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Abstract
Heterogeneous Hybrid Transactional Analytical Processing (H2TAP) database systems have been developed to match the
requirements for low latency analysis of real-time operational data. Due to technical challenges, these systems are hard
to architect, non-trivial to engineer, and complex to administrate. Current research has proposed excellent solutions to
many of those challenges in isolation – a unified engine enabling to optimize performance by combining these solutions
is still missing. In this concept paper, we suggest a highly flexible and adaptive data structure (called GRIDTABLE) to
physically organize sparse but structured records in the context of H2TAP. For this, we focus on the design of an efficient
highly-flexible storage layout that is built from scratch for mixed query workloads. The key challenges we address are:
(1) partial storage in different memory locations, and (2) the ability to optimize for mixed OLTP-/OLAP access patterns.
To guarantee safe and well-specified data definition or manipulation, as well as fast querying with no compromises on
performance, we propose two dedicated access paths to the storage.
In this paper, we explore the architecture and internals of GRIDTABLES showing design goals, concepts and trade-offs.
We close this paper with open research questions and challenges that must be addressed in order to take advantage of the
flexibility of our solution.
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1 Introduction

In the last decade, the database research community has
focused on challenges for data management and system de-
sign implied by the ongoing needs to manage and analyze
web-scale, frequently changing, diverse datasets. One key
challenge is to minimize the latency between operational
and analytical systems [34, 45, 48]. For Hybrid Transac-
tional Analytical Processing (HTAP) systems, new archi-
tectures were proposed that enable low latency analysis on
real-time operational data. A good overview about this topic
can be found in a recent survey by Özcan et al. [45]. A key
enabling factor for HTAP systems is modern hardware:
modern hardware promises novel ways for data process-
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ing of relational [14, 25] and non-relational data [42, 49],
as well as benefits for several database system components,
such as query optimization [26, 41]. Appuswamy et al. even
suggested to use the term H2TAP whenever hybridization of
workloads is combined with heterogeneity of hardware [6],
effectively emphasizing the role of modern hardware.

In previous work [50], we questioned whether current
database systems on modern hardware are really future-
proof and ready for H2TAP workloads. We concluded the
existence of missing synergy effects in the state-of-the-art
since existing solutions are examined in isolation which
leaves optimization potential unexplored and unexploited,
such as unsatisfactory support of row-wise storage for co-
processors, adaptive indexing across multiple devices, or an
excellent online re-organization for H2TAP workloads for
cross-device databases as already studied in depth for CPU-
only database systems.

In addition to that, it is not yet clear how to combine
novel research suggestions in a unified system, and how
such suggestions may affect or benefit from each other. In
particular, our research community shows opportunities and

K

https://doi.org/10.1007/s13222-019-00330-x
http://crossmark.crossref.org/dialog/?doi=10.1007/s13222-019-00330-x&domain=pdf
http://orcid.org/0000-0002-3042-5873


44 Datenbank Spektrum (2020) 20:43–56

challenges of modern hardware in database systems in iso-
lation, among them the need for analysis of novel adaptive
data layouts and data structures for operational and ana-
lytical systems [6, 7, 9, 55], novel processing, storage and
federation approaches on non-relational data models [11,
18, 51, 52, 62], benefits and drawbacks of porting to new
compute platforms [12, 16, 33, 63], opportunities and limi-
tations of GPUs and other co-processors as building blocks
for storage and querying purposes [8, 14, 33], novel pro-
posals for main memory databases on modern hardware [3,
15, 21, 53, 56], adaptive optimization, and first attempts
towards self-managing database systems [17, 36, 43, 46].

In this paper, we aim for a novel storage engine de-
sign, called GRIDSTORE that manages relations with a data
structure that we name GRIDTABLES, in order to face the
challenges of H2TAP on multiple devices by enabling the
combination of established solutions so far considered in
isolation. Relations in GRIDTABLES are flexibly partitioned
into a set of self-contained, and placement-aware contain-
ers, called grids. Each grid by its own is able to perform
local optimizations regarding schema re-ordering, to avoid
cache thrashing for wide records (cf. [13] for OLAP-only),
and record organization to optimize the data access path
and minimize data redundancy (cf. [1]).

A GRIDTABLE implements a flexible and adaptive record
layout (cf. [4, 9, 23, 55]) to allow zero-cost null-value
suppression, to enable the combination of logically distant
record fields into physical dense blocks, and to perform
global layout adaption. In contrast to existing partitioning
capabilities in enterprise systems, a relation can therefore
be partitioned to any combination of vertical and horizontal
(logical) fragments with a granularity from the table level
to tuple-field values, if desired.

GRIDTABLES enable a fine-grained physical optimiza-
tion of a single database by transitioning between a trans-
actional storage, an analytical storage, and a mixed storage
based on the actual usage. Transitions respect user-specific
data model definitions and constraints, and are executed via
local and global optimizations on the GRIDTABLE. Analyti-
cal query performance is improved by (implicit) denormal-
ization (similar to a WIDETABLE, [39]), and transactional
query performance is improved by (implicit) normalization.

We begin with an overview picture, showing a feature
summary of our data store (Sect. 2). We then continue with
sections containing the following contributions:

� Requirement Analysis. We state requirements for a stor-
age engine matching a One-Size-Fits-Most design for
competing access patterns and optimization goals, co-
processor support and self-tuning (Sect. 3).

� Flexible Data Storage. We propose a stacked architecture
for highly-flexible partitioning, multiple storage formats
and placement options (Sect. 4).

� Design Space Exploration. We discuss most representa-
tive aspects in a flexible storage for H2TAP: data storage
and querying (Sect. 5).

� Open Challenges. With GRIDTABLES, we broaden the
canvas for (autonomous) optimization, and explore opti-
mization problems that we seek to address with our pro-
posal, such as table partitioning and baseline heuristics
(Sect. 6).

