH11, Macin8f, Macin8h, Macin8n, Macpe6h and Macpe6j. 561 individuals of *M. winkleri* (see Appendix A) were analysed for these markers.
Table 3-2. The microsatellite markers for *M. winkleri*, *M. tanarius* and *M. winkleriella*, their primer sequences, fluorescent label, repeat motif, size of the original clone, the genebank accession number, annealing temperature and PCR program used.

						РО	R prod	lct	Variatior	/ Multiple	e Peaks	
acity of the second s		Drimor corruption (E.'3) and fluctoreant	Doroco	Original clone	GenBank Accession	snµeuej .v	N. MINKIEL	H. Minkleriella	suhenet .N	N. MINKIGH	n. ^{Winkleriella}	Annealing temperature
Baier et al. 2009	MactaG01	F:Hex-5'-TCTAAGAAAACTAGAGGAC-3' R:5'-AATCTCCCCTTCCCTAATC-3'	(AG)32	147	FM244656	Yes	Yes	Yes	Yes/No	Yes/No	Yes	51°C (1)
Baier et al. 2009	MactaG09	F:Hex-5'-CGAACCTGTAATCTCGATCTG-3' R:5'-GCCTTGTTCTTCCAAAAGCC-3'	(GA) ₂₃	199	FM244660	Yes	No	No	Yes/No			53°C (1)
Baier et al. 2009	MactaG07	F:Tamra-5'-GGGATTTTGACAGGGCAAGG-3' R:5'-GGACGATATTTGATAATGTGGAC-3'	(GA) ₃₂	279	FM244659	Yes	Yes	Yes	Yes/No	Yes/No	Yes/No	59°C (1)
Baier et al. 2009	MactaF10	F:Fam -5'-AGTGGAGGGTTGTTAGTGAG-3' R:5'-CCTTTCCAAAAGTCTTGTTAGATG-3'	(GT) ₂₆	204	FM244657	Yes	Yes	Yes	Yes/Yes*	Yes/Yes	Yes/No	57°C (1)
Baier et al. 2009	MactaF03	F:Hex-5'-ACAAGTGGAAGATGGAGA-3' R:5'-AAGAAACATCAAAATCACCA-3'	(TG) ₂₉	169	FM244658	Yes	No	Yes	Yes/No		Yes/No	57°C (1)
Baier et al. 2009	MachyA06	F:Hex-5'-CCACTGACATCCAGGTCACA-3' R:5'-AGCTCCAAAAGTGTGGTTCG-3'	(GA) ₂₅	152	FM244662	No	Yes	ΝΤ		No/No		53°C (1)
Baier et al. 2009	MachyA07	F:5'-TGGGTTGGAGCTTTCAATTC-3' R:5'-CCAAATGCTAATGAAAATAATAACC-3'	(GA) ₂₄	173	FM244663	No	No	No				
Baier et al. 2009	MachyB07	F:5'-GCAACGAACATCCTCCAGAT-3' R:5'-TGTTTCGCTTCTGACTTACCAA-3'	(GA) ₃₀	241	FM244661	No	No	N/T	,			
Baier et al. 2009	MachyB10	3' R:5'-TCTCAGTTTAGGTTTTGCGACTC-3'	(GA) ₂₁	107	FM244653	Yes	Yes	Yes	Yes/No	Yes/No	Yes/No	53°C (1)
Baier et al. 2009	MachyG07	F:Fam-5'-TTCTTCACTTCATTTATTAGTATGTGC-3 R:5'-GTCTCGCTACCGTGTCTCG-3'	́ (GT) ₂₃	219	FM244655	Yes	Yes	No	Yes	Yes		53°C (1)
Baier et al. 2009	MachyH11	F:Fam-5-TCCACAAGTTAACGAGCAACC-3 R:5TGGTTTCGATTGGCTTTGAT-3	(GCA) ₁₀ (N) ₂₇ (GCA) ₁₁	235	FM244654	Yes	Yes	Yes	Yes	Yes	Yes	53°C (1)
Guicking et al. 2006	Macin8h	F:Tamra-5'-ACAGACTCAAGCGGTCAAGG-3' R:5'-GGCTACCATCTTTCGTTGC-3'	(CAG)₅N₅(CAG) ₈	182	DQ168588	Yes	Yes	Yes	Yes/No	Yes/No	Yes/No	52°C (2)
Guicking et al. 2006	Macin8n	F:Fam -5- AAGCTCAACCACCTCAGCAT-3' R:5'-ATCTCTCCGCTGTTGTTGCT-3'	(CAG) ₅ (CAA) ₂ (CAG) ₁₀ (CAA) ₂ N ₆ (CAG) ₃ (CAACAG) ₂ (CCA) ₂ CAG (CAA) ₂	221	DQ168589	Yes	Yes	Yes	Yes/No	Yes/No	Yes/No	52°C (2)
Guicking et al. 2006	Macpe6h	F:5'-AGCAGTAGCAGCCACTTCAA-3' R:Tamra-5'-ATCCCAAGTCCCAATCATCA-3'	(GCA) ₅ ACA(GCA) ₃	160	DQ168590	Yes	Yes	Yes	Yes/No	Yes/No	Yes/No	52°C (2)
Guicking et al. 2006	Macpe6j	F:Fam -5'-CCTCAAGTGGGGTCTTTTGGA-3' R:5'-GCCTGGTTCTCCTTGTTCTG-3'	(GCT)13N60 (AAAAG)5	242	DQ168591	Yes	Yes	Yes	Yes/No	Yes/No	Yes/No	52°C (2)
pers comm. Guicking	Macin11j	F:5'-ACCCCAAAGGTGTGATGAAT-3' R:Fam -5'-TGTATGTAGCACCCTCCAGG-3'	(TG)	ı	I	No	Yes	Yes	,	Yes/Yes*	Yes/No	54°C (3)
pers comm. Guicking	Macin8f	F:5'-AAGATGAGCCCAGAAGAGCA-3' R:5'-AGGAGGTATCGCTGTTGACG -3'	(ACC) (CAG) (CAA)	I	I	Yes	Yes	Yes	Yes/No	Yes/No	Yes/No	54°C (3)
N/T - Not Tested.												

Fourteen primer combinations successfully amplified in *M. tanarius*: MactaG01, MactaG07, MactaG09, MachyB10, MachyG07, MachyH11, Macin8f, Macin8h, Macin8n, Macpe6h and Macpe6j, MachyA03, MachyB04, MachyB11 (Table 3-1). After exclusion of the primer combinations showing multiple peaks or lacking length variation, in the end 11 markers were included in the SSR analysis for *M. tanarius*: MactaG01, MactaG07, MactaG09, MachyB10, MachyG07, MachyH11, Macin8f, Macin8h, Macin8n, Macpe6h and Macpe6j. 353 individuals of *M. tanarius* (see Appendix A) were analysed for these markers.

In *M. winkleriella* 14 primer combinations were successfully amplified: MactaF03, MactaG01, MactaG07, MachyA03, MachyA06, MachyB04, MachyB10, MachyH11, Macin8f, Macin8h, Macin8n, Macin11j, Macpe6h and Macpe6j (Table 3-1). Of these ten microsatellite markers were included in the SSR analysis for *M. winkleriella*. These markers correspond to those included for *M. winkleri* with one exception, MactaF03 was used instead of MachyG07 (Table 3-1). 12 individuals of *M. winkleriella* were analysed for these markers (see Appendix A).

The markers for *M. winkleri*, *M. tanarius* and *M. winkleriella*, their primer sequences and fluorescent label, repeat motif, size of the original clone and the genebank accession number are summarized in Table 3-2.

PCR amplifications were performed with two different types of programs, using different annealing temperatures for the different markers. The annealing temperatures can be found in Table 3-2, together with the specific PCR program, either 1, 2 or 3 (given in brackets after each temperature) as described below:

- (1) Initial denaturation at 95 °C for 5 min, followed by 33 cycles of 95 °C for 30 s, the annealing temperature for 30 s, 70 °C for 40 s, 70 °C for 8 min.
- (2) Initial denaturation at 95 °C for 5 min, followed by 35 cycles of 95 °C for 45 s, the annealing temperature for 60 s, 68 °C for 1 min, 70 °C for 8 min.
- (3) Initial denaturation at 95 °C for 5 min, followed by 35 cycles of 95 °C for 30 s, the annealing temperature for 30 s, 72 °C for 2 min, 72 °C for 7 min.

Amplifications were performed in a volume of 10 μ l, containing 1 to 5 ng of genomic template DNA, 1x buffer (containing 15 mM MgCl₂), 10 pmol each of forward and reverse primer, 0.2 mM of each dNTP, and 0.5 U of Taq DNA polymerase (QIAGEN). To decrease the formation of primer dimers 5 μ g bovine serum albumin (BSA) were added. To facilitate the amplification of GC-rich regions and to increase the specificity (Varadaraj & Skinner 1994) 3% dimethyl sulfoxide (DMSO) was added.

Microsatellite genotyping analysis

PCR was performed for the genotyping analysis using one primer per pair containing a fluorescent labelled dye, (FAM, HEX or TAMRA) for both genotyping systems, as described below.

For the genotyping analysis on the ABI Prism 377 automated sequencer (ABI) (from Applied Biosystems) a loading buffer mix (containing 180 μ l of formamid, 70 μ l of loading buffer ABI and 50 μ l of a genotyping size standard, as specified below) was prepared. 1.2 μ l of the PCR amplification product (in different dilutions depending on the strength of the PCR product and the colour of the label) was mixed with 0.5 μ l of the loading buffer mix and heat-denatured at 96 °C for 2 min. Fragment lengths of the fluorescently labelled PCR products were determined with an internal standard (GeneScan 500 ROX; Applied Biosystems) on a 6% polyacrylamide gel on the ABI.

For the genotyping analysis on the MegaBACE 1000 automatic DNA sequencer (Amersham Biosciences), a loading buffer mix (700 μ l of loading buffer MegaBACE and 20 μ l of the size standard) was prepared. 3 μ l of PCR amplification products were mixed with 7 μ l of the loading buffer mix and heat-denatured at 96 °C for 2 min. The genotyping size standard was the MegaBACETM ET 400-R Size Standard (Amersham Biosciences). Different dilutions depending on the marker specific strength of the PCR product and the colour of the fluorescent label were used. A general approximation for the dilutions according to the colours was as follows: FAM: 1:60, HEX: 1:20, TAMRA: 1:40. Fluorescent labels used can be found in Table 3-2, with the respective primer sequences.

For time and cost-efficiency between two and four markers were run in one MegaBACE run, as three differently coloured fluorescent dyes are available, and dyes of the same colours can be run in one run if the fragments sufficiently vary in length. Two reference samples were placed in each genotyping plate to reference fragment lengths over all genotyping runs, as well as to be able to reference between the two different genotyping systems (ABI and MegaBACE).

For the data obtained from the ABI system automatic lane tracking was performed and refined by hand in GeneScan 3.1 (Applied Biosystems). The lanes were then extracted and the data imported into Genotyper 2.5 (Applied Biosystems), where the fragments were manually scored. Data obtained from the MegaBACE was analysed using Fragment Profiler 1.2 (Amersham Bioscience).

3.1.3 Assignment analysis using the SSR data

Two different Bayesian assignment approaches were applied to infer population structure of *M. winkleri* and *M. tanarius* using the programs STRUCTURE and INSTRUCT. The same parameters as in the chloroplast assignment analysis were used, but the input matrices contain the fragment sizes of the alleles in this analysis. For all calculations the admixture model was assumed, which allows for mixed ancestry of each individual, as we are dealing with nuclear data, and thus expect mixed ancestry, i.e. biparental ancestry. For *M. tanarius* one calculation was done using only the individuals from Borneo and another containing all individuals. In this analysis, the number of populations tested ranged from K = 1 to K = 20, as the value for L(K) had not yet reached a plateau after K = 10. The still increasing L(K) indicates that to

only analyse until K = 10, as in the chloroplast analysis, would not have been sufficient. Ten replicate runs, per population K, were performed.

Determining the number of populations (K)

The determination of the optimal K was performed in the same manner as in the chloroplast analysis (see page 29). The maximal value of L(K) as taken over all replicate runs, the first value in the plateau phase of the mean L(K), and the calculation of Delta K (Δ K) were used to determine the optimal K in the STRUCTURE analysis. Similarly, the determination of the optimal K for the INSTRUCT analysis was to choose the smallest DIC value of all replicate runs, the first K in the plateau and the second order rate of change in the averaged DIC value (Δ K DIC).

Bar plots for *M. winkleri* and *M. tanarius* were created using the optimal Ks (except where plots show no additional information), illustrating the assignment of each individual to K clusters.

3.1.4 Principal coordinate analysis

Principal Coordinate Analyses (PCoAs) were conducted to better resolve the similarities and dissimilarities of the genetic structure within the microsatellite data. Pairwise genetic distance matrices, where two alleles can be either identical (= 0) or different (= 1), were calculated for (i) all 561 *M. winkleri* individuals, (ii) all 353 *M. tanarius* individuals and (iii) for only the Bornean *M. tanarius* individuals (305) using GenAlEx 6 (Peakall & Smouse 2006). For each of these three data sets, the distances were summed over the loci and PCoAs were computed on these summed distances using GenAlEx 6.

3.1.5 Analysis of genetic diversity and differentiation

To compare the genetic diversity between the species under study, the rarefied allelic richness was calculated using ADZE-1.0 (Szpiech et al. 2008). This measure allows for comparison of the nuclear allelic diversity, without the bias that is introduced by uneven sample sizes. The rarefied allelic richness and the mean rarefied allelic richness (i.e. averaging over the used SSR loci) were calculated. For the entire microsatellite data set of each of *M. winkleri*, *M. tanarius* and *M. winkleriella* the rarefaction number was set to g = 24 (the smallest sample size). The rarefied allelic richness was also calculated for several subsets of both *M. winkleri* and *M. tanarius*, rarefied for different values based on the desired comparison. This calculation was performed rarefied for both g = 6 and g = 70 for individuals west and east of the Crocker Range, and just for g = 6 for individuals from Sarawak/Brunei vs. individuals from Sabah.

To estimate amounts of gene flow and genetic differentiation between subpopulations of M. winkleri and M. tanarius several measures of population differentiation were calculated. The pairwise population Nei's genetic distance (Nei 1972) and Wright's inbreeding

coefficient, F_{ST} (Wright 1922), were computed using GenAlEx. In addition to these, Nei's coefficient of gene differentiation, G_{ST} , was also considered. However, more recent work has shown that the G_{ST} calculation can result in low values for highly variable markers, even when no alleles are shared between subpopulations (Hedrick 2005). As microsatellite markers are highly polymorphic, in place of the G_{ST} , Hedrick's standardized G_{ST} , G'_{ST} , was calculated manually using the values of the average subpopulation Hardy-Weinberg heterozygosity and the total population heterozygosity from GenAlEx and formula 4b from Hedrick (2005).

The differentiation values were calculated for *M. winkleri* and *M. tanarius* between the populations west and east of the Crocker Range and Sarawak/Brunei and Sabah. For *M. tanarius* alone, these measures were additionally calculated between populations of Borneo and Malay Peninsula to provide a baseline comparison with the other regional subsets.

To compare amounts of gene flow across similar geographic scales between *M. tanarius* and *M. winkleri*, G'_{ST} was calculated between three sets of regions. These regions are: a) Northern Sarawak and Brunei (plus southwestern Sabah for *M. tanarius*), b) northwestern Sabah and c) eastern Sabah (see Figure 3-11).

The following are the genetic diversity and differentiation metrics that are used in this work:

The **allelic richness** estimates the expected number of distinct alleles that will be observed in a population rarefied for the sample size (i.e. a subsample of size g, randomly drawn from the population) (Hurlbert 1971, Petit et al. 1998).

The **pairwise population Nei genetic distance** (Nei 1972) is a measure for the genetic differentiation. This genetic distance is specified on a log scale, and is a measure of the normalized identity (I) of genes between two populations with respect to all loci.

The **pairwise population** \mathbf{F}_{ST} value represents the degree of population genetic differentiation. If the F_{ST} is small, it means that the allele frequencies within each population are similar; if it is large, it means that the allele frequencies are different (Holsinger & Weir 2009). The values range from 0 to 1, where a value of 0 implies complete panmixis and a value of 1 complete separation between the populations.

The **standardized** G_{ST} (Nei 1973), G'_{ST} , (Hedrick 2005), also represents the degree of population genetic differentiation. While G_{ST} measures the amount of variation between subpopulations, relative to the total population variation, for G'_{ST} , the magnitude is the proportion of the maximum differentiation possible for the level of subpopulation homozygosity observed. This allows for better comparison between loci with different levels of genetic variation.

For *M. winkleri* and its sister species *M. winkleriella*, nine common SSR markers were used in the microsatellite analysis (see page 65). For these common markers the shared alleles between *M. winkleri* and *M. winkleriella* are determined and discussed.

3.2 Results of the microsatellite analysis

3.2.1 Assignment analyses using the SSR data

Assignment analysis in Macaranga winkleri assuming the admixture model

Screening through all log probabilities in *M. winkleri* (K = 1 to K = 20) for all replicate runs of STRUCTURE assuming the admixture model leads to the highest log probability for K = 16 (Table 3-3). The first K value in the plateau phase of the plot of the averaged log probability of data L(K), which is supposed to be the optimal, is K = 3 for *M. winkleri* (Figure 3-1A). Also the less subjective determination of K, via the calculation of Δ K, results in K = 3 (Figure 3-1B). The smallest DIC value for *M. winkleri* is found for K = 11 (Table 3-3). Plotting the averaged DIC values the first K in the plateau phase is K = 3 (Figure 3-1C). Also the plot of Δ K DIC shows a peak for K = 3 (Figure 3-1D). Table 3-3 summarizes the optimal K values for *M. winkleri* assuming admixture using the programs STRUCTURE and INSTRUCT.

Assignment analysis in Macaranga tanarius assuming the admixture model

Screening through all log probabilities in *M. tanarius* (K = 1 to K = 15) in all replicate runs of STRUCTURE assuming the admixture model leads to the highest log probability for K = 11 in both the analyses with all individuals and the one with only the Bornean *M. tanarius* individuals (Table 3-3).

The first K value in the plateau phase of the plot of the averaged log probability of data L(K) as a function of K (K = 1 to K = 15), which is supposed to be the optimal, is K = 5 for Bornean *M. tanarius* (Figure 3-2A) and K = 6 for all *M. tanarius* (Figure 3-3A).

Table 3-3. *Macaranga winkleri* and *M. tanarius*. Optimal K values for the microsatellite data sets of both STRUCTURE and INSTRUCT assuming the admixture model, determined with different methods.

	S	TRUCTURE		INS	TRUCT	
	K with highest log probability of all replicate runs	First K in the plateau phase of the plot of the Mean-Log- Likelihood	K with the highest value for ΔK	K showing the smallest DIC value	First K in the plateau phase of the DIC values	K with the highest value for ΔK DIC
M. winkleri	K=16	K=3	K=3	K=11	K=3	K=3
M. tanarius ¹	K=11	K=5	K=5	K=10	K=6/K=7	K=3
<i>M. tanarius</i> ²	K=11	K=6	K=2	K=11	K=7	K=2

¹ Only Bornean individuals.

² All individuals.

Figure 3-1. Plots for the determination of the optimal K value in *M. winkleri* for all individuals using the admixture model.

A) The log probability L(K) averaged over the ten replicate runs m(L(K)) of STRUCTURE. Vertical bars indicate standard deviations.

B) To assess the number of groups (K) supported by the analysis with STRUCTURE, the second order rate of change in the log-likelihood (Δ K) was calculated (Evanno et al. 2005).

C) The DIC values averaged over the ten replicate runs of INSTRUCT. Standard deviations are indicated by the use of vertical bars. In nearly all number of groups (K) the magnitude of the standard deviations are too small to be seen at this scale.

D) To assess the number of groups (K) supported by the analysis with INSTRUCT, the second order rate of change in the DIC was calculated (ΔK DIC).

The highest value for ΔK is K = 5 for the Bornean individuals (Figure 3-2B) and K = 2 for all individuals (Figure 3-3B). The smallest DIC value for Bornean *M. tanarius* is found for K = 10, for all *M. tanarius* individuals it is K = 11 (Table 3-3). Plotting the averaged DIC values for Bornean *M. tanarius* the first K in the plateau phase is either K = 6 or K = 7 (Figure 3-2C) as the low gradient results in both K = 6 and K = 7 being equally considered as the first K in the plateau phase. For all *M. tanarius* individuals the first value in the plateau phase of the averaged DIC value is K = 7 (Figure 3-3C).

Figure 3-2. Plots for the determination of the optimal K value in Bornean *M. tanarius*, using the admixture model.

A) The log probability L(K) averaged over the ten replicate runs m(L(K)) of STRUCTURE. Vertical bars indicate standard deviations.

B) To assess the number of groups (K) supported by the analysis with STRUCTURE, the second order rate of change in the log-likelihood (ΔK) was calculated.

C) The DIC values averaged over the ten replicate runs of INSTRUCT. Standard deviations are indicated by the use of vertical bars. In nearly all number of groups (K) the magnitude of the standard deviations are too small to be seen at this scale.

D) To assess the number of groups (K) supported by the analysis with INSTRUCT, the second order rate of change in the DIC was calculated (ΔK DIC).

The plot of ΔK DIC shows the highest peak for K = 3 for Bornean *M. tanarius* (Figure 3-2D) and K = 2 for all *M. tanarius* (Figure 3-3D).

Table 3-3 gives an overview of the optimal K values for *M. tanarius* assuming admixture with the programs STRUCTURE and INSTRUCT.

Figure 3-3. Plots for the determination of the optimal K value in *M. tanarius* for all individuals using the admixture model.

A) The log probability L(K) averaged over the ten replicate runs m(L(K)) of STRUCTURE. Vertical bars indicate standard deviations.

B) To assess the number of groups (K) supported by the analysis with STRUCTURE, the second order rate of change in the log-likelihood (ΔK) was calculated.

C) The DIC values averaged over the ten replicate runs of INSTRUCT. Standard deviations are indicated by the use of vertical bars. In nearly all number of groups (K) the magnitude of the standard deviations are too small to be seen at this scale.

D) To assess the number of groups (K) supported by the analysis with INSTRUCT, the second order rate of change in the DIC was calculated (ΔK DIC).

3.2.2 Bar plots illustrating the assignment analyses of the SSR data

Bar plots of *M. winkleri* assuming the admixture model

For STRUCTURE the populations yielding the highest log probability (K = 16) and the start of the plateau phase (K = 3, see Mean-Log-Likelihood plot, Figure 3-1A) are shown in bar plots (Figure 3-4A & B). While for INSTRUCT the populations that are shown are for the start of the plateau phase (K = 3, see DIC plot, Figure 3-1 C) and for the smallest DIC (K = 11) (Figure 3-4 C & D).

The bar plots for both STRUCTURE and INSTRUCT (Figure 3-4), reveal that generally the *M. winkleri* individuals from Sarawak/Brunei belong to the same cluster independent of the number of populations (K) used. While individuals from Sarawak/Brunei tend to a single cluster, those from Sabah tend to two clusters for K = 3 and K = 11 (graphs B, C and D).

For both STRUCTURE and INSTRUCT with K = 3 (B and C) the same clustering of individuals emerges, represented by the corresponding colours, blue, red and yellow. The specific percentages with which each individual belongs to a cluster is given in Appendix J for K = 3 (STRUCTURE) and for all best Ks in Table 1 in the digital appendix. The blue cluster consists entirely of individuals from Sarawak/Brunei, while the individuals from Sabah are split into the red and yellow clusters. The individuals making up the yellow cluster originate primarily from the west grid of Danum Valley (see Appendix B and the accompanying description).

For the assignment of STRUCTURE with K = 16 (A), the major division separating Sarawak/Brunei and Sabah remain. However, 17 individuals originating from Brunei (~ 30%) are assigned to an additional cluster each with more than 50%, dividing Sarawak/Brunei partly into their separate respective regions. The group indicated as K.K.-Ranau-Poring is divided into two major clusters comprising individuals from Poring and the rest. In the Danum Valley group for K = 16 an additional bigger cluster obtained is the orange one, comprising mostly individuals from the West 10 part of the west grid. In the remainder of Sabah several small clusters can be detected as well as individuals of mixed assignment.

The bar plot D, INSTRUCT with K = 11, does not give additional information beyond what is already shown in the K = 3 plots of STRUCTURE (B) or INSTRUCT (C). This plot clearly indicates the same three clusters as in K = 3 (B and C) only with the red cluster now shown as one cluster with consistently mixed assignment to 11 groups for all individuals.

Figure 3-4. A series of bar plots of the assignment analysis and corresponding geographic distribution of *M. winkleri* individuals, using both STRUCTURE (A-B) and INSTRUCT (C-D). Each graph illustrates the clustering of microsatellite data assuming the admixture model. In each graph, the individuals are presented in the same order (see Appendix J). The map illustrates the regions from

77

A more detailed dissection of the geographic distribution of individuals in the Danum Valley of Sabah and along the major arteries in and out of the valley (including the road to Malua and Lahad Datu) is shown in Appendix B. The bar plot consists of the Danum Valley section of the INSTRUCT analysis with population K = 3 (Figure 3-4C). The individuals from this region that cluster in yellow tend to be from the west grid, mostly from region W0 to W07. A second set of individuals in yellow are also found along the road to Malua and one individual between the field centre and Lahad Datu.

Bar plots of *M. tanarius* assuming the admixture model

Bar plots for *M. tanarius* were created to visualize the STRUCTURE and INSTRUCT results for the microsatellite data applying the admixture model showing the optimal K values. These plots illustrate the assignment of each individual to the assumed number of clusters (K). A bar plot of the assignment analysis and corresponding geographic distribution of the *M. tanarius* individuals (Figure 3-5) generally show that individuals of one region tend to cluster (depending on the number of populations, K, used) in the assignment analysis. Each individual is assigned one value for each cluster (between 0 and 1) representing the degree that the individual belongs in each cluster. A value of 1 indicates that the individual shares no commonality with the corresponding cluster. Any other non-zero value is an indication of the mixed ancestry of the individuals.

A more detailed analysis of *M. tanarius* (Figure 3-5) is illustrated for the optimal clustering, K = 6, showing the geographic origins of identifiable clusters. The percentage with which each individual belongs to a cluster (see Appendix K) is represented by the corresponding colour, blue, orange, yellow, green, red and brown. All individuals from the Malay Peninsula were found to cluster together, in the blue cluster, with an average of 94.8%, with only one individual belonging to this cluster with a percentage less than 80% (individual 6090 with 62.4%). The orange cluster includes all individuals from Sarawak/Brunei (identified as region 1 in the figure) and individuals from southern Sabah in the surroundings of Tenom (region 3).

- A) the highest log probability of all replicate runs of STRUCTURE, K = 16,
- B) the first K in the plateau phase of the plot of the Mean-Log-Likelihood of STRUCTURE, K = 3,
- C) the first K in the plateau phase of the plot of the DIC values of INSTRUCT, K = 3, and
- D) the K with the smallest DIC value of INSTRUCT, K = 11.

which the *M. winkleri* individuals were sampled. Each cluster in the bar plot is related visually to its geographic origin(s), in detail by numbers and regions (above A), and in broader geographic terms (below D). The four graphs represent the preferred value (this is the highest value for STRUCTURE runs, and the lowest for INSTRUCT) found over ten replicates for:

Figure 3-5. A bar plot of the assignment analysis and corresponding geographic distribution of *M. tanarius* individuals. The centre graph illustrates the clustering of microsatellite data assuming the admixture model, and the first K in the plateau phase of the plot of the mean-log-likelihood, K = 6, from STRUCTURE (Appendix K, Figure 3-6C). The main map (upper, right hand side) illustrates the regions from which the *M. tanarius* individuals were sampled. The Malay Peninsula and Sabah with northern Sarawak and Brunei are shown, respectively, in greater detail in boxes A (upper, left) and B (lower, centre). Each cluster in the bar plot is related visually to its geographic origin(s), by lines to the upper maps, and numbers in the lower map.

The yellow cluster is comprised of individuals from the western coastal region around Kota Kinabalu and the island Pulau Gaya (region 5). The green cluster is more diverse than the other clusters, mainly consisting of individuals from around the region between Kota Kinabalu and Kota Belud and between Kota Kinabalu and Ranau (region 6), but also including individuals from further south along the coast around Beaufort (region 4) and the island Pulau Tiga (region 2). Furthermore individuals from region 5, which fall mainly in the yellow cluster, show individuals that are assigned with percentages between 0.05 and 87.7 (average 8.6) to the green cluster. Geographically the yellow cluster is located near to the main green cluster (6) and between the northern (6) and southern (2 & 4) green clusters.

The red cluster is also from western Sabah, more inland around Poring and Ranau (region 7). The individuals from this cluster closely border the green cluster to the west, and this is shown again by the high percentage of the green cluster in several individuals. The brown cluster consists of all samples in central and eastern Sabah (regions 8 and 9, respectively). Although these regions are more geographically distant we still see high percentages from both the green and yellow clusters.

With K = 6 the individuals from East Kalimantan did not tend to join a single cluster, as did individuals from other regions, with substantial percentages in the green, red, brown, orange and blue clusters, however all of them have the highest percentage in the red cluster (between 36.1% and 80.1%). This may be a mathematical artefact, due to the small number of individuals, however even with much larger numbers of clusters (see Figure 3-6B & D each with K = 11), these individuals tend to join multiple clusters with a significant percentage (see Table 2 in the digital appendix).

The *M. tanarius* individual from Java mainly belongs to the green cluster (64.0%), with 29.2% to the brown, and with small percentages in the other four clusters.

Comparing the bar plots for all optimal K values from STRUCTURE and INSTRUCT (Table 3-3) for the assignment analysis of all *M. tanarius* individuals assuming the admixture model shows clearly the separation of the Malaysian individuals (blue cluster) from all the other individuals for all K values (Figure 3-6A-E).

In general the graphs B-E (Figure 3-6) show the same clustering for the *M. tanarius* individuals, as indicated by the long vertical lines and small letters (a-f) below graph C.

Shorter vertical lines indicate the substructure that was detected within some of the main clusters. Cluster d shows a further subdivision (indicated by the *) in the population structure for K = 11 (STRUCTURE) in graph B, separating individuals from the Island Pulau Gaya and the individuals from Kota Kinabalu's surrounding. Cluster c3 shows substructure detected by both STRUCTURE and INSTRUCT for K = 11 as well as for K = 7 (INSTRUCT), separating the individuals which originate from the region between Kota Kinabalu and Kota Belud, close to Kota Kinabalu (*1), from the other individuals of cluster c3. Cluster f shows substructure for the STRUCTURE results in K = 11, separating individuals of Danum (*2) from those of Tabin and Tawau (*3).

Figure 3-6. Series of bar plots of the assignment analysis of all *M. tanarius* individuals using both STRUCTURE (A-C) and INSTRUCT (D-E). Each graph illustrates the clustering of microsatellite data assuming the admixture model. In each graph, the Individuals are presented in the same order (Appendix K). The five graphs represent the preferred value (this is the highest value for STRUCTURE runs, and the lowest for INSTRUCT) found over ten replicates for:

- A) the optimal ΔK of STRUCTURE; K = 2,
- B) the highest likelihood of STRUCTURE; K = 11,
- C) the first K in the plateau phase of the plot of the mean-log-likelihood of STRUCTURE; K = 6,
- D) the smallest DIC value in INSTRUCT; K = 11, and
- E) the first K in the plateau phase of the DIC values of INSTRUCT; K = 7.

The vertical lines indicate the common population clusters detected for different values of K (K = 6, 7 and 11) for both STRUCTURE and INSTRUCT. These clusters are labelled by the single lower case letters under plot C (letters a-f). Individuals belonging to the same cluster (for example the green cluster c) that are separated in the bar plot have an additional index term (e.g. c1, c2 & c3). The arrow marks the singleton individual from Java. Further substructure is demarcated by short vertical lines within the corresponding plot.

Basically INSTRUCT gives a very similar assignment result for K = 7 (graph E), as STRUCTURE for K = 6 (graph C), only the green individuals in the red cluster (e) and the green individual from the brown cluster (f) are assigned to one additional cluster, the pink one.

In the barplot for K = 11 (graph D) individuals were in principle assigned to the clusters a-f, (only additionally distinguishing (*1) for cluster c3), but INSTRUCT assigns genetically similar individuals not to mainly one cluster, but with highly similar percentages for each individual to each of the several different clusters. In cluster b1 and b2 for example individuals are assigned to all the 11 different clusters created for this barplot with different percentages, but all individuals were assigned with a highly similar percentage to each cluster.

The STRUCTURE barplot for K = 11 (B) basically structures the analysed individuals into clusters a-f, but providing more information on the population substructure (indicated by the asterisks below the graph) than the other barplots. Furthermore individuals from clusters c1 and c2 (regions 4 and 2 in Figure 3-5) were distinguished from individuals of cluster c3 (region 6).

Figure 3-7 illustrates a comparison of the STRUCTURE barplot for K = 11 between all *M. tanarius* individuals and the subset of *M. tanarius* individuals from Borneo alone. This figure illustrates the key difference in features between these two classes of *M. tanarius* individuals, one additional cluster for the individuals of Malay Peninsula. Although the remaining individuals are grouped into one more cluster for the Bornean individuals, no additional features emerge.

Figure 3-7. Bar plots of the assignment analysis for *M. tanarius* assuming the admixture model, with the highest likelihood of STRUCTURE; K = 11, for:

- A) all M. tanarius individuals, and
- B) only Bornean M. tanarius individuals.

3.2.3 Principal coordinate analysis

Macaranga winkleri

In the PCoA of *M. winkleri* the first two axes account for roughly 60% of the variance (Table 3-4). The first axis is the most descriptive, explaining 35.20% of the variance. This is clearly visualized in the PCoA plot (Figure 3-8), with the existence of two main groups dividing the individuals of Sabah from the individuals of Sarawak/Brunei. The individual presented in pink is the individual that is found between the two groups in the PCoA of the chloroplast data (Figure 2-8). Here this individual clusters with those from Sarawak/Brunei, but not in the main body of Sarawak/Brunei individuals, instead it lies with the outliers in the direction of the Sabah group. Within the group of Sabah individuals, seven individuals lie west of the

Table 3-4. *Macaranga winkleri* and *M. tanarius*. Principal coordinate analysis (PCoA). Percentage of variation explained by the first three axes.

		Axis	
Species	1	2	3
M. winkleri	35.20%	26.47%	11.87%
Cumulative:	35.20%	61.67%	73.54%
M. tanarius ¹	34.79%	17.56%	13.92%
Cumulative:	34.79%	52.34%	66.27%
<i>M. tanarius</i> ²	25.32%	18.14%	17.32%
Cumulative:	25.32%	43.46%	60.78%
1. All individuals.			

2. Only Bornean individuals.

Figure 3-8. Plot of the first and second axes of the PCoA analysis of the genetic distances of *M. winkleri*. Two main divisions along the primary axis divide individuals from Sarawak/Brunei (blue) and individuals from Sabah (red and yellow). The secondary axis primarily divides the individuals from Sabah into those from the Danum Valley, west grid 0-7 (DV, W0-7 shown in yellow), from the main body (in red). Individual 4396 (HT group 4 in the chloroplast analysis) is indicated in pink.

Crocker Range, these are indicated with a solid outline. As with the chloroplast transition individual (pink) these Sabah individuals west of the Crocker Range are not clustered within the main body. Instead these individuals tend towards the periphery of the main body of Sabah individuals. The second axis incorporates a further 26.47% of the variance, clearly illustrating the split of individuals in Sabah into two subgroups. Geographically the second axis splits those individuals along the west grid (0-7) of the Danum Valley from the main group of individuals from Sabah.

Macaranga tanarius

Individuals from Borneo, Java and the Malay Peninsula were analysed in the PCoA of *M. tanarius*. The first two axes account for roughly 50% of the variance (Table 3-4), with the first axis accounting for 34.79% the variance. The PCoA plot of the first two axes (Figure 3-9) shows two main groupings, the individuals from Borneo and the individuals from the Malay Peninsula. The individual from Java clusters with the Bornean individuals, but not with the main body.

A closer analysis of the *M. tanarius* individuals from Borneo was also performed. The first two axes of the PCoA for Bornean *M. tanarius* account for less than 50% of the variance (Table 3-4). At first the plot of the primary and secondary axes (Figure 3-10A) appears to yield little additional information. However, when grouped into geographic regions (corresponding to those in Figure 3-5B) all but one group tends to cluster within the first two axes. The lone holdout (NW Sabah 5) is made up of individuals from Kota Kinabalu and the island Pulau Gaya. These individuals are better differentiated along the third axis (three dimensional plot not shown) found by PCoA, which accounts for 17.32% of the variance,

Figure 3-9. Plot of the first and second axes of the PCoA analysis of the genetic distances of *M. tanarius* from Borneo, Java and the Malay Peninsula. The individuals from Borneo are clearly separated from the individuals of the Malay Peninsula. The individual from Java clusters with the Bornean individuals.

Figure 3-10. A) Plot of the first and second axes of the PCoA analysis. B) Plot of the first and third axis of the genetic distances of *M. tanarius* from Borneo. Abbreviations used: NW = Northwest, E = East, SW = Southwest. Numbers in the legend correspond to the numbers of the geographical regions in B.

Table 3-5. Mean allelic richness for all *M. winkleri*, *M. tanarius* and *M. winkleriella* individuals, and the Bornean *M. tanarius* individuals rarefied for a g of 24.

species	aroup	rarefied for (a)	mean allelic richness	standard error	number of loci
M. winkleri	all	24	8.85	1.27	10
M. tanarius	all	24	7.11	1.57	12
M. tanarius	Borneo	24	7.16	1.58	12
M. winkleriella	all	24	4	0.63	10

Table 3-6. Determination of shared alleles of *M. winkleriella* compared with *M. winkleri* for the nine common SSR markers.

	MactaG01	MactaG07	MachyB10	MachyH11	Macin8f	Macin8n	Macin8h	Macpe6h	Macpe6j
Shared:	6 alleles	3 alleles	4 alleles	3 alleles	2 alleles	3 alleles	3 alleles	1 allele	4 alleles
Unique:	-	-	-	-	-	-	1 allele	-	-

nearly the same as the second axis with 18.14%. Together the first three axes describe over 60% of the variance in the Bornean individuals of *M. tanarius*. While limited to visualizing the multidimensional results of the PCoA, a second view of this data (Figure 3-10B) showing the plot of the first and third axes helps to illustrate the differentiation of different geographical regions.

3.2.4 Genetic diversity and differentiation

To better analyse the genetic diversity, the allelic richness was calculated for each of the ten loci analysed for *M. winkleri* and *M. winkleriella* and the 12 loci analysed for *M. tanarius* using ADZE-1.0.

The mean allelic richness (averaged over the ten loci) with sample size rarefied for g = 24 is 8.85 in *M. winkleri*, which is more than twice the value of *M. winkleriella* (4.00). The mean allelic richness of *M. tanarius* is 7.11 for all individuals and 7.16 for the Bornean individuals, and thus smaller than for *M. winkleri* (Table 3-5). For the nine common markers between *M. winkleri* and *M. winkleriella* it was determined that all but one of the alleles found in *M. winkleriella* is shared with *M. winkleri* (Table 3-6).

For *M. winkleri* the mean allelic richness west and east of the Crocker Range (Table 3-7) is rarefied for g = 70, and is ~1.5 times larger east than west of the range (14.74 and 9.88, respectively). For *M. tanarius* the mean allelic richness (Table 3-7) west and east of the Crocker Range, rarefied for the same g is of a similar magnitude on either side (10.25 and 11.21, respectively). Comparing *M. tanarius* individuals from Borneo and Malay Peninsula, they are also in a similar range with the individuals from Borneo having a richness of 11.58 and those from Malay Peninsula 9.38. Although both comparative groups of *M. tanarius* have a similar mean allelic richness, the Borneo/Malay Peninsula groups exhibit a larger difference than those on either side of the Crocker Range.

The mean allelic richness (Table 3-8) was again computed, this time rarefied for g = 6, for both *M. winkleri* and *M. tanarius*. This rarefaction was necessary in order to compare the division by the Crocker Range with the division between Sabah and Sarawak/Brunei. Both calculations show a similar trend consistent for both *Macaranga* species, that the division between Sarawak/Brunei and Sabah is slightly more pronounced than the division east and west of the mountain range.

To quantify differences among the population west and east of the mountain range Nei's genetic distance, Wright's inbreeding coefficient (F_{ST}) and Hedrick's standardized G_{ST} , were calculated (Table 3-9). The genetic differentiation between the *M. winkleri* population west and east of the mountain range is more than seven times larger than in *M. tanarius* using Nei's genetic distance (0.377 vs. 0.050) and more than five times larger for both F_{ST} (0.093 vs. 0.017) and G'_{ST} (0.398 vs. 0.067). In both cases the value for G'_{ST} more closely approximated Nei's genetic distance than Wright's inbreeding coefficient.

		rarefied	mean allelic	standard	number of
species	group	for (g)	richness	error	loci
M. winkleri	west of Crocker Range	70	9.88	1.74	10
M. winkleri	east of Crocker Range	70	14.74	2.15	10
M. winkleri	Sarawak/Brunei	70	8.87	1.68	10
M. winkleri	Sabah	70	14.41	2.19	10
M. tanarius	west of Crocker Range	70	10.25	2.48	12
M. tanarius	east of Crocker Range	70	11.21	2.76	12
M. tanarius	Borneo	70	11.58	2.85	12
M. tanarius	Malay Peninsula	70	9.38	1.94	12

Table 3-7. Mean allelic richness for *M. winkleri* and *M. tanarius* rarefied for g = 70. Comparison of *M. winkleri* west and east of the Crocker Range and between Sarawak/Brunei and Sabah. Comparison of *M. tanarius* west and east of the Crocker Range and between Borneo and Malay Peninsula.

Table 3-8. Mean allelic richness for *M. winkleri* and *M. tanarius* rarefied for g = 6. Comparison west and east of the Crocker Range and Sarawak/Brunei vs. Sabah division.

		rarefied	mean allelic	standard	number of
species	group	for (g)	richness	error	loci
M. winkleri	west of Crocker Range	6	3.00	0.44	10
M. winkleri	east of Crocker Range	6	3.75	0.35	10
M. winkleri	Sarawak/Brunei	6	2.87	0.44	10
M. winkleri	Sabah	6	3.72	0.36	10
M. tanarius	west of Crocker Range	6	3.14	0.43	12
M. tanarius	east of Crocker Range	6	3.10	0.43	12
M. tanarius	Sarawak/Brunei	6	2.38	0.31	12
M. tanarius	Sabah	6	3.18	0.44	12

Table 3-9. Population differentiation for *M. tanarius* and *M. winkleri* individuals from Borneo west vs. east of the Crocker Range and Sarawak/Brunei vs. Sabah.

Species	populations	Nei genetic distance	pairwise population F _{ST}	pairwise population G´ _{ST}
M. winkleri	west vs. east of Crocker Range	0.377	0.093	0.398
M. tanarius	west vs. east of Crocker Range	0.050	0.017	0.067
M. winkleri	Sarawak/Brunei vs. Sabah	0.395	0.099	0.414
M. tanarius	Sarawak/Brunei vs. Sabah	0.150	0.068	0.204
M. tanarius	Malay Peninsula vs. Borneo	0.505	0.114	0.467

These genetic differentiation values were then calculated for both the *M. winkleri* and *M. tanarius* populations divided between Sarawak/Brunei and Sabah (Table 3-9). The genetic differentiation between the *M. winkleri* population between Sarawak/Brunei and Sabah is more than twice that in *M. tanarius* using Nei's genetic distance (0.395 vs. 0.150) and G'_{ST} (0.414 vs. 0.204), and nearly one and a half times larger for F_{ST} (0.099 vs. 0.068). For both *Macaranga* species each of these genetic differentiation measurements was larger for this division than for the west/east division caused by the mountain range. This is most pronounced in the case of *M. tanarius*, with differentiation values three times higher for the division between Sarawak/Brunei and Sabah, while for *M. winkleri* the increase in these values was smaller, but consistent.

The same quantification was performed for the *M. tanarius* populations on Borneo and Malay Peninsula (Table 3-9). Nei's genetic distance is 0.505, the F_{ST} is 0.114 and the G'_{ST} is 0.467. Quantified in each of these ways, the genetic differentiation is much larger than for the *M. tanarius* populations west and east of the mountain range and between Sarawak/Brunei and Sabah.

When considering the geographic regions where both *M. winkleri* and *M. tanarius* were found, there emerge three distinct regions. These three regions are described as: a) Northern Sarawak and Brunei (plus southwestern Sabah for *M. tanarius*), b) northwestern Sabah and c) eastern Sabah. Between these three main sampling regions of Borneo, the inter-regional calculations of the G'_{ST} values for *M. winkleri* vary considerably from those of *M. tanarius* (Figure 3-11). For *M. winkleri* the highest differentiation is detected between population a and c (0.437) and is in a similar range for populations a and b (0.373). The G'_{ST} value is smaller for the populations between b and c (0.092). For *M. tanarius* the value for G'_{ST} is the same for a-c and b-c (0.114) and for a-b it is slightly smaller (0.087).

Figure 3-11. G'_{ST} values for *M. winkleri* (shown in blue) and *M. tanarius* (shown in orange) between three populations: a) Northern Sarawak and Brunei (plus southwestern Sabah for *M. tanarius*), b) northwestern Sabah and c) eastern Sabah. The circles indicate the approximate centres of these three sampled regions for both species.

3.3 Discussion of the microsatellite data

In this part of the study nuclear microsatellite markers, which are co-dominant markers generally with a high mutation rate (Sharma et al. 2007), were used. Because of their high variability they can be used as powerful tools for population genetic analysis. The nuclear genome is inherited biparentally (Petit et al. 2005), and thus in contrast to chloroplast data, also reflects pollen-mediated gene flow.

While the main focus in the chloroplast data set of this study is on phylogeographic analyses, which aim to reveal historical processes that formed the extant distribution of genetic variation, here population genetic approaches are used, which interpret differences in allele distribution under the assumption of recent gene flow.

3.3.1 Population genetic structure of *M. winkleri*

Macaranga winkleri is a myrmecophytic pioneer species. It occurs together with its obligate partner ant *Crematogaster* morphospecies (msp.) 8, only in Borneo.

To test the hypothesis of restricted pollen-mediated gene flow in *M. winkleri*, (hypothesis 2 chapter 1.2) assignment analyses were performed using two different programs STRUCTURE and INSTRUCT. Different ways of determining the optimal K lead to the same result. The calculation of ΔK for STRUCTURE (Figure 3-1B) resulted in K = 3, as did the more subjective detection of the first K in the plateau phase of the log probability (Figure 3-1A). In accordance with this, the plot of the average DIC values (Figure 3-1C) for INSTRUCT leads to K = 3 as an optimal number of clusters, as does the ΔK calculation of the averaged DIC values (Figure 3-1D). These unanimous results for the optimal number of clusters indicate a clear structure of the *M. winkleri* data. The clear geographic differentiation of the nuclear data indicates a geographic restriction of gene flow via pollen, which is in accordance with the hypothesis.

Geographically these three groups of *M. winkleri* are clearly differentiated between the two major regions Sarawak/Brunei and Sabah with a further differentiation within Sabah, indicating a third group (yellow cluster), which is located in the west grid of Danum Valley (Figure 3-4A, B & C and Appendix B). The cluster comprises individuals from west grid 0-7 and individuals sampled at the road to Malua. This genetically distinct cluster can be explained by dispersal events, introducing this combination of genotypes to this region followed by the establishment of a population.

Another optimality criterion (the smallest DIC value) for INSTRUCT is met at K = 11. However, this number of clusters continues to illustrate the true clustering (K = 3), by classifying the main group from Sabah in such a way as to assign each individual roughly evenly to each of the remaining groups (Figure 3-4D). Thus, the same three groups are indicated again. This shows the importance of a careful choice when determining the optimal number of clusters. Here, using only the number of K, assessed by the smallest DIC value results in a number of clusters, much higher than the real optimal number of clusters, which becomes obvious by visual inspection of the bar plot.

For STRUCTURE a further optimality criterion (the highest log probability of all replicate runs) is met at K = 16. In contrast to the INSTRUCT ad-hoc determination of K, for this analysis, the assignment algorithm works to identify as many subgroups as possible, making it better suited to identifying substructure from smaller geographical regions (Figure 3-4A).

In the assignment analyses it becomes evident that a comparison and careful evaluation of the differently obtained optimal K values and visual inspection of the bar plots is necessary, to access the true population structure. Only using the ad-hoc determination for INSTRUCT results in a K much higher than the true K. However, visual inspection of the bar plot reveals the optimal K. The ad-hoc determination of the number of clusters for STRUCTURE provides information on subpopulations of *M. winkleri*, showing that different numbers of clusters can provide information on different hierarchical levels of structure in the data. In contrast, INSTRUCT when given an excess number of groups (K >> optimal K), continues to illustrate the true clustering, which makes it more suitable to identifying the upper hierarchical structure, which is represented by K = 3 in the *M. winkleri* data set. K = 3 was also detected for the calculation of Δ K (STRUCTURE). This is in accordance with Evanno et al. (2005), who found, that calculating Δ K (STRUCTURE) detected accurately the uppermost hierarchical levels of structure for a test scenario. Taking the different approaches for the determination of the best Ks together, K = 3 as the optimal number of clusters for the *M. winkleri* data set is indicated.

Further analysis using PCoA emphasizes these three genetic geographic groupings of *M. winkleri* (Figure 3-8). Within the first two axes over 60% of the genetic variation are already accounted for. A plot of the primary and secondary axes shows a clear division between the Sarawak/Brunei and Sabah individuals along the primary axis. Along the secondary axis the division between the main body of the Sabah individuals and those individuals from the west grid of the Danum Valley, building the third group, becomes apparent.

Genetic differentiation in *Macaranga winkleri* between Sarawak/Brunei vs. Sabah and individuals west vs. east of the Crocker Range

There are seven *M. winkleri* individuals from Sabah that are west of the Crocker Range. These individuals could be logically grouped, either with the individuals from Sarawak/Brunei to form a group of all individuals west of the Crocker Range (Figure 2-16), or together with the rest of the individuals from Sabah. To determine the groupings with the higher genetic differentiation, and thus lower amounts of pollen-mediated gene flow, three differentiation measures, Nei's genetic distance, the pairwise population F_{ST} and the G'_{ST}, were calculated for each of these groupings.

All analyses performed show a clear genetic differentiation between individuals of *M. winkleri* in Sarawak/Brunei and those of Sabah.

The results of the assignment analysis using both STRUCTURE and INSTRUCT (Figure 3-4) support the existence of the two main clusters, Sarawak/Brunei and Sabah. For the optimal K = 3 all individuals from Sarawak/Brunei were assigned to one cluster, and the individuals from Sabah into two clusters. The individual (ID 4396) that was found between the two groups in the chloroplast analysis is assigned to Sarawak/Brunei by both STRUCTURE and INSTRUCT, based on the nuclear SSR data, in accordance with its geographical origin. The differentiation between the groups Sarawak/Brunei and Sabah persists from K = 2 up to K = 16 (not all plots shown). The persistence of the assignment of membership to the two groups is indicative of the high level of genetic differentiation between these two groups.

In addition the PCoA plot illustrates the split between the two groups along the primary axis (Figure 3-8). The *M. winkleri* individual, ID 4396, is located on the primary axis within the Sarawak/Brunei cluster in the nuclear SSR analysis. However, it is located on the peripheral arm towards the Sabah cluster.

To test the hypothesis of a higher genetic diversity in Sabah compared to Sarawak/Brunei due to long-term persisting rain forests, (hypothesis 9, chapter 1.2), the rarefied mean allelic richness, a measure of genetic diversity, which considers differences in sample sizes was calculated. The value shows a difference between individuals from Sarawak/Brunei and those from Sabah (Table 3-7 & Table 3-8) rarefied for g = 70 as well as g = 6. *Macaranga winkleri* individuals from Sabah show a higher mean allelic richness than those from Sarawak/Brunei. This is in accordance with the hypothesised higher genetic diversity for Sabah. Castric and Bernatchez (2003) proposed that populations located at the expanding edge of a species' range typically show a low allelic richness. As *M. winkleri* does not occur in the southern parts of Sarawak (Lucy Chong, Sarawak Forest Department, personal communication), this might be the expanding edge of the range and explain the lower allelic richness of the Sarawak/Brunei population.

The differentiation of the *M. winkleri* individuals west and east of the Crocker Range is not as pronounced as for the Sarawak/Brunei and Sabah groupings.

The results of the assignment analysis using both STRUCTURE and INSTRUCT (Figure 3-4) are to assign the *M. winkleri* individuals from Sabah west of the range (IDs 6403-6409) with a high percentage (89.0 - 96.7%) to the Sabah cluster for K = 3 (see Appendix J). Accordingly for K = 11 these individuals were assigned only with very low percentage to the Sarawak/Brunei cluster (1.6 - 3.7%) while assigned to Sabah clusters with higher percentages (from 14.1 to 21.0%). Correspondingly for K = 16 they were assigned with even smaller percentages to Sarawak/Brunei (0.6 – 1.9%) (Table 1 in the digital appendix) and instead strongly grouped in Sabah subgroups (from 38.9 to 90.9%). Both assignment analyses agree that these individuals are more closely related to individuals from Sabah east of the Crocker Range than to individuals from Sarawak/Brunei.

91

The higher genetic differentiation for *M. winkleri* individuals from Sarawak/Brunei and Sabah compared to those from different sides of the mountain range do not suggest the Crocker Range as a barrier to current gene flow. This can indicate Sarawak/Brunei vs. Sabah as an older split within the species than the split by the Crocker Range. This split within *M. winkleri* between Sarawak/Brunei and Sabah can be explained, as with the chloroplast data (see page 49), by the retreat of the species into two (or more) separate refugia during arid periods of the Pliocene. When better conditions resumed, the subpopulations again expanded, but have not yet been in genetic exchange.

Also the PCoA plot illustrates a clear split between *M. winkleri* individuals from Sarawak/Brunei and Sabah. However, the relationship between the individuals from Sabah west of the Crocker Range to those from Sarawak/Brunei is a close one. These individuals west of the mountain range tend to the periphery of the main Sabah cluster, along the axial arm in the direction of the Sarawak/Brunei cluster (Figure 3-8). While still clearly in the Sabah group, this may indicate that these western Sabah individuals are not as distantly related to the Sarawak/Brunei individuals as the assignment analyses would indicate.

The mean allelic richness west and east of the Crocker Range rarefied for g = 70 (9.88 and 14.74, respectively) and for g = 6 (3.00 and 3.75, respectively) provide another indicator that the *M. winkleri* individuals from Sabah west of the Crocker Range are more closely related to the Sabah subpopulation. When compared with the mean allelic richness for Sarawak/Brunei vs. Sabah, the allelic diversity of the Sarawak/Brunei individuals (8.87 rarefied for g = 70 and 2.87 rarefied for g = 6) was less than that for those individuals west of the Crocker Range. For the Sabah individuals the mean allelic richness (14.41 and 3.72, respectively) was approximately the same as for those individuals east of the Crocker Range. Although both means for Sabah were slightly below the respective means east of the mountain range, they were well within the tolerance of the standard error. At first it may seem contradictory that the allelic diversity for Sabah did not show any significant increase. One explanation evident in the PCoA plot is that the individuals from Sabah west of the Crocker Range group with other outliers of Sabah east of the range. It is possible that alleles that were distinct when these individuals were excluded from Sabah are no longer distinct, when including these individuals.

The genetic differentiation metrics for the groups Sarawak/Brunei and Sabah vs. the group west and east of the Crocker Range for *M. winkleri* show very similar values. For Nei's genetic distance, the pairwise population F_{ST} and the G'_{ST} values are consistently slightly bigger for the groups Sarawak/Brunei vs. Sabah than for west and east of the Crocker Range. This indicates a higher differentiation for individuals from Sarawak/Brunei vs. Sabah than for individuals west and east of the range. However, only seven *M. winkleri* individuals (IDs 6403-6409) originate within Sabah and west of the mountain range, the small number possibly biasing these results.

3.3.2 Population genetic structure of *Macaranga tanarius*

Macaranga tanarius is a non-myrmecophytic pioneer tree. It is found in mildly to very disturbed vegetation. Assignment analyses for *M. tanarius* were performed using both STRUCTURE and INSTRUCT. The determination of the best K for STRUCTURE results in K = 5 for Bornean *M. tanarius* both for the first K in the plateau phase (Figure 3-2A) and the calculation of ΔK (Figure 3-2B). Calculation of ΔK DIC (INSTRUCT) results in K = 3 for Bornean *M. tanarius*.

When considering all *M. tanarius* individuals, which includes the individuals from Malay Peninsula, the assignment analysis typically builds one extra cluster – specifically for those individuals from Malay Peninsula, indicating that these are highly differentiated from the Bornean individuals. This is in accordance with the expectation of a high genetic differentiation between these two groups, caused by vicariant evolution (hypothesis 8, chapter 1.2).

This extra cluster is detected in the optimal K values found using the plateau phase for both STRUCTURE and INSTRUCT as well as with the smallest DIC for INSTRUCT (Table 3-3). Interestingly, this is not the case with the highest log probability, where the optimal K for both the Bornean and all individuals of *M. tanarius* is 11. In this case the analysis for all individuals still maintains one cluster for Malay Peninsula, but redistributes the remaining individuals among 10 rather than 11 clusters (Figure 3-7). This indicates a possible superfluous cluster in this optimality identifier for the Bornean individuals. Again, this shows that a careful check of the optimal number of clusters detected is always necessary.

In the situation of the calculation of ΔK and ΔK DIC values, the optimal K for all *M. tanarius* individuals is found to be K = 2, and thus smaller than for only the Bornean individuals (K = 5). Similarly for the INSTRUCT analysis the optimal K for all *M. tanarius* individuals is found to be K = 2 and for the Bornean individuals K = 3. This lower number of optimal clusters can be explained by the fact that the calculation of ΔK detects the uppermost hierarchical level of structure in a data set (Evanno et al. 2005). Thus, a high genetic differentiation between individuals from Borneo and Malay Peninsula is indicated.

An interesting side note when examining the second order rate of change, ΔK and ΔK DIC (Figure 3-2B & D), for the Bornean individuals is a double peak. In both cases the highest peak is reported, but they are not consistent between STRUCTURE and INSTRUCT (K = 5 and K = 3, respectively). In both cases when the rate of change is combined with the plots of the curves they are based on (Figure 3-2A & C), it becomes apparent that the true optimal occurs at the higher K value (K = 5). This is consistent between the analyses, and is in accordance with the result K = 6 for all *M. tanarius*, as the individuals from Malay Peninsula are always grouped into a single cluster. In this case combining different approaches for the determination of the optimal K value helps to find the optimal number of clusters in the data.

The different approaches to detect the optimal K, combined with visual inspection of the bar plots, consistently results in five groupings among the Bornean *M. tanarius* individuals as

identified in Figure 3-6 (labelled b-f). This clear small-scale geographic structure, is contradicting the expectations of elevated amounts of pollen-mediated gene flow in the species (hypothesis 5 chapter 1.2), which would result in mixed clusters for the regions.

Further analysis using PCoA confirms the clear genetic geographic differentiation between *M. tanarius* individuals from Borneo and the Malay Peninsula. This differentiation is illustrated along the primary axis which already accounts for nearly 35% of variation (Figure 3-9 & Table 3-4). A further PCoA of the first two axes of only the Bornean individuals (Figure 3-10) already shows groupings previously described by the geographical clusters identified in the assignment analysis (Figure 3-5, K = 6). The larger number of subgroups makes it difficult to visualize the groupings, but the first two axes already account for ~43% of the variation.

The rarefied mean allelic richness for *M. tanarius* shows a difference between individuals from Sarawak/Brunei and those from Sabah (Table 3-7). As with *M. winkleri*, individuals of *M. tanarius* from Sabah show a higher mean allelic richness than those from Sarawak/Brunei indicating the expanding edge of *M. tanarius* to be in Sarawak/Brunei.

Genetic differentiation in *M. tanarius* between individuals west and east of the Crocker Range, Sarawak/Brunei vs. Sabah, and Borneo vs. Malay Peninsula

There are 154 *M. tanarius* individuals from Sabah that were collected west of the Crocker Range. As with *M. winkleri*, these individuals could be grouped with either the individuals from Sarawak/Brunei to form a group of all individuals west of the Crocker Range, or together with the rest of the individuals from Sabah. To determine the grouping with the highest differentiation, the differentiation measures were calculated for each of these groupings.

The results of the assignment analysis using both STRUCTURE and INSTRUCT show that individuals of *M. tanarius* from Sarawak/Brunei and southwestern Sabah consistently cluster together from K = 2 to K = 11 (Figure 3-5 & Figure 3-6, not all plots shown). No indications for a split between individuals from these two regions are given by the assignment analyses. However, as *M. tanarius* only occurs in northern Sarawak, the number of samples from Sarawak/Brunei is limited to six. The PCoA plot does not suggest a split between these groupings either (Figure 3-10). Unlike for *M. winkleri*, the PCoA plot of the first two axes of the Bornean *M. tanarius* does not show a clear differentiation between Sarawak/Brunei and Sabah (Figure 3-10A). In this plot the individuals from Sarawak/Brunei cluster together (towards the far right along the primary axis), but the individuals from Sabah, both west and east, are spread out along both sides of this axis.

The results of the assignment analysis using both STRUCTURE and INSTRUCT (Figure 3-5) do not indicate the Crocker Range as a barrier to current gene flow, as individuals from geographic regions 1, west of the range, and from region 3, east of the range cluster together.

Furthermore the PCoA plot does not suggest high levels of differentiation between individuals west and east of the range, but instead shows groupings consistent with the bar plot analysis.

Nei's genetic distance, the pairwise population F_{ST} and the G'_{ST} for *M. tanarius* are consistently higher for the Sarawak/Brunei and Sabah grouping than for the grouping west and east of the Crocker Range. This indicates a higher genetic differentiation for Sarawak/Brunei, and thus lower levels of gene flow between these groupings. Further it does not indicate the Crocker Range in its current position as a barrier to gene flow. In order to determine a baseline for the measures of differentiation, the three differentiation values were also calculated between the *M. tanarius* individuals from Malay Peninsula and Borneo (as M. winkleri is endemic only to Borneo). This comparison was chosen as it represents two geographically distinct populations which should yield the maximum expected differentiation. This way an upper bound for each of these measures is provided allowing for a relative comparison of their magnitudes. All differentiation metrics for *M. tanarius* between Malay Peninsula and Borneo are consistently higher than for the two other comparisons (Sarawak/Brunei vs. Sabah and west vs. east of the Crocker Range). This is in accordance with the PCoA plot, which clearly shows the high differentiation between M. tanarius individuals from Malay Peninsula and Borneo along the first axis. This high genetic differentiation between individuals from Malay Peninsula and Borneo is in accordance with the hypothesis of vicariant evolution (hypothesis 8, chapter 1.2). Comparing Nei's genetic distance for *M. tanarius* between Malay Peninsula and Borneo, with the values for individuals west and east of the Crocker Range, shows a roughly 10 times higher value for Malay Peninsula vs. Borneo than for individuals west and east of the Crocker Range and a roughly 3.5 times higher value than for individuals from Sarawak/Brunei vs. Sabah. For the G'ST value, proportions between the different groupings are highly similar to proportions of Nei's genetic distance. For the F_{ST} values, the proportions are slightly changed, yet show the highest value for Malay Peninsula vs. Borneo, the second highest for Sarawak/Brunei vs. Sabah and the lowest value for west vs. east of the Crocker Range.

3.3.3 Comparison of M. winkleri, M. winkleriella and M. tanarius

Assignment analyses were performed on *M. winkleri* and *M. tanarius* using STRUCTURE and INSTRUCT. For *M. winkleri* the true number of clusters (K) was found to be three. For *M. tanarius* the true number of clusters (K) was found to be six for all individuals and five for just the Bornean individuals. This result for *M. tanarius* is consistent as the sixth cluster for all individuals is comprised entirely of individuals from the Malay Peninsula.

The larger K value in *M. tanarius* could mean that there is more differentiation than in *M. winkleri*. However, without additional knowledge regarding the clusters, it is not possible to directly compare the number of optimal clusters from different analyses. For example an alternative scenario is that it could be a measure of the magnitude of differentiation among the allele data. In this scenario the number of clusters alone are not sufficient to determine higher genetic differentiation, but are relative to the magnitude of the peak differentiation. This

scenario is corroborated by the strong local geographic correlation found among the *M. tanarius* clusters, as opposed to the large scale geographic correlation found among the *M. winkleri* clusters. An analogous situation is the comparison of *M. tanarius* for K = 2 vs. K = 6 (Figure 3-6). At K = 2 the clustering is very strong between Malay Peninsula and Borneo and gives no indication of further local differentiation, but does not preclude further differentiation, as seen with K = 6. Further evidence that not only supports the second scenario, but points to *M. winkleri* actually having a higher differentiation is the highest log probability (for STRUCTURE) and the smallest DIC value (for INSTRUCT). These values are a determination by each program of the optimal number of clusters, as opposed to 11 for Bornean (and all) *M. tanarius*. These values are closer for INSTRUCT, which finds a maximum of 11 possible clusters for *M. winkleri* and 10 for Bornean *M. tanarius* (11 for all).

PCoA plots of the nuclear SSR data for *M. winkleri* and Bornean *M. tanarius*, considered over similar geographic scales, show a much more pronounced population structure in *M. winkleri* than in *M. tanarius*. While *M. winkleri* shows three clear clusters, for *M. tanarius* the clustering is less obvious. This is also reflected by the fact that for *M. winkleri* the first two axes explain ~62% of the variation and for *M. tanarius* only ~43%.

The genetic diversity, assessed by the calculation of the mean allelic richness, rarefied for the same sample size, g = 24, is ~1.2 times larger for *M. winkleri* than for Bornean *M. tanarius* (8.85 vs. 7.16). This can indicate differences in the population history of the species e.g. *M. tanarius* could have gone through a genetic bottleneck or local extinction and lost some of its allelic diversity. The lower mean allelic richness can also indicate that *M. winkleri* is older than *M. tanarius*, the latter having had less time for the accumulation of different alleles.

However, comparisons of genetic diversity between different organisms is always difficult, since differences in the mutation rate between closely related species can be detected even for the same DNA regions (Fieldhouse et al. 1997).

Macaranga winkleriella, which is sister species of *M. winkleri*, is endemic to a small area of Northern Sarawak. The species shows a mean allelic richness that is not even half the value of *M. winkleri*. This is in accordance with the hypothesised low levels of genetic diversity for *M. winkleriella* (hypothesis 3, chapter 1.2). It can be explained by the very restricted distribution area, which leads to a small effective population size. Due to fewer individuals, less new alleles originate. Furthermore the change in the frequency of an allele in a smaller population due to random sampling (i.e. genetic drift) is higher. Due to the effect of this elevated genetic drift the probability that more alleles are lost from the population is increased, and the resulting allelic richness is lower. This is in accordance with the studies of Brett et al. (1995) and Hamrick and Godt (1996), who showed that endemic and narrowly distributed species tended to have lower genetic diversity than species with more extensive geographic ranges. For *M. winkleriella* the mean allelic richness detected was low. According to Groombridge et al. (2009) lower genetic diversity can be due to either a recent population crash or a consequence of an evolutionary history of sustained isolation and small effective

population size. When comparing the alleles of *M. winkleriella* and *M. winkleri* for the nine common SSR markers, it was found that all but one allele, found in *M. winkleriella*, is shared with *M. winkleri* (Table 3-6). The fact that these two species share all but one allele can indicate genetic similarity, and thus maybe a recent separation of *M. winkleriella* from *M. winkleri*. However, as in microsatellite genotyping analyses only the fragments sizes are assessed, the possibility of size homoplasy, i.e. that fragments show the same size but not the same sequence, is given. But over short evolutionary scales homoplasy seems of little concern (Jarne & Lagoda 1996) and furthermore this seems unlikely, when analysing nine loci. The assumption of a recent split of *M. winkleriella* from *M. winkleri* can be supported by the low genetic diversity detected for this species.

A comparison of the amount of genetic differentiation, using Hedrick's standardized G'_{ST} between three geographic regions where both *M. winkleri* and *M. tanarius* were found was performed to compare the amounts of gene flow between the species under study. The three geographic regions are: a) Northern Sarawak and Brunei (plus southwestern Sabah for *M. tanarius*), b) northwestern Sabah and c) eastern Sabah. Between these three regions, the inter-regional calculations of the G'_{ST} values for *M. tanarius* vary considerably from those of *M. winkleri* (Figure 3-11). For *M. tanarius* the value for G'_{ST} is the same for a-c and b-c (0.114) and for a-b it is slightly smaller (0.087). This indicates similar amounts of gene flow between the three populations of *M. tanarius*. The detected values are small, indicating low levels of genetic differentiation and, thus, moderate to high levels of gene flow between the three analysed populations.

The case is completely different for *M. winkleri*. Between populations b-c the genetic differentiation for myrmecophytic *M. winkleri* is in a similar range (0.092) as for non-myrmecophytic *M. tanarius*. In contrast to that, the genetic differentiation between population a-c and a-b is much higher (0.437 and 0.373, respectively).

These results are in accordance with the results of the PCoA for *M. winkleri*, which illustrate a pronounced genetic differentiation between the individuals from Sarawak/Brunei (identified here as group a) and the individuals from Sabah (groups b and c) along the primary axis.

The lower genetic differentiation for *M. tanarius* compared to *M. winkleri* indicates a better connectivity of the *M. tanarius* populations via gene flow. This enhanced gene flow between the populations prevents genetic differentiation between them. An explanation for the higher amounts of gene flow in *M. tanarius* than in *M. winkleri* can be the difference in pollinators. While *M. tanarius*' main pollinators are flower bugs, *M. winkleri* is mainly pollinated by thrips. Flower bugs have a larger body size than thrips. As insects with larger body sizes were shown to fly longer distances (Shirai 1995), the flower bugs are supposed to cover larger distances than the thrips pollinating *M. winkleri*. As gene flow limits genetic structure (Duminil et al. 2009), higher levels of pollen-mediated gene flow connect the populations for *M. tanarius*, thus limiting the genetic population differentiation.

To sum up, the genetic differentiation metrics indicate a higher differentiation between the population west and east of the Crocker Range as well as for regions Sarawak/Brunei and

Sabah for the myrmecophytic species *M. winkleri* than for the non-myrmecophytic species *M. tanarius*. This indicates higher levels of gene flow between populations of *M. tanarius* via pollen in the non-myrmecophytic species, which can be explained by better flying ability of its pollinators. In addition a younger age of *M. tanarius* may explain the lower level of genetic differentiation.

4 Combined discussion of the microsatellite and chloroplast analyses

Macaranga winkleri

For myrmecophytic *M. winkleri*, all analyses performed using both the chloroplast and the microsatellite data set show a clear genetic differentiation between individuals from Sarawak/Brunei and individuals from Sabah. This genetic differentiation is more pronounced than the differentiation by the Crocker Range, as individuals from Sabah, west of the range, are clearly more similar genetically to the other individuals from Sabah. Contrary to the expectations (hypothesis 7, chapter 1.2), this does not indicate that this mountain range acts as a primary barrier to either seed or pollen flow, instead it indicates that Sarawak/Brunei vs. Sabah represent an older split within the species.

The chloroplast data shows a pronounced population structure on the regional scale, as reflected by the geographical distribution of the haplotypes (Figure 2-6). This is in accordance with the expected limited dispersal ability for seeds of *M. winkleri* (hypothesis 1, chapter 1.2). Also the population structure inferred by the microsatellite data shows a clear geographic structure, but on a larger geographic scale. In the microsatellite data, the low genetic differentiation within the groups Sarawak/Brunei and Sabah indicates high levels of gene flow within these groups (but not among them). Therefore, the larger distances surpassed by pollen-mediated gene flow, connecting populations can counter-balance low distances detected for the seed flow. Weising et al. (2010) developed a scenario to explain long dispersal distances for thrips, whereby the thrips are passively distributed by the wind.

