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PROCESS ANALYTICAL TECHNOLOGY 

In the last decades biotechnology has been evolved into a promising key technology with 
application fields in medical care, food technology, agriculture and fine chemicals. Generating 
annual sales of approximately 33 billion dollars in 2004 and representing about 20-25 % share of 
the total number of new medical entities in the Unites States (US) and Europe (Walsh 2006), the 
production of biopharmaceuticals for the health care sector is an important and profitable market. 
Among the top selling products the majority are oncology and oncology supporting products 
(monoclonal antibodies and growth factors), followed by hormones (predominantly insulin), 
fusion proteins and cytokines (Lawrence 2007). The future seems promising, as the yearly 
growth rates of sales of biologics in the United States are in the double digit range of 10 %, a 
development clearly outperforming US pharmaceuticals which lagged behind with 3-4 % in 
2007 (Aggarwal 2008). 

However, contrary to the big milestones made in the fields of biochemistry, molecular biology 
and microbiology for the development of active pharmaceutical ingredients (API) as well as the 
identification of new application fields, less effort is spent in bioprocess engineering and the cost 
effective large scale production of the biologics. It is widely accepted that, compared to other 
sectors of production industry, e.g., automobile and petrochemistry, these processes generally 
have deficits in terms of rates of technological process innovation as well as detailed, 
quantitative process understanding (Dünnebier and Tups 2007). These facts seem to be not 
surprising, since the selling products exhibit a long duration of patents and generate high 
revenues in almost exclusive application fields. Moreover, after years of intensive research, 
subsequent testing of promising drug candidates in capital-intensive clinical studies and the final 
drug approval, it is generally difficult from the manufacturer’s point of view to perform 
significant changes in the production process. In addition, rigid requirements of regulatory 
authorities in the past have generally lowered the drive of continuous process optimization. 

Recently, current pricing systems for pharmaceuticals in many industrialized countries are up for 
debate, because of fast-growing health care costs as a consequence of the demographic change. 
Both, political pressure as well as the fact of the standstill in technical innovation in 
biopharmaceutical production, have brought the US American Food and Drug Administration 
(FDA) to raise their Process Analytical Technology (PAT) initiative (FDA 2004). Moreover, 
with the advent of approval and production of biogenerics (biosimilars) the established 
companies become increasingly pressurized, since they have to compete with comparable but 
cheaper APIs. This development is now explicitly supported by the European Medical Agency 
(EMEA) with their biosimilar guidance documents (EMEA 2005, Walsh 2006, Rathore 2009a). 

The intent of the PAT framework is to catalyze improvements in process understanding and 
control of the manufacturing process while at the same time being consistent with the FDA’s 
maxim: “quality cannot be tested into products; it should be built-in or should be by design”. As 
it might be misinterpreted by the term “Analytical”, the PAT guidance is not just about 
implementing modern measurement devices. It further aims at using modern multivariate 
techniques to gain quantitative understanding, especially about the complex cause-effect 
interrelationships between the various process variables and their detailed influence on the 
process quality. Concomitantly, reproducibility is assured by utilizing signals of on-line available 
process data and, subsequently, by using this information for feedback control of critical process 
variables within tight specification limits. Finally, the FDA’s focus is on the quality by design 
approach, which means the consequent utilization of gained process knowledge and its 
quantitative conversion into models, ending up in a continuous process improvement. PAT has 
been discussed in industry (DePalma 2004) as well as in academia much more intensively than 
any other regulatory topic before (Hinz 2006, Rathore 2009b). It is recognized as an important 
paradigm change in the agencies’ way to inspect and approve production processes for 
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pharmaceuticals. The initiative was immediately taken up by the EMEA and the Japanese 
Ministry of Health, Labour and Welfare (MHLW) and continues within the common steady 
International Conference on Harmonization (ICH) of the leading agencies. In particular, the ICH 
issued a couple of guidelines (Q7–Q10) defining the framework for the new approach to process 
approval (ICH 2000-2008). PAT is embedded into the new concept of the agencies, which is 
going to leave the more or less formal fixed set of standard operational procedures that do not 
take the specialties of the concrete production processes into account. It will be replaced by a 
risk-based procedure, where the importance of the individual operations with respect to their 
impact on the quality of the final product and, hence, on the safety for the patients is examined.  

From the viewpoint of biopharmaceutical production, changes at the production process always 
bear a certain risk (Chirino and Mire-Slius 2004). Possible violation of specification limits or a 
loss of a production lot must be traded off against desired outcomes of enhanced yields, 
improved technologies and economical benefits. Process alterations still involve regulatory 
adaptation and have to be evaluated with respect to possible negative effects on the safety and 
efficacy of the product. This can only be quantified if the influence of the changes on the process 
or product quality is sufficiently well understood. Hence, central to the new approach is the 
knowledge about the essential details of process equipment and its dynamical operation during 
up- and downstream processing. The intent is to directly use the gained knowledge for a 
continuous improvement of process quality. 

 
Figure 1. Off-line measurements of product (triangles) and biomass concentration (circles), typically found in 

recombinant protein manufacturing for a standard cultivation process without implementation of 
advanced feedback and supervisory control systems (Jenzsch 2006a, Gnoth et al. 2007). As can be 
seen, the deviation from the desired profiles (blue - biomass, orange - product) is high and therefore 
the batch-to-batch reproducibility of both state variables is rather low. 

In particular, the quality of recombinant therapeutic proteins, which cannot be measured on-line, 
is closely related to the quality of the production process. Process quality itself is directly related 
to its reproducibility. Thus, in practice, the straightforward way of assuring protein quality is 
guaranteeing reproducibility of the processes wherein the product is formed. A typical example, 
that represents the actual situation of the batch-to-batch reproducibility in biopharmaceutical 
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production, is given in Figure 1. It shows profiles of biomass and product concentration values of 
12 cultivation processes operated with the same control strategy. Here, the batch-to-batch 
reproducibility can be characterized by the standard deviation of the corresponding concentration 
trajectories of successive production runs from a desired ideal profile (blue and orange line in 
Figure 1). It is immediately clear from Figure 1 that reproducibility, expressed by a significant 
scatter of biomass and protein values, and therefore process robustness against disturbances is 
rather low. 

On the way to solve that general problem in biopharmaceutical production processes PAT sets 
up the framework for purposeful and defined process improvements. According to the guidance, 
a process is considered well understood when, (I) all critical sources of variability are identified 
and explained, (II) variability is managed by the process, (III) product quality properties can be 
accurately and reliably predicted over the design space established, for materials used, process 
parameters, manufacturing, environmental, and other conditions. 

In the thesis presented here, several specific examples are given how to implement the general 
PAT idea into practical operation of fermentations for recombinant therapeutic protein 
production. The approaches developed apply to different aspects of fermentation technology and 
basically encompass the improvement of the measurement data quality and the use of process 
models. Subsequently, these models are exploited for optimization, prediction of process 
behavior as well as for the application of feedback control and process supervisory systems to 
counteract random errors and systematic failures. The highlighted problems are of practical value 
and the developed solutions meet the demands of application in research as well as in industry. 
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CONCEPTUAL FRAMEWORK 

Quality of Measurement Data 
The quality of fermentation processes crucially depends on the precision of which central 
process parameters are maintained with respect to the desired values. Prior to building complex 
advanced monitoring, feedback control and supervision techniques, it is worthwhile to focus 
attention on the improvement of measurement data quality, i.e., the signal-to-noise ratio of 
process variables has to be enhanced. The reason is that systematic or random errors made 
during measurement and control of essential process variables, basically affect all other recorded 
process variables. Since these errors increasingly propagate in the direction of more complex 
models, the best way of increasing the overall prediction quality of models is to enhance the 
information content of measurement data itself. 

In this context, the parameters of fermentation temperature, dissolved oxygen concentration pO2 
as well as the pH value have to be singled out. These parameters tremendously influence the 
physico-chemical observed in the liquid culture medium and the gas-liquid inferential area. For 
instance, even small fluctuations in the pH value cause variations of the carbon dioxide solubility 
in water and the equilibrium with bicarbonate ions leading to either additional CO2 accumulation 
or dissolution effects in the culture medium (Royce 1992, Spérandio and Paul 1997). The result 
of those fluctuations is monitored by the off-gas analytics, where the variance in the CO2 volume 
fraction might be misinterpreted as changes in the metabolic activity of the cells. Consequently, 
after the effects between pH changes and CO2 solubility had been identified, process models 
were applied to quantitatively understand the fundamental cause-effect relationship followed by 
appropriate controller design on the basis of model-supported simulation studies. In practical 
validation experiments, the designed parameter adaptive controller, which used the gain-
scheduling approach, showed to be highly capable to control pH within narrow tolerance limits. 
Thereby, associated fluctuations in the CO2 off-gas signals were eliminated. 

Another important challenge of the process operator is to strictly control the pO2, i.e., the partial 
pressure of oxygen dissolved in the culture medium, to a given setpoint. With approximately 
8 mg L-1, oxygen has a low solubility in water and especially in aerobic fermentations in large 
scale bioreactors oxygen transfer into the liquid phase might become a limiting problem. 
Moreover, the fast dynamics in oxygen transfer and uptake requires a special design of the pO2 
controllers. Standard proportional-integral-derivative (PID) controllers with fixed parameters are 
not able to cope with this problem, since a good performance is only assured for a certain 
working point. Instead, process analysis showed that parameter adaptation by a simple gain-
scheduling approach significantly improved control quality (Kuprijanov et al. 2009). In doing so, 
the PID parameters are continuously adjusted to the changing process dynamics, which are 
primarily caused by the metabolic activity of the cells. As a metabolic indicator for the process 
dynamics the CO2 production rate was selected to be the scheduling variable. The improvement 
of pO2 control by the gain-scheduling approach is illustrated in Figure 2. 
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Figure 2. Comparison of two fermentation runs with respect to the measurement data of pO2. The blue curve 

depicts the typical oscillating behavior of pO2 control obtained for a standard PID controller with 
fixed parameters. The application of gain-scheduling on the controller parameters results in a 
significant reduction of measurement noise (red line). 

The benefits obtained by an improved pO2 control are primarily a more stable stirrer speed 
profile and, which might be more important for model development, a significant increase in the 
signal-to-noise ratio of off-gas values O2 and CO2. These on-line measurements are central 
variables for superior monitoring and control models later on used, because they provide 
information about the physiological state of the culture as well as about the amount of biomass 
formed. 

Quality by Design 
A central point often claimed in the course of the PAT discussion is about building quality into 
products by design. Process improvements should be performed in a directed manner on the 
basis of detailed quantitative knowledge about the underlying functional interrelationships. As an 
indispensable prerequisite, systematic experiments allow for the identification of influencing 
factors and for the development of a suitable simplified model idea. In this context, the design 
space is defined as the combinational range of the investigated parameters where the designated 
model maintains its validity. In terms of fermentation development, it is desired to extract the 
functional relationship between growth and product formation with a minimum of effort. 
Conventional batch and fed-batch control strategies enable the exploration of growth and product 
formation kinetics either under substrate conditions exceeding the decisive Ks-value or under 
substrate limitation. However, in the substrate limited fed-batch mode investigation of growth 
and product formation is restricted toward maximum growth rates. On the other hand, in excess 
of substrate significant amounts of overflow metabolites (e.g., acetate) are formed, which were 
shown to inhibit product formation (Luli and Strohl 1990, Jensen and Carlsen 1990, Roe et al. 
2002) and therefore distort the estimation of the pure π-µ-relationship. 

7 8 9 10 11 12 13 140

20

40

60

Process Time [h]

pO
2 [%

sa
t]

 

 

Standard PID control
Adaptive PID control



CHAPTER 1.  
• INTRODUCTION • 

 

7
 

Feed Pulse Control 
The probing control technique, first described by Åkesson et al. (1999), proved to be suitable to 
investigate product formation under near-maximal growth conditions without accumulation of 
substrate and inhibiting by-products. However, in the course of the presented work, the original 
concept was further extended by performing quasi continuous feed pulses and immediate 
analysis of the corresponding respiratory responses in terms of pO2. By switching periodically 
between substrate limited and slightly unlimited states, the trajectories of substrate uptake and 
the corresponding biomass growth rate, at the same time avoiding overflow metabolism, can be 
identified. 

 

Figure 3. Typical behavior of the critical substrate uptake rate (green line) and the corresponding biomass 
growth rate (red line) after induction with 1 mM IPTG, here at the example of a heterologous 
recombinant protein expression of the reference protein HumaX (circles). As can be seen, the 
respective rates significantly drop with evolving target protein. The results were obtained by using 
the probing control technique and allow for the investigation of product formation kinetics under 
quasi maximal growth conditions without accumulation of inhibiting overflow metabolites, e.g., 
acetate. 

It is known, that upon induction of heterologous protein expression in high cell density cultures 
the biomass growth rate tends to dynamically change, primarily caused by the metabolic burden 
(Bentley et al. 1990, Bhattacharya and Dubey 1995, Glick 1995, Neubauer et al. 2003, 
Rozkov et al. 2004). The simple technique paves the way for an easy identification of such fast 
changing and complex growth trajectories. As an example, experimentally determined substrate 
uptake and biomass growth rate profiles for an Escherichia coli (E. coli) fermentation process 
after induction of the recombinant protein expression, are shown in Figure 3. Moreover, as the 
functional relationship between substrate uptake and respiratory response is used, the proposed 
controller is not restricted to a specific host, but instead is universally applicable in a wide range 
of aerobic fermentations. The feed pulse controller therefore provides a simple means to obtain 
the practical achievable design space, which plays a prominent role in the early stage of process 
development. It proved to be a valuable tool in fermentation processes for the identification of 
product formation kinetics of different recombinant proteins (NGIPR, HumaX). 
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Process Models 
A functional description of process know-how is a key requirement for a continuous 
improvement of process quality. A major approach in bioprocess engineering is to represent this 
knowledge by means of quantitatively exploitable process models. The models developed herein 
can be seen as a simplified representation of complex relationships observed during 
fermentation. They are results of detailed process analysis, which finally leads to an improved 
process understanding. The established models have been directly utilized for simulation studies 
by explaining the process variability in a knowledge-based cause-effect analysis. Moreover, 
quantitative process models, either mechanistic or data-driven, have been used for process 
optimization (Levisauskas et al. 2003), feedback control (Jenzsch et al. 2006b) as well as for 
model-based process supervision (Jenzsch et al. 2006a). Obviously, such models are of practical 
use, since they enable reliable prediction of the process behavior as well as the occurring kinetic 
process dynamics. And this prediction capability is a clear evidence of profound process 
knowledge. 

 
Figure 4. Model estimations (black solid line) using the proposed hybrid network approach together with the 

corresponding off-line measured values of biomass (circles) and both fractions of target protein 
HumaX (soluble – triangles, inclusion bodies – squares). The hybrid network is capable to accurately 
predict the state variables and their kinetics for various cultivation conditions, i.e., different growth 
rates and temperatures during fermentation. 

The description of the observed process characteristics in form of quantitatively exploitable, 
conventional models is a major problem, since it often turns out to be a time consuming 
procedure not always leading to satisfying results. It requires detailed knowledge about the 
cultivation process as well as a high degree of modeling experience to extract the complex 
underlying relationships among process variables and further to express the corresponding 
quantitative mechanistic terms. Thus, it was a main objective during this work to develop a 
universal approach for the identification and the quantitative prediction of state variables as well 
as their dynamical behavior. In the presented hybrid modeling approach, the specific rate kinetics 
is predicted by artificial neural networks (ANN) and is combined with the general valid mass 
balance equations. The implemented artificial neural networks were trained with on-line 
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measurable process data. By using nonlinear response functions the inherently nonlinear process 
dynamics were identified in a completely data-driven way. It resulted in an excellent prediction 
quality compared to conventional process models, and, moreover, circumvented the formulation 
of complex mathematical terms. Results obtained by the hybrid network approach are presented 
in Figure 4 at the example of the HumaX fermentation process. 

Since the developed approach works completely data-driven, there is no need for process 
specific model assumptions, and it is therefore not restricted to a certain cultivation process or 
host strain. This was demonstrated by the identification of completely different product 
formation kinetics (Gnoth et al. 2008, Gnoth et al. 2010a). Moreover, the system is perfectly 
suited as an on-line state estimation and process supervision tool, because all required inputs for 
the hybrid network are real-time accessible.  

Process Optimization 
Incorporating process know-how into quantitatively utilizable models is essentially the basis for 
directed process optimization procedures. With the presented approach as well as with 
conventional models process design studies are easy to be performed. Once the network is 
trained, optimal strategies for the used network inputs are determined by common optimization 
search routines. 

 
Figure 5. Comparison of central state variables characterizing the quality and the performance of the 

fermentation process for production of the recombinant therapeutic protein HumaX. After model-
based process optimization (green), the mass of desired soluble protein was increased (upper right), 
whereas the unwanted inclusion body fraction (lower right) was suppressed concomitantly. The 
specific biomass growth rate as well as the fermentation temperature after induction were identified 
to strongly affect soluble protein formation. 

Results of practical validation experiments after numerical optimization are exemplarily shown 
in Figure 5. Here, the aim was to maximize the expression of the soluble protein fraction of the 
heterologous protein HumaX simultaneously suppressing the undesired inclusion body fraction. 
In contrast to the situation of just evaluating single biomass and product values, the knowledge 
about the underlying dynamics enables the design of an optimal process considering the 
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dynamical changes. In this special case, the specific growth rate as well as the fermentation 
temperature after induction were manipulated to meet the optimization goal. It can immediately 
be seen that the proposed optimized process control led to an increase of the desired soluble 
protein fraction and additionally to a suppression of unwanted inclusion bodies.  

Figure 5 reveals the general idea behind the development of process models. With the 
quantitative knowledge of the process dynamics it is possible to identify critical parameters 
affecting the process (Franco-Lara and Weuster-Botz 2005, Zheng et al. 2005, Kavanagh and 
Barton 2008). These parameters are available to be subsequently optimized in a knowledge 
based way and/or used for advanced feedback control to increase process performance. 

Feedback Control  
In real industrial environment disturbances may appear which cannot simply be compensated for 
by a robust process operation. In order to guarantee that even then the process will follow the 
desired paths, the advice in PAT is to use control in the engineering sense (Lee et al. 1999). 
Control strategies are intended to actively manipulate the actual process in such a way that it 
maintains a desired state (setpoint). The overall aim is to ensure a high batch-to-batch 
reproducibility of the process, which is tantamount to a consistent quality of output materials and 
the final product. 

Generally, the major objective is to maximize the amount of the desired protein. This mass mp 
can be represented as a time integral of the specific product formation rate π and the target 
protein expressing biomass x within a certain time interval of cultivation. The more cells are 
formed, the more protein mp can be produced. Thus, manufactures are interested in high cell 
density cultivations (Lee 1996, Riesenberg and Guthke 1999). However, a high number of cells 
is not sufficient to get high amounts of product. Essentially, these cells have to perform well and 
this performance property is characterized by the specific product formation rate π. Both 
variables must, in theory, simultaneously reach values as large as possible to maximize the mass 
of target protein mp. In this regard, the primary influence variable for both is the specific biomass 
growth rate μ. This correlation is trivial for x, but in most industrially relevant fermentations it 
was found that it is also valid for π (e.g., Neidhardt et al. 1990, Pirt 1994). The reason is that cell 
replication needs a well running and efficient protein formation machinery, which is obviously 
the case for foreign protein production as well. 

In practice, operators have to keep in mind that there is a trade-off between the specific growth 
rate μ and the product formation performance of the cells. So it is not always advisable to 
maintain µ as high as possible in order to achieve maximal final target protein values. The 
optimal control strategy is dependent on the quantitative π(μ)-relationship, which is a function of 
several influencing factors, e.g., host system, type of heterologous protein, nutritional conditions. 
A typical example of such a π(μ)-relationship for a recombinant, soluble protein expressed in the 
cells’ cytoplasm is presented in Figure 6. In this particular case, the curve depicts a maximum at 
about 0.12 h-1. Hence, in order to keep the performance with respect to recombinant protein 
production as high as possible, the best solution is to keep cells’ specific growth rate at the 
specified value. 
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Figure 6. Specific product formation rate π for the HumaX production as a function of the specific biomass 

growth rate µ. 

From the physiological point of view, μ is obviously the preferred control variable. Many 
bioprocess engineers considered μ control as the method of choice (e.g., Shioya et al. 1985, Lee 
et al. 1989, Paalme et al. 1990, Riesenberg et al. 1991, Yoon et al. 1994, Levisauskas et al. 
1996, Soons et al. 2006). In this context, “Generic Model Control” proved to be a simple model-
based technique well suited for µ control (Preuß et al. 2000, DeLisa et al. 2001, Repsyte and 
Simutis 2006). However, specific growth rate control has a fundamental problem. As shown by 
Jenzsch et al. (2006c), variations in the biomass concentration, for instance, caused by different 
amounts of inoculum, inevitably lead to different trajectories of biomass during fermentation. 

A further step toward a robust and precise control technique, which, by the way, avoids indirect 
state estimation, was done by controlling the total cumulative carbon dioxide production rate 
tcCPR. It turned out, that this variable was perfectly suited to match all requirements for 
bioprocess operation. The tcCPR mirrors the respiration of the cells, which in turn directly 
correlates with the actual total amount of biomass and thereby with the specific biomass growth 
rate, as well. Jenzsch et al. (2007) demonstrated the applicability of this approach for the 
production of recombinant proteins in E. coli. In the course of this work tcCPR control was 
improved with respect to the relative deviation from the setpoint through integration of the 
control algorithm into the novel process control system SIMATIC PCS 7 (Kuprijanov et al. 
2008). It is shown, that the control technique is a ready-to-use application, mainly due to its 
simple integration into industrial biopharmaceutical production environment. Besides that, an 
outstanding advantage is the exclusive use of a global variable measured by common off-gas 
analyzers. This leads to a high degree of batch-to-batch reproducibility in biomass and target 
protein. The most important advantage from such tight control is taken in downstream 
processing. Because of the lower variability of the product concentrations, it can be run much 
easier with smaller losses of product and maybe with a lower number of processing steps. 
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Fault Detection and Process Supervision 
Feedback control algorithms were shown to enable a compensation of randomly appearing 
process disturbances and therewith to increase process reproducibility. However, in feedback 
control, the controller assumes measurement devices, which provide correct information about 
the changes of the controlled variable. Now, imagine a situation where process analytics depicts 
systematic errors, e.g., due to sensor drifts, sampling and instrumentation faults, or even worse, 
completely fails. In those cases, feedback control is not capable to work properly. As the 
controller is not able to differentiate between normal process data and process errors, faulty 
measurement signals are misinterpreted by the controller causing completely wrong control 
actions. In the worst case, the actual fermentation deviates from its specification limits, if the 
abnormal process behavior is not detected as early as possible by the process operator. 
Moreover, industrial experience shows that manual supervision of process data and control 
actions by the process operator is time consuming and requires a certain degree of fermentation 
experience. 

Consequently, there is a strong need for automated fault detection and supervisory systems. The 
intention of these algorithms is to check process data for consistency simultaneously as feedback 
control actions takes place. In doing so, supervisory and feedback control complement each 
other, since, compared to feedback control, the data is treated on a much higher integral level. 
Obviously, the main task is to detect failures and to disclose inconsistencies in the process 
behavior. In cases, where process errors occur, alarms should be sent automatically to the 
operator. In a further step, automated fail-safe actions should be activated concomitantly 
enforcing the engineering control to enter a different program, for instance, switching over to a 
safe open-loop control mode. In this way, process supervision is understood as a means of 
continuous process verification, which is in the sense of ICH’s guideline Q8 (ICH 2005) an 
alternative approach to process validation where the manufacturing process performance is 
continuously monitored and evaluated. 

An easy and straightforward way to check process data for consistency is to apply simple 
balances. In this context, mass, carbon and degree of reduction balances are of first choice. 
Elemental balances were often described (e.g., Chattaway and Stephanopoulos 1989, Nielsen and 
Villadsen 1994) but seldom used on-line during fermentation. These techniques are generally 
used in a first step for process supervision of measurement values, that are involved in mass and 
energy flow rates. 

A logical step is to combine balancing techniques with the accumulated quantitative process 
understanding to yield advanced process models. By this means, it is possible to check the 
consistency of measurement data as well as to reliably predict central variables and kinetics 
signaling process performance. More sophisticated model-based methods involve state 
estimators, e.g., Kalman filters, fuzzy and neural data-driven techniques or hybrid models 
(Dochain and Bastin 1990, Claes and van Impe 1999, Grewal and Andrews 2001, James et al. 
2002, Galvanauskas et al. 2004). 

