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Chapter 1

Introduction

1.1 Evolutionary partial integro-differential equations

The present contribution is devoted to the study of some classes of linear and quasilinear partial
integro-differential equations which can be all written in the general form

∂t

∫ t

0

k(t− τ)
(

u(τ, x) − u0(x)
)

dτ − div a
(

t, x, u(t, x), Du(t, x)
)

= b
(

t, x, u(t, x), Du(t, x)
)

, t ∈ (0, T ), x ∈ Ω. (1.1)

Here T > 0, Ω is a bounded domain in RN , u : [0, T ] × Ω → R is the unknown, and Du stands
for the gradient of u with respect to the spatial variables. The function u0 is given and plays the
role of the initial data for u, that is u|t=0 = u0 in Ω.

The kernel k ∈ L1, loc(R+) is assumed to be of type PC by which we mean the following:

(K) k is nonnegative and nonincreasing, and there exists a kernel l ∈ L1, loc(R+) such that
k ∗ l = 1 in (0,∞).

Here and in what follows k ∗ v denotes the convolution on the positive halfline with respect to
the time variable, that is, (k ∗ v)(t) =

∫ t

0 k(t− τ)v(τ) dτ , t ≥ 0. If k ∈ L1, loc(R+) satisfies (K) we
also write (k, l) ∈ PC. Note that (k, l) ∈ PC implies that l is completely positive, in particular l
is nonnegative, cf. [15, Theorem 2.2 and Proposition 2.1].

An important example is given by

k(t) = g1−α(t)e−γt and l(t) = gα(t)e−γt + γ(1 ∗ [gα(·)e−γ·])(t), t > 0, (1.2)

where α ∈ (0, 1), γ ≥ 0, and gβ denotes the Riemann-Liouville kernel

gβ(t) =
tβ−1

Γ(β)
, t > 0, β > 0.

Both kernels in (1.2) are strictly positive and decreasing; observe that l̇(t) = ġα(t)e−γt < 0,
t > 0. Their Laplace transforms are given by

k̂(λ) =
1

(λ+ γ)1−α
, l̂(λ) =

1

(λ+ γ)α

(

1 +
γ

λ

)

, Re λ > 0,

which shows that k ∗ l = 1 on (0,∞). Hence we have both (k, l) ∈ PC, and (l, k) ∈ PC.
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In the special case (1.2) equation (1.1) amounts to a time fractional equation of order α ∈
(0, 1). Specializing further, by putting γ = 0 in (2.1), we obtain the pair (k, l) = (g1−α, gα),
α ∈ (0, 1). In this situation the integro-differential operator in (1.1) becomes the Riemann-
Liouville fractional derivation operator of order α ∈ (0, 1) defined by

∂α
t v = ∂t(g1−α ∗ v), t > 0,

for sufficiently smooth functions v. It is the composition of the fractional integration operator
g1−α∗, which has order −(1 − α), and the derivation operator ∂t.

The linear version of (1.1) takes the form

∂t

(

k ∗ (u− u0)
)

− Lu = f + div g, t ∈ (0, T ), x ∈ Ω, (1.3)

where

Lu = div
(

A(t, x)Du + b(t, x)u
)

+
(

c(t, x)|Du
)

+ d(t, x)u.

Here A = (aij) is R
N×N -valued, b and c take values in R

N , and d is a real-valued function.
Further, (·|·) denotes the scalar product in RN and the functions u0 = u0(x), f = f(t, x), and
g = g(t, x) are given data.

A large part of this contribution deals with the time fractional diffusion equation

∂α
t (u− u0) − div

(

A(t, x)Du
)

= f, t ∈ (0, T ), x ∈ Ω. (1.4)

The main point here is that concerning the coefficients aij we merely assume measurability,
boundedness, and a uniform parabolicity condition.

In (1.1), the functions a : (0, T ) × Ω × R
N+1 → R

N and b : (0, T ) × Ω × R
N+1 → R are

measurable and satisfy suitable structure conditions, see Section 4.3 below.

Before describing the main objectives and results we discuss some applications of the above
equations in mathematical physics.

1.2 Applications in physics

A strong motivation for studying equations of the type (1.1), in particular (1.4), comes from
physics. Time fractional diffusion equations are used to model anomalous diffusion, see e.g. the
survey [55]. In this context, equations of the type (1.4) are termed subdiffusion equations (the
time order α lies in (0, 1); in the case α ∈ (1, 2), which is not considered here, one speaks of
superdiffusion equations. While in normal diffusion (described by the heat equation or more
general parabolic equations), the mean squared displacement of a diffusive particle behaves like
const·t for t → ∞, equation (1.4), usually with A = Id, exhibits the behaviour const·tα, for
which there is evidence in a diverse number of systems, see [55] and the references therein.
Time fractional diffusion equations of time order α ∈ (0, 1) are also closely related to a class
of Montroll-Weiss continuous time random walk models where the waiting time density behaves
like const·t−α−1 for t → ∞, see e.g. [35], [36], [55]. Problems of the type (1.4) are further used
to describe diffusion on fractals ([55], [65]), and they also appear in mathematical finance, see
e.g. [68].

Another context where equations of the type (1.1) appear is the modelling of dynamic pro-
cesses in materials with memory. They typically arise by combining the usual conservation laws
such as balance of energy or balance of momentum with some constitutive laws pertaining to
materials with memory. An example is given by the theory of heat conduction with memory, see
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[63] and the references therein. Another application is the following special case of a model for
the diffusion of fluids in porous media with memory, which has been introduced in [7]:

∂α
t (p− p0) − div

(

κ(p)Dp
)

= f, t ∈ (0, T ), x ∈ Ω,

p = 0, t ∈ (0, T ), x ∈ Γ, (1.5)

p|t=0 = p0, x ∈ Ω.

Here α ∈ (0, 1), p = p(t, x) denotes the pressure of the fluid, κ = κ(p) stands for the permeability
of the porous medium, and f is related to external sources in the equation of balance of mass.
Model (1.5) is obtained by combining the latter equation with a modified version of Darcy’s law
for the mass flux q which reads

q = −∂1−α
t

(

κ(p)Dp
)

,

and by assuming that the (average) mass of the fluid is proportional to the pressure. We refer
to [37], where a more general model is considered.

In the physical literature one also finds models of the type (1.1) where k enjoys property
(K) but the dynamics is not fractional in time. An important example is a class of ultraslow
diffusion equations. In the context of anomalous diffusion these equations are used to model
the case where the mean squared displacement has a logarithmic growth. This so-called ’strong
anomaly’ is encountered in several systems, e.g. in polymer physics, see the recent papers [9],
[10], [46], [59], [73]. In [54] ultra slow diffusion equations are obtained when looking at scaling
limits of certain continuous time random walk models with random waiting times between jumps.
Mathematically, ultra slow diffusion can be described by means of equations of the form (1.3)
where the operator ∂t(k ∗ u) is a so-called distributed order derivative, that is, the kernel k takes
the form

k(t) =

∫ 1

0

g1−α(t)µ(α) dα, t > 0. (1.6)

Here µ : [0, 1] → [0,∞) is a weight function, it is different from zero on a set of positive measure.
It can be shown that under appropriate conditions on µ the kernel k in (1.6) is of type PC, see
[46].

1.3 Main objectives and literature

The main goal of this work is to develop a theory of weak solutions for problems of the form
(1.3) and (1.1) and to study the regularity problem in the time fractional case.

To be more specific, let us consider the linear time fractional diffusion equation (1.4), which
is the prototypical example. As already mentioned before, we only want to assume that the
coefficients aij be measurable and bounded, that is, A ∈ L∞((0, T ) × Ω; RN×N ), and that they
satisfy a uniform parabolicity condition, that is, there exists a constant ν > 0 such that

(

A(t, x)ξ|ξ
)

≥ ν|ξ|2, for a.a. (t, x) ∈ (0, T )× Ω, and all ξ ∈ R
N .

A first important question is to find a suitable notion of weak solution for equation (1.4).
One problem is to understand the role of the initial condition u|t=0 = u0 in Ω. If this condition
cannot be given a direct meaning within the weak setting, then at least one should require that
it is automatically satisfied whenever the weak solution is smooth.

Having found an appropriate weak setting, the next task then consists in proving existence
and uniqueness for (1.4), together with a suitable boundary condition like, e.g., in the associated
Dirichlet problem. To achieve this, suitable energy estimates are required.
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In the elliptic and classical parabolic case it is well-known that for second-order problems
the maximum principle is valid. Moreover, there exists a powerful theory of a priori estimates,
often referred to as De Giorgi-Nash-Moser theory, which provides local and global estimates for
weak solutions of the respective equations such as local and global boundedness, the Harnack
and the weak Harnack inequality, and Hölder continuity of weak solutions, see [29], [34] for the
elliptic and [49], [51] for the parabolic case. Hölder estimates are of utmost significance for the
study of quasilinear problems. In fact, in the elliptic case their discovery opened up the theory
of quasilinear equations in higher dimensions; in the parabolic case they among others allow to
prove global in time existence.

Hölder continuity of weak solutions to elliptic equations in divergence form with discontinuous
coefficients was proved by De Giorgi [19] and, independently, by Nash [60]. Nash also obtained the
corresponding result for parabolic equations. Another seminal contribution was made by Moser
[56], who found a new proof of the De Giorgi-Nash theorem by means of the Harnack inequality.
Later, Moser ([57], [58]) also established the parabolic version of the Harnack inequality for
positive weak solutions of equations in divergence form, and using this result he was able to give
a different proof for Nash’s regularity result in the parabolic case. In the non-divergence case
corresponding results were obtained by Krylov and Safonov [47], [48]. Concerning Harnack and
Hölder estimates for degenerate and singular parabolic equations we refer to [20], [22], [23], [24],
and [25].

Since the time fractional case with α ∈ (0, 1) can be viewed in some sense as an intermediate
case between the elliptic (α = 0) and the classical parabolic case (α = 1), one might conjecture
that corresponding results can also be obtained in the time fractional situation. However, there
is a significant difference to the cases α = 0 and α = 1: the time fractional equations are non-
local, due to the non-local nature of the operator ∂α

t in time. This feature complicates the matter
considerably, as the theory described above essentially relies on local estimates. Another difficulty
consists in the lack of a simple calculus for integro-differential operators like ∂α

t . In particular one
needs a kind of chain rule for such operators in order to use the test-function method, the latter
being the basic tool for deriving a priori bounds for weak solutions of equations in divergence
form.

One of the main objectives of this contribution is to prove a time fractional analogue of the
classical parabolic version of the celebrated De Giorgi-Nash theorem, that is, we want to show
that under appropriate assumptions on the data f and u0 any weak solution of the time frac-
tional diffusion equation (1.4) with arbitrary α ∈ (0, 1) is Hölder continuous in the interior of the
parabolic cylinder (0, T )×Ω. We are further interested in conditions which ensure Hölder conti-
nuity up to the parabolic boundary. Having achieved this it is another goal to demonstrate the
strength of these regularity results by establishing global strong well-posedness for a quasilinear
time fractional problem.

Besides the regularity problem we are further interested in Harnack estimates for time frac-
tional diffusion equations. Does there hold a weak Harnack inequality for nonnegative superso-
lutions, and if so, what is the optimal exponent? In the purely time-dependent case, that is, for
scalar equations of the form

∂α
t (u− u0) + σu = 0, t ∈ (0, T ),

with σ ≥ 0, a weak Harnack inequality with optimal exponent 1/(1−α) has been proved by the
author in [78]. Much more difficult seems to be the question whether a full Harnack inequality
holds for nonnegative solutions of the time fractional equation (1.4) with f = 0. Note that in
the literature, neither the weak nor the full Harnack inequality are known to hold in the time
fractional case even with the Laplacian, that is, when A(t, x) = Id.

Concerning the case of rough coefficients, to the author’s knowledge nothing seems to be
known for time fractional diffusion equations like (1.4). The main obstruction for the existing
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results to be applicable is that we merely assume measurability with respect to t of the leading
coefficients. On the other hand there exist many papers where equations of the type (1.4), as
well as nonlinear or abstract variants of them are studied in a strong(er) setting, assuming more
smoothness on the coefficients and nonlinearities, see e.g. [3], [13], [14], [17], [27], [31], [63], [81],
[82]. Note that (1.4) can be rewritten as

u− gα ∗ div
(

ADu
)

= u0 + gα ∗ f, t ∈ (0, T ), x ∈ Ω,

which is a parabolic Volterra equation, so that for regular coefficients the theory in, e.g., [63]
and [81] yields results on existence, uniqueness and regularity. In particular there exists a fully
developed Lp-theory (see also Theorem 2.8.1 below) as well as optimal Schauder estimates.
In some papers generalized solutions are constructed for problems of the type (1.1) where the
quasilinear term is not allowed to depend explicitly on t, see [31] and [38]. These results are
based on the theory of accretive operators.

We further remark that concerning non-local operators there exists a very active field of
research which deals with integro-differential operators the prototype of which is (−∆)α, α ∈
(0, 1). These operators are closely connected to purely jump processes. We refer to [1], [2], [6],
[39], [40], [43], [70], [72] and the references given therein for Harnack and Hölder estimates for
harmonic functions with respect to this type of operators.

1.4 Overview

We give now an overview of the contents of this contribution and describe the main results and
some of the principal ideas behind them.

Chapter 2 is devoted to preliminaries and collects the basic tools needed for our investigation
of the problems to be studied. After fixing some notation we first discuss some basic properties
of kernels of type PC and give some more examples. An important issue is how such kernels can
be suitably approximated by more regular kernels which are also nonnegative and nonincreasing.
This can be achieved by means of the Yosida approximations Bn, n ∈ N, of the operator B
defined by Bu = d

dt(k ∗u), e.g. in L2([0, T ]). In fact, one can show that Bnu = d
dt(kn ∗u), where

kn has the desired properties and kn → k in L1([0, 1]) as n→ ∞. A crucial tool for our approach
is provided by the fundamental identity (2.6), stated in Lemma 2.3.1. This identity gives a
formula for expressions of the form H ′(u) d

dt (k ∗ u) and can be viewed as a kind of ’chain rule’
for the operator B. In Section 2.4 we state two lemmas on the geometrically fast convergence to
zero of sequences of numbers satisfying certain recursive inequalities. These lemmas are needed
for the De Giorgi technique, which will be used in the proofs of L∞-bounds and regularity of
weak solutions. Section 2.5 provides the basic tools of Moser’s iteration technique including an
abstract lemma of Bombieri and Giusti which is very useful for accomplishing the ’crossover at
zero’. This method will be later used in the proof of the weak Harnack inequality. The remaining
part of Chapter 2 is devoted to weighted Poincaré inequalities and parabolic embeddings, and
we state a result about maximal Lp-regularity for linear time fractional initial-boundary value
problems of second order.

In Chapter 3 we address the problem of existence of weak solutions to linear equations in the
case of rough coefficients. This is done in the canonical Hilbert space setting. Let V and H be
real separable Hilbert spaces such that V →֒ H densely and identify H with its dual H′, that is,
V →֒ H →֒ V ′. We study the abstract problem

d

dt

(

[k ∗ (u− x)](t), v
)

H
+ a

(

t, u(t), v
)

=
〈

f(t), v
〉

V′×V
, v ∈ V , a.a. t ∈ (0, T ), (1.7)

where d/dt means the generalized derivative of real functions on (0, T ), k is a kernel of type PC,
x ∈ H and f ∈ L2([0, T ];V ′) are given data, and a : (0, T ) × V × V → R is measurable w.r.t.
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t and a bounded V-coercive bilinear form w.r.t. the second and third argument. By means of
the Galerkin method and the Hilbert space version of a special case of the fundamental identity,
relation (2.8), we prove existence and uniqueness of a solution u of (1.7) in the class

W (x,V ,H) = {u ∈ L2([0, T ];V) : k ∗ (u − x) ∈ 0H
1
2 ([0, T ];V ′)},

where the zero means vanishing trace at t = 0, see Theorem 3.3.1. This result can be viewed as
the analogue of the well-known existence and uniqueness result for the corresponding abstract
parabolic equation







d
dt

(

u(t), v
)

H
+ a

(

t, u(t), v
)

=
〈

f(t), v
〉

V′×V
, v ∈ V , a.a. t ∈ (0, T ),

u(0)= x ∈ H,
u ∈ H1

2 ([0, T ];V ′)∩L2([0, T ];V),

see e.g. Theorem 4.1 and Remark 4.3 in Chapter 4 in [52] or [87, Section 23].
Besides the existence result we also prove some useful interpolation results for functions in

the class W (x,V ,H) with x ∈ H and (k, l) ∈ PC. It is shown that for u ∈ W (x,V ,H) the
function k ∗ u belongs to the space C([0, T ];H), and if in addition l ∈ Lp,w([0, T ]), the weak Lp

space, for some p > 1 then u ∈ L2p,w([0, T ];H). The corresponding statement without ’weak’ is
true as well. We finally apply these results to time fractional diffusion equations like (1.4) with
measurable coefficients and establish the unique (weak) solvability of the corresponding Dirichlet
problem in the class

u ∈ L 2
1−α , w([0, T ];L2(Ω)) ∩ L2([0, T ]; °H1

2 (Ω)), with u− u0 ∈ 0H
α
2 ([0, T ];H−1

2 (Ω))}.

For the solution we additionally obtain g1−α ∗ u ∈ C([0, T ];L2(Ω)) with g1−α ∗ u|t=0 = 0.
In Chapter 4 we study linear and quasilinear second-order equations of the type (1.3) and

(1.1), respectively. The leading coefficients of L in (1.3) are merely assumed to be measurable and
bounded, and they satisfy a uniform parabolicity condition. The main purpose of the chapter is
to show that under appropriate conditions on the data and nonlinearities, respectively, any weak
solution is essentially bounded on (0, T )×Ω, provided it is bounded on the parabolic boundary,
see Corollary 4.2.1 and Theorem 4.3.1. Concerning the kernel, the crucial assumption is that
(k, l) ∈ PC where l ∈ Lp([0, T ]) for some p > 1. This condition allows to gain higher integrability
w.r.t. time from the energy estimates. Our proofs of the L∞-bounds use De Giorgi’s iteration
technique and rely on truncated energy estimates, which are derived by means of the fundamental
identity (2.6). The latter is only possible after reformulating the problems in a different weak
form where the singular kernel k is replaced with the more regular kernel kn (n ∈ N) resulting
from the Yosida approximation method described above. This is an important technical detail
as our method resolves the time regularization problem for equations of the type (1.1) in the
weak setting. In the classical parabolic case this can be achieved by means of Steklov averages,
a method which no longer works in the case of (1.1).

Chapter 5 deals with the weak Harnack inequality for nonnegative weak supersolutions of the
time fractional diffusion equation

∂α
t (u − u0) − div

(

A(t, x)Du
)

= 0, t ∈ (0, T ), x ∈ Ω, (1.8)

where α ∈ (0, 1), u0 ∈ L2(Ω), and A is as described at the beginning of Section 1.3. To formulate
the result, let B(x, r) denote the open ball with radius r > 0 centered at x ∈ RN , and let λN

be the Lebesgue measure in RN . For δ ∈ (0, 1), t0 ≥ 0, τ > 0, and a ball B(x0, r), define the
parabolic cylinders

Q−(t0, x0, r) = (t0, t0 + δτr2/α) ×B(x0, δr),

Q+(t0, x0, r) = (t0 + (2 − δ)τr2/α, t0 + 2τr2/α) ×B(x0, δr).
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We will prove that for any η > 1, τ > 0, t0 ≥ 0 and r > 0 with t0 + 2τr2/α ≤ T , any ball
B(x0, ηr) ⊂ Ω, any 0 < p < 2+Nα

2+Nα−2α , and any nonnegative weak supersolution u of (1.8) in

(0, t0 + 2τr2/α) ×B(x0, ηr) with u0 ≥ 0 in B(x0, ηr), we have the inequality

( 1

λN+1

(

Q−(t0, x0, r)
)

∫

Q−(t0,x0,r)

up dλN+1

)1/p

≤ C ess inf
Q+(t0,x0,r)

u, (1.9)

where the constant C = C(ν,Λ, δ, τ, η, α,N, p). The proof uses Moser’s iteration technique and
relies on rather intricate local estimates for powers of u and log u. Once again, the fundamental
identity (2.6) is the principal tool in the derivation of these a priori estimates. We also show that
the critical exponent 2+Nα

2+Nα−2α is optimal. Note that by sending α → 1 we recover the critical

exponent 1 + 2
N of the weak Harnack inequality in the classical parabolic case. As a simple

consequence of the weak Harnack inequality (1.9) we obtain the strong maximum principle for
weak subsolutions of (1.8). Another application is a theorem of Liouville type, which says that
any bounded weak solution of (1.8) on R+ × RN with u0 = 0 vanishes a.e. on R+ × RN . It will
be further shown that in the case u0 = 0 any bounded weak solution u of (1.8) is continuous
at (0, x0) for all x0 ∈ Ω and lim(t,x)→(0,x0) u(t, x) = 0, that is, the initial condition u|t=0 = 0 is
satisfied in the classical sense. We point out that the weak Harnack inequality described above
is not strong enough to show Hölder continuity for weak solutions of (1.8), the main obstruction
being the global positivity assumption (in time). This is a significant difference to the case α = 1,
where the weak Harnack inequality implies a Hölder estimate for weak solutions.

The regularity problem for weak solutions of (1.4) with α ∈ (0, 1) and rough coefficients as
before is addressed in Chapter 6. Here we prove the main result of this contribution, Theorem
6.1.1. It states that for u0 ∈ L∞(Ω) and f ∈ Lr([0, T ];Lq(Ω)) with r and q sufficiently large
any bounded weak solution of (1.4) is Hölder continuous in the interior of the parabolic cylinder
(0, T ) × Ω. The proof uses De Giorgi’s technique and the method of non-local growth lemmas,
which has been recently developed in [70] for integro-differential operators like the fractional
Laplacian. In contrast to the proof of the weak Harnack inequality memory terms that result
from time-shifts in the equation cannot be dropped but must be estimated carefully to make
the proof work. As before, the fundamental identity (2.6) is frequently used to derive various a
priori estimates for u and certain logarithmic expressions involving u. In Chapter 6 we also give
sufficient conditions for Hölder continuity up to the parabolic boundary. Here we do not aim at
high generality but we are content with finding some simple conditions which are satisfied in the
strong Lp-setting considered in the following chapter.

In Chapter 7 we apply the regularity results from the preceding chapter to prove the unique
global strong solvability of the quasilinear problem

∂α
t (u − u0) − div

(

A(u)Du
)

= f, t ∈ (0, T ), x ∈ Ω,

u = g, t ∈ (0, T ), x ∈ Γ, (1.10)

u|t=0 = u0, x ∈ Ω,

which is a generalization of the model (1.5). Here α ∈ (0, 1), T > 0, N ≥ 2, and Ω ⊂ RN is a
bounded domain with C2-smooth boundary Γ. Concerning the nonlinearity it will be assumed
that A ∈ C1(R; RN×N ) is symmetric and that there exists ν > 0 such that (A(y)ξ|ξ) ≥ ν|ξ|2 for
all y ∈ R and ξ ∈ RN . Assuming p > N + 2

α it will be shown that under suitable regularity and
compatibility conditions on the data u0, f, g problem (1.10) possesses a unique strong solution u
in the class

u ∈ Hα
p ([0, T ];Lp(Ω)) ∩ Lp([0, T ];H2

p(Ω)),

see Theorem 7.1.1. The point here is that T > 0 can be given arbitrarily large. Note that
short-time existence of strong or classical solutions to problems like (1.10) can be established
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by means of maximal regularity and the contraction mapping principle. This has been known
before, see e.g. [14] and [82].

Chapter 8 is devoted to the full Harnack inequality for the Riemann-Liouville fractional
derivation operator. So in this part we restrict ourselves to the purely time-dependent case. To
describe the main result of this chapter, Theorem 8.1.1, let t∗ ≥ 0, 0 < σ1 < σ2 < σ3, and ρ > 0.
Suppose that α ∈ (0, 1) and u0 ≥ 0. We will prove that for any sufficiently smooth, nonnegative
function u on (0, t∗ + σ3ρ) that satisfies

∂α
t (u− u0)(t) = 0, a.a. t ∈ (t∗, t∗ + σ3ρ),

we have the Harnack inequality

sup
W−

u ≤
σ3

σ1
inf
W+

u, (1.11)

where
W− = (t∗ + σ1ρ, t∗ + σ2ρ), W+ = (t∗ + σ2ρ, t∗ + σ3ρ).

We will further show that, similarly to the case of the fractional Laplacian, the Harnack inequality
is no longer valid if the global positivity assumption is replaced by a local one. Furthermore,
the Harnack estimate fails to hold if the relation ∂α

t (u − u0) = 0 is only satisfied on the smaller
interval (t∗+σ1ρ, t∗+σ3ρ). In the last section of the chapter (1.11) is generalized to nonnegative
solutions of a class of nonhomogenous fractional differential equations. The results indicate that
a full Harnack inequality should also hold for time fractional diffusion equations like (1.8) with
α ∈ (0, 1).
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Chapter 2

Preliminaries

2.1 Some notation

We begin by fixing some notation. For T > 0 and a bounded domain Ω ⊂ RN with boundary
Γ := ∂Ω let ΩT denote the cylindrical domain (0, T ) × Ω and put also ΓT = (0, T ) × Γ. For
x0 ∈ RN and r > 0, by B(x0, r) and Br(x0) we mean the open ball of radius r centered at x0.
The Lebesgue measure in RN will be denoted by λN or µN .

The boundary Γ is said to satisfy the property of positive geometric density, if there exist
β ∈ (0, 1) and ρ0 > 0 such that for any x0 ∈ Γ, any ball B(x0, ρ) with ρ ≤ ρ0 we have that
λN (Ω ∩B(x0, ρ)) ≤ βλN (B(x0, ρ)), cf. e.g. [20, Section I.1].

By y+ we mean the positive part of y ∈ R, i.e. y+ := max{y, 0}. Note that y2
+ := (y+)2.

Further, Sym{N} stands for the space of N -dimensional real symmetric matrices. For s > 0 and
1 < p <∞ the symbols Hs

p and Bs
pp refer to Bessel potential (Sobolev spaces for integer s) and

Sobolev-Slobodeckij spaces, respectively. Recall that °H1
2 (Ω) := C∞

0 (Ω) H1
2 (Ω). The derivative of

a kernel k ∈ H1
1 ([0, T ]) will be usually denoted by k̇.

2.2 Kernels of type PC

The following class of kernels has been introduced in [85] and is basic to our treatment of (1.1).

Definition 2.2.1 A kernel k ∈ L1, loc(R+) is called to be of type PC if it is nonnegative and
nonincreasing, and there exists a kernel l ∈ L1, loc(R+) such that k ∗ l = 1 in (0,∞). In this case,
we say that (k, l) is a PC pair and write (k, l) ∈ PC.

From (k, l) ∈ PC it follows that l is completely positive (see e.g. Theorem 2.2 in [15]), in
particular l is nonnegative, cf. [15, Proposition 2.1].

Example 2.2.1 An important example is given by

k(t) = g1−α(t)e−µt and l(t) = gα(t)e−µt + µ(1 ∗ [gαe
−µ·])(t), t > 0, (2.1)

with α ∈ (0, 1) and µ ≥ 0. As already shown in Section 1.1, we have both (k, l) ∈ PC, and
(l, k) ∈ PC.

Example 2.2.2 There exist pairs (k, l) ∈ PC with the property that for any p > 1 and T > 0
the kernel l does not belong to Lp([0, T ]). To construct such a pair, let (γn)n∈N be a sequence of
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positive real numbers such that
∑∞

n=1 γn < ∞. Let further (αn)n∈N be a sequence of numbers
in (0, 1) that converges to 0 as n→ ∞. We then set

l(t) =
∞
∑

n=1

γngαn(t)e−t, t > 0.

By Euler’s integral for the Gamma function,

|gαn(·)e−·|L1(R+) = 1, n ∈ N,

and therefore l ∈ L1(R+) with |l|L1(R+) =
∑∞

n=1 γn. Moreover, for every n ∈ N, gαn(t)e−t is

completely monotone, that is (−1)j(gαne
−·)(j)(t) ≥ 0, t > 0, for j = 0, 1, 2, . . . Consequently, l

enjoys the same property. Furthermore, by Theorem 5.4 in Chapter 5 of [32], the kernel l has
a resolvent k ∈ L1,loc(R+) of the first kind, that is k ∗ l = 1 on (0,∞), and this resolvent is
completely monotone as well. In particular, k is nonnegative and nonincreasing, and so (k, l) ∈
PC. Since αn → 0, there do not exist p > 1 and T > 0 such that l ∈ Lp([0, T ]).

PC pairs enjoy a useful stability property with respect to exponential shifts. Writing kµ(t) =
k(t)e−µt, t > 0, µ ≥ 0, we have

(k, l) ∈ PC ⇒ (kµ, lµ + µ(1 ∗ lµ)) ∈ PC, µ ≥ 0. (2.2)

To prove (2.2), we first note that for any µ ≥ 0, kµ is evidently nonnegative and nonincreasing,
and lµ + µ(1 ∗ lµ) is nonnegative. Multiplying k ∗ l = 1 by 1µ(t) = e−µt gives kµ ∗ lµ = 1µ,
which in turn implies that µkµ ∗ 1 ∗ lµ = µ1 ∗ 1µ = 1 − 1µ. Adding these relations, we see that
kµ ∗ [lµ + µ(1 ∗ lµ)] = 1.

We next discuss an important method of approximating kernels of type PC. Let 1 ≤ p <∞,
(k, l) ∈ PC, T > 0, and X be a real Banach space. Then the operator B defined by

Bu =
d

dt
(k ∗ u), D(B) = {u ∈ Lp([0, T ];X) : k ∗ u ∈ 0H

1
p ([0, T ];X)},

where the zero means vanishing at t = 0, is known to be m-accretive in Lp([0, T ];X), cf. [11],
[16], and [31]. Its Yosida approximations Bn, defined by Bn = nB(n + B)−1, n ∈ N, enjoy the
property that for any u ∈ D(B), one has Bnu → Bu in Lp([0, T ];X) as n → ∞. Further, one
has the representation

Bnu =
d

dt
(kn ∗ u), u ∈ Lp([0, T ];X), n ∈ N, (2.3)

where kn = nsn, and sn is the unique solution of the scalar-valued Volterra equation

sn(t) + n(sn ∗ l)(t) = 1, t > 0, n ∈ N,

see e.g. [75]. Denoting by hn ∈ L1, loc(R+) the resolvent kernel associated with nl, we have

hn(t) + n(hn ∗ l)(t) = nl(t), t > 0, n ∈ N, (2.4)

and hence, by convolving (2.4) with k,

(k ∗ hn)(t) + n(k ∗ hn ∗ l)(t) = n, t > 0, n ∈ N,

which shows that
kn = nsn = k ∗ hn, n ∈ N. (2.5)
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Note that complete positivity of l implies that hn is nonnegative, and that the kernels sn are
nonnegative and nonincreasing for all n ∈ N, see e.g. [63, Proposition 4.5] and [15, Proposition
2.1]. From sn = 1 − 1 ∗ hn we further see that sn ∈ H1

1 ([0, T ]). In view of (2.5) we conclude
that the kernels kn, n ∈ N, are also nonnegative and nonincreasing, and that they belong to
H1

1 ([0, T ]).
Note that for any function f ∈ Lp([0, T ];X), 1 ≤ p < ∞, there holds hn ∗ f → f in

Lp([0, T ];X) as n→ ∞. In fact, defining u = l ∗ f , we have u ∈ D(B), and

Bnu =
d

dt
(kn ∗ u) =

d

dt
(k ∗ l ∗ hn ∗ f) = hn ∗ f → Bu = f in Lp([0, T ];X)

as n→ ∞. In particular, kn → k in L1([0, T ]) as n→ ∞.

2.3 A fundamental identity for integro-differential opera-

tors of the form d
dt(k ∗ u)

We next state a fundamental identity for integro-differential operators of the form d
dt (k ∗ u), cf.

also [78], [84]. It can be viewed as the analogue to the chain rule (H(u))′ = H ′(u)u′.

Lemma 2.3.1 Let T > 0 and U be an open subset of R. Let further k ∈ H1
1 ([0, T ]), H ∈ C1(U),

and u ∈ L1([0, T ]) with u(t) ∈ U for a.a. t ∈ (0, T ). Suppose that the functions H(u), H ′(u)u,
and H ′(u)(k̇ ∗ u) belong to L1([0, T ]) (which is the case if, e.g., u ∈ L∞([0, T ])). Then we have
for a.a. t ∈ (0, T ),

H ′(u(t))
d

dt
(k ∗ u)(t) =

d

dt

(

k ∗H(u)
)

(t) +
(

−H(u(t)) +H ′(u(t))u(t)
)

k(t)

+

∫ t

0

(

H(u(t− s)) −H(u(t)) −H ′(u(t))[u(t− s) − u(t)]
)

[−k̇(s)] ds. (2.6)

The lemma follows from a straightforward computation. Note that in particular identity (2.6)
applies to the Yosida approximations of the operator d

dt(k ∗ u) discussed in Section (2.2). We
remark that an integrated version of (2.6) can be found in [32, Lemma 18.4.1]. Observe that the
last term in (2.6) is nonnegative in case H is convex and k is nonincreasing.

An important example with regard to truncated energy estimates is given by H(y) = 1
2 (y+)2,

y ∈ R. Evidently, H ∈ C1(R) with derivative H ′(y) = y+, y ∈ R. Assume in addition that
the kernel k ∈ H1

1 ([0, T ]) is nonnegative and nonincreasing. Then it follows from (2.6) and the
convexity of H that for any function u ∈ L2([0, T ]),

u(t)+
d

dt
(k ∗ u)(t) ≥

1

2

d

dt

(

k ∗ (u+)2
)

(t) +
1

2
k(t)(u+)2(t) (2.7)

≥
1

2

d

dt

(

k ∗ (u+)2
)

(t), a.a. t ∈ (0, T ).

The following identity is basic to energy estimates in the Hilbert space setting. For H = R it
coincides with (2.6) with H(y) = 1

2y
2, y ∈ R.

Lemma 2.3.2 Let H be a real Hilbert space with scalar product (·, ·)H and T > 0. Then for any
k ∈ H1

1 ([0, T ]) and any v ∈ L2([0, T ];H) there holds

( d

dt
(k ∗ v)(t), v(t)

)

H
=

1

2

d

dt
(k ∗ |v(·)|2H)(t) +

1

2
k(t)|v(t)|2H

+
1

2

∫ t

0

[−k̇(s)] |v(t) − v(t− s)|2H ds, a.a. t ∈ (0, T ). (2.8)
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The subsequent two lemmas are also obtained by simple algebra. The first one can be viewed
as a product rule for expressions of the form d

dt(k ∗ [u1u2]).

Lemma 2.3.3 Let T > 0, k ∈ H1
1 ([0, T ]), v ∈ L1([0, T ]), and ϕ ∈ C1([0, T ]). Then

ϕ(t)
d

dt
(k ∗ v)(t) =

d

dt

(

k ∗ [ϕv]
)

(t) +

∫ t

0

k̇(t− τ)
(

ϕ(t) − ϕ(τ)
)

v(τ) dτ, a.a. t ∈ (0, T ).

Lemma 2.3.4 Let T > 0 and α ∈ (0, 1). Suppose that v ∈ 0H
1
1 ([0, T ]) and ϕ ∈ C1([0, T ]). Then

(

gα ∗ (ϕv̇))(t) = ϕ(t)(gα ∗ v̇)(t) +

∫ t

0

v(σ)∂σ

(

gα(t− σ)[ϕ(t) − ϕ(σ)]
)

dσ, a.a. t ∈ (0, T ).

If in addition v is nonnegative and ϕ is nondecreasing there holds

(

gα ∗ (ϕv̇))(t) ≥ ϕ(t)(gα ∗ v̇)(t) −

∫ t

0

gα(t− σ)ϕ̇(σ)v(σ) dσ, a.a. t ∈ (0, T ).

2.4 Auxiliary lemmas on fast geometric convergence

The following lemmas concerning the geometric convergence of sequences of numbers will be
needed for the De Giorgi iteration arguments in Chapter 4 and 6. The first can be found, e.g.,
in [49, Chapter II, Lemma 5.6] and [20, Chapter I, Lemma 4.1]. Its proof is by induction.

Lemma 2.4.1 Let {Yn}, n = 0, 1, 2, . . ., be a sequence of positive numbers, satisfying the recur-
sion inequality

Yn+1 ≤ CbnY 1+γ
n , n = 0, 1, 2, . . . ,

where C, b > 1 and γ > 0 are given numbers. If

Y0 ≤ C−1/γb−1/γ2

,

then Yn → 0 as n→ ∞.

The next result has been taken from [20, Chap. I, Lemma 4.2], see also [49].

Lemma 2.4.2 Let {Yn} and {Zn}, n = 0, 1, 2, . . ., be sequences of positive numbers, satisfying
the recursive inequalities

Yn+1 ≤ Cbn
(

Y 1+β
n + Y β

n Z
1+γ
n

)

,

Zn+1 ≤ Cbn
(

Yn + Z1+γ
n

)

for n = 0, 1, 2, . . ., where C, b > 1 and β, γ > 0 are given numbers. If

Y0 + Z1+γ
0 ≤ (2C)−

1+γ
δ b−

1+γ

δ2 , with δ = min{β, γ},

then {Yn} and {Zn} tend to zero as n→ ∞.
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2.5 Moser iterations and an abstract lemma of Bombieri

and Giusti

Throughout this section Uσ, 0 < σ ≤ 1, will denote a collection of measurable subsets of a fixed
finite measure space endowed with a measure µ, such that Uσ′ ⊂ Uσ if σ′ ≤ σ. For p ∈ (0,∞)
and 0 < σ ≤ 1, Lp(Uσ) stands for the Lebesgue space Lp(Uσ, dµ) of all µ-measurable functions
f : Uσ → R with |f |Lp(Uσ) := (

∫

Uσ
|f |p dµ)1/p <∞.

The following two lemmas are basic to Moser’s iteration technique. The arguments in their
proofs have been repeatedly used in the literature (see e.g. [29], [51], [56], [57], [66], [74]), so it is
worthwhile to formulate them as lemmas in abstract form, also for future reference. We provide
proofs for the sake of completeness.

The first Moser iteration result reads as follows, see also [18, Lemma 2.3].

Lemma 2.5.1 Let κ > 1, p̄ ≥ 1, C ≥ 1, and γ > 0. Suppose f is a µ-measurable function on
U1 such that

|f |Lβκ(Uσ′ ) ≤
(C(1 + β)γ

(σ − σ′)γ

)1/β

|f |Lβ(Uσ), 0 < σ′ < σ ≤ 1, β > 0. (2.9)

Then there exist constants M = M(C, γ, κ, p̄) and γ0 = γ0(γ, κ) such that

ess sup
Uδ

|f | ≤
( M

(1 − δ)γ0

)1/p

|f |Lp(U1) for all δ ∈ (0, 1), p ∈ (0, p̄].

Proof: For q > 0 and 0 < σ ≤ 1, let

Φ(q, σ) = (

∫

Uσ

|f |q dµ)1/q .

Let 0 < p ≤ p̄ and δ ∈ (0, 1). Set pi = pκi, i = 0, 1, . . . and define the sequence {σi}, i = 0, 1, . . .,

by σ0 = 1 and σi = 1 −
∑i

j=1 2−j(1 − δ), i = 1, 2, . . .; observe that 1 = σ0 > σ1 > . . . > σi >

σi+1 > δ as well as σi−1 − σi = 2−i(1 − δ), i ≥ 1. Suppose now n ∈ N. By using (2.9) with
β = pi, i = 0, 1, . . . , n− 1, we obtain

Φ(pn, δ) ≤ Φ(pn, σn) = Φ(pn−1κ, σn) ≤
(C(1 + pκn−1)γ

[2−n(1 − δ)]γ

)
1
p κ−(n−1)

Φ(pn−1, σn−1)

≤
( C(2p̄κn−1)γ

[2−n(1 − δ)]γ

)
1
p κ−(n−1)

Φ(pn−1, σn−1)

≤
( C̃(C, p̄, γ)nκγ(n−1)

(1 − δ)γ

)
1
p κ−(n−1)

Φ(pn−1, σn−1) ≤ . . .

≤
(

C̃
∑ n−1

j=0 (j+1)κ−j

κγ
∑ n−1

j=0 jκ−j

(1 − δ)−γ
∑ n−1

j=0 κ−j
)1/p

Φ(p0, σ0)

≤
(M(C, p̄, γ, κ)

(1 − δ)
γκ

κ−1

)1/p

Φ(p, 1).

