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Summary 

 

Genetic diversity within species has demonstrable advantages at various levels of biological organization. 
Although the genetic diversity found inside colonies of eusocial Hymenoptera (wasps, bees and ants) has 
proven to confer important benefits, its advantages at the population level have been much less 
studied. Moreover, the impact of mating system on the genetic structure of wild population is still poorly 
understood. Evidence of a genetic basis for worker caste polymorphism is still scarce and was previously 
confined to ant species exhibiting either small or large workers. Showing a high queen mating frequency 
and an extreme worker polymorphism, with four recognized physical worker castes, the New World army 
ant Eciton burchellii is among the most suitable study models to test the generality of genetic effects on 
caste differentiation in insect societies. The first manuscript presented here, proved the existence of a 
genetic component for worker caste determination in E. burchellii, showing that high genetic variation 
combined with a genetic component to worker caste determination, may increase homeostasis in systems 
with complex division of labour. At the population level, genetic diversity is ultimately determined by the 
genetically effective population size (Ne), which due to the combination of eusociality, haplodiploidy and 
complementary sex determination, is severely constrained in eusocial Hymenoptera. Additional 
limitations on Ne occur in army ants since they have wingless queens and colony fission, both factors 
causing restricted maternal gene flow and high population viscosity. The second manuscript addresses the 
impact of dispersal and multiple mating on the structure of E. burchellii populations, showing that male 
dispersal and polyandry seem to enhance gene flow and minimize the deleterious effects associated with 
small effective population size. Gene flow in wild populations of eusocial Hymenopterans, however, will 
not only be affected by the colony characteristics exhibited at any given time, but also by the turnover of 
colonies over time. The western honeybee (Apis mellifera) represents an optimal model to study colony 
turnover since its mating system involves the regular aggregation of thousands of males from many 
colonies in specific drone congregation areas (DCAs) that virgin queens visit to mate. The third 
manuscript presented here assesses the temporal changes in the genetic structure of a wild DCA in Africa, 
finding an extremely high turnover of the queens contributing drones to the DCA. DCAs of African 
honeybees thus seem to be extremely dynamic systems, which together with colony migrations, boost the 
effective population size and maintain a high genetic diversity in the population. The second and the third 
article of this thesis demonstrate that at the population level, genetic diversity also seems to have 
important implications for the evolution of mating systems in highly eusocial systems. Another factor 
potentially shaping the genetic diversity of wild Hymenopteran populations is sexual selection. Army ants 
and honeybees are ideal models to study sexual selection, since they share extremely male biased sex 
ratios but exhibit different life histories. Army ant males must find a receptive queen and be accepted by 
its workers in order to mate. In contrast, honeybee drones concentrate at DCAs waiting to mate with virgin 
queens on flight. Thus, female mate choice is likely to play a more important role in army ants, and male-
male competition seems to prevail in honeybees. For instance, while the second manuscript shows that 
army ant workers choose the males least related to their queen; the fourth article here included 
demonstrates that honeybee mating flights select the drones with a higher developmental stability, 
regardless of their genetic background. Hence, whereas female choice in army ants seems to promote 
outbreeding, male-male competition among honeybee drones is mainly based on environmental cues, and 
thus not likely to constrain genetic diversity. Addressing the conservation status of European honeybees, 
the last manuscript here included stands apart from the previous four. The past and present biodiversity of 
European honeybees are reviewed, coupled with a brief summary of the management and conservation 
strategies hold by different countries. Beekeeping practices in Europe were found to have a profound 
influence over the abundance of honeybees. It is therefore concluded that conservation policies directed at 
promoting responsible beekeeping, while preserving the current honeybee genetic diversity, should be 
implemented soon to protect this important pollinator. 
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Zusammenfassung 

 

Innerartliche genetische Diversität hat auf verschiedenen Ebenen der biologischen Organisation 
demonstrierbare Vorteile. Obwohl genetische Variation innerhalb der Kolonie bei eusozialen Hautflüglern 
(Wespen, Bienen und Ameisen)  als vorteilhaft bewiesen wurde, sind die Vorteile auf Populationsebene 
weit weniger untersucht worden. Des Weiteren sind die Auswirkungen des Paarungssystems auf die 
genetische Struktur wilder Populationen bisher kaum verstanden. Die Hinweise auf eine genetische Basis 
von Arbeiterinnen-Kasten-Polymorphismen sind spärlich und bisher lediglich auf Ameisenarten mit zwei 
Größenkategorien von Arbeiterinnen beschränkt. Die Neuwelt-Treiberameise Eciton burchellii gehört 
durch die hohe Paarungsfrequenz der Königin und den mit vier anerkannten physischen Kasten extremen 
Arbeiterinnen-Polymorphismus zu den am besten geeigneten Modellorganismen, um die 
Allgemeingültigkeit genetischer Effekte zur Kastendetermination in Insektenstaaten zu studieren. Das 
erste hier vorgestellte Manuskript belegt das Vorhandensein einer genetischen Komponente der 
Arbeiterinnen-Kastendetermination in E. burchellii, was zeigt, dass hohe genetische Variation in 
Verbindung mit einer genetischen Komponente der Arbeiterinnen-Kastendetermination das Gleichgewicht 
in Systemen mit komplexer Arbeitsteilung erhöhen kann. Auf Populationlevel wird genetische Variation 
ultimat allerdings durch die effektive Populationgröße (Ne) bestimmt, die bei eusozialen Hymenopteren 
durch die Kombination von Eusozialität, Haplodiploidie und komplementärer Geschlechtsbestimmung 
stark eingeschränkt ist. Bei Treiberameisen ist die effektive Populationgröße durch die Flügellosigkeit der 
Königinnen und durch Koloniefissionen sogar noch zusätzlich eingeschränkt. Beide Faktoren verursachen 
einen eingeschränkten maternalen Genfluss sowie eine hohe Populationsviskosität. Das zweite Manuskript 
befasst sich mit den Auswirkungen von Verbreitung und multipler Verpaarung auf die Struktur von E. 

