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Preface
A quantum leap in solid state physics was the understanding that macroscopic objects can be
described using the symmetries of the Hamiltonian. For instance, if translational symmetry is
present, the atomic structure of the macroscopic objects is described by the solution of a unit cell.
Disorder, for example a random potential landscape, breaks translational symmetry. Other sym-
metries are untouched by disorder, such as orthogonal or unitary transformations of the Hamil-
tonian. Physicists in the seventies and eighties of the last century realized that phase transitions
even in disordered solids can be described in a scaling ansatz. This scaling is due to the un-
derlying symmetry of the Hamiltonian and is therefore universal. One type of phase transition
in disordered solids is the disorder-induced metal-insulator transition. A metallic solid is trans-
formed to an insulator by an increase of disorder. Therefore the initially extended electronic wave
function localizes.

Disorder also has an impact on classical systems, for example, reaction-diffusion systems.
Especially interesting is the effect of disorder and fluctuations in systems where ordering mech-
anisms occur, as in the case of phase separation of particles. In the last years, trend words
as self-assembly, self-organization, and pattern formation were used to describe different kinds
of ordering reactions. These are investigated driven by the motivation to design devices using
reaction-diffusion dynamics. The Liesegang pattern formation is a prominent example, due to
the simple descriptions of pattern distances and widths. Commonly, Liesegang patterns are de-
scribed by mean-field approximations. In such scenarios, the concentrations of particles are ap-
proximated as smooth functions and the reaction is described by differential equations. In nature,
fluctuations of the particle concentrations are present due to disorders such as defects, impurities
etc. An important progress achieved in the last decade is the understanding that fluctuations do
not necessarily destroy pattern formation. In contrary, they are able to enhance or induce pattern
formation and order.

The publications presented in Part III are the core of this thesis. In Part I the general con-
text of these publications is introduced, while in Part II they are summarized and discussed in
relation with each other. Part I is divided into three chapters. In Chapter 1 different examples
of compositionally and structural-topologically disordered systems are described, starting with
percolation. Realizations of the tight-binding approximation for different types of disorders are
introduced, for instance, the Anderson model, a binary alloy system, quantum percolation, and
the random phase model. Gels and glasses are mesoscopic examples of structurally disordered
systems. Their properties, especially their local structures, are described. At last, the general
properties of complex networks are introduced with emphasis on the description of clustering.

In Chapter 2 the transport dynamics of particles in disordered systems are discussed. At first
the tight-binding model for electron transport in disordered media is derived. Results for appli-
cations are presented, for example, for quantum percolation, and for the Anderson model with
and without magnetic field. Furthermore it is shown that the tight-binding model is not only valid
for quantum wave transport in disordered media, but also for classical waves. Finally reaction-
diffusion dynamics are derived and discussed with focus on the influence of disorder.

Chapter 3 is devoted to the understanding of Liesegang pattern formation and the localization
of electronic wave functions in disordered media. In the context of Liesegang pattern formation
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four important laws are introduced and mean-field predictions are discussed. The section on
localization deals with a scaling ansatz to describe the metal-insulator transition. Additionally,
a common statistical method is introduced called level spacing statistic. Eventually, numerical
and experimental studies dealing with the critical parameters of the metal-insulator transition are
discussed.

In Part II the publication presented in Part III are summarized and discussed. Chapters 4 to
6 deal with investigations of Liesegang pattern formation in disordered materials, whereas the
aim of Chapters 7 to 9 is to understand the affect of a small magnetic field and of topological-
structural disorder for metal-insulator phase transitions.

Chapter 4 is a detailed review of different models on Liesegang pattern formation. In addition,
a lattice-gas model to simulate Liesegang patterns is introduced. Different methods to analyze
simulation and experimental results are presented. In Chapter 5 the lattice-gas model is used to
investigate how disorder and fluctuations effect the pattern formation process. Additionally, ef-
fective mean-field descriptions incorporating disorder and fluctuations are derived. In Chapter 6
these results are applied for designing equidistant and more complex patterns. Chapter 7 is the
first publication dealing with calculations on localization effects. A prediction for the shift of
the metal-insulator transition induced by a small magnetic field is tested in extensive numerical
calculation and confirmed. Finally, the topic of Chapters 8 and 9 is the influence of topological
disorder on metal-insulator and optical localization transitions. Topological disorder is intro-
duced, using different types of networks and variations of local topological structures in complex
networks. At last, the bibliography and the acknowledgments complete this thesis.

Lukas Jahnke
Halle (Saale), May 2009
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Part I.

Introduction



1. Structures of disordered systems

Two types of disorder are considered in this thesis which are compositional disorder and structural-
topological disorder. In compositionally disordered systems disorder is induced by a non-periodic
potential landscape. Dropping the fixed lattice structure creates structural-topological disorder,
either by displacements of the atoms, or introducing additional long-range interactions, replacing
the lattice by a complex network.

In Section 1.1 examples for both types of disorder in electronic systems are discussed. Ad-
ditionally, the tight-binding Hamiltonian will be introduced as an example of a disordered elec-
tronic system on a lattice. Section 1.2 describes gels and glasses as examples of non-isotropic
structures. Complex networks are treated in Section 1.3.

1.1. Electronic materials

In ordered electronic materials the system properties are characterized by long-range translational
symmetry. Starting from a perfectly ordered lattice, there are different possibilities to introduce
disorder. For compositional disorder the potential landscape is disordered, the simplest model
is a random distribution of two different kinds of atoms on a lattice. Further distortions are
impurities and vacancies. If vectorial properties (spins) are present, compositional disorder can
also be induced by their random orientation.

Disorder is alternatively introduced by relaxation of the lattice structure, called structural-
topological disorder. Such types of disorder can be found, e.g., in glassy systems, porous media,
or amorphous semiconductors. The simplest model of a structurally disordered system is per-
colation [29]. A common percolation model is site percolation, where the sites of an ordered
lattice are randomly occupied with probability p, as sketched in Figure 1.1. This picture, e.g.,
corresponds to cases where the occupied sites resemble conducting parts and the unoccupied
sites resemble insulating parts of the solid. The connected sites of the lattice are called clusters.
For a small occupation concentration p the conducting parts are spatially separated and small
(see Figure. 1.1(a)), thus the solid is an insulator. On contrary, for high p a large cluster emerges
which reaches from one side of the lattice to the other (see Figure. 1.1(c)). This cluster becomes
infinitely large on an infinite lattice, therefore it is called infinite cluster. Transport of particles
between the edges is now possible and the solid becomes a metal. An infinite cluster emerges
for the first time for the critical occupation concentration, called pc (see Figure. 1.1(b)). At this
critical concentration the system undergoes a geometrical phase transition. For p < pc the solid
is an insulator, whereas for p > pc a metal. The phase transition is called geometric, because the
transition is induced by the geometry of the system, still the description is equivalent to a thermo-
dynamical phase transition. Besides metal-insulator transitions, this percolation model can also
describe transport properties in porous media or spreading of diseases and forest fire [29].

Besides site percolation, other variations exist, e.g., percolation in continuum space or bond
percolation. The latter is similar to site percolation, with the difference that not the sites are
occupied randomly, but the bonds connecting the sites are wired with probability pb. For all
types of percolation different variations of the lattice structure exist, e.g., different dimensions,
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1.1. Electronic materials

Figure 1.1.: Site percolation on a quadratic lattice: The sites of the finite clusters are colored gray, the
infinite cluster is colored black, and the unoccupied sites are white. The occupation concen-
tration is (a) p = 0.5, (b) p = 0.593, and (c) p = 0.7.

triangular and honeycomb lattices. An interesting lattice is the Cayley tree (see Figure. 1.2(a)),
because most percolation quantities can be calculated analytically. On a Cayley tree all sites have
z neighboring sites connected only with one bond, such that loops are not present. The Cayley
tree can be build iteratively, starting from the first site. For the next level, z new bonds and sites
are connected from a site of the last level. Site and bond percolation are identical, because in
this case the bond is the only connection to the site . Percolation can be defined by connecting
the sites of the next level with a connection probability p. If a site is unoccupied (gray circles
in Figure. 1.2(b)) the branches growing from this site will all be unoccupied for all levels (white
circles in Figure. 1.2(b)). The critical connection probability pc for the Cayley tree is analytically
derived as pc = 1/(z−1). For higher connection probabilities p > pc, in one iteration on average
more than one new branch is attached. Thus the mass of the structure grows exponentially when
the size is scaled linearly, as in the case of an infinite dimensional object. For p < pc the growth
of the Cayley tree dies out after a few iteration steps.

The critical occupation probability pc for a quadratic lattice is pc ≈ 0.59 for site percolation
and pb,c ≈ 1/2 for bond percolation. For cubic lattices the corresponding critical occupation
probabilities are pc ≈ 0.31 and pb,c ≈ 0.25 (see [29] and references therein). The probability P∞
for a site to be part of the infinite cluster is zero below pc and increases above pc as

P∞ = (p− pc)
β. (1.1)

The linear size of the finite clusters, below and above pc, is characterized by the correlation length
ξ. The correlation length is defined as the mean distance between two sites on the same finite
cluster and represents the characteristic length scale in percolation. When p approaches pc, ξ
increases,

ξ ∝ |p− pc|−ν , (1.2)

with the same critical exponent ν below and above the threshold. While pc depends explicitly
on the type of the lattice, the critical exponents β and ν are universal, depending only on the
dimension. The critical exponents for quadratic and cubic lattices are β ≈ 5/36, ν ≈ 4/3 and
β ≈ 0.417, ν ≈ 0.875, respectively. For the Cayley tree they are β = 1 and ν = 1/2.
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1. Structures of disordered systems

Figure 1.2.: The first three iterations of a Cayley tree with z = 3. (a) All sites are occupied. (b) The
percolation model. The black sites are occupied, the gray sites are not occupied, the white
sites are not connectible to the large cluster.

The infinie cluster at criticality is a stochastic fractal [193]. It is self-similar1 on all length
scales larger than the lattice constant and smaller than the size of the lattice. The fractal properties
of the infinite cluster can be measured using non-integer fractal dimensions: non-fractal objects
have an integer valued dimension d, such that the mass of the object M scales with the size r as
a power-law: M ∝ rd. For an infinite cluster the mass scales in average as

⟨M(r)⟩ ∝ rdf (1.3)

where df ≈ 2.5 for a cubic lattice, df ≈ 1.9 for a quadratic lattice, and df = 4 for the Cayley
tree. Generally, the fractal dimension df is smaller than the lattice dimension, because the cluster
does not fill the whole space, but df is still larger than the dimension of the corresponding hyper
plane. The fractal dimension df of a percolation cluster only depends on the dimension and not
on the concrete lattice structure.

Near pc, on length scales smaller than ξ, also the finite clusters are self-similar. Above pc the
infinite cluster can be regarded as an homogeneous system, if the length scales are larger than ξ,
whereas it is self-similar for smaller ξ, i.e.,

M(r) ∝

{
rdf r ≪ ξ,

rd r ≫ ξ.
(1.4)

The structure of disordered systems like percolation clusters can be reasonably described by
potential landscapes and hopping probabilities for particles moving on the cluster. An approach,
equally suitable for compositional and structural disorder, is a discretized Hamiltonian in a tight-
binding approximation (see Section 2.1),

H =
∑
i

ϵia
†
iai −

∑
(i,j)

tj,ia
†
jai, (1.5)

with ai and a†i as the creation and annihilation operators of particles at position Ri, respectively.
This approach is suitable for numerical studies of disordered systems, because the discretized

1Self-similarity is a key property of fractals: If a small piece is cut out of a fractal and magnified isotropically to
the size of the original, both the original and the magnification are geometrically equivalent.

4



1.2. Glasses and gels

Hamiltonian can be mapped to the memory structure of personal computers. The first part of the
Hamiltonian (1.5) stands for the on-site disordered potential, whereas the second part describes
the nearest neighbor hopping probabilities of the quantum mechanical object.

Disorder is inserted into the Hamiltonian (1.5) by random site energies and/or hopping matrix
elements derived from a probability distribution function. An example for compositional disor-
der is the two-component alloy ApB1−p, where each site is occupied by an A or B atom with
probability p or 1− p. The probability distribution for the on-site energies is given as

P (ϵi) = pδ (ϵi − ϵA) + (1− p)δ(ϵi − ϵB) , (1.6)

where ϵA,B are the site energies of atom A and B, respectively. In the limit ϵB − ϵA → ∞ the
wave function of the A subband vanishes identically on the B sites, making them completely in-
accessible for the quantum particles. This situation pictures non-interacting electrons, moving on
a random ensemble of lattice points, a percolation cluster. Therefore this case is called quantum
percolation model [24, 171]. Thus a compositionally disordered system can be transformed into
a structurally disordered system. The main difference for both types of disorders on a lattice is
that compositional disorder is induced by a potential Landscape, whereas for structural disorder
some sites are completely unaccessible.

The Anderson model [9] illustrates another, more complex example. In this model the random
on-site energies are derived from a box probability distribution of width W ,

P (ϵi) =

{
1
W

−W/2 ≤ ϵ ≤ W/2,

0 otherwise.
(1.7)

or a Gaussion distribution

P (ϵi) =
1√
2πσ2

exp

(
− ϵ2i
2σ2

)
, (1.8)

with σ2 = W 2/12. Results of such investigations are presented in Chapters 7 to 9. An analog
model using a Lorentz distribution as the potential distribution

P (ϵi) =
W

π(W 2 + ϵ2i )
(1.9)

is called the Lloyd model.
An example for off-diagonal disorder is the random phase model where

ti,j = t exp(ıϕi,j), (1.10)

are the off-diagonal elements with 0 ≤ ϕi,j ≤ 2π random phases. This model describes a spinless
electron traveling in a random magnetic field. Interestingly, a magnetic field can be introduced
as a special kind of disorder. The effect of a magnetic field are further discussed in Sections 2.1
and 3.2 whereas the results of the effect of small magnetic fluxes are presented in Chapter 7.

1.2. Glasses and gels

Two prominent examples of disordered structures with relevance for reaction-diffusion systems
are glasses and gels. Both materials are ideal to investigate reaction-diffusion phenomena, be-
cause convection is mostly suppressed.
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1. Structures of disordered systems
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Figure 1.3.: Chemical structure formula for silica hydrogel. Due to the weak Si−O bonding this structure
does not correspond to the geometric structure of the gel. In contrast, rings of larger sizes,
broken linkages, and dynamical changes of linkages occur.

A gel, as a material, can not be defined rigorously. It is usually a two component system of
solid and liquid nature. Typical types of gels are silica gels, agars, gelatins and soft soaps. Gels
are created from suspensions or solutions. The molecules of the first, solid component are three
dimensionally cross linked. The second component, usually water, penetrates this network as a
continuous phase. Therefore, a gel can be compared with a loosely interlinked polymer. Linkages
are formed by cooling, by chemical reactions, or by inserting additives.

In the following silica hydrogel is examined as an example for a gelic structure. This gel is a
solution of sodium metasilicate. Monosilicic acid is produced in accordance with the dynamic
equilibrium

Na2SiO3 + 3H2O � H4SiO4 + 2NaOH, (1.11)

and polymerizes with liberation of water. This reaction proceeds until a three-dimensional net-
work of Si − O links is established as shown in Figure 1.3. The geometrical structure is not
rectangular, as the chemical structure formula suggests. Rings of larger sizes form, linkages
break, and pores emerge, even large enough for ions or small particles to diffuse through the gel.

Glasses have an even longer history than gels, both in art craft and in technology. Glazed stones
found in Egyptian tombs can be dated back to 12,000 B.C. In the middle ages glass technology
was brought to perfection as can be seen in colorful church windows all around Europe. Today,
glasses are common and essential in technology. Most of the commercially used glasses are
compositions of oxides, which are silica based. In the past decades interest in non-oxide glasses
has emerged. Although scientifically interesting, these are not further considered in this thesis.

Important types of oxide glasses are vitreous silica glasses, inexpensive soda-lime glasses, or
borosilicate glasses. Vitreous silica glasses are highly pure SiO2 composites with the largest
refractory index in commercially used glasses. In addition to their refractoriness, they have a
high chemical resistance to corrosion, a very low electrical conductivity, a near-zero coefficient
of thermal expansion, and good UV transparency. Soda-lime glasses can be produced abundantly
by large-scale continuous melting of inexpensive materials such as soda, limestones, and sand.
They have good chemical durability, high electrical resistivity, and good spectral transmission in
the visible region. Because of the relative high coefficient of thermal expansion, they are prone
to thermal shock failure. For borosilicate glasses small amounts of alkali are added to silica
and boron oxides. A low thermal expansion coefficient and good resistance to chemical attack
characterizes this glass family.

Similar to gels, it is not trivial to define glasses. The peculiarity of glasses is their melting
temperature. Surprisingly, they do not have a sharp, well-defined melting point. Glasses are
essentially isotropic in the absence of applied forces and internal stress. Therefore, glasses re-
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1.2. Glasses and gels

Figure 1.4.: The volume-temperature digram for a glass-forming liquid in comparison to a crystal solid-
liquid phase transition. Figure taken from [206]

semble a solid liquid. Varshneya [206] tries to define glasses using different phrases as solid
with liquid like structure, a non-crystalline solid, or generally as amorphous solid. A common
definition would be an amorphous solid which undergoes a glass transition.

An example of a glass transition compared with a crystal solid-liquid phase transition is given
in Figure 1.4. When a liquid is cooled, the volume reduces along the path abc. The melting
point corresponds to the temperature Tm, assumed to be at point b. For crystals, this point is
defined as the temperature where the crystallized solid and the liquid have the same Gibbs free
energy and the emerging crystal is in equilibrium with the remaining liquid. Crystallization
depends on fast nucleation and growth, therefore the transition point is smeared, represented by
the gray shadowed vertical line. A fast volume shrinkage accompanies the crystallization process
and a further volume reduction takes place on a much slower pace afterwards. If crystallization
does not occur below Tm, e.g., fast cooling (quenching), the liquid reaches a supercooled state,
corresponding to path bcf. In contrast to crystallization, no discontinuities are observed in the
volume shrinkage. By cooling the volume shrinks further, due to the lower kinetic energy of
the sample, and the viscosity of the supercooled liquid rapidly increases. If the temperature is
low enough, the mobility of the molecules is too small to rearrange into a crystalline structure
characteristic for this temperature. As a result, the state line departs smoothly from path bcf and
reaches a near straight line mostly parallel to path de. The final volume depends on the speed of
cooling, as indicated by point g and h. The material in the nearly straight low-temperature part
of the curve behaves essentially as a solid and is in a glassy state. The region from departing
the supercooled state path to the seemingly rigid condition is called the glass transition region
or glass transformation range. This transition does not take place at one critical temperature, but
is smeared throughout the entire range. The intersection between the interpolated glass path and
the supercooled path is termed fictive temperature (Tf ). At this temperature, the structure of the
supercooled liquid is frozen into the glass.

7



1. Structures of disordered systems

Figure 1.5.: Atomic structural representation of a hypothetical A−O composite, where A could be, e.g.,
silicon. (a) A2O3 crystalline structure. (b) A2O3 glass structure. Figure taken form [206]

The structural differences of crystalline and glass structure are shown for a hypothetical com-
posite in Figure 1.5 where (a) corresponds to a hypothetical crystalline and (b) to glass structure.
On medium scale, the glassy system in (b) is disordered and not isotropic. Similar to gels, large
rings and broken linkages occur, in contrary bonds are much stronger. Through these pores ions
or particles diffuse but convection is impossible.

In contrast to the last section, where disorder plays an important role in the modeling of phase
transitions, the effect of disorder in gels and glasses will be integrated into the transport, nucle-
ation and growth process. In mean-field models, fluctuations around the mean diffusion speed is
neglected. Such fluctuations are included in lattice-gas models introduced in Section 4.4. Fur-
thermore, disorder in gels and glasses has a great influence on growth and nucleation processes,
they are included in the lattice-gas simulation and cause fluctuations. The fluctuations are im-
portant in the description of Liesegang patterns, because they enhance or even initiate the pattern
formation (Chapter 5).

1.3. Complex networks

Only recently, networks have attained interest in research. This is somehow surprising, because
networks can be found in a variety of dynamical systems, as protein folding, food webs, social
contacts, phone calls, collaborational networks in science and business, the world wide web
(WWW), and the Internet. In a network, one typically speaks of nodes which are linked or
connected through edges. For example, in social networks the nodes are humans and the edges
are different types of social connections. The number of edges a node participates in, is its degree
k.

Although networks can be found in very different applications, it is possible to group different
networks using only few characteristic properties. A general characterization is the distribution
of degrees P (k). In an Erdös-Rényi graph where N nodes are connected randomly with a proba-
bility p the degree distribution is given by a Poisson distribution which peaks at k0 = ⟨k⟩ [4, 67].
For a second important class of networks, so called scale-free networks, one finds P (k) ∝ k−λ

[104] with exponent λ > 2. These are called scale-free, because their second moment diverges,
hence, no intrinsic scale can be defined. Scale-free networks can be found in natural, sociological
and technological networks.

8



1.3. Complex networks

An additional network property is the average path length l. The path length li,j between nodes
ni and nj is defined as the number of nodes along the shortest path between them. Another way to
define the topological size of networks is the diameter d which is the maximal distance between
any pair of nodes. For Erdös-Rényi graphs the average path length l and the diameter d can be
calculated analytically and are given by the logarithm of its size, l ∝ d ∝ lnN [4]. The average
path length and the diameter of scale-free networks depend on the exponent λ. For λ > 3 one
finds the same results as in the Erdös-Rényi graph case whereas for λ < 3, d ∝ ln lnN [48],
and for λ = 3, d ∝ lnN/ ln lnN [26]. Since the average distance of the nodes is very small,
networks are revered to as small-world objects. Moreover, scale-free networks with λ < 3 are
referred to as ultra small-world objects.

Another property occurring in real networks is clustering. Especially social networks tend to
contain cliques. These are circles of friends or acquaintances where every member knows every
other member. Such behavior can be quantified by the clustering coefficient C. If the neighbors
of a node ni with ki edges is grouped in a clique where everybody is connected with each other,
this clique has a total of ki(ki − 1)/2 edges. The clustering coefficient can than be defined as the
ratio of the actual number of edges between these nodes, Ti, and the maximum value of possible
edges [212],

Ci =
2Ti

ki(ki − 1)
. (1.12)

This equation can also be derived by calculating the numbers of triangles, Ti, passing through
vertex i.

Although clustering is by definition a local topological quantity, it is possible to define a global
clustering coefficient C by averaging over Ci. Such global approach can not take into account
special properties of a network. For instance degree-degree correlations, also known as assorta-
tivity, can lead to equal C, although the topological structures of either network are fundamen-
tally different [157]. Therefore, a practical ansatz is a degree dependent clustering coefficient
[207, 174],

C̄(k) =
1

Nk

∑
i∈Γ(k)

Ci, (1.13)

whereNk is the number of vertices of degree k and Γ(k) is the set of such vertices. There are lim-
itations on the actual form of Equation (1.13) for scale-free networks which can be approximated
by [174]

C̄(k) = C0(k − 1)−α. (1.14)

The exponent α ∈ [0, 1] depends on the assortativity of the network; for low assortativity α → 1
and for high assortativity α → 0. Applications and further discussion of clustering will be given
in Section 9.3.

Examples of networks and their properties are shown in Table 1.1. All presented real world
networks are small-world objects with average path length around three. This average path length
is similar to an equivalent random network. In contrary, the measured clustering coefficients are
much higher than those of an equivalent random network, where nearly no cliques emerge. This
occurs due to equivalent probabilities for a connection of nearest neighbors and two random
nodes [4],

Crand = p =
⟨k⟩
N
, (1.15)

reducing to zero for large N . Then again, Table 1.1 suggests that the clustering coefficient is
independent of the size. This shows similarity to a lattice, where clustering is also size indepen-
dent, depending only on the coordination number. Contrariwise, lattices do not have short path
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1. Structures of disordered systems

Table 1.1.: Exemplary real world networks and their characteristic properties: network size N , average
degree ⟨k⟩, average path length l, average path length of an equivalent random network lrand,
clustering coefficient C and clustering coefficient of an equivalent random network Crand.
Data taken from [4] and references therein.

Network N ⟨k⟩ l lrand C Crand

WWW, site level, undir. 153,127 35.21 3.1 3.35 0.1078 0.00023
Internet, domain level 3015-6209 3.52-4.11 3.7-3.76 6.36-6.18 0.18-0.3 0.001

Movie actor 225,226 61 3.65 2.99 0.79 0.00027
SPIRES co-authorship 56,627 173 4.0 2.12 0.726 0.003
E. coli, reaction graph 315 28.3 2.62 1.98 0.59 0.09

Silwood Park food web 154 4.75 3.40 3.23 0.15 0.03
Words, co-occurrence 460,902 70.13 2.67 3.03 0.437 0.0001

Power grid 4941 2.67 18.7 12.4 0.08 0.005

lengths. For a d-dimensional hypercubic lattice the average node-node distance scales as N1/d,
i.e., it increases much faster withN compared with the logarithmic increase observed for random
and real world networks.

The simplest way to create networks with high clustering but small l was proposed by Watts
and Strogatz in 1998 [212]. In this model one starts with an ordered ring lattice where each node
ni is connected to the K nodes closest to it (Figure. 1.6(a)). For this kind of lattice, the clustering
coefficient is

C =
3(K − 2)

4(K − 1)
, (1.16)

converging to 3/4 in the limit of large K. As a second step, the edges will be rewired with a
probability pr without allowing self-connections and duplicate edges. Therefore, prNK/2 long-
range edges are introduced, connecting to other neighborhoods. Using this model, it is possible
to numerically calculate the dependence of clustering C(pr) and average path length l(pr) on
the rewiring probability pr. Figure 1.6(b) shows, that the transition to a small-world object is
rather fast, with nearly constant clustering coefficient. As a result, the small-world phenomena is
almost undetectable at the local level. Like in real world networks, a coexistence of small-world
characteristics and high clustering is possible.

In the pioneering work of Barabási and Albert [16] it is argued that real networks have two
generic mechanisms missing in random graphs. Firstly, real networks grow from a small number
of nodes by including new nodes and edges, e.g. the WWW is growing exponentially by new
links and additional pages, and co-authorship connections in scientific publications are growing
steadily by new publications. Secondly, nodes are not connected independent of their degree,
i.e., nodes with high degree are more probable to be linked with new nodes. For example well
known web pages, having large amounts of links, will be rather linked than unknown ones. Just
as well, papers with large amount of citations are rather cited again. This phenomena is known as
preferential attachment in network science. Both ingredients, growth and preferential attachment,
lead to a model which dynamically reproduces scale-free degree distribution [16].

For practical reasons in investigations on scale-free networks, as in Chapters 8 and 9, the
networks are not grown dynamically. Algorithms are used, generating networks with predefined
degree distributions. An algorithm which produces networks with predefined degree distribution
and clustering is presented in [174].

Similar to lattices, percolation can be defined on networks. The occupation probability p is
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1.3. Complex networks

(a) (b)

Figure 1.6.: (a) Evolution of Watts-Strogatz model which interpolates between a regular ring lattice and
a random network, without altering the number of nodes or edges. Left one begins with
N = 20 nodes which are fully connected to the four nearest neighbors. The edges are
rewired with a probability pr. For higher pr the network becomes more and more disordered
until for pr = 1 it is totally randomly connected. (b) Average path length l(pr) and clustering
coefficient C(pr) of a Watts-Strogatz model dependent on the rewiring probability pr. The
scales for pr are logarithmic to resolve the fast drop in l(pr). Figures after [212].

equivalent to the probability to connect an edge or introduce a node. The critical occupation
probability pc of a network depends on its degree distribution. A randomly connected network
with arbitrary degree distribution has an infinite cluster if [149, 47]

⟨k2⟩
⟨k⟩

> 2. (1.17)

Random removal of nodes and edges with probability q = 1− p changes the degree distribution,
reducing ⟨k2⟩/⟨k⟩. The critical probability pc is reached when ⟨k2⟩/⟨k⟩ = 2. Scale-free networks
resemble an interesting case. It is nearly impossible to break the network, i.e., pc > 0.99, for
exponents 2 < λ < 3 [46, 47].

Equation (1.17) is only true for uncorrelated networks with zero clustering. The influence of
degree-degree correlations on the stability of networks is not much investigated. For uncorrelated
networks with clustering coefficient C0, defined in Equation (1.14), an infinite cluster exists if
[177]

⟨k2⟩
⟨k⟩

> 2 + C0. (1.18)

Therefore, clustering shifts the percolation threshold, such that the network breaks for lower pc.
Surprisingly, it is also possible to break the network for 2 < ⟨k2⟩/⟨k⟩ < 3 by a mere change of
clustering without tampering with the degree distribution, i.e., without removing nodes or bonds.
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2. Dynamics of disordered systems

The aim of physics is not only to study static properties of matter but also dynamical quantities
as transport and reaction. The transport properties of electrons in disordered systems are investi-
gated in Section 2.1 in the context of the tight-binding model. Similarities between quantum and
classical waves are the topic of Section 2.2. In Section 2.3 reaction-diffusion dynamics will be
introduced.

2.1. Electronic dynamics

The dynamics shown in this chapter concern the wave functions and energy spectra of non-
interacting quantum mechanical objects. The Hamiltonian describing a non-interacting electron
moving in a potential V of N equal atoms, sitting at lattice points Rj with lattice constant a =
|Rj −Rj+1|, is [52, 114]

H(r) =
p2

2m
+

N∑
j=1

V (r−Rj). (2.1)

Obviously, the potential V (r) is invariant under a translation R = aer,

V (r) = V (r+R), (2.2)

with er = (Rj − Rj+1)/a an identity vector parallel to one of the symmetry axises, e.g. for a
cubic lattice er ∈ {ex, ey, ez}. More electrons are added by summation over several one-particle
Hamiltonians (2.1). For example for M electrons the full Hamiltonian is H̃ =

∑M
i=1Hi with Hi

as Equation (2.1), but r → ri and p→ pi.
The electronic wave function Ψ(r) and the corresponding energies E are solutions of the con-

tinuous time independent Schrödinger equation

HΨ(r) = EΨ(r). (2.3)

In the one-particle picture, the wave function describing several electrons is the antisymmetric
product of the single one-particle eigenfunctions Ψ(r). Due to the translational symmetry of the
potential the Hamiltonian permutes with the translational operator, having the same eigenfunction
Ψ. This leads to the solution

Ψ(r+R) = exp(ıkR)Ψ(r). (2.4)

The periodicities of eigenfunction and lattice are equal up to a phase shift and can be constructed
from an elementary function uk(r) = uk(r+R), known as Bloch factors,

Ψk(r) ∝ exp(ıkr)uk(r), (2.5)

with quantized k vectors. Therefore, the problem is reducible to solutions of the Bloch factors.
Equation (2.5) is known as the Bloch theorem.
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2.1. Electronic dynamics

Although the Bloch theorem is an important description of band structures in solid state physics,
it is not suitable to describe disordered media. For disordered solids the solution of a unit cell
is not sufficient due to lacking translational symmetry. Consequently, different approaches have
been developed; exemplary a discussion of the tight-binding model follows. In this model the
starting point is not a free electron in a periodic potential, but a tightly bound electron.

The Hamiltonian (2.1) can be split in two parts. First the Hamiltonian at position R of the
tightly bound electron,

ĤR =
p2

2m
+ V (r−R), (2.6)

and second, an effective potential of all the other atoms

∆VR(r) =
∑
R′ ̸=R

V (r−R′). (2.7)

The idea of the tight-binding model is to construct Bloch functions from the localized states
around the atoms. An orthonormal basis of localized states, the Wannier state, is defined as

wn(r−R) =
1√
N

∑
k

exp(−ıkR)Ψnk(r), (2.8)

with n the quantum numbers of the solutions of the atomic Hamiltonian and Ψnk(r) Bloch func-
tions. Using Equation (2.8) it is possible to calculate the dispersion relation

En(k) = ϵn +
∑
R ̸=0

exp(−ıkR)Λ(R), (2.9)

with ϵn the energy potential of the nth state and Λ(R) corresponding to the interaction of the other
atomic potentials. Both, ϵn and Λ, depend on the Wannier function (2.8) which itself depends
on the Bloch function, the unknown solution of the problem. Clearly, Equation (2.9) is only
solvable self consistently applying a linear combination of the periodic wave functions (2.5) as
zeroth order approximation of the Wannier function. This ansatz is known as LCAO (Linear
Combination of Atomic Orbits) method.

For the purpose of this work it is sufficient to take the matrix elements as parameters in the
Wannier basis, leading to an Hamiltonian

H =
∑
n,i

ϵn,i a
†
n,i an,i +

∑
n,i̸=j

tn,i,j a
†
n,i an,j, (2.10)

with a†n,i (an,i) a creation (annihilation) operator for a Wannier state with quantum number n at
position Ri. For example the Wannier function in spatial representation is

wn(r−Ri) = ⟨r|a†n,i|0⟩. (2.11)

For only one state per site Equation (2.10) reduces to the form introduced in Equation (1.5).
Disorder can be introduced into Equation (2.10) by parametrization of the potential landscape

ϵn,i (corresponding diagonal disorder) or the hopping-matrix elements tn,i,j (the off-diagonal dis-
order). Next to diagonal disorder as the main topic of this work, off-diagonal disorder is intro-
duced in form of a magnetic field in Chapter 7.

A common parametrization of disorder, used for the Anderson model [9], is Equation (1.7).
The width W of distribution (1.7) quantifies the strength of disorder. For vanishing width the
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2. Dynamics of disordered systems

ordered lattice is recovered. In this case the energy eigenvalues form energy bands of finite width
and the eigenfunctions correspond to periodic Bloch functions spreading throughout the entire
system. Electrons in such extended states are highly mobile and contribute to charge transport.
For high disorder (large W ) strong fluctuations of the potential energy lead to backscattering and
interference effects, and the wave function localizes. It decays exponentially in space, therefore
electrons are bound at the impurities and can not contribute to transport.

Starting from an ordered lattice the density of states broadens for higher disorder and localized
states appear near the band edges, separated from the extended states in the band center at a
critical energy ±Ec, called mobility edges [119]. At a critical disorder Wc the mobility edges
merge at the band center. At this point a quantum phase transition occurs, known as the metal-
insulator transition (MIT). For a one dimensional system Wc = 0 can be calculated analytically
[119]. For higher dimensions no analytical approaches are feasible and Wc needs to be extracted
numerically. As a result, properties of two dimensional systems are discussed controversially, yet
it is a general believe that no extended state exists. In three dimensional (3d) systems a phase
transition from extended to localized states is observed for Wc ≈ 16.5. Recent values are listed
and discussed in Section 3.2.

In quantum percolation the disorder is induced by the geometrical structure and measured
by the connection or occupation probability p (see Section 1.1). For p < pc all clusters are
finite, therefore the eigenfunctions are always localized. The same is true at pc due to the fractal
structure of the cluster, resembling a highly disordered system. For p > pc the infinite cluster
becomes more and more dense, until it is an ordered lattice for p = 1 with extended plain waves
as eigenfunctions of the tight-binding Hamiltonian. Therefore, a critical connection or occupation
probability pq has to exist, with pc < pq ≤ 1, where for the first time extended states are observed
in the eigenvalue spectrum pq = minE pq(E).