We let now n tend to ∞ and use the fact that

lim
n→∞

Φ(pn, δ) = ess sup
Uδ

|f |

to get

ess sup
Uδ

|f | ≤
(M(C, p̄, γ, κ)

(1 − δ)
γκ

κ−1

)1/p

|f |Lp(U1).
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Hence the proof is complete. �

The second Moser iteration result is the following, see also [18, Lemma 2.5].

Lemma 2.5.2 Assume that µ(U1) ≤ 1. Let κ > 1, 0 < p0 < κ, and C ≥ 1, γ > 0. Suppose f is
a µ-measurable function on U1 such that

|f |Lβκ(Uσ′ ) ≤
( C

(σ − σ′)γ

)1/β

|f |Lβ(Uσ), 0 < σ′ < σ ≤ 1, 0 < β ≤
p0

κ
< 1. (2.10)

Then there exist constants M = M(C, γ, κ) and γ0 = γ0(γ, κ) such that

|f |Lp0(Uδ) ≤
( M

(1 − δ)γ0

)1/p−1/p0

|f |Lp(U1) for all δ ∈ (0, 1), p ∈ (0,
p0

κ
].

Proof: Set pi = p0κ
−i, i = 1, 2, . . .. Given δ ∈ (0, 1) we take again the sequence {σi}, i =

0, 1, 2, . . ., defined by σ0 = 1 and σi = 1−
∑i

j=1 2−j(1− δ), i ≥ 1. Suppose now n ∈ N. By using
(2.10) with β = pi, i = 1, . . . , n, we obtain

Φ(p0, δ) ≤ Φ(p0, σn) = Φ(p1κ, σn) ≤
Cκ/p0

[2−n(1 − δ)]γκ/p0
Φ(p1, σn−1)

≤
Cκ/p0

[2−n(1 − δ)]γκ/p0

Cκ2/p0

[2−(n−1)(1 − δ)]γκ2/p0
Φ(p2, σn−2) ≤ . . .

≤
C

1
p0

(κ+κ2+...+κn)

2−
γ

p0
(nκ+(n−1)κ2+...+2κn−1+κn)(1 − δ)

γ
p0

(κ+κ2+...+κn)
Φ(pn, σ0).

Since pi = p0κ
−i, we have

1

p0

n
∑

j=1

κj =
κ(κn − 1)

p0(κ− 1)
=

κ

p0(κ− 1)
(
p0

pn
− 1) =

κ

κ− 1
(

1

pn
−

1

p0
).

Employing the formula
n

∑

j=1

jκj−1 =
1 − (n+ 1)κn + nκn+1

(κ− 1)2

we have further

n
∑

j=1

(n+ 1 − j)κj = (n+ 1)

n
∑

j=1

κj −

n
∑

j=1

jκj

= (n+ 1)κ
κn − 1

κ− 1
− κ

1 − (n+ 1)κn + nκn+1

(κ− 1)2

= κ
κn+1 − (n+ 1)κ+ n

(κ− 1)2
≤

κ

(κ− 1)2
κn+1

≤
κ3

(κ− 1)3
(κn − 1) ≤

κ3

(κ− 1)3
(
p0

pn
− 1),

which yields

1

p0

n
∑

j=1

(n+ 1 − j)κj ≤
κ3

(κ− 1)3
(

1

pn
−

1

p0
).
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Therefore

Φ(p0, δ) ≤
[2

γκ3

(κ−1)3 C
κ

κ−1

(1 − δ)
γκ

κ−1

]
1

pn
− 1

p0
Φ(pn, σ0).

Given p ∈ (0, p0/κ] there exists n ≥ 2 such that pn < p ≤ pn−1. We then have

1

pn
−

1

p0
=
κn − 1

p0
≤

κn + κn−1 − κ− 1

p0
=

(1 + κ)(κn−1 − 1)

p0

= (1 + κ)(
1

pn−1
−

1

p0
) ≤ (1 + κ)(

1

p
−

1

p0
),

as well as
Φ(pn, σ0) = Φ(pn, 1) ≤ Φ(p, 1),

by Hölder’s inequality and the assumption µ(U1) ≤ 1. All in all, we obtain

Φ(p0, δ) ≤
[2

γκ3

(κ−1)3 C
κ

κ−1

(1 − δ)
γκ

κ−1

](1+κ)( 1
p− 1

p0
)

Φ(p, 1),

which proves the lemma. �

The following abstract lemma is due to Bombieri and Giusti [4]. For a proof we also refer to
[66, Lemma 2.2.6] and [18, Lemma 2.6]

Lemma 2.5.3 Let δ, η ∈ (0, 1), and let γ, C be positive constants and 0 < β0 ≤ ∞. Suppose f
is a positive µ-measurable function on U1 which satisfies the following two conditions:

(i)
|f |Lβ0

(Uσ′ ) ≤ [C(σ − σ′)−γµ(U1)
−1]1/β−1/β0 |f |Lβ(Uσ),

for all σ, σ′, β such that 0 < δ ≤ σ′ < σ ≤ 1 and 0 < β ≤ min{1, ηβ0}.
(ii)

µ({log f > λ}) ≤ Cµ(U1)λ
−1

for all λ > 0.
Then

|f |Lβ0
(Uδ) ≤Mµ(U1)

1/β0 ,

where M depends only on δ, η, γ, C, and β0.

2.6 Weighted Poincaré inequalities

The following result can be found in [57, Lemma 3], see also [51, Lemma 6.12].

Proposition 2.6.1 Let ϕ ∈ C(RN ) with non-empty compact support of diameter d and assume
that 0 ≤ ϕ ≤ 1. Suppose that the domains {x ∈ RN : ϕ(x) ≥ a} are convex for all a ≤ 1. Then
for any function u ∈ H1

2 (RN ),

∫

RN

(

u(x) − uϕ

)2
ϕ(x) dx ≤

2d2µN (suppϕ)

|ϕ|L1(RN )

∫

RN

|Du(x)|2ϕ(x) dx,

where

uϕ =

∫

RN u(x)ϕ(x) dx
∫

RN ϕ(x) dx
.
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The next Poincaré-type inequality has been taken from [20, Chap. I, Prop. 2.1], see also [49].

Proposition 2.6.2 Let Ω be a bounded convex set in RN and let w ∈ C(Ω̄) with values in [0, 1]
be such that the sets {x ∈ Ω : w(x) > c} are convex for all c ∈ (0, 1). Let v ∈ H1

2 (Ω) and assume
that the set E0 := {v = 0} ∩ {w = 1} has positive measure. Then

(

∫

Ω

v2w dx
)1/2

≤ C
(diamΩ)N

λN (E0)
N−1

N

(

∫

Ω

|Dv|2w dx
)1/2

,

where the constant C only depends on N .

2.7 Parabolic embeddings

We next state an interpolation result which will be frequently used throughout this contribution.

Let T > 0 and Ω be a bounded domain in RN . For 1 < p ≤ ∞ we define the space

Vp := Vp([0, T ]× Ω) = L2p([0, T ];L2(Ω)) ∩ L2([0, T ];H1
2 (Ω)), (2.11)

endowed with the norm

|u|Vp([0,T ]×Ω) := |u|L2p([0,T ];L2(Ω)) + |Du|L2([0,T ];L2(Ω;RN )).

Suppose that

p′
(

1 −
2

r

)

+N
(1

2
−

1

q

)

= 1, (2.12)

where p′ = p/(p− 1), and

r ∈ [2, 2p], q ∈
[

2, 2N
N−2

]

for N > 2

r ∈ (2, 2p], q ∈ [2,∞) for N = 2

r ∈
[

4p
p+1 , 2p

]

, q ∈ [2,∞] for N = 1.















Assuming that ∂Ω satisfies the property of positive density we have that Vp →֒ Lr([0, T ];Lq(Ω)).
Moreover, there exists a constant C = C(N, q) such that

|u|Lr([0,T ];Lq(Ω)) ≤ C|u|Vp([0,T ]×Ω), (2.13)

for all u ∈ Vp ∩L2([0, T ]; °H1
2 (Ω)). This is a consequence of the Gagliardo-Nirenberg and Hölder’s

inequality. For a proof we refer to [76]. The case p = ∞ is contained, e.g., in [49, p. 74 and 75].

Setting

κ := κp :=
2p+N(p− 1)

2 +N(p− 1)
(2.14)

with κ∞ = 1 + 2/N , it follows from (2.13) that

|u|L2κ([0,T ]×Ω) ≤ C(N, p)|u|Vp([0,T ]×Ω), (2.15)

for all u ∈ Vp ∩ L2([0, T ]; °H1
2 (Ω)).
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2.8 Lp-estimates for linear equations

We conclude this preliminary part with a maximal Lp-regularity result, which is a special case
of [82, Theorem 3.4] on linear boundary value problems in the context of parabolic Volterra
equations.

Let T > 0 and Ω ⊂ RN be a bounded domain with C2-boundary Γ, and N ≥ 2. We consider
the problem

∂α
t

(

u− u0(x)
)

− aij(t, x)DiDju = f, t ∈ (0, T ), x ∈ Ω,

u = g, t ∈ (0, T ), x ∈ Γ, (2.16)

u|t=0 = u0, x ∈ Ω,

where we use the sum convention.

Theorem 2.8.1 Let α ∈ (0, 1) and p > 1
α + N

2 . Suppose that A = (aij)i,j=1,...,N ∈ C([0, T ] ×

Ω; Sym{N}), and there exists ν > 0 such that aij(t, x)ξiξj ≥ ν|ξ|2 for all (t, x) ∈ [0, T ] × Ω and
ξ ∈ RN . Then the problem (2.16) has a unique solution u in the class

Z := Hα
p ([0, T ];Lp(Ω)) ∩ Lp([0, T ];H2

p(Ω)) →֒ C([0, T ]× Ω)

if and only if the following conditions are satisfied.

(i) f ∈ Lp([0, T ];Lp(Ω)), g ∈ YD := B
α(1− 1

2p )
pp ([0, T ];Lp(Γ)) ∩ Lp([0, T ];B

2− 1
p

pp (Γ)), and u0 ∈

Yγ := B
2− 2

pα
pp (Ω);

(ii) u0 = g|t=0 on Γ.

In this case one has an estimate of the form

|u|Z ≤ C
(

|f |Lp(ΩT ) + |g|YD + |u0|Yγ

)

,

where C only depends on α, p,N, T,Ω, A.
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Chapter 3

Abstract equations in Hilbert

spaces

3.1 Setting and introductory remarks

Let V and H be real separable Hilbert spaces such that V is densely and continuously embedded
into H. Identifying H with its dual H′ we have V →֒ H →֒ V ′, and

(h, v)H = 〈h, v〉V′×V , h ∈ H, v ∈ V , (3.1)

where (·, ·)H and 〈·, ·〉V′×V denote the scalar product in H and the duality pairing between V ′

and V , respectively.
In this chapter we study the abstract problem

d

dt

(

[k ∗ (u− x)](t), v
)

H
+ a

(

t, u(t), v
)

=
〈

f(t), v
〉

V′×V
, v ∈ V , a.a. t ∈ (0, T ), (3.2)

where d/dt means the generalized derivative of real functions on (0, T ), k ∈ L1, loc(R+) is a
scalar kernel of type PC, see Definition 2.2.1, k ∗ u stands for the convolution on the positive
halfline, and a : (0, T ) × V × V → R is a bounded V-coercive bilinear form. Further, x ∈ H and
f ∈ L2([0, T ];V ′) are given data.

We seek a solution u of (3.2) in the regularity class

W (x,V ,H) := {u ∈ L2([0, T ];V) : k ∗ (u− x) ∈ 0H
1
2 ([0, T ];V ′)},

where the zero means vanishing trace at t = 0. The vector x can be regarded as initial data for
u, at least in a weak sense. If e.g. u, and d

dt (k∗ [u−x]) belong to C([0, T ];V ′), then the condition
k ∗ (u− x)(0) = 0 implies u(0) = x, see Section 3.3.

In the special case

k(t) = g1−α(t)e−µt, t > 0, α ∈ (0, 1), µ ≥ 0, (3.3)

(3.2) amounts to an abstract differential equation of fractional order α ∈ (0, 1).
In this chapter we will prove that problem (3.2) possesses exactly one solution in the class

W (x,V ,H), see Theorem 3.3.1 below. This result can be regarded as the analogue of the well-
known existence and uniqueness result for the corresponding abstract parabolic equation







d
dt (u(t), v)H + a(t, u(t), v) = 〈f(t), v〉V′×V , v ∈ V , a.a. t ∈ (0, T ),

u(0)= x ∈ H,
u ∈ H1

2 ([0, T ];V ′)∩L2([0, T ];V),
(3.4)
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see e.g. Theorem 4.1 and Remark 4.3 in Chapter 4 in [52] or [87, Section 23]. We point out
that concerning time regularity the bilinear form a is only assumed to be measurable in t. This
allows, e.g., to treat parabolic partial integro-differential equations in divergence form with merely
bounded and measurable coefficients, see Section 3.4.

The proof of Theorem 3.3.1 is based on the Galerkin method and suitable a priori estimates
for solutions of (3.2). These estimates are derived by means of the basic identity (2.8). It has
been known before but does not seem to appear in the literature in the context of problems
of the form (3.2). We remark that recently ([75]) the identity (2.8) was successfully employed
to construct Lyapunov functions for certain nonlinear differential equations of fractional order
between 0 and 2.

In order to be able to apply (2.8), we approximate the kernel k by the sequence (kn) which
is obtained from the Yosida approximation of the operator B defined by Bv = d

dt (k ∗ v), e.g. in
L2([0, T ]), see Section 2.2. This method was already used in [75], we also refer to [31], where a
more general class of integro-differential operators (in time) is studied.

Note that (3.2) is equivalent to the equation

d

dt
[k ∗ (u − x)](t) + A(t)u(t) = f(t), a.a. t ∈ (0, T ), (3.5)

in V ′, where the operator A(t) : V → V ′ is defined by

〈A(t)u, v〉V′×V = a(t, u, v), u, v ∈ V . (3.6)

For equations of the form (3.5) with A(t) ≡ A there exists a vast literature, even in general
Banach spaces, see e.g. [31], and [63] and the references given therein. However, in the case
of time-dependent A and without smoothness assumption nothing seems to be known in the
literature concerning existence and uniqueness, except for [85], which forms the basis for this
chapter.

3.2 A basic interpolation result

Let V and H be real Hilbert spaces as described above, that is V →֒ H →֒ V ′. In the theory of
abstract parabolic equations the continuous embedding

H1
2 ([0, T ];V ′) ∩ L2([0, T ];V) →֒ C([0, T ];H) (3.7)

is well-known, see e.g. Proposition 2.1 and Theorem 3.1 in Chapter 1 of [52], or Proposition 23.23
in [87]. The following theorem provides the analogue of (3.7) in the case of the space W (x,V ,H).

Theorem 3.2.1 Let V and H be real Hilbert spaces as described above (V →֒ H →֒ V ′). Let
further T > 0, and k ∈ L1, loc(R+) be of type PC. Suppose that x ∈ H, and u ∈ W (x,V ,H).
Then k ∗ (u− x) and k ∗ u belong to the space C([0, T ];H) (after possibly being redefined on a set
of measure zero). The mapping {t 7→ |k ∗ u|2H(t)} is absolutely continuous on [0, T ], with

d

dt
|k ∗ u|2H(t) = 2

〈

[k ∗ (u− x)]′(t), [k ∗ u](t)]
〉

V′×V
+ 2k(t)

(

x, (k ∗ u)(t)
)

H
(3.8)

for a.a. t ∈ [0, T ]. Furthermore,

|k ∗ u|C([0,T ];H) ≤ C
(∣

∣

∣

d

dt
[k ∗ (u− x)]

∣

∣

∣

L2([0,T ];V′)
+ |u|L2([0,T ];V) + |x|H

)

, (3.9)

the constant C depending only on T , |k|L1([0,T ]), and the constant of the embedding V →֒ H.
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We remark that in the case x = 0, the property k ∗u ∈ C([0, T ];H) follows immediately from the
embedding (3.7). In fact, u ∈ L2([0, T ];V) implies k ∗ u ∈ L2([0, T ];V), by Young’s inequality,
and so

k ∗ u ∈ H1
2 ([0, T ];V ′) ∩ L2([0, T ];V) →֒ C([0, T ];H).

We point out that for x 6= 0 this simple reduction is not possible.

Proof of Theorem 3.2.1. Note first that (k∗x)(·) = (1∗k)(·)x ∈ H1
1 ([0, T ];H) →֒ C([0, T ];H).

Thus k ∗ (u− x) ∈ C([0, T ];H) if and only if k ∗ u ∈ C([0, T ];H).
Let kn ∈ H1

1 ([0, T ]), n ∈ N, be the kernel associated with the Yosida approximation Bn of
the operator

Bv =
d

dt
(k ∗ v), D(B) = {v ∈ L2([0, T ];V ′) : k ∗ v ∈ 0H

1
2 ([0, T ];V ′)}. (3.10)

Then kn ∗ u ∈ H1
2 ([0, T ];V), and we have for n, m ∈ N,

d

dt

∣

∣

∣
(kn ∗ u)(t) − (km ∗ u)(t)

∣

∣

∣

2

H
= 2

(

[kn ∗ u]′(t) − [km ∗ u]′(t), [kn ∗ u](t) − [km ∗ u](t)
)

H
.

Thus, in view of (3.1) and Young’s inequality,

∣

∣

∣
(kn ∗ u)(t) − (km ∗ u)(t)

∣

∣

∣

2

H
=

∣

∣

∣
(kn ∗ u)(s) − (km ∗ u)(s)

∣

∣

∣

2

H

+ 2

∫ t

s

〈

[kn ∗ (u− x)]′(τ) − [km ∗ (u− x)]′(τ), [kn ∗ u](τ) − [km ∗ u](τ)
〉

V′×V
dτ

+ 2

∫ t

s

[kn(τ) − km(τ)]
(

x, [kn ∗ u](τ) − [km ∗ u](τ)
)

H
dτ

≤
∣

∣

∣
(kn ∗ u)(s) − (km ∗ u)(s)

∣

∣

∣

2

H
+

∣

∣

∣

d

dt
[kn ∗ (u− x)] −

d

dt
[km ∗ (u− x)]

∣

∣

∣

2

L2([0,T ];V′)

+
∣

∣

∣
kn ∗ u− km ∗ u

∣

∣

∣

2

L2([0,T ];V)
+ 2|x|2H|kn − km|2L1([0,T ]) +

1

2

∣

∣

∣
kn ∗ u− km ∗ u

∣

∣

∣

2

C([0,T ];H)
(3.11)

for all s, t ∈ [0, T ]. Since kn → k in L1([0, T ]) as n→ ∞, we have kn ∗ u→ k ∗ u in L2([0, T ];H)
as well as in L2([0, T ];V). Further, u− x ∈ D(B) implies that d

dt [kn ∗ (u− x)] → d
dt [k ∗ (u− x)]

in L2([0, T ];V ′).
We fix now a point s ∈ (0, T ) for which

(kn ∗ u)(s) → (k ∗ u)(s) in H as n→ ∞.

Taking then in (3.11) the maximum over all t ∈ [0, T ] and absorbing the last term, it follows
that (kn ∗ u) is a Cauchy sequence in C([0, T ];H). Thus kn ∗ u converges in C([0, T ];H) to some
v ∈ C([0, T ];H). Since we also know that kn ∗ u → k ∗ u in L2([0, T ];H), we deduce k ∗ u = v
a.e. in [0, T ], proving the first part of the theorem.

Similarly as above we see that

|(kn ∗ u)(t)|2H = |(kn∗ u)(s)|
2
H + 2

∫ t

s

〈

[kn ∗ (u− x)]′(τ), [kn ∗ u](τ)
〉

V′×V
dτ

+ 2

∫ t

s

kn(τ)
(

x, (kn ∗ u)(τ)
)

H
dτ

23



for all s, t ∈ [0, T ], and n ∈ N. Taking the limits as n→ ∞ we obtain

|(k ∗ u)(t)|2H = |(k∗ u)(s)|2H + 2

∫ t

s

〈

[k ∗ (u− x)]′(τ), [k ∗ u](τ)
〉

V′×V
dτ

+ 2

∫ t

s

k(τ)
(

x, (k ∗ u)(τ)
)

H
dτ (3.12)

for all s, t ∈ [0, T ]. Hence {t 7→ |k ∗ u|2H(t)} is absolutely continuous on [0, T ], and (3.8) holds
true.

To obtain (3.9), we estimate the integral terms in (3.12) similarly as for (3.11) and integrate
with respect to s. This yields

|(k ∗ u)(t)|2H ≤
1

T
|(k ∗ u)|2L2([0,T ];H) +

∣

∣

∣

d

dt
[k ∗ (u− x)]

∣

∣

∣

2

L2([0,T ];V′)

+ |k ∗ u|2L2([0,T ];V) + 2|x|2H|k|2L1([0,T ]) +
1

2
|k ∗ u|2C([0,T ];H) (3.13)

for all t ∈ [0, T ]. We then take the maximum over all t ∈ [0, T ], absorb the last term, and use
Young’s inequality for convolutions, to the result

1

2
|k ∗ u|2C([0,T ];H) ≤

1

T
|k|2L1([0,T ])|u|

2
L2([0,T ];H) +

∣

∣

∣

d

dt
[k ∗ (u− x)]

∣

∣

∣

2

L2([0,T ];V′)

+ |k|2L1([0,T ])|u|
2
L2([0,T ];V) + 2|x|2H|k|2L1([0,T ]),

which implies (3.9). �

3.3 The main existence and uniqueness result

In this section we are concerned with existence and uniqueness for the abstract problem (3.2).
Recall that V and H are real separable Hilbert spaces such that V is densely and continuously
embedded into H. Identifying H with its dual H′, we have V →֒ H →֒ V ′, and the relation (3.1)
holds. It will be assumed that dimV = ∞.

We will suppose that the following assumptions are satisfied.

(Hk) (k, l) ∈ PC for some l ∈ L1, loc(R+).

(Hd) x ∈ H, f ∈ L2([0, T ];V ′).

(Ha) For a.a. t ∈ (0, T ), the mapping a(t, ·, ·) : V × V → R is bilinear, and there exist constants
M > 0, c > 0, and d ≥ 0, which are independent of t, such that

|a(t, u, v)| ≤M |u|V |v|V , (3.14)

a(t, u, u) ≥ c|u|2V − d|u|2H, (3.15)

for all u, v ∈ V and a.a. t ∈ (0, T ). Moreover, the function {t 7→ a(t, u, v)} is measurable
on (0, T ) for all u, v ∈ V .

We seek a solution of (3.2) in the space

W (x,V ,H) = {u ∈ L2([0, T ];V) : k ∗ (u − x) ∈ 0H
1
2 ([0, T ];V ′)}.
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Note that the vector x plays the role of the initial data for u, at least in a weak sense. If e.g.
u, and d

dt(k ∗ [u − x]) =: f̃ belong to C([0, T ];V ′), then the assumption (Hk) and the condition
k ∗ (u− x)(0) = 0 entail that

u− x =
d

dt
(l ∗ k ∗ [u− x]) = l ∗ f̃

in C([0, T ];V ′), and therefore u(0) = x.
In order to construct a solution in the desired class, we will use the Galerkin method. We

will assume that

(Hb) {w1, w2, . . .} is a basis in V , and (xm) is a sequence in H such that xm ∈ span{w1, . . . , wm},
m ∈ N, and xm → x in H as m→ ∞.

Setting

um(t) =
m

∑

j=1

cjm(t)wj , xm =
m

∑

j=1

βjmwj ,

and replacing u, x, and v in (3.2) by um, xm, and wi, respectively, we formally obtain for every
m ∈ N, the system of Galerkin equations

m
∑

j=1

d

dt
[k ∗ (cjm − βjm)](t)(wj , wi)H +

m
∑

j=1

cjm(t)a(t, wj , wi) = 〈f(t), wi〉V′×V , (3.16)

for a.a. t ∈ (0, T ), where i runs through the set {1, . . . ,m}.
The main result in this section is the following.

Theorem 3.3.1 Let T > 0, and V and H be real Hilbert spaces as described above. Suppose the
assumptions (Hk), (Hd), (Ha), and (Hb) hold. Then the problem (3.2) has exactly one solution
u in the space W (x,V ,H). The mapping (x, f) 7→ u is linear, and there exists a constant M0 > 0
such that

|k ∗ (u− x)|H1
2 ([0,T ];V′) + |u|L2([0,T ];V) ≤M0

(

|x|H + |f |L2([0,T ];V′)

)

(3.17)

for all x ∈ H and f ∈ L2([0, T ];V ′). Moreover, for every m ∈ N, the Galerkin equation (3.16)
possesses precisely one solution um ∈W (xm,V ,H). The sequence (um) converges weakly to u in
L2([0, T ];V) as m→ ∞.

Proof. Uniqueness. Suppose that u1, u2 ∈ W (x,V ,H) are solutions of (3.2). The difference
u = u1 − u2 then belongs to the space W (0,V ,H) and satisfies the equation

〈(k ∗ u)′(t), v〉V′×V + a(t, u(t), v) = 0, v ∈ V, a.a. t ∈ (0, T ).

We may take v = u(t), thereby getting

〈(k ∗ u)′(t), u(t)〉V′×V + a(t, u(t), u(t)) = 0, a.a. t ∈ (0, T ). (3.18)

Let kn ∈ H1
1 ([0, T ]), n ∈ N, be the kernel associated with the Yosida approximation Bn of the

operator B defined in (3.10). Then (3.18) is equivalent to

〈(kn ∗ u)′(t), u(t)〉V′×V + a(t, u(t), u(t)) = hn(t), a.a. t ∈ (0, T ), (3.19)

where
hn(t) = 〈(kn ∗ u)′(t) − (k ∗ u)′(t), u(t)〉V′×V , a.a. t ∈ (0, T ).
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Since kn ∗ u ∈ H1
2 ([0, T ];H), we may apply (3.1) to the first term in (3.19), to the result

( d

dt
(kn ∗ u)(t), u(t)

)

H
+ a(t, u(t), u(t)) = hn(t), a.a. t ∈ (0, T ), (3.20)

for all n ∈ N.
The kernels kn are nonnegative and nonincreasing. Thus, by Lemma 2.3.2,

1

2

d

dt
(kn ∗ |u(·)|2H)(t) ≤

( d

dt
(kn ∗ u)(t), u(t)

)

H
, a.a. t ∈ (0, T ).

The second term in (3.20) is estimated by means of the abstract G̊arding inequality (3.15) in
(Ha). Proceeding this way, it follows from (3.20) that

d

dt
(kn ∗ |u(·)|2H)(t) ≤ 2d|u(t)|2H + 2hn(t), a.a. t ∈ (0, T ). (3.21)

Observe that all terms in (3.21) viewed as functions of t belong to L1([0, T ]). Therefore we may
convolve (3.21) with the kernel l from assumption (Hk). Letting then n go to ∞ and selecting
an appropriate subsequence, if necessary, we arrive at

|u(t)|2H ≤ 2d (l ∗ |u(·)|2H)(t), a.a. t ∈ (0, T ). (3.22)

Here we use the fact that hn → 0 in L1([0, T ]), which entails l ∗ hn → 0 in L1([0, T ]), and that

l ∗
d

dt
(kn ∗ |u(·)|2H) =

d

dt
(kn ∗ l ∗ |u(·)|2H) →

d

dt
(k ∗ l ∗ |u(·)|2H) = |u(·)|2H

in L1([0, T ]) as n→ ∞.
Since l is nonnegative, (3.22) implies that |u(t)|2H = 0 a.e. in (0, T ), by the abstract Gronwall

lemma [86, Prop. 7.15], i.e. u = 0.
Existence. 1. We show first that for every m ∈ N, the system of Galerkin equations (3.16)

admits a unique solution ψ := ψm := (c1m, . . . , cmm)T on [0, T ] in the class W (ξ,Rm,Rm), where
ξ := ξm := (β1m, . . . , βmm)T .

Since the vectors w1, . . . , wm are linearly independent, the matrix ((wj , wi)H) ∈ Rm×m is
invertible. Hence (3.16) can be solved for d

dt [k ∗ (cjm − βjm)], which leads to an equivalent
system of the form

d

dt
[k ∗ (ψ − ξ)](t) = B(t)ψ(t) + g(t), a.a. t ∈ (0, T ), (3.23)

where B ∈ L∞([0, T ]; Rm×m), and g ∈ L2([0, T ]; Rm), by the assumptions (Ha) and (Hd). In
order to solve (3.23), we transform it into the system of Volterra equations

ψ(t) = ξ + l ∗ [B(·)ψ(·)](t) + (l ∗ g)(t), a.a. t ∈ (0, T ),

which has a unique solution ψ ∈ L2([0, T ]; Rm), see e.g. [32, Chapter 9]. But then ψ ∈
W (ξ,Rm,Rm), and hence it is also a solution of (3.23). This shows that for every m ∈ N,
the Galerkin equation (3.16) has exactly one solution um ∈W (xm,V ,H).

2. We next derive a priori estimates for the Galerkin solutions. The Galerkin equations
(3.16) are equivalent to

( d

dt
[k ∗ (um − xm)](t), wi

)

H
+ a(t, um(t), wi) = 〈f(t), wi〉V′×V , a.a. t ∈ (0, T ), (3.24)
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i = 1, . . . ,m. Multiplying (3.24) by cim and summing over i, we obtain

( d

dt
[(k ∗ (um − xm)](t), um(t)

)

H
+ a(t, um(t), um(t)) = 〈f(t), um(t)〉V′×V . (3.25)

Let kn ∈ H1
1 ([0, T ]), n ∈ N, be as in the uniqueness part above. Then (3.25) can be written as

( d

dt
(kn ∗ um)(t), um(t)

)

H
+ a(t, um(t), um(t))

= kn(t)(xm, um(t))H + 〈f(t), um(t)〉V′×V + hmn(t), a.a. t ∈ (0, T ), (3.26)

with
hmn(t) = 〈[kn ∗ (um − xm)]′(t) − [k ∗ (um − xm)]′(t), um(t)〉V′×V .

Using Lemma 2.3.2 and inequality (3.15), we find that

1

2

d

dt
(kn ∗ |um(·)|2H)(t) +

1

2
kn(t)|um(t)|2H + c|um(t)|2V

≤ d|um(t)|2H + kn(t)(xm, um(t))H + 〈f(t), um(t)〉V′×V + hmn(t),

which, by Young’s inequality, yields the estimate

d

dt
(kn ∗ |um(·)|2H)(t) + c|um(t)|2V ≤ 2d|um(t)|2H + kn(t)|xm|2H +

1

c
|f(t)|2V′ + 2hmn(t). (3.27)

Similarly as in the uniqueness part, we see that l ∗ hmn → 0 and

l ∗
d

dt
(kn ∗ |um(·)|2H) → |um(·)|2H

in L1([0, T ]) as n→ ∞. Consequently, if we convolve (3.27) with l, and let n tend to ∞, selecting
an appropriate subsequence, if necessary, we obtain the estimate

|um(t)|2H ≤ 2d (l ∗ |um(·)|2H)(t) + |xm|2H +
1

c
(l ∗ |f(·)|2V′)(t) (3.28)

for a.a. t ∈ (0, T ), and all m ∈ N. By positivity of l, it follows from (3.28) that

|um|L2([0,T ];H) ≤ C
(

|xm|H + |f |L2([0,T ];V′)

)

, (3.29)

where the constant C depends only on c, d, l, T .
Returning to (3.27), we may integrate from 0 to T - note that (kn ∗ |um(·)|2H)(0) = 0 - and

then let n go to ∞ to find that

c

∫ T

0

|um(t)|2V dt ≤ 2d

∫ T

0

|um(t)|2H dt+ |k|L1([0,T ])|xm|2H +
1

c

∫ T

0

|f(t)|2V′ dt.

This, together with (3.29) and the assumption xm → x in H, yields the a priori bound

|um|L2([0,T ];V) ≤ C1

(

|x|H + |f |L2([0,T ];V′)

)

, m ∈ N, (3.30)

with some C1 > 0 being independent of m ∈ N.
3. By (3.30) there exists a subsequence of (um), which we will again denote by (um), such

that
um ⇀ u in L2([0, T ];V) as m→ ∞, (3.31)
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for some u ∈ L2([0, T ];V). We will show that u ∈W (x,V ,H), and that u is a solution of (3.2).
Let ϕ ∈ C1([0, T ]; R) with ϕ(T ) = 0. Multiplying (3.24) by ϕ and using integration by parts,

we obtain

−

∫ T

0

ϕ′(t)([k ∗ (um − xm)](t), wi)H dt+

∫ T

0

ϕ(t)a(t, um(t), wi) dt

=

∫ T

0

ϕ(t)〈f(t), wi〉V′×V (3.32)

for all m ≥ i, because [k ∗ (um − xm)](0) = 0. We apply then the limits (3.31), and xm → x in
H to equation (3.32). By means of (3.14), the embedding V →֒ H, and Young’s and Hölder’s
inequality, one easily verifies that this leads to

−

∫ T

0

ϕ′(t)([k ∗ (u− x)](t), wi)H dt+

∫ T

0

ϕ(t)a(t, u(t), wi) dt =

∫ T

0

ϕ(t)〈f(t), wi〉V′×V (3.33)

for all i ∈ N. Observe that ([k ∗ (u − x)](t), wi)H = 〈[k ∗ (u− x)](t), wi〉V′×V , by (3.1). It is not
difficult to see that the terms in (3.33) represent linear continuous functionals on the space V ,
with respect to wi. Consequently, in light of (Hb), (3.33) implies

−

∫ T

0

ϕ′(t)〈[k ∗ (u− x)](t), v〉V′×V dt+

∫ T

0

ϕ(t)a(t, u(t), v) dt =

∫ T

0

ϕ(t)〈f(t), v〉V′×V (3.34)

for all v ∈ V .
Since (3.34) holds in particular for all ϕ ∈ C∞

0 (0, T ), we infer that k∗(u−x) has a generalized
derivative on (0, T ) with

d

dt
[k ∗ (u − x)](t) + A(t)u(t) = f(t), a.a. t ∈ (0, T ), (3.35)

where the operator A(t) : V → V ′ is defined as in (3.6). From u ∈ L2([0, T ];V) and |A(t)u(t)|V′ ≤
M |u(t)|V for a.a. t ∈ (0, T ), we deduce that A(·)u ∈ L2([0, T ];V ′). Since f ∈ L2([0, T ];V ′), too,
it follows that [k ∗ (u− x)]′ ∈ L2([0, T ];V ′).

To see that u ∈W (x,V ,H), it remains to show that [k∗(u−x)](0) = 0. We set z := k∗(u−x).
Then z ∈ H1

2 ([0, T ];V ′) →֒ C([0, T ];V ′), and by (3.34) and (3.35), there holds

−

∫ T

0

ϕ′(t)〈z(t), v〉V′×V dt =

∫ T

0

ϕ(t)〈z′(t), v〉V′×V (3.36)

for all v ∈ V , and all ϕ ∈ C1([0, T ]; R) with ϕ(T ) = 0. Choosing ϕ such that ϕ(0) = 1, and
approximating z in H1

2 ([0, T ];V ′) by a sequence of functions zn ∈ C1([0, T ];V ′), it follows from
(3.36) and the formula of integration by parts that 〈z(0), v〉V′×V = 0 for all v ∈ V . Hence
z(0) = 0.

Summarizing, we have found a function u ∈ W (x,V ,H) that solves the operator equation
(3.35). Since (3.35) is equivalent to (3.2), the existence proof is complete.

Moreover, (3.35) has exactly one solution in the class W (x,V ,H). Consequently, all subse-
quences of the original sequence (um) that are weakly convergent in L2([0, T ];V) have the same
limit u. Hence, the original sequence (um) converges weakly to u in L2([0, T ];V).

Continuous dependence on the data. From um ⇀ u in L2([0, T ];V) and the estimate
(3.30), it follows by means of the theorem of Banach and Steinhaus, that

|u|L2([0,T ];V) ≤ lim inf
m→∞

|um|L2([0,T ];V) ≤ C1

(

|x|H + |f |L2([0,T ];V′)

)

.
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Using this estimate, together with |A(·)u|L2([0,T ];V′) ≤ M |u|L2([0,T ];V), (Hd), and (3.35), we
obtain the desired estimate (3.17). �

If not only the kernel l in (Hk) but also some p-th power of it with p > 1 belongs to L1([0, T ]),
then one can get an additional estimate for solutions of (3.2). This is the consequence of the
first part of the subsequent interpolation result for functions in the space W (x,V ,H). It also
contains the analogue of

∫ T

0

t−1|u(t)|2H dt <∞ for all u ∈ 0H
1
2 ([0, T ];V ′) ∩ L2([0, T ];V),

see [52, Chap. 3, Prop. 5.3 and Prop. 5.4], in the case of the space W (x,V ,H).
By Lp,w([0, T ]), p ∈ [1,∞) we mean the weak Lp space of Lebesgue measurable functions on

(0, T ).

Theorem 3.3.2 Let V and H be real Hilbert spaces as described above (V →֒ H →֒ V ′). Let
further T > 0, (k, l) ∈ PC, and suppose that x ∈ H, and u ∈ W (x,V ,H). Then the following
statements hold.

(i) If l ∈ Lp,w([0, T ]) for some p > 1 then u ∈ L2p,w([0, T ];H), and there holds

|u|L2p,w([0,T ];H) ≤ C
(∣

∣

∣

d

dt
[k ∗ (u − x)]

∣

∣

∣

L2([0,T ];V′)
+ |u|L2([0,T ];V) + |x|H

)

, (3.37)

the constant C depending only on T , and |l|Lp,w([0,T ]). If l ∈ Lp([0, T ]) for some p > 1 then
u ∈ L2p([0, T ];H), and the estimate corresponding to (3.37) holds.

(ii) There holds the estimate

(

∫ T

0

k(t)|u(t)|2H dt)1/2 ≤ C1

(∣

∣

∣

d

dt
[k ∗ (u− x)]

∣

∣

∣

L2([0,T ];V′)
+ |u|L2([0,T ];V) + |x|H

)

,

where the constant C1 only depends on |k|L1([0,T ]).

Proof. We proceed similarly as in the proof of the previous result. The key idea again is to apply
the identity (2.8) from Lemma 2.3.2.

Let (kn) be the sequence of approximating kernels used above, and put

g(t) = 〈(k ∗ [u− x])′(t), u(t)〉V′×V , t ∈ (0, T ),

and
hn(t) = 〈(kn ∗ [u− x])′(t) − (k ∗ [u− x])′(t), u(t)〉V′×V , t ∈ (0, T ).

Then
( d

dt
(kn ∗ u)(t), u(t)

)

H
= kn(t)(x, u(t))H + g(t) + hn(t), a.a. t ∈ (0, T ),

with each term being in L1([0, T ]). Using (2.8) and the inequality ab ≤ 1
4a

2 + b2 it follows that

1

2

d

dt
(kn ∗ |u(·)|2H)(t) +

1

4
kn(t)|u(t)|2H ≤ kn(t)|x|2H + g(t) + hn(t), a.a. t ∈ (0, T ). (3.38)

To prove (i), we drop the second term on the left, which is nonnegative, convolve the resulting
inequality with l, and send n to ∞. Arguing as in the proof of Theorem 3.3.1 we obtain

|u(t)|2H ≤ 2
(

|x|2H + (l ∗ g)(t)
)

, a.a. t ∈ (0, T ).
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Young’s inequality for weak type Lp spaces (see e.g. [30, Theorem 1.2.13]) then gives

|u|2L2p,w([0,T ];H) =
∣

∣

∣
|u(·)|2H

∣

∣

∣

Lp,w([0,T ])
≤ 2

(

|l|Lp,w([0,T ])|g|L1([0,T ]) + T 1/p|x|2H

)

,

which together with

2|g|L1([0,T ]) ≤
∣

∣

∣

d

dt
[k ∗ (u − x)]

∣

∣

∣

2

L2([0,T ];V′)
+ |u|2L2([0,T ];V)

implies the first desired bound in (i). If l ∈ Lp([0, T ]) one may apply Young’s classical inequality
for convolutions to establish the asserted estimate in (i).

As to (ii), we integrate (3.38) from 0 to T , and drop the term kn ∗ |u(·)|2H)(T ), to the result

∫ T

0

kn(t)|u(t)|2H dt ≤ 4
(

(1 ∗ kn)(T )|x|2H + |g|L1([0,T ]) + |hn|L1([0,T ])

)

.