burchellii Populationen und zeigt, dass sowohl die Verbreitung von Männchen als auch Polyandrie den 
Genfluss zu erhöhen, und gleichzeitig die mit kleinen effektiven Populationsgrößen zusammenhängenden, 
schädlichen Effekte zu minimieren scheinen. Jedoch wird der Genfluss in natürlichen Populationen 
eusozialer Hymenopteren nicht nur durch die Charakteristika der Kolonien zu einer gegebenen Zeit 
bestimmt, sondern auch durch den zeitlichen Wechsel von Kolonien. Die westliche Honigbiene (Apis 

mellifera) stellt ein ideales Modell zur Untersuchung von Koloniewechseln dar, da ihr Paarungssystem die 
regelmäßige Aggregation tausender Männchen verschiedener Kolonien an speziellen 
Drohnensammelplätzen enthält (“drone congregation area”, DCA), welche von den unverpaarten 
Königinnen aufgesucht werden. Das dritte Manuskript behandelt die temporären Veränderungen der 
genetischen Struktur natürlicher DCAs in Afrika. Es konnte ein extrem hoher Wechsel derjenigen 
Königinnen gezeigt werden, von denen die Drohnen der DCAs abstammen. Folglich scheinen die DCAs 
afrikanischer Honigbienen ein extrem dynamisches System zu sein, was zusammen mit 
Koloniewanderungen die effektive Populationsgröße erhöht und dadurch eine hohe genetische Diversität 
in der Population erhält. Der zweite und dritte Artikel dieser Arbeit demonstrieren, dass genetische 
Diversität ebenfalls auf Populationsebene wichtige Auswirkungen auf die Evolution von 
Paarungssystemen in hoch-eusozialen Insekten hat. Ein weiterer Faktor, der die genetische Diversität 
natürlicher Hymenopterenpopulationen möglicherweise prägt, ist sexuelle Selektion. Treiberameisen und 
Honigbienen stellen ideale Modellorganismen dar, um sexuelle Selektion zu untersuchen, da beide ein 
stark in Richtung der Männchen verschobenes Geschlechtergleichgewicht teilen aber unterschiedliche 
Lebensentwicklungen aufweisen. Männchen von Treiberameisen müssen, um sich zu verpaaren, eine 
paarungsbereite Königin finden und von deren Arbeiterinnen akzeptiert werden. Im Gegensatz dazu 
versammeln sich Honigbienendrohnen an DCAs und warten darauf, sich mit einer unverpaarten Königin 
im Flug zu paaren. Folglich spielt wahrscheinlich bei Treiberameisen die weibliche Partnerwahl eine 
wichtige Rolle, während bei Honigbienen der Wettstreit zwischen den Männchen überwiegt. Während 
beispielsweise das zweite Manuskript zeigt, dass Treiberameisenarbeiterinnen diejenigen Männchen 
auswählen, welche am wenigsten mit der Königin verwandt sind, demonstriert der vierte hier vorgestellte 
Artikel, dass der Hochzeitsflug bei Honigbienen diejenigen Drohnen mit einer höheren 
Entwicklungsstabilität selektiert und zwar unabhängig ihrer genetischen Herkunft. Während die weibliche 
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Partnerwahl bei Treiberameisen das Auskreuzen zu fördern scheint, basiert der Konkurrenzkampf 
zwischen Männchen bei Honigbienen hauptsächlich auf Umwelteinflüssen und beschränkt daher 
wahrscheinlich die genetische Diversität nicht. Das letzte hier eingefügte Manuskript befasst sich mit dem 
Stand des Umweltschutzes europäischer Honigbienen und steht somit nicht in Bezug zu den vorigen vier 
Artikeln. Zusammen mit einer kurzen Zusammenfassung der Management- und Schutzstrategien in 
verschiedenen Ländern, wird eine Übersicht zur Biodiversität der Europäischen Honigbienen in der 
Vergangenheit und Gegenwart gegeben. Die Untersuchungen ergaben einen profunden Einfluss der 
Imkereipraktiken auf die Abundanz von Honigbienen in Europa. Es wird daher der Schluss gezogen, dass 
Schutzstrategien mit dem Ziel, eine nachhaltige Imkerei zu fördern und gleichzeitig die momentane 
genetische Diversität der Honigbienen zu erhalten, zeitnah umgesetzt werden sollten, um diesen wichtigen 
Bestäuber zu schützen. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Keywords: Apis mellifera, beekeeping, drone congregation areas, polyandry, Eciton burchellii, 
effective population size, gene flow, honeybee conservation, mating flights, multiple mating, 
sexual selection, social insects. 
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General Introduction 