Macaranga winkleriella

The typical expectations of small populations are that they are more strongly affected by genetic drift (Honnay & Jacquemyn 2007) and also have a smaller number of new alleles originating due to fewer individuals. In accordance with these expectations, *M. winkleriella* had low levels of genetic diversity in both the chloroplast and the nuclear data. The chloroplast haplotype analysis of 13 individuals, using an alignment of *atpB-rbcL* and *rpL16* (2,650 bp) resulted in only two haplotypes. Also the genetic diversity in the microsatellite data, assessed by the mean allelic richness (rarefied for the sample size), is less than half the richness calculated for *M. winkleri*. However, this value may be higher than expected when taking into account the very restricted distribution area of *M. winkleriella*.

In the chloroplast analysis no haplotypes are shared between the sister species *M. winkleri* and *M. winkleriella*. The haplotypes of both species are nine and ten mutational steps apart. This mutational distance is not large, considering that for *M. winkleri* 29 mutational steps were detected on the intraspecific level and can indicate a recent split of *M. winkleri* and *M. winkleriella* into distinct species. The microsatellite data might indicate an even more recent split, as all but one allele of *M. winkleriella*, for the nine common SSR markers, occur also in *M. winkleri* and the nuclear microsatellites are assumed to evolve faster than the

chloroplast DNA (Wolfe et al. 1987). This can indicate that *M. winkleri* populations and the population with the ancestral chloroplast type of *M. winkleriella* were still connected via pollen-based gene flow, while no longer connected via seed-based gene flow.

Macaranga tanarius

As in *M. winkleri*, all analyses performed with the SSR data in non-myrmecophytic *M. tanarius* show a higher genetic differentiation between individuals from Sarawak/Brunei vs. Sabah than for individuals west and east of the Crocker Range. This contradicts the expectations of the mountain range as a major geographic barrier to dispersal (hypothesis 7, chapter 1.2).

The low genetic diversity for the chloroplast data of *M. tanarius*, suggesting a young age of the species, is in contrast to the higher genetic diversity detected for the nuclear SSR data. The higher genetic diversity in the microsatellite data set, compared with the chloroplast data, can reflect the generally higher mutation rate of the nuclear SSR loci compared with the chloroplast loci. This may be due to the sequence motifs and the biparental inheritance of the nuclear genome, which in contrast to the chloroplast, allows for recombination to occur.

The low genetic differentiation within the chloroplast data of *M. tanarius*, reflected by the geographical distribution of the chloroplast haplotypes, is due to low levels of genetic diversity, which is itself a reflection of the young age of the species. In contrast, the low genetic differentiation between the populations in the SSR data is indicative of high levels of pollen-mediated gene flow, as hypothesised (hypothesis 5, chapter 1.2), which in turn prevents high levels of genetic differentiation between the populations.

For *M. tanarius* both the microsatellite and the chloroplast data show relatively high levels of genetic differentiation between individuals from Borneo and Malay Peninsula, as expected due to vicariant evolution (hypothesis 8, chapter 1.2). The level of genetic differentiation is higher in the microsatellite data than in the chloroplast data. This can be explained by a higher mutation rate of the nuclear SSR loci, compared with the chloroplast, and thus a faster accumulation of genetic differences over time.

Comparison of Macaranga winkleri and Macaranga tanarius

As hypothesised (hypothesis 6, chapter 1.2), the population structure was found to be more pronounced in *M. winkleri* than in *M. tanarius* for both the chloroplast and the microsatellite data. This is consistent with all performed analyses of the chloroplast data. The analyses performed with the SSR data, clearly reveal generally lower levels of genetic differentiation between the populations of *M. tanarius* than of *M. winkleri*, indicating higher levels of pollenmediated gene flow for *M. tanarius*. For the assignment analyses, a more careful interpretation of the results is necessary, as for *M. winkleri* the optimal number of clusters in a similar geographic range is smaller (K = 3) than for *M. tanarius* (K = 5), which if considered alone might seem inconsistent. However, when viewed together with the results from the

other analyses it becomes apparent that the higher number of clusters for *M. tanarius* is probably indicating a lower genetic peak differentiation in the data and therefore, a larger number of smaller differences are being distinguished. In other words, for *M. winkleri* a small number of major genetic differentiations (i.e. clusters) are found, whereas for *M. tanarius*, a larger number of minor differentiations are found.

The mean allelic richness is higher within Sabah than within Sarawak/Brunei, for both *M. winkleri* and *M. tanarius*. This is in accordance with the expectations of higher genetic diversity in a long-term persisting rain forest in Sabah compared with Sarawak/Brunei (hypothesis 9, chapter 1.2). In accordance with this, the haplotypic richness for *M. tanarius* is also higher in Sabah than in Sarawak/Brunei. For the chloroplast data of *M. winkleri* the ratio is reversed, being higher in Sarawak/Brunei. A possible explanation can be a stronger influence of genetic drift of the haploid chloroplast genome than on the diploid nuclear genome, due to the smaller effective population size (Ennos 1994).
5 Conclusions

In the genus *Macaranga* roughly 30 species are myrmecophytes. They offer food and nesting space for the ant partners in their hollow stems. In return, the ants protect the plants from herbivores and lianas.

The project, which this dissertation was part of, aimed at the analysis of co-evolutionary and speciation processes in the genus *Macaranga* (Euphorbiaceae) and on the investigation of how the ant could have promoted speciation in the *Macaranga* host plants. Myrmecophytic *Macaranga* species occur in three sections: *Pachystemon*, *Pruinosae* and *Winklerianae*. The number of myrmecophytes in the sections varies strongly. While *Pachystemon* comprises 23 myrmecophytic species (out of 25) and *Pruinosae* five (out of eight), *Winklerianae* comprises only two species, which are both myrmecophytes. To investigate reasons for differences in species richness of ant-plants, analyses of population genetic parameters for sections *Pachystemon* and *Pruinosae* were conducted in parallel projects.

In this dissertation, population structure and dispersal abilities of the species of section *Winklerianae*, were investigated. The two species are *Macaranga winkleri* and *M. winkleriella*, both of which occur together with the same ant species. Furthermore, a non-myrmecophytic species, *M. tanarius*, was included for a comparison with the myrmecophytic *Winklerianae* species.

In contrast to non-myrmecophytic species, myrmecophytic species can be expected to show limited effective colonisation, as they can only disperse to areas where the ant partner is already present or within flight distance of the colonising ant. For *M. winkleri* a limited ability of seed dispersal, due to the dependence on the ant partner could be shown by the geographical distribution of the chloroplast haplotypes. The chloroplast data show a pronounced population structure on the regional scale (Figure 2-6).

The population structure inferred by the data of the biparentally inherited nuclear microsatellites also reveals a clear geographic structure for *M. winkleri*, but on a larger geographic scale (Figure 3-4). This indicates that pollen-based gene flow reaches further than gene flow mediated by seeds (see page 99). In *M. tanarius* high levels of gene flow are indicated by low G'_{ST} suggesting that the pollinating flower bugs of *M. tanarius* connect populations via gene flow even better than the thrips of *M. winkleri*.

The stronger population structure for the chloroplast compared to the SSR data can partly be attributed to the smaller effective population size of the haploid chloroplast genome. However, it is also indicative of a more efficient pollen dispersal in *M. winkleri* than was previously anticipated due to expected restricted flying abilities of the thrips, which are the main pollinators. In *M. tanarius* low levels of genetic diversity were detected for the chloroplast analyses. The phylogeographic analysis suggests either a young age and a rapid colonisation or a relatively recent population bottleneck followed by a fast colonisation for this species.

In the narrow endemic species *M. winkleriella* low levels of genetic diversity were detected by both chloroplast sequences and nuclear microsatellite markers. This can be explained by the very restricted distribution area, leading to a small effective population size and genetic drift acting more strongly on the smaller population. In the chloroplast haplotype network *M. winkleriella* is clearly separated (by 9 and 10 mutational steps) from its sister species *M. winkleri* (Figure 2-5). In contrast to this, in the microsatellite analysis all but one of the alleles found in *M. winkleriella* is shared with *M. winkleri* (Table 3-6), indicating genetic similarity and thus may be a recent separation of *M. winkleriella* from *M. winkleri*. It can be concluded that *M. winkleri* populations and the population with the ancestral chloroplast type of *M. winkleriella* were connected much longer via pollen-based gene flow, while no longer connected via seed-based gene flow.

For myrmecophytic *M. winkleri*, all analyses performed with the chloroplast and the microsatellite data show a clear genetic differentiation between individuals from Sarawak/Brunei and those from Sabah. This genetic differentiation is more pronounced than the differentiation of populations west and east of the Crocker Range. This indicates that Sarawak/Brunei vs. Sabah represent an older split within this species.

This split can be explained by the species being in refugia, in both Sarawak/Brunei and Sabah when the rainforest became fragmented during arid periods of the Pliocene, and then when better conditions resumed, spreading out from there. The fact that the haplotypes are private for the regions Sarawak/Brunei and Sabah would then indicate that the two (or more) subpopulations from both regions have not been in genetic exchange after spreading out of the refugia. This can be explained by a low effective speed of seed dispersal. Nowadays *Macaranga winkleri* does not occur close to the southwestern coast of Sabah, because in this region no more forest exists. Therefore, gene flow among *M. winkleri* from the subpopulations Sarawak/Brunei and Sabah is probably limited.

A high number of missing intermediates between haplotypes from Sabah and Sarawak/Brunei were detected. These missing haploytpes could be reflecting haplotypes that became extinct due to anthropogenic deforestation. However, it seems improbable that the large number of missing intermediates in the chloroplast network of *M. winkleri* between regions Sarawak/Brunei and Sabah is only reflecting the recent anthropogenic deforestation during the last century. In this case some intermediate haplotypes would still be expected to occur in the proximity of the deforested area. Since no intermediate haplotypes were detected an older separation of the two groups is suggested.

The identical chloroplast haplotype detected in *M. winkleri* on both sides of the mountain range can be explained by a refugium in Sabah, located in or near the Crocker Range and spreading out of the species from the refugium to both sides of the Crocker Range. This is in accordance with the population structure of *M. winkleri* reflected by the nuclear microsatellite markers.

The fact that section *Winklerianae* comprises only two species, thus lacking a pronounced radiation of myrmecophytes, can generally be explained by a higher connectivity by gene

flow. These elevated amounts of gene flow have so far prevented the separation of subpopulations, and thus allopatric speciation. However, a clear split within *M. winkleri* for subpopulations from Sarawak/Brunei and Sabah was shown, indicating allopatric separation and possibly a beginning of allopatric speciation.

An explanation for the higher connectivity by gene flow compared with the other sections could be less restricted effective seed dispersal due to a more mobile ant-partner. The specific ant partner of *M. winkleri*, *Crematogaster* msp. 8, is highly dependent on its host. Nevertheless, the genetic structure was shown to be less pronounced than in other less host-specific *Crematogaster* ants from the subgenus *Decacrema* (Braasch 2008). This implies a better dispersal ability of *Crematogaster* msp. 8 compared with the other ant species. An explanation for the longer flight distances can be the larger body size of these ant queens in comparison to the ants from subgenus *Decacrema* (Feldhaar et al. 2010), providing better mobility. In addition, good genetic exchange among populations may also be maintained by elevated amounts of pollen-mediated gene flow, shown in this work.

In a next step my data will be combined and compared with population genetic parameters of the parallel projects analysing the obligate myrmecophytes of the more radiated sections *Pachystemon* and *Pruinosae*. To do this, the same population genetic differentiation measures, preferably standardized for the maximum variability of the markers utilised, using the nuclear microsatellite data for all *Macaranga* species analysed in the frame of the project will be calculated. This way a direct comparison of the amounts of pollen flow among populations will be possible. Also for the chloroplast analyses, the population differentiation will be compared, allowing for conclusions of differences in the population structure and seed dispersal abilities of the myrmecophytes from the more species rich sections with section *Winklerianae*.

Abstract

The genus *Macaranga* Thou. (Euphorbiaceae) comprises about 260 dioecious species that are distributed in the tropics from West Africa through Southeast Asia to some remote Pacific islands. Some of the most important pioneer trees of lowland dipterocarp forests of the Malay Archipelago belong to this genus. An interesting characteristic of *Macaranga* is its various associations with ants. Roughly 30 species are ant-plants (myrmecophytes), providing food and nesting space for the ants in their hollow stems. The ants protect their hosts from herbivores and climbers.

The population structure and dispersal abilities of the two myrmecophytic species of section *Winklerianae*, *M. winkleri* and *M. winkleriella* were investigated. *Macaranga winkleri* is endemic to Borneo, while *M. winkleriella* occurs only in a small limestone area in northern Sarawak (Borneo). Both species are obligate myrmecophytes, which means that both partners, the ant and the plant, cannot survive without each other. Myrmecophytic species can be expected to show limited effective seed dispersal, as, in contrast to non-myrmecophytic species, they can only disperse to areas where the ant partner is already present or within flight distance of the colonising ant. To compare the population structure and dispersal abilities of myrmecophytes and non-myrmecophytes the non-myrmecophytic species, *M. tanarius* (Tanarius group), distributed from India and southern China to Australia and New Guinea, was included in this study.

A chloroplast sequence analysis was conducted using three non-coding chloroplast markers, *atpB-rbcL*, *rpL16* and ccmp5 to reconstruct the phylogeographic history and differences in seed dispersal abilities of the species under study. Additionally, population genetic analyses for the three species were conducted based on nuclear microsatellite markers. For this purpose up to 11 microsatellite markers per species were developed.

Macaranga winkleri shows a pronounced population structure on the regional scale for the chloroplast data, reflecting limited seed dispersal abilities. Also the data of the biparentally inherited nuclear microsatellites reveal a clear population structure, but on a larger geographic scale, which can indicate that pollen-based gene flow reaches further than seed-mediated gene flow.

In the locally restricted species, *M. winkleriella*, only small amounts of genetic diversity were detected by both marker systems used.

In *M. tanarius* low levels of genetic diversity were detected for the chloroplast analyses. The phylogeographic analysis for this species suggests either a young age and a rapid colonisation or a relatively recent population bottleneck followed by fast colonisation. Lower levels of genetic differentiation among populations for the nuclear microsatellites, than in *M. winkleri*, can indicate higher amounts of pollen-mediated gene flow.

In contrast to other myrmecophytic sections of *Macaranga*, section *Winklerianae* comprises only two species, thus lacking a pronounced radiation of myrmecophytes. This lack of

radiation can be explained by a better genetic connectivity of populations of *M. winkleri* compared with species in the more radiated sections, so far preventing processes of allopatric speciation.

Zusammenfassung

Die Gattung *Macaranga* Thou. (Euphorbiaceae) umfasst ungefähr 260 diözische Arten, die von Afrika über Südostasien bis zu abgelegenen Inseln im Pazifik vorkommen. Einige der wichtigsten Pionierbäume des typischen Dipterokarpenwaldes des Tieflands des Malayischen Archipels gehören zu dieser Gattung. Eine Besonderheit von *Macaranga* ist die vielfältige Vergesellschaftung mit Ameisen. Ungefähr 30 Arten sind Ameisenpflanzen (Myrmecophyten), die Futter und Nistraum für die Ameisen im hohlen Stamm bieten und im Gegenzug Schutz gegen Herbivore und Bewuchs mit Lianen von den Ameisen erhalten.

Die Populationsstruktur und Ausbreitungsfähigkeiten der beiden Arten der Sektion *Winklerianae, Macaranga winkleri* und *M. winkleriella*, wurden untersucht.

Macaranga winkleriella ist in ihrer Verbreitung auf ein Kalksteingebiet im nördlichen Sarawak (Borneo) beschränkt, während *M. winkleri* endemisch für Borneo ist. Beide Arten sind obligate Myrmecophyten, das heißt beide Partner, die Pflanze und die Ameise, können nicht alleine überleben. Für Myrmecophyten wird eine begrenzte effektive Ausbreitung über Samen erwartet, da sie sich im Gegensatz zu Nichtmyrmecophyten nur in Gebiete ausbreiten können, wo die spezifische Ameise bereits ist oder sich in Flugdistanz befindet. Um die Populationsstruktur von myrmecophytischen und nicht-myrmecophytischen Arten zu vergleichen, wurde die von Indien und Südchina bis nach Australien und Neuguinea verbreitete *M. tanarius (Tanarius* group) ebenfalls analysiert.

Drei nichtkodierende Chloroplastenregionen, *atpB-rbcL*, *rpL16* und ccmp5, wurden sequenziert, um die Populationsstruktur der drei *Macaranga* Arten zu untersuchen. Um populationsgenetische Analysen durchführen zu können, wurden zwischen 10 und 11 nukleare Mikrosatellitenmarker pro Art entwickelt und eine Genotypisierung durchgeführt.

Die eingeschränkte Ausbreitungsfähigkeit über Samen von *M. winkleri* zeigt sich in der starken geographischen Struktur der Chloroplasten Haplotypen. Auch die biparental vererbten nuklearen Mikrosatelliten zeigen eine deutliche Populationsstruktur, aber auf einer großen geographischen Skala, was zeigt, dass der Genfluss über Pollen weiter reicht als der über Samen.

Für *M. winkleriella*, die lokal begrenzt vorkommt, wurde sowohl in den Chloroplasten- als auch den Mikrosatellitenmarkern nur geringe genetische Diversität detektiert.

Macaranga tanarius zeigt geringe genetische Diversität in den Chloroplastenmarkern. Die phylogeographische Analyse für diese Art lässt entweder auf ein geringes Alter und eine schnelle Ausbreitung schließen, oder einen durchlaufenen "genetischen Flaschenhals", ebenfalls gefolgt von schneller Ausbreitung. Die in der Mikrosatellitenanalyse festgestellte geringere genetische Differenzierung zwischen den Populationen spiegelt höheren Genfluss über Pollen wider.

Im Gegensatz zu den anderen myrmecophytischen *Macaranga* Sektionen, besteht die Sektion *Winklerianae* nur aus zwei Arten. Die geringe Zahl an Arten in der Sektion lässt sich dadurch erklären, dass die Populationen von *M. winkleri*, verglichen mit den Populationen der Arten in den anderen Sektionen, im besseren genetischen Austausch stehen und dadurch allopatrische Artbildung bisher verhindert wurde.

Acknowledgements

I would like to start by thanking my supervisor Frank Blattner for giving me the chance to work in his working group, for giving me a lot of freedom, trust and support and for his constant high spirits.

I am also very thankful to Prof. Isabell Hensen at the University of Halle for agreeing to supervise my thesis.

I am grateful to Dr. Brigitte Fiala for the sharing of her expert *Macaranga* knowledge via email, which proved invaluable, and for providing me with such an excellent introduction to the different species of the genus on Borneo.

I would also like to thank Dr. Daniela Guicking very much for the many fruitful discussions and advice with lab techniques.

A special thank you to Prof. Kurt Weising for making his lab available to me and all of the helpful discussions.

To all of my colleagues in section taxonomy, who provided me with my daily working atmosphere. Especially I thank Enoch Achigan Dako, Solomon Benor, Jonathan Brassac, Frank Blattner, Reinhard Fritsch, Maia Gurushidze, Matthias Höffken, Sabine Jakob, Christina Koch, Nicolai Nürk, Klaus Pistrick, Thekla Pleines and Karl Schmid.

And to others for their various assistance:

Birgit Müller from Geobotany at the University Halle for helping to solve problems with the Fragment Profiler software,

Birgit Wohlbier, Petra Oswald and Bruni Wedemeier for assistance in the lab,

Dr. Jörg Fuchs, for excellent cooperation in genome size measurements of *M. tanarius*, and

Lucy Chong from Sarawak Forest Research Centre and Mohamad Shahbudin Sabki from the Sarawak Forestry department for the research and export permits.

This thesis would not have been possible without the support I received along the way, both technical and not. For their time and work I will always be grateful to:

Hart Poskar G.F. Adv. ;-)

Jonathan Brassac, for all the productive discussions combined with delicious French food,

Thekla Pleines, for her many insights and a good time,

Dörte Harpke, who was not only always ready to help but always with a smile on her face,

Matthias Höffken, for discussions on statistical procedures and the nice coffee breaks,

Maia Gurushidze, for always being ready to help and the nice chats,

Nicolai Nürk, for creating a pleasant atmosphere in our office and help with adobe illustrator, and

Sylvia Pross, for all her support during an adventurous collection trip.

Furthermore, I would like to thank all of those who helped along the way, and who enriched my experiences during my stay in the little village of Gatersleben, especially

the Student Board for the enrichment of the scientific life at IPK, with student conferences, workshops and talks,

the "Kulturverein Gatersleben" for the enrichment of cultural life in Gatersleben, and

Hellmuth and Waltraut Fromme for a warm welcome in Gatersleben and a pleasant time in the "Keramikzirkel".

I would like to thank the IPK for providing excellent working conditions and the Deutsche Forschungsgemeinschaft for funding of the collection trips.

Being at the IPK afforded me a unique experience, and populated it with a diverse and ever changing social community. For this I would like to express my gratitude to the PhD student (and postdoc-) community of the IPK, for a truly diversified cultural life. I will fondly remember the movie nights, canoeing trips, BBQs and parties, but most of all the people.

I would especially like to thank my good friends who supported me in the course of my thesis and made the time in Gatersleben so pleasant: Francesco Agueci, René Anton, Mian Abdur Rehman Arif, Jonathan Brassac, Jana Ebersbach, Thomas Hahn, Isabella Herrmann, Thekla Pleines, Hart Poskar, Sylvia Pross and Paride Rizzo.

And finally to my family, who have supported me in every way possible. To my dear brother Martin, who is always there for me, and Julia, thank you both. Last but never least I am eternally grateful to my parents for all the support and encouragement that they provided me through my entire life.

References

- Alvarez-Buylla, E. R. & Garay, A. A. 1994. Population genetic structure of *Cecropia obtusifolia*, a tropical pioneer tree species *Evolution*, 48: 437-453.
- Baier, C., Guicking, D., Prinz, K., Fey-Wagner, C., Wöhrmann, T., Weising, K., Debener, T., Schie, S. & Blattner, F. R. 2009. Isolation and characterization of 11 new microsatellite markers for *Macaranga* (Euphorbiaceae). *Molecular Ecology Resources*, 9: 1049-1052.
- Bänfer, G., Fiala, B. & Weising, K. 2004. AFLP analysis of phylogenetic relationships among myrmecophytic species of *Macaranga* (Euphorbiaceae) and their allies. *Plant Systematics and Evolution*, 249: 213-231.
- Bänfer, G., Moog, U., Fiala, B., Mohamed, M., Weising, K. & Blattner, F. R. 2006. A chloroplast genealogy of myrmecophytic *Macaranga* species (Euphorbiaceae) in Southeast Asia reveals hybridization, vicariance and long-distance dispersals. *Molecular Ecology*, 15: 4409-4424.
- Banks, J. A. & Birky, C. W. 1985. Chloroplast DNA diversity is low in a wild plant, *Lupinus texensis*. Proceedings of the National Academy of Sciences of the United States of America, 82: 6950-6954.
- Barkley, N., Krueger, R., Federici, C. & Roose, M. 2009. What phylogeny and gene genealogy analyses reveal about homoplasy in *Citrus* microsatellite alleles. *Plant Systematics and Evolution*, 282: 71-86.
- Bentley, B. L. 1977. Extra-floral nectaries and protection by pugnacious bodyguards. *Annual Review of Ecology and Systematics*, 8: 407-427.
- Blattner, F. R., Weising, K., Bänfer, G., Maschwitz, U. & Fiala, B. 2001. Molecular analysis of phylogenetic relationships among myrmecophytic *Macaranga* species (Euphorbiaceae). *Molecular Phylogenetics and Evolution*, 19: 331-44.
- Borsch, T. & Quandt, D. 2009. Mutational dynamics and phylogenetic utility of noncoding chloroplast DNA. *Plant Systematics and Evolution*, 282: 169-199.
- Braasch, T. 2008. Population genetics of Crematogaster msp. 8 (Formicidae: Myrmicinae), the obligate colonist of Macaranga winkleri (Euphorbiaceae). Diploma thesis, Julius-Maximilians-Universität, Würzburg, Germany.
- Bremer, B., Bremer, K., Chase, M. W., Fay, M. F., Reveal, J. L., Soltis, D. E., Soltis, P. S., Stevens, P. F., Anderberg, A. A., Moore, M. J., Olmstead, R. G., Rudall, P. J., Sytsma, K. J., Tank, D. C., Wurdack, K., Xiang, J. Q. Y., Zmarzty, S. & Angiosperm Phylogeny, G. 2009. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. *Botanical Journal of the Linnean Society*, 161: 105-121.
- Brett, G. P. & Randall, J. B. 1995. Genetic Diversity in the tetraploid sand dune endemic *Deschampsia mackenzieana* and its widespread diploid progenitor *D. cespitosa* (Poaceae). *American Journal of Botany*, 82: 121-130.
- Bruford, M. W. & Wayne, R. K. 1993. Microsatellites and their application to population genetic studies. *Current Opinion in Genetics & Development*, 3: 939-943.

- Cannon, C. H. & Manos, P. S. 2003. Phylogeography of the Southeast Asian stone oaks (*Lithocarpus*). Journal of Biogeography, 30: 211-226.
- Cannon, C. H., Morley, R. J. & Bush, A. B. G. 2009. The current refugial rainforests of Sundaland are unrepresentative of their biogeographic past and highly vulnerable to disturbance. *Proceedings of the National Academy of Sciences of the United States of America*, 106: 11188-11193.
- Castelloe, J. & Templeton, A. R. 1994. Root Probabilities for Intraspecific Gene Trees under Neutral Coalescent Theory. *Molecular Phylogenetics and Evolution*, 3: 102-113.
- Castric, V. & Bernatchez, L. 2003. The Rise and Fall of Isolation by Distance in the Anadromous Brook Charr (*Salvelinus fontinalis Mitchill*). *Genetics*, 163: 983-996.
- Cavalli-Sforza, L. L., Menozzi, P. & Piazza, A. 1996. *The History and Geography of Human Genes*, Princeton, New Jersey, Princeton University Press.
- Cavers, S., Navarro, C., Hopkins, R., Ennos, R. A. & Lowe, A. J. 2005. Regional and population-scale influences on genetic diversity partitioning within costa rican populations of the pioneer tree *Vochysia ferruginea* mart. *Silvae Genetica*, 54: 258-264.
- Chapuis, M.-P. & Estoup, A. 2007. Microsatellite null alleles and estimation of population differentiation. *Molecular Biology and Evolution*, 24: 621-631.
- Clement, M., Posada, D. & Crandall, K. A. 2000. TCS: a computer program to estimate gene genealogies. *Molecular Ecology*, 9: 1657-1659.
- Cohen, J. 1988. *Statistical Power Analysis for the Behavioral Sciences*, Hillsdale, New Jersey, Lawrence Erlbaum Associates.
- Conde, M. F., Pring, D. R. & Levings, C. S. 1979. Maternal inheritance of organelle DNA's in *Zea mays-Zea perennis* reciprocal crosses. *Journal of Heredity*, 70: 2-4.
- Cruden, R. W. 1966. Birds as Agents of Long-Distance Dispersal for Disjunct Plant Groups of the Temperate Western Hemisphere. *Evolution*, 20: 517-532.
- Davidson, D. W. & Mckey, D. 1993. Ant Plant Symbioses Stalking the Chuyachaqui. *Trends in Ecology & Evolution*, 8: 326-332.
- Davies, S. J. & Ashton, P. S. 1999. Phenology and fecundity in 11 sympatric pioneer species of *Macaranga* (Euphorbiaceae) in Borneo. *American Journal of Botany*, 86: 1786-1795.
- Davies, S. J. 2001. Systematics of *Macaranga* sects. *Pachystemon* and *Pruinosae* (Euphorbiaceae). *Harvard Papers in Botany*, 6: 371-448.
- Demesure, B., Comps, B. & Petit, R. J. 1996. Chloroplast DNA phylogeography of the common beech (*Fagus sylvatica* L.) in Europe. *Evolution*, 50: 2515-2520.
- Duminil, J., Hardy, O. & Petit, R. 2009. Plant traits correlated with generation time directly affect inbreeding depression and mating system and indirectly genetic structure. *Bmc Evolutionary Biology*, 9.
- Eliades, N. G. & Eliades, D. G. 2009. HAPLOTYPE ANALYSIS: software for analysis of haplotypes data. Distributed by the authors. Forest Genetics and Forest Tree Breeding, Georg-Augst University Goettingen, Germany.

- Ellegren, H. 2004. Microsatellites: simple sequences with complex evolution. *Nature Review Genetics*, 5: 435-445.
- Ennos, R. A. 1994. Estimating the relative rates of pollen and seed migration among plant populations. *Heredity*, 72: 250-259.
- Evanno, G., Regnaut, S. & Goudet, J. 2005. Detecting the number of clusters of individuals using the software structure: a simulation study. *Molecular Ecology*, 14: 2611-2620.
- Excoffier, L., Smouse, P. E. & Quattro, J. M. 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction Data. *Genetics*, 131: 479-491.
- Falush, D., Stephens, M. & Pritchard, J. K. 2003. Inference of Population Structure Using Multilocus Genotype Data: Linked Loci and Correlated Allele Frequencies. *Genetics*, 164: 1567-1587.
- Federle, W., Maschwitz, U., Fiala, B., Riederer, M. & Holldobler, B. 1997. Slippery antplants and skilful climbers: selection and protection of specific ant partners by epicuticular wax blooms in *Macaranga* (Euphorbiaceae). *Oecologia*, 112: 217-224.
- Federle, W., Fiala, B., Zizka, G. & Maschwitz, U. 2001. Incident daylight as orientation cue for hole-boring ants: prostomata in *Macaranga* ant-plants. *Insectes Sociaux*, 48: 165-177.
- Feldhaar, H., Gadau, J. & Fiala, B. 2010. Speciation in obligately plant-associated *Crematogaster* ants: Host-distribution rather than adaption towards specific hosts drives the process. *In:* Glaubrecht, M. (ed.) *Evolution in Action: Case studies in Adaptive Radiation, Speciation and the Origin of Biodiversity.* Heidelberg, Berlin (Springer).
- Fiala, B., Maschwitz, U., Pong, T. Y. & Helbig, A. J. 1989. Studies of a South East Asian Ant-Plant Association - Protection of *Macaranga* Trees by *Crematogaster-Borneensis*. *Oecologia*, 79: 463-470.
- Fiala, B. & Maschwitz, U. 1992. Food bodies and their significance for obligate antassociation in the tree genus *Macaranga* (Euphorbiaceae). *Botanical Journal of the Linnean Society*, 110: 61-75.
- Fiala, B., Grunsky, H., Maschwitz, U. & Linsenmair, K. E. 1994. Diversity of Ant-Plant Interactions - Protective Efficacy in *Macaranga* Species with Different Degrees of Ant Association. *Oecologia*, 97: 186-192.
- Fiala, B. 1996. Ants benefit pioneer trees: the genus *Macaranga* as an example of ant-plant associations in dipterocarp forest ecosystems. *In:* Schulte, D. & Scone, D. (eds.) *Dipterocarp Forest Ecosystems: towards sustainable management.* Singapore, NY, London, Hongkong: World Scientific Publishing Co.
- Fiala, B., Jakob, A. & Maschwitz, U. 1999. Diversity, evolutionary specialization and geographic distribution of a mutualistic ant-plant complex: *Macaranga* and *Crematogaster* in South East Asia. *Biological Journal of the Linnean Society*, 66: 305-331.
- Fieldhouse, D., Yazdani, F. & Golding, G. B. 1997. Substitution rate variation in closely related rodent species. *Heredity*, 78: 21-31.

- Fischer, D. & Bachmann, K. 1998. Microsatellite enrichment in organisms with large genomes (*Allium cepa*). *Biotechniques*, 24: 796-802.
- Gao, H., Williamson, S. & Bustamante, C. D. 2007. A Markov Chain Monte Carlo Approach for Joint Inference of Population Structure and Inbreeding Rates From Multilocus Genotype Data. *Genetics*, 176: 1635-1651.
- Gathorne-Hardy, F. J., Syaukani, Davies, R. G., Eggleton, P. & Jones, D. T. 2002. Quaternary rainforest refugia in south-east Asia: using termites (Isoptera) as indicators. *Biological Journal of the Linnean Society*, 75: 453-466.
- Gorog, A. J., Sinaga, M. H. & Engstrom, M. D. 2004. Vicariance or dispersal? Historical biogeography of three Sunda shelf murine rodents (*Maxomys surifer, Leopoldamys* sabanus and Maxomys whiteheadi). Biological Journal of the Linnean Society, 81: 91-109.
- Groombridge, J. J., Dawson, D. A., Burke, T., Prys-Jones, R., Brooke, M. D. & Shah, N. 2009. Evaluating the demographic history of the Seychelles kestrel (*Falco araea*): Genetic evidence for recovery from a population bottleneck following minimal conservation management. *Biological Conservation*, 142: 2250-2257.
- Guicking, D., Rana, T. S., Blattner, F. R. & Weising, K. 2006. Microsatellite markers for the palaeotropic pioneer tree genus *Macaranga* (Euphorbiaceae) and their cross-species transferability. *Molecular Ecology Notes*, 6: 245-248.
- Guicking, D., Fiala, B., Blattner, F. R., Slik, J. W. F., Mohamed, M. & Weising, K. 2011. Comparative chloroplast DNA phylogeography of two tropical pioneer trees, *Macaranga gigantea* and *M. pearsonii* (Euphorbiaceae). *Tree Genetics and Genomes*, 10.1007/s11295-010-0357-z.
- Guicking, D., Kröger-Kilian, T., Fiala, B., Blattner, F. R., Slik, J. W. F. & Weising, K. in preparation. Genetic diversity and population structure of two paleotropical pioneer tree species: *Macaranga hypoleuca* and *M. beccariana*.
- Hamrick, J. L. & Godt, M. J. W. 1996. Effects of Life History Traits on Genetic Diversity in Plant Species. *Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences*, 351: 1291-1298.
- Hasegawa, M., Kishino, H. & Yano, T.-A. 1985. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. *Journal of Molecular Evolution*, 22: 160-174.
- Hedenas, L. 2010. Phylogeography and origin of European Sanionia uncinata (Amblystegiaceae, Bryophyta). Systematics and Biodiversity, 8: 177-191.
- Hedrick, P. W. 1999. Perspective: highly variable loci and their interpretation in evolution and conservation. *Evolution*, 53: 313-318.
- Hedrick, P. W. 2005. A standardized genetic differentiation measure. *Evolution*, 59: 1633-1638.
- Heil, M., Fiala, B., Linsenmair, K. E. & Boller, T. 1999. Reduced chitinase activities in ant plants of the genus *Macaranga*. *Naturwissenschaften*, 86: 146-149.
- Heil, M., Fiala, B., Baumann, B. & Linsenmair, K. 2000. Temporal, spatial and biotic variations in extrafloral nectar secretion by *Macaranga tanarius*. *Functional Ecology*, 14: 749–757.

- Heil, M., Koch, T., Hilpert, A., Fiala, B., Boland, W. & Linsenmair, K. 2001a. Extrafloral nectar production of the ant-associated plant, *Macaranga tanarius*, is an induced, indirect, defensive response elicited by jasmonic acid. *Proceedings of the National Academy of Sciences of the United States of America*, 98: 1083-1088.
- Heil, M., Fiala, B., Maschwitz, U. & Linsenmair, K. E. 2001b. On benefits of indirect defence: short- and long-term studies of antiherbivore protection via mutualistic ants. *Oecologia*, 126: 395-403.
- Heil, M. & Mckey, D. 2003. Protective ant-plant interactions as model systems in ecological and evolutionary research. Annual Review of Ecology Evolution and Systematics, 34: 425-453.
- Hensen, I., Kilian, C., Wagner, V., Durka, W., Pusch, J. & Wesche, K. 2010. Low genetic variability and strong differentiation among isolated populations of the rare steppe grass *Stipa capillata* L. in Central Europe. *Plant Biology*, 12: 526-536.
- Holsinger, K. E. & Weir, B. S. 2009. Genetics in geographically structured populations: defining, estimating and interpreting FST. *Nature Reviews Genetics*, 10: 639-650.
- Honnay, O. & Jacquemyn, H. 2007. Susceptibility of Common and Rare Plant Species to the Genetic Consequences of Habitat Fragmentation. *Conservation Biology*, 21: 823-831.
- Howlett, B. E. & Davidson, D. W. 2003. Effects of seed availability, site conditions, and herbivory on pioneer recruitment after logging in Sabah, Malaysia. *Forest Ecology and Management*, 184: 369-383.
- Hurlbert, S. H. 1971. The Nonconcept of Species Diversity: A Critique and Alternative Parameters. *Ecology*, 52: 577-586.
- Inger, R. F. & Voris, H. K. 2001. The biogeographical relations of the frogs and snakes of Sundaland. *Journal of Biogeography*, 28: 863-891.
- Ivensen, G. R. 1984. *Bayesian Statistical Inference* Sage, Beverly Hills, California, USA, Sage Publications Incorporated.
- Jarne, P. & Lagoda, P. J. L. 1996. Microsatellites, from molecules to populations and back. *Trends in Ecology & Evolution*, 11: 424-429.
- Jürgens, A., Feldhaar, H., Feldmeyer, B. & Fiala, B. 2006. Chemical composition of leaf volatiles in *Macaranga* species (Euphorbiaceae) and their potential role as olfactory cues in host-localization of foundress queens of specific ant partners. *Biochemical Systematics and Ecology*, 34: 97-113.
- King, M. G., Horning, M. E. & Roalson, E. H. 2009. Range persistence during the last glacial maximum: *Carex macrocephala* was not restricted to glacial refugia. *Molecular Ecology*, 18: 4256-4269.
- Koptur, S. 1992. Plants with extrafloral nectaries and ants in everglades habitats. *Florida Entomologist*, 75: 38-50.
- Kulju, K. K. M., Sierra, S. E. C., Draisma, S. G. A., Samuel, R. & Van Welzen, P. C. 2007. Molecular phylogeny of *Macaranga*, *Mallotus*, and related genera (Euphorbiaceae s.s.): insights from plastid and nuclear DNA sequence data. *American Journal of Botany*, 94: 1726-1743.

- Lagercrantz, U., Ellegren, H. & Andersson, L. 1993. The abundance of various polymorphic microsatellite motifs differs between plants and vertebrates. *Nucleic Acids Research*, 21: 1111-1115.
- Librado, P. & Rozas, J. 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. *Bioinformatics*, 25: 1451-1452.
- Lowe, A., Harris, S. & Ashton, P. 2004. *Ecological Genetics: Design, Analysis and Application.*, Oxford, Blackwell.
- Mantel, N. 1967. Detection of disease clustering and a generalized regression approach. *Cancer Research*, 27: 209-220.
- Maschwitz, U., Fiala, B., Davies, S. & Linsenmair, K. 1996. A South-East Asian myrmecophyte with two alternative inhabitants: *Camponotus* or *Crematogaster* as partners of *Macaranga lamellata*. *ECOTROPICA*, 2: 29-40.
- Mccauley, D. E. 1995. The use of chloroplast DNA polymorphism in studies of gene flow in plants. *Trends in Ecology & Evolution*, 10: 198-202.
- Messier, W., Li, S. H. & Stewart, C. B. 1996. The birth of microsatellites. *Nature*, 381: 483-483.
- Moog, U., Fiala, B., Federle, W. & Maschwitz, U. 2002. Thrips pollination of the dioecious ant plant *Macaranga hullettii* (Euphorbiaceae) in Southeast Asia. *American Journal of Botany*, 89: 50-59.
- Moog, U. 2002. Die Reproduktion von Macaranga (Euphorbiaceae) in Suedostasien: Bestäubung durch Thripse und Kastration durch Pflanzenameisen. PhD thesis, Johann Wolfgang Goethe-Universität, Frankfurt Main, Germany.
- Morley, R. J. 2000. *Origin and Evolution of Tropical Rain Forests*, Chichester, New York, Weinheim, Brisbane, Singapore, Toronto, John Wiley & Sons, LTD.
- Mousadik, A. & Petit, R. J. 1996. High level of genetic differentiation for allelic richness among populations of the argan tree *Argania spinosa* (L.) Skeels endemic to Morocco. *TAG Theoretical and Applied Genetics*, 92: 832-839.
- Moyle, R. G., Schilthuizen, M., Rahman, M. A. & Sheldon, F. H. 2005. Molecular phylogenetic analysis of the white-crowned forktail *Enicurus leschenault* in Borneo. *Journal of Avian Biology*, 36: 96-101.
- Muloko-Ntoutoume, N., Petit, R. J., White, L. & Abernethy, K. 2000. Chloroplast DNA variation in a rainforest tree (*Aucoumea klaineana*, Burseraceae) in Gabon. *Molecular Ecology*, 9: 359-363.
- Nei, M. 1972. Genetic distance between populations. American Naturalist, 106: 283-392.
- Nei, M. 1973. Analysis of Gene Diversity in Subdivided Populations. *Proceedings of the National Academy of Sciences of the United States of America*, 70: 3321-3323.
- Oliveira, P. S. & Freitas, A. V. L. 2004. Ant-plant-herbivore interactions in the neotropical cerrado savanna. *Naturwissenschaften*, 91: 557-570.
- Palmer, J. D. 1987. Chloroplast DNA evolution and biosystematic uses of chloroplast DNA variation. *American Naturalist*, 130: 6-29.
- Peakall, R. & Smouse, P. E. 2006. GenAlEx 6: genetic analysis in Excel. Population genetic software for teaching and research. *Molecular Ecology Notes*, 6: 288-295.

- Petit, R., Mousadik, A. E. & Pons, O. 1998. Identifying populations for conservation on the basis of genetic markers. *Conservation Biology*, 12: 844–855.
- Petit, R. J., Duminil, J., Fineschi, S., Hampe, A., Salvini, D. & Vendramin, G. G. 2005. Comparative organization of chloroplast, mitochondrial and nuclear diversity in plant populations. *Molecular Ecology*, 14: 689-701.
- Pleines, T., Jakob, S. S. & Blattner, F. R. 2009. Application of non-coding DNA regions in intraspecific analyses. *Plant Systematics and Evolution*, 282: 281-294.
- Posada, D. & Crandall, K. A. 2001. Intraspecific gene genealogies: trees grafting into networks. *Trends in Ecology & Evolution*, 16: 37-45.
- Posno, M., Van Vhet, A. & Groot, G. S. P. 1986. The gene for *Spirodela oligorhiza* chloroplast ribosomal protein homologous to *E. coli* ribosomal protein L16 is split by a large intron near its 5' end: structure and expression. *Nucleic Acids Research*, 14: 3181-3195.
- Pritchard, J. K., Stephens, M. & Donnelly, P. 2000. Inference of population structure using multilocus genotype data. *Genetics*, 155: 945-959.
- Provan, J., Russell, J. R., Booth, A. & Powell, W. 1999. Polymorphic chloroplast simple sequence repeat primers for systematic and population studies in the genus *Hordeum*. *Molecular Ecology*, 8: 505-511.
- Pupko, T. & Graur, D. 1999. Evolution of Microsatellites in the Yeast Saccharomyces cerevisiae: Role of Length and Number of Repeated Units. *Journal of Molecular Evolution*, 48: 313-316.
- Quek, S. P., Davies, S. J., Itino, T. & Pierce, N. E. 2004. Codiversification in an ant-plant mutualism: stem texture and the evolution of host use in *Crematogaster (Formicidae: Myrmicinae)* inhabitants of *Macaranga* (Euphorbiaceae). *Evolution*, 58: 554-570.
- Quek, S. P., Davies, S. J., Ashton, P. S., Itino, T. & Pierce, N. E. 2007. The geography of diversification in mutualistic ants: a gene's-eye view into the Neogene history of Sundaland rain forests. *Molecular Ecology*, 16: 2045-2062.
- Raes, N., Roos, M. C., Slik, J. W. F., Van Loon, E. E. & Ter Steege, H. 2009. Botanical richness and endemicity patterns of Borneo derived from species distribution models. *Ecography*, 32: 180-192.
- Rambaut, A. 2002. Se-Al v2.0a11: Sequence Alignment Editor. University of Oxford, Oxford, UK.
- Razafimandimbison, S. G., Moog, J., Lantz, H., Maschwitz, U. & Bremer, B. 2005. Reassessment of monophyly, evolution of myrmecophytism, and rapid radiation in *Neonauclea* s.s. (Rubiaceae). *Molecular Phylogenetics and Evolution*, 34: 334-354.
- Ridley, H. N. 1930. *The dispersal of plants throughout the world*, Ashford, Kent, L. Reeve & Co.
- Rose, O. & Falush, D. 1998. A threshold size for microsatellite expansion. *Molecular Biology and Evolution*, 15: 613-615.
- Rowe, G. & Beebee, T. J. C. 2007. Defining population boundaries: use of three Bayesian approaches with microsatellite data from British natterjack toads (*Bufo calamita*). *Molecular Ecology*, 16: 785-796.

- Schlötterer, C. 2000. Evolutionary dynamics of microsatellite DNA. *Chromosoma*, 109: 365-371.
- Schnabel, A. & Wendel, J. F. 1998. Cladistic biogeography of *Gleditsia* (Leguminosae) based on *ndhF* and *rpl16* chloroplast gene sequences. *American Journal of Botany*, 85: 1753-1765.
- Schönswetter, P., Tribsch, A. & Niklfeld, H. 2003. Phylogeography of the High Alpine Cushion Plant Androsace alpina (Primulaceae) in the European Alps. *Plant Biology*, 5: 623-630.
- Selkoe, K. A. & Toonen, R. J. 2006. Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. *Ecology Letters*, 9: 615-629.
- Sharma, P. C., Grover, A. & Kahl, G. 2007. Mining microsatellites in eukaryotic genomes. *Trends in Biotechnology*, 25: 490-498.
- Shaw, J., Lickey, E. B., Beck, J. T., Farmer, S. B., Liu, W., Miller, J., Siripun, K. C., Winder, C. T., Schilling, E. E. & Small, R. L. 2005. The tortoise and the hare II: relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis. *American Journal of Botany*, 92: 142-166.
- Shirai, Y. 1995. Longevity, Flight Ability and Reproductive Performance of the Diamondback Moth, *Plutella xylostella* (L.) (Lepidoptera: Yponomeutidae), Related to Adult Body Size. *Applied Entomology and Zoology*, 28: 587-590.
- Slatkin, M. 1985. Gene flow in natural populations. Annual Review of Ecology and Systematics, 16: 393-430.
- Slik, J. 2001. Macaranga and Mallotus (Euphorbiaceae) as indicators for disturbance in the lowland dipterocarp forests of East Kalimantan, Indonesia. PhD thesis, Universiteit Leiden.
- Slik, J. W. F., Priyono & Van Welzen, P. C. 2000. Key to the Macaranga Thou. and Mallotus Lour. Species (Euphorbiaceae) of East Kalimantan, Indonesia. Gardens' Bulletin Singapore, 52: 11-87.
- Slik, J. W. F. & Van Welzen, P. C. 2001. A phylogeny of *Mallotus* (Euphorbiaceae) based on morphology: Indications for a pioneer origin of *Macaranga*. Systematic Botany, 26: 786-796.
- Slik, J. W. F., Poulsen, A. D., Ashton, P. S., Cannon, C. H., Eichhorn, K. a. O., Kartawinata, K., Lanniari, I., Nagamasu, H., Nakagawa, M., Van Nieuwstadt, M. G. L., Payne, J., Purwaningsih, Saridan, A., Sidiyasa, K. D., Verburg, R. W. & Webb, C. O. 2003. A floristic analysis of the lowland dipterocarp forests of Borneo. *Journal of Biogeography*, 30: 1517-1531.
- Soltis, D. E., Soltis, P. S. & Milligan, B. G. 1992. Intraspecific chloroplast DNA variation: systematic and phylogenetic implications. *In:* Soltis, P. S., Soltis, D. E. & Doyle, J. J. (eds.) *Molecular Systematics of Plants*. New York: Chapman and Hall.
- Spiegelhalter, D. J., Best, N. G., Carlin, B. P. & Linde, A. V. D. 2002. Bayesian measures of model complexity and fit. *Journal Of The Royal Statistical Society Series B*, 64: 583-639.

- Squirrell, J., Hollingsworth, P. M., Woodhead, M., Russell, J., Lowe, A. J., Gibby, M. & Powell, W. 2003. How much effort is required to isolate nuclear microsatellites from plants? *Molecular Ecology*, 12: 1339-1348.
- Stehlik, I., Blattner, F. R., Holderegger, R. & Bachmann, K. 2002. Nunatak survival of the high Alpine plant *Eritrichium nanum* (L.) Gaudin in the central Alps during the ice ages. *Molecular Ecology*, 11: 2027-2036.
- Strand, M., Prolla, T. A., Liskay, R. M. & Petes, T. D. 1993. Destabilization of tracts of simple repetitive DNA in yeast by mutations affecting DNA mismatch repair. *Nature*, 365: 274-276.
- Swaine, M. D. & Whitmore, T. C. 1988. On the definition of ecological species groups in tropical rain forests. *Plant Ecology*, 75: 81-86.
- Swofford, D. L. 2002. PAUP*. Phylogenetic Analyses Using Parsimony (*and other methods). Version 4. Sunderland.
- Szpiech, Z. A., Jakobsson, M. & Rosenberg, N. A. 2008. ADZE: A rarefaction approach for counting alleles private to combinations of populations. *Bioinformatics*, 24: 2498– 2504.
- Tautz, D. 1989. Hypervariability of simple sequences as a general source for polymorphic DNA markers. *Nucleic Acids Research*, 17: 6463-6471.
- Ueda, S., Quek, S. P., Itioka, T., Inamori, K., Sato, Y., Murase, K. & Itino, T. 2008. An ancient tripartite symbiosis of plants, ants and scale insects. *Proceedings of the Royal Society B-Biological Sciences*, 275: 2319-2326.
- Valdes, A. M., Slatkin, M. & Freimer, N. B. 1993. Allele Frequencies at Microsatellite Loci: The Stepwise Mutation Model Revisited. *Genetics*, 133: 737-749.
- Varadaraj, K. & Skinner, D. M. 1994. Denaturants or cosolvents improve the specificity of PCR amplification of a G+C -rich DNA using genetically-engineered DNA-polymerases *Gene*, 140: 1-5.
- Vogel, M., Bänfer, G., Moog, U. & Weising, K. 2003. Development and characterization of chloroplast microsatellite markers in *Macaranga* (Euphorbiaceae). *Genome*, 46: 845-857.
- Voris, H. K. 2000. Maps of Pleistocene sea levels in Southeast Asia: shorelines, river systems and time durations. *Journal of Biogeography*, 27: 1153-1167.
- Wagner, D. B. 1992. Nuclear, chloroplast, and mitochondrial DNA polymorphisms as biochemical markers in population genetic analyses of forest trees. *New Forests*, 6: 373-390.
- Warburg, O. 1892. Über Ameisenpflanzen (Myrmekophyten), VEB Georg Thieme.
- Webber, B. L., Abaloz, B. A. & Woodrow, I. E. 2007. Myrmecophilic food body production in the understorey tree, *Ryparosa kurrangii* (Achariaceae), a rare Australian rainforest taxon. *New Phytologist*, 173: 250-263.
- Webster, G. L. 1994. Classification of the Euphorbiaceae. Annals of the Missouri Botanical Garden, 81: 3-32.
- Weising, K. & Gardner, R. C. 1999. A set of conserved PCR primers for the analysis of simple sequence repeat polymorphisms in chloroplast genomes of dicotyledonous angiosperms. *Genome*, 42: 9-19.

- Weising, K., Nybom, H., Wolff, K. & Kahl, G. 2005. DNA Fingerprinting in Plants. Principles, Methods and Applications, Boca Raton, Fl, CRC Press, Taylor & Francis Group.
- Weising, K., Guicking, D., Fey-Wagner, C., Kröger-Kilian, T., Wöhrmann, T., Dorstewitz, W., Bänfer, G., Ute Moog, Vogel, M., Baier, C., Blattner, F. R. & Fiala, B. 2010. Mechanisms of Speciation in Southeast Asian Ant-Plants of the Genus Macaranga (Euphorbiaceae) In: Glaubrecht, M. (ed.) Evolution in Action: Case studies in Adaptive Radiation, Speciation and the Origin of Biodiversity. Heidelberg, Berlin (Springer).
- Whitmore, T. C. 1969. First thoughts on species evolution in Malayan *Macaranga* (Studies in *Macaranga* III). *Biological Journal of the Linnean Society*, 1: 223-231.
- Whitmore, T. C. 1974. Studies in *Macaranga*: VI: Novelties from Borneo and a Reduction in Malaya. *Kew Bulletin* 29: 445-450.
- Whitmore, T. C. 1975. The Euphorbiaceae of Borneo. *Kew Bulletin Additional Series*, 4: 140-159.
- Whitmore, T. C. 2008. *The Genus Macaranga: a prodromus*, Richrnond. Surrey, Royal Botanic Gardens.
- Wolfe, K. H., Li, W. H. & Sharp, P. M. 1987. Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. *Proceedings of the National Academy of Sciences of the United States of America*, 84: 9054-9058.
- Woodruff, D. S. 2010. Biogeography and conservation in Southeast Asia: how 2.7 million years of repeated environmental fluctuations affect today's patterns and the future of the remaining refugial-phase biodiversity. *Biodiversity and Conservation*, 19: 919-941.
- Woolley, S. M., Posada, D. & Crandall, K. A. 2008. A Comparison of Phylogenetic Network Methods Using Computer Simulation. *PLoS ONE*, 3: e1913.
- Wright, S. 1922. Coefficients of Inbreeding and Relationship. *The American Naturalist*, 56: 330-338.
- Wright, S. 1940. Breeding structure of populations in relation to speciation. *The American Naturalist* 74: 232-248.
- Wurdack, K. J., Hoffmann, P. & Chase, M. W. 2005. Molecular phylogenetic analysis of uniovulate Euphorbiaceae (Euphorbiaceae sensu stricto) using plastid *rbcL* and *trnL-F* DNA sequences. *American Journal of Botany*, 92: 1397-1420.
- Xu, X., Peng, M., Fang, Z. & Xu, X. 2000. The direction of microsatellite mutations is dependent upon allele length. *Nature Genetics*, 24: 396-399.

List of Figures

 Figure 1-4. A) Peltate leaves of *M. winkleriella* B) stipules of *M. winkleriella* (photos:

 Brigitte Fiala).
 10

Figure 1-5. A) *Macaranga winkleri* colonised by its specific ant and characteristic stipules B) Leaves of *M. winkleri* C) Staminate inflorescence of *M. winkleri* D) Typical habitat of *Macaranga* species E) *M. winkleri* tree with adult in picture for scale F) *M. winkleri* in a gap in primary forest G) Fruits of *M. winkleri* H) Uninhabited *M. winkleri* individual, showing herbivore damage and a climber at the stem. 10

Figure 1-6. A) Typical habitat of *M. tanarius* B) *M. tanarius* tree habitus C) *M. tanarius* leaf with size comparison (photo: Nicolai Nürk) D) Staminate inflorescence of *M. tanarius* (photo: Birgit Schäfer) E) Fruits of *M. tanarius* (photo: Daniela Guicking) F) Stipules of *M. tanarius*.

Figure 2-5. Chloroplast haplotype network of *M. winkleri* and *M. winkleriella* with closely related *Macaranga* individuals as outgroups. Shapes indicate the different species. The size of the circles and squares indicate the number of individuals in which the haplotype was found.

Figure 2-7. Statistical parsimony network of different *Macaranga* species based on the *atp*B*rbc*L intergenic spacer. Black dots show missing intermediates. Numbers give the HT number. Circle size indicates the number of individuals in which the haplotype was found. .36

Figure 2-15. Plot of genetic vs. geographic distance for *Macaranga tanarius*. Each dot represents one individual of *M. tanarius*. Individuals from Sumatra, Java, Malay Peninsula and Australia are included. The line is the regression line. This figure is a combination of a histogram and a scatter plot to better illustrate the large number of comparisons with the same relationship between geographic and genetic distance. Each point in the scatter plot represents one bin of size ten along the geographical distance axis and the size of each point is

determined by the number of pairwise comparisons in the corresponding bin as specified in the legend
Figure 2-16. Topographical map of the island of Borneo, indicating the central mountain range that separates the island and the Crocker Range to the north, dividing Sabah into a western and eastern part. Map modified after Wikipedia.org
Figure 2-17. <i>Crematogaster</i> msp. 8 haplotype network calculated with TCS of 135 sequences of mitochondrial DNA redrawn and modified after Braasch (2008). The circle size is representative of the number of individuals in which the haplotype was found. Black dots present missing intermediates
Figure 3-1. Plots for the determination of the optimal K value in <i>M. winkleri</i> for all individuals using the admixture model
Figure 3-2. Plots for the determination of the optimal K value in Bornean <i>M. tanarius</i> , using the admixture model
Figure 3-3. Plots for the determination of the optimal K value in <i>M. tanarius</i> for all individuals using the admixture model
Figure 3-4. A series of bar plots of the assignment analysis and corresponding geographic distribution of <i>M. winkleri</i> individuals, using both STRUCTURE (A-B) and INSTRUCT (C-D). Each graph illustrates the clustering of microsatellite data assuming the admixture model In each graph, the individuals are presented in the same order (see Appendix J). The magillustrates the regions from
Figure 3-5. A bar plot of the assignment analysis and corresponding geographic distribution of <i>M. tanarius</i> individuals. The centre graph illustrates the clustering of microsatellite data

List of Tables

Table 2-3. Sequence information of the variable microsatellite regions in M. tanarius. 34

Table 2-4. Principal coordinate analysis (PCoA) of *Macaranga winkleri* and *M. tanarius*.Percentage of variation explained by the first three axes.38

Table 2-6. Intra-population genetic diversity values for *M. winkleri*, *M. tanarius* and *M. winkleriella*, distinguishing Sabah from Sarawak/Brunei rarefied for a sample size of 11.44

Table 2-8. Intraspecific values for haplotype and nucleotide diversity for all *M. winkleri*,

 M. tanarius and *M. winkleriella* samples. These values were also calculated for *M. tanarius*

 with only Borneo, for *M. winkleri* with only Sabah and for *M. winkleri* with only

 Sarawak/Brunei.

 46

Table 3-4. Macaranga winkleri and M. tanarius. Principal coordinate analysis (PCoA).Percentage of variation explained by the first three axes.82

Table 3-5. Mean allelic richness for all *M. winkleri*, *M. tanarius* and *M. winkleriella*individuals, and the Bornean *M. tanarius* individuals rarefied for a g of 24.84

Table 3-6. Determination of shared alleles of *M. winkleriella* compared with *M. winkleri* for the nine common SSR markers.

 84

Table 3-8. Mean allelic richness for *M. winkleri* and *M. tanarius* rarefied for g = 6. Comparison west and east of the Crocker Range and Sarawak/Brunei vs. Sabah division.....86

 Appendix A Neighbor-joining tree of *M. winkleri* and *M. winkleriella* using sequence alignments of the markers *atpB-rbcL* and *rpL16*.

- 0.0001 substitutions/site

Appendix B A bar plot of the assignment analysis and corresponding geographic distribution of *M. winkleri* individuals (Appendix J) highlighting the small scale population structure of the species in the Danum Valley of Sabah (Figure 3-4C). The graph along the bottom illustrates the clustering of microsatellite data assuming the admixture model, and the first K in the plateau phase of the plot of DIC values, from INSTRUCT, K = 3. The map of Sabah (A) shows the relative position of the Danum Valley (B). The majority of the *M. winkleri* individuals were sampled from the specific region of the valley as detailed in (C). Each cluster in the bar plot is related to its geographic origin(s), in detail by grid position (specified above the bar plot) and more generally below the graph. Abbreviations used with the bar plot are expanded in (C).

							Collection		
Number	Species	number	Latitude	Longitude	Location	Habitat / Ecology	(dd.mm.vv)	Collector	(Number)
448	M. tanarius	01-034	4,450	101.370	Malaysia, Peninsula, Pahano, Cameron Highlands, Tanah Rata		15.02.01	UMoog	Leiden
2734	M. tanarius	DG05-10	3.239	101.633	Malaysia, Peninsula, Selangor, FRIM, forest road	roadside	22.07.05	DGuicking	KAS
2743	M. tanarius	DG05-19	3.239	101.633	Malaysia, Peninsula, Selangor, FRIM, forest road	roadside	22.07.05	DGuicking	
43	M. tanarius M. tanarius	M64 M73	3.148	101.711	Malaysia, Peninsula, Selangor, Kuala Lumpur Malaysia, Peninsula, Selangor, Gombak Valley,		04.09.98	UMaschwitz	
6083	M. tanarius	CB-06-16	3.340	101.820	Malaysia, Peninsula, Selangor, old Genting road, after pass 50 km to K.L.	roadside	08.08.06	CBaier	
6084	M. tanarius	CB-06-17	3.340	101.820	Malaysia, Peninsula, Selangor, old Genting road, after pass 50 km to K.L.	roadside	08.08.06	CBaier	
6086	M. tanarius	CB-06-18 CB-06-19	3.340	101.820	Malaysia, Peninsula, Selangor, old Genting road, after pass 50 km to K.L. Malaysia, Peninsula, Selangor, old Genting road, after pass 50 km to K.L.	roadside	08.08.06	CBaier	
6087	M. tanarius	CB-06-20	3.340	101.820	Malaysia, Peninsula, Selangor, old Genting road, after pass 50 km to K.L.	roadside	08.08.06	CBaier	
6088	M. tanarius	CB-06-21	3.340	101.820	Malaysia, Peninsula, Selangor, old Genting road, after pass 50 km to K.L.	roadside	08.08.06	CBaier	
6089	M. tanarius M. tanarius	CB-06-22 CB-06-23	3.340	101.820	Malaysia, Peninsula, Selangor, old Genting road, after pass 50 km to K.L. Malaysia, Peninsula, Selangor, old Genting road, after pass 50 km to K.L.	roadside	08.08.06	CBaier	
6092	M. tanarius	CB-06-25	3.340	101.820	Malaysia, Peninsula, Selangor, old Genting road, after pass 50 km to K.L.	roadside	08.08.06	CBaier	GAT-6397
6093	M. tanarius	CB-06-26	3.340	101.820	Malaysia, Peninsula, Selangor, old Genting road, after pass 50 km to K.L.	roadside	08.08.06	CBaier	GAT-6396
6094	M. tanarius M. tanarius	CB-06-27 CB-06-28	3.340	101.820	Malaysia, Peninsula, Selangor, old Genting road, after pass 50 km to K.L. Malaysia, Peninsula, Selangor, old Genting road, 43 km to K l	roadside	08.08.06	CBaier	GA1-6393
6096	M. tanarius	CB-06-29	3.330	101.770	Malaysia, Peninsula, Selangor, old Genting road, 43 km to K.L.	roadside	08.08.06	CBaier	
6097	M. tanarius	CB-06-30	3.330	101.760	Malaysia, Peninsula, Selangor, old Genting road, 25 km to K.L.	roadside	08.08.06	CBaier	
6098	M. tanarius M. tanarius	CB-06-31 CB-06-32	3.330	101.760	Malaysia, Peninsula, Selangor, old Genting road, 25 km to K.L. Malaysia, Peninsula, Selangor, old Genting road, 25 km to K.L.	roadside	08.08.06	CBaier	
6100	M. tanarius	CB-06-33	3.330	101.760	Malaysia, Peninsula, Selangor, old Genting road, 25 km to K.L.	roadside	08.08.06	CBaier	
6101	M. tanarius	CB-06-34	3.330	101.760	Malaysia, Peninsula, Selangor, old Genting road, 25 km to K.L.	roadside	08.08.06	CBaier	
6102	M. tanarius	CB-06-35	3.330	101.760	Malaysia, Peninsula, Selangor, old Genting road, 25 km to K.L. Malaysia, Reginsula, Selangor, old Genting road, 26 km to K.L.	roadside	08.08.06	CBaier	
6104	M. tanarius	CB-06-37	3.330	101.760	Malaysia, Peninsula, Selangor, old Genting road, 25 km to K.L. Malaysia, Peninsula, Selangor, old Genting road, 25 km to K.L.	roadside	08.08.06	CBaier	
6105	M. tanarius	CB-06-38	3.330	101.760	Malaysia, Peninsula, Selangor, old Genting road, 25 km to K.L.	roadside	08.08.06	CBaier	
6106	M. tanarius	CB-06-39	3.330	101.760	Malaysia, Peninsula, Selangor, old Genting road, 25 km to K.L. Malaysia, Reginsula, Selangor, old Genting road, 26 km to K.L.	roadside	08.08.06	CBaier	
6108	M. tanarius	CB-06-41	3.330	101.760	Malaysia, Peninsula, Selangor, old Genting road, 25 km to K.L. Malaysia, Peninsula, Selangor, old Genting road, 25 km to K.L.	roadside	08.08.06	CBaier	
6109	M. tanarius	CB-06-42	3.330	101.760	Malaysia, Peninsula, Selangor, old Genting road, 25 km to K.L.	roadside	08.08.06	CBaier	
6110	M. tanarius	CB-06-43	3.330	101.760	Malaysia, Peninsula, Selangor, old Genting road, 25 km to K.L.	roadside	08.08.06	CBaier	CAT CODE
6068	M. tanarius	CB-06-01	3.310	101.760	Malaysia, Peninsula, Selangor, old Genting road, 20 km to K.L. Malaysia, Peninsula, Selangor, old Genting road, 20 km to K.L.	roadside	08.08.06	CBaier	GA1-0395
6069	M. tanarius	CB-06-02	3.310	101.740	Malaysia, Peninsula, Selangor, old Genting road, 20 km to K.L.	roadside	08.08.06	CBaier	
6070	M. tanarius	CB-06-03	3.310	101.740	Malaysia, Peninsula, Selangor, old Genting road, 20 km to K.L. Malaysia, Regissula, Selangor, old Centing road, 20 km to K.L.	roadside	08.08.06	CBaier	
6072	M. tanarius	CB-06-05	3.310	101.740	Malaysia, Peninsula, Selangor, old Genting road, 20 km to K.L.	roadside	08.08.06	CBaier	GAT-6394
6073	M. tanarius	CB-06-06	3.310	101.740	Malaysia, Peninsula, Selangor, old Genting road, 20 km to K.L.	roadside	08.08.06	CBaier	GAT-6392
6074	M. tanarius M. tanarius	CB-06-07	3.310	101.740	Malaysia, Peninsula, Selangor, old Genting road, 20 km to K.L. Malaysia, Baningula, Selanger, old Centing road, 20 km to K.L.	roadside	08.08.06	CBaier	
6077	M. tanarius	CB-06-10	3.310	101.740	Malaysia, Peninsula, Selangor, old Genting road, 20 km to K.L.	roadside	08.08.06	CBaier	
6078	M. tanarius	CB-06-11	3.310	101.740	Malaysia, Peninsula, Selangor, old Genting road, 20 km to K.L.	roadside	08.08.06	CBaier	
6079	м. tanarius M. tanarium	CB-06-12 CB-06-19	3.310	101.740	malaysia, Heninsula, Selangor, old Genting road, 20 km to K.L. Malaysia, Peninsula, Selangor, old Genting road, 20 km to K.L.	roadside	08.08.06	CBaier CBaier	
6081	M. tanarius	CB-06-14	3.310	101.740	Malaysia, Peninsula, Selangor, old Genting road, 20 km to K.L.	roadside	08.08.06	CBaier	
6082	M. tanarius	CB-06-15	3.310	101.740	Malaysia, Peninsula, Selangor, old Genting road, 20 km to K.L.	roadside	08.08.06	CBaier	
41	M. tanarius	M62	3.720	101.750	Malaysia, Peninsula, Pahang, Fraser's Hill		09.06.98	UMaschwitz	
6002	M. tanarius	BF425/06	4.800	114.650	Brunei, Tutong, between Tutong and T.Merimbun, close to Kg. Maya Brunei, Tutong, between Tutong and T.Merimbun, close to Kg. Maya	roadside	30.08.06	BFiala	
6929	M. tanarius	BF07/62	4.876	114.879	Brunei, road BSB-Seria, Liang, km 64	roadside	30.08.07	BFiala	
6930	M. tanarius	Bf07/63	4.876	114.879	Brunei, road BSB-Seria, Liang, km 64	roadside	31.08.07	BFiala	
28	M. tanarius	M50	4.876	114.679	Brunei, Randar Seri Benawan	Toadside	17 09 98	UMaschwitz	
6922	M. tanarius	Bf07/57	4.862	115.406	Malaysia, Sarawak, 15 km to Lawas	roadside	29.08.07	BFiala	
6924	M. tanarius	Bf07/59	4.862	115.406	Malaysia, Sarawak, 15 km to Lawas Malaysia, Barana, Sabab, Dulay Ting Jaland	roadside	29.08.07	BFiala	
5232	M. tanarius	DG06_325 DG06_326	5.731	115.652	Malaysia, Borneo, Sabah, Pulau Tiga Island Malaysia, Borneo, Sabah, Pulau Tiga Island	along trails in forest	06.09.06	DGuicking	
5234	M. tanarius	DG06_327	5.731	115.652	Malaysia, Borneo, Sabah, Pulau Tiga Island	along trails in forest	06.09.06	DGuicking	
5235	M. tanarius	DG06_328	5.731	115.652	Malaysia, Borneo, Sabah, Pulau Tiga Island	along trails in forest	06.09.06	DGuicking	
5236	M. tanarius	DG06_329 DG06_330	5.731	115.652	Malaysia, Borneo, Sabah, Pulau Tiga Island Malaysia, Borneo, Sabah, Pulau Tiga Island	along trails in forest	06.09.06	DGuicking	
5238	M. tanarius	DG06_331	5.731	115.652	Malaysia, Borneo, Sabah, Pulau Tiga Island	along trails in forest	06.09.06	DGuicking	
5239	M. tanarius	DG06_332	5.731	115.652	Malaysia, Borneo, Sabah, Pulau Tiga Island	along trails in forest	06.09.06	DGuicking	
5240	M. tanarius	DG06_333	5.731	115.652	Malaysia, Borneo, Sabah, Pulau Tiga Island Malaysia, Borneo, Sabah, Pulau Tiga Island	along trails in forest	06.09.06	DGuicking	
5242	M. tanarius	DG06_335	5.731	115.652	Malaysia, Borneo, Sabah, Pulau Tiga Island	along trails in forest	06.09.06	DGuicking	
5243	M. tanarius	DG06_336	5.731	115.652	Malaysia, Borneo, Sabah, Pulau Tiga Island Malaysia, Borneo, Sabah, Pulau Tiga Island	along trails in forest	06.09.06	DGuicking	
6190	M. tanarius	CB-06-122	5.180	116.590	Malaysia, Borneo, Sabah, Fenom, Jalan Tumantalik, near river Pegalan	riverside	21.08.06	CBaier	
6191	M. tanarius	CB-06-123	5.180	116.590	Malaysia, Borneo, Sabah, Tenom, Jalan Tumantalik, near river Pegalan	riverside	21.08.06	CBaier	
6192	M. tanarius	CB-06-124	5.180	116.590	Malaysia, Borneo, Sabah, Tenom, Jalan Tumantalik, near river Pegalan Malaysia, Borneo, Sabah, Tenom, Jalan Tumantalik, near river Pegalan	riverside	21.08.06	CBaier	
6193	M. tanarius M. tanarius	CB-06-125 CB-06-126	5.180	116.590	Malaysia, Borneo, Sabah, Tenom, Jalan Tumantalik, near river Pegalan Malaysia, Borneo, Sabah, Tenom, Jalan Tumantalik, near river Pegalan	riverside	21.08.06	CBaier	
6195	M. tanarius	CB-06-127	5.180	116.590	Malaysia, Borneo, Sabah, Tenom, Jalan Tumantalik, near river Pegalan	riverside	21.08.06	CBaier	
6196	M. tanarius	CB-06-128	5.180	116.590	Malaysia, Borneo, Sabah, Tenom, Jalan Tumantalik, near river Pegalan Malaysia, Borneo, Sabah, Tenom, Jalan Tumantalik, near river Pegalan	riverside	21.08.06	CBaier	GAT-6369
6198	M. tanarius	CB-06-129 CB-06-130	5.180	116.590	Malaysia, Borneo, Sabah, Tenom, Jalan Tumantalik, near river Pegalan Malaysia, Borneo, Sabah, Tenom, Jalan Tumantalik, near river Pegalan	riverside	21.08.06	CBaier	
6199	M. tanarius	CB-06-131	5.180	116.590	Malaysia, Borneo, Sabah, Tenom, Jalan Tumantalik, near river Pegalan	riverside	21.08.06	CBaier	
6176	M. tanarius	CB-06-108	5.210	116.570	Malaysia, Borneo, Sabah, Tenom, Jalan Bukit Bendera Melanzia, Barras, Sabah, Tenom, Jalan Bukit Bendera	roadside	20.08.06	CBaier	GAT-6366 / 6375
6178	M. tanarius	CB-06-110	5.210	116.570	Malaysia, Borneo, Sabah, Tenom, Jalan Bukit Bendera	roadside	20.08.06	CBaier	
6179	M. tanarius	CB-06-111	5.210	116.570	Malaysia, Borneo, Sabah, Tenom, Jalan Bukit Bendera	roadside	20.08.06	CBaier	
6180	M. tanarius	CB-06-112	5.210	116.570	Malaysia, Borneo, Sabah, Tenom, Jalan Bukit Bendera Malaysia, Borneo, Sabah, Tenom, Jalan Bukit Bendera	roadside	20.08.06	CBaier	
6182	M. tanarius	CB-06-114	5.210	116.570	Malaysia, Borneo, Sabah, Tenom, Jalan Bukit Bendera	roadside	20.08.06	CBaier	
6183	M. tanarius	CB-06-115	5.210	116.570	Malaysia, Borneo, Sabah, Tenom, Jalan Bukit Bendera	roadside	20.08.06	CBaier	
6184	M. tanarius M. tanarius	CB-06-116 CB-06-117	5.210	116.570	Malaysia, Borneo, Sabah, Lenom, Jalan Bukit Bendera Malaysia, Borneo, Sabah, Tenom, Jalan Bukit Bendera	roadside	20.08.06	CBaier	
6186	M. tanarius	CB-06-118	5.210	116.570	Malaysia, Borneo, Sabah, Tenom, Jalan Bukit Bendera	roadside	20.08.06	CBaier	
6187	M. tanarius	CB-06-119	5.210	116.570	Malaysia, Borneo, Sabah, Tenom, Jalan Bukit Bendera Malaysia, Borneo, Sabah, Tenom, Jalan Bukit Bendera	roadside	20.08.06	CBaier	GAT 6270
6189	м. шпапиs M. tanarius	CB-06-120 CB-06-121	5.210 5.210	116.570	Malaysia, Someo, Sabah, Tenom, Jalah Bukit Bendera Malaysia, Borneo, Sabah, Tenom, Jalah Bukit Bendera	roadside	20.08.06 20.08.06	CBaier	GA1-03/U
6200	M. tanarius	CB-06-132	5.210	116.570	Malaysia, Borneo, Sabah, Tenom, Jalan Bukit Bendera	roadside	21.08.06	CBaier	GAT-6379
6201	M. tanarius	CB-06-133	5.210	116.570	Malaysia, Borneo, Sabah, Tenom, Jalan Bukit Bendera	roadside	21.08.06	CBaier CBaier	
6202	m. tanarius M. tanarius	CB-06-134 CB-06-135	5.210	116.570	Malaysia, Borneo, Sabah, Tenom, Jalan Bukit Bendera	roadside	21.08.06 21.08.06	CBaier	
6204	M. tanarius	CB-06-136	5.210	116.570	Malaysia, Borneo, Sabah, Tenom, Jalan Bukit Bendera	roadside	21.08.06	CBaier	
6205	M. tanarius M. tanarium	CB-06-137 CB-06-129	5.210	116.570	Malaysia, Borneo, Sabah, Tenom, Jalan Bukit Bendera Malaysia, Borneo, Sabah, Tenom, Jelan Bukit Bendera	roadside	21.08.06	CBaier CBaier	
6206	M. tanarius	CB-06-139	5.210	116.570	Malaysia, Borneo, Sabah, Tenom, Jalan Bukit Bendera	roadside	21.08.06	CBaier	
6208	M. tanarius	CB-06-140	5.210	116.570	Malaysia, Borneo, Sabah, Tenom, Jalan Bukit Bendera	roadside	21.08.06	CBaier	
6226	M. tanarius M. tanarius	CB-06-158	5.200	116.560	Malaysia, Borneo, Sabah, Tenom, Hill near Hotel Perkasa Malaysia, Borneo, Sabah, Tenom, Hill near Hotel Perkasa	roadside	23.08.06	CBaier	GAT-6386
6228	M. tanarius	CB-06-160	5.200	116.560	Malaysia, Borneo, Sabah, Tenom, Hill near Hotel Perkasa	roadside	23.08.06	CBaier	
6229	M. tanarius	CB-06-161	5.200	116.560	Malaysia, Borneo, Sabah, Tenom, Hill near Hotel Perkasa	roadside	23.08.06	CBaier	
6230	M. tanarius	CB-06-162 CB-06-162	5.200	116.560	Malaysia, Borneo, Sabah, Lenom, Hill near Hotel Perkasa Malaysia, Borneo, Sabah, Tenom, Hill near Hotel Perkasa	roadside	23.08.06	CBaier	GA1-6387
6232	M. tanarius	CB-06-164	5.200	116.560	Malaysia, Borneo, Sabah, Tenom, Hill near Hotel Perkasa	roadside	23.08.06	CBaier	
6233	M. tanarius	CB-06-165	5.200	116.560	Malaysia, Borneo, Sabah, Tenom, Hill near Hotel Perkasa	roadside	23.08.06	CBaier	0.47.0076
6234 6235	M. tanarius	CB-06-167	5.200 5.200	116.560	инанузна, corneo, Sabah, Lenom, Hill near Hotel Perkasa Malaysia, Borneo, Sabah, Tenom, Hill near Hotel Perkasa	roadside	23.08.06 23.08.0F	CBaier CBaier	GA1-6378
6236	M. tanarius	CB-06-168	5.200	116.560	Malaysia, Borneo, Sabah, Tenom, Hill near Hotel Perkasa	roadside	23.08.06	CBaier	
6237	M. tanarius	CB-06-169	5.200	116.560	Malaysia, Borneo, Sabah, Tenom, Hill near Hotel Perkasa	roadside	23.08.06	CBaier	CAT (274
6209 6210	w. tanarius M. tanarius	CB-06-141 CB-06-142	5.210 5.210	116.560	Malaysia, Dorneo, Sabah, Lenom, Hill near Hotel Perkasa Malaysia, Borneo, Sabah, Tenom, Hill near Hotel Perkasa	vegetation around the hotel	23.08.06 23.08.06	CBaier	GA1-63/1
6211	M. tanarius	CB-06-143	5.210	116.560	Malaysia, Borneo, Sabah, Tenom, Hill near Hotel Perkasa	vegetation around the hotel	23.08.06	CBaier	
6212	M. tanarius	CB-06-144	5.210	116.560	Malaysia, Borneo, Sabah, Tenom, Hill near Hotel Perkasa Malaysia, Borneo, Sabah, Tenom, Hill near Hotel Perkasa	vegetation around the hotel	23.08.06	CBaier	
6213	m. tanarius M. tanarius	CB-06-145 CB-06-146	5.210	116.560	Malaysia, Borneo, Sabah, Tenom, Hill near Hotel Perkasa	vegetation around the hotel	23.08.06 23.08.06	CBaier	
6215	M. tanarius	CB-06-147	5.210	116.560	Malaysia, Borneo, Sabah, Tenom, Hill near Hotel Perkasa	vegetation around the hotel	23.08.06	CBaier	
6216	M. tanarius M. tanarius	CB-06-148	5.210	116.560	Malaysia, Borneo, Sabah, Tenom, Hill near Hotel Perkasa Malaysia, Borneo, Sabah, Tenom, Hill near Hotel Perkasa	vegetation around the hotel	23.08.06	CBaier	
6218	M. tanarius	CB-06-149	5.210	116.560	Malaysia, Borneo, Sabah, Tenom, Hill near Hotel Perkasa	vegetation around the hotel	23.08.06	CBaier	
6220	M. tanarius	CB-06-152	5.210	116.560	Malaysia, Borneo, Sabah, Tenom, Hill near Hotel Perkasa	vegetation around the hotel	23.08.06	CBaier	
6221	M. tanarius M. tanarius	CB-06-153 CB-06-154	5.210	116.560	Malaysia, Borneo, Sabah, Tenom, Hill near Hotel Perkasa Malaysia, Borneo, Sabah, Tenom, Hill near Hotel Perkasa	vegetation around the hotel	23.08.06	CBaier	GAT-6368 GAT-6367
6223	M. tanarius	CB-06-155	5.210	116.560	Malaysia, Borneo, Sabah, Tenom, Hill near Hotel Perkasa	vegetation around the hotel	23.08.06	CBaier	5111 6301
6224	M. tanarius	CB-06-156	5.210	116.560	Malaysia, Borneo, Sabah, Tenom, Hill near Hotel Perkasa	vegetation around the hotel	23.08.06	CBaier	
6225 6257	M. tanarius M. tanarius	CB-06-157 CB-06-189	5.210 5.570	116.560	malaysia, Borneo, Sabah, Lenom, Hill near Hotel Perkasa Malaysia, Borneo, Sabah, periphery of Beaufort	vegetation around the hotel	23.08.06 26.08.0F	CBaier CBaier	
5863	M. tanarius	BF280/06b	5.564	115.600	Malaysia, Sabah, 5 km to Kuala Penyu	roadside, 1 m from the sea	18.08.06	BFiala	
5864	M. tanarius	BF281/06b	5.564	115.600	Malaysia, Sabah, 5 km to Kuala Penyu	roadside, 1 m from the sea	18.08.06	BFiala	
6290	M. tanarius M. tanarius	CB-06-222	6.020	116.080	Malaysia, Borneo, Sabah, near Kota Kinabalu, Pulau Gaya Malaysia, Borneo, Sabah, near Kota Kinabalu, Pulau Gaya	torest edge	28.08.06	CBaier	
0201		JU 007220	0.020				20.00.00		

Appendix C Plant material used in this study. ID, field number, habitat/ecology, collection date collector and herbarium number are given. Latitude and longitude was whenever possible determined with a GPS, otherwise using fallingrain.com.

