

In silico Identifizierung und Untersuchung von Agonisten und Antagonisten des Androgenrezeptors

Dissertation zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.)

vorgelegt der

Naturwissenschaftlichen Fakultät II - Chemie, Physik, Mathematik der Martin-Luther-Universität Halle-Wittenberg

von Frau Diplom-Bioinformatikerin Stephanie Tennstedt (geb. Gulde) geb. am 25.08.1981 in Halle (Saale)

Gutachter:

Professor Dr. L. A. Wessjohann (Martin-Luther-Universität Halle-Wittenberg)
Juniorprofessor Dr. T. Exner (Universität Konstanz)

verteidigt am 12.04.2011

© Stepahnie Tennstedt 2005 - 2011

Die Arbeiten der vorliegenden Dissertation wurden im Zeitraum von August 2005 bis Juli 2009 am Leibniz-Institut für Planzenbiochemie in der Abteilung Natur- und Wirkstoffchemie unter der Leitung von Professor Ludger A. Wessjohann angefertigt.

Meinem Doktorvater *Herrn Professor Dr. Ludger A. Wessjohann* danke ich herzlich für die Aufnahme in seine Abteilung Natur- und Wirkstoffchemie am Leibniz-Institut für Pflanzenbiochemie. Trotz der Tatsache, dass ich eigentlich kein Chemiker bin, fühlte ich mich dennoch sehr heimisch und wohl. Er hatte immer ein offenes Ohr für mich und stand mir mit seinem großen Erfahrungsschatz und seiner kritischen Diskussionsbereitschaft stets hilfreich zur Seite. Ich danke Ihnen außerdem für das rege Interesse am Erfolg und Fortgang meiner Arbeit und für die Möglichkeit der Präsentation meiner Arbeit auf zahlreichen nationalen und internationalen Konferenzen, Schulungen und Kolloquien. Nicht zuletzt möchte ich mich für die Überlassung des außerordentlich interessanten und hoch spannenden Themas auf dem Gebiet der Kernrezeptoren bedanken.

Mein besonderer Dank gilt vor allem meinem Betreuer *Herrn Dr. habil. Wolfgang Brandt.* Sein großes Engagement und seine stete Diskussionsbereitschaft haben wertvolle Anregungen und Impulse für diese Arbeit gegeben. Ganz besonders möchte ich mich für deine herzliche Offenheit und den gewährten Spielraum für die Entwicklung eigener, kreativer Ideen bedanken. Vielen Dank für dein entgegengebrachtes Vertrauen in mich. All dies hat wesentlich zum Gelingen meiner Arbeit beigetragen.

Der Wella AG Darmstadt danke ich für die finazielle Unterstützung meiner Promotion.

Es ist mir eine ganz besonder Freude an dieser Stelle *Claudia Bobach* für die gemeinsame Zeit im *"Aquaerium"* zu danken. Ich danke dir für die vielen, vielen Assays, die wissenschaftlichen Diskussionen und die tolle Zusammenarbeit.

Frau Dr. Susanne Aust von der Firma Probiodrug AG danke ich für die interessanten Diskussionen rund um das Themengebiet.

Herrn Dr. Guido Kirsten der Firma Chemcomp AG möchte ich an dieser Stelle besonders für die Hilfe in *MOE*-Softwarefragen und die regen Diskussinosbereitschaft auf den verschieden Tagungen danken.

Ich danke allen *Post-Doktoranden, Doktoranden, Diplomanten* und *technischen Angestellten* des Leibniz-Instituts für Planzenbiochemie, die wertvolle Denkanstöße lieferten, Diskussionsbereitschaft zeigten und eine angenehme Arbeitsatmosphäre schaften. Ein extra Dank gilt *Dr. Frank Broda* für seine Hilfe auf informatischer Ebene. Ein weiterer Dank geht an *Anika Denkert* und *Kristin Palberg* für die Durchführung der Assays.

Ein besonderes herzlicher Dank geht an meine *Eltern* und meine *Familie* für die tägliche Unterstützung, das Verständnis und die Geduld.

"Wer glaubt etwas zu sein, hat aufgehört etwas zu werden." Sokrates

Inhaltsverzeichnis

A	bkürz	zungsve	rzeichnis	XI
E	CinheitenverzeichnisXIII			
A	bbildungsverzeichnisXIV			
Т	abelle	enverzei	chnis	XVIII
F	ormel	verzeicl	hnis	XX
1	E	inleitun	g	1
	1.1	Androg	genrezeptor	2
		1.1.1	Physiologische Bedeutung der natürlichen	
			Liganden am Beispiel von Testosteron	2
		1.1.2	Androgenrezeptorinduzierte Genexpression	
		1.1.3	Strukturelle Organisation	4
		1.1.4	Struktur-Aktivitäts-Beziehungen	9
		1.1.5	Therapeutisches Potential	
	1.2	Zielste	llung der Arbeit	
2	St	tand der	r Literatur – Strukturbasierter Entwurf zur	
	Id	lentifizi	erung von Proteinliganden	
	2.1	Sequer	nzvergleich	
	2.2	Sekund	lärstrukturvorhersage	
	2.3	3D-Str	uktur Modellierung	
	2.4	Validie	erung des 3D-Modells	
	2.5	Moleki	ülmechanik	
		2.5.1	Kraftfeld	
		2.5.2	Energieminimierung	
		2.5.3	Moleküldynamik-Simulation	
		2.5.4	Simulated annealing	
	2.6	Pharma	akophor	
	2.7	Dockir	ng und Scoring	
	2.8	Auswa	hl einer geeigneten virtuellen Screeningprozedur	

3	E	Ergebnisse und Diskussion: Virtuelles Screening am		
Androgenrezeptor				
3.1 Erzeugung eines Wechselwirkungsmodels für den Androgenrezentor		ng eines Wechselwirkungsmodels für den enrezeptor	. 36	
		3.1.1	Klassifizierung von Wechselwirkungen	. 37
		3.1.2	Simulated annealing im Vergleich zu	
			bekannten Wechselwirkungen	. 40
	3.2	Beschre	bibung des Pharmakophormodels	. 42
	3.3	Bewertu	Ing der Dockingprozeduren	. 44
		3.3.1	Re-Docking der Röntgenkristallstrukturen	. 44
		3.3.2	Anreicherungspotential der	
			Dockingprozeduren	. 46
	3.4	Zwei-So Charakt	chritt-Virtual-Screening: Identifizierung und erisierung der bestes potentiellen Hits	. 48
	3.5	3.5 Experimentelles Screening der potentiellen Hits		. 50
	3.6	3.6 Struktur-Aktivitäts-Beziehungen		. 53
		3.6.1	Vergleich der Dockingerbnisse für die	
			Standardverbindungen mit der Literatur	. 56
		3.6.2	Struktur-Aktivitätsbeziehung der neu	
			identifizierten Liganden	. 63
	3.7	Zusamn	nenfassung und Diskussion	. 72
4	E	rgebniss	e und Diskussion:	
	A	ntagonis	tischer/agonistischer Mechanismus	. 74
	4.1	Berechr	ung von fehlenden Kraftfeldparametern	. 76
	4.2	Erzeugu	ing der Startstruktur	. 76
		4.2.1	Startstruktur für Testosteron	. 76
		4.2.2	Startstruktur für R1881, Cyproteronacetat,	
			R-Bicalutamid, β -Sitosterol, QDM255 und	
			QDM276	. 77
		4.2.3	Startstruktur für Hydroxyflutamid	. 78
	4.3	Molekü	ldynamikprotokoll	. 78

	4.4	NR3C4 Agonist	-LBD in Komplex mit Antagonisten oder en und Koaktivator)
		4.4.1	Globale strukturelle Änderung während der	
			Moleküldynamik-Simulation)
		4.4.2	Verhalten bekannter Agonisten und	
			Antagonisten	L
		4.4.3	Strukturelle Änderung des FXXLF-Motiv im	
			Komplex mit bekannten Liganden	1
		4.4.4	Konformative Änderung innerhalb der LBT im	
			Komplex mit bekannten Liganden 85	5
		4.4.5	Analyse der Bindung von QDM255, QDM276	
			und β-Sitosterol	3
	4.5	Zusamn	nenfassung und Diskussion	l
5	E	rgebniss	e und Diskussion: Kreuzreaktion -	
	Se	elektivitä	it von Liganden	1
	5.1	Homolo	giemodelling und Evaluierung	5
	5.2	Paarwei	ser Sequenz-/Strukturvergleich97	7
	5.3	Strukturelle/sequenziellen Unterschiede im Bereich der Bindetasche		l
	5.4	Kreuzdo	ocking	1
		5.4.1	Re-Docking 104	1
		5.4.2	Bewertung der Scoringfunktion 105	5
		5.4.3	Struktur-Aktivitätsbeziehungen	7
	5.5	Zusamn	nenfassung und Diskussion	1
6	Z	usamme	nfassung und Ausblick 116	5
7	Н	ardware	und Software 121	L
8	Li	iteraturv	verzeichnis 123	3
9	A	nhang		3
	9.1	Kernrez	eptorklassen 138	3
	9.2	Comput	erbasierte Methoden 139)
		9.2.1	Parameter für PLIF)

	9.2.2	Parameter für Ligand Interaction
	9.2.3	Parameter für Simulated annealing 140
	9.2.4	Parameter für die Minimierung von Ligand-
		Protein-Komplex vor dem Re-Docking 140
	9.2.5	Parameter Re-Docking GOLD (ChemScore)
	9.2.6	Parameter Re-Docking GOLD (GoldScore) 142
	9.2.7	Parameter Re-Docking MOE 142
	9.2.8	Parameter Docking PLANTS 143
	9.2.9	Parameter MOE-Superpose
	9.2.10	Parameter optimiertes Docking 143
	9.2.11	Protokoll: Erzeugung der Starstruktur
	9.2.12	SVL-Scipt für Moleküldynamik-Simulation
		mit MOE 146
	9.2.13	Protokoll: Homologiemodellierung und
		Evaluierung 147
	9.2.14	Protokoll: Sequenzvergleich
	9.2.15	Protokoll: Strukturvergleich
	9.2.16	Protokoll: Kreuzdocking
9.3	Ergebni	sse: Virtuelles Screening am Androgenrezeptor 148
	9.3.1	Re-Docking148
	9.3.2	Anreicherungskurven für die verschieden
		Röntgenkristallstrukturen 149
9.4	Ergebni Mechan	sse: Antagonistischer/agonistischer ismus
	9.4.1	Strukturen der Standardliganden die in der
		Molküldynamik-Simulation verwendet wurden
	9.4.2	Stabilität der Modelle 158
	9.4.3	Beobachtete Wasserstoffbrücken 159
9.5	Ergebni	sse: Kreuzreaktion - Selektivität von Liganden 159
9.6	Struktur	formelverzeichnis

Curriculum Vitae	A
Veröffentlichungen	B
Eidesstattliche Erklärung	E

Abkürzungsverzeichnis

AF-1	Aktivierungsfunktion-1
AF-2	Aktivierungsfunktion-2
AS	Aminosäure
BLOSUM	Blocksubstitutionsmatrix
DBD	DNS-Bindungsdomäne
DHT	Dihydrotestosteron
DNS	Desoxyribonukleinsäure
DUD	Verzeichnisses brauchbarer decoys (engl.: directory of useful decoys)
EF	Anreicherungsfaktor (engl.: enrichment factor)
GnRH	Gonatropin auschüttendes Hormon (engl.: gonadotropin releasing
	hormone)
Н	Helix
IGF-1	insulinähnlicher Wachstumsfaktor-1 (engl.: insulin-like growth factor 1)
LBD	C-terminale-Ligandenbindungsdomäne
LBT	Ligandenbindungstasche
KLS	Kernlokalisationssignal
NMR	Kernspinresonanz (engl.: nuclear magnetic resonance)
NR3A1	α-Östrogenrezeptor
NR3A2	β-Östrogenrezeptor
NR3B1	Östrogen-ähnlicher Rezeptor-a
NR3B2	Östrogen-ähnlicher Rezeptor-β
NR3B3	Östrogen-ähnlicher Rezeptor-γ
NR3C1	Glucocorticoidrezeptor
NR3C2	Mineralocorticoidrezeptor
NR3C3	Progesteronrezeptor
NR3C4	Androgenrezeptor
NTD	NH2-terminale-Transaktivierungsdomäne
R1881	Methyltrienolon
RMSD	mittlere quadratische Abweichung (engl.: root-mean-square deviation)
RMSF	mittlere quadratische Fluktuation (engl.: root-mean-square fluctuation)
RNS	Ribonukleinsäure
SF	Scoringfunktion

Tau-1	Transaktivierungseinheit-1 (engl.: transactivation unit 1)
Tau-5	Transaktivierungseinheit-5 (engl.: transactivation unit 5)
TES	Testosteron
VS	virtuelles Screening
XTT	(Na-3,3'-[1-(phenylamino)carbonyl-3,4-tetrazolium]-bis(4-methoxy-6-
	nitrobenzol)-sulfonsäurehydrat)
β	β-Faltblatt

Einheitenverzeichnis

Å	Ångström
bp	Basenpaare
kb	Kilobasen
kDa	Kilodalton
kcal	Kilokalorien
mol	Mol
nM	Nanomolar
ps	Picosekunden
μΜ	Micromolar

Abbildungsverzeichnis

Soweit nicht anders beschrieben ist in den 3D-Abbildungen Kohlenstoff in grau, Sauerstoff in rot, Stickstoff in blau, Schwefel in gelb, Chlor in grün und Fluor in cyan abgebildet.

Abbildung 1:	Ausschnitt der Biosynthese von Testosteron nach Brown et al.	3
Abbildung 2:	Organisation des NR3C4-Gens und -Proteins nach Jenster et al.	4
Abbildung 3:	Strukturelle Organisation der NH2-terminalen-Transaktivierungs-	
	domäne	5
Abbildung 4:	Vereinfachte Darstellung der Wirkung von Agonisten und Antagonist	
	am NR3C4 auf die Genexpression	5
Abbildung 5:	Interaktion der α -Helices im zinkfingerbindenden Motiv mit der großen	
	Furche der DNS	6
Abbildung 6:	Ligandenbindungsdomäne des NR3C4	8
Abbildung 7:	LBD des NR3C4 in Komplex mit verschiedenen Koaktivatormotiven	9
Abbildung 8:	R1881	10
Abbildung 9:	Signifikante Modifikationen und deren Auswirkung für DHT und	
	TES	11
Abbildung 10:	Signifikante Modifikationen und deren Auswirkung für	
	R-Bicalutamid	13
Abbildung 11:	Nichtsteroidale Liganden des NR3C4	13
Abbildung 12:	Verwendete Liganden bei der Wechselwirkungsanalyse mit dem	
	Programmpaket PLIF und Ligand Interaction von MOE	37
Abbildung 13:	3D-Strukturvergleich der Liganden entsprechend der PLIF-	
	Ergebnisse	38
Abbildung 14:	Ergebnisse des Simulated annealing	41
Abbildung 15:	Pharmakophormodell mit 4 Pharmakophorkugeln	43
Abbildung 16:	Bewertung der Güte der Dockingprogramme anhand des	
	RMSD-Wertes	45
Abbildung 17:	Bewertung der Güte der Dockingprogramme anhand des	
	RMSD-Wertes	45
Abbildung 18:	Anreicherungskurven für NR3C4-Liganden des gesamten DUD und	
	dem besten 1 % der nach score sortierten Datenbank	47
Abbildung 19:	Arbeitsablauf des VS	49

Abbildung 20:	Korrelation nach Spearman zwischen den scores aus dem Docking mit	
	PLANTS (CHEMPLP***) und den experimentell bestimmten	
	pK _i -Werten der 19 Verbindungen	56
Abbildung 21:	Beste Dockingposition für Medroxyprogesteron	57
Abbildung 22:	Beste Dockingposition für TES und DHT	58
Abbildung 23:	Beste Dockingposition für Spironolacton	58
Abbildung 24:	Beste Dockingposition für α -Östradiol und β -Östradiol	60
Abbildung 25:	Beste Dockingposition für 17α-Ethinylestradiol	61
Abbildung 26:	Beste Dockingpostion für Cyproteronacetat	62
Abbildung 27:	Beste Dockingposition für Progesteron	63
Abbildung 28:	Beste Dockingposition für QDM276	64
Abbildung 29:	Beste Dockingposition für β -Sitosterol	66
Abbildung 30:	Beste Dockingposition für Guggulsteron E und Guggulsteron Z	67
Abbildung 31:	Beste Dockingposition für Guggulsteron E und Guggulsteron Z mit	
	Conolly Oberfläche	68
Abbildung 32:	Beste Dockingposition für XSA164	69
Abbildung 33:	Beste Dockingposition für DUE040	70
Abbildung 34:	Veränderung des RMSD-Wertes von 0 bis 5000 ps	
	gegenüber der Startstrucktur	79
Abbildung 35:	RMSF der Aminosäuren zwischen 4 und 5 ns	80
Abbildung 36:	Veränderung des RMSD-Wertes der Rückgratatomkoordinaten	
	des Koaktivators von 0 bis 5000 ps gegenüber der Startstruktur	85
Abbildung 37:	Ligandenabhängige Veränderung der Position der	
	Aminosäuren K720 und M734 des NR3C4	86
Abbildung 38:	Veränderung des F764 Torsionswinkel C-C α -C β -C γ von 0 bis	
	5000 ps	87
Abbildung 39:	Veränderung des RMSD-Wertes der Rückgratatomkoordinaten des	
	Koaktivators zur Startstruktur von 0 bis 5000 ps	88
Abbildung 40:	Momentaufnahme der Dynamik von β -Sitosterol und TES im	
	NR3C4-Coaktivator-Komplex	89
Abbildung 41:	Einfluss von QDM255, QDM276 und β -Sitosterol auf die Aminosäuren	
	F876, L880 und L881	90
Abbildung 42:	Ergebnis des paarweisen Sequenzvergleichs der LBD für alle $n(n-1)/2$	
	Kernrezeptoren	98

Abbildung 43:	Ergebnis des paarweises 3D-Strukturvergleichs der LBD für alle	
	n(n-1)/2 Kernrezeptoren	,
Abbildung 44:	Ergebnis des paarweisen Sequenzvergleichs der LBT für alle $n(n-1)/2$	
	Kernrezeptoren 10	0
Abbildung 45:	Ergebnis des paarweisen 3D-Strukturvergleichs der LBT für alle	
	n(n-1)/2 Kernrezeptoren 10	0
Abbildung 46:	Die fünf Teilbereiche der LBT und die zugehörige prozentuale	
	Konservierung der jeweiligen Aminosäuren 10	2
Abbildung 47:	Die fünf Teilbereiche der LBT mit den Liganden von 10	
	Kernrezeptoren und die zugehörige strukturelle Ähnlichkeit	
	pro Rezeptor 10	13
Abbildung 48:	Korrelation nach Spearman zwischen den score und pK _i -Werten	
	für die Kernrezeptoren NR3A1, NR3A2, NR3C1 und NR3C 10	7
Abbildung 49:	Wechselwirkungsplot für QDM276 im NR3C4 10	19
Abbildung 50:	Wechselwirkungsplot für β-Sitosterol im NR3C4 11	2
Abbildung 51:	Wechselwirkungsplot für Guggulsteron Z im NR3C411	4
Abbildung 52:	Struktur für QDM276 (52), QDM255 (40) und	
	β -Sitosterol (34)), Gugulsteron <i>E</i> (36) und <i>Z</i> (38) 11	7
Abbildung 53:	Zusammenfassung der neu identifizierten Struktur-Aktivitäts-	
	Beziehungen für die Liganden des NR3C4 am Beispiel von TES11	8
Abbildung 54:	Zusammenfassung der Ergebnisse der Moleküldynamik-Simulation 11	9
Abbildung 55:	Anreicherungskurven für NR3C4-Liganden des gesamten DUD	
	und dem besten 1 % der nach score sortierten Datenbank14	.9
Abbildung 56:	Anreicherungskurven für NR3C4-Liganden des gesamten DUD	
	und dem besten 1 % der nach score sortierten Datenbank	0
Abbildung 57:	Anreicherungskurven für NR3C4-Liganden des gesamten DUD	
	und dem besten 1 % der nach score sortierten Datenbank	1
Abbildung 58:	Anreicherungskurven für NR3C4-Liganden des gesamten DUD	
	und dem besten 1 % der nach score sortierten Datenbank	2
Abbildung 59:	Anreicherungskurven für NR3C4-Liganden des gesamten DUD	
	und dem besten 1 % der nach score sortierten Datenbank	3
Abbildung 60:	Anreicherungskurven für NR3C4-Liganden des gesamten DUD	
	und dem besten 1 % der nach score sortierten Datenbank	4

Abbildung 61:	Anreicherungskurven für NR3C4-Liganden des gesamten DUD	
	und dem besten 1 % der nach score sortierten Datenbank	155
Abbildung 62:	Anreicherungskurven für NR3C4-Liganden des gesamten DUD	
	und dem besten 1 % der nach score sortierten Datenbank	156
Abbildung 63:	Veränderung des RMSD-Wertes von 0 bis 5000 ps gegenüber der	
	Startstrucktur	158

Tabellenverzeichnis

Tabelle 1:	Bedeutung der einzelnen Buchstaben innerhalb der Pharmakophor-	
	Schemata-Bezeichnung	29
Tabelle 2:	Verwendete Dockingprogramme und SF	33
Tabelle 3:	Surface contact interactions bzw. Van-der-Waals-Kontakte	40
Tabelle 4	Strukturen, Dockingergebnisse (score) und Ki-Werte für	
	10 Verbindungen, die mit Hilfe des VS vorhergesagt wurden	51
Tabelle 5:	K _i -Wert und Strukturen von neun Standardverbindungen des NR3C4	53
Tabelle 6:	Ergebnisse aus dem Wildtyp-NR3C4-Fluoreszenzpolarisationsassay	
	und dem Docking mit PLANTS (CHEMPLP)***	55
Tabelle 7:	Dockingstudie mit verschiedenen Seitenketten am C-7 des QDM276	65
Tabelle 8:	Dockingstudie mit verschiedenen Seitenketten am C-16 und C-17 des	
	Guggulsteron E und des Gugulsteron Z	69
Tabelle 9:	Beobachtete Wasserstoffbrücken für jedes Modell während	
	der 4. bis 5. ns der Moleküldynamik-Simulation	81
Tabelle 10:	Beobachtete Wasserstoffbrücken für jedes Modell während	
	der 4. bis 5. ns der Moleküldynamik-Simulation	84
Tabelle 11:	Ergebnis der Templatsuche für 17 humane Kernrezeptoren	95
Tabelle 12:	Ergebnisse des Ramachandram-Plots und der PROSAII-Analyse für	
	die entsprechenden Proteinmodelle	96
Tabelle 13:	Ergebnisse des Re-Dockings mit PLANTS und CHEMPLP	105
Tabelle 14:	Dockingergebnisse der entsprechenden Ligand-Rezeptor-Komplexe	108
Tabelle 15:	Experimentelle pK _i -Werte und scores für 11 QDM276- und	
	11 QDM255-Rezeptorkomplexe	108
Tabelle 16:	Experimentelle pK _i -Werte und scores für	
	11 β-Sitosterol-Rezeptorkomplexe	111
Tabelle 17:	Experimentelle pK _i -Werte und scores für 11 Guggulsteron E-	
	und Guggulsteron Z-Rezeptorkomplexe	113
Tabelle 18:	Bekannte humane Kernrezeptoren	138
Tabelle 19:	Flexible Seitenketten während des Kreuzdocking für die	
	einzelnen Kernrezeptorklassen	148
Tabelle 20:	Ergebnisse des Re-Dockings	148

Tabelle 21:	Strukturen der Standardliganden die während der Molküldynamik-
	Simulation verwendet wurden 157
Tabelle 22:	Beobachtete Wasserstoffbrücken für jedes Modell während der
	4. bis 5. ns der Moleküldynamik-Simulation 159
Tabelle 23:	Sequenzvergleich der Kernrezeptor-LBD 159
Tabelle 24:	Zuordnung der 5 Ligandenbindungssubtaschen innerhalb
	der 37 humanen Kernrezeptoren 165
Tabelle 25:	Daten für die Korrelation zwischen score und den experimentell
	bestimmten pK _i -Werten für den NR3A1 166
Tabelle 26:	Daten für die Korrelation zwischen score und den experimentell
	bestimmten pK _i -Werten für den NR3A2 166
Tabelle 27:	Daten für die Korrelation zwischen score und den experimentell
	bestimmten pK _i -Werten für den NR3C1 166
Tabelle 28:	Daten für die Korrelation zwischen score und den experimentell
	bestimmten pK _i -Werten für den NR3C3 167
Tabelle 29:	Strukturformelverzeichnis

Formelverzeichnis

Formel 1:	Mittlere quatratische Abweichung	19
Formel 2:	Beispiel einer Energiepotentialfunktion	24
Formel 3:	2. Ableitung des 2. Newton'schen Gesetzes	26
Formel 4	Mittlere quatratische Fluktuation	27
Formel 5:	Boltzmann-Faktor der Energiedifferenz	31
Formel 6:	Berechnung des Anreicherungsfaktors	.34

1 Einleitung

Die Suche des Menschen nach Heilmitteln kann bis in die Antike zurückverfolgt werden, jedoch war die Entdeckung meist dem Zufall unterworfen. Jahrhunderte lang wurden Krankheiten mit verschiedenen pflanzlichen Extrakten behandelt ohne die Ursachen der heilenden Wirkung zu kennen. Heute wissen wir, dass die Ursache für einige Erkrankungen auf die spezifischen Veränderungen von Proteinen zurückzuführen ist. Kennt man die biologische Funktion der Proteine, die für eine Krankheitsausprägung verantwortlich ist, so ist es möglich gezielt in den biologischen Stoffwechsel einzugreifen, um der Krankheit entgegenzuwirken. Aus diesem Grund sucht man in der modernen Arzneistoffforschung nach krankheitsrelevanten Proteinen. So kann später gezielt nach chemischen Stoffen (Liganden) gesucht werden, die an das Protein (Target) binden und dem Krankheitsprozess, durch Inhibierung oder Aktivierung des Proteins, entgegenwirken. Die vorliegende Arbeit befasst sich mit dem Androgenrezeptor. Er spielt eine entscheidende Rolle in der Ausbildung und Aufrechterhaltung der männlichen sekundären Geschlechtsmerkmale, der Knochen, der Muskeln und der Spermatogenese. Der Androgenrezeptor gehört zur Gruppe der intrazellulären Transkriptionsfaktoren. Die Transkription der Androgenrezeptor-abhängigen Gene wird durch eine ligandeninduzierte, konformative Änderung der Ligandenbindungsdomäne des Androgenrezeptors ausgelöst. Eine Fehlregulation und genetische Disposition des Androgenrezeptors kann zu verschiedenen Erkrankungen führen, wie dem Hypergonadismus, dem Prostatakrebs, der benignen Prostatahyperplasie, der androgenen Alopezie, der Akne und dem Hirsutismus.

In der vorliegenden Arbeit sollten neue Liganden des Androgenrezeptors identifiziert und die molekularen Grundlagen ihrer Wirkung untersucht werden. Folglich sollte es möglichen sein den allgemeinen Mechanismus der Wechselwirkung zwischen Ligand und Androgenrezeptor sowie dessen Funktion besser zu verstehen und neue Kriterien für effektivere "potentielle Wirkstoffe" abzuleiten. Aus diesem Grund gibt das nachfolgende Kapitel einen Einblick in den Stand der Literatur über die Struktur und Funktion des Androgenrezeptors und seiner Liganden, der für das Verständnis und die Einschätzung der Ergebnisse nötig ist.

1.1 Androgenrezeptor

Der Androgenrezeptor (NR3C4) ist ein Mitglied der Kernrezeptorsuperfamilie, welche sich aus mehr als 100 Rezeptoren zusammensetzt und stetig wächst.¹ Er gehört zur Klasse der Steroidrezeptoren und wird auf Grund seiner Sequenzähnlichkeit in die Unterfamilie der Östrogenrezeptor-artigen Rezeptoren eingeordnet. In der Familie der Vertebraten sind bis heute neun Östrogenrezeptor-artige Rezeptoren bekannt: α -Östrogenrezeptor (NR3A1), β -Östrogenrezeptor (NR3A2), Östrogen-ähnlicher Rezeptoren- α (NR3B1), Östrogenähnlicher Rezeptoren- β (NR3B2), Östrogen-ähnlicher Rezeptoren- γ (NR3B3), Glucocorticoidrezeptor (NR3C1), Mineralocorticoidrezeptor (NR3C2), Progesteronrezeptor (NR3C3) und NR3C4.

1.1.1 Physiologische Bedeutung der natürlichen Liganden am Beispiel von Testosteron

Testosteron (1; TES) gehört wie sein Metabolit Dihydrotestosteron (2; DHT) zur Gruppe der steroidalen Sexualhormone und ist ein natürlicher Ligand des NR3C4. TES (1) ist eines der wichtigsten zirkulierenden Androgene. Sinkt der TES-Spiegel im Blut, kommt es zu einer Ausschüttung des Gonadotropin-Releasing-Hormones (GnRH) aus dem Hypothalamus. GnRH regt daraufhin in der Hypophyse die Ausschüttung des luteinisierenden Hormons und des adrenocorticotropen Hormons an. Infolgedessen wird beim Mann in den Leydig'schen Zwischenzellen des Hodens und zum geringen Teil in der Nebennierenrinde TES (1) gebildet. Bei der Frau erfolgt die Bildung des TES (1) in den Eierstöcken und ebenso in geringen Mengen in der Nebennierenrinde. Die Synthese von TES (1) beginnt bei der Biosynthese von Cholesterin (3) und setzt sich fort über die Bildung von Progesteron (4) und 17α -Hydroxyprogesteron (5) bis hin zur Abspaltung der C20-C21 Seitenketten und der abschließenden Reduktion zum TES (1; Abbildung 1).² TES (1) gelangt über den Blutkreislauf zu den Zielorganen wie z.B. zum Knochen- und Muskelgewebe, zum Urnierengang, zur Samenblase oder zu den äußeren Geschlechtsorganen.³ Der freie nichtproteingebundene Anteil macht hierbei ca. 1-2 % aus und wird als derjenige angesehen, der in den verschiedenen Zellen des Organismus wirksam ist.⁴ In den meisten Zielorganen, nicht aber in der Muskulatur und im Knochen, wird TES (1) durch Reduktion der C4-C5-Doppelbindung unter Beteiligung von Nicotinamidadenindinukleotidphosphat als essentieller Kofaktor zu DHT (2) umgewandelt. Diese Reaktion wird durch die 5α -Reduktase katalysiert. Nachdem das TES (1) passiv durch die Zielzelle diffundiert ist, bindet es oder sein Metabolit DHT (2) an den NR3C4.

Abbildung 1: Ausschnitt der Biosynthese von Testosteron (1; TES) nach Brown *et alii.*² (I: 20,22-Desmolase (Mitochondrien); II: 3β -Hydroxysteroid-Dehydrogenase; III: $\Delta 4,5$ -Isomerase; IV: Steroid-17 α -Hydroxylase; V: 17,20-Desmolase; VI: 17 β -Hydroxysteroid-Dehydrogenase; VII: 5 α -Reduktase).

1.1.2 Androgenrezeptorinduzierte Genexpression

Wie alle anderen Steroidrezeptoren ist der NR3C4 ein intrazellulärer Transkriptionsfaktor. Die Transkription ist einer der zwei Hauptprozesse der Genexpression. Durch ein zeitlichund gewebespezifisches Kopieren der Gene wird das Wachstum, die Differenzierung, der Metabolismus, die Reproduktion und die Morphogenese des menschlichen Organismus reguliert. Während der Transkription erfolgt unter Beteiligung von Ribonukleinsäure- (RNS-) Polymerasen am aktivierten Desoxyribonukleinsäure- (DNS-) Strang die RNS-Synthese. Nach dem RNS-*Processing* entsteht die "reife" Boten-RNS, welche als "Blaupause" für die Proteinbiosynthese während der Translation dient. Die Kernrezeptoren leiten ein extrazelluläres Signal (Hormon) zum Kern der Zelle weiter, um die targetspezifische Genexpression zu regulieren. Der hormongebundene Kernrezeptor bindet dabei als Komplex mit seinen assoziierten Koregulatoren und der basale Transkriptionsmaschinerie an genregulatorische Sequenzen auf der Ziel-DNS und beeinflusst die Geschwindigkeit der Transkriptionsinitiation. Dies führt zu einem veränderten Genexpressionsmuster in der Zelle. Ein durch den NR3C4 beeinflusstes Gen ist z.B. der insulinähnliche Wachstumsfaktor-1 (IGF-1), der nahezu jede Zelle im menschlichen Organismus beeinflusst, wie z. B. Muskeln, Knorpel, Leber, Niere, Nerven und Haut. Der Einfluss des NR3C4 auf IGF-1 steht auch im Zusammenhang mit dem Prostatakrebs.⁵

1.1.3 Strukturelle Organisation

Der NR3C4 wurde 1981 erstmals als ein auf dem X-Chromosom der Bande q11-12 liegendes Gen lokalisiert.⁶ Das Gen umfasst 180 kbp und ist mit dem 5^c-Ende zum Zentromer orientiert. Das Boten-RNS-Transkript ist 10,6 kb lang und hat ein offenes Leseraster von 2757 bp, welches für die acht Exons kodiert.⁷⁻¹⁰ Das Protein ist 919 Aminosäuren lang. Es sind zwei Isoformen bekannt,¹¹ wobei dem NR3C4-A (87 kDa) im Gegensatz zum NR3C4-B (110 kDa) der N-Terminus fehlt. Da der NR3C4-B, die am häufigsten in der Zelle vorkommende Isoform ist,¹¹ beziehen sich die nachfolgenden Erläuterungen nur auf die Isoform B. Der NR3C4 besitzt wie alle Steroidrezeptoren drei getrennte autonome Domänen (Abbildung 2),¹² die im Folgenden beschrieben werden.

Abbildung 2: Strukturelle Organisation des NR3C4-Gens und -Proteins nach Jenster *et al.*¹² (NTD: NH₂-terminale-Transaktivierungsdomäne; DBD: DNS-Bindungsdomäne; LBD: C-terminale Ligandenbindungsdomäne).

Die NH₂-terminale-Transaktivierungsdomäne (NTD) des NR3C4 ist die größte Domäne, umfasst.13 Aminosäuren Es existiert keine welche 558 Röntgenkristalloder Kernspinresonanz- (NMR) Struktur dieser Domäne. Die Länge der Aminosäuren der NTD variiert. Es handelt sich dabei um Wiederholungen von Glutamin- und Glycinresten. Die Funktion dieses Polymorphismus im NR3C4 ist noch weitgehend unbekannt. Der Polyglutaminpolymorphismus ist ein Marker in der Humanpopulationsgenetik und vermutlich für mehrere Krankheiten verantwortlich.¹⁴⁻¹⁶ Im Bereich der NTD liegt die Aktivierungsfunktion-1 (AF-1), innerhalb der Aminosäuren 142-337 (Abbildung 3). Die AF-1 enthält drei Motive: das ¹⁷⁹LKDIL¹⁸³-Motiv, das ¹⁸³L/HX₇LL¹⁹²-Motiv und die zentrale Transaktivierungseinheit-1 (Tau-1) zwischen den Aminosäuren 177 und 203.¹⁷⁻¹⁹

Abbildung 3: Strukturelle Organisation der NH₂**-terminalen-Transaktivierungsdomäne** (AF-1: Aktivierungsfunktion-1; Tau-1: zentrale Transaktivierungseinheit-1; Tau-5: zentrale Transaktivierungseinheit-5)

Mutationsstudien zeigten das Tau-1 eine wichtige Funktion innerhalb der Transkription übernimmt.^{18;20;21} Das ¹⁸³L/HX₇LL¹⁹²-Motiv dient vermutlich als Bindungsseite für Tab-2, eine Komponente des Kernrezeptorkorepressors.¹⁷ Bindet ein Ligand am NR3C4 und löst die Rekrutierung des Tab-2/Kenrezeptorkorepressors aus, so führt dies zur Unterdrückung der Transkription der durch den NR3C4 regulierten Gene. Diese Liganden werden als Antagonisten bezeichnet. Agonisten dagegen sind Liganden, die nicht zu einer Unterdrückung des durch den NR3C4-regulierten Gens führen, sondern zu einer transkriptionellen Aktivierung. Die Regulierung des NR3C4 wird durch die regulatorische Funktion von Interleukin-1ß zusätzlich beeinflusst. So konnte in Prostatakarzinomzelllinien gezeigt werden, dass in Anwesenheit von Interleukin-1ß Tab-2 über den mitogenen, extrazellular signalregulierten Kinase-Kinase-1 Signalweg phosphoryliert wird, was vermutlich zur Dissoziation des Kernrezeptorkorepressorkomplexes führt.²² Auf diese Weise kann das Gleichgewicht zwischen Koaktivator- und Korepressorbindung verschoben werden und die Bindung eines Antagonisten kann eine Transkription mit agonistischem Charakter hervorrufen (Abbildung 4). Eine Behandlung von Prostatakarzinompatienten mit Antiandrogenen (z.B. Bicalutamid) für eine Inhibierung der transkriptionellen Aktivität des NR3C4 wäre in Anwesenheit von Interleukin-1ß somit wirkungslos.²³

Abbildung 4: Vereinfachte Darstellung der Wirkung von Agonisten und Antagonisten am NR3C4 auf die Genexpression.

Ebenso können Mutationen des NR3C4, die Überexpression von Koaktivatoren oder eine Änderung im Zellzyklus dazu führen, dass ein Antagonist einen agonistischen Charakter zeigt.²⁴⁻²⁶ Die zentrale Transaktivierungseinheit-5 (Tau-5) von Aminosäure 360 bis 495 ist ein weiterer funktioneller Bereich der AF-1.¹⁹ Tau-5 enthält das ⁴³³WHTLF⁴³⁷-Motiv (Abbildung 3) und wirkt als autonome Aktivierungsdomäne.²⁷

Die zentrale DNS-Bindungsdomäne (DBD) ist die am stärksten konservierte Domäne des NR3C4. Sie besteht aus den Aminosäuren 559-624. Die DBD ist spezifisch für das jeweilige Bindungselement des Promotors. Sie enthält zwei hochkonservierte, cysteinreiche Zinkfinger-Motive.²⁸ Durch die Komplexierung von 4 Cysteinresten durch das Zink-Ion ergibt sich die Tertiärstruktur des Zinkfingers. Die Analyse der Röntgenkristallstruktur verschiedener DBD anderer Steroidrezeptoren hat ergeben, dass die Aminosäuren der α -Helix im Zinkfinger bindenden Motiv, durch ihre Interaktion mit der großen Furche der DNS, für die sequenzspezifische Interaktion der Kernrezeptoren verantwortlich sind (Abbildung 5).²⁹

Abbildung 5: Interaktion der α -Helices im zinkfingerbindenden Motiv mit der großen Furche der DNS. Die DNS-Bindungsdomäne (Monomer I und II) ist in grün mit dem Zinkatomen als rote Sphäre dargestellt.²⁸ Zusätzlich ist die D-Box und P-Box eingezeichnet.

Durch Mutationsanalysen, der an den Zinkfingern beteiligten Aminosäuren mehrerer Steroidrezeptoren, konnte gezeigt werden, dass die im ersten Zinkfinger enthaltenen Motive (P-Box und D-Box) für die sequenzspezifische Interaktion mit der DNS von großer Bedeutung sind.³⁰⁻³² Die P-Box bildet zwischen den beiden letzten Cysteinen des ersten Zinkfingers eine Schleife. Sie bestimmt die Spezifität der für die verschiedenen Untergruppen charakteristischen Bindungselemente. Beispielsweise erlaubt die charakteristische P-Box der Kernrezeptoren NR3C1, NR3C2, NR3C3 und NR3C4 ihr Bindungselement AGAACA zu

erkennen.³³ Das zweite Zinkfingerbindende Motiv (D-Box) ist eine weitere wichtige Aminosäuresequenz, welche für die Dimerisierung der Steroidrezeptoren von Bedeutung ist.³⁴ Sie besteht aus einer kurzen Peptidsequenz zwischen dem ersten und dem zweiten Cystein des zweiten Zinkfingers. In Analogie zu anderen Steroidrezeptoren bindet der NR3C4 als Dimer an die klassischen DNS-genregulatorischen Sequenzen. Jedoch weist der NR3C4 eine erhöhte Affinität zur DNS auf, was zu einer verstärkten Dimerisation führt.²⁸ Zwischen der DBD und der Ligandenbindungsdomäne (LBD) befindet sich ein flexibles Scharnier (Hingeregion). Die Hingeregion kann als ein Fragment zwischen der letzten α-Helix der DBD und der ersten α-Helix der LDB definiert werden. Sie besteht aus den Aminosäuren 623 bis 671 des NR3C4. Nähere Analysen haben gezeigt, dass es sich hierbei nicht nur um eine Scharnierfunktion handelt. Diese Region enthält wie in vielen Kernrezeptoren ein Kernlokalisationssignal (KLS).^{35;36} Das NR3C4-KLS bindet an Importin α .³⁷ Mutationen innerhalb dieses KLS stehen in Zusammenhang mit dem Prostatakrebs.³⁷ Auch abseits des Kernlokalisationssignals scheint diese Region von größerer Bedeutung zu sein, als bisher angenommen wurde.³⁸ So spielt das KLS eine entscheidende Rolle bei der Transaktivierung.³⁷

Der C-Terminus der Kernrezeptoren enthält die LBD, welche eine deutlich geringere Konservierung aufweist als die DBD. Die LBD besteht aus den Aminosäuren 676-919 des NR3C4. Im Jahr 2000 konnten erstmals die LBD des wildtyp-NR3C4 im Komplex mit Methyltrienolon (12; R1881), einem synthetischen Agonisten, mittels Röntgenstrukturanalyse aufgeklärt werden (Abbildung 6).³⁹ Bis heute existiert keine NMR-Struktur der LBD. Der Vergleich verschiedener Kernrezeptorröntgenkristallstrukturen zeigte, dass die LBD strukturell gleich aufgebaut sind.³⁹ Die LBD des NR3C4 bildet eine definierte globuläre Struktur mit zwei antiparallelen β -Faltblättern und 12 α -Helices, welche in einer antiparallelen dreilagigen Sandwichstruktur aufgebaut ist (Abbildung 6). Die Helix1 (H1) und H3 formen eine Seite der LBD, während H4, H5 und das erste antiparallele β-Faltblatt sowie H8 und H9 das Zentrum der LBD bilden. H6, H7, H10 und H11 bilden die zweite Seite der LBD. Der Großteil der hydrophoben Bindetasche wird durch die H5, den N-terminalen Bereich der H3 und der C-terminalen Region der H10 und der H11 begrenzt. Bei der Bindung eines Agonisten dient die H12 als ein "Deckel" der Ligandenbindungstasche (LBT). Das zweite antiparallele β-Faltblatt stabilisiert als "Schloss" die Konformation der NR3C4-LBD. Die durch den Agonisten induzierte Konformation der LBD ermöglicht die Ausbildung eines hydrophoben Spaltes auf der Oberfläche der LBD im Bereich der H3, H4 und H12 (Abbildung 6). $^{39;40}$

Abbildung 6: Ligandenbindungsdomäne des NR3C4 (A) in Komplex mit R1881 (**12**; grau)³⁹ und (B) in Komplex mit R1881 (**12**; grau) und einem Koaktivatormotiv (blau) im Bereich der AF-2 (Aktivierungsfunktion-2; grau), die die Helices 3, 4 und 12 umfasst.⁴¹ Die Helices (H) sind in rot, die Schleifen in grün und die Faltblätter (β) in gelb dargestellt.

Der Spalt wird als Aktivierungsfunktion-2 (AF-2) bezeichnet und ist entscheidend für die amino/carboxyl-terminale Wechselwirkung des NR3C4.⁴² Die AF-2 dient gleichzeitig auch als Dockingseite für Koaktivatoren.^{43;44} Eine komparative Studie mehrerer Koaktivator LxxLL-Motive anderer Kernrezeptorkoaktivatoren zeigten unterschiedliche Sequenz-spezifitäten der NR3C4-LBD.⁴⁵ Weiterhin wurden für die AF-2 nur eine schwache Affinität zu den LxxLL-Motiven nachgewiesen.¹⁹ Im Unterschied zu anderen Kernrezeptoren kann die AF-2 des NR3C4 mit aromatischen Aminosäureseitenketten, z.B. dem ²³FQNLF²⁷-Motiv der NR3C4-NTD wechselwirken.⁴⁶ Die Aminosäuren Lys⁷²⁰ und Glu⁸⁹⁷ sind in der Lage Rückgratkontakte zum ²³FQNLF²⁷-Motiv zu formen, aber nicht zum LxxLL-Motiv (Abbildung 7).⁴¹ Man geht davon aus, dass die Aktivierung der AF-2 auf einem dynamischen Gleichgewicht verschiedener Konformationen der H12 beruht, und dass eine Änderung des Gleichgewichts in Richtung aktivierter H12-Konformationen zu der Kofaktorrekrutierung und damit zur transkriptionellen Genaktivierung führt.⁴⁷ Man vermutet, dass die Koregulatoren eine Verbindung zum Dimer des Kernrezeptors überbrücken.⁴⁸

Abbildung 7: LBD des NR3C4 in Komplex mit verschiedenen Koaktivatormotiven. (A) LBD des NR3C4 (grau) in Komplex mit dem FQNLF-Koaktivatormotiv (gelb) und (B) dem LRYLL-Koaktivatormotiv (rosa). Die Aminosäuren K720 und E897 sind in der Lage Rückgratkontakte zum FQNLF-Koaktivatormotiv zu formen, aber nicht zum LRYLL-Koaktivatormotiv.⁴¹

Antagonisten hingegen zerstören entweder die Struktur der LBD, oder ändern die Position der H12, so dass keine Koaktivatoren und Chromatin-modifizierenden Faktoren mehr binden können.⁴⁹ Man unterscheidet in diesem Fall zwei Mechanismen. Wird die Bildung der agonistischen Form der H12 sterisch durch den Liganden gehindert, spricht man von einem "aktiven Antagonisten". Induziert der Ligand einen inaktiven Rezeptor nicht durch einen direkten Kontakt mit der H12, so spricht man von einem "passiven Antagonisten".⁴⁷ Bis zum jetzigen Zeitpunkt wurde keine NMR- oder Röntgenkristallstrukturanalyse einer wildtyp-LBD des NR3C4 mit einem Antagonisten in Komplex mit einem Korepressor publiziert.

1.1.4 Struktur-Aktivitäts-Beziehungen

Bis heute wurden mehrere steroidale und nichtsteroidale Liganden des NR3C4 identifiziert. Die diversen Liganden binden mit unterschiedlicher Affinität am NR3C4. Die K_i-Werte erstrecken sich von schwach mikromolaren Konzentrationen bis hin zu hoch affinen Liganden im nanomolarem Bereich. Interessant scheint, dass Steroide mit sehr ähnlicher Struktur merkliche Unterschiede in der Affinität zum Rezeptor aufweisen können, während strukturell verschiedene Liganden ähnliche Affinitäten zeigen.⁵⁰ Diese Beobachtungen machen eine Vorhersage der Bindungsenergie zwischen Ligand und Rezeptor allein auf struktureller Ebene sehr schwer. Da mehrere Röntgenkristallstrukturen des NR3C4 in Komplex mit steroidalen Liganden, wie TES (1), DHT (2) und R1881 (12) publiziert wurden,^{39;46;50;50-54} lassen sich aus diesen Daten wichtige Rückschlüsse für die StrukturAktivitäts-Beziehung ziehen. Der Bindemechanismus der Steroide umfasst viele hydrophobe Wechselwirkungen sowie Wasserstoffbrücken in verschieden Regionen der LBT. Beides spielt eine essentielle Rolle bei der Ligandenbindung des NR3C4.^{39;40;55} Die Seitenketten der hydrophoben Aminosäuren innerhalb der LBT nehmen verschiedene Konformationen ein und können dadurch günstiger mit dem hydrophoben Kern des Steroids in Wechselwirkung treten und ihn stabilisieren.⁵⁶ Die hydrophoben Aminosäuren sind aber nicht vorrangig nur für die Stabilität des Steroids in der Bindetasche wichtig, sondern auch für die hohe Selektivität und Spezifität innerhalb der Kernrezeptorfamilie.⁵⁰

Mehrere Steroide formen über eine 3-Ketogruppe des A-Rings eine Wasserstoffbrücke mit der Seitenkette des Gln^{711} und Arg^{752} , direkt oder indirekt über ein Wassermolekül (konserviert).⁵⁰ Des Weiteren können mehrere steroidale Liganden über ein Wasserstoffatom der 17β-Hydroxylgruppe eine Wasserstoffbrücke mit der Seitenkette des Asn⁷⁰⁵ und des Thr⁸⁷⁷ ausbilden (Abbildung 8).⁵⁰

Abbildung 8: R1881. Wasserstoffbrückennetzwerk (potentielle Wasserstoffbrücken mit einem Abstand kleiner 3.5 Å als gestrichelt, gelbe Linie) zwischen Liganden R1881 (**12**; grün) und den Aminosäuren (grau) N705, Q711, R752 und T877 des NR3C4 sowie einem Wassermolekül (rot).³⁹

Die Bedeutung der Wasserstoffbrücken ist durch verschiedene Mutationsstudien belegt worden.⁵⁰ So zeigte die Arg752Gln-Mutation einen Einfluss auf die Funktion des NR3C4. Menschen mit dieser Mutation zeigen eine Androgenresistenz und einen weiblichen Phänotyp. Mutationsstudien an Gln⁷¹¹ zeigten keinen Effekt auf die Bindungsaffinität der Liganden zum NR3C4. Eine Asn705Ser-Mutation resultiert in einer starken Reduktion der Bindungsaffinität des Liganden zum NR3C4. Eine Thr877Ala-Mutation zeigte eine veränderte Selektivität in der Ligandenbindung. Die Thr877Ala-Mutation verursacht einen größeren Raum in der Nähe des D-Rings, so dass Liganden mit einem größeren Substituenten am D-Ring des Steroidgrundgerüsts in der LBT des NR3C4 binden können, wie Progesteron (4) und Cortisol (13).

Eine gute Zusammenfassung über die Struktur-Aktivitäts-Beziehungen steroidaler Liganden des NR3C4 bietet das Review von Frakaki *et al.*⁵⁶ Es beinhaltet die Auswirkungen von Substitutionen am C1-, C2-, C3-, C4-, C5-, C7-, C8-, C11- und C17-Atom (Abbildung 9) auf die anabole oder androgene Aktivität. Verschiedene Studien von TES-Derivaten belegen, dass sich eine Alkylierung am C1- und C2-Atom begünstigend auf die anabole Aktivität auswirkt. Weiterhin ist beschrieben, dass sich eine 3-Ketogruppe begünstigend auf die androgene Aktivität auswirkt. Das Sauerstoffatom der Ketogruppe am C-3 besitzt zwei freie Elektronenpaare und kann somit als Wasserstoffbrückenakzeptor eine Wechselwirkung mit polaren oder geladenen Aminosäureresten eingehen.⁵⁰ Verschiedene Studien haben gezeigt, dass eine Reduktion der Ketogruppe in ein α - oder β -Alkohol zu einer verminderten Bindungsaffinität führt.

Abbildung 9: Signifikante Modifikationen und deren Auswirkung. (A) DHT (2)^{56;57} und (B) TES (1).⁵⁶

Das 5a-steroidale Grundgerüst begünstigt die Bindungsaffinität im Gegensatz zum 5ß-steroidalen Grundgerüst.⁵⁵ Im Gegensatz dazu hat eine C4-Doppelbindung keinen kritischen Einfluss auf die Bindungsaffinität.⁵⁸ Kleine Substitutionen am C-7 zeigten eine begünstigende Wirkung auf die Bindungsaffinität, jedoch nimmt die Bindungsaffinität bei einer bestimmen Größe wieder ab.⁵⁶ 11-Oxo-Substitutionen am DHT (2) zeigten eine Reduktion der Bindungsaffinität zum NR3C4.⁵⁵ 11β-Substitutionen am Spironolacton (14) zeigten hingegen eine erhöhte androgene Aktivität.⁵⁹ 3α-OH-Derivate des DHT (2) mit einer 16α-Seitenkette zeigten eine erhöhte antiandrogene Aktivität.⁵⁷ Bisherige kurzen Modifikationen an der β -Hydroxylgruppe am C-17 des DHT (2) zeigten eine Reduktion der Bindungsaffinität.^{60;61} Die 17β-Hydroxylgruppe ist als Wasserstoffbrückendonor in der Lage Wechselwirkung mit elektronegativen Atomen einzugehen.⁵⁰ Eine Veresterung der 17β-Hydroxylgruppe am TES (1) wirkt sich förderlich auf die anabole Aktivität aus.⁵⁵ DHT-Derivate ohne eine Methylgruppe am C-19 und mit einer Methylgruppe am C-7 zeigten eine erhöhte androgene Aktivität. TES-Derivate ohne Methylgruppe am C-19 zeigten hingegen eine Erhöhung der anabolen Aktivität und eine Reduktion der androgenen Aktivität.56

In den vergangen Jahren wurden mehrere nichtsteroidale Liganden des NR3C4 identifiziert. Dazu zählen z.B. Arylpropionamid-, Toluidid-, Hydantion-, Phthalimid-, Chinolonon-, Diphenyl-, Phenylpyridin- und Dichlordiphenyldichlorethanderivate.⁶²⁻⁶⁴ Ein Vorteil der meisten nichtsteroidalen Liganden liegt in der Spezifität zum NR3C4, den günstigen pharmakokinetischen Eigenschaften, sowie der gewebsspezifischen Wirkung.^{65;66} Einer der bekanntesten nichtsteroidalen Antiandrogene ist R-Bicalutamid (15).⁶⁷ Es gehört zur Gruppe der Toluididderivate, wie die Antiandrogene Flutamid (16)⁶⁷ und Nilutamid (17).⁶⁸ Mehrere Studien zeigten, dass Substitutionen der Sulfonylgruppe des Bicalutamids (15) zu thio- oder etherverlinkten Gruppen zu einer agonistische Aktivität führen.⁶⁹⁻⁷¹ Ethergekoppelte Bicalutamidanaloga besitzen einen erhöhten Effekt in anabolem Gewebe, wie Muskulatur und Knochen, im Gegensatz zu androgenem Gewebe wie Prostata und Samenblase.^{66;72;73} Eine Acetamin-, Cyano- oder Nitrogruppe in para-Position im B-Ring führte zu einer erhöhten Affinität zum NR3C4.72 Ebenso zeigten R-Bicalutamidderivate mit elektronenfangenden Gruppen am B-Ring eine erhöhte Affinität zum NR3C4 (Abbildung 10).^{74;75} Für die nichtsteroidalen Liganden in Komplex mit dem NR3C4 sind bisher nur wenige Röntgenkristallstrukturen bekannt. Unbekannt ist die Röntgenkristallstruktur eines Wildtyp-NR3C4 in Komplex mit einem nichtsteroidalen Antagonisten.

Abbildung 10: Signifikante Modifikationen und deren Auswirkung für R-Bicalutamid (15).

Dennoch ist bekannt, dass die nichtsteroidalen Liganden ähnliche Bindemotive besitzen, wie sie bei der Bindung von steroidalen Liganden beobachtet werden können. So bildet die Nitrogruppe des Liganden R-3 (**18**; Toluidide-Derivat) eine direkte bzw. indirekte Wasserstoffbrücke zu der Seitenketten des Arg⁷⁵² und des Gln⁷¹¹ und über seine Hydroxylgruppe eine Wasserstoffbrücke zum Asn⁷⁰⁵ (Abbildung 11).⁷⁶ Agonistisch wirkende R-Bicalutamid-Derivate zeigten ein ähnliches Bindemuster wie das von R-3 (**18**). Sie formen Wasserstoffbrücken zum Arg⁷⁵², Leu⁷⁰⁴, Asn⁷⁰⁵ und Gln⁷¹¹. Agonistische R-Bicalutamid-Derivate mit hydrophilen Substituenten am B-Ring bilden eine zusätzliche Wasserstoffbrücke zu einem Wassermolekül, dass durch His⁸⁷⁴ und Aminosäuren der Helix 4 und 5 stabilisiert wird.⁷⁷ Für das nichtsteroidale Chinolin-Derivat LGD2226 (**19**; Abbildung 11) ist bekannt, dass es eine Wasserstoffbrücke zu den Aminosäureseitenketten des Gln⁷¹¹ und Arg⁷⁵² sowie zu einem Wassermolekül bildet.⁷⁸

Abbildung 11: Nichtsteroidale Liganden des NR3C4. (A) Wasserstoffbrückennetzwerk (potentielle Wasserstoffbrücken mit einem Abstand kleiner 3.5 Å als gestrichelt, gelbe Linie) zwischen dem Liganden R-3 (**18**; grün) und den Aminosäuren (grau) L704, N705, Q711 und R752 sowie einem Wassermolekül (rot). (B) Wasserstoffbrückennetzwerk zwischen dem Liganden LDG2226 (**19**; orange) und den Aminosäuren (grau) Q711 und R752 sowie einem Wassermolekül (rot).^{76;78}

1.1.5 Therapeutisches Potential

Eine Störung der Androgenfunktion kann bei den verschiedensten Erkrankungen beobachtet werden. Auf Grund der Tatsache, dass die Wirkung der Androgene durch den NR3C4 vermittelt wird, ist der NR3C4 ein spezifisches *Drug Target* bei der Behandlung dieser Krankheiten. So z.B. beim Hypergonadismus, einer Unterfunktion der Keimdrüsen, die zu einem Androgenmangel führt, der sich je nach Lebensalter und Geschlecht unterschiedlich auswirken kann. Man unterscheidet hierbei zwischen hypergonadismus (Störung der Hormonfunktion in den Gonaden) und hypogonadotropen Hypogonadismus (Störung der Hormonproduktion im Hypothalamus). Bei der Behandlung finden häufig Testosteronester wie Testosteronphenylpropionat (**20**), Testosteronpropionat (**21**) und Testosterondecanoat (**22**) Anwendung. Der Ester wird im Körper durch eine Esterase abgespalten und das natürliche Steroid wird freigesetzt.⁷⁹ Die Kräftigung bei schwächenden Krankheiten wie Krebs oder dem erworbenes Immundefektsyndrom AIDS ist ein weiteres Anwendungsgebiet von NR3C4-Liganden. Einsatz finden hier die Anabolika, wie Nandrolon (**23**), Clostebolacetat (**24**) und Metenolonacetat (**25**). Sie kehren die negative Stoffwechsellage vom Abbau des Körpergewebes in den Aufbau um.

Eine Androgenüberfunktion kann z.B. bei der androgenen Alopezie, der Akne, dem Hirsutismus, der benignen Prostatahyperplasie und dem Prostatakrebs beobachtet werden. Der Prostatakrebs ist das am häufigsten auftretende Malignom und die bei Männern der westlichen Welt, zweithäufigste krebsassoziierte Todesursache.^{80;81} Nach Schätzungen des Robert Koch-Instituts werden in Deutschland jährlich 40.000 Neuerkrankungen diagnostiziert, wobei das Risiko an Prostatakrebs zu erkranken mit dem Alter steigt.⁸² Bei einer Therapie kann ein auf die Prostatakapsel beschränkter Tumor durch eine radikale Prostatektomie oder durch Radiotherapie behandelt werden. Da das Prostatagewebe anfänglich androgen-abhängig proliferiert,⁸³ kann eine Therapie durch Luteinisierendes-Hormon-Releasing-Hormon-Analoga, zur Hemmung der testikulären Androgenproduktion erfolgen, um ein weiteres Tumorwachstum zu verhindern.^{84;85} Jedoch bleibt bei dieser Therapie die Synthese von TES (1) und DHT (2) in der Nebenniere unbeeinflusst.^{84;86;87} Eine verbleibenden NR3C4-Aktivität kann durch Hemmung der eine zusätzliche Antiandrogentherapie erreicht werden.^{84;85;87-89} Zurzeit sind einige steroidale Antiandrogene auf dem Markt, wie z.B. Cyproteronacetat (26; Androcur®, Climen®, Diane 35®, Ginette 35®) oder auch nichtsteroidale Antiandrogene wie R-Bicalutamid (15; Casodex®) und Flutamid (16; Fugerel®). Die Hemmung des NR3C4 führt letztlich zur Hemmung der Krebsproliferation.⁸⁴ In fast allen Fällen tritt jedoch nach einer Behandlung von 1-2 Jahren

androgen-unabhängiges Prostatakarzinom auf. ein trotz fortlaufender Therapie. Androgenunabhängig heißt in diesem Fall jedoch nicht, dass der Prostatakrebs nicht auf die Aktivität des NR3C4 angewiesen ist.^{80;84;90;91} So konnte gezeigt werden, dass die Hemmung der NR3C4-Expression zu einer Hemmung der Proliferation führt.^{80;84;92} Die Ursachen hierfür können unterschiedlicher Natur sein, wie z.B. eine Überexpression des Rezeptors des NR3C4-Gens⁹³ oder durch eine Amplifizierung aktivierte. zelluläre Signaltransduktionswege (Kapitel 1.1.3), die zur Proliferation führen, sowie Mutationen am NR3C4. Die Mutationen können bewirken, dass der Rezeptor durch andere Liganden aktiviert wird oder sogar durch die verwendeten Antiandrogene (Kapitel 1.1.3).⁹⁴⁻⁹⁷

Ein Nachteil der meisten Androgene bzw. Antiandrogene sind ihre starken Nebenwirkungen. So zeigen viele Anabolika nicht nur eine anabole, sondern auch eine virilisierende, zyklusstörende oder hodenschädigende Wirkung. Bei Kindern kann es zudem zu einer früheren Knochenreifung und einem reduziertem Längenwachstum kommen. Umgekehrt zeigen Androgene anabole Nebenwirkungen. Diese Wirkung ist meist auf eine geringe Gewebespezifität zurückzuführen. Des Weiteren zeigen steroidale Liganden von Steroidrezeptoren Kreuzreaktionen innerhalb ihrer Proteinfamilie, was ein weiterer Grund für die Nebenwirkungen steroidaler Medikamente ist.⁹⁸ Nichtsteroidale Antiandrogene wie R-Bicalutamid (**15**) oder Flutamid (**16**) oder nichtsteroidale Androgene wie R-3 (**18**) zeigen dagegen eine hohen Affinität und Spezifität zum NR3C4. Jedoch wurde nachgewiesen, dass Mutationen die während des Krankheitsverlaufes innerhalb der LBD des NR3C4 auftreten können, sowohl bei steroidalen als auch bei nichtsteroidalen Liganden zu einer unerwünschten NR3C4-Aktivität führen (Kapitel 1.1.3).⁹⁴⁻⁹⁷

1.2 Zielstellung der Arbeit

Der NR3C4 ist ein wichtiges therapeutisches Zielprotein zum Beispiel bei der Behandlung von Hypogonadismus, androgener Alopezie, Akne, Hirsutismus, benigner Prostatahyperplasie und dem Prostatakrebs. Durch den gezielten Einsatz von Wirkstoffen wird versucht der Androgenunterfunktion bzw. -überfunktion entgegenzuwirken. Die Behandlung mit bisherigen Wirkstoffen ist meist nicht sehr erfolgreich oder nach einem anfänglich guten Ansprechen auf den Wirkstoff nach relativ kurzer Zeit wirkungslos. Ursachen hierfür sind krankheitsbegleitende Mutationen oder die Überexpression des NR3C4, die das Wirkspektrum der Medikamente verändern sowie erhöhte Nebenwirkungen (Kapitel 1.1.3 und 1.1.5). Ein Ansatz zur Auffindung von wirksameren Substanzen besteht in der Suche nach neuen Liganden des NR3C4, um den allgemeinen Mechanismus zwischen Struktur und Wirkung besser zu verstehen sowie Kriterien für affinere und selektivere Wirkstoffe abzuleiten.

Die Identifizierung neuer, potentieller Liganden des NR3C4 war auch ein wichtiges Ziel der vorliegenden Arbeit. Anhand computerbasierten Methoden sollten effektive Kriterien zur Differenzierung von potentiellen Liganden und Nichtbindern aus großen Konformationsdatenbanken abgeleitet werden. Diese Kriterien sollten als Filter in einem virtuellen Screening (VS) nach potentiellen NR3C4-Liganden dienen. Die Evaluierung der im VS vorgeschlagenen potentiellen NR3C4-Liganden erfolgt durch den Vergleich experimentell ermittelter Struktur-Wirkungs-Beziehung (Daten von Claudia Bobach, Kristin Palberg und Anika Denkert; Leibniz-Institut für Pflanzenbiochemie, Halle)

Es soll die grundlegende Fragestellung beantwortet werden ob es möglich ist, mit Hilfe der computerbasierten Methoden die experimentell erhaltenen Struktur-Wirkungs-Beziehungen zu verifizieren und einen detaillierteren Einblick in die Struktur-Wirkungs-Beziehungen zu bekommen. Ziel ist es Modelle zu entwickeln, die neue Kriterien für weitere Liganden-(Hit-) Optimierungsschritte darstellen.

Je nach Art, ob Agonist oder Antagonist, induziert der Ligand eine konformative Änderung der AF-2 und beeinflusst somit das Genexpressionsmuster in der Zelle. Damit ergab sich die Frage nach der biologischen Aktivität der identifizierten NR3C4-Liganden, die anhand von Computermodellen bestimmt werden sollte.

Trotz der Fortschritte in der Behandlung von Erkrankungen mit spezifisch an Kernrezeptoren wirkenden Medikamenten treten häufig Nebenwirkungen auf, die auf Kreuzreaktionen mit anderen Kernrezeptoren zurückzuführen sind.⁹⁸ Somit ist die Spezifität des Liganden zum NR3C4 ein weiteres wichtiges Kriterium für effektiv wirksame Substanzen. Es stellt sich die Frage wie spezifisch die im VS identifizierten Liganden am NR3C4 wirken und welche Aminosäuren eine besondere Rolle in der Spezifität einnehmen. Zusammenfassend sollten in dieser Arbeit folgende Fragen beantwortet werden: (1) Können mit computerbasierten Methoden neue Liganden des NR3C4 identifiziert Methoden verlässliche Informationen über Liganden des NR3C4 gewonnen werden? (3) Kann eine eindeutige Zuordnung der Liganden des NR3C4 zu agonistischer oder antagonistischer Aktivität über Computermodelle erfolgen? (4) Können Aussagen anhand von Computermodellen über die Kreuzreaktivitäten mit anderen Steroidrezeptoren für Liganden des NR3C4 gemacht werden?
2 Stand der Literatur – Strukturbasierter Entwurf zur Identifizierung von Proteinliganden

Die Methode des strukturbasierten Entwurfs von Proteinliganden erlaubt die Selektion von potentiellen Liganden aus großen 3D-Strukturdatenbanken aufgrund der gegebenen 3D-Struktur des Proteins. Die Grundlage für diese Methode wurde in 1980er Jahren durch die Entwicklung von computergestützten Sequenziermaschinen gelegt. Mit Hilfe der parallel fortschreitenden Entwicklung in der Hochdurchsatz-Röntgenkristallographie, der NMR-Technik, der Elektronenmikroskopie sowie der Vorhersage von Proteinstrukturmodellen konnten bis heute mehr als 57.000 proteinogene dreidimensionale Strukturen⁹⁹ und mehr als 8.000.000 proteinogene Sequenzen bestimmt werden.¹⁰⁰ Im Zuge des exponentiellen Anstiegs an in vitro bestimmten dreidimensionalen Proteinstrukturen¹⁰¹ und durch immer zuverlässigere und genauere Methoden des dreidimensionalen Proteinstrukturmodellings¹⁰² gewann das VS und der Einsatz von rationalem, strukturbasiertem Design zur Identifizierung von Proteinliganden immer mehr an Bedeutung.¹⁰¹ Die neuesten Methoden der Computerchemie erlauben eine schnelle und kostenarme Filterung von großen 3D-Strukturdatenbanken nach potentiellen Liganden. Die anschließende biochemische Testung kann heute eine Steigerung der Erfolgsrate um das ~500 bis 1000-fache im Vergleich zur Testung ohne VS erzielen.^{103,104} Die in vitro neu erworbenen Erkenntnisse können wiederum in den weiteren in silico Prozess einfließen und somit zur Optimierung der Methode beitragen.