Observe that (1∗kn)(T ) → (1∗k)(T ), and |hn|L1([0,T ]) → 0 as n→ ∞. Therefore, for sufficiently
large n we have

∫ T

0

kn(t)|u(t)|2H dt ≤ 8
(

(1 ∗ k)(T )|x|2H + |g|L1([0,T ])

)

.

Since kn → k in L1([0, 1]), the assertion then follows from Fatou’s lemma. �

In the case of fractional evolution equations we have the following corollary. Here we set

0H
α
2 ([0, T ];V ′) := {v|[0,T ] : v ∈ Hα

2 (R;V ′) and supp v ⊆ R+},

where Hα
2 (R;V ′) stands for the Bessel potential space of order α of V ′-valued functions on the

line.

Corollary 3.3.1 Let T > 0, and V and H be real Hilbert spaces as described above. Suppose
(Hd), (Ha), and (Hb), and assume that k(t) = g1−α(t)e−µt, t > 0, with α ∈ (0, 1), and µ ≥ 0.
Then the problem (3.2) admits exactly one solution u in the space

W (α;x,V ,H) := {u ∈ L2([0, T ];V) : u− x ∈ 0H
α
2 ([0, T ];V ′)}.

Furthermore, we have

(g1−αe
−µ·) ∗ u ∈ C([0, T ];H), u ∈ L 2

1−α , w([0, T ];H), and

∫ T

0

t−α|u(t)|2H dt <∞.

There exists a constant M = M(α, µ, T ) > 0 such that

|u− x|
0Hα

2 ([0,T ];V′) + |u|L2([0,T ];V)+|(g1−αe
−µ·) ∗ u|C([0,T ];H) + |u|L 2

1−α
, w

([0,T ];H)

+(

∫ T

0

t−α|u(t)|2H dt)1/2 ≤M
(

|x|H + |f |L2([0,T ];V′)

)

,

for all x ∈ H and f ∈ L2([0, T ];V ′).

Proof. Let l as in (2.1). Then

0H
α
2 ([0, T ];V ′) = {l ∗ v : v ∈ L2([0, T ];V ′)}

= {v ∈ L2([0, T ];V ′) : (g1−αe
−µ·) ∗ v ∈ 0H

1
2 ([0, T ];V ′),
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for the first equals sign see e.g. [81, Corollary 2.1]; the second one follows from k ∗ l = 1. Note
further that l ∈ L1/(1−α),w([0, T ]). So the assertions of the corollary follow immediately from the
previous results. �

Note that taking formally the limit α → 1 in the above estimates (with µ = 0) we recover
the well-known estimates for solutions of the abstract parabolic equation (3.4).

3.4 Second order problems

Let T > 0, and Ω be a bounded domain in RN with N ≥ 3. We consider the problem






∂t(k ∗ (u− u0)) − div (ADu) + (b|Du) + cu= g, t ∈ (0, T ), x ∈ Ω,
u(t, x)= 0, t ∈ (0, T ), x ∈ ∂Ω,
u(0, x)= u0(x), x ∈ Ω.

(3.39)

Here (·|·) denotes the scalar product in RN . We make the following assumptions on the kernel
k, the coefficients, and the data.

(Hk) (k, l) ∈ PC for some l ∈ L1, loc(R+).

(Hd) u0 ∈ L2(Ω), g ∈ L2([0, T ];L 2N
N+2

(Ω)).

(HA) A ∈ L∞((0, T ) × Ω; RN×N ), and ∃ν > 0 such that

(A(t, x)ξ|ξ) ≥ ν|ξ|2, for a.a. t ∈ (0, T ), x ∈ Ω, and all ξ ∈ R
n.

(Hc) b ∈ L∞((0, T ) × Ω; RN), c ∈ L∞((0, T )× Ω).

We set V = °H1
2 (Ω), and H = L2(Ω), endowed with the inner product (u, v)H =

∫

Ω uv dx. Define

a(t, u, v) =

∫

Ω

(

(

A(t, x)Du(x)|Dv(x)
)

+
(

b(t, x)|Du(x)
)

v(x) + c(t, x)u(x)v(x)
)

dx

and

〈f(t), v〉V′×V =

∫

Ω

g(t, x)v(x) dx, a.a. t ∈ (0, T ).

Then the weak formulation of (3.39) reads

d

dt

(

[k ∗ (u− u0)](t), v
)

H
+ a(t, u(t), v) = 〈f(t), v〉V′×V , v ∈ V , a.a. t ∈ (0, T ), (3.40)

and we seek a solution in the class

W (u0, °H1
2 (Ω), L2(Ω))={u ∈ L2([0, T ]; °H1

2 (Ω)) : k ∗ (u − u0) ∈ 0H
1
2 ([0, T ];H−1

2 (Ω))}.

It is folklore that in the described setting the assumptions (Hd), and (Ha) in Theorem 3.3.1 are
satisfied. Concerning (Hb), we could take {w1, w2, . . .} to be the complete set of eigenfunctions
for −∆ in °H1

2 (Ω). Consequently, we obtain

Corollary 3.4.1 Suppose the assumptions (Hk), (Hd), (HA), and (Hc) hold. Then the problem
(3.39) has a unique weak solution u ∈W (u0, °H1

2 (Ω), L2(Ω)) in the sense that (3.40) is satisfied.
Further, k ∗ u ∈ C([0, T ];L2(Ω)). In the case k(t) = g1−α(t)e−µt, t > 0, with α ∈ (0, 1), and
µ ≥ 0, we have

u ∈ L 2
1−α , w([0, T ];L2(Ω)) ∩ L2([0, T ]; °H1

2 (Ω)), and u− u0 ∈ 0H
α
2 ([0, T ];H−1

2 (Ω))}.

Of course, a corresponding result also holds in the case N ≤ 2 with the assumption on g appro-
priately modified. In any case, g ∈ L2([0, T ]× Ω) is sufficient.
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Chapter 4

Boundedness of weak solutions

and the maximum principle

4.1 Introductory remarks

Let T > 0, and Ω be a bounded domain in RN . In this chapter we investigate linear partial
integro-differential equations of the form

∂t

(

k ∗ (u− u0)
)

− Lu = f + div g, t ∈ (0, T ), x ∈ Ω, (4.1)

as well as related quasilinear problems

∂t

(

k ∗ (u− u0)
)

− div a(t, x, u,Du) = b(t, x, u,Du), t ∈ (0, T ), x ∈ Ω, (4.2)

where in both cases k ∈ L1, loc(R+) is a kernel of type PC.
In (4.1), L is a second order operator w.r.t. the spatial variables in divergence form:

Lu = div
(

A(t, x)Du + b(t, x)u
)

+ (c(t, x)|Du) + d(t, x)u.

Here A is RN×N -valued, b and c take values in RN , and d is a real-valued function. Recall that
(·|·) denotes the scalar product in RN . The functions u0 = u0(x), f = f(t, x), and g = g(t, x)
are given data; the function u0 plays the role of the initial data for u.

Concerning the leading coefficients of L we merely assume measurability, boundedness, and a
uniform parabolicity condition. The coefficients of the lower order terms are assumed to belong
to certain Lebesgue spaces of mixed type, so they need not be bounded.

In (4.2), the functions a : (0, T ) × Ω × RN+1 → RN and b : (0, T ) × Ω × RN+1 → R are
measurable and satisfy suitable structure conditions, see (Q1)–(Q5) in Section 4.3.

One of the main objectives of this chapter is to derive results asserting the boundedness on
ΩT of appropriately defined weak solutions of (4.1) and (4.2), respectively, that are bounded
on ΓT . We further establish the analogue of the well-known weak maximum principle for weak
solutions of the parabolic equation corresponding to (4.1), i.e. ∂tu−Lu = f +div g, see e.g. [49,
Theorem 7.2, p. 188].

Our proofs of the global boundedness results use De Giorgi’s iteration technique and are
based on suitable a priori estimates for weak solutions of (4.1) and (4.2), respectively. These
estimates, which by partly standard arguments (c.p. [49, Chapters III and V]) lead to suitable
Caccioppoli type inequalities, are derived by means of the basic inequality (2.7).
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One of the technical difficulties in deriving the desired estimates in the weak setting is to
find an appropriate time regularization of the equation. In the classical parabolic theory this
is achieved by means of Steklov averages in time. In the case of equations (4.1) and (4.2)
this method does not work any more, since Steklov average operators and convolution do not
commute. It turns out that instead one can again use the Yosida approximation of the operator
B defined by Bv = ∂t(k ∗ v), e.g. in L2([0, T ]), which leads to a regularization of the kernel k
(not of u!).

4.2 Linear equations

In this section we study the linear equation (4.1). Let T > 0, and Ω be a bounded domain in
RN such that ∂Ω satisfies the property of positive density, the latter will be assumed throughout
this chapter. In what follows (except for Theorem 4.2.2 and Theorem 4.2.3) we will assume that

(H1) There exists l ∈ L1, loc(R+) such that (k, l) ∈ PC. Further, l ∈ Lp([0, T ]) for some p > 1.

(H2) A ∈ L∞((0, T ) × Ω; RN×N ), and ∃ν > 0 such that

(A(t, x)ξ|ξ) ≥ ν|ξ|2, for a.a. (t, x) ∈ ΩT , and all ξ ∈ R
N .

(H3) u0 ∈ L2(Ω), and

∣

∣

∣
|b|2 + |g|2 + |c|2 + |d| + |f |

∣

∣

∣

Lr([0,T ];Lq(Ω))
=: CD <∞,

where
p′

r
+

N

2q
= 1 − β,

and

r ∈
[

p′

(1−β) ,∞
]

, q ∈
[

N
2(1−β) ,∞

]

, β ∈ (0, 1) for N ≥ 2,

r ∈
[

p′

(1−β) ,
2p′

(1−2β)

]

, q ∈ [1,∞], β ∈
(

0, 1
2

)

for N = 1.

We say that a function u is a weak solution (subsolution, supersolution) of (4.1) in ΩT , if u
belongs to the space

Ṽp := { v ∈ L2p([0, T ];L2(Ω)) ∩ L2([0, T ];H1
2 (Ω)) such that

k ∗ v ∈ C([0, T ];L2(Ω)), and (k ∗ v)|t=0 = 0},

and for any nonnegative test function

η ∈ °H1,1
2 (ΩT ) := H1

2 ([0, T ];L2(Ω)) ∩ L2([0, T ]; °H1
2 (Ω))

with η|t=T = 0 there holds

∫ T

0

∫

Ω

(

− ηt[k ∗ (u− u0)]+(ADu + bu|Dη) − (c|Du)η − duη
)

dxdt

= (≤, ≥)

∫ T

0

∫

Ω

(

fη − (g|Dη)
)

dxdt. (4.3)

It is not difficult to verify, by means of Hölder’s inequality and the interpolation inequality (2.13),
that under conditions (H1)-(H3) the integrals in (4.3) are finite, see also the proof of Theorem
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4.2.1 below. We point out that (4.1) is considered without any boundary conditions, in this
sense weak solutions of (4.1) as defined above are local ones (w.r.t. x). Note that for an energy
estimate for weak solutions u ∈ Ṽp of (4.1) one can work with a weaker version of condition (H3),

see e.g. Theorem 4.2.2 below. We further remark that weak solutions of (4.1) in the class Ṽp

have already been constructed in Chapter 3 under the assumptions (H1), (H2), and a stronger
variant of (H3), see Section 3.4. Notice also that the function u0 plays the role of the initial data
for u, at least in a weak sense. In case of sufficiently smooth functions u and k ∗ (u − u0) the
condition (k ∗ u)|t=0 = 0 implies u|t=0 = u0, see Section 3.3.

The following lemma is basic to deriving a priori estimates for weak (sub-/super-) solutions
of (4.1) as it provides an equivalent weak formulation of (4.1) where the kernel k is replaced with
the more regular kernel kn (n ∈ N) defined in (2.5). In what follows the kernels hn, n ∈ N, are
as in Section 2.2.

Lemma 4.2.1 Let the assumptions (H1)–(H3) be satisfied. Then u ∈ Ṽp is a weak solution

(subsolution, supersolution) of (4.1) if and only if for any nonnegative function ψ ∈ °H1
2 (Ω) one

has
∫

Ω

(

ψ∂t[kn∗(u− u0)] + (hn ∗ [ADu + bu]|Dψ) − (hn ∗ [(c|Du) + du])ψ
)

dx

= (≤, ≥)

∫

Ω

(

[hn ∗ f ]ψ − (hn ∗ g|Dψ)
)

dx, a.a. t ∈ (0, T ), n ∈ N. (4.4)

Proof. We may restrict ourselves to the subsolution case as the remaining cases can be treated
analogously.

The ’if’ part is readily seen as follows. Given an arbitrary nonnegative η ∈ °H1,1
2 (ΩT ) satisfying

η|t=T = 0, we take in (4.4) ψ(x) = η(t, x) for any fixed t ∈ (0, T ), integrate from t = 0 to t = T ,
and integrate by parts w.r.t. the time variable. Relation (4.3) then follows by sending n → ∞;
here we use the approximating properties of the kernels hn described in Section 2.2.

To show the ’only–if’ part, we choose the test function

η(t, x) =

∫ T

t

hn(σ − t)ϕ(σ, x) dσ =

∫ T−t

0

hn(σ)ϕ(σ + t, x) dσ, t ∈ (0, T ), x ∈ Ω, (4.5)

with arbitrary n ∈ N and nonnegative ϕ ∈ °H1,1
2 (ΩT ) satisfying ϕ|t=T = 0; η is nonnegative since

ϕ and hn are so (see Section 2.2). Then

ηt(t, x) =

∫ T

t

hn(σ − t)ϕσ(σ, x) dσ, a.a. (t, x) ∈ ΩT .

By Fubini’s theorem, we have

∫ T

0

(

∫ T

t

hn(σ − t)ψ1(σ) dσ
)

ψ2(t) dt =

∫ T

0

ψ1(t)
(

∫ t

0

hn(t− σ)ψ2(σ) dσ
)

dt,

for all ψ1, ψ2 ∈ L2([0, T ]). So it follows from (4.3) and kn = hn ∗ k (c.p. (2.5)) that

∫ T

0

∫

Ω

(

− ϕt[kn∗(u− u0)] + (hn ∗ [ADu+ bu]|Dϕ) − (hn ∗ [(c|Du) + du])ϕ
)

dx dt

≤

∫ T

0

∫

Ω

(

[hn ∗ f ]ϕ− (hn ∗ g|Dϕ)
)

dx dt, n ∈ N.
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Observe that kn ∗ (u − u0) ∈ 0H
1
2 ([0, T ];L2(Ω)). Therefore, integrating by parts and using

ϕ|t=T = 0 yields

∫ T

0

∫

Ω

(

ϕ∂t[kn∗(u− u0)] + (hn ∗ [ADu + bu]|Dϕ) − (hn ∗ [(c|Du) + du])ϕ
)

dx dt

≤

∫ T

0

∫

Ω

(

[hn ∗ f ]ϕ− (hn ∗ g|Dϕ)
)

dx dt (4.6)

for all n ∈ N and ϕ ∈ °H1,1
2 (ΩT ) with ϕ|t=T = 0. By means of a simple approximation argument,

we infer that (4.6) holds true for any ϕ of the form ϕ(t, x) = χ(t1,t2)(t)ψ(x), where χ(t1,t2)

denotes the characteristic function of the time-interval (t1, t2), 0 < t1 < t2 < T , and ψ ∈ °H1
2 (Ω)

is nonnegative. Appealing to the Lebesgue differentiation theorem, we then obtain the desired
relation (4.4). �

In what follows we say that a function u ∈ Ṽp satisfies u ≤ K a.e. on ΓT for some number K ∈ R

if (u−K)+ ∈ L2([0, T ]; °H1
2 (Ω)), likewise for lower bounds on ΓT .

Theorem 4.2.1 Let T > 0 and Ω ⊂ R
N be a bounded domain. Let further the assumptions

(H1) – (H3) be satisfied. Suppose K ≥ 0 is such that u0 ≤ K a.e. in Ω. Then there exists a
constant C = C(p, q, r, |l|Lp([0,T ]), T,N, ν,Ω, CD) such that for any weak subsolution u ∈ Ṽp of
(4.1) in ΩT satisfying u ≤ K a.e. on ΓT there holds u ≤ C(1 +K) a.e. in ΩT .

Remarks 4.2.1 (i) There is a corresponding result for weak supersolutions u of (4.1) in the
situation where u0 ≥ K a.e. in Ω, and u ≥ K a.e. on ΓT , for some K ≤ 0. This follows
immediately from Theorem 4.2.1 by replacing u with −u, and u0 with −u0.

(ii) The statement of Theorem 4.2.1 remains true if r and q in (H3) are different for different
coefficients and data, that is when |b|2 ∈ Lr1([0, T ];Lq1(Ω)), |g|2 ∈ Lr2([0, T ];Lq2(Ω)), and so
forth with ri and qi satisfying the same conditions as r and q in (H3). This can been seen by
working with several functions µκ,i and by generalizing the iteration argument for the function
φ, see below. In the classical parabolic case this issue is discussed in [49, Chapter III, Remark
7.2].

Proof of Theorem 4.2.1. Suppose u ∈ Ṽp is a weak subsolution of (4.1) in ΩT . Then, by Lemma

4.2.1, for any nonnegative function ψ ∈ °H1
2 (Ω) relation (4.4) holds with the ’≤’ sign. For

t ∈ (0, T ) we take in (4.4) the test function ψ = u+
κ := (uκ)+, where uκ := u − κ, and κ ∈ R

satisfying the condition
κ ≥ κ0 := max{0, ess sup

Ω
u0, ess sup

ΓT

u}. (4.7)

The resulting inequality can be written in the form
∫

Ω

(

u+
κ ∂t(kn ∗ uκ) + (hn ∗ [ADu+ bu]|Du+

κ ) − (hn ∗ [(c|Du) + du])u+
κ

)

dx

≤

∫

Ω

(

[hn ∗ f ]u+
κ − (hn ∗ g|Du+

κ ) + u+
κ (u0 − κ)kn

)

dx, a.a. t ∈ (0, T ). (4.8)

Clearly,
∫

Ω

u+
κ (u0 − κ)kn dx ≤ 0, a.a. t ∈ (0, T ),

by positivity of kn and (4.7). Thanks to (2.7) we further have

u+
κ ∂t(kn ∗ uκ) ≥

1

2
∂t

(

kn ∗ (u+
κ )2

)

, a.a. (t, x) ∈ ΩT . (4.9)
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Using these relations it follows from (4.8) that

∫

Ω

(1

2
∂t[kn ∗ (u+

κ )2] + (hn ∗ [ADu+ bu]|Du+
κ ) − (hn ∗ [(c|Du) + du])u+

κ

)

dx

≤

∫

Ω

(

[hn ∗ f ]u+
κ − (hn ∗ g|Du+

κ )
)

dx, a.a. t ∈ (0, T ). (4.10)

Next we convolve (4.10) with the nonnegative kernel l from assumption (H1), and observe that
in view of

kn ∗ (u+
κ )2 ∈ 0H

1
1 ([0, T ];L1(Ω))

and kn = k ∗ hn we have

l ∗ ∂t

(

kn ∗ (u+
κ )2

)

= ∂t

(

l ∗ kn ∗ (u+
κ )2

)

= hn ∗ (u+
κ )2.

Sending then n→ ∞, and selecting an appropriate subsequence, if necessary, we thus arrive at

1

2

∫

Ω

(u+
κ )2 dx+ l ∗

∫

Ω

(ADu|Du+
κ ) dx ≤ l ∗ F, a.a. t ∈ (0, T ), (4.11)

where

F (t) =

∫

Ω

(

− (bu+ g|Du+
κ ) + [(c|Du) + du+ f ]u+

κ

)

dx.

By (H2), we have

∫

Ω

(ADu|Du+
κ ) dx =

∫

Ω

(ADu+
κ |Du

+
κ ) dx ≥ ν

∫

Ω

|Du+
κ |

2 dx, (4.12)

and thus
∫

Ω

(u+
κ )2 dx ≤ 2 l ∗ F, a.a. t ∈ (0, T ).

Young’s inequality for convolutions then gives

|u+
κ |

2
L2p([0,t1];L2(Ω)) = |(u+

κ )2|Lp([0,t1];L1(Ω))

≤ 2|l|Lp([0,t1])|F |L1([0,t1]) ≤ 2|l|Lp([0,T ])|F |L1([0,t1]) (4.13)

for all t1 ∈ (0, T ].
Returning to (4.11), we may also drop the first term, convolve the resulting inequality with

k, and use k ∗ l = 1 as well as (4.12), thereby obtaining

ν|Du+
κ |

2
L2([0,t1];L2(Ω)) ≤ |F |L1([0,t1]). (4.14)

In order to estimate |F |L1([0,t1]), which appears on the right side of both (4.13) and (4.14),
we proceed similarly as in [49, p. 184]. We denote the Lebesgue measure in R

N by λN and set

Aκ(t) = {x ∈ Ω : u(t, x) > κ}, t ∈ (0, T ).

Then

|F |L1([0,t1]) ≤ ε|Du+
κ |

2
L2([0,t1];L2(Ω))

+ C(ε)

∫ t1

0

∫

Aκ(t)

(

|b|2u2 + |g|2 + |c|2(uκ)2 + |du|uκ + |f |uκ

)

dx dt,
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for all ε > 0. Selecting ε sufficiently small and assuming κ ≥ 1, this together with (4.13), and
(4.14) gives

|u+
κ |

2
Vp([0,t1]×Ω) ≤ C(ν, |l|p, T, p)

∫ t1

0

∫

Aκ(t)

D(t, x)
(

(uκ)2 + κ2
)

dx dt, (4.15)

where |l|p := |l|Lp([0,T ]), and

D(t, x) = |b(t, x)|2 + |g(t, x)|2 + |c(t, x)|2 + |d(t, x)| + |f(t, x)|,

and Vp([0, t1]×Ω) is defined as in (2.11). Using Hölder’s inequality and (H3) we thus have with
1/r + 1/r′ = 1 and 1/q + 1/q′ = 1 that

|u+
κ |

2
Vp([0,t1]×Ω) ≤ C|D|Lr([0,t1];Lq(Ω))|(u

+
κ )2 + κ2χ{u>κ}|Lr′ ([0,t1];Lq′(Ω)); (4.16)

here C is as in (4.15), and χ{u>κ} denotes the characteristic function of the set of points (t, x) ∈
(0, t1) × Ω at which u(t, x) > κ. We may then estimate, using again Hölder’s inequality,

|(u+
κ )2|Lr′ ([0,t1];Lq′(Ω)) ≤ |u+

κ |
2
L2r′(1+δ)([0,t1];L2q′(1+δ)(Ω))µ

δ
r′(1+δ)
κ , (4.17)

with

µκ =

{

∫ t1
0
λN (Aκ(t))

r′

q′ dt : q > 1
λ1({t ∈ (0, t1) : λN (Aκ(t)) > 0}) : q = 1,

and

δ =
2β

2(p′ − 1) +N
.

It is not difficult to verify that, by virtue of (H3), the numbers r̃ := 2r′(1+ δ) and q̃ := 2q′(1+ δ)
are subject to the condition (2.12) with (r, q) being replaced by (r̃, q̃). Therefore, using inequality
(2.13), it follows from (4.17) that

|(u+
κ )2|Lr′ ([0,t1];Lq′(Ω)) ≤ C(N, q)|u+

κ |
2
Vp([0,t1]×Ω)µ

δ
r′(1+δ)
κ . (4.18)

We may further write

|κ2χ{u>κ}|Lr′ ([0,t1];Lq′ (Ω)) = κ2µ
1
r′
κ . (4.19)

Combining (4.16), (4.18), and (4.19) we obtain

|u+
κ |

2
Vp([0,t1]×Ω) ≤ C1|D|Lr([0,t1];Lq(Ω))

(

|u+
κ |

2
Vp([0,t1]×Ω)µ

δ
r′(1+δ)
κ + κ2µ

1
r′
κ

)

, (4.20)

with C1 = C1(ν, |l|p, T, p,N, q).
We now choose t1 = T/n where n ∈ N is so large that

C1|D|Lr([0,T ];Lq(Ω))t
δ

r′(1+δ)

1 λN (Ω)
δ

q′(1+δ) ≤
1

2
. (4.21)

Setting C2
2 = 2C1|D|Lr([0,T ];Lq(Ω)), inequality (4.20) then implies

|u+
κ |

2
Vp([0,t1]×Ω) ≤ C2

2κ
2µ

1
r′
κ , κ ≥ κ̃0 := max{κ0, 1}. (4.22)

Define the function
φ(κ) = µ

1
r̃
κ , κ ≥ κ̃0.
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We will show that φ(2M) = 0 provided M ≥ κ̃0 is sufficiently large. The argument is analogous
to the proof of Theorem 6.1 in Chapter II of [49]. For the sake of completeness we give the
details.

By virtue of inequalities (2.13) and (4.22), we have for any κ2 > κ1 ≥ κ̃0

(κ2 − κ1)φ(κ2) ≤ |u+
κ1
|Lr̃([0,t1];Lq̃(Ω)) ≤ C(N, q)|u+

κ1
|Vp([0,t1]×Ω) ≤ C3κ1φ(κ1)

1+δ, (4.23)

where C3 = CC2. We take κ2 = ξn+1 and κ1 = ξn with ξn = M(2 − 2−n), n = 0, 1, 2, . . ., and
M ≥ κ̃0 being fixed. This gives

φ(ξn+1) ≤
C3ξn

ξn+1 − ξn
φ(ξn)1+δ ≤ 4C32

nφ(ξn)1+δ,

which, together with Lemma 2.4.1, shows that the sequence Yn = φ(ξn), n = 0, 1, . . ., will go to
zero as n→ ∞, provided φ(ξ0) is sufficiently small, namely

φ(ξ0) = φ(M) ≤ (4C3)
−1/δ2−1/δ2

. (4.24)

By taking in (4.23) κ2 = M = mκ̃0 and κ1 = κ̃0, we obtain

φ(M) ≤
C3

m− 1
φ(κ̃0)

1+δ ≤
C3

m− 1
t
(1+δ)/r̃
1 λN (Ω)(1+δ)/q̃ .

Hence (4.24) is satisfied for

m = 1 + C3t
(1+δ)/r̃
1 λN (Ω)(1+δ)/q̃(4C3)

1/δ21/δ2

.

It follows that for this m
ess sup
[0,t1]×Ω

u ≤ 2M = 2mκ̃0. (4.25)

To obtain a bound on the whole time-interval [0, T ], we proceed by induction. Using (4.25)
we next derive an estimate on [t1, 2t1], which together with (4.25) is then employed to find an
upper bound on [2t1, 3t1], and so forth until we reach T after finitely many steps. Due to the
nonlocalness of the integro-differential operator in time, in each step we have to use the bounds
established in all of the previous steps, that is up to t = 0.

Let T0 ∈ (0, T ) and suppose that u ∈ Ṽp is a weak subsolution of (4.1) in ΩT which is bounded
above on [0, T0] × Ω. Then as above we have

∫

Ω

(

ψ∂t(kn ∗ uκ) + (hn ∗ [ADu+ bu]|Dψ) − (hn ∗ [(c|Du) + du])ψ
)

dx

≤

∫

Ω

(

[hn ∗ f ]ψ − (hn ∗ g|Dψ) + ψ(u0 − κ)kn

)

dx, a.a. t ∈ (T0, T ), (4.26)

for any nonnegative ψ ∈ °H1
2 (Ω), κ ∈ R, and n ∈ N. Recall that kn ∈ H1

1 ([0, T ]) with derivative
k̇n ≤ 0. We define

Hκ,n(t, x) =

∫ T0

0

[−k̇n(t− τ)]uκ(τ, x) dτ, t ∈ (T0, T ), x ∈ Ω. (4.27)

By Jensen’s inequality,

|Hκ,n(t, x)|2 ≤
(

kn(t− T0) − kn(t)
)

∫ T0

0

[−k̇n(t− τ)] |uκ(τ, x)|2 dτ, (4.28)
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which shows that Hk,n ∈ L2([T0, T ]× Ω). Therefore we may use the decomposition

(kn ∗ uκ)(t, x) =

∫ t

T0

kn(t− τ)uκ(τ, x) dτ +

∫ T0

0

kn(t− τ)uκ(τ, x) dτ, t ∈ (T0, T ),

to rewrite (4.26) as

∫

Ω

(

ψ∂t

∫ t

T0

kn(t− τ)uκ(τ, x) dτ + (hn ∗ [ADu+ bu]|Dψ) − (hn ∗ [(c|Du) + du])ψ
)

dx

≤

∫

Ω

(

[hn ∗ f ]ψ − (hn ∗ g|Dψ) + ψ(u0 − κ)kn + ψHκ,n

)

dx, a.a. t ∈ (T0, T ). (4.29)

We then shift the time according to s = t − T0. Employing the notation ṽ(s) = v(s + T0),
s ∈ (0, T − T0), for functions v defined on (T0, T ), (4.29) becomes

∫

Ω

(

ψ∂s(kn ∗ ũκ) + ((hn ∗ [ADu+ bu])̃ |Dψ) − (hn ∗ [(c|Du) + du])̃ ψ
)

dx

≤

∫

Ω

(

[hn ∗ f ]̃ ψ − ((hn ∗ g)̃ |Dψ) + ψ(u0 − κ)k̃n + ψH̃κ,n

)

dx, a.a. s ∈ (0, T − T0).

(4.30)

Setting T0 = t1, we can now argue as above to get an upper bound for u on [t1, 2t1] × Ω. We
restrict κ to

κ ≥ κ̃1 := max{κ̃0, ess sup
[0,t1]×Ω

u} = max{κ̃0, 2mκ̃0} = 2mκ̃0,

which entails that u0 − κ ≤ 0 as well as H̃κ,n ≤ 0. Consequently, the terms involving these
functions can be dropped in (4.30). We take ψ = ũ+

κ and use the analogue of (4.9). Convolving
the resulting inequality with l, and sending n→ ∞ then yields

1

2

∫

Ω

(ũ+
κ )2 dx+ l ∗

∫

Ω

(ÃDũ|Dũ+
κ ) dx ≤ l ∗ F̃ , a.a. s ∈ (0, T − t1),

which is the time shifted version of (4.11). We conclude that

ess sup
[t1,t2]×Ω

u ≤ 2mκ̃1 = 4m2κ̃0. (4.31)

These arguments can now be repeated for the time-intervals [jt1, (j + 1)t1], j = 2, . . . , n − 1,
thereby obtaining a bound

ess sup
ΩT

u ≤ Cκ̃0,

with a constant C = C(p, q, r, |l|p, T,N, ν, λN (Ω), CD). �

As an immediate consequence of Theorem 4.2.1 and Remark 4.2.1(i) we obtain the global bound-
edness of weak solutions of (4.1) that are bounded on the parabolic boundary of ΩT .

Corollary 4.2.1 Let T > 0 and Ω ⊂ RN be a bounded domain. Assume that the assumptions
(H1) – (H3) are satisfied. Suppose K ≥ 0 is such that |u0| ≤ K a.e. in Ω. Then there exists a
constant C = C(p, q, r, |l|Lp([0,T ]), T,N, ν,Ω, CD) such that for any weak solution u ∈ Ṽp of (4.1)
in ΩT satisfying |u| ≤ K a.e. on ΓT there holds |u| ≤ C(1 +K) a.e. in ΩT .
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For weak subsolutions (supersolutions) of (4.1) the maximum (minimum) principle is valid in
the subsequent form. Let (H3’) stand for

u0 ∈ L2(Ω),
∣

∣

∣
|c|2 + |d|

∣

∣

∣
∈ Lr([0, T ];Lq(Ω)),

where
p′

r
+

N

2q
= 1,

and

r ∈ [p′,∞), q ∈
[

N
2 ,∞

]

for N ≥ 2,

r ∈ [p′, 2p′], q ∈ [1,∞] for N = 1.

Theorem 4.2.2 Let T > 0 and Ω ⊂ RN be a bounded domain. Suppose that the conditions
(H1),(H2), and (H3’) are fulfilled, and assume that b ≡ g ≡ 0, f ≡ 0, and d ≤ 0 in ΩT . Then
for any weak subsolution (supersolution) u ∈ Ṽp of (4.1), we have for a.a. (t, x) ∈ ΩT

u(t, x) ≤ max
{

0, ess sup
Ω

u0, ess sup
ΓT

u
} (

u(t, x) ≥ min
{

0, ess inf
Ω

u0, ess inf
ΓT

u
} )

,

provided this maximum (minimum) is finite.

Proof. It suffices to consider the subsolution case. Note first that Lemma 4.2.1 also holds under
the conditions of Theorem 4.2.2. We take

κ = max
{

0, ess sup
Ω

u0, ess sup
ΓT

u
}

in (4.11), assuming that this quantity is finite. By the assumptions on the coefficients and data,
we have

F (t) ≤ G(t) :=

∫

Ω

(c|Du)u+
κ dx, a.a. t ∈ (0, T ).

We may then argue similarly as in the proof of Theorem 4.2.1 to find that for any t1 ∈ (0, T ]

|u+
κ |

2
Vp([0,t1]×Ω) ≤ C(ν, |l|Lp([0,T ]), p, T )|G|L1([0,t1]),

and thus

|u+
κ |

2
Vp([0,t1]×Ω) ≤ C̃(ν, |l|p, p, T )

∣

∣

∣
|c|2

∣

∣

∣

Lr([0,t1];Lq(Ω))
|u+

κ |
2
L2r′ ([0,t1];L2q′(Ω)). (4.32)

By (H3’), the numbers 2r′ and 2q′ are subject to the condition (2.12). Therefore, using inequality
(2.13), we deduce that

|u+
κ |

2
Vp([0,t1]×Ω) ≤ C0

∣

∣

∣
|c|2

∣

∣

∣

Lr([0,t1];Lq(Ω))
|u+

κ |
2
Vp([0,t1]×Ω),

with a positive constant C0 = C0(ν, |l|p, p, T,N, q). For t1 satisfying the condition

C0

∣

∣

∣
|c|2

∣

∣

∣

Lr([0,t1];Lq(Ω))
< 1

we then obtain
|u+

κ |
2
Vp([0,t1]×Ω) ≤ 0,
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that is u ≤ κ a.e. in (0, t1)×Ω. To establish this inequality on ΩT we proceed by induction as in
the proof of Theorem 4.2.1, using the fact that the function Hκ,n defined in (4.27) is nonpositive
on (T0, T ) whenever u ≤ κ a.e. in (0, T0) × Ω. �

We remark that in the time fractional case the maximum principle stated above was recently
reproved in [53] for classical solutions.

In all of the previous results we assumed that the kernel l belongs to Lp([0, T ]) for some
p > 1. It turns out that the maximum principle still holds when this assumption is dropped and
in addition we have c ≡ 0.

Theorem 4.2.3 Let T > 0 and Ω ⊂ RN be a bounded domain. Suppose there exists l ∈
L1, loc(R+) such that (k, l) ∈ PC. Let further (H2) be satisfied, and assume that u0 ∈ L2(Ω),
b ≡ c ≡ g ≡ 0, f ≡ 0, and 0 ≥ d ∈ L∞([0, T ];Lq(Ω)), where q ∈ [N/2,∞] for N ≥ 3, q ∈ (1,∞]

for N = 2, and q ∈ [1,∞] for N = 1. Then for any weak subsolution (supersolution) u ∈ Ṽ1 of
(4.1), we have for a.a. (t, x) ∈ ΩT

u(t, x) ≤ max
{

0, ess sup
Ω

u0, ess sup
ΓT

u
} (

u(t, x) ≥ min
{

0, ess inf
Ω

u0, ess inf
ΓT

u
} )

,

provided this maximum (minimum) is finite.

Proof. We proceed as in the proof of the preceding theorem. Observe that the assumptions on
d ensure that duu+

κ ∈ L1(ΩT ). Since c ≡ 0, we have this time F ≤ 0 a.e. in (0, T ), and hence
(V1(ΩT ) = L2([0, T ];H1

2 (Ω)))

|u+
κ |

2
V1([0,T ]×Ω) ≤ 0, with κ = max

{

0, ess sup
Ω

u0, ess sup
ΓT

u
}

,

which immediately implies the assertion. �

We remind the reader that in Example 2.2.2 it was shown that the case p = 1 can occur, that
is, there exist pairs (k, l) ∈ PC such that for any p > 1 and T > 0 the kernel l does not belong
to Lp([0, T ]).

4.3 Quasilinear equations

In this section we extend the previous results to quasilinear equations of the form (4.2) with
suitable structure conditions. This is possible, as also known from the elliptic and parabolic
case, since the test function method used above does not depend so much on the linearity of the
operator L but on a certain nonlinear structure.

Let (H1) hold, and u0 ∈ L2(ΩT ). We will assume that the functions a : ΩT × RN+1 → RN

and b : ΩT × RN+1 → R are measurable and satisfy

(Q1) (a(t, x, ξ, η)|η) ≥ C0|η|
2 − c0|ξ|

γ − ϕ0(t, x),

(Q2) |a(t, x, ξ, η)| ≤ C1|η| + c1|ξ|
γ̃ + ϕ1(t, x),

(Q3) |b(t, x, ξ, η)| ≤ C2|η|
2(γ−1)

γ + c2|ξ|
γ−1 + ϕ2(t, x),

for a.a. (t, x) ∈ ΩT , and all ξ ∈ R, η ∈ RN . Here Ci, ci, i = 0, 1, 2, are positive constants, and
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(Q4) The parameter γ lies in the range

2 ≤ γ < 2γ̃, with γ̃ :=
2p′ +N

2p′ +N − 2
.

(Q5) The functions ϕi, i = 0, 1, 2, defined on ΩT are nonnegative, ϕ1 ∈ L2(ΩT ), and ϕ0, ϕ2 ∈
Lq̂(ΩT ), where

1

q̂

(

p′ +
N

2

)

= 1 − β̂, β̂ ∈ (0, 1].

A function u ∈ Ṽp is called a weak solution (subsolution, supersolution) of equation (4.2) in
ΩT , if a(t, x, u,Du) and b(t, x, u,Du) are measurable, and for any nonnegative test function
η ∈ °H1,1

2 (ΩT ) with η|t=T = 0 there holds

∫ T

0

∫

Ω

(

− ηt[k ∗ (u− u0)] + (a(t, x, u,Du)|Dη) − b(t, x, u,Du)η
)

dx dt = (≤, ≥) 0. (4.33)

One verifies using (2.13), which shows Vp →֒ L2γ̃(ΩT ), and Hölder’s inequality that under the
above structure conditions this definition makes sense, see also the estimates below.

Theorem 4.3.1 Let T > 0 and Ω ⊂ RN be a bounded domain. Let u0 ∈ L2(Ω), and assume
that (H1), (Q1)–(Q5) are satisfied. Let q be a fixed positive number such that

(γ − 2)
(

p′ +
N

2

)

< q ≤ 2γ̃.

Suppose further that K ≥ 0 is such that u0 ≤ K a.e. in Ω. Then any weak subsolution u ∈ Ṽp of
(4.2) satisfying u ≤ K a.e. on ΓT is essentially bounded above in ΩT by a constant C depending
only on the data, q, and |u|Lq(ΩT ). In the case γ = 2, the constant C depends only on the data.

An analogous result holds for supersolutions that are bounded below on the parabolic boundary,
c.p. Remark 4.2.1(i) in the linear case.

Proof of Theorem 4.3.1. We proceed as in the linear case. Note first that one can easily prove
a result analogous to Lemma 4.2.1. Following the lines in the proof of Theorem 4.2.1 we obtain
for κ ≥ κ0 (see (4.7)), by means of the assumed structure conditions,

|u+
κ |

2
Vp([0,t1]×Ω) ≤ C

∫ t1

0

∫

Aκ(t)

([

|Du|
2(γ−1)

γ + |u|γ−1 + ϕ2

]

u+
κ + |u|γ + ϕ0

)

dx dt, (4.34)

where the constant C depends only on |l|p, T, p and the constants appearing in (Q1) and (Q3).
The first term on the right is estimated using Young’s inequality,

|Du|
2(γ−1)

γ u+
κ ≤ ε|Du|2 + C(ε)(u+

κ )γ , ε > 0.

