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Abstract

Stroke is one of the leading causes of death and disability globally. Occipital stroke often

leads to visual field loss in both eyes, called homonymous hemianopia (HH), and associ-

ated problems with eye movements, attention, and visual cognition. Vision impairments

are of serious concern as they significantly reduce life quality, such as orienting, iden-

tifying objects, reading, or driving. However, only few treatments exist for visual field

defects after stroke, such as laborious visual training. In recent years, a new therapeutic

approach has emerged: noninvasive brain micro-current stimulation, which is based on

innovative brain stimulation technology that modulates brain excitability via transcranial

application. Two of the most common transcranial stimulation methods are transcra-

nial direct current stimulation (tDCS) and transcranial alternating current stimulation

(tACS). They either modulate the neurons’ excitability or entrain the neurons’ oscillation

with external frequency modulation leading to brain plasticity. This plasticity response

of the brain can be assessed by graph theory, which can describe brain functional net-

work properties by quantifying typologies of anatomical tracts or functional associations

of brain networks and their changes. Machine learning has attracted much attention from

neuroscience and other applications, as it allows us to gain insight into the physiological

basis of high performance without predefined features.

We now combined multidisciplinary technologies such as neuropsychology, graph theory,

noninvasive brain stimulation, and artificial intelligence to understand the brain network

reorganization after a stroke and the possible mechanism for vision recovery. To this

end, we first characterized the brain network reorganization for occipital stroke patients

through the clinical trial to investigate the dynamic brain plasticity changes compared

to healthy controls. Secondly, we designed a noninvasive brain stimulation interven-

tion to investigate the underlying vision recovery mechanism of modulating the brain

plasticity for stroke patients that have suffered vision loss. Finally, based on the clinical

result, we propose an artificial intelligence approach to utilize the multi-model data (EEG

and behavioral data) to predict the possibility of vision recovery after noninvasive brain

stimulation. We also evaluated the correlation between brain oscillations and visual field

defects with deep neural networks. Our result could benefit visually impaired patients

after occipital stroke during the clinic’s diagnostic and treatment and enhance their daily

activities and quality of life.

Keywords: Stroke, EEG, Brain connectivity, Brain networks, Graph neural network,

Deep learning.
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Zusammenfassung

Der Schlaganfall ist weltweit eine der Hauptursachen für Tod und Behinderung. Ein

okzipitaler Schlaganfall führt häufig zu einem Gesichtsfeldverlust in beiden Augen, der

als homonyme Hemianopie (HH) bezeichnet wird, und den damit verbundenen Problemen

mit Augenbewegungen, Aufmerksamkeit und visueller Wahrnehmung. Sehbehinderungen

sind von ernsthafter Bedeutung, da sie die Lebensqualität erheblich beeinträchtigen, z.B.

Orientieren, Identifizieren von Objekten, Lesen oder Fahren. Es gibt jedoch nur wenige

Behandlungen für Gesichtsfelddefekte nach einem Schlaganfall, wie z.B. mühsames vi-

suelles Training. In den letzten Jahren hat sich ein neuer therapeutischer Ansatz her-

ausgebildet: die nichtinvasive Mikrostromstimulation des Gehirns, die auf einer innova-

tiven Technologie zur Hirnstimulation basiert, die die Erregbarkeit des Gehirns durch

transkranielle Anwendung moduliert. Um solche Netzwerke zu analysieren, hat Deep

Learning in den Neurowissenschaften und anderen Anwendungen viel Aufmerksamkeit

auf sich gezogen, da es uns ermöglicht, Einblicke in die physiologischen Grundlagen von

Hochleistung ohne vordefinierte Merkmale zu gewinnen.

Wir haben jetzt multidisziplinäre Technologien wie Neuropsychologie, Grapietheorie,

nichtinvasive Hirnstimulation und künstliche Intelligenz kombiniert, um die Reorgan-

isation des Gehirns Netzwerks nach einem Schlaganfall und den möglichen Mechanis-

mus zur Wiederherstellung des Sehvermögens zu verstehen. Zu diesem Zweck haben wir

zunächst die Reorganisation des Hirnnetzwerks für Patienten mit okzipitalem Schlaganfall

durch die klinische Studie charakterisiert, um die dynamischen Plastizitätsänderungen

des Gehirns im Vergleich zu gesunden Kontrollen zu untersuchen. Zweitens haben wir

eine nichtinvasive Intervention zur Hirnstimulation entwickelt, um den zugrunde liegen-

den Mechanismus zur Wiederherstellung des Sehvermögens bei der Modulation der Plas-

tizität des Gehirns bei Schlaganfallpatienten mit Sehverlust zu untersuchen. Basierend

auf dem klinischen Ergebnis schlagen wir einen Ansatz mit künstlicher Intelligenz vor, um

die Multi-Modell-Daten (EEG- und Verhaltensdaten) zu nutzen, um die Möglichkeit einer

Wiederherstellung des Sehvermögens nach nichtinvasiver Hirnstimulation vorherzusagen.

Unser Ergebnis könnte sehbehinderten Patienten nach einem okzipitalen Schlaganfall

während der Diagnose und Behandlung der Klinik zugute kommen und ihre täglichen

Aktivitäten und ihre Lebensqualität verbessern.

Keywords:Schlaganfall, EEG, Gehirnkonnektivität, Gehirnnetzwerke, Graph Neuronales

Netzwerk, Deep Learning.
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1 Motivation

1.1 Motivation

This chapter describes the research questions and motivation.

In order to obtain a better insight into the functional consequences of occipital strokes

and the underlying mechanisms and to find ways of vision rehabilitation and restoration,

we initiated a detailed exploration of the brain´s physiological underpinnings in chronic

stroke survivors. This was guided by the proposal that vision loss following stroke is not

only the result of the local, primary loss of nerve cells in the brain but that the local lesion

has more widespread, remote effects on the brain network. While magnetic resonance

imaging (MRI) evidence suggests that activation changes can be observed in stroke patients

(Pineiro et al., 2001), the electrophysiological basis of vision loss is still considered to be

only a function of the size of the local brain lesion. To better understand the physiological

underpinnings of hemianopia, it is therefore desirable to find out if and how a local occipital

lesion may affect the global brain network organization and reorganization. The idea that

visual system lesions lead unexpected consequences on visual field than previously thought

is supported by prior observations showing that (i) patients with visual field loss have

reaction time deficits in the “intact” visual field of the non-damaged hemisphere (Bola

et al., 2013), and (ii) even patients with “peripheral” optic nerve damage show “central”

breakdown of synchronization in brain networks which can be improved by non-invasive

brain current stimulation which correlates with behavioral recovery (Bola et al., 2014;

Sabel et al., 2011b). Therefore, a better understanding of brain network organization and

reorganization is mandated.

Our understanding of brain networks after occipital stroke is essential for identifying

the disrupted communication between occipital and other brain regions. There is ample

evidence already of brain network reorganization in different neurological disorders such as

glaucoma (Wang et al., 2016b), stroke (Carmichael et al., 2001; Crofts et al., 2011; Goodin

et al., 2018; Nelles et al., 2007), Alzheimer disease (Dickerson and Sperling, 2009; Li et al.,

2013; Sulaimany et al., 2017), depression (Beard et al., 2016; Dusi et al., 2015; Gong and

He, 2015; Wu et al., 2017), or traumatic brain damage (Gilbert et al., 2018; Hou et al.,

2019; Medaglia, 2017; San Lucas et al., 2018). Thus, brain network analyses provide an

important window into the pathology of the human brain of patients and healthy subjects

(Husain and Schmidt, 2014).

Indeed, there is already evidence for the role of global functional connectivity net-

work (FCN) reorganization, which was obtained in patients with (peripheral) optic nerve

damage: they suffer deficits in upstream visual pathways with associated brain FCN dys-

functions in the alpha-band, and when FCN are resynchronized again with alternating

current stimulation, this leads to partial recovery of vision (Bola et al., 2014). These

observations support the ”theory of activating residual vision” (Sabel et al., 2011b) and

suggest that brain network plasticity and reorganization plays an important role not only

in normal and abnormal vision but also in recovery (Dundon et al., 2015; Sabel et al.,

2011a; Sabel and Kasten, 2000a).

This study involved the approach of noninvasive transcranial electrical stimulation

(TES) on patients after an occipital stroke. It aimed to better understand the neuronal
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1.1 Motivation

mechanisms of brain plasticity after visual field loss (homogeneous hemianopia: HH). The

outcomes of the modulation effect of neuron synchronization within the cortical networks

will help find appropriate protocols to restore vision in stroke patients using noninvasive

brain stimulation.

Though numerous studies support the critical role of FCN in different neurological

functions and dysfunctions, including those after optic nerve damage, none have explored

the relationship between global neurophysiological resting-state network organization and

reorganization and how they relate to visual performance in hemianopia after stroke. To

fill this gap, we now compared electroencephalography (EEG) recordings of hemianopia

occipital stroke patients with age-matched controls and used graph theory to analyze net-

work parameters and their correlation with visually elicited responses. We firstly excluded

the possible existence of differences in the left and right hemispheres of the control group

and calculated the reorganization in the lesion hemisphere and intact hemisphere. The

brain of control subjects from the left and right hemispheres was averaged as a single half

hemisphere. The statistic was performed to reveal the brain network changes between

single half hemispheres of the control subject (Control), lesion hemisphere of the patients

(Lesion/LH), and intact hemisphere of the patients (Intact/IH). Because of the size and

location of the lesion are thought to bring the diversification of post-stroke neuroplasticity

reorganization (Xu et al., 2015), here we also investigate the location influence for the

brain network reorganization. The small-world network was determined to show the net-

work changes globally. Finally, we evaluated the correlated relationship between the brain

network measures with the high-resolution perimetry data.

A general protocol of transcranial direct current stimulation (tDCS) for balanced in-

teraction between two hemispheres after unilateral stroke was proposed for this study:

cathodal tDCS over visual cortex of the intact hemisphere to reduce the inhibition of

damaged hemisphere with anodal electrode placed on Fpz (Gall et al., 2015). It is a

challenge to design the sham condition in order to respond to phosphenes in Transcra-

nial alternating current stimulation (tACS) and cutaneous sensations in tDCS. In the

tDCS/tACS condition, cathodal tDCS was applied immediately prior to tACS to compare

the possible difference with Sham/tACS group.

It was hypothesized that the combined stimulation using tACS/tDCS and tACS alone

significantly improve visual functions compared to sham stimulation, both tACS/tDCS

and tACS strengthened the related brain connectivity measures and modulated the brain

networks synchronization. Furthermore, we considered that tACS/tDCS induces stronger

improvement compared to the tACS stimulation alone. Overall, the target of this study

was to find an evidence-based brain stimulation protocol for clinic use with vision loss after

occipital stroke. This study was also the first definitive trial, a large-scale consortium on

non-invasive brain stimulation for a stroke patient with vision loss combining tDCS and

tACS.

Machine learning techniques have drawn considerable attention and outperformed the

traditional methods in analyzing the brain connectome in recent years. This thesis pro-

posed three chapters to reveal the relationship between resting-state EEG brain network

measures and visual performance. For example, electrode-level brain connectivity predicts

stroke patients’ visual field distribution using a convolutional neural network in the time

and frequency domain, which tried to help neuroscientist and clinicians understand the
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Figure 1: Research framework

possible correspondence between the visual field and brain oscillation. The results will

be very beneficial for the clinical diagnostic and understanding of brain plasticity after

stroke. A clinical system for visual neglect diagnostic after brain damage could be de-

veloped with a more robust pre-trained model, allowing doctors and patients to get the

potential awareness of this symptom as early as possible in the future. Furthermore, graph

neural network model’s prediction could help the neurologist and rehabilitation specialist

decide whether the stroke patients can restore vision after noninvasive brain stimulation

treatment. In the future, the prospect of this thesis could be producing an integrated

clinical system that benefits both patients and medical experts.

1.2 Research questions

Generally, this thesis tried to find the answers to the following questions(See Fig. 1):

1. What is the role of local and global brain network in stroke patients, adaptive or

maladaptive?

Hemianopia following occipital stroke is thought to be mainly due to local damage

at or near the lesion site. Nevertheless, MRI studies suggest functional connectivity

network (FCN) reorganization also in distant brain regions. Because it is unclear if

reorganization is adaptive or maladaptive, compensating or aggravating vision loss,

we characterized FCNs electrophysiologically to explore the role of local and global

brain plasticity and correlated reorganization with visual performance (Study 1).

2. What is the brain network modulation effect by noninvasive brain stimulation in a

random-controlled and sham study?

3
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The rehabilitation of patients with partial vision loss after occipital stroke remains

unknown in the clinic, and only few treatments exist for partial vision loss recovery.

Therefore, this study aimed to apply randomized and sham-controlled noninvasive

brain stimulation protocols to modulate brain networks and validate their clinical

practice potential for vision recovery (Study 2.1).

3. What is the underlying mechanism of brain network which can contrast the for

responders and non-responders?

Most patients with residual structures and functions spared by the damage have

some shade of grey in their visual filed where function is neither completely lost nor

normal (Sabel et al., 2018). This pattern follows the idea of ‘areas of residual vision’

(Sabel and Gudlin, 2014). The improvement of reaction time in the white and grey

grids during the Follow-up demonstrated that the visual acuity was enhanced in the

responder group compared to the baseline. Furthermore, the responder group has a

significantly higher vision (Field of vision: FOV) field than the non-responder group,

both after treatment and Follow-up. This raised a question: How does the responder

group local and global brain network differ from the non-responder group after TES

? Through this question, we may get some insight to optimize the noninvasive brain

stimulation paradigm design accurately and efficiently, targeting the brain network

reorganization toward the neuron rehabilitation purpose(Study 2.2).

4. Could we identify the vision loss patients with a stroke by the disrupted brain con-

nectivity network?

Graph theory has been widely applied to investigate brain network alteration for

different kinds of neurological diseases. Brain connectivity and network measure

have been highlighted recently in clinical diagnostic as prediction biomarkers. Some

methodologies, such as fluid and tissue analysis, can enhance diagnostic precision

and guide clinical practice treatment for stroke patients. However, a biomarker

that predicts stroke patients’ brain network state is rare for vision loss patients in

stroke. This study characterized the brain network state utilizing a deep neural

network given multiscale brain network and corresponding it with the physiological

patterns(Study 3).

5. Could we map the EEG frequency domain or connectivity domain to visual field

deficit distribution with deep learning technology?

Decoding resting-state electroencephalography (EEG) to predict patients’ visual field

distribution could be an essential reference for a better understanding of the com-

pensation of visual functions after a stroke. In addition, the result could be beneficial

for clinical diagnostics and treatment. This study proposed a frequency spectrum-

based 2D convolutional neural network (CNN) and brain connectivity-based 3DCNN

model to predict the visual field defect (Study 4).

6. Could we find a biomarker to predict the responder or non-responder after noninva-

sive brain stimulation for vision recovery after stroke, inspired by the clinical result

?

Noninvasive brain stimulation (NIBS) has gained lots of attention from both aca-

demics and clinical usage. Its curative effect shows positive feedback in kinds of
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neurological disorders and brain damage. Stroke is one of them that could benefit

from this new technology. However, the unknown underlying mechanism of brain

stimulation helping brain recovery after stroke hinders our further exploration of

brain functions. Studies on the prediction of possible recovery rates with brain net-

work features are pretty rare. This study proposed a hybrid graph convolutional

autoencoder (HGCAE) to predict the stroke recovery potential after brain electrical

stimulation therapy. Twenty-four occipital stroke patients have been randomized,

divided into three groups, and received the specific NIBS interventions. After two

months, we identified the responders based on the visual performance (Study 5).
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2 Fundamentals and structure

2.1 The visual system of the brain

The visual system is the most critical human sensory system. One-third of the hu-

man cerebral cortex is related to vision information processing that humans receive from

the outside world (Grill-Spector and Malach, 2004). Moreover, it can strongly influence

humans’ cognition performance, decision-making, emotions, and so on. In addition, the

visual system collectes information from the eye and recognizes the low-level feature in-

formation, such as movement, depth, color, direction, and form, as well as the high-level

meaning of visual objects (Felleman and Van Essen, 1991).

The central (neural) part of the visual system consists of central nervous system tissue

including photoreceptor cells and neurons in the retina, optic nerves, optic tract, visual

cortex and visual association areas (see Fig. 2 and Fig. 3).

The visual cortex is the primary cortical area of the brain that is used to receive,

integrate and process visual information from the retina (Huff et al., 2020). It is located in

the occipital lobe at the back of the brain. The visual cortex is made of five different areas

(V1 - V5) according to function and structure (Luck et al., 1997). The light information

is first captured by the eye (retina) and then passes to the first area of the primary visual

cortex (V1). From there, it creates a bottom-up saliency map of the visual field to guide

attention or eye gaze to salient visual locations (Li, 2002), The information processed by

the visual cortex is transmitted to other brain areas for reprocessing. Therefore, the visual

cortex acts as a fundamental logical unit for external behavior or response to external

stimuli. The visual cortex plays a vital role in daily human life.

The visual system is one of the most extensively studied sensory systems so far. As

the nervous system’s primary function is to obtain, process, and output information, the

visual cortex occupies a large proportion of all external information obtained by organisms,

especially for higher animals. As the main center of information reception and processing,

if the visual cortex is damaged, it will impact the entire brain, for example after stroke.

2.2 Vision loss caused by stroke

The main clinical manifestations of a stroke is cerebral ischemia and hemorrhagic

injury, see Fig. 4, which has very high mortality and disability rate. Hemorrhagic stroke

and ischemic stroke are two most common categories. Stroke has a rapid onset and high

fatality rate. There are over 13.7 million new stroke cases per year. Almost 60% of all of

the patients with stroke are under 70 years (Benjamin et al., 2017; Feigin et al., 2017).

Many stroke survivors have various symptoms such as visual and movement impairments

(Rowe et al., 2009; Rowe, 2017; Xu et al., 2015). If the stroke occurs in the occipital lobe

of the visual cortex, it will lead to vision loss, for which there are only few options for

effective treatment (Gall et al., 2015). The most common type of vision loss is homonymous

hemianopia (HH), in which the same half of the visual field in both eyes is lost (Zhang

et al., 2006a). This happens in about 40% of stroke cases when occipital lobe is damaged

(See Fig. 3, the visual cortex as 7 in the right hemisphere), 30% at the parietal lobe

(Pambakian and Kennard, 1997). The functional life ability and life quality of patients
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Figure 2: Vision pathway (Image source@Miquel Perello Nieto)

with HH are seriously impacted (Gall et al., 2010b). Patients with visual field defects have

a risk of falling, impaired ability to read, and might develop depression (Gall et al., 2010b;

Jones and Shinton, 2006; Ramrattan et al., 2001; Ribeiro et al., 2015a). Many patients

may not be aware of the visual defects or may not consider their symptoms of HH (Gall

et al., 2015).

The cause of HH relayed to different brain areas of the visual pathway, which was

damaged, 40% of HH patients were due to the lesions in the occipital lobe (Pambakian

and Kennard, 1997; Zhang et al., 2006a). But specific visual field defects do not always

indicate specific lesion locations (Zhang et al., 2006a). The diagnoses of visual impairments

and treatment after vision loss was therefor needed for stroke survivors (Rowe et al.,

2009, 2013). Perimetry index is currently the most common visual deficit measurement

standard, such as high-resolution perimetry (HRP) developed by (Sabel et al., 1997) or

Oculus twinfield, both of which measure the visual field.

2.3 Therapy for vision recovery after stroke

2.3.1 Intravenous injection

Traditionally, intravenous thrombolytic treatment (TPA) is used to restore perfusion

in the hyperacute phase of ischemia, which had only relieved for HH when the neuronal

tissue damage developed impermanent by ischemia (Strbian et al., 2012b,a). After the

hyperacute phase, the brain automatically tries to compensate for the loss of functions.

This compensation is incomplete and even a barrier for brain functional recovery, as the

hyperactivities of the intact hemisphere inhibit neuron activities in lesion area (Corbetta

et al., 2005). Some scientists proclaimed that visual training can improve vision, such as

visual stimulation paradigms to improve vision recovery after many years after damage

(Kasten et al., 1998; Poggel et al., 2004; Sahraie et al., 2006). However, the HH is still

considered somewhat permanent damage to neurons in the visual cortex and resilient to

rehabilitation (Zhang et al., 2006b). Except for intravenous thrombolysis (Strbian et al.,

2012b), brain modulation was also highlighted recently because vision loss in the blind
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2.3 Therapy for vision recovery after stroke

Figure 4: stroke type (image source@cdc.org )

induces not only by primary tissue damage but also can be interpreted by a breakdown of

synchronization in brain networks (Bola et al., 2014; Sabel et al., 2011b).

2.3.2 Residual vision activation theory

’Residual vision activation theory ’was first proposed by Sabel et al. (Sabel et al.,

2011b) on how visual functions can be reactivated and restored after retinal or cerebral

visual injury. This “residual vision activation theory” considered the following observations

and potential mechanisms that might help explain recovery:

• (i) Areas of partial damage at the visual field border: this area is in the transition

area between the normal visual field and the completely damaged visual field. Al-

though this does not match the lesion location of the brain area, it is still an area

worthy of our attention because it has the highest probability of being recovered;

• (ii) ”Islands” surviving tissue within the blind area: there are some surviving neurons

in the blind zone which possibly benefit from external intervention and treatment;

• (iii) Extrastriate pathways unaffected by the damage;

• (iv) Downstream, higher-level neuronal networks: human vision is not only controlled

by the visual cortex but is the result of the synchronization and coordination of

multiple brain regions. Therefore, after visual impairment, adjusting the downstream

brain network may also stimulate the performance of rehabilitation.

The author also stated that the residual vision is subject to the following points: (i)

fewer live neurons, (ii) lack of sufficient attentional resources, (iii) the lesioned hemisphere

is inhibited by the dominant intact hemisphere, and (iv) disturbance in their temporal

processing. For these reasons, the residual part cannot perform its normal function and

may even be inhibited. Therefore, for the residual visual field, our Lab believes that based

on its more than 20 years of scientific research (Sabel et al., 2020a), the following two

methods could be the most promising tools for vision recovery: (i) visual training and
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(ii) noninvasive electrical brain current stimulation. Such methods will strengthen the

synaptic transmission and network plasticity (Sabel et al., 2011b), which can help vision

restoration. Here we consider this theory would also fit for the treatment of vision loss

after the stroke. The goal of this thesis is to evaluate the potential of repetitive noninvasive

brain stimulation for vision recovery in stroke patients.

2.3.3 Brain stimulation

The transmembrane potential of neurons or occurrence of action potentials could be

affected by the neuron itself or external intervention (Anastassiou et al., 2010). Deep brain

stimulation (DBS) and noninvasive brain stimulation (NIBS) through the scalp could

locally or globally modulate the brain plasticity and potentially improve the treatment

performance of brain disease (Priori, 2003).

For invasive brain stimulation, deep brain stimulation (DBS) is the most common

treatment technique that involves the use of implanted electrodes to measure patholog-

ical brain activity and deliver adjustable electrical current to selected brain structures

(Perlmutter and Mink, 2006; Breit et al., 2004; Kringelbach et al., 2007). In addition,

it has been proved to be effective at reducing symptoms of Parkinson’s disease, essential

tremor, and dystonia, and depression (Lozano et al., 2019). However, DBS needs high-risk

surgery to open the skull and implant the electrode into the specific brain area. During

this process, unpredicted damage to the brain could occur, which make it not suitable for

most of patients. Up to now, it is not popular in clinical usages also for its-complexity.

However, it has a promising future in the treatment of other(non-visual) brain diseases

such as Parkinson’s disease.