Grundsätzlich besteht nicht nur die Möglichkeit eines strukturbasierten Designs von Proteinliganden sondern auch die Möglichkeit eines ligandenbasierten Designs. Die letztere Methode bietet den Vorteil, dass die 3D-Struktur des Proteins nicht bekannt sein muss. Dies ermöglicht auch eine Identifizierung von Liganden von schwer zugänglichen Proteinen, wie z.B. Membranproteinen. Gleichzeitig ist die fehlende Betrachtung der Proteinstruktur ein Nachteil dieser Methode. Es kann nur auf Grund der Affinitätsdaten und der Struktur der Liganden auf die Struktur-Aktivitäts-Beziehung geschlossen werden. Dies hat zur Folge, dass unbekannte Wechselwirkungsmöglichkeiten mit dem Rezeptor nicht identifiziert werden können und keine alternative Struktur-Aktivitäts-Beziehung postuliert werden kann.

Da zu Beginn der Arbeit für den NR3C4 mehrere Röntgenkristallstrukturen des Rezeptors in Komplex mit verschiedenen Liganden bekannt waren, sollte ein strukturbasierter Ansatz zur Auffindung von neuen potentiellen Liganden des NR3C4 entwickelt werden. An die Filterung von 3D-Strukturdatenbanken nach potentiellen Liganden und deren experimenteller Testung sollte sich die Beurteilung der Liganden hinsichtlich ihrer Spezifität zum NR3C4 und ihrer biologischen Funktion anschließen.

Die Umsetzung der Aufgaben erfolgte mit modernsten Methoden der Computerchemie. Dieses Kapitel gibt einen Einblick in die Methoden zur Vorhersage und Bewertung von Proteinstrukturen und Protein-Ligand-Komplexen. Es umfasst die Methoden des Sequenzvergleichs, der Sekundärstrukturvorhersage, der 3D-Strukturmodellierung, der Validierung eines 3D-Modells, der Molekülmechanik, der in silico Suche auf der Basis von Pharmakophormodellen, des Dockings und des Scorings sowie Methoden zur Beurteilung von VS-Prozeduren.

2.1 Sequenzvergleich

Sequenzvergleiche (*alignment*) finden sehr häufig Anwendung in der Bioinformatik. Die Aufgaben sind dabei sehr vielfältig: Vorhersage und Klassifikation von Proteinen hinsichtlich ihrer Aktivität und Funktion, Vergleich neuer Sequenzen mit bereits bekannten Sequenzen, Auffinden von ähnlichen Sequenzstücken, Suche in großen Sequenzdatenbanken.¹⁰⁵ Darüber hinaus stellen sie die Grundlage für viele weitere Berechnungen dar, so z.B. die Erstellung von phylogenetischen Bäumen.¹⁰⁶ In der computerbasierten Proteinfaltung bieten sie die Basis, da oftmals schon eine Übereinstimmung von 30 % ausreichend ist, um Rückschlüsse auf die dreidimensionale Struktur und die daraus resultierende Funktionalität eines Proteins zu schließen.¹⁰⁷ Bei einem Sequenzvergleich wird eine biologische Sequenz zu einer Zeichenkette abstrahiert. Werden zwei Proteinsequenzen verglichen so wird jedes Element der einen Zeichenkette einem Element der anderen Zeichenkette oder einer Leerstelle/Lücke (*gap*) zugeordnet. Dabei darf die Reihenfolge der einzelnen Zeichenkettenabschnitte nicht verändert werden.

Um unterschiedliche Sequenzvergleiche bewerten zu können, wurden sogenannte Scoringfunktionen (SF; Bewertungs-/Beurteilungsfunktionen) eingeführt. Diese können für verschiedene Problemstellungen sehr unterschiedlich aussehen. Eine der ersten SF für die Austauschwahrscheinlichkeit von Aminosäuren waren die PAM- (*Percent accepted Mutations*-) Matrizen. Sie wurden in den 1970er-Jahren von Margaret Dayhoff entwickelt und berechnen sich aus dem Unterschied von 100 Proteinen, die zu 85 % identisch sind.¹⁰⁸ Die PAM1-Matrix gibt an zu welchem Anteil eine Substitution der Aminosäuren zu erwarten wäre, wenn sich ein Prozent der Aminosäuren verändert hätte. Dies entspricht einer

Ähnlichkeit von 99 %. Die höchste Stufe ist die PAM250, die einer Sequenzähnlichkeit von ca. 20 % entspricht. Eine weitere wichtige Gruppe sind die BLOSUM (BLOcks SUbstitution-Matrices), die 1992 von Jorga und Steven Henikoff eingeführt wurden. Die BLOSUM bauen auf der BLOCKS-Datenbank auf. Die Datenbank 3000 enthält ca. multiple Sequenzvergleiche von konservierten Sequenzen (Blocks) mit Substitutionen, jedoch keine Insertionen und Deletionen aus ca. 800 Proteinfamilien.¹⁰⁹ Auch hier existieren wiederum verschiedene Matrizen, die auf dem Vergleich von unterschiedlich identischen Proteinsequenzen beruhen. Für die Berechnung der BLOSUM62 wurden z.B. verwandte Proteinsequenzen miteinander verglichen, die zu maximal 62 % identisch waren. Aus diesem Vergleich geht eine Tabelle hervor, die die relative Mutationsrate darstellt. Auf Grund dieser Tabellen lassen sich die jeweiligen Sequenzvergleiche und die dazugehörenden scores bzw. die Identität oder Ähnlichkeit der Sequenzen zueinander berechnen. Beide SF basieren auf empirischen Daten. Im Unterschied zu den PAM-Matrizen wurden die BLOSUM nicht extrapoliert, sondern jeweils neu berechnet.

In dieser Arbeit wurde ausschließlich *MOE-Align* und *MOE-Superpose* von *MOE* (*Molecular Operating Environment*)¹¹⁰ und *Phyre* (*Protein Homology/analogY Recognition Engine*)¹¹¹ verwendet. *MOE* bietet mit *MOE-Align* ein Werkzeug für paarweise und multiple Sequenzvergleiche von gegebenen Sequenzen und für die Suche nach ähnlichen Sequenzen innerhalb großer Datenbanken. *MOE-Align* basiert auf dem A*-Suchalgorithmus, einem heuristischen Verfahren.¹¹⁰ Als SF sind sowohl die BLOSUM als auch die PAM-Matrizen implementiert. Das Ergebnis des Sequenzvergleichs kann weiterhin auch durch die Definition der Gapstrafe beeinflusst werden. Außerdem bietet *MOE-Align* die Möglichkeit, Ähnlichkeiten hinsichtlich der Sekundärstruktur in den Sequenzvergleich einzubeziehen. Mit *MOE-Superpose* bietet *MOE* zusätzlich die Möglichkeit eines 3D-Strukturvergleichs. Dabei werden die vom Benutzer definierten Aminosäurekoordinaten überlagert. Die Distanz der dreidimensionalen Strukturen untereinander wird durch die mittlere quadratische Abweichung (RMSD) in Å angegeben. Der RMSD-Wert berechnet sich nach der Formel 1:

$$RMSD = (\frac{1}{N}\sum_{i=1}^{l=N}\delta_i^2)^{\frac{1}{2}}$$

Formel 1: Mittlere quatratische Abweichung. (*N*: Paare gleicher Atome; δ: betrachtete Atompaare)

Je kleiner der RMSD-Wert je geringer ist die Distanz zwischen den dreidimensionalen Strukturen. Somit lassen sich mit *MOE* nicht nur auf der Basis der Primär- und Sekundärstruktur sondern auch auf der Basis der Tertiärstruktur Aussagen über die Ähnlichkeit von Proteinen zueinander machen. Mit *Phyre* von Bennett-Lovsey lassen sich 3D-Strukturen zu gegebenen Sequenzen finden. Die Suche basiert ebenfalls auf einem heuristischen Verfahren unter Einbeziehung der Primär- und Sekundärstruktur.

2.2 Sekundärstrukturvorhersage

Die Vorhersage der Sekundärstruktur von Proteinen ist für die Erkennung der entsprechenden Proteinfaltung von großer Bedeutung. Sie liefert erste Informationen über das mögliche Auftreten von α -Helices und β -Faltblättern in der zu modellierenden Proteinstruktur. Besteht nur eine geringe Sequenzähnlichkeit zwischen Proteinen mit bekannter Funktion und dem zu modellierenden Proteinen können aufgrund der Vorhersage der Sekundärstruktur oftmals Struktur-Funktions-Beziehungen abgeleitet werden. Auch bei der 2D-NMR-Spektroskopie kann eine Vorhersage von lokalen Sekundärstrukturelementen hilfreich sein.

Die Sekundärstruktur lässt sich jedoch nicht einfach direkt aus der Aminosäuresequenz ableiten. Eine der ersten Methoden wurde 1974 von Chou et al.¹¹² veröffentlicht. Bei dieser frühen Methode wurde für jede Aminosäure eine Wahrscheinlichkeit aus bekannten Röntgenkristallstrukturen berechnet, zu der die Aminosäure in einer bestimmten Sekundärstruktur (wie z.B. α-Helix, β-Faltblatt, Schleifenstruktur) vorkommt. Heute sind in der Literatur zahlreiche Methoden zur Vorhersage von Sekundärstrukturen beschrieben. Die meisten Methoden leiten verschiedene Parameter und Regeln aus bekannten dreidimensionalen Strukturen ab. Eine deutliche Verbesserung der Vorhersage konnte durch die Einbeziehung von multiplen Sequenzvergleichen erzielt werden.¹¹³ Einige Methoden wie PSIPRED¹¹⁴ kombinieren multiple Sequenzvergleiche mit einem neuronalen Netz und verbessern so die Aussagekaft der Vorhersage. Bis heute existiert jedoch keine Methode die für alle Problemstellungen eine genaue Vorhersage liefert. Im besten Fall werden 70-80 % eines Proteins richtig vorhergesagt. Um den Fehler gering zu halten betrachtet man meist mehrere Sekundärstrukturvorhersagen und vergleicht sie mit homologen Proteinen. Der in dieser Arbeit verwendete Metaserver PredictProtein¹¹⁵ bietet die Möglichkeit die Sekundärstruktur von verschiedenen Programmen berechnen zu lassen.

2.3 3D-Struktur Modellierung

Die Modellierung der dreidimensionalen Struktur eines Proteins kann entscheidend für die Antworten auf die verschiedensten biologischen Fragen sein. Die Frage, wie sich die dreidimensionale Struktur eines Proteins berechnet lässt, wird als "Faltungsproblem" bezeichnet. In der Zelle falten sich die verschiedenen Proteine unterschiedlich schnell, aber meist innerhalb weniger Sekunden oder Minuten. Das Levinthal-Paradoxon¹¹⁶ besagt, dass es viel zu viele mögliche Konformationen gibt, als dass man sie alle berechnen und die günstigste auswählen könnte. Unter der Annahme, dass man jede Konformation innerhalb einer Millisekunde exakt berechnen kann, würde das Auffinden eine Proteinstruktur eines Proteins mit nur 100 Aminosäuren, aufgrund der hohen Anzahl an möglichen Konformationen, mehr Zeit in Anspruch nehmen als das Universum alt ist.

Bei der Vorhersage der dreidimensionalen Struktur eines Proteins unterscheidet man drei Methoden: (1) de novo bzw. ab inito Strukturvorhersagen sowie (2) das threading und (3) die komparative Modellierung. Schwierig ist die Vorhersage von Proteinen, die keine sequenziellen oder strukturellen Ähnlichkeiten zu bekannten 3D-Strukturen anderer Proteine aufweisen. In diesem Fall bieten sich Methoden wie die de novo bzw. ab inito Strukturvorhersagen an. Hierbei wird die 3D-Struktur des Proteins mit minimaler Konformationsenergie allein von der Sequenz des Proteins abgeleitet. Bei einem Proteinstruktur-Vorhersage-Treffen 1994 in Asilomar konnte noch keine ab initio Methode korrekte Proteinstrukturen erzeugen.¹¹⁷ Heute werden vereinfachte Kraftfelder mit kombiniert118;119 Dynamiksimulationen und hierarchische Suchmethoden finden Anwendung.¹²⁰ Die jüngsten Ergebnisse zeigten grob ähnliche Modelle von Fragmenten in großer Proteindatenbanken.¹²¹⁻¹²⁴

Kann für das Zielprotein (*target*) eine hohe Sekundärstrukturhomologie zu einem Protein mit bekannter Struktur (Templat) vorhergesagt werden, lässt sich die 3D-Struktur mit minimaler Konformationsenergie durch das *threading* modellieren. Die Grundidee besteht darin, die Sequenz des Zielproteins auf das Rückgrat des Templats aufzufädeln und die Güte der Sequenz für die Struktur anhand von Potentialen zu bewerten.^{125;126} Diese Idee basiert auf der Annahme, dass die Evolution nur eine begrenzte Anzahl von Strukturmotiven hervorgebracht hat. Jedoch zeigten Untersuchungen zur CASP7 (*Critical Assessment of Techniques for Protein Structure Prediction 7*), dass mit Hilfe des *threading* zwar korrekte Modelle erzeugt werden können, aber keine einzige Methode die Modelle für mehr als die Hälfte der Testproteine korrekt bewerten konnte.^{127;128} Die bisher zuverlässigste Methode ist die komparative Modellierung. Der Ansatz basiert auf der Grundlage, dass evolutionär ähnliche Sequenzen ähnliche 3D-Strukturen aufweisen.¹²⁹⁻¹³¹ Als Konsequenz daraus wird bei der komparativen Modellierung die dreidimensionale Struktur des Zielproteins ausgehend von bekannten Strukturen evolutionär ähnlicher Proteine (Template) moduliert. Der Erfolg der komparativen Modellierung hängt zum größten Teil von der evolutionären Distanz zwischen Zielprotein und Templat ab, die Sequenzähnlichkeit muss statistisch signifikant sein. Liegt die Homologie bei 50 % ist es möglich, Modelle mit einer mittleren quadratischen Abweichung (RMSD; Kapitel 2.1) von ~1 Å zum natürlich gefalteten Protein zu erhalten. Bei einer Homologie zwischen 30-50 % hatte das schlechteste CASP Modell von 2006 noch einen RMSD-Wert < 4 Å (durchschnittlich lag er bei 2-3 Å). Sinkt die Homologie unter 30 % oder sogar unter 20 %, werden mehr als die Hälfte aller Aminosäuren falsch modelliert.¹⁰²

In dieser Arbeit wurden die 3D-Modelle mit Hilfe des komparativen Modellierungspakets MOE-Homology von MOE erstellt. MOE-Homology generiert vollständige, minimierte 3D-Modelle der gesuchten Sequenz ausgehend von einer oder mehreren bekannten Sequenzen. Die zu Grunde liegende Methode basiert auf einer Kombination des segmentmatching Verfahrens von Levitt et al.¹³² und dem Indel-Verfahren von Fechteler et al.¹³³ Zu Beginn wird eine partielle Startgeometrie erstellt, indem alle Koordinaten der konservierten Aminosäuren vom Templat kopiert werden. Im nächsten Schritt, der Boltzmann-Zufalls-Prozedur, werden für die nicht konservierten Regionen mögliche Peptidrückgratfragmente Proteindatenbank⁹⁹ und Seitenkettenkonformationen einer aus aus einer MOE-Rotamerdatenbank ausgewählt. Es wird eine vom Benutzer bestimmte Anzahl an Übergangsmodellen generiert. Die Platzierung von Schleifenregionen (loops) und Seitenketten wird hierbei durch eine Kontaktenergiefunktion kontrolliert. Optional gebundene Liganden und konservierte Wassermoleküle können in das strukturelle Templat einbezogen werden. Das Endmodell entspricht entweder der minimierten kartesischen Durchschnittsstruktur oder dem besten Übergangsmodell.

2.4 Validierung des 3D-Modells

Die Fehlerabschätzung ist ein wichtiger Schritt für die Validierung jeglicher Modelle. Die Fehler lassen sich grob in zwei Kategorien, die sterischen Fehler und die Kompatibilitätsfehler (die Fehler zwischen Aminosäuresequenz und Raumstruktur), unterteilen. Unter dem stereochemischen Fehler versteht man Symmetrie- und Geometriefehler (Chiralität, Bindungslänge, Bindungswinkel, Torsionswinkel, usw.) sowie die strukturelle Fehlpackung des Proteins. Um die ungünstigen Bindungslängen, Winkel und hohe Energien der Proteinstruktur zu korrigieren können die Methoden der Molekülmechanik (Kapitel 2.5), wie die Minimierung und Moleküldynamik-Simulation mit CHARMM oder AMBER, genutzt werden.^{134;135} Zusätzliche Terme wie das Born-Solvatationsmodell zur Beschreibung von Solvatationseffekten erlauben die Berücksichtigung von nicht implizit in der Energiefunktion enthaltenen Effekten.¹³⁶ Die Auswertung der sterochemischen Qualität des Proteins kann z.B. mit Hilfe des Ramachandran Plots erfolgen, der in den Programmpaketen *MOE*, *PROCHECK*¹³⁷ oder *What_Check*¹³⁸ enthalten ist.

Die Kompatibilität zwischen Aminosäuresequenz und Raumstruktur des Proteins lässt sich mit wissensbasierten Energiefunktionen darstellen. Man geht davon aus, dass die meisten Proteine durch ihre native Faltung charakterisiert werden können und ihr physiologischer Endzustand als Funktion der Aminosäuresequenz angenommen werden kann.¹³⁹ Die am häufigsten verwendeten Werkzeuge hierfür sind *PROSAII*¹⁴⁰, *VERIFY3D*^{141;142} oder *Profiles-3D*.¹⁴¹⁻¹⁴³

Mit dem Programm ERRAT¹⁴⁴ kann die Bewertung der Genauigkeit der Proteinfaltung einer Struktur anhand der eingegangenen nichtkovalenten Atom-Atom-Wechselwirkungen der 3D-Struktur des Proteins erfolgen.

Zur Überprüfung der 3D-Struktur eines Proteins können auch Metaserver wie *MetaMQAP*¹⁴⁵ verwendet werden. Sie vereinen in sich die Methoden von mehreren Proteinanalysewerkzeugen.

2.5 Molekülmechanik

2.5.1 Kraftfeld

Molekülmechanik-Verfahren bilden die Grundlage der Computerchemie/-biochemie. Sie wurden zuerst zur Untersuchung von einfachen intramolekularen Kräften eingesetzt.^{146;147} Das Einsatzgebiet der Molekülmechanik-Verfahren hat sich aufgrund der Kraftfeldentwicklung enorm ausgedehnt. Mit Hilfe der Molekülmechanik lassen sich statische Eigenschaften wie die Struktur, die Energie und die Elektrostatik eines Moleküls oder einer Gruppe von Molekülen in relativ kurzer Zeit berechnen. Der Grund hierfür ist die Born-Oppenheimer-Näherung. Man geht davon aus, dass sich die Bewegung der Elektronen

von der wesentlich langsameren Bewegung der Kerne trennen lässt. So ist es möglich, die Energie eines Moleküls oder eines molekularen Systems als eine Funktion der Atomkoordinaten zu beschreiben, der Energiepotentialfunktion. Hierbei werden die Atome als Massepunkte betrachtet, die miteinander wechselwirken. Man geht davon aus, dass sowohl die Bindungslängen wie auch die Bindungswinkel dem Standardwert nahe kommen. Diese Standardwerte können durch sterische Wechselwirkungen modifiziert werden. Man nimmt an, dass die Moleküle ihre Geometrie nahe den "idealen" Werten ausrichten. Kommt es jedoch zu einer Deformation der Geometrie, so wird eine Spannungsenergie aufgebaut. Die Optimierung der Geometrie erfolgt durch die Minimierung der Spannungsenergie. Die Spannungsenergie lässt sich zum Beispiel mit der Energiepotentialfunktion der Formel 2 berechnen.

$$V = \sum_{Bindung} \frac{k_i}{2} (l_i - l_{0,i})^2 + \sum_{Winkel} \frac{k_i}{2} (\theta_i - l\theta_{0,i})^2$$
$$+ \sum_{Torsion} \frac{V_n}{2} (1 + \cos(n\omega - \gamma))$$
$$+ \sum_{i=1}^N \sum_{j=1+i}^N \left(4\varepsilon_{ij} \left[\left(\frac{\sigma_{ij}}{r_{ij}} \right)^{12} - \left(\frac{\sigma_{ij}}{r_{ij}} \right)^6 \right] + \frac{q_i q_j}{4\pi\varepsilon_0 r_{ij}} \right)$$

Formel 2: Beispiel einer Energiepotentialfunktion. Sie setzt sich zusammen aus dem harmonischen Potential, dem Torsionspotential und dem nichtbindenden Term (Lennard-Jones Potential und Coulomb Potential).

Die Funktion der Formel 2 besteht aus drei Termen: dem harmonischen Potential, dem Torsionspotential und dem nichtbindenden Term. Ersterer beinhaltet die Summe aller bindenden Wechselwirkungen innerhalb eines Moleküls, die sich aus zwei bzw. drei Atomen zusammensetzten. Die energetische Änderung während der Rotation um eine Bindung wird durch das Torsionspotential beschrieben. Der nichtbindende Term setzt sich aus dem elektrostatischen Potential (Coulomb-Potential) und den Van-der-Waals-Wechselwirkungen (Lennard-Jones-Potential) zusammen.

Heute gibt es eine Vielzahl an Kraftfeldern mit unterschiedlichen Potentialfunktionen. MM, Beispiele sind das Kraftfeld MM2, MM3 und MM4 Alligner von (http://europa.chem.uga.edu/; 15.05.2010), AMBER von Weiner und Kollman (http://ambermd.org/; 15.05.2010), OPLS von Jorgensen (http://zarbi.chem.yale.edu//; 15.05.2010), GROMOS von van Gunsteren (http://www.igc.ethz.ch/; 15.05.2010), CHARMM von Brooks und Karplus (http://yuri.harvard.edu/; 15.05.2010), Tripos von Clark und Cramer (http://tripos.com/; 15.05.2010) oder MMFF von Halgren (http://www.schrodinger.com/; 15.05.2010) die sich in ihren einzelnen Termen unterscheiden.

Durch die Wahl der Parameter lässt sich ein Kraftfeld individuell anpassen. Jedoch muss beachtet werden, dass die Parameter oftmals zwar so abgestimmt wurden, dass sie den thermodynamischen Durchschnittswert der Experimente korrekt wiedergeben, die jeweilige Geometrie oder Konformation des Moleküls jedoch nicht betrachtet wurde. Auch sollte bedacht werden, dass für die Parametrisierung von Kraftfeldern nur ein limitierter Datensatz zur Verfügung stand. Dennoch lassen sich die verschiedene Kraftfelder auf viele Probleme und große molekulare Systeme anwenden.

In dieser Arbeit fanden das Tripos-Kraftfeld implementiert in *SYBYL*¹⁴⁸ und das CHARMM22-Kraftfeld (*Chemistry at HARvard Marcromolecular Mechanics*) implementiert in *MOE* Anwendung. Sie wurden speziell für die Untersuchung biologischer Makromoleküle entwickelt. Weiter wurden das OPLS- (*Optimized Potentials for Liquid Simulations*) und MMFF94x-Kraftfeld (*Merck Molecular Force Field*) implementiert in *MOE* verwendet. Sie eignen sich besonders gut für kleinere Moleküle.

2.5.2 Energieminimierung

Eine Methode innerhalb der Molekülmechanik ist die Energieminimierung. Ihre Anwendungsmöglichkeiten wurden in Kapitel 2.3 und 2.4 beschrieben. Bei der Energieminimierung geht man davon aus, dass sich die stabilste Konformation eines Moleküls am Punkt der niedrigsten potentiellen Energie befindet. Verändert sich die Geometrie, so verändert sich die potentielle Energie. Man kann sich vorstellen, dass die Energiehyperfläche eines Moleküls einer Art "Hügellandschaft" entspricht. Sucht man die geringste Energie eines Moleküls, so untersucht man die partielle Ableitung der Energie bezüglich aller Koordinaten, d.h. den Gradienten. Da die Hyperfläche der potentiellen Energie sehr komplex ist, bedient man sich iterativer Verfahren die entweder durch die Anzahl der Iterationsschritte oder die zu berechnende Genauigkeit begrenzt werden. Für die Lösung dieses Problems haben sich drei mathematische Näherungsverfahren durchgesetzt: das SD-Verfahren (Steepest descent) für grobe und schnelle Näherungen, die CG-Verfahren (Conjugate gradient) für feine Näherungen und die NR-Methode (Newton Raphson), die zusätzlich zur Richtungsvorhersage des Energiegradienten das Verhalten der Energiekurve miteinbezieht, jedoch wesentlich rechenaufwendiger ist. Homologiemodelle lassen sich mit Hilfe der Energieminimierung hinsichtlich ihrer sterischen Fehler korrigieren. Jedoch ist zu

beachten, dass die energieminimierte Molekülstruktur nicht unbedingt die biologisch aktive Konformation eines Moleküls ist, die am globalen oder überhaupt an einem Minimum der Potenzialenergie liegt.

2.5.3 Moleküldynamik-Simulation

Die Methode der Moleküldynamik-Simulation erlaubt uns das Verhalten von Atomen/Molekülen über einen gewissen Zeitraum unter bestimmten Bedingungen, wie Temperatur, Druck oder Lösungsmittel zu studieren. So lassen sich Ligand-Protein-Komplexe bei Raumtemperatur simulieren, um wertvolle Erkenntnisse hinsichtlich der Beziehung zwischen Struktur und Aktivität zu erhalten. Um die Dynamik in die Betrachtung der Moleküleigenschaften mit einzubeziehen, muss man sowohl das Interaktionspotential als auch die Bewegungsgleichung der Partikel kennen. Dafür wird die potentielle Energie aus der Molekülmechanik übernommen und dem Newton'schen Gesetz der Bewegung unterworfen. Durch die schrittweise Lösung der 2. Ableitung des 2. Newton'schen Gesetzes (F = ma) wird die aktuelle Position und Geschwindigkeit des Atoms des Moleküls berechnet (Formel 3), wobei x die x-Koordinate des Teilchens, t die Zeit, F_x die gerichtete Kraft auf das Teilchen entlang der x-Richtung und m die Masse des Teilchens ist.

$$\frac{\partial^2 x}{\partial t^2} = \frac{F_x}{m}$$

Formel 3: 2. Ableitung des 2. Newton'schen Gesetzes. (*m*: Masse des Teilchens; *x*: x-Koordinate des Teilchens; *t*: Zeit; F_x : gerichtete Kraft auf das Teilchen entlang der x-Richtung)

Aus der Kenntnis der Position der Atome und ihrer Geschwindigkeit zum Zeitpunkt t, kann dann ihre Position und Geschwindigkeit zum Zeitpunkt $(t+\Delta t)$ berechnet werden. Einer der am häufigsten verwendeten Algorithmen zur Lösung der Newton'schen Bewegungsgleichung ist der Verlet Velocity Integrator.¹⁴⁹ Ein Schlüsselparameter ist hierbei die Wahl des Integrationszeitschritts Δt . Um die Länge einer Moleküldynamik-Simulation möglichst groß, die dafür benötigte Rechenzeit jedoch kurz zu halten, ist ein möglichst großer Zeitschritt Δt notwendig. Andererseits verursacht ein zu großer Zeitschritt aber Instabilität und Ungenauigkeit bei der Integration.

Das Ergebnis der Moleküldynamik-Simulation ist eine Trajektorie, die die Position und Geschwindigkeit des Teilchens (Atom eines Moleküls) im System über die Zeit wiedergibt. Für die Beurteilung der Güte der Moleküldynamik-Simulation stehen mehrere Methoden zur Verfügung. So erlaubt die Betrachtung der RMSD-Werte der Atome über die Zeit eine Beurteilung der Stabilität der dynamisierten 3D-Struktur. Der RMSD-Wert berechnet sich nach der Formel 1 (Kapitel 2.1). Je kleiner der RMSD-Wert gegenüber der Struktur zum Zeitpunkt t = 0 ist und je geringer der Betrag des RMSD-Wertes zwischen t_i und t_{i+1} über einen bestimmten Zeitraum ist, desto stabiler ist der Komplex während der Dynamik.

Mit Hilfe der mittleren quadratischen Fluktuation (RMSF) kann die gemittelte Abweichung von der Startstruktur für jedes Element über die Simulationszeit bestimmt werden. Hiermit lässt sich beispielsweise erkennen welche Teile des Systems stark schwingen. Die Formel für die Berechnung des RMSF-Wertes lautet:

$$RMSF = \frac{1}{N} \sum_{t_j=1}^{N} (x_i(t_j) - \tilde{x}_i)^2$$

Formel 4: Mittlere quadratische Fluktuation. (*N*: Zeit; $x_i(t_j)$: Position der betrachteten Atome zum Zeitpunkt t_j ; \tilde{x}_i : Position der Referenzstruktur)

Je größer der RMSF-Wert, desto stärker ist die Schwingung des betrachteten Systems.

2.5.4 Simulated annealing

Eine weitere Methode zur Identifizierung von biologisch aktiven Konformationen ist das simulated annealing, eine Spezialform der Moleküldynamik-Simulation. Diese Methode eignet sich ausgezeichnet, um verschiedene Konformationen eines Moleküls zu erhalten und somit seine physikalischen, chemischen, biologischen oder pharmakologischen Eigenschaften zu studieren. Das simulated annealing ist ein Verfahren, das den physikalischen Abkühlungsprozess einer Substanz nachahmt, um die beste Lösung für ein gegebenes Problem zu finden. In der Realität ist die Temperatur ein wichtiges Schlüsselelement beim Überführen eines Stoffes von der flüssigen Phase in den festen Zustand. Nur wenn die Moleküle ausreichend Zeit haben sich zu ordnen, bilden sie stabile Kristalle und erreichen so einen Zustand nahe dem globalen Minimum. Die treibende Kraft hierbei ist die freie Energie des Systems. Während des simulated annaeling wird das betrachtete System bis auf eine bestimmte Temperatur erhitzt, so dass es einen hohen Energiezustand erreicht und in der Lage ist große Energiebarrieren zu überwinden. Im Anschluss wird das System für eine gewisse Zeit thermisch äquilibriert. Nach der Äquilibrierung wird das System abgekühlt und mit sinkender Temperatur entsprechen die Zustände mit niedriger Energie zunehmend der Bolzmann-Verteilung. Die treibende Kraft der freien Energie wird dabei durch die interne Energie des Systems simuliert. Bei einer Temperatur von 0 K sollte das System das globale Minimum (Konformation der minimalsten Energie) erreicht haben. Dies erfordert jedoch eine unendliche Anzahl von Temperaturschritten und thermischen Äquilibrierungen und kann

somit nicht erreicht werden. Durch ein simulated annealing mit ausreichend vielen Schritten erhält man nur das lokale Minimum nahe dem globalen Minimum.

2.6 Pharmakophor

Für die Suche nach aktiven Liganden ist das chemische und strukturelle Verständnis über das aktive Zentrum und die damit verbundenen Ligand-Rezeptor-Wechselwirkungen essentiell. Der Begriff des Pharmakophors geht auf Paul Ehrlich zurück. Er definierte 1890 ein Pharmakophor als ein molekulares Gerüst, welches die essentiellen Eigenschaften für die biologische Aktivität eines Wirkstoffs (pharmacon) trägt (phoros). Ein Pharmakophor ist ein ausgezeichnetes Werkzeug, um existierende Daten besser zu verstehen und Strukturen mit potentieller Aktivität, Selektivität oder pharmakokinetischen Eigenschaften zu bestimmen. Pharmakophormodelle werden durch Analysen von Struktur-Aktivitäts-Beziehungen und durch Abbildung von bekannten Eigenschaften von aktiven Analoga erzeugt. Man unterscheidet zwischen der direkten Methode (auf der Basis eines Rezeptor-Ligand-Komplexes) und der indirekten Methode (auf der Basis einer Menge an Liganden, die mit dem Rezeptor auf eine bekannte Weise interagieren). Die Pharmakophorsuche unterscheidet sich hauptsächlich in der Definition der Suchanfrage, der konformativen Flexibilität und der Identifizierung des Pharmakophormusters. Heute gibt es eine große Anzahl von Programmen für die Generierung von Pharmakophoren, so z.B. Discovery Studio 2.0,150 MOE-PLIF und MOE-Pharm von MOE, Phase von Schroedinger¹⁵¹ und LigandScout.¹⁵² In dieser Arbeit fanden die Programme MOE-PLIF und MOE-Pharm Anwendung.

MOE-PLIF (Protein Ligand Interaction Fingerprints) von *MOE* ist eine hervorragende Methode um Wechselwirkungen zwischen Protein und Ligand zu charakterisieren und in Form von Fingerprints zusammenzufassen. Die Wechselwirkungen werden anhand ihrer zugehörigen Aminosäurereste klassifiziert und in einen Fingerprint übersetzt. Es werden sechs Wechselwirkungen betrachtet: Wasserstoffbrücken zwischen dem Ligand und einer Aminosäureseitenkette (unterteilt in Donor und Akzeptor), Wasserstoffbrücken zwischen dem Ligand und einem Rückgratatom des Proteins (unterteilt in Donor und Akzeptor), ionische Wechselwirkungen und *surface contact interactions*. Die Wasserstoffbrücken zwischen polaren Atomen werden nach einer Methode, basierend auf einer Proteinkontaktstatistik, berechnet. Dabei wird die Wasserstoffbrücke zwischen den beiden Atomen hinsichtlich ihrer Distanz und Orientierung bewertet. Der Wert gibt die prozentuale Wahrscheinlichkeit an, dass es sich hierbei um eine gut ausgebildete Wasserstoffbrücke handelt. Die ionische Wechselwirkung wird aus dem inversen Quadrat der Distanz zwischen Atomen unterschiedlicher Ladungen berechnet und in Prozent angegeben (100 % = 1 Å). Die *surface contact interactions* ergeben sich durch die Berechnung der Lösungsmittel ausgesetzten Oberfläche der Aminosäuren und werden in Prozent angegeben. Mit MOE-*Pharm* lassen sich 3D-Suchanfragen für Konformationsdatenbanken entsprechend der Ligand-Protein-Bindung definieren. Das Pharmakophor enthält Informationen über die Distanzen, die Winkel und die Koordinaten der definierten Eigenschaften. Für die Definition der Eigenschaften hält MOE-*Pharm* mehrere Pharmakophorschemata bereit, die wie in Tabelle 1 codiert sind. Das PCH- und das PCH_All-Schemata sind die einfachsten Systeme. Sie beinhalten sieben grundlegende zuzuordnende Eigenschaften. Dazu zählen Donor- und Akzeptoratome für Wasserstoffbrücken, Liganden für Metalle, positive und negative Ladungen sowie aromatische und hydrophobe Interaktionsmöglichkeiten.

Buchstaben	staben Bedeutung	
Р	Polarity - Polarität	
Р	Planarity - Planarität (nur wenn es sich um zweites P handelt)	
С	Charge - Ladung	
н	Hydrophobicity - Hydrophobizität	
D	Directionality encoded by projected features - gerichtet projizierte Eigenschaft	

Tabelle 1: Bedeutung der einzelnen Buchstaben innerhalb der Pharmakophor-Schemata-Bezeichnung.

Während im Schema PCH für größere aliphatische Systeme nur das Zentrum dieses Systems als Zuordnungspunkt dient, kann im PCH_All Schemata jedes der beteiligten Atome einzeln zugeordnet werden. Eine Erweiterung der pharmakophoren Eigenschaften wird durch die PPCH-, PPCH_All- und PCHD-Schemata möglich. In dieser Arbeit wurde das PCH_All-Schema verwendet. Es enthält Beschreiber für Wasserstoffbrückenakzeptoren, -donoren, Metallligatoren, Kationen, Anionen, hydrophobe und aromatische Eigenschaften.

2.7 Docking und Scoring

Viele biologische Prozesse basieren auf einer spezifischen molekularen Wiedererkennung. Signaltransduktion, Immunantwort und Enzymkatalyse sind von der Bildung von kovalent bzw. nichtkovalent gebundener Protein-Liganden-Komplexe abhängig. Das Ziel des Dockings ist die Berechnung von kovalent bzw. nichtkovalent gebunden Protein-Ligand-Komplexen. Gegeben ist die Struktur eines Proteins und eines Liganden. Gesucht ist die Struktur des Komplexes. Dies wird als "Dockingproblem" bezeichnet. In der Annahme, dass die native Geometrie des Komplexes dem globalen Minimum der freien Bindungsenergie entspricht, kann das Docking als ein Energieoptimierungsproblem angesehen werden. Es ist die Suche nach der Ligand-Protein-Konformation mit der minimalen freien Bindungsenergie. Die makromolekulare Natur des Proteins und die Tatsache, dass die Bildung des Komplexes in Wasser erfolgt, kompliziert das Problem signifikant. Eine häufig angewandte Methode zur Lösung des "Dockingproblems" ist die heuristische Näherung. Sie löst die Aufgabe in einem annehmbaren Zeitfenster. Die Entwicklung von Dockingmethoden hat somit auch etwas mit groben Annahmen und dem Finden von akzeptablen Vereinfachungen zu tun, so dass ein ausreichendes, akkurates, vorhergesagtes Modell für die Protein-Liganden-Wechselwirkung entsteht.

Zurzeit sind mehr als 60 Dockingprogramme und mehr als 30 SF in der Literatur beschrieben.¹⁵³ Jedes Dockingprogramm besteht aus zwei komplementären Komponenten: (1) einer Methode, um den Konformationsraum des Liganden und/oder des Proteins zu untersuchen und (2) einer SF, um den vorgeschlagenen Bindungsmodus, der als Pose bezeichnet wird, zu evaluieren. Für die Untersuchung des Konformationsraumes unterscheidet man mehrere Ansätze: die Multikonformer-Algorithmen, die inkrementelle Konstruktionsmethode und die stochastische Methode. Bei Multikonformer-Algorithmen handelt es sich um ein starres Docking einer Ligandenkonformation bzw. einer Bibliothek von Ligandenkonformationen. Der Ansatz beruht auf dem Docken von kleinen Molekülen mit Hilfe eines komplementären Umrisses der Ligandenbindungstasche oder eines Interaktionsstellen-Musteralgorithmus. Dank der geringen Laufzeit werden diese Programme oftmals zur Umwandlung von großen in mittelgroße Datenbanken mit akzeptabler Anreicherung genutzt. Bei der inkrementellen Konstruktionsmethode werden die Liganden in Fragmente zerlegt und in der Ligandenbindungstasche unter Berücksichtigung der Ligandenflexibilität wieder zusammen gebaut, wobei ein Fragment des Liganden als Anker dient und starr gedockt wird. Zwei der am weitesten verbreiteten stochastischen Methoden sind der genetische Algorithmus und die Monte-Carlo-Suche. Der genetische Algorithmus wurde Mitte der 1990er Jahre implementiert um flexible Liganden zu docken. Genetische Algorithmen basieren auf der Evolutionstheorie von Darwin. Die "Chromosomen" repräsentieren die Posen des Liganden, welche aus "Genen" bestehen. Diese "Gene" kodieren für jeden Torsionswinkel, sowie für die Rotation und Translation des Liganden im Raum. Die Pose ist in der genetischen Information verschlüsselt und entwickelt sich über die Zeit durch genetische Operationen wie Rekombination und Mutation. Es gibt verschiedene Methoden für die Selektion der nächsten Generation. Die populärste ist das Überleben der Fittesten, wobei die beiden Konformationen mit der schlechtesten Punktzahl (*score*) der nächsten Generation übergeben werden. Als Programmbeispiele wären hier *GOLD* (*Genetic Optimization Ligand Docking*)^{154;155} oder *DARWIN*¹⁵⁶ zu erwähnen. *MOE-Dock* von *MOE* oder *ProDock*¹⁵⁷ basieren hingegen auf der Monte-Carlo-Suche. Bei dieser Methode werden die Posen des Liganden sequentiell durch das Rotieren von Bindungen und der Translation des Liganden, für ein oder mehrere Parameter pro Zeiteinheit bzw. Iteration modifiziert. Die neue Konformation wird im Anschluss nach dem Metropolis-Kriterium bewertet. D.h. zeigt die neu generierte Konformation eine geringere Energie als die zuvor generierte oder ist der Bolzmannfaktor (N_E ; Formel 5) der Energiedifferenz (ΔE) größer als eine Zufallszahl zwischen 0 und 1 wird die Konformation akzeptiert und kann als Ausgangskonformation für einen neuen Monte-Carlo-Schritt verwendet werden.

$$N_E = e^{-\frac{\Delta E}{k_B T}}$$

Formel 5: Bolzmann-Faktor der Energiedifferenz. (N_E : Bolzmann-Faktor; ΔE : Energiedifferenz; k_B : Bolzmannkonstante; *T*: Temperatur)

Wird das Metropolis-Kriterium nicht erfüllt wird die zuletzt angenommene Konformation wiederhergestellt und die Abfolge der Monte-Carlo-Schritte beginnt erneut, bis ein Terminationskriterium (z.B. maximale Anzahl an Funktionsaufrufen) erfüllt ist. Andere stochastische Optimierungsalgorithmen ließen sich ebenfalls durch die Biologie inspirieren, so zum Beispiel der Ameisenalgorithmus, der im Programm PLANTS (Protein-Ligand ANT System)¹⁵⁸ implementiert ist. Hierbei bilden artifizielle Ameisen das Verhalten ihrer natürlichen Vorbilder nach, indem sie die Variablen einer gesuchten Lösung sukzessiv analog einer Wegsuche festlegen. Dabei machen sie die Wahlentscheidung über den Wert der aktuell betrachteten Lösungsvariablen abhängig von der Höhe der "Pheromonvariablen", welche die Güte der vorangegangenen Wahlentscheidungen zwischen der Lösungsvariablen und ihrer möglichen Ausprägungen an dieser Stelle des Festlegungsprozesses kennzeichnet. Die künstlichen Ameisen orientieren sich aber nicht allein am "Pheromon". Zusätzlich wird ihnen eine Art Sehfähigkeit bei ihrer Wegentscheidung zugeschrieben. Nach der Fixierung einer Variablen kennzeichnen auch die artifiziellen Ameisen ihre getroffene Wegentscheidung für die Nachfolger mit "Pheromon". Die "Ameisen" mimen das Verhalten realer Ameisen nach und markieren Ligandenkonformationen mit niedriger Energie anhand des Pheromonpfades.

Die künstliche Pheromonpfadinformation wird in der nachfolgenden Iteration modifiziert und erzeugt so mit hoher Wahrscheinlichkeit Konformationen mit geringer Energie.

Die zweite Komponente eines Dockingprogramms besteht aus der SF. SF dienen zum einen dazu, die Richtigkeit des Dockings zu überprüfen und zum anderen die Bindungsaffinität vorherzusagen. Die Korrektheit einer SF ist der entscheidende Punkt innerhalb des VS. Zu starke Vereinfachungen bei der Solvatation oder des Entrophiebeitrags zur freien Bindungsenergie führen zu falschen Ligand-Rezeptor-Komplex-Bewertungen. Man unterteilt die SF in kraftfeldbasierte, empirische und wissensbasierte SF.

Bei der empirischen SF erfolgt die Bewertung der Energetik der Ligandenbindung durch eine Zerlegung der Bindungsaffinität in einfache skalierbare Beträge, z.B. Wasserstoffbrückenbindung, Metallbindung, hydrophobe Effekte und dem freezing von rotierbaren Bindungen. Diese verschiedenen skalierbaren Faktoren werden durch Regression bestimmt, so dass sie die experimentell bestimmten Protein-Ligand-Affinitäten wiedergeben. Jede empirische SF unterscheidet sich in der Anzahl und der Natur der Terme, die die Gleichung bilden. So beinhalten verschiedene SF einen explizit gerichteten Wasserstoffbrückenbindungsterm (z.B. ChemScore, X-Score, FlexX) und nur einige wenige enthalten einen explizit gerichteten Metall-Ligand-Wechselwirkungsterm (Surflex, X-Score).

Die kraftfeldbasierten SF wurden entwickelt, um das konformative Verhalten und die thermodynamischen und kinetischen Eigenschaften von kleinen Molekülen sowie Makromolekülen wiederzugeben. Angewandt auf Protein-Ligand-Komplexe zeigen sie häufig eine Überbewertung der Bindungsaffinität. Techniken wie PB/SA (*Poisson-Boltzmann/surface area*, Poisson-Boltzmann/Oberfläche) und GB/SA (*generalized Born/surface area*, verallgemeinerte Born/Oberfläche), die explizites bzw. implizites Wasser betrachten sind genauer in der Bewertung der Bindungsaffinität, jedoch wesentlich zeitintensiver. Vergleicht man die SF, so gibt es nur eine geringe Anzahl an ausschließlich kraftfeldbasierten SF. Geläufiger sind Kraftfeldterme kombiniert mit den Termen empirischer SF. Die Auswahl der Kraftfeldparameter variiert von AMBER bei AutoDock bis hin zu Tripos bei GoldScore.

Die wissensbasierten SF beruhen auf statistischen Analysen von Kristallstrukturen mehrerer Protein-Ligand-Komplexe. Hierzu wurde das Verhalten von Ligand-Protein-Atomtyppaaren untersucht und in ein paarweises Potential konvertiert. Der *score* berechnet sich aus der Summe aller Wechselwirkungspaare zwischen jedem Ligand- und Proteinatom innerhalb einer definierten Sphäre. Einige Wechselwirkungen können jedoch in der Menge der zugänglichen Kristallstrukturen unterrepräsentiert sein, so dass diese Wechselwirkungen nicht besonders genau parametrisiert sind. Wie auch bei den kraftfeldbasierten Methoden bestehen die wissensbasierten SF aus zusätzlichen Korrekturtermen, wie z.B. dem Solvatationsterm (DrugScore).

In dieser Arbeit fanden die Programme GOLD, MOE-Dock und PLANTS Anwendung. Ihre entsprechenden Suchalgorithmen und SF sind in Tabelle 2 aufgeführt.

 Tabelle 2: Verwendete Dockingprogramme und SF. Zusätzlich angegeben ist der Suchalgoritmus und die Klasse der SF.

Program	Suchalgorithmus	SF	Klasse
GOLD	Genetischer Algorithmus	ChemScore	empirisch
		GoldScore	kraftfeldbasiert
MOE-Dock	Alpha Triangle	London dG	kraftfeldbasiert
	Triangle Matcher	Affinity dG	kraftfeldbasiert
	Alpha PMI	Alpha HB	kraftfeldbasiert
PLANTS	Ameisenalgorithmus	chemPLP	empirisch

2.8 Auswahl einer geeigneten virtuellen Screeningprozedur

Für die Bewertung der Güte eines VS werden mathematische Methoden wie der Anreicherungsfaktor (EF - *enrichment factor*), ROC (*receiver operating characteristic*) oder die Fläche unter der Anreicherungskurve (AUAC - *Area under the accumulation curve*) verwendet. Einen guten Überblick über diese Methoden liefert die Ausgabe "*Evaluation of Computational Methods*" des "*Journal of Computer Aided Molecular Design*", Volumen 22, Nummer 3-4, von 2008.

Sowohl beim EF, als auch bei ROC und AUAC wird überprüft, in wieweit die VS-Route in der Lage ist, die Binder (Liganden) von den potentiell Nichtbindendern (*decoys*) zu trennen. In der vorliegenden Arbeit wurden die verschieden Dockingprozeduren der Screeningroute mit Hilfe des EF bewertet. Es wurde eine Testdatenbank¹⁵⁹ verwendet, die sich aus Liganden und *decoys* des Zielproteins zusammensetzt. Zunächst wurde die potentielle Affinität für die Strukturen der Testdatenbank mit Hilfe der Dockingprozedur vorhergesagt. Im Anschluss erfolgten die absteigende Sortierung der Strukturen der Testdatenbank nach ihrer vorhergesagten, potentiellen Affinität und die Auftragung des Ergebnisses in einem *xy*-Diagramm gegen die identifizierten Liganden. Diese Darstellung erlaubt einen Vergleich der einzelnen Dockingprozeduren untereinander. Im idealen Fall sollten alle Liganden von der SF besser bewertet worden sein als die *decoys*. Der EF für den Prozentsatz *x* berechnet sich durch die Formel 6:

$$EF_x = \frac{\frac{L_x}{L_{all}}}{\frac{L_{all}}{L_{all} + D_{all}}}$$

Formel 6: Berechnung des Anreicherungsfaktors (EF). (*x*: zu untersuchender Bereich, z.B. 1 %, 10 % oder 30 %; EF_x : Anreicherungsfaktor für den prozentualen Bereich x; L_x : Anzahl der Liganden innerhalb des prozentualen Bereich x; L_{all} : Anzahl aller Liganden; D_{all} : Anzahl aller Decoys)

Der EF gibt eine Auskunft über die Anzahl an Liganden, die in einem bestimmten Prozentsatz der Datenbank anhand ihrer vorhergesagten Affinität identifiziert wurden. Ziel ist es eine höhere Anreicherung als die zufällige statistische Verteilung des experimentellen Screenings zu erreichen.

Eine weitere Methode um die Güte der Dockingprozedur zu testen ist der RMSD-Wert (Kapitel 2.1). Bei dieser Methode wird der Abstand der Koordinaten der Atome der gedockten Ligandkonformation zu den Koordinaten der Atome der experimentell bestimmten Ligandkonformation betrachtet. Je kleiner der RMSD-Wert für das betrachtete Ligandkonformationspaares ist, desto ähnlicher sind die beiden Konformationen des Liganden zueinander, d.h. desto besser kann die Dockingprozedur die experimentelle Konformation des Liganden wiedergeben.

Verschiede Studien zur Beurteilung von Dockingprozeduren kommen zu dem Schluss, dass zwar einig Programme besser Nährungen erzielen als andere, es jedoch kein universelles Werkzeug für die Vorhersage der 3D-Konformation des Ligand-Protein-Komplexes und der Affinität des Liganden zum Rezeptor gibt. Neben dem Platzierungsalgorithmus und der SF haben verschiedene andere Faktoren einen Einfluss auf das Ergebnis. In diesem Zusammenhang ist die Strukturaufbereitung zu nennen, d.h. die Definition der korrekten Atomtypen, die Beachtung des Protonierungs- und Tautomeriezustandes, sowie die Behandlung von Wassermolekülen innerhalb der LBT. Des Weiteren sollten alle Dockingprozeduren unter den gleichen Bedingungen getestet werden, d.h. gleiche Angaben für die Größe der Bindetasche und gleiche Testdatensätze. Letzteres ist ein empfindlicher Punkt innerhalb des VS. Verdonk et al.¹⁶⁰ zeigten, dass ein signifikanter Unterschied im Größenverhältnis der Liganden und decoys zu künstlich guten Ergebnisse führt. Dasselbe gilt unzweifelhaft für alle anderen physikalischen Eigenschaften der Liganden und decoys.¹⁵⁹ Auch das Verhältnis von Liganden zu *decoys* hat einen Einfluss auf das Ergebnis.¹⁶¹ In dieser Arbeit wurde der NR3C4-Datensatz des Verzeichnisses brauchbarer decoys (DUD -Directory of Useful Decoys) verwendet. Er erfüllt all diese Kriterien und besteht aus 74 NR3C4-Liganden und 2630 decoys. Die Gruppe Huang wählte zu jedem bekannten NR3C4-Liganden weitere 36 Moleküle aus der "*druglike*" Substanzdatenbank ZINK¹⁶² aus, die als *decoys* dienen sollen, wobei deren Affinität zum Rezeptor aber nicht bekannt war (es könnte also ein noch unbekannter Ligand unter dem Datensatz von selektierten *decoys* sein). Die ZINK-Datenbank besteht aus kommerziell erhältlichen Liganden. Die *decoys* unterscheiden sich nicht signifikant hinsichtlich ihrer physikalisch-chemischen Eigenschaften, wie Molekulargewicht, cLogP (Verteilungskoeffizient von Octanol und Wasser), Anzahl an Donor- und Akzeptoratomen von den jeweils zugeordneten Liganden, jedoch hinsichtlich ihrer Topologie und erlauben somit eine optimale Bewertung der Güte der Dockingprozedur.¹⁵⁹

3 Ergebnisse und Diskussion: Virtuelles Screening am Androgenrezeptor

In diesem Kapitel erfolgt die Beschreibung und Diskussion des VS am NR3C4 zur Identifizierung potentieller NR3C4-Liganden in virtuellen 3D-Strukturdatenbanken. Zuerst sollte ein Wechselwirkungsmodell für den NR3C4 erstellt werden, aus dem im zweiten Schritt ein effektives Pharmakophormodell abgeleitet werden sollte, das im VS zur Anwendung kommt. Im dritten Schritt sollten mehrere Dockingprozeduren hinsichtlich ihrer geometrischen Genauigkeit und ihres EF untersucht werden. Ziel war es, die Dockingprozedur zu identifizieren, die optimal die aktiven von den inaktiven Strukturen trennt und somit im VS eingesetzt werden kann. Nach der Beschreibung und Beurteilung der einzelnen Schritte des VS erfolgt die Schilderung der neu etablierten VS-Route. Im Anschluss wird die Durchführung des VS sowie die experimentelle Testung erläutert. Es folgt die Diskussion der neu identifizierten Hits. Zusätzlich sollte untersucht werden, inwieweit es möglich ist, die experimentell ermittelten quantitativen Struktur-Aktivitäts-Beziehungen mit Hilfe eines verfeinerten Dockings wiederzufinden. Das Kapitel endet mit einer Zusammenfassung der Ergebnisse sowie einer abschließenden Diskussion.

3.1 Erzeugung eines Wechselwirkungsmodells für den Androgenrezeptor

Der spezifische physikochemische Mechanismus ist maßgebend für die Protein-Ligand Wechselwirkung. Man geht davon aus, dass sich die totale freie Bindungsenergie auf die paarweisen Beträge von Wechselwirkungen zwischen den funktionellen Gruppen des Liganden und der Proteinbindeseite vereinfachen lässt. Zusätzlich wird angenommen, dass austauschbare funktionelle Gruppen mit gleichen physikochemischen Verhalten voraussichtlich ähnliche Wirkungen in Bezug auf die Bindungsaffinität erzielen. Aus diesem Grund sollten in den folgenden zwei Kapiteln bekannte Ligand-Rezeptor-Komplexe des NR3C4 sowie die LBT auf potentielle Wechselwirkungsmuster untersucht werden, so dass sich ein Wechselwirkungsmodell für den NR3C4 ableiten lässt.

3.1.1 Klassifizierung von Wechselwirkungen

Die Klassifizierung der Wechselwirkungen zwischen Ligand und Protein erfolgte anhand der zugehörigen Aminosäurereste. Für die Erzeugung eines Wechselwirkungsmodells wurden alle Röntgenkristallstrukturen des NR3C4, die vor dem 1. November 2007 in der Proteindatenbank⁹⁹ zugänglich waren, mit dem Werkzeug *PLIF* und *Ligand Interaction* aus dem Programm *MOE* untersucht (Parameter siehe Anhang 9.2.1 und 9.2.2). Röntgenkristallstrukturen die nicht dem Wildtyp entsprachen wurden nicht mit *MOE* analysiert. Waren Röntgenkristallstrukturen mit gleichem Ligand zugänglich, so wurde die Röntgenkristallstruktur mit der kleinsten Auflösung in die Analyse einbezogen. Infolgedessen wurden acht Röntgenkristallstrukturen (PDB-Codes: 1XOW, 1T65, 2AM9, 2AMB, 2PNU, 2AXA, 2AX9 und 2HVC) mit unterschiedlichen Liganden (Abbildung 12) analysiert. Da bis heute kein Antagonist in Komplex mit einem Wildtyp-NR3C4 kristallsiert wurde, handelt es sich bei diesen acht Liganden ausschließlich um Agonisten des NR3C4.

Abbildung 12: Verwendete Liganden bei der Wechselwirkungsanalyse mit dem Programmpaket *PLIF* und *Ligand Interaction* von *MOE*. R1881 (12; PDB-Code: 1XOW), DHT (2; PDB-Code: 1T65), TES (1; PDB-Code: 2AM9), Tetrahydrogestrinon (27; PDB-Code: 2AMB), EM-5744 (28; PDB-Code: 2PNU), S-1 (29; PDB-Code: 2AXA), R-3 (18; PDB-Code: 2AX9) und LDG2226 (19; PDB-Code: 2HVC).

Es wurden folgende Wechselwirkungen betrachtet: Wasserstoffbrücken zwischen den Atomen des Liganden und den Atomen der Aminosäureseitenkette (unterteilt in Donor und Akzeptor), Wasserstoffbrücken zwischen den Atomen des Liganden und den Rückgratatomen des Proteins (unterteilt in Donor und Akzeptor), sowie ionische Wechselwirkungen, aromatisch π - π -Wechselwirkungen und schwache Van-der-Waals-Kontakte. Die Ergebnisse für die Wasserstoffbrücken sind in Abbildung 13 dargestellt und im folgenden Abschnitt beschrieben.

Abbildung 13: 3D-Strukturvergleich der Liganden entsprechend der *PLIF*-Ergebnisse. Die Kohlenstoffatome und deren Bindungen wurden zum besseren Verständnis entsprechend der Liganden eingefärbt. Die potentiellen Wasserstoffbrücken sind durch gelb, gestrichelte Linien dargestellt. (A) DHT (2; grün), R1881 (12; orange), TES (1; grau); (B) Tetrahydrogestrinon (27; grün), EM5744 (28; grau); (C) R-3 (18; grün), S-1 (29; grau); (D) LDG2226 (19; grau).

Die Analyse zeigte, dass alle acht Liganden eine Wasserstoffbrücke mit Arg⁷⁵²-N^η bilden. Die Seitenkette des Arg⁷⁵² ist in den acht Röntgenkristallstrukturen räumlich konserviert. Dies ist ein Hinweise darauf, dass Arg⁷⁵² möglicherweise eine wichtige Funktion bei der Bindung von Androgenen besitzt. Die Arg752Gln-Mutation führt zur Androgenresistenz, wie sie beim Goldberg-Maxwell-Morris-Syndrom identifiziert wurde.¹⁶³ Diese Mutation ist ein weiterer Hinweis auf eine essentielle Funktion des Arg⁷⁵² bei der Bindung von Androgenen. Es wird

angenommen, dass Arg⁷⁵² als Anker für die Liganden in der Bindetasche dient.⁵⁰ Die sieben Liganden R1881 (12), DHT (2), TES (1), Tetrahydrogestrinon (27), EM-5744 (28), S-1 (29) und R-3 (18) bilden eine Wasserstoffbrücke mit Asn⁷⁰⁵-N⁸². LDG2226 (19) kann aufgrund seiner Struktur keine Wasserstoffbrücke mit Asn⁷⁰⁵ ausbilden. Diese Tatsache führt zu der Vermutung, dass die Ausbildung einer Wasserstoffbrücke zu Asn⁷⁰⁵ nicht essentiell für die Bindung eines Agonisten ist. Eine Asn705Ala-Mutation führt dazu, dass Antagonisten wie Hydroxyflutamid (30) und Bicalutamid (15) eine agonistische Wirkung zeigten. Wird der protonierte Stickstoff des Hydroxyflutamid (30) bzw. von R-Bicalutamid (15) gegen ein Sauerstoffatom ausgetauscht, so zeigten beide Verbindungen eine antagonistische Wirkung im Komplex mit dem Asn705Ala-NR3C4.¹⁶⁴ Diese Mutations- und Substitutionsstudien verdeutlichen die essentielle Funktion der Aminosäure Asn⁷⁰⁵, die in Abhängigkeit von der Struktur des Liganden, für die biologische Wirkung des Rezeptors verantwortlich ist. Weiterhin ist anzumerken, dass die Konformation von Asn⁷⁰⁵ in allen acht untersuchten Röntgenkristallstrukturen konserviert ist. Vergleicht man die Konformation von Asn⁷⁰⁵ mit weiteren Röntgenkristallstrukturen des NR3C4, so kann Asn⁷⁰⁵ unterschiedliche Konformationen einnehmen. DHT (2) kann in Abhängigkeit von der Asn⁷⁰⁵-Konformation über seine 17*β*-Hydroxylgruppe eine Wechselwirkung mit Asn⁷⁰⁵-N⁸² oder mit Asn⁷⁰⁵-O⁸¹ eingehen.^{52;53} Dies ist ein Hinweis darauf, dass Asn⁷⁰⁵ flexibel ist und sowohl als Donor, als auch als Akzeptor wirken kann. Mit Ausnahme von R-3 (18), S-1 (29) und LDG2226 (19) gehen alle anderen Liganden eine Wasserstoffbrückenbindung mit Thr⁸⁷⁷-O⁷¹ ein. Für die Thr877Ala-Mutation des NR3C4 konnte eine verringerte Affinität des DHT (2) nachgewiesen werden. Ein Grund hierfür ist vermutlich der Verlust der Wasserstoffbrücke zwischen der 17 β -Hydroxylgruppe des DHT (2) und dem Thr⁸⁷⁷-O^{γ 1}.⁷⁶ Dies ist ein Hinweis darauf, dass eine Wasserstoffbrücke zur Aminosäure Thr⁸⁷⁷ nicht essentiell für die Bindung eines Agonisten, aber aktivitätssteigernd ist. Für die Liganden R-3 (18), S-1 (29) und LDG2226 (19) konnte in den betrachteten Röntgenkristallstrukturen eine Wasserstoffbrückenbildung mit Gln^{711} (Gln^{711} - O^{ϵ_1} : R-3 (18), S-1 (29); Gln^{711} - N^{ϵ_2} : LDG2226 (19)) nachgewiesen werden. Es ist zu beachten, dass die Seitenkette des Gln⁷¹¹ verschiedene Konformationen einnehmen kann. In Komplex mit TES (1) und Tetrahydrogestrinon (27) kann Gln^{711} -N^{ϵ 2} zum Liganden gewandt sein und eine Wasserstoffbrücke mit TES (1) und Tetrahydrogestrinon (27) ausbilden, aber auch von TES (1) und Tetrahydrogestrinon (27) abgewandt sein. Dies zeigt, dass diese Wasserstoffbrücke vermutlich nicht essentiell für die Bindung eines steroidalen Liganden ist.⁵⁰ Nur zwei der acht Liganden (R-3 (18), S-1 (29)) können aufgrund ihrer Struktur je eine Wasserstoffbrücke mit dem Leu⁷⁰⁴-O ausbilden. Die Position des Leu⁷⁰⁴-O ist in allen acht Röntgenkristallstrukturen räumlich konserviert. Es ist nicht auszuschließen, dass eine Wechselwirkung zwischen den nichtsteroidalen Liganden R-3 (18) bzw. S-1 (29) und dem Leu⁷⁰⁴-O essentiell ist. Der Ligand LDG2226 (19) ist aufgrund seiner Struktur im Unterschied zu den anderen sieben Liganden in der Lage, zusätzlich eine aromatische π - π -Wechselwirkung mit der Seitenkette des Trp⁷⁴¹ auszubilden. Es kann davon ausgegangen werden, dass die Wechselwirkung nicht essentiell für die in NR3C4 Bindung von Androgenen der Bindetasche des ist. da andere steroidale/nichtsteroidale Liganden dieses Bindemotiv nicht aufweisen. Eine solche Wechselwirkung stabilisiert jedoch den Liganden LDG2226 (19) zusätzlich in der Bindetasche. Im Zentrum der Bindetasche wurden zahlreiche Aminosäurereste identifiziert die schwache Van-der-Waals-Kontakte zum Liganden ausbilden (Tabelle 3). Diese Aminosäurereste stabilisieren den Liganden vermutlich zusätzlich im Zentrum der Bindetasche.

Tabelle 3: Surface contact interactions bzw. Van-der-Waals-Kontakte. Es sind jeweils die Aminosäuren (AS) dargestellt, die mit den Liganden R1881 (12), DHT (2), TES (1), Tetrahydrogestrinon (27), EM-5744 (28), S-1 (29), R-3 (18) und LDG2226 (19) Wechselwirkungen eingehen. Zusätzlich zu den Liganden wurde der entsprechende PDB-Code, der verwendeten Röntgenkristallstruktur angegeben.

Ligand	PDB-Code	AS (Surface contact interactions und Van-der-Waals-Kontakte)
R1881 (12)	1XOW	L701, L704, L707, Q711, M742, M745, M749, F764, F876, L880
DHT (2)	1T65	L704, Q711, M742, M745, M749, F764, M780, F876, M895
TES (1)	2AM9	L701, L704, N705, L707, Q711, W741, M742, M745, F764, M780, L873, F876, T877, M895
Tetrahydrogestrinon (27)	2AMB	L701, L704, N705, L707, Q711, W741, M742, M745, M749, Phe764, M780, L873, F876, T877, L880
EM-5744 (28)	2PNU	L704, L707, Q738, W741, M742, M745, M749, F764, F876, F891, I898
S-1 (29)	2AXA	L707, G708, Q711, W741, M742, M745, M749, F764, T877, M895, I899
R-3 (18)	2AX9	L701, L707, G708, W741, M742, M745, M749, F764, T877
LDG2226 (19)	2HVC	L701, L704, G708, M745, M749, F764, T877, F876, M895

3.1.2 Simulated annealing im Vergleich zu bekannten Wechselwirkungen

Im zweiten Schritt wurde die Bindungetasche des NR3C4 mit dem simulated annealing Werkzeug von *TRIPOS* genauer untersucht. Das Ziel bestand darin, lokale Minima von kleinen Molekülen (Probemolekülen) innerhalb der LBT zu bestimmen. Aus diesen Ergebnissen sollten unbekannte Wechselwirkungen zwischen Ligand und Protein abgeleitet werden, die das Wechselwirkungsmodell komplettieren sollten. Als Grundlage diente die Röntgenkristallstruktur des NR3C4 mit dem Liganden R1881 (**12**; PDB-Code: 1E3G). Zunächst wurden sowohl der Ligand als auch die Wassermoleküle aus dem Rezeptor entfernt.