We end this paper with a discussion on related work
(Sect. 7), and our conclusion (Sect. 8).

2 GridTables: Big Picture and Vision

The ultimate vision behind GRIDTABLES is to create a stor-
age engine for H2TAP database systems that fully supports
both multi-core CPUs and many-core GPUs without mak-
ing any cutbacks in terms of data freshness, isolation, and
transactional consistency.

In this paper, we focus on the storage engine and on
storage-engine core operations (i.e., scans and materializa-
tion) rather than on operations that fall into the domain of
the query engine (and thus, are more coupled with the co-
processor-aware aspects of our design).

2.1 The Need for HTAP onModern Hardware

In this section we establish the need for an H2TAP store
on modern hardware, based on a motivating experiment.
Next, we summarize key requirements for such a system.
We conclude the section by outlining essential features of
GridTables.

A dedicated H2TAP system design is motivated by the
observation that both operational and analytical access pat-
terns inside a single (hybrid) workload imply different and
(sometimes) contradicting optimizations, such as for phys-
ical record organization [9, 23], hot/cold data classification
and handling [37], or the choice to run entire queries in
parallel (i.e., inter-query parallelism) vs to run particular
parts of a single query in parallel (i.e., intra-query paral-
lelism) [50].

In the following, we show an extract of our experiments
performed in our previous work [50] in Fig. 1, and invite
readers interested in details beyond the scope of this paper
to a read. For the ease of scoping, we limit our insights
to host-based experiments only, and do not explore host-/
device effects in our current paper.

Setup. In our host-based experiments, we examined the
effect of physical table layouts (i.e., row-store/column-
store), the query parallelism policy used on the query
throughput for varying access patterns, and an increasing
number of tuples stored in a table. As a dataset we used
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Fig. 1 Query throughput as function of data size, grouped by storage format and parallelism policy for mixed operational and analytical access
patterns (running on host platform)

the customer and lineitem tables of the popular TPC-C
benchmark. In detail, we issued (scan) queries computing
the sum of a randomly chosen attribute (i.e., attribute-cen-
tric queries) in the lineitem table for all tuples and some
(n = 150) tuples, and queries materializing all fields of
some (m = 150) tuples (i.e., record-centric queries) in the
customer table.

Insights.We concluded that there is no clear winner con-
figuration: the physical storage layout and the query paral-
lelism policy affect the query performance. For instance,
due to thread-management costs, single-threaded execution
is beneficial for record-centric queries as long as the num-
ber of tuples to be materialized is small. At a (system-spe-
cific) threshold on this number of tuples for the same query,
changing the parallelism policy to a data-parallel execution
strategy is more reasonable. Likewise, to optimize for an
attribute-centric query, a columnar record layout (DSM)
would be more fitting.

Consequences. In case of a mix of both query types,
neither column-store nor row-store is always the best choice
and it is not trivial to determine which to chose – especially
if the workload changes over time. Both storage layout and
query parallelism policies are sometimes tightly coupled in
their optima for a specific case – but for the hybrid case,
unfortunately all possible combinations of access pattern
and query parallelism policy might be relevant.

3 Concrete Requirements

One cannot expect a One-Size-Fits-All design solving ev-
ery problem in the domain of H2TAP in an optimal way,
as shown by Athanassoulis in 2016 for optimizations invol-
ing read times, update cost, and memory requirements at
once [10]. As a consequence, we suggest a One-Size-Fits-
Most design under the following requirements:

1. Best for Pure Transactional Access Patterns. Records
must be quickly accessible to point queries over their
primary key values. Therefore, the storage engine must
support record-centric access. Read/write operations for

a single tuple must be cache efficient. When issued with
transactional workloads and multiple requests, the stor-
age engine should not spend valuable CPU time in man-
agement of concurrency.

2. Best for Pure Analytical Access Patterns. The storage en-
gine must support analytical queries on massive amounts
of (denormalized) data without compromising the com-
plexity of these analytical tasks. Therefore, the storage
engine must support efficient range-queries in a column-
centric manner.

3. Physical Adaptiveness for H2TAP. When the system is
issued with both transactional and analytical queries,
the query performance should match a pure transac-
tional system when the queries are transactional-major,
and should match a pure analytical system when the
queries are analytical-major. Everything between those
two extremes should be smoothly interpolated. The per-
formance penalty for accessing operational data for long-
running analytical purposes should be minimized.

4. Co-Processor Acceleration & Data Placement. For com-
pute-intensive analytical tasks, the engine should be able
to use NUMA-styled co-processors, such as GPUs or FP-
GAs. In case that data is too large to be stored in the de-
vice memory of such a co-processor, the storage engine
should use the co-processor on a dataset portion which
fits into the device memory, and for which the largest per-
formance gain can be expected. In fact, dismissing the
use of the co-processor (e.g., by rolling back to CPU)
should not be triggered by the data set size.

5. Knobs for Autonomous Optimization. The requirements
mentioned above lead to a huge optimization space with
an enormous amount of possible configurations. It can
be expected that straight-forward user empowerment will
leave optimization potential unused. Therefore, the stor-
age engine must expose tuning knobs and informative
statistics such that an external self-driving system com-
ponent could instrument the storage engine to iteratively
configure itself towards the most promising context-
aware configuration.

K



46 Datenbank Spektrum (2020) 20:43–56

Fig. 2 Stacked architecture at a glance: indirection levels and com-
ponents as well as two-way access path to raw data stored in host or
device memory

In addition to the requirements mentioned above, there
are a series of technical challenges and needs for H2TAP
systems on modern hardware.

Recently, Appuswamy et al. pointed to multi-socket
multi-core platforms that require careful design for global
shared memory, cache coherence and massive parallelism,
coining the term H2TAP as a new architecture built for this
purpose [6].

In Fig. 2, we show the stacked architecture of our pro-
posal, GRIDTABLES. Each indirection level is bundled with
a particular set of level-specific functions that we explore
more in detail in Sect. 5.4.