Noninvasive brain stimulation was the most widely used for the treatment of the kind

of neurological disease in clinic (Antal and Herrmann, 2016). it modulates the neuron’s

membrane for neurological and psychiatric rehabilitation without any medical surgery, see

Fig. 5. The plasticity of neuron correlation could be induced with the specific treatment

protocol with electrodes superimposed on the scalp (Huang et al., 2017), and NIBS have

been considered the most promising tool to explore the human brain currently. In the

last few years, the NIBS has been used in rehabilitation for stroke (Elsner et al., 2017),

Alzheimer (Benussi et al., 2021), and other diseases.

Generally, NIBS could be categorized into different approaches:

Transcranial direct current stimulation (tDCS) is one of noninvasive brain stim-

ulation method used to modulate cortical excitability (Nitsche and Paulus, 2000; Priori

et al., 1998). A constant, low-intensity current is passed though through two electrodes

(from anodal to cathodal) placed the head, which modulates neuronal activity (Purpura

and McMurtry, 1965). Anodal stimulation acts to excite neuronal activity, while cathodal

stimulation inhibits or reduces neuronal activity (Antal and Herrmann, 2016). The main

effect of tDCS on neurons is the transition of the resting membrane potential for depolar-

ization or hyperpolarization below the threshold, which depends on the current direction

relative to the axon orientation (Bindman et al., 1964; Purpura and McMurtry, 1965;

Gorman, 1966). tDCs has been proved effective in many neurological disease such as pain

(Klein et al., 2015; Attal et al., 2016), prkinson (Ferrucci et al., 2016; Kaski et al., 2014),

motor stroke (Allman et al., 2016; Rossi et al., 2013), multiple sclerosis (Ayache et al.,

2016; Tecchio et al., 2015), epilepsy (Tekturk et al., 2016; Fregni et al., 2006), Alzheimer’s
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Figure 5: Transcranial electric stimulation (Dayan et al., 2013), Transcranial Magnetic Stimula-
tion@image source: Neuroncare, Deep brain stimulation@image source: nih.gov

disease (Ferrucci et al., 2008; Bystad et al., 2016) and so on.

Transcranial Alternating Current Stimulation (tACS) is expected to synchro-

nize or desynchronize cortical oscillations (Antal and Paulus, 2013). It is believed that

the tACS mainly entraines or synchronizes ongoing oscillatory brain activity (Antal and

Herrmann, 2016). Compared with tDCS, the major difference could rely on the frequency,

the intensity, and the phase of the stimulation, and the frequency of AC stimulation can

be matched to the frequency of the brain’s internal oscillation in the closed-loop mode

(Moliadze et al., 2010). tACS is a low-intensity sinusoid current across an active electrode

placed on the head while the reference electrode could be settled with a specific protocol

design. The low-intensity electric field across a targeted brain region entraines oscillations

and neurons, making tACS a powerful tool to modulate brain plasticity. The long-lasting

effect was observed in many clinical trials (Neuling et al., 2013b; Clancy et al., 2018). The

unique capabilities altering the brain and behavior provided by tACS have been hypoth-

esized (Antal and Paulus, 2013; Antal and Herrmann, 2016). In the treatment of many

kinds of brain diseases, the results have been confirmed by various stimulation protocols,

such as Parkinson’s disease (Del Felice et al., 2019; Krause et al., 2014), stroke (Bao et al.,

2020; Wischnewski et al., 2019), Alzheimer disease (Buss et al., 2019; Chang et al., 2018).

Transcranial Random Noise Stimulation (tRNS) was firstly applied in humans

in 2008 (Terney et al., 2008). Instead of constant direct current delivery, tRNS stimulation

differs from tDCS in that current levels are randomly delivered. The alternating current

with random amplitude and frequency (commonly 0.1 - 640 Hz) in healthy subjects, in-

creased the motor cortex excitability (i.e., increased MEP) after 10 minutes of stimulation.

Later research shows that the high-frequency band (hf-tRNS, from 100-640 Hz) has shown

to be the most effective in increasing neural excitability (Moret et al., 2019). The tRNS

induced robust changes in cortical excitability could be related to the repeated opening of

sodium channels or modulation of neuronal networks with a increased sensitivity (Reme-

dios et al., 2019; Terney et al., 2008). tRNS has shown some promising results in motor

learning (Contemori et al., 2019), multiple sclerosis (Palm et al., 2016a), or Parkinson

(Stephani et al., 2011).

Transcranial Magnetic Stimulation(TMS) is a neuromodulatory technique that

applies a magnetic field carrying short-lasting electrical current pulse to the brain via
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Figure 6: Ultrasound Neuromodulation@image source:epfl.ch

a ’coil’ (Barker et al., 1985), see Fig. 5. Different coil types allows different magnetic

field patterns, and using more focal points can elicit a deeper magnetic field for deeper

cortical layers (Ziemann, 2011). A high-intensity TMS pulse induces a synchronized high-

frequency burst of discharge in a large group of neurons (Siebner et al., 2009). The external

interfered synchronization followed by inhibition effectively modulates brain motor cortex

(Barker et al., 1985), vision perceptual, and cognitive processing (Strafella and Paus,

2000). TMS is a very critical tool that can be used in the clinic to study the function

and dysfunction of the human brain in a non-invasive and painless way (Ziemann, 2011).

The TMS applications have been combined simultaneously with other neurophysiology or

neuroimaging techniques such as EEG (Conde et al., 2019), or fMRI (Peters et al., 2020).

Although its exact mechanism of action is still unknown, current evidence suggests its role

in inhibition and excitement of neurons could be used for the treatment of psychosis and

neuropathy disease (Chail et al., 2018).

Transcranial Ultrasound Stimulation (TUS) is a emerging technique that can

noninvasively excite or inhibit neuron’s state in specific brain regions by emitting pulsed

ultrasonic waves (Tufail et al., 2011), see Fig. 6. Compared with magnetic or electrical non-

invasive brain stimulation, this technology has higher spatial resolution and can reach deep

structures (di Biase et al., 2019). There are several studies trying to reveal the mechanism

of the TUS, most of them agrees that TUS can modify the membrane gating kinetics

through the action on ion channels or neurotransmitter receptors (Tufail et al., 2010). In

addition, the mechanical energy of US leads to periodic expansions and contractions of

the membrane (Krasovitski et al., 2011).

Above-mentioned neuromodulation technology is known to be able to change brain

networks. Therefore, the question is how to quantify changes in the brain, a very important

issue. We used graph theory to study this question, for it is widely used to quantify the

dynamic changes of brain networks. In the next paragraph, we will describe related brain

network quantification and machine learning methods
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Figure 7: Graph theory, CC: Clustering Coefficient. From a to b: short node path (green line); long
node path (red line)

2.4 Graph theory and machine learning

2.4.1 Brain connectome and graph theory

The brain networks (connectome) means the explicitly defined anatomical and func-

tional connections on the same map of brain regions, which quite help explore functional

connectivity relationships (Zhou et al., 2006). The graph theory describes important prop-

erties of brain networks by quantifying typologies of their respective network measures by

anatomical tracts or by functional associations (Newman, 2004). According to this theory,

brain areas correspond to nodes or vertices, and edges are the connections between the

nodes, see Fig. 7. Node degree is the number of links connected to a center node, and

strength is the sum weights of links connected to the center node. The clustering coeffi-

cient is the fraction of triangles around the center node (Rubinov and Sporns, 2010). Node

betweenness centrality is the value of all shortest paths that pass though a given node.

Nodes with high values of centrality involved in a large number of shortest paths. If the

network structure has a high cluster coefficient and a short path length, the network struc-

ture is called a ”small world” which is a fraction between ordered and random networks.

Patterns of anatomical connectivity in neuronal networks are sometimes characterized by

high clustering and a small path length (Watts and Strogatz, 1998).

A single network measurement can characterize one or several aspects of large-scale

brain connections. For example, there are various measures to examine various aspects of

functional integration and separation, quantify the role of specific brain regions, charac-

terize the patterns of local anatomical circuits, and test the network’s ability to recover

from insults (Rubinov and Sporns, 2010).

Metrics for specific network elements (for example: nodes or links) often quantify the

connections associated with these nodes or links, reflecting how these nodes or links are

embedded in the network. In addition to these different representations, network metrics

can be described as binary and weighted, directed and undirected variants. The undirected

binary variant is usually a generalization of a weighted and directed metric (Rubinov and

Sporns, 2010).

Characteristic path length. The shortest path length is the short distance from
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one node to another node, which are related to network efficiency and information transfer

rate in graph theory. The characteristic path length is the average shortest path length of

all nodes in the network with a definition:

L =
1

n

∑
i∈N

Li (1)

where Li the average path length between node i and all other nodes

Clustering coefficient. The ”small world” combines the presence of functional mod-

ules with robust intermodular links (Rubinov and Sporns, 2010), networks are more clus-

tered than the random network and have approximately the same characteristic path

length (Watts and Strogatz, 1998). The clustering coefficient is the fraction of triangles

around a center node with the following definition:

C =
1

n

∑
i∈N

Ci =
1

n

∑
i∈N

2ti
ki (ki − 1),

(2)

Modularity Modularity is a statistic measure that quantifies the degree to which

the network may be subdivided into such delineated groups (Newman, 2004). A higher

value of modularity shows that nodes in a nonoverlapping group maximizes the number

of within-group edges and minimizes the number of between-group edges (Rubinov and

Sporns, 2010).

Q =
∑
u∈M

[euv − (
∑
v∈M

euv)2] (3)

where the network is fully divided into non-overlapping modules M , and euv is the pro-

portions of all links that connect nodes in module u with nodes in module .v

Betweenness centrality. Node betweenness centrality is the value of all shortest

paths in the network that pass though a given node. Nodes with high values of betweenness

centrality involve a large number of shortest paths (Rubinov and Sporns, 2010; Freeman,

1978)

bi =
1

(n− 1)(n− 2)

∑
h,j∈N h6=i,h 6=j,j 6=i

pihj
phj

(4)

where phj is the short path length between node p and j,pihj is the number of shortest

path length that pass the node i

These brain network attributes can help us to better understand the exchange and

flow of mutual information between brain nodes, and they are widely used in the field of

brain science. For the subjects of our research, these measurement methods can also help

us to better understand the relationship between visual field damage and brain network

changes in stroke patients. In the next paragraph, we will focus on the methods that

reveal changes in brain network of patients with visual field deficit.

After a stroke on the occipital lobe, the brain network analysis for HH patients was

essential for identifying the disrupted communication between the occipital and other

brain regions. The ”residual vision activation theory” was proposed for vision restoration

after brain and retina damage (Sabel et al., 2011b). In theory, the brain plasticity of pa-

tients could be modulated or reorganized by vision training or electronic brain stimulation

(Dundon et al., 2015; Sabel et al., 2011a; Sabel and Kasten, 2000a). However, Considering
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the unclear mechanism of brain network reorganization in neurological disorders, many

studies focus on the pathology to investigate the brain lesions in HH patients (Brandt

et al., 1998; Nissa et al., 2016; Pambakian et al., 2000; Sawaya et al., 2014; Stayman et al.,

2013). Very few studies have been done on the functional brain connectivity and dynamic

network changes with HH patients in the resting state EEG. Brain functional connectiv-

ity and network are the critical window in revealing disrupted brain oscillation in brain

activity between patients and healthy subjects (Husain and Schmidt, 2014).

One study reported that HH patients with damage on the left primary visual cortex

had less activities than healthy subjects; patients showed greater activation on other lobes

in the lesioned hemisphere and the intact hemisphere in the associative visual cortex

(Wang et al., 2010). Another study reported that the connectivity was enhanced by new

forming connections. Compensatory connections mainly originated from the infarction

area and targeted contralesional frontal, central, and parietal cortices (Guo et al., 2014).

In the temporal lobe, the disturbed neural synchronization in vision loss patients indicated

disrupted communication within the visual pathway (Bola and Sabel, 2015). Thus the state

of synchronization or desynchronization of brain networks plays a vital role in visual cortex

functional signal preprocessing and transferring. Therefore, disturbed synchronization in

patients with vision loss might aggravate the functional consequences of reduced visual

input (Bola et al., 2014). The related phenomena after stroke in the left or right hemisphere

have been reported in many types of research (Forss et al., 1999; Kalénine et al., 2010;

Vallar and Perani, 1986).

In summary, graph theory could help us illustrate the brain network properties with

nodes and links in a brain connectivity matrix. We will discuss graph neural networks

more detail in next chapter.

2.4.2 Machine learning and graph neural network

Machine learning refers to a subarea of artificial intelligence that automatically learns

the patterns based on the dataset and predicts the new instance label without being explic-

itly programmed. The traditional algorithms could be considered to solve the two problems

classification or regression, such as decision tree, support vector machines (SVM), and lin-

ear discriminant analysis (LDA), linear regression. There have been many applications for

these algorithms and they achieved an remarkable performance—the feature and dataset

size and the logic of the algorithm influence the performance strongly. In the last few

years, based on the multiple linear perceptions, Yann LeCun (LeCun et al., 2015) had

proposed a convolutional neural network that performs end-to-end feature extraction and

ROI pooling in imaging processing. Furthermore, the LSTM and other more complex

modes had been proposed to handle the time serial data and natural language prepro-

cessing (Hochreiter and Schmidhuber, 1997). This paper will focus on the deep learning

technologies to handle the sensor level and source-level brain connectivity matrix.

Convolutional neural network: Convolutional Neural Networks (CNN) is a type of

feed-forward neural network that includes convolution, non-linear and pooling operations

in deep layers. It is one of the most representative algorithms of deep learning (LeCun

et al., 2015). The eruption of deep learning is also based on the outstanding performance

of convolutional neural networks in image recognition (Krizhevsky et al., 2012). 2DCNN

and 3DCNN can effectively reduce the dimensionality of a large amount of data into a
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Figure 8: A example of convolution operation

Figure 9: An general concept of 3DCNN

small amount of data and retain the feature patterns of the image, see Fig. 8 and 9 . Many

researchers believe that the human vision system inspires the CNN structure, but some

considered it was only the merits of mathematics and the expansion of computational

abilities nowadays.

There are many variants of convolutional neural networks. They have achieved great

performance compared with traditional ones in some specific fields, such as the Resnet (He

et al., 2016), Densenet (Iandola et al., 2014), YOLO (Redmon et al., 2016), Fast-RCNN

(Ren et al., 2015), and Faster-RCNN (Ren et al., 2016). In computer vision problems, the

current state of art network structure is based mostly on attention mechanism (Vaswani

et al., 2017). For example, vision transformer (Dosovitskiy et al., 2020), which divides the

whole image into sub-regions and applies multi-head attention gates, achieves excellent

performance in object detection and segmentation tasks. Another highlighted method

in medical imaging is Unet (Ronneberger et al., 2015) which was firstly proposed in the

blood vessel segmentation task and had been extended to various medical applications. At

present, most imaging solutions in deep learning for medical imaging are based on Unet

architectures.

Recurrent neural network: In contrast to the remarkable achievements of convolu-

tional neural networks in image processing, the recurrent neural networks (RNN) is unique

in time series data such as natural language processing and medical signal processing and

have received significant attention from researchers. The most famous one is the long short

term memory (LSTM) algorithm (Hochreiter and Schmidhuber, 1997), which combined

various gates and the previous hidden state, see Fig. 10. For example, in machine trans-

lation problems, this algorithm effectively combines the context to obtain global weights.
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Figure 10: An unrolled recurrent neural network@images source:colah’s blog (Cohen, 2015)

Figure 11: 2D convolution (Euclidean space) vs. Graph convolution (Non-Euclidean space) (Wu et al.,
2020)

Although the later self-attention mechanism completely outperforms the recurrent neural

network (Vaswani et al., 2017), its inner core still draws on the idea from RNN. An-

other particular LSTM structure: Bidirectional LSTM gained our attention (Graves and

Schmidhuber, 2005). This structure feeds the data into the LSTM layer from different

directions and could obtain integrated features. The variant of this structure has been

extended in language understanding successfully, such as (BERT) (Devlin et al., 2018).

Moreover, considering its mechanism and interhemispheric brain, it may have excellent

potential usage in brain network applications.

Graph neural network: Deep learning definitely could effectively learn the hidden

features from the Euclidean data such as image, video, and text. However, there is an

increasing demand for a new methodology to handle the non-Euclidean data, such as

recommendation systems in e-commerce, molecular chemistry, and brain connectivity in

neuroscience where the graph was made of the nodes and edges. The nodes can be directly

connected to all the nodes in the graph or partially connected with neighbor nodes. The

edges between two nodes could be binary and weighted, the numbers of nodes and links

could be various for individual subjects. These data structures in graphs demonstrated

a complex relationship and inter-dependency presentation, which imposed a significant

challenge on existing deep learning technology, see Fig. 11.

The early study in GNN was tracked back to 1997, Sperduti et al. (Sperduti and

Starita, 1997) proposed a neural network to handle the acyclic graphs, and Gori et al.

(Gori et al., 2005) firstly referred to the neural network as graph neural network in 2005

and extended by Scarselli et al. (Scarselli et al., 2008). Then, inspired by the excellent

performance of CNN on images, Braun et al. (Bruna et al., 2013) proposed a spectral-

based convolutional graph neural network (spectral GCN) which has a solid theoretical

foundation in signal processing. However, spatial GCN attracted more attention than the

Spectral GCN for higher lower efficiencies, higher generality, and more flexibility compared

with spectral GCN, which was firstly proposed by Micheli et al. (Micheli, 2009). In sum,
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Figure 12: A convGNN with pooling and readout layers for graph classification (Defferrard et al., 2016)

spectral GCN has to calculate the eigenvector and Fourier basis while spatial GCN could

directly operate convolution in the whole graph. Another thing, spectral GCN requited

the directed graph while the spatial GCN is more flexible to handle multiple source graphs.

Graph network embedding targets to present the graph with lower-dimensional nodes,

both persevering the topology structure and node information, see Fig.12. Traditional

algorithms could perform directly on node levels for classification, clustering, or predic-

tion. CNN is more likely a group of neural networks, which is designed for an end-to-end

classification task. GNNS could address the graph network embedding problem with the

autoencoder structure while the graph network embedding contains non-deep learning

ways to extract features. Graph autoencoder (GAES) maps the nodes into high-level fea-

tures with deep learning structures, primarily used for latent feature (network embedding)

and new graphs generation. The iconic work from Wang et al. (Wang et al., 2016a) pre-

sented a stacked autoencoder to preserve the nodes in the first ordered and second ordered

proximity jointly by minimizing the distance from the center node and its neighbors.

After GNN generates the latent features, the graph may have redundant nodes that re-

quire high computations. Therefore, a downsampling strategy referred to as GCN pooling

was performed to reduce the numbers of the node. Max/Mean/Sum are the most com-

mon ways to do pooling, depending on the target in specified network design. Recently,

a differentiate pooling method (Ying et al., 2018) was proposed to generate a hierarchical

structure of a graph, which instead of simply clustering the nodes in a graph, tried to

keep the graph structure topology and node information when doing the node assignment.

For example, in neuroscience, the clustering is pre-defined by brain regions. In a word,

graph pooling is an important step to reduce the graph size and prevent over-fitting, while

achieving this target is still an open question.

2.5 Structure of thesis

To be better to classify our contributions and results in revealing the mechanism of

brain network reorganization and neuron modulation effect for vision recovery, this thesis

has the following chapters to evaluate these key points: Chapter 3 and Chapter 4 focus

on the understanding of the brain network reorganization after a stroke and intervention

with brain stimulation; Chapters 5, 6, 7 reveal the relationship between vision loss and

behaviour data with deep learning technology. The structure of the thesis is listed as

follows:
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• Chapter 1 and Chapter 2 addressed the motivation, research background, and re-

lated methodology.

• Chapter 3 demonstrates that stroke brains showed altered FCNs in the alpha- and

beta-band in numerous occipital, temporal and frontal brain structures. FCN had a

less efficient network organization globally, while node networks reorganized on the

local level, especially in the intact hemisphere. Here, the occipital network was 58%

more rigid (with a more “regular” network structure) while the temporal network

was 32% more efficient (showing greater “small-worldness”), both of which correlate

with worse or better visual processing, respectively.

• Chapter 4 demonstrates that real tDCS/ real tACS (ACDC) enhanced the lesion

hemisphere’s alpha band strength in the superior occipital lobe during the follow-

up. The sham tDCS/ real tACS (AC) and sham tDCS/ sham tACS (Sham) group

maintained the baseline level. A negative correlation (r=-0.80, p=0.017) appeared

between the intact visual field and characteristic path length after treatment in the

ACDC group. The alpha band centrality of intact middle occipital decreased af-

ter treatment in ACDC. The ACDC protocol significantly decreased the delta band

coherence between the lesion and the intact occipital lobe. Meanwhile, we found

an enhancement of coherence between the intact occipital lobe and intact temporal

lobe. The responder group has significantly higher strength than the non-responder

group, in both hemispheres at lingual, calcarine, and on the lesion side of superior

occipital in the low alpha band during the follow-up. The responder group has lower

coherence between intact occipital and lesion frontal. The FOV negatively correlated

with the ipsilesional frontal strength of the NonResponder group in the high alpha

band.

• Chapter 5 explores multiscale brain network and deep neural network to evaluate

brain network patterns for identifying vision impairment patients after occipital

stroke. The prediction model and statistical analysis result indicate that the low

and high alpha band under specific density could be a predictor to characterize

brain network reorganization. The Bi-LSTM achieved a balanced performance be-

tween sensitivity and specificity, which could prove valuable for applications in brain

feature extraction later. Further investigation was needed to extend this algorithm

with more data samples and an optimized network structure. These results may

bring insight for clinical diagnostics and interventions in the future.

• Chapter 6 proposes a frequency spectrum-based 2D convolutional neural network

and a connectivity-based 3D convolutional neural network to decode the relation-

ship between the brain oscillation and the visual field defect caused by a unilateral

occipital stroke. The spectrum-based 2DCNN model demonstrated better visual field

location prediction than the connectivity-based 3DCNN model, while the visual field

percentage was not predictable in our evaluation. The visualization of EEG char-

acteristics and feature maps help make results more explainable. But more samples
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and optimized network structure are needed in further studies.

• Chapter 7 discusses the possibility of predicting the noninvasive brain electrical stim-

ulation therapy effect with the alpha band brain functional network in visual loss

patients after occipital stroke. We emphasized the dynamic changes with graph the-

ory and proposed a hybrid graph convolutional network for NIBS outcome prediction.

The results show the HGCN achieved an overall accuracy of 74% and 91% sensitivity

on recovery potential prediction after NIBS intervention. Although this is still far

away from proper clinical usage, this predictable outcome could be an incentive for

future development in the clinical application of noninvasive brain stimulation.

• Chapter 8 summarized all the contributions in this study and proposed further stud-

ies.
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3 Study 1: Adaptive and maladaptive brain functional net-

work reorganization after stroke

(This work has been published by Brain connectivity)
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3.1 Background

3.1 Background

Hemianopia following unilateral occipital stroke creates problems in everyday visual

tasks such as reading, navigating, or driving (Ribeiro et al., 2015a). While the scotoma is

thought to be a ”local” problem of retinotopic, cortical cell death at or near the lesion site,

it also creates global problems caused by remote deafferentation or network disturbances

throughout the brain (Catani et al., 2012), including cross-hemispheric influences.

Based on prior studies, we expected that brain network plasticity could be both adap-

tive or maladaptive (Nava and Röder, 2011). Whereas adaptive changes could compensate

or improve the function (i.e., restoration of visual function), maladaptive changes would

interfere, reduce or disrupt the functional state (Li et al., 2016; Woolf, 1989) depending

on the pathophysiological condition (Dalise et al., 2014). Both are expected to be caused

by or associated with structural or functional modifications of brain networks (Naro et al.,

2016; Pascual-Leone et al., 2005). Examples of adaptive and maladaptive neuroplasticity

were reported in various studies of pain (Li et al., 2016), stroke (Altman et al., 2019),

focal dystonia (Quartarone et al., 2006) or tremor (Lee et al., 2014), to name but a few.