A magnetic field shifts the critical disorder [112]. This is not surprising, since the field can be
regarded as a special kind of off-diagonal disorder (see Equation 1.10). In quantum mechanics a
magnetic field is introduced by substituting p → p − eA [89] in the Schrödinger Hamiltonian
(2.1), with e the elementary electrical charge. In classical electrodynamics the vector potential
was introduced as a convenient mathematical aid, but all fundamental equations are expressible
in terms of fields. This is no longer true in quantum mechanics, where the vector potential is
necessary to introduce the magnetic field in the canonical formalism. For quantum mechanical
objects the vector potential is relevant, even though the magnetic field B = ∇ × A = 0. For
example, in the case shown in Figure 2.1 electrons move through a field free zone, but interference
effects are detected at the screen, induced by a non-zero vector potential A which leads to a phase
shift of the wave function [3].

The vector potential is gauge invariant, therefore, Landau gauge is chosen, A = B(0, x, 0), to
simplify the problem. The hopping matrix elements from the tight-binding Hamiltonian (2.10)
with Rj = Ri + ∆R and ∆R = ±ey will read ti,j = t exp(±2πıϕi,jm) where m = Ri · ex,
and ϕi,j = φi,j/φ0 is the ratio of flux φi,j = a2Bi,j through a lattice cell with size a2 to one flux
quantum φ0 = h/e. For ∆R ∈ {±ex,±ez} the non-diagonal matrix elements are ti,j = t. The
results for ϕi,j = δ and ϕi,j = 1/4 + δ are invariant under the shift δ → −δ. Thus the range
ϕi,j = 0 to ϕi,j = 1/4 represents the full flux spectrum from the flux free case to the largest
possible flux.

A constant magnetic field is described by a constant magnetic flux ϕi,j = ϕ through each pla-
quete. If ϕi,j is a random number, derived form an interval [−ϕ/2, ϕ/2] with a uniform probability
density p(ϕi,j) = 1/ϕ, a spatially random magnetic flux is modeled. The relation between flux
per plaquete ϕ and magnetic field B depends on the lattice constant a, B = ϕh/a2e. Therefore,
if the lattice spacing is a real crystal on the order of, e.g., several Å, a value of ϕ = 1/4 implies
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2.2. Classical wave dynamics

Figure 2.1.: Schematic experiment to demonstrate the interference effect of a time-independent vector
potential. The gray circle is a solenoid, the magnetic field B is confined within. The vector
potential, A, is different from zero everywhere outside the solenoid, because the total flux
through every circuit containing the origin is equal to a constant φ =

∫
Adx. The phase

difference ∆S of the two electron beams at the screen will be ∆S ∝
∫
Adx ∝ φ [3]. Hence,

interference between two electron beams is induced by the vector potential A. No magnetic
force is applied to the electrons.

an enormous magnetic field at the order of a several thousand Tesla. An alternative ansatz would
be to introduce a size depending flux ti,j = t exp(−2πıϕABa/L), known as the Aharonov-Bohm
flux, with L as the size of the system. Recent values of critical disorder Wc for different fluxes ϕ
are listed and discussed in Section 3.2.

2.2. Classical wave dynamics

In a disordered system electrons scatter at impurities, and localization of the wave function occurs
due to backscattering and interference effects. Surprisingly, the Schrödinger equation (2.3) has
similarities to the scalar wave equation,

∂2

∂t2
Ψ− v2∇2Ψ = 0, (2.12)

with v the speed of the wave inside a uniform medium. The scalar wave equation differs from
electromagnetic and elastic wave equations, because classical waves have vector character, i.e.
different polarization. Electromagnetic waves have two polarized states transverse to the wave
vector k, and elastic waves have a further longitudinal polarization parallel to k. In uniform
and isotropic media it is possible to decouple polarized states and describe each, using Equa-
tion (2.12). In disordered media decoupling is an approximation, because scattering leads to
interconversion of different polarized states. Nonetheless Equation (2.12) is sufficient to describe
localization effects.

Inserting the wave amplitude function

Ψ(r, t) = exp[−ı(ωt− k · r)] (2.13)

15



2. Dynamics of disordered systems

of a plane wave with frequency ω into Equation (2.12) leads to an alternative form of the classical
wave equation

∇2Ψ+ κ2Ψ = 0 (2.14)

with

κ2 =
ω2

v2
. (2.15)

Equation (2.14) is equivalent to the Schrödinger equation (2.3) with

κ2 =
2m(E − V )

~2
. (2.16)

For the quantum case κ2 is only positive for E > V , whereas it is always positive for classi-
cal waves. Spatial dependencies are introduced in the quantum mechanical case by a spatially
varying potential V (r) = V + δV (r) or for classical waves by fluctuating dielectric constants
ϵ(r) = 1 + δ(r) with v2 = c2/ϵ(r). The quantity κ2 is separable in constant κ20 and spatially
varying σ(r) values

κ2 = κ20 − σ(r), (2.17)

with

κ20 =
2m

~2
(E − V ) and κ20 =

ω2

c2
, (2.18)

for quantum and classical waves, respectively. Both are, up to a constant term, equivalent. While
κ20 is linear in energy for the quantum case, it is quadratic in the classical case due to the different
order of the time derivative in the fundamental equations of motion.

The terms depending on r are

σ(r) =
2mδV (r)

~2
and σ(r) = −δϵ(r)ω

2

c2
, (2.19)

for the quantum coefficient and classical coefficient, respectively. A striking difference between
quantum mechanical and classical case is the frequency dependence of the latter. The conse-
quence is a frequency dependent disorder strength, where σ(r) vanishes for ω → 0 in the case of
classical waves.

Keeping the differences in mind, it is possible to derive a tight-binding model of classical waves
on a lattice [180] in analogy to Section 2.1. Diagonal disorder is introduced by a fluctuating
dielectric constant, not by a potential as in the case of quantum waves. Therefore, an optical
network with fibers and cavities as edges and beam splitters as nodes can be described by the
tight-binding Hamiltonian (1.5), where ϵi is disorder introduced by beam splitters and ti,j is the
phase accumulation of the classical wave by traveling through cavities or fibers. The frequency
dependence of ϵi can be neglected for monochromatic light. In Chapters 8 and 9 results for
localization properties of complex optical networks are presented.

2.3. Reaction and diffusion dynamics

Interference is the dominant effect of quantum objects and classical waves in disordered media,
leading to unexpected phenomena, for instance localization of the wave function. The momentum
of microscopical particles diffusing in a gel or glass is large enough, such that interference effects
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2.3. Reaction and diffusion dynamics

can be neglected1. Statistical and chemical properties described by diffusion and reaction are the
dominant effects.

Diffusion is a typical transport phenomena found in amorphous solids or liquids. In a con-
tinuum description the interesting quantity for measuring particle transport is the diffusive flux
j, describing the number of particles crossing an unit area per second. The measurable static
quantity is usually the concentration of particles c, i.e., the number of particles per unit volume.
When no external forces are applied they can be equalized,

j = −D∇c, (2.20)

with D the diffusion constant. Equation (2.20) is called Fick’s law.
If the medium is anisotropic, D is a symmetric tensor of rank two. Therefore, three principal

diffusivities are needed to describe the total flux of the system. For isotropic media all three
principal diffusivities are equal and diffusion is described by one diffusion constant.

In a reaction free case the particle number is conserved and the particle flux gradient is de-
scribed by a balance equation

∂c

∂t
+∇j = 0. (2.21)

Combining Equation (2.21) and Fick’s law (2.20) leads to a time dependent equation

∂c

∂t
= ∇(D∇c) (2.22)

which reduces to
∂c

∂t
= D∇2c, (2.23)

if the diffusivityD is independent of c. The solution c(r, t) for all positions r and times t depends
on the boundary conditions of the system and initial conditions c(r, t = 0).

For example, consider a quasi one dimensional case of particles diffusing into a gel or a glass.
The initial condition is c(x, 0) = 0 for x > 0 and the concentration of the indiffusing particle is
held constant at the entering edge, c(0, t) = cs, than the solution of Equation (2.23) is [50]

c(x, t) = cs erfc

(
x

2
√
Dt

)
, (2.24)

where erfc is the complimentary Gaussian error function, defined as

erfc z = 1− erf z with erf z =
2√
π

∫ z

0

exp
(
−τ 2

)
dτ. (2.25)

Diffusion in crystalline solids occurs by a series of jumps of individual particles, thus, the
diffusivity is describable in terms of physical quantities, the elementary jump processes. On an
uniform lattice the probability P (R, t|0, 0) to find a particle at lattice point R at time t when it
has been at lattice point 0 at time 0 is the master equation

d

dt
P (R, t|0, 0) = −

∑
R′

ΛRR′P (R′, t|0, 0), (2.26)

1The wave length of a matter wave λ is inversely proportional to its momentum p. This relationship is known as
the de Brogli wave length λ = h/p of a particle with h Planck’s constant. If the de Brogli wave length is smaller
than the mean collision length, quantum mechanical effects can be neglected.
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2. Dynamics of disordered systems

with

ΛRR′ ∼


zΓ R = R′

−Γ R,R′ nearest neighbours
0 otherwise.

(2.27)

Γ is the jump rate and z the number of nearest neighbors. Equation (2.26) consists of a gain term,
describing particle jumps from nearest neighbors, and a loss term of particles jumping to nearest
neighbors.

The solution of Equation (2.26) can be extracted by looking at its Fourier transform

P (k, t) =
∑
l

exp (−ık ·R)P (R, t|0, 0), (2.28)

where the Fourier wave vector k depends on the lattice type. For a hypercubic lattice with N =
Ld sites, lattice constant a and periodic boundary conditions, the wave vector reads

k =
2π

La
n. (2.29)

The integer n is restricted to values between −L/2 and L/2, the first Brillouin zone. The solution
of the master equation (2.26) in Fourier space is

P (k, t) = P (k, 0) exp [−Λ(k)t] , (2.30)

with Λ(k) as the Fourier transform of the transition rate matrix (2.27).
A diffusion constant describing the collective motion of particles can be defined as the propor-

tionality factor of the mean square displacement at time t, with initial position R = 0 at time
t = 0,

⟨R2⟩(t) = −
d∑

l=1

∂2

∂kl∂kl
P (k, t)|k=0 =

d∑
l=1

∂2Λ(k)

∂kl∂kl
|k=0t. (2.31)

The mean square displacement depends on the geometry of the system. For example, for a
hypercubic lattice of dimension d and lattice constant a

⟨R2⟩(t) = 2dΓa2t, (2.32)

and therefore D = Γa2. This is Einstein’s description of particle diffusion [66].
Disorder is introduced into the system by an effective transition rate [110]

Γij = Γ0 exp

(
− Eij

kBT

)
(2.33)

depending on the particles initial i and final site j. Eij are randomly distributed barrier energies
Eij ≤ 0 or traps Eij ≥ 0. A first order approximation of the microscopical diffusion coefficient
for particles in disordered media (as gels and glasses) is the average over all transition rates (2.33)
[110]. Therefore, the disordered structure of the medium is parametrized in Chapters 4 and 6 by
an effective jump probability.

Reaction-diffusion systems are established by inserting a coupling term R in Equation (2.23),
consisting of products of all involved particle concentrations. For example, for two initially
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2.3. Reaction and diffusion dynamics

separated particles A and B with concentrations a(x, t) and b(x, t), the reaction process of a
extinction2, A+B → 0, is modeled by coupled partial differential equations

∂

∂t
a(x, t) = DA

∂2

∂x2
a(x, t)−R(a(x, t), b(x, t)), (2.34)

∂

∂t
b(x, t) = DB

∂2

∂x2
b(x, t)−R(a(x, t), b(x, t)), (2.35)

with initial states

a(x, t = 0) = a0Θ(−x), (2.36)
b(x, t = 0) = b0Θ(x). (2.37)

The parameters DA and DB are the diffusion constants of A and B particles, respectively. Θ(x)
is the Heaviside step function. The reaction profile R(x, t) can be derived in a mean-field ap-
proximation [118] and described in Section 4.3.3.

For high particle concentrations, phase separating processes like nucleation of seeds and their
growth are important dynamical properties. A simple model suitable for pattern formations in-
vestigated in Chapters 4 to 6 is a supersaturated liquid. In such liquids the nucleation and growth
rate depends on the supersaturation

s(x, t) =
c(x, t)

Ksp

− 1 (2.38)

with c(x, t) the concentration of a reaction product and Ksp its solubility. Using classical nucle-
ation theory it is possible to describe the nucleation rate n(x, t) in dependence on the supersatu-
ration as

n(x, t) = gns
E(x, t) exp(−β/ ln2[s(x, t) + 1]), for s(x, t) > 0, (2.39)

with constants gn, E, and β [55, 133]. Due to the sensible dependence of the nucleation rate
n(x, t) on the supersaturation s(x, t), it is possible to simplify Equation (2.39) by introducing a
critical supersaturation threshold scrit,n. If the supersaturation is lower than scrit,n, no particles
nucleate whereas for larger supersaturation the nucleation rate is modeled as [133]

n(x, t) = gn [s(x, t)− scrit,n]
E . (2.40)

In cases where E is large, a further simplification is to define scrit,n as a sharp threshold. For
s(x, t) > scrit,n the particles nucleate with a constant nucleation rate n but for s(x, t) < scrit no
particles nucleate. Particle growth can be modeled similarly, either by a linear dependence of the
particle growth rate r(x, t) on the supersaturation or also by using a critical threshold scrit,r.

2This reaction is equivalent to a production of a third particle, C, which does not influence the initial ones: A+B →
C
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3. Pattern formation and localization

The influence of disorder on pattern formation and localization of quantum and classical waves
is the main topic of this work. At a first glance, both themes do not have much in common, also
numerical techniques for finding solutions are different. Pattern formation deals with transport
and reaction of particles while localization is an interference effect of waves. The conjunctive
elements are the aggregation of particles in a finite region and the importance of disorder. In
Chapter 5 it is shown that disorder enhances or even initiates pattern formation of Liesegang
bands. Similarly, localization is induced by disorder. Different types of disorder are investigated,
for example a small magnetic field (Chapter 7) or topological disorder through clustering in
complex networks (Chapters 8 and 9), to influence critical parameters.

Due to similarities and diversities of both fields, they serve as good examples how disorder
influences formation or appearance of phase separations or transitions. In Section 3.1 pattern
formation of Liesegang bands will be introduced as a summary of a detailed review on Liesegang
band formation in Chapter 4. Section 3.2 will be devoted to a theoretical background on local-
ization of wave functions and the Anderson model.

3.1. Pattern formation

Patterns can emerge dynamically without external interference. In a self-organized system pat-
terns dissolve when the organizing mechanism is switched off. This can be observed when
fish swarms build complex groups when predators are near and dissolve afterwards. In a self-
assembled system preexisting complex components evolve to higher ordered systems. This pro-
cess is reversible and controllable by proper design of the components [214]. Pattern formations
are stable aggregations of particles, i.e. permanent for at least a larger time scale, in an irreversible
process.

Patterns form in different settings. Examples can be found in geology due to sedimentation or
weather processes, on animal skins induced by biological mechanism, or in chemical reactions
due to phase separation. They appear in different forms, e.g., as waves, branches and spirals
[51, 15, 93]. This thesis concentrates on patterns in reaction-diffusion systems and especially on
Liesegang band formation.

Although, Liesegang pattern formation [134] is one of the oldest discoveries of regular pattern
structure in reaction-diffusion systems and has a long history of experimental and theoretical
investigation, it is not a commonly discussed process. More convenient pattern formations for
textbook examples are those describable solely by reaction and diffusion, e.g., Turing patterns
[205, 36, 51, 141, 128] or Belousov-Zhabotinsky systems [15, 93]. Liesegang bands additionally
require a fast precipitation and growth process.

Liesegang bands emerge in reaction-diffusion processes of two initially separated agents. The
first agent, B, is homogeneously distributed in a sample (e.g., glass or gel). The second agent,
A, is injected either from one end of the sample or from the center. In the first case bands form
(Figure 3.1(a)), in the second case, concentric rings around the center emerge (Figure. 3.1(b)).
Liesegang bands were first observed by Raphael Eduard Liesegang in 1896 [134], when he in-
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3.1. Pattern formation

Figure 3.1.: Experimental examples of Liesegang patterns. (a) Agent A is injected from the top of the
test tube and diffuses into a gel containing agent B dissolved in the gel, yielding a linear
geometry [164]. (b) Same, but agent A is injected from the center [152].

jected a few drops of silver nitrate into a glass plate with a layer of gelatin, impregnated with
potassium chromate. In such scenario, series of concentric rings of precipitated silver chromate
emerge. The bands or rings form successively where the (n+1)th band forms at time tn+1 > tn,
at position xn+1 > xn and with width wn+1 > wn.

A few years later, Morse and Pierce [152] observed diffusional dynamics of the band forma-
tion, xn ∝

√
tn, in a similar experimental setup as Liesegang [134]. This rule, known as the time

law, has been validated by a large number of measurements using different types of inner and
outer agents such as lead ionide systems [103, 154, 133, 155, 76], magnesium hydroxide systems
[154], cobalt hydroxide systems (where band dissolution is observed) [199] and other ionic com-
plexes [75, 76]. The time law is a simple consequence of the diffusional process. The position
xf (t) of the reaction front of the inner and outer agents moves proportional to

√
t (Section 4.3.3).

Because the band formation usually occurs at the reaction front, the time law emerges naturally.
Twenty years later Jablczynski [97] successfully described the spatial positions of bands by a

geometrical series. The ratio of two consecutive band positions converges to a constant p, the
spacing factor

xn+1/xn → 1 + p for n→ ∞. (3.1)

This observation is known as the spacing law and typical empirical values for p reported in
literature range from 0.015 [156] to 0.7 [154] with a large variation of different results in macro-
scopic length scales of millimeters or centimeters [143, 154, 75, 76, 156] and microscopic in the
nanometer [148] or micrometer regime [23].

Compared to the time law, it is much harder to find an explanation for the spacing law. In
principle, typical model scenarios are reactions of the type

A+B → · · ·C · · · → D, (3.2)

where most of the differences are found on how the intermediate step, · · ·C · · · , is realized. D is
the precipitation product.

The first models had no intermediate reaction [160, 210, 163, 221, 133, 28, 130, 131]. The
same is true for the first qualitative description of Liesegang band formation suggested by Ost-
wald [160] based on supersaturating liquids. He predicted spontaneous precipitation of reaction
products as a reason for pattern formation. When the product concentration AB of the inner and
outer agent exceeds a critical concentration Ksp, nucleation seeds precipitate. These seeds grow
at the expense of the reaction product until AB falls bellow a second concentration Kp. This
model is known as the ion product saturation model.
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3. Pattern formation and localization

Early analytical descriptions using the above ansatz [210, 163, 221] could reproduce the spac-
ing law, but in a slightly different form than Equation (3.1),

xn+1/xn = 1 + p. (3.3)

In Chapter 4 the contradicting observation (3.1) and prediction (3.3) of the spacing law is recon-
ciled.

Later it became clear that the analysis of Liesegang bands is simplified by introduction of
an intermediate particle C [111], because the full process separates into two stages. A well
understood reaction-diffusion process A+B → C [118] succeeded by precipitation C → D.

As introduced in Section 4.3.3, the first process can be solved for special sets of initial and
boundary conditions. The pattern forming precipitation can be analyzed separately as nucleation
and growth of immobile particles. Therefore, this model is known as the nucleation and growth
model and is the basis for simulations presented in Chapters 4 to 6. More complicated models
are suitable for detailed descriptions of experiments, without revealing more details on the basic
Liesegang pattern formation process.

The spacing factor p depends on the initial concentration of the inner and outer agents b0 and a0,
respectively. This dependence is known as the Matalon-Packter law, named after two scientists
who found

p = F (b0) +G(b0)
b0
a0

(3.4)

by comparing different types of experiments [143, 161]. F andG are dimensionless monotonously
decreasing functions of b0. It follows that p is linearly dependent on 1/a0 for constant b0.

A first analytical description of the Matalon-Packter law was performed by Antal et al. [13].
They derived a more general law, with the Matalon-Packter law as a special case. In case of the
nucleation and growth model it states

p =
DC

Df

[
c0
Ksp

− 1− DC

2Df

]−1

, (3.5)

with c0 the mean concentration of C particles without precipitation. DC and Df are the diffusion
coefficients of the intermediate particle C and the reaction front, respectively. As in Ostwalds
model, Ksp is a nucleation threshold. Nucleation occurs, if the concentration of the intermediate
particles c > Ksp. The Matalon-Packter law can be derived for b0 ≪ a0 (see Section 4.3.3).
In [13] the growth of precipitants is neglected. Basically, Equation (3.5) describes patterns of
zero width. In Chapter 5 Equation (3.5) is extended to include non-zero widths and fluctuations.
This extended Matalon-Packter law is used successfully to control equidistant pattern formation
in Chapter 6.

The analytical derivation of Equation (3.5) is described in detail in [13], thus a more qualitative
description follows. To understand the band formation in the nucleation and growth model only
parameters describing C particles and their nucleation are relevant. Band widths are neglected
in Equation (3.5), and hence parameters controlling band growth are not needed. The basic
parameters for C particles are their diffusion constant DC , their mean concentration c0, and the
effective diffusion constant of the reaction zoneDf where these particles are created. The spacing
factor p is a dimensionless parameter. As a result, it depends on ratios of these basic parameters,
i.e. p(DC/Df , c0/Ksp). Bands form, if the nucleation threshold is Ksp < c0. This is controlled
by the denominator of Equation (3.5). For DC > Df particles diffuse away from the reaction
zone, causing a reduction of the local concentration of C particles at the reaction zone. This
has two consequences. First, the denominator needs to be corrected by the term DC/2Df and
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3.2. Localization

second, the distances between the bands are higher, p is larger, because it takes longer for the
concentration c to reach the threshold Ksp.

Only recently a fourth law has come into focus, the width law. It states that the width wn

of the nth band is proportional to a power-law of the position wn ∝ xαn [44, 164, 60, 78, 76].
Alternatively, a linear dependence is proposed and also observed, wn = µ1xn+µ2 [103, 55, 156].
One aim of the results in Chapter 4 is to reconcile both theories.

Theoretically, it is possible to derive the width law using particle conservation [164] leading to

wn = p
c0
dn
xn, (3.6)

with dn as the density of the nth band (see Section 4.3.3).
Numerical simulations became feasible in the eighties [55, 133] using similar types of reaction-

diffusion processes as described in Section 2.3 and nucleation and growth descriptions similar to
Equations (2.39) and (2.40). These functions have to be sensible in respect to changes in the
supersaturation for Liesegang patterns to emerge [133, 28]. As already suggested in Section 2.3,
threshold concentrations for modeling nucleation and growth are therefore reasonable approxi-
mations [28, 60, 69, 23].

Besides these reaction-diffusion models, a novel ansatz was introduced in 1999 [164, 12] based
on spinodal decomposition (see Section 4.3.5). The first non mean-field model was introduced
in 1994 [44, 45]. Instead of solving differential equations the authors succeeded to simulate
Liesegang pattern formation in a lattice-gas approach, based on the nucleation and growth model
(see Section 4.4). The simulations performed in Chapters 4 to 6 are based on this lattice-gas
simulation.

Beyond a detailed theoretical description of Liesegang pattern formation, recent publications
concentrate on manipulation of pattern formation to design patterns arbitrarily [21, 142] or achieve
equidistant bands [150]. In the first, the pattern forming process is controlled by an external os-
cillatory electric field [21, 142]. Without electric fields the properties of the reaction front is
equivalent to the case discussed in Section 4.3.3. If an electrical field is imposed, the properties
of the front change [20]. Interestingly, for a wide range of electrical field intensities neither the
locality, nor the diffusive nature of the front is altered. However, the electrical field has an im-
portant effect on the production of C particles. The ionic agents are driven toward each other for
one polarity and as a result, the concentration of C particles increases in the direction of the front
motion. If the opposite polarity is imposed, the concentration of produced C particles reduces
until the complete extinction of the reaction. A quasi-periodic current exists for which bands are
generated at prescribed band positions. The authors proofed numerically and experimentally the
feasibility of this approach. The second publication achieves equidistant banding by an exponen-
tial reduction of the nucleation threshold Ksp [150]. This is derived by equalizing the nucleation
threshold Ksp to the concentration of C particles at a desired position. The calculation of Ksp is
done numerically while the simulation runs. No analytical derivation of the exponential decrease
is presented. In Chapter 6 a complimentary ansatz to design patterns is proposed and simulation
results of equidistant bands are presented.

3.2. Localization

The main effect of pattern formation is phase separation, meaning that particles group in spatially
constraint regions. Interference effects of waves in disordered media lead to a similar effect,
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3. Pattern formation and localization

where the envelope of the wave function decays exponentially

Ψ(r) = f(r) exp(−r/λ), (3.7)

with f(r) a randomly varying function and λ the localization length. For finite λ the state is
localized, whereas for λ → ∞ extended. Disorder initiates a phase transition from extended to
localized state. The understanding of phase transitions is a major achievement of modern physics.
In the last century it became clear that phase transitions are a general concept mainly dictated by
the symmetry of the system. This is also true for the phase transition from extended to localized
states, also known as the metal-insulator transition (MIT).

3.2.1. Metal-insulator transition
A practicable method to distinguish an extended from a localized state is the inverse participation
number, defined as the second moment of the probability density,

P−1 =
∑
r

|Ψ(r)|4 ∥Ψ∥ = 1. (3.8)

It is a measure for the portion of space where the amplitude of the wave function differs markedly
from zero. For an extended state with constant amplitude, |Ψ(r)|2 = 1/N , the participation ratio
P equals the number of sites N . Thus, P = N ∝ Ld, with L being the linear size of the system
and d its dimension. It diverges in the thermodynamic limit, for L → ∞. For extended states a
fractal dimension d∗ ≤ d [119] is defined as

lim
L→∞

P = Ld∗ . (3.9)

The state is multifractal, if the fractal dimensions are not integer multiples of d∗ for higher mo-
ments of the probability density [119]. For localized states, P is proportional to the volume
where the state has a non-vanishing amplitude. Thus, in the thermodynamic limit L → ∞ the
participation ratio P is a constant and the fractal dimensionality vanishes.

An alternative approach, initially considered by Anderson [9], investigates the return proba-
bilities of particles. If a state is extended, the probability of return for large times reaches zero,
whereas it remains finite for localized states. Anderson called it absence of diffusion.

A general ansatz to describe phase transitions are finite-size scalings of the order parameters.
In an early work Thoules [202] states that the conductance G of a system with size (2L)d only
depends on the conductance GL of the 2d blocks of size L. Therefore, the dimensionless con-
ductance g, more precisely its arithmetic mean ⟨g⟩, only depends on the size of the system and a
scaling parameter b,

g(bL) = f(g(L), b). (3.10)

In a first approximation the logarithmic derivative of g is [1]

d ln g

d lnL
= β(ln g), (3.11)

with solution
g = g(L/ξ). (3.12)

A single length scale ξ is introduced as the constant of integration including all information about
scattering rates, energy etc. For very strong disorder, g ≪ 1, exponential localization is expected
with g ∝ exp(−2L/λ) and

β(ln g) ∝ ln g. (3.13)
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3.2. Localization

Figure 3.2.: Plot of β against ln g for one to three dimensional systems and zero temperature. The con-
ductance g(L) increases with increasing L if β > 0, but it decreases for β < 0. A crossing
at β = 0 is a critical point corresponding to the metal-insulator transition of the Anderson
model and is observed for d > 2.

Comparing these expectations with Equation (3.12), the length scale ξ is identified as the local-
ization length λ. If disorder is weak, the system behaves classically with Ohmic conductivity σ,
therefore, g ∝ σLd−2 and

β(ln g) ∝ d− 2. (3.14)

The length scale ξ is related to the conductivity σ as ξ ∝ σ−1/(d−2) and is interpretable as the
correlation length of the system. The β-function, introduced in Equation (3.12), can be sketched
(Figure 3.2) by interpolating between Equation (3.13) for negative ln g and Equation (3.14) for
positive ln g. For β < 0 the conductivity decreases with increasing sample size driving the
system towards the localized regime. For β > 0 the opposite is true, because g rises with L.
For d = 3 one finds a fix point β = 0 at which conductivity is independent of system size.
This critical point separates the metallic from the insulating region and, thus, corresponds to the
metal-insulator transition. For one dimension β is negative, and therefore, the system is always
localized. Two dimensions represent the marginal case, it is believed that no crossover exists.
Numerical results for the Anderson model on fractal lattices with dimensions 2 < d < 3 support
the assumption that indeed d = 2 is the lower critical dimension beyond which a disorder driven
metal-insulator transition exists [170].

The conductivity σ of extended states near the critical point Wc is σ ∝ |W −Wc|s, whereas
the localization length λ ∝ |W − Wc|−ν [1]. Both exponents can be set into relationship as
s = (d − 2)ν [119] and are, therefore, equal in three dimensions. These exponents are under-
stood to be universal in the sense that they are not sensitive to the specific details of the system
depending only on general symmetries. Common symmetries are orthogonal, unitary, and sym-
plectic transformations of the Hamiltonian. The first case describes a spin-less electron, the
second an electron in a magnetic field, and for the third spin-orbit coupling is considered. Other
critical parameters, like the critical disorder Wc, depend on the topology of the system.

In modern approaches the localization length is not derived from the eigenstates Ψ of the dy-
namic equation (2.10). The most accurate way to calculate the localization length λ for a given
energy E without computing the eigenstates explicitly is the transfer-matrix method (TMM)
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3. Pattern formation and localization

[119, 88]. TMM plays its strength in the investigation of wave functions of an Anderson model
with nearest neighbor interactions. Consequently, TMM is not suitable for non-lattice topologies
as complex networks. A geometrically independent method is eigenvalue statistics. Eigenvalue
statistics, also known as level statistics, has been established in the late eighties as a method to
calculate critical parameters of metal-insulator transitions. Localization properties are deduced
from statistical properties of the eigenvalue spectra instead from the eigenfunctions Ψ. The ad-
vantage is a reduced numerical effort; the price to pay is the lacking possibility to differentiate
the states in an analyzed spectral range.

3.2.2. Level statistics

Level statistics was first used in nuclear physics [218] to understand complex excitation spectra
of heavy nuclei. It is not feasible to calculate the energy spectra distribution using elementary
quantum physics, but a qualitative description using random matrix theory [62] succeeded.

In the eighties random matrix theory was introduced in solid state physics to understand the
chaotic eigenvalue spectra of disordered solid systems [64, 6]. The connections to metal-insulator
transitions were realized a few years later and level statistical methods were used for numerical
investigations of critical disorder [7, 183, 90, 91]. Review articles concerning random matrix
theory and eigenvalue statistics are [145, 83, 146].

In random matrix theory [145] the objects of investigation are 2× 2 matrices A, with indepen-
dent random numbers as matrix elements An,m. In the case of Gaussian orthogonal ensembles
(GOE) the matrix elements A1,1,A1,2 = A2,1 and A2,2 can be transformed by orthogonal transfor-
mations. Using infinitesimal transformation techniques, the distributions of the matrix elements
An,m is determinable as a Gaussian. The mean E0 and standard deviation σ are free parameters
of the distribution. By investigating eigenvalues Eα and Eβ instead of matrix elements, it is pos-
sible to reduce the number of free parameters, if the matrix is characterized by the eigenvalue
distances s ≡ |Eα − Eβ|. Normalization (⟨s⟩ = 1) of the corresponding distribution reduces a
further parameter. The normalized level spacing distribution is a parameter free Wigner distribu-
tion

PGOE(s) =
πs

2
exp

[
−π
4
s2
]
. (3.15)

Because PGOE(s) → 0 for s → 0, the probability of degenerated or similar eigenvalues is
zero or suppressed. This is known as eigenvalue repulsion. For large level spacings the Wigner
distribution has a Gaussian tail.

The matrix elements of a hermitian matrix with random complex numbers and invariance under
unitary transformations represents a Gaussian unitary ensemble (GUE). The eigenvalue spacing
distribution of a Hamiltonian with broken time reversal symmetry is an example for this ensem-
ble. The Wigner distribution of the level spacings is similar to Equation (3.15)

PGUE(s) =
32

π2
s2 exp

[
−4

s2

π

]
. (3.16)

If rotational symmetry is broken, the random quaternion matrix elements of a symplectic ma-
trix form a Gaussian symplectic ensemble (GSE). The distribution PGSE(s) is similar to the
Wigner distribution for the GOE case (Equation (3.15)), but for small level distances s it does not
scale linearly but PGSE(s) ∝ s4.
PGOE, PGUE, and PGSE are a good approximations for level spacing distributions of large

matrices with corresponding symmetry, as numerical investigation showed, even for sparsely
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3.2. Localization

filled matrices. Consequently, the eigenvalue spacing distributions of the tight-binding Hamilto-
nian (2.10) can be described by random matrix theory results, if some requirements are fulfilled.
There are two cases for which the Wigner distributions are not correct: (i) The matrices are not
disordered. The eigenvalue of ordered or nearly ordered systems are nearly equidistant and some
are degenerated. Therefore, they can not be repulsive and are independent of each other. (ii) The
eigenstates are localized. If the eigenstates are localized, they do not overlap and are therefore
independent.

The level spacings of independent eigenstates are described by the Poisson distribution

PP(s) = exp[−s]. (3.17)

In this case, the levels do not repel each other, the contrary is true; degeneration is probable,
PP(0) = 1. The tail of the Poisson distribution is not Gaussian, but a simple exponential decreas-
ing, slower than the Wigner distributions (3.15) and (3.16).

Therefore, level spacing distributions of tight-binding Hamiltonians are adequate for invest-
ing metal-insulator transitions. The corresponding distributions PP(s) for localized states and
PGOE(s) or PGUE(s) for extended states are only true for infinite system sizes. For finite systems,
the level spacing distributions are somehow in between, reaching the limiting distributions for
increasing system sizes. Therefore, if P (s) is changing towards a Poisson distribution, the state
is localized. If it changes toward a Wigner distribution, it is extended. At the critical disorder the
level spacing distribution is system size independent as predicted by scaling theories.

If a magnetic field is imposed, the level spacing distribution of extended states is described by
PGUE. Examples of level spacing distributions for different disorder strengthsW in the Anderson
model are presented in Figure 3.3 for (a) without and (b) with small magnetic field.

For practicability reasons, P (s) is not investigated directly, but finite-size scalings of derived
values Γ(L,W ). The level spacing distributions for the metallic and insulating regime differs
[183], therefore, a quantity Γ(L,W ) describing the metal-insulator phase transition is singular at
the critical point in respect to W for L = ∞. Three different constants are needed for each of the
three different regimes, Γ̃m for the metallic, Γ̃c for the critical, and Γ̃i for the insulating case [91],

Γ(L,W )
L→∞−−−→


Γ̃m ∀W < Wc

Γ̃c W =Wc

Γ̃i ∀W > Wc

. (3.18)

Describing the same second order phase transition with characteristic length scale ξ, Γ has an
equal finite-size scaling behavior as the conductance in Equation (3.12), i.e.,

Γ(L,W ) = F (L/ξ(W )). (3.19)

Although Γ(L,W ) is singular for L = ∞, it is analytical for finite sizes and, thus, F is expand-
able around the critical point, F (x) =x→0 a+ bx1/ν + cx2/ν + . . . , leading to

Γ(L,W ) ≃ Γ(L,Wc) + C|W −Wc|L1/ν . (3.20)

This is correct for all quantities fulfilling condition (3.18) and obeying scaling relation (3.19).
In Equation (3.20) irrelevant scaling variables Ξ, decaying with the system size, are not con-

sidered. Although always present, they are important to take into account for hard boundary
conditions [186, 187]. The scaling formula Equation (3.19) has to be extended to include rele-
vant Υ and irrelevant Ξ scaling variables,

Γ = F (ΥL1/ν ,ΞLy). (3.21)
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Figure 3.3.: Level spacing distributions P(s). The Poisson distribution is the dash-dotted purple curve.
The GOE (GUE) distribution is the dashed (dotted) red curve. The lines are level spacing
distributions of a 3d Anderson model using the tight-binding Hamiltonian (1.5). Disorder
strength W is increased from red lines to blue lines. (a) System size L = 20. A clear
transition from GOE (dashed red curve) to Poisson (dash-dotted purple curve) behavior is
observed. The disorder is increased from W = 10 (continuous red curve) to W = 23
(continuous purple curve). (b) A magnetic flux per plaquete ϕ = 10−3 is imposed on a lattice
with system size L = 40. A clear transition from GUE to Poisson behavior is observed as
the disorder strength increases from W = 8 (continuous red curve) to W = 23 (continuous
blue curve).