In recent years, an often proposed method is statistical process control. This is not a control in 
the engineering sense, but a method of multivariate statistical data analysis. It does not execute a 
particular action on the process, but aims at process monitoring. With statistical process control 
techniques the process is supervised primarily in order to detect deviations beyond common 
cause variation. It operates independently from feedback controllers and detects problems caused 
by disturbances that cannot be addressed by the controllers. 
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Figure 7. A simple to understand example of the principal component analysis principle with real process data 

from recombinant protein production processes. Here, the oxygen uptake rate OUR and the carbon 
dioxide production rate CPR measurement data of about 30 fermentation runs were plotted to 
visualize the correlation between these two variables. It can be simply described by a linear 
regression line, which is equivalent to the first principal component corresponding to the original data 
matrix. 

In statistical process control, principal component analysis (PCA) is most often employed to get 
a quick overview and to detect deviations from the desired process behavior. PCA is a linear 
theory that tries to extract the static interrelationship between process variables. The idea behind 
PCA is to simply reduce the dimension of the space of related variables toward a lower-
dimensional representation space. Herein, the remaining variables appear to be independent of 
each other, i.e., the redundancy in the measurements is removed. In Figure 7 a plausible example 
is shown, constructed from on-line measured data of about 30 experiments performed of varying 
conditions with E. coli BL21 DE3 cells. The so-called correlation plot depicts a high degree of 
correlation between oxygen uptake rate OUR and carbon dioxide production rate CPR so that, if 
no measurement errors occur, the data can be reduced to a one-dimensional representation, a 
straight line. Deviations from this line could be used to characterize the inconsistency of a 
particular set of OUR and CPR data. 

PCA is not restricted to only two dimensions or to continuous processes operated at a single 
operating point. Extensions toward batch processes were proposed by several groups (Nomikos 
and MacGregor 1995, Wold et al. 1998). These techniques have also been applied to 
fermentation processes, where such multivariate statistical process control (MSPC) tools were 
useful to detect sensor faults and process deviations in seed, batch and fed-batch cultivations 
(Gregersen and Jørgensen 1999, Biccatio et al. 2002, Cimander and Mandenius 2002, Glassey et 
al. 2000, Lennox et al. 2002). 

As recombinant protein production processes are intrinsically nonlinear, the use of principal 
components, which is a linear theory, might be problematic (Shimizu et al. 1998). This 
restriction does not apply to nonlinear alternatives to PCA. The most prominent among them is 
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the autoassociative artificial neural network (aANN) technique developed by Kramer 
(Kramer 1991) for chemical engineering applications. The aANN operates for the most part 
analogous to PCA. The first step is to train a simple feedforward network, that maps n inputs 
onto m outputs (m<n) being practically independent of each other. The reduction of 
dimensionality of the input variables into the feature space is performed in the bottleneck layer. 
In order to make sure that this mapping describes the process behavior well enough, the reverse 
mapping of the bottleneck layer variables onto the input variables by a second feedforward 
network should be an overall result of the input layer onto itself. Training of the aANN is 
performed off-line on the basis of reference fermentations run under normal operating 
conditions. The result is a unique correlation structure of the process, which is expressed by a 
certain parameter set of the aANN weights. Subsequently, the trained network system is used on-
line to supervise an unknown running process in a way that the measurement data is compared 
with the correlation structure of the reference model. Deviations from these normal operating 
trajectories indicate process faults caused by abnormal variations in the monitored variables. The 
aANNs have been used in case studies of fault diagnosis in fermentation processes 
(Glassey et al. 1994, Ignova et al. 1995), but also at (even industrial) fermentations (Simutis and 
Lübbert 1998, Hiden et al. 1999). 
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CONCLUSIONS 
While being top in the development of new biologics, biopharmaceutical industry lags far behind 
other sectors of industry in terms of manufacturing technology. This led to the situation, that US 
Food and Drug Administration (FDA 2004) as well as the European Medicines Agency (EMEA 
2006) found themselves, in a reversal of their traditional role, pushing the industry they regulate 
to adopt more progressive approaches in quality and manufacturing systems (McKenzie et al. 
2006). They encourage manufacturers to utilize “quality by design” techniques and to develop 
manufacturing processes on the basis of mechanistic understanding - measures that have been 
introduced in other industries long years ago. By using modern optimization, supervision and 
control methods, recombinant therapeutic protein production processes can be operated with a 
very good batch-to-batch reproducibility. This property can be exploited in order to run the 
processes closer to the design-space boundary, which in turn results in higher product yields. The 
benefit is possibly enhanced even more in the subsequently performed downstream processing 
steps, where the small variability in the raw product stream results in reliable and reproducible 
purification steps. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8. Hierarchical structure of the fundamental concept, which is intended to be practically implemented. 

First, special emphasis is laid on the improvement of the quality of measurement data, a point that is 
often underestimated or even completely skipped by process operators. Increasing the signal-to-noise 
ratio directly results in an improved process understanding, which basically assists in developing 
fundamental process interrelations into quantitative models. These models offer opportunity to 
optimize the process performance by manipulating central influence variables in a knowledge based 
way. In a next level, advanced feedback control techniques are implemented to combat process 
variations and to increase the batch-to-batch reproducibility. Finally, the intention of process 
supervision is the continuous check for consistency of measurement data, the on-line detection of 
critical process errors, and, in a consequent step, the activation of backup systems for automated fail-
safe operation within the specification limits. 
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Quality is not the only aspect calling for the techniques described here. Extremely high and still 
increasing costs for the new drugs will no longer be tolerable by the authorities. That is why the 
development and manufacturing costs must be reduced in future. Hence, there is a strong focus 
on productivity and manufacturing efficiency as well as on rapid process development. As with 
quality assurance, it is mandatory to initiate the development of these topics on the basis of more 
comprehensive mechanistic process understanding and with manufacturing feasibility in mind. It 
should be emphasized, that the process operational strategy can only be as good as the 
knowledge about the process behavior and dynamics that can be made quantitatively available to 
process optimization studies. Therefore, quantitative models describing the process aspects 
relevant in keeping the process objectives under control, may they be mechanistic or data-driven 
ones, are not simply a play with computers, but tools indispensable for optimizing the 
benefit/cost ratio. 

The broad PAT framework embedded in the latest initiatives of FDA and EMEA will serve to 
support the conceptual idea of this dissertation. Its practical application in fermentation processes 
for the production of recombinant therapeutic proteins will be discussed. The techniques are 
designed to achieve a high process performance and a robust process operation. In this context, 
process robustness in terms of a high degree of batch-to-batch reproducibility, is obtained by the 
consequent use of tools as suggested within PAT (Gnoth et al. 2007). Figure 8 summarizes the 
specific topics as well as the order to be treated in the present thesis. One of the major objectives 
of this thesis was the ease of implementation as well as the simple transferability of the methods 
proposed. These methods were tested at different recombinant proteins. The work provides 
insofar tools for the application in industrial as well as in the research process environment. 

Basically, the work starts with the detailed evaluation of measurement data, both on-line and off-
line available, and the subsequent identification of critical process parameters. These parameters, 
which dramatically affect the measurement noise, are explicitly analyzed and the resulting 
functional relationships are formulated in terms of quantitative utilizable models. Consequently, 
a model-based elimination of systematic measurement errors primarily results in a significant 
improvement of the overall measurement data quality. At the examples of the critical to control 
parameters pH and pO2 the gain-scheduling approach demonstrates to be absolutely beneficial 
for the measurement quality of fermentation data. These results were presented in two 
publications (Kuprijanov et al. 2008, Gnoth et al. 2010). 

Following the general conceptual idea, it will be shown, that the increased information content of 
measurement data is beneficial for the prediction quality of advanced process models as well as 
for advanced process control. First, process models are developed that quantitatively describe the 
observed process behavior. Especially the knowledge about the current product formation 
kinetics and its functional interrelationship with the specific growth rate is of primary 
importance. An approach that proved to be suitable for a quick and reliable identification of 
product formation as a function of different parameters was the hybrid artificial neural network. 
In this way, product formation kinetics of different types of target protein expression were 
identified. The use of this approach enabled the investigation and quantitative estimation of 
target protein formation as inactive insoluble inclusion bodies. The corresponding findings were 
published in Gnoth et al. 2007.  

In another case study the hybrid modeling approach was further demonstrated to be a valuable 
tool for the identification of formation kinetics of a soluble expressed heterologous protein as 
well as its competing formation as insoluble inclusion bodies. The trained model herein was 
exploited for a constrained process optimization of central process variables, where the 
formation of the soluble protein fraction was favored while almost completely suppressing the 
insoluble part. As the batch-to-batch reproducibility of the optimized results was sensitively 
affected by even small disturbances, advanced feedback control was applied. This ensured 
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process variability to fall within tight specification limits as well as a high degree of batch-to-
batch reproducibility. Gnoth et al. 2010a summarized the investigations regarding this topic. 

Finally, as feedback control cannot handle process faults, which inevitably appear in 
fermentation processes, a system of superior fault detection and process supervision was 
implemented. It is capable of checking process data for consistency, identifies the responsible 
variables in cases when process faults occur and, if necessary, activates back-up systems that 
guarantee a secure process operation within the specification limits. A practical approach 
concerning the use of a fault diagnosis system and an automated fail-safe operation is presented 
in Gnoth et al. 2010b. 
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ABSTRACT 
A simple well-performing adaptive control technique for pH control in fermentations of 
recombinant protein production processes is described and its design procedure is explained. 
First, the entire control algorithm was simulated and parameterized. Afterwards it was tested in 
real cultivation processes. The results show that this simple technique leads to significant 
reductions in the fluctuations of the pH values in microbial cultures at a minimum of 
expenditures. The signal-to-noise ratio and thus the information captured by the pH signal were 
increased by about an order of magnitude. This leads to a substantial improvement in the noise of 
many other process signals that are used to monitor and control the process. For instance, 
respiratory off-gas data of CO2 and its derived carbon dioxide production rate signals from the 
cultures carry much less noise as compared to those values obtained with conventional pH 
control. Detailed process analysis revealed that even very small pH jumps of 0.03 values during 
the fermentation were shown to result in pronounced deflections in CO2-volume fraction of 8 % 
(peak to peak). The proposed controller, maintaining the pH within the interval of 0.01 around 
the setpoint, reduces the noise considerably. 

 

 

 

 

 

 
This paper has been published in Applied Microbiology and Biotechnology: 

Gnoth, S., Kuprijanov, A., Simutis, R., Lübbert, A., 2010. Simple adaptive pH control in bioreactors using gain-
scheduling methods. Appl. Microbiol. Biotechnol. 85: 955–964.  



CHAPTER 2. 
• SIMPLE ADAPTIVE PH CONTROL IN BIOREACTORS USING GAIN-SCHEDULING METHODS • 

 

24
 

INTRODUCTION 
Temperature T and pH belong to the first choice of variables that are to be controlled in 
industrial fermentation processes. This is due to the fact that the specific growth (μ) and product 
formation (π) rates sensitively depend on T and pH (Nielsen and Villadsen 1994, Johnston et al. 
2002). As the μ(pH) curve often depicts a broader and flatter maximum as compared with the 
μ(T) relationship, pH control was not given much attention. Hence, in practice, simple 
conventional proportional integral derivative (PID) controllers are installed at most bioreactors. 

In the context of the current process analytical technology (PAT) initiative, process 
reproducibility is a lively discussed topic. The batch-to-batch reproducibility can significantly be 
improved with advanced control techniques that tightly keep the process' key variables, such as 
biomass x or the specific growth rate μ, on predefined trajectories. Improved controllers need on-
line measurement data reflecting the metabolic activity of the cells. First choice are 
measurements of the volume fractions of O2 and CO2 in the fermenters' vent lines and the 
oxygen uptake as well as the carbon dioxide production rates (CPR), which are determined from 
them. Examples of such advanced control techniques are RQ control (Zeng et al. 1994, Franzen 
et al. 1996), the control of the specific growth rate μ (Shioya 1992, Levisauskas et al. 1996, 
Soons et al. 2006, Wang et al. 2006), the total biomass control (Jenzsch et al. 2006a), or the total 
cumulative carbon dioxide production rate control (Jenzsch et al. 2007).  

If the on-line signals from the off-gas analyzers are used to improve the batch-to-batch 
reproducibility by means of advanced control, the success depends on the noise in the 
measurement signals. Carbon dioxide production rates derived from exhaust gas analyzer data 
are only accurate if pseudo steady-state conditions can be assumed in the liquid media. For 
instationary systems, e.g., in cases of fluctuating pH values, the true CPR may be different to that 
estimated from the measured CO2 volume fractions. (Royce 1992, Spérandio and Paul 1997). 
The reason is that the reaction of dissolved CO2 with water and further the dissociation to 
bicarbonate sensitively depend on the pH value, leading to additional CO2 accumulation or 
dissolution effects in the liquid. Hence, it is straightforward to avoid pH fluctuations as far as 
possible and thus to look for improved controllers in order to increase precision by which pH is 
controlled. This will, consequently, lead to an increase in the signal-to-noise ratio in the key on-
line signals of fermentations such as the carbon dioxide production rate.  

Here we present a simple adaptive pH controller that significantly reduces the fluctuations in the 
pH and the corresponding base consumption signal during the entire fermentation process by 
dynamically adapting the controller parameters to changes in the process' dynamics. For that 
purpose, we use the gain-scheduling technique. We start the discussion with a sensitivity analysis 
and a simulation of the controller dynamics. Subsequently, the controller’s parameters are 
determined followed by the implementation of the controller in microbial cultivation processes 
producing recombinant proteins. 

MATERIALS AND METHODS 

Experimental Setup 
All cultivations were performed in a B. Braun 10-Lbioreactor Biostat-C, entirely operated in fed-
batch mode, i.e., no initial glucose was present and substrate was added directly after 
inoculation. The experiments were fully documented in a central database and are identified by 
their consecutive 'study numbers', e.g., S486, which appear in some of the plots in the following 
text. The feeding profile was designed according to Jenzsch et al. (2006b). This assures substrate 
limited conditions direct after inoculation and a high degree of batch-to-batch reproducibility. 
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The feeding solution consisted of glucose with a concentration of 400 g L−1. It contained the 
same composition with respect to mineral salts as the initial cultivation medium, i.e., Na2SO4 
2 g L−1, (NH4)2SO4 2.46 g L−1, NH4Cl 0.5 g L−1, K2HPO4 14.6 g L−1, NaH2PO4×H2O 3.6 g L−1, 
ammonium-hydrogencitrate 1.0 g L−1, MgSO4×7 H2O 1.2 g L−1, trace element solution 2 ml L−1. 

Two BL21(DE3)-strains with antibiotic resistance against kanamycin/ampicillin were used in the 
cultivation studies. In all cases the expression of the recombinant protein took place under the 
control of the T7/lac promoter upon induction with isopropylthiogalactopyranoside. The first 
host-system Escherichia coli BL21, harboring the plasmid pET11a EGFP, releases the green 
fluorescent protein (GFP) in its active form into its cytoplasm, whereas the second one expresses 
a commercially important recombinant protein (here referred to as HumaX) in its soluble form 
and as inclusion bodies. 

Off-gas analysis was performed on-line with a paramagnetic sensor (Maihak Oxor 610) for O2 
and an infrared detector (Maihak Unor 610) for CO2. The dissolved oxygen concentration was 
monitored with an Ingold pO2 probe (Mettler Toledo InPro 6800) and maintained around 
25 %sat by increasing the airflow rate and subsequently the stirrer speed. Additionally, a 
fluorescence pO2 probe (Presens) was applied as a redundant measurement device. pH was 
measured with another standard Ingold-probe (Mettler Toledo 405-DPAS-SC-K85-120) 
connected to a 16-bit transmitter (Knick) and controlled by appropriately adding NH4OH 
solution (25 % w/w) to the culture. Note that no special pH probe is needed. In order to quantify 
precision and random error part of the pH measurement, a long-term experiment (15 h) under 
defined conditions was conducted where measurement values were recorded every 9 s. For that 
purpose pH-buffer 7 was used at a controlled temperature of 25 °C. Signal values with a 
difference of pH 0.0004 could be distinguished and the nominal standard deviation of the 
measurement noise was measured to be 8e-4, saying that the predominant part of the later 
observed pH variations in fermentations accounts for systematic errors. The base addition was 
measured on-line by means of a balance. Substrate feeding was conducted with a gravimetrical 
feed rate controller (Sartorius) connected with a balance (Sartorius). 

Off-line measurements were performed with time increments of half an hour: final biomass 
concentrations around 60 g (DW)/L were usually obtained in the cultures reported about here. 
The values were estimated from OD600 measurements performed with a spectral photometer 
(Shimadzu UV-2102PC). Additionally, some dry weight measurements were performed in order 
to validate the available correlation between biomass dry weight and the OD600 values. Glucose 
concentration was quantitatively determined by YSI-Glucose-Analyzer (Yellow Springs). 

Gain-Scheduling Controller 
In cases where pH fluctuations have to be kept very small, the conventional PID controllers do 
not work properly as the process dynamics in batch and fed-batch procedures, most often applied 
in industry, cannot be considered constant. With changes in the dynamics, the optimum 
controller parameters also change so that the controller performance may become insufficient. A 
straightforward measure to cope with this problem has been automatic adaptation of the 
controller parameters to the changes in the dynamic behavior of the culture. In literature, model-
aided adaptation procedures are proposed for this purpose. In industry, however, these are 
considered difficult and not simple to use. Hence, there is a need for simple transparent 
techniques of controller parameter adaptation. Gain-scheduling is an advanced PID control 
technique well suited for nonlinear processes where the process dynamics are varying with the 
operating conditions (Cardello and San 1988, Astrøm and Hägglund 2006) such as the dynamics 
of biotechnical production processes that change drastically during the cultivations 
(Franzen et al. 1996, Shuler and Kargi 2001). 
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Gain-scheduling control can follow rapid changes in the process dynamics, if values or estimates 
of quantities signaling the corresponding changes in dynamics, can be measured with a 
sufficiently small delay time. Possible applications of the gain-scheduling technique for control 
of biotechnological processes have already been discussed in literature (Levisauskas 1995, 
2001), but to our knowledge, the technique has not yet been practically used in bioprocess 
engineering, because the most important variable that reflects changes in bioprocess dynamics - 
the absolute and the specific biomass growth rate - normally cannot be measured on-line. 
However, in cases where the biomass growth rate can be indirectly estimated from the carbon 
dioxide production rate or other biomass growth rate estimators, gain-scheduling algorithms can 
be easily implemented and used for control of biotechnological processes. A block diagram of 
the presented control system working with gain-scheduling is shown in Figure 1. The system has 
an inner loop composed of the process and the controller, and an outer loop which adjusts the 
controller parameters upon changes in the process dynamics. 

 
Figure 1. Block diagram of a PID control system for adaptive pH control where gain-scheduling is used to 

adapt the controller to changes in the process dynamics. 

RESULTS 

pH Dependency of the Off-gas Volume Fraction yCO2  
Microorganisms transfer CO2, a main metabolic product, into their environment in dissolved 
form. Their activity is characterized by the carbon dioxide production rate CPR. In aerated 
bioreactors, main part of the dissolved CO2 is transferred into the dispersed gas phase. This 
transfer rate is usually described by the corresponding volumetric rate, the carbon dioxide 
transfer rate CTR. With the gas throughput, the carbon dioxide finally leaves the reactor through 
the reactor's vent line, where the CO2 volume fraction yCO2 [LCO2 /LGas] is measured by means of 
infrared sensors or mass spectrometers. 

The CO2 concentration out
2CO  in the gas leaving the culture broth is primarily determined by the 
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where ε is the gas holdup, MCO2 the molecular weight of CO2, Qin and Qout are the volumetric gas 
flow rates in the inlet and outlet gas and in

2CO  the concentration of CO2 in the gas supply. 

The response in the concentration Sensor
2CO  reaching the exhaust gas sensor is delayed in the 

gaseous headspace volume and the analyzer. Assuming a time constant TN we can describe this 
time delay by 

( )Sensorout

N

Sensor

COCO
Tdt

dCO
22

2 1
−⋅=         (2) 

The corresponding volume fraction recorded by the off-gas analyzer is  

out
SensorSensor

CO p
TRCOy ⋅⋅

⋅=
1000

22         (3) 

Compared to oxygen, CO2 has a much higher solubility in water and, additionally, dissolved 
L
2CO  reacts with water to form bicarbonate. The conversion of dissolved carbon dioxide into 

bicarbonate leads to a dynamic change in the dissolved CO2 concentration. This is considered by 
the CO2 balance: 
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Royce (1992) showed that in real cultivations the rate can simply be described by 

a
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L

CO K
HCOkCOkR

−− ⋅
⋅−⋅= 3

2212
10        (5) 

depicting the pH-dependency and the influence of the bicarbonate concentration −
3HCO  on the 

rate by which CO2 is removed from the liquid phase by chemical reaction. k1 and k2 are reaction 
constants whereas Ka represents the carbonic acid dissociation constant.  
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Upon changes in the pH of the culture, significant changes in CTR appear even if CPR remains 
constant. Decreasing pH values lead to temporary increases in CTR and decreasing CTRs appear 
upon jumps to higher pH values. 

Figure 2 shows an experimental validation of this model with data from the E. coli cultivation 
system used in this work. The experiment was performed during the product formation phase of 
the E. coli cultivation. During the measurements, the airflow rate was kept constant at 20 sLpm 
and the feed rate remained at 100 g h-1. The mean carbon dioxide volume fraction in the vent line 
could therefore be considered roughly constant in that time interval at about yCO2=0.02 LCO2/LGas. 
Changes in the pH were induced by step changes in the base addition through the NH4OH-
solution supply line used for pH control. 

A positive pH shift leads to an immediate drop of yCO2 from which the culture recovers with a 
time constant of a few minutes. As can be seen from the figure, even very small pH changes of 
0.05 units lead to heavy effects in CTR. Moreover, pH changes in the order of 0.03 lead to 
measurable responses in the CO2 volume fraction in the vent line. 
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Figure 2. Systematic step changes of pH (step size 0.05 and 0.03) induced during the E. coli culture and 

corresponding answers in CTR as measured by the off-gas analyzer. The lower curve shows the pH 
profile (scale on the left axis); the upper two curves show the measured CTR (scale on the right axis) 
together with the profile computed with the model equations (Eqs. 1-6). 

As the pH variations in most real cultivation experiments are larger than 0.05, much of the CO2 
fluctuations in the off-gas of real cultures can be traced back to pH fluctuations. Consequently, if 
the off-gas CO2 values are to be used in advanced controllers for RQ-, biomass-, or tcCPR 
control, the pH value in the culture must be controlled very precisely in order maintain stationary 
conditions (see Eqs. 4 and 5), to avoid strong fluctuations and thus information losses from the 
off-gas measurement signals. 

RESULTS 

Modeling the pH Dynamics 
In most fermenters, pH control is performed with separately operating PID controllers, which 
respond to deviations in the pH values, measured with conventional electrochemical electrodes, 
from the desired set point profiles by pumping base or acid into the culture medium. The PID 
controller parameters are most often kept constant and are usually chosen in such a way that the 
controller can be used across the entire cultivation. 

A closer look at the performance of the pH control with a standard PID controller reveals that the 
change in the process dynamics of the culture is reflected by the changing fluctuations in the 
controlled pH value. Figure 3 shows a typical example of a culture in a laboratory-scale reactor, 
where pH is controlled with B. Braun’s DCU, using standard controller settings. The important 
point is that the control performance is not constant across the entire cultivation and the envelope 
of the deviations in the controlled pH signal resembles the variations in the feeding profile and 
the total carbon dioxide production rate (tCPR). The tCPR signal is known to reflect the 
metabolic activity of the cells and is dependent on both, the total biomass and the specific growth 
rate. 
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Figure 3. Illustration of pH control quality in a 10 L B. Braun Biostat reactor by means of measured 

trajectories of the substrate feed rate F, the controlled pH and the total carbon dioxide production rate 
(tCPR). The measurements were performed during a GFP production process. 

This observation can serve as the basis of a simple model. We used a Luedeking–Piret type of 
equation describing the carbon dioxide production rate as a function of the biomass formation. 
Accordingly, we also need an equation for biomass production. In our accompanying example of 
a recombinant protein production process, biomass growth is divided into two phases operated at 
different specific growth rates, i.e., the biomass and the product formation phase. The following 
simple equations are sufficiently accurate for controller design purposes: 
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xmxYtCPR ccx ⋅+⋅⋅= μ          (8) 

Where x [g] is the total biomass in the reactor, μ [h−1] the specific growth rate, tCPR [g/h] the 
total carbon dioxide production rate in the reactor and Ycx and mc are parameters of the 
Luedeking–Piret equation. During the biomass growth phase, cells were fed with an exponential 
substrate feed rate profile that adjusts growth to a relatively high specific growth rate μ=0.50 h-1. 
In the product formation phase, the specific growth rate was kept at its optimal value for product 
formation, which was μ=0.14 h-1 in this particular case. Between both process phases, i.e., in the 
time interval (9 h≤ t≤10 h), μ was ramped down linearly. For the Luedeking–Piret type 
expression in Eq. 8 the parameter values were determined to be Ycx=0.935gCO2 /gx and 
mc=0.065gCO2 /gx/h. 