 
The eusocial Hymenoptera 
 
Exhibiting exceptionally high levels of social organization and extremely specialized and 
complex mating systems, the social Hymenoptera (wasps, bees and ants) constitute an ideal 
group of insects to test specific predictions of evolutionary theories (Wilson 1971; Hölldobler & 
Wilson 1990; Thornhill and Alcock 2001). The social Hymenoptera dominate terrestrial 
ecosystems, are among the main predators of other arthropods, pollinate the majority of flowering 
plants and are important food sources for many other animals (Wilson 1971). A particular 
characteristic shared by all Hymenopterans is haplodiploidy. Hymenoptera males are raised from 
unfertilized eggs laid by diploid females, and hence they only have one halve of the genetic 
material carried by females. In consequence, female daughters of such haploid males share 
exactly the same paternal genotype, and thus their genetic relatedness is higher that that observed 
between sisters of diplo-diploid organisms. Following kin selection theory (Hamilton 1964), 
social organization should be strongly influenced by the genetic relatedness among group 
members, since it determines the cost/benefits thresholds required to favour the evolution and 
maintenance of altruistic behaviours (Queller 1993). Haplodiploidy has thus immense 
implications for the evolution of sociality. Eusociality, an extreme form of altruism, has evolved 
several times in the Hymenoptera, providing fertile ground to study different kinds of social 
conflicts in the light of kin selection theory (e.g. Keller et al. 1993; Bourke & Franks 1995; 
Crozier & Pamilo 1996).  

Eusocial insects exhibit reproductive division of labour, with one or few individuals 
undertaking reproduction (the queens), cooperative brood care, and the presence of overlapping 
cohorts of specialized sterile helpers (the workers; Wilson 1971). In some groups, here termed as 
“highly eusocial”, the workers have undergone an extreme level of specialization, loosing their 
ability to mate and reproduce sexually. An intricate division of labour has evolved in these 
groups, involving clearly distinct worker castes (Oster & Wilson 1978). Such high levels of 
social organization might have facilitated the appearance of complex mating systems, such as 
multiple queens in a single colony (polygyny) or multiply mated queens (polyandry; see Hughes 
et al. 2008a). Both mating systems have profound consequences for social organization since 
they reduce the intracolonial worker-worker relatedness, and hence the benefits gained through 
inclusive fitness may not exceed the cost associated with the maintenance of the sterile worker 
behaviour (Hamilton 1964; Queller 1993). Non-kin related adaptive advantages must therefore 
influence social organization in order to maintain the colony structure in these cases (Korb & 
Heinze 2004).  

 
Genetic diversity in eusocial Hymenoptera 
 
The occurrence of polygyny and polyandry has been found to be negatively correlated across taxa 
(Keller & Reeve 1994; Hughes et al. 2008b), which suggests they are alternative mechanisms to 
boost intracolonial genetic diversity. Genetic diversity within social insect colonies has proven to 
confer important benefits, such as increased productivity, broader tolerance to environmental 
changes, increased resistance to pathogens, and improved task performance through a more 
efficient division of labour (reviewed by Palmer & Oldroyd 2000 and Crozier & Fjerdingstad 
2001). The benefits of a high genetic diversity at the population level, however, have been much 
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less studied, and the impact of such mating system on the genetic structure of wild population is 
still poorly understood.  

The amount of genetic diversity found in a given population is ultimately determined by its 
genetically effective size (Ne), which refers to the number of individuals in an idealized 
population that would experience the same rate of random genetic change over time as the real 
population under consideration (Wright 1931; Hartl & Clark 2007). In eusocial Hymenoptera, the 
combination of eusociality, haplodiploidy and complementary sex determination, constrains 
effective population size to a greater extent than in other insect taxa (Hedrick & Parker 1997; 
Chapman & Bourke 2001; Packer & Owen 2001). Eusociality is characterized by the occurrence 
of one or few reproductive females per colony (the queens). Since Ne is mostly limited by the 
abundance of the rare sex, eusocial Hymenoptera have smaller effective population sizes than 
solitary species with a larger number of reproductive individuals per unit area (Wilson 1963; 
Chapman & Bourke 2001). In addition, the haploid condition of males reduces the number of 
copies of a given allele in the population, and hence the effective population size of haplodiploids 
is ¾ the effective population size of diploid organisms under equal sex ratios (Hedrick & Parker 
1997). Finally, the common sex determination system based on the complementary action of 
specific sex alleles at an autosomal locus (Cook & Crozier 1995), inevitably results in a fraction 
of inviable or effectively sterile diploid males in the population. The production of diploid males 
not only limits colony growth, but also biases the effective breeding sex ratio in favour of haploid 
males, further reducing Ne (Zayed 2004). The combination of these factors makes populations of 
eusocial Hymenoptera particularly susceptible to losing genetic variability due to genetic drift. In 
consequence, strong selective pressures are expected to have shaped mating systems in order to 
avoid the negative effects associated with inbreeding depression (reviewed by Keller & Waller 
2002), which in the Hynoptera include decreased colony foundation success, reduced colony 
growth and reproduction, and a shorter colony life span (Gerloff & Schmid-Hempel 2005; Haag-
Liautard et al. 2008). 