The three conceptual main components are GRIDTA-
BLES, grids, and data fragments. From top to bottom:
a GRIDTABLE is a data structure that manages multiple lay-
outs for a relation. Each of these layouts is a combination
of vertical and horizontal partitioning where a particular
partition has no partitioning-related side-effects to adjacent
partitions. A grid is a component that realizes one particu-
lar partition including its own physical schema, or indexes.
Each grid consists of exactly one data fragment which is
a plain storage implementation (such as column store or
row store) for relational data that accesses host or device
memory directly.

To avoid undesired effects by wrongly chosen partitions
(such as splitting an OLTP-related tuple into two parts by
vertical partitioning), the responsible decision process must
consider a range of constraints, e.g., implied by the work-
load, or by service level agreements with the client. We
explore related problems more in detail in Sect. 6, and
study a solution option for a decision process that relies on
reinforcement learning to improve from experience while
seeking to avoiding execution overheads from online parti-
tioning algorithms, in dedicated papers [19, 20].

Data access in complex structures (e.g., in GRIDTABLES)
is a trade-off design space. On the one hand, a clear con-
ceptual access path is needed that abstracts from low-level

details and which solves important design-related require-
ments, such as reusability and understandability. In this
path, safe operations and usability rather than high perfor-
mance access are the goals. On the other hand, such proper-
ties come often with the cost of additional call overhead that
is unacceptable for aggregation-heavy operations as typical
for analytical queries over huge amounts of columnar data.
For these requirements, safe operation and usability play
a minor role. Therefore, a GRIDTABLE exposes two ways to
access raw data, one for definition and manipulation (a safe
path) and one for querying purposes (a fast path).

3.1 Definition andManipulation

The definition and manipulation path adopts a carefully de-
signed abstraction API that is engineered with the goal of
a well-defined, reliable, and secure path to the data. The
primary purpose of the definition and manipulation path is
data loading.

Conceptually, this path abstracts from low-level raw data
management over the following indirection levels: (i) the ta-
ble level consists of logic that affects the table as a whole
(such as snapshotting in-memory tables to secondary stor-
age at specific intervals). The table level accesses (ii) the
tuple level, which is about management of entire records
that may fall into several grids (i.e., fall into several tu-
plets). This level is for reading and writing entire tuples
without the need to care about how the physical organiza-
tion actually looks like. The tuple level accesses (iii) the
tuplet level, which abstracts from low-level operations such
as seeking to particular positions in a raw byte array in
DRAM. This level is used to update or read individual fields
in the boundaries of a grid. Finally, each grid translates the
calls from the tuplet level into low-level operations that are
highly affected by the actual storage strategy at hand, the
(iv) raw data level. The raw data level computes the number
of bytes and the position inside the raw data that must be
read/written when a particular record field is read/written
via the tuplet level.

By design, we use the definition and manipulation path
for generic data load, diagnostics and debugging purposes.

4 A StackedArchitecture Concept

To address our requirements stated in Sect. 3, we provide
the following features for GRIDTABLES (see Fig. 3) that
are, to the point of this writing, instrumented by the client
rather than by the system itself: (1) Flexible Partitions that
allow highly-flexible intra-tuple data formats, (2) Per-Grid
Formats, to format tuplets column-wise or row-wise, (3)
Per-Grid Storage enabling the storage of tuplets in host or
device memory, (4) Data Packing, enabling the storage of
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a b c d e

Fig. 3 Feature summary of GRIDTABLES. Flexible partitions (a), per-grid formats (b), per-grid storage (c), data packing (d), and schema-reorder-
ing (e)

logically distant fields in a physically contiguous manner,
and (5) Schema-Reordering, re-ordering per-grid fields for
data cache efficiency. In the following, we explore details
on these features.

Flexible Partitions. Having a particular order on, or de-
pendencies between partitions w.r.t. their definition is com-
mon for existing partitioning schemes [50], which leads to
unreachable configurations in the optimization space. The
feature of flexible partitions in a GRIDTABLE enables to par-
tition a table in an arbitrary manner by freely defining (non-
overlapping) regions in a table. In other words, the partition
scheme in a GRIDTABLE does not force to partition hori-
zontally and then vertically first (or vice versa), but allows
to define partition regions independent from other existing
partitions.

Removing such dependencies and order restrictions from
the partitioning scheme enables a higher degree in flexibil-
ity, which in turn promises more fine-grained matches of
data layout and data placement for the workload on partic-
ular regions of a table, which will lead to a better perfor-
mance if the right configuration in the now broader opti-
mization space is used.

Clearly, having freely floating partitions is not only more
flexible but also more complex from both a description and
optimization perspective. To limit that complexity, we re-
strict a GRIDTABLE to not have overlapping regions. An
overlapping region may be understood as a particular por-
tion of data that is redundantly stored on different locations
and formatted differently due to different and contradicting
access patterns at the same time. We assume that having ex-
actly contradicting access patterns on a significant amount
of data where there is no trend to one side of an access
pattern type, is a special case for real-world workloads.
Therefore, we made the design decision to disallow over-
lapping regions in order to prune the optimization space that
must be explored. Extensions to our solution could consider
replication, in future work.

Special to note is the encoding of large null-regions for
sparse datasets in a GRIDTABLE: if there is no grid defined

for a particular subset of row and columns, then this re-
gion is interpreted as containing null-values only. This tiny
definition allows us to zero-out huge regions of null-data
without reserving any memory for their encoding addition-
ally.

As pointed out by Lemke et al. during their investigation
of compression techniques for columnar business intelli-
gence solutions, optimization tasks involving reordering of
elements to maximize the desired effect require heuristics to
be practical computable within a reasonable time [38]. The
authors defined a process consisting of four stages (analy-
sis, candidate determination, heuristic evaluation, and per-
candidate application), where four different strategies for
range sorting under different assumptions are used. Similar
to the problems described by Lemke et al. determining the
best partition for a GRIDTABLE is an NP-complete prob-
lem and cannot be optimally solved in reasonable time. We
explore this and related problems in detail in Sect. 6.