If irrelevant scaling variables do not introduce discontinuities, F is expandable not only around
the relevant scaling variable Υ

Γ =

nR∑
n=0

ΥnLn/νFn(ΞL
y), (3.22)

up to order nR, but also around the irrelevant Ξ

Fn(ΞL
y) =

nI∑
m=0

ΞmLmyFnm, (3.23)

up to order nI . The scaling variables are analytical functions of the dimensionless disorder w =
(Wc −W )/Wc and therefore equally expandable ,

Υ(w) =

mR∑
n=1

bnw
n and Ξ(w) =

mI∑
n=0

cnw
n, (3.24)

up to order mR for the relevant and mI for the irrelevant variables, respectively. The relevant
scaling variable vanishes at criticality, thus, b0 = 0, whereas c0 is finite, introducing a size
dependent error. A size independent Γcorr at criticality is reestablished by subtracting the terms
including irrelevant variables. The absolute scale of the arguments are undefined, but fixable
by choosing, e.g., F01 = F10 = 1 in (3.23). The total number of fitting parameters is Np =
(nI + 1)(nR + 1) +mR +mI + 2.
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Figure 3.4.: The localization parameter I0 = ⟨s2⟩/2 versus disorder W for system sizes L/a = 14 (red
circles), L/a = 17 (yellow squares), L/a = 20 (green diamonds), L/a = 23 (light blue
stars), L/a = 30 (blue pluses), and L/a = 40 (pink crosses). The lines correspond to fits
of Equation (3.27). (a) The symbols correspond to I0. A transition from extended states
for small W to localized ones for large W is seen for all sample sizes. Nevertheless, the
critical crossing point cannot be observed directly due to finite size effects. Inset: the region
around W = 16.1 zoomed in; there is no single crosspoint. (b) Corrected values of I0
where the influence of the irrelevant variables is subtracted. A clear transition can be seen at
Wc ≈ 16.57; all lines cross at one distinct critical disorder.

Two common scaling quantities, used in Chapters 7 to 9, are the second moment of level
spacing

I0(L) ≡
1

2
⟨s2⟩ ≡ 1

2

∫ ∞

0

s2P (s)ds, (3.25)

and

γ(L) =

∫∞
2
P (s)ds−

∫∞
2
PW(s)ds∫∞

2
PP(s)ds−

∫∞
2
PW(s)ds

, (3.26)

where PW is the Wigner distribution being PGOE when no magnetic field is imposed and PGUE

else. The second moments of Poisson, GOE, or GUE distributions are I0,P = 1, I0,GOE = 0.637
and I0,GUE = 0.589. The scaling quantity γ → 0 for extended states and γ → 1 for localized
states if N → ∞. In contrast to I0, the calculation of γ depends on the assumed symmetry of the
system.

In Figure 3.4 an example case is depicted of a 3d Anderson model on a cubic lattice with
diagonal disorder and hard boundary conditions. I0 is expanded up to orders nI = 1, nR = 3,
mR = 1 and mI = 0 such that

I0(W,L) = F0(ΥL
1/ν) + ΞLyF1(ΥL

1/ν). (3.27)

In (a) I0 is shown without any corrections. In the inset the crossing region is enlarged, no
well definable crossing point exists, i.e at criticality I0 is size dependent. In (b) the correction
I0 − ΞLyF1 is shown. The lines cross at one well defined point as seen in the inset. The critical
disorder is given by Wc = 16.57 ± 0.13 (see Chapter 7) which is in agreement with the newest
numerical result Wc ≈ 16.54 [187]. For periodic boundary conditions, the effect of the irrelevant
scaling variables is negligible [187].
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3. Pattern formation and localization

3.2.3. Results for the Anderson transition

Since the eighties it is known that a phase transition in a 3d Anderson model exists [138] which
is equivalent to a metal-insulator transition [132, 94]. The typical value for the critical disorder
Wc ≈ 16.5 for a boxed potential distribution has been confirmed numerically [139, 169, 91, 86,
186, 187]. Applying a Gaussian potential distribution, the critical disorder is Wc ≈ 21.29 [186]
and in the Lloyd model Wc ≈ 4.27 [186]. For smaller disorder W the electronic eigenstates are
extended, the localization length λ is infinite. Furthermore, the wave amplitudes do not decay
exponentially. Above the critical point, W > Wc, the states are localized. For the Anderson
model with non-diagonal disorder the states are only localized near the band edges [32]. Non-
diagonal disorder is, therefore, weaker than diagonal disorder.

It needs higher accuracy and a large numerical effort to determine the values of the critical
exponent ν. Therefore, the values changed in the same time accuracy improved. The values are
ν = 1.2 ± 0.3 [119], ν = 1.34 ± 0.1 [91], ν = 1.41 ± 0.11 [86], ν = 1.57 ± 0.02 [186], and
ν = 1.56± 0.02 [187].

For the case of a four dimensional (4d) Anderson model the critical disorder rises to Wc ≈ 35
and ν ≈ 1 [170]. For higher dimensions an extrapolation Wc ≈ 16.5(d − 2) and ν ≈ 0.8/(d −
2) + 0.5 was proposed [170].

For quantum percolation on a quadratic lattice it is believed, but not undisputed [144, 117], that
all eigenfunctions are localized (pq = 1) [200, 190, 151, 54] as predicted from the scaling theory
analysis presented above [1]. For quantum percolation on a cubic lattice the critical occupation
probability pq ≈ 0.44 [117, 191, 192, 123] for site percolation, and critical connection probability
pbq ≈ 0.34 [144, 191, 38, 24] for bond percolation are found. These values are definitely lower
than 1 and higher than the critical classical values pc (see Section 1.1), thus a true quantum phase
transition is observable.

The values for the critical exponent νq are similar to the Anderson transition: νq = 1.6 ± 0.2
[192], νq = 1.35± 0.1 [24], and νq = 1.46± 0.09 [105]. Similar critical exponents are expected,
because the Anderson model and quantum percolation are in the same universality class.

Networks are infinitely dimensional objects. As shown in Section 2.2 quantum and classical
waves can be described using the same formalism concerning the localization properties in dis-
ordered systems. Therefore, it is not important whether the network is a large molecule or an
optical network with beam splitters as nodes and fibers or cavities as the edges. Since optical
fibers have a very low loss rate, there is no essential difference between connecting neighboring
nodes of the network and far away ones. As a result, also the physical distance of the nodes has
no importance, in contrast to the scenario of a large molecule.

For Cayley trees [166] and different types of networks [167] ν = 0.5 ± 0.15, as expected for
an infinite dimensional object [170]. In Chapter 9 a more detailed introduction and review is
given. The critical disorder Wc depends on the type of topology, especially the mean number of
neighbors (Chapter 9) and other topological quantities as e.g. clustering (Chapter 8). It is even
possible to generate phase transitions with zero diagonal disorder by a mere change of clustering
(Chapter 8).

A large number of experiments are devoted to understand the Anderson model. The 3d lo-
calization transition is studied on doped semiconductors, being a typical example of disordered
media. Such systems are usually Si:P, Si:B, Si:As and Ge:Sb. Acceptors and donors are combined
to allow variation of disorder and electron concentration independently. Most of the results reveal
a conductivity exponent s ≈ 1 [201, 220, 70, 87]. This is in contradiction to the above numerical
results. One has to keep in mind that the numerical results are calculated for non-interacting
electrons. Coulomb interaction affects the critical exponent [19], therefore, the results are not
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directly comparable.
To avoid these complications, experiments are also performed using classical waves. In the

case of Anderson localization of light, experimental efforts turned out to be challenging. The dif-
ficulty arises due to similar characteristic signatures of photon absorption and wave localization,
for both the transmission decreases exponentially. Therefore experimental results using powder
of micrometer scaled GaAs particles [215], in which exponential decreases of transmission is
observed, is not undisputed [168, 216]. In [197] results of transmission measurements of light
through strongly scattering samples of TiO2 particles is presented. Deviation from diffusion
was measured unexplainable by absorption, sample geometry or reduction of transport velocity.
Furthermore, the deviation increases for decreasing mean free path of the particles.

A new promising research direction are measurements of Anderson localization of light in
disordered photonic lattices. In these systems the light waves can be described by Schrödinger
like equations. Disorder is either induced by variation of sample widths [127] or some optical
disorder [172]. The transmission light intensities are compared with numerical solutions of the
underlying theory which gives signatures for extended and localized states.

In all above experiments, the localized wave function can not be observed directly. Local-
ization is derived from transmission or conductance properties. In very recent experiments with
Bose-Einstein condensates it is possible to measure the shape of the wave function by measuring
the atomic density of the Bose-Einstein condensate [25, 165]. Thereby, exponential decay of the
wave function and the transition to extended states can be observed.

3.2.4. Effect of magnetic fields
The effect of a weak magnetic field on the critical disorder Wc was derived in the eighties by
Khmel’nitskii and Larkin [112]. They predicted that the shift of critical disorder can be described
by a power-law

Wc(ϕ)−Wc(0) = Cϕ1/2ν . (3.28)

The critical disorder changes, because the magnetic field introduces a new length scale LB =√
~/eB and thus LB/a = 1/

√
2πϕ (see Section 2.1). Therefore, the conductivity at T = 0 can

be written by a power of the ratios ξ/LB with ξ = [(W −Wc)/Wc]
−νa the correlation length. So

the conductivity is

σ(B,W ) ∝ f(ξ/LB) ∝ Φ

[
W −Wc

Wc

(
~

eBa2

)1/2ν
]
, (3.29)

and it vanishes at the critical disorder Wc(B) for which both length scales are nearly equal
ξ/LB ∼ 1, i.e.,

Wc(B)−Wc(0) ∝
[
eBa2

~

]1/2ν
∝ ϕ1/2ν . (3.30)

This phenomenological derivation is only true for small magnetic fields. The numerical verifica-
tion of Equation (3.30) is the topic of Chapter 7.

Besides Chapter 7 there are no detailed investigations of critical parameters for small magnetic
fluxes but numerical values for higher fluxes exist and are presented in Table 3.1. The critical
disorder rises with higher fluxes up to the symmetry axes at ϕ = 1/41. A higher shift is achieved
by introducing a random flux. In the case of the size dependent Ahoronov-Bohm flux, no shift of
the critical disorder is observed [17].

1The critical parameters are equivalent for ϕ = 1/4 + δ and ϕ = 1/4− δ. See Section 2.1 for details.
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Table 3.1.: Best fit estimates of critical disorder Wc and critical exponents for different fluxes in the
Anderson model.

flux ϕ Wc ν Ref.
1/20 17.67 ± 0.14 1.28 ± 0.15 [86]
1/10 17.81 ± 0.12 1.33 ± 0.18 [86]

0.15 (=̂ 0.4)1 17.93 ± 0.15 1.38 ± 0.17 [86]
1/6 (=̂ 1/3)1 18.32 ± 0.016 1.43 ± 0.04 [185]

1/5 18.06 ± 0.13 1.36 ± 0.15 [86]
1/4 18.376 ± 0.017 1.43 ± 0.06 [185]
1/4 18.35 ± 0.11 – [58]

random 18.80 ± 0.04 1.45 ± 0.09 [108]
Ahoronov-Bohm 16.4 1.66 [17]

If at least a full flux quantum penetrates the system time reversal symmetry is fully broken and
PGUE is the correct level spacing distribution function of the extended state. An example of a
transition from a Poisson distribution PP to PGUE is shown in Figure 3.3. The critical exponent
ν in such a case corresponds to the GUE symmetry class. Comparing the values of the newest
results for ν with magnetic fields with the newest values for ν without a magnetic field [187] the
critical exponents of the two universality classes GOE and GUE are distinguishable.

A shift of the critical disorder is also seen in quantum bond percolation where the critical
occupation probability shifts to pq = 0.308 [105]. The critical exponent reduces and is similar to
the cases of the Anderson model with magnetic field: νq = 1.24± 0.08 [105].
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Influencing pattern formation

Influencing pattern formation

Liesegang pattern formation is well described by several mean-field models. These state of art
models are reviewed and discussed in Section 4.3. Investigations beyond mean-field predictions
are rare and the few published ones are insufficient for understanding the role of disorder or
even controlling Liesegang patterns by means of disorder [44, 45, 11]. Exactly this knowledge
is desirable. One thus needs a model including fluctuations and disorder, and furthermore, a
profound understanding of these effects. As a consequence, Section 4.4 introduces a lattice-gas
model laying ground for further investigations. In Chapter 5 these lattice-gas simulations are
used to investigate the influence of disorder on the pattern forming mechanism. The achieved
understanding is utilized successfully in Chapter 6 to generate equidistant bands by variation of
structural disorder.

The lattice-gas model is a further development of a nucleation and growth based model [44,
45]. The advancement is, besides an extension to three dimensions (3d), a more efficient treat-
ment of the first stage, i.e. the reaction-diffusion process (see Section 3.1). Instead of explicitly
simulating the production of C particles, they are inserted with a probability, approximated by
an analytically available reaction rate. Using such approximation, simulations with high con-
centrations of C particles become feasible. These high concentrations are needed to drive the
system closer to the mean-field limit, essential for the systematic investigation of fluctuations in
Chapter 5.

In lattice-gas models fluctuations are naturally present, induced by the random walk of par-
ticles on a lattice. The implementation of disorder is straightforward. Besides that, lattice-gas
simulations serve well as computational experiments, being in-between experiments and mean-
field approaches. The processing of the results is similar to experiments with a wider range of
possibilities to modify the system. As a result, apparent contradictions between analytical and
experimental observations are reconciled successfully in Chapter 4. The same advantage is also
beneficial for the designing of equidistant and more complex patterns in Chapter 6.

Experimental observations and analytical calculations lead to contradicting results for the ratio
of the positions of two successive Liesegang bands, xn+1/xn. In the experimental case the ratio
converges for larger n to 1 + p, with p the spacing factor (Equation (3.1)), whereas in the ana-
lytical case the ratio is equal to 1 + p (Equation (3.3)). Lattice-gas simulation results follow the
experimentally observed behavior. It is possible to reconcile both results by introducing an offset
ξ, assuming the experimentally observed band positions x′n are shifted, x′n = xn − ξ, due to an
undefined first band. This shift is sufficient to explain the experimental observations. Knowing
the source of the problem, a more convenient way to extract p is proposed. The spacing factor
p and offset ξ are obtained as coefficients of a linear fit of the measured positions. Using linear
regression methods, error estimates are well defined. It remains an open question how ξ can be
derived from the basic constants. Because ξ can be extracted robustly, further investigations are
feasible.

Similarly, competing empirical definitions exist for the spatial broadening of the Liesegang
band widths. This width law is defined either as a linear function of width and position, or
alternatively, as a power-law. Both definitions lead to equally good fitting results, due to the
small value of the width compared to the position of the band. The theoretical description (Equa-
tion (3.6)) proposes a power-law behavior. The widthwn of the nth bands is not only proportional
to its position, but it is also inverse proportional to the density of the band. The width law turns
into a power-law, because the densities of the bands are in general not constant, but also a power-
law. To compare this theoretical prediction with data of lattice-gas simulations the positions have
to be shifted by ξ, leading to a mixture of linear and power-law. Especially for constant band
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densities, the width law is described best by a linear function of the positions. Because the mass
of the bands has to be a linear function of the band position, it is possible to test the theoreti-
cal predictions, using the measured positions of lattice-gas simulations. Simulation results only
lead to a linear mass dependence, if the offset ξ is incorporated. This strongly indicates that ξ is
essential for a correct data analysis. A recent experiment [156] is re-analyzed, confirming these
results. Also, when bands are designed (Chapter 6) the offset ξ is important for avoiding biases.

The importance of Chapter 4 for the next publications is twofold. Firstly, a fast lattice-gas
simulation model is developed, tested and presented. Secondly, the important parameters are
discussed and correct data processing and analyzing methods are proposed. These methods are
essential for further investigations. Due to the solid groundwork of Chapter 4, the role of fluc-
tuations is successfully tackled in Chapter 5. The motivation is derived from the fact that in the
last decades experiments were performed with micrometer [82, 23, 78, 204] and even nanometer
[148] sized widths of Liesegang bands. On such length scales thermal fluctuations of particle
motion and defects in the structure are no longer negligible. The fact that Liesegang bands are
scalable over several magnitudes of system sizes indicates that fluctuations do not necessarily
destroy the pattern forming mechanism. Furthermore, it indicates that band formation is well
described by mean-field approximations, including some effective constants.

The lattice-gas simulations in Chapters 4 to 6 are performed on 3d lattices. Consequently,
fluctuations induced by C particle production can be neglected. The only source of fluctuations
left is thermal motion of particles, i.e. their random walk, leading to fluctuations of local con-
centrations of C particles. A parameter sensible to small changes in particle concentration is the
spacing factor p. The spacing factor depends critically on the equilibrium concentration c0, due
to the threshold character of nucleation. Since one or few nucleations are sufficient to grow a
band, the fluctuations of concentrations of C particles are effectively increasing nucleation prob-
abilities, and thus effect the value of p. Increasing fluctuations reduces p and enhances pattern
formation, because more patterns emerge in a given volume. Furthermore, it is possible to achieve
pattern formation in parameter ranges, where no patterns would occur in mean-field approxima-
tions, i.e. for c0 < Ksp where Ksp denotes the nucleation threshold. For larger concentrations of
C particles the effect of fluctuations reduces, and the mean-field values are reestablished.

Further sources of fluctuations are introduced by structural disorder. A way to simulate such
disorder is heterogeneous nucleation, i.e., a non-constant nucleation threshold Ksp. For simplic-
ity a normal distribution with mean Khet

sp and standard deviation σ is assumed. If σ is large,
nucleation occurs already when the mean concentration of C particles is much smaller thanKhet

sp .
Therefore, Ksp is effectively reduced and as a result p also reduces. If σ is large enough, patterns
are observed in parameter regimes where no mean-field solution exists, and thermal fluctuations
are negligible. To sum up, patterns emerge when defects, impurities, or fluctuations are increased
in a sample, and fluctuations and disorder act as ordering mechanisms. This seems counter in-
tuitive, but is nevertheless the cause why the length scales of Liesegang pattern experiments are
scalable over several orders of magnitudes. The drawback is an increased instability in the re-
producibility of experiments, due to difficulties in preparing identically disordered samples. The
main reason for the ordering effect of fluctuations and disorder is the existence of a threshold.
A similar effect can be found in stochastic resonance, where an undetectable signal is made de-
tectable by addition of noise [217, 74, 101]. The reason for undetectability is usually a threshold
within the signal processing device. Noise leads to fluctuations, hence, the signal overcomes the
threshold and detection becomes feasible.

For large concentrations the effect of thermal fluctuations can be neglected and heterogeneous
nucleation is the only relevant effect of disorder remaining. In that case it is possible to extract
the mean nucleation threshold Khet

sp , a quantity difficult to measure, by a geometrical analysis.
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Therefore, the ansatz presented in this thesis can lead to a better understanding of nucleation.
Besides the interesting results on fluctuations, the analytical description of the spacing factor p

(Equation (3.5)) is extended in Chapter 5 to include fluctuations and disorder. The empirically ex-
tended formula is an important tool for the designing of patterns in Chapter 6. Designing special
kinds of patterns is an active research topic. In nature one finds reaction-diffusion processes con-
trolling and building structures from molecular to macroscopic length scales. Reaction-diffusion
systems have been on target for years to be utilized in the designing of devices in a bottom-up
approach [82]. In this approach devices are build using pattern formation and self-organization
processes, rather than an active manipulation of the substrates. One example is lithography, where
the precision is limited by the employed tools. In bottom-up approaches, on the other hand, the
precision is limited only by the length scale of the basic interactions, in an ideal environment. A
further advantage of material design using reaction-diffusion processes is the possibility to ac-
cess the third dimension. Patterns can form in the direction perpendicular to the surface, and are
not limited to the surface. A combination of bottom-up and traditional techniques is therefore
interesting, where 3d structures are relevant, e.g., for optical lattices. The main challenge for
bottom-up approaches is to control the pattern formation such that predefined bands form. One
of the most promising bottom-up approaches is Liesegang pattern formation, especially for de-
vices where periodic bands or rings are of interest, e.g., in optical filters. One of the possibilities
discussed in Chapter 6 is equidistant banding. There are two possible definitions for equidis-
tant bands. Consecutive bands can be defined as equidistant, if either the distance of their band
borders, or the distance of their centers is constant. Both definitions are only equivalent if the
band widths are constant. The center oriented approach is more convenient, and therefore used
in Chapter 6.

To influence the distance of the patterns, the spacing factor p has to be varied. There are
several ways how p can be influenced. Obvious possibilities are: temperature gradients, boundary
condition variations, and tweaking of the reaction process. A further possibility is the spatial
modification of the substrate, e.g., introducing a fractal material in which the fractal dimension
changes spatially. The path chosen in Chapter 6 is a large-scale modification of the nucleation
conditions either directly or by introduction of impurities and defects. To control p, it is crucial
to know its dependence on the basic parameters as described in Chapter 5.

The result for the homogeneous case is a spatially decreasing Ksp, hence, the number of possi-
ble equidistant bands is limited. To optimize the number of bands the parameter has to be tuned
such thatKsp decreases slowly. It is possible to achieve inter-band distances in the heterogeneous
case by increasing the disorder in the substrate, e.g., by creation of nucleation seeds by intense
laser irradiation [113]. This shows that influencing pattern formation by controlling disorder in
a medium is indeed possible. The maximum number of bands that can be produced using this
method is limited. When the distribution is too broad, basically near the value of the mean, nu-
cleation will become random and no structures evolve. Therefore, fine tuning of the parameters
is necessary.

There are in total three (four) unknown parameters in case of homogeneous (heterogeneous)
nucleation, needed to model width and fluctuations on one side, and the offset parameter ξ on the
other side. Because ξ is not known a priori, equidistant bands can only be generated in an itera-
tive experimental (or simulation) procedure. An iterative graphical scheme is suggested to extract
the correct ξ, leading to unbiased equidistant band formation. In conclusion, constant inter-band
distances are achieved using both methods. The only difference between the bands produced by
variation of homogeneous nucleation and the ones created by variation of disorder is a larger
standard deviation of inter-band distances for the latter. Although the band distances are equal,
the band widths reduce spatially, whereas the masses of the bands are constant. This behavior is
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understood using the analytical methods introduced in Section 2.3. The iterative procedure in-
troduced in Chapter 6 is transferable to other schemes for the band distances. Furthermore, other
geometries can be implemented in the lattice-gas model. Therefore, the results of Chapters 4
to 6 are applicable for designing arbitrary patterns in arbitrary geometries. An important open
question, which might have to be settled before these results can be exploited, is, how to achieve
equidistant patterns with constant band widths. To accomplish this, the role of the band densities
has to be investigated further.

The results presented in Chapters 4 to 6 and also recent publications [150, 21, 142] indicate
the great progress in understanding Liesegang pattern formation that has been achieved in the
last decade. Less than three years ago controlled equidistant band formation was unreachable.
Now, with the results of [21] and Chapter 6 the feasibility is shown in complementary elegant
ways. I believe that the results presented here are a motivation for further experiments, not only
leading to new devices and applications, but to a deeper understanding of nucleation and growth
processes in pattern formation.

Influencing localization

The influence of disorder on the transport properties of quantum and classical waves is actively
investigated (see Section 3.2). The Anderson model is a common choice for a numerical ap-
proach dealing with this topic [9]. Less investigated fields are on one hand structural-topological
disorders beyond quantum percolation [24], and on the other hand special forms of off-diagonal
disorders such as the magnetic field.

A magnetic field shifts the metal-insulator transition at a critical disorder Wc in the Anderson
model [9] due to a new length scale, the magnetic length LB/a = 1/

√
2πϕ (see Section 3.2.4).

The transition occurs when the magnetic length and the correlation length ξ are equal, LB ∼ ξ.
Utilizing this idea, Khmel’nitskii and Larkin (author?) [112] predicted the shift of Wc for small
fluxes (ϕ → 0) to be a power-law Wc(ϕ) −Wc(0) = Cϕβ/ν with β = 1/2 (see Section 3.2 and
Equation (3.28)). For finite systems though, the irrelevant length scale of the system size L may
play a role for LB > L. Therefore, a solid numerical calculation includes system sizes larger
than LB, but small magnetic fluxes. The combination of both criteria requires large system sizes,
making numerical confirmations of [112] a challenging task. As a result, nearly all numerical
calculations on magnetic fields in an Anderson model are for large or random fields.

Only in one publication Khmel’nitskiis and Larkins prediction is confirmed, although with
large error bars [58]. Furthermore, the values for Wc and ν are only presented graphically and
Khmel’nitskiis and Larkins prediction is fitted over the full flux range, while the theory is ex-
pected to be true for small fluxes only. Therefore, investigations going beyond these results are
desirable. In Chapter 7 results of extensive numerical calculations are presented for 3d lattices
of linear sizes from L/a = 14 to L/a = 40. The latter is a great challenge, even for state-of-
art computer resources. To prevent discontinuities of the magnetic field at the boundaries, hard
boundary conditions are applied. Irrelevant scaling variables are not negligible for such bound-
ary conditions and are taken care of in a finite-size scaling analysis. The smallest system size
determines the smallest magnetic flux considered, ϕ = 0.0008. The flux with the largest effect is
ϕ = 1/4, due to the symmetry of the problem (see Section 2.1).

A magnetic field not only shifts the critical disorder but also breaks the time reversal symmetry
of the Hamiltonian. To achieve this, the total flux quantum penetrating the system has to be at
least one. For such systems the Gaussian unitary ensemble (GUE) is the correct level distribution,
not the Gaussian orthogonal ensemble (GOE). At the critical disorder the crossover is indepen-
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dent of the total flux through the sample, since at criticality the distribution does not depend on
size. Therefore also for fluxes, ϕ ≤ 0.004, where the smallest system sizes are not penetrated
by a full flux quantum, it is possible to confirm [112] approximately obtaining β = 0.45± 0.05.
Also for larger fluxes, 0.004 < ϕ ≤ 0.1, where all system are penetrated by at least one flux
quantum, a power law can be confirmed approximately yielding β = 0.6 ± 0.07. Although at
criticality the critical disorder has to be independent of the size it seems to be a cross over be-
tween both regimes. This cross over could be caused by a full development of the GUE symmetry
upon increasing ϕ. Surprisingly, the prefactor ∆ for the shift of critical disorder is larger than
anticipated. Already for very small magnetic fields (ϕ < 0.1) all of the total shift has occurred.

Supplementary results presented in Chapter 7 are the critical level distributions for different
boundary conditions and fluxes. Interestingly, for hard boundary conditions the critical level
spacing distributions changes only slightly when the magnetic fields are applied in contrast to a
drastic shift for periodic boundary conditions.

The shift exponent β/ν depends inversely on the critical exponent ν which characterizes the
behavior of the localization length at the metal-insulator transition. Introducing long-range bonds
on a lattice structure reduces ν systematically, reaching ν = 0.5 for an infinitely dimensional
system. This approach could be utilized to further increase the shift in order to build sensible
binary magnetic detectors.

Long-range interactions introduce structural-topological disorder to the system. The same type
of disorder also occurs in non-lattice topologies like networks. As in the case of a magnetic field,
topological disorder shifts the metal-insulator transition. In Section 9.2 earlier results regarding
metal-insulator phase transitions for several types of networks are reviewed and their critical
disorder Wc and critical exponent ν are reported. The network structure is fixed while only
diagonal disorder is varied, similar to the Anderson model. Comparing the results for the critical
disorder Wc and mean number of connection per nodes, i.e. mean degree (see Section 1.3),
reveals that higher mean degree leads to higher Wc. In Chapter 8 and Section 9.3 the effects
of topological disorder are investigated more systematically. Instead of changing the degree,
which would correspond to percolation [47], the local structure is modified by changing the
probability of triadic closure, introduced in Section 1.3 as clustering index Ci of each node i
(Equation (1.12)).

Clustering has some properties similar to the connection probability p in percolation. Starting
from a non-clustered network, a demand for higher clustering leads to the disintegration of small
components with high clustering. At first, triangles of nodes with degree k = 2 disintegrate,
having the highest possible mean clustering coefficient of C = 1, later also larger structures dis-
integrate. Localization is only well defined on the infinite cluster. Parameters of the full network,
such as the degree distribution P (k) and the clustering coefficient C, are irrelevant parameters
of the metal-insulator phase transition. The relevant parameters are the degree distribution Pg(k)
and the clustering coefficient Cg of the infinite cluster. The interesting order parameter for the
metal-insulator phase transition induced by clustering is Cg. The global clustering coefficient
cannot capture adequately the local properties of clustering, therefore C0 as introduced in Equa-
tion (1.14) is a more suitable order parameter. The relationship between C0 and Cg is investigated
in Section 9.3 and it is shown that both are linearly dependent, making C0 and Cg interchange-
able as scaling variables. These results are discussed in Section 9.3 in more detail compared with
the initial letter publication in Chapter 8. Section 9.3 also contains some supplementary material
concerning clustering missing in Chapter 8, although, the results on the metal-insulator transition
are identical.

The context of the investigations in Section 9.3 and Chapter 8 are optical scale-free networks
with sizes N = 2000 to N = 20000. The large system sizes are required for large clustering, due
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Figure II.1.: Example of clustering dependencies of the infinite cluster (solid curves) and second largest
cluster (dashed curves) for a scale-free network with λ = 5. The curves are normalized by
the network size. The values for the second largest cluster are additionally enlarged by a
factor of 10. The color code for the system sizes are: N=10000 (red), N=15000 (light green),
N=20000 (green), N=50000 (blue), N=100000 (purple).

to the shrinking of the infinite cluster. Different networks with degree exponents from λ = 3 to
6 and C0 = 0 to C0 = 1 are examined. For other networks, as e.g., Erdös-Rényi networks, the
results of Chapter 8 also hold, but these have not been published yet. The dynamics are described
by a tight-binding Hamiltonian as defined in Section 1.1 which is also correct for optical networks
as derived in Section 2.2.

The energy level spectra are analyzed using level statistical methods. The result is that the level
spacing distributions are similar to those in the case of the Anderson transition. A transition from
near Wigner distribution for C0 = 0 to near Poisson distribution for high clustering is clearly
seen, for λ ≥ 4 even if W = 0. Thus, clustering induces a transition similar to an Anderson
transition even without compositional disorder.

The critical disorder Wc, as well as the critical clustering C0,q, and the critical exponent ν
are extracted, using the finite-size scaling quantity γ (Equation (3.26)) extended to include C0

as second scaling variable. For different compositional disorders Wc and clustering C0 the full
phase diagram is presented. Higher degree exponents λ lead to reduced critical clustering C0,q

and critical disorder Wc. These results are in agreement with those reviewed in Section 9.2,
because higher degree exponents λ correspond to lower mean degrees. The results for the critical
exponents ν are in agreement with mean-field calculations predicting ν = 1/2.

Besides a quantum phase transition, clustering also induces a classical phase transition similar
to percolation but not focused in the publication in Chapters 8 and 9. By enhancing clustering
it is possible to break the network, i.e., a critical C0,c exists, such that above C0,c all clusters
are finite clusters. Therefore, it is important to make sure that the quantum phase transition at
C0,q is well separated from the classical one at C0,c. It is possible to extract C0,c by examining
the second largest cluster. As long as an infinite cluster exists, the second largest cluster will
grow on its expense. After the infinite cluster breaks, all clusters are equal and will disintegrate
into smaller and smaller clusters. Therefore, the size of the second largest cluster N2 peaks for
C0 = C0,c. In the additional Fig. II.1 the reduction of the largest component (solid curves) and
of the second largest component (dashed curves) is shown. The colors represent different system
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sizes. For nearly all clusterings, the infinite clusters reduce in the same manner. This is no longer
true for the second largest cluster, where a peak at around C0 ≈ 0.85 is clearly visible. The peak
shifts to higher clusterings for larger system sizes, approximating the correct value. Therefore,
C0,c > 0.85 is clearly separable from the critical quantum transition C0,q ≈ 0.69 (see Chapter 8).
The same analysis is done for several degree exponents λ (see Section 1.3 for a definition of
λ). For all explored λ, classical and quantum transitions are clearly separable. For λ < 4.5, no
classical transitions are found and for λ < 4 no quantum transitions with W = 0 are observed.
Therefore, a regime 4 < λ < 4.5 exists, where only quantum transitions occur.

Chapter 8 and Section 9.3 show that clustering induces a transition similar to the Anderson
transition even without compositional disorder. Therefore, clustering represents a new degree
of freedom that can be used to induce and study phase transitions. The similarities between
clustering and percolation are obvious. In both cases one finds a quantum transition before a
classical one. These similarities call for further explorations leading to a better understanding of
the interplay between topological structures and metal-insulator transitions. Clustering is only
one of several local properties of a network. The results of Chapters 8 and 9 can be extended
to further properties as, e.g., degree-degree correlations. Such investigations additionally feature
an interesting approach to understand the local properties of localization effects. I believe, the
results presented in this thesis will open new doors to deeper understanding of localization effects
in disordered systems.
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Abstract: For more than a century Liesegang patterns – self-organized, quasi-periodic structures
occurring in diffusion-limited chemical reactions with two components – have been attracting
scientists. The pattern formation can be described by four basic empirical laws. In addition to
many experiments, several models have been devised to understand the formation of the bands
and rings. Here we review the most important models and complement them with detailed three-
dimensional lattice-gas simulations. We show how the mean-field predictions can be reconciled
with experimental data by a redefinition of the distances suggested by our lattice-gas simulations.

4.1. Introduction
In recent years the general interest in self-organized structures is growing, triggered by the idea
of cheap and fast production of nano-scaled devices. One of the promising effects for obtaining
such devices is Liesegang pattern formation, based on a reaction-diffusion process. Experimental
evidences for Liesegang patterns in solid materials on the nano-scale have already been obtained,
see, e. g., [148, 23, 82]. For example, periodic patterns of silver nano particles in glass were
observed by electron microscopy [148]. If it became possible to control the growth of such
patterns with experimentally tunable parameters, self-organized optical devices could be made.
In addition, the Liesegang phenomenon is an interesting research topic on its own due to the
simple patterns arising out of complicated reaction and diffusion processes.

Since the first description of Liesegang rings in gels by the German chemist Raphael Eduard
Liesegang in 1896 [134], many experiments and several models have been devised to understand
the formation of the bands and rings. Although the basic problems are solved and four universal
empirical laws have been found common to all experimentally observed Liesegang phenomena,
there are still open questions. In literature misunderstandings regarding the exact definition of the
measured quantities cause some discrepancies between the experimental results and the predic-
tions of theoretical (mean-field) models. In this paper, we review the most important models for
Liesegang pattern formation and complement them with extensive lattice-gas simulations of the
reaction-diffusion processes. Based on our three-dimensional (3d) simulation results, we find a
way to reconcile most experimental observations with the results obtained in mean-field models.
In addition, we obtain evidence that fluctuations in 3d reaction-diffusion processes may play an
important role in Liesegang pattern formation on the nano-scale.