Our understanding of brain networks after occipital stroke is essential for identifying

the disrupted communication between occipital and other brain regions. There is ample

evidence already of brain network reorganization in different neurological disorders such as

glaucoma (Wang et al., 2016b), stroke (Carmichael et al., 2001; Crofts et al., 2011; Goodin

et al., 2018; Nelles et al., 2007), Alzheimer disease (Dickerson and Sperling, 2009; Li et al.,

2013; Sulaimany et al., 2017), depression (Beard et al., 2016; Dusi et al., 2015; Gong and

He, 2015; Wu et al., 2017), traumatic brain damage (Gilbert et al., 2018; Hou et al.,

2019; Medaglia, 2017; San Lucas et al., 2018). Thus, Brain network analyses provide an

important window into the pathology of the human brain of patients and healthy subjects

(Husain and Schmidt, 2014).

Such studies rely typically on MRI, which measures the oxygenation state (blood flow),

a rather indirect measure of brain network organization and reorganization, and brain

functional connectivity. Nevertheless, they provide a first approximation of spatially dis-

tributed networks and their temporal synchronization and reorganization after stroke. For

example, one study of HH patients with primary visual cortex lesions revealed fewer brain

activities than healthy subjects and greater activation of other lobes in the lesioned and

the intact hemisphere in the associative visual cortex (Wang et al., 2010). Nelles et al.

(Nelles et al., 2002) carried out hemifield stimulation in hemianopia patients and compared

activation patterns to those in normal subjects. In controls, the most significant activation

was found in the contralateral visual cortex (area 17) and bilaterally in the extrastriate

cortex (areas 18 and 19) . In patients, these areas were also activated during visual stim-

ulation of the patients’ intact hemifield. Because visual stimulation of the hemianopia

visual field provoked stronger ipsilateral activation of the extrastriate visual cortex, the

authors concluded extensive neuronal plasticity. Others reported that vision training in

hemianopia alters the activation changes in different brain regions (Vanni et al., 2001).

While MRI informs us about the general activation state of different brain regions,

its low temporal resolution does not allow conclusions about the synchronization state of

the electrophysiological networks, which the EEG can measure. On the other hand, with

its high time resolution, the EEG comprises a much more direct measure of functional
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synchronization states in the brain and network dynamics. As a result, there is a growing

number of investigators that used EEG to characterize brain functional connectivity and

their dynamics (Rossini et al., 2019).

Brain FCN reorganization is well established using MRI techniques in different neural

disorders such as early blindness (Striem-Amit et al., 2015), glaucoma (Wang et al., 2016b),

stroke (Wang et al., 2010), Alzheimer disease (Dennis and Thompson, 2014), schizophrenia

and depression (Wu et al., 2017), traumatic brain injury (Sharp et al., 2014), or following

occipital damage (Pedersini et al., 2020). Yet, the functional role of FCN reorganization in

hemianopia is rather unclear. On the one hand, widespread FCN changes might be ”mal-

adaptive”, because hemianopia patients have slowed reaction times and perceptual deficits

in their intact hemifield (Bola et al., 2013; Cavézian et al., 2015; Chokron et al., 2008).

On the other hand, FCN reorganization might be ”adaptive,” as shown in patients with

optic nerve damage, where neuromodulation-induced FCN reorganization can strengthen

occipital-frontal interactions, which correlates with visual field improvements (Bola et al.,

2014)

Indeed, there is already evidence for the role of global FCN reorganization, which

was obtained in patients with (peripheral) optic nerve damage: they suffer deficits in

upstream visual pathways with associated brain FCN dysfunctions in the alpha-band, and

when FCN are resynchronized again with alternating current stimulation, this leads to

partial recovery of vision (Bola et al., 2014). These observations support the ”theory of

activating residual vision” (Sabel et al., 2011b)and suggest that brain network plasticity

and reorganization plays an important role not only in normal and abnormal vision but

also in recovery (Dundon et al., 2015; Sabel et al., 2011a; Sabel and Kasten, 2000a).

To characterize adaptive or maladaptive plasticity, we recorded EEG in the resting

state of hemianopia patients. Unlike MRI, an indirect biomarker of neural activity us-

ing oxygenation as a surrogate of neural activity, the EEG is a direct neurophysiologi-

cal biomarker with excellent time resolution. Therefore, we recorded resting-state EEG

in stroke patients with hemianopia. We described brain FCN properties by quantifying

topologies of functional associations and their changes using well-known graph theory met-

rics “clustering coefficient” (fraction of triangles around a node) and node “betweenness

centrality” (hereafter referred to as “Centrality”). A network´s clustering coefficient and

path length define “small worldness” (SW), which represents the network´s degree of or-

derly (regular) vs. random connections. In this manner, we could collect information on

neuronal synchronization and FCN dynamics independent of energy consumption (Rossini

et al., 2019) intending to clarify the functional role of local and global network reorgani-

zation. Specifically, we hypothesized that FCNs graph metrics significantly differ between

healthy controls and patients with stroke. We hoped to learn which FCN plasticity features

are adaptive or maladaptive by correlating them with a visual performance.

3.2 Method

3.2.1 Experimental setting

We recruited hemianopic patients with occipital ischemic stroke (n=24; age: 58.4±10.9

yrs., mean±SD, lesion age>6 months, 21male/3female) and age-matched healthy controls

(n=24, age: 57.4±10.5 yrs., 18 male/6 female) as shown in Tab 1. Of note, some patients
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Figure 13: Left panel (A): Analysis pipeline ECG: electrocardiogram; EMG: electromyography; MNI:
standard brains template from the Montreal Neurological Institute; BEM: Boundary Element Method;
AAL: Automatic Anatomical Labeling, the adjacent matrix was thresholded with density=0.3. Right
panel (B): Visual field plot in hemianopia as assessed by high resolution perimetry (HRP). White regions
show the intact visual fields, grey regions represent visual field sectors where patients’ response accuracy
was inconsistent and with only partial vision (“areas of residual vision”, ARVs, shown by arrows), and
black regions showed no responses (“blind”). Partial function in ARVs is supported by partial cell survival
of cells, which are not sufficiently synchronized to fire action potentials.
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had middle cerebral artery (MCI) territory and brainstem strokes, a possible source of

heterogeneity and FCN variability. Inclusion criteria were as follows: homonymous visual

field defects (after middle or posterior artery stroke), stable visual field defect (spontaneous

recovery completed), lesion age >6 months, age of patients >18 and <75 years.

Exclusion criteria were published previously in our lab (see (Gall et al., 2015; Li, 2016)),

here we listed some important information from above mentioned publications: complete

blindness, visual hemineglect, electrical or metal implants (e.g., heart pacemakers), any

kind of epilepsy or photosensitivity, autoimmune diseases at an acute stage, psychiatric dis-

orders (schizophrenia, etc.), severe substance abuse, diabetic retinopathy or diabetes melli-

tus with average blood glucose level >seven mmol/l, high blood pressure >160/100mmHg,

instable or high level of intraocular pressure (>27mmHg), retinitis pigmentosa, patholog-

ical nystagmus, any severe ophthalmological disorders with a high probability of ongoing

vision loss, pregnancy, atrial fibrillation, the risk for vascular thrombosis, arteriosclerosis

with more than 75% stenosis, myocardial infarction with high cardioembolic risk level,

coronary severe heart disease including unstable angina pectoris, any operation targeting

the heart, head or vascular system during the past three months.

The measurement method was described before by (Li, 2016), we also listed some of

the important information here from above mentioned publications: Binocular visual fields

were tested using a particular high-resolution computer-based campimetric test (HRP) as

previously described (Kasten et al., 1998). The patients were seated in a darkened room in

front of a 17-in. monitor. Patients were instructed to keep looking at the fixation point and

to press the space bar on the computer keyboard whenever either a target stimulus or an

isoluminant change in the colour of the fixation point was detected. Simultaneous control

of eye movements was carried out utilizing an eye-tracker. Stimulus detection, as well as

reaction times, were measured by the program at all stimulus positions (Li, 2016). For

each patient, three measurements were performed. The visual field areas were categorized

as intact shown in white (three correctly detected stimuli per location), partially damaged

regions shown in grey (one or two stimuli detected), and impaired (blind) areas shown in

black (no stimulus detection).

EEG acquisition, preprocessing and analysis High dense array EEG was recorded us-

ing a HydroCell GSN 128-channel net and a Net Amps 300 amplifier (EGI Inc., Eugene,

Oregon, USA) (sample frequency: 500 Hz; impedance <50 kΩ). Five-minute long resting-

state EEG per subject was recorded under eye-closed and no-task conditions. A digital

1-145 Hz band-pass filter and a 50 Hz notch filter were applied. Data were down-sampled

to 250 Hz and referenced with the common average reference method. Bad channels of

controls (4.08±1.31, mean±SD) and patients (4.67±1.43) were removed following visual

inspection, and six neighboring electrodes were averaged to represent the removed chan-

nels. Five-minute-long EEG recordings were segmented into 2-sec epochs overlapping 0.5

s, with comparable clean trials count for controls (123.6±20.1) and patients (120.1±21.2).

Components of eye-blinks or cardiac activity of controls (3.7±1.4) and patients (5.9±3.1)

were removed by independent component analysis (ICA); The signal was then decomposed

to Delta (1-3Hz), Theta (4-7Hz), Alpha1 (8-10Hz), Alpha2 (11-13Hz), Beta1 (13-21Hz),

Beta2 (22-30Hz) and the total alpha (8-13Hz) frequency bands. The analysis pipeline is

displayed in Fig. 13A.

Fourier analysis with multitapers and discrete prolate spheroidal sequences (DPSS) ta-

25



3.2 Method

per was used to reduce spectral leakage and achieve frequency smoothing. In our frequency

analysis, sensor level Fourier spectra were computed to obtain cross-spectral density per

frequency bin, and all trials were kept. To locate the origin of neural activity, we used

the standard Boundary Element Method volume conduction model of the head (Oosten-

veld et al., 2003) and a standard 3D volumetric source model in 8 mm resolution with

Montreal Neurological Institute (MNI) coordinates for EEG forward and inverse com-

putations. Generally, the forward model was calculated using the symmetric boundary

element method (BEM) (Fuchs et al., 2001). In contrast, the inverse model was calculated

with a beamforming method using the partial canonical correlation (PCC) method (Rao,

1969), which implemented the Dynamical Imaging of Coherent Sources (DICS) algorithm

for computing the spatial filters for each dipole location in the volumetric source model

(Gross et al., 2001). This was subsequently used for connectivity analysis. Finally, the

original neural activities were resourced within dipoles from 1-30 Hz according to frequency

bands, and the frequency bins were summed and weight averaged into six frequency bands

for statistical analysis. We applied the volumetric automatic anatomical labeling (AAL)-

VOIs atlas (Tzourio-Mazoyer and Landeau, 2002) which is constructed based on a single

subject, high-resolution T1-MRI (Collins et al., 1998), and defines 120 structures, of which

we analyzed 90.

We first compared FCN in the left and right hemispheres of age-matched controls (CH)

and, after averaging them, with lesioned (LH) and intact hemispheres (IH) of patients using

the small-world network as a parameter of global network states.

3.2.2 Estimating functional connectivity

FCNs are defined by statistical synchronization of resting-state EEG patterns, which

allows quantification of interaction between different pairs of brain regions (Pereda et al.,

2005) with the imaginary part of coherence (Nolte, 2003), a method insensitive to false

connectives arising from volume conduction.

icoh(f,t) = |im

 ∑N
n=1 S

n
1 (f, t)Sn∗

2 (f, t)√∑N
n=1 |Sn

1 (f, t)2|
∑N

n=1 |Sn
2 (f, t)2|

 | (5)

where Sn
1 (f, t) and Sn∗

2 (f, t) are the frequency-decomposed EEG data from two specific
regions,for every subject and condition the coherence matrix are 128(channel) × 128(chan-
nel)for all pairs at sensor level, the coherence was segmented into short and long range,
the short range coherence was within each lobes of interest

RT,RF,RP,RO,LT, LF,LP,LO

, the long range coherence was between([RO] to

RT,RF,RP,LT, LF,LP,LO

and [LO] to

RT,RF,RP,RO,LT, LF,LP

, at source level, between all pairs of dipoles on source data was calculated with imaginary

part of coherence, for each one subject per band,

To reduce the dimensionality in the connectivity matrix, we adopt a parcellation
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scheme with the AAL atlas and combine the connectivity values between sets of dipole

pairs that belong to a given pair of parcels; the parcellated connectivity matrix (116×116)

was generated to further complex network analysis.

Graph theory describes the properties of brain networks by quantifying typologies of

anatomical tracts or functional associations of brain networks and their changes. Key

graph metrics are “clustering coefficient” (fraction of triangles around a node) and node

“betweenness centrality” (hereafter referred to as “Centrality”), the fraction of all shortest

paths of a given node. A network´s clustering coefficient and short path length define

the “small worldness” (SW). It represents the network´s degree of orderly (regular) vs.

random connections. In our study, nodes represent brain regions and edges represent the

synchronization between two regions at the anatomical level as defined by the AAL atlas

(Rubinov and Sporns, 2010).

We calculated the global efficiency (GE), global clustering coefficient (GCC), and global

characteristic path length (GCPL) per density to evaluate the stabilization and robustness

of network patterns in the alpha band. In this case, we could retain the non-arbitrary and

stabilized network pattern and also removed the weak and noisy connectivity (see Fig. 14A,

D). Briefly, the density of a connectivity matrix was limited to those with a threshold of

0.3; only 30% of the strongest weight edges were considered to ascertain that the densities

(proportion of existing edges out of all possible edges) were equal for each graph and

subject (Bola and Sabel, 2015). Generally, fixing the probability for the existence of

an edge excludes criteria of Erdős-Rényi random networks for group analysis (van den

Heuvel and Hulshoff Pol, 2010). We then calculated the following graph measures: node

strength, node degree, node betweenness centrality, and node clustering coefficient; degree

and strength represent the sum of links and their weight in a node, centrality demonstrates

how many shortest path length pass a node, and the clustering coefficient describes the

network around the node. In addition, we assessed the global characteristic path length

and clustering coefficient to identify long-range functional connectivity between ROIs.

The EEG was preprocessed and resourced in Fieldtrip (Oostenveld et al.) with Matlab

2017a (MATLAB, 2017) to visualize long connectivity by BrainNetViewer (Xia et al.,

2013). Firstly, Mann-Whitney U-test was used to compare the FCN measures between

the PCAI and Non-PCAI groups to exclude the effects with Non-PCAI individual lesions.

We then compared control subjects with the lesioned and non-lesioned (intact) hemisphere

of stroke patients (per frequency*per node). In controls, the FCN metrics were averaged

for both hemispheres and compared with intact and the lesioned hemispheres of patients.

Significant differences between them were then calculated with a one-way Kruskal-Wallis

test for three independent samples. In the post-hoc pairwise comparison with Mann-

Whitney U-test (p<0.05), the p-value was corrected with family-wise error rate adjusted by

the Bonferroni method to consider the multiple comparison problem. Pearson correlations

were calculated between FCN metrics and visual performance (detection ability, reaction

time) as measured by high-resolution perimetry (HRP) in normal (shown in white in Fig.

13B), impaired (grey) or blind (black) visual field regions.

3.2.3 Ethic and trials

Standard Protocol Approvals, Registrations, and Patient Consents: This study com-

plied with the ethical standards of the Declaration of Helsinki (1964) and was approved
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as a clinical trial by the local ethics committee (University of Magdeburg, Medical Fac-

ulty, Magdeburg/Germany; no.173/13) and national regulatory bodies (ClinicalTrials.gov-

Identifier: NCT04008589). The study started on 14. Jan 2014 and ended 16. March 2015;

24 patients were finally recruited (all patients signed consent forms). Data Availability

Statement: Data not published with GDPR protection in the EU. However, anonymized

data are available to appropriately qualified investigators upon request.

3.3 Result

Graph theory features betweenness centrality, clustering coefficient, and characteristic

path lengths (Fig. 14A, B) were used to describe FCN organization. “Centrality” repre-

sents how many shortest path length pass this brain region (node), while the “clustering

coefficient” explains the network around the node. Thus, global FCN structures are repre-

sented by “characteristic path length” and “clustering coefficient”. The mean connectivity

matrix of control subjects and stroke patients (Fig. 14C) shows the dominant functional

connections between ROIs. Whereas normal subjects had more clearly defined FCN with

few regions interconnecting, the FCN pattern was more diffuse in patients, with many

different functional connections. Because there was no significant left/right hemispheric

difference in local FCN metrics in controls, both were pooled because Non-PCAI (n=8)

and PCAI patients (n=16) were comparable in the alpha band (Fig. 15B), both were also

pooled.

3.3.1 FCN graph metrics in intact and lesion hemispheres

Tab 2 summarizes graph analysis results for regions with the most critical differences in

the alpha band, namely the FCN metrics in occipital, parietal and temporal brain regions.

No significance was found in the frontal areas.

Network Centrality: The parameter “centrality” (also called “betweenness central-

ity”) is the most relevant and sensitive graph metric in all ROIs compared to other graph

measures. It represents how many times the shortest path length passes through one

node. A node with high centrality has considerable influence within a network by con-

trolling the information processing of other nodes. By comparing EEGs between patients

and controls, we studied how nodes react to the occipital stroke and how they com-

municate with other nodes´ “centrality” (Fig. 16A, C). Post-hoc testing revealed that

centrality in the LH of precuneus was significantly higher than in the CH (p<0.05) by

44.8%; the centrality in the IH of Occipital Sup was significantly higher than in the CH

(p<0.01) by 58.7%, and the IH centrality of the Occipital Mid was 27.3% higher than

the LH (p<0.05). Thus, the visual cortex of the intact hemisphere had higher centrality

than the lesioned hemisphere. Group differences were also found for the middle tempo-

ral (Temporal Mid) (F(2,69)=10.52, p=0.005) and inferior temporal gyrus (Temporal Inf)

(F(2,69)=9.13, p=0.01). Post-hoc analysis showed that the centrality of Temporal Mid

(p<0.005) and Temporal Inf (p<0.05) of the IH was significantly lower than the CH (-

32.6% and -30.7%, respectively).

Clustering Coefficient: The clustering coefficient (CC) describes the network clustering

capacity of the local nodes. When it is high, the node is considered to be less flexible

(stable), having a “regular” FCN structure. Post-hoc analysis indicates that LH clustering
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coefficients in Occipital Sup (p<0.05) and Occipital Mid (p<0.05) were higher than in

controls by +22.2% and +20.7%, respectively (Fig. 16B, D). This is a sign that the network

at or near the lesion site has more stability (=less flexibility), i.e., a more “regular” FCN

structure, with fewer global interactions due to structural or functional disconnection.

Network degree and strength: Degree: The number of local node connections (degree)

showed significant differences in Post-hoc analysis (Fig. 17A): IH degree was significantly

lower in controls in Temporal Mid (p<0.05) by -20.3%, in Temporal Sup (p<0.01) by -

17.6%, and in Temporal Inf (p=0.005) by -19.4%. Furthermore, degree in Temporal Mid

of IH was 26.1% lower than LH (p<0.05) and 31.6% or 21.3% higher in IH Occipital Sup

(p<0.05) and Occipital Mid (p<0.005) above controls, respectively. This shows FCN-

degree enhancement of intact middle occipital and superior occipital lobes, while the

degree of the intact temporal ITG was lower, which matches the centrality results above.

Strength: (Fig. 17B). Post-hoc analysis showed that local network strength was lower in IH

of patients than controls in Temporal Sup (p<0.05) by -12.4% and Temporal Inf (p<0.05)

by -15.5%, but higher in LH Temporal Mid (p<0.05) and Temporal Inf (p<0.05) by 20.0

and 22.2%. And we observed increased strength of Cuneus (p<0.05) and Occipital Sup

(p<0.05) in the IH compared to controls by 33.2% and 42.5%. In contrast, intact temporal

regions had reduced degree and strength. Thus, local node strength and degree were sig-

nificantly enhanced in the occipital lobe of IH above control levels (intact>lesion>control),

while a significant reduction was noted in the temporal lobe (control>lesion>intact). In

the LH, FCN reorganization was less pronounced occipitally and unaffected in temporal

structures. FCN reorganization included an increased number of links and sum of weights

in the intact occipital lobe while being reduced in the intact temporal lobe to levels beyond

those of the lesioned hemisphere. Clustering also increased, but only in the LH.

3.3.2 Reorganization of inter-cortical connectivity in left and right stroke

patients

Because visual processing may differ in both hemispheres (Cavézian et al., 2015), we

compared FCNs in left vs. right-sided damage in the alpha-band (8-13Hz). Reorgani-

zation of long-range connectivity was enhanced in patients compared to controls. Still,

the change differed between left vs. right hemispheric strokes. In left stroke, long-range

connectivity (coherence) was significantly enhanced between left occipital (LO) and left

frontal lobe (LF) in the alpha2 band (z=3.118, p=0.012) and the right frontal regions

(z=2.62, p=0.031) (Fig. 18). In contrast, in right hemispheric strokes, coherence was

higher than controls in the left occipital and right parietal lobe (RP) (z=2.70, p=0.031).

In left hemispheric stroke patients, only a trend of enhanced alpha2 band connectivity

between the right occipital and right frontal lobe (z=2.58, p=0.06). Thus, regardless of

side, the intact visual cortex had a pronounced elevation in node centrality (Fig. 18B).

3.3.3 Global small-world network

Global characteristic path length (CPL) and Clustering Coefficient (CC) describe

“small-worldness” patterns of the global brain network (Fig. 18C, D). Mann-Whitney

U-test revealed that in the low beta band patients had a significantly higher CPL (z=2.6,

p=0.009) and lower CC than controls (z=2.3, p=0.02) which resulted in an overall lower

small-world network pattern in stroke; the stabilization of this network pattern was also
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3.3 Result

Figure 17: Part A: Node degree visualization for CH, LH, and IH. Lower right: areas with significant
z-value are shown in a single hemisphere surface plot. Negative Z-values showed in blue and positive values
in red. Part B: Node strength was enhanced in Occipital Sup and cuneus, but it was inhibited in the intact
temporal lobe. The significant difference symbols: “+”=LH vs. CH; *= LH vs. IH; = CH vs. IH. The
x-axis frequency band differences are compared to the control-zero-baseline); Y-axis: distribution of the
brain network measures (p<0.05, FDR-corrected).
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evaluated cross multiscale thresholding (Fig. 15D).

Figure 18: Part A: Visualization of long-range connectivity with 0.3 sparsity (high alpha-band); box plots
show significant changes (p-value, FDR-corrected). Frontal Mid.L/R: Middle frontal gyrus of the left or
right hemisphere, Occipital Mid.L/R: Middle occipital lobe of the left or right hemisphere. Parietal Sup.R:
Superior parietal gyrus of the right hemisphere. LO/RO: left/right occipital lobe. LF/RF: Left/Right
frontal lobe. RP: Right parietal lobe. Part B: Centrality difference between left vs. right-stroke vs.
control. Both show in the contralateral hemisphere more alpha-band connectivities. Part C and D: Global
CPL network comparison shows that patients had high CPL in the Beta1 band and a lower global CC
network. A trend was observed in the Alpha2 band with a higher CC in the patient group. Here, the
small-world network was observed with higher CPL and lower CC in patients. *=significance between
control and patients.