Per-Grid Formats. Per-grid formats enable each parti-
tion to organize contained record portions with complete
independence from other partitions. Currently, we support
uncompressed in-memory column stores and row stores, as
well as a binary-search based index. Conceptually further
specialized storage strategies can be added, such as com-
pressed column stores for SSDs, or even specialized grid
implementations for HDDs or long-term storage devices,
such as tapes.

Per-Grid Storage. Per-grid storage enables each parti-
tion to be stored on a dedicated memory kind, if required,
making the GRIDTABLE an abstract container that splits and
delegates queries into grids and collects results from these
grids to construct the final reply. We currently support main-
memory (host memory) based partitions and partitions that
are stored in the co-processors device memory. Along with
the flexible partition feature, per-grid formats allow to em-
ulate in a fine-grained manner any major storage layout
presented in the literature so far. For instance, HYRISE [23]
can be simulated with vertical partitioning only where each
partition is either a column store or row store.

K



48 Datenbank Spektrum (2020) 20:43–56

However, we are not limited by these types: our abstrac-
tion enables to store data on other memory locations that we
have not yet explored, such as on SSDs or remote machines.

Data Packing. Data packing is a distinct feature in
GRIDTABLES that allows to physically cluster records that
are logically spread across the table. With data packing, we
are able to move continuous physical memory blocks to co-
processors (such as a GPUs) instead of managing several
distinct memory blocks only because a user-defined struc-
ture forces us to do so. Additionally, we use data packing to
decrease the memory requirements implied by organizing
the GRIDTABLE structure itself: we pack data from two into
one grid if both grids have the same storage location and
record format, effectively reducing the number of grids that
must be managed by the GRIDTABLE. Further, data packing
promises to efficiently manage cold data in the long run:
after analysis a GRIDTABLE may pack cold records into
one grid and perform (heavy-weight) compression on this
grid, or evict the grid data to SSD disks.

Schema-Reordering. Schema-reordering is a feature
built for row-store-major GRIDTABLES that involve a huge
amount of attributes similar to WIDETABLES but optimized
for point-queries rather than range-queries. Having a best-
matching ordered attribute schema for row-store records is
needed for OLTP queries to optimize execution speed of
queries that access a set of fields of a single record (such as
the projection operator does). The reasons for an increased
execution speed with a reasonable schema order is that
a higher data locality of record fields that are accessed
together is more cache efficient, and therefore, faster.

Schema-reordering is a per-grid capability to physically
rearrange fields of records stored in that partition. The moti-
vation behind this feature is to minimize CPU cache misses
for point-queries on same records over a large subset of the
records attribute set. A careful re-ordering of record fields
in this case promises a higher probability to have the next
field already stored in cache: when the majority of queries
to that particular grid touches n out of m attributes, these
n attributes are moved to the front per-record. Then, seek-
ing between records with providing pre-fetching hints to the
CPU raise the probability to have all the next n attributes al-
ready in the cache for settings in which each single records
size exceeds the cache line size.

5 Organization and Storage

In this section, we focus on engineering and design chal-
lenges regarding the GRIDTABLE data structure itself. After
establishing the problem statement in Sect. 5.1, we continue
with our solutions in the following sections.

5.1 Problem Statement

The purpose of GRIDTABLES is to satisfy our requirements
as established in Sect. 3. Namely, the support of data storage
strategies optimized for analytical and transactional data ac-
cess patterns along with a smooth transition between both to
optimize for hybrid access patterns. Additionally, the stor-
age engine must be ready for co-processors like GPU or
FPGAs, and must expose knobs for autonomous optimiza-
tion.

In Sect. 4, we depict features for which we argue that
they address these requirements. For instance, flexible parti-
tions enable fine-grained and mutable modifications on data
placement and data storage strategy that can be driven by
access patterns. Zero-cost null-value encoding, data pack-
ing and schema-reordering allow to optimize WIDETABLE-
like GRIDTABLES that result from denormalization in order
to optimize analytical query runtime (cf. [39]).

The challenge is to support these features in order to sat-
isfy our requirements in one unified data structure that is
both (self-)manageable and reasonable regarding its struc-
tural complexity. We classified the storage-related chal-
lenges into two groups, (1) the challenge to efficiently or-
ganize and maintain a GRIDTABLE and (2) the challenge to
support unified data definition and manipulation operations
in face of highly flexible partitions.

The problem of self-driven re-evaluation of a layout dur-
ing runtime, a problem that we call GridFormation, is not
in the scope of this paper. For interested readers, we refer
to our other work that explores and investigates GridFor-
mation in a first proposal with reinforcement learning [19,
20].

5.2 The GridTable Data Structure

In this section, we give a detailed description of the in-
gredients of the GRIDTABLE data structure and how these
components relate to each other.

A GRIDTABLE is a type of data store for a relation R with
schema R that segments R into non-overlapping regions
which can be arbitrarily arranged.

A region is defined by two intervals: tuple cover and
attribute cover, a tuple cover defines which tuples are con-
tained by their row identifiers1 (RID), and an attribute cover
defines which subset of R falls into a particular region.

Unlike other partition schemes, GRIDTABLES allow to
define regions in a nonrestrictive way: neither is a partic-
ular partitioning order enforced (such as division into sub-
relations first) nor is it enforced that all regions are de-

1 A RID is a unique value referencing an entire row in a GRIDTABLE.
However, the data type of these identifiers is implementation-depen-
dent and not in focus of this concept.
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a b c

Fig. 4 Views on GRIDTABLE storage, table index, and organization

scribed. Regions can be of one out of two kinds, either zero-
outed or managed.