Plant ID		Field					Collection Date		Herbarium
Number	Species	number	Latitude	Longitude	Location Melawia Remos Sabab pear Keta Kinabalu Rulau Gaua	Habitat / Ecology	(dd.mm.yy)	Collector	(Number)
6293	M. tanarius	CB-06-225	6.020	116.080	Malaysia, Borneo, Sabah, near Kota Kinabalu, Pulau Gaya Malaysia, Borneo, Sabah, near Kota Kinabalu, Pulau Gaya	forest edge	28.08.06	CBaier	
6294	M. tanarius M. tanarius	CB-06-226 CB-06-227	6.020	116.080	Malaysia, Borneo, Saban, near Kota Kinabalu, Pulau Gaya Malaysia, Borneo, Sabah, near Kota Kinabalu, Pulau Gaya	forest edge	28.08.06	CBaier	GAT-6373
6296 6297	M. tanarius M. tanarius	CB-06-228 CB-06-229	6.020	116.080 116.080	Malaysia, Borneo, Sabah, near Kota Kinabalu, Pulau Gaya Malaysia, Borneo, Sabah, near Kota Kinabalu, Pulau Gaya	forest edge	28.08.06 28.08.06	CBaier CBaier	
6298 6299	M. tanarius M. tanarius	CB-06-230 CB-06-231	6.020 6.020	116.080 116.080	Malaysia, Borneo, Sabah, near Kota Kinabalu, Pulau Gaya Malaysia, Borneo, Sabah, near Kota Kinabalu, Pulau Gaya	forest edge forest edge	28.08.06 28.08.06	CBaier CBaier	
6300 6301	M. tanarius M. tanarius	CB-06-232 CB-06-233	6.020 6.020	116.080 116.080	Malaysia, Borneo, Sabah, near Kota Kinabalu, Pulau Gaya Malaysia, Borneo, Sabah, near Kota Kinabalu, Pulau Gaya	forest edge forest edge	28.08.06 28.08.06	CBaier CBaier	
6302 6303	M. tanarius M. tanarius	CB-06-234 CB-06-235	6.020	116.080	Malaysia, Borneo, Sabah, near Kota Kinabalu, Pulau Gaya Malaysia, Borneo, Sabah, near Kota Kinabalu, Pulau Gaya	forest edge	28.08.06	CBaier CBaier	
6342 6342	M. tanarius	CB-06-274	6.120	116.310	Malaysia, Borneo, Sabah, Putera Jaya Malaysia, Borneo, Sabah, Putera Jaya	roadside	30.08.06	CBaier	
6258	M. tanarius M. tanarius	CB-06-275 CB-06-190	6.640	116.130	Malaysia, Borneo, Saban, Putera Jaya Malaysia, Borneo, Sabah, Kota Kinabalu, periphery	periphery of town, roadside	27.08.06	CBaier	GAT-6376
6259 6260	M. tanarius M. tanarius	CB-06-191 CB-06-192	6.640 6.640	116.130 116.130	Malaysia, Borneo, Sabah, Kota Kinabalu, periphery Malaysia, Borneo, Sabah, Kota Kinabalu, periphery	periphery of town, roadside periphery of town, roadside	27.08.06 27.08.06	CBaier CBaier	
6261 6262	M. tanarius M. tanarius	CB-06-193 CB-06-194	6.640 6.640	116.130 116.130	Malaysia, Borneo, Sabah, Kota Kinabalu, periphery Malaysia, Borneo, Sabah, Kota Kinabalu, periphery	periphery of town, roadside periphery of town, roadside	27.08.06 27.08.06	CBaier CBaier	
6263 6264	M. tanarius M. tanarius	CB-06-195 CB-06-196	6.640 6.640	116.130 116.130	Malaysia, Borneo, Sabah, Kota Kinabalu, periphery Malaysia, Borneo, Sabah, Kota Kinabalu, periphery	periphery of town, roadside periphery of town, roadside	27.08.06 27.08.06	CBaier CBaier	
6265 6266	M. tanarius M. tanarius	CB-06-197 CB-06-198	6.640 6.640	116.130 116.130	Malaysia, Borneo, Sabah, Kota Kinabalu, periphery Malaysia, Borneo, Sabah, Kota Kinabalu, periphery	periphery of town, roadside periphery of town, roadside	27.08.06	CBaier CBaier	
6267	M. tanarius M. tanarius	CB-06-199	6.640	116.130	Malaysia, Borneo, Sabah, Kota Kinabalu, periphery	periphery of town, roadside	27.08.06	CBaier	
6269	M. tanarius	CB-06-201	6.640	116.130	Malaysia, Borneo, Sabah, Kota Kinabalu, periphery Malaysia, Borneo, Sabah, Kota Kinabalu, periphery	periphery of town, roadside	27.08.06	CBaier	
6270	M. tanarius	CB-06-202 CB-06-203	6.640	116.130	Malaysia, Borneo, Sabah, Kota Kinabalu, periphery Malaysia, Borneo, Sabah, Kota Kinabalu, periphery	periphery of town, roadside	27.08.06	CBaier	
6272 6273	M. tanarius M. tanarius	CB-06-204 CB-06-205	6.640 6.640	116.130 116.130	Malaysia, Borneo, Sabah, Kota Kinabalu, periphery Malaysia, Borneo, Sabah, Kota Kinabalu, periphery	periphery of town, roadside periphery of town, roadside	27.08.06 27.08.06	CBaier CBaier	
6274 6275	M. tanarius M. tanarius	CB-06-206 CB-06-207	6.640 6.640	116.130 116.130	Malaysia, Borneo, Sabah, Kota Kinabalu, periphery Malaysia, Borneo, Sabah, Kota Kinabalu, periphery	periphery of town, roadside periphery of town, roadside	27.08.06 27.08.06	CBaier CBaier	
6276 6277	M. tanarius M. tanarius	CB-06-208 CB-06-209	6.640 6.640	116.130 116.130	Malaysia, Borneo, Sabah, Kota Kinabalu, periphery Malaysia, Borneo, Sabah, Kota Kinabalu, periphery	periphery of town, roadside periphery of town, roadside	27.08.06 27.08.06	CBaier CBaier	GAT-6383 GAT-6382
6278	M. tanarius M. tanarius	CB-06-210 CB-06-211	6.640	116.130	Malaysia, Borneo, Sabah, Kota Kinabalu, periphery Malaysia, Borneo, Sabah, Kota Kinabalu, periphery	periphery of town, roadside	27.08.06	CBaier CBaier	GAT-6380
6280	M. tanarius	CB-06-212	6.640	116.130	Malaysia, Borneo, Sabah, Kota Kinabalu, periphery	periphery of town, roadside	27.08.06	CBaier	GAT-6377
6281	M. tanarius	CB-06-213 CB-06-214	6.640	116.130	Malaysia, Borneo, Saban, Kota Kinabalu, periphery Malaysia, Borneo, Sabah, Kota Kinabalu, periphery	periphery of town, roadside	27.08.06	CBaier	GAT-6385
6283	M. tanarius M. tanarius	CB-06-215 CB-06-216	6.640	116.130	Malaysia, Borneo, Saban, Kota Kinabalu, periphery Malaysia, Borneo, Sabah, Kota Kinabalu, periphery	periphery of town, roadside periphery of town, roadside	27.08.06	CBaier	GAT-6381
6285 6286	M. tanarius M. tanarius	CB-06-217 CB-06-218	6.640 6.640	116.130 116.130	Malaysia, Borneo, Sabah, Kota Kinabalu, periphery Malaysia, Borneo, Sabah, Kota Kinabalu, periphery	periphery of town, roadside periphery of town, roadside	27.08.06 27.08.06	CBaier CBaier	
6287 6288	M. tanarius M. tanarius	CB-06-219 CB-06-220	6.640 6.640	116.130 116.130	Malaysia, Borneo, Sabah, Kota Kinabalu, periphery Malaysia, Borneo, Sabah, Kota Kinabalu, periphery	periphery of town, roadside periphery of town, roadside	27.08.06 27.08.06	CBaier CBaier	
6289	M. tanarius M. tanarius	CB-06-221	6.640	116.130	Malaysia, Borneo, Sabah, Kota Kinabalu, periphery	periphery of town, roadside	27.08.06	CBaier	
6318	M. tanarius	CB-06-250	6.640	116.080	Malaysia, Borneo, Sabah, Kota Kinabalu, near Padang Malaysia, Borneo, Sabah, Kota Kinabalu, near Padang	roadside	29.08.06	CBaier	
6320	M. tanarius M. tanarius	CB-06-252	6.640	116.080	Malaysia, Borneo, Saban, Kota Kinabalu, near Padang Malaysia, Borneo, Sabah, Kota Kinabalu, near Padang	roadside	29.08.06	CBaier	
6175 6308	M. tanarius M. tanarius	CB-06-107 CB-06-240	6.640 6.640	116.130 116.130	Malaysia, Borneo, Sabah, Kota Kinabalu, near Padang Malaysia, Borneo, Sabah, Kota Kinabalu, near Padang	roadside roadside	19.08.06 29.08.06	CBaier CBaier	
6309 6310	M. tanarius M. tanarius	CB-06-241 CB-06-242	6.640 6.640	116.130 116.130	Malaysia, Borneo, Sabah, Kota Kinabalu, near Padang Malaysia, Borneo, Sabah, Kota Kinabalu, near Padang	roadside roadside	29.08.06 29.08.06	CBaier CBaier	GAT-6374
6311 6312	M. tanarius M. tanarius	CB-06-243 CB-06-244	6.640 6.640	116.130 116.130	Malaysia, Borneo, Sabah, Kota Kinabalu, near Padang Malaysia, Borneo, Sabah, Kota Kinabalu, near Padang	roadside	29.08.06	CBaier CBaier	
6313 6314	M. tanarius M. tanarius	CB-06-245 CB-06-246	6.640	116.130	Malaysia, Borneo, Sabah, Kota Kinabalu, near Padang Malaysia, Borneo, Sabah, Kota Kinabalu, near Padang	roadside	29.08.06	CBaier CBaier	
6315	M. tanarius	CB-06-247	6.640	116.130	Malaysia, Borneo, Sabah, Kota Kinabalu, near Padang Malaysia, Borneo, Sabah, Kota Kinabalu, near Padang	roadside	29.08.06	CBaier	
6321	M. tanarius M. tanarius	CB-06-248 CB-06-253	6.640	116.130	Malaysia, Borneo, Sabah, Kota Kinabalu, near Padang Malaysia, Borneo, Sabah, Kota Kinabalu, near Padang	roadside	29.08.06	CBaier	
6322	M. tanarius M. tanarius	CB-06-254 CB-06-255	6.640	116.130	Malaysia, Borneo, Saban, Kota Kinabalu, near Padang Malaysia, Borneo, Sabah, Kota Kinabalu, near Padang	roadside	29.08.06	CBaier	
6324 6325	M. tanarius M. tanarius	CB-06-256 CB-06-257	6.640 6.640	116.130 116.130	Malaysia, Borneo, Sabah, Kota Kinabalu, near Padang Malaysia, Borneo, Sabah, Kota Kinabalu, near Padang	roadside roadside	29.08.06 29.08.06	CBaier CBaier	
6326 6327	M. tanarius M. tanarius	CB-06-258 CB-06-259	6.640 6.640	116.130 116.130	Malaysia, Borneo, Sabah, Kota Kinabalu, near Padang Malaysia, Borneo, Sabah, Kota Kinabalu, near Padang	roadside roadside	29.08.06 29.08.06	CBaier CBaier	
6328 6329	M. tanarius M. tanarius	CB-06-260 CB-06-261	6.640 6.640	116.130 116.130	Malaysia, Borneo, Sabah, Kota Kinabalu, near Padang Malaysia, Borneo, Sabah, Kota Kinabalu, near Padang	roadside	29.08.06	CBaier CBaier	
6330 6331	M. tanarius M. tanarius	CB-06-262 CB-06-263	6.640	116.130	Malaysia, Borneo, Sabah, Kota Kinabalu, near Padang Malaysia, Borneo, Sabah, Kota Kinabalu, near Padang	roadside	29.08.06	CBaier	
6332	M. tanarius	CB-06-264	6.640	116.130	Malaysia, Borneo, Sabah, Kota Kinabalu, near Padang Malaysia, Borneo, Sabah, Kota Kinabalu, near Padang	roadside	29.08.06	CBaier	
6334	M. tanarius M. tanarius	CB-06-265 CB-06-266	6.640	116.130	Malaysia, Borneo, Sabah, Kota Kinabalu, near Padang Malaysia, Borneo, Sabah, Kota Kinabalu, near Padang	roadside	29.08.06	CBaier	
6335	M. tanarius M. tanarius	CB-06-267 CB-06-268	6.640	116.130	Malaysia, Borneo, Sabah, Kota Kinabalu, near Padang Malaysia, Borneo, Sabah, Kota Kinabalu, near Padang	roadside	29.08.06	CBaier	
6337 6338	M. tanarius M. tanarius	CB-06-269 CB-06-270	6.640 6.640	116.130 116.130	Malaysia, Borneo, Sabah, Kota Kinabalu, near Padang Malaysia, Borneo, Sabah, Kota Kinabalu, near Padang	roadside roadside	29.08.06 29.08.06	CBaier CBaier	
6339 6340	M. tanarius M. tanarius	CB-06-271 CB-06-272	6.640 6.640	116.130 116.130	Malaysia, Borneo, Sabah, Kota Kinabalu, near Padang Malaysia, Borneo, Sabah, Kota Kinabalu, near Padang	roadside roadside	29.08.06 29.08.06	CBaier CBaier	
6341 6344	M. tanarius M. tanarius	CB-06-273 CB-06-276	6.640 6.240	116.130 116.130	Malaysia, Borneo, Sabah, Kota Kinabalu, near Padang Malaysia, Borneo, Sabah, from KK towards Kota Belud	roadside	29.08.06	CBaier CBaier	
6345 6346	M. tanarius M. tanarius	CB-06-277 CB-06-278	6.240	116.130	Malaysia, Borneo, Sabah, from KK towards Kota Belud	roadside	30.08.06	CBaier	
6347 6347	M. tanarius	CB-06-279	6.240	116.460	Malaysia, Borneo, Sabah, from KK towards Kota Belud	roadside	30.08.06	CBaier	
6349	M. tanarius M. tanarius	CB-06-280 CB-06-281	6.240	116.460	Malaysia, Borneo, Sabah, irom KK towards Kota Belud Malaysia, Borneo, Sabah, from KK towards Kota Belud	roadside	30.08.06	CBaier	GAT-6372
6350 6351	m. tanarius M. tanarius	CB-06-282 CB-06-283	6.240	116.460 116.460	Malaysia, Borneo, Sabah, from KK towards Kota Belud Malaysia, Borneo, Sabah, from KK towards Kota Belud	roadside	30.08.06	CBaier	
6352 6353	M. tanarius M. tanarius	CB-06-284 CB-06-285	6.240 6.240	116.460 116.460	Malaysia, Borneo, Sabah, from KK towards Kota Belud Malaysia, Borneo, Sabah, from KK towards Kota Belud	roadside roadside	30.08.06 30.08.06	CBaier CBaier	
6354 6355	M. tanarius M. tanarius	CB-06-286 CB-06-287	6.240 6.240	116.460 116.460	Malaysia, Borneo, Sabah, from KK towards Kota Belud Malaysia, Borneo, Sabah, from KK towards Kota Belud	roadside roadside	30.08.06 30.08.06	CBaier CBaier	
6356 6357	M. tanarius M. tanarius	CB-06-288 CB-06-289	6.640 6.640	116.650	Malaysia, Borneo, Sabah, South of Kota Belud Malaysia, Borneo, Sabah, South of Kota Belud	roadside roadside	31.08.06 31.08.06	CBaier CBaier	
6358 6359	M. tanarius M. tanarius	CB-06-290 CB-06-291	6.640	116.650	Malaysia, Borneo, Sabah, South of Kota Belud Malaysia, Borneo, Sabah, South of Kota Belud	roadside	31.08.06 31.08.06	CBaier	
6370	M. tanarius	CB-06-302	6.630	116.130	Malaysia, Borneo, Sabah, Kota Belud, near Siu Motel Malaysia, Borneo, Sabah, Kota Belud, near Siu Motel	roadside	31.08.06	CBaier	
6372	M. tanarius	CB-06-304	6.630	116.130	Malaysia, Corriet, Salaan, tota bendu, near Siu Motel Malaysia, Borneo, Sabah, Kota Belud, near Siu Motel	roadside	31.08.06	CBaier	
6373	m. tananus M. tanarius	CB-06-305	6.630	116.130	Malaysia, Borneo, Sabah, Kota Belud, near Siu Motel Malaysia, Borneo, Sabah, Kota Belud, near Siu Motel	roadside	31.08.06	CBaier	
6375 6377	M. tanarius M. tanarius	CB-06-307 CB-06-309	6.630 6.630	116.130 116.460	Malaysia, Borneo, Sabah, Kota Belud, near Siu Motel Malaysia, Borneo, Sabah, Kota Belud, near Siu Motel	roadside roadside	31.08.06 31.08.06	CBaier CBaier	
6378 6360	M. tanarius M. tanarius	CB-06-310 CB-06-292	6.630 6.630	116.460 116.680	Malaysia, Borneo, Sabah, Kota Belud, near Siu Motel Malaysia, Borneo, Sabah, Kota Belud, near Siu Motel	roadside roadside	31.08.06 31.08.06	CBaier CBaier	
6361 6362	M. tanarius M. tanarius	CB-06-293 CB-06-294	6.630 6.630	116.680 116.680	Malaysia, Borneo, Sabah, Kota Belud, near Siu Motel Malaysia, Borneo, Sabah, Kota Belud, near Siu Motel	roadside roadside	31.08.06 31.08.06	CBaier CBaier	
6363 6364	M. tanarius M. tanarius	CB-06-295 CB-06-296	6.630	116.680	Malaysia, Borneo, Sabah, Kota Belud, near Siu Motel Malaysia, Borneo, Sabah, Kota Belud, near Siu Motel	roadside	31.08.06	CBaier CBaier	
6365	M. tanarius	CB-06-297	6.630	116.680	Malaysia, Borneo, Sabah, Kota Belud, near Siu Motel	roadside	31.08.06	CBaier	
6367	M. tanarius M. tanarius	CB-06-299	6.630	116.680	Malaysia, Borneo, Sabah, Kota Belud, near Siu Motel Malaysia, Borneo, Sabah, Kota Belud, near Siu Motel	roadside	31.08.06	CBaier	
6376	M. tanarius	CB-06-301 CB-06-308	6.630	116.680	Malaysia, Sorrieo, Sabah, Kota Belud, near Siu Motel	roadside	31.08.06	CBaier	
6379 6380	м. tanarius M. tanarius	CB-06-311 CB-06-312	6.640 6.640	116.680 116.680	malaysia, Borneo, Sabah, Kota Belud, near Siu Motel Malaysia, Borneo, Sabah, Kota Belud, near Siu Motel	roadside roadside	31.08.06 31.08.06	CBaier CBaier	
6387 6384	M. tanarius M. tanarius	CB-06-319 CB-06-316	6.600 6.600	116.660 116.680	Malaysia, Borneo, Sabah, Kota Belud, direction Kudat Malaysia, Borneo, Sabah, Kota Belud, direction Kudat	small forest near road small forest near road	01.09.06 01.09.06	CBaier CBaier	
6385 6394	M. tanarius M. tanarius	CB-06-317 CB-06-326	6.600 6.630	116.680 116.680	Malaysia, Borneo, Sabah, Kota Belud, direction Kudat Malaysia, Borneo, Sabah, Kota Belud, direction Kudat	small forest near road small forest near road	01.09.06 01.09.06	CBaier CBaier	
6382 6383	M. tanarius M. tanarius	CB-06-314 CB-06-315	6.600	116.750 116.750	Malaysia, Borneo, Sabah, Kota Belud, direction Kudat Malaysia, Borneo, Sabah, Kota Belud, direction Kudat	small forest near road small forest near road	01.09.06	CBaier CBaier	
6388	M. tanarius	CB-06-320	6.600	116.750	Malaysia, Borneo, Sabah, Kota Belud, direction Kudat Malaysia, Borneo, Sabah, Kota Balud, direction Kudat	small forest near road	01.09.06	CBaier	
6390	M. tananus	CB-06-322	6.600	116.750	Malaysia, Corrieto, Sabah, Kota Belud, direction Kudat Malaysia, Borneo, Sabah, Kota Belud, direction Kudat	small forest near road	01.09.06	CBaier	
6391 6393	m. tanarius M. tanarius	CB-06-323 CB-06-325	6.600 6.600	116.750	Malaysia, Borneo, Sabah, Kota Belud, direction Kudat Malaysia, Borneo, Sabah, Kota Belud, direction Kudat	small forest near road	01.09.06	CBaier	
6395 6396	M. tanarius M. tanarius	CB-06-327 CB-06-328	6.280 6.280	116.500 116.500	Malaysia, Borneo, Sabah, from KK to Ranau, stop 1 Malaysia, Borneo, Sabah, from KK to Ranau, stop 1	roadside roadside	02.09.06 02.09.06	CBaier CBaier	
6397 6398	M. tanarius M. tanarius	CB-06-329 CB-06-330	6.280 6.280	116.500 116.660	Malaysia, Borneo, Sabah, from KK to Ranau, stop 1 Malaysia, Borneo, Sabah, from KK to Ranau, stop 1	roadside roadside	02.09.06 02.09.06	CBaier CBaier	
6399 6400	M. tanarius M. tanarius	CB-06-331 CB-06-332	6.510 6.510	116.650	Malaysia, Borneo, Sabah, from KK to Ranau, stop 2 Malaysia, Borneo, Sabah, from KK to Ranau, stop 2	roadside roadside	02.09.06 02.09.06	CBaier CBaier	
6401	M. tanarius	CB-06-333	6.510	116.750	Malaysia, Borneo, Sabah, from KK to Ranau, stop 2	roadside	02.09.06	CBaier	

Plant ID		Field					Collection Date		Herbarium
Number 6402	Species M. toporium	number	Latitude	Longitude	Location Malauria, Barros, Sabah, from KK to Pasau, stop 2	Habitat / Ecology	(dd.mm.yy)	Collector	(Number)
6440	M. tanarius	CB-06-372	6.500	116.500	Malaysia, Borneo, Sabah, iron KK to Kanau, stop 2 Malaysia, Borneo, Sabah, outskirts of Ranau	roadside	03.09.06	CBaier	
6441 6442	M. tanarius M. tanarius	CB-06-373 CB-06-374	6.500	116.650 116.650	Malaysia, Borneo, Sabah, outskirts of Ranau Malaysia, Borneo, Sabah, outskirts of Ranau	roadside	03.09.06	CBaier	
6439 6433	M. tanarius M. tanarius	CB-06-371 CB-06-365	6.500 6.500	116.750 117.200	Malaysia, Borneo, Sabah, outskirts of Ranau Malaysia, Borneo, Sabah, outskirts of Ranau	roadside roadside	03.09.06	CBaier CBaier	
6434 6435	M. tanarius M. tanarius	CB-06-366 CB-06-367	6.500	117.200	Malaysia, Borneo, Sabah, outskirts of Ranau Malaysia, Borneo, Sabah, outskirts of Ranau	roadside roadside	03.09.06	CBaier CBaier	
6436	M. tanarius	CB-06-368	6.500	117.200	Malaysia, Borneo, Sabah, outskirts of Ranau	roadside	03.09.06	CBaier	
6438	M. tanarius	CB-06-369 CB-06-370	6.500	117.200	Malaysia, Borneo, Sabah, outskirts of Ranau Malaysia, Borneo, Sabah, outskirts of Ranau	roadside	03.09.06	CBaier	
6443 6444	M. tanarius M. tanarius	CB-06-375 CB-06-376	6.500 6.500	117.200 117.200	Malaysia, Borneo, Sabah, outskirts of Ranau Malaysia, Borneo, Sabah, outskirts of Ranau	roadside	03.09.06	CBaier CBaier	
6445 6446	M. tanarius M. tanarius	CB-06-377 CB-06-378	6.500 6.500	117.200 117.200	Malaysia, Borneo, Sabah, outskirts of Ranau Malaysia, Borneo, Sabah, outskirts of Ranau	roadside roadside	03.09.06	CBaier CBaier	
6447	M. tanarius M. tanarius	CB-06-379	6.500	117.200	Malaysia, Borneo, Sabah, outskirts of Ranau	roadside	03.09.06	CBaier	
6450	M. tanarius	CB-06-382	6.500	117.200	Malaysia, Borneo, Sabah, outskirts of Ranau Malaysia, Borneo, Sabah, outskirts of Ranau	roadside	03.09.06	CBaier	
6451 6452	M. tanarius M. tanarius	CB-06-383 CB-06-384	6.500 6.500	117.200 117.200	Malaysia, Borneo, Sabah, outskirts of Ranau Malaysia, Borneo, Sabah, outskirts of Ranau	roadside	03.09.06	CBaier CBaier	
6453 6457	M. tanarius M. tanarius	CB-06-385 CB-06-389	6.500 6.500	117.200 117.200	Malaysia, Borneo, Sabah, outskirts of Ranau Malaysia, Borneo, Sabah, outskirts of Ranau	roadside roadside	03.09.06	CBaier CBaier	
6449	M. tanarius M. tanarius	CB-06-381	6.500	117.210	Malaysia, Borneo, Sabah, outskirts of Ranau	roadside	03.09.06	CBaier CBaier	
6455	M. tanarius	CB-06-387	6.500	117.210	Malaysia, Borneo, Sabah, outskirts of Ranau Malaysia, Borneo, Sabah, outskirts of Ranau	roadside	03.09.06	CBaier	
6458	M. tanarius M. tanarius	CB-06-388 CB-06-390	6.500	117.210	Malaysia, Borneo, Saban, outskirts of Ranau Malaysia, Borneo, Sabah, outskirts of Ranau	roadside	03.09.06	CBaier	
6030 6026	M. tanarius M. tanarius	BF453/06 BF449/06	6.070 6.070	116.720 116.720	Malaysia, Borneo, Sabah, Poring, staff quarters Malaysia, Borneo, Sabah, Poring, logging road	area around staff quarters next to river	13.08.06 12.08.06	BFiala BFiala	
6027	M. tanarius M. tanarius	BF450/06 BF456/06	6.070	116.720	Malaysia, Borneo, Sabah, Poring, logging road Malaysia, Borneo, Sabah, Poring, logging road	next to river	12.08.06	BFiala BFiala	
6034	M. tanarius	BF457/06	6.070	116.720	Malaysia, Borneo, Sabah, Poring, logging road Malaysia, Borneo, Sabah, Poring, logging road	next to river	12.08.06	BFiala	
6035 6036	M. tanarius M. tanarius	BF458/06 BF459/06	6.070	116.720 116.720	Malaysia, Borneo, Sabah, Poring, logging road Malaysia, Borneo, Sabah, Poring, logging road	next to river next to river	12.08.06 12.08.06	BFiala BFiala	
6037 6060	M. tanarius M. tanarius	BF460/06 BF488/06	6.070 6.070	116.720 116.720	Malaysia, Borneo, Sabah, Poring, logging road Malaysia, Borneo, Sabah, Poring, logging road	next to river next to river	12.08.06 12.08.06	BFiala BFiala	
6043	M. tanarius	BF466/06	6.070	116.720	Malaysia, Borneo, Sabah, Poring. Langanan	trail in forest	17.08.06	BFiala	
6029	M. tanarius M. tanarius	BF452/06 BF452/06	6.070	116.720	Malaysia, Borneo, Sabah, Poring, Camp site		13.08.06	BFiala	
6032 4334	M. tanarius M. tanarius	BF455/06 BF 91??	6.070 5.650	116.720 117.210	Malaysia, Borneo, Sabah, Poring, Camp site Malaysia, Borneo, Sabah, Telupid, Jln. Microwave	roadside	14.08.06 28.08.05	BFiala BFiala	
6142 6143	M. tanarius M. tanarius	CB-06-74 CB-06-75	5.050 5.050	117.760 117.760	Malaysia, Borneo, Sabah, Danum Valley, road to Malua, junction to BRL Malaysia, Borneo, Sabah, Danum Valley, road to Malua, junction to BRI	roadside roadside	15.08.06 15.08.06	CBaier CBaier	
6144	M. tanarius	CB-06-76	5.050	117.760	Malaysia, Borneo, Sabah, Danum Valley, road to Malua, junction to BRL	roadside	15.08.06	CBaier	
6145 6148	M. tanarius M. tanarius	CB-06-77 CB-06-80	5.050	117.760 117.760	Malaysia, Borneo, Sabah, Danum Valley, road to Malua, junction to BRL Malaysia, Borneo, Sabah, Danum Valley, road to Malua, junction to BRL	roadside	15.08.06 15.08.06	CBaier CBaier	
6149 6150	M. tanarius M. tanarius	CB-06-81 CB-06-82	5.050 5.050	117.760 117.760	Malaysia, Borneo, Sabah, Danum Valley, road to Malua, junction to BRL Malaysia, Borneo, Sabah, Danum Valley, road to Malua, junction to BRL	roadside roadside	15.08.06 15.08.06	CBaier CBaier	
6151	M. tanarius	CB-06-83	5.050	117.760	Malaysia, Borneo, Sabah, Danum Valley, road to Malua, junction to BRL	roadside	15.08.06	CBaier	
6161	M. tanarius M. tanarius	CB-06-93	4.950	117.810	Malaysia, Borneo, Sabah, Danum Valley, road to Malua, junction to Brcc Malaysia, Borneo, Sabah, Danum Valley, DVFC, exit	primary forest	15.08.06	CBaier	
5211 5212	M. tanarius M. tanarius	DG06_304 DG06_305	4.990 4.990	117.960 117.960	Malaysia, Borneo, Sabah, DV, logging site 2006, north of road to Lahad Datu Malaysia, Borneo, Sabah, DV, logging site 2006, north of road to Lahad Datu	very recent logging site/road very recent logging site/road	03.09.06	DGuicking DGuicking	
5213 5214	M. tanarius M. tanarius	DG06_306	4.990	117.960	Malaysia, Borneo, Sabah, DV, logging site 2006, north of road to Lahad Datu Malaysia, Borneo, Sabah, DV, logging site 2006, north of road to Lahad Datu	very recent logging site/road	03.09.06	DGuicking	
5215	M. tanarius	DG06_308	4.990	117.960	Malaysia, Borneo, Sabah, DV, logging site 2006, north of road to Lahad Datu Malaysia, Borneo, Sabah, DV, logging site 2006, north of road to Lahad Datu	very recent logging site/road	03.09.06	DGuicking	
5216 5217	M. tanarius M. tanarius	DG06_309 DG06_310	4.990 4.990	117.960 117.960	Malaysia, Borneo, Sabah, DV, logging site 2006, north of road to Lahad Datu Malaysia, Borneo, Sabah, DV, logging site 2006, north of road to Lahad Datu	very recent logging site/road very recent logging site/road	03.09.06	DGuicking	
5218 5219	M. tanarius M. tanarius	DG06_311 DG06_312	4.990 4.990	117.960 117.960	Malaysia, Borneo, Sabah, DV, logging site 2006, north of road to Lahad Datu Malaysia, Borneo, Sabah, DV, logging site 2006, north of road to Lahad Datu	very recent logging site/road very recent logging site/road	03.09.06	DGuicking DGuicking	
5220	M. tanarius	DG06_313	4.990	117.960	Malaysia, Borneo, Sabah, DV, logging site 2006, north of road to Lahad Datu	very recent logging site/road	03.09.06	DGuicking	
5221	M. tanarius M. tanarius	DG06_314 DG06_315	4.990	117.960	Malaysia, Borneo, Saban, DV, logging site 2006, north of road to Lanad Datu Malaysia, Borneo, Sabah, DV, logging site 2006, north of road to Lahad Datu	very recent logging site/road	03.09.06	DGuicking	
4302 4306	M. tanarius M. tanarius	BF 57 BF 61	5.310 5.310	118.840 118.840	Malaysia, Borneo, Sabah, Tabin Wildlife Reserve, Resort Malaysia, Borneo, Sabah, Tabin Wildlife Reserve, Resort	open area open area	25.08.05 27.08.05	BFiala BFiala	
5119	M. tanarius M. tanarius	DG06_212	4.390	117.890	Malaysia, Borneo, Sabah, Tawau Hills Park, edge of oil palm plantation	edge of oil palm plantation and secondary forest	29.08.06	DGuicking	
5120	M. tanarius	DG06_213	4.390	117.890	Malaysia, Borneo, Sabah, Tawau Hills Park, edge of oil paint plantation Malaysia, Borneo, Sabah, Tawau Hills Park, edge of oil paint plantation	edge of oil palm plantation and secondary forest	29.08.06	DGuicking	
5123 5124	M. tanarius M. tanarius	DG06_216 DG06_217	4.390 4.390	117.890 117.890	Malaysia, Borneo, Sabah, Lawau Hills Park, edge of oil palm plantation Malaysia, Borneo, Sabah, Tawau Hills Park, edge of oil palm plantation	edge of oil palm plantation and secondary torest edge of oil palm plantation and secondary forest	29.08.06 29.08.06	DGuicking	
5125 5128	M. tanarius M. tanarius	DG06_218	4.390	117.890	Malaysia, Borneo, Sabah, Tawau Hills Park, edge of oil palm plantation Malaysia, Borneo, Sabah, Tawau Hills Park, edge of oil palm plantation	edge of oil palm plantation and secondary forest	29.08.06	DGuicking	
5129	M. tanarius	DG06_222	4.390	117.890	Malaysia, Borneo, Sabah, Tawau Hills Park, edge of oil paint plantation Malaysia, Borneo, Sabah, Tawau Hills Park, edge of oil paint plantation	edge of oil palm plantation and secondary forest	29.08.06	DGuicking	
5130	M. tanarius M. tanarius	DG06_223 DG06_224	4.390	117.890	Malaysia, Borneo, Sabah, Tawau Hills Park, edge of oil paim plantation Malaysia, Borneo, Sabah, Tawau Hills Park, edge of oil paim plantation	edge of oil paim plantation and secondary forest edge of oil palm plantation and secondary forest	29.08.06	DGuicking	
5132 5133	M. tanarius M. tanarius	DG06_225 DG06_226	4.390 4.390	117.890 117.890	Malaysia, Borneo, Sabah, Tawau Hills Park, edge of oil palm plantation Malaysia, Borneo, Sabah, Tawau Hills Park, edge of oil palm plantation	edge of oil palm plantation and secondary forest edge of oil palm plantation and secondary forest	29.08.06 29.08.06	DGuicking DGuicking	
5134	M. tanarius M. tanarius	DG06_227	4.390	117.890	Malaysia, Borneo, Sabah, Tawau Hills Park, edge of oil palm plantation	edge of oil palm plantation and secondary forest	29.08.06	DGuicking	
305	M. tanarius	0000_220	-7.655	110.723	Indonesia, Java	edge of oil paint planation and secondary forest	02.10.00	UMaschwitz	
1531 1532	M. tanarius M. tanarius	M644 M693	-0.980	116.930 116.930	Indonesia, Borneo, E-Kalimantan, Samboja Indonesia, Borneo, E-Kalimantan, Samboja	burned 18 and 3 years ago burned 18 and 3 years ago	10.12.01 11.12.01	FSlik	
1533 6713	M. tanarius M. winkleri	M705 CB-07-248	-0.980 1.463	116.930 111.560	Indonesia, Borneo, E-Kalimantan, Samboja Malavsia, Borneo, Sarawak, Bt, Saban Resort to Betong	burned 18 and 3 years ago edge of gravel path to Paku	13.12.01 05.08.07	FSlik CBaier	
7092	M. winkleri M. winkleri	CB-07-25	2.190	113.060	Malaysia, Borneo, Sarawak, Pelagus Resort	next to creek in forest	20.07.07	CBaier	
7102	M. winkleri	CB-07-35	2.190	113.060	Malaysia, Borneo, Sarawak, Pelagus Resort	near hotel	20.07.07	CBaier	
7126 7087	M. winkleri M. winkleri	CB-07-59 CB-07-20	2.190 2.190	113.060 113.060	Malaysia, Borneo, Sarawak, Pelagus Resort Malaysia, Borneo, Sarawak, Pelagus Resort	near hotel next to creek in forest	20.07.07 20.07.07	CBaier CBaier	
7089 7088	M. winkleri M. winkleri	CB-07-22 CB-07-21	2.190 2.190	113.060 113.060	Malaysia, Borneo, Sarawak, Pelagus Resort Malaysia, Borneo, Sarawak, Pelagus Resort	near hotel	20.07.07	CBaier CBaier	
7098	M. winkleri M. winkleri	CB-07-31	2.190	113.060	Malaysia, Borneo, Sarawak, Pelagus Resort	next to creek in forest	20.07.07	CBaier	GAT 6402
6670	M. winkleri M. winkleri	CB-07-205	3.350	113.440	Malaysia, Borneo, Sarawak, Felagus Resolt Malaysia, Borneo, Sarawak, Jalan Miri -Bintulu, street to Tubau	close to a small creek	31.07.07	CBaier	GA1-6403
6676 6669	M. winkleri M. winkleri	CB-07-211 CB-07-204	3.350	113.440 113.440	Malaysia, Borneo, Sarawak, Jalan Miri -Bintulu, street to Tubau Malaysia, Borneo, Sarawak, Jalan Miri -Bintulu, street to Tubau	close to a small creek close to a small creek	31.07.07 31.07.07	CBaier	
6675 6668	M. winkleri M. winkleri	CB-07-210 CB-07-203	3.350	113.440	Malaysia, Borneo, Sarawak, Jalan Miri -Bintulu, street to Tubau Malaysia, Borneo, Sarawak, Jalan Miri -Rintulu, street to Tubeu	close to a small creek close to a small creek	31.07.07 31.07.07	CBaier CBaier	
6674	M. winkleri	CB-07-209	3.350	113.440	Malaysia, Borneo, Sarawak, Jalan Miri -Bintulu, street to Tubau	close to a small creek	31.07.07	CBaier	
6680	M. winkleri	CB-07-202 CB-07-215	3.350	113.440	Maraysia, Donred, Sarawak, Jalan Miri - Bintulu, street to Tubau Malaysia, Borneo, Sarawak, Jalan Miri - Bintulu, street to Tubau	close to a small creek	31.07.07	CBaier	
6679 6678	M. winkleri M. winkleri	CB-07-214 CB-07-213	3.350 3.350	113.440 113.440	Malaysia, Borneo, Sarawak, Jalan Miri -Bintulu, street to Tubau Malaysia, Borneo, Sarawak, Jalan Miri -Bintulu, street to Tubau	close to a small creek close to a small creek	31.07.07 31.07.07	CBaier CBaier	
6673	M. winkleri M. winkleri	CB-07-208	3.350	113.440	Malaysia, Borneo, Sarawak, Jalan Miri -Bintulu, street to Tubau Malaysia, Borneo, Sarawak, Jalan Miri, Bintulu, street to Tubau	close to a small creek	31.07.07	CBaier	
6677	M. winkleri	CB-07-212	3.350	113.440	Malaysia, Borneo, Sarawak, Jalan Miri -Bintulu, street to Tubau Malaysia, Borneo, Sarawak, Jalan Miri -Bintulu, street to Tubau	close to a small creek	31.07.07	CBaier	
6672 6659	M. winkleri M. winkleri	CB-07-207 CB-07-194	3.350 3.680	113.440 113.750	Malaysia, Borneo, Sarawak, Jalan Miri -Bintulu, street to Tubau Malaysia, Borneo, Sarawak, Jalan Miri -Bintulu, ca 103 miles to Miri	close to a small creek dirt road at boundary of plantation	31.07.07 31.07.07	CBaier	
6658 6657	M. winkleri M. winkleri	CB-07-193 CB-07-192	3.680 3.680	113.750 113.750	Malaysia, Borneo, Sarawak, Jalan Miri -Bintulu, ca 103 miles to Miri Malaysia. Borneo. Sarawak, Jalan Miri -Bintulu, ca 103 miles to Miri	dirt road at boundary of plantation dirt road at boundary of plantation	31.07.07 31.07.07	CBaier CBaier	
6664	M. winkleri M. winkleri	CB-07-199 CB-07-191	3.680	113.750	Malaysia, Borneo, Sarawak, Jalan Miri -Bintulu, ca 103 miles to Miri Malaysia, Borneo, Sarawak, Jalan Miri -Bintulu, ca 103 miles to Miri	dirt road at boundary of plantation dirt road at boundary of plantation	31.07.07	CBaier CBaier	
6663	M. winkleri	CB-07-198	3.680	113.750	Malaysia, Borneo, Sarawak, Jalan Miri -Bintulu, ca 103 miles to Miri	dirt road at boundary of plantation	31.07.07	CBaier	
6655 6662	м. winkleri M. winkleri	CB-07-190 CB-07-197	3.680 3.680	113.750 113.750	маауsia, воrneo, Sarawak, Jalan Miri -Bintulu, ca 103 miles to Miri Malaysia, Borneo, Sarawak, Jalan Miri -Bintulu, ca 103 miles to Miri	airt road at boundary of plantation dirt road at boundary of plantation	31.07.07 31.07.07	CBaier CBaier	
6654 6661	M. winkleri M. winkleri	CB-07-189 CB-07-196	3.680 3.680	113.750	Malaysia, Borneo, Sarawak, Jalan Miri -Bintulu, ca 103 miles to Miri Malaysia, Borneo, Sarawak, Jalan Miri -Bintulu, ca 103 miles to Miri	dirt road at boundary of plantation dirt road at boundary of plantation	31.07.07 31.07.07	CBaier CBaier	
6557	M. winkleri M. winkleri	CB-07-88	4.226	114.035	Malaysia, Borneo, Sarawak, Lambir National Park, forest between HQ and waterfall 1	river bank (sand)	26.07.07	CBaier	
6551	M. winkleri	CB-07-90 CB-07-82	4.226	114.035	Malaysia, Borneo, Sarawak, Lambir National Park, forest between HQ and waterfall 1 Malaysia, Borneo, Sarawak, Lambir National Park, forest between HQ and waterfall 1	river bank (sand)	26.07.07	CBaier	
6560 7136	M. winkleri M. winkleri	CB-07-91 CB-07-77	4.226 4.226	114.035 114.035	Malaysia, Borneo, Sarawak, Lambir National Park, forest between HQ and waterfall 1 Malaysia, Borneo, Sarawak, Lambir National Park, forest between HQ and waterfall 1	river bank (sand) river bank (sand)	26.07.07 26.07.07	CBaier CBaier	
6552 6561	M. winkleri M. winkleri	CB-07-83 CB-07-92	4.226	114.035	Malaysia, Borneo, Sarawak, Lambir National Park, forest between HQ and waterfall 1 Malaysia, Borneo, Sarawak, Lambir National Park, forest between HQ and waterfall 1	river bank (sand) river bank (sand)	26.07.07	CBaier CBaier	
6553	M. winkleri	CB-07-84	4.226	114.035	Malaysia, Borneo, Sarawak, Lambir National Park, forest between HQ and waterfall 1 Malaysia, Borneo, Sarawak, Lambir National Park, forest between HQ and waterfall 1	river bank (cand)	26.07.07	CBaier	
6562 7124	м. winkleri M. winkleri	CB-07-93 CB-07-57	4.226	114.035 114.035	инанузна, Болпео, Sarawak, Lambir National Park, forest between HQ and waterfall 1 Malaysia, Borneo, Sarawak, Lambir National Park, forest between HQ and waterfall 1	river bank (sand) river bank (sand)	26.07.07 25.07.07	CBaier	
6554 6566	M. winkleri M. winkleri	CB-07-85 CB-07-98	4.226 4.226	114.035 114.035	Malaysia, Borneo, Sarawak, Lambir National Park, forest between HQ and waterfall 1 Malaysia, Borneo, Sarawak, Lambir National Park. forest between HQ and waterfall 1	river bank (sand) river bank (sand)	26.07.07 26.07.07	CBaier CBaier	
7125	M. winkleri M. winkleri	CB-07-58	4.226	114.035	Malaysia, Borneo, Sarawak, Lambir National Park, forest between HQ and waterfall 1	river bank (sand)	25.07.07	CBaier	
6567	M. winkleri	CB-07-99	4.226	114.035	Malaysia, Borneo, Sarawak, Lambir National Park, forest between HQ and waterfall 1 Malaysia, Borneo, Sarawak, Lambir National Park, forest between HQ and waterfall 1	river bank (sand)	26.07.07	CBaier	
6556 6568	M. winkleri M. winkleri	CB-07-87 CB-07-100	4.226 4.226	114.035 114.035	Malaysia, Borneo, Sarawak, Lambir National Park, forest between HQ and waterfall 1 Malaysia, Borneo, Sarawak, Lambir National Park, forest between HQ and waterfall 1	river bank (sand) river bank (sand)	26.07.07 26.07.07	CBaier CBaier	
6608	M. winkleri	CB-07-144	4.226	114.035	Malaysia, Borneo, Sarawak, Lambir National Park	forest edge	29.07.07	CBaier	

							Collection		
Plant ID Number	Species	Field	Latitude	Longitude	Location	Habitat / Ecology	Date (dd mm wy)	Collector	(Number)
6605	M winkleri	CB-07-139	4 226	114 035	Malaysia Borneo Sarawak Lambir National Park	forest edge	29.07.07	CBaier	(Number)
6604	M. winkleri	CB-07-138	4.226	114.035	Malaysia, Borneo, Sarawak, Lambir National Park	forest edge	29.07.07	CBaier	
6607	M. winkleri	CB-07-142	4.226	114.035	Malaysia, Borneo, Sarawak, Lambir National Park	forest edge	29.07.07	CBaier	
6606	M. winkleri	CB-07-140	4.226	114.035	Malaysia, Borneo, Sarawak, Lambir National Park	forest edge	29.07.07	CBaier	
6614	M. winkleri	CB-07-151 CB-07-150	4.226	114.035	Malaysia, Borneo, Sarawak, Lambir National Park Malaysia, Borneo, Sarawak, Lambir National Park	forest edge	29.07.07	CBaier	
6613	M. winkleri	CB-07-149	4.226	114.035	Malaysia, Borneo, Sarawak, Lambir National Park	forest edge	29.07.07	CBaier	
6612	M. winkleri	CB-07-148	4.226	114.035	Malaysia, Borneo, Sarawak, Lambir National Park	forest edge	29.07.07	CBaier	
6620	M. winkleri M. winklori	CB-07-156	4.226	114.035	Malaysia, Borneo, Sarawak, Lambir National Park Malaysia, Borneo, Sarawak, Lambir National Park	forest edge	29.07.07	CBaier	
6618	M. winkleri	CB-07-154	4.226	114.035	Malaysia, Borneo, Sarawak, Lambir National Park	forest edge	29.07.07	CBaier	
6610	M. winkleri	CB-07-146	4.226	114.035	Malaysia, Borneo, Sarawak, Lambir National Park	forest edge	29.07.07	CBaier	
7135	M. winkleri	CB-07-76	4.226	114.035	Malaysia, Borneo, Sarawak, Lambir National Park	island in river, near bridge	26.07.07	CBaier	
7134	M. winkleri M. winklori	CB-07-75	4.226	114.035	Malaysia, Borneo, Sarawak, Lambir National Park, Near Hilltop Lodge Malaysia, Borneo, Sarawak, Lambir National Park, Near Hilltop Lodge	forest edge	26.07.07	CBaier	
7130	M. winkleri	CB-07-71	4.226	114.035	Malaysia, Borneo, Sarawak, Lambir National Park, Near Hilltop Lodge	forest edge	26.07.07	CBaier	
7129	M. winkleri	CB-07-68	4.226	114.035	Malaysia, Borneo, Sarawak, Lambir National Park, Near Hilltop Lodge	forest edge	26.07.07	CBaier	
7128	M. winkleri	CB-07-65	4.226	114.035	Malaysia, Borneo, Sarawak, Lambir National Park, Near Hilltop Lodge	forest edge	26.07.07	CBaier	
7132	M. winkleri	CB-07-73	4.226	114.035	Malaysia, Borneo, Sarawak, Lambir National Park, Near Hiltop Lodge Malaysia, Borneo, Sarawak, Lambir National Park, Near Hilton Lodge	forest edge	26.07.07	CBaler	
6599	M. winkleri	CB-07-131	4.226	114.035	Malaysia, Borneo, Sarawak, Lambir National Park, near bridge, Latak Waterfall	near bridge,close to waterfall	29.07.07	CBaier	
6597	M. winkleri	CB-07-129	4.226	114.035	Malaysia, Borneo, Sarawak, Lambir National Park, near Tree Tower	edge of a trail in forest	29.07.07	CBaier	
6596	M. winkleri	CB-07-128	4.226	114.035	Malaysia, Borneo, Sarawak, Lambir National Park, near Tree Tower	edge of a trail in forest	29.07.07	CBaier	
6941	M. winkleri	Bf07/76	4.226	114.035	Malaysia, Borneo, Sarawak, Lambir National Park, Nibong waterfall Malaysia, Borneo, Sarawak, Lambir National Park, Nibong waterfall	Primary forest, close to waterfall	02.09.07	BFiala	
6942	M. winkleri	BF07/77	4.226	114.035	Malaysia, Borneo, Sarawak, Lambir National Park, Nibong waterfall	Primary forest, close to waterfall	02.09.07	BFiala	
6943	M. winkleri	Bf07/78	4.226	114.035	Malaysia, Borneo, Sarawak, Lambir National Park, Nibong waterfall	Primary forest, close to waterfall	02.09.07	BFiala	
6903 7110	M. Winkleri M. winkleri	CB-07-43	4.226	114.035	Malaysia, Borneo, Sarawak, Lambir National Park, near watertali 1 Malaysia, Borneo, Sarawak, Lambir National Park, forest, between HQ and Waterfall 1	edge of a trail in forest	25 07 07	CBaier	
6583	M. winkleri	CB-07-115	4.226	114.035	Malaysia, Borneo, Sarawak, Lambir National Park, fork in forest path (Nibong, Latak, Pantu)	forest path	29.07.07	CBaier	
6582	M. winkleri	CB-07-114	4.226	114.035	Malaysia, Borneo, Sarawak, Lambir National Park, fork in forest path (Nibong, Latak, Pantu)	forest path	29.07.07	CBaier	
6584	M. winkleri	CB-07-116	4.226	114.035	Malaysia, Borneo, Sarawak, Lambir National Park, fork in forest path (Nibong, Latak, Pantu)	forest path	29.07.07	CBaier	
6617	M. winkleri M. winkleri	CB-07-153 CB-07-152	4.226	114.035	Malaysia, Borneo, Sarawak, Lambir National Park Malaysia, Borneo, Sarawak, Lambir National Park	forest edge	29.07.07	CBaier	
6579	M. winkleri	CB-07-111	4.225	114.037	Malaysia, Borneo, Sarawak, Lambir National Park, Waterfall 2, opposite bank	close to waterfall	29.07.07	CBaier	
6577	M. winkleri	CB-07-109	4.225	114.037	Malaysia, Borneo, Sarawak, Lambir National Park, Waterfall 2, opposite bank	close to waterfall	29.07.07	CBaier	
6576	M. winkleri	CB-07-108	4.225	114.037	Malaysia, Borneo, Sarawak, Lambir National Park, Waterfall 2, opposite bank	close to waterfall	29.07.07	CBaier	
6066	M. WINKIERI M. winkleri	CB-07-107 Bf07/101	4.225	114.03/	Malaysia, Borneo, Sarawak, Lambir National Park, Waterfall 2, opposite bank Borneo, Brunei, Belait, Wong Kadir waterfall	close to waterfall	29.07.07	BEigle	
6962	M. winkleri	BF07/97	4.375	114.459	Borneo, Brunei, Belait, Wong Kadir waterfall	primary forest	31.08.07	BFiala	
6963	M. winkleri	BF07/98	4.375	114.459	Borneo, Brunei, Belait, Wong Kadir waterfall	primary forest	31.08.07	BFiala	
6964	M. winkleri	BF07/99	4.375	114.459	Borneo, Brunei, Belait, Wong Kadir waterfall	primary forest	31.08.07	BFiala	
6965	M. Winkleri M. winklori	BT07/100	4.375	114.459	Borneo, Brunei, Belait, Wong Kadir waterfall Borneo, Brunei, Belait, Wong Kadir waterfall	primary torest	31.08.07	BFiala	
6873	M. winkleri	BF07/08	4.375	114.459	Borneo, Brunei, Belait, Wong Kadir waterfall	primary forest, lowland, forest understorey and along trail	31.08.07	BFiala	
6874	M. winkleri	BF07/09	4.375	114.459	Borneo, Brunei, Belait, Wong Kadir waterfall	primary forest, lowland, forest understorey and along trail	31.08.07	BFiala	
5975	M. winkleri	BF398/06	4.460	114.470	Borneo, Brunei, Belait, 5 km to Tereja	roadside, good forest	29.08.06	BFiala	
5957	M. winkleri M. winklori	BF380/06	4.460	114.470	Borneo, Brunei, Belait, 5 km to Tereja Borneo, Brunei, Belait, 5 km to Tereja	roadside, good forest	29.08.06	BFiala	
5966	M. winkleri	BE375//06	4.460	114.470	Borneo, Brunei, Belait, 5 km to Tereja Borneo, Brunei, Belait, 5 km to Tereja	roadside, good forest	29.08.06	BFiala	
5802	M. winkleri	BF206/06b	4.460	114.470	Borneo, Brunei, Belait, 5 km to Tereja	roadside, good forest	29.08.06	BFiala	
5803	M. winkleri	BF207/06b	4.460	114.470	Borneo, Brunei, Belait, 5 km to Tereja	roadside, good forest	29.08.06	BFiala	
5974	M. winkleri	BF397/06	4.460	114.470	Borneo, Brunei, Belait, 5 km to Tereja	roadside, good forest	29.08.06	BFiala	
5963	M. winkleri	BE385/06	4.460	114.470	Borneo, Brunei, Belait, 5 km to Tereja Borneo, Brunei, Belait, 5 km to Tereja	roadside, good forest	29.08.06	BFiala	
5970	M. winkleri	BF393/06	4.460	114.470	Borneo, Brunei, Belait, 5 km to Tereja	roadside, good forest	29.08.06	BFiala	
6061	M. winkleri	Bf489/06	4.460	114.470	Borneo, Brunei, Belait, Labi	forest reserve	29.08.06	BFiala	
5918	M. winkleri	BF344/06	4.460	114.470	Borneo, Brunei, Belait, Labi	forest reserve	29.08.06	BFiala	Laidea
7060	M. winkleri	Bf07/191	4.460	115.032	Malavsia, Borneo, Sarawak, 5 km, to Puni Ferry (along the border of Brunei)	roadside at the edge of mixed dipterocarp forest	15.09.07	BFiala	Leiden
5701	M. winkleri	BF61/06	4.717	115.067	Borneo, Brunei, Temburong, Belalong, directly on river, opposite bank	directly next to river	22.08.06	BFiala	
5700	M. winkleri	Bf60/06	4.717	115.067	Borneo, Brunei, Temburong, Belalong, directly on river, opposite bank	directly next to river	22.08.06	BFiala	
5697	M. winkleri M. winkleri	BF56/07	4.717	115.067	Borneo, Brunei, Temburong, Belalong, opposite bank	gap in forest	22.08.06	BFiala	
5713	M. winkleri	BF83/06b	4.717	115.067	Borneo, Brunei, Temburong, Belalong	Forest department	23.08.06	BFiala	
5716	M. winkleri	BF86/06b	4.717	115.067	Borneo, Brunei, Temburong, Belalong	Forest department	23.08.06	BFiala	
5694	M. winkleri	BF52/06b	4.717	115.067	Borneo, Brunei, Temburong, Belalong	Field centre	21.08.06	BFiala	
5723	M. winkleri M. winklori	BF93/06b	4.717	115.067	Borneo, Brunei, Lemburong, Belalong Borneo, Brunei, Temburong, Belalong	Field centre	23.08.06	BFiala	
5693	M. winkleri	BF51/06	4.717	115.067	Borneo, Brunei, Temburong, Belalong	Field centre	21.08.06	BFiala	
6902	M. winkleri	BF07/37	4.712	115.079	Borneo, Brunei, Temburong, 10 km before Bangar	roadside, primary forest	29.08.07	BFiala	
6899	M. winkleri	BF07/34	4.712	115.079	Borneo, Brunei, Temburong, 10 km before Bangar	roadside, primary forest	29.08.07	BFiala	
6900	M. winkleri	BF07/35	4.712	115.079	Borneo, Brunei, Temburong, 10 km before Bangar	roadside, primary forest	29.08.07	BFiala	
5	M. winkleri	M7	4.550	115.079	Borneo, Brunei, Fernburong, To kin belore Bangar Borneo, Brunei, Belalong	loadside, primary lorest	29.08.07	DFIBIA	KAS
4391	M. winkleri	BF 147	4.566	115.151	Borneo, Brunei, Kuala Belalong	primary forest, opposite bank	10.09.05	BFiala	
4396	M. winkleri	BF 152	4.566	115.151	Borneo, Brunei, Kuala Belalong	Field centre	10.09.05	BFiala	
5/60	M. Winkleri M. winkleri	BF134/06 Bf272/06	4.760	115.180	Borneo, Brunei, Lutong, Bukit Patoi Borneo, Brunei Tutong, Bukit Patoi	recreation area, primary forest	19.08.06	BFiala	
5764	M. winkleri	BF138/06b	4.760	115.180	Borneo, Brunei, Tutong, Bukit Patoi	recreation area, primary forest	01.09.06	BFiala	
5762	M. winkleri	BF136/06b	4.760	115.180	Borneo, Brunei, Tutong, Bukit Patoi	recreation area, primary forest	01.09.06	BFiala	
6008	M. winkleri	BF431/06	4.760	115.180	Borneo, Brunei, Tutong, Bukit Patoi	recreation area, primary forest	01.09.06	BFiala	
5852	M. winkleri M. winkleri	BF435/06 BF269/06	4.760	115.180	Borneo, Brunei, Futong, Bukit Patoi	recreation area, primary forest	19.08.06	BFiala	
5853	M. winkleri	Bf270/06	4.760	115.180	Borneo, Brunei, Tutong, Bukit Patoi	recreation area, primary forest	19.08.06	BFiala	
5828	M. winkleri	BF245/06b	4.760	115.180	Borneo, Brunei, Tutong, Bukit Patoi	recreation area, primary forest	19.08.06	BFiala	
5763	M. winkleri M. winkleri	BF137/06b	4.760	115.180	Borneo, Brunei, Tutong, Bukit Patoi Porneo, Brunei Tutong, Bukit Patoi	recreation area, primary forest	01.09.06	BFiala	
6011	M. winkleri	Bf434/06	4,760	115,180	Borneo, Brunei, Tutong, Bukit Patoi	recreation area, primary forest	01.09.06	BFiala	
5850	M. winkleri	Bf267/06	4.760	115.180	Borneo, Brunei, Tutong, Bukit Patoi	recreation area, primary forest	19.08.06	BFiala	
6894	M. winkleri	BF07/29	4.760	115.180	Borneo, Brunei, Temburong, Bukit Patoi	roadside, primary forest	29.08.07	BFiala	
6895	w. winkleri M. winkleri	BF07/30 BF07/32	4.760	115.180	Borneo, Brunei, Temburong, Bukit Patoi Borneo, Brunei, Temburong, Bukit Patoi	roadside, primary lorest	29.08.07 29.08.07	BFiala	
6898	M. winkleri	BF07/33	4.760	115.180	Borneo, Brunei, Temburong, Bukit Patoi	roadside, primary forest	29.08.07	BFiala	
482	M. winkleri	30/2001	5.899	116.225	Malaysia, Borneo, Sabah, Crocker Range	logging road	13.04.01	BFiala	
6463 6460	M. Winkleri M. winkleri	CB-06-395	6.090	116.750	waraysia, dorneo, sabah, kanau to KK Malaysia, Borneo, Sabah, Ranau to KK, Kinahaku viceu	roadside	03.09.06	CBaier	
6459	M. winkleri	CB-06-392	6.110	116.840	Malaysia, Borneo, Sabah, Ranau to KK, Kinabalu view	roadside	03.09.06	CBaier	
6462	M. winkleri	CB-06-394	6.160	116.970	Malaysia, Borneo, Sabah, Ranau to KK	roadside	03.09.06	CBaier	
6461	M. winkleri M. winkleri	CB-06-393	6.160	116.970	Malaysia, Borneo, Sabah, Ranau to KK, 44 km to Tuaran Malaysia, Borneo, Sabah, Ranau to KK	roadside	03.09.06	CBaier	
6469	w. winkleri M. winkleri	CB-06-400	6 180	116.610	Malaysia, Borneo, Sabah, Ranau to KK	roadside	03.09.06	CBaier	
6414	M. winkleri	CB-06-346	6.190	116.860	Malaysia, Borneo, Sabah, from KK to Ranau, stop 4	roadside	02.09.06	CBaier	
6410	M. winkleri	CB-06-342	6.190	116.860	Malaysia, Borneo, Sabah, from KK to Ranau, stop 4	roadside	02.09.06	CBaier	
6412	M. winkleri	CB-06-344	6.190	116.860	Malaysia, Borneo, Sabah, from KK to Ranau, stop 4	roadside	02.09.06	CBaier	
6411	M. winkleri	CB-06-348 CB-06-343	6 190	116.860	Malaysia, Someo, Sabah, from KK to Ranau, stop 4 Malaysia, Borneo, Sabah, from KK to Ranau, stop 4	roadside	02.09.06	CBaier	
6415	M. winkleri	CB-06-347	6.190	116.860	Malaysia, Borneo, Sabah, from KK to Ranau, stop 4	roadside	02.09.06	CBaier	
5766	M. winkleri	BF142/06B	6.330	116.720	Malaysia, Sabah, road KK-Ranau, ca km 60	roadside	02.09.06	BFiala	
5780	M. winkleri M. winkleri	170/06b Bf144/06b	6.330	116.720	Malaysia, Sabah, road KK-Ranau, ca km 60 Malaysia, Sabah, road KK-Ranau, ca km 60	roadside	02.09.06	BFiala BFiala	
5771	M. winkleri	BF153/060	6.330	116.720	Malaysia, Sabah, road KK-Ranau, ca km 60	roadside	02.09.06	BFiala	
5778	M. winkleri	168/06b	6.330	116.720	Malaysia, Sabah, road KK-Ranau, ca km 60	roadside	02.06.09	BFiala	
5772	M. winkleri	BF156/06b	6.330	116.720	Malaysia, Sabah, road KK-Ranau, ca km 60	roadside	02.09.06	BFiala	
5779 5777	w. winkleri M. winkleri	169/06b 164/06b	6.330	116.720 116.720	waraysia, oabah, road KK-kanau, ca km bu Malavsia. Sabah, road KK-kanau, ca km 60	roadside	02.09.06 02.06.09	⊳⊢iaia BFiala	
6022	M. winkleri	BF444/06	6.330	116.720	Malaysia, Sabah, road KK-Ranau, ca km 60	roadside	02.09.06	BFiala	
6020	M. winkleri	BF442/06	6.330	116.720	Malaysia, Sabah, road KK-Ranau, ca km 60	roadside	02.09.06	BFiala	
6021	M. winkleri	BF443/06	6.330	116.720	Malaysia, Sabah, road KK-Ranau, ca km 60	roadside	02.09.06	BFiala	
6025 5770	M. winkleri M. winkleri	BF148/065	6.330 6.330	116.720	Malaysia, Sabah, road KK-Ranau, ca km 60 Malaysia, Sabah, road KK-Ranau, ca km 60	roadside	02.09.06	BFiala BFiala	
5788	M. winkleri	BF185/06b	6.330	116.720	Malaysia, Sabah, road KK-Ranau, ca km 60	roadside	02.09.06	BFiala	
5774	M. winkleri	BF159/06b	6.330	116.720	Malaysia, Sabah, road KK-Ranau, ca km 60	roadside	02.09.06	BFiala	
5781	M. winkleri M. winkleri	BF172/06b	6.330	116.720	Malaysia, Sabah, road KK-Ranau, ca km 60 Malaysia, Sabah, road KK Panau, ca km 60	roadside	02.09.06	BFiala	
5765	w. winkleri M. winkleri	BF139/065	6.330	116.720	Malaysia, Sabah, road KK-Ranau, ca km 60	roadside.	02.06.09 02.00.09	BFiala	
6426	M. winkleri	CB-06-358	6.330	116.720	Malaysia, Borneo, Sabah, from KK to Ranau, stop 6, 55 km to Ranau	roadside	02.09.06	CBaier	
6429	M. winkleri	CB-06-361	6.330	116.720	Malaysia, Borneo, Sabah, from KK to Ranau, stop 6, 55 km to Ranau	roadside	02.09.06	CBaier	
6430	M. winkleri M. winkleri	CB-06-362	6.330	116.720	Malaysia, Borneo, Sabah, from KK to Ranau, stop 6, 55 km to Ranau	roadside	02.09.06	CBaier	
6424	M. winkleri	CB-06-359	6.330	116.720	Malaysia, Someo, Sabah, from KK to Ranau, stop 6, 55 km to Ranau Malaysia, Borneo, Sabah, from KK to Ranau, stop 6, 55 km to Ranau	roadside	02.09.06	CBaier	
6432	M. winkleri	CB-06-364	6.330	116.720	Malaysia, Borneo, Sabah, from KK to Ranau, stop 6, 55 km to Ranau	roadside	02.09.06	CBaier	
6422	M. winkleri	CB-06-354	6.330	116.720	Malaysia, Borneo, Sabah, from KK to Ranau, stop 6, 55 km to Ranau	roadside	02.09.06	CBaier	
6428	M. winkleri M. winkleri	CB-06-360	6.330	116.720	Malaysia, Borneo, Sabah, from KK to Ranau, stop 6, 55 km to Ranau	roadside	02.09.06	CBaier	
0431	wi. WitiKlefi	00-00-363	0.330	110.720	manayora, Domeo, Sabari, Irom KK to Kanau, stop 6, 55 KM to Kanau	rudusiud	0∠.09.06	CDalei	

