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Abstract 

Due to a large amount of data collected in genetic evaluation systems, it is clear that the 

presence of errors is nearly inevitable, therefore, outliers or abnormal test-day (TD) yields 

are common in production data of dairy cattle. Such abnormal measurements may 

adversely affect genetic evaluation if not accounted for properly. Thus, appropriate 

quantitative tools have to be devised for detecting and treating outliers. The examination of 

residuals is one of the earliest methods proposed for detecting outliers. Scaling the 

residuals by dividing by standard error is an alternative in the situation that they have 

different variances.  

For the purpose of this study, two different treatment schemes, discarding and adjusting 

of outliers have been implemented prior to variance component estimation using a fixed 

regression TD model. Each of the two treating schemes were applied to three different 

regression procedures; simple (SR), robust (RR) and local regressions with both linear 

(LR1) and quadratic (LR2) polynomial degrees, to remove or to reduce the effects of TD 

records that are labelled as outliers. In order to do the discarding scheme, various 

percentage of outlying TD records (0.1, 0.2, 0.4, 0.8, 1.6, 3.2 and 6.4%) which represented 

the highest values of either absolute residual (ABSR) or absolute standardized residual 

(ASTAR) have been excluded. 

The adjusting procedure consisted of estimating residuals from each three regression 

estimation procedures, computing the standard deviation for each cow, and restricting the 

outlier residuals to be within k standard deviations (SD). Thus, a new observation (=k×SD) 

was created for use in the genetic evaluation.  

The objectives were to compare three regression procedures applied to 111,599 TD milk 

yield records of 11,620 German Holstein cows and to determine the impact of treating 

outlying milk records on numbers and distributions of outliers, mean of absolute residuals 

(MAR), mean of squared residuals (MSR), standard deviation of residuals (SDR), variance 
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components, genetic and non-genetic parameters, mean estimated breeding values 

(MEBV) and rankings of animals. Results were compared to the original dataset with any 

kind of manipulation. Milk yields in the first lactations were analysed by the model that 

included the fixed factors of herd-year-season of calving, herd-test-date effect, fixed 

regression coefficients of the Ali and Schaeffer function (1987) for days in milk (DIM) and 

random effects of animal and permanent environment. 

Preliminary analyses showed both the existence of outliers in the data and dissimilarity 

between distributions of outliers across regressions and schemes. Relative frequency of outliers 

indicated that more abnormalities occurred at a specified stage of lactation depending on  the 

regression technique. However, SR and RR showed a different pattern from local regressions 

(i.e. LR1 and LR2) where the low outliers were less than 50% of total outlying records. By 

using ASTAR instead of ABSR, the residual terms MAR, MSR and SDR more slowly 

decreased but ASTAR represented less dependency on DIM and production level.  

In all cases, both phenotypic and error variances decreased with increasing number of 

outliers depending on the method and percentage of treated outliers. Adjusting of outliers 

less affected the MEBV of animals than discarding them, and cows displayed more 

fluctuations in MEBV than bulls. Rankings of top one hundred bulls and cows did not differ 

much in comparison with complete data. According to the results of this research, the RR 

method seemed to be preferred over the methods SR, LR1 or LR2 because it affects a 

smaller proportion of treated data. The findings of the current study also suggest that the 

effectiveness of each regression procedure in detection of outliers is a function of goodness 

of method-fitting to the data and incidence frequency of outliers during lactation.  

Though the results of residual criteria did not show any strong evidence to determine 

the proper coefficient k for each treating scheme, the model performance was generally 

improved using both discarding and adjusting methods. However according to the results, 

especially based on standard deviation of additive genetic and permanent environment 

parameters, discarding 0.4% to 0.8% and adjusting about 1% to 5% outliers are 

recommended depending on the regression method. Selection of the best coefficient (k) 

highly depends on the data set, model, regression strategy and definition of limitations for 

high and low TD yields whether discarding or adjusting schemes are applied.  

Dealing with outlying records contains two main parts. The first is detection of outliers 

using a suitable model, and the second is treating them through either discarding or adjusting 

approaches by determining limits for low and high boundaries. If the model does not 

accurately fit the data or limitations are not correctly defined, some data will incorrectly be 

defined as outliers as well as some outliers will not be detected.  



Acknowledgments 

 
 

 

 

 

 

When it comes to the time to write this page, it would not be easy to enumerate all of the 

support that I have received throughout my research. I am sure that without many of the 

people, the thesis completion would not have become a reality.  

Foremost, I would like to express my sincere gratitude to my advisor Prof. Dr. Hermann 

H. Swalve for offering this exciting project, for providing data, for the continuous support of 

my PhD study, and for his patience, motivation, enthusiasm, and immense knowledge. It has 

been both a pleasure and honour to share with him ideas and meaningful discussions on many 

subjects related to my research and program of study over last four years.   

Besides my advisor, I would like to thank the rest of my thesis committee members: Prof. 

Dr. Lutz Schüler and PD. Dr. Sven König for their encouragement, insightful comments, and 

useful questions. Their guidance helped me to improve my thesis and to complete my studies. 

My deepest thanks to Ms. Dr. Monika Wensch-Dorendorf for helping me to analyze the 

data sets under Linux operation system. I would also like to thank Prof. Dr. Strandén for 

posting his papers from Agrifood Research Center, Finland. This was a great help.  

Additionally, I must also thank Dr. Nobert Mielenz for helping me with statistical 

problems. In particular, I am grateful to Ms. Dr. Renate Schafberg for supporting me when I 

arrived in Halle\Saale. I will never forget your kindness towards me and my wife. 

I want to thank Ms. Heike Braunsdorff, librarian of the Institute, for her help and guidance 

in finding the needed literatures. I wish to thank Ms. Dr. Kerstin Brügemann who paid 

attention to me whenever I needed.  

This thesis would not be possible without support of my wife, Atefeh who has supported me 

through the completion of my degree. Thank you for your love, encouragement and 

providing this opportunity.   

Last but by no means least, I especially appreciate Dr. Joachim Wussow whose help and 

support makes me remember forever. 



 iv 

List of Contents 

 
 
 
 

1. Introduction ........................................................................................................................ 1 

1.1. Outliers problem with milk yield records .................................................................................. 1 

1.2. The study purposes..................................................................................................................... 3 

2. Literature review................................................................................................................. 4 

2.1. Outlier definitions ...................................................................................................................... 5 

2.2. Sources of outliers...................................................................................................................... 5 

2.2.1. Measurement or recording errors...................................................................................... 5 

2.2.2. Incorrect distributional assumptions ................................................................................. 6 

2.2.3. Structure within the data.................................................................................................... 6 

2.2.4. Execution error .................................................................................................................. 6 

2.2.5. Inherent variability ............................................................................................................ 6 

2.3. Classification of outlier detection methods................................................................................ 7 

2.4. Univariate outlier detection methods ......................................................................................... 7 

2.4.1. Scoring of residuals ........................................................................................................... 7 

2.4.2. Scatter plots ....................................................................................................................... 7 

2.4.3. Box Plot.............................................................................................................................. 8 

2.5. Obtrusive effects of outliers on regression analysis................................................................... 9 

2.6. Multivariate outlier detection methods in regression analysis ................................................... 9 

2.6.1 The y- Outliers and their detection .................................................................................... 10 

2.6.1.1. Residuals.................................................................................................................................10 

2.6.1.2. Standardized residuals............................................................................................................12 

2.6.2. The x- outliers or leverage points and their detection ...................................................... 12 

2.6.2.1 Studentized residuals ...............................................................................................................12 

2.6.2.2. Hat matrix...............................................................................................................................13 

2.6.3. The x-y outliers or influence points and their detection ................................................... 13 

2.7. Statistical test for presence of outliers...................................................................................... 14 

2.8. Deal with outliers: discarding or adjusting .............................................................................. 15 

2.9. Ordinary Least Squares, Robust and Local Regressions.......................................................... 16 

2.9.1 Ordinary Least Squares method ....................................................................................... 16 

2.9.2 Robust regression method ................................................................................................. 17 

2.9.3. Local Regression method ................................................................................................. 18 



 v 

3. Materials and methods ..................................................................................................... 21 

3.1. Data .......................................................................................................................................... 21 

3.2. Methods.................................................................................................................................... 22 

3.2.1. Tests to determine the existence of outliers...................................................................... 22 

3.2.2. Methods to detect outliers ................................................................................................ 22 

3.2.3. Schemes to treat outliers .................................................................................................. 23 

3.3. Model ....................................................................................................................................... 24 

3.4. Comparisons............................................................................................................................. 27 

4. Results ............................................................................................................................... 28 

4.1. Tests for determining the existence of outliers ........................................................................ 28 

4.2. Checking the fit of the models ................................................................................................. 32 

4.3. The distribution frequency of outliers...................................................................................... 35 

4.4. Counting outliers per lactations ............................................................................................... 40 

4.5. Impact on residual criteria........................................................................................................ 44 

4.6. Impact on variance components and standard deviations ........................................................ 51 

4.7.  Impact on breeding values and ranking of top animals........................................................... 54 

5. Discussion ......................................................................................................................... 60 

5.1. Tests for determining the existence of outliers ........................................................................ 61 

5.2. Checking the fit of the models ................................................................................................. 62 

5.3. The distribution frequency of outliers...................................................................................... 63 

5.4. Counting outliers per lactations ............................................................................................... 65 

5.5. Impact on residual criteria........................................................................................................ 66 

5.6. Impact on variance components and standard deviations ........................................................ 68 

5.7. Impact on breeding values and ranking of top animals............................................................ 69 

5.8. Comparison between treating schemes .................................................................................... 70 

5.9. Comparison between regression methods.................................................................................. 72 

5.10. Reword ................................................................................................................................... 77 

6. Conclusion ........................................................................................................................ 80 

7. Zusammenfassung............................................................................................................ 82 

8. References ......................................................................................................................... 85 



 vi 

List of Tables 

 

 
 
 
 
 

Table  3.1: Structure of the data. .............................................................................................. 21 

Table  3.2: Mean and standard deviation (SD) of TD yields and days in milk by test numbers.... 22 

Table  4.1: Percentage of outliers detected by ASTAR, STUR and PRESSR and PRESS. ..... 30 

Table  4.2: Mean, SD, Min and Max values for various residuals and statistics resulting from SR. 31 

Table  4.3: Correlations between TD records and residual statistics for various regressions. . 33 

Table  4.4: Distribution of outliers detected (in percent) using the discarding scheme (ABSR 

or ASTAR) during lactation (DIM) for different regression methods. ................................... 37 

Table  4.5: Distribution of outliers detected (in percent) using the adjusting scheme during 

lactation (DIM) for different regression methods. .................................................................. 37 

Table  4.6: Distribution of outliers detected (in percent) using the discarding scheme (ABSR 

or ASTAR) per various TD milk yield levels for different regression methods. .................... 37 

Table  4.7: Distribution of outliers detected (in percent) using the adjusting scheme per 

various TD milk yield levels for different regression methods............................................... 37 

Table  4.8: The number of outlying TD (TD no.), no. of lactations with at least one outlying 

TD (Lactation), percentage of low outliers (Low), percentage of lactations with a single 

outlying TD (Single) and the number of lactations with one to eight outlying TD (TD1, 

TD2,..,TD8),  by various percentages (Percent) for the discarding scheme using ABSR 

applied to different regressions. .............................................................................................. 41 

Table  4.9: The number of outlying TD (TD no.), no. of lactations with at least one outlying 

TD (Lactation), percentage of low outliers (Low), percentage of lactations with a single 

outlying TD (Single) and the number of lactations with one to eight outlying TD (TD1, 

TD2,..,TD8),  by various percentages (Percent) for the discarding scheme using ASTAR 

applied to different regressions. .............................................................................................. 42 

Table  4.10: The number of outlying TD (TD no.), no. of lactations with at least one outlying 

TD (Lactation), percentage of low outliers (Low), percentage of lactations with a single 

outlying TD (Single) and the number of lactations with one to eight outlying TD (TD1, 

TD2,..,TD4), by various percentage (Percent) for the adjusting scheme applied to different 

regressions and coefficients (k). .............................................................................................. 43 



 vii 

Table  4.11: Milk production average (MPA), mean of absolute residuals (MAR), mean of 

squared residuals (MSR), standard deviation of residuals (SDR), variance components (Va, 

Vpe, Vp and Ve) and their ratios (h2, c2 and e2) and standard errors (SE) and mean log 

likelihood (MLL) from different regressions for discarding scheme using ABSR................. 46 

Table  4.12: Milk production average (MPA), mean of absolute residuals (MAR), mean of 

squared residuals (MSR), standard deviation of residuals (SDR), variance components (Va, 

Vpe, Vp and Ve) and their ratios (h2, c2 and e2) and standard errors (SE) and mean log 

likelihood (MLL) from different regressions for discarding scheme using ASTAR. ............. 47 

Table  4.13: Milk production average (MPA), mean of absolute residuals (MAR), mean of 

squared residuals (MSR), standard deviation of residuals (SDR), variance components (Va, 

Vpe, Vp and Ve) and their ratios (h2, c2 and e2) and standard errors (SE) and mean log 

likelihood (MLL) from SR and RR for adjusting scheme....................................................... 48 

Table  4.14: Milk production average (MPA), mean of absolute residuals (MAR), mean of 

squared residuals (MSR), standard deviation of residuals (SDR), variance components (Va, 

Vpe, Vp and Ve) and their ratios (h2, c2 and e2) and standard errors (SE) and mean log-

likelihood (MLL) from LR1 and LR2 for adjusting scheme................................................... 49 

Table  4.15: Mean, SD, Min and Max of EBVs, correlations of EBVs between methods and those 

for all animals (N= 58315) and ranking top 100 bulls and cows for discarding schemes. ........... 56 

Table  4.16: Mean, SD, Min and Max of EBVs, correlations of EBVs between methods and 

those for all animals (N= 58315) and ranking top 100 bulls and cows for adjusting scheme. .. 57 



 viii 

List of Figures 

 
 
 
 
 
 
 
 

Figure  2.1: An example of box plot. ......................................................................................... 8 

Figure  2.2: Simple linear regression showing three outliers. .................................................. 10 

Figure  2.3: Ideal residual plot when model is correct ............................................................... 11 

Figure  2.4: Local fitting at four different smoothing parameter.................................................. 20 

Figure  2.5: Effect of changing the polynomial degree on model fit. ...................................... 20 

Figure  4.1: Variation of PRESS residual versus days in milk (DIM) resulted by SR model. .. 31 

Figure  4.2: The plots original data (MPA), its variance (MPV) and predicted values versus 

days in milk (DIM) for various regressions. ........................................................................... 33 

Figure  4.3: The plots average of residual, absolute residual, standard deviation of residual and 

absolute standardized residuals versus days in milk (DIM) for various regressions. ............. 34 

Figure  4.4: Correlation between TD yields and predicted values for various regressions...... 34 

Figure  4.5: The plots of relative frequency of outliers for discarding scheme with both 

residual criteria ABSR (a) and ASTAR (b) and adjusting (c) scheme versus days in milk 

(DIM) for different regression methods. ................................................................................. 38 

Figure  4.6: The plots of relative frequency of outliers for discarding scheme with both 

residual criteria ABSR (a) and ASTAR (b) and adjusting (c) scheme versus TD size levels 

(TD value) for different regression methods. .......................................................................... 39 

Figure  4.7: Milk production average (MPA), mean absolute residual (MAR), mean squared 

residual (MSR) and standard deviation of residual (SDR) for both discarding scheme by 

various percentages. ................................................................................................................ 50 

Figure  4.8: Milk production average (MPA), mean absolute residual (MAR), mean squared 

residual (MSR) and standard deviation of residual (SDR) for adjusting scheme by various 

levels........................................................................................................................................ 50 

Figure  4.9: Phenotypic, additive genetic, permanent and residual variances for both 

discarding scheme by various percentages.............................................................................. 52 



 ix 

Figure  4.10: Phenotypic, additive genetic, permanent and residual variances for adjusting 

scheme by various levels. ........................................................................................................ 52 

Figure  4.11: Additive genetic, permanent, residual variance ratios and mean log likelihood for both 

discarding scheme by various percentages.............................................................................. 53 

Figure  4.12: Additive genetic, permanent, residual variance ratios and mean log likelihood for 

adjusting scheme by various levels. ........................................................................................ 53 

Figure  4.13: Standard error of additive and permanent variance ratios for both discarding and 

adjusting schemes by various percentages and levels. ............................................................ 54 

Figure  4.14: Mean of estimated breeding values (MEBV) and correlation of EBVs of animals 

between full data and those from both discarding and adjusting schemes, by various 

percentages and levels. ............................................................................................................ 58 

Figure  4.15: Mean of estimated breeding values of top 100 bulls (MEBVS) and cows (MEBVC) 

and their Spearman rank correlations (SCORRS and SCORRC) for both discarding schemes by 

various percentages................................................................................................................... 58 

Figure  4.16: Mean of estimated breeding values of top 100 bulls (MEBVS) and cows 

(MEBVC) and their Spearman rank correlations (SCORRS and SCORRC) for adjusting 

scheme by various levels. ........................................................................................................ 59 



 1 

1. Introduction 

Breeding programs and management decisions regarding milk production always start 

from an analysis of lactation yields generated from sets of test-day (TD) records made 

during lactation period. Since TD milk yield records of dairy cows are the most important 

ingredient in dairy cattle breeding programs, it is essential to keep them away from 

contaminations using proper methods. 

1.1. Outliers problem with milk yield records 

Selection of the best animals for genetic improvement requires the prediction of 

breeding values which must be deduced from phenotypic data. However, the accuracy of 

estimating breeding values depends on the quality and the accuracy of the phenotypic and 

pedigree data available that usually are large in size. The presence of errors in the data is 

nearly unavoidable and consequently outliers commonly take place in performance data such 

as TD yields. Therefore, it is difficult to define when a TD record becomes an outlier 

because there are biological and technical reasons. 

The International Committee for Animal Recording (ICAR) recommends that the data 

entering a country genetic evaluation system should have high quality, irrespective of how 

quality is defined (Interbull 2001). However, data obtained in a wide range of applications 

frequently contain atypical observations called outliers (outlying observations). Yang et al. 

(2004) stated that an outlier or an abnormal TD yields is a 24-h daily milk (fat, protein or 

other trait) yield which is significantly located outside the range of the rest of the yields 

made by cows of similar status (i.e. age, stage of lactation, herd or contemporary group). 

This definition reflects the statistical character of outliers. 

Some studies have reported bias of predicted breeding values in genetic evaluation of 

dairy cattle (Kuhn et al. 1994, Kuhn and Freeman 1995, Lidauer and Mantysaari 1996). 

Strandén and Gianola (1997) supposed that this bias may be due to outliers that cannot be 

predicted by the statistical model.  

Although the cause for a TD record to be an abnormally low or high milk yield is 

usually not explainable, few reasons have been mentioned by several authors such as 

selective reporting or misreporting of the performance records (Bertrand and Wiggans 

1998), preferential treatment of a cow (Strandén and Gianola 1997, 1998, 1999), sickness, 

injury, error in recording (Wiggans et al. 2003), chance, data manipulation, human error 

(Yang et al. 2004), inappropriate contemporary group formation, animal misidentification 

(Cardoso et al. 2006), measurement errors, health status, short-term changes in the herd 
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environment and mismanagement of the data (Jamrozik et al. 2007). In every case, 

regardless of the source of outlying observations, a measured 24-h TD yield may not be 

representative of either the cow’s actual yield or her genetic ability if it is considered as an 

outlying TD records (Wiggans et al. 2003). This implies that an outlier can be an 

observation without to be an apparent error caused by above mentioned reasons. 

Dealing with outliers is also a difficult task in all scientific areas, but since milk 

production of dairy cows is influenced by genetic and environmental effects and some 

kinds of interaction of those effects, e.g. between sire and herd (Suzuki et al. 1998) it 

would be more complex and consequently, there remains a need for more investigations.  

Outliers present some problems in animal breeding analyses. Such data cannot be 

accommodated in the model leading to bias in the prediction of breeding values  (Kuhn et al. 

1994, Kuhn and Freeman 1995, Strandén and Gianola 1999). Presence of outliers in the data 

also results in reduction of accuracy and reliability of estimates through inflating the sum of 

squares of residuals or prediction error variances for estimated genetic parameters and 

breeding values and leads to misleading results in genetic evaluations (Yang et al. 2004).  

In the last ten years, interest in test day models (TDM) using TD records has increased 

among dairy breeders because of several advantages (Swalve 1995b, 1998, 2000). In 

addition to accounting for environmental factors, an advantage of a TDM as fixed 

regression model is that it may account for differences in the shape of the lactation curve 

(Bormann et al. 2003). In this context, several mathematical functions have been proposed 

(Wood 1967, Ali and Schaeffer 1987, Wilmink 1987, Guo and Swalve 1995) differing 

mainly in the type of regression, in the number of parameters and shapes of lactation 

curves when milk data are fitted on individual cows (Macciotta et al. 2005). On the other 

hand, due to the effect of both environmental and genetic factors leading to the random 

variations in shapes of lactation curves between cows (Rekik and Ben-Gara 2004) a wide 

range of goodness of fit has been described by researchers (Perochon et al. 1996, Olori et 

al. 1999, Tekerli et al. 2000). It has been reported that atypical lactations are poorly 

described by standard models in contrast to typical lactations (Olori et al. 1999). The 

standard deviations related to means of estimates of parameters for atypical curves are 

large, suggesting an important heterogeneity of atypical curves (Rekik and Ben Gara 

2004). Therefore it is necessary to use suitable models when one attends to detect outlying 

TD records. It can be achieved by using robust regressions which are robust to the presence 

of outliers in least-squares models or local smoothing regressions which fit lactation data 

without the need for a predefined model.  
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It is concluded from the above discussions that treating outliers by a proper approach 

which takes into accounts the data departures, may be capable of attenuating the impact of 

outliers on data analysis. Several procedures are available in order to detect outliers, and 

each may be applied to prediction residuals generated from the regression models implying 

that extreme observations can only be determined according to the model used for 

regression analysis. There is a great deal of doubt about the ways to deal with such 

abnormal records when estimating lactation yields or breeding values. 

One of the earliest proposed methods to detect outliers is the examination of ordinary 

residuals or some transformations of them. Regardless of which method (excluding or 

adjusting) is used, these methods are implemented prior or parallel to data analysis. 

Although a few researchers have studied the impact of detection and correction of outliers 

(Wiggans et al. 2003, Yang et al. 2004, Jamrozik et al. 2007), there are only a few literary 

sources which deal with the outliers in the genetic analysis using TDM and analyse the 

question whether such abnormal recording should be discarded or adjusted.  

1.2. The study purposes  

What emerges from above considerations and discussions is that the certain cause of an 

outlying observation can not be determined especially in large data sets that are common in 

dairy cattle genetic evaluations. Because there are different and controversial opinions  

how to deal with outliers, in this study some methods will be applied on Holstein data from 

Northern Germany to analyze the consequences of this data manipulation. The main 

objectives of the current study are: 1) examination of three regression methods to detect 

outlying yields, 2) excluding or adjusting the outlying yields when estimating lactation 

yield and, 3) investigation whether the accuracy of lactation yield estimates is improved by 

the use of such methods. Results from the procedures will be compared to those from the 

entire dataset without treatment. Specific objectives included: comparison of fit statistics of 

different regression models, method comparisons by residual statistics, analysis of 

distributions of the identified outliers over the lactation period, comparison of rankings of 

animals (bulls and cows) from different evaluation methods and examination of the 

influence of using these methods on genetic and non-genetic parameters and their standard 

errors. 
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2. Literature review  

The prediction of breeding values constitutes an integral part of most breeding plans for 

genetic improvement (Mrode 1996). This prediction is implemented by selection of 

animals of higher genetic merit than average to be parents of the next generation (Cameron 

1997). Merit that is deduced via genetic evaluation, is a linear or nonlinear combination of 

genetic values for several economical traits. Genetic merit is not observable, so it must be 

inferred from data (Gianola 2000). Crucial for the accurate prediction of breeding value is 

the availability of records (Mrode 1996). Linear models are used for evaluation of linear, 

normally distributed traits such as milk yield (Van Raden 2006) and in the most sciences 

such as applied statistics data (Pedhazur 1982, Nevitt and Tam 1997).  

In the linear model 

yi = xi  β + εi       →      ŷi = xi β                                                 (2.1) 

where the εi is the differences between the observed values of yi (response variable) and 

those predicted by the model (ŷi) and xi is the value of the explanatory variable(s) for the ith 

individual. In general the least-squares approach is adopted to estimate model parameters 

(β) and residuals (ε). The error term represents the cumulative effect of factors not 

specified in the model (Rencher and Schaalje 2008). 

Since the error ε is unobservable, it must be estimated indirectly using predicted 

residuals, ε̂  (Zewotir and Galpin 2007). The least-squares regression lines are the best-

fitting line to the data when its underlying assumptions are satisfied: a) each of the metric 

variables is normally distributed, b) the relationships between metric variables are linear, 

and c) the relationship between response and explanatory variables is homoscedastic. 

When all three assumptions hold, the least-squares estimators of the β’s have minimum 

variance (Rawlings et al. 1998) otherwise the estimators may be poor and the resulting 

analysis may provide results of questionable validity (Freund and Littell 2000). 

Although violations of the assumptions are often not so severe as to invalidate the 

analysis (Freund and Littell 2000) these assumptions are frequently violated by the 

presence of outliers in the data (Nevitt and Tam 1997). Thus, it is useful to examine the 

data for possible violations and, if violations are found, to employ remedial alternatives 

(Freund and Littell 2000). In the following pages, more comprehensive details on the 

outlier topic will be presented. 
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2.1. Outlier definitions 

Though there are various definitions, an outlier is generally considered as a data 

observation that is far from the pattern for a variable or sample (Stevens 1984). Hawkins 

(1980) described outliers as observations that deviate so much from other observations and 

are generated by a different mechanism and may cause doubt about the validity of the 

results. Wainer (1976) also entered the concept of the fringelier (a marginally extreme 

value or case), referring to unusual events which occur rarely. Barnett and Lewis (1984) 

defined an outlier in a set of data as "an observation (or subset of observations) which 

appears to be inconsistent with that set of data". Likewise, Johnson (1992) considers an 

outlier as an observation in a data set which appears to be inconsistent with the rest of that 

data set.  

