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1 Introduction

1.1 Motivation and Aims of the Thesis

Magnetic phenomena have always fascinated people and magnetism has been known for
about thousands of years. However, the early usage of magnetism was limited to determin-
ing the location of north pole. A remarkable step ahead was made by J. C. Maxwell [1] who
introduced in his famous work the concept of a field and explained magnetic and electric
phenomena, and their interactions, within a unified picture. Maxwell’s findings inspired
further research in the area of electromagnetism and since that time both experimental and
theoretical studies went hand in hand in uncovering a variety of new phenomena.

Later, the effects of resonant absorption of electromagnetic energy, e.g. Ferromagnetic
Resonance (FMR), in (ferro-) magnetic samples were predicted (Arkad’ev [2]), and exper-
imentally observed (Griffiths [3] and Zavoiskii [4]). The experiments of Stern and Gerlach
[5] paved the way to establish the concept of the electron spin. The exchange interaction
effect was discovered by Heisenberg [6] and Dirac [7] and finally the effect of magnetic
anisotropy (e.g. the work of Meiklejohn and Bean [8] or basically [9]) they all build the
fundamentals of solid state magnetism.

Together with the broadening of theoretical and experimental studies a necessity to ac-
cess smaller dimensions of a magnetic solid emerged. Thus, the role of engineering and
technical science arose as never before. As a result, new imaging techniques appeared:
Scanning Electron Microscopy (SEM, 1935), Transmission Electron Microscopy (TEM,
1935), Atomic (Magnetic) Force Microscope (A(M)FM), Scanning Tunneling Microscopy
(STM, 1981), and Spin-Polarized STM (SPSTM) to name but a few. At the same time
methods for creating micro- and nano- structured objects down to one dimension were
developed, such as Molecular Beam Epitaxy (MBE), Pulsed Laser Deposition (PLD) and
chemically self-assembly methods. Together with experimental techniques, additionally
designed for the micro- and nano- structures, e.g. Superconducting QUsantum Interference
Devise (SQUID), Magneto Optical Kerr- Effect (MOKE) techniques, microwave spec-
troscopy (FMR, ESR, PSR) techniques and X-ray Magnetic Circular Dichroism (XMCD)
techniques. These all furnish a new insight into the world of small (magnetic) structures.

Nowadays, interest in nanostructured magnetism is twofold. On the one hand, although
there exists a huge number of magnetic phenomena, effects, theories and models describing
them, magnetism as a whole is not fully understood, i.e. a unifying theory is still missing.
Additionally, important discoveries made during the last decades (e.g. Giant- and Tunnel-
Magneto Resistance, GMR and TMR, respectively) may lead to new findings. On the other
hand, industrial applications ranging from magnetic sensors and medical equipment to high
density storage devises is the driving force for new development and research.

In the present work we focus on magnetic nanoparticles as utilized in the information
storage. The ultimate goal in information technology [10–13] is to store a bit of informa-
tion on a single magnetic nanoparticle with two stable orientations of magnetization. One
stable state is referred to as the ”spin up” orientation or ”logical one”, whereas the other

1
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Energy

Polar angle

θ
min1

θ
min2

θ
max

E
min2

E
min1

E
max

Quantum-mechanical tunneling

Classical transition

Figure 1.1: General representation of a two-level magnetic system. States, marked by θmin1

and θmin2 represent the energy minima of the magnetic moment. They are separated by a
maximum θmax over which a classical transition or through which a quantum tunneling can
occur.

state is noted as a ”spin down” one or ”logical zero” (energetically corresponding to the
two minima in Fig. 1.1). The process of information writing amounts to changing the
one state to the other. Reading of information can be achieved by detecting the orienta-
tion of the particle’s magnetization. In this respect, the major questions for technological
applications are:

• How to increase the density of information storage;

• How to access and control single storage units within the shortest time;

• How to save energy when reading or writing the information.

In the thesis it is aimed to address the second and the third questions from a fundamental
point of view, whereas the first issue is rather technological and will be partly addressed in
Chapter 2.

1.2 Energy Contributions to the magnetic
Nanoparticle

In order to fulfil the simple picture of the two-level system shown in Fig. 1.1 one should
list all possible effects that can influence the system. These effects might be expressed as

2



Energy Contributions to the magnetic Nanoparticle

contributions to the total energy H of the magnetic nanoparticle in the Heisenberg model

H = −J
∑
<ij>

si · sj −DfA(S)− µ0µ
2
1

4πa3

∑
i<j

3(si · eij)(eij · sj)− si · sj

r3
ij

− µ1B
∑

i

si.
(1.1)

The first term stands for the exchange interaction with isotropic exchange constant J be-
tween the neighbor magnetic moments si,j within the nanoparticle. The second term de-
scribes the magnetocrystalline anisotropy contribution expressed by the function fA(S)
which could be any anisotropy type that possesses two local minima. D denotes the
anisotropy energy strength. The third term accounts for the dipole-dipole interaction be-
tween the magnetic moments within the nanoparticle with a lattice constant a and a mag-
netic moment per atom µ1. The magnetic moment is usually expressed in units of the Bohr
magneton µB = 9.27 · 10−24 J/T; µ0 = 4π · 10−7 Vs/(Am) is the vacuum permeability.
eij denote the unit vectors which point from the magnetic moment si towards the sj , i.e.
eij = (rj − ri)/|rj − ri| and rij = |rj − ri|/a. Finally, the last term expresses the Zee-
mann interaction with the external applied magnetic field B.
Domain walls in nanoparticles. Magnetism is a collective phenomenon. This implies
that the short ranged exchange interaction energy and the long ranged dipole-dipole en-
ergy compete. These considerations bring us to the first possible effect which may arise
in magnetic nanoparticles - building of domain walls. Indeed, starting from a certain size
of the nanoparticle a reduction of its dimension will not lead to a spatial variation of the
spin orientations since this entails too much exchange energy. A critical diameter of the
nanoparticle is usually compared with the domain wall thickness and reads [14]

dc = 2

√
A

K
, (1.2)

where A is called the exchange stiffness and K is the anisotropy energy strength. Above
the critical diameter dc domain walls start to build leading to incoherent rotation of the
spin orientations [15]. Rough estimates for the averaged values of A = 10−11 J/m and
K = 106 J/m3 for ferromagnetic nanoparticles [14] give the critical diameter around 60
nm. Therefore, we restrict ourselves to the range below the dc.
Quantum-mechanical tunneling. The model which will be presented in the next chapters
is valid for diameters below dc. However, it fails for infinitely small magnetic systems, such
as molecular magnets where quantum-tunneling effects show up (Fig. 1.1). This effect can
be estimated within the Landau-Zener model [16, 17] using the following formula for the
tunneling probability P [18]

Pm,m′ = 1− exp
[
− π∆2

m,m′

2~gµB|m−m′|µ0dBz/dt

]
, (1.3)

where m and m′ are the quantum numbers associated with the energy gap ∆m,m′ , dBz/dt
is the constant field sweeping rate, g ≈ 2, and ~ = 1.05 · 10−34 Js is the Planck constant.
Quantum tunneling effect is negligible for the nanoparticles considered here.
Temperature effects. Once the system is coupled to a thermal bath thermal fluctuations
may cause a reduction of the net magnetization when approaching the Curie-temperature

3
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TC , where the net magnetization can even vanish. Therefore, the model presented in Chap-
ter 3 is valid well below TC .

In contrast to that effect, which is of a purely static nature, another effect can arise when
the time scale of the measurement τmeas is longer than the mean time (escape time) τ

τ = τ0 exp
[ KV

kBT

]
(1.4)

needed for the nanoparticle with the volume V to escape from one minimum to the other
(Fig. 1.1) due to thermal activation. This dynamical effect which will also be addressed
in Chapter 3 is known as superparamagnetism and should be taken into account when
considering the dynamical properties of the system.

The thesis is organized as follows. Chapter 2 describes the properties of the systems used
for the calculations. Chapter 3 presents a detailed overview of static and dynamic models
employed for the description of the system stability or dynamics. Different mechanisms
of damping used in the Lnadau-Lifshitz-Gilbert (LLG) equation are listed and explained
in Chapter 4. The next chapter is devoted to the numerical solution of the stochastic LLG
equation. Chapter 6 includes results obtained for DC- and AC- continuous fields. Here
the critical fields of a single-domain nanoparticle and the corresponding reversal times are
calculated for both a uniaxial and a cubic anisotropy and at finite temperatures. Chapter 7
lists the main results acquired for the magnetization switching and control in the presence
of magnetic pulses in the spirit of the local control theory (LCT) [19–21]. Finally, the last
chapter concludes the thesis and provides an outlook for further calculations.

4



2 Systems studied

A steady demand to increase the storage density has led to new technologies in fabrication
of information storage materials. The focus slowly shifted from cobalt-based ferromag-
netic thin films that are commercially used at present for recording to ferromagnetic alloys
fabricated via self-organization methods [22, 23]. Note, that when scaling down the vol-
ume of the nanoparticle V (equation (1.4)) in order to achieve the same stability ratio
KV/(kBT ), the anisotropy density constant K should at least be higher than in conven-
tional cobalt-based materials. Surprisingly, in the ferromagnetic alloys addressed below
this is exactly the case granting thus the usage of them as potential storage media even at
room temperatures.

In the following we will concentrate on iron-platinum alloys FexPt1−x, where x denotes
the relative volume iron concentration expressed in per cents. The FexPt1−x alloys are
chemically synthesized by the decomposition of iron pentacarbonyl, Fe(CO)5, and the re-
duction of platinum acetylacetonate, Pt(acac)2, in a solvent at high temperature [24]. Via
combination of Fe- and Pt-containing species from the reduction of Pt salt an FePt nucleus
is yielded. As a result each FePt-nanoparticle is surrounded by a thick organic coating
layer. The size of the nanoparticles can easily be tuned in the range from several to ten
nanometers via the molar ratio of Fe and Pt precursors. The distance as well as the form of
such close-packed arrays can also be controlled. The process of formation of anoparticles
arrays is called nanoparticles self-assembly. The organic shell can be removed by a soft
in situ hydrogen plasma treatment [25]. However, the nanoparticles obtained at this stage
possess a disordered fcc structure and a low anisotropy constant. After a thermal anneal-
ing the particles change their inner structure to the fct with a maximal anisotropy constant
value. Since the anisotropy value depends also on the concentration of iron, it reaches its
maximum at around x = 50% [26]. This is called the maximal anisotropy constant of the
L10 fct ordered phase for FexPt1−x with x centered around 50%, K = 107 J/m3 [24].

The dependence on temperature and on the magnetic moment of the anisotropy constant
for FexPt1−x alloys is known in the literature and addressed on the basis of first principles
method in [27, 28] and experimentally [29, 30].

For the model presented in this work the knowledge of the anisotropy type, i.e. fA(S)
(equation (1.1)), is required. Anisotropy, which is a property of a ferromagnetic material to
keep the magnetization in a certain direction or plane at thermal equilibrium, can be caused
either by the crystal structure - magnetocrystalline anisotropy (MA), or by the form of the
specimen - form anisotropy [9, 31]. Below the main factors of the MA are pointed out.

The exchange interaction given by the first term of equation (1.1) can not be responsible
for the MA since it is space invariant. The spin-orbit coupling (SOC) is the main reason
which causes the MA. Calculations of the magnetocrystalline anisotropy energy (MAE)
and the type of it are usually based on the SOC and are widely addressed [32–34].

A clear picture emerges from a phenomenological model proposed by van Vleck [35].
He considered a pair interaction between the neighbor magnetic moments. The environ-
ment for each moment is included in the anisotropy energy reflecting the symmetry of the

5



2 Systems studied

X

Y

Z
Min

Max

Figure 2.1: A schematic representation of the magnetocrystalline anisotropy of a uniaxial
type aligned along the Z-direction, K2 > 0

Fe50Pt50

Mean Magnetic Anisotropy Anisotropy Precessional Curie
diameter moment energy energy period temperature

density
d, [nm] µS, [µB] K2, [J/m3] D, [J] Tprec, [s] TC, [K]

6.3 22000 5.9·106 7.7·10−19 4.6·10−12 710

Table 2.1: Parameters used for a Fe50Pt50-nanoparticle [36, 37]

crystal. An expansion of the anisotropy energy Ha for the direction cosines αi = µ · ei is
also proposed, where µ denotes the magnetic moment of the nanoparticle. These consid-
erations are consistent with the experimental data originally obtained as hysteresis loops in
different directions of the crystal [9].

2.1 Uniaxial Anisotropy

For a uniaxial anisotropy no odd exponents of αi in the Ha expansion are allowed due to
the rotational symmetry. Hence, one can write down for the expansion in case when the Z
axis and the easy axis coincide [31]

Hua = −K0 −K2α
2
z −K4α

4
z − ... = −K0 −K2 cos2 θ −K4 cos4 θ − ..., (2.1)

whereas all terms after K2 will be truncated and K0 can be omitted.
This anisotropy type is schematically shown in Fig. 2.1: For positive K2 the magnetic

moment µ of the nanoparticle has two stable orientations 0 and π and they are separated
by a maximum at π/2, which all are encoded by the color in Fig. 2.1.

Ab initio calculations reveal for the Fe50Pt50-nanoparticles a uniaxial anisotropy type
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2.2 Cubic Anisotropy

X

Y

Z

Min

Max

Figure 2.2: A schematic representation of the magnetocrystalline anisotropy of a cubic
type, K4 > 0

Fe70Pt30

Mean Magnetic Anisotropy Anisotropy Precessional Curie
diameter moment energy energy period temperature

density
d, [nm] µS, [µB] K4, [J/m3] D, [J] Tprec, [s] TC, [K]

2.3 2000 8.0·105 5.1·10−21 6.5·10−11 420

Table 2.2: Parameters used for a Fe70Pt30-nanoparticle [29]

[36]; Various parameters are listed in Table 2.1.

2.2 Cubic Anisotropy

For a cubic anisotropy all odd terms in αi and also terms dependent on α2
i vanish due to

equivalence of the main axes X , Y , Z in a cubic crystal with respect to the change of sign.
For the remaining terms the anisotropy energy reads [31]

Hca = −K4(α
2
xα

2
y + α2

yα
2
z + α2

xα
2
z)−K6(α

4
xα

4
yα

4
z)− .... (2.2)

Truncation after the first term in equation (2.2) yields for the energy expressed via az-
imuthal (φ) and polar (θ) angles

Hca = −K4(cos2 φ sin2 φ sin4 θ + sin2 θ cos2 θ). (2.3)

In Fig. 2.2 the energy landscape for a cubic anisotropy is demonstrated. In contrast to
the uniaxial anisotropy type the cubic anisotropy possesses eight stable orientation of the
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2 Systems studied
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Figure 2.3: Anisotropy energy dependence on the polar angle θ (a) and on the azimuthal
angle φ (b). The solid black line corresponds to the uniaxial anisotropy which can be
imagined as a cut of the energy depending on θ and φ for a fixed φ (a). The cubic anisotropy
is shown for both φ- and θ-cuts (other curves in both (a) and (b)).

magnetization in thermal equilibrium encoded with the violet in the figure. These are along
< 111 >-directions if K4 is positive.

For the cubic anisotropy Fe70Pt30-nanoparticles are chosen [29]. Further parameters are
recorded in Table 2.2.

2.3 Comparison of the Anisotropy Types

For applications a uniaxial anisotropy is the most popular, since it clearly indicates a par-
allel and an antiparallel state. It is well understood and relatively simple in the analytical
treatment. When studying a cubic anisotropy a new concept of the switching process is
demanded. Indeed, switching can be defined either as a one between the parallel and an-
tiparallel states, thus, similar to the uniaxial anisotropy, or as a transition from a stable
orientation to any other neighbor orientation. The last issue opens a perspective for saving
more than one bit of information on the systems with a cubic anisotropy. Additionally, the
question of the magnetization trajectory arises since not all pathes are energetically equiv-
alent (Fig. 2.2). This particular question will be addressed in Chapter 6.

Fig. 2.3 schematically shows a quantitative comparison of uniaxial and cubic anisotro-
pies. The anisotropy constants K2 and K4 are chosen to be equal to one in arbitrary units.
The uniaxial anisotropy creates a higher barrier (solid black curve) than that for the cubic
anisotropy. The other curves are cross sections of the energy profile in Fig. 2.2 for fixed
angles φ (a) and θ (b) passing through the corresponding minima.