Hence, choosing ε sufficiently small, the gradient term can be absorbed by the left hand side in
(4.34). Setting µκ := |λN (Aκ(·))|L1([0,t1]),

β := 1 −
1

q
(γ − 2)

(

p′ +
N

2

)

∈ (0, 1], and δ :=
2β

2(p′ − 1) +N
,

we further have (c.p. [49, p. 425, 426])
∫ t1

0

∫

Aκ(t)

|u|γ dx dt ≤ |u|γ−2
Lq(ΩT )|uχ{u>κ}|

2
L 2q

q−(γ−2)

([0,t1]×Ω)

≤ C(N, q)|u|γ−2
Lq(ΩT )

(

|u+
κ |

2
Vp([0,t1]×Ω)µ

δ(q−γ+2)
(1+δ)q

κ + κ2µ
q−(γ−2)

q
κ

)

. (4.35)

43



Recall that Vp →֒ L2γ̃(ΩT ), so |u|Lq(ΩT ) is finite.
As in the proof of Theorem 4.2.1 we may estimate, with the aid of (Q5),

∫ t1

0

∫

Aκ(t)

(ϕ2u
+
κ +ϕ0) dx dt ≤ C(N, q̂)|ϕ2 +ϕ0|Lq̂(ΩT )

(

|u+
κ |

2
Vp([0,t1]×Ω)µ

δ̂

q̂′(1+δ̂)
κ + κ2µ

1
q̂′

κ

)

, (4.36)

provided that κ ≥ 1; here δ̂ is defined as δ with β replaced by β̂. From (4.34)– (4.36) and the
trivial inequality µκ ≤ t1λN (Ω) we then infer that

|u+
κ |

2
Vp([0,t1]×Ω) ≤ C

(

|u+
κ |

2
Vp([0,t1]×Ω)t

ρ
1 + κ2µ

min

{

q−(γ−2)
q , 1

q̂′

}

κ

)

, (4.37)

where

ρ = min
{δ(q − γ + 2)

(1 + δ)q
,

δ̂

q̂′(1 + δ̂)

}

,

and C depends on the data (including λN (Ω)), q, and on |u|Lq(ΩT ); in the case γ = 2 the constant

C depends only on the data. Choose t1 so small that Ctρ1 ≤ 1
2 . Then

|u+
κ |

2
Vp([0,t1]×Ω) ≤ 2Cκ2µ

min

{

q−(γ−2)
q , 1

q̂′

}

κ , κ ≥ κ̃0 = max{κ0, 1}.

Defining φ(κ) = µ
1/q̃
κ , κ ≥ κ̃0, with

q̃ =

{

2(1+δ)q
q−(γ−2) : q−(γ−2)

q < 1
q̂′

2q̂′(1 + δ̂) : q−(γ−2)
q ≥ 1

q̂′
,

we may then proceed exactly as in the proof of Theorem 4.2.1, thereby establishing first an upper
bound on (0, t1) × Ω, and then also on ΩT , by an analogous induction argument. �

The maximum principle holds in the following form.

Theorem 4.3.2 Let T > 0 and Ω ⊂ R
N be a bounded domain. Suppose there exists l ∈

L1, loc(R+) such that (k, l) ∈ PC. Suppose further u0 ∈ L2(Ω), (Q1) with c0 = 0 and ϕ0 ≡ 0,
as well as (Q2) with ϕ1 ∈ L2(ΩT ), and assume that b ≡ 0. Then for any weak subsolution
(supersolution) u ∈ Ṽ1 of (4.2), we have for a.a. (t, x) ∈ ΩT

u(t, x) ≤ max
{

0, ess sup
Ω

u0, ess sup
ΓT

u
} (

u(t, x) ≥ min
{

0, ess inf
Ω

u0, ess inf
ΓT

u
} )

,

provided this maximum (minimum) is finite.

Proof. The proof is analogous to that of Theorem 4.2.3. �

Finally we consider the case of ’natural’ or Hadamard growth conditions with respect to |Du|.
Suppose for simplicity that

(Q) (a(t, x, ξ, η)|η) ≥ C0|η|
2, |a(t, x, ξ, η)| ≤ C1|η|, |b(t, x, ξ, η)| ≤ C2|η|

2,

for a.a. (t, x) ∈ ΩT , and all ξ ∈ R, η ∈ RN , where Ci, i = 0, 1, 2 are positive constants. In the
classical parabolic case one knows that weak solutions of the corresponding problem under the
conditions (Q) are in general not bounded. However there exist results (also in a more general
situation) providing L∞ bounds in terms of the data under the additional assumption that the
weak solution is bounded, see e.g. [49, Chapter V, Theorem 2.2]. It turns out that analogous
results can be proved for (4.2). Here we only formulate such a result in the case where (Q) holds.
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Theorem 4.3.3 Let T > 0 and Ω ⊂ R
N be a bounded domain. Suppose there exists l ∈

L1, loc(R+) such that (k, l) ∈ PC. Suppose further u0 ∈ L∞(Ω), and that (Q) is satisfied. Then

for any bounded weak solution u ∈ Ṽ1 of (4.2),

|u|L∞(ΩT ) ≤ max
{

|u0|L∞(Ω), ess sup
ΓT

|u|
}

.

Proof. We proceed as in the proof of [20, Theorem 17.1]. Set

κ0 =
{

|u0|L∞(Ω), ess sup
ΓT

|u|
}

,

and assume that K := ess supΩT
u > κ0. We then take test functions u+

κ where κ = K − ε ≥ κ0,
ε > 0, and estimate as above. By (Q) we obtain

|u+
κ |

2
V1(ΩT ) ≤ C(C0, C2)

∣

∣

∣
|Du+

κ |
2u+

κ

∣

∣

∣

L1(ΩT )
≤ εC(C0, C2)

∣

∣

∣
|Du+

κ |
2
∣

∣

∣

L1(ΩT )
.

Thus if ε is sufficiently small, we have |u+
κ |

2
V1(ΩT ) ≤ 0, that is u ≤ κ < K a.e. in ΩT , a

contradiction. Hence, u ≤ κ0 a.e. in ΩT . The lower bound is proved analogously. �

4.4 Degenerate and singular problems

We conclude this chapter by stating a very recent result obtained in [76] to demonstrate that
the theory developed in this chapter can be extended to quasilinear problems with a so-called
p-structure. For the sake of simplicity we restrict ourselves to the situation with fractional
dynamics. An important special case then is the following time fractional p-Laplace equation

∂α
t (u − u0) − div

(

|Du|p−2Du
)

= f in ΩT , (4.38)

with α ∈ (0, 1) and p > 1. The following result was proved in [76, Theorem 1.2].

Theorem 4.4.1 Let α ∈ (0, 1), p > 1, T > 0, and Ω ⊂ RN be a bounded domain. Suppose that
u0 ∈ L∞(Ω) and that f ∈ Ls(ΩT ) with s > N

p + 1
α . Let further q > 1 be a fixed number satisfying

s >
N

p
+ q′ >

N

p
+

1

α
. (4.39)

Then for any (appropriately defined) weak solution u of (4.38) in ΩT which is essentially bounded
on ΓT there holds

|u|L∞(ΩT ) ≤ C
(

N, p, α, s, |f |Ls(ΩT ), T, |Ω|,max{|u0|L∞(Ω), ess sup
ΓT

|u|}
)

.

Corresponding results in the case α = 1 are well-known, see the monograph [20].
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Chapter 5

The weak Harnack inequality

5.1 Introductory remarks and the weak Harnack estimate

Let T > 0 and Ω be a bounded domain in RN . In this chapter we will prove a weak Harnack
inequality for nonnegative weak supersolutions of the time fractional diffusion equation

∂α
t (u− u0) − div

(

A(t, x)Du
)

= 0, t ∈ (0, T ), x ∈ Ω, (5.1)

where α ∈ (0, 1). We will assume that

(H1) A ∈ L∞(ΩT ; RN×N ), and

N
∑

i,j=1

|aij(t, x)|
2 ≤ Λ2, for a.a. (t, x) ∈ ΩT .

(H2) There exists ν > 0 such that

(

A(t, x)ξ|ξ
)

≥ ν|ξ|2, for a.a. (t, x) ∈ ΩT , and all ξ ∈ R
N .

(H3) u0 ∈ L2(Ω).

We say that a function u is a weak solution (subsolution, supersolution) of (5.1) in ΩT , if u
belongs to the space

Sα := { v ∈ L 2
1−α , w([0, T ];L2(Ω)) ∩ L2([0, T ];H1

2 (Ω)) such that

g1−α ∗ v ∈ C([0, T ];L2(Ω)), and (g1−α ∗ v)|t=0 = 0},

and for any nonnegative test function

η ∈ °H1,1
2 (ΩT ) = H1

2 ([0, T ];L2(Ω)) ∩ L2([0, T ]; °H1
2 (Ω))

with η|t=T = 0 there holds

∫ T

0

∫

Ω

(

− ηt[g1−α ∗ (u− u0)] + (ADu|Dη)
)

dxdt = (≤, ≥) 0. (5.2)

Recall that Lp, w stands for the weak Lp space.

47



Existence of weak solutions of (5.1) in the class Sα follows from Corollary 3.4.1. Notice that
the regularity class for weak solutions differs slightly from the one considered in Section 4.2. For
the specific kernels k = g1−α and l = gα it is more natural to work with the weak Lp space as

gα ∈ L 1
1−α , w([0, T ]) but gα /∈ L 1

1−α
([0, T ]). We have Sα ⊂ Ṽ 1

1−α−ε for all 0 < ε ≤ α
1−α .

To formulate the main result of this chapter, let B(x, r) denote the open ball with radius
r > 0 centered at x ∈ RN . In this chapter, the Lebesgue measure in RN is denoted by µN . For
δ ∈ (0, 1), t0 ≥ 0, τ > 0, and a ball B(x0, r), define the boxes

Q−(t0, x0, r) = (t0, t0 + δτr2/α) ×B(x0, δr),

Q+(t0, x0, r) = (t0 + (2 − δ)τr2/α, t0 + 2τr2/α) ×B(x0, δr).

Theorem 5.1.1 Let α ∈ (0, 1), T > 0, and Ω ⊂ RN be a bounded domain. Suppose the
assumptions (H1)–(H3) are satisfied. Let further δ ∈ (0, 1), η > 1, and τ > 0 be fixed. Then for
any t0 ≥ 0 and r > 0 with t0 + 2τr2/α ≤ T , any ball B(x0, ηr) ⊂ Ω, any 0 < p < 2+Nα

2+Nα−2α ,

and any nonnegative weak supersolution u of (5.1) in (0, t0 + 2τr2/α)×B(x0, ηr) with u0 ≥ 0 in
B(x0, ηr), there holds

( 1

µN+1

(

Q−(t0, x0, r)
)

∫

Q−(t0,x0,r)

up dµN+1

)1/p

≤ C ess inf
Q+(t0,x0,r)

u, (5.3)

where the constant C = C(ν,Λ, δ, τ, η, α,N, p).

Theorem 5.1.1 will be proved in Sections 5.2–5.5. It states that nonnegative weak supersolutions
of (5.1) satisfy a weak form of Harnack inequality in the sense that we do not have an estimate
for the supremum of u on Q−(t0, x0, r) but only an Lp estimate. In Section 5.6 we will show
that the critical exponent 2+Nα

2+Nα−2α is optimal, i.e. the inequality fails to hold for p ≥ 2+Nα
2+Nα−2α .

Theorem 5.1.1 can be viewed as the time fractional analogue of the corresponding result in
the classical parabolic case α = 1, see e.g. [51, Theorem 6.18] and [74]. Sending α → 1 in the
expression for the critical exponent yields 1+2/N , which is the well-known critical exponent for
the heat equation. We would like to point out that the statement of Theorem 5.1.1 remains valid
for (appropriately defined) weak supersolutions of (5.1) on (t0, t0 + 2τr2/α) × B(x0, ηr) which
are nonnegative on (0, t0 + 2τr2/α) × B(x0, ηr). Here the global positivity assumption cannot
be replaced by a local one, as simple examples show, see Section 8.3. This significant difference
to the case α = 1 is due to the non-local nature of ∂α

t . The same phenomenon is known for
integro-differential operators like (−∆)α with α ∈ (0, 1), see e.g. [41].

As a simple consequence of the weak Harnack inequality we derive the strong maximum
principle for weak subsolutions of (5.1), see Theorem 5.7.1 below. As a further application of
the weak Harnack inequality we obtain a theorem of Liouville type, see Corollary 5.7.1 below.
It states that any bounded weak solution of (5.1) on R+ × RN with u0 = 0 vanishes a.e. on
R+ × RN .

In the classical parabolic case boundedness and the weak (or full) Harnack inequality imply
an Hölder estimate for weak solutions, cf. [20], [49], [51], [57]. We also refer to [29] and [56] for
the elliptic case. In the present situation one cannot argue anymore as in the classical parabolic
case, due to the global positivity assumption in Theorem 5.1.1. The same problem arises for the
fractional Laplacian, see [70]. However, in our case it is possible to establish at least continuity at
t = 0. This is done in Theorem 5.7.2 in the case u0 = 0. It is shown that in this case any bounded
weak solution u of (5.1) is continuous at (0, x0) for all x0 ∈ Ω and lim(t,x)→(0,x0) u(t, x) = 0. Thus
for such weak solutions the initial condition u|t=0 = 0 is satisfied in the classical sense.

Our proof of Theorem 5.1.1 relies on a priori estimates for time fractional problems, which
are derived by means of the fundamental identity (2.6) for the regularized fractional derivative.
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It further uses Moser’s iteration technique and Lemma 2.5.3 of Bombieri and Giusti [4], which
allows to avoid the rather technically involved approach via BMO-functions. This simplification
is already of great significance in the classical parabolic case, see Moser [58] and Saloff-Coste
[66].

We point out that the results obtained in this chapter can be easily generalized to quasilinear
equations of the form

∂α
t (u− u0) − diva(t, x, u,Du) = b(t, x, u,Du), t ∈ (0, T ), x ∈ Ω, (5.4)

with suitable structure conditions on the functions a and b. This is possible, as also known from
the elliptic and the classical parabolic case, since the test function method used in the proof of
Theorem 5.1.1 does not depend so much on the linearity of the differential operator w.r.t. the
spatial variables but on a certain nonlinear structure, cf. [29], [51], and [74].

We further remark that in the purely time-dependent case, that is for scalar equations of the
form

∂α
t (u− u0) + σu = 0, t ∈ (0, T ),

with σ ≥ 0, a weak Harnack inequality with optimal exponent 1
1−α was proved in [83] for

nonnegative supersolutions, see Section 8.1 for the precise statement. As a curiosity, note that
putting N = 0 in the expression 2+Nα

2+Nα−2α results in the critical exponent from the purely time-
dependent case.

5.2 The regularized weak formulation, time shifts, and

scalings

The following lemma provides the regularized weak formulation of (5.1), with the singular kernel
g1−α being replaced by the kernel g1−α,n (n ∈ N) given by

g1−α,n = nsα,n = hα,n ∗ g1−α.

Here sα,n and hα,n are the unique solutions of the scalar-valued Volterra equations

sα,n(t) + n(sα,n ∗ gα)(t) = 1, t > 0, n ∈ N,

hα,n(t) + n(hα,n ∗ gα)(t) = ngα(t), t > 0, n ∈ N,

cf. Section 2.2. In what follows α ∈ (0, 1) is fixed, so we may put hn := hα,n, n ∈ N.

Lemma 5.2.1 Let α ∈ (0, 1), T > 0, and Ω ⊂ RN be a bounded domain. Suppose the assump-
tions (H1)–(H3) are satisfied. Then u ∈ Sα is a weak solution (subsolution, supersolution) of
(5.1) in ΩT if and only if for any nonnegative function ψ ∈ °H1

2 (Ω) one has

∫

Ω

(

ψ∂t[g1−α,n ∗ (u− u0)] + (hn ∗ [ADu]|Dψ)
)

dx = (≤, ≥) 0, a.a. t ∈ (0, T ), n ∈ N.

Lemma 5.2.1 is a special case of Lemma 4.2.1 except for the slightly different regularity class for
weak solutions. The proof is the same.

Let u ∈ Sα be a weak supersolution of (5.1) in ΩT and assume that u0 ≥ 0 in Ω. Then
Lemma 5.2.1 and positivity of g1−α,n imply that

∫

Ω

(

ψ∂t(g1−α,n ∗ u) + (hn ∗ [ADu]|Dψ)
)

dx ≥ 0, a.a. t ∈ (0, T ), n ∈ N, (5.5)
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for any nonnegative function ψ ∈ °H1
2 (Ω).

Let now t1 ∈ (0, T ) be fixed. For t ∈ (t1, T ) we introduce the shifted time s = t− t1 and set
f̃(s) = f(s+ t1), s ∈ (0, T − t1), for functions f defined on (t1, T ). From the decomposition

(g1−α,n ∗ u)(t, x) =

∫ t

t1

g1−α,n(t− τ)u(τ, x) dτ +

∫ t1

0

g1−α,n(t− τ)u(τ, x) dτ, t ∈ (t1, T ),

we then deduce that

∂t(g1−α,n ∗ u)(t, x) = ∂s(g1−α,n ∗ ũ)(s, x) +

∫ t1

0

ġ1−α,n(s+ t1 − τ)u(τ, x) dτ. (5.6)

Assuming in addition that u ≥ 0 on (0, t1) × Ω it follows from (5.5), (5.6), and the positivity of
ψ and of −ġ1−α,n that

∫

Ω

(

ψ∂s(g1−α,n ∗ ũ) +
(

(hn ∗ [ADu])̃ |Dψ
)

)

dx ≥ 0, a.a. s ∈ (0, T − t1), n ∈ N, (5.7)

for any nonnegative function ψ ∈ °H1
2 (Ω). This relation will be the starting point for all of the

estimates in the next two sections.
We conclude this section with a remark on the scaling properties of equation (5.1). Let

t0, r > 0 and x0 ∈ RN . Suppose u ∈ Sα is a weak solution (subsolution, supersolution) of (5.1)
in (0, t0r

2/α) × B(x0, r). Changing the coordinates according to s = t/r2/α and y = (x − x0)/r
and setting v(s, y) = u(sr2/α, x0 + yr), v0(y) = u0(x0 + yr), and Ã(s, y) = A(sr2/α, x0 + yr),
the problem for u is transformed to a problem for v in (0, t0)×B(0, 1), namely there holds with
D = Dy (also in the weak sense)

∂α
s (v − v0) − div

(

Ã(s, y)Dv
)

= (≤, ≥) 0, s ∈ (0, t0), y ∈ B(0, 1). (5.8)

5.3 Mean value inequalities

For σ > 0 we put σB(x, r) := B(x, σr). Recall that µN denotes the Lebesgue measure in RN .

Theorem 5.3.1 Let α ∈ (0, 1), T > 0, and Ω ⊂ RN be a bounded domain. Suppose the
assumptions (H1)–(H3) are satisfied. Let η > 0 and δ ∈ (0, 1) be fixed. Then for any t0 ∈ (0, T ]
and r > 0 with t0− ηr

2/α ≥ 0, any ball B = B(x0, r) ⊂ Ω, and any weak supersolution u ≥ ε > 0
of (5.1) in (0, t0) ×B with u0 ≥ 0 in B , there holds

ess sup
Uσ′

u−1 ≤
(CµN+1(U1)

−1

(σ − σ′)τ0

)1/γ

|u−1|Lγ(Uσ), δ ≤ σ′ < σ ≤ 1, γ ∈ (0, 1].

Here Uσ = (t0 − σηr2/α, t0) × σB, 0 < σ ≤ 1, C = C(ν,Λ, δ, η, α,N) and τ0 = τ0(α,N).

Proof: We may assume that r = 1 and x0 = 0. In fact, in the general case we change coordinates
as t → t/r2/α and x→ (x − x0)/r, thereby transforming the equation to a problem of the same
type on (0, t0/r

2/α) ×B(0, 1), cf. Section 5.2.
Fix σ′ and σ such that δ ≤ σ′ < σ ≤ 1 and put B1 = σB. For ρ ∈ (0, 1] we set Vρ = Uρσ.

Given 0 < ρ′ < ρ ≤ 1, let t1 = t0 − ρση and t2 = t0 − ρ′ση. Then 0 ≤ t1 < t2 < t0. We introduce
further the shifted time s = t− t1 and set f̃(s) = f(s+ t1), s ∈ (0, t0− t1), for functions f defined
on (t1, t0). Since u0 ≥ 0 in B and u is a positive weak supersolution of (5.1) in (0, t0) × B, we
have (cf. (5.7))

∫

B

(

v∂s(g1−α,n ∗ ũ) +
(

(hn ∗ [ADu])̃ |Dv
)

)

dx ≥ 0, a.a. s ∈ (0, t0 − t1), n ∈ N, (5.9)
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for any nonnegative function v ∈ °H1
2 (B). For s ∈ (0, t0 − t1) we choose the test function

v = ψ2ũβ with β < −1 and ψ ∈ C1
0 (B1) so that 0 ≤ ψ ≤ 1, ψ = 1 in ρ′B1, suppψ ⊂ ρB1, and

|Dψ| ≤ 2/[σ(ρ − ρ′)]. By the fundamental identity (2.6) applied to k = g1−α,n and the convex
function H(y) = −(1 + β)−1y1+β, y > 0, there holds for a.a. (s, x) ∈ (0, t0 − t1) ×B

−ũβ∂s(g1−α,n ∗ ũ) ≥ −
1

1 + β
∂s(g1−α,n ∗ ũ1+β) +

( ũ1+β

1 + β
− ũ1+β

)

g1−α,n

= −
1

1 + β
∂s(g1−α,n ∗ ũ1+β) −

β

1 + β
ũ1+βg1−α,n. (5.10)

We further have
Dv = 2ψDψ ũβ + βψ2ũβ−1Dũ.

Using this and (5.10) it follows from (5.9) that for a.a. s ∈ (0, t0 − t1)

−
1

1 + β

∫

B1

ψ2∂s(g1−α,n ∗ ũ1+β) dx+ |β|

∫

B1

(

(hn ∗ [ADu])̃ |ψ2ũβ−1Dũ
)

dx

≤ 2

∫

B1

(

(hn ∗ [ADu])̃ |ψDψ ũβ
)

dx+
β

1 + β

∫

B1

ψ2ũ1+βg1−α,n dx. (5.11)

Next, choose ϕ ∈ C1([0, t0 − t1]) such that 0 ≤ ϕ ≤ 1, ϕ = 0 in [0, (t2 − t1)/2], ϕ = 1 in
[t2 − t1, t0 − t1], and 0 ≤ ϕ̇ ≤ 4/(t2 − t1). Multiplying (5.11) by −(1 + β) > 0 and by ϕ(s), and
convolving the resulting inequality with gα yields

∫

B1

gα ∗
(

ϕ∂s(g1−α,n ∗ [ψ2ũ1+β ])
)

dx+ β(1 + β) gα ∗

∫

B1

(

(hn ∗ [ADu])̃ |ψ2ũβ−1Dũ
)

ϕdx

≤ 2|1 + β| gα ∗

∫

B1

(

(hn ∗ [ADu])̃ |ψDψ ũβ
)

ϕdx + |β| gα ∗

∫

B1

ψ2ũ1+βg1−α,nϕdx, (5.12)

for a.a. s ∈ (0, t0 − t1). By Lemma 2.3.4,
∫

B1

gα∗
(

ϕ∂s(g1−α,n ∗ [ψ2ũ1+β ])
)

dx ≥

∫

B1

ϕgα ∗
(

∂s(g1−α,n ∗ [ψ2ũ1+β])
)

dx

−

∫ s

0

gα(s− σ)ϕ̇(σ)
(

g1−α,n ∗

∫

B1

ψ2ũ1+β dx
)

(σ) dσ. (5.13)

Furthermore, by virtue of

g1−α,n ∗ [ψ2ũ1+β] ∈ 0H
1
1 ([0, t0 − t1];L1(B1))

and g1−α,n = g1−α ∗ hn as well as gα ∗ g1−α = 1 we have

gα ∗ ∂s(g1−α,n ∗ [ψ2ũ1+β ]) = ∂s(gα ∗ g1−α,n ∗ [ψ2ũ1+β ]) = hn ∗ (ψ2ũ1+β). (5.14)

Combining (5.12), (5.13), and (5.14), sending n→ ∞, and selecting an appropriate subsequence,
if necessary, we thus obtain

∫

B1

ϕψ2ũ1+β dx + β(1 + β) gα ∗

∫

B1

(

ÃDũ|ψ2ũβ−1Dũ
)

ϕdx

≤ 2|1 + β| gα ∗

∫

B1

(

ÃDũ|ψDψ ũβ
)

ϕdx+ |β| gα ∗

∫

B1

ψ2ũ1+βg1−αϕdx

+

∫ s

0

gα(s− σ)ϕ̇(σ)
(

g1−α ∗

∫

B1

ψ2ũ1+β dx
)

(σ) dσ, a.a. s ∈ (0, t0 − t1). (5.15)
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Put w = ũ
β+1
2 . Then Dw = β+1

2 ũ
β−1

2 Dũ. By assumption (H2), we have

β(1 + β) gα ∗

∫

B1

(

ÃDũ|ψ2ũβ−1Dũ
)

ϕdx ≥ νβ(1 + β) gα ∗

∫

B1

ϕψ2ũβ−1|Dũ|2 dx

=
4νβ

1 + β
gα ∗

∫

B1

ϕψ2|Dw|2 dx. (5.16)

Using (H1) and Young’s inequality we may estimate

2
∣

∣

(

ÃDũ|ψDψ ũβ
)

ϕ
∣

∣ ≤ 2Λψ|Dψ| |Dũ|ũβϕ = 2Λψ|Dψ| |Dũ|ũ
β−1
2 ũ

β+1
2 ϕ

≤
ν|β|

2
ψ2ϕ|Dũ|2ũβ−1 +

2

ν|β|
Λ2|Dψ|2ϕũβ+1

=
2ν|β|

(1 + β)2
ψ2ϕ|Dw|2 +

2

ν|β|
Λ2|Dψ|2ϕw2. (5.17)

From (5.15), (5.16), and (5.17) we conclude that
∫

B1

ϕψ2w2 dx +
2ν|β|

|1 + β|
gα ∗

∫

B1

ϕψ2|Dw|2 dx ≤ gα ∗ F, a.a. s ∈ (0, t0 − t1), (5.18)

where

F (s) =
2Λ2|1 + β|

ν|β|

∫

B1

|Dψ|2ϕw2 dx+ |β|ϕ(s)g1−α(s)

∫

B1

ψ2w2 dx

+ ϕ̇(s)
(

g1−α ∗

∫

B1

ψ2w2 dx
)

(s) ≥ 0, a.a. s ∈ (0, t0 − t1).

We may drop the second term in (5.18), which is nonnegative. By Young’s inequality for convo-
lutions and the properties of ϕ we then infer that for all p ∈ (1, 1/(1 − α))

(

∫ t0−t1

t2−t1

(

∫

B1

[ψ(x)w(s, x)]2 dx)p ds
)1/p

≤ |gα|Lp([0,t0−t1])

∫ t0−t1

0

F (s) ds, (5.19)

where

|gα|Lp([0,t0−t1]) =
(t0 − t1)

α−1+1/p

Γ(α)[(α − 1)p+ 1]1/p
≤

ηα−1+1/p

Γ(α)[(α − 1)p+ 1]1/p
=: C1(α, p, η). (5.20)

We choose any of these p and fix it.
Returning to (5.18), we may also drop the first term, convolve the resulting inequality with

g1−α and evaluate at s = t0 − t1, thereby obtaining
∫ t0−t1

t2−t1

∫

B1

ψ2|Dw|2 dx ds ≤
|1 + β|

2ν|β|

∫ t0−t1

0

F (s) ds. (5.21)

Using
∫ t0−t1

t2−t1

∫

B1

|D(ψw)|2 dx ds ≤ 2

∫ t0−t1

t2−t1

∫

B1

(

ψ2|Dw|2 + |Dψ|2w2
)

dx ds

we infer from (5.19)–(5.21) that

|ψw|2Vp([t2−t1,t0−t1]×B1)
≤ 2

(

C1(α, p, η) +
|1 + β|

ν|β|

)

∫ t0−t1

0

F (s) ds

+ 4

∫ t0−t1

0

∫

B1

|Dψ|2w2 dx ds. (5.22)
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We will next estimate the right-hand side of (5.22). By the assumptions on ψ and ϕ, and
since |β| > 1, we have

∫ t0−t1

0

∫

B1

|Dψ|2w2 dx ds ≤
4

σ2(ρ− ρ′)2

∫ t0−t1

0

∫

ρB1

w2 dx ds

and

F (s) ≤
( 8Λ2|1 + β|

νσ2(ρ− ρ′)2
+ |β|g1−α((t2 − t1)/2)

)

∫

ρB1

w2 dx

+
4

t2 − t1

(

g1−α ∗

∫

ρB1

w2 dx
)

(s), a.a. s ∈ (0, t0 − t1).

Recall that σ ≥ δ > 0. So we have
∫ t0−t1

0

F (s) ds ≤
( 8Λ2|1 + β|

νσ2(ρ− ρ′)2
+

2α|β|

Γ(1 − α)(ρ − ρ′)α(ση)α

)

∫ t0−t1

0

∫

ρB1

w2 dx ds

+
4

(ρ− ρ′)ση

∫ t0−t1

0

g2−α(t0 − t1 − τ)

∫

ρB1

w(τ, x)2 dx dτ

≤ C(ν,Λ, δ, η, α)
1 + |1 + β|

(ρ− ρ′)2

∫ t0−t1

0

∫

ρB1

w2 dx ds.

Combining these estimates and (5.22) yields

|ψw|Vp([t2−t1,t0−t1]×B1) ≤ C(ν,Λ, δ, η, α, p)
1 + |1 + β|

ρ− ρ′
|w|L2([0,t0−t1]×ρB1).

We apply next the interpolation inequality (2.15) to the function ψw and make use of ψ = 1 in
ρ′B1 to deduce that

|w|L2κ([t2−t1,t0−t1]×ρ′B1) ≤ C(ν,Λ, δ, η, α, p,N)
1 + |1 + β|

ρ− ρ′
|w|L2([0,t0−t1]×ρB1), (5.23)

where the number κ > 1 is given in (2.14). Since w = ũ
β+1
2 and by transforming back to the

time t, we see that (5.23) is equivalent to

(

∫

Vρ′

u−|1+β|κ dµN+1)
1
2κ ≤

C̃(1 + |1 + β|)

ρ− ρ′
(

∫

Vρ

u−|1+β| dµN+1)
1
2

with C̃ = C̃(ν,Λ, δ, η, α, p,N). Hence, with γ = |1 + β|,

|u−1|Lγκ(Vρ′ ) ≤
( C̃2(1 + γ)2

(ρ− ρ′)2

)1/γ

|u−1|Lγ(Vρ), 0 < ρ′ < ρ ≤ 1, γ > 0.

Employing the first Moser iteration, Lemma 2.5.1 (with p̄ = 1), it follows that there exist
constants M0 = M0(ν,Λ, δ, η, α, p,N) and τ0 = τ0(κ) such that

ess sup
Vθ

u−1 ≤
( M0

(1 − θ)τ0

)1/γ

|u−1|Lγ(V1) for all θ ∈ (0, 1), γ ∈ (0, 1].

Thus if we take θ = σ′/σ and notice that

1

1 − θ
=

σ

σ − σ′
≤

1

σ − σ′
,
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we obtain

ess sup
Uσ′

u−1 ≤
( M0

(σ − σ′)τ0

)1/γ

|u−1|Lγ(Uσ), γ ∈ (0, 1].

Hence the proof is complete. �

We put (cf. (2.14))

κ̃ := κ1/(1−α) =
2 +Nα

2 +Nα− 2α
.

Theorem 5.3.2 Let α ∈ (0, 1), T > 0, and Ω ⊂ RN be a bounded domain. Suppose the
assumptions (H1)–(H3) are satisfied. Let η > 0 and δ ∈ (0, 1) be fixed. Then for any t0 ∈ [0, T )
and r > 0 with t0 + ηr2/α ≤ T , any ball B = B(x0, r) ⊂ Ω, any p0 ∈ (0, κ̃), and any nonnegative
weak supersolution u of (5.1) in (0, t0 + ηr2/α) ×B with u0 ≥ 0 in B, there holds

|u|Lp0(U ′

σ′
) ≤

(CµN+1(U
′
1)

−1

(σ − σ′)τ0

)1/γ−1/p0

|u|Lγ(U ′

σ), δ ≤ σ′ < σ ≤ 1, 0 < γ ≤ p0/κ̃.

Here U ′
σ = (t0, t0 + σηr2/α) × σB, C = C(ν,Λ, δ, η, α,N, p0), and τ0 = τ0(α,N).

Proof: We proceed similarly as in the previous proof. Without restriction of generality we may
assume that p0 > 1 and r = 1. By replacing u with u + ε and u0 with u0 + ε and eventually
letting ε→ 0+ we may further assume that u is bounded away from zero.

Fix σ′, σ such that δ ≤ σ′ < σ ≤ 1 and put B1 = σB. For ρ ∈ (0, 1] we set V ′
ρ = U ′

ρσ. Given
0 < ρ′ < ρ ≤ 1, let t1 = t0 + ρ′ση and t2 = t0 + ρση, so 0 ≤ t0 < t1 < t2. We shift the time by
means of s = t− t0 and set f̃(s) = f(s+ t0), s ∈ (0, t2 − t0), for functions f defined on (t0, t2).

We then repeat the first steps of the preceding proof, the only difference being that now we
take β ∈ (−1, 0). Note that, as a consequence of this, (5.10) simplifies to

−ũβ∂s(g1−α,n ∗ ũ) ≥ −
1

1 + β
∂s(g1−α,n ∗ ũ1+β), a.a. (s, x) ∈ (0, t2 − t0) ×B,

hence we obtain with ψ ∈ C1
0 (B1) as above

−
1

1 + β

∫

B1

ψ2∂s(g1−α,n ∗ ũ1+β) dx+ |β|

∫

B1

(

(hn ∗ [ADu])̃ |ψ2ũβ−1Dũ
)

dx

≤ 2

∫

B1

(

(hn ∗ [ADu])̃ |ψDψ ũβ
)

dx, a.a. s ∈ (0, t2 − t0). (5.24)

Next, choose ϕ ∈ C1([0, t2 − t0]) such that 0 ≤ ϕ ≤ 1, ϕ = 1 in [0, t1 − t0], ϕ = 0 in
[t1 − t0 + (t2 − t1)/2, t2 − t0], and 0 ≤ −ϕ̇ ≤ 4/(t2 − t1). Multiplying (5.24) by 1 + β > 0 and by
ϕ(s), and applying Lemma 2.3.3 to the first term gives

−

∫

B1

∂s(g1−α,n ∗ [ϕψ2ũ1+β ]
)

dx+ |β|(1 + β)

∫

B1

(

ÃDũ|ψ2ũβ−1Dũ
)

ϕdx

≤

∫ s

0

ġ1−α,n(s− σ)
(

ϕ(s) − ϕ(σ)
)(

∫

B1

ψ2ũ1+β dx
)

(σ) dσ

+ 2(1 + β)

∫

B1

(

ÃDũ|ψDψ ũβ
)

ϕdx+ Rn(s), a.a. s ∈ (0, t2 − t0), (5.25)
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where

Rn(s) = − |β|(1 + β)

∫

B1

(

(hn ∗ [ADu])̃ − ÃDũ|ψ2ũβ−1Dũ
)

ϕdx

+ 2(1 + β)

∫

B1

(

(hn ∗ [ADu])̃ − ÃDũ|ψDψ ũβ
)

ϕdx, a.a. s ∈ (0, t2 − t0).

We set again w = ũ
β+1
2 and estimate exactly as in the preceding proof, using (H1), (H3) and

(5.17), to the result

−

∫

B1

∂s(g1−α,n ∗ [ϕψ2w2]
)

dx+
2ν|β|

1 + β

∫

B1

ϕψ2|Dw|2 dx

≤

∫ s

0

ġ1−α,n(s− σ)
(

ϕ(s) − ϕ(σ)
)(

∫

B1

ψ2w2 dx
)

(σ) dσ

+
2Λ2(1 + β)

ν|β|

∫

B1

|Dψ|2ϕw2 dx+ Rn(s), a.a. s ∈ (0, t2 − t0). (5.26)

Recall that g1−α,n = g1−α ∗ hn. Putting

W (s) =

∫

B1

ϕ(s)ψ(x)2w(s, x)2 dx

and denoting the right-hand side of (5.26) by Fn(s), it follows from (5.26) that

Gn(s) := ∂α
s (hn ∗W )(s) + Fn(s) ≥ 0, a.a. s ∈ (0, t2 − t0).

By (5.14) and positivity of hn, we have

0 ≤ hn ∗W = gα ∗ ∂α
s (hn ∗W ) ≤ gα ∗Gn + gα ∗ [−Fn(s)]+

a.e. in (0, t2 − t0), where [y]+ stands for the positive part of y ∈ R. For any p ∈ (1, 1/(1 − α))
and any t∗ ∈ [t2 − t0 − (t2 − t1)/4, t2 − t0] we thus obtain by Young’s inequality

|hn ∗W |Lp([0,t∗]) ≤ |gα|Lp([0,t∗])

(

|Gn|L1([0,t∗]) + |[−Fn]+|L1([0,t∗])

)

. (5.27)

Since t∗ ≤ t2 − t0 ≤ η, we have |gα|Lp([0,t∗]) ≤ C1(α, p, η) with the same constant as in (5.20).
By positivity of Gn,

|Gn|L1([0,t∗]) = (g1−α,n ∗W )(t∗) +

∫ t∗

0

Fn(s) ds.

Observe that Rn → 0 in L1([0, t2 − t0]) as n → ∞. Hence |[−Fn]+|L1([0,t∗]) → 0 as n → ∞.
Further,

∫ t∗

0

∫ s

0

ġ1−α,n(s− σ)
(

ϕ(s) − ϕ(σ)
)(

∫

B1

ψ2w2 dx
)

(σ) dσ ds

=

∫ t∗

0

g1−α,n(t∗ − σ)
(

ϕ(t∗) − ϕ(σ)
)(

∫

B1

ψ2w2 dx
)

(σ) dσ

−

∫ t∗

0

ϕ̇(s)

∫ s

0

g1−α,n(s− σ)
(

∫

B1

ψ2w2 dx
)

(σ) dσ ds

≤ −

∫ t∗

0

ϕ̇(s)

∫ s

0

g1−α,n(s− σ)
(

∫

B1

ψ2w2 dx
)

(σ) dσ ds,
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since ϕ is nonincreasing. We also know that g1−α,n ∗W → g1−α ∗W in L1([0, t2− t0]). Hence we
can fix some t∗ ∈ [t2−t0−(t2−t1)/4, t2−t0] such that for some subsequence (g1−α,nk

∗W )(t∗) →
(g1−α ∗W )(t∗) as k → ∞. Sending k → ∞ it follows then from (5.27), the preceding estimates,
and from ϕ = 1 in [0, t1 − t0] that

(

∫ t1−t0

0

(

∫

B1

[ψ(x)w(s, x)]2 dx)p ds
)1/p

≤ C1(α, p, η)
(

(g1−α ∗W )(t∗) + |F |L1([0,t2−t0])

)

, (5.28)

with

F (s) =
2Λ2(1 + β)

ν|β|

∫

B1

|Dψ|2ϕw2 dx− ϕ̇(s)
(

g1−α ∗

∫

B1

ψ2w2 dx
)

(s).

On the other hand, we can integrate (5.26) over (0, t∗) and take the limit as k → ∞ for the
same subsequence as before, thereby getting

∫ t1−t0

0

∫

B1

ψ2|Dw|2 dx ds ≤
1 + β

2ν|β|

(

(g1−α ∗W )(t∗) + |F |L1([0,t2−t0])

)

. (5.29)

Arguing as above (cf. the lines before (5.22)), we conclude from (5.28) and (5.29) that

|ψw|2Vp([0,t1−t0]×B1)
≤ 4

∫ t2−t0

0

∫

B1

|Dψ|2w2 dx ds

+ 2
(

C1(α, p, η) +
1 + β

ν|β|

)(

(g1−α ∗W )(t∗) + |F |L1([0,t2−t0])

)

. (5.30)

Since ϕ = 0 in [t1 − t0 + (t2 − t1)/2, t2 − t0] and t∗ ∈ [t2 − t0 − (t2 − t1)/4, t2 − t0], we have

(g1−α ∗W )(t∗) ≤ g1−α

(

(t2 − t1)/4
)

∫ t2−t0

0

∫

B1

ψ2w2 dx ds

=
4α

Γ(1 − α)(ρ− ρ′)α(ση)α

∫ t2−t0

0

∫

ρB1

w2 dx ds.

Further,
∫ t2−t0

0

∫

B1

|Dψ|2w2 dx ds ≤
4

σ2(ρ− ρ′)2

∫ t2−t0

0

∫

ρB1

w2 dx ds.