3.3.4 Correlations between network measures and vision

Correlating FCN parameters with visual performance outside the scotoma (i.e., in

“intact” visual field sectors) (white regions in the HRP chart displayed in Fig. 13): The

(intact) visual field (FV) size includes regions normal detection in the intact hemifield

as well as any residual vision on the scotoma side. VF size was positively correlated

with centrality in the IH Occipital Sup (r=0.526, n=24, p=0.008) in the alpha-band and

negatively with the clustering coefficient (CC) in the Occipital Inf of the IH (r=-0.463,

p=0.023). Both, node centrality (r=0.478, p=0.018) and CC (r=0.417, p=0.043) of LH

Temporal Pole Mid were significantly correlated with normal vision size (Fig. 19). And

the node centrality of IH supplementary motor area (SMA) correlated negatively with

normal vision size (r=-0.414, p=0.044) in the alpha band (Fig. 19). Furthermore, node CC
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Figure 19: Pearson correlation between visual detection accuracy in HRP and local network measures
(Centrality, Clustering Coefficient) in the intact and lesioned hemisphere. Note: x-axis shows vision
performance for white, grey, and black areas. No significant correlation was observed with global CPL or
CC measures and visual functions (data not shown here).
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of SMA in both hemispheres correlated positively with the VF size (IH: r=0.424, p=0.039;

LH: r=0.524, p=0.009) and the centrality of IH frontal Inf Orb positively correlated with

the normal vision size (r=0.509, p=0.011) in the alpha band.

A correlation heat map (Fig. 20) shows how visual functions relate to FCN graph

measures in the alpha band of patients. Greater visual detection ability was associated

with larger values in degree and strength in occipital and temporal regions and more

clustering in temporal and frontal lobe structures of LH (Fig. 20A). The IH showed a

reverse pattern: detection was associated with lower coherence in occipital and temporal

regions and lower degree and strength in occipital, temporal and frontal regions. While

VF-size is a spatial attribute, reaction time probes temporal visual processing (Fig. 20B).

Because smaller values represent faster reaction times, negative correlations indicate that

better temporal processing was associated with greater “small-worldness.” Interestingly,

a negative (moderate) correlation pattern was observed for alpha band clustering in most

brain regions in both hemispheres. Thus, we conclude that global alpha-band clustering

benefits temporal processing. Other overall correlation patterns were only found in the

intact hemisphere (occipital, temporal, frontal), where a greater degree and strength was

associated with poor temporal processing.

3.4 Discussion

This is the first systematic study of FCN reorganization using EEG-tracking in chronic,

occipital stroke patients. Similar to other functional systems (Rossini et al., 2003; Vecchio

et al., 2019), we found FCNs reorganization in visual system structures both locally (at

or near the lesion site) and globally, i.e., via long-range FCN changes, where different

structures showed either strengthening or weakening of FCN patterns (Tab 2). We ob-

served increased centrality, degree, and strength in occipital regions, which were moderate

in the lesioned (11%-36%) but massive (31%-58%) in the intact hemisphere. This more

“regular” (rigid) FCN pattern suggests less flexibility and less efficiency. The opposite

was encountered in the temporal lobe, where FCN values dropped markedly in the intact

hemisphere (-12% to -32%) (Greater “small-worldness”), indicating greater flexibility and

efficiency in neural processing. In contrast, FCNs remained unchanged on the lesion side.

What is the functional consequence of this network plasticity? Higher FCN values in

centrality, degree, strength, and clustering signify greater rigidity/stability and less flex-

ibility, signs of a more “structured” network (Fig. 14A), where nodes are more tightly

connected with immediate neighbors. In contrast, lower values suggest less clustering

and shorter path length, believed to support greater functional integration and processing

efficiency (“small-worldness”). This is thought to signify increased functional (neurocog-

nitive) relevance for a given function or action (Bassett and Bullmore, 2017; Douw et al.,

2011). Our stroke patients demonstrate massive FCN changes with both “adaptive” and

“maladaptive” signs of reorganization.

In the intact hemisphere, occipital brain areas (including visual cortex) show a more

“regular” FCN-structure, suggesting a functional disturbance, having less flexible and less

efficient FNC (“maladaptive” plasticity). But temporal regions show increased small-

worldness, i.e., more network efficiency and global integration (“adaptive” plasticity).

“Maladaptive” plasticity in the intact visual cortex may be triggered by a loss of cross-

hemispheric inhibition following occipital lesions, leading to hyperactivation and desyn-
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chronization of visual signal processing. In contrast, greater FCN efficiency and integra-

tion in the intact temporal lobe indicate an adaptive role of temporal regions. Thus,

EEG-tracking with subsequent FCN graph analysis unveiled signs of both “adaptive” and

“maladaptive” FCN plasticity which MRI-imaged oxygenation changes cannot observe.

Thus, EEG tracking markedly, and more precisely, extends our understanding of post-

stroke brain network reorganization. Furthermore, the observation we collected in our

patients is largely compatible with the current state of the art.

3.4.1 Maladaptive FCN reorganization in the intact visual cortex

Using MRI, Wang et al. report that brain activity is lower in the damaged regions but

above normal values in the intact hemisphere (Wang et al., 2010). Nelles et al. stimulated

the intact hemifield of hemianopic patients with visual stimuli, comparing BOLT activation

patterns with normal subjects (Nelles et al., 2007), more activation was observed in the

intact visual cortex (area 17) and bilaterally in the extrastriate cortex (areas 18/19). But

when stimulating the hemianopic side, this led to bilateral activation of the extrastriate

cortex, which was stronger in the intact hemisphere, suggesting that the intact hemisphere

was compensating by over-activation.

Our findings are compatible with the proposal of plasticity of the intact visual cortex.

But because, unlike the evidence of MRI overactivation, the EEG captures frequency-

specific electrophysiological network changes even when there is no change in energy con-

sumption (oxygenation), offering a more detailed understanding of the neurophysiology

consequences of unilateral stroke. Most prominently, our EEG analyses revealed a rather

massive reorganization of the intact hemisphere node-centrality, -degree and –strength,

yet no change in the clustering coefficient (Tab 2). Furthermore, patients´ intact occipital

regions were much less flexible and less efficient (involved in a lower small-worldness) than

control (up to 58%), suggesting that the intact cortex is not only hemodynamically more

active (as shown by MRI), but, processing neural information less efficiently, with less

signal and more noise in visual cortical regions.

Over-activation of the intact hemisphere should not be all that surprising. After

all, in everyday life, heminaopic patients have to process visual information with only

one visual cortex, not two. However, this challenge could impact the physiology and

function of the visual system in various ways: (i) functionally, the intact visual cortex

can no longer share the task of analyzing the visual world with its “buddy”-hemisphere.

(ii) When only one visual cortex has to manage tasks such as object tracking, synchro-

nizing the right and left side of space (“perceptual crowding”), controlling perception-

action interactions, and so on. (iii) Physiologically, unilateral lesions lead to transcallosal

anatomical/functional deafferentation caused by the loss of interhemispheric inhibition

(the “Sprague-effect”)(Sprague, 1966), creating an interhemispheric imbalance which could

explain why (iv) the contralateral “intact” hemifield has subtle perceptual deficits (Bola

et al., 2013). In addition, (v) eye movement coordination is a problem because compen-

satory eye movements towards the hemianopic side complicates temporal integration of

visual stimuli (Dundon et al., 2015), and (vi) the function and coordination of microsac-

cades are impaired– tiny eye movements which are critical for high resolution vision (Gao

et al., 2018).

Given this conglomerate of challenges, the intact visual cortex has a neural processing
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load that is way above normal levels. While greater metabolic activity (observed with

MRI) seems to signify adaptive compensation, our EEG-tracking suggests the contrary:

less “small-worldness” with lower efficiency of neuronal synchronization in space and time.

Therefore, a reduced (neural network) efficiency in combination with a (metabolic) cell

hyperactivation may signify less signal and more noise in the intact occipital lobe. Perhaps

this is the price the brain has to pay when only one occipital cortex represents a “bilateral”

visual world. We, therefore, propose that FCN reorganization in the intact visual cortex is

“maladaptive,” creating more “noise” (less signal) in an overwhelmed visual cortex. But

how can “maladaptive” occipital and “adaptive” temporal FCN plasticity be explained?

In a speculative spirit, we propose that the loss of cross-hemispheric inhibition leads to

an FCN disturbance and over-activation of the intact region. Indeed, hemianopia patients

suffer perceptual impairments in the presumably “intact” visual field sector.

Such deficits include accuracy and response time deficits when detecting or categorizing

natural scenes (Cavézian et al., 2010), reduced detection ability, and temporal process-

ing (slowed reaction time) (Bola et al., 2013), pathological completion of simple figures

(Paramei et al., 2017), reduced detection of contours composed of non-contiguous Gabor

patches embedded in a random patch array (Paramei and Sabel, 2008), and Gestalt percep-

tion impairment with associated alterations of the gamma-band EEG activity (Schadow

et al., 2009). Furthermore, late blind individuals have less dynamic low-frequency fluctu-

ations (lower flexibility) of visual thalamocortical activity.

3.4.2 Adaptive FCN reorganization of intact temporal lobe

In contrast to the intact occipital lobe, temporal regions showed marked reduction of

node-centrality, -degree, and –strength which were up to -32% of control values. This

change towards FCN structures of greater “small-worldness” signifies more flexibility and

greater efficiency. Surprisingly, temporal brain regions remained at normal (control) lev-

els. Temporal lobe alterations in stroke patients were also reported by others, but the

results are mixed. Vanni et al. (Vanni et al., 2001) recorded MRI alternations in a hemi-

anopia patient with right posterior cortical damage who had undergone significant vision

rehabilitation training. They found longer-latency responses in the damaged (right) su-

perior temporal cortex, which was interpreted as a sign of compensation of the brain to

produce synchronized population responses in the early visual processing of the cortex

(Vanni et al., 2001).

On the other hand, when a hemianopia patient was trained with flicker stimulation

(Henriksson et al., 2007), functional MRI revealed that information from both hemifields

was processed in the intact hemisphere. This was true not only in visual areas V1, V2,

V3, and V3a but also in the visual motion-sensitive area V5 in the superior temporal

gyrus. This finding is compatible with our EEG-tracking results, and both are compatible

with the hypothesis of “adaptive” plasticity in temporal structures. It is debatable if

greater oxygenation (activation) in MRI is good or bad for vision. Although increased

oxygenation might well signify that more neurons fire action potentials, it does not teach

us this creates more synchrony in neural signaling, i.e., more signal improving vision or

more noise, reducing vision.

The greater small-worldness of occipital-temporal, intra-hemispheric adaptations are

behaviourally meaningful if one considers the role of the temporal gyrus in normal vision
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as investigated in monkeys. The monkey brain is homologous to the human brain (Kolster

et al., 2010). Similar to humans, the temporal lobe processes motion perception with

its motion-sensitive middle temporal (MT)/V5+ complex with four regions: the MT/V5

proper, the ventral part of the medial superior temporal area, the fundus of the superior

temporal area, and the transition of V4, each representing the complete contralateral

visual hemifield. They are sensitive to three-dimensional structures from motion and

for the perception of a static stimulus and movement perception. Together with some

nearby regions, the V5+ complex supports about 70% of the motion localizer activation.

The middle temporal (MT)/V5+ complex is unaffected by occipital cortex lesions, as it

receives is afferent input directly from the retina through the extrastriate route. This

would explain why the temporal lobe FCN was unaffected on the lesioned hemisphere and

why it can support “blindsight” hemianopic patients, who can correctly identify visual

stimuli inside the hemianopic field without being aware of it (Stoerig and Cowey, 1997).

Our stroke patients had a sharp rise of “small-worldness” in the middle temporal

gyrus (+32.6%) and this was correlated with improved temporal processing (faster reac-

tion times). We propose that this FCN change is “adaptive” FCN, possibly supporting

better movement perception of the intact hemifield and thus help the (overwhelmed) intact

visual cortex to manage everyday activities, increase visual sensitivity and better tempo-

ral processing. This interpretation is compatible with reports that training with moving

stimuli can improve perception in hemianopia (Huxlin et al., 2009; Jobke et al., 2009),

that blindsight training improves visual field sensitivity (Sahraie et al., 2006), and it may

explain why “compensatory” eye movement training improves daily activities and visual

fields (Kerkhoff et al., 1992).

3.4.3 The dominant role of alpha-band oscillations

Our FCN changes were mainly found in the alpha and low beta1 frequency bands,

confirming their well-known role in visual processing. Especially alpha oscillations are

believed to increase signal-to-noise ratio by inducing a balance of inhibitory and excita-

tory influences in the brain (Sourav et al., 2018), where alpha regulates the bottom-up

influences (Schepers et al., 2012) and controls the top-down attentional sampling of vi-

sual perception at around 10 Hz. Van Rullen (VanRullen, 2016) suggested that brain

functions, including vision, are sustained by oscillations of neuronal aggregates with firing

rates at various frequencies, which ascertains perception and cognition to operate period-

ically. Therefore, different oscillations (frequency bands) require synchronization across

space and time to transiently bind/unbind different sensory modalities, tasks, and cogni-

tive states. We believe our FCN graph analysis is a valuable tool to help understand how

multiple periodic functions are orchestrated or synchronized after stroke, so that internal

sampling rhythms can be coordinated for the expression of overt behavior by way of short-

(local) and long-distance (global) functional connections. As in normal vision, alpha-band

oscillations play an important role in the damaged brain, and FCNs in the alpha band

are critically altered in stroke-induced vision loss, both with adaptive and maladaptive

consequences.
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3.4.4 Reorganization in the damaged hemisphere

Compared to the intact hemisphere, the damaged hemisphere actually had less pro-

nounced FCN plasticity. Specifically, the Occipital Mid and Occipital Sup had a clustering

coefficient which was higher than the intact and control hemisphere (Lesion>Intact Con-

trol), ie. Showing involvement in lower small-worldness (more stability, less flexibility).

We interpret this to signify greater local activity and/or less long-range neural interac-

tions in the lesion and/or its surround (Crofts et al., 2011; Wang et al., 2010). Specifically,

the lack of impairment in the damaged hemisphere could be explained as follows: firstly,

the (MT)/V5+ complex receives direct retinofugal fibers through the extra-striate route

which supports eye movement control and movement perception. It is one of two main

pathways mediating blindsight (Stoerig and Cowey, 1997; Cowey and Stoerig, 1991), the

other being residual tissue of incomplete cortical damage (Wüst et al., 2002). Under nor-

mal conditions, the extra-striate pathway interacts with V1 projections so to integrate

retinotopy and eye movements. However, because this extra-striate pathway bypasses V1,

it can still support movement perception and eye movement control. Hence, FCNs are

largely unaltered.

3.4.5 Global small-world network reorganization

The ’small-world’ is characterized by a high clustering coefficient (CC) and low char-

acteristic path length (CPL) (Rubinov and Sporns, 2010; Watts and Strogatz, 1998) (Fig.

14), showing if nodes are tightly connected with their nearest neighbours (high cc and high

CPL) or not (low cc and low CPL). FCNs can be either highly stable and inflexible, or

they are instable and highly flexible. Because neurological functions require both stability

and flexibility to support stable and/or transient operations, the brain´s FCN can adopt

different states of “small-worldness” which lies inbetween both extremes.

Patients had lower beta band CC compared to controls, i.e. global FCN synchro-

nization was impaired, reducing neural processing efficiency (low small-worldness). Fig.

14C shows the more diffuse FCN pattern in patients due to a greater number of connec-

tions with increased CC and CPL suggests a loss of “small-worldness”, i.e. a less efficient

network organization.

FCN reorganization between remote regions after stroke is well known and indicates

local and global effects in different functional systems (Grefkes and Ward, 2014; Vecchio

et al., 2019; Wang et al., 2012). Our own observations of a loss of occipito-frontal func-

tional connectivity in patients with optic nerve damage (Bola et al., 2014) are in line with

our current finding that stroke patients have greater coherence between the occipital lobe

and ipsilateral frontal lobe both in the damaged and in the intact hemisphere. However,

patients´ left and right hemisphere differed: left stroke patients had enhanced coherence

between the lesioned occipital lobe and the intact frontal lobe, but right hemispheric stroke

group had greater coherence between the intact occipital and parietal lobe of the dam-

aged hemisphere. This brain network (re-)organization may explain the known left/right

differences in visual processing (Cavézian et al., 2015; Chokron et al., 2008).
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3.4.6 Brain network correlation with behavioral data

We correlated graph measures in the alpha band with visual function to interpret our

findings on a functional level. Fig. 20 is a correlation heatmap, where high scores in FCN

degree, strength, and clustering indicate greater “regularity” of the network. Greater

network regularity in occipital, temporal, and frontal regions of the lesioned hemisphere

was associated with larger visual field size, which is found in patients with incomplete

hemianopia. This suggests that residual vision on the hemianopic side interferes with the

overall network structure (lower “small-worldness”). However, negative correlations were

found in the intact hemisphere of the occipital, temporal and frontal lobes. Fig. 20B shows

correlations between FCN metrics and reaction time, a marker of temporal processing

of residual vision, which is independent of visual field size. In the intact hemisphere,

greater “regularity” (strength, degree) of the alpha band network was associated with

longer reaction times in occipital, temporal, and frontal regions. Therefore, greater “small-

worldness” correlates with faster temporal processing, i.e., more efficient visual processing

in the temporal and frontal lobes. Because temporal lobe gain of “small-worldness” (=loss

of regularity, Tab 2) matches the reaction time gain, this indicates “adaptive” FCN-

plasticity.

3.5 Limitations

Because FCN analyses were based on a standard head model, this might obscure

subtle FCN changes caused by individual lesion sizes/locations. But this would create

a bias against the hypothesis of finding group differences. Secondly, some patients had

Non-PCAI lesions, but this did not affect our results. Thirdly, we cannot solve the cause-

effect problem because we do not know if FCN alterations result from chronic stroke or

if persons with such FCNs are at greater risk of suffering stroke. Indeed, personality

and stress resilience are known risk factors for CNS diseases such as stroke and glaucoma

(Sabel et al., 2018).

3.6 Conclusions

Graph measures of FCN based on EEG-tracking are a valuable tool to unravel the

role of electrophysiological oscillations in brain network reorganization. As we showed,

the stroke brain shows both local and global FCN reorganization in the high alpha and

low beta band, which can be both “maladaptive” or “adaptive” in different brain regions.

To be clear, we do not believe that a given subject has either whole-brain “adaptive” or

“maladaptive” FCN plasticity. Still, we propose that FCN reorganization may be “adap-

tive” in some brain regions but “maladaptive” in other regions of the same individual.

Specifically, the stroke FCN changes towards a more “regular” pattern that is maladap-

tive in the intact occipital region, possibly creating perceptual deficits causing temporal

and spatial visual impairments in the “intact” but crowded visual field. But FCN can also

be “adaptive,” enabling temporal gyrus structures to compensate for vision loss. Thus,

exploring the complex architecture of the brain´s FCN using EEG-tracking adds critical

temporal dimensions to our understanding of brain reorganization to better explain the

normal and abnormal (low) vision. In addition, brain FCN graph analysis might inspire

new approaches for the diagnosis and rehabilitation of low vision loss and other neurode-
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generative disorders.
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4 Study 2: Reorganization of brain functional connectivity

network and vision restoration following combined tDCS-

tACS treatment after occipital stroke

(This work has been published by Frontiers of Neurology 2021)
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4.1 Background

4.1 Background

The potential to restore visual fields following central visual system damage has at-

tracted some attention in the last two decades (Kasten et al., 1997; Sabel and Kasten,

2000a; Sabel et al., 2004; Dundon et al., 2015; Fedorov et al., 2011; Sabel et al., 2020a;

Tharaldsen et al., 2020), Occipital stroke, for example, leads to homonymous hemianopia

(HH) whereby a quarter or the same half of the visual field in both eyes is lost (Zhang

et al., 2006a). This impairs visual functional abilities and quality of life (Gall et al., 2010b),

which puts patients at risk to fall or have difficulties in reading, and to develop secondary

neuropsychological deficits such as depression and social isolation (Ramrattan et al., 2001;

Jones and Shinton, 2006; Gall et al., 2010b; Ribeiro et al., 2015a). While visual training

can improve visual fields (Sabel and Kasten, 2000b; Cavanaugh and Huxlin, 2017), it is

time-consuming, and progress of recovery takes many months of daily exercises.

To overcome this limitation, efforts were made to use non-invasive brain stimulation

(NIBS) as a new therapeutic approach. NIBS has already been applied in the rehabil-

itation of different neurological diseases affecting the motor system, memory, language,

or cognition (Antal et al., 2017). They include low-intensity NIBS such as alternating

or direct current stimulation (tACS, tDCS), which are believed to alter brain excitability

(Woods et al., 2016). Especially tDCS was often used to treat various neurological and

neuropsychiatric dysfunctions (Palm et al., 2016b; Ciechanski and Kirton, 2017). Here,

current flows from the anodal to the cathodal electrode, where the anode is thought to

enhance (excite) and the cathode reduce (inhibit) neuronal activities (Nitsche and Paulus,

2000; Nitsche et al., 2003). In contrast, the direction of current flow in tACS alternates

between both electrodes and thus is able to modulate periodic oscillations (Woods et al.,

2016). This can, in turn, entrain endogenous brain oscillation in a frequency and phase-

specific manner (Ali et al., 2013; Herrmann et al., 2013). With tACS, it is, therefore,

possible to enhance the power, shift the peak, and change the EEG oscillations phase by

applying the ACS at a frequency identical or close to those oscillations (Zaehle et al., 2010).

tACS was already shown to increase parieto-occipital alpha activity and to synchronize

cortical oscillations with entrainment of specific frequencies (Helfrich et al., 2014), and

this impacts the endogenous alpha oscillation with long-lasting ”after-effects” (Neuling

et al., 2013a). When stimulating the brain in the alpha frequency range, for example, this

increased alpha power, reflecting neuroplasticity changes rather than induced entrainment

(Vossen et al., 2015a). NIBS can also be used to purposely modulate neuron excitation and

inhibition in many neurological diseases with a potential to induce recovery of function

(Lefaucheur et al., 2017).

tACS has also been shown to enhance recovery following visual cortex or optic nerve

damage (Sabel et al., 2011a; Gall et al., 2011, 2013, 2016). A 10-day treatment course

achieved improvements in visual fields, reduced reaction time, and visual acuity. The

proposed mechanism of action is to modulate the synchronization of neuronal networks

firing of partially damaged ”areas of residual vision” that survived the injury, possibly

involving the strengthening of synaptic transmission along with various parts of the visual

pathway and enhancing blood flow (Sabel et al., 2020a). Indeed, tACS-induced visual

improvements significantly correlated with neuronal synchronization changes (Gall et al.,

2010a; Fedorov et al., 2011; Gall et al., 2016), and enhanced alpha-band activity or power

citeSchmidt.2013 (Vossen et al., 2015b). Considering tDCS, several previous studies sug-
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4.2 Materials and Method

gest that visual cortex damage leads to hyperactivity of the intact hemisphere, presumably

inhibiting the lesioned side (Corbetta et al., 2005; Oliveri et al., 1999), and a dual-mode

tDCS can reduce visual neglect symptoms (Sunwoo et al., 2013).

That tDCS can modulate visual functions was shown in normal subjects and patients

with visual system damage. For example, Plow et al. combined tDCS with visual train-

ing which improved hemianopic visual fields (Plow et al., 2012). In healthy subjects,

anodal tDCS of the occipital poles significantly reduces psychophysical surround suppres-

sion (Spiegel et al., 2012) and enhanced occipital blood flow (Sabel et al., 2020b) However,

little is known about possible frequency-specific neural-plastic mechanisms for vision re-

covery after occipital stroke. Only a few studies explored the potential of NIBS to induce

recovery of visual functions in patients suffering from a unilateral occipital stroke (Gall

et al., 2015). Therefore, a better understanding of the neurophysiological mechanism

of tACS and tDCS is needed to understand and eventually maximize their potential to

improve visual fields after unilateral occipital stroke.