Plant ID		Field					Collection		Horbarium
Number 3	Species	number	Latitude	Longitude	Location	Habitat / Ecology	(dd.mm.yy)	Collector	(Number)
6423 6405	M. winkleri M. winkleri	CB-06-355 CB-06-337	6.330 6.400	116.720 116.580	Malaysia, Borneo, Sabah, from KK to Ranau, stop 6, 55 km to Ranau Malaysia, Borneo, Sabah, from KK to Ranau, near Ko Mananokoh	roadside roadside edge of small banana plantage	02.09.06	CBaier CBaier	
6407	M. winkleri	CB-06-339	6.400	116.580	Malaysia, Borneo, Sabah, from KK to Ranau, near Kg Manangkob	roadside, edge of small banana plantage	02.09.06	CBaier	
6408 6406	M. winkleri M. winkleri	CB-06-340 CB-06-338	6.400 6.400	116.580 116.580	Malaysia, Borneo, Sabah, from KK to Ranau, near Kg Manangkob Malaysia, Borneo, Sabah, from KK to Ranau, near Kg Manangkob	roadside, edge of small banana plantage roadside, edge of small banana plantage	02.09.06	CBaier	
6404	M. winkleri	CB-06-336	6.400	116.580	Malaysia, Borneo, Sabah, from KK to Ranau, near Kg Manangkob	roadside, edge of small banana plantage	02.09.06	CBaier	
6420	M. winkleri	CB-06-352	6.400	116.830	Malaysia, Borneo, Sabah, from KK to Ranau, stop 5	roadside	02.09.06	CBaier	
6419 6421	M. winkleri M. winkleri	CB-06-351 CB-06-353	6.400 6.400	116.830 116.830	Malaysia, Borneo, Sabah, from KK to Ranau, stop 5 Malaysia, Borneo, Sabah, from KK to Ranau, stop 5	roadside roadside	02.09.06	CBaier CBaier	
6417	M. winkleri	CB-06-349	6.400	116.830	Malaysia, Borneo, Sabah, from KK to Ranau, stop 5	roadside	02.09.06	CBaier	
2119	M. winkleri M. winkleri	DG04_25	6.060	116.690	Malaysia, Borneo, Sabah, Irom KK to Kanao, near Kg Manangkob Malaysia, Borneo, Sabah, Poring, Langanan trail, ca km 1.6	primary forest	02.09.08	BFiala/DGuicking	
510	M. winkleri M. winkleri	58/2001 53/2001	6.060	116.690	Malaysia, Borneo, Sabah, Poring, Langanan trail Malaysia, Borneo, Sabah, Poring, canony walkway	primary forest behind path, canony walkway	16.04.01	BFiala	
6044	M. winkleri	Bf467/06	6.070	116.720	Malaysia, Borneo, Sabah, Poring, walkway	walkway	13.08.06	BFiala	
6047 6046	M. winkleri M. winkleri	BF469/06	6.070	116.720 116.720	Malaysia, Borneo, Sabah, Poring, Langanan Malaysia, Borneo, Sabah, Poring, Langanan	trail	17.08.06	BFiala	
6053	M. winkleri	BF481/06	6.070	116.720	Malaysia, Borneo, Sabah, Poring, Langanan	trail	17.08.06	BFiala	
6045	vi. winkleri M. winkleri	BF468/06	6.070	116.720	Malaysia, Borneo, Saban, Poring, Langanan Malaysia, Borneo, Sabah, Poring, Langanan	trail	17.08.06	BFiala	
5667	M. winkleri M. winkleri	BF 15/06 Bf17/06	6.070	116.720	Malaysia, Borneo, Sabah, Poring, Langanan Malaysia, Borneo, Sabah, Poring, Langanan	trail trail	13.08.06	BFiala	
5674	M. winkleri	BF22/06	6.070	116.720	Malaysia, Borneo, Sabah, Poring, Langanan	trail	13.08.06	BFiala	
5666	vi. winkleri M. winkleri	BF11/06 BF13/06b	6.070	116.720	Malaysia, Borneo, Sabah, Poring, Langanan Malaysia, Borneo, Sabah, Poring, Langanan	trail	13.08.06	BFiala	
5660	M. winkleri M. winkleri	BF05/06b	6.070	116.720	Malaysia, Borneo, Sabah, Poring, logging road Malaysia, Borneo, Sabah, Poring, logging road	logging road	12.08.06	BFiala	
5658	M. winkleri	BF03/06	6.070	116.720	Malaysia, Borneo, Sabah, Poring, logging road Malaysia, Borneo, Sabah, Poring, logging road	logging road	12.08.06	BFiala	
5659 5657	M. winkleri M. winkleri	BF04/06b BF02/06b	6.070	116.720 116.720	Malaysia, Borneo, Sabah, Poring, logging road Malaysia, Borneo, Sabah, Poring, logging road	logging road	12.08.06	BFiala BFiala	
5661	M. winkleri	BF06/06b	6.070	116.720	Malaysia, Borneo, Sabah, Poring, logging road	logging road	12.08.06	BFiala	
2323	vi. winkleri M. winkleri	DG04_229	6.070	116.720	Malaysia, Borneo, Saban, Poring, logging road Malaysia, Borneo, Sabah, Poring, logging road	old logging road	12.08.06	DGuicking	
2351	M. winkleri M. winkleri	DG04_257 BE08/06b	6.070	116.720	Malaysia, Borneo, Sabah, Poring, logging road Malaysia, Borneo, Sabah, Poring	old logging road	12.08.04	BFiala	
5664	M. winkleri	BF10/06	6.070	116.720	Malaysia, Borneo, Sabah, Poring	path to canopy walkway in primary forest	13.08.06	BFiala	
4744 4742	M. winkleri M. winkleri	HF 56-58	6.070 6.070	116.720 116.720	Malaysia, Borneo, Sabah, Poring, logging road Malaysia, Borneo, Sabah, Poring, logging road	logging road logging road	31.03.06	HFeldhaar HFeldhaar	
4743	M. winkleri	HF 6-55	6.070	116.720	Malaysia, Borneo, Sabah, Poring, logging road	logging road	31.03.06	HFeldhaar	
4749 4754	vi. winkleri M. winkleri	HF 6-66 HF 6-73	6.070	116.720	Malaysia, Borneo, Saban, Poring, logging road Malaysia, Borneo, Sabah, Poring, logging road	logging road	31.03.06	HFeldhaar	
4751	M. winkleri M. winkleri	HF 6-63 HF 6-72	6.070	116.720	Malaysia, Borneo, Sabah, Poring, logging road Malaysia, Borneo, Sabah, Poring, logging road	logging road	31.03.06	HFeldhaar HFeldhaar	
4748	M. winkleri	HF 6-65	6.070	116.720	Malaysia, Borneo, Sabah, Poring, logging road	logging road	31.03.06	HFeldhaar	
4755 4756	M. winkleri M. winkleri	HF 6-71 HF 6-59	6.070 6.070	116.720 116.720	Malaysia, Borneo, Sabah, Poring, logging road Malaysia, Borneo, Sabah, Poring, logging road	logging road logging road	31.03.06 31.03.06	HFeldhaar HFeldhaar	
4750	M. winkleri	HF 6-61	6.070	116.720	Malaysia, Borneo, Sabah, Poring, logging road	logging road	31.03.06	HFeldhaar	
4747	vi. winkleri M. winkleri	HF 6-67 HF 6-70	6.070	116.720	Malaysia, Borneo, Saban, Poring, logging road Malaysia, Borneo, Sabah, Poring, logging road	logging road	31.03.06	HFeldhaar	
4752	M. winkleri M. winkleri	HF 6-76 HF 6-69	6.070	116.720	Malaysia, Borneo, Sabah, Poring, logging road Malaysia, Borneo, Sabah, Poring, logging road	logging road	31.03.06	HFeldhaar HFeldhaar	
4757	M. winkleri	HF 6-60	6.070	116.720	Malaysia, Borneo, Sabah, Poring, logging road	logging road	31.03.06	HFeldhaar	
2337 I 2581 I	M. winkleri M. winkleri	DG04_243 DG04_487	6.060 5.680	116.730 116.940	Malaysia, Borneo, Sabah, Poring, logging road Malaysia, Borneo, Sabah, Bukit Taviu, stop 7	new logging road forest trail	12.08.04 20.08.04	DGuicking DGuicking	
2485	M. winkleri	DG04_391	5.690	116.980	Malaysia, Borneo, Sabah, Bukit Taviu, stop 1	roadside	20.08.04	DGuicking	
112	M. winkleri	16/00	5.330	117.330	Malaysia, Borneo, Sabah, Deramakot Forest Reserve	roadside	10.04.00	BFiala	
118 4043	M. winkleri M. winkleri	22/00 DG05-1319	5.330 5.866	117.330 117.967	Malaysia, Borneo, Sabah, Deramakot Forest Reserve Malaysia, Borneo, Sabah, Sepilok, trail to birdwatching tower	roadside primary forest	11.04.00	BFiala DGuicking	
4044	M. winkleri	DG05-1320	5.866	117.967	Malaysia, Borneo, Sabah, Sepilok, trail to birdwatching tower	primary forest	28.08.05	DGuicking	
4048 4049	M. winkleri M. winkleri	DG05-1324 DG05-1325	5.866 5.866	117.967 117.967	Malaysia, Borneo, Sabah, Sepilok, waterhole Malaysia, Borneo, Sabah, Sepilok, waterhole	primary forest	28.08.05 28.08.05	DGuicking	
2829	M. winkleri M. winkleri	DG05-105 DG05-106	5.110	117.600	Malaysia, Borneo, Sabah, Danum Valley, logging road near Malua Malaysia, Borneo, Sabah, Danum Valley, logging road near Malua	logging road	30.07.05	DGuicking	
2831	M. winkleri	DG05-107	5.110	117.600	Malaysia, Borneo, Sabah, Danum Valley, logging road near Malua	logging road	30.07.05	DGuicking	
2854 2866	M. winkleri M. winkleri	DG05-130 DG05-142	5.110 5.110	117.600 117.600	Malaysia, Borneo, Sabah, Danum Valley, logging road near Malua Malaysia, Borneo, Sabah, Danum Valley, logging road near Malua	logging road logging road	30.07.05 30.07.05	DGuicking DGuicking	
2867	M. winkleri	DG05-143	5.110	117.600	Malaysia, Borneo, Sabah, Danum Valley, logging road near Malua	logging road	30.07.05	DGuicking	
3663	M. winkleri M. winkleri	DG05-821 DG05-939	5.100	117.650	Malaysia, Borneo, Saban, Danum Valley, Malua, new logging road Malaysia, Borneo, Sabah, Danum Valley, Malua, new logging road	logging road	17.08.05	DGuicking	
3664 3740	M. winkleri M. winkleri	DG05-940 DG05-1016	5.100 5.100	117.650 117.650	Malaysia, Borneo, Sabah, Danum Valley, Malua, new logging road Malaysia, Borneo, Sabah, Danum Valley, Malua, new logging road	logging road	17.08.05	DGuicking	
3661	M. winkleri	DG05-937	5.100	117.650	Malaysia, Borneo, Sabah, Danum Valley, Malua, new logging road	logging road	17.08.05	DGuicking	
3662	M. winkleri M. winkleri	DG05-938 DG05-498	5.100 5.060	117.650 117.740	Malaysia, Borneo, Sabah, Danum Valley, Malua, new logging road Malaysia, Borneo, Sabah, Danum Valley, road to Malua	logging road roadside	17.08.05	DGuicking	
3253 3415	M. winkleri M. winkleri	DG05-529 DG05-691	5.050	117.760	Malaysia, Borneo, Sabah, Danum Valley, road to Malua Malaysia, Borneo, Sabah, Danum Valley, road to Malua	roadside	07.08.05	DGuicking	
3414	M. winkleri	DG05-690	5.090	117.650	Malaysia, Borneo, Sabah, Danum Valley, road to Malua	roadside	10.08.05	DGuicking	
6155 6157	M. winkleri M. winkleri	CB-06-87 CB-06-89	5.070 5.070	117.720 117.720	Malaysia, Borneo, Sabah, Danum Valley, road to Malua Malaysia, Borneo, Sabah, Danum Valley, road to Malua	roadside roadside	15.08.06 15.08.06	CBaier CBaier	
6158	M. winkleri	CB-06-90	5.070	117.720	Malaysia, Borneo, Sabah, Danum Valley, road to Malua	roadside	15.08.06	CBaier	
6160	M. winkleri M. winkleri	CB-06-92	5.070	117.720	Malaysia, Borneo, Sabah, Danum Valley, road to Malua Malaysia, Borneo, Sabah, Danum Valley, road to Malua	roadside	15.08.06	CBaier	GAT-6388
6159 3815	M. winkleri M. winkleri	CB-06-91 DG05-1091	5.070	117.720	Malaysia, Borneo, Sabah, Danum Valley, road to Malua Malaysia, Borneo, Sabah, Danum Valley, road to Malua	roadside	15.08.06	CBaier	
3816	M. winkleri	DG05-1092	5.070	117.730	Malaysia, Borneo, Sabah, Danum Valley, road to Malua	roadside	17.08.05	DGuicking	
3221 3	M. winkleri M. winkleri	DG05-497 DG05-606	5.060	117.740 117.750	Malaysia, Borneo, Sabah, Danum Valley, road to Malua Malaysia, Borneo, Sabah, Danum Valley, road to Malua	roadside	07.08.05	DGuicking	
3331 3332	M. winkleri M. winkleri	DG05-607 DG05-608	5.060	117.750	Malaysia, Borneo, Sabah, Danum Valley, road to Malua Malaysia, Borneo, Sabah, Danum Valley, road to Malua	roadside	07.08.05	DGuicking	KAS
3333	M. winkleri	DG05-609	5.060	117.750	Malaysia, Borneo, Sabah, Danum Valley, road to Malua	roadside	07.08.05	DGuicking	
3334 3329	M. winkleri M. winkleri	DG05-610 DG05-605	5.060 5.060	117.750 117.750	Malaysia, Borneo, Sabah, Danum Valley, road to Malua Malaysia, Borneo, Sabah, Danum Valley, road to Malua	roadside	07.08.05 07.08.05	DGuicking DGuicking	KAS
3254	M. winkleri M. winklori	DG05-530	5.050	117.760	Malaysia, Borneo, Sabah, Danum Valley, road to Malua Malaysia, Borneo, Sabah, Danum Valley, road to Malua	roadside	07.08.05	DGuicking	
3292	M. winkleri	DG05-569	5.050	117.760	Malaysia, Borneo, Sabah, Danum Valley, road to Malua	roadside	07.08.05	DGuicking	
3294 3878	M. winkleri M. winkleri	DG05-570 DG05-1154	5.050 5.000	117.760 117.800	Malaysia, Borneo, Sabah, Danum Valley, road to Malua Malaysia, Borneo, Sabah, Danum Valley, road to Malua	roadside roadside	07.08.05 17.08.05	DGuicking DGuicking	
3882	M. winkleri	DG05-1158	5.000	117.800	Malaysia, Borneo, Sabah, Danum Valley, road to Malua	roadside	17.08.05	DGuicking	
3883	vi. winkleri M. winkleri	DG05-1159 DG05-1212	5.000	117.800	Malaysia, Borneo, Sabah, Danum Valley, road to Malua Malaysia, Borneo, Sabah, Danum Valley, road to Malua	roadside	17.08.05	BFiala	
3937 6154	M. winkleri M. winkleri	DG05-1213 CB-06-86	5.000	117.800	Malaysia, Borneo, Sabah, Danum Valley, road to Malua Malaysia, Borneo, Sabah, Danum Valley, road to Malua, junction to BRI	roadside	17.08.05	BFiala	
6153	M. winkleri	CB-06-85	5.050	117.760	Malaysia, Borneo, Sabah, Danum Valley, road to Malua, junction to BRL	roadside	15.08.06	CBaier	
6147 6141	M. winkleri M. winkleri	CB-06-79 CB-06-402	5.050 5.050	117.760 117.760	Malaysia, Borneo, Sabah, Danum Valley, road to Malua, junction to BRL Malaysia, Borneo, Sabah, Danum Valley, road to Malua. iunction to BRL	roadside roadside	15.08.06 15.08.06	CBaier CBaier	GAT-6398
6146	M. winkleri M. winklori	CB-06-78 Bf06/229	5.050	117.760	Malaysia, Borneo, Sabah, Danum Valley, road to Malua, junction to BRL Malaysia, Borneo, Sabah, Danum Valley, junction to BPI	roadside	15.08.06	CBaier BEisla	
4733	M. winkleri	Bf06/239	4.950	117.810	Malaysia, Sonico, Sabah, Danum Valley, junction to BRL	roadside	20.03.06	BFiala	
4734 4735	M. winkleri M. winkleri	Bf06/240 Bf06/241	4.950 4.950	117.810 117.810	Malaysia, Borneo, Sabah, Danum Valley, junction to BRL Malaysia, Borneo, Sabah, Danum Valley, junction to BRL	roadside roadside	20.03.06 20.03.06	BFiala BFiala	
4736	M. winkleri	Bf06/242	4.950	117.810	Malaysia, Borneo, Sabah, Danum Valley, junction to BRL	roadside	20.03.06	BFiala	
4/37 3857	w. winkleri M. winkleri	DG05-1133	4.950 5.020	117.810 117.750	манаузна, волнео, Saban, Danum Valley, junction to BRL Malaysia, Borneo, Sabah, Danum Valley, BRL	roadside	20.03.06 17.08.05	DGuicking	
3860	M. winkleri M. winkleri	DG05-1136 DG05-1137	5.020	117.750	Malaysia, Borneo, Sabah, Danum Valley, BRL Malaysia, Borneo, Sabah, Danum Valley, BRI	roadside roadside	17.08.05	DGuicking	
3078	M. winkleri	DG05-354	5.040	118.040	Malaysia, Borneo, Sabah, Danum Valley, Main Line North	roadside	03.08.05	DGuicking	
4642 3443	M. winkleri M. winkleri	Bf06/163 DG05-719	5.010 5.010	118.070 118.070	Malaysia, Borneo, Sabah, Danum Valley, Sg. Kalisun trail Malaysia, Borneo, Sabah, Danum Valley, Sg. Kalisun trail	sapling secondary forest	18.03.06 11.08.05	BFiala DGuicking	
4988	M. winkleri M. winklo-	DG06_081	5.010	118.070	Malaysia, Borneo, Sabah, Danum Valley, Sg. Kalisun Malaysia, Borneo, Sabah, Danum Volley, Sg. Kolisun	secondary forest	24.08.06	DGuicking	
4987	vi. wirikleri M. winkleri	DG06_080 DG06_082	5.010	118.070	Malaysia, Borneo, Sabah, Danum Valley, Sg. Kalisun Malaysia, Borneo, Sabah, Danum Valley, Sg. Kalisun	secondary forest	24.08.06 24.08.06	DGuicking	
4726 4807	M. winkleri M. winkleri	BF06/232 MT06=k182	5.010 4,950	118.070 117.810	Malaysia, Borneo, Sabah, Danum Valley, Sg. Kalisun trail Malaysia. Borneo, Sabah, Danum Valley, Kalisun	secondary forest, uninhabited plant	23.03.06 00.01 00	BFiala MTürke	
3462	M. winkleri	DG05-738	4.950	117.800	Malaysia, Borneo, Sabah, Danum Valley, Sg. Purut trail	primary forest	14.08.09	DGuicking	
2233 5083	w. winkleri M. winkleri	DG04_139 DG06_176	4.980	117.800 117.800	манаузна, волнео, Saban, Danum Valley, westambling trail, watertall Malaysia, Borneo, Sabah, Danum Valley, west grid, W13,1N5	primary idrest primary forest	ub.08.04 26.08.06	DGuicking	
5082 4550	M. winkleri M. winkleri	DG06_175 Bf06/80	4.980	117.800	Malaysia, Borneo, Sabah, Danum Valley, west grid, W15N3 Malaysia, Borneo, Sabah, Danum Valley, west grid W15 N1 5	primary forest primary forest uninhabited plant	26.08.06 13.03.06	DGuicking BEiala	
		2.00.00	4.000		manayana, aannoo, ouriani, ouriani vanoy, woor gild W to Wto	proversion and a proversion of the second se	10.00.00		

Plant ID		Field					Collection Date		Herbarium
Number	Species	number	Latitude	Longitude	Location	Habitat / Ecology	(dd.mm.yy)	Collector	(Number)
4551 4544	M. winkleri M. winkleri	BF06/81 BF06/75	4.980 4.980	117.800 117.800	Malaysia, Borneo, Sabah, Danum Valley, west grid W15 N1.5 Malaysia, Borneo, Sabah, Danum Valley, west grid W15 N1.5	primary torest, uninhabited plant primary forest, uninhabited plant	13.03.06 13.03.06	BFiala BFiala	
4555	M. winkleri M. winkleri	BF06/84 DG05-754	4.980	117.800	Malaysia, Borneo, Sabah, Danum Valley, west grid W15 N1.5 Malaysia, Borneo, Sabah, Danum Valley, west grid N1W15	primary forest	13.03.06	BFiala	
3479	M. winkleri	DG05-755	4.980	117.800	Malaysia, Borneo, Sabah, Danum Valley, west grid N1W15	primary forest	15.08.05	DGuicking	
4662 4668	M. winkleri M. winkleri	BF06/179 BF06/185	4.980 4.980	117.800 117.800	Malaysia, Borneo, Sabah, Danum Valley, west grid W12 Malaysia, Borneo, Sabah, Danum Valley, west grid W12	primary forest primary forest, sapling	00.01.00 19.03.06	BFiala BFiala	
4669	M. winkleri M. winkleri	BF06/186 BF06/181	4.980	117.800	Malaysia, Borneo, Sabah, Danum Valley, west grid W12 Malaysia, Borneo, Sabah, Danum Valley, west grid W12	primary forest, sapling	19.03.06	BFiala BFiala	
4667	M. winkleri	BF06/184	4.980	117.800	Malaysia, Borneo, Sabah, Danum Valley, west grid W12	primary forest, sapling	19.03.06	BFiala	
4671 4672	M. winkleri M. winkleri	BF06/188 BF06/189	4.950 4.950	117.810 117.810	Malaysia, Borneo, Sabah, Danum Valley, west grid W12 Malaysia, Borneo, Sabah, Danum Valley, west grid W12	primary forest, sapling primary forest, sapling	19.03.06 19.03.06	BFiala BFiala	
4661	M. winkleri M. winkleri	BF06/179	4.950	117.810	Malaysia, Borneo, Sabah, Danum Valley, west grid W12	primary forest, sapling	19.03.06	BFiala	
4666	M. winkleri M. winkleri	BF06/183	4.980	117.800	Malaysia, Borneo, Sabah, Danum Valley, west grid W12 Malaysia, Borneo, Sabah, Danum Valley, west grid W12	primary forest, sapling primary forest, sapling	19.03.06	BFiala	
4670 4688	M. winkleri M. winkleri	BF06/187 BF06/205	4.980	117.800 117.800	Malaysia, Borneo, Sabah, Danum Valley, west grid W12 Malaysia, Borneo, Sabah, Danum Valley, west grid W11	primary forest, sapling primary forest, tree	19.03.06 19.03.06	BFiala BFiala	
5202	M. winkleri	DG06_295	4.980	117.800	Malaysia, Borneo, Sabah, Danum Valley, west grid, W11	primary forest	31.08.06	DGuicking	
5201 4693	M. winkleri M. winkleri	DG06_294 BF06/207	4.980	117.800 117.800	Malaysia, Borneo, Sabah, Danum Valley, west grid, W11 Malaysia, Borneo, Sabah, Danum Valley, west grid W11	primary torest primary forest, tree	31.08.06 19.03.06	DGuicking BFiala	
4473 5043	M. winkleri M. winkleri	BF06/09 DG06_136	4.980	117.800	Malaysia, Borneo, Sabah, Danum Valley, west grid W10 N3 Malaysia, Borneo, Sabah, Danum Valley, west grid, W10S1 25	primary forest, sapling	09.03.06	BFiala	
5059	M. winkleri	DG06_152	4.980	117.800	Malaysia, Borneo, Sabah, Danum Valley, west grid, W1051.25 Malaysia, Borneo, Sabah, Danum Valley, west grid, W10S1.5	primary forest	25.08.06	DGuicking	
5063 5048	M. winkleri M. winkleri	DG06_156 DG06_141	4.980 4.980	117.800 117.800	Malaysia, Borneo, Sabah, Danum Valley, west grid, W10S1.5 Malaysia, Borneo, Sabah, Danum Valley, west grid, W10S1.5	primary forest primary forest	25.08.06 25.08.06	DGuicking DGuicking	
5050	M. winkleri M. winkleri	DG06_143	4.980	117.800	Malaysia, Borneo, Sabah, Danum Valley, west grid, W10S1.5	primary forest	25.08.06	DGuicking	
5055	M. winkleri M. winkleri	DG06_148 DG06_164	4.980	117.800	Malaysia, Borneo, Sabah, Danum Valley, west grid, W1051.5 Malaysia, Borneo, Sabah, Danum Valley, west grid, W10S1.5	primary forest	25.08.06	DGuicking	
5061 5060	M. winkleri M. winkleri	DG06_154 DG06_153	4.980	117.800 117.800	Malaysia, Borneo, Sabah, Danum Valley, west grid, W10S1.5 Malaysia, Borneo, Sabah, Danum Valley, west grid, W10S1.5	primary forest	25.08.06 25.08.06	DGuicking	
5072	M. winkleri	DG06_165	4.980	117.800	Malaysia, Borneo, Sabah, Danum Valley, west grid, W10S1.5	primary forest	25.08.06	DGuicking	
5056 5062	M. winkleri M. winkleri	DG06_149 DG06_155	4.980 4.980	117.800 117.800	Malaysia, Borneo, Sabah, Danum Valley, west grid, W10S1.5 Malavsia, Borneo, Sabah, Danum Valley, west grid, W10S1.5	primary forest primary forest	25.08.06 25.08.06	DGuicking DGuicking	
5075	M. winkleri	DG06_168	4.980	117.800	Malaysia, Borneo, Sabah, Danum Valley, west grid, W10S1.5	primary forest	25.08.06	DGuicking	
5064	M. winkleri M. winkleri	DG06_144 DG06_157	4.980	117.800	Malaysia, Borneo, Sabah, Danum Valley, west grid, W1051.5 Malaysia, Borneo, Sabah, Danum Valley, west grid, W10S1.5	primary lotest	25.08.06	DGuicking	
5054 5068	M. winkleri M. winkleri	DG06_147 DG06_161	4.980	117.800	Malaysia, Borneo, Sabah, Danum Valley, west grid, W10S1.5 Malaysia, Borneo, Sabah, Danum Valley, west grid, W10S1.5	primary forest	25.08.06	DGuicking	
5057	M. winkleri	DG06_150	4.980	117.800	Malaysia, Borneo, Sabah, Danum Valley, west grid, W10S1.5	primary forest	25.08.06	DGuicking	
5069 5070	M. winkleri M. winkleri	DG06_162 DG06_163	4.980 4.980	117.800 117.800	Malaysia, Borneo, Sabah, Danum Valley, west grid, W10S1.5 Malavsia, Borneo, Sabah, Danum Valley, west grid, W10S1.5	primary forest primary forest	25.08.06 25.08.06	DGuicking DGuicking	
5073	M. winkleri M. winkleri	DG06_166	4.980	117.800	Malaysia, Borneo, Sabah, Danum Valley, west grid, W10S1.5	primary forest	25.08.06	DGuicking	
5045 5046	M. winkleri M. winkleri	DG06_138 DG06_139	4.980	117.800	Malaysia, Borneo, Sabah, Danum Valley, west grid, W1051.5 Malaysia, Borneo, Sabah, Danum Valley, west grid, W10S1.5	primary forest	25.08.06	DGuicking	
5067	M. winkleri M. winklori	DG06_160	4.980	117.800	Malaysia, Borneo, Sabah, Danum Valley, west grid, W10S1.5 Malaysia, Borneo, Sabah, Danum Valley, west grid, W10S1.6	primary forest	25.08.06	DGuicking	
5078	M. winkleri M. winkleri	DG06_142 DG06_171	4.980	117.800	Malaysia, Borneo, Sabah, Danum Valley, west grid, W1051.5 Malaysia, Borneo, Sabah, Danum Valley, west grid, W10S1.5	primary forest	25.08.06	DGuicking	
5077 5076	M. winkleri M. winkleri	DG06_170 DG06_169	4.980	117.800	Malaysia, Borneo, Sabah, Danum Valley, west grid, W10S1.5 Malaysia, Borneo, Sabah, Danum Valley, west grid, W10S1.5	primary forest	25.08.06	DGuicking	
5080	M. winkleri	DG06_173	4.980	117.800	Malaysia, Borneo, Sabah, Danum Valley, west grid, W10S1.5	primary forest	25.08.06	DGuicking	
5079 5066	M. winkleri M. winkleri	DG06_172 DG06_159	4.980	117.800 117.800	Malaysia, Borneo, Sabah, Danum Valley, west grid, W10S1.5 Malaysia, Borneo, Sabah, Danum Valley, west grid, W10S1.5	primary torest primary forest	25.08.06 25.08.06	DGuicking	
5058	M. winkleri	DG06_151	4.980	117.800	Malaysia, Borneo, Sabah, Danum Valley, west grid, W10S1.5	primary forest	25.08.06	DGuicking	
5065	M. winkleri M. winkleri	DG06_158 DG06_174	4.980	117.800	Malaysia, Borneo, Saban, Danum Valley, west grid, W1051.5 Malaysia, Borneo, Sabah, Danum Valley, west grid, W10S1.5	primary forest primary forest	25.08.06	DGuicking	
5044	M. winkleri M. winklori	DG06_137	4.980	117.800	Malaysia, Borneo, Sabah, Danum Valley, west grid, W10S1.5 Malaysia, Borneo, Sabah, Danum Valley, west grid, W10S1.6	primary forest	25.08.06	DGuicking	
5053	M. winkleri	DG06_146	4.980	117.800	Malaysia, Borneo, Sabah, Danum Valley, west grid, W1051.5	primary forest	25.08.06	DGuicking	
5052 5086	M. winkleri M. winkleri	DG06_145 DG06_179	4.980	117.800 117.800	Malaysia, Borneo, Sabah, Danum Valley, west grid, W10S1.5 Malaysia, Borneo, Sabah, Danum Valley, west grid, W10S1.10	primary forest	25.08.06	DGuicking	
5084	M. winkleri	DG06_177	4.980	117.800	Malaysia, Borneo, Sabah, Danum Valley, west grid, W10S3.6	primary forest	26.08.06	DGuicking	
4728 4729	M. winkleri M. winkleri	Bf06/234 BF06/235	5.100 5.100	117.650 117.650	Malaysia, Borneo, Sabah, Danum Valley, upper rhino ridge trail, R51 Malaysia, Borneo, Sabah, Danum Valley, upper rhino ridge trail, R51	primary forest, gap primary forest, gap	25.03.06 25.03.06	BFiala BFiala	
4727	M. winkleri	Bf06/233	5.100	117.650	Malaysia, Borneo, Sabah, Danum Valley, Rhino ridge trail, R13-R14	primary forest, gap	24.03.06	BFiala	
2137	M. winkleri M. winkleri	DG06_178 DG04_43	4.980	117.800	Malaysia, Borneo, Saban, Danum Valley, west grid, W8S5 Malaysia, Borneo, Sabah, Danum Valley, west grid, main trail W8	primary forest	26.08.06	BFiala/DGuicking	
4981	M. winkleri M. winkleri	DG06_074	4.980	117.800	Malaysia, Borneo, Sabah, Danum Valley, west grid, creek at R1 Malaysia, Borneo, Sabah, Danum Valley, west grid, creek at R1	primary forest	22.08.06	DGuicking	
4982	M. winkleri	DG06_075	4.980	117.800	Malaysia, Borneo, Sabah, Danum Valley, west grid, creek at R1	primary forest	22.08.06	DGuicking	
4980 4978	M. winkleri M. winkleri	DG06_073 DG06_071	4.950 4.980	117.810 117.800	Malaysia, Borneo, Sabah, Danum Valley, west grid, creek at R1 Malaysia, Borneo, Sabah, Danum Valley, west grid, before R1	primary forest primary forest	22.08.06 22.08.06	DGuicking DGuicking	
4984	M. winkleri	DG06_077	4.980	117.800	Malaysia, Borneo, Sabah, Danum Valley, west grid, creek at R1	primary forest	22.08.06	DGuicking	
5037	M. winkleri M. winkleri	DG06_130 DG06_129	4.980	117.800	Malaysia, Borneo, Sabah, Danum Valley, west grid, near W7.8 Malaysia, Borneo, Sabah, Danum Valley, west grid, near W7.8	primary forest	25.08.06	DGuicking	
5040	M. winkleri M. winklori	DG06_133	4.980	117.800	Malaysia, Borneo, Sabah, Danum Valley, west grid, near W7.8 Malaysia, Borneo, Sabah, Danum Valley, west grid, near W7.8	primary forest	25.08.06	DGuicking	
5030	M. winkleri	DG06_123	4.980	117.800	Malaysia, Borneo, Sabah, Danum Valley, west grid, near W7.6 Malaysia, Borneo, Sabah, Danum Valley, west grid, near W7.8	primary forest	25.08.06	DGuicking	
5033 5031	M. winkleri M. winkleri	DG06_126 DG06_124	4.980 4.980	117.800 117.800	Malaysia, Borneo, Sabah, Danum Valley, west grid, near W7.8 Malaysia, Borneo, Sabah, Danum Valley, west grid, near W7.8	primary forest primary forest	25.08.06 25.08.06	DGuicking DGuicking	
5027	M. winkleri	DG06_120	4.980	117.800	Malaysia, Borneo, Sabah, Danum Valley, west grid, near W7.8	primary forest	25.08.06	DGuicking	
5039	M. winkleri	DG06_121 DG06_132	4.980	117.800	Malaysia, Borneo, Sabah, Danum Valley, west grid, near W7.8	primary forest	25.08.06	DGuicking	
5034 5029	M. winkleri M. winkleri	DG06_127 DG06_122	4.980	117.800	Malaysia, Borneo, Sabah, Danum Valley, west grid, near W7.8 Malaysia, Borneo, Sabah, Danum Valley, west grid, near W7.8	primary forest	25.08.06	DGuicking	
5035	M. winkleri	DG06_128	4.980	117.800	Malaysia, Borneo, Sabah, Danum Valley, west grid, near W7.8	primary forest	25.08.06	DGuicking	
5032 5024	M. winkleri M. winkleri	DG06_125 DG06_117	4.980	117.800	Malaysia, Borneo, Sabah, Danum Valley, west grid, near W7.8 Malaysia, Borneo, Sabah, Danum Valley, west grid, near W7.8	primary forest	25.08.06	DGuicking	
5025	M. winkleri M. winklori	DG06_118	4.980	117.800	Malaysia, Borneo, Sabah, Danum Valley, west grid, near W7.8 Malaysia, Borneo, Sabah, Danum Valley, west grid, near W7.8	primary forest	25.08.06	DGuicking	
5041	M. winkleri	DG06_113	4.980	117.800	Malaysia, Borneo, Sabah, Danum Valley, west grid, near W7.6 Malaysia, Borneo, Sabah, Danum Valley, west grid, near W7.8	primary forest	25.08.06	DGuicking	
5042 3466	M. winkleri M. winkleri	DG06_135 DG05-742	4.980 4.980	117.800 117.800	Malaysia, Borneo, Sabah, Danum Valley, west grid, near W7.8 Malaysia, Borneo, Sabah, Danum Valley, west grid W7.5	primary forest primary forest	25.08.06 15.08.05	DGuicking DGuicking	
3467	M. winkleri M. winkleri	DG05-743	4.980	117.800	Malaysia, Borneo, Sabah, Danum Valley, west grid W7.5 Malaysia, Borneo, Sabah, Danum Volley, west grid W7.5	primary forest	15.08.05	DGuicking	
5022	M. winkleri	DG06_115	4.980	117.800	Malaysia, Borneo, Sabah, Danum Valley, west grid W7.5 Malaysia, Borneo, Sabah, Danum Valley, west grid, near W5.8	primary forest	25.08.06	DGuicking	
5013 5015	M. winkleri M. winkleri	DG06_106 DG06_108	4.980 4.980	117.800 117.800	Malaysia, Borneo, Sabah, Danum Valley, west grid, W5N5.3 Malaysia, Borneo, Sabah, Danum Vallev. west grid. W5N5.3	primary torest primary forest	24.08.06 24.08.06	CFeyWagner CFeyWagner	
5016	M. winkleri	DG06_109	4.980	117.800	Malaysia, Borneo, Sabah, Danum Valley, west grid, W5N5.3	primary forest	24.08.06	CFeyWagner	
5021	M. winkleri M. winkleri	DG06_107 DG06_114	4.980	117.800	Malaysia, Borneo, Sabah, Danum Valley, west grid, near W5 Malaysia, Borneo, Sabah, Danum Valley, west grid, near W5	primary lotest	25.08.06	DGuicking	
3998	M. winkleri M. winkleri	DG05-1274	4.980	117.800	Malaysia, Borneo, Sabah, Danum Valley, west grid W5S5.3 Malaysia, Borneo, Sabah, Danum Valley, Wast grid, Block	primary forest	22.08.05	DGuicking	
6163	M. winkleri	CB-06-95	4.980	117.800	Malaysia, Borneo, Sabah, Danum Valley, west grid, Piot 4 Malaysia, Borneo, Sabah, Danum Valley, west grid, W4	primary forest	16.08.06	CBaier	
6169 6171	M. winkleri M. winkleri	CB-06-101 CB-06-103	4.980 4.980	117.800 117.800	Malaysia, Borneo, Sabah, Danum Valley, west grid, W4 Malavsia, Borneo, Sabah, Danum Valley, west grid, W4	primary forest primary forest	16.08.06 16.08.06	CBaier CBaier	GAT-6390
6168	M. winkleri	CB-06-100	4.980	117.800	Malaysia, Borneo, Sabah, Danum Valley, west grid, W4	primary forest	16.08.06	CBaier	
6170 6164	M. winkleri M. winkleri	CB-06-102 CB-06-96	4.980	117.800 117.800	Malaysia, Borneo, Sabah, Danum Valley, west grid, W4 Malaysia, Borneo, Sabah, Danum Valley, west grid, W4	primary torest primary forest	16.08.06 16.08.06	CBaier	
6167	M. winkleri M. winklori	CB-06-99	4.980	117.800	Malaysia, Borneo, Sabah, Danum Valley, west grid, W4 Malaysia, Borneo, Sabah, Danum Valley, west grid, W2 6N6	primary forest	16.08.06	CBaier	
6173	M. winkleri	CB-06-104 CB-06-105	4.980	117.800	Malaysia, Borneo, Sabah, Danum Valley, west grid, W3.5N5 Malaysia, Borneo, Sabah, Danum Valley, west grid, W3.5N5	primary forest	16.08.06	CBaier	
6162 6165	M. winkleri M. winkleri	CB-06-94 CB-06-97	4.980 4.980	117.800 117.800	malaysia, Borneo, Sabah, Danum Valley, west grid, W3.5N5 Malaysia, Borneo, Sabah, Danum Valley, west grid. W2.5	primary torest primary forest	16.08.06 16.08.06	CBaier CBaier	
6166	M. winkleri	CB-06-98	4.980	117.800	Malaysia, Borneo, Sabah, Danum Valley, west grid, W2.5	primary forest	16.08.06	CBaier	
5200	m. winkleri M. winkleri	DG06_291 DG06_293	4.980	117.800	Malaysia, Borneo, Sabah, Danum Valley, west grid, W2 Malaysia, Borneo, Sabah, Danum Valley, west grid, W2	primary idlest	31.08.06	DGuicking	
5199 4050	M. winkleri M. winkleri	DG06_292	4.980	117.800	Malaysia, Borneo, Sabah, Danum Valley, west grid, W2 Malaysia, Borneo, Sabah, Danum Valley, west grid, W0N13	primary forest	31.08.06	DGuicking	
4961	M. winkleri	DG06_054	4.980	117.800	Malaysia, Borneo, Sabah, Danum Valley, west grid, W0N13	primary forest	20.08.06	DGuicking	
4958 4957	M. winkleri M. winkleri	DG06_051 DG06_050	4.980 4.980	117.800 117.800	Malaysia, Borneo, Sabah, Danum Valley, west grid, W0N13 Malaysia, Borneo, Sabah, Danum Valley, west grid. W0N13	primary forest primary forest	20.08.06 20.08.06	DGuicking DGuickina	
4960	M. winkleri	DG06_053	4.980	117.800	Malaysia, Borneo, Sabah, Danum Valley, west grid, W0N13	primary forest	20.08.06	DGuicking	
4956	m. winkleri M. winkleri	BF06/66	4.980	117.800	Malaysia, Borneo, Sabah, Danum Valley, west grid, WUN13 Malaysia, Borneo, Sabah, Danum Valley, west grid W0 nach N12	big gap uninhabited seedling	20.08.06	BFiala	
4533b 4533e	M. winkleri M. winkleri	BF06/66b BE06/66e	4.980	117.800	Malaysia, Borneo, Sabah, Danum Valley, west grid W0 nach N12 Malaysia, Borneo, Sabah, Danum Valley, west grid W0 nach N12	big gap uninhabited seedling big gap uninhabited seedling	12.03.06 12.03.0F	BFiala BFiala	
4533f	M. winkleri	BF06/66f	4.980	117.800	Malaysia, Borneo, Sabah, Danum Valley, west grid W0 nach N12	big gap uninhabited seedling	12.03.06	BFiala	
4533c 4533a	M. winkleri M. winkleri	BF06/66c BF06/66a	4.980 4.980	117.800 117.800	Malaysia, Borneo, Sabah, Danum Valley, west grid W0 nach N12 Malaysia, Borneo, Sabah, Danum Valley, west grid W0 nach N12	big gap uninhabited seedling big gap uninhabited seedling	12.03.06 12.03.06	BFiala BFiala	
5009	M. winkleri M. winkleri	DG06_102	4.980	117.800	Malaysia, Borneo, Sabah, Danum Valley, west grid, von W0N7	primary forest	24.08.06	CFeyWagner	
5008	M. winkleri	DG06_101 DG06_100	4.980	117.800	Malaysia, Someo, Sabah, Danum Valley, west grid, von W0N7 Malaysia, Borneo, Sabah, Danum Valley, west grid, von W0N7	primary forest	24.08.06 24.08.06	CFeyWagner	
5010 5011	M. winkleri M. winkleri	DG06_103	4.980	117.800	Malaysia, Borneo, Sabah, Danum Valley, west grid, von W0N7 Malaysia, Borneo, Sabah, Danum Valley, west grid, von W0N7	primary forest	24.08.06 24.08.0F	CFeyWagner CFeyWagner	
4531	M. winkleri	Bf06/64	4.980	117.800	Malaysia, Borneo, Sabah, Danum Valley, west grid W0 N5 after N10	sapling,uninhabited	12.03.06	BFiala	

Plant ID		Field					Collection	Herbarium
Number	Species	number	Latitude	Longitude	Location	Habitat / Ecology	(dd.mm.yy)	Collector (Number)
4656	M. winkleri	Bf06/174	4.950	117.810	Malaysia, Borneo, Sabah, Danum Valley, Elephant Ridge trail E15	river vegetation, sapling uninhabited	19.03.06	BFiala
4655	M. winkleri M. winkleri	BF06/173 DG05-1235	4.980	117.800	Malaysia, Borneo, Sabah, Danum Valley, Elephant Ridge trail, Malaysia, Borneo, Sabah, Danum Valley, So, Segama, Elephant Ridge trail	sapling, uninhabited	19.03.06	Bhiala DGuicking
4507	M. winkleri	BF06/40	4.980	117.800	Malaysia, Borneo, Sabah, Danum Valley, east grid E14-15	primary forest, uninhabited plant	10.03.06	BFiala
3203	M. winkleri	DG05-479	4.980	117.870	Malaysia, Borneo, Sabah, Danum Valley, road to Lahad Datu	roadside	06.08.05	DGuicking
3039	M. winkleri	DG05-287 DG05-315	4.970	117.940	Malaysia, Borneo, Sabah, Danum Valley, road to Lahad Datu Malaysia, Borneo, Sabah, Danum Valley, road to Lahad Datu	abandoned logging road	03.08.05	DGuicking
3040	M. winkleri	DG05-316	4.970	117.940	Malaysia, Borneo, Sabah, Danum Valley, road to Lahad Datu	abandoned logging road	03.08.05	DGuicking
3041	M. winkleri M. winkleri	DG05-317 DG05-286	4.970	117.940	Malaysia, Borneo, Sabah, Danum Valley, road to Lahad Datu Malaysia, Borneo, Sabah, Danum Valley, road to Lahad Datu	abandoned logging road abandoned logging road	03.08.05	DGuicking
3042	M. winkleri	DG05-318	4.970	117.940	Malaysia, Borneo, Sabah, Danum Valley, road to Lahad Datu	abandoned logging road	03.08.05	DGuicking
3013	M. winkleri	DG05-289	4.970	117.940	Malaysia, Borneo, Sabah, Danum Valley, road to Lahad Datu	abandoned logging road	03.08.05	DGuicking
3038 2968	M. winkleri M. winkleri	DG05-314 DG05-244	4.970	117.940	Malaysia, Borneo, Sabah, Danum Valley, road to Lahad Datu Malaysia, Borneo, Sabah, Danum Valley, road to Lahad Datu	abandoned logging road abandoned logging road	03.08.05	DGuicking DGuicking
2987	M. winkleri	DG05-263	4.960	117.950	Malaysia, Borneo, Sabah, Danum Valley, road to Lahad Datu	abandoned logging road	03.08.05	DGuicking
3061	M. winkleri	DG05-337	5.010	118.040	Malaysia, Borneo, Sabah, Danum Valley, road to Lahad Datu Malaysia, Borneo, Sabah, Danum Valley, road to Lahad Datu	roadside	03.08.05	DGuicking
5224	M. winkleri	DG05-204 DG06_317	4.990	117.960	Malaysia, Borneo, Sabah, Danum Valley, north of road to Lahad Datu	very recent logging site/road	03.09.06	DGuicking
5227	M. winkleri	DG06_320	4.990	117.960	Malaysia, Borneo, Sabah, Danum Valley, north of road to Lahad Datu	very recent logging site/road	03.09.06	DGuicking
5225	M. winkleri M. winkleri	DG06_318 DG06_319	4.990	117.960	Malaysia, Borneo, Sabah, Danum Valley, north of road to Lahad Datu Malaysia, Borneo, Sabah, Danum Valley, north of road to Lahad Datu	very recent logging site/road	03.09.06	DGuicking
5228	M. winkleri	DG06_321	4.990	117.960	Malaysia, Borneo, Sabah, Danum Valley, north of road to Lahad Datu	very recent logging site/road	03.09.06	DGuicking
5231	M. winkleri M. winklori	DG06_324	4.990	117.960	Malaysia, Borneo, Sabah, Danum Valley, north of road to Lahad Datu Malaysia, Borneo, Sabah, Danum Valley, north of road to Lahad Datu	very recent logging site/road	03.09.06	DGuicking
5223	M. winkleri	DG06_316	4.990	117.960	Malaysia, Borneo, Sabah, Danum Valley, north of road to Lahad Datu	very recent logging site/road	03.09.06	DGuicking
5229	M. winkleri	DG06_322	4.990	117.960	Malaysia, Borneo, Sabah, Danum Valley, north of road to Lahad Datu	very recent logging site/road	03.09.06	DGuicking
2185 2148	M. winkleri M. winkleri	DG04_91 DG04_54	4.970	117.950	Malaysia, Borneo, Sabah, Danum Valley, road Lahad Datu to DVFC, 25 km to DVFC Malaysia, Borneo, Sabah, Danum Valley, road Lahad Datu to DVFC, 6 km to DVFC	logged area roadside	05.08.04	BFiala/DGuicking BEiala/DGuicking
2206	M. winkleri	DG04_112	4.970	117.940	Malaysia, Borneo, Sabah, Danum Valley, road Lahad Datu to DVFC, 23 km to DVFC	roadside	05.08.04	BFiala/DGuicking
3385	M. winkleri	DG05-661	4.970	117.820	Malaysia, Borneo, Sabah, Danum Valley, 1-2km to DVFC	secondary forest	09.08.05	DGuicking
2224	M. winkleri	DG05-062 DG04_130	4.970	117.820	Malaysia, Borneo, Sabah, Danum Valley, road Lahad Datu to DVFC, junction to DVFC	roadside	05.08.04	BFiala/DGuicking
4616	M. winkleri	BF06/139	4.980	117.800	Malaysia, Borneo, Sabah, Danum Valley, DVFC, gap close to office	gap, sapling	17.03.06	BFiala
4618	M. winkleri M. winklori	BF06/141 BE06/140	4.980	117.800	Malaysia, Borneo, Sabah, Danum Valley, DVFC, gap close to office Malaysia, Borneo, Sabah, Danum Valley, DVFC, gap close to office	gap, sapling	17.03.06	BFiala
4620	M. winkleri	BF06/143	4.980	117.800	Malaysia, Borneo, Sabah, Danum Valley, DVFC, gap close to office	gap, saping gap, sapling	17.03.06	BFiala
4615	M. winkleri	BF06/138	4.950	117.810	Malaysia, Borneo, Sabah, Danum Valley, DVFC, gap close to office	gap, sapling	17.03.06	BFiala
4619	M. winkleri M. winkleri	CB-06-55	4.950	117.810	Malaysia, Borneo, Sabah, Danum Valley, DVFC, gap close to office Malaysia, Borneo, Sabah, Danum Valley, Tembaling trail	gap, saping primary forest, riverside	17.03.06	CBaier
6123	M. winkleri	CB-06-56	4.950	117.800	Malaysia, Borneo, Sabah, Danum Valley, Tembaling trail	primary forest, riverside	13.08.06	CBaier
6126	M. winkleri M. winklori	CB-06-59	4.950	117.800	Malaysia, Borneo, Sabah, Danum Valley, Tembaling trail Malaysia, Borneo, Sabah, Danum Valley, Tembaling trail	primary forest, riverside	13.08.06	CBaier
6127	M. winkleri	CB-06-60	4.950	117.800	Malaysia, Borneo, Sabah, Danum Valley, Tembaling trail	primary forest, riverside	13.08.06	CBaier
6124	M. winkleri	CB-06-57	4.950	117.800	Malaysia, Borneo, Sabah, Danum Valley, Tembaling trail	primary forest, riverside	13.08.06	CBaier
6136	M. winkleri M. winkleri	CB-06-69 CB-06-66	4.950	117.800	Malaysia, Borneo, Sabah, Dahum Valley, Tembaling trail Malaysia, Borneo, Sabah, Dahum Valley, Tembaling trail	primary torest, riverside	13.08.06	CBaier
6129	M. winkleri	CB-06-62	4.950	117.800	Malaysia, Borneo, Sabah, Danum Valley, Tembaling trail	primary forest, riverside	13.08.06	CBaier
6134	M. winkleri	CB-06-67	4.950	117.800	Malaysia, Borneo, Sabah, Danum Valley, Tembaling trail	primary forest, riverside	13.08.06	CBaier
6132	M. winkleri	CB-06-65	4.950	117.800	Malaysia, Borneo, Sabah, Danum Valley, Tembaling Itali Malaysia, Borneo, Sabah, Danum Valley, Tembaling Itali	primary forest, riverside	13.08.06	CBaier
6117	M. winkleri	CB-06-50	4.950	117.800	Malaysia, Borneo, Sabah, Danum Valley, Tembaling trail	primary forest, riverside	13.08.06	CBaier
6137	M. winkleri M. winkleri	CB-06-70 CB-06-52	4.950	117.800	Malaysia, Borneo, Sabah, Danum Valley, Tembaling trail Malaysia, Borneo, Sabah, Danum Valley, Tembaling trail	primary forest, riverside	13.08.06	CBaier
6139	M. winkleri	CB-06-72	4.950	117.800	Malaysia, Borneo, Sabah, Danum Valley, Tembaling trail	primary forest, riverside	13.08.06	CBaier
6120	M. winkleri	CB-06-53	4.950	117.800	Malaysia, Borneo, Sabah, Danum Valley, Tembaling trail	primary forest, riverside	13.08.06	CBaier
6121	M. winkleri M. winkleri	CB-06-54 CB-06-63	4.950	117.800	Malaysia, Borneo, Sabah, Danum Valley, Tembaling trail Malaysia, Borneo, Sabah, Danum Valley, Tembaling trail	primary forest, riverside primary forest, riverside	13.08.06	CBaier
6128	M. winkleri	CB-06-61	4.950	117.800	Malaysia, Borneo, Sabah, Danum Valley, Tembaling trail	primary forest, riverside	13.08.06	CBaier
6138 6131	M. winkleri M. winkleri	CB-06-71 CB-06-64	4.950	117.800	Malaysia, Borneo, Sabah, Danum Valley, Tembaling trail Malaysia, Borneo, Sabah, Danum Valley, Tembaling trail	primary forest, riverside	13.08.06	CBaier
6112	M. winkleri	CB-06-45	4.950	117.800	Malaysia, Borneo, Sabah, Danum Valley, Tembaling trail	primary forest, plant growing on trunk in river	13.08.06	CBaier
6114	M. winkleri	CB-06-47	4.950	117.800	Malaysia, Borneo, Sabah, Danum Valley, Tembaling trail	primary forest, plant growing on trunk in river	13.08.06	CBaier
6113	M. winkleri M. winkleri	CB-06-46 CB-06-49	4.950	117.800	Malaysia, Borneo, Sabah, Danum Valley, Tembaling trail Malaysia, Borneo, Sabah, Danum Valley, Tembaling trail	primary forest, plant growing on trunk in river primary forest, plant growing on trunk in river	13.08.06	CBaier
6115	M. winkleri	CB-06-48	4.950	117.800	Malaysia, Borneo, Sabah, Danum Valley, Tembaling trail	primary forest, plant growing on trunk in river	13.08.06	CBaier
3106	M. winkleri M. winklori	DG05-382	4.950	117.810	Malaysia, Borneo, Sabah, Danum Valley, Kuala Tembaling trail Malaysia, Borneo, Sabah, Danum Valley, Kuala Tembaling trail	primary forest	04.08.05	DGuicking
4597	M. winkleri	Bf06/122	4.950	117.810	Malaysia, Borneo, Sabah, Danum Valley, Kuala Tembaling Itali Malaysia, Borneo, Sabah, Danum Valley, Kuala Tembaling Itali	primary forest	16.03.06	BFiala
4602	M. winkleri	Bf06/127	4.950	117.810	Malaysia, Borneo, Sabah, Danum Valley, Kuala Tembaling trail, waterfall	primary forest, uninhabited small saplings	16.03.06	BFiala
4600	M. winkleri M. winkleri	Bf06/125 Bf06/124	4.950	117.810 117.810	Malaysia, Borneo, Sabah, Danum Valley, Kuala Tembaling trail, waterfall Malaysia, Borneo, Sabah, Danum Valley, Kuala Tembaling trail, waterfall	primary forest, uninhabited small saplings primary forest, uninhabited small saplings	16.03.06	BFiala BFiala
4601	M. winkleri	Bf06/126	4.950	117.810	Malaysia, Borneo, Sabah, Danum Valley, Kuala Tembaling trail, waterfall	primary forest, uninhabited small saplings	16.03.06	BFiala
4598	M. winkleri M. winklori	Bf06/123 Bf06/120	4.950	117.810	Malaysia, Borneo, Sabah, Danum Valley, Kuala Tembaling trail, waterfall Malaysia, Borneo, Sabah, Danum Valley, Kuala Tembaling trail, waterfall	primary forest, uninhabited small saplings	16.03.06	BFiala REisla
4596	M. winkleri	BF06/121	4.950	117.810	Malaysia, Borneo, Sabah, Danum Valley, Kuala Tembaling Irail, waterfall	primary forest	16.03.06	BFiala
4612	M. winkleri	Bf06/136	4.950	117.810	Malaysia, Borneo, Sabah, Danum Valley, Kuala Tembaling trail, waterfall	primary forest	16.03.06	BFiala
4486	M. winkleri M. winkleri	BF06/22 BF06/31	4.950	117.810 117.810	Malaysia, Borneo, Sabah, Danum Valley, Kuala Tembaling trail, Chris plot 5 Malaysia, Borneo, Sabah, Danum Valley, Kuala Tembaling trail, Chris plot 5	primary forest	10.03.06	BFiala BFiala
4487	M. winkleri	BF06/23	4.950	117.810	Malaysia, Borneo, Sabah, Danum Valley, Kuala Tembaling trail, Chris plot 5	primary forest	10.03.06	BFiala
4594	M. winkleri M. winkleri	BF06/119 BF 42	4.950	117.810	Malaysia, Borneo, Sabah, Danum Valley, Kuala Tembaling trail, Chrisplot 6 Malaysia, Borneo, Sabah, Tahin Wildlife Reserve, Lined trail	primary forest	16.03.06 25.09.0F	BFiala BFiala
4290	M. winkleri	BF 44	5.310	118.840	Malaysia, Borneo, Sabah, Tabin Wildlife Reserve, Lipad Itali Malaysia, Borneo, Sabah, Tabin Wildlife Reserve, Lipad Itali	good secondary forest	25.08.05	BFiala
4291	M. winkleri	BF 45	5.310	118.840	Malaysia, Borneo, Sabah, Tabin Wildlife Reserve, Lipad trail, gap	good secondary forest	25.08.05	BFiala
2051 5093	w. winkleri M. winkleri	DF 091-03 DG06, 186	4.630	117.380 117.890	Malaysia, borneo, Saban, Luasong Malaysia, Borneo, Sabah, Tawau Hills Park, picnic area	picnic area	03.09.03 28.08.06	DGuicking
5094	M. winkleri	DG06_187	4.400	117.890	Malaysia, Borneo, Sabah, Tawau Hills Park, picnic area	picnic area	28.08.06	DGuicking
5096 5005	M. winkleri M. winklori	DG06_189	4.400	117.890	Malaysia, Borneo, Sabah, Tawau Hills Park, picnic area Malaysia, Borneo, Sabah, Tawau Hills Park, picnic area	picnic area	28.08.06	DGuicking
5159	M. winkleri	DG06_252	4.400	117.890	Malaysia, Borneo, Sabah, Tawau Hills Park, trail to hot springs	water catchment reserve	29.08.06	DGuicking
5175	M. winkleri M. winkleri	DG06_268	4.400	117.890	Malaysia, Borneo, Sabah, Tawau Hills Park, trail to hot springs	water catchment reserve	29.08.06	DGuicking
5194 5196	w. winkleri M. winkleri	DG06_287 DG06_289	4.400	117.890	Malaysia, Borneo, Sabah, Tawau Hills Park, trail to hot springs	water catchment reserve	29.08.06	DGuicking
5181	M. winkleri	DG06_274	4.400	117.890	Malaysia, Borneo, Sabah, Tawau Hills Park, trail to hot springs	water catchment reserve	29.08.06	DGuicking
5195 5186	M. winkleri M. winkleri	DG06_288	4.400	117.890	Malaysia, Borneo, Sabah, Tawau Hills Park, trail to hot springs Malaysia, Borneo, Sabah, Tawau Hills Park, trail to waterfall Galas	water catchment reserve water catchment reserve	29.08.06 29.08.06	DGuicking
5185	M. winkleri	DG06_278	4.400	117.890	Malaysia, Borneo, Sabah, Tawau Hills Park, trail to waterfall Galas	water catchment reserve	29.08.06	DGuicking
5187	M. winkleri	DG06_280	4.400	117.890	Malaysia, Borneo, Sabah, Tawau Hills Park, trail to waterfall Galas	water catchment reserve	29.08.06	DGuicking
5184 5140	w. winkleri M. winkleri	DG06_277 DG06_233	4.400 4.390	117.890 117.890	Malaysia, borneo, Saban, Lawau Hills Park, trail to waterfall Galas Malaysia, Borneo, Sabah, Tawau Hills Park, edge of oil palm plantation	edge of oil palm plantation and secondary forest	29.08.06 29.08.06	DGuicking
5142	M. winkleri	DG06_235	4.390	117.890	Malaysia, Borneo, Sabah, Tawau Hills Park, edge of oil palm plantation	edge of oil palm plantation and secondary forest	29.08.06	DGuicking
5143	M. winkleri M. winklori	DG06_236	4.390	117.890	Malaysia, Borneo, Sabah, Tawau Hills Park, edge of oil palm plantation Malaysia, Borneo, Sabah, Tawau Hills Park, edge of oil polm plantation	edge of oil palm plantation and secondary forest	29.08.06	DGuicking
5141	M. winkleri	DG06_232	4.390	117.890	Malaysia, Borneo, Sabah, Tawau Hills Park, edge of oil palm plantation	edge of oil palm plantation and secondary lorest	29.08.06	DGuicking
5144	M. winkleri	DG06_237	4.390	117.890	Malaysia, Borneo, Sabah, Tawau Hills Park, edge of oil palm plantation	edge of oil palm plantation and secondary forest	29.08.06	DGuicking
1964 470	M. winkleri M. winkleri	HF-02-038 27/2001	4.330	118.000	malaysia, Borneo, Sabah, Lawau Hills, Bukit Lawau Malaysia, Borneo, Sabah, Tawau Hills,	secondary forest	08.10.02	HHeidhaar BEiala
1986	M. winkleri	036	4.330	118.000	Malaysia, Borneo, Sabah, Tawau Hills		08.10.02	HFeldhaar
1985	M. winkleri M. winkleri	037	4.330	118.000	Malaysia, Borneo, Sabah, Tawau Hills Malaysia, Borneo, Sarawak, Mulu National Park, Classicational, Multine Course	20120	08.10.02	HFeldhaar REisla
396 397	M. winkleriella	56	4.030	114.800	Malaysia, Borneo, Sarawak, Mulu National Park, ClearWatercave, Mellau Gorge Malaysia, Borneo, Sarawak, Mulu National Park, Clearwatercave. trail	2017e	21.09.00	BFiala WB
398	M. winkleriella	57	4.030	114.800	Malaysia, Borneo, Sarawak, Mulu National Park, Clearwatercave, trail		21.09.00	BFiala
399 400	w. winkleriella M. winkleriella	58 2	4.030	114.800 114.800	Malaysia, Borneo, Sarawak, Mulu National Park, Clearwatercave, trail Malaysia, Borneo, Sarawak, Mulu National Park, Clearwatercave, trail		21.09.00 20.09.00	BFiala
401	M. winkleriella	3	4.030	114.800	Malaysia, Borneo, Sarawak, Mulu National Park, Clearwatercave, trail		20.09.00	BFiala
403	M. winkleriella M. winkleric''s	5	4.030	114.800	Malaysia, Borneo, Sarawak, Mulu National Park, Clearwatercave, trail		20.09.00	BFiala
523 6984	M. winkleriella	Bf07/119	4.030	114.800	Malaysia, Borneo, Sarawak, Mulu National Park, Clearwatercave, Meliau Gorge	gorge	05.09.00	BFiala
6985	M. winkleriella	Bf07/120	4.030	114.800	Malaysia, Borneo, Sarawak, Mulu National Park, Clearwatercave, Meliau Gorge	gorge	05.09.07	BFiala
6986 7137	M. winkleriella M. winkleriella	Bt07/121	4.030	114.800 114.800	Malaysia, Borneo, Sarawak, Mulu National Park, Clearwatercave, Meliau Gorge Malaysia, Borneo, Sarawak, Mulu National Park	gorge	05.09.07	BFiala DMezger
					· · · · · · · · · · · · · · · · · · ·			

Kg. = kampung = village BSB = Bandar Seri Begawan DV= Danum Valley BRL= Borneo Rainforest Lod KK = Kota Kinabalu GAT= Gatersleber KAS= Kassel WB= WBrzburg
Plant ID		нт	Population				
Number	HT ¹	Groups ¹	Circles ²	Sp	ecies	Collector	Location
5139	1	1	1a 10	М. М	winkleri	DGuicking	Malaysia, Borneo, Sabah, Tawau Hills Park, edge of oil palm plantation 'Golden Hope', trail to Bt. Bombalai
5142	1	1	1a	М.	winkleri	DGuicking	Malaysia, Borneo, Sabah, Tawau Hills Park, edge of oil palm plantation 'Golden Hope', trail to Bt. Bombalai
5159	1	1	1b	М.	winkleri	DGuicking	Malaysia, Borneo, Sabah, Tawau Hills Park, trail to hot springs, 0 to 2.6 km
2051	1	1	1D 1c	м. М.	winkleri	BFiala	Malaysia, Borneo, Saban, Tawau Hilis Park, trail to not springs, 0 to 2.6 km Malaysia, Borneo, Sabah, Luasong
2478	1	1	1d	М.	winkleri	DGuicking	Malaysia, Borneo, Sabah, Bukit Taviu, stop 1
2485	1	1	1d	М.	winkleri	DGuicking	Malaysia, Borneo, Sabah, Bukit Taviu, stop 1 Malaysia, Borneo, Sabah, Bukit Taviu, stop 7
3857	1	1	1u 1e	м. М.	winkleri	DGuicking	Malaysia, Borneo, Sabah, Danum Valley, Borneo rainforest lodge
3860	1	1	1e	М.	winkleri	DGuicking	Malaysia, Borneo, Sabah, Danum Valley, Borneo rainforest lodge
4286	1	1	1f 1f	М.	winkleri	BFiala	Malaysia, Borneo, Sabah, Tabin Wildlife Reserve, Lipad trail
5665	1	1	1g	M.	winkleri	BFiala	Malaysia, Borneo, Sabah, Poring, Langanan
5667	1	1	1g	М.	winkleri	BFiala	Malaysia, Borneo, Sabah, Poring, Langanan
5669	1	1	1g	М.	winkleri	BFiala	Malaysia, Borneo, Sabah, Poring, Langanan Malaysia, Borneo, Sabah, Taway, Lilila Badi, trail te bet enrinere. 0 to 2.6 km
6146	2	2	2a	M.	winkleri	CBaier	Malaysia, Borneo, Sabah, Fawau Hills Park, trail to hot springs, o to 2.6 km Malaysia, Borneo, Sabah, Danum Valley, road to Malua, junction to Borneo rainforest lodge
6154	3	2	2a	М.	winkleri	CBaier	Malaysia, Borneo, Sabah, Danum Valley, road to Malua, junction to Borneo rainforest lodge
6153	3	2	2a 2b	М. М	winkleri	CBaier	Malaysia, Borneo, Sabah, Danum Valley, road to Malua, junction to Borneo rainforest lodge
4734	3	2	2b 2b	M.	winkleri	BFiala	Malaysia, Borneo, Sabah, Danum Valley, junction to Borneo rainforest lodge
4736	3	2	2b	М.	winkleri	BFiala	Malaysia, Borneo, Sabah, Danum Valley, junction to Borneo rainforest lodge
6112	3	2	2c	М.	winkleri	CBaier	Malaysia, Borneo, Sabah, Danum Valley, Tembaling trail
6130	3	2	2c	M.	winkleri	CBaier	Malaysia, Borneo, Sabah, Danum Valley, Tembaling trail
4290	3	2	2d	М.	winkleri	BFiala	Malaysia, Borneo, Sabah, Tabin Wildlife Reserve, Lipad trail, gap
5058 5065	3	2	2e 2e	М. М	winkleri	DGuicking	Malaysia, Borneo, Sabah, Danum Valley, west grid, W10S1.5 Malaysia, Borneo, Sabah, Danum Valley, west grid, W10S1.5
5066	3	2	2e	M.	winkleri	DGuicking	Malaysia, Borneo, Sabah, Danum Valley, west grid, W1051.5
4615	4	2	2f	М.	winkleri	BFiala	Malaysia, Borneo, Sabah, Danum Valley, DVFC, big gap close to office, trail into forest
6407 6408	5	3	3a 3a	М. М	winkleri	CBaier	Malaysia, Borneo, Sabah, from Kota Kinabalu to Ranau, Jalan Hulan, near Kunung Manangkob, stop 3 Malaysia, Borneo, Sabah, from Kota Kinabalu to Ranau, Jalan Hulan, near Kunung Manangkob, stop 3
6412	5	3	3b	м. М.	winkleri	CBaier	Malaysia, Borneo, Sabah, from Kota Kinabalu to Ranau, stop 4
6414	5	3	3b	М.	winkleri	CBaier	Malaysia, Borneo, Sabah, from Kota Kinabalu to Ranau, stop 4
6420 6421	5	3	3c 3c	М. М	winkleri	CBaier	Malaysia, Borneo, Sabah, from Kota Kinabalu to Ranau, stop 5 Malaysia, Borneo, Sabah, from Kota Kinabalu to Ranau, stop 5
6424	5	3	3d	M.	winkleri	CBaier	Malaysia, Borneo, Sabah, from Kota Kinabalu to Ranau, stop 5 Malaysia, Borneo, Sabah, from Kota Kinabalu to Ranau, stop 6, 55 km to Ranau
6427	5	3	3d	М.	winkleri	CBaier	Malaysia, Borneo, Sabah, from Kota Kinabalu to Ranau, stop 6, 55 km to Ranau
6462	5	3	3e 20	М. М	winkleri	CBaier	Malaysia, Borneo, Sabah, Ranau to Kota Kinabalu Malaysia, Borneo, Sabah, from Kata Kinabalu to Banau, stop 5
6403	5	3	3a	M.	winkleri	CBaier	Malaysia, Borneo, Sabah, from Kota Kinabalu to Ranau, Jalan Hulan, near Kunung Manangkob, stop 3
6468	5	3	3e	М.	winkleri	CBaier	Malaysia, Borneo, Sabah, Ranau to Kota Kinabalu
6469	6	3	3e 2d	М.	winkleri	CBaier	Malaysia, Borneo, Sabah, Ranau to Kota Kinabalu Malaysia, Borneo, Sabah, from Kata Kinabalu to Banau, stop 6, 55 km to Banau
6411	8	3	3b	м. М.	winkleri	CBaier	Malaysia, Borneo, Sabah, from Kota Kinabalu to Ranau, stop 6, 55 km to Rahau Malaysia, Borneo, Sabah, from Kota Kinabalu to Ranau, stop 4
4396	9	4	4	М.	winkleri	BFiala	Borneo, Brunei, Temburong, Kuala Belalong
5	10	5	5a	М.	winkleri	UMaschwitz REiolo	Borneo, Brunei, Temburong, Belalong
6873	10	5	5c	м. М.	winkleri	BFiala	Borneo, Brunei, Belait, Wong Kadi waterfall
6897	10	5	5b	М.	winkleri	BFiala	Borneo, Brunei, Temburong, Bukit Patoi
6898	10	5	5b	М. М	winkleri	BFiala	Borneo, Brunei, Temburong, Bukit Patoi
5700	11	5	5a	M.	winkleri	BFiala	Borneo, Brunei, Temburong, Belalong
6895	12	5	5b	М.	winkleri	BFiala	Borneo, Brunei, Temburong, Bukit Patoi
5829	13	5	5b	М. М	winkleri	BFiala	Borneo, Brunei, Temburong, Bukit Patoi
4391	15	5	5c	M.	winkleri	BFiala	Borneo, Brunei, Temburong, Kuala Belalong
5763	16	5	5b	М.	winkleri	BFiala	Borneo, Brunei, Temburong, Bukit Patoi
5855 7060	17	5	5b	М. М	winkleri	BFiala	Borneo, Brunei,Temburong, Bukit Patoi Malaveia, Borneo, Sarawak, Puni
6656	19	7	7a	М.	winkleri	CBaier	Malaysia, Borneo, Sarawak, Jalan Miri -Bintulu
6658	19	7	7a	М.	winkleri	CBaier	Malaysia, Borneo, Sarawak, Jalan Miri -Bintulu
6561 6562	20	7	7b 7b	М. М	winkleri	CBaier	Malaysia, Borneo, Sarawak, Lambir National Park Malaysia, Borneo, Sarawak, Lambir National Park
6657	21	7	7c	М.	winkleri	CBaier	Malaysia, Borneo, Sarawak, Jalan Miri -Bintulu
6659	22	7	7c	М.	winkleri	CBaier	Malaysia, Borneo, Sarawak, Jalan Miri -Bintulu
6061 244	23 23	8	8a 8a	М. М	winkleri	BFiala	Borneo, Brunei, Belait, Labi Borneo, Brunei, Belait, Labi road (southern part of the road)
5803	23	8	8b	М.	winkleri	BFiala	Borneo, Brunei, Belait, Tereja
5962	23	8	8b	М.	winkleri	BFiala	Borneo, Brunei, Belait, Tereja
5970 5974	23 23	8 8	8b	м. М	winkieri winkleri	⊳⊢iaia BFiala	borneo, brunei, belait, Tereja Borneo, Brunei, Belait, Tereja
6874	23	8	8c	М.	winkleri	BFiala	Borneo, Brunei, Belait, Wong Kadi waterfall
6962	23	8	8c	М.	winkleri winklori	BFiala	Borneo, Brunei, Belait, Wong Kadi waterfall
5983	∠3 24	8 8	ac 8b	M.	winkleri	BFiala	Borneo, Brunei, Belait, Tereja
5918	25	8	8a	М.	winkleri	BFiala	Borneo, Brunei, Belait, Labi
6875	26	8	8c	М.	winkleri	BFiala	Borneo, Brunei, Belait, Wong Kadi waterfall Malaveia, Borneo, Sarawak, Jalan Miri-Bintulu
6679	27	9	9a	M.	winkleri	CBaier	Malaysia, Borneo, Sarawak, Jalan Miri -Bintulu Malaysia, Borneo, Sarawak, Jalan Miri -Bintulu
7078	27	9	9b	М.	winkleri	CBaier	Malaysia, Borneo, Sarawak, Pelagus Resort
7089	27	9	9b Ob	М.	winkleri	CBaier	Malaysia, Borneo, Sarawak, Pelagus Resort
6673	28	9	9a	M.	winkleri	CBaier	Malaysia, Borneo, Sarawak, Jalan Miri -Bintulu
6713	29	10	10	М.	winkleri	CBaier	Malaysia, Borneo, Sarawak, between Bukit Saban Resort and Betong
6566	30 31	11 12	11 129	М.	winkleri	CBaier BEiala	Malaysia, Borneo, Sarawak, Lambir National Park Malaysia, Borneo, Sarawak, Mulu, Cleanwatercave, Meliau Gorge
397	31	12	12a	м. М.	winkleriella	BFiala	Malaysia, Borneo, Sarawak, Mulu, Clearwatercave, menad Gorge
398	31	12	12a	М.	winkleriella	BFiala	Malaysia, Borneo, Sarawak, Mulu, Clearwatercave, trail
399	31	12	12a	М.	winkleriella	BFiala BFiala	Malaysia, Borneo, Sarawak, Mulu, Clearwatercave, trail Malaysia, Borneo, Sarawak, Mulu, Clearwatercave, trail
400	31	12	12a	M.	winkleriella	BFiala	Malaysia, Borneo, Sarawak, Mulu, Clearwatercave, Irail
403	31	12	12a	М.	winkleriella	BFiala	Malaysia, Borneo, Sarawak, Mulu, Clearwatercave, trail
523	31	12	12b	М.	winkleriella	BFiala	Malaysia, Borneo, Sarawak, Mulu Malaysia, Borneo, Sarawak, Mulu National Port
7138	31	12	12b	M.	winkleriella	BFiala	Malaysia, Borneo, Sarawak, Mulu National Park
6984	32	12	12b	М.	winkleriella	BFiala	Malaysia, Sarawak, Mulu
6985	32	12	12b	М. М	winkleriella	BFiala BFiala	Malaysia, Sarawak, Mulu Malaysia, Sarawak, Mulu
201	33	13	13	м. М.	gigantea	UMaschwitz	Malaysia, Selangor
	. ·					Umaschwitz /	· ·
203	34	14	14	М.	gigantea	Heckroth	malaysia, Selangor
202	35 36	15 16	15 16	М. М	pruinosa dienenborstii	UMaschwitz	Malaysia, Selangor Malaysia, Selangor

Macaranga winkleri individuals and outgroups included in the TCS haplotype Appendix D network calculation, with corresponding haplotypes, HT groups, origin and collector.