The change of the pH value in the culture is a function of the metabolic conversion rate. It is 
dependent on the carbon dioxide production rate CPR [g/kg/h] and the rate of NH4OH 
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addition [mL/h] to the culture. As already mentioned, part of CO2 being produced during the 
cultivation process appears in the dissolved form and reacts with water primarily to form 
bicarbonate. Ammonium hydroxide is taken up by the cells as nitrogen source. To a practical 
approach, CO2 production and ammonium consumption can be considered correlated 
(Siano 1995). This relationship is changing during the cultivation process with the process 
dynamics. Thus, the pH change was assumed to be a nonlinear function of the key variables 
determining the dynamics of the process, for instance CPR (CPR and tCPR can be converted 
vice versa via the culture weight) and the specific gravimetric rate of base addition RBase/W. 
Here, an artificial neural network (ANN) is used to quantitatively describe pH changes in the 
reactor upon changes in the specific rate of base addition RBase/W, CPR and the overall amount 
of CO2 produced (cCPR). With this rate expression the dynamics of the pH signal is described 
by: 

),,,( PcCPRCPR
W

R
ANN

dt
dpH Base=         (9) 

where P represents the set of parameters (weights) of the artificial neural network. Numerical 
experiments showed that a simple feedforward ANN with a single hidden layer containing three 
nodes responding with hyperbolic tangent functions is sufficient for this purpose. For network 
training, the experimental data of pH, RBase/W, CPR, cCPR were taken from several cultivation 
runs. The training was performed using the cross-validation technique with MATLAB’s 
optimization subroutine lsqcurvefit (Mathworks). Typical simulation results together with the 
experimental observation are presented in Figure 4. 

 
Figure 4. Comparison of modeled (red) and measured (blue) pH signals. 
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For controller design it must be taken into account that the experimentally determined pH values 
(measured values) appear with some time delay τ with respect to the base addition. For that 
purpose, experiments were made with 5 kg mineral salt medium and a base addition rate of 
RBase=0.17 mLBase/s in order to identify the delay time τ. The estimate of time delay was τ=5 s. 
The pH sensor signal was computed as a simple delay function in the following way: 

)()( τ−= tpHtpHSensor          (10) 

Simulation of PID Controller 
For pH control we used the positional form of digital PID controllers. In this form the PID 
algorithm is expressed by: 
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where Ti and Td are the parameters of the integral and derivative terms, Tc is the control cycle, 
Kc the controller gain, and u0 the base level control signal. 

The advantage of the positional form is that it actually determines the full value of the action 
variable, which can more easily be supervised than its alternative, the velocity or incremental 
representation. This control expression is first used for simulation and then applied in 
experimental tests. Because of process nonlinearities (different slopes at increasing and 
decreasing pH values) it is difficult to apply the classical PID controller tuning rules, such as 
Ziegler and Nichols (1942) or Cohen and Coon (1953) for controller parameter tuning 
(Seborg et al. 2004). Hence, in such situations, PID controller parameters for bioreactors are 
most often tuned experimentally. So we did in a first approach. 

In the cultivation experiments we initially used a set of PID controller parameters, which were 
obtained after using Ziegler–Nichols rules (Astrøm and Hägglund 2006) and additional 
experimental tuning during some test cultivations. Despite that, the quality of the pH control was 
not sufficiently good in some intervals of the cultivation process. The simulated and the 
experimentally obtained results are compared in Figure 5 (left part). Since the simulated pH 
values reflect the experimentally observed structure in the pH fluctuations fairly well, the 
assumption in the ANN model (Eq. 9) that the pH changes are strongly correlated with CPR gets 
experimental support. Other possible contributions do not seem to make a big qualitative change 
in the profile. Hence, the experiments also suggest considering the CO2 formation rate a key 
influence variable on pH changes in the culture. 
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Figure 5. Comparison of simulated (red) and experimental (blue) results with the standard PID controller 

installed in a B. Braun DCU (left part). The same standard PID controller is compared with 
simulation results obtained with the gain-scheduling approach (right part). 

In order to improve the pH controller, the information contained in tCPR is processed using the 
gain-scheduling technique (see Figure 1). The straightforward way is simply to adapt the PID 
controller gain in the following linear way: 
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The parameter Ktcpr was obtained in a linear search procedure by simulation runs using process 
model and pH controller. The integrated absolute error (IAE) from the pH setpoint value was 
used as the criterion for quality of the controller (Astrøm and Hägglund 2006, Seborg et al. 
2004). 
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As further shown in Figure 5 (right part), with the simple adaptation of the gain, the controller 
performance can be improved significantly as compared to the normal PID controller and there is 
no longer a structure in the fluctuations that reflects the tCPR profile. The IAE for the controlled 
pH per analyzed time interval 2-15 h was: IAE=0.0236 pH-unit·h (adaptive PID), and 
IAE=0.1367 pH-unit·h (normal PID). 
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Experimental Test of the pH Control System 
The gain-scheduled controller designed according to the procedure described in the previous 
sections was first applied to E. coli cultures producing GFP. A typical result is depicted in 
Figure 6, which experimentally confirms the outcome of the simulation studies. The 
improvement as compared to the standard PID controller is evident. The integrated absolute error 
was IAE=0.0189 pH-unit·h for adaptive PID, and IAE=0.1887 pH-unit·h for normal PID (pH 
control starts at time=2 h). Hence, the adaptive controller improved the control performance by 
about one order of magnitude. 

 
Figure 6. Experimental result of the pH control with a gain-scheduled controller (blue) compared with a 

corresponding profile obtained with a standard PID controller (red) installed in commercially 
available controllers (B. Braun DCU). 

In order to show that the results are not restricted to a particular bioreaction system, fermentation 
runs with the same controller have also been conducted with another E. coli strain that expresses 
its product partly in form of inclusion bodies and partly in a soluble active form. Results are 
presented in Figure 7 giving an impression of the controller performance over the entire 
fermentation time. 
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Figure 7. Experimental results of pH controlled experiments. The upper two plots (red lines) are from standard 

controlled experiments (HumaX studies S357, S365), the lower two (blue lines) were controlled with 
a gain-scheduling controller (HumaX studies S496, S509). 

Simplification 
If the cultivation process is run under substrate limited conditions throughout, as it is usual in 
processes operated in the fed-batch mode, gain-scheduling control of pH can be simplified even 
more. By taking the actual feed rate F(t) instead of the total tCPR(t) profile, it is also possible to 
adapt the controller parameters. This possibility becomes obvious from Figure 3, which shows 
that the course of the feed rate profile F is very similar to that of the tCPR profile. 

In Figure 8, an experimental validation of this fact is shown. A pH profile is depicted that was 
measured during an experiment where the PID controller gain was adapted using the actual feed 
rate F. It can be seen that the controller performance is as good as in the cases discussed above, 
where the total carbon dioxide production rate tCPR was used for this purpose. For a comparison 
a pH profile of a culture where tCPR measurements were used for scheduling is also plotted in 
the figure. 
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Figure 8. Measured pH profile in a cultivation performed with a gain-scheduled PID controller using the feed 

rate F(t) as the scheduling variable (Study S486 - red line). For comparison, the corresponding profile 
of a study in which parameter adaptation is made with the tCPR(t) measurement (Study S485 - blue 
line) is shown. 

If gain-scheduling is the issue, we do not need an exact estimation of the particular variable used 
to monitor the changes in the process dynamics. Here it is sufficient to grossly quantify major 
changes. Thus, in cases of fed-batch cultures that entirely run in a substrate limited way, the 
equipment required to install this adaptive controller is much simpler, as the off-gas analyzer 
required for calculating tCPR is no longer necessary. Then it suffices to use the feed rate profile 
to adapt the controller gain. 

DISCUSSION 

Benefits of Improved pH Control 
Besides the primary aim of reduction of pH variation, the controller is of advantage in 
cultivations where the base consumption during pH control is used to estimate important state 
variables. The total amount of base, Base(t) [mL], that has already been added to the fermenter 
during pH control as well as its time derivative dBase/dt can be used to predict biomass and 
specific growth rates on-line (Iversen et al. 1994, Vicente et al. 1998, Jenzsch et al. 2006c, 
Sundström and Enfors 2008). The generally assumed approximation of the relationship between 
Base(t) and the state variables biomass x and the specific biomass growth rate μ is similar to the 
Luedeking–Piret approach: 

xµtY
dt

dBase
bx ⋅⋅= )(           (14) 

 

0 5 10 15
6.85

6.9

6.95

7

7.05

Process Time [h]

pH

 

 

S486
S485



CHAPTER 2. 
• SIMPLE ADAPTIVE PH CONTROL IN BIOREACTORS USING GAIN-SCHEDULING METHODS • 

 

36
 

where Ybx(t) is the yield coefficient of base-biomass as a function of process time, i.e., changing 
process dynamics. By combining Eqs. 7 and 14, the base consumption rate is a valuable signal 
for estimation of biomass growth and the specific biomass growth rate on-line. 

dt
dx

x
µ

dt
dBase

tYdt
dx

bx

⋅=

⋅=

1
)(

1

          (15) 

The estimation quality crucially depends on the quality of the base consumption rate signal and 
is significantly improved with the proposed pH control. The influence of the improved pH 
control on the estimates can be judged from the corresponding data shown in Figure 9. The 
comparison between conventionally and adaptively controlled experiments demonstrates that the 
base consumption signal in the adaptively controlled fermentation is significantly improved and 
therefore facilitates state estimation. 

 
Figure 9. On-line estimates of specific growth rates from base consumption. With gain-scheduling control 

(blue lines, HumaX studies S496, S509) the signal-to-noise ratio of the specific growth rate 
estimation becomes significantly better compared to that obtained from standard PID control (red 
lines, HumaX studies S357, S365). The improved signals are now more suitable and valuable for 
state estimation and monitoring techniques. 

Moreover, as already pointed out, pH is a key influencing factor for the concentration of CO2 
dissolved in water. Even small variations in pH cause significant changes in the CO2 volume 
fractions measured by the off-gas analyzer in the vent line (Royce 1992, Spérandio and Paul 
1997). This can easily be seen by comparing data from cultivation runs performed with standard 
PID and gain-scheduling control, as depicted in Figure 10. Consequently, the measurement of 
the respiratory quotient, a central monitoring variable of metabolic state, becomes less noisy 
when pH control is improved. 
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Figure 10. Effect of improved pH on carbon dioxide volume fraction observed by the off-gas analyzer in 

fermentations with standard PID control (red lines, HumaX studies S357, S365) and gain-scheduling 
control (blue lines, HumaX studies S496, S509) operated at a constant airflow rate Qin=1,200 L h-1. A 
closer look at two different fermentation time intervals shows that the measurement noise of CO2 is 
decreased due to a reduction in the pH fluctuations. 

Finally, an improved dBase/dt signal can also be used for process control purposes. Control of 
the total cumulative CPR was shown to lead to a perfect batch-to-batch reproducibility in 
microbial cultivations (Jenzsch et al. 2007). The detectors of CO2 in off-gas are most often based 
on infrared sensors. In cases where the tCPR signal fails, the faulty CO2 measurement signal can 
be replaced by an estimate based on the total base consumption Base(t). This allows keeping the 
controller running in a safe operational mode, provided the signal-to-noise ratio of this signal is 
high enough. The adaptive pH controller presented leads to Base(t) data that allow very good 
tcCPR signal estimates as shown in the experimental example depicted in Figure 11. In this 
example, this indirectly measured tcCPR signal was used to control the cultivation process. The 
difference to the reference process is very low. 

In conclusion, here we showed for the first time at real cultivation systems that gain-scheduled 
PID controllers are easy to apply for pH control in fermentation processes for recombinant 
protein production. As the key scheduling variable the total carbon dioxide formation rate is the 
natural choice. It allows continuously adapting the controller gain to changes in the dynamics of 
the cultivation process. If the entire cultivation is running under substrate limited conditions, the 
gain adaptation can be simplified even more. Then, the substrate feed rate profile can be used 
directly as the scheduling variable. The feed rate is available as a noise-free signal and does not 
require a costly off-gas analyzer. With both approaches the final pH fluctuations in the culture 
could be reduced significantly. This was demonstrated at several cultivation systems. Improved 
pH control also led to a largely increased signal-to-noise ratio of other important signals, e.g., the 
base consumption rate or the rate of CO2 appearance in off-gas. Both signals are often used in 
various process state estimation, monitoring, control and fault analysis tasks (e.g., Jenzsch et al. 
2007). 
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Figure 11. Fermentation controlled along a predefined total cumulative CPR profile. In the experiment, the 

tcCPR signal was estimated (red line) from the base consumption measured (blue line) during a 
fermentation where the pH was controlled with the gain-scheduled pH controller described above. 

Thus, with the proposed pH controller the central requirement of FDA/ EMEA (PAT) with 
respect to data quality and batch-to-batch reproducibility can be met in a simple way. The benefit 
of the improved controller is that it drastically reduces the variability of decisive process 
variables and therewith increases the performance of advanced controllers. 

Acknowledgments 
This work has been performed within the “Excellence Cluster Biotechnology” of the State of 
Sachsen-Anhalt and was financially supported by the Ministry of Science and Technology. We 
gratefully thank for that support. 

0 500 1000 15000

100

200

300

400

500

Time Steps

To
ta

l c
um

ul
at

iv
e 

C
P

R
 [g

]

 

 

tcCPR measured
tcCPR reconstructed



CHAPTER 2. 
• SIMPLE ADAPTIVE PH CONTROL IN BIOREACTORS USING GAIN-SCHEDULING METHODS • 

 

39
 

NOMENCLATURE 
B Base addition [g] 

in
2CO  Concentration of CO2 in the inlet gas [mol/LGas] 

out
2CO  Concentration of CO2 entering reactor’s headspace [mol/LGas] 

Sensor
2CO  Concentration of CO2 reaching off-gas sensor [mol/LGas] 

L
2CO  Concentration of CO2 in the liquid phase [mol/LLiquid] 

*
2CO  Saturation concentration of CO2 in the liquid phase [mol/LLiquid] 

CPR Specific carbon dioxide production rate [gCO2/(LLiquid·h)] 

CTR Carbon dioxide transfer rate [gCO2/(LLiquid·h)]  

tCPR Total carbon dioxide production rate [gCO2/h] 

cCPR Cumulative specific carbon dioxide production rate [gCO2/kg] 

ctCPR Cumulative total carbon dioxide production rate [gCO2] 

e Control error between setpoint and actual value [-] 
−
3HCO  Concentration of bicarbonate in the liquid phase [mol/LLiquid] 

IAE Integral absolute error [pH-unit·h] 

k1 Forward reaction rate constant of CO2 hydration [h-1] 

k2 Reverse reaction rate constant of CO2 hydration [h-1] 

akCO2
L  Volumetric mass transfer coefficient for CO2 [h-1] 

Ka Dissociation constant for carbonic acid [mol/LLiquid] 

Kc Basic controller gain [-] 

KtCPR Adaptive controller gain from tCPR measurements [h/gCO2] 

mc Maintenance contribution to tCPR [gCO2/gx/h] 

MCO2 Molecular weight of CO2 [g/mol] 

pout Pressure [Pa] 

Qin Inlet volumetric aeration rate [LGas/h] 

Qout Outlet volumetric aeration rate [LGas/h] 
R Universal gas constant [J/(K·mol) 

RBase Rate of base addition [mL/h] 

RCO2 Rate of CO2 hydration in water [mol/(LLiquid·h) 

T Temperature [K] 

Tc Control cycle [s] 

Td Differential time constant in PID algorithm [s] 

Ti Integral time constant in PID algorithm [s] 
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TN Delay time [h] 

u Control signal [-] 

VL Liquid volume in reactor [L] 

W Weight of liquid volume [kg] 

x Total biomass  [g] 
Sensor
CO2y  Volume fraction of outlet CO2 measured by off-gas  sensor [LCO2/LGas] 

Ybx Yield coefficient base – biomass [gBase/gx] 

Ycx Yield coefficient carbon dioxide – biomass [gCO2/gx] 

ε Gas holdup [LGas/LLiquid] 

µ Specific biomass growth rate [h-1] 

τ Time constant of pH electrode [s] 
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ABSTRACT  
Design and experimental validation of advanced pO2 controllers for fermentation processes 
operated in the fed-batch mode are described. In most situations, the presented controllers are 
able to keep the pO2 in fermentations for recombinant protein productions exactly on the desired 
value. The controllers are based on the gain-scheduling approach to parameter-adaptive 
proportional integral controllers. In order to cope with the most often appearing distortions, the 
basic gain-scheduling feedback controller was complemented with a feedforward control 
component. This feedforward/feedback controller significantly improved pO2 control. By means 
of numerical simulations, the controller behavior was tested and its parameters were determined. 
Validation runs were performed with three Escherichia coli strains producing different 
recombinant proteins. It is finally shown that the new controller leads to significant 
improvements in the signal-to-noise ratio of other key process variables and, thus, to a higher 
process quality. 
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INTRODUCTION 
Controlling the dissolved oxygen concentration in bioreactors that are used for recombinant 
protein production is commonplace. Usually, the objective is not to allow the pO2 dropping 
below a critical limit where the product quality is affected. It is, however, less known that a 
tighter pO2 control in the bioreactor significantly reduces product variability and considerably 
increases the batch-to-batch reproducibility. Both issues, tight feedback control and high batch-
to-batch reproducibility, are crucial in quality control in the course of the production of 
biopharmaceuticals and main goals of the Food and Drug Administration’s (FDA) process 
analytical technology (PAT) initiative. Besides this, many fermentation processes are finally 
limited by the realizable oxygen transfer rate (OTR) of the bioreactor system. These processes 
critically depend on the proximity the pO2 is maintained at the lowest possible value without 
negatively affecting the product formation rate. A well performing pO2 control allows 
optimization of bioprocesses with respect to the maximization of OTR, as the actual working 
point of the controller can be approached closer to the desired minimum controllable pO2 
setpoint. In this way, the amount of total biomass per amount of supplied air can be further 
increased. Additionally, as will be shown later, bad tuned controllers exhibit large variations in 
pO2 during fermentation, followed by significant fluctuations in pO2-related variables, i.e., off-
gas data of CO2 and O2. Consequently, the implementation of process models, state estimation or 
algorithms for biomass, product or growth rate estimation based on respiratory off-gas data is 
hindered. A strictly controlled pO2 leads to significantly lower noise levels on signals of all key 
process variables and, therefore, to an increased reliability of advanced models and monitoring 
systems (Kuprijanov et al. 2008). 

Controlling the dissolved oxygen concentration exactly to a given setpoint is difficult since 
various effects influence its actual value. As the dynamics of the fermentation processes are 
usually rapidly changing, classical proportional-integral-derivative (PID) controllers cannot be 
used for high-performance dissolved oxygen concentration control in bioreactors. Instead, 
parameter adaptive or model-supported controllers must be employed. Here, an improved gain-
scheduling controller complemented with a feedforward component is designed and tested in 
laboratory bioreactors operated with different Escherichia coli strains expressing recombinant 
proteins. It is shown that it performs much better in compensating for the most probable process 
distortions with influence on pO2 than the conventional pO2 controllers. For industrial 
environments, only very simple and robust controllers can be proposed. In this paper, we present 
a simple gain-scheduling approach which, combined with feedforward disturbance elimination, 
leads to very stable and tight pO2 control performance over the entire fermentation process. The 
approach is demonstrated at examples of concrete E. coli cultures but can easily be adapted to 
other systems. 

Advanced pO2 Control Algorithm 
Gain-scheduling is an advanced PID control technique well suited for nonlinear processes in 
which the dynamics are varying with time and the operating conditions (Åström and Hägglund 
1988, 2006, Åström and Wittenmark 1989). In bioprocess engineering, we are generally 
confronted with such processes. The dynamics of fermentation processes change drastically 
during the cultivation (Bastin and Dochain 1990, Shuler and Kargi 2001). Making use of gain-
scheduling techniques, it is preliminarily necessary to find suitable measurable variables or 
quantities that can accurately be estimated and carry enough information about changes in 
process dynamics. Gain-scheduling methods use the information about the process dynamics to 
adapt the parameters of PI or PID controllers. For historical reasons, the phrase gain-scheduling 
is used even if PID controller parameters other than the gain, such as the derivative time or 
integral time, are changed in the course of the process. A block diagram of a control system 
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working with gain-scheduling is shown in Figure 1a. The system has an inner loop composed of 
the process and the controller and an outer loop, which adjusts the controller parameters upon 
changes in the process dynamics. In fermentation processes, formation or consumption rates of 
metabolites and substrates appear to be a good choice of scheduling variables depicting changes 
in the process dynamics. They carry more information about the process dynamics than the state 
variables (concentrations of biomass, substrate, and product). The possibility of applying the 
gain-scheduling technique for bioprocess control has already been discussed in literature 
(Cardello and San 1988, Levisauskas 1995, Lee et al. 1990), but the technique has not yet been 
applied in bioprocess engineering because of the pretended complexity of the algorithms or since 
the most important variables, which reflect changes in bioprocess dynamics, e.g., the absolute 
and the specific biomass growth rate, could not be measured on-line. In this paper, we show that 
in cases where the biomass growth rate can be related to the oxygen consumption rate, the gain-
scheduling technique can easily be implemented and used for controller setting adjustments. We 
particularly demonstrate the performance of gain-scheduled PID controllers for dissolved oxygen 
concentration control in bioreactors. Most well-performing fed batch processes are kept under 
control by varying the substrate feed rate F. In this case, pO2 control can be improved exploiting 
the relationship between pO2 and its main influence variable, the substrate feed rate in a 
feedforward mode. This results in an improved control system that combines a simple gain-
scheduling feedback controller with a feedforward controller (Figure 1b). 

 

Figure 1. Block diagram of a PI-control system with gain-scheduling (a) and feedforward part, compensating 
for influences of substrate feed rate changes on the controller performance (b). 

MATERIALS AND METHODS 

Experimental Setup  
All cultivations were performed in a B. Braun 15-L bioreactor Biostat-C operated in the fed-
batch mode, i.e., no initial glucose and starting substrate addition directly after inoculation. The 
feeding profile was designed according to Jenzsch et al. (2006). This assured substrate-limited 
conditions directly after inoculation and a high degree of batch-to-batch reproducibility. The 
feeding solution consisted of glucose with a concentration of 400 g L−1. It contained the same 
composition with respect to mineral salts as the initial cultivation medium, i.e., Na2SO4 2 g L−1, 
(NH4)2SO4 2.46 g L−1, NH4Cl 0.5 g L−1, K2HPO4 14.6 g L−1, NaH2PO4×H2O 3.6 g L−1, 
ammonium hydrogen citrate 1.0 g L−1, MgSO4×7 H2O 1.2 g L−1 and trace element solution 
2 mL L−1. Three BL21(DE3) strains with antibiotic resistance against kanamycin/ampicillin were 
used in the cultivation experiments. In all cases, the expression of the recombinant protein took 
place under the control of the T7/lac promoter (Sambrook et al. 1989) after induction with 
isopropylthiogalactopyranoside (IPTG). The first host system E. coli BL21 pET11a EGFP 
releases the green fluorescent protein (GFP) in its active form into its cytoplasm, whereas the 
second one expresses a commercially important recombinant protein (here referred to as 

a) b) 
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HumaX), which is encoded in pET28a vector, in two fractions, i.e., dissolved form and as an 
inclusion body. The third strain expresses a commercially interesting protein (here named GIP) 
nearly exclusively in form of inclusion bodies. Off-gas analysis was performed on-line with a 
paramagnetic oxygen sensor (Maihak Oxor 610) for O2 and an infrared detector (Maihak 
Unor 610) for CO2. The dissolved oxygen concentration was monitored with an Ingold pO2 
probe (Mettler Toledo) and maintained around 25 % saturation (%sat) by increasing the airflow 
rate and, subsequently, the stirrer speed. Additionally, a fluorescence pO2 probe (Presens) was 
applied as an additional redundant measurement device. pH was measured by another Ingold 
probe (Mettler Toledo) and controlled by appropriately adding NH4OH solution (25 % w/w) to 
the culture. The base addition was recorded on-line by means of a balance. Substrate addition 
was conducted with a gravimetrical feed rate controller (Sartorius), which was connected with a 
balance (Sartorius). Off-line measurements were performed with time increments of half an 
hour: Biomass concentration was estimated from OD600 measurements performed with a spectral 
photometer (Shimadzu UV-2102PC). Additionally, some dry weight measurements were 
performed in order to validate the available correlation between biomass dry weight and the 
OD600 values. Glucose concentration was quantitatively determined by a YSI glucose analyzer 
(Yellow Springs Instrument), whereas acetate was measured by gas chromatography (Perkin 
Elmer) according to Vairavamurthy and Mopper (1990). 