 

2.2. Sources of outliers 

Outliers can arise from several different mechanisms or causes. One of the challenges of 

working with outliers is that the researcher is rarely sure of the reason for the outlying 

observations (Evans 1999). Therefore, it is important to study the causes that may be 

responsible for outliers in a given data set because what should be decided about an outlier 

is somewhat a function of the derived cause (Osborne and Overbay 2004). Anscombe 

(1960) classified outliers into two major categories: those arising from errors in the data, 

and those arising from the inherent variability of the data. Potential sources of outliers are: 

measurement and recording errors, incorrect distribution assumption, unknown data 

structure, or inherent variability (Iglewicz and Hoaglin 1993, Barnett and Lewis 1994).  

2.2.1. Measurement or recording errors 

Neither measurement device nor researcher is completely infallible (Evans 1999). At 

times, errors may be made in the measurement, or due to faulty recording or coding of 

observations (Iglewicz and Hoaglin 1993) or as a result of an imperfect measurement 

apparatus (Anscombe 1960). Errors of this nature can often be corrected by returning to the 

original documents or even the subjects if necessary and possible and entering the correct 

value (Osborne and Overbay 2004). In these situations researchers may legitimately decide 

to reject or recode the observations (Anscombe 1960, Hecht 1991, Osborne and Overbay 

2004). Iglewicz and Hoaglin (1993), however, advocate the recording of all outliers 

because if they reoccur in subsequent data collections, it may indicate the need to modify 

measurement or recording techniques.  
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2.2.2. Incorrect distributional assumptions 

In addition to measurement and recording errors, outliers can occur in data sets due to 

incorrect distribution assumed for the analysis (Iglewicz and Hoaglin 1993). Douzenis and 

Rakow (1987) pointed out that the presence of outliers not only may indicate a weakness in 

the statistical model but may also distort statistics which assume a normally distributed 

sample. Thus, researchers should consider the assumptions which are made by each model 

in regression analysis and effectively handle this matter before collecting the data (Evans 

1999).  

2.2.3. Structure within the data 

Another possible cause of outliers is that the data contains a different structure than is 

accounted for by the sampling method (Jacobs 2001). Iglewicz and Hoaglin (1993) offer an 

example of data that are presumed to come from random daily samples but actually come 

from another sample. In this case, the data may need to be investigated more fully before 

deciding whether to retain, recode, or reject the outlying observations (Evans 1999).  

2.2.4. Execution error 

Another factor to consider when studying outliers is that they may not be mistakes at 

all, but indicators that within a sample, such values are possible (Iglewicz and Hoaglin 

1993). In such a case, the presence of an outlier can lead the researcher to an important 

discovery in terms of the potential for what is being studied. Anscombe (1960) pointed out 

that researchers do not always accomplish what they set out to do.  

2.2.5. Inherent variability  

Another source of outliers is the natural variation of the observations over the sample 

and unexpected events during the data generating process (Barnett and Lewis 1994). As the 

data set becomes larger, the probability for the occurrence of outlying values becomes 

greater (Evans 1999). An outlying observation may be merely an extreme manifestation of 

the random variability inherent in the data. If this is true, the values should be retained and 

processed in the same manner as the other observations in the sample (Grubbs 1969). Due 

to the deleterious effects that outliers can have, it might be desirable to use a 

transformation or truncation strategy to keep the observation in the data set and at the same 

time to minimize the impact on statistical results (Osborne and Overbay 2004).  

However, defining the cutoff for what makes an extreme measurement an outlier 

requires somewhat individual judgment (Jacobs 2001). Not all outliers are illegitimate, and 

not all illegitimate scores show up as outliers (Barnett and Lewis 1994). 
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2.3. Classification of outlier detection methods  

The methods of outlier detection can be classified into at least two groups a) univariate 

methods that proposed in earlier works in this field, and b) multivariate methods that have 

been commonly used in most researches (Ben-Gal 2005). Univariate analysis explores each 

variable in a data set, separately. Ben-Gal et al. (2003) categorize statistical process control 

methods by two major criteria: a) methods for independent data (x variables) versus 

methods for dependent data (y variable); and b) methods that are model-specific (e.g. least-

squares), versus methods that are model-generic (e.g. smoothing local regression). Various 

outlier detection methods exist and will be briefly discussed presently. 

 

2.4. Univariate outlier detection methods 

A univariate method searches the data in y-axis or generally one variable to detect 

outliers. Univariate methods are favoured for their simplicity, but these methods cannot 

detect observations which violate the correlation structure of the dataset (Franklin and 

Brodeur 1997). Usual methods of univariate outlier detection have been listed as below:  

2.4.1. Scoring of residuals 

One method of identifying univariate outliers is simply converting the data values to Z 

scores and screening for high absolute values (Donzenis and Rakow 1987). A Z score is 

the observed value minus the mean, divided by the standard deviation. It represents the 

number of standard deviations it falls from the mean. However, this rule doesn't always 

yield the desired result particularly in small data sets (Shoemaker 1999). 

2.4.2. Scatter plots  

Anscombe and Tukey (1963) encouraged beginning any analysis of residuals by looking 

at a scatter plot. If outlying samples are present, these will usually show up as points in the 

score plots lying outside the normal range of variability (Evans 1999, Naes et al. 2002). 

They provide valuable information not only about the presence of outliers but also the 

adequacy of the model and/or the validity of its associated assumptions. The patterns of 

residuals are informative about the type of violation (Serdahl 1996, Zewotir and Galpin 

2007). For this purpose, scatter plots of residuals against predictor variables can also help 

to detect outliers (Larsen and McCleary 1972). In addition, Zewotir and Galpin (2007) 

recommended using the studentized residuals to the ordinary residuals in the plot, because 

using them will not be complicated by the non-constant residual variance and will 

generally be more revealing than the ordinary residuals.  
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2.4.3. Box Plot 

Perhaps the most popular univariate outlier detection technique is the quartile method 

proposed by Tukey (1977). Since the mean is very sensitive to outliers and to long tails in 

the distribution, in many situations statisticians instead use the median, which is generally 

much safer (Hampel et al. 1986). The method is not only robust, but also simple and non-

parametric (Franklin and Brodeur 1997). A box plot is a graphical display of data that 

shows the location, spread, skewness and length of tails the measure of central tendency 

using median, beneath which 50% of the data points fall (Tukey 1977). An example for a 

box plot is shown in Figure 2.1. 

The box surrounding the median represents the 75th-25th percentiles of the data (Jacobs 

2001). The inter-quartile range (IQR) is a measure of the range of data and is the difference 

between the 25th (Q1) and 75th (Q3) percentiles (Meinert and Norman 1998). This method 

treats any value greater than the 75th percentile plus 1.5 times the IQR distance, or less 

than the 25th percentile minus 1.5 times the IQR distance as an outlier (Jacobs 2001). In 

the US, Bertrand and Wiggans (1998) reported that some edits for outliers based on IQR 

ranges are imposed for milk yield data from dairy herds sampled by their owners rather 

than a testing supervisor. Meinert and Norman (1998) classified outliers as possible or 

probable by IQR (Figure 2.1). Possible outliers are values that lie between 1.5 and 3 IQR 

ranges from the first quartile (Q1) or the third quartile (Q3). Probable outliers are values 

falling beyond 3 IQR range units from Q1 and Q3. They used the milk yield outliers detected 

by box plot method as indicators of accuracy of genetic evaluations of sires. 

 
Figure  2.1: An example of a box plot. 
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2.5. Obtrusive effects of outliers on regression analysis 

The aim of a regression analysis is to obtain estimates of the unknown parameters 

which indicate how a change in one of the independent variables affects the values of the 

dependent variable. The occurrence of outliers can result in increase in error rates and 

substantial undesired changes in parameter and statistic estimates when using either 

parametric or nonparametric analysis (Zimmerman 1994). First, they generally inflate error 

variance and reduce the power of statistical tests. Second, they can decrease normality if 

non-randomly distributed, altering the odds of making errors (both Type I and Type II) and 

in multivariate analyses violate model assumptions. Third, they can severely bias or 

influence estimates that may be of substantial interest (Osborne and Overbay 2004). 

Therefore, it is important to identify them prior to modeling and analyzing (Williams et al. 

2002, Liu et al. 2004).  

 

2.6. Multivariate outlier detection methods in regression analysis 

The classical outlier detection methods are efficient when the data include only one 

outlier. However, if the data contains more than one outlying observation, the power of 

these methods decreases drastically, owing to the masking (failing to identify outliers) and 

swamping (mistaking clean observations for outliers problems). Therefore, a method which 

avoids these problems is needed (Hadi 1992). In order to decide about the outlier problem 

in regression analyses, it is also useful to distinguish between x and y outliers. From a 

practical perspective, three types of outliers are problematic in regression analysis 

(Rencher and Schaalje 2008).  

On the one hand, some observations may fail to be predicted by the model with a 

reasonable degree of accuracy. The y-outliers are defined as those observations that have a 

different relationship between y and x variables (Naes et al. 2002). The y-outliers may occur 

in the case that several populations are mixed in a data set or that some relevant variables 

have been omitted (Coenders and Saez 2000). On the other hand, some observations are 

abnormally positioned relative to the majority of x-data (Naes et al. 2002). The presence of 

such observations in the data set substantially modifies the estimates and weakens the 

conclusions which may be drawn from the model (Coenders and Saez 2000).  

Likewise, it often happens that an observation is an outlier according to the both y- and 

x-data, simultaneously (Coenders and Saez 2000). Figure 2.2 that was adopted from 

Rencher and Schaalje (2008), displays these three types of outliers in simple linear 

regression analysis. 
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Figure  2.2: Simple linear regression showing three outliers. 

 

 

The sample 1 is an outlier in x direction (leverage point) but is positioned close to the 

straight line fitted to the rest of the samples. This sample has little effect on the regression 

equation but it has the potential to be influential. The point 2 in Figure 2.2 is an outlier in y 

direction close to the average in x. In this case the regression equation is only slightly 

influenced by this outlying sample. However, the outlying sample 3 is abnormal both in x 

and in the relation between x and y. This sample has a very strong effect on the regression 

equation. It is said that the sample is influential. The statistics to measure these types of 

outliers will be discussed. 

2.6.1 The y- Outliers and their detection 

Outliers on the dependent variable typically exert greater influence on the parameter 

estimates and R2 (Determination Coefficient) than do outliers on the independent variables 

(Hecht 1991, Serdahl 1996). The outlying data point on y pulls the regression line towards 

itself in an effort to minimize error variance (Serdahl 1996). Hecht (1991) found that 

analysis of the standardized and studentized residuals were the most effective diagnostic 

methods for identifying outliers on the y axis. 

2.6.1.1. Residuals 

The most common and traditional tool for detecting y-outliers is the residual that for 

observation i is defined as εi = yi-ŷi. With linear models in Formula (2.1), the error vector ε 

is unobservable (Rencher and Schaalje 2008). In order to estimate ε for a given sample, the 

predict residual vector is used as:  

βε Xyyy −=−= ˆˆ                                                  (2.2)          
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The prediction errors in a regression model are assumed to be a random variable that are 

normally and independently distributed with a mean of zero and common variance (Gill 

1986). If the model and attendant assumptions are correct, a plot of the residuals versus 

predicted values or versus i (the observation number) should show no systematic pattern 

(Naes et al. 2002). These plots are therefore useful for checking the model (Rencher and 

Schaalje 2008). There are no exact rules, but some rules of thumb can be set up for when a 

residual is to be considered larger than expected (Martens and Naes 1989). Larger y can 

indicate errors in samples with a different relationship between x and y (Naes et al. 2002). 

But a popular approach is to detect an observation as an outlier if the magnitude of its 

residual, ε, exceeds the estimated population standard deviation, SD, multiplied by a 

designated constant, k, (Anscombe 1960, Anscombe and Tukey 1963, Hecht 1991). 

If k is large, then the largest residuals will less likely exceed this product and they will 

less likely be rejected. If k is small, however, the product of k with SD will be smaller and 

the observation with the greatest residual will more likely be rejected (Evans 1999). 

Anscombe (1960) has discussed calculation of k with more detailed information on the. A 

typical plot of this type is shown in Figure 2.3. 

 

 

Figure  2.3: Ideal residual plot when model is correct (Rencher and Schaalje 2008). 

 
 

Using the least-squares estimator yXXX ′′= −1)(β̂ , the vector of predicted values can be 

written as 

HyyXXXXXy =′′== −1)(ˆˆ β                                              (2.3) 

where XXXXH ′′= −1)( . The n x n matrix H is called the Hat matrix because it maps y into 

ŷ (Hoaglin and Welsch 1978, Rencher and Schaalje 2008). Using (2.3), the residual vector 

ε̂  can be expressed in terms of H: 

yHIHyyyy )(ˆˆ −=−=−=ε ε)( HI −=                                     (2.4) 
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2.6.1.2. Standardized residuals 

The observed residuals, ε̂ , in real data, however, are not independent and do not have 

common variance as indicated by Formula 2.4 (Rawlings et al. 1998), because they are 

scale-dependent and their variances depend on the standard errors (Gill 1986). 

)1()ˆvar( 2
iii h−= σε                                                 (2.5) 

where hii is the ith diagonal element of the Hat matrix that the method for its calculation 

would be presented on the next page. Thus, it is desirable to scale the residuals so that they 

have the same variance σ2. There are two common and related methods of scaling (Rencher 

and Schaalje 2008). For the first method of scaling, Belsley et al. (1980) suggest to 

standardize each residual that is independent of the residual. Dividing each residual by its 

SD (standard deviation) gives a standardized residual, denoted with ri, 

ii

i
i

h
r

−
=

1

ˆ

σ

ε
                                                         (2.6) 

where hii is the ith diagonal element of H and σ is square root of the error variance. All 

standardized residuals normally distributed with unit variance and mean 0 (Rawlings et al. 

1998). In analysis of variance the biggest issue is the distance of an individual from the 

subgroup. Standardized residuals indicate the distance between any point and the sub-

group, and hence are efficient in assisting analysts in examining data for multivariate 

outliers (Osborne and Overbay 2004).  

2.6.2. The x- outliers or leverage points and their detection 

Sometimes, even though data points may deviate from the mean, they may not 

necessarily impact the coefficient of determination or the regression equation (Evans 

1999). The outliers on the x axis impact regression statistics, though to a smaller degree 

than do outliers on the y axis (Hecht 1991). They usually have more effect on the 

variability of the x scores than they do on the relationship between the variables (Hecht 

1991) unless the extreme value of x shows a serious impact on y (Evans 1999).  

2.6.2.1 Studentized residuals  

A second method of scaling the residuals is the studentized deleted residual introduced by 

Belsley et al. (1980). For ith observation, it is the residual computed from a regression 

equation estimated without the ith observation divided by its SD, which is also computed 

without the ith observation. This prevents the ith observation from influencing its own 

prediction and from inflating the standard error with which it is being standardized 

(Coenders and Saez 2000). The result is the Studentized residual, denoted ri
*: 

iii

i
i

h
r

−
=

1)(

*

σ

ε
                                                        (2.7) 
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where the subscript in parentheses indicates that the ith observation has been omitted. 

As with εi and ri, the ri
* are not independent of each other (Rawlings et al. 1998). The 

standardized and Studentized residuals can be obtained from the ordinary residuals without 

rerunning the regression with the observation omitted (Belsley et al. 1980). Cook and 

Weisberg (1982) refer to ri as the studentized residual with internal studentization in 

contrast to external studentization for ri
*. The ri

* are called RSTUDENT by Belsley et al. 

(1980) and SAS Institute (Rawlings et al. 1998).  

2.6.2.2. Hat matrix 

The Hat matrix can be helpful for detecting outliers when outliers maintain enough 

influence on the regression line to make ŷi close to yi (Hoaglin and Welsch 1978, Iglewicz 

and Hoaglin 1993). The leverage of observation i is defined as hii:  

2 2
1

2
1

( ) ( )1 1
( )

( )
i i

ii i in

k k x

x x x x
h x X X x

n x x n SS

−

=

− −
′ ′= + = + =

∑ −  

where x is the mean of the x variable. High leverage points (high values on the diagonal 

of the Hat matrix) suggest that the corresponding observation may be an outlier, if any hii 

be greater than twice the number of the predictors (Hoaglin and Wesch 1978, Evans 1999). 

The leverages can be plotted against observation number or against other diagnostic tools 

as residuals (Naes et al. 2002). Hoaglin and Welsch (1978) advocated the use of the Hat 

matrix followed by an examination of studentized residuals. The Hat matrix offers 

information about high leverage points, and the studentized residuals allow researchers to 

identify inconsistent y values (Evans 1999). 

2.6.3. The x-y outliers or influence points and their detection 

As was mentioned above, some outliers may be very harmful when they affect both 

regression line and regression parameters. Under these circumstances, Cook's influence measure 

is the best known and probably the most used one (Cook and Weisberg 1982, Martens and 

Naes 1989) that makes a contribution to both the residual and the leverage. It can be written as 










−+
=

ii

iii
i

h

h

k

r
D

11

2

 

where ri is the standardized residual and hii is the ith diagonal element ofthe Hat matrix 

computed from the full regression and k is the number of parameters in the model. Di 

would be large if the standardized residual is large and if the data point is far from the 

centroid of the x-space (Rawlings et al. 1998). The influence Di is usually plotted versus ε 

or observation number that is called an influence plot (Naes et al. 2002).  

(2.8) 

(2.9) 
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2.7. Statistical test for presence of outliers 

Iglewicz and Hoagin (1993) advocated the inspection and examination of all data for 

outliers. By testing data for outliers, researchers can avoid making distorted conclusions 

about data and can yield more robust estimates of parameters (Bacon 1995).  

There are several tests for identifying univariate and multivariate outliers, separately. 

Four common outlier tests for univariate data with normal distributions are the Rosner test, 

Dixon test, Grubbs test, and the box-plot rule. These techniques are based on hypothesis 

testing rather the regression methods (Grubbs 1969, Fallon and Spada 1997).  

Because multivariate statistics are increasing in popularity with researchers in most 

scientific fields, the challenge of detecting multivariate outliers demands more attention 

(Wiggins 2000). The standardized and studentized residuals are often used to identify 

outliers in analysis based on linear models (Montanari 1995). The observation with the 

largest absolute studentized residual is usually given special attention and is considered as 

the observation most likely to be a contaminant.  

However, it is important to realize that these residuals will follow a t distribution, 

implying that (in a large sample) approximately 5% of them will appear extreme. This 

problem is solved by adjusting the t-test critical value, using a Bonferroni correction. The 

correction is to replace the usual degree of freedom α/2 for critical t with α /2n. 

Consequently, this pushes the t-critical into the ends of the distribution, decreasing the 

chance of declaring a residual to be an outlier (Scott 2003). 

The PRESS statistic is another available statistic with the use of regression analysis for 

detecting the possible presence of outlying observations in the data. The PRESS 

(prediction sum of squares) is the sum of squares of error (SSE) which was obtained by 

estimating the equation using all the data without the current (ith) observation (Freund and 

Littell 2000). It is computed as:  

2
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ε                                                  (2.10) 

Where the (i) indicates that the ith observation was not used in the development of the 

regression equation. The sum of squares of the PRESS statistic should be compared to the 

SSE. When it is substantially larger than the SSE, there is reason to suspect that some 

influential observations or outliers exist (Freund and Littell 2000) because a residual
iε̂  that 

corresponds to a large value of hii contributes more to PRESS (Rencher and Schaalje 2008). 

However, there are data points that are identified as outliers using some statistics but not by 

others (Wiggins 2000).  



 15 

2.8. Deal with outliers: discarding or adjusting 

There is a great deal of argue as to what to do with detected outliers (Osborne and 

Overbay 2004). When an outlier is detected, it is not easy to know exactly what to do about 

it, but some guidelines can be set up. The first thing to do is always to go back to the lab 

and look for possible reasons for the sample to be an outlier (Naes et al. 2002). However, 

in practice, it is not always possible. If there is no explanation for an outlier, the dataset 

could be analyzed both with and without the outlying observations and then, two results 

should be compared (Evans 1999, Rencher and Schaalje 2008). If the influence is 

negligible, it does not matter very much what is actually done with the outlier. Another 

alternative is to discard the outlier, even though no explanation has been found (Rencher 

and Schaalje 2008). This will most often, but not always lead to better prediction ability of 

the predictor (Naes et al. 2002). 

Although, it is stated by a few authors that removal of extreme scores produces 

undesirable consequences, they are in the minority, especially when the outliers are 

illegitimate (Osborne and Overbay 2004). When the data points are legitimate, some authors 

(Orr et al. 1991) argue that data are more likely to be representative of the population as a 

whole if outliers are not removed (Osborne and Overbay 2004). Hecht (1991) asserted that 

too many researchers advocate the simple rejection of outliers for their treatment but they 

should not force the data to conform to their preconceived expectations by rejecting detected 

outlying observations. Adjusting of outliers is a recommended alternative to discarding 

them. One method of adjusting outliers is the use of transformations (Osborne 2002). By 

using transformations, extreme scores can be kept in the data set and residual variance can 

be reduced (Hamilton 1992). However, transformations may not be an appropriate way 

because of difficulties in its interpretation (Osborne 2002).  

Truncation of outliers is one alternative to transformation, wherein extreme values are 

recoded to the highest or lowest reasonable score (Osborne and Overbay 2004). It could be 

done using trimming (elimination) or winsorization (truncation) of the data (Iglewicz and 

Hoaglin 1993). A trimmed mean is defined as the mean calculated by trimming a 

percentage (usually 5%) of data sets from the top and bottom of data sets. This helps to 

alleviate the distortion caused by extreme values (Fallon and Spada 1997). A winsorized 

mean is similar to the trimmed mean but instead of trimming the points, they are set to the 

lowest or highest value (Sachs 1982, NIST 2003).  

Iglewicz and Hoaglin (1993) proposed the operation of winsorization parallel to the 

trimming. They believe that trimming should be performed on a data set simultaneously, 



 16 

with an equal number of values trimmed from each end of the data set. This demonstrates 

that winsorization does not discard outliers completely, but rather decreases their distance 

from the center of the sample (Barnett and Lewis 1984). Instead of elimination, 

transformations or truncation, researchers sometimes use various robust procedures to 

protect their data from being distorted by the presence of outliers (Barnett and Lewis 1994, 

Rencher and Schaalje 2008). However, dealing with outliers needs a model to catch them 

and results depend on the model fitted to the data (Mayeres et al. 2003). 

 

2.9. Ordinary Least Squares, Robust and Local Regressions 

Williams et al. (2002) classified the outlier detection methods between parametric 

methods and nonparametric methods that are model-free. The classical least squares 

estimator is widely used in regression analysis because of both the ease of computation and 

tradition. The most widely employed method for estimating model parameters (β and ε) in 

least squares is the method of ordinary least squares (Nevitt and Tam 1998). When 

Ordinary Least Squares (OLS) is used, the outliers can significantly influence the estimates 

(Lane 2002) even in the presence of only one outlier (Nevitt and Tam 1998). 

Consequently, when there are outliers in the data, a robust fitting method is necessary. 

Robust and local regressions are two alternatives in such a case. More details about these 

specific regressions will be presented:  

2.9.1 Ordinary Least Squares method 

The Ordinary Least squares (OLS) that was first introduced by Carl Friedrich Gauss 

around 1794 (Weisberg 2005), is the most common regression estimator. The objective of 

this method is to 

∑ =

n

i iMinimize
1

2ε  

where ε=y-ŷ as in 2.2 (Chen 2002). Most outlier detection methods use some measures of 

distance to evaluate how far away an observation is from the centre of the data. To measure 

this distance, the sample mean and variance may be used (Franklin and Brodeur 1997). 

Although this method of identifying outliers is simple, but since the mean is very sensitive to 

outliers and to long tails in the distribution, even a single regression outlier can totally offset 

the least squares estimator (Hadi and Simonoff 1993, Iglewicz and Hoaglin 1993, Franklin 

and Brodeur 1997). Consequently, OLS is not a robust estimator (Chen 2002). One approach 

to avoid this weakness and sensitivity is utilizing robust scale and location estimators which 

are inherently resistant to outliers and much safer due to using other statistics such as the 

median or quartile to mean (Hampel et al. 1986, Franklin and Brodeur 1997).  
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2.9.2 Robust regression method 

This method that gives more robust results in the presence of outliers, also can be used to 

detect outliers (Chen 2002). However, if no outliers are present and the sample size is large, 

the robust and classical methods should give similar estimates. If the estimates differ, outliers 

may be present or the assumed distribution may be incorrect (Olive 2005).  

The purpose of robust estimation is to produce an efficient estimator in the presence of 

outliers, while minimizing bias. This is done by reducing the influence of the outliers on 

the estimator before it breaks down (Franklin and Brodeur 1997). Hampel (1971, 1974) 

introduced the concept of the breakdown point, as a measure for the robustness of an 

estimator against outliers as the smallest percentage of outliers that can cause an estimator 

to take arbitrary large values. Thus, if an estimator has the larger breakdown point, 

consequently it is more robust (Ben-Gal 2005).  

  Contrary to traditional least squares estimators, there is a class of robust regression 

methods that replace the sum of squared errors with ones less influenced by outliers using 

trimming or winsorizing simply means (Franklin and Brodeur 1997). The ROBUSTREG 

procedure in SAS Version 9.1 (SAS 2003) implements the most commonly used robust 

regression techniques such as Huber M-estimation, high breakdown value estimations 

(LTS and S), and combinations of these two methods (MM) that have different breakdown 

measures (Chen 2002).  

M-estimation was introduced by Huber (1973), and it is the simplest method among 

robust regressions both computationally and theoretically (Chen 2002). M-estimators are 

not robust with respect to x-space while at the same time they are still robust with respect 

to outlying data in the response direction (Rousseeuw and Leory 1987). It means that both 

OLS and M-estimation methods cannot distinguish good leverage points from bad leverage 

points. In such cases, high breakdown value estimates (LTS, S and MM) are needed (Chen 

2002). Instead of minimizing a sum of squares as in least squares, a Huber-type M-

estimator β̂ of β minimizes a sum of less rapidly increasing functions (ρ) of the residuals 

(Rousseeuw and Leory 1987): 
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Where  for  the  observation xi, location estimate  T, and scale estimate σ, define  the  

residual, ri=(xi-T)/σ.  Typically,  the  role  of  this  function  is  to  decrease  the influence  of  

observations with large residuals. The procedure can also solve this system by using 

iteratively re-weighted least squares which are robust to outliers (Chen 2002).  
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As mentioned above, there are many other strategies for robust regressions which search 

outliers in x or both x and y directions (Chen 2002). More details about these methods can 

be found in the literature (Yohai 1987, Rousseeuw and Yohai 1984, Rosseeuw and Leroy 

1987, Rousseauw and Van Driessen 1998, Venables and Ripley 1999). 