16

The HT corresponds to the numbering in Figure 2-5.
 The matching number/letter combinations indicate that the individuals are grouped together in one population circle in figure 2-6.

		Letter		Letter		Letter		Letter		Letter		Letter		Letter
Plant ID	1st SSR in	for	2nd SSR in	for	3rd SSR in	for	4th SSR in	for	5th SSR in	for	1st SSR in	for		for
F120		E		moui		niotii		Mour		D		D	сттитеттитити	D
5140	TTTTTTTT	E	TTTTTTTTTT	c	TTTTTTT-	В	TTTTTTTTTTT	Â	AAAAAAA-	В	AAAAAA-	В	сттттстттттттт	В
5142	TTTTTTTT	E	TTTTTTTTT	č	TTTTTTT-	в	TTTTTTTTTTTT	A	AAAAAA-	в	AAAAA-	В	CTTTTTCTTTTTTTT-	в
5159	TTTTTTTTT	E	TTTTTTTTTT	С	TTTTTTTT-	В	TTTTTTTTTTT	А	AAAAAA-	в	AAAAA-	В	CTTTTTCTTTTTTTTT-	В
5194	TTTTTTTT	E	TTTTTTTTTT	c	TTTTTTT-	В	TTTTTTTTTTT	A	AAAAAAA-	В	AAAAAA-	В		В
2051	TTTTTTTTT	F	TTTTTTTTTT-	A	TTTTTTTT-	B	TTTTTTTTTTT	A	AAAAAAA-	В	AAAAAA- AAAAAA-	B		С
2485	TTTTTTTT	E	TTTTTTTTTT-	A	TTTTTTT-	В	TTTTTTTTTTTT	A	AAAAAA-	в	AAAAA-	В	CTTTTTCTTTTTTTTT	č
2581	TTTTTTTTT	E	TTTTTTTTTTT-	А	TTTTTTTT-	В	TTTTTTTTTTT	А	AAAAAA-	в	AAAAA-	В	CTTTTTCTTTTTTTTT	С
3857	TTTTTTTT	E	TTTTTTTTTT	В	TTTTTTT-	В	TTTTTTTT-	В	AAAAAAA-	В	AAAAAA-	В	CTTTTTCTTTTTTTTT-	В
3860 4286	TTTTTTTT	E	TTTTTTTTT	в	TTTTTTTT.	B	TTTTTTTTTTTT	в	AAAAAAA-	B	AAAAAA-	B	CTTTTTCTTTTTTTTTTT	в
4291	TTTTTTTTT	E	TTTTTTTTT	č	TTTTTTTT-	В	TTTTTTTTTTT	Â	AAAAAAA-	В	AAAAAA-	В	сттттстттттттт	A
5665	TTTTTTTTT	E	TTTTTTTTTT	в	TTTTTTT-	В	TTTTTTTTTTT	А	AAAAAA-	в	AAAAA-	В	стттттсттттттттт.	в
5667	TTTTTTTTT	E	TTTTTTTTTTT	в	TTTTTTTT-	в	TTTTTTTTTT	А	AAAAAA-	в	AAAAA-	В	CTTTTTCTTTTTTTTTTT	в
5669	TTTTTTTT	E	TTTTTTTTTTT	В	TTTTTTT-	В	TTTTTTTTTTT	A	AAAAAAA-	В	AAAAAA-	В		В
6146	TTTTTTTT	F	TTTTTTTTTT	C C	TTTTTTT-	B	TTTTTTTTTTT	A	AAAAAAA- AAAAAAA-	B	AAAAAA- AAAAAA-	B	CTTTTCTTTTTTTT-	в С
6154	TTTTTTTT	Ē	TTTTTTTTT	č	TTTTTTT-	В	TTTTTTTTTTTT	A	AAAAAAA-	В	AAAAAA-	В	CTTTTTCTTTTTTTTT	č
6153	TTTTTTTT	E	TTTTTTTTT	С	TTTTTTTT-	В	TTTTTTTTTTT	А	AAAAAA-	В	AAAAA-	В	CTTTTTCTTTTTTTTT	С
4733	TTTTTTTT	E	TTTTTTTTT	С	TTTTTTT-	В	TTTTTTTTTTT	A	AAAAAA-	В	AAAAA-	В	CTTTTTCTTTTTTTT	С
4734	11111111 TTTTTTTT	E	1111111111 TTTTTTTTT	C	11111111- TTTTTTTT	В	TTTTTTTTTTT	A	AAAAAAA-	В	AAAAAA-	B		C
6112	TTTTTTTT	E	TTTTTTTTTT	c	TTTTTTT-	В	TTTTTTTTTTT	Â	AAAAAAA-	В	AAAAAA-	В	сттттсттттттт	В
6129	TTTTTTTT	E	TTTTTTTTTT	č	TTTTTTT-	В	TTTTTTTTTTTT	A	AAAAAA-	в	AAAAA-	В	CTTTTTCTTTTTTTTT-	в
6130	TTTTTTTT	Е	TTTTTTTTT	С	TTTTTTTT-	В	TTTTTTTTTTT	А	AAAAAA-	В	AAAAA-	В	CTTTTTCTTTTTTTT-	В
4290	TTTTTTTT	E	TTTTTTTTT	С	TTTTTTT-	В	TTTTTTTTTT	A	AAAAAAA-	В	AAAAAA-	В	CTTTTTCTTTTTTTTT-	В
5058	TTTTTTTT	E	TTTTTTTTT	C	11111111- TTTTTTTT	B	+++++++++++++++++++++++++++++++++++++++	A	AAAAAAA- AAAAAAAA-	B	AAAAAA-	B	CTTTTTCTTTTTTTTTT	B
5066	TTTTTTTT	E	TTTTTTTTT	č	TTTTTTTT-	В	TTTTTTTTTTT	A	AAAAAAA-	В	AAAAAA-	В	сттттстттттттт	В
4615	TTTTTTTT	E	TTTTTTTTT	С	TTTTTTT-	в	TTTTTTTTTTT	А	AAAAAA-	в	AAAAA-	В	CTTTTTCTTTTTTTTTT.	в
6407	TTTTTTTT	E	TTTTTTTTT	С	TTTTTTT-	В	TTTTTTTTTTT	А	AAAAAA-	В	AAAAA-	В	CTTTTTCTTTTTTTTTTT.	В
6408	TTTTTTTT	E	TTTTTTTTT	С	TTTTTTT-	В		A	AAAAAAA-	В	AAAAAA-	В	CTTTTTCTTTTTTTTTT	В
6412 6414	TTTTTTTT	E	TTTTTTTTT	Ċ	TTTTTTTT.	B	TTTTTTTTTTT	A	AAAAAAA-	B	AAAAAA-	B	CTTTTTCTTTTTTTTTTT	B
6420	TTTTTTTTT	E	TTTTTTTTT	č	TTTTTTTT-	В	TTTTTTTTTTTT	Â	AAAAAAA-	В	AAAAAA-	В	CTTTTTCTTTTTTTTTTT	c
6421	TTTTTTTT	Е	TTTTTTTTT	C	TTTTTTT-	в	TTTTTTTTTTT	А	AAAAAA-	в	AAAAA-	В	CTTTTTCTTTTTTTTT	C
6424	TTTTTTTT	E	TTTTTTTTT	С	TTTTTTT-	В	TTTTTTTTTTT	A	AAAAAA-	В	AAAAA-	В	CTTTTTCTTTTTTTTTTT	В
6427	TTTTTTTT	E	TTTTTTTTTT	c	TTTTTTT-	B	TTTTTTTTTTT	A	AAAAAAA-	В	AAAAAA-	В		В
6402	TTTTTTTTT	F	TTTTTTTTT	c	TTTTTTTT-	B	TTTTTTTTTTT	A	AAAAAAA-	B	AAAAAA- AAAAAAA-	B	CTTTTTCTTTTTTTTT	c
6403	TTTTTTTT	E	TTTTTTTTT	č	TTTTTTTT-	В	TTTTTTTTTTT	A	AAAAAAA-	В	AAAAAA-	В	сттттсттттттттт	в
6468	TTTTTTTT	E	TTTTTTTTT	С	TTTTTTT-	в	TTTTTTTTTTT	А	AAAAAA-	в	AAAAA-	В	CTTTTTCTTTTTTTTTT.	в
6469	TTTTTTTT	E	TTTTTTTTT	С	TTTTTTT-	В	TTTTTTTTTTT	A	AAAAAA-	В	AAAAA-	В	CTTTTTCTTTTTTTTTTT	В
6426	TTTTTTTT	E	TTTTTTTTT	C	TTTTTTT-	В	TTTTTTTTTTTT	A	AAAAAAA-	В	AAAAAA-	В		В
4396	TTTTTTTTT	F	TTTTTTTTT	c	TTTTTTTT-	B	TTTTTTTTTTT	A	AAAAAAA-	B	AAAAAA- AAAAAAA-	B	CTTTTTCTTTTTTTTTT	B
5	TTTTTTTTT-	В	TTTTTTTTT	D	TTTTTTT-	В	TTTTTTTTT	D	AAAAAAA	Ă	AAAAA-	В	сттттстттттттт	Ā
5828	TTTTTTTTTT-	в	TTTTTTTT	D	TTTTTTTT-	В	TTTTTTTTT	D	AAAAAAA	A	AAAAA-	В	CTTTTTCTTTTTTTTT-	В
6873	TTTTTTTTTT-	В	TTTTTTTT	D	TTTTTTT-	В	TTTTTTTTT	D	AAAAAAA	A	AAAAAA-	В	CTTTTTCTTTTTTTT-	B
6898	TTTTTTTTTTT-	B	TTTTTTTT	D	TTTTTTT-	B	TTTTTTTTT	D		A	AAAAAA- AAAAAA-	B	CTTTTCTTTTTTTTTT	A
5723	TTTTTTTTTTT-	В	TTTTTTTT	D	TTTTTTTT-	В	TTTTTTTTT	D	AAAAAAAA	A	AAAAAA-	В	CTTTTTCTTTTTTTTTTT	c
5700	TTTTTTTTTTT-	в	TTTTTTTT	D	TTTTTTT-	в	TTTTTTTTT	D	AAAAAAA	А	AAAAA-	В	CTTTTTCTTTTTTTTTT.	в
6895	TTTTTTTTTT-	В	TTTTTTTT	D	TTTTTTT-	В	TTTTTTTTT	D	AAAAAAA	A	AAAAA-	В	CTTTTTCTTTTTTTTTTTT	A
5829	TTTTTTTTTTTT	В	TTTTTTTT	D	TTTTTTT-	В	TTTTTTTTT	D	AAAAAAAA	A	AAAAAA-	В	СПППСПППППП	A
4391	TTTTTTTTTTT-	B	TTTTTTTTT	D	TTTTTTTT-	B	TTTTTTTTT	D	AAAAAAAA	A	AAAAAA-	B	ститистититит	A
5763	TTTTTTTTTT-	в	TTTTTTTTT	D	TTTTTTT-	В	TTTTTTTTT	D	AAAAAAA	A	AAAAA-	В	CTTTTTCTTTTTTTTTTTT	A
5855	TTTTTTTTTTT-	В	TTTTTTTTT	D	TTTTTTTT-	в	TTTTTTTTT	D	AAAAAAA	A	AAAAA-	В	CTTTTTCTTTTTTTTTTTT	Α
7060	TTTTTTTTTT-	В	TTTTTTTTT	D	TTTTTTT-	В	TTTTTTTTT	D	AAAAAAA	A	AAAAAA-	В	ститистититит	A
6658	TTTTTTTTTTT-	B	TTTTTTTT	D	TTTTTTTTT	A	TTTTTTTTT	D		A	AAAAAA- AAAAAAA-	B	CTTTTTCTTTTTTTTTTT	A
6561	TTTTTTTTTTT-	В	TTTTTTTT	D	TTTTTTTTT	A	TTTTTTTTT	D	AAAAAAAA	A	AAAAAA-	В	сттттстттттттт	A
6562	TTTTTTTTTTT-	в	TTTTTTTT	D	TTTTTTTT	Α	TTTTTTTTT	D	AAAAAAA	А	AAAAA-	В	CTTTTTCTTTTTTTTTTTT	Α
6657	TTTTTTTTTT-	В	TTTTTTTT	D	TTTTTTTT	A	TTTTTTTTT	D	AAAAAAA	A	AAAAA-	В	CTTTTTCTTTTTTTTTTTT	A
6659	TTTTTTTTTTTT	В	TTTTTTTT	D	TTTTTTTTT	A	TTTTTTTTTTT	D	AAAAAAAA	A	AAAAAA-	В	СПППСПППППП	A
244	TTTTTTTTTTT-	B	TTTTTTTTT	D	TTTTTTTTT	A	TTTTTTTTT	D	AAAAAAAA	A	AAAAAA-	B	сттттсттттттт	В
5803	TTTTTTTTT-	В	TTTTTTTT	D	TTTTTTTTT	A	TTTTTTTTT	č	AAAAAAA	A	AAAAA-	В	сттттсттттттт.	В
5962	TTTTTTTTTT-	в	TTTTTTTT	D	TTTTTTTTT	A	TTTTTTTTTT	С	AAAAAAA	A	AAAAA-	В	CTTTTTCTTTTTTTTT-	В
5970	TTTTTTTTTT-	В	TTTTTTTT	D	TTTTTTTTT	A	TTTTTTTTT	С	AAAAAAA	A	AAAAAA-	В	CTTTTTCTTTTTTTT-	В
5974 6874	1111111111111 TTTTTTTTT	В R	111111111 TTTTTTTT	D	11111111111 TTTTTTTT	A	11111111111 TTTTTTTT-	C C	ΑΑΑΑΑΑΑΑ ΑΑΑΑΑΑΔΔ	A	AAAAAA- AAAAAA-	B		BR
6962	ΤΤΤΤΤΤΤΤΤΤΤΤ-	В	TTTTTTTT	D	TTTTTTTT	A	TTTTTTTTT	č	AAAAAAA	A	AAAAAA-	В	CTTTTTCTTTTTTTTT-	в
6963	ΤΤΤΤΤΤΤΤΤΤΤΤΤ-	В	TTTTTTTT	D	TTTTTTTT	A	TTTTTTTTT	С	AAAAAAA	А	AAAAA-	В	CTTTTTCTTTTTTTTT.	В
5983	TTTTTTTTT-	В	TTTTTTTT	D	TTTTTTTT	A	TTTTTTTTTT	С	AAAAAAA	A	AAAAA-	В	CTTTTTCTTTTTTTT-	В
5918	11111111111111 TTTTTTTTTTTTT	В	TTTTTTTT	D	TTTTTTTTT	A	TTTTTTTTTT	C		A	AAAAAA-	B		В
6678	TTTTTTTTTT	c	TTTTTTTT	D	TTTTTTT-	В	TTTTTTTTT	D	AAAAAAA-	В	AAAAAA-	В	сттттстттттттт-	C
6679	TTTTTTTTTT	C	TTTTTTTT	D	TTTTTTT-	В	TTTTTTTTT	D	AAAAAA-	в	AAAAA-	В	CTTTTTCTTTTTTTTT	C
7078	TTTTTTTTTTT	С	TTTTTTTT	D	TTTTTTT-	В	TTTTTTTTT	D	AAAAAA-	В	AAAAA-	В	CTTTTTCTTTTTTTTTTT.	В
7089	TTTTTTTTTT	c	TTTTTTTTT	D	TTTTTTT-	В	TTTTTTTTT	D	AAAAAAA-	В	AAAAAA-	В		В
6673	TTTTTTTTTTT	c	TTTTTTTT	D	TTTTTTTT-	B	TTTTTTTTT	D	AAAAAAA-	B	AAAAAA- AAAAAAA-	B	CTTTTTCTTTTTTTTT-	C D
6713	TTTTTTTTTT	č	TTTTTTTT	D	TTTTTTT-	В	TTTTTTTTT	D	AAAAAAA-	в	AAAAAA-	В	CTTTTTCTTTTTTTTT	č
6566	ΤΤΤΤΤΤΤΤΤΤΤΤΤ-	В	TTTTTTTT	D	TTTTTTTT	А	TTTTTTTTT	D	AAAAAAA	А	AAAAA-	В	CTTTTTCTTTTTTTTTTTT	A
396	TTTTTTTTT	D	TTTTTTT	E		В	TTTTTTGTT	E	AAAAAAA	В	AAAAAA-	В	CTTTTTCTTTTTTTTT	D
397	TTTTTTTTT	D	TTTTTTTT	D	TTTTTTTT.	B	TTTTTTGTT	E	AAAAAAA-	B	AAAAAA-	B		D
399	TTTTTTTTT	D	TTTTTTTT	D	TTTTTTTT-	В	TTTTTTGTT	E	AAAAAA-	В	AAAAAA-	В	CTTTTTCTTTTTTTTTT	D
400	TTTTTTTTT	D	TTTTTTTT	D	TTTTTTTT-	в	TTTTTTGTT	Е	AAAAAA-	в	AAAAA-	в	CTTTTTCTTTTTTTT	D
401	TTTTTTTTT	D	TTTTTTTT	D	TTTTTTT-	В	TTTTTTGTT	E	AAAAAA-	В	AAAAA-	В	CTTTTTCTTTTTTTTTT	D
403	TTTTTTTT	D	TTTTTTTT	D	11177777	B	TTTTTTGTT	E	AAAAAAA-	B	AAAAAA-	B		D
523 7137	TTTTTTT	מ	TTTTTTT	ם	TTTTTT-	B	TTTTTTGTT	F	AAAAAAA-	B	AAAAAA-	B	CITITICITITITIT	D
7138	TTTTTTTT	D	TTTTTTTT	D	TTTTTTT-	В	TTTTTTGTT	E	AAAAAA-	В	AAAAA-	В	CTTTTTCTTTTTTTTT	D
6984	TTTTTTTTT	D	TTTTTTTT	D	TTTTTTT-	В	TTTTTTGTT	Е	AAAAAA-	В	AAAAA-	в	CTTTTTCTTTTTTTTT	D
6985	TTTTTTTTT	D	TTTTTTTT	D	TTTTTTT-	В	TTTTTTGTT	E	AAAAAA-	В	AAAAAA-	В	CTTTTTCTTTTTTTTTT	D
6986 201	1111TTTTT	D	1111TTTTT	D	1111TTTT- TTTTTTT-	B	1111TTGTT	E	AAAAAAA- AAAAAAA	B	AAAAAA- AAAAAA-	B		D C
201		~		5		5		-	,	5		5		5
203	TTTTTTTTTTTT	A	TTTTTTTT	D	TTTTTTT-		TTTTTTTTT		AAAAAA-	В	AAAAA-	В	стттттстттттттттт-	В
202 205	TTTTTTTTTTT TTTTTTTTTT	A C	TTTTTTTT TTTTTTTT	D E	TTTTTTT- TTTTTTT-	B B	TTTTTTTTT TTTTTTTTTT	C C	AAAAAA- AAAAAAA-	B B	AAAAAA- AAAAAAA	B A		B A

Appendix E Sequence information of the microsatellite regions of *M. winkleri* individuals and outgroups included in the TCS haplotype network.

Plant ID		Population circles ²	Snecies	Collector	Location
6367	2	1	M. tanarius	Conector	Malavsia, Borneo, Sabah, Kota Belud, near Siu Motel
5864	4	2	M. tanarius	BFiala	Malaysia, Sabah, 5 km to Kuala Penyu
227	5	3	M. tanarius	UMoog	Indonesia, Sumatra, Jambi, road from Sungaipenuh to Bangko ca. 70 km to Bangko
216	/ 19	4	M. tanarius M. tanarius	ASchwarzbach	Australia Borneo, Brunei, Bandar Seri Begawan
6927	1a	5	M. tanarius	BFiala	Borneo, Brunei, road BSB-S. Liang, km 64
6928	1a	5	M. tanarius	BFiala	Borneo, Brunei, road BSB-S. Liang, km 64
6929	1a	5	M. tanarius	BFiala	Borneo, Brunei, road BSB-S. Liang, km 64
6002	1a 1a	6	M. tanarius	BFiala	Borneo, Brunei, Tutong
5215	1a	7	M. tanarius	DGuicking	Malaysia, Borneo, Sabah, Danum Valley, logging site 2006, north of road to Lahad Datu
5217	1a	7	M. tanarius	DGuicking	Malaysia, Borneo, Sabah, Danum Valley, logging site 2006, north of road to Lahad Datu
5218 6144	1a 1a	8	M. tanarius M. tanarius	CBaier	Malaysia, Borneo, Sabah, Danum Valley, logging site 2006, north of road to Lanad Datu Malaysia, Borneo, Sabah, Danum Valley, road to Malua, junction to BRI
6145	1a	8	M. tanarius	CBaier	Malaysia, Borneo, Sabah, Danum Valley, road to Malua, junction to BRL
6149	1a	8	M. tanarius	CBaier	Malaysia, Borneo, Sabah, Danum Valley, road to Malua, junction to BRL
6396	1a	9	M. tanarius	CBaier	Malaysia, Borneo, Sabah, from Kota Kinabalu to Ranau, stop 1
6397 6398	1a 1a	9	M. tanarius M. tanarius	CBaier	Malaysia, Borneo, Sabah, from Kota Kinabalu to Ranau, stop 1 Malaysia, Borneo, Sabah, from Kota Kinabalu to Ranau, stop 1
6400	1a	10	M. tanarius	CBaier	Malaysia, Borneo, Sabah, from Kota Kinabalu to Ranau, stop 2
6351	1a	11	M. tanarius	CBaier	Malaysia, Borneo, Sabah, from Kota Kinabalu towards Kota Belud
6352	1a	11	M. tanarius	CBaier	Malaysia, Borneo, Sabah, from Kota Kinabalu towards Kota Belud
6387	1a 1a	12	M. tanarius	CBaier	Malaysia, Borneo, Sabah, Kota Belud, direction Kudat
6388	1a	12	M. tanarius	CBaier	Malaysia, Borneo, Sabah, Kota Belud, direction Kudat
6389	1a	12	M. tanarius	CBaier	Malaysia, Borneo, Sabah, Kota Belud, direction Kudat
6360	1a 10	13	M. tanarius	CBaier	Malaysia, Borneo, Sabah, Kota Belud, near Siu Motel Malaysia, Borneo, Sabah, Kota Belud, near Siu Motel
6362	1a	13	M. tanarius	CBaier	Malaysia, Borneo, Sabah, Kota Belud, near Siu Motel
6363	1a	13	M. tanarius	CBaier	Malaysia, Borneo, Sabah, Kota Belud, near Siu Motel
6364	1a	13	M. tanarius	CBaier	Malaysia, Borneo, Sabah, Kota Belud, near Siu Motel
6366	1a 1o	13	M. tanarius	CBaier	Malaysia, Borneo, Sabah, Kota Belud, near Siu Motel Malaysia, Borneo, Sabah, Kota Kinabah, paor Padang
6326	1a 1a	14	M. tanarius	CBaier	Malaysia, Borneo, Sabah, Kota Kinabalu, near Padang Malaysia, Borneo, Sabah, Kota Kinabalu, near Padang
6327	1a	14	M. tanarius	CBaier	Malaysia, Borneo, Sabah, Kota Kinabalu, near Padang
6328	1a	14	M. tanarius	CBaier	Malaysia, Borneo, Sabah, Kota Kinabalu, near Padang
6329	1a	14	M. tanarius	CBaier	Malaysia, Borneo, Sabah, Kota Kinabalu, near Padang Malaysia, Borneo, Sabah, Kota Kinabalu, near Padang
6265	1a 1a	14	M. tanarius	CBaier	Malaysia, Borneo, Sabah, Kota Kinabalu, periphery of KK
6266	1a	15	M. tanarius	CBaier	Malaysia, Borneo, Sabah, Kota Kinabalu, periphery of KK
6267	1a	15	M. tanarius	CBaier	Malaysia, Borneo, Sabah, Kota Kinabalu, periphery of KK
6292	1a	16	M. tanarius	CBaier	Malaysia, Borneo, Sabah, near Kota Kinabalu, Pulau Gaya
6293	1a 1a	16	M. tanarius	CBaier	Malaysia, Borneo, Sabah, near Kota Kinabalu, Pulau Gaya Malaysia, Borneo, Sabah, near Kota Kinabalu, Pulau Gaya
6436	1a	17	M. tanarius	CBaier	Malaysia, Borneo, Sabah, outskirts of Ranau
6443	1a	17	M. tanarius	CBaier	Malaysia, Borneo, Sabah, outskirts of Ranau
6450	1a	17	M. tanarius	CBaier	Malaysia, Borneo, Sabah, outskirts of Ranau Malaysia, Borneo, Sabah, outskirts of Ranau
6257	1a 1a	18	M. tanarius	CBaier	Malaysia, Borneo, Sabah, periphery of Beaufort
6043	1a	19	M. tanarius	BFiala	Malaysia, Borneo, Sabah, Poring, Langanan
6026	1a	19	M. tanarius	BFiala	Malaysia, Borneo, Sabah, Poring, logging road
6033 5220	1a 10	19	M. tanarius	BFiala	Malaysia, Borneo, Sabah, Poring, logging road Malaysia, Borneo, Sabah, Pulau Tira, Island
5240	1a	20	M. tanarius	DGuicking	Malaysia, Borneo, Sabah, Pulau Tiga Island
5241	1a	20	M. tanarius	DGuicking	Malaysia, Borneo, Sabah, Pulau Tiga Island
6356	1a	21	M. tanarius	CBaier	Malaysia, Borneo, Sabah, South of Kota Belud
6357	1a 1a	21	M. tanarius M. tanarius	CBaier	Malaysia, Borneo, Sabah, South of Kota Belud Malaysia, Borneo, Sabah, South of Kota Belud
5127	1a	22	M. tanarius	DGuicking	Malaysia, Borneo, Sabah, Tawau Hills Park, edge of oil palm plantation
5128	1a	22	M. tanarius	DGuicking	Malaysia, Borneo, Sabah, Tawau Hills Park, edge of oil palm plantation
5129	1a	22	M. tanarius	DGuicking	Malaysia, Borneo, Sabah, Tawau Hills Park, edge of oil palm plantation
6220	1a 1a	23	M. tanarius	CBaier	Malaysia, Borneo, Sabah, Tenom, Hill near Hotel Perkasa Malaysia, Borneo, Sabah, Tenom, Hill near Hotel Perkasa
6224	1a	23	M. tanarius	CBaier	Malaysia, Borneo, Sabah, Tenom, Hill near Hotel Perkasa
6225	1a	23	M. tanarius	CBaier	Malaysia, Borneo, Sabah, Tenom, Hill near Hotel Perkasa
6227	1a 10	23	M. tanarius	CBaier	Malaysia, Borneo, Sabah, Tenom, Hill near Hotel Perkasa Malaysia, Borneo, Sabah, Tenom, Jalan Rukit Bendara
6182	1a 1a	24	M. tanarius	CBaier	Malaysia, Borneo, Sabah, Tenom, Jalan Bukit Bendera
6183	1a	24	M. tanarius	CBaier	Malaysia, Borneo, Sabah, Tenom, Jalan Bukit Bendera
6195	1a	24	M. tanarius	CBaier	Malaysia, Borneo, Sabah, Tenom, Jalan Tumantalik, near river Pegalan
6197 6198	1a 1a	24 24	ıvı. tanarius M. tanarius	CBaier	ivialaysia, domeo, Sabah, Tenom, Jalan Tumantalik, near river Pegalan Malaysia, Borneo, Sabah, Tenom, Jalan Tumantalik, near river Pegalan
6922	1a	25	M. tanarius	BFiala	Malaysia, Borneo, Sarawak Lawas
6923	1a	25	M. tanarius	BFiala	Malaysia, Borneo, Sarawak Lawas
6924	1a	25	M. tanarius	BFiala	Malaysia, Borneo, Sarawak Lawas
6925	1a 1a	25 25	M. tanarius	BFiala	Malaysia, Borneo, Sarawak Lawas Malaysia, Borneo, Sarawak Lawas
1531	1b	26	M. tanarius	FSlik	Indonesia, Borneo, E-Kalimantan, Samboja
1532	1b	26	M. tanarius	FSlik	Indonesia, Borneo, E-Kalimantan, Samboja
1533	1b	26	M. tanarius	FSlik	Indonesia, Borneo, E-Kalimantan, Samboja
4334 6365	пс За	∠/ 28	w. tanarius M. tanarius	CBaier	Malaysia, Borneo, Saban, Leupio, Jin. Microwave Malaysia, Borneo, Sabah, Kota Belud, near Siu Motel
305	3b	29	M. tanarius	UMaschwitz	Indonesia, Java
448	6a	30	M. tanarius	UMoog	Malaysia, Peninsula, Pahang, Cameron Highlands, Tanah Rata, road to Tanah Rata
6073	6a 6-	30	M. tanarius	CBaier	Malaysia, Peninsula, Selangor, alte Genting road, 20 km to K.L.
6077	оа 6а	30 30	м. uanarius M. tanarius	CBaier	Malaysia, Ferrinsula, Selangor, alte Genting road, 20 km to K.L. Malaysia, Peninsula, Selangor, alte Genting road, 20 km to K.L.
6078	6a	30	M. tanarius	CBaier	Malaysia, Peninsula, Selangor, alte Genting road, 20 km to K.L.
6079	6a	30	M. tanarius	CBaier	Malaysia, Peninsula, Selangor, alte Genting road, 20 km to K.L.
6080	6a	30	M. tanarius	CBaier	Malaysia, Peninsula, Selangor, alte Genting road, 20 km to K.L.
6105 6107	6a 69	31	M. tanarius	CBaier	manaysia, Peninsula, Selangor, alte Genting road, 25 km to K.L. Malaysia, Peninsula, Selangor, alte Genting road, 25 km to K l
6108	6a	31	M. tanarius	CBaier	Malaysia, Peninsula, Selangor, alte Genting road, 25 km to K.L.
6086	6a	32	M. tanarius	CBaier	Malaysia, Peninsula, Selangor, alte Genting road, after pass, 50 km to K.L.
6087	6a	32	M. tanarius	CBaier	Malaysia, Peninsula, Selangor, alte Genting road, after pass, 50 km to K.L.
6002	6a 69	32	M. tanarius	CBaier	manaysia, Peninsula, Selangor, alte Genting road, after pass, 50 km to K.L. Malaysia, Peninsula, Selangor, alte Genting road, after pass, 50 km to K.L.
2682	6a	32	M. tanarius	UMaschwitz	Malaysia, Peninsula, Selangor, Gombak Valley
6070	6b	33	M. tanarius	CBaier	Malaysia, Peninsula, Selangor, alte Genting road, 20 km to K.L.
43	6b	33	M. tanarius	UMaschwitz	Majaysia, Peninsula, Selangor, Kuala Lumpur

Appendix F Macaranga tanarius individuals included in the TCS haplotype network calculation, with corresponding haplotypes, population circles, locations and collectors.

The HT corresponds to the numbering in Figure 2-3.
 Matching numbers indicate that individuals are grouped together in one population circle in Figure 2-4.

Locus Name	Primer Name	Direction	Primer Sequence (5´- 3´)
ccmp1 ¹	ccmp1F	forward	CAGGTAAACTTCTCAACGGA
	ccmp1R	reverse	CCGAAGTCAAAAGAGCGATT
ccmp2 ¹	ccmp2F	forward	GATCCCGGACGTAATCCTG
	ccmp2R	reverse	ATCGTACCGAGGGTTCGAAT
ccmp3 ¹	ccmp3F	forward	CAGACCAAAAGCTGACATAG
	ccmp3R	reverse	GTTTCATTCGGCTCCTTTAT
ccmp4 ¹	ccmp4F	forward	AATGCTGAATCGAYGACCTA
	ccmp4R	reverse	CCAAAATATTBGGAGGACTCT
ccmp5 ¹	ccmp5F	forward	TGTTCCAATATCTTCTTGTCATTT
	ccmp5R	reverse	AGGTTCCATCGGAACAATTAT
ccmp6 ¹	ccmp6F	forward	CGATGCATATGTAGAAAGCC
	ccmp6R	reverse	CATTACGTGCGACTATCTCC
ccmp7 ¹	ccmp7F	forward	CAACATATACCACTGTCAAG
	ccmp7R	reverse	ACATCATTATTGTATACTCTTTC
ccmp10 ¹	ccmp10F	forward	TTTTTTTTAGTGAACGTGTCA
	ccmp10R	reverse	TTCGTCGDCGTAGTAAATAG
atp B-rbc L ²	atpB-rbcL-F	forward	GAAGTAGTAGGATTGATTCTC
	atpB-rbcL-R	reverse	CAACACTTGCTTTAGTCTCTG
<i>trn</i> L- <i>trn</i> F ³	trnL-trnF-F	forward	GGAAATGGGGATATGGCG
	trnL-trnF-R	reverse	ATTTGAACTGGTGACACGAG
rpL16 ⁴	rpL16F71 ^₄	forward	GCTATGCTTAGTGTGTGACTCGTTG
	RpL16-F2- PCR ⁵	forward	CTCATCGCTTTGCATTATCTGG
	rpL16R1516 4	reverse	CCCTTCATTCTTCCTCTATGTTG
<i>trn</i> D ^{GUC} -trn T ^{GGU 6}	trnD ^{GUC}	forward	ACCAATTGAACTACAATCCC
	trnT ^{GGU}	reverse	CTACCACTGAGTTAAAAGGG
trnS ^{UGA} -trnfM ^{CAU 6}	trnS ^{UGA}	forward	GAGAGAGAGGGATTCGAACC
	trnFM ^{CAU}	reverse	CATAACCTTGAGGTCACGGG

Appendix G Chloroplast regions checked for the possibility of amplification and sequencing and sequence variation and corresponding primer sequences.

¹ Chloroplast markers, Weising & Gardner 1999; Vogel et al. 2003.

² Samuel et al. 1997.

³Taberlet et al. 1991, Forwardard primer nested from Jakob & Blattner 2006.

⁴ Small et al. 1998; Shaw et al. 2005.

⁵ Self-designed.

⁶ Demesure et al. 1995; Shaw et al. 2005.

Appendix H	Individuals included in the haplotype network calculation of M. winkleri and other
Macaranga spe	cies with corresponding microsatellite sequence information based on <i>atpB-rbcL</i>
intergenic space	er sequences (this study and database).

Plant ID Number	HT Species	s Loc	ation	Database accession number	1st SSR in atpB-rbcL	Letter for motif	2nd SSR in atpB-rbcL	Letter for motif	3rd SSR in atpB-rbcL	Lette for moti	f 4th SSR in f atpB-rbcL	Letter for motif	5th SSR in atpB-rbcL	Letter for motif
4396 2478	1 M. winkl	leri Borr leri Mal:	neo, Brunei, Kuala Belalong avsia, Borneo, Sabab, Bukit Taviu, stop 1			F	TTTTTTTTTT	C A	TTTTTTT-	B		A	AAAAAAA-	B
2485	1 M. winkl	<i>leri</i> Mala	aysia, Borneo, Sabah, Bukit Taviu, stop 1		TTTTTTTT	F	TTTTTTTTT	A	TTTTTTT-	В	TTTTTTTTTTT	A	AAAAAAA	В
3857	1 M. winki 1 M. winki	ien Mai ileri Mala	aysia, Borneo, Sabah, Bukit Taviu, stop 7 aysia, Borneo, Sabah, Danum Valley, Borneo rainforest lodge		TTTTTTTTT	F	TTTTTTTTTTT	в	TTTTTTTT-	В	TTTTTTTTTT-	В	AAAAAAA AAAAAAA	в
3860 4615	1 M. winkl 1 M. winkl	tleri Mala tleri Mala	aysia, Borneo, Sabah, Danum Valley, Borneo rainforest lodge avsia, Borneo, Sabah, Danum Valley, DVEC, big gap close to office, trail into forest		TTTTTTTT	F	TTTTTTTTTT	BC	TTTTTTT-	B		B	AAAAAAA- AAAAAAA-	B
4733	1 M. winkl	<i>leri</i> Mala	aysia, Borneo, Sabah, Danum Valley, junction to Borneo rainforest lodge		TTTTTTTT	F	TTTTTTTTT	c	TTTTTTT-	В	TTTTTTTTTTT	A	AAAAAAA-	В
4734 4736	1 M. winki 1 M. winki	ileri Mala Ileri Mala	aysia, Borneo, Sabah, Danum Valley, junction to Borneo rainforest lodge aysia, Borneo, Sabah, Danum Valley, junction to Borneo rainforest lodge		TTTTTTTTT	F	TTTTTTTTTT	c	TTTTTTT-	В	TTTTTTTTTTT	A	AAAAAAA AAAAAAA	в
6154 6146	1 M. winkl	ileri Mala Ileri Mala	aysia, Borneo, Sabah, Danum Valley, road to Malua, junction to Borneo rainforest lodge avsia, Borneo, Sabah, Danum Valley, road to Malua, junction to Borneo rainforest lodge			F		c	TTTTTTTT-	B	TTTTTTTTTTTT	A A	AAAAAAA-	B
6153	1 M. winkl	<i>leri</i> Mala	aysia, Borneo, Sabah, Danum Valley, road to Malua, junction to Borneo rainforest lodge		TTTTTTTT	F	TTTTTTTTT	c	TTTTTTT-	В	TTTTTTTTTTT	A	AAAAAAA-	В
6130 6112	1 M. winki 1 M. winki	ileri Mala Ileri Mala	aysia, Borneo, Sabah, Danum Valley, Tembaling trail aysia, Borneo, Sabah, Danum Valley, Tembaling trail		TTTTTTTTT	F	TTTTTTTTTT	c	TTTTTTT-	В	TTTTTTTTTTT	A	AAAAAAA AAAAAAA	в
6129 5066	1 M. winkl	ileri Mala Ileri Mala	aysia, Borneo, Sabah, Danum Valley, Tembaling trail aysia, Borneo, Sabah, Danum Valley, west orid, W10S1 5			F		c	TTTTTTTT-	B	TTTTTTTTTTTT	A A	AAAAAAA-	B
5058	1 M. winkl	<i>leri</i> Mala	aysia, Borneo, Sabah, Danum Valley, west grid, W1051.5		TTTTTTTT	F	TTTTTTTTT	c	TTTTTTT-	в	TTTTTTTTTTT	A	AAAAAAA-	В
5065 6403	1 M. winkl 1 M. winkl	<i>ileri Mala</i> <i>ileri Mala</i>	aysia, Borneo, Sabah, Danum Valley, west grid, W10S1.5 aysia, Borneo, Sabah, from KK to Ranau, Jalan Hulan, near Kunung Manangkob, stop 3		TTTTTTTT	F	TTTTTTTTTT	с С	TTTTTTT-	B	TTTTTTTTTTT	A	AAAAAAA- AAAAAAA-	B
6407	1 M. winkl	ileri Mala	aysia, Borneo, Sabah, from KK to Ranau, Jalan Hulan, near Kunung Manangkob, stop 3			F	TTTTTTTTTT	c		B	TTTTTTTTTTT	A	AAAAAAA-	B
6412	1 M. winki	ileri Mala	aysia, Borneo, Sabah, from KK to Ranau, stop 4		TTTTTTTTT	F	TTTTTTTTTT	c	11111111	в	TTTTTTTTTTTT	Â	AAAAAAA-	в
6414 6411	1 M. winkl 1 M. winkl	<i>ileri Mala</i> <i>ileri Mala</i>	aysia, Borneo, Sabah, from KK to Ranau, stop 4 aysia, Borneo, Sabah, from KK to Ranau, stop 4		TTTTTTTT	F	TTTTTTTTTT	с с	TTTTTTT-	B	11111111111111111	A	AAAAAAA- AAAAAAA-	B
6417	1 M. winkl	ileri Mala	aysia, Borneo, Sabah, from KK to Ranau, stop 5			F	TTTTTTTTTT	c		B	TTTTTTTTTTT	A	AAAAAAA-	B
6421	1 M. winki	ileri Mala	aysia, Borneo, Sabah, from KK to Ranau, stop 5		TTTTTTTTT	F	TTTTTTTTTT	c	11111111	в	TTTTTTTTTTTT	Â	AAAAAAA-	в
6424 6426	1 M. winkl 1 M. winkl	teri Mala teri Mala	aysia, Borneo, Sabah, from KK to Ranau, stop 6, 55 km to Ranau aysia, Borneo, Sabah, from KK to Ranau, stop 6, 55 km to Ranau		TTTTTTTTT	F	TTTTTTTTTT	с с	TTTTTTT-	B	TTTTTTTTTTTT	A	AAAAAAA- AAAAAAA-	B
6427	1 M. winkl	leri Mala	aysia, Borneo, Sabah, from KK to Ranau, stop 6, 55 km to Ranau		TTTTTTTT	F	TTTTTTTTT	Ċ	TTTTTTT-	В	*****	A	AAAAAAA	В
2051	1 M. winki 1 M. winki	ien Mai ileri Mala	aysia, Borneo, Sabah, Luasong aysia, Borneo, Sabah, Poring, Langanan		TTTTTTTT	F	TTTTTTTTTTT	в	TTTTTTTT-	В	TTTTTTTTTTTT	A	AAAAAAA AAAAAAA	В
5667	1 M. winkl	ileri Mala ileri Mala	aysia, Borneo, Sabah, Poring, Langanan aysia, Borneo, Sabah, Poring, Langanan		TTTTTTTTT	F	TTTTTTTTTT	B	TTTTTTTT-	B	TTTTTTTTTTTT	A A	AAAAAAA-	B
6462	1 M. winkl	<i>leri</i> Mala	aysia, Borneo, Sabah, Ranau to KK		TTTTTTTT	F	TTTTTTTTT	c	TTTTTTT-	В	TTTTTTTTTTT	A	AAAAAA-	В
6469 6468	1 M. winkl 1 M. winkl	<i>ileri Mala</i> <i>ileri Mala</i>	aysia, Borneo, Sabah, Ranau to KK aysia, Borneo, Sabah, Ranau to KK		TTTTTTTTT	F	TTTTTTTTTT	с с	TTTTTTT-	B	TTTTTTTTTTTTT TTTTTTTTTTTT	A	AAAAAAA- AAAAAAA-	B
4286	1 M. winkl	ileri Mala	aysia, Borneo, Sabah, Tabin Wildlife Reserve, Lipad trail			F	TTTTTTTTT	С	TTTTTTT-	В	TTTTTTTTTTT	A	AAAAAAA	B
4291 4290	1 M. winki 1 M. winki	ileri Mala	aysia, Borneo, Sabah, Tabin Wildlife Reserve, Lipad trail, gap aysia, Borneo, Sabah, Tabin Wildlife Reserve, Lipad trail, gap		TTTTTTTTT	F	TTTTTTTTTT	c	TTTTTTT-	В	TTTTTTTTTTTT	A	AAAAAAA AAAAAAA	В
5139 5140	1 M. winkl 1 M. winkl	ileri Mala Ileri Mala	aysia, Borneo, Sabah, Tawau Hills Park aysia, Borneo, Sabah, Tawau Hills Park			F	TTTTTTTTTT	с с	TTTTTTT-	B	TTTTTTTTTTTT TTTTTTTTTTTT	A	AAAAAAA- AAAAAAA-	B
5142	1 M. winkl	<i>leri</i> Mala	aysia, Borneo, Sabah, Tawau Hills Park		TTTTTTTT	F	TTTTTTTTT	c	TTTTTTT-	В	TTTTTTTTTTT	A	AAAAAA-	В
5159 5196	1 M. winki 1 M. winki	<i>ieri Mala</i> <i>ileri Mala</i>	aysia, Borneo, Saban, Tawau Hills Park, trail to hot springs, 0 to 2.6 km aysia, Borneo, Sabah, Tawau Hills Park, trail to hot springs, 0 to 2.6 km		TTTTTTTTT	F	TTTTTTTTTT	c	TTTTTTT-	В	TTTTTTTTTTTT	A	AAAAAAA- AAAAAAA-	В
5194	1 M. winkl	ileri Mala ileri Mala	aysia, Borneo, Sabah, Tawau Hills Park, trail to hot springs, 0 to 2.6 km		TTTTTTTTTT	F	TTTTTTTTTT	С	TTTTTTT-	B	TTTTTTTTTTT	A	AAAAAAA-	B
6673	1 M. winkl	ileri Mala	aysia, Borneo, Sarawak, Jalan Miri -Bintulu		TTTTTTTTTT	D	TTTTTTTTT	D	ттттттт-	в	TTTTTTTTT	D	AAAAAAA-	в
6678 7078	1 M. winkl 1 M. winkl	<i>ileri Mala</i> <i>ileri Mala</i>	aysia, Borneo, Sarawak, Jalan Miri -Bintulu aysia, Borneo, Sarawak, Pelagus Resort		TTTTTTTTTT	D D	TTTTTTTT	D	TTTTTTT-	B	TTTTTTTTT	D D	AAAAAAA- AAAAAAA-	B
7089	1 M. winkl	ileri Mala	aysia, Borneo, Sarawak, Pelagus Resort		TTTTTTTTTT	D	TTTTTTTT	D	TTTTTTT-	B	TTTTTTTTT	D	AAAAAAA	B
6713	1 M. winki	ieri Mala	aysia, Borneo, Sarawak, Pelagus Resort aysia, Borneo, Sarawak, between Bukit Saban Resort and Betong		TTTTTTTTTT	D	TTTTTTTTT	D	11111111-	В	TTTTTTTTT	D	AAAAAAA-	В
6061 244	2 M. winkl 2 M. winkl	<i>leri</i> Borr <i>leri</i> Borr	neo, Brunei, Belait, Labi neo. Brunei, Belait, Labi road (southern part of the road)			с с	TTTTTTTTT	D	TTTTTTTTT	A	TTTTTTTTT	C D	AAAAAAAA AAAAAAAAA	A
5803	2 M. winkl	leri Borr	neo, Brunei, Belait, Tereja		TTTTTTTTT	Ċ	TTTTTTTT	D	111111111	A	TTTTTTTT	С	ААААААА	A
5962 5970	2 M. winki 2 M. winki	ieri Borr	neo, Brunei, Belait, Tereja neo, Brunei, Belait, Tereja		TTTTTTTTTTT-	c	TTTTTTTTT	D	TTTTTTTTT	A	TTTTTTTTT	c	AAAAAAAA	A
5974 5983	2 M. winkl 2 M. winkl	ileri Borr Ileri Borr	neo, Brunei, Belait, Tereja neo, Brunei, Belait, Tereja			C	TTTTTTTT	D		A A		C C		A
6873	2 M. winki 2 M. winki	<i>leri</i> Borr	neo, Brunei, Belait, Wong Kadi waterfall		TTTTTTTTT-	c	TTTTTTTTT	D	11111111-	в	TTTTTTTTT	D	AAAAAAAA	Â
6874 6875	2 M. winkl 2 M. winkl	<i>leri</i> Borr <i>leri</i> Borr	neo, Brunei, Belait, Wong Kadi waterfall neo, Brunei, Belait, Wong Kadi waterfall		TTTTTTTTTT	с с	TTTTTTTTT	D		A	TTTTTTTTT	C C	AAAAAAAA AAAAAAAA	A
6962	2 M. winkl	leri Borr	neo, Brunei, Belait, Wong Kadi waterfall		TTTTTTTTTT-	c	TTTTTTTT	D		A	TTTTTTTTT	c	AAAAAAA	A
5700	2 M. winki 2 M. winki	<i>leri</i> Borr	neo, Brunei, Temburong, Belalong		TTTTTTTTT-	c	TTTTTTTTT	D	11111111-	в	TTTTTTTTT	D	AAAAAAAA	Â
5723	2 M. winkl 2 M. winkl	teri Borr teri Borr	neo, Brunei, Temburong, Belalong neo, Brunei, Temburong, Belalong			с с	TTTTTTTTT	D	TTTTTTT-	B	TTTTTTTTT	D	AAAAAAAA	A
6895	2 M. winkl	leri Borr	neo, Brunei, Temburong, Bukit Patoi		TTTTTTTTT	č	TTTTTTTT	D	TTTTTTT-	В	TTTTTTTT	D	AAAAAAA	A
6897 5855	2 M. winkl 2 M. winkl	<i>leri</i> Borr <i>leri</i> Borr	neo, Brunei, Temburong, Bukit Patoi neo, Brunei, Temburong, Bukit Patoi		TTTTTTTTTT	с с	TTTTTTTTT	D	TTTTTTT-	B	TTTTTTTTT	D	AAAAAAAA AAAAAAAA	A
6898 5763	2 M. winkl 2 M. winkl	teri Borr Teri Borr	neo, Brunei, Temburong, Bukit Patoi			c	TTTTTTTT	D	TTTTTTTT-	B	TTTTTTTTT	D	ΑΑΑΑΑΑΑ	A A
5828	2 M. winkl	leri Borr	neo, Brunei, Temburong, Bukit Patoi		TTTTTTTTTT	č	TTTTTTTT	D	TTTTTTT-	В	TTTTTTTTT	D	AAAAAAA	A
5829 6656	2 M. winkl 2 M. winkl	<i>ileri</i> Borr <i>ileri</i> Mala	neo, Brunei, Temburong, Bukit Patoi aysia, Borneo, Sarawak, Jalan Miri -Bintulu		TTTTTTTTTT	с с	TTTTTTTTT	D	TTTTTTTT	A	TTTTTTTTT	D	AAAAAAAA AAAAAAAA	A
6657	2 M. winkl	ileri Mala	aysia, Borneo, Sarawak, Jalan Miri -Bintulu			c	TTTTTTTT	D		A	TTTTTTTTT	D	AAAAAAAA	A
6659	2 M. winkl	ileri Mala	aysia, Borneo, Sarawak, Jalan Miri -Bintulu		TTTTTTTTTT	č	TTTTTTTT	D	TTTTTTTT	A	TTTTTTTTT	D	AAAAAAAA	A
6561 6562	2 M. winkl 2 M. winkl	<i>ileri Mala</i> <i>ileri Mala</i>	aysia, Borneo, Sarawak, Lambir National Park aysia, Borneo, Sarawak, Lambir National Park		TTTTTTTTTT	с с	TTTTTTTT	D	TTTTTTTTT TTTTTTTTT	A	TTTTTTTTT	D D	AAAAAAAA AAAAAAAA	A
6566	2 M. winkl	ileri Mala	aysia, Borneo, Sarawak, Lambir National Park		TTTTTTTTTT-	c	TTTTTTTT	D		A	TTTTTTTTT	D	AAAAAAA	A
5918	3 M. winkl	leri Borr	neo, Brunei, Belait, Labi		TTTTTTTTT-	c	TTTTTTTTT	D		Ā	TTTTTTTTT	c	AAAAAAAA	Ă
5810 202	3 M. winkl 4 M. pruin	ileri Borr nosa Mala	neo, Brunei, Temburong, Belalong avsia. Selangor		TTTTTTTTTTT	C B	TTTTTTTT	D	TTTTTTT-	B	TTTTTTTTT	D D	AAAAAAAA AAAAAAA-	A B
201	5 M. gigar	ntea Mala	aysia, Selangor			В	TTTTTTTT	D	TTTTTTT-	В	TTTTTTTTT	D	AAAAAAA	B
523	7 M. winkl	leriella Mala	aysia, Selangui aysia, Borneo, Sarawak, Mulu		TTTTTTTTT	E	тттттттт	D	TTTTTTT-	В	TTTTTTGTT	F	AAAAAAA-	В
6984 6985	7 M. winkl 7 M. winkl	leriella Mala Ieriella Mala	aysia, Borneo, Sarawak, Mulu aysia, Borneo, Sarawak, Mulu			E	TTTTTTTTT	D	TTTTTTT-	B	TTTTTTGTT	F	AAAAAAA- AAAAAAA-	B
6986	7 M. winkl	<i>leriella</i> Mala	aysia, Borneo, Sarawak, Mulu		TTTTTTTTT	E	TTTTTTTT	D	TTTTTTT-	В	TTTTTTGTT	F	AAAAAA	В
7137	7 M. winki 7 M. winki	<i>leriella</i> Mala <i>leriella</i> Mala	aysia, Borneo, Sarawak, Mulu National Park aysia, Borneo, Sarawak, Mulu National Park		TTTTTTTTT	E	TTTTTTTTT	D	TTTTTTT-	В	TTTTTTGTT	F	AAAAAAA- AAAAAAA-	В
396	7 M. winkl	leriella Mala	aysia, Borneo, Sarawak, Mulu, Clearwatercave, Meliau Gorge			E	TTTTTTTT	E	TTTTTTT-	B	TTTTTTGTT	F	AAAAAAA-	B
398	7 M. winkl	leriella Mala	aysia, Borneo, Sarawak, Mulu, Clearwatercave, trail		TTTTTTTTT	E	TTTTTTTTT	D	11111111	в	TTTTTTGTT	F	AAAAAAA-	в
399 400	7 M. winkl 7 M. winkl	<i>leriella</i> Mala <i>leriella</i> Mala	aysia, Borneo, Sarawak, Mulu, Clearwatercave, trail avsia, Borneo, Sarawak, Mulu, Clearwatercave, trail			E	TTTTTTTT	D D	TTTTTTT-	B	TTTTTTGTT	F	AAAAAAA- AAAAAAA-	B
401	7 M. winkl	leriella Mala	aysia, Borneo, Sarawak, Mulu, Clearwatercave, trail		TTTTTTTTTT	E	TTTTTTTT	D	TTTTTTT-	В	TTTTTTGTT	F	AAAAAAA-	В
403	8 M. winki	ienella Mala Ileri Borr	aysia, Borneo, Sarawak, Mulu, Clearwatercave, trail neo, Brunei, Temburong, Kuala Belalong		TTTTTTTTTT	C	TTTTTTTTT	D	TTTTTTTT-	В	TTTTTTTTT	D	AAAAAAA AAAAAAAA	A
12 118	9 M. winkl 10 M. winkl	teri Borr teri Mala	neo, Brunei, Temburong, Belalong avsia, Borneo, Sabab, Deramakot Forest Reserve	DQ358245 DQ358246	TTTTTTTTTT	C F	TTTTTTTTT	D C	TTTTTTT-	B	TTTTTTTTT	D	AAAAAAAA AAAAAAA-	A B
136	11 M. recur	rvata Mal	aysia, Borneo, Sabah, Tawau Forest Reserve	DQ358244	1111111111	A	TTTTTTTA	F	111111111	Ā	TTTTTTTTT	D	AAAAAAA-	В
1986 1593	12 M. winkl 13 M. winkl	<i>leri</i> Mala <i>leri</i> Indo	aysia, Borneo, Sabah, Tawau Hills onesia, Borneo, E-Kalimantan, Samboja	DQ358247 DQ358248	TTTTTTTT	F	TTTTTTTT	D	TTTTTT-	B	TTTTTTTTT-	A B	AAAAAAA AAAAAAA-	B
211	14 M. conife	fera Mala	aysia, Peninsula, Selangor, Gombak Valley aysia, Peninsula, Pahang, Cameron Highland, Tanah Pata, rood to Tanah Pata	DQ358251	TTTTTTTTT	c	TTTTTTTT	D		B	TTTTTTTTT	D	AAAAAAA-	B
828	15 M. gigar	ntea Indo	nesia, Formoura, Farrang, Carrieron Fighland, Farran Rata, road to Farran Rata nesia, Borneo, E-Kalimantan, Bukit Bankirai	DQ358273	111111111111	В	TTTTTTT	E	TTTTTTT-	В	TTTTTTTTT	D	AAAAAAA	В
536 461	15 M. pruin 16 M. conifi	rosa Mala fera Mala	aysia, Peninsula aysia, Borneo, Sabah, Tawau Hills	DQ358274 DQ358252		B B	TTTTTTTT	E	TTTTTTT- TTTTTTTT-	B	11111111111 11111111111	D D	AAAAAAA- AAAAAAA-	B
162	17 M. gigar	ntea Indo	onesia, Borneo, E-Kalimantan, dirt road from Bukit Soeharto to Bukit Bankirai	DQ358262	11111111111	B		E	TTTTTT	c	TTTTTTTT	E	AAAAAAA	В
450	17 M. gigar	ntea Mala	aysia, Sentres, Janawan, Tola Rooming to Matang, 160 billige aysia, Peninsula, Pahang, Cameron Highland, Tanah Rata, road to Tanah Rata	DQ358254	111111111111	В	TTTTTTT	E	TTTTTTT	c	TTTTTTTT	E	AAAAAAA	В
40 435	17 M. gigar 17 M. hose	ntea Mala Mala	aysia, Peninsula, Pahang, Fraser's Hill aysia, Peninsula, Pahang, Janda Baik, 30 km from Bentong	DQ358255 DQ358257		B	TTTTTTT	E	TTTTTTT TTTTTTT	C C	TTTTTTTT	E	AAAAAAA- AAAAAAA-	B
454	17 M. hose	oi Mala	aysia, Peninsula, Selangor, Gombak Valley, Gombak	DQ358268	11111111111	В	TTTTTTT	E	TTTTTT	c	TTTTTTTT	E	AAAAAAA	В
485 2091	19 M. pears	sonii Mala Sonii Mala	aysia, borneo, Sabah, Crocker Kange, ∠o km to Kéningau aysia, Borneo, Sabah, Luasong	DQ358269 DQ358267		B	TTTTTTT	E	TTTTTTT	C	TTTTTTTT	E	AAAAAAA- AAAAAAA-	B
286 347	20 M. pube 21 M. pears	<i>sonii</i> Mala	aysia, Borneo, Sabah, Patau, near Tambunan, road to Mahua waterfall, Jln. Mahua onesia, Borneo, E-Kalimantan, Bukit Soeharto, road from Samarinda to Balikpapan	DQ358261 DQ358260	TTTTTTTTT	D D	TTTTTTTT	E	TTTTTT TTTTTTT	C C	TTTTTTTTT TTTTTTTTTT	D D	AAAAAAA- AAAAAAA-	B

* If taken from the database.

Appendix I Order of the *M. winkleri* individuals in the bar plots of the chloroplast assignment analysis.

Individual	Plant ID		
(1 bar)	Number	Species	Location
1	2478	M. winkleri	Malaysia, Borneo, Sabah, Bukit Taviu, stop 1
2	2485	M. winkleri	Malaysia, Borneo, Sabah, Bukit Taviu, stop 1 Malaysia, Borneo, Sabah, Bukit Taviu, stop 7
4	3857	M. winkleri	Malaysia, Borneo, Sabah, Danum Valley, Borneo rainforest lodge
5	3860	M. winkleri	Malaysia, Borneo, Sabah, Danum Valley, Borneo rainforest lodge
6	4615	M. winkleri	Malaysia, Borneo, Sabah, Danum Valley, DVFC, big gap close to office, trail into forest
7	4733	M. winkleri	Malaysia, Borneo, Sabah, Danum Valley, junction to Borneo rainforest lodge
8	4734	M. winkleri	Malaysia, Borneo, Sabah, Danum Valley, junction to Borneo rainforest lodge
9 10	4736	M. WINKIERI M. winkleri	Malaysia, Borneo, Sabah, Danum Valley, Junction to Borneo rainforest lodge Malaysia, Borneo, Sabah, Danum Valley, Tembaling trail
11	6129	M. winkleri	Malaysia, Borneo, Sabah, Danum Valley, Tembaling trail
12	6130	M. winkleri	Malaysia, Borneo, Sabah, Danum Valley, Tembaling trail
13	6146	M. winkleri	Malaysia, Borneo, Sabah, Danum Valley, road to Malua, junction to Borneo rainforest lodge
14	6154	M. winkleri	Malaysia, Borneo, Sabah, Danum Valley, road to Malua, junction to Borneo rainforest lodge
15	5058	M. WINKIEN M. winkleri	Malaysia, Borneo, Sabah, Dahum Valley, rodu to Malua, junction to Borneo rainforest louge Malaysia, Borneo, Sabah, Dahum Valley, west grid, W10S1 5
17	5065	M. winkleri	Malaysia, Borneo, Sabah, Danum Valley, west grid, W1051.5
18	5066	M. winkleri	Malaysia, Borneo, Sabah, Danum Valley, west grid, W10S1.5
19	6407	M. winkleri	Malaysia, Borneo, Sabah, from Kota Kinabalu to Ranau, Jalan Hulan, near Kunung Manangkob
20	6408	M. winkleri	Malaysia, Borneo, Sabah, from Kota Kinabalu to Ranau, Jalan Hulan, near Kunung Manangkob
21	6403 6412	M. WINKIERI M. winkleri	Malaysia, Borneo, Sabah, from Kota Kinabalu to Ranau, Jalah Hulah, hear Kunung Manangkob Malaysia, Borneo, Sabah, from Kota Kinabalu to Ranau, stop 4
23	6414	M. winkleri	Malaysia, Borneo, Sabah, from Kota Kinabalu to Ranau, stop 4
24	6411	M. winkleri	Malaysia, Borneo, Sabah, from Kota Kinabalu to Ranau, stop 4
25	6420	M. winkleri	Malaysia, Borneo, Sabah, from Kota Kinabalu to Ranau, stop 5
26	6421	M. winkleri	Malaysia, Borneo, Sabah, from Kota Kinabalu to Ranau, stop 5
27	6417 6424	M. WINKleri M. winklori	Malaysia, Borneo, Sabah, from Kota Kinabalu to Ranau, stop 5 Malaysia, Borneo, Sabah, from Kota Kinabalu to Panau, stop 5, 55 km to Panau
20 29	6426	M. winkleri	Malaysia, Borneo, Sabah, from Kota Kinabalu to Ranau, stop 6, 55 km to Ranau
30	6427	M. winkleri	Malaysia, Borneo, Sabah, from Kota Kinabalu to Ranau, stop 6, 55 km to Ranau
31	2051	M. winkleri	Malaysia, Borneo, Sabah, Luasong
32	5665	M. winkleri	Malaysia, Borneo, Sabah, Poring, Langanan
33	5667	M. winkleri	Malaysia, Borneo, Sabah, Poring, Langanan Malaysia, Borneo, Sabah, Poring, Langanan
34	5009 6462	M. winkleri M. winkleri	Malaysia, Borneo, Sabah, Pornig, Langarian Malaysia, Borneo, Sabah, Ranau to Kota Kinabalu
36	6469	M. winkleri	Malaysia, Borneo, Sabah, Ranau to Kota Kinabalu
37	6468	M. winkleri	Malaysia, Borneo, Sabah, Ranau to Kota Kinabalu
38	4286	M. winkleri	Malaysia, Borneo, Sabah, Tabin Wildlife Reserve, Lipad trail
39	4290	M. winkleri	Malaysia, Borneo, Sabah, Tabin Wildlife Reserve, Lipad trail, gap
40 41	4291 5139	M. WINKIERI M. winkleri	Malaysia, Borneo, Sabah, Tabin Wildlife Reserve, Lipad trail, gap Malaysia, Borneo, Sabah, Tawau Hills Park, edge of oil palm plantation 'Golden Hone'
42	5140	M. winkleri	Malaysia, Borneo, Sabah, Tawau Hills Park, edge of oil palm plantation 'Golden Hope'
43	5142	M. winkleri	Malaysia, Borneo, Sabah, Tawau Hills Park, edge of oil palm plantation 'Golden Hope'
44	5159	M. winkleri	Malaysia, Borneo, Sabah, Tawau Hills Park, trail to hot springs, 0 bis 2.6 km
45	5194	M. winkleri	Malaysia, Borneo, Sabah, Tawau Hills Park, trail to hot springs, 0 bis 2.6 km
40	6713	M. winkleri M. winkleri	Malaysia, Borneo, Saban, Tawadi Hills Park, Irali to hot springs, 0 bis 2.6 km Malaysia, Borneo, Sarawak, between Bukit Saban Resort and Betong
48	6656	M. winkleri	Malaysia, Borneo, Sarawak, Jalan Miri -Bintulu
49	6657	M. winkleri	Malaysia, Borneo, Sarawak, Jalan Miri -Bintulu
50	6658	M. winkleri	Malaysia, Borneo, Sarawak, Jalan Miri -Bintulu
51	6659	M. winkleri	Malaysia, Borneo, Sarawak, Jalan Miri -Bintulu Malaysia, Borneo, Sarawak, Jalan Miri -Bintulu
52 53	6678	M. winkleri M. winkleri	Malaysia, Borneo, Sarawak, Jalan Miri -Bintulu Malaysia, Borneo, Sarawak, Jalan Miri -Bintulu
54	6679	M. winkleri	Malaysia, Borneo, Sarawak, Jalan Miri -Bintulu
55	6561	M. winkleri	Malaysia, Borneo, Sarawak, Lambir National Park
56	6562	M. winkleri	Malaysia, Borneo, Sarawak, Lambir National Park
57	6566	M. winkleri	Malaysia, Borneo, Sarawak, Lambir National Park
50 50	7078 7089	M. winkleri M. winkleri	malaysia, burneu, Sarawak, Pelagus Resort Malaysia, Borneo, Sarawak, Pelagus Resort
60	7126	M. winkleri	Malaysia, Borneo, Sarawak, Pelagus Resort
61	7060	M. winkleri	Malaysia, Sarawak, Puni
62	5	M. winkleri	Borneo, Brunei, Belalong
63	6061	M. winkleri	Borneo, Brunei, Belait, Labi Romeo, Brunei, Belait, Labi road (southern part of the road)
65	244 5918	M. winkleri	Borneo, Brunei, Belait, Labi
66	5803	M. winkleri	Borneo, Brunei, Belait, Tereja
67	5962	M. winkleri	Borneo, Brunei, Belait, Tereja
68	5970	M. winkleri	Borneo, Brunei, Belait, Tereja
69 70	5974	M. winkleri	Borneo, Brunei, Belait, Tereja Rorneo, Brunei, Belait, Tereja
70	5983 6873	M. winkleri	Borneo, Brunei, Belait, Vong Kadi waterfall
72	6874	M. winkleri	Borneo, Brunei, Belait, Wong Kadi waterfall
73	6875	M. winkleri	Borneo, Brunei, Belait, Wong Kadi waterfall
74	6962	M. winkleri	Borneo, Brunei, Belait, Wong Kadir waterfall
75	6963	M. winkleri	Borneo, Brunei, Belait, Wong Kadir waterfall
/6 77	4391 4396	M. WINKIEri M. winkleri	borneo, brunei, Kuala Belalong Borneo, Brunei, Kuala Belalong
78	5723	M. winkleri	Borneo, Brunei, Temburong, Belalong
79	5700	M. winkleri	Borneo, Brunei, Temburong, Belalong
80	5810	M. winkleri	Borneo, Brunei, Temburong, Belalong
81	6895	M. winkleri	Borneo, Brunei, Temburong, Bukit Patoi
82 83	6800 6800	M winkleri	borneo, brunei, remburong, bukit Patoi Borneo, Brunei, Temburong, Bukit Patoi
84	5855	M. winkleri	Borneo, Brunei, Tutong, Bukit Patoi
85	5763	M. winkleri	Borneo, Brunei, Tutong, Bukit Patoi
86	5828	M. winkleri	Borneo, Brunei, Tutong, Bukit Patoi
87	5829	M. winkleri	Borneo, Brunei, Tutong, Bukit Patoi

Appendix J Order of the *M. winkleri* individuals for all bar plots created for both STRUCTURE and INSTRUCT analyses using the microsatellite data, and percentages with which individuals are assigned to each cluster for K = 3 (STRUCTURE).