The paper is structured as follows. Section 4.2 describes the main experimental findings, which
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Figure 4.1.: (Colour online) experimental examples of Liesegang patterns in test tubes. Agent
A is injected from the open end (top) of the tube, which contains agent
B dissolved in a gel, yielding a linear geometry (Figure by D. B. Siano,
http://commons.wikimedia.org/wiki/Image:Liesegangrings.jpg).

can be summed up in four empirical universal laws describing the Liesegang patterns. Section 4.3
reviews previous work on models reproducing these laws. After an overview including a discus-
sion of recent trends, we focus first on reaction-diffusion models with thresholds, and describe
afterwards the spinodal decomposition model and a kinetic Ising model. Section 4.4 is devoted
to our studies based on lattice-gas simulations, presenting both the numerical method, the main
findings, and a suggestion for reconciling the mean-field predictions with both, the experimental
data and our 3d simulation results by a redefinition of the distances. Section 4.5 summarizes our
findings and gives an outlook on further work on Liesegang pattern formation.

4.2. Experimental findings and empirical universal laws
In his original experiment, Liesegang covered a glass plate with a layer of gelatin impregnated
with potassium chromate [134]. Then he added a small drop of silver nitrate in the centre. As a
result, silver chromate was precipitated in the form of a series of concentric rings with regularly
varying spacings. These rings became famous as Liesegang rings or more generally Liesegang
patterns. Shortly after the first experiments, Wilhelm Ostwald presented an explanation for the
occurrence of the rings [160], which is still the basis for most of the models today. The next
important experimental findings followed several years later. In 1903, Morse and Pierce [152]
investigated the formation time of the bands, observing diffusional dynamics, i. e., the time law.
Jablczynski [97] showed twenty years later that Liesegang patterns follow a geometric series,
i. e., the spacing law. Based on this observation Matalon and Packter [143, 161] investigated the
functional dependence of the positions of the bands on the concentrations of the reacting agents
in 1955.

The geometry of the pattern depends on the initial conditions for the reacting agents. Usually
one agent (the inner electrolyte), represented by the B particles in the models, is initially homo-
geneously distributed in the sample or gel. The second agent (the outer electrolyte), represented
by the A particles, is injected. If A is injected in the centre, precipitation rings are formed. If B is
homogeneously distributed in a cylindrical tube and A is injected from one end of the tube, bands
form perpendicular to the motion of the reaction front, see Fig. 4.1. The second experimental
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Figure 4.2.: Results of a 3d lattice-gas simulation of Liesegang band formation. (a) Injecting A from
the left, Liesegang bands (black) with increasing distance form in the simulated lattice of
32 × 32 × 2048 sites. To obtain the projection, all 32 two-dimensional slices were placed
next to each other vertically. (b) The ratio xn+1/xn of the positions of the (n+ 1)st and nth
band is plotted versus n. See Fig. 4.6 in Sect. 4.4.3 for the parameters of the simulation.

setup is more appropriate for a theoretical description because it is effectively one dimensional
(1d) [85]. Most of the theoretical and experimental work was done using this linear configura-
tion; here we also focus on the ’band’ setup. Although Liesegang rings are basically a projection
of the bands onto polar coordinates, spiral patterns have been observed in the ring configuration
exclusively. They have no equivalent in the linear configuration.

To define the basic observables, we assume that the nth band forms at time tn at distance xn
from the side where A is injected. The width of the nth band is denoted by wn. Firstly, the
position xn is empirically found to be proportional to the square-root of the time tn,

xn ∝
√
tn. (4.1)

This rule called time law in literature has been confirmed experimentally many times [152, 182,
103, 154, 133, 199, 75, 155, 76].

Figure 4.2 shows that the position xn of the nth band follows approximately a geometric series
converging to the spacing law [97]

xn ∝ (1 + p)n ⇔ xn+1/xn → 1 + p for large n (4.2)

with p > 0 the spacing factor. Typical empirical values for p reported in literature range from
0.05 to 0.4 [148, 23, 154, 75, 76, 156].

A first systematic experimental analysis of the functional dependence of p on the concentra-
tions of agents A and B was done by Matalon and Packter [143, 161]. They gathered experimen-
tal results on p and found a functional dependence on the concentrations of both agents, a0 and
b0, respectively. This dependency is known as the Matalon-Packter law and takes the form

p = F (b0) +G(b0)
b0
a0
, (4.3)

with F and G as dimensionless monotonously decreasing functions of b0 1. F and G are not
1In the original work, the Matalon-Packter law was introduced as p = F (b0)+G(b0)/a0. The disadvantage of this

equivalent definition is that G(b0) gets the dimension of b0.
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dependent on a0 making p linearly dependent on 1/a0 for constant b0. This can serve as a test
for the validity of the Matalon-Packter law. In Sect. 4.3.3 we will show that Eq. (4.3) is just an
approximation of a more general law in the limit of reaction fronts much faster than the diffusion
of theB particles. This limit holds for most of the experiments, because a0 is usually much larger
then b0 while both electrolytes diffuse equally fast. An exception seems to be the experiment with
nanoscale silver particles in glass [148] where the diffusion of silver ions, the inner electrolyte,
might be one magnitude faster than the diffusion of the outer electrolyte, hydrogen. This leads to
a slower motion of the reaction front compared to the diffusion of the silver ions.

As can be seen in Fig. 4.2(a) the Liesegang bands are getting broader for larger n. It is possible
to set up an empirical law describing the width wn of the nth band as function of the position xn.
Experimentalists use two competing versions of the width law,

wn = µ1xn + µ2 and wn ∝ xαn (4.4)

see, e. g., [103, 156, 55] and [76, 44, 164, 60], respectively. We are not aware of any papers
comparing the two versions. In addition, different values of the exponent α in the second version
have been published. The experiment with nanoscale silver particles in glass can be fitted by α ≈
0.7 [148] (using the second version of Eq. (4.4)), but the results can be equally well fitted by the
first version. Most other papers report larger values of α, e. g., 0.9 < α < 1 [60]. Publications of
early reactive lattice-gas simulations, where the second version was first introduced, fit best with
values of α ≈ 0.5− 0.6 [44, 45], but no comparison with the first version of Eq. (4.4) was done.
It is difficult to distinguish between both versions of the width law because the number of bands
is limited and the widths wn of the bands are small compared to their positions xn. Theoretical
works prefer the second version with α = 1 [76, 164, 60]. In Sect. 4.4.5 the different versions
will be tested on our results of lattice-gas simulations. We will also propose an alternative,
theoretically well grounded approach unifying both versions there.

The time law (4.1) is a simple consequence of a diffusion process. The position xf (t) of the
reaction front between A and B moves proportional to

√
t with a prefactor that depends on a0

and b0 [50]. The other three laws cannot be explained so easily; one needs models describing
nucleation and growth of the bands. These models can be categorized into two types. The first
type is based on diffusion and reaction dynamics plus some thresholds which account for nucle-
ation and growth. There exists a wide range of modifications. The second type of models uses
well established phase separation techniques to explain the pattern formation based on spinodal
decompositions [12] or a kinetic Ising model [11]. All of these models will be reviewed in the
next section.

4.3. Models

4.3.1. Overview and recent trends

Reaction-diffusion models with thresholds are the oldest models describing Liesegang pattern
formation. Only a few month after the first experiments by Liesegang, Ostwald gave a possible
explanation of the pattern formation process on the basis of supersaturating liquids [160]. He sug-
gested that the precipitation is not a result of a balanced reaction but must happen spontaneously
when the concentration product K of the reactive partners reaches a critical concentration Ksp.
The precipitation grows until K falls under a second concentration Kp. Both thresholds set the
stage for several models differing in the detailed description of the reaction process. In principle
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they all follow a reaction scenario

A+B → · · ·C · · · → D, (4.5)

and differ in the way the intermediate stage · · ·C · · · and the precipitation → D are described.
For the concentrations of the different chemical agentsA,B, . . . the symbols a, b, . . . will be used
in the following.

The empirical laws described in the previous section became the basis for the theoretical work
which started in the fifties. First analytical descriptions [210, 163, 221] showed that the pat-
terns can be explained by diffusion and reaction processes with a moving reaction front. When
numerical simulation became feasible about 90 years after the first experiments it was possible
to reproduce patterns dynamically by studying the reaction-diffusion equations [133, 55]. The
fact that a novel approach was introduced in 1999 [164, 12] shows that the Liesegang pattern
phenomena are still an active research field in both, experiment and theory.

Apart from the novel simulation approach the trends in the literature follow two general lines.
The first line works on an analytical description of the basic laws [60, 13, 130, 131] or even looks
for more general laws [96]. The second line varies the initial conditions and the geometrical
configurations of the setup to understand the phenomena better and to find ways for applying the
pattern formation in interesting engineering problems. Alternative geometries [95] and complex
3d boundary conditions [23, 82, 189] have been studied experimentally. Variation of the reaction
terms [43] and the nucleation thresholds [150], additional terms for a dissolution of the bands
[199, 153], as well as open systems [125] and, last but not least, systems with an additional
electric field [199, 124, 184, 22, 21] have been studied to vary the patterns. In recent work the
motion of the reaction front is even detached from the phase separation, which might be initiated,
e. g., by a temperature gradient [10]. One hopes to understand and control the pattern formation
process such that bands with constant distance [150] or even arbritary patterns can be designed
[21].

Most of the theoretical work is based on an analytical study or numerical solution of differ-
ential equations. Since such equations are always based on the concentrations a, b, . . . of the
reacting agents, they generally yield mean-field solutions. Although such mean-field solutions
can reproduce the basic laws listed in the previous section they have two disadvantages. Firstly,
they cannot account for the statistical character of the reactions. Hence, the influence of parti-
cle number fluctuations and thus the stability of the patterns cannot be investigated adequately.
Although there are some ideas to include fluctuation by an additional noise term in mean-field
models [23, 124], we think that models with intrinsically statistical character are more adequate.
This is particularly true for mesoscopic and nanoscopic systems, where fluctuations become more
important. First experiments on microscopic scales indicate that fluctuations might play an im-
portant role [148, 23, 82]. Secondly, the differential equations may not describe the microscopical
structure of the bands. Chopard et al. [44, 45] proposed an alternative approach by taking the
basic principles of the mean-field description and implementing them in a reactive lattice-gas
simulation. Such simulations can be very helpful in reconciling mean-field predictions with ex-
perimental data, as we will see in Sect. 4.4. A similar approach seems also possible using Ising
models [11].

In the following sections, the mentioned quantitative models and simulations will be reviewed,
except for the lattice-gas simulations to be presented in Sect. 4.4.
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4.3.2. Ion product saturation models

In the first and easiest quantitative models for Liesegang pattern formation, the ion product mod-
els, the precipitation takes place without an intermediate stage; i. e., there is no C stage in (4.5)
[210, 163, 221]. Like in the Ostwald model, nucleation A + B → D occurs when the local
product concentration K = ab reaches the threshold Ksp. The precipitates of D will grow and
deplete their surrounding of A and B. As the reaction front proceeds, the product concentration
around the immobile precipitate decays until growth becomes impossible. Wagner [210], Prager
[163] and Zeldovich et al. [221] could show that these ingredients yield patterns which obey
the time law (4.1) and spacing law (4.2). The diffusion profiles of a and b are described by a
system of coupled integro-differential equations with given boundary conditions. These equa-
tions can be rewritten in a more convenient way, if local coordinates are introduced in the form
λn = xn/(2

√
Dtn) and γn = xn/xn−1. Taking n → ∞ and x0 → 0 renders the equations

mathematically solvable. The local coordinates λn → λ and γn → γ yield the time law and the
spacing law, respectively. However, since these laws were the result of a continuous limit, the
dynamics of the process was lost. Furthermore, the formation of the Liesegang bands was taken
for granted and not proved by solving reaction-diffusion equations.

The first dynamical version of the ion product model proposed by Ross et al. [133] was de-
duced from the elementary chemical reaction A + B → D and solved numerically. Besides the
typical diffusion terms for A and B,

∂ta = DA∂
2
xa−R and (4.6)

∂tb = DB∂
2
xb−R (4.7)

with diffusivities DA and DB, respectively, the equations include a reaction rate R constructed
for a specific experimental configuration. In principle,Rmimics an auto-catalytic growth process
with a growth rate proportional to an increasing function of the supersaturation S = (ab/Ksp)−1.
The authors tested different power laws and exponential functions and observed pattern formation
for a very quickly growing function R(S) only. Beside the confirmation of the time law no
quantitative observations of the other laws were reported.

Later Zrinyi et al. [28] pointed out that no detailed description of the agent transport is needed,
since precipitation takes place on a faster time scale. It is thus possible to model the growth
process by a given critical threshold Kp. The corresponding source term for additional D can be
written as a Heaviside step function, c1(a, b, d)Θ(ab−Kp). The growth starts when the product
concentration exceeds a second threshold Ksp > Kp, where the rate is independent of d. The
partial differential equation for the precipitate concentration d can thus be written as [28] 2,

R = ∂td = c1(a, b, d)Θ(ab−Kp) + c2Θ(ab−Ksp), (4.8)

where c1 and c2 are model-dependent functions of the parameters (initial concentrations and
diffusion coefficients), and c1 also depends on a, b and d. Liesegang patterns observed in a
wide range of systems can be modelled this way. In particular, it was possible to show that the
time law and the spacing law hold for a large set of parameters [28]. The Matalon-Packter law
was confirmed only if the initial concentration of the outer electrolyte a0 is sufficiently large.
However, p was shown to stay a monotonously decreasing function of a0 even if a0 is small.
Furthermore, p increases monotonously with Ksp in a non-linear way, and it is anti-proportional
to the diffusivity DA of the outer electrolyte. The results for a specific p do not depend on the

2In the original paper the second term was not introduced as a formula but described in the text.
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individual parameters but on ratios of parameters with equal dimension – a simple consequence
of the mean-field character of Eqs. (4.6) to (4.8). The findings are consistent with an experimental
categorisation of the patterns by the product and the difference of the initial concentrations [154].
The width law, however, was not investigated.

In closely related approaches, growth was modelled proportional to the concentration of the
precipitate, corresponding to Kp = 0 and c1 ∝ d in Eq. (4.8) [13, 130, 131]. Focusing on the
Matalon-Packter law (4.3), Antal et al. found that F is constant andG ∝

√
DB/DAKsp/b

2
0 [13].

This result was achieved analytically based on the assumption b0 ≪ a0; hence the failure of the
Matalon-Packter law for low a0 could not be observed. This result is inconsistent with p ∝ 1/DA

in [28], due to different assumptions for c1 and c2. Lebedeva et al. searched for a criterion for
the pattern formation [130, 131], finding Φ = Kspk2DB/u

2(t) > 2 +
√
5, with k2 the growth

rate and u(t) the velocity of the front (decreasing with time). Patterns are thus formed when the
nucleation threshold Ksp is high and the growth rate k2 is large. The time dependence of u(t)
explains why patterns do not start at x0 = 0 but an empty (“plug”) zone exists at the edge. The
first two results match with those of Ross et al. [133] and Zrinyi et al. [28], who did not study
the velocity of the reaction front.

4.3.3. Nucleation and growth models

The next models with slightly increased complexity separate the reaction-diffusion process A +
B → C from the nucleation and growth processC → D, introducing an intermediate stateC, see
Eq. (4.5). This, however, considerably simplifies the analysis. In the literature such models are
often called nucleation and growth models because the formation of D depends on the nucleation
and accumulation of C rather than on the product concentration of A and B.

This model was first introduced by Keller et al. [111] who analysed reaction-diffusion equa-
tions and confirmed the time law (4.1) and the spacing law (4.2). In contrast to Wagner and
Prager [210, 163] they could calculate the positions xn of the bands without a priori assuming
band formation and stopping of the band growth. The first numerical solutions for a nucleation
and growth model were presented by Dee [55]. He used a similar technique as Ross et al. [133]
(see previous section) and determined the nucleation and growth criterion by classical nucleation
theory. A detailed work concerning the nucleation and growth of silver particles similar to Dee
was presented recently [102]. Since the reaction-diffusion process can be separated from the
precipitation process, we will discuss the two stages separately.

First process: reaction-diffusion A+B → C

The simple reaction-diffusion process A+B → C is important independently of Liesegang pat-
terns since it is a basic process in many chemical reactions. To apply the results to the Liesegang
pattern phenomena we will focus on a quasi-1d geometry where the reacting particles are sepa-
rated at time t0 = 0 with initial concentration a0 and b0. The concentration profiles a(x, t) and
b(x, t) for x ≥ 0 and t > 0 are determined by the reaction-diffusion equations (4.6) and (4.7)
with the initial conditions a(x, 0) = a0Θ(−x), b(x, 0) = b0Θ(x) 3. The reaction term R is again
assumed to be proportional to the concentration product K = ab. Under these assumptions it is
possible to calculate a(x, t) and b(x, t) as well as the reaction rate R(x, t) ∝ ab asymptotically

3For our problem we will need the additional boundary condition a(0, t) = a0. The changes needed to achieve this
will be introduced in Sect. 4.4.1

48



4.3. Models

 

0 100 200 300 400
0

0.2

0.4

0.6

0.8

1

x

C
on

ce
nt

ra
tio

n

 

 

A
B
C

300 320 340 360
0

1

2

3

4

5
x 10

−4

x

C
on

ce
nt

ra
tio

n

 

 

A
B
R

W
f

A
f

100 200 300 400

0

0.1

0.2

0.3

0.4

0.5

x
C

on
ce

nt
ra

tio
n

 

 

A
B
C
D/20
K

sp(a) 

(b) 

(c) 

Figure 4.3.: (Colour online) illustration of the concentration profiles obtained in the reaction-diffusion
process A + B → C without (a,b) and with (c) precipitation C → D. The concentrations
a(x, t) (red) and b(x, t) (green) are shown for fixed time t together with (a) the reaction
rate R(x, t) ∝ ab (black) following Eq. (4.9), (b) the accumulated concentration c(x, t)
(magenta), and (c) the rescaled concentration of the precipitate D (blue). Note the constant
value of c(x, t) = c0 behind the reaction front in (b) according to Eq. (4.11). The dashed line
in (c) indicates the threshold Ksp; the next band is started when c(x, t) reaches Ksp.

for large times t [73],

R(x, t) ∼ Af SR

[
x− xf (t)

wf (t)

]
, (4.9)

where SR is approximately a Gaussian [12, 129]. The result is illustrated in Fig. 4.3(a). R(x, t)
describes the reaction front and reaches its maximum value at xf which scales as xf (t) ∼

√
t.

The width of the front scales as wf (t) ∼ tγ with γ = 1/6. The production rate Af of C at x = xf
is proportional to t−ζ with ζ = 2/3. A scaling analysis regarding the impact of fluctuations [49]
leads to the conclusion that the critical dimension, above which fluctuations become unimportant,
is dc = 2. In 2d logarithmic corrections apply and in 1d the whole dynamics change dramatically
[49].

It is possible to approximate the effective diffusion coefficient Df for the reaction front, i. e.,
the prefactor in xf =

√
2Df t as well as the concentration c0 of C behind the reaction front. This

requires a few assumptions [118] which will be usually fulfilled in typical experimental setups.
The reaction front R(x, t) has to be confined in a region (reaction zone) xf (t) − wf (t)/2 <
x < xf (t) + wf (t)/2 for all times t, disregarding all reactions outside this region. Then the
concentration profile of each agent can be written as a solution of a diffusion equation [50].
Furthermore, Eqs. (4.6) and (4.7) must be approximated by a quasi-stationary solution in the
region −(DAt)

1/2 ≪ x ≪ (DBt)
1/2. Under these conditions the effective diffusion coefficient
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Df is given by an analytic implicit equation [118],

H

(
−
√

Df

2DA

)
=
a0
√
DA

b0
√
DB

H

(√
Df

2DB

)
(4.10)

withH(x) = [1−erf(x)] exp(x2). Here, erf(x) is the Gaussian error function defined as erf(x) =
2√
π

∫ x

0
exp (−z2) dz. Evidently, the velocity of the reaction front does not depend on each of the

initial concentrations, but on their ratio a0/b0, and it scales in the same way as DA and DB,
since no characteristic time and length scales exist. The same approximation also yields that the
concentration of C behind the reaction front is constant (see Fig. 4.3(b)), given by [13]

c0 =
b0
π

√
2DB

Df

H−1

(√
Df

2DB

)
. (4.11)

The interesting point of these results, for the Liesegang pattern phenomena, is that only c0 andDf

are essential parameters. Since both depend only on the initial concentrations and the diffusion
coefficients, the band formation is independent of the reaction rate which is hard to measure.
This does not imply, however, that the width of the bands or the specific concentration profiles
are independent of the reaction rate.

Second process: Precipitation C → D

Describing the A + B → C process exclusively by c0, Df , and the Gaussian reaction front
(4.9), we now focus on the precipitation step. Like Ross et al. [133] (see Sect. 4.3.2), Dee [55]
modelled the precipitation process using the classical droplet theory. Droz et al. [60] showed that
Dee’s approach can be simplified into

∂td(x, t) = c1N [c(x, t), d(x, t)] + c2Θ[c(x, t)−Ksp] with N(c, d) ∝ d(x, t), (4.12)

corresponding to Eq. (4.8) with Kp = 0 and c1 and c2 constants or proportional to c. A typical
result of such a simulation is shwon in Fig. 4.3(c). Using this model, Dee confirmed the spacing
law (4.2) and found the linear form of the width law (4.4). Due to limited computational resources
he was restricted to one example with only six bands and obtained no information on the Matalon-
Packter law (4.3).

In Eq. (4.12) the growth of the precipitates is restricted to the points of the nucleated particles,
see also Fig. 4.3(c). To obtain bands with a macroscopic width wn one would need nucleation at
every point in wn since no non-local term exist. Although no macroscopic width is reproduced in
this model one sees that the hight of the bands, which can be interpreted as their mass or integrated
particle number, seems to grow linearly. This is in agreement with a theoretical prediction which
will be introduced in Sect. 4.4.5.

Alternatively it would be possible to allow non-local growth such that C can become D in a
broader surrounding of an initial nucleation centre. A popular version of the non-local term is
[23, 69]

N(c, d) = Θ

[∫ x+dx

x−dx

d(x′, t) dx′
]
Θ[c(x, t)−Kp]. (4.13)

In this case, a second threshold Kp is needed to stop the growth. This threshold is not needed in
Eq. (4.12) because local growth stops if nucleation stops.
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Quantitative mean-field predictions for p and the Matalon-Packter law

It is possible to calculate the functional dependence of p in the nucleation and growth model
described above [13],

p =
DC

Df

[
c0
Ksp

− 1− DC

2Df

]−1

. (4.14)

This surprisingly simple analytical solution determines p from the basic parameters Df and c0
(from A+ B → C), DC (for the diffusion of C), and the nucleation threshold Ksp. As expected
for a mean-field solution, Eq. (4.14) depends only on dimensionless ratios of the parameters. The
first term characterizes the velocity of C versus the velocity of the reaction front, representing a
measure of how fast c0 could be reached. If Df ≪ DC , C will quickly leave the reaction front
and diffuse away. In this case it takes longer to reach the desired threshold Ksp, and p becomes
larger. The second term makes sure that no precipitation occurs if Ksp > c0. If Ksp is close to c0
it takes longer to reach Ksp and p is also large.

The structure of Eq. (4.14) will be similar if nucleation and growth is modelled somewhat
differently. All mean-field solutions must scale, and patterns emerge only if Ksp ≤ c0. For this
reason Eq. (4.14) can serve as reference to test further properties of Liesegang pattern formation.
One of these properties is the Matalon-Packter law, which is clearly inconsistent with Eq. (4.14),
since it does not scale linearly with 1/a0. However, Antal et al. [13] could show that the Matalon-
Packter law is a special case of Eq. (4.14), if b0 ≪ a0. Then DB ≪ Df and the Gaussian error
function can be approximated by erf(x) ≈ 1 − exp(−x2)

(
1− 1

2x2 − . . .
)
/
√
πx [2]. Applying

this to Eq. (4.11) we obtain c0 ≈ b0 (1+
DB

Df
) = b0 (1+

DB

DA

DA

Df
). In the range 0.05 ≤ b0/a0 ≤ 0.1

interesting for experiments, Antal et al. showed numerically that DA/Df is linear in a0/b0. This
leads to DA/Df ≈ ν1 + ν2b0/a0, yielding an approximation for c0,

c0 = b0

(
1 + ν1

DB

DA

+ ν2
DB

DA

b0
a0

)
, (4.15)

with 1 + ν1
DB

DA
and ν2DB

DA
numbers of order one. Since b0/a0 ≪ 1 it is possible to neglect the

last term in Eq. (4.15). It is not possible to argue this way already in the linear approximation of
DA/Df because the νs do not have the same magnitude. Inserting the approximation back into
Eq. (4.14) we obtain

p =
DCKspν1

DA(σ1b0 −Ksp)
+

DCKspν2b0
DA(σ1 −Ksp)

b0
a0

= F (b0) +G(b0)
b0
a0
, (4.16)

which is in the form of Eq. (4.3). The assumptions needed to derive Eq. (4.16) will be correct
for most macroscopic experiments. An important exception might be given by an experiment of
nanoscale particles in glasses [148]. In that case a0 and b0 have the same magnitude, but DB

seems to be one order of magnitude larger than DA. This leads to c0 ≫ b0 in contradiction
with Eq. (4.15). However, since only one experiment was carried out yet, we cannot see whether
Eq. (4.14) holds.

The width law

The width law has been neglected in the discussion of Liesegang pattern formation for a long
time because of difficulties in defining and measuring the width wn of the bands consistently. To
obtain a finite width in microscopical models one needs to introduce a non-local growth term and
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a second threshold as N(c, d) from Eq. (4.13). On the other hand it is also possible to generate a
width using Eq. (4.12) for macroscopic models, e. g. [55].

The first theoretical step in the direction of clarifying the law was done by Droz et al. [60]
using a model based on Eq. (4.12). They showed that the total mass mn of D material in the nth
band is proportional to xn. The concentration profile d(x, t) for t ≫ tn+1 will be stationary and
has a scaling function of the form, dn(x, t) = And[(x − xn)/wn] for xn ≤ x ≤ xn + wn, where
the amplitude An could depend on n. It is thus possible to relate mn with dn by integration,
mn = An

∫ xn+wn

xn
d[(x − xn)/wn] dx = γAnwn ∝ xn, where γ is the substituted integral over

dn. Using the first version of Eq. (4.4), wn ∼ xαn, this yields An ∼ xβn with α + β = 1 [60]. The
authors also discussed experiments, fitting the results with 0.9 < α < 1.

A more direct treatment was proposed by Racz [164]. Because the A + B → C process
is independent of the C → D process the number of C particles produced in the first process
is the same as the number of D particles ending up in the bands. The number of C particles
can than be calculated using the assumption that the constant concentration c0 behind the front
is really reached. Later, C precipitates into bands of D with a high concentration dh while
the low concentration cl of C remains between the bands. The particle conservation law yields
(xn+1 − xn)c0 = (xn+1 − xn − wn)cl + wndh leading to the width law in the form

wn = p
c0 − cl
dh − cl

xn ≈ p
c0
dh
xn, (4.17)

since cl is usually very small. If dh varies with the band position as dh ∼ xβn the width law takes
again the form wn ∼ xαn with α + β = 1.

4.3.4. Further reaction-diffusion models and comparison

For charged C particles it is possible to extend the nucleation and growth model such that nu-
cleation only occurs if the concentration of the outer electrolyte A exceeds a third threshold Ka.
Such models are known as induced sol coagulation models [182, 39, 53]. The additional thresh-
old is motivated by the fact that the repulsive electrostatic interaction between the C ions can be
screened by A particles. The model yields band formation significantly behind the reaction front
as observed in some experiments [103]. The functional form of p deviates from Eq. (4.14) [13],

p = 2
DC

Df

{[
c0
Ksp

(1−Ka/a0)

]2
− DC

Df

}−1

. (4.18)

A fourth category of models is called competitive growth models [75, 71, 68, 208, 40, 37, 121].
In these models, the precipitates D can dissolve with a probability decreasing with increasing
size of the precipitates. In special cases it is possible that the bands move [223], dissolve and
reprecipitate [199], such that the total number of bands leads to a chaotic time series.

It is possible to compare the F and G functions of the Matalon-Packter law (4.3) for the
supersaturation models with thresholds discussed in Sects. 4.3.2 to 4.3.3 and Eq. (4.18). As
already mentioned, the law is valid only for b0/a0 ≪ 1 and DB/Df ≤ 1. The ion product
supersaturation model (see Sect. 4.3.2) predicts F (b0) ∼ const and G(b0) ∼ Ksp/b

2
0, which is

in contradiction to experimental results yielding monotonously decreasing functions of b0 for F
and G [143]. The nucleation and growth model predicts F (b0) ∼ G(b0) ∼ Ksp/(σb0 −Ksp) ≈
Ksp/b0 if Ksp ≪ b0. The induced sol coagulation model predicts F (b0) ∼ K2

sp/b
2
0 and G(b0) ∼

(α/b30 + β/b20). In addition, Antal et al. [13] remark that a refined version of the sol coagulation
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model will converge to the nucleation and growth model in the limit Ka/a0 → 0. With such a
model it should be possible to vary the functional dependence of F such that F (b0) ∼ b−γ

0 with
1 ≤ γ ≤ 2, corresponding to 0.2 ≤ γ ≤ 2.7 observed in experiments, see [13] and references
therein. Such refinement is only possible if the C particle are charged. For uncharged C particles
the nucleation and growth model still yields the best predictions.

Comparing all four supersaturation models one can conclude that the nucleation and growth
model serves best as a reference model. It is the easiest model yielding the Matalon-Packter law.
Although it needs an intermediate state C, the model is actually most suitable for analytical and
numerical studies. The sol coagulation model and the competitive growth models, on the other
hand, can explain details observed in specific experimental setups, but they are not needed to
explain the basic universal laws discussed in Sect. 4.2. The variety of models yielding these laws
is remarkable. The same is true for the variety of physical, chemical and even geological systems
showing the phenomenon. This fact suggests that a very general mechanism governs the pattern
formation. Such a mechanism will be described in the next section.

4.3.5. The spinodal decomposition model with Cahn-Hilliard
dynamics

Although the supersaturation models described in the previous sections account for most of the
Liesegang phenomena, there are drawbacks. Firstly, the threshold parameters controlling the
growth of the bands are difficult to grasp theoretically and not easy to control experimentally.
Secondly, it is difficult to derive how the band formation could be manipulated in a desired way,
since the structure of the models is too complicated. Furthermore, the specific models might
seem insufficiently universal. Hence, a new approach free of thresholds and reaction-diffusion
equations was recently suggested by Antal et al. [12]. They studied only the second process
C → D of Eq. (4.5) applying the spinodal decomposition theory for phase separating processes
[84, 56] to describe the phase separation into bands. We note that the distinction between C and
D is actually not necessary here, since the bands correspond to areas with high concentration
c = dh, while there is little C between the bands, c = cl (see also Sect. 4.3.3). Although the
model was introduced to describe C → D processes it is equally valid for processes where the C
particles arrange in bands of high and low concentrations. Then the phase separation is assumed
to take place at a very low effective temperature leading to stable bands after long times.

As we have seen in the Sect. 4.3.3 the production of C particles in the A+B → C reaction is
well understood. The reaction front – an approximately Gaussian shaped region where C is pro-
duced at the rate R(x, t) given by Eq. (4.9) – moves diffusively with its centre at xf (t) =

√
2Df t

and its width increasing as wf (t) ∼ t1/6. Hence, the spinodal decomposition model can start
with the C particles. Their dynamics are described by a simple phase separating equation taking
particle conservation into account. The specific dynamics were introduced by Cahn and Hilliard
[31, 30]. We note that an equivalent approach is the so-called model B in critical dynamics [92].

In the Cahn-Hilliard equation the concentration of C, c, is represented by the so-called ’mag-
netization’

m = c− (cl + dh)/2. (4.19)

Then a Ginzburg-Landau-type free energy is defined in the simplest possible way required for
obtaining two minima. This free energy, illustrated in Fig. 4.4, is finally inserted into the Cahn-
Hilliard equation [164],

∂tm = −λ∂2x
[
ϵm− γm3 + σ∂2xm

]
+R(x, t), (4.20)
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Figure 4.4.: (Colour online) illustration of the spinodal decomposition model. The homogeneous part of
the free energy F is shown as a function of the ‘magnetization’ m = c − (cl + dh)/2. See
text for detailed explanation.

Here, R(x, t) is the source term introducing new C particles into the system via the A+B → C
reaction. The parameters ϵ and γ have to satisfy

√
ϵ/γ = (dh − cl)/2, while σ must be positive

to eliminate short-wavelength instabilities. λ and σ can be used to set the time-scale and length-
scale of the system, which leaves ϵ as the only free parameter. Since ϵ measures the negative
deviation of the temperature T from the critical temperature Tc, ϵ > 0 is needed for T < Tc. No
phase separation occurs for T > Tc.

The model can be understood most easily by looking at the free energy sketched in Fig. 4.4.
The source term R(x, t) moves the system form m = −me (for c = cl ≈ 0) over the spinodal
point −ms to m = m0 which corresponds to c = c0. Choosing m0 such that it is located in the
unstable regime, the system will move to the second stable regime at m = me corresponding
to the high concentration c = dh, i. e., band formation. The band becomes a sink for C, and its
width grows until the front moves away so thatm can decay belowms, and the unstable regime is
reached again, moving the system back to m = −me. Using this model it is possible to produce
Liesegang patterns satisfying the spacing law (4.2) in agreement with the Matalon-Packter law
(4.3) [164, 12, 59]. Due to the conservation of C particles the arguments regarding the width law
presented in Sect. 4.3.3 also apply here. Actually, the derivation of the width law in Eq. (4.17)
was introduced in the context of the spinodal decomposition model.

A special feature not observed in the threshold models is the low density phase with non-zero
c, which has been reported in many experiments. The spinodal decomposition model can also
be implemented for sophisticated conditions. For example, the effect of an additional electric
field was discussed recently this way [22]. However, this can be done similarly using a threshold
model [20].

4.3.6. The kinetic Ising model with Glauber and Kawasaki dynamics

An alternative way to model the phase separating dynamics was recently proposed by Magnin
et al. [11] along the lines of the kinetic Ising model for ferromagnets. The main advantage
is that this model fully describes the fluctuations, going beyond the mean-field approximations.
Like in the spinodal decomposition model (see previous section), the concentration of C (and D)
particles is represented as a magnetization. The particles are identified as spin-up sites in a cubic
lattice, while spin-down sites represent vacancies. Then the formation of precipitates is modelled
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by a combination of spin-flip and spin-exchange dynamics [61]. The Hamiltonian is the usual
nearest neighbour Ising Hamiltonian with ferromagnetic coupling J > 0 between the spins σr at
site r, modelling the attraction of the C particles,

H = −J
∑

neighbours r,r′

σrσr′ . (4.21)

Specifically, Glauber dynamics [80] are used to add the C particles in an initial state, in which
all spins are down. The spin-flip rate wr at site r is given by wr = R(r, t)(1 − σr)/2, with R
the source term discussed in Sect. 4.3.3 (see Eq. (4.9)). Since the width wf (t) ∼ t1/6 of the
reaction front is not changing much, a constant width leaving behind a constant concentration
c0 of C particles was chosen [11]. The diffusion and interaction of the spin-up sites, i. e., of
the particles, is modelled by a spin-exchange process with Kawasaki dynamics [109], wr→r′ =
[1 + exp (δE/(kBT ))]

−1 /τe. This exchange rate satisfies a detailed balance at temperature T .
The flip frequency τe sets the time scale, T is the temperature, kB the Boltzmann constant, and
δE the energy change.