We now used both protocols alone or in combination to learn more about the mech-

anisms and effects of tACS and tDCS in occipital strokes. Specifically, we hypothesized

that cathodal tDCS might inhibit the intact visual cortex, reduce its hyperactivity and

thus lower the associated cross-hemispheric inhibition. Treatment with tACS, on the

other hand, might induce endogenous neuronal oscillations of the whole brain. There-

fore, we now studied both methods alone as well as in combination. We expected that a

”double-punch” approach of combined tACS/tDCS would be most effective, as it would

simultaneously reduce cross-hemispheric inhibition and enhance the excitability of the tis-

sue at or near the lesion site. We already reported our vision recovery and fMRI-activation

results elsewhere. In the present paper, we characterize brain neurophysiological changes

focusing on brain network reorganization and plasticity and studied how this correlates

with visual parameters in our stroke patients.

4.2 Materials and Method

4.2.1 Demographics

Unilateral occipital stroke patients (n= 24) suffering from hemianopia were recruited

as previously described (Gall et al., 2015) and randomly assigned to one of three groups

(see Fig. 21A): ): tDCS/tACS group (ACDC, n=8, age: Mean ± SD=53.45±14.18); Sham

tDCS/tACS group (AC, n=8, age: Mean ± SD =58.25±9.54); sham tDCS/Sham tACS

group (SHAM, n=8, age: Mean ± SD=63.87±5.38). Their EEG results were compared to

24 healthy subjects (age: Mean ± SD =57.4±10.5) (see Tab 3 and Tab 1). The study was

conducted with the guidelines of the International Conference on Harmonization of Good

Clinical Practice (ICH-GCP) and the applicable national legislation requiring all partici-

pants to sign a consent form in agreement with the declaration of Helsinki. The study was

approved by the institutional review board of the University of Magdeburg. The patient’s

group identity was only known to the experimenter who performed the stimulation. The

participants were informed about their stimulation protocol after completion of follow-up

diagnostics at eight weeks(Gall et al., 2015).

Patients’ cause of hemianopia was ischemic (n=19) or hemorrhagic (n=5) stroke, and

their age range was 18-75 years. Lesion age was at least six months, and diagnostic results
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4.2 Materials and Method

showed stable visual field defects across repeated baseline measurements. Subjects with

spontaneous fluctuations and recovery of vision were not entered in the trial. Moreover, all

patients had corrected visual acuity of at least 0.4 (20/50 Snellen) or better. The presence

of residual vision and detectable gradual transition between the intact and the blind part

of the visual field was confirmed according to the clinician’s evaluation. Patients were

excluded if they had at least one of the following symptoms: malignant brain tumor, eye

or other central nervous system diseases, electric or metallic implants in the eyes or head,

expected low compliance, history of epileptic seizures within the last ten years, or use

of antiepileptic or sedative drugs during the recruiting process. Before admission to our

study, A neurologist checked the medical history. A comprehensive examination of visual

dysfunction, was carried out. The confirmation of further involved in this study depended

on the preliminary investigation results. The patients must demonstrate some residual

visual performance, which could be identified by a gradual transition between the blind

area and the visual field’s intact area.

4.2.2 Experiment design

tDCS/tACS: The tACS and cathodal tDCS stimulation was delivered with conductive-

rubber electrodes placed in saline-soaked sponges and connected with a NeuroConn MC8

stimulator. The tACS stimulation electrode (5 × 7 cm) and a reference electrode (10 × 10

cm) were placed at Fpz and the right upper arm, respectively, according to 10–20-system

EEG recordings. Stimulation started with a 5 Hz burst, and then frequency increased in

steps of 1 Hz up to 30 Hz using a 48 second-long “rtACS block.” The tACS stimulation

was given for 20 min per day with a maximum current of 1.5 mA (peak-to-peak), which

was well above the phosphene threshold (Schutter and Hortensius, 2010). Then, the block

was repeated for 20 minutes. In the tDCS condition, the cathode was positioned above

the intact hemisphere, and stimulation was done for 10 min immediately before rtACS

and set at one mA using one electrode placed at either O1 or O2 position (3 × 3 cm) with

anode at Fpz. The impedance was kept below 10 kΩ.

Sham design: Sham patients had identical electrode montage and stimulation dura-

tion. The tACS sham-condition was designed so to induce (short-lasting) phosphenes that

patients could notice (Schutter and Hortensius, 2010), i.e., it was a minimal stimulation.

In addition, occasional current bursts were given to create short but presumably thera-

peutically ineffective phosphenes (Gall et al., 2015) involving one 5 Hz burst/min with

individual amplitude for phosphene perception as used in a previous study where none of

the subjects could tell to which group they belonged (Gall et al., 2015). In contrast, the

tDCS sham condition was designed to elicit only cutaneous sensations that gradually dis-

appear because of habituation (Dundas et al., 2007). Here, the current was ramped up for

30 sec, then stopped, and at the end of the session, ramped down for another 30s as shown

in Fig. 21A. Through this design, we ensured that all patients’ felt their skin comparable

in degree and duration with the active tDCS. The combined tDCS / tACS stimulation

was designed to indicate whether prior cathodal tDCS on the intact hemisphere (a kind

of conditioning) could enhance rtACS effects compared to sham-stimulation and rtACS

without preceding tDCS (Gall et al., 2015). Here, cathodal tDCS was applied to reduce

the interhemispheric imbalance by inhibiting the visual cortex of the intact hemisphere

Fig. 21B. All sham patients had been offered to receive stimulation treatment after the

final follow-up evaluation. The stimulation parameters were kept unchanged for 20-30
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4.2 Materials and Method

minutes per day during the two weeks’ treatment ((Fig. 21C). Of note: for all stimulation

condition the default-setting of the neuroConn stimulator gives short pulse of 50Hz at 0.5

µAmp every two seconds to monitor the skin resistance.

Safety aspects of the applied electrical current stimulation: The relatively

large surface area of electrodes during stimulation limited the maximum threshold of

current densities compared with other studies. The maximum current density was 42

µA/cm2 below AC stimulating electrodes and 15 µA/cm2 below the reference electrode. In

the case of tDCS, it was 111 µA/cm2 below the stimulating electrodes, which corresponded

to a total charge density lower than 0.1 C/cm2, which was below the safety limits as

described in the previous study (Nitsche et al., 2003). Safety guidelines for direct current

applied to the human brain were reported (Nitsche et al., 2003; Iyer et al., 2005; Antal

et al., 2017). The following undesirable symptoms had been observed immediately after

stimulation and the following day before the next stimulation: dizziness, headache, blurred

vision immediately after stimulation, skin sensation, fatigue/drowsiness, and others.

4.2.3 EEG recording and preprocessing

High dense array EEG was recorded using a HydroCell GSN 128channel net and Net

Amps 300 amplifier (EGI Inc., Eugene, Oregon, USA) with a sampled frequency of 500

Hz. Impedance was ascertained to be below 50 kΩ throughout the recording. The pa-

tient’s resting-state EEG was recorded at three time points (before treatment: PRE, after

ten days of treatment: POST; follow-up after two months: FU). During the recording,

patients were instructed to keep relaxed, with their eyes closed, for at least 5 minutes.

There was no significant difference in patient’s age in three groups after a Kruskal-Wallis

test (p>0.05), ACDC (Mean ± SD=53.45±14.18), AC (Mean ± SD =58.25±9.54), Sham

(Mean ± SD=63.87±5.38).

EEG signals were analyzed with Matlab version 2019a and Fieldtrip (Oostenveld et al.,

2011). A digital 1-145 Hz band pass filter was applied as well as a 50 Hz notch filter, and the

data was down-sampled to 250 Hz and then referenced by the common average reference

method. Five minutes long EEG recordings for both groups were segmented into 2 seconds

long epochs with 0.5 s overlapping. Components of eye-blinks and cardiac activity were

removed by an independent component analysis (ICA) algorithm. The frequency was

decomposed as seven frequency bands: Delta (1 ∼ 3Hz), Theta (4 ∼ 7 Hz), Alpha1

(8 ∼ 10Hz), Alpha2 (11 ∼ 13Hz), Beta1 (14 ∼ 21 Hz), Beta2 (22 ∼ 30 Hz) and the whole

Alpha band as (8 ∼ 13Hz).

4.2.4 Source construction and functional connectivity estimation

See previous description(see Chapter 3).

4.2.5 Visual field diagnostic

Visual field parameters (Visual field: FOV, High-resolution Perimetry: HRP) were

assessed in patients to quantify the visual impairment in different phase. The contralateral

eye’s FOV was measured by OCULUS Twinfield®2. HRP demonstrates the visual field

charts generated by high-resolution computer-based Perimetry developed by the Sabel

laboratory (Sabel et al., 1997).
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Figure 21: A). The pipeline for experiment time schedule and post-diagnostic, five mins-rsEEG, and
Visual parameters were recorded before the experiment as a baseline, after ten days of stimulation, and
two months later in Follow-up. Moreover, all sham patients were offered to receive stimulation treatment
after the final evaluation. B and C). Therefore, three treatment groups were organized: Real tDCS/Real
tACS (ACDC), Sham tDCS/Real tACS (AC), Sham tDCS/Sham tACS (SHAM). The primary purpose of
this design was to decrease the activity in the intact occipital to balance the interhemispheric interaction
and modulate the brain oscillation with tACS, especially in the lesioned hemisphere. Study design protocol:
10 minutes-tDCS was firstly applied on Cathode: O1 or O2 and Anode: Fpz over the intact hemisphere;
then, immediately, 20 minutes-tACS was applied on an active electrode: Fpz and reference electrode: right
upper arm. 1mA current in Real tDCS for all the stimulation period and Sham tDCS current was being
ramped up for 30 s then stopped and at the end of the session ramped down for another 30s. Max current
1.5mA in Real tACS for all the stimulation period and only one 5 Hz burst per minute for sham tACS
stimulation. D) The boxplot of White and grey areas’ reaction time, ACDC has faster reaction time than
before treatment as well as other two groups. This may indicate that the ACDC’s visual functionality has
been enhanced with more probability than the other two groups. RT: reaction time, Unit: millisecond. In
the bottom part, the FOV percentage changes in each group, the median of percentage changes of ACDC
was observed positive both in POST and FU. In contrast, AC and SHAM group remains zero. From both
HRP and FOV, the ACDC group shows a more promising visual performance improvement than the other
two groups. FOV: Field of Vision. Unit: dB.

4.2.6 Data analysis and software

Data analysis was conducted with Matlab 2017a (MATLAB, 2017). EEG was pre-

processed and resourced in Fieldtrip (Oostenveld et al., 2011), the functional connectivity

measures were calculated by the brain connectivity toolbox (Rubinov et al., 2009), and

the long coherence was visualized by BrainNetViewer (Xia et al., 2013). Pearson cor-

relation was performed between the behavior data and brain network measures at each

frequency band. Because our study was explorative, no adjustment was made for multiple-

comparison (Rubin, 2017).

Visual fields were analyzed with respect to absolute change in HRP and percent-

age change in FOV after non-invasive brain stimulation per group. A repeated measure

ANOVA test was performed (three groups: ACDC, AC, SHAM, and two-time: Post-Pre

and Fu-Pre). P-value was corrected by the Tukey-Kramer test in the posthoc analysis.

4.3 Results

4.3.1 Visual field recovery

A detailed description of visual field recovery is published elsewhere. However, to

explore the functional meaning of brain network changes, here we report detection perfor-

mance in the visual fields and the reaction times.

Visual field: There was no significant main effect (F (1, 21) = 0.002, p=0.9) and

no interaction effect (F (2, 21) = 0.46, p=0.63) in visual field detection performance.

However, as shown in Fig. 21D, the ACDC group’s FOV increased after treatment, and

this was maintained at follow-up. In contrast, the other two groups’ median FOV remained

unchanged after treatment and at follow-up. This suggests that the visual functionality

of the ACDC group had a trend of an enhancement at a group level compared with a

baseline which was not observed in the other two groups.

Reaction time: No significant interaction effect was observed (F (2, 21) = 1.49, p=0.24)

on white and grey RT percentage shown in Fig. 21D. However, there was a trend of ACDC

reaction time decrease (which is an improvement) in both POST and FU in the intact
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4.3 Results

sector of the visual field. In contrast, both AC and SHAM groups’ reaction time increased

in POST and FU compared with baseline. As for the grey area, there was no significant

interaction (F (2, 21) = 0.006, p=0.99) nor a main effect for the group interactions (F (1,

21) = 0.84, p=0.37). However, RT of ACDC decreased while the RT of AC and SHAM

increased comparing with baseline in POST and FU. This indicates the ACDC group has

a greater visual acuity percentage change than the other two groups.

4.3.2 Brain network after brain stimulation

We performed a two-way 3 (Stimulation group: ACDC, AC, and Sham) x 3(Time:

PRE, POST, and FU) mixed-design ANOVA with repeated measures on the time variable

of local node strength and long coherence (see Fig. 22A). A compound symmetry assump-

tion was checked before statistical analysis was performed. The regular p-value calcula-

tions in the repeated measures were reported if the theoretical distribution of the response

variables was of the same variance if provided the compound symmetry assumption was

not true. P-value calculations were corrected with Greenhouse-Geisser approximation.

The post-hoc test was estimated with a significant sign (p<0.05) after a mixed-design

ANOVA test, and the family-wise error rate was controlled by the Tukey-Kramer test

after estimating homogeneity of variances. To explore the role of brain functional network

reorganization as potential mechanisms of recovery, we calculated the two global parame-

ters “characteristic path length” and “global clustering coefficient” using a 30% threshold

of the connectivity matrix (Bola and Sabel, 2015).

4.3.3 Between-group analysis:

There is no significant interaction effect on the occipital lobe in the alpha band.

4.3.4 Within-group analysis

A significant main effect of strength was observed in the ACDC group with repeated

time measures on occipital sup (O1, MNI index: 49 50) of the lesioned hemisphere (F

(2, 42) =5.31, p=0.009). We tested whether the assumption of sphericity was not vi-

olated (W=0.97, p=0.74). Thus, in the ACDC group, the strength of three treatment

time points on occipital sup LH differed significantly. Post-hoc analysis showed that FU

strength on occipital sup LH was significantly higher than PRE (MD±SEM=0.84±0.32,

p=0.044). The significant main effect of strength in SHAM group was observed with

repeated time measures on occipital mid (O2, MNI index: 51 52) of the lesioned hemi-

sphere (F (2, 42) =4.486, p=0.017) and occipital sup (O1, MNI index: 49 50) of lesioned

hemisphere (F (2, 42) =5.31, p=0.009). The assumption of sphericity was not violated

(W=0.99, p=0.98 and W=0.97, p=0.74, respectively). This shows that if we only consider

the sham group’s treatment, the strength of three-time points on occipital mid LH, and

occipital sup LH significantly differed. Post-hoc analysis showed that the node strength

of occipital mid LHafter SHAM treatment was significantly higher than before treatment

(MD±SEM=1.01±0.42, p=0.050) and follow-up (MD±SEM=1.35±0.39 p=0.007). More-

over, the occipital sup LH node strength after SHAM treatment was also observed to be

significantly lower than follow-up (MD±SEM=1.30±0.41, p=0.011) (see Fig. 22A right

part).
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4.3 Results

Figure 22: Part A: The left side displays the surface plot of the median node strength per group in the
alpha band. Baseline (PRE): ACDC and AC group have stronger connectivity than the SHAM group in
the intact hemisphere (Parietal and Occipital). After treatment (POST): ACDC and AC have lower node
strength than the SHAM group (Parietal and Occipital). Follow-up (FU): ACDC has stronger connectivity
than the AC and SHAM group. Right part: Line plot of the single occipital lobe from 1-30Hz with control
baseline corrected. In ACDC, the middle and superior occipital region have greater strength at POST and
FU than PRE (p<0.05). Meanwhile, the AC group shows a similar pattern for a three-time point (p>0.05)
in the above two ROIs. The SHAM group’s node strength was significantly enhanced after treatment and
then dropped to the original level. Part B: this shows the global Clustering Coefficient and Characteristic
path length for three groups. The ACDC group had decreased CC at follow-up, indicating that information
transfer in the whole brain needed to pass fewer nodes than baseline (i.e., it is more efficient. Here, the
connections are more ordered or less diffuse. No significance was observed in the other groups.
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4.3 Results

4.3.5 Global small world networks

According to graph theory, a network structure can be characterized by two opposing

poles: a high cluster coefficient with a long path length (an “ordered” network) on the one

hand and low clustering with a short path length (a “random” network). If the network

is between those two poles attributed, it has a proper balance between “stability” and

“efficiency.” Then it is called a small-world network. Patterns of anatomical connectivity in

neuronal networks are sometimes characterized by high clustering and a small path length

(Watts and Strogatz, 1998). We calculate the global CPL and CC using the 30% threshold

of connectivity matrix as a criterion for three treatment groups to identify the small world

network dynamic changes. Using these network parameters, we performed a two-way 3

(Group: ACDC, AC, and Sham) x 3 (Time: Pre, Post, and Fu) mixed-design ANOVA with

repeated measurements on the time variable. The compound symmetry assumption was

checked before statistics were performed. The regular p-value calculations in the repeated

measures were reported if the theoretical distribution of the response variables had the

same variance provided the compound symmetry assumption was not violated; p-value

calculations were corrected with Greenhouse-Geisser approximation and the posthoc test

was estimated with a significant level of p<0.05 after a mixed-design ANOVA test. The

family-wise error rate was controlled by the Tukey-Kramer test following estimation of the

homogeneity of variances. No significance was observed for the global CPL and CC (see

Fig. 22B). However, a trend was noted in that the global CC of ACDC was decreased

in FU while the global CPL remained at the same level as before, a clear sign of a more

efficient small-worldness network after ACDC treatment.

4.3.6 Correlation between brain network measure and reaction time (RT)

The functional meaning of the network dynamics can be explored with correlation

analyses. We found a negative correlation between the intact visual field and characteristic

path length (global CPL), which was significantly different at POST (r=-0.80, p=0.017) in

the ACDC group (See Fig. 23A), this indicates that a larger visual field is associated with

lower characteristic path length after treatment. Furthermore, a positive correlation was

observed between reaction time in areas of residual vision and characteristic path length

at PRE (r=0.70, p=0.049), suggesting that slower reaction time of the residual visual

field was associated with higher characteristic path length. The correlation between brain

network measure at sub-regions of occipital lobe and reaction time in intact VF shows

a trend of a treatment effect as well. Node strength correlated negatively with both the

intact and the lesioned hemisphere (See Fig. 23B), indicating that better visual function

is supported by higher node strength in the brain. As for centrality, which is a measure

to quantify how many shortest path length go through one node, the results show that

after treatment and follow-up, that better visual function is supported by a state where

the brain has a higher capacity to compensate spontaneously.

The centrality of Cuneus (r=-0.88, p≤0.01) and Lingual (r=-0.73, p≤0.01) in the

intact hemisphere were significantly correlated with the reaction time (See Fig. 23B),

demonstrating that ACDC may have long-lasting modulation effect than the other two

groups (see follow-up). Thus, ACDC enhances both hemisphere’s brain connectivity, and

we could especially assume that the ’silent’ neuron was reactivated. More functional

connectivity could be rescheduled and transferred around the lesion part.
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4.3.7 Global brain connectivity

The connections coherence from lesion occipital and intact occipital to other brain

regions were calculated, as shown in Fig. 23C. A two-way mixed-designed ANOVA test

was conducted on brain network measures between Group (ACDC, AC, Sham) and Time

(before treatment: PRE, after treatment: POST, and follow-up: FU). The post-hoc anal-

ysis has been performed for the pairwise comparison with a significant sign (p<0.05),

the family-wise error rate (FWER) was adjusted. A significant coherence was observed

between the lesioned occipital (LH) and the intact occipital (IH) region in three measure-

ments (F (2, 42) =6.509, p= 0.003), and the neural correlation in the delta band was

significantly declined between the lesion occipital and intact occipital lobe after ACDC.

Post-hoc analysis indicates that coherence after POST was lower than the PRE (MD

±SEM=-0.014 ±0.005, p=0.036), with a trend at FU (MD =-0.016 ±0.007, p=0.069). A

significant coherence was also observed between intact occipital (IO) and intact temporal

(IT) in three measurements (F (2, 42) =6.16, p= 0.004). The coherence between IO and

IT was enhanced after POST and significantly declined at follow-up in the ACDC group

in the low beta band. Post-hoc analysis indicates that the coherence of FU was lower than

at POST (MD ±SEM=-0.017±0.006, p=0.018). And there was a trend of coherence en-

hancement after POST when compared with PRE treatment (MD ±SEM=-0.018 ±0.007,

p=0.054).

4.3.8 Responder and non-responder

To further clarify the role of brain FCN reorganization in vision recovery and validate

the meaning of our correlation results, we compared responders and non-responders. To

this end, we used the contralateral visual field as obtained by standard Oculus perimetry

as a criterion to classify each patient as either a responder or non-responder, irrespective

of which treatment they received.

As shown in Fig. 24A, patients above the zero-line were considered responders (n=10)

and all others non-responders (n=14). We performed a two-way ANOVA test (group:

responder and non-responder, time: POST vs. PRE, FU vs. PRE) to investigate HRP

changes which were not, but the Mann-Whitney U-test revealed that the FOV was greater

in the responders (z=4.17, p<0.001) at Fig. 24B (Right part). Of note: this difference

was the result of the definition of responder and confirmed that both groups are, in fact,

different. It does not demonstrate treatment efficacy.

4.3.9 Local brain network measure dynamics change

To investigate the local node strength and centrality changes in responder and non-

responder groups. We performed a two-way repeated measure ANOVA test (Groups:

responder and non-responder, time: baseline and Follow up).

Both the node strength on Calcarine (F (1, 22) = 6.42, p=0.018) and lingual lobes (F

(1, 22) = 7.38, p= 0.012) of lesion hemisphere in low alpha band were observed significantly

between the responder and non-responder group during Follow up. The post hoc result

shows the node strength both in Calcarine (MD ±SEM =-1.56±0.57, p=0.013) and lingual

(MD±SEM = -1.68 ±0.49, p=0.002) of lesion hemisphere in responder group are higher

than the non-responder group, see Fig. 24B.

59
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Figure 25: Part A: Global clustering coefficient and characteristic path length show no interaction or
main effect for characteristics path length (two groups*three-time points). But a main effect was observed
in the responders when comparing FU and POST, namely a lower clustering coefficient. Part B: the global
coherence. From B, we could see the strength of the intact middle occipital increased while the centrality
decreased, which is very interesting, considering C, we may suggest that intact middle occipital get rid
of redundant connections from various regions but enhanced the connection with intact temporal, as the
temporal could help the vision loss patient to handle the daily perception or movement identification. The
long coherence between lesion frontal and intact occipital was observed significantly reduced at FU, the
coherence was lower than the in PRE in the alpha band. The coherence between the lesion temporal and
lesion occipital was significantly changed, both the responder and non-responders show higher coherence
than the control subject.
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4.3 Results

Figure 26: Pearson correlation between the FOV and node strength. In non-responders, we observed
a positive correlation between FOV and node strength in the lingual LH and Calcarine LH in the Delta
band. In the alpha band, node strength of both the lingual IH and middle frontal LH was negatively
correlated with FOV. resFU: Responders at FU; nonresFU: non-Responders at FU; resPRE: Responders
at baseline; nonresPRE: Non-Responders at baseline.
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Both the node strength on Calcarine (F (1, 22) = 9.60, p= 0.005) and lingual lobes

(F (1, 22) = 5.76, p= 0.025) of intact hemisphere in low alpha band were also observed

significantly between the responder and non-responder group during Follow up. The post

hoc result shows the node strength both in Calcarine (MD ±SEM = -1.56±0.65, p=0.026)

and lingual (MD±SEM = -1.503±0.427, p=0.002) of intact hemisphere in responder group

are higher than the non-responder group.