Plant ID			Individua	Percent o	f individual assign	ed to			
Number	Sp	ecies	(1 bar)	Cluster K=1	Cluster K=2 Clu	ster K=3	Location	Latitude	Longitude
6/13 7002	М. М	winkleri	1	99.3%	0.5%	0.3%	Malaysia, Borneo, Sarawak, Bt. Saban Resort to Betong	1.463	111.560
7032	M.	winkleri	3	70.1%	29.4%	0.6%	Malaysia, Borneo, Sarawak, Pelagus Resort	2.190	113.060
7102	М.	winkleri	4	98.7%	0.7%	0.6%	Malaysia, Borneo, Sarawak, Pelagus Resort	2.190	113.060
7126	М.	winkleri	5	89.3%	10.4%	0.3%	Malaysia, Borneo, Sarawak, Pelagus Resort	2.190	113.060
7087	М.	winkleri	6	92.7%	6.5%	0.8%	Malaysia, Borneo, Sarawak, Pelagus Resort	2.190	113.060
7089	М.	winkleri	7	99.3%	0.4%	0.2%	Malaysia, Borneo, Sarawak, Pelagus Resort	2.190	113.060
7088	M.	winkleri	8	99.3%	0.5%	0.2%	Malaysia, Borneo, Sarawak, Pelagus Resort Malaysia, Borneo, Sarawak, Pelagus Resort	2.190	113.060
7093	M.	winkleri	10	94.4%	5.2%	0.3%	Malaysia, Borneo, Sarawak, Pelagus Resort	2.190	113.060
6670	М.	winkleri	11	99.4%	0.4%	0.3%	Malaysia, Borneo, Sarawak, Jalan Miri -Bintulu	3.350	113.440
6676	М.	winkleri	12	98.5%	1.2%	0.3%	Malaysia, Borneo, Sarawak, Jalan Miri -Bintulu	3.350	113.440
6669	М.	winkleri	13	94.0%	1.0%	5.1%	Malaysia, Borneo, Sarawak, Jalan Miri -Bintulu	3.350	113.440
6675	М.	winkleri	14	98.7%	1.0%	0.3%	Malaysia, Borneo, Sarawak, Jalan Miri -Bintulu Malaysia, Borneo, Sarawak, Jalan Miri Bintulu	3.350	113.440
6674	M	winkleri	15	90.0%	0.5%	9.5%	Malaysia, borneo, Sarawak, Jalan Miri -Bintulu Malaysia, Borneo, Sarawak, Jalan Miri -Bintulu	3.350	113.440
6667	M.	winkleri	17	94.0%	5.4%	0.7%	Malaysia, Borneo, Sarawak, Jalan Miri -Bintulu	3.350	113.440
6680	М.	winkleri	18	98.8%	0.9%	0.3%	Malaysia, Borneo, Sarawak, Jalan Miri -Bintulu	3.350	113.440
6679	М.	winkleri	19	99.3%	0.4%	0.3%	Malaysia, Borneo, Sarawak, Jalan Miri -Bintulu	3.350	113.440
6678	М.	winkleri	20	99.2%	0.5%	0.2%	Malaysia, Borneo, Sarawak, Jalan Miri -Bintulu	3.350	113.440
6673	M.	winkleri	21	99.2%	0.6%	0.3%	Malaysia, Borneo, Sarawak, Jalan Miri -Bintulu	3.350	113.440
6677	M	winkleri	22	99.3%	0.5%	0.3%	Malaysia, borneo, Sarawak, Jalan Miri -Bintulu Malaysia, Borneo, Sarawak, Jalan Miri -Bintulu	3.350	113.440
6672	M.	winkleri	24	98.4%	1.1%	0.5%	Malaysia, Borneo, Sarawak, Jalan Miri -Bintulu	3.350	113.440
6659	М.	winkleri	25	98.7%	0.5%	0.8%	Malaysia, Borneo, Sarawak, Jalan Miri -Bintulu	3.680	113.750
6658	М.	winkleri	26	99.3%	0.4%	0.3%	Malaysia, Borneo, Sarawak, Jalan Miri -Bintulu	3.680	113.750
6657	М.	winkleri	27	99.3%	0.4%	0.4%	Malaysia, Borneo, Sarawak, Jalan Miri -Bintulu	3.680	113.750
6664	M.	winkleri	28	99.1%	0.6%	0.3%	Malaysia, Borneo, Sarawak, Jalan Miri -Bintulu	3.680	113.750
6663	M	winkleri	29	99.1%	0.6%	0.3%	Malaysia, borneo, Sarawak, Jalan Miri -Bintulu Malaysia, Borneo, Sarawak, Jalan Miri -Bintulu	3.680	113.750
6655	M.	winkleri	31	99.3%	0.5%	0.2%	Malaysia, Borneo, Sarawak, Jalan Miri -Bintulu	3.680	113.750
6662	М.	winkleri	32	99.2%	0.5%	0.3%	Malaysia, Borneo, Sarawak, Jalan Miri -Bintulu	3.680	113.750
6654	М.	winkleri	33	99.2%	0.5%	0.2%	Malaysia, Borneo, Sarawak, Jalan Miri -Bintulu	3.680	113.750
6661	М.	winkleri	34	98.7%	0.7%	0.6%	Malaysia, Borneo, Sarawak, Jalan Miri -Bintulu	3.680	113.750
6557	М. М	winkleri	35	99.4%	0.3%	0.2%	Malaysia, Borneo, Sarawak, Lambir National Park	4.226	114.035
6551	M	winkleri	30	99.3%	0.4%	0.2%	Malaysia, Borneo, Sarawak, Lambir National Park	4.220	114.035
6560	M.	winkleri	38	99.2%	0.5%	0.2%	Malaysia, Borneo, Sarawak, Lambir National Park	4.226	114.035
7136	М.	winkleri	39	99.3%	0.5%	0.3%	Malaysia, Borneo, Sarawak, Lambir National Park	4.226	114.035
6552	М.	winkleri	40	99.3%	0.5%	0.2%	Malaysia, Borneo, Sarawak, Lambir National Park	4.226	114.035
6561	М.	winkleri	41	98.4%	1.2%	0.4%	Malaysia, Borneo, Sarawak, Lambir National Park	4.226	114.035
6553	М. М	winkleri	42	99.0%	0.7%	0.3%	Malaysia, Borneo, Sarawak, Lambir National Park	4.226	114.035
7124	M	winkleri	43	92.5%	0.5%	0.3%	Malaysia, Borneo, Sarawak, Lambir National Park	4.220	114.035
6554	М.	winkleri	45	98.3%	1.5%	0.2%	Malaysia, Borneo, Sarawak, Lambir National Park	4.226	114.035
6566	М.	winkleri	46	98.6%	0.7%	0.7%	Malaysia, Borneo, Sarawak, Lambir National Park	4.226	114.035
7125	М.	winkleri	47	99.3%	0.4%	0.3%	Malaysia, Borneo, Sarawak, Lambir National Park	4.226	114.035
6555	М.	winkleri	48	99.3%	0.4%	0.3%	Malaysia, Borneo, Sarawak, Lambir National Park	4.226	114.035
6567	M.	winkleri	49	99.0%	0.6%	0.3%	Malaysia, Borneo, Sarawak, Lambir National Park	4.226	114.035
6568	M	winkleri	51	99.3%	0.4%	0.3%	Malaysia, Borneo, Sarawak, Lambir National Park	4.220	114.035
6608	М.	winkleri	52	99.0%	0.7%	0.2%	Malaysia, Borneo, Sarawak, Lambir National Park	4.226	114.035
6605	М.	winkleri	53	99.3%	0.4%	0.2%	Malaysia, Borneo, Sarawak, Lambir National Park	4.226	114.035
6604	М.	winkleri	54	99.3%	0.5%	0.3%	Malaysia, Borneo, Sarawak, Lambir National Park	4.226	114.035
6607	М.	winkleri	55	94.9%	4.8%	0.4%	Malaysia, Borneo, Sarawak, Lambir National Park	4.226	114.035
6606	М. М	winkleri	56	99.2%	0.4%	0.4%	Malaysia, Borneo, Sarawak, Lambir National Park	4.226	114.035
6614	M	winkleri	58	90.0%	0.8%	0.3%	Malaysia, Borneo, Sarawak, Lambir National Park	4.220	114.035
6613	М.	winkleri	59	98.7%	0.8%	0.4%	Malaysia, Borneo, Sarawak, Lambir National Park	4.226	114.035
6612	М.	winkleri	60	99.2%	0.5%	0.3%	Malaysia, Borneo, Sarawak, Lambir National Park	4.226	114.035
6620	М.	winkleri	61	98.5%	0.8%	0.7%	Malaysia, Borneo, Sarawak, Lambir National Park	4.226	114.035
6611	М.	winkleri	62	98.8%	0.8%	0.4%	Malaysia, Borneo, Sarawak, Lambir National Park	4.226	114.035
6610	M	winkleri	64	99.2%	0.5%	0.3%	Malaysia, Borneo, Sarawak, Lambir National Park	4.220	114.035
7135	M.	winkleri	65	99.3%	0.4%	0.3%	Malaysia, Borneo, Sarawak, Lambir National Park	4.226	114.035
7134	М.	winkleri	66	95.8%	1.6%	2.7%	Malaysia, Borneo, Sarawak, Lambir National Park	4.226	114.035
7133	М.	winkleri	67	99.4%	0.3%	0.2%	Malaysia, Borneo, Sarawak, Lambir National Park	4.226	114.035
7130	М.	winkleri	68	99.3%	0.4%	0.2%	Malaysia, Borneo, Sarawak, Lambir National Park	4.226	114.035
7129	М. М	winkleri	69	99.1%	0.7%	0.3%	Malaysia, Borneo, Sarawak, Lambir National Park	4.226	114.035
7120	M	winkleri	70	90.0%	0.8%	0.4%	Malaysia, Borneo, Sarawak, Lambir National Park	4.220	114.035
7132	М.	winkleri	72	99.4%	0.3%	0.2%	Malaysia, Borneo, Sarawak, Lambir National Park	4.226	114.035
6599	М.	winkleri	73	92.9%	6.6%	0.5%	Malaysia, Borneo, Sarawak, Lambir National Park	4.226	114.035
6597	М.	winkleri	74	99.3%	0.5%	0.2%	Malaysia, Borneo, Sarawak, Lambir National Park	4.226	114.035
6596	М.	winkleri	75	99.4%	0.3%	0.3%	Malaysia, Borneo, Sarawak, Lambir National Park	4.226	114.035
6980	M.	winkleri	76	99.2%	0.6%	0.2%	Malaysia, Borneo, Sarawak, Lambir National Park Malaysia, Borneo, Sarawak, Lambir National Park	4.226	114.035
6942	M.	winkleri	78	99.4%	0.4%	0.2%	Malaysia, Borneo, Sarawak, Lambir National Park	4.226	114.035
6943	М.	winkleri	79	99.3%	0.4%	0.2%	Malaysia, Borneo, Sarawak, Lambir National Park	4.226	114.035
6903	М.	winkleri	80	99.1%	0.6%	0.3%	Malaysia, Borneo, Sarawak, Lambir National Park	4.226	114.035
7110	М.	winkleri	81	99.4%	0.4%	0.3%	Malaysia, Borneo, Sarawak, Lambir National Park	4.226	114.035
6583	М.	winkleri	82	99.4%	0.4%	0.2%	Malaysia, Borneo, Sarawak, Lambir National Park	4.226	114.035
6584	₩. М	winkleri winkleri	83	93.2% QQ 2%	0.4% 0.4%	0.4%	walaysia, borneo, Sarawak, Lambir National Park Malaysia, Borneo, Sarawak, Lambir National Park	4.226	114.035
6617	м. М.	winkleri	04 85	98.3%	1.4%	0.3%	Malavsia, Borneo, Sarawak, Lambir National Park	4.226	114,035
6616	М.	winkleri	86	98.5%	0.7%	0.8%	Malaysia, Borneo, Sarawak, Lambir National Park	4.226	114.035
6579	М.	winkleri	87	96.4%	3.4%	0.3%	Malaysia, Borneo, Sarawak, Lambir National Park	4.225	114.037
6577	М.	winkleri	88	98.5%	1.1%	0.4%	Malaysia, Borneo, Sarawak, Lambir National Park	4.225	114.037
6576	М.	winkleri	89	99.2%	0.5%	0.3%	Malaysia, Borneo, Sarawak, Lambir National Park	4.225	114.037
6966 6966	М. М	winkleri winkleri	90 01	99.2%	0.5%	0.3%	ivialaysia, borneo, Sarawak, Lambir National Park Borneo, Brunei, Belait, Wong Kadir waterfall	4.225	114.037
6962	М.	winkleri	92	98.0%	0.7%	1.3%	Borneo, Brunei, Belait, Wong Kadir waterfall	4.375	114.459
6963	М.	winkleri	93	99.2%	0.5%	0.2%	Borneo, Brunei, Belait, Wong Kadir waterfall	4.375	114.459
6964	М.	winkleri	94	99.2%	0.5%	0.4%	Borneo, Brunei, Belait, Wong Kadir waterfall	4.375	114.459
6965	М.	winkleri	95	95.0%	4.6%	0.5%	Borneo, Brunei, Belait, Wong Kadir waterfall	4.375	114.459
6875	М.	winkleri	96	98.8%	0.6%	0.6%	Borneo, Brunei, Belait, Wong Kadir waterfall	4.375	114.459
6780	M.	wiriKleri	97	97.5%	2.1%	0.4%	Domeo, Drunei, Deiait, wong Nadir Waterrali	4.375	114.459

Plant ID		Individual .	Percent of	individual assi	gned to			
Number	Species	(1 bar)	Cluster K=1	Cluster K=2 C	Cluster K=3	Location	Latitude	Longitude
6874	M. winkleri	98	99.1%	0.5%	0.4%	Borneo, Brunei, Belait, Wong Kadir waterfall	4.375	114.459
5975	M. winkleri	99	79.2%	17.6%	3.2%	Borneo, Brunei, Belait, Tereja	4.460	114.470
5957	M. winkleri	100	93.9%	2.9%	3.2%	Borneo, Brunei, Belait, Tereja	4.460	114.470
5952	M winkleri	107	90.0% 81.0%	0.7%	18.3%	Borneo, Brunei, Belait, Tereja	4.460	114.470
5802	M. winkleri	103	91.6%	8.1%	0.3%	Borneo, Brunei, Belait, Tereja	4.460	114.470
5803	M. winkleri	104	95.8%	2.8%	1.5%	Borneo, Brunei, Belait, Tereja	4.460	114.470
5974	M. winkleri	105	99.3%	0.5%	0.3%	Borneo, Brunei, Belait, Tereja	4.460	114.470
5983	M. winkleri	106	98.2%	1.2%	0.5%	Borneo, Brunei, Belait, Tereja	4.460	114.470
5962	M. winkleri	107	92.8%	2.6%	4.7%	Borneo, Brunei, Belait, Tereja	4.460	114.470
5970	M. winkleri	108	90.7%	0.4%	8.9%	Borneo, Brunei, Belait, Tereja	4.460	114.470
6061 E019	M. WINKIERI M. winklori	109	98.7%	0.9%	0.3%	Borneo, Brunei, Belait, Labi	4.460	114.470
244	M winkleri	110	95.0%	2.9%	1.6%	Borneo, Brunei, Belait, Labi	4.460	114.470
7060	M. winkleri	112	97.9%	0.6%	1.4%	Malaysia, Borneo, Sarawak, Puni	4,715	115.032
5701	M. winkleri	113	57.1%	42.5%	0.3%	Borneo, Brunei, Temburong, Belalong	4.717	115.067
5700	M. winkleri	114	79.2%	19.5%	1.3%	Borneo, Brunei, Temburong, Belalong	4.717	115.067
5697	M. winkleri	115	97.1%	1.2%	1.7%	Borneo, Brunei, Temburong, Belalong	4.717	115.067
5711	M. winkleri	116	89.5%	10.1%	0.3%	Borneo, Brunei, Temburong, Belalong	4.717	115.067
5713	M. winkleri	117	49.3%	50.3%	0.4%	Borneo, Brunei, Temburong, Belalong	4.717	115.067
5/16	M. winkleri	118	97.9%	1.7%	0.4%	Borneo, Brunei, Lemburong, Belalong	4.717	115.067
5723	M. winkleri	119	77.3% 50.2%	22.1%	0.6%	Borneo, Brunei, Temburong, Belalong	4.717	115.067
5810	M winkleri	120	99.2%	0.5%	0.3%	Borneo, Brunei, Temburong, Belalong	4.717	115.067
5693	M. winkleri	122	98.8%	0.9%	0.3%	Borneo, Brunei, Temburong, Belalong	4.717	115.067
6902	M. winkleri	123	93.2%	4.7%	2.0%	Borneo, Brunei, Temburong, 10 km before Bangar	4.712	115.079
6899	M. winkleri	124	98.0%	0.8%	1.3%	Borneo, Brunei, Temburong, 10 km before Bangar	4.712	115.079
6900	M. winkleri	125	96.4%	3.2%	0.4%	Borneo, Brunei, Temburong, 10 km before Bangar	4.712	115.079
6901	M. winkleri	126	78.2%	21.1%	0.7%	Borneo, Brunei, Temburong, 10 km before Bangar	4.712	115.079
5	M. winkleri	127	92.4%	5.3%	2.4%	Borneo, Brunei, Belalong	4.550	115.133
4391	M. WINKIERI M. winklori	128	74.6%	6.0%	19.4%	Borneo, Brunei, Kuala Belalong	4.566	115.151
4390	M. winkleri	129	90.7% 78.3%	2.9%	1.0%	Borneo, Brunei Tutong, Bukit Patoi	4.500	115.151
5855	M winkleri	130	76.2%	23.3%	0.5%	Borneo, Brunei Tutong, Bukit Patoi	4.760	115 180
5764	M. winkleri	132	40.3%	59.4%	0.3%	Borneo, Brunei, Tutong, Bukit Patoi	4,760	115,180
5762	M. winkleri	133	78.0%	21.5%	0.5%	Borneo, Brunei, Tutong, Bukit Patoi	4.760	115.180
6008	M. winkleri	134	70.1%	29.6%	0.3%	Borneo, Brunei, Tutong, Bukit Patoi	4.760	115.180
6012	M. winkleri	135	87.4%	10.3%	2.3%	Borneo, Brunei, Tutong, Bukit Patoi	4.760	115.180
5852	M. winkleri	136	70.7%	28.8%	0.5%	Borneo, Brunei, Tutong, Bukit Patoi	4.760	115.180
5853	M. winkleri	137	99.3%	0.4%	0.3%	Borneo, Brunei, Tutong, Bukit Patoi	4.760	115.180
5828	M. winkleri	138	99.1%	0.6%	0.3%	Borneo, Brunei, Lutong, Bukit Patoi	4.760	115.180
5820	M. winkleri	139	99.3%	0.5%	0.2%	Borneo, Brunei Tutong, Bukit Patoi	4.760	115.180
6011	M winkleri	140	96.4%	3.1%	0.5%	Borneo, Brunei Tutong, Bukit Patoi	4.760	115 180
5850	M. winkleri	142	84.7%	14.9%	0.5%	Borneo, Brunei, Tutong, Bukit Patoi	4,760	115,180
6894	M. winkleri	143	99.1%	0.4%	0.5%	Borneo, Brunei, Temburong, Bukit Patoi	4.760	115.180
6895	M. winkleri	144	96.5%	3.2%	0.3%	Borneo, Brunei, Temburong, Bukit Patoi	4.760	115.180
6897	M. winkleri	145	96.4%	3.3%	0.3%	Borneo, Brunei, Temburong, Bukit Patoi	4.760	115.180
6898	M. winkleri	146	95.6%	0.5%	3.9%	Borneo, Brunei, Temburong, Bukit Patoi	4.760	115.180
482	M. winkleri	147	1.4%	98.3%	0.3%	Malaysia, Borneo, Sabah, Crocker Range	5.899	116.225
6460	M. winkleri	140	0.5%	44.8%	0.4%	Malaysia, Borneo, Sabah, Rahau to KK, Kinahalu view	6.090	116.750
6459	M winkleri	149	1.3%	98.5%	0.3%	Malaysia, Borneo, Sabah, Ranau to KK, Kinabalu view	6 110	116 840
6462	M. winkleri	151	11.2%	88.5%	0.4%	Malaysia, Borneo, Sabah, Ranau to KK	6,160	116.970
6461	M. winkleri	152	14.9%	84.7%	0.4%	Malaysia, Borneo, Sabah, Ranau to KK, 44 km to Tuaran	6.160	116.970
6468	M. winkleri	153	3.9%	95.8%	0.4%	Malaysia, Borneo, Sabah, Ranau to KK	6.180	116.610
6469	M. winkleri	154	1.0%	98.5%	0.5%	Malaysia, Borneo, Sabah, Ranau to KK	6.180	116.610
6414	M. winkleri	155	12.5%	87.2%	0.3%	Malaysia, Borneo, Sabah, from KK to Ranau, stop 4	6.190	116.860
6410	M. winkleri	156	1.0%	98.7%	0.3%	Malaysia, Borneo, Sabah, from KK to Ranau, stop 4	6.190	116.860
6412	M. WINKIERI M. winklori	157	4.6%	95.1%	0.4%	Malaysia, Borneo, Sabah, from KK to Ranau, stop 4	6 190	116.860
6411	M winkleri	159	27.9%	71.7%	0.4%	Malaysia, Borneo, Sabah, from KK to Ranau, stop 4	6 190	116.860
6415	M. winkleri	160	31.4%	66.7%	1.9%	Malavsia, Borneo, Sabah, from KK to Ranau, stop 4	6,190	116.860
5766	M. winkleri	161	2.4%	97.3%	0.3%	Malaysia, Sabah, road KK-Ranau, ca km 60	6.330	116.720
5780	M. winkleri	162	2.1%	52.5%	45.4%	Malaysia, Sabah, road KK-Ranau, ca km 60	6.330	116.720
5767	M. winkleri	163	1.6%	98.1%	0.4%	Malaysia, Sabah, road KK-Ranau, ca km 60	6.330	116.720
5771	M. winkleri	164	0.5%	70.6%	28.9%	Malaysia, Sabah, road KK-Ranau, ca km 60	6.330	116.720
5/78	M. winkleri	165	2.0%	97.4%	0.5%	walaysia, Sabah, road KK-Kanau, ca km 60 Melaysia, Sabah, road KK Banau, ca km 60	6.330	116.720
5770	ivi. WITIKIETI M. winklori	160	1.0%	31.1% QR 1%	0.5%	waaysa, Sabah, Iodu NN-Nahalu (Ca Kili Du Malaysia, Sabah, road KK-Rapay, ca km 60	0.330	116.720
5777	M. winkleri	168	0.5%	98.5%	1.0%	Malaysia, Sabah, road KK-Ranau, ca km 60	6.330	116.720
6022	M. winkleri	169	0.7%	99.0%	0.4%	Malaysia, Sabah, road KK-Ranau, ca km 60	6.330	116.720
6020	M. winkleri	170	0.7%	99.0%	0.3%	Malaysia, Sabah, road KK-Ranau, ca km 60	6.330	116.720
6021	M. winkleri	171	0.4%	99.3%	0.3%	Malaysia, Sabah, road KK-Ranau, ca km 60	6.330	116.720
6025	M. winkleri	172	0.7%	99.0%	0.3%	Malaysia, Sabah, road KK-Ranau, ca km 60	6.330	116.720
5770	M. winkleri	173	0.7%	98.6%	0.7%	Malaysia, Sabah, road KK-Ranau, ca km 60	6.330	116.720
5788	M. winkleri	174	0.5%	99.2%	0.3%	Malaysia, Sabah, road KK-Ranau, ca km 60 Malaysia, Sabah, road KK-Ranau, ca km 60	6.330	116.720
5781	M. winkleri	175	2.5%	97.2%	2.0%	Malaysia, Sabah, 10au KK-Ranau, ca km 60	6.330	116.720
5775	M. winkleri	177	1.0%	98.4%	0.6%	Malaysia, Sabah, road KK-Ranau, ca km 60	6.330	116.720
5765	M. winkleri	178	0.6%	99.1%	0.3%	Malaysia, Sabah, road KK-Ranau, ca km 60	6.330	116.720
6426	M. winkleri	179	2.7%	96.9%	0.4%	Malaysia, Borneo, Sabah, from KK to Ranau, stop 6, 55 km to Ranau	6.330	116.720
6429	M. winkleri	180	19.8%	79.8%	0.4%	Malaysia, Borneo, Sabah, from KK to Ranau, stop 6, 55 km to Ranau	6.330	116.720
6430	M. winkleri	181	2.2%	97.5%	0.3%	Malaysia, Borneo, Sabah, from KK to Ranau, stop 6, 55 km to Ranau	6.330	116.720
6427	M. winkleri	182	0.7%	38.6%	60.7%	Malaysia, Borneo, Sabah, from KK to Ranau, stop 6, 55 km to Ranau	6.330	116.720
6424	IVI. WINKleri M. winklori	183	2.0%	90.9% 06.1%	1.1%	walaysia, borneo, Sabah, rrom KK to Kanau, stop 6, 55 km to Kanau Malaysia, Borneo, Sabah, from KK to Panau, stop 6, 55 km to Panau	6.330	116.720
6432	M winkleri	104	0.0%	90.1% 99.1%	0.3%	Malaysia, Domeo, Sabah, nom AK to Ranau, stop 6, 55 km to Ranau Malaysia, Borneo, Sabah, from KK to Ranau, stop 6, 55 km to Ranau	6 330	116 720
6428	M. winkleri	186	37.9%	61.8%	0.3%	Malaysia, Borneo, Sabah, from KK to Ranau. stop 6, 55 km to Ranau	6.330	116.720
6431	M. winkleri	187	23.7%	75.9%	0.4%	Malaysia, Borneo, Sabah, from KK to Ranau, stop 6, 55 km to Ranau	6.330	116.720
6423	M. winkleri	188	1.1%	98.6%	0.3%	Malaysia, Borneo, Sabah, from KK to Ranau, stop 6, 55 km to Ranau	6.330	116.720
6405	M. winkleri	189	1.1%	91.4%	7.5%	Malaysia, Borneo, Sabah, from KK to Ranau, near Kg Manangkob	6.400	116.580
6407	M. winkleri	190	3.6%	96.0%	0.3%	Malaysia, Borneo, Sabah, from KK to Ranau, near Kg Manangkob	6.400	116.580
6408	M. winkleri	191	1.0%	89.0%	10.0%	walaysia, Borneo, Sabah, from KK to Kanau, near Kg Manangkob	6.400	116.580
6400	M winkleri	192	∠.0% 6.7%	90.9% 92.8%	0.5%	Malaysia, Domeo, Sabah, nom AK to Ranau, near Ka Mananakoh	6 400	116 580
6403	M. winkleri	194	2.5%	97.2%	0.3%	Malaysia, Borneo, Sabah, from KK to Ranau, near Kg Manangkob	6.400	116.580

Name Figure (Tab) Control / Contro / Control / Contro / Contro	Plant ID		Individual	Percent of	of individual as	signed to				
1450 M. ander 100 6.20 16.20	Number	Species	(1 bar)	Cluster K=1	Cluster K=2	Cluster K=3	Location		Latitude	Longitude
cheb de avalue 100 21.50 Abore Babe, March OS Babe, 2005 Babe, March OS Babe, 2005 Abore	6420	M. winkleri	195	8.5%	91.1%	0.4%	Malaysia,	Borneo, Sabah, from KK to Ranau, stop 5	6.400	116.830
101 J. J. Prob 195 1.1.5. 1.2.5. <td>6419</td> <td>M. winkleri</td> <td>196</td> <td>7.0%</td> <td>92.3%</td> <td>0.7%</td> <td>Malaysia,</td> <td>Borneo, Sabah, from KK to Ranau, stop 5</td> <td>6.400</td> <td>116.830</td>	6419	M. winkleri	196	7.0%	92.3%	0.7%	Malaysia,	Borneo, Sabah, from KK to Ranau, stop 5	6.400	116.830
bits Lambare 100 21.56 01.75 Marking Source, Selach, Prost, Lambarg, Source, meding Sampang, Source, Sourc	6421	M. WINKIERI M. winkleri	197	19.8%	79.5%	0.6%	Malaysia,	Borneo, Sabah, from KK to Ranau, stop 5 Borneo, Sabah, from KK to Ranau, stop 5	6.400	116.830
111 L Askebs 200 0.55 Control Contro Contre	6409	M. winkleri	199	2.1%	97.6%	0.3%	Malaysia,	Borneo, Sabah, from KK to Ranau, near Kg Manangkob	6.400	116.580
10 I I 1.2 I 1.3 Market Bores, Book, Perry Largers Trait ECO IEEO 101 I Instruct 220 1.5 IEIO IEEO IEEO<	2119	M. winkleri	200	0.9%	98.8%	0.3%	Malaysia,	Borneo, Sabah, Poring, Langanan trail, ca km 1.6	6.060	116.690
Bit Marcine South Parks	510	M. winkleri	201	12.9%	83.7%	3.4%	Malaysia,	Borneo, Sabah, Poring, Langanan trail	6.060	116.690
eds 4.4 above 2.6 1.5 2.7 0.6 1.5 2.6 1.6 2.6 1.6 2.6 1.6 2.6 1.6 2.6 1.6 2.6 1.6 2.6 1.6 2.6 1.6 2.6 1.6 2.6 1.6 </td <td>505</td> <td>M. winkleri</td> <td>202</td> <td>3.4%</td> <td>95.1%</td> <td>1.5%</td> <td>Malaysia,</td> <td>Borneo, Sabah, Poring, canopy walkway</td> <td>6.050</td> <td>116.700</td>	505	M. winkleri	202	3.4%	95.1%	1.5%	Malaysia,	Borneo, Sabah, Poring, canopy walkway	6.050	116.700
ether ether <td>6044</td> <td>M. WINKIERI M. winkleri</td> <td>203</td> <td>1.0%</td> <td>98.7%</td> <td>0.3%</td> <td>Malaysia,</td> <td>Borneo, Sabah, Poring, Walkway Borneo, Sabah, Poring, Langapan</td> <td>6.070</td> <td>116.720</td>	6044	M. WINKIERI M. winkleri	203	1.0%	98.7%	0.3%	Malaysia,	Borneo, Sabah, Poring, Walkway Borneo, Sabah, Poring, Langapan	6.070	116.720
cose M. arubeir 200 0.07 10.07 <t< td=""><td>6046</td><td>M. winkleri</td><td>204</td><td>0.8%</td><td>98.8%</td><td>0.4%</td><td>Malaysia,</td><td>Borneo, Sabah, Poring, Langanan</td><td>6.070</td><td>116.720</td></t<>	6046	M. winkleri	204	0.8%	98.8%	0.4%	Malaysia,	Borneo, Sabah, Poring, Langanan	6.070	116.720
6000 M. arkeyer 200 0.0% 9.7% 2.7% 0.0% 10.7% 0.0% 10.7% 655 M. arkeyer 201 0.7% 0.0% 0.0% 10.7% 0.0% 10.7% 656 M. arkeyer 211 1.4% 0.0%	6053	M. winkleri	206	0.6%	99.0%	0.4%	Malaysia,	Borneo, Sabah, Poring, Langanan	6.070	116.720
1614 M. ankader 200 0.7% 0.0%	6054	M. winkleri	207	0.6%	97.3%	2.2%	Malaysia,	Borneo, Sabah, Poring, Langanan	6.070	116.720
eff Markels 200 10.5% 1	6045	M. winkleri	208	0.7%	99.0%	0.3%	Malaysia,	Borneo, Sabah, Poring, Langanan	6.070	116.720
1999 A. Namber 211 5.45 0.35 Markets 0.207 0.15 0.207<	5667	M. winkleri	209	0.5%	99.3%	0.3%	Malaysia,	Borneo, Sabah, Poring, Langanan	6.070	116.720
1980 M. Langkar 121 1.5% 84.1% 0.20 116.20 568 M. Langkar 121 0.5% 88.5% 0.20 116.20 569 M. Langkar 11 0.5% 88.5% 0.20 116.20 0.67 116.20 569 M. Langkar 11 0.5% 88.5% 1.0% 116.20 116.20 569 M. Langkar 11 0.5% 89.5% 0.5% M. Langkar 0.607 116.20 568 M. Langkar 11 0.5% 89.5% 0.5% M. Langkar 6.07 116.20 568 M. Langkar 21 0.5% 0.5% 0.5% M. Langkar 6.07 116.20 568 M. Langkar 22 0.5% 0.5% M. Langkar 6.07 116.20 568 M. Langkar 22 0.5% 0.5% M. Langkar 6.07 116.20 564 M. Langkar 22 0.5% 0.5% M. Langkar	5674	M. WINKIERI	210	5.3% 1.4%	94.3%	0.3%	Malaysia,	Borneo, Sabah, Poling, Langanan	6.070	116.720
9586 M. avakari 210 0.95% <	5665	M. winkleri	212	1.6%	98.1%	0.3%	Malaysia,	Borneo, Sabah, Poring, Langanan	6.070	116.720
6000 M. ankber 11 11 Malysis Berns, Sakah, Parng, Beging ranzi 6.00 116.700 6000 M. ankber 215 0.04% 825.7% 0.05% 1.05% 0.05% 1.05% 0.05% 1.05% 0.05% 1.05% 0.05% 1.05% 0.05% 1.05% 0.05% <th< td=""><td>5666</td><td>M. winkleri</td><td>213</td><td>0.8%</td><td>98.9%</td><td>0.3%</td><td>Malaysia,</td><td>Borneo, Sabah, Poring, Langanan</td><td>6.070</td><td>116.720</td></th<>	5666	M. winkleri	213	0.8%	98.9%	0.3%	Malaysia,	Borneo, Sabah, Poring, Langanan	6.070	116.720
effert Markens Parts Bigs of the start Constraint Constraint <td< td=""><td>5660</td><td>M. winkleri</td><td>214</td><td>11.9%</td><td>69.9%</td><td>18.2%</td><td>Malaysia,</td><td>Borneo, Sabah, Poring, logging road</td><td>6.070</td><td>116.720</td></td<>	5660	M. winkleri	214	11.9%	69.9%	18.2%	Malaysia,	Borneo, Sabah, Poring, logging road	6.070	116.720
append All without append ap	5662	M. winkleri	215	0.6%	98.9%	0.5%	Malaysia,	Borneo, Sabah, Poring, logging road	6.070	116.720
Separation An answer Separation Control Separation Control Separation Separation <td>5658</td> <td>M. winkleri</td> <td>216</td> <td>0.4%</td> <td>99.2%</td> <td>0.4%</td> <td>Malaysia,</td> <td>Borneo, Sabah, Poring, logging road</td> <td>6.070</td> <td>116.720</td>	5658	M. winkleri	216	0.4%	99.2%	0.4%	Malaysia,	Borneo, Sabah, Poring, logging road	6.070	116.720
Setter Maryeska Bornes, Sakath, Porta, Sagaring out 6.07 115.72 600 M. winker 220 0.4% 89.1% 0.4% Maryeska Bornes, Sakah, Portaj, Sagaring road 6.07 115.726 621 M. winker 220 0.4% 89.1% 0.4% Maryeska Bornes, Sakah, Portaj, Sagaring and Maryeska Bornes, Sakah, Portaj 6.07 115.70 6564 M. winker 221 1.4% 86.6% 0.7% Maryeska Bornes, Sakah, Portaj 6.07 115.70 6564 M. winker 222 1.2% 86.6% 0.7% Maryeska Bornes, Sakah, Portaj Sayaring Contag 6.07 115.70 7473 M. winker 221 1.2.6% 86.5% 0.6% Maryeska Bornes, Sakah, Portaj, Sagaring and 6.07 115.70 7473 M. winker 221 0.4.6% 0.5% Maryeska Bornes, Sakah, Portaj, Sagaring and 6.07 115.70 7474 M. winker 221 0.4.6% 0.2% 0.3% Maryeska Bornes, Sakah, Portaj, Sagaring and 6.07 115.70 7474 </td <td>5657</td> <td>M winkleri</td> <td>217</td> <td>0.4%</td> <td>99.3%</td> <td>0.3%</td> <td>Malaysia,</td> <td>Borneo, Sabah, Poring, logging road</td> <td>6.070</td> <td>116.720</td>	5657	M winkleri	217	0.4%	99.3%	0.3%	Malaysia,	Borneo, Sabah, Poring, logging road	6.070	116.720
dtta unweiker 220 6.8% 4.6% Matyria, Borne, Stahn Porig Enging rand 6.77 115.70 253 M. antikker 221 0.7% 97.4% 1.9% 0.7% 97.4% 1.9% 0.7% 97.4% 1.9% 0.7% 97.4% 1.9% 0.7% 97.4% 1.9% Matyrak Berne, Stahn Porig 6.070 116.720	5661	M. winkleri	219	0.6%	99.1%	0.3%	Malaysia,	Borneo, Sabah, Poring, logging road	6.070	116.720
233 M. winker 221 0.4% 0.9%	6038	M. winkleri	220	5.8%	89.6%	4.6%	Malaysia,	Borneo, Sabah, Poring, logging road	6.070	116.720
238 M. winkker 222 0.7% 99.0% 0.5% Malyes, Brons, Sateh, Porg, Logging read 6.07 116.700 44 M. winkker 223 1.1% Bork 0.3% Malyes, Brons, Sateh, Porg, Logging read 6.07 116.700 4742 M. winkker 223 1.6% B0.7% 0.3% Malyes, Brons, Sateh, Porg, Logging read 6.07 116.700 4748 M. winkker 223 1.6% B0.7% 0.7% Malyes, Brons, Sateh, Porg, Logging read 6.07 116.700 4748 M. winkker 223 0.6% 0.0% Malyes, Brons, Sateh, Porg, Logging read 6.07 116.720 4747 M. winkker 223 0.4% 0.88 0.7% Malyes, Brons, Sateh, Porg, Logging read 6.07 116.720 4747 M. winkker 223 0.4% 0.9% 0.3% Malyes, Brons, Sateh, Porg, Logging read 6.07 116.720 4747 M. winkker 223 0.4% 0.92.% 0.3% Malyes, Brons, Sateh, Porg, Logging read 6.07 <td< td=""><td>2323</td><td>M. winkleri</td><td>221</td><td>0.4%</td><td>99.1%</td><td>0.4%</td><td>Malaysia,</td><td>Borneo, Sabah, Poring, logging road</td><td>6.070</td><td>116.720</td></td<>	2323	M. winkleri	221	0.4%	99.1%	0.4%	Malaysia,	Borneo, Sabah, Poring, logging road	6.070	116.720
Book Manual Market Sector Book	2351	M. winkleri	222	0.7%	99.0%	0.3%	Malaysia,	Borneo, Sabah, Poring, logging road	6.070	116.720
and modelly above Balayes Dimensions Status Print Status 4742 M. Winkker 225 254% 96.0% 0.4% Makyas Encode 6.070 116.720 4743 M. Winkker 227 12.25% 96.0% 0.4% Makyas Encode 6.070 116.720 4743 M. Winkker 221 0.24% 98.0% 0.3% Makyas Encode 6.070 116.720 4745 M. Winkker 231 0.4% 98.0% 0.3% Makyas Encode 6.070 116.720 4745 M. Winkker 231 0.4% 98.0% 0.3% Makyas Encode 6.070 116.720 4746 M. Winkker 231 0.4% 98.2% 0.3% Makyas Encode 6.070 116.720 4747 M. Winkker 233 1.0% 98.7% 0.3% Makyas Encode 6.070 116.720 4747 M. Winkker 233<	5663	M. winkleri	223	0.7%	97.4%	1.9%	Malaysia,	Borneo, Sabah, Poring	6.070	116.720
4474 M. emberr 268 2.678 0.679 116.720 474 M. emberr 228 0.578 0.679 116.720 474 M. emberr 228 0.578 0.679 116.720 474 M. emberr 228 0.578 0.677 116.720 474 M. emberr 231 0.676 0.677 116.720 474 M. emberr 231 0.676 0.787 0.778 0.779 0.677 116.720 474 M. emberr 231 0.676 0.788 0.784 Matypin, Borne, Stath, Porin, Loging road 6.077 116.720 474 M. emberr 234 2.7.78 7.6.374 Matypin, Borne, Stath, Poring, Loging road 6.077 116.720 474 M. emberr 234 2.7.78 7.6.374 Matypin, Borne, Stath, Poring, Loging road 6.077 116.720 474 M. emberr 238 0.0.78 0.334 Matypin, Borne, Stath, Poring, Loging road 6.077 116.720 116.720	2004 4744	M winkleri	224	1.1%	98.6%	0.3%	Malaysia,	Borneo, Sabah, Poring Borneo, Sabah, Poring, logging road	6.070	116.720
4743 M. winkeri 222 12.8% 80.0% 0.0% Mainyai, Borneo, Sakah, Poring, Goging road 6.070 116.720 474 M. winkeri 228 0.8% 96.0% 0.0% Mainyai, Borneo, Sakah, Poring, Goging road 6.070 116.720 474 M. winkeri 228 0.8% 96.0% 0.0% Mainyai, Borneo, Sakah, Poring, Goging road 6.070 116.720 4745 M. winkeri 232 0.4% 92.2% 0.3% Mainyai, Borneo, Sakah, Poring, Logging road 6.070 116.720 4745 M. winkeri 238 2.1% 0.3% Mainyaia, Borneo, Sakah, Poring, Logging road 6.070 116.720 4745 M. winkeri 238 2.1% 0.3% Mainyaia, Borneo, Sakah, Poring, Logging road 6.070 116.720 4745 M. winkeri 238 1.5% 0.3% Mainyaia, Borneo, Sakah, Poring, Logging road 6.070 116.720 4747 M. winkeri 240 0.6% 9.1% 0.3% Mainyaia, Borneo, Sakah, Poring, Logging road 6.070 1	4742	M. winkleri	226	2.8%	96.8%	0.4%	Malaysia,	Borneo, Sabah, Poring, logging road	6.070	116.720
4749 M. winkeri 228 0.8% 96.0% 0.0% Mainyaia. Bernes. Staht, Porinj, toging road 6.070 116.720 475 M. winkeri 223 0.4% 96.0% 0.0% Mainyaia. Bernes. Staht, Porinj, toging road 6.070 116.720 474 M. winkeri 223 0.4% 96.0% 0.0% Mainyaia. Bernes. Staht, Porinj, toging road 6.070 116.720 475 M. winkeri 223 0.4% 98.0% 0.7% Mainyaia. Bernes. Staht, Porinj, toging road 6.070 116.720 476 M. winkeri 223 0.4% 98.0% 0.7% Mainyaia. Bernes. Staht, Porinj, toging road 6.070 116.720 477 M. winkeri 223 0.7% 99.7% 0.05% Mainyaia. Bernes. Staht, Porinj, toging road 6.070 116.720 477 M. winkeri 223 0.7% 99.7% 0.2% Mainyaia. Bernes. Staht, Porinj, toging road 6.070 116.720 478 M. winkeri 224 0.7% 99.7% 0.2% Mainyaia. Bernes. Stah	4743	M. winkleri	227	12.8%	86.6%	0.6%	Malaysia,	Borneo, Sabah, Poring, logging road	6.070	116.720
4.4. winkert 228 0.8% 90.0% 0.3% Makyaka, Borne, Sakah, Porin, kgging rade 6.070 116.720 4.7.1 M. winkert 220 10.4% 98.4% 0.3% Makyaka, Borne, Sakah, Porin, kgging rade 6.070 116.720 4.7.8 M. winkert 223 10.4% 99.0% 0.7% Makyaka, Borne, Sakah, Porin, kgging rade 6.070 116.720 4.7.5 M. winkert 223 1.2% 78.3% 2.2% Makyaka, Borne, Sakah, Porin, kgging rade 6.070 116.720 4.7.5 M. winkert 223 1.2% 4.3% Makyaka, Borne, Sakah, Porin, kgging rade 6.070 116.720 4.7.5 M. winkert 228 1.0.4% 83.3% 0.3% Makyaka, Borne, Sakah, Porin, kgging rade 6.070 116.720 4.7.5 M. winkert 228 1.0.4% 83.3% 0.3% Makyaka, Borne, Sakah, Porin, kgging rade 6.070 116.720 4.7.5 M. winkert 228 1.0.4% 83.3% 0.3% Makyaka, Borne, Sakah, Porin, kgging rade 6.070<	4749	M. winkleri	228	0.8%	98.6%	0.6%	Malaysia,	Borneo, Sabah, Poring, logging road	6.070	116.720
4751 M. winkkeri 230 0.4% 88.5% 0.5% Malayala. Bornes. Stahk, Poring, logging road 6.070 116.720 4755 M. winkkeri 233 0.4% 98.5% 0.5% Malayala. Bornes. Stahk, Poring, logging road 6.070 116.720 4755 M. winkkeri 233 0.4% 98.5% 0.7% Malayala. Bornes. Stahk, Poring, logging road 6.070 116.720 4755 M. winkkeri 238 1.0% 98.7% 0.3% Malayala. Bornes. Stahk, Poring, logging road 6.070 116.720 4775 M. winkkeri 238 5.0% 92.4% 0.3% Malayala. Bornes. Stahk, Poring, logging road 6.070 116.720 4775 M. winkkeri 238 5.0% 91.% 0.3% Malayala. Bornes. Stahk, Poring, logging road 6.070 116.720 4775 M. winkkeri 238 0.05% 91.% 0.3% Malayala. Bornes. Stahk, Poring, logging road 6.070 116.720 4775 M. winkkeri 248 0.05% 98.5% 0.3% M	4754	M. winkleri	229	0.8%	99.0%	0.3%	Malaysia,	Borneo, Sabah, Poring, logging road	6.070	116.720
4748 M. wesker 231 6.0% 8.8.6% 0.4% Manayas, Bornes, Sabah, Poring, Jogging road 6.070 116.720 4755 M. wesker 233 0.4% 859% 0.7% Manayas, Bornes, Sabah, Poring, Jogging road 6.070 116.720 4756 M. wesker 233 0.0% 8.9% 0.7% Manayas, Bornes, Sabah, Poring, Jogging road 6.070 116.720 4776 M. wesker 238 0.0% 8.92% 0.3% Manayas, Bornes, Sabah, Poring, Jogging road 6.070 116.720 4776 M. wesker 238 0.0% 89.2% 0.3% Manayas, Bornes, Sabah, Poring, Jogging road 6.070 116.720 4776 M. wesker 230 0.0% 89.3% 0.3% Manayas, Bornes, Sabah, Poring, Jogging road 6.070 116.720 2377 M. wesker 243 0.5% 98.2% 0.3% Manayas, Bornes, Sabah, Poring, Jogging road 6.070 116.720 2378 M. wesker 244 0.5% 98.2% 2.6% Manayas, Bornes, Sabah, Paring, Longing road 5.200 116.720 2384 M. wesker <td>4751</td> <td>M. winkleri</td> <td>230</td> <td>0.4%</td> <td>98.8%</td> <td>0.8%</td> <td>Malaysia,</td> <td>Borneo, Sabah, Poring, logging road</td> <td>6.070</td> <td>116.720</td>	4751	M. winkleri	230	0.4%	98.8%	0.8%	Malaysia,	Borneo, Sabah, Poring, logging road	6.070	116.720
4765 M. winkeri 233 0.4% 96.9% 0.7% Malaysia, Bornes, Sabah, Poring, Joging road 6.070 116.720 4766 M. winkeri 235 1.0% 96.7% 0.3% Malaysia, Bornes, Sabah, Poring, Joging road 6.070 116.720 4776 M. winkeri 235 0.0% 96.7% 0.3% Malaysia, Bornes, Sabah, Poring, Joging road 6.070 116.720 4777 M. winkeri 230 6.3.7% 4.5.9% Malaysia, Bornes, Sabah, Poring, Joging road 6.070 116.720 4747 M. winkeri 230 0.04% 98.1% 0.3% Malaysia, Bornes, Sabah, Poring, Joging road 6.070 116.720 4747 M. winkeri 243 0.04% 98.1% 0.3% Malaysia, Bornes, Sabah, Poring, Joging road 6.070 116.720 4747 M. winkeri 243 1.4% 98.1% 0.3% Malaysia, Bornes, Sabah, Poring, Joging road 6.070 116.720 4747 M. winkeri 243 1.4% 98.1% 0.5% Malaysia, Bornes, Sabah, Poring,	4753	M. winkleri	231	16.0%	83.6%	0.4%	Malaysia,	Borneo, Sabah, Poring, logging road	6.070	116.720
47476 M. winkeri 254 72.3% 72.9% Malaysia, Borne, Staha, Poring, Joging road 6.070 116.720 4747 M. winkeri 236 0.0% 92.5% 0.3% Malaysia, Borne, Staha, Poring, Joging road 6.070 116.720 4747 M. winkeri 237 0.5% 92.5% 0.3% Malaysia, Borne, Staha, Poring, Joging road 6.070 116.720 4745 M. winkeri 237 0.0% 92.5% 0.3% Malaysia, Borne, Staha, Poring, Joging road 6.070 116.720 4747 M. winkeri 241 0.05% 99.2% 0.3% Malaysia, Borne, Staha, Poring, Joging road 6.060 116.720 2315 M. winkeri 243 0.05% 99.2% 0.3% Malaysia, Borne, Staha, Poring, Joging road 5.680 116.840 2435 M. winkeri 243 0.05% 99.2% 0.3% Malaysia, Borne, Staha, Poring, Joging road 5.580 115.840 244 M. winkeri 243 0.5% 99.2% 0.3% Malaysia, Borne, Staha, Poring, Joging ro	4746	M. WINKIERI M. winkleri	232	0.4%	99.2%	0.3%	Malaysia,	Borneo, Sabah, Poring, logging road	6.070	116.720
47476 M. winkeri 255 1.0% 96.7% 0.2% Maingyai, Borneo, Sabah, Poring, Joging road 6.070 115.720 4747 M. winkeri 237 6.3.5% 46.9% 0.6% Maingyai, Borneo, Sabah, Poring, Joging road 6.070 115.720 4747 M. winkeri 238 0.0% 86.9% 0.0% Maingyai, Borneo, Sabah, Poring, Joging road 6.070 115.720 4757 M. winkeri 238 10.0% 86.9% 0.3% Maingyai, Borneo, Sabah, Poring, Joging road 6.070 116.720 4757 M. winkeri 242 1.4% 86.1% 0.5% Maingyai, Borneo, Sabah, Poring, Joging road 6.660 116.890 2281 M. winkeri 244 0.6% 3.5% 1.5% Maingyai, Borneo, Sabah, Buit Towi, stop 1 5.660 115.890 2418 M. winkeri 243 0.6% 9.5% Maingyai, Borneo, Sabah, Sapiok, ratio birtwaching tower 5.866 117.987 244 0.6% 0.5% 9.5% Maingyai, Borneo, Sabah, Sapiok, ruistor 1 5.866	4756	M. winkleri	233	21.2%	76.3%	2.5%	Malaysia,	Borneo, Sabah, Poring, logging road	6.070	116.720
4474 M. winkeri 238 0.6% 92.2% 0.3% Malaysia, Borne, Sahah, Pering, logging road 6.070 115.720 4726 M. winkeri 238 0.7% 93.1% 0.3% Malaysia, Borne, Sahah, Pering, logging road 6.070 115.720 4726 M. winkeri 238 0.7% 93.1% 0.3% Malaysia, Borne, Sahah, Pering, logging road 6.070 115.720 4775 M. winkeri 241 0.5% 99.2% 0.3% Malaysia, Borne, Sahah, Paring, logging road 6.070 116.720 2537 M. winkeri 243 0.6% 97.2% Malaysia, Borne, Sahah, Pakit Twuis, top 7 5.680 116.940 2486 M. winkeri 243 0.6% 96.2% 0.3% Malaysia, Borne, Sahah, Pakit Twuis, top 7 5.680 116.940 248 M. winkeri 243 0.9% 96.2% 0.3% Malaysia, Borne, Sahah, Pakit, Kuis top 1 5.600 115.800 244 M. winkeri 248 0.9% 96.2% Malaysia, Borne, Sahah, Pakit, Kuis top 1 5.600	4750	M. winkleri	235	1.0%	98.7%	0.3%	Malaysia,	Borneo, Sabah, Poring, logging road	6.070	116.720
4745 M. winkleri 237 53.5% 45.9% Malaysia, Bornes, Sakah, Poring, Iogojen road 6.070 116.720 4752 M. winkleri 233 0.04% 83.3% 0.3% Malaysia, Bornes, Sakah, Poring, Iogojen road 6.070 116.720 4746 M. winkleri 233 0.04% 83.3% 0.3% Malaysia, Bornes, Sakah, Poring, Iogojen road 6.070 116.720 2537 M. winkleri 241 0.4% 88.1% 0.5% Malaysia, Bornes, Sakah, Paring, Iogojen road 6.060 116.980 2537 M. winkleri 242 0.4% 88.1% Malaysia, Bornes, Sakah, Patri Towis, top 1 5.680 115.890 2485 M. winkleri 243 0.5% 83.5% 2.6% Malaysia, Bornes, Sakah, Borlink, Farle Naturation prove 5.866 117.957 4043 M. winkleri 247 3.5% 0.5% Malaysia, Bornes, Sakah, Septick, ratio brit/watching tower 5.866 117.957 4044 M. winkleri 251 0.5% 0.5% Malaysia, Bornes, Sakah, Septick, waterhole 5.86	4747	M. winkleri	236	0.6%	99.2%	0.3%	Malaysia,	Borneo, Sabah, Poring, logging road	6.070	116.720
4725 M. winkleri 238 0.7% 99.1% 0.3% Malayaia, Bornes, Sahah, Poring, Sognar, Toad 6.070 116.720 474 M. winkleri 231 0.5% 0.3%	4745	M. winkleri	237	53.5%	45.9%	0.6%	Malaysia,	Borneo, Sabah, Poring, logging road	6.070	116.720
44.4 M. Munkeri 231 10.5% 89.3% 0.2% Malyska, forme, Stah, Poring, logging road 6.010 116.20 4757 M. Winkleri 242 1.4% 98.1% 0.5% Malyska, Bornes, Stah, Pukel Tavik, stop 7 5.680 116.940 2861 M. winkleri 242 1.4% 98.1% 0.5% Malyska, Bornes, Stah, Pukel Tavik, stop 1 5.680 116.980 2478 M. winkleri 244 0.9% 98.8% 0.3% Malyska, Bornes, Stah, Pukel Tavik, stop 1 5.680 117.30 2478 M. winkleri 244 0.9% 98.9% 2.2% Malyska, Bornes, Stah, Bornes, Stah, Bornes, Stah, Stangelok, trail to birdwatching tower 5.86 117.957 444 M. winkleri 240 0.5% 0.5% 88.9% Malyska, Bornes, Stah, Bornes, Stah, Bornes, Stah, Stangelok, trail to birdwatching tower 5.86 117.957 2444 M. winkleri 251 0.5% 0.5% Malyska, Bornes, Stah, Darum Valley, Jogging road near Malua 5.110 117.600 253 M. winkleri 251 0.5% 9	4752	M. winkleri	238	0.7%	99.1%	0.3%	Malaysia,	Borneo, Sabah, Poring, logging road	6.070	116.720
413 M. Winker 24 0.58 B. 278 0.58 B. 278 0.58 B. Winker 241 0.64 93.75 0.65 116.20 2818 M. Winker 243 0.64 97.95 Malaysia, Bornes, Staha, Buki Tavu, stop 1 5.660 116.960 2476 M. Winker 244 0.95 93.85% 0.25 Malaysia, Bornes, Staha, Buki Tavu, stop 1 5.660 116.960 118 M. Winker 244 0.95 93.85% 0.25 Malaysia, Bornes, Staha, Detamakel Forest Reserve 5.330 117.330 444 M. Winker 246 0.95 96.95% 2.27 Malaysia, Bornes, Staha, Detamakel Forest Reserve 5.386 117.957 4444 Minker 250 0.95% 0.95% Malaysia, Bornes, Staha, Datum Valley, Logging rand nar Malua 5.110 117.600 2235 M. Winker 251 0.05% 90.7% 0.25% Malaysia, Bornes, Staha, Datum Valley, Logging rand nar Malua 5.110 117.600 2316 M. Winker 252 0.05% <	4746	M. winkleri	239	10.4%	89.3%	0.3%	Malaysia,	Borneo, Sabah, Poring, logging road	6.070	116.720
2831 M. winker/ 242 1.4% 98.1% 0.5% Maliysia, Bornes, Stah, Buki Tavu, stop 1 5.680 116.940 2476 M. winker/ 244 0.0% 97.9% 1.5% Malysia, Bornes, Stah, Buki Tavu, stop 1 5.680 116.980 2478 M. winker/ 244 0.0% 98.9% 2.2% Malysia, Bornes, Stah, Buki Tavu, stop 1 5.680 117.30 118 M. winker/ 247 3.8% 2.2% Malysia, Bornes, Stah, Bucik, trait b birdwatching tower 5.88 117.93 443 M. winker/ 247 3.8% 2.4% Malysia, Bornes, Stah, Barjok, trait b birdwatching tower 5.88 117.957 444 M. winker/ 240 0.5% 9.7% Malysia, Bornes, Stah, Barjok, trait b birdwatching tower 5.88 117.957 2830 M. winker/ 251 41.0% 22.2% 28.9% Malysia, Bornes, Stah, Darum Valley, Jogging road near Malua 5.110 117.600 2831 M. winker/ 252 0.5% 98.9% 0.5% Malysia, Bornes, Stah, Darum Valley, Malar anerM	4/5/ 2337	M winkleri	240	0.6%	99.1%	0.3%	Malaysia,	Borneo, Sabah, Poring, logging road	6.060	116.720
2485 M. winkeri 243 0.6% 97.9% 1.5% Malaysia, Borneo, Sabah, Buil Tavu, stop 1 5.680 116.980 112 M. winkeri 245 3.6% 93.8% 2.6% Malaysia, Borneo, Sabah, Deramakor Forest Reserve 5.330 117.330 118 M. winkeri 246 0.9% 66.9% 2.2% Malaysia, Borneo, Sabah, Deramakor Forest Reserve 5.330 117.300 4043 M. winkeri 247 3.8% 1.1% 65.0% Malaysia, Borneo, Sabah, Sejniok, trait to birdwatching tower 5.868 117.967 4044 M. winkeri 243 2.2% 1.7% 85.1% Malaysia, Borneo, Sabah, Sejniok, trait to birdwatching tower 5.868 117.967 4044 M. winkeri 253 0.4% 99.0% 0.5% Malaysia, Borneo, Sabah, Darum Valey, Logging road near Malua 5.110 117.600 2831 M. winkeri 254 0.9% 9.0% 0.5% Malaysia, Borneo, Sabah, Darum Valey, Logging road near Malua 5.110 117.600 2845 M. winkeri 254 0.9%9	2581	M. winkleri	242	1.4%	98.1%	0.5%	Malaysia,	Borneo, Sabah, Forling, logging road Borneo, Sabah, Bukit Taviu, stop 7	5.680	116.940
2478 M. winkleri 244 0.9% 0.8% 0.3% Malaysia, Borneo, Sabah, Dermankor Forest Reserve 5.330 117.330 118 M. winkleri 246 0.9% 96.9% 2.2% Malaysia, Borneo, Sabah, Dermankor Forest Reserve 5.330 117.330 141 M. winkleri 246 0.9% 0.8% 96.3% Science, Sabah, Sepilok, trail to birtwichting tower 5.866 117.967 4044 M. winkleri 228 1.7% 96.3% B8.3% Malaysia, Borneo, Sabah, Sepilok, trait to birtwichting tower 5.866 117.967 4048 M. winkleri 220 0.5% 0.8% 89.7% Malaysia, Borneo, Sabah, Sepilok, variethole 5.866 117.967 4049 M. winkleri 251 0.6% 90.7% 0.5% Malaysia, Borneo, Sabah, Darum Valley, Logging road near Malua 5.110 117.600 2834 M. winkleri 253 0.6% 90.7% 0.4% Malaysia, Borneo, Sabah, Darum Valley, Logging road near Malua 5.110 117.600 2844 M. winkleri 256 0.6% 90.7% 0.4% Malaysia, Borneo, Sabah, Darum Valley, Logging road near Malua	2485	M. winkleri	243	0.6%	97.9%	1.5%	Malaysia,	Borneo, Sabah, Bukit Taviu, stop 1	5.690	116.980
111 M. winkleri 245 3.6% 93.8% 2.6% Malaysia, Borneo, Sabah, Deramakor Forest Reserve 5.330 117.330 4434 M. winkleri 247 3.8% 1.1% 65.0% Malaysia, Borneo, Sabah, Seniok, trait to intrivucting tover 5.868 117.867 4444 M. winkleri 240 0.5% 0.8% Malaysia, Borneo, Sabah, Seniok, trait to intrivucting tover 5.868 117.867 4444 M. winkleri 220 0.5% 0.8% Malaysia, Borneo, Sabah, Seniok, trait to intrivucting tover 5.868 117.867 429 M. winkleri 251 0.4% 98.7% Malaysia, Borneo, Sabah, Darum Valley, togging road near Malua 5.110 117.600 2831 M. winkleri 252 0.4% 99.0% 0.5% Malaysia, Borneo, Sabah, Darum Valley, togging road near Malua 5.110 117.600 2846 M. winkleri 254 0.9% 98.5% 0.5% Malaysia, Borneo, Sabah, Darum Valley, togging road near Malua 5.110 117.600 2846 M. winkleri 256 0.5% 98.5% 0.5% Malaysia, Borneo, Sabah, Darum Valley, togging road near Malua 5.100	2478	M. winkleri	244	0.9%	98.8%	0.3%	Malaysia,	Borneo, Sabah, Bukit Taviu, stop 1	5.690	116.980
118 M. winklein 246 0.9% 96.9% 2.2% Malaysia, Borneo, Sabah, Sepilok, Trai b Dirdwatching tower 5.66 117.367 4044 M. winkleri 248 0.9% 0.9% 98.3% Malaysia, Borneo, Sabah, Sepilok, Trai b Dirdwatching tower 5.666 117.367 4044 M. winkleri 249 0.9% 0.9% Malaysia, Borneo, Sabah, Sepilok, waterholo 5.666 117.367 4283 M. winkleri 251 4.10% 22.3% 29.4% Malaysia, Borneo, Sabah, Darum Yalley, logging road near Malua 5.110 117.600 2833 M. winkleri 253 0.0% 90.% 0.5% Malaysia, Borneo, Sabah, Darum Yalley, logging road near Malua 5.110 117.600 2845 M. winkleri 255 0.0% 90.0% 0.4% Malaysia, Borneo, Sabah, Darum Yalley, logging road near Malua 5.110 117.600 2866 M. winkleri 256 1.0% 98.6% 0.4% Malaysia, Borneo, Sabah, Darum Yalley, logging road near Malua 5.110 117.600 2867 M. winkleri 256 <t< td=""><td>112</td><td>M. winkleri</td><td>245</td><td>3.6%</td><td>93.8%</td><td>2.6%</td><td>Malaysia,</td><td>Borneo, Sabah, Deramakot Forest Reserve</td><td>5.330</td><td>117.330</td></t<>	112	M. winkleri	245	3.6%	93.8%	2.6%	Malaysia,	Borneo, Sabah, Deramakot Forest Reserve	5.330	117.330
444.4 A. Winkerin 247 3.8% 11.% 95.0% Malaysia, Bornes, Staba, Septiok, trait is birokatching tower 5.666 117.967 4044 M. winkeri 249 2.2% 1.7% 86.3% Malaysia, Bornes, Staba, Septiok, trait is birokatching tower 5.666 117.967 4044 M. winkeri 249 2.2% 1.7% 86.3% Malaysia, Bornes, Staba, Septiok, trait is birokatching tower 5.666 117.967 4044 M. winkeri 252 0.4% 92.3% Malaysia, Bornes, Staba, Darum Valley, logging road near Malua 5.110 117.600 2831 M. winkeri 256 0.6% 98.0% 0.6% Malaysia, Bornes, Staba, Darum Valley, logging road near Malua 5.110 117.600 2866 M. winkeri 256 0.6% 99.0% 0.4% Malaysia, Bornes, Staba, Darum Valley, logging road near Malua 5.110 117.600 2866 M. winkeri 256 0.5% 99.0% 0.4% Malaysia, Bornes, Staba, Darum Valley, Malua, new logging road 5.100 117.650 3864 M. winkeri 2	118	M. winkleri	246	0.9%	96.9%	2.2%	Malaysia,	Borneo, Sabah, Deramakot Forest Reserve	5.330	117.330
Humikeir 200 2.2% 1.7% 96.1% Malaysia, Borneo, Sabah, Sepluk, waterhole 5.668 117.987 2820 M. winkleir 251 41.0% 22.2% 28.0% Malaysia, Borneo, Sabah, Sepluk, waterhole 5.668 117.987 2820 M. winkleir 252 0.4% 97.1% 25% Malaysia, Borneo, Sabah, Darum Valley, togging road near Malua 5.110 117.600 2831 M. winkleir 255 0.6% 98.0% 0.5% Malaysia, Borneo, Sabah, Darum Valley, togging road near Malua 5.110 117.600 2867 M. winkleir 255 0.6% 98.0% 0.4% Malaysia, Borneo, Sabah, Darum Valley, togging road near Malua 5.110 117.600 2866 M. winkleir 256 1.0% 98.0% 0.4% Malaysia, Borneo, Sabah, Darum Valley, Malua, new logging road 5.100 117.650 3866 M. winkleir 256 0.5% 99.2% 0.3% Malaysia, Borneo, Sabah, Darum Valley, Malua, new logging road 5.100 117.650 3866 M. winkleir 261 1.0%	4043	M. WINKIERI M. winkleri	247	3.8%	1.1%	95.0%	Malaysia,	Borneo, Sabah, Sepilok, trail to birdwatching tower	5.866	117.967
4449 M. winkeri 250 0.5% 0.9% 98.7% Malaysia, Borneo, Sabah, Darum Valley, logging cod near Malua 5.10 117.260 2829 M. winkleri 252 0.4% 97.1% 2.28 kM Malaysia, Borneo, Sabah, Darum Valley, logging cod near Malua 5.110 117.600 2831 M. winkleri 253 0.6% 99.0% 0.5% Malaysia, Borneo, Sabah, Darum Valley, logging cod near Malua 5.110 117.600 2866 M. winkleri 255 0.6% 99.0% 0.4% Malaysia, Borneo, Sabah, Darum Valley, logging cod near Malua 5.110 117.600 2866 M. winkleri 255 0.5% 99.0% 0.5% Malaysia, Borneo, Sabah, Darum Valley, Malua, new logging cod 5.100 117.650 3864 M. winkleri 258 0.5% 99.2% 0.3% Malaysia, Borneo, Sabah, Darum Valley, Malua, new logging cod 5.100 117.650 3864 M. winkleri 260 0.5% 99.2% 0.3% Malaysia, Borneo, Sabah, Darum Valley, Malua, new logging cod 5.100 117.650 3864 M. wi	4044	M winkleri	240	2.2%	1.7%	96.1%	Malaysia,	Borneo, Sabah, Sepilok, itali to birdwatching tower	5.866	117.967
2229 M. winkler 251 41.0% 29.2% 29.8% Malaysia, Borneo, Sabah, Darum Valley, logging road near Malua 5.110 117.600 2830 M. winkler 253 0.6% 99.0% 0.5% Malaysia, Borneo, Sabah, Darum Valley, logging road near Malua 5.110 117.600 2854 M. winkler 255 0.6% 99.0% 0.4% Malaysia, Borneo, Sabah, Darum Valley, logging road near Malua 5.110 117.600 2866 M. winkler 255 0.6% 99.0% 0.4% Malaysia, Borneo, Sabah, Darum Valley, logging road near Malua 5.110 117.600 3863 M. winkler 256 1.0% 97.8% 1.0% Malaysia, Borneo, Sabah, Darum Valley, Malua, new logging road 5.100 117.650 3864 M. winkler 259 0.5% 99.2% 0.3% Malaysia, Borneo, Sabah, Darum Valley, Malua, new logging road 5.100 117.650 3864 M. winkler 261 1.0% 7.3% 91.7% Malaysia, Borneo, Sabah, Darum Valley, Malua, new logging road 5.100 117.650 3862 M. w	4049	M. winkleri	250	0.5%	0.8%	98.7%	Malaysia,	Borneo, Sabah, Sepilok, waterhole	5.866	117.967
2830 M. winkler 252 0.4% 9.71% 2.5% Malaysia, Borneo, Sabah, Danum Valley, logging road near Malua 5.110 117.600 2864 M. winkler 254 0.9% 98.5% 0.5% Malaysia, Borneo, Sabah, Danum Valley, logging road near Malua 5.110 117.600 2866 M. winkler 256 0.6% 99.0% 0.4% Malaysia, Borneo, Sabah, Danum Valley, logging road near Malua 5.110 117.600 2866 M. winkler 256 1.0% 98.6% 0.4% Malaysia, Borneo, Sabah, Danum Valley, logging road near Malua 5.100 117.650 3664 M. winkler 258 0.5% 99.0% 0.5% Malaysia, Borneo, Sabah, Danum Valley, Malua, new logging road 5.100 117.650 3760 M. winkler 280 0.6% 96.7% 2.8% Malaysia, Borneo, Sabah, Danum Valley, Malua, new logging road 5.100 117.650 3764 M. winkler 282 0.4% 0.3% Malaysia, Borneo, Sabah, Danum Valley, Malua, new logging road 5.100 117.650 3764 M. winkler 286 1.5% 98.3% 0.3% Malaysia, Borneo, Sabah, Danum Valley, Ma	2829	M. winkleri	251	41.0%	29.2%	29.8%	Malaysia,	Borneo, Sabah, Danum Valley, logging road near Malua	5.110	117.600
2831 M. winkleri 253 0.6% 99.0% 0.5% Malaysia, Borneo, Sabah, Danum Valley, Jogging road near Malua 5.110 117.600 2866 M. winkleri 255 0.6% 99.0% 0.4% Malaysia, Borneo, Sabah, Danum Valley, Jogging road near Malua 5.110 117.600 2867 M. winkleri 255 0.6% 99.0% 0.4% Malaysia, Borneo, Sabah, Danum Valley, Jogging road near Malua 5.110 117.600 3663 M. winkleri 257 1.2% 97.8% 1.0% Malaysia, Borneo, Sabah, Danum Valley, Malua, new logging road 5.100 117.650 3664 M. winkleri 259 0.5% 92.2% 0.3% Malaysia, Borneo, Sabah, Danum Valley, Malua, new logging road 5.100 117.650 3661 M. winkleri 261 1.0% 7.3% 91.7% Malaysia, Borneo, Sabah, Danum Valley, Malua, new logging road 5.100 117.650 3622 M. winkleri 263 3.6% 15.1% 81.3% Malaysia, Borneo, Sabah, Danum Valley, Malua, new logging road 5.100 117.650 3622 <t< td=""><td>2830</td><td>M. winkleri</td><td>252</td><td>0.4%</td><td>97.1%</td><td>2.5%</td><td>Malaysia,</td><td>Borneo, Sabah, Danum Valley, logging road near Malua</td><td>5.110</td><td>117.600</td></t<>	2830	M. winkleri	252	0.4%	97.1%	2.5%	Malaysia,	Borneo, Sabah, Danum Valley, logging road near Malua	5.110	117.600
2286 M. winkleri 254 0.9% 98.5% 0.5% Malaysia, Borneo, Sabah, Danum Valley, logging road near Malua 5.110 117.600 2866 M. winkleri 255 0.6% 99.0% 0.4% Malaysia, Borneo, Sabah, Danum Valley, logging road near Malua 5.110 117.600 2866 M. winkleri 255 0.5% 99.0% 0.5% Malaysia, Borneo, Sabah, Danum Valley, Malua, new logging road 5.100 117.650 38664 M. winkleri 256 0.5% 99.0% 0.5% Malaysia, Borneo, Sabah, Darum Valley, Malua, new logging road 5.100 117.650 38644 M. winkleri 260 0.6% 96.7% 2.8% Malaysia, Borneo, Sabah, Darum Valley, Malua, new logging road 5.100 117.650 38642 M. winkleri 251 0.4% 0.3% 99.3% Malaysia, Borneo, Sabah, Darum Valley, Malua, new logging road 5.100 117.650 38622 M. winkleri 256 1.5% 98.1% 0.4% Malaysia, Borneo, Sabah, Darum Valley, road to Malua 5.000 117.740 3222 M. wi	2831	M. winkleri	253	0.6%	99.0%	0.5%	Malaysia,	Borneo, Sabah, Danum Valley, logging road near Malua	5.110	117.600
2000 minihem 250 0.474 Integrate, Daniev, Laggin, Daging, Daging, Daging, Daging, Tada 5.110 117.200 20467 Minihem 256 1.0% 98.28% 0.4% Malaysia, Borneo, Sabah, Danum Valley, Jogging Toad 5.110 117.260 3645 Minihem 256 0.5% 99.2% 0.5% 99.2% 0.5% Malaysia, Borneo, Sabah, Danum Valley, Malua, new Jogging Toad 5.100 117.650 3664 Minihem 256 0.5% 99.2% 0.3% Malaysia, Borneo, Sabah, Danum Valley, Malua, new Jogging Toad 5.100 117.650 3661 Minihem 261 0.5% 99.2% Malaysia, Borneo, Sabah, Danum Valley, Malua, new Jogging Toad 5.100 117.650 3622 Minihem 261 1.0% 4.0% 95.0% Malaysia, Borneo, Sabah, Danum Valley, Malua, new Jogging Toad 5.100 117.760 3222 Minihem 263 3.6% 15.1% 81.3% Malaysia, Borneo, Sabah, Danum Valley, Malua, new Jogging Toad 5.000 117.720 3415 Minihkeri 266 1.5% <td>2854</td> <td>M. winkleri M. winkleri</td> <td>254</td> <td>0.9%</td> <td>98.5%</td> <td>0.5%</td> <td>Malaysia,</td> <td>Borneo, Sabah, Dahum Valley, logging road hear Malua</td> <td>5.110</td> <td>117.600</td>	2854	M. winkleri M. winkleri	254	0.9%	98.5%	0.5%	Malaysia,	Borneo, Sabah, Dahum Valley, logging road hear Malua	5.110	117.600
345 <i>M. winkleri</i> 257 1.2% 97.8% 1.0% Malaysia, Borneo, Sabah, Danum Valley, Malua, new logging road 5.100 117.650 3663 <i>M. winkleri</i> 258 0.5% 99.0% 0.5% Malaysia, Borneo, Sabah, Danum Valley, Malua, new logging road 5.100 117.650 3740 <i>M. winkleri</i> 260 0.6% 96.7% 2.8% Malaysia, Borneo, Sabah, Danum Valley, Malua, new logging road 5.100 117.7650 3661 <i>M. winkleri</i> 261 0.6% 99.3% Malaysia, Borneo, Sabah, Danum Valley, Malua, new logging road 5.100 117.760 3662 <i>M. winkleri</i> 262 0.4% 0.3% 99.3% Malaysia, Borneo, Sabah, Danum Valley, Malua, new logging road 5.100 117.760 3622 <i>M. winkleri</i> 266 1.4% 4.0% 9.50% Malaysia, Borneo, Sabah, Danum Valley, madu Malua 5.060 117.760 3614 <i>M. winkleri</i> 266 1.4% 98.3% 0.3% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.070 117.720 3615 <i>M. winkleri</i> <td< td=""><td>2867</td><td>M. winkleri</td><td>256</td><td>1.0%</td><td>98.6%</td><td>0.4%</td><td>Malaysia,</td><td>Borneo, Sabah, Danum Valley, logging road near Malua</td><td>5.110</td><td>117.600</td></td<>	2867	M. winkleri	256	1.0%	98.6%	0.4%	Malaysia,	Borneo, Sabah, Danum Valley, logging road near Malua	5.110	117.600
3653 M. winkleri 258 0.5% 99.0% 0.5% Malaysia, Borneo, Sabah, Danum Valley, Malua, new logging road 5.100 117.650 3740 M. winkleri 269 0.6% 96.7% 2.4% Malaysia, Borneo, Sabah, Danum Valley, Malua, new logging road 5.100 117.650 3661 M. winkleri 261 1.0% 7.3% 91.7% Malaysia, Borneo, Sabah, Danum Valley, Malua, new logging road 5.100 117.650 3622 M. winkleri 263 3.6% 15.1% Malaysia, Borneo, Sabah, Danum Valley, Malua, new logging road 5.100 117.650 3223 M. winkleri 265 1.5% 98.1% 0.4% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.090 117.760 3414 M. winkleri 266 1.5% 98.1% 0.4% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.090 117.650 3414 M. winkleri 266 1.5% 98.1% 0.4% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.070 117.20 6157 M. winkleri 267 19	3545	M. winkleri	257	1.2%	97.8%	1.0%	Malaysia,	Borneo, Sabah, Danum Valley, Malua, new logging road	5.100	117.650
3664 M. winkleri 259 0.5% 99.2% 0.3% Malaysia, Borneo, Sabah, Danum Valley, Malua, new logging road 5.100 117.650 3661 M. winkleri 261 1.0% 7.3% 91.7% Malaysia, Borneo, Sabah, Danum Valley, Malua, new logging road 5.100 117.650 3662 M. winkleri 262 0.4% 0.3% 98.3% Malaysia, Borneo, Sabah, Danum Valley, Malua, new logging road 5.100 117.650 3222 M. winkleri 263 3.6% 15.1% 98.1% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.060 117.760 3415 M. winkleri 266 1.4% 98.3% 0.4% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.090 117.650 3414 M. winkleri 266 1.4% 98.3% 0.3% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.070 117.720 6155 M. winkleri 266 0.6% 99.0% 0.4% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.070 117.720 6156 M. winkleri 270 0.9% 98.8% 0.3% Malaysia, Borneo, Sabah, Danum Valley, road to Malu	3663	M. winkleri	258	0.5%	99.0%	0.5%	Malaysia,	Borneo, Sabah, Danum Valley, Malua, new logging road	5.100	117.650
3740 M. winkleri 260 0.6% 96.7% 2.8% Malaysia, Borneo, Sabah, Danum Valley, Malua, new logging road 5.100 117.650 3661 M. winkleri 262 0.4% 0.3% 99.3% Malaysia, Borneo, Sabah, Danum Valley, Malua, new logging road 5.100 117.650 3222 M. winkleri 263 3.6% 15.1% 81.3% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.060 117.740 3233 M. winkleri 266 1.5% 98.1% 0.4% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.090 117.650 3414 M. winkleri 266 1.5% 98.1% 0.4% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.070 117.650 6155 M. winkleri 266 0.6% 90.0% 0.4% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.070 117.720 6158 M. winkleri 270 0.9% 9.4% 0.3% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.070 117.720 6166 M. winkleri 271 0.3% 98.4% 0.3% Malaysia, Borneo, Sabah, Danum Valley, road to Malua	3664	M. winkleri	259	0.5%	99.2%	0.3%	Malaysia,	Borneo, Sabah, Danum Valley, Malua, new logging road	5.100	117.650
3661 M. Winkleri 261 1.0% 7.3% 91.7% Malaysia, Borneo, Sabah, Danum Valley, Malua, new logging road 5.100 117.450 3662 M. winkleri 262 0.4% 0.3% 93.5% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.060 117.760 3223 M. winkleri 263 1.0% 4.0% 95.0% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.060 117.760 3414 M. winkleri 266 1.4% 98.3% 0.3% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.070 117.720 6157 M. winkleri 268 0.6% 99.0% 0.4% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.070 117.720 6157 M. winkleri 269 9.4% 90.3% 0.3% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.070 117.720 6158 M. winkleri 270 0.9% 96.8% 0.3% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.070 117.720 6158 M. winkleri 271 0.3%	3740	M. winkleri	260	0.6%	96.7%	2.8%	Malaysia,	Borneo, Sabah, Danum Valley, Malua, new logging road	5.100	117.650
Society American Society Society Marka and models, fundable, and models, fundable, and models, fundable,	3662	M winkleri	261	1.0%	0.3%	91.7%	Malaysia,	Borneo, Sabah, Dahum Valley, Malua, new logging road	5.100	117.650
3253 M. winkleri 264 1.0% 4.0% 95.0% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.050 117.760 3414 M. winkleri 265 1.5% 98.1% 0.4% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.090 117.650 6155 M. winkleri 266 1.9% 98.3% 0.3% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.070 117.720 6155 M. winkleri 268 0.6% 99.0% 0.4% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.070 117.720 6156 M. winkleri 269 9.4% 90.3% 0.3% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.070 117.720 6156 M. winkleri 271 0.3% 99.4% 0.3% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.070 117.720 6156 M. winkleri 271 0.5% 98.7% 0.3% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.070 117.720 6156 M. winkleri 277 0.5% <	3222	M. winkleri	263	3.6%	15.1%	81.3%	Malavsia.	Borneo, Sabah, Danum Valley, road to Malua	5.060	117.740
3415 M. winkleri 265 1.5% 98.1% 0.4% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.090 117.650 3414 M. winkleri 266 1.4% 98.3% 0.3% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.090 117.720 6155 M. winkleri 266 1.9.7% 79.8% 0.5% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.070 117.720 6155 M. winkleri 268 0.6% 90.0% 0.4% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.070 117.720 6166 M. winkleri 270 0.9% 98.8% 0.3% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.070 117.720 6160 M. winkleri 271 0.3% 98.4% 0.3% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.070 117.720 3816 M. winkleri 273 0.4% 99.3% 0.3% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.070 117.720 3816 M. winkleri 274 0.5%	3253	M. winkleri	264	1.0%	4.0%	95.0%	Malaysia,	Borneo, Sabah, Danum Valley, road to Malua	5.050	117.760
3414 M. winkleri 266 1.4% 98.3% 0.3% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.090 117.650 6155 M. winkleri 268 0.6% 99.0% 0.4% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.070 117.720 6156 M. winkleri 269 9.4% 90.3% 0.3% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.070 117.720 6166 M. winkleri 271 0.3% 99.4% 0.3% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.070 117.720 6167 M. winkleri 272 0.4% 99.3% 0.3% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.070 117.720 6158 M. winkleri 272 0.4% 99.4% 0.3% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.070 117.730 3815 M. winkleri 273 0.4% 99.4% 0.3% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.070 117.730 3221 M. winkleri 276 1.2% 98.5% 0.3% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.060	3415	M. winkleri	265	1.5%	98.1%	0.4%	Malaysia,	Borneo, Sabah, Danum Valley, road to Malua	5.090	117.650
bit M. winkleri 2br 19. /% /9. % 0.5% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.070 117.720 6157 M. winkleri 268 0.6% 99.0% 0.3% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.070 117.720 6156 M. winkleri 270 0.9% 98.8% 0.3% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.070 117.720 6160 M. winkleri 271 0.9% 98.8% 0.3% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.070 117.720 6157 M. winkleri 271 0.4% 99.3% 0.3% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.070 117.720 6158 M. winkleri 273 0.4% 99.3% 0.3% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.070 117.720 8158 M. winkleri 274 0.5% 98.7% 0.3% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.060 117.750 3331 M. winkleri 277 1.5% 98.5%	3414	M. winkleri	266	1.4%	98.3%	0.3%	Malaysia,	Borneo, Sabah, Danum Valley, road to Malua	5.090	117.650
ord m. minkeri 200 0.0% 95.0% 0.4% Midaysia, Borneo, Sabah, Danum Valley, road to Malua 5.0/0 117.720 6156 M. winkleri 270 0.9% 98.8% 0.3% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.070 117.720 6166 M. winkleri 271 0.3% 99.4% 0.3% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.070 117.720 6161 M. winkleri 273 0.4% 99.3% 0.3% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.070 117.720 3816 M. winkleri 273 0.4% 99.3% 0.8% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.070 117.730 3221 M. winkleri 276 0.5% 98.7% 0.8% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.060 117.750 3331 M. winkleri 276 1.2% 98.5% 0.3% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.060 117.750 3332 M. winkleri 278 0.8% <td< td=""><td>6155</td><td>M. winkleri</td><td>267</td><td>19.7%</td><td>/9.8%</td><td>0.5%</td><td>Malaysia,</td><td>Borneo, Sabah, Danum Valley, road to Malua</td><td>5.070</td><td>117.720</td></td<>	6155	M. winkleri	267	19.7%	/9.8%	0.5%	Malaysia,	Borneo, Sabah, Danum Valley, road to Malua	5.070	117.720
6156 M. winkleri 270 0.9% 98.8% 0.3% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.070 117.720 6160 M. winkleri 271 0.3% 99.4% 0.3% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.070 117.720 6161 M. winkleri 271 0.3% 99.4% 0.3% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.070 117.720 3815 M. winkleri 273 0.4% 99.4% 0.3% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.070 117.730 3816 M. winkleri 274 0.5% 98.7% 0.8% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.060 117.740 3221 M. winkleri 276 1.2% 98.5% 0.3% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.060 117.750 3331 M. winkleri 276 1.2% 98.5% 0.8% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.060 117.750 3332 M. winkleri 278 0.8% <	6158	M winkleri	268	0.6%	99.0%	0.4%	Malaysia,	Borneo, Sabah, Danum Valley, road to Malua	5.070	117.720
6160 M. winkleri 271 0.3% 99.4% 0.3% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.070 117.720 6159 M. winkleri 272 0.4% 99.3% 0.3% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.070 117.720 3815 M. winkleri 273 0.4% 99.4% 0.3% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.070 117.730 3816 M. winkleri 274 0.5% 98.7% 0.8% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.060 117.740 3221 M. winkleri 276 1.2% 98.5% 0.3% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.060 117.750 3331 M. winkleri 277 1.5% 97.7% 0.8% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.060 117.750 3333 M. winkleri 279 5.6% 94.0% 0.3% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.060 117.750 3333 M. winkleri 280 1.9% <	6156	M. winkleri	270	0.9%	98.8%	0.3%	Malaysia,	Borneo, Sabah, Danum Valley, road to Malua	5.070	117.720
6159 M. winkleri 272 0.4% 99.3% 0.3% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.070 117.720 3815 M. winkleri 273 0.4% 99.4% 0.3% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.070 117.730 3816 M. winkleri 274 0.5% 99.2% 0.3% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.060 117.740 3301 M. winkleri 276 1.2% 98.5% 0.3% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.060 117.740 3331 M. winkleri 277 1.5% 97.7% 0.8% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.060 117.750 3333 M. winkleri 277 1.5% 97.7% 0.8% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.060 117.750 3333 M. winkleri 278 0.8% 98.5% 0.8% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.060 117.750 3333 M. winkleri 281 1.9% <	6160	M. winkleri	271	0.3%	99.4%	0.3%	Malaysia,	Borneo, Sabah, Danum Valley, road to Malua	5.070	117.720
3815 M. winkleri 273 0.4% 99.4% 0.3% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.070 117.730 3816 M. winkleri 274 0.5% 98.7% 0.8% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.070 117.730 3221 M. winkleri 276 1.2% 98.5% 0.3% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.060 117.750 3331 M. winkleri 276 1.2% 98.5% 0.3% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.060 117.750 3332 M. winkleri 277 1.5% 98.5% 0.8% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.060 117.750 3333 M. winkleri 279 5.6% 94.0% 0.3% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.060 117.750 3334 M. winkleri 281 1.9% 84.8% 14.2% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.060 117.760 3292 M. winkleri 281 0.5%	6159	M. winkleri	272	0.4%	99.3%	0.3%	Malaysia,	Borneo, Sabah, Danum Valley, road to Malua	5.070	117.720
3816 M. winkleri 274 0.5% 98.7% 0.8% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.070 117.730 3221 M. winkleri 276 1.2% 98.5% 0.3% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.060 117.740 3330 M. winkleri 277 1.5% 97.7% 0.8% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.060 117.750 3331 M. winkleri 277 1.5% 97.7% 0.8% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.060 117.750 3333 M. winkleri 279 5.6% 94.0% 0.3% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.060 117.750 3334 M. winkleri 281 1.0% 84.8% 14.2% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.060 117.750 3329 M. winkleri 282 0.5% 92.2% 0.3% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.050 117.760 3292 M. winkleri 282 0.5% 92.2% 0.3% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.050	3815	M. winkleri	273	0.4%	99.4%	0.3%	Malaysia,	Borneo, Sabah, Danum Valley, road to Malua	5.070	117.730
111.740 25.0% 92.2% 0.3% Integ., second, berlett, s	3816	M. winkleri	274	0.5%	98.7%	0.8%	Malaysia, Malaysia	Borneo, Sabah, Danum Valley, road to Malua Borneo, Sabah, Danum Valley, road to Malua	5.070	117.730
1.10 1.10 1.12 0.001 Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.000 117.750 3331 M. winkleri 278 0.8% 98.5% 0.8% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.060 117.750 3333 M. winkleri 278 0.8% 98.5% 0.8% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.060 117.750 3333 M. winkleri 280 1.9% 94.7% 3.3% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.060 117.750 3324 M. winkleri 280 1.9% 94.7% 3.3% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.060 117.750 3329 M. winkleri 281 1.0% 84.8% 14.2% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.050 117.760 3292 M. winkleri 283 0.5% 92.2% 0.3% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.050 117.760 3293 M. winkleri 284 1.4% 98.3% 0.3% M	3330	M. winkleri	275	1.2%	98.5%	0.3%	Malavsia	Borneo, Sabah, Danum Valley, road to Malua	5,060	117 750
3332 M. winkleri 278 0.8% 98.5% 0.8% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.060 117.750 3333 M. winkleri 279 5.6% 94.0% 0.3% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.060 117.750 3334 M. winkleri 280 1.9% 94.7% 3.3% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.060 117.750 3324 M. winkleri 281 1.0% 84.8% 14.2% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.060 117.750 3225 M. winkleri 281 1.0% 84.8% 14.2% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.050 117.760 3292 M. winkleri 282 0.5% 99.2% 0.3% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.050 117.760 3292 M. winkleri 284 1.4% 98.3% 0.3% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.050 117.760 3294 M. winkleri 286 0.4%	3331	M. winkleri	277	1.5%	97.7%	0.8%	Malaysia.	Borneo, Sabah, Danum Valley, road to Malua	5.060	117.750
3333 M. winkleri 279 5.6% 94.0% 0.3% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.060 117.750 3334 M. winkleri 280 1.9% 94.7% 3.3% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.060 117.750 3329 M. winkleri 281 1.9% 94.7% 3.3% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.060 117.750 3254 M. winkleri 282 0.5% 99.2% 0.3% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.050 117.760 3293 M. winkleri 282 0.5% 99.2% 0.3% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.050 117.760 3293 M. winkleri 284 1.4% 98.3% 0.3% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.050 117.760 3293 M. winkleri 285 1.0% 98.7% 0.3% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.000 117.800 3876 M. winkleri 286 0.4% <	3332	M. winkleri	278	0.8%	98.5%	0.8%	Malaysia,	Borneo, Sabah, Danum Valley, road to Malua	5.060	117.750
3334 M. winkleri 280 1.9% 94.7% 3.3% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.060 117.750 3329 M. winkleri 281 1.0% 84.8% 14.2% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.060 117.750 3254 M. winkleri 281 1.0% 84.8% 14.2% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.050 117.760 3254 M. winkleri 283 0.5% 99.2% 0.3% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.050 117.760 3293 M. winkleri 284 1.4% 98.3% 0.3% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.050 117.760 3294 M. winkleri 286 1.4% 98.3% 0.3% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.050 117.760 3284 M. winkleri 286 0.4% 99.3% 0.3% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.000 117.800 3888 M. winkleri 287 0.6%	3333	M. winkleri	279	5.6%	94.0%	0.3%	Malaysia,	Borneo, Sabah, Danum Valley, road to Malua	5.060	117.750
3329 M. winkleri 281 1.0% 84.8% 14.2% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.060 117.750 3254 M. winkleri 282 0.5% 99.2% 0.3% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.050 117.760 3294 M. winkleri 283 0.5% 99.2% 0.3% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.050 117.760 3293 M. winkleri 284 1.4% 98.3% 0.3% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.050 117.760 3294 M. winkleri 286 1.0% 98.7% 0.3% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.050 117.760 3878 M. winkleri 286 0.4% 99.3% 0.3% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.000 117.800 3882 M. winkleri 287 0.6% 99.1% 0.3% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.000 117.800 3883 M. winkleri 289 0.5%	3334	M. winkleri	280	1.9%	94.7%	3.3%	Malaysia,	Borneo, Sabah, Danum Valley, road to Malua	5.060	117.750
bit winkleri 262 0.5% 99.2% 0.3% Winkleri Danum Valley, road to Malua 5.050 117.760 3292 M. winkleri 283 0.5% 99.2% 0.3% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.050 117.760 3293 M. winkleri 284 1.4% 98.3% 0.3% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.050 117.760 3293 M. winkleri 286 1.0% 98.7% 0.3% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.050 117.760 3294 M. winkleri 286 0.4% 99.3% 0.3% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.000 117.800 3877 M. winkleri 287 0.6% 99.1% 0.3% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.000 117.800 3883 M. winkleri 288 0.5% 99.4% 0.3% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.000 117.800 3936 M. winkleri 289 0.5%	3329	M. winkleri	281	1.0%	84.8%	14.2%	Malaysia,	Borneo, Sabah, Danum Valley, road to Malua	5.060	117.750
Loc Loc <thloc< th=""> <thloc< th=""> <thloc< th=""></thloc<></thloc<></thloc<>	3254	ıvı. winkleri M winkleri	282	0.5%	99.2% aa 2%	0.3%	Malavsia,	Borneo, Sabah, Danum Valley, road to Malua Borneo, Sabah, Danum Valley, road to Malua	5.050	117.760
3294 M. winkleri 285 1.0% 98.7% 0.3% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.050 117.760 3878 M. winkleri 286 0.4% 99.3% 0.3% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.000 117.760 3878 M. winkleri 286 0.4% 99.3% 0.3% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.000 117.800 3882 M. winkleri 288 2.3% 97.4% 0.3% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.000 117.800 3936 M. winkleri 289 0.5% 99.2% 0.3% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.000 117.800 3936 M. winkleri 289 0.5% 99.2% 0.3% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.000 117.800 3937 M. winkleri 290 0.5% 99.2% 0.3% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.000 117.800 3937 M. winkleri 291 25.8%	3293	M. winkleri	284	1.4%	98.3%	0.3%	Malavsia,	Borneo, Sabah, Danum Valley, road to Malua	5.050	117.760
3878 M. winkleri 286 0.4% 99.3% 0.3% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.000 117.800 3882 M. winkleri 287 0.6% 99.1% 0.3% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.000 117.800 3883 M. winkleri 288 2.3% 97.4% 0.3% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.000 117.800 3836 M. winkleri 289 0.5% 99.2% 0.3% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.000 117.800 3936 M. winkleri 289 0.5% 99.2% 0.3% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.000 117.800 3937 M. winkleri 290 0.5% 99.2% 0.3% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.000 117.800 3937 M. winkleri 291 25.8% 73.7% 0.5% Malaysia, Borneo, Sabah, Danum Valley, road to Malua, junction to BRL 5.050 117.760	3294	M. winkleri	285	1.0%	98.7%	0.3%	Malaysia,	Borneo, Sabah, Danum Valley, road to Malua	5.050	117.760
3882 M. winkleri 287 0.6% 99.1% 0.3% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.000 117.800 3883 M. winkleri 288 2.3% 97.4% 0.3% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.000 117.800 3936 M. winkleri 289 0.5% 99.2% 0.3% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.000 117.800 3937 M. winkleri 290 0.5% 99.2% 0.3% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.000 117.800 3937 M. winkleri 290 0.5% 99.2% 0.3% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.000 117.800 6154 M. winkleri 291 25.8% 73.7% 0.5% Malaysia, Borneo, Sabah, Danum Valley, road to Malua, junction to BRL 5.050 117.760	3878	M. winkleri	286	0.4%	99.3%	0.3%	Malaysia,	Borneo, Sabah, Danum Valley, road to Malua	5.000	117.800
sess M. winkleri 288 2.3% 97.4% 0.3% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.000 117.800 3936 M. winkleri 289 0.5% 99.2% 0.3% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.000 117.800 3937 M. winkleri 290 0.5% 99.2% 0.3% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.000 117.800 6154 M. winkleri 291 25.8% 73.7% 0.5% Malaysia, Borneo, Sabah, Danum Valley, road to Malua, junction to BRL 5.050 117.760	3882	M. winkleri	287	0.6%	99.1%	0.3%	Malaysia,	Borneo, Sabah, Danum Valley, road to Malua	5.000	117.800
Society M. minilerity 2.99 0.376 Windsysta, Borneo, Sabah, Danum Valley, road to Malua 5.000 117.800 3937 M. winklerity 290 0.5% 99.2% 0.3% Malaysia, Borneo, Sabah, Danum Valley, road to Malua 5.000 117.800 6154 M. winklerity 291 25.8% 73.7% 0.5% Malaysia, Borneo, Sabah, Danum Valley, road to Malua, junction to BRL 5.050 117.760	3883	M. winkleri	288	2.3%	97.4%	0.3%	Malaysia,	Durneu, Sabah, Danum Valley, road to Malua	5.000	117.800
6154 M. winklein 291 25.8% 73.7% 0.5% Malaysia, Borneo, Sabah, Danum Valley, road to Malua, junction to BRL 5.050 117.760	3930	M. winkleri	209 290	0.5%	99.2% 99.2%	0.3%	Malavsia,	Borneo, Sabah, Danum Valley, road to Malua	5,000	117.800
	6154	M. winkleri	291	25.8%	73.7%	0.5%	Malaysia,	Borneo, Sabah, Danum Valley, road to Malua, junction to BRL	5.050	117.760