8



3 Overview of Models and Methods

Before discussing our own results a brief overview of basic models and methods is given
in this chapter. These might be classified into two groups: Static and dynamic.

Static in this context means that the system goes adiabatically (quasi statically) through
all possible states. Additionally, one is interested here in the equilibrium final state. This
treatment was the first and accounts for the Stoner-Wohlfarth model (SW) [38, 39], where,
from energy minimization the hysteresis and magnetization states of a single domain fer-
romagnetic nanoparticle (Stoner particle) under the influence of an external magnetic field
are derived. The Néel-Brown model [40–43] addresses properties of a Stoner particle cou-
pled additionally to a thermal bath. Statistical methods [9, 44, 45] have been put forward.
The main analytical tool is a partition function which includes all imaginable states of the
system and allows the calculation of free energy, averaged magnetization or magnetic sus-
ceptibility, to name but a few.

Dynamically the properties of the system are handled such that all states are known
for every moment in the time propagation. Knowing these nonequilibrium states the cor-
responding averaged quantities can be calculated using the stochastic Landau-Lifshitz-
Gilbert (LLG) equation for the magnetization motion [46–48]. The Monte Carlo (MC)
method [15, 49, 50] was used and the correspondence to the LLG Fokker-Planck (FP)
equation [51, 52] is pointed out.

3.1 Static Treatment

3.1.1 Stoner-Wohlfarth Model

In the framework of the SW model [38, 39] a spherical magnetic nanoparticle with the
volume V and magnetic moment at saturation µS is assumed to be in a single-domain
state and with a uniaxial magnetocrystalline anisotropy of density K. Thermal fluctuations
of the magnetic moment are ignored in this model. The particle is placed in an external
magnetic field B such that the easy axis and the Z axis of the coordinate system coincide.
In the following the field applied will be expressed in the units of the coercive field BC =
2KV/µS, i.e. b = B/BC, the anisotropy and total energies can thus be denoted in the
units of the maximum uniaxial anisotropy energy µSBC. To simplify matters one restricts
the treatment to a certain plane where the applied field and the magnetization lie (see Fig.
3.1). Thus, the total energy ε might be written down as

ε = −1

2
cos2 θ − b cos(θb − θ), (3.1)

where θ and θb are the angles between the magnetization and the easy axis direction and
between the applied field and the easy axis direction, respectively (Fig. 3.1).
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3 Overview of Models and Methods

S

bX

Y

Z

b(t)

q

q
b

XY plane

Z plane

Figure 3.1: Alignment of the magnetic moment S and the static magnetic field b. A
derivation for the SW astroid is based on the assumption that S changes in the same plane
as b, denoted as the Z-plane.

Equilibrium states can be found from the condition ∂ε/∂θ = 0 and the stability of the
system is expressed by ∂2ε/∂θ2 = 0. From the first condition we find

∂ε

∂θ
= cos θ sin θ − b⊥ cos θ + b|| sin θ = 0, (3.2)

with the new notations b⊥ = b sin θb and b|| = b cos θb. Dividing the last equation by
sin θ cos θ we arrive at

b⊥
sin θ

− b||
cos θ

= 1. (3.3)

The stability condition yields

∂2ε

∂θ2
= − sin2 θ + cos2 θ + b⊥ sin θ + b|| cos θ = 0. (3.4)

Equation (3.4) divided by sin2 θ and under the assumption of equation (3.3) gives after
simplification, b|| = − cos3 θ. Inserting the last expression into equation (3.3) we find
b⊥ = sin3 θ. The last two equations

{
b|| = − cos3 θ,
b⊥ = sin3 θ,

(3.5)

establish the so called Stoner-Wohlfarth astroid, a curve with four cusps and known mathe-
matically as a hypocycloid [53]. In polar representation the dependence of b on θb is often
used

b =
[
cos

2
3 θb + sin

2
3 θb

]− 3
2
. (3.6)
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3.1 Static Treatment

A
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||

S

b

A1

A2

A

⊥

B

(b) b

bO

S
||

b

B

B

⊥

Figure 3.2: The Stoner-Wohlfarth astroid. The easy axis is aligned along the Y axis in
the figure (b||) and the hard axis is denoted with b⊥. The astroid separates stable states of
the magnetic moment SA1 and SA2, where no switching occurs (a), from those where the
reversal takes place and only one stable orientation of the magnetic moment SB is realized
(b).

The Stoner-Wohlfarth astroid is schematically illustrated in Fig. 3.2 and represents a dis-
tribution of switching fields in equilibrium. The astroid separates the stable states (filled
area), where no switching of the magnetization from the parallel to the antiparallel orien-
tations occurs, from those where a magnetization reversal is realized (unfilled area). At the
same time the astroid shows a dependence of switching fields on the relative orientation of
the applied field with respect to the easy axis. The smallest switching field achievable in
this respect at zero temperature is under the angle of 3π/4.

By using the Slonczewski graphical method [54] one can also find the orientation of the
magnetization in equilibrium. First, one connects points O and A (Fig. 3.2 (a)) which
means the direction of the applied field (bA). Then, one connects the point A and the tan-
gents to the astroid close to the easy axis (b||-axis). Lines that are parallel to the tangents
and going through the point O give the magnetization orientations SA1 and SA2 in equi-
librium. The existence of two such fields implies that the field applied does not exceed
the switching field. When repeating the same procedure for the point B (Fig. 3.2 (b)) one
obtains the only orientation of the magnetization in equilibrium. Since point B is out of
the astroid there exists only one stable orientation SB in the part where the field is applied.

It was recently shown that the so called dynamical SW astroid exists [55], which differs
from the static one. Applying an external magnetic field, perpendicularly to the easy axis
the solution of the Landau-Lifshitz-Gilbert equation provides a lowering of fields close to
the b⊥ axis.

A graphical solution for any anisotropy type and for two- and three-dimensional SW
astroids has been found [56, 57]. It might be useful for experimentally determining the
switching fields when the anisotropy type is unknown.

The influence of temperature on the astroid has been studied experimentally [58] and
theoretically [59].
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3 Overview of Models and Methods

3.1.2 Néel-Brown Model
In [40] Néel suggested a way to describe the mean time at which the magnetization of a
ferromagnetic nanoparticle in a single domain state overcomes the potential barrier ∆E =
|Emin2 − Emin1| (Fig. 1.1) with the Arrhenius law

τ = τ 0e
∆E
kBT . (3.7)

Originally, this was done for the probability of escaping a state which is a reciprocal func-
tion of the escape time.

On the basis of equation (3.7) the effect of superparamagnetism can be elucidated.
Suppose, one measures with a certain time τmeas for temperatures well below the Curie-
temperature. When τmeas > τ , one would measure a zero net magnetization. Hence, one
obtains superparamagnetic behavior. For τmeas < τ the probability of thermal switching
is non-zero, however, without a magnetic field applied the switching does not take place.
These considerations illustrate that superparamagnetism is a dynamical effect.

In the absence of any applied field and when the system has a uniaxial symmetry the
energy barrier is ∆E = KV . If the temperature is too low to cause the switching or the
time scale of measurement is too short a magnetic field could assist the switching. We
assume an external field is applied under the angle θb = π (Fig. 3.1). The energy of the
particle in reduced units transforms thus from equation (3.1) to

ε = −1

2
cos2 θ + b cos θ. (3.8)

The derivative, ∂ε/∂θ gives

∂ε

∂θ
= sin θ(cos θ − b) = 0. (3.9)

This equation reveals that the system possesses two minima, namely θmin1 = 0 and θmin2 =
π (with ε(θmin1) = −1/2 + b, ε(θmin2) = −1/2 − b), and a maximum cos(θmax) = b
(ε(θmax) = b2/2). The height of the potential barrier (∆E = ∆εµSBC) caused by the
uniaxial anisotropy and changed by the magnetic field when b < 1 is

∆ε = ε(θmax)− ε(θmin1) =
b2

2
+ 1− b =

1

2
(1− b)2. (3.10)

Assuming equations (3.7) and (3.9) we finally come to

τ = τ 0e
KV
kBT

(1−b)2
. (3.11)

At the beginning Néel supposed τ 0 to be a constant. Further studies [60–62] showed that τ 0

is a complicated function of the applied field, anisotropy type, temperature and dynamical
damping. Brown [43], using the stochastic Landau-Lifshitz-Gilbert equation, where in
addition to the deterministic effective field he included an additive white noise, constructed
the corresponding Fokker-Planck equation (section 3.2.4). From it he derived escape rates
for the limit ∆E >> kBT

τ 0 =
1 + α2

α

1

γBC

√
kBT

KV (1− b)2

π

1− b2
, (3.12)
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Figure 3.3: Projection of the magnetic moment onto the field direction as a function of the
external magnetic field and temperature ξ = µSB/(kBT ), calculated for the isotropic case
(Langevin-function) and the case of infinite anisotropy (Brillouin-function).

where α is a dimensionless magnetization damping in a Gilbert form (Section 3.2.1 and
Chapter 4). Expressions (3.10) and (3.11) form the main results of the Néel-Brown model
which addresses the stability of the magnetization of a small ferromagnetic nanoparticle
with a uniaxial anisotropy under the influence of an external magnetic field along with
thermal fluctuations.

3.1.3 Statistical Solution

The equilibrium properties of a small ferromagnetic nanoparticle can be addressed with
statistical methods [44]. Consider a canonical ensemble (where exchange of heat between
the system and the environment occurs) with a total energy E. From statistical mechanics
the canonical partition function is [44]

Z =
∑

i

e−βEi = Sp(e−βEi), (3.13)

where the summation runs over the eigenvalues and β = 1/(kBT ). Let us assume we are
dealing with a semiclassical system (the magnetic moment is large). Hence, the summation
in (3.13) can be replaced by the integral over all states in spherical coordinates

Z =
1

V

∫

V

e−βEdV →
∫

θ

∫

φ

e−βE sin θ dθ dφ. (3.14)

The average magnetic moment < µ > in an external magnetic field B is the field derivative
of the free energy F

< µ >= − ∂F

∂B
, (3.15)

with F = −kBT ln Z. Introducing a new variable ξ = µSB/(kBT ) expression (3.15) then
reads

< µ >= −µS
1

Z

∂Z

∂ξ
. (3.16)
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3 Overview of Models and Methods

The free energy of a small ferromagnetic nanoparticle can be written

F = −KV cos2 θ + µSB cos θ. (3.17)

Keeping in mind the expression for ξ being a projection onto the field direction and intro-
ducing ζ = βKV and x = cos θ the partition function becomes

Z = 2π

∫ +1

−1

e−ζx2−ξxdx. (3.18)

Note that the field is applied antiparallel to the initial state of the magnetic moment. The
partition function can be calculated exactly via the error function
Erf(x) = (2/

√
π)

∫ x

0
e−t2dt [63, 64]

Z =

√
π

2
√

ζ
e−

ξ2

4ζ

[
Erf

(√
ζ +

ξ

2
√

ζ

)
+ Erf

(√
ζ − ξ

2
√

ζ

)]
. (3.19)

Using formula (3.16) we find

< µz >= −µS


− ξ

2ζ
+

2√
πζ

eζ+ ξ2

4ζ sinh ξ[
Erf

(√
ζ + ξ

2
√

ζ

)
+ Erf

(√
ζ − ξ

2
√

ζ

)]

. (3.20)

From a fundamental point of view two particular cases are interesting: An isotropic case
(ζ = 0); and a case with an infinite anisotropy. Thus, when ζ = 0 the partition function is

Zζ→0 =
2π

ξ
2 sinh ξ. (3.21)

The averaged magnetic moment of a ferromagnetic nanoparticle is given by the Langevin
function

< µz >ζ→0= −µS

(
1

tanh ξ
− 1

ξ

)
. (3.22)

The case with the infinite uniaxial anisotropy can be understood as if only two states in the
system would have been allowed, namely with +µ and −µ. The partition function is then
Z = eξ + e−ξ and thus the averaged magnetic moment

< µz >ζ→∞= −µS tanh ξ. (3.23)

This expression is known in the literature as a Brillouin 1/2 function.
Both functions are shown in Fig. 3.3 as a function of ξ. This might be interpreted as

a function of either the external magnetic field or of the inverse temperature. This graph
clearly demonstrates that the averaged magnetic moment of a small particle is always be-
tween the Langevin or Brillouin 1/2 functions. The Brillouin 1/2 function depicts a sat-
uration at smaller fields since only two states are allowed, whereas the Langevin function
allows for many states between the parallel and antiparallel states of the magnetic moment.

Fig. 3.3 clearly illustrates what happens from a statistical point of view with the mag-
netic moment when an external magnetic field is applied. However, when the field is zero
the magnetic moment vanishes according to this figure which is not the case for a ferro-
magnet. Indeed, this physical picture is valid for an ideal paramagnet and for a ferromagnet
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Figure 3.4: Temperature dependence of the net magnetic moment for a ferromagnet.

the external field should be replaced by a molecular field B = κ < µz > [9]. Therefore,
the net magnetic moment of a ferromagnet in the absence of an external field is

< µz >= µS tanh

(
µSκ < µz >

kBT

)
. (3.24)

This dependence is represented in Fig. 3.4: Approaching the Curie temperature the mag-
netic moment gradually diminishes. For instance, even at T/TC = 0.9 the magnetic mo-
ment is 1/2 of its saturation value.

3.2 Dynamic Treatment

3.2.1 Stochastic Landau-Lifshitz-Gilbert Equation

Suppose S = µ/µS is a unit vector of a magnetic moment with saturation µS. In an
effective field Heff the magnetic moment precesses. Landau and Lifshitz [46] proposed an
equation describing the dynamics of such a moment

dS

dt
= −γ

[
S ×Heff

]− λγ
[
S × [

S ×Heff
]]

, (3.25)

where γ = |e|ge/(2me) = 1.76 · 1011(Ts)−1 is the gyromagnetic ratio and λ is dimen-
sionless. The effective field is defined as a gradient of the total energy H (real units) with
respect to S

Heff = − 1

µS

∂H
∂S

. (3.26)
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Figure 3.5: Schematic illustration of torques acting on the magnetization vector introduced
by the Landau-Lifshitz-Gilbert equation of motion. The precessional term is shown with
a blue vector, the relaxation term is marked by a red vector. The direction of the effective
field Heff is along the Z axis.

Equation (3.25) is called the Landau-Lifshitz (LL) equation. Conventionally both terms
are denoted as exchange terms. The absolute value of the magnetic moment is conserved.
Fig. 3.5 depicts the meaning of both terms in the LL equation. The first term stands
for a precessional motion of the magnetic moment around the effective field, whereas the
second term describes a relaxation motion towards the effective field with a relaxation
rate λ. Initially, Landau and Lifshitz did not focus on the origins of the relaxation, but
simply qualitatively explained this process. However, somewhat later it was noticed that
the LL equation leads to wrong physical results for high damping λ. Indeed, for λ À 1 the
derivative Ṡ → −∞, although it should vanish. This problem was solved by Gilbert who
phenomenologically introduced another equation of motion [47, 48, 65]

dS

dt
= −γ

[
S ×Heff

]
+ α

[
S × dS

dt

]
, (3.27)

where the dimensionless damping parameter α was introduced via the Rayleigh dissipation
function [48]. Geometrically, the Gilbert equation yields the same physical picture for
the precession and relaxation as the LL equation. Moreover, the Gilbert equation can be
brought to the form of the LL equation, namely

dS

dt
= − γ

1 + α2

[
S ×Heff

]− αγ

1 + α2

[
S × [

S ×Heff
]]

. (3.28)

Usually in the literature [10, 66], this equation is referred to as the Landau-Lifshitz-Gilbert
(LLG) equation.

Albeit the LLG equation was phenomenologically introduced, the precession motion
can be explained from the quantum-mechanical point of view, namely when considering
the Heisenberg equation of motion in the classical limit [67]. The microscopic origins of
the damping process will be addressed in chapter 4.