Die Wasserstoffe der Aminosäuren wurden addiert. Die 3D-Struktur des Proteins wurde mit dem TRIPOS-Kraftfeld (Partialladung: Gasteiger-Hückel, weiter Parameter siehe Anhang 9.2.3) minimiert. Es wurden vier simulated annealing Experimente mit unterschiedlich kleinen Probemolekülen durchgeführt. Bei den Probemolekülen handelte es sich um Methan für die hydrophoben Wechselwirkungen, Benzen für aromatische Wechselwirkungen, für die Identifizierung von Wasserstoffbrückenakzeptorbereichen Methanolat und Ammonium für die Identifizierung von Wasserstoffbrückendonorbereichen. Das Probemolekül wurde "von Hand" in das Zentrum der Bindungstasche platziert. Die Atome des Proteinrückgrats wurden als Aggregat festgehalten, so dass sich nur das Probemolekül und die Seitenketten frei im Raum bewegen konnten. Dies hat den Vorteil, dass die Seitenketten der Aminosäuren in Bereiche gelangen, aus denen sie bessere Wechselwirkungen mit dem Probemolekül eingehen können. Die Abbildung 14 zeigt die energetischen Minima, die während der 30 Zyklen des jeweiligen exponentiellen simulated annealing Experiments mit dem TRIPOS-Kraftfeld berechnet wurden (weitere Parameter siehe Anhang 9.2.3). Die lokalen Minima der Benzen- und Methanprobe bilden im Zentrum der Bindetasche eine große hydrophobe/aromatische Sphäre (Abbildung 14 (A) und (B)).

Abbildung 14: Ergebnisse des *Simulated annealing*. Zur Orientierung wurden in jeder Abbildungen die Aminosäure L704, N705, Q711, M745, R752 und T877 abgebildet. Die Kohlenstofftome der Proben sind in orange dargestellt, die der Aminosäuren in grau. *Simulatet annealing* Ergebnis für (A) Benzen (B) Methan (C) Ammonium (D) Methanolat.

Diese resultiert aus den vielen unpolaren Aminosäuren Leu⁷⁰¹, Leu⁷⁰⁴, Leu⁷⁰⁷, Trp⁷⁴¹, Met⁷⁴², Met⁷⁴⁵, Met⁷⁴⁹, Val⁷⁴⁶, Phe⁷⁶⁴, Met⁷⁸⁰, Met⁷⁸⁷, Leu⁸⁷³, Phe⁸⁷⁶, Leu⁸⁸⁰, Phe⁸⁹¹ und Met⁸⁹⁵ im Zentrum der LBT. Die Ergebnisse in Kapitel 3.1.1 zeigten in diesem Bereich viele hvdrophobe Wechselwirkungen, sowie aromatische π - π -Wechselwirkungen zwischen LDG2226 (19) und Trp⁷⁴¹ und stimmen somit mit den Ergebnissen des *simulated annealings* überein. Nach dem *simulated annealing* mit der NH₄⁺-Probe ergaben sich lokale Minima nahe Thr⁸⁷⁷ und Asn⁷⁰⁵(Abbildung 14 (C)). Dies ist auf die Ausbildung von Wasserstoffbrücken mit Thr⁸⁷⁷-O γ und Asn⁷⁰⁵-O^{δ 1} oder Asn⁷⁰⁵-N^{δ 2} zurückzuführen. Diese Wechselwirkungen wurden in Kapitel 3.3.1 bei den Liganden R1881 (12), DHT (2), TES (1), Tetrahydrogestrinon (27), EM5744, R-3 (18) und S-1 (29) identifiziert. Weitere lokale Minima ergaben sich für die NH_4^+ -Proben in der Nähe von Leu⁷⁰⁵. In diesem Bereich konnten Wasserstoffbrücken zwischen der NH4⁺-Probe und dem Leu⁷⁰⁴-O identifiziert werden (Abbildung 14 (C)). Diese Eigenschaft ist durch die Röntgenkristallstrukturen mit den Liganden S-1 (29) und R-3 (18) bekannt.¹⁶⁵ In der Nähe der Aminosäuren Gln⁷⁰⁵, Met⁷⁴⁵ und Arg⁷⁵² wurden weitere lokale Minima mit der NH₄⁺-Probe berechnet. Die NH₄⁺-Probe bildete Wasserstoffbrücken mit $Gln^{705}-N^{\epsilon 2}$, $Gln^{705}-O^{\epsilon 1}$, $Met^{745}-O$ und $Arg^{752}-N^{\eta 2}$. Diese Wechselwirkungen wurde 2007 durch die Arbeitsgruppe von D. Poirier bereits gezeigt.⁵⁷ Die lokalen Minima der CH₃O⁻-Probe befanden sich nach dem simulated annealing im Bereich des Thr⁸⁷⁷ und Asn⁷⁰⁵ (Wasserstoffbrücke mit Asn⁷⁰⁵-N⁸²; Abbildung 14 (D)). Die 3D-Struktur der LBD in Komplex mit Androstandion zeigte ebenfalls dieses Bindemotiv.¹⁶⁶ In der Nähe der Aminosäuren Gln⁷⁰⁵, Met⁷⁴⁵ und Arg⁷⁵² bildeten sich weitere lokale Minima mit $Gln^{705}-N^{\epsilon 2}$ Arg⁷⁵²-N^{η^2}; der CH₃O⁻-Probe aus (Wasserstoffbrücken mit und Abbildung 14 (D)). Die Ergebnisse des simulated annealing bestätigten alle bekannten Wechselwirkungen, die in verschiedenen Rötgenkristallstrukturen bereits gezeigt wurden.^{39;50;52} Unbekannte Wechselwirkungen wurden nicht nachgewiesen. Das Resultat des simulated annealing dient als guter Ausgangspunkt für die Entwicklung eines Pharmakophormodells.

3.2 Beschreibung des Pharmakophormodells

Die Eigenschaften des Wechselwirkungsmodells (Kapitel 3.1) werden durch ein Vier-Punkt-Pharmakophormodell wiedergegeben (Abbildung 15). Die Ergebnisse des *simulated annealings* mit Benzen und Methan werden durch die Pharmakophorkugeln F2 und F3 repräsentiert, die jeweils sowohl aromatische als auch hydrophobe Eigenschafen enthalten. Beide Pharmakophorkugeln befinden sich im Zentrum der Bindetasche. Sie wurden nicht zu einer Pharmakophorkugel vereinigt, weil ein lokales Minimum für die NH₄⁺-Probe nahe dem Leu⁷⁰⁴-O identifiziert wurde. So konnte der Pharmakophorkugel F2, die sich im Bereich des Leu⁷⁰⁴ befindet, die Eigenschaft eines Wasserstoffdonors hinzugefügt werden. Durch diese Eigenschaft unterscheidet sich die Pharmakophorkugel F2 von F3. Die weiteren Ergebnisse aus dem *simulated annealing* für die NH₄⁺-Probe und die CH₃O⁻-Probe ergaben die Pharmakophorkugeln F1 und F4, die die Eigenschaften eines Donors und eines Akzeptors enthalten. Die beiden Pharmakophorkugeln befinden sich im äußeren Bereich der Bindetaschen auf gegenüberliegenden Seiten und umschließen die Pharmakophorkugel F2 und F3. Da die Ergebnisse aus dem Wechselwirkungsmodell und der Literatur darauf hindeuteten, dass die Aminosäure Arg⁷⁵² eine essentielle Wasserstoffbrücke zum Liganden ausbildet (siehe Kapitel 3.2.1), wurde die Pharmakohorkugel F1 als essentiell definiert.

Abbildung 15: Pharmakophormodell mit 4 Pharmakophorkugeln. F1 (orange): essentielle Don&Akz|Akz|Don Pharmakophorkugel mit einem Radius von 1 Å; F2 (blau): Hyd|Aro Pharmakophorkugel mit einem Radius von 1,5 Å; F3 (grün): Aro|Hyd|Don Pharmakophorkugel mit einem Radius von 1,8 Å; F4 (rot): Don&Akz|Akz|Don Pharmakophorkugel mit einem Radius von 1,8 Å; F4 (rot): Don&Akz|Akz|Don Pharmakophorkugel mit einem Radius von 1,8 Å; F4 (rot): Don&Akz|Akz|Don Pharmakophorkugel mit einem Radius von 1,8 Å; F4 (rot): Don&Akz|Akz|Don Pharmakophorkugel mit einem Radius von 1,8 Å; F4 (rot): Don&Akz|Akz|Don Pharmakophorkugel mit einem Radius von 1,8 Å; F4 (rot): Don&Akz|Akz|Don Pharmakophorkugel mit einem Radius von 1,8 Å; F4 (rot): Don&Akz|Akz|Don Pharmakophorkugel mit einem Radius von 1,8 Å; F4 (rot): Don&Akz|Akz|Don Pharmakophorkugel mit einem Radius von 1,8 Å; F4 (rot): Don&Akz|Akz|Don Pharmakophorkugel mit einem Radius von 1,8 Å; F4 (rot): Don&Akz|Akz|Don Pharmakophorkugel mit einem Radius von 1,8 Å; F4 (rot): Don&Akz|Akz|Don Pharmakophorkugel mit einem Radius von 1,8 Å; F4 (rot): Don&Akz|Akz|Don Pharmakophorkugel mit einem Radius von 1,8 Å; F4 (rot): Don&Akz|Akz|Don Pharmakophorkugel mit einem Radius von 1,8 Å; F4 (rot): Don&Akz|Akz|Don Pharmakophorkugel mit einem Radius von 1,8 Å; F4 (rot): Don&Akz|Akz|Don Pharmakophorkugel mit einem Radius von 1,8 Å; F4 (rot): Don&Akz|Akz|Don Pharmakophorkugel mit einem Radius von 1,8 Å; F4 (rot): Don&Akz|Akz|Don Pharmakophorkugel mit einem Radius von 1,8 Å; F4 (rot): Don&Akz|Akz|Don Pharmakophorkugel mit einem Radius von 1,8 Å; F4 (rot): Don&Akz|Akz|Don Pharmakophorkugel mit einem Radius von 1,8 Å; F4 (rot): Don&Akz|Akz|Don Pharmakophorkugel mit einem Radius von 1,8 Å; F4 (rot): Don&Akz|Akz|Don Pharmakophorkugel mit einem Radius von 1,8 Å; F4 (rot): Don&Akz|Akz|Don Pharmakophorkugel mit einem Radius von 1,8 Å; F4 (rot): Don&Akz|Akz|Don Pharmakophorkugel mit einem Radius von 1,8 Å; F4 (rot): Don&Akz|Akz|Don Pharmakophorkugel mit einem Radius von 1,8 Å; F4 (rot): Don&Akz|Akz|Don Pharmakophor

Das Volumen der LBT wurde mit Hilfe eines ausschließenden Volumens im Pharmakophor berücksichtig. Dazu wurden alle Aminosäuren mit einem Radius von 4,5 Å um den Liganden R1881 (**12**) markiert und die Aminosäuren der H12 (Glu⁸⁹³-Ser⁹⁰⁸) wurden subtrahiert. Die verbleibenden markierten Atome wurden als ausschließendes Volumen mit einem Radius von 1,3 Å definiert. Die Subtraktion der Aminosäuren der H12 vom ausschließenden Volumen bietet den Vorteil, dass auch potentielle Liganden identifiziert werden können, die mit den Aminosäuren der H12 kollidieren. Diese Liganden können potentielle Antagonisten darstellen (Kapitel 1.1.3). Im Anschluss wurde das 4-Punkt-Pharmakophormodell an 71 steroidalen und nichtsteroidalen Liganden des NR3C4 getestet.¹⁵⁹ Ziel der Testung war eine Optimierung der Pharmakophoranfrage hinsichtlich der Ligandenwiederfindungsrate. Dazu wurde die Mindestanzahl der Pharmakophorkugeln variiert, die eine Struktur erfüllen muss, um als potentieller Ligand identifiziert zu werden, sowie die Größe der Pharmakophorkugeln. Mit dem besten Modell, das in der VS-Prozedur angewandt werden sollte (Kapitel 3.4), konnten 71 von 71 Liganden wiedergefunden werden. Dabei war F1 als essentiell definiert und mindestens eine weitere Pharmakophoreigenschaft aus je zwei weiteren beliebigen Pharmakophorkugeln musste erfüllt sein. Der optimale Radius der Pharmakophorkugel F1 betrug 1 Å. Für die Pharmakophorkugeln F2 und F4 wurde ein optimaler Radius von 1,5 Å berechnet. Die größte Pharmakophorkugel war F3 mit 1,8 Å.

3.3 Bewertung der Dockingprozeduren

3.3.1 Re-Docking der Röntgenkristallstrukturen

Mit Hilfe des Re-Dockings der Röntgenkristallstrukturen sollte die Frage beantwortet werden, wie gut der jeweilige Dockingalgorithmus kombiniert mit den einzelnen SF die Röntgenkristallstruktur wiedergeben kann. Für das Docking standen 12 verschiedene Prozeduren zur Verfügung. Sie setzen sich aus den fünf unterschiedlichen Algorithmen zur Konformationsraumanalyse und den sechs unterschiedlichen SF der Programmpackete GOLD, PLANTS und MOE zusammen (Parameter siehe Anhang 9.2.5-9.2.7). Für die Untersuchung wurden acht Protein-Ligand-Komplexe des NR3C4 aus der Proteindatenbank⁹⁹ entnommen (PDB-Codes: 1XOW, 2AM9, 2AMB, 2AX9, 2AXA, 2HVC, PNU und 1T65, siehe Kapitel 3.3.1) und analysiert. GOLD erlaubte im Gegensatz zu PLANTS und MOE die Einbeziehung von Wassermolekülen während des Dockings (in PLANTS war die Option zu diesem Zeitpunkt noch nicht möglich). Aus diesem Grund wurden für das Docking mit GOLD nur nichtkonservierte Wassermoleküle (Kapitel 1.1.4) aus der Röntgenkristallstruktur entfernt. Für das Docking mit PLANTS und MOE wurden alle Wassermoleküle entfernt. Die Wasserstoffe der Aminosäuren, des Liganden und des Wassers wurden in SYBYL addiert. Die Protein-Ligand-Komplexes wurde mit **TRIPOS-Kraftfeld** 3D-Struktur des dem (Partialladung: Gasteiger-Hückel, Parameter siehe Anhang 9.2.4) minimiert. Der Ligand 12 wurde extrahiert und mit den verschieden Dockingprozeduren in die Röntgenkristallstrukturen platziert. Anschließend wurden die erhaltenen Ligand-Protein-Komplexe mit den Röntgenkristallstrukturen verglichen. Dazu wurde der RMSD-Wert (Kapitel 2.7) zwischen dem Ligand des Ligand-Protein-Komplexes mit dem besten score der jeweiligen Methoden und dem Ligand der Röntgenkristallstruktur berechnet (Abbildung 16).

Abbildung 16: Bewertung der Güte der Dockingprogramme anhand des RMSD-Wertes. Es ist der RMSD-Wert (geringerer Wert = besser) zwischen dem Ligand aus dem Dockingergebnis mit dem besten *score* zum Liganden der Röntgenkristallstruktur dargestellt. Die Untersuchung erfolgte für die Liganden DHT (2), R1881 (12), TES (1), Tetrahydrogestrinon (27), R-3 (18), S-1 (29), LDG2226 (19) und EM-5744 (28; zusätzlich sind die PDB-Codes der verwendeten Röntgenkristallstrukturen angegeben). Die Bindetasche wurde durch einen Radius von 15 Å um L873-C^{δ} definiert. Außer für vier MOE-Dockingprozeduren konnten alle Liganden mit einer Genauigkeit kleiner 2 Å von den Dockingprozeduren wiedergegeben werden.

Für die einzelnen Dockingposen variierte der RMSD-Wert bezogen auf die Röntgenkristallstrukturen um bis zu 2,4 Å. Für die Dockinguntersuchung mit der Röntgenkristallstruktur 1XOW (Ligand: DHT (2)) konnte beispielsweise für *PLANTS* (*CHEMPLP*) ein RMSD-Wert von 0,17 Å berechnet werden. Die Dockingstudie mit *MOE* (*AT/AHB*) ergab hingegen eine Abweichung von 2,58 Å. Bis auf die Dockingprozedur *MOE* (*AT/AHB*) wurde mit allen anderen Prozeduren durchschnittlich ein RMSD-Wert von unter 1 Å erzielt (Abbildung 17).

Dockingprogramme

Abbildung 17: Bewertung der Güte der Dockingprogramme anhand des RMSD-Wertes. Es ist der mittlere RMSD-Wert (geringerer Wert = besser) für das Docking der steroidalen Strukturen DHT (2; PDB-Code: 1T65), R1881 (12; PDB-Code: 1XOW), TES (1; PDB-Code: 2AM9), Tetrahydrogestrinon (27; PDB-Code: 2AMB) und EM-5744 (28; PDB-Code: 2PNU)), der nicht-steroidalen Strukturen R-3 (18; PDB-Code: 2AX9), S-1 (29; PDB-Code: 2AXA) und LDG2226 (19; PDB-Code: 2HVC)) und der Mittelwert aller acht Liganden dargestellt. Die Bindetasche wird durch einen Radius von 15 Å um L873-C^{δ} definiert. Die steroidalen Strukturen können von allen Dockingprogrammen bis auf *MOE* (*AT/AHB*) und *MOE* (*AM/LdG*) immer genauer als die nicht-steroidalen Strukturen wiedergegeben werden. Der mittlere RMSD-Wert für alle Strukturen ist $\leq 1,5$ Å.

Die steroidalen Liganden erreichten im Vergleich zu den nichtsteroidalen Liganden bessere Dockingergebnisse (Abbildung 17). Dies ist möglicherweise auf die geringere Flexibilität der steroidaler Liganden zurückzuführen. Zusammenfassend kann die Aussage getroffen werden, dass sowohl *PLANTS* als auch *GOLD* vermutlich gute bis sehr gute Ergebnisse für die Bewertung von ähnlichen Strukturen liefern werden.

3.3.2 Anreicherungspotential der Dockingprozeduren

In diesem Schritt sollte beurteilt werden, welche Dockingprozedur sich aus Kapitel 3.3.1 am besten für die Differenzierung zwischen aktiven und potentiell inaktiven Strukturen, d.h. zwischen Liganden und decoys eignet. Als Testdatensatz diente der NR3C4-Datensatz des DUD¹⁵⁹ (Kapitel 2.8). Alle Strukturen wurden nach den gleichen Prozeduren, die in Kapitel 3.3.1 beschrieben wurden, in die LBT der acht Röntgenkristallstrukturen des NR3C4 gedockt. Die besten Ergebnisse wurden mit der Röntgenkristallstruktur 2HVC (PDB-Code) für GOLD (ChemScore) und PLANTS (CHEMPLP) erzielt. PLANTS erlaubte im Gegensatz zu GOLD und MOE ein Docking mit flexiblen Seitenketten (in GOLD war die Option zu diesem Zeitpunkt noch nicht möglich). Da bekannt ist, dass Antagonisten der hormonalen Kernrezeptoren mit verschieden Aminosäureresten kollidieren, ist beim Docking mit flexiblen Seitenketten eine nochmalige Verbesserung der Dockingergebnisse zu erwarten. Für eine Analyse der flexiblen Seitenketten wurden alle Röntgenkristallstrukturen des Wildtyp-NR3C4 aus der Proteindatenbank¹⁰¹ einbezogen. In einem Strukturvergleich verschiedener Röntgenkristallstrukturen des NR3C4 (PDB-Codes: 1I37, 1T65, 1XOW, 2AM9, 2AMB, 2AX9, 2AXA, 2HVC und 2PNU) konnte mit MOE-Superpose eine Flexibilität von über 1 Å bei den Aminosäuren Leu⁷⁰¹, Ser⁷⁰², Leu⁷⁰⁴, Asn⁷⁰⁵, Trp⁷⁴¹, Met⁷⁴⁵ Met⁷⁸⁰, Met⁷⁸⁷, Leu⁸⁷³, Thr⁸⁷⁷, Leu⁸⁸⁰, Val⁸⁸⁹ und Met⁸⁹⁵ nachgewiesen werden (Parameter siehe Anhang 9.2.9). Als weitere flexible Aminosäure kommt Phe⁸⁷⁶ in Frage, die in Zusammenhang mit verschiedenen Antagonisten diskutiert wird.⁵⁷ Um die optimale Zusammensetzung an flexiblen Seitenketten zu bestimmen, erfolgte eine Überprüfung mit PLANTS. Die höchste Steigerung des EF um 4 % konnte mit den Aminosäuren Leu⁷⁰¹, Leu⁷⁰⁴, Asn⁷⁰⁵, Phe⁸⁷⁶ und Thr⁸⁷⁷ erreicht werden. Ein Re-Docking analog zu Kapitel 3.3.1 zeigte einen Durchschnittlichen RMSD-Wert von 0,56 Å (Tabelle 20), so dass davon ausgegangen werden kann, dass auch diese Dockingprozedur bei ähnlichen Liganden nahezu native Komplexe berechnet. Die Abbildung 18 A zeigt die Anreicherungskurven für das Dockingszenario mit 2HVC und dem DUD.

Abbildung 18: Anreicherungskurven für NR3C4-Liganden des gesamten DUD (links, A) und dem besten 1 % der nach *score* sortierten Datenbank (rechts, B). Es wurde das DUD in die LBT des NR3C4 (PDB-Code: 2HVC) gedockt. Die Bindetasche wird durch einen Radius von 15 Å um L873C^{δ} definiert. Die Kurven wurden durch 14 unterschiedliche Dockingprozeduren erhalten. Es ist als Vergleich in jedem Diagramm die ideale und die zufällige (random) Kurve abgebildet. (1) Ergebnisse für GOLD (ChemScore), GOLD (GoldScore), PLANTS (CHEMPLP)*, PLANTS (CHEMPLP)**. (2) Ergebnisse für MOE(AP/AdG), MOE (AP/DHB), MOE (AP/LDG), MOE (AT/AdG) und MOE (AT/DHB). (3) Ergebnisse für MOE (AT/LdG), MOE (MT/AdG), MOE (MT/DHB) und MOE (MT/LdG). Den bester EF₁ lieferte *PLANTS (CHEMPLP)****.

* keine flexiblen Seitenketten;

*** L701, L704, A705, F876 und T877 flexibel

^{**} T877 flexibel;

Die Ergebnisse der Dockingszenarien für die Röntgenkristallstrukturen mit dem PDB-Codes 1XOW, 1T65, 2AM9, 2AMB, 2PNU, 2AXA und 2AX9 sind im Anhang 9.3.2 abgebildet. Mit der Ausnahme von MOE (AP), MOE (AT/DHB), MOE (AT/LdG), MOE (MT/DHB) und MOE (MT/LdG) waren alle Dockingprozeduren in Abbildung 18 in der Lage einen EF von über 50 % in den ersten 10 % der nach *score* sortierten Datenbank zu erzielen ($EF_{10} > 50$). Entscheidend für die Auswahl der besten Dockingprozedur ist nicht nur der EF sondern auch das Kurvenverhalten. Im Idealfall sollten sich im vorderen Teil der nach score sortierten Datenbank ausschließlich Liganden befinden und im hinteren Teil nur decoys. Ziel war es, eine Dockingprozedur auszuwählen, die sowohl einen hohen EF aufweist, sowie eine optimale Steigerung im vorderen Teil der nach score sortiert Datenbank (siehe Kapitel 2.8). Da sich Substanzen nur limitiert gewinnen oder testen lassen, ist es von entscheidender Bedeutung, dass bei einem VS ein hoher Anteil positiver Hits im ersten Promille oder Prozent der nach score sortierten Datenbank erzielt wird. Unter der Berücksichtigung unserer limitierten experimentellen Testkapazität beschränkte sich die Untersuchung hier auf das erste Prozent der Datenbank, auf den EF1. Die Abbildung 18 (B) zeigt die Anreicherungskurven für das erste Prozent der Datenbank. Im ersten Prozent der Datenbank befinden sich im idealen Fall 26 Liganden (= 35,21 % aller Liganden). PLANTS (CHEMPLP)*** und GOLD (ChemScore) erzielten in diesem Bereich eine Anreicherung von 19 Liganden und 7 falsch negativen Strukturen. Somit wird ein EF₁ von 26,76 erreicht. Das ergibt eine falsch negativ Rate von weniger als 24 %. Aus dem Verlauf der Anreicherungskurven ist für GOLD (ChemScore) und PLANTS (CHEMPLP)*** zu erkennen, dass GOLD (ChemScore) wesentlich zeitiger falsch negative Ergebnisse liefert. Diese Untersuchungen haben gezeigt, dass das beste Ergebnis für die Anreicherung von Liganden des DUD-NR3C4-Datensatzes mit PLANTS (CHEMPLP)*** in Kombination mit 2HVC (PDB-Code) erzielt wurde. Diese Methode sollte sich sich daher als beste Dockingprozedur für das VS am NR3C4 eignen.

3.4 Zwei-Schritt-Virtual-Screening: Identifizierung und Charakterisierung der bestes potentiellen Hits

Nach der Erstellung eines effektiven Pharmakophormodells (Kapitel 3.1-3.2) und der Identifizierung einer geeigneten Dockingprozedur für ein VS (Kapitel 3.3) bestand das nächste Ziel in der Identifizierung von neuen Liganden aus virtuellen 3D-Strukturdatenbanken.

Abbildung 19: Arbeitsablauf des VS. Ausgehend von 1.300.000 Strukturen konnten nach Vorfilterung (Prefilter), Pharmakophorsuche, Docking, Clustering (UNITY Fingerprints) und visueller Inspektion 94 potentielle Hits identifiziert werden. Dabei handelt es sich bei 35 Hits um Strukturen, die in der Beilsteindatenbank¹⁶⁷ bzw. der hauseigene Datenbank (Leibniz-Institut für Pflanzenbiochemie, Abteilung Naturstoffchemie) als Naturstoffe gekennzeichnet sind (siehe Anhang 9.6 Tabelle 29).

Die gesamte VS-Prozedur ist in Abbildung 19 dargestellt und im folgenden Abschnitt beschrieben. Für das VS standen die hauseigene Datenbank (Leibniz-Institut für Pflanzenbiochemie, Abteilung Naturstoffchemie) mit ~5400 synthetisch hergestellten und aus Pflanzen und Pilzen isolierten Verbindungen und die MOE Datenbank, die kommerziell erhältliche Substanzen enthält, zur Verfügung. Die 3D-Strukturdatenbanken enthalten zusammen ~1,3 Millionen Strukturen (~50 Millionen Konformationen). Im ersten Schritt wurden wenige unspezifische und zielproteinunabhängige Filter (rotierbare Bindungen < 9; Molekulargewicht < 500 Da) verwendet. Sie reduzierten den Datensatz auf ~800.000 Strukturen. Durch die Verwendung dieser Filter wird eine hohe Flexibilität der Strukturen vermieden, denn erfahrungsgemäß reduziert sich die Bindungsaffinität der Liganden zum Protein mit der Erhöhung der Entropie der Liganden. Zusätzlich wird die Komplexität der Strukturen herabgesetzt, wodurch die Erfolgswahrscheinlichkeit des VS erhöht wird. Im zweiten Schritt erfolgte die Pharmakophorfilterung, in welchem die Strukturen selektiert wurden, die die Eigenschaften des 4-Punkt-Pharmakophormodells (Kapitel 3.2) erfüllten. Mit dem Pharmakophorschritt konnten von 800.000 Strukturen insgesamt ~39.000 Strukturen selektiert werden, die die Kriterien des 4-Punkt-Pharmakophormodells erfüllen und damit als potentielle Liganden gelten. Die selektierten Strukturen wurden im Anschluss in die Bindetasche des NR3C4, nach den zuvor identifizierten Kriterien (Kapitel 3.3) mit PLANTS gedockt, mit CHEMPLP*** bewertet und nach ihrem *score* sortiert. Die 390 am besten bewerteten Strukturen wurden gemäß der UNITY Fingerprints nach ihrer Ähnlichkeit geclustert und visuell ausgewertet.

Am Ende konnte ein Datensatz von 94 Verbindung aus ~1,3 Millionen Strukturen als potentielle Liganden des NR3C4 identifiziert werden, wobei 35 Hits in der Beilsteindatenbank¹⁶⁷ bzw. der hauseigene Datenbank (Leibniz-Institut für Pflanzenbiochemie, Abteilung Naturstoffchemie) als Naturstoffe gekennzeichnet waren. (Datenbankabfrage: 03. Juli 2010; Anhang 9.6 Tabelle 29).

3.5 Experimentelles Screening der potentiellen Hits

Im Anschluss an das VS sollten die 94 Substanzen in vitro auf ihre Aktivität getestet werden. Dazu wurden die Substanzen in vitro auf ihre biologische Wirkung am NR3C4 an den Prostatakarzinomzelllinien LNCaP und PC-3 getestet (durchgeführt von Claudia Bobach, Annika Denkert und Kristin Palberg). Die LNCaP-Zellline ist eine aus einer Lymphknotenmetastase isolierte Zelllinie.¹⁶⁸ Sie ist hormonsensitiv. Nach Zugabe von TES (1) und DHT (2) wurde eine erhöhte Proliferationsrate und Phosphataseaktivität nachgewiesen.¹⁶⁸ Die LNCaP-Zellen exprimieren die Thr877Ala-Mutante des NR3C4.⁹⁴ Diese Punktmutation befindet sich innerhalb der LBT und führt zu einer veränderten Substratspezifität des Rezeptors.¹⁶⁹ Nach der Zugabe von Hydroxyflutamid (30) und Cyproteronacetat (26), die als Antagonisten am Wildtyp-NR3C4 wirken, konnten agonistische Effekte am Thr877Ala-NR3C4 beobachtet werden.⁹⁴ Die LNCaP-Zellen wurden für die vorliegende Arbeit ohne und mit Zugaben von 1 nM TES (1) mit den aus dem VS vorgeschlagenen 94 Testsubstanz in einer Konzentration von 10 nM und 10 µM inkubiert. Die Proliferationsrate wurde nach einer Inkubationszeit von fünf Tagen mit dem XTT-Reagenz (Na-3,3'-[1-(phenylamino) carbonyl-3,4-tetrazolium]-bis(4-methoxy-6-nitrobenzol)-sulfonsäurehydrat) detektiert. Als Kontrolle diente die Inkubation der LNCaP-Zellen mit bzw. ohne TES (1) in Abwesenheit der Testsubstanz. Zeigte sich nach Zugabe der Testsubstanz in Anwesenheit bzw. Abwesenheit von TES (1) ein Proliferationseffekt im Vergleich zum Zellwachstum ohne Testsubstanz, ist dies ein Hinweis darauf, dass die Substanz am Thr877Ala-NR3C4 wirksam ist. Um auszuschließen, dass es sich bei der Testsubstanz um einen nicht auf die Hormonwirkung zurückzuführenden Effekt handelte, wie z.B. Zytotoxizität, wurden die Testsubstanzen an PC-3-Zellen getestet. Die PC3-Zellinie wurde post-mortem aus einer Konchenmarkmetastase isoliert und wächst hormonunabhängig.¹⁷⁰ Für den Nachweis der Proliferation wurde die Testsubstanz in einer Konzentration von 10 nM und 10 µM für 5 Tage mit den PC-3-Zellen inkubiert und mit XTT-Reagenz detektiert. Substanzen mit NR3C4-unabhängigen Antitumoreffekten sollten im PC-3-Assay eine Inhibierung der Proliferation zeigen, während potentiell wirksame Substanzen am NR3C4 keinen direkten Einfluss auf die PC-3-Proliferation besitzen. Für alle 94 getesteten Substanzen konnte eine potentielle Wirkung am NR3C4 nachgewiesen werden. 93 von den 94 Substanzen wurden im Anschluss in einem Wildtyp-NR3C4-Fluoreszenzpolarisationsassay (PolarScreenTM Androgen Receptor Competitor Assay Kit, Green von Invitrogen (Carlsbad, CA, USA)) auf ihre Affinität zum NR3C4 getestet. Für die eine Substanz steht die Testung noch aus. Für 60 der 93 Subtanzen ergab sich eine prozentuale Aktivität von kleiner, gleich 50 % bei einer Testkonzentration von 100 µM bezogen auf 10 µM TES (1). Für 33 Substanzen konnte eine prozentuale Aktivität von größer 50 % beobachtet werden. Die Ergebnisse des experimentellen Screenings für die 94 Verbindungen sind im Anhang 9.6 in Tabelle 29 abgebildet. Im Anschluss an das Wildtyp-NR3C4-Fluoreszenz-polarisationsassay wurde für 10 identifizierte Substanzen der IC₅₀-Wert, sowie der K_i-Wert nach Kenakin bestimmt.¹⁷¹ Bei den Verbindungen handelte es sich um QDM276 (52), QDM255 (40), β -Sitosterol (34), Guggulsteron Z (38), Guggulsteron E (36), XSA164 (79), DUE040 (59), XVB0158 (53), XVB485 (114) und XVB0273 (77; Tabelle 4).

Tabelle 4: Strukturen, Dockingergebnisse (*score*) und K_i-Werte für 10 Verbindungen, die mit Hilfe des VS vorhergesagt wurden (niedriger *score* und K_i-Wert = besser; vergleichsweise ist der K_i-Wert für TES (1) und DHT (2) $\sim 8,9$ nM (Tabelle 5)).

Fortsetzung Tabelle 4: Strukturen, Dockingergebnisse (*score*) und K_i-Werte für 10 Verbindungen, die mit Hilfe des VS vorhergesagt wurden.

XVB0273 (**77**) zeigte als einzige der 10 Verbindungen einen K_i-Wert über 50 μM (XVB0273 (**77**): 62 μM ±16). Drei Verbindungen zeigten einen K_i-Wert zwischen 10 μM und 20 μM (DUE040 (**59**): 11 μM ±1; XVB0158 (**53**): 14 μM ±2; XVB485 (**114**): 17 μM ±3). Fünf Verbindungen zeigten einen K_i-Wert zwischen 1 und 10 μM (QDM255 (**40**): 2 μM ±0,5; β-Sitosterol (**34**): 3 μM ±0,4; Guggulsteron *Z* (**38**): 3 μM ±0,6; Guggulsteron *E* (**36**): 4 μM ±0,8; XSA164 (**79**): 9 μM ±1,5). Für die Verbindung QDM276 (**52**) konnte interessanterweise ein K_i-Wert von 10 nM ±3 bestimmt werden, welcher dem von TES (**1**; 8,9 nM) gleichkommt. Bei 2 der 10 aufgeführten Verbindungen (Guggulsteron *E* (**36**) und *Z* (**38**)) handelt es sich um bereits in der Fachliteratur beschriebene Liganden des NR3C4.¹⁷² Die verbleibenden 8 Verbindungen konnten als neue Liganden des NR3C4 identifiziert werden, die bis zum jetzigen Zeitpunkt in der Literatur in diesem Zusammenhang nicht beschrieben wurden.
3.6 Struktur-Aktivitäts-Beziehungen

Im Folgenden sollte untersucht werden, ob und in wie weit es möglich ist, mit Hilfe des Platzierungsalgorithmus von *PLANTS* und der SF *CHEMPLP**** wichtige strukturelle Abhängigkeiten für die experimentell ermittelten quantitativen Struktur-Wirkungs-Beziehungen wiederzufinden. Hierfür wurden neun bekannte Liganden TES (1), DHT (2), 17 α -Östradiol (128), 17 β -Östradiol (126), 17 α -Ethinylöstradiol (127), Cyproteronacetat (26), Progesteron (4), Medroxyprogesteron (125) und Spironolacton (14); Tabelle 5) und 10 Liganden (QDM276 (52), QDM255 (40), β -Sitosterol (34), Guggulsteron *Z* (38), Guggulsteron *E* (36), XSA164 (79), DUE040 (59), XVB0158 (53), XVB485 (114) und XVB0273 (77); Tabelle 4), die über das VS (Kapitel 3.4) identifiziert wurden, ausgewählt. Bis auf DUE040 (59) enthalten alle Strukturen ein steroidales Grundgerüst. Die K_i-Werte aus dem Wildtyp-NR3C4-Fluoreszenzpolarisationsassay sind in der Tabelle 4 und Tabelle 5 zusammengefasst. Die K_i-Werte erstrecken sich von der Verbindung Medroxyprogesteron (125; K_i = 2,7 nM ±0,4) bis zu der Verbindung XVB0273 (77; K_i = 62 μ M ±16) über 4 Größenordnungen, so dass eine korrekte Bewertung der Rangfolge der Moleküle durch die SF möglich sein sollte.

Tabelle 5: K_i-Wert und Strukturen von neun Standardverbindungen des NR3C4.

Vergleicht man die ermittelten *scores* aus dem VS mit den K_i-Werten der einzelnen Verbindungen (Tabelle 6), zeigte sich beim Docking mit 5 flexiblen Seitenketten, dass der PLANTS Algorithmus in Verwendung mit *CHEMPLP**** die Affinitätsreihenfolge der 19 Verbindungen/Strukturen nicht korrekt wiedergeben kann. Für die aktivsten Verbindungen Medroxyprogesteron (**125**), DHT (**2**) und TES (**1**) konnte die korrekte Affinitätsreihenfolge bestimmt werden, jedoch wurden Verbindungen wie QDM276 (**52**) und Spironolacton (**14**) unterbewertet. Andere Strukturen wie β -Sitosterol (**34**), Guggulsteron *E* (**36**) und *Z* (**38**) wurden dagegen überbewertet. Nach einer Korrelation (nach Spearman) zwischen den im Wildtyp-NR3C4-Fluoreszenzpolarisationsassay bestimmten pK_i-Werten und den theoretisch ermittelten *scores* wurde ein R²-Wert von 0,2 mit einem F-Wert von 4,013 und einem p-Wert von 0,061 ermittelt (Abbildung 20 A). Aufgrund dieses Ergebnisses besteht kein mathematischer Zusammenhang zwischen *score* und pK_i-Wert.

Fortsetzung Tabelle 5: K_i-Wert und Strukturen von neun Standardverbindungen des NR3C4.

Tabelle 6: Ergebnisse aus dem Wildtyp-NR3C4-Fluoreszenzpolarisationsassay (K_i-Wert in nM) und dem Docking mit *PLANTS* (*CHEMPLP*)*** (*Score*). Es wurde mit 5 flexiblen Seitenketten (L704, N705, L707, F876, T877) gedockt. Die Bindetasche wird durch einen Radius von 15 Å um L873-C^{δ} definiert. Zusätzlich ist der experimentelle Rang bezogen auf den K_i-Wert und der vorhergesagte Rang bezogen auf den *score* dargestellt.

Verbindung	Aktivität	Aktivität Experimenteller		Vorhergesagter
	(K _i in nM)	Rang		Rang
Medroxyprogesteron (125)	2,7 ±0,4	1	-114	1
DHT (2)	8,9	2	-111	2
TES (1)	8,9	2	-111	2
QDM 276 (52)	10,6 ±1,7	4	-95	8
Spironolacton (14)	16,0 ±2,9	5	-80	11
17β-Östradiol (126)	53,1	6	-111	2
17α-Ethinylestradiol (127)	111,6 ±35,1	7	-103	6
Cyproteronacetat (26)	122,6	8	-98	7
Progesteron (4)	164,3	9	-109	3
QDM 255 (40)	1815,2 ±531,3	10	-103	6
17α-Östradiol (128)	1934,70 ±375,0	11	-107	4
β-Sitosterol (34)	3121,2 ±438,3	12	-109	3
Guggulsteron Z (38)	3364,7 ±691,9	13	-107	4
Guggulsteron E (36)	4338,7 ±797,0	14	-106	5
XSA164 (79)	9183,0 ±1531,0	15	-87	10
DUE040 (59)	11227,0 ±812,0	16	-93	9
XVB0158 (53)	14255,7 ±2302,2	17	-95	8
XVB0485 (114)	16690,7 ±3497,5	18	-74	12
XVB0273 (77)	62025,6 ±15982,3	19	-87	10

Somit ergeben sich folgende Fragen: Ist die SF nicht in der Lage die Liganden ausreichend gut, hinsichtlich ihrer Affinität zum Rezeptor, zu bewerten? Sollten auf Grund der Struktur der Liganden weitere Seitenketten flexibel gehalten werden? Ist die Anzahl der Dockingläufe und des Clusterparameters nicht hinreichend gut gewählt? Da es sich hierbei um ein Docking von 19 Strukturen handelte, spielte der Zeitfaktor eine geringere Rolle als beim VS von mehreren tausend Strukturen. Deshalb konnte die Anzahl der Dockingläufe und die Anzahl der flexiblen Seitenketten erhöht werden, was zu genaueren Ergebnissen führen sollte. Untersuchungen zeigten, dass einige der 19 Strukturen mit den Aminosäuren Leu⁷⁰¹, Ser⁷⁰², Met⁷⁸⁷, Phe⁸⁷⁶, Leu⁸⁸⁰ und Met⁸⁹⁵ kollidierten, sobald sie von Hand in die Bindetasche des NR3C4 analog zum steroidalen Grundgerüst von DHT (2) platziert wurden. Diese Kollisionen wurden beim bisherigen Docking nicht in Form von flexiblen Seitenketten berücksichtigt. Aus diesem Grund sollten diese sechs Aminosäureseitenketten während des erneuten Dockings zusätzlich flexibel gehalten werden. Ein optimales Ergebnis konnte mit 100 Dockingläufen pro Struktur erzielt werden. In Abbildung 20 ist die Korrelation zwischen den scores und den pKi-Werten der 19 Verbindungen für die nichtoptimierte und die optimierte Dockingprozedur dargestellt. Mit der verbesserten Dockingprozedur konnte eine signifikante Korrelation nach Spearman im Gegensatz zur nicht-optimierten Dockingprozedur erzielt werden. Die lineare Verknüpfung zwischen den scores und den pK_i -Werten ergab für die optimierte Dockingprozedur folgende Korrelationswerte: R = 0.81; $R^2 = 0.66$; F = 4.0 und p < 0.0001. Im Vergleich dazu betrugen der R-Wert und R²-Wert beim

nicht-optimierten Docking 0,6 und 0,2 (F = 4,013; p = 0,061). Aufgrund dieser mathematischen Abhängigkeiten lässt sich schlussfolgern, dass ein Zusammenhang zwischen den Struktur-Aktivitäts-Beziehungen aus dem optimierten Docking und den experimentell bestimmen Struktur-Aktivitäts-Beziehungen besteht.

Abbildung 20: Korrelation nach Spearman zwischen den *scores* aus dem Docking mit PLANTS (CHEMPLP***) und den experimentell bestimmten pK_i-Werten der 19 Verbindungen. (A) Nicht-optimiertes Docking und (B) optimiertes Docking.

3.6.1 Vergleich der Dockingergebnisse für die Standardverbindungen mit der Literatur

Zunächst sollten die Dockingergebnisse für die Standardverbindungen mit dem Stand der Literatur und den experimentell ermittelten K_i-Werten diskutiert werden. **Medroxyprogesteron** (125) zeigte mit einem K_i-Wert von 2,66 nM \pm 0,44 und einem score von -114 sowohl die höchste experimentelle als auch virtuell berechnete Affinität zum NR3C4 von allen neun getesteten Standardverbindungen. Bis heute existiert keine Röntgenkristallstruktur eines Medroxprogesteron-NR3C4-Komplexes. In der Literatur wird Medroxyprogesteron (125) als ein Agonist des NR3C4 beschrieben.¹⁷³ Die Dockingposition mit dem besten score für Medroxyprogesteron (125) ist in Abbildung 21 dargestellt. Der Ligand bildet über seine 3-Ketogruppe zwei mögliche Wasserstoffbrücken mit den Aminosäureresten Gln^{711} -N^{$\epsilon 2$} (Gln^{711} -N^{$\epsilon 2$}...O: 3,01 Å) und Arg^{752} -N^{η} (Arg^{752} -N^{η}...OC-3: 2,74 Å) aus sowie eine mögliche Wasserstoffbrücke zwischen der Ketogruppe am C-20 und Thr⁸⁷⁷-O^γ (Thr⁸⁷⁷-O^γ...OC-20: 2,27 Å). Weiterhin wird die Struktur durch schwache Van-der-Waals-Kontakte mit den Aminosäuren Leu⁷⁰¹, Leu⁷⁰⁴, Leu⁷⁰⁷, Trp⁷⁴¹, Met⁷⁴², Met⁷⁴⁵, Val⁷⁴⁹, Phe⁷⁶⁴, Met⁷⁸⁷, Leu⁸⁷³, Leu⁸⁸⁰, Phe⁸⁹¹ und Met⁸⁹⁵ in der LBT stabilisiert.

Abbildung 21: Beste Dockingposition für Medroxyprogesteron (125; orange). Die gelb, gestrichelten Linien zeigen die potentiellen Wasserstoffbrücken zwischen den Atomen des Liganden und den Atomen der Aminosäurereste (Q711, R752 und T877) des Rezeptors. Die Aminosäurereste, die als Stab/Linie dargestellt sind, sind fett/nicht fett beschriftet.

Die bekanntesten Agonisten des NR3C4 sind DHT (2) und TES (1),¹⁷³ die sich strukturell nur durch ihre $\Delta 4$ -Doppelbindung voneinander unterscheiden. Für die beiden Strukturen existieren mehrere Röntgenkristallstrukturen. Ein Vergleich der Dockingergebnisse mit den Röntgenkristallstrukturen 1T65⁵² und 2AM9⁵⁰ ergab keine signifikanten Unterschiede (RMSD-Wert DHT (2): 0,4 Å, RMSD-Wert TES (1): 0,3 Å). In der besten Dockingposition von DHT (2) und TES (1) (Abbildung 22) treten vier potentielle Wasserstoffbrücken zu den Aminosäuren Gln⁷¹¹, Arg⁷⁵², Thr⁸⁷⁷ und Asn⁷⁰⁵ auf (TES (1): Gln⁷¹¹-N^{ε2}...O: 3,01 Å; $Arg^{752}-N^{\eta}...O: 2,89 \text{ Å}; Thr^{877}-O^{\gamma}...O: 2,67 \text{ Å} und Asn^{705}-N^{\delta2}...O: 3,07 \text{ Å} und DHT (2):$ Gln^{711} -N^{$\epsilon 2$}...O: 3,06 Å; Arg⁷⁵²-N^{η}...O: 2,90 Å; Thr⁸⁷⁷-O^{γ}...O: 2,77 Å und Asn⁷⁰⁵-N^{$\delta 2$}...O: 3,07 Å; Abbildung 22). Des Weiteren werden TES (1) und DHT (2) durch mehre Van-der-Waals-Kontakte mit verschieden Aminosäuren (TES (1): Leu⁷⁰⁴, Leu⁷⁰⁷, Met⁷⁴², Met⁷⁴⁵, Met⁷⁴⁹, Phe⁷⁶⁴, Leu⁸⁷³ und Met⁸⁹⁵; DHT (2): Leu⁷⁰⁴, Leu⁷⁰⁷, Met⁷⁴², Met⁷⁴⁵, Met⁷⁴⁹, Phe⁷⁶⁴, Met⁷⁸⁰, Leu⁸⁷³ und Phe⁸⁷⁶) stabilisiert. Sowohl beim Docking als auch im Fluoreszenzpolarisationsassay zeigten DHT (2) und TES (1) die zweithöchste Affinität zum NR3C4 (K_i: 8,85 nM,¹⁷⁴ score: -111). In der Literatur wird DHT (2) jedoch als der affiniere Ligand des NR3C4 angesehen. Pereira de Jésus-Tran *et al.*⁵⁰ zeigten durch die Berechnung der Wechselwirkungsenergie, dass sich die unterschiedliche Affinität von DHT (2) und TES (1) zum NR3C4 in der Zusammensetzung von Wasserstoffbrücken, schwachen Van-der-Waals-Kontakten und elektrostatischen Wechselwirkungen begründen lässt. Das von Claudia Bobach, Kristin Palberg und Annika Denkert verwendete Fluoreszenzpolarisationsassay zeigte aufgrund des K_d-Wertes des zu verdrängenden markierten Liganden keine genügend hohe Sensitivität im Bereich ≤ 10 nM, welches keine weitere Schlussfolgerung zulässt.

Abbildung 22: Beste Dockingposition für TES (1) und DHT (2). (A) TES (1; orange) und (B) DHT (2; grün) und TES (1; orange). Die Dockinganordnung für TES (1) und DHT (2) zeigt je vier potentielle Wasserstoffbrücken zwischen dem Ligand und den Aminosäureresten N705, Q711, R752 und T877, die als gelb, gestrichelten Linien dargestellt sind. TES (1) und DHT (2) nehmen eine nahezu gleiche Position ein. Die Aminosäurereste, die als Stab/Linie dargestellt sind, sind fett/nicht fett beschriftet.

Spironolacton (14) wird in der Literatur als NR3C4 Antagonist¹⁷³ beschrieben. Im Fluoreszenzpolarisationsassay konnte für Spironolacton (14) ein K_i-Wert von 15,96 nM ($\pm 2,85$ nM) berechnet werden, wogegen ein *score* von -107 steht. In der Annahme, dass es sich bei der Dockinglösung um den nativen Komplex handelt, wird dieser von der SF im Vergleich zu den *in vitro* ermittelten Ergebnissen überbewertet. Die beste Dockinganordnung für Spironolacton (14) innerhalb der LBT des NR3C4 zeigte vier potentielle Wasserstoffbrücken mit den Aminosäuren Asn⁷⁰⁵, Gln⁷¹¹, Arg⁷⁵² und Thr⁸⁷⁷ (Gln⁷¹¹-N^{$\epsilon 2$}...O: 3,02 Å; Arg⁷⁵²-N^{η}...O: 2,61 Å und Thr⁸⁷⁷-O^{γ}...O: 3,02 Å und Asn⁷⁰⁵-N^{$\delta 1$}...OC-22: 3,36 Å; Abbildung 23).

Abbildung 23: Beste Dockingposition für Spironolacton (12; orange). Die gelb, gestrichelten Linien zeigen die potentiellen Wasserstoffbrücken zwischen den Atomen des Liganden und den Atomen der Aminosäurereste (Q711, R752 und T877) des Rezeptors. Die Aminosäurereste, die als Stab/Linie dargestellt sind, sind fett/nicht fett beschriftet.

Des Weiteren wird der Ligand durch zahlreiche Van-der-Waals-Kontakte mit verschiedenen Aminosäuren der LBT (Leu⁷⁰¹, Leu⁷⁰⁴, Leu⁷⁰⁷, Met⁷⁴², Met⁷⁴⁵, Val⁷⁴⁶, Met⁷⁴⁹, Phe⁷⁶⁴, Met⁷⁸⁰, Met⁷⁸⁷, Leu⁸⁷³, Phe⁸⁷⁶, Leu⁸⁸⁰ und Phe⁸⁹¹) stabilisiert. Nirdé *et al.*⁵⁹ postulierte anhand von Dockingstudien, dass die schwachen Van-der-Waals-Kontakte zwischen dem γ -Lactonring und den Aminosäuren der LBT nicht ausreichen, um die fehlenden Van-der-Waals-Kontakte im Bereich des C-11 des Spironolactons (**14**) auszugleichen und es somit zu einer Destabilisierung der agonistischen Konformation des NR3C4 kommt. Die Dockingstudien in der vorliegenden Arbeit zeigten, dass die α -Gruppe am C-7 des Spironolactons (**14**) potentiell mit dem Met⁷⁸⁷ der H7 kollidiert. Für den γ -Lactonring konnte eine potentielle Kollision mit dem Leu⁷⁰¹ der H3 beobachtet werden. Die beschriebenen Kollisionen und die von Nirdé *et al.* postulierten schwächeren Van-der-Waals-Kontakte können zu einer Konformations-änderung der LBT führen und somit ein Grund für den antagonistischen Charakters des Spironolactons (**14**) sein.

β-Östradiol (126) zeigte in einem in vitro NR3C4 transkriptionalen Aktivierungsassay sowohl eine agonistische als auch eine antagonistische Aktivität am NR3C4.¹⁷³ Es existiert keine Röntgenkristallstruktur für β-Östradiol (126) in Komplex mit dem NR3C4. Mit Hilfe des Fluoreszenzpolarisationsassays konnte für β-Östradiol (126) ein K_i-Wert von 53,12 nM¹⁷⁴ ermittelt werden, eine um 0,78 Größenordnungen geringere Affinität zum NR3C4 als TES (1). Im Docking zeigte β -Östradiol (126) jedoch den gleichen score wie TES (1) und wird damit unter der Annahme, dass es sich bei der Dockinglösung um den nativen Komplex handelt von der SF überbewertet. Die geringere Affinität von β-Östradiol (126) zum NR3C4 im Gegensatz zu TES (1) kann vermutlich auf den strukturellen Unterschied am C3 des β -Östradiols (126) zurückgeführt werden. β -Östradiol (126) kann aufgrund seiner 3 β -Hydroxylgruppe keine so starke Wechselwirkung mit dem Gln⁷¹¹-O^{ϵ 1} und Arg⁷⁵²-N^{η} $(Gln^{711}-O^{\epsilon 1}...OC-3: 2,95 \text{ Å}; Arg^{752}-N^{\eta}...OC-3: 2,96 \text{ Å})$ eingehen wie TES (1) mit seiner 3-Ketogruppe. Verschiedene Studien anderer Arbeitsgruppen haben gezeigt, dass eine Reduktion der 3-Ketogruppe zu einem α- oder β-Alkohol zu einer verminderten Bindungsaffinität am NR3C4 führt.⁵⁵ Weiterhin kann β -Östradiol (126) in der Dockingposition mit dem besten score drei weitere potentielle Wasserstoffbrücken ausbilden, die die Aminosäuren Met⁷⁴⁵, Thr⁸⁷⁷ und Asn⁷⁰⁵ (Met⁷⁴⁵-O...OC-3: 3,07 Å, Thr⁸⁷⁷-O^{γ}...OC-17: 2,69 Å und Asn⁷⁰⁵-O^{δ 1}...OC-17: 3,06 Å; Abbildung 24 (A)) betreffen. Zusätzlich wird β -Östradiol (**126**) durch mehrere schwache Van-der-Waals-Kontakte mit den Aminosäureresten der LBT (Leu⁷⁰⁴, Leu⁷⁰⁷, Met⁷⁴², Met⁷⁴⁵, Met⁷⁴⁹, Phe⁷⁶⁴, Leu⁷⁸⁰ und Leu⁸⁷³) stabilisiert.

Abbildung 24: Beste Dockingposition für α -Östradiol (128) und β -Östradiol (126). (A) Beste Dockingposition für β -Östradiol (126; orange). Die gelb, gestrichelten Linien zeigen die potentiellen Wasserstoffbrücken zwischen den Atomen des Liganden und den Atomen der Aminosäurereste (N705, Q711, M745, R752 und T877) des Rezeptors. (B) Beste Dockingposition für α -Östradiol (128; grün) und β -Östradiol (126; orange), wobei keine potentielle Wasserstoffbrücke (gelb, gestrichelte Linie) zwischen α -Östradiol (128) und T877 ausgebildet ist. Die Aminosäurereste, die als Stab/Linie dargestellt sind, sind fett/nicht fett beschriftet.

a-Östradiol (128) zeigte in vitro eine geringere Affinität (111,57 nM ±35,12) zum NR3C4 und einen schlechteren *score* (-107) als β -Östradiol (126). Es unterscheidet sich von β -Östradiol (126) strukturell nur durch die Konfiguration der Hydroxylgruppe am C-17. Bisherige Modifikationen an der β -Hydroxylgruppe am C-17 des DHT (2) zeigten ebenfalls eine Reduktion der Bindungsaffinität.⁵⁶ Die beste Dockingposition für α -Östradiol (128) zeigte, dass aufgrund der α -Hydroxylgruppe keine Wasserstoffbrücke zum Thr⁸⁷⁷ ausgebildet wird. α -Östradiol (128) bildete im Gegensatz zu β -Östradiol (126) nur vier potentielle Wasserstoffbrücken mit den Atomen der Aminosäurereste der LBT aus (Gln⁷¹¹-O^{ε1}...OC-3: 2,98 Å; Arg⁷⁵²-N^η...OC-3: 2,97 Å; Met⁷⁴⁵-O...OC-3: 3,05 Å und Asn⁷⁰⁵-O^{δ1}...OC-17: 3,20 Å; Abbildung 24 (B)). Die fehlende Wasserstoffbrücke im Vergleich zur Bindung von β -Östradiol (126) könnte somit ein Grund für die geringere Affinität von α -Östradiol (128) zum NR3C4 sein. Zusätzlich werden beide Strukturen durch unterschiedliche schwache Vander-Waals-Kontakte in der LBT stabilisiert (β-Östradiol (**126**): Leu⁷⁰⁴, Leu⁷⁰⁷, Met⁷⁴², Met⁷⁴⁵, Met⁷⁴⁹, Phe⁷⁶⁴, Met⁷⁸⁰, Leu⁸⁷³; α -Östradiol (**128**): Leu⁷⁰¹, Leu⁷⁰⁴, Leu⁷⁰⁷, Trp⁷⁴¹, Met⁷⁴², Met⁷⁴⁵, Met⁷⁴⁹, Phe⁷⁶⁴, Leu⁸⁷³, Met⁸⁹⁵), ein weiterer Grund für die Affinitätsdifferenz beider Verbindungen. Hinweise hierfür sind in Fragkaki et al.⁵⁶ beschrieben. Der potentiell agonistische und antagonistische Charakter von α - (128) und β -Östradiol (126)¹⁷³ kann allein mit Hilfe des Dockings nicht geklärt werden. Zukünftige Moleküldynamik-Simulationen analog zu Kapitel 4 könnten bei der Klärung helfen.

Abbildung 25: Beste Dockingposition für 17α-Ethinylestradiol (127; orange). Die gelb, gestrichelten Linien zeigen die potentiellen Wasserstoffbrücken zwischen den Atomen des Liganden und den Atomen der Aminosäurereste (N704, Q711, R752 und T877) des Rezeptors. Die Aminosäurereste, die als Stab/Linie dargestellt sind, sind fett/nicht fett beschriftet.

17 α -Ethinylestradiol (127) ein Antagonist des NR3C4,¹⁷³ der noch nicht in Komplex mit kristallisiert einem Wildtyp-NR3C4 wurde. zeigte im Wildtyp-NR3C4-Fluoreszenzpolarisationsassay eine Affinität von 111,57 nM (±35,12 nM). Damit wurde für 17α-Ethinylöstradiol (127) ein um 58 nM schlechterer K_i-Wert im Gegensatz zu β-Östradiol (126) bestimmt. Auch im Docking zeigte 17α -Ethinylestradiol (127) einen schlechteren score (-103) als β -Östradiol (126; -111). Strukturell unterscheidet sich 17α -Ethinylestradiol (127) von β -Östradiol (126) durch eine zusätzliche α -C=CH-Gruppe am C-17. Die beste Dockingposition von 17α-Ethinylestradiol (127)zeigte gleiche das $(Gln^{711}-O^{\epsilon 1}...OC-3)$ Arg⁷⁵²-N^{η}...OC-3: Wasserstoffbrückenmuster 3,11 Å; 3.18 Å Met⁸⁷⁷-O...OC-3: 2,99 Å, Thr⁸⁷⁷-O^{γ}...OC-17: 2,38 Å und Asn⁷⁰⁵-O^{δ 1}...OC-17: 3,08 Å; Abbildung 25) im Vergleich zu β -Östradiol (**126**). Zusätzlich wird 17 α -Ethinylöstradiol (**127**) in dieser Position durch schwache Van-der-Waals-Kontakte mit den Aminosäuren Leu⁷⁰¹, Leu⁷⁰⁴, Leu⁷⁰⁷, Trp⁷⁴¹, Met⁷⁴², Met⁷⁴⁵, Val⁷⁴⁶, Met⁷⁴⁹, Phe⁷⁶⁴, Leu⁸⁷³, Leu⁸⁸⁰ und Met⁸⁹⁵ in der LBT stabilisiert. Das Volumen für die Liganden in der LBT des NR3C4 ist räumlich sehr beschränkt. Es ist möglich, dass durch die zusätzliche α-CCH-Gruppe am C-17 des 17α -Ethinylestradiol (127) nicht mehr ausreichend starke Wechselwirkungen zwischen den Aminosäuren der LBT und den Atomen des Liganden bestehen. Dies führt vermutlich dazu, dass die LBD des NR3C4 nicht in der agonistischen Konformation stabilisiert werden kann. Auch hier könnten Moleküldynamik-Simulationen analog zu Kapitel 4 bei der Überprüfung dieser Hypothese helfen.

Für **Cyproteronacetat** (26) konnte mit Hilfe des Wildtyp-NR3C4-Fluoreszenzpolarisationsassay ein K_i -Wert von 122,63 nM berechnet werden.¹⁷⁴ In der Literatur ist Cyproteronacetat (26) als Antagonist des NR3C4 beschrieben. Die Struktur konnte bisher nur in Komplex mit der Thr877Ala-Mutante des NR3C4 kristallisiert werden

(PDB-Code:20Z7). In Komplex mit dem Thr877Ala-NR3C4 zeigte Cyproteronacetat (26) einen agonistischen Charakter.¹⁷⁵ Das beste Dockingergebnis (Abbildung 26) zeigte ein Bindungsmuster, das dieser Kristallstruktur sehr ähnlich ist. Mit den Aminosäureresten Leu⁷⁰⁴, Leu⁷⁰⁷, Met⁷⁴², Met⁷⁴⁵, Val⁷⁴⁶, Met⁷⁴⁹, Phe⁷⁶⁴, Met⁷⁸⁰, Met⁷⁸⁷, Leu⁸⁷³, Phe⁸⁷⁶, Leu⁸⁸⁰, Phe⁸⁹¹ und Met⁸⁹⁵ geht der Ligand schwache Van-der-Waals-Kontakte ein und wird so in der Bindetasche stabilisiert. Cyproteronacetat (26) bildete über seine Ketogruppe am C3-Atom eine Wasserstoffbrücke zum $Gln^{711}-N^{\epsilon 2}$ ($Gln^{711}-N^{\epsilon 2}...O$: 3,4 Å) und zum $Arg^{752}-N^{\eta 2}$ (Arg⁷⁵²-N^{η^2}...O: 2,81 Å). Die α -OCHOCH₃-Gruppe am C-17 des Cyproteronacetat (26) kollidierte mit der Seitenkette der Aminosäure Leu⁷⁰¹. Dockingerbnisse von Bohl et al. zeigten ebenfalls eine konformative Änderung des Leu⁷⁰¹. Diese Autoren postulierten, dass es durch die konformative Änderung des Leu⁷⁰¹ zu einer partiellen Entfaltung des C-terminalen Endes der H11 kommt und zu einer konformativen Veränderung der Schleife zwischen H11 und H12 im Vergleich zu anderen Kristallstrukturen des NR3C4. Des Weiteren kann sowohl bei Bohl et al. als auch bei der besten Dockingposition des Cyproteronacetats (26) eine Kollision zwischen der β -CH(O)CH₃-Gruppe am C17 und der Seitenkette des Thr⁸⁷⁷ der H11 beobachtet werden (Abbildung 26). Bohl et al. nehmen an, dass auf Grund der Kollision mit der Seitenkette des Thr⁸⁷⁷ die H11 repositioniert wird. Beide konformative Änderungen sind vermutlich verantwortlich für eine Umfaltung der NR3C4-LBD und führen zu einer antagonistischen Aktivität des Cyproteronacetats (26).

Abbildung 26: Beste Dockingpostion für Cyproteronacetat (26; orange). Die gelb, gestrichelten Linien zeigen die potentiellen Wasserstoffbrücken zwischen den Atomen des Liganden und den Atomen der Aminosäurereste (N705, Q711 und R752) des Rezeptors. Eine potentielle Kollision des Liganden mit den Aminosäuren T877 (lila) und L701 (lila) der H11 führt vermutlich zu einer konformativen Änderung der LBD. Die Aminosäurereste, die als Stab/Linie dargestellt sind, sind fett/nicht fett beschriftet.

Progesteron (4) zeigte wie β -Östradiol (126) in einem *in vitro* NR3C4 transkriptionalen Aktivierungsassay sowohl eine agonistische als auch eine antagonistische Aktivität am NR3C4.¹⁷³ Bis heute existiert keine Röntgenkristallstruktur von Progesteron (4) in Komplex mit einem NR3C4. Im Wildtyp-NR3C4-Fluoreszenzpolarisationsassay zeigte Progesteron (4) einen K_i-Wert von 164,25 nM.¹⁷⁴ Somit weist Progesteron (**4**) eine um 155 nM geringere Affinität zum NR3C4 auf als TES (**1**). Der *score* von Progesteron (**4**) ist ebenfalls schlechter als der von TES (**1**). Strukturell besitzt Progesteron (**4**) im Vergleich zu TES (**1**) am C-17 keine β-Hydroxylgruppe, sondern eine β-Acetylgruppe. Auf Grund dieser Substitution ist es Progesteron (**4**) vermutlich nicht möglich, eine Wasserstoffbrücke zum Asn⁷⁰⁵ auszubilden. Die beste Dockinganordnung (Abbildung 27) zeigte im Gegensatz zu TES (**1**) nur drei potentielle Wasserstoffbrücken zwischen Progesteron (**4**) und den Aminosäuren innerhalb der LBT (Gln⁷¹¹-N^{ε2}...O: 2,93 Å; Arg⁷⁵²-N^η...OC-3: 2,78 Å und Thr⁸⁷⁷-O^γ...OC-17: 2,49 Å). Des Weiteren wird Progesteron (**4**) durch mehre schwache Van-der-Waals-Kontakte mit den verschiedenen Aminosäuren (Leu⁷⁰¹, Leu⁷⁰⁴, Leu⁷⁰⁷, Trp⁷⁴¹, Met⁷⁴², Met⁷⁴⁵, Val⁷⁴⁶, Met⁷⁴⁹, Phe⁷⁶⁴, Met⁷⁸⁰, Leu⁸⁷³, Leu⁸⁸⁰, Met⁸⁹⁵) der LBT stabilisiert. Warum Progesteron (**4**) im NR3C4 transkriptionalen Aktivierungsassay sowohl eine agonistische als auch eine antagonistische Aktivität besitzt, kann durch das Docking nicht beantwortet werden.

Abbildung 27: Beste Dockingposition für Progesteron (4; orange). Die gelb, gestrichelten Linien zeigen die potentiellen Wasserstoffbrücken zwischen den Atomen des Liganden und den Atomen der Aminosäurereste (Q711, R752 und T877) des Rezeptors. Auf Grund seiner β -Acetylgruppe kann Progesteron (4) vermutlich eine Wasserstoffbrücke zum N705 ausbilden. Die Aminosäurereste, die als Stab/Linie dargestellt sind, sind fett/nicht fett beschriftet.

3.6.2 Struktur-Aktivitätsbeziehung der neu identifizierten Liganden

QDM276 (52) zeigte mit einem K_i-Wert von 10,6 nM ±1,7 und einem *score* von -112 die höchste experimentelle und virtuell berechnete Affinität zum NR3C4 unter den neu identifizierten Liganden. Der K_i-Wert und *score* von QDM276 (52) befinden sich in der Größenordnung von TES (1). Strukturell unterscheidet sich QDM276 (52) nur durch seine Δ 9-Doppelbindung und dem α -COOCH₃-Substituenten am C-7 von TES (1). Die beste Dockingposition des QDM276 (52) in der LBT des NR3C4 ist in Abbildung 28 dargestellt. Ein Vergleich von QDM276 (52) und TES (1) zeigte, dass QDM276 (52) ähnliche Wechselwirkungen mit den Aminosäuren der LBT des NR3C4 ausbildet.