Plant ID		Individual _	Percent of	individual ass	igned to			
Number	Species	(1 bar)	Cluster K=1	Cluster K=2	Cluster K=3	Location	Latitude	Longitude
6153	M. winkleri	292	2.9%	96.3%	0.8%	Malaysia, Borneo, Sabah, Danum Valley, road to Malua, junction to BRL	5.050	117.760
6147	M. winkleri	293	2.4%	73.1%	24.5%	Malaysia, Borneo, Sabah, Danum Valley, road to Malua, junction to BRL	5.050	117.760
6141	M. WINKIERI M. winklori	294	1.0%	98.7%	0.3%	valaysia, Borneo, Sabah, Danum Valley, road to Malua, junction to BRL	5.050	117.760
4732	M. winkleri	296	0.8%	98.9%	0.3%	Valaysia, Borneo, Sabah, Danum Valley, ioad to Malda, junction to BRL	4.950	117.810
4733	M. winkleri	297	1.1%	95.8%	3.1%	Malaysia, Borneo, Sabah, Danum Valley, junction to BRL	4.950	117.810
4734	M. winkleri	298	0.9%	98.9%	0.3%	Malaysia, Borneo, Sabah, Danum Valley, junction to BRL	4.950	117.810
4735	M. winkleri	299	0.5%	98.9%	0.6%	Malaysia, Borneo, Sabah, Danum Valley, junction to BRL	4.950	117.810
4736	M. winkleri	300	1.1%	98.3%	0.6%	Valaysia, Borneo, Sabah, Danum Valley, junction to BRL	4.950	117.810
4/3/	M. winkleri	301	0.5%	99.2%	0.3%	Valaysia, Borneo, Sabah, Danum Valley, junction to BRL	4.950	117.810
3860	M winkleri	302	0.8%	90.1%	0.3%	Malaysia, Borneo, Sabah, Danum Valley, BRL	5.020	117.750
3861	M. winkleri	304	0.7%	25.7%	73.6%	Malaysia, Borneo, Sabah, Danum Valley, BRL	5.020	117.750
3078	M. winkleri	305	0.6%	99.1%	0.3%	Malaysia, Borneo, Sabah, Danum Valley, Main Line North	5.040	118.040
4642	M. winkleri	306	1.0%	98.7%	0.3%	Malaysia, Borneo, Sabah, Danum Valley, Sg. Kalisun trail	5.010	118.070
3443	M. winkleri	307	0.5%	99.2%	0.3%	Malaysia, Borneo, Sabah, Danum Valley, Sg. Kalisun trail	5.010	118.070
4988	M. winkleri	308	1.4%	97.4%	1.2%	Valaysia, Borneo, Sabah, Danum Valley, Sg. Kalisun	5.010	118.070
4987	M. winkleri	309	0.6%	99.1%	0.3%	Valaysia, Borneo, Sabah, Danum Valley, Sg. Kalisun Valaysia, Borneo, Sabah, Danum Valley, Sg. Kalisun	5.010	118.070
4303	M. winkleri	311	0.5%	99.3%	0.3%	Malaysia, Borneo, Sabah, Danum Valley, Sg. Kalisun trail	5.010	118.070
4807	M. winkleri	312	0.7%	92.2%	7.2%	Valaysia, Borneo, Sabah, Danum Valley, Kalisun	4.950	117.810
3462	M. winkleri	313	4.1%	93.5%	2.4%	Malaysia, Borneo, Sabah, Danum Valley, Sg. Purut trail	4.950	117.800
2233	M. winkleri	314	0.9%	89.9%	9.2%	Valaysia, Borneo, Sabah, Danum Valley, Westambling trail, waterfall	4.980	117.800
5083	M. winkleri	315	1.5%	98.0%	0.6%	Malaysia, Borneo, Sabah, Danum Valley, west grid, W13,1N5	4.980	117.800
5082	M. winkleri	316	0.5%	99.0%	0.5%	Valaysia, Borneo, Sabah, Danum Valley, west grid, W15N3	4.980	117.800
4550	M. WINKIER	317	0.6%	98.1%	1.3%	vialaysia, Borneo, Sabah, Danum Valley, west grid W15 N1.5 Vialaysia, Borneo, Sabah, Danum Valley, west grid W15 N1.5	4.980	117.800
4544	M. winkleri	319	1.3%	87.9%	10.8%	Malaysia, Borneo, Sabah, Danum Valley, west grid W15 N1.5	4.980	117.800
4555	M. winkleri	320	23.2%	76.5%	0.3%	Malaysia, Borneo, Sabah, Danum Valley, west grid W15 N1.5	4.980	117.800
3478	M. winkleri	321	4.9%	94.8%	0.3%	Malaysia, Borneo, Sabah, Danum Valley, west grid N1W15	4.980	117.800
3479	M. winkleri	322	0.6%	98.1%	1.3%	Malaysia, Borneo, Sabah, Danum Valley, west grid N1W15	4.980	117.800
4662	M. winkleri	323	0.8%	98.6%	0.6%	Valaysia, Borneo, Sabah, Danum Valley, west grid W12	4.980	117.800
4668	M. winkleri	324	1.0%	98.7%	0.3%	Valaysia, Borneo, Sabah, Danum Valley, west grid W12	4.980	117.800
4664	M. winkleri	325	0.4%	99.1%	0.5%	Malaysia, Borneo, Sabah, Danum Valley, west grid W12 Malaysia, Borneo, Sabah, Danum Valley, west grid W12	4.980	117.800
4667	M. winkleri	327	1.1%	98.5%	0.3%	Valavsia, Borneo, Sabah, Danum Valley, west grid W12	4.980	117.800
4671	M. winkleri	328	0.4%	98.3%	1.3%	Malaysia, Borneo, Sabah, Danum Valley, west grid W12	4.950	117.810
4672	M. winkleri	329	0.5%	99.2%	0.3%	Malaysia, Borneo, Sabah, Danum Valley, west grid W12	4.950	117.810
4661	M. winkleri	330	1.2%	98.4%	0.3%	Malaysia, Borneo, Sabah, Danum Valley, west grid W12	4.950	117.810
4663	M. winkleri	331	0.3%	0.3%	99.5%	Valaysia, Borneo, Sabah, Danum Valley, west grid W12	4.980	117.800
4666	M. winkleri	332	0.5%	99.1%	0.5%	Valaysia, Borneo, Sabah, Danum Valley, west grid W12	4.980	117.800
4670	M. winkleri	333	0.5%	12.4%	4.3%	Malaysia, Borneo, Sabah, Danum Valley, west grid W12 Malaysia, Borneo, Sabah, Danum Valley, west grid W11	4.980	117.800
5202	M. winkleri	335	0.3%	99.4%	0.3%	Malaysia, Borneo, Sabah, Danum Valley, west grid W11	4.980	117.800
5201	M. winkleri	336	0.5%	99.2%	0.3%	Malaysia, Borneo, Sabah, Danum Valley, west grid, W11	4.980	117.800
4693	M. winkleri	337	0.6%	99.1%	0.3%	Malaysia, Borneo, Sabah, Danum Valley, west grid W11	4.980	117.800
4473	M. winkleri	338	0.6%	98.6%	0.8%	Malaysia, Borneo, Sabah, Danum Valley, west grid W10 N3	4.980	117.800
5043	M. winkleri	339	0.3%	0.3%	99.4%	Malaysia, Borneo, Sabah, Danum Valley, west grid, W10S1.25	4.980	117.800
5059	M. winkleri M. winkleri	340	32.2%	67.3% 70.5%	0.5%	vialaysia, Borneo, Sabah, Danum Valley, west grid, W10S1.5	4.980	117.800
5048	M. winkleri	342	1 7%	98.0%	0.3%	Malaysia, Borneo, Sabah, Danum Valley, west grid, W1031.5	4.980	117.800
5050	M. winkleri	343	0.8%	98.3%	0.9%	Valaysia, Borneo, Sabah, Danum Valley, west grid, W10S1.5	4.980	117.800
5055	M. winkleri	344	0.5%	99.1%	0.4%	Malaysia, Borneo, Sabah, Danum Valley, west grid, W10S1.5	4.980	117.800
5071	M. winkleri	345	0.6%	99.1%	0.3%	Malaysia, Borneo, Sabah, Danum Valley, west grid, W10S1.5	4.980	117.800
5061	M. winkleri	346	0.9%	98.8%	0.3%	Malaysia, Borneo, Sabah, Danum Valley, west grid, W10S1.5	4.980	117.800
5060	M. winkleri	347	0.7%	88.8%	10.5%	Valaysia, Borneo, Sabah, Danum Valley, west grid, W10S1.5	4.980	117.800
5056	M winkleri	349	0.8%	98.8%	0.3%	Malaysia, Borneo, Sabah, Danum Valley, west grid, W1051.5 Malaysia, Borneo, Sabah, Danum Valley, west grid, W1051.5	4.980	117.800
5062	M. winkleri	350	1.0%	98.7%	0.3%	Valaysia, Borneo, Sabah, Danum Valley, west grid, W10S1.5	4.980	117.800
5075	M. winkleri	351	0.3%	76.9%	22.8%	Malaysia, Borneo, Sabah, Danum Valley, west grid, W10S1.5	4.980	117.800
5051	M. winkleri	352	8.2%	91.4%	0.3%	Malaysia, Borneo, Sabah, Danum Valley, west grid, W10S1.5	4.980	117.800
5064	M. winkleri	353	0.6%	63.2%	36.2%	Valaysia, Borneo, Sabah, Danum Valley, west grid, W10S1.5	4.980	117.800
5054	M. WINKIER	354	0.7%	99.0%	0.3%	Valaysia, Borneo, Sabah, Danum Valley, west grid, W1051.5	4.980	117.800
5057	M. winkleri	356	0.9%	98.8%	0.3%	Malaysia, Borneo, Sabah, Danum Valley, west grid, W1031.5	4.980	117.800
5069	M. winkleri	357	0.4%	66.7%	33.0%	Malaysia, Borneo, Sabah, Danum Valley, west grid, W10S1.5	4.980	117.800
5070	M. winkleri	358	1.0%	98.1%	0.9%	Malaysia, Borneo, Sabah, Danum Valley, west grid, W10S1.5	4.980	117.800
5073	M. winkleri	359	0.8%	99.0%	0.3%	Malaysia, Borneo, Sabah, Danum Valley, west grid, W10S1.5	4.980	117.800
5045	M. winkleri	360	0.7%	99.0%	0.3%	Valaysia, Borneo, Sabah, Danum Valley, west grid, W10S1.5	4.980	117.800
5067	ıvı. WINKleri M winkleri	361	0.6%	99.0% 98.8%	0.3%	vialaysia, porneo, Sabah, Danum Valley, west grid, W10S1.5 Malaysia, Borneo, Sabah, Danum Valley, west grid, W10S1.5	4.980	117.800
5049	M. winkleri	363	0.7%	99.1%	0.3%	Malaysia, Borneo, Sabah, Danum Valley, west grid, W1001.5	4.980	117.800
5078	M. winkleri	364	0.3%	99.4%	0.3%	Malaysia, Borneo, Sabah, Danum Valley, west grid, W10S1.5	4.980	117.800
5077	M. winkleri	365	0.3%	99.2%	0.4%	Malaysia, Borneo, Sabah, Danum Valley, west grid, W10S1.5	4.980	117.800
5076	M. winkleri	366	5.6%	94.2%	0.3%	Malaysia, Borneo, Sabah, Danum Valley, west grid, W10S1.5	4.980	117.800
5080	M. winkleri	367	1.6%	97.6%	0.8%	Malaysia, Borneo, Sabah, Danum Valley, west grid, W10S1.5	4.980	117.800
5079	M. WINKIERI M. winklori	368	0.7%	99.0%	0.3%	Valaysia, Borneo, Sabah, Danum Valley, west grid, W1051.5	4.980	117.800
5058	M. winkleri	370	0.6%	93.8%	5.6%	Valaysia, Borneo, Sabah, Danum Valley, west grid, W1051.5 Valaysia, Borneo, Sabah, Danum Valley, west grid, W1051.5	4.980	117.800
5065	M. winkleri	371	0.5%	99.2%	0.3%	Malaysia, Borneo, Sabah, Danum Valley, west grid, W10S1.5	4.980	117.800
5081	M. winkleri	372	1.0%	98.7%	0.3%	Malaysia, Borneo, Sabah, Danum Valley, west grid, W10S1.5	4.980	117.800
5044	M. winkleri	373	0.3%	93.0%	6.7%	Malaysia, Borneo, Sabah, Danum Valley, west grid, W10S1.5	4.980	117.800
5047	M. winkleri	374	0.4%	99.4%	0.3%	Malaysia, Borneo, Sabah, Danum Valley, west grid, W10S1.5	4.980	117.800
5053	ıvı. WINKleri M. winkleri	3/5	1.5%	69.5% 1.8%	9.0%	vialaysia, porneo, Sabah, Danum Valley, west grid, W10S1.5 Malaysia, Borneo, Sabah, Danum Valley, west grid, W10S1.5	4.980	117 800
5086	M. winkleri	370	0.9%	98.6%	0.5%	Valaysia, Borneo, Sabah, Danum Valley, west grid, W1051.5 Valaysia, Borneo, Sabah, Danum Valley, west grid, W10S1.10	4.980	117,800
5084	M. winkleri	378	0.4%	99.3%	0.3%	Malaysia, Borneo, Sabah, Danum Valley, west grid, W10S3.6	4.980	117.800
4728	M. winkleri	379	0.8%	98.9%	0.4%	Malaysia, Borneo, Sabah, Danum Valley, upper rhino ridge trail, R51	5.100	117.650
4729	M. winkleri	380	0.6%	99.1%	0.3%	Malaysia, Borneo, Sabah, Danum Valley, upper rhino ridge trail, R51	5.100	117.650
4727	M. winkleri	381	0.7%	99.0%	0.3%	Malaysia, Borneo, Sabah, Danum Valley, Rhino ridge trail, R13-R14	5.100	117.650
5085	M. winkleri	382	0.7%	99.0%	0.3%	Valaysia, Borneo, Sabah, Danum Valley, west grid, W8S5	4.980	117.800
2137	IVI. WINKIERI M. winkleri	384	0.3%	99.1% 99.3%	0.5%	vialaysia, pomeo, Sabah, panum valley, west grid, main trail wo Malaysia, Borneo, Sabah, Danum Valley, west grid, crook at R1	4.900	117.800
4979	M. winkleri	385	1.0%	98.8%	0.3%	Malaysia, Borneo, Sabah, Danum Valley, west grid, creek at R1	4.980	117.800
4982	M. winkleri	386	0.5%	99.3%	0.3%	Malaysia, Borneo, Sabah, Danum Valley, west grid, creek at R1	4.980	117.800
4980	M. winkleri	387	0.4%	99.0%	0.5%	Malaysia, Borneo, Sabah, Danum Valley, west grid, creek at R1	4.950	117.810
4978	M. winkleri	388	0.5%	97.3%	2.2%	Malaysia, Borneo, Sabah, Danum Valley, west grid, before R1	4.980	117.800

Plant ID		Individual	Percent o	of individual as	signed to			
Number	Species	(1 bar)	Cluster K=1	Cluster K=2	Cluster K=3	Location	Latitude	Longitude
4984	M. winkleri	389	1.0%	98.5%	0.5%	Malaysia, Borneo, Sabah, Danum Valley, west grid, creek at R1	4.980	117.800
5037	M. winkleri M. winkleri	390	0.3%	0.4%	99.4%	Malaysia, Borneo, Sabah, Danum Valley, west grid, near W7.8 Malaysia, Borneo, Sabah, Danum Valley, west grid, near W7.8	4.980	117.800
5040	M. winkleri	392	0.3%	0.3%	99.5%	Malaysia, Borneo, Sabah, Danum Valley, west grid, near W7.8	4.980	117.800
5023	M. winkleri	393	0.2%	0.2%	99.5%	Malaysia, Borneo, Sabah, Danum Valley, west grid, near W7.8	4.980	117.800
5030	M. winkleri	394	0.2%	0.4%	99.4%	Malaysia, Borneo, Sabah, Danum Valley, west grid, near W7.8	4.980	117.800
5033	M. winkleri	395	0.6%	0.4%	99.1%	Malaysia, Borneo, Sabah, Danum Valley, west grid, near W 7.8 Malaysia, Borneo, Sabah, Danum Valley, west grid, near W 7.8	4.980	117.800
5027	M. winkleri	397	0.5%	12.7%	86.7%	Malaysia, Borneo, Sabah, Danum Valley, west grid, near W7.8	4.980	117.800
5028	M. winkleri	398	0.4%	0.4%	99.2%	Malaysia, Borneo, Sabah, Danum Valley, west grid, near W7.8	4.980	117.800
5039	M. winkleri	399	0.3%	0.3%	99.4%	Malaysia, Borneo, Sabah, Danum Valley, west grid, near W7.8	4.980	117.800
5034	M. winkleri	400	0.3%	0.4%	99.3%	Malaysia, Borneo, Sabah, Danum Valley, west grid, near W7.8	4.980	117.800
5029	M. winkleri	401	0.2%	0.3%	99.3%	Malaysia, Borneo, Sabah, Danum Valley, west grid, near W7.8	4.980	117.800
5032	M. winkleri	403	0.3%	0.4%	99.2%	Malaysia, Borneo, Sabah, Danum Valley, west grid, near W7.8	4.980	117.800
5024	M. winkleri	404	0.4%	0.5%	99.1%	Malaysia, Borneo, Sabah, Danum Valley, west grid, near W7.8	4.980	117.800
5025	M. winkleri	405	1.0%	0.5%	98.5%	Malaysia, Borneo, Sabah, Danum Valley, west grid, near W7.8	4.980	117.800
5026	M. WINKIERI M. winkleri	406	0.6%	0.8%	98.7%	Malaysia, Borneo, Sabah, Dahum Valley, west grid, near W7.8 Malaysia, Borneo, Sabah, Dahum Valley, west grid, near W7.8	4.980	117.800
5042	M. winkleri	408	0.2%	0.3%	99.5%	Malaysia, Borneo, Sabah, Danum Valley, west grid, near W7.8	4.980	117.800
3466	M. winkleri	409	0.4%	99.3%	0.3%	Malaysia, Borneo, Sabah, Danum Valley, west grid W7.5	4.980	117.800
3467	M. winkleri	410	0.4%	99.4%	0.3%	Malaysia, Borneo, Sabah, Danum Valley, west grid W7.5	4.980	117.800
3468 5022	M. WINKIERI M. winkleri	411 412	0.5%	99.0%	0.5%	Malaysia, Borneo, Sabah, Danum Valley, west grid w7.5 Malaysia, Borneo, Sabah, Danum Valley, west grid near W5.8	4.980	117.800
5013	M. winkleri	413	0.2%	0.2%	99.5%	Malaysia, Borneo, Sabah, Danum Valley, west grid, W5N5.3	4.980	117.800
5015	M. winkleri	414	1.1%	0.4%	98.6%	Malaysia, Borneo, Sabah, Danum Valley, west grid, W5N5.3	4.980	117.800
5016	M. winkleri	415	1.3%	0.6%	98.2%	Malaysia, Borneo, Sabah, Danum Valley, west grid, W5N5.3	4.980	117.800
5014	M. winkleri M. winkleri	416	0.3%	0.9%	98.9%	Malaysia, Borneo, Sabah, Danum Valley, west grid, W5N5.3 Malaysia, Borneo, Sabah, Danum Valley, west grid, near W5	4.980	117.800
3998	M. winkleri	417	2.4%	28.1%	69.5%	Malaysia, Borneo, Sabah, Danum Valley, west grid W5S5.3	4.980	117.800
6140	M. winkleri	419	0.3%	0.4%	99.3%	Malaysia, Borneo, Sabah, Danum Valley, West grid, Plot 4	4.980	117.800
6163	M. winkleri	420	22.5%	33.1%	44.3%	Malaysia, Borneo, Sabah, Danum Valley, west grid, W4	4.980	117.800
6169	M. winkleri	421	33.9%	5.2%	60.9%	Malaysia, Borneo, Sabah, Danum Valley, west grid, W4	4.980	117.800
6168	M winkleri	422	22.3%	0.7%	77.0%	Malaysia, Borneo, Sabah, Dahum Valley, west grid, W4 Malaysia, Borneo, Sabah, Dahum Valley, west grid, W4	4.980	117.800
6170	M. winkleri	424	14.1%	19.4%	66.5%	Malaysia, Borneo, Sabah, Danum Valley, west grid, W4	4.980	117.800
6164	M. winkleri	425	36.2%	6.9%	56.9%	Malaysia, Borneo, Sabah, Danum Valley, west grid, W4	4.980	117.800
6167	M. winkleri	426	8.4%	19.0%	72.6%	Malaysia, Borneo, Sabah, Danum Valley, west grid, W4	4.980	117.800
6172	M. winkleri M. winkleri	427	19.7%	20.9%	59.4% 65.0%	Malaysia, Borneo, Sabah, Danum Valley, west grid, W3.5N5 Malaysia, Borneo, Sabah, Danum Valley, west grid, W3.5N5	4.980	117.800
6162	M. winkleri	429	0.2%	0.3%	99.5%	Malaysia, Borneo, Sabah, Danum Valley, west grid, W3.5N5	4.980	117.800
6165	M. winkleri	430	5.8%	31.2%	63.0%	Malaysia, Borneo, Sabah, Danum Valley, west grid, W2.5	4.980	117.800
6166	M. winkleri	431	25.9%	1.4%	72.7%	Malaysia, Borneo, Sabah, Danum Valley, west grid, W2.5	4.980	117.800
5198	M. winkleri	432	0.2%	0.3%	99.4%	Malaysia, Borneo, Sabah, Danum Valley, west grid, W2	4.980	117.800
5199	M. winkleri	433	0.3%	0.3%	99.4%	Malaysia, Borneo, Sabah, Danum Valley, west grid, W2 Malaysia, Borneo, Sabah, Danum Valley, west grid, W2	4.980	117.800
4959	M. winkleri	435	0.2%	0.3%	99.5%	Malaysia, Borneo, Sabah, Danum Valley, west grid, W0N13	4.980	117.800
4961	M. winkleri	436	4.8%	94.9%	0.3%	Malaysia, Borneo, Sabah, Danum Valley, west grid, W0N13	4.980	117.800
4958	M. winkleri	437	1.0%	98.7%	0.3%	Malaysia, Borneo, Sabah, Danum Valley, west grid, W0N13	4.980	117.800
4957	M. winkleri	430	0.7%	97.3%	2.1%	Malaysia, Borneo, Sabah, Danum Valley, west grid, Wolk 13 Malaysia, Borneo, Sabah, Danum Valley, west grid, W0N13	4.980	117.800
4956	M. winkleri	440	0.5%	99.2%	0.3%	Malaysia, Borneo, Sabah, Danum Valley, west grid, W0N13	4.980	117.800
4533	M. winkleri	441	0.4%	96.3%	3.4%	Malaysia, Borneo, Sabah, Danum Valley, west grid W0 nach N12	4.980	117.800
4533b	M. winkleri	442	0.4%	99.1%	0.4%	Malaysia, Borneo, Sabah, Danum Valley, west grid W0 nach N12	4.980	117.800
4533f	M. winkleri	443	1.7%	97.7%	0.9%	Malaysia, Borneo, Sabah, Danum Valley, west grid W0 hach N12	4.980	117.800
4533c	M. winkleri	445	2.4%	96.4%	1.2%	Malaysia, Borneo, Sabah, Danum Valley, west grid W0 nach N12	4.980	117.800
4533a	M. winkleri	446	2.4%	75.8%	21.8%	Malaysia, Borneo, Sabah, Danum Valley, west grid W0 nach N12	4.980	117.800
5009	M. winkleri	447	0.3%	0.3%	99.4%	Malaysia, Borneo, Sabah, Danum Valley, west grid, von W0N7	4.980	117.800
5008	M. winkleri	440	0.7%	0.3%	99.0%	Malaysia, Borneo, Sabah, Danum Valley, west grid, von WON7	4.980	117.800
5010	M. winkleri	450	0.3%	0.3%	99.4%	Malaysia, Borneo, Sabah, Danum Valley, west grid, von W0N7	4.980	117.800
5011	M. winkleri	451	0.7%	98.4%	0.9%	Malaysia, Borneo, Sabah, Danum Valley, west grid, von W0N7	4.980	117.800
4531	M. winkleri	452	0.4%	99.3%	0.3%	Malaysia, Borneo, Sabah, Danum Valley, west grid W0 N5 after N10	4.980	117.800
4655	M winkleri	453	0.5%	99.3%	0.3%	Malaysia, Borneo, Sabah, Dahum Valley, Elephant Ridge trail E15 Malaysia, Borneo, Sabah, Dahum Valley, Elephant Ridge trail	4.950	117.810
3959	M. winkleri	455	0.8%	98.9%	0.3%	Malaysia, Borneo, Sabah, Danum Valley, Sg. Segama, Elephant Ridge trail	4.950	117.800
4507	M. winkleri	456	0.8%	98.8%	0.3%	Malaysia, Borneo, Sabah, Danum Valley, east grid E14-15	4.980	117.800
3203	M. winkleri	457	22.6%	70.4%	7.0%	Malaysia, Borneo, Sabah, Danum Valley, road to Lahad Datu	4.980	117.870
3039	M. winkleri	458	25.2%	74.5% 99.1%	0.3%	Malaysia, Borneo, Sabah, Dahum Valley, road to Lahad Datu Malaysia, Borneo, Sabah, Dahum Valley, road to Lahad Datu	4.970	117.940
3040	M. winkleri	460	3.5%	91.8%	4.7%	Malaysia, Borneo, Sabah, Danum Valley, road to Lahad Datu	4.970	117.940
3041	M. winkleri	461	0.6%	99.1%	0.3%	Malaysia, Borneo, Sabah, Danum Valley, road to Lahad Datu	4.970	117.940
3010	M. winkleri	462	0.4%	99.4%	0.3%	Malaysia, Borneo, Sabah, Danum Valley, road to Lahad Datu	4.970	117.940
3042	M winkleri	463	0.9%	98.5%	0.6%	Malaysia, Borneo, Sabah, Dahum Valley, road to Lahad Datu Malaysia, Borneo, Sabah, Dahum Valley, road to Lahad Datu	4.970	117.940
3038	M. winkleri	465	1.2%	98.5%	0.3%	Malaysia, Borneo, Sabah, Danum Valley, road to Lahad Datu	4.970	117.940
2968	M. winkleri	466	1.0%	32.1%	67.0%	Malaysia, Borneo, Sabah, Danum Valley, road to Lahad Datu	4.960	117.950
2987	M. winkleri	467	0.7%	98.8%	0.6%	Malaysia, Borneo, Sabah, Danum Valley, road to Lahad Datu	4.960	117.950
3061 2988	M. WINKleri	468 469	0.5% 0.4%	99.3% 99.3%	0.3%	iviaraysia, borneo, Saban, Danum Valley, road to Lahad Datu Malaysia, Borneo, Sabah, Danum Valley, road to Lahad Datu	5.010 4.960	118.040
5224	M. winkleri	470	0.9%	98.8%	0.4%	Malaysia, Borneo, Sabah, Danum Valley, north of road to Lahad Datu	4.990	117.960
5227	M. winkleri	471	0.9%	97.7%	1.5%	Malaysia, Borneo, Sabah, Danum Valley, north of road to Lahad Datu	4.990	117.960
5225	M. winkleri	472	0.7%	99.0%	0.3%	Malaysia, Borneo, Sabah, Danum Valley, north of road to Lahad Datu	4.990	117.960
5226 5228	ıvı. WINKleri M. winkleri	473	0.4%	99.3%	0.3%	walaysia, borneo, sabah, banum Valley, north of road to Lahad Datu Malaysia, Borneo, Sabah, Danum Valley, north of road to Lahad Datu	4.990 4 990	117.960
5231	M. winkleri	475	1.7%	91.6%	6.7%	Malaysia, Borneo, Sabah, Danum Valley, north of road to Lahad Datu	4.990	117.960
5230	M. winkleri	476	1.1%	98.6%	0.3%	Malaysia, Borneo, Sabah, Danum Valley, north of road to Lahad Datu	4.990	117.960
5223	M. winkleri	477	0.9%	98.8%	0.3%	Malaysia, Borneo, Sabah, Danum Valley, north of road to Lahad Datu	4.990	117.960
5229	M. winkleri M. winkleri	478	0.9%	98.8%	0.3%	Malaysia, Borneo, Sabah, Danum Valley, north of road to Lahad Datu Malaysia, Borneo, Sabah, Danum Valley, road Lahad Datu to DVEC, 25 km to DVEC	4.990	117.960
2165	M, winkleri	479	0.4%	99.4% 89.0%	10.7%	Malaysia, Borneo, Sabah, Danum Valley, road Lahad Datu to DVFC, 25 km to DVFC	4.970	117.950
2206	M. winkleri	481	0.6%	99.1%	0.3%	Malaysia, Borneo, Sabah, Danum Valley, road Lahad Datu to DVFC, 23 km to DVFC	4.970	117.940
3385	M. winkleri	482	0.3%	99.4%	0.3%	Malaysia, Borneo, Sabah, Danum Valley, 1-2km to DVFC	4.970	117.820
3386	M. winkleri M. winkleri	483 494	3.8%	95.1% Q8.6%	1.1%	Malaysia, Borneo, Sabah, Danum Valley, 1-2km to DVFC Malaysia, Borneo, Sabah, Danum Valley, road Labad Datu to DVFC, junction to DVFC	4.970 4.900	117.820
4616	M. winkleri	485	0.7%	99.0%	0.3%	Malaysia, Borneo, Sabah, Danum Valley, DVFC, gap close to office	4.980	117.800

Plant ID		Individual	Percent c	of individual as	signed to				
Number	Species	(1 bar)	Cluster K=1	Cluster K=2	Cluster K=3	- 10	cation	Latitude	Longitude
4618	M winkleri	486	0.7%	97 9%	1.4%	Ma	lavsia Borneo Sabab Danum Valley DVEC gap close to office	4 980	117 800
4617	M. winkleri	487	0.4%	99.4%	0.3%	Ma	lavsia, Borneo, Sabah, Danum Valley, DVFC, gap close to office	4,980	117.800
4620	M. winkleri	488	0.4%	99.3%	0.3%	Ma	lavsia, Borneo, Sabah, Danum Valley, DVFC, gap close to office	4,980	117.800
4615	M. winkleri	489	0.6%	99.1%	0.3%	Ma	lavsia, Borneo, Sabah, Danum Valley, DVFC, gap close to office	4.950	117.810
4619	M. winkleri	490	0.4%	99.3%	0.3%	Ma	lavsia, Borneo, Sabah, Danum Valley, DVFC, gap close to office	4,950	117.810
6122	M. winkleri	491	27.2%	70.6%	2.3%	Ma	lavsia, Borneo, Sabah, Danum Valley, Tembaling trail	4.950	117.800
6123	M. winkleri	492	0.7%	98.7%	0.6%	Ma	lavsia, Borneo, Sabah, Danum Valley, Tembaling trail	4.950	117.800
6126	M. winkleri	493	0.8%	98.3%	0.9%	Ma	lavsia, Borneo, Sabah, Danum Valley, Tembaling trail	4,950	117.800
6125	M. winkleri	494	0.6%	98.7%	0.7%	Ma	lavsia, Borneo, Sabah, Danum Valley, Tembaling trail	4,950	117.800
6127	M. winkleri	495	1.0%	98.7%	0.3%	Ma	lavsia, Borneo, Sabah, Danum Valley, Tembaling trail	4,950	117.800
6124	M. winkleri	496	0.4%	98.8%	0.8%	Ma	lavsia, Borneo, Sabah, Danum Valley, Tembaling trail	4,950	117.800
6136	M. winkleri	497	1.0%	94.2%	4.8%	Ma	lavsia, Borneo, Sabah, Danum Valley, Tembaling trail	4,950	117,800
6133	M. winkleri	498	0.4%	99.3%	0.2%	Ma	lavsia, Borneo, Sabah, Danum Valley, Tembaling trail	4.950	117.800
6129	M. winkleri	499	1.4%	98.0%	0.7%	Ma	lavsia, Borneo, Sabah, Danum Valley, Tembaling trail	4.950	117.800
6134	M. winkleri	500	0.7%	98.3%	1.0%	Ma	lavsia, Borneo, Sabah, Danum Valley, Tembaling trail	4.950	117.800
6135	M. winkleri	501	4.3%	95.4%	0.3%	Ma	lavsia, Borneo, Sabah, Danum Valley, Tembaling trail	4.950	117.800
6132	M. winkleri	502	0.4%	99.1%	0.4%	Ma	lavsia, Borneo, Sabah, Danum Valley, Tembaling trail	4.950	117.800
6117	M. winkleri	503	1.0%	98.5%	0.5%	Ma	lavsia, Borneo, Sabah, Danum Valley, Tembaling trail	4,950	117.800
6137	M. winkleri	504	0.7%	98.9%	0.4%	Ma	lavsia, Borneo, Sabah, Danum Valley, Tembaling trail	4,950	117.800
6119	M. winkleri	505	0.3%	99.1%	0.6%	Ma	lavsia, Borneo, Sabah, Danum Valley, Tembaling trail	4,950	117,800
6139	M. winkleri	506	0.8%	98.7%	0.5%	Ma	lavsia, Borneo, Sabah, Danum Valley, Tembaling trail	4,950	117,800
6120	M. winkleri	507	0.4%	97.7%	1.9%	Ma	lavsia, Borneo, Sabah, Danum Valley, Tembaling trail	4.950	117.800
6121	M. winkleri	508	0.5%	99.1%	0.5%	Ma	Javsia, Borneo, Sabah, Danum Valley, Tembaling trail	4.950	117.800
6130	M winkleri	509	0.4%	98.6%	1.0%	Ma	lavsia Borneo, Sabah, Danum Valley, Tembaling trail	4 950	117 800
6128	M winkleri	510	0.5%	99.2%	0.3%	Ma	lavsia Borneo, Sabah, Danum Valley, Tembaling trail	4 950	117 800
6138	M winkleri	511	0.0%	98.3%	1.3%	Ma	laysia, Borneo, Sabah, Danum Valley, Tembaling trail	4 950	117 800
6131	M winkleri	512	0.8%	98.6%	0.6%	Ma	laysia, Borneo, Sabah, Danum Valley, Tembaling trail	4 950	117 800
6112	M winkleri	513	0.8%	98.9%	0.3%	Ma	lavsia Borneo, Sabah, Danum Valley, Tembaling trail	4 950	117 800
6114	M winkleri	514	0.5%	99.2%	0.3%	Ma	laysia, Borneo, Sabah, Danum Valley, Tembaling trail	4 950	117 800
6113	M winkleri	515	0.5%	99.2%	0.3%	Ma	laysia, Borneo, Sabah, Danum Valley, Tembaling trail	4 950	117 800
6116	M winkleri	516	0.5%	99.1%	0.0%	Ma	laysia, Borneo, Sabah, Danum Valley, Tembaling trail	4 950	117 800
6115	M winkleri	517	1 1%	08.1%	0.4%	M	laysia, Borneo, Sabah, Danum Valley, Tembaling trail	4.950	117.800
3106	M winkleri	518	0.6%	95.4%	4 3%	M	laysia, Borneo, Sabah, Danum Valley, Kuala Tembaling trail	4.950	117,810
4502	M. winkleri	510	0.0%	00.0%	4.5%	Ma	Javaia, Borneo, Sabah, Danum Valley, Kuala Tembaling trail	4.950	117.010
4593	M. winkleri	519	0.9% E 49/	90.0%	0.0%	IVIC	laysia, borneo, Sabah, Dahum Valley, Kuala Tembaling Itali	4.950	117.010
4097	M. winkleri	520	0.4%	94.3%	0.3%	IVIC	laysia, borneo, Sabah, Dahum Valley, Kuala Tembaling Itali, waterfall	4.950	117.010
4602	IVI. WINKIERI	521	0.7%	99.0%	0.3%	IVIa	laysia, Borneo, Sabah, Dahum Valley, Kuala Tembaling Itali, wateriali	4.950	117.010
4600	IVI. WINKIERI	522	0.7%	99.0%	0.3%	IVIa	laysia, borneo, Sabah, Dahum Valley, Kuala Tembaling Itali, waterfall	4.950	117.010
4099	IVI. WINKIERI	523	0.5%	90.2%	0.2%	IVIC	laysia, borneo, Sabah, Dahum Valley, Kuala Tembaling Itali, waterfall	4.950	117.010
4001	W. WINKIER	524	0.0%	90.9%	0.3%	IVIC	laysia, Borneo, Sabah, Dahumi Valley, Kuala Tembaling trali, waterfall	4.950	117.010
4596	M. winkleri	525	1.4 %	90.3%	1.0%	IVIC	laysia, borneo, Sabah, Dahum Valley, Kuala Tembaling Itali, waterfall	4.950	117.010
4595		520	0.4%	90.0%	1.0%	IVIC	laysia, Borneo, Sabah, Dahumi Valley, Kuala Tembaling trail, waterfall	4.950	117.010
4090	M. winkleri	527	0.5%	99.2%	0.3%	IVIC	laysia, borneo, Sabah, Dahum Valley, Kuala Tembaling Itali, waterfall	4.950	117.010
4012	M. winkleri	520	0.0%	90.0%	1.0%	IVIC	laysia, Dorneo, Sabah, Dahum Valley, Kuala Tembaling Itali, Wateriali	4.950	117.010
4400		529	0.4%	97.0%	1.0%	IVIC	laysia, Borneo, Sabah, Dahum Valley, Kuala Tembaling trail, Chiris plot 5	4.950	117.010
4495	IVI. WINKIERI	530	2.4%	97.3%	0.3%	IVIa	laysia, Borneo, Sabah, Dahum Valley, Kuala Tembaling Itali, Chris plot 5	4.950	117.010
4467	IVI. WINKIERI	531	0.4%	98.0%	1.0%	IVIa	laysia, Borneo, Sabah, Dahum Valley, Kuala Tembaling Itali, Chrispiol 5	4.950	117.010
4594	M. WINKIERI	532	0.5%	98.6%	0.9%	IVIa	laysia, Borneo, Saban, Danum Valley, Kuala Tempaling trail, Unrisplot 6	4.950	117.810
4200	M. WINKIER	533	0.7%	90.7%	0.3%	IVIC	laysia, Domeo, Sabah, Tabin Wildlife Reserve, Lipad Itali	5.310	110.040
4290	M. WINKIERI	534	0.7%	99.0%	0.3%	IVIa	laysia, Borneo, Sabah, Tabih Wildlife Reserve, Lipad Irail, gap	5.310	110.040
4291	M. WINKIER	535	0.0%	93.9%	0.3%	IVIC	laysia, Borneo, Sabah, Fabiri Wildine Reserve, Lipau Itali, gap	3.310	110.040
2051	M. WINKIER	536	0.3%	54.0%	45.7%	IVIa	laysia, Borneo, Sabah, Luasong	4.630	117.300
5093	winkleri	531	4.0%	94.9%	0.3%	IVI2	iaysia, Domeo, Sabah, Lawau Filis Faik, pichic area Javeia, Borneo, Sabah, Tawau Hills Park, pichic area	4.400	117.090
5094	M winkler	530	1.3%	30.4%	0.3%	IVI2	iaysia, Domeo, Sabah, Lawau Filis Faik, pichic area Javeia, Borneo, Sabah, Tawau Hills Park, pichic area	4.400	117.090
5090	winkleri	539	0.0%	30.9%	0.4%	IVI2	iayola, Domeo, Sabah, Lawau Hills Faik, pichic area	4.400	117.090
5095		540	0.7 %	99.0%	0.3%	IVIC	laysia, Borneo, Sabah, Tawau Hills Park, pichic alea	4.400	117.090
5159	winkleri	541	47.3%	49.3%	3.4%	IVI2	iaysia, burneu, Sabah, Tawau Hills Park, trail to hot springs	4.400	117.090
5175		542	23.3%	73.2%	1.5%	IVIC	laysia, Borneo, Sabah, Tawau Hills Park, Itali to hot springs	4.400	117.090
5194	IVI. WINKIERI	543	1.7%	97.9%	0.5%	IVIa	laysia, borneo, Sabah, Tawau Hills Park, trail to hot springs	4.400	117.690
5190	IVI. WINKIERI	544	0.6%	90.9%	0.3%	IVIC	laysia, Domeo, Sabah, Tawau Hills Park, Irail to hot springs	4.400	117.090
5161	M. WINKIERI	545	0.6%	99.1%	0.3%	IVIa	laysia, Borneo, Sabah, Tawau Hills Park, trait to hot springs	4.400	117.690
0190	WINKIERI	040 E 47	1.0%	30.∠% 00.0%	0.3%	IVI2	iaysia, Domeo, Sabah, Lawau Filis Fark, Itali to Not Splings Javeia, Borneo, Sabah, Tawau Hills Park, trail to waterfall Color	4.400	117.090
5100	winkleri	547	0.7%	39.0%	0.3%	IVI2	iayoia, Donico, Sabah, Lawau Hills Faik, ifall 10 Waterfall Galas	4.400	117.090
0100 E107	M winkleri	546	0.0%	30.0%	0.0%	IVI2	iaysia, Domeo, Sabah, Lawau Filis Fark, Ifali (0 Waterfall Galas	4.400	117.090
D10/	winkleri	549	1.1%	90.0%	0.3%	IVI2	iaysia, burneu, Sabah, Tawau Hills Park, Irali tu waterfall Galas	4.400	117.090
5184	IVI. WINKIERI	550	0.5%	95.3%	4.1%	IVIa	iaysia, burneu, Sabah, Lawau Hills Park, Ifall to Waterfall Galas	4.400	117.890
5140	IVI. WINKIERI	551	1.0%	59.2%	39.8%	IVIa	laysia, borneo, Sabah, Lawau milis Park, edge of oil paim plantation	4.390	117.890
5142	ivi. Winkieri	552	1.5%	98.2%	0.3%	IVIa	iaysia, borrieo, Sabah, Lawau Hills Park, edge of oil paim plantation	4.390	117.890
5143	M. WINKleri	553	3.2%	96.4%	0.3%	Ma	iaysia, burrieu, Saban, Lawau Hills Park, edge of oil palm plantation	4.390	117.890
5139	ivi. Winkieri	554	3.1%	90.0%	0.3%	IVIA	laysia, borneo, Sabah, Tawau Hills Park, euge of oli paim plantation	4.390	117.090
5141	IVI. WINKIERI	555	0.4%	99.3%	0.3%	IVI2	laysia, borneo, Sabah, Lawau Hills Park, edge of oil palm plantation	4.390	117.090
5144	M. winkleri	556	1.5%	98.1%	0.4%	IVIa	iaysia, borneo, Sabah, Lawau milis Park, edge of oil paim plantation	4.390	117.890
1964	IVI. WINKIERI	557	0.005	0.991	0.003	IVIa	iaysia, borrieo, Sabari, Lawau milis, bukit Lawau	4.33	118
4/9	IVI. WINKIERI	558	0.006	0.99	0.004	IVIa	iaysia, burneu, Sabah, Tawau Hills Jawaia, Barpaa, Sabah, Tawau Hilla	4.33	118
1900	w. winkieri	559	0.008	0.99	0.003	IVIA	iaysia, builleu, sabali, l'awau fillis Javaia, Barnaa, Sabab, Taway Hilla	4.33	110
1985	IVI. WINKIELI	560	0.004	0.993	0.003	IVIa	iaysia, Durneu, Sabari, Tawau milis	4.33	118

Appendix K Order of *M. tanarius* individuals for all bar plots created for both STRUCTURE and INSTRUCT analyses, and percentages with which individuals are assigned to each cluster for K = 6 (STRUCTURE).