 
Gene flow in army ant and honeybee populations 
 
Although rare, polyandry is widespread among eusocial Hymenoptera (Boomsma & Ratnieks 
1996; Strassmann 2001; Hughes et al. 2008b). The most extreme levels of polyandry are found in 
honeybees and army ants, where queens usually mate with more than ten males. Both are highly 
eusocial groups sharing obligatory multiple mating by queens and the same mode of colony 
reproduction. In contrast to species where the queens found new colonies alone (independent 
colony foundation), army ants and honeybee queens ground new colonies accompaigned by a 
group of workers (dependent colony foundation). Honeybee queens leave their old nest along 
with a large proportion of workers to fund a new nest at a different location (Seeley 1985). Pupae 
containing daughter queens, who will take over reproduction, are left behind in the old nest along 
with the remaining workers. Dispersal in honeybees is therefore determined by the flight ability 
of the sexuals and the workers (Peters and Ito 2001). Similarly, army ant colonies reproduce 
through colony fission, with the old queen taking a large proportion of workers and leaving 
behind freshly emerged daughter queens. Army ant queens and workers, however, have 
permanently lost their wings, and thus dispersal is mainly undertaken by the males (Hölldobler 
and Wilson 1990). Effective dispersal and gene flow is therefore very different in honeybees and 
army ants, and hence alternative mechanisms are expected to maximize gene flow in each group.  

Army ants are a large group of mostly tropical and subterranean ants characterized by the 
“army ant adaptive syndrome” (Gotwald 1995), namely the combination of group predation and 
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nomadism. The enhanced group predation efficiency that results from very large colonies 
reproducing through colony fission, probably selected for the loss of wings in army ant queens, at 
the expense of higher dispersion ability. In addition, as an inevitable consequence of colony 
fission, army ants exhibit extremely male biased sex ratios, enhancing the opportunity for random 
genetic drift and making this species more susceptible to inbreeding (Hartl and Clark 2007). 
Army ants thus represent an excellent test case for the efficiency of dispersal and mating 
strategies in enhancing gene flow (Hölldobler and Bartz 1985; Gadagkar 1991).  

The mating system of the honeybee (Apis mellifera), on the other hand, has been regarded 
as one of the most panmictic in the animal kingdom, with thousands of males aggregating in 
drone congregation areas (DCAs) that virgin queens visit to mate with tens of partners. DCAs are 
formed irrespective of the presence of a queen, at open sites delimited by conspicuous geographic 
landmarks, such as valleys, river shores or forest openings. Moreover, they are stable through 
time, with some locations known to have served as DCA for decades (Ruttner 1972). Although 
DCA are known to gather males from most colonies within recruitment range (Baudry et al. 
1998), the temporal changes in the colonies contributing drones remain unknown. Yet, changes in 
the DCAs’ genetic structure will ultimately determine population gene flow and effective 
population size.  

 
Study questions 

  
The different life histories of army ants and honeybees constitute two alternative models to study 
the evolution of mating systems in highly eusocial Hymenopterans with queen multiple mating 
and male biased sex ratios. Focusing on two species, namely the army ant Eciton burchellii and 
the honeybee Apis mellifera, this thesis aims to provide a broad insight into the mating systems of 
these two groups. The following major questions are addressed in each one of the next five 
chapters: 
 
I. Is there a genetic component for worker caste determination in the army ant Eciton burchellii? 
 
II. What is the impact of male dispersal and multiple mating on gene flow in the army ant Eciton 

burchellii? 
 
III. How dynamic are drone congregation areas of the honeybee Apis mellifera?  
 
IV. Is there male-male competition during the mating flights of Apis mellifera drones?  
 
V. What is the current status of native honeybee populations in Europe and which factors constitute a 

threat to their conservation?  
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I. Worker caste determination in the army ant Eciton 

burchellii 

 

Rodolfo Jaffé1§*, Daniel. J. C. Kronauer2§, F. Bernhard Kraus3, Jacobus J. Boomsma2, 
Robin F. A. Moritz1 

 
1 Institut für Biologie, Martin-Luther-Universität Halle-Wittenberg. Hoher Weg 4, 06099 Halle/Saale, 
Germany. 
2 Institute of Biology, Department of Population Biology, University of Copenhagen, Universitetsparken 
15, 2100 Copenhagen, Denmark. 
3 El Colegio de la Frontera Sur (ECOSUR), Carr. Antiguo Aeropuerto km 2.5. C.P. 30700 Tapachula, 
Chiapas, Mexico. 
§
 These authors contributed equally to this work 