Process Model 
Characteristic to fed-batch fermentation processes is that their dynamics significantly change 
with time. Hence, classical PID controllers are not expected to work accurately. PID controllers 
for the dissolved oxygen concentration lead to significant variation in some phases of the 
cultivation, i.e., the quality of the pO2 controller may be good in one process phase but bad in 
others, as shown in Figure 2. 

 
Figure 2. Typical experimental records of pO2 controllers based on the industrial standard, the PID controller 

with constant parameters. The controller performs well in some process phases, but bad in others. 
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Various processes affect pO2 in a real fermentation process for recombinant protein production. 
The most important influence variables are: airflow, stirrer speed, oxygen consumption rate 
(OUR) and more indirectly the substrate feed rate Feed(t). Airflow rate Qg and stirrer speed 
NStirrer are both taken as action variables for pO2 control in a sequential fashion. In the first phase 
of cultivation, pO2 concentration is usually controlled by manipulating the airflow rate Qg. 
During this short phase, pO2 control is uncomplicated and can generally be guaranteed using 
classical PI and PID algorithms. Problems with pO2 control usually appear later in the 
cultivation, when pO2 is controlled by varying the stirrer speed. In order to estimate the 
parameters of the gain-scheduling controller, we used a mathematical model describing the 
dynamics of the dissolved oxygen in the bioreactor. 

The concentration of dissolved oxygen O depends on the oxygen transfer rate OTR, i.e., the 
supply of oxygen from the aeration system of the reactor, and the oxygen consumption rate OUR 
of the cellular system. The balance equation for the dissolved oxygen O can be written as  
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   (1) 

where O* is the saturation concentration of dissolved oxygen. pO2 is used in bar, while in 
laboratory environments, this variable is usually scaled in percent of its saturation value. OUR 
[g kg-1 h-1] represents the oxygen uptake rate, X [g kg-1] the biomass concentration, μ [h-1] the 
specific growth rate and Nstirrer [rpm] the stirrer rotational speed. Because the mixing time 
constant in the laboratory reactor used is small as compared to the time constant of the pO2 
sensor as well as to the dynamics of the process, it was neglected in the model. The signal of the 
dissolved oxygen sensor Sensor

2pO  was modeled assuming a first order response system 
(Dang et al. 1977) with a time constant Tsensor and a time delay, τ. 

Following the usual mass transfer theory, the kLa value was assumed to depend on the stirrer 
speed only using the following equation: 

2)(10
a

stirrerL Naaak ⋅+=          (2) 

The parameters a0, a1, a2, Tsensor, and τ were identified using experimental data and Matlab’s 
optimization procedure lsqcurvefit. 

Active Experiments 
Prior to building an adequate model for an improved pO2 control, the relationships among central 
process variables have to be identified in fermentation runs switching off pO2 control and 
varying the stirrer speed manually. Investigating the dynamic response in pO2 upon step changes 
in the stirrer speed in a 10-L bioreactor, systematic experiments were carried out to generate 
informative data for that relationship. It is important to note that getting informative data, the 
measurements must be made available with sampling rates of at least 1 s-1, since the time 
constants of the relevant transfer processes are in the order of a few seconds only. Figure 3 
displays the experimental values of Nstirrer, pO2 and OUR, carbon dioxide production rate (CPR) 
across the entire cultivation process. Interesting to note is the influence of the stirrer speed on the 
respiratory data of OUR and CPR. Changes in stirrer speed lead to changes in oxygen and carbon 
dioxide transfer and are observed as peaks in the respective off-gas data. Therefore, optimal 
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tuning of pO2 controllers without great variations in the stirrer speed benefits signal quality of 
related off-gas measurements, which are central variables in advanced state estimation and 
monitoring systems. 

 
Figure 3. Results of active experiments for model identification. Response of the pO2 signal to a change of the 

stirrer speed of the bioreactor. Upper Part: pO2 control was deactivated and the stirrer was manually 
changed stepwise during the cultivation (working interval 350-950 rpm). Lower part: OUR and CPR 
measured during the same cultivation. The immediate step change of the stirrer speed leads to 
distortions in the off-gas signals of OUR and CPR. 

Model Identification  
Model identification, based on data from these measurements, resulted in the following 
parameter values for the kLa and pO2 sensor model: 

a0=−357 a1=1.06 a2=1.07 τ=9 s Tsensor=17 s 

Figure 4 shows a comparison between the experimental results and simulated values using the 
identified parameters. 

Despite the fact that quasi-steady-state model and experimental data differ somewhat, the model 
describes the dynamics of the pO2 upon changes in the stirrer speed accurately enough for our 
purpose. In this respect, one must take into account that it is not necessary for the model to 
predict the pO2 values with high accuracy in quasi-steady states; it only must be able to follow 
the gross changes in the dynamic response characteristics. It is the controller, which must force 
the process to tightly follow the setpoint profile. From this point of view, the model can perfectly 
be used for controller design. This model was applied to estimate the parameters for gain-
scheduling of PI controller. 
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Figure 4. Measured and simulated signals of pO2 in a cultivation process: Upper graph: entire cultivation 

process; Lower graph: detailed representation. 

Estimation of Gain-Scheduling Control Parameters 
For the gain-scheduling pO2 control, we used the following representation of digital PI 
controllers: 

0
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        (3) 

This equation can easily be transformed into the velocity form of PI controllers, which is more 
conveniently used in practical applications: 
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e(k) is the control error, Ti the integral time, Tc the control cycle, Kc the controller gain, and u0 is 
the initial value of the controller action. 

For controller parameter tuning, we used the well known frequency response method described 
in Åström and Hägglund (2006). This method is based on knowledge about the point on the 
Nyquist representation of the process transfer function, where the Nyquist curve intersects the 
negative part of the real axis. For historical reasons, the point has been referred to as the ultimate 
point. The controller gain at this point is called ultimate gain, and the corresponding oscillation 
period is the ultimate period.  

In the frequency response test, the gain, Kp, of the P part of the controller is increased starting 
from zero until the system begins to oscillate. When Kp is set such that a constant oscillation 
(neither increasing nor decreasing amplitude) is reached, that value is called the ultimate gain 
and is denoted Ku. The oscillation will generally be periodic with some period Tu. 
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Figure 5. Measured and approximated values of the controller parameter Kc (upper graph) and for Ti (lower 
graph) for different values of OUR. 

The process model described above was used to determine the parameters Ku and Tu. These 
parameter values are later used for controller design. In this investigation, the setpoint of the 
dissolved oxygen pO2sp, is assumed to be 25 %sat, and the oxygen uptake rates, OUR, are 
allowed to vary in the interval (1.5 ≤ OUR ≤ 11 g kg-1 h-1). The resulting values of the ultimate 
gain, Ku, and the period, Tu, are processed in a straightforward way to determine the controller 
parameters Kc and Ti making use of the well-known method of Ziegler and Nichols (1942, 
Seborg et al. 2004). For that purpose, the following relations were used: 

uiuc TTKK ⋅=⋅= 8.04.0        (5) 

In Figure 5, the measured values of Kc and Ti are compared with those approximated by means 
of a linear regression with the oxygen uptake rate, OUR, which resulted in: 

OURKc ⋅+= 62.038.0          (6) 

OURTi ⋅−= 2.281           (7) 

The simple result of this discussion is that the PI controller parameters Kc and Ti can linearly be 
related to the actual oxygen uptake rate, OUR, which is signaling changes in the process 
dynamics. The latter is available on-line from off-gas analyzers, i.e., O2 and airflow values 
measured on-line during the fermentation process. In other words, the simple linear relationships 
(Eqs. 6 and 7) between Kc and Ti and OUR can be used for an automated on-line adaptation of 
the controller parameters, which are normally kept constant in classical PI controllers. 
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Improving the Controller by a Feedforward Component 
In substrate-limited processes, the substrate feed rate is the most important variable influencing 
pO2. Consequently, if the substrate feed rate Feed(t), which is either known beforehand or 
measured on-line, changes rapidly during the cultivation process, the information can be used in 
a feedforward fashion to improve the quality of the pO2 control. The simplest way is using a 
static approximation: A simple linear relationship between substrate feed rate and the stirrer 
speed can be derived from the experimental data depicted in Figure 6. This feedforward control 
component leads to a significant improvement of the pO2 control performance, as the results will 
show. 

 
Figure 6. Experimental determination of a static relation between substrate feed rate and stirrer speed rate, 

when pO2 is controlled at pO2sp=25 %sat. 

The linear fit can directly be taken as the feedforward part of the controller. It sufficiently 
approximates the stirrer speed rate, which is necessary to keep pO2 around 25 %sat for a given 
substrate feed rate: 

FeedbbN ⋅+= 10           (8) 

In this particular case, the regression parameters are b0=360 rpm and b1=1.8 rpm g-1 h-1. The 
equation is also useful for pO2 control when the feedback component in the pO2 controller is not 
activated. In this case, the equation can be used in the sense of a simple feedforward control. As 
we are using the velocity form of the controller, the change in the action variable u due to the 
feedforward component is: 

))1()((1 −−⋅=Δ=Δ kFeedkFeedbNu f        (9) 

Finally, the feedforward and the feedback algorithm must be combined. The final change in the 
action variable then simply becomes the sum of the individual actions: 
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and the control signal is iteratively computed from the previous value by adding the actual total 
change Δua: 

)()1()( kukuku aaa Δ+−=          (11) 

The feedforward part of the control algorithm is only important where the substrate feed rate is 
changing rapidly. In other cases, good controller performance can be guaranteed with the simple 
gain-scheduled PI feedback controller. 

RESULTS 

Gain-Scheduling/Feedforward Controller Simulations 
Tests of the gain-scheduling/feedforward controller and comparison of its performance with that 
of traditional PI controllers can initially be performed numerically using the process model 
described above. 

Representing the noisy behavior of pO2 in real cultivation, the output of the process model was 
corrupted with random measurement noise (zero mean, STD=0.5 %). 

Additionally, a kLa disturbance was considered in order to simulate the controller’s reaction upon 
an addition of a pulse of an antifoam agent to the culture. For such a situation, a reduction in the 
kLa value of 30 % was assumed. Such a large jump in kLa upon antifoam pulses is typical for real 
cultivation processes. In the simulation described here, this distortion was made at the 
fermentation time t=8 h for 6 min. 

Moreover, a distortion in substrate feed rate was simulated at fermentation time t=12 h. At that 
time, the feed pump was assumed to be distorted for 6 min. During this time interval, the feed 
rate was reduced by 35 % from its setpoint profile. In order to simulate this distortion, an OUR 
step was calculated from the substrate feed rate, using a linear relationship. 

A further problem with pO2 control appears upon induction, which was performed 
experimentally by addition of IPTG. In the simulations, induction was assumed at the 
fermentation time t=9 h. After induction, the specific substrate uptake rate suddenly drops. 
Hence, the feed rate must be suddenly be decreased as well. This leads to a decrease in the OUR 
and, thus, at constant mass transfer characteristics, to an increase in pO2 when the pO2 controller 
cannot cope adequately with the rapidly changing oxygen demand. 

The simulations of the pO2 signal depicted in Figure 7 were computed for the three controller 
alternatives: the conventional PI controller (upper graph), the gain-scheduled controller 
(middle), and the gain-scheduled/feedforward controller (lower graph). 
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Figure 7. Upper graph: pO2 profiles simulated for a PI-controller (tuned for the working point   

OUR=5 g kg-1 h -1). Middle: gain-scheduled PI-controller. Lower graph: gain-scheduled/feedforward 
PI-controller. The typical disturbance of kLa is assumed to be 30 %. Also, a substrate feed distortion 
of 35 % was simulated. 

The conventional PI controller, tuned to the working point OUR=5 g kg-1 h-1, shows considerable 
fluctuations when the system is operated apart from these conditions. In the upper graph, this can 
be seen in the time interval (3≤t≤ 4 h) where the controller performance is insufficient. At t=8 h, 
the antifoam pulse leads to a severe decrease in pO2, which the controller tries to compensate for 
by increasing the stirrer speed. Typically, an overshoot of pO2 in the opposite direction is 
observed when the distortion is removed. Upon induction at t=9 h, pO2 increases, but the 
controller cannot follow fast enough. It takes about 1 h until the controller is able to bring the 
pO2 back on track. For the feed pump distortion at t=12 h, the effect is similar to the antifoam 
distortion. However, the distortion goes the other way around. When the pump fails, the oxygen 
concentration rises, and the controller reacts. Then, after removing the distortions, the controller 
must quickly adapt to the normal situation, leading to an overshoot into the other direction. 

The gain-scheduling controller, as displayed in the second row of the figure, is able to keep the 
pO2 close to track over the entire cultivation process (Figure 7). Only upon the drastic distortions 
it cannot react fast enough. Hence, upon antifoam addition, feed pump failure and induction 
there are still problems in keeping the process on track. Another problem appearing with the 
gain-scheduled controller is that it leads to a small systematic deviation from the desired setpoint 
profile. This is due to its finite reaction time on changes in the process dynamics. 
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Figure 8. pO2 profiles measured in experiments with 3 E. coli strains expressing the three recombinant 

proteins: GFP, GIP, HumaX. Left: PI control (Cultivations S486, S327, S429). Right: gain-scheduled 
PI control (Cultivations S489, S498, S496). 

The feedforward/feedback variant of the controller eliminates the problems with these small 
systematic deviations, as they can be forecasted. This is shown in the upper part of Figure 9. The 
changes in the relevant disturbance variable (substrate feed ratio) are known or are measurable 
and can be compensated by the feedforward component of the controller; this eliminates the 
small systematic deviations from the setpoint profile. In particular, the drop of the feed rate upon 
induction is known beforehand or is measurable. Hence, the controller problem at induction can 
also be removed with the feedforward controller component. 

As can be seen from Figure 7, the only distortions that cannot be coped with are the reactions on 
the randomly appearing antifoam pulses. From the distortions around the induction time and 
failures at the feed pump, only small reactions remain. 

6 8 10 12 140

20

40

6 8 10 12 140

20

40

6 8 10 12 140

20

40

pO
2 [%

sa
t]

6 8 10 12 140

20

40

8 10 12 14 160

20

40

Process Time [h]
8 10 12 14 160

20

40



CHAPTER 3. 
• ADVANCED CONTROL OF DISSOLVED OXYGEN CONCENTRATION IN FED BATCH CULTURES  

DURING RECOMBINANT PROTEIN PRODUCTION • 
 

55
 

 
Figure 9. Experimental tests of the pO2 control performance using feedforward/gain-scheduling PI control 

(upper graph: cultivation S526) and the simple gain-scheduling PI control (lower graph: cultivation 
S489) for a recombinant protein production process (GIP protein) 

Experimental Validation of Gain-Scheduling Control 
The gain-scheduling controller was applied to cultivations of genetically modified E. coli 
bacteria. Experiments were performed with three different strains. Each expressed a different 
protein. These are referred to as GFP, GIP, and HumaX. Typical pO2 profiles obtained with a 
traditional PI and the simple gain-scheduled PI controller are depicted in Figure 8. 

Figure 9 depicts the measured pO2 signal in cultivations where pO2 was controlled with the 
feedforward/gain-scheduled feedback controller. In this case, the controller performed well over 
the entire time interval it was switched on, i.e., it was not affected by quick changes in substrate 
feed rate at the induction time where the simple gain-scheduled PI controller still had some 
problems, as the lower part in the figure shows. The feedforward part of the controller eliminated 
these problems and worked perfectly. Hence, the proposed feedforward/gain-scheduled feedback 
control algorithm allows increasing the dissolved oxygen performance significantly. As well 
known in practice, cultures of genetically modified E. coli bacteria may produce foam 
particularly in the second half of the cultivation process. This is most often destroyed by adding 
chemical antifoam agents. Additions of antifoam agents immediately increase bubble 
coalescence, and consequently, the kLa suddenly drops and with it associated the oxygen transfer 
rate. The process proceeds so rapidly that one cannot react fast enough with increasing the stirrer 
speed or the airflow rate. Thus, unfortunately, the randomly appearing antifoam pulses lead to so 
drastic distortions that the controller cannot remove the corresponding distortions in pO2. 

Finally, an additional payoff of the improved pO2 control must be discussed. The significantly 
reduced pO2 noise level is expected to lead to an equivalent reduction in the noise level of other 
culture variables, a goal for process quality improvement stressed by FDA’s and European 
Medicines Agency’s PAT initiative. As shown by Jenzsch et al. (2007), the batch-to-batch 
reproducibility of fermentation processes, performed during the production of recombinant 
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therapeutic proteins, can be significantly improved with total cumulative carbon dioxide 
production rate (tcCPR) feedback control. Tight control requires accurate and precise 
measurements of the CPR throughout the entire time the process is running under this controller. 
It can immediately be seen from Figure 10 that the CPR signal in this fermentation depicts a 
much lower noise level, if the fermentations are additionally run with a feedforward/feedback 
(gain-scheduled) controller, as described above. 

 
Figure 10. Measurements of the CPR during tcCPR controlled fermentations of E. coli producing GIP. In run 

S290 pO2 was controlled with a conventional PI controller, in run S498 the gain-scheduled 
pO2 controller was used. 

The signal-to-noise ratio improvement in this key measurement signal clearly justifies the 
investment into the improved adaptive pO2 controller, as it significantly improves the CPR signal 
quality and, with it, the accuracy by which the tcCPR controller can keep the overall cultivation 
under tight control. 

DISCUSSION 
pO2 control is required in order to keep this quantity at its desired level despite strongly changing 
oxygen consumption rates. Conventionally used standard PID controllers cannot do this 
sufficiently well during the entire fermentation, as changes in the oxygen uptake dynamics 
require adjustments of the controller parameters. The consequences are strong fluctuations in the 
dissolved oxygen tension pO2. In this paper, we proposed a simple and robust adaptation 
technique that allows keeping pO2 tightly on its desired level despite the random and systematic 
distortions on the culture. 

Fluctuating oxygen tensions, resulting from inadequately pO2 controlled cultures, lead to 
fluctuating OUR and CPR values. Hence, process state estimation and supervisory process 
control techniques, which make use of these off-gas signals (Jenzsch et al. 2007) perform 
significantly better when pO2 fluctuations are kept smaller. 
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Moreover, in order to guarantee a high oxygen transfer rate, the pO2 has to be kept as low as 
possible from physiological reasons. Tighter control allows a closer approach of the pO2 
setpoints to the critical oxygen concentration, and this immediately leads to a higher oxygen 
transfer rate OTR. 

It was shown that extending the simple and robust gain-scheduling controller by a feedforward 
component enables the controller to quickly respond to fast changes in the substrate feed rate or 
in the volumetric mass transfer coefficient kLa. Such changes generally appear upon antifoam 
agent pulses or substrate feed pump distortions. Moreover, most pO2 controllers lead to problems 
after induction of recombinant protein expression where the substrate uptake rate drops 
significantly. 

All the pO2 changes resulting from these distortions can be removed by the simple adaptive 
feedforward/feedback controller proposed, with the exception of the pO2 peaks appearing upon 
antifoam pulses. The latter distortions can significantly be reduced, but not completely 
eliminated. Currently, there is only one way to avoid the strong response of the pO2 controller on 
antifoam agent additions to the culture: As these are signaled early enough by the foam sensor, 
the pO2 controller can be switched off for about 5 min, just holding the current stirrer speed and 
airflow constant in that time interval. 

Generally, the pO2 controller helps reducing the process noise and thus improves the batch-to-
batch reproducibility of the fermentation in accordance to the actual requirements of FDA. 
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ABSTRACT  
A data-driven model is presented that can serve two important purposes. First, the specific 
growth rate and the specific product formation rate are determined as a function of time and thus 
the dependency of the specific product formation rate from the specific biomass growth rate. The 
results appear in form of trained artificial neural networks from which concrete values can easily 
be computed. The second purpose is using these results for on-line estimation of current values 
for the most important state variables of the fermentation process. One only needs on-line data of 
the total carbon dioxide production rate (tCPR) produced and an initial value x of the biomass, 
i.e., the size of the inoculum, for model evaluation. Hence, having the inoculum size and on-line 
values of tCPR, the model can directly be employed as a soft-sensor for the actual value of the 
biomass, the product mass as well as the specific biomass growth rate and the specific product 
formation rate. In this paper the method is applied to fermentation experiments on the laboratory 
scale with an E. coli strain producing a recombinant protein that appears in form of inclusion 
bodies within the cells’ cytoplasm. 
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INTRODUCTION 
E. coli is the most important host cell system for recombinant protein production systems, if the 
desired products do not need posttranslational modifications to obtain efficacy (Walsh 2006). In 
many practical cases, the heterologous products appear in form of inclusion bodies within these 
bacterial cells. Then, several downstream processing steps including cell disruption followed by 
solubilization and refolding are necessary before clinical efficacy of the protein is achieved. 

In order to obtain a high product titer in the fermenter, the process operational procedure must be 
optimized for high cell density, i.e., high biomass concentration X, and, at the same time high 
specific product formation rates π. The latter can only be adjusted to their optimal values if the 
relationship between π and the variables that can be adjusted during the cultivation process is 
known. Such relationships are not well investigated, and thus, only very rough estimates can be 
found in literature. Usually it is simply assumed that the specific product formation rate is in a 
fixed stoichiometric relationship to the specific biomass growth rate π=YPX•µ; or the specific 
substrate consumption rate. Only a few groups developed more complex kinetic expressions for 
product formation (e.g., Levisauskas et al. 2003). 

Strict mechanistic approaches are extremely difficult to quantify, as the anabolic metabolism of 
the cells is rather complex and not yet completely understood. Anyway, for process control 
purposes, it is straightforward to look for correlations, preferably of variables that are on-line 
accessible during industrial fermentation runs. Such data-driven approaches can be very well 
performing, provided that the right variables are chosen and the relations are identified using 
many data sets from the single process under consideration. The approach used here is based on 
artificial neural networks that are trained on an extended set of data records. These networks are 
known to depict very good mapping properties for complicated nonlinear relationships (e.g., 
Haykin 1999). 

Data-Driven Approach to Product Formation Kinetics 
A schematic view of the data-driven approach used here is shown in Figure 1 (Gnoth et al. 
2006). It is based on two simple feedforward artificial neural networks (ANNs). The first one 
determines the specific biomass growth rate µ from on-line measured carbon dioxide production 
rate (tCPR) data as well as tai, the time after induction. The time signal tai is zero before induction 
and increases continuously thereafter. Acting as a switch, this information first signals the 
induction point to the network model and then delivers the current process time axis after 
induction. The specific growth rate µ determined by the identified inputs is used in an ordinary 
differential equation, i.e., a simple process model, to determine the biomass x, which is then fed 
back onto the input layer of the ANN. Thus, the model is a hybrid one where the kinetics, 
represented by ANNs, is combined with dynamic mass balances (Schubert et al. 1994). 

The estimate of µ from this ANN is then used as an input of the second ANN computing the 
specific product formation rate π. A further input to this second ANN is again the time after 
induction, tai. Additionally, the third input is the specific protein concentration px=p/x (where x is 
the total biomass, and p the total product mass). p is obtained from x and π by solving another 
simple mass balance equation shown in the Figure 1. 

As there are no direct on-line measurements available for µ and π, the networks must be trained 
using off-line measured biomass x and product mass p data. This can be done with the sensitivity 
equation technique discussed by Simutis and Lübbert (1997) and Gnoth et al. (2006). 
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Figure 1. Scheme of the ANN-based approach of deriving the π(µ)-relationship as well as biomass x and 

product mass p. 

EXPERIMENTAL 
Experiments were performed with genetically modified E. coli bacteria that are able to produce 
the commercially interesting gastric inhibitory polypeptide GIP (Jenzsch et al. 2006). The 
desired product in the process reported about here is in form of inclusion bodies. All experiments 
used E. coli BL21(DE3) as the host cell. The target protein was coded on the plasmid pET28a 
and expressed under the control of the T7 promoter after induction with isopropyl-
thiogalactopyranoside (1 mM IPTG). The strain was resistant against kanamycin. The product 
appears as inclusion bodies within the cytoplasm. The particular strain used did not produce 
notable amounts of acetate (data not shown) under the cultivation conditions adjusted in the 
experiments reported. 

All the experiments were performed within Biostat-C 15-L bioreactor (BBI Sartorius) operated 
at maximum 8-L volume. The fermenter was equipped with three standard six-blade Rushton 
turbines that could be run up to 1,400 rpm. The aeration rate could be increased up to 24 sLpm. 
Aeration rate and then stirrer speed were increased one after the other in order to keep the 
dissolved oxygen concentration at 25 % saturation. 