A zero-outed region is a single region interpreted as
a (huge) block of null-values. This kind is not described
by a grid, i.e., the absence of a grid for a particular region
defines that region as a block of null-only values. We visu-
alize zero-outed regions with the label (null) in Fig. 4a. It’s
worth to note here, that lossless compression techniques,
like run-length encoding, are orthogonal to zeroing-out re-
gions, although such techniques may be used to implement
that functionally alternatively.

A managed region is a single region interpreted as
a block of data (not necessarily non-null data), that is
owned by a grid.

For instance the region owned by grid g5 covers the
attribute An, spanning all tuples in Fig. 4a. Multiple regions
can be owned by a single grid as long as these regions result
from composition of vertical and horizontal partitioning of
that grid. For a better understanding, see g0 in Fig. 4a. The
grid g0 owns tuples t0 and tm for all attributes (with the
exception of attribute An). It is important to note that g0

is logically split into two parts (the regions) but physically
g0 is one unit (which is the basis for the technique we call
data packing).

GRIDTABLE Components. Any GRIDTABLE consists of
the logical schema R of R, its table index (TI), a Grid
Space, and data for book-keeping purposes. The logical
schema, that implies no order on attributes, is used to de-
scribe R according to its definition in the database. It is used
in conjunction with the table index that manages regions in
order to locate and instrument (e.g., call particular functions
on) grids. Grids are owned by the (memory-resident) Grid
Space data structure. The Grid Space (see Fig. 4c) is a dic-
tionary data structure responsible for grid management, and
especially the translation between references to grids and
their implied strategies that are part of their data fragment.

As the TI in conjunction with the Grid Space act as
both an organizing structure and abstraction layer, a decou-
pling of low-level grid-related details (such as data place-

ment) and implementation-independent management (such
as merging of grids) is feasible. One key point here is that
the TI allows to poll information and statistics for particular
grids and is able to revise a particular data-to-grid mapping
having access to the repository of grid implementations. In
productive deployments, re-partitioning must not be man-
ual. It raises a set of research challenges for structures as
flexible as GRIDTABLES, e.g., when to merge grids, when
to undo uch a merge considering implications of the on-
line execution of these operations, or how to effectively
refine a chosen partitioning after data ingestion that may
have a fixed partitioning policy (such as import all data
as a single table-wide row grid). We explore these ques-
tions in more detail in Sect. 6, for which techniques such
as database cracking [29] might be a good starting point.

Reference translation is a mission-critical operation typ-
ically invoked multiple times when multiple regions are
touched during queries. Therefore, we suggest to implement
a dictionary inside the Grid Space with a data structure that
has constant access time (in fact, we use a plain array for
that purpose). Book-keeping data ranges from memory us-
age, read-/write statistics, and capacity information that are
used by the GRIDTABLE in order to perform diagnostics,
to apply optimization tailored to the read-/write patterns
(e.g., transformation to other data fragment types), or for
resource management (e.g., freeing up allocated but unused
space when space limits are reached).

Data Fragments. Each grid manages its contained tu-
plets physically in a data container, called data fragment.

A data fragment maps the logical schema that partially
falls into the region covered by the grid to a physical
schema. In addition to the logical schema, a physical
schema defines the definitive order of attributes per record.
This mapping between logical schema at the table level on
the one hand, and the physical schema at the data fragment
level on the other hand, allows us to apply a fine-grained
schema-reordering. Schema-reordering is the capability to
physically rearrange tuple fields without interference to the
logical schema or other regions in the table that are not man-

K



50 Datenbank Spektrum (2020) 20:43–56

aged by the grid at hand. The ultimate benefit of schema-
reordering is that it enables adaptability towards request-
driven physical order of fields to improve the processors
data cache efficiency. More in detail, schema-reordering
promises a better cache utilization by smartly ordering
fields for record-centric queries on row-wise stored data
when a single record exceeds the data cache line size.

In addition to the physical schema, a data fragment main-
tains a set of book-keeping data structures, and (abstract)
operations Op1; Op2; :::; Opn for its strategy stored in the
fragment structure.

For the purpose of this paper, we do not expand on
the book-keeping component other than stating that it is
mainly about statistics on data access for re-partitioning,
and data histograms for query optimization. However, the
Op1; Op2; :::; Opn along with the fragment structure are
used to provide each data fragment with a specific query-
ing strategy.

A (row) identifier is a unique unsigned integer that refers
to a record (tuple or tuplet) in a GRIDTABLE. We use the
term identifier instead of the term tuple identifier to avoid
confusion with the semantics of a tuple identifier in disk-
based systems, and to have a common naming for both tuple
and tuplets references since they share the same concept of
reference. However, in GRIDTABLES there are two kinds of
identifiers, global and local. A global identifier identifies
a single tuple in the scope of a GRIDTABLE while a grid-
local identifier identifies a single tuplet in the scope of
a grid.

Clearly, the more fine-gained a relation becomes, the
higher the cost for book-keeping this information, and the
more effort during processing. Hence, the actual partition
choice must be bound given some user limits on space con-
sumption and the partitioning impact on query processing
performance. We take a deeper look at these challenges in
Sect. 6.

5.3 Strategy Abstraction Design

To be extensible towards novel strategies, we intentionally
draw the abstraction layer of strategies and data fragments
over abstract functions.

Abstract functions fall into the following categories:

1. Raw Operations.
2. Cursor-Based Operations.
3. Indirection-Level Bridging.

Each (query-related) function in (1) operates on a bulk of
tuplets to minimize the per-tuplet function-call overhead.
Non-query-related operations in (2) involve moving fields
cursors and tuplet cursors, per-field reading and writing for
the definition and manipulation path (see Sect. 5.4). Query-
related operations in (3) are basically used for invocation of

full-scan operations and point-query operations over a set
of tuplets for the query path.