* Corresponding author: Tel: +49-345-5526394, Fax: +49-345-5527264, Email: 
rodolfo.jaffe@zoologie.uni-halle.de 
 

Abstract 
 
Elaborate division of labour has contributed significantly to the ecological success of 
social insects. Division of labour is achieved either by behavioural task specialisation or 
by morphological specialization of colony members. In physical caste systems, the diet 
and rearing environment of developing larvae is known to determine the phenotype of 
adult individuals, but recent studies have shown that genetic components also contribute 
to the determination of worker caste. One of the most extreme cases of worker caste 
differentiation occurs in the army ant genus Eciton, where queens mate with many 
males and colonies are therefore composed of numerous full-sister subfamilies. This 
high intracolonial genetic diversity, in combination with the extreme caste 
polymorphism, provides an excellent test system for studying the extent to which caste 
determination is genetically controlled. Here we show that genetic effects contribute 
significantly to worker caste fate in E. burchellii. We conclude that the combination of 
polyandry and genetic variation for caste determination may have facilitated the 
evolution of worker caste diversity in some lineages of social insects. 
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II. Gene flow is maintained by polyandry and male dispersal 

in the army ant Eciton burchellii 

 
Rodolfo Jaffé1*, Robin F. A. Moritz1 & F. Bernhard Kraus1,2 

 
1 Institut für Biologie, Martin-Luther-Universität Halle-Wittenberg. Hoher Weg 4, 06099 Halle (Saale), 
Germany. 
2 El Colegio de la Frontera Sur (ECOSUR), Departamento Entomología Tropical, Carr. Antiguo 
Aeropuerto km 2.5. C.P. 30700 Tapachula, Chiapas, Mexico. 
* Corresponding author: Tel: +49-345-5526394, Fax: +49-345-5527264, Email: 
rodolfo.jaffe@zoologie.uni-halle.de 
 
Abstract  

 
The combination of haplodiploidy, complementary sex determination and eusociality 
constrains the effective population size (Ne) of social Hymenoptera far more than in any 
other insect group. Additional limitations on Ne occur in army ants since they have 
wingless queens and colony fission, both factors causing restricted maternal gene flow 
and high population viscosity. Therefore winged army ant males gain a particular 
significance to ensure dispersal, facilitate gene flow and avoid inbreeding. Based on 
population genetic analyses with microsatellite markers, we studied a population of the 
Neotropical army ant Eciton burchellii, finding a high level of heterozygosity, weak 
population differentiation and no evidence for inbreeding. Moreover, by using sibship 
reconstruction analyses we quantified the actual number of male contributing colonies 
represented in a queen’s mate sample, demonstrating that through extreme multiple 
mating the queens are able to sample genes of males from up to ten different colonies, 
usually located within an approximate radius of 1km. We finally correlated the 
individual mating success of each male contributing colony with the relative siring 
success of individual males and found a significant colony-dependent male fitness 
component. Our results imply that the dispersal and mating system of these army ants 
seem to enhance gene flow and minimize the deleterious effects associated with small 
effective population size. 
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Abstract 
 
The mating system of the honeybee (Apis mellifera) has been regarded as one of the 
most panmictic in the animal kingdom, with thousands of males aggregating in drone 
congregation areas (DCAs) that virgin queens visit to mate with tens of partners. 
Although males from many colonies gather at such congregations, the temporal changes 
in the colonies contributing drones remain unknown. Yet, changes in the DCAs’ genetic 
structure will ultimately determine population gene flow and effective population size. 
By repeatedly sampling drones from an African DCA over a period of three years, we 
studied the temporal changes in the genetic structure of a wild honeybee population. 
Using three sets of tightly linked microsatellite markers, we were able to reconstruct 
individual queen genotypes with a high accuracy, follow them through time and 
estimate their rate of replacement. The number of queens contributing drones to the 
DCA varied from 12 to 72 and was correlated with temperature and rainfall. We found 
that more than 80% of these queens were replaced by mostly unrelated ones in 
successive eight months sampling intervals, which resulted in a clear temporal genetic 
differentiation of the DCA. Our results suggest that the frequent long range migration of 
colonies without nest-site fidelity is the main driver of this high queen turnover. DCAs 
of African honeybees should thus be regarded as extremely dynamic systems which 
together with migration boost the effective population size and maintain a high genetic 
diversity in the population. 
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Abstract 
 
Males of the honeybee (Apis mellifera) fly to specific drone congregation areas (DCAs), 
which virgin queens visit in order to mate. From the thousands of drones that are reared 
in a single colony only very few succeed in copulating with a queen, and therefore a 
strong selection is expected to act on adult drones during their mating flights. In 
consequence, DCAs may serve as a mate selection mechanism, assuring that queens 
only mate with those individuals having a better flight ability and a higher 
responsiveness to the queen’s visual and chemical cues. We tested this idea relying on 
fluctuating asymmetry (FA) as a measure of phenotypic quality. By recapturing marked 
drones at a natural DCA and comparing their FA with a control sample of drones 
collected at their natal colonies, we were able to detect any selection on wing size and 
wing FA occurring during the mating flights. Aiming to obtain independent drone 
samples, sharing the same mother queen and similar rearing conditions, we confirmed 
drone parentage by genotyping all samples with three sets of linked microsatellite 
markers. Although we found no evidence for selection on wing size, FA was found to 
be significantly lower in the drones collected at the DCA than in those collected at the 
hives. Our results demonstrate that developmental stability can determine the mating 
ability of honeybee drones. We therefore conclude that selection during the mating 
flights of drones seems to be an important factor for female mate choice in honeybees. 
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Abstract 
 