The purpose of diagnostics is to find and identify deviations from the assumptions; 

whereas the purpose of robustness is to safeguard against deviations from the assumptions 

(Huber 1990). Furthermore, Huber (1990) noted that outlier detection is classified under 

diagnostics, not robustness. Robustness is making a procedure insensitive to outliers. Though 

robust estimators are efficient and highly insensitive to unusual values of the dependent 

variable, one high leverage point can break them completely (Militino and Ugarte 1997). 

2.9.3. Local Regression method 

Locally weighted regression, or LOESS, is a nonparametric approach to estimate 

regression functions through multivariate smoothing with a weighted least squares 

algorithm that locally weights the data (Cleveland and Devlin 1988, Cleveland and Grosse 

1991). This procedure is available in SAS (2003) via PROC LOESS. This procedure 

allows greater flexibility than traditional modeling tools and it performs iterative re-

weighting to provide robust fitting when there are outliers in the data (Cohen 1999). The 

underlying model for local regression is  

iii xfy ε+= )(  

where for i = 1 to n, yi and xi are observations of a response and independent variables. 

In the above formula, ƒ is the unknown regression function and εi is a random error 

(Cleveland and Grosse 1991, Cohen 1999) and yi has a constant variance (Cleveland and 

Loader 1995). For ƒ, it is supposed that the function can be well approximated locally by a 

parametric polynomials (linear or quadratic) by fitting a regression surface to the data 

points within a chosen neighbourhood of the certain point x0 (Cleveland and Loader 1995, 

Cohen 1999). The radius of each neighbourhood or bandwidth h(x0) is chosen so that the 

neighbourhood contains a specified percentage of the data points called the smoothing 

window (x−h(x0), x+h(x0)) as demonstrated by Loader (1999). To estimate ƒ(x), only 

observations within this window are used (Cleveland and Grosse 1991, Loader 1999). The 

observations are weighted according to the formula: 
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where W(u) is a weight function that assigns largest weights to observations close to x0 

(Cleveland et al. 1988). Researcher will usually want to incorporate a weight function, 

w(u), that gives greater weight to the xi in the neighbourhood that are close to x0 and lesser 

weight to those that are further (Cleveland and Loader 1995). Moreover, the bandwidth 

h(x0) has a critical effect on the fit of the local regression. If h(x0) is too small, insufficient 

data fall within the smoothing window and a large variance will result. On the other hand, 

if h(x0) is too large, the local polynomial may not fit the data well within the smoothing 

window and the fit will have large bias (Loader 1999). SAS controls the smoothing 

window through specifying a smoothing parameter in LOESS procedure (SAS 1999).  

The smoothing parameter in each local neighbourhood controls the smoothness of the 

estimated surface (Cohen 1999). A smoothing parameter, α, (between 0 and 1) chooses 

h(x0) in such a way that the local neighbourhood always contains a specified number of 

points (Loader 1999). Of course, as the smoothing parameter α is reduced, the residuals 

generally get smaller, and show less structure (Loader 1999). 

An Example of local fitting for the four smoothing parameters 0.2, 0.4, 0.6 and 0.8 

adopted from Loader (1999) is shown in the Figure 2.3. Clearly, α =0.2 produces a much 

sharper fit than α =0.8 which is highly smoothed, since it does not fit the data well (Loader 

1999). Thus the maximum smoothing parameter of 1 essentially fits a function for the 

entire data set, which is obviously the smoothest yet poorest fitting curve, while small 

values, such as 0.1 may actually fit the curve to all data points (Freund and Littell 2000). 

There are several strategies to select the smoothing parameter. A simple one is to examine 

plots of the fit residuals versus the predictor variable and to choose the largest smoothing 

parameter that shows no clearly pattern in the fit residuals (Cohen 1999).  

Like the smoothing parameter, the degree of the local polynomial affects the bias and 

variance. A high polynomial degree can always provide a better prediction with less bias 

than a low polynomial degree (Cleveland and Loader 1995). Figure 2.4 displays, for 

example, including local constant, linear, quadratic and cubic fits for the ethanol dataset 

adopted from Loader (1999). Though the local constant fit in Figure 2.4 is sharp and 

somewhat bias, it doesn’t fit the data well at the left boundary. Both the boundary bias and 

sharpness were reduced by local linear fit but this is rarely adequate. The local quadratic 

and local cubic fits produce better performance containing less sharpness and better fit to 

data the but increase variance especially at boundaries that can be a problem (Loader 

1999). 
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Figure  2.4: Local fitting at four different smoothing parameter: α = 0.2, 0.4, 0.6 and 0.8 

(from Loader (1999)). 

 

 

 

Figure  2.5: Effect of changing the polynomial degree on model fit (from Loader (1999)). 
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3. Materials and methods 

 

3.1. Data 

The sample is a subset of the data used in Brügemann (2008). It contains data from four 

cattle breeding service centers in Germany. 

 The final set of test data included a total of 111,599 TD records of 11,620 first lactation 

Holstein cows which calved between 1997 and 2002 (black-white=11576, red-white=44). 

These data come from the six largest dairy farms situated in north-eastern of Germany. 

Days in milk (DIM) were restricted to those between 5 and 330. Only records 

corresponding to 2 times a day milking and collected under the supervision of a milk 

recording expert were used. Each TD record contained data completely measured on daily 

(24-h) milk yields (in kg) with only two sampled milking and with sampling interval of 

approximately 4 weeks.  

Four seasons of calving (January-March, April-June, July-September and October-

December) were defined. To be included in the data set, each cow was required to have at 

least nine test-day yields per lactation. Herd-test-dates were required to have at least 9 test-

day records. There were 113 herd-year-season and 357 herd-test-date (HTD) contemporary 

groups in the final data. The final pedigree file consisted of 58315 animals, the ancestors. 

Table 3.1 presents the structure of data and pedigree files. In this context, Table 3.2 

presents the mean and the standard deviation of milk yields and days in milk by test 

numbers. 

 

 

 

 

 

 

 

Table  3.1: Structure of the data. 
Item No. 

First lactation with ≥ 9 TD records 11,620 
TD records no.  111,599 
HYS levels no. 113 
HTD levels no. 357 
Number of inbred animals 14,889 
Average and maximum inbreeding coefficient% 1.97, 26.56 
Mean, minimum and maximum of age at calving in month 27.58, 20, 40 
Herds no. 6 
Average, minimum and maximum TD records per herd, no. 18,560, 7,147, 37,455 
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Table  3.2: Mean and standard deviation (SD) of TD yields and days in milk by test numbers.1 
Test-day milk yields Days in milk 

Test No. 
 

Mean SD 
 

Mean SD 
 

1  24.648 5.735  22.437 12.336  
2  27.486 5.258  54.880 14.304  
3  27.000 5.247  88.165 16.159  
4  25.680 5.169  121.010 17.209  
5  24.284 5.142  154.227 17.904  
6  22.831 5.088  187.668 18.110  
7  21.462 5.103  220.618 17.953  
8  19.803 5.154  253.549 17.764  
9  17.550 5.624  285.992 17.175  

10  16.544 5.629  311.244 13.997  
11  16.480 5.695  318.645 6.805  

Mean  22.983 6.337  164.197 92.476  

1- The number for TD 1-9 was 11620 and it was 6385 and 634 for TD 10 and 11 respectively. 

 

 

3.2. Methods  

In order to achieve the objectives that have been initially determined, it necessary to 

pursue the following strategies. 

3.2.1. Tests to determine the existence of outliers 

 Prior to apply for any detection or treatment of abnormal recordings, it is necessary to 

perform some tests in determining the existence of outliers. To do this, PRESS residuals 

and statistic, standardized residuals and studentized residuals with both usual degree of 

freedom for t-statistic and one corrected by Bonferroni adjustment were used.  

3.2.2. Methods to detect outliers 

As earlier has been explained, dealing with outliers requires a model to be fitted to the 

data using a regression procedure. The selected regression procedures were the methods; 

Simple Regression (SR), Robust Regression (RR) and Local Regression (LR) with first degree 

(LR1) and second degree (LR2) of polynomial function with two smoothing parameter (0.5 

and 0.6). These regression procedures were utilized to detect the abnormal TD records as 

well as to check and compare whether regression improves the criterions as more as possible.  

All regression methods SR, RR and LR are carried out by the Windows version 9.1.3 of 

Statistical Analysis Software (SAS) using Proc REG, Proc ROBUSTREG and Proc LOESS 

procedures respectively and the produced outputs were used for further utilizing. Robust 

estimation includes many different procedures. In the present study, one such method that 

uses the M-estimator (Huber 1973) for the robust regression method was applied. For the RR 

method, the residual was specified as convergence criterion and the maximum number of 

iterations during the parameter estimation being limited to 1000. For all local smoothing 
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methods, only one iteration was considered, although the locally re-weighting methods 

requiring more iterations and yielding more stable results, are robust to the influences of 

outliers. However, in this case it was not possible to be handled by the LOESS procedure (at 

least for some lactations). The RR method was used due to its useful characters as to be 

resistant versus outlying observations and LR owing to its desirable properties for situations 

in which one does not know a suitable parametric form of the regression surface. 

3.2.3. Schemes to treat outliers 

In order to deal with outlying TD observations before implementation of genetic 

evaluations, two treating schemes, discarding and adjusting, were considered and each of 

them was applied to three regression procedures.  

The discarding scheme excluding 0.1, 0.2, 0.4, 0.8, 1.6, 3.2 and 6.4 percent of outlying 

TD yields with the highest values for either absolute residual (ABSR) or absolute 

standardized residual (ASTAR) were employed. The marginal residuals for each 

observation were defined as yi-ŷi where ŷ = Xβ. The ASTAR of individual recordings was 

calculated as the residuals (R) divided by standard division of the residual (STDR).  

With the adjusting scheme, a TD record was adjusted if its R was beyond k times of its 

STDR. In this case, these records ( *
iy ) were replaced by a value as following:   
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 where STDR is the standard deviation of residuals estimated by regression method for 

a specific lactation of an animal in a given TD. Also, k is a constant chosen by the user and 

is designed so that approximately between 0.1 to less than 11.5 percents of records are 

labelled as outlier (see Table 4.10). Outliers for each method were defined as observations 

that were located outside of specified limits. In general, this method is similar to the 

method adopted by Yang et al. (2004) except that they computed the standard errors for 

each contemporary groups instead of each observation point. The model to capture the 

outlying data by both SR and RR procedures included four DIM covariates (X2, X3, X4 and 

X5) of Ali and Schaeffer’s (1987) function and LR procedure used only one covariate, X5 

(it comes following) in the model. Subsequently, the data obtained after treating data 

specified as outlying records by both discarding and adjusting schemes were used in order to 

compare the impact of using these methods on model residual criterions, genetic parameters 

and estimated breeding values including the full pedigree.  
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In addition, variance components and parameters as well as breeding values were 

obtained by a regular analysis with complete data. Outliers were quantified by number and 

proportion (relative to the total number of observations), average, standard deviation, and 

minimum and maximum values of differences between y
*
i and yi. Outliers were also 

characterized by number of outliers per cow and lactation.  

 

3.3. Model 

A single trait repeatability animal model which uses fixed regression model (FRM) for 

genetic analysis of TD milk yields was defined with following components:  

ijklkk

m

mmjiijkl epeaXbHTDHYSy +++++= ∑
=

5

1

 

Where: 
 

yijkl is a TD milk yield observation of  cow k, 

HYSi is fixed effect of ith herd-year-season of calving, 

HTDj is fixed effect of jth herd-test-date,  

ak is additive genetic random effect of kth cow, 

pek is permanent environment random effect of kth cow, 

bm are mth fixed regression coefficients of age at calving and Ali and Schaeffer’s function  

X1 = age at calving in months,  

X2 = DIM/330,  

X3 = ln(330/DIM),  

X4 = (DIM/330)2 and  

X5 = (ln(330/DIM))2. 

 

This model is similar to the both repeatability models used by Swalve (1995a) or similar 

to a combination of two models TY1 and TY3 of Ptak and Schaeffer (1993), except  that  

the  regression coefficients  are  not  nested  within  age-season effects. The inclusion of 

factors was based on the literature and a preliminary analysis of test day data. Effects that 

had a major influence on the shape of the lactation curve were herd, age at calving and year 

and season of calving. Month of production is automatically included in HTD effect. The 

main non-genetic effects in the TDM are the herd-test-date (HTD) effect and fixed 

regressions to account for the average shape of lactation curves (Strabel et al. 2005). All 

fixed effects are included as cross-classified effects, not as fixed regressions. 
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In the FRM which initially was proposed by Ptak and Schaeffer (1993) and Reents et al. 

(1995) for modelling dairy TD data, it is assumed that additive genetic and permanent 

environmental effects (variance components) are constant throughout a lactation. This 

implies equal correlations between any two tests, regardless how far away they are from 

each other (Jensen 2001). Thus, residual variance was assumed to be constant across 

lactation. Furthermore, (co)variances between residuals for records were assumed to be 

zero in this model.  

Although, such assumptions result in parsimonious parameterisation, they do not seem 

to make a good use of TD information and do not reflect phenotypic observations well (Liu 

et al. 1998) due to assuming that individuals have a constant additive genetic effect 

throughout the course of lactation and do not allow for differences in lactation curve 

shapes between animals (Szyda and Liu 1999). Advantages and disadvantages of FRM 

were well discussed in literature (e.g. Swalve 2000, Jensen 2001). Here, it is assumed that 

the shape of the lactation curve is not influenced by random genetic and permanent 

environmental effects. However, it was adopted due to the computation limitations and 

simplicity.  

The analyses to compute variance components were implemented by VCE package 

V5.1.0 (Kovac and Groeneveld 2002). For estimating the model parameters, the conjugate 

gradient algorithm (default option) was used through setting the sparse matrix algorithm as 

solver (Groeneveld 2003). The estimations were stopped when the Log likelihood changed 

by less than 0.0001 in the last two successive iterations or until the number of iterations 

reached 1000 whichever occurred first. However, the preliminary analysis showed that 

thirty iterations were sufficient to reach convergence.  

For the purpose of estimating breeding values by PEST package V4.2.3 (Groeneveld et 

al. 1990), the solver IOC (iteration on coefficient) was chosen. The estimated variance 

components obtained by VCE package were used as values of the specified parameters for 

PEST. For PEST, the parameters to stop computations were 1×10-7 (convergence criterion) 

and 200,000 (maximum number of iteration) respectively. Both packages were run under a 

Linux operation system. The same pedigree data were used in all analyses. 

 

In matrix notation, the model can be written as: 

y = Xb + Za + Wp + e                                              (3.1) 
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where y is the vector of TD milk yields; b is the vector of fixed effects being herd-year-

season of calving (HYS) subclass and herd-test-date (HTD) subclass and fixed regression 

coefficients (X1 to X5); a is the vector of animal additive genetic effects; p is the vector of 

animal permanent environmental effects; and e are the random residual effects. X, Z, and W 

are matrices relating observations to factors b, a and p in the model, respectively. 

The corresponding Henderson's mixed model equations (Henderson 1984) for analysis 

are: 
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where 2)( aAGaVar σ== , 2)( ppIPpVar σ==  and 2
enIR σ= . For this case, the matrix R is 

diagonal and has the constant residual variance. Therefore, multiplying (3.2) throughout by 

the scalar residual variance ( 2
eσ ) results in a equivalent equation: 
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with 22
1 / ae σσα = , 22

2 / pe σσα = . 

where RWWPZZGyVar +′+′=)( , A = additive genetic relationship matrix among the 

animals, I = identity matrix and R = residual matrix, σ2
a= variance of the additive genetic 

effect, σ2
p= variance of the permanent environmental effect and σ2

e= variance of the 

residual effect that were assumed to be constant over lactation. 
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3.4. Comparisons 

The evaluation of the model fit was based on checking the residuals (R, ABSR and 

ASTAR) and the correlation between TD yields and their predicted values. Moreover, the 

proportion of identified outlying recordings over lactation and versus production level  by 

various regressions will be checked. The total number of detected outliers, the percentage, 

no. of cows with at least one outlying TD recording, percentage of low outliers and 

percentage of lactations with a single outlying TD for each data set produced by methods 

will be examined. In each case (treating method), the total number of lactations with one 

(TD1), two (TD2) and by eight (TD8) outlier records for whole lactations will be 

calculated. 

It is very important to note that the residuals, iê , estimated by PEST package are 

conditional meaning that the effects of the factors included in the model on observations 

were removed by ) p̂w  âz b̂x(ˆ
iiiii ye ′+′+′−= where yi is the corresponding observation. 

Average of milk yield production (MPA), mean of absolute residuals (MAR), mean of 

squares of residuals (MSR) and standard deviation of residual (SDR) will be compared. In 

addition, results of genetic evaluations, additive genetic (Va), permanent environmental (Vc) 

and residual (Ve) variances, heritability (h2), permanent variance ratio (c2) and error variance 

ratio (e2) and; their standard errors (SE (h2), SE (c2) and SE (e2)) were estimated.  

Comparisons are also made of the top 100 bulls (with 50 or more daughters having 

records) and top 100 cows having records, on number of top 100 bulls and cows in 

common with the different analyses, average of estimated breeding values (MEBV), and 

Spearman rank correlations. Correlations between the complete data with no treatment and 

those from the methods will be also estimated for all animals. 
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4. Results 

 

4.1. Tests for determining the existence of outliers 

As explained before, it is useful to examine data for possible outliers and to employ 

remedial alternatives, although practically most datasets from every field of science 

includes one or more outlying observation(s). In this study, testing was done through 

applying absolute standardized residual (ASTAR), absolute PRESS residual (APRESSR), 

PRESS statistic (PRESS) and studentized residual (STUR). Residuals from a regression 

analysis will generally be dependently (unequally) distributed, even if outliers are not 

present in the data. Therefore, it is advisable to divide the residuals by their standard 

deviations. Similarity between PRESS statistic and the residual sum of squares (SSE) 

relevant to a specified lactation, suggests that there are no outliers or influential observations 

in the data. The advantage of using the studentized residuals over ordinary residuals is that 

they have a two-sided symmetric student distribution. Belsley et al. (1980) pointed out that 

studentized residuals have a t-distribution with n-p-1 degrees of freedom, where n and p 

are the number of observations and model parameters, respectively. This means that one 

can test the significance of any single studentized residual using a t-table.  

Table 4.1 presents the percentage of detected outliers by STAR and PRESS residuals 

which are greater than 2 and 3 in absolute value, respectively. Moreover, it shows the 

identified outliers by studentized residuals in two statistical levels of α=0.05 and α=0.01 with 

both the usual alpha for two-side test (α/2) and the alpha corrected by Bonferroni method 

(α/2n). It also shows the comparison of the average of PRESS to SSE for all lactations. 

Table 4.2 shows the summary statistics for the three residual terms PRESS, SSE and 

PRESS/SSE that were produced by SR (simple regression) analysis and their absolute 

values. However, these residuals will be needed to explain the observed ranges of outlier 

tests which were applied to the simple regression. 

Standardized residuals (STAR) are useful in detecting abnormal observations or 

outliers. The good thing about STAR is that they quantify how large the residuals are in 

standard deviation (SD) units, and therefore, can easily be used to identify the outliers. In 

general, any observation with an ASTAR greater than two (that includes about 95% of 

them) should be considered for further investigation, although such observations are not 

necessarily outliers (Birkes and Dodge 1993). Shiffler (1988) showed that the magnitude 

of a standardized residual in a univariate data set could never exceed (n - 1)/ n  where n is 

the number of observations (Gray and William 1994). It means that with available data, 
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range of ASTAR would be 2.67, 2.85 and 3.01 for 9, 10 and 11 tests per lactation, 

respectively. However, 1.7% data points having ASTAR greater than two (the specified 

threshold for being a potential outlier) were detected (Table 4.2). 

Another useful test to recognize outlying TD records is examining studentized residuals 

(STUR). The studentized residual for a given data point not only depends on the ordinary 

residual but also on the size of the mean square error and the leverage hii. The STUR is the 

standardized residual calculated without the current observation. It is clear that increasing 

the significance level of a statistical test will decrease the probability of obtaining a 

significant error. As Table 4.1 shows, STUR detected 8.44% and 2.82% at significant levels 

of 5% and 1%, respectively, versus 1.85% and 0.64% whereas their alphas were corrected 

for degree of freedom using Bonferroni adjustment. Since the Bonferroni criterion is 

relatively conservative, Williams et al. (1999) provided an alternative to this inequality that 

results in drooping more outlier observations.  

The PRESS residual and PRESS statistic, behaved somewhat different from the last two 

ones. The predicted residual for the observation i is called PRESS residual (PRESSR) that 

was explained in section 1.7 and is the numerator of PRESS statistics. The sum of squares of 

PRESSR is called the PRESS statistics (predicted residual sum of squares). Furthermore, an 

extreme value is often considered to be an outlier if an outlier test flags the predicted residual 

greater than 3.0 in absolute value. Approximately 34% data points provided a APRESSR 

value greater than the value 3.0 (Table 4.2) which implies a potential difficulty in identifying 

outlying data using this type of residual criterion. Though PRESS in most cases is larger than 

SSE but the general idea is that it should not be much larger in contrast to what is given in 

Table 4.2. As a rule, if the PRESS statistic for an individual lactation is considerably larger 

than its SSE this indicates the existence of outliers in that particular lactation. Clearly, a 

lower PRESS statistic suggests a better prediction performed by the model if the aim is to 

compare different models.  

About 53.5% of the data were identified as outliers by the PRESS statistics. On average, 

PRESS is about 750 times greater than SSE, probably due to its sensitivity to dropping TD 

records in a lactation stage prior to the peak yield. Looking at PRESS and its absolute value 

(APRESSR) presented in Table 4.2, one can find the high average value and large standard 

deviation (SD) of PRESSR and APRESSR. Figure 4.1 shows the high variability of the 

average of PRESSR for the first month of lactation period. It means that the measure of the 

PRESS statistic is seriously affected by eliminating (see equation 2.10 on page 14) the TD 

records relating to the first 45 days of lactation before peak milk yield.  
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Silvestre et al. (2006) studied the different shapes of the seven lactation curve functions 

based on TD records from varying sample schemes including the intervals from calving to 

first test (8, 30, 60, and 90 day) and two intervals between tests (4 and 8 week). When time 

intervals from calving to first test were equal to 60-d or more were analyzed, the SD of 

error increased and the correlation (R) between true and estimated yields decreased. Their 

results for both 4 and 8 week test schemes show poor fit for the lactations groups having 

the first test within 60 and 90 days after calving. It is interesting that a poorer results were 

observed for the lactation groups with DIM=60 and 4 weeks interval containing 9 records 

per lactation compared to the group with DIM=30 and 8 weeks interval including only 5 

tests per lactation. This fact obviously indicates that the reduction in R was a consequence 

of the increased interval from calving to the first test (60 or 90 DIM). Thus, the efficiency 

of most lactation  models strongly depends on the interval from calving to the first test 

(Silvestre et al. 2006). 

From the results it may be concluded that the PRESSR and PRESS statistics may not be 

useful outlier tests for the data with few TD records per lactation as herein. It is proved 

again by taking the average of PRESS statistics for the lactations with 9, 10 and 11 test 

records, separately. The number of TD records decreased from 15149 in the lactations with 

9 records to 14688 and 6862 in lactations with 10 and 11 records, respectively. A possible 

cause of this decrease is that a increase in the number of milk tests will raise the chance of 

occurring more than one milk tests in the first 45 days in milk after calving. 

Therefore, the results from the tests underline the presence of outliers in the data set 

regardless of which outlier test is used. Below, other aspects of the fit of the regression 

models as well as the relationship between frequencies of the detected outliers and lactation 

stage and/or TD yield values will be explained. 

 

Table  4.1: Percentage of outliers detected by ASTAR, STUR and PRESSR and PRESS1. 

Test Percentage of detected outliers 

ASTAR >2 1.71 
 STUR t95% 8.44 

STUR t95%b 1.85 

STUR t99% 2.82 

STUR t99%b 0.64 

PRESSR >3 34.4 
 PRESS > (100×SSE) 53.5 

1- In this table the limitation for a point to be an outlier using ASTAR was a value greater than 2, and using PRESSR 
limitation was a value greater than 3. Using STUR a point was an outlier if its critical t-value was larger than the t-value 
in the t-table for levels 5% and 1% with (t95%b and t99%b) and without Bonferroni correction (t95% and t99%). Using PRESS 
statistics, the range for a particular lactation having outlier(s) was a PRESS greater than 100×SSE. 
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Table  4.2: Mean, SD, Min and Max values for various residuals and statistics resulting from SR1. 

Type of Residual Mean SD Min Max 

R 0.0000 1.457 -16.05 17.149 

STDR 1.1746 0.8615 0.0007 8.6572 

STAR 0.0002 1.027 -2.429 2.4139 

STUR -0.0314 1.806 -51.08 63.495 

PRESSR 1.2393 38.79 -1916.0 1666.4 

ABSR 0.9819 1.076 0.000 17.149 

ASTAR 0.8609 0.559 0.000 2.4294 

ASTUR 1.1294 1.409 0.000 63.495 

APRESSR 8.9917 37.76 0.000 1916.0 

SSE2 20.380 27.51 0.0550 443.752 

PRESS2 14469 88876 0.76404 3672788 

Ratio PRESS/SSE2 755.15 3660.9 1.9457 133212 

1- In this table R stands for residual, STDR for standard deviation of residual, STAR for standardized residual, 
STUR for studentized residual, PRESSR for predicted residual sum of squares and ABSR, ASTAR, ASTUR and 
APRESS stand for absolute values of R, STAR, STUR and PRESS, respectively. Moreover, SSE stands for sum 
of squared errors, PRESS stands for predicted residual sum of squares and Ratio stands for the proportion 
PRESS/SSE.  

2- These three criteria (SSE, PRESS and Ratio) were applied to the individual lactations. 

 

 

 

 

 

 

Figure  4.1: Variation of PRESS residual versus days in milk (DIM) resulting from SR model. 
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4.2. Checking the fit of the models  

Figures 4.2, 4.3 and 4.4 show the patterns of variations for predicted yields, residual 

terms and correlations between predicted and observed milk yields over the lactation 

period, respectively. Despite a high variance at the beginning and the end of lactation, both 

SR and RR models fitted well to the TD data points for these parts.  

On the other hand, the curves fitted by the local regressions LR1 and LR2 with both 

smoothing parameters 0.5 and 0.6 (LR1-0.5, LR1-0.6, LR2-0.5 and LR2-0.6) matched the 

average of the actual data (MPA) from 5 to 75 DIM sufficiently, and afterward they 

gradually moved away from the MPA by end of lactation. The LR regressions 

underestimated the predicted values between 180 and 270 DIM and overestimated it later, 

indicating that these models were unable to fit the data accurately within  this phase of the 

lactation course.  