The term |F |L1([0,t2−t0]) is estimated similarly as in the proof of Theorem 5.3.1 (cf. the lines
that follow (5.22)). We obtain

|F |L1([0,t2−t0]) ≤ C(ν,Λ, δ, η, α)
1 + (1 + β)

|β|(ρ− ρ′)2

∫ t2−t0

0

∫

ρB1

w2 dx ds.

Notice the additional factor |β| in the denominator. Combining these estimates we deduce from
(5.30) that

|ψw|Vp([0,t1−t0]×B1) ≤ C(ν,Λ, δ, η, α, p)
1 + (1 + β)

|β|(ρ − ρ′)
|w|L2([0,t2−t0]×ρB1).

By the interpolation inequality (2.15) and since ψ = 1 in ρ′B1, this implies for all β ∈ (−1, 0)

|w|L2κ([0,t1−t0]×ρ′B1) ≤ C(ν,Λ, δ, η, α, p,N)
1 + |1 + β|

|β|(ρ − ρ′)
|w|L2([0,t2−t0]×ρB1), (5.31)

56



where

κ = κp =
2p+N(p− 1)

2 +N(p− 1)
∈ (1, κ̃).

We now fix 1 < p < 1/(1 − α) such that κp = (p0 + κ̃)/2. This is possible because κp ր κ̃ as
pր 1/(1 − α).

Next, we set γ = 1 + β ∈ (0, 1) and transform back to u to get

|u|Lγκ(V ′

ρ′
,dµ) ≤

( C̃

(ρ− ρ′)2

)1/γ

|u|Lγ(V ′

ρ ,dµ), 0 < ρ′ < ρ ≤ 1, 0 < γ ≤ p0/κ. (5.32)

Here, µ = (ηωN )−1µN+1, ωN the volume of the unit ball in RN , and C̃ = C̃(ν,Λ, δ, η, α,N, p0)
is independent of γ ∈ (0, p0/κ], since |β| is bounded away from zero. Note that µ(V ′

1) ≤ 1.
Finally, we employ the second Moser iteration scheme, Lemma 2.5.2, to conclude from (5.32)

that there are constants M0 = M0(ν,Λ, δ, η, α,N, p0) and τ0 = τ0(κ) such that

|u|Lp0(V ′

θ
,dµ) ≤

( M0

(1 − θ)τ0

)1/γ−1/p0

|u|Lγ(V ′

1 ,dµ), 0 < θ < 1, 0 < γ ≤ p0/κ. (5.33)

If we take θ = σ′/σ and translate (5.33) back to the measure µN+1, we obtain

|u|Lp0(U ′

σ′
) ≤

(M0(ηωN )−1

(σ − σ′)τ0

)1/γ−1/p0

|u|Lγ(U ′

σ), 0 < γ ≤ p0/κ. (5.34)

Since κ < κ̃, (5.34) holds in particular for all γ ∈ (0, p0/κ̃]. This finishes the proof. �

5.4 Logarithmic estimates

Theorem 5.4.1 Let α ∈ (0, 1), T > 0, and Ω ⊂ R
N be a bounded domain. Suppose the

assumptions (H1)–(H3) are satisfied. Let τ > 0 and δ, η ∈ (0, 1) be fixed. Then for any t0 ≥ 0
and r > 0 with t0 +τr2/α ≤ T , any ball B = B(x0, r) ⊂ Ω, and any weak supersolution u ≥ ε > 0
of (5.1) in (0, t0 + τr2/α) ×B with u0 ≥ 0 in B, there is a constant c = c(u) such that

µN+1

(

{(t, x) ∈ K− : log u(t, x) > c+ λ}
)

≤ Cr2/αµN (B)λ−1, λ > 0, (5.35)

and

µN+1

(

{(t, x) ∈ K+ : log u(t, x) < c− λ}
)

≤ Cr2/αµN (B)λ−1, λ > 0, (5.36)

where K− = (t0, t0 + ητr2/α) × δB and K+ = (t0 + ητr2/α, t0 + τr2/α) × δB. Here the constant
C depends only on δ, η, τ,N, α, ν, and Λ.

Proof: Since u0 ≥ 0 in B and u is a positive weak supersolution we may assume without loss of
generality that u0 = 0 and t0 = 0. In fact, in the case t0 > 0 we shift the time as t → t − t0,
thereby obtaining an inequality of the same type on the time-interval J := [0, τr2/α]. Observe
that the property g1−α ∗ u ∈ C([0, t0 + τr2/α];L2(B)) implies g1−α ∗ ũ ∈ C(J ;L2(B)) for the
shifted function ũ(s, x) = u(s+ t0, x). So we have

∫

B

(

v∂t(g1−α,n ∗ u) + (hn ∗ [ADu]|Dv)
)

dx ≥ 0, a.a. t ∈ J, n ∈ N, (5.37)

for any nonnegative test function v ∈ °H1
2 (B).
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For t ∈ J we choose the test function v = ψ2u−1 with ψ ∈ C1
0 (B) such that suppψ ⊂ B,

ψ = 1 in δB, 0 ≤ ψ ≤ 1, |Dψ| ≤ 2/[(1 − δ)r] and the domains {x ∈ B : ψ(x)2 ≥ b} are convex
for all b ≤ 1. We have

Dv = 2ψDψ u−1 − ψ2u−2Du,

so that by substitution into (5.37) we obtain for a.a. t ∈ J

−

∫

B

ψ2u−1∂t(g1−α,n ∗ u) dx+

∫

B

(

ADu|u−2Du
)

ψ2 dx

≤ 2

∫

B

(

ADu|u−1ψDψ
)

dx+ Rn(t), (5.38)

where

Rn(t) =

∫

B

(

hn ∗ [ADu] −ADu|Dv
)

dx.

By (H1) and Young’s inequality,

∣

∣2
(

ADu|u−1ψDψ
)∣

∣ ≤ 2Λψ|Dψ| |Du|u−1 ≤
ν

2
ψ2|Du|2u−2 +

2

ν
Λ2|Dψ|2.

Using this, (H2) and |Dψ| ≤ 2/[(1 − δ)r], we infer from (5.38) that for a.a. t ∈ J

−

∫

B

ψ2u−1∂t(g1−α,n ∗ u) dx+
ν

2

∫

B

|Du|2u−2ψ2 dx ≤
8Λ2µN (B)

ν(1 − δ)2r2
+ Rn(t). (5.39)

Setting w = log u we have Dw = u−1Du. The weighted Poincaré inequality of Proposition 2.6.1
with weight ψ2 yields

∫

B

(w −W )2ψ2dx ≤
8r2µN (B)
∫

B ψ
2dx

∫

B

|Dw|2ψ2dx, a.a. t ∈ J, (5.40)

where

W (t) =

∫

B w(t, x)ψ(x)2dx
∫

B
ψ(x)2dx

, a.a. t ∈ J.

From (5.39) and (5.40) we deduce that

−

∫

B

ψ2u−1∂t(g1−α,n ∗ u) dx+
ν

∫

B ψ
2dx

16r2µN (B)

∫

B

(w −W )2ψ2dx ≤
8Λ2µN (B)

ν(1 − δ)2r2
+ Rn(t),

which in turn implies

−
∫

B ψ
2u−1∂t(g1−α,n ∗ u) dx

∫

B
ψ2dx

+
ν

16r2µN (B)

∫

δB

(w −W )2dx ≤
C1

r2
+ Sn(t), (5.41)

for a.a. t ∈ J , with some constant C1 = C1(δ,N, ν,Λ) and Sn(t) = Rn(t)/
∫

B ψ
2dx.

The fundamental identity (2.6) with H(y) = − log y reads (with the spatial variable x being
suppressed)

−u−1∂t(g1−α,n ∗ u) = −∂t(g1−α,n ∗ log u) + (log u− 1)g1−α,n(t)

+

∫ t

0

(

− log u(t− s) + log u(t) +
u(t− s) − u(t)

u(t)

)

[−ġ1−α,n(s)] ds.
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In terms of w = log u this means that

−u−1∂t(g1−α,n ∗ u) = − ∂t(g1−α,n ∗ w) + (w − 1)g1−α,n(t)

+

∫ t

0

Ψ
(

w(t− s) − w(t)
)

[−ġ1−α,n(s)] ds, (5.42)

where Ψ(y) = ey − 1 − y. Since Ψ is convex, it follows from Jensen’s inequality that

∫

B ψ
2Ψ

(

w(t− s, x) − w(t, x)
)

dx
∫

B
ψ2dx

≥ Ψ
(

∫

B ψ
2
(

w(t − s, x) − w(t, x)
)

dx
∫

B
ψ2dx

)

.

Using this and (5.42) we obtain

−
∫

B ψ
2u−1∂t(g1−α,n ∗ u) dx

∫

B
ψ2dx

≥ −∂t(g1−α,n ∗W ) + (W − 1)g1−α,n(t)

+

∫ t

0

Ψ
(

W (t− s) −W (t)
)

[−ġ1−α,n(s)] ds

= −e−W∂t(g1−α,n ∗ eW ), (5.43)

where the last equals sign holds again by (5.42) with u replaced by eW . From (5.41) and (5.43)
we conclude that

ν

16r2µN (B)

∫

δB

(w −W )2dx ≤ e−W∂t(g1−α,n ∗ eW ) +
C1

r2
+ Sn(t), a.a. t ∈ J. (5.44)

We choose

c(u) = log
((g1−α ∗ eW )(ητr2/α)

g2−α(ητr2/α)

)

. (5.45)

This definition makes sense, since g1−α ∗ eW ∈ C(J). The latter is a consequence of g1−α ∗ u ∈
C(J ;L2(B)) and

eW (t) ≤

∫

B
u(t, x)ψ(x)2dx
∫

B ψ(x)2dx
, a.a. t ∈ J,

where we apply again Jensen’s inequality.

To prove (5.35) and (5.36), one of the key ideas is to use the inequalities

µN+1({(t, x) ∈ K− : w(t, x) > c(u) + λ})

≤ µN+1({(t, x) ∈ K− : w(t, x) > c(u) + λ and W (t) ≤ c(u) + λ/2})

+ µN+1({(t, x) ∈ K− : W (t) > c(u) + λ/2}) =: I1 + I2, λ > 0, (5.46)

µN+1({(t, x) ∈ K+ : w(t, x) < c(u) − λ})

≤ µN+1({(t, x) ∈ K+ : w(t, x) < c(u) − λ and W (t) ≥ c(u) − λ/2})

+ µN+1({(t, x) ∈ K+ : W (t) < c(u) − λ/2}) =: I3 + I4, λ > 0, (5.47)

and to estimate each of the four terms Ij separately.

We begin with the estimates for W . To estimate I2 and I4 we adopt some of the ideas
developed in [83]. We set J− := (0, ητr2/α), J+ := (ητr2/α, τr2/α), and introduce for λ > 0 the
sets J−(λ) := {t ∈ J− : W (t) > c(u) + λ} and J+(λ) := {t ∈ J+ : W (t) < c(u) − λ}.

59



Interestingly, positivity and integrability of the function eW are sufficient to derive the desired
estimate for I2, cf. also [83, Theorem 2.3]. In fact, with ρ = τr2/α we have

eλµ1

(

J−(λ)
)

= eλµ1

(

{t ∈ J− : eW (t) > ec(u)eλ}
)

=

∫

J−(λ)

eλ dt

≤

∫

J−(λ)

eW (t)−c(u) dt ≤

∫

J−

eW (t)−c(u) dt

=
g2−α(ηρ)

(g1−α ∗ eW )(ηρ)

∫ ηρ

0

eW (t) dt

≤
g2−α(ηρ)

(g1−α ∗ eW )(ηρ)
·

1

g1−α(ηρ)

∫ ηρ

0

g1−α(ηρ− t)eW (t) dt

=
Γ(1 − α)

Γ(2 − α)
ηρ =

ητr2/α

1 − α
,

and therefore

I2 = µ1

(

J−(λ/2)
)

µN (δB) ≤
2ητδN

(1 − α)λ
r2/αµN (B), λ > 0. (5.48)

We come now to I4. For m > 0 define the function Hm on R by Hm(y) = y, y ≤ m, and
Hm(y) = m+ (y−m)/(y−m+ 1), y ≥ m. Then Hm is increasing, concave, and bounded above
by m+ 1. Further, we have Hm ∈ C1(R), and so by concavity

0 ≤ yH ′
m(y) ≤ Hm(y) ≤ m+ 1, y ≥ 0. (5.49)

Multiplying (5.44) by eWH ′
m

(

eW
)

and employing (5.49) as well as the fundamental identity (2.6),
we infer that

∂t

(

g1−α,n ∗Hm

(

eW
)

)

+
C1

r2
Hm

(

eW
)

≥ −Sne
WH ′

m

(

eW
)

, a.a. t ∈ J. (5.50)

For t ∈ J+ we shift the time by setting s = t − ητr2/α = t − ηρ and put f̃(s) = f(s + ηρ),
s ∈ (0, (1−η)ρ), for functions f defined on J+. By the time-shifting identity (5.6), (5.50) implies
that for a.a. s ∈ (0, (1 − η)ρ)

∂s

(

g1−α,n ∗Hm

(

eW̃
)

)

+
C1

r2
Hm

(

eW̃
)

≥ Υn,m(s) − S̃ne
W̃H ′

m

(

eW̃
)

, (5.51)

with the history term

Υn,m(s) =

∫ ηρ

0

[

− ġ1−α,n(s+ ηρ− σ)
]

Hm

(

eW (σ)
)

dσ.

For θ ≥ 0 define the kernel rα,θ ∈ L1,loc(R+) by means of

rα, θ(t) + θ(rα, θ ∗ gα)(t) = gα(t), t > 0.

Observe that rα, 0 = gα. Since gα is completely monotone, rα, θ enjoys the same property (cf.
[32, Chap. 5]), in particular rα, θ(s) > 0 for all s > 0. Moreover, we have (see e.g. [83])

rα, θ(s) = Γ(α)gα(s)Eα,α(−θsα), s > 0, (5.52)

where Eα,β denotes the generalized Mittag-Leffler-function (see e.g. [28, p. 210] and [44, Section
1.8]) defined by

Eα,β(z) =

∞
∑

n=0

zn

Γ(nα+ β)
, z ∈ C. (5.53)
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We put θ = C1/r
2 and convolve (5.51) with rα, θ. We have a.e. in (0, (1 − η)ρ)

rα, θ ∗ ∂s

(

g1−α,n ∗Hm

(

eW̃
)

)

= ∂s

(

rα, θ ∗ g1−α,n ∗Hm

(

eW̃
)

)

= ∂s

(

[gα − θ(rα, θ ∗ gα)] ∗ g1−α,n ∗Hm

(

eW̃
)

)

= hn ∗Hm

(

eW̃
)

− θrα, θ ∗ hn ∗Hm

(

eW̃
)

,

and so we obtain a.e. in (0, (1 − η)ρ)

hn ∗Hm

(

eW̃
)

≥ rα, θ ∗ Υn,m − rα, θ ∗
[

S̃ne
W̃H ′

m

(

eW̃
)]

+ θhn ∗ rα, θ ∗Hm

(

eW̃
)

− θrα, θ ∗Hm

(

eW̃
)

. (5.54)

Sending n→ ∞ and selecting an appropriate subsequence, if necessary, it follows that

Hm

(

eW̃
)

≥ rα, θ ∗ Υm, a.a. s ∈ (0, (1 − η)ρ), (5.55)

where

Υm(s) =

∫ ηρ

0

[

− ġ1−α(s+ ηρ− σ)
]

Hm

(

eW (σ)
)

dσ;

in fact, this can be seen by using the approximation property of the kernels hn.
Observe that for s ∈ (0, (1 − η)ρ) we have

0 ≤ θsα ≤
C1

r2
(1 − η)α

(

τr2/α
)α

= C1(1 − η)ατα =: ω,

and thus by continuity and strict positivity of Eα,α in (−∞, 0],

rα, θ(s) ≥ Γ(α)gα(s) min
y∈[0,ω]

Eα,α(−y) =: C2(α, ω)Γ(α)gα(s), s ∈ (0, (1 − η)ρ).

We may then argue as in [83, Section 2.1] to obtain

Hm

(

eW̃ (s)
)

≥ C2(α, ω)
α(s/[ηρ])α

1 + (s/[ηρ])
(ηρ)α−1

(

g1−α ∗Hm

(

eW
))

(ηρ), a.a. s ∈ (0, (1 − η)ρ).

Evidently, Hm(y) ր y as m → ∞ for all y ∈ R. Thus by sending m → ∞ and applying Fatou’s
lemma we conclude that

eW̃ (s) ≥ C2(α, ω)
α(s/[ηρ])α

1 + (s/[ηρ])
(ηρ)α−1

(

g1−α ∗ eW
)

(ηρ), a.a. s ∈ (0, (1 − η)ρ). (5.56)

We then employ (5.56) to estimate as follows.

eλµ1

(

J+(λ)
)

= eλµ1

(

{t ∈ J+ : eW (t) < ec(u)e−λ}
)

=

∫

J+(λ)

eλ dt

≤

∫

J+(λ)

ec(u)−W (t) dt ≤

∫

J+

ec(u)−W (t) dt

=
(g1−α ∗ eW )(ηρ)

g2−α(ηρ)

∫ (1−η)ρ

0

e−W̃ (s) ds

≤
C2(α, ω)−1(ηρ)1−α

αg2−α(ηρ)

∫ (1−η)ρ

0

(1 + s/ηρ)(s/ηρ)−α ds

=
Γ(2 − α)ηρ

αC2(α, ω)

∫
1−η

η

0

σ−α(1 + σ) dσ = C3(α, η, ω)ρ.
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Hence

I4 = µ1

(

J+(λ/2)
)

µN (δB) ≤
2C3(α, η, ω)δN

λ
r2/αµN (B), λ > 0. (5.57)

We come now to I1. Set J1(λ) = {t ∈ J− : c −W (t) + λ/2 ≥ 0} and Ω−
t (λ) = {x ∈ δB :

w(t, x) > c+ λ}, t ∈ J1(λ), where c = c(u) is given by (5.45). For t ∈ J1(λ), we have

w(t, x) −W (t) > c−W (t) + λ ≥ λ/2, x ∈ Ω−
t (λ),

and thus we deduce from (5.44) that a.e. in J1(λ)

ν

16r2µN (B)
µN

(

Ω−
t (λ)

)

≤
1

(c−W + λ)2

(

e−W ∂t(g1−α,n ∗ eW ) +
C1

r2
+ Sn

)

. (5.58)

Set χ(t, λ) = µN

(

Ω−
t (λ)

)

, if t ∈ J1(λ), and χ(t, λ) = 0 in case t ∈ J− \ J1(λ). Let further

H(y) = (c− log y+ λ)−1, 0 < y ≤ y∗ := ec+λ/2. Clearly, H ′(y) = (c− log y+ λ)−2y−1 as well as

H ′′(y) =
1

(c− log y + λ)2y2

( 2

c− log y + λ
− 1

)

, 0 < y ≤ y∗,

which shows that H is concave in (0, y∗] whenever λ ≥ 4. We will assume this in what follows.
We next choose a C1 extension H̄ of H on (0,∞) such that H̄ is concave, 0 ≤ H̄ ′(y) ≤

H̄ ′(y∗), y∗ ≤ y ≤ 2y∗, and H̄ ′(y) = 0, y ≥ 2y∗. Then

0 ≤ yH̄ ′(y) ≤
2

λ
, y > 0. (5.59)

In fact, for y ∈ (0, y∗] we have

yH̄ ′(y) =
1

(c− log y + λ)2
≤

1

(c− log y∗ + λ)2
≤

4

λ2
≤

1

λ
, (5.60)

while in case y ∈ [y∗, 2y∗] we may simply estimate

yH̄ ′(y) ≤ 2y∗H̄
′(y∗) ≤

2

λ
.

It is clear that H̄ is bounded above. There holds

H̄(y) ≤
3

λ
, y > 0. (5.61)

To see this, note that since H̄ is nondecreasing with H̄ ′(y) = 0 for all y ≥ 2y∗, the claim follows
if the inequality is valid for all y ∈ [y∗, 2y∗]. For such y we have by (5.60) and by concavity of H̄

H̄(y) ≤ H̄(y∗) + H̄ ′(y∗)(y − y∗) ≤ H̄(y∗) + y∗H̄
′(y∗) ≤

3

λ
.

Observe also that

eW (t)H ′(eW (t)) =
1

(c−W (t) + λ)2
, a.a. t ∈ J1(λ).

Since H̄ ′ ≥ 0, and e−W∂t(g1−α,n ∗ eW ) + C1r
−2 + Sn ≥ 0 on J− by virtue of (5.44), we infer

from (5.58) and (5.59) that

ν

16r2µN (B)
χ(t, λ) ≤ eW H̄ ′(eW )

(

e−W∂t(g1−α,n ∗ eW ) +
C1

r2
+ Sn

)

≤ H̄ ′(eW )∂t(g1−α,n ∗ eW ) +
2C1

λr2
+

2|Sn(t)|

λ
, a.a. t ∈ J−. (5.62)
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Since H̄ is concave, the fundamental identity (2.6) yields

H̄ ′(eW )∂t(g1−α,n ∗ eW ) ≤ ∂t

(

g1−α,n ∗ H̄
(

eW
)

)

+
(

− H̄(eW ) + H̄ ′(eW )eW
)

g1−α,n

≤ ∂t

(

g1−α,n ∗ H̄
(

eW
)

)

+
2

λ
g1−α,n, a.a. t ∈ J−,

which, together with (5.62), gives a.e. in J−

ν

16r2µN (B)
χ(t, λ) ≤ ∂t

(

(g1−α,n ∗ H̄
(

eW
)

)

+
2

λ
g1−α,n +

2C1

λr2
+

2|Sn(t)|

λ
. (5.63)

We then integrate (5.63) over J− = (0, ηρ) and employ (5.61) for the estimate

(

g1−α,n ∗ H̄
(

eW
)

)

(ηρ) ≤
3

λ

∫ ηρ

0

g1−α,n(t) dt.

By sending n→ ∞, this leads to

∫

J1(λ)

µN

(

Ω−
t (λ)

)

dt =

∫ ηρ

0

χ(t, λ) dt ≤
16r2µN (B)

ν

( 5

λ
g2−α(ηρ) +

2C1ηρ

λr2

)

=
16r2/αµN (B)

νλ

(

5g2−α(ητ) + 2C1ητ
)

=: C4
r2/αµN (B)

λ
, λ ≥ 4.

Hence with C5 = max{4τ, C4} we find that

I1 ≤
C5r

2/αµN (B)

λ
, λ > 0. (5.64)

It remains to derive the desired estimate for I3. To this purpose we shift again the time
by putting s = t − ηρ, and denote the corresponding transformed functions as above by W̃ , w̃,
... and so forth. Set further J̃+ := (0, (1 − η)ρ). By the time-shifting property (5.6) and by
positivity of eW , relation (5.44) then implies

ν

16r2µN (B)

∫

δB

(w̃ − W̃ )2dx ≤ e−W̃∂s(g1−α,n ∗ eW̃ ) +
C1

r2
+ S̃n(s), a.a. s ∈ J̃+. (5.65)

Next, set J2(λ) = {s ∈ J̃+ : W̃ (s) − c+ λ/2 ≥ 0} and Ω+
s (λ) = {x ∈ δB : w̃(s, x) < c − λ}, s ∈

J2(λ). For s ∈ J2(λ), we have

W̃ (s) − w̃(s, x) ≥ W̃ (s) − c+ λ ≥ λ/2, x ∈ Ω+
s (λ),

and thus (5.65) yields that a.e. in J2(λ)

ν

16r2µN (B)
µN

(

Ω+
s (λ)

)

≤
1

(W̃ − c+ λ)2

(

e−W̃∂s(g1−α,n ∗ eW̃ ) +
C1

r2
+ S̃n

)

. (5.66)

We proceed now similarly as above for the term I1. Set χ(s, λ) = µN

(

Ω+
s (λ)

)

, if s ∈ J2(λ),

and χ(s, λ) = 0 in case s ∈ J̃+ \ J1(λ). We consider this time the convex function H(y) =
(log y − c + λ)−1 for y ≥ y∗ := ec−λ/2 with derivative H ′(y) = −(log y − c + λ)−2y−1 < 0. We
define a C1 extension H̄ of H on [0,∞) by means of

H̄(y) =

{

H ′(y∗)(y − y∗) +H(y∗) : 0 ≤ y < y∗
H(y) : y ≥ y∗.
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Evidently, −H̄ is concave in [0,∞) and

0 ≤ −H̄ ′(y)y ≤
1

(log y∗ − c+ λ)2
≤

1

(λ/2)2
≤

4

λ
, y ≥ 0, λ ≥ 1. (5.67)

We will assume λ ≥ 1 in the subsequent lines.
Observe that

−eW̃ (s)H ′(eW̃ (s)) =
1

(W̃ (s) − c+ λ)2
, a.a. s ∈ J2(λ).

Since −H̄ ′ ≥ 0, and e−W̃∂s(g1−α,n ∗ eW̃ ) + C1r
−2 + S̃n ≥ 0 on J̃+ due to (5.65), it thus follows

from (5.66) and (5.67) that

ν

16r2µN (B)
χ(s, λ) ≤ −eW̃ H̄ ′(eW̃ )

(

e−W̃∂s(g1−α,n ∗ eW̃ ) +
C1

r2
+ S̃n

)

≤ −H̄ ′(eW̃ )∂s(g1−α,n ∗ eW̃ ) +
4C1

λr2
+

4|S̃n(s)|

λ
, a.a. s ∈ J̃+. (5.68)

By concavity of −H̄, the fundamental identity (2.6) provides the estimate

−H̄ ′(eW̃ )∂s(g1−α,n ∗ eW̃ ) ≤ −∂s

(

g1−α,n ∗ H̄
(

eW̃
)

)

+
(

H̄(eW̃ ) − H̄ ′(eW̃ )eW̃
)

g1−α,n

≤ −∂s

(

g1−α,n ∗ H̄
(

eW̃
)

)

+ H̄(0)g1−α,n ≤ −∂s

(

g1−α,n ∗ H̄
(

eW̃
)

)

+
6

λ
g1−α,n,

a.e. in J̃+, which when combined with (5.68) leads to

ν

16r2µN (B)
χ(s, λ) ≤ −∂s

(

g1−α,n ∗ H̄
(

eW̃
)

)

+
6

λ
g1−α,n +

4C1

λr2
+

4|S̃n(s)|

λ
,

for a.a. s ∈ J̃+. We integrate this estimate over J̃+ and send n→ ∞ to the result

∫

J2(λ)

µN

(

Ω+
s (λ)

)

ds =

∫ (1−η)ρ

0

χ(s, λ) ds ≤
16r2µN (B)

ν

( 6

λ
g2−α

(

(1 − η)ρ
)

+
4C1(1 − η)ρ

λr2

)

=
16r2/αµN (B)

νλ

(

6g2−α

(

(1 − η)τ
)

+ 4C1(1 − η)τ
)

=: C6
r2/αµN (B)

λ
, λ ≥ 1.

Hence with C7 = max{τ, C6} we obtain that

I3 ≤
C7r

2/αµN (B)

λ
, λ > 0. (5.69)

Finally, combining (5.46), (5.47), and (5.48), (5.57), (5.64), (5.69) establishes the theorem.
�

5.5 The final step of the proof

We are now in position to prove Theorem 5.1.1. Without loss of generality we may assume that
u ≥ ε for some ε > 0; otherwise replace u by u+ ε, which is a supersolution of (5.1) with u0 + ε
instead of u0, and eventually let ε→ 0+.
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For 0 < σ ≤ 1, we set Uσ = (t0+(2−σ)τr2/α, t0+2τr2/α)×σB and U ′
σ = (t0, t0+στr

2/α)×σB.
Clearly, Q−(t0, x0, r) = U ′

δ and Q+(t0, x0, r) = Uδ.

By Theorem 5.3.1,

ess sup
Uσ′

u−1 ≤
(CµN+1(U1)

−1

(σ − σ′)τ0

)1/γ

|u−1|Lγ(Uσ), δ ≤ σ′ < σ ≤ 1, γ ∈ (0, 1].

Here C = C(ν,Λ, δ, τ, α,N) and τ0 = τ0(α,N). This shows that the first hypothesis of Lemma
2.5.3 is satisfied by any positive constant multiple of u−1 with β0 = ∞.

Consider now f1 = u−1ec(u) where c(u) is the constant from Theorem 5.4.1 with K− = U ′
1

and K+ = U1. Since log f1 = c(u) − log u, we see from Theorem 5.4.1, estimate (5.36), that

µN+1({(t, x) ∈ U1 : log f1(t, x) > λ}) ≤MµN+1(U1)λ
−1, λ > 0,

where M = M(ν,Λ, δ, τ, η, α,N). Hence we may apply Lemma 2.5.3 with β0 = ∞ to f1 and the
family Uσ; thereby we obtain

ess sup
Uδ

f1 ≤M1

with M1 = M1(ν,Λ, δ, τ, η, α,N). In terms of u this means that

ec(u) ≤M1 ess inf
Uδ

u. (5.70)

On the other hand, Theorem 5.3.2 yields

|u|Lp(U ′

σ′
) ≤

(CµN+1(U
′
1)

−1

(σ − σ′)τ1

)1/γ−1/p

|u|Lγ(U ′

σ), δ ≤ σ′ < σ ≤ 1, 0 < γ ≤ p/κ̃.

Here C = C(ν,Λ, δ, τ, α,N, p) and τ1 = τ1(α,N). Thus the first hypothesis of Lemma 2.5.3 is
satisfied by any positive constant multiple of u with β0 = p and η = 1/κ̃. Taking f2 = ue−c(u)

with c(u) from above, we have log f2 = log u− c(u) and so Theorem 5.4.1, estimate (5.35), gives

µN+1({(t, x) ∈ U ′
1 : log f2(t, x) > λ}) ≤MµN+1(U

′
1)λ

−1, λ > 0,

where M is as above. Therefore we may again apply Lemma 2.5.3, this time to the function f2
and the sets U ′

σ, and with β0 = p and η = 1/κ̃; we get

|f2|Lp(U ′

δ
) ≤M2µN+1(U

′
1)

1/p,

where M2 = M2(ν,Λ, δ, τ, η, α,N, p). Rephrasing then yields

µN+1(U
′
1)

−1/p|u|Lp(U ′

δ) ≤M2e
c(u). (5.71)

Finally, we combine (5.70) and (5.71) to the result

µN+1(U
′
1)

−1/p|u|Lp(U ′

δ) ≤M1M2 ess inf
Uδ

u,

which proves the assertion. �
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5.6 Optimality of the exponent 2+Nα
2+Nα−2α

in the weak Har-

nack inequality

In this section we will show that the exponent 2+Nα
2+Nα−2α in Theorem 5.1.1 is optimal.

To this purpose consider the nonhomogeneous fractional diffusion equation on RN

∂α
t u− ∆u = f, t ∈ (0, T ], x ∈ R

N , (5.72)

with initial condition

u(0, x) = 0, x ∈ R
n. (5.73)

Following [27], we say that a function u ∈ C([0, T ] × RN ) ∩ C((0, T ];C2(RN )) with g1−α ∗ u ∈
C1((0, T ];C(RN)) is a classical solution of the problem (5.72), (5.73) if u satisfies (5.72) and
(5.73). For any bounded continuous function f that is locally Hölder continuous in x, there
exists a unique classical solution u of the problem (5.72), (5.73), and it is of the form

u(t, x) =

∫ t

0

∫

RN

Y (t− τ, x− y)f(τ, y) dy dτ, (5.74)

where

Y (t, x) = c(N)|x|−N tα−1H20
12

(1

4
t−α|x|2

∣

∣

∣

(α,α)
(N/2,1), (1,1)

)

,

cf. [27]. Here H20
12 (z|

(α,α)
(N/2,1), (1,1)) denotes a special H function (also termed Fox’s H function),

see [44, Section 1.12] and [27] for its definition. It is differentiable for z > 0, the asymptotic
behaviour for z → ∞ and z → +0, respectively, is described in [27, formulae (3.9) and (3.14)].
It has been also proved in [27] that Y is nonnegative.

We choose a smooth and nonnegative approximation of unity {φn(t, x)}n∈N in R+ ×RN such
that each φn is bounded. Put f = φn in (5.72) and denote the corresponding classical solution
of (5.72), (5.73) by un. Evidently, un is nonnegative and satisfies

∂α
t un − ∆un = φn ≥ 0, t ∈ (0, T ], x ∈ R

N .

Hence un is a nonnegative supersolution of (5.72) with f = 0 for all n ∈ N.

Suppose the weak Harnack inequality (5.3) holds for some p ≥ 2+Nα
2+Nα−2α . Then, by taking

Q− = (0, 1) ×B(0, 1) and Q+ = (2, 3) ×B(0, 1) it follows that

(

∫

Q−

up
n dµN+1

)1/p
≤ C inf

Q+

un, n ∈ N, (5.75)

where the constant C is independent of n. Since un → Y in the distributional sense as n→ ∞,
we have

inf
Q+

un ≤
1

µN+1(Q+)

∫

Q+

un dµN+1 ≤ 1 +
1

µN+1(Q+)

∫

Q+

Y dµN+1 <∞, n ≥ n0,

for a sufficiently large n0. On the other hand, the left-hand side of (5.75) cannot stay bounded,

since Y /∈ Lp(Q−) for p ≥ 2+Nα
2+Nα−2α . In fact, writing H20

12 (z) = H20
12 (z|

(α,α)
(N/2,1), (1,1)) for short, we
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have

|Y |pLp(Q−) =

∫ 1

0

∫

B(0,1)

c(N)p|x|−Npt(α−1)pH20
12

(

t−α|x|2/4
)p
dx dt

= c1

∫ 1

0

∫ 1

0

rN−1−Npt(α−1)pH20
12

(

t−αr2/4
)p
dr dt

= c1

∫ 1

0

∫ t−α/2

0

(

ρtα/2)N−1−Npt(α−1)p+α/2H20
12

(

ρ2/4
)p
dρ dt

≥ c1

∫ 1

0

tα(N−Np)/2+(α−1)p dt

∫ 1

0

ρN−1−NpH20
12

(

ρ2/4
)p
dρ

≥ c2

∫ 1

0

tα(N−Np)/2+(α−1)p dt,

with some positive constant c2. The last integral diverges for all p ≥ 2+Nα
2+Nα−2α . Hence (5.75)

yields a contradiction.

5.7 Applications of the weak Harnack inequality

The strong maximum principle for weak subsolutions of (5.1) may be easily derived as a conse-
quence of the weak Harnack inequality.

Theorem 5.7.1 Let α ∈ (0, 1), T > 0, and Ω ⊂ R
N be a bounded domain. Suppose the

assumptions (H1)–(H3) are satisfied. Let u ∈ Sα be a weak subsolution of (5.1) in ΩT and
assume that 0 ≤ ess supΩT

u <∞ and that ess supΩ u0 ≤ ess supΩT
u. Then, if for some cylinder

Q = (t0, t0 + τr2/α) ×B(x0, r) ⊂ ΩT with t0, τ, r > 0 and B(x0, r) ⊂ Ω we have

ess sup
Q

u = ess sup
ΩT

u, (5.76)

the function u is constant on (0, t0) × Ω.

Proof: Let M = ess supΩT
u. Then v := M −u is a nonnegative weak supersolution of (5.1) with

u0 replaced by v0 := M − u0 ≥ 0. For any 0 ≤ t1 < t1 + ηr2/α < t0 the weak Harnack inequality
with p = 1 applied to v yields an estimate of the form

r−(N+2/α)

∫ t1+ηr2/α

t1

∫

B(x0,r)

(M − u) dx dt ≤ C ess inf
Q

(M − u) = 0.

This shows that u = M a.e. in (0, t0)×B(x0, r). As in the classical parabolic case (cf. [51]) the
assertion now follows by a chaining argument. �

We next apply the weak Harnack inequality to establish continuity at t = 0 for weak solutions.

Theorem 5.7.2 Let α ∈ (0, 1), T > 0, and Ω ⊂ RN be a bounded domain. Suppose the
assumptions (H1) and (H2) are satisfied. Let u ∈ Sα be a bounded weak solution of (5.1) in
ΩT with u0 = 0. Then u is continuous at (0, x0) for all x0 ∈ Ω and lim(t,x)→(0,x0) u(t, x) = 0.

Moreover, letting η > 0 we have for any cylinder Q(x0, r0) := (0, ηr
2/α
0 ) × B(x0, r0) ⊂ ΩT and

r ∈ (0, r0]

ess osc
Q(x0,r)

u ≤ C
( r

r0

)δ

|u|L∞(ΩT ), (5.77)
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with ess oscQ(x0,r) = ess supQ(x0,r) − ess infQ(x0,r) and constants C = C(ν,Λ, η, α,N) > 0 and
δ = δ(ν,Λ, η, α,N) ∈ (0, 1).

Proof: Let u ∈ Sα be a bounded weak solution of (5.1) in ΩT with u0 = 0. Set u(t, x) = 0 and
A(t, x) = Id for t < 0 and x ∈ Ω. For T0 > 0 we shift the time by setting s = t + T0 and put
f̃(s) = f(s − T0), s ∈ (0, T + T0), for functions f defined on (−T0, T ). Since Du(t, ·) = 0 for
t < 0 and

∂t(g1−α,n ∗ u)(t, x) = ∂t

∫ t

−T0

g1−α,n(t− τ)u(τ, x) dτ = ∂s(g1−α,n ∗ ũ)(s, x),

the function ũ is a bounded weak solution of

∂α
s ũ− div

(

Ã(s, x)Dũ
)

= 0, s ∈ (0, T + T0), x ∈ Ω.

Next, assuming r ∈ (0, r0/2] we introduce the cylinders

Q∗(x0, r) =
(

− ηr2/α, ηr2/α
)

×B(x0, r),

Q−(x0, r) =
(

− η(2r)2/α,−η(3r/2)2/α
)

×B(x0, r),

and denote by Q̃∗(x0, r) resp. Q̃−(x0, r) the corresponding cylinders in the (s, x) coordinate
system. Let us write Mi = ess supQ̃∗(x0,ir) ũ and mi = ess infQ̃∗(x0,ir) ũ for i = 1, 2. Choosing

T0 ≥ η(2r)2/α, we may apply Theorem 5.1.1 with p = 1 to the functions M2 − ũ, ũ−m2, which
are nonnegative in (0, η(2r)2/α + T0) ×B(x0, 2r), thereby obtaining

r−N+2/α

∫

Q̃−(x0,r)

(M2 − ũ) dµN+1 ≤ C(M2 −M1),

r−N+2/α

∫

Q̃−(x0,r)

(ũ−m2) dµN+1 ≤ C(m1 −m2),

where C > 1 is a constant independent of u and r. By addition, it follows that

M2 −m2 ≤ C(M2 −m2 +m1 −M1).

Writing ω(x0, r) = ess supQ̃∗(x0,ir) ũ− ess infQ̃∗(x0,ir) ũ, this yields

ω(x0, r) ≤ θω(x0, 2r), r ≤ r0/2, (5.78)

where θ = 1 − C−1 ∈ (0, 1). Iterating (5.78) as in the proof of [29, Lemma 8.23] we obtain

ω(x0, r) ≤
1

θ

( r

r0

)log θ/ log(1/2)

ω(x0, r0), r ≤ r0.

The estimate (5.77) then follows by transforming back to the function u and using that u = 0
for negative times. In particular, we also see that u is continuous at (0, x0) for all x0 ∈ Ω and
that lim(t,x)→(0,x0) u(t, x) = 0. �

The last application is a theorem of Liouville type. We say that a function u on R+ × RN is
a global weak solution of

∂α
t u− div

(

A(t, x)Du
)

= 0, (5.79)

if it is a weak solution of (5.79) in (0, T )×B(0, r) for all T > 0 and r > 0.
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Corollary 5.7.1 Let α ∈ (0, 1). Assume that A ∈ L∞(R+ × R
N ; RN×N ) and that there exists

ν > 0 such that

(

A(t, x)ξ|ξ
)

≥ ν|ξ|2, for a.a. (t, x) ∈ R+ × R
N , and all ξ ∈ R

N .

Suppose that u is a global bounded weak solution of (5.79). Then u = 0 a.e. on R+ × R
N .

Proof: For r > 0 and x0 = 0 it follows from the proof of Theorem 5.7.2 that

ω(0, r) ≤ θω(0, 2r), r > 0, (5.80)

where θ ∈ (0, 1) is independent of r and u. By induction, (5.80) yields

ω(0, r) ≤ θnω(0, 2nr) ≤ 2θn|u|L∞(R+×RN ), r > 0, n ∈ N.