Abbildung 28: Beste Dockingposition für QDM276 (52; orange). Die potentiellen Wasserstoffbrücken zwischen den Atomen des Liganden und den Atomen der Aminosäuren (N705, Q711, R752 und T877) des Rezeptors sind als gelb, gestrichelte Linien dargestellt. Ein möglicher Kontakt zwischen M780 (lila) und COOCH₃-Gruppe am C7-Atom des QDM276 (**52**; orange) führt wahrscheinlich zu einer Repositionierung von M780. Die Aminosäurereste, die als Stab/Linie dargestellt sind, sind fett/nicht fett beschriftet.

Die 17β-Hydroxylgruppe des Liganden QDM276 (52) bildet eine potentielle Wasserstoffbrücke zum Asn⁷⁰⁵-O^{δ 1} (Asn⁷⁰⁵-O^{δ 1}...O: 3,05 Å) und Thr⁸⁷⁷-O^{γ} (Thr⁸⁷⁷-O^{γ}...O: 2,53 Å). Das O-3 Atom des QDM276 (52) formt eine potentielle Wasserstoffbrücke zum $Arg^{752}-N^{\eta}$ ($Arg^{752}-N^{\eta}...O$: 2,91 Å) und zum $Gln^{711}-N^{\epsilon 2}$ ($Gln^{711}-N^{\epsilon 2}...O$: 2,95 Å). Die Aminosäurereste von Leu⁷⁰⁴, Leu⁷⁰⁷, Met⁷⁴², Met⁷⁴⁵, Val⁷⁴⁶, Met⁷⁴⁹, Phe⁷⁶⁴, Met⁷⁸⁰, Met⁷⁸⁷, Leu⁸⁷³ und Met⁸⁹⁵ gehen potentielle schwache Van-der-Waals-Kontakte mit QDM276 (52) ein und tragen zusätzlich zur Anordnung des Liganden in der Bindetasche bei. Ein markanter Unterschied zu TES (1) im Bindemodus ergibt sich durch die α -COOCH₃-Gruppe am C-7 des QDM276 (52). Der C-7-Substituent kollidiert möglicherweise mit der Seitenkette des Met⁷⁸⁰ (Abbildung 28), einem Aminosäurerest innerhalb der Schleife zwischen der H6 und der H7. Die Schleife liegt in räumlicher Nähe zum C-terminalen Ende der H11. Es ist möglich, dass die Kollision einen Einfluss auf die Konformation des C-terminalen Endes der H11 hat, was zu einer antagonistischen Konformation der H12 führen könnte. Um eine genauere Aussage treffen zu können, müssten jedoch Moleküldynamik-Simulationen durchgeführt werden (Kapitel 4). Die Verbindung QDM255 (40) ist das Esterhydrolysat, die freie Carbonsäure von QDM276 (52) und strukturell sehr ähnlich. Allein die Esterspaltung bewirkt einen um zwei Größenordnungen schlechteren Ki-Wert von 1,8 µM ±0,5. Auch der score von -102 sagt eine deutlich schlechtere Affinität für QDM255 (40) im Gegensatz zu QDM276 (52) voraus. In der besten Dockingposition liegt QDM255 (40) ähnlich dem QDM276 (52) in der LBT und bildet wie QDM276 (52) eine potentielle Wasserstoffbrücke über seine 17β-Hydroxylgruppe zum Asn⁷⁰⁵-O^{δ 1} (Asn⁷⁰⁵-O^{δ 1}...O: 3,04) und Thr⁸⁷⁷-O^{γ} (Thr⁸⁷⁷-O^{γ}...O: 2,50 Å) aus. Das O-3 Atom des QDM255 (40) bildet ebenso eine Wasserstoffbrücke zum $Arg^{752}-N^{\eta}$ $(\text{Arg}^{752}-\text{N}^{\eta}...\text{O: }3,08\text{ Å})$ und zum $\text{Gln}^{711}-\text{N}^{\epsilon_1}$ ($\text{Gln}^{711}-\text{N}^{\epsilon_2}...\text{O: }3,06\text{ Å}$) aus wie QDM276 (**52**).

Des Weiteren wird QDM255 (40) durch mehrere schwache Van-der-Waals-Kontakte mit den Aminosäuren Leu⁷⁰⁴, Leu⁷⁰⁷, Met⁷⁴², Met⁷⁴⁵, Val⁷⁴⁶, Met⁷⁴⁹, Phe⁷⁶⁴, Leu⁸⁷³, Met⁸⁷⁵, Met⁷⁸⁰ und Met⁷⁸⁷ in der LBT stabilisiert. Ein Grund für die schlechtere Affinität von QDM255 (**40**) zum NR3C4 im Gegensatz zu ODM276 (52) könnte die Stärke und die Anzahl an Van-der-Waals-Kontakten zwischen dem Liganden und den Aminosäureresten der LBT sein. Ein weiterer Grund ist vermutlich auf die fehlende Methylgruppe am C-7-Substitutenten des ODM255 (40) zurückzuführen. Dies führt zu einer Polarisierung, die sich in der hydrophoben Umgebung vermutlich negativ auf die Affinität zum Rezeptor auswirkt.

Um die Rolle der C-7-Seitenkette genauer zu verstehen wurden Dockingstudien mit verschieden Seitenketten am C-7 durchgeführt (Tabelle 7). Alle acht virtuellen Derivate des QDM276 (52) zeigten in ihrer besten Dockingposition eine gleiche Orientierung des steroidalen Grundgerüsts im Vergleich mit QDM276 (52). Eine Substitution durch hydrophobere Gruppen wie CH₂OCH₃ führt zu einem verbesserten score, d.h. einer potentiell höheren Affinität. Dies bestätigen auch die Dockingergebnisse von QDM276 03 (130; C-7: α-CH₃) und QDM276_07 (134; C-7: α-CH₂CH₂CH₃). Ein Vergleich mit QDM276 (52) zeigte, dass sich die 17α -Hydroxyl- bzw. 3-Ketogruppe räumlich analog zum -OCH₃ des QDM276 (52) befindet. Unterschiedlich substituierte Methylgruppen zeigten, dass hydrophobe Substituenten zu einer höheren Affinität führten. Eine Substitution der C-7-Seitenkette durch Wasserstoff führte ebenso zu einer Verbesserung des score. Als optimale Seitenkette konnte eine C-7 Seitenkette mit einer Methylgruppe identifiziert werden (score von QDM276_03 (130): -128; Tabelle 7). Die Struktur zeigte einen besseren score im Vergleich zu QDM276 (52) oder TES (1) und besitzt somit vermutlich eine höhere Affinität zum NR3C4 als QDM276 (52) und TES (1). OH

Tabelle 7: Dockingstudie mit verschiedenen Seitenketten am C-7 des QDM276 (52). Zu jeder Struktur ist der α-Rest am C-7 angegeben (R), der mit PLANTS (CHEMPLP) erhaltene score, und der mittels Wildtyp-NR3C4-Fluoreszenzpolarisationsassay bestimmte Ki-Wert in nM. Zusätzlich ist der Trivialname und die CAS-Nummer angegeben, sofern bekannt.

Verbindung	R	Trivialname	CAS	score	K _i [nM]
QDM276 (52)	COOCH ₃	-	-	-112	10,6 ±1,7
QDM255 (40)	COOH	-	943589-77-3	-103	1815,2
					±531,3
QDM276_02 (129)	CHO	-	-	-125	n. b.
QDM276_03 (130)	CH₃	-	15506-08-8	-128	n. b.
QDM276_04 (131)	Н	17β-Hydroxy-4,9-estradien-3-on	6218-29-7	-126	n. b.
QDM276_05 (132)	CH ₂ OCH ₃	-	-	-117	n. b.
QDM276_06 (133)	CH ₂ OH	-	-	-124	n. b.
QDM276_07 (134)	$CH_2CH_2CH_3$	-	-	-119	n. b.
QDM276_08 (135)	CH ₂ CH ₃	-	-	-125	n. b.
h t h + + t + +					

n. b.: nicht bestimmt

Weiterführende Moleküldynamik-Simulationen könnten einen Aufschluss darüber geben, ob es sich bei den virtuellen Derivaten um Agonisten oder Antagonisten des NR3C4 handelt und somit zum besseren Verständnis der Rolle der C-7-Seitenkette im NR3C4-Mechanismus beitragen.

Bei der Verbindung **\beta-Sitosterol** (34) mit einem K_i-Wert von 3,1 μ M ±0,4 handelt es sich ebenfalls um eine steroidale Verbindung, die eine um 1,3 µM schlechtere Affität zum NR3C4 aufweist als QDM255 (40). Mit Hilfe des Dockings wurde für β -Sitosterol (34) eine höhere Affinität zum NR3C4 als für ODM255 (40) vorhergesagt, so dass β-Sitosterol (34) von der SF überbewertet wurde (in der Annahme, dass es sich bei der Dockinglösung um den nativen Komplex handelt). Im Unterschied zu den Verbindungen ODM255 (40) und ODM276 (52) enthält β -Sitosterol (34) keine 3-Ketogruppe und kann somit keine so starke Wasserstoffbrücke zum Arg⁷⁵²-N^{η} (Arg⁷⁵²-N^{η 1}...O: 2,86 Å) und zum Gln⁷¹¹-O^{ϵ 1} $(Gln^{711}-O^{\epsilon 1}...O: 2,84 \text{ Å}, Gln^{711}-N^{\epsilon 2}...O: 2,47 \text{ Å})$ ausbilden (Abbildung 29). β -Sitosterol (34) enthält wie TES (1) keine funktionelle Gruppe am C-7. Im Gegensatz zu den QDM-Verbindungen besitzt β -Sitosterol (34) am C-10 eine Methylgruppe, dementsprechend fehlt die Δ 9-Doppelbindung. Über die zusätzliche Methylgruppe am C-10 ist β -Sitosterol (34) vermutlich in der Lage analog zu DHT (2) und TES (1) stärker Van-der-Waals-Kontakte mit den Aminosäureseitenketten des Gly⁷⁰⁸, Met⁷⁴⁵ und Met⁸⁹⁵ einzugehen (Abbildung 29). Des Weiteren weist β -Sitosterol (34) keine Δ 4-Doppelbindung sondern eine Δ 5-Doppelbindung auf. Am C-17 besitzt β -Sitosterol (34) eine β -CH(CH₃)-C₂H₄-CH(C₂H₅)-CH(CH₃)₂-Seitenkette, welche potentiell mit dem Phe⁸⁷⁶ der H11 kollidiert (Abbildung 29).

Abbildung 29: Beste Dockingposition für β -Sitosterol (34; orange). Die potentiellen Wasserstoffbrücken zwischen den Atomen des Liganden (orange) und den Atomen der Aminosäurereste (Q711 und R752) des Rezeptors sind als gelb, gestrichelte Linien dargestellt. Eine mögliche Kollision zwischen der β -CH(CH₃)-C₂H₄-CH(C₂H₅)-CH(CH₃)₂-Guppe am C-17 des Liganden und F876 (magenta) führt wahrscheinlich zu einer Konformationsänderung der LBD. Die Aminosäurereste, die als Stab/Linie dargestellt sind, sind fett/nicht fett beschriftet.

Die Kollision kann zu einer Konformationsänderung der LBD des NR3C4 führen,⁵⁷ weshalb β -Sitosterol (**34**) vermutlich eine antagonistische Wirkung zeigen könnte. Dies lässt sich allein aus dem Docking nicht mit Sicherheit sagen. Des Weiteren geht β -Sitosterol (**34**) mit den Aminosäureresten Phe⁶⁹⁷, Leu⁷⁰¹, Leu⁷⁰⁴, Leu⁷⁰⁷, Met⁷⁴², Val⁷⁴⁶, Met⁷⁸⁰, Leu⁸⁷³ und Leu⁸⁸⁰ schwache Van-der-Waals-Kontakte ein, die zusätzlich zur Anordnung des Liganden in der Bindetasche beitragen.

Für Guggulsteron Z (38) und Guggulsteron E (36) konnten K_i -Wert von 3.3 μ M ±0.6 bzw. 4.3 µM ±0.8 bestimmt werden. Hierbei handelt es sich um zwei steroidale Analoga, die schon in der Literatur in einem Co-Transfektionsassay als Antagonisten des NR3C4 identifiziert wurden (EC₅₀ Guggulsteron E (**36**): 660 nM \pm 240; EC₅₀-Wert Guggulsteron Z (**38**): $220 \text{ nM} \pm 70$).¹⁷² Im Rezeptorbindungsassay von Kristin Palberg¹⁷⁶ zeigten sich deutlich geringere Aktivitätswerte als im Co-Transfektionsassay. Dies kann auf Kreuzreaktivitäten mit anderen Proteinen zurückgeführt werden, die im Kotransfektionsassay nicht ausgeschlossen werden können und somit zu einer Verschiebung der Aktivität führen können. Durch das Docking konnte anhand des score bestätigt werden, dass Guggulsteron Z (38; -107) eine größere Affinität zum NR3C4 aufweist als Guggulsteron E (36; -106). In der besten Dockingposition (Abbildung 30) gehen Guggulsteron E (36) und Guggulsteron Z (38) schwache Van-der-Waals-Kontakte mit den Aminosäuren Leu⁷⁰¹, Leu⁷⁰⁴, Leu⁷⁰⁷, Trp⁷⁴¹, Met⁷⁴², Met⁷⁴⁹, Phe⁷⁶⁴, Leu⁸⁷³, Phe⁸⁷⁶ und Leu⁸⁸⁰ ein und werden dadurch in der LBT stabilisiert. Guggulsteron E (36) und Guggulsteron Z (38) bilden weiterhin eine Wasserstoffbrücke zum Arg⁷⁵²-N^{η} und zum Gln⁷¹¹-O^{ϵ 1} und werden vermutlich so in der Bindetasche fixiert (Abbildung 30).

Abbildung 30: Beste Dockingposition für (A) Guggulsteron *E* (36; orange) und (B) Guggulsteron *Z* (38; orange). Die gelb, gestrichelten Linien zeigen die potentiellen Wasserstoffbrücken zwischen den Atomen des Liganden und den Atomen der Aminosäurereste (R752 und T877) des Rezeptors. Die Aminosäurereste, die als Stab/Linie dargestellt sind, sind fett/nicht fett beschriftet.

Aufgrund eines fehlenden Portonendonors/-akzeptors an Position C-17, bilden Guggulsteron E (**36**) und Guggulsteron Z (**38**) keine Wasserstoffbrücken zu Thr⁸⁷⁷ und Asn⁷⁰⁵ aus (Abbildung 30). Diese Wasserstoffbrücken sind nicht essentiell für die Bindung in der Bindetasche. Dies wurde bereits durch die Röntgenkristallstruktur mit dem PDB-Code 2HVC und dem Liganden LDG2226 (**19**) gezeigt (siehe Kapitel 3.2). Jedoch kann das Fehlen dieser Wasserstoffbrücken sowie die zusätzliche Ketogruppe am C-16 (Tabelle 8), die sich in einem eher hydrophoben Bereich der Bindetasche befindet (Abbildung 31) zu einer geringeren Affinität zum NR3C4 führen.

Abbildung 31: Beste Dockingposition für (A) Guggulsteron E (36; orange) und (B) Guggulsteron Z (38; orange) mit Conolly Oberfläche (grün: hydrophober Bereich; rot: Donor- und Akzeptorbereich; blau: mild, polarer Bereich). Die hydrophobe Gruppe am C17-Atom befindet sich bei Guggulsteron E (36) in einem Donorbereich, während sie sich bei Guggulsteron Z (38) in einem hydrophoben Bereich befindet, was vermutlich zu der höheren Affinität von Guggulsteron Z(38) zum NR3C4 führt. Die Gruppe am C16 von Guggulsteron E (36) und Guggulsteron Z (38) befindet sich in einem hydrophoben, mild polaren Bereich, und wirkt somit vermutlich affinitätssenkend.

Ein Austausch der Gruppen am C-16 mit der Gruppe am C-17 führt bei beiden Strukturen zu einer Verbesserung des *score* (Tabelle 8), d.h. einer potentiell besseren Affinität. Auf Grund des Austausches ist es Guggulsteron E01 (**136**) und Guggulsteron Z01 (**138**) nun möglich eine Wasserstoffbrücke über das freie Elektronenpaar am C-17-Sauerstoff zum Asn⁷⁰⁵-N⁸² (Guggulsteron E01 (**136**): cAsn⁷⁰⁵-N⁸²...O: 2,79 Å, Guggulsteron Z01 (**138**): Asn⁷⁰⁵-N⁸²...O: 2,84 Å) zu bilden. Eine Reduktion der fiktiven Ketogruppe am C-17 in eine β-Hydroxylgruppe führt noch einmal zu einer Annäherung an die Struktur des TES (**1**) und damit zu einer Verbesserung des *score*. Durch diese Änderungen sind Guggulsteron E02 (**137**) und Guggulsteron Z02 (**139**) in der Lage eine zusätzliche Wasserstoffbrücke zu Thr⁸⁷⁷-O⁷ (Guggulsteron E02 (**137**): Asn⁷⁰⁵-O⁸²...O: 3,00 Å; Thr⁸⁷⁷-O⁷...O: 2,28 Å) auszubilden, wobei Guggulsteron Z02 durch seine Z-Konfiguration vermutlich in der Lage ist stärkere Wasserstoffbrücken auszubilden und somit vermutlich mit höherer Affinität am NR3C4 bindet (siehe *score* Tabelle 8).

Tabelle 8: Dockingstudie mit verschiedenen Seitenketten am C-16 und C-17 des Guggulsteron E (36) und des Gugulsteron Z (38). Zu jeder Struktur ist der Rest R¹ und R² angegeben, der mit *PLANTS* (*CHEMPLP*) erhaltene *score*, und der mittels Wildtyp-NR3C4-Fluoreszenzpolarisationsassay bestimmte K_i-Wert.

Name	R ¹	R ²	score	K _i [nM]
Guggulsteron E (36)	=CHCH ₃ (<i>E</i>)	0	-106	4338,7 ±797,0
Guggulsteron E01 (136)	=O	CHCH ₃ (<i>E</i>)	-107	n. b.
Guggulsteron E02 (137)	β-ΟΗ	$CHCH_3(E)$	-108	n. b.
Guggulsteron Z (38)	$=CHCH_3(Z)$	0	-107	3364,7 ±691,9
Guggulsteron Z01 (138)	=O	CHCH ₃ (<i>Z</i>)	-109	n. b.
Guggulsteron Z02 (139)	β-ΟΗ	CHCH ₃ (<i>Z</i>)	-111	n. b.

n. b. - nicht bestimmt

Die Verbindung **XSA164** (**79**) zeigte im Experiment einen K_i-Wert von 9,2 μM ±1,5 und einen *score* von -93. XSA164 (**79**) besitzt das steroidale Grundgerüst von DHT (**2**), jedoch ist die Ketogruppe am C-3 gegen eine NH₂-Gruppe ausgetauscht. Im Gegensatz zu DHT (**2**) besitzt XSA164 (**79**) keine Hydroxylgruppe in β-Position am C17-Atom, sondern eine β CH(CH₃)C₃H₆OH-Gruppe. In der besten Dockingposition (Abbildung 32) bildet der Ligand über sein funktionelle Gruppe am C3-Atom eine Wasserstoffbrücke zum Arg⁷⁵²-N^{η1}, dem Amin des Gln⁷¹¹-N^{ε2} und zum Met⁷⁴⁵-O (Arg⁷⁵²-N^{η1}...N: 3,02 Å; Gln⁷¹¹-N^{ε2}...N: 3,25 Å; Met⁷⁴⁵-O...N: 2,78 Å) aus. Durch seine CH(CH₃)C₃H₆OH-Gruppe ist XSA164 (**79**) nicht in der Lage je eine Wasserstoffbrücke mit den Seitenketten der Aminosäuren Asn⁷⁰⁵ und Thr⁸⁷⁷ einzugehen. Stattdessen kollidiert die Seitenkette potentiell mit dem Asn⁷⁰⁵ (H3), Thr⁸⁷⁷ (H11) und Met⁸⁹⁵ (H12; Abbildung 32).

Abbildung 32: Beste Dockingposition für XSA164 (79; orange). Die potentiellen Wasserstoffbrücken zwischen den Atomen des Liganden und den Atomen der Aminosäurereste (Q711, M745 und R752) des Rezeptors sind als gelb, gestrichelte Linien dargestellt. Die β -CH(CH₃)C₃H₆OH-Gruppe am C17-Atom des Liganden kollidiert mit N705, T877 (lila) und M895 (lila). Die Kollision führt wahrscheinlich zu einer konformativen Änderung der LBD. Die Aminosäurereste, die als Stab/Linie dargestellt sind, sind fett/nicht fett beschriftet.

Die Kollision verursacht vermutlich eine Veränderung der Konformation der LBD, was zu einer antagonistischen Wirkung führen könnte. Eine genauere Aussage ist vermutlich durch eine Moleküldynamik-Simulation möglich. Die Kollision mit Met⁸⁹⁵ ist von besonderem Interesse, da Met⁸⁹⁵ eine Aminosäure der H12 ist, und der Ligand so eine direkte Konformationsänderung der H12 bewirken könnte. Ein Hinweis auf eine antagonistische Aktivität gaben auch die zellbasierten Experimente von Claudia Bobach. Hier zeigte sich eine verminderte Zellproliferation bei den LNCaP-Zellen unter 1 nM TES-Zugabe. Des Weiteren bildet der Ligand mit 12 Aminosäuren (Leu⁷⁰¹, Leu⁷⁰⁴, Leu⁷⁰⁷, Met⁷⁴⁵, Val⁷⁴⁶, Met⁷⁴⁹, Phe⁷⁶⁴, Met⁷⁸⁰, Leu⁸⁷³, Phe⁸⁷⁶, Leu⁸⁸⁰ und Phe⁸⁹¹) schwache Van-der-Waals-Kontakte, die vermutlich zur Stabilisierung des Liganden in der LBT beitragen.

Die einzige aktive nichtsteroidale neu identifizierte Verbindung mit einem K_i-Wert von 11,2 \pm 0,8 µM ist **DUE040** (**59**). Nichtsteroidale Liganden des NR3C4 haben im Vergleich zu steroidalen Liganden den Vorteil einer geringeren Metabolisierungsrate und zeigen weniger Kreuzreaktivitäten zu anderen Steroidhormonrezeptoren.⁶² DUE040 (**59**) könnte aufgrund dieser Eigenschaft von besonderm interesse für eine klinische Anwendung sein. Das Dockingergebnis zeigt für DUE040 (**59**) mit einem *score* von -93 eine ähnliche Affinität wie für den Liganden XSA164 (**79**) und stimmt mit dem experimentellen Ergebnis überein. In der besten Dockinganordnung (Abbildung 33) befindet sich der Phenylring des Liganden in räumlicher Nähe zum Arg⁷⁵² und Gln⁷¹¹ und kann somit über seinen Nitrilrest eine Wasserstoffbrücke zum Arg⁷⁵²-N[¶] (Arg⁷⁵²-N[¶]...N: 3,1 Å) und Gln⁷¹¹-O^{ε1} (Gln⁷¹¹-O^{ε1} ...N: 2,9 Å) ausbilden. Über die Hydroxylgruppe am C-5 bildet DUE040 (**59**) eine Wasserstoffbrücke zum Met⁷⁴⁵-O (Abbildung 33). Der Ligand geht keine Wasserstoffbrücke mit den Aminosäuren Asn⁷⁰⁵ und Thr⁸⁷⁷ ein.

Abbildung 33: Beste Dockingposition für DUE040 (59; orange). Die gelb, gestrichelten Linien zeigen die potentiellen Wasserstoffbrücken zwischen den Atomen des Liganden und den Atomen der Aminosäurereste (Q711 und R752) des Rezeptors. Die Aminosäurereste, die als Stab/Linie dargestellt sind, sind fett/nicht fett beschriftet.

Er bildet des Weiteren mit 10 Aminosäureresten (Leu⁷⁰¹, Leu⁷⁰⁴, Met⁷⁴², Met⁷⁴⁵, Val⁷⁴⁶, Met⁷⁴⁹, Phe⁷⁶⁴, Met⁷⁸⁰, Leu⁸⁷³ und Met⁸⁹⁵) schwache Van-der-Waals-Kontakte, die dazu beitragen den Liganden in der Bindetasche zu stabilisieren.

Weiterhin wurden für die steroidalen Verbindungen XVB0158 (53), XVB485 (114) und XVB0273 (77) die K_i-Werte experimentell bestimmt. Für XVB0158 (53) wurde ein K_i-Wert von $14,3\pm2,3\,\mu$ M und für XVB485 (**114**) bzw. XVB0273 (**77**) ein K_i-Wert von $16,7 \pm 3,5 \mu$ M bzw. $62,0 \pm 16,0 \mu$ M bestimmt. Zu einem gleichen Ergebnis in der Affinitätsreihenfolge kommen die Dockingergebnisse mit einem score für XVB0158 (53) von -96 und einem score für XVB485 (114) bzw. XVB0273 (77) von -93 bzw. -87. Alle drei Strukturen weisen wie β -Sitosterol (34) eine β -Hydroxylgruppe am C-3 auf und können somit vermutlich nur eine schwache Wasserstoffbrücke zum Arg⁷⁵²-N^{η} und Gln⁷¹¹-O^{ϵ 1} ausbilden. Sie formen schwache Van-der-Waals-Kontakte mit den umliegenden Aminosäureresten (XVB0158 (53): Leu⁷⁰¹, Leu⁷⁰⁴, Leu⁷⁰⁷, Met⁷⁴², Met⁷⁴⁵, Val⁷⁴⁶, Met⁷⁴⁹, Met⁷⁶⁴, Met⁷⁸⁰, Leu⁸⁷³, Phe⁸⁷⁶ und Leu⁸⁸⁰; XVB485 (**114**): Leu⁷⁰¹, Leu⁷⁰⁴, Met⁷⁴², Met⁷⁴⁵, Val⁷⁴⁶, Met⁷⁴⁹, Phe⁷⁶⁴, Leu⁷⁸⁰, Met⁷⁸⁷, Leu⁸⁷³, Phe⁸⁷⁶, Leu⁸⁸⁰ und Phe⁸⁹¹; XVB0273 (**77**): Leu⁷⁰¹, Leu⁷⁰⁴, Leu⁷⁰⁷, Met⁷⁴², Met⁷⁴⁵, Met⁷⁴⁹, Phe⁷⁶⁴, Met⁷⁸⁰, Leu⁸⁷³, Leu⁸⁸⁰, Phe⁸⁷⁶ und Met⁸⁹⁵), wodurch die Liganden in der LBT zusätzlich stabilisiert werden. Gemeinsam ist allen drei Strukturen weiterhin ein sehr langer flexibler Rest am C-17. Die Seitenkette am C-17 kollidiert potentiell bei XVB0273 (77) mit Phe⁸⁷⁶ (H11) und bei XVB0158 (53) mit Phe⁸⁷⁶ (H11) und Leu⁸⁸⁰ (H11). Im Fall von XVB485 (114) ergab sich eine potentielle Kollision mit Leu⁷⁰⁴ (H3), Leu⁷⁰¹ (H3), Ser⁷⁰² (H3) und Leu⁸⁸⁰ (H11). Diese Kollision führt zu der Vermutung, dass es sich hierbei um Antagonisten des NR3C4 handeln könnte, da sie potentiell zu einer entscheidenden Konformationänderung der LBD frühren könnten. Eine genauere Aussage lässt sich aber auch in diesem Fall nur mit Hilfe einer Moleküldynamik-Simulation treffen. Die Verbindungen XVB0158 (53) und XVB485 (114) unterscheiden sich nur durch ihren Substituenten am C-17 voneinander. Ein Vergleich der Strukturen lässt daher die Vermutung zu, dass sich XVB0158 (53) auf Grund seines hydrophoberen C-17-Substituenten optimal in die LBT einpasst und aus diesem Grund vermutlich eine höhere Affinität zum NR3C4 als XVB485 (114) besitzt. Vergleicht man XVB0273 (77) mit β-Sitosterol (34), welche sich ebenfalls nur durch den Rest am C-17 unterscheiden, so lässt sich auch hier die Vermutung äußern, dass β-Sitosterol (34) auf Grund seiner hydrophoberen C-17-Seitenkette eine höhere Affinität als XVB0273 (77) besitzt.

3.7 Zusammenfassung und Diskussion

Im Rahmen der vorliegenden Arbeit konnte ein erfolgreiches VS bestehend aus Pharmakophorfilterung und Docking zur Identifizierung von potentiellen Liganden des NR3C4 vorgestellt werden. Es konnten 94 potentielle Liganden des NR3C4 aus einer virtuellen Strukturdatenbank mit ~1,3 Millionen Strukturen vorgeschlagen werden. 60 der 94 Verbindungen zeigten eine prozentuale Aktivität kleiner, gleich 50 % in einem auf Fluoreszenzpolarisation beruhendem NR3C4-Bindungsassay. 33 Verbindungen zeigten eine prozentuale Aktivität von über 50 %, wobei der ermittelte K_i-Wert für sechs Verbindungen unter 10 μ M lag. Für die aktivste Verbindung konnte ein K_i-Wert von 10,6 nM ±2,7 bestimmt werden. Die experimentell bestätigten Verbindungen zeigten strukturmerkmale, die in dieser Kombination zuvor noch nicht in der Literatur beschrieben wurden. Die Herangehensweise an das VS kann prinzipiell für alle Zielproteine (*targets*) angewandt werden, für die ein Ligand-Protein-Komplex kristallisiert und Ergebnisse aus Mutationsstudien zur Verfügung stehen.

Es ist klar, dass gerade bei der Identifizierung von Antagonisten die Flexibilität einiger Aminosäuren, sogar die Flexibilität ganzer Helices, eine große Rolle spielt. Aus diesem Grund wurde das ausschließende Volumen des Pharmakophormodelles in diesen Bereichen reduziert. Für den Dockingschritt im VS musste aufgrund der Flexibilität des Rezeptors ein Kompromiss zwischen der Anzahl an flexiblen Amionäureseitenketten. der Dockinggenauigkeit und der Geschwindigkeit gefunden werden. Die Limitation des VS ist somit in der Auswahl an flexiblen Seitenketten zu sehen. Die SF ist nur in der Lage eine korrekte Affinität vorherzusagen, wenn die entsprechende Ligand-Rezeptor-Wechselwirkung durch eine Röntgenkristallstruktur zugänglich ist. Auf der anderen Seite konnten Kombinationen aus denen zur Verfügung stehenden Platzierungsmethoden und SF bestimmt werden, die in der Lage sind nahezu native Ligand-Rezeptor-Komplexe vorherzusagen. Dies und die Vergleiche der gedockten Ligand-Rezeptor-Komplexe sind in der Lage eine signifikante 3D-Struktur-Aktivität-Beziehung zu erstellen.

Basierend auf den an das VS anschließenden Dockingstudien konnte gezeigt werden, dass 3-Hydroxylsteroide eine geringere Affinität zum NR3C4 zeigen als 3-Ketosteroiden. Dieser Affinitätsunterschied stimmt mit den in der Literatur beschrieben Struktur-Aktivitäts-Beziehungen überein.⁵⁶ Docking-Studien mit Z- und *E*-subsituierten Seitenketten am C-16 konnten zeigen, dass Strukturen mit einem =CHCH₃(Z)-Substituenten vermutlich eine höhere Affinität zum NR3C4 aufweisen als Strukturen mit =CHCH₃(*E*)-Substituenten. Es wird postuliert, dass eine Substitution der C-7-Seitenkette des QDM276 (52) durch eine Methylgruppe zu einer Erhöhung der Affinität am NR3C4 führt. Weiterhin wird postuliert, dass die α -COOCH₃-Gruppe am C-7 von QDM276 (52) durch eine potentielle Kollision mit der Seitenkette des Met⁷⁸⁰ zu einer antagonistischen Aktivität am NR3C4 führt. Eine antagonistische Aktivität konnte auch für Strukturen mit einer Seitenkette am C-17 vorhergesagt werden, die mindestens der Länge einer Hexylseitenkette entspricht. Es wird vermutet, dass eine C-17-Seitenkette mit der Mindestlänge einer Hexylseitenkette ohne Verzweigung am C-22 und C-23 (siehe β-Sitosterol (34), XSA164 (79) und XVB0158 (53)) gegen die Seitenkette des Phe⁸⁷⁶ stößt. Da Phe⁸⁷⁶ eine Aminosäure der C-terminalen H11 ist, wird weiterhin angenommen, dass es zu einer partiellen Entfaltung des C-terminalen Endes der H11 und zu einer konformativen Veränderung der LBD des NR3C4 kommt. Es wird postuliert, dass eine Verzweigung an Position C-22 und C-23 der C17-Seitenkette (C17-Seitenkette entspricht der Mindestlänge einer Hexylseitenkette; siehe XVB485 (114), XVB0273 (77)) zu einer Kollision mit den Aminosäuren Leu⁷⁰¹ (H3), Leu⁷⁰⁴ (H3) und Leu⁸⁸⁰ (H11), sowie zu einer Repositionierung von Met⁸⁹⁵ (H12) in Abhängigkeit von der jeweiligen Verzweigung führen kann. Verbindungen mit diesem Strukturmotiv zeigen vermutlich eine antagonistische Aktivität am NR3C4.

Aufgrund der Ergebnisse der Dockingstudien handelt es sich bei den Verbindungen β -Sitosterol (34), XVB0158 (53), XVB0273 (77) und XVB485 (114) um potentielle Antagonisten des NR3C4.

Weitere *in vitro* und *in silico* Untersuchungen können helfen den Mechanismus der Ligandenbindung am NR3C4 besser zu verstehen. Insbesondere sollte hier die antagonistische Wirkung von β -Sitosterol (**34**), XVB0158 (**53**), XVB0273 (**77**) und XVB485 (**114**) untersucht werden, welche vermutlich durch ihre C-17-Seitenkette ein charakteristisches, antagonistisches Strukturmerkmal besitzen. Mögliche Untersuchungsmethoden wären die *in vitro* Testung von Derivaten in Kombination von Dockingstudien und Moleküldynamik-Simulationen. Die daraus resultierenden Erkenntnisse sollten das Ziel haben, eine zweite Generation von Liganden mit zielgerichteten Wechselwirkungen zu synthetisieren oder in der Natur zu identifizieren, die eine neue Familie von Antiandrogenen hervorbringt.

Die hier erörterten Ergebnisse tragen somit nicht nur zum Verständnis der Struktur-Aktivitäts-Beziehungen neu identifizierter Liganden bei, sondern können bei der Entwicklung neuer Agonisten bzw. Antagonisten hilfreich sein.

4 Ergebnisse und Diskussion: Antagonistischer/agonistischer Mechanismus

Strukturelle Daten von Kernrezeptoren verdeutlichen, dass nach der Bindung eines Agonisten die Helix12 eine Position einnimmt, die die Koaktivatorbindung begünstigt.¹⁷⁷ Dies führt zu der Vermutung, dass die Rekrutierung der Kofaktoren, die makromolekulare Anordnung des Komplexes, sowie die Initialisierung der Transkription abhängig von der Ligandenbindung sind. Viele Kernrezeptor-Antagonisten weisen große, sperrige Motive auf, welche es der Helix12 unmöglich machen die für die Koaktivatorbindung günstige Position einzunehmen, so dass die Transkription vermindert wird. Dieser Mechanismus wird als aktiver Antagonismus bezeichnet.⁴⁷ Antagonisten, denen diese großen, sperrigen Motive fehlen z.B. (R,R)-THC (140) beim NR3A2⁴⁷ und Progesteron (4) beim NR3C2¹⁷⁸ üben ihre Wirkung auf einem subtileren Weg aus. Dieser Mechanismus wird als passiver Antagonismus bezeichnet, wobei der Antagonist den Rezeptor in einer nichtproduktiven Rezeptorkonformation stabilisiert.⁴⁷ Der subtile Effekt von Mutationen auf die Wirkung von Liganden (Agonist/aktiver oder passiver Antagonist) kann nicht auf einen einfachen An/Aus-**Mechanismus** reduziert werden. Es ist des Weiteren bekannt, dass die Aktivierung/Inhibierung von Kernrezeptoren ein wesentlich komplexerer Prozess ist, wonach in Anwesenheit von Mutationen und passiven Antagonisten eine Verschiebung des Gleichgewichts in Richtung aktive/inaktive Konformation des Rezeptors erfolgt, wobei hier die Konzentration der Koaktivatoren und Korepressoren eine entscheidende Rolle spielt.⁴²

Die Methode der Moleküldynamik-Simulation erlaubt uns das Verhalten von Ligand-Protein-Komplexen über einen gewissen Zeitraum unter bestimmten Bedingungen zu studieren. Carlson et al.¹⁷⁹ untersuchten mit Hilfe der Moleküldvnamik-Simulation die molekularen Grundlagen für die erhöhte Sensitivität von Aldosteron (141) zur Val571Met-Mutante des Glucocorticoidrezeptors im Vergleich zum Wildtyp. Die Moleküldynamik-Simulationen die Val571Met-Mutante eine Neuanordnung der *AF-2* zeigten, dass des *Glucocorticoidrezeptors* die Rezeptor-Koaktivator-Wechselwirkung hervorrief, was begünstigte. Alvarez et al.¹⁸⁰ erklärten mit Hilfe der Moleküldynamik-Simulation den passiven Mechanismus des Antiglucocorticoids 21-Hydroxy-6,19-epoxyprogesteron (142). Sie zeigten, dass 21-Hydroxy-6,19-epoxyprogesteron (142) eine Bewegung der Schleife zwischen Helix1 und Helix3 induziert, die vermutlich einen negativen Effekt auf die Homodimerisierung des Rezeptors hat und somit wahrscheinlich einen wichtigen Startschritt der Transkription blockiert.

Andere Studien befassten sich mit der Bindetasche des NR3A1¹⁸¹ oder der NR3A-Selektivität.¹⁸² Verschiedene Röntgenkristallstrukturen des mutierten NR3C4 und des Wildtyps im Komplex mit nicht-/steroidalen Liganden von Bohl et al.^{76;175;183} gaben einen ersten Einblick in den agonistisch/antagonistischen Mechanismus des NR3C4. Bisson et al.¹⁸⁴ untersuchten mittels Moleküldynamik-Simulation den agonistischen und antagonistischen Mechanismus des NR3C4 im Komplex mit nichtsteroidalen Liganden. Die Studien zeigten, dass eine Verschiebung des Met⁸⁹⁵ (Helix12) durch die Bindung von R-Bicalutamid und einer Repositionierung von Trp⁷⁴¹ die Urasche für die antagonistische Wirkung sein könnte. Für die Antagonisten R-Bicalutamid (15) und Hydroxyflutamid (30) im Komplex mit der agonistischen NR3C4-Konformation beobachteten sie eine instabile Dynamik, die sich vermutlich durch schwächere oder fehlende Wechselwirkungen zwischen dem Liganden und den Aminosäuren der Helix5, Helix11 oder Helix12 ergab.

Die molekularen Grundlagen des agonistischen und antagonistischen Mechanismus des NR3C4 waren auch in dieser Arbeit Gegenstand der Untersuchung. Entscheidend für die Aufklärung der Wechselwirkungen zwischen Koaktivator und LBD bzw. AF-2 in Abhängigkeit des Liganden war die Verwendung eines Koaktivators mit einem FXXLF-Motiv (Kapitel 1) im Gegensatz zu früheren Moleküldynamik-Simulationen. Untersucht wurde der Einfluss der agonistischen Liganden TES (1) und R1881(12), sowie der antagonistischen Liganden Cyproteronacetat (26), Hydroxyflutamid (30) und R-Bicalutamid (15) auf die Wechselwirkung zwischen Koaktivator und LBD bzw. AF-2. Das Ziel der Untersuchung sollte in der Identifizierung von klaren Unterschieden zwischen der Bindung eines Agonisten und eines Antagonisten liegen. Basierend auf diesen Ergebnissen sollten die neuidentifizierten Liganden QDM276 (52), QDM255 (40) und β -Sitosterol (34) hinsichtlich ihrer biologischen Aktivität (Agonist oder Antagonist) charakterisiert werden.

Dieses Kapitel beschreibt die Erstellung der Startstruktur für die Moleküldynamik-Simulation sowie deren Durchführung. Es folgt die Auswertung der Moleküldynamik-Simulation für die Agonisten und Antagonisten und die Beurteilung der Liganden β -Sitosterol (**34**), QDM276 (**52**) und QDM255 (**40**) hinsichtlich ihrer biologischen Aktivität. Das Kapitel endet mit einer abschließenden Zusammenfassung und Diskussion.

4.1 Berechnung von fehlenden Kraftfeldparametern

Alle Untersuchungen und Analysen in Kapitel 4 wurden in *MOE* durchgeführt. Für eine Moleküldynamik-Simulation wurde jedoch ein Kraftfeld benötigt, welches sowohl für Proteine als auch für Liganden parametrisiert ist. Im Programmpaket *MOE* stand kein Kraftfeld mit diesen Eigenschaften zur Verfügung, so dass die fehlenden Parameter im CHARMM22-Kraftfeld von Guido Kirsten (*Chemical Computing Group Inc.*) mit dem Programm *PC-GAMESS7.0* (*build3910 09-05-2006*) berechnet und in das CHARMM22-Kraftfeld eingebaut wurden.¹⁸⁵

4.2 Erzeugung der Startstruktur

Zunächst sollte für jeden Ligand-Protein-Koaktivator-Komplex ein 3D-Modell in *MOE* berechnet werden, das während der Moleküldynamik-Simulation als Startstruktur diente.

4.2.1 Startstruktur für Testosteron

Ausgehend von der NR3C4-Röntgenkristallstruktur von Askew et al.⁵¹ (PDB-Code:2Q7I) wurde mit dem Programm MOE eine Startstruktur für die Moleküldynamikuntersuchung für TES (1) erstellt. Die Kristallstruktur umfasst neben der LBD des NR3C4 den Liganden TES (1) und einen Koaktivator mit einem FXXLF-Motiv. Sie besitzt eine Auflösung von 1.87 Å. Im Bereich zwischen Ile⁸⁴² und Ser⁸⁵¹ konnten die Aminosäuren nicht aufgelöst werden. Somit mussten die fehlenden Aminosäuren kraftfeldbasiert mit MOE-Homology modelliert werden. Dazu wurden alle Wasserstoffe bis auf das konservierte Wassermolekül (Kapitel 1.1.4) aus der Röntgenkristallstruktur entfernt und die Protonen addiert. Die Sequenz humanen NR3C4 (Expassy-Code: P10275) wurde mit der Sequenz des der Röntgenkristallstruktur verglichen (BLOSSUMN). Ausgehend von diesem Sequenzvergleich wurden 10 3D-Übergangsmodelle generiert, wobei der Koaktivator, TES (1) und das konservierte Wassermolekül als unveränderlich (restrain) verwendet wurden. Als Kraftfeld wurde das für TES (1) modifizierte CHARMM22-Kraftfeld mit dem Bornsolvatationsmodell verwendet. (weitere Parameter siehe Anhang 9.2.11). Der Wasser-TES-Protein-FXXLF-Komplex wurde mit dem für TES (1) abgewandelten CHARMM22-Kraftfeld und dem Bornsolvatationsmodell bis zu einem Gradienten von 0.001 minimiert. Das Bornsolvatationsmodell erlaubt die Berechnung des Komplexes in Wasser ohne explizite Wassermoleküle, was sich durch den verminderten Rechenaufwand positiv auf die Dauer der Rechenzeit auswirkt. Da das konservierte Wassermolekül bei moleküldynamischen Voruntersuchung nicht stabil blieb, wurde eine leichte Kraftkonstante von 1 kcal/mol auf die Distanz zwischen Arg^{752} und Wasser (Arg^{752} - N^{η} ...O: 2,8-3,3 Å), sowie Met⁷⁴⁵ und Wasser (Met⁷⁴⁵-O...O: 2,8-3,3) während der Minimierung und der Moleküldynamik-Simulation angewandt (die Kraftkonstante wurde auch auf alle weiteren Modelle während der Minimierung und der Moleküldynamiken-Simulation angewandt). Sowohl der Ramachandram Plot als auch eine Analyse mit *ProsaII* und *MetaMQAP* bewerteten das Modell als positiv.

4.2.2 Startstruktur für R1881, Cyproteronacetat, R-Bicalutamid, β-Sitosterol, QDM255 und QDM276

Für die R1881-, Cyproteronacetat-, R-Bicalutamid-, β-Sitosterol-, QDM255- und QDM276-Modelle diente der Wasser-TES-Protein-FXXLF-Komplex (Kapitel 4.2.1) als Templat. Im ersten Schritt wurde TES (1) aus dem Modell entfernt. Die Liganden wurden mit PLANTS in die LBT des Modells analog zum verbesserten Dockingprotokoll aus Kapitel 3.6 gedockt. Im Anschluss wurden die Aminosäuren, die zu tief in die Bindetasche ragten und mit dem Liganden kollidierten, aus dem Modell entfernt. Mit Hilfe eines homologen Modelling wurden die entfernten Aminosäuren kraftfeldbasiert wieder in die Modelle integriert. Dazu wurde die Sequenz des humanen NR3C4 (EXPASY-Code: P10275)¹⁰⁰ mit der Sequenz des modifizierten Wasser-TES-Protein-FXXLF-Komplex verglichen (BLOSSUMN). Ausgehend von diesem Sequenzvergleich wurden 10 3D-Übergangsmodelle generiert, wobei der Koaktivator, der Ligand in seiner Dockingorientierung und das konservierte Wassermolekül als restrain verwendet wurden. Als Kraftfeld wurde das für den jeweiligen Liganden modifizierte CHARMM22-Kraftfeld mit dem Bornsolvatationsmodell verwendet. (Protokoll siehe Anhang 9.2.11). Das Endmodell des jeweiligen Komplexes entsprach dem besten Übergangsmodell. Im Anschluss an die Homologiemodellerstellung erfolgte eine Minimierung des Wasser-Ligand-Protein-FXXLF-Komplexes bis zu einem Gradienten von 0,001 mit dem für den jeweiligen Liganden modifizierte CHARMM22-Kraftfeld und dem Bornsolvatationsmodell. Sowohl der Ramachandram Plot als auch eine Analyse mit ProsaII und MetaMQAP bewerteten die Modelle als zuverlässig.

4.2.3 Startstruktur für Hydroxyflutamid

Hydroxyflutamid (30) wurde analog zu den Liganden aus 4.2.2 in die LBT des Wasser-TES-Protein-FXXLF-Komplex (PDB-Code: 2Q7I) gedockt. Ein Vergleich mit der Röntgenkristallstruktur Thr877Ala mutierten NR3C4 eines als Komplex mit Hydroxyflutamid (**30**; PDB-Code: 2AX6; Auflösung 1,5 Å) zeigte, das Hydroxyflutamid (**30**) gleiche räumliche Anordnung in der LBT einnimmt, jedoch kollidiert die Hydroxyflutamid (**30**) im Wildtyp-NR3C4 potentiell mit dem Aminosäurerest des Thr⁸⁷⁷. Die Röntgenkristallstruktur 2AX6 enthält weiterhin ein zweites konserviertes Wassermolekül in der LBT im Vergleich zur Röntgenkristallstruktur 2Q7I. Das Wassermolekül erlaubt eine indirekte Wasserstoffbrücke zwischen der Ketogruppe des Hydroxyflutamids (30) und Leu⁸⁷³-O und trägt vermutlich zur Stabilität des Hydroxyflutamids (**30**) in der LBT bei. Auf Grund dieser Tatsache sollte das zweite konservierte Wassermolekül bei der Moleküldynamik-Simulation beachtet werden. Für die Erstellung des Startkomplexes wurde der Wasser-TES-Protein-FXXLF-Komplex (Kapitel 4.2.1) mit der Röntgenkristallstruktur 2AX6 und der BLOSSMN verglichen. Ausgehend von diesem Sequenzvergleich wurden 10 3D-Übergangsmodelle erstellt, wobei der Koaktivator, Hydroxyflutamid (30) und die zwei konservierten Wassermoleküle als restrain verwendet wurden. Als Kraftfeld wurde das für (30)den Hydroxyflutamid modifizierte CHARMM22-Kraftfeld mit dem Bornsolvatationsmodell verwendet (weitere Parameter siehe Anhang 9.2.11). Das Endmodell entsprach dem besten Übergangsmodell. Analog zu Kapitel 4.2.2 wurde der erhaltene Komplex minimiert. Zusätzlich wurde eine Kraftkonstante von 1 kcal/mol auf das Leu⁸⁷³-O und das zweite Wassermolekül (Leu⁸⁷³-O...O: 2,8-3,3 Å), sowie das zweite Wassermolekül und die Ketogruppe des Hydroxyflutamids (30; O...O: 2,8-3,3 Å) angewandt. Diese Kraftkonstante wurde auch in der späteren Moleküldynamik-Simulation des Hydroyflutamidmodells verwendet. Sowohl der Ramachandram Plot als auch eine Analyse mit ProsaII und MetaMQAP bewerteten das Modell als zuverlässig.

4.3 Moleküldynamikprotokoll

Das Dynamikprotokoll bestand aus drei Schritten. Im ersten Schritt wurde das System langsam von 0 K auf 300K für 100 ps unter konstantem Duck von 101 kPA erwärmt. Während des zweiten Schritts blieb die Temperatur bei 300K für 5000 ps konstant. Im dritten Schritt folgte eine Simulation für 200 ps bei 300 K ohne Kraftkonstante, wobei die Modelle stabil blieben. Alle drei Dynamikschritte erfolgten mit einem Zeitschritt von 0,5 fs (weitere Parameter siehe Anhang 9.2.12).

4.4 NR3C4-LBD in Komplex mit Antagonisten oder Agonisten und Koaktivator

4.4.1 Globale strukturelle Änderung während der Moleküldynamik-Simulation

Um die Stabilität der Modelle während der Moleküldynamik-Simulation beurteilen zu können, wurde der RMSD-Wert der Proteinrückgratatome der Modelle in Abhängigkeit von der Startstruktur entlang der Moleküldynamik-Trajektorie berechnet. Die Ergebnisse sind in Abbildung 34 dargestellt.

Abbildung 34: Veränderung des RMSD-Wertes von 0 bis 5000 ps gegenüber der Startstrucktur. Die Berechnung des RMSD-Wertes erfolgte über die Atomkoordinaten des Proteinrückgrates. (A) R1881 (12; blau), TES (1; rot); (B) Cyproteronacetat (26; grau), Hydroxyflutamid (30; braun), R-Bicalutamid (15; gelb); (C) QDM255 (40; orange), QDM276 (52; grüne), β -Sitosterol (34; lila).

Es zeigte sich, dass die Komplexstrukturen für TES (1), R1881 (12), Cyproteronacetat (26), Hydroxyflutamid (30) und R-Bicalutamid (15) nach einer Equilibrierung von 3 ns einen stabilen Zustand eingenommen haben. Der RMSD-Wert konvergiert bei rund 3,0 Å für TES (1), bei 2,1 Å für R1881 (12) bei 3,6 für R-Bicalutamid (15) und bei 4,0 Å für Hydroxyflutamid (30) und Cyproteronacetat (26). Die Modelle für β -Sitosterol (34), QDM255 (40) und QDM276 (52) zeigten nach einer Equilibrierung von 4 ns einen stabilen Zustand, wobei der RMSD-Wert bei rund 4,5 Å für β -Sitosterol (34), bei 3,5 Å für QDM255 (40) und bei 3,2 Å für QDM276 (52) konvergierte. Für jedes System wurde ebenfalls der RMSD-Wert über alle Atome in Abhängigkeit von der Startstruktur entlang der Moleküldynamik-Trajektorie berechnet (Anhang 9.4.2 Abbildung 63). Die Proteinatome zeigten für alle Modelle nach 4 ns keine signifikante Änderung in der Abweichung zur Startstruktur. Somit beziehen sich alle weiteren Kalkulationen auf die Moleküldynamik-Trajektorie zwischen der 4. und der 5. ns.

Um zu erkennen welche Aminosäuren während der Moleküldynamik-Simulation stark schwingen wurde die RMSF entlang der Moleküldynamik-Trajektorie im Zeitfenster von der 4. bis 5. ns für alle Aminosäuren der LBD berechnet (Abbildung 35).

Abbildung 35: RMSF der Aminosäuren zwischen 4 und 5 ns. Die Berechnung der RMSF erfolgte über die Atomkoordinaten des Proteins. (A) R1881 (12; blau), TES (1; rot); (B) Cyproteronacetat (26; grau), Hydroxyflutamid (30; braun), R-Bicalutamid (15; gelb); (C) QDM255 (40; orange), QDM276 (52; grüne), β -Sitosterol (34; lila). Die Bereiche der Sekundärstrukturelemente Helix und Faltblatt sind als schwarze Striche dargestellt.

Das Ergebnis zeigte, dass eine hohe Fluktuation bei den Aminosäureresten in Schleifen-Regionen, welche die Sekundärstrukturelemente miteinander verbinden, auftrat. Weiterhin konnte eine erhöhte Fluktuation bei den Aminosäurenresten der Oberflächenregion des Proteins beobachtet werden, welche dem Lösungsmittel zugewandt waren. Die Fluktuationen in den beschrieben Region stellen keine ungewöhnlichen Beobachtungen dar und können bei verschiedenen Moleküldynamik-Simulationen beobachtet werden.^{179;182}

4.4.2 Verhalten bekannter Agonisten und Antagonisten

R1881 (12) enthält im Gegensatz zu TES (1) eine Δ 9- und Δ 11-Doppelbindung sowie eine zusätzliche Methylgruppe am C-17 (siehe Anhang 9.4.1). Während der Moleküldynamik-Simulation konnte für beide Liganden die in der Literatur beschriebenen Wasserstoffbrücken zu den Seitenketten der Aminosäuren Arg⁷⁵², Thr⁸⁷⁷, Asn⁷⁰⁵ und Gln⁷¹¹ beobachtet werden.^{39;41;164} Als Wasserstoffbrücke wurde eine Kombination aus Donor- (D), Wasserstoff-(H) und Akzeptor- (A) Atomen mit einer (D-H...A)-Konfiguration definiert, wenn die Distanz zwischen D und A kleiner gleich 3,5 Å und der Winkel D-H-A größer gleich 120° war. In Tabelle 9 sind die direkten und über ein Wassermolekül vermittelten Wasserstoffbrücken zwischen dem NR3C4 und den Agonisten, die zu mehr als 20 % der Zeit vorhanden waren angegeben.

			Wasserstoffbrücken				
		Atom 1		Atom 2		^a Zeitraum [%]	^b Distanz
R1881	direkte Wasserstoffbrückenbindung	Ligand	O-3	R752	N ^η	83,6	3,1
(12)		Ligand	O-17	T877	$O^{\gamma 1}$	78,6	3,2
	Wasser vermittelte Wasserstoff-	Ligand	O-3	Wasser1	0	69,2	3,1
	brückenbindung	Wasser1	0	R752	N^{η}	93,5	3,0
		Wasser1	0	R752	N^{η}	95,0	3,2
		Wasser1	0	M745	0	60,2	2,9
TES	direkte Wasserstoffbrückenbindung	Ligand	O-3	R752	N^{η}	80,1	3,1
(1)		Ligand	O-17	T877	$O^{\gamma 1}$	87,6	3,1
	Wasser vermittelte Wasserstoff-	Ligand	O-3	Wasser1	0	79,1	3,3
	brückenbindung	Wasser1	0	R752	N^{η}	95,5	3,1
		Wasser1	0	R752	N^{η}	95,5	3,1
		Wasser1	0	Q711	O^{ϵ^1}	44,3	3,2
		Wasser1	0	Q711	N^{ϵ^2}	36,3	3,2
		Wasser1	0	M745	0	90,0	3,1

Tabelle 9: Beobachtete Wasserstoffbrücken für jedes Modell während der 4. bis 5. ns der Moleküldynamik-Simulation. Für alle Atompaare, die die Kriterien für Wasserstoffbrücken für über 20 % der Zeit während der 4. bis 5. ns erfüllen.

^a Zeitraum für den die Kriterien für Wasserstoffbrücken erfüllt waren in %.

^b Die durchschnittliche Distanz der Atompaare während der betrachteten Zeit.

R1881 (12) und TES (1) bildeten zu 83,6 % bzw. 80,1 % der Zeit eine Wasserstoffbrücke zwischen dem O-3 und Arg^{752} -N[¶] und zu 78,6 % bzw. 87,6 % der Zeit eine Wasserstoffbrücke zwischen dem O-17 und Thr⁸⁷⁷-O^{γ1} aus (Tabelle 9). Für die Aminosäuren Asn⁷⁰⁵ und Gln⁷¹¹ konnten Wasserstoffbrücken zu weniger als 20 % der Zeit beobachtet werden. Diese Beobachtung lässt vermuten, dass die Wasserstoffbrücken zu Asn⁷⁰⁵ und Gln⁷¹¹ eine weniger signifikante Rolle in der Bindung von R1881 (12) und TES (1) spielen als Arg⁷⁵² und Thr⁸⁷⁷. Unterstützt wird diese Beobachtung durch experimentelle Ergebnisse von Mutationsstudien, die zeigten, dass Gln⁷¹¹ keinen Effekt auf die Bindungsaffinität zum NR3C4 haben,⁵⁰ während Mutationen am Arg⁷⁵² zur Androgenresistenz¹⁶³ und am Thr⁸⁷⁷ zu einem Affinitätsverlust am NR3C4 führen.⁷⁶ Des Weiteren konnte eine indirekte Wasserstoffbrücke vom O-3 des R1881 (12) bzw. TES (1) über ein Wassersmolekül zur Aminosäure Arg⁷⁵² und Met⁷⁴⁵ beobachtet werden, welche zum Beispiel auch in der Röntgenkristallstruktur von Matias *et al.*³⁹ beschrieben wurde.

Für den Antagonisten Cyproteronacetat (26) konnte eine Wasserstoffbrücke zwischen Arg^{752} -N^{η} und dem O-3 über 58,7 % der Zeit beobachtet werden, sowie eine Wasserstoffbrücke für 22,4 % der Zeit zwischen der 17β-Acetylgruppe und der Seitenkette des Asn⁷⁰⁵ (Tabelle 10). Es konnte keine Wasserstoffbrücke zwischen Cyproteronacetat (**26**) und Thr⁸⁷⁷ bzw. Gln⁷¹¹ identifiziert werden. Diese Ergebnisse stimmen mit den Dockingstudien von Bohl et al.¹⁷⁵ überein. Im Vergleich zu den steroidalen Agonisten ist Thr⁸⁷⁷ zu 180° in Richtung Leu⁸⁷³ gedreht und kann somit nicht mit dem Liganden wechselwirken, aber stabile Van-der-Waals-Kontakte ausbilden. Eine ähnliche Beobachtung machten Bisson et al.¹⁸⁶ für R-Bicalutamid (15). Wie schon für R1881 (12) und TES (1) konnte auch für Cyproteronacetat (26) eine indirekte Wasserstoffbrücke vom O-3 über ein Wassersmolekül zur Aminosäure Arg⁷⁵² und Met⁷⁴⁵ beobachtet werden (Tabelle 10). Ein Vergleich mit der Röntgenkristallstruktur von DHT (2) (PDB-Code: 1T65) und TES (1; PDB-Code: 2AM9) in Komplex mit dem NR3C4 zeigte, dass das steroidale Grundgerüst von Cyproteronacetat (26) leicht verschoben ist und gegen Leu⁷⁰⁴ (H3) und Phe⁸⁷⁶ (H11) stößt. Zu gleichen Ergebnissen kamen Bohl et al.¹⁷⁵ während ihrer Dockingstudien. Die beobachteten unstabilen Aminosäurereste der H3 und H11 sind vermutlich ein Grund für die antagonistische Wirkung von Cyproteronacetat (26).

R-Bicalutamid (15) zeigte eine Wasserstoffbrücke für 42,3 % der Zeit zwischen seinem tertiären Amin und dem Arg^{752} -N^{η} (Tabelle 10). Vom tertiären Amin des R-Bicalutamids (15) zum Gln^{711} -N^{ϵ 2} und vom O-10 des R-Bicalutamids (15) zum Asn^{705} -N^{ϵ 2} konnte für unter 20 % der Zeit eine Wasserstoffbrücke beobachtet werden. Aufgrund der räumlichen Position

der Thr⁸⁷⁷-Seitenkette, analog zu Thr⁸⁷⁷-Seitenkette im Komplex mit Cyproteonacetat, konnte keine Wasserstoffbrücke zwischen Thr⁸⁷⁷ und R-Bicalutamid (15) nachgewiesen werden. Die Position der Thr⁸⁷⁷-Seitenkette begünstigte hingegen stabile Van-der-Waals-Kontakte zum Liganden. Moleküldynamik-Simulationsstudien von Bisson et al. zeigten ähnliche Ergebnisse.¹⁸⁶ Des Weiteren konnte eine indirekte Wasserstoffbrücke über das Wassermolekül zwischen den Aminosäure Arg⁷⁵²-N^η bzw. Met⁷⁴⁵-O zum tertiären Amin des R-Bicalutamid (15) zu 97,5 %, 96,0 % bzw. 95,0 % der Zeit beobachtet werden (Tabelle 10). Im Vergleich zu TES (1) und R1881 (12) wird Met⁸⁹⁵ durch Trp⁷⁴¹ (H5) und die Sulfonylgruppe des R-Bicalutamids (15) verschoben, wodurch R-Bicalutamid (15) vermutlich an Packungsdichte verliert und die 3D-Struktur der H12 verändert.¹⁸⁶ Durch die Bewegung des Trp⁷⁴¹ wird Leu⁷¹² (H3) depositioniert, welches sich in räumlicher Nähe zum Koaktivator befindet. Die Depositionierung des Leu⁷¹² führt vermutlich zu einer schwächeren Wechselwirkung mit den Aminosäuren des Koaktivators und könnte zusammen mit den beobachteten Bewegungen der Aminosäuren der H3, H5, H11 und H12 ein Grund für die antagonistische Wirkung des R-Bicalutamids (15) sein.

Hydroxyflutamid (30) besitzt im Gegensatz zu R-Bicalutamid (15) eine Nitrogruppe und kein tertiäres Amin am C-3 sowie keine Fluoro-(Methylsulfonyl)-Benzengruppe am C-13. Über die Nitrogruppe konnte keine Wasserstoffbrücke zu den Seitenketten des Arg⁷⁵² oder Gln⁷¹¹ über 20 % der Zeit beobachtet werde. Die NH-Gruppe des Hydroxyflutamid (30) bildete für 26,9 % der Zeit eine Wasserstoffbrücke zum Leu⁷⁰⁴-O (Tabelle 10). Für die Dauer von 25,9 % der Zeit war eine Wasserstoffbrücke zwischen der Hydroxylgruppe des Hydroxyflutamids (30) und Thr⁸⁷⁷-O^{γ 1} zu beobachten (Tabelle 10). Damit weist die Seitenkette des Thr⁸⁷⁷ keine stabile Konfiguration analog zu R-Bicalutamid (15) und Cyproteonacetat (26) auf. Über einen längeren Zeitraum bildete Hydroxyflutamid (30) eine Wasserstoffbrücke indirekt über ein Wassermoleküle zu den Aminosäuren Arg⁷⁵² und Met⁷⁴⁵ (Tabelle 10). Die indirekte Wasserstoffbrücke von der OH-Gruppe des aus Hydroxyflutamid (30) über das zweite Wassermolekül zum Leu⁸⁷³ (H11) wurde nur zu 35,3 % der Zeit beobachtet (Tabelle 10). Dies bestätigt die Beobachtungen von Bisson et alii.186 Sie postulierten, dass die instabilere Wasserstoffbrücke zu einer abgeschwächten Wechselwirkung mit Met⁸⁹⁵ (H12) führt und ein Grund für die antagonistische Wirkung von Hydroxyflutamid (30) sein kann. Zusammenfassend kann gesagt werden, dass die Moleküldynamik-Simulation für R-Bicalutamid (15) und Hydroxyflutamid (30) gleiche Ergebnisse zeigten, wie sie bei Bisson et al.¹⁸⁶ beschrieben wurden.

		Wasserstoffbrücken					
		Atom 1		Atom 2		^a Zeitraum [%]	⁵Distanz
Cyproteronacetat	direkte Wasserstoffbrückenbindung	Ligand	O-3	R752	N ^η	58,7	2,8
(26)		Ligand	O-20	N705	N^{δ^1}	22,4	3,2
Hydroxyflutamid	direkte Wasserstoffbrückenbindung	Ligand	O-11	T877	$O^{\gamma 1}$	25,9	3,2
(30)		Ligand	Ν	L704	0	26,9	3,3
	Wasser vermittelte Wasserstoff- brückenbindung	Ligand	O-E2	Wasser1	0	49,8	3,2
		Wasser1	0	R752	N ^η	99,5	3,2
		Wasser1	0	R752	N ^η	97,5	3,1
		Wasser1	0	M745	0	88,1	3,0
		Ligand	O-10	Wasser2	0	92,5	3,0
		Wasser2	0	Leu873	0	35,3	3,3
R-Bicalutamid (15)	direkte Wasserstoffbrückenbindung	Ligand	N-8	R752	Ν ^η	42,3	3,3
	Wasser vermittelte Wasserstoff- brückenbindung	Ligand	N-8	Wasser1	0	49,8	3,2
		Wasser	0	R752	N ^η	97,5	3,1
		Wasser	0	R752	N^{η}	96,0	3,2
		Wasser	0	M745	0	95,0	3,1

Tabelle 10: Beobachtete Wasserstoffbrücken für jedes Modell während der 4. bis 5. ns der Moleküldynamik-Simulation. Für alle Atompaare die, die Kriterien für Wasserstoffbrücken für über 20 % der Zeit während der 4. bis 5. ns erfüllen.

^a Zeitraum für den die Kriterien für Wasserstoffbrücken erfüllt waren in %.

^b Die durchschnittliche Distanz der Atompaare während der betrachteten Zeit.

Das Fehlen der Wasserstoffbrücke zwischen den Antagonisten und der Seitenkette des Thr⁸⁷⁷, sowie die Veränderung der Position der Aminosäurereste der H3, H5, H11 und H12 tragen maßgeblich zu einem antagonistischen Mechanismus bei. Ebenso konnte die postulierten Thesen von Bohl *et al.*, des antagonistischen Mechanismus von Cyproteronacetat (**26**) bestätigt werden. Zusätzlich zeigte sich, das Leu⁸⁸⁰ (H11) vermutlich eine wichtige Rolle im antagonistischen Mechanismus einnimmt. Im Nachfolgenden sollte nun geklärt werden, wie sich der Koaktivator in Abhängigkeit der jeweiligen Liganden verhält.

4.4.3 Strukturelle Änderung des FXXLF-Motiv im Komplex mit bekannten Liganden

Um den Einfluss der Liganden auf die Koaktivatorbindung zu analysieren, wurden der RMSD-Wert der Rückgratatome des Koaktivators aller Modelle in Abhängigkeit von der Startstruktur entlang der Moleküldynamik-Trajektorie berechnet. Die Ergebnisse sind in Abbildung 36 dargestellt. Die Abweichung für die Rückgratatome des Koaktivators von der Startstruktur war für die Agonisten R1881 (12) und TES (1) für die gesamten 5 ns der Dynamik minimal. Somit behält der Koaktivator seine stabile Ausgangskonformation. Während der Moleküldynamik-Simulation der Antagonisten zeigten die RMSD-Werte der Rückgratatome des Koaktivators eine Abweichung von 3-6 Å zur Startstruktur. Es erfolgte eine komplette Entfaltung der helikalen Sekundärstruktur.