Europe harbours several endemic honeybee (Apis mellifera) subspecies. Yet the 
distribution of these subspecies is nowadays also much influenced by beekeeping 
activities. Large scale migratory beekeeping and trade in queens, coupled with the 
promiscuous mating system of honeybees, have exposed native European honeybees to 
increasing introgressive hybridization with managed non-native subspecies, which may 
lead to the loss of valuable combinations of traits shaped by natural selection. Other 
threats to European honeybees are factors that have caused a progressive decline in A. 

mellifera throughout the world in recent years, leading to large economic losses and 
jeopardizing ecosystem functioning. We review the biodiversity of European honeybees 
and summarize the management and conservation strategies employed by different 
countries. A comprehensive picture of the beekeeping industry in Europe is also 
provided. Finally we evaluate the potential threats affecting the biodiversity of 
European honeybee populations and provide some perspectives for future research. 
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General Discussion 

 
The colony level perspective 
 
Genetic diversity within species has verifiable advantages at various levels of biological 
organization (Hartl & Clark 2007; Nonacs & Kapheim 2007). Within social insect 
colonies, genetic diversity has proven to confer important benefits, such as an enhanced 
productivity and a broader tolerance to environmental changes (Crozier & Page 1985; 
Page et al. 1995; Fjerdingstad 2002; Jones et al. 2004; Schwander et al. 2005; Mattila & 
Seeley 2007), increased resistance to pathogens (Brown & Schmid-Hempel 2003; Tarpy 
2003; Hughes & Boomsma 2004 2006; Tarpy & Seeley 2006; Seeley & Taropy 2007), 
and improved task performance through a more efficient division of labour (Fuchs & 
Moritz 1998, Hughes et al. 2003; Julian & Fewell 2004). 

The existence of a genetic component for worker task-specialization is now well 
documented in honeybees (Robinson & Page 1988; Frumhoff & Baker 1988; Moritz & 
Hillesheim 1989; Oldroyd et al. 1992; Robinson et al. 1994; Page et al. 1995; Page & 
Erber 2002), but less so among the ants (Julian & Fewell 2004; Rosset et al. 2005). 
Although worker polymorphism and intra-colonial genetic diversity appear to be 
positively correlated across ant taxa (Fjerdingstad & Crozier 2006), evidence of a 
genetic basis for worker caste polymorphism is still scarce and was previously confined 
to ant species from two subfamilies, exhibiting either small or large workers (Fraser et 

al. 2000; Hughes et al. 2003; Rheindt, et al. 2005). Showing a high queen mating 
frequency and an extreme worker polymorphism, with four recognized physical worker 
castes (Franks 1985), the New World army ant Eciton burchellii is among the most 
suitable study models to test for the generality of genetic effects on caste differentiation 
in insect societies. The first manuscript here presented, proved the existence of a genetic 
component for worker caste determination in E. burchellii, showing that high genetic 
variation combined with a genetic component for worker caste determination, may 
increase homeostasis in systems with complex division of labour (Fjerdingstad & 
Crozier 2006; Oldroyd & Fewell 2007). 

This first manuscript supports the notion that genetic diversity is associated to 
highly eusocial systems, exhibiting an extreme worker caste differentiation. However, a 
recent study showed that polyandry was not the ancestral state of eusocial insects, 
suggesting that it only appeared after the workers had lost the ability to reproduce 
sexually (Hughes et al. 2008). Hence, genetic diversity does not seem to be the cause of 
the high levels of worker specialization observed in some species (Oster & Wilson 
1978). By providing the colony members with a broad range of response thresholds to 
different environmental stimuli, intracolonial genetic diversity may nevertheless 
increase colony homeostasis and thus help to maintain a complex social organization 
(Oldroyd & Fewell 2007). 

 
The population level perspective 
 
At the population level, genetic diversity is ultimately determined by the genetically 
effective population size (Ne), which due to the combination of eusociality, 
haplodiploidy and complementary sex determination is severely constrained in eusocial 
Hymenoptera (Hedrick & Parker 1997; Chapman & Bourke 2001; Packer & Owen 
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2001). Army ants are particularly exposed to genetic drift since their queens are 
wingless and colony fission is the usual way of reproduction, both factors causing 
restricted maternal gene flow and high population viscosity (Gotwald 1995; Berghoff et 

al. 2008). Winged army ant males thus gain a particular significance to ensure dispersal, 
facilitate gene flow and avoid inbreeding (Keller & Passera 1993; Nunney 1993; 
Crozier & Pamilo 1996; Haag-Liautard et al. 2008). The second manuscript addresses 
the impact of dispersal and multiple mating on gene flow in E. burchellii, showing that 
male dispersal and polyandry seem to enhance gene flow and minimize the deleterious 
effects associated with a small effective population size.  