Sending n→ ∞ shows that u is constant. The claim then follows by Theorem 5.7.2. �
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Chapter 6

Hölder estimates for weak

solutions of fractional evolution

equations

6.1 The main regularity theorem

Let T > 0 and Ω be a bounded domain in RN . The main purpose of this chapter is to study the
regularity of weak solutions to fractional evolution equations of the form

∂α
t (u− u0) −Di

(

aij(t, x)Dju
)

= f, t ∈ (0, T ), x ∈ Ω. (6.1)

Here α ∈ (0, 1), u0 = u0(x) is a given initial data for u, A = (aij) ∈ L∞((0, T )× Ω; RN×N ), and
we use the sum convention.

We assume that

(H1) A ∈ L∞(ΩT ; RN×N ), and

N
∑

i,j=1

|aij(t, x)|
2 ≤ Λ2, for a.a. (t, x) ∈ ΩT .

(H2) There exists ν > 0 such that

aij(t, x)ξiξj ≥ ν|ξ|2, for a.a. (t, x) ∈ ΩT , and all ξ ∈ R
N .

(H3) u0 ∈ L∞(Ω); f ∈ Lr([0, T ];Lq(Ω)), where r, q ≥ 1 fulfill

1

αr
+

N

2q
= 1 − κ,

and

r ∈
[

1
α(1−κ) ,∞

]

, q ∈
[

N
2(1−κ) ,∞

]

, κ ∈ (0, 1) for N ≥ 2,

r ∈
[

1
α(1−κ) ,

2
α(1−2κ)

]

, q ∈ [1,∞], κ ∈
(

0, 1
2

)

for N = 1.
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For weak solutions we choose the same regularity class as in Chapter 5, thus u is a weak
solution of (6.1) in ΩT , if u belongs to the space

Sα = { v ∈ L2/(1−α),w([0, T ];L2(Ω)) ∩ L2([0, T ];H1
2(Ω)) such that

g1−α ∗ v ∈ C([0, T ];L2(Ω)), and (g1−α ∗ v)|t=0 = 0},

and for any test function

η ∈ °H1,1
2 (ΩT ) = H1

2 ([0, T ];L2(Ω)) ∩ L2([0, T ]; °H1
2 (Ω))

with η|t=T = 0 there holds

∫ T

0

∫

Ω

(

− ηt

[

g1−α ∗ (u− u0)
]

+ aijDjuDiη
)

dxdt =

∫ T

0

∫

Ω

fη dxdt.

For β1, β2 ∈ (0, 1) and Q ⊂ ΩT we set

[u]Cβ1,β2(Q) := sup
(t,x),(s,y)∈Q, (t,x) 6=(s,y)

{ |u(t, x) − u(s, y)|

|t− s|β1 + |x− y|β2

}

.

The main regularity theorem reads as follows.

Theorem 6.1.1 Let α ∈ (0, 1), T > 0 and Ω be a bounded domain in RN . Let the assumptions
(H1)-(H3) be satisfied and suppose that u ∈ Sα is a bounded weak solution of (6.1) in ΩT . Then
there holds for any Q ⊂ ΩT separated from ΓT by a positive distance d,

[u]
C

αǫ
2

,ǫ(Q̄)
≤ C

(

|u|L∞(ΩT ) + |u0|L∞(Ω) + |f |Lr([0,T ];Lq(Ω))

)

with positive constants ǫ = ǫ(Λ, ν, α, r, q,N, diam Ω, inf(τ,z)∈Q τ) and C = C(Λ, ν, α, r, q,N ,
diam Ω, λN+1(Q), d).

Theorem 6.1.1 gives an interior Hölder estimate for bounded weak solutions of (6.1) in terms of
the data and the L∞-bound of the solution. It can be viewed as the time fractional analogue of
the classical parabolic version (α = 1) of the well-known De Giorgi-Nash theorem on the Hölder
continuity of weak solutions to elliptic equations in divergence form (De Giorgi [19], Nash [60]),
see also [29],[34],[56] for the elliptic and [49],[51], as well as the seminal contributions by Moser
[57],[58] for the parabolic case. In the non-divergence case corresponding results were obtained
by Krylov and Safonov [47], [48]. Concerning parabolic degenerate and singular equations we
refer to [20] and [23].

The significance of Theorem 6.1.1 lies among others in providing the key a priori estimate
for certain quasilinear time fractional diffusion equations to establish global strong (or classical)
well-posedness for these problems, see Chapter 7. In order to succeed there, we also have to
find conditions which ensure Hölder continuity of weak solutions of (6.1) up to the parabolic
boundary. This is achieved by means of Theorem 6.1.1 and suitable extensions to larger domains
within the framework of maximal Lp-regularity, see Theorem 6.7.1.

The proof of Theorem 6.1.1, which is contained in Sections 6.2–6.5, relies on local a priori
estimates, which are derived by means of the fundamental identity (2.6) for the regularized
fractional derivative. In the proof we further use De Giorgi’s technique (employed similarly as in
[49, Section II.6 and Section V.10], see also [26]) combined with the method of non-local growth
lemmas, which has been recently developed in [70] for integro-differential operators like the
fractional Laplacian, see also [40]. Concerning growth lemmas for partial differential equations
we also refer to the work of Landis [50]. The adaption of this method to equations with memory
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requires an additional condition on the memory term, see (6.11) and (6.27) below, which naturally
appears when shifting the time in the equation. To derive a suitable oscillation estimate for
sequences of nested and shrinking cylinders exhibiting the natural scaling behaviour, we proceed
by induction. The key idea here is to use the induction hypothesis, that is the oscillation estimate
on all larger cylinders, to obtain the required estimate for the memory term.

As already pointed out, boundedness and the weak Harnack inequality, Theorem 5.1.1, are
not strong enough for proving regularity of weak solutions. The different quality of the weak
Harnack estimate and Theorem 6.1.1 is also reflected by the fact that nonnegative supersolutions
of (6.1) are also nonnegative supersolutions of localizations of (6.1) when shifting the time, that
is, the memory terms resulting from time-shifts have the right sign and can be dropped in the
estimates, see Section 5.2. This is no longer possible in the case of the Hölder estimate, making
the proof of the latter substantially more involved.

We further remark that Theorem 6.1.1 can be generalized without much effort to quasilinear
equations of the form

∂α
t (u− u0) −Di

(

ai(t, x, u,Du)
)

= b(t, x, u,Du), t ∈ (0, T ), x ∈ Ω,

with appropriate structure conditions on the functions ai and b, which correspond to the ones
given in [49] in the case α = 1.

6.2 A basic nonlocal growth lemma

We begin with the regularized weak formulation of (6.1). The proof is the same as for Lemma
4.2.1.

Lemma 6.2.1 Let α ∈ (0, 1), T > 0, and Ω ⊂ RN be a bounded domain. Suppose the assump-
tions (H1)–(H3) are satisfied. Then u ∈ Sα is a weak solution of (6.1) in ΩT if and only if for
any test function ψ ∈ °H1

2 (Ω) and any n ∈ N one has

∫

Ω

(

ψ∂t[g1−α,n ∗ (u − u0)] +
(

hn ∗ [aijDju]
)

Diψ
)

dx =

∫

Ω

(hn ∗ f)ψ dx, a.a. t ∈ (0, T ). (6.2)

In order to derive local (in time) estimates for (6.1) it is necessary, as in the two previous chapters,
to shift the time in the equation, which gives rise to an additional history term. Let T0 ∈ (0, T )
be fixed. For t ∈ (T0, T ) we introduce the shifted time s = t − T0 and set ṽ(s) = v(s + T0),
s ∈ (0, T −T0), for functions v defined on (T0, T ). Arguing as in Section 5.2 it follows from (6.2)
that for any test function ψ ∈ °H1

2 (Ω)

∫

Ω

(

ψ∂s(g1−α,n ∗ ũ)+
(

hn ∗ [aijDju]
)

˜Diψ
)

dx =

∫

Ω

(

(hn ∗ f )̃ + g̃1−α,n(s)u0(x)
)

ψ(x) dx

+

∫

Ω

ψ(x)

∫ T0

0

[

− ġ1−α,n(s+ T0 − τ)
]

u(τ, x) dτ dx, (6.3)

for a.a. s ∈ (0, T − T0).
Let now u be a bounded weak solution of (6.1) and (t1, x1) ∈ (0, T ]×Ω be a fixed point. We

consider the cylinders

Q(ρ) := Q(t1, x1, θ, ρ) = (t1 − θρ2/α, t1) ×Bρ(x1),

with scaling parameter ρ > 0 and parameter θ > 0. We also write Bρ = Bρ(x1) for short.
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Suppose Q(2ρ) ⊂ ΩT , that is ρ ≤ ρ0 := max{1, diamΩ/4}. We put

t0 = t1 − θ(2ρ)2/α, t̄ = t1 − θθ1ρ
2/α, θ1 ∈ (1, 22/α),

and assume that t0 ≥ τ0, where τ0 ∈ (0, T ) is a fixed number.
Let σ1 ∈ (0, 1) and k ∈ R. For t ∈ (0, t1) we choose in (6.2) the test function ψ = (u− k)+η

2

with η ∈ C1
0 (Ω) so that 0 ≤ η ≤ 1, η = 1 in B(1−σ1)ρ, supp η ⊂ Bρ, and |Dη| ≤ 2/(σ1ρ). We

have

Dψ = η2D(u− k)+ + 2ηDη (u− k)+,

and thus by substitution into (6.2) and inequality (2.7) we obtain

∫

Bρ

(1

2
η2∂t[g1−α,n ∗ (u− k)2+] +

1

2
η2g1−α,n(u − k)2+

)

dx

+

∫

Bρ

η2(hn ∗ [aijDju])Di(u− k)+ dx ≤ −

∫

Bρ

2ηDiη (hn ∗ [aijDju])(u − k)+ dx

+

∫

Bρ

(

hn ∗ f + g1−α,n(u0 − k)
)

η2(u− k)+ dx, (6.4)

for a.a. t ∈ (0, t1). Since

(u0 − k)(u − k)+ ≤
1

2
(u0 − k)2 +

1

2
(u − k)2+,

it follows that
∫

Bρ

(1

2
η2∂t[g1−α,n ∗ (u− k)2+] + η2(hn ∗ [aijDju])Di(u − k)+

)

dx

≤

∫

Bρ

(

− 2ηDiη (hn ∗ [aijDju])(u− k)+ + (hn ∗ f)η2(u− k)+

)

dx

+
1

2

∫

Bρ

η2g1−α,n(u0 − k)2 dx, a.a. t ∈ (0, t1). (6.5)

Suppose now that t ∈ (t̄, t1) and shift the time by setting s = t − t̄. Employing the same
notation as in (6.3) with T0 = t̄, that is ṽ(s) = v(s+ t̄) for functions v defined on (t̄, T ), we have

∫

Bρ

(1

2
η2∂s[g1−α,n ∗ (ũ − k)2+] + η2(hn ∗ [aijDju])̃ Di(ũ− k)+

)

dx

≤

∫

Bρ

(

− 2ηDiη (hn ∗ aijDju)̃ (ũ− k)+ + (hn ∗ f )̃ η2(ũ− k)+

)

dx

+
1

2

∫

Bρ

(

η2g̃1−α,n(u0 − k)2 + η2H̃k,n

)

dx, a.a. s ∈ (0, t1 − t̄), (6.6)

where

Hk,n(t, x) =

∫ t̄

0

[−ġ1−α,n(t− τ)](u(τ, x) − k)2+ dτ, t ∈ (t̄, t1), x ∈ Ω.

We next convolve (6.6) with gα and observe that in view of

g1−α,n ∗ (ũ − k)2+ ∈ 0H
1
1 ([0, t1 − t̄];L1(Ω))
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and g1−α,n = gα ∗ hn we have

gα ∗ ∂s

(

g1−α,n ∗ (ũ − k)2+

)

= ∂s

(

gα ∗ g1−α,n ∗ (ũ− k)2+

)

= hn ∗ (ũ− k)2+.

Sending then n→ ∞ and selecting an appropriate subsequence, if necessary, we obtain

1

2

∫

Bρ

η2(ũ − k)2+ dx+ gα ∗

∫

Bρ

η2ãijDjũ Di(ũ− k)+ dx

≤ gα ∗

∫

Bρ

(

− 2ηDiη ãijDj ũ(ũ − k)+ + f̃ η2(ũ − k)+

)

dx

+
1

2
gα ∗

∫

Bρ

η2
(

g̃1−α(u0 − k)2 +

∫ t̄

0

[−ġ1−α(t̄+ · − τ)] (u(τ, x) − k)2+ dτ
)

dx, (6.7)

for a.a. s ∈ (0, t1 − t̄). Note that by boundedness of u, the last integral in (6.7) is well-defined.
By (H2), we have

∫

Bρ

η2ãijDj ũDi(ũ− k)+ dx =

∫

Bρ

η2ãijDj(ũ − k)+Di(ũ − k)+ dx

≥ ν

∫

Bρ

η2|D(ũ− k)+|
2 dx.

(H1) and Young’s inequality imply that

2η|Diη| |ãij | |Dj ũ|(ũ− k)+ ≤ ν η2|D(ũ − k)+|
2 +

Λ2

ν
|Dη|2(ũ− k)2+.

From these relations, relation (6.7), and the properties of η we deduce that

∫

B(1−σ1)ρ

(ũ− k)2+ dx ≤ gα ∗

∫

Bρ

( 8Λ2

ν(σ1ρ)2
(ũ − k)2+ + 2|f̃ |(ũ− k)+

)

dx

+ gα ∗

∫

Bρ

(

g̃1−α(u0 − k)2 +

∫ t̄

0

[−ġ1−α(t̄+ · − τ)] (u(τ, x) − k)2+ dτ
)

dx, (6.8)

a.e. in (0, t1 − t̄). This estimate is the starting point for the following nonlocal growth lemma.
We set

Ak,ρ(t) = {x ∈ Bρ : u(t, x) > k}, t ∈ (t0, t1),

Ãk,ρ(s) = {x ∈ Bρ : ũ(s, x) > k}, s ∈ (0, t1 − t̄),

and introduce the number
t∗ = t1 − θθ2ρ

2/α, θ2 ∈ (1, θ1).

Proposition 6.2.1 Let u be a bounded weak solution of (6.1) and M0 = |u|L∞(ΩT ). Suppose
further that the above assumptions are satisfied. Let M = ess supQ(2ρ) u and |k| ≤ M0. Then

there exist constants 1 < θ2 < θ1 < 22/α, µ, ξ, σ1, β ∈ (0, 1), and θ, γ0 > 0 that depend only
on Λ, ν, α, r, q,N, τ0, ρ0,M0, |u0|L∞(Ω), |f |Lr([0,T ];Lq(Ω)) and are such that for any γ ∈ (0, γ0] the
following implication holds true: If

max{µ(M − k), ρκ} < ess sup
[t0,t1]×Bρ

u− k =: Zk (6.9)
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and

λN+1

(

{(t, x) ∈ (t0, t̄) ×Bρ : u(t, x) ≥ k}
)

≤
1

2
λN+1

(

(t0, t̄) ×Bρ

)

, (6.10)

as well as

u(t, x) − k ≤ (M − k)
(

2
[

22/α(
t1 − t

t1 − t0
)
]γ

− 1
)

, a.a. (t, x) ∈ (0, t0) ×Bρ, (6.11)

then
λN

(

Ak+ξZk ,ρ(t)
)

≤ βλN (Bρ), a.a. t ∈ (t∗, t1). (6.12)

Proof. Let ξ ∈ (0, 1) and suppose that t ∈ (t∗, t1), i.e. s ∈ (t∗ − t̄, t1 − t̄). Then

λN

(

Ãk+ξZk ,ρ(s)
)

≤ λN

(

Ãk+ξZk,(1−σ1)ρ(s)
)

+ λN (Bρ) − λN (B(1−σ1)ρ)

≤ λN

(

Ãk+ξZk,(1−σ1)ρ(s)
)

+ σ1NλN (Bρ). (6.13)

By the definition of Zk, which is positive, by assumption (6.9), we have

(ξZk)2λN

(

Ãk+ξZk,(1−σ1)ρ(s)
)

≤

∫

Ãk,(1−σ1)ρ(s)

(ũ − k)2 dx.

This, together with (6.8), yields that

λN

(

Ãk+ξZk ,(1−σ1)ρ(s)
)

≤
8Λ2

ν(ξZk)2(σ1ρ)2
gα ∗

∫

Bρ

(ũ − k)2+ dx

+
2

(ξZk)2
gα ∗

∫

Bρ

|f̃ |(ũ− k)+ dx+
1

(ξZk)2
gα ∗

∫

Bρ

g̃1−α(u0 − k)2 dx

+
1

(ξZk)2
gα ∗

∫

Bρ

∫ t0

0

[−ġ1−α(t̄+ · − τ)] (u(τ, x) − k)2+ dτ dx

+
1

(ξZk)2
gα ∗

∫

Bρ

∫ t̄

t0

[−ġ1−α(t̄+ · − τ)] (u(τ, x) − k)2+ dτ dx

=: M1 + M2 + M3 + M4 + M5. (6.14)

We now estimate the Mi terms one after the other. Evidently,

M1 ≤
C(Λ, ν)

(ξσ1ρ)2
g1+α(s)λN (Bρ) ≤

C(Λ, ν)

(ξσ1ρ)2
g1+α(t1 − t̄)λN (Bρ)

≤
C(Λ, ν, α)

(ξσ1ρ)2

(

θθ1ρ
2/α

)α

λN (Bρ) ≤ C1(Λ, ν, α)
θα

(ξσ1)2
λN (Bρ). (6.15)

Using (H3), (6.9), and Hölder’s inequality, we have with q′ = q/(q − 1)

M2 ≤
4M0

Γ(α)(ξZk)2

∫ s

0

(s− τ)(α−1)|f̃(τ, ·)|Lq(Bρ) dτ λN (Bρ)
1
q′

≤
C(α, r)M0s

α− 1
r

(ξZk)2
|f̃ |Lr([0,t1−t̄];Lq(Bρ))λN (Bρ)

1
q′

≤
C(α, r, |f |Lr(Lq))M0

ξ2ρ2κ
(θθ1ρ

2/α)α− 1
r λN (Bρ)

1− 1
q

≤ C(α, r, q,N, |f |Lr(Lq))M0
θα− 1

r

ξ2
λN (Bρ). (6.16)
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Further,

M3 ≤
|u0 − k|2L∞(Ω)

(ξZk)2
λN (Bρ)

∫ s

0

gα(s− σ)g1−α(σ + t̄) dσ

≤
|u0 − k|2L∞(Ω)

ξ2ρ2κ
λN (Bρ)g1−α(τ0)g1+α(t1 − t̄)

≤ C(α, τ0, ρ0)
(

M2
0 + |u0|

2
L∞(Ω)

) θα

ξ2
λN (Bρ). (6.17)

We come now to the short-term memory term M5. By means of assumption (6.10) and the
fact that −ġ1−α is positive and decreasing, we may estimate for σ ∈ (0, t1 − t̄),

∫ t̄

t0

∫

Bρ

[−ġ1−α(t̄+ σ − τ)] (u(τ, x) − k)2+ dxdτ ≤ Z2
k

∫ t̄

t0

[−ġ1−α(t̄+ σ − τ)]λN (Ak,ρ(τ)) dτ

≤ Z2
kλN (Bρ)

∫ t̄

t0+t̄
2

[−ġ1−α(t̄+ σ − τ)] dτ ≤ Z2
kλN (Bρ)

(

g1−α(σ) − g1−α(σ +
t̄− t0

2
)
)

.

Hence

M5 ≤
λN (Bρ)

ξ2

∫ s

0

gα(s− σ)
(

g1−α(σ) − g1−α(σ +
t̄− t0

2
)
)

dσ

=
λN (Bρ)

ξ2

(

1 −

∫ 1

0

gα(1 − ς)g1−α(ς +
t̄− t0

2s
) dς

)

≤
λN (Bρ)

ξ2

(

1 −

∫ 1

0

gα(1 − ς)g1−α(ς +
t̄− t0

2(t∗ − t̄)
) dς

)

=
λN (Bρ)

ξ2

(

1 −

∫ 1

0

gα(1 − ς)g1−α(ς +
22/α − θ1
2(θ1 − θ2)

) dς
)

. (6.18)

For the long-term memory term M4 we use the assumptions (6.9), (6.11). For a.a. σ ∈ (0, t1− t̄)
we have

∫

Bρ

∫ t0

0

[−ġ1−α(t̄+ σ − τ)] (u(τ, x) − k)2+ dτ dx

≤
Z2

kλN (Bρ)

µ2

∫ t0

0

[−ġ1−α(t̄+ σ − τ)]
(

2
[

22/α(
t1 − τ

t1 − t0
)
]γ

− 1
)2

dτ

≤
Z2

kλN (Bρ)

µ2
(t1 − t0)

∫ ∞

1

[−ġ1−α(σ + t̄− t1 + τ(t1 − t0))]
(

2[22/ατ ]γ − 1
)2

dτ.

Observe that the last integral is finite provided that 2γ < α. We will assume this in what follows.
Setting

ψγ(τ) = 2[22/ατ ]γ − 1, τ ≥ 1,
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we then obtain

M4 ≤
λN (Bρ)

(µξ)2
(t1 − t0)

∫ s

0

gα(s− σ)

∫ ∞

1

[−ġ1−α(σ + t̄− t1 + τ(t1 − t0))]ψ
2
γ(τ) dτdσ

=
λN (Bρ)

(µξ)2
·
t1 − t0
s

∫ 1

0

gα(1 − ς)

∫ ∞

1

[

− ġ1−α(ς +
t̄− t1 + τ(t1 − t0)

s
)
]

ψ2
γ(τ) dτdς

=
λN (Bρ)(t1 − t0)

(µξ)2s

∫ 1

0

gα(1 − ς)

∫ ∞

1

[

− ġ1−α(ς +
t̄− t1 + τ(t1 − t0)

s
)
]

(ψ2
γ(τ) − 1) dτdς

+
λN (Bρ)

(µξ)2

∫ 1

0

gα(1 − ς)g1−α(ς +
t̄− t0
s

) dς =: M4,1 + M4,2. (6.19)

To estimate the second term we use the monotonicity of g1−α and s ≤ t1 − t̄, thereby getting

M4,2 ≤
λN (Bρ)

(µξ)2

∫ 1

0

gα(1 − ς)g1−α(ς +
22/α − θ1

θ1
) dς. (6.20)

For M4,1 we need both the lower and the upper bound for s. We conclude that

M4,1 ≤
22/αλN (Bρ)

(µξ)2(θ1 − θ2)

∫ 1

0

gα(1 − ς)

∫ ∞

1

[

− ġ1−α(ς +
22/ατ − θ1

θ1
)
]

(

ψ2
γ(τ) − 1

)

dτdς. (6.21)

Combining (6.13) – (6.21) and enlarging M5 by the factor 1/µ2 we obtain with some constant

C = C(Λ, ν, α, r, q,N, τ0, ρ0,M0, |u0|L∞(Ω), |f |Lr(Lq))

the inequality

λN

(

Ãk+ξZk ,ρ(s)
)

≤ λN (Bρ)
{

σ1N + C
[ θα

(ξσ1)2
+
θα− 1

r

ξ2
+
θα

ξ2

]

+
1

µ2ξ2

[

1 −

∫ 1

0

gα(1 − ς)
(

g1−α(ς +
22/α − θ1
2(θ1 − θ2)

) − g1−α(ς +
22/α − θ1

θ1
)
)

dς
]

+
22/α

(θ1 − θ2)µ2ξ2

∫ 1

0

gα(1 − ς)

∫ ∞

1

[

− ġ1−α(ς +
22/ατ − θ1

θ1
)
]

(

ψ2
γ(τ) − 1

)

dτdς
}

=: λN (Bρ)
(

σ1N + β1(θ, ξ, σ1) + β2(θ1, θ2, µ, ξ) + β3(θ1, θ2, µ, ξ, γ)
)

.

Observe that the integral occurring in β2 is strictly positive if and only if

22/α − θ1
2(θ1 − θ2)

<
22/α − θ1

θ1
, (6.22)

by monotonicity of g1−α. (6.22) is equivalent to the condition 2θ2 < θ1, which can be satisfied by
suitable θ1, θ2 subject to 1 < θ2 < θ1 < 22/α. Notice as well that with ξ, σ1, µ, θ1, θ2 being fixed,
we have β1 → 0 as θ → 0, and β3 → 0 as γ → 0. The last assertion follows from Lebesgue’s
dominated convergence theorem.

We will now fix the parameters as follows. 1. Choose θ1 and θ2 such that 2 < 2θ2 < θ1 < 22/α.
2. Select then ξ, µ ∈ (0, 1) both close enough to 1 so that β2(θ1, θ2, µ, ξ) < 1. 3. Choose σ1 > 0
sufficiently small so that σ1N + β2(θ1, θ2, µ, ξ) < 1. 4. Finally fix sufficiently small θ > 0 and
γ0 ∈ (0, α/2) such that

β := σ1N + β1(θ, ξ, σ1) + β2(θ1, θ2, µ, ξ) + β3(θ1, θ2, µ, ξ, γ0) < 1.

Since β3 is non-increasing in γ, the assertion of the proposition follows immediately. �
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Remark 6.2.1 Note that the assertion of Proposition 6.2.1 remains valid when equation (6.1)
has a second term on the right-hand side of the form −Dig

i, where |g|2 ∈ Lr([0, T ];Lq(Ω)). In
fact, this would result in the additional term

gα ∗

∫

Bρ

g̃iDiψ dx = gα ∗

∫

Bρ

g̃i
(

η2Di(u− k)+ + 2η(u− k)+Diη
)

dx

on the right of (6.7). Using g̃iDi(u − k)+ ≤ ǫ0|D(u − k)+|
2 + C(ǫ0)|g̃|

2 with sufficiently small
ǫ0 > 0 the term containing |D(u−k)+|

2 can be absorbed and the |g̃|2-term is estimated similarly
as the f̃ -term above. Further, g̃iη(u − k)+Diη can be estimated by Young’s inequality, too,
leading to suitable terms.

From now on we will assume that

(P) The set of parameters θ, θ1, θ2, µ, ξ, σ1, β, γ0 is fixed such that the implication of Proposition
6.2.1 holds true.

Recall that M = ess supQ(2ρ) u. Let m = ess infQ(2ρ) u and m̄ = (M + m)/2. Suppose u
satisfies (6.9), (6.10), and (6.11) for k = m̄. Then, by Proposition 6.2.1,

λN

(

Am̄+ξZm̄,ρ(t)
)

≤ βλN (Bρ), a.a. t ∈ (t∗, t1).

Consequently,

λN

(

{x ∈ Bρ : u(t, x) − m̄ ≤ ξ(M − m̄)}
)

≥ λN

(

{x ∈ Bρ : u(t, x) − m̄ ≤ ξZm̄)}
)

≥ (1 − β)λN (Bρ), a.a. t ∈ (t∗, t1). (6.23)

Consider then in (t∗, t1) ×B2ρ the function

v = log
( (1 − ξ)(M − m̄)

M − u+ ε(M − m̄) + ρκ

)

, (6.24)

where ε ∈ (0, 1) is a parameter. Observe that we have v ≤ 0 whenever u − m̄ ≤ ξ(M − m̄). In
view of (6.23), the set of points in Bρ for which this holds constitutes a certain portion of Bρ,
for a.a. t ∈ (t∗, t1). This property will later allow us to apply the weighted Poincaré inequality,
Proposition 2.6.2, with suitable weight to v+ in (t∗, t1) ×B2ρ.

Notice as well that the estimate
ess sup

Q(ρ)

v ≤M1 (6.25)

(with M1 ≥ 0 independent of ρ, ε) implies the inequality

u ≤M − [e−M1(1 − ξ) − ε](M − m̄) + ρκ a.e. in Q(ρ).

Setting ω(ρ) = ess supQ(ρ) u− ess infQ(ρ) u and choosing ε sufficiently small, it follows that

µ̃ := max
{

1 − e−M1(1 − ξ)/2 + ε/2, (1 + µ)/2
}

∈ (1/2, 1),

and
ω(ρ) ≤ µ̃ω(2ρ) + ρκ. (6.26)

If the condition (6.9) with k = m̄ is violated, then

ω(ρ) ≤ ess sup
[t0,t1]×Bρ

u−m ≤ µ(M − m̄) + m̄−m+ ρκ =
µ+ 1

2
(M −m) + ρκ,

and hence the oscillation estimate(6.26) holds in this case as well.
Our next objective is to establish (6.25). We proceed in two steps. First we derive an L2-

estimate for v on a slightly larger cylinder. Using De Giorgi’s iteration technique this estimate
then allows us to establish a sup-bound for v on Q(ρ).

79



t t t t t

Q(2 )r

Q( )r

0 1
-

*

~

Poincaré

sup v

|v|
2

Q(1, )r

t

x

x
1(t )1

,

6.3 An L2-estimate for v on a cylinder containing Q(ρ)

Let t̃ = t1 − θθ3ρ
2/α with θ3 ∈ (1, θ2) being fixed. Our goal is to derive an L2-estimate for v on

the cylinder (t̃, t1) ×B3ρ/2(x1).

Proposition 6.3.1 Let ε ∈ (0, 1) and u be a bounded weak solution of (6.1). Suppose that the
assumptions formulated at the beginning of Section 6.2 are satisfied. Suppose that (P) holds and
that the conditions (6.9) and (6.10) are satisfied with k = m̄. Suppose further that

u(t, x) − m̄ ≤ (M − m̄)
(

2
[

22/α(
t1 − t

t1 − t0
)
]γ

− 1
)

, a.a. (t, x) ∈ (0, t0) ×B2ρ, (6.27)

where γ ∈ (0, γ0] is such that

ε ≥ εγ :=

∫ ∞

1

[−ġ1−α(σ −
θ2

22/α
)](ψγ(σ) − 1) dσ. (6.28)

Then
∫ t1

t̃

∫

B 3ρ
2

v(t, x)2 dx dt ≤ C ρN+ 2
α .

where C = C(Λ, ν, α, r, q,N, τ0, ρ0, ξ, β, θ, θ2, θ3,M0, |u0|L∞(Ω), |f |Lr([0,T ];Lq(Ω))), in particular C
does not depend on ρ, ε, and γ.

Proof. Let t ∈ (t∗, t1) and shift the time by setting s = t − t∗. Letting um̄ = u − m̄ and using
the same notation as in (6.3) with T0 = t∗, we have for all ψ ∈ °H1

2 (Ω),
∫

Ω

(

ψ∂s(g1−α,n ∗ ũm̄) + (hn ∗ [aijDju])̃ Diψ
)

dx =

∫

Ω

(

(hn ∗ f )̃ + g̃1−α,n(u0 − m̄) + H̃m̄,n

)

ψ dx, a.a. s ∈ (0, t1 − t∗), (6.29)

where

Hm̄,n(t, x) =

∫ t∗

0

[−ġ1−α,n(t− τ)](u(τ, x) − m̄) dτ, t ∈ (t∗, t1), x ∈ Ω.

Define

Φ(y) = − log
( (1 + ε)(M − m̄) − y + ρκ

(1 − ξ)(M − m̄)

)

, y ∈ [m− m̄,M − m̄]. (6.30)

Then Φ is bounded and

Φ(y) ≥ − log
( 4

1 − ξ

)

=: −C∞, (6.31)
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since (6.9) with k = m̄ implies

ρκ < Zm̄ ≤M − m̄.

We further have

Φ′(y) =
1

(1 + ε)(M − m̄) − y + ρκ

and

Φ′′(y) =
1

((1 + ε)(M − m̄) − y + ρκ)2
= Φ′(y)2 > 0,

for all y ∈ [m− m̄,M − m̄]. In particular, Φ is a convex function.
For s ∈ (0, t1 − t∗) we choose in (6.29) the test function ψ = Φ′(ũm̄)w2 with w ∈ C1

0 (B2ρ)
such that suppw ⊂ B2ρ, w = 1 in B3ρ/2, 0 ≤ w ≤ 1, |Dw| ≤ 4/ρ, and the domains {x ∈ B2ρ :
w(x)2 ≥ c} are convex for all c ≤ 1.

By the fundamental identity (2.6) and since ṽ = Φ(ũm̄), we have (with the spatial variable x
being suppressed)

Φ′(ũm̄(s))∂s(g1−α,n ∗ ũm̄)(s)

= ∂s

(

g1−α,n ∗ Φ(ũm̄)
)

(s) +
(

− Φ(ũm̄(s)) + ũm̄(s)Φ′(ũm̄(s))
)

g1−α,n(s)

+

∫ s

0

(

Φ(ũm̄(s− σ)) − Φ(ũm̄(s)) − Φ′(ũm̄(s))[ũm̄(s− σ) − ũm̄(s)]
)

[−ġ1−α,n(σ)] dσ

≥ ∂s

(

g1−α,n ∗ ṽ
)

(s) +
(

− ṽ(s) − 1 + (M − m̄)Φ′(ũm̄(s))
)

g1−α,n(s)

+

∫ s

0

Υ
(

ṽ(s) − ṽ(s− σ)
)

[−ġ1−α,n(σ)] dσ, (6.32)

where Υ(y) = ey − 1 − y, y ∈ R.
We next consider the history term on the right of (6.29). We write

Hm̄,n(t, x) =

∫ t0

0

[−ġ1−α,n(t− τ)](u(τ, x) − m̄) dτ +

∫ t∗

t0

[−ġ1−α,n(t− τ)](u(τ, x) − m̄) dτ

=: H
(1)
m̄,n(t, x) + H

(2)
m̄,n(t, x).

Since u ≤M in Q(2ρ), the short-term memory term can be estimated as follows.

H̃
(2)
m̄,n(s, x) ≤ (M − m̄)[g1−α,n(s) − g1−α,n(s+ t∗ − t0)], a.a. (s, x) ∈ (0, t1 − t∗) ×B2ρ. (6.33)

Thanks to (6.27) we further have

H̃
(1)
m̄,n(s, x) ≤ (M − m̄)

∫ t0

0

[−ġ1−α,n(s+ t∗ − τ)]
(

ψγ

( t1 − τ

t1 − t0

)

− 1
)

dτ

+ (M − m̄)

∫ t0

0

[−ġ1−α,n(s+ t∗ − τ)] dτ

≤ εγ,n(M − m̄)(t1 − t0)
−α + (M − m̄)g1−α,n(s+ t∗ − t0), (6.34)

for a.a. (s, x) ∈ (0, t1 − t∗) ×B2ρ, where

εγ,n = (t1 − t0)
1+α

∫

t0
t1−t0

1

[−ġ1−α,n(t∗ − t1 + σ(t1 − t0)]
(

ψγ(σ) − 1
)

dσ. (6.35)
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By means of integration by parts and the approximation property of the kernels hn one verifies
that as n→ ∞,

εγ,n → εγ,∞ :=

∫

t0
t1−t0

1

[−ġ1−α(σ −
θ2

22/α
)](ψγ(σ) − 1) dσ

≤

∫ ∞

1

[−ġ1−α(σ −
θ2

22/α
)](ψγ(σ) − 1) dσ = εγ . (6.36)

Setting

Rn(s) =

∫

B2ρ

(

(hn ∗ f )̃ − f̃ + (u0 − m̄)(g̃1−α,n − g̃1−α)
)

ψ dx

+

∫

B2ρ

(

(εγ,n − εγ,∞)(M − m̄)(t1 − t0)
−αψ +

[

ãijDjũ− (hn ∗ [aijDju])̃
]

Diψ
)

dx,

for s ∈ (0, t1−t∗), it follows from (6.29), (6.32), (6.33), (6.34), and (6.36) that with ψ = Φ′(ũm̄)w2

∫

B2ρ

w2
(

∂s(g1−α,n ∗ ṽ) − (ṽ + 1)g1−α,n

)

dx

+

∫

B2ρ

w2

∫ s

0

Υ(ṽ(s, x) − ṽ(s− σ, x))[−ġ1−α,n(σ)] dσ dx+

∫

B2ρ

ãijDj ũDiψ dx

≤

∫

B2ρ

(

f̃ + (u0 − m̄)g̃1−α + εγ(M − m̄)(t1 − t0)
−α

)

ψ dx+ Rn(s), (6.37)

for a.a. s ∈ (0, t1 − t∗).
By (H1), (H2), and since Dṽ = Φ′(ũm̄)Dũm̄ and Φ′′(y) = Φ′(y)2, we have

∫

B2ρ

ãijDjũDiψ dx =

∫

B2ρ

ãijDjũ
(

w2Φ′′(ũm̄)Diũm̄ + 2wΦ′(ũm̄)Diw
)

dx

=

∫

B2ρ

w2ãijDj ṽDiṽ dx+ 2

∫

B2ρ

wãijDj ṽDiw dx

≥
ν

2

∫

B2ρ

w2|Dṽ|2 dx −
2Λ2

ν

∫

B2ρ

|Dw|2 dx

≥
ν

2

∫

B2ρ

w2|Dṽ|2 dx − C(ν,Λ, N)ρN−2, a.a. s ∈ (0, t1 − t∗). (6.38)

Since u satisfies (6.23), we may apply Proposition 2.6.2 with weight w2 to ṽ+ in B2ρ pointwise
for a.a. s ∈ (0, t1 − t∗). In view of ṽ2 ≤ (ṽ+)2 +C2

∞ (c.p. (6.31)), and |Dṽ+|
2 ≤ |Dṽ|2 we obtain

∫

B2ρ

w2 ṽ2 dx ≤ C2
∞

∫

B2ρ

w2 dx+

∫

B2ρ

w2 [ṽ+]2 dx

≤ C2
∞λN (B2ρ) + C(N)

(4ρ)2N

([1 − β]λN (Bρ))
2(N−1)

N

∫

B2ρ

w2 |Dṽ+|
2 dx

≤ C2
∞λN (B2ρ) + C(N, β)ρ2

∫

B2ρ

w2 |Dṽ|2 dx, a.a. s ∈ (0, t1 − t∗). (6.39)

Turning to the first term on the right of (6.37), we may estimate for a.a. s ∈ (0, t1 − t∗),
∫

B2ρ

f̃ψ dx ≤
1

ρκ
|f̃(s, ·)|Lq(Ω)λN (B2ρ)

1
q′ = C(N, q)|f̃ (s, ·)|Lq(Ω)ρ

2κ+ 2
αr +N−2−κ

≤ C(N, q, ρ0)|f̃(s, ·)|Lq(Ω)ρ
2

αr +N−2. (6.40)
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Further, since g1−α(s+ t∗) ≤ g1−α(τ0),

∫

B2ρ

(u0 − m̄)g̃1−αψ dx ≤
1

ρκ
(|u0|L∞(Ω) +M0)λN (B2ρ)g1−α(s+ t∗)

≤ C(|u0|L∞(Ω),M0, N, α, τ0, ρ0)ρ
N−2. (6.41)

Note that ψ ≤ [ε(M − m̄)]−1. By assumption (6.28) we also have εγ ≤ ε. Therefore

∫

B2ρ

εγ(M − m̄)(t1 − t0)
−αψ dx ≤ (t1 − t0)

−αλN (B2ρ) = C(α, θ,N)ρN−2. (6.42)

From (6.37)–(6.42) we infer that

∫

B2ρ

w2
(

∂s(g1−α,n ∗ ṽ) − (ṽ + 1)g1−α,n

)

dx

+

∫

B2ρ

w2

∫ s

0

Υ(ṽ(s, x) − ṽ(s− σ, x))[−ġ1−α,n(σ)] dσ dx+
ν0
ρ2

∫

B2ρ

w2ṽ2 dx

≤ CρN−2
(

1 + |f̃(s, ·)|Lq(Ω)ρ
2

αr

)

+ Rn(s), a.a. s ∈ (0, t1 − t∗), (6.43)

where ν0 = ν0(ν,N, β) and C = C(|u0|L∞(Ω),M0, N, α, τ0, ρ0, ν,Λ, q, θ, β, C∞) are positive con-
stants.

We next introduce the function

V (s) =

∫

B2ρ
w(x)2 ṽ(s, x) dx

∫

B2ρ
w(x)2 dx

, s ∈ (0, t1 − t∗).