Abbildung 36: Veränderung des RMSD-Wertes der Rückgratatomkoordinaten des Koaktivators von 0 bis 5000 ps gegenüber der Startstruktur. (A) Agonisten: R1881 (12; blau), TES (1; rot); (B) Antagonisten: Cyproteronacetat (26; grau), Hydroxyflutamid (30; braun), R-Bicalutamid (15; gelb). Zusätzlich ist beispielhaft der Rezeptor (grau) mit dem Koaktivator (rot) zum Zeitpunkt 0 ns und 5 ns für (A) den Agonisten TES (1) und (B) den Antagonisten Hydroxyflutamid (30) dargestellt.

Ein möglicher Grund hierfür sind die schwächeren Wechselwirkungen der antagonistischen Liganden mit den Aminosäuren der H3, H5, H11 und H12, die vermutlich zur beobachteten Veränderung der 3D-Struktur der AF-2 und damit zur beobachteten Veränderung der 3D-Struktur des Koaktivators führen (Kapitel 4.4.2).

4.4.4 Konformative Änderung innerhalb der LBT im Komplex mit bekannten Liganden

Um die konformative Änderungen innerhalb der LBT zu analysieren, die eine molekulare Ursache für die antagonistische/agonistische Wirkung des Liganden bzw. die veränderte 3D-Struktur des Koaktivators sein könnten, wurde die Durchschnittsstruktur der NR3C4-Modelle während der Equilibrierungsphase miteinander verglichen. Die Durchschnittsstruktur wurde mit *MOE-ProteinConsensus* erstellt. Hierzu wurden 41

Momentaufnahmen, welche von der letzen Nanosekunde der jeweiligen Moleküldynamik-Trajektorie mit einem Intervall von 25 ps stammen, zu einem Durchschnittsmodell zusammengefasst. Vergleicht man die Konsensusmodelle für die Agonisten R1881 (**12**) und TES (**1**) mit den Konsensusmodellen der Antagonisten Cyproteronacetat (**26**), R-Bicalutamid (**15**) und Hydroxyflutamid (**30**), so zeigten nur die Aminosäuren Lys⁷²⁰, Met⁷³⁴, Arg⁷⁸⁶ und Phe⁸⁷⁶ einen RMSD-Wert größer 2 Å. Die Aminosäuren Lys⁷²⁰ und Met⁷³⁴ liegen im Bereich der AF-2 und damit in räumlicher Nähe zum Koaktivator (Abbildung 37).

Abbildung 37: Ligandenabhängige Veränderung der Position der Aminosäuren K720 und M734 des NR3C4. In Komplex mit einem Agonisten (grau) kann K720 eine Kation-π-Wechselwirkung mit dem F27 des Koaktivators eingehen sowie eine Wasserstoffbrücke zum F27-O des Koaktivators ausbilden. In Komplex mit einem Antagonisten (lila) sind diese Wechselwirkungen aufgrund der Positionsänderung der Aminosäuren nicht möglich.

Die Komplexe mit einem Agonisten zeigen zwischen dem Lys⁷²⁰ und dem Phe²⁷-O des Koaktivators eine Wasserstoffbrücke. Lys⁷²⁰ geht weiterhin mit dem Phe²⁷ des Koaktivators eine Kation- π -Wechselwirkung ein, während Met⁷³⁴ schwache Van-der-Waals-Kontakte mit dem Phe²⁷ eingeht. Die Konformationsänderung der Aminosäureseitenketten Lys⁷²⁰ und Met⁷³⁴ (Abbildung 37), wie sie bei den Antagonisten beobachtet wurden, kann durch die fehlende Wechselwirkung zwischen der AF-2 und dem Koaktivator ein Grund für die antagonistische Wirkung der Liganden sein. Die Aminosäuren Arg⁷⁸⁶ und Phe⁸⁷⁶ befinden sich in räumlicher Nähe zum jeweiligen Liganden. Der Diederwinkel C-C α -C β -C γ des Phe⁸⁷⁶ ist während der 4-5 ns der Moleküldynamik-Simulation für die Agonisten R1881(**12**) und TES (**1**) stabil bei 60° (Abbildung 38 (A)). Für die Antagonisten Cyproteronacetat (**26**), R-Bicalutamid (**15**) und Hydroxyflutamid (**30**) ist der Diederwinkel dagegen bei 170° stabil (Abbildung 38 (B)). Zu dieser konformativen Änderung kommt es vermutlich im Fall von Cyproteronacetat (**26**) durch eine Kollision zwischen Ligand und Phe⁸⁷⁶ (Kapitel 4.4.2), die zu einer veränderten 3D-Struktur des C-terminalen Bereichs der H11 führt.

Abbildung 38: Veränderung des F764 Torsionswinkel C-C α -C β -C γ von 0 bis 5000 ps. (A) R1881 (12; blau) und TES (1; rot) und (B) Cyproteronacetat (26; grau), Hydroxyflutamid (30; braun) und R-Bicalutamid (15; gelb). Zusätzlich ist beispielhaft die Position des F764 in Komplex mit (A) dem Agonisten TES (1) und (B) dem Antagonisten R-Bicalutamid (15; RBI) bei t = 0 ns (grau) und t = 5 ns (lila) dargestellt.

Im Fall von Hydroxyflutamid (**30**) und R-Bicalutamid (**15**) kommt es durch die Positionsänderung von Aminosäuren im C-terminalen Bereich der H11 (Kapitel 4.4.2) zu einer indirekten konformativen Änderung des Phe⁸⁷⁶. Die konformative Änderung des C-terminalen Bereichs der H11 führt vermutlich zu einer strukturellen Änderung der AF-2 und zu den beobachteten schwächeren Wechselwirkungen zwischen der AF-2 und dem Koaktivator (Kapitel 4.4.2). Arg⁷⁸⁶ (H7) liegt an der Oberflächenregion der LBD des NR3C4, welche dem Lösungsmittel zugewandt ist, wodurch vermutlich eine erhöhte Flexibilität gegeben ist. Durch eine vom Antagonisten induzierte Veränderung der H11, die sich in räumlicher Nähe zur H7 befindet, kommt es vermutlich zu einer weiteren Erhöhung der Flexibilität von Arg⁷⁸⁶. Um die Rolle von Arg⁷⁸⁶ im agonistisch/antagonistischen Mechanismus zu bewerten sind vermutlich weitere Untersuchungen am gesamten NR3C4 nötig.

4.4.5 Analyse der Bindung von QDM255, QDM276 und β -Sitosterol

Welche Schlussfolgerungen lassen sich nun für die Liganden QDM255 (**40**), QDM276 (**52**) und β -Sitosterol (**34**) ziehen? Handelt es sich hierbei um Agonisten oder um Antagonisten des NR3C4? Betrachtet man die Rückgratatome des Koaktivators, so weichen sie für die Liganden QDM276 (**52**) und QDM255 (**40**) im Gegensatz zu β -Sitosterol (**34**) für die gesamten 5 ns der Moleküldynamik-Simulation nicht stark von der Startstruktur ab (Abbildung 39).

Abbildung 39: Veränderung des RMSD-Wertes der Rückgratatomkoordinaten des Koaktivators zur Startstrucktur von 0 bis 5000 ps. Die Berechnung des RMSD-Wertes erfolgte über die Rückgratatomekoordinaten des Koaktivators bezogen auf die Koaktivatorstartstruktur. QDM255 (40; orange), QDM276 (52; grüne), β -Sitosterol (34; lila).

Diese Tatsache und die in Kapitel 4.4.3 beschriebenen Beobachtungen lassen den Rückschluss zu, dass es sich bei QDM255 (40) und QDM276 (52) um Agonisten des NR3C4 und bei β-Sitosterol (34) um einen Antagonisten handelt. Die nachfolgenden Erklärungen stützen diese Behauptung. Für die Liganden QDM255 (40), QDM276 (52) und β-Sitosterol (34) des NR3C4 (Kapitel 3.4 und 3.6) konnten während der 4. bis 5. ns direkte Wasserstoffbrücken zwischen dem Arg⁷⁵²-N^{η} und der 3-Ketogruppe bzw. der 3β-Hydroxylgruppe beobachtet werden. Für QDM255 (40) und β-Sitosterol (34) ist die Wasserstoffbrücke zu 42,3 % der Zeit vorhanden, während sie bei QDM276 (52) nur zu 26,9 % der Zeit beobachtet werden konnte (Anhang 9.4.3 Tabelle 22). β-Sitosterol (34) bildete weiterhin über seine 3 β -Hydroxylgruppe eine stabile Wasserstoffbrücke zu Gln⁷¹¹-O^{ϵ 1} welche zu 87,6 % der Zeit vorhanden war (Anhang 9.4.3 Tabelle 22). Es konnte eine weniger stabile Wasserstoffbrücke für 23,9 % der Zeit zwischen Gln^{711} -N^{ϵ 2} und β -Sitosterol (34) beobachtet werden. (Anhang 9.4.3 Tabelle 22). Im Gegensatz dazu konnte für QDM276 (52) und QDM255 (40) nur für unter 20 % der Zeit eine Wasserstoffbrücke zur Seitenkette des Gln⁷¹¹ identifiziert werden. Es zeigte sich, dass QDM255 (40) und QDM276 (52) in der
Lage sind über ihre 17 β -Hydroxylgruppe eine Wasserstoffbrücke zum Thr877-O^{γ 1} auszubilden (QDM255 (**40**): 55,7 % und QDM276 (**52**): 70,6 %; Anhang 9.4.3 Tabelle 22). Die Seitenkette vom Thr⁸⁷⁷ im Komplex mit β -Sitosterol (**34**) ist hingegen analog zur Seitenkette vom Thr⁸⁷⁷ im Komplex mit Cyproteronacetat (**26**) oder R-Bicalutamid (**15**) um 180° in Richtung Leu⁸⁷³ gedreht. Sie formt schwache Van-der-Waals-Kontakte zur hydrophoben C17-Seitenkette des β -Sitosterols (**34**).

Die Ausbildung einer Wasserstoffbrücke zwischen Asn^{705} und den Liganden konnte für QDM276 (**52**) und QDM255 (**40**) nur zu einem Zeitraum von unter 20 % beobachtet werden. Für β -Sitosterol (**34**) wurde eine Drehung der Seitenkette von Asn^{705} um 180° in Richtung Leu⁷⁰⁴ beobachtet. Dadurch kommt es vermutlich zur beobachteten Positionsänderung der nicht aromatischen und nicht hydrophoben Aminosäuren der H3, die zwischen Leu⁷⁰⁵ und Val⁷¹³ liegen. Infolgedessen kann die Seitenkette des Glu⁷⁰⁹ keine Wasserstoffbrücke mehr zum Met⁸⁹⁴-N (H12) bzw. Met⁸⁹⁵-N (H12) ausbilden (Abbildung 40 (A)), was vermutlich zur beobachteten Änderung der 3D-Struktur der H12 führte. Die strukturelle Änderung der H12 ist vermutlich ein Grund für die das beobachtete Fehlen der Wasserstoffbrücke zwischen der Seitenkette des Glu⁸⁹⁷ und dem Gly²¹-N, Ala²²-N und Phe²³-N des Koaktivators (Abbildung 40 (B)), was wiederum die veränderte 3D-Struktur des Koaktivators erklären könnte.

Abbildung 40: Momentaufnahme der Dynamik von β -Sitosterol (34; lila) und TES (1; grau) im NR3C4-Coaktivator-Komplex. (A) E709 (lila) kann im β -Sitosterol-NR3C4-Koaktivator-Komplex keine Wasserstoffbrücke zum M985 und M894 (lila) formen. Im TES-NR3C4-Koaktivator-Komplex kann E709 (grau) die Wasserstoffbrücke zum M985 und M894 (grau) formen. (B) E897 (lila) kann im β -Sitosterol-NR3C4-Koaktivator-Komplex keine Wasserstoffbrücke zum G21, A22 und F23 (braun) des Koaktivators ausbilden. Im TES-NR3C4-Koaktivator-Komplex kann E897 (grau) die Wasserstoffbrücken zum G21, A22 und F23 (schwarz) des Koaktivators ausbilden.

Im Gegensatz dazu konnte die Ausbildung der Wasserstoffbrücke zwischen Glu^{709} -O^{ε} und Met⁹⁸⁴-N bzw. Met⁹⁸⁵-N sowie die Wasserstoffbrücken zwischen dem Glu^{897} -O^{ϵ} und dem Glv²¹-N, Ala²²-N und Phe²³-N des Koaktivators bei TES (1), R1881 (12), ODM255 (40) und ODM276 (52) während der Moleküldynamik-Simulation beobachtet werden. Weiterhin konnte für β-Sitosterol (34) im Gegensatz zu TES (1), R1881 (12), QDM276 (52) und ODM255 (40) keiner Kation- π -Wechselwirkung zwischen Lys⁷²⁰ und Phe²⁷ des Koaktivators sowie keine schwachen Van-der-Waals-Kontakte zwischen Met⁷³⁴ und Phe²⁷ im Konsensusmodell beobachtet werden. Dies ist wiederum ein Indiz für die antagonistische Wirkung von β -Sitosterol (34). Betrachtet man den Diederwinkel C-C α -C β -C γ des Phe⁸⁷⁶ während der letzten Nanosekunde für β -Sitosterol (**34**) so bleibt er stabil bei 170°, analog zu R-Bicalutamid (15), Hydroxyflutamid (30) und Cyproteronacetat (26). Bei QDM276 (52) und QDM255 (40) blieb er hingegen bei 60° stabil, analog zu TES (1) und R1881 (12; Abbildung 41). Dies bestätigt wiederum die Vermutung, dass es sich bei ß-Sitosterol (34) um einen Antagonisten des NR3C4 handelt und bei ODM255 (40) und ODM276 (52) um Agonisten. Die veränderte Position von Phe⁸⁷⁶ in Komplex mit β -Sitosterol (34) begründet sich in der Kollision zwischen dem Phe⁸⁷⁶ und dem 17 β -Substituenten des β -Sitosterols (**34**; Abbildung 41 (B)). Ebenfalls wird die Position des Leu⁸⁸⁰ (H11) durch den 17β-Substituenten des β -Sitosterols (34) verändert und in Richtung Leu⁸⁸¹ verschoben, (Abbildung 41 (B)) was vermutlich ebenfalls zur strukturellen Änderung der H11 beiträgt.

Abbildung 41: Einfluss von QDM255 (40), QDM276 (52) und β -Sitosterol (34) auf die Aminosäuren F876, L880 und L881 (A) Veränderung des F876 Torsionswinkel C-C α -C β -C γ von 0 bis 5000 ps für die NR3C4-Koaktivator-Komplexe mit QDM255 (40; orange), QDM276 (52; grün) und β -Sitosterol (34; lila). (B) Überlagerung des TES-NR3C4-Coaktivator-Komplex (grau) mit dem β -Sitosterol-NR3C4-Coaktivator-Komplex (lila). Es ist die Kollision des F876 (grau) mit dem17 β -Substituenten des β -Sitosterols (34) dargestellt, die zu einer veränderten Position des F876 (lila) führt. Zusätzlich ist die Verschiebung der Position des L880 in Richtung des L881 im β -Sitosterol-NR3C4-Coaktivator-Komplex (lila) gegenüber dem TES-NR3C4-Coaktivator-Komplex (grau) dargestellt.

Die Positionsänderung der Aminosäurereste der H3, H11 und H12 im Komplex mit β-Sitosterol (34) und die damit verbundenen schwächeren/fehlenden Wechselwirkungen zwischen Koaktivator und AF-2 lassen insgesamt darauf schließen, dass β-Sitosterol (34) ein Antagonist des NR3C4 ist. QDM276 (52) und QDM255 (40) zeigten dagengen ein typisches Verhalten wie TES (1) und R1881 (12). Auf Grund dieser Tatsache kann davon ausgegangen werden, dass es sich bei QDM255 (40) und QDM276 (52) um Agonisten des NR3C4 handelt. Der einzige beobachtete Unterschied zwischen QDM255 (40) und QDM276 (52) betrifft die Met⁷⁸⁰. Aminosäureseitenkette Die Seitenkette blieb während der gesamten Moleküldvnamik-Simulation mit QDM276 (52) stabil. Bei QDM255 (40) hingegen drehte sich Met⁷⁸⁰ vom Liganden weg, während sich Gln⁷⁸³ (H7) gleichzeitig in Richtung QDM255 (40) drehte. Eine mögliche Wasserstoffbrücke zwischen der Seitenkette am C-7 des QDM255 (40) und der Seitenkette des Gln⁷⁸³ konnte für die 5 ns der Moleküldynamik-Simulation nicht beobachtet werden. Auf Grund dieser Tatsache ist die geringere Affinität von ODM255 (40) zum NR3C4 im Vergleich zu ODM276 (52) vermutlich durch die schwächeren Van-der-Waals-Kontakte zu Met⁷⁸⁰ zu erklären.

4.5 Zusammenfassung und Diskussion

Um die molekularen Grundlagen der agonistischen und antagonistischen Wirkung von NR3C4-Liganden zu untersuchen, wurden mehrere 5 ns Moleküldynamik-Simulation mit steroidalen und nichtsteroidalen Ligand-NR3C4-Koativator-Komplexen durchgeführt.

Für die Agonisten TES (1) und R1881 (12) konnten die bekannten Wasserstoffbrücken analog zu den Röntgenkristallstrukturen beobachtet werden.^{41;51} Die Betrachtung der RMSD-Werte der Rückgratatome des Koaktivators in Abhängigkeit von der Startstruktur entlang der Moleküldynamik-Trajektorie zeigte, dass die Startstruktur des Koaktivators während der gesamten Moleküldynamik-Simulation mit TES (1) bzw. R1881 (12) stabil blieb.

Für die Antagonisten Cyproteronacetat (**26**), R-Bicalutamid (**15**) und Hydroxyflutamid (**30**) wurde eine Änderung der Position der Aminosäuren Lys⁷²⁰ und Met⁷³⁴ beobachtet, die Wechselwirkungen mit dem Phe²⁷ des Koaktivators eingehen, sowie eine strukturelle Änderung der H11 durch eine Rotation von Phe⁸⁷⁶. Im Komplex mit Cyproteonacetat zeigte sich weiterhin eine Veränderung der Position der Aminosäuren Leu⁷⁰⁴ (H3) und Leu⁸⁸⁰ (H11), die durch eine Repositionierung des steroidalen Grundgerüsts des Cyproteonacetats hervorgerufen wurde. Somit konnte die Hypothese von Bohl *et al.* ¹⁷⁵ bestätigt werden.

Weiterhin konnte wie bei Bisson *et al.* ¹⁸⁶ gezeigt werden, dass es durch die Sulfonylgruppe des R-Bicalutamids (**15**) und der Neupositionierung der Aminosäureseitenkette des Trp⁷⁴¹ (H5) zu einer Destabilisierung der "Ruheposition" des Met⁸⁹⁵ (H12) kommt. Anschließende Untersuchungen weiterer Aminosäuren zeigten eine Verschiebung von Leu⁷¹² (H3) durch Trp⁷⁴¹ (H5). Dies könnte eine mögliche Erklärung für die schwächeren Wechselwirkungen zwischen der AF-2 und dem Koaktivator sein.

Für Hydroxyflutamid (**30**) konnte ebenfalls die Beobachtung von Bisson *et al.* ¹⁸⁶ bestätigt werden. So konnte gezeigt werden, dass es sich bei der indirekten Wasserstoffbrücke zwischen der OH-Gruppe des Hydroxyflutamids (**30**) und des Leu⁸⁷³ (H11) um eine instabile Wasserstoffbrücke handelt. Durch diese nichtstabile Wasserstoffbrücke kommt es vermutlich zu einer Repositionierung des Met⁸⁹⁵ und damit zur Änderung der 3D-Struktur der H12.

Die Positionsänderungen der Aminosäuren der H3, H5, H11 und H12 führen zu schwächeren/fehlenden Wechselwirkungen zwischen der AF-2 und den Aminosäuren des Koaktivators. Die stabile Bindung des Koaktivators spielt jedoch eine wichtige Rolle in der transkriptionellen Aktivierung androgen-regulierter Gene. Somit wird postuliert, dass die beobachteten Positionsänderungen der Aminosäuren ein molekularer Grund für die antagonistische Aktivität der Liganden sind.

Die im VS neu identifizierten Liganden QDM276 (**52**) und QDM255 (**40**; Kapitel 3) zeigten die bekannten Wechselwirkungen wie sie bei R1881 (**12**) und TES (**1**) beobachtet wurden. Des Weiteren blieb der Koaktivator im Vergleich zur Startstruktur während der gesamten Moleküldynamik-Simulation für QDM276 (**52**) und QDM255 (**40**) analog zu den Moleküldynamik-Simulationen mit TES (**1**) und R1881 (**12**) stabil. Aufgrund dieser Daten konnten die Liganden QDM276 (**52**) und QDM255 (**40**) des NR3C4 als potentielle Agonisten klassifiziert werden. Unabhängig davon kann postuliert werden, dass die schwächere Affinität des QDM255 (**40**) im Vergleich zu QDM276 (**52**) zum NR3C4 zum Teil in einer schwächeren Wechselwirkung zum Met⁷⁸⁰ (H7) begründet ist.

Für den neu identifizierten Liganden β-Sitosterol (**34**) des NR3C4 (Kapitel 3) konnte während der Moleküldynamik-Simulation eine strukturelle Änderung des Koaktivators beobachtet werden. Durch die 17β-Seitenkette des β-Sitosterols (**34**) kommt es zur Repositionierung von Leu⁸⁸⁰ (H11) und Phe⁸⁷⁶ (H11). Weiterhin konnte nachgewiesen werden, dass es zu einer strukturellen Änderung der H3 im Bereich der Aminosäuren Asn⁷⁰⁵ und Leu⁷⁰⁷ bis Val⁷¹² kommt. Die Positionsänderung der Aminosäuren der H3 und H11 führen vermutlich zu schwächeren Wechselwirkungen zwischen der AF-2 und dem Koaktivator. Diese Ergebnisse liefern mögliche Gründe für die beobachtete strukturelle Änderung des Koaktivators und lassen die Vermutung zu, dass es sich bei β -Sitosterol (**34**) um einen Antagonisten des NR3C4 handelt.

Zellexperimente von Claudia Bobach bestätigten die Vorhersage, dass es sich bei den Liganden QDM255 (**40**) und QDM276 (**52**) um Agonisten und bei β -Sitosterol (**34**) um einen Antagonisten des NR3C4 handelt.¹⁸⁷

Zusammenfassend konnten markante Unterschiede zwischen bekannten Agonisten und Antagonisten identifiziert werden, die es erlauben Liganden, hier speziell QDM255 (40) und QDM276 (52) und β -Sitosterol (34), in Agonisten bzw. Antagonisten zu klassifizieren. Durch die Moleküldynamik-Simulation konnte gezeigt werden, dass die C17-Seitenkette eine entscheidende Rolle im antagonistischen Mechanismus des NR3C4 spielt. Es stellt sich die Frage welche spezielle Rolle die einzelnen Verzweigungen der C17-Seitenkette im molekularen Mechanismus spielen (Kapitel 3). Zukünftige Synthesen oder Naturstoffselektionen und Moleküldynamik-Simulationen sollten das Ziel haben, die C17-Seitenkette durch Kombinationen verschiedener Substituenten hinsichtlich ihrer antagonistischen Wirkung zu klassifizieren.

5 Ergebnisse und Diskussion: Kreuzreaktion - Selektivität von Liganden

Die humanen Kernrezeptoren sind sowohl sequenziell als auch strukturell sehr ähnlich zueinander. Auf Grund dieser Tatsache kommt es sehr häufig zu Kreuzreaktionen der NR3C4-Liganden mit anderen Kernrezeptoren. Um spezifische Liganden zu entwickeln, ist nicht nur die Proteinsequenz sondern auch die 3D-Struktur der Ligandenbindungstasche der Kernrezeptoren entscheidend.

Insgesamt waren für 33 der 48 bekannten humanen Kernrezeptorenklassen (siehe Anhang 9.1) Röntgenkristallstrukturen in der Protein Data Bank¹⁰¹ zugänglich. 31 Röntgenkristallstrukturen lagen in der agonistischen 3D-Struktur des NR3C4 vor. Die Röntgenkristallstruktur des NR111 musste wegen Unklarheiten in der Aminosäuresequenz aus Somit standen für die Untersuchung der Analyse ausgenommen werden. 30 Röntgenkristallstrukturen unterschiedlicher Kernrezeptoren zur Verfügung. Das Defizit an 17 fehlenden Röntgenkristallstrukturen sollte durch die Erstellung von homologen Modellen ausgeglichen werden. Auf der Basis der 3D-Strukturen sollte im Anschluss ein sequenzieller und struktureller Vergleich der Kernrezeptoren zum NR3C4 erfolgen um Unterschiede innerhalb der Ligandenbindungstasche zu identifizieren. Diese Informationen könnten einen entscheidenden Vorteil bei der Entwicklung spezifischer NR3C4-Liganden darstellen. Durch Dockingstudien und der experimentellen Testung bekannter NR3C4-Liganden an weiteren humanen Kernrezeptoren sollten Struktur-Aktivitäts-Beziehungen abgeleitet werden, die zusätzliche wertvolle Informationen für die Entwicklung spezifischer NR3C4-Liganden liefern.

Aus diesen Gründen wird im ersten Schritt dieses Kapitels die Modellierung der 17 fehlenden 3D-Kernrezeptorstrukturen beschrieben und beurteilt. Im zweiten Schritt erfolgt die Beschreibung und Auswertung der sequenziellen und strukturellen Vergleiche zwischen den verschieden Kernrezeptoren und dem NR3C4. Die Darstellung und Diskussion der Dockingergebnisse mehrerer NR3C4-Liganden in unterschiedlichen Kernrezeptoren sowie eine Zusammenfassung der Ergebnisse und eine abschließende Diskussion schließt sich im dritten Schritt an.

5.1 Homologiemodelling und Evaluierung

Eine Möglichkeit, das Defizit struktureller Daten über humane Kernrezeptoren auszugleichen und einen Einblicke in die Ligandenspezifizität zu erlangen, ist die Entwicklung von dreidimensionalen Computermodellen. Für die Erstellung der 17 3D-Proteinmodelle wurde mit dem Programm PHYRE in großen Datenbanken nach strukturell ähnlichen Proteinen gesucht. Als Resultat konnten für 13 der 17 Proteinsequenzen homologe Proteine mit einer Identität von mehr als 30 % gefunden werden (Tabelle 11). Wichtig für die Entwicklung der homologen Proteinmodelle war neben der hohen Identität und dem E-Wert auch die Übereinstimmung zwischen den vorhergesagten Sekundärstrukturelementen des Proteinmodells und dem homologen Templat. Für die Sekundärstrukturvorhersagen wurden hauptsächlich die über das Internet frei zugängliche Methode von PredictProtein verwendet (Kapitel 2.2). Die Ergebnisse zeigten, dass die Zielproteine (targets) hauptsächlich aus α -helikalen Bereichen aufgebaut und über Schleifen-Regionen miteinander verbunden sind. Außerdem enthalten sie zusätzlich 2-4 antiparallele Faltblätter.

Tabelle 11: Ergebnis der Templatsuche für 17 humane Kernrezeptoren. Es wurden jeweils die Proteinstrukturen (*Target*) mit der höchsten zum Templat gefundenen Identität (Id.) in % und ihrem E-Wert angegeben. Zusätzlich ist für jede Proteinstruktur der *ExPASy*-Code und die Proteinklasse (Klasse 1), sowie für das Templat der *PDB*-Code, die Proteinkette (Kette), Proteinklasse (Klasse 2) und Quelle dargestellt. Für die mit "-" markierten Zellen wurden kein Templat mit einer Identitäten größer 30 % gefunden.

Target		Templat					
ExPASy- Code	Klasse 1	PDB- Code	Kette	Klasse 2	Quelle	ld. [%]	E-Wert
P51843	NR0B1	-	-	-	-	-	-
Q15466	NR0B2	-	-	-	-	-	-
P10276	NR1B1	1XAP	А	NR1B2	Homo sapiens	88	9,00E-27
P20393	NR1D1	2V0V	В	NR1D2	Homo sapiens	70	6,80E-23
Q92753	NR1F2	1NQ7	А	NR1F2	Rattus norvegicus	99	2,10E-43
P51449	NR1F3	1NQ7	А	NR1F2	Rattus norvegicus	50	2,20E-40
P48443	NR2B3	1MVC	А	NR2B1	Homo sapiens	88	4,10E-30
P13056	NR2C1	-	-	-	-	-	-
P49116	NR2C2	1MVC	А	NR2B1	Homo sapiens	30	3,00E-29
Q9Y466	NR2E1	1MVC	А	NR2B1	Homo sapiens	31	4,70E-27
Q9Y5X4	NR2E3	1MVC	А	NR2B1	Homo sapiens	34	2,60E-28
P10589	NR2F1	1MVC	А	NR2B1	Homo sapiens	38	3,60E-25
P24468	NR2F2	1MVC	А	NR2B1	Homo sapiens	39	1,10E-25
P10588	NR2F6	1MVC	А	NR2B1	Homo sapiens	39	1,00E-22
O95718	NR3B2	1TFC	В	NR3B3	Homo sapiens	73	2,00E-27
Q92570	NR4A3	1PDU	А	NR4A4	Drosophila melanogaster	51	1,50E-25
Q15406	NR6A1	-	-	-	-	-	-

Der Vergleich der Aminosäuresequenz des Zielproteins (targets) mit dem entsprechenden Templat zeichnete sich durch eine sehr große Übereinstimmung in Hinsicht auf die Sekundärstruktur aus. Für die Erstellung der homologen Modelle wurde die Sequenz des Zielproteins und des zugehörigen Templats entsprechend des Sequenzvergleichs von Phyre überlagert und mit dem Programmpaket MOE das zugehörige Proteinmodell erstellt. Die Modellingprozedur benutzt eine zufällige Bolzmann-Verteilung, welche das resultierende Modell mittels einer speziellen "Reste-Packungs-Funktion", in Hinsicht auf die Orientierung von Aminosäureseitenketten und möglichen Wasserstoffbrückenbindungen validiert. Zur Verbesserung der Qualität der entsprechenden Proteinmodelle wurde eine Moleküldynamik-Simulation von 200 ps auf das Protein angewandt. Die Qualität und Stereochemie der Proteinmodelle wurde mit dem Programm PROCHECK bei einer theoretischen Auflösung von 2,0 Å getestet (Tabelle 12). Die Ergebnisse für die Torsionswinkel φ und ψ im Ramachandran-Plots zeigen, dass für fast alle Zielproteine (targets) ein hinreichend gutes Modell erzeugt werden konnte, da sich die φ - und ψ -Werte in den erlaubten Bereichen des Ramachandran-Plots befanden.

Tabelle 12: Ergebnisse des Ramachandram-Plots und der PROSAII-Analyse für die entsprechenden Proteinmodelle (Target). Zusätzlich ist für jedes Target der ExPASy-Code, die Proteinklasse (Klasse), die Anzahl an Aminosäuren in der Ligandenbindungsdomäne (LBD) und der Identitätsanteil (Id.) in % zum entsprechenden Templat (Tabelle 11) angegeben. Für die mit "-" markierten Zellen wurden kein Template mit einer Identitäten größer 30 % gefunden und demnach kein Proteinmodell erzeugt. Grau schattiert sind die Proteinmodelle mit denen weitergearbeitet wurde

	Target			R. Plot	PROSAII						MetaMQA	٨P
ExPASY- Code	Klasse	Länge LBD [AS]	ld. [%]	nicht- erlaubter Bereich	Comb	Fehler	Pair	Fehler	Surf	Fehler	GDT_ TS	RMS D [Å]
P51843	NR0B1	-	-	-	-	-	-	-	-	-	-	-
Q15466	NR0B2	-	-	-	-	-	-	-	-	-	-	-
P10276	NR1B1		88	0	-9,20	0,78	-7,75	-0,86	-6,23	0,57	86,06	1,30
P20393	NR1D1	179	70	0	-8,07	1,12	-6,26	-0,04	-5,45	0,79	84,78	1,26
Q92753	NR1F2	244	99	0	-8,65	1,46	-5,95	1,05	-6,26	0,63	85,55	1,28
P51449	NR1F3	242	50	0	-7,67	1,41	-5,65	1,33	-5,38	-1,49	80,99	1,54
P48443	NR2B3	227	88	0	-8,75	1,12	-7,64	-0,84	-5,77	0,95	84,14	1,60
P13056	NR2C1	-	-	-	-	-	-	-	-	-	-	-
P49116	NR2C2	228	30	0	-6,41	3,47	-4,89	1,91	-4,53	2,20	68,64	2,55
Q9Y466	NR2E1	236	31	5	-6,02	3,98	-4,22	2,69	-4,33	2,48	60,06	2,78
Q9Y5X4	NR2E3	209	34	0	-6,87	2,75	-6,12	0,49	-4,23	2,31	64,47	2,43
P10589	NR2F1	225	38	3	-6,49	3,35	-6,2	0,57	-3,99	2,71	61,22	2,91
P24468	NR2F2	206	39	0	-6,36	3,21	-6,08	0,46	-3,92	2,59	69,90	2,07
P10588	NR2F6	213	39	0	-6,95	2,72	-6,10	0,53	-4,17	2,41	70,19	2,01
O95718	NR3B2	225	73	0	-7,91	1,93	-5,66	1,11	-5,55	1,15	n.b.	n.b.
Q92570	NR4A3	226	51	0	-8,65	1,4	-5,95	1,05	-6,26	-0,63	80,97	1,82

Z-Faktor Comb: y = -6,67-0,0141x -

Z-Faktor Pair: y = -4,05-0,0121x

Z-Faktor Surf: y = -4,43-0,0101x

GDT_TS Globaler Distanz Test

Pair Surf Eine Ausnahme bilden die Modelle der Klassen NR2E1 und NR2F1. Diese Modelle wiesen mehrere φ und ψ -Winkel in nichterlaubten Bereichen auf, was vermutlich auf die geringere Sequenzidentität zurückzuführen ist. Die geringere Sequenzidentität führte höchstwahrscheinlich zu einem falschen Sequenzvergleich, wodurch ein fehlerhaftes Modell entstand.¹⁰² Alle anderen sterischen Kriterien, wie Peptidbindungsplanarität, Bindungslängen und -winkel, etc. für die hinreichend guten Modelle befinden sich innerhalb der normalen Parameter, die für ein Protein mit einer Auflösung von 2.0 Å zu erwarten sind. Die Kompatibilität zwischen der Aminosäuresequenz und der Raumstruktur der 3D-Modelle wurde mit Prosall berechnet (Tabelle 12). Die Ergebnisse zeigten für alle Modelle, die auf der Basis des Sequenzvergleichs mit einer Sequenzidentität von über 40 % erzeugt wurden ein negatives Potential (nicht dargestellt) und einen Fehler kleiner 2 (Tabelle 12). Dies deutet darauf hin, dass es sich hier um korrekt gefaltete Proteine handelt. Zusätzlich wurde mit MetaMQAP die globale und lokale Qualität der Modelle untersucht, die entsprechenden GDT TS und RMSD-Werte sind in Tabelle 12 abgebildet. Der GTD TS-Wert wurde für alle Modelle mit kleiner 90 bewertet, was einer guten globalen Qualität gleichzusetzen ist.¹⁴⁵ Der RMSD-Wert war für alle Modelle mit einer Homologie über 40 % kleiner als 2 Å (Tabelle 12), d.h. die Modelle weichen potentiell weniger als 2 Å von der realen Proteinstruktur ab.

Da die Kernrezeptoren untereinander strukturell sehr homolog sind, wurden nur Modelle in die nachfolgende Studie einbezogen, die sowohl im Ramachandran-Plot keine Aminosäuren im nichterlaubten Bereich, als auch in der *PROSAII*-Studie keine Standardabweichung von über 2 aufwiesen, sowie in der *MetaMQAP* Studie einen RMSD-Wert kleiner 2 Å zeigten. Durch diese Auswahl kann der Fehler, der sich durch schlechte homologe Modelle beim strukturellen Vergleich ergeben würde reduziert werden.

5.2 Paarweiser Sequenz-/Strukturvergleich

Mit Hilfe von paarweisen Sequenz- und Strukturvergleichen können hochinformative *heat maps* erstellt werden, die Unterschiede zwischen den einzelnen Kernrezeptoren aufzeigen. Für die Analyse standen nach der homologen Modellierung die Sequenzen und 3D-Strukturen von 37 verschiedenen Kernrezeptoren zur Verfügung. Für die Sequenzen mit mehreren Röntgenkristallstrukturen wurde die Röntgenkristallstruktur mit der besten Auflösung und dem besten DPI-Wert ausgewählt. Zunächst wurde die sequenzielle Ähnlichkeit der LBD innerhalb der Kernrezeptorklassen analysiert. Dazu wurde der paarweise Sequenzvergleich des Programmpackets *MOE* genutzt. Es wurden n(n-1)/2 Vergleiche erstellt und die Ähnlichkeitswerte ermittelt. Als SF wurde die BLOSUMN mit den Parametern gap-open = 10,0 und gap-extend = 0,5 verwendet. Die Ähnlichkeitswerte der Vergleiche ergaben eine quadratisch, symmetrische Matrix. Der Grad der Ähnlichkeit für jedes Sequenzpaar wurde als *heat map* in Abbildung 42 dargestellt. Das Spektrum der Farben erstreckt sich von blau zu rot und gibt den Ähnlichkeitswert für das entsprechende Sequenzpaar wieder. Je mehr das Farbspektrum in den roten Bereich verschoben ist desto höher ist die sequenzielle Ähnlichkeit des Kernrezeptorpaars zueinander. Die Dominanz des blauen Farbspektrums im *heat map* deutet auf eine geringe Sequenzidentität innerhalb der LBD der humanen Kernrezeptoren hin.

Abbildung 42: Ergebnis des paarweisen Sequenzvergleichs der LBD für alle n(n-1)/2 Kernrezeptoren. Das Farbspektrum reicht von blau nach rot, wobei eine Verschiebung in den roten Farbbereich eine Verstärkung der abgebildeten Eigenschaft (sequenzielle Ähnlichkeit nach BLOSUMN) darstellt. *hierbei handelt es sich um Homologiemodelle, nicht um Röntgenkristallstrukturen (Kapitel 5.1).

Die höchste Sequenzidentität von 52 % weist der NR3C3 zum NR3C4 auf, gefolgt vom NR3C1 mit einer Sequenzidentität von 47 % und dem NR3C2 mit einer Sequenzidentität von 45 %. Bis auf den NR1F1 mit einer Sequenzidentität von unter 10 %, weisen alle übrigen 32 Kernrezeptoren eine Sequenzidentität zwischen 10 % und 20 % zum NR3C4 auf. Die Untersuchung wurden durch eine paarweise strukturelle Analyse vervollständigt. Dazu wurde für jedes Kernrezeptorpaar ein C α -RMSD-Wert mit *MOE-Superpose* ermittelt. Die Ergebnisse wurden ebenfalls in eine quadratische (37 x 37) Matrix überführt, so dass die C α -RMSD-Werte als *heat map* dargestellt werden konnten (Abbildung 43).

Abbildung 43: Ergebnis des paarweises 3D-Strukturvergleichs der LBD für alle n(n-1)/2 Kernrezeptoren. Das Farbspektrum reicht von rot nach blau, wobei eine Verschiebung in den roten Farbbereich eine Verstärkung der abgebildeten Eigenschaft (strukturelle Ähnlichkeit in Å (RMSD)) darstellt. *hierbei handelt es sich um Homologiemodelle, nicht um Röntgenkristallstrukturen (Kapitel 5.1).

Je mehr das Farbspektrum in den roten Bereich verschoben ist desto geringer ist der C α -RMSD-Wert des betrachteten Kernrezeptorpaars - desto ähnlicher ist die 3D-Struktur des Paares zueinander. Der durchschnittliche C α -RMSD-Wert beträgt 2,48 Å und erstreckt sich über einen Bereich von 1,08 Å bis 3,80 Å. Einen RMSD-Wert kleiner 2 Å weisen nur die Kernrezeptoren NR3B2, NR3B3, NR3C1, NR3C2 und NR3C3 zum NR3C4 auf. Diese Ergebnisse zeigen, dass die untersuchten Kernrezeptoren große sequenzielle und sehr geringe strukturelle Unterschiede innerhalb der LBD besitzen.

Ergänzt wurde diese Untersuchung durch eine Analyse der Sequenzähnlichkeit und der Cα-RMSD-Werte innerhalb der LBT. Dazu wurden nach dem paarweisen Vergleich alle Aminosäuren der Kernrezeptoren, die innerhalb eines 4 Å großen Radius um den Liganden des NR3C4 lagen, selektiert. Der entsprechende Vergleich ist in Abbildung 44 dargestellt. Das Spektrum der Farben erstreckt sich von blau zu rot und gibt den Ähnlichkeitswert für das entsprechende Sequenzpaar wieder. Je mehr das Farbspektrum in den roten Bereich verschoben ist desto höher ist die sequenzielle Ähnlichkeit des Kernrezeptorpaars zueinander. Die Dominanz des blauen Farbspektrums im *heat map* deutet auf eine geringe Sequenzidentität innerhalb der LBT der humanen Kernrezeptoren hin. Wie bei den Sequenzidentität von 72 % zum NR3C4 aufweist, gefolgt vom NR3C1 mit einer Sequenzidentität von 59 %. Die Kernrezeptoren NR1C, NR1D und NR1I zeigen eine Sequenzidentität von unter 10 %.

Abbildung 44: Ergebnis des paarweisen Sequenzvergleichs der LBT für alle n(n-1)/2 Kernrezeptoren. Das Farbspektrum reicht von blau nach rot, wobei eine Verschiebung in den roten Farbbereich eine Verstärkung der abgebildeten Eigenschaft (sequenzielle Ähnlichkeit nach BLOSUMN) darstellt. *hierbei handelt es sich um Homologiemodelle, nicht um Röntgenkristallstrukturen (Kapitel 5.1).

Alle übrigen 32 Kernrezeptoren zeigen eine Sequenzidentität zwischen 10 % und 35 % zum NR3C4. Auch hier wurde zur Vervollständigung eine paarweise Strukturanalyse durchgeführt. Die C α -RMSD-Werte wurde mit *MOE-Superpose* für die selektierten Aminosäuren ermittelt. Die Ergebnisse wurden in eine quatratische (37 x 37) Matrix überführt, so dass die C α -RMSD-Werte als *heat map* dargestellt werden konnten (Abbildung 45).

Abbildung 45: Ergebnis des paarweisen 3D-Strukturvergleichs der LBT für alle n(n-1)/2 Kernrezeptoren. Das Farbspektrum reicht von rot nach blau, wobei eine Verschiebung in den roten Farbbereich eine Verstärkung der abgebildeten Eigenschaft (strukturelle Ähnlichkeit in Å (RMSD)) darstellt.

*hierbei handelt es sich um Homologiemodelle, nicht um Röntgenkristallstrukturen (Kapitel 5.1).

Das Spektrum der Farben erstreckt sich von blau zu rot und gibt den C α -RMSD-Wert für das entsprechende Sequenzpaar wieder. Die Dominaz des roten Farbspektrums im *heat map* deutet auf eine hohe strukturelle Ähnlichkeit innerhalb der LBT der humanen Kernrezeptoren hin. Die C α -RMSD-Werte erstrecken sich von 0,72 Å bis 3,85 Å. Im Durchschnitt beträgt der C α -RMSD-Wert 1,80 Å. Die 11 Kernrezeptoren NR1B1, NR2B1, NR2B2, NR3A1, NR3A2, NR3B1, NR3B2, NR3B3, NR3C1, NR3C2 und NR3C3 weisen mit C α -RMSD-Wert kleiner 1,5 Å die höchste strukturelle Ähnlichkeit zum NR3C4 auf. Ihre Sequenzielle Änlichkeit variiert jedoch zwischen 16 % und 72 % zum NR3C4. Weitere Untersuchungen in Kapitel 4.3 sollen einen genaueren Einblick in die Unterschiede und Gemeinsamkeiten der Kernrezeptoren NR1B1, NR2B1, NR2B2, NR3A1, NR3A2, NR3B1, NR3B2, NR3B3, NR3C1, NR3C2 und NR3C3 zum NR3C4 geben, da sie durch ihre strukturelle (und sequenzielle) Ähnlichkeit vermutlich eine erhöhte Affinität zu NR3C4-Liganden zeigen.

5.3 Strukturelle/sequenzielle Unterschiede im Bereich der Bindetasche

Für die gezielte Untersuchung von strukturellen und sequenziellen Unterschieden der LBT der 11 Kernrezeptoren NR1B1, NR2B1, NR2B2, NR3A1, NR3A2, NR3B1, NR3B2, NR3B3, NR3C1, NR3C2 und NR3C3 zum NR3C4 erfolgte eine räumliche Aufteilung in 5 Bereiche nach der NR3C4-LBT. Der erste Bereich erstreckt sich von Leu⁷⁰¹ bis Leu⁷¹² und entspricht einem Teil der H3 des NR3C4. Der zweite Bereich umfasst Gln⁷³⁸ bis Arg⁷⁵² und entspricht einem Teil der Helix H4 und H5 des NR3C4. Die Aminosäuren Leu⁷⁶², Phe⁷⁶⁴, Leu⁷⁶⁸, Phe⁷⁷⁰, Arg⁷⁷⁴, Ser⁷⁷⁸, Met⁷⁸⁰, Gln⁷⁸³, Cys⁷⁸⁴, Arg⁷⁸⁶ und Met⁷⁸⁷ bilden den Bereich 3, der einen Teil des antiparallen Faltblatt 1 (F1) des NR3C4 einschließt. Der vierte Bereich umfasst Leu⁸⁷³ bis Leu⁸⁸⁰ und entspricht einem Teil der H11. Der fünfte Teilbereich der Bindetasche ist von Phe⁸⁹¹ bis Val⁹⁰¹ definiert und entspricht einem Teil der H12 des NR3C4. Anhand des Vergleichs aus Kapitel 5.2 wurde die sequenzielle Ähnlichkeit der einzelnen Bereiche in Bezug auf den NR3C4 berechnet (Abbildung 46). Es kann davon ausgegangen werden, dass Bereiche mit einer geringen Ähnlichkeit ein Potential für die Entwicklung von spezifischeren Liganden darstellen. Die Ergebnisse ergaben für die gesamte LBT des NR3C4 im Durchschnitt eine Ähnlichkeit von 37 % zu den 11 Kernrezeptoren. Die höchste Ähnlichkeit mit 42 % zeigte der Bereich 1 (H3) und 2 (H4 und H5).

Abbildung 46: Die fünf Teilbereiche der LBT und die zugehörige prozentuale Konservierung der jeweiligen Aminosäuren. Die Daten wurden für die Kernrezeptoren NR1B1^{*}, NR2B1, NR2B2, NR3A1, NR3A2, NR3B1, NR3B2^{*}, NR3B3, NR3C1, NR3C2, NR3C3 und NR3C4 erhoben. *hierbei handelt es sich um Homologiemodelle, nicht um Röntgenkristallstrukturen (Kapitel 5.1).

Die Aminosäuren im Bereich 3 (F1) sind im Durchschnitt zu 39 %, im Bereich 5 (H12) zu 32 % und im Bereich 4 (H11) nur noch zu 21 % gleich. Geht man vom Erhalt der Aminosäurezusammensetzung der einzelnen Bereiche aus, so lässt sich vermuten, dass sich spezifische Liganden durch Substitutionen der in Bereichen 4 (11) und 5 (H12) bindenden Molekülteile synthetisieren lassen. Weiterhin wurde betrachtet, welche Aminosäuren im Einzelnen innerhalb der 5 Bereiche konserviert sind. Einen 100%igen Erhalt zeigten die Aminosäuren Arg⁷⁵² im Bereich 2 (H4 und H5) und Glu⁸⁹⁷ im Bereich 5 (H12). Auf Grund der Konservierung ist davon auszugehen, dass das Argenin und die Glutaminsäure eine entscheidende Rolle bei allen 11 Kernrezeptoren spielen. Im NR3C4 dient das Argenin als Anker für die Liganden des Rezeptors. Die besondere Bedeutung von Glu⁸⁹⁷ ist noch unbekannt. Eine Konservierung von 80 % bis 99 % zeigten die Aminosäuren Leu⁷⁰⁴ und

Leu⁷⁰⁷ im Bereich 1 (H3), Trp⁷⁴¹ im Bereich 2 (H4 und H5), sowie Leu⁷⁶² und Leu⁷⁶⁸ im Bereich 3 (F1). Unter 10 % Übereinstimmung zeigten die Aminosäuren Gly⁷⁴³ und Met⁷⁴⁹ im Bereich 2 (H4 und H5) und Thr⁸⁷⁷ und Asp⁸⁷⁹ im Bereich 4 (H11) sowie Val⁹⁰¹ im Bereich 5 (H12). Was bedeuten diese Ergebnisse für die Entwicklung von spezifischen NR3C4 Liganden? Um die Spezifität von NR3C4-Liganden zu erhöhen sollten bei der Synthese die Bereiche des Liganden besonders berücksichtigt werden, die sich in räumlicher Nähe zu den Aminosäuren mit einer geringen Konservierung befinden. Um noch genauere Aussagen treffen zu können, wurden die sequenziellen Untersuchungen durch strukturelle Analysen vervollständigt. Die Cα-RMSD-Werte wurden mit *MOE-Superpose* von *MOE* für die 11 Kernrezeptorklassen für die jeweiligen Bereiche der LBT berechnet (Abbildung 47).

Abbildung 47: Die fünf Teilbereiche der LBT mit den Liganden von 10 Kernrezeptoren und die zugehörige strukturelle Ähnlichkeit pro Rezeptor. Es sind die Liganden der Röntgenkristallstrukturanalysen der 10 Kernrezeptoren NR2B1, NR2B2, NR3A1, NR3A2, NR3B1, NR3B3, NR3C1, NR3C2, NR3C3 und NR3C4 in der LBT des NR3C4 (PDB-Code: 2HVC) dargestellt. Die Diagramme zeigen die RMSD-Werte (Å) der Kernrezeptoren NR1B1^{*}, NR2B1, NR2B2, NR3A1, NR3A2, NR3B1, NR3B3, NR3C1, NR3C2 und NR3C3 zum NR3C4 für die einzelnen Teilbereiche der Bindetasche (berechnet auf den C α -Atomen).

^{*}hierbei handelt es sich um Homologiemodelle, nicht um Röntgenkristallstrukturen (Kapitel 5.1).

Im Durchschnitt zeigte der Bereich 1 (H3) und 2 (H4 und H5) den kleinsten C α -RMSD-Wert mit 1,01 Å und 1,06 Å zum NR3C4. Für den Bereich 3 (F1) und 4 (H11) wurden C α -RMSD-Werte von 1,75 Å und 1,36 Å zum NR3C4 berechnet. Der Bereich 5 (H12) zeigte den höchsten C α -RMSD-Wert mit 2,36 Å.

Zusammenfassend ergeben sich im Bereich 2 (H4 und H5), 4 (H11) und 5 (H12) deutliche sequenzielle Unterschiede. Einzelne Aminosäuren in diesen Bereichen zeigen eine Ähnlichkeit von unter 10 % zum NR3C4 innerhalb der 11 Kernrezeptoren (Abbildung 46). Strukturelle Unterschiede von mehr als 2 Å zwischen dem NR3C4 und einigen der 11 Kernrezeptoren zeigen sich im Bereich 3 (F1), 4 (H11) und 5 (H12; Abbildung 47). Liganden die in diesem Bereich spezifisch mit den Aminosäuren des NR3C4 wechselwirken, gehen vermutlich potentiell geringere Kreuzreaktionen mit anderen Kernrezeptoren ein.

5.4 Kreuzdocking

Nachdem in Kapitel 5.3 strukturelle und sequenzielle Bereiche des NR3C4 identifiziert wurden, die eine entscheidende Rolle für die Spezifität von NR3C4 Liganden spielen könnten, sollten die neu identifizierten Liganden (Kapitel 3.6) mit einem K_i-Wert unter 5 μ M hinsichtlich ihrer Spezifität zum NR3C4 bewertet werden.

Zu diesem Zweck sollten die Liganden in die 11 Kernrezeptoren mit hoher Kreuzreaktionswahrscheinlichkeit (Kapitel 5.2) gedockt werden. Die Bewertung der Spezifität sollte anschließend anhand der Dockingergebnisse und den experimentell ermittelten quantitativen Struktur-Aktivitäts-Beziehungen erfolgen.

5.4.1 Re-Docking

Da die Ergebnisse einer Dockingprozedur nicht *target*-unabhängig sind, sollte zunächst überprüft werden, ob das Dockingprotokoll des NR3C4 (Kapitel 3.6) auf die 11 Kernrezeptoren anwendbar ist. Wie in Kapitel 3.3.1 wird mit dem Re-Docking überprüft wie genau die Position des Liganden eines gegebenen Ligand-Protein-Komplexes einer Röntgenkristallstruktur mit Hilfe der Dockingprozedur wiedergegeben werden kann.

Für diesen Zweck wurden die Ligand-Protein-Komplexe aus Kapitel 5.3 verwendet. Zuerst wurden die Wasserstoffe addiert, die Wassermoleküle entfernt und der Ligand aus der Röntgenkristallstruktur extrahiert. Um die Flexibilität der Kernrezeptoren zu berücksichtigen, wurden während des Dockings die korrespondierenden Seitenketten (Anhang 9.2.16

Tabelle 19) aus der optimierten Dockingprozedur des NR3C4 (Kapitel 3.6) flexibel gehalten. Die extrahierten Liganden wurden durch die Dockingprozedur in die Bindetasche des Rezeptors platziert und mit der SF bewertet. Die Positionierung mit dem besten *score* wurde mittels RMSD-Wert (Kapitel 2.8) mit der entsprechenden Protein-Ligand-Röntgenkristallstruktur verglichen. Die Ergebnisse sind in Tabelle 13 dargestellt.

Tabelle 13: Ergebnisse des Re-Dockings mit PLANTS und CHEMPLP. Die Aminosäuren die während des Dockings flexibel waren, sind in Tabelle 19 dargestellt. Für die Kernrezeptorklassen NR1B1 und NR3B2 standen nur Homologiemodelle (HM) zur Verfügung. Der RMSD-Wert bezieht sich auf die Atomkoordinaten des Liganden aus der Röntgenkristallstruktur und des Liganden aus der Dockinganordnung, ohne Berücksichtigung der Wasserstoffatome. Zusätzlich wurde der PDB-Code der verwendeten Röntgenkristallstruktur angegeben, sowie die verwendete Proteinkette, die Auflösung der Röntgenkristallstruktur und der Name des Liganden.

Kernrezeptor- klasse	PDB- Code	Kette	Auflösung [Å]	Ligand	RMSD- Wert [Å]	Score
NR1B1	HM	-	-	-	-	-
NR2B1	1MVC	А	1,90	BMS649 (143)	0,74	-127
NR2B2	1UHL	А	2,90	Metroprensäure (144)	2,35	-76
NR3A1	2P15	А	1,94	EZT (145)	0,59	-102
NR3A2	1YYE	А	2,03	196 (146)	0,30	-105
NR3B1	1XB7	А	2,50	-	-	-
NR3B2	HM	-	-	-	-	-
NR3B3	2E2R	А	1,60	Bisphenol A (147)	0,39	-104
NR3C1	1M2Z	А	2,50	Dexamethason (148)	0,42	-119
NR3C2	2AAX	А	1,75	Prednison (149)	0,41	-120
NR3C3	1SR7	А	1,49	Mometasonfuroat (150)	0,74	-131

Der RMSD-Wert betrug für alle Liganden (**143, 145-150**), bis auf die Metroprensäure (**144**), in der besten Dockingposition weniger als 1 Å. Der RMSD-Wert für die Metroprensäure betrug 2,35 Å und war somit um 1,61 Å bis 1,94 Å schlechter im Vergleich zu den anderen sieben Ergebnissen. Der schlechtere RMSD-Wert für die Metroprensäure ergabt sich vermutlich durch die schlechte Auflösung der Röntgenkristallstruktur (2,9 Å) sowie durch die hohe Flexibilität des Liganden. Trotzallem zeigten die RMSD-Werte, dass die Dockingprozeduren die Liganden-Protein-Komplexe in einem akzeptablem Rahmen wiedergeben. Es kann davon ausgegangen werden, dass strukturell ähnliche Liganden mit ähnlicher Genauigkeit gedockt werden können.

5.4.2 Bewertung der Scoringfunktion

Wie die Ergebnisse aus Kapitel 5.4.1 zeigten kann die Dockingprozedur aus Kapitel 5.3 für alle 11 Kernrezeptoren angewandt werden. Es stellt sich nun die Frage: Können mit Hilfe des Dockingalgorithmus und der *CHEMPLP*-Funktion wichtige strukturelle Abhängigkeiten für die experimentell ermittelten, quantitativen Struktur-Wirkungs-Beziehungen identifiziert

werden? Hierfür wurden die Strukturen der neu identifizierten Liganden (Kapitel 3.4) und die Standardverbindungen (Kapitel 3.6.1) in die 11 Kernrezptoren analog zu Kapitel 5.4.1 gedockt. Parallel dazu wurden die Ki-Werte der Substanzen mit Hilfe eines Fluoreszenzpolarisation-Rezeptorbindungsassay von C. Bobach, A. Denkert und K. Palberg an den Kernrezeptoren NR3A1, NR3A2, NR3C1 und NR3C3 bestimmt.^{176;187} Für die Kernrezeptoren NR1B1, NR2B1, NR2B2, NR3B1, NR3B2, NR3B3 und NR3C2 konnte im Rahmen der Arbeit kein Assay durchgeführt werden. Die Testsubstanzen wurden in einer Konzentration von 10 µM und 100 µM am entsprechenden Rezeptor getestet. Zeigten die Testverbindungen bei einer Konzentration von 10 µM eine prozentuale Aktivität von über 50 %, so wurde der IC₅₀-Wert ermittelt und der K_i-Wert nach Kenakin¹⁷¹ berechnet. Parallel dazu wurden die Strukturen der Testsubstanzen in die 11 Kernrezptoren analog zu Kapitel 5.4.1 gedockt. Die ermittelten K_i-Werte unterscheiden sich für die Kernrezeptoren NR3A1, NR3A2 und NR3C3 um 6 Größenordnungen bzw. um 5 Größenordnungen für den NR3C1 (Tabelle 25 - Tabelle 28). Geht man davon aus, dass ein mathematischer Zusammenhang zwischen dem Ki-Wert und der bei der Bindung des Liganden am Rezeptor frei werdenden Energie besteht und betrachtet man zusätzlich das große Aktivitätsspektrum, so sollte eine korrekte Bewertung der Rangfolge der Moleküle durch die SF möglich sein. Die Ergebnisse in Tabelle 25, Tabelle 26, Tabelle 27 und Tabelle 28 (Anhang 9.5) zeigten, dass eine korrekte experimentell ermittelte Aktivitätsreihenfolge mit Hilfe der SF nicht wiedergegeben werden kann, aber Verbindungen mit niedrigen Ki-Werten korrekt von Verbindungen mit hohen K_i-Werten getrennt werden konnten.

Die durchschnittliche Differenz zwischen den experimentell und *in silico* bestimmten pK_i-Wert betrug $\pm 0,706$ nM (NR3A1: $\pm 0,907$ nM; NR3A2: $\pm 0,724$ nM; NR3C1: $\pm 0,553$ nM; NR3C3: $\pm 0,726$ nM). Jedoch konnte eine mathematische Abhängigkeit (durch eine Korrelation nach Spearman) zwischen den berechneten *scores* und experimentell bestimmten pK_i-Werten nachgewiesen werden (Abbildung 48). So ergab sich für den NR3C3, für den auch die meisten experimentellen Daten zur Verfügung standen ein R²-Wert von 0,78 (R-Wert: 0,88). Der F-Wert betrug 49,1 und der p-Wert war kleiner 0,0001. Für den NR3C1 und NR3A2 konnte ein R²-Wert von 0,75 (R-Wert: 0,87; F-Wert: 29,6; p-Wert: <0,0001) bzw. 0,71 (R-Wert: 0,84; F-Wert: 12,4; p-Wert: 0,017) bestimmt werden. Für den NR3A1, für den die wenigsten experimentellen Daten zur Verfügung standen, konnte nur eine Korrelation mit einem R²-Wert von 0,58 (R-Wert:0,76; F-Wert: 6,9; p-Wert: 0,046) erreicht werden.

107

Abbildung 48: Korrelation nach Spearman zwischen den *score* und pK_i-Werten für die Kernrezeptoren NR3A1, NR3A2, NR3C1 und NR3C3. Zusätzlich ist für jede Korrelation der R²-Wert angegeben.

5.4.3 Struktur-Aktivitätsbeziehungen

Im Folgenden soll diskutiert werden, warum manche Liganden des NR3C4 starke bzw. weniger starke Affinitäten zu anderen humanen Kernrezeptoren zeigten. Die Diskussion konzentriert sich auf die NR3C4 Liganden QDM276 (**52**), QDM255 (**40**), β -Sitosterol (**34**), Guggulsteron *E* (**36**) und Guggulsteron *Z* (**38**) und die humanen Kernrezetoren NR1B1, NR2B1, NR2B2, NR3A1, NR3A2, NR3B1, NR3B2, NR3B3, NR3C1, NR3C2 und NR3C3, die eine hohe Ähnlichkeit zum NR3C4 zeigten (Kapitel 5.3). Die 5 Liganden wurden auf Grund ihres K_i-Wertes (kleiner 5 µM) zum NR3C4 ausgewählt.

Die Ergebnisse dieser Untersuchung sind in Tabelle 14 dargestellt. Die Tabelle zeigt für den jeweiligen Liganden den besten *score* für alle untersuchten Rezeptoren und den *score* für den NR3C4 zum Vergleich. Aus den *scores* lässt sich ableiten, dass die Verbindungen QDM276 (**52**) und Guggulsteron E (**36**) wahrscheinlich neben der Affinität zum NR3C4 eine Affinität zum NR3C1, NR3C2 und NR3C3 aufweisen. QDM255 (**40**) zeigt vermutlich zusätzliche Kreuzreaktionen mit NR3C2 und NR3C3, während β -Sitosterol (**34**) und Guggulsteron Z (**38**) neben ihrer Affinität zum NR3C4 vermutlich eine Kreuzreaktion zum NR3C2 zeigen.

Tabelle 14: Dockingergebnisse der entsprechenden Ligand-Rezeptor-Komplexe. Es ist jeweils der beste *score* für den entsprechenden Ligand-Rezeptor-Komplexe angegeben. Zum Vergleich sind die *scores* für die jeweiligen Ligand-NR3C4-Komplexe aus Kapitel 3.5 dargestellt (grün). Rot hinterlegt sind die *scores*, die auf eine erhöhte Affinität zwischen Ligand und Rezeptor hindeuten.

Kernrezeptorklasse	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
Liganden	1B1	2B1	2B2	3A1	3A2	3B1	3B2	3B3	3C1	3C2	3C3	3C4
QDM276 (52)	-77	-78	-87	-96	-95	n.b.	n.b.	-87	-103	-100	-102	-112
QDM255 (40)	-80	-75	-81	-99	-98	n.b.	n.b.	-72	-72	-103	-101	-103
β-Sitosterol (34)	-71	-95	-78	n.b.	n.d.	n.b.	n.b.	n.b.	-96	-120	-93	-109
Guggulsteron E (36)	-85	-78	-84	-96	-94	n.b.	n.b.	-87	-101	-115	-102	-106
Guggulsteron Z (38)	-79	-86	-85	-91	-96	n.b.	n.b.	-89	-98	-113	-99	-107

Für den aktivsten neu identifizierten NR3C4-Liganden **QDM276** (**52**; K_i-Wert: 10,63 nM \pm 2,7; *score*: -112) konnte nur in Komplex mit NR3C1, NR3C2 und NR3C3 ein *score* kleiner gleich -100 berechnet werden. Dies deutet darauf hin, dass die Verbindung QDM276 (**52**) auch eine ähnliche Affinität zu diesen 3 Kernrezeptoren aufweisen könnte. In experimentellen Tests konnte für QDM276 (**52**) ein K_i-Wert von 124 nM \pm 9 am NR3C1 und ein K_i-Wert von 66 nM \pm 20 am NR3C3 nachgewiesen werden. Diese geringen Unterschiede des K_i-Wertes im Vergleich zum NR3C4 und der *score* zum NR3C2, der darauf hindeutet, dass die Verbindung QDM276 (**52**) im Vergleich zum NR3C4 eine ähnliche Aktivität zum NR3C2 besitzt, machen QDM276 (**52**) zu einem unspezifischen NR3C-Liganden. Am NR3A1 bzw. NR3A2 zeigte die Verbindung QDM276 (**52**) einen um 2 bzw. 3 Größenordnungen schlechteren K_i-Wert im Vergleich zum NR3C4 *in vitro* (Tabelle 15). Dies kann durch die Dockingergebnissen bestätigt werden (Tabelle 15).

Tabelle 15: Experimentelle pK_i-Werte und *scores* für 12 QDM276- und 12 QDM255-Rezeptorkomplexe. Zusätzlich ist ein Ausschnitt aus dem Sequenzvergleich der 37 humanen Kernrezeptoren (vollständiger Sequenzvergleich siehe Abhang 9.5 Tabelle 23) abgebildet.

Klasse	QDM2	276 (52)	QDM2	55 (40)	Sequenzvergleich
	pK _i - Wert	score	pK _i - Wert	score	
NR1B1	n.b.	-77	n.b.	-80	S^{229} V^{309}
NR2B1	n.b.	-78	n.b.	-75	C^{369} V^{349}
NR2B2	n.b	-87	n.b	-81	C^{340} V^{420}
NR3A1	-3,49	-96	-3,31	-99	T^{347} L^{428}
NR3A2	-4,12	-95	-3,46	-98	T ²⁹⁹ L ³⁴⁰
NR3B1	n.b.	n.b.	n.b.	n.b.	C^{325} L^{405}
NR3B2	n.b.	n.b.	n.b.	n.b.	C ²⁴⁴ I ³²⁴
NR3B3	n.b.	-87	n.b.	-72	C ²⁶⁹ I ³⁴⁹
NR3C1	-2,09	-103	> 100 [*]	-72	N ⁵⁶⁴ M ⁶⁴⁶
NR3C2	n.b.	-102	n.b.	-103	N^{770} M^{852}
NR3C3	-1,82	-102	> 100 [*]	-101	N ⁷¹⁹ M ⁸⁰¹
NR3C4	-1,03	-112	-3,26	-103	N^{705} M^{787}

n.b.: nicht bestimmt; ^{*}prozentuale Aktivität (Testkonzentration:100 µM bezogen auf 10 µM Standardsubstanz)

Ein Grund für die geringere Affinität am NR3A1 und NR3A2 könnte die 3-Ketogruppe sein. Die NR3A1 und NR3A2 binden vorzugsweise Steroide mit einem phenolischen A-Ring, im Gegensatz zu 3-ketosubstituierten Steroiden.¹⁸⁸ Für die Kernrezeptoren NR1B1, NR2B1, NR2B2, NR3B3 wurden ebenfalls *scores* von größer -100 berechnet, was darauf hindeutet, dass die Verbindung vermutlich eine geringe Affinität zu diesen Rezeptoren im Vergleich zum NR3C4 zeigt. Für die Kernrezeporen NR3B1 und NR3B2 konnte keine Dockingposition für die Struktur QDM276 (**52**) innerhalb der LBT berechnet werden. Eine Überlagerung der erhaltenen 10 QDM276-Rezeptor-Komplexe mit *MOE-Superpose* zeigte, dass bei allen Kernrezeptorklassen QDM276 (**52**) eine ähnliche räumliche Anordnung in der LBT einnimmt. In einem Radius von 4 Å um den Liganden befinden sich zwei Aminosäuren, Asparagin und Methionin, die nur im NR3C1, NR3C2, NR3C3 und NR3C4 konserviert sind (Abbildung 49).