2d and 3d simulations have been reported for this model [11]. In 2d no pattern formation
could be found for a wide range of parameters, in contradiction with previous work using lattice-
gas simulations [44, 45]. In 3d patterns emerge in a restricted parameter range. Due to limited
computational power no quantitative results for Liesegang patterns have been published yet and
fluctuations have not been analysed, indicating that the model needs further investigation.

In the next section, we will thoroughly discuss lattice-gas simulations for Liesegang pattern
formation, since these studies have already yielded quantitative results and fully include fluctua-
tions.

4.4. Lattice-gas simulations
In the previous section, we have seen that several mean-field models can reproduce the basic laws
of Liesegang pattern formation. However, there are problems not solved by mean-field models.

1. Is the spacing law valid for all distances or only asymptotically?
While simple mean-field theories yield xn ∝ (1+p)n or equivalently xn+1 = (1+p)xn, see
Sect. 4.3.2, experimental works usually report an asymptotic behaviour xn+1 → (1 + p)xn
for large n (Eq. (4.2)).

2. Which version of the width law is the true one?
While the mean-field theories generally yield wn ∝ xαn (see Eq. (4.17)), experiments have
been fitted successfully by both version of Eq. (4.4).

3. Which deviations from the Matalon-Packter law (4.3) or its more general mean-field form
(4.14) are relevant?
Although most experimental findings are consistent with the Matalon-Packter law (4.3),
one can expect deviations if DB is large or if fluctuations become important.

4. How stable are Liesegang patterns forming under different conditions and in nanoscale
systems?
Simple mean-field models assume the existance of quasi-periodic Liesegang patterns and
thus cannot be used to study the stability of the pattern formation process. In general, mean-
field quantities like concentrations are not well suited for studying nano-sized systems,
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since the number of atoms of one agent in a given small volume may fluctuate significantly.
These fluctuations can increase or decrease the stability of the Liesegang patterns.

5. What Liesegang patterns can be expected under special, restricted (e. g., dimensionally
reduced), or designed geometries?
This question is particularly important if self-organization of Liesegang patterns shall be
applied to design nanoscale devices. However, mean-field models usually assume a quasi-
1d geometry.

In this section we will address problems 1 to 3 by means of lattice-gas simulations. Problems 4
and 5 will be studied in later publications; we just briefly comment on them here.

Problem 4 can be addressed only by models that include the fluctuations of the particle num-
bers and thus go beyond the mean-field limit. Two major approaches in this direction have been
published so far: the kinetic Ising spin simulation reviewed in Sect. 4.3.6 [11], and lattice-gas
simulations on the basis of the nucleation and growth model by Chopard et al. [44, 45]. Since
the Ising model approach is still not so far advanced, we chose the second approach here. An
additional advantage is the existence of a corresponding mean-field model (see Sect. 4.3.3), that
the results can be compared with to find out deviations in the universal laws and effects of fluc-
tuations. Equations (4.14) and (4.17) represent the mean-field solutions for the spacing law and
width law, respectively.

Problem 5 has already been addressed by Liesegang himself since the first experiments were
in polar geometry. However, most theoretical work was done in quasi-1d geometry, and nobody
investigated how geometry affects the pattern formation and the empirical laws. A first step to-
wards new geometries was done in [23] using mean-field models plus a stochastic term. However,
this ansatz seems to be hard to control for some special geometries. Therefore we think that the
lattice-gas model can serve as a good candidate to test also new geometries and their influence
on the pattern formation.

Lattice-gas simulations can serve as a computational experiment to test how the mean-field
solutions can be applied to ‘experimental’ data and furthermore how fluctuations might cause
deviations from these solutions. As suggested by the separation of the two processes in the
nucleation and growth model, the lattice-gas simulation consists of two stages. In a first stage the
C particles are generated (cf. Sect. 4.3.3). The second stage simulates the precipitation of the C
particles by rules comparable with cellular automata (cf. Sect. 4.3.3).

4.4.1. First process: reaction-diffusion A+B → C

In the simulation, we consider a simple cubic lattice of size M × M × L with L ≫ M , see
Fig. 2(a). Each lattice site represents one cubicle (cell) of the system. Initially, the lattice is
homogeneously filled with B particles, i. e., there are on average b0 independent B particles on
each site. The A particles are placed on the left plane of the lattice with a0 particles on each of
the M ×M sites. The parameters a0 and b0 can thus be interpreted as concentrations per lattice
site. Typically, b0 is in between 10 and 200, while a0 is about twice as large. The mean-field limit
can be reached if either the considered cells are enlarged or the number of particles per cell is
increased. Thus, increasing both a0 and b0 but keeping their ratio constant, drives the simulation
to the mean-field limit.

The dynamics is modelled as follows. To simulate diffusion, both, A and B particles perform
independent random walks on the lattice. The diffusities DA andDB are defined as the probabili-
ties that a motion in either of the six possible directions takes place in a given time step [41, 115],
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i. e., DA and DB are proportional to the physical diffusivities. After each time step, the left plane
of the lattice is re-filled with A particles with the initial condition. A reaction A+ B → C takes
place with probability κ (κ = 1 in our simulations), if at least one A and one B particle is found
on the same site [49, 42]. Afterwards, all C particles also diffuse independently on the lattice
with diffusity DC . It was previously shown that the mean-field predictions regarding the reaction
rate R(x, t) (reviewed in Sect. 4.3.3) are in agreement with the simulations in 3d [49], while
logarithmic corrections occur in 2d [42].

Here, we use for the first time 3d lattice-gas simulations for Liesegang patterns in contrast to
the 2d setup employed by Chopard et al. [44, 45]. For an alternative 3d simulation see Sect. 4.3.6
[11]. To confirm that the mean-field limit is reached for large concentrations, we ran simulations
with different b0 (keeping a0/b0 constant) and found that c0/b0 becomes constant in agreement
with Eqs. (4.10) and (4.11). Figure 4.5(a) shows the simulated deviations from the mean-field
limit, which decay below one percent for b0 ≫ 2. We focus on b0 > 10, where the deviations
are below 10−4. In a 2d (or 1d) simulation, fluctuations would alter c0 such that c0/b0 does not
converge to the mean-field limit even for large b0 and a0 [42].

Since the mean-field solutions are valid for a 3d setup, it is possible to insert the C particles
directly. This ansatz was first used in a kinetic Ising scenario [11] (see Sect. 4.3.6). We employ
this idea to speed up our numerical calculations, since fully simulating the reaction-diffusion pro-
cess A+B → C reduces the computational speed by at least one order of magnitude. Otherwise
we could not work with concentrations b0 > 10 in sensible time. However, this approximation
reduces the fluctuations of C particle production, in particular for small concentrations.

The probability to insert C particles into the lattice is given by the reaction rate R(x, t) (see
Eq. (4.9)), with a centre position xf (t) moving as xf (t) =

√
2Df t to the right. Usually, Df

is calculated via Eq. (4.10), assuming that the A particles are distributed homogeneously for
x → −∞, i. e., a(−∞, t) = a−∞. In this case the A particle concentration outside the quasi-
stationary region (see Sect. 4.3.3) can be approximated by a(x, t) = a−∞−af

[
erf
(

x
2
√
DA t

)
+ 1
]

with a constant af . However, in our configuration, Eq. (4.10) needs to be modified, since the
concentration of A particles is held constant for all times on the left plane, i. e., for x = 0:
a(0, t) = a−∞ − af = a0. A straightforward derivation similar to the derivation of Eq. (4.10) in
[118] leads to the solution

erf

(√
Df

2DA

)
exp

(
Df

2DA

)
=
a0
√
DA

b0
√
DB

H

[√
Df

2DB

]
. (4.22)

Following [11] we approximate the nearly Gaussian-shaped reaction rate term R(x, t) by

R̃(x, t) =
Ãf√
t
Θ(x− xf +∆)Θ(xf +∆− x), (4.23)

with constant width 2∆ of the front. These simplifications are justified since the band forming
process does not depend on the exact form of the reaction zone [12] and the width of the front
increases very slowly in time (as t1/6, see Eq. (4.9)). The most important feature of the reaction
front is that it leaves behind a constant concentration c0 ofC particles. Therefore, Ãf in Eq. (4.23)
is chosen to be

Ãf =

√
2Df

4∆
c0. (4.24)

Figure 4.5(b) compares the simulated cLG0 with the c0 value inserted into the simulation via
Eq. (4.24). In contrast to a full simulation of the A + B → C reaction (see Fig. 4.5(a)), cLG0
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Figure 4.5.: (Colour online) (a) Deviations of the 3d lattice-gas simulations from the mean-field limit. The
values of simulated ratios cLG0 /b0 have been calculated from the plateau of c(x, t) observed
behind the diffusion front (see Fig. 4.3(b)). The corresponding mean-field value cMF

0 /b0
was calculated from Eq. (4.11). The red curve marks the (scaled) standard deviations of
the particle numbers per lattice cell from their means cLG0 indicating the fluctuations in the
production of the C particles. The simulation parameters are a0/b0 = 2, DA = 1, DB =
0.1. (b) Results of our lattice-gas simulations with C particles inserted in an approximated
reaction zone according to Eqs. (4.23) and (4.24). The values of simulated ratios cLG0 /c0
have been calculated as in (a). They are in good agreement with the inserted c0 for all
concentrations. Red curve same as for (a). The parameters are Df = 1.22 (calculated from
Eq. (4.22)) and ∆ = 3.

reaches the mean-field value already for small concentrations since the fluctuations induced by
the motion of the A and B particles are eliminated. Only the standard deviation (red curve)
of the number of particles per cell is similar as in Fig. 4.5(a), since the reaction front in (b) is
an approximation of the reaction front in (a) and both cause the same fluctuations in C particle
production.

4.4.2. Second process: Precipitation C → D

The second part of our lattice-gas simulation is the precipitation of C particles, generating the
immobile precipitate D. The nucleation of D depends only on c(x, t), while the growth of D
depends on both, c(x, t) and d(x, t), see also Sect. 4.3.3. In the particle picture of our lattice-gas
simulation the density will be the number of particles divided by the considered cell volume.
Here, this considered volume around a given lattice cell includes all neighbour cells, i. e., the 27
cells in a cube of 3× 3× 3 cells. This definition sets the mean reaction distance.

Two thresholds are introduced. If the mean local concentration of C particles (in the 27 cells)
exceeds a threshold Ksp, nucleation occurs. C particles in the vicinity of D particles precipitate
already if their mean local concentration exceeds a threshold Kp < Ksp. C particles on top of
D particles always precipitate, which makes the growth process fast enough to deplete a region
of C particles. Without this option the growth process would not terminate, and no additional
Liesegang bands could be formed. The resulting bands have distinct positions, which we will
denote by x′n in the following; their width is denoted by wn. We calculated x′n as the centre of
the bands, i. e., the mean of the positions of the first and last D particles within each band. The
corresponding widths wn are defined as the differences between these two positions.
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Figure 4.6.: Spacing law for simulated data depicted in a way different from Fig. 4.2(b), where x′n+1/x
′
n

was plotted versus n to observe the asymptotical behaviour (cf. Eq. (4.26)). Here, x′n+1

is plotted versus x′n to observe the linear behaviour with slope 1 + p and offset pξ (cf.
Eq. (4.27)), yielding p = 0.066 and ξ = 62. Parameter set for the 3d lattice-gas simula-
tion: a0 = 130, b0 = 65, DA = 1, DB = 0.1 (leading to Df = 1.22 and c0/b0 = 1.072);
DC = 0.1, Ksp/b0 = 0.93, and Kp/b0 = 0.52.

4.4.3. Reconsideration of the spacing law

Equation (4.2), i. e., the asymptotical convergence of the ratio of the positions of neighbouring
bands xn+1/xn → 1 + p for large n, was estimated from empirical findings; see Sect. 4.2.
On the other hand, theoretical analyses suggest that the ratio xn+1/xn is identical with 1 + p
[210, 163, 221, 111], as was discussed in Sects. 4.3.2 and 4.3.3. Although these two forms of
the spacing law contradict each other, both are still used in parallel without much considerations.
We propose a way to reconcile the experimental findings described by the empirical form of the
spacing law with the theoretical mean-field prediction.

In experimental and numerical results the position of the first Liesegang band is usually blurred
and thus not well defined, contrary to theoretical analyses. Thus, there is an arbitrariness in
choosing the position of the first band. Therefore, it is better to use different variables x′n for
the experimentally or numerically measured band positions and xn for the theoretical positions,
since there may be an offset ξ between them,

xn = x′n + ξ, (4.25)

due to, e. g., the blurred first band. Another possibility is that the mass of D in the first Liesegang
band as well as the band’s width cannot be close to zero as would be required if the linear increase
observed in Fig. 4.3(c) was beginning at x′ = 0. We will see later that usually ξ > 0, i. e.,
xn > x′n, indicating that the ideal laws are based on an ‘imaginary’ starting point outside the real
sample. In literature, however, significant confusion is caused by the fact that both variables, xn
and x′n, are not distinguished.

Studying measured values x′n, and assuming both, x′n = xn− ξ and the ideal mean-field result,
xn+1 = (1 + p)xn, one finds the asymptotic (empirical) form of the spacing law,

x′n+1

x′n
=
xn+1 − ξ

xn − ξ
= 1 + p

xn
xn − ξ

= 1 + p
x′n + ξ

x′n
= 1 + p+

pξ

x′n
→ (1 + p) (4.26)

for large n as in Eq. (4.2). Figure 4.2(b) shows this asymptotic behaviour as observed in simulated
data; note that actually the values of x′n rather than xn are plotted. The coefficient p is hard to
determine in such plots, especially if only few bands are present. A more convenient way to
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Figure 4.7.: (Colour online) reconsideration of the Matalon-Packter law based on 3d lattice-gas simula-
tions. (a) The yellow squares indicate simulation results for the spacing law coefficient p ob-
tained keeping b0 constant and varying a0. The straight line is a linear fit to the first four data
points using Eq. (4.3). (b) Simulation results similar to those shown in (a). Df and c0 are cal-
culated using Eqs. (4.22) and (4.11), respectively. The blue curve is a fit of Eq. (4.14), while
the red curve takes fluctuations into account. Parameters: b0 = 55, DA = 1, DB = 0.1,
DC = 0.15, Ksp/b0 = 0.96, and Kp/b0 = 0.52.

extract p from measured data is to fit the equation

x′n+1 = (1 + p)x′n + pξ, (4.27)

where pξ is the intersection with the ordinate, as shown in Fig. 4.6 for the same data. Even for
a small number of bands, p and ξ can be extracted conveniently. In addition, we believe that the
offset ξ is an important ingredient that should not be neglected in interpreting any experimental
or simulated data. However, it remains unclear if or how the value of ξ could be predicted.

4.4.4. Reconsideration of the Matalon-Packter law
The original Matalon-Packter law (4.3) predicts a linear dependence between b0/a0 and p. It was
shown in Sect. 4.3.3 that this empirical law holds for b0 ≪ a0 only. In addition, a more general
law was presented in Eq. (4.14) [13]. The deviations from Eq. (4.3) are even stronger in the
results of lattice-gas simulations. An example is depicted in Fig. 4.7(a). A linear dependence is
observed only for a0/b0 > 250, a criterion shown to be equivalent to DB/Df ≈ 1 [13]. If a0 is
reduced for constant b0, Df increases, driving the system out of the regime in which Eq. (4.3) is
valid [13]. Our lattice-gas simulations confirms these results, see Fig. 4.7(a).

Figure 4.7(b) compares a fit of the generalized Matalon-Packter law Eq. (4.14) (blue curve)
with the results of our lattice-gas simulations. The deviations are still quite large. Only if fluc-
tuations are taken into account by further modifying the generalized Matalon-Packter law, a nice
agreement can be reached. The formula used for the red fit in Fig. 4.7(b) will be discussed and
motivated in detail in a later publication.

4.4.5. Reconsideration of the width law
As discussed in Sect. 4.2 two competing empirical forms of the width law are used for fitting
experimental data,

wn = µ1xn + µ2 and wn ∝ xαn. (4.4)

Figure 4.8 shows the results of our lattice-gas simulations in both representations, because wn is
plotted versus x′n both linearly and double logarithmically. Clearly, it is not possible to favour
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Figure 4.8.: Reconsideration of the width law based on 3d lattice-gas simulations. (a) Linear presentation
of wn versus x′n (points) together with a fit of the first version of Eq. (4.4) with µ1 = 0.035
and µ2 = 3.4. (b) Double logarithmic presentation of the same data together with a fit of the
second version of Eq. (4.4) with slope α = 0.82. The same simulation as for Figs. 4.2 and
4.6 was used.

either of the two forms of the width law, since all widths are small compared with the size of the
sample and both fits have an equivalent quality.

On the other hand, in Sect. 4.3.3 a simple and general width law was deduced theoretically
(see Eq. (4.17)) using particle conservation. Assuming scaling behaviour of the band densities
dn, dn ∝ xβn, and setting cl = 0 (since no precipitate occurs between the bands in our simulation),
one obtains

wn = p
c0
dn
xn ∝ xαn (4.28)

with α = 1−β. This law was derived using the theoretical xn where the ratio for two consecutive
bands is constant, i. e., the exact form of the spacing law. A width law valid for experimental
or numerical data of the positions x′n of the bands can be derived introducing the offset ξ, see
Eq. (4.25). The analytical form of the width law thus becomes

wn = p
c0
dn

(x′n + ξ) = p
c0
dn
x′n +

c0
dn
pξ, (4.29)

which is in between the two competing empirical forms (4.4), since dn ∝ (x′n + ξ)β . Note that
pξ is identical with the offset of the fit for the spacing law (4.27). Hence, the parameter ξ is also
important for understanding the width law.

To test these predictions we have run simulations and fitted Eq. (4.28) to extract α from the
data disregarding ξ, i. e., inserting x′n directly for xn. The results are shown in Fig. 4.9(a), yellow
points. In a second approach we used the same data and inserted xn = x′n+ξ into Eq. (4.28), also
obtaining α as a fit parameter. The results are shown in Fig. 4.9(a), red points. Both approaches
lead to different values of α indicating that the offset ξ plays a significant role.

Since the width law depends on the density of the bands dn, it is not possible to distinguish
the correct form by just looking at the width exponent α. Therefore, we have also calculated the
densities dn in the numerical simulations. Figure 4.9(b) shows the exponent β obtained by fitting
dn ∝ x′n

β (yellow points) and dn ∝ (x′n+ξ)
β (red points). In addition, Fig. 4.9(c) depicts the sum

of both exponents from parts (a) and (b), α+β. The product wndn can be interpreted as the mass
mn of band n; it scales as mn = pc0xn = pc0x

′
n + pc0ξ according to Eq. (4.29). Thus, according

to theory, the mass exponent α+β must be one. The results shown in Fig. 4.9(c) indicate that this
holds only in the case where the offset ξ is taken into account correctly (red points), confirming
that ξ must not be disregarded.
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Figure 4.9.: (Colour online) fits of (a) width, (b) density, and (c) mass scaling behaviour based on our
3d lattice-gas simulations for different values of c0. The exponents have been obtained by
fitting a power-law to plots of (a) wn, (b) dn, and (c) mn = dnwn versus x′n (yellow dots)
and versus x′n+ ξ (red dots). The parameters of the simulations are identical with those used
for Figs. 4.2 and 4.6, except for varied c0.

4.4.6. Application to previous experimental data

We believe that much confusion in literature could be avoided if the difference between xn and
x′n was taken into account. In particular, the long-standing discussion about the width law could
probably be solved if the analysis of experimental data included plots versus xn = x′n + ξ. We
suggest that former experiments should be re-analysed using ξ and x′n to confirm our conclusions.

An experiment which confirms the result of Eq. (4.29) was published recently [156]. The
authors investigated pattern formation in a κ-Carrageenan gel. They measured x′n and wn for
different concentration of the outer solution. First they plotted x′n+1 versus x′n in a fashion similar
to Fig. 4.6 and extracted p. Looking at the plot, we can clearly see offsets corresponding to
pξ. Secondly they plotted wn versus x′n in a linear fashion similar to Fig. 4.8(a), extracting the
parameter µ1 = pc0/dn in Eq. (4.29), assuming constant densities dn. Looking at the plot, we
also clearly see offsets corresponding to µ2 = pξc0/dn (according to Eq. (4.29)). In addition they
determined c0/dn = 0.53. This means that the offsets of the width law must be approximately
half of the offsets of the spacing law. This conclusion is in quantitative agreement with the offsets
we read from the plots in [156]. The experimental data thus confirm our conclusion that the offset
ξ should be taken into account.

The differences of Eqs. (4.17) and (4.29) explain the different approaches used in experiment
and theory. In summary, we have solved problems 1 and 2 raised in the beginning of Sect. 4.4;
problem 3 was discussed in Sect. 4.4.4.

4.5. Summary and outlook

In this paper we reviewed the four empirical laws believed to govern Liesegang pattern formation
and several important mean-field models reproducing these laws as well as a few Monte-Carlo-
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type simulations. Based on our detailed 3d lattice-gas simulations of the nucleation and growth
model, we detected three major problems in reconciling the experimental reports with mean-field
results. However, our simulations also helped us to find a straightforward solution.

We have shown that all basic empirical laws describing Liesegang pattern formation, i. e., the
time law, the spacing law, the Matalon-Packter law, and the width law can be understood on the
basis of the nucleation and growth model. A full agreement between experimental observations,
simulation results, and mean-field models can be obtained only if a constant offset ξ between
measured and theoretically assumed band positions is taken into account, as suggested in this
work. A re-analysis of a previous experiment concerning the spacing law and the width law
confirmed our suggestion. We propose that further experiments should be re-analysed to test the
refined predictions.

In addition, we suggest further experiments with systematically varied concentrations of both,
inner and outer electrolyte to confirm or extend the generalized Matalon-Packter law (4.14). Our
current work in progress regarding the effects of fluctuations on Liesegang pattern formation
indicates that additional modifications of the Matalon-Packter law are necessary in small-scale
systems. Reliable experimental results for the nanoscale regime, where fluctuations are definitely
important, are expected to become available soon, since experiments with nanoscale particles
get feasible. A big open question will be how to manipulate the pattern formation such that
interesting nanoscale devices could be designed. A deeper understanding of the dynamics is
important for reaching this goal. For first promising works in this direction, see [150, 21, 10].
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5. Consequences of fluctuations in
Liesegang pattern formation
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Abstract: Using lattice-gas simulations we show that Liesegang pattern formation in reaction-
diffusion systems on small length scales can be described by a mean-field model, supplemented
with three first-order corrections. We find that fluctuations due to thermal motion of the particles
and due to impurities in the sample increase the number of Liesegang bands or even initiate pat-
terns not forming without fluctuations. I.e., noise enhances or even induces ordering. Therefore,
we suggest that it is possible to tune the number or distance of Liesegang bands by changing
the impurities in the sample. Moreover, it might be possible to measure the nucleation threshold
when changing the level of impurities in a micro- or nano-scale experimental setting.

5.1. Introduction

Pattern formation via reaction-diffusion processes can be observed in many fields of science
[15] and in a wide range of length scales [82]. The dynamics is often complicated [51] but
sometimes purely diffusive [107] or noise induced [181]. While some aspects can be described
and understood with analytically or numerically solvable mean-field models, other phenomena
require microscopic modelling approaches.

The pioneering papers on pattern formation in reaction-diffusion processes were published
by Liesegang [134] and Turing [205]. Most experimental [36] and theoretical [51, 141, 128]
work concentrated on the understanding of Turing patterns, which can be described by coupled
reaction-diffusion equations. Liesegang patterns (i.e., bands or rings), on the other hand, emerge
when diffusive motion is coupled with a fast nucleation process described by a highly nonlinear
term [55, 130, 131].

For more than hundred years, Liesegang patterns have been studied experimentally [134, 143,
161, 14, 77, 85, 148, 78, 204, 82, 23, 156]. In contrast to Turing patterns one finds regular
structures described by three well-defined rules concerning the spatial position xn, the formation
time tn, and the width wn of the nth Liesegang band (see [98] for a recent review):

• time law: xn ∝
√
tn [152],

• spacing law: xn+1 = (1 + p)xn [97],

• width law: wn ∝ xαn [103, 60, 55].

These laws have been derived in mean-field approaches based on (i) reaction-diffusion models
with a threshold [55, 13, 130, 131] and (ii) phase-separating models with spinodal decomposition
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5.2. Nucleation and growth model for Liesegang pattern formation

[12, 164]. Here, we focus on the spacing law and study the dependence of p on parameters of the
process. Since p > 0 in nearly all natural Liesegang patterns, the distance between neighbouring
bands is increasing with depth and with band index – the picture characteristic of Liesegang pat-
terns. Recently, however, suggestions for designing the xn in a macroscopic system, i.e. changing
the spacing law, have been obtained [10, 150, 21].

On the other hand, experiments could recently be scaled down to dimensions in the micrometer
[204, 78, 23, 82] and nanometer regime [148]. On small scales the coarse grained structure of
the sample and fluctuations induced by thermal motions of the particles or by impurities become
important. Such effects cannot be studied in mean-field calculations. However, in none of the
few microscopic simulations going beyond the mean-field limit [44, 45, 11] band formation was
studied quantitatively and compared with the mean-field models. In this paper we show that
lattice-gas simulation results for a nucleation and growth model with two thresholds can be fitted
by mean-field predictions if the formula for the spacing-law coefficient p is supplemented with
two correction terms.

The main focus of this paper is studying how fluctuations affect Liesegang pattern formation.
It has already been known for years that fluctuations do not always destroy order but they can
also enhance or initiate it [181]. Prominent examples are stochastic resonance [74, 217, 101] and
catalysis [194]. Here we show that fluctuations in Liesegang pattern formation (i) increase the
number of bands and (ii) can sometimes even initiate band formation. We find bands induced by
fluctuations due to the thermal motion of the particles and by impurities, i.e. by heterogeneous
nucleation. This effect could be used to control the number or distance of Liesegang bands. We
propose that it is possible to measure the nucleation threshold by changing the level of impurities
in a sample and fitting the spacing-law coefficient p with our extended mean-field formulas.

In the next parts of the paper we introduce the model and describe our lattice-gas simulation.
Then we summarize the main results of the corresponding mean-field theory and discuss sources
of fluctuations. The main parts of the paper are devoted to the discussion of the effects of fluctu-
ations on the spacing law, studying (i) thermal motion and (ii) heterogeneous nucleation.

5.2. Nucleation and growth model for Liesegang pattern
formation

Liesegang band (resp. ring) formation usually occurs when a first substance A is normally dif-
fusing into a gel or a glassy material from a planar surface (resp. from central point). The second
relevant substance B is initially homogeneously dissolved in the gel, which – contrary to a liq-
uid – prevents flow or convection. At the diffusion front of A, where it meets B, a fast reaction
A+B → C takes place, in which other (irrelevant) by-products might occur in addition toC. The
final step is precipitation: C aggregates and creates immobile clusters denoted by D, which form
the Liesegang bands. The details of the intermediate C stage might differ [98]. For Liesegang
bands emerging in glass [148], for example, A is hydrogen, B are silver ions, C are Ag atoms or
groups of 3-4 Ag atoms, and D are silver particles with sizes of several nanometers.

Most experimental and theoretical work as well as simulations focussed on the quasi-1d (one-
dimensional) setup, in which A enters the sample from a planar surface, although Liesegang
initially studied the polar geometry with A entering from the centre of a dish. The required
parameters include the initial concentrations of A and B, denoted by a0 and b0, the diffusivities
of all mobile agents, DA, DB, and DC as well as parameters describing the reaction and the
precipitation. Precipitation must involve highly non-linear terms to obtain Liesegang bands [55,
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Figure 5.1.: (Colour online) Depiction of the nucleation process. The dashed black line is the nucleation
threshold Ksp. The magenta line shows the concentration c(x) of C particles generated at the
reaction front (currently at x ≈ 350, not shown). The blue lines are the bands of precipitate
D, scaled down by a factor of 0.05.

130, 131]. For simplicity we focus on a model in which the reaction process (A + B → C) can
be separated from the nucleation and growth process (C → D) [55, 13, 98].

The reaction process is controlled by diffusion and well understood (see [98] and references
therein). Mean-field results with a critical dimension of two [49, 42, 118] show that the centre
of the reaction front moves diffusively (position xf =

√
2Df t) into the sample with an effective

diffusion coefficientDf . The value ofDf can be calculated self-consistently from a0, b0,DA, and
DB. Likewise, the asymptotic concentration of C particles behind the front, c0, can be calculated
analytically; it is approximately independent of the spatial position x [49, 42, 118, 98].

Due to the diffusion-limited character of the reaction process the precipitation will be fast
compared with the diffusion time. All reactions occur instantaneously in our simulation with time
steps chosen according to diffusional speed. Therefore a threshold Ksp for the concentration c(x)
of diffusing C particles is a good approximation to model the nucleation process. As depicted in
fig. 5.1 nucleation occurs and a new band forms if c(x) locally exceeds Ksp. The band will grow
consuming c(x) until the reaction front moved further to the right, allowing for sufficient C to be
generated and a new band to be nucleated. In this simple nucleation and growth model, all band
are infinitely narrow (see fig. 5.1). Bands with a finite width can be modelled by introducing
an additional threshold Kp < Ksp, such that C particles in the vicinity of D particles already
precipitate if their local concentration is above Kp.

5.3. Lattice-gas simulation

We have implemented a microscopic simulation of the nucleation and growth model based on a
lattice-gas approach. We refer to [44, 45] for a first qualitative 2d implementation and to [98]
for a more comprehensive description of our 3d implementation. Lattice-gas simulations use ex-
tended cellular automata; transport and reactions of the particles are governed by probabilistic
terms. Transport is modelled by a random walk of each particle, and nucleation and growth are
simulated by rules applied for each particle at each time step. Boundary conditions are imple-
mented according to the geometry of the lattice. Alternative non mean-field approaches would
be inserting a statistical term into the mean-field equations and solving these partial differential
equations numerically [23] or Ising-type models [11].

Our simulations are run on a 3d simple cubic lattice of size 32 × 32 × 2048. Although we
cannot rule out finite-size effects (below ≈ 20 percent) in fitted spacing-law coefficients p for
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Figure 5.2.: Results of the lattice-gas simulation with Df = 1.22, c0 = 58.96, DC = 0.1, Ksp =
50.93, and Kp = 20.37. (a) 2d presentation of the 3d patterns: all 32 slices (in z direction)
are plotted next to each other vertically (in y direction). Grey dots represent remaining C
particles and white dots represent the precipitated D particles. (b) 1d projection of the mean
number of particles (in the y-z planes). The continuous line shows the concentration of D
with peaks at both ends of each band due to the simulation rule of C always precipitating
when reaching D. If this rule is abandoned, the peaks vanish but the simulations become
much slower (since there remain many diffusing C particles). However, the patterns remain
unchanged. The straight dashed line is the nucleation threshold Ksp.

this lattice size, we have checked that the functional dependencies of p on our parameters are
not affected by them. Since the reaction A + B → C is well understood (see previous sec-
tion), we simulate only the precipitation process, i.e., we start already with the C particles. The
local rate of C particle generation is taken from the reaction zone profile following the mean-
field solution [49, 42, 118, 11]. If the local concentration of C, averaged over the 27 lattice
points in a local 3 × 3 × 3 cube, exceeds the nucleation threshold Ksp, nucleation occurs and
C becomes the immobile (not diffusing) D. This local averaging is needed since we neglect all
short-distance interactions. Basically we introduce a small-scale mean-field ansatz. We antici-
pate that all chemical reactions occur inside a single lattice cell while all nucleation and growth
reactions occur inside the extended box of 27 cells. These assumptions also set the length scales
of our simulations. The clusters of D grow at the expense of C, as long as the local concentration
of C plus D exceeds Kp < Ksp. In addition, C particles always turn into D when moving to a
lattice point where there is already D. Using this simulation procedure we can obtain realistic
Liesegang patterns with more than twenty bands, see fig. 5.2(a).

Altogether, there are five parameters in our simulation: the speed of the reaction front, Df ,
and the limit concentration of C particles, c0 (both of which can be calculated from a0, b0, DA,
andDB [49, 42, 118]), the diffusivityDC , the nucleation thresholdKsp, and the growth threshold
Kp. A constant value ofKsp describes homogeneous nucleation. Later, we also consider spatially
fluctuating values of Ksp, which models heterogeneous nucleation.

The main quantities needed to analyse Liesegang patterns are the positions xn and the widths
wn of the bands (see fig. 5.2(b)). Then we determine the spacing-law coefficient p by a linear fit
of xn+1 = (1 + p)xn + bp to the data; see [98] for a justification of the offset bp employed here.
To check the stability of p we perform three independent simulations for each set of parameters.
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Figure 5.3.: (Colour online) Least square fits of eq. (5.1) (lines) to simulation results (squares) for the
spacing-law coefficient p obtained varying DC in (a) and Ksp in (b). Fixed parameters are
Df = 1.22, c0/Kp = 2.07, and c0 = 26.8 (blue points), c0 = 58.96 (green points) as
well as c0/Ksp = 1.16 in (a) and DC = 0.1 in (b). Fitted parameters are F1 = 0.32 and
F2 = 1.33 (blue) and F1 = 0.3 and F2 = 1.24 (green). The dashed line in (b) marks
c0/Ksp = 1 + DC/2Df . Deviations from eq. (5.1) seem to occur for c0/Ksp < 0.95;
however, mean-field theory would not permit any pattern formation for c0/Ksp ≤ 1. Inset of
(b): the red squares are simulation results for varied Kp with fixed Df = 1.22, Ksp = 18.52,
c0 = 21.44, and DC = 0.2; fitted by F1 = 1− F ′

1Kp/c0 (red line).

5.4. Corrections to the mean-field spacing law
The most common way to describe the spacing-law coefficient p is the Matalon-Packter law
predicting a linear dependence of p on the ratio of the initial concentrations a0 and b0: p =
F (b0) + G(b0)b0/a0 [143, 161]. However, this rule was shown to be just a special case (for
b0 ≪ a0 and c0 ≈ b0 or DB ≈ Df ) of a more general law which was derived from a mean-
field theory of the nucleation and growth model described above which only depends on the
parameters of the nucleation and growth process [13, 98]. In the mean-field model, Liesegang
bands will emerge only if the nucleation threshold Ksp is lower than c0 and DC is sufficiently
small such that the value of p is positive.

In general, one can expect that p may depend on three dimension-less parameters, DC/Df ,
c0/Ksp, and c0/Kp. Since this mean-field model does not involve a growth threshold Kp, it
describes bands with zero widths. Broad bands, however, have some excluded volume around
their centres. The distances between them will thus be more similar with each other than for
narrow bands, i.e. p is reduced. We thus suggest a first order correction with an additional
dimension-less prefactor F1 depending on c0/Kp. In addition, we insert a second factor F2 to
take fluctuations (also disregarded in the mean-field model) into account; F2 will be discussed in
detail in the next section. With these two first-order corrections

p = F1
DC

Df

[
F2

c0
Ksp

− 1− DC

2Df

]−1

. (5.1)

To test this corrected formula quantitatively we have run simulations varyingDC (see fig. 5.3(a))
and Ksp (see fig. 5.3(b)) but leaving all other parameters constant. The figures show that our data
can be fitted very well by eq. (5.1) assuming constant values of F1 and F2. These results are
the first numerical test of the p (DC/Df , c0/Ksp) dependence by microscopic simulations. In
addition, the inset in fig. 5.3(b) shows the dependence of p on Kp. We have fitted the data with
F1 = 1 − F ′

1Kp/c0, showing that Kp/c0 enters linearly into the correction factor F1 in first or-
der approximation. Since the occurrence of F1 is not a consequence of fluctuations we will not
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discuss it further here.
The dashed line in fig. 5.3(b) separates the region where mean-field solutions for pattern for-

mation exists, c0/Ksp > 1+DC/2Df , from the region without any mean-field patterns. However,
due to the fluctuations in our microscopic simulation, we observe patterns also on the left hand
side of the dashed line – the regime of ordered patterns is expanded. The area close to the dashed
line is described very well by our first-order corrected formula (5.1) due to the correction factor
F2, but the approximation with fixed F2 seems to fail for c0/Ksp < 0.95. To understand the role
of F2 we now discuss in more detail the consequences of fluctuations.