A qualitative interpretation of damping without any microscopic details can be found in
[68]. In equation (3.25) for λ → 0 the effective field Heff is determined by the immediate
magnetic configuration. This can only be the case for a very slow magnetization motion
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3.2 Dynamic Treatment

which allows all relevant microscopic degrees of freedom to immediately readjust them-
selves to the changing magnetization. When this is not true, the effective field requires a
certain time delay which is related to the dissipation. Thus,

Heff(t) → −∂H(S(t− τ))

∂S
≈ Heff − τ

(
∂S

∂t
· ∂

∂S

)
Heff . (3.29)

Inserting the effective field in form of equation (3.29) into the (3.25) for λ → 0 we end up
with the equation similar to that of Gilbert.

The assumption that all states of the magnetic moment belong to the sphere (Fig. 3.5)
allows for the usage of the LLG in spherical coordinates with two spacial coordinates φ
and θ. Further the LLG will be employed in the following form [10]





(1 + α2)
dφ

dt
=

1

sin θ
· ∂H̃

∂θ
− α

sin2 θ
· ∂H̃

∂φ
,

(1 + α2)
dθ

dt
= − 1

sin θ
· ∂H̃

∂φ
− α · ∂H̃

∂θ
,

(3.30)

where the total energy H̃ is expressed in units of the uniaxial anisotropy field µSBA with
BA = 2D/µS. Time is expressed in units of the field-free precessional time t ← tγBA.
The LLG equation in form (3.28) together with (3.26) is unable to address the properties
of magnetization dynamics when the system is coupled to the thermal bath. W. F. Brown
[43] proposed to extend the effective field with an additional white noise term ζ that takes
into account thermal fluctuations

Heff(t) = − 1

µS

∂H
∂S

+ ζ(t). (3.31)

Similar to the Brownian motion of microscopic particles in a liquid, the characteristics of
the additive noise are

〈ζi(t)〉 = 0,
〈ζi(t)ζj(t + ∆t)〉 = qδijδ(∆t),

(3.32)

with i and j being the Cartesian components of ζ and ∆t the time interval. Such char-
acteristics are typical for Gaussian-distributed Markov processes (no correlations in time)
[45, 51]. The coefficient q could be found using the Fluctuation-Dissipation Theorem
[44, 45]. Generally, processes other than Markov could be considered. In particular, the
role of colored noise (an Ornstein-Uhlenbeck process [51]) might also be considered, how-
ever, we will focus on the properties of white noise (cf. equation (3.32)) in this work.

Thus, taking into account equations (3.28) or (3.30) and (3.31) together with (3.32) we
mathematically deal with a nonlinear stochastic first order ordinary differential equation,
leaving the aspects of numerical simulations for one of the further chapters.

3.2.2 Equations similar to the Landau-Lifshitz-Gilbert
Besides the LL (3.25) and the LLG (3.28) equations a general type of equation of the mag-
netization motion can be considered [69] due to expansion of the change of the magnetic
moment into three orthogonal vectors

dS

dt
= AS + B

[
S ×Heff

]
+ C

[
S × [

S ×Heff
]]

+ ... (3.33)
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3 Overview of Models and Methods

This equation includes the effect of the modulus variation of S. This becomes important
when approaching the Curie-temperature of a ferromagnet (cf. Fig. 3.4). One of the
equations taking into account the effect of modulus change of S is the Landau-Lifshitz-
Bloch equation [70]. It reads ( in the notations of [70])

dS

dt
= −γ

[
S ×Heff

]− ΛN

(
1− S

ξ

ξ

)
S − γλ

(
1− 1

ξ

) [
S × [

S ×Heff
]]

, (3.34)

where ΛN = 2λγkBT/µS is the Néel attempt frequency and ξ = µSB/(kBT ) is the re-
duced field.

Another class of ferromagnetic dynamical equations are variants of the Bloch equa-
tions [71]. These equations typically have two relaxation times: One for the component
of the magnetic moment parallel to the effective field Heff and one for the perpendicular
component, T 1 (longitudinal) and T 2 (transversal), respectively. The Bloch-Bloembergen
equation can be written

dS

dt
= −γ

[
S ×Heff

]− S ·Heff −Heff

T 1

Heff

(Heff)2
− (Sxex + Syey)

T2

. (3.35)

3.2.3 Monte Carlo Method

The Monte Carlo (MC) method can also be applied to handle the problem of magnetization
stability. Here, we point out the essential issues of the method.

The MC method can be defined as a method that describes the states of a system on the
basis of physical laws by use of random numbers [52]. In fact, every numerical method
where random numbers play an important role might be called a MC method.

Random numbers reproduce stochastic processes coming about in almost all realistic
physical systems and are caused by thermal fluctuations of any quantity in the system. MC
methods can be successfully applied when one is not interested in details of fluctuations of
any quantity but in equilibrium thermodynamics implying an average of a large number of
the stochastic states. One usually defines a stochastic process used in the MC simulations
as a Markov process [72], i.e. a process where all states in the future do not depend on the
past.

Now it will be demonstrated what forms a basis for MC-methods. Imagine we have a
system which is a canonical ensemble. Assume, for any state Si there exists an energy of
the state ESi

. Suppose PSi
(t) is a probability to be in state Si for the time t and PSj

(t) is a
probability to stay in state Sj for t. Then, the Master equation (ME) [52] for changing the
probability to be in state PSi

(t) is

dPSi
(t)

dt
=

∑
Sj

(
PSj

(t)W (Sj, Si)− PSi
(t)W (Si, Sj)

)
. (3.36)

Here the sum is calculated over all possible states Sj . W (Si, Sj) and W (Sj, Si) are the
transition rates from Si to Sj and Sj to Si, respectively.
In thermodynamic equilibrium

∑
Sj

PSj
(t)W (Sj, Si) =

∑
Sj

PSi
(t)W (Si, Sj), (3.37)
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is valid, where PSi,j
= PSi,j

(t).
On the other hand it is obvious that for any state Sj

PSj
(t)W (Sj, Si) = PSi

(t)W (Si, Sj). (3.38)

The latter condition is known as the Detailed Balance Principle (DBP) [52]. From the last
equation one can find

W (Si, Sj)

W (Sj, Si)
=

PSj

PSi

. (3.39)

A canonical ensemble obeys the Boltzmann distribution, where the probability to be in the
state Si or Sj is

PSi,j
=

e
−

ESi,j
kBT

Z
, (3.40)

with Z the partition function Z =
∑
Sj

e
−

ESj
kBT . The summation runs through all states.

Using equations (3.40) and (3.39) one can easily find

W (Si, Sj)

W (Sj, Si)
=

PSj

PSi

= e
ESi

−ESj
kBT . (3.41)

This relation is the key point for the MC method since it obeys the ME in equilibrium.
Usually, numerically one uses either the Metropolis algorithm [50] which defines the tran-
sition rate as {

W (Si, Sj) = 1, if ESj
− ESi

6 0

W (Si, Sj) = e
ESi

−ESj
kBT , otherwise,

(3.42)

or the Glauber algorithm [49]

W (Si, Sj) =
1

1 + e
−

ESi
−ESj

kBT

. (3.43)

It is not difficult to show that both of these algorithms satisfy the relation (3.41) and hence
the DBP as well.

Historically, first MC simulations for magnetic systems were applied to the Ising model
[73], where only two states of magnetic moment were permitted, namely +1 and −1.
In such system, also called a system with an infinite anisotropy (expression (3.23)), the
question of time step does not arise, since there exists only one possible next state. In the
quasi-classical system studied here, there are many states between +1 and −1. Thus, the
question of time quantification may arise. In the literature one usually assumes a single-
spin flip algorithm, which means that a trial step for a single spin is made. The whole
procedure works as follows [15, 74]:

• First, one chooses randomly or regularly some spin Si.

• Then, one makes a trial time step such that one ends up with the spin Sj . The method
of making the trial step can be different [15].
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3 Overview of Models and Methods

• After this one calculates the change of energy ESi
−ESj

. To decide, whether this step
is accepted a random number r ∈ [0; 1] is generated. In the case if r < W (Si; Sj),
the trial step is accepted and the procedure can be repeated with other spins. Note,
that W (Si, Sj) is calculated with either Metropolis or Glauber algorithms. One step
for a spin is called a Monte Carlo Step (MCS).

Thus, this procedure can be repeated many times by finally averaging over all states to
calculate a static quantity of interest, e.g. the average magnetic moment.

3.2.4 Fokker-Planck Equation
The general Fokker-Planck (FP) equation [51, 75] for several variables describes the time
evolution of the distribution function P ({x}, t) of N macroscopic variables {x} = x1, ..., xN

∂P ({x}, t)
∂t

=

[
−

N∑
i=1

∂

∂xi

D
(1)
i ({x}) +

N∑
i=1

∂2

∂xi∂xj

D
(2)
ij ({x})

]
P ({x}, t), (3.44)

where D
(1)
i ({x}) is a drift vector and D

(2)
ij ({x}) is a diffusion vector. By solving the FP

equation one obtains distribution functions from which any averages of macroscopic vari-
ables can be found via integration.

This equation can be applied to the broad variety of nonequilibrium phenomena includ-
ing Brownian motion of small particles, laser physics and others. We will construct a FP
equation which corresponds to the stochastic LLG equation of motion. For this we con-
sider the LLG in the form of equation (3.28) inserting there a relation for the effective field
(3.31) with the properties (3.32). Separating between the deterministic and the stochastic
parts in this equation we come to the Langevin type equation which generally might be
expressed as

dSi

dt
= Ai(Si, t) +

∑

k

Bik(S, t)ζk(t), (3.45)

where Si are the cartesian components of the reduced magnetic moment and Ai(Si, t),
Bik(S, t) are the deterministic and the stochastic parts of the LLG equation with the ther-
mal noise components ζk(t). The corresponding FP equation is then [51]

∂P

∂t
= −

∑
i

∂

∂Si

[(
Ai + q

∑

jk

Bjk
∂Bik

∂Sj

)
P

]
+

∑
ij

∂2

∂Si∂Sj

[(
q
∑

k

BikBjk

)
P

]
.

(3.46)
Simplifying the second sum in equation (3.46) we find [76]

∂P

∂t
= −

∑
i

∂

∂Si

[
Ai − q

∑

k

Bik

(∑
j

∂Bjk

∂Sj

)
− q

∑

jk

BikBjk
∂

∂Sj

]
P. (3.47)

Comparing (3.45) with (3.28) one finds

Ai(Si, t) = − γ

1 + α2

([
S ×Hd

eff
]
i
+ α

[
S × [

S ×Hd
eff

]]
i

)
, (3.48)

with Hd
eff = −(1/µS)

(
∂H/∂S

)
being the deterministic part of the effective field. For

Bik we deduce

Bik(S, t) =
γ

1 + α2

[
−

∑
j

εijkSj + α
(
δikS

2 − SiSk

)
]
, (3.49)
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3.2 Dynamic Treatment

with εijk the totally antisymmetric unit tensor (Levi-Civita symbol) and δij to be the Kroneker-
delta symbol [53]. Similarly it can be shown that

∑
j

∂Bjk

∂Sj

= − 2αγ

1 + α2
(3.50)

and hence
∑

k

Bik

(∑
j

∂Bjk

∂Sj

)
= 0. (3.51)

For the last term in equation (3.47) we find

−q
∑

jk

BikBjk
∂

∂Sj

= q
α2γ2

(1 + α2)2
S2

[
S ×

[
S × ∂

∂S

]]

i

. (3.52)

The coefficient in (3.52) is defined via the Néel time

1

τN

=
2qγ2α2

(1 + α2)2
, (3.53)

where the Néel time is the characteristic time of diffusion in the absence of a potential [70].
Thus, the corresponding FP equation for the LLG is

∂P

∂t
= − ∂

∂S

{
− γ

1 + α2

( [
S ×Hd

eff
]
+ α

[
S × [

S ×Hd
eff

]] )

+
1

2τN

[
S ×

[
S × ∂

∂S

]]
P

}
. (3.54)

If one assumes that the stationary solution of the FP equation has the Boltzmann distribu-
tion, i.e. P 0(S) ∼ e−βH(S), then the Néel time can be obtained as [70]

1

τN

=
2αγ

(1 + α2)

1

βµS

(3.55)

and finally the coefficient which enters the correlation function in (3.32) is

q =
1 + α2

α

kBT

γµS

. (3.56)

Thus, constructing the corresponding FP equation one can find the characteristic time scale
for the given stochastic process and the coefficient in the correlation function. In principle,
the FP equation can also be solved analytically in very limited cases since it is a partial
differential equation. For a more general situation numerical methods should be used.

3.2.5 Discussion of the dynamical Methods
All the dynamical methods listed above can be compared using the three following criteria:
Analytical procedure, numerical integration and results obtained.
Analytical procedure. The LLG equation extended for finite temperatures can be exactly
solved in very limited cases at zero temperature [77]. The methods to solve nonlinear
dynamical equations are discussed in [78].
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Figure 3.6: Minimal switching field expressed in units of the coercive field as a function
of the diameter of a nanoparticle. Squares or circles represent numerical simulations based
on the LLG, whereas the curves are calculated using formula (3.57). The time τ denotes
the total time of calculations.

MC is a purely numerical method and can not be reproduced analytically.
The FP equation associated with the LLG equation is widely discussed in the literature

[51]. Some analytical solutions are available especially in the stationary situation [51].
Alternatively, the FP equation should be solved numerically by use of methods known for
solving the partial differential equations.
Numerical procedure. All of the three methods can be numerically implemented. The
advantage of the stochastic LLG arises when one aims to acquire the whole dynamics,
i.e. for all time moments. Additionally, since the LLG is in this sense a Langevin type
equation it can include in the energy and hence in the effective field all possible types of
interactions, like exchange, anisotropy etc. Knowing all these effects, the LLG is a very
powerful tool for study the magnetization dynamics, magnetization control as well as for
more complicated analysis, e.g. response functions.

However, when one is merely interested in the equilibrium properties of a system, such
as the averaged magnetization then the MC methods appear to be a more effective recipe
due to the higher allowed temporal steps of implementation and hence a lower calculation
time.

The FP equation associated with the LLG can serve as a supplementary tool for finding
different characteristic parameters.
Results obtained with the methods. The key point of the LLG equation is that it permits
us to know all states of the magnetization for the whole of the propagation time. This
can be of advantage when the control properties are addressed. The MC method yields
a fast information for the averaged states. And finally, from solving the FP equation one
can find all information about the system. However, the FP is usually used to analytically
characterize the stochastic time scale of the system.
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3.3 Comparison of the static and the dynamic Approaches

3.3 Comparison of the static and the dynamic
Approaches

A quantitative comparison of the statical (using the Néel-Brown model) and dynamical
(using the stochastic LLG equation) methods is illustrated in Fig. 3.6. For this, the minimal
switching field bmin of a single-domain magnetic nanoparticle is studied as a function of
a particle’s diameter d. An analytical expression for the minimal switching field might be
given by formula (3.11) transformed for bmin and expressed in units of the coercive field
BC

bmin = 1−
√

6kBT

Kπd3
ln

(
τ

τ 0

)
. (3.57)

Numerical simulations were performed using the stochastic LLG implemented as described
in Chapter 5 for a Co-nanoparticle. The following parameters were used in simulations:
α = 0.25, µper atom = 1.8 · µB, K = 1.0 · 106 J/m3, T = 8.3 K [79–81]. The parameter
τ 0 was calculated using formula (3.12). Co-nanoparticles with high damping provided a
faster relaxation towards the desirable state. The minimal switching field was obtained
numerically as the minimal field at which the magnetic moment changed from a parallel to
an antiparallel state.

Fig. 3.6 reveals that the analytical and the numerical results coincide, proving the cor-
rectness of both static and dynamic approaches. For high waiting times τ > 1 µs only one
numerical result is given due to the dramatic increase in calculation time by a factor of
1000.
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4 Relaxation in ferromagnetic
Systems

This chapter deals with the magnetization damping, which enters the phenomenological
treatment proposed by Landau, Lifshitz and Gilbert which is popular nowadays. After a
discussion the experimental evidence (e.g. [82–84]) and theoretical microscopic treatment
of damping [85] is presented.

4.1 Review of Experiments for the Measurement of
the Damping Parameter

Experimental techniques for the measurement of magnetization damping are based on the
LL or the LLG equations, (3.25) or (3.28) respectively. The damping parameter can be
measured either in the dimensionless units (λ in the Landau-Lifshitz form or α in the
Gilbert form) or in units of the field free precessional frequency ω = γBC in [rad/s] as
described in Ref. [82]. In our calculations we will use the dimensionless damping α in the
Gilbert form.