As it is observable from Figure 4.2, around DIM 270 up to 300, the slope of the MPA 

curve changed slightly. This figure also shows that local smoothing regressions performed in 

a slightly different way compared with the rest of methods for the latest months when milk 

yield was again significantly increased. While the predicted residuals for the LR1 and LR2 

models followed a pattern in which they had the same sign for several successive months, 

inconsistent patterns of deviations about zero were found for the SR and RR models 

indicating a more satisfactory description of the lactation data by these models (Figure 4.3). 

The average of absolute standardized residuals followed a similar pattern for all regressions 

excluding SR which remained nearly stable during lactation. Late lactations (later than 

month 6) were particularly difficult to predict with any of the LR models.  

Table 4.3 shows the correlations between TD milk records and other statistics such as 

predicted values (PRED), residuals (R), standard deviation of residuals (STDR) and 

standardized residuals (STAR) for all regression procedures. The estimated correlations 

between predicted and observed milk yields were high for all models, but the observed milk 

yields showed an intermediate correlation with the residuals (15-28) with an exception for 

LR2-0.5 (=9). The existence of these correlations again indicates that higher prediction 

residuals generally are associated with a larger observed yields and vice versa. This table 

demonstrates that local regressions show slightly higher correlation of TD records with their 

predicted values compared to SR and RR, though this difference is negligible. On the other 

hand, increasing the smoothing parameter from 0.5 to 0.6 caused a decrease in PRED as an 

insufficient performance. In addition, existence of a higher correlation between milk yields 

and their residuals (R) than standardized residuals (STAR) implies that a larger (or smaller) 
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TD record has a higher (or lower) chance to be an outlier if it is detected by ABSR. However, 

standardizing the residuals somewhat alleviated this correlation by 5% (see Table 4.3).  

Figure 4.4 illustrates with more details the pattern of correlation between the original and 

predicted TD records by each regression procedure in various parts of the lactation period. 

While the predicted values generated from the local regressions were highly correlated with 

the true values (Table 4.2), these models (except LR2-0.5 method) suffer from a lack of fit 

(i.e. under- and over-estimation of the predictions) at late lactation (Figure 4.2).  

The narrow range of correlations and their high values (around 1.0 and 0.93) between 

predicted and observed milk yields over the lactation for all models suggest that the 

predicted values were more highly associated with the magnitude of milk yields than the 

stages of lactation. Furthermore, local regressions with the smaller smoothing parameter 0.5 

predicted the original points better than 0.6 did.  

 

 
Table  4.3: Correlations between TD records and residual statistics for various regressions1. 

Statistics SR RR LR-0.5 LR2-0.5 LR1-0.6 LR2-0.6 

PRED 97.322 97.306 98.625 99.663 97.429 98.926 

R 22.987 23.136 20.458 9.182 27.930 15.500 

STDR 3.328 10.273 15.218 10.503 20.026 15.354 

STAR 19.317 20.174 15.264 5.597 22.335 10.663 
1- In this table all correlations have been presented in percent. 

 
 
 

 

Figure  4.2: The plots of original data (MPA), its variance (MPV) and predicted values 
versus days in milk (DIM) for various regressions. 
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Figure  4.3: The plots of average residual, absolute residual, standard deviation of residual 
and absolute standardized residuals versus days in milk (DIM) for various regressions. 
 

 

Figure  4.4: Correlation between TD yields and predicted values versus DIM for various 
regressions. 
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4.3. The distribution frequency of outliers 

Although homogeneity of variance (homoscedasticity) is assumed in the model, the data 

should be tested for it. Several significance tests are available using absolute values of the 

residuals as Modified Levene’s test which is less sensitive to the normality assumption (NIST 

2003). The significant F-test value of 173.01 (p<0.0001) for TD size and value of 26.70 

(p<0.0001) for DIM are evidence that variances are not homogeneous (heteroscedasticity) 

between eight different production levels classified according to their (daily) milk kilograms 

(<10, 10-15, 15-20, 20-25, 25-30, 30-35, 35-40 and >40) and lactation stages (DIM from 5 to 

330 with 30-days interval). A number of remedies for this heterogeneity exist including 

deleting outliers (if their removal is essential), using weights by weighted regression, 

transformations, nonparametric and robust procedures. All Tukey's Studentized Range Tests 

that were applied to the pairwise comparisons between different production levels and lactation 

stages, were significantly different (p<0.0001) with exception for DIM levels 45 vs. 75 and 15 

vs. 165. According to Mayeres et al. (2003), the distribution of outliers should be independent 

of the value of production (TD milk yield) or the stage of lactation (DIM). Tables 4.4 and 4.5, 

and Figure 4.5 demonstrate the distribution pattern of the detected outliers (in percent) during 

the lactation course using all three regression strategies, SR, RR and LR (with linear and 

quadratic degrees as well as two smoothing parameters 0.5 and 0.6) and for both schemes. In 

these tables, the relative frequencies are based on the average of all coefficients k.  

The outliers detected by ABSR (Figure 4.5a) for SR and RR were well distributed 

between peak and end of lactation. However both local regressions (especially for LR2) 

were somewhat different from SR and RR, a high portion of the outlying records occurred 

in the last three months of lactation. This could be a consequence of the goodness of the fit 

of the models over the lactation. Overall regressions (except RR), switching from ASTAR 

to ABSR slightly changed the incidence pattern of the abnormal recordings (Figure 4.5b). 

The observed difference between ABSR and ASTAR for the relative frequencies of 

detected outliers confirms that the predicted residuals do not have a constant variance over 

the lactation period. Moreover, Figure 4.5c shows the distribution of adjusted outlying 

observations over the lactation period. It is very obvious that the distributions for SR and 

RR are quite similar to those for discarding by the use of ASTAR, but two local 

regressions show a slight difference in distribution of outliers between adjusting scheme 

and discarding using ASTAR (Figure 4.5). Using SR, percentage of OTD yields at the 

peak was somewhat higher than other methods, which may be due to a smaller variance at 

this stage of lactation (see Figure 4.2). The interesting thing with RR is that the frequency 

of outliers did not arise in the early and in the late stages of lactation, confirming that the 

RR method has a sufficient fit for the data sets which resulted from both elimination and 

substitution of outlying observations.  
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In contrast to SR and RR procedures, when an adjusting scheme was applied to the data 

by both local regressions, the relative frequency of occurrence of outlying observations 

highly increased before the end of lactation (similar to discarding scheme). However, local 

regressions, especially when applying a larger smoothing parameter (0.6), did not fit the data 

accurately after DIM=150. Consequently, for larger smoothing parameters the distribution of 

outliers remains somewhat unsatisfactory. Although, both local regressions, particularly LR2 

with the smaller smoothing parameter, matched the data well (see PRED in Table 4.3) but all 

of them suffer from the lack of uniform distribution of outliers over the lactation period.  

Similar to DIM, it is necessary to examine the regression methods to find a relationship 

between size of a TD yield and the probability to be an outlier. However, there is an 

expectation that the number of outliers for the high (or low) production animals remains low 

and for the animals with moderate production remains more in agreement with their frequency. 

The findings shown in Tables 4.6 and 4.7 and Figure 4.6 seem to confirm this theory for both 

discarding (ABSR and ASTAR) and adjusting schemes. There is a small difference between 

ABSR and ASTAR in catching the outlying points, so ASTAR captures the smallest and the 

largest TD records with less probability than ABSR (Figure 4.6a and 4.6b). In other words, it 

captures the data points located near the center of the data, because they are more.  

In the Table 4.6, the frequency (Freq) of TD values (in percent) in the category of 20-25 

kg for ASTAR, for example, is 30.26 where its frequency for SR and LR1-0.5 is 24.56 and 

33.04, respectively. Scaling of frequencies for the category >40 by converting them to the 

corresponding frequencies for the category of 20-25 kg resulted in 0.22 (24.56×0.27/30.26) 

and 0.29 (33.04×0.27/30.26) rather 0.65 and 0.38 for SR and LR1-0.5. The corresponding 

standardized quantities of the category <10 for SR and LR1-0.5 are 1.88 and 2.53, but the 

observed frequencies (Freq) are 8.28 and 3.98, respectively. These differences imply that 

despite standardizing the residuals, ASTAR still catches the TD records with the small and 

large values more than expected. The relatively insignificant value of the differences 

indicates that after standardizing the residuals, heterogeneous variance corresponding to 

TD magnitude and lactation stage were greatly taken into account. The incidence pattern 

for the distribution of the adjusted records by size classes is similar to that for ASTAR 

(Figure 4.6c). Despite dissimilarity between two strategies (discarding and adjusting), both 

methods captured smaller TD records as outliers more frequently than the bigger ones. 

This is more likely due to their higher count.  

Since LR with the smoothing parameter =0.5 (for LR1 and LR2) described the data much 

better than 0.6, and since it provided a more consistent pattern for outliers over lactation, it is 

chosen as local regression candidates to examine the impact of outlier treatment on the 

results of genetic evaluations and consequently on ranking the top cows and bulls. 
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Table  4.4: Distribution of outliers detected (in percent) using the discarding scheme 
(ABSR or ASTAR) during lactation (DIM) for different regression methods. 

ABSR ASTAR 
DIM Freq 

SR RR LR1-0.5 LR2-0.5 LR1-0.6 LR2-0.6 SR RR LR1-0.5 LR2-0.5 LR1-0.6 LR2-0.6 

15 8.14 0.00 0.00 0.00 0.00 0.00 0.00 11.75 0.00 0.00 0.00 0.00 0.00 
45 9.52 0.44 0.31 0.00 0.00 0.00 0.00 13.00 0.31 0.00 0.00 0.00 0.00 
75 9.41 10.80 10.89 0.21 0.16 0.62 0.17 12.27 9.81 0.12 0.23 0.19 0.07 

105 9.38 10.69 10.26 1.51 0.73 2.04 0.55 8.99 7.39 1.79 0.52 1.24 0.16 
135 9.35 15.35 15.32 4.15 1.15 3.69 1.10 8.29 11.58 3.58 0.67 1.94 0.20 
165 9.28 15.91 15.75 3.66 0.72 3.26 0.44 8.31 20.29 2.69 0.61 1.22 0.06 
195 9.38 16.17 16.64 2.06 0.21 5.94 3.51 9.62 19.45 1.67 0.29 9.29 0.01 
225 9.45 10.21 10.63 9.29 2.22 18.42 10.93 6.75 9.86 20.67 0.13 50.99 3.43 
255 9.52 10.95 10.63 32.12 16.75 22.22 33.20 6.39 10.87 59.74 9.85 29.68 70.29 
285 9.36 8.63 8.95 23.12 57.28 15.03 30.51 6.95 9.99 7.96 85.34 2.65 24.48 
315 7.21 0.85 0.61 23.88 20.78 28.78 19.59 7.69 0.47 1.79 2.36 2.81 1.31 

 

 

Table  4.5: Distribution of outliers detected (in percent) using the adjusting scheme during 
lactation (DIM) for different regression methods. 

DIM Freq SR RR LR1-0.5 LR2-0.5 LR1-0.6 LR2-0.6 

15 8.14 11.29 0.00 0.00 0.00 0.00 0.00 
45 9.52 12.57 0.08 0.00 0.00 0.00 0.00 
75 9.41 11.37 6.21 0.30 0.79 0.41 0.20 

105 9.38 9.42 5.90 2.96 1.88 2.44 0.45 
135 9.35 8.89 12.15 5.71 2.34 3.40 0.56 
165 9.28 8.18 21.95 4.85 2.03 2.38 0.21 
195 9.38 8.17 19.51 3.05 1.03 9.56 0.11 
225 9.45 6.67 9.97 15.70 0.82 40.69 6.22 
255 9.52 7.14 12.55 49.88 13.08 29.79 54.59 
285 9.36 8.06 11.29 12.52 70.03 4.53 33.88 
315 7.21 8.23 0.38 5.01 8.01 6.80 3.78 

 

 

Table  4.6: Distribution of outliers detected (in percent) using the discarding scheme 
(ABSR or ASTAR) per various TD milk yield levels for different regression methods. 

ABSR ASTAR TD 

value 
Freq 

SR RR LR1-0.5 LR2-0.5 LR1-0.6 LR2-0.6 SR RR LR1-0.5 LR2-0.5 LR1-0.6 LR2-0.6 

10 < 2.32 14.88 15.17 23.74 11.98 33.08 18.69 8.28 6.66 3.98 3.19 5.73 4.32 
10-15 8.06 19.39 19.92 15.19 15.71 16.33 15.14 13.88 16.44 11.04 19.24 11.22 14.17 
15-20 20.77 16.19 16.58 16.13 26.98 10.95 18.98 20.02 24.82 27.35 35.86 22.09 30.97 
20-25 30.26 17.60 17.63 22.85 27.48 15.49 25.54 24.56 24.88 33.04 29.81 30.19 34.17 
25-30 25.13 13.23 12.10 13.34 13.32 13.75 14.68 18.69 14.80 16.97 10.20 20.87 13.25 
30-35 10.98 9.94 9.61 6.20 3.96 6.99 5.77 9.17 7.32 6.12 1.18 7.71 2.80 
35-40 2.21 4.50 4.69 0.93 0.47 1.34 0.65 4.75 4.14 1.12 0.50 1.44 0.29 
> 40 0.27 4.27 4.31 1.63 0.10 2.08 0.55 0.65 0.95 0.38 0.01 0.75 0.04 

 

 

Table  4.7: Distribution of outliers detected (in percent) using the adjusting scheme per 
various TD milk yield levels for different regression methods. 

TD value Freq SR RR LR1-0.5 LR2-0.5 LR1-0.6 LR2-0.6 

10 < 2.32 6.31 3.98 3.98 3.78 5.26 3.81 
10-15 8.06 12.06 12.88 12.24 18.58 11.62 15.47 
15-20 20.77 20.20 24.68 28.03 35.11 24.03 32.78 
20-25 30.26 26.35 29.68 31.39 28.67 30.79 31.79 
25-30 25.13 20.95 18.02 17.16 10.98 19.59 12.61 
30-35 10.98 10.28 8.31 6.03 2.41 7.24 3.09 
35-40 2.21 3.03 1.88 0.94 0.42 1.13 0.40 
> 40 0.27 0.81 0.56 0.24 0.04 0.35 0.05 
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Figure  4.5: Plots of relative frequency of outliers for discarding scheme with both residual 
criteria ABSR (a) and ASTAR (b) and adjusting (c) scheme versus days in milk (DIM) for 
different regression methods. The symbols are for SR , RR , LR1-0.5 , 
LR1-0.6 , LR2-0.5  and LR2-0.6 . 

a 

b 
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Figure  4.6: Plots of relative frequency of outliers for discarding scheme with both residual 
criteria ABSR (a) and ASTAR (b) and adjusting (c) scheme versus TD size levels (TD value) 
for different regression methods. The symbols are for SR , RR , LR1-0.5 , 
LR1-0.6 , LR2-0.5  and LR2-0.6 . 

a 

b 

c 
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4.4. Counting outliers per lactations  

Tables 4.8 and 4.9 give the distribution of lactations (total number in all lactations) 

including outlying test-days (OTD) in various count classes of OTD number for the 

discarding approaches (ABSR and ASTAR). Table 4.10 presents the same information for 

the adjusting methods. It is remarkable that very few lactations with more than one 

abnormal record are identified. 

Among the regression methods, SR had the highest proportion of lactations with several 

possible outliers by eight TD records (TD8) that indicates its inability to be independent of 

production levels. Due to this problem, using ABSR can result in elimination of the records 

that may not be an outlier or those generated from cows with low or high genetic potential 

leading to inaccurate selection results. An alternative to this is using ASTAR instead of 

ABSR. As it is clear from Table 4.9, using ASTAR greatly relieved this problem by 

standardizing the ordinary residuals with maximum four OTD per lactation. When the 

adjusting method was applied to the data, the proportion of lactations with a single outlier 

increased up to four OTD per lactation by correcting about 10% TD records (Table 4.10). 

This positive outcome for the adjusting case, however, may be due to using both residual and 

its standard deviation having correlation with the magnitude of TD records.  

In the case of discarding of OTD, the frequency of the low outliers for SR and RR was 

larger than the frequency of high outliers. However, local regressions (LR1 and LR2) show 

a different pattern where the low outliers were less than 50% out of total OTD records 

(Table 4.8 and 4.9). Similar outcomes were obtained by adjusting the outlying candidates. 

These findings strongly emphasize that the proportion of low outliers depends on the 

regression method and the percentage of identified outliers as well as the fit of the model. 

Totally, RR showed the greatest percentage of lactations with a single OTD (up to 100%) 

and in contrast, SR had the greatest proportions of lactations with two or more outliers 

whether discarding or adjusting schemes were applied to the data. 

For all regressions and schemes, however, along with increasing the proportion of 

detected outlying records, the frequency of lactations with two or more extreme yields 

increased. This occurs as a consequence of increasing the number of outliers and increasing 

the probability of observing two or more outliers within a specific lactation. By contrary, an 

increase in the proportion of detected outliers was associated with a decrease in the 

incidence of lactations with only a single abnormal record. However, current results do not 

provide information regarding relative frequency of low outliers in various stages of 

lactation that may be different for each type of regression procedure. 
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Table  4.8: The number of outlying TD (TD no.), no. of lactations with at least one outlying TD (Lactation), percentage of low outliers (Low), 

percentage of lactations with a single outlying TD (Single) and the number of lactations with one to eight outlying TD (TD1, TD2,..,TD8),  by 

various percentages (Percent) for the discarding scheme using ABSR applied to different regressions. 

Analysis Percent TD no. Lactation Low Single TD 1 TD 2 TD 3 TD 4 TD 5 TD 6 TD 7 TD 8 

 Full data 0 0 0 0 0 0 0 0 0 0 0 0 0 
                            
SR 0.1 111 102 69.37 91.18 93 9 0 0 0 0 0 0 
SR 0.2 223 198 71.30 87.37 173 25 0 0 0 0 0 0 
SR 0.4 446 385 70.18 84.94 327 55 3 0 0 0 0 0 
SR 0.8 892 716 64.57 78.91 565 127 23 1 0 0 0 0 
SR 1.6 1785 1306 60.22 71.98 940 279 64 20 3 0 0 0 
SR 3.2 3571 2311 55.47 62.09 1435 611 180 59 19 6 1 0 
SR 6.4 7142 3982 51.74 49.60 1975 1231 521 169 57 23 5 1 
               
RR 0.1 111 104 69.37 93.27 97 7 0 0 0 0 0 0 
RR 0.2 223 212 73.09 94.81 201 11 0 0 0 0 0 0 
RR 0.4 446 411 72.87 91.48 376 35 0 0 0 0 0 0 
RR 0.8 892 779 67.49 86.65 675 95 9 0 0 0 0 0 
RR 1.6 1785 1428 62.75 79.48 1135 241 42 8 2 0 0 0 
RR 3.2 3571 2551 57.41 70.64 1802 560 131 39 14 5 0 0 
RR 6.4 7142 4351 53.08 57.48 2501 1208 434 141 46 18 3 0 
               
LR1 0.1 111 96 53.15 85.42 82 13 1 0 0 0 0 0 
LR1 0.2 223 183 49.78 79.78 146 34 3 0 0 0 0 0 
LR1 0.4 446 353 50.22 75.35 266 81 6 0 0 0 0 0 
LR1 0.8 892 664 46.30 69.43 461 178 25 0 0 0 0 0 
LR1 1.6 1785 1239 44.99 61.26 759 417 60 3 0 0 0 0 
LR1 3.2 3571 2333 43.21 56.49 1318 813 184 16 1 1 0 0 
LR1 6.4 7142 4141 42.30 45.83 1898 1619 516 87 16 5 0 0 
               
LR2 0.1 111 94 36.94 84.04 79 13 2 0 0 0 0 0 
LR2 0.2 223 185 32.29 81.62 151 30 4 0 0 0 0 0 
LR2 0.4 446 364 32.96 79.95 291 64 9 0 0 0 0 0 
LR2 0.8 892 671 35.09 71.98 483 155 33 0 0 0 0 0 
LR2 1.6 1785 1191 39.72 59.70 711 368 111 0 1 0 0 0 
LR2 3.2 3571 2103 44.67 49.74 1046 668 373 11 4 1 0 0 
LR2 6.4 7142 3525 50.78 36.06 1271 1062 1065 89 32 6 0 0 
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Table  4.9: The number of outlying TD (TD no.), no. of lactations with at least one outlying TD (Lactation), percentage of low outliers (Low), 

percentage of lactations with a single outlying TD (Single) and the number of lactations with one to eight outlying TD (TD1, TD2,..,TD8),  by 

various percentages (Percent) for the discarding scheme using ASTAR applied to different regressions. 

Analysis Percent TD no. Lactation Low Single TD 1 TD 2 TD 3 TD 4 TD 5 TD 6 TD 7 TD 8 

Full data 0 0 0 0 0 0 0 0 0 0 0 0 0 
                            
SR 0.1 111 93 65.77 86.02 80 8 5 0 0 0 0 0 
SR 0.2 223 199 61.88 90.45 180 14 5 0 0 0 0 0 
SR 0.4 446 396 62.56 89.14 353 36 7 0 0 0 0 0 
SR 0.8 892 778 62.00 87.02 677 88 13 0 0 0 0 0 
SR 1.6 1785 1453 59.89 81.21 1180 214 59 0 0 0 0 0 
SR 3.2 3571 2862 57.27 80.12 2293 429 140 0 0 0 0 0 
SR 6.4 7142 5344 56.13 74.31 3971 949 423 1 0 0 0 0 
               
RR 0.1 111 111 69.37 100.00 111 0 0 0 0 0 0 0 
RR 0.2 223 223 68.16 100.00 223 0 0 0 0 0 0 0 
RR 0.4 446 446 68.39 100.00 446 0 0 0 0 0 0 0 
RR 0.8 892 892 65.92 100.00 892 0 0 0 0 0 0 0 
RR 1.6 1785 1785 61.40 100.00 1785 0 0 0 0 0 0 0 
RR 3.2 3571 3567 58.67 99.89 3563 4 0 0 0 0 0 0 
RR 6.4 7142 6963 55.61 97.43 6784 179 0 0 0 0 0 0 
               
LR1 0.1 111 111 23.42 100.0 111 0 0 0 0 0 0 0 
LR1 0.2 223 223 24.22 100.0 223 0 0 0 0 0 0 0 
LR1 0.4 446 446 23.32 100.0 446 0 0 0 0 0 0 0 
LR1 0.8 892 892 24.33 100.0 892 0 0 0 0 0 0 0 
LR1 1.6 1785 1785 25.66 100.0 1785 0 0 0 0 0 0 0 
LR1 3.2 3571 3489 28.42 97.65 3407 82 0 0 0 0 0 0 
LR1 6.4 7142 5989 33.24 80.80 4839 1147 3 0 0 0 0 0 
               
LR2 0.1 111 111 13.51 100.0 111 0 0 0 0 0 0 0 
LR2 0.2 223 223 21.08 100.0 223 0 0 0 0 0 0 0 
LR2 0.4 446 446 21.97 100.0 446 0 0 0 0 0 0 0 
LR2 0.8 892 892 20.52 100.0 892 0 0 0 0 0 0 0 
LR2 1.6 1785 1785 22.30 100.0 1785 0 0 0 0 0 0 0 
LR2 3.2 3571 3571 25.93 100.0 3571 0 0 0 0 0 0 0 
LR2 6.4 7142 6284 38.07 86.35 5426 858 0 0 0 0 0 0 
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Table  4.10: The number of outlying TD (TD no.), no. of lactations with at least one 

outlying TD (Lactation), percentage of low outliers (Low), percentage of lactations with a 

single outlying TD (Single) and the number of lactations with one to eight outlying TD 

(TD1, TD2,..,TD4), by various percentage (Percent) for the adjusting scheme applied to 

different regressions and coefficients (k). 

Analysis Level k Percent TD no. Lactation Low Single TD 1 TD 2 TD 3 TD 4 

Full data  0 0 0 0 0 0 0 0 0 0 

            
SR 1 2.10 0.78 871 761 62.00 87.254 664 84 13 0 

SR 2 2.05 1.22 1365 1140 60.66 83.070 947 161 32 0 

SR 3 2.00 1.71 1905 1544 59.69 80.894 1249 229 66 0 

SR 4 1.95 2.62 2927 2375 58.46 80.884 1921 356 98 0 

SR 5 1.90 3.82 4260 3369 56.88 78.807 2655 537 177 0 

SR 6 1.85 5.1 5686 4385 56.68 76.534 3356 757 272 0 

SR 7 1.80 6.46 7206 5387 56.09 74.290 4002 953 430 2 

SR 8 1.75 7.94 8861 6406 55.61 71.823 4601 1168 624 13 

SR 9 1.70 9.46 10559 7401 55.12 69.288 5128 1422 817 34 

SR 10 1.65 11.04 12321 8268 54.36 64.998 5374 1810 1009 75 
            
RR 1 3.4 0.73 820 820 65.73 100.00 820 0 0 0 

RR 2 3.2 1.13 1258 1256 64.79 99.841 1254 2 0 0 

RR 3 3.0 1.72 1924 1921 62.16 99.844 1918 3 0 0 

RR 4 2.8 2.62 2924 2899 61.18 99.138 2874 25 0 0 

RR 5 2.6 3.78 4224 4137 58.93 97.897 4050 87 0 0 

RR 6 2.4 5.39 6016 5754 56.80 95.464 5493 260 1 0 

RR 7 2.3 6.37 7114 6665 56.41 93.308 6219 443 3 0 

RR 8 2.2 7.5 8371 7618 55.72 90.194 6871 741 6 0 

RR 9 2.1 8.75 9760 8539 54.98 85.877 7333 1191 15 0 

RR 10 2.0 10.12 11299 9387 54.08 79.994 7509 1845 32 1 
            
LR1 1 2.6 0.37 410 410 23.41 100.00 410 0 0 0 

LR1 2 2.4 0.74 827 827 24.79 100.00 827 0 0 0 

LR1 3 2.2 1.23 1378 1378 25.25 100.00 1378 0 0 0 

LR1 4 2.0 2.05 2285 2283 27.31 99.912 2281 2 0 0 

LR1 5 1.8 3.28 3665 3570 28.81 97.339 3475 95 0 0 

LR1 6 1.7 4.05 4525 4290 30.19 94.522 4055 235 0 0 

LR1 7 1.6 5.07 5661 5120 31.69 89.434 4579 541 0 0 

LR1 8 1.5 6.49 7241 6033 33.38 80.043 4829 1200 4 0 

LR1 9 1.4 8.61 9607 7318 34.62 69.596 5093 2161 64 0 

LR1 10 1.3 11.4 12722 9066 34.66 62.784 5692 3093 280 1 
            
LR2 1 1.4 0.13 140 140 17.14 100.00 140 0 0 0 

LR2 2 1.3 1.64 1827 1827 22.33 100.00 1827 0 0 0 

LR2 3 1.2 3.33 3713 3713 25.94 100.00 3713 0 0 0 

LR2 4 1.1 4.04 4508 4508 27.99 100.00 4508 0 0 0 

LR2 5 1.0 4.50 5020 5020 29.70 100.00 5020 0 0 0 

LR2 6 0.9 5.00 5576 5547 31.73 99.477 5518 29 0 0 

LR2 7 0.8 5.57 6211 6012 34.47 96.690 5813 199 0 0 

LR2 8 0.7 6.51 7260 6300 38.50 84.762 5340 960 0 0 

LR2 9 0.6 8.37 9343 6382 45.01 54.967 3508 2787 87 0 

LR2 10 0.5 11.13 12419 6385 50.17 15.129 966 4824 575 20 
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4.5. Impact on residual criteria  

Tables 4.11 through 4.14 and Figures 4.7 and 4.8 illustrate the milk production average 

(MPA), mean of absolute residuals (MAR), mean of squared residuals (MSR) and standard 

deviation of residuals (SDR) obtained from the full data which individual records were 

deleted and corrected using different estimation procedures (i.e. SR, RR, LR1 and LR2). 