5.4 Definition andManipulation Path

This section is about the definition and manipulation path
in GRIDTABLES. This path is intended for generic data
load, diagnostics and debugging purposes. Directly speak-
ing, querying is done via the query path. This completely
bypasses the definition and manipulation path to get rid of
the complexity involved with that indirection. For a disk-
based system where accessing secondary storage dominates
this indirection costs, one can speculate to utilize the defini-
tion and manipulation path also for query processing – es-
pecially since the query path cannot be implemented for that
system kind without major changes. Considering the data
definition and manipulation path for disk-based querying is
an interesting but yet unexplored application of GRIDTA-
BLES which is out of the scope of this paper.

From a main-memory storage engine perspective, the
definition and manipulation path is required and used ex-
actly for the purpose it was designed for: correct definition
and manipulation of data stored in an environment that does
not guarantee physical order of elements nor shared mem-
ory between elements.

Level-Specific Operations. In Sect. 4, we provided
a high-level view on the stacked architecture for GRIDTA-
BLES, visualized in Fig. 2. In this section, we show level-
specific functions to operate on components in that archi-
tecture, and to navigate from one layer to another.

1. Table Level (TL). A GRIDTABLE exposes operations to
insert, update, remove, and query records abstracting
from the table partition. Any request to insert, to update,
or to remove tuples is delegated to those grids that own
the specific region that should be altered.

2. Tuple Level (TPL). Similar to typical tuple-based pro-
cessing of tuple-at-a-time models, a tuple cursor is
opened at table level and used to iterate through all
tuples stored in the table. This iteration potentially in-
volves jumping from one grid to another. The logic for
these jump operations is transparent to the caller such
that the tuple level is abstracted away from the partition-
ing structure below the tuple level.

3. Tuplet Level (TTL). A tuple is already broken down into
several tuplets that fall into several grids. A single grid
owns portions of several (physical) tuples that may span
several regions in the GRIDTABLE. A tuplet is a concep-
tual abstraction from lower-level stored fields to get rid
of low-level data management, i.e., each tuplet consists
of a fixed set of fields that can be randomly accessed in-
dependent on their actual physical storage. Tuplet fields
may be spread across multiple locations but the tuplet
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level exposes a unified way to read and write these fields
creating the illusion of a dense object.

4. Raw Data Level (RDL). Records are actually physically
stored and queried highly dependent on the strategy at
hand. The raw data level is responsible for two actions:
(1) to provide the functionality defined at the tuplet level
in order to hide from low level details (e.g., seeking to
a certain memory address), and (2) to provide one or
more late-materialization scan flavors to efficiently re-
strict the GRIDTABLES content given a user-defined pred-
icate.

We explicitly note here, that some major aspects (such
as efficient primary key uniqueness checks, recovery and
failover, concurrency issues and transaction control, or
cache coherence and latency management for data on co-
processors) are not discussed or only slightly touched in
this paper. The reason for this is our strong focus on the
table data structure in isolation, such that we have to defer
this required discussion to future work.

6 Open Challenges

At the point of this writing, GRIDTABLES are a novel con-
cept to enable a unified storage engine in the huge design
space of an H2TAP database system.

The core question is how to instrument GRIDTABLES ca-
pabilities in a way that the system itself smartly and au-
tonomously tunes multiple knobs at once to calibrate itself
to the best possible performance in one instant in time.

In order to answer the question about self-driven instruc-
tion of partitioning schemes as flexible as GRIDTABLES, we
formulate the following eight open research challenges that
can be researched in isolation, which are, therefore, given
here without any particular order.

RecordOrganization Problem. Given a GRIDTABLE R,
a set Q of n queries on R and a cost function f that deter-
mines the costs to access fields in R in order to answer the
query set Q.

The problem is to find a layout L.R/ such that f is
minimal for all queries in Q at once.

This problem cannot be solved efficiently in its optimal
version in a feasible amount of time. However, a good so-
lution to this problem enables to autonomously determine
a suitable layout for one particular time span in which Q is
issued (cf. [4, 9, 23] for work towards this direction).

Data Placement Problem. Given a GRIDTABLE R, an
update-ratio ˛, a workload by a set Q of queries having
a portion of ˛ update operations contained, a cost function
fQ that determines the costs of accessing fields in R for
Q, and a cost function fup that determines the costs for
updates on the device memory.

The problem is to find a layout L.R/ for R such that fQ

is minimal for all queries in Q at once, and that minimizes
the fup for those data fragments that are stored in the device
memory for varying ˛.

Data Fragments can be placed in a device memory (e.g.,
the co-processors device memory) and processed by that
device. The structure of GRIDTABLE enables a fine-grained
data placement of tuplets in the device, e.g., multiple parts
of a single column, disjunct regions of multiple columns,
or particular blocks of data.

In case of a read-only workload (˛ � 0), the data place-
ment problem is the Record Organization Problem. In case
of any non-read-only workload (˛ > 0), selecting the de-
vice as storage- and processing-place for some data only
yields higher performance if the cost penalty for update
propagation to the device is low. Whether this penalty is
low or not (even for write-only workloads with ˛ � 1),
depends whether the selected data is target of updates in Q

or not.
A reasonable solution to the problem is to minimize the

surface of data in R stored in the device that is updated by Q

but to maximize the surface of data in R not modified by Q

stored in the device to increase the processing performance.
Transition Cost Problem. Given a GRIDTABLE R, and

a layout L0.R/ for R that is a solution of the Record Orga-
nization Problem for one particular time instant t0, and two
time instants t1; t2 with t2 > t1 > t0.

The problem is to determine (or forecast) layouts L1.R/

and L2.R/ as a solution of the Record Organization Prob-
lem for t1 resp. t2 , to compute the transition costs c0!1

for a transition from L0.R/ to L1.R/; c0!2 for a transi-
tion L0.R/ to L2.R/ , and c1!2 for a transition L1.R/

to L2.R/ , and to decide at a time instant t� 2 .t0; t2�

whether to change from L0.R/ to L1.R/ , or to change
from L0.R/ to L2.R/ considering c0!1; c0!2 , and
c1!2, or to perform no change at all.