No significant was observed for brain network measure centrality. However, the central-

ity of intact middle occipital at FU was lower than PRE in the responder group (p=0.32,

MD=-44).

4.3.10 Global network measures for responder and non-responder

Global network features are those that describe the state of the whole brain, irrespec-

tive of region. We first calculated the global clustering coefficient and global character

path length, followed by two-way repeated ANOVA (two groups × three-time points).

The p-value was corrected by the Tukey test in post-hoc analysis. The only significant

finding was that global CC in FU was significantly lower than the POST (MD ±SEM =-

0.0068±0.0027, p=0.05) in the high alpha band (Fig. 25A). This suggests that responders

need fewer connections to handle the neuronal synchronization in the resting state.

4.3.11 Global coherence for responder and non-responder

To investigate the long coherence fluctuation irrespective of the stimulation protocols,

a two-way repeated measure ANOVA was performed (three groups: control, responder,

and non-responder, and two-time points: PRE and FU). The p-value was adjusted for

multiple comparisons by the Tukey-Kramer test for post-hoc analysis. A main effect on

coherence was observed between intact occipital and lesion frontal in the alpha band (F

(1, 45) = 4.032, p=0.05) (Fig. 25B). The FU coherence between the occipital IH and

frontal LH was significantly lower than baseline in responders (MD± SEM = 0.0069±
0.003, p=0.025). And an interaction effect was observed when investigating the differ-

ence between the control and responders during FU (F (2, 45) = 4.04, p=0.024) in the

alpha band. Furthermore, at FU, the coherence between the occipital IH and tempo-

ral IH was significantly higher in non-responders when compared to controls (MD ±SEM

= 0.0140±0.0053, p=0.030).

4.3.12 Correlation between FOV and brain network measures

Pearson correlations were calculated to investigate the relationship between visual

functionality measurements (FOV: see Fig. 26 and HRP: see Fig. 27) and node strength.

We observed significant correlations both in the Lingual LH (r resFU=-0.783, p=0.007)

and middle occipital IH (r resFU=-0.725, p=0.018), where responders with higher FOV

showed lower node strength in the delta band, and higher node strength in non-responders

in Lingual LH (r resFU=0.609, p=0.021) and Middle Occipital IH (r resFU=0.573, p=0.032).

This suggests that in both hemispheres, responders with higher FOV have lower delta band

strength while non-responders have higher delta band strength. The same delta band pat-

tern was also noted in both hemisphere of Calcarine (Lesion hemisphere: r nonresFU=0.608,

p nonresFU=0.023, Intact hemisphere: r nonresFU=0.539, p nonresFU=0.047) in non-
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4.4 Discussion

responders. Delta band node strength was positively correlated with FOV in non-responders.

This may be one possible reason why non-responders failed to improve their vision because

of the delta band oscillation in the visual cortex. High alpha-band node strength corre-

lated significantly with FOV in Lingual IH (r nonresFU=-0.686, p=0.004) and middle

frontal LH (r nonresFU=-0.686, p=0.007) in non-responders. This indicates that alpha-

band node strength decreases with higher FOV measures in non-responders.

4.4 Discussion

We used graph theory to analyze the local and global brain network changes after non-

invasive brain stimulation for patients with vision loss caused by stroke. The study aimed

to find an evidence-based stimulation protocol for clinical use concerning stroke rehabili-

tation after brain damage. This was the first study to modulate the brain networks with

non-invasive brain stimulation for unilateral occipital stroke patients suffering persistent

visual field loss.

4.4.1 Behavior performance

Regarding behavior performance, visual field parameters (FOV and HRP) are consid-

ered equally important and constitute the primary outcome measures. The ACDC group

patients showed a significant percentage improvement over baseline of FOV and faster

reaction times, indicating enhanced visual functions. In contrast, AC and SHAM patients

at POST and FU showed a slower reaction time and no change over the baseline of the

FOV. But the combined tACS and tDCS enhanced visual performance compared to base-

line, which was not observed in the other two groups. The output of observable behavior

performance enhancement of visual functions was to be ACDC >AC >SHAM. Because

only the ACDC had improved visual performance, this raises the question as to possible

brain FCN reorganization in this group.

4.4.2 Local and global network alteration after NIBS

Neuroplasticity is a critical factor in many neurological or neuropsychiatric diseases

(Lefaucheur et al., 2017) and modifying cortical activities by NIBS might be a promising

therapeutic approach for clinical application (Bland and Sale, 2019). For example, tDCS

shifts the suprathreshold of the resting state membrane potentials toward depolarization or

hyperpolarization (Gorman, 1966). Another approach is tACS, which entrains the neural

oscillation in a frequency and phase-specific manner (Ali et al., 2013) and arouses the

endogenous network coupling or decoupling in a long-lasting plasticity manner (Polańıa

et al., 2015; Reinhart and Nguyen, 2019). Vision loss in the blind is induced not only by

primary tissue damage but also can be interpreted by a breakdown of synchronization in

brain networks (Sabel et al., 2011b). Here, the intact hemisphere hyperactivity may be

a possible mechanism of spontaneous compensation (Crofts et al., 2011; Bönstrup et al.,

2018) which may – or may not – be beneficial for neuron rehabilitation. In fact, it could

be a possible barrier for the recovery of the disturbed balance between both hemispheres.

The above-normal hyperactivity of the intact hemisphere has the potential to inhibit

the lesioned hemisphere’s residual function (Corbetta et al., 2005; Oliveri et al., 1999).

Lateralized anode and cathode position tDCS protocols were thought to modulate cortical
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4.4 Discussion

Figure 27: Correlation heat map between brain network measures (strength and centrality) and visual
performance (DA: detection accuracy; RT: reaction time) in responders. At POST and FU, there was a
trend that faster reaction time was associated with higher centrality in both hemispheres. DA: detection
accuracy, VF: visual field, RT: reaction time.
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imbalance between excitation and inhibition (Gall et al., 2015). At the same time, tACS

is the leading technology that allows manipulation of phase coherence between distant

brain regions (Bland and Sale, 2019). The long-lasting effects of tACS were reported in

cognitive tasks (Cappelletti et al., 2013; Snowball et al., 2013; Brevet-Aeby et al., 2019;

Ciechanski and Kirton, 2017; Fertonani and Miniussi, 2017). Based on the above, the

active tACS electrode was positioned at Fpz to entrain intrinsic neuron oscillation with

an external matched frequency (5-30Hz). This randomized and sham-controlled clinic trial

was finally evaluated for persistent visual field loss recovery with a sequential approach of

tDCS followed by tACS.

4.4.3 Inter-hemispheric balance after NIBS

Cortical network reorganization after an injury is a widely recognized phenomenon

(Liepert et al., 2006). One study reported HH patients with damage on the left primary

visual cortex who showed greater activation on other lobes in the lesion hemisphere and

intact hemisphere associated with the visual cortex (Wang et al., 2010). Another study

showed that bilateral SMA activation was increased after intensive rehabilitation of pos-

tural balance (Fujimoto et al., 2014). Others suggested that plastic reorganization of

cognitive resources serve to compensate for impairment in stroke patients during motor

rehabilitation tasks (Huo et al., 2019). However, such studies of cortical balance and re-

covery were not carried out with hemianopic stroke patients. In the present study, we first

applied the cathodal tDCS over the intact visual hemisphere with the goal to inhibit the

increased excitability caused by brain network reorganization after the stroke, which was

then immediately by tACS applied on Fpz to entrain oscillations for both hemispheres. In

the ACDC group, the middle and superior occipital lobe of the lesioned hemisphere had

significantly higher strength in POST and FU compared to baseline and showed greater

network strength in the intact middle occipital lobe. An enhancement of the lesioned

hemisphere in the ACDC group was also observed in the superior occipital lobe. The

strength of both the AC and sham groups fell back to slightly below the original level

during follow-up. Both occipital lobes’ enhanced strength could demonstrate that inter-

hemispheric connections were more balanced in the ACDC group. Because this correlates

with visual performance in the ACDC group. This observation is compatible with the

hypothesis that post-lesion FCN plasticity reduces the imbalance between the lesioned

and the intact hemisphere. As we showed, the unique protocol design of ACDC is able to

modulate brain plasticity between the lesion and intact hemisphere, where the continuous

stimulation can produce sustained and long-lasting neuronal modulation of the brain’s

neural networks. But in stroke patients, ACS alone is apparently ineffective.

The strength of Calcarine IH increased in the ACDC group while the other two groups

did not show similar patterns. The same change was also observed in the responder

group. The centrality of both Calcarine IH and Lingual IH positively correlated with

the reaction time in PRE and correlated negatively with RT both in POST and RT.

This shows that the ACDC modulation enhanced the efficiency of information transfer

on these two brain regions, which is associated with recovery of visual function (faster

reaction time). Regarding the issue of global brain network modulation, a lower CC was

only observed in the ACDC group compared to the baseline, which demonstrates that

the ACDC reduces alpha-band whole-brain connections. Therefore, our interpretation is

that reduced connections are a sign of greater efficiency of visual processing, where less
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connectivity (greater processing efficiency) could comprise a possible mechanism of visual

recovery.

4.4.4 Correlation of visually guided behavior and global network FCN mea-

sures

Characteristic path length (CPL) is the average shortest path length in the network; a

lower CPL indicates fewer intermediary nodes are needed to transfer information between

two unlinked nodes. In this case, the efficacy within a network is considered to be high.

We found a significant positive correlation between the grey dots’ reaction time and alpha

band CPL in the ACDC group at baseline, which disappeared at follow-up. This suggests

that vision processing after ACDC modulation needs fewer nodes, i.e., fewer steps to

process neural information. On the other hand, in the ACDC group, a significant negative

correlation was observed between the number of white dots in HRP and the CPL after

treatment. This also suggests that ACDC decreased in the whole brain alpha band CPL,

which was associated with an enlarged visual field. In contrast, CPL shows a very low

negative correlation at FU. In summary, we suggest that ACDC can enhance processing

efficiency in the alpha-band, a possible mechanism of vision recovery.

4.4.5 Global coherence after brain stimulation

The brain network changes in global coherence at both POST and FU show that

NIBS can trigger brain plasticity by altering functional interaction between multiple brain

regions. Specifically, ACDC reduced the functional connectivity between the lesion and the

intact occipital lobe in the delta band and enhanced the connectivity between the intact

occipital and the intact temporal lobe in the low beta band. In contrast, in the sham and

ACS groups, no significant network changes were observed. Therefore, the combination

of tACS and tDCS is apparently able to modulate neural plasticity by increasing the

efficiency of communication between remote regions of the brain, possibly by improving

inter-hemispheric balance.

4.4.6 The challenge and efficacy of Sham and AC design

The design of a proper sham condition is one of the biggest challenges in NIBS studies

because NIBS can elicit cutaneous sensations that gradually disappear due to habituation,

and tACS induces phosphene perception (Schutter and Hortensius, 2010). We used 5 Hz

burst/min current bursts rather than “no stimulation” in the Sham tACS group. The

current level was ramped up for the 30s, then stopped, and at the end of the session,

ramped down for another 30s in the Sham tDCS group (Gall et al., 2015). In this way,

we ensured a comparable effect and duration of cutaneous sensations for all the patients

during stimulation with this unique design. However, in the sham group, the strength of

temporal mid IH increased significantly after ten days of stimulation and return to the

baseline level at follow-up. This suggests that the sham condition was not neutral but

altered the strength, which might mean that the temporal lobe is sensitive to slow burst

current in sham tACS, though no long-lasting effect was observed. Yet, node strength in

the occipital cortex did not change after ACS.
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4.4.7 Comparison of responders and non-responders

Compared to non-responders, responders had fewer grey and more white visual field

sectors. This supports the hypothesis that ‘areas of residual vision’ (grey sectors) can be

activated, improve the regions of partial vision (Sabel and Gudlin, 2014). Most patients

with residual structures and functions spared by the damage have such “grey” regions

where the function is neither completely lost nor normal (Sabel et al., 2018). The faster

reaction time of white and grey regions demonstrates that visual processing was enhanced

in responders compared to baseline. In addition, the responders had significantly higher

FOV than non-responders, both after treatment and at FU. This raises how the local and

global brain network compares between responders and non-responders, irrespective of

their NIBS treatment.

4.4.8 Local and global network in responders

The group of responders (irrespective to which group each patient belonged) showed

significantly enhanced strength in the low alpha band in the lingual and calcarine lobe of

both hemispheres which non-responders did not. The lingual gyrus located between the

middle of the temporal lobe and occipital lobe is relevant for complex visual processing

such as object shape and contour information (Karnath et al., 2009; Schankin et al., 2020).

The calcarine sulcus is mainly involved in the primary visual cortex (V1) with a role in

early-stage visual processing, creating a bottom-up saliency map from visual inputs to

guide the shifts of attention (Yan et al., 2018; Zhaoping and Ackermann, 2018). The

strength enhancement in both hemispheres could be a sign of compensation following

the occipital damage. Similarly, the strength of the middle occipital region of the intact

hemisphere was enhanced. We conclude that the reorganization occurs in two hemispheres

symmetrically as a consequence of the occipital lobe. The correlation between network

strength and behavior performance indicates that the delta band and alpha band play a

vital role in vision recovery. Possibly regions with less alpha and higher delta are less

responsive to the NIBS-induced oscillations, at least with regard to behavior output.

While in the delta band of the lingual and calcarine node, non-responders had higher

connection weights with higher FOV values; responders had fewer connection weights

with higher FOV. Thus, delta band connectivity might play a critical role in enhancing

visual functions and be a possible recovery biomarker of brain network reorganization.

The same was noted in the intact middle occipital lobe, wherein responders better vision

was associated with lower delta band connectivity strength of the intact middle occipital,

while the non-responders had higher node strength. The pattern is consistent with the

neural correlation between the intact and lesion occipital lobe in the ACDC group. Here,

a lower coherence in the delta band between two occipital lobes was associated with visual

field parameter improvement. Similarly, the global CC of the responder group in FU was

significantly decreased in the high alpha band compared to baseline. Thus, this finding

also suggests could responders (with better vision recovery) needed fewer whole-brain

connections in the high alpha band.

67



4.4 Discussion

4.4.9 The correlation between the FOV and network measures

In non-responders, greater visual acuity correlated with lower strength and FOV in the

alpha band, especially at the frontal and lingual region. We also observed the neuron cor-

relation between intact occipital and lesion frontal was deceased during in the responders.

This observation is consistent with our prior studies (Bola et al., 2014) that the connection

between the frontal and occipital cortex was enhanced after optic nerve damages. Thus,

local and global patterns of decreased connections between the intact occipital cortex and

the lesioned frontal cortex signal this a physiological correlate of vision recovery. The

middle frontal lobe plays an essential role as a visual information-processing bridge that

was weakened after ACDC treatment.

4.4.10 The coherence between the intact occipital and intact temporal lobe

In responders, the FU coherence between intact occipital and intact temporal was sig-

nificantly higher than at baseline. It is known that the temporal lobe is responsible for

handling perception and movement identification. Therefore, an enhanced connection be-

tween two lobes following NIBS suggests that the intact temporal lobe adjusts the internal

information transmission state more rapidly. It may temporarily disengage connections

with other less important regions, providing more support for the visual cortex to pro-

cess visual motion information. The centrality of the intact temporal lobe demonstrates

how much information is transferred through this area. In responders, we noticed a trend

of local node enhancement in centrality and strength during FU compared with baseline

and control. In responders, the centrality of Occipital mid IH remained unchanged com-

pared to baseline, whereas the centrality of Temporal mid IH increased. Considering the

global coherence enhancement between the intact occipital and intact temporal regions,

we conclude that the communication between the intact occipital and temporal lobe plays

a critical role in visual function enhancement. We are cautious to considering it to be

due to brain stimulation. However, we assume that this kind of enhancement between in-

tact occipital and intact temporal is adaptive for brain network reorganization after brain

damage.

In summary, occipital damage, following stroke creates partial vision loss with brain

network alteration in the delta and alpha band, and ACDC, but not AC alone, improves

visual functions. As we showed now, brain network plasticity patterns such as inter-

hemispheric (im) balance and the long-lasting plasticity were consistent with behavior

performance in the ACDC group. This suggests that modulating brain network plasticity

is a promising tool to induce recovery of vision recovery. An analysis of responders vs.

non-responders (irrespective of the treatment they received) also helped us understand

NIBS effects, highlighting the role of a reduction of the coherence between the LH and IH

occipital lobes in the delta band and a reduced high alpha-band coherence between the

frontal and occipital; these two FCN patterns might comprise biomarkers of vision recovery

and shed light on the role of coherence between intact occipital and intact temporal regions.

Future experiments are needed to confirm this proposal.
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4.5 Conclusion

Our exploratory clinical trial of hemianopic stroke patients showed that ACDC, but

not ACS treatment, is able to induce greater hemispheric balance of brain functional

connectivity networks in the alpha band, which correlates with vision recovery. In addition,

ACDC decreases delta band coherence between the lesioned and intact occipital cortex

and modifies the connections with other regions. A lowered global clustering coefficient

observed in responders may be the physiological mechanism of vision recovery. The brain´s

FCN can process visual information with fewer functional connectivities in the alpha band.

Thus, brain FCN reorganization is relevant for the post-lesion response and plasticity of

the damaged visual system. The results can help guide us in the development of more

effective stimulation protocols for vision restoration.
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5 Study 3: Interhemispheric Cortical Network Connectivity

Reorganization Predicts Vision Impairment in Stroke

(This work has been published by 43rd Annual International Conference of the

IEEE Engineering in Medicine and Biology Society)
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5.1 Background

5.1 Background

Stroke of the brain is a common cause of death and disability in the elderly, which is

steadily increasing. Until 2013, there were almost 25.7 million stroke survivors, 6.5 million

deaths from stroke worldwide (Feigin et al., 2017). About 30-50% of the stroke cases

have damage to the visual pathway, leading to homonymous hemianopia (HH), in which

the same half of the visual field in both eyes is lost. This visual field defect significantly

decreases daily functional abilities and quality of life (Gall et al., 2010a). With secondary

risks of falling, loss of the ability to read, and anxiety and depression (Ribeiro et al.,

2015b).

Graph theory-based network analysis is essential in neuro-science to explore brain

functional connectivity (FCN) network synchronization and reorganization after a stroke.

It is typically characterized by graph parameters such as strength, which is the sum of

weights of links connected to one node (Newman, 2004).

Vision loss in the blind is a result of both primary losses of neurons through tissue dam-

age and a breakdown of synchronization in brain networks (Sabel et al., 2011a). Disturbed

synchronization in patients with vision loss might aggravate the functional consequences

of reduced visual input (Bola et al., 2014). Wang et al. (Wang et al., 2012) reported HH

patients with left primary visual cortex damage to have less brain functional activity than

healthy subjects. Another study (Guo et al., 2014) showed that the newly forming FCN

connections and compensatory connections mainly originated from the infarction area and

influences contralesional cortices.

Weighted graphs with thresholds are able to reveal the level of efficiency in large-scale

networks analysis (Telesford et al., 2011), allows easy extraction of meaningful informa-

tion (Serrano et al., 2009) compared to binary graphs. Fornito et al. (Fornito et al.,

2010) reported network scaling effects in human resting-state fMRI under the propor-

tional thresholds from 5% to 40%. Buckner et al. (Buckner et al., 2009) reported the

hubs for adaptive task control at the proportional thresholds from 2% to 10%. Heuvel

et al. (van den Heuvel et al., 2009) reported the efficiency of functional brain networks

and intellectual performance from a correlation coefficient of r=0.3 to 0.5. In all these

studies, the authors used a relatively narrow range of network density, and this could be a

limitation with risks of inadequate or faulty interpretations. Previous graph theory stud-

ies on HH (Wang et al., 2012; Guo et al., 2014) used scalp electrode connections without

considering the network density; the stability of such patterns is still unknown. Therefore,

in the present study, we characterized the cortex level’s brain functional network dynamics

in HH patients after a stroke, using multiscale proportional threshold-based densities for

brain connectivity matrix.

Stroke biomarkers could provide a diagnostic inference for effective personalized ther-

apy in stroke patients. Several researchers have proposed various prediction biomarkers

such as fluid and tissue analysis for stroke prevention (Kim et al., 2013; Jickling and

Sharp, 2015). Others utilized the brain functional network to predict the impairments in

stroke with deep learning technology (Lindow et al., 2016; Jiang et al., 2013; Siegel et al.,

2016). Therefore, we evaluated the potential for predicting functional loss in patients with

stroke using deep learning technology through the brain network. There are many and

highly sophisticated deep learning methods in the market; however, deep learning requires
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high computation power and colossal data size, limiting its application in brain science.

Especially the use of small amounts of high-dimensional data is still facing significant

challenges.

LSTM (Long Short-Term Memory) (Huang et al., 2015) was a particular type of re-

current neural network (RNN) (Hochreiter and Schmidhuber, 1997) that is often used to

model contextual information in natural language processing tasks. However, RNN mod-

els feed the data into the network only in a one-directional manner. In the present study

of stroke patients, we consider both internal connections and external isolation between

the lesion and intact hemisphere of the brain to evaluate if the Bi- LSTM can capture a

better network feature presentation in bi-directional learning from both hemispheres.

We hypothesize that the Bi-LSTM can learn brain network patterns by paying specified

attention to the FCN state of the lesioned and the intact hemisphere. We, therefore,

implemented the Bi-LSTM model along with other traditional algorithms on the multiscale

brain functional connectivity matrix to reveal brain network alteration patterns in occipital

stroke patients.

Specifically, we addressed the following two questions: (i) how does the frequency band

and the density of the brain connectivity matrix influence the performance of the deep

neural network for predicting stroke patients; and (ii) how does the predictive performance

of the model fit the characteristics of electrophysiological data using the statistics and

visualization of the FCN-“strength” changes in the middle occipital node.

5.2 Method

5.2.1 Subject

We recruited 24 Patients with partial vision loss as a result of occipital stroke (see

more detail (Gall et al., 2015)) and 24 age-matched healthy subjects with normal vision

or corrected to normal vision. All subjects were instructed to keep their eyes closed while

resting-state EEG was recorded for the duration of five minutes (Table 4). Patient and

control subjects were statistically comparable in age (p>0.05). High dense array EEG

was recorded using a HydroCell GSN 128 channel net (EGI Inc.). The ethics committee

of the University of Magdeburg approved the study in compliance with the declaration of

Helsinki. All subjects were asked to sign a consent form. See Chapter 3 for more detail.

Figure 28: We evaluated a two-layer Bidirectional LSTM (neurons: 58, 58) algorithm and compared
it with other traditional algorithms such as deep forward neural network architecture with three hidden
layers (neurons: 256, 128, 32), support vector machine (SVM), and random forest (RF). Data input shape
(1× 116) from AAL atlas. Output label was 1: patient and 0: control subject.
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Table 4: Patient information summary

Total Lesion side Age Lesion Months

Patient 24 10 left, 14 right 58.375±10.87 40.95±39.21

Control 24 NA 57.375±10.56 NA

5.2.2 Data prepossessing

A digital 1-145 Hz bandpass filter was applied as well as a 50 Hz notch filter. The

data was down-sampled to 250 Hz and then referenced by the common average reference

method. EEG recordings were segmented into 2 seconds long per epoch. Components of

eye-blinks and cardiac activity were removed by independent component analysis (ICA).