Perhaps it is again proper to state that henceforth, LR1 and LR2 imply first and second 

order of local regressions with a smoothing parameter =0.5. 

While differences among regressions were small, MPA for both ABSR and ASTAR 

showed an increasing trend with increasing discarding percentage. But for SR and RR 

analyses, the increase in MPA alleviated after k=0.8 in contrast to LR1 and LR2 which 

continuously increased (Tables 4.11 and 4.12 and Figure 4.7). The increasing trend of MPA 

indicates that the sum of absolute deviations from the average of milk production of the 

whole dataset (=22.98 kg) for low outliers is larger than that for high outliers. The variation 

in MPA depends on both the number and the distance of low and high outliers from the 

average of the data. Since the average of all observations for the low outliers is greater than 

that for the high outliers, consequently discarding them leads to an increase in the milk 

average (MPA). This is expected for SR and RR because the incidence of abnormal records 

was fairly equally distributed over the lactation course. However, an increase in the 

percentage of discarded outlying data for SR and RR caused a decrease in the ratio of low 

outliers to total outliers (Table 4.8, 4.9 and 4.10) and consequently the increase of MPA 

stopped. The reduction in MPA after discarding 1.6% of outliers with SR and RR 

significantly implies that the low outliers are less deviated from their predicted values 

compared to the high outliers although the amount of low outliers is greater than that of high 

outliers. Therefore, the total effect of discarding the lower outliers on MPA will be smaller 

than the effect of the higher outliers that leads to an increase in MPA. 

Abnormal low and high records for both local regressions, however, were accumulated in 

the last stage of lactation when milk production decreases and eventually stops. In this stage 

the milk yield average is generally lower than the total average (=22.98 kg), consequently 

their elimination will lead to an increase in the production average of the sample (MPA). In 

contrast to SR and RR, the pattern of MPA for LR1 and LR2 using the adjusting method 

showed a linear decreasing trend with increasing the outlier number (Table 4.13 and 4.14 and 

Figure 4.8). This finding points to the existence of a relative difference between the two 

schemes of treatment of the outlying data. In the adjusting case, the abnormal records are not 

discarded; rather their large deviations are reduced by winsorization or reducing the weight 

of outliers resulting in maintenance of the relative impact of their original yields on the total 

average. For LR1 and LR2, this finally resulted in a MPA towards a lower level due to 
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higher incidence of high abnormalities in the end of lactation where OTD yields on average 

are smaller than the data average. For SR and RR, this does not lead to a slight change in 

MPA owing to relatively equal distribution of outliers over the lactation. 

 All methods performed better than data with no treatment in terms of MAR, MSR and 

SDR for both discarding and adjusting strategies. The original data without treatment 

always gave the higher residual criterions than both ABSR and ASTAR. However, some 

degree of dissimilarity is seen in the pattern of three residual terms between ABSR and 

ASTAR, so that those for ASTAR decreased more slowly compared with ABSR. The main 

cause for this finding is that the farthest data points (on both high and low sides) are less 

probable to be detected as outliers by ASTAR than ABSR, likely due to a lower correlation 

between milk yield records and their ASTAR compared to ABSR. The decreasing trend of 

the residual terms for SR and RR is quite similar (in both ABSR and ASTAR cases) in 

contrast to LR1 and LR2 methods. Among all regressions, LR2 contrary to RR, presented 

the smallest difference in residual terms from original data at a given discarding percentage, 

as a result of an inconsistent distribution of the detected outliers over the lactation. 

It seems that k=0.4 is a good starting point to discard extreme values, because it 

included a high portion of total reduction in all three residual terms by removing a small 

number of data points. It is observable from Figure 4.7 that MSR and SDR curves are 

slightly sharper than those for MAR. It implies that there are few observations with very 

large differences from their expected values, consequently squaring these residuals boosts 

their impacts on MSR. Moreover, it is notable that in order to calculate the true total 

residual differences between each given analysis and the original data, one should multiply 

MAR and MSR by the number of TD records used by that analysis.  

As was explained earlier, elimination of outliers might introduce bias, therefore it was 

decided to use a residual limit. The corresponding results have been presented in Tables 4.13 

and 4.14 and Figure 4.8. The residual measures for data with adjusted records show a 

decreasing linear pattern. However, the observed difference for the pattern of residual terms 

between discarding and adjusting schemes again emphasizes that there is a small portion of 

large residuals (detected by the adopted model) in the data which should be noticed when 

trying to deal with the outliers. Similar to the discarding approach, for the adjusting case also 

the greatest decrease in residual terms was found by the RR method, besides a moderate 

reduction by SR and LR1. It is necessary to state that contrary to the discarding scheme, the 

adjusting level does not imply the exact percentage of the corrected records due to using 

different coefficients (i.e. k) which determine the final percentage of the affected TD records 

for each regression strategy. Therefore, in order to find the exact percentage of corrected TD 

yields for the adjusting case, one should be referred to Table 4.10. 
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Table  4.11: Milk production average (MPA), mean of absolute residuals (MAR), mean of squared residuals (MSR), standard deviation of 
residuals (SDR), variance components (Va, Vpe, Vp and Ve) and their ratios (h2, c2 and e2) and standard errors (SE) and mean log likelihood 
(MLL) from different regressions for discarding scheme using ABSR. 

Analysis Percent MPA MAR MSR SDR Vpe Va Ve Vp c2 h2 e2 SE(c2) SE(h2) SE(e2) MLL 

Full data 0 22.98 2.133 8.462 2.909 7.399 7.154 9.402 23.95 0.30889 0.29864 0.39248 0.01403 0.01582 0.00315 0.1477 
                 
SR 0.1 22.99 2.119 8.274 2.877 7.414 7.186 9.196 23.80 0.31156 0.30198 0.38646 0.01405 0.01583 0.00308 0.1326 

SR 0.2 22.99 2.110 8.186 2.861 7.454 7.170 9.100 23.72 0.31419 0.30222 0.38359 0.01398 0.01570 0.00301 0.1253 

SR 0.4 23.00 2.096 8.043 2.836 7.518 7.126 8.945 23.59 0.31872 0.30209 0.37919 0.01422 0.01598 0.00307 0.1138 

SR 0.8 23.00 2.077 7.877 2.807 7.537 7.160 8.765 23.46 0.32125 0.30517 0.37359 0.01431 0.01608 0.00304 0.1004 

SR 1.6 23.00 2.051 7.664 2.768 7.564 7.171 8.537 23.27 0.32503 0.30814 0.36684 0.01436 0.01607 0.00297 0.0856 

SR 3.2 23.00 2.016 7.429 2.726 7.527 7.248 8.291 23.07 0.32633 0.31421 0.35946 0.01466 0.01641 0.00297 0.0731 

SR 6.4 22.98 1.972 7.151 2.674 7.570 7.197 8.012 22.78 0.33230 0.31600 0.35170 - - - 0.0661 
                 
RR 0.1 22.99 2.118 8.271 2.876 7.415 7.181 9.192 23.79 0.31171 0.30188 0.38642 0.01402 0.01578 0.00307 0.1323 

RR 0.2 22.99 2.109 8.176 2.859 7.452 7.178 9.089 23.72 0.31419 0.30262 0.38319 0.01400 0.01572 0.00300 0.1244 

RR 0.4 23.00 2.095 8.038 2.835 7.505 7.150 8.938 23.59 0.31809 0.30305 0.37886 0.01367 0.01544 0.00303 0.1132 

RR 0.8 23.00 2.075 7.861 2.804 7.522 7.186 8.747 23.45 0.32071 0.30637 0.37292 0.01431 0.01612 0.00303 0.0989 

RR 1.6 23.01 2.048 7.651 2.766 7.577 7.159 8.522 23.26 0.32577 0.30781 0.36642 0.01429 0.01597 0.00294 0.0846 

RR 3.2 23.00 2.014 7.414 2.723 7.528 7.245 8.274 23.05 0.32665 0.31434 0.35901 0.01469 0.01643 0.00297 0.0707 

RR 6.4 22.99 1.972 7.155 2.675 7.535 7.212 8.017 22.76 0.33101 0.31682 0.35218 0.01490 0.01661 0.00299 0.0663 
                 
LR1 0.1 22.99 2.123 8.347 2.889 7.405 7.184 9.276 23.87 0.31028 0.30102 0.38870 0.01407 0.01585 0.00316 0.1394 

LR1 0.2 22.99 2.117 8.284 2.878 7.411 7.201 9.208 23.82 0.31114 0.30230 0.38656 0.01407 0.01585 0.00310 0.1352 

LR1 0.4 23.01 2.107 8.186 2.861 7.415 7.250 9.102 23.77 0.31198 0.30505 0.38298 0.01388 0.01557 0.00301 0.1291 

LR1 0.8 23.02 2.093 8.061 2.839 7.494 7.206 8.968 23.67 0.31664 0.30445 0.37891 0.01431 0.01608 0.00310 0.1220 

LR1 1.6 23.06 2.068 7.856 2.803 7.556 7.171 8.749 23.48 0.32185 0.30546 0.37268 0.01429 0.01605 0.00300 0.1138 

LR1 3.2 23.13 2.038 7.622 2.761 7.627 7.144 8.505 23.28 0.32767 0.30693 0.36540 0.01449 0.01617 0.00305 0.1086 

LR1 6.4 23.25 1.990 7.285 2.699 7.725 7.145 8.162 23.03 0.33543 0.31020 0.35437 0.01461 0.01631 0.00298 0.1092 
                 
LR2 0.1 22.99 2.128 8.416 2.901 7.426 7.140 9.352 23.92 0.31047 0.29852 0.39101 0.01398 0.01579 0.00314 0.1444 

LR2 0.2 22.99 2.126 8.392 2.897 7.425 7.151 9.327 23.90 0.31062 0.29918 0.39019 0.01378 0.01567 0.00313 0.1430 

LR2 0.4 23.00 2.123 8.367 2.893 7.425 7.148 9.301 23.87 0.31100 0.29940 0.38960 0.01387 0.01574 0.00313 0.1426 

LR2 0.8 23.02 2.116 8.308 2.882 7.477 7.113 9.241 23.83 0.31374 0.29849 0.38776 - - - 0.1414 
 LR2 1.6 23.06 2.101 8.195 2.863 7.505 7.133 9.123 23.76 0.31585 0.30021 0.38394 0.01395 0.01567 0.00304 0.1400 

LR2 3.2 23.13 2.083 8.053 2.838 7.552 7.173 8.982 23.71 0.31857 0.30255 0.37888 0.01383 0.01547 0.00296 0.1438 

LR2 6.4 23.27 2.055 7.846 2.801 7.712 7.099 8.786 23.60 0.32683 0.30083 0.37234 0.01429 0.01603 0.00304 0.1550 
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Table  4.12: Milk production average (MPA), mean of absolute residuals (MAR), mean of squared residuals (MSR), standard deviation of 
residuals (SDR), variance components (Va, Vpe, Vp and Ve) and their ratios (h2, c2 and e2) and standard errors (SE) and mean log likelihood 
(MLL) from different regressions for discarding scheme using ASTAR. 

Analysis Percent MPA MAR MSR SDR Vpe Va Ve Vp c2 h2 e2 SE(c2) SE(h2) SE(e2) MLL 

Full data 0 22.98 2.133 8.462 2.909 7.399 7.154 9.402 23.95 0.30889 0.29864 0.39248 0.01403 0.01582 0.00315 0.1477 
                 
SR 0.1 22.99 2.128 8.412 2.900 7.400 7.170 9.348 23.92 0.30937 0.29979 0.39084 0.01400 0.01582 0.00314 0.1442 

SR 0.2 22.99 2.124 8.377 2.894 7.406 7.176 9.311 23.89 0.30996 0.30035 0.38969 0.01381 0.01570 0.00314 0.1420 

SR 0.4 22.99 2.117 8.299 2.881 7.417 7.168 9.226 23.81 0.31150 0.30102 0.38748 0.01402 0.01578 0.00309 0.1362 

SR 0.8 23.00 2.105 8.198 2.863 7.386 7.225 9.119 23.73 0.31125 0.30446 0.38429 0.01389 0.01559 0.00302 0.1298 

SR 1.6 23.01 2.087 8.055 2.838 7.360 7.295 8.968 23.62 0.31155 0.30882 0.37963 0.01430 0.01606 0.00312 0.1229 

SR 3.2 23.02 2.054 7.787 2.791 7.441 7.274 8.688 23.40 0.31795 0.31081 0.37124 0.01435 0.01616 0.00304 0.1107 

SR 6.4 23.04 1.999 7.380 2.717 7.577 7.263 8.267 23.11 0.32790 0.31432 0.35778 0.01474 0.01649 0.00299 0.0933 
                 
RR 0.1 22.99 2.127 8.401 2.898 7.407 7.155 9.336 23.90 0.30994 0.29941 0.39065 0.01390 0.01576 0.00313 0.1431 

RR 0.2 22.99 2.123 8.361 2.892 7.387 7.185 9.293 23.87 0.30954 0.30106 0.38939 0.01406 0.01587 0.00313 0.1405 

RR 0.4 23.00 2.116 8.300 2.881 7.400 7.178 9.228 23.81 0.31085 0.30152 0.38762 0.01345 0.01507 0.00301 0.1363 

RR 0.8 23.00 2.105 8.207 2.865 7.436 7.151 9.128 23.72 0.31354 0.30154 0.38492 0.01408 0.01588 0.00308 0.1300 

RR 1.6 23.01 2.089 8.073 2.841 7.409 7.187 8.988 23.58 0.31415 0.30474 0.38111 0.01420 0.01595 0.00314 0.1222 

RR 3.2 23.03 2.061 7.857 2.803 7.480 7.160 8.765 23.40 0.31959 0.30591 0.37450 0.01425 0.01604 0.00303 0.1104 

RR 6.4 23.04 2.032 7.657 2.767 7.544 7.086 8.575 23.21 0.32511 0.30535 0.36954 0.01443 0.01618 0.00301 0.1081 
                 
LR1 0.1 22.99 2.131 8.444 2.906 7.409 7.148 9.384 23.94 0.30948 0.29856 0.39196 0.01403 0.01583 0.00314 0.1466 

LR1 0.2 22.99 2.130 8.438 2.905 7.406 7.147 9.378 23.93 0.30948 0.29864 0.39188 0.01403 0.01583 0.00315 0.1466 

LR1 0.4 22.99 2.129 8.427 2.903 7.402 7.143 9.368 23.91 0.30955 0.29869 0.39175 0.01401 0.01581 0.00314 0.1466 

LR1 0.8 23.00 2.126 8.402 2.899 7.405 7.134 9.344 23.88 0.31004 0.29871 0.39125 0.01382 0.01569 0.00314 0.1459 

LR1 1.6 23.01 2.120 8.346 2.889 7.415 7.114 9.290 23.82 0.31130 0.29867 0.39004 0.01395 0.01574 0.00309 0.1445 

LR1 3.2 23.04 2.109 8.249 2.872 7.429 7.097 9.198 23.72 0.31315 0.29915 0.38771 0.01403 0.01583 0.00311 0.1446 

LR1 6.4 23.15 2.082 8.044 2.836 7.458 7.130 9.005 23.59 0.31612 0.30220 0.38168 0.01390 0.01557 0.00299 0.1559 
                 
LR2 0.1 22.99 2.132 8.458 2.908 7.400 7.161 9.399 23.96 0.30884 0.29889 0.39227 0.01403 0.01583 0.00315 0.1478 

LR2 0.2 22.99 2.131 8.452 2.907 7.408 7.153 9.393 23.95 0.30926 0.29862 0.39212 0.01404 0.01584 0.00315 0.1482 

LR2 0.4 23.00 2.131 8.451 2.907 7.409 7.156 9.394 23.96 0.30923 0.29867 0.39210 0.01404 0.01584 0.00315 0.1494 

LR2 0.8 23.02 2.129 8.435 2.904 7.428 7.140 9.380 23.95 0.31017 0.29815 0.39168 0.01405 0.01584 0.00315 0.1507 

LR2 1.6 23.05 2.127 8.420 2.902 7.444 7.123 9.372 23.94 0.31095 0.29757 0.39149 0.01404 0.01583 0.00315 0.1547 

LR2 3.2 23.12 2.124 8.403 2.899 7.449 7.131 9.369 23.95 0.31105 0.29774 0.39121 0.01405 0.01584 0.00315 0.1650 

LR2 6.4 23.22 2.117 8.353 2.890 7.489 7.104 9.348 23.94 0.31282 0.29674 0.39044 - - - 0.1862 
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Table  4.13: Milk production average (MPA), mean of absolute residuals (MAR), mean of squared residuals (MSR), standard deviation of 

residuals (SDR), variance components (Va, Vpe, Vp and Ve) and their ratios (h2, c2 and e2) and standard errors (SE) and mean log likelihood 

(MLL) from SR and RR for adjusting scheme. 

Analysis Level Percent MPA MAR MSR SDR Vpe Va Ve Vp c2 h2 e2 SE(c2) SE(h2) SE(e2) MLL 

Full data - - 22.98 2.133 8.462 2.909 7.399 7.154 9.402 23.95 0.30889 0.29864 0.39248 0.01403 0.01582 0.00315 0.1477 

                  

SR 1 0.78 22.98 2.132 8.448 2.906 7.400 7.154 9.386 23.94 0.30911 0.29883 0.39207 0.01403 0.01583 0.00314 0.1466 

SR 2 1.22 22.98 2.131 8.438 2.905 7.401 7.155 9.376 23.93 0.30925 0.29897 0.39178 0.01404 0.01584 0.00315 0.1459 

SR 3 1.71 22.98 2.130 8.426 2.903 7.401 7.156 9.363 23.92 0.30941 0.29915 0.39143 0.01403 0.01583 0.00314 0.1449 

SR 4 2.62 22.98 2.129 8.410 2.900 7.402 7.157 9.345 23.90 0.30965 0.29939 0.39096 0.01399 0.01580 0.00314 0.1437 

SR 5 3.82 22.99 2.127 8.389 2.896 7.404 7.157 9.322 23.88 0.31000 0.29967 0.39033 0.01380 0.01568 0.00314 0.1420 

SR 6 5.10 22.99 2.124 8.362 2.892 7.406 7.157 9.292 23.86 0.31046 0.30003 0.38951 0.01404 0.01585 0.00312 0.1398 

SR 7 6.46 22.99 2.121 8.331 2.886 7.410 7.158 9.258 23.83 0.31100 0.30043 0.38857 0.01396 0.01575 0.00308 0.1373 

SR 8 7.94 22.99 2.117 8.296 2.880 7.414 7.158 9.219 23.79 0.31163 0.30086 0.38752 0.01406 0.01584 0.00310 0.1345 

SR 9 9.46 22.99 2.113 8.256 2.873 7.419 7.157 9.175 23.75 0.31237 0.30134 0.38630 0.01409 0.01590 0.00311 0.1312 

SR 10 11.04 22.99 2.108 8.213 2.866 7.424 7.157 9.128 23.71 0.31314 0.30187 0.38499 0.01411 0.01591 0.00309 0.1277 

                  

RR 1 0.73 22.99 2.128 8.408 2.900 7.402 7.157 9.343 23.90 0.30968 0.29943 0.39089 0.01399 0.01581 0.00314 0.1435 

RR 2 1.13 22.99 2.126 8.385 2.896 7.404 7.157 9.317 23.88 0.31007 0.29973 0.39020 0.01377 0.01566 0.00314 0.1416 

RR 3 1.72 22.99 2.123 8.353 2.890 7.409 7.156 9.283 23.85 0.31067 0.30007 0.38925 0.01407 0.01586 0.00314 0.1391 

RR 4 2.62 22.99 2.118 8.309 2.883 7.414 7.156 9.234 23.80 0.31145 0.30063 0.38792 0.01407 0.01587 0.00314 0.1355 

RR 5 3.78 22.99 2.112 8.249 2.872 7.420 7.158 9.168 23.75 0.31248 0.30143 0.38608 0.01408 0.01589 0.00310 0.1305 

RR 6 5.39 22.99 2.103 8.172 2.859 7.430 7.158 9.082 23.67 0.31389 0.30240 0.38370 0.01398 0.01571 0.00301 0.1239 

RR 7 6.37 22.99 2.097 8.126 2.851 7.435 7.160 9.032 23.63 0.31468 0.30303 0.38229 0.01413 0.01590 0.00302 0.1200 

RR 8 7.50 23.00 2.091 8.076 2.842 7.442 7.159 8.977 23.58 0.31564 0.30364 0.38072 0.01423 0.01602 0.00310 0.1157 

RR 9 8.75 23.00 2.084 8.020 2.832 7.450 7.159 8.915 23.52 0.31670 0.30431 0.37899 0.01385 0.01551 0.00297 0.1109 

RR 10 10.12 23.00 2.075 7.959 2.821 7.457 7.160 8.848 23.47 0.31779 0.30515 0.37706 0.01429 0.01608 0.00305 0.1056 

 

 

 



 49 

Table  4.14: Milk production average (MPA), mean of absolute residuals (MAR), mean of squared residuals (MSR), standard deviation of 

residuals (SDR), variance components (Va, Vpe, Vp and Ve) and their ratios (h2, c2 and e2) and standard errors (SE) and mean log-likelihood 

(MLL) from LR1 and LR2 for adjusting scheme. 

Analysis Level Percent MPA MAR MSR SDR Vpe Va Ve Vp c2 h2 e2 SE(c2) SE(h2) SE(e2) MLL 

Full data - - 22.98 2.133 8.462 2.909 7.399 7.154 9.402 23.95 0.30889 0.29864 0.39248 0.01403 0.01582 0.00315 0.1477 

                  

LR1 1 0.37 22.98 2.132 8.456 2.908 7.400 7.153 9.395 23.95 0.30900 0.29869 0.39231 0.01403 0.01582 0.00314 0.1472 

LR1 2 0.74 22.98 2.131 8.447 2.906 7.400 7.153 9.385 23.94 0.30914 0.29879 0.39206 0.01403 0.01583 0.00314 0.1464 

LR1 3 1.23 22.98 2.129 8.433 2.904 7.402 7.151 9.370 23.92 0.30940 0.29892 0.39168 0.01403 0.01583 0.00314 0.1452 

LR1 4 2.05 22.98 2.127 8.410 2.900 7.403 7.149 9.345 23.90 0.30980 0.29917 0.39104 0.01397 0.01580 0.00314 0.1432 

LR1 5 3.28 22.98 2.122 8.374 2.894 7.406 7.148 9.305 23.86 0.31039 0.29961 0.39000 0.01391 0.01577 0.00313 0.1400 

LR1 6 4.05 22.98 2.120 8.349 2.890 7.406 7.148 9.278 23.83 0.31076 0.29994 0.38930 0.01410 0.01581 0.00314 0.1379 

LR1 7 5.07 22.97 2.116 8.320 2.884 7.408 7.148 9.245 23.80 0.31124 0.30033 0.38843 - - - 0.1353 

LR1 8 6.49 22.97 2.111 8.282 2.878 7.412 7.147 9.204 23.76 0.31191 0.30075 0.38734 0.01404 0.01583 0.00309 0.1321 

LR1 9 8.61 22.97 2.106 8.234 2.870 7.415 7.148 9.151 23.71 0.31268 0.30143 0.38589 0.01408 0.01588 0.00309 0.1281 

LR1 10 11.40 22.97 2.098 8.173 2.859 7.418 7.150 9.083 23.65 0.31365 0.30232 0.38404 0.01400 0.01573 0.00301 0.1229 

                  

LR2 1 0.13 22.98 2.133 8.461 2.909 7.399 7.154 9.401 23.95 0.30889 0.29865 0.39247 0.01403 0.01582 0.00315 0.1477 

LR2 2 1.64 22.98 2.132 8.457 2.908 7.400 7.153 9.397 23.95 0.30898 0.29868 0.39234 0.01403 0.01582 0.00315 0.1472 

LR2 3 3.33 22.98 2.131 8.443 2.906 7.403 7.150 9.382 23.94 0.30931 0.29873 0.39195 0.01404 0.01583 0.00315 0.1456 

LR2 4 4.04 22.98 2.129 8.427 2.903 7.405 7.150 9.364 23.92 0.30958 0.29894 0.39148 0.01400 0.01580 0.00313 0.1438 

LR2 5 4.50 22.98 2.127 8.412 2.900 7.407 7.149 9.347 23.90 0.30989 0.29907 0.39104 0.01384 0.01571 0.00314 0.1420 

LR2 6 5.00 22.97 2.126 8.398 2.898 7.409 7.148 9.332 23.89 0.31015 0.29922 0.39062 0.01379 0.01568 0.00314 0.1402 

LR2 7 5.57 22.97 2.124 8.384 2.895 7.412 7.147 9.316 23.87 0.31047 0.29934 0.39019 0.01403 0.01584 0.00315 0.1384 

LR2 8 6.51 22.97 2.122 8.369 2.893 7.416 7.144 9.299 23.86 0.31082 0.29944 0.38975 0.01400 0.01581 0.00310 0.1367 

LR2 9 8.37 22.97 2.120 8.349 2.889 7.420 7.142 9.277 23.84 0.31126 0.29958 0.38915 - - - 0.1347 

LR2 10 11.13 22.97 2.117 8.320 2.885 7.424 7.142 9.246 23.81 0.31177 0.29993 0.38830 0.01395 0.01570 0.00308 0.1326 
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Figure  4.7: Milk production average (MPA), mean absolute residual (MAR), mean squared 
residual (MSR) and standard deviation of residual (SDR) for both discarding schemes by 
various percentages.  
 