In simpler words, this online problem describes the de-
cision act with which the system performs a change in the
layout towards a more suitable layout. The interesting chal-
lenge in this problem is that the optimal layout changes over
time (due to changes in the workload), and that the bene-
fit of a transition might be hidden by the costs it implies.
These costs may contain time considerations for copying
and re-formatting actions of data in memory, costs for data
movement operations between devices, and more.

Roughly speaking, staying too long on one particular lay-
out or being too slow in layout adaption leaves performance
opportunities untouched. At the same time, too aggressive
changes will lead to sub-optimal performance compared to
moderate or to slow changes due to transition costs.

A suitable solution to this problem must balance the
trade-off such that more suitable layouts are adapted as fast
as possible, while – at the same time – the number of sub-
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optimal performance runs (due to transition costs) must be
minimized.

Read Set Labeling Problem. Given a workload W con-
sisting of N queries with a particular ratio ˛ of transac-
tional and analytical operations where ˛ is unknown to the
system.

The problem is to find and optimally classify regions in
the read set W (i.e., the fields accessed for reads or writes)
in order to mark them as attribute-centric or row-centric
operation regions.

Obviously, this is not a trivial problem efficiently to
solve in an optimal way since PARTITION is already NP-
complete. However, having this classification promising
a good hint for a layout optimizer which then immediately
is able to compare current regions in a GRIDTABLE match-
ing the regions in the read set.

Wide-Partitioning Problem. Given m tables R =
fR1; R2; :::; Rng, and a series of m read/write queries
Q1; Q2; :::; Qm on these n tables with ratio r , a cost func-
tion fQ that determines the costs to access fields in R to
answer Q, a cost function f� that determines the costs
to access fields for a rewritten (scan) query � for Q on
R1 ‰R2 ‰ ...‰Rn, a cost function f‰ that determines the
costs to construct a WideTable R� = .R1 ‰R2 ‰ :::‰Rn/,
and a cost function mQ.X/ that determine maintenance
costs to update table X if Q manipulates data in X .

The problem is to find i0 2 f1; 2; :::; mg such that

f‰.R/ +
mX

i=i0

f�i
.R�/ + m�i

.R�/ <

mX

i=i0

fQi
.R/

+ m�i
.R/

(if such an i0 exists)
Informally, the problem is to determine a particular

threshold i0 in time during processing of Q1; Q2; :::; Qm

for which it is cheaper to take the effort in constructing
R� once, and then continue with WideTable scans com-
pared to straightforward execution Qi0+1; :::; Qm (by also
considering update costs after that threshold).

As shown by Bian et al. in their work on WIDE TA-
BLES, rewriting a query Q on R to � on R� yields ex-
cellent performance improvements for pure analytical pro-
cessing [13]. In context of H2TAP this technique therefore
promises an excellent performance gain for the analytical
part of queries. However, naive adaptions of WideTables
is likewise a bottleneck due to memory limitations to hold
the denormalized table R�. Additionally, since H2TAP in-
herently implies additional data writes, update costs of R�
compared to (potentially normalized) tables in R must be
taken into account. Finally, H2TAP systems are online sys-
tems rather than pure analytical offline systems. Therefore,

a solution i0 once found, is immediately target for being re-
evaluated once time passes m. Perhaps, a decomposition of
R� back into R will be the better option then.

Attribute Ordering Problem. Given a grid G in a lay-
out L.R/ of a GRIDTABLE R, and m sets of queries
Q1; Q2; :::; Qm for G at time t1; t2; :::; tm (t1 < t2 < ::: <

tm), a function fmiss that determines the number of (pro-
cessor data-) cache-misses for a query set Q in G given
a fixed (physical) order of tuplet fields in G defined by the
order of attributes A1; A2; :::; An in the schema of G.

The problem is to find a sequence of permutations
.�.A1/; �.A2/; :::; �.An//i for i = 1; 2; :::; m to phys-
ically re-order tuplet fields in G such that fmiss is
minimal for t1; t2; :::; tm with .�.A1/; �.A2/; :::; �.An//k

is used at time tk for query set Qk (1 � k � m).
The interesting aspect of this problem is that queries in

a query set Q are neither required to read/write a partic-
ular subset of tuplets in G, of tuplet fields or of fields in
common in a particular order. Consequently, this problem
ranges from trivial configurations (such as entire Q reads
all tuplets fields of all tuplets in natural order) to contra-
dicting configurations (such as the first half of Q reads all
tuplet fields of all tuplets in natural order, while the second
half of Q does the same but in inverse natural order).

Finding an optimal solution �.A1/; �.A2/; :::; �.An/ for
a given Q is challenging, especially for an online sequence
of queries as given in the problem statement.

Null-Region Maximization Problem. Let R be a a
sparse GRIDTABLE, L.R/ a layout for R, Q a set of
queries, f a cost function that determines the costs for
accessing fields in R, and " a small threshold from the
domain of costs.

The problem is to re-order tuplets in R and to re-order
attributes in the schema of each grid in L.R/ such that for
the new layout L�.R/ holds: L�.R/ maximizes the regions
that contains null-only values (e.g., by minimizing the num-
ber of null-only regions), and the costs for Q using f in
L.R/ are the same as the costs for L�.R/ ˙ ".

A region in a GRIDTABLE R that completely covers
a null-value block of data, does not require additional space
for encoding these null-values (cf. Sect. 5.2). This poten-
tially saves space in very sparse data sets. Given the way
how regions and grids are managed in a GRIDTABLE, the
most memory efficient configuration is a small number of
regions that are null-value data data only, but each of these
regions cover a maximum number of values.