Abbildung 49: Wechselwirkungsplot für QDM276 (52) im NR3C4. Dargestellt sind die konservierten Aminosäuren des NR3C4, die in einem Radius von 4 Å um den Liganden liegen und in der NR3C-Kernrezeptorklasse zu 100 % konserviert sind. Die Atome die dem Lösungsmittel zugänglich sind, sind blau markiert.

Die 17 β -Hydroxylgruppe des Liganden QDM276 (**52**) bildet eine Wasserstoffbrücke zum O^{δ 1} des Asparagin und spielt somit eine Rolle bei Affinität des Liganden zum Rezeptor. Ein Austausch vom Asparagin gegen ein Cystein, wie es für die Kernrezeptoren NR2B1, NR2B2, NR3B2 NR3B3 Fall NR3B1, und der ist, verhindert vermutlich eine Wasserstoffbrückenbildung an dieser Position, was zu einer Affinitätsverringerung führen kann. Für den Kernrezeptor NR1B1 ist Asparagin gegen ein Serin und für die Kernrezeptoren NR3A1 und NR3A2 gegen ein Threonin ausgetauscht, welche die Ausbildung einer Wasserstoffbrücke zur 17β-Hydroxylgruppe des Liganden erlauben. Die räumliche Nähe von Methionin zur COOCH₃-Seitenkette am C-7 von QDM276 (52) ermöglicht die Ausbildung

von schwachen Van-der-Waals-Kontakten. Durch einen Austausch der Aminosäure Methionin mit einer polaren Seitenkette gegen eine Aminosäure mit einer hydrophoben Seitenkette, wie es für die Rezeptoren NR1B1, NR2B1, NR3A1, NR3A2, NR3B1, NR3B2 und NR3B3 der Fall ist (Tabelle 15), kommt es zu einer Abstoßung zwischen der COOCH₃-Gruppe des Liganden und der hydrophoben Seitenkette der Aminosäure. Dies kann die Ursache für eine starke Verschlechterung des Ki-Wertes sein. Genauere Aussagen können nur durch aufwendige Moleküldynamik-Simulationen und die Berechnung der freien Energie getroffen werden. Oder durch eine in vitro Testung an Rezeptoren mit der entsprechenden Mutation am Methionin bzw. Asparagin. Die Testung von QDM255 (40), das sich nur durch die Seitenkette am C7-Atom von QDM276 (52) unterscheidet, verdeutlicht die Wichtigkeit der C7-Seitenkette für die Affinität des Liganden zum jeweiligen Rezeptor. Die Dockingergebnisse zeigten eine ähnliche räumliche Anordnung von QDM255 (40) im Vergleich zu QDM276 (52). QDM255 (40) zeigte eine prozentuale Inhibierung von über 50 % bei einer Konzentration von 100 µM am NR3C1 und NR3C3, der score suggerierte jedoch ein anderes Ergebnis. Hier lagen die scores für alle 3-Ketosteroidrezeptoren unter -100, außer für NR3C1. Geht man davon aus, dass es sich um eine korrekte, aber durch die SF überbewertete Dockinganordnungen handelt, so müssen die nicht zu 100 % konservierten Aminosäuren in räumlicher Nähe zur C7-Seitenkette des QDM255 (40) eine Rolle in der Spezifität spielen. Eine genauere Aussage kann aber nur durch eine Moleküldynamik-Simulationen und die Berechnung der freien Energie getroffen werden, oder durch eine Testung an den Kernrezeptoren mit entsprechenden Mutationen.

Interessant ist weiterhin, dass der K_i-Wert für QDM255 (**40**) und NR3A1 bzw. NR3A2 in der gleichen Größenordnung liegt wie der K_i-Wert für QDM255 (**40**) in Komplex mit dem NR3C4. Diese Beobachtung konnte für QDM276 (**52**), mit einem um 2 bzw. 3 Größenordnungen schlechteren K_i-Wert im Gegensatz zum NR3C4, nicht gemacht werden (Tabelle 15). Eine Erklärung für diese Beobachtung könnte vermutlich ein Vergleich von Moleküldynamik-Simulation mit QDM255 (**40**) bzw. QDM276 (**52**) in Komplex mit NR3A1, NR3A2 und NR3C4 liefern.

β-Sitosterol (**34**) zeigte beim Docking einen *score* kleiner -100 für die Rezeptoren NR3C4 und NR3C2. Für die Kernrezeptoren NR1B1, NR2B1, NR2B2, NR3C1 und NR3C3 wurden schlechtere *scores* von größer -100 für die beste Dockingposition berechnet (Tabelle 16). Für die Kernrezeptoren NR3A1, NR3A2, NR3B1, NR3B2 und NR3B3 konnte keine Dockingposition innerhalb der Ligandenbindetasche berechnet werden.

111

Klasse	β-Sitost	terol (34)				Se	equ	enzve	ergl	leich				
	pK _i - Wert	score												
NR1B1	n.b.	-71	I) ²²¹	. W ²²⁵	 $L^{269}I^{270}$		I^{273}		$A^{300}GF^{302}$	 $R^{394}V^{395}$	 L ³⁹⁸	 E ⁴⁰¹	
NR2B1	n.b.	-95	I	,261	. V ³⁶⁵	 $L^{309}I^{310}$		F^{313}		$A^{340}GV^{342}$	 ${\rm H}^{435}{ m L}^{436}$	 F^{439}	 I ⁴⁴²	
NR2B2	n.b.	-78	I	,332	. V ³³⁶	 L ³⁸⁰ I ³⁸¹		F ³⁸⁴		${\rm A}^{411}{\rm GV}^{413}$	 ${\rm H}^{506}{ m L}^{507}$	 F ⁵¹⁰	 I ⁵¹³	
NR3A1	< 100 [*]	n.b.	E	339 .	. M ³⁴³	 $L^{387}M^{388}$		L ³⁹¹		$V^{418}GM^{420}$	 ${\rm H}^{524}{ m L}^{525}$	 M^{528}	 K ⁵³¹	
NR3A2	< 100 [*]	n.b.	E	291 .	. M ²⁹⁵	 $L^{339}M^{340}$		L ³⁴³		V ³⁶⁹ GI ³⁷¹	 ${\tt H}^{475} {\tt L}^{476}$	 M^{479}	 K ⁴⁸²	
NR3B1	n.b.	n.b.	F	.317	. V ³²¹	 $L^{365}V^{366}$		V ³⁶⁹		$A^{395}GL^{397}$	 ${\rm H}^{494}{ m F}^{495}$	 V ⁴⁹⁸	 E^{501}	
NR3B2	n.b.	n.b.	I	236	. L ²⁴⁰	 $L^{284}I^{285}$		I ²⁸⁸		$\mathrm{A}^{\mathrm{315}}\mathrm{GL}^{\mathrm{317}}$	 ${\rm H}^{409}{ m F}^{410}$	 V^{413}	 Q ⁴¹⁶	
NR3B3	n.b.	n.b.	I	261	. L ²⁶⁵	 L ³⁰⁹ I ³¹⁰		V ³¹³		$\mathrm{A}^{\mathrm{340}}\mathrm{GL}^{\mathrm{342}}$	 ${\rm H}^{434}{ m F}^{435}$	 I ⁴³⁸	 E^{441}	
NR3C1	-3,12	-96	ר	556	. M ⁵⁶⁰	 $M^{604}A^{605}$		L^{608}		P ⁶³⁷ CM ⁶³⁹	 Y ⁷³⁵ C ⁷³⁶	 T^{739}	 D ⁷⁴²	
NR3C2	n.b.	-120	I	762	. L ⁷⁶⁶	 $L^{810}S^{811}$		L ⁸¹⁴		S ⁸⁴³ AM ⁸⁴⁵	 $F^{341}C^{342}$	 T^{945}	 E ⁹⁴⁸	
NR3C3	-3,78	-93	5	711 .	. L ⁷¹⁵	 $M^{759}V^{760}$		L^{763}		S ⁷⁹² SM ⁷⁹⁴	 Y ⁸⁹⁰ C ⁸⁹¹	 T ⁸⁹⁴	 Q ⁸⁹⁷	
NR3C4	-3,49	-109	I	697	. L ⁷⁰¹	 $M^{745}V^{746}$		M ⁷⁴⁹		S ⁷⁷⁸ RM ⁷⁸⁰	 F ⁸⁷⁶ T ⁸⁷⁷	 L ⁸⁸⁰	 K ⁸⁸³	

Tabelle 16: Experimentelle pK_i-Werte und *scores* für 12 β -Sitosterol-Rezeptorkomplexe. Zusätzlich ist ein Ausschnitt aus dem Sequenzvergleich der 37 humanen Kernrezeptoren (vollständiger Sequenzvergleich siehe Anhang 9.5 Tabelle 23) abgebildet.

n.b.: nicht bestimmt; *prozentuale Aktivität (Testkonzentration:100 µM bezogen auf 10 µM Standardsubstanz)

Vergleicht man die erhaltenen Dockingpositionen der jeweiligen Rezeptoren miteinander, so nimmt ß-Sitosterol (34) in den Kernrezeptoren eine ähnliche räumliche Anordnung ein. Experimentell konnten für β-Sitosterol (34) am NR3C1 und NR3C3 K_i-Werte in der gleichen Größenordnung wie beim NR3C4 beobachtet werden, was sich nicht im score widerspiegelt (Tabelle 16). Für die Kernrezeptoren NR3A1 und NR3A2 wurde eine prozentuale Inhibierung von unter 50 % bei einer Konzentration von 100 µM in vitro ermittelt (Tabelle 16). Betrachtet man den sehr guten score von -120 für β-Sitosterol (34) am NR3C2 und die K_i-Werte für die Rezeptoren NR3C1 und NR3C3, so ist β-Sitosterol (34) ein unspezifischer Ligand der NR3C-Klasse. Die unterschiedliche Affinität von β-Sitosterol (34) zu NR3C1, NR3C2, NR3C3 und NR3C4 im Gegensatz zu den NR1B1, NR2B1, NR2B2, NR3A1, NR3A2, NR3B1, NR3B2 und NR3B3 ist möglicherweise auf Interaktionen mit 12 Aminosäuren zurückzuführen, die mittels MOE-Superpose identifiziert wurden. Dazu wurden die 11 Kernrezeptoren mit dem NR3C4 überlagert und alle Aminosäuren mit einem Radius von 4 Å um den Liganden selektiert. Die Aminosäuren die in den NR3C zu 100 % konserviert waren wurden subtrahiert. Bei den dadurch identifizierten 12 Aminosäuren des NR3C4 handelt es sich um die Aminosäuren Met⁷⁴⁵, Val⁷⁴⁶ und Met⁷⁴⁹, die sich in räumlicher Nähe der 3β-Hydroxylgruppe befinden und die Aminosäuren Phe⁶⁷⁹, Leu⁷⁰¹, Ser⁷⁷⁸, Arg⁷⁷⁹, Met⁷⁸⁰, Phe⁸⁷⁶, Thr⁸⁷⁷, Leu⁸⁸⁰ und Lys⁸⁸³, die sich in räumlicher Nähe zur Seitenkette am C-17 befinden (Abbildung 50).

112

Abbildung 50: Wechselwirkungsplot für β -Sitosterol (34) im NR3C4. Dargestellt sind die Aminosäuren des NR3C4, die in einem Radius von 4 Å um den Liganden liegen und nicht zu 100 % in der NR3C-Klasse konserviert sind. Die Atome die dem Lösungsmittel zugänglich sind, sind blau markiert.

Welche Kombination an Substituenten der 17 β -Seitenkette des β -Sitosterols (**34**) zu einem selektiveren Liganden führt, kann vermutlich durch die Synthese und *in vitro* Testung von verschieden Derivaten sowie Moleküldynamik-Simulationen verschiedener Derivate und der Berechnung der freien Energie in zukünftigen Studien herausgefunden werden.

Die Dockingpositionen von Guggulsteron E (**36**) und Guggulsteron Z (**38**) zeigten in 10 Kernrezeptoren eine ähnliche räumliche Anordnung. Strukturell unterscheiden sich die beiden Strukturen nur in ihrer Konfiguration der Doppelbindung zwischen C17 und C20. Für Guggulsteron E (**36**) und Z (**38**) konnten am NR3C2 und NR3C4 ein *score* kleiner -100 und am NR1B1, NR2B1, NR2B2, NR3A1 und NR2A2 ein *score* größer -100 berechnet werden (Tabelle 17). Am NR3C1 und NR3C3 konnte nur für Guggulsteron E (**36**) ein *score* kleiner -100 errechnet werden (Tabelle 17). Am NR3B1 und NR3B2 konnte weder für Guggulsteron Z (**38**) noch für Guggulsteron E (**36**) eine Dockingposition innerhalb der LBT ermittelt werden. *In vitro* wurde für Guggulsteron E (**36**) am NR3C1 ein um zwei Größenordnungen besserer K_i-Wert im Vergleich zum NR3C4 bestimmt. Für Guggulsteron Z (**38**) lag die prozentuale Inhibierung mit einer Konzentration von 100 µM bei über 50 % (Tabelle 17). Für Guggulsteron E (**36**) in Komplex mit NR3C3 konnte *in vitro* ein K_i-Werte bestimmt werden, der um eine Größenordnung besser ist im Vergleich zum NR3C4 (Tabelle 17). Für Guggulsteron Z (**38**) konnte hingegen ein K_i-Wert in der gleichen Größenordnung wie am NR3C4 bestimmt werden (Tabelle 17).

Klasse	Guggul (3	steron <i>E</i> 86)	Guggulsteron Z (38)		Sequenzvergleich
	pK _i -	score	рК _і -	score	
	Wert		Wert		
NR1B1	n.b.	-85	n.b.	-79	W^{225} L^{269} I^{273} F^{302} R^{394} L^{398}
NR2B1	n.b.	-78	n.b.	-86	V^{265} L^{309} F^{313} V^{342} H^{435} F^{439}
NR2B2	n.b.	-84	n.b.	-85	V^{336} L^{380} F^{384} V^{413} H^{506} F^{510}
NR3A1	< 100 [*]	-96	< 100 [*]	-91	M^{343} L^{387} L^{391} M^{420} H^{524} M^{528}
NR3A2	< 100 [*]	-94	< 100 [*]	-96	M^{295} L^{339} L^{343} I^{371} H^{475} M^{479}
NR3B1	n.b.	n.b.	n.b.	n.b.	V^{321} L^{365} V^{369} L^{397} H^{494} V^{498}
NR3B2	n.b.	n.b.	n.b.	n.b.	L^{240} L^{284} I^{288} L^{317} H^{409} V^{413}
NR3B3	n.b.	-87	n.b.	-89	\texttt{L}^{765} \texttt{L}^{309} \texttt{V}^{313} \texttt{L}^{342} \texttt{H}^{434} \texttt{I}^{438}
NR3C1	-1,24	-101	> 100 [*]	-98	M^{560} M^{604} L^{608} M^{639} Y^{735} T^{739}
NR3C2	n.b.	-115	n.b.	-113	L^{766} L^{810} L^{814} M^{845} F^{341} T^{945}
NR3C3	-2,81	-102	-3,47	-99	L^{715} M^{759} L^{763} M^{794} Y^{890} T^{894}
NR3C4	-3.64	-106	-3.53	-107	$_{\rm m}$ T $_{\rm r}^{701}$ $_{\rm m}$ M 745 $_{\rm m}$ M 749 $_{\rm m}$ M 780 $_{\rm m}$ F 876 $_{\rm m}$ T $_{\rm r}^{880}$ $_{\rm m}$

Tabelle 17: Experimentelle pK_i-Werte und *scores* für 11 Guggulsteron *E*- und Guggulsteron *Z*-Rezeptorkomplexe. Zusätzlich ist ein Ausschnitt aus dem Sequenzvergleich der 37 humanen Kernrezeptoren (vollständiger Sequenzvergleich siehe Anhang 9.5 Tabelle 23) abgebildet.

n.b.: nicht bestimmt; *prozentuale Aktivität (Testkonzentration:100 µM bezogen auf 10 µM Standardsubstanz)

Für die Kernrezeptoren NR3A1 und NR3A2 wurde eine prozentuale Inhibierung von unter 50 % bei einer Konzentration von 100 µM Guggulsteron E (36) bzw. Z bestimmt (Tabelle 17). Für beide Substanzen, Guggulsteron E (36) und Guggulsteron Z (38), ergab sich ein ähnlicher experminteller K_i-Wert am NR3C4. Jedoch wurde für Guggulsteron Z (38) beim NR3C4 und NR3C3 eine ähnliche Affinität und für NR3C1 eine geringer Affinität im Vergleich zum NR3C4 bestimmt. Für Guggulsteron E(36) wurde eine erhöhte Affinität zum NR3C1 und NR3C3 im Vergleich zum NR3C4 nachgewiesen (Tabelle 17). Um die unterschiedliche Affinität von Guggulsteron E (36) und Z (38) innerhalb der NR3C-Klasse zu erklären wurden die Dockingergebnisse der beiden Liganden mit MOE-Superpose verglichen. Innerhalb eines Radius von 4 Å um die Liganden Guggulsteron E (36) und Z (38) wurden die nicht konservierten Aminosäuren Leu⁷⁰¹, Met⁷⁸⁰, Phe⁸⁷⁶ und Leu⁸⁸⁰ des NR3C4 (bezogen auf die NR3C-Kernrezeptorklasse) identifiziert (Abbildung 51). Sie befinden sich in räumlicher Nähe zur $\Delta 17$ -Doppelbindung, dem einzigem strukturellen Unterschied zwischen Guggulsteron E (36) und Z (Kapitel 3.6.2). Diese Aminosäuren bilden schwache Van-der-Waals-Kontakte mit dem Liganden und erklären vermutlich die unterschiedliche Affinität der beiden Liganden in den NR3Cs. Moleküldynamik-Simulationen mit verschieden Mutationen und die Berechnung der freien Energie könnten die essentiellen Aminosäuren identifizieren, die für die unterschiedliche Selektivität von Guggulsteron E (36) und Z (38) verantwortlich sind. Eine weitere Möglichkeit zur Identifizierung solcher Aminosäuren wäre die Testung der Verbindungen in vitro an verschiedenen Mutanten.

114

Abbildung 51: Wechselwirkungsplot für Guggulsteron Z (38) im NR3C4. Dargestellt sind die nicht konservierten Aminosäuren L701, M780, F876 und L880 des NR3C4, bezogen auf die NR3C-Kernrezeptorklasse. Die Atome die dem Lösungsmittel zugänglich sind, sind blau markiert.

Zusammenfassend kann bestätigt werden das 3-Ketosteroide generell eine geringere Affinität zur NR3A-Klasse aufweisen, als zur NR3C-Klasse. Betrachtet man die Ergebnisse für QDM255 (**40**) und QDM276 (**52**), so liegt dies vermutlich nicht allein an der 3-Ketogruppe. Es kann weiterhin postuliert werden, dass die chemophysikalischen Eigenschaften der Seitenketten am C-7 und C-17 eines Steroids eine entscheidende Rolle in der Spezifität spielen. Die Seitenketten am C-7 und C-17 befinden sich in den Ligandenbindungssubtaschen 4 und 5. Da es sich hierbei um die Bereiche handelt, die strukturell und sequenziell gering konserviert sind, können durch die gezielte Derivatisierung von Liganden in diesem Bereich vermutlich aktivere und selektivere Liganden erzeugt werden.

5.5 Zusammenfassung und Diskussion

Das Ziel dieser Untersuchung war es, einen Überblick über die sequenzielle und strukturelle Ähnlichkeit der Kernrezeptorklassen zum NR3C4 zu erhalten, für die Röntgenkristallstruktur zur Verfügung standen oder für die Homologiemodelle generiert werden konnten. In diesem Zusammenhang wurden sieben hinreichend gute Modelle von verschiedenen humanen Kernrezeptoren erstellt. Die 3D-Strukturdaten von 37 verschiedenen Kernrezeptorklassen, wurden mit Hilfe von paarweisen Sequenzvergleichen, sowie paarweisen Strukturvergleichen untersucht. Die Ergebnisse wurden als *heat maps* dargestellt, welche die Analyse einer zuverlässigen und umfassenden Beziehung existierender Kernrezeptorklassen ermöglichten. Durch diese Untersuchung konnten 11 Kernrezeptorklassen identifiziert werden, welche sowohl eine sequenziell als auch strukturell sehr ähnliche LBT zum NR3C4 besitzen und damit potentielle Kreuzreaktionen mit den Liganden des NR3C4 eingehen können. Interessante Ergebnisse konnten auch durch das Konsensusmodell der einzelnen Ligandenbindungssubtaschen erzielt werden. Die Untersuchungen der Ligandenbindungssubtaschen in lieferten Einblicke relevante Teilstrukturen und Bindungsunterschiede in Hinblick auf Liganden des NR3C4. Speziell die Konsensusanalyse und die Ca-RMSD Berechnung für die Ligandenbindungssubtaschen deuteten darauf hin, dass die Ligandenbindungssubtaschen 4 und 5 eine entscheidende Funktion für die Selektivität der Ligandenerkennung einnehmen. Die experimentell bestimmten Ki-Werte ermöglichten einen direkten Vergleich der einzelnen Aktivitäten der verschiedenen Verbindungen zu fünf Kernrezeptoren. Zusammen mit den Dockingergebnissen von 12 verschiedenen Kernrezeptoren konnten Aminosäuren identifiziert werden, die vermutlich eine wichtige Rolle in Bezug auf die Ligandenspezifität spiele. Es konnte postuliert werden, das Modifikationen am C7 und C17-Atom von steroidalen Liganden des NR3C4 zu einer selektiveren Bindung am NR3C4 führen könnten. Alle Untersuchungen zusammen geben wichtige Anhaltspunkte für das gezielte Design neuer potenter und selektiverer Liganden für den NR3C4. Durch die Synthese verschiedener Derivate von Guggulsteron E (36) und Z (38), β-Sitosterol (34) und QDM276 (52) sollte es möglich sein, spezifischere Liganden für den NR3C4 zu erhalten. Durch Moleküldynamik-Simulationen und der Berechnung der freien Energie mit verschiedenen Derivaten und systematischen Mutationen am Rezeptor in silico und in vitro sollte es weiterhin möglich sein, wertvolle Hinweise für das gezielte Design neuer Liganden zu gewinnen.

6 Zusammenfassung und Ausblick

Der NR3C4 ist ein Mitglied der Kernrezeptorsuperfamilie. Die Rezeptoren dieser Familie bestehen aus drei getrennten autonomen Domänen: einer NTD, einer hochkonservierten, zentralen DBD und einer konservierten LBD. Wie alle anderen Kernrezeptoren ist der NR3C4 ein intrazellulärer Transkriptionsfaktor, welcher durch die Bindung von Androgenen reguliert wird. Die durch Androgene induzierte Konformation der LBD des NR3C4 erlaubt die Ausbildung eines hydrophoben Spaltes (AF-2) auf der Oberfläche der Domäne, der als Dockingseite für die Koaktivatoren dient. Eine Änderung der Konformation der LBD in Abhängigkeit des Liganden hat somit eine Auswirkung auf die Koaktivatorrekrutierung und damit auf die transkriptionelle Genaktivierung.

Eine Androgenüber- bzw. unterfunktion kann zu den verschiedendsten Krankheitsbildern führen z. B. zu Hypergonadismus, androgener Alopezie, Akne, Hirsutismus, benigner Prostatahyperplasie oder Prostatakrebs. Die Behandlung mit bisherigen Wirkstoffen ist meist nicht sehr erfolgreich oder nach einem anfänglich guten Ansprechen auf den Wirkstoff nach relativ kurzer Zeit wirkungslos. Ursachen hierfür sind krankheitsbegleitende Mutationen oder die Überexpression des NR3C4, die das Wirkspektrum der Medikamente verändern. Außerdem ist eine Behandlung oft mit starken Nebenwirkungen verbunden, da viele Medikamente nicht spezifisch wirken und z. B. Kreuzreaktionen zu anderen Kernrezreptoren zeigen.

Im Mittelpunkt dieser Arbeit stand die Identifizierung neuer Liganden des NR3C4, um den allgemeinen Mechanismus zwischen Struktur und Wirkung besser zu verstehen sowie die Ableitung von Kriterien für affinere und selektivere Liganden. Daher gliedert sich die Arbeit in drei Schwerpunkte:

- Das virtuelles Screening am NR3C4: Entwicklung einer VS Prozedur und deren Anwendung auf eine 3D-Strukturendatenbank zur Identifizierung neuer potentieller NR3C4-Liganden (Überprüfung durch *in vitro* Test)
- (2) Antagonistischer oder agonistischer Mechanismus: Identifizierung von Unterschieden in der Bindung von Agonisten und Antagonisten und Klassifizierung der drei "aktivsten" Liganden (aus *in vitro* Test) in potentiell agonistisch bzw. antagonistisch wirkend

(3) Kreuzreaktionen - Selektivität von Liganden: Beurteilung der fünf "aktivsten" Liganden (aus *in vitro* Test) hinsichtlich ihrer Kreuzreaktivität mit anderen humanen Kernrezeptoren

Die in dieser Arbeit etablierte virtuelle 2-Schritt-Screeningprozedur aus Pharmakophor und Dockingprozedur ermöglichte eine *in silico* Suche nach potentiellen Liganden des NR3C4 in einer ~1,3 Millionen Strukturen umfassenden Datenbank. Im Anschluss an das VS konnten 94 potentielle Liganden für eine *in vitro* Testung vorgeschlagen werden. 93 der 94 potentiellen Liganden zeigten *in vitro* eine Affinität zum NR3C4. Der K_i-Wert der aktivsten Verbindung QDM276 (**52**; Abbildung 52) betrug im *in vitro* Test 10,6 nM \pm 2,7.

Abbildung 52: Struktur für QDM276 (52), QDM255 (40), β-Sitosterol (34), Gugulsteron E (36) und Z (38).

Die experimentell bestätigten Verbindungen zeigten unter anderem Strukturmerkmale, die in dieser Kombination zuvor nicht in der Literatur beschrieben wurden. Aus diesem Grund wurde neben der computerbasierten Suche nach neuen Liganden versucht, die *in vitro* ermittelten Struktur-Aktivitäts-Beziehungen mit Hilfe des Dockings wiederzufinden. Nach einer Verbesserung der Dockingprozedur konnten die Struktur-Aktivitäts-Beziehungen anhand des *scores* mit einem R² von 0,64 und einer Signifikanz von unter 0,0001 wiedergegeben werden. Neben der Bestätigung von in der Literatur beschrieben Struktur-Aktivitäts-Beziehungen, konnte postuliert werden, dass eine Substitution der C7-Seitenkette des QDM276 (**52**) durch eine Methylgruppe zu einer Affinitätssteigerung am NR3C4 führt. Dockingstudien mit Z- und E-subsituierten Seitenketten am C-16 zeigten, dass Strukturen mit einem =CHCH₃(Z)-Substituenten vermutlich eine höhere Affinität zum NR3C4 aufweisen als

mit einem =CHCH₃(*E*)-Substituenten (Abbildung 53). Für verschiedene Strukturen, die mindestens die Länge einer β -Hexylseitenkette am C-17 aufwiesen, konnte eine antagonistische Wirkung vorhergesagt werden (Abbildung 53).

Abbildung 53: Zusammenfassung der neu identifizierten Struktur-Aktivitäts-Beziehungen für die Liganden des NR3C4 am Beispiel von TES (1).

^a Das Modell wurde anhand von Strukturen (β -Sitosterol (**34**), XSA164 (**79**), XVB0158 (**53**), XVB0273 (**77**), XVB485 (**114**)) mit Unterschieden im/am steroidalem Grundgerüst an Position C-3, $\Delta 4$ und C-17 postuliert.

In einem weiteren Schritt wurde anhand mehrerer Moleküldynamik-Simulationen der agonistische/antagonistische Mechanismus von fünf Standardliganden des NR3C4 und der drei "aktivsten" neu identifizierten Strukturen (QDM276 (52), QDM255 (40) und β-Sitosterol (34); Abbildung 52) untersucht. Die Moleküldynamik-Simulationen erfolgten erstmals mit einem Koaktivator, so dass die direkte Auswirkung des Liganden auf die AF-2 bzw. den beobachtet werden konnte. Es konnte gezeigt werden, dass Koaktivator eine Positionsänderung der Aminosäuren der Helices 3, 5, 11 und 12 durch den Liganden zu schwächeren bzw. fehlenden Wechselwirkungen zwischen der AF-2 und den Aminosäuren des Koaktivators führt. Auf Grund dieser Tatsachen kommt es während der Moleküldynamik-Simulation im Komplex mit einem Antagonisten vermutlich zu einer Repositionierung der Aminosäuren des Koaktivators (Abbildung 54). Die Moleküldynamik-Simulationen erlaubten die Klassifizierung der Liganden QDM276 (52) und QDM255 (40) in Agonisten des NR3C4 und die Klassifizierung des Liganden β -Sitosterol (34) in einen Antagonisten des NR3C4. Weiterführende in vitro Experimente konnten Hinweise zur Bestätigung dieser Ergebnisse liefern. Um die Selektivität der fünf "aktivsten" in dieser Arbeit identifizierten Liganden (QDM276 (52), QDM255 (40), β -Sitosterol (34), Guggulsteron E (36) und Guggulsteron Z (38); Abbildung 52) zum NR3C4 im Vergleich zu anderen humanen Kernrezeptoren einzuschätzen und zu verstehen, wurden umfassende sequenzielle und strukturelle Analysen basierend auf 37 3D-Proteinstrukturen unterschiedlicher Kernrezeptorklassen durchgeführt. Zusammen mit Dockingstudien an 12 verschieden Kernrezeptorklassen und in vitro

Ergebnissen von fünf unterschiedlichen Kernrezeptorklassen konnten Aminosäuren identifiziert werden, die vermutlich eine entscheidende Rolle in der Ligandenspezifität ausüben.

Abbildung 54: (A) und (B) Zusammenfassung der Ergebnisse der Moleküldynamik-Simulation (Ausschnitts der NR3C4-LBD (grau) mit Ligand (orang), Struktur sowie Kohlenstoffatome des Koaktivators (grün)).

Neben der Bestätigung von in der Literatur bereits beschriebenen Selektivitätsmerkmalen konnte postuliert werden, dass Modifikationen am C-7 und C-17 von steroidalen Liganden des NR3C4 zu einer selektiveren Bindung am NR3C4 führen (Abbildung 53).

Die in dieser Arbeit identifizierten Struktur-Aktivitäts-Beziehung, bieten die Möglichkeit der Synthese von NR3C4-Ligand-Derivaten mit verbesserter Wirkstärke und Selektivität zum NR3C4. Durch zukünftige gezielte Mutationsstudien, *in vitro/vivo* Testungen, weitere Moleküldynamik-Simulationen und der Berechnung der freien Energie für die Ligand-Rezeptor-Komplexe sowie deren Derivate sollte es möglich sein, die postulierten Thesen zur Spezifität und Wirkstärke der Liganden sowie den agonistischen/antagonistischen Mechanismus zu verifizieren und zu spezifizieren. Daran anschließend sollte es möglich sein, Agonisten und Antagonisten der zweiten Generation für den NR3C4 zu synthetisieren.

7 Hardware und Software

Die Anzahl der Programme und Routinen, welche eine Modifikation und Analyse von Proteinen oder Molekülen erlauben ist immens. Im Folgenden werden die wichtigsten in dieser Arbeit verwendeten Anwendungen zusammenfassend und ohne Wertung aufgeführt:

Anwendung	Herkunft						
GOLD - Genetic Optimization Ligand Docking Voraussage von Ligand-Protein- Bindungsverhalten	Cambridge Crystallographic Data Centre 12 Union Road Cambridge, UK						
MetaMQAP - Model Quality Assessment Programs Meta Server zur Qualitätsabschätzung von Proteinmodellen	Laboratory of Bioinformatics and Protein Engineering International Institute of Molecular and Cell Biology ul. Ks. Trojdena 4 02-109 Warsaw / Poland						
MOE – Molecular Operating Environment Molecular Modelling Programmpakt	Chemical Computing Group Suite 910 - 1010 Sherbrooke St. W Montreal, Quebec, Canada H3A 2R7						
PLANTS - Protein-Ligand ANT System Docking Voraussage von Ligand-Protein- Bindungsverhalten	Universität Konstanz Fachbereich Chemie D-78457 Konstanz / Deuschland						
Prosa II - PROtein Structure Analysis Proteins-Faltungs-Analyse	Center of Applied Molecular Engineering, Jakob-Haringer Str. 1, A-5020 Salzburg / AUSTRIA						
SYBYL Molecular Modelling Programmpaket	Tripos, Inc. 1699 South Hanley Road St. Louis, MO 63144-2319 USA						

Die Arbeitsgruppe Computerchemie verfügt desweiteren über eine Vielzahl von Hardwaresystemen, die ein optimales Arbeiten mit den oben aufgeführten Programmen erlauben. Die Hardwaresysteme die für die Erstellung dieser Arbeit zur Verfügung standen sind im Folgenden kurz aufgeführt.

Stereo-Grafikworkstations:

- 3 SGI Octane (400 MHz R12000 CPU; 2,8 bzw. 1,0 GByte RAM; IRIX)
- 1 SGI Fuel (500 MHz R14000 CPU; 1 GByte RAM; IRIX)
- 3 PC-Workstations (3,2 GHz AMD64 CPU; 2 GByte RAM; Linux)

Linux-Computercluster:

- 1x Quad-Opteron (Opteron 875 Dualcore-CPU; 16 GByte RAM)
- 7x Dual-Xeon (2,66 GHz Xeon-HT; 2 GByte RAM)
- 1x WebApplication- & Boot-Server (2,66 GHz Xeon-HT; 2 GByte RAM)
- 1x Fileserver (2,2 GHz Xeon; 1 GByte RAM; externes 2,4 TByte RAID-Subsystem)
- 6x Pentium-Computeserver (2,0 GHz Pentium IV, 1 GByte RAM), davon 2 für
- spezielle Anwendungen mit Windows 2000 anstelle von Linux

8 Literaturverzeichnis

- 1. A unified nomenclature system for the nuclear receptor superfamily. *Cell* **1999**, *97*, 161-163.
- 2. Brown, L. G. The biosynthesis of steroids and triterpenoids. *Natural Product Reports* **1998**, *15*, 653-696.
- 3. Brinkmann, A. O. Molecular basis of androgen insensitivity. *Molecular and Cellular Endocrinology* **2001**, *179*, 105-109.
- 4. Schmidtova, E. Testosterone--effects, metabolism and genetic determination. *Ceskoslovenská Fysiologie* **2008**, *57*, 61-75.
- 5. Pandini, G., Mineo, R., Frasca, F., Roberts, C. T. Jr., Marcelli, M., Vigneri, R., & Belfiore, A. Androgens up-regulate the insulin-like growth factor-I receptor in prostate cancer cells. *Cancer Research* 2005, *65*, 1849-1857.
- 6. Migeon, B. R., Brown, T. R., Axelman, J., & Migeon, C. J. Studies of the locus for androgen receptor: localization on the human X chromosome and evidence for homology with the Tfm locus in the mouse. *Proceedings of the National Academy of Sciences of the United States of America* **1981**, *78*, 6339-6343.
- 7. Tilley, W. D., Marcelli, M., Wilson, J. D., & McPhaul, M. J. Characterization and expression of a cDNA encoding the human androgen receptor. *Proceedings of the National Academy of Sciences of the United States of America* **1989**, *86*, 327-331.
- 8. Faber, P. W., van Rooij, H. C., Schipper, H. J., Brinkmann, A. O., & Trapman, J. Two different, overlapping pathways of transcription initiation are active on the TATA-less human androgen receptor promoter. The role of Sp1. *The Journal of Biological Chemistry* **1993**, *268*, 9296-9301.
- 9. Kuiper, G. G., Faber, P. W., van Rooij, H. C., van der Korput, J. A., Ris-Stalpers, C., Klaassen, P., Trapman, J., & Brinkmann, A. O. Structural organization of the human androgen receptor gene. *Journal of Molecular Endocrinology* **1989**, *2*, R1-R4.
- Lubahn, D. B., Brown, T. R., Simental, J. A., Higgs, H. N., Migeon, C. J., Wilson, E. M., & French, F. S. Sequence of the intron/exon junctions of the coding region of the human androgen receptor gene and identification of a point mutation in a family with complete androgen insensitivity. *Proceedings of the National Academy of Sciences of the United States of America* 1989, 86, 9534-9538.
- 11. Wilson, C. M. & McPhaul, M. J. A and B forms of the androgen receptor are present in human genital skin fibroblasts. *Proceedings of the National Academy of Sciences of the United States of America* **1994**, *91*, 1234-1238.
- 12. Jenster, G., van der Korput, H. A., van Vroonhoven, C., van der Kwast, T. H., Trapman, J., & Brinkmann, A. O. Domains of the human androgen receptor involved in steroid binding, transcriptional activation, and subcellular localization. *Molecular Endocrinology* **1991**, *5*, 1396-1404.

- 13. McEwan, I. J., Lavery, D., Fischer, K., & Watt, K. Natural disordered sequences in the amino terminal domain of nuclear receptors: lessons from the androgen and glucocorticoid receptors. *Nuclear Receptor Signaling* **2007**, *5*, e001.
- 14. Casella, R., Maduro, M. R., Lipshultz, L. I., & Lamb, D. J. Significance of the polyglutamine tract polymorphism in the androgen receptor. *Urology* **2001**, *58*, 651-656.
- 15. Ferro, P., Catalano, M. G., Dell'Eva, R., Fortunati, N., & Pfeffer, U. The androgen receptor CAG repeat: a modifier of carcinogenesis? *Molecular and Cellular Endocrinology* **2002**, *193*, 109-120.
- 16. Mononen, N., Ikonen, T., Autio, V., Rokman, A., Matikainen, M. P., Tammela, T. L., Kallioniemi, O. P., Koivisto, P. A., & Schleutker, J. Androgen receptor CAG polymorphism and prostate cancer risk. *Human Genetics* **2002**, *111*, 166-171.
- Zhu, P., Baek, S. H., Bourk, E. M., Ohgi, K. A., Garcia-Bassets, I., Sanjo, H., Akira, S., Kotol, P. F., Glass, C. K., Rosenfeld, M. G., & Rose, D. W. Macrophage/cancer cell interactions mediate hormone resistance by a nuclear receptor derepression pathway. *Cell* 2006, *124*, 615-629.
- 18. Callewaert, L., Van Tilborgh, N., & Claessens, F. Interplay between two hormoneindependent activation domains in the androgen receptor. *Cancer Research* **2006**, *66*, 543-553.
- 19. Jenster, G., van der Korput, H. A., Trapman, J., & Brinkmann, A. O. Identification of two transcription activation units in the N-terminal domain of the human androgen receptor. *The Journal of Biological Chemistry* **1995**, *270*, 7341-7346.
- 20. Betney, R. & McEwan, I. J. Role of conserved hydrophobic amino acids in androgen receptor AF-1 function. *Journal of Molecular Endocrinology* **2003**, *31*, 427-439.
- 21. McEwan, I. J. & Gustafsson, J. Interaction of the human androgen receptor transactivation function with the general transcription factor TFIIF. *Proceedings of the National Academy of Sciences of the United States of America* **1997**, *94*, 8485-8490.
- Baek, S. H., Ohgi, K. A., Rose, D. W., Koo, E. H., Glass, C. K., & Rosenfeld, M. G. Exchange of N-CoR corepressor and Tip60 coactivator complexes links gene expression by NF-kappaB and beta-amyloid precursor protein. *Cell* 2002, *110*, 55-67.
- Baek, S. H., Ohgi, K. A., Nelson, C. A., Welsbie, D., Chen, C., Sawyers, C. L., Rose, D. W., & Rosenfeld, M. G. Ligand-specific allosteric regulation of coactivator functions of androgen receptor in prostate cancer cells. *Proceedings of the National Academy of Sciences of the United States of America* 2006, 103, 3100-3105.
- 24. Balk, S. P. & Knudsen, K. E. AR, the cell cycle, and prostate cancer. *Nuclear Receptor Signaling* **2008**, *6*, e001.
- 25. Taplin, M. E. & Balk, S. P. Androgen receptor: a key molecule in the progression of prostate cancer to hormone independence. *Journal of Cellular Biochemistry* **2004**, *91*, 483-490.
- 26. Bevan, C. L. Androgen receptor in prostate cancer: cause or cure? *Trends in Endocrinology and Metabolism* **2005**, *16*, 395-397.
- 27. Dehm, S. M. & Tindall, D. J. Androgen receptor structural and functional elements: role and regulation in prostate cancer. *Journal of Molecular Endocrinology* **2007**, *21*, 2855-2863.
- 28. Shaffer, P. L., Jivan, A., Dollins, D. E., Claessens, F., & Gewirth, D. T. Structural basis of androgen receptor binding to selective androgen response elements. *Proceedings of the National Academy of Sciences of the United States of America* **2004**, *101*, 4758-4763.
- Luisi, B. F., Xu, W. X., Otwinowski, Z., Freedman, L. P., Yamamoto, K. R., & Sigler, P. B. Crystallographic analysis of the interaction of the glucocorticoid receptor with DNA. *Nature* 1991, *352*, 497-505.
- 30. Freedman, L. P. & Luisi, B. F. On the mechanism of DNA binding by nuclear hormone receptors: a structural and functional perspective. *Journal of Cellular Biochemistry* **1993**, *51*, 140-150.
- 31. Freedman, L. P. Anatomy of the steroid receptor zinc finger region. *Endocrine reviews* **1992**, *13*, 129-145.
- 32. Berg, J. M. DNA binding specificity of steroid receptors. Cell 1989, 57, 1065-1068.
- 33. Umesono, K. & Evans, R. M. Determinants of target gene specificity for steroid/thyroid hormone receptors. *Cell* **1989**, *57*, 1139-1146.
- 34. Zilliacus, J., Wright, A. P., Carlstedt-Duke, J., & Gustafsson, J. A. Structural determinants of DNA-binding specificity by steroid receptors. *Journal of Molecular Endocrinology* **1995**, *9*, 389-400.
- 35. Evans, R. M. The steroid and thyroid hormone receptor superfamily. *Science* **1988**, 240, 889-895.
- 36. Zhou, Z. X., Sar, M., Simental, J. A., Lane, M. V., & Wilson, E. M. A liganddependent bipartite nuclear targeting signal in the human androgen receptor. Requirement for the DNA-binding domain and modulation by NH2-terminal and carboxyl-terminal sequences. *The Journal of Biological Chemistry* **1994**, *269*, 13115-13123.
- 37. Cutress, M. L., Whitaker, H. C., Mills, I. G., Stewart, M., & Neal, D. E. Structural basis for the nuclear import of the human androgen receptor. *Journal of Cell Science* **2008**, *121*, 957-968.
- 38. Novac, N. & Heinzel, T. Nuclear receptors: overview and classification. *Current Drug targets. Inflammation and Allergy* **2004**, *3*, 335-346.
- Matias, P. M., Donner, P., Coelho, R., Thomaz, M., Peixoto, C., Macedo, S., Otto, N., Joschko, S., Scholz, P., Wegg, A., Basler, S., Schafer, M., Egner, U., & Carrondo, M. A. Structural evidence for ligand specificity in the binding domain of the human androgen receptor. Implications for pathogenic gene mutations. *The Journal of Biological Chemistry* 2000, 275, 26164-26171.

- 40. Sack, J. S., Kish, K. F., Wang, C., Attar, R. M., Kiefer, S. E., An, Y., Wu, G. Y., Scheffler, J. E., Salvati, M. E., Krystek, S. R., Jr., Weinmann, R., & Einspahr, H. M. Crystallographic structures of the ligand-binding domains of the androgen receptor and its T877A mutant complexed with the natural agonist dihydrotestosterone. *Proceedings of the National Academy of Sciences of the United States of America* **2001**, *98*, 4904-4909.
- 41. He, B., Gampe, R. T., Jr., Kole, A. J., Hnat, A. T., Stanley, T. B., An, G., Stewart, E. L., Kalman, R. I., Minges, J. T., & Wilson, E. M. Structural basis for androgen receptor interdomain and coactivator interactions suggests a transition in nuclear receptor activation function dominance. *Molecular Cell* **2004**, *16*, 425-438.
- 42. Hodgson, M. C., Shen, H. C., Hollenberg, A. N., & Balk, S. P. Structural basis for nuclear receptor corepressor recruitment by antagonist-liganded androgen receptor. *Molecular Cancer Therapeutics* **2008**, *7*, 3187-3194.
- 43. Moras, D. & Gronemeyer, H. The nuclear receptor ligand-binding domain: structure and function. *Current Opinion in Cell Biology* **1998**, *10*, 384-391.
- 44. He, B., Minges, J. T., Lee, L. W., & Wilson, E. M. The FXXLF motif mediates androgen receptor-specific interactions with coregulators. *The Journal of Biological Chemistry* **2002**, *277*, 10226-10235.
- 45. Chang, C., Norris, J. D., Gron, H., Paige, L. A., Hamilton, P. T., Kenan, D. J., Fowlkes, D., & McDonnell, D. P. Dissection of the LXXLL nuclear receptor-coactivator interaction motif using combinatorial peptide libraries: discovery of peptide antagonists of estrogen receptors alpha and beta. *Molecular and Cellular Biology* **1999**, *19*, 8226-8239.
- 46. Hur, E., Pfaff, S. J., Payne, E. S., Gron, H., Buehrer, B. M., & Fletterick, R. J. Recognition and accommodation at the androgen receptor coactivator binding interface. *PLoS Biology* **2004**, *2*, E274.
- 47. Shiau, A. K., Barstad, D., Radek, J. T., Meyers, M. J., Nettles, K. W., Katzenellenbogen, B. S., Katzenellenbogen, J. A., Agard, D. A., & Greene, G. L. Structural characterization of a subtype-selective ligand reveals a novel mode of estrogen receptor antagonism. *Nature Structural Biology* **2002**, *9*, 359-364.
- Westin, S., Kurokawa, R., Nolte, R. T., Wisely, G. B., McInerney, E. M., Rose, D. W., Milburn, M. V., Rosenfeld, M. G., & Glass, C. K. Interactions controlling the assembly of nuclear-receptor heterodimers and co-activators. *Nature* 1998, 395, 199-202.
- 49. Klokk, T. I., Kurys, P., Elbi, C., Nagaich, A. K., Hendarwanto, A., Slagsvold, T., Chang, C. Y., Hager, G. L., & Saatcioglu, F. Ligand-specific dynamics of the androgen receptor at its response element in living cells. *Molecular and Cellular Biology* **2007**, *27*, 1823-1843.
- 50. Pereira, d. J.-T., Cote, P. L., Cantin, L., Blanchet, J., Labrie, F., & Breton, R. Comparison of crystal structures of human androgen receptor ligand-binding domain complexed with various agonists reveals molecular determinants responsible for binding affinity. *Protein Science* **2006**, *15*, 987-999.

- 51. Askew, E. B., Gampe, R. T., Jr., Stanley, T. B., Faggart, J. L., & Wilson, E. M. Modulation of androgen receptor activation function 2 by testosterone and dihydrotestosterone. *The Journal of Biological Chemistry* **2007**, *282*, 25801-25816.
- 52. Estebanez-Perpina, E., Moore, J. M., Mar, E., Delgado-Rodrigues, E., Nguyen, P., Baxter, J. D., Buehrer, B. M., Webb, P., Fletterick, R. J., & Guy, R. K. The molecular mechanisms of coactivator utilization in ligand-dependent transactivation by the androgen receptor. *The Journal of Biological Chemistry* **2005**, *280*, 8060-8068.
- 53. Estebanez-Perpina, E., Arnold, L. A., Nguyen, P., Rodrigues, E. D., Mar, E., Bateman, R., Pallai, P., Shokat, K. M., Baxter, J. D., Guy, R. K., Webb, P., & Fletterick, R. J. A surface on the androgen receptor that allosterically regulates coactivator binding. *Proceedings of the National Academy of Sciences of the United States of America* **2007**, *104*, 16074-16079.
- 54. Jouravel, N., Sablin, E., Arnold, L. A., Guy, R. K., & Fletterick, R. J. Interaction between the androgen receptor and a segment of its corepressor SHP. *Acta Crystallographica. Section D, Biological Crystallography.* **2007**, *63*, 1198-1200.
- 55. Fang, H., Tong, W., Branham, W. S., Moland, C. L., Dial, S. L., Hong, H., Xie, Q., Perkins, R., Owens, W., & Sheehan, D. M. Study of 202 natural, synthetic, and environmental chemicals for binding to the androgen receptor. *Chemical Research in Toxicology* **2003**, *16*, 1338-1358.
- Fragkaki, A. G., Angelis, Y. S., Koupparis, M., Tsantili-Kakoulidou, A., Kokotos, G., & Georgakopoulos, C. Structural characteristics of anabolic androgenic steroids contributing to binding to the androgen receptor and to their anabolic and androgenic activities. Applied modifications in the steroidal structure. *Steroids* 2009, 74, 172-197.
- 57. Roy, J., Breton, R., Martel, C., Labrie, F., & Poirier, D. Chemical synthesis and biological activities of 16alpha-derivatives of 5alpha-androstane-3alpha,17beta-diol as antiandrogens. *Bioorganic & Medicinal Chemistry* **2007**, *15*, 3003-3018.
- 58. Liao, S., Liang, T., Fang, S., Castaneda, E., & Shao, T. C. Steroid structure and androgenic activity. Specificities involved in the receptor binding and nuclear retention of various androgens. *The Journal of Biological Chemistry* **1973**, *248*, 6154-6162.
- 59. Nirde, P., Terouanne, B., Gallais, N., Sultan, C., & Auzou, G. Antimineralocorticoid 11beta-substituted spirolactones exhibit androgen receptor agonistic activity: a structure function study. *Molecular Pharmacology* **2001**, *59*, 1307-1313.
- 60. Gower, D. B. 16-Unsaturated C 19 steroids. A review of their chemistry, biochemistry and possible physiological role. *Journal of Steroid Biochemistry* **1972**, *3*, 45-103.
- 61. Rogozkin, V. A. Metabolism of Anabolic Androgenic Steroids; CRS Press: 1991.
- 62. Gao, W. & Dalton, J. T. Expanding the therapeutic use of androgens via selective androgen receptor modulators (SARMs). *Drug Discovery Today* **2007**, *12*, 241-248.

- 63. Singh, S. M., Gauthier, S., & Labrie, F. Androgen receptor antagonists (antiandrogens): structure-activity relationships. *Current Medicinal Chemistry* 2000, 7, 211-247.
- 64. Soderholm, A. A., Viiliainen, J., Lehtovuori, P. T., Eskelinen, H., Roell, D., Baniahmad, A., & Nyronen, T. H. Computationally identified novel diphenyl- and phenylpyridine androgen receptor antagonist structures. *Journal of Chemical Information and Modeling* **2008**, *48*, 1882-1890.
- 65. Gao, W., Kim, J., & Dalton, J. T. Pharmacokinetics and pharmacodynamics of nonsteroidal androgen receptor ligands. *Pharmaceutical Research* **2006**, *23*, 1641-1658.
- 66. Yin, D., Gao, W., Kearbey, J. D., Xu, H., Chung, K., He, Y., Marhefka, C. A., Veverka, K. A., Miller, D. D., & Dalton, J. T. Pharmacodynamics of selective androgen receptor modulators. *The Journal of Pharmacology and Experimental Therapeutics* **2003**, *304*, 1334-1340.
- 67. Christiansen, R. G., Bell, M. R., D'Ambra, T. E., Mallamo, J. P., Herrmann, J. L., Ackerman, J. H., Opalka, C. J., Kullnig, R. K., Winneker, R. C., Snyder, B. W., & . Antiandrogenic steroidal sulfonylpyrazoles. *Journal of Medicinal Chemistry* **1990**, *33*, 2094-2100.
- 68. Wakeling, A. E., Furr, B. J., Glen, A. T., & Hughes, L. R. Receptor binding and biological activity of steroidal and nonsteroidal antiandrogens. *Journal of Steroid Biochemistry* **1981**, *15*, 355-359.
- Yin, D., He, Y., Perera, M. A., Hong, S. S., Marhefka, C., Stourman, N., Kirkovsky, L., Miller, D. D., & Dalton, J. T. Key structural features of nonsteroidal ligands for binding and activation of the androgen receptor. *Molecular Pharmacology* 2003, 63, 211-223.
- Marhefka, C. A., Gao, W., Chung, K., Kim, J., He, Y., Yin, D., Bohl, C., Dalton, J. T., & Miller, D. D. Design, synthesis, and biological characterization of metabolically stable selective androgen receptor modulators. *Journal of Medicinal Chemistry* 2004, 47, 993-998.
- 71. Dalton, J. T., Mukherjee, A., Zhu, Z., Kirkovsky, L., & Miller, D. D. Discovery of nonsteroidal androgens. *Biochemical and Biophysical Research Communications* **1998**, 244, 1-4.
- 72. Kim, J., Wu, D., Hwang, D. J., Miller, D. D., & Dalton, J. T. The para substituent of S-3-(phenoxy)-2-hydroxy-2-methyl-N-(4-nitro-3-trifluoromethyl-phenyl)-prop ionamides is a major structural determinant of in vivo disposition and activity of selective androgen receptor modulators. *The Journal of Pharmacology and Experimental Therapeutics* **2005**, *315*, 230-239.
- 73. Gao, W., Kearbey, J. D., Nair, V. A., Chung, K., Parlow, A. F., Miller, D. D., & Dalton, J. T. Comparison of the pharmacological effects of a novel selective androgen receptor modulator, the 5alpha-reductase inhibitor finasteride, and the antiandrogen hydroxyflutamide in intact rats: new approach for benign prostate hyperplasia. *Endocrinology* **2004**, *145*, 5420-5428.

- 74. Chen, J., Hwang, D. J., Bohl, C. E., Miller, D. D., & Dalton, J. T. A selective androgen receptor modulator for hormonal male contraception. *The Journal of Pharmacology and Experimental Therapeutics* **2005**, *312*, 546-553.
- Chen, J., Hwang, D. J., Chung, K., Bohl, C. E., Fisher, S. J., Miller, D. D., & Dalton, J. T. In vitro and in vivo structure-activity relationships of novel androgen receptor ligands with multiple substituents in the B-ring. *Endocrinology* 2005, *146*, 5444-5454.
- 76. Bohl, C. E., Miller, D. D., Chen, J., Bell, C. E., & Dalton, J. T. Structural basis for accommodation of nonsteroidal ligands in the androgen receptor. *The Journal of Biological Chemistry* **2005**, *280*, 37747-37754.
- 77. Bohl, C. E., Wu, Z., Chen, J., Mohler, M. L., Yang, J., Hwang, D. J., Mustafa, S., Miller, D. D., Bell, C. E., & Dalton, J. T. Effect of B-ring substitution pattern on binding mode of propionamide selective androgen receptor modulators. *Bioorganic & Medicinal Chemistry Letters* 2008, 18, 5567-5570.
- 78. Wang, F., Liu, X. Q., Li, H., Liang, K. N., Miner, J. N., Hong, M., Kallel, E. A., van Oeveren, A., Zhi, L., & Jiang, T. Structure of the ligand-binding domain (LBD) of human androgen receptor in complex with a selective modulator LGD2226. *Acta Crystallographica. Section F, Structural biology and Crystallization Communications* **2006**, *62*, 1067-1071.
- 79. Jockenhovel, F. Testosterone therapy--what, when and to whom? *Aging Male.* 2004, 7, 319-324.
- 80. Brinkmann, A. O. & Trapman, J. Prostate cancer schemes for androgen escape. *Nature Medicine* **2000**, *6*, 628-629.
- 81. Bray, F., Sankila, R., Ferlay, J., & Parkin, D. M. Estimates of cancer incidence and mortality in Europe in 1995. *European Journal of Cancer* **2002**, *38*, 99-166.
- 82. Chatterjee, B. The role of the androgen receptor in the development of prostatic hyperplasia and prostate cancer. *Molecular and Cellular Biochemistry* **2003**, *253*, 89-101.
- 83. Feldman, B. J. & Feldman, D. The development of androgen-independent prostate cancer. *Nature Reviews. Cancer* **2001**, *1*, 34-45.
- 84. Fuhrmann, U., Parczyk, K., Klotzbucher, M., Klocker, H., & Cato, A. C. Recent developments in molecular action of antihormones. *Journal of Molecular Medicine* **1998**, *76*, 512-524.
- 85. Corbin, A. From contraception to cancer: a review of the therapeutic applications of LHRH analogues as antitumor agents. *The Yale journal of biology and medicine* **1982**, *55*, 27-47.
- 86. Labrie, F., Dupont, A., Giguere, M., Borsanyi, J. P., Lacourciere, Y., Monfette, G., Emond, J., & Bergeron, N. Benefits of combination therapy with flutamide in patients relapsing after castration. *British Journal of Urology* **1988**, *61*, 341-346.

- 87. Labrie, C., Simard, J., Zhao, H. F., Belanger, A., Pelletier, G., & Labrie, F. Stimulation of androgen-dependent gene expression by the adrenal precursors dehydroepiandrosterone and androstenedione in the rat ventral prostate. *Endocrinology* **1989**, *124*, 2745-2754.
- 88. Lieberman, R., Bermejo, C., Akaza, H., Greenwald, P., Fair, W., & Thompson, I. Progress in prostate cancer chemoprevention: modulators of promotion and progression. *Urology* **2001**, *58*, 835-842.
- 89. Labrie, F., Belanger, A., Dupont, A., Luu-The, V., Simard, J., & Labrie, C. Science behind total androgen blockade: from gene to combination therapy. *Clinical and Investigative Medicine*. **1993**, *16*, 475-492.
- 90. Zegarra-Moro, O. L., Schmidt, L. J., Huang, H., & Tindall, D. J. Disruption of androgen receptor function inhibits proliferation of androgen-refractory prostate cancer cells. *Cancer Research* **2002**, *62*, 1008-1013.
- 91. Craft, N., Shostak, Y., Carey, M., & Sawyers, C. L. A mechanism for hormoneindependent prostate cancer through modulation of androgen receptor signaling by the HER-2/neu tyrosine kinase. *Nature Medicine* **1999**, *5*, 280-285.
- 92. Liao, X., Tang, S., Thrasher, J. B., Griebling, T. L., & Li, B. Small-interfering RNAinduced androgen receptor silencing leads to apoptotic cell death in prostate cancer. *Molecular Cancer Therapeutics* **2005**, *4*, 505-515.
- 93. Visakorpi, T., Hyytinen, E., Koivisto, P., Tanner, M., Keinanen, R., Palmberg, C., Palotie, A., Tammela, T., Isola, J., & Kallioniemi, O. P. In vivo amplification of the androgen receptor gene and progression of human prostate cancer. *Nature Genetics* **1995**, *9*, 401-406.
- 94. Veldscholte, J., Ris-Stalpers, C., Kuiper, G. G., Jenster, G., Berrevoets, C., Claassen, E., van Rooij, H. C., Trapman, J., Brinkmann, A. O., & Mulder, E. A mutation in the ligand binding domain of the androgen receptor of human LNCaP cells affects steroid binding characteristics and response to anti-androgens. *Biochemical and Biophysical Research Communications* **1990**, *173*, 534-540.
- 95. Taplin, M. E., Bubley, G. J., Ko, Y. J., Small, E. J., Upton, M., Rajeshkumar, B., & Balk, S. P. Selection for androgen receptor mutations in prostate cancers treated with androgen antagonist. *Cancer Research* **1999**, *59*, 2511-2515.
- 96. Hara, T., Miyazaki, J., Araki, H., Yamaoka, M., Kanzaki, N., Kusaka, M., & Miyamoto, M. Novel mutations of androgen receptor: a possible mechanism of bicalutamide withdrawal syndrome. *Cancer Research* **2003**, *63*, 149-153.
- 97. Matias, P. M., Carrondo, M. A., Coelho, R., Thomaz, M., Zhao, X. Y., Wegg, A., Crusius, K., Egner, U., & Donner, P. Structural basis for the glucocorticoid response in a mutant human androgen receptor (AR(ccr)) derived from an androgen-independent prostate cancer. *Journal of Medicinal Chemistry* **2002**, *45*, 1439-1446.
- 98. Wilkinson, J. M., Hayes, S., Thompson, D., Whitney, P., & Bi, K. Compound profiling using a panel of steroid hormone receptor cell-based assays. *Journal of Biomolecular Screening* **2008**, *13*, 755-765.

- 99. Bernstein, F. C., Koetzle, T. F., Williams, G. J., Meyer, E. F., Jr., Brice, M. D., Rodgers, J. R., Kennard, O., Shimanouchi, T., & Tasumi, M. The Protein Data Bank: a computer-based archival file for macromolecular structures. *Journal of Molecular Biology* **1977**, *112*, 535-542.
- 100. Gasteiger, E., Gattiker, A., Hoogland, C., Ivanyi, I., Appel, R. D., & Bairoch, A. ExPASy: The proteomics server for in-depth protein knowledge and analysis. *Nucleic Acids Research* **2003**, *31*, 3784-3788.
- 101. Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., & Bourne, P. E. The Protein Data Bank. *Nucleic Acids Research* 2000, 28, 235-242.
- 102. Kryshtafovych, A., Venclovas, C., Fidelis, K., & Moult, J. Progress over the first decade of CASP experiments. *Proteins* **2005**, *61 Supplement* 7, 225-236.
- 103. Shoichet, B. K. Virtual screening of chemical libraries. Nature 2004, 432, 862-865.
- 104. Doman, T. N., McGovern, S. L., Witherbee, B. J., Kasten, T. P., Kurumbail, R., Stallings, W. C., Connolly, D. T., & Shoichet, B. K. Molecular docking and highthroughput screening for novel inhibitors of protein tyrosine phosphatase-1B. *Journal* of Medicinal Chemistry 2002, 45, 2213-2221.
- 105. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., & Lipman, D. J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. *Nucleic Acids Research* **1997**, *25*, 3389-3402.
- 106. Innis, C. A., Shi, J., & Blundell, T. L. Evolutionary trace analysis of TGF-beta and related growth factors: implications for site-directed mutagenesis. *Protein Engineering* **2000**, *13*, 839-847.
- 107. Xiang, Z. Advances in homology protein structure modeling. Current Protein & Peptide Science 2006, 7, 217-227.
- 108. Dayhoff, M. Atlas of Protein Sequence and Structure; Nat Biomed Research Foundation: 1978.
- 109. Henikoff, S. & Henikoff, J. G. Amino acid substitution matrices from protein blocks. *Proceedings of the National Academy of Sciences of the United States of America* **1992**, 89, 10915-10919.
- 110. MOE (The Molecular Operating Environment) Version 2006-2009, software available from Chemical Computing Group Inc., 1010 SherbrookeStreet West, Suite 910, Montreal, Canada H3A 2R7. http://www.chemcomp.com.
- 111. Kelley, L. A. & Sternberg, M. J. Protein structure prediction on the Web: a case study using the Phyre server. *Nature Protocols* **2009**, *4*, 363-371.
- 112. Chou, P. Y. & Fasman, G. D. Prediction of protein conformation. *Biochemistry* **1974**, *13*, 222-245.
- 113. Cuff, J. A. & Barton, G. J. Evaluation and improvement of multiple sequence methods for protein secondary structure prediction. *Proteins* **1999**, *34*, 508-519.

- 114. Kaur, H. & Raghava, G. P. Prediction of beta-turns in proteins from multiple alignment using neural network. *Protein Science* **2003**, *12*, 627-634.
- 115. Rost, B., Yachdav, G., & Liu, J. The PredictProtein server. *Nucleic Acids Research* 2004, *32*, W321-W326.
- 116. Levinthal C In *Mossbauer Spectroscopy in Biological Systems*. Debrunner P, Tsibris JCM, and Munck E Eds.; University of Illinois, Urbana IL: 1969.
- 117. Moult, J., Pedersen, J. T., Judson, R., & Fidelis, K. A large-scale experiment to assess protein structure prediction methods. *Proteins* **1995**, *23*, ii-iv.
- 118. Elofsson, A., Le Grand, S. M., & Eisenberg, D. Local moves: an efficient algorithm for simulation of protein folding. *Proteins* **1995**, *23*, 73-82.
- 119. Pedersen, J. T. & Moult, J. Genetic algorithms for protein structure prediction. *Current Opinion In Structural Biology* **1996**, *6*, 227-231.
- 120. Srinivasan, R. & Rose, G. D. LINUS: a hierarchic procedure to predict the fold of a protein. *Proteins* **1995**, *22*, 81-99.
- 121. Baker, D. & Sali, A. Protein structure prediction and structural genomics. *Science* **2001**, *294*, 93-96.
- 122. Lesk, A. M., Lo, C. L., & Hubbard, T. J. Assessment of novel fold targets in CASP4: predictions of three-dimensional structures, secondary structures, and interresidue contacts. *Proteins* **2001**, *Supplement 5*, 98-118.
- 123. Jones, D. T. Predicting novel protein folds by using FRAGFOLD. *Proteins* 2001, *Supplement* 5, 127-132.
- Bystroff, C., Thorsson, V., & Baker, D. HMMSTR: a hidden Markov model for local sequence-structure correlations in proteins. *Journal of Molecular Biology* 2000, *301*, 173-190.
- 125. Sippl, M. J. Knowledge-based potentials for proteins. *Current Opinion in Structural Biology* **1995**, *5*, 229-235.
- 126. Sippl, M. J., Lackner, P., Domingues, F. S., Prlic, A., Malik, R., Andreeva, A., & Wiederstein, M. Assessment of the CASP4 fold recognition category. *Proteins* 2001, *Supplement* 5, 55-67.
- 127. Eyrich, V. A., Marti-Renom, M. A., Przybylski, D., Madhusudhan, M. S., Fiser, A., Pazos, F., Valencia, A., Sali, A., & Rost, B. EVA: continuous automatic evaluation of protein structure prediction servers. *Bioinformatics* **2001**, *17*, 1242-1243.
- 128. Bujnicki, J. M., Elofsson, A., Fischer, D., & Rychlewski, L. LiveBench-1: continuous benchmarking of protein structure prediction servers. *Protein Science* **2001**, *10*, 352-361.
- 129. Dunbrack, R. L., Jr. Comparative modeling of CASP3 targets using PSI-BLAST and SCWRL. *Proteins* **1999**, *Supplement 3*, 81-87.