 

Figure  4.8: Milk production average (MPA), mean absolute residual (MAR), mean squared 
residual (MSR) and standard deviation of residual (SDR) for adjusting scheme by various levels.  
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4.6. Impact on variance components and standard deviations  

Tables 4.11 to 4.14 also present the influence of removal and correction of outliers on the 

variance components as well as on the standard errors. Figures 4.9 through 4.13 illustrate the 

same information as plot. For both phenotypic (Vp) and residual (Ve) variances, a decreasing 

pattern was observed by omitting 0.1 to 6.4% observations with the largest ABSR, a 

logical consequence of discarding the extreme individual records which varied widely 

from their predicted values (Figure 4.9). Using ASTAR instead to ABSR in order to select 

OTD observations has slowed a decrease in Vp and Ve, likely due to not considering 

observations with the large predicted residuals which usually have larger TD values, as 

explained before. Despite small random fluctuations in additive genetic variance (Va), it 

remained nearly stable by both ABSR and ASTAR methods. Along with increasing the 

percentage of discarded data, permanent environment variance (Vpe) increased using ABSR 

and it remained almost constant (without any considerable change) using ASTAR.  

When data was treated by adjusting the OTD recordings, both Vp and Ve were moved in 

opposite direction of Vpe, though the variations were very small in scale. Despite negligible 

increase in Vpe, Va remained constant for all methods through adjusting of outliers (Table 

4.13 and Table 4.14 and Figure 4.10). Among all regressions applied to adjusting scheme, 

RR displayed the highest differences in all variances compared with the original analysis. 

Overall schemes and regressions, both Ve and Vp declined as a result of removing the 

observations with large residuals, before implementation of genetic evaluation.  

At a particular percentage additive genetic variance ratio or heritability (h2) and permanent 

environmental variance ratio (c2) for all regressions (except LR2) which their extreme 

observations were identified by ABSR, were slightly higher compared with those selected by 

ASTAR. In comparison with the complete dataset, error variance ratio (e2) decreased (similar 

to Ve) in a nonlinear way in all cases, while the mean of log-likelihood estimates (MLL) 

increased for LR1 (using ABSR) and LR2 (using both ABSR and ASTAR). These findings 

were illustrated in the Figure 4.11. Though larger values of log-likelihoods indicate better 

fitting models, this comparison should not be applied between full and reduced models 

(Fatehi et. al 2005), consequently in this case MLL is not comparable. 

 After adjusting of outliers using all regression methods, both h2 and c2 increased in 

contrast to e2, but the greatest increase in them was found for RR compared to other 

methods (Table 4.13 and 4.14 and Figure 4.12). Both h2=0.2987 and c2=0.3089 were 

higher than 0.24 and 0.28, respectively, reported by Swalve (1995a) for German data. Kaya 

et al. (2003) found a h2=0.11 using milk yield records from 1103 first lactations of Holstein 

cows. Furthermore, Mrode et al. (2002) using a single-trait fixed regression model, 

achieved a value 0.25 for  first lactation milk yields of 1134042 Holstein cows. 
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Figure  4.9: Phenotypic, additive genetic, permanent and residual variances for both 
discarding scheme by various percentages. 

 

 

Figure  4.10: Phenotypic, additive genetic, permanent and residual variances for adjusting 
scheme by various levels.  



 53 

 

Figure  4.11: Additive genetic, permanent, residual variance ratios and mean log likelihood for 
both discarding schemes by various percentages. 
 

 

Figure  4.12: Additive genetic, permanent, residual variance ratios and mean log likelihood for 
adjusting scheme by various levels. 
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Figure  4.13: Standard error of additive and permanent environmental variance ratios for 
both discarding and adjusting schemes by various percentages and levels.  

 

 

 

For the most discarding strategies, standard deviation of additive genetic variance ratio 

(SE(h2)) and permanent environmental variance ratio (SE(c2)) were minimized at k=0.4. For 

the adjusting schemes, the lowest level occurred at k=5 for SR with 3.82%, at k=2 for RR 

with 1.13%, and k=5 for LR1 and LR2 with 3.28% and 4.50% of the data, respectively. Figure 

4.13 illustrates these findings for both schemes. This is surprising that standard deviations 

are more reduced using discarding method compared to adjusting method. In some cases 

however, the programme was not able to predict the standard deviation of parameters due to 

the fact, that the optimization algorithm did not reach to the convergence limit. 

 

4.7.  Impact on breeding values and ranking of top animals 

Tables 4.15 and 4.16 contain the results in respect of the mean (MEBV), standard 

deviation (SDEBV), minimum (MINEBV) and maximum (MAXEBV) values of estimated 

breeding values (EBV) of milk yield for all animals in pedigree (N= 58315). Furthermore, 

they show the correlation (CORR) between EBVs of all animals generated from original 
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data and those from discarding and adjusting schemes, respectively.  Figure 4.14 demonstrates 

the variability of MEBV and CORR over the discarding percentages and adjusting levels. 

MEBV, SDEBV, MINEBV and MAXEBV practically remained stable for all regressions, 

although MEBV in most discarding cases followed a quadratic form. For the discarding 

scheme, however, the peak value of MEBV happened at k=0.8 or k=1.6. Figure 4.14 clearly 

represents the pattern of variation for MEBV for both discarding and adjusting schemes. 

Generally, as the proportion of discarded and corrected outliers increased, variations in 

MEBV became larger. In contrast to discarding, MEBV resulted from adjusting schemes 

show small differences with the data without treatment, but it follows a certain pattern: 

constant for SR, increasing for LR1, decreasing for LR2 and a upward and then downward 

for RR (Table 4.16). Correlations (CORR) were reduced in parallel with an increase in the 

proportion of discarded outliers, but a slightly greater decrease was seen by ABSR than by 

ASTAR, as a result of removing records with the largest deviations. The CORR between 

corrected and full data remained almost stable (Figure 4.14).  

Tables 4.15 and 4.16 also give the average of estimated breeding values of top 100 bulls 

(MEBVS) and cows (MEBVC), number of animals in common in the top 100 bulls 

(NTSIC) and cows (NTCIC) lists between full data and different analyses, and spearman 

rank correlation of top 100 bulls (SRCORRS) and cows (SRCORRC) for the discarding 

and adjusting schemes, respectively. Both MEBVS and MEBVC actually remained stable 

as compared with those of the full data. The Figures 4.15 and 4.16 show MEBVS, 

MEBVC, SRCORRS and SRCORRC for discarding and adjusting schemes, respectively. 

In comparison to the to sires, rankings of top cows (SCORRC) were more highly affected 

by the estimation procedures, probably for the reason that bulls had a minimum of 50 TD 

records compared with a minimum of 9 records per cows  (because data included only first 

lactation cows).  

The final results from the Tables 4.15 and 4.16 indicate that no more than 6 (9) and 1 (1) 

bulls (cows) disappeared from the top 100 lists for discarding and adjusting schemes as 

compared with the full dataset. In comparison to ASTAR, rankings of top bulls and cows 

severely altered by the use of ABSR. Overall regression procedures, the list of the top 100 

bulls which resulted from adjusted datasets, mostly remained without significant changes, 

in contrast to the discarding approach (Table 4.16). This provides evidence that removal of 

outlying observations affect the ranking of the top bulls and cows more than adjusting 

them. The similarity of rankings of bulls and cows between SR and RR methods is also 

shown in Figures 4.15 and 4.16.   
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Table  4.15: Mean, SD, Min and Max of EBVs, correlations of EBVs between methods and 
those for all animals (N= 58315) and ranking top 100 bulls and cows for discarding schemes1. 

EBV statistics for all animals EBV statistics for top bulls 

and cows 

EBV statistics for top cows 

cows Analysis scheme k 
MEBV SDEBV MINEBV MAXEBV CORR MEBVS NTSIC SCORRS MEBVC NTCIC SCORRC 

Full data - 0 0.4371 1.6122 -5.5111 9.1054 - 5.1137 - - 6.9972 - - 
              SR ABSR 0.1 0.4362 1.6165 -5.4798 9.1009 99.979 5.1191 99 99.677 7.0098 98 99.763 
SR ABSR 0.2 0.4386 1.6152 -5.4744 9.0863 99.969 5.1206 98 99.573 7.0047 97 99.645 
SR ABSR 0.4 0.4388 1.6125 -5.4452 9.0465 99.952 5.1245 97 99.488 6.9789 96 99.478 
SR ABSR 0.8 0.4414 1.6176 -5.4615 9.0619 99.932 5.1505 97 99.264 6.9998 95 99.055 
SR ABSR 1.6 0.4451 1.6199 -5.4811 9.0989 99.908 5.1669 97 99.017 7.0032 95 98.166 
SR ABSR 3.2 0.4369 1.6245 -5.5480 9.1719 99.869 5.1614 96 99.058 7.0193 93 96.755 
SR ABSR 6.4 0.4273 1.6137 -5.5806 9.1389 99.812 5.1264 96 98.537 6.9541 92 95.954 
              SR ASTAR 0.1 0.4383 1.6143 -5.4716 9.1247 99.995 5.1200 99 99.949 7.0064 100 99.901 
SR ASTAR 0.2 0.4389 1.6136 -5.4689 9.1416 99.990 5.1167 99 99.878 7.0038 100 98.959 
SR ASTAR 0.4 0.4404 1.6133 -5.4569 9.1225 99.978 5.1223 98 99.608 6.9997 99 99.117 
SR ASTAR 0.8 0.4444 1.6219 -5.4904 9.1954 99.963 5.1374 96 99.517 7.0402 98 99.022 
SR ASTAR 1.6 0.4417 1.6268 -5.5445 9.2407 99.937 5.1472 96 99.215 7.0740 97 98.154 
SR ASTAR 3.2 0.4384 1.6264 -5.5444 9.1812 99.888 5.1414 95 98.464 7.0500 96 96.737 
SR ASTAR 6.4 0.4384 1.6231 -5.5244 9.1170 99.796 5.1310 95 97.518 7.0293 91 95.341 
              RR ABSR 0.1 0.4364 1.6162 -5.4764 9.0987 99.978 5.1206 99 99.718 7.0090 98 99.756 
RR ABSR 0.2 0.4383 1.6170 -5.4737 9.0972 99.966 5.1269 98 99.546 7.0089 97 99.623 
RR ABSR 0.4 0.4385 1.6154 -5.4558 9.0668 99.950 5.1306 97 99.507 6.9919 96 99.460 
RR ABSR 0.8 0.4417 1.6189 -5.4793 9.0901 99.928 5.1500 97 99.146 7.0150 95 98.838 
RR ABSR 1.6 0.4420 1.6182 -5.4801 9.0806 99.904 5.1583 97 98.944 6.9866 95 97.808 
RR ABSR 3.2 0.4407 1.6254 -5.5447 9.1828 99.869 5.1670 96 98.897 7.0290 94 95.688 
RR ABSR 6.4 0.4297 1.6178 -5.5852 9.1697 99.813 5.1324 94 98.479 6.9730 93 93.672 
              RR ASTAR 0.1 0.4399 1.6132 -5.4654 9.1076 99.994 5.1201 98 99.898 7.0002 100 99.840 
RR ASTAR 0.2 0.4405 1.6168 -5.4843 9.1422 99.989 5.1247 98 99.743 7.0159 99 98.855 
RR ASTAR 0.4 0.4414 1.6169 -5.4814 9.1503 99.980 5.1279 98 99.571 7.0130 99 98.657 
RR ASTAR 0.8 0.4390 1.6136 -5.4870 9.1084 99.966 5.1200 97 99.540 6.9896 99 98.043 
RR ASTAR 1.6 0.4340 1.6166 -5.5394 9.1301 99.945 5.1195 98 99.503 7.0009 99 97.506 
RR ASTAR 3.2 0.4328 1.6171 -5.5180 9.0707 99.902 5.1228 96 99.146 6.9829 97 96.821 
RR ASTAR 6.4 0.4287 1.6048 -5.5276 8.9933 99.848 5.0911 95 98.131 6.9264 92 94.839 
              LR1 ABSR 0.1 0.4394 1.6148 -5.5097 9.1220 99.988 5.1232 100 99.671 7.0126 99 99.717 
LR1 ABSR 0.2 0.4393 1.6184 -5.5166 9.1389 99.982 5.1329 100 99.615 7.0204 98 99.596 
LR1 ABSR 0.4 0.4413 1.6248 -5.5358 9.1793 99.971 5.1545 99 99.581 7.0447 98 98.727 
LR1 ABSR 0.8 0.4463 1.6226 -5.4837 9.1237 99.957 5.1568 98 99.506 7.0148 97 98.380 
LR1 ABSR 1.6 0.4393 1.6208 -5.4851 9.0667 99.929 5.1550 99 99.140 6.9917 97 97.319 
LR1 ABSR 3.2 0.4303 1.6158 -5.4619 9.0162 99.883 5.1341 98 97.947 6.9504 96 96.223 
LR1 ABSR 6.4 0.4250 1.6137 -5.4355 8.9474 99.793 5.1330 97 97.463 6.9209 92 92.986 
              LR1 ASTAR 0.1 0.4382 1.6119 -5.5105 9.1022 99.997 5.1136 99 99.960 6.9902 100 99.162 
LR1 ASTAR 0.2 0.4386 1.6111 -5.5076 9.1002 99.996 5.1127 99 99.861 6.9906 100 99.116 
LR1 ASTAR 0.4 0.4403 1.6117 -5.5002 9.1046 99.993 5.1160 100 99.807 6.9930 100 99.016 
LR1 ASTAR 0.8 0.4406 1.6109 -5.4927 9.0958 99.986 5.1180 99 99.674 6.9909 98 98.630 
LR1 ASTAR 1.6 0.4413 1.6091 -5.4807 9.0632 99.972 5.1150 98 99.338 6.9840 98 97.799 
LR1 ASTAR 3.2 0.4356 1.6044 -5.4638 9.0336 99.949 5.1009 98 99.018 6.9683 97 96.581 
LR1 ASTAR 6.4 0.4382 1.6123 -5.4738 9.0601 99.893 5.1341 97 98.769 6.9620 94 93.164 
              LR2 ABSR 0.1 0.4365 1.6101 -5.4981 9.0756 99.994 5.1071 99 99.958 6.9878 100 99.792 
LR2 ABSR 0.2 0.4370 1.6114 -5.5047 9.0936 99.991 5.1114 99 99.869 6.9940 100 99.868 
LR2 ABSR 0.4 0.4366 1.6107 -5.4987 9.0898 99.988 5.1134 99 99.855 6.9919 100 99.840 
LR2 ABSR 0.8 0.4382 1.6074 -5.4708 9.0483 99.978 5.1077 99 99.758 6.9624 99 99.501 
LR2 ABSR 1.6 0.4397 1.6151 -5.4573 9.0592 99.952 5.1367 99 99.173 6.9675 97 98.713 
LR2 ABSR 3.2 0.4393 1.6221 -5.4707 9.0415 99.908 5.1520 98 98.386 6.9769 96 97.570 
LR2 ABSR 6.4 0.4357 1.6111 -5.4224 8.9062 99.813 5.1211 98 96.731 6.8944 91 92.706 
              LR2 ASTAR 0.1 0.4367 1.6123 -5.5124 9.1088 99.999 5.1138 99 99.921 7.0024 100 99.741 
LR2 ASTAR 0.2 0.4350 1.6107 -5.5092 9.0960 99.997 5.1087 99 99.888 6.9930 99 99.337 
LR2 ASTAR 0.4 0.4347 1.6114 -5.5157 9.0995 99.995 5.1108 99 99.866 6.9944 99 99.286 
LR2 ASTAR 0.8 0.4331 1.6087 -5.5097 9.0488 99.990 5.1021 99 99.734 6.9766 98 99.269 
LR2 ASTAR 1.6 0.4302 1.6076 -5.4975 9.0258 99.981 5.0983 99 99.671 6.9622 96 98.785 
LR2 ASTAR 3.2 0.4342 1.6107 -5.4766 9.0325 99.964 5.1066 99 99.540 6.9663 95 98.046 
LR2 ASTAR 6.4 0.4270 1.6032 -5.4992 8.9963 99.919 5.0767 99 98.899 6.9048 94 96.174 

1- In this table, MEBV stands for mean, SDEBV for standard deviation, MINEBV for minimum and MAXEBV for 
maximum of estimated breeding values, CORR stands for correlation between cases and regular BLUP for all animals  
(=58315). Also, MEBVS and MEBVC stand for average of estimated breeding values, NTSIC and NTCIC stand for top 
100 lists in common; and SRCORRS and SRCORRC stand for spearman rank correlation for bulls and cows, 
respectively for both excluding schemes (ABSR and ASTAR).  
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Table  4.16: Mean, SD, Min and Max of EBVs, correlations of EBVs between methods and 

those for all animals (N= 58315) and ranking top 100 bulls and cows for adjusting scheme1. 

EBV statistics for all animals EBV statistics for top bulls EBV statistics for top cows  
Analysis Percent 

MEBV SDEBV MINEBV MAXEBV CORR MEBVS NTSIC SCORRS MEBVC NTCIC SCORRC 

Full data 0 0.4371 1.6122 -5.5111 9.1054 - 5.1137 - - 6.9972 - - 
             
SR 0.78 0.4373 1.6123 -5.5083 9.1066 100.00 5.1140 100 99.994 6.9975 100 99.990 

SR 1.22 0.4374 1.6124 -5.5080 9.1079 100.00 5.1144 100 99.984 6.9980 100 99.988 

SR 1.71 0.4375 1.6125 -5.5083 9.1093 100.00 5.1148 99 99.983 6.9986 100 99.977 

SR 2.62 0.4374 1.6126 -5.5089 9.1107 100.00 5.1150 99 99.981 6.9989 100 99.977 
SR 3.82 0.4374 1.6126 -5.5087 9.1114 100.00 5.1150 99 99.976 6.9988 100 99.957 

SR 5.10 0.4373 1.6127 -5.5094 9.1118 100.00 5.1151 99 99.972 6.9990 100 99.930 

SR 6.46 0.4373 1.6129 -5.5103 9.1126 99.999 5.1153 99 99.969 6.9992 100 99.914 

SR 7.94 0.4372 1.6129 -5.5115 9.1127 99.999 5.1149 99 99.963 6.9986 100 99.884 
SR 9.46 0.4372 1.6128 -5.5120 9.1118 99.999 5.1148 99 99.948 6.9980 99 99.860 

SR 11.04 0.4371 1.6129 -5.5127 9.1125 99.998 5.1149 99 99.942 6.9985 99 99.810 
             
RR 0.73 0.4378 1.6130 -5.5030 9.1103 99.999 5.1161 99 99.985 6.9999 100 99.953 

RR 1.13 0.4379 1.6131 -5.5032 9.1111 99.999 5.1165 99 99.981 7.0000 100 99.934 
RR 1.72 0.4380 1.6132 -5.5039 9.1107 99.999 5.1167 99 99.975 6.9991 100 99.886 

RR 2.62 0.4379 1.6135 -5.5050 9.1115 99.998 5.1174 99 99.959 6.9993 99 99.827 

RR 3.78 0.4377 1.6139 -5.5083 9.1133 99.997 5.1182 99 99.946 7.0003 99 99.751 

RR 5.39 0.4377 1.6142 -5.5099 9.1140 99.996 5.1194 99 99.922 7.0009 99 99.618 
RR 6.37 0.4377 1.6145 -5.5123 9.1163 99.995 5.1203 99 99.910 7.0019 99 99.578 

RR 7.50 0.4375 1.6145 -5.5129 9.1153 99.993 5.1199 99 99.869 7.0007 99 99.503 

RR 8.75 0.4374 1.6144 -5.5142 9.1152 99.992 5.1201 99 99.848 7.0003 99 99.361 

RR 10.12 0.4372 1.6145 -5.5202 9.1154 99.990 5.1202 99 99.837 7.0003 99 99.262 
             
LR1 0.37 0.4373 1.6121 -5.5107 9.1052 100.00 5.1140 100 99.992 6.9969 100 99.994 
LR1 0.74 0.4376 1.6122 -5.5103 9.1069 100.00 5.1144 100 99.981 6.9974 100 99.986 

LR1 1.23 0.4379 1.6120 -5.5089 9.1065 100.00 5.1146 99 99.972 6.9969 100 99.975 

LR1 2.05 0.4385 1.6121 -5.5077 9.1067 99.999 5.1155 99 99.958 6.9980 100 99.938 

LR1 3.28 0.4387 1.6119 -5.5053 9.1068 99.999 5.1160 99 99.934 6.9990 100 99.853 
LR1 4.05 0.4389 1.6119 -5.5046 9.1088 99.998 5.1165 99 99.922 7.0005 100 99.819 

LR1 5.07 0.4391 1.6119 -5.5044 9.1095 99.998 5.1169 99 99.914 7.0013 100 99.778 

LR1 6.49 0.4394 1.6119 -5.5017 9.1096 99.997 5.1172 99 99.897 7.0016 99 99.705 

LR1 8.61 0.4396 1.6122 -5.5011 9.1124 99.996 5.1182 99 99.885 7.0034 99 99.677 
LR1 11.40 0.4396 1.6124 -5.5062 9.1156 99.996 5.1191 99 99.867 7.0055 99 99.650 
             
LR2 0.13 0.4371 1.6122 -5.5112 9.1054 100.00 5.1138 100 100.00 6.9973 100 99.999 

LR2 1.64 0.4370 1.6120 -5.5115 9.1043 100.00 5.1133 100 99.995 6.9967 100 99.986 

LR2 3.33 0.4367 1.6116 -5.5108 9.1013 100.00 5.1115 100 99.984 6.9949 99 99.973 
LR2 4.04 0.4365 1.6115 -5.5102 9.1016 100.00 5.1108 100 99.968 6.9955 100 99.965 

LR2 4.50 0.4365 1.6113 -5.5096 9.1011 99.999 5.1099 100 99.959 6.9955 100 99.939 

LR2 5.00 0.4362 1.6109 -5.5105 9.1007 99.999 5.1084 100 99.940 6.9951 100 99.871 

LR2 5.57 0.4361 1.6107 -5.5092 9.0991 99.998 5.1071 100 99.935 6.9947 100 99.822 
LR2 6.51 0.4358 1.6101 -5.5077 9.0959 99.997 5.1051 100 99.915 6.9924 100 99.791 

LR2 8.37 0.4357 1.6097 -5.5069 9.0937 99.997 5.1037 100 99.906 6.9909 99 99.770 

LR2 11.13 0.4357 1.6096 -5.5046 9.0932 99.996 5.1033 100 99.898 6.9903 99 99.753 

1- In this table, MEBV stands for mean, SDEBV for standard deviation, MINEBV for minimum and MAXEBV for 
maximum of estimated breeding values, CORR stands for correlation between cases and regular BLUP for all animals  
(=58315). Also, MEBVS and MEBVC stand for average of estimated breeding values, NTSIC and NTCIC stand for top 
100 lists in common; and SRCORRS and SRCORRC stand for spearman rank correlation for bulls and cows, 
respectively for adjusting scheme.  
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Figure  4.14: Mean of estimated breeding values (MEBV) and correlation of EBVs of 
animals between full data and those from both discarding and adjusting schemes by 
various percentages and levels.  
 

 
Figure  4.15: Mean of estimated breeding values of the top 100 bulls (MEBVS) and cows 
(MEBVC) and their Spearman rank correlations (SCORRS and SCORRC) for both discarding 
schemes by various percentages.  
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Figure  4.16: Mean of estimated breeding values of the top 100 bulls (MEBVS) and cows 
(MEBVC) and their Spearman rank correlations (SCORRS and SCORRC) for the adjusting 
scheme by various levels. 
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5. Discussion  

Milk recording data are important management and decision tools for dairy farmers and 

for genetic evaluation (Bertrand 1996). Consequently, the accuracy of milk recordings will 

be very important for milk producers and breeding organizations. According to Cardoso et 

al. (2006), the accuracy of EBVs depends on the quality and validity of the phenotypic and 

pedigree data. Performance or phenotypic records in the form of TD milk yields are 

influenced by factors that are not clearly defined in the statistical model, thus leading to 

large residuals. These large residuals are attributed to outlying observations (or outliers) 

which can seriously bias genetic parameter estimates and genetic evaluations (Stranden 

and Gianola 1998). The validity of a TD evaluation relies on the accuracy of (co)variance 

components that are used (Strable and Mistzal 1999) and the accuracy of a genetic 

evaluation depends on how well the assumptions of the model match the data (Wiggans 

and VanRaden 1991).  

It is inferred from the above text that there is a need to detect and treat these outlying data 

for accurate estimation of model parameters and breeding values. Generally, there are two 

alternative approaches including discarding and adjusting, in order to deal with outliers in 

TD data. These alternatives can be applied either before or parallel to estimate the variance 

components and breeding values using mixed linear regression analysis.  

Therefore, the general goal of this study was to explore a simple approach to detect 

abnormal recordings of milk yield. A further purpose was to compare the influence of 

treating (discarding and adjusting) abnormal records by the use of three regression 

methods. The final purpose was to explore simple and effective residual analysis and the 

role that these residuals play in various aspects of genetic evaluation diagnostics related to 

the used test-day model.  

To achieve the above goals, it was required to predict the response variable (TD 

records) based on the predictor variables (a linear function of days in milk) for individual 

lactations using a regression procedure. However, different regression methods exhibit 

different properties e.g. residuals and their standard errors, estimates of the model 

parameters and their standard errors, and goodness of their fit. In contrast to least-squares 

regression that here has been called simple regression (SR), robust regressions (RR) 

provide protection against outliers and high leverage points. Local smoothing regression 

(LR) combines the simplicity of linear least squares regression with the flexibility of 

nonlinear regression. An advantage of this method is that no specific function is needed to 

fit the data to the model (NIST 2003).  
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In the next step, the limits that specify whether or not a TD value is considered as an 

outlier must be defined separately for both discarding and adjusting approaches, before the 

outlying recordings can be identified. In the current study, it was done by defining outliers 

as values deviating significantly from other records belonging to a given lactation. Finally, 

all three regression methods SR, RR and LR (with first and second polynomial order) were 

applied to each of the two treating schemes (discarding and adjusting).  

In order to select the required data to be removed, different percentages of the absolute 

predicted ordinary residual (ABSR) and standardized residual (ASTAR) were examined. 