One of the most well known techniques in this respect is the Ferromagnetic Resonance
technique (FMR) [86, 87]. By applying a static and perpendicular to it a time-dependent
magnetic field to a ferromagnetic sample the response function is measured as a func-
tion of the strength of the static field. The absorbed power is proportional to the imag-
inary part of the transverse susceptibility. The measured absorbed power signal is of a
Lorentzian type with a maximum at a certain field Bres which refers to the resonance fre-
quency ωres = γBres. The applied static field creates a splitting of the energy levels,
whereas the oscillating field induces a transition between the levels when the frequency of
the oscillating field coincides with the one associated with the splitting. In a perfect sample
without dissipation the absorbed power is a delta function with the absorption at only one
frequency. Damping leads to a width broadening and is measured as a function of reso-
nance frequency of the broadened curves [82]. This technique has been preformed for a
wide range of temperatures and revealed [88, 89] that damping has a different behavior for
iron, cobalt and nickel and shows an increase in it at low and high temperatures. Typical
values of damping measured with the FMR are in the range from 0.01 to 0.3 [90–93] and
are very material specific.

Recently, further techniques like Magneto Optical Kerr Effect (MOKE) [83, 94] were
employed for the measurement of the magnetization damping. Here, the MOKE-signal is
related to the time propagation of the magnetization. Usually, one fits the measured signal
with the solution of the LLG equation for a chosen damping parameter. The best fit to the
measurement yields the value of damping. Generally, measured values of damping here
[83, 94–96] are in agreement with those obtained from FMR.

Similarly, X-Ray Magnetic Circular Dichroism (XMCD) allows for measurements of
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Figure 4.1: Schematic illustration of possibilities for damping in a ferromagnetic body.
Path 1 presents a direct relaxation to the lattice. Paths 2 and 3 show an indirect damping
into nonuniform motions of the magnetization and then into the lattice.

the damping parameter [84, 97] with element specification which is advantageous for het-
erostructures.

The effect of doping on the damping was extensively studied experimentally by mixing
to NiFe alloys rare earths [98] or transition metals [99]. As a result, damping rate can
accurately be tuned up to 0.8. Additionally, doping iron with vanadium resulted in a de-
creased damping [100]. All these findings hint on complicated mechanisms of damping
and a demand for a microscopic understanding of the processes.

4.2 Mechanisms and Models of the Magnetization
Damping

The fact that there is a number of mechanisms for damping (see review in Ref. [85, 101])
implies that no one model is able to explain all the experimental findings. In Ref. [102] the
author points out two main channels for the energy dissipation in ferromagnetic materials:
Direct and indirect damping (see Fig. 4.1). As direct damping an energy dissipation from
the uniform motion of the magnetic moment (or a magnon with the wave vector k ≈ 0)
to the thermal bath is understood. It is shown that this irreversible damping mechanism
can be considered in fact as a viscous damping of the magnetic moment coupled to shear
distortions of the lattice. This scenario might be realized in small samples with sizes lower
than the domain wall thickness.

For sufficiently large samples such a uniform motion can populate states in the magnetic
subsystem, i.e. the energy transfers into the spin waves (k 6= 0). This process is reversible,
however, on the long time scale the energy will flow into the thermal bath as well. That is
what is called indirect damping, which is also experimentally observable [103].

Since in this study we focus on small ferromagnetic nanoparticles the damping mech-
anism is supposed to be direct. For practical purposes, however, one aims to calculate a
material specific damping parameter to be able to compare it with the associated experi-
ment. Below the main steps of the so called ”breathing” Fermi surface model [104, 105]
are presented. This model usually serves as the basis for ab intio techniques to calculate
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4.2 Mechanisms and Models of the Magnetization Damping

damping.
The Spin Orbit Coupling (SOC) causes changes of electronic states εk,j during the pre-

cession of the magnetic moment Si. Here, index j denotes a particular electronic state
and i stands for the Cartesian component of the normalized magnetic moment. The total
electronic energy is then

E =
∑

k,j

εk,jnk,j, (4.1)

where nk,j is defined below.
Quasistatic changes of Si during the precession produce small variation of Fermi surface

which is equivalent to the action of the effective field

Heff
i = − 1

µS

∑

k,j

nk,j
∂εk,j

∂Si

. (4.2)

The summation runs over the first Brillouin zone. Those nonequilibrium states that are
close to the Fermi level relax due to collisions with lattice defects. Thus, for the nonequi-
librium populations we may write

nk,j = f(εk,j)− τj
df(εk,j)

dt
, (4.3)

where f(εk,j) is the Fermi function and τj is the lifetime of the state j. Therefore, the
damping consists in the phase lag between the changes in Si and the population response.
Mathematical illustration of the phase lag may be obtained by inserting of (4.3) into (4.2)
and applying the chain rules to the out-of-phase part

Heff
i = − 1

µS

∑

k,j

f(εk,j)
∂εk,j

∂Si

− 1

µS

∑

k,j

τk,j

(
−∂fk,j

∂εk,j

)
∂εk,j

∂Si

∂εk,j

∂Sl

dSl

dt
. (4.4)

Comparing now the out-of-phase part of (4.4) with the Gilbert-like relaxation expression

Heff
i = −α

γ

dSi

dt
(4.5)

and recalling that at low temperatures −∂f(εk,j)

∂εk,j
≈ δ(εF − εk,j) one finally finds

αil =
τγ

µS

∑

k,j

(
∂εk,j

∂Si

)(
∂εk,j

∂Sl

)
δ(εF − εk,j). (4.6)

Here, the assumption is made, that the lifetimes are equal for all states j, i.e. τ = τj . It
should be noted that damping in the ”breathing” Fermi surface model is a tensor. Moreover,
this result is very similar to the Drude conductivity tensor which is also proportional to
the relaxation time. It is known that the relaxation time scales with temperature as ∼
T−2. Hence, at low temperatures the model predicts α ∼ T−2 behavior and explains
experimental results [88].

Calculations of damping tensor can be found in [106]. In particular, it was shown that
damping may completely vanish in some directions.

Further improvements of this model like ab initio calculations on the basis of the torque
correlation model [107] succeeded to explain high temperature regime of damping. Within
this model damping splits into conductivity-like term at low temperatures and a resistivity-
like term for high temperatures.

In the calculations presented in this work the results will be presented as a variation of
damping with the values of damping being appropriate for low and high temperatures.
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5 Numerical Procedure
The LLG equation can be solved analytically only in the very low damping regime, i.e.
in a nearly linear case. In the completely nonlinear regime some analytical solutions are
available in certain limits only. For example, in the low energy regime of the damped
magnetic moment [108–110] as a spin wave propagation or a solution with a very restricted
geometry [77].

The fact that the LLG equation which is to be solved is a stochastic differential equation
entails the use of numerical integration methods.

5.1 Stochastic Calculus for the Langevine Type
Equations

The LLG equation can be written as a stochastic Langevine equation for three Cartesian
components denoted by i in equation (3.45). Expressions (3.48) and (3.49) decipher co-
efficients Ai(Si, t) and Bik(Si, t). Suppose, we are interested in finding small changes of
∆Si(t) in the time interval t ∈ [t; t + ∆t]. Then, from (3.45) we deduce

∆Si(t) = Si(t + ∆t)− Si(t)

=

∫ t+∆t

t

Ai(Si, t
′) dt′ +

∫ t+∆t

t

∑

k

Bik(Si, t
′)ζk(t

′) dt′. (5.1)

For the times close to the beginning of the time interval, i.e. ∆t → 0, Ai(Si, t + ∆t) ≈
Ai(Si, t) and Bik(Si, t+∆t) ≈ Bik(Si, t). With these considerations we obtain from (3.45)

∆Si(t) = Ai(Si, t)∆t +
∑

k

Bik(Si, t)

∫ t+∆t

t

ζk(t
′) dt′. (5.2)

Assuming that the noise function ζk(t) is a Markov process we infer from (3.32)
〈∫ t+∆t

t

ζk(t
′) dt′

∫ t+∆t

t

ζl(t
′′) dt′′

〉
∼

∫ t+∆t

t

dt′
∫ t+∆t

t

δklδ(t
′′ − t′) dt′′ = δkl∆t. (5.3)

Thus, we find for (5.2)

∆Si(t)
∣∣∣
∆t→0

= Ai(Si, t)∆t +
∑

k

Bik(Si, t)ζk(t)
√

∆t. (5.4)

When aiming to find S̄i(t) for any time moment from the interval t ∈ [t; t+∆t] S̄i(t) reads
as

S̄i(t) = (1− ν)Si(t) + νSi(t + ∆t) = (1− ν)Si(t) + ν(Si + ∆Si(t))

= Si(t) + ν∆Si(t). (5.5)
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With the last equation the expression for ∆Si(t) converts into

∆Si(t) = Ai(S̄i(t), t)∆t +
∑

k

Bik(Si(t) + ν∆Si(t), t)ζk(t)
√

∆t. (5.6)

For the second term the following expression is valid

Bik(Si(t) + ν∆Si(t), t)ζk(t)
√

∆t

= Bik(Si(t), t)ζk(t)
√

∆t + ν
∂Bik(Si(t), t)

∂Si(t)
∆Si(t)ζk(t)

√
∆t + ...

= Bik(Si(t), t)ζk(t)
√

∆t + ν
∂Bik(Si(t), t)

∂Si(t)

(∑

k

Bik(Si(t), t)ζk(t)

)
∆t + O(∆t

3
2 ).

(5.7)

Inserting the expression (5.7) into (5.6) finally yields

∆Si(t) =

[
Ai(S̄i(t), t) + ν

(∑

k

∂Bik(Si(t), t)

∂Si(t)
ζk(t)

)(∑

k

Bik(Si(t), t)ζk(t)

)]
∆t

+
∑

k

Bik(Si(t), t)ζk(t)
√

∆t. (5.8)

This is a general expression for the time propagation of the reduced magnetic moment.
Various definitions of the stochastic integral are known from the literature [72, 111]. They
differ only in the drift term (see the expression in square brackets). An Itô interpretation
[72] is obtained when ν = 0, i.e.

∆Si(t) = Ai(S̄i(t), t)∆t +
∑

k

Bik(Si(t), t)ζk(t)
√

∆t. (5.9)

For ν = 1/2 a Stratonovich interpretation [72] is acquired

∆Si(t) =

[
Ai(S̄i(t), t) +

1

2

(∑

k

∂Bik(Si(t), t)

∂Si(t)
ζk(t)

)(∑

k

Bik(Si(t), t)ζk(t)

)]
∆t

+
∑

k

Bik(Si(t), t)ζk(t)
√

∆t. (5.10)

It can be shown [76] that the dynamical properties within the two integral interpretations
are totally different. The Itô integral interpretation is usually used for pure mathematical
purposes, whereas the Stratonovich interpretation leads to correct physical results. In par-
ticular, the trajectories of the magnetic moment created by the stochastic LLG equation
coincide with those yielded by the corresponding FP equation only when the stochastic
integral is interpreted in the Stratonovich sense. This interpretation underlies the present
study throughout.

5.2 Numerical Integration Scheme
For the numerical integration of stochastic differential equations of the Langevine type
a proper numerical scheme is required, since the stochastic integral, in contrast to the
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5.2 Numerical Integration Scheme

deterministic case has to converge to the Stratonovich solution.
In all the numerical simulations presented in this work the Heun or improved Euler

method is employed [72, 111] which is a predictor corrector method. A rather simple
Euler method [111] can not be used here since it yields the Itô solution and omits the
noise-induced drift. This integration scheme is shown to be inconsistent [112, 113]. On
the other hand, a rigorous numerical treatment can be achieved by means of the Runge-
Kutta method [114]. However, a high precision provided by the Runge-Kutta method is
not needed in the stochastic case. Hence, the Heun method is a good compromise between
a low accuracy and an enormous calculation time.

The Heun integration scheme works as follows. For a given initial condition determined
by a set of Si(t = 0) a recursive predictor step for discretization time interval tn+1 − tn =
∆t is made according to

S̄n+1
i = Sn

i + Ai(S
n
i , tn)∆t +

∑

k

Bik(S
n
i , tn)ζk(t

n)
√

∆t. (5.11)

A corrector part is calculated according to

Sn+1
i = Sn

i +
1

2

[
Ai(S̄

n
i , tn+1) + Ai(S

n
i , tn)

]
∆t

+
1

2

∑

k

[
Bik(S̄

n
i , tn+1) + Bik(S

n
i , tn)

]
ζk(t

n)
√

∆t. (5.12)

The characteristics of the white multiplicative noise are given by expressions (3.32). The
deterministic part within the Heun scheme is calculated with the second order of accuracy
in ∆t. Local discretization errors given by the method are of the order three in ∆t [111].
The integration time step is commonly chosen such that it is at least 1/1000 of the field-free
precessional period. The random numbers ζk(t) are generated according to the Box-Müller
algorithm [115] and the period of them is around 231 (> 109). Therefore, artifacts associ-
ated with repetition of random numbers are avoided.

The stochastic LLG equation is evaluated numerically in reduced units, where the effec-
tive field is expressed in units of the anisotropy field and the time is reduced to the field-free
precessional period.

Comparison with other numerical procedures is widely presented in the literature [111,
116, 117]. In contrast to the Milstein method, the Heun method allows for larger integra-
tion steps (approximately ten times larger) with the same precision.
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6 Dynamical Properties of the
Magnetization in the Presence of
continuous Fields

In this chapter results of the magnetization switching are presented. Several techniques for
the magnetization switching are known in the meantime in the literature: Via short laser
pulses [118], spin-polarized electric currents [119, 120] or the use of conventional mag-
netic fields ([10–12] and references therein). It was recently shown both experimentally
[121] and theoretically [122, 123] (mostly numerical studies) and [124, 125] (fully analyti-
cal based on the FP equation solution) that a microwave time-dependent field synchronized
with the magnetic moment of a ferromagnetic nanoparticle is capable to switch it. More-
over, the amplitudes of applied fields turned out to be even smaller than those for a static
field. Additionally, switching occurred on a much faster time scale as compared to static
fields.

In the context of the switching properties of ferromagnetic nanoparticles the quantities
of interest are critical switching field amplitudes and the corresponding reversal times de-
pendending on damping parameters, temperature and the type of anisotropy.

It should be stressed that the term continuous for the applied fields means that the enve-
lope is longer than the field-free precessional period.

All the results presented in this chapter are obtained mostly using numerical simulations
details of which are described in Chapter 5.

6.1 Static magnetic Fields

6.1.1 Analytical Study at Zero Temperature

Assume a ferromagnetic nanoparticle at zero temperature in a single domain state (Stoner
particle [38, 122, 126, 127]) with the uniaxial anisotropy axis being parallel to the Z direc-
tion (Fig. 3.1). If a static field b is applied antiparallel to the initial state of the magnetic
moment S, i.e. θb = π, then for the total energy expressed in units of the anisotropy energy
we may write

H̃ = −1

2
cos2 θ + b cos θ. (6.1)

Since the energy is only dependent on the polar angle θ, the equation for θ, as follows from
expression (3.30), can be exactly analytically solved. For the conditions with the start angle
θ0 = π/360 and θe = π at the end, this equation reads

∫ π

θ0

dθ

sin θ(b− cos θ)
=

α

1 + α2

∫ trev

0

dt′. (6.2)
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6 Dynamical Properties of the Magnetization in the Presence of continuous Fields

From (6.2) for the time of complete reversal trev we find

trev =
1 + α2

α

1

ωA

1

b2 − 1
ln

(
tan

(
θ
2

)b
sin θ

b− cos θ

)∣∣∣
π

θ0

, (6.3)

with ωA = γBA = 2γD/µS (with BA = BC). Here we obtained results similar to those
reported in [77].