- 130. Yang, A. S. & Honig, B. An integrated approach to the analysis and modeling of protein sequences and structures. II. On the relationship between sequence and structural similarity for proteins that are not obviously related in sequence. *Journal of Molecular Biology* **2000**, *301*, 679-689.
- 131. Melo, F., Sanchez, R., & Sali, A. Statistical potentials for fold assessment. *Protein Science* **2002**, *11*, 430-448.
- 132. Levitt, M. Accurate modeling of protein conformation by automatic segment matching. *Journal of Molecular Biology* **1992**, *226*, 507-533.
- 133. Fechteler, T., Dengler, U., & Schomburg, D. Prediction of protein three-dimensional structures in insertion and deletion regions: a procedure for searching data bases of representative protein fragments using geometric scoring criteria. *Journal of Molecular Biology* **1995**, *253*, 114-131.
- 134. Weiner, S. J., Kollman, P. A., Nguyen, D. T., & Case, D. An all atom force field for simulations of proteins and nucleic acids. *Journal of Computational Chemistry* **1986**, 7, 230-252.
- 135. Brooks, B. R., Bruccoleri, R. E., Olafson, B. D., States, D. J., Swaminathan, S., & Karplus, M. A program for macromolecular energy, minimization, and dynamics calculations. *Journal of Computational Chemistry* **1983**, *4*, 187-217.
- 136. Still, W. C., Tempczyk, A., Hawley, R. C., & Hendrickson, T. Semianalytical treatment of solvation for molecular mechanics and dynamics. *Journal of the American Chemical Society* **1990**, *112*, 6127-6129.
- 137. Laskowski, R. A., MacArthur, M. W., Moss, D. S., & Thornton, J. M. PROCHECK: a program to check the stereochemical quality of protein structures. *Journal of Applied Crystallography* **1993**, *26*, 283-291.
- 138. Hooft, R. W., Vriend, G., Sander, C., & Abola, E. E. Errors in protein structures. *Nature* **1996**, *381*, 272.
- 139. Anfinsen, C. B. The formation and stabilization of protein structure. *The Biochemical Journal* **1972**, *128*, 737-749.
- 140. Sippl, M. J. Boltzmann's principle, knowledge-based mean fields and protein folding. An approach to the computational determination of protein structures. *Journal of Computer-Aided Molecular Design* **1993**, *7*, 473-501.
- 141. Luthy, R., Bowie, J. U., & Eisenberg, D. Assessment of protein models with threedimensional profiles. *Nature* **1992**, *356*, 83-85.
- 142. Bowie, J. U., Luthy, R., & Eisenberg, D. A method to identify protein sequences that fold into a known three-dimensional structure. *Science* **1991**, *253*, 164-170.
- 143. Eisenberg, D., Bowie, J. U., Luthy, R., & Choe, S. Three-dimensional profiles for analysing protein sequence-structure relationships. *Faraday Discussions* **1992**, 25-34.
- 144. Colovos, C. & Yeates, T. O. Verification of protein structures: patterns of nonbonded atomic interactions. *Protein Science* **1993**, *2*, 1511-1519.

- 145. Pawlowski, M., Gajda, M. J., Matlak, R., & Bujnicki, J. M. MetaMQAP: a metaserver for the quality assessment of protein models. *BMC. Bioinformatics* **2008**, *9*, 403.
- 146. Rahman, A. Correlations in the Motion of Atoms in Liquid Argon. *Physical Review* **1964**, *136*, A405.
- 147. Verlet, L. Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules. *Physical Review* **1967**, *159*, 98.
- 148. SYBYL (2006-2009) Tripos International, 1699 South Hanley Rd., St. Louis, Missouri, 63144, USA.
- 149. Verlet L. Thermodynamical properties of Lennard-Jones molecules. *Physical Review* **1967**, *159*, 98-103.
- 150. Discovery Studio (2009) version 2. 0; Accelrys, Inc. : San Diego, CA..
- 151. Phase (2006-2009) Scrödinger, LLC http://schodinger.com.
- 152. Wolber, G. & Langer, T. LigandScout: 3-D pharmacophores derived from proteinbound ligands and their use as virtual screening filters. *Journal of Chemical Information and Modeling* **2005**, *45*, 160-169.
- 153. Moitessier, N., Englebienne, P., Lee, D., Lawandi, J., & Corbeil, C. R. Towards the development of universal, fast and highly accurate docking/scoring methods: a long way to go. *British Journal of Clinical Pharmacology* **2008**, *153 Supplement 1*, S7-26.
- 154. Verdonk, M. L., Chessari, G., Cole, J. C., Hartshorn, M. J., Murray, C. W., Nissink, J. W., Taylor, R. D., & Taylor, R. Modeling water molecules in protein-ligand docking using GOLD. *Journal of Medicinal Chemistry* 2005, 48, 6504-6515.
- 155. Verdonk, M. L., Cole, J. C., Hartshorn, M. J., Murray, C. W., & Taylor, R. D. Improved protein-ligand docking using GOLD. *Proteins-Structure Function and Genetics* **2003**, *52*, 609-623.
- 156. Taylor, J. S. & Burnett, R. M. DARWIN: a program for docking flexible molecules. *Proteins* **2000**, *41*, 173-191.
- 157. Jean-Yves, T. & Harold, A. S. ProDock: Software package for protein modeling and docking. *Journal of Computational Chemistry* **1999**, *20*, 412-427.
- 158. Korb, O., Stutzle, T., & Exner, T. E. PLANTS: Application of ant colony optimization to structure-based drug design. *Ant Colony Optimization and Swarm Intelligence, Proceedings* **2006**, *4150*, 247-258.
- 159. Huang, N., Shoichet, B. K., & Irwin, J. J. Benchmarking sets for molecular docking. *Journal of Medicinal Chemistry* **2006**, *49*, 6789-6801.
- Verdonk, M. L., Berdini, V., Hartshorn, M. J., Mooij, W. T., Murray, C. W., Taylor, R. D., & Watson, P. Virtual screening using protein-ligand docking: avoiding artificial enrichment. *Journal of Chemical Information and Computer Sciences* 2004, 44, 793-806.

- 161. Nicholls, A. What do we know and when do we know it? *Journal of Computer-Aided Molecular Design* **2008**, *22*, 239-255.
- 162. Irwin, J. J. & Shoichet, B. K. ZINC--a free database of commercially available compounds for virtual screening. *Journal of Chemical Information and Modeling* **2005**, *45*, 177-182.
- 163. Sakai, N., Yamada, T., Asao, T., Baba, M., Yoshida, M., & Murayama, T. Bilateral testicular tumors in androgen insensitivity syndrome. *International Journal of Urology* **2000**, *7*, 390-392.
- 164. Marhefka, C. A., Moore, B. M., Bishop, T. C., Kirkovsky, L., Mukherjee, A., Dalton, J. T., & Miller, D. D. Homology modeling using multiple molecular dynamics simulations and docking studies of the human androgen receptor ligand binding domain bound to testosterone and nonsteroidal ligands. *Journal of Medicinal Chemistry* 2001, 44, 1729-1740.
- 165. Bohl, C. E., Chang, C., Mohler, M. L., Chen, J., Miller, D. D., Swaan, P. W., & Dalton, J. T. A ligand-based approach to identify quantitative structure-activity relationships for the androgen receptor. *Journal of Medicinal Chemistry* **2004**, *47*, 3765-3776.
- 166. Jasuja, R., Ramaraj, P., Mac, R. P., Singh, A. B., Storer, T. W., Artaza, J., Miller, A., Singh, R., Taylor, W. E., Lee, M. L., Davidson, T., Sinha-Hikim, I., Gonzalez-Cadavid, N., & Bhasin, S. Delta-4-androstene-3,17-dione binds androgen receptor, promotes myogenesis in vitro, and increases serum testosterone levels, fat-free mass, and muscle strength in hypogonadal men. *The Journal of Clinical Endocrinology and Metabolism* **2005**, *90*, 855-863.
- 167. Beilstein database, Elsevier MDL. MDL Crossfire Beilstein. [1.0.6181]. 2010. San Leandro, CA. (Datenbankabfrage: 03. Juli 2010)
- 168. Horoszewicz, J. S., Leong, S. S., Kawinski, E., Karr, J. P., Rosenthal, H., Chu, T. M., Mirand, E. A., & Murphy, G. P. LNCaP model of human prostatic carcinoma. *Cancer Research* 1983, 43, 1809-1818.
- 169. Berrevoets, C. A., Umar, A., & Brinkmann, A. O. Antiandrogens: selective androgen receptor modulators. *Molecular and Cellular Endocrinology*. **2002**, *198*, 97-103.
- 170. Kaighn, M. E., Narayan, K. S., Ohnuki, Y., Lechner, J. F., & Jones, L. W. Establishment and characterization of a human prostatic carcinoma cell line (PC-3). *Investigative Urology* **1979**, *17*, 16-23.
- 171. Kenakin T. *Pharmacologic Analysis of Drug-Receptor Interactions*; Lippincott Williams & Wilkins: 1997.
- 172. Burris, T. P., Montrose, C., Houck, K. A., Osborne, H. E., Bocchinfuso, W. P., Yaden, B. C., Cheng, C. C., Zink, R. W., Barr, R. J., Hepler, C. D., Krishnan, V., Bullock, H. A., Burris, L. L., Galvin, R. J., Bramlett, K., & Stayrook, K. R. The hypolipidemic natural product guggulsterone is a promiscuous steroid receptor ligand. *Molecular Pharmacology* 2005, 67, 948-954.

- 173. Araki, N., Ohno, K., Takeyoshi, M., & Iida, M. Evaluation of a rapid in vitro androgen receptor transcriptional activation assay using AR-EcoScreen cells. *Toxicology in Vitro* **2005**, *19*, 335-352.
- 174. Bobach, C., Denkert, A., and Palberg, K. Fluorescence polarization assays. **2010**. nicht publiziert
- 175. Bohl, C. E., Wu, Z., Miller, D. D., Bell, C. E., & Dalton, J. T. Crystal structure of the T877A human androgen receptor ligand-binding domain complexed to cyproterone acetate provides insight for ligand-induced conformational changes and structure-based drug design. *The Journal of Biological Chemistry* **2007**, *282*, 13648-13655.
- 176. Palberg, K. Hormonassay mit Phytosterolen und Steroidderivaten. 2008. Martin-Luther-Universität Halle-Wittenberg. Diplomarbeit
- 177. Renaud, J. P. & Moras*, D. Structural studies on nuclear receptors. *Cellular and Molecular Life Sciences (CMLS)* **2000**, *57*, 1748-1769.
- 178. Souque, A., Fagart, J., Couette, B., Davioud, E., Sobrio, F., Marquet, A., & Rafestin-Oblin, M. E. The mineralocorticoid activity of progesterone derivatives depends on the nature of the C18 substituent. *Endocrinology* **1995**, *136*, 5651-5658.
- 179. Carlsson, P., Koehler, K. F., & Nilsson, L. Glucocorticoid receptor point mutation V571M facilitates coactivator and ligand binding by structural rearrangement and stabilization. *Journal of Molecular Endocrinology*. **2005**, *19*, 1960-1977.
- Alvarez, L. D., Marti, M. A., Veleiro, A. S., Presman, D. M., Estrin, D. A., Pecci, A., & Burton, G. Exploring the molecular basis of action of the passive antiglucocorticoid 21-hydroxy-6,19-epoxyprogesterone. *Journal of Medicinal Chemistry* 2008, *51*, 1352-1360.
- 181. Celik, L., Lund, J. D., & Schiott, B. Conformational dynamics of the estrogen receptor alpha: molecular dynamics simulations of the influence of binding site structure on protein dynamics. *Biochemistry* **2007**, *46*, 1743-1758.
- 182. Zeng, J., Li, W., Zhao, Y., Liu, G., Tang, Y., & Jiang, H. Insights into ligand selectivity in estrogen receptor isoforms: molecular dynamics simulations and binding free energy calculations. *The Journal of Physical Chemistry. B* **2008**, *112*, 2719-2726.
- 183. Bohl, C. E., Gao, W., Miller, D. D., Bell, C. E., & Dalton, J. T. Structural basis for antagonism and resistance of bicalutamide in prostate cancer. *Proceedings of the National Academy of Sciences of the United States of America* **2005**, *102*, 6201-6206.
- 184. Bisson, W. H., Abagyan, R., & Cavasotto, C. N. Molecular basis of agonicity and antagonicity in the androgen receptor studied by molecular dynamics simulations. *Journal of Molecular Graphics & Modelling* **2008**, *27*, 452-458.
- 185. Kirsten, G. CHARMM22-Kraftfeldparameter. 2006. E-Mailkorrespondenz

- 186. Bisson, W. H., Cheltsov, A. V., Bruey-Sedano, N., Lin, B., Chen, J., Goldberger, N., May, L. T., Christopoulos, A., Dalton, J. T., Sexton, P. M., Zhang, X. K., & Abagyan, R. Discovery of antiandrogen activity of nonsteroidal scaffolds of marketed drugs. *Proceedings of the National Academy of Sciences of the United States of America* 2007, 104, 11927-11932.
- 187. Bobach C. Etablierung hormonaler Assays und Testung von Extrakten, Naturstoffen und synthetischen Verbindungen. eingereicht 2010. Martin-Luther-Universität Halle-Wittenberg. Dissertation
- 188. Chen, Z., Katzenellenbogen, B. S., Katzenellenbogen, J. A., & Zhao, H. Directed evolution of human estrogen receptor variants with significantly enhanced androgen specificity and affinity. *The Journal of Biological Chemistry* **2004**, *279*, 33855-33864.

9 Anhang

9.1 Kernrezeptorklassen

Tabelle 18: Bekannte humane Kernrezeptoren.	Angegeben is	st der Familienname,	der Genname, d	as Gensymbol	und der
ExPASy-Code.					

Familie	Genname	Gensymbol	ExPASy-Code
NR1A1	Thyroidhormonrezeptor α	TRalpha	P10827
NR1A2	Thyroidhormonrezeptor β	TRbeta	P10828
NR1B1	Retinsäurenrezeptor a	RARalpha	P10276
NR1B2	Retinsäurenrezeptor	RARbeta	P10826
NR1B3	Retinsäurenrezeptor y	RARG	P13631
NR1C1	Peroxisom-Proliferator-aktivierte Rezeptor-α	PPARA	Q07869
NR1C2	Peroxisom-Proliferator-aktivierte Rezeptor-β/δ	PPARD	Q03181
NR1C3	Peroxisom-Proliferator-aktivierte Rezeptor-y	PPARG	P37231
NR1D1	Rev-ErbAa	NR1D1	P20393
NR1D2	Rev-ErbAβ	NR1D2	Q14995
NR1F1	RAR-verwandte Waise Rezeptor-α	RORA	P35398
NR1F2	RAR-verwandte Waise Rezeptor-β	RORB	Q92753
NR1F3	RAR-verwandte Waise Rezeptor-y	RORG	P51449
NR1H2	Leber X Rezeptor-β	NR1H2	P55055
NR1H3	Leber X Rezeptor-α	NR1H3	Q13133
NR1H4	Farnesoid X Rezeptor	NR1H4	Q96RI1
NR1I1	Vitamin D Rezeptor	VDR	P11473
NR1I2	Pregnane X Rezeptoren	NR1I2	O75469
NR1I3	Constitutive androstane Rezeptoren	NR1I3	Q14994
NR2A1	Hepatocyte Kern fackor-4-α	HNF4A	P41235
NR2A2	Hepatocyte Kern fackor-4-y	HNF4G	Q14541
NR2B1	Retinoid X Rezeptoren-α	RXRA	P19793
NR1B2	Retinoid X Rezeptoren-β	RXRB	P28702
NR2B3	Retinoid X Rezeptoren-y	RXRG	P48443
NR2C1	Testicular Rezeptoren 2	NR2C1	P13056
NR2C2	Testicular Rezeptoren 4	NR2C2	P49116
NR2E1	Kernrezeptor TLX	NR2E1	Q9Y466
NR2E3	Zellspezifischer Phtorezeptor Kernrezeptor	NR2E3	Q9Y5X4
NR2F1	COUP Transkriptionfaktor 1	NR2F1	P10589
NR2F2	COUP Transkriptionfaktor 2	NR2F2	P24468
NR2F6	V-erbA-verwandes Gen	NR2F6	P10588
NR3A1	Östrogenrezeptor-a	ESR1	P03372
NR3A2	Östrogenrezeptor-β	ESR2	Q92731
NR3B1	Östrogen-ähnlicher Rezeptoren-α	ESRRA	P11474
NR3B2	Östrogen-ähnlicher Rezeptoren-β	ESRRB	O95718
NR3B3	Östrogen-ähnlicher Rezeptoren-y	ESRRG	P62508
NR3C1	Glucocorticoidrezeptor	NR3C1	P04150
NR3C2	Mineralocorticoidrezeptor	NR3C2	P08235
NR3C3	Progesteronrezeptor	PGR	P06401
NR3C4	Androgenrezeptor	AR	P10275
NR4A1	Nervenwachstumsfaktor IB	NR4A1	P22736
NR4A2	Kernrezeptor-verwandt 1	NR4A2	P43354
NR4A3	Neuron-abgeleitet orphan Rezeptoren 1	NR4A3	Q92570

Familie	Genname	Gensymbol	ExPASy-Code
NR5A1	Steroidogenfaktor 1	NR5A1	Q13285
NR5A2	Leber-Rezeptor homolog-1	NR5A2	O00482
NR6A1	Keimzellenkernfactor	GCNF	Q15406
NR0B1	Dosierung-sensitives Geschlechtsumkehr, adrenale Hypoplasie kritisches, auf chromosome X, Gene 1	NR0B1	P51843
NR0B2	Kleine Heterodimer-Partner	NR0B2	Q15466

Fortsetzung Tabelle18: Bekannte humane Kernrezeptoren. Angegeben ist der Familienname, der Genname, das Gensymbol und der *ExPASy*-Code.

9.2 Computerbasierte Methoden

Die hier aufgeführten Skripte und Parameter sind aufgrund der verwendeten Programme in englisch beibehalten.

9.2.1 Parameter für PLIF

Sidechain H-donor:	Min Score (1): 1 %	Min Score (2): 5 %
Sidechain H-acceptor:	Min Score (1): 1 %	Min Score (2): 5 %
Backbone H-donor:	Min Score (1): 1 %	Min Score (2): 5 %
Backbone H-acceptor:	Min Score (1): 1 %	Min Score (2): 5 %
Solvent H-donor:	Min Score (1): 1 %	Min Score (2): 5 %
Solvent H-acceptor:	Min Score (1): 1 %	Min Score (2): 5 %
Ionic Attraction:	Min Score (1): 5 %	Min Score (2): 5 %
Surface Contact:	Min Score (1): 20 %	Min Score (2): 50 %
Maximum # Bits:	250	

9.2.2 Parameter für Ligand Interaction

H-bond:	Minimum Score 10 %
Ionic:	Minimum Score 10 %
Solvent:	Minimum Score 10 %
Nonbonded:	Maximum Distance 4.5

9.2.3 Parameter für Simulated annealing

Run:	30 Cycles			
Heat Molecule at 700	K for 1000 fs			
Anneal Molecule to 1	00 K for 1000 fs			
Annealing Function:	exponential potential			
Energy Setup:	Force Field: Tripos;	Charge: Gasteiger Huckel		
	One-Four Scaling: 1;	Dielectric Function: Distance		
	NB Cutoff: 16;	Dielectric Constant: 1.0		
	H-Bond Radius Scaling: 0.7			
Aggregate:	backbone			
Minimize bevor Anne	ealing			

9.2.4 Parameter für die Minimierung von Ligand-Protein-Komplex vor dem Re-Docking

Programm: SYBYL			
Minimize Details:			
Methode: Powell;	Termination: Gradient		
Max Iteration: 500;	Non-Bonded Reset: 10		
Max Displacement: 0.01;	RMS Displacement: 0.001		
Min Energy Change: 0.05;	Gradient: 0.05		
Simplex Threshold: 1000;	Simplex Iterations:20		
LS Accuracy: 0.001;	Derivative Reset: 100		
LS Step Size: 0.001;	Color Option: Potential		
Status Update: 1;	Checkpoint Interval: 0		
Graphic Update: 1	List Terms Threshold: -10		

Force Field Details:	
Force Field: Tripos;	Charges: Gasteiger-Huckel
One-Four Scaling: 1;	Dielectric Function:Distance
NB Cutoff: 8;	Dielectric Constant: 1
H-Bond Radius Scaling: 0.7	
Revie H's and LP's	

9.2.5 Parameter Re-Docking GOLD (ChemScore)

SCORINGFUNCTION ChemScore POPULATION popsiz = 50 $select_pressure = 1.125$ $n_islands = 1$ maxops = 1000niche_siz = 2GENETIC OPERATORS $pt_crosswt = 100$ $allele_mutatewt = 100$ migratewt = 0FLOOD FILL radius = 15origin = $0\ 0\ 0$ do cavity = 1floodfill_atom_no = 3364 cavity_file = cavity.atoms floodfill_center = atom FLAGS display = 0internal_ligand_h_bonds = 0 $n_{ligand_bumps} = 0$ $flip_free_corners = 0$ flip_amide_bonds = 0 flip_planar_n = 1 flip_ring_NRR flip_ring_NHR $flip_pyramidal_n = 0$ rotate_carboxylic_oh = flip use tordist = 1**TERMINATION** early_termination = 1 $n_{top_solutions} = 3$ rms tolerance = 1.5**CONSTRAINTS** $force_constraints = 0$ COVALENT BONDING covalent = 0SAVE OPTIONS save_score_in_file = 1 save_protein_torsions = 1 save_option save_clustered_solutions 0.75

FITNESS FUNCTION SETTINGS initial_virtual_pt_match_max = 5.0 relative_ligand_energy = 0 gold_fitfunc_path chemscore score_param_file = DEFAULT

9.2.6 Parameter Re-Docking GOLD (GoldScore)

Alle Parameter wurden analog zum Re-Docking *GOLD* (ChemSore) Kapitel 9.2.5 ausgewählt, außer:

SCORINGFUNCTION GoldScore

9.2.7 Parameter Re-Docking MOE

Die zur Verfügung stehenden *Placement* (Triangle Matcher, Alpha PMI und Alpha Triangle) und SF (London dG, Affinity dG und Alpha HB) wurden in allen Kombinationsmöglichkeiten getestet.

Receptor:ReceptorSite:Ligand AtomsUse Wall Constrain:offPharmacophore:noneRotate Bonds:onRetrain:10Remove Duplicates:on

9.2.8 Parameter Docking PLANTS

Die Dockingparameter wurden analog zu den Parametern des Re-Dockings (Anhang 9.3.6) gewählt. Für PLANTS (CHEMPLP**) wurde der Parameter

flexible side-chain
flexible_protein_side_chain_string THR877

hinzugefügt, sowie für PLANTS (CHEMPLP***) der Parameter

flexible side-chain flexible_protein_side_chain_string LEU704 flexible_protein_side_chain_string ASN705 flexible_protein_side_chain_string LEU707 flexible_protein_side_chain_string PHE876 flexible_protein_side_chain_string THR877

9.2.9 Parameter MOE-Superpose

Group by Chain Tag: on

Atom Sets:	CA	
Options:	All Residues	
Actions:	Move all Chains in Tag as Group:	on
	Auto Associate Non-Protein Chains	s: on
	Print RMSD to CLI:	on

9.2.10 Parameter optimiertes Docking

Die Dockingparameter wurden analog zu den Parametern des Dockings (Anhang 9.3.7) PLANTS (CHEMPLP***) gewählt, zusätzlich wurden folgende Parameter hinzugefügt:

flexible side-chain flexible_protein_side_chain_stringLEU701 flexible_protein_side_chain_stringMET787 flexible_protein_side_chain_stringPHE876 flexible_protein_side_chain_stringLEU880 flexible_protein_side_chain_stringMET895

9.2.11 Protokoll: Erzeugung der Starstruktur

MOE-Align			~			
Initial Pairwise Build	-up:	on;	Su	bstitu	tion Matrix:	blosumn
Round-robin:		on;	Ga	ip Sta	irt:	7
Iterative Refinement:		on;	Ga	ap Ex	tend:	1
Chain Selection:		ignore				
Build-up:		tree-based	l			
Iteration Limit:		100;	Fa	ilure	Limit: 10	
Secundäry Structure:		none				
Structural Alignment	:	Enable Structural Alignmnet Superpose Chains				
Gap Start:		1				
Gap Extend:		0.1				
I						
MOE-Homology Mod	dell:					
Options: Don't Use Selected Residues to Override Tamplate(s) Disable C-terminal & N-terminal Outgap Modeling Include Selected Atomes as Enivionment for induced			amplate(s) Iodeling or induced Fit			
Models:	10					
#Rotamer Library	*	/*** / *				
Database:	\$MOE/lib/amino.mdb					
Strain Cutoff:	1.5					
Distance Cutoff:	1.2					
#Loop Directory						
Database:	\$MOE	/lib/amino.	.mdb			
Codes:	\$MOE	/lib/segmer	nt.lis			
#Model Refinment						
Intermediates:	None					
Model Scoring:	GB/VI					
Final Model:	Mediu	m				
Apply Protonate 3D Prior to Refining the Final Model						
#Forcefield						
Load:	Custom Version of CHARMM22					
Enable:	Bonded, van der Waals, Electrostatics. Restrains					
Cutoff:	Enable	On: 8; Off	f:10			
Solvation:	Born;	Die	electric	:4;	Exteroir:80	
Scale Like:	1;	Un	nlike:0,		Wild: 1	
Fix Hydrogens						
Fix Charges						

MOE-Energy Minimize:

#Forcefield			
Load:	Custom Versi	on of CHARM	M22
Enable:	Bonded, van d	ler Waals, Elec	ctrostatics, Restrains
Cutoff:	Enable On: 8;	Off:10	
Solvation:	Born;	Dielectric:4;	Exteroir:80
Scale Like:	1;	Unlike:0;	Wild: 1
Fix Hydrogen	S		
Fix Charges			

sowie die entsprechenden Limitationen (restrains) (Kapitel 4.2)

#Other	
Selected Atomes Only:	Off
Adjust H and LP:	Off
Gradient:	0.001
Options:	Calculate Forcefield Partial Charges

sowie die entsprechenden Limitationen (restrains) (Kapitel 4.2)

9.2.12 SVL-Scipt für Moleküldynamik-Simulation mit MOE

#svl function DynamicsInit; function Dynamics; function PartialCharge; local function main [] ReadMOE Minimierte Startstruktur als '.moe'; // load start complex pot Load 'Custum Version als '.ff''; // load force field pot Setup[eleDist: 0. solEnable: 1]: // load Solvatation = Born aSetCharge[Atoms[], first PartialCharge[Atoms[], 'FF']]; pot_Setup[threadCount: 4]; // load Threads = 4 DynamicsInit [Dynamikfile als '.mdb', // Database [savePosition:1, // Save & Every saveVelocity:1, // Save & Every saveAcceleration:1, // Save & Every sample:5, // Save & Every ensemble: 'NVT', // Ensemble algorithm:'NPA', // Algorithm T0:30. // T0 bondConstraints:'light', // Constrain waterConstraints:'rigid', // Water constraintTol:1e-12, // Tolerance dt:0.0005, // Time step // temperature response QT:0.2, QP:5 // pressure response]]; local t = 0; t = Dynamics [Dynamikfile als '.mdb', // Database t + 100. // Heat (ps) [30,300], // [T0,T] // pressure 0. [stage:'heat'] // lable step 1; t = Dynamics [Dynamikfile als '.mdb', // Database t + 5000, // production (ps) // [T0,T] [300,300], // pressure 0, // lable step [stage:"]]; t = Dynamics [Dynamikfile als '.mdb', // Database t + 100. $// \operatorname{cool}(ps)$ [300,30], // [T0,T] // pressure 0, [stage:'cool'] // lable step]; endfunction

9.2.13 Protokoll: Homologiemodellierung und Evaluierung

Alle Parameter wurden analog zum Protokoll zu Erzeugung der Startstruktur Kapitel 9.2.11 ausgewählt, außer:

#Forcefield Load: CHARMM22

9.2.14 Protokoll: Sequenzvergleich

Die Sequenzen wurden paarweise mit der Sequenz des NR3C4 verglichen.

<u>MOE-Align</u> Initial Pairwise Build-up: Round-robin: Iterative Refinement:	on; on; on;	Substitution Matrix: b Gap Start: Gap Extend:	blosumn 7 1
Chain Selection: Build-up: Iteration Limit: Secundäry Structure:	ignore tree-based 100; none	Failure Limit: 10	
Structural Alignment: Gap Start: Gap Extend:	Enable Structu Superpose Cha 1 0.1	ural Alignment ains	

9.2.15 Protokoll: Strukturvergleich

Protein Superpose:
Group by Chain TagSynchronize SelectionAtom Sets:CAOptions:Selected ResiduesActions:Auto-Associate Non-Protein ChainsPrint RMSD Table to CLI

9.2.16 Protokoll: Kreuzdocking

Die Dockingparameter wurden analog zu den Parametern des Re-Dockings (Anhang 9.3.6) gewählt. Die Seitenketten die mit Hilfe des Parameters

flexible side-chain
flexible_protein_side_chain_string

während des Dockings für das jeweilige Protein als flexibel betrachtet wurden sind in der nachfolgenden Tabelle 19 aufgelistet.

Tabelle 19: Flexible Seitenketten während des Kreuzdocking für die einzelnen Kernrezeptorklassen. Zusätzlich angegeben ist der PDB-Code mit der verwendeten Kette. Ist kein PDB-Code angegeben so handelt es sich um ein Homologiemodell.

Kernrezeptor- klasse	PDB-Code	Kette	flexible Aminosäuren	
NR1B1	-	-	W225, D226, F228, S229, R394, V395, L398, I406	
NR2B1	1MVC	А	V265, T266, I268, C269, H435, L436, F439, L351	
NR2B2	1UHL	А	V336, T337, I339, C340, H506, L507, F510, L522	
NR3A1	2P15	А	M343, G344, L346, T347, H524, L525, M528, L540	
NR3A2	1YYE	А	M295, M296, L298, T299, H475, L476, M479, L491	
NR3B1	1 B7	А	V321, A322, L324, C325, H494, F495, V498, F510	
NR3B2	-	-	L241, T241, L243, C244, H409, F410, V413, F425	
NR3B3	2E3R	А	L265, T266, L268, C269, H434, F435, I438, F450	
NR3C1	1M2Z	А	M560, T561, L563, N564, L620,Y735, C736, T739, L753	
NR3C2	2AA	А	L766, S767, L769, N770, F826, F941, C942, T945, L960	
NR3C3	1SR7	А	L715, T716 ,L718, N719, M775, Y890, C891, T894, M909	
NR3C4	2PNU	А	L701, S702, L704, N705, M787, F876, T877,L880, M895	

9.3 Ergebnisse: Virtuelles Screening am Androgenrezeptor

9.3.1 Re-Docking

Tabelle 20: Ergebnisse des Re-Dockings. Es wurde mit PLANTS (CHEMPLP)* ohne flexible Seitenketten, PLANTS (CHEMPLP)** mit Thr877 als flexibler Seitenkette und mit PLANTS (CHEMPLP)*** mit fünf flexibelen Seitenketten (L701, L704, N705, F876 und T877) gedockt.

		PLANTS	PLANTS	PLANTS
Ligand	PDB-Code	(CHEMPLP)*	(CHEMPLP)**	(CHEMPLP)***
DHT (2)	1T65	0,3685	0,3819	0,4256
R1881 (12)	1XOW	0,1716	0,2862	0,2293
TES (1)	2AM9	0,2915	0,324	0,3109
Tetrahydrogestrinon (27)	2AMB	0,6604	0,6993	0,6874
R-3 (18)	2AX9	1,3042	1,3647	1,3683
S-1 (29)	2AXA	0,7053	0,539	0,8183
LDG2226 (19)	2HVC	0,5796	0,5611	0,6065

Abbildung 55: Anreicherungskurven für NR3C4-Liganden des gesamten DUD (links, A) und dem besten 1 % der nach *score* sortierten Datenbank (rechts, B). Es wurde das DUD in die LBT des NR3C4 (PDB-Code: 1XOW) gedockt. Die Bindetasche wird durch einen Radius von 15 Å um L873C^{δ} definiert. Die Kurven wurden durch 14 unterschiedliche Dockingprozeduren erhalten. Es ist als Vergleich in jedem Diagramm die ideale und die zufällige (random) Kurve abgebildet. (1) Ergebnisse für GOLD (ChemScore), GOLD (GoldScore), PLANTS (CHEMPLP)*, PLANTS (CHEMPLP)** (2) Ergebnisse für MOE(AP/AdG), MOE (AP/DHB), MOE (AP/LDG), MOE (AT/AdG) und MOE (AT/DHB). (3) Ergebnisse für MOE (AT/LdG), MOE (MT/AdG), MOE (MT/DHB) und MOE (MT/LdG). Den bester EF₁ lieferte *PLANTS (CHEMPLP)****.

Abbildung 56: Anreicherungskurven für NR3C4-Liganden des gesamten DUD (links, A) und dem besten 1 % der nach *score* sortierten Datenbank (rechts, B). Es wurde das DUD in die LBT des NR3C4 (PDB-Code: 1T65) gedockt. Die Bindetasche wird durch einen Radius von 15 Å um L873C^{δ} definiert. Die Kurven wurden durch 14 unterschiedliche Dockingprozeduren erhalten. Es ist als Vergleich in jedem Diagramm die ideale und die zufällige (random) Kurve abgebildet. (1) Ergebnisse für GOLD (ChemScore), GOLD (GoldScore), PLANTS (CHEMPLP)*, PLANTS (CHEMPLP)**. (2) Ergebnisse für MOE(AP/AdG), MOE (AP/DHB), MOE (AP/LDG), MOE (AT/AdG) und MOE (AT/DHB). (3) Ergebnisse für MOE (AT/LdG), MOE (MT/AdG), MOE (MT/DHB) und MOE (MT/LdG). Den bester EF₁ lieferte *PLANTS (CHEMPLP)****.

Abbildung 57: Anreicherungskurven für NR3C4-Liganden des gesamten DUD (links, A) und dem besten 1 % der nach *score* sortierten Datenbank (rechts, B). Es wurde das DUD in die LBT des NR3C4 (PDB-Code: 2AM9) gedockt. Die Bindetasche wird durch einen Radius von 15 Å um L873C^{δ} definiert. Die Kurven wurden durch 14 unterschiedliche Dockingprozeduren erhalten. Es ist als Vergleich in jedem Diagramm die ideale und die zufällige (random) Kurve abgebildet. (1) Ergebnisse für GOLD (ChemScore), GOLD (GoldScore), PLANTS (CHEMPLP)*, PLANTS (CHEMPLP)***. (2) Ergebnisse für MOE(AP/AdG), MOE (AP/DHB), MOE (AP/LDG), MOE (AT/AdG) und MOE (AT/DHB). (3) Ergebnisse für MOE (AT/LdG), MOE (MT/AdG), MOE (MT/DHB) und MOE (MT/LdG). Den bester EF₁ lieferte *PLANTS (CHEMPLP)****.

Abbildung 58: Anreicherungskurven für NR3C4-Liganden des gesamten DUD (links, A) und dem besten 1 % der nach *score* sortierten Datenbank (rechts, B). Es wurde das DUD in die LBT des NR3C4 (PDB-Code: 2AMB) gedockt. Die Bindetasche wird durch einen Radius von 15 Å um L873C^{δ} definiert. Die Kurven wurden durch 14 unterschiedliche Dockingprozeduren erhalten. Es ist als Vergleich in jedem Diagramm die ideale und die zufällige (random) Kurve abgebildet. (1) Ergebnisse für GOLD (ChemScore), GOLD (GoldScore), PLANTS (CHEMPLP)*, PLANTS (CHEMPLP)** (2) Ergebnisse für MOE(AP/AdG), MOE (AP/DHB), MOE (AP/LDG), MOE (AT/AdG) und MOE (AT/DHB). (3) Ergebnisse für MOE (AT/LdG), MOE (MT/AdG), MOE (MT/DHB) und MOE (MT/LdG). Den bester EF₁ lieferte *PLANTS (CHEMPLP)****.

Abbildung 59: Anreicherungskurven für NR3C4-Liganden des gesamten DUD (links, A) und dem besten 1 % der nach *score* sortierten Datenbank (rechts, B). Es wurde das DUD in die LBT des NR3C4 (PDB-Code: 2PNU) gedockt. Die Bindetasche wird durch einen Radius von 15 Å um L873C^{δ} definiert. Die Kurven wurden durch 14 unterschiedliche Dockingprozeduren erhalten. Es ist als Vergleich in jedem Diagramm die ideale und die zufällige (random) Kurve abgebildet. (1) Ergebnisse für GOLD (ChemScore), GOLD (GoldScore), PLANTS (CHEMPLP)*, PLANTS (CHEMPLP)**. (2) Ergebnisse für MOE(AP/AdG), MOE (AP/DHB), MOE (AP/LDG), MOE (AT/AdG) und MOE (AT/DHB). (3) Ergebnisse für MOE (AT/LdG), MOE (MT/AdG), MOE (MT/DHB) und MOE (MT/LdG). Den bester EF₁ lieferte *PLANTS (CHEMPLP)****.

Abbildung 60: Anreicherungskurven für NR3C4-Liganden des gesamten DUD (links, A) und dem besten 1 % der nach *score* sortierten Datenbank (rechts, B). Es wurde das DUD in die LBT des NR3C4 (PDB-Code: 2AXA) gedockt. Die Bindetasche wird durch einen Radius von 15 Å um L873C^{δ} definiert. Die Kurven wurden durch 14 unterschiedliche Dockingprozeduren erhalten. Es ist als Vergleich in jedem Diagramm die ideale und die zufällige (random) Kurve abgebildet. (1) Ergebnisse für GOLD (ChemScore), GOLD (GoldScore), PLANTS (CHEMPLP)*, PLANTS (CHEMPLP)** und PLANTS (CHEMPLP)***. (2) Ergebnisse für MOE(AP/AdG), MOE (AP/DHB), MOE (AP/LDG), MOE (AT/AdG) und MOE (AT/DHB). (3) Ergebnisse für MOE (AT/LdG), MOE (MT/AdG), MOE (MT/DHB) und MOE (MT/LdG). Den bester EF₁ lieferte *PLANTS (CHEMPLP)****.

Abbildung 61: Anreicherungskurven für NR3C4-Liganden des gesamten DUD (links, A) und dem besten 1 % der nach *score* sortierten Datenbank (rechts, B). Es wurde das DUD in die LBT des NR3C4 (PDB-Code: 2AX9) gedockt. Die Bindetasche wird durch einen Radius von 15 Å um L873C^{δ} definiert. Die Kurven wurden durch 14 unterschiedliche Dockingprozeduren erhalten. Es ist als Vergleich in jedem Diagramm die ideale und die zufällige (random) Kurve abgebildet. (1) Ergebnisse für GOLD (ChemScore), GOLD (GoldScore), PLANTS (CHEMPLP)*, PLANTS (CHEMPLP)** (2) Ergebnisse für MOE(AP/AdG), MOE (AP/DHB), MOE (AP/LDG), MOE (AT/AdG) und MOE (AT/DHB). (3) Ergebnisse für MOE (AT/LdG), MOE (MT/AdG), MOE (MT/DHB) und MOE (MT/LdG). Den bester EF₁ lieferte *PLANTS (CHEMPLP)****.

Abbildung 62 Anreicherungskurven für NR3C4-Liganden des gesamten DUD (links, A) und dem besten 1 % der nach *score* sortierten Datenbank (rechts, B). Es wurde das DUD in die LBT des NR3C4 (PDB-Code: 2HVC) gedockt. Die Bindetasche wird durch einen Radius von 15 Å um L873C^{δ} definiert. Die Kurven wurden durch 14 unterschiedliche Dockingprozeduren erhalten. Es ist als Vergleich in jedem Diagramm die ideale und die zufällige (random) Kurve abgebildet. (1) Ergebnisse für GOLD (ChemScore), GOLD (GoldScore), PLANTS (CHEMPLP)*, PLANTS (CHEMPLP)**. (2) Ergebnisse für MOE(AP/AdG), MOE (AP/DHB), MOE (AP/LDG), MOE (AT/AdG) und MOE (AT/DHB). (3) Ergebnisse für MOE (AT/LdG), MOE (MT/AdG), MOE (MT/DHB) und MOE (MT/LdG). Den bester EF₁ lieferte *PLANTS (CHEMPLP)***.

9.4 Ergebnisse: Antagonistischer/agonistischer Mechanismus

9.4.1 Standardliganden der Molküldynamik-Simulation

Hydroxyflutamid (30)

9.4.2 Stabilität der Modelle

Abbildung 63: Veränderung des RMSD-Wertes von 0 bis 5000 ps gegenüber der Startstrucktur. Die Berechnung des RMSD-Wertes erfolgte über die Atomkoordinaten des Proteins. (A) R1881 (12; blau), TES (1; rot); (B) Cyproteronacetat (26; grau), Hydroxyflutamid (30; braun), R-Bicalutamid (15; gelb); (C) QDM255 (40; orange), QDM276 (52; grüne), β -Sitosterol (34; lila).

9.4.3 Beobachtete Wasserstoffbrücken

		Wasserstoffbrücken					
		Atom 1		Atom 2		^a Zeitraum [%]	⁵Distanz
QDM255	direkte Wasserstoffbrückenbindung	Ligand	O-3	R752	Ν ^η	42,3	3,3
(40)		Ligand	O-17	T877	$O^{\gamma 1}$	55,7	3,2
	Wasser vermittelte Wasserstoff-	Ligand	O-3	Wasser	0	85,1	3,0
	brückenbindung	Wasser	0	R752	N^{η}	91,5	3,0
		Wasser	0	R752	\mathbf{N}^{η}	95,5	3,2
		Wasser	0	M745	0	90,0	3,1
QDM276	direkte Wasserstoffbrückenbindung	Ligand	O-3	R752	N^{η}	26,9	3,4
(52)	Ligand C	O-17	T877	$O^{\gamma 1}$	70,6	3,2	
	Wasser vermittelte Wasserstoff-	Ligand	O-3	Wasser	0	89,1	3,0
	brückenbindung	Wasser	0	R752	R752 N ^ŋ 93,5	3,0	
		Wasser	0	R752	\mathbf{N}^{η}	97,5	3,1
		Wasser	0	M745	0	91,0	3,1
β-Sitosterol	direkte Wasserstoffbrückenbindung	Ligand	O-3	R752	N^{η}	42,3	3,3
(34)		Ligand (O-3	Q711	O^{ϵ^1}	87,6	3,1
		Ligand	O-3	Q711	N^{ϵ^2}	23,9	3,3
	Wasser vermittelte Wasserstoff-	Wasser	0	R752	Ν ^η	97,0	3,1
	brückenbindung	Wasser	0	R752	\mathbf{N}^{η}	93,0	3,1
		Wasser	0	M745	0	91,5	3,1

Tabelle 22: Beobachtete Wasserstoffbrücken für jedes Modell während der 4. bis 5. ns der Moleküldynamik-Simulation. Für alle Atompaare die, die Kriterien für Wasserstoffbrücken für über 20 % der Zeit während der 4. bis 5. ns erfüllen.

^a Zeitraum für den die Kriterien für Wasserstoffbrücken erfüllt waren in %.

^b Die durchschnittliche Distanz der Atompaare während der betrachteten Zeit.

9.5 Ergebnisse: Kreuzreaktion - Selektivität von Liganden

Tabelle 23: Sequenzvergleich der Kernrezeptor-LBD. Dargestelt ist jeweils die Kernrezeptorklasse und der PDB-Code, der verwendeten Struktur, sowie die verwendet Kette in der Röntgenkristallstruktur. * Hierbei handelt es sich um Homologiemodelle.

Klasse	PDB- Code	Kette	15060
NR1A1	1NVA	A	RPEPTPEEWDLIHIATEAHR-STNA
NR1A2	1N46	A	KPEPTDEEWELIKTVTEAHV-ATNA
NR1B1	*	*	PEVGELIEKVRKAHQ-ETFP
NR1B2	1XAP	A	AELDDLTEKIRKAHQ-ETFP
NR1B3	1FCY	A	ASPQLEELITKVSKAHQ-ETFP
NR1C1	2P54	A	DLKSLAKRIYEAYLKNFNMNKVKARVILSGKA-SNNP
NR1C2	1YOS	A	PQVADLKAFSKHIYNAYLKNFNMTKKKARSILTGKA-SHTA
NR1C3	1ZGY	A	PESADLRALAKHLYDSYIKSFPLTKAKARAILTGKTTDKSP
NR1D1	*	*	
NR1D2	2V0V	A	
NR1F1	1N83	A	AELEHLAQNISKSHL-ETCQ

Klasse	PDB- Code	Kette	15060
NR1F2	*	*	TMTEIDRIAQNIIKSHL-ETCQ
NR1F3	*	*	SLTEIEHLVQSVCKSYR-ETCQ
NR1H2	1P8D	A	VQLTAAQELMIQQLVAAQL-QCNK
NR1H3	1UHL	В	MSPEQL-GMIE
NR1H4	10SH	A	SHG-ELTP
NR112	1ILH	A	GLTEEQRMMIRELMDAQMKTFDTTFSHFKNFRLPGVLSSGCELPESLQAPSREEA-AKWS
NR1I3	1XV9	В	PVQLSKEQEELIRTLLGAHT-RHMG
NR2A1	1PZL	A	DSSLPSINALLQAEV-LSRQ
NR2A2	1LV2	A	SINTLAQAEV-RSRQ
NR2B1	1MVC	A	DMPVERILEAEL-AVEP
NR2B2	1UHL	A	EMPVDRILEAEL-AVEQ
NR2B3	*	*	DMPVERILEAEL-AVEP
NR3A1	2P15	A	SLALSLTADQMVSALL-DAEP
NR3A2	1YYE	A	LSPEQLVLTLL-EAEP
NR3B1	1XB7	A	PVNALVSHLL-VVEP
NR3B2	*	*	PLTKIVSYLL-VAEP
NR3B3	2E2R	A	KPYNKIVSHLL-VAEP
NR3C1	1M2Z	A	ATLPQLTPTLVSLLE-VIEP
NR3C2	2AA	A	ALVPQLSTISR-ALTP
NR3C3	1SR7	A	QLIPPLINLLM-SIEP
NR3C4	2PNU	A	QPIFLNVLE-AIEP
NR4A1	2QW4	A	NLLTSLVRAHL-DSGP
NR4A2	10VL	A	SLISALVRAHV-DSNP
NR4A3	*	*	MMNALVRALT-DSTP
NR5A1	1ZDT	A	PNVPELILQLLQLEP-DEDQ
NR5A2	1YUC	A	ASIPHLILELLKCEP-DEPQ
Klasse	PDB- Code	Kette	110120
NR1A1	1NVA	A	KQRRKFLPDDIGQSPDGDKVDLEAFSEFTKIITPAITRVVDF
NR1A2	1N46	A	QGSHWKQKRKFLPEDIGQAPIVNAPEGGKVDLEAFSHFTKIITPAITRVVDF
NR1B1	*	*	ALCQLGKYTTNNSSEQRVSLDIDLWDKFSELSTKCIIKTVEF
NR1B2	1XAP	A	SLCQLGKYTTNSSADHRVRLDLGLWDKFSELATKCIIKIVEF
NR1B3	1FCY	A	SLCQLGKYTTNSSADHRVQLDLGLWDKFSELATKCIIKIVEF
NR1C1	2P54	A	PFVIHDMETLCMAEKTLVAKLVANGIQNKEAEVRIFHCCQCTSVETVTELTEF
NR1C2	1YOS	A	PFVIHDIETLWQAEKGLVWKQLVNGLPPYKEISVHVFYRCQCTTVETVRELTEF
NR1C3	1ZGY	A	FVIYDMNSLMMGEDKIKFKHITPLQEQSKEVAIRIFQGCQFRSVEAVQEITEY
NR1D1	*	*	VQEIWEDFSMSFTPAVREVVEF
NR1D2	2V0V	A	KSGHEIWEEFSMSFTPAVKEVVEF
NR1F1	1N83	A	YLREELQQITWQTFLQEEIENYQNKQREVMWQLCAIKITEAIQYVVEF
NR1F2	*	*	YTMEELHQLAWQTHTYEEIKAYQSKSREALWQQCAIQITHAIQYVVEF
NR1F3	*	*	LRLEDLLRQRSNIFSREEVTGYQRKSMWEMWERCAHHLTEAIQYVVEF
NR1H2	1P8D	A	RSFSDQPKVTPWPLGADPQSRDARQQRFAHFTELAIISVQEIVDF
NR1H3	1UHL	В	KLVAAQQQCNRRSFEARQQRFAHFTELAIVSVQEIVDF
NR1H4	10SH	A	DQQTLLHFIMDSYNKQRMPENFLILTEMATNHVQVLVEF
NR112	1ILH	A	QVRKDLCSLKVSLQLRGEDGSVWNYKPPADSGGKEIFSLLPHMADMSTYMFKGIISF
NR1I3	1XV9	В	TMFEQFVQFRPPAHLFIHHQPLPTLAPVLPLVTHFADINTFMVLQVIKF
NR2A1	1PZL	A	ITSPVSGINGDIRAKKIASIADVCESMKEQLLVLVEW
NR2A2	1 L.V.2	А	ISVSSPGSSTDINVKKIASIGDVCESMKOOLLVLVEW

Fortsetzung Tabelle 23: Sequenzvergleich der Kernrezeptor-LBD. Dargestelt ist jeweils die Kernrezeptorklasse und der PDB-Code, der verwendeten Struktur, sowie die verwendet Kette in der Röntgenkristallstruktur.
* Hierbei handelt es sich um Homologiemodelle.
| Klasse | PDB- | Kette | 708090100110120 |
|--------|-------|-------|--|
| 10001 | Lode | - | |
| NR2BI | IMVC | A | KTETYVEANMGLNPSSPNDPVTN1CQAADKQLFTLVEW |
| NR2B2 | 1UHL | A | KSDQGVEGPGGTGGSGSSPNDPVTNICQAADKQLFTLVEW |
| NR2B3 | * | * | KTESYGDMNMENSTNDPVTNICHAADKQLFTLVEW |
| NR3A1 | 2P15 | A | PILYSPYDPTRPFSEASMMGLLTNLADRELVHMINW |
| NR3A2 | 1YYE | A | PHVLISRPSAPFTEASMMMSLTKLADKELVHMISW |
| NR3B1 | 1XB7 | A | EKLYAMPDPAGPDGHLPAVATLCDLFDREIVVTISW |
| NR3B2 | * | * | DKLYAMPPPGMPEGDIKALTTLCDLADRELVVIIGW |
| NR3B3 | 2E2R | A | EKIYAMPDPTVPDSDIKALTTLCDLADRELVVIIGW |
| NR3C1 | 1M2Z | A | EVLYAGYDSSVPDSTWRIMTTLNMLGGRQVIAAVKW |
| NR3C2 | 2AA | A | SPVMVLENIEPEIVYAGYDSSKPDTAENLLSTLNRLAGKQMIQVVKW |
| NR3C3 | 1SR7 | A | DVIYAGHDNTKPDTSSSLLTSLNQLGERQLLSVVKW |
| NR3C4 | 2PNU | A | GVVCAGHDNNQPDSFAALLSSLNELGERQLVHVVKW |
| NR4A1 | 2QW4 | A | STAKLDYSKFQELVLPHFGKEDAGDVQQFYDLLSGSLEVIRKW |
| NR4A2 | 10VL | A | AMTSLDYSRFQANPDYQMSGDDTQHIQQFYDLLTGSMEIIRGW |
| NR4A3 | * | * | RDLDYSRYCPTDQAAAGTDAEHVQQFYNLLTASIDVSRSW |
| NR5A1 | 1ZDT | A | VRARILGCLQEPTKSRPDQPAAFGLLCRMADQTFISIVDW |
| NR5A2 | 1YUC | A | VQAKIMAYLQQEQANRSKHEKLSTFGLMCKMADQTLFSIVEW |
| Klasse | PDB- | Kette | 130140150160170180 |
| | Code | | |
| NR1A1 | 1NVA | A | AKKLPMFSELPCEDQIILLKGCCMEIMSLRAAVRYDPESDTLTLSGEMAVKREQLK |
| NR1A2 | 1N46 | A | AKKLPMFCELPCEDQIILLKGCCMEIMSLRAAVRYDPESETLTLNGEMAVTRGQLK |
| NR1B1 | * | * | AKQLPGFTTLTIADQITLLKAACLDILILRICTRYTPEQDTMTFSDGLTLNRTQMH |
| NR1B2 | 1XAP | А | AKRLPGFTGLTIADQITLLKAACLDILILRICTRYTPEQDTMTFSDGLTLNRTQMH |
| NR1B3 | 1FCY | A | AKRLPGFTGLSIADQITLLKAACLDILMLRICTRYTPEQDTMTFSDGLTLNRTQMH |
| NR1C1 | 2P54 | A | AKAIPGFANLDLNDQVTLLKYGVYEAIFAMLSSVMNKDGMLVAY-GNGFITREFLK |
| NR1C2 | 1YOS | A | AKSIPSFSSLFLNDQVTLLKYGVHEAIFAMLASIVNKDGLLVANGSGFVTREFLR |
| NR1C3 | 1ZGY | A | AKSIPGFVNLDLNDQVTLLKYGVHEIIYTMLASLMNKDGVLISEGQGFMTREFLK |
| NR1D1 | * | * | AKHIPGFRDLSQHDQVTLLKAGTFEVLMVRFASLFNVKDQTVMFLSRTTYSLQELG |
| NR1D2 | 2V0V | A | AKRIPGFRDLSQHDQVNLLKAGTFEVLMVRFASLFDAKERTVTFLGSKKYSVDDLH |
| NR1F1 | 1N83 | A | AKRIDGFMELCQNDQIVLLKAGSLEVVFIRMCRAFDSQNNTVYF-DGKYASPDVFK |
| NR1F2 | * | * | AKRITGFMELCQNDQILLLKSGCLEVVLVRMCRAFNPLNNTVLF-EGKYGGMQMFK |
| NR1F3 | * | * | AKRLSGFMELCQNDQIVLLKAGAMEVVLVRMCRAYNADNRTVFF-EGKYGGMELFR |
| NR1H2 | 1P8D | A | AKQVPGFLQLGREDQIALLKASTIEIMLLETARRYNHETECITFLKDFTYSKDDFH |
| NR1H3 | 1UHL | В | AKQLPGFLQLSREDQIALLKTSAIEVMLLETSRRYNPGSESITDFSYNREDFA |
| NR1H4 | 10SH | A | TKKLPGFQTLDHEDQIALLKGSAVEAMFLRSAEIFNKKLPSGHSDLLEERIR |
| NR112 | 1ILH | A | AKVISYFRDLPIEDQISLLKGAAFELCQLRFNTVFNAETGTWEC-GRLSYCLEDTA |
| NR1I3 | 1XV9 | В | TKDLPVFRSLPIEDOISLLKGAAVEICHIVLNTTFCLOTONFLCGPLRYTIEDGAR |
| NR2A1 | 1PZL | A | AKYIPAFCELPLDDOVALLRAHAGEHLLLGATKRSMVFKDVLLLGNDYIVPRHCPE |
| NR2A2 | 1LV2 | A | ~
AKYIPAFCELPLDDOVALLRAHAGEHLLLGATKRSMMYKDILLLGNNYVIHRNSCE |
| NR2B1 | 1 MVC | A | AKRIPHESELPLDDOVILLRAGWNELLTASESHRSIAVKDGILLATGLHVHRNSAH |
| NR2B2 | 1UHT. | A | AKRTPHESSLPLDDOVILLRAGWNELLTASESHRSTDVRDGILLATGLHVHRNSAH |
| NR2B3 | * | * | AKRIPHESDLTLEDOVILLRAGWNELLIASESHRSVSVODGILLATGLHVHRSSAH |
| NR3A1 | 2215 | Δ | AKRVPGEVDLTLHDOVHLLECAWLETIMIGLVWRSMEHPCKLLEA DNLLLDRNOCK |
| ND373 | 1 VVF | 7 | |
| ND 2D1 | 1007 | A | |
| ND3D1 | 10D/ | * | |
| MD2D2 | 000 | 7 | VKRIDCECHICIYDOWCIIOCYMMETITICAWADOLCE DDD TAXYDDAADDDCCA |
| NK3B3 | ZEZK | A | WAT DEEDNING DEEDNALL ON ON WAT WE DAY OND ON DEED OF THE ON TADDA THORE DO SK |
| NRKC1 | M27 | A | AKATPGEKNTHTDDOMTTTDOYSWMSTMAFALGWRSYROSSANTTCEAPDTTTNEORMT |

Fortsetzung Tabelle 23: Sequenzvergleich der Kernrezeptor-LBD. Dargestelt ist jeweils die Kernrezeptorklasse und der PDB-Code, der verwendeten Struktur, sowie die verwendet Kette in der Röntgenkristallstruktur. *Hierbei handelt es sich um Homologiemodelle. **Fortsetzung Tabelle 23: Sequenzvergleich der Kernrezeptor-LBD.** Dargestelt ist jeweils die Kernrezeptorklasse und der PDB-Code, der verwendeten Struktur, sowie die verwendet Kette in der Röntgenkristallstruktur. * Hierbei handelt es sich um Homologiemodelle.

Klasse	PDB-	Kette	130140150160170180
	Code	_	
NR3C2	2AA	A	AKVLPGFKNLPLEDQITLIQYSWMSLLSFALSWRSYKHTNSQFLYFAPDLVFNEEKMH
NR3C3	1SR7	A	SKSLPGFRNLHIDDQITLIQYSWMSLMVFGLGWRSYKHVSGQMLYFAPDLILNEQRMK
NR3C4	2PNU	A	AKALPGFRNLHVDDQMAVIQYSWMGLMVFAMGWRSFTNVNSRMLYFAPDLVFNEYRMH
NR4A1	2QW4	A	AEKIPGFAELSPADQDLLLESAFLELFILRLAYRSKPGEGKLIFCSGLVLHRLQCA
NR4A2	10VL	A	AEKIPGFADLPKADQDLLFESAFLELFVLRLAYRSNPVEGKLIFCNGVVLHRLQCV
NR4A3	*	*	AEKIPGFTDLPKEDQTLLIESAFLELFVLRLSIRSNTAEDKFVFCNGLVLHRLQCL
NR5A1	1ZDT	A	ARRCMVFKELEVADQMTLLQNCWSELLVFDHIYRQVQHGKEGSILLVTGQEVELTTVA
NR5A2	1YUC	A	ARSSIFFRELKVDDQMKLLQNCWSELLILDHIYRQVVHGKEGSIFLVTGQQVDYSIIA
Klasse	PDB- Code	Kette	230210220230240
NR1A1	1NVA	A	NGGLG-VVSDAIFELGKSLSAFNLDDTEVALLQAVLLMSTDRSGLL
NR1A2	1N46	A	NGGLG-VVSDAIFDLGMSLSSFNLDDTEVALLQAVLLMSSDRPGLA
NR1B1	*	*	NAGFG-PLTDLVFAFANQLLPLEMDDAETGLLSAICLICGDRQDLE
NR1B2	1XAP	A	NAGFG-PLTDLVFTFANQLLPLEMDDTETGLLSAICLICGDRQDLE
NR1B3	1FCY	A	NAGFG-PLTDLVFAFAGQLLPLEMDDTETGLLSAICLICGDRMDLE
NR1C1	2P54	A	SLR-KPFC-DIMEPKFDFAMKFNALELDDSDISLFVAAIICCGDRPGLL
NR1C2	1YOS	A	SLR-KPFS-DIIEPKFEFAVKFNALELDDSDLALFIAAIILCGDRPGLM
NR1C3	1ZGY	A	SLR-KPFG-DFMEPKFEFAVKFNALELDDSDLAIFIAVIILSGDRPGLL
NR1D1	*	*	AMGMG-DLLSAMFDFSEKLNSLALTEEELGLFTAVVLVSADRSGME
NR1D2	2V0V	A	SMGAG-DLLNSMFEFSEKLNALQLSDEEMSLFTAVVLVSADRSGIE
NR1F1	1N83	A	SLGCE-DFISFVFEFGKSLCSMHLTEDEIALFSAFVLMSADRSWLQ
NR1F2	*	*	ALGSD-DLVNEAFDFAKNLCSLQLTEEEIALFSSAVLISPDRAWLI
NR1F3	*	*	ALGCS-ELISSIFDFSHSLSALHFSEDEIALYTALVLINAHRPGLQ
NR1H2	1P8D	A	RAGLQVEFINPIFEFSRAMRRLGLDDAEYALLIAINIFSADRPNVQ
NR1H3	1UHL	В	KAGLQVEFINPIFEFSRAMNELQLNDAEFALLIAISIFSADRPNVQ
NR1H4	10SH	A	NSGISDEYITPMFSFYKSIGELKMTQEEYALLTAIVILSPDRQYIK
NR112	1ILH	A	GGFQQ-LLLEPMLKFHYMLKKLQLHEEEYVLMQAISLFSPDRPGVL
NR1I3	1XV9	В	VGFQV-EFLELLFHFHGTLRKLQLQEPEYVLLAAMALFSPDRPGVT
NR2A1	1PZL	A	LAEMS-RVSIRILDELVLPFQELQIDDNEYAYLKAIIFFDPDAKGLS
NR2A2	1LV2	A	VEIS-RVANRVLDELVRPFQEIQIDDNEYACLKAIVFFDPDAKGLS
NR2B1	1MVC	A	SAGVG-AIFDRVLTELVSKMRDMQMDKTELGCLRAIVLFNPDSKGLS
NR2B2	1UHL	A	SAGVG-AIFDRVLTELVSKMRDMRMDKTELGCLRAIILFNPDAKGLS
NR2B3	*	*	SAGVG-SIFDRVLTELVSKMKDMQMDKSELGCLRAIVLFNPDAKGLS
NR3A1	2P15	A	CVEGMV-EIFDMLLATSSRFRMMNLQGEEFVCLKSIILLNSGVYTFLSSTLKSLE
NR3A2	1YYE	A	CVEGIL-EIFDMLLATTSRFRELKLQHKEYLCVKAMILLNSSMYP-LVTATQDAD
NR3B1	1XB7	A	AAGLG-ELGAALLQLVRRLQALRLEREEYVLLKALALANSDSVHIE
NR3B2	*	*	LAGLL-ELYRAILQLVRRYKKLKVEKEEFVTLKALALANSDSMYIE
NR3B3	2E2R	A	LAGLL-DLNNAILQLVKKYKSMKLEKEEFVTLKAIALANSDSMHIE
NR3C1	1M2Z	A	LPCMY-DQCKHMLYVSSELHRLQVSYEEYLCMKTLLLLSSVPKDGLK
NR3C2	2AA	A	QSAMY-ELCQGMHQISLQFVRLQLTFEEYTIMKVLLLLSTIPKDGLK
NR3C3	1SR7	A	ESSFY-SLCLTMWQIPQEFVKLQVSQEEFLCMKVLLLLNTIPLEGLR
NR3C4	2PNU	A	KSRMY-SQCVRMRHLSQEFGWLQITPQEFLCMKALLLFSIIPVDGLK
NR4A1	2QW4	A	RGFG-DWIDSILAFSRSLHSLLVDVPAFACLSALVLITDRHGLQ
NR4A2	10VL	A	RGFG-EWIDSIVEFSSNLQNMNIDISAFSCIAALAMVTERHGLK
NR4A3	*	*	RGFG-EWLDSIKDFSLNLQSLNLDIQALACLSALSMITERHGLK
NR5A1	1ZDT	A	TQAGS-LLHSLVLRAQELVLQLLALQLDRQEFVCLKFIILFSLDLKFLN
NR5A2	1YUC	A	SQAGATLN-NLMSHAQELVAKLRSLQFDQREFVCLKFLVLFSLDVKNLE

Fortsetzung Tabelle 23: Sequenzvergleich der Kernrezeptor-LBD. Dargestelt ist jeweils die Kernrezeptorklasse und der PDB-Code, der verwendeten Struktur, sowie die verwendet Kette in der Röntgenkristallstruktur. * Hierbei handelt es sich um Homologiemodelle.