By Jensen’s inequality,

V (s)2 ≤

∫

B2ρ
w(x)2 ṽ(s, x)2 dx

∫

B2ρ
w(x)2 dx

, a.a. s ∈ (0, t1 − t∗). (6.44)

Since Υ is convex, Jensen’s inequality also yields

∫ s

0

Υ
(

V (s) − V (s− σ)
)

[−ġ1−α,n(σ)] dσ

≤

∫ s

0

1
∫

B2ρ
w(x)2 dx

∫

B2ρ

w(x)2Υ(ṽ(s, x) − ṽ(s− σ, x))[−ġ1−α,n(σ)] dσ dx, (6.45)

a.e. in (0, t1− t∗). By the fundamental identity (2.6) with H(y) = − log y applied to the function
e−V , we further have

−eV (s) ∂s

(

g1−α,n ∗ e−V
)

(s) = ∂s(g1−α,n ∗ V )(s) −
(

V (s) + 1
)

g1−α,n(s)

+

∫ s

0

Υ
(

V (s) − V (s− σ)
)

[−ġ1−α,n(σ)] dσ, a.a. s ∈ (0, t1 − t∗). (6.46)

Dividing then (6.43) by
∫

B2ρ
w2 dx, and setting

F (s) = 1 + |f̃(s, ·)|Lq(Ω)ρ
2

αr , R̄n(s) =
|Rn(s)|

∫

B2ρ
w2 dx
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it follows by virtue of (6.44)–(6.46) that

−eV (s) ∂s

(

g1−α,n∗e
−V

)

(s) +
ν1
ρ2
V (s)2 +

ν1
ρN+2

∫

B2ρ

w(x)2 ṽ(s, x)2 dx

≤
C1

ρ2
F (s) + R̄n(s), a.a. s ∈ (0, t1 − t∗), (6.47)

with ν1 = ν1(ν,N, β) > 0 and C1 = C1(|u0|L∞(Ω),M0, N, α, τ0, ρ0, ν,Λ, q, θ, β, C∞) > 0.
We next put

W (s) = V (s) + C∞ + 1, s ∈ (0, t1 − t∗).

Since ṽ ≥ −C∞ (see (6.31)), we have W ≥ 1. Furthermore, (6.47) implies

−eW (s) ∂s

(

g1−α,n∗e
−W

)

(s) +
ν1
2ρ2

W (s)2 +
ν1

ρN+2

∫

B2ρ

w(x)2 ṽ(s, x)2 dx

≤
C2

ρ2
F (s) + R̄n(s), a.a. s ∈ (0, t1 − t∗), (6.48)

where C2 = C1 + (C∞ + 1)2ν1. We then fix a negative number ζ such that

−1 < ζ <
1

α
− 2. (6.49)

Multiplying (6.48) by W ζ(≤ 1) and dropping the third term on the left-hand side gives

−W ζeW∂s

(

g1−α,n ∗ e−W
)

+
ν1
2ρ2

W 2+ζ ≤
C2

ρ2
F + R̄n. (6.50)

By the fundamental identity (2.6) applied to the function H(y) = (− log y)1+ζ/(1 + ζ), where
y ∈ (0, 1/e], we have

−W ζeW ∂s

(

g1−α,n ∗ e−W
)

≥ ∂s

(

g1−α,n ∗
W 1+ζ

1 + ζ

)

−
(W 1+ζ

1 + ζ
+W ζ

)

g1−α,n.

In fact, H is convex since

H ′′(y) =
1

y2
(− log y)ζ−1

(

ζ − log y
)

≥ 0, y ∈ (0, 1/e].

From (6.50) and W ζ ≤ 1 we thus conclude that for a.a. s ∈ (0, t1 − t∗),

∂s

(

g1−α,n ∗
W 1+ζ

1 + ζ

)

+
ν1
2ρ2

W 2+ζ ≤
(W 1+ζ

1 + ζ
+ 1

)

g1−α,n +
C2

ρ2
F + R̄n.

Integrating from 0 to t1 − t∗ and sending n→ ∞ yields

ν1
2ρ2

∫ t1−t∗

0

W 2+ζ ds ≤

∫ t1−t∗

0

(W 1+ζ

1 + ζ
+ 1

)

g1−α ds+
C2

ρ2
|F |L1([0,t1−t∗])

≤

∫ t1−t∗

0

(

ε̃W 2+ζ + ε̃−(1+ζ)C(ζ)g2+ζ
1−α

)

ds+ |g1−α|L1([0,t1−t∗]) +
C2

ρ2
|F |L1([0,t1−t∗])

for all ε̃ > 0. By Hölder’s inequality,

1

ρ2
|F |L1([0,t1−t∗]) ≤ θθ2ρ

2
α−2 + ρ

2
αr −2|f̃ |Lr([0,t1−t∗];Lq(Ω))(θθ2)

1
r′ ρ

2
αr′ .
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Choosing ε̃ = ν1/(4ρ
2) it then follows that

∫ t1−t∗

0

W ds ≤

∫ t1−t∗

0

W 2+ζ ds ≤ C3ρ
2/α

(

1 + |f |Lr([0,T ];Lq(Ω))

)

, (6.51)

where C3 = C3(ν1, θ, θ2, α, r, ζ, C2). This L1-estimate for the function W on (0, t1− t∗) is crucial
for what follows.

We return to (6.48) and use the identity (6.46) (with V replaced byW ) to reformulate the first
term. Note that the last term in (6.46) is nonnegative, due to the convexity of H(y) = − log y.
Therefore

∂s(g1−α,n ∗W )(s)−
(

W (s) + 1
)

g1−α,n(s) +
ν1

ρN+2

∫

B2ρ

w(x)2 ṽ(s, x)2 dx

≤
C2

ρ2
F (s) + R̄n(s), a.a. s ∈ (0, t1 − t∗).

We choose ϕ ∈ C1([0, t1−t∗]) such that 0 ≤ ϕ ≤ 1, ϕ = 0 in [0, (t̃−t∗)/2], ϕ = 1 in [t̃−t∗, t1−t∗],
and 0 ≤ ϕ̇ ≤ 4/(t̃− t∗). Multiplying the last inequality by ϕ(s) and using Lemma 2.3.3 yields

∂s(g1−α,n ∗ [ϕW ])(s) −
(

W (s) + 1
)

ϕ(s)g1−α,n(s) +
ν1

ρN+2

∫

B2ρ

ϕ(s)w(x)2 ṽ(s, x)2 dx

≤

∫ s

0

[−ġ1−α,n(s− σ)]
(

ϕ(s) − ϕ(σ)
)

W (σ) dσ +
C2

ρ2
F (s) + R̄n(s)

≤
4

t̃− t∗

∫ s

0

[−ġ1−α,n(s− σ)](s − σ)W (σ) dσ +
C2

ρ2
F (s) + R̄n(s).

We next integrate from 0 to t1 − t∗ and send n → ∞. Selecting an appropriate subsequence, if
necessary, and employing (6.51) we obtain

ν1
ρN+2

∫ t1−t∗

0

∫

B2ρ

ϕ(s)w(x)2 ṽ(s, x)2 dx ds ≤

∫ t1−t∗

0

(

W (s) + 1
)

ϕ(s)g1−α(s) ds

+
4

t̃− t∗

∫ t1−t∗

0

∫ s

0

[−ġ1−α(s− σ)](s − σ)W (σ) dσ ds+
C2

ρ2
|F |L1([0,t1−t∗])

≤ g1−α

( t̃− t∗
2

)

|W + 1|L1([0,t1−t∗]) +
4α

t̃− t∗

(

g2−α ∗W
)

(t1 − t∗) +
C2

ρ2
|F |L1([0,t1−t∗])

≤ g1−α

( t̃− t∗
2

)(

t1 − t∗ + |W |L1([0,t1−t∗])

)

+
4αg2−α(t1 − t∗)

t̃− t∗
|W |L1([0,t1−t∗])

+
C2

ρ2
|F |L1([0,t1−t∗])

≤ C4(α, θ, θ2, θ3, C3) ρ
2
α−2

(

1 + |f |Lr([0,T ];Lq(Ω))

)

,

which in turn implies

∫ t1

t̃

∫

B 3ρ
2

v(t, x)2 dx dt ≤ C5(ν1, C4) ρ
N+ 2

α

(

1 + |f |Lr([0,T ];Lq(Ω))

)

.

This completes the proof of Proposition 6.3.1. �
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Remark 6.3.1 Note that the assertion of Proposition 6.3.1 remains true when equation (6.1)
has a second term on the right-hand side of the form −Dig

i, where |g|2 ∈ Lr([0, T ];Lq(Ω)). In
fact, recall Remark 6.2.1 and note that for a.a. s ∈ (0, t1 − t∗) and any ǫ0 > 0 we have

∫

B2ρ

g̃iDiψ dx =

∫

B2ρ

g̃i
(

w2Φ′(ũm̄)Diṽ + 2wΦ′(ũm̄)Diw
)

dx

≤

∫

B2ρ

(

ǫ0w
2|Dṽ|2 + C(ǫ0)|g̃|

2Φ′(ũm̄)2 + |Dw|2
)

dx.

The first term can be absorbed for sufficiently small ǫ0, while the second term is estimated
similarly to the f̃ -term above:

∫

B2ρ

g̃iDiψ dx ≤ C(N, q)
∣

∣|g̃(s, ·)|2
∣

∣

Lq(Ω)
ρ

2
αr

+N−2.

Observe that this is possible, since in the line before (6.40) we have an extra factor ρκ at disposal
which is just good enough to control the additional factor Φ′(ũm̄).

6.4 A sup-bound for v on the cylinder Q(ρ)

Proposition 6.4.1 Let the assumptions of Proposition 6.3.1 be satisfied. Then

ess sup
Q(ρ)

v ≤M1, (6.52)

where 0 ≤ M1 = M1(Λ, ν, α, r, q,N, τ0, ρ0, ξ, β, θ, θ2, θ3,M0, |u0|L∞(Ω), |f |Lr([0,T ];Lq(Ω))), in par-
ticular M1 does not depend on ρ, ε, and γ.

Proof. 1. Local truncated energy estimates. We introduce the family of nested cylinders

Q(ϑ, ρ) = (t1 − [1 + ϑ(θ3 − 1)]θρ2/α, t1) ×Bρ(1+ϑ/2)(x1)

with parameter ϑ ∈ [0, 1]. Note that Q(0, ρ) = Q(ρ) and Q(1, ρ) = (t̃, t1) ×B3ρ/2.
Let 0 ≤ ϑ1 < ϑ2 ≤ 1 be fixed. We set

t′ = t1 − [1 + ϑ2(θ3 − 1)]θρ2/α, t̂ = t1 − [1 + ϑ1(θ3 − 1)]θρ2/α.

Let t ∈ (t′, t1) and shift the time by setting s = t − t′. Employing the same notation as in
(6.3) with T0 = t′, we have for all ψ ∈ °H1

2 (Ω),

∫

Ω

(

ψ∂s(g1−α,n ∗ ũm̄) + (hn ∗ [aijDju])̃ Diψ
)

dx =

∫

Ω

(

(hn ∗ f )̃ + g̃1−α,n(u0 − m̄) + H̃m̄,n

)

ψ dx, a.a. s ∈ (0, t1 − t′), (6.53)

where

Hm̄,n(t, x) =

∫ t′

0

[−ġ1−α,n(t− τ)](u(τ, x) − m̄) dτ, t ∈ (t̃, t1), x ∈ Ω.

Define the function Ψ by means of

Ψ(y) =
1

2
(Φ(y) − k)2+, y ∈ [m− m̄,M − m̄],
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with Φ as in (6.30) and k > 0. Then Ψ is a C1 function,

Ψ′(y) = Φ′(y)(Φ(y) − k)+ =
(Φ(y) − k)+

(1 + ε)(M − m̄) − y + ρκ
,

and Ψ is convex, by virtue of Φ′,Φ′′ > 0.
For s ∈ (0, t1− t

′) we choose in (6.53) the test function ψ = Ψ′(ũm̄)η2 where η ∈ C1
0 (B2ρ) has

values only in [0, 1], supp η ⊂ Bρ(1+ϑ2/2), η = 1 in Bρ(1+ϑ1/2), and |Dη| ≤ 4/(ρ[ϑ2 − ϑ1]). Since

−Ψ(y)+Ψ′(y)y = −
1

2
(Φ(y) − k)2+ + (Φ(y) − k)+Φ′(y)y

≥ −
1

2
(Φ(y) − k)2+ +

(

[M − m̄]Φ′(y) − 1
)

(Φ(y) − k)+

and ṽ = Φ(ũm̄), the fundamental identity (2.6) yields

Ψ′(ũm̄)∂s(g1−α,n ∗ ũm̄) ≥ ∂s

(

g1−α,n ∗ Ψ(ũm̄)
)

+
(

− Ψ(ũm̄) + ũm̄Ψ′(ũm̄)
)

g1−α,n

≥
1

2
∂s

(

g1−α,n ∗ (ṽ − k)2+

)

+
(

−
1

2
(ṽ − k)2+ +

(

[M − m̄]Φ′(ũm̄) − 1
)

(ṽ − k)+

)

g1−α,n. (6.54)

We split again the history term on the right of (6.53) into a long- and a short-term memory
term:

Hm̄,n(t, x) =

∫ t0

0

[−ġ1−α,n(t− τ)](u(τ, x) − m̄) dτ +

∫ t′

t0

[−ġ1−α,n(t− τ)](u(τ, x) − m̄) dτ

=: H
(1)
m̄,n(t, x) + H

(2)
m̄,n(t, x).

Similarly as in the proof of Proposition 6.3.1 (c.p. (6.33) and (6.34)) we obtain

H̃
(2)
m̄,n(s, x) ≤ (M − m̄)[g1−α,n(s) − g1−α,n(s+ t′ − t0)],

H̃
(1)
m̄,n(s, x) ≤ εγ,n(M − m̄)(t1 − t0)

−α + (M − m̄)g1−α,n(s+ t′ − t0),

for a.a. (s, x) ∈ (0, t1 − t′) ×B2ρ, and hence

H̃m̄,n(s, x) ≤ (M − m̄)g1−α,n(s) + εγ,n(M − m̄)(t1 − t0)
−α, (6.55)

for a.a. (s, x) ∈ (0, t1 − t′) ×B2ρ, where εγ,n is defined as in (6.35).
Inserting ψ = Ψ′(ũm̄)η2 into (6.53) and using (6.54) and (6.55) we obtain with ρ2 := ρ(1 +

ϑ2/2)

1

2

∫

Bρ2

η2 ∂s

(

g1−α,n ∗ (ṽ − k)2+

)

dx −
1

2

∫

Bρ2

η2(ṽ − k)2+g1−α,n dx

+

∫

Bρ2

η2(M − m̄)Φ′(ũm̄)(ṽ − k)+g1−α,n dx−

∫

Bρ2

η2(ṽ − k)+g1−α,n dx

+

∫

Bρ2

(hn ∗ [aijDju])̃ Di

[

Ψ′(ũm̄)η2
]

dx

≤

∫

Bρ2

(

(hn ∗ f )̃ + g̃1−α,n(u0 − m̄) + H̃m̄,n

)

Φ′(ũm̄)(ṽ − k)+η
2 dx

≤

∫

Bρ2

(

(hn ∗ f )̃ + g̃1−α,n(u0 − m̄)
)

Φ′(ũm̄)(ṽ − k)+η
2 dx

+

∫

Bρ2

(

(M − m̄)g1−α,n + εγ,n(M − m̄)(t1 − t0)
−α

)

Φ′(ũm̄)(ṽ − k)+η
2 dx, (6.56)
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for a.a. s ∈ (0, t1 − t′).
Next, choose ϕ ∈ C1([0, t1 − t′]) such that 0 ≤ ϕ ≤ 1, ϕ = 0 in [0, (t̂ − t′)/2], ϕ = 1 in

[t̂ − t′, t1 − t′], and 0 ≤ ϕ̇ ≤ 4/(t̂ − t′). We multiply (6.56) by ϕ2 and apply Lemma 2.3.3.
Estimating the commutator term similarly as above we get

1

2

∫

Bρ2

η2 ∂s

(

g1−α,n ∗
[

ϕ(ṽ − k)+
]2

)

dx+

∫

Bρ2

(hn ∗ [aijDju])̃ Di

[

Ψ′(ũm̄)η2
]

ϕ2 dx

≤

∫

Bρ2

ϕ2η2
(

(ṽ − k)+ +
1

2
(ṽ − k)2+

)

g1−α,n dx

+

∫

Bρ2

(

(hn ∗ f )̃ + g̃1−α,n(u0 − m̄) + εγ,n(M − m̄)(t1 − t0)
−α

)

Φ′(ũm̄)(ṽ − k)+η
2ϕ2 dx

+
4

t̂− t′

∫ s

0

[−ġ1−α,n(s− σ)](s − σ)

∫

Bρ2

η(x)2
(

ṽ(σ, x) − k
)2

+
dx dσ.

Convolve this last inequality with gα and send n→ ∞. Selecting an appropriate subsequence, if
necessary, this gives

1

2

∫

Bρ2

ϕ2η2(ṽ − k)2+ dx+ gα ∗

∫

Bρ2

ãijDj ũDi

[

Ψ′(ũm̄)η2
]

ϕ2 dx ≤ gα ∗G1, (6.57)

for a.a. s ∈ (0, t1 − t′), where

G1(s) =

∫

Bρ2

ϕ2η2
(

(ṽ − k)+ +
1

2
(ṽ − k)2+

)

g1−α dx+
4α

t̂− t′
g1−α ∗

∫

Bρ2

η2(ṽ − k)2+ dx

+

∫

Bρ2

(

|f̃ | + g̃1−α|u0 − m̄| + εγ(M − m̄)(t1 − t0)
−α

)

Φ′(ũm̄)(ṽ − k)+η
2ϕ2 dx.

Since ṽ = Φ(ũm̄) and Φ′′(y) = Φ′(y)2, we further have

D
[

Ψ′(ũm̄)η2
]

= η2Φ′(ũm̄)D(ṽ − k)+ + η2(ṽ − k)+Φ′′(ũm̄)Dũm̄ + 2ηDηΦ′(ũm̄)(ṽ − k)+

= η2Φ′(ũm̄)D(ṽ − k)+ + η2Φ′(ũm̄)(ṽ − k)+Dṽ + 2ηDηΦ′(ũm̄)(ṽ − k)+,

and therefore by (H1) and (H2)
∫

Bρ2

ãijDj ũDi

[

Ψ′(ũm̄)η2
]

ϕ2 dx =

∫

Bρ2

ϕ2η2ãijDj ṽ
(

Di(ṽ − k)+ + (ṽ − k)+Diṽ
)

dx

+

∫

Bρ2

ϕ2ãij(ṽ − k)+Dj ṽ 2ηDiη dx

≥ ν

∫

Bρ2

ϕ2η2
(

|D(ṽ − k)+|
2 + (ṽ − k)+|Dṽ|

2
)

dx

− 2Λ

∫

Bρ2

ϕ2(ṽ − k)+|D(ṽ − k)+| |Dη|η dx

≥
ν

2

∫

Bρ2

ϕ2η2|D(ṽ − k)+|
2 dx−

2Λ2

ν

∫

Bρ2

ϕ2|Dη|2(ṽ − k)2+ dx.

Combining this and (6.57) we infer that

1

2

∫

Bρ2

ϕ2η2(ṽ − k)2+ dx+ gα ∗
ν

2

∫

Bρ2

ϕ2η2|D(ṽ − k)+|
2 dx ≤ gα ∗G, (6.58)
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for a.a. s ∈ (0, t1 − t′), where G is defined by

G(s) = G1(s) +
2Λ2

ν

∫

Bρ2

ϕ2|Dη|2(ṽ − k)2+ dx.

We may drop the second term in (6.58), which is nonnegative. By Young’s inequality for
convolutions we conclude that for all p ∈ (1, 1/(1 − α))

|ϕη(ṽ − k)+|
2
L2p([0,t1−t′];L2(Bρ2)) ≤ 2|gα|Lp([0,t1−t′])|G|L1([0,t1−t′]). (6.59)

Here

|gα|Lp([0,t1−t′]) =
(t1 − t′)α−1+1/p

Γ(α)[(α − 1)p+ 1]1/p
≤ C1(α, p, θ)ρ

2
α (α−1+ 1

p ). (6.60)

We may also drop the first term in (6.58), convolve the resulting inequality with g1−α and
evaluate at s = t1 − t′, thereby obtaining

∫ t1−t′

0

∫

Bρ2

ϕ2η2|D(ṽ − k)+|
2 dx ds ≤

2

ν
|G|L1([0,t1−t′]). (6.61)

Using

∫ t1−t′

0

∫

Bρ2

|D
(

ϕη(ṽ − k)+
)

|2 dx ds ≤

2

∫ t1−t′

0

∫

Bρ2

(

ϕ2η2|D(ṽ − k)+|
2 + ϕ2|Dη|2(ṽ − k)2+

)

dx ds

we deduce from (6.59)–(6.61) and the definition of G that

ρ−
2
α (α−1+ 1

p )|ϕη(ṽ − k)+|
2
L2p([0,t1−t′];L2(Bρ2 )) +

∣

∣D[ϕη(ṽ − k)+]
∣

∣

2

L2([0,t1−t′]×Bρ2 )

≤ C2(ν,Λ, C1)
(

∫ t1−t′

0

G1(s) ds+

∫ t1−t′

0

∫

Bρ2

ϕ2|Dη|2(ṽ − k)2+ dx ds
)

. (6.62)

We will next estimate the right-hand side of (6.62). By the assumptions on ϕ and η we have

∫ t1−t′

0

∫

Bρ2

ϕ2|Dη|2(ṽ − k)2+ dx ds ≤
16

ρ2(ϑ2 − ϑ1)2

∫ t1−t′

0

∫

Bρ2

(ṽ − k)2+ dx ds.

Turning to G1 we set

Ãk,ρ2 (s) = {x ∈ Bρ2 : ṽ(s, x) > k}, s ∈ (0, t1 − t′).

Then we have for a.a. s ∈ (0, t1 − t′)

∫

Bρ2

ϕ2η2(ṽ − k)+g1−α dx ≤ g1−α

( t̂− t′

2

)

∫

Ãk,ρ2
(s)

(

(ϑ2 − ϑ1)
α +

(ṽ − k)2+
(ϑ2 − ϑ1)α

)

dx

≤
C3(α, θ, θ3)

ρ2

∫

Ãk,ρ2
(s)

(

1 +
(ṽ − k)2+

(ϑ2 − ϑ1)2α

)

dx,
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and also
1

2

∫

Bρ2

ϕ2η2(ṽ − k)2+g1−α dx ≤
C4(α, θ, θ3)

ρ2(ϑ2 − ϑ1)α

∫

Bρ2

(ṽ − k)2+ dx.

Further,

∫ t1−t′

0

4α

t̂− t′
g1−α ∗

∫

Bρ2

η2(ṽ − k)2+ dx ds ≤
4αg2−α(t1 − t′)

t̂− t′

∫ t1−t′

0

∫

Bρ2

(ṽ − k)2+ dx ds

≤
C5(α, θ, θ3)

ρ2(ϑ2 − ϑ1)

∫ t1−t′

0

∫

Bρ2

(ṽ − k)2+ dx ds.

By (H3), there exists p ∈ (1, 1/(1 − α)) such that for r and q from (H3) we have

p′

r
+

N

2q
= 1 − κ̃ with κ̃ ∈ (0, 1).

Here p′ = p/(p− 1) as usual. We fix this p and set

δ =
2κ̃

2(p′ − 1) +N

and r̃ = 2r′(1 + δ) and q̃ = 2q′(1 + δ). Observing that Φ′(ũm̄) ≤ ρ−κ on [0, t1 − t′] × Bρ2 and
using Hölder’s inequality, we then have for any ε1 > 0

∫ t1−t′

0

∫

Bρ2

|f̃ |Φ′(ũm̄)(ṽ − k)+η
2ϕ2 dx ds ≤ ρ−κ|f̃ |Lr([0,t1−t′];Lq(Bρ2 ))

× |ϕη(ṽ − k)+|Lr̃([0,t1−t′];Lq̃(Bρ2 ))µ
(1+2δ)/r̃
k,ρ2

≤ ε1|ϕη(ṽ − k)+|
2
Lr̃([0,t1−t′];Lq̃(Bρ2))ρ

−z +
1

ε1
µ

2(1+2δ)/r̃
k,ρ2

ρz−2κ|f |2Lr([0,T ];Lq(Ω)),

with

µk,ρ2 =

{

∫ t1−t′

0 λN (Ãk,ρ2 )
r′

q′ ds : q > 1

λ1({s ∈ (0, t1 − t′) : λN (Ãk,ρ2 (s)) > 0}) : q = 1,

and

z = 2
( 2

αr̃
+
N

q̃

)

+ 2 −
2

α
−N.

Further

µ
2(1+2δ)

r̃

k,ρ2
ρz−2κ = µ

1
r′

+ δ
r′(1+δ)

k,ρ2
ρz−2κ ≤ C6(α, θ, θ3, r, δ)µ

1
r′

k,ρ2
ρ

δ
1+δ

(

N
q′

+ 2
αr′

)

+z−2κ

and

δ

1 + δ

(N

q′
+

2

αr′

)

+ z − 2κ =
δ

1 + δ

(N

q′
+

2

αr′
)

+
2

1 + δ

( 1

αr′
+
N

2q′

)

+ 2 −
2

α
−N − 2κ

=
( 2

αr′
+
N

q′

)

+ 2 −
2

α
−N + 4(1 − κ) − 4 + 2κ

=
( 2

αr′
+
N

q′

)

− 2 −
2

α
−N + 4

( 1

αr
+
N

2q

)

+ 2κ

= −
( 2

αr′
+
N

q′

)

+
2

α
+N − 2 + 2κ. (6.63)
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Therefore

∫ t1−t′

0

∫

Bρ2

|f̃ |Φ′(ũm̄)(ṽ − k)+η
2ϕ2 dx ds ≤ ε1|ϕη(ṽ − k)+|

2
Lr̃([0,t1−t′];Lq̃(Bρ2 ))ρ

−z

+
C6

ε1
µ

1
r′

k,ρ2
ρ
−
(

2
αr′

+ N
q′

)

ρ
2
α +N−2ρ2κ

0 |f |2Lr([0,T ];Lq(Ω)).

Using g̃1−α(s) < g1−α(τ0), the same argument yields

∫ t1−t′

0

∫

Bρ2

g̃1−α |u0 − m̄|Φ′(ũm̄)(ṽ − k)+η
2ϕ2 dx ds ≤ ε1|ϕη(ṽ − k)+|

2
Lr̃([0,t1−t′];Lq̃(Bρ2 ))ρ

−z

+
C7

ε1
µ

1
r′

k,ρ2
ρ
−
(

2
αr′

+ N
q′

)

ρ
2
α +N−2ρ2κ

0

with C7 = C7(α,N, θ, θ3, r, q, C6, τ0, |u0|L∞(Ω),M0).
Finally, since εγ ≤ ε, we may estimate

∫

Bρ2

εγ(M − m̄)(t1 − t0)
−αΦ′(ũm̄)(ṽ − k)+η

2ϕ2 dx ≤
1

4θαρ2

∫

Bρ2

(ṽ − k)+η
2ϕ2 dx

≤
1

4θαρ2

∫

Ãk,ρ2
(s)

(

1 + (ṽ − k)2+
)

dx.

From (6.62) and the previous estimates it follows that for any ε1 > 0

ρ−
2
α (α−1+ 1

p )|ϕη(ṽ − k)+|
2
L2p([0,t1−t′];L2(Bρ2 )) +

∣

∣D[ϕη(ṽ − k)+]
∣

∣

2

L2([0,t1−t′]×Bρ2 )

≤ 2ε1|ϕη(ṽ − k)+|
2
Lr̃([0,t1−t′];Lq̃(Bρ2 ))ρ

−z + C8

( 1

ρ2(ϑ2 − ϑ1)2
|(ṽ − k)+]

∣

∣

2

L2([0,t1−t′]×Bρ2)

+
1

ε1
µ

1
r′

k,ρ2
ρ
−
(

2
αr′

+ N
q′

)

ρ
2
α +N−2 +

1

ρ2

∫ t1−t′

0

λN (Ãk,ρ2 ) ds
)

, (6.64)

where C8 = C8(α, θ, θ3, ν,Λ, τ0, p, r, q, δ, ρ0, |f |Lr(Lq), |u0|L∞(Ω),M0).
Observe that (6.64) is scaling invariant with respect to ρ > 0, in fact, each of the terms

behaves like ρN−2+2/α when changing coordinates as s → s/ρ2/α and x → x1 + (x − x1)/ρ.
Notice as well that the numbers r̃ and q̃ are subject to conditions (2.12) with (r, q) replaced by
(r̃, q̃). Therefore, choosing ε1 sufficiently small, the first term on the right-hand side of (6.64) is
dominated by one half of the sum on the left-hand side.

Further, it is appropriate to reformulate the last term in (6.64) in order to obtain the same
structure as for the term involving µk,ρ2 . To this end, we put

r̂ =
1
α + N

2

1 − κ
,

which means that the pair (r̂, q̂) with q̂ := r̂ satisfies the same condition as (r, q) in (H3). Then
we have

µ̂k,ρ2 :=

∫ t1−t′

0

λN (Ãk,ρ2 )
r̂′

q̂′ ds =

∫ t1−t′

0

λN (Ãk,ρ2 ) ds

≤ µ̂
1
r̂′

k,ρ2
(

∫ t1−t′

0

∫

Bρ2

dx ds)
1
r̂ ≤ C9(α,N, θ, θ3, r̂) µ̂

1
r̂′

k,ρ2
ρ
−
(

2
αr̂′

+ N
q̂′

)

ρ
2
α +N .
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We conclude that

ρ−
2
α (α−1+ 1

p )|ϕη(ṽ − k)+|
2
L2p([0,t1−t′];L2(Bρ2 )) +

∣

∣D[ϕη(ṽ − k)+]
∣

∣

2

L2([0,t1−t′]×Bρ2 )

≤ C10

( 1

ρ2(ϑ2 − ϑ1)2
|(ṽ − k)+|

2
L2([0,t1−t′]×Bρ2 )

+ ρ
2
α +N−2

[

µ
1
r′

k,ρ2
ρ
−
(

2
αr′

+ N
q′

)

+ µ̂
1
r̂′

k,ρ2
ρ
−
(

2
αr̂′

+ N
q̂′

)

])

, (6.65)

with C10 = C10(C8, C9, N, r̂). Returning to the function v and using the properties of the cut-off
functions we obtain with J(ϑ, ρ) = (t1 − [1 + ϑ(θ3 − 1)]θρ2/α, t1)

ρ−
2
α (α−1+ 1

p )|(v − k)+|
2
L2p(J(ϑ1,ρ);L2(Bρ(1+ϑ1/2)))

+
∣

∣D(ṽ − k)+
∣

∣

2

L2(Q(ϑ1,ρ))

≤ C10

( 1

ρ2(ϑ2 − ϑ1)2
|(v − k)+|

2
L2(Q(ϑ2,ρ))

+ ρ
2
α +N−2

[

µ(k, ϑ2, ρ)
1
r′ ρ

−
(

2
αr′

+ N
q′

)

+ µ̂(k, ϑ2, ρ)
1
r̂′ ρ

−
(

2
αr̂′

+ N
q̂′

)

])

(6.66)

for all 0 ≤ ϑ1 < ϑ2 ≤ 1 and k > 0, where

µ(k, ϑ, ρ) =

{

∫

J(ϑ,ρ) λN (Ak,ρ(1+ϑ/2)(t))
r′

q′ dt : q > 1

λ1({t ∈ J(ϑ, ρ) : λN (Ak,ρ(1+ϑ/2)(t)) > 0}) : q = 1,

Ak,ρ̃(t) = {x ∈ Bρ̃ : v(t, x) > k}, t ∈ (t̃, t1), ρ̃ > 0,

and µ̂(k, ϑ, ρ) is defined correspondingly.
2. Iterative Inequalities. We next normalize to ρ = 1. To this purpose we change variables

as t→ t1 + (t− t1)/ρ
2/α and x→ x1 + (x− x1)/ρ. Denoting the new variables again by t and x

and the transformed function again by v the inequalities (6.66) take the form

|(v − k)+|
2
Vp(Q(ϑ1,1)) ≤ 2C10

( 1

(ϑ2 − ϑ1)2
|(v − k)+|

2
L2(Q(ϑ2,1))

+ µ(k, ϑ2, 1)
1
r′ + µ̂(k, ϑ2, 1)

1
r̂′

)

. (6.67)

We consider the family of boxes Qn = Q(ζn, 1) = J(ζn, 1) × B1+ζn/2 with ζn = 2−(n+1),
n = 0, 1, 2, . . ., and introduce the sequence of increasing levels

kn = K
(

2 −
1

2n

)

,

where K ≥ 1 is a number to be chosen. For n = 0, 1, 2, . . . we set

Yn =
1

K2

∣

∣(v − kn)+
∣

∣

2

L2(Qn)

and
Zn = µ(kn, ζn, 1)

1
r′(1+δ) + µ̂(kn, ζn, 1)

1
r̂′(1+δ) .

Let ζ̃n = (ζn + ζn+1)/2. Choose a cutoff-function ηn ∈ C1(B1+ζn/2) that has values only in
[0, 1], such that supp ηn ⊂ B1+ζ̃n/2, ηn = 1 in B1+ζn+1/2, and |Dηn| ≤ 32 · 2n. Let

χ =
2p+N(p− 1)

2 +N(p− 1)
.
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Then we have with Jn = J(ζn, 1)

Yn+1 ≤ K−2

∫

Jn+1

∫

Akn+1,1+ζ̃n/2

(v − kn+1)
2η2

n dx dt

≤ K−2
(

∫

Jn+1

λN (Akn+1,1+ζ̃n/2) dt
)

1
χ′

(

∫

Jn+1

∫

Akn+1,1+ζ̃n/2

[

(v − kn+1)ηn

]2χ
dx dt

)
1
χ

≤ C(p,N)K−2
(

∫

Jn+1

λN (Akn+1,1+ζ̃n/2) dt
)

1
χ′

∣

∣(v − kn+1)+ηn

∣

∣

2

Vp(Jn+1×B1+ζ̃n/2)
,

where we use the embedding Vp →֒ L2χ from (2.13).
Further,

∫

Jn+1

λN (Akn+1,1+ζ̃n/2) dt ≤ (kn+1 − kn)−2

∫

Jn+1

∫

Akn+1,1+ζ̃n/2

(v − kn)2+ dx dt

≤ (kn+1 − kn)−2K2Yn ≤ 4n+1Yn.

Using the properties of ηn and applying (6.67) with ϑ2 = ζn > ζ̃n = ϑ1 and k = kn+1 we also
have

∣

∣(v − kn+1)+ ηn

∣

∣

2

Vp(Jn+1×B1+ζ̃n/2)
≤ 2

∣

∣(v − kn+1)+
∣

∣

2

Vp(Jn+1×B1+ζ̃n/2)

+ 2

∫

Jn+1

∫

Akn+1,1+ζ̃n/2

(v − kn+1)
2
+|Dηn|

2 dx dt

≤ 4C10

(

4n+3|(v − kn+1)+|
2
L2(Qn) + µ(kn+1, ζn, 1)

1
r′ + µ̂(kn+1, ζn, 1)

1
r̂′

)

+ 2 · 4n+5|(v − kn+1)+|
2
L2(Qn)

≤ 4n+4(C10 + 8)K2Yn + 4C10Z
1+δ
n . (6.68)

It follows that

Yn+1 ≤ C1116n
(

Y
1+ 1

χ′

n + Y
1

χ′

n Z1+δ
n

)

. (6.69)

Turning to Zn+1 note that

(kn+1 − kn)2Zn+1 = (kn+1 − kn)2
(

µ(kn+1, ζn+1, 1)
1

r′(1+δ) + µ̂(kn+1, ζn+1, 1)
1

r̂′(1+δ)
)

≤ |(v − kn)+ηn|
2
L2r′(1+δ)(Jn+1;L2q′(1+δ)(B1+ζ̃n/2))

+ |(v − kn)+ηn|
2
L2r̂′(1+δ)(Jn+1;L2q̂′(1+δ)(B1+ζ̃n/2))

≤ 2C(p,N)
∣

∣(v − kn)+ ηn

∣

∣

2

Vp(Jn+1×B1+ζ̃n/2)
. (6.70)

The right-hand side is estimated in the same way as in (6.68) replacing kn+1 by kn. This yields

Zn+1 ≤ 2C(p,N)4n+1K−2
(

4n+4(C10 + 8)K2Yn + 4C10Z
1+δ
n

)

,

and therefore

Zn+1 ≤ C1116n
(

Yn + Z1+δ
n

)

, (6.71)
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where we may take the same constant C11 = C11(C10, N, p) as in (6.69).
In view of (6.69) and (6.71), Lemma 2.4.2 implies that Yn and Zn tend to zero as n → ∞

provided that

Y0 + Z1+δ
0 ≤ (2C11)

− 1+δ
δ1 16

− 1+δ

δ2
1 , with δ1 := min

{

δ,
1

χ′

}

. (6.72)

This condition is satisfied whenever K is sufficiently large. In fact, for Y0 we have

Y0 = K−2
∣

∣(v −K)+
∣

∣

L2(J(1/2,1)×B5/4)
≤ K−2|v|L2(Q(1,1)).

Z0 can be estimated as in (6.70) if one assumes that k−1 = K/2 and ζ−1 = 1. This gives

Z0 ≤
8C(p,N)

K2

∣

∣(v − k−1) η−1

∣

∣

2

Vp(J0×B1+ζ̃
−1/2)

.

Using (6.68) with kn+1 replaced by k−1 we then obtain for some C12 = C12(p,N,C10)

Z0 ≤C12K
−2

(

|v|L2(Q(1,1)) + µ(K/2), 1, 1)
1
r′ + µ̂(K/2, 1, 1)

1
r̂′

)

≤C12K
−2

(

|v|L2(Q(1,1)) +
(

θ3θλN (B3/2)
)

1
r′ +

(

θ3θλN (B3/2)
)

1
r̂′

)

.

Normalizing the L2-estimate from Proposition 6.3.1 to ρ = 1 yields an a priori bound for
|v|L2(Q(1,1)). Hence there exists a number K ≥ 1 depending only on Λ, ν, α, r, q,N, τ0, ρ0, ξ, β, θ,
θ2, θ3,M0, |u0|L∞(Ω), |f |Lr(Lq) such that (6.72) is fulfilled.

Since kn → 2K and Yn → 0 as n → ∞, it follows that ess supQ(0,1) v ≤ 2K. Scaling back to
the original variables, this means that (6.52) holds with M1 = 2K. �

Remark 6.4.1 Note that the assertion of Proposition 6.3.1 remains true when equation (6.1)
has a second term on the right-hand side of the form −Dig

i, where |g|2 ∈ Lr([0, T ];Lq(Ω)). In
fact, recall Remark 6.3.1 and note that for any ǫ0 > 0 we have

∫ t1−t′

0

∫

Bρ2

ϕ2giDi

[

Ψ′(ũm̄)η2
]

dx ds ≤

∫ t1−t′

0

∫

Bρ2

(

ǫ0ϕ
2η2

[

|D(ṽ − k)+|
2 + (ṽ − k)+|Dṽ|

2
]

+ C(ǫ0)
[

|g̃|2Φ′(ũm̄)2(ṽ − k)+ + |Dη|2(ṽ − k)2+
]

)

dx ds

+ C(ǫ0)

∫ t1−t′

0

∫

Ak,ρ2

|g̃|2Φ′(ũm̄)2 dx ds.

The terms with factor ǫ0 can be absorbed if ǫ0 is selected small enough. The term containing
|g̃|2Φ′(ũm̄)2(ṽ − k)+ is estimated similarly as the f̃ -term above; note that the additional factor
Φ′(ũm̄) can be controlled thanks due the last summand in (6.63). Finally, by Hölder’s inequality,

∫ t1−t′

0

∫

Ak,ρ2

|g̃|2Φ′(ũm̄)2 dx ds ≤
∣

∣|g|2
∣

∣

Lr(Lq)
µ

1
r′

k,ρ2
ρ
−
(

2
αr′

+ N
q′

)

ρ
2
α +N−2,

which is the right estimate to proceed as above.

6.5 Oscillation estimates

Suppose u is a bounded weak solution of (6.1). Without restriction of generality we may assume
that ess oscΩT u ≤ 1.
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As in the previous sections we let τ0 ∈ (0, T ) be fixed and (t1, x1) ∈ (τ0, T ]×Ω. We consider
the family of nested cylinders

Q(ρ) := Q(t1, x1, θ, ρ) = (t1 − θρ2/α, t1) ×Bρ(x1),

with scaling parameter ρ = 2−l, l ∈ Z, and the fixed parameter θ > 0 (cf. assumption (P)). By l̃
we denote the integer that corresponds to the largest of those cylinders Q(2−l) that are properly
contained in (τ0, T )×Ω. Let further l0 ≥ l̃ be an integer, which will be fixed later appropriately.
For l ≤ l0 we set al := ess infΩT u and bl := al + 2−(l−l0)κ1 , where κ1 > 0 is another parameter
which will be chosen later. Then trivially we have for all j ≤ l0, j ∈ Z,

(i) aj ≤ u ≤ bj a.e. in Q(2−j) ∩ ΩT , (ii) bj − aj = 2−(j−l0)κ1 . (6.73)

Let now l ≥ l0 and assume that there exist sequences (aj), (bj) ⊂ R such that (6.73) is
satisfied for all j ≤ l. The objective is then to construct two numbers al+1 and bl+1 such that
(i) and (ii) in (6.73) hold also true for j = l + 1.