From expression (6.3) the following conclusions can be drawn. Apart from the SW
model (Section 3.1.1) the result obtained using the LLG equation is the same: Switching
can only occur on the finite time scale when the static field applied exceeds the anisotropy
field (b > 1). Moreover, this formula reveals a dependence on the damping parameter
α and the start angle θ0. In particular, an interesting feature of the nonstochastic LLG
equation shows up: Starting from θ0 = 0 no switching can be achieved. Noteworthy
is the fact that the volume dependence is missing in equation (6.3), since due to the zero
temperature dynamics of the LLG equation, no coupling to the thermal bath is present. The
pronounced dependence of trev on damping is shown in Fig. (6.4) as a dashed curve. This
dependence can be explained as a dominant precessional motion in a low damping regime
and an enhanced damping term in the LLG equation in case of high damping. A certain
balance between the two motion types is observed for a moderate damping parameter.
Neglecting the weaker altering logarithmic dependence, equation (6.3) takes the following
form for minimal fields needed for switching

b ≈
√

1

trevωA

1 + α2

α
+ 1. (6.4)

This expression shows the field strength dependence on trev which might be interpreted
as a measuring time. For infinite trev we end up with the SW result, whereas a rather
complicated dependence on damping arises when approaching trev → 1/ωA. Typically,
the measuring times which will be demonstrated in the next sections are close in spirit to
those measured using the microwave spectroscopy methods (e.g. FMR) and are around
1000 or more of the precessional period.

6.1.2 Numerical Study for Nanoparticles with a uniaxial
Anisotropy at Nonzero Temperatures

The analytical results reported above provide an insight into the dynamics of the magnetic
moment at zero Kelvin. The question of how finite temperatures will assist the dynamics
can be addressed by employing the stochastic LLG equation. For this purpose nanoparti-
cles with a uniaxial anisotropy are chosen (e.g. Fe50Pt50, Table 2.1). To clearly address
the issue with the finite temperatures we chose temperatures high enough to demonstrate
their effect on the one hand, by paying attention to the point of losing the ferromagnetic
properties on the other hand. Three finite temperatures are T1 = 56 K, T2 = 280 K and
T3 = 560 K. For the last temperature the net magnetic moment is still not completely lost
due to critical phenomena (see Fig. 3.4). As was pointed out in section (3.1.2) the magnetic
moment can also vanish due to the dynamical effect of superparamagnetism. For this rea-
son for the measurement time to be approximately equal to 5 ns the following escape times
associated with the above temperatures were calculated, τT1 = 2 · 10217 s, τT2 = 1 · 1075 s
and τT3 = 7 · 1031 s, respectively (further details see in [128]).
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Figure 6.1: Magnetization reversal of a nanoparticle when a static field is applied for two
temperatures T0 = 0 K and T3 = 560 K with the strengths of the field b = 1.01 and 0.74,
respectively. The damping parameter is α = 0.1. Start angle of the magnetic moment is
θ0 = π/360.

Figure 6.2: Trajectories of the magnetic moment in the E(θ, φ) space. The motion starts at
θ → 0 and arrives at θ → π. Other parameters are T 0 = 0 K, b = 1.01 and α = 0.1.
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6 Dynamical Properties of the Magnetization in the Presence of continuous Fields

The procedure of finding the critical fields is as follows. Antiparallel to the magnetic mo-
ment of the nanoparticle a static field is applied in small steps starting from small values.
When a magnetization reversal is realized, the values of the last field applied and the cor-
responding reversal times are recorded (Fig. 6.1). Note that in contrast to the situation
described in [122] we define the reversal as a magnetization switching from a parallel to
the antiparallel state, since at finite temperatures the state with Sz = 0 may be not stable.
Thermal fluctuations may lead to a switching back to the original state.

Fig. 6.2 illustrates how the switching occurs in the energy space E(θ, φ). Static mag-
netic field changes the energy profile by elevating the initial and lowering the target states
at the same time. Hence, the initial state becomes energetically not favorable and the mag-
netic moment switches.

The behavior of minimal fields needed for switching for a given measurement time and
temperature is shown in Fig. 6.3. The zero temperature curve approves the results of
SW model. Indeed, for zero Kelvin and a high measurement time damping is insufficient,
hence, there is no dependence on it (the same what equation (6.4) implies in the limit of
large trev). High temperatures assist the switching by lowering the required minimal static
fields (Direct Current, DC-fields).

Inset of Fig. 6.3 shows data not averaged over many realizations. As can be seen, the
averaging is not relevant for the critical fields, however, becomes very reasonable in calcu-
lations of the corresponding reversal times (see Fig. 6.4). The temperature effect eliminates
the pronounced dependence on damping as it was for T = 0 K and the reversal times oc-
cur on the nanosecond time scale. For these results it should be stressed that the reversal
times shown in Fig. 6.4 are continuously associated with the calculated critical fields. The
reversal times might be essentially reduced by keeping the static field amplitude to be the
same for all temperatures.
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Figure 6.3: Critical field amplitudes expressed in units of the uniaxial anisotropy field as a
function of damping parameter for a static field. Each curve is averaged over 500 cycles.
Inset shows as-calculated data for T3 = 560 K.
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Figure 6.4: Reversal times corresponding to the critical fields in Fig. 6.3 as a function of
damping parameter. Inset shows not averaged data for T3 = 560 K.

6.1.3 Numerical Study for Nanoparticles with a cubic
Anisotropy at Nonzero Temperatures

The issue of a cubic anisotropy arises since it is not captured by the analytical solution
(Section 6.1.1) as well. For the role of a ferromagnetic nanoparticle with a cubic anisotropy
we choose Fe70Pt30 nanoparticles with the parameters listed in Table 2.2. Similarly to
Fe50Pt50 nanoparticles the temperatures of calculations are T4 = 0.3 K, T5 = 0.9 K and
T6 = 1.9 K. The corresponding escape times are τT4 = 1 · 1034 s, τT5 = 2 · 105 s and
τT6 = 2·10−2 s, respectively. Note that the temperatures for the both types of nanoparticles
were calculated as the same ratio of the thermal energy to the anisotropy energy kBT/D,
whereas in the case of cubic anisotropy the smallest energy barrier were taken (see Fig.
2.3).

An additional issue for cubic anisotropy crystals is how to define switching. Since there
are more than two stable orientations (see Fig. 2.2), there exist more possibilities for the
reversal. In this chapter the switching for the cubic anisotropy is defined similarly to that
for the uniaxial anisotropy, namely as a switching from a parallel to the antiparallel state.

The total energy of a nanoparticle with a cubic anisotropy in an external static field is

H̃ = −1

2
(cos2 φ sin2 φ sin4 θ + cos2 θ sin2 θ)− S · b. (6.5)

At first we let the magnetic moment relax to the state close to φ0 = π/4 and θ0 =
arccos(1/

√
3). The target state is thus φe = 3π/4 and θe = π − arccos(1/

√
3). To

achieve switching we apply the magnetic field as

b = − b√
3
(ex + ey + ez). (6.6)
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6 Dynamical Properties of the Magnetization in the Presence of continuous Fields

To be consistent with the results reported for the uniaxial anisotropy we plot the Z projec-
tions of the magnetic moment Sz for different temperatures (Fig. 6.5). This, however, does
not yield a full picture of the three-dimensional motion. The trajectories of this motion are
shown in the E(θ, φ)-space for the static field and for small damping. Similar to the uniax-
ial anisotropy, the initial state lies higher than the target one and a slow motion towards the
target state happens (Fig. 6.6). The dynamics of this motion is, however, totally different
compared with the uniaxial one.

The procedure of determining the critical fields (these fields we denote as Alternate
Current (AC) fields) despite the completely different geometry of the system is the same:
Reaching the target state the minimal fields and the corresponding reversal times are re-
corded and plotted as a function of damping parameter and temperature.

One general feature should be commented upon in Fig. 6.7. All fields, expressed in
units of the maximum anisotropy field, turn out to be smaller than those for the uniaxial
anisotropy. The reason is that the cubic anisotropy with the same constant in expression
(6.5) is generally lower than the uniaxial (see Fig. 2.3). Hence, smaller reversal fields
appear to be sufficient for switching.

The corresponding reversal times shown in Fig. 6.8 indicate that, due to the low mea-
surement time chosen for a better comparison with the results for the uniaxial anisotropy
constant, jumps for trev appear even for T = 0 K. The reason of the lower temperature-
assisted reversal times is as follows. Due to the initial states to which the magnetic moment
relaxes, a switching not assisted by the temperature, takes a longer time.
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Figure 6.5: Magnetization reversal of a nanoparticle with a cubic anisotropy when a static
field is applied for two temperatures T0 = 0 K and T6 = 1.9 K with the strengths of
the field of b = 0.82 and 0.22, respectively. The damping parameter is α = 0.1. The
magnetic moment starts its motion from φ0 = π/4, θ0 = arccos(1/

√
3) and finally arrives

at φe = 3π/4, θe = π − arccos(1/
√

3).
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6.1 Static magnetic Fields

Figure 6.6: Trajectories of the magnetic moment in the E(θ, φ) space for b = 0.82 and
α = 0.1. The initial and target states are the same as those indicated in Fig. 6.5.
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Figure 6.7: Critical field amplitudes expressed in units of the uniaxial anisotropy field as a
function of the damping parameter for a static field applied. Each curve is averaged over
500 cycles. Inset shows as-calculated data for T 6 = 1.9 K.
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Figure 6.8: Reversal times corresponding to the critical fields shown in Fig. 6.7 as a
function of damping.

6.2 Continuous Time-Dependent magnetic Fields

6.2.1 New Strategy for Switching

Experimental findings [121] revealed the possibility of magnetization switching of small
magnetic nanoparticles in the absence of a strong static field merely by usage of time-
dependent field with a frequency close to the precessional frequency. Here we depict the
main steps to understand the process of magnetization excitation on the basis of the LLG
equation (3.28) [122, 127].

The effective field Heff is separated into the internal and the external (Zeemann) one

Heff = − 1

µS

∂H
∂S

= H int + Hext. (6.7)

Consider an energy change rate using the continuity equation

dH
dt

=
∂H
∂t

+ Ḣ
ext · ∂H

∂Hext . (6.8)

For the external field we obtain from the definition

∂H
∂Hext = −µSS. (6.9)

∂H/∂t can be found from the definition of the effective field (6.7) as

Heff = − 1

µS

∂H
∂S

= − 1

µS

∂H
∂t

1
∂S
∂t

, (6.10)
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6.2 Continuous Time-Dependent magnetic Fields

from which we finally deduce

∂H
∂t

= −µSH
eff · ∂S

∂t
. (6.11)

The last scalar product can be found by multiplying the LLG equation (3.28) with Heff

Heff · ∂S

∂t
= − γ

1 + α2

(
Heff · [S × (

Heff + α
[
S ×Heff

])] )

=
γ

1 + α2

(
Heff + α

[
S ×Heff

] )
· [S ×Heff

]

=
αγ

1 + α2

∣∣∣
[
S ×Heff

] ∣∣∣
2

. (6.12)

Finally, inserting the last expression into equation (6.8) we arrive at

dH
dt

= − αγµS

1 + α2

∣∣∣
[
S ×Heff

] ∣∣∣
2

− µSS · Ḣext
. (6.13)

Equation (6.13) makes the process of energy absorption in the presence of a time-dependent
field clear. In particular, when the system is solely subjected to a static field, i.e. Ḣ

ext
= 0,

the energy can only decrease due to damping. The presence of a time-dependent field en-
ables a balance in the energy decrease and increase. Nevertheless, not all fields are able to
pump the system with an energy. It is shown [127] that choosing Hext ∼ Ṡ and keeping
in mind the relation S · S̈ = −Ṡ · Ṡ the second term can be positive and depending on the
field amplitude can exceed the losses in the system.

In the following a similar strategy will be employed for the magnetization reversal.

0 0.05 0.1 0.15 0.2 0.25
Time, [ns]

-1

-0.5

0

0.5

1

M
ag

ne
tic

 m
om

en
t S

z

T
0
=0 K

0 1 2 3 4 5
Time, [ns]

-1

-0.5

0

0.5

1

M
ag

ne
tiz

at
io

n 
S z T

3
=560 K

Figure 6.9: Magnetization reversal of a nanoparticle when a time-dependent field is applied
for zero Kelvin and α = 0.1. The field strength and the frequency in reduced units are
b0 = 0.18 and ω = ωA/1.93, respectively. The inset shows the reversal at T3 = 560 K and
b0 = 0.17.
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6 Dynamical Properties of the Magnetization in the Presence of continuous Fields

Figure 6.10: Trajectories of the magnetic moment in the E(θ, φ) space. Other parameters
are T 0 = 0 K, b0 = 0.18, ω = ωA/1.93, α = 0.1.

6.2.2 Numerical Study for Nanoparticles with a uniaxial
Anisotropy at Nonzero Temperatures

Since the experimental realization of the strategy with Hext ∼ Ṡ is a difficult task in-
volving a tracking of the magnetization on a very short time scale, another strategy with
a modified version of the field is presented. We focus on a nanoparticle with a uniaxial
anisotropy. All parameters used in the simulations are the same as mentioned in Subsec-
tion 6.1.2. The total energy of the nanoparticle expressed in µSBA is given by

H̃ = −1

2
cos2 θ + S · b(t), (6.14)

with the field applied in the XY -plane (Fig. 3.1)

b(t) = b0 cos ωt ex + b0 sin ωt ey. (6.15)

Fig. 6.9 illustrates the present strategy for the reversal process for two different tempera-
tures. It is important to note that due to oscillating field the switching occurs on a faster
time scale of approximately ten picoseconds for each oscillation at zero Kelvin. Tempera-
ture assists the switching with the effect of increasing of switching time.

Trajectories of the magnetic moment illustrated in Fig. 6.10 supplement the fact that all
in all the dynamics for a time-dependent field is more complicated. This figure has to be
understood as an immediate snapshot since the energy landscape oscillates alone with the
field applied. However, for small amplitudes which is the case for Fig. 6.10 this effect is
negligible.

The main effect induced by the time-dependent fields is that the field amplitudes ex-
pressed in units of the anisotropy fields (Fig. 6.11) have a very pronounced dependence
on damping parameter in contrast to the static case. In particular, switching fields for low
damping are much smaller than the SW limit indicated on this scale as one. For extremely

42



6.2 Continuous Time-Dependent magnetic Fields

high damping this strategy is not advantageous since the minimal fields exceed the SW
limit. Such behavior can be explained qualitatively via a resonant energy absorption mech-
anism when the frequency of the oscillating field matches the precessional one. Note that
temperature does not influence these results much for small and moderate damping since
the energy landscape oscillates with a high frequency (compared to the static fields shown
in Fig. 6.2).

The reversal times associated with these switching fields show qualitatively similar be-
havior as those for a static field.

A quantitative understanding of the dependencies plotted in Fig. 6.11 and Fig. 6.12 can
be found via the solution of the LLG equation in spherical coordinates (system of equa-
tions (3.30)) with the field applied as in expression (6.15). The last expression should be
presented, however, in spherical coordinates which yields

b(t) = b0

(
sin θ sin(φ− ωt) er + cos θ cos(φ− ωt) eθ + sin(ωt− φ) eφ

)
. (6.16)

Assuming equation (6.16) and S = er we find for the total energy

H̃ = −1

2
cos2 θ − b0 sin θ sin(φ− ωt), (6.17)

from where we deduce for the derivatives needed in equations (3.30)

∂H̃
∂φ

= −b0 sin θ cos(φ− ωt) and
∂H̃
∂θ

= cos θ sin θ − b0 cos θ sin(φ− ωt). (6.18)

Finally, for the altering of θ we find

θ̇ =
1

1 + α2
[b0 cos(φ− ωt)− α cos θ(sin θ − b0 sin(φ− ωt))] . (6.19)

On this stage the assumption of the field and the magnetic moment synchronization is made
which is the case in the vicinity of the energy minima as our dynamical simulations show
[129]. Therefore, for the synchronized motion we obtain

θ̇ =
1

1 + α2

[
b0 − α

2
sin 2θ

]
. (6.20)

In principle, from equation (6.20) it follows that θ̇ > 0 remains for b0 > α/2. This is
a rough estimate of the critical fields needed for the magnetization reversal. The exact
solution of equation (6.20) for the initial and target conditions θ0 and θe, respectively,
yields

b0cr =
1

2

√
4C2(1 + α2)2

ω2
At2rev

+ α2, (6.21)

with

C = arctan

[
α− 2b0 tan θe√

4b0
2 − α2

]
− arctan

[
α− 2b0 tan θ0√

4b0
2 − α2

]
. (6.22)

Note that C is small, nonzero and α-independent for θ0 → 0 and θe → π. This relation
explains qualitatively and quantitatively the behavior shown in Fig. 6.11 obtained numeri-
cally for variation of damping, however, only for low and moderate damping.
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Figure 6.11: Critical field amplitudes expressed in units of the uniaxial anisotropy field as a
function of damping parameter for a time-dependent field applied. Each curve is averaged
over 500 cycles. Inset shows as-calculated data for T3 = 560 K.
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Figure 6.12: Reversal times corresponding to the critical fields plotted in Fig. 6.11. Inset
shows not averaged data for T0 = 0 K.