5.5. Fluctuations due to thermal motion
The main focus of this paper is studying how fluctuations affect Liesegang pattern formation. The
fluctuations in the production of C particles can be neglected in a 3d setting, since the critical
dimension of the mean-field reaction-diffusion model is two [49, 42, 118]. We thus focus on the
consequences of fluctuations in the nucleation process.

Nucleation occurs if the local concentration of C particles, c, exceeds the constant limit Ksp.
The local value of c is defined by the number of C particles in a given lattice cell with volume Vc,
divided by Vc. Since the number of particles fluctuates due to the diffusion process, c also fluctu-
ates representing thermal noise. Without nucleation, the number of C particles in a given lattice
cell is thus a binomially distributed integer variable, and its mean c0Vc can be approximately
associated with the standard deviation

√
c0Vc. The mean-field limit is approached either by in-

creasing the volume Vc of the lattice cells or by increasing the concentration c0. In both cases,
the standard deviation

√
c0Vc will eventually become negligible compared with the mean c0Vc.

We can thus check for the consequences of thermal noise by reducing c0 and keeping both ratios
c0/Ksp and c0/Kp as well as Vc = 1 constant in our microscopic simulations. Any deviations
from a constant spacing-law coefficient p are then induced by thermal fluctuations.

Figure 5.4(a) shows that p is not constant, i.e. the mean-field result is clearly violated. In
fact, this equation just describes the limit of very large concentrations c0. For lower c0 we ob-
serve smaller values of p, i.e. more bands with smaller and more similar spacings. In addition,
fig. 5.4(b) shows that pattern formation with a specific p also occurs in the regime where there
should be no pattern formation according to mean-field results. Clearly, the thermal noise leads
to ordering, since the spacing-law coefficient p is reduced with decreasing c0 and patterns occur
even for c0 < Ksp.

Next we want to fit quantitatively our data obtained studying a very wide range of c0 values
(mean numbers of C particles per lattice cell) ranging from 1 to 200 and also various parameter
ratios c0/Ksp, c0/Kp, and DC/Df (see caption of fig. 5.4). To do this we must further elaborate
the first-order corrected mean-field formula (5.1). If c0 is reduced, keeping c0/Ksp constant,
the mean number of C particles in one lattice cell, c0Vc, decreases proportional to c0, but its
fluctuations decrease proportional just to

√
c0. In the case of low c0 we can assume that – due

to the thermal fluctuations – a reduced mean c0 will already be sufficient for nucleations, since
sometimes the actual concentration c will be c0 plus some factor times

√
c0. Thus, it is plausible

that c0 should be replaced by c0 + F ′
2

√
c0 or, equivalently, F2 = 1 + F ′

2/
√
c0 in eq. (5.1),

p = F1
DC

Df

[(
1 +

F ′
2√
c0

)
c0
Ksp

− 1− DC

2Df

]−1

. (5.2)

The parameter F ′
2 indicates by how many standard deviations the nucleation threshold Ksp may

exceed c0 for band formation to continue happening.
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5. Consequences of fluctuations in Liesegang pattern formation
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Figure 5.4.: (Colour online) Spacing-law coefficients p from simulations with constant ratios c0/Ksp and
c0/Kp (symbols) fitted with eq. (5.2) (lines). (a) Regime of mean-field pattern formation,
c0/Ksp > 1 +DC/2Df , with (from bottom to top) c0/Ksp = 1.32 (dark blue), 1.26 (light
blue), 1.16 (green), 1.11 (yellow), and 1.07 (orange). (b) Regime of no pattern formation
in mean-field, with (from bottom to top) c0/Ksp = 1.03 (dark blue), 1 (medium blue),
0.96 (light blue), 0.90 (green), 0.88 (yellow), 0.85 (orange) 0.83 (red). Further parameters:
Df = 1.22, DC = 0.1, c0/Kp = 2.07. (c) Values of the fitting parameters F1 (circles)
and F ′

2 (squares) in eq. (5.2) for c0/Kp = 2.89 (open symbols) and 2.07 (filled symbols),
Df = 1.22, and DC = 0.2 (green), 0.1 (blue), and 0.05 (red) versus c0/Ksp. The dashed
line marks Ksp = c0. We performed three Monte Carlo runs for each parameter set.

Equation (5.2) fits very well the data in both figs. 5.4(a) and (b). The fitted values for these
and several additional simulations are summarized in fig. 5.4(c). The area to the right-hand side
of the dashed line shows cases of pattern formation with a mean-field counter part, whereas the
area on the left-hand side describes fluctuation induced patterns. Errors are smaller for the case
c0 > Ksp. Both F1 and F ′

2 seem to have some dependence on Ksp, the dependence near Ksp ≈ c0
looks like a transition. However, since the region of possible Kp and Ksp values is limited in the
simulation, it is not feasible to determine numerically the (second order) corrections to F1 and
F ′
2 with sufficient precision. An analytical approach beyond the scope of this paper would be

needed.

5.6. Fluctuations due to heterogeneous nucleation
Up to now we have considered homogeneous samples with a constant nucleation threshold Ksp.
However, in gels or glasses there are always defects, impurities or even free volume, and the
nucleation of larger particles will probably be much easier in these locations. The consequences
of such heterogeneous nucleation can be studied easily in our microscopic simulation, if the value
of Ksp in each lattice point is considered as a fixed random variable. Here, we assume a normal
distribution of Ksp with mean Khet

sp and standard deviation σ. This distribution of nucleation
thresholds can be considered as a second source of fluctuations in the nucleation process.
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5.6. Fluctuations due to heterogeneous nucleation
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Figure 5.5.: (Colour online) Spacing-law coefficients p from simulations with heterogeneous nucle-
ation. (a) p versus c0 with fixed c0/K

het
sp = 0.93 for homogeneous nucleation, σ = 0

(yellow squares), and for heterogeneous nucleation, σ = 0.0185c0 (blue diamonds), and
σ = 0.0556c0 (red circles). (b) p versus σ/c0 for c0 = 107.2 fitted with eq. (5.3) (red line).
Fit results: F1 = 1.82, F ′

2 = 1, F ′′
2 = 2.825. There is no pattern formation for homogeneous

nucleation or heterogeneous nucleation with σ < 0.017c0 (vertical line) in this case. Further
parameters: Df = 1.22, DC = 0.1, c0/Kp = 2.07.

Figure 5.5(a) shows that heterogeneous nucleation further expands the regime of stable pattern
formation. If the fluctuations σ of Ksp are small, Liesegang patterns occur just for small c0,
since there is no mean-field pattern formation as c0 < Khet

sp . For large σ, on the other hand,
we observe stable patterns up to very large c0; i.e. the thermal noise is not needed to induce
pattern formation. Clearly, fluctuations due to heterogeneous nucleation decrease the value of
the spacing law coefficient p, leading to more ordered patterns, and induce pattern formation in
regions where it would be impossible with mere homogeneous nucleation.

A quantitative description of the behaviour of p is possible again. Since the local nucleation
criteria is c > Ksp, the consequences of heterogeneous nucleation are comparable with the con-
sequences of fluctuations induced by thermal noise we described in eq. (5.2) taking variations of
c0 into account via F2 = 1 + F ′

2/
√
c0. If σ is large, nucleation can occur already if c0 is much

smaller than Khet
sp . A second term proportional to the standard deviation divided by the mean,

σ/Khet
sp (similar to the term

√
c0Vc/(c0Vc) for homogeneous nucleation), must thus be added to

F2, leading to

p = F1
DC

Df

[(
1 +

F ′
2√
c0

+
F ′′
2 σ

Khet
sp

)
c0
Khet

sp

− 1− DC

2Df

]−1

. (5.3)

Figure 5.5(b) confirms this formula by numerical simulations in the region c0 < Khet
sp , where even

thermal noise is not sufficient to induce pattern formation, if merely homogeneous nucleation
occurs (at σ = 0).

If c0 is large, the term F ′
2/
√
c0 in eq. (5.3) can be disregarded. Now, one can imagine an

experimental setting in which the heterogeneity σ of the sample is known and can be varied, but
the nucleation thresholdKhet

sp is not known. By studying the patterns and the p values for different
c0, keeping σ constant, it will be possible to extract F1 and F2/K

het
sp = (1 + F ′′

2 σ/K
het
sp )/Khet

sp .
Repeating this for different values of σ one can extract 1/Khet

sp as the intersection of F2/K
het
sp

with the ordinate. We think that this might be an interesting method to determine the nucleation
threshold Khet

sp which is very hard to measure.
In general, fluctuations induced by heterogeneous nucleation reduce the spacing-law coeffi-

cient p and increase the number of Liesegang bands. It is thus possible to change the number
or distance of bands without changing the properties or concentrations of the reactants involved
in the pattern formation process. One only has to change the level of impurities or defects in
a sample. In contrast to thermal fluctuations, such changes can be realized with spatial varia-
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5. Consequences of fluctuations in Liesegang pattern formation

tions. We thus suggest that the spacing law can be modified by designing concentration profiles
of impurities or defects in the sample. This might be realized by strong focussed laser irradiation
of glass samples in an nano-scale Liesegang pattern formation experiment with silver particles
[148]. This way, it might be possible to obtain equidistant band formation without interfering
with the chemical reactions. Such designed Liesegang pattern formation could be used, for ex-
ample, in optics, where the spacing and the widths of the bands directly affect absorption and
scattering of light. It might become possible to produce different types of devices in the same
chemical setting just by changing the type of glass or the levels of impurities or defects.

5.7. Summary and conclusion
We have microscopically simulated Liesegang pattern formation based on a nucleation and growth
model with thresholds. The results show why experimental Liesegang patterns on very different
length scales are so similar and can be described by the same fundamental rules. The reason is
that fluctuations, irrespectively of their origin in either thermal motion of the particles or in im-
purities, defects or free volume in the sample, stabilize the pattern formation process. Contrary to
intuition the patterns are not disturbed by fluctuations, but the regime of stable pattern formation
is rather expanded. Consequently, the three major Liesegang rules, time law, spacing law, and
width law, apply also in systems with large fluctuations, e.g. in experiments on micrometer and
nanometer scales.

In addition, we have extended the mean-field formula for the spacing-law coefficient p with
three first-order correction terms including the effects of (i) bands with non-zero width, (ii) fluc-
tuations due to thermal motion of the particles on small scales, and (iii) fluctuations due to het-
erogeneous nucleation. We suggest that the formula can be used to fit experimental results and
to confirm the consequences of fluctuations in Liesegang pattern formation. Besides, it might be
used to extract the value of the nucleation threshold from experiments.

As a particularly attractive application of our results, we suggest that Liesegang pattern forma-
tion can be controlled by designing spatially varying concentrations of impurities or defects in
the sample. This way the ordering effect of the fluctuations could be used to control the number
or distance of Liesegang bands without interfering with the possibly delicate chemistry of the
reaction and nucleation processes or with the diffusion processes. This approach seems to be
complementary to recent suggestions [10, 150, 21].

Acknowledgements: We would like to acknowledge support from the Deutsche Forschungsge-
meinschaft (DFG, project B16 in SFB 418).
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6. Equidistant band formation of
precipitation in a reaction-diffusion
process
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Abstract: We study precipitation patterns occurring in diffusion-limited chemical reactions, fo-
cusing on Liesegang bands. Naturally these patterns are non-equidistantly spaced and thus less
useful for bottom-up material design. However, we show how a continuous large-scale modifica-
tion of the inhomogeneity of the substrate and/or the nucleation threshold can be used to obtain
equidistantly spaced bands on small length scales. We confirm our suggestions by lattice-gas
simulations and propose an iterative experimental procedure not requiring a-priori knowledge of
parameters.

Natural pattern formation can be found in many systems on various length scales [214] and
with many shapes and types [15]. Besides the aesthetic appeal of the patterns, efforts are driven
by the idea of designing devices in a bottom-up approach [82, 196, 188, 140]. One aims at
understanding and controlling the pattern formation processes to design materials with patterns
for special applications. Such an approach is complementary to top-down approaches, e. g.,
lithography. In particular, it allows to access the third dimension, i. e., patterns formed in the
direction perpendicular to the surface, without any material deposition techniques.

One of the promising phenomena for creating well-defined structures in a bottom-up approach
is Liesegang pattern formation [134, 143, 14, 85, 77, 204, 148, 78, 82, 23, 156, 126]. Liesegang
rings or bands typically form if a substance diffuses from a centre or a peripheral edge into an
initially homogeneous medium, where the reaction product precipitates and aggregates. The phe-
nomenon is observed on macroscopic length scales (centimetres), typically for reaction-diffusion
systems in gels [156, 126], but also in micrometer [204, 78, 23, 82] and nanometre regimes in
solid materials [148].

Liesegang patterns are quantitatively described by three laws governing the creation time tn,
the distance xn from the surface of the sample, and the width wn of the nth band: time law
xn ∝

√
tn, spacing law xn+1 = (1+ p)xn, and width law wn ∝ xαn (see [98] for a recent review).

These laws have been derived in mean-field approaches based on (i) reaction-diffusion models
with a threshold [55, 13, 130, 131] and (ii) phase-separating models with spinodal decomposition
[12, 164].

In this paper we show that it is possible to obtain equidistantly spaced patterns by changing the
coefficient p of the spacing law in a controlled fashion in space or in time. We derive a general
approach, which is independent of a specific detailed reaction process and does not need a-priori
knowledge of any process parameters.

We achieve equidistant patterns by either preparing a substrate with a gradient in the density of
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6. Equidistant band formation of precipitation in a reaction-diffusion process

Figure 6.1.: 2d representation of the 3d Liesegang patterns with equidistant spacing obtained in lattice-
gas simulations on a cubic lattice (32x32x2048). All 32 slices (in z direction) are plotted
next to each other vertically (in y direction). Grey dots represent mobile C, and white dots
represent precipitated D particles; A (not shown) diffused into the volume from the left.
Equation (1) is fulfilled (a) by spatial variation of the nucleation threshold Ksp(x) or (b) by
spatial variation of the strength of heterogeneities. The simulation parameters are as follows:
(a) c0 = 107.2, Df = 1.22, DC = 0.1, Kp = 19, F1/∆x = 0.01, F2 = 1 for equation (6.3),
and (b) c0 = 107.2, Df = 1.22, DC = 0.1, Khet

sp = 111, Kp = 37, F1/∆x = 0.005,
F2 = 1.1, F ′′

2 = 2.8 for equation (6.4).

nucleation seeds or with a gradient in the strength of heterogeneities. Our approach is based on
a theoretical formula for the spacing-law coefficient p originally derived in a mean-field model
[13] and recently extended to include several different types of fluctuations [99]. We verify our
predictions in a microscopic lattice-gas simulation [44, 45, 98, 99].

We define a pattern to be equidistantly spaced if the distance between the centres of all neigh-
bouring bands is identical, i. e. xn+1 = xn +∆x for all n; see figure 6.1 for illustration. Inserting
the spacing law xn+1 = (1 + p)xn yields the spatial dependence of the coefficient p,

p(x) = ∆x/x. (6.1)

Since the Liesegang bands are created successively in space and time according to the time law,
it is possible to transform equation (6.1) into a temporal version, i. e., p(t), if the reaction profile
is known.

Although equation (6.1) ensures that the spatial distances between the bands are identical,
their widths wn will not be the same. The reason is that wn not only depends on p but also on the
density dn of the precipitated particles in the nth band. Because of particle conservation we have
wn ∝ p xn/dn [164, 98]. Naturally, one finds wn ∝ xαn with α ≤ 1 [98, 44, 45, 55]. Therefore,
the density usually increases with the position of the band as dn ∝ x1−α

n . For equidistant bands,
on the other hand, this implies a decrease of the band widths, since wn ∝ ∆x/dn ∝ xα−1

n . This
is confirmed in the simulations shown in figure 6.1. However, the mass mn = wndn of the bands
is expected to be constant for equidistant bands. Nevertheless, the time law remains unchanged
unless the diffusion process is modified in space or time.

Using equation (6.1) it is possible to obtain equidistant banding if the p dependence of one
or more parameters of the reaction-diffusion process is known and if these parameters can be
changed systematically in space and/or in time. It is even sufficient to know the dependencies
in an empirical way. Parameters that could be varied include temperature, boundary conditions,
concentrations of reacting particles, etc. An alternative approach, however, is the spatial variation
of the substrate to impose the required p(x). For example, a change of the dimensionality, i. e., a
fractal structure would alter the diffusivity in space and time (fractal diffusion law).

Another possibility – the one we study here – is the spatial modification of the inhomogeneities
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Figure 6.2.: Spatial dependence of Ksp(x), solid line, and σ(x), dashed line, used for obtaining equidis-
tantly spaced Liesegang bands (same parameters as in figure 6.1).

or defects in the substrate, since nucleation and precipitation are altered by them. Experimentally
this could be achieved, e. g., in glass substrates by irradiation with intense laser pulses in order
to control Liesegang pattern formation of metal nano particles [148]. Since a broad (large-scale)
gradient of inhomogeneities induced in the substrate before the actual reaction-diffusion process
will be sufficient for equidistant banding on the micrometer scale (or below), this procedure can
be regarded as real bottom-up pattern formation. It is complementary to approaches directly
interfering with the detailed chemical reaction-diffusion processes in an homogeneous substrate
[21].

We base our approach for equidistant patterns on a theoretical formula for the spacing-law
coefficient p originally derived in a mean-field model [13] and later extended by three empirical
approximations to include the effects of a growth threshold for the precipitates, thermal fluctu-
ations of the particle densities, and random spatial fluctuations of the nucleation threshold [99].
The underlying nucleation and growth model for Liesegang pattern formation (see [98] for a
review) assumes that one substance (B) is initially homogeneously distributed in the substrate
and reacts with the other substance (A) diffusing into the sample from one surface. The reaction
product (C) is mobile, but precipitates to form immobile particles (D) if its local concentration
exceeds the nucleation threshold Ksp. In addition, the D particles grow at the expense of C as
long as the local concentration of C remains above the growth threshold Kp. In this scenario the
spacing-law coefficient is given by [99]

p = F1
DC

Df

[
F2

c0
Ksp

− 1− DC

2Df

]−1

(6.2)

with Df the effective diffusion coefficient of the reaction zone, c0 the limit concentration of C
(both of which can be calculated self-consistently from the initial concentrations and diffusivities
of A and B), and DC the diffusivity of C. F1 and F2 = 1 + F ′

2/
√
c0 are empirical parameters

approximating influences of the band widths (controlled by Kp) as well as thermal fluctuations,
respectively.

Inserting equation (6.1) into equation (6.2) it is easy to find the required spatial gradient of the
nucleation threshold,

Ksp(x) = F2
c0Df

DC

[
F1

x

∆x

+
Df

DC

+
1

2

]−1

. (6.3)

Figure 6.2 depicts Ksp(x) for the parameters of the simulation shown in figure 6.1(a). Clearly,
Ksp(x) is decreasing with depth x from the substrate surface. However, the necessary decay is
in general not a simple exponential as has been recently suggested for a specific detailed reaction
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6. Equidistant band formation of precipitation in a reaction-diffusion process

Figure 6.3.: Characterization of the bands depicted in figure 6.1, red symbols for homogeneous nucleation
and yellow symbols for heterogeneous nucleation. (a) Individual inter-band distances ∆x,n

(triangles) and masses mn (circles). The corresponding means and standard deviations are
∆x = 30.1±0.8 and 51.8±3.0 lattice points and m = 2919±107 and 4957±421 particles
for homogeneous and heterogeneous nucleation, respectively. (b) Band widths wn (circles)
and densities dn (squares).

process [150]. In order to optimize the number of Liesegang bands the parameters, in particular
Df/DC , must be tuned such that Ksp(x) decreases slowly.

Since the nucleation threshold might be difficult to modify directly in experiments, we also
study – as a second alternative – inhomogeneous nucleation with Ksp randomly fluctuating in
space. In this case it is sufficient to impose a gradient onto the width of the random fluctuations
of Ksp, which corresponds to imposing a gradient on the inhomogeneity of the substrate. We
consider a Gaussian distribution of the Ksp values with average Khet

sp and standard deviation σ
[99]. Then an effective threshold Keff

sp can be approximated by Khet
sp − F ′′

2 σ with an empirical
parameter F ′′

2 . Inserting Keff
sp into equation (6.2) and using again equation (6.1) one obtains

σ(x) =
Khet

sp

F ′′
2

− F2c0Df

F ′′
2DC

[
F1

x

∆x

+
Df

DC

+
1

2

]−1

. (6.4)

To achieve equidistant banding this way the constraint 0 < σ(x) ≪ Khet
sp must hold, since the

fluctuations cause random nucleation without banding if σ is in the order of the mean nucleation
threshold Khet

sp . However, σ(x) will eventually reach the mean nucleation threshold for large x
according to equation (6.4). Therefore, the parameters determining the gradient of σ(x) must be
chosen such that σ(x) ≪ Khet

sp within the length of the sample. Figure 6.2 shows the σ(x) used
in the simulation depicted in figure 6.1(b). Because the pattern formation does not start at x = 0
one does not need σ(x) > 0 for small x.

Next we test our suggestions for equidistant Liesegang bands in a microscopic simulation. We
impose equations (6.3) or (6.4), i. e., the gradients of Ksp(x) or σ(x) shown in figure 6.2, into a
lattice-gas simulation of the nucleation and growth model described above. We refer to [99, 98]
for a detailed description of the simulation procedure; note that Ksp and σ are kept constant in
these previous papers. Figure 6.1(a) shows a representative result for homogeneous nucleation
(spatial gradient Ksp(x), σ = 0), while figure 6.1(b) is obtained with heterogeneous nucleation
(constant Khet

sp , spatial gradient σ(x)).
Figure 6.3(a) confirms that the individual inter-band distances ∆x,n = xn+1 − xn and the

masses mn = wndn ≈ c0∆x,n are approximately constant. Figure 6.3(b) confirms that the
widths wn decrease with depth, while the densities dn increase. The equidistant bands formed
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by homogeneous or heterogeneous nucleation are fully equivalent, the numerical differences in
∆x and mn being merely due to the chosen parameters. However, it is harder to achieve a low
variance of ∆x,n and mn in the case of heterogeneous nucleation (see caption of figure 6.3).

The presented results of unbiased equidistant patterns have not been achieved in an ad-hoc way.
We have rather obtained them following an optimization scheme which is described next. Such
a scheme is necessary since the empirical parameters F1, F2, and F ′′

2 are not only unknown, but
they also depend on Ksp [99]. To make things worse, the positions xn of the bands are affected
by an offset ξ in both experimental and simulation results, such that the theoretical positions xn
are related to the measured x′n by xn = x′n + ξ [98]. Equation (6.1) thus has to be rewritten
as p(x′) = ∆x/(x

′ + ξ) with a ξ that is not know beforehand. The latter change also affects
equations (6.3) and (6.4), where x must be replaced by x′ + ξ.

Nevertheless, it is possible to achieve equidistant banding in an iterative procedure not requir-
ing a-priori knowledge of the parameters ξ, F1, F2, and F ′′

2 (for heterogeneous nucleation only).
Therefore, we are convinced that this procedure will also be applicable in experiments where the
nucleation and growth model is not describing the processes exactly. Such a practical approach is
consistent with bottom-up material design, since a full quantitative understanding of the process
is not needed, if the desired structures can be obtained reliably.

We start the iterative procedure with arbitrary F1/∆x, F2, F ′′
2 , and ξ′ = ξ + δξ, replacing x

by x′ + ξ′ in equations (6.1), (6.3), and (6.4). Since the error in guessing ξ is most crucial, we
denote it as δξ here. The errors caused by incorrect F1/∆x, F2, and F ′′

2 can also be dealt with
approximately via δξ as will be shown below. The bias error δξ causes a wrong spacing of the
bands x′n+1 − x′n = xn+1 − xn = p xn = ∆x(x

′
n + ξ)/(x′n + ξ′), i. e.,

(x′n+1 − x′n)(x
′
n + ξ′) = ∆x(x

′
n + ξ′)−∆xδξ. (6.5)

If the measured band positions x′n of an experiment yield a linear plot according to this equation,
both, ∆x and δξ can be extracted from the linear fit, see figure 6.4(a). Then it is possible to reduce
the linear trend in the inter-band spacings (due to δξ ̸= 0) by variation of ξ′ in the next iteration of
the experiment. On the other hand, if the plot according to figure 6.4(a) and equation (6.5) is not
approximately linear, the information on the reaction process is insufficient to achieve equidistant
banding.

Figure 6.4(b) shows that the bias error δξ can be eliminated by optimizing ξ′. Basically, one
has to determine a few points in the plot and find the zero of δξ(ξ′), which corresponds to finding
the real ξ. Note that the final value of the inter-band spacing ∆x is not known initially. Hence
several runs with different F1/∆x, F2, and possibly F ′′

2 might be needed until a requested value
of ∆x can be obtained. This is shown in figure 6.4(c), where the ∆x obtained for optimized
equidistant spacing (optimized ξ′ = ξ) is plotted for several values of F1/∆x and three values
of F2 (homogeneous nucleation) as well as for two sets of values of F2 and F ′′

2 (heterogeneous
nucleation). The figure confirms that our optimization procedure can be applied for very different
parameter sets. It suggests that the procedure might also work for Liesegang pattern formation
in systems, where the nucleation and growth model is not the best modelling approach. In the
experimental procedure, appropriate values for the parameters can be found iteratively, using
plots like those in figure 6.4.

In summary, we have described an iterative procedure for obtaining equidistantly spaced Liesegang
bands without a-priori knowledge of the specific process parameters. The approach is based on
a continuous large-scale modification of the nucleation threshold or the heterogeneity of the sub-
strate prior to the actual reaction-diffusion process leading to the banded precipitation. We have
derived the procedure from the nucleation and growth model and confirmed it in extended Monte-
Carlo lattice-gas simulations. We are convinced that the procedure can be applied experimentally
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6. Equidistant band formation of precipitation in a reaction-diffusion process

Figure 6.4.: (a and b) Analysis and optimization of the bias parameter δξ for obtaining equidistant bands,
red symbols for homogeneous nucleation and yellow symbols for heterogeneous nucleation.
(a) Fits of equation (6.5) (black lines) to the data of xn (circles) with ξ′ = −44 and −103 for
homogeneous and heterogeneous nucleation, respectively. The fits yield ∆x = 30.0 and 50.4
with bias parameters δξ = −0.75 and −26.85, respectively. (b) Bias parameters δξ versus
ξ′ as extracted from plots similar to the one shown in (a) and averaged over three configu-
rations. (c) Optimized ∆x for homogeneous nucleation (small symbols) and heterogeneous
nucleation (large symbols). The parameters c0 = 107.2 and Df = 1.22 are identical for all
results. We used DC = 0.1, Kp = 19, and F2 = 0.8 (red circles), 1 (yellow diamonds), and
1.25 (green squares) for homogeneous and DC = 0.05, Khet

sp = 111, Kp = 37, F ′′
2 = 2.8,

F2 = 1.1 (blue triangles), and 1.5 (purple stars) for heterogeneous nucleation.

and is not limited to systems exactly described by the specific model. We suggest that it can be
used in bottom-up material design for obtaining patterns in the direction vertical to a surface. The
process could eventually be combined with in-plane structuring techniques such as lithography
or precipitate dissolution (see, e. g., [113]) to obtain three-dimensional structures. Although we
have restricted this paper to equidistantly spaced Liesegang bands, replacing equation (6.1) with
an appropriately generalized ansatz and then following the same path will enable one to obtain
many other patterns.

Acknowledgement We would like to thank Frank Lange for running some of the initial com-
puter simulations. This work has been supported by the Deutsche Forschungsgemeinschaft
(DFG, project B16 in SFB 418). Acknowledgements: We would like to thank Frank Lange for
running some of the initial computer simulations. This work has been supported by the Deutsche
Forschungsgemeinschaft (DFG, project B16 in SFB 418).

78



7. The effect of a small magnetic flux
on the metal-insulator transition

Journal: Submitted to Physical Review B
Authors: Lukas Jahnke and Jan W. Kantelhardt
Institute: Institute of Physics, Theory group, Martin-Luther-Universität Halle-Wittenberg, 06099
Halle, Germany
Author: Richard Berkovits
Institute: Minerva Center and Department of Physics, Bar-Ilan University, Ramat-Gan 52900,
Israel
Abstract: We numerically show that very small magnetic flux can significantly shift the metal-
insulator transition point in a disordered electronic system. The shift for the 3d Anderson model
obeys a power law as predicted by Larkin and Khmel’nitskii (1981). We calculate the exponent
and find good agreement with the prediction. For small flux, the prefactor of the power law is
larger than expected, leading to a surprisingly strong dependence of the transition point on the
applied magnetic field. Furthermore, we show that the critical level-spacing distribution is hardly
changed by the magnetic flux if hard-wall rather than periodic boundary conditions are applied.

7.1. Introduction
The interest in measuring small magnetic fields is driven by the possibility to build smaller mag-
netic storage devices with high capacity. Much progress in the understanding of the magnetic
properties of condensed matter has been achieved in the last decades especially regarding thin
layers [120]. Some of the results were honored by the Nobel price in physics in 2007 for the
discovery of the giant magneto resistance by Fert and Grünberg.

In this paper we want to take a different path, studying the influence of a magnetic field on
the metal-insulator transition (Anderson transition) in a disordered sample [9] rather than on the
magnetization. Already in the eighties, Larkin and Khmel’nitskii [112] estimated the shift of
the metal-insulator transition point based on a single-parameter scaling theory of the localization
transition. This phenomenological theory assumes that two length scales determine the behavior
of the system. The first is the correlation (or localization) length as function of the disorder
parameter, ξ(W ) ∝ |W −Wc|−ν , where Wc is the critical disorder (at zero magnetic field) and ν
the scaling exponent of the correlation length. The second relevant length scale is the magnetic
length given by LB =

√
~/eB, where B is the magnetic field. Rewriting the usual single-

parameter scaling theory of the conductivity with the ratio of these two length scales Larkin and
Khmel’nitskii [112] obtained

σ(B,W ) ∝ e2

~LB

Φ

[(
LB

ξ(W )

)1/ν
]
, (7.1)

where Φ[x] is a scaling function equal to zero when x is of order of unity. The conductivity will
thus be zero for ξ ≈ LB, or, using the definition of the correlation length, the field-dependent
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7. The effect of a small magnetic flux on the metal-insulator transition

critical disorder Wc(B) is related to Wc(0) by Wc(B) −Wc(0) ∝ L
−1/ν
B ∝ B1/2ν for small B.

Replacing the magnetic field B by the magnetic flux ϕ yields

Wc(ϕ)−Wc(0) = Cϕβ/ν with β = 1/2. (7.2)

The prediction (7.2) was verified in different sophisticated analytical studies [219, 137, 35, 213,
159, 18, 179]. Numerical work, however, concentrated on the effect of large or random magnetic
fluxes [185, 108, 158]. A computation of the shift of the mobility edge as function of the magnetic
field was performed only once [58], with large error bars and for relatively large fluxes. However,
since Eq. (7.2) should hold in particular for small fluxes a more thorough numerical analysis is
needed.

Here we show that the shift of the critical disorder Wc for small magnetic fluxes generally fol-
lows the power law Eq. (7.2). We find a surprisingly large prefactorC, which leads to a very large
shift even for small values of ϕ. The shift is consistent with results obtained for larger ϕ earlier
[86]. However, deviations occur for very large fluxes in contrast to previously published results.
Basically, half of the total shift in Wc takes place for fluxes smaller than the ones previously
considered (ϕ < 0.01). This could possibly be exploited for devices detecting small magnetic
fields. Various experiments have demonstrated the possibility to reproduce properties seen in the
Anderson model including effects of magnetic fields [147, 211, 203].

In addition to the shift of the critical disorder Wc induced by ϕ > 0 a large change in the criti-
cal level-spacing distribution with magnetic field was reported [17]. These results were obtained
with periodic boundary conditions. On the other hand, it is known that a change of boundary
conditions also changes the critical level-spacing distribution [27, 173]. Here we show that for
hard-wall boundary conditions the critical level-spacing distribution function is nearly indepen-
dent of the magnetic flux. We also examine the second moment of the critical level spacing
distributions and confirm its dependence on the boundary condition [27]. Furthermore, we ex-
amine its dependence on the magnetic flux for periodic and hard wall boundary conditions and
find only very little changes in both cases.

The outline of the paper is as follows. In Section 7.2 we introduce the model and also describe
the finite-size fitting procedures we employed to determine the critical disorders Wc. In Section
7.3 we discuss the main results presenting the phase diagram and comparing with Eq. (7.2).
Section 7.4 is devoted to the effect of boundary conditions on the critical level spacing distribution
and its second moment. Section 7.5 gives conclusion and outlook.

7.2. Model and finite-size scaling approach
To study metal-insulator transitions (MIT) on a 3D simple cubic lattice we consider the tight-
binding Hamiltonian [9],

H =
∑
i

ϵia
†
iai −

∑
(i,j)

tj,ia
†
jai, (7.3)

where the first part represents the disordered on-site potential (homogeneous distribution −W/2 <
ϵi < W/2) and the second part describes the transfer between neighboring sites (i, j). A constant
magnetic field B induces a phase shift through the vector potential A for non-diagonal matrix
elements. Choosing Landau gauge, i. e. A = B(0, x, 0), the transfer probability is given by
ti,j = exp(2πıϕn) with n = ri · ex for neighboring lattice points where ri − rj = ±ey, and
ti,j = 1 otherwise. Here, we denote the ratio of flux φ trough a lattice cell with size a2 to one flux
quantum φ0 = h/e by ϕ = a2B/φ0. Note that the relation between the flux per plaquete and a
given magnetic field depends on the lattice constant a.
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Figure 7.1.: The level spacing distribution P (s) for a system of size L/a = 40 and magnetic flux ϕ =
10−3 per plaquete. In the metallic phase (blue curves) the level spacing follows the GUE
distribution (dotted blue curve) rather than the GOE distribution (dashed blue curve). A clear
transition from GUE to Poisson (dash-dotted red curve) behavior is observed as the disorder
increases from W = 8 (continuous red curve) to W = 23 (continuous blue curve). Inset:
System size dependence of I0 = ⟨s2⟩/2 for W = 10. With increasing system size the GUE
value (dotted line) is clearly reached asymptotically rather than the GOE value (dashed line).

In our numerical calculations the flux ϕ per plaquete (unit square) in the xy-plane is chosen
between 8× 10−4 and 1/4. The lowest value is derived from the smallest system size L/a = 14
considered. For lower fluxes the magnetic length LB/a = 1/

√
2πϕ would become smaller than

L, and the electrons could not accumulate a 2π phase shift. The largest flux we consider is
given by the symmetry of the problem [89]. We choose hard wall boundary conditions in most
calculations to avoid discontinuities in the phase accumulation of the hopping electrons due to
the magnetic field.