Compression Problem. Given a layout L.R/ of
a GRIDTABLE R with k grids G1; G2; :::Gk , a set C of
n compression techniques C = fc1; c2; :::; cng, a set Q of
queries Q = fQ1; Q2; :::; Qmg with a query performance
of p, and a user-defined lower bound � < p that sets the
least acceptable query performance.
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The problem is to determine a candidate set X � C and
j = 1; :::; k permutation �j W f1; 2; :::; ng ! f1; 2; :::; ng
such that for each i 2 f1; 2; :::; kg the per-grid compression
.ci

�.n/
ı � � � ı ci

�.2/
ı ci

�.1/
/.Gi / minimizes the space require-

ments for the entire layout L.R/ while the query perfor-
mance for Q must not drop below the threshold � .

In the challenging aspect of this problem is not only the
determination of the i = 1; :::; k permutations �i to deter-
mine the order in which a particular set of compression
techniques are applied one after the another to compress
a particular grid, which by its own is a computational ex-
pensive problem, but that this decision must run for k grid
concurrently while there is a (potential) variety of access
pattern in Q and queries in Q must not access all grids in
L.R/ equally.

In sum, a unified architecture promises the best of all
worlds. For instance, the synergy of the compression prob-
lem and the attribute ordering problem promises a better so-
lution than both in isolation (cf. [38]). To fulfill the promise
of a truly unified architecture, our stated open research chal-
lenges must be continuously solved at once during runtime,
which is a challenging task.

7 RelatedWork

The field of adaptive data stores is a hot research topic with
a series of novel approaches, such as the popular database
cracking [22, 24, 28, 29], its variations and analysis [30,
58–60], advanced partitioning [32, 44, 61] or adaptive resp.
holistic indexing [5, 47, 57]. Latest research is done on
navigation through the entire data structure design space,
and systems adapting to workload and hardware by using
machine learning [20, 27, 31], or Just-In-Time data struc-
tures as proposed by Kennedy et al. [35]. On the other side
of the spectrum, there are also advanced techniques oper-
ating on fixed data layouts, such as PAX [2] or Fractured
Mirrors [54].

An academic database system that pioneers a notable
amount of H2TAP features for the relational model is HY-
PER [34]. Originally motivated by the challenge to engi-
neering an H2TAP system with competitive performance
to pure operational and pure analytical systems by using
the UNIX’s fork system call, its storage engine nowadays
supports combined horizontal and vertical partitioning in-
cluding advanced compression of cold data [37]. However,
this is in contrast to the partition technique in GRIDTABLES:
while HYPER forces vertical partitioning to a relation first,
in our approach it is up to the system whether to start first
with horizontal partitioning, or vertical partitioning instead.

A young system is L-STORE, a main-memory H2TAP
database system that supports historic queries [55]. L-STORE

is powered by a storage engine that performs physical re-

formatting of tuples on-demand. For this, the primary data
container incorporates multiple base pages and tail pages
that are used to form an actual tuple. A relation is man-
aged by sub-relations such that each attribute of a table
is mapped to one vertical fragment. Although GRIDSTORE

does not support time-travel (historic) queries in the sense
of L-STORE, the flexibility of GRIDSTORE allows to mimic
partitioning to pure-vertical fragments.

Another direction is taken for the development of the
database system PELOTON [9]: its storage engine is built
from ground up to support a novel tile-based architecture
that manages tables in terms of tile groups. Each such group
is a horizontal fragment which may be further vertically
partitioned into (inner) partitions called logical tiles. The
partition schema of PELOTON is more restrictive than the
one we present in this paper, but shares important ideas such
as the autonomous self-adaption of the layout depending on
workload optimization. One special feature of PELOTON is
its ability to forecast changes in the workload and to trig-
ger adaption proactively [40]. At this point of this writing,
GRIDTABLES do not support the orthogonal feature of fore-
casting, or adopting learned optimization models, but we
are researching in this direction [19].

An adaptive storage engine veteran is HYRISE [23],
which organizes a relation by n sub-relations, called con-
tainers. Each container holds a certain amount of attributes:
when a container incorporates exactly one attribute, the
sub-relation becomes de facto a columnar format. HYRISE

allows both formats for records columnar and row-wise.
This storage engine automatically changes the number of
attributes particular containers own in order to improve
cache efficiency in face of changing workloads. Similar,
the H2O [4] storage engine manages both, columnar and
row-wise formatted partitions for a single table following
a strict horizontal partitioning similar to HYRISE. H2O
applies changes in that the partitioning is done in a lazy
fashion when compared to HYRISE by applying a new par-
titioning schema after careful evaluation in the background.
GRIDTABLES and both, HYRISE and H2O share the required
idea of autonomous adaption of partitions without manual
tuning by a human administrator. However, the space of
potential partitions for a single table in GRIDTABLES is far
larger compared to these approaches since GRIDTABLES

allows for an arbitrary order of horizontal and vertical
partitioning.

8 Conclusion

In this paper, we propose a novel concept to manage
records for H2TAP database systems, called GRIDTABLES.
We showed how mixed workloads affect the query per-
formance. Then, we stated requirements for an H2TAP
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store, and showed our proposal of a stacked architecture
built on a set of well-engineered indirection levels for se-
cure, safe and well-defined data access in face of arbitrary
data placement and formatting. Based on our concept for
a One-Size-Fits-Most architecture, we explored our list of
formally defined open research challenges that focus on au-
tomatic instrumentation of GRIDTABLE features: (i) Read
Set Labeling to label workload parts as analytical resp.
transactional, (ii) Record Organization to find layout for
table to optimize for read set, (iii) Wide-Partitioning to de-
cide on (de-)normalize action for infinite horizon (iv) Data
Placement to find optimal placement of data, (v) Attribute
Ordering to find optimal order of attributes, (vi) Null Max-
imization to find maximum regions for null-data, and (vii)
Transition Costs to approximate data moving & partitioning
action costs, and (viii) Compression to compress grids in-
dividually while not sacrificing performance. To fulfill the
promise of best performances, we motivated for further in-
vestigation these eight open research challenges for storage
structures as flexible as GRIDTABLES.
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