6.2.3 Numerical Study for Nanoparticles with a cubic
Anisotropy at Nonzero Temperatures

Finally we study the dynamics and the behavior of switching fields and reversal times of the
oscillating field on a nanoparticle with a cubic anisotropy. We take the same nanoparticles
and parameters for calculation as described in Subsection 6.1.3. To interpret the results
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6.3 Discussion and Interpretation of the Results obtained

in a similar way with those reported above we apply the oscillating fields in the plane
which is perpendicular to the initial state of the magnetic moment given by φ0 = π/4 and
θ0 arccos(1/

√
3). This implies that the field which enters equation (6.5) can be written as

b(t) = + b0(cos ω1t cos φ0 + sin ω1t sin φ0 cos θ0) ex

+ b0(− cos ω1t sin φ0 + sin ω1t cos φ0 cos θ0) ey

+ b0 sin ω1t sin θ0 ez, (6.23)

with b0 being the strength and ω1 the frequency of the oscillating field.
The procedure of determining the field amplitudes is the same as before (see Fig. 6.13 for

Z-projection of the magnetization). A three dimensional trajectories of the magnetic mo-
ment projected on the energy landscape reveal an interesting behavior (Fig. 6.14): Switch-
ing occurs mostly close to the local minima.

Finally, minimal switching fields (Fig. 6.15) and their reversal times (Fig. 6.16) demon-
strate the same qualitative behavior as that for the uniaxial anisotropy.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time, [ns]

-1

-0.5

0

0.5

1

M
ag

ne
tic

 m
om

en
t S

z

T
0
=0 K

T
6
=1.9 K

Figure 6.13: Magnetization reversal of a nanoparticle when a time-dependent field is ap-
plied for α = 0.1 and at T 0 = 0 K and T 6 = 1.9 K. Parameters chosen in simulations are
b0 = 0.055 and ω1 = ω̃A/1.93 with ω̃A = (2/3)ωA.

6.3 Discussion and Interpretation of the Results
obtained

In this chapter the dynamical properties of mainly two kinds of systems using the analytical
LLG equation and the one numerically extended for finite temperatures were studied. The
most attention was paid to the study of the minimal switching fields as a function of the
damping parameter, temperature and the type of anisotropy. The corresponding reversal
times should be considered as complementary data since they turned out to be very sen-
sitive functions of the applied fields and hence thermal fluctuations (see equation (6.3)).
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6 Dynamical Properties of the Magnetization in the Presence of continuous Fields

Figure 6.14: Trajectories of the magnetic moment in the E(θ, φ) space. Other parameters
are as those listed in Fig. 6.13 for zero Kelvin. The start and target states are as those
shown in Fig. 6.5.

These numerical ”experiments” are similar in spirit to those captured by the microwave
spectroscopy, where the oscillating fields with frequencies in the range of some hundred
Gigahertz are used. The main similarity concerns the time window or the measurement
time which was fixed to some nanoseconds. However, there are significant principle dif-
ferences between the numerical results and the conventional experiments. In particular, we
explicitly contrasted the cases of static (DC) and time-dependent (AC) fields. As inferred
from Figures 6.2 and 6.10 e.g., the mechanisms of transition between the states for a DC
and an AC field have totally various nature. Indeed, in case of a static field switching
occurs due to the change of the heights in the energy landscape between the initial and
the target states. When applying a field oscillating with a frequency of the same order of
magnitude with the field-free precessional frequency one observes a resonant-like energy
absorption followed by a magnetization switching when the field strength is large enough.
As a result of the different mechanisms the dependencies of critical fields on damping and
temperature for DC and AC fields show a different behavior. Once the measurement time
is set to be large enough for switching critical DC fields do not depend on damping. This
phenomenon is explained due to a quasi equilibrium change of the state of the magnetic
moment where a certain equilibrium between the supplied energy and the dissipated one is
set. This is also reflected in the corresponding reversal times that all regardless the temper-
ature are of the order of picoseconds. This becomes especially important for an AC field
applied which is a more dynamical process in the sense that the T = 0 K reversal times are
on the time scale of some tens to hundred picoseconds.

Various anisotropy types are important as the potential systems for information storage
units. Their dynamical properties are generally more complicated and even the issue of
switching becomes questionable. This will be additionally addressed in the next chapter.
Moreover, systems with a cubic anisotropy demonstrate lower switching fields due to the
geometry of the crystal.
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Figure 6.15: Critical field amplitudes expressed in units of the uniaxial anisotropy field as
a function of damping parameter for a time-dependent field. Each curve is averaged over
500 cycles. Inset shows as-calculated data for T6 = 1.9 K.

As a final point to this chapter the relatively high range of damping variation should be
addressed. Usually, the values of damping for ferromagnetic thin films range from 0.01 to
0.3. Doping of ferromagnets with rare earths or transition metals can enhance the values
up to 0.8 (see references in Chapter 4).
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7 Dynamical Properties of the
Magnetization in the Presence of
pulsed Fields

In this chapter properties of magnetization dynamics are studied when short magnetic
pulses are applied. The key point is an impulsive excitation which populates states with
higher energies within times much shorter than the field-free precessional period.

The interest in such type of magnetization excitation is driven by possible applications
in data storage devices as well as fast magnetic sensors [10–13] on the one hand, and by
the fundamentally different physical properties of these systems on the other hand. Re-
cent experiments [90, 91, 130, 131] revealed the usage of a finely focused electron beam
producing magnetic pulses with durations of several picoseconds and field strengths of up
to several tesla for the magnetization switching. We require the pulses to be even shorter
than those in the experiments and in contrast to the numerical simulations [132] develop
an analytical scheme for the magnetization reversal, ”freezing” and numerically extend the
proposed model for finite temperatures. The scheme relies on the Local Control Theory
(LCT) [19–21] widely used in the quantum chemistry [133]. The controlled conditions
within the LCT are derived from the response of the system providing a clear physical in-
terpretation for the control mechanism.

First, the analytical model with the main assumptions and approximations is presented.
Then, we demonstrate that the properties of the magnetic moment evolution mainly depend
on the angle shift δφ between the magnetization and the pulse. Note, that the main assump-
tion, namely the shortness of the pulse, allows to decouple the LLG equations with respect
to the Cartesian components and to proceed with subsequent analytical findings. Further
analytical and numerical results are illustrated by contrasting two cases with different an-
gles shifts δφ = 3π/2 and δφ = 0. Numerical methods serve additionally for illustrating
the magnetization dynamics for nanoparticles with a cubic anisotropy.

7.1 Analytical Model

7.1.1 Theory

For demonstration of the proposed scheme we chose Fe50Pt50 nanoparticles (see Chapter 2
for their internal parameters), whereas the results for a cubic anisotropy will be addressed
for Fe70Pt30 small particles.

Similarly to the previous chapter the dynamics of the magnetic moment of the nanopar-
ticle is governed by a system of the LLG equations (3.30) with the zero Kelvin effective
field in the form of equation (3.26). The total energy of the nanoparticle is given by

H̃ = H̃A + H̃F = H̃A − S · b0(t), (7.1)
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7 Dynamical Properties of the Magnetization in the Presence of pulsed Fields

where the energy is measured in units of µSBA with BA = 2D/µS. D is the strength of the
anisotropy energy. Time in the system of equations (3.30) is expressed in units of the field-
free precessional period T prec. The magnetic field pulse b0(t) is realized as a superposition
of two perpendicular pulses bx and by lying in the XY -plane (see Fig. 3.1) with the mock
angle φ0 = arctan (|by|/|bx|). Note, that for the pulse with duration ε we may write

b0(t) =

{
f(t)b0

2ε
(cos φ0ex + sin φ0ey), t0 − ε < t < t0 + ε

0, elsewhere.
(7.2)

The total energy change under the influence of such a pulse becomes

∂H̃
∂φ

=
∂H̃A

∂φ
+

∂H̃F

∂φ
=

∂H̃A

∂φ
+

b0f(t)

2ε
sin θ sin(φ− φ0),

∂H̃
∂θ

=
∂H̃A

∂θ
+

∂H̃F

∂θ
=

∂H̃A

∂θ
− b0f(t)

2ε
cos θ cos(φ− φ0). (7.3)

Rewriting the LLG system of equation with the expressions (7.3) and with new dimension-
less variable τ(t)

τ(t) =
t− (t0 + ε) + 2ε

2ε
,

dτ

dt
=

1

2ε
, (7.4)

with properties
τ = 0 for t = t0 − ε,
τ = 1 for t = t0 + ε,

(7.5)

yields

1

2ε

dφ

dτ
= p

[
1

sin θ

∂H̃A

∂θ
− α

sin2 θ

∂H̃A

∂φ

]

− pb0f(t(τ))

2ε

[
cos θ

sin θ
cos δφ + α

sin δφ

sin θ

]
, (7.6)

1

2ε

dθ

dτ
= p

[
− 1

sin θ

∂H̃A

∂φ
− α

∂H̃A

∂θ

]

+
pb0f(t(τ))

2ε
[− sin δφ + α cos θ cos δφ] ,

where the new notations δφ = φ − φ0 for the angle shift and p = 1/(1 + α2) were
introduced.

We require for the pulses to be much shorter than the precessional period, i.e. ε ¿ T prec.
Hence, as it follows from equations (7.6) the effect of the anisotropy becomes negligible
during the pulse application and the dynamics of the magnetic moment can be separately
considered during the pulse application (excitation) and directly after the pulse application
(relaxation).

In the absence of the field, i.e. b0 = 0, the dynamics is only influenced by the type of
the anisotropy. For instance, for a uniaxial anisotropy

H̃U
A = −1

2
cos2 θ (7.7)
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7.1 Analytical Model

for the initial conditions φf (t = t̄0) and θf (t = t̄0) the solution is known [76, 77] and reads

φf (t) = φ(t̄0)± t− t̄0
1 + α2

± 1

α
ln

∣∣∣∣∣∣∣∣

cos θf (t̄0)

(
1 +

√
1 + tan2 θf (t̄0) · e−

2α(t−t̄0)

1+α2

)

1 + cos θf (t̄0)

∣∣∣∣∣∣∣∣
,

tan θf (t) = tan θf (t̄0) · e−
α

1+α2 (t−t̄0)
,

(7.8)

where ± refer to the area 0 < θ < π/2 or π/2 < θ < π, respectively. This solution
indicates that the magnetic moment relaxes either to θf,min1 = 0 or to θf,min2 = π.

When no field is applied and the dynamics is governed by a cubic anisotropy with energy

H̃C
A = −1

2
(cos2 φ sin2 φ sin4 θ + cos2 θ sin2 θ), (7.9)

the solution of the system

dφ

dt
= − 1

1 + α2
cos θ

(1

2
sin2 2φ sin2 θ + cos 2θ

)

+
1

4

α

1 + α2
sin2 θ sin 4φ, (7.10)

dθ

dt
=

1

4

1

1 + α2
sin3 θ sin 4φ

+
1

2

α

1 + α2
sin 2θ

(1

2
sin2 2φ sin2 θ + cos 2θ

)
,

becomes nontrivial and only in certain limiting cases like for a thin film approximation, an
analytical solution can be obtained.

Now we focus on the issue concerning the state of the magnetic moment directly after
the pulse application. The system of equations (7.6) in approximation ε ¿ T prec yields

dφ

dτ
= − 1

sin θ

b0f(t(τ))

1 + α2
[cos θ cos δφ + α sin δφ] ,

dθ

dτ
=

b0f(t(τ))

1 + α2
[− sin δφ + α cos θ cos δφ] .

(7.11)

Introducing the notations for before the pulse θ(t−), φ(t−) (t− := t0− ε) and directly after
the pulse θ(t+) and φ(t+) (t+ := t0 + ε), we demand for a stroboscopic evolution of the
magnetic moment

θ(t+) > θ(t−) ∀ t+, t−, (7.12)

which leads to switching when θ increases always upon the pulse application.
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Figure 7.1: Graphical illustration of torques exerted by a magnetic pulse for two different
angle shifts: δφ = 0 (a) and δφ = 3π/2 (b). For δφ = 3π/2 the precessional torque
becomes more favorable for switching, whereas for δφ = 0 this is the case when the
relaxation term is dominant.

Solution for δφ = 0

For a sequence of pulses (7.2) each applied with the same duration and angle shift δφi = 0
and centered at times t0,i we find from the system (7.11) the following changes of azimuthal
and polar angles

φ(t+i ) = φ(t−i )− ln

∣∣∣∣∣∣
tan

(
θ(t+i )

2

)
·
tan

(
θ(t−i )

2
+ π

4

)
+ 1

tan
(

θ(t−i )

2
+ π

4

)
− 1

∣∣∣∣∣∣
,

tan

(
θ(t+i )

2

)
=

tan
(

θ(t−i )

2
+ π

4

)
· e

αb0f(t0,i)

1+α2 − 1

tan
(

θ(t−i )

2
+ π

4

)
· e

αb0f(t0,i)

1+α2 + 1

.

(7.13)

Two features of this solution should be mentioned. The changes of θ are not uniform
and depend on the prior-pulse angle θ(t+t ). Moreover, the changes of the angles strongly
depend on damping. In particular, for low damping the switching becomes not effective
since θ is not altered. For high damping we get θ(t+i ) → π/2 and φ(t+i ) strongly depends
on θ(t−i ). For the condition dθ/dτ > 0 which enables the switching, the sign of cos θ
should be taken into account, since it is different for 0 < θ < π/2 and π/2 < θ < π.

Solution for δφ = 3π/2

Similar to the solutions for δφi = 0 one can also derive those for δφi = 3π/2

φ(t+i ) = φ(t−i ) + α ln

∣∣∣∣∣∣
tan

(
θ(t−i )

2
+ 1

2

b0f(t0,i)

1+α2

)

tan
(

θ(t−i )

2

)
∣∣∣∣∣∣
,

θ(t+i ) = θ(t−i ) +
b0f(t0,i)

1 + α2
.

(7.14)
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7.1 Analytical Model

This solution reveals totally different properties of θ variation. They are uniform and es-
sentially depend on the field strength b0 and less on damping. An additional property is
that for small α angle φ remains almost the same. In view of a very low damping parame-
ter to be measured and calculated for nanoparticles this strategy provides a quasi ballistic
switching.

Fig. 7.1 sketches the directions of the torques acting on the magnetic moment when the
pulse is applied for both δφ = 0 and δφ = 3π/2. The main feature for the δφ = 0 pulse is
that both the precessional and the relaxation terms written for the applied pulse point in the
opposite directions as compared to the relaxation motion (Fig. 3.5). Therefore, every time
the pulse is applied its precessional torque compensates for the precessional term caused
by the anisotropy and its relaxation term can compensate for the damping term in the case
of field-free motion in the case when the appropriate field strength is chosen. The situation
becomes completely different for the δφ = 3π/2 pulses. Every time when the δφ = 3π/2
pulses are applied their precessional torque acts against the field-free relaxation motion
and their damping torque is aligned parallel to the field-free precessional moment.
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Figure 7.2: Change of angle θ directly after the ith pulse as a function of δφ plotted for
different values of damping α (b0 = 0.4, θ(t−i ) = π/180, f(t0,i) = 1).
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Figure 7.3: Change of angle θ directly after the ith pulse as a function of δφ plotted for
different values of the field amplitude b0 (α = 1.0, θ(t−i ) = π/180, f(t0,i) = 1).
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Solution for general δφ

It has to be stressed that the second equation in system (7.11) can be solved exactly. We are
interested in the quantity ∆θi = θ(t+i ) − θ(t−i ) as a function of δφ which might be found
from ∣∣∣∣∣2

√
2 arctanh

[ √
1+cos 2δφi

cos δφi
(α cos δφi + sin δφi) tan θ

2√
α2 − 1 + (α2 + 1) cos 2δφi

]∣∣∣∣∣

θ(t+i )

θ(t−i )

=
b0f(t0,i)

1 + α2
·
√

α2 − 1 + (α2 + 1) cos 2δφi.