				East / West	Perc	cent of ir	dividual	assigne	d to clus	ster			
Plant ID Number	Species	Individua (1 bar)	Geographic Identifier ¹	of Crocker Range ²	K=1	K=2	K=3	K=4	K=5	K=6	Location	Latitude	Longitude
448 2734	M. tanarius M. tanarius	1	Malay Peninsula Malay Peninsula		1.4%	1.2%	1.2%	94.5% 95.9%	0.9%	0.8%	Malaysia, Peninsula, Pahang, Cameron Highlands, Tanah Rata Malaysia, Peninsula, Selangor, FRIM, forest road	4.450	101.370
2743	M. tanarius	3	Malay Peninsula		1.1%	0.7%	0.8%	94.5%	0.6%	2.2%	Malaysia, Peninsula, Selangor, FRIM, forest road	3.239	101.633
43 2682	M. tanarius M. tanarius	4	Malay Peninsula Malay Peninsula		0.8%	3.6% 0.4%	0.4%	94.4% 98.2%	0.4%	0.3%	Malaysia, Peninsula, Selangor, Kuala Lumpur Malaysia, Peninsula, Selangor, Gombak Valley	3.148 3.320	101.711 101.750
6083	M. tanarius	6	Malay Peninsula		0.5%	0.6%	0.3%	97.9%	0.3%	0.3%	Malaysia, Peninsula, Selangor, old Genting road, after pass 50 km to K.L.	3.340	101.820
6085	M. tanarius	8	Malay Peninsula		0.3%	0.4%	0.3%	97.9%	0.7%	0.4%	Malaysia, Peninsula, Selangor, old Genting road, after pass 50 km to K.L. Malaysia, Peninsula, Selangor, old Genting road, after pass 50 km to K.L.	3.340	101.820
6086 6087	M. tanarius M. tanarius	9 10	Malay Peninsula Malay Peninsula		0.7% 0.3%	1.3% 0.5%	0.9% 0.4%	95.5% 97.4%	0.7% 0.6%	0.9% 0.8%	Malaysia, Peninsula, Selangor, old Genting road, after pass 50 km to K.L. Malaysia, Peninsula, Selangor, old Genting road, after pass 50 km to K.L.	3.340 3.340	101.820 101.820
6088	M. tanarius	11	Malay Peninsula		0.4%	0.5%	0.5%	97.5%	0.6%	0.4%	Malaysia, Peninsula, Selangor, old Genting road, after pass 50 km to K.L.	3.340	101.820
6089	M. tanarius M. tanarius	12	Malay Peninsula		0.4%	2.4%	0.4%	91.7% 62.4%	0.5%	33.6%	Malaysia, Peninsula, Selangor, old Genting road, after pass 50 km to K.L. Malaysia, Peninsula, Selangor, old Genting road, after pass 50 km to K.L.	3.340	101.820
6092 6093	M. tanarius M. tanarius	14 15	Malay Peninsula Malay Peninsula		0.5%	1.5% 1.1%	1.4%	94.2% 95.0%	0.6%	1.8%	Malaysia, Peninsula, Selangor, old Genting road, after pass 50 km to K.L. Malaysia, Peninsula, Selangor, old Genting road, after pass 50 km to K l	3.340 3.340	101.820
6094	M. tanarius	16	Malay Peninsula		2.4%	1.2%	0.7%	92.6%	2.5%	0.6%	Malaysia, Peninsula, Selangor, old Genting road, after pass 50 km to K.L.	3.340	101.820
6095	м. tanarius M. tanarius	17	Malay Peninsula Malay Peninsula		0.6%	0.4%	1.3% 0.9%	96.6% 96.8%	0.5%	0.5%	Malaysia, Peninsula, Selangor, old Genting road, 43 km to K.L. Malaysia, Peninsula, Selangor, old Genting road, 43 km to K.L.	3.330	101.770
6097 6098	M. tanarius M. tanarius	19 20	Malay Peninsula Malay Peninsula		0.5%	0.7%	0.8%	96.0% 98.6%	1.6%	0.5%	Malaysia, Peninsula, Selangor, old Genting road, 25 km to K.L. Malaysia, Peninsula, Selangor, old Genting road, 25 km to K l	3.330	101.760
6099	M. tanarius	20	Malay Peninsula		0.2%	0.3%	0.3%	98.6%	0.3%	0.3%	Malaysia, Peninsula, Selangor, old Genting road, 25 km to K.L.	3.330	101.760
6100 6101	M. tanarius M. tanarius	22 23	Malay Peninsula Malay Peninsula		0.5% 0.4%	0.4%	0.4%	98.0% 96.9%	0.5% 0.7%	0.3%	Malaysia, Peninsula, Selangor, old Genting road, 25 km to K.L. Malaysia, Peninsula, Selangor, old Genting road, 25 km to K.L.	3.330 3.330	101.760 101.760
6102	M. tanarius	24	Malay Peninsula		2.6%	0.6%	1.1%	93.3%	1.4%	0.9%	Malaysia, Peninsula, Selangor, old Genting road, 25 km to K.L.	3.330	101.760
6104	M. tanarius	26	Malay Peninsula		0.4%	0.3%	0.3%	98.2%	0.5%	0.2%	Malaysia, Peninsula, Selangor, old Genting road, 25 km to K.L.	3.330	101.760
6105 6106	M. tanarius M. tanarius	27 28	Malay Peninsula Malay Peninsula		0.7% 2.3%	0.4% 1.5%	0.3% 0.6%	98.1% 94.7%	0.3% 0.5%	0.3% 0.3%	Malaysia, Peninsula, Selangor, old Genting road, 25 km to K.L. Malaysia, Peninsula, Selangor, old Genting road, 25 km to K.L.	3.330 3.330	101.760 101.760
6107	M. tanarius	29	Malay Peninsula		0.3%	0.6%	0.9%	97.3%	0.4%	0.5%	Malaysia, Peninsula, Selangor, old Genting road, 25 km to K.L.	3.330	101.760
6108	M. tanarius M. tanarius	30	Malay Peninsula		0.3%	0.3%	0.4%	93.8% 98.4%	0.3%	0.5%	Malaysia, Peninsula, Selangor, old Genting road, 25 km to K.L. Malaysia, Peninsula, Selangor, old Genting road, 25 km to K.L.	3.330	101.760
6110 6111	M. tanarius M. tanarius	32 33	Malay Peninsula Malay Peninsula		0.6%	0.6%	0.3%	97.5% 97.8%	0.6%	0.4%	Malaysia, Peninsula, Selangor, old Genting road, 25 km to K.L. Malaysia, Peninsula, Selangor, old Genting road, 25 km to K.L.	3.330 3.330	101.760 101.760
6068	M. tanarius	34	Malay Peninsula		0.3%	0.4%	0.3%	98.4%	0.3%	0.3%	Malaysia, Peninsula, Selangor, old Genting road, 20 km to K.L.	3.310	101.740
6069 6070	M. tanarius M. tanarius	35 36	Malay Peninsula Malay Peninsula		0.4%	0.5% 1.1%	0.6%	95.3% 94.2%	2.9% 0.4%	0.3%	Malaysia, Peninsula, Selangor, old Genting road, 20 km to K.L. Malaysia, Peninsula, Selangor, old Genting road, 20 km to K.L.	3.310 3.310	101.740 101.740
6071 6072	M. tanarius M. tanarius	37 38	Malay Peninsula Malay Peninsula		0.8% 5.0%	3.3%	0.4%	81.1% 92.8%	4.5% 0.5%	9.9% 0.3%	Malaysia, Peninsula, Selangor, old Genting road, 20 km to K.L. Malaysia, Peninsula, Selangor, old Genting road, 20 km to K.L.	3.310	101.740
6073	M. tanarius	39	Malay Peninsula		0.2%	0.3%	0.3%	98.7%	0.3%	0.2%	Malaysia, Peninsula, Selangor, old Genting road, 20 km to K.L. Malaysia, Peninsula, Selangor, old Genting road, 20 km to K.L.	3.310	101.740
6074 6075	M. tanarius M. tanarius	40 41	Malay Peninsula Malay Peninsula		0.3% 0.8%	0.4% 0.5%	0.3% 0.2%	98.5% 97.6%	0.3% 0.7%	0.3% 0.2%	Malaysia, Peninsula, Selangor, old Genting road, 20 km to K.L. Malaysia, Peninsula, Selangor, old Genting road, 20 km to K.L.	3.310 3.310	101.740 101.740
6077	M. tanarius	42	Malay Peninsula		0.5%	1.5%	0.4%	96.7%	0.7%	0.3%	Malaysia, Peninsula, Selangor, old Genting road, 20 km to K.L.	3.310	101.740
6078	M. tanarius M. tanarius	43	Malay Peninsula		0.4%	0.8%	0.4%	96.0% 98.3%	0.5%	0.8%	Malaysia, Peninsula, Selangor, old Genting road, 20 km to K.L. Malaysia, Peninsula, Selangor, old Genting road, 20 km to K.L.	3.310	101.740
6080 6081	M. tanarius M. tanarius	45 46	Malay Peninsula Malay Peninsula		0.6% 0.3%	0.6% 1.2%	1.3% 0.6%	96.3% 95.1%	0.8% 0.6%	0.4% 2.3%	Malaysia, Peninsula, Selangor, old Genting road, 20 km to K.L. Malaysia, Peninsula, Selangor, old Genting road, 20 km to K.L.	3.310 3.310	101.740 101.740
6082	M. tanarius	47	Malay Peninsula		4.7%	1.3%	1.3%	90.1%	1.6%	1.0%	Malaysia, Peninsula, Selangor, old Genting road, 20 km to K.L.	3.310	101.740
41 6001	м. tanarius M. tanarius	48 49	Malay Peninsula 1	West	0.3% 39.2%	0.5% 7.3%	0.4% 47.2%	98.2% 0.6%	0.3% 2.0%	0.2%	Malaysia, Peninsula, Panang, Fraser's Hill Brunei, Tutong,	3.720 4.800	101.750 114.650
6002 6929	M. tanarius M. tanarius	50 51	1	West	97.7% 77.8%	0.5%	0.6%	0.4%	0.4%	0.5%	Brunei, Tutong, Brunei, road BSB-S, Liang, km 64	4.800	114.650 114.879
6930	M. tanarius	52	1	West	95.6%	0.8%	0.9%	0.4%	0.9%	1.4%	Brunei, road BSB-S. Liang, km 64	4.876	114.879
6931 28	M. tanarius M. tanarius	53 54	1	West West	5.0% 13.3%	0.8% 1.3%	2.9% 53.1%	0.4% 0.8%	53.7% 30.5%	37.2% 1.0%	Brunei, road BSB-S. Liang, km 64 Brunei, Bandar Seri Begawan	4.876 4.941	114.879 114.949
6922	M. tanarius	55	1	West	94.1%	1.4%	0.8%	0.4%	2.7%	0.6%	Malaysia, Sarawak, Lawas	4.862	115.406
5232	M. tanarius M. tanarius	57	2	West	0.6%	45.9%	2.8%	0.4%	90.1%	4.0%	Malaysia, Sarawak, Lawas Malaysia, Borneo, Sabah, Pulau Tiga Island	5.731	115.652
5233 5234	M. tanarius M. tanarius	58 59	2	West West	4.9% 0.4%	48.8% 92.0%	2.2% 2.6%	0.5% 2.3%	40.8% 2.0%	2.8% 0.7%	Malaysia, Borneo, Sabah, Pulau Tiga Island Malaysia, Borneo, Sabah, Pulau Tiga Island	5.731 5.731	115.652 115.652
5235	M. tanarius	60	2	West	1.7%	84.1%	1.5%	0.3%	7.5%	4.8%	Malaysia, Borneo, Sabah, Pulau Tiga Island	5.731	115.652
5236 5237	м. tanarius M. tanarius	61	2	West	1.3%	0.9% 57.8%	20.6%	1.1%	33.0%	68.9% 5.7%	Malaysia, Borneo, Sabah, Pulau Tiga Island Malaysia, Borneo, Sabah, Pulau Tiga Island	5.731	115.652
5238 5239	M. tanarius M. tanarius	63 64	2	West	9.3%	71.6% 46.1%	3.1% 7.1%	1.1% 6.1%	12.8% 34.4%	2.0%	Malaysia, Borneo, Sabah, Pulau Tiga Island Malaysia, Borneo, Sabah, Pulau Tiga Island	5.731 5.731	115.652
5240	M. tanarius	65	2	West	5.6%	74.8%	0.9%	0.4%	17.4%	0.9%	Malaysia, Borneo, Sabah, Pulau Tiga Island	5.731	115.652
5241 5242	M. tanarius M. tanarius	66 67	2	West West	1.2% 1.5%	3.1% 31.7%	49.4% 1.3%	0.3% 0.7%	6.2% 61.3%	39.9% 3.6%	Malaysia, Borneo, Sabah, Pulau Tiga Island Malaysia, Borneo, Sabah, Pulau Tiga Island	5.731 5.731	115.652 115.652
5243	M. tanarius	68	2	West	0.7%	3.3%	4.7%	0.3%	5.1%	85.9%	Malaysia, Borneo, Sabah, Pulau Tiga Island	5.731	115.652
6190	M. tanarius	70	3	East	77.2%	9.6%	8.6%	0.5%	3.6%	0.5%	Malaysia, Borneo, Sabah, Fulad riga Island Malaysia, Borneo, Sabah, Tenom, Jalan Tumantalik, near river Pegalan	5.180	116.590
6191 6192	M. tanarius M. tanarius	71 72	3 3	East East	87.8% 93.4%	6.5% 4.2%	1.1% 0.8%	1.1% 0.3%	0.9% 0.6%	2.6% 0.7%	Malaysia, Borneo, Sabah, Tenom, Jalan Tumantalik, near river Pegalan Malaysia, Borneo, Sabah, Tenom, Jalan Tumantalik, near river Pegalan	5.180 5.180	116.590 116.590
6193	M. tanarius	73	3	East	94.7%	0.8%	0.6%	0.3%	0.7%	2.9%	Malaysia, Borneo, Sabah, Tenom, Jalan Tumantalik, near river Pegalan	5.180	116.590
6194	M. tanarius M. tanarius	74	3	East	96.1% 86.0%	1.0%	0.6%	0.8%	2.8%	0.5% 9.4%	Malaysia, Borneo, Sabah, Tenom, Jalah Tumantalik, hear river Pegalah Malaysia, Borneo, Sabah, Tenom, Jalan Tumantalik, near river Pegalah	5.180	116.590
6196 6197	M. tanarius M. tanarius	76 77	3	East East	91.6% 95.9%	0.8%	1.1%	0.5%	5.5% 1.2%	0.5%	Malaysia, Borneo, Sabah, Tenom, Jalan Tumantalik, near river Pegalan Malaysia, Borneo, Sabah, Tenom, Jalan Tumantalik, near river Pegalan	5.180 5.180	116.590 116.590
6198	M. tanarius	78	3	East	96.7%	0.5%	1.0%	0.3%	1.0%	0.5%	Malaysia, Borneo, Sabah, Tenom, Jalan Tumantalik, near river Pegalan	5.180	116.590
6199	M. tanarius M. tanarius	79 80	3	East	28.9% 96.9%	3.4% 0.8%	28.5%	0.4%	0.4%	28.0%	Malaysia, Borneo, Sabah, Tenom, Jalah Tumantalik, near river Pegalah Malaysia, Borneo, Sabah, Tenom, Jalah Bukit Bendera	5.180	116.590 116.570
6177 6178	M. tanarius M. tanarius	81 82	3	East	87.3% 96.2%	1.0%	7.2%	0.5%	2.1%	2.0%	Malaysia, Borneo, Sabah, Tenom, Jalan Bukit Bendera Malaysia, Borneo, Sabah, Tenom, Jalan Bukit Bendera	5.210 5.210	116.570 116.570
6179	M. tanarius	83	3	East	93.0%	2.1%	0.5%	0.3%	2.0%	2.1%	Malaysia, Borneo, Sabah, Tenom, Jalan Bukit Bendera	5.210	116.570
6180 6181	м. tanarius M. tanarius	84 85	3 3	East East	96.5% 91.1%	0.6% 1.7%	1.5% 1.0%	0.2% 0.2%	0.7% 4.6%	0.4% 1.4%	maraysia, Borneo, Saban, Tenom, Jalan Bukit Bendera Malaysia, Borneo, Sabah, Tenom, Jalan Bukit Bendera	5.210 5.210	116.570 116.570
6182	M. tanarius M. tanarius	86 87	3 3	East	97.2% 90.6%	0.6%	0.5%	0.2%	0.9%	0.6%	Malaysia, Borneo, Sabah, Tenom, Jalan Bukit Bendera Malaysia, Borneo, Sabah, Tenom, Jalan Bukit Bendera	5.210	116.570 116.570
6184	M. tanarius	88	3	East	96.8%	0.5%	1.3%	0.2%	0.7%	0.4%	Malaysia, Borneo, Sabah, Tenom, Jalan Bukit Bendera	5.210	116.570
6185 6186	м. tanarius M. tanarius	89 90	3 3	East East	94.6% 96.4%	1.2% 0.8%	1.8% 0.8%	0.2% 0.3%	0.6% 1.3%	1.6% 0.5%	malaysia, Borneo, Sabah, Tenom, Jalan Bukit Bendera Malaysia, Borneo, Sabah, Tenom, Jalan Bukit Bendera	5.210 5.210	116.570 116.570
6187	M. tanarius	91	3	East East	77.5%	12.9%	0.6%	0.3%	7.1%	1.6%	Malaysia, Borneo, Sabah, Tenom, Jalan Bukit Bendera Malaysia, Borneo, Sabah, Tenom, Jalan Bukit Bondera	5.210	116.570
6189	M. tanarius	92	3	East	90.1% 84.6%	2.6%	1.6%	2.0%	8.2%	1.0%	Malaysia, Borneo, Sabah, Tenom, Jalan Bukit Bendera	5.210	116.570
6200 6201	M. tanarius M. tanarius	94 95	3 3	East East	96.8% 91.0%	0.7% 1.2%	0.8% 5.2%	0.3% 0.4%	0.9% 1.5%	0.5% 0.7%	Malaysia, Borneo, Sabah, Tenom, Jalan Bukit Bendera Malaysia, Borneo, Sabah, Tenom. Jalan Bukit Bendera	5.210 5.210	116.570 116.570
6202	M. tanarius	96	3	East	93.3%	0.5%	3.1%	0.6%	1.7%	0.8%	Malaysia, Borneo, Sabah, Tenom, Jalan Bukit Bendera	5.210	116.570
6203 6204	м. tanarius M. tanarius	97 98	з З	East East	60.6% 92.4%	11.0% 0.8%	ు.ర% 2.6%	0.4% 0.2%	2.7% 0.6%	1.4% 3.3%	Malaysia, Borneo, Sabah, Tenom, Jalan Bukit Bendera Malaysia, Borneo, Sabah, Tenom, Jalan Bukit Bendera	5.210 5.210	116.570
6205	M. tanarius M. tanarius	99 100	3	East	96.7% 97 1%	0.8%	0.5%	0.4%	1.1%	0.5%	Malaysia, Borneo, Sabah, Tenom, Jalan Bukit Bendera Malaysia, Borneo, Sabah, Tenom, Jalan Bukit Bendera	5.210	116.570 116.570
6207	M. tanarius	101	3	East	93.2%	1.6%	3.2%	0.6%	0.8%	0.6%	Malaysia, Borneo, Sabah, Tenom, Jalan Bukit Bendera	5.210	116.570
6208 6226	м. tanarius M. tanarius	102 103	3 3	East East	95.9% 48.7%	0.9% 0.6%	0.4% 0.5%	0.4% 0.9%	1.1% 48.9%	1.3% 0.4%	malaysia, Borneo, Sabah, Lenom, Jalan Bukit Bendera Malaysia, Borneo, Sabah, Tenom, Hill near Hotel Perkasa	5.210 5.200	116.570 116.560
6227	M. tanarius	104	3	East	95.1%	1.5%	1.0%	0.3%	1.2%	1.0%	Malaysia, Borneo, Sabah, Tenom, Hill near Hotel Perkasa Malaysia, Borneo, Sabah, Tenom, Hill near Hotel Perkasa	5.200	116.560
6229	M. tanarius	106	3	East	92.2%	4.0%	0.8%	0.9%	1.5%	0.6%	Malaysia, Borneo, Sabah, Tenom, Hill near Hotel Perkasa Malaysia, Borneo, Sabah, Tenom, Hill near Hotel Perkasa	5.200	116.560
6230 6231	M. tanarius M. tanarius	107 108	3 3	East East	97.2% 96.5%	0.6% 0.4%	0.6% 1.4%	0.3% 0.8%	0.8% 0.4%	0.4% 0.4%	Malaysia, Borneo, Sabah, Tenom, Hill near Hotel Perkasa Malaysia, Borneo, Sabah, Tenom, Hill near Hotel Perkasa	5.200 5.200	116.560 116.560
6232	M. tanarius	109	3	East	97.2%	0.7%	0.6%	0.3%	0.6%	0.7%	Malaysia, Borneo, Sabah, Tenom, Hill near Hotel Perkasa	5.200	116.560
6233	м. tanarius M. tanarius	110	3	East East	97.5% 96.6%	0.6%	0.5% 0.9%	0.3%	0.5% 0.8%	0.5%	Malaysia, Borneo, Sabah, Tenom, Hill near Hotel Perkasa Malaysia, Borneo, Sabah, Tenom, Hill near Hotel Perkasa	5.200	116.560
6235 6236	M. tanarius M. tanarius	112 113	3 3	East Fast	97.0% 19.2%	0.6%	0.5% 11.5%	0.3%	0.5% 4.1%	1.1% 1.0%	Malaysia, Borneo, Sabah, Tenom, Hill near Hotel Perkasa Malaysia, Borneo, Sabah, Tenom, Hill near Hotel Perkasa	5.200	116.560 116.560
6237	M. tanarius	114	3	East	95.8%	1.0%	1.6%	0.3%	0.5%	0.8%	Malaysia, Borneo, Sabah, Tenom, Hill near Hotel Perkasa	5.200	116.560
6209 6210	м. tanarius M. tanarius	115 116	3 3	East East	95.9% 87.6%	1.2% 2.2%	1.1% 1.3%	0.3% 0.4%	0.8% 6.6%	0.7% 1.9%	maraysia, Borneo, Saban, Lenom, Hill near Hotel Perkasa Malaysia, Borneo, Sabah, Tenom, Hill near Hotel Perkasa	5.210 5.210	116.560 116.560
6211	M. tanarius	117	3	East	95.7% 93.9%	0.8%	1.0%	1.4%	0.6%	0.4%	Malaysia, Borneo, Sabah, Tenom, Hill near Hotel Perkasa Malaysia, Borneo, Sabah, Tenom, Hill near Hotel Perkasa	5.210	116.560
6213	M. tanarius	119	3	East	96.2%	0.8%	1.0%	0.4%	0.9%	0.8%	Malaysia, Borneo, Sabah, Tenom, Hill near Hotel Perkasa	5.210	116.560
6214	M. tanarius	120	3	East	88.4%	1.0%	1.0%	0.5%	0.9%	8.2%	malaysia, Borneo, Sabah, Tenom, Hill near Hotel Perkasa	5.210	116.560

			Goographia	East / West	Perc	ent of in	dividual	assigne	d to clus	ster			
Plant ID Number	Species	Individual (1 bar)	Identifier ¹	of Crocker Range ²	K=1	K=2	K=3	K=4	K=5	K=6	Location	Latitude	Longitude
6215	M. tanarius	121 3		East	89.0%	1.4%	7.5%	0.3%	0.6%	1.2%	Malaysia, Borneo, Sabah, Tenom, Hill near Hotel Perkasa	5.210	116.560
6217	M. tanarius	122 3		East	97.1%	0.0%	0.7%	0.3%	0.0%	0.5%	Malaysia, Borneo, Sabah, Tenom, Hill near Hotel Perkasa Malaysia, Borneo, Sabah, Tenom, Hill near Hotel Perkasa	5.210	116.560
6218 6220	M. tanarius M. tanarius	124 3 125 3		East	92.2% 97.0%	0.5%	0.6%	0.3%	1.7%	4.7%	Malaysia, Borneo, Sabah, Tenom, Hill near Hotel Perkasa Malaysia, Borneo, Sabah, Tenom, Hill near Hotel Perkasa	5.210 5.210	116.560 116.560
6221	M. tanarius	126 3		East	95.1%	0.7%	0.9%	1.3%	1.5%	0.6%	Malaysia, Borneo, Sabah, Tenom, Hill near Hotel Perkasa	5.210	116.560
6222 6223	M. tanarius M. tanarius	127 3 128 3		East Fast	95.9% 82.0%	1.1%	1.0% 0.5%	0.4%	0.8%	0.8%	Malaysia, Borneo, Sabah, Tenom, Hill near Hotel Perkasa Malaysia, Borneo, Sabah, Tenom, Hill near Hotel Perkasa	5.210 5.210	116.560 116.560
6224	M. tanarius	129 3		East	94.6%	2.1%	0.8%	0.6%	1.3%	0.6%	Malaysia, Borneo, Sabah, Tenom, Hill near Hotel Perkasa	5.210	116.560
6225 6257	M. tanarius M. tanarius	130 3 131 4		East West	91.3% 4.4%	2.8% 81.9%	2.1% 10.1%	0.4%	2.0%	1.3%	Malaysia, Borneo, Sabah, Tenom, Hill near Hotel Perkasa Malaysia, Borneo, Sabah, periphery of Beaufort	5.210 5.570	116.560 116.230
5863	M. tanarius	132 4		West	0.5%	51.8%	1.7%	10.7%	34.4%	0.9%	Malaysia, Sabah, 5 km to Kuala Penyu	5.564	115.600
5864 6290	M. tanarius M. tanarius	133 4 134 5		West	0.8%	61.1% 0.9%	3.7% 97.2%	12.9% 0.3%	20.7%	0.9%	Malaysia, Sabah, 5 km to Kuala Penyu Malaysia, Borneo, Sabah, near Kota Kinabalu, Pulau Gaya	5.564 6.020	115.600 116.080
6291	M. tanarius	135 5		West	0.9%	0.5%	96.7%	0.6%	0.5%	0.7%	Malaysia, Borneo, Sabah, near Kota Kinabalu, Pulau Gaya	6.020	116.080
6292	M. tanarius M. tanarius	136 5		West	0.8%	3.0% 11.8%	28.8% 82.0%	1.8%	64.6% 0.7%	0.7%	Malaysia, Borneo, Saban, near Kota Kinabalu, Pulau Gaya Malaysia, Borneo, Sabah, near Kota Kinabalu, Pulau Gaya	6.020	116.080
6294	M. tanarius	138 5		West	27.1%	2.5%	31.9%	1.4%	34.2%	2.9%	Malaysia, Borneo, Sabah, near Kota Kinabalu, Pulau Gaya	6.020	116.080
6296	M. tanarius	140 5		West	0.4%	6.8%	90.4%	1.2%	0.6%	0.6%	Malaysia, Borneo, Sabah, near Kota Kinabalu, Pulau Gaya Malaysia, Borneo, Sabah, near Kota Kinabalu, Pulau Gaya	6.020	116.080
6297	M. tanarius M. tanarius	141 5		West	0.9%	39.8%	52.5% 86.1%	4.9%	0.6%	1.2%	Malaysia, Borneo, Sabah, near Kota Kinabalu, Pulau Gaya Malaysia, Borneo, Sabah, near Kota Kinabalu, Pulau Gaya	6.020	116.080
6299	M. tanarius	143 5		West	0.8%	1.5%	95.1%	0.3%	0.8%	1.4%	Malaysia, Borneo, Sabah, near Kota Kinabalu, Pulau Gaya Malaysia, Borneo, Sabah, near Kota Kinabalu, Pulau Gaya	6.020	116.080
6300 6301	M. tanarius M. tanarius	144 5 145 5		West West	2.7% 2.0%	17.1% 4.2%	77.6% 87.5%	0.5% 0.7%	0.6% 1.6%	1.5% 3.9%	Malaysia, Borneo, Sabah, near Kota Kinabalu, Pulau Gaya Malaysia, Borneo, Sabah, near Kota Kinabalu, Pulau Gaya	6.020 6.020	116.080 116.080
6302	M. tanarius	146 5		West	0.7%	41.1%	47.2%	0.4%	9.8%	0.8%	Malaysia, Borneo, Sabah, near Kota Kinabalu, Pulau Gaya	6.020	116.080
6303	M. tanarius M. tanarius	147 5		West	0.5% 2.1%	5.0% 0.9%	91.1% 93.3%	0.4%	1.5% 0.8%	1.4%	Malaysia, Borneo, Saban, near Kota Kinabalu, Pulau Gaya Malaysia, Borneo, Sabah, Putera Jaya	6.020	116.080
6343	M. tanarius	149 5		West	3.7%	28.6%	59.9%	0.4%	1.7%	5.7%	Malaysia, Borneo, Sabah, Putera Jaya	6.120	116.310
6258	M. tananus M. tanarius	150 5		West	1.6%	0.9%	97.0% 90.2%	4.7%	1.5%	1.3%	Malaysia, Borneo, Sabah, Kota Kinabalu, periphery Malaysia, Borneo, Sabah, Kota Kinabalu, periphery	6.640	116.130
6260 6261	M. tanarius M. tanarius	152 5		West	0.7%	3.3%	85.0% 21.5%	0.8%	2.0%	8.2% 4.4%	Malaysia, Borneo, Sabah, Kota Kinabalu, periphery Malaysia, Borneo, Sabah, Kota Kinabalu, periphery	6.640 6.640	116.130 116.130
6262	M. tanarius	154 5		West	0.5%	0.5%	97.7%	0.3%	0.6%	0.5%	Malaysia, Borneo, Sabah, Kota Kinabalu, periphery	6.640	116.130
6263 6264	M. tanarius M. tanarius	155 5 156 5		West	0.5%	0.5%	97.7% 97.3%	0.3%	0.6%	0.5%	Malaysia, Borneo, Sabah, Kota Kinabalu, periphery Malaysia, Borneo, Sabah, Kota Kinabalu, periphery	6.640 6.640	116.130 116.130
6265	M. tanarius	157 5		West	2.2%	34.4%	22.0%	0.3%	1.0%	40.0%	Malaysia, Borneo, Sabah, Kota Kinabalu, periphery	6.640	116.130
6266	м. tanarius M. tanarius	158 5		West	0.9%	0.5%	97.0% 95.8%	0.3%	0.7%	0.6%	Malaysia, Borneo, Saban, Kota Kinabalu, periphery Malaysia, Borneo, Sabah, Kota Kinabalu, periphery	6.640	116.130
6268	M. tanarius	160 5		West	0.6%	0.5%	97.0%	0.3%	0.7%	0.9%	Malaysia, Borneo, Sabah, Kota Kinabalu, periphery	6.640	116.130
6270	M. tanarius	162 5		West	1.1%	87.7%	6.8%	2.1%	0.6%	1.8%	Malaysia, Borneo, Sabah, Kota Kinabalu, periphery Malaysia, Borneo, Sabah, Kota Kinabalu, periphery	6.640	116.130
6271 6272	M. tanarius M. tanarius	163 5 164 5		West	0.4%	0.5%	98.1% 96.7%	0.2%	0.4%	0.4%	Malaysia, Borneo, Sabah, Kota Kinabalu, periphery Malaysia, Borneo, Sabah, Kota Kinabalu, periphery	6.640 6.640	116.130 116.130
6273	M. tanarius	165 5		West	0.6%	0.8%	95.4%	0.4%	1.7%	1.1%	Malaysia, Borneo, Sabah, Kota Kinabalu, periphery	6.640	116.130
6274 6275	M. tanarius M. tanarius	166 5 167 5		West	1.0% 9.5%	1.5% 3.5%	94.6% 84.8%	1.8% 0.4%	0.6%	0.6%	Malaysia, Borneo, Sabah, Kota Kinabalu, periphery Malaysia, Borneo, Sabah, Kota Kinabalu, periphery	6.640 6.640	116.130 116.130
6276	M. tanarius	168 5		West	0.6%	13.7%	47.9%	0.3%	0.8%	36.6%	Malaysia, Borneo, Sabah, Kota Kinabalu, periphery	6.640	116.130
6277	м. tanarius M. tanarius	169 5		West	2.4%	0.9%	91.4% 91.7%	1.5%	3.1% 0.7%	0.7%	Malaysia, Borneo, Saban, Kota Kinabalu, periphery Malaysia, Borneo, Sabah, Kota Kinabalu, periphery	6.640	116.130
6279 6280	M. tanarius M. tanarius	171 5		West	0.4%	0.6%	97.5% 94.2%	0.2%	0.4%	0.9%	Malaysia, Borneo, Sabah, Kota Kinabalu, periphery Malaysia, Borneo, Sabah, Kota Kinabalu, periphery	6.640 6.640	116.130 116.130
6281	M. tanarius	173 5		West	1.1%	0.8%	95.3%	0.4%	1.0%	1.5%	Malaysia, Borneo, Sabah, Kota Kinabalu, periphery	6.640	116.130
6282 6283	M. tanarius M. tanarius	174 5 175 5		West West	1.3% 1.3%	12.4% 2.5%	83.8% 90.5%	0.6% 0.3%	1.3% 1.0%	0.7% 4.3%	Malaysia, Borneo, Sabah, Kota Kinabalu, periphery Malaysia, Borneo, Sabah, Kota Kinabalu, periphery	6.640 6.640	116.130 116.130
6284	M. tanarius	176 5		West	9.9%	2.3%	85.2%	1.2%	0.8%	0.6%	Malaysia, Borneo, Sabah, Kota Kinabalu, periphery	6.640	116.130
6285	м. tanarius M. tanarius	177 5		West	1.5%	0.6%	33.2% 97.7%	8.9% 0.4%	43.7%	6.5% 0.5%	Malaysia, Borneo, Sabah, Kota Kinabalu, periphery Malaysia, Borneo, Sabah, Kota Kinabalu, periphery	6.640	116.130
6287	M. tanarius M. tanarius	179 5		West	2.0%	2.7%	73.3%	0.4%	15.7%	5.9%	Malaysia, Borneo, Sabah, Kota Kinabalu, periphery	6.640 6.640	116.130
6289	M. tanarius	181 5		West	5.3%	0.8%	89.0%	0.6%	3.0%	1.4%	Malaysia, Borneo, Sabah, Kota Kinabalu, periphery	6.640	116.130
6317 6318	M. tanarius M. tanarius	182 5 183 5		West	1.1% 1.0%	3.8% 0.9%	92.2% 91.8%	0.7%	1.5% 2.0%	0.7%	Malaysia, Borneo, Sabah, Kota Kinabalu, near Padang Malaysia, Borneo, Sabah, Kota Kinabalu, near Padang	6.640 6.640	116.080 116.080
6319	M. tanarius	184 5		West	1.2%	0.9%	95.3%	0.4%	1.3%	0.9%	Malaysia, Borneo, Sabah, Kota Kinabalu, near Padang	6.640	116.080
6175	M. tananus M. tanarius	186 5		West	1.2%	3.3% 6.9%	91.2% 87.5%	0.4%	1.1%	3.3%	Malaysia, Borneo, Sabah, Kota Kinabalu, near Padang Malaysia, Borneo, Sabah, Kota Kinabalu, near Padang	6.640	116.080
6308 6309	M. tanarius M. tanarius	187 5 188 5		West	0.9% 9.6%	17.2% 6.7%	73.3% 78.8%	5.6% 0.4%	1.5% 1.8%	1.4%	Malaysia, Borneo, Sabah, Kota Kinabalu, near Padang Malaysia, Borneo, Sabah, Kota Kinabalu, near Padang	6.640 6.640	116.130 116.130
6310	M. tanarius	189 5		West	1.2%	14.1%	67.9%	0.6%	1.2%	15.0%	Malaysia, Borneo, Sabah, Kota Kinabalu, near Padang	6.640	116.130
6311 6312	M. tanarius M. tanarius	190 5 191 5		West	0.5% 7.1%	1.0% 1.9%	42.2% 88.5%	4.4% 0.3%	51.4% 0.9%	0.5% 1.3%	Malaysia, Borneo, Sabah, Kota Kinabalu, near Padang Malaysia, Borneo, Sabah, Kota Kinabalu, near Padang	6.640 6.640	116.130 116.130
6313	M. tanarius	192 5		West	3.3%	23.9%	71.0%	0.3%	0.8%	0.6%	Malaysia, Borneo, Sabah, Kota Kinabalu, near Padang	6.640	116.130
6314 6315	м. tanarius M. tanarius	193 5		West	3.3%	57.4% 1.9%	29.8% 92.5%	0.3%	5.3% 0.8%	3.1% 0.7%	Malaysia, Borneo, Sabah, Kota Kinabalu, near Padang Malaysia, Borneo, Sabah, Kota Kinabalu, near Padang	6.640	116.130
6316 6321	M. tanarius M. tanarius	195 5		West	1.7%	0.8%	95.4% 30.9%	0.4%	1.0%	0.7%	Malaysia, Borneo, Sabah, Kota Kinabalu, near Padang	6.640	116.130
6322	M. tanarius	197 5		West	0.5%	1.2%	66.6%	1.1%	29.0%	1.5%	Malaysia, Borneo, Sabah, Kota Kinabalu, near Padang	6.640	116.130
6323 6324	M. tanarius M. tanarius	198 5 199 5		West	1.0% 12.8%	1.0% 3.4%	94.9% 79.0%	0.6%	2.2%	0.5% 3.1%	Malaysia, Borneo, Sabah, Kota Kinabalu, near Padang Malaysia, Borneo, Sabah, Kota Kinabalu, near Padang	6.640 6.640	116.130 116.130
6325	M. tanarius	200 5		West	0.6%	0.8%	97.4%	0.3%	0.5%	0.4%	Malaysia, Borneo, Sabah, Kota Kinabalu, near Padang	6.640	116.130
6326 6327	M. tanarius M. tanarius	201 5 202 5		West	1.4% 1.6%	44.4% 1.4%	17.6% 88.9%	0.2%	0.4% 6.9%	36.0% 0.7%	Malaysia, Borneo, Sabah, Kota Kinabalu, near Padang Malaysia, Borneo, Sabah, Kota Kinabalu, near Padang	6.640 6.640	116.130 116.130
6328	M. tanarius	203 5		West	5.1%	2.4%	89.5%	0.5%	1.6%	0.9%	Malaysia, Borneo, Sabah, Kota Kinabalu, near Padang	6.640	116.130
6329	M. tananus M. tanarius	204 5		West	4.2%	7.8%	90.6% 88.6%	1.6%	0.6%	0.8%	Malaysia, Borneo, Sabah, Kota Kinabalu, near Padang Malaysia, Borneo, Sabah, Kota Kinabalu, near Padang	6.640	116.130
6331	M. tanarius M. tanarius	206 5		West	0.6%	3.1%	92.3% 96.4%	1.4%	1.8%	0.8%	Malaysia, Borneo, Sabah, Kota Kinabalu, near Padang	6.640	116.130
6333	M. tanarius	208 5		West	2.8%	2.4%	93.1%	0.3%	0.5%	0.8%	Malaysia, Borneo, Sabah, Kota Kinabalu, near Padang	6.640	116.130
6334 6335	M. tanarius M. tanarius	209 5 210 5		West	2.3% 0.7%	7.6% 1.9%	83.1% 93.9%	0.3%	5.1% 0.9%	1.6% 2.3%	Malaysia, Borneo, Sabah, Kota Kinabalu, near Padang Malaysia, Borneo, Sabah, Kota Kinabalu, near Padang	6.640 6.640	116.130 116.130
6336	M. tanarius	211 5		West	1.4%	1.4%	94.7%	0.9%	1.2%	0.5%	Malaysia, Borneo, Sabah, Kota Kinabalu, near Padang	6.640	116.130
6337 6338	м. tanarius M. tanarius	212 5 213 5		West	3.5% 5.7%	0.9% 3.2%	89.7% 68.4%	4.4% 0.6%	1.0% 21.3%	0.6% 0.8%	malaysia, Borneo, Sabah, Kota Kinabalu, near Padang Malaysia, Borneo, Sabah, Kota Kinabalu, near Padano	6.640 6.640	116.130 116.130
6339	M. tanarius	214 5		West	0.6%	24.5%	71.9%	1.6%	0.5%	1.0%	Malaysia, Borneo, Sabah, Kota Kinabalu, near Padang	6.640	116.130
ь340 6341	м. tanarius M. tanarius	215 5 216 5		west West	3.0% 1.7%	o.2% 4.1%	00.8% 84.4%	0.4% 1.1%	0.8% 8.0%	0.8% 0.7%	Malaysia, Borneo, Sabah, Kota Kinabalu, near Padang Malaysia, Borneo, Sabah, Kota Kinabalu, near Padang	ь.640 6.640	116.130
6344	M. tanarius M. tanarius	217 6		West	1.9%	77.2%	18.4%	1.1%	0.8%	0.6%	Malaysia, Borneo, Sabah, from KK towards Kota Belud	6.240	116.130
6346	M. tanarius	219 6		West	1.4%	83.3%	13.0%	0.7%	0.9%	0.7%	Malaysia, Borneo, Sabah, from KK towards Kota Belud	6.240	116.460
6347 6348	M. tanarius M. tanarius	220 6 221 6		West West	6.3% 0.7%	74.5% 96.9%	13.4% 0.7%	0.8% 0.4%	4.0% 0.7%	1.0% 0.6%	Malaysia, Borneo, Sabah, from KK towards Kota Belud Malaysia, Borneo, Sabah, from KK towards Kota Belud	6.240 6.240	116.460 116.460
6349	M. tanarius	222 6		West	6.0%	90.4%	1.2%	0.9%	1.0%	0.5%	Malaysia, Borneo, Sabah, from KK towards Kota Belud	6.240	116.460
6350 6351	м. tanarius M. tanarius	223 6 224 6		West West	0.7% 4.3%	96.6% 92.2%	1.2% 0.6%	0.4% 1.0%	0.4% 1.1%	0.6% 0.7%	Malaysia, Borneo, Saban, from KK towards Kota Belud Malaysia, Borneo, Sabah, from KK towards Kota Belud	6.240 6.240	116.460 116.460
6352	M. tanarius	225 6		West	1.1%	95.4%	1.3%	0.4%	1.4%	0.4%	Malaysia, Borneo, Sabah, from KK towards Kota Belud	6.240	116.460
6353 6354	м. tanarius M. tanarius	226 6 227 6		West	0.5% 5.3%	ษช.0% 91.9%	0.5% 0.7%	0.3% 0.3%	0.3% 0.8%	0.3%	Malaysia, Borneo, Sabah, from KK towards Kota Belud Malaysia, Borneo, Sabah, from KK towards Kota Belud	6.240 6.240	116.460 116.460
6355	M. tanarius	228 6		West	0.5%	97.5%	0.6%	0.5%	0.4%	0.4%	Malaysia, Borneo, Sabah, from KK towards Kota Belud	6.240	116.460
6357	M. tanarius	229 6		West	8.1%	32.5% 80.9%	4.9%	0.0%	2.9%	2.3%	Malaysia, Borneo, Sabah, South of Kota Belud	6.640	116.650
6358 6359	M. tanarius M. tanarius	231 6 232 6		West	0.7% 7.2%	68.5% 81.7%	8.5% 3.6%	1.0% 3.6%	5.9% 2.3%	15.4%	Malaysia, Borneo, Sabah, South of Kota Belud Malaysia, Borneo, Sabah, South of Kota Belud	6.640 6.640	116.650 116.650
6370	M. tanarius	233 6		West	0.7%	88.9%	2.0%	0.7%	3.5%	4.1%	Malaysia, Borneo, Sabah, Kota Belud, near Siu Motel	6.630	116.130
6371 6372	м. tanarius M. tanarius	234 6 235 6		West West	0.7% 7.7%	90.9% 87.0%	3.5% 2.8%	0.4% 0.9%	0.4% 0.4%	4.1% 1.2%	manaysia, Borneo, Saban, Kota Belud, near Siu Motel Malaysia, Borneo, Sabah, Kota Belud, near Siu Motel	6.630 6.630	116.130 116.130
6373	M. tanarius	236 6		West	0.9%	43.9%	2.8%	0.7%	31.2%	20.5%	Malaysia, Borneo, Sabah, Kota Belud, near Siu Motel	6.630	116.130
6375	M. tanarius	237 6		West	15.4%	23.5% 62.6%	14.5%	2.2%	1.4%	6.8%	Malaysia, Borneo, Sabah, Kota Belud, near Siu Motel	6.630	116.130
6377 6378	M. tanarius M. tanarius	239 6 240 6		West West	13.7% 79.3%	54.1% 12.2%	28.9% 1.8%	0.4% 0.5%	1.0% 4.5%	2.0% 1.7%	Malaysia, Borneo, Sabah, Kota Belud, near Siu Motel Malaysia, Borneo, Sabah, Kota Belud, near Siu Motel	6.630 6.630	116.460 116.460

			Goographia	East / West	Perc	ent of in	dividual	assigne	d to clus	ter			
Plant ID Number	Species	Individual (1 bar)	Identifier ¹	Range ²	K=1	K=2	K=3	K=4	K=5	K=6	Location	Latitude	Longitude
6360	M. tanarius	241 6	6	West	4.7%	90.9%	1.7%	0.3%	1.2%	1.1%	Malaysia, Borneo, Sabah, Kota Belud, near Siu Motel	6.630	116.680
6361 6362	M. tanarius M. tanarius	242 6	5	West	15.9% 58.4%	65.2% 7.5%	8.5% 0.5%	0.4% 2.0%	9.3% 2.7%	0.7% 28.9%	Malaysia, Borneo, Sabah, Kota Belud, near Siu Motel Malaysia, Borneo, Sabah, Kota Belud, near Siu Motel	6.630 6.630	116.680 116.680
6363	M. tanarius	244 6	6	West	84.6%	7.5%	1.9%	3.8%	1.4%	0.9%	Malaysia, Borneo, Sabah, Kota Belud, near Siu Motel	6.630	116.680
6364 6365	M. tanarius M. tanarius	245 6 246 f	5	West	27.9%	18.8% 77.5%	50.9% 17.3%	0.4%	1.5%	0.6% 2.5%	Malaysia, Borneo, Sabah, Kota Belud, near Siu Motel Malaysia, Borneo, Sabah, Kota Belud, near Siu Motel	6.630	116.680
6366	M. tanarius	247 6	6	West	25.0%	9.2%	9.9%	0.6%	51.5%	3.8%	Malaysia, Borneo, Sabah, Kota Belud, near Siu Motel	6.630	116.680
6367 6369	M. tanarius M. tanarius	248 6	6	West	1.8%	7.5%	1.6% 8.5%	0.6%	86.1% 6.3%	2.3%	Malaysia, Borneo, Sabah, Kota Belud, near Siu Motel Malaysia, Borneo, Sabah, Kota Belud, near Siu Motel	6.630 6.630	116.680
6376	M. tanarius	249 0	5	West	3.3%	12.7%	2.2%	0.3%	67.9%	13.5%	Malaysia, Borneo, Sabah, Kota Belud, near Siu Motel Malaysia, Borneo, Sabah, Kota Belud, near Siu Motel	6.630	116.680
6379	M. tanarius	251 6	6	West	91.5%	3.3%	2.6%	0.6%	0.9%	1.0%	Malaysia, Borneo, Sabah, Kota Belud, near Siu Motel	6.640	116.680
6380	M. tanarius M. tanarius	252 6	5	West	25.0% 7.4%	34.2% 79.5%	3.5% 2.6%	0.3%	3.1%	33.9% 1.5%	Malaysia, Borneo, Sabah, Kota Belud, near Siu Motei Malaysia, Borneo, Sabah, Kota Belud, direction Kudat	6.600	116.660
6384	M. tanarius	254 6	6	West	2.1%	17.2%	18.1%	0.6%	2.5%	59.3%	Malaysia, Borneo, Sabah, Kota Belud, direction Kudat	6.600	116.680
6385 6394	M. tanarius M. tanarius	255 6 256 6	5	West	1.6% 36.4%	60.5% 40.1%	7.2%	1.3%	2.1%	27.2% 9.2%	Malaysia, Borneo, Sabah, Kota Belud, direction Kudat Malaysia, Borneo, Sabah, Kota Belud, direction Kudat	6.600 6.630	116.680 116.680
6382	M. tanarius	257 6	5	West	0.7%	94.1%	3.5%	0.3%	0.5%	0.9%	Malaysia, Borneo, Sabah, Kota Belud, direction Kudat	6.600	116.750
6383	M. tanarius	258 6	6	West	3.4%	91.7%	1.5%	0.3%	1.2%	1.9%	Malaysia, Borneo, Sabah, Kota Belud, direction Kudat	6.600	116.750
6389	M. tanarius	259 6	6	West	2.6%	9.6% 83.9%	3.2%	3.3%	0.6%	6.3%	Malaysia, Borneo, Sabah, Kota Belud, direction Kudat Malaysia, Borneo, Sabah, Kota Belud, direction Kudat	6.600	116.750
6390	M. tanarius	261 6	6	West	8.8%	56.4%	1.7%	0.4%	26.3%	6.6%	Malaysia, Borneo, Sabah, Kota Belud, direction Kudat	6.600	116.750
6391	M. tanarius M. tanarius	262 6	5	West	1.6% 53.4%	68.0% 25.9%	4.9% 9.3%	2.7%	21.8% 4.8%	0.9% 5.7%	Malaysia, Borneo, Sabah, Kota Belud, direction Kudat Malaysia, Borneo, Sabah, Kota Belud, direction Kudat	6.600	116.750
6395	M. tanarius	264 6	6	West	3.0%	90.4%	2.9%	0.3%	1.8%	1.6%	Malaysia, Borneo, Sabah, from KK to Ranau, stop 1	6.280	116.500
6396 6397	M. tanarius M. tanarius	265 6	5	West West	4.4% 4.8%	55.9% 83.9%	15.8% 1.8%	0.7%	7.2%	16.0% 5.2%	Malaysia, Borneo, Sabah, from KK to Ranau, stop 1 Malaysia, Borneo, Sabah, from KK to Ranau, stop 1	6.280 6.280	116.500 116.500
6398	M. tanarius	267 6	6	West	0.8%	92.4%	1.9%	1.4%	1.8%	1.6%	Malaysia, Borneo, Sabah, from KK to Ranau, stop 1	6.280	116.660
6399	M. tanarius	268 6	5	West	6.8%	39.8%	46.5%	1.1%	3.5%	2.4%	Malaysia, Borneo, Sabah, from KK to Ranau, stop 2	6.510	116.650
6401	M. tanarius	209 0	6	West	1.4%	79.3%	14.6%	0.5%	1.9%	2.3%	Malaysia, Borneo, Sabah, from KK to Ranau, stop 2 Malaysia, Borneo, Sabah, from KK to Ranau, stop 2	6.510	116.750
6402	M. tanarius	271 6	6	West	0.6%	89.1%	0.8%	0.3%	1.0%	8.1%	Malaysia, Borneo, Sabah, from KK to Ranau, stop 2	6.510	116.750
6440 6441	M. tanarius M. tanarius	272 7	7	East	0.5%	0.8%	2.4%	0.9%	2.7%	92.8% 95.4%	Malaysia, Borneo, Sabah, outskirts of Ranau Malaysia, Borneo, Sabah, outskirts of Ranau	6.500	116.500
6442	M. tanarius	274	7	East	1.9%	0.8%	0.7%	0.4%	2.1%	94.1%	Malaysia, Borneo, Sabah, outskirts of Ranau	6.500	116.650
6439 6433	M. tanarius M. tanarius	275 7	7	East	0.7%	0.9%	0.9%	0.3%	0.7%	96.6%	Malaysia, Borneo, Sabah, outskirts of Ranau Malaysia, Borneo, Sabah, outskirts of Ranau	6.500	116.750
6434	M. tanarius	277 1	7	East	0.7%	0.5%	0.9%	0.4%	0.5%	96.9%	Malaysia, Borneo, Sabah, outskirts of Ranau	6.500	117.200
6435	M. tanarius	278	7	East	9.8%	1.5%	1.4%	1.2%	1.0%	85.0%	Malaysia, Borneo, Sabah, outskirts of Ranau	6.500	117.200
6436 6437	M. tanarius M. tanarius	279 280 7	7	East	0.8% 2.8%	1.1%	1.2%	0.6%	0.5%	95.9% 1.6%	Malaysia, Borneo, Sabah, outskirts of Ranau Malaysia, Borneo, Sabah, outskirts of Ranau	6.500	117.200
6438	M. tanarius	281	7	East	0.5%	0.7%	0.5%	4.1%	0.6%	93.6%	Malaysia, Borneo, Sabah, outskirts of Ranau	6.500	117.200
6443 6444	M. tanarius M. tanarius	282 7	7	East	1.0%	0.7%	0.7%	0.4%	1.0%	96.2%	Malaysia, Borneo, Sabah, outskirts of Ranau Malaysia, Borneo, Sabah, outskirts of Ranau	6.500 6.500	117.200
6445	M. tanarius	284	7	East	0.4%	0.6%	0.9%	1.4%	0.5%	96.2%	Malaysia, Borneo, Sabah, outskirts of Ranau	6.500	117.200
6446	M. tanarius	285	7	East	1.0%	10.5%	5.0%	0.3%	1.3%	81.9%	Malaysia, Borneo, Sabah, outskirts of Ranau	6.500	117.200
6448	M. tanarius	287 7	7	East	2.0%	4.0%	3.5%	0.4%	2.3%	87.7%	Malaysia, Borneo, Sabah, outskirts of Ranau	6.500	117.200
6450	M. tanarius	288	7	East	0.8%	1.8%	4.1%	1.5%	1.0%	90.7%	Malaysia, Borneo, Sabah, outskirts of Ranau	6.500	117.200
6451 6452	M. tanarius M. tanarius	289 7	7	East	0.5%	0.8%	9.8% 0.9%	0.3%	0.8%	87.8% 96.8%	Malaysia, Borneo, Sabah, outskirts of Ranau Malaysia, Borneo, Sabah, outskirts of Ranau	6.500 6.500	117.200
6453	M. tanarius	291	7	East	0.7%	1.6%	0.7%	0.9%	0.7%	95.4%	Malaysia, Borneo, Sabah, outskirts of Ranau	6.500	117.200
6457 6449	M. tanarius M. tanarius	292 7	7	East	0.7%	0.8%	4.5%	0.9%	0.5%	92.6%	Malaysia, Borneo, Sabah, outskirts of Ranau Malaysia, Borneo, Sabah, outskirts of Ranau	6.500	117.200
6454	M. tanarius	294	7	East	0.5%	0.4%	0.6%	0.2%	0.4%	97.8%	Malaysia, Borneo, Sabah, outskirts of Ranau	6.500	117.210
6455	M. tanarius	295	7	East	5.6%	3.2%	2.3%	1.0%	0.6%	87.3%	Malaysia, Borneo, Sabah, outskirts of Ranau	6.500	117.210
6458	M. tanarius	296 1	7	East	1.0%	17.1%	1.1%	0.5% 8.6%	3.2%	97.4% 68.9%	Malaysia, Borneo, Sabah, outskirts of Ranau Malaysia, Borneo, Sabah, outskirts of Ranau	6.500	117.210
6030	M. tanarius	298	7	East	1.0%	0.8%	1.2%	0.3%	1.4%	95.3%	Malaysia, Borneo, Sabah, Poring, staff quarters	6.070	116.720
6026 6027	M. tanarius M. tanarius	299 7	7	East	0.4%	0.6%	0.9%	0.3%	0.5% 2.6%	97.4% 92.9%	Malaysia, Borneo, Sabah, Poring, logging road Malaysia, Borneo, Sabah, Poring, logging road	6.070 6.070	116.720 116.720
6033	M. tanarius	301	7	East	0.6%	0.6%	0.5%	0.4%	0.9%	97.0%	Malaysia, Borneo, Sabah, Poring, logging road	6.070	116.720
6034	M. tanarius	302 7	7	East	0.7%	0.4%	0.5%	0.2%	1.7%	96.5%	Malaysia, Borneo, Sabah, Poring, logging road	6.070	116.720
6036	M. tanarius	303 7	7	East	0.4%	0.8%	0.8%	0.4%	0.0%	96.8%	Malaysia, Borneo, Sabah, Poring, logging road	6.070	116.720
6037	M. tanarius	305 7	7	East	0.4%	0.6%	13.5%	1.9%	0.4%	83.2%	Malaysia, Borneo, Sabah, Poring, logging road	6.070	116.720
6060	M. tanarius M. tanarius	306 7	7	East	0.7%	1.8%	0.8%	0.5% 1.8%	0.9%	95.4% 95.3%	Malaysia, Borneo, Sabah, Poring, logging road Malaysia, Borneo, Sabah, Poring. Langanan	6.070	116.720
6031	M. tanarius	308	7	East	0.7%	1.4%	1.1%	0.3%	1.1%	95.4%	Malaysia, Borneo, Sabah, Poring, Hot springs area	6.070	116.720
6029	M. tanarius M. tanarius	309 3	7	East	0.7%	0.7%	0.6%	0.3%	0.7%	97.0%	Malaysia, Borneo, Sabah, Poring, Camp site Malaysia, Borneo, Sabah, Poring, Camp site	6.070	116.720
4334	M. tanarius	311 8	B	East	4.0%	21.3%	5.3%	0.3%	67.5%	1.6%	Malaysia, Borneo, Sabah, Telupid, Jln. Microwave	5.650	117.210
6142	M. tanarius	312 9	9	East	0.7%	1.5%	1.1%	0.9%	95.1%	0.7%	Malaysia, Borneo, Sabah, Danum Valley, road to Malua, junction to BRL	5.050	117.760
6144	M. tanarius	313 3	9	East	3.7%	2.0%	26.7%	0.2%	57.0%	10.1%	Malaysia, Borneo, Sabah, Danum Valley, road to Malua, junction to BRL	5.050	117.760
6145	M. tanarius	315 9	9	East	1.6%	0.4%	0.6%	0.3%	96.7%	0.4%	Malaysia, Borneo, Sabah, Danum Valley, road to Malua, junction to BRL	5.050	117.760
6148	M. tanarius M. tanarius	316 9	9	East	0.3%	95.4% 0.5%	0.3%	0.3%	2.6% 93.4%	3.5%	Malaysia, Borneo, Sabah, Danum Valley, road to Malua, junction to BRL Malaysia, Borneo, Sabah, Danum Valley, road to Malua, junction to BRL	5.050	117.760
6150	M. tanarius	318 9	9	East	0.9%	0.5%	0.6%	0.4%	96.7%	0.9%	Malaysia, Borneo, Sabah, Danum Valley, road to Malua, junction to BRL	5.050	117.760
6151 6152	M. tanarius M. tanarius	319 9	9	East	0.6%	0.4%	0.5%	4.9%	93.1% 78.6%	0.5%	Malaysia, Borneo, Sabah, Danum Valley, road to Malua, junction to BRL Malaysia, Borneo, Sabah, Danum Valley, road to Malua, junction to BRL	5.050 5.050	117.760 117.760
6161	M. tanarius	321 9	9	East	2.6%	36.7%	30.7%	1.6%	23.6%	4.8%	Malaysia, Borneo, Sabah, Danum Valley, DVFC, exit	4.950	117.810
5211	M. tanarius	322 9	9	East	0.7%	0.6%	0.8%	0.4%	96.8%	0.8%	Malaysia, Borneo, Sabah, DV, logging site 2006, north of road to Lahad Datu	4.990	117.960
5212	M. tanarius	323 9	9	East	0.6%	0.4%	0.6%	1.6%	95.6%	1.2%	Malaysia, Borneo, Sabah, DV, logging site 2006, north of road to Lahad Datu Malaysia, Borneo, Sabah, DV, logging site 2006, north of road to Lahad Datu	4.990	117.960
5214	M. tanarius	325 9	9	East	0.6%	0.4%	0.8%	0.3%	96.8%	1.1%	Malaysia, Borneo, Sabah, DV, logging site 2006, north of road to Lahad Datu	4.990	117.960
5215 5216	M. tanarius M. tanarius	326 9	9	East	0.8%	0.5%	1.1%	0.3%	68.1% 96.6%	28.7%	Malaysia, Borneo, Sabah, DV, logging site 2006, north of road to Lanad Datu Malaysia, Borneo, Sabah, DV, logging site 2006, north of road to Lahad Datu	4.990	117.960
5217	M. tanarius	328 9	9	East	1.2%	0.6%	0.5%	0.2%	94.6%	2.7%	Malaysia, Borneo, Sabah, DV, logging site 2006, north of road to Lahad Datu	4.990	117.960
5218 5219	M. tanarius M. tanarius	329 9	9	East	2.9%	1.0% 9.7%	1.3%	0.6%	93.6% 87.3%	0.7%	Malaysia, Borneo, Sabah, DV, logging site 2006, north of road to Lahad Datu Malaysia, Borneo, Sabah, DV, logging site 2006, north of road to Lahad Datu	4.990	117.960 117.960
5220	M. tanarius	331 9	9	East	0.7%	0.7%	1.1%	0.3%	96.2%	1.0%	Malaysia, Borneo, Sabah, DV, logging site 2006, north of road to Lahad Datu	4.990	117.960
5221	M. tanarius	332 9	9	East	1.6%	0.7%	0.7%	0.3%	96.0%	0.6%	Malaysia, Borneo, Sabah, DV, logging site 2006, north of road to Lahad Datu	4.990	117.960
4302	M. tanarius	334 9	9	East	0.3%	1.2%	0.4%	0.3%	96.6%	0.4%	Malaysia, Borneo, Sabah, Tabin Wildlife Reserve, Resort	4.990	118.840
4306	M. tanarius	335	9	East	0.5%	0.8%	1.2%	0.7%	96.4%	0.5%	Malaysia, Borneo, Sabah, Tabin Wildlife Reserve, Resort	5.310	118.840
5119 5120	м. tanarius M. tanarius	336 9 337 9	9	East East	1.5% 11.2%	0.4% 2.1%	0.7% 0.7%	0.4% 1.0%	95.5% 78.6%	1.5% 6.4%	Malaysia, Borneo, Sabah, Tawau Hills Park, edge of oil palm plantation Malaysia, Borneo, Sabah, Tawau Hills Park, edge of oil palm plantation	4.390 4.390	117.890 117.890
5121	M. tanarius	338 9	Ð	East	0.5%	2.2%	1.5%	0.5%	94.5%	0.7%	Malaysia, Borneo, Sabah, Tawau Hills Park, edge of oil palm plantation	4.390	117.890
5123	M. tanarius	339 9	9	East	3.1%	0.7%	0.5%	0.3%	93.1%	2.2%	Malaysia, Borneo, Sabah, Tawau Hills Park, edge of oil palm plantation	4.390	117.890
5124	M. tanarius	340 9	9	East	10.6%	9.0% 19.8%	2.3%	0.4%	66.2%	0.6%	Malaysia, Borneo, Sabah, Tawau Hills Park, edge of oil paim plantation Malaysia, Borneo, Sabah, Tawau Hills Park, edge of oil palm plantation	4.390	117.890
5128	M. tanarius	342 9	9	East	1.3%	0.8%	0.5%	0.3%	96.0%	1.1%	Malaysia, Borneo, Sabah, Tawau Hills Park, edge of oil palm plantation	4.390	117.890
5129	м. tanarius M. tanarius	343 9	9	East	∠.8% 1.8%	∠1.9% 2.4%	2.6%	0.8%	20.2% 81.4%	o.2% 11.0%	Malaysia, Borneo, Sabah, Tawau Hills Park, edge of oil paim plantation Malaysia, Borneo, Sabah, Tawau Hills Park, edge of oil palm plantation	4.390	117.890
5131	M. tanarius	345 9	9	East	9.0%	0.9%	0.6%	1.9%	87.0%	0.6%	Malaysia, Borneo, Sabah, Tawau Hills Park, edge of oil palm plantation	4.390	117.890
5132 5133	M. tanarius M. tanarius	346 9 347 9	9	East East	0.5% 0.5%	5.9% 1.0%	2.6% 49.9%	0.5% 0.3%	88.9% 47.6%	1.8% 0.6%	Malaysia, Borneo, Sabah, Tawau Hills Park, edge of oil palm plantation Malaysia, Borneo, Sabah, Tawau Hills Park, edge of oil palm plantation	4.390 4.390	117.890 117.890
5134	M. tanarius	348 9	9	East	0.7%	0.6%	0.8%	0.4%	96.4%	1.1%	Malaysia, Borneo, Sabah, Tawau Hills Park, edge of oil palm plantation	4.390	117.890
5135	M. tanarius M. tanarius	349 9) Java	East	0.8%	16.2%	38.9%	1.5%	38.2%	4.3%	Malaysia, Borneo, Sabah, Tawau Hills Park, edge of oil palm plantation	4.390	117.890
1531	M. tanarius	350 S	Kalimantan	East	1.7%	35.3%	0.5%	+.5% 14.4%	29.2% 12.0%	36.1%	Indonesia, Borneo, E-Kalimantan, Samboja	-7.055	116.930
1532	M. tanarius M. tanarius	352	Kalimantan Kalimantan	East	8.8%	7.1%	0.9%	0.4%	2.7%	80.1%	Indonesia, Borneo, E-Kalimantan, Samboja	-0.980	116.930

 1. The geographic identifier refers to Figure 3-5.

 2. For Bornean individuals only.

Lebenslauf

Persönliche Daten:

Name:	Christina Baier
Geburtsdatum und -ort:	25.01.1981, Hünfeld
Staatsangehörigkeit:	Deutsch
Anschrift:	Christina Baier
	Goetheweg 8
	36088 Hünfeld
	Tel: 01577/5975317
	e-mail: baier@ipk-gatersleben.de

Wissenschaftlicher Werdegang:

ab 04/2011	Wissenschaftliche Mitarbeiterin im Centro de Estudios Avanzados en Zonas Aridas (CEAZA), La Serena, Chile
05/2006-03/2011	Doktorandin am Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK) in Gatersleben; Titel der Dissertation: "Comparative phylogeographic and population genetic analyses of three tropical pioneer trees, <i>Macaranga winkleri, M. winkleriella</i> and <i>M. tanarius</i> (Euphorbiaceae)". Betreuer: Dr. Frank R. Blattner
09/2005-04/2006	Wissenschaftliche Mitarbeiterin, Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK) in Gatersleben
08/2005	Diplomprüfungen: Naturschutz Spezielle Botanik und Mykologie Physische Geographie
10/2004-08/2005	Diplomarbeit "Development and application of chloroplast DNA markers in <i>Araucaria araucana</i> Molina K.Koch (Araucariaceae)" an der INTA San Carlos de Bariloche, Argentinien und der Philipps-Universität Marburg
10/2000-08/2005	Studium der Biologie an der Philipps-Universität Marburg
08/1991-06/2000	Besuch des Wigbertgymnasiums in Hünfeld
08/1987-06/1991	Pasuch dar Crundschula in Hünfald

Veröffentlichungen:

- Baier, C., Guicking, D., Prinz, K., Fey-Wagner, C., Wöhrmann, T., Weising, K., Debener, T., Schie, S. & Blattner, F. R. 2009. Isolation and characterization of 11 new microsatellite markers for *Macaranga* (Euphorbiaceae). Molecular Ecology Resources, 9, 1049-1052.
- Marchelli, P., Baier, C., Mengel, C., Ziegenhagen, B. & Gallo, L. 2010. Biogeographic history of the threatened species *Araucaria araucana* (Molina) K. Koch and implications for conservation: a case study with organelle DNA markers. Conservation Genetics, 11, 951-963.
- Weising, K., Guicking, D., Fey-Wagner, C., Kröger-Kilian, T., Wöhrmann, T., Dorstewitz, W., Bänfer, G., Moog, U., Vogel, M., Baier, C., Blattner, F. R. & Fiala, B. 2010. Mechanisms of Speciation in Southeast Asian Ant-Plants of the Genus *Macaranga* (Euphorbiaceae) In: Glaubrecht, M. (ed.) Evolution in Action: Case studies in Adaptive Radiation, Speciation and the Origin of Biodiversity. Heidelberg, Berlin (Springer).

Konferenzbeiträge:

- Baier, C. & Blattner, F.R.: Population genetic structure of the obligate myrmecophyte *Macaranga winkleri* and the non-myrmecophytic *M. tanarius* (Euphorbiaceae); Poster auf der Biosystematics, Berlin, 21-27.02.2011
- Baier, C. & Blattner, F.R.: Comparative Phylogeography of Bornean myrmecophytic and nonmyrmecophytic species of *Macaranga* (Euphorbiaceae), Vortrag auf der PSSC 2009, 23-26.06.2009
- Marchelli, P., Baier, C.; Mengel, C; Ziegenhagen, B; Gallo, L.Historia biogeográfica de *Araucaria araucana* (Molina) K. Koch e implicancias para su conservación, Poster auf dem XXXVII Congreso Argentino de Genética. Tandil, Argentina, 19-24. 09. 2008
- Baier, C. & Blattner, F.R.: Effects of dispersal barriers on the population structure of the obligate myrmecophyte *Macaranga winkleri* (Euphorbiaceae); Vortrag auf der EURECO-GFOE 2008, Leipzig, 15-19.09.2008
- Baier, C. & Blattner, F.R.: Genetic structure in and among populations of the Southeast Asian tropical ant-plants of *Macaranga* (Euphorbiaceae), Poster auf der Botany 2008, Vancouver, 26-30.07.2008
- Baier, C. & Blattner, F.R.: Genetic structure in and among populations of the Southeast Asian tropical ant-plants of *Macaranga* (Euphorbiaceae); Poster auf der Plant Science Student Conference 2008, Gatersleben, 01-04.07.2008
- Baier, C. & Blattner, F.R.: Analysis of the genetic structure of two Southeast Asian tropical antplants – Macaranga winkleri and M. tanarius (Euphorbiaceae); Poster auf der Systematics 2008, Göttingen, 07-11.04.2008
- Baier, C. & Blattner, F.R.: Analysis of the genetic structure of two Southeast Asian tropical antplants *Macaranga winkleri* and *M. tanarius*. 3rd Plant Science Student Conference, IPB, Halle/Saale., 05-08.06.2007

- Baier, C.: Preliminary results of the genetic structure of two Southeast Asian tropical antplants – *Macaranga winkleri* and *M. tanarius*. Vortrag im PhD Student Course "Molecular marker analysis of plant population structure and processes"; University of Copenhagen, Copenhagen/Denmark, 21.-25.05.2007
- Baier, C. & Blattner, F.R.: Phylogeographic and population genetic studies on the Bornean obligate myrmecophyte *Macaranga winkleri* (Euphorbiaceae); Poster am Institutstag IPK, Gatersleben, 10.10.2006
- Baier, C., Mengel, C., Moreno, C., Marchelli, P., Gallo, L., Ziegenhagen, B.: DNA quality is still crucial in genetic analyses of plants - Experiences with *Araucaria araucana* in phylogeographic studies; Poster auf 35th Annual conference of the GFÖ, in Regensburg, 19-23.09. 2005

Gatersleben, den 28.03.2011

Christina Baier

Eigenständigkeitserklärung

Hiermit erkläre ich, dass diese Arbeit bisher weder der Naturwissenschaflichen Fakultät der Martin-Luther-Universität Halle Wittenberg noch irgendeiner anderen wissenschaftlichen Einrichtung zum Zweck der Promotion vorgelegt wurde.

Ich erkläre, dass ich mich bisher noch nie um einen Doktorgrad beworben habe.

Ferner erkläre ich, dass ich die vorliegende Arbeit selbständig und ohne fremde Hilfe verfasst habe. Es wurden keine anderen als die angegebenen Quellen und Hilfsmittel benutzt, und die den benutzten Werken wörtlich oder inhaltlich entnommenen Stellen wurden als solche kenntlich gemacht.

Gatersleben, den 28.03.2011

Christina Baier