The fermentations were operated in the fed-batch mode immediately after inoculation. The initial 
volume was 5 L. Temperature and pH were adjusted to 35 °C and 7, respectively. The main 
carbon and energy source, glucose, was fed at concentration of 300 and 600 g/kg. For more 
details about the medium the reader is conferred to Jenzsch et al. (2006). 

All fermentations were started during night by automatic transfer of the inoculum from a 
refrigerator into the reactor. Substrate feeding was started in an open-loop fashion with 
predefined exponential profiles. When, after some cultivation time, the signal-to-noise ratio of 
the off-gas data reached a predefined level, closed-loop control was started with the total 
biomass or the total carbon dioxide produced (tcCPR) as control variables. Additionally, 
experiments were performed under unlimited conditions. 

CO2 in the vent line was measured with MAIHAK’s Unor 610, O2 with MAIHAK’s Oxor 610. 
The total ammonia consumption during pH control was recorded by means of a balance beneath 
the base reservoir. These three quantities were measured on-line. 

Biomass concentrations were measured off-line via optical density at 600 nm with a Shimadzu 
photo-spectrometer (UV-2102PC). Glucose was determined enzymatically with a YSI 2700 
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Select Bioanalyzer (Yellow Springs Instrument). The product was measured with SDS-PAGE 
after separation of the inclusion bodies and their solubilization. 

RESULTS 
Forty-nine data sets from the E. coli fermentations described above were used for training and 
validation (cross-validation procedure) of the hybrid model depicted in Figure 1. These 
fermentations were performed under very different conditions. Some of them were controlled to 
small specific growth rates in the order µ=0.1 h-1. Others were run in an unlimited way with 
respect to the substrate concentration S. Furthermore, some runs were controlled to fairly high 
specific growth rates in the beginning of the product formation phase. Figure 2 depicts the result 
of the training of the network system illustrated in Figure 1 with respect to the simple π(µ)-
relationship. 

 
Figure 2. π(µ)-relationship derived from the network system depicted in Figure 1 for fixed tai=1 h and 

px=0.01 g/g. 

In order to assure that the data-driven model is truly mapping the biomass growth and product 
formation kinetics, the model solutions were compared to the corresponding experimental data. 
For this purpose, the cross validation technique was employed. The typical results shown in 
Figure 3 are from experiments, i.e., the data, which were not used during the network training. 

Note, that the model depicted in Figure 1 only needs the on-line available tCPR signal, the initial 
biomass x as well as the time tai at which the culture is induced. The actual values of total 
biomass x and total product concentration p then appear as model outputs together with the 
specific growth and product formation rates at each time where a new tCPR value becomes 
available. Hence, the method can be used as a soft-sensor for x, p, µ and π. In Figure 3 the lines 
depict the outputs of this soft-sensor for x and p, the symbols show the corresponding off-line 
measurement values, which, in the case of the protein data, are available only days after the 
fermentation had been finished.  
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It is worthwhile to mention, that the on-line measured variable tCPR and the information tai 
about the induction state are sufficient for an on-line adaptation of the ANN-based model to the 
current state of the process, particularly in the product formation phase. With this on-line 
information, biomass and product mass as well as the corresponding specific formation rates µ 
and π can quite accurately be estimated. The full lines in Figure 3, corresponding to the biomass 
and the product mass shown, confirm this. 

 
Figure 3. Typical example for simulations using the data-based kinetics. The biomass and product mass 

profiles (lines) are shown together with the corresponding off-line measured data (symbols). These 
data were not used during network training, thus, the comparison in the plot can be considered as a 
model’s validation procedure. 

Heterologous protein formation is usually accompanied by a metabolic load of the cells. In order 
to quantify this, the influence of the specific protein concentration px, i.e., the protein load of the 
cells on p was examined, as well. The resulting three-dimensional graph is depicted in Figure 4. 
The specific product concentration px is seen not influencing the π(µ)-relationship significantly. 
At a given µ, π is only slightly decreasing with the accumulation of the inclusion body protein 
within the cytoplasm of the cells. However, there is a significant influence of px, the protein load 
of the cells, on the specific growth rate µ, which is referred to in literature as a metabolic burden. 
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Figure 4. Specific product formation rate as a function of µ, the specific biomass growth rate, and px, the 

specific protein concentration. In general, two types of µ-π-px dependencies were obtained. Type I 
(dashed line) shows constant relationship, if the fermentations run under limited conditions below 
the critical specific growth-rate. Type II (solid line) depicts the relationship under maximum growth 
conditions, i.e., the increasing protein load on the cells reduces the achievable maximum growth rate 
after induction. Arrows indicate the process evolution with increasing process time. 

To further clarify this, the π values, obtained from experimental data were plotted into the 
π(µ,px)-surface depicted in Figure 4. Figure 5 shows the data points for all 49 experiments. The 
values practically remain on the surface. They clearly show which part of the (µ,px)-space has 
been explored during the fermentations performed. With higher px values smaller and smaller µ 
values were obtained, even when the culture does not run in a substrate-limited way. Thus, only 
a part of the surface depicted in the model (Figure 4) is accessible during the process. 
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Figure 5. Comparison of the π(µ,px)-relationship derived from the ANN-based model with π values obtained 

from experimental data (symbols). The data on the plane shows the size of the design space, i.e., the 
approximate range of values that is possible at all in the [µ px]-space. 

The monotonic increase of the specific product formation rate with the specific biomass growth 
rate µ leads to the consequence that the biomass growth rate must be kept as high as possible, in 
order to obtain a maximum product titer at the end of the cultivation. 

These results were successfully tested in some spot checks. For this purpose, additional 
validation experiments were performed. In the first one, the culture was grown at its maximum 
specific growth rate after induction, in the second one, a small specific growth rate which was 
suboptimal for the expression of inclusion body proteins was chosen. Both resulting protein 
formation patterns are depicted in Figure 6. The product mass profiles p are very different and 
show the behavior expected from the monotonically increasing π with increasing µ. 
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Figure 6. Validation tests of the results depicted in Figure 2 for two cases: one cultivation operated with 

substrate concentration well above values where substrate limitation occurs and one operated under 
substrate limitation. Total biomass was similar in both experiments at induction time. The curves 
present the total product obtained with the data-driven model and the points are experimental values. 

DISCUSSION 
The most important point to note for the protein investigated here, which is packed in form of 
inclusion bodies within the cells, is that the π(µ)-relationship is a simple monotonic function of 
essentially the specific biomass growth rate µ only. The metabolic load of the cell, resulting from 
the product accumulation within its cytoplasm and characterized by the specific protein 
concentration px, influences the maximum specific biomass growth µmax, but not directly the 
specific product formation rate π. In other words, the specific product formation rate π is only 
dependent on the specific growth rate µ as assumed by many researches in bioprocess 
engineering (e.g., Shioya 1992, Yoon et al. 1994, Soons et al. 2006). However, µ cannot be 
freely adjusted, as its maximum attainable value µmax decreases with the specific product 
concentration px. Thus, in this particular system, the influence of the cell’s internal protein 
concentration or accumulation on the cell’s protein formation performance π is an indirect one. 

The π(µ)-relationship of the strain investigated here is qualitatively different from the one of 
other E. coli systems, e.g., one where the product appears in a soluble active form. For a strain 
expressing the soluble green fluorescence protein (GFP), Gnoth et al. (2006) found that the  
π(µ)-relationship depicts a maximum at a rather low specific biomass growth rate of about 
µ=0.14 h - 1. Other strains possibly show further forms of the π(µ)-relationship. Hence, it is 
straightforward to look for a well-performing technique that allows determining the product 
kinetics without the assumption of unproven models or constraints on the cell metabolism. Such 
a method is presented in this paper. It is not restricted to a special product and works without any 
assumption about kinetic parameters. Insofar, it is suitable for any kind of expressing protein 
(e.g., soluble/insoluble). 
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As the approach proposed here is a purely data-driven approach, relatively many data records are 
required to train the networks and to validate the results. In the beginning of the developments 
with a new biological system, having a few data records only, the prediction might not be 
sufficiently good. This could be considered a disadvantage of the proposed method. However, 
this approach has the advantage of excellent learning abilities. After each cultivation the 
networks can automatically be retrained using the extended database. In this way, the software 
learns without much additional efforts of the plant personnel. 

Experiments performed in much different ways as compared to the records used for network 
training, will also not be predicted sufficiently well. However, after adding the data records to 
the database, the automatic learning will quickly lead to a better model performance. Thus, in the 
following runs the model will be sufficiently accurate for state estimation. 

Providing many data records might be a problem in small laboratories, but it is definitely not a 
problem in industrial production environments. The number of data records necessary to obtain 
reliable results is dependent on the quality of the data, particularly on the accuracy of the product 
concentration values. Typically, data from about ten experiments are needed. Again, this is not 
so much a problem in industrial environments, where the laboratories are usually very 
experienced in measuring the concentrations of their particular product. 

One of the main advantages of the method summarized in Figure 1 is that the evaluation of the 
identified model is extremely quick. It can thus perfectly be used for on-line model-supported 
process monitoring and control purposes. One example is its use as a software sensor for x and p 
as well as for µ and π. For these quantities no physical sensors are available. 
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ABSTRACT 
Recombinant proteins produced in Escherichia coli hosts may appear within the cells’ cytoplasm 
in form of insoluble inclusion bodies (IBs) and/or as dissolved functional protein molecules. If 
no efficient refolding procedure is available, one is interested in obtaining as much product as 
possible in its soluble form. Here, we present a process engineering approach to maximizing the 
soluble target protein fraction. For that purpose, a dynamic process model was developed. Its 
essential kinetic component, the specific soluble product formation rate, if represented as a 
function of the specific growth rate and the culture temperature, depicts a clear maximum. Based 
on the dynamic model, optimal specific growth rate and temperature profiles for the fed-batch 
fermentation were determined. In the course of the study reported, the mass of desired soluble 
protein was increased by about 25 %. At the same time, the formation of inclusion bodies was 
essentially avoided. As the optimal cultivation procedure is rather susceptible to distortions, 
control measures are necessary to guarantee that the real process can be kept on its desired path. 
This was possible with robust closed-loop control. Experimental process validation revealed that, 
in this way, high dissolved product fractions could be obtained at an excellent batch-to-batch 
reproducibility. 

 

 

 

 
 
This paper has been published in Applied Microbiology and Biotechnology: 

Gnoth, S., Simutis, R., Lübbert, A., 2010. Selective expression of the soluble product fraction in Escherichia coli 
cultures employed in recombinant protein production processes. Appl. Microbiol. Biotechnol. 87: 2047–2058.



CHAPTER 5. 
 • SELECTIVE EXPRESSION OF THE SOLUBLE PRODUCT FRACTION IN ESCHERICHIA COLI CULTURES EMPLOYED IN 

RECOMBINANT PROTEIN PRODUCTION PROCESSES •
 

70
 

INTRODUCTION 
In Escherichia coli cultures, heterologous proteins often appear as a mixture of soluble 
molecules and aggregates, referred to as inclusion bodies. In cases where proper refolding 
procedures are not available, process operational conditions must be selected that primarily lead 
to the soluble product fraction. 

Literature contains many hints that the relative amount of soluble protein is mainly influenced by 
the growth conditions and the culture temperature adjusted during the product formation phase. 
The knowledge about these influences is qualitative: According to Schein (1989) the easiest way 
of lowering the fraction expressed as inclusion bodies is to reduce the fermentation temperature, 
thereby favoring the activity and expression of chaperones and, on the other hand, reducing 
aggregation reactions (Sørensen and Mortensen 2005). Many authors provided evidence that a 
reduction in the culture temperature during the product formation phase increases the soluble 
fraction of the desired product (Piatak et al. 1988, Chalmers et al. 1990, Liao 1991, Vasina and 
Baneyx 1997). Endogenous proteins aggregated in E. coli may resolubilize when cells are 
subjected to lower temperature or cultivated in presence of chaperones (Kedzierska et al. 1999). 
Berwal et al. (2008) showed considerable temperature influences on the relative amount of the 
product forms. They presented an example where E. coli expressed its heterologous protein 
under normal operating conditions of T=35–37 °C nearly completely in form of inclusion bodies, 
but, upon a strong reduction in the culture temperature after induction, the soluble protein 
fraction appeared increased up to 85 %. If cultivation temperatures are decreased, however, 
biomass growth is significantly lowered and with it the total amount of soluble protein, as well. 
Because of these conflicting effects, high productivity expression of soluble protein appears to 
be an optimization problem. 

In other studies, improved expression strains were employed (Bessette et al. 1999, Steinfels et al. 
2002), which focused on co-expression of chaperones (Nishihara et al. 2000, Ikura et al. 2002, 
Baneyx and Palumbo 2003) or combination with soluble fusion partners (Davis et al. 1999, Kim 
and Cha 2006). Also, lowering the inducer concentration (Weickert et al. 1996, Heo et al. 2006) 
was proposed. The influence of the specific growth rate on the ratio between dissolved product 
and inclusion body formation is much less investigated (Kopetzki et al. 1989, Shin et al. 1998, 
Hoffmann et al. 2001). Qualitatively, it is believed that, during expression of correctly folded 
recombinant proteins, the folding process is rate-limiting, e.g., by a limitation of chaperones 
(Thomas and Baneyx 1996, Villaverde and Carrió 2003, Rinas et al. 2007, Gasser et al. 2008). If 
more raw protein is formed than can be folded by the cells, the amount of protein exceeding the 
maximal folding capacity is shuffled to insoluble aggregates (inclusion bodies). Consequently, 
by manipulation of the specific growth rate, the expression rate of recombinant protein can be 
adjusted to this rate-limiting bottleneck of the cell, thus favoring the soluble protein fraction. 

In this work, we focus attention on the quantitative influence of the specific growth rate and 
fermentation temperature on the formation of soluble target protein as well as on the concurring 
inclusion body formation. From the engineering perspective, soluble product fraction 
optimization requires a process model that can quantitatively be exploited in order to find 
optimal operational conditions, i.e., with respect to: 

– The ratio soluble/IB product fraction, 
– The overall productivity, and, finally, 
– The reproducibility of the operational procedure.  

Here, we present a robust engineering procedure of solving this optimization problem. Its 
performance is demonstrated at a concrete example. For that purpose, we took an E. coli strain 
from an industrial partner expressing a recombinant protein that appears partly in soluble form 
and partly in form of inclusion bodies. We started with two alternative modeling approaches, a 
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conventional model and a data-based hybrid model. Both were parameterized using the same 
data set. Biomass and product concentration data were predicted by the hybrid model more 
precisely. Hence, the latter was used to determine an optimal process operational procedure. The 
optimization result showed that the final process must closely follow the optimal trajectories in 
order to exclusively express the soluble protein fraction. The reproducibility of the process was 
finally achieved by controlling the total amount of CO2 produced by the cells. 

MATERIALS AND METHODS 

Experimental Setup 
E. coli BL21(DE3) pET28a (Novagen) was used as the host system in all experiments. The 
organism expresses a commercially interesting protein, in the following text referred to as 
HumaX for secrecy reasons. Part of this product appears in its active soluble form, whereas the 
remaining part is formed as inclusion bodies. The protein was expressed under control of the T7 
promoter after induction with 1 mM IPTG.  

All cultivations were conducted in a B. Braun 10-L bioreactor Biostat C started with 5 L defined 
mineral salt medium of the following composition, i.e., Na2SO4 2.0 g L-1, (NH4)2SO4 2.46 g L-1, 
NH4Cl 0.5 g L-1, K2HPO4 14.6 g L-1, NaH2PO4×H2O 3.6 g L-1, (NH4)2-H–citrate 1.0 g L-1, 
MgSO4×7 H2O 1.2 g L-1, trace element solution 2 ml L-1, thiamine 0.1 g L-1, and kanamycin 
0.1 g L-1. The process was entirely operated in fed-batch mode, i.e., no glucose was present in 
the medium at inoculation time. The feed, containing glucose as the carbon and energy source 
and mineral salts in the same composition as the initial mineral medium, was pumped into the 
reactor directly after inoculation (Jenzsch et al. 2006a). As the starting biomass concentration 
was only 0.25 g L-1 (DCW), the substrate feed rates had to be kept very low in the beginning in 
order to avoid overfeeding and thus formation of overflow metabolites or even substrate 
inhibition. Since the feed pumping rates were limited toward low feed rates, the feeding was 
started with a glucose concentration of 300 g kg-1. When enough biomass had been formed, the 
feeding solution was switched to a glucose concentration of 600 g kg-1. Substrate feeding 
addition was measured gravimetrically and recorded on-line using a Sartorius balance. The entire 
process was operated under the control of a Siemens Simatic PCS7 system (Kuprijanov et al. 
2008). 

During the biomass growth phase, an exponential feeding led to an exponential growth 
corresponding to a fixed specific growth rate of μ=0.5 h-1. This growth rate was chosen in order 
to run the process in a substrate-limited way just below the specific substrate uptake rate that 
leads to acetate formation. In the open-loop-controlled phase, the temperature was kept at 
T=35 °C. Within 1 h upon induction at t=10 h, the temperature was linearly ramped down to the 
specific product formation temperature chosen. 

Then, during product formation, the temperature was kept constant. A series of experiments were 
conducted with different production-phase temperature values in the interval 27 °C≤T≤35 °C. 
The experiments were performed at different specific growth rates during the post-induction 
phase. Again, an open-loop-control procedure was used, i.e., predefined feed rate profiles were 
applied. At t=9.5 h, the growth rate was linearly ramped down to the desired value, which was 
then kept constant during the product formation phase. In this way, specific growth rates in the 
interval 0.08 h-1≤μset≤0.16 h-1 were adjusted during the product formation time, see Table 1. 
Additionally, some fermentation runs were performed employing a modified substrate pulse 
control technique to determine the critical specific substrate uptake rate profile at which an 
accumulation of overflow metabolites was just avoided. At all times, in the substrate-limited, 
open-loop controlled fermentations as well as in fermentations applying feed pulse control, no 
acetate formation was observed.  
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Table 1. Experimental setup of the fermentations performed. 

 Screening Experiments Validation Runs 

Specific Growth Rate µSet [h-1] 0.08, 0.12, 0.16, µcrit 0.12 

Fermentation Temperature 
after induction T [°C] 27, 29, 31, 33, 35 31 

Type of Control Open-loop, Feed-Pulse 
Control tcCPR-control 

Respiration was monitored via exhaust gas analysis in the vent line, i.e., O2 was measured on-
line with a paramagnetic oxygen sensor (Maihak Oxor 610) while CO2 was detected with an 
infrared detector (Maihak Unor 610). An Ingold DO probe (Mettler Toledo) was used for 
monitoring and control of dissolved oxygen to a value of 25 %sat applying the gain-scheduling 
approach (Kuprijanov et al. 2009). pH was measured with an Ingold pH probe (Mettler Toledo) 
and maintained at pH=7 using a parameter adaptive proportional integral derivative (PID) 
controller (Gnoth et al. 2010). Monitoring of the integral base consumption during pH control 
was accomplished with another balance. Temperature was measured with a PT100 sensor and 
controlled with a standard PID controller. All on-line data was recorded in a central SQL data-
base with a time increment of 0.005 h. 

Off-line measurements were performed with time increments of half an hour. Biomass 
concentration was determined by means of an OD600 measurement with a spectral photometer 
(Shimadzu UV-2102PC). Additionally, some dry weight measurements were performed in order 
to test the correlation between biomass dry weight and the OD600 values. Glucose concentration 
was measured enzymatically with a YSI 2700 Select Bioanalyzer (Yellow Springs Inc.). Acetate 
was determined using an enzymatic kit (Boehringer Mannheim) after centrifugation and 
subsequent heating of the supernatant (15 min, 80 °C). Finally, target protein was quantified by 
gel densitometry of stained sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-
PAGE) after cell disruption, separation of the soluble fraction, and solubilization of inclusion 
bodies (IBs). All target protein that appeared in the soluble fraction had the desired activity as 
was shown by our industrial partner. 
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Model for Process Optimization 
Dynamic process models for process optimization and control purposes are based on mass 
balances for the main state variables, such as biomass, substrate and product. 

( )cc
V
FR

dt
dc

F −⋅+=            (1) 

F
dt
dV

=            (2) 

where the concentration vector c=[X S PSol PIB] consists of the elements biomass concentration 
X, substrate concentration S, concentration PSol of the soluble part of the desired protein, and PIB, 
the concentration of the inclusion body protein. cF stands for the vector containing the 
concentrations of these variables in the feed. F is the feed rate and V the volume of the culture. 
As all the protein production processes are operated in the fed-batch mode, we additionally need 
to consider the dynamic change of the entire culture volume (Eq. 2). The different models are 
mostly distinguished by the way they are used to formulate the kinetics, which makes up the 
biochemical conversion rate vector R=[μ−σ πSol πIB]·X. In the following, we first present such a 
conventional model specifying the specific rates μ, σ, πSol, and πIB. As this is quite time-
consuming, we will further show that data-driven model versions of the same kinetic expressions 
are easier to develop and are more accurate. 

RESULTS 

Conventional Process Model 
In a conventional unstructured process model, the kinetics for the biomass and product formation 
is most often formulated in terms of Monod-type expressions, whereas temperature dependencies 
are usually modeled by Arrhenius expressions. 

Cells take up substrate in order to grow and to produce the desired product. Hence, we start with 
the specific substrate uptake rate as the basic kinetic variable. 
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The third factor describes the generally observed fact that the specific substrate uptake rate 
becomes smaller at higher biomass concentrations. The temperature dependency of the specific 
biomass growth rate μ is described by an Arrhenius expression (Roels 1983, Esener et al. 1983, 
Schügerl and Bellgardt 2000). Additionally, by means of a logistic expression, it is considered 
that biomass growth rates decrease at elevated biomass concentrations. 
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The specific formation rate of soluble protein πSol critically depended on the specific growth rate 
as well as on the cultivation temperature. The following expression reflects experimental results 
that the specific product formation rate shows up a distinct maximum with respect to both, 
temperature and product concentration. 
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Finally, the specific formation rate of the inclusion body protein πIB is described by Eq. 6, saying 
that inclusion body formation is being favored at increasing cultivation temperatures and 
biomass growth rates. 
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With these kinetic expressions, the system of mass balances Eqs. 1 and 2 was solved numerically 
in Matlab. The results are depicted in Figure 1 together with the experimental data recorded 
during the open-loop controlled fermentations from which the initial and operating conditions 
were taken. 

 
Figure 1. Results of simulations using the conventional process model as described in Eqs. 1–6 (curves) 

compared with the experimental data (circles: total biomass, triangles: total soluble protein, squares: 
total inclusion body protein). 
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Hybrid Model 
Formulating a conventional model-based on complex Monod-type kinetic expressions including 
temperature influences and determining their parameter values to a sufficient accuracy is time-
consuming, and the results are restricted to the particular example investigated. Thus, a more 
general hybrid model is proposed that is easier to develop and leads to a higher accuracy. 

This hybrid model combines feed-forward artificial neural networks (ANNs) describing the 
kinetic model components, the specific rate expressions with simple mass balances as shown in 
Figure 2. Separate ANNs were taken for estimation of the specific growth rate μ and the specific 
product formation rate π. The single mass balances have not been formulated in terms of the 
biomass or product concentrations as in Eq. 1, but instead directly in terms of the total mass 
values x and p (Gnoth et al. 2008). The model parameters (structure and weights of the ANN 
components) were determined using the sensitivity equation approach (Schubert et al. 1994) and 
the “Leave-One-Out” cross-validation procedure (Hjorth 1994). 

The performance of this hybrid model can be seen in Figure 3, where the off-line biomass and 
the product mass profiles recorded in 15 different cultivation runs are compared with the 
corresponding solutions computed with one and the same hybrid model.  

= ⋅
dx µ x
dt

= ⋅
dp x
dt

π

 
Figure 2. General structure of the hybrid model describing the specific biomass and product formation rates μ 

and π together with the biomass x and the respective product mass p. At each on-line sampling time, 
the substrate addition rate and tCPR as well as tOUR are processed in the first ANN (five inputs, one 
bias, ten hidden layer nodes and one output) to estimate the specific biomass growth rate and, 
subsequently, the total biomass. Once the biomass part hybrid net is trained, the outputs together with 
the cultivation temperature and the specific protein load act as inputs for the following hybrid net 
predicting the target protein (three inputs, one bias, seven hidden layer nodes and one output). The 
same architecture of the product part network is used for estimation of either soluble or inclusion 
body protein formation. For simplicity reasons, only one product network respective for both protein 
fractions is shown. Solving the optimization problem was performed by exploitation of the second 
trained part of the hybrid network system (“Product Part”) with fixed network weights. Estimation of 
specific biomass growth rate μ then drops, as it is defined in Eq. 10. In this way, the hybrid model is 
used to easily simulate various specific growth rate profiles and cultivation temperatures. 