(7.15)

Fig. 7.2 shows the dependency (7.15) with a variation of damping. Due to a high moment
(see the LLG eqaution) exerted to the system one achieves a maximum positive change in
θ for δφ = 3π/2 at small α (black thin curve). The figure also supplements the fact that
the switching might be effective for δφ = 0, however, in a high damping regime.

Besides damping, the field strengths can also strongly influence the dynamics of the
magnetic moment subjected to such short magnetic pulses. Change ∆θi upon the field
strength is shown in Fig. 7.3, where for a more contrast we increased damping to α = 1.0.
For sufficiently high field amplitudes one can even obtain switching by using one single
field pulse.

A general observation from both Fig. 7.2 and Fig. 7.3 is that upon no variation of
damping or field amplitudes it is not possible to change the period of δφ, which has always
positive and negative changes of ∆θ.

An independent solution for the variation of angles θ and φ might be directly obtained
from the system (7.11) by assuming α to be zero. The solution obtained is

φ(t+i ) = φ(t−i )− cos δφ

sin δφ
ln

∣∣∣∣∣
tan

(
θ(t−i )− b0f(t0,i) sin δφ

)

sin θ(t−i )

∣∣∣∣∣ ,

θ(t+i ) = θ(t−i )− b0f(t0,i) sin δφ.

(7.16)

The solution is basically presented by the black thin curves in Fig. 7.2 and Fig. 7.3 which
clearly affirms the idea of the most effective switching for δφi = 3π/2.

Regarding the change of φ for general δφ, it becomes impossible to deduce it from equa-
tions (7.11) using the general solution (7.15). Thus, further purely analytical realization
of switching is not available and will be supported by a recursive numerical procedure
described in Subsection 7.1.2.

Critical Field Amplitudes needed for Reversal for a Sequence of Pulses with
fixed δφ

Above the shift angle δφ was addressed to mainly determine the switching behavior. Ob-
viously, the strength of the applied pulses plays a significant role for switching. Here,
we discuss the conditions under which the minimum field amplitudes can be derived.
For the steady increase of θ it is natural to demand that the change during the excitation
∆θexcit

i = θ(t+i )− θ(t−i ) is at least not less than the rate of θ decrease during the relaxation
process ∆θrelax

i = θ(t−i )− θ(t+i−1) or

∆θexcit
i ≥ |∆θrelax

i |. (7.17)
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Figure 7.4: Dependence of critical field amplitude b0cr expressed in units of the uniaxial
anisotropy field on the angle θ(t−i ) at the beginning of the pulse application for δφi = 3π/2
(a) and δφi = 0 (b). The pulses are applied with a time interval equal to the precessional
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Figure 7.5: Dependence of critical field amplitude b0cr on the angle θ(t−i ) at the beginning
of the pulse application for δφi = 3π/2 (a) and δφi = 0 (b) for α = 0.05. Pulses are
applied with various time lags τi.

The relaxation rate is known from the field-free solution contained in equation (7.8) and
can be expressed as

∆θrelax
i = arctan

(
tan(θ(t−i )) · e

ατi
1+α2

)
− θ(t−i ), (7.18)

where τi denotes the ith relaxation until the i + 1th excitation. Assuming expressions
(7.18) and (7.14) and keeping in mind the condition (7.17) we determine for the critical
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field amplitudes all applied with δφi = 3π/2

b
(δφi=3π/2)
0cr = (1 + α2)

(
arctan

(
tan(θ(t−i )) · e

ατi
1+α2

)− θ(t−i )
)
. (7.19)

In a similar manner one can find the critical fields for the pulses all applied with δφi = 0

b
(δφi=0)
0cr = − 1 + α2

α
ln

∣∣∣∣tan
(θ(t−i )

2
+

π

4

)∣∣∣∣ +

+
1 + α2

α
ln

∣∣∣∣∣∣
1 + tan(1

2
arctan (tan(θ(t−i )) · e

ατi
1+α2 ))

1− tan
(

1
2

arctan (tan(θ(t−i )) · e
ατi

1+α2 )
)

∣∣∣∣∣∣
. (7.20)

Both equation (7.19) and (7.20), i.e. the minimal field amplitudes expressed in units of
the anisotropy field and leading to switching, are plotted in Fig. 7.4. For the constant lag
time between the pulses the procedure of pulse applications with δφi = 3π/2 turns out to
be more advantageous for all values of damping since due to more effective switching the
field amplitudes to be applied have lower values. For the nonconstant time lag between the
pulses these dependencies change their forms. In particular, upon the time lag function this
may lead to either decrease or increase of minimal switching fields. Nevertheless, for the
damping chosen to be small the strategy with the pulses all applied with δφi = 3π/2 we
obtained smaller field amplitudes.

Our further numerical simulations will show that the scenario with the fixed lag time
during relaxation is valid during the stabilization of the magnetic moment in equilibrium.
This means that out of equilibrium, i.e. when the excitation is not completely balanced by
the relaxation, the time lag is not a constant.

7.1.2 Principle of controlled Switching
Based on the results obtained from the solution of the nonstochastic LLG equation we at-
tempt to demonstrate how the scheme is capable for switching (Fig. 7.6) when all short
magnetic pulses are applied with the shift angle δi = 3π/2. Starting from a given equilib-
rium state of the magnetic moment given by φ = φ(0) and θ = θ(0) the first pulse centered
at t0,1 is applied when condition φ(0) − φ0 = 3π/2 is fulfilled. Equation (7.14) yields a
condition for the tilt angle after the pulse application. Thereafter, the field-free propaga-
tion comes about according to equation (7.8) with the initial values φf (t̄0) = φ(t+1 ) and
θf (t̄0) = θ(t+1 ). Then, at the time moment t = t0,2 a second pulse is applied with the same
angle shift φf (t

+
1 + τ1) − φ0 = 3π/2. The procedure of the controlled pulse applications

is repeated until the state with θ = π/2 is reached by a subsequent relaxation to the target
state θ → π.

Figs. 7.7 and 7.8 demonstrate the described scheme for two limits of damping parame-
ter, 0.05 and 1.0, respectively. Interesting fact is that in low relaxation regime (see Fig. 7.7)
switching is observed for both angle shifts, where surprisingly for δφi = 0 the switching
occurs earlier. Switching is completely not achievable for high values of damping for the
same field strengths as for small α when δφi = π/2 (Fig. 7.8 (a)). Also in the limit of high
damping the switching occurs for δφi = 0. From these illustrations we conclude that not
only θ change after the pulse, also φ altering plays a significant role and should be taken
into account.
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7.2 Numerical Illustrations
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Figure 7.6: Evolution of θ according to the proposed control scheme and for φf (t = 0) =
π/180 = θf (t = 0), φ0 = arctan(by/bx) = 2π/3, α = 0.05, f = 1, b0 = 0.2. Inset shows
the short-time behavior (pulses are switched off for θ > π/2).
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Figure 7.7: Evolution of θ for two angle shifts δφi = 3π/2 (a) and δφi = 0 (b) and for
φf (0) = π/180, θf (0) = π/180, φ0 = π/3, α = 0.05, b0 = 0.2, f(t0,i) = 1. Insets show
the detailed motion at the beginning of the pulse application (field amplitudes enlarged x5).

7.2 Numerical Illustrations

7.2.1 Rectangular shaped magnetic Pulses

The results shown above have uncovered many interesting issues needed for the magne-
tization switching and control, the questions of pulse duration and its form together with
temperature and different anisotropy effects, however, were all not captured by the analyt-
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ical procedure. Hence, further numerical simulations are required to supplement, approve
and also extend the analytical results. The analytical results reported in Section 7.1 re-
main important since they state the range of parameters used in numerics. Concerning the
damping parameter it is known that the typical values are from 0.001 to approximately 0.05
(Chapter 4). We deliberately decide to take the maximum of these values to speed up the
relaxation process.

The numerical stochastic LLG was implemented according to the description given in
Chapters 5 and 6. Further details can be found in [128].

In this subsection we choose rectangular shaped short magnetic pulses having a duration
TR for which we can write

bR
0 (t) =

{
bR
0 (cos φ0ex + sin φ0ey), t0 − TR < t < t0 + TR

0, elsewhere.
(7.21)

Duration of the Pulses

To decide which duration of the pulses is the most appropriate for the scheme proposed
we numerically model switching starting from a state θ → 0 (see Fig. 7.9). All pulses are
applied at zero Kelvin when the φ-angles of the magnetic moment and of the field differ
in 3π/2 (both (a) cases in Fig. 7.7 and 7.8). In particular, a very effective way to apply
pulses is when a certain balance between the strength and the duration of the pulse is set,
which is the case for TR = T prec/6. Additional feature is that when reaching equilibrium
between the relaxation and the excitation a magnetic moment stabilization (θ stabilization)
is achievable. DC or AC continuous magnetic fields mentioned in Chapter 6 are not capable
to provide such a stabilization, to the knowledge of the author. Figures 7.4 and 7.5 (both (a)
cases) depict the reason for the stabilization: Choosing a certain constant field amplitude
it is enough to reach further state where this field lies higher than the critical one. At
the crossing of the critical fields curve with the chosen field the balance in the relaxation
and excitation sets in and for the magnetic moment it means a spacial θ stabilization. As
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Figure 7.8: Evolution of θ for two angle shifts δφi = 3π/2 (a) and δφi = 0 (b) and for
φf (0) = π/180, θf (0) = π/180, φ0 = π/3, α = 1.0, b0 = 0.2, f(t0,i) = 1.
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7.2 Numerical Illustrations

inferred from Fig. 7.9 the magnetic moment can be well controlled for the durations below
T prec and no special pulse duration tuning is required as long as the duration is shorter than
the precessional period.

For the later results we choose the duration of TR < T prec/100 to avoid an overlapping
of the pulses.
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Figure 7.9: θ(t) for different pulse durations. The pulses are shown as solid rectangles.
T prec is the precessional period and b0 = 0.3, α = 0.05.

Controlled Switching

When an exact control is required to achieve switching what will happen when only the
first pulse is applied with a fixed angle shift and the rest with an arbitrary angle shift?
This question is relevant for an experimental realization of this scheme. This point we
address by simulating the evolution of θ of the magnetic moment subjected to short pulses
when all the pulses are applied strictly with δφi = 3π/2 (Fig. 7.10 (a)) and only the first
pulse is strictly followed to this scheme, i.e. δφ1 = 3π/2 (Fig. 7.10 (b)). Obviously,
when the magnetic moment is not controlled no switching can be seen regardless of the
strength of the fields applied. Only a small θ-stabilization is reached around a certain
θ. At the same time, for a strict control we observe both the θ-stabilization (amplitudes
below b0 = 10) and the switching for higher amplitudes. Similar behavior concerning
the control properties is observable from Fig. 7.11 where the angle difference was fixed
at δφ = 0. However, θ stabilization is only obtained for the smallest field amplitude
and further increase in fields resulted in switching. These findings are consistent with the
analytical one for δφ = 0 (compare Fig. 7.8). This behavior is explained due to the change
which the angle φ experiences directly after the pulse for δφ = 0 (equation (7.13)): After
the pulse application the condition where δφ = 0 is reached earlier than for δφ = 3π/2.
Hence, switching occurs on the time scale of several and not as in the case of δφ = 3π/2
ten precessional periods.
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time the rectangular pulses are applied when δφi = 3π/2 (a); Only the first pulse is applied
when δφ1 = 3π/2, the rest after a time lag of the precessional period (b). Other parameters
are: α = 0.05, T0 = 0K.

The representation which is chosen for the θ evolution turns out to be universal for various
systems in so far as θ is expressed in radians and time in units of the precessional pe-
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δφ1 = 0, the rest after a time lag of the precessional period (b). Other parameters are:
α = 0.05, T0 = 0K.
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7.2 Numerical Illustrations

riod. In this respect the only parameter which can influence the dynamics of such systems
in reduced dimensions is damping, which is dimensionless as well. Co-nanoparticles are
therefore modeled in a similar way as FePt. Damping was taken as α = 0.25 and further
parameters were extracted from [79]. The statement that only damping significantly influ-
ences the dynamics in such representation is clearly illustrated in Fig. 7.12. Compared to
the simulations made on Fe50Pt50-nanoparticles switching demands higher pulse strengths,
since the magnetic moment faster relaxes to the original state.
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Figure 7.12: Evolution of angle θ for a Co-nanoparticle for δφi = 3π/2 and different field
strengths. Other parameters are: α = 0.25, T0 = 0K.

Temperature effects we illustrate in Figures 7.13 and 7.14. Since the time scale of exci-
tation is comparable with that of thermal fluctuations no observable changes can be seen
during the application of a pulse. Temperature causes changes of the relaxation. More
attention should be paid to the relaxation process. In particular, as inferred from Fig. 7.13
(b) the application of pulses should be performed for angles higher than π/2, since thermal
fluctuations may drive the magnetic moment back to the initial state.

A shown comparison of the analytical and fully numerical results of stabilization and
switching demonstrated in figures 7.7, 7.8 and 7.10, 7.11 yields different amplitudes of the
applied fields needed for switching. However, this discrepancy can be explained due to a
time-dependent analytical field amplitude. Hence, the following time integrals should be
compared: Analytically ∫ ∞

−∞

b0

2ε
dt = b0

∫ 1

0

2ε

2ε
dτ = b0

and numerically ∫ ∞

−∞
bR
0 dt =

∫ t+i

t−i

bR
0 dt = bR

0 (t+i − t−i ),
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Figure 7.13: Temperature-dependent evolution of angle θ for δφi = 3π/2 (a) and δφi = 0
(b). The pulses are applied only when θ < π/2. Other parameters are: α = 0.05, bR

0 =
14.77.

from those the relation between the amplitudes can be found as

bR
0 =

b0

t+i − t−i
. (7.22)

Using equation (7.19) and Fig. 7.4 we find a critical field for e.g. δφi = 3π/2, α = 0.05 to
be equal to b0cr = 0.05. The numerical value corresponding to it, according to expression
(7.21), is 0.05/(6/1000) ≈ 8.3. Starting from approximately this value the numerical
switching occurs, however, on much longer time scale (see Fig. 7.10).

Magnetization Freezing

θ stabilization or freezing was depicted in Fig. 7.11 for bR
0 = 2.95 for which the φ

stabilization for short periods is shown in Fig. 7.15. Stabilization of both angles θ and φ
was not, however, achieved.

Thermal-Assisted controlled Switching

Field-assisted magnetization freezing can be used for fast field-assisted thermal switching.
First, the magnetic moment is finely stabilized near the state θ ≈ π/2 (Fig. 7.16). Tem-
peratures on this time scale is unable to switch the magnetic moment as inset of Fig. 7.16
reveals. The presence of the field at finite temperatures assists a fast magnetization rever-
sal. This effect is achievable only within a stabilization procedure. Such a thermal-assisted
switching can be used for fast temperature monitoring as a thermal sensor.
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Figure 7.14: Temperature-dependent evolution of angle θ for δφi = 3π/2 (a) and δφi = 0
(b). The pulses are applied even when θ > π/2. Other parameters are: α = 0.05, bR

0 =
14.77.

Some Aspects for Nanoparticles with a cubic Anisotropy

The present scheme can also be extended for the case of a cubic anisotropy. As was pointed
out in Chapter 2 a crystal with a cubic anisotropy possess more than two stable orientations.
Hence, switching can be defined either as a reversal from a parallel to the antiparallel
state or as a change of the magnetization from one stable orientation to another one. We
understand under switching the second scenario which is demonstrated in Fig. 7.17. Black
curve shows a relaxation from a state close to the energy minimum. Increasing the field
amplitude and applying the pulses for δφ = 3π/2 the neighbor state is populated (green
curve). Further increase of the field strength results in the switching close to the antiparallel
states (cyan curve).

It can also be shown that the effect of magnetization freezing functions in the case of a
cubic anisotropy. As was shown in [134] the stabilization within the present scheme can
be realized by freezing the magnetic moment on the top of the potential barrier.