The signal was decomposed as six frequency bands: Delta (1-3Hz), Theta (4-7Hz), Alpha1

(8-10Hz), Alpha2 (11-13Hz), Beta1 (14-21Hz), Beta2 (22-30Hz). see Chapter.3 for more

detail

5.2.3 Source reconstruction

The forward model was calculated using the symmetric boundary element method

(BEM) (Fuchs et al., 2001). The inverse model was calculated with a beamforming method

using the partial canonical correlation method (Rao, 1969), which implements Dynamical

Imaging of Coherent Sources (DICS) (Gross et al., 2001). The default template for MRI

was from MNI (Colin 27) at 8mm resolution (Holmes and Hoge.etc, 1998). The AAL-VOIs

atlas (AAL) is an automatic anatomical labeling result (Tzourio-Mazoyer and Landeau,

2002), which includes 120 structure definitions, and 116 were used in this study. See

Chapter 3 for more detail.

5.2.4 Brain connectivity and threshold

Functional connectivity was based on the statistical synchronization to quantify the

interaction between different brain region pairs (Pereda et al., 2005). Here we used the

imagery part of coherence (Nolte et al., 2004a),

Finally, the connectivity matrix (116× 116) was sparsed from density 0.1 to 1 per fre-

quency band for patients and controls. All self-connections were removed before analysis,

which means only[0.1 ∼ 1] strongest weight edges were kept for each subject in both groups

consistently. In this case, the density defined as the proportion of existing edges out of all

possible edges was equal for each graph per subject (Bola and Sabel, 2015). Fixing the

probability for an edge also excludes the criteria of Erdo¨s-R´enyi random networks for

group analysis (Van Wijk et al., 2010).

5.2.5 Evaluation method

A deep neural network (DNN) is an artificial neural network (ANN) with multiple

layers between the input and output layers (Bengio, 2009). The hidden layer and activation

functions can improve expressive ability. In this paper, we implemented a two hidden layer

(58, 58) Bi-LSTM model and three hidden layers (256, 128, 32) deep forward network to

predict the vision impairment stroke patients with a support vector machine(SVM) and

Random forest(RF) as the baseline shown in Fig. 28, Brain node strength was calculated

per frequency and density. We proposed three feature extraction methods: Model I): The
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Table 5: Final peak performance of the evaluated models

Model
Pooled
Control

Flipped
Patient

Accuracy Sensitivity Specificity

SVM I Yes Yes 67% 58% 75%
II No Yes 73% 63% 83%
III No No 67% 54% 70%

RF I Yes Yes 63% 54% 70%
II No Yes 63% 58% 63%
III No No 60% 63% 41%

DNN I Yes Yes 81% 67% 96%
II No Yes 70% 75% 67%
III No No 67% 75% 58%

Bi-LSTM I Yes Yes 63% 58% 67%
II No Yes 73% 70% 75%
III No No 63% 63% 63%

node strength of control subjects between the left and right hemispheres was pooled. The

brain of the right stroke patient was flipped so that only the lesion hemisphere and intact

hemisphere were showed. Model II): The controls were not pooled, and the patient data

was flipped. Model III): The controls were not pooled, and the patient data was not

flipped (see Tab 5).

5.2.6 Training the model

All training sessions were implemented in Google Colab, Sklearn, and Keras. Forty-

eight subject data was shuffled before a three-folder cross-validation in the training session.

For both Bi-LSTM and DNN, we took Adam as the optimizer and binary-cross entropy

as the cost function. The performance was evaluated with three metrics: overall accu-

racy, sensitivity, and specificity. A non-parametric Mann- Whitney U-test was performed

between the lesioned hemisphere and the control hemisphere and between the intact and

control hemispheres. Data prepossessing, source reconstruction, and brain connectivity

were conducted with the Fieldtrip toolbox (Oostenveld et al., 2011).

5.3 Result

5.3.1 Model performance

We evaluated Bi-LSTM, DNN, SVM, and RF to scout for appropriate prediction

biomarkers (Frequency bands or network density), which can identify the presence of

vision impairment in patients with occipital stroke. As shown in Tab 5, the DNN yielded

the highest accuracy (81%) in model I; however, the sensitivity (67%) was relatively low,

and the specificity was significantly higher (96%). This demonstrates that pooling the left

and right hemispheres for the controls may lead to an over-fitting in testing data. The

same phenomenon appeared in SVM performance. The Bi-LSTM shows a balanced per-

formance between sensitivity (70%) and specificity (75%) with an overall accuracy of 73%

in model II, suggesting that flipping the hemisphere could enhance the feature patterns

learning during training. As shown in Fig. 30, the log loss of model II shows the Bi-LSTM

demonstrated the ability to learn the feature patterns and continuously reduce losses. For

RF, the result is not satisfied as expected.
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5.4 Discussion

Figure 30: Compared to the Bi-LSTM, the DNN shows a slice better performance in model I in the
high alpha band. However, here the log loss is relatively stable and higher than the Bi-LSTM. Bi-LSTM
shows a balanced performance between sensitivity (70%) and specificity (75%), with an overall accuracy
of 73% in model II in the low alpha band. Eliminating the structure influence of individual algorithms,
the result suggests that flipping the patient’s hemisphere could enhance the feature pattern learning, while
the controls should not be pooled.

5.3.2 Biomarker in Brain network

Stroke biomarkers can be used as a guiding tool for more effective personalized therapy

(Kim et al., 2013), and help improve the diagnosis of stroke and determine the cause of

stroke (Jickling and Sharp, 2015). Unlike the traditional approach, we aimed to find the

characteristics representing the network reorganization after a stroke with a bi-directional

LSTM algorithm. This algorithm has been used for natural language processing for a long

time. Here, we explored the two-directional feature learning efficiency from intact and

lesion hemispheres. As shown in Fig. 30, the peak accuracy was achieved in the low alpha

band from density 0.3 to 0.5 with Bi-LSTM. The result is compatible with the hypothesis

that brain network reorganization in the low alpha band after a stroke can help to identify

occipital stroke patients. Therefore, the network threshold should be taken into account

for brain network analysis or biomarkers prediction in neurological disease.

In our patients, the middle occipital lobe area is most affected by ischemic stroke

(Posterior cerebral artery infarcts). To further confirm the patterns from the network

characteristics, we specifically selected the middle occipital lobe for further statistical

analysis. As shown in Fig. 31, the strength of the alpha band in both lesion and intact

hemisphere was found significantly lower than in controls for a density >0.3, which is

consistent with our prediction result.

5.4 Discussion

A correct diagnosis of ischemic stroke and its causes are essential to treat and prevent

stroke (Jickling and Sharp, 2015). While MRI images used in the clinic to identify the

lesion location are structurally meaningful, they provide no information about the func-

tional state of the tissue at or around the lesion site (locally) or in other brain regions
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Figure 31: Left part: Z-value distribution between the lesion /intact hemisphere and the control hemi-
sphere at the middle occipital lobe. Significant patterns show that both intact hemispheres have higher
strength in the alpha band (8-12 Hz) than controls when selecting a density>0.3 (red-box). The strength
in the low beta band (13-21) of both lesion and intact hemisphere was lower than the controls. Right part:
the high alpha band strength of intact hemisphere was higher than the lesion hemisphere.

(globally). This can only be achieved with EEG recordings that provide electrophysiolog-

ical information about the activity of neurons and their interactions. Therefore, assessing

brain network reorganization in a quantitative manner offers a new “functional” dimension

to characterize brain damage and recovery. Traditional biomarkers such as blood, other

body fluids, or tissues have been proposed to predict neurological disease states physio-

logically (Kim et al., 2013). In contrast, the present study aimed to find a ’biomarker’

based on a multiscale brain network and deep neural network. We evaluated the pattern

learning efficiency of Bi-LSTM with a bidirectional vector from two hemispheres. The

result demonstrates that the brain node strength in the low and high alpha band could

be utilized to predict functional (vision) loss in occipital stroke patients. The Bi-LSTM

achieved an excellent performance that was more specific and effective than other tradi-

tional algorithms of hemisphere pattern learning. Furthermore, the result from Model II

illustrates that hemisphere flattening in unilateral stroke patients and no-pooling in con-

trols has a palpable classification performance to discriminate between visually impaired

stroke patients and normal subjects.

Alpha phase synchronization is known to relate to different behavioral states and

neuronal effects of visual-spatial attention (Lobier et al., 2018). With the present study,

we confirmed the role of the high alpha band in visual processing because, in this frequency

band, brain damage leads to reorganized FCN patterns with a more significant number

of functional connections of intermediate density. Future studies should explore how this

understanding of brain FCN can be used for clinical diagnostics and rehabilitation. This

new perspective is consistent with our earlier findings that both low and high-alpha brain

network alternation is critical in the brain network reorganization of stroke patients. Our

future studies will evaluate if and how the strong connections from the lesion side can

handle information processing after a stroke; and how the contralateral, “intact” functional

regions might help compensate for the loss of vision.
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More generally speaking, deep learning technology with optimized structures can help

extract functionally relevant parameters by using FCN pattern characterization without

predefined features. Bi-LSTM achieved a more balanced performance (in both accuracy

and log loss) than other methods. Considering the mechanism of Bi-LSTM in natural

language processing, we propose that the Bi-LSTM method is a valuable procedure for

capturing brain network states of the lesion and intact hemisphere. Integration of bidi-

rectional data input (intact vs. lesioned hemisphere) through LSTM cell can enhance

the performance and stability of the model. Although the model’s final performance did

not reach a high accuracy rate for all models in this study, we believe that the expected

results can be obtained using a more extensive data sample with Bi-LSTM. Moreover, the

performance can inspire us to understand brain network reorganization after an occipital

stroke in the clinical context of diagnosing vision loss and predicting its recovery potential.

5.5 Conclusion

This study evaluated the potential of predicting vision impairment in stroke patients

with deep neural networks and multiscale brain networks. The prediction model and sta-

tistical analysis results show that brain node strength in the low and high alpha band

under specific density could be a predictor to characterize brain network reorganization

in stroke patients. Furthermore, the Bi-LSTM gained a balanced performance between

sensitivity and specificity, proving its feature learning capacity for hemisphere feature ex-

traction. Further investigation is needed to extend this algorithm with more data samples

and an optimized network structure. In the future, these results may inspire others to

gain more insight into stroke clinical diagnostics and interventions, and it highlights the

value of Bi-LSTM in functional predictions of brain diseases.
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6 Study 4: Decoding Resting-state EEG to Predict Visual

Field Defect in Stroke

(This work has been published in 10th International IEEE EMBS Conference on

Neural Engineering (Xu et al., 2021))
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6.1 Background

Stroke is one of the leading causes of death and disability globally (Campbell, 2019).

One-third of stroke patients may lose part of the visual field in both eyes called homony-

mous hemianopia (HH). HH is the main consequence of an occipital lobe damage (Good-

win, 2014), which can significantly negatively affect the quality of life such as walking and

reading. Occipital damage will cause the vision loss or inhibition of lesion visual cortex

activity, which will further affect the neural synchronization that physiologically manifests

as a dynamic change in the brain network’s plasticity. The relationship between neural

oscillation or synchronization and visual field loss is quite promising and worth investi-

gating. Decoding resting-state Electroencephalography (rsEEG) to predict the visual field

distribution could be an essential reference for a better understanding of the compensation

of visual functions after a stroke. The result could be beneficial for clinical diagnostics

and treatment.

Deep learning technology has attracted lots of attention in visual field prediction based

on different types of patterns of clinical data. Choi et al. (Choi and Kwon, 2016) proposed

an assembled deep neural networks to enhance post-treatment ischemic stroke prognosis.

Christopher et al. (Christopher et al., 2020), and Hashimoto et al. (Hashimoto et al., 2020)

utilized the deep learning technology to predict the visual field damage from spectral-

domain Optical Coherence Tomography in glaucoma. Park et al. (Park et al., 2019) built

a visual field prediction algorithm using a recurrent neural network(RNN). Wen et al.

(Wen et al., 2019) demonstrated that deep learning networks could be trained to forecast

future 24-2 Humphrey Visual Fields. As mentioned above, these researchers rely on the

visual field chart or Optical Coherence Tomography (OCT), not the electrophysiological

data. Little is reported and known if there is a possibility of decoding the neural oscillation

or synchronization to predict the status of visual field loss in HH patients after a stroke.

We propose a frequency spectrum based on 2DCNN and brain connectivity-based

3DCNN to predict the visual field defect after a unilateral occipital stroke. The visual

field defect location and percentage (Black, Grey, and White area) were decoded with

deep learning technology. We also explored and visualized the pattern of brain oscillation

and neural synchronization in these patients.

6.2 Method

6.2.1 Subject information

Twenty-four occipital stroke patients and 24 controls were recruited; more information

of the patients, such as the lesion pathology and the inclusion criteria, were previously

described here (Li, 2016). High density array EEG was recorded using a HydroCell GSN

128 channel net (EGI Inc.). The ethics community of Otto-von-Guericke-University ap-

proved this study in agreement with Helsinki’s declaration, and all the subjects signed

their consent.

6.2.2 Data collection

Patients were randomly divided into three groups and received non-invasive brain

stimulation to recover visual performance. Five minutes of resting-state EEG with eyes
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closed per subject were recorded three times: before treatment, post-treatment, and follow-

up. both the EEG data and high-resolution perimetry (HRP) (Kaiser et al., 1994) data

were recorded for patients. The EEG data of control was collected only once, and HRP

was not tested (all white) for control since HRP was binocular visual test.

6.2.3 Data preprocessing

A digital 1-145 Hz bandpass filter with a 50 Hz notch filter was used to remove the

current interference. The data were down-sampled to 250 Hz. EEG recordings were seg-

mented into 2 second-long epochs after common average reference. Eye-blinks and cardiac

activity were rejected by independent component analysis (ICA) and visual checking. A

1-30Hz bandpass filter was applied. Finally, 100 clean trials for each subject per recording

were kept. Finally, total trials were 9600, including the 24*3*100(patient*times*trials)

and 24*1*100(controls*times*trials).

6.2.4 Feature extraction

Frequency decomposition with Fourier analysis was performed, the multitapers method

was included in Fourier analysis, which allows better control of time and frequency smooth-

ing. The frequency spectrum was averaged in the time unit since there was no task during

the recording. Finally, a 128*30 spectrum matrix was generated per trial, where 128 rep-

resents the number of channels, and the 30 represents the frequency bin from 1 to 30

Hz. Here instead of the frequency band (128*4, here Delta, theta, alpha, beta band), we

believe that frequency bins (128*30) could enrich the spectrum’s context information.

The cross-spectral density was computed from the Fourier coefficients during the fre-

quency decomposition to calculate the sensor level functional brain connectivity for each

subject. We used the imagery part of the coherence to estimate the phase synchroniza-

tion between pair channels (Nolte et al., 2004b). Finally, a 128*128*30 sensor level-based

brain connectivity matrix was generated per trial. Meanwhile, the group of electrodes was

selected in the location of the left occipital Lobe (LO) [E65, E66, E67, E70, E71] and right

occipital lobe (RO) [E76, E77, E83, E84, E90] for feature visualization as shown in Fig.

36.

6.2.5 Label generation

To quantify the visual impairment, the visual field was evaluated in patients by HRP. In

this Perimetry test, white regions show the intact visual field, and grey regions represent

areas of residual vision, and black regions are considered fully blind areas. The raw

HRP data was recorded as a 21*21 matrix which is too large for it may lead to poor

performance and make no sense for our hypothesis; hence we reduce the size and complexity

of labels with two methods: The percentage of each category per subject were regarded

as the label1, which was indirect information presentation of the visual field; the label2

represented the location of the visual field in a reduced dimension HRP from 21*21 to

2*2, max-pooling was applied when decreasing the matrix dimension, only the black and

white area was considered, see Fig. 33.
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Figure 33: The original HRP was converted into two categories: percentage and location. The percentage
presents the indirect information of visual field: Black, Grey, and White (1*3 vector, for example: [75%,
10%, 15%]). The location distribution presents the visual field defect location considering the mostly
hemianopia patient lost their vision by the quarter as a unit (1*4 binary vector, for example: [1, 0, 0, 1],
1: black, 0:white ).

6.2.6 Metrics

The percentage prediction of the visual field distribution is based on a nonlinear regres-

sion model. For this, we use MSE (Mean square error) to calculate the loss for training.

R2 score is promoted to evaluate the model performance, the high peak score is 1.0, and

it could be harmful if the model is unexpectedly worse. The visual field location has a

binary output (in a 1*4 matrix: 1: black and 0: white), the accuracy metric was applied

to evaluate the performance.

6.2.7 Proposed networks

We proposed a 5-layers CNN architecture as the network’s backbone for the spectrum-

based 2DCNN and connectivity-based 3DCNN model. This concave network architecture

design is mainly to learn local features by reducing dimension and input this feature into

the fully connected network after upsampling. The 2DCNN model for frequency domain

is shown in the upper part of Fig. 32. For the connectivity domain, we use a similar

model as 2DCNN but revised some details, shown in the lower part of Fig. 32, the input

was marked 3D data. The size of the output layer following the fully connected network

is adjusted for different labels. For example, the size is set as 3 for the percentage label

and 4 for the location distribution label. Thus, each grid has a binary output(0/1).

6.2.8 Training process

We fit the model using the Adam optimizer, using default parameters described in

(Kingma and Ba, 2014), minimizing the binary cross-entropy loss function in the brain

connectivity domain and MSE (Mean square error) in the frequency spectrum domain. The

reactivation function is the exponential linear unit (ELU). The dropout probability was set

to 0.5 to prevent over-fitting when training on limited sample sizes. 5 fold cross-validation
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Table 6: The performance of visual field percentage

Model Feature Control Data split Label R2

2DCNN
Spectrum No Cross subjects Percentage <0
Spectrum Yes Cross subjects Percentage <0

3DCNN
Connectivity No Cross subjects Percentage <0
Connectivity Yes Cross subjects Percentage <0

(train-test spilt rate: 0.8 for training and 0.2 for test) was applied. We ran 50 training

iterations (epochs) and saved the model weights, producing the lowest validation set loss.

Within-subject evaluation generally uses single-person data, so it is prone to overfitting

and low generalization ability. Cross-subject evaluation could help improve the trained

models’ generalization ability and prevent overfitting. Therefore, this study mainly reports

cross-subject training performance. When performing data split, we randomly split into

training and test groups based on samples instead of a single trial to ensure no training

data would appear in the test part.

All models were trained on Google Colab Pro using Tensorflow and Keras. Data

preprocessing and feature extraction were performed with the Fieldtrip toolbox in Matlab

(Oostenveld et al.).

6.3 Results

As shown in Tab 6, the R2 score shows the model output a worse prediction perfor-

mance about the percentage of the visual field. Furthermore, both frequency spectrum and

brain connectivity-based R2-score are less than zero, indicating that the brain oscillation

feature could not correspond with the percentage of the visual field.

From Tab 7, the frequency spectrum-based 2DCNN model achieved the best perfor-

mance 67.5% with the control dataset where the brain connectivity-based 3DCNN only

achieved the 60.7%. The possible explanation is that the frequency spectrum was more

direct information than the brain connectivity. The form of spectrum data is suitable for

feature learning in convolutional neural networks. For the spectrum model, the precision

of each sub-region was [0.595 0.748 0.667 0.638]. We also evaluated the model based on

the frequency band; however, they did not exceed the result as in Tab 7.

The feature map was visualized from frequency spectrum 2DCNN as in Fig. 34A, a

clear pattern was observed with light color around 10 Hz; the electrode was located in the

occipital and temporal lobe. The feature map from brain connectivity was visualized as

shown in Fig. 34B. no clear pattern was observed in this 3DCNN model, which could be

why the 3DCNN model shows worse performance than the 2DCNN model.

The topology plot of the frequency spectrum and local node weight were visualized

to further investigate the patterns from frequency spectrum and brain connectivity. As

shown in Fig. 35, both in the low and high alpha bands, the alpha band spectrum power

of the control subject is relatively similar in both hemispheres. While, stroke patients

show more activities in the contralateral visual cortex. In Fig. 36, the zero-means of LO

or RO is used as a reference to show the distribution of brain node strength. However, no

obvious characteristic pattern could be extracted.
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Figure 34: The feature map visualization for frequency spectrum-based model and sensor-based brain
connectivity. In A, the region of interest was learned and highlighted (Occipital and temporal electrodes).
In B, no clear patterns were learned from the 3DCNN model

Table 7: The performance of visual field Location

Model Feature Control Data split Label Acc

2DCNN
Spectrum No Cross subjects Location 0.639
Spectrum Yes Cross subjects Location 0.675

3DCNN
Connectivity No Cross subjects Location 0.578
Connectivity Yes Cross subjects Location 0.607

Figure 35: The topology plot of the frequency spectrum over the scalp for control and patient (left and
right stroke patients). Higher activity in the contralateral visual cortex was observed both in the low and
high alpha band.
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6.4 Discussion

Figure 36: The topology plot of the node strength for control and patient(left and right stroke patients)
in the low and high alpha band. The LO or RO was zero-averaged as the reference for other regions. There
was no obvious pattern observed for local node weight.

6.4 Discussion

The loss of the visual field in stroke patients causes many inconveniences in life. Clinical

diagnosis and treatment can help patients manage the visual field’s loss and improve their

quality of life. However, there are few studies on the decoding changes in brain state to

predict visual field defects. Therefore, based on features extracted from the resting state

EEG, we utilized deep learning methods to evaluate the possibility of visual field defect

prediction in stroke patients.

The results from the above experiments may present that it is barely possible to predict

a patient’s percentages of vision field given their electrode-based frequency spectrum and

brain connectivity. In contrast, the visual field location was possibly predicted with a

large sample and optimized algorithms.

In the case of large samples, it may provide a more appealing prediction performance.

On the contrary, patient recruitment and data collection are challenging, so increasing the

data sample is feasible but not economical.

Although the 2DCNN model learns some helpful information, the cross-subjects perfor-

mance is not as satisfactory. In both domains, the score never reaches 70%. One possible

reason could be that the 2DCNN and the 3DCNN model cannot thoroughly learn EEG

signals’ typical pattern, and the variability of lesion location may cause inconsistent brain

network patterns.

We consider that the vision field’s percentages are not a direct representation of visual

functional ability. The percentages of the vision field only reflect the numeric values. For a

single value, it could have infinite combinations. For example, the intact vision percentage

is 54.4% (240 out of 441 areas are white). In this case, the white areas’ locations could be

distributed anywhere within the 21 * 21 matrix.

In conclusion, the visual field defect location could be predictable through the fre-

quency spectrum, and the performance could possibly be improved with a large sample.

However, predicting vision percentage remains a formidable challenge.
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6.5 Conclusion

This study proposed a frequency spectrum-based 2D convolutional neural network and

a connectivity-based 3D convolutional neural network to decode the relationship between

the brain oscillation and the visual field defect caused by a unilateral occipital stroke.

The spectrum-based 2DCNN demonstrated better visual field location prediction than the

connectivity-based 3DCNN model, while the visual field percentage was not predictable

in our evaluation. The visualization of EEG characteristics and feature maps help make

results more explainable. More samples and optimized network structure may yield an

improvement in the future.
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7 Study 5: Predicting Brain Electrical Stimulation Out-

come in Stroke by Clinical-inspired Hybrid Graph Con-

volutional Autoencoder

(Part of this work has been published to 2nd IEEE International Conference on

Human-Machine Systems 2021)
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7.1 Background

Noninvasive brain stimulation (NIBS) techniques have been widely used in clinical ap-

plication and they were found to be effective and safe (Dayan et al., 2013). Two of the

most common neural modulation technologies are tDCS and tACS. tDCS can modify ex-

citability of neuronal tissue with direct current. tACS, on the other hand, can entrain the

neurons to oscillate at an externally driven frequency. The effect of neuromodulation tech-

nology has been clinically confirmed in stroke (Lindenberg et al., 2010), pain (O’Connell

et al., 2018), Parkinson’s (Tinkhauser et al., 2017), depression (Holtzheimer et al., 2017),

and other brain diseases. Regarding stroke, NIBS techniques were used to enhance dif-

ferent functional domains, including vision loss after a unilateral occipital stroke, which

could possibly be benefited from NIBS (Gall et al., 2015; Sabel et al., 2020b).