Gene flow in wild populations of eusocial Hymenopterans, however, will not only 
be affected by the colony characteristics exhibited at any given time, but also by the 
turnover of colonies over time. Colony turnover is very difficult to quantify in natural 
populations, because it requires identifying and following particular colonies in the 
wild. The western honeybee (Apis mellifera) represents an optimal model to study 
colony turnover since its mating system involves the aggregation of thousands of males 
from many colonies in specific drone congregation areas (DCAs) that virgin queens 
visit to mate (Winston 1987; Baudry et al. 1998). Furthermore, the recent availability of 
the honeybee genome (The Honeybee Genome Sequencing Consortium 2006) has made 
possible the development of new molecular DNA tools that allow the very accurate 
reconstruction of queen genotypes from a random sample of honeybee drones (Moritz et 

al. 2007; Shaibi et al. 2008). The third manuscript presented here assesses the temporal 
changes in the genetic structure of a wild honeybee population. The fact that more than 
80% of the queens contributing drones to a particular DCA were found to be replaced 
by mostly unrelated ones in successive eight months sampling intervals, shows that 
DCAs of African honeybees are extremely dynamic systems, which together with 
colony migrations, boost the effective population size and maintain a high genetic 
diversity in the population (Estoup et al. 1995). 

The second and third paper of this thesis demonstrate that at a higher, population 
level, genetic diversity also seems to have important implications for the evolution of 
mating systems in highly eusocial systems. Group-level adaptations can be easily over-
run by individual or colony level benefits, and have therefore remained as alternative or 
second-order explanations (Bourke & Franks 1995; Crozier & Pamilo 1996). The 
mating systems of eusocial Hymenoptera, however, probably evolved in response to 
multiple selection pressures, and therefore a broader, multi-level selection perspective, 
is likely to yield new interesting insights (Korb & Heinz 2004). For instance, these two 
papers show that in addition to all the colony-level benefits mentioned above, high 
genetic diversity is also important at the population level in order to counterbalance 
small effective population sizes. The mating systems of these two highly eusocial 
Hymenopterans can therefore be regarded as alternative approaches to maximize gene 
flow and avoid inbreeding.  

Interestingly, army ants and honeybees have evolved different mechanisms in 
response to different selective pressures. Because of the lack of winged queens and 
workers, army ant dispersal is far more restricted that that of honeybees. In 
consequence, winged army ant males are responsible for most dispersal. In the second 
paper we show that army ant males are capable of undertaking long mating flights. In 
addition, by mating with many males, army ant queens sample genes from males of 
many different colonies, thus promoting panmixis and reducing the strength of genetic 
drift. On the contrary, honeybee queens and workers are capable of undertaking long-
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distance migratory swarms and hence the males do not play such an important role in 
dispersal as in army ants (Hepburn & Radloff 1998). Honeybee males, for instance, join 
the nearest DCA to mate (Koeniger et al. 2005a), probably aiming at minimizing their 
energy expenditure during the mating flights. Nevertheless, honeybees have been 
regarded as one of the most panmictic organisms in the animal kingdom (Baudry et al. 
1998), because such DCAs can comprise males from most colonies within recruitment 
area. The third paper here presented, quantified the temporal changes in the genetic 
composition of a wild DCA, showing that such drone-contributing colonies are 
extremely mobile, causing a significant temporal genetic differentiation of African 
DCAs. Hence, in contrast to army ants, dispersal in honeybees is mainly undertaken by 
migratory colonies. 

 
Sexual selection 
 
The selection processes occurring during the location of mates, the copula and the 
fertilization, can act either among members of one sex (intra-sexual selection) or among 
the members of both sexes (inter-sexual selection). Sexual selection primarily operates 
on the sex with the greatest variance in reproductive success. As this is usually the male 
sex, intra-sexual selection is normally referred to as male-male competition, and intra-
sexual selection as female choice (Andersson 1994). Both kinds of selection result in the 
greater reproductive success of the selected males, at the expense of a reduction in the 
genotypic and phenotypic variance found in the initial male population (Andersson 
1994). It is therefore a challenge to understand how genetic diversity is maintained 
under different kinds of sexual selection (Thornhill & Alcock 2001; Andersson & 
Simmons 2006). 