As quantified in Table 2 by means of root mean square deviations (RMSEC values) between that 
of biomass, soluble protein, and IB-protein data and their corresponding computational results, 
the hybrid model leads to a considerably better fit to the measurement data than the conventional 
process model. 
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Table 2. Comparison of prediction quality of the conventional process model and the hybrid ANN-approach, 
expressed by the root mean square error. 

 RMSEC [g] 

Total Biomass Total Soluble 
Protein Total IB-Protein 

Conventional Model 10.81 1.78 0.87 

Hybrid Network 4.71 1.28 0.62 

 

 
Figure 3. Comparison between modeled (lines) and measured values of biomass and protein mass for the 

experiments performed (circles: total biomass, triangles: total soluble protein, squares: total 
inclusion body protein). One and the same set of hybrid models was used in all cases. 

From the process engineering point of view, it is instructive to know how soluble and inclusion 
body product formation rates vary with the specific biomass growth rate μ and the cultivation 
temperature. The output of the hybrid model for the specific formation rates of soluble and IB 
protein fraction at a fixed value of the respective specific target protein load p/x, i.e., at a 
specified time after induction, is depicted in Figure 4. While the inclusion body formation rate 
generally increases with rising temperature within the temperature interval investigated, the 
soluble fraction depicts a clear maximum at intermediate temperatures of 31 °C. At a given 
temperature, the IB formation rate rises with the specific growth rate as expected, while the 
product formation rate for the soluble fraction again passes a pronounced maximum at a value of 
about 0.12 h-1. 
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Figure 4. Specific product formation rates of the soluble protein fraction (left) and inclusion body fraction 
(right) as a function of the specific growth rate and fermentation temperature in the product formation 
phase. The marked dots depict fermentation data used for model identification. Compared with the 
desired soluble protein formation, which depicts a distinct optimum at lower growth rates and 
temperatures, IB-protein formation mainly occurs at elevated growth rates and temperatures. 

Finally, it should be noted that the inputs of the hybrid model shown in Figure 2 are on-line 
measured variables. The only variable that is not available on-line is the total biomass x, which, 
however, is used recursively. That means, we only need its initial value. The same applies for the 
starting values of pSol and pIB, which are considered to be zero in practical applications. In other 
words, if the inoculum size is known, the hybrid model depicted in Figure 2 is not only able to 
estimate biomass and product formation from historical fermentation data sets, it can also be 
used as a soft-sensor for the important variables biomass x, product mass pSol, and pIB, the 
specific growth rate μ, as well as the specific product formation rates πSol and πIB. Because it is a 
purely data-driven approach, it can easily be adapted to different hosts and product formation 
kinetics by training with the data from the corresponding cultivations. Finally, the hybrid model 
is not restricted to a fixed fermentation time as measurement data is given to network every time 
interval. 

Optimization 
After the specific product formation rate patterns π(μ,T) have been determined, the trained 
hybrid network can readily be used to find optimal μ and T profiles with respect to a given 
objective function. For that purpose, only a part of the full hybrid model is required. As the total 
biomass is directly accessible from a given μ-profile via the ordinary differential equation, 

xµ
dt
dx

⋅=             (7) 

only the “Product Part” (second part) of the hybrid model is required. For any combination of μ 
and T, the hybrid model is capable to, first, determine the total biomass x and, subsequently, to 
calculate the specific product formation rate directly yielding the total product mass via balance 
equation. The weights of the ANN computing π remain the same as in the original hybrid model 
depicted in Figure 2. 
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Beforehand, a quantitative formulation of the objective function J must be made. In order to keep 
the procedure simple, we fixed the duration of the post-induction phase and chose 

)()()( 21 ffIBfSol txtptpJ ⋅−⋅−= ββ        (8) 

where the first term denotes the desired soluble product mass available at the end of the 
fermentation (t=tf). The second part considers the inclusion body formation, whereas the last 
term was added to avoid excessive biomass formation. The parameters β1 and β2 must be 
specified from economical points of view. They can be considered penalty factors punishing the 
formation of inclusion bodies and excessive biomass without contribution to target protein 
formation. In reality, the solution of the optimization procedure is constrained by physical as 
well as physiological factors. The main physical constraint is the limited oxygen transfer rate that 
can be provided by the bioreactor. It influences the maximal amount of biomass that can be 
employed for product formation. Since the oxygen uptake rate in the current cultivation system 
drops roughly half an hour after induction, the aeration capacity of the reactor mainly determines 
the biomass at which induction has to be performed. 

From physiological point of view, the limiting constraint is often the critical specific substrate 
uptake rate σc of the cells. In the current context, this is defined as the maximal specific substrate 
uptake rate of the cells just avoiding the formation of overflow products. In case of E. coli, 
acetate represents the main overflow metabolite, and it has been shown to inhibit growth and 
product formation and thus the overall process productivity (Luli and Strohl 1990, Jensen and 
Carlsen 1990, Roe et al. 2002). Because the critical substrate uptake rate considerably drops with 
time after induction, knowledge of σc is required to avoid overfeeding and thus the formation of 
acetate. Mechanistic models about the dynamical change of σc are not available. Thus, σc was 
determined experimentally using a modified substrate pulse-response technique based on the 
approach proposed by Åkesson (Åkesson et al. 1999). For that purpose, cultivation experiments 
were performed where the substrate feed rate was modulated and the corresponding response in 
the dissolved oxygen concentration (DO) was examined. The modulated feed rate was increased 
as long as there was a significant reaction in the DO. When a response was no longer observed, 
the critical substrate uptake rate was reached. Then, the mean feed rate was slightly reduced not 
to run into a state of acetate formation. By periodically approaching σc, its time profile was 
determined. 

To ensure validity of estimation near the constraints, the hybrid model was additionally trained 
with on-line data of a feed pulse-controlled fermentation. In this way, the specific formation rate 
of the soluble fraction of the desired protein was determined as a hyper-surface on the plane 
spanned by the specific growth rate μ and the specific product concentration pSol/x. This is 
depicted in Figure 5. Using the data of the feed modulation experiments just described, we can 
get the corresponding path on this hyper-plane. The periodic approach to the critical substrate 
uptake rate can be seen in the wavy nature of the red curve. As the pSol/x-axis can be viewed as a 
slightly nonlinear axis of the cultivation time after induction, one can see that the specific growth 
rate drops sharply with time after induction; however, this drop starts after some time delay, an 
effect that is qualitatively mentioned in literature (Bentley et al. 1990, Bhattacharya and Dubey 
1995, Hoffmann and Rinas 2001). The essential information from Figure 5 with respect to 
process optimization is that the process must be kept below the red curve, if substrate overflow is 
to be avoided. Thus, this curve can be considered a constraint to the optimal process control 
strategy. In order to get an expression that can conveniently be used in optimization studies, the 
red curve was approximated by 

⎟⎟
⎠

⎞
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⎝
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This is represented by the dashed black line in Figure 5. 

 
Figure 5. Specific soluble product formation rate hyperspace on plane spanned by the specific growth rate and 

the specific soluble protein load of the cells at a fixed fermentation temperature. The red curve 
depicts the result of the probing control experiment, saying that maximal biomass growth capacity is 
rapidly decreasing after induction. The dashed black curve is a smoothed version of the result defined 
as a constraint for optimization. The blue curve is a typical trajectory of an experiment guided along a 
fixed specific growth rate under growth limited conditions. 

Keeping the numerical optimization feasible from the practical point of view, some general 
simplifications were made. The first was to keep the temperature constant after ramping down to 
the desired value. The temperatures adjusted during the production phase were constrained to the 
interval 27 °C≤T≤35 °C. 

The second simplification regards the specific biomass growth rate. In literature, it was most 
often assumed to keep the specific growth rate as far as possible constant at its optimal value 
(e.g., Jenzsch et al. 2006b). Here, we allowed for a slight linear shift in μ and assumed a linear 
time function for the specific growth rate profile. 

taatµ ⋅+= 10)(           (10) 

In order to optimize the μ(t) profile with respect to the objective function J, the parameters a0, a1, 
and the fermentation temperature T were varied. The results of the numerical optimization 
performed with Matlab depended on the choice of the parameters in the objective function: For 
the case β1=β2=0, the optimal values of the free model parameters were T=31 °C, a0=0.2, and 
a1=−0.01. The solutions for the biomass x and product masses pSol, pIB, as well as for the specific 
growth μ and formation rates πSol and πIB are presented in Figure 6a. Here, the amount of desired 
protein was calculated to be 21.36 g. At the same time, the undesired IB-protein was being 
formed at an amount of 3.91 g. The corresponding biomass was x=537.6 g. 
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Figure 6. Simulated profiles of the desired soluble protein mass (solid green line, left side), the IB-protein 

mass (dash-dot red line, left side) and biomass (dashed blue line, left side) as a function of process 
time together with the corresponding specific growth (μ: dashed blue line, right side) and product 
formation (πSol: solid green line, right side, πIB: dash-dot red line, right side) rates for optimization 
scenario A with penalty factors β1=0.0, β2=0.0 and optimization scenario B with penalty factors 
β1=1.0, β2=0.025. The outcome of both optimization runs for the cultivation temperature was 31 °C. 

Alternatively, we considered the situation of a trade-off between soluble protein and inclusion 
body formation concurrently optimizing the substrate to soluble product yield. The parameters 
here were chosen to be β1=1.0 and β2=0.025, saying that IB formation should be kept on a lower 
level and biomass should not be too excessive. Then, the estimates of the optimal parameters 
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were T=31 °C, a0=0.12, and a1=−0.004. The corresponding results are depicted in Figure 6b. 
Here, the amount of the desired product was 19 g, but the total mass of IB-protein was only 
1.4 g. Biomass ended up at 396 g. The second optimization scenario was considered more related 
to practice. Hence, its results were further investigated. An experiment performed with the 
optimized parameter values resulted in the blue curve in Figure 5. It only approached the 
constraint with respect to the critical substrate uptake rate at quite high specific protein loads of 
the cells, i.e., at the end of the cultivation. This only required a small reduction in the specific 
growth rate, i.e., a small feed reduction. 

 
Figure 7. Comparison of the trajectories of a standard fermentation strategy applied at the early beginning of 

our studies (yellow circles, red line) and after model-supported process optimization (green squares, 
black line). The improved strategy leads to higher amounts of soluble protein and, simultaneously, to 
a reduction of the inclusion body fraction. 

Figure 7 compares the results with parameters from the second optimization scenario with those 
obtained when a standard fermentation strategy for recombinant proteins was applied. The latter 
strategy was proposed at the beginning of the investigation reported here when the strain was 
delivered. At that time, a temperature of 35 °C and a constant specific growth rate of  
μset=0.16 h-1 during the protein formation phase were chosen. 

It becomes immediately clear from Figure 7 that the improvements with respect to the 
optimization task to be solved are considerable. The soluble product fraction became larger and 
the inclusion body fraction was nearly suppressed. The improved results were obtained at 
decreased cultivation temperatures after induction and at lower total biomass values, indicating a 
significant increase of substrate to soluble protein yield. Figure 7 reveals product mass profiles 
of the two solutions being much different, while the biomass profiles are quite close to each 
other. Thus, the optimal trajectories are sensitive to small distortions in the biomass growth 
profile. The question therefore arises, how to assure that the good results can be produced with a 
high reproducibility. 
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Assuring Reproducibility 
Process variability is a major problem in fermentation plants. The batch-to-batch variability in 
the biomass profiles typically found in biopharmaceutical industry is known to be so high that 
the two biomass profiles, depicted in Figure 7, are completely within the normal scatter. Hence, 
feedback process control was employed, in order to improve reproducibility of the process 
operation to a grade that the process consistently produces the dissolved product at its optimized 
fraction. 

 
Figure 8. Results of the five experiments performed to validate the resulting operational procedure that aims in 

maximizing the formation of soluble product fraction (upper right) with simultaneous reduction of 
the inclusion body fraction (lower right). The high degree of batch-to-batch reproducibility was 
assured by application of feedback control of the integral mass of carbon dioxide generated by the 
cells (tcCPR: lower left). 

For that purpose, the process was controlled along the time profile of the total mass of CO2 
generated by the cells. As was demonstrated by Jenzsch et al. (2007), this approach is a reliable 
indirect control of a corresponding biomass and specific growth rate profile as well, 
circumventing sophisticated state estimation methods of these variables. The profile of the 
integral CO2 produced was taken from the cultivation with optimal cultivation parameter settings 
(as shown in Figure 7). As the manipulated variable the feed rate F was used. The batch-to-batch 
reproducibility obtained with this control procedure can easily be judged from the five validation 
fermentations depicted in Figure 8. 

It can be seen that the total CO2-mass profiles measured in the different cultivations (depicted in 
lower left part of Figure 8) almost completely overlap. Deviations from the set point profile are 
less than 1 %. Thus, the controller works well. As the process is a deterministic system, the low 
variability in the total CO2 leads to small variations in biomass and protein masses, as well. 
Practically all target protein appears in its soluble form, while the inclusion body fraction is 
almost completely suppressed. The larger scatter in the protein data is due to the fact that the 
precision of the protein concentration measurements by gel densitometry of SDS-PAGE is 
considerably smaller than the one in the measurements of biomass and CO2. 
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DISCUSSION 
Here, we present an engineering approach to finding a process operational procedure that 
channels practically all the desired product formed by the E. coli bacteria into its soluble form. 
As such, the method makes use of numerically exploitable models quantitatively describing the 
process dynamics of product formation. We first used a conventional model where the kinetics is 
represented by Monod-like expressions. This model required considerable development time, 
because different hosts and types of target proteins demand for a careful quantitative, 
knowledge-based description of process kinetics. In a next step, an approach was chosen, which, 
first of all, is universally applicable and, moreover, depicts a higher accuracy. It is based on 
general valid mass balances and purely data-driven expressions for the kinetics. The latter allow 
for an easy model adaptation to various strains as well as to differing product formation kinetics 
and were formulated by means of artificial neural networks. 

It was pinpointed that the employed hybrid process model could not only be used for off-line 
data-driven estimation of biomass and product formation kinetics, but also, since all input 
variable values are available on-line, as a soft-sensor to monitor the important process variables 
μ, πSol, πIB, x, as well as both fractions of the target protein pSol and pIB. Moreover, the hybrid 
model was shown to be exploitable in numerical optimization studies, where the aim was to find 
process operational protocols maximizing the soluble fraction of the desired product formed by 
the cells. For that purpose, we formulated a concrete objective function and determined the 
process constraints. 

The results showed that the process can be run in such a way that the inclusion body formation is 
practically negligible. However, the process performance was sensitively affected by deviations 
from the optimal path of the process. Hence, in order to stabilize the process, advanced feedback 
control adjusting biomass growth was employed. This guaranteed a high reproducibility of all 
important state variables, particularly a nearly exclusive production of the desired soluble target 
protein fraction. As the controlled process variable the time profile of the overall mass of CO2 
generated by the cells was used. This has the advantage that rather noiseless on-line 
measurement signals can be supplied to the controller instead of indirectly measured variables, 
such as the specific biomass growth rate μ. The total integral CO2 profile in turn can directly be 
related to a profile of the specific biomass growth rate, which is most often used in literature as 
the controlled variable, and which appears as the result from the optimization procedure 
described in the previous section. 

The developments reported address the central requirements of FDA's PAT initiative with 
respect to comprehensive use of knowledge-based process design and operation. First, the 
identification of the variables that critically affect product formation was performed. 
Subsequently, quantitative process models were formulated that can be and were used for 
constraint process optimization. Finally, advanced feedback control was implemented to assure 
reproducibility. So far, the methodology provides innovative tools and methods for a knowledge-
based process design and operation. 
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NOMENCLATURE 
c Concentration vector  [g/L] 

cF Concentration vector of species in feeding  [g/L] 

DO Dissolved oxygen  [%sat] 

EA1 Activation enthalpy for biomass growth 12.4321 [kJ/mol] 

EA2 Inactivation enthalpy for biomass growth 298.5476 [kJ/mol] 

EA3 Activation enthalpy for soluble protein expression 94.5376 [kJ/mol] 

EA4 Inactivation enthalpy for soluble protein expression 290.2615 [kJ/mol] 

EA5 
Activation enthalpy for inclusion body protein 
expression 92.0230 [kJ/mol] 

EA6 
Inactivation enthalpy for inclusion body protein 
expression 280.3431 [kJ/mol] 

F Feeding rate  [g/h] 

FGlc Feeding rate of pure glucose  [g/h] 

J Objective function of optimization  [g] 

k1 Constant for activation of biomass growth 130.0307 [-] 

k2 Constant for inactivation of biomass growth 3.8343e48 [-] 

k3 Constant for activation of soluble protein expression 2.4099e16 [-] 

k4 Constant for inactivation of soluble protein expression 3.0156e49 [-] 

k5 
Constant for activation of inclusion body protein 
expression 7.1563e14 [-] 

k6 
Constant for inactivation of inclusion body protein 
expression 1.3982e46 [-] 

KP Constant of inhibition of soluble protein expression 
caused by increasing protein load 40.1263 [g2/L2] 

KS Monod constant 0.08 [g/L] 

KX-σ 
Constant for inhibition of substrate uptake caused by 
higher cell densities 36.8123 [g/L] 

KX-µ Constant for inhibition of biomass growth caused by 
higher cell densities 121.8669 [g/L] 

Kµ1 
Constant for inactivation of soluble protein expression 
at higher growth rates  0.25 [-] 

Kµ2 
Constant for inactivation of inclusion body protein 
expression at lower growth rates 0.082 [h-1] 

p General annotation of total mass of target protein   [g] 

pIB Total mass of target inclusion body protein fraction  [g] 

pSol Total mass of soluble target protein fraction  [g] 

PSol Concentration of soluble target protein fraction  [g/L] 
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PIB Concentration of target inclusion body protein fraction  [g/L] 

R Universal gas constant 0.0083145 [kJ/(K mol)] 

R Vector of conversion rates  [h-1] 

RMSE Root mean square error  [g] 

S Substrate concentration  [g/L] 

t Process time  [h] 

tF Duration of fermentation  [h] 

tai Time after induction  [h] 

tCPR Total carbon dioxide production rate  [g/h] 

tOUR Total oxygen uptake rate   [g/h] 

T Cultivation temperature  [°C],[K] 

x Total biomass dry weight  [g] 

X Concentration of biomass dry weight  [g/L] 

YXS Yield coefficient biomass - substrate 0.535 [g/g] 

V Culture volume  [L] 

µ Specific biomass growth rate  [h-1] 

µc 
Maximal specific biomass growth rate where no 
overflow metabolism occurs  [h-1] 

πSol Specific product formation rate of soluble protein  [h-1] 

πIB Specific product formation rate of inclusion body 
protein  [h-1] 

σ Specific substrate uptake rate  [h-1] 

σc 
Maximal specific substrate uptake rate where no 
overflow metabolism occurs  [h-1] 

σmax Maximal specific substrate uptake rate 1.5008 [h-1] 

Sol
maxπ  Maximal specific product formation rate of soluble 

protein 0.2160 [h-1] 

IB
maxπ   Maximal specific product formation rate of inclusion 

body protein 0.024 [h-1] 
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ABSTRACT 
In industrial production environment, cultivation processes forming recombinant proteins run 
along predefined trajectories. Herein, feedback control is the best way to keep the processes on 
track. However, feedback controllers require accurate on-line values of the controlled variables. 
In order to find out whether the corresponding measurement signals are correct, process 
supervision is required. Here we compare some realistic approaches to such supervision at one 
and the same fermentation process from a practical point of view. As the accompanying 
example, a fermentation process expressing a pharmaceutically relevant recombinant protein was 
taken. Classical univariate techniques were found to be still extremely valuable tools, as most 
deviations from the desired trajectories can first be noticed within these charts. Simple balancing 
techniques form an important basis for multivariate process supervision, as they characterize the 
measurement data with respect to consistency. Since the number of measured variables is limited 
in fermentation technology, univariate fault detection procedures can be employed throughout, 
thus, if process failures occur, errors can easily be identified by analyzing each measurement 
variable separately. Thus, data reduction, the main advantage of linear principal component 
analysis does not lead to a significant benefit with respect to fault detection. Autoassociative 
artificial neural networks (aANN), the nonlinear extension to PCA, are powerful estimators for 
values of variables when the corresponding sensors fail. Optimal for process supervision are full 
dynamic process models that can be used to link data from different sensors and that can be 
further applied in model aided controllers. After a process failure has been appeared and the 
corresponding responsible variables have been identified, automated fail-safe techniques are 
proposed to finish the process properly without violation of its specification limits. 
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INTRODUCTION 
Highly reproducible operation in fermentation processes is of paramount importance for the 
production of recombinant therapeutic proteins and thus a major demand expressed by the 
regulatory authorities, e.g., FDA, EMEA, in order to make sure that products stay within their 
specification limits (FDA 2004, De Palma 2004, EMEA 2006). Reproducibility can effectively 
be supported by closed-loop process control (Jenzsch et al. 2006). A major prerequisite for 
correct process control is that the measurement devices employed are working correctly. 

In real fermentation plants, however, several failures may appear. Hence, it is straightforward to 
supervise the fermentation process in such a way that errors are detected as early as possible, in 
order to have time enough to start corrective measures preventing the process from leaving its 
specification domain. For that purpose, process monitoring, supervision and control systems are 
installed at bioreactors to register the on-line measurement signals, display them properly and 
analyze the on-line information. The errors found during the process are classified into different 
categories (Hocalar et al. 2006). 

– Random measurement noise with zero mean and in agreement with measurement 
accuracy 

– Disturbances/abnormalities – sudden gross errors in the measurement data including the 
complete failure of the sensor 

– Distortions/drifts – systematic measurement errors due to, e.g., wrong calibrated sensors, 
or systematic movements of the sensors signal during the process 

– Decreased measurement accuracy 

In situations where measured signals start deviating systematically from their specified 
trajectories, the first task is to find out whether or not measurement signals are correct. This 
question must be solved by checking them for consistency with simultaneously measured 
signals. Models interrelating the signal values are then required. The different supervision 
methods available are essentially distinguished by the level of sophistication of the models 
employed. When a measurement does not deliver a correct value, it should be replaced by a 
sufficiently correct estimate. Again, it is straightforward to determine the estimate by means of a 
model from other simultaneously measured values.  

In cases where the measurement variables are consistent but the process is progressing atypical, 
e.g., off-line values of metabolites are out of their normal ranges, the problem is to identify the 
reason of the fault in the process. This is not considered in this paper. Here, we focus on 
supervising the on-line measurement signals in fermentation processes that are used to keep the 
process under control.  

In the project we report about, we investigated several techniques that were proposed for and are 
in use in other sectors of production industry, mainly in the chemical and petrochemical 
industries, with respect to their applicability in fermentation processes. Methods that are of high 
importance in these processes might not be as valuable as in fermentation plants, since 
conditions are much different in many respects. An important difference to chemical or 
petrochemical production reactors is the number of on-line measurement devices being restricted 
as far as possible in bioreactors to reduce the contamination risk and to avoid expensive device 
validation procedures (Royce 1993, Junker et al. 2006). 

In order to get a realistic picture, we compared all techniques investigated at one and the same 
fermentation process for production of a recombinant therapeutic protein. For that purpose, we 
took an example where the desired product appears in its active form as well as in form of 
inclusion bodies within genetically modified E. coli bacteria.  



CHAPTER 6.  
• FERMENTATION PROCESS SUPERVISION AND STRATEGIES FOR FAIL-SAFE OPERATION: A PRACTICAL APPROACH • 

 

91
 

MATERIAL AND METHODS 
Escherichia coli BL21(DE3) pET28a was used as the host system in all experiments. The 
organism expresses a commercially interesting protein, in the following text referred to as 
HumaX for secrecy reasons. Part of this product appears in its active soluble form another one in 
form of inclusion bodies. The protein was expressed under control of the T7 promoter after 
induction with 1 mM IPTG.  

All cultivations were conducted in a B. Braun 10-L-bioreactor Biostat C with defined mineral 
salt medium, i.e., Na2SO4 2 g L-1, (NH4)2SO4 2.46 g L-1, NH4Cl 0.5g L-1, K2HPO4 14.6 g L-1, 
NaH2PO4×H2O 3.6 g L-1, (NH4)2-H-Citrate 1.0 g L-1, MgSO4×7 H2O 1.2 g L-1, trace element 
solution 2 ml L-1, thiamine 0.1 g L-1, and kanamycin 0.05 g L-1. All cultivation experiments were 
entirely run in the fed-batch mode, i.e., the medium did not contain glucose at inoculation time. 
At the early stage of fermentation an exponential feeding was performed by open-loop control. 
After seven hours of fermentation, the process operation was switched to control of total mass of 
generated carbon dioxide tcCPR (Jenzsch et al. 2007). In this way, a specific growth rate of 
µ=0.5 h-1 in the biomass growth phase and an optimal growth rate for soluble recombinant 
protein production of µ=0.12 h-1 after induction was achieved. Within all fermentations the 
temperature was kept at T=35 °C and subsequently lowered to 31 °C prior to induction. Both 
parameters, the specific growth rate as well as the fermentation temperature, were controlled to 
optimal values after induction as was found by Gnoth et al. (2010a). 