Adjusting the different proportions of outlying data through restricting them to the residual 

limits that are defined by standard deviation (SD) of individual TD records, was another 

approach to the simple removal of outliers. To adjust an observation, the value of the 

residual must be large enough to exceed the product of k (constant) with the SD. If k is 

large, then the largest residuals will be less likely to exceed this product and they will be 

less likely to be corrected. On the other hand, if k is small the product of k with SD will be 

smaller and the observation with the greatest residual will be more likely to be corrected.  

All three regression methods and two treating schemes were applied to the original data 

set, prior to a fixed regression test-day model analysis. Finally the residual criterions, 

genetic and non-genetic variances and parameters, their standard deviations, average of 

estimated breeding values and ranking of top bulls and cows were inspected. 

 

5.1. Tests for determining the existence of outliers 

There are a variety of statistical tests for assessing the existence of outliers in the data 

depending on the data structure (univariate or multivariate) and the nature of the test which 

each lead to different set of outliers. A good example in this regard is the study done by 

Strandén and Gianola (1997). They used three types of linear models including a) a bivariate 

model, b) a univariate model (repeatability) with homogeneous residual variance, and, c) a 

heteroscedastic repeatability model. Within each of these models, the residual distributions 

were either Gaussian (normal) or t-student at the statistical level of less than 1%. Thus, a total 

of six statistical models was studied. Their results showed that the normal method detects more 

outliers than the t-probability approach, because of the difficulty for estimating probabilities 

precisely in the normal procedure. Thus, they found a clear superiority for t-models and 

considered this method as the more accurate method. For example, within univariate 

heteroscedastic models, the Gaussian assumption gave 25 outliers whereas the t-distribution 

produced only 10 (a reduction of 60% in the number of outliers). The bivariate Gaussian 

models detected 39 outliers (about 2.3% of all records) over 21 (about 1.4%) for t-models.  
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In the current research, the examination of data for possible outliers using both 

standardized (STAR) and studentized residuals (STUDR) attested the existence of potential 

outliers within the data. However, the proportion (percentage) of detected outliers 

depended on the type of the statistics used and significance level. Using STUDR, a 

minimum percentage of 0.64% occurred at p<0.01 after Bonferroni correction (which 

identifies fewer outliers than usual case). PRESS statistics discovered approximately half 

of all TD records to be outliers that can be considered as its drawback. Probably, this 

statistic can be efficient when data includes weekly instead of monthly milk recordings. In 

this case, there are many observations per lactation and consequently, there are several TD 

records prior to peak yield. However, regardless of the amount of the identified outliers by 

above tests, a high proportion of them are normal data. 

 

5.2. Checking the fit of the models 

Although evaluating and comparing goodness of fit among regression methods that has 

been accomplished by estimating of the correlation between predicted and actual values, 

was not the primary aim of this study, the outcomes indicate a significant difference in 

their fit at the end of lactation. These differences influence the efficiency of regression 

methods in detection and treatment of outlier leading to the different sets of outliers that 

treating them will affect both the variance components and breeding value estimates 

differently. The results from the current study confirm that both SR and RR procedures 

fitted relatively well to the data but local regressions, particularly those with the higher 

smoothing parameter, suffered from an inaccurate fit at later months of the lactation 

course. It seems that local regressions yielding a smooth but biased fit in the late lactation, 

lead to inaccurate outlier detection and treatment conclusions.  

Although a common assumption of genetic evaluation models is homogeneity of 

(co)variances, this assumption is often incorrect across time or herds (Boldman and Freeman 

1990). In TD models an additional reason for unequal variances is linked to lactation stage 

(Gengler and Wiggans 2001) and production level (De Veer and Van  Vleck 1987). 

The findings from the current research underline the importance of the dependency 

between the magnitude of TD records and both lactation stages and production levels that 

should be taken into account before any attempt for dealing with outliers. Factors 

influencing the variation in milk production in the beginning of the lactation are likely cow 

factors such as milk let down in the first few days, stress due to parlour introduction, calf 

removal, change of diet, dietary upsets and calving problems (Quinn et al. 2007). Other 
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contributing cow factors cause the inability of the cow, immediately acalving, to consume 

sufficient energy to sustain lactation (Buckley et al. 2003, McGuire et al. 2004). An increase 

in the phenotypic variance at the end of lactation was also observed. Factors such as stage of 

lactation, production potential, pregnancy status, and changes in nutrition are likely to be the 

primary factors, contributing to the variation at this time (Quinn et al. 2007). 

The current study showed that there is an intermediate correlation between TD values 

and both ordinary and standardized residuals that can cause problems in the process of 

correct detection of outliers. Other types of residuals can be also used as diagnostics such 

as the Cook’ distance and studentized residuals. 

 

5.3. The distribution frequency of outliers 

The results of genetic evaluations are also influenced not only by how well the model 

predicts the TD yields for each individual lactation but also by the frequency of outliers 

detected by each regression method within lactation stages and production levels. Based on 

Mayeres et al. (2003), the distribution of outliers should be theoretically independent of the 

production level and lactation stage. Consequently, prediction residuals and standardized 

residuals are supposed to be homogeneous within lactation period and production level. 

From the results of the present research, it is now known that distributions of outliers by 

DIM (all four regressions combined) were not generally uniform in the interval from 5 to 

330 DIM. Distributions become more uniform (smaller differences between DIM 5-30 and 

the remaining part of the lactation) with increasing values of k (results have not been 

shown) in agreement with Jamrozik et al. (2007). Moreover, the beginning and the end of 

lactation were characterized by a lower frequency of detected outliers which is in contrast 

to what has been reported by Wiggans et al. (2003) and Quinn et al. (2007) who used 

similar approaches and definitions (<60% or >150% of predicted TD yield) to detect 

outliers. In the study of Quinn et al. (2007), 51% of the abnormal recordings were in the 

first lactation week where milk production is affected adversely by several environmental 

factors. However, this high percentage may be somewhat unrealistic because outliers are 

extreme observations which occur fairly randomly across lactation. Jamrozik et al. (2007) 

reported around 39% of outliers on DIM=10 at k = 1.5 for first lactation cows.  

In the present study, the high phenotypic variance at early and late lactation stages 

generally leads to a lower probability for a potential outlier to pass the defined range and 

become an actual outlier. This problem can be solved by providing weights for the 

residuals or for the product of k and SD.  
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In contrast to RR and LR procedures, SR showed a nearly constant distribution for OTD 

records throughout lactation with the highest values at peak lactation. This period of 

lactation could be associated with erratic or problematic values of milk recording. Mayeres 

et al. (2003) found a higher number of deviant TD yields at the peak yield and attributed 

this to the larger phenotypic variances which is in contrast to the current study.  

Mayeres et al. (2003) also found very few outliers for low milk production, contrary to 

high levels. They attributed this to the weakness of their method in the detection of outliers 

for the lower productions of the beginning and the end of the lactation period (Mayeres et 

al. 2003). They used a fixed SD (=1.83 kg) for product SD by k, in order to define the 

limits of the prediction error. Thus, an animal having a TD production of 15 kg has less 

chance to be out of the 15±5×1.83 interval than another one with the 35±5×1.83 interval. 

Since the phenotypic variance varies across lactation, a constant SD may cause 

inconvenience in detecting outlying records, consequently some data will incorrectly be 

defined as outliers or some outliers may not be detected. Although in the current study the 

percentage of low and high outliers is still a little greater than what is expected (especially 

for SR) but it is acceptable. 

In addition to the need for determining the non-existence of the dependency between 

production level or lactation stage and the portion of the identified outliers, particular tests 

also need to be conducted if there are any other given patterns of heterogeneous variances 

for various subclasses of the data (Cardoso et al. 2006). In this regard, animal breeders are 

encouraged to employ extra precautions so that no accidental selection of data or the 

occurrence of bias becomes possible (Interbull 2001).  

The statistical tests (Tukey's Studentized Range Test) show that the variances were 

heterogeneous for different production levels and lactation stages. This means that with no 

correction for variance heterogeneity in the model, the homogeneity of the variance will be 

absent. It can also cause some problems in identification of the outlying data like removing 

animals with extreme high or low production level (Mayeres et al. 2003) and consequently 

leads to bias in the selection.  

For this purpose, robust heteroskedastic error models proposed by Cardoso et al. (2005) 

for genetic evaluations, are a desirable alternative where there is heterogeneity of the 

variance among data subclasses. These models use features of structural variance models 

(Foulley et al. 1992, Kizilkaya and Tempelman 2005) and heavy-tailed density models 

such as t-student (Lange and Sinsheimer 1993, Rosa et al. 2003), representing an 

alternative to the deletion of records (Cardoso et al. 2006). 
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5.4. Counting outliers per lactations  

In order to check and control the impact of each regression procedure and treatment 

method on genetic evaluation results, inspection of the number of detected outliers 

corresponding to the different sample subclasses is of interest. It is very critical that there 

are no systematic patterns in the number of outliers in the different subclasses of the data. 

In addition to the lactation stage and production level, this study has analyzed the 

distribution of outliers within lactations. Another important issue that needs to be 

examined is the frequency of low (and high) outliers in each lactation phase and during 

lactation that influences not only the average of milk production (MPA) but also the results 

of breeding value estimates (EBV). Because of a large number of applied analyses, it was 

not possible to determine the frequency of the low and high outliers for each lactation 

subclasses (week or month) separately.  

The results of the incidence frequency of the detected outliers for the current study show 

that they were less at the beginning and end of the lactation, and were more in the middle of 

the lactation period with an exception for the local regressions. According to Wiggans et al. 

(2003), a cow is less likely to have a large increase in yield than a large decrease. Their 

preliminary investigation showed that a lower limit of 60% of predicted TD yield as 

specified by ICAR (1995) and an upper limit of 150% are reasonable lower and higher 

limits. Wiggans et al. (2003) reported about 95% of abnormal milk records (outliers) to be 

low (1.8% out of total data). Furthermore, in the study done by Quinn et al. (2007), 96% of 

the abnormal recordings from first lactation cows were declared abnormally low. Both 

studies which used a similar definition for detecting outliers, found a higher proportion for 

lower outliers in very early lactation and an intermediate proportion in late lactation.  

A probable cause for the observed difference in the percentage of low outliers between  

the current study and the two above mentioned studies is that they utilized different 

functions to estimate the slope of the lactation curve for first and subsequent milk yield 

using adjacent TD yields. In more precise terms, a separate set of regression coefficients 

was estimated based on subsequent rather than preceding TD yield to predict the first TD 

yield. This is achieved by comparison between the results of the current study and those of 

two above studies figuring out that the occurrence of low and high outliers is associated 

with the model fitted to the data, definition of restrictions and parameters used (predicted 

values, residuals and standard errors) in these calculations. Therefore, the high frequency of 

lower outliers in the last two studies may be a consequence of a problem in one or both of 

the indicated cases.  
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The relatively higher incidence of low recordings which were obtained by the current 

survey and the two previous studies, may be due to difference of the adopted procedures in 

the definition of outliers.  In the current study, as the percentage of outliers (discarded or 

adjusted) data increased, the quotient of abnormally low and high records approached to 

50:50. However, for both SR and RR methods the percentage of low outliers was more 

than 50 and it was lower than 50 for both local regressions.  

The percentage of the lactations containing a single outlier decreased along with the 

increase in the proportion of outliers, as a logical consequence. The higher values for this 

percentage reflects the fact that the used methods accurately identified OTD records from a 

given lactation with less regard to the measure of the other TD yields from that given 

lactation. In addition, the relatively uniform distribution of outliers per lactation shows that 

there was no evident pattern for the detection of outliers in the level of lactation. In other 

words, there is a less chance to detect several outliers per a lactation, if only a small amount 

of data is selected as outliers. Furthermore, the occurrence of low outliers changed along 

with the increase in the frequency of detected outliers. For example, for SR and RR, it 

varied from 70% to 50%. From the application point of view, this variation may suggest 

the need for changing the limitations <60% (for lower yields) and >150% (for upper 

yields) of predicted values to detect abnormal TD records. 

 

5.5. Impact on residual criteria  

One of the most important and primary goals of treating outliers is reducing the 

measures of error terms. There are many criteria, such as residuals and squares of residuals 

that can be used to assess the relative size of predicted residuals from the model. The mean 

error and standard deviation of errors are mathematical measures of the magnitude and 

dispersion of the errors in estimating actual yields, respectively. In this study, the average 

of absolute residuals (MAR) and squared (MSR) were used because data sets were different 

in number of observations after discarding the detected outliers. Establishing such a 

standardization makes these criteria appropriate for comparing results from both discarding 

and adjusting schemes.  

Yang et al. (2004) applied two types of robust estimation procedures to a single trait 

random regression TDM to reduce the effects of OTD. The first robust procedure (k method) 

estimated the residuals from the genetic evaluation model, computed the standard deviation 

of residuals across all records, and restricted the outlier residuals to be within k standard 

deviations. Consequently, a new observation was created (similar to the current study) for 

use in the genetic evaluation model. Four different values of k were examined. The second 
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robust procedure (W method) utilized different weights with each TD record which were 

estimated from the residuals for all observations. Outliers tended to receive smaller weights, 

and thus their influence tended to be reduced. Results were compared to usual best linear 

unbiased prediction (BLUP) ignoring the outlier problem. Their findings showed that the 

BLUP method resulted in the smallest sum of squared residuals (SSR) and the smallest 

standard deviation of residuals (SDR) and consequently showed a better performance. For 

the k robust methods, a k=2.0 (4% of the data) gave the smallest sum of absolute residuals 

(SAR) that was only 0.85% smaller than BLUP method, but at same time it yields a SDR 

that was about 4.5% greater than SDR from the usual BLUP. The W robust methods where 

each observation is weighted according to its residual, performed poorly with much higher 

values for SSR, SAR, and SDR than BLUP method.  

Jamrozik et al. (2007) applied a robust method in the format of a multiple trait random 

regression model for the correction of outliers. Their method was similar to the k robust 

method described by Yang et al. (2004) except that the residuals were calculated for all 

observations within each DIM and the standard deviation of residuals was computed for 

each DIM rather than only four DIM groups, as used by Yang et al. (2004). They also 

reported that higher values of k reduced SSR for robust methods but none of them reached 

the level of BLUP while values of k = 2.75 and 3.0 (for protein yield) gave the smallest 

SAR compared with BLUP (only about 0.41% and 0.38% smaller than usual BLUP). 

In contrast to the above studies, in the current study along with an increase in the percentage 

of treated outliers, the corresponding MAR, MSR and SDR became smaller in comparison 

with those from the full data. The discarding scheme with k=0.4 or =0.8 gave small enough 

values for MAR, MSR and SDR and removed a large portion of the inconsistency in the 

predicted residuals from the model. For the adjusting case, the best k was dependent on the 

regression method. The RR method presented the largest reduction in residual terms among 

all regression methods. For example, at k=2.0 which includes only 1.13% of the data 

corrected by RR, MAR was 0.33% smaller than that for data with no treatment.  

Milk production is known as the most important source of income for many farms and 

for successful dairy production management. Therefore, the impact of any treatment of 

outliers should also include a milk production assessment which here was evaluated by 

average of milk production (MPA). The results clearly indicated that the local regressions 

with both linear and quadratic orders were different in the pattern of variations for MPA 

from usual parametric regressions (i.e. SR and RR). The variation in MPA is more likely 

attributable to the combination of factors including ratio of low to high outliers, accuracy 

of the fit of the various regressions to the data over the lactation period, the regression 

technique and the used model.  
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5.6. Impact on variance components and standard deviations  

Estimation of genetic parameters is necessary for prediction of breeding values, prediction 

of response to selection and determination of selection procedure and also is essential before 

the development of breeding strategies. Estimating additive genetic and non-additive genetic 

variances contributes to a better understanding of the genetic structure of a population. 

The results from the current research indicated that the error variance (Ve), phenotypic 

variance (Vp) and error variance ratio (e2) considerably decreased through treatment of the 

abnormal TD records by both discarding and adjusting schemes. The general pattern of 

variations observed for additive genetic (Va) and permanent environmental (Vpe) variances 

remained relatively constant using adjusting scheme along with the increasing outlier 

percentage but they showed a random pattern using discarding scheme.  

It is proposed that smaller standard errors show the superiority of a model or method 

because fewer unexpected and more reliable predictions are produced. Naturally, the 

usefulness of a model would depend mainly on prediction accuracy and also, the accuracy of 

estimating heritability is dependent on its standard error. Therefore, a high standard error of 

heritability also shows the low accuracy of the estimates (Khanitta et al. 2005, Basualdo et 

al. 2007). In the current study it was found that despite a small increase in h2 (heritability) 

and c2 (permanent environmental variance ratio), their standard errors slightly decreased. 

These results indicate the usefulness and practicality of using the defined methods in 

detection and treatment the outlying datas in a proper way. Although, there are no other 

studies to support these results, many studies (Brotherstone and Hill 1986, Boldman and 

Freeman 1990, Dong and Mao 1990) have found that genetic variance is not constant and 

increases with herd yield and herd phenotypic variance. Meinert et al. (1988) found that herd 

mean was only moderately correlated (≤0.5) with phenotypic variance.  

Brügemann (2008), in a detailed study, estimated the heritability of one hundred of the 

largest dairy herds in the eastern Germany which also included the data records from those 

six dairy herds that were used for the present study. The average of the estimated 

heritability using a fixed regression test-day model for the six herds was considerably 

lower than that for the current study (0.206 versus 0.2987) which included all six herds as a 

whole dataset. The corresponding average for Vpe, Ve and Va were 15.060, 9.443 and 

6.332, respectively which indicate higher values of Vpe and Ve and smaller value of Va 

compared to those for the present study (7.399, 9.402 and 7.154, respectively). In the current 

research, however, the data were subject to considerably more editing than previous study 

which included various milking frequencies (2x, 3x and robotic milking) and without the 

limitation of nine TD records per lactation. However, the existence of these sources of the 

heterogeneous variances can lead to decrease in the heritability coefficient. On the other 

hand, the differences may just be by chance. 
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5.7. Impact on breeding values and ranking of top animals 

The genetic evaluation has a key role in selection decisions and breeding improvement 

programs. Nowadays, the estimation of breeding values and the estimation of the variance 

components are implemented simultaneously with linear mixed models (Krejčová et al. 

2007). Therefore, the analysis of impacts of the outlier treatment on them seems logical 

and necessary because these impacts affect the results of the variance component estimation 

and finally the results of genetic evaluations. 

Jamrozik et al. (2007) estimated the average, standard deviation, minimum and 

maximum values of EBV for protein yield for BLUP and those data which were corrected 

for the outlying yields. In their study, the average estimated breeding values (EBV) were 

practically constant for all methods with a small increase from -0.026 to -0.023 and small 

changes in standard deviations and ranges of EBV did not show any apparent pattern. 

Similar findings were observed in the present study where an increase in the percentage of 

outliers did not significantly affected the EBV of concerned animals (fluctuated in a narrow 

range), especially for the adjusting scheme. It is expected from the results that upward and 

downward changes in the MEBV are dependent on the frequency of low and high outliers 

that are likely belong to animals with smaller and larger EBVs, respectively.  

An important component of each breeding program is the identification of animals with 

the highest genetic merit with a high accuracy, because these animals should be used as 

parents for the next generation. Treating a higher number of data was always associated 

with the lower correlation between EBV of animals from entire data and those produced by 

methods from the current research. Generally, correlations (with minimum of 99.9) in the 

present study were higher than that (range of 96.1 to 99.7) reported by Jamrozik et al. 

(2007) with nearly the same proportion of corrected milk yield TD records.  

For the present study, EBV average of a top 100 bulls (MEBVS) and cows (MEBVC) 

remained relatively constant, though they slightly increased in some cases. Furthermore, 

the variation of EBV for cows was less than for bulls. In the study of Yang et al. (2004), 

the median EBVs of the top 100 bulls and cows using the method k robust estimation was 

greater than usual analysis with BLUP.  

From the results of the current study it was concluded that the Spearman rank correlations 

of the top 100 bulls and cows (SCORRS and SCORRC) decreased and some bulls and cows 

changed their position on the list of superior animals that could be attributed to the number 

of outlier records for these animals in the current research. However, the variation of SCORRC 

was remarkably larger than that of SCORRS, most likely due to fewer records per cows.  
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Using k robust method, Yang et al. (2004) reported a range of 99.2 to 99.3 and 91.4 to 

94.3 for spearman rank correlation of bulls and cows, respectively. In the current study, the 

number of top bulls and cows in common in the top 100 lists between full data and data sets 

from different analyses was higher than those from robust k method used by the study of 

Jamrozik et al. (2007) who found a range of 92 to 97 for bulls and a range of 84 to 98 for 

cows. Using k method, Yang et al. (2004) reported a range of 99 to 100 for bulls and 90 to 

91 for cows. 

In general, the results of the current research are in a good agreement with the results of 

Yang et al. (2004) for the single trait model and of Jamrozik et al. (2007) for the multiple 

trait model. However, their methods require somewhat more computational cost and/or 

programming effort to their implementation. For these reasons, the strategy described by 

the current study may be superior in the treatment of outlying data to methods presented by 

above studies with regard to the ranking of top animals. Therefore, due to simplicity of the 

procedure used here, it may be comparable with the method used by previous studies.  

 

5.8. Comparison between treating schemes 

Outlier data can be excluded or otherwise replaced (substituted) with corrected values in 

genetic evaluations. In traditional statistical analysis, mean and standard deviation are 

estimated without taking outliers into account through removing them (Chernobai and 

Rachev 2006). Removing outliers is drastic, consequently without detailed analysis of the 

data it is difficult to decide whether they should be excluded or not. The current research 

describes the methods which initially were used to identify the outliers with residual 

diagnostic techniques, and then to determine the impact of removing and adjusting outliers 

on various aspects of genetic evaluations. 

As explained in the previous sections, two treatment schemes discarding and adjusting 

were applied to the data. For the discarding scheme two types of residual definitions, i.e. 

ordinary (ABSR) and standardized (ASTAR) residuals in absolute value were used in order 

to select the outlying observations. These two kinds of residuals represented significant 

difference in their performance not only on outlier detection but also on genetic evaluations. 

For example, the incidence pattern of the detected outliers using ASTAR during lactation 

was more uniform than ABSR. The distribution of outliers corresponding to different 

production levels and lactation stages were more consistent using ASTAR. Moreover, 

ASTAR identified a higher proportion of lactations with only one TD as outlier. 

Meanwhile, rankings of top bulls and cows severely altered by the use of ABSR in 
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comparison to ASTAR. Therefore, using ASTAR of records instead of ABSR leads to 

adjustment of most sources of variance that are not specified in the model and directly or 

indirectly affect a given TD such as herd, DIM, cow’s age and production level. The only 

superiority of ABSR over ASTAR was its smaller values for three residual criteria.  

Thus, analysis of residuals is useful because inadequate models will yield structured 

residuals (Box and Jenkins 1976). Standardized residuals represent the distance of an 

individual observation from the sub-sample (herein "lactation") and thus they are effective 

in assisting analysts in examining data for multivariate outliers (Osborne and Overbay 

2004). 

However, it can be concluded from the results that the standardized residuals are a good 

substitute for fitted residuals because they are independent of the units of measurement of 

the variables and provide a unitless statistical score for judging the size of the residual. 

They are also more robust and conservative than ordinary residuals for outlier detection 

applications. Perhaps because of these properties, ICAR agrees with modification the 

assessment of the bias related to the meter due to measuring errors using standardized 

residuals to find out if outlier data exist. The bias of the meter is tested both with all results 

and after removing outlier data and if one of the tests is failed, then the meter is rejected 

(ICAR 2007).  

Based on the results of the current research, correction of the outliers generally less 

affected the residual criteria, genetic and non-genetic variances and parameters and their 

standard deviations as well as breeding values in comparison with the discarding scheme. 

For instance, the number of detected outliers was less dependent on DIM and production 

level. By adjustment of outliers, a maximum of four OTD per lactation was corrected by 

the adjusting scheme. It also led to smaller residual terms of MAR, MSR and SDR as well 

as both Vp and Ve. The MEBV resulted from adjusting schemes showed small differences 

with the data with no treatment. The CORR between corrected data sets and full data 

remained almost stable. Rankings of top bulls and cows were not altered by the adjustment 

of outliers. Though the correction of outliers less influenced the different criteria that have 

been examined, it may be a much safer and secure solution than discarding them, because 

it does not remove the potential information associated with the TD records which may be 

informative for other aspects of the survey. Based on Mayeres et al. (2003), the factors 

causing an outlier may be different consequently the safest treating is to reduce them 

towards their expected value predicted by a convenient model. 
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Taken together, the above points imply that it is not very easy to deal with outliers and 

making decision about them. Despite these difficulties, some researches attempted to handle 

outliers in milk production data analysis. Some of them only focused on detection of 

outliers (Strandén and Gianola 1997, Jamrozik et al. 2004) and the others substituted these 

abnormalities with values predicted by model prior to (Wiggans et al. 2003) or parallel to 

genetic evaluation (Mayeres et al. 2003, Yang et al. 2004). It seems that few researches 

have been undertaken on how to deal with outliers in practice and especially analyzing 

their impacts on genetic evaluation. In addition, there was no study to compare the impact 

of discarding and adjusting outliers on residual statistics, variances and genetic evaluation 

results. Therefore, there is still a need for more research investigating the use of new 

methods to assess the effect of treatment of outlying data on genetic evaluation. According 

to Yang et al. (2004) the better method will be the one that gives the higher correlation of 

EBVs with the genetic values from the data without treating the extreme points, or the 

greater probability of correctly ranking animals.  

According to the obtained results it can be concluded that both discarding and adjusting 

approaches have been shown to be effective in alleviating obstructive effects of outliers in 

TD data, irrespective of their advantages and disadvantages. The results are based on their 

impacts on residual terms, genetic and non-genetic variances and both h2 and c2 estimates as 

well as their standard deviations. However, using both discarding and adjusting schemes 

together to treat the TD data may give the better performance than each of them individually. 

This would potentially make it a more attractive data cleaning procedure and may encourage 

a greater uptake of editing TD data without losing or manipulating a high number of records.  

 

5.9. Comparison between regression methods 

Various regression methods have different analytical and statistical characteristics and 

each of them predicts different values for response variable, residuals and standard 

deviations. Results of the current study have shown somewhat these differences. The 

obtained outcomes indicated the superiority of the robust regression technique over simple 

and local regressions in detection and treatment of outlying TD milk yields. In the 

following, some differences between these regression methods will be pointed out.  