To calculate the eigenvalues of 3D systems with the Hamiltonian (7.3) we use an iterative
solver based on a general Davidson and Olsen algorithm [195, 195] where the matrix vector
multiplication is performed by Intel MKL Pardiso. We calculate six eigenvalues around |E| = 0
for each configuration with linear system sizes ranging from L/a = 14 to L/a = 40 lattice
points, accumulating between 2× 105 and 2× 106 eigenvalues for each system size. Only for the
two smallest fluxes ϕ = 8 × 10−4 and ϕ = 10−3 the system sizes are L/a > 20 and L/a > 17,
respectively, to fulfill the condition L≫ LB.

It is expected that a second-order phase transition occurs for a given critical disorder Wc. We
study this transition by analyzing the level-spacing distribution P (s) of consecutive eigenvalues
Ei, with s = (Ei−Ei−1)/∆E and the mean level spacing ∆E. In the limit of infinite system size
the level-spacing distribution P (s) of a disordered system corresponds to a random-matrix the-
ory result if the eigenfunctions are extended. For systems which obey time-reversal symmetry the
corresponding random-matrix ensemble is the Gaussian orthogonal ensembles (GOE), well ap-
proximated by the Wigner surmise, PGOE(s) = (π/2)s exp(−πs2/4) (dashed red line in Fig. 7.1).
A magnetic field breaks the time reversal symmetry, changing the ensemble to a Gaussian uni-
tary ensemble (GUE), for which the Wigner surmise yields PGUE(s) = (32/π2)s2 exp(−4s2/π)
(dotted red line in Fig. 7.1). In contrast to the metallic phase, the uncorrelated energy levels of
localized states are characterized by a Poisson distribution, PP(s) = exp(−s) (dashed dotted
purple line in Fig. 7.1), independent of the symmetry. For finite systems P (s) is between PGOE
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7. The effect of a small magnetic flux on the metal-insulator transition

(or PGUE with a magnetic field) and PP(s). However, it approaches one of them with increasing
system size, remaining system-size independent only at the transition point W = Wc.

To determine the critical disorder Wc(ϕ) we study the system-size dependence of the second
moment of the level spacings I0 = ⟨s2⟩/2 ≡ 1

2

∫∞
0
s2P (s) ds, see the inset of Fig. 7.1. From

one-parameter finite-size scaling arguments [183, 90, 91] it is expected that I0 will depend on the
disorder W and on the lattice size L if W ̸= Wc, but become independent of L at W = Wc. The
second moments of a Poissonian, GOE or GUE distribution can be calculated easily, yielding
I0,P = 1, I0,GOE = 0.637 (dashed line in the inset of Fig. 7.1) and I0,GUE = 0.589 (dotted line).

Figure 7.1 shows the level-spacing distributions of a system of size L/a = 40 and magnetic
flux ϕ = 10−3 per plaquete. A transition can be observed from a metallic phase, where the
level-spacing distribution is close to GUE, (W = 8, continuous blue line) to an insulating phase
with P (s) close to Poisson, (for W = 23, continuous red line). When comparing the continuous
blue line with the dotted blue curve, a clear similarity can be observed. This means that the
universality class of the metallic state is GUE [PGUE(s)] rather than GOE [PGOE(s)]. There is no
smooth crossover between GOE and GUE for linear system sizes larger than LB. The asymptotic
behavior can also be seen in the system size dependence of I0 shown in the inset of Fig. 7.1.
For large system sizes and low disorder (W = 10), I0 reaches the GUE value asymptotically.
The critical (system-size independent) level-spacing distribution Pc(s) and the corresponding
I0,c occur at Wc ≈ 17.25 (continuous green line in Fig. 7.1) for ϕ = 10−3. The form of Pc(s) will
be discussed in Section 7.4.

Since we choose hard boundary conditions we need to take care of finite-size corrections due
to irrelevant surface effects [187, 186]. Therefore we fit our data to a scaling form including these
irrelevant surface effects decaying with system size as a power law, I0 = F (ΨL1/ν ,ΞLy) with
the critical exponent ν, the relevant scaling variable Ψ, the leading irrelevant variable Ξ and the
leading irrelevant exponent y. For finite system sizes L no phase transition takes place and F is
a smooth analytical function. After expanding F to first order one gets

I0(ϕ,W,L) = F0(ΨL
1/ν) + ΞLyF1(ΨL

1/ν) (7.4)

where F0 and F1 are analytical functions and are expanded to third order in the analysis of the
numerical results. The relevant and irrelevant scaling variables are expanded in power series of
the dimensionless disorder w = (Wc −W )/Wc. The relevant variable is expanded to first order,
Ψ(w) = Ψ1(Wc−W )/Wc, whereas we expand to zeroth order the irrelevant variable, Ξ(w) = Ξ0.
In total there are eleven independent fit parameters with Wc and ν being the interesting ones
(see Ref. [187, 186] for the details of the procedure). In the procedure we fit our results of I0
to Eq. (7.4) using a least-square method, i. e., a state of the art non-linear least-square fitting
algorithm implemented in Mathematica.

Figure 7.2(a) shows results of such a non-linear fit for ϕ = 10−3 together with the simulation
results for five system sizes (L/a = 17, 20, 23, 30, 40). As expected and already indicated in the
inset of Fig. 7.1, I0 drops with increasing system sizes approaching I0,GUE for large system sizes
if W < Wc. For W > Wc, on the other hand, I0 increases with system sizes towards I0,P. At the
critical disorder Wc, I0 is system-size independent. The lines are the result of the simultaneous
fit. Although it seems that all lines cross at W ≈ 16.7 this is not the case as can be seen in the
inset. This is due to the non-relevant variables ΞLyF1 scaling with system size L.

Figure 7.2(b) shows that subtracting the non-relevant variables leads to a nice crossover for
Wc ≈ 17.25 indicating a system-size independent critical value of I0,c ≈ 0.854. Taking the
whole range of fluxes it is possible to draw a phase diagram of fluxes and critical disorders.

To achieve better accuracy we do not only fit the results for each flux ϕ separately but also
calculate combined non-linear fits over two ranges of fluxes form ϕ = 8× 10−4 to 4× 10−3 and
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Figure 7.2.: The localization parameter I0 = ⟨s2⟩/2 versus disorder W for system sizes L/a = 17 (red
circles), L/a = 20 (yellow squares), L/a = 23 (green diamonds), L/a = 30 (light blue
stars), and L/a = 40 (blue crosses) where a magnetic flux of ϕ = 10−3 is applied. The lines
correspond to fits of Eq. (7.4). The symbols correspond to I0. (a) A transition from extended
states for small W to localized ones for large W is seen for all sample sizes. Nevertheless,
the critical crossing point cannot be observed directly due to finite size effects. Inset: the
region around W = 16.7 zoomed in; there is no single crosspoint. (b) Corrected values of I0
where the influence of the irrelevant variables is subtracted. A clear transition can be seen at
Wc ≈ 17.25; all lines cross at one distinct critical disorder.

ϕ = 7 × 10−3 to 0.1. Such an approach is possible since Wc is the only parameter in Eq. (7.4)
changing significantly with ϕ for small values of ϕ. To check the stability of the fits we compare
the results for combined fits with those for individual fits.

7.3. Phase diagram and scaling behavior of the
transition

We have performed extensive numerical calculations for the entire range of magnetic fluxes [89]
from ϕ = 0 to 1/4. The data is analyzed according to the description given in the previous section.
For ϕ = 0 we retrieve the well-known GOE value for the critical disorder Wc = 16.57 ± 0.13
and the critical exponent ν = 1.62 ± 0.09 [187, 186]. For maximum flux, ϕ = 1/4, we find
Wc = 18.14 ± 0.12 slightly lower and ν = 1.54 ± 0.08 slightly higher than previous results
[185, 108, 158, 58]. The critical value I0,c is not changing much upon applying the flux; we
observe I0,c = 0.829± 0.006 and I0,c = 0.808± 0.008 for ϕ = 0 and ϕ = 1/4, respectively. The
result without flux is in agreement with previous work [27].

Figure 7.3 summarizes our numerical results for intermediate fluxes. The blue squares show
the results Wc(ϕ) for fits of each individual ϕ. The error bars have been calculated as standard
deviations obtained from approximately 1000 bootstrap samples each. The black symbols show
the results of combined fits for ϕ = 8 × 10−4 to 4 × 10−3 (squares) and ϕ = 7 × 10−3 to 0.1
(diamonds). The values of the most important parameters Wc, ν and I0,c of the combined fits are
also listed in Tab. 7.1. The error bars are the standard deviations for 500 bootstrap samples.

For the critical exponent we obtain ν = 1.42 ± 0.04 for small ϕ which is slightly lower but
within the error bar range of a previous numerical study [185, 108, 158] (ν = 1.43 ± 0.04). For
large ϕ we find ν = 1.62 ± 0.06. Our main goal, however, is studying the dependence of the
critical disorder Wc on ϕ. The purple fit in Fig. 7.3 corresponds to small and the red fit to large
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Figure 7.3.: The shift of the critical disorder Wc as function of the magnetic flux ϕ = a2eB/h. The
blue symbols correspond to non-linear fits of Eq. (7.4) for each individual ϕ. The error bars
indicate the standard deviation of approximately 1000 bootstrap samples. The black symbols
are based on simultaneous non-linear fit of Eq. (7.4) with fluxes ϕ = 8 × 10−4 to 4 × 10−3

(squares) and 7 × 10−3 to 0.1 (diamonds); the error bars are standard deviations of 500
bootstrap samples. The lines are linear fits of Eq. (7.2). Inset: the critical disorder Wc as
function of ϕ for all values of the magnetic flux in a linear presentation (same symbols).
Scaling holds for ϕ ≤ 0.1 only.

Table 7.1.: Combined fit results for fluxes ϕ = 8× 10−4 to 4× 10−3 and ϕ = 7× 10−3 to 0.1 of critical
disorder Wc, critical exponent ν, and critical I0,c. Further parameters are the shift exponent
β/ν, the shift pre-factor C and β. The error is estimated as the standard deviation of 500
bootstrap samples.

ϕ Wc Wc

0.0008 17.09 ± 0.06
0.001 17.14 ± 0.06

0.0015 17.21 ± 0.06
0.002 17.27 ± 0.06
0.004 17.44 ± 0.06
0.007 17.16 ± 0.08
0.01 17.27 ± 0.08
0.03 17.65 ± 0.08
0.1 18.16 ± 0.08

I0,c 0.846 ± 0.003 0.825 ± 0.005
ν 1.42 ± 0.04 1.62 ± 0.06

β/ν 0.31 ± 0.03 0.37 ± 0.03
β 0.45 ± 0.05 0.60 ± 0.07
C 4.9± 0.4 3.8 ± 0.1
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7.4. The critical level spacing distribution

ϕ. Since the calculation of the Wc(ϕ) values does not use ϕ as a fitting parameter, the power-
law behavior confirms the prediction (7.2) by Larkin and Khmel’nitskii [112] discussed in the
introduction. The exponents β = 0.45 ± 0.05 for small ϕ and β = 0.6 ± 0.07 for large ϕ are
approximately in agreement with the predicted exponent β = 1/2, [112, 219, 137, 35, 213, 159,
18, 179] showing that the predicted power-law holds in both regimes. The crossover between the
two regimes is mainly caused by a shift in I0,c (see Table I), i. e., slight modifications in the form
of the critical level spacing distribution (see next section). The shift occurs in the same way, if
other quantities like, e. g., γ = [

∫∞
2
P (s)ds −

∫∞
2
PGUE(s)ds]/[

∫∞
2
PP(s)ds −

∫∞
2
PGUE(s)ds]

are studied for determining Wc(ϕ). The crossover is comparable with effects caused by changing
boundary conditions and might be related with a crossover to fully developped GUE symmetry
upon increasing ϕ.

However, the prefactor C in Eq. (7.2) is surprisingly large in both cases, being 4.9 ± 0.4 and
3.8 ± 0.1 for small and large ϕ, respectively. The large C for small ϕ leads to a fast shift of
the critical disorder with increasing field (see inset of Fig. 7.3). This result is consistent with a
previous study considering larger ϕ only [86]. It is quite surprising how fast the critical disorder
rises for small ϕ. Already at ϕ = 0.004 more than half of the full shift in the critical disorder has
taken place [Wc(0.004) −Wc(0) = 0.87]. For very high magnetic fluxes (ϕ > 0.1) deviations
from the power-law scaling (7.2) occur. We believe that the observed sensitivity to small magnetic
fluxes may be used as a basis for building a magnetic sensor.

7.4. The critical level spacing distribution

In contrast to the critical disorder Wc the critical level-spacing distribution Pc(s) is not universal.
It depends on the boundary conditions [27] and the topology of the system. In the absence of a
magnetic field the peak of the level distribution is shifted to smaller values of s when the bound-
ary conditions are successively changed from periodic to hard-wall in each of the three spatial
directions [27]. The tails of Pc(s) for large s can be fitted by an exponential Pc(s) ∼ exp(−κs)
with κ = 1.87 for periodic boundary conditions [17] and κ = 1.49 for hard-wall (Dirichlet)
boundary conditions [173]. The critical level spacing distribution does not only change with
boundary conditions but also when a magnetic flux is applied. The increase for low s changes
from nearly linear to nearly quadratic, and the maximum becomes larger for periodic boundary
conditions [17]. However, we are not aware of published numerical results of Pc(s) for hard-wall
boundary conditions.

Figure 7.4 shows the critical level-spacing distribution functions Pc(s) for the Anderson model
with different magnetic fluxes ϕ and periodic as well as hard-wall boundary conditions. The re-
sults confirm previous studies in the case of periodic boundary conditions. However, the changes
in Pc(s) for hard-wall boundary conditions are hardly significant. The average curves for small
and large ϕ are very similar to the GOE curve (for ϕ = 0), but not fully identical. In the interme-
diate case, Pc(s) is slightly shifted to the left, possibly indicating a stronger effect of the boundary
conditions in this case. The tails of the critical distributions follow the ansatz P (s) ∼ exp(−κs)
with κ = 1.88 for periodic boundary conditions in good agreement with Ref. [17] independent
of ϕ. For hard-wall boundary conditions we find two values for κ, depending whether a magnetic
field is imposed or not. For ϕ = 0 the result of Ref. [173] is confirmed, κ = 1.49. With magnetic
field we find κ = 1.38 for all values of ϕ.
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Figure 7.4.: (a) The critical level spacing distribution functions for periodic and hard-wall boundary con-
ditions and different fluxes ϕ. For periodic boundary conditions Pc(s) depends strongly on
ϕ; examples for ϕ = 0 (dashed red line) and ϕ = 0.1 (dashed purple line) are shown. For
hard-wall boundary the dependence nearly vanishes, as can be seen from the behavior of the
continuous lines. The red line corresponds to the case without magnetic field, ϕ = 0. The
green and purple lines are the average Pc(s) for ϕ = 8×10−4 to 4×10−3 and ϕ = 7×10−3

to 0.1, respectively. The limiting distributions are also shown, black dotted line – Poisson
distribution, black dashed line – Wigner GOE, black dashed dotted line – Wigner GUE. (b)
Semi-logarithmical plots of the same data. The blue lines are fits to the tails with κ = 1.49
and κ = 1.38 in hard-wall boundary conditions for ϕ = 0 and ϕ > 0, respectively, and
κ = 1.88 for periodic boundary conditions.

7.5. Summary and concluding remarks
Our main goal has been to confirm that the shift in the critical disorder Wc(ϕ) for small values
of the magnetic flux ϕ follows the scaling behavior Wc(ϕ) − Wc(0) = Cϕβ/ν with β = 1/2
as predicted by Larkin and Khmel’nitskii [112]. After a careful numerical study we are able to
confirm this prediction, however, the prefactor C is larger than expected from previous numerical
studies [58, 86]. Very weak fluxes thus have a strong effect on the resistivity of a sample at low
temperatures. This type of behavior naturally leads to the idea that the effect might be used as
the basis of a very sensitive low-temperature sensor for magnetic flux.

In addition we have considered the effects of boundary conditions and magnetic fields on the
details of the metal-insulator transition of a 3D Anderson model. The results can be summa-
rized as follows. The critical disorder Wc is independent of the boundary conditions although
it depends on ϕ. The opposite is true for the second moment I0,c of the critical level spacing
distribution Pc(s), which is nearly independent of ϕ in hard-wall boundary conditions and only
depends on ϕ for periodic boundary conditions.
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8. Wave localization in complex
networks with high clustering
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Abstract: We show that strong clustering of links in complex networks, i. e. a high probability of
triadic closure, can induce a localization-delocalization quantum phase transition (Anderson-like
transition) of coherent excitations. For example, the propagation of light wave-packets between
two distant nodes of an optical network (composed of fibers and beam splitters) will be absent if
the fraction of closed triangles exceeds a certain threshold. We suggest that such an experiment
is feasible with current optics technology. We determine the corresponding phase diagram as a
function of clustering coefficient and disorder for scale-free networks of different degree distri-
butions P (k) ∼ k−λ. Without disorder, we observe no phase transition for λ < 4, a quantum
transition for λ > 4 and an additional distinct classical transition for λ > 4.5. Disorder reduces
the critical clustering coefficient such that phase transitions occur for smaller λ.

Anderson localization continues to spur excitement although half a century has passed since
it was first conceived in the context of electron transport through disordered metals [9]. Since
then new systems in which this phenomenon occurs were suggested and verified, such as light
in strongly scattering media [215, 197] or photonic crystals [172, 127], acoustical vibrations in
glasses [72] or percolation systems [106], and very recently atomic Bose-Einstein condensates in
an aperiodic optical lattice [25, 165]. Clearly, new complex topologies can lead to novel physics.
Therefore, in this Letter, we investigate the role played by clustering on the localization of waves
in an experimentally realizable system of an optical network.

An optical communication network may be considered as a graph with edges representing op-
tical fibers (or wave guides) and nodes representing optical units (essentially beam splitters) that
redistribute incoming waves into outgoing fibers. Although constructing such a small network
seems experimentally feasible, to the best of our knowledge it has not been performed. Theo-
retically, the propagation of electromagnetic or electronic waves in two and three dimensional
disordered systems was studied with nodes on a lattice and bonds connecting nearest neighbors
only [63]. However, if there are almost no losses along the edges, coherent effects are relevant
for all edges including those connecting nodes spatially far from each other. Thus transitions in
the transport properties of coherent waves on complex networks with long-range links are rele-
vant to typical real-world communication networks [207, 33] and can be studied experimentally.
Alternatively, one might consider a network of wave guides on the nanoscale similar to photonic
lattices [172, 127]. Specifically, we suggest that Anderson localization should be observed upon
changing the network topology [see Figs. 1(a,b)] instead of tweaking the disorder.
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Compared with standard lattices, complex scale-free networks have additional degrees of free-
dom which define the topology of the network [57, 162, 4]. Focusing on the exponent λ of
the power-law degree distribution P (k) ∼ k−λ in scale-free networks and the clustering coef-
ficient C (see below for exact definitions) [212, 209, 174, 177, 175, 176], we find that: (i) a
localization-delocalization transition is induced by increasing C even in the absence of on-node
(on-site) disorder W for λ > 4; (ii) the quantum transition point Cq moves to lower values when
W is increased (continuous phase diagram); and (iii) the scaling exponent ν is very close to the
mean-field value ν = 0.5 for all values of λ and Cq, as may be expected for a system with high
spatial dimension [65, 170]. We have also verified that similar results hold for networks with
homogeneous or Erdös-Renyi type degree distribution P (k). For P (k) ∼ k−λ with λ > 4.5 (ap-
proximately) there is an additional distinct classical transition at a clustering coefficient Cc > Cq.

Theoretically, one may attempt to study quantum phase transitions using a scattering formu-
lation of the wave propagation [178], or, as we have chosen here, by studying the spectrum of
an Anderson model [9, 119] representing the complex network. Usually, diagonal (on-site) or
non-diagonal (bond) disorder is introduced to obtain a localization transition [167]. An alter-
native approach is percolation, i. e. removing some fraction of all sites or bonds. In this case
a classical transition [135] in which the infinite cluster breaks into finite pieces is found after
the quantum phase transition [24]. Anderson and quantum percolation transitions, which seems
to be in the same universality class, have been studied on different topologies including fractal
structures [170], Cayley trees [166], and complex networks [47, 167]. In all cases, the transitions
were induced either by on-site disorder or by cutting bonds (percolation) and thus changing the
degree distribution of the network [47]. Here we show that it is possible to observe a quantum
phase transitions by changing the clustering of the network without introducing on-site disorder
or changing the degree distribution, thus keeping the total number of links constant. We find that
clustering drives a localization transition in a way similar to disorder. Both clustering and strong
backscattering due to disorder increase the probability of closed loops and thus the probability of
interference.

Many random network models have been proposed to reproduce important aspects of real-
world networks topologies [57, 162, 4]. The properties of such networks are usually character-
ized by four quantities: the degree distribution P (k) (distribution of the number of neighbors k
per node), the characteristic path length ℓ between two arbitrary nodes (small-world property),
the clustering coefficient C (probability of triadic closures) and the assortativity (degree-degree
correlations) [157].

Real-world networks exhibit a high clustering coefficient C indicating the presence of many
loops on short length scales [57, 162, 4]. This global measure can be achieved by averaging over
Ci = 2Ti/[ki(ki − 1)] [212], where Ti is the number of triangles passing through vertex i and
ki is its degree. However, since a global C cannot capture specific aspects of the network (e. g.
varying degree-degree correlations can lead to networks with different topology but similar C
[177, 175, 176]), it was suggested to average Ci within each degree class [207], yielding C̄(k).

To generate scale-free networks with tunable P (k) ∼ k−λ (see [47] for details) and C̄(k),
we have applied the algorithm suggested recently by Serrano and Boguñá [174]. Here we have
chosen

C̄(k) = C0(k − 1)−1, (8.1)

with C0 between 0 (no clustering) and 1 (maximum clustering), which can be obtained without
degree-degree correlations [177, 175, 176]. In the following, we will use the parameterC0 instead
of C or C̄(k), since a linear relation holds for C0 ≤ 0.9 (see inset in Fig. 8.1(d); larger C0

should be treated with care). We obtained similar, however less reliable, results when generating
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Figure 8.1.: (Color online) Representative pictures of the giant component of scale-free networks (λ = 5)
(a) without and (b) with clustering (C0 = 0.6). Both networks have giant components of
similar size (N ∼ 150); the size of the whole network being N = 150 for (a) and N = 200
for (b). The logarithmically scaled coloring presents the intensity of a mode with E ≈ 0.2,
red indicating the highest and violet the lowest probability. (c) degree distribution P (k) and
(d) clustering coefficients C̄(k) for scale-free networks with λ = 4 [line in (c)], C0 = 0.65
[line in (d) according to Eq. (8.1)] and N = 15000 nodes, averaged over 120 configurations.
Blue circles for distributions regarding the whole network and red squares for the giant com-
ponent (with ⟨N1⟩ = 11906 nodes; shifted vertically by a factor of 2). The inset shows that
a linear dependence between C0 and C holds also for the giant component if C0 ≤ 0.9.

networks with the algorithm of Volz [209] fixing C instead of C̄(k).
Figures 8.1(a,b) show two representative pictures of scale-free networks without and with clus-

tering. Figures 8.1(c,d) compare the theoretical P (k) and C̄(k) with the quantities we obtained
numerically, considering the whole network or just the giant component. One can see good agree-
ment in both cases. We want to stress that we do not change P (k), the total number of links, and
the number of nodes of the whole network, but only its structure by introducing clustering. Ba-
sically we rewire the network to achieve a higher clustering. The network can break for high
clustering because nodes with low degree aggregate in finite clusters. We checked that the corre-
sponding critical classical coefficient Cc is clearly larger than the critical quantum coefficient Cq

if such a classical transition takes place.
Since each triangle represents a very short loop in the network, waves in networks with high

clustering will have a high probability to return to the same node and to interfere. Since such
interferences are the main reason for quantum localization, one may expect that strong clustering
will induce localization. To study wave localization we consider the Anderson Hamiltonian [9,
119],

H =
∑
i

ϵia
†
iai −

∑
(i,j)

tj,ia
†
jai, (8.2)

where the first part represents the disordered on-site (node) potential (homogeneous distribution
−W/2 < ϵi < W/2) and the second part describes the transfer between each pair of nodes
(i, j). For optical waves, one has ti,j = exp(iφi,j) for connected nodes (φi,j is the optical phase
accumulated along the bond), and ti,j = 0 for disconnected nodes. For simplicity, we restrict
ti,j to random values ±1; the Hamiltonian thus remains in the orthogonal symmetry class. The
extension to unitary symmetry is straightforward. In this scenario, the on-site disorder W results
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8. Wave localization in complex networks with high clustering

from variations in the optical units (beam splitters) located at the nodes.
By exact diagonalization, we have calculated the eigenvalues of the Hamiltonian (8.2) on the

largest cluster for scale-free networks with various λ and C0. Figures 1(a,b) show the intensi-
ties corresponding to two eigenmodes. Then we applied level statistics [90, 91] to determine the
localization behavior of the modes and to extract the quantum phase-transition points. In disor-
dered systems with extended eigenfunctions the energy spacing distribution P (s) of consecutive
eigenvalues (levels) Ei corresponds to the random-matrix theory result, well approximated by
the Wigner surmise, PW(s) = (π/2)s exp(−πs2/4). For localized states the level spacings are
described by the Poisson distribution, PP(s) = exp(−s). For finite systems P (s) is in between
PW(s) and PP(s). However, it approaches one of them with increasing system size, remaining
system-size independent only at the transition point. To determine this point for model parame-
ters λ (exponent of degree distribution), C0 [Eq. (8.1)], and W [below Eq. (8.2)], we study the
system-size (N ) dependence, of

γ =

∫∞
2
P (s) ds−

∫∞
2
PW(s) ds∫∞

2
PP(s) ds−

∫∞
2
PW(s) ds

, (8.3)

where γ → 0 with N → ∞ for extended states and γ → 1 for localized states [183]. From
finite-size scaling arguments [183] we expect that γ around C0,q will not only depend on C0 but
also on the diameter of the network L,

γ(C0,W, L) = γ(C0,q,Wc, L) + (8.4)

[R1|C0 − C0,q|+R2|W −Wc|]L1/ν ,

where R1 and R2 are constants and L ∝ ln (a(C0)N) 1. This relation enables us to obtain the
critical clustering coefficient C0,q, the critical disorder Wc, and the critical exponent ν. Using
Eq. (8.4) we have determined C0,q and Wc for scale-free networks with various λ. We also
checked that equivalent results are obtained if other integral measures of P (s) are studied, e. g.,
I0 =

1
2

∫∞
0
s2P (s) ds.

Considering large scale-free networks without disorder (W = 0) but varied C0, Fig. 8.2 shows
P (s) versus s as well as the two limiting cases PW(s) and PP(s). One can clearly see that
the shape of P (s) changes from Wigner to Poisson with increasing C0. We thus observe an
Anderson-like transition although there are no disorder W and no changes in the degree distribu-
tion P (k). The inset of Fig. 8.2 shows γ for five system sizes versus the clustering strength C0.
One can observe the quantum phase transition at the critical value C0,q ≈ 0.69 by the crossing of
the five curves, indicating a system-size independent critical value of γc ≈ 0.76.

Figure 8.3(a) shows the phase diagram for the transitions from localized (upper right) to ex-
tended (lower left) optical modes. The horizontal axis (C0 = 0) corresponds to the case with
no clustering studied before by Sade et al. [167], where the critical disorder Wc depends on λ.
The main new finding of the present study regards the transitions on the vertical axis. Without
disorder, the transition to the localized phase occurs at a critical clustering C0,q that depend on
λ, i. e., the degree distribution. While even the strongest clustering C0 = 1 cannot achieve such
a transition if λ < 4, values of C0,q < 1 are observed for λ > 4. The case λ = 4 seems to be
limiting: this is the broadest degree distribution which allows a quantum phase transition upon
increasing clustering.

1The N dependence is well established [48] but the C0 dependence seems to be unexplored. Our data for N up
to 105 suggest ln a ∝ (C0 − C0,c)

−νc . Since C0,q < C0,c, a and thus L depend weakly on C0 at the quantum
transition.
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Figure 8.2.: (Color online) Level spacing distribution P (s) for optical modes on scale-free networks with
λ = 5, N = 12500 and no disorder, W = 0. A clear transition from Wigner (dashed
red curve) to Poisson (dash-dotted blue curve) behavior is observed as a function of the
clustering coefficient prefactor that is increased from C0 = 0.0 (continuous red curve) to
C0 = 0.90 (continuous blue curve). Inset: localization parameter γ [see Eq. (8.3)] versus C0

for networks with N = 5000 (red), N = 7500 (light green), N = 10000 (green), N = 12500
(blue), and N = 15000 (purple). A transition from extended modes for small C0 to localized
modes for large C0 is observed at C0,q ≈ 0.69. The results are based on eigenvalues around
|E| = 0.2 and 0.5.

If variations of C0 and W are considered, the full phase diagram can be explored. Evidently,
smaller values of C0 are sufficient for quantum phase transitions if W > 0. We obtained similar
phase diagrams for networks with homogeneous or Erdös-Renyi-type degree distributions (not
shown). Within our error bars the critical exponent ν corresponds to the mean-field value ν = 0.5
for infinite dimensions (see Fig. 8.3(b)) as expected from the Anderson transition [65].

To make sure that the quantum transition is induced by clustering and not by a classical phase
transition we determent the corresponding classical critical clustering coefficient C0,c. We find
no indications of a classical transition for λ < 4.5, i. e. the giant component is not broken. For
λ = 5 we find C0,c ≈ 0.85, significantly larger than C0,q ≈ 0.69 [see insets of Fig. 8.2 and
Fig. 8.3(c)]. We thus conclude that the quantum transition for W = 0 is clearly different from
the classical one in two ways: (i) there is no classical transition between 4 < λ < 4.5 although a
quantum transition is clearly seen, and (ii) for λ > 4.5, the quantum transition occurs for lower
C0 values than the classical one. This leaves an intermediate regime (C0,q < C0 < C0,c ≤ 1) in
which all modes are localized although there is a spanning giant cluster.

In summary, we have shown that quantum phase transitions of wave-like modes (similar to
the Anderson transition and to the quantum percolation transition) can be obtained in a complex
network without introducing on-site disorder or bond disorder or tampering with the degree dis-
tribution (i. e. the number and distribution of links). One only needs to change the clustering
coefficient of the network, which corresponds to a rewiring procedure.

We conclude that clustering represents a new degree of freedom that can be used to induce and
study phase transitions in complex networks. Comparing systems with different clustering prop-
erties might enable one to find the most relevant cause of quantum localization. We propose that
the phenomenon should be observable experimentally and relevant in complex coherent optical
networks made of fibers and beam splitters. Such experiments will directly probe the influence
of complex network topology on the Anderson localization of light [215, 197, 172, 127].
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Figure 8.3.: (Color online) (a) Phase diagram for transitions from localized optical modes (upper right)
to extended modes in parts of the spectrum (lower left) for different degree distribution ex-
ponents λ, λ = 4 (blue diamonds), 4.25 (magenta circles), and 5 (red squares). Data for
C0 > 0.9 are not reliable for network generation reasons, and the error bar for the point at
C0 = 1 is about 0.1. (b) Exponent ν for different λ and C0,q. The values are, within the error
bars (not shown), consistent with the mean-field prediction ν = 0.5. (c) Quantum transitions
without disorder (blue circles) and classical transitions (red squares) as a function of the de-
gree exponent λ. In the regime 4 < λ < 4.5 only quantum transitions occur. For W > 0 the
curves move downwards making quantum transitions possible for λ < 4 (green circles for
W = 5 and magenta circles for W = 10).
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9.1. Introduction

9.1.1. Motivation

Anderson localization continues to spur excitement although half a century has passed since it
was first conceived in the context of electron transport through disordered metals [9, 119]. Since
then new systems in which this phenomenon occurs were suggested and verified, such as light
in strongly scattering media [215, 197] or photonic crystals [172, 127], acoustical vibrations in
glasses [72] or percolation systems [106], and very recently atomic Bose-Einstein condensates
in an aperiodic optical lattice [25, 165]. The Anderson transition, first predicted in 1958 [9], has
been a central topic in condensed matter physics for the last half century. The main idea is that a
phase transition from extended (metallic) to localized (insulating) eigenstates exists as a function
of the disorder or energy of a quantum system. This transition will be manifested by a change
in the transport through the system from metallic to insulating conductance. The transition is
conceptually different from the canonical explanation for the existence of insulators in solid state
(i. e., the Fermi energy is in the gap between energy band), since for the Anderson insulator the
Fermi energy is in the middle of the band. Nevertheless, since the states available are localized
due to the disorder, no current can pass through the system.

Although the insulating behavior is due to disorder, it is nevertheless quite different in origin
from the percolation transition. While in the percolation transition no direct path exists between
the two edges of the sample, in the Anderson transition such paths do exist, nevertheless the
probability of current transversing the sample is exponentially small due to constructive interfer-
ence between time reversed paths. Thus, the Anderson transition takes into account the quantum
(or wave) nature of the particle diffusing through the sample, while the percolation transition is
classical in nature.

The fact that the Anderson transition depends on interference effects between time reversed
paths leads to an interesting dependence of the Anderson transition on the dimensionality of the

93



9. Wave localization on complex networks

Figure 9.1.: Possible realizations of optical networks constructed from beam splitters (cavities) repre-
sented by circles and optical fibers (wave guides) represented by lines. (a) A regular lattice.
(b) A complex network.

system. The lower critical dimension, below which the system is localized for all values of dis-
order, is believed to be two [1], since the probability of returning to the origin (i. e., constructive
interference due to time reversal symmetry) stays non-zero in the limit of infinite system size for
d ≤ 2. The upper critical dimension (for which the system remains metallic for any amount of
disorder) remains uncertain although it is generally believed to be infinity [34, 122, 198, 136, 65].

Most of the studies concerning the Anderson transition have considered regular lattices with
on-site or bond disorder. Interest in the influence of the unusual topologies of complex networks
on the properties of quantum interference is rising. Indeed, recently the Anderson transition in
particular networks, namely small-world networks [222, 79, 81], the Cayley tree [166], random
regular graphs, Erdös-Rényi graphs and scale-free networks [167] were studied. One may justify
this interest by the light the study of the Anderson transition on complex networks sheds on the
general properties of the transition, but here we would like to emphasis that complex networks
could be actually realized in real-world situations such as optical networks.

Hence we shall begin by describing an example of an experimentally realizable system of a
complex network, i. e., an optical network. We shall show that optical networks may be described
using a tight binding Hamiltonian. We shall then describe how one can determine the properties
of the Anderson transition using our knowledge of the statistical properties of the eigenvalues of
the Hamiltonian. Then the Anderson transition properties of different complex networks will be
studied. Finally we investigate the role played by clustering on the localization of waves. We
shall show that new complex topologies lead to novel physics, specifically clustering may lead to
localization.

9.1.2. Optical network

A fresh view on the relevance of complex network models to real-world localization comes from
considering optical networks. There is a long history of considering optical (or microwave)
systems as a tool to analyze localization behavior. In 1982 Shapiro [178] has generalized a
model proposed by Anderson et al. [8] to describe localization in disordered systems. Instead
of considering a tight-binding description of a lattice, Shapiro considers a model in which sites
are represented by beam splitters or cavities and bonds by optical fibers or wave guides (see
Fig. 9.1(a)). From a theoretical point of view, this description is convenient in order to describe
the system using the scattering matrix formalism. This description was taken a step further by
Edrei et al. [63] who applied it to describe the dynamics of wave propagation (for example
acoustic or light waves) in a disordered medium.