The strength of sexual selection increases with the variance in the reproductive 
success of the males, i.e. when the operational sex ratios are more male biased. Along 
with stingless bees, army ants and honeybees have the most extreme male biased sex 
ratios among the social Hymenoptera (Boomsma et al. 2005). Army ants and honeybees 
are therefore particularly suitable models to compare sexual selection mechanisms in 
species with different life histories. Before gaining access to a queen, E. burchellii 
males must cross the potentially deadly worker force, ultimately “choosing” the next 
fathers of their colony (Schneirla 1971). Franks and Hölldobler (1987) pointed out that 
if workers are to maximize their own inclusive fitness, they should choose the males 
that offer the greatest fertility, presumably the more robust ones exhibiting the most 
queen-like parfumarie. Such a direct mate choice over many generations would 
facilitate the development of a greater worker preference and more pronounced male 
traits, resulting in a Fisherian runaway selection. This circular process of positive 
feedback between female preference and male traits usually cause a significant 
reduction in genetic diversity (Andersson 1994), which would be particularly harmful 
for species with small effective population sizes, such as army ants. In the second 
manuscript, E. burchellii queens were found to be less related than average to their 
mates. Moreover, the same result was found in three other E. burchellii populations in 
Panama (Berghoff et al. 2008), which provides strong evidence for a relatedness-based 
worker mate choice. Army ant workers thus seem to choose the queen’s mates based on 
their relatedness to the queen, preferring the least related males among those having 
accomplished a successful mating flight. This mate choice mechanism might have 
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evolved to reduce sib-matings and the deleterious effects associated with inbreeding or 
genetic incompatibility (Cook & Crozier 1995; Ayasse et al. 2001; Oppelt et al. 2008).  

In contrast to army ants, honeybee males do not experience such a worker-driven 
selection, because they never enter the colony of their future mate. Moreover, honeybee 
copulas are extremely fast and occur in mid-air, making any direct pre-copulatory mate 
selection by the queens unlikely (Baer 2005). On the other hand, male-male competition 
is probably very strong in honeybees. From the thousands of drones that are reared in a 
single colony, only very few succeed in copulating with a queen, and hence a strong 
selection is expected to act on adult drones during their mating flights (Koeniger et al. 
2005b). The formation of DCAs may thus serve as an indirect mate choice mechanism, 
assuring that queens only mate with those individuals having a better flight ability and a 
higher responsiveness to the queen’s visual and chemical cues. This idea was tested in 
the fourth manuscript, which shows that developmental stability, assessed through 
fluctuating asymmetry (Møller and Swaddle 1997; Polak 2003), seems to determine the 
mating ability of honeybee drones. Moreover, such developmental stability was found 
to be independent of genetic factors, being the rearing environment (or the interaction 
between genotype and the rearing environment) the main source of phenotypic variance. 
Drone mating flights thus seem to select the drones with a higher developmental 
stability (which are also likely to have more and higher quality sperms), without causing 
an important reduction in genetic diversity. Taken together, these results highlight once 
more the importance of dispersal and gene flow as key factors shaping the evolution of 
mating systems in highly eusocial Hymenoptera (Boomsma et al. 2005). 

 
Beekeeping and the conservation of native honeybees in Europe 
 
Apis mellifera is arguably the world’s most important beneficial insect, being of great 
value to man and nature. They produce honey, pollinate crops worth billions of Euros 
per year, and provide full and part time employment to beekeepers throughout the globe 
(Southwick & Southwick 1992; Kevan & Phillips 2001; Moritz et al. 2005). The 
honeybee is also a vital member of many terrestrial ecosystems, pollinating a broad 
spectrum of wild flora. Moreover, because they hibernate as colonies with large 
numbers of workers they are essential for ensuring early spring pollination, when other 
pollinators are absent (Aizen & Feinsinger 1994; Dick 2001). 

Considering the importance of genetic diversity for honeybee populations, any 
effort aiming at the conservation of this key pollinator should preserve its current 
biodiversity. In many regions of Africa, where beekeeping is poorly developed, truly 
wild and undisturbed honeybee populations can still be found (Moritz et al. 2005). In 
contrast, the current distribution and zones of natural hybridization of the ten 
morphologically and genetically distinct European A. mellifera subspecies have been 
strongly influenced by beekeeping activities over the course of history (Ruttner 1988). 
The promiscuous mating system of honeybees, coupled with large scale migratory 
beekeeping and queen trade, has exposed native European honeybees to increasing 
introgressive hybridization with managed non-native subspecies (Jensen et al. 2005; 
Dall’Olio et al. 2007). Such hybridization modifies the genetic pool of local honeybee 
populations, leading to the loss of their genetic identity. This is alarming since native 
subspecies constitute important reservoirs of local adaptations, ultimately determining 
the survival of honeybees in natural habitats (Randi 2008).  
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Addressing the conservation status of European honeybees, the last manuscript 
stands apart from the previous four. The past and present biodiversity of European 
honeybees are reviewed in the fifth manuscript of this thesis, coupled with a brief 
summary of the management and conservation strategies hold by different countries. By 
surveying the apicultural practices of 33 European countries, a comprehensive picture of 
the magnitude and nature of the beekeeping industry in the continent is provided. The 
density of managed hives across all countries was found to be positively correlated to 
the mean number of hives kept by local beekeepers, showing that the size of beekeeping 
operations can profoundly influence the local abundance of beehives. Pollution, land 
use, and harmful beekeeping practices were found among the main factors currently 
threatening honeybee populations (van Engelsdorp et al. 2007; Potts et al. 2008). It is 
therefore concluded, that conservation policies directed at promoting responsible 
beekeeping while preserving the current honeybee genetic diversity, should be 
implemented soon to avoid the extinction of valuable native subspecies. 
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