Very extreme TD records were less detected by RR method in comparison to SR and 

LR that is a consequence of its independency on the level of production. Contrary to RR 

and LR, SR represented the lowest percentage of single outlier per lactation because of its 

dependency on the production levels. This reflects the problem of attributing more than 
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one outlying TD to a given lactation of a high- or low-producing dairy cow. However, it is 

essential to point out that superiority of local regressions over SR is not necessarily true, 

because most outlier points that have been detected by these regressions, corresponded to 

the end of lactation. The placing of the most outliers in the end lactation, incorrectly causes 

a decrease in the probability of detection of two or more outlying records in a given 

lactation. Among all tested methods, SR method showed little effect on the ranking of 

EBVs for the top animals. While LR2 represented the highest correlation between 

observed and predicted breeding values, it showed a high inequality in distribution of 

outliers during lactation. Thus, the usefulness and efficiency of a regression procedure for 

outlier detection is a function of its fit to the data and the incidence frequency of outliers at 

different lactation stages.  

Among all methods, RR was the regression procedure that provided the largest 

differences between the usual analysis and other procedures in terms of residual criteria, 

variances, parameters and their standard deviations while it affected only a small portion of 

data. These performance advantages make it a more accurate and convenient regression 

procedure than all other methods. Therefore, RR methods can attenuate the adverse effects 

of outliers on residual terms and model parameters. Despite these good features, however, 

robust regressions are still not broadly used. Several reasons have been explained for their 

unpopularity (see Hampel et al. 1986). The M-estimation which has been already briefly 

described, uses weight functions of the residuals that increase less rapidly than the square 

of the residuals used by OLS. The weighting function attenuates the influence of 

observations with large residuals (O’Kelly 2006). It became obvious from results (see 

Tables 4.11 to 4.14) that local regression with lower polynomial degree (i.e. LR1) led to a 

smaller value for the corresponding residual criteria. Thus, nonparametric local regression 

as a new tool can be applicable in dealing techniques with outliers because it does not need 

  a predefined model to be fitted to the data. In this context, Quist et al. (2007) estimated the 

missing milking records from the daily milk data set by using local regression techniques 

via PROC LOESS in SAS (Statistical Analysis Software). 

Generally, the local regression estimators produced the residual terms with less 

difference from those for the original analysis. There are two main reasons for this 

phenomenon. The first one is their unsuitable fitting at the end of lactation, and the second 

one is employing different regression techniques and functions for the detection of outliers 

and for genetic evaluations. However, the earlier problem seems to be more problematic. 

The examinations clearly show that the performance of this kind of regressions is greatly 

influenced by order of polynomial regression and value of smoothing parameter. Choosing 
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a higher smoothing parameter with this procedure will provide a smoother curve which 

may hide the main features of the data and the fit will have large bias. If it is too small, 

insufficient data fall within the smoothing window and consequently a large variance will 

result (Loader 1999).  

Like the smoothing parameter, the degree of the local polynomial affects the bias and 

variance. A local polynomial with higher degree provides a better prediction than a low 

polynomial degree, and consequently leads to an estimate with less bias but a lower degree 

usually produces better fits with less variance, especially at the edges (Cleveland and 

Loader 1995, Loader 1999). The fitted value at a data point for LOESS procedure is 

obtained by blending them at the initial cell through partitioning the initial cell into sub-

cells by median (SAS 1999). However, like other least squares methods, the local 

smoothing local regression which was applied to the LOESS procedure of SAS, is also 

sensitive to the effects of outliers in the data set (NIST 2003). The two of the biggest 

advantages of local regressions over parametric methods are: a) the fact that it does not 

need to specify a function prior to fitting the model to the data and b) its flexibility. These 

two advantages make it one of the modern regression methods for applications that use 

least squares regressions (NIST 2003).  

The known drawbacks of LOESS are: a) it requires fairly large and dense data sets in 

order to produce good models, b) it does not produce a regression function that is easily 

represented by a mathematical formula, and c) it is a computational intensive method. 

However, the last drawback is not usually a real problem in current computing 

environment, unless the data sets being used are very large (NIST 2003).   

When the length of lactation is shorter, probably local regressions will show different 

performance and results compared with the longer lactations. However, owing to a limited 

number of TD milk records per lactation on each individual lactation, LOESS procedure 

was unable to meet iterative reweighting least squares method which improves the 

robustness of the fit in the presence of outliers in the data (Cohen 1999). In order to face 

such situations where there are possible outliers in the data, robust smoothing methods 

have been developed to restrict the influence of outliers. LOWESS (local weighted 

scatterplot smoother) which is sometimes called a robust version of LOESS, could be used 

(Takezawa 2006). Finally, using thin-plate smoothing splines by PROC TSPLINE is 

another alternative (Freund and Littell 2000).  

Class or group of data that should be searched for outliers, also could be important. 

Some researches have focused on the detection of outliers within larger DIM levels (Yang et 
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al. 2004) or within smaller DIM levels (Jamrozik et al. 2007) rather than within lactation 

(Wiggans et al. 2003). Difference in the selected level for searching for outliers, results in 

considerable differences in conclusions. For example, Yang et al. (2004) and Jamrozik et al. 

(2007) employed a similar robust estimation (k method) in order to correction of outliers 

using a random regression TDM. Jamrozik et al. (2007) calculated residuals and standard 

deviation of residuals for all observations within each of the DIM classes from 5 to 305 

(301 classes), separately rather than within only four DIM classes used for the residual 

variances in the study of Yang et al. (2004). Jamrozik et al. (2007) reported lower values 

for SAR at k = 2.75 and 3.0 (for protein yield) than BLUP compared with Yang et al. 

(2004). Generally, larger groups and levels provide higher variance and standard deviation 

for residuals that decreased the probability of any data point correctly lying outside the 

particular deviation boundaries and becoming an actual outlier due to heterogeneity among 

observation within those groups.   

What seems certain is that dealing with outliers needs a model to catch them and results 

depend on the ingredients of the model fitted on the data, regression procedure and limits 

defined. Similarity of the model applied to both detection and treatment of outlying 

observations will be critical to obtain accurate results. 

In the current research, the model to estimate the variance components and breeding 

values was a linear mixed model which included both fixed and random effects as well as 

co-variables. But the model to detect outliers only included the independent co-variables of 

Ali and Schaeffer’s function (1987). However, this dissimilarity may lead to unnecessary 

removal of data or identifying some records as outliers which may not really be. In this 

context, Cox and Snell (1968) presented a general definition of residuals for the models 

with a single source of variability (i.e. fixed effects). Authors like Hilden-Minton (1995) 

extended such ideas to define three types of residuals (ordinary, standardized and 

studentized residuals) where the other source of variability presents in linear mixed models 

(Nobre and Singer 2007). While Haslett and Hayes (1998), and Haslett (1999) considered 

residuals for the fixed effect linear model with correlated covariance structure, their 

approaches cannot be directly applied to a mixed model.  

The definition of residuals in the fixed effects model is y − Xβ, whereas in the mixed 

model is y − Xβ − Zu (Zewotir and Galpin 2007). Since mixed models have two sources of 

variability (within and between-subjects), two different types of residuals (marginal and 

conditional) may be defined and thus, the corresponding analysis would be more complex 

(Nobre and Singer 2007). Fei and Pan (2003) showed when the covariance structure is 
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misspecified, incorrect identification of outlying observations may occur. Consequently, it is 

important to know whether genetic and residual covariance structures are correctly specified 

before performing the outlier test through the residual analysis in linear mixed models. 

Apart from how to define the high and low limits which dictate the allowable range for 

a TD to be declared as outlier, the model features such as the type of distribution for the 

residuals and modelling of milk production data (305-day or test-day models) are of 

importance as well.  

Most genetic evaluation programs for livestock are based on generalized linear mixed 

model analyses (Tempelman 1998) with breeding values or genetic effects modeled as 

random with a covariance structure (Kizilkaya and Tempelman 2005). As it is well known, 

the Gaussian (normal) linear mixed models are often used by animal breeders when 

estimating genetic parameters and breeding values for a quantitative trait (Strandén and 

Gianola 1997). These models are sensitive to departures from assumptions causing by 

outliers. One such method that uses the t-student distribution for the residuals was 

proposed by Strandén and Gianola (1997, 1998, and 1999). Since the t-distribution has 

thicker tails than the Gaussian, it allows more variation and pushes the critical t into the 

tails of the distribution, giving it less chance to obtain a significant residual. Consequently, 

outliers should influence inferences from t-distribution less than in a Gaussian model 

(Strandén and Gianola 1997).  

In a similar research context, Jamrozik et al. (2004) adopted such method to test the 

performance of the robust statistical models that use heavy-tailed distributions for the 

residual effect. The proportion of outlier observations in the research of Jamrozik et al. 

(2004) which used random regression TD model with normality assumptions, was larger 

than reported by Strandén and Gianola (1997) for the 305-d model (3.7 vs. 1.4%). In other 

words, in the study of Jamrozik et al. (2004) the number of outliers using the t-distribution 

was slightly higher compared with the study of Strandén and Gianola (1997). Probably, 

utilizing a different model (TD model vs. 305-d model) could be led to a higher percentage 

of outliers.  

Lange et al. (1989) has suggested that the t-distribution model is appropriate when 

outliers are neither extreme nor common, which according to Strandén and Gianola (1997) 

is reasonable to expect in TD milk yield records of dairy cattle. In contrast, the findings of 

the current investigation showed that the outlying records are both extreme and relatively 

common because a high proportion lactations which contained outliers, included only a 

single outlier.  
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5.10. Reword  

Outlier detection is a critical part of the data analysis, and the use of ordinary and 

standardized residuals from various regression models is a very common approach for the 

identifying discordant observations in the linear regression problems. In general, there are 

two common alternatives in the face of such a situation including discarding and adjusting 

of outliers. 

While there was no strong evidence to propose a certain coefficient k for both 

discarding and adjusting schemes, however, it seems from the results reported here that 

removing 0.4% to 0.8% of data in the editing process could be done. Without losing a large 

number of observations, the discarding method yielded results more accurate than those 

obtained with the regular analysis using full data, because of having smaller standard 

deviation for both h2 and c2. Likewise, when data was corrected by various regression 

methods, for RR a k=2 (1.13%), SR a k=5 (3.82%), and a k=5 for  both LR1 (3.28%) and 

LR2 (4.50%) seem to be better values than other coefficients according to the results of the 

current survey. However, selection of a smaller k will influence a higher number of data 

but these did not introduce great changes in residual terms and other criteria. These limits also 

seem to be a good compromise between correction of abnormal TD values and percentage of 

detected outliers that has been reported by others, for example, 3.7% (Strandén and Gianola 

1997), 1.9% (Wiggans et al. 2003), 0.113% (Mayeres et al. 2003), 1.4% (Jamrozik et al. 

2004), < 4% (Jamrozik et al. 2007) and 3.3% (Quinn et al. 2007).  

Furthermore, other techniques such as data mining or knowledge discovery which is the 

process of extracting hidden patterns and predictive information from large datasets, can be 

used for identifying trends, correlations, discrepancies, irregularities and disruptions (Banos 

et al. 2003). An attractive feature of this method is that no assumptions on data structure are 

required to validate consistent and replicable pattern hypotheses (Banos et al. 2003). 

In this study, outliers were defined arbitrarily and based on self and rational 

understanding using residuals calculated for each lactation, coefficient k, regression 

method and treating scheme. The methods and coefficients k were chosen on the basis of 

their suitability, methodological considerations and previous studies as well as with the aim 

of determining whether reasonable adjustments can be made to decrease the obstructive 

influences of the outliers. Definition of outliers was, therefore, method dependent (i.e. 

regression, scheme, k level) as done by some authors (Wiggans et al. 2003, Yang et al. 

2004, Jamrozik et al. 2007, Quinn et al. 2007). It means that the different regression 

methods with the various values of k defined outliers in a different way. Definition of 
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outliers, however, is an important and a difficult matter underlying all the studies discussed 

in literatures which attempted to detect and to treat the outlying data. Observation that was 

an outlier for a higher percentage could be considered as a probable outlier candidate for a 

lower percentage. According to the results, although adjusting methods with the smaller k 

values detected relatively large proportions of outlying data, most of them could likely be 

considered as normal data. Thus, definition of outliers in the current study was somewhat 

different from the common definition of outliers.  

Besides the known factors altering the overall pattern of the lactation curve, there is also 

high local variation due to the environmental effects as well as due to the biological nature 

of the lactation itself (Olori et al. 1999). According to Swalve (2000), while in heat, a 

cow's performance commonly drops to about 40 to 50% of the yield that was produced in 

the previous day. Therefore, a large proportion of outliers detected by a statistical model 

may not be an actual outlier due to factors which affect performance but were not included 

in the model. 

Although, determining the causes of abnormal records was not the goal of this study, 

but there are several sources for their origins according to Quinn et al. (2007) : 1) manual 

or human errors in sampling, 2) mechanical or equipment sampling errors, 3) cow factors 

associated with the general wellbeing or stage of lactation of the cow, 4) post sampling 

treatment, and 5) the ability of the method outlined to identify true abnormalities. 

Among all causes of outlying recordings, preferential treatment of cows has been taken 

into more consideration. Preferential treatment can be described as any management 

practice that increases production and is applied to one or several cows, but not to their 

contemporaries (Kuhn et al. 1994). Some studies have reported that the bias of predicted 

breeding values in genetic evaluation of dairy cattle may be due to outliers that cannot be 

accommodated by the statistical model which are caused, for instance, by preferential 

treatment of cows (Kuhn et al. 1994, Kuhn and Freeman 1995). However, using a suitable 

robust distribution (e.g. t-student) may alleviate the impact of outliers on genetic 

evaluations (Strandén and Gianola 1997).   

In recent years, a number of countries have been forced to provide flexible service and 

pricing for farmers due to lack of funding required for their activities. However, this 

increased milk recording membership of dairy farmers (Miglior et al. 2002). According to 

Miglior et al. (2000), almost 20% of the countries (60% of milk recorded cows worldwide) 

were offering flexible options to farmers in terms of milk recording. Consequently, these 

activities decrease the ability of the model to make a good prediction and can cause some 
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difficulties in accurately identifying the true outliers in the face of many different types of 

heterogeneous resources.  

In this connection, INTERBULL that is a sub-committee of the International Committee 

for Animal Recording (ICAR), strongly recommends the milk recording organisations to 

keep the quality of records in genetic evaluations through data quality assessment methods 

(Interbull 2001). However, in each country a number of criteria are used in the data editing 

process in order to exclude the logical inconsistencies and those records that make little 

biological meaning. National genetic evaluation centres, are also recommended by ICAR 

to devise simple methods of checking for detection of outliers and exclusion of logical 

inconsistencies in the input data. While it is recommended that sick cows not to be 

recorded, some evidence shows that their test values may be predicted by the farmer or by 

the milk recorder, or TD values are declared missing (Quinn et al. 2007). Thus, data 

editing for genetic evaluation systems generally needs deleting records that are considered 

extremely deviant from the phenotypic mean of its subclass (e.g. three standard deviations) 

or if a record falls outside the range of 60% to 140% or 60% to 150% (ICAR 1995, Bertrand 

and Wiggans 1998, Wiggans et al. 2003). ICAR (1995, 2002) in the revised recording 

guidelines proposed that true daily-test values labelled abnormal (sick, injured, under 

treatment or in heat) must be used in the computation of the lactation record.  

However, if the test value is less than 50% of the previous test value or less than 60% of 

the predicted test value, values may be considered as missing (ICAR 1995, 2007). 

Although ICAR suggested suitable strategies for the very obvious data recording errors, 

these methods could be inefficient where the residual does not follow a normal distribution 

and/or variances are heterogeneous across various data subclasses (Cardoso et al. 2006).   

The most important conclusion to be drawn from the above paragraphs is that ICAR 

allows the pre-evaluation filters that exclude a number of data during the editing process. 

While editing instructions should follow the recommendations of ICAR (Interbull 2001), 

some breeding organizations conduct different high and low limits such as 3.0 and 99.9 kg 

for milk (Mayere et al. 2003) other than one proposed by ICAR. Discarding method using 

ASTAR, as described herein, may be an acceptable substitute in such cases where there is 

a necessity to exclude very extreme TD records before genetic evaluation in the phase of 

preparation and editing of data.  
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6. Conclusion  

Dealing with outlying or abnormal TD records includes two main parts. The first one is 

detection of outliers using a suitable statistical model that fits the data closely. In this 

context, there are several models which the best of them should be selected after a careful 

examination. If data is not correctly matched or model does not include all data features, 

predictions will be erroneous and some data will incorrectly be defined as outliers as well 

as some outliers will not be detected.  

The second and more important one is treating the identified outliers through either 

discarding or adjusting schemes by defining the proper limits of very low and very high 

records. There is an expectation that the model should have relatively uniform distribution 

of incidence of outliers across lactation period. The frequency of outliers over the various 

phases of the lactation severely depends on defining the allowable limits of error.  

This implies that dealing with outlier needs a model to detect the outliers and results 

critically depend on the model fitted on the data and defined limits. The results indicate 

that after k value, the regression model or procedure is a major contributing factor to the 

number of abnormal recordings.  

The attained results show that all procedures were clearly superior in residual terms 

(MAR, MSR and SDR) over the data without treatment, but these results do not determine 

which coefficient k, is more convenient to use for each treating scheme. The best 

coefficient k highly depends on the data set, model function, regression strategy and 

definition of limits for the high and low TD yields whether discarding or adjusting schemes 

are applied. In accordance with the other criteria such as measure of additive genetic 

variance and heritability as well as their standard deviation, discarding 0.4% to 0.8% and 

adjusting 1% to 5% of data are recommended depending on the regression methodology. 

This study has not provided evidence to determine which method (deleting or adjusting) 

is a better alternative to usual analysis with no treatment. The better method will be one 

that give a smaller residual measures over data with no manipulation, higher correlation of 

EBVs with true genetic values, higher probability for correctly ranking animals and 

smaller standard deviation for both h2 and c2.  

Although elimination of outliers is a convenient way to protect the results from their 

obtrusive effects but removing outlying observations is not ideal because it discards any 

other information associated with that observation. This will be particularly extreme for the 

lactations with a small number of TD records. Thus, due to the severe impact of removing 



 81 

the TD records with the large deviation on residual criteria which may bias the obtained 

model parameters and genetic evaluations, researcher should avoid discarding a large 

amount of them. 

Therefore, in order to protect the data from biases that could be caused by discarding 

outliers, application of an appropriate adjusting procedure will be a justifiable alternative 

to keeping them. Through adjusting the outlying records to a minimum or maximum, 

outliers are retained and at the same time, their impacts on calculation of residual criteria is 

reduced. Adjusting of outliers also led to a relative reduction in all residual terms, although 

reductions were less than discarding scheme. The results of this study indeed confirm that 

either of the methods which have been outlined, could be implemented prior to usual 

genetic evaluation systems without greatly increasing costs. However, a simultaneous use 

of both approaches (discarding and adjusting) may be a better choice than doing each of 

them individually.  

Since the robust analysis described in this study limited the influence of outliers due to 

having the greatest outcomes and maximum benefits, it is recommended to apply these 

methods into prospective animal breeding. The current study also suggests to 

simultaneously use the residual terms (MAR, MSR and SDR) and standard deviation of 

heritability (or additive genetic variance) to evaluate and compare the capability of the 

lactation models in detecting and treating the outliers. Comparing the treatment of the 

outlying TD observations in the lactation level to the more general case of multiple 

lactation (contemporary groups) and using both discarding and adjusting together are the 

future direction of this research.  

While residuals or transformations of them are highly informative to assess the fit of the 

specified model and reveal the relative inconsistencies between model and data, outliers 

resulting from unclear causes may be of interest as well. Therefore, detection of outliers 

using different models may lead to a direct assessment of the models' accuracy and 

consequently can give an evaluation and comparison criteria of the of fit obtained from the 

different models.  
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7. Zusammenfassung 

Durch die große Anzahl an Daten, die für die Zuchtwertschätzung erhoben werden, ist 

es vorhersehbar, dass Fehler auftreten. Deshalb ist es normal, dass Ausreißer und 

abnormale Testtagsleistungen (TD) in den Leistungsdaten des Milchrindes vorkommen. 

Diese Ausreißer können die Zuchtwertschätzung nachteilig beeinflussen, sofern nicht 

darauf Einfluss genommen wird. Deshalb müssen geeignete quantitative Methoden 

entwickelt werden, um Ausreißer zu finden und zu behandeln. Die Überprüfung der 

Resteffekte ist eine der ersten Methoden, um Ausreißer zu finden. Die Skalierung der 

Resteffekte mittels der Divison durch die Standardfehler ist eine Alternative zur 

Beschreibung der unterschiedlichen Varianz. 

Diese Arbeit beschäftigt sich mit zwei unterschiedlichen Verfahren, um Ausreißer zu 

behandeln. Die Varianzkomponentenschätzung mit einem fixed regression TD Model 

wurde zum Einen ohne Ausreißer und zum Anderen mit angepassten Ausreißern gerechnet. 

Beide Methoden wurden mit drei unterschiedlichen Regressionen gerechnet. Die Einfache 

(SR), die Robuste (RR) und die lokale Regression mit linearem (LR1) und quadratischem 

(LR2) Polynom. Ziel war es, die als Ausreißer gekennzeichneten TD zu entfernen oder zu 

reduzieren. Zum Einen wurde der prozentuale Anteil an Ausreißern der TD (0.1, 0.2, 0.4, 

0.8, 1.6, 3.2 und 6.4%), welche die höchsten Werte der tatsächlichen Resteffekte (ABSR) 

oder der tatsächlichen standardisierten Resteffekte (ASTAR) darstellen, ausgeschlossen.  

Die Methode, welche mit angepassten Ausreißern rechnet, verlangt für jede der drei 

Regressionen die Schätzung der Resteffekte und die Berechnung der Standardabweichung 

der Resteffekte für jede Kuh sowie die Reduzierung der Ausreißerresteffekte innerhalb k 

Standardabweichungen (SD). Anschließend wurde eine neue Beobachtung generiert 

(=k×SD), um sie in der Zuchtwertschätzung zu nutzen. 

Weiterhin sollten drei Regressionen, angewandt auf 111,599 TD für Milch von 11,620 

deutschen Holstein-Kühen bezüglich des Einflusses der Behandlung der Ausreißer in den 

Milchleistungsdaten in Abhängigkeit von der Anzahl und Verteilung der Ausreißer, der 

mittleren Abweichung (MAR), bezüglich der mittleren Abweichungsquadrate (MSR), der 

Standardfehler der Resteffekte (SDR) und der Varianzkomponenten verglichen werden. Es 

erfolgte außerdem eine Schätzung der genetischen und der nicht genetischen Parameter, 

der mittleren Zuchtwerten (MEBV) und der Rangierung der Tiere. 

Die Ergebnisse werden mit den Originaldaten verglichen, wobei jede Art der 

Veränderung einbezogen wird. Die fixen Effekte im Model zur Auswertung der 

Milchleistung in der ersten Laktation waren Herde – Jahr – Kalbesaison, 
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Herdentesttageffekt, fixe Regeression mit Ali und Schaeffer (1987) für die Tage in Milch, 

das Tier als zufälliger Effekt und die permanente Umwelt. 

Vorläufige Auswertungen haben ergeben, dass Ausreißer in den Daten als auch 

Ungleichheit zwischen der Verteilung der Ausreißer in der Regression und den Modellen 

auftreten. Die relativen Häufigekeiten der Ausreißer lassen vermuten, dass die 

Abweichungen in einem spezifischen Abschnitt der Laktation in Abhängigkeit der 

jeweiligen Regressionstechnik öfter auftraten. 

In allen Fällen zeigten SR und RR ein unterschiedliches Verhalten zur lokalen Regression 

(z.B. LR1 und LR2), in der die Ausreißer, die sich mit niedrigeren Werten vom normalen 

Mittel unterschieden, weniger als 50% der gesamt Ausreißer einnahmen. 

Die Auswertung mit ASTAR anstelle von ABSR zeigte, dass MAR, MSR und SDR einen 

deutlich schwächeren Abfall hatten. Allerdings zeigte ASTAR dabei eine geringere 

Abhängigkeit von den Tagen in Milch und der Leistung. 

In allen aufgezeigten Variationen reduzierte sich die phenotypische Varianz und die Varianz 

der Resteffekte mit zunehmender Anzahl Ausreißer in Abhängigkeit von der Methode und 

dem Prozentsatz an betrachteten Ausreißern. Die Korrektur auf Ausreißer hatte wenig Einfluss 

auf die MEBV der Tiere. Kühe zeigten eine größere Abweichung in den MEBV als Bullen. 

Die Rangierung der besten einhundert Bullen und Kühe unterschied sich nicht von den 

Gesamtdaten. Die Ergebnisse dieser Untersuchung zeigten, dass die RR Methode den 

Ergebnissen der Methoden SR, LR1 und LR2 zu bevorzugen ist, weil sie eine kleinere 

Anzahl an behandelten Daten beeinflusst.  

Die Ergebnisse der vorliegenden Studie lassen ebenfalls schlussfolgern, dass die 

Effektivität der einzelnen Regressionsbestimmungen für die Ausreißer sowohl eine gut 

funktionierende Methode bezüglich der Auswertung des Datenmaterials ist als auch eine 

angepasste Bewertung des Vorkommens an Ausreißern in der Laktation zulässt. 

Obwohl die Ergebnisse der Resteffekte nicht hinreichend genug waren, um den 

angemessenen Koeffizienten k in Abhängigkeit des Verfahrens zu bestimmen, konnte 

generell eine verbessert Anpassung, sowohl für die Ausschluss- als auch 

Anpassungsmethode der Ausreißer erzielt werden. Jedoch sind die Ergebnisse, vor allem 

hinsichtlich der Standardabweichung für den additiv-genetischen und permanenten 

Umwelteffekt, von 0,4% bis 0,8% für die Ausschluss- und 1% bis 5% für die 

Anpassungsmethode der Ausreißer, je nach Methode der Regression zu empfehlen. 

Die Auswahl des besten Koefficienten (k) ist stark von den Daten, dem Model, der 

Regressionsmethode und der Abgrenzung der hohen und niedrigen TD abhängig. 
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Die Arbeit mit Ausreißerdaten setzt sich aus zwei Hauptbestandteilen zusammen: erstens 

das Auffinden eines passenden Models für die Ausreißerproblematik und zweitens die 

Bewertung der Ausreißer. Außerdem muss Entweder das Weglassen der Ausreißer bei der 

Bearbeitung der Daten oder das Anpassen der Ausreißer unter der Festlegung von oberen 

und unteren Grenzen erfolgen. Sollte das Model nicht korrekt an die Daten angepasst sein 

oder die Limitierung der Daten nicht korrekt definiert sein, werden Daten inkorrekterweise 

als Ausreißer definiert oder nicht als Ausreißer erkannt.  
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