Klasse	PDB- Code	Kette	250260270280290300
NR1A1	1NVA	A	CVDKIEKSQEAYLLAFEHYVNHRKHNIPHFWPKLLMKVTDLRMIGACHASRFLH
NR1A2	1N46	A	CVERIEKYQDSFLLAFEHYINYRKHHVTHFWPKLLMKVTDLRMIGACHASRFLH
NR1B1	*	*	QPDRVDMLQEPLLEALKVYVRKRRPSRPHMFPKMLMKITDLRSISAKGAERVIT
NR1B2	1XAP	A	EPTKVDKLQEPLLEALKIYIRKRRPHMFPKILMKITDLRSISAKGAERVIT
NR1B3	1FCY	A	EPEKVDKLQEPLLEALRLYARRRRPSQPYMFPRMLMKITDLRGISTKGAERAIT
NR1C1	2P54	A	NVGHIEKMQEGIVHVLRLHLQSNHPDDIFLFPKLLQKMADLRQLVTEHAQLVQI
NR1C2	1YOS	A	NVPRVEAIQDTILRALEFHLQANHPDAQYLFPKLLQKMADLRQLVTEHAQMMQR
NR1C3	1ZGY	A	NVKPIEDIQDNLLQALELQLKLNHPESSQLFAKLLQKMTDLRQIVTEHVQLLQV
NR1D1	*	*	NSASVEQLQETLLRALRALVLKNRPLETSRFTKLLLKLPDLRTLNNMHSEKLLS
NR1D2	2V0V	A	NVNSVEALQETLIRALRTLIMKNHPNEASIFTKLLLKLPDLRSLNNMHSEELLA
NR1F1	1N83	A	EKVKIEKLQQKIQLALQHVLQKNHRED-GILTKLICKVSTLRALCGRHTEKLMA
NR1F2	*	*	EPRKVQKLQEKIYFALQHVIQKNHLDD-ETLAKLIAKIPTITAVCNLHGEKLQV
NR1F3	*	*	EKRKVEQLQYNLELAFHHHLCKTHRQSILAKLPPK-GKLRSLCSQHVERLQI
NR1H2	1P8D	A	EPGRVEALQQPYVEALLSYTRIKRPQDQLRFPRMLMKLVSLRTLSSVHSEQVFA
NR1H3	1UHL	В	DQLQVERLQHTYVEALHAYVSIHHPHDRLMFPRMLMKLVSLRTLSSVHSEQVFA
NR1H4	10SH	A	DREAVEKLQEPLLDVLQKLCKIHQPENPQHFACLLGRLTELRTFNHHHAEMLMS
NR112	1ILH	A	QHRVVDQLQEQFAITLKSYIECNRPQPAHRFLFLKIMAMLTELRSINAQHTQRLLR
NR1I3	1XV9	В	QRDEIDQLQEEMALTLQSYIKGQQRRPRDRFLYAKLLGLLAELRSINEAYGYQIQH
NR2A1	1PZL	A	DPGKIKRLRSQVQVSLEDYINDRQYDSRGRFGELLLLLPTLQSITWQMIEQIQF
NR2A2	1LV2	A	DPVKIKNMRFQVQIGLEDYINDRQYDSRGRFGELLLLLPTLQSITWQMIEQIQF
NR2B1	1MVC	A	NPAEVEALREKVYASLEAYCKHKYPEQPGRFAKLLLRLPALRSIGLKCLEHLFF
NR2B2	1UHL	A	NPSEVEVLREKVYASLETYCKQKYPEQQGRFAKLLLRLPALRSIGLKCLEHLFF
NR2B3	*	*	NPSEVETLREKVYATLEAYTKQKYPEQPGRFAKLLLRLPALRSIGLKCLEHLFF
NR3A1	2P15	A	EKDHIHRVLDKITDTLIHLMAKAGLTLQ-QQHQRLAQLLLILSHIRHMSNKGMEHLYS
NR3A2	1YYE	A	SSRKLAHLLNAVTDALVWVIAKSGISSQ-QQSMRLANLLMLLSHVRHASNKGMEHLLN
NR3B1	1XB7	A	DAEAVEQLREALHEALLEYEAGRAGPGGGAERRRAGRLLLTLPLLRQTAGKVLAHFYG
NR3B2	*	*	DLEAVQKLQDLLHEALQDYELSQRHEEPWRTGKLLLTLPLLRQTAAKAVQHFYS
NR3B3	2E2R	A	DVEAVQKLQDVLHEALQDYEAGQHMEDPRRAGKMLMTLPLLRQTSTKAVQHFYN
NR3C1	1M2Z	A	SQELFDEIRMTYIKELGKAIVKREGNSS-QNWQRFYQLTKLLDSMHEVVENLLNYCFQ
NR3C2	2AA	A	SQAAFEEMRTNYIKELRKMVTKCPNNSG-QSWQRFYQLTKLLDSMHDLVSDLLEFCFY
NR3C3	1SR7	A	SQTQFEEMRSSYIRELIKAIGLRQKGVV-SSSQRFYQLTKLLDNLHDLVKQLHLYCLN
NR3C4	2PNU	A	NQKFFDELRMNYIKELDRIIACKRKNPT-SCSRRFYQLTKLLDSVQPIARELHQFTFD
NR4A1	2QW4	A	EPRRVEELQNRIASCLKEHVAAVAGEPQPASCLSRLLGKLPELRTLCTQGLQRIFY
NR4A2	TOAT	A	EPKRVEELQNKI VNCLKDHVTFNNGGLNRPNYLSKLLGKLPELRTLCTQGLQRIFY
NR4A5	1 7 5 00	7	
NR5AL	1 VUC	A	
NK5AZ	DDD	A Webbe	
KIASSe	Code	Kette	310320
NR1A1	1NVA	A	MK-VECPTELFPPLFLEVFEDQ
NR1A2	1N46	A	MK-VECPTELFPPLFLEVFE
NR1B1	*	*	LK-MEIPGSM-PPLIQEMLEN
NR1B2	1XAP	A	LK-MEIPGSM-PPLIQEMLEN
NR1B3	1FCY	A	LK-MEIPGPM-PPLIREMLE
NR1C1	2P54	A	IKKTESDAAL-HPLLQEIYRDMY
NR1C2	1YOS	A	IKKTETETSL-HPLLQEIYKD
NR1C3	1ZGY	А	IKKTETDMSL-HPLLOEIYKDLY

Klasse	PDB- Code	Kette	310320330340
NR1D1	*	*	FR
NR1D2	2V0V	А	FK
NR1F1	1N83	А	FK-AIYPDIVRLHF-PPLYKELF
NR1F2	*	*	FK-QSHPEIVNTLF-PPLYKELFN
NR1F3	*	*	FQ-HLHPIVVQAAF-PPLYKELFS
NR1H2	1P8D	А	LR-LQDKKL-PPLLSEIWDVHE
NR1H3	1UHL	В	LR-LQDKKL-PPLLSEIWDV
NR1H4	10SH	А	WR-VNDHKF-TPLLCEIWDV
NR112	1ILH	A	IQ-DIHPFATPLMQELFGI
NR1I3	1XV9	В	IQGLSAM-MPLLQEICS
NR2A1	1PZL	A	IK-LFGMAKI-DNLLQEMLLGGS
NR2A2	1LV2	А	VK-LFGMVKI-DNLLQEMLLGG
NR2B1	1MVC	A	FK-LIGDTPI-DTFLMEMLEAP
NR2B2	1UHL	А	FK-LIGDTPI-DTFLMEMLEA
NR2B3	*	*	FK-LIGDTPI-DTFLMEMLETP
NR3A1	2P15	A	MK-CKNVVPL-SDLLLEMLDAHRL
NR3A2	1YYE	A	MK-CKNVVPV-YDLLLEMLNAHVL
NR3B1	1XB7	A	VK-LEGKVPM-HKLFLEMLEA
NR3B2	*	*	VK-LQGKVPM-HKLFLEMLEAK
NR3B3	2E2R	A	IK-LEGKVPM-HKLFLEMLEAKV
NR3C1	1M2Z	A	TF-LDKTMSIEF-PEMLAEIITNQIPKYSNGNIKKLLFHQK
NR3C2	2AA	A	TF-RES-HALKVEF-PAMLVEIISDQLPKVESGNAKPLYFH-R
NR3C3	1SR7	A	TF-IQS-RALSVEF-PEMMSEVIAAQLPKILAGMVKPLLFH-K
NR3C4	2PNU	A	LL-IKS-HMVSVDF-PEMMAEIISVQVPKILSGKVKPIYFHTQ
NR4A1	2QW4	A	LK-LEDLVPP-PPIIDKIFMDT
NR4A2	lovl	A	LK-LEDLVPP-PAIIDKLFLDTLPF
NR4A3	*	*	LK-LEDLVSP-PSIIDKLFLDT
NR5A1	1ZDT	A	KH-LGNEMPR-NNLLIEMLQAKQ
NR5A2	1YUC	А	KH-LNGDVPY-NNLLIEMLHA

Fortsetzung Tabelle 23: Sequenzvergleich der Kernrezeptor-LBD. Dargestelt ist jeweils die Kernrezeptorklasse und der PDB-Code, der verwendeten Struktur, sowie die verwendet Kette in der Röntgenkristallstruktur. * Hierbei handelt es sich um Homologiemodelle.

* Homologiemodell.

Tabelle 24: Zuordnung der 5 Ligandenbindungssubtaschen innerhalb der 37 humanen Kernrezeptoren. Dargestellt ist jeweils die Kernrezeptorklasse, der PDB-Code der verwendeten Struktur, sowie die verwendet Kette der Röntgenkristalstruktur.

Hierbei handelt es sich um Homologiemo	delle
--	-------

Klasse	PDB- Code	Kette	HЗ	Н5/Н6	B1	H11	H12
NR1A1	1NVA	A	FSEFTKIITPAI	KGCCMEIMSLRAAVR	LLMVQGLVIF	HASRFLHM	LFPPLFLEVFEDQ-
NR1A2	1N46	A	FSHFTKIITPAI	KGCCMEIMSLRAAVR	LLMVQGLVIF	HASRFLHM	LFPPLFLEVFE
NR1B1	*	*	WDKFSELSTKCI	KAACLDILILRICTR	MFLLQAFLVF	GAERVITL	M-PPLIQEMLEN
NR1B2	1XAP	A	WDKFSELATKCI	KAACLDILILRICTR	MFLLQAFLVF	GAERVITL	M-PPLIQEMLEN
NR1B3	1FCY	A	WDKFSELATKCI	KAACLDILMLRICTR	MFLLQAFLVF	GAERAITL	M-PPLIREMLE
NR1C1	2P54	A	FHCCQCTSVETV	KYGVYEAIFAMLSSV	VYGIFLFIKF	HAQLVQII	L-HPLLQEIYRDMY
NR1C2	1YOS	A	FYRCQCTTVETV	KYGVHEAIFAMLASI	LAGVFLFIKF	HAQMMQRI	L-HPLLQEIYKD
NR1C3	1ZGY	A	FQGCQFRSVEAV	KYGVHEIIYTMLASL	LSGMFLFFKF	HVQLLQVI	L-HPLLQEIYKDLY
NR1D1	*	*	WEDFSMSFTPAV	KAGTFEVLMVRFASL	VFTYEMMLMF	HSEKLLSF	
NR1D2	2V0V	A	WEEFSMSFTPAV	KAGTFEVLMVRFASL	VFKYDMALMF	HSEELLAF	
NR1F1	1N83	A	WQLCAIKITEAI	KAGSLEVVFIRMCRA	VFKAVLCFVF	HTEKLMAF	F-PPLYKELF
NR1F2	*	*	WQQCAIQITHAI	KSGCLEVVLVRMCRA	VFKGMLSLAF	HGEKLQVF	F-PPLYKELFN
NR1F3	*	*	WERCAHHLTEAI	KAGAMEVVLVRMCRA	VFKGLLCLIF	HVERLQIF	F-PPLYKELFS
NR1H2	1P8D	A	FAHFTELAIISV	KASTIEIMLLETARR	IFFYDALFIF	HSEQVFAL	L-PPLLSEIWDVHE
NR1H3	1UHL	В	FAHFTELAIVSV	KTSAIEVMLLETSRR	I-FYDALFIF	HSEQVFAL	L-PPLLSEIWDV
NR1H4	10SH	A	FLILTEMATNHV	KGSAVEAMFLRSAEI	SLRSIYMF	HAEMLMSW	F-TPLLCEIWDV
NR112	1ILH	A	LPHMADMSTYMF	KGAAFELCQLRFNTV	WCLYDGQLML	HTQRLLRI	TPLMQELFGI
NR1I3	1XV9	В	VTHFADINTFMV	KGAAVEICHIVLNTT	FCRTGGQFLF	YGYQIQHI	M-MPLLQEICS
NR2A1	1PZL	A	IADVCESMKEQL	RAHAGEHLLLGATKR	LLYVCAMVIL	MIEQIQFI	I-DNLLQEMLLGGS
NR2A2	1LV2	A	IGDVCESMKQQL	RAHAGEHLLLGATKR	LLYIS-IVVL	MIEQIQFV	I-DNLLQEMLLGG-
NR2B1	1MVC	A	VTNICQAADKQL	RAGWNELLIASFSHR	ILLVSAVIVL	CLEHLFFF	I-DTFLMEMLEAP-
NR2B2	1UHL	A	VTNICQAADKQL	RAGWNELLIASFSHR	ILLVSAVIVL	CLEHLFFF	I-DTFLMEMLEA
NR2B3	*	*	VTNICHAADKQL	RAGWNELLIASFSHR	ILLVSAVIVL	CLEHLFFF	I-DTFLMEMLETP-
NR3A1	2P15	A	MGLLTNLADREL	ECAWLEILMIGLVWR	LFLLQVMILL	GMEHLYSM	L-SDLLLEMLDAHR
NR3A2	1YYE	A	MMSLTKLADKEL	ESCWMEVLMMGLMWR	LFLLEVIILL	GMEHLLNM	V-YDLLLEMLNAHV
NR3B1	1XB7	A	VATLCDLFDREI	QSVWMEVLVLGVAQR	LFLLGALLLL	VLAHFYGV	M-HKLFLEMLEA
NR3B2	*	*	LTTLCDLADREL	QSAWMEILILGIVYR	LYYMHALLIL	AVQHFYSV	M-HKLFLEMLEAK-
NR3B3	2E2R	A	LTTLCDLADREL	QSAWMEILILGVVYR	LYYMQALLIL	AVQHFYNI	M-HKLFLEMLEAKV
NR3C1	1M2Z	A	MTTLNMLGGRQV	QYSWMSLMAFALGWR	LFLIRPMQML	LLNYCFQT	F-PEMLAEIITNQI
NR3C2	2AA	A	LSTLNRLAGKQM	QYSWMSLLSFALSWR	LFLFKSMLMH	LLEFCFYT	F-PAMLVEIISDQL
NR3C3	1SR7	A	LTSLNQLGERQL	QYSWMSLMVFGLGWR	LFLLRSFLMW	LHLYCLNT	F-PEMMSEVIAAQL
NR3C4	2 PNU	A	LSSLNELGERQL	QYSWMGLMVFAMGWR	LFLFRSMQMR	LHQFTFDL	F-PEMMAEIISVQV
NR4A1	2QW4	A	VQQFYDLLSGSL	ESAFLELFILRLAYR	LFLLQ-FWIL	GLQRIFYL	P-PPIIDKIFMDT-
NR4A2	10VL	A	IQQFYDLLTGSM	ESAFLELFVLRLAYR	LFVLQ-FWIV	GLQRIFYL	P-PAIIDKLFLDTL
NR4A3	*	*	VQQFYNLLTASI	ESAFLELFVLRLSIR	FFLLQ-FWIK	GLQRIFYL	P-PSIIDKLFLDT-
NR5A1	1ZDT	A	FGLLCRMADQTF	QNCWSELLVFDHIYR	ILQVTQGLVL	AKEYLYHK	R-NNLLIEMLQAKQ
NR5A2	1YUC	A	FGLMCKMADQTL	QNCWSELLILDHIYR	ILQVIQLLAQ	AEEYLYYK	Y-NNLLIEMLHA

* Homologiemodell

Tabelle 25: Daten für die Korrelation zwischen *score* und den experimentell bestimmten pK_i -Werten für den NR3A1. Zusätzlich angegeben ist der K_i-Wert, der Rang der Substanz nach dem *score* (Rang nach *score*), der Rang der Substanz nach dem pK_i -Wert (Rang nach pK_i -Wert) und die Differenz zwischen experimentell bestimmten pK_i -Wert und vorhergesagtem pKi-Wert (vorh. pKi-Wert) als Fehler.

Substanz	score	K _i -Wert [nM]	pK _i -Wert [nM]	Rang nach score	Rang nach	vorh. pK _i - Wert [nM]	Fehler [nM]
					K _i -Wert		
QDM 276 (52)	-96	3060,12	-3,49	7	6	-5,00	1,51
QDM 255 (40)	-99	2033,85	-3,31	4	5	-3,71	0,40
DHT (2)	-98	369,85	-2,57	5	4	-3,78	1,21
TES (1)	-98	5259,03	-3,72	5	7	-3,78	0,06
17β-Estradiol (126)	-103	1,27	-0,11	1	2	-0,73	0,62
17α-Estradiol (128)	-102	1,49	-0,17	2	3	-1,34	1,17
17α-Ethinylestradiol (127)	-100	0,07	1,18	3	1	-2,56	1,38

Tabelle 26: Daten für die Korrelation zwischen *score* und den experimentell bestimmten pK_i -Werten für den NR3A2. Zusätzlich angegeben ist der K_i -Wert, der Rang der Substanz nach dem *score* (Rang nach *score*), der Rang der Substanz nach dem pK_i -Wert (Rang nach pK_i -Wert) und die Differenz zwischen experimentell bestimmten pK_i -Wert und vorhergesagtem pKi-Wert (vorh. pKi-Wert) als Fehler.

Substanz	score	K _i -Wert [nM]	pK _i -Wert [nM]	Rang nach score	Rang nach	vorh. pK _i - Wert [nM]	Fehler [nM]
					K _i -Wert		
QDM 276 (52)	-95	13241,68	-4,12	7	6	-4,055	-0,175
QDM 255 (40)	-98	2903,57	-3,46	5	5	-3,398	-0,062
XSA164 (79)	-93	7068,98	-3,85	6	7	-4,493	0,643
DHT (2)	-106	745,46	-2,87	4	3	-1,646	-1,224
TES (1)	-105	633,64	-2,80	3	4	-1,865	-0,935
17β-Estradiol (126)	-109	1,72	-0,24	2	1	-0,989	0,749
17α-Estradiol (128)	-108	0,86	0,07	1	2	1,208	-1,278

Tabelle 27: Daten für die Korrelation zwischen *score* und den experimentell bestimmten pK_i -Werten für den NR3C1. Zusätzlich angegeben ist der K_i -Wert, der Rang der Substanz nach dem *score* (Rang nach *score*), der Rang der Substanz nach dem pK_i -Wert (Rang nach pK_i -Wert) und die Differenz zwischen experimentell bestimmten pK_i -Wert und vorhergesagtem pKi-Wert (vorh. pKi-Wert) als Fehler.

Substanz	score	K _i -Wert [nM]	pK _i -Wert [nM]	Rang nach score	Rang nach	vorh. pK _i - Wert [nM]	Fehler [nM]
					r _i -wert		
QDM 276 (52)	-103	124,03	-2,09	8	10	-1,399	-0,691
β-Sitosterol (34)	-96	1331,72	-3,12	11	11	-3,128	0,008
Guggulsteron E (36)	-101	17,34	-1,24	9	6	-1,893	0,653
XVB0158 (53)	-95	3081,47	-3,49	12	12	-3,375	-0,115
DHT (2)	-104	2,36	-0,37	6	4	-1,152	0,782
TES (1)	-104	19,83	-1,30	6	7	-1,152	-0,148
Medroxyprogesteron (125)	-110	0,02	1,64	1	1	0,33	1,31
Cyproteronacetat (26)	-109	0,31	0,52	3	2	0,083	0,437
17β-Estradiol (126)	-101	48,82	-1,69	9	9	-1,893	0,203
Progesteron (4)	-105	15,56	-1,19	5	5	-0,905	-0,285
17α-Ethinylestradiol (127)	-107	29,75	-1,47	4	8	-0,411	-1,059
Spironolacton (12)	-110	4,12	-0,61	1	3	0,33	-0,94

Tabelle 28: Daten für die Korrelation zwischen *score* und den experimentell bestimmten pK_i -Werten für den NR3C3. Zusätzlich angegeben ist der K_i -Wert, der Rang der Substanz nach dem *score* (Rang nach *score*), der Rang der Substanz nach dem pK_i -Wert (Rang nach pK_i -Wert) und die Differenz zwischen experimentell bestimmten pK_i -Wert und vorhergesagtem pKi-Wert (vorh. pKi-Wert) als Fehler.

Substanz	score	K _i -Wert [nM]	pK _i -Wert [nM]	Rang nach <i>score</i>	Rang nach K _i -Wert	vorh. pK _i - Wert [nM]	Fehler
QDM 276 (52)	-102	66,10	-1,82	7	7	-2,058	0,238
β-Sitosterol (34)	-93	6092,75	-3,78	16	14	-4,362	0,582
Guggulsteron E (36)	-102	651,96	-2,81	7	9	-2,058	-0,752
Guggulsteron Z (38)	-99	2964,35	-3,47	11	12	-2,826	-0,644
XSA164 (79)	-97	2814,61	-3,45	14	11	-3,338	-0,112
DUE040 (59)	-98	15714,33	-4,20	13	16	-3,082	-1,118
XVB0158 (53)	-99	2967,77	-3,47	11	13	-2,826	-0,644
XVB485 (114)	-96	9057,09	-3,96	15	15	-3,594	-0,366
DHT (2)	-106	4,03	-0,61	6	3	-1,034	0,424
TES (1)	-107	60,46	-1,78	4	6	-0,778	-1,002
Medroxyprogesteron (125)	-107	0,60	0,22	4	2	-0,778	0,998
Cyproteronacetat (26)	-116	0,02	1,76	1	1	1,526	0,234
17β-Estradiol (126)	-108	94,92	-1,98	3	8	-0,522	-1,458
17α-Estradiol (128)	-102	1051,20	-3,02	7	10	-2,058	-0,962
Progesteron (4)	-110	6,65	-0,82	2	5	-0,01	-0,81
17α-Ethinylestradiol (127)	-102	6,05	-0,78	7	4	-2,058	1,278

9.6 Strukturformelverzeichnis

Tabelle 29: Strukturformelverzeichnis. Gelistet sind alle in der vorliegenden Arbeit erwähnten Strukturen/Verbindungen sowie die 94 potentiellen Hits aus dem VS (Nr.: 31-124). Angegben ist jeweils die Strukturformelnummer (Nr.), der Trivialname und die *Chemical Abstract Service* (CAS) Nummer (soweit beides bekannt), die Struktur, der IUPAC Name. Weiterhin angegeben ist die IPB-internen Substanzbezeichnungen (MolID und 3LC), der *score* und die relative Bindungsaffinität (RBA) zum NR3C4 bei 100 μ M in Prozent (bezogen auf 10 μ M TES (1)), sowie deren Standardabweichung in Prozent. Der *score* und die RBA wurde nur für die 94 Verbindung (Hits) aus dem VS dargestellt. Zusätzlich wurde angegeben, ob die Strukturen in der Beilsteindatenbank¹⁶⁷ oder der hauseigene Datenbank (Leibniz-Institut für Pflanzenbiochemie, Abteilung Naturstoffchemie) als Naturstoff gelistet sind (Datenbankabfrage: 03. Juli 2010). Bei Strukturen mit roter Stereochemie war die rote stereochmische Teilstruktur nicht bekannt und wurde durch das Docking in die LBT des NR3C4 eralten.

- *IUPAC Namen mit MarvinSketch (ChemAxon) generiert
- ^{\$} IUPAC Namen aus Pubchem (http://pubchem.ncbi.nlm.nih.gov/; 29.05.2010)
- [§] IUPAC Namen aus PDBsum (http://www.ebi.ac.uk/pdbsum/; 29.05.2010)

Nr.	Trivialname / CAS / Struktur / IUPAC Name	MollD	3LC	score	RBA [%]	Natur- stoff
1	Testosteron CAS 58-18-4 (8R,9S,10R,13S,14S,17S)-1,7,8,10,11,12,13,15,16,17- Decahydro-17-hydroxy-10,13-dimethyl-2H- cyclopenta[a]phenanthren-3(6H,9H,14H)-on	-	-	-	-	ja
2	Dihydrotestosteron CAS 521-18-6 H, H H, H H (5S,8R,9S,10S,13S,14S,17S)-Dodecahydro-17-hydroxy- 10,13-dimethyl-2H-cyclopenta[a]phenanthren- 3(4H,9H,14H)-on	-	-	-	-	ja
3	Cholesterin CAS 57-88-5 (35,88,95,10R,13R,14S,17R)- 2,3,4,7,8,9,10,11,12,13,14,15,16,17-Tetradecahydro- 10,13-dimethyl-17-((R)-6-methylheptan-2-yl)-1H- cyclopenta[a]phenanthren-3-ol	-	-	-	-	ja
4	Progesteron CAS 57-83-0 (8S,9S,10R,13S,14S,17S)-17-Acetyl- 1,7,8,10,11,12,13,15,16,17-decahydro-10,13-dimethyl-2H- cyclopenta[a]phenanthren-3(6H,9H,14H)-on	-	-	-	-	ja

[#] IUPAC Namen mit ChemDraw Ultra 8.0 generiert

Nr.	Trivialname / CAS / Struktur / IUPAC Name	MollD	3LC	score	RBA [%]	Natur- stoff
5	17α-Hydroxyprogesteron CAS 68-96-2 (8R,9S,10R,13S,14S,17R)-17-Acetyl- 1,7,8,10,11,12,13,15,16,17-decahydro-17-hydroxy-10,13- dimethyl-2H-cyclopenta[a]phenanthren-3(6H,9H,14H)-on	-	-	-	-	ja
6	Acetyl-CoA O CAS 72-89-9 H ₃ C CoA S-CoA Ethanethioat	-	-	-	-	ja
7	(<i>R</i>)-Mevalonsäure CAS 150-97-0 HO (R)-3,5-Dihydroxy-3-methylpentanoicsäure	-	-	-	-	
8	Squalen CAS 111-02-4 (6E,10E,14E,18E)-2,6,10,15,19,23-Hexamethyltetracosa- 2,6,10,14,18,22-hexaen	-	-	-	-	ja
9	Lanosterin CAS 79-63-0 HO (3S,5R,10S,13R,14R,17R)- 2,3,4,5,6,7,10,11,12,13,14,15,16,17-Tetradecahydro- 4,4,10,13,14-pentamethyl-17-((R)-6-methylhept-5-en-2- yl)-1H-cyclopenta[a]phenanthren-3-ol	-	-	-	-	ja
10	Pregnenolon CAS 145-13-1 HO 1-((3S,8S,9S,10R,13S,14S,17S)- 2,3,4,7,8,9,10,11,12,13,14,15,16,17-Tetradecahydro-3- hydroxy-10,13-dimethyl-1H-cyclopenta[a]phenanthren- 17-yl)ethanon	-	-	-	-	ja

Nr.	Trivialname / CAS / Struktur / IUPAC Name	MollD	3LC	score	RBA [%]	Natur- stoff
11	4-Androsten-3,17-dion CAS 63-05-8 (8R,9S,10R,13S,14S)-1,7,8,9,10,11,12,13,15,16- Decahydro-10,13-dimethyl-2H- cyclopenta[a]phenanthrene-3,17(6H,14H)-dion	-	-	-	-	ja
2	Methyltrienolon CAS 965-93-5 (8S,13S,14S,17S)-1,2,7,8,13,15,16,17-Octahydro-17- hydroxy-13,17-dimethyl-6H-cyclopenta[a]phenanthren- 3(14H)-on	-	-	-	-	-
13	Cortisol CAS 50-23-7 HO HO HO HO HO HO HO HO HO HO	-	-	_	-	ja
14	Spironolacton CAS 52-01-7 H H H G $T\alpha$ -Acetylthio- 3-oxo-17 α -pregn-4-en- 21,17 β - carbolacton ⁵	-	-	-	-	-
15	R-Bicalutamid CAS 90357-06-5 HO F F F F (R)-3-(4-Fluorophenylsulfonyl)-N-(4-cyano-3- (trifluoromethyl)phenyl)-2-hydroxy-2- methylpropanamid ⁸	-	-	-	-	-

r or isel	zung Tabene 29: Strukturformerverzeichnis.					Matur
Nr.	Trivialname / CAS / Struktur / IUPAC Name	MollD	3LC	score	RВА [%]	Natur-
16	Flutamid 0 ₂ N CAS 13311-84-7 CF ₃ O CH ₃ CH ₃ CH ₃	-	-	-	-	-
17	Nilutamid CAS 63612-50-0 CF ₃ 5,5-Dimethyl-3-[4-Nitro-3- (trifluoromethyl)phenyl]imidazolidine- 2,4-dion ⁵	-	-	-	-	-
18	R-3 CAS 206193-18-2 Br (R)-3-Bromo-N-(3-(trifluoromethyl)-4-nitrophenyl)-2- budgeur 2 methylang properties	-	-	-	-	-
19	LDG2226 CAS - F_3C N_CF_3 CF_3 6-[Bis(2,2,2-trifluoroethyl)amino]-4- (trifluoromethyl)quinolin-2(1h)-one [1,2-dihydro-6-n,n-bis(2,2,2-trifluoroethyl)amino-4- trifluoromethyl-2- quinolinon] ^{\$}	-	-	-	-	-
20	Testosteronphenylpropionat CAS 4223-58-9 (H H H H H H H H H H H H H H H H H H H	-	-	-	-	-
21	Testosteronpropionat CAS 57-85-2 (8R,9S,10R,13S,14S,17S)-10,13-Dimethyl-3-oxo- 1,2,6,7,8,9,11,12,14,15,16,17- dodecahydrocyclopenta[a]phenanthren-17-yl] propanoat [§]	-	-	-	-	-

Fortset	zung	Tabelle	29:	Strukturformel	verzeichnis.

Nr.	Trivialname / CAS / Struktur / IUPAC Name	MollD	3LC	score	RBA [%]	Natur- stoff
22	Testosterondecanoat CAS 5721-91-5 (H H H (8R,9S,10R,13S,14S,17S)-10,13-Dimethyl-3-oxo- 1,2,6,7,8,9,11,12,14,15,16,17- dodecahydrocyclopenta[a]phenanthren-17-yl] decanoat [§]	-	-	-	-	-
23	Nandrolon CAS 434-22-0 H H H H H H H H H H H H H H H H H H H	-	_	-	-	-
24	Clostebolacetat CAS 95006-78-3	-	-	-	-	-
25	Metenolonacetat CAS 153-00-4 ((5S,8R,9S,10S,13S,14S,17S)-1,10,13-Trimethyl-3-oxo- 4,5,6,7,8,9,11,12,14,15,16,17- dodecahydrocyclopenta[a]phenanthren- 17-yl] acetat [§]	-	-	-	-	-

Nr.	Trivialname / CAS / Struktur / IUPAC Name	MollD	3LC	score	RBA [%]	Natur- stoff
26	Cyproteroneacetat CAS 57-38-5 ++++++++++++++++++++++++++++++++++++	-	-	-	-	-
27	Tetrahydrogestrinon CAS 618903-56-3 H (8S,13S,14S,17S)-13,17-Diethyl-17-hydroxy- 1,2,6,7,8,14,15,16- octahydrocyclopenta[a]phenanthren-3-on	-	_	-	-	_
28	EM-5744 CAS - F F OH H H H H G S, 8R, 9S, 10S, 13R, 14S, 17S)-13-(2-(3,5- Difluorobenzyloxy)ethyl)-dodecahydro-17-hydroxy-10-	-	-	-	-	
29	S-1 CAS - F- (S)-3-(4-Fluorophenoxy)-N-(3-(trifluoromethyl)-4- nitrophenyl)-2-hydroxy-2-methylpropanamid	-	-	-	-	-
30	Hydroxyflutamid Cas 52806-53-8 O_2N O_2N O_1 O_1 O_2N O_2N O_2N O_1 O_2N	-	-	-	-	-

Fortset	zung Tabelle 29: Strukturformelverzeichnis.			r		1
Nr.	Trivialname / CAS / Struktur / IUPAC Name	MollD	3LC	score	RBA [%]	Natur- stoff
31	Campesterol CAS 474-62-4 H H H H H H H H H H H H H H H H H H H	-	GUS025	-117,57	3,75 ±8,47	ja
	(35,85,95,108,138,145,178)-2,3,4,7,8,9,10,11,12,13,14, 15,16,17-Tetradecahydro-10,13-dimethyl-17-((2R,5R)-5,6- dimethylheptan-2-yl)-1H-cyclopenta[a]phenanthren-3-ol					
32	β-Sitostanol CAS 83-45-4 HO HO HO H	-	GUS022	-113,98	7,08 ±1,06	ja
	(3S,5S,8R,9S,10S,13R,14S,17R)-17-((2R,5R)-5-Ethyl-6- methylheptan-2-yl)-hexadecahydro-10,13-dimethyl-1H- cyclopenta[a]phenanthren-3-ol					
33	16-Dehydropregnenolon CAS 1162-53-4	862	XSG035	-112,17	54,97 ±7,24	ja
	1-((3S,8R,9S,10R,13S,14S)-2,3,4,7,8,9,10,11,12,13,14,15- Dodecahydro-3-hydroxy-10,13-dimethyl-1H- cyclopenta[a]phenanthren-17-yl)ethanon					
34	β-Sitosterol CAS 83-46-5	997	DFK008	-109,22	114,57 ±2,91	ja
	(3S,8S,9S,10R,13R,14S,17R)-17-((2R,5R)-5-Ethyl-6- methylheptan-2-yl)-2,3,4,7,8,9,10,11,12,13,14,15,16,17- tetradecahydro-10,13-dimethyl-1H- cyclopenta[a]phenanthren-3-ol					

Nr.	Trivialname / CAS / Struktur / IUPAC Name	MollD	3LC	score	RBA [%]	Natur- stoff
35	Fucosterol CAS 481-14-1 H H (3S,8S,9S,10R,13R,14S,17R)-2,3,4,7,8,9,10,11,12,13,14, 15,16,17-Tetradecahydro-17-((R,E)-5-isopropylhept-5- en-2-yl)-10,13-dimethyl-1H-cyclopenta[a]phenanthren-3- ol	-	GUS021	-107,28	7,33 ±1,78	ja
36	Guggulsteron <i>E</i> CAS - (8R,9S,10R,13S,14S,17E)-17-Ethyliden- 1,7,8,10,11,12,13,14,15,17-decahydro-10,13-dimethyl-2H- cyclopenta[a]phenanthren-3,16(6H,9H)-dion	-	GUS024	-107,12	84,41 ±1,66	ja
37	Equilenin CAS 517-09-9 HO (13S,14S)-12,13,15,16-Tetrahydro-3-hydroxy-13-methyl- 11H-cyclopenta[a]phenanthren-17(14H)-on	-	GUS011	-106,75	71,24 ±4,73	ja
38	Guggulsteron Z CAS - (8R,9S,10R,13S,14S,17Z)-17-Ethyliden- 1,7,8,10,11,12,13,14,15,17-decahydro-10,13-dimethyl-2H- cyclopenta[a]phenanthren-3,16(6H,9H)-dion	-	GUS023	-106,42	105,49 ±2,46	ja
39	7-Ketositosterol CAS 2034-74-4 HO (3S,8S,9S,10R,13R,14S,17R)-1,3,4,10,11,12,13,15,16,17- Decahydro-3-hydroxy-17-((2R)-5-isopropylheptan-2-yl)- 10,13-dimethyl-2H-cyclopenta[a]phenanthren- 7(8H,9H,14H)-on	3918	XVB000	-103,39	59,33 ±8,54	ja

Nr.	Trivialname / CAS / Struktur / IUPAC Name	MolID 2669	3LC QDM255	score	RBA [%]	Natur- stoff
	CAS 943589-77-3	2669	QDM255			
40	(7R,8R,13S,14S,17S)-2,3,6,7,8,11,12,13,14,15,16,17- Dodecahydro-17-hydroxy-13-methyl-3-oxo-1H- cyclopenta[a]phenanthren-7-carbonsäure			-103,35	132,02 ±5,07	-
41	CAS-	1831	DTT107	-103,15	-	ja
	(5S,9R,10S,13R,14S,17S)-17-((E,2R,5S)-5-Ethyl-6- methylhept-3-en-2-yl)-1,5,6,10,11,12,13,15,16,17- decahydro-10,13-dimethyl-2H- cyclopenta[a]phenanthren-3(4H,9H,14H)-on					
42	CAS -	174	QQQ000	-102,76	1,92 ±40,11	-
	yl)-3-(1-methyl-1H-pyrazol-4-yl)acrylamid					
43	Cholesterol CAS 57-88-5 HO (85,95,10R,13R,14S,17R)- 2,3,4,7,8,9,10,11,12,13,14,15,16,17-Tetradecahydro- 10.2 dimethod 477 (P) 6 method horton 2 ut) 4H	-	GUS010	-101,60	85,12 ±3,60	ja
	CAS 6327-61-3	1679	ZHM118- 08	-101,02	23,16 ±5,87	-
44	N',N'-Dibenzyl-2-phenylacetohydrazid					

Fortsetzung Tabelle 29: Strukturformelverzeichnis.

Nr.	Trivialname / CAS / Struktur / IUPAC Name	MollD	3LC	score	RBA [%]	Natur- stoff
45	Sophoraflavanon B CAS 53846-50-7 HO OH OH OH OH OH OH OH OH OH OH OH OH	1603	GWH125	-98,81	68,73 ±2,29	ja
46	CAS -	5070	DRT014	-98,62	19,93 ±7,85	-
47	CAS -	160	QQQ000	-97,27	7,20 ±2,46	-
48	CAS - (15,85,105,11R,145,15R)-15- Methylpentacyclo[8.7.0.0 ^{1,14} .0 ^{2,7} .0 ^{11,15}]heptadeca- 2,4,6- trien=8 11 14-triol*	4834	QRH001	-97,05	18,46 ±8,25	-
49	CAS - HO HO HO HO HO HO HO HO HO HO HO HO HO	643	QHD001	-96,80	11,69 ±4,06	-
50	CAS 2465-11-4 (3S,9R,10S,13R,14R,17R)- 2,3,4,5,6,9,10,11,12,13,14,15,16,17-Tetradecahydro- 10,13-dimethyl-17-((E,2R,5R)-5,6-dimethylhept-3-en-2- yl)-1H-cyclopenta[a]phenanthren-3-ol	519	ZAB000	-95,64	15,17 ±5,62	ja

Nr.	Trivialname / CAS / Struktur / IUPAC Name	MollD	3LC	score	RBA [%]	Natur- stoff
51	Onitin CAS 53823-02-2 HO	-	GUS026	-95,39	39,77 ±2,54	ja
	2,3-Dihydro-4-hydroxy-6-(2-hydroxyethyl)-2,2,5,7- tetramethylinden-1-on					
52	CAS- OH H H O H O O O O O O O O O O O H	2670	QDM276	-95,13	214,76 ±31,28	-
	(7R,8R,13S,14S,17S)-Methyl 2,3,6,7,8,11,12,13,14, 15,16,17-dodecahydro-17-hydroxy-13-methyl-3-oxo-1H- cyclopenta[a]phenanthrene-7-carboxylat					
53	CAS -	2255	XVB0158	-95,10	64,51 ±2,46	-
	(3R,5S,8S,9S,10R,13R,14S,17R)-dodecahydro-3- hydroxy-10,13-dimethyl-17-((R)-6-methylheptan-2-yl)- 3H-cyclopenta[a]phenanthrene-2,6(9H,14H)-dione					
54	CAS - 	4846	QRH013	-94,84	62,95 ±2,49	-
	tetraen-5-ylacetat*					
55	CAS 486-66-8	-	GUS004	-94,08	31,15 ±4,08	ja
	7-Hydroxy-3-(4-hydroxyphenyl)-4H-chromen-4-on					
56	CAS - H H H H H H H H H H H H H	496	ZAB000	-94,06	36,69 ±3,17	-

Nr.	Trivialname / CAS / Struktur / IUPAC Name	MollD	3LC	score	RBA [%]	Natur- stoff
57	3-Phenylumbelliferon CAS 6468-96-8 HO	1789	MAD952	-93,88	98,50 ±7,04	-
	2-(3-Fluorophenyl)-7-methoxy-4H-chromen-4-on					
58	CAS - O (6R)-6-Hydroxy-2-octyl-2H-pyran-3(6H)-on	1218	DRT065	-93,73	51,16 ±9,17	-
59		137	DUE040	-93,11	n.b.	-
	2,5-Dinydroxy-4-((E)-oct-1-enyl)benzonitrii					
60	Tanshinone IIA CAS 568-72-9	157	QQQ000	-93,03	32,77 ±4,87	ja
	6,7,8,9-Tetrahydro-1,6,6-trimethylphenanthro[1,2- b]furan-10,11-dion					
61	5,6-Dihydro-conimin CAS 33467-66-2	526	ZAB000	-91,97	35,16 ±17,93	-
	(1R,2S,5S,6S,9R,12S,13S,16S)-N,6,13-Trimethyl-7-					
	azapentacycio[10.8.0.0 ²² .0 ²² .0 ¹⁰]icosan-16-amin*					
62	NH NH	1992	ТРТ097	-91,89	24,67 ±4,45	-
	2-Phanyl-N-((S)-1-phanylothyl)acotamid					
63	Dehydrogingerdione CAS 91815-33-7 OH 0 H0 (15 27) 2 Hydroxy 1 (4 bydroxy 2 methovymbory)/deep	966	DFK043	-91,51	-89,23 ±10,49	ja
	(12,32)-3-frydroxy- r-(4-frydroxy-3-inethoxyphenyi)deca- 1,3-dien-5-on					

Nr.	Trivialname / CAS / Struktur / IUPAC Name	MollD	3LC	score	RBA [%]	Natur- stoff
64	CAS 32684-57-4 HO O	1592	MAD970	-90,89	40,56 ±1,57	-
	6-Hydroxy-3-phenyl-4H-chromen-4-on					
65	CAS - HO HO	3321	GUG333	-90,48	27,49 ±3,03	-
	5-[4-(Hydroxymethyi)phenyi]benzen-1,3-diol^					
66		641	QHD001	-90,29	15,00 ±7,19	-
	(E)-Methyl 3-((2R,3R,4S,5S,6R)-tetrahydro-3,4,5- trihydroxy-6-(hydroxymethyl)-2H-pyran-2- ylcarbamoyl)acrylat					
67		1680	ZHM118- 11	-90,08	-2,80 ±1,01	-
68	CAS 52122-86-8 OH	1795	MAD925	-89,84	64,98 ±0,79	-
	1-(2,5-Dihydroxyphenyl)-2-phenylethanon					
69	CAS-	169	QQQ000	-89,80	28,71 ±3,68	-
	N-(3-Acetylphenyl)-4-iodo-1-methyl-1H-pyrazole-5- carboxamid					
70	CAS - OH O O O O O O O O O O O O O O O O O	1801	MAD998	-89,63	52,03 ±2,56	-
	1-(2,5-Dihydroxyphenyl)-2-(4-methoxyphenyl)ethanon					
71	CAS - HO HO OH 4-((2R,3R,4S,5S,6R)-Tetrahydro-3,4,5-trihydroxy-6- (hydroxymethyl)-2H-pyran-2-ylcarbamoyl)butansäure	639	QHD001	-89,45	18,27 ±7,40	-

r or isei.	zung Tabene 27. Sti ukturiormerverzeichnis.				Matur	
Nr.	Trivialname / CAS / Struktur / IUPAC Name	MollD	3LC	score	RВА [%]	Natur-
72	CAS - O O O O O O O O O O O O O O O O O O O	1594	MAD968	-88,93	29,10 ±4,08	-
73	CAS - HO H H H H H H H H H H H H H	4837	QRH004	-88,90	0,75 ±6,31	-
74	CAS 52752-67-7 0 0 HO	1581	MAD987	-88,81	25,92 ±1,98	ja
75	CAS - HO HO HO HO OH OH OH OH OH OH OH OH		QHD001	-88,14	20,31 ±11,37	-
76			MAD999	-87,96	25,12 ±9,91	-
	o-riyaroxy-o-(o-metnoxypnenyi)-4H-Chromen-4-Oh					
77	(3S,8S,9S,10R,13S,14S,17R)- 2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-17- ((2S,3R,4R,5R)-3,4-dihydroxy-5,6-dimethylheptan-2-yl)- 10,13-dimethyl-1H-cyclopenta[a]phenanthren-3-ol	4040	XVB0273	-87,49	9,73 ±4,50	-

1 of the later.						Notur
Nr.	Trivialname / CAS / Struktur / IUPAC Name	MollD	3LC	score	КВА [%]	stoff
78	CAS- HO	1800	MAD994	-87,39	78,24 ±22,81	-
	1-(2,5-Dihydroxyphenyl)-2-(3-methoxyphenyl)ethanon					
79	CAS -	2415	XSA164	-87,23	72,60 ±7,81	_
	(R)-4-((5R,8R,9S,10S,13R,17R)-3-Amino-hexadecahydro- 10,13-dimethyl-1H-cyclopenta[a]phenanthren-17- yl)pentan-1-ol					
80			MMK017	-86,95	66,33 ±1,67	ja
	(6S,9E,11aR)-7,8,11,11a-Tetrahydro-3,6,10- trimethylcyclodeca[b]furan-2,5(4H,6H)-dion					
81	CAS 75335-16-9 HO 1-(2-Hydroxy-4-methoxyphenyl)-3-(4-		MAD969	-86,50	8,75 ±7,28	-
82	CAS - OH O HO OH F (4-Fluorophenyl)(2.4.6-trihydroxyphenyl)methanon		DBC51	-86,42	38,91 ±2,71	-
83	CAS - OH H HO (7R,8R,9R,13S,14S,17S)-7,8,9,11,12,13,14,15,16,17-	2668	QDM237	-85,68	20,32 ±7,13	-
	Decahydro-3,17-dihydroxy-13-methyl-6H- cyclopenta[a]phenanthren-7-carbonsäure					

Nr.	Trivialname / CAS / Struktur / IUPAC Name	MollD	3LC	score	RBA [%]	Natur- stoff
84	CAS - 0 OH OH (4R,5R)-4-tert-Butoxy-5-hydroxy-5-octylcyclopent-2- enon	5079	DRT020	-85,63	-32,35 ±1,14	-
85	CAS - (3S,5S,8S,9R,10R,13S,14R,17R)-tetradecahydro-3- hydroxy-17-((2S,3R,4R,5R)-3,4-dihydroxy-5,6- dimethylheptan-2-yl)-10,13-dimethyl-9H- cyclopenta[a]phenanthren-6(14H)-on	3962	XVB0562	-85,61	4,65 ±28,35	-
86	Isoprocurcumenol CAS 62754-56-7 HO HO HO HO HO HO HO HO HO HO HO HO HO		MMK027	-85,49	47,49 ±4,59	ja
87	methylen-7-(propan-2-yliden)azulen-6(1H,2H,7H)-on 1,2-Diguaiacylmethane CAS 4957-27-1 HO		NHV-006- AS14	-85,19	19,19 ±8,20	ja
88	4-(4-Hydroxy-3-methoxystyryl)-2-methoxyphenol CAS - HO OH OH OH OH OH OH OH OH OH		DNA044c- OJE5-2	-84,78	25,41 ±8,05	ja
89	CAS - HO HO HO OH 2-((2R,3R,4S,5S,6R)-Tetrahydro-3,4,5-trihydroxy-6- (hydroxymethyl)-2H-pyran-2-ylcarbamoyl)benzolsäure	642	QHD001	-83,93	13,18 ±10,75	-

Fortsetzung Tabelle 29: Strukturformelverzeichnis.

					RBA	Natur-
Nr.	Trivialname / CAS / Struktur / IUPAC Name	MollD	3LC	score	[%]	stoff
	CAS-	168	QQQ000	-83,49	15,30	-
90					±5,69	
	carboxamid					
	CAS - HN	165	QQQ000	-83,31	1,59	-
91	1 40 42 Triazotriavalario 4 0 0 ³⁸ mentadaga				±1,44	
	3,5,7,10,12,14-hexaen-9-imin*					
	CAS-OH	1803	DDM001	-83,26	10,75	-
92					±6,99	
	6 Hudrovy 2 (2 methovyphonyd) 2 methyd 4H ebromon					
	4-on					
	Isoxanthohumol	1600	GWH120	-83,01	57,61	ja
93	CAS 521-48-2 HO O HO				±4,38	
	2,3-Dihydro-7-hydroxy-2-(4-hydroxyphenyl)-5-methoxy- 8-(3-methylbut-2-enyl)chromen-4-on					
	CAS 919491-04-6	3114	QDM101	-82,85	21,02	-
94					±9,85	
	1-(Benzensulfonyl)-3-bromopiperidin-4-on*					
	CAS 2555-22-8 0	1786	MAD958	-82,84	21,70	-
95					±1,63	
	7-Methoxy-3-phenyl-2H-chromen-2-on					
	CAS 13062-78-7	702	KRO017	-82,63	33,87	-
96	н				±2,50	
	N-(4-Hydroxyphenethyl)formamid					

I UI ISCI						
Nr.	Trivialname / CAS / Struktur / IUPAC Name	MollD	3LC	score	RBA [%]	Natur- stoff
97		4847	QRH014	-82,63	8,27 ±0,75	-
	(1R,8aR)-1,2,3,4,6,8a-Hexahydro-1-hydroxy-1- methylnaphthalen-7-ylacetat					
98	CAS - HO HO OH (E)-3-((2R,3R,4S,5S,6R)-Tetrahydro-3,4,5-trihydroxy-6-	640	QHD001	-82,27	10,68 ±12,62	-
	(hydroxymethyl)-2H-pyran-2-ylcarbamoyl)acrylsäure					
99	CAS 36035-65-1	161	QQQ000	-82,17	0,01 ±30,79	-
	N-[4-({[(1Z)-2-					
	CAS -	1482	ZAC000	-81,57	72,89 ±7,14	-
100	(2R,3S,6R,8R)-6,8-Dihydroxy-2,3,10,10- tetramethyltricyclo[6.3.0.0 ^{2.6}]undecan-4-on*					
101			MAD980	-81,16	66,08 ±21,31	-
		0070	0.001/100	00.01	74.00	
102	$H_2 N$	2073	QDM438	-80,61	±3,15	
	(9R,11R,14S,15S)-14-Hydroxy-15-methyl-5- azatetracyclo[8.7.0.0 ^{2.7} .0 ^{11,15}]heptadeca- 1(10),2(7)-dien- 9-carboxylsäure*					
103	Coffein CAS 58-08-2	-	GUS018	-80,11	31,99 ±3,96	ja
	,,,,,,-inineury-in-pulli-2,0(5n,/n/-uloil	1	1		1	

Nr.	Trivialname / CAS / Struktur / IUPAC Name	MollD	3LC	score	RBA [%]	Natur- stoff
104	CAS - HN + S O Nethyl-4-(2,3-dihydro-4-(4-methoxyphenyl)-2-		QQQ000	-79,84	11,54 ±11,01	ja
105	CAS - HO HO 3,5-Dihydroxyphenyl-4-bromobenzoat		DBC032	-79,11	47,41 ±15,55	-
106	6 Cumarin CAS 91-64-5 0 2H-Chromen-2-on		DFK-006- 4 (in DB aber DFK011)	-78,92	16,06 ±3,68	ja
107	Artemisinin CAS 63968-64-9		GUS009	-78,92	54,34 ±2,11	ja
108	(1S,4S,5R,8S,9R,12S,13R)-1,5,9-Trimethyl-11,14,15,16- tetraoxatetracyclo[10.3.1.0 ^{4,13} .0 ^{8,13}]hexadecan-10-on* CAS - HO HO (S)-3-(2-Hydroxy-4-methoxybenzyl)-2,3-dihydro-7- hydroxy-5,8-dimethoxy-6-methylchromen-4-on		DNA040b- OJE4	-77,19	38,58 ±4,37	ja
109	CAS - Methyl-3-(7-(difluoromethyl)-5-methyl-[1,2,4]triazolo[1,5-		QQQ000	-76,51	59,83 ±15,74	-

Fortsetzung Tabelle 29: Strukturformelverzeichnis.

Nr.	Trivialname / CAS / Struktur / IUPAC Name	MollD	3LC	score	RBA [%]	Natur- stoff
110	CAS - O = (V + V) = (V + V) O	759	KRO009	-75,87	33,08 ±4,03	-
111	CAS - (1R,2S,6R,7S,16S,17S,20S)-17-Hydroxy-4,16-dimethyl-4- azapentacyclo[11.7.0.0 ^{2,6} .0 ^{7,12} .0 ^{16,20}]icos- 12-en-3,5,9- trion*		QDM458	-75,32	75,22 ±1,83	-
112	CAS 896730-94-2 HO HO HO HO HO HO HO HO HO HO HO HO HO		QHD001	-75,23	21,63 ±6,17	-
113	CAS 330833-96-0 H ₂ N O V NH 3-[(2-Amino-5-benzoylphenyl)amino]-5,5- dimethylcyclohex-2-en-1-on*	170	QQQ000	-74,80	22,63 ±2,96	-

Nr.	Trivialname / CAS / Struktur / IUPAC Name	MollD	3LC	score	RBA [%]	Natur- stoff
114	(3S,5S,8S,9S,10R,13S,14S,17R)-tetradecahydro-3- hydroxy-10,13-dimethyl-17-((S)-1-((2R,3R)-3-((R)-3- methylbutan-2-yl)oxiran-2-yl)ethyl)-9H- cyclopenta[a]phenanthren-6(14H)-one		XVB485	-74,23	66,51 ±3,39	-
115	CAS - (5S,6S,7S,8R,13S,14S,17S)- 2,3,4,5,6,7,8,11,12,13,14,15,16,17-Tetradecahydro-17- hydroxy-13-methyl-3-oxo-1H-cyclopenta[a]phenanthren- 6,7-dicarbonitril	2671	QDM520	-74,24	87,91 ±7,81	-
116	6 CAS - F 6 O H N-N 0 H N-N		QQQ000	-70,55	3,95 ±10,63	-
117	CAS 65614-48-4 OH		MAD919	-67,63	97,02 ±11,75	-
118	CAS - HO HO HO HO HO HO HO HO HO HO	2270	XVB0089	-66,97	63,26 ±6,92	-

Nr.	Trivialname / CAS / Struktur / IUPAC Name	MollD	3LC	score	RBA [%]	Natur- stoff
119	225,235-Homocastasteron CAS 74174-46-2 HO, HO, HO, HO, HO, HO, HO, HO, HO, HO,		XVB000	-65,77	1,07 ±9,52	-
120	CAS - O O F F 2-Acetyl-5-methoxyphenyl-3-fluorobenzoat	1590	MAD977	-64,33	72,98 ±15,63	-
121	CAS - F F F F F F F F		QQQ000	-62,05	102,73 ±1,63	-
122	CAS - HN N H O NH		QQQ000	-61,13	0,12 ±34,17	-
123	123 CAS - Cl O Cl Cl Cl 2-(3,7-Dihydro-7-oxo-2H-furo[3,2-g]chromen-2- vl)propan-2-vl-2.4-dichlorobenzoat		QQQ000	-60,37	27,37 ±14,15	-
124	Astaxanthin CAS 472-61-7 (6R)-6-Hydroxy-3-[(1E,3E,5E,7E,9E,11E,13E,15E,17E)- 18-[(4R)-4-hydroxy-2,6,6-trimethyl-3-oxocyclohex-1-en- 1-yl]-3,7,12,16-tetramethyloctadeca- 1,3,5,7,9,11,13,15,17-nonaen-1-yl]-2,4,4- trimethylcyclohex-2-en-1-on	-	GUS015	-55,34	53,74 ±20,09	ja

Fortset	ortsetzung Tabelle 29: Strukturformelverzeichnis.					
Nr.	Trivialname / CAS / Struktur / IUPAC Name	MollD	3LC	score	RBA [%]	Natur- stoff
	Medroxyprogesteron CAS 520-85-4 (6S 8R 9S 10R 13S 14S 17P)-17-Acetul-		-	-	-	ja
125	1,7,8,10,11,12,13,15,16,17-decahydro-17-hydroxy- 6,10,13-trimethyl-2H-cyclopenta[a]phenanthren- 3(6H,9H,14H)-on					
126	17β-Östradiol CAS 50-28-2 HO (8R,9S,13S,14S,17S)-7,8,9,11,12,13,14,15,16,17- Decahydro-13-methyl-6H-cyclopenta[a]phenanthrene- 3,17-diol	-	-	-	-	ja
127	17α-Ethinylöstradiol CAS 57-63-6 H HO (8R,9S,13S,14S,17S)-17-Ethynyl- 7,8,9,11,12,13,14,15,16,17-decahydro-13-methyl-6H- cyclopenta[a]phenanthrene-3,17-diol	-	-	-	-	ja
128	17α-Östradiol CAS 57-91-0 HO (8R,9S,13S,14S,17R)-7,8,9,11,12,13,14,15,16,17- Decahydro-13-methyl-6H-cyclopenta[a]phenanthrene- 3,17-diol	-	-	-	-	ja
129	CAS - H H O (7R,8R,13S,14S,17S)-2,3,6,7,8,11,12,13,14,15,16,17- Dodecahydro-17-hydroxy-13-methyl-3-oxo-1H- cyclopenta[a]phenanthrene-7-carbaldehyd	-	-	-	-	-

Fortset	zung Tabelle 29: Strukturformelverzeichnis.				1	
Nr.	Trivialname / CAS / Struktur / IUPAC Name	MollD	3LC	score	RBA [%]	Natur- stoff
130	CAS 15506-08-8 H H (7R,8S,13S,14S,17S)-1,2,7,8,11,12,13,15,16,17- Decahydro-17-hydroxy-7,13-dimethyl-6H- cyclopenta[a]phenanthren-3(14H)-on	-	-	-	-	-
131	17β-hydroxy-4,9-estradien-3-one CAS 6218-29-7 (8S,13S,14S,17S)-1,2,7,8,11,12,13,15,16,17-Decahydro- 17-hydroxy-13-methyl-6H-cyclopenta[a]phenanthren- 3(14H)-on	-	-	-	-	-
132	CAS - H H H O (7R,8R,13S,14S,17S)-1,2,7,8,11,12,13,15,16,17- Decahydro-17-hydroxy-7-(methoxymethyl)-13-methyl- 6H-cyclopenta[a]phenanthren-3(14H)-on	-	-	-	-	-
133	CAS - H H (7R,8R,13S,14S,17S)-1,2,7,8,11,12,13,15,16,17- Decahydro-17-hydroxy-7-(hydroxymethyl)-13-methyl- 6H-cyclopenta[a]phenanthren-3(14H)-on	-	-	-	-	-
134	CAS - H H O (7R,8S,13S,14S,17S)-1,2,7,8,11,12,13,15,16,17- Decahydro-17-hydroxy-13-methyl-7-propyl-6H- cyclopenta[a]phenanthren-3(14H)-on	-	-	-	-	-
135	CAS - OH H H O (7R,8S,13S,14S,17S)-7-ethyl-1,2,7,8,11,12,13,15,16,17- Decahydro-17-hydroxy-13-methyl-6H- cyclopenta[a]phenanthren-3(14H)-on	-	-	-	-	-

Fortsetzung	Tabelle	29:	Strukturformelverzeichnis.
-------------	---------	-----	----------------------------

Nr.	Trivialname / CAS / Struktur / IUPAC Name	MollD	3LC	score	RBA [%]	Natur- stoff
		-	-	-	-	-
136	(8R,95,10R,135,145,16E)-16-Ethylidene- 1,7,8,9,10,11,12,13,15,16-decahydro-10,13-dimethyl-2H- cyclopenta[a]phenanthrene-3,17(6H,14H)-dion					
	CAS - OH H H H H H H H H H H H H H H H H H H	-	-	-	-	_
137	dimethyl-2H-cyclopenta[a]phenanthren-3(6H,9H,14H)-on					
	CAS -	-	-	-	-	_
138	cyclopenta[a]phenanthrene-3,17(6H,14H)-dion					
139	CAS - (8R,9S,10R,13S,14S,16Z,17S)-16-Ethylidene- 1,7,8,10,11,12,13,15,16,17-decahydro-17-hydroxy-10,13- dimethyl 2H curlementhern 2(6H 0H 14H) on	-	-	-	-	-
	(R,R)THC	-		-	-	-
140	CAS - HO (5R,11R)-5,11-Diethyl-5,6,11,12-tetrahydrochrysene- 2,8-diol [§]					

roriset	rtsetzung Tabelle 29: Strukturformelverzeichnis.					
Nr.	Trivialname / CAS / Struktur / IUPAC Name	MollD	3LC	score	RВА [%]	Natur- stoff
	Aldosteron CAS 52-39-1 HO H H H H H H H H H H H H H H H H H H	-	-	-	-	ja
141	dodecahydrocyclopenta[a]phenanthrene- 13-carbaldehyd ^{\$}					
142	21-Hydroxy-6,19- epoxyprogesteron CAS - HHH H H H H	-	-	-	-	-
143	BMS649 CAS - 4-[2-(5,5,8,8-tetramethyl-6,7-Dihydronaphthalen-2-yl)- 1,3-dioxolan-2-yl]benzoat [§]	-	-	-	-	-
144	Metroprensäure CAS - O OH (E,7R)-11-Methoxy-3,7,11-trimethyldodec-2-enoicsäure ^s	-	-	-	-	-
145	EZT CAS - H HO 8R,9S,13S,14S,17R)-13-Methyl-17-[2-[2- (trifluoromethyl)phenyl]ethyl]- 7,8,9,11,12,14,15,16-octahydro-6H- cyclopenta[a]phenanthrene- 3,17-diol ^{\$}	-	-	-	-	-

Nr.	Trivialname / CAS / Struktur / IUPAC Name	MollD	3LC	score	RBA [%]	Natur- stoff
	196 N CAS 550997-55-2	-	-	-	-	-
	F, OH HO					
146	3-(3-Fluoro-4-hydroxyphenyl)-7-hydroxy-1- naphthonitril [§]					
	Bisphenol A CAS 80-05-7	-	-	-	-	ja
	HO					
147	4-[2-(4-Hydroxyphenyl)propan-2-yl]phenol ^{\$}					
	Dexamethason CAS 50-02-2 HO HO H H H H H	-	-	-	-	-
	(8S,9R,10S,11S,13S,14S,16R,17R)-9-Fluoro-11,17- dihydroxy-					
140	17-(2-hydroxyacetyl)-10,13,16-trimethyl- 6,7,8,11,12,14,15,16-					
140	octahydrocyclopenta[a]phenanthren-3-on*					
149	CAS 53-03-2 O H H H H H CAS 53-03-2 O H CAS 53-03-2 O CAS 53-03-2 O CAS 53-03-2 O H CAS 53-03-2 O CAS 53-03-2 O CAS 53-03-2 O CAS 53-03-2 O CAS 53-03-2 CAS 53-03-2 O CAS 53-03-2 CAS	-		-	-	
	Mometasonfuroat CAS 83919-23-7 HO HO HO CI CI HO CI CI CI CI CI CI CI CI CI CI CI CI CI	-	_	_	_	_
150	dodecahydro-11-hydroxy-10,13,16-trimethyl-3-oxo-3H- cyclopenta[a]phenanthren-17-yl furan-2-carboxylate					

Curriculum Vitae

Wissenschafliche Mitarbeiterin

seit 2009 Universitätsklinikum Schleswig-Holstein Campus Lübeck, Abt. Medizinische Klinik II von Prof. H. Schunkert, Arbeitsgruppe Kardiovaskuläre Genetik von Prof. J. Erdmann

Wissenschafliche Mitarbeiterin

2005 - 2009 Leibniz-Institut für Pflanzenbiochemie in Halle (Saale), Abt. Naturund Wirkstoffchemie von Prof. L. A. Wessjohann, AG Computerchmie von PD Dr. habil. W. Brandt

Promotion

seit 2005 wissenschaftlicher Mitarbeiter am Leibniz-Institut für Pflanzenbiochemie in Halle (Saale), Abt. Natur- und Wirkstoffchemie von Prof. L. A. Wessjohann, AG Computerchmie von PD Dr. habil. W. Brandt Thema: In silico Identifizierung und Untersuchung von Antagonisten und Agonisten des Androgenrezeptors

Industriepraktikum

2004 Æterna Zentaris Inc. in Frankfurt am Main, AG Computerchemie Emmanuel Polymeropoulos Thema: Erstellung einer Datenbank für kommerziell erhältliche Strukturen auf der Basis des MDL-ISIS Informationsmanagementsystems

Studium der Bioinformatik

 2000-2005 Martin-Luther-Universität Halle-Wittenberg
2005 Abschluss: Diplom-Bioinformatikerin Vertiefungsrichtung: Enzymologie, Enzymkinetik
2005 Diplomarbeit: angefertigt am Leibniz-Institut für Pflanzenbiochemie in Halle (Saale) Virtuelles Screening auf Hormonaktivität von Naturstoffen

Abitur

1992-2000	Elisabeth-Gymnasium in Halle (Saale)
2000	Allgemeine Hochschulreife

Veröffentlichungen

Aus meiner bisherigen wissenschaftlichen Arbeit sind folgende Posterbeiträge, Vorträge und Publikationen hervorgegangen:

Posterbeiträge:

Mai 2010	Stephanie Gulde, Michaela Müller, Heribert Schunkert, Jeanette
	Erdmann "Which pathway is associated with coronary artery
	disease/myocardial infarction?", 3. Cardiogenics Metting in Bergamo
	(Italien)
Juli 2008	Stephanie Gulde, Claudia Bobach, Wolfgang Brandt, Ludger A.
	Wessjohann, "Novel hormone receptor antagonist identified by
	virtual screening and dynamic simulation studies", Plant Science
	Students Conference in Halle (Deutschland)
Juli 2008	Torsten Geißler, Stephanie Gulde, Norbert Arnold, Andrea Porzel,
	Jürgen Schmidt, Ludger A. Wessjohann, "Fungal fruiting bodies as a
	source of AchE inhibitors for treatment of alzheimer's disease" Plant
	Science Students Conference in Gatersleben (Deutschland)
April 2008	Stephanie Gulde, Claudia Bobach, Wolfgang Brandt, Ludger A.
	Wessjohann, "Application of MOE's virtual screening for new
	ligands of a steroid hormone receptor", 22. Darmstädter Molecular
	Modelling Workshop in Erlangen (Deutschland)
August 2007	Stepanie Gulde, Claudia Bobach, Wolgang Brandt, Ludgar A.
	Wessjohann, "How to model tricky transmembrane proteins",
	EMBO: New Methods In Membrane Protein Research in Stockholm
	(Schweden)
Juli 2007	Claudia Bobach, Stephanie Gulde, Wolfgang Brandt, Ludger A.
	Wessjohann, "Optimization of assay procedures for screening of
	crude plant and fungal extracts to find new leads against prostatic
	diseases ", Plant Science Students Conference in Halle (Deutschland)
April 2005 Stepanie Gulde, Claudia Bobach, Wolgang Brandt, Ludgar A. Wessjohann, "Step-wise approaches to the in silico screening of large 3D-databases to identify ligands for a receptor protein", 19. Darmstädter Molecular Modelling Workshop in Erlangen (Deutschland)

Vorträge:

Oktober 2008	Stephanie Gulde, Wolfgang Brandt, Ludger A. Wessjohann
	"Computerchemie - Ein modernes Werkzeug zur Identifizierung neuer
	Liganden", Naturstofftreffen in Würzburg (Deutschland)
Mai 2007	Stephanie Gulde, Claudia Bobach, Wolfgang Brandt, Ludger A.
	Wessjohann, "Androgenrezeptor – In vitro/in silico Methoden" in
	Gastvortrag am Institut für Anatomie und Zellbiologie in Halle
	(Deutschand)
Februar 2005	Stephanie Gulde, Wolfgang Brandt, Ludger A. Wessjohann "In Silico
	Screening", Minisymposium zur Metabolomanalyse in Pflanzen in
	Gatersleben (Deutschland)

Publikationen:

Bei Publikationen mit mehr als 20 Autoren, wurde davon abgesehen alle Autoren aufzulisten.

Stephanie Gulde, Claudia Bobach, Kristin Palberg, Andrea Kiessling, Wolfgang Brandt, , B. Seliger Ludger A. Wessjohann, "*Characterization of androgen receptor ligands for their antiandrogenic potential via androgen regulated gene analysis supported by molecule dynamic simulations of ligand receptor comple es*", in Manuskript in Vorbereitung

Stephanie Gulde, Claudia Bobach, Wolfgang Brandt, Babara Seliger, Ludger A. Wessjohann, "Screening of synthetic and natural product databases: identification of novel androgens", Manuskript für Journal of Medicinal Chemistry liegt vor

Stephanie Gulde, Juliane Fischer, Wolfgang Brandt, Ludger A. Wessjohann, "Virtual Screening - Tools for a Better Selection of New Drug Leads", eingereicht bei Medicinal Chemistry in Drug Discovery Review Book (in Druck)

Heribert Schunkert et al., "Large scale association analysis identifies 13 new susceptibility loci for coronary disease", Nature Genetics 2011, 43(4), 333-338

Jeanette Erdmann *et al.*, *"Genome-wide association study identifies a new locus for coronary artery disease on chromosome 10p11.23"*, European Heart Journal 2011, 32(2),158-168

Matthias Heinig *et al.*, *"A trans-acting locus regulates an anti-viral expression network and type 1 diabetes risk"*, Nature Letters 2010, 467(7314):460-464

Eidesstattliche Erklärung

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig und nur mit den angegebenen Hilfsmitteln angefertigt habe. Die den benutzten Werken wörtlich oder inhaltlich entnommenen Stellen habe ich gekennzeichnet.

Diese Arbeit wurde nur der Naturwissenschaftlichen Fakultät II (Fachbereich Chemie) der Martin-Luther-Universität Halle-Wittenberg vorgelegt. Ich habe mich zu keinem früheren Zeitpunkt um den Doktorgrad beworben.

Ich bin mir bewusst, dass eine falsche Erklärung rechtliche Folgen haben kann.

Hamburg, den 30.09.2010 Stephanie Tennstedt (geb. Gulde)