There has been little study of brain network-based clinical outcome prediction after

brain electrical stimulation with machine learning (Butson et al., 2006; Chaturvedi et al.,

2006; Mohammed et al., 2017). Kyriaki et al. (Park et al., 2021) presented a random

forest technique to predict the unified Parkinson’s disease rating scale improvement after

deep brain stimulation. Another similar work is that of Kwang et al. (Kostoglou et al.,

2017) who applied deep learning techniques to microelectrode recording signals to pre-

dict motor function improvement in Parkinson’s disease. However, these invasive brain

stimulation studies are not based on physiological signal phase coupling and did not con-

sider the behavior data. Indeed, considering the unknown underlying mechanism for NIBS

and personalized variance, the prediction of the clinical outcome after noninvasive brain

stimulation therapy is very challenging and rarely investigated.

Deep learning has achieved great success in computer vision, audio recognition, and

natural language processing (LeCun et al., 2015). Current deep learning technology is

mainly based on Euclidean geometric distance, such as the convolutional neural network

(CNN). However, the non-Euclidean geometric distance data emerged increasingly, such

as social networks and brain networks in graphs with complex relationships presented by

node and edges. Graph neural network aimed handling non-Euclidean geometric distance

in many applications. One of the most highlighted networks is the spatial-based graph

convolutional network (GCN). The spatial GCN could derive the updated presentation of

the central node with its connected neighbors in a weighted network, which is equivalent

to the node strength in graph theory analysis.

The spatial-based graph convolutional network can obtain the characteristics of the

central node from its connected neighbor nodes, which matches the strength (information

propagation) and centrality (message passing) in graph theory analysis. The strength is

the local feature presentation of pre-defined nodes with its neighbors. Centrality is the

global feature presentation of pre-defined nodes with all the nodes in the graph. The

readout layer mainly aimed to generate the whole level presentation based on nodes and

then feed the node features into a fully connected layer for training.

GCN pooling is a down-sampling strategy to reduce the size of parameters for a smaller

presentation in a graph. The pooling operation could relieve the over-fitting, permutation

invariance, and computation issues (Zhou et al., 2020). Mean pooling was one of the

most effective methods to implement the pooling operation. The DiffPool was proposed

to generate a hierarchical presentation of graphs (Ying et al., 2019). The critical point in
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this method is to compress the nodes into a lower number while keeping topological and

feature information. For example, a mean pooling strategy could help generate lower-size

and higher-level presentations between two brain nodes from a sub-nodes connectivity

matrix in neuroscience.

This study evaluated a proposed hybrid convolutional autoencoder (HGCAE) to pre-

dict the clinical outcome based on brain network measures and behavioral data obtained

from patients with unilateral stroke. Brain node strength and centrality are generated

by an equivalent filter of graph convolutional network. Pairwise coherence between high-

level nodes was derived by the mean pooling layer on sub-nodes. The visual performance

was also considered during the training session. The overall goal of our research was to

promote the development of novel approaches of predicting outcome in clinical neurology.

7.2 Method

7.2.1 Subjects information

24 patients (Age, n = 24,Mean ± Sd, 58.375 ± 10.87) with partial vision loss led by

a unilateral occipital stroke were recruited (see more detail for clinical trial (Sabel, 2019)

and treatment (Gall et al., 2015)). High dense resting-state EEG was recorded before

brain stimulation therapy using a HydroCell GSN 128channel net (EGI Inc.). The ethics

committee of University Magdeburg approved this study and all the subjects have signed

the consent. For more details, see Chapter 3.

7.2.2 Data preprocessing

A digital 1-145 Hz bandpass filter was applied on data as well as a 50 Hz notch

filter. The data was downsampled to 250 Hz and then referenced by the common average

reference method. EEG recordings were segmented into 2 seconds long each epoch, 100

trails were picked out per subject. Independent component analysis (ICA) removed the

eye-blinks and cardiac activity.

7.2.3 Source reconstruction

Only the Alpha band frequency (8 ∼ 12Hz) was decomposed for brain source re-

construction. The forward model was calculated using the symmetric boundary element

method (BEM) (Fuchs et al., 2001). The inverse model was calculated with a beamform-

ing method using the partial canonical correlation method (Rao, 1969), which implements

Dynamical Imaging of Coherent Sources (DICS) (Gross et al., 2001). The default template

for MRI was from MNI (Colin 27) at 8mm resolution (Holmes and Hoge.etc, 1998). The

AAL-VOIs atlas (AAL) is an automatic anatomical labeling result (Tzourio-Mazoyer and

Landeau, 2002), which includes 120 structure definitions, and 90 were used in this study.

7.2.4 Functional connectivity and brain network

Using the source reconstruction, we re-sampled the trials with bootstrap method which

generated 50 connectivity matrices per subject as output. Then we used the imagery part

of coherence (Nolte et al., 2004a) to calculate the brain connectivity, which is insensitive to

false connectivity arising from volume conduction to measure the functional connectivity
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with resting-state EEG data. The connectivity matrix of each subject was thresholded

with a network density of 0.3, which means only 0.3 strongest weight edges were kept for

each subject. In this manner, the density defined as the proportion of existing edges out

of all possible edges was equal for each graph per subject (Bola and Sabel, 2015). Fixing

the probability for an edge also excludes the criteria of Erdos-R´enyi random networks for

group analysis (Van Wijk et al., 2010). The connectivity matrix (90× 90) was generated

for graph network analysis.

Weighted graph analysis attracted lots of attentions from the neuronscience area,

Which can keep the information and avoid all issues related to selecting an appropriate

threshold comparison with the binary network (Hagmann et al., 2008; Stam et al., 2008).

In this study, we applied the graph theory analysis with the brain connectivity matrix for

feature engineering in predicting the noninvasive brain stimulation output performance.

7.2.5 Node local aggregation

In graph theory, node strength is the sum of weights of links from its neighbors con-

nected to the node, demonstrating the importance of information exchange with neigh-

borhood nodes, consistent with the information propagation in GCN (Monti et al., 2017).

Here, the brain was parcellated with an AAL mask. The node strength (1 × 90) was

calculated with a weighted connectivity matrix (90× 90). The whole-brain node strength

was averaged as the global strength.

7.2.6 Node global aggregation

Node betweenness centrality is the fraction of all shortest paths in the network that

contain a given node, which match the messaging pass in GCN (Yadati et al., 2018).

A higher value of betweenness centrality in node indicates that it participates in a more

significant number of shortest paths, where the node will be considered to play an essential

role in the whole brain network information transfer. Node betweenness centrality (1×90)

was calculated by Brandes algorithm with a weight connectivity matrix (90×90) (Brandes,

2001). The entire brain node’s centrality was averaged as the global centrality.

7.2.7 Edges with GCN pooling

Inspired by the pooling modules in GCN (Ying et al., 2018), the coherence between

pairwise nodes were segmented from left or right Occipital (LO or RO) linked to the rest of

the brain regions [RO] to [RT,RF,RP,LT,LF,LP,LO] or [LO] to [RT,RF,RP,RO,LT,LF,LP](T:

Temporal, F: Frontal, P: Parietal) as shown in Fig. 37. The pooling layer averaged the

sub-nodes in these regions for a higher-level node presentation. The coherence matrix

(1× 7) from each hemisphere was contacted during the training session.

7.2.8 Visual field

Binocular visual fields were tested using a particular high-resolution computer-based

campimetric test battery as previously described (Kasten et al., 1997). For each patient,

three measurements were performed. The visual field areas were categorized as intact

shown in white (three correctly detected stimuli per location), partially damaged regions

shown in grey (one or two stimuli seen), and impaired, blind areas shown in black (no
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Figure 37: Local node strength (left) and global pairwise coherence (right)

stimulus detected). The reaction time (0 − 1s) of the intact visual field(white and grey

grids) was recorded simultaneously. The HRP parameters include a 1× 5 vector.

Figure 38: Proposed HGCAE structure for brain stimulation therapy output prediction
in stroke

7.3 Frame structure

The proposed network structure includes: graph convolutional autoencoder, readout

layer, pooling layer, and multiple layer perception (MLP). GCN autoencoder (including

the readout and pooling layer) can generate the network embedding of clinical inspired

feature and train the MLP involved in the parameter optimization. The brain connectivity

matrix was fed into the GCN autoencoder to derive the feature matrix, such as local node

and global pairwise coherence. Local node strength and centrality were z-scored before

concatenation, followed by a fully connected layer (8 neurons). The coherence between

higher-level nodes were normalized before concatenation. Both outputs were concatenated

into another fully connected layer (8 neurons). Meanwhile, the global strength and cen-

trality were concatenated with HRP parameters and then contacted with the output from

local node strength and centrality with a dropout of 0.75 as well as the sigmoid activation

function, see Fig. 38.

7.4 Label generation

All the patients have been given noninvasive brain stimulation after this study. The

visual field was tested by HRP, and displayed as visual field charts. The contralateral
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Table 8: The classification report with HGCAE

class Precision Recall F1-score Support

Non-responder 0,86 0,56 0,68 200
Responder 0,68 0,91 0,78 200

eye’s FOV was measured by OCULUS Twinfield®2. For the details of NIBS protocols,

see (Gall et al., 2015). The visual field parameters were measured before treatment and

two months later after treatment. Compared with before treatment, the patients with

enhanced visual performance (Positive percentage change of FOV) were categorized as

responders (Label: 1), or, non-responders (Label: 0).

7.5 Training detail

The model was trained on Google Colab by using the Adam optimizer with the default

parameters described in (Kingma and Ba, 2014), minimizing the binary cross-entropy

log loss function. The reactivation function is the Rectified Linear Unit (RELU). The

dropout probability was set to 0.75 to prevent over-fitting when training on limited sample

sizes. Data was split with 800 trials from 16 subjects for training and 400 trials from 8

subjects for the validation. We ran 30 training iterations (epochs). Loss weights were

settled as [0.2, 0.2, 0.1, 0.2, 0.2] for [local node, local centrality, HRP, LO-coherence, RO-

coherence]. Data preprocessing and feature extraction were performed with the Fieldtrip

toolbox (Oostenveld et al., 2011) on Matlab.

7.6 Result

The final performance of HGCAE shows the proposed model gains at a higher sensi-

tivity of 91% and lower specificity of 56% as well as the global mean accuracy of 74% on

the validation dataset, see Tab 8 and Fig. 39, The model’s performance is in line with

clinical expectations because higher sensitivity is expected to help the clinician decide if

further treatment is and which treatment conditions are more preferred. Those patients

who can get the most extraordinary potential recovery possibilities from non-invasive elec-

trical stimulation therapy can receive treatments, which effectively saves medical resources

and achieve precision medicine.

Specifically, the precision of the non-responder prediction accuracy was 86% and the

responder prediction was 68%. This indicates that more negative samples are predicted to

be positive and fewer positive numbers of examples are predicted to be negative. This phe-

nomenon could be considered over-fitting because our model is more sensitive to positive

samples. As can be seen in Fig. 41 and Fig. 42, the visualization of brain node strength

and centrality showed that the features of positive subjects are more pronounced. The

responder’s pairwise coherence between temporal and occipital in the intact hemisphere is

higher than the non-responder while in the lesioned hemisphere of the non-responder, it is

reverse. In the future, it might be possible to optimize the performance through early-stop

(see Fig. 40), learning-rate and dropouts.
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Figure 39: The accuracy of the train and validation dataset

Figure 40: The loss curve of the train and validation dataset
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Figure 41: The topology plot of the strength and centrality in patient brain network
reorganization after noninvasive brain stimulation before treatment (PRE) and two months
after treatment (FU)

7.7 Discussion

Noninvasive brain stimulation (NIBS) has shown its promising potential to improved

lost functions in neurological disorders (Woods et al., 2016; Antal et al., 2017). Vision loss

after stroke is one example how this new technology can help patients (Sabel, 2019). How-

ever, the mechanisms of recovery following brain stimulation are only poorly understood,

hindering our progress to better define a more effective usage of this technology. Research

regarding the possibility of predicting this therapy efficacy using brain network features

are quite rare and worth to be investigated further (Kostoglou et al., 2017; Park et al.,

2021). And there is currently still no consensus on mechanisms of action of how NIBS

achieves neuromodulation and recovery. We therefore explored the possibility of recov-

ery prediction after receiving non-invasive neuromodulation based on the brain network

measures and using behavior data.

The proposed model has achieved relatively high sensitivity in predicting responders.

By visualizing the brain network parameters, we found that patients with a stronger

capacity for brain network reorganization are more likely to benefit from neuromodulation

after a stroke. However, it is probably not be the only factor that influences outcome. One

possibility is that electrical stimulation enhances the excitability of the neurons in patients

and this might induce adaptive brain network reorganization. Yet, more experiments are

needed to study this proposal.

Future studies should also consider other machine learning models and to test more

algorithms to evaluated the value of our proposed model’s performance. Preferably, such

studies should include larger sample sizes of patients. It is worth pointing out that this

study did not consider the personalized variability caused by different electrical stimulation

parameters during the treatment. Rather, we predicted the possibility of recovery by

observing the reorganization of the brain network before treatment and the changes in

visual function after treatment. As for the relationship between the possibility of recovery

95



7.8 Conclusion

and different NIBS protocols, further investigation are needed.

Figure 42: Pairwise coherence between higher level brain nodes, no significant was observed

7.8 Conclusion

This study evaluated the possibility of predicting the effect of noninvasive brain electri-

cal stimulation of the alpha band brain functional network on recovery of vision in patients

after occipital stroke. As we showed, brain network dynamic changes can be uncovered

with graph theory in combination with a hybrid graph convolutional network autoencoder

for NIBS outcome prediction. Our results show that with the HGCAE we can achieved

an overall accuracy of 74% as well as 91% sensitivity of predicting recovery of vision after

NIBS intervention. Although this is still far away from the valid clinical usage, this out-

come prediction approach showed that progress can be made with machine learning, and

the results are an incentive to further explore prediction models for the clinical application

of non-invasive brain stimulation.

96



8 General discussion and Future work

8.1 General discussion and conclusion

This chapter first summarizes this thesis’s main contributions (neuromodulation with

noninvasive brain stimulation and prediction with deep learning) corresponding to the

raised questions in the motivation part. The second part of this chapter discusses potential

directions for future work inspired by our current work.

8.1.1 Clinical findings from brain damage, reorganization and recovery

The role of brain network reorganization: Graph measures of FCN based on

EEG-tracking are a valuable tool to unravel the role of electrophysiological oscillations

in brain network reorganization. As shown in Chapter 3, the stroke brain shows both

local and global FCN reorganization in the high alpha and low beta band, and this can

be both ”maladaptive” or ”adaptive” in different brain regions. Specifically, the stroke

FCN changes towards a more ”regular” pattern that is maladaptive in the intact occipital

region, possibly creating perceptual deficits causing temporal and spatial visual impair-

ments in the ”intact” but crowded visual field. However, FCN can also be “adaptive”,

enabling temporal gyrus structures to compensate for the loss of vision in the scotoma.

Thus, exploring the complex architecture of the brain’s FCN using EEG-tracking adds

critical temporal dimensions to our understanding of brain reorganization to better ex-

plain the normal and abnormal (low) vision. In addition, brain FCN graph analysis might

inspire new approaches for the diagnosis and rehabilitation of low vision loss and other

neurodegenerative disorders, such as noninvasive brain stimulation.

The brain network dynamic change after NIBS : Noninvasive brain stimulation

(NIBS) is already known to improve visual field functions in patients with optic nerve

damage as it partially restores the organization of brain functional connectivity networks

(FCN). However, because little is known if NIBS is effective also following brain damage,

we studied the correlation between visual field recovery and FCN reorganization in stroke

patients with central visual pathway damage. Then we analyzed data from a randomized,

and sham controlled noninvasive brain electric stimulation clinical trials to modulate the

brain plasticity for vision loss patients to validate its vision recovery potential (Chapter 4).

ACDC patients obtain improved visual functionality and hemispheric balance while AC

and SHAM groups remain at the previous level. The decreased long connectivity changes

in the ACDC group in the delta band suggests that the combination of tACS and tDCS

could inhibit the low-frequency neural oscillation between the lesion occipital and intact

occipital. This raises the question, if FCN parameters can serve as a biomarker to predict

vision recovery.

The possible mechanism of vision recovery after NIBS: The less global clus-

tering coefficient in the responder group than the non-responder group suggets that the

resting brain state needs fewer connections at paired regions to transfer the information;

possibility ACDC could elicit some ’silent neurons’ in the lesion location. These fewer

connections in the alpha band between lesion frontal and intact occipital represented the

plasticity alterations toward improving visual functionality. The connections between in-

tact temporal and intact occipital lobe shows that the intact temporal plays an essential
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role in adaptive visual function after stroke. Brain FCN reorganization is therefore rele-

vant for the post-lesion response and plasticity of the damaged visual system. This finding

could help guide us in searching for more effective stimulation protocols to induce vision

restoration in ways that are more effective and long-lasting than the existing technique of

visual rehabilitation in stroke and brain injury.

8.1.2 Visual field decoding with deep learning

Deep learning and graph neural networks attracted lots of attention from the neuro-

science community. This thesis proposes a frequency spectrum based 2DCNN and brain

connectivity- based 3DCNN for predicting the visual field defect after a unilateral occip-

ital stroke. Next, we evaluated if it is possible to identify patients and controls using

brain network biomarkers. Bi-LSTM demonstrated the overall balanced performance.

Lastly, inspired by the clinical features, a GCN autoencoder was implemented to predict

the responder or non-responders from the brain connectivity matrix. Work described in

Chapters 5-7 is now discussed.

Brain network connectivity predicts vision impairment:Chapter 5 explored a

multiscale brain network and deep neural network to evaluate brain network patterns for

identifying vision impairment patients after occipital stroke. The prediction model and

statistical analysis indicate that the low and high alpha band under specific density can

serve as a predictor to characterize brain network reorganization. The Bi-LSTM gained a

balanced performance between sensitivity and specificity, which could prove useful for the

development and application of brain feature extractions. Further investigation should

extend this algorithm with more data samples and an optimized network structure. These

results may provide insight for clinical diagnostics and interventions in the future.

Decoding resting-state EEG to predict visual field defect: To investigate the

relationship between EEG and visual field, Chapter 6 proposed a frequency spectrum-

based 2D convolutional neural network and a connectivity-based 3D convolutional neural

network to decode the relationship between the brain oscillation and the visual field defect

caused by a unilateral occipital stroke. The spectrum-based 2DCNN demonstrated bet-

ter visual field location prediction than the connectivity-based 3DCNN model, while the

visual field percentage was not predictable in our evaluation. The visualization of EEG

characteristics and feature maps help make results more explainable. More samples and

optimized network structure may yield an improvement in the future.

Predicting brain electrical stimulation outcome in stroke: To investigate the

relationship between EEG and visual field parameters, Chapter 7 proposed a frequency

spectrum-based 2D convolutional neural network and a connectivity-based 3D convolu-

tional neural network to decode the relationship between the brain oscillation and the

visual field defect caused by a unilateral occipital stroke. The spectrum-based 2DCNN

demonstrated better visual field location prediction than the connectivity-based 3DCNN

model, while the visual field percentage was not predictable in our evaluation. The vi-

sualization of EEG characteristics and feature maps help make results more explainable.

More samples and optimized network structure may yield an improvement in the future.
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8.2 Future work

The studies discussed in this thesis have some limitations:

• Sample size: in this study, twenty-four unilateral occipital stroke patients were re-

cruited for the brain stimulation intervention, to test three stimulation protocols

(ACDC, AC, SHAM) with eight patients per group. This small sample size per

group may play a critical role in limiting our ability to interpret data. In future

studies a larger sample would be preferred to obtain more robust data analysis and

result interpretation. Meanwhile, for the prediction part of the brain network, vi-

sual field, and brain stimulation responder, the small number of subjects limits the

accuracy. A larger sample is expected to improve the final performance in future

studies.

• Source reconstruction and data variability: we applied a common fMRI template

from MNI when resourcing with a low spatial resolution of the EEG signals. For a

better resolution the individual head model for both patients and controls would be

preferable. Some researchers reported that intra-individual variability in response to

tDCS and tACS was found (Im et al., 2018; Kasten et al., 2019; Laakso et al., 2015;

Wiethoff et al., 2014). There are different possible sources of outcome variability.

Firstly, the individual anatomy varies between patients, which generates differences

in electric fields inside the brain (Laakso et al., 2015). Even in a fixed stimulation

montage and intensity, there is substantial variability of spatial distribution and

strength were observed with individual anatomical differences (Laakso et al., 2015).

In our study, the data was warped into MNI (Montreal Neurologic Institute) space

during source reconstruction. Some researchers argue that the standard template

would make the anatomy less precise, especially in the lesion area; however, we

used the same pipeline and could still demonstrate the brain network consistently

with the behavior output. Secondly, there may be other systemic factors (such

as blood flow differences, hormonal or nutritional influences) which may influence

neurophysiological activity during FU; and thirdly, we recently observed that vision

recovery following ACS treatment in patients with optic nerve damage depend on the

patients’ personality trait (Sabel et al., 2020b). In view of these other intervening

variables, it is questionable if an individual brain scan template really enhances the

power of prediction.

• Resting-state connectivity vs. Task-based connectivity: brain connectivity could be

calculated at rest (with eyes closed) or during a task-specific activity. The FCN in

resting-state EEG was our first step to investigate the role of the brain’s FCN after

damage to characterize its fundamental network structure. The visual task-induced

reorganization would be another fascinating perspective for future studies. Of note,

MRI studies of neurological functions are also often carried out during the resting

state. Future work could be a multi-model data study that combines the rFMRI

and visual task-based EEG data. In this way, not only the brain network in resting

EEG but also the dynamic brain network in time scale would tell us more details

about brain network reorganization.

• Optimized algorithms: in this study, we had implemented several algorithms such

as SVM, MLP,2DCNN,3DCNN, Bi-LSTM, and GCN autoencoder. The results are
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meaningful in clinical terms and could possibly serve as a biomarker for the visual

vision diagnostics. However, the output performance is not state of the art or in

the scope of our expectations. The possible reason could be the structure of the

proposed algorithms and the fine-tune tracks that could not converge the final loss.

Regarding brain connectivity, we would like to explore a more novel structure of

the graph neural network for higher performance. The attention mechanism also

attracts lots of attention from researchers. The possible way in the future could be

the GCN transformer that takes advantage of both the graph data and the global

attention features.

In sum, despite these limitations, this thesis demonstrates the value of brain functional

connectivity reorganization as a physiological biomarker for normal, abnormal, and recov-

ered vision. The hope is that this new understanding will inspire novel methods for vision

diagnostics, recovery and rehabilitation.
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H.-O. Karnath, J. Rüter, A. Mandler, and M. Himmelbach. The anatomy of object

recognition—visual form agnosia caused by medial occipitotemporal stroke. Journal of

Neuroscience, 29(18):5854–5862, 2009.

D. Kaski, R. Dominguez, J. Allum, A. Islam, and A. Bronstein. Combining physical train-

ing with transcranial direct current stimulation to improve gait in parkinson’s disease:

a pilot randomized controlled study. Clinical Rehabilitation, 28(11):1115–1124, 2014.

110



REFERENCES

E. Kasten, H. Strasburger, and B. A. Sabel. Programs for diagnosis and therapy of visual

field deficits in vision rehabilitation. Spatial Vision, 10:499–503, 1997.
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