One should realize that such a description can form the basis of a realistic network which may
be built in a lab. For example a network of beam splitters and optical fibers similar to the one
sketched in Fig. 9.1(b) may be constructed and its localization properties experimentally studied.
Since optical fibers have a very low loss rate, there is no essential difference between connecting
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neighboring nodes of the network, or far away ones. Moreover, since in any realistic optical set-
up the length of the optical fiber is much longer than the wave length even for nearest-neighbor
nodes, there is no correlation between the phase gained by the wave as it transverses the distance
between two nodes and the physical distance between the nodes. Thus, in principal any form
of a complex network (small-world network, Cayley tree, random regular graph, Erdös-Rényi
graph and scale-free network) can be constructed and measured on an optical bench. Although
constructing such a small network seems experimentally feasible, to the best of our knowledge it
has not been performed.

Thus transitions in the transport properties of coherent waves on complex networks with long-
range links are relevant to typical real-world communication networks [33, 207] and can be stud-
ied experimentally. Alternatively, one might consider a network of wave guides on the nanoscale
similar to photonic lattices [172, 127].

Although we illustrated the analogy between optical and electronic systems using the scattering
matrix formulation it is nevertheless quite general. It is known that the scalar wave equation is
a good approximation for the propagation of an optical wave in an inhomogeneous medium as
long as polarization effects are not important. The scalar wave equation may be written as

∇2Ψ+
ϵ(r)

c2
∂2

∂2t
Ψ = 0, (9.1)

where ϵ(r) = 1+δϵ(r) describes the local fluctuations in the dielectric constant and c is the speed
of light. Assuming a monochromatic wave one may rewrite Ψ(r, t) = ψ(r) exp(iωt), where ω is
the frequency of the wave. Inserting Ψ(r, t) into the scalar wave equation (Eq. (9.1)) will result
in

−∇2ψ − δϵ(r)ψ =
(ω
c

)2
ψ. (9.2)

When this is compared with the stationary Schrödinger equation with a varying potential U(r) =
U + δU(r),

−∇2ψ +
2m

~2
δU(r)ψ =

2m

~2
(E − U)ψ, (9.3)

it can be seen that the Schrödinger equation and the scalar wave equation in random media are
identical up to constants. Thus, one may use techniques developed in the field of electronic lo-
calization in order to study the properties of optical networks. One such approach is determining
the Anderson transition from the statistics of the eigenvalues of the Hamiltonian describing the
system. In the extended phase the distribution of the eigenvalues is expected to follow the ap-
propriate Gaussian ensemble (i. e., if the Hamiltonian follows time-reversal symmetry it should
follow the Gaussian orthogonal ensemble, GOE, while in the presence of a magnetic field which
breaks time-reversal symmetry it is expected to follow the Gaussian unitary ensemble, GUE). On
the other hand in the localized regime the eigenvalues are expected to follow Poissonian statistics.
Thus, by changing the disorder a system described by Eq. (9.3) should exhibit a transition from
the appropriate Gaussian ensemble in the metallic phase to a Poisson statistics in the localized
phase. This transition should show the usual finite-size behavior expected for a second order
phase transition, and thus finite-size scaling may be used to determine the transition point [183].

9.1.3. Introduction Anderson model and level statistics
To study wave localization we consider the Anderson Hamiltonian [9],

H =
∑
i

ϵia
†
iai −

∑
(i,j)

tj,ia
†
jai, (9.4)
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Figure 9.2.: The distribution P (s) for a 500 sites scale-free graph with λ = 4 (m = 2). A clear transition
from Wigner to Poisson is observed as a function of disorder.

where the first part represents the disordered on-site (node) potential (homogeneous distribution
−W/2 < ϵi < W/2) and the second part describes the transfer between each pair of nodes
(i, j). For optical waves, one has ti,j = exp(iφi,j) for connected nodes (φi,j is the optical phase
accumulated along the bond), and ti,j = 0 for disconnected nodes. For simplicity, we restrict
ti,j to random values ±1; the Hamiltonian thus remains in the orthogonal symmetry class. The
extension to unitary symmetry is straightforward. In this scenario, the on-site disorder W results
from variations in the optical units (beam splitters) located at the nodes.

Then we applied level statistics [91] to determine the localization behavior of the modes and
to extract the quantum phase-transition points. The Hamiltonian is diagonalized, and one obtains
N eigenvalues Ei (where N is the number of nodes in the graph). A very useful characterization
of the statistics of the eigenvalues is the distribution P (s) of adjacent level spacings s, where
s = (Ei+1 − Ei)/⟨Ei+1 − Ei⟩, and ⟨. . .⟩ denotes averaging over different realizations of disorder
or other random features of the network such as different realizations of node connectivities.

One expects the distribution to shift as function of disorder from the Wigner surmise distribu-
tion (characteristic of Gaussian orthogonal ensembles),

PGOE(s) =
πs

2
exp

[
−πs

2

4

]
, (9.5)

at weak disorder to a Poisson distribution (characteristic of localized states) at strong disorder,

PP (s) = exp[−s]. (9.6)

Examples of such transitions for a particular complex network can be seen in the following sec-
tions (Fig. 9.2). As the on-site disorder W increases, P (s) shifts from the GOE toward the
Poisson distribution. Additional features of the Anderson transition, such as the fact that all
curves intersects at s = 2 and the peak of the distribution climbs along the Poisson curve for
larger values of W are also seen.

At the transition the distribution will not change as function of the system size while for weaker
disorder the distribution will become more GOE like as the system size increases and for stronger
disorder it will become more Poisson like as function of the system size. The transition point can
thus be determined by a finite-size scaling procedure [183], which will be described in detail
further on.

96
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9.2. Statistical properties of the spectra of complex
networks

In the following section we shall present the results of numerical studies of the spectral statistics
of different classes of complex networks which have been mainly published in Ref. [167]. The
features of the Anderson metal-insulator transition are found to be similar for a wide range of
different networks. A metal-insulator transition as a function of the disorder can be observed for
different classes of complex networks for which the average connectivity is small. The critical
index of the transition corresponds to the mean field expectation (i. e., ν = 0.5). When the
connectivity is higher, the amount of disorder needed to reach a certain degree of localization
is proportional to the average connectivity, though a precise transition cannot be identified. The
absence of a clear transition at high connectivity is probably due to the very compact structure of
the highly connected networks, resulting in a small diameter even for a large number of sites.

9.2.1. Characteristics of the different Networks

We shall begin by a short definition of the characteristics of the different networks we consider.

Random graph

A random graph (or- random regular graph) is a graph withN nodes, each is connected to exactly
k random neighbors [4]. The diameter of a graph is the maximal distance between any pair of its
nodes. In a random graph the diameter d is proportional to lnN . In Sect. 9.2.3 we shall present
results of the level spacing distribution for random-regular graphs with k = 3 .

Erdös-Rényi graphs

In their classical model from 1959 Erdös and Rényi (ER) [67] describe a graph with N nodes
where every pair of nodes is connected with probability p resulting in ⟨k⟩ = Np. For a large
random graph the degree distribution follows the Poisson distribution:

P (k) = e−⟨k⟩ ⟨k⟩k

k!
. (9.7)

The diameter of such a graph follows: d ∼ lnN , similar to a random graph. In Sect. 9.2.3 we
have specifically calculated the level distribution for ⟨k⟩ = 3, 3.1, 3.2, 3.5, 4, 5, 7.5 and 10.

Scale-free networks

Scale-free (SF) networks [5] are networks where the degree distribution (i. e., fraction of sites
with k connections) decays as a power-law. The degree distribution is given by [104] :

P (k) = ck−λ,m < k < K,

where c = (λ − 1)mλ−1 and K = mN1/(λ−1) [47], λ is the power-law exponent, m is a lower
cutoff, and K is an upper cutoff . Thus, there are no sites with degree below m or above K.
The diameter of the SF network can be regarded as the mean distance of the sites from the site
with the highest degree. For graphs with 2 < λ < 3 the distance behaves as d ∼ ln(ln(N))
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[48], and for λ = 3 as d ∼ ln(N)/ ln(ln(N)) [26]. This anomalous behavior stems from the
structure of the network where a small core containing most of the high degree sites has a very
small diameter. For higher values of λ the distance behaves as in ER, i. e., d ∼ ln(N). The ⟨k⟩
of a SF graph is obtained by the following expression:

⟨k⟩ = 1− λ

2− λ
× K2−λ −m2−λ

K1−λ −m1−λ
(9.8)

For λ > 2 and large enough N the average degree ,⟨k⟩, is a constant. The results for SF networks
presented in Sect. 9.2.2 correspond to λ = 3.5, 4, 5 with m = 2 (lower cutoff), and λ = 4, 5 with
m = 3. Due to their small diameter, SF networks with λ < 3 were not considered.

Double peaked distributions

In order to find hierarchical relation between the different graphs, we studied also some variations
on these graphs. For a random graph we changed the degree of a small percent of the nodes, so
we have a graph with double peaked distribution. Thus, the average connectivity, ⟨k⟩, is the
average degree of the nodes. Several examples were taken: changing 5% of the nodes to k = 5
(instead of k = 3) resulting in ⟨k⟩ = 3.1, or changing 5% of the nodes to k = 10 (⟨k⟩ = 3.35).
Replacing 20% of the nodes connectivity for the previous cases will result in ⟨k⟩ = 3.4 (for
k = 5 nodes) and ⟨k⟩ = 4.4 (for k = 10 nodes). Additionally, in order to relate with previous
results of the metal insulator transition on a Cayley-tree [166] we checked a tree in which 5% of
its nodes have higher degree (k = 4) resulting in an average connectivity 3.05 and creating few
closed trajectories - loops.

9.2.2. Method

Now we turn to the calculation of the spectral statistics of these networks. First, one must con-
struct the appropriate network structure, i. e., to determine which node is connected to which.
This is achieved using the following algorithm [47, 149]:
1. For each site choose a degree from the required distribution.
2. Create a list in which each site is repeated as many times as its degree.
3. Choose randomly two sites from the list and connect this pair of site as long as they are differ-
ent sites.
4. Remove the pair from the list. Return to 3.

The diameter of a graph is calculated by building shells of sites [104]. The inner shell contains
the node with the highest degree, the next contains all of its neighbors, and so on. Of course,
each node is counted only once. The diameter of the system is then determined by the number
of shells. Two more options which were considered are defining the diameter by the most highly
populated shell, or by averaging over the shells. The diameter obtained by the various methods
are quite similar.

The energy spectrum is calculated using the usual tight-binding Hamiltonian defined in Eq.
(9.4). The on-site energies, εi are uniformly distributed over the range −W/2 ≤ εi ≤ W/2. The
hopping matrix element tj,i is set to 1 for nearest neighbor nodes which are determined according
to the network structure, and to 0 for unconnected nodes. We diagonalize the Hamiltonian exactly,
and obtain N eigenvalues Ei (where N is the number of nodes in the graph) and eigenvectors ψi.
Then we calculate the distribution P (s) of adjacent level spacings s defined above.
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Figure 9.3.: γ as function of W for different SF graphs sizes (λ = 4 and m = 2). The typical behavior
for finite size transition is seen, where a crossing in the size dependence of γ between the
metallic (small values of W ) and localize (large value of W ) regime is seen.

An example for such a transition is presented in Fig. 9.2 where a scale-free graph with λ =
4 and m = 2 was considered. As W increases P (s) shifts toward the Poisson distribution.
Additional hallmark features of the Anderson transition, such as the fact that all curves intersects
at s = 2 and the peak of the distribution "climbs" along the Poisson curve for larger values of W
are also apparent. Similar transition from Wigner to Poisson statistics is seen also for the other
networks considered in this study.

The transition point can be determined more accurately from calculating [183]

γ =

∫∞
2
P (s)ds−

∫∞
2
Pw(s)ds∫∞

2
Pp(s)ds−

∫∞
2
Pw(s)ds

, (9.9)

where γ → 0 as the distribution tends toward the Wigner distribution, and γ → 1 if the distribu-
tion approaches the Poisson distribution. One expects that as the system size increases, the finite
size corrections will become smaller resulting in a distribution closer to a Wigner distribution in
the metallic regime and to Poisson in the localized one. At the transition point the distribution
should be independent of the system size. In Fig. 9.3 we plot the behavior of γ as function of W
for several sizes of a scale-free graph. Indeed, γ decreases with system size for small values of
W while it increases with size for large values of W .

All curves should cross around a particular value of disorder signifying the critical disorder.
From finite size scaling arguments [183] one expects that γ around the critical disorder will
depend on the disorder and network size, L, in the following way:

γ(W,L) = γ(Wc, L) + C

∣∣∣∣WWc

− 1

∣∣∣∣L1/ν , (9.10)

where C is a constant. This relation enables us to extract both the critical disorder Wc and the
critical index ν. Scaling of the numerical data according to Eq. (9.10) yields two branches cor-
responding to the metallic and localized regimes, that are clearly seen in Fig. 9.4. The estimated
values of ν and Wc (see Table I) are extracted by fitting the branches to a 4th order polynomial.
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Figure 9.4.: The scaling of γ according to Eq. (9.10) for different SF, λ = 4,m = 2, networks sizes. Two
branches, corresponding to the metallic and localized regimes, appear.

Network ⟨k⟩ l Wc ν
Scale-Free , λ = 4 , m = 2 2.97 12.46 15.7±0.9 0.55±0.11

Random-Regular (RR) 3 11.8 11.9±0.26 0.66±0.08
Erdös-Rényi 3 9.45 20.5±0.23 0.68±0.08
Cayley-Tree 3 10 11.44±0.06 0.51±0.045

Cayley-Tree with loops 3.05 10 12.4±0.1 0.54±0.075
RR "double peak" 3.1 10.28 14.1±0.3 0.85±0.41

Table 9.1.: Networks showing the localization transition. The value of l is for N = 1000.

9.2.3. Results

The calculations for all networks mentioned above are performed for M different realizations,
whereM = 1000, 400, 200, . . . , 50 for the corresponding number of nodes: N = 200, 500, 1000, . . . , 4000.
Except for the Cayley-tree networks for which M = 4000, 2000, 1000, . . . , 125, 64 for the cor-
responding tree sizes: N = 63, 127, 255, . . . , 2047, 4095 or L = 6, 7, 8, . . . , 11, 12 (where L is
the number of "generations" of the tree). Another exception is for Erdös-Rényi graphs in which
⟨k⟩ is between 3 and 3.5. The low connectivity of the graphs, results in one main cluster and
relatively large number of not-connected nodes (about 5%). Thus, the calculations are made only
for the largest cluster of each realization, since a procedure that considers all the nodes is skewed
by the eigenvalues of small disconnected clusters [24]. A clear localization transition is observed
for a group of graphs which are all characterized by an average degree ⟨k⟩ smaller than 3.1, and
an averaged last occupied shell l (for N = 1000 sites) larger or equal to 9.45. The results are
summarized in Table 9.1.

The results for all the graphs (including those which show no clear signs of transition) can be
scaled according to their average degree ⟨k⟩. The higher the value of ⟨k⟩ is - the higher is the
value of W needed in order to obtain a specific value of γ. Thus, the higher the average degree,
the more metallic the system is, which makes sense. A cross section at γ = 0.6 of all curves is
shown in Fig. 9.5 as a function of ⟨k⟩. The ⟨k⟩ of the networks studied in Fig. 9.5 as well as the
averaged last occupied shell l for N = 1000 sites are presented in Table 9.2.

9.2.4. Observations

The following observations can be gleaned out of the data for the different networks:
(1) For all the networks that show a metal-insulator transition, ν is of order 1/2 except for the
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Figure 9.5.: The γ curves of the checked networks can be ordered by their ⟨k⟩. The values of their
W (γ = 0.6) are presented as a function of ⟨k⟩. One can notice the increasing W with ⟨k⟩.

Network ⟨k⟩ l (for N = 1000)
Scale-Free , λ = 4 , m = 2 2.97 12.46

Random-Regular 3 11.8
Random-Regular "double peak"

(p = 0.95 → k = 3 , p = 0.05 → k = 5) 3.1 10.28
Cayley-Tree 3 10

Cayley-Tree with loops 3.05 10
Erdös-Rényi 3 9.45

Scale-Free , λ = 3.5 , m = 2 3.28 9.36
Erdös-Rényi 3.1 9.31
Erdös-Rényi 3.2 9.03

Random-Regular "double peak"
(p = 0.8 → k = 3 , p = 0.2 → k = 5) 3.4 9

Erdös-Rényi 3.5 8.33
Random-Regular "double peak"

(p = 0.95 → k = 3 , p = 0.05 → k = 10) 3.35 7.99
Erdös-Rényi 4 7.51

Scale-Free , λ = 5 , m = 3 4 7.37
Scale-Free , λ = 4 , m = 3 4.5 6.05

Random-Regular "double peak"
(p = 0.8 → k = 3 , p = 0.2 → k = 10) 4.4 6.13

Erdös-Rényi 5 6.31
Erdös-Rényi 7.5 5.02
Erdös-Rényi 10 4.1

Table 9.2.: The average connectivity ⟨k⟩ of all the networks considered in this study, as well as the aver-
aged last occupied shell l for N = 1000 sites
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9. Wave localization on complex networks

Random-Regular "double-peak" network which is the one with the highest value of connectivity
that still shows a clear transition. A critical index of ν = 0.5 is expected for a system of infinite
dimensionality. At ⟨k⟩ = 3.1 the value of ν is significantly higher, but so is the estimate of the
error bar. On the other hand for the Erdös-Rényi graph with ⟨k⟩ = 3.1 no clear transition is
observed.
(2) All networks with connectivity above 3.1 do not show clear signs of a metal-insulator transi-
tion. Nevertheless, one should be rather careful in interpreting this observation since, as is clear
from Table 9.2, larger values of ⟨k⟩ lead to smaller size, l, of the network for the same number
of nodes. Moreover, from the two networks which have the same ⟨k⟩ = 3.1, only the one with
the higher value of l shows clear signs of the metal insulator transition. Thus, the absence of
transition may be an artifact of the small size of networks with high average connectivity.
(3) The critical disorder Wc fluctuates in the range of 12− 20 (Table 9.2). Due to the small range
of ⟨k⟩ (2.97− 3.1), it is hard to determine any relation between k and Wc.
(4) On the other hand, there is a clear relation between the amount of disorder needed in order to
reach a particular value of γ (i. e., the value ofW needed to reach a certain degree of localization)
and ⟨k⟩. As can be seen in Fig. 9.5, a linear dependence W (γ = 0.6) ∝ ⟨k⟩ is observed.

9.2.5. Discussion
Thus, the gross features of the Anderson metal-insulator transition are similar for a wide range
of different networks. The critical index for all the networks studied here are within the range
expected for a system of infinite dimensionality, and the connectivity influences the degree of
localization. On the other hand, the fact that networks with high connectivity are very compact
raises the problem of identifying the transition point. It is hard to extend the usual finite-size
scaling method to networks with high connectivity since the number of sites grows very rapidly
with size, while for small network sizes the crossover behavior of the γ curves is very noisy. This
results in an inability to clearly identify the Anderson transition, although it can not be ruled out
the possibility that there is a critical connectivity for complex networks above which no transition
exist.

It is also worthwhile to add a general comment on the statistical method we have used in order
to identify the transition. The Anderson transition is one of the best known examples of a quan-
tum phase transition. Non-analyticities of the free energy is the clearest sign for a classical phase
transitions. One would expect that for quantum phase transitions the free energy will be replaced
by the ground state energy. Surprisingly this is not the case for the Anderson transition, since
only the ground state wave function, not the the ground state energy exhibit a signature of the
transition. Traditionally, numerically identifying the phase transition was performed by calculat-
ing the conductance or transmission through the system, which directly probes the properties of
the wave functions.

Later it has been realized by Shklovskii and his coworkers [183] that although the ground state
energy does not contain information regarding the phase transition, statistical properties of the
single-electron electrons encode such information. As we explained in the previous sections the
statistics of the energy spacings can be used to identify the transition and study its properties.

Recently it was realized that information entropy can also be used as a tool to identify a quan-
tum phase transition, even for the Anderson transition [116]. Constructing a density matrix of
some part A of the system ρA by tracing out all other degrees of freedom , one may define the
von Neumann entropy of the system SA = −Tr(ρA ln ρA). Averaging over different parts and
realizations of disorder, one can use finite size scaling in a similar fashion to the one described
for the spacing statistics to colaps the singular part of the entropy on two branches in a similar
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9.3. Complex networks with high clustering

fashion to the one depicted in Fig. 9.4. Thus, the von Neumann entropy may be used as an
additional method to identify the Anderson transition for complex networks and could be used to
augment the statistical methods described in this chapter.

9.3. Complex networks with high clustering

As introduced in the last sections it is possible to study quantum phase transition by analyzing the
spectrum of an Anderson model [9, 119] representing the complex network. The transition was
obtained in Sect. 9.2.2 by introducing diagonal (on-site) disorder [167]. Alternative approaches
would be non-diagonal (bond) disorder or percolation, i. e. removing some fraction of all sites or
bonds. In this case a classical transition [135] in which the infinite cluster breaks into finite pieces
is found after the quantum phase transition [24]. Anderson and quantum percolation transitions,
which seem to be in the same universality class, have been studied on different topologies includ-
ing fractal structures [170], Cayley trees [166], and complex networks [47, 167]. In all cases,
the transitions were induced either by on-site disorder or by cutting bonds (percolation) and thus
changing the degree distribution of the network [47].

In this section we want to show that it is possible to observe quantum and classical phase
transitions by a mere topological change of the network. Even for zero disorder and unchanged
degree distribution we find a quantum phase transition by increasing the clustering of the network.
Most of the results in this section have been published in [100].

9.3.1. Clustering

Complex networks have additional degrees of freedoms compared with standard lattices. The
basic property of a network is its degree distribution P (k) which defines the type of network.
Some examples were discussed in Sect. 9.2.1. A property related to the degree distribution is
the diameter d or the characteristic path length ℓ between two arbitrary nodes (small-world prop-
erty) of the system. These are important global properties, but in real-world network one also
observe local degrees of freedom [4, 57, 162]. Two of the most important ones are clustering and
assortativity [157]. The latter describes the degree-degree correlation of the network. Although
the assortativity is definitely an interesting subject we will focus on the effect of clustering. To
prevent interference between both we keep the degree-degree correlation as low as possible.

Clustering measures the cliquishness of a typical neighborhood and was introduced in the study
of ’small-world’ networks [212]. Regular non-random networks with constant degree have high
clustering and a large diameter comparable to standard lattices. When a fraction of the links is
reconnected randomly the diameter and the clustering drop. A completely random network has
nearly zero clustering. On the other hand, real-world networks exhibit high clustering indicating
the presence of many loops on short length scales [4, 57, 162].

Quantitatively clustering can be defined as the probability of triadic closure, Ci = 2Ti/[ki(ki−
1)] [212], where Ti is the number of triangles passing through vertex i and ki is its degree.
Although clustering is a local quantity a global measure C can be achieved by averaging over Ci.
A globalC cannot capture specific aspects of the network, e.g. varying degree-degree correlations
can lead to networks with different topology but similar C [177, 175, 176]. On the other hand
the fully local Ci is hard to analyze. Therefore it was suggested to average Ci within each degree
class, yielding C̄(k)[207].

It is not possible to achieve all possible functional dependences of C̄(k) with k. To achieve
high clustering of the higher degrees the assortativity of the network has to be strong. When
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(a) (b) (c)

Figure 9.6.: Representative pictures of scale-free networks (λ = 5) (a) without and (b,c) with clustering
(C0 = 0.4, 0.6). All three networks have the same size of N = 250. The giant component
has a size of (a) Ng = 250, (b) Ng = 203, and (c) Ng = 145. The actual global clustering
coefficient is (a) C = 8 × 10−4, (b) C = 0.34, and (c) C = 0.53. The global clustering
coefficient of the giant component is (b) Cg = 0.10 and (c) Cg = 0.17. The logarithmically
scaled gray scales presents the intensity of a mode with E ≈ 0.45, light gray indicating the
highest and black the lowest probability

nodes with large degrees are connected to nodes with lower degrees they can not achieve a high
clustering because the nodes with lower degrees do not have enough connections to participate
in a large number of triangles. Depending on the strength of the degree-degree correlation one
finds an upper limit which can be approximated by

C̄(k) = C0(k − 1)−α, (9.11)

with α between 1 for no and 0 for high assortativity. Because we want to study a phase transition
induced by clustering we want to keep the assortativity as low as possible. Therefore we will
restrict ourselves to α = 1. An explicit linear dependence between C and C0 exists and variation
of C0 between 0 (no clustering) and 1 (maximum clustering) are unambiguous. The connection
between the global clustering coefficient C and C0 is a constant ∆ which only depends on λ,
C = C0∆(λ) with ∆ =

∑K
k=m(k − 1)P (k). It is possible to write ∆ using the basic parameters

(m, K, λ, N ), using (9.8) and the paragraph following.
We apply an algorithm suggested recently by Serrano and Boguñá [174] to generate scale-free

networks with tunable degree distribution P (k) ∼ k−λ (9.8) and C̄(k). In Fig. 9.6(a)-(c) we
show three representative pictures of scale-free networks as a result of the algorithm. They all
have the same number of nodes with a rising C0 from left to right. One sees clearly that for
higher clustering more and more nodes disintegrate from the giant component. The reason is that
for nodes with low degree it is easier to achieve higher clustering in some small clusters. For
example nodes with a degree of two can achieve the highest clustering in triangles.

In Fig. 9.7(a) and (b) we show the degree distribution P (k) and the degree dependent clus-
tering coefficient C̄(k), respectively. The lines are the theoretical values which were demanded.
The circles correspond to results of the full network and the squares to results of the giant com-
ponent. While the degree distribution is quite stable when going from the full system to the giant
component, the clustering changes for all degrees drastically. It drops by at least a factor of two.

A metal-insulator transition is well defined only on the giant component since the other clusters
do not grow with system size. In the language of percolation it is the infinite cluster because it
becomes infinite for an infinite system size while the small clusters remain finite. Therefore a
localized state and an extended state are unambiguously defined only on the giant component.
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Figure 9.7.: (a) degree distribution P (k) and (b) clustering coefficients C̄(k) for scale-free networks with
λ = 4 [line in (a)], C0 = 0.65 [line in (b) according to (9.11)] and N = 15000 nodes,
averaged over 120 configurations. Circles for distributions regarding the whole network and
squares for the giant component (with ⟨N1⟩ = 11906 nodes; shifted vertically by a factor of
2 for degree distribution)

For the finite components a localized state with a localization length larger than the system size
can not be distinguish from an extended state.

Since the clustering of the giant component Cg differs from that of the full network C it is a
priori not clear which of them is a good order parameter for the transition. The ambiguity can be
resolved by analyzing the functional dependence of C0 with the average clustering coefficient of
the full network C and its giant component Cg. An illustrative results is shown in Fig. 9.8. Not
only C is linearly dependent on C0 but also Cg if C0 ≤ 0.9. We find no system size dependence
which is important because we want to use a finite size scaling formalism to analyze the phase
transition. Values forC0 ≥ 0.85 should be treated with care because the algorithm fails to achieve
such high clustering. Due to the linear dependence of all three versions of clustering coefficient
they are interchangeable. In the following, we will use the parameter C0 instead of C or C̄(k).

The results shown in Fig. 9.8 are also a good measure for the quality of the algorithm. The
black line is the theoretically achievable clustering with the given C0. The algorithm does not
achieve the theoretically possible clustering but is very near this value. But still a linear de-
pendence holds for C and C0, which is more important. In the inset the gradient of the linear
dependence ∆ is shown for different power-law exponent λ. One sees that for all λ the algo-
rithm does not achieve the theoretically possible clustering. Interestingly ∆ for the clustering
dependence of the giant component is nearly constant.

We obtained similar, however less reliable, results when generating networks with the algo-
rithm of Volz [209] fixing C instead of C̄(k). The problem of this algorithm is that it is not
possible to control the assortativity. Therefore when C is changed also the assortativity changes
making it difficult to judge whether both networks are comparable.

Since each triangle represents a very short loop in the network, waves in networks with high
clustering will have a high probability to return to the same node and to interfere. Since such
interferences are the main reason for quantum localization, one may expect that strong clustering
will induce localization.

9.3.2. Results

To analyze the metal-insulator transition for networks with clustering we use the formalism as
introduced in 9.1.3. We study scale-free networks with various λ and C0. The eigenvalues and
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Figure 9.8.: Test of the relation C = C0∆(λ) for a scale-free network with λ = 4 and m = 2. The
black line is the ideal curve. The circles (squares) are results for the full network (giant
component). The different gray scales represent different system sizes from N = 2000
(black) to N = 20000 (white). The dashed (dashed dotted) line is a linear fit for the full
network (giant component). Inset: Results of the fits for ∆(λ). Line is the ideal curve. The
circles (squares) are the results for the full network (giant component). The dashed line is the
mean of ∆ for the giant component with ⟨∆⟩ = 0.34.

eigenvectors are calculated by exact diagonalisation of the Hamiltonian (9.4). Figures 9.6(a-c)
show the intensities corresponding to three eigenmodes. For all three cases the state is extended
on the whole giant component and not present on the finite clusters.

To extract the critical clustering C0,q, the critical disorder Wc, and critical exponent ν we have
to extend (9.10) to also include C0. As in the case for the disorder W we expect from finite-size
scaling arguments [183] that γ around C0,q will behave exactly as around Wc,

γ(C0,W,L) = γ(C0,q,Wc, L) + (9.12)

[R1|C0 − C0,q|+R2|W −Wc|]L1/ν ,

where R1 and R2 are constants and L ∝ ln (a(C0)N) 1. Using (9.12) we have determined
C0,q and Wc for scale-free networks with various λ. We also checked that equivalent results are
obtained if other integral measures of P (s) are studied, e.g., I0 = 1

2

∫∞
0
s2P (s) ds.

To convince the reader that clustering indeed induces a phase transition we show in Fig. 9.9 the
level spacing distribution P (s) of a large scale-free network without disorder (W = 0) but varied
C0, as well the two limiting cases PW(s) and PP(s). One can clearly see that the shape of P (s)
changes from Wigner to Poisson with increasing C0. Comparing Fig. 9.9 with Fig. 9.2 one finds
no deviation from the typical behavior known from disorder. We thus observe an Anderson-like
transition although there are no disorder W and no changes in the degree distribution P (k). The
inset of Fig. 9.9 shows γ for five system sizes versus the clustering strength C0. One can observe
the quantum phase transition at the critical value C0,q ≈ 0.69 by the crossing of the five curves,
indicating a system-size independent critical value of γc ≈ 0.76.

The phase diagram for the transition from localized (upper right) to extended (lower left) opti-
cal modes is shown in Fig. 9.10(a). The horizontal axis (C0 = 0) corresponds to the case with no
clustering studied before in Sect. 9.2.2, where the critical disorder Wc depends on λ. The main
new finding of the present study regards the transitions on the vertical axis. Without disorder,

1The N dependence is well established [48] but the C0 dependence seems to be unexplored. Our data for N up
to 105 suggest ln a ∝ (C0 − C0,c)

−νc . Since C0,q < C0,c, a and thus L depend weakly on C0 at the quantum
transition.
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Figure 9.9.: Level spacing distribution P (s) for optical modes on scale-free networks with λ = 5, N =
12500 and no disorder, W = 0. A clear transition from Wigner (dashed curve) to Poisson
(dash-dotted curve) behavior is observed as a function of the clustering coefficient prefactor
that is increased from C0 = 0.0 (continuous red curve; light gray curve nearest to dashed
curve) to C0 = 0.90 (continuous blue curve; dark gray curve nearest to dashed dotted curve).
Inset: localization parameter γ [see (9.9)] versus C0 for networks with N = 5000 (red),
N = 7500 (light green), N = 10000 (green) , N = 12500 (blue), and N = 15000 (purple).
A transition from extended modes for small C0 to localized modes for large C0 is observed
at C0,q ≈ 0.69. The results are based on eigenvalues around |E| = 0.2 and 0.5 (taken from
[100])

the transition to the localized phase occurs at a critical clustering C0,q that depend on λ, i. e., the
degree distribution. While even the strongest clustering C0 = 1 cannot achieve such a transition
if λ < 4, values of C0,q < 1 are observed for λ > 4. The case λ = 4 seems to be limiting:
this is the broadest degree distribution which allows a quantum phase transition upon increasing
clustering.

If variations of C0 and W are considered, the full phase diagram can be explored. Evidently,
smaller values of C0 are sufficient for quantum phase transitions if W > 0. Within our error bars
the critical exponent ν corresponds to the mean-field value ν = 0.5 for infinite dimensions (see
Fig. 9.10(b)) as expected from the Anderson transition [65]. We obtained similar phase diagrams
for networks with homogeneous or Erdös-Renyi-type degree distributions (not shown).

There are some similarities between the phase transition induced by clustering and quantum
percolation. In both cases the giant component becomes smaller for larger values of the order
parameters. We also find a classical phase transition after the quantum phase transition. The
relation between both types of transitions is still an open question. The changes in the degree
distribution of the giant component are not sufficient to explain the classical transition.

To make sure that the quantum transition is induced by clustering and not by a classical phase
transition we determine the corresponding classical critical clustering coefficient C0,c. For that
we have analyzed the size N2 of the second largest cluster in the system which should increase
with C0 if the giant component exists (C0 < C0,c) and decrease for higher values of C0 if it broke
down (C0 > C0,c) [47]. We find no indications of a classical transition for λ < 4.5, i. e. the giant
component is not broken. For λ = 5 we find C0,c ≈ 0.85, significantly larger than C0,q ≈ 0.69
[see insets of Fig. 9.9 and Fig. 9.10(c)]. We thus conclude that the quantum transition for W = 0
is clearly different from the classical one in two ways: (i) there is no classical transition between
4 < λ < 4.5 although a quantum transition is clearly seen, and (ii) for λ > 4.5, the quantum
transition occurs for lower C0 values than the classical one. This leaves an intermediate regime
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Figure 9.10.: (a) Phase diagram for transitions from localized optical modes (upper right) to extended
modes in parts of the spectrum (lower left) for different degree distribution exponents λ,
λ = 4 (blue diamonds), 4.25 (pink circles), and 5 (red squares). Data for C0 > 0.9 are
not reliable for network generation reasons, and the error bar for the point at C0 = 1 is
about 0.1. (b) Exponent ν for different λ and C0,q. The values are, within the error bars
(not shown), consistent with the mean-field prediction ν = 0.5. (c) Quantum transitions
without disorder (blue circles) and classical transitions (red squares) as a function of the
degree exponent λ. In the regime 4 < λ < 4.5 only quantum transitions occur. For W > 0
the curves move downwards making quantum transitions possible for λ < 4 (green circles
for W = 5 and pink circles for W = 10). The figures are taken from [100]

(C0,q < C0 < C0,c ≤ 1) in which all modes are localized although there is a spanning giant
cluster.

9.4. Summary
In summary, we have shown that quantum phase transitions of wave-like modes (similar to the
Anderson transition and to the quantum percolation transition) can be obtained in a complex
network without introducing on-site disorder or bond disorder or tampering with the degree dis-
tribution (i. e. the number and distribution of links). One only needs to change the clustering
coefficient of the network, which corresponds to a rewiring procedure.

We conclude that clustering represents a new degree of freedom that can be used to induce and
study phase transitions in complex networks. Comparing systems with different clustering prop-
erties might enable one to find the most relevant cause of quantum localization. We propose that
the phenomenon should be observable experimentally and relevant in complex coherent optical
networks made of fibers and beam splitters. Such experiments will directly probe the influence
of complex network topology on the Anderson localization of light [215, 197, 127, 172].
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