7.2.2 Gaussian shaped magnetic Pulses

Final issue which is to be addressed in this section is another form of the pulses. Pulses of
a Gaussian-like form (f(t) = 2ε e−(t−t0)2/T 2 in equation (7.2)) applied in the XY -plain

bG
0 (t) = bG

0 e−
(t−t0)2

T2 (cos φ0 ex + sin φ0 ey), (7.23)

and having the following absolute values in units of rectangular-like pulses

bG
0 = bR

0

t+i − t−i√
πT

(7.24)
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0 = 2.95. This figure indicates the φ stabilization. The
short pulses are shown as pink straight lines having the same amplitude.

are useful for the magnetization stabilization and switching as Fig. 7.18 clearly shows.
One should remark here that the main attention was focused on a very short pulses for
which independently of their form the dynamics is the same (for the durations shorter than
the precessional period, Fig. 7.18).

7.3 Discussion

The analytical and numerical results demonstrated in this chapter stated the usefulness of
the scheme where two perpendicular magnetic fields with a duration shorter than the pre-
cessional period can be used for the magnetization switching and its stabilization (freez-
ing). The requirement of the pulse shortness is insofar important since it provides a rapid
excitation of the system to a certain state with a subsequent relaxation on a much longer
time scale. Mathematically, the short excitation enabled to decouple the LLG equation giv-
ing rise to a variety of analytical predictions. These are the dependencies of the θ changes
on the angle shift δφ (figures 7.2 and 7.3), critical field amplitudes for a constant (Fig.
7.4) and a changing (Fig. 7.5) lag time during the relaxation. Full numerical simulations
extended for finite temperatures confirmed quantitatively and qualitatively the analytical
results and supplemented them in questions of the pulse form and the duration variations
as well as for a cubic anisotropy.

The results presented in this chapter contrasted two limiting cases of the angle shift be-
tween the magnetic moment and the field, namely δφ = 0 and δφ = 3π/2. As inferred
from Fig. 7.1 the main difference consists in various torques that are exerted on the mag-
netic moment during the application of the magnetic pulses with given δφ. In particular,
for δφ = 3π/2 the switching is realized easier since the torque acting towards the target
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Figure 7.16: Thermal-assisted controlled switching in the presence of short pulses with an
amplitude b0 = 8.86. Inset shows that switching is not possible for b0 = 0.

state (negative Z in Fig. 7.1) is not damping-dependent and is only a function of the pulse
field strength (equation (7.14)). Additionally, we have also demonstrated the effect of θ
freezing (Fig. 7.10, e.g.) which was realized for the δφ = 3π/2 pulses.

The δφ = 0 pulses are interesting since they allow for the φ freezing (Fig. 7.15). Switch-
ing is realizable within these angle shifts as well.

The scheme proposed in this chapter also allowed for thermally assisted switching. As
demonstrated in Fig. 7.16 it is enough to steer the magnetic moment to a state in the vicin-
ity of θ = π/2 and then thermal fluctuations can cause switching. Note that this scenario is
realizable due to a strong control of the magnetization. The control becomes possible since
the time scale of the pulse changes is nearly the same as that for thermal fluctuations.
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cessional period. Applied pulses are shown as solid bell-shaped curves. Other parameters
are: bG
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8 Concluding Remarks and future
Perspectives

8.1 Summary

The stochastic LLG equation provides a powerful tool for studying the magnetization dy-
namics. The main advantage of the LLG equation is that it explicitly highlights and allows
us to separately study the main sources of the magnetization perturbations, namely the
precessional motion, the relaxation motion and the thermal fluctuations. Additionally, the
effect of the spin-torque can be taken into account by adding the torque induced term (see
the next section of this chapter). This would not be possible using the MC method pre-
sented in Chapter 3, whereas the FP equation could lead to a highly complicated solutions.
Another advantage of the LLG is that it yields the magnetization properties for all mo-
ments of the time propagation. This makes the LLG very powerful for the investigation
of the control properties. As shown in Chapter 7, for sufficiently short magnetic pulses
the LLG allows for a direct comparison of the analytical and the numerical predictions.
Furthermore, one can state that only using the stochastic LLG equation the effects of con-
trolled switching, θ or φ freezing and thermal assisted switching can be studied.

The main disadvantage of the stochastic LLG equation is that it does not allow for high
steps in time propagation. By increasing the time steps wrong physical results may be ob-
tained. This disadvantage results in a high computational time when the numerical results
should be compared with the experimental data especially for the experiments with high
measuring times like SQUID. However, even for continuous magnetic fields we used the
stochastic LLG since it allowed for a flexible tuning of the damping. Additionally, the
dynamics in the presence of the oscillating continuous fields could be compared directly
with that for the static fields.

The main purpose of this study is the investigations of controlled dynamics of the mag-
netic moment of a ferromagnetic nanoparticle within the possible shortest times by ap-
plying as small excitations as possible. In Chapter 1 we specified the total energy of a
ferromagnetic nanoparticle and identified the relevant parts.

To this end we assumed that nanoparticles considered are isolated. This excluded the
dipole-dipole interactions. The size of ferromagnetic nanoparticles was from several to
hundred nanometers. The high magnetic anisotropy energies known in particular for FePt
alloys make the nanoparticles stable against thermal excitations which might lead to super-
paramagnetism. The small size of the nanoparticles leads to further simplifications in the
total energy. Since a noncollective motion of the spins within the particle entails too much
of the exchange energy, its contributions become negligible (Stoner-particle).

The classical spin dynamics is justified by the huge value of the magnetic moment.
Effects of thermal fluctuations for the nanoparticles are important and should be taken

into account as we demonstrated by explicit calculations.
Both the continuous and the pulsed magnetic fields enabled switching. However, the
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application of the continuous and the pulsed magnetic fields resulted in different critical
field amplitudes and different reversal times. In case of static fields the switching occurred
on the cost of the reversal time, allowing thus for a relatively low switching fields around
the SW limit for the static fields. The reversal times are some nanoseconds. Application
of oscillating fields resulted in the reduction of switching fields up to ten times and the
lowering of switching times. This was due to the resonant absorption of the energy of the
oscillating field. The effect of temperatures modified strongly the critical static fields and
their reversal times.

Switching with magnetic pulses occurred within ten to twenty precessional periods,
i.e. around several tens of picoseconds for Fe50Pt50-nanoparticles. Temperatures do not
strongly modify the magnetization dynamics since the time scales of excitations and ther-
mal fluctuations are approximately the same.

Pulsed magnetic excitations revealed a more transparent analytical scheme and estab-
lished besides the switching the effects of magnetization freezing around a certain direction
and the effect of thermal-assisted switching. The freezing effect was due to a controlled
balance in the excitation and the relaxation energies. Although the effects of θ and φ freez-
ing were separately demonstrated, the complete freezing or fixing of the magnetization was
not achieved.

The effect of thermal-assisted switching is only due to the controlled excitation of the
magnetization and is not observable for continuous fields.

8.2 Perspectives for future Studies

8.2.1 Spin-Torque Effect

Independently Slonczewski [119] and Berger [120] both predicted that a spin-polarized
electric current flowing into a ferromagnetic layer can exert a torque on the magnetization.
This effect is known as a spin-torque transfer. The nature of it is the s−d exchange interac-
tion [135] between the 4s itinerant electrons and the 3d localized electrons of the ferromag-
net [120]. Usually, it is assumed that the current propagates perpendicularly to the interface
of the metallic and ferromagnetic layers (Current Perpendicular Plane, CPP). However, for
the effect to be observable realtively high current densities are required (> 107 A/cm2)
[136, 137]. For such current densities flowing through the ferromagnet a current induced
magnetization switching is expected to occur.

Experimental Observations

Inspired by the predictions of Slonczewski and Berger a number of experiments have been
done in order to evidence the spin-torque effect. An experimental setup of one of the first
of such experiments [138] is sketched in Fig. 8.1 (a). A thin ferromagnetic layer of cobalt
(Co1) is separated from another thick ferromagnetic cobalt layer (Co2) by a copper (Cu)
spacer. All lengths of the layers including the diameter of the pillar are of the order of
some nanometers to provide a high current density. The orientation of the magnetization in
this experiment can be detected via the GMR effect [139, 140] for the Co1/Cu/Co2 trilayer
system. For a negative bias between the electrodes the direction of the current is stabilized
from the thick layer with a fixed magnetization to the thin layer with a free magnetization.
The magnetization of the Co1 layer is then aligned parallel to that of the second ferromag-
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Figure 8.1: (a) Experimental setup for measurement of the current-induced switching in a
pillar system described in Ref. [138]. (b) dV/dI(I) measurements obtained via the GMR
effect [138].

netic layer (see dV/dI-curve of Fig. 8.1 (b)). For a negative bias the parallel orientation
changes to the antiparallel one and dV/dI increases. The hysteresis like behavior depicted
on the dV/dI-curve demonstrates that the magnetization of the free layer switches back
upon decreasing the current.

Oersted fields created by moving electrons of the current might be responsible for the
switching. However, these fields have a wrong symmetry and favor a vortex-like magne-
tization state with a helicity depending on the current direction. Hence, this experiment
manifests a new way of magnetization switching via spin-polarized currents.

Microscopic Origin of the Effect

In order to understand the microscopic origin of the spin torque let us consider a nonmag-
netic and a ferromagnetic layers connected together as illustrated in Fig. 8.2. We also
assume the spin quantization axis to be parallel to the magnetization of the ferromagnet
(Z-direction). Then, in the nonmagnetic film the normalized wave function of an electron
whose spin points in an arbitrary direction with angles θ and φ can be written using the
rotation matrix [141] as a superposition of spin up (↑) and spin down (↓) states

ψin = eikxx
[
cos

θ

2
e−i φ

2 | ↑> + sin
θ

2
ei φ

2 | ↓>
]
. (8.1)

kx denotes the wave vector along the X-direction. We have also assumed the direction of
the incident electron to be perpendicular to the interface. For simplicity, φ is set to zero
since in experiments the shape anisotropy causes altering of the magnetization in the plane
of the film. In contrast to the studies reported in [119, 120] and based on the s−d exchange
interaction model a more simple physical problem is considered here. The consideration is
based on the Stoner model which tells that there is an exchange splitting ∆ for an electron
in the ferromagnetic layer. The splitting shifts the down electron states higher in energy
than the up electrons. Hence, the physical properties can be modeled as a simple scattering
problem from a rectangular potential displayed in Fig. 8.2 (below). Thus, the transmitted
and reflected parts of the scattered wave function for spin up (t↑, r↑) and spin down (t↓, r↓)
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configurations read [142]

ψtrans = eikxx
[
t↑ cos

θ

2
| ↑> +t↓ sin

θ

2
| ↓>

]
,

ψref = eikxx
[
r↑ cos

θ

2
| ↑> +r↓ sin

θ

2
| ↓>

]
, (8.2)

or for the case when wave functions and their derivatives of the both layers are equal at the
interface [143]

ψtrans = eik↑x cos
θ

2
| ↑> +eik↓x sin

θ

2
| ↓>,

ψref = e−ikx sin
θ

2
| ↓> . (8.3)

New variables are k↑ = kx = k and k↓ =
√

2m(E −∆)/~ with E = ~2k2/(2m) and m
to be the electron mass.

To calculate the torque exerted on the localized magnetic moment S by a single itinerant
electron the spin current density should first be defined [143]

Q =
~2

2m
Im(ψ∗σ ⊗∇ψ), (8.4)

where σ denotes the pauli matrices σx, σy and σz and ⊗ stands for the outer product. As
can be seen from this definition Q is a tensor.

For a normalized spinor plane-wave wave-function of the form

ψ = eikx
[
a| ↑> +b| ↓>

]
(8.5)

the components of the current density for an x spatial and the three x, y, z spin directions
are

Qxx =
~2k

2m
2Re(ab∗),

Qxy =
~2k

2m
2Im(ab∗), (8.6)

Qxz =
~2k

2m
(|a|2 − |b|2).

Using expressions (8.6) the spatial components x̂, ŷ, ẑ of Q transform to

Qin =
~2k

2m

[
sin θ x̂ + cos θ ẑ

]
,

Qtrans =
~2

2m
sin θ

2kk↓
k + k↓

(
cos[(k↑ − k↓)x] x̂ + sin[(k↑ − k↓)x] ŷ

)

+
~2

2m
k↓

(
cos2 θ

2
−

(
2k

k + k↓

)2

sin2 θ

2

)
ẑ, (8.7)

Qref =
~2

2m
k

(
k − k↓
k + k↓

)2

ẑ.
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Figure 8.2: Incident spin wave is shown for a single electron having a spin projection with
θ and φ on the X , Y , Z axes. The nonmagnetic metallic layer is denoted with blue color
(NM) and the ferromagnetic layer is shown in gray (FM).

Finally, since the total angular momentum is conserved the torque exerted on the volume
near the interface can be determined as a net flux of the nonequilibrium current density

NST = −
∫

surface

d2R n̂ ·Q = A x̂ (Qin + Qrefl −Qtrans), (8.8)

where A is the area of the ferromagnet on which the torque is exerted. The last equation
simply means that the torque NST is equal to the incoming flux QinA x̂ minus the outgoing
flux QtransA x̂ and QrefA x̂.

Transmitted and reflected current densities summed over all states on the Fermi surface
are collinear with the magnetic moment of the ferromagnetic layer. Thus, the origin of the
spin-torque effect is the absorption of the transverse spin current density on the interface
[142] and

NST ≈ A x̂ ·Qin⊥ = A
~2k

2m
sin θ x̂. (8.9)

sin θ entering the equation (8.9) is indeed proportional to the double vector product of the
itinerant and localized magnetic moment directions. Using the notation Se as the polariza-
tion of the incoming electrons and S as the magnetic moment of the localized magnetic
moment, the change of S is (with coefficients assumed in [68, 144])

(
dS

dt

)

ST

= γ
β

1 + ηS · Se

[
S × [S × Se]

]
, (8.10)

where γ is a gyromagnetic ratio and β, η are model dependent dimensionless parameters;
current or current density enters in β (for details see [145]).
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8 Concluding Remarks and future Perspectives
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Figure 8.3: Demonstration of the torque directions exerted on the magnetization by a spin-
current. Direction of the torque strongly depends on the direction of the current. The gray
arrow indicates the situation for a negative current. The green arrow shows in turn the
torque for a positive current.

Current-induced Magnetization Dynamics

Due to the fact that torques acting on the magnetic moment are additive quantities we can
simply add the spin-torque term to the LLG equation (3.28). For the resulting equation we
have

dS

dt
= − γ

1 + α2

[
S ×Heff

]− αγ

1 + α2

[
S × [

S ×Heff
]]

+γ
β

1 + ηS · Se

[
S× [S × Se]

]
.

(8.11)
Each term of this equation is illustrated in Fig. 8.3. The precessional motion is weakly
affected by the spin-torque term. The relaxation motion in turn can be fully compensated
by the current induced torque. In case when the spin-torque term has a positive current
(I > 0) and is higher than the relaxation in the system, then the current-induced switching
can take place.

Interesting dynamical properties arise when applying the proposed scheme for ultra short
magnetic pulses (Chapter 7) for spin currents alone or combined with ultrashort magnetic
pulses.

Despite the similar geometrical structure of the damping and the spin-torque terms they
are different. In particular, the effective field around which the magnetic moment precesses
changes upon temperature fluctuations or anisotropy contributions, whereas the orienta-
tions of Se is fixed. Interesting behavior is expected for the case when the damping and
the spin torques are compensated.

Considering an extension of the calculations proposed here, equation (8.11) can also be
applied for continuous media to study the effect of spin torque on the propagation of do-
main walls. Despite a huge amount of recent works in this area [146–149], to name but a
few, the proposed scheme for ultrashort spin-torque pulses can also be used for studying
the domain walls propagation. This becomes exciting in view of existing experiments for
spin-torques pulses [150–152]. Interesting is the application of this approach to studying
the magnetization dynamics of small objects (nanoislands) in the vicinity of the blocking
temperature (see experiments reported in [153]).
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[41] L. Néel. Influence des fluctuations thermiques sur l’aimantation de grains ferro-
magnétiques très fins. Compt. Rend. Acad. Scien., 228:664–666, 1949.

[42] L. Néel. Some theoretical Aspects of Rock-Magnetism. Adv. Phys., 4:191–243,
1955.

[43] W. F. Brown. Thermal Fluctuations of a Single-Domain Particle. Phys. Rev.,
130:1677–1686, 1963.

[44] L. D. Landau and E. M. Lifshitz. Statistical Physics, volume 5. Elsevier, Amster-
dam, 3rd edition, 2007.

[45] F. Reif. Statistische Physik und Theorie der Wärme. Walter de Gruyter, Berlin, 3rd
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