Because the initial biomass concentration was only 0.25 g L-1 (DCW), the substrate feed rates 
had to be kept very low in the beginning, in order to avoid overfeeding and thus formation of 
overflow metabolites or even substrate inhibition. Since the feed pumping rates were limited 
toward low feed rates, the feeding was started with a glucose concentration of 300 g kg-1. When 
enough biomass had been formed, the feeding solution was switched to a glucose concentration 
of 600 g kg-1. Substrate feeding addition was measured gravimetrically and recorded on-line 
using a Sartorius balance.  
Respiratory data was monitored via exhaust gas analysis in the vent line, i.e., O2 was measured 
on-line with a paramagnetic oxygen sensor (Maihak Oxor 610) while CO2 was detected with an 
infrared sensor (Maihak Unor 610). An Ingold pO2 probe (Mettler Toledo) was used for 
monitoring and control of dissolved oxygen to a value of 25 %sat. pH was measured with an 
Ingold pH probe (Mettler Toledo) and maintained at pH 7. The integral base consumption during 
pH control was monitored with another balance. Control of pO2 as well as pH was performed 
using a parameter adaptive gain-scheduling approach (Kuprijanov et al. 2009, Gnoth et al. 
2010b). Temperature was measured with a PT-100 sensor and controlled with a standard PID 
controller. In addition, PT-100 sensors to measure the temperature of the coolant inflow and 
outflow were installed at the entry and exit of the cooling jacket. The entire process was operated 
under the control of a Siemens SIMATIC PCS7 control system (Kuprijanov et al. 2008, 2010). 

Off-line measurements were performed with time increments of half an hour. Biomass 
concentration was estimated from an OD600 measurement performed with a spectral photometer 
(Shimadzu UV-2102PC). Additionally, some dry weight measurements were conducted, in order 
to test the correlation between biomass dry weight and the OD600 values. Glucose concentration 
was determined enzymatically with a YSI 2700 Select Bioanalyzer (Yellow Springs Inc.). 
Finally, target protein was quantified by gel densitometry after cell disruption, separation of the 
soluble fraction, solubilization of IB’s and subsequent SDS-PAGE. 

In developing a reference profile for the investigations of the various process supervision 
techniques, a couple of experiments were operated under the same controlled conditions similar 
to production runs in industry. From these fermentations a mean profile of the total mass of 
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carbon dioxide formed was determined that was  used as the setpoint profile for the feedback 
control. To give an impression of the data quality, the data sets are depicted in Figure 1. 

Figure 1. Data set originating from a fermentation system used in recombinant protein production with E. coli 
bacteria. All fermentation runs were successfully controlled to a predefined profile of the total 
carbon dioxide mass [g] produced by the cells (Jenzsch et al. 2007). The data set was used to identify 
all models discussed in the subsequent parts of this paper. The numbers in the legend are study 
identifiers of the fermentations in our laboratory database. 

In order to test the various monitoring techniques described later, additional experiments were 
performed where failures were induced during the fermentation. 

RESULTS AND DISCUSSION 

Univariate Supervision Methods 

Control Charts 
In continuous processes it is straightforward to make use of control charts where the 
measurement values of single variables are plotted against time (e.g., Stoumbos et al. 2003). If 
the values of variables have to be kept constant, for instance the pH-value, deviations from the 
desired values signal can simply be analyzed. In batch or fed-batch processes that are 
predominating in fermentation plants, things are usually more complicated as the desired values 
of most state variables, e.g., the biomass, vary with time. A straightforward approach is to set 
two-sided limits around the desired value within which the fluctuations must stay in an 
undisturbed process. When unusual deviations appear, operators will be alarmed, and in 
situations of stronger variations, corrective actions become indispensible. The identification of 
an unusual deviation is performed after statistical analysis of the data from previous successfully 
finished cultivations. Generally, two limits are used, the alarm and the action limit. The first only 
signals a significant deviation from the desired profile, the second says that an immediate 
response by the operator is required.  
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In practice, the first problem is to determine the time profiles of these limits. A first guess is 
derived from the paths of successfully performed fermentations, such as those shown in Figure 1, 
by computing the alarm limits from the standard deviation of fluctuations around the mean 
observed in fermentations under normal operating conditions. Since those profiles, e.g., 2-sigma 
curves, will probably be noisy, they must be smoothed appropriately. In this context, we applied 
a normal running mean filter, but generally several alternative techniques exist, for instance 
Savitzky-Golay smoothing (Savitzky and Golay 1964). The alarm and action limits must be 
separately tuned for each variable under consideration based on experiences with the current 
process or with similar ones. For simplicity, we took smoothed 2-sigma distances for the alarm 
and 3-sigma distances for the action limits (Shewart 1931, Fortuna et al. 2007). An example is 
given in Figure 2. 

 
Figure 2. Typical charts used to supervise on-line measured variables in a process control system. They depict 

deviations from the desired reference value. Upper part: for the culture weight, lower part: for the 
total oxygen uptake rate. The solid black line is the deviation from the currently measured signal, the 
blue dashed lines are the alarm limits and the solid red lines are the action limits. 

During the cultivation experiments the on-line measurement values were supervised by a 
SIMATIC PCS7 control system that alarmed the operator whenever the respective limit was 
reached, or started an appropriate action procedure in cases where the action limit was violated. 

An important point is the selection of the variables to be monitored. Measurements significantly 
influencing the cell's behavior with respect to biomass growth and product formation are most 
important. The main physiological state variable of the cells, the specific growth rate, sensitively 
depends on quantities such as pH, pO2, temperature, etc.. These are measured on-line, but they 
are separately controlled to predefined, constant values. If the controllers work correctly, the 
signals of these variables themselves do not deliver significant information about process faults. 
However, the action variables are varied and therefore clearly depict the expenses necessary to 
keep the controlled quantities on track. For pH control this is the amount of base (and, if 
necessary, acid) needed to hold the desired pH value. The dynamics of temperature control are 
mirrored by the energy required for cooling, or simply by the integral of the temperature 
difference between coolant in- and outflow at the cooling jacket, provided that the coolant flow 
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rate is constant. In this way, a small number of - at the first glance unconventional - on-line 
measurement variables are used for process supervision together with others that are more 
directly related to the specific growth rate, e.g., the oxygen uptake rate OUR and the specific 
carbon dioxide production rate CPR, which both are derived from off-gas analytics. 

Trend and Noise Analysis 
Control charts can be further exploited by looking whether the signal noise shows an unexpected 
behavior. For instance, when the noise level on the signal changes unexpectedly, it must be 
argued that there is something wrong.  

The signals are usually allowed to freely move within the alarm limits around the setpoint. 
During normal process operation, these distortions should randomly fluctuate around the 
setpoint. Otherwise, a systematic error must be assumed. Such trends or drifts are best 
recognized by integrating the deviations between measured and reference values. When the 
integral significantly deviates from zero, a trend must be assumed. In this way, trends can often 
be detected long before the process reaches the alarm limits. A typical example is shown in 
Figure 2, here for weight or oxygen uptake rate at times larger than 12 h a trend was detected. 
Besides this, methods to detect and analyze cyclical trends in the measurement data are 
summarized in the general topic of time series analysis, which encompass, e.g., auto- and cross 
correlation or Fourier transformation procedures (Brereton 2005). 

Multivariate Process Supervision Procedures 
When a key process variable tends to drift away from its desired reference trajectory, the 
objective is to find out whether or not all process components work correctly. This question must 
be answered in steps. Looking for consistency of process data is a first measure. It requires a 
model that incorporates the different variables. The various methods are distinguished by the 
models employed. 

Balances 

Mass Balance 
A mass balance around the entire culture is a simple and straightforward basic model used to 
check measurement data for consistency. The mass balance sums up changes in the culture mass 
W due to incoming and outgoing flow rates. The biggest flow rates increasing W are (i) the 
substrate feed rate FS, (ii) the rate FB of base addition during pH-control, (iii) the total oxygen 
transfer rate tOTR and (iv) the rate FAF at which the antifoam agent is added to the broth. W is 
diminished mainly by (i) the rate tCTR at which CO2 is leaving the culture through the vent line, 
but also (ii) by the rate of water evaporation Fevap and (iii) Fsample the rate at which culture is 
removed during the sampling procedure for off-line measurements. The sum of all these 
contributions should be equal to the measured culture weight Wm. 

∫ ⋅−−−⋅++++=
t

SampleEvapAFBSm dtFFtCTRtOTRFFFWtW
0

0 ))(001.0()(   (1) 

Of course, all the feeds Fi are functions of time t. Typical plots of the measured mass Wm 
together with the right hand side of the balance equation for normal operating fermentations are 
shown in Figure 3. 
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Figure 3. Examples of mass balances computed on-line for 4 different fermentation runs (S481, S572, S598, 

S600). As can be seen, measured (blue line) and balanced (red line) culture weight fall together and 
the corresponding mass balance is considered closed. 

This representation of the mass balance can be used on-line during the running process to 
supervise the process. I.e., the sum of the contributions can directly be displayed with the culture 
weight Wm measured by the balance. Upon statistically significant deviations between both 
signals an alarm is triggered.  

Carbon Balance 
Simultaneously, the C-balance can be used for on-line process supervision (Han et al. 2003, Jobé 
et al. 2003). For an aerobic E. coli process, it is derived from the gross reaction equation  

OHYAcYCOYPYXYNHYOYS OSHAcSCSPSXSSNHOS 222332 ⋅+⋅+⋅+⋅+⋅→⋅+⋅+   (2) 

where S is the substrate, here glucose, NH3 the ammonia-solution used for pH control, X the 
biomass, P the target protein, Ac the overflow metabolites, H2O, O2 and CO2 water, oxygen and 
carbon dioxide, respectively. 

Here, the stoichiometric coefficients are written in terms of yield coefficients with respect to C-
moles of substrate. In the C-Balance the yield coefficients for ammonia, oxygen and water do not 
make a contribution. With the elemental composition of the species involved, the change ni in 
the amount of C-atoms in species i during the reaction per unit time can be related to each other. 
It is convenient to resolve this relation for the biomass term. Then the C-balance reads 

)(
200 CSCSampleCAcCPCCOCXCSCFCX nnnnnnnnn ++++−++=     (3) 

It is known that carbon dioxide dissolves to a considerable extent in the liquid medium and 
further is in equilibrium with bicarbonate. However, if the pH is strictly controlled to a constant 
value (as it is normally done in fermentations), the CO2-bicarbonate system is then in steady 
state and can be neglected (Royce 1992, Spérandio 1997, Gnoth et al. 2010b). 
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Often, the impact of product formation on the overall carbon balance is negligible. The equation 
is further simplified, if the process is assumed to be operated in substrate limited fed-batch mode. 
Then, the amount of substrate accumulating in the culture broth as well as the formation of 
overflow metabolites can be neglected. The amount of carbon being added by the feed as well as 
the overall amount of carbon from CO2 production are derived from on-line measured variables, 
i.e., the substrate feeding rate and the CO2 fraction in the exhaust gas. With the measured culture 
mass Wm and the molecular weights of the species, the relationship can be represented in terms 
of concentrations, which are more conveniently be compared with the off-line measured biomass 
concentrations as shown in Figure 4. The off-line biomass values were obtained from OD600 
values via correlation curve with time delays of 15 min after sampling. 

 
Figure 4. Results of carbon balances of 4 fermentation runs. As explained in the text, the C-containing 

compounds of the culture are balanced. In this way, biomass concentration is estimated on-line (red 
line) and is compared with those measured off-line (symbols). 

Degree of Reduction Balance 
Further, the degree of reduction balance (e.g., Shuler and Kargi 2002, Chattaway et al. 1992) can 
be exploited on-line. This balance is also based on the gross reaction equation just as the 
C-balance. It makes use of the O2-contribution instead of the CO2-contribution to the overall 
reaction. Again, the result can be displayed in terms of biomass concentrations to more 
conveniently show plots to which the process operators are familiar. 

All three balances were evaluated on-line during the fermentation process and were incorporated 
into our Siemens PCS7 process control system. They are known to be the first consistency check 
to be made in order to make sure that the measurement equipment works correctly (e.g., Nielsen 
and Villadsen 1994). Since these balances make use of different measurement variables, best 
results for identification of process errors are obtained if all balances are combined. Then, in case 
of an error in the substrate feed rate, for instance, all three balances are not closed, while a faulty 
CO2 measurement is signaled by a non-closed carbon balance but probably not in the degree of 
reduction balance. The other way around, a closed carbon balance and an open degree of 
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reduction balance reveal a problem with the O2 measurement in the vent line. More complex 
balancing methods, i.e., linear constraint and data reconciliation methods, have been developed 
by Wang and Stephanopoulos (1983) as well as Heijden (1994a,b,c). At the example of industrial 
fed-batch yeast fermentations Hocalar et al. (2006) applied elemental balances and an additional 
heat balance. The redundant information was utilized for error diagnosis, fault detection and state 
estimation. In principal, the first action is to set up the elemental component matrix and the 
conversion rate vector on the basis of the stochiometry of the current fermentation process and 
the number of elemental balances, i.e., the constraints of the system. Then, the degree of 
redundancy is calculated. If the degree of redundancy is > 0, the system can be used to i) detect 
gross measurement errors during fermentation, ii) estimate nonmeasured conversion rates and 
further iii) improve the accuracy of the measured conversion rates by reconciliation methods 
(Jobé et al. 2003). Measurement errors are detected after the elemental component matrix and 
the conversion rate vector have been divided into a measurable and a non-measurable part. 
Subsequently, the redundancy matrix, and with it the reduced form specifying the number of 
independent equations, can be calculated. In further steps the residual vector and its variance-
covariance matrix are determined and finally a statistical test introduced by Reilly and Carpani 
(1963) is made. The test function h is chi-square distributed when the raw measurements are 
uncorrelated. If h exceeds the given confidence level, the serial elimination method by Ripps 
(1965) is a tool to identify the source of an error.  

Black-box Models 
Where there is not enough physically based process knowledge, more or less simple black-box 
models are practical alternatives. There are two groups of such models, statistical and nonlinear 
parametric ones. Both are data-driven per se, so that little process knowledge is required with the 
exception of the choice of dependent and independent variables to be considered. 

Statistical Models 
One of the most well known statistical modeling and analyzing method for fault detection is 
principal component analysis (PCA), including their multiway versions (Wold et al. 1987, 
Nomikos and MacGregor 1994), which essentially is a multidimensional linear mapping between 
process variables. The measured data from J variables forms a cloud in an J-dimensional data 
space. PCA performs a coordinate transformation in such a way that in the new orthogonal 
coordinate system the first coordinate points to the direction of the largest extension of the cloud. 
The second coordinate indicates the direction where the variance again is next highest, and so on 
with the third and further up to the J-th coordinate. In the new linear vector space the coordinates 
(transformed variables) unfortunately do no longer have a physical meaning, but on the other 
hand have the advantage that they are independent of each other and are classified with respect 
to the variability, their signal amplitudes depict during the cultivation. 
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Figure 5. Classical representation of fermentation data (symbols) in a three dimensional data space together 

with the 3 principal components (lines). While the tcOUR=f(tcCPR) is strictly linear, the 
Base=f(tcOUR, tcCTR) is nonlinear. Because of that, data reduction using linear PCA is 
problematic, since significant information is lost. 

A simple basic example with real fermentation data is given in Figure 5 where the centered base 
consumption is plotted above the plane spanned by the centered cumulative oxygen uptake rate 
and the centered cumulative carbon dioxide production rate. As the name suggests, PCA deals 
with principal components and neglects further ones that do not influence the process 
significantly. This data space reduction property is essential to the success of PCA. 

Moreover, the classification capability is the very advantage of the method, as feature variables 
displaying no significant change during the cultivation do not necessarily need to be considered. 
The property is particularly important, if very many variables are to be measured at the process 
under consideration. In fermentation processes for recombinant protein production this feature is 
not really used, because the number of on-line measured variables is usually very small so that a 
data reduction cannot bring a very big advantage. Additionally, as shown in Figure 5, in 
nonlinear systems a data reduction often cannot be performed, since all three components are 
required in the transformed system to describe the "data cloud". 
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Figure 6. Monitoring of a well performing (upper graph) and a faulty (lower graph) cultivation process based 

on the multiway principal component analysis of seven variables. For comparability, the same 
process faults as in Figure 2 were applied, i.e., error in culture weight and tOUR. In order to 
establish the PCA model, 16 reference batches performed under normal operating conditions were 
used. The calculated squared prediction error SPE serves as an indicator for the deviation between 
actual fermentation and the established process model. Since PCA performs a linear transformation, 
the SPE can be divided into the single variable contributions. SPE values exceeding the alarm (solid 
orange line) and action limits (solid red line) indicate an abnormal process behavior. 

The second feature of PCA is that it can easily detect faults, if the correlation structure among 
process variables is disturbed. In that case, the value appears as an outlier with respect to the data 
cloud made up by the correct values in the J-dimensional data space.  

For on-line fault detection of a fermentation process, the measurement data has to be unfolded in 
a special way. First of all, data from I reference fermentations with J variables at K time steps is 
unfolded so that that the new two-way matrix has the dimension X = I × (J·K). Each column in X 
corresponds now to one variable at a certain time instant. Obviously, the dimension of X is rather 
high and the columns, i.e., the variables, are not independent of each other. The application of 
PCA reduces the dimension of X, eliminates redundant information and extracts the principal 
components (PCs). Often only three to four PCs are sufficient to describe the major part of the 
system’s variability. After PCA has been applied to the reference data set, a unique correlation 
structure of the measurement data is identified and PCA model is set up. The measurement 
matrix X can then be divided into the loadings P, the scores T and a residual error E of the model 
in the following way. 

ETPX T +=            (4)
 

The established PCA model then can be used to monitor an unknown fermentation process. An 
advantage of the linear PCA method as compared to more complex nonlinear methods is its ease 
of identification of variables being responsible for the outlier point. For that purpose, one can 
compute the squared prediction error (SPE), which can be further divided into its components 
(Gregersen and Jørgensen 1999, Westerhuis et al. 2000), as shown in Figure 6.  
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Where er is the rth column of the error matrix E=Xnew-tnewPT. For a single batch it is a scalar and 
the SPEk becomes the sum of quadratic residues between the values of the batch to be monitored 
and the values predicted by the PCA model at time point k. The SPE can be approximated by a 
χ2 distribution, where mk and υk are the mean and the variance of the SPE of the reference 
batches used for building the PCA model. Based on the confidence levels (in our case α=0.05 
and α =0.01), the alarm and action limits were calculated, respectively. 
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Our experience showed that no significant time savings were observed with PCA compared to 
the classical univariate supervisory system, i.e., errors were detected simultaneously. 
Additionally, reliable process supervision by PCA demands a careful selection of the monitoring 
variables and especially a high number of model batches to have statistically safe results. 

Currently the "Kernel PCA" technique is discussed in literature (Liu and Zhao 2006, Zhang and 
Qin 2007) as an extension of PCA for dimension reduction and fault analysis of applications 
depicting a nonlinear behavior. Kernel PCA is very well suited to extract nonlinear structures of 
interest in the data (Schölkopf et al. 1998). It works well for classification purposes; however, 
the problem is that a reconstruction of original values from the feature space is not generally 
possible in a unique way. Hence, its use in fermentation fault recovery is questionable. 

Parametric Black Box Models 
For PCA it is extremely important to choose appropriate input variables, i.e., those having a 
significant influence on the process dynamics. The same applies for alternatives to PCA, such as 
autoassociative artificial neural networks (aANNs). These are known to be nonlinear extensions 
of the PCA techniques (Kramer 1992). Their main advantage is the ability to cope with the 
intrinsic nonlinearity of fermentation processes. Autoassociative neural networks are black box 
models where the parameters are determined by means of a nonlinear fit between the network 
outputs to given process data. They consist of two feedforward artificial neural networks. The 
first maps the input data to a set of feature variables of such a low dimension that the new 
variables are almost independent of each other (i.e., they do no longer contain redundant 
information), and the second feedforward network converts these variables back into the original 
physical data space. A trained aANN thus transforms the real process signals onto themselves 
(Figure 7). As in case of PCA, the difference between original and reconstructed measurements 
is used for calculation of the squared prediction error SPE. Whenever one input value is 
distorted, the aANN does not map the input signals onto themselves and the SPE rises, indicating 
that an error in the measurements has occurred. Because of the missing linear properties, the 
responsible physical quantity cannot be directly identified with the aANN in cases of observed 
faults in the measurement data.  
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Figure 7. Structure of the autoassociative artificial neural network (aANN) used here for process supervision 

and signal reconstruction. Measurement values (left) are fed into the aANN and, subsequently, the 
trained network is capable to calculate reconstructed values (right). Only if the correlation structure 
among the variables is correct, original and reconstructed values fall together. In this special case, 
the number of nodes in the outer hidden layers was 10 and in the bottleneck layer 4 nodes were used. 

However, if a single faulty measurement is identified in the univariate signal analysis, the aANN 
can easily be used to recover the faulty signal. A straightforward way is to simply vary the 
corresponding input value of the aANN until the SPE becomes minimal. In this way, the signal 
value, which fits best into the correlation structure with the other input signal values, is obtained. 

 
Figure 8. Recovery of a measurement signal by an autoassociative artificial neural network after a complete 

failure of a single input variable, here the culture weight at t=12 h (left). First, the responsible 
variable is identified, e.g., in the univariate monitoring system. By means of a “Golden Search” 
algorithm this input variable is then varied in a way that the squared prediction error SPE (right) as 
the objective function is minimized, saying that the correlation structure between the measured 
variable is correct.  
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The variation is done automatically with a simple search algorithm, e.g., with the "Golden 
Search" procedure (Galvanauskas et al., 2004). An illustration of this procedure is given in 
Figure 8, where the measurement of the culture weight failed at t=12 h, which was immediately 
reconstructed by an aANN. 

Dynamic Process Models 
A highly valuable technique to identify errors is to run a validated dynamic process model in 
parallel to the real process (Assisa and Filho 2000, Boudreau et al. 2006). This directly exploits 
the mechanistic knowledge of the process engineer about the current state of the process. 
Examples of dynamic models used for prediction of biomass, substrate or target protein values 
were presented by (Levisauskas et al. 2003, Zheng et al. 2005, Nadri et al. 2006, Gnoth et al. 
2010a). Dynamic models are usually based on mass balances around the entire culture and are 
formulated in terms of systems of ordinary differential equations. The comparison of the 
modeling results with the current process measurement values directly reveals deviations from 
the desired process path, a fact that can be utilized for process supervision purposes. More or less 
complex dynamic process models are essentially the basis of many model aided process variable 
estimators such as observers and Kalman filters (Bastin and Dochain 1990, Neeleman and van 
Boxtel 2001, Alvarez and Simutis 2004). In a further step, dynamic process models and black 
box techniques can be linked to yield hybrid models. These models were successfully applied for 
monitoring and control of fermentation processes (Oliveira 1998, Roubos et al. 2000, Silva et al. 
2000, Galvanauskas et al. 2004). Today, advanced modeling, control and supervisory algorithms 
are easily implementable into the process control software. The fast progress of these systems 
has been open the opportunity to simulate the complete bioreactor system in real-time (e.g., 
kinetics, control action, delay times etc.) simultaneously as the real fermentation takes places. 
This is referred to as the virtual plant concept. With it, the possibility arises to test process 
control system’s interaction and performance. The virtual plant offers opportunity to reduce costs 
(e.g., for the development of advanced controllers, process testing), to train personnel in real 
fermentation environment, and further to accelerate the benefits of the PAT-initiative (McMillan 
2007). This concept probably has a great potential, but needs a thorough analysis of the 
processes involved (McMillan 2004, Boyes et al. 2005, Kuprijanov et al. 2008). 

Recommendation 
The backbone of process supervision is and remains univariate analysis of the various on-line 
signals from the fermenter. This must be installed at all production fermenters integrated in the 
automatic process control systems (PCS). If variables leave the specified trajectories, alarms are 
automatically sent to the operator and corrective actions can be performed. 

Disturbances are most easily detected by means of trend analysis. Moreover, simple multivariate 
analyzing techniques are recommended. We propose to perform a mass balance as well as a C-
balance on-line during the cultivations. Additionally a degree of reduction balance should be 
calculated. In this study these balances were utilized to estimate the culture weight (mass 
balance) and biomass values (C-balance, degree of reduction balance) during the process. The 
estimations were then compared with on-line and off-line measured values. Analysis of the 
species involved in the different balances was a simple means to detect the responsible variable 
in cases of process errors. Methods to combine the different balances and further to 
automatically detect gross measurement errors have been proposed by (Wang and 
Stephanopoulos 1983, Heijden 1994a, b, c,). Its practical applicability in industrial fed-batch 
processes showed Hocalar et al. (2006). Balancing techniques require a thorough examination of 
the species and variables based on the specific conditions of the process. However, these 
methods lead to a better understanding of the process and the variables included. Compared to 
statistical process supervision, the methodology does not need extensive fermentation data to 
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obtain reliable results. In addition, the measurement data involved does not need to be pretreated 
in a special way. 

Abnormalities were first recognized in the original process variables. Operators easier recognize 
an unusual process behavior when observing original physical signals, e.g., biomass 
concentrations. A data reduction at the cost of loosing physically interpretable measurement 
values seems to be disputable in bioprocess supervision and control. 

Case Studies of Failure Compensating Measures  
Process monitoring and fault detection have frequently been discussed in literature (e.g., 
Glassey et al. 1997, Bicciato et al. 2000, Albert and Kinley 2001, Gunther et al. 2007), however, 
less information is available about strategies of keeping the process safely within its specification 
limits upon the identification of an error. It is important to correct faults/disturbances whenever 
possible. In the following case-studies some practical solutions are proposed. 

Error in the pH-Measurement 
In a first study we assume that the pH sensor fails. When the sensor electrode breaks, the pH 
signal jumps beyond the action limit. This is immediately detected by process control system 
PCS7. If no redundant measurement pH probe is installed, the simplest way of keeping the 
process running is to directly deactivate the pH controller and switch to an open-loop control 
mode where the base feed is controlled along its reference profile. 

 
Figure 9. Trajectories of a fermentation where the feedback pH-controller was stopped at t=8.5 h and the fail-

safe routine was started. The latter feeds the base for pH control along its reference profile. 
Consequently, the base signal deviation (upper left) is zero. The pH remains within its specification 
limits (upper right). The tcCPR controller was still working (lower left) and was able to keep 
biomass (squares) and product (dots) within their specification limits (lower right), which are 
marked by the dashed lines.  
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The procedure was tested in a fermentation where the feedback pH-controller was deactivated 
and replaced by an open-loop control mode at t=8.5 h. Here, the pH signal did not really fail, but 
was instead used to show the validity of this approach. The results are depicted in Figure 9.  

As can be seen, the process could be kept within the specification limits up to the end of the 
production run. It is particularly interesting that the procedure worked during the entire product 
formation phase, i.e., after induction with IPTG. 

Failures in the Off-gas Analyzer 
All cultivations in the accompanying examples were kept precisely on track by means of a 
tcCPR controller (Jenzsch et al. 2007). This controller needs a tcCPR signal from the process, 
which is usually derived from the CO2-volume fraction measured by the off-gas analyzer. When 
this device fails, which, for instance, can be detected via the C- and the degree of reduction 
balance, two main possibilities for fail-safe routines exist.  

i) The faulty signal is replaced by an estimate based on other on-line signals, which are 
independent of the off-gas analyzer. 

ii) The feedback controller is shut down and the process is continued with an open-loop 
controller along the reference profile of the action variable, the substrate feed rate FS. 

 
Figure 10. Measured tcCPR profiles and those reconstructed from a dynamic model (left) and an artificial 

neural network (right). 

On-line estimates of a tcCPR signal can be derived in several ways. Good results were obtained 
with two approaches: The first is based on a black box model represented by an artificial neural 
network that directly estimates tcCPR from on-line signals of (a) the integral glucose 
consumption, (b) the total mass of base added to the process during pH control, and (c) the 
integral temperature difference of the coolant between output and input at the cooling jacket of 
the fermenter. 
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The second estimator is based on the mechanistic process model of Gnoth et al. (2010a), where 
the carbon dioxide production rate is additionally considered by means of a Luedeking-Piret-
term. In this case, the on-line signals from the process are (a) the substrate feed rate, and (b) the 
total mass of base needed by the pH controller.  

Figure 10 compares the measured tcCPR signal with the estimates of both approaches in a 
fermentation where no fault occurred. It becomes clear that both methods provide perfect 
estimates of the tcCPR signal under these conditions. 

 
Figure 11. tcCPR controlled fermentations: results of different recovery techniques upon the detection of a 

failure in the off-gas analyzer at t=12.5 h. Upper graph: Switch to open-loop control of the reference 
feed profile, i.e., deactivation of the tcCPR controller. Middle graph: using the dynamic process 
model to estimate tcCPR for the tcCPR controller. Lower graph: Keeping the tcCPR controller 
running by reconstructing the tcCPR signal by means of an ANN using the integral temperature 
difference between coolant outflow and inflow, the total base consumption and the integral glucose 
consumption. 

In a series of experiments, the three fail-safe routines (two estimators and one open-loop 
controller) were tested experimentally. The cultures were kept on track until t=12.5 h with a 
perfectly working tcCPR controller. Then, the normal tcCPR signal was either replaced by the 
estimates but keeping tcCPR control active, or the tcCPR feedback controller was shut down and 
switched to open-loop control mode. 

The results are compared in Figure 11. In all three cases the process could be kept within its 
specification limits. Even the simplest approach, the open-loop control worked well. The best 
result was obtained with the tcCPR estimator based on the artificial neural network. If data of 
about 5 or more fermentations is available, such a network can be trained to give comparably 
good results.  
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CONCLUSIONS 
In the course of the production of recombinant therapeutic proteins, the formation of the 
pharmaceutically active ingredients appears during the fermentation step. As this process is 
extremely complex, the only practical way to guarantee high product quality is to keep the 
cultivation process tightly under control, i.e., to assure a high batch-to-batch reproducibility. The 
best strategy of achieving this is to automatically compensate for randomly appearing 
disturbances by feedback control. Besides keeping pressure, temperature, pH and pO2 at constant 
levels, the physiological state of the cells can be controlled via its key variable, the specific 
biomass growth rate. A very powerful way to perform this indirectly is controlling the total 
amount or mass of carbon dioxide produced. Jenzsch et al. (2007) showed that this tcCPR 
control is capable to keep the cultivation tightly on track. 

Feedback controllers however, require accurate signals of the controlled variable from the 
cultures. When one of the measurement devices fails, the controllers are no longer able to work 
properly. Hence, the measurement signals must be supervised in order to make sure that they 
deliver valid information and in case of an error, fail-safe routines must be started preventing the 
process to violate its specification limits. Here, we showed some basic approaches to both 
measures, which were derived from a database and the experience of more than 500 
fermentations of E. coli-based production processes for recombinant proteins.  

With respect to fault detection, the experience is that classical univariate signal analysis, if 
installed at production fermenters within the standard process control systems, are able to do a 
very good job. As the number of on-line measurement signals at a single production fermenter is 
kept as small as possible in order to reduce the contamination risk and to avoid high expenses for 
device validation, the signals can be observed individually. Practically all distortions and 
disturbances were first detected by the supervision of the on-line measured variables. 

If the signals leave the intervals of normal operating conditions, a measurement error can most 
often be detected by comparison with other simultaneously measured signals. This requires 
models relating the quantities to each other. 

The easiest way to test on-line signals for consistency is making use of balances. We showed that 
three balances can routinely be employed for this purpose, the general mass balance around the 
culture as well as the carbon and the degree of reduction balance. As they consider different 
quantities, they already provide some information about erroneous signals in a failure situation. 

Principal component analysis has often been proposed for supervising fermentation processes, 
since this linear approach has successfully been applied in extended chemical and petrochemical 
production plants. However, at single fermenters it cannot make use of its main advantage of 
data space reduction, because the number of signals to be taken into account is very small. 
Furthermore, the application of linear methods like PCA to intrinsically nonlinear fermentation 
processes is questionable. Hence, no practical improvement was observed in all tests of this 
approach. 

Autoassociative artificial neural networks are the nonlinear variants of PCA. They allow to more 
sensitively detect inconsistencies, but cannot identify the responsible, erroneous signals as easy 
as PCA. However, since failures are easily detected by the univariate analysis, the aANNs can be 
employed to recover the distorted signals on-line.  

In situations where measurement devices fail the question is how to keep the process within its 
specification limits. The two main approaches investigated were: (i) switching the process to an 
open-loop control mode. Here, the controlled variable is guided along a predefined trajectory, 
which is most often the reference profile of the action variable; and (ii) estimating the correct 
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value of the faulty signal from other independently measured on-line signals and replacing the 
disturbed one, thus keeping the controller running.  

Both variants were tested at the accompanying example, the HumaX-production with E. coli, and 
both showed the general applicability in fermentation practice. pH could be kept within its 
specification limits by simply replacing the pH feedback controller by an open-loop control 
along the reference base feed rate profile. tcCPR control was continued running through 
replacement of the faulty signal by a neural network model estimate or by a value based on a 
dynamic process model calculation. In doing so, the fermentations could be successfully finished 
within the specification limits even in cases of severe process faults. 
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NOMENCLATURE 
Ac Overflow metabolites  

E Matrix of errors  

e Vector of errors  

FAF Rate of addition of antifoam agent [kg/h] 

FB Rate of base addition during pH control [kg/h] 

FEvap Rate of water evaporation of the culture broth due to aeration [kg/h] 

FSample Rate of sampling [kg/h] 

FS Substrate feed rate [kg/h] 

h Statistical test function  

I Number of batches   

J Number of variables  

K Number of time steps  

k Current time step   

NH3 Ammonia  

nCAc Amount of carbon in overflow metabolites [mol] 

nCCO2 Amount of carbon in the carbon dioxide [mol] 

nCF Amount of carbon that is added with the feeding [mol] 

nCP Amount of carbon in the target protein [mol] 

nCS Amount of carbon in the substrate in the culture medium [mol] 

nCS0 Amount of carbon in the substrate being added at the start of 
fermentation 

[mol] 

nCSample Amount of carbon removed due to sampling [mol] 

nCX Amount of carbon in the biomass [mol] 

nCX0 Amount of carbon in the initial biomass [mol] 

P Concentration of target protein [g/kg] 
PT Transposed matrix of loadings  

r Number of principal components  

S Substrate concentration [g/kg] 

S0 Initial substrate concentration at inoculation time [g/kg] 

SPE Squared prediction error  

∆TJacket Temperature difference between coolant outflow and inflow [K] 

T Temperature of the culture medium [°C] 

T Matrix of scores  

tnew Vector of scores of the fermentation to be monitored  
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tCPR Total carbon dioxide production rate [g/h] 

tCTR Total carbon dioxide transfer rate [g/h] 

tOUR Total oxygen uptake rate [g/h] 

tOTR Total oxygen transfer rate [g/h] 

tcOUR Total cumulative oxygen uptake rate [g] 

tcCPR Total cumulative carbon dioxide production rate [g] 

W0 Initial culture weight [kg] 

Wm Measured culture weight [kg] 

X Matrix of measurements (PCA)  

X Biomass concentration [g/kg] 

X0 Initial biomass concentration at inoculation time [g/kg] 

YXS Yield coefficient of biomass formed per substrate [mol/C-mol] 

YOS Yield coefficient of oxygen consumed per substrate [mol/C-mol] 

YNH3S Yield coefficient of ammonia consumed per substrate [mol/C-mol] 

YPS Yield coefficient of target protein formed per substrate [mol/C-mol] 

YCS Yield coefficient of carbon dioxide formed per substrate [mol/C-mol] 

YH2OS Yield coefficient of water formed per substrate [mol/C-mol] 

µ Specific biomass growth rate [1/h] 
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SUMMARY 
 

Biopharmaceutical manufacturing processes have been for a long time operated under rigid 
regulatory conditions that prevented technological progress. However, the introduction of the 
process analytical technology (PAT) concept by the U.S. Food and Drug Administration in 2004 
has led to fundamental changes with respect to the inspection and approval of manufacturing 
processes of biologics. Rather than keeping production processes fixed in any respect, it opens 
up the possibility to establish them on the basis of a comprehensive process understanding and 
lefts space for a continuous technological process improvement. A central role herein plays the 
use of modern process analytical tools, whose signals are not only utilized for process analysis 
and optimization but also to quickly counteract process inconsistencies during the process. 
Techniques and methods, that have been long term rejected due to regulatory concerns, but that 
have found a widespread use in other production industries, e.g., automobile and petrochemical 
industry, are now explicitly supported to be implemented in biopharmaceutical production 
processes. It is one of the major aims of the regulatory authorities in the near future to overcome 
the rigid mindset as well the technical standstill in biopharmaceutical production that have in the 
past hindered process innovations.  

The presented work gives an insight into the practical implementation of the overall PAT 
concept in fermentation processes for production of recombinant therapeutic proteins. At several 
specific examples on different technological levels, it will be shown that all presented 
approaches result in improvements in terms of process robustness, performance as well as the 
degree of batch-to-batch reproducibility of important process variables. 

First of all, it was shown that it is straightforward to intensively deal with quality of 
measurement data itself, meaning the improvement of the information content of recorded 
variables by a consequent reduction of measurement noise. In this context, parameters of pH and 
the dissolved oxygen in the liquid medium pO2 were identified to critically affect fermentation 
performance, since they have a strong influence on biological as well as on physicochemical 
properties during fermentation. In accordance to the PAT approach, the dynamic effects were 
both qualitatively and quantitatively understood by means of mathematical models paving the 
way for a directed solution. The developed gain-scheduling approach, that adapts controller 
parameters to the nonlinear dynamics of the process, was first tested in numerical simulations 
and afterwards successfully applied in practical fermentations. The proposed technique proved to 
be beneficial directly for controller performance of the corresponding variables but also for the 
quality of measurements physico-chemically related to these variables. In this way, the accuracy 
prediction of advanced process models, requiring the measurement data in order to quantitatively 
describe complex relationships, was significantly improved, as well. 

Besides that, special emphasis was put on the analysis of important state variables and their 
dynamical behavior during fermentation processes. Biomass and target protein herein were of 
paramount importance, as they crucially defined process quality and batch-to-batch 
reproducibility. Estimation of these variables with common methods was generally difficult due 
to their intrinsic nonlinear nature. Therefore, a hybrid modeling approach was set up. It 
combined artificial neural networks with general valid mass balances and enabled not only the 
reliable prediction of biomass and target protein but also the corresponding dynamics, as 
expressed by their specific formation rates. The technique worked completely data-driven and 
was therefore easily applicable to various expression systems, as it was shown at different types 
of product formation kinetics in E. coli. 
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In the next step, process models, either mechanistic or black box, were demonstrated to be 
quantitatively utilized for model-based optimization. At the example of a recombinant E. coli 
strain expressing the target in the soluble form, the hybrid modeling technique was firstly used to 
identify product formation kinetics as a function of central influencing factors. Subsequently, 
based on the trained model, optimal values of parameters having a major impact on target protein 
expression were calculated to redesign the process. It was then kept to its optimal trajectories 
using advanced feedback control. Therefore, process performance with respect to large amounts 
of target protein, as well a high degree of batch-to-batch reproducibility were increased 
simultaneously. 

Finally, on the way to improve overall process robustness and reliability of process data on-line 
fault detection routines and supervisory systems were developed. Here, the main objective was to 
evaluate measurement data in terms of consistency and validity in comparison to reference 
batches run under normal operating conditions. However, these techniques were not only 
restricted to the identification of process errors, the methods established were designed to further 
activate automated fail-safe systems, which were able to intervene in classical control actions, if 
necessary. In this way, fermentation processes were finished within specification limits even in 
cases of fatal process deviations. 

All approaches presented in this work basically share one common concept. It starts with the 
consequent analysis of measurement information during the fermentation process and its 
subsequent application for identification of fundamental cause-effect relationships. It continues 
with the quantitative description using process models and finally ends up with the use of the 
gathered know-how for process improvements in a directed way. Moreover, it was a major 
objective that the applied methods remain feasible, are easy to implement and are transferable to 
other hosts and production systems. Thus, the process analytical technology is not an abstract 
topic to be qualitatively discussed. Instead, the methods proposed herein showed to be valuable 
tools pushing fermentation processes forward toward a significantly improved performance and 
quality. The results demonstrated the potential to transfer the overall PAT idea to the real 
fermentation environment in the field of research and industrial manufacturing. It is now up to 
the manufacturers to adopt these state-of-the-art techniques and to overcome the technological 
backlog in biopharmaceutical production. 
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ZUSAMMENFASSUNG 
 

Biopharmazeutische Herstellungsprozesse sind in der Vergangenheit über einen langen Zeitraum 
unter strengen regulatorischen Rahmenbedingungen durchgeführt worden, die eine 
technologische Weiterentwicklung verhinderte. Mit der Einführung der „Process Analytical 
Technology“ (PAT) Initiative im Jahre 2004 durch die US-amerikanische Aufsichts- und 
Zulassungsbehörde (FDA) hat sich jedoch eine grundlegende Wende hinsichtlich der Über-
wachung und Zulassung von Produktionsprozessen zur Herstellung biopharmazeutischer 
Wirkstoffe, sogenannter Biologics, vollzogen. Die PAT-Richtlinie bietet Herstellern die 
Möglichkeit, Produktionsprozesse basierend auf einem umfassenden qualitativen und 
quantitativen Prozessverständnis zu etablieren sowie auch nach der Zulassung kontinuierlich 
weiterzuentwickeln. Eine zentrale Rolle spielt dabei die Nutzung moderner Messtechnik, deren 
Signale nicht nur für die Analyse und Optimierung von Verfahren sondern ausdrücklich auch für 
die Bekämpfung von Prozessabweichungen verwendet werden sollen. Fortschrittliche 
Technologien und Methoden wurden früher aus regulatorischen Gründen nur zögerlich 
übernommen. Inzwischen wird jedoch der Einsatz bestimmter Verfahren, die bereits seit 
längerem in anderen Industriezweigen, wie z. B. der Automobilindustrie und Petrochemie, 
erfolgreich Einzug halten, in der biopharmazeutischen Produktion nun explizit gefordert. Es ist 
eines der erklärten Ziele der Zulassungsbehörden, mit der proklamierten PAT-Initiative in 
näherer Zukunft die starre, innovationshemmende Haltung sowie den technologischen Stillstand 
der Produktionsprozesse der vergangenen Jahre zu überwinden. 

Die vorliegende Arbeit gibt einen Einblick in die praktische Umsetzung des PAT-Konzeptes in 
Bezug auf Fermentationsprozesse zur Herstellung rekombinanter, therapeutischer Proteine. 
Anhand konkreter Beispiele auf verschiedenen technologischen Ebenen wird gezeigt, dass alle 
vorgestellten Anwendungen zu einer Verbesserung hinsichtlich der Stabilität, Leistungsfähigkeit 
als auch der Reproduzierbarkeit wichtiger Kenngrößen des Fermentationsprozesses führen. 

Das Hauptaugenmerk der Arbeit lag zunächst auf der intensiven Auseinandersetzung mit den 
während der Fermentation aufgezeichneten Messdaten. Hierbei konnte durch eine konsequente 
Reduzierung auftretender Messwertschwankungen der Informationsgehalt der Prozessvariablen 
sowie deren Messdatenqualität deutlich verbessert werden. In diesem Zusammenhang wurden 
der pH-Wert sowie der Gelöstsauerstoffpartialdruck pO2 im Nährmedium als kritische 
Prozessgrößen identifiziert, da diese einen fundamentalen Einfluss sowohl auf biologische als 
auch auf physikochemische Effekte im Fermentationsprozess haben. Das auftretende 
dynamische Verhalten dieser Prozessgrößen wurde gemäß PAT zunächst qualitativ erfasst und 
anschließend mittels mathematischer Prozessmodelle quantitativ abgebildet. In numerischen 
Simulationen wurde dann ein Algorithmus entwickelt, der die Regelparameter automatisch an 
die nichtlineare Prozessdynamik anpasst. Anschließend wurde die Methode erfolgreich in 
Fermentationsexperimenten angewendet. Dadurch konnte zum einen die Regelgenauigkeit und 
zum anderen die Messdatenqualität zentraler Prozessvariablen erhöht werden. Der gesteigerte 
Informationsgehalt der Messdaten führte dazu, dass die im Zuge dieser Arbeit entwickelten 
Prozessmodelle in ihrer Vorhersagequalität wesentlich verbessert werden konnten. 

Ein weiterer Schwerpunkt stellte die Analyse wichtiger Zustandsgrößen sowie deren zeitliche 
Entwicklung im Fermentationsprozess dar. Von zentraler Bedeutung waren hierbei die 
Konzentration der Biomasse sowie des exprimierten Zielproteins, da diese in besonderem Maße 
die Qualität und Reproduzierbarkeit eines Fermentationsprozesses bestimmten. Grundsätzlich 
gestaltete sich mit den herkömmlichen Methoden die Zustandsschätzung dieser beiden Größen 
wegen des grundlegenden nichtlinearen Verhaltens schwierig. Der in diesem Zusammenhang 
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entwickelte Hybrid-Modellansatz vereint künstliche neuronale Netze mit allgemein gültigen 
Massenbilanzen. Dadurch war es möglich, zuverlässige Schätzungen für Biomasse und Ziel-
proteinwerte vorzunehmen und darüber hinaus auch die zu Grunde liegenden Kinetiken zu 
identifizieren. Das vorgestellte Verfahren arbeitete dabei vollständig datenbasiert und war somit 
sehr leicht auf unterschiedliche Arten von Expressionssystemen und Bildungskinetiken 
übertragbar. 

Die formulierten Prozessmodelle, entweder mechanistisch oder datenbasiert, wurden in einem 
nächsten Schritt konsequent für eine modellgestützte Prozessoptimierung eingesetzt. Am 
Beispiel eines heterologen, löslich exprimierten Proteins wurde ein hybrides Modell verwendet, 
um zunächst die Produktbildungskinetik in Abhängigkeit zentraler Einflussgrößen quantitativ zu 
erfassen. Basierend auf dem trainierten Prozessmodell wurden optimale Parameter für eine 
verbesserte Zielproteinexpression berechnet und die Prozessführung dahingehend angepasst. Mit 
Hilfe höherwertiger Regelalgorithmen wurde sichergestellt, dass der Prozess entlang seiner 
optimalen Trajektorie geführt wurde. Durch diese Strategie wurden die absolute 
Zielproteinmenge und gleichzeitig die Reproduzierbarkeit des Fermentationsprozesses 
wesentlich erhöht. 

Um die Robustheit und die Zuverlässigkeit der Fermentationsprozesse insgesamt zu verbessern, 
wurden in einem weiteren Schritt Routinen zur Fehlererkennung und Prozessüberwachung 
entwickelt. Ihre Hauptaufgabe bestand darin, Messdaten hinsichtlich ihrer Konsistenz sowie 
ihrer Gültigkeit in Bezug auf Referenzprozesse zu überprüfen. Neben der primären Aufgabe der 
Fehlererkennung waren die entwickelten Methoden in der Lage, wenn nötig, zusätzlich 
automatische Sicherungssysteme zu aktivieren. Dadurch war es möglich, Fermentationen auch 
bei Auftreten schwerwiegender Prozessabweichungen innerhalb ihrer definierten Spezifikations-
grenzen zu beenden. 

Allen im Rahmen dieser Arbeit vorgestellten Methoden liegt ein gemeinsames Grundkonzept zu 
Grunde. Dieses beinhaltet im Wesentlichen die konsequente Nutzung von im Fermentations-
prozess anfallender Messinformation, um die fundamentalen Zusammenhänge der Variablen 
untereinander zu identifizieren. Es setzt sich fort in der Beschreibung der zu Grunde liegenden 
Beziehungen in Form quantitativ auswertbarer Prozessmodelle und der gezielten Anwendung 
dieser Modelle für eine gerichtete Prozessoptimierung. Darüber hinaus ist es ein Hauptanliegen, 
dass die präsentierten Techniken praktikabel sowie einfach auf verschiedene Produktionssysteme 
übertragbar sind. Das PAT-Konzept ist insofern nicht nur als ein abstraktes, qualitativ zu 
diskutierendes Thema anzusehen. Vielmehr wird im Rahmen dieser Arbeit gezeigt, dass die 
entwickelten Methoden Fermentationsprozesse technologisch und qualitativ signifikant 
verbessern. Dadurch ergibt sich ein großes Potenzial für einen verbreiteten Einsatz nicht nur in 
der Forschung sondern auch im routinemäßigen, industriellen Produktionsbetrieb. Es liegt nun an 
den Herstellern, die neuen Werkzeuge einzusetzen und damit den technologischen Rückstand in 
der Produktion von Biologics aufzuholen. 
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