The first observation is that the induction hypothesis implies an estimate of power type for
the memory term. More precisely, we have the following

Lemma 6.5.1 Let ml = (al + bl)/2, and t0 = t1 − θ2−2l/α. Then

|u(t, x) −ml| ≤ (bl −ml)
(

2
[

22/α(
t1 − t

t1 − t0
)
]

ακ1
2

− 1
)

, (6.74)

for a.a. (t, x) ∈ (0, t0) ×B2−l(x1).

Proof. Let x ∈ B2−l(x1). Given t ∈ (0, t0) we find an integer l∗ ≤ l so that

t1 − θ2−2(l∗−1)/α < t ≤ t1 − θ2−2l∗/α, (6.75)

which means that (t, x) ∈ Q(2−(l∗−1)). By the induction hypothesis,

u(t, x)−ml ≤ bl∗−1 −ml = bl∗−1 − al∗−1 + al∗−1 −ml

≤ bl∗−1 − al∗−1 + al −ml = 2−(l∗−1−l0)κ1 −
1

2
2−(l−l0)κ1

= (bl −ml)
(

2 · 2−(l∗−1−l)κ1 − 1
)

.

From (6.75) and t1 − t0 = θ2−2l/α we deduce that

2−2(l∗−l)/α =
θ2−2l∗/α

θ2−2l/α
≤

t1 − t

t1 − t0
.

Hence

u(t, x)−ml ≤ (bl −ml)
(

2 · 2κ12−(l∗−l)κ1 − 1
)

≤ (bl −ml)
(

2
[

22/α(
t1 − t

t1 − t0
)
]

ακ1
2

− 1
)

.

The desired lower estimate for u−ml is proved analogously. �

From now on we will assume that

γ :=
ακ1

2
∈ (0, γ0] and εγ ≤ ε. (6.76)
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In the next step we distinguish two cases. With t̄ = t1−θθ12
−2l/α at least one of the following

inequalities is satisfied:

(A) λN+1

(

{(t, x) ∈ (t0, t̄) ×B2−l(x1) : u(t, x) ≥ ml}
)

≤
1

2
λN+1

(

(t0, t̄) ×B2−l(x1)
)

,

or

(B) λN+1

(

{(t, x) ∈ (t0, t̄) ×B2−l(x1) : u(t, x) ≤ ml}
)

≤
1

2
λN+1

(

(t0, t̄) ×B2−l(x1)
)

.

Suppose (A) holds. We again distinguish two cases. Let us first assume that

max
{

µ(bl −ml), 2
−(l+1)κ

}

< ess sup
[t0,t1]×B

2−(l+1)

u−ml. (6.77)

From Lemma 6.5.1 and Lemma 6.4.1 we then infer that the function v defined in (6.24) with
ρ = 2−(l+1), M = bl, and m̄ = ml is subject to

ess sup
Q(2−(l+1))

v ≤M1,

where M1 ≥ 0 is the a priori bound from (6.52). This in turn implies

u ≤ bl −
[

e−M1(1 − ξ) − ε
]

(bl −ml) + 2−(l+1)κ a.e. in Q(2−(l+1)).

If (6.77) is violated, we have

u ≤ ml + µ(bl −ml) + 2−(l+1)κ

≤ bl − [1 − µ](bl −ml) + 2−(l+1)κ a.e. in Q(2−(l+1)).

We next set

ε =
1

2
e−M1(1 − ξ) and ε∗ =

1

2
min{ε, 1 − µ}.

Then the previous estimates show that if condition (A) holds, we have in any case

u ≤ bl − ε∗(bl − al) + 2−(l+1)κ a.e. in Q(2−(l+1)). (6.78)

Define now
al+1 = al and bl+1 = al + 2−(l+1−l0)κ1 .

Then by the induction hypothesis,

bl+1 ≥ bl − ε∗(bl − al) + 2−(l+1)κ

⇔ 2−(l+1−l0)κ1 ≥ (1 − ε∗)2
−(l−l0)κ1 + 2−(l+1)κ

⇔ 1 ≥ 2κ1(1 − ε∗) + 2−(l−l0+1)(κ−κ1)2−l0κ.

Assuming κ1 ≤ κ and recalling that l ≥ l0, the last condition certainly follows from

2κ1(1 − ε∗) + 2−l0κ ≤ 1. (6.79)

We choose now κ1 ∈ (0,min{κ, 2γ0/α}] so small and l0 ≥ l̃ so large that εγ ≤ ε and (6.79) are
satisfied. In particular κ1 and l0 are independent of l ≥ l0. In view of (6.78) and the definition
of al+1 and bl+1 it is then evident that (6.73) holds for j = l + 1.
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Suppose now that (B) holds. Setting

û = bl + al − u and û0 = bl + al − u0,

û is a bounded weak solution of

∂α
t (û− û0) −Di(aijDjû) = −f, t ∈ (0, T ), x ∈ Ω. (6.80)

We further put
âj = bl + al − bj , b̂j = bl + al − aj , j ≤ l.

By the induction hypothesis, we have for all j ≤ l, j ∈ Z,

âj ≤ û ≤ b̂j a.e. in Q(2−j) ∩ ΩT and b̂j − âj = bj − aj = 2−(j−l0)κ1 .

Note also that âl = al, b̂l = bl, and

m̂l :=
b̂l + âl

2
= ml.

Moreover,
u ≥ ml ⇔ û ≤ ml.

Hence

λN+1

(

{(t, x) ∈ (t0, t̄) ×B2−l(x1) : û(t, x) ≥ ml}
)

≤
1

2
λN+1

(

(t0, t̄) ×B2−l(x1)
)

,

so that we are in the situation of case (A). We may now argue as above, replacing u, aj , and bj
by û, âj , and b̂j, respectively, and using equation (6.80). Since |û0 − m̂l|L∞(Ω) = |u0 −ml|L∞(Ω)

the corresponding estimates in Propositions 6.2.1, 6.3.1, and 6.4.1 hold with the same constants
as above. Thus we obtain

û ≤ b̂l − ε∗(b̂l − âl) + 2−(l+1)κ a.e. in Q(2−(l+1)),

where ε∗ is as above. It follows that

âl ≤ û ≤ âl + 2−(l+1−l0)κ1 a.e. in Q(2−(l+1)),

where κ1 and l0 are the same as before. In terms of u this means that

al+1 := bl − 2−(l+1−l0)κ1 ≤ u ≤ bl =: bl+1 a.e. in Q(2−(l+1)).

Hence in case (B), this is an admissible choice of al+1 and bl+1 in order to satisfy (6.73) for
j = l + 1.

Summarizing, we obtain the following result.

Proposition 6.5.1 Let u be a bounded weak solution of (6.1). Let τ0 ∈ (0, T ) be fixed and
(t1, x1) ∈ (τ0, T ] × Ω. Let further Q(ρ) = (t1 − θρ2/α, t1) × Bρ(x1), where θ > 0 is the fixed
parameter from assumption (P). Then

ess osc
Q(2−j)∩ΩT

u ≤ C 2−jκ1 , j ∈ Z,

where κ1 = κ1(Λ, ν, α, r, q,N, τ0, diam Ω, |u|L∞(ΩT ), |u0|L∞(Ω), |f |Lr([0,T ];Lq(Ω))) and C = C(Λ, ν,
α, r, q,N, τ0, diam Ω, |u|L∞(ΩT ), |u0|L∞(Ω), |f |Lr([0,T ];Lq(Ω)), dist (x1, ∂Ω), |t1 − τ0|).
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Note that here C, compared with κ1, also depends on t1− τ0 and dist (x1, ∂Ω). C explodes when
min{t1 − τ0, dist (x1, ∂Ω)} → 0. This comes from fixing first κ1 ∈ (0,min{κ, 2γ0/α}] so small
that 2κ1(1− ε∗) < 1 as well as εγ ≤ ε and choosing then l0 ≥ l̃ such that (6.79) is satisfied. With

κ1 being fixed, the factor 2l0κ1 increases with l0, and by definition of l̃ we have

( θ

t1 − τ0

)
α
2

,
1

dist (x1, ∂Ω)
≤ 2l̃ ≤ 2l0 .

We further remark that the case ω := ess oscΩT u > 1 can be simply reduced to the case
considered above by means of the normalization u→ u/ω, u0 → u0/ω, f → f/ω and the trivial
estimate ess oscΩT u ≤ 2|u|L∞(ΩT ).

The estimate in Proposition 6.5.1 can be improved in that one can derive a bound for the
oscillation of u on Q(2−j) ∩ ΩT that depends linearly on the sum

D := |u|L∞(ΩT ) + |u0|L∞(Ω) + |f |Lr([0,T ];Lq(Ω)). (6.81)

To this purpose we normalize by setting û = u/2D, û0 = u0/2D, and f̂ = f/2D. Then

|u(t, x)|, |u0(x)| ≤ 1/2 for a.a. t ∈ (0, T ) and x ∈ Ω, ess oscΩT u ≤ 1 as well as |f̂ |Lr([0,T ];Lq(Ω)) ≤
1/2. Since û is a weak solution of

∂α
t (û − û0) −Di(aijDj û) = f̂ , t ∈ (0, T ), x ∈ Ω,

we may apply Propositions 6.2.1, 6.3.1, and 6.4.1 to û and obtain corresponding estimates which
do not depend on |û|L∞(ΩT ), |û0|L∞(Ω), and |f̂ |Lr([0,T ];Lq(Ω)), by normalization and the above
proofs. In particular the geometric parameter θ and the bound M1 do not depend on these
quantities. We may then argue as in the proof of Proposition 6.5.1 to obtain corresponding
oscillation estimates for û. Finally, rescaling to the original function u yields the following result.

Theorem 6.5.1 Let τ0 ∈ (0, T ) be fixed and (t1, x1) ∈ (τ0, T ] × Ω. Then there exist positive
numbers θ, κ1 depending only on Λ, ν, α, r, q,N, diam Ω, τ0, and there is a positive constant C =
C(Λ, ν, α, r, q,N, diam Ω, τ0, dist (x1, ∂Ω), |t1 − τ0|) such that for any bounded weak solution u of
(6.1) in ΩT there holds

ess osc
Q(2−j)∩ΩT

u ≤ C 2−jκ1

(

|u|L∞(ΩT ) + |u0|L∞(Ω) + |f |Lr([0,T ];Lq(Ω))

)

, j ∈ Z,

with Q(ρ) = (t1 − θρ2/α, t1) ×Bρ(x1).

As a simple consequence we obtain the subsequent oscillation estimate for general cylinders with
continuous scaling parameter.

Corollary 6.5.1 Let τ0 ∈ (0, T ) be fixed and (t1, x1) ∈ (τ0, T ]×Ω. Let further τ1 > 0 and Q̃(ρ) =
(t1 − τ1ρ

2/α, t1) × Bρ(x1) for ρ > 0. Then there exist positive numbers κ1 = κ1(Λ, ν, α, r, q,N ,
diam Ω, τ0) and C = C(Λ, ν, α, r, q,N, diam Ω, τ0, τ1, dist (x1, ∂Ω), |t1 − τ0|) such that for any
bounded weak solution u of (6.1) there holds

ess osc
Q̃(ρ)∩ΩT

u ≤ C ρκ1

(

|u|L∞(ΩT ) + |u0|L∞(Ω) + |f |Lr([0,T ];Lq(Ω))

)

, ρ > 0.

In particular, any bounded weak solution u of (6.1) in ΩT is Hölder continuous in ΩT .
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Proof. Suppose that τ1 ≥ θ, where θ is the same as in Theorem 6.5.1. Given ρ > 0 we put
ρ̂ = ρ(τ1/θ)

α/2. There exists j∗ ∈ Z such that 2−(j∗+1) ≤ ρ̂ < 2−j∗ . By Theorem 6.5.1, we then
have with D as in (6.81)

ess osc
Q̃(ρ)∩ΩT

u ≤ ess osc
Q(ρ̂)∩ΩT

u ≤ ess osc
Q(2−j∗ )∩ΩT

u ≤ C 2−j∗κ1D

≤ C2κ1 ρ̂κ1D ≤ C2κ1

(τ1
θ

)

ακ1
2

ρκ1D.

The case τ1 < θ is treated similarly. �

The interior Hölder estimate stated in Theorem 6.1.1 follows now from Corollary 6.5.1 by means
of a standard covering argument.

Remark 6.5.1 All results of this section can be generalized to the case where the right-hand
side of equation (6.1) has the form

kf
∑

k=1

fk −

kg
∑

k=1

Dig
i
k,

with fk ∈ Lrk
([0, T ];Lqk

(Ω)), k = 1, . . . , kf ,
∑N

i=1(g
i
k)2 ∈ Lr(k)([0, T ];Lq(k)(Ω)), k = 1, . . . , kg,

and all pairs of exponents (rk, qk) and (r(k), q(k)), respectively, are subject to the condition in
(H3). This follows from Remark 6.4.1 and by straightforward modifications of the proofs given
above.

6.6 Regularity up to t = 0

The objective of this and the following section is to find conditions on the data which ensure
Hölder continuity up to the parabolic boundary. Here we do not aim at great generality but at
results which are sufficient for the quasilinear problem to be studied in Chapter 7. Since there
we will work with the setting of maximal Lp-regularity, it is natural (and also not so difficult) to
use corresponding regularity results to achieve the goal.

We first discuss regularity up to t = 0.

Theorem 6.6.1 Let α ∈ (0, 1), T > 0 and Ω be a bounded domain in RN . Let the assumptions
(H1)-(H3) be satisfied. Let further Ω′ ⊂ Ω be an arbitrary subdomain and assume that

u0|Ω̃ ∈ B
2− 2

pα
pp (Ω̃) with p >

1

α
+
N

2
,

for some C2-smooth domain Ω̃ such that Ω′ ⊂ Ω̃ ⊂ Ω and Ω′ is separated from ∂Ω̃ by a positive
distance d. Assume in addition that p ≥ 2 if N = 1. Then, for any bounded weak solution u of
(6.1) in ΩT , there holds

[u]
C

αǫ
2

,ǫ([0,T ]×Ω′ )
≤ C

(

|u|L∞(ΩT ) + |u0|L∞(Ω) + |u0|
B

2− 2
pα

pp (Ω̃)
+ |f |Lr([0,T ];Lq(Ω))

)

(6.82)

with positive constants ǫ = ǫ(Λ, ν, α, p, r, q,N, diamΩ) and C = C(Λ, ν, α, p, r, q,N, d, diamΩ, T,
λN (Ω′)).
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Proof. The basic idea of the proof is to extend u to [−1, T ]×Ω such that u is Hölder continuous
on [−1, 0]× Ω′ and to apply Theorem 6.1.1.

To this purpose we first extend u0|Ω̃ ∈ B
2− 2

pα
pp (Ω̃) to a function û0 ∈ B

2− 2
pα

pp (RN ). By [82,
Theorem 3.1], the problem

∂α
t

(

w − û0

)

− ∆w = 0, t ∈ (0, 1), x ∈ R
N ,

w|t=0 = û0, x ∈ R
N ,

possesses a unique solution w in the class

Z := Hα
p ([0, 1];Lp(R

N )) ∩ Lp([0, 1];H2
p(RN )),

and one has an estimate of the form

|w|Z ≤ C0|û0|
B

2− 2
pα

pp (RN )
≤ C̃0|u0|

B
2− 2

pα
pp (Ω̃)

.

Note that by the mixed derivative theorem (cf. [71]),

Z →֒ Hα(1−ς)
p ([0, 1];H2ς

p (RN )), ς ∈ [0, 1],

and thus Z →֒ BUCδ([0, 1]×RN) for some sufficiently small δ ∈ (0, α/2). In fact, the assumption
p > 1

α + N
2 ensures existence of some ς ∈ (0, 1) with α(1 − ς) − 1

p > δ and 2ς − N
p > δ.

Multiplying w by a suitable smooth cut-off function ϕ(t) we can construct a function ŵ ∈ Z
with ŵ|t=0 = û0 and ŵ|t=1 = 0. We then extend u to [−1, T ] × Ω by setting u(t, x) = ŵ(−t, x)
for t ∈ [−1, 0) and x ∈ Ω.

Next, we shift the time by setting τ = t+ 1. Put û(τ, x) = u(τ − 1, x), τ ∈ (0, T + 1), x ∈ Ω̃.
Define further

g := ∂α
τ û− ∆û, τ ∈ (0, 1), x ∈ Ω̃.

Then g ∈ Lp([0, 1] × Ω̃), since û|τ∈(0,1) ∈ Hα
p ([0, 1];Lp(Ω̃)) ∩ Lp([0, 1];H2

p(Ω̃)) and û|τ=0 = 0.

Furthermore we have for any test function η ∈ °H1,1
2 ([0, T + 1] × Ω̃),

∫ 1

0

∫

Ω̃

(

− ητ (g1−α ∗ û) +Dj ûDiη
)

dx dτ =

∫ 1

0

∫

Ω̃

gη dx dτ −

∫

Ω̃

η(g1−α ∗ û) dx
∣

∣

∣

τ=1
. (6.83)

On the other hand, we have for a.a. (τ, x) ∈ (1, T + 1) × Ω̃,

(g1−α ∗ û)(τ, x) = (g1−α ∗ u)(τ − 1, x) +

∫ 1

0

g1−α(τ − σ)û(σ, x) dσ

=
(

g1−α ∗ (u− u0)
)

(τ − 1, x) + g2−α(τ)u0(x)

+

∫ 1

0

g1−α(τ − σ)
(

û(σ, x) − u0(x)
)

dσ.

Set

h(τ, x) = g1−α(τ)u0(x) +

∫ 1

0

ġ1−α(τ − σ)
(

û(σ, x) − u0(x)
)

dσ =: h1(τ, x) + h2(τ, x),

âij(τ, x) = aij(τ − 1, x), and f̂(τ, x) = f(τ − 1, x) for (τ, x) ∈ (1, T + 1) × Ω̃. Since u is
a weak solution of (6.1) in ΩT , we thus obtain after a short computation that for any η ∈
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°H1,1
2 ([0, T + 1] × Ω̃) with η|τ=T+1 = 0

∫ T+1

1

∫

Ω̃

(

−ητ (g1−α ∗ û) + âijDj ûDiη
)

dx dτ =

∫ T+1

1

∫

Ω̃

(f̂ + h)η dx dτ +

∫

Ω̃

η(g1−α ∗ û) dx
∣

∣

∣

τ=1
. (6.84)

Adding (6.83) and (6.84) shows that û is a weak solution of

∂α
τ û−Di(bijDjû) = f̃ , τ ∈ (0, T + 1), x ∈ Ω̃,

where
bij(τ, x) = χ[0,1](τ) + χ(1,T+1](τ)âij(τ, x)

and
f̃(τ, x) = χ[0,1](τ)g(τ, x) + χ(1,T+1](τ)

(

f̂ + h
)

(τ, x).

Evidently, χ[0,1](τ)g ∈ Lp([0, T +1]× Ω̃) and χ(1,T+1](τ)f̂ ∈ Lr([0, T +1];Lq(Ω̃)). Concerning

the h-term we clearly have χ(1,T+1](τ)h1 ∈ L∞([0, T + 1] × Ω̃). To estimate χ(1,T+1](τ)h2, we
employ the Hölder estimate

|û(σ, x) − u0(x)| = |û(σ, x) − û(1, x)| ≤ C1(1 − σ)δ, σ ∈ [0, 1], x ∈ Ω̃,

which results from the embedding Z →֒ BUCδ([0, 1]×RN ) and the construction of û. It follows
that for 1 < τ = t+ 1 ≤ 1 + T and x ∈ Ω̃

|h2(τ, x)| ≤ C1

∫ 1

0

[−ġ1−α(τ − σ)](1 − σ)δ dσ

=
αC1

Γ(1 − α)

∫ 1

0

(t+ σ)−1−ασδ dσ.

Assuming that t = τ − 1 ∈ (0, 1) we then have

|h2(τ, x)| ≤
αC1

Γ(1 − α)

(

∫ t

0

(t+ σ)−1−ασδ dσ +

∫ 1

t

(t+ σ)−1−ασδ dσ
)

≤
αC1

Γ(1 − α)

(

∫ t

0

(t+ σ)−1−αtδ dσ +

∫ 1

t

σ−1−α+δ dσ
)

≤
αC1

Γ(1 − α)
t−α+δ

( 1

α
+

1

α− δ

)

≤ 3C1(τ − 1)δg1−α(τ − 1).

This shows that χ(1,T+1](τ)h2 ∈ Lr0([0, T + 1];L∞(Ω̃)) for all 1 ≤ r0 <
1

α−δ . In particular we

find some r̂ > 1
α such that χ(1,T+1](τ)h2 ∈ Lr̂([0, T + 1];L∞(Ω̃)).

All in all we see that f̃ is of the form f̃ =
∑4

i=1 f̃i, where f̃i ∈ Lri([0, T + 1];Lqi(Ω̃)) with

1

αri
+
N

2qi
< 1, i = 1, 2, 3, 4.

Hence Theorem 6.1.1 and Remark 6.5.1 imply that û is Hölder continuous in [1/2, T + 1] × Ω′.
This in turn yields Hölder continuity of u in [0, T ] × Ω′, and it is not difficult to see that u is
subject to the estimate (6.82). �
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Remark 6.6.1 It follows from Remark 6.5.1 and the proof above, that Theorem 6.6.1 can be
generalized to the case where the right-hand side of equation (6.1) has the form

kf
∑

k=1

fk −

kg
∑

k=1

Dig
i
k,

with fk and gi
k as in Remark 6.5.1.

6.7 Regularity up to the parabolic boundary

The following result gives conditions on the data which are sufficient for Hölder continuity on
[0, T ]× Ω.

Theorem 6.7.1 Let α ∈ (0, 1), T > 0, N ≥ 2, and Ω ⊂ RN be a bounded domain with C2-
smooth boundary Γ. Let the assumptions (H1)-(H3) be satisfied. Suppose further that

u0 ∈ B
2− 2

pα
pp (Ω), g ∈ YD := B

α(1− 1
2p )

pp ([0, T ];Lp(Γ)) ∩ Lp([0, T ];B
2− 1

p
pp (Γ))

with p > 1
α + N

2 , and that the compatibility condition

u0 = g|t=0 on Γ

is satisfied. Then for any bounded weak solution u of (6.1) in ΩT such that u = g a.e. on
(0, T ) × Γ, there holds

[u]
C

αǫ
2

,ǫ([0,T ]×Ω)
≤ C

(

|u|L∞(ΩT ) + |u0|
B

2− 2
pα

pp (Ω)
+ |f |Lr([0,T ];Lq(Ω)) + |g|YD

)

(6.85)

with positive constants ǫ = ǫ(Λ, ν, α, p, r, q,N,Ω) and C = C(Λ, ν, α, p, r, q,N,Ω, T ).

Proof. By Theorem 2.8.1, the problem

∂α
t (v − u0) − ∆v = 0, t ∈ (0, T ), x ∈ Ω

v = g, t ∈ (0, T ), x ∈ Γ,

v|t=0 = u0, x ∈ Ω,

admits a unique strong solution v in the class

v ∈ Z := Hα
p ([0, T ];Lp(Ω)) ∩ Lp([0, T ];H2

p(Ω))

and
|v|Z ≤ C0(|u0|

B
2− 2

pα
pp (Ω)

+ |g|YD ),

where C0 only depends on α, p,N, T,Ω. As in the proof of Theorem 6.6.1 we see that v ∈
Cδ([0, T ]× Ω) for some δ > 0. Furthermore, the mixed derivative theorem implies that

Div ∈ H
α
2

p ([0, T ];Lp(Ω)) ∩ Lp([0, T ];H1
p(Ω)) →֒ H

ας
2

p ([0, T ];H1−ς
p (Ω))

for all ς ∈ [0, 1]. Without restriction of generality we may assume that p ∈ ( 1
α + N

2 ,
2
α + N).

With

p̃ :=
1
α + N

2
2

αp + N
p − 1

>
1

α
+
N

2
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and ς := 2
αp − 1

αp̃ ∈ (0, 1) we then have H
ας
2

p ([0, T ];H1−ς
p (Ω)) →֒ L2p̃(ΩT ), which shows that

|Div|
2 ∈ Lp̃(ΩT ) with 1

αp̃ + N
2p̃ < 1.

Setting w = u− v, w is a bounded weak solution of

∂α
t w −Di(aijDjw) = f +Di(aijDjv) − ∆v, t ∈ (0, T ), x ∈ Ω,

and w = 0 a.e. on (0, T ) × Γ.
Next, let Ω0 be an arbitrary bounded domain containing Ω such that dist(Ω, ∂Ω0) > 0.

We extend w, f, aij and ϕi := Div to [0, T ] × Ω0 by setting w, f, ϕi = 0 and aij = δij on
[0, T ]× (Ω0 \ Ω). Then w solves

∂α
t w −Di(aijDjw) = f +Di(aijϕj − ϕi), t ∈ (0, T ), x ∈ Ω0,

in the weak sense, and thus Theorem 6.6.1 and Remark 6.6.1 imply that w is Hölder continuous
on [0, T ]× Ω. Since u = v + w, the assertion of Theorem 6.7.1 follows. �
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Chapter 7

Global solvability of a quasilinear

problem

7.1 The global solvability theorem

In this chapter we want to show how the Hölder estimates derived in the previous chapter can
be used to prove global solvability of certain quasilinear problems.

Let α ∈ (0, 1), T > 0, N ≥ 2, and Ω ⊂ RN be a bounded domain with C2-smooth boundary
Γ. We consider the quasilinear problem

∂α
t (u− u0) −Di(aij(u)Dju) = f, t ∈ (0, T ), x ∈ Ω,

u = g, t ∈ (0, T ), x ∈ Γ, (7.1)

u|t=0 = u0, x ∈ Ω,

where we use again the sum convention. Letting p > N + 2
α we will assume that

(Q1) f ∈ XT := Lp([0, T ];Lp(Ω)), g ∈ Y T
D := B

α(1− 1
2p )

pp ([0, T ];Lp(Γ)) ∩ Lp([0, T ];B
2− 1

p
pp (Γ)),

u0 ∈ Yγ := B
2− 2

pα
pp (Ω), and u0 = g|t=0 on Γ;

(Q2) A = (aij)i,j=1,...,N ∈ C1(R; Sym{N}), and there exists ν > 0 such that aij(y)ξiξj ≥ ν|ξ|2

for all y ∈ R and ξ ∈ RN .

The main result concerning the problem (7.1) reads as follows.

Theorem 7.1.1 Let T > 0 be an arbitrary number, p > N+ 2
α , and suppose that the assumptions

(Q1) and (Q2) are satisfied. Then the problem (7.1) possesses a unique strong solution u in the
class

u ∈ ZT := Hα
p ([0, T ];Lp(Ω)) ∩ Lp([0, T ];H2

p(Ω)).

7.2 Proof of the theorem

The proof of theorem 7.1.1 is divided into three parts, devoted respectively to local well-
posedness, existence of a maximally defined solution, and to a priori estimates which lead to
global existence.
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1. Local well-posedness. Short-time existence and uniqueness in the regularity class Zδ

can be established by means of the contraction mapping principle and maximal Lp-regularity for
an appropriate linearized problem. We proceed similarly as in [82], see also [12] and [64].

We first define a reference function w ∈ ZT as the unique solution of the linear problem

∂α
t (w − u0) − aij(u0)DiDjw = f + a′ij(u0)Diu0Dju0, t ∈ (0, T ), x ∈ Ω,

w = g, t ∈ (0, T ), x ∈ Γ,

w|t=0 = u0, x ∈ Ω,

see Theorem 2.8.1. Note that the condition p > N + 2
α ensures the embedding

u0 ∈ Yγ = B
2− 2

pα
pp (Ω) →֒ C1(Ω),

and thus we also have
ZT →֒ C([0, T ];Yγ) →֒ C([0, T ];C1(Ω)).

For δ ∈ (0, T ] and ρ > 0 let

Σ(δ, ρ) = {v ∈ Zδ : v|t=0 = u0, |v − w|Zδ ≤ ρ},

which is a closed subset of Zδ. By Theorem 2.8.1, we may define the mapping F : Σ(δ, ρ) → Zδ

which assigns to u ∈ Σ(δ, ρ) the unique solution v = F (u) of the linear problem

∂α
t (v − u0) − aij(u0)DiDjv = f + h(u,Du,D2u), t ∈ (0, δ), x ∈ Ω,

v = g, t ∈ (0, δ), x ∈ Γ, (7.2)

v|t=0 = u0, x ∈ Ω,

where
h(u,Du,D2u) =

(

aij(u) − aij(u0)
)

DiDju+ a′ij(u)DiuDju.

Observe that every fixed point u of F is a local solution of (7.1) and vice versa, at least for some
small time interval [0, δ].

Since Zδ →֒ C([0, δ];C1(Ω)) we may set

µw(δ) := max{|w(t, x) − u0(x)| + |Dw(t, x) −Du0(x)| : t ∈ [0, δ], x ∈ Ω}.

Evidently, µw(δ) → 0 as δ → 0, due to w|t=0 = u0. Letting u ∈ Σ(δ, ρ) we then have for all
t ∈ [0, δ] and x ∈ Ω

|u(t, x) − u0(x)| + |Du(t, x) −Du0(x)| ≤ |u− w|C([0,δ];C1(Ω)) + µw(δ)

≤M0|u− w|Zδ + µw(δ) ≤M0ρ+ µw(δ), (7.3)

where the embedding constant M0 > 0 does not depend on u and δ ∈ (0, T ]; the latter is true
since u − w belongs to the space 0Z

δ := {ϕ ∈ Zδ : ϕ|t=0 = 0}. (7.3) yields for any u ∈ Σ(δ, ρ)
the bound

|u(t, x) − u0(x)| + |Du(t, x) −Du0(x)| ≤M0ρ0 + µw(T ), t ∈ [0, δ], x ∈ Ω, (7.4)

where we assume ρ ∈ (0, ρ0].
Let now u ∈ Σ(δ, ρ) and v = F (u). Then v − w ∈ 0Z

δ solves the problem

∂α
t (v − w) − aij(u0)DiDj(v − w) = h(u,Du,D2u) − a′ij(u0)Diu0Dju0, t ∈ (0, δ), x ∈ Ω,

v − w = 0, t ∈ (0, δ), x ∈ Γ,

(v − w)|t=0 = 0, x ∈ Ω.
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Consequently, it follows from Theorem 2.8.1 that for some constant M1 > 0 which is independent
of δ ∈ (0, T ] there holds

|v − w|Zδ ≤M1|h(u,Du,D
2u) − a′ij(u0)Diu0Dju0|Xδ

≤M1|
(

aij(u) − aij(u0)
)

DiDju|Xδ +M1|a
′
ij(u)DiuDju− a′ij(u0)Diu0Dju0|Xδ .

Using (7.3) and (7.4) we may estimate the first term as follows.

|
(

aij(u) − aij(u0)
)

DiDju|Xδ ≤
(

|A(u) −A(w)|(L∞)N2 + |A(w) −A(u0)|(L∞)N2

)

×
(

|D2u−D2w|(Xδ)N2 + |D2w|(Xδ)N2

)

≤M2

(

ρ+ µw(δ)
)(

ρ+ |D2w|(Xδ)N2

)

,

where M2 > 0 does not depend on δ and ρ. Similarly we obtain

|a′ij(u)DiuDju− a′ij(u0)Diu0Dju0|Xδ ≤M3

(

ρ+ µw(δ)
)(

ρ+ δ
1
p
)

,

with M3 > 0 being independent of δ and ρ; here the factor δ
1
p comes from the estimate |z|Xδ ≤

(

λN (Ω)δ
)1/p

|z|∞. We conclude that

|v − w|Zδ ≤M
(

(ρ+ µ(δ)
)2
, (7.5)

where M and µ(δ) are constants, which do not depend on ρ, M is independent of δ, and µ(δ) is
non-decreasing with µ(δ) → 0 as δ → 0.

Next let ui ∈ Σ(δ, ρ) and vi = F (ui), i = 1, 2. Then v1 − v2 ∈ 0Z
δ solves the problem

∂α
t (v1 − v2) − aij(u0)DiDj(v − w) = h(u1, Du1, D

2u1) − h(u2, Du2, D
2u2), t ∈ (0, δ), x ∈ Ω,

v1 − v2 = 0, t ∈ (0, δ), x ∈ Γ,

(v1 − v2)|t=0 = 0, x ∈ Ω,

hence
|v1 − v2|Zδ ≤M1|h(u1, Du1, D

2u1) − h(u2, Du2, D
2u2)|Xδ .

Estimating similarly as above we obtain

|v1 − v2|Zδ ≤M
(

(ρ+ µ(δ)
)

|u1 − u2|Zδ , (7.6)

where M and µ(δ) are like those in (7.5).
Finally, the estimates (7.5) and (7.6) show that for sufficiently small ρ and δ the mapping F

is a strict contraction which leaves the set Σ(δ, ρ) invariant. Local existence and uniqueness of
strong solutions to (7.1) follows now by the contraction mapping principle.

2. The maximally defined solution. The local solution u ∈ Zδ obtained in the first part
can be continued to some larger interval [0, δ + δ1] ⊂ [0, T ]. In fact, let uδ := u|t=δ ∈ Yγ and
define the set

Σ(δ, δ1, ρ) := {v ∈ Zδ+δ1 : v|[0,δ] = u, |v − w|Zδ+δ1 ≤ ρ},

where the reference function w ∈ ZT is now defined as the solution of the linear problem

∂α
t (w − u0) − aij(uδ)DiDjw = f + h1 + χ(δ,T ](t)a

′
ij(uδ)Diuδ Djuδ, t ∈ (0, T ), x ∈ Ω,

w = g, t ∈ (0, T ), x ∈ Γ,

w|t=0 = u0, x ∈ Ω,
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with
h1 = χ[0,δ](t)

(

(

aij(u) − aij(uδ)
)

DiDju+ a′ij(u)DiuDju
)

.

Observe that w|[0,δ] = u, by uniqueness. So Σ(δ, δ1, ρ) is not empty and it becomes a complete

metric space when endowed with the metric induced by the norm of Zδ+δ1 .
Define next the mapping F : Σ(δ, δ1, ρ) → Zδ+δ1 which assigns to ũ ∈ Σ(δ, δ1, ρ) the solution

v = F (ũ) of the linear problem

∂α
t (v − u0) − aij(uδ)DiDjv = f + h̃(ũ, Dũ,D2ũ), t ∈ (0, δ + δ1), x ∈ Ω,

w = g, t ∈ (0, δ + δ1), x ∈ Γ,

w|t=0 = u0, x ∈ Ω,

where
h̃(ũ, Dũ,D2ũ) =

(

aij(ũ) − aij(uδ)
)

DiDjũ+ a′ij(ũ)Diũ Djũ.

Since ũ|[0,δ] = u we have also v|[0,δ] = u, by uniqueness.

Observe that h1 = h̃(ũ, Dũ,D2ũ) on [0, δ] and thus

|v − w|Zδ+δ1 ≤M1|h̃(ũ, Dũ,D
2ũ) − a′ij(uδ)Diuδ Djuδ|Lp([δ,δ+δ1]×Ω).

Further,

|F (ũ1) − F (ũ2)|Zδ+δ1 ≤M1|h̃(ũ1, Dũ1, D
2ũ1) − h̃(ũ2, Dũ2, D

2ũ2)|Lp([δ,δ+δ1]×Ω),

for ũ1, ũ2 ∈ Σ(δ, δ1, ρ). Therefore we may estimate analogously to the first step to see that for
sufficiently small δ1 and ρ we have F (Σ(δ, δ1, ρ)) ⊂ Σ(δ, δ1, ρ) and F is a strict contraction. Hence
the contraction mapping principle yields existence of a unique fixed point of F in Σ(δ, δ1, ρ), which
is the unique solution of (7.1) on [0, δ + δ1].

Repeating this argument we obtain a maximal interval of existence [0, Tmax) with Tmax ≤ T ,
that is Tmax is the supremum of all τ ∈ (0, T ) such that the problem (7.1) has a unique solution
u ∈ Zτ .

3. A priori bounds and global well-posedness. In order to establish global existence
we will show that |u|Zτ stays bounded as τ ր Tmax.

Let τ ∈ (0, Tmax) and u ∈ Zτ be the unique solution of (7.1). Setting bij(t, x) = aij(u(t, x)),
it is evident that u is a weak solution of

∂α
t (u− u0) −Di(bijDju) = f, t ∈ (0, τ), x ∈ Ω.

Since Yγ →֒ C(Ω) and Y τ
D →֒ C([0, τ ] × Γ), Corollary 4.2.1 implies a uniform sup-bound for |u|,

namely
|u(t, x)| ≤ C1, t ∈ [0, τ ], x ∈ Ω,

where the constant C1 depends only on the data |f |XT , |g|∞, |u0|∞,Ω, T, α,N , and ν, not on τ .
It follows then from Theorem 6.7.1 that for some ε > 0 we have

|u|Cε([0,τ ]×Ω) ≤ C2,

where the number C2 ≥ 1 depends only on |f |XT , |g|Y T
D
, |u0|Yγ ,Ω, T, α,N , and ν, not on τ . In

particular, we obtain a uniform Hölder estimate for the coefficients bij , i, j = 1, . . . , N .
The first equation of (7.1) can be rewritten as

∂α
t (u − u0) − bijDiDju = f + a′ij(u)DiuDju.
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By Theorem 2.8.1, the linear problem

∂α
t (v − u0) − bijDiDjv = f, t ∈ (0, τ), x ∈ Ω,

v = g, t ∈ (0, τ), x ∈ Γ,

v|t=0 = u0, x ∈ Ω,

has a unique solution v ∈ Zτ and there exists a constant M1 > 0 independent of τ such that

|u− v|Zτ ≤M1|a
′
ij(u)DiuDju|Xτ

≤M1

N
∑

i,j=1

max
|y|≤C1

|a′ij(y)|
∣

∣|Du|2
∣

∣

Xτ . (7.7)

The assumption on p implies p > N
2 and thus

H2
p (Ω) →֒ H1

2p(Ω) →֒ Cε0 (Ω)

for some ε0 ∈ (0, ε]. By the Gagliardo-Nirenberg inequality, there exists then θ ∈ (0, 1
2 ) such

that

|Du(t, ·)|L2p(Ω;RN ) ≤ C|u(t, ·)|θH2
p(Ω)|u(t, ·)|

1−θ

Cε(Ω)
≤ CC2|u(t, ·)|

θ
H2

p(Ω), t ∈ [0, τ ],

and hence by Hölder’s and Young’s inequality

∣

∣|Du|2
∣

∣

Xτ ≤ C̃|Du|2L2p([0,τ ]×Ω;RN) ≤ C3|u|
2θ
Lp([0,τ ];H2

p(Ω))τ
1−2θ

p

≤ C4|u|
2θ
Zτ ≤ ε1|u|Zτ + C5(ε1, θ, C4),

for all ε1 > 0. This together with (7.7) yields a bound for |u − v|Zτ which is uniform w.r.t. τ .
Since |v|Zτ stays bounded as τ ր Tmax, it follows that |u|Zτ enjoys the same property. Hence
we have global existence. �
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Chapter 8

The Harnack inequality for the

fractional derivation operator

8.1 Harnack inequalities and the main result

Harnack inequalities have been proved to be an important tool in the theory of linear and
nonlinear partial differential equations. We refer to the recent survey [42] for an introduction
into this subject. A variant of the classical Harnack inequality for the Laplace operator can be
stated as follows. Denote by Bρ(y) the open ball in Rn with radius ρ > 0 and center y ∈ Rn.
Suppose that u is a nonnegative harmonic function in B4ρ(y). Then

sup
Bρ(y)

u ≤ 3n inf
Bρ(y)

u,

see e.g. [29, Section 2.3]. The classical parabolic Harnack inequality (i.e. for the heat operator)
is due to Hadamard [33] and Pini [61]. The following version was introduced by Moser [57] in a
more general context, see also [21]. Letting ρ > 0, σ ∈ (0, 1), and y ∈ Rn we define the boxes

Q− = (−ρ2,−σρ2) ×Bρ(y), Q+ = (σρ2, ρ2) ×Bρ(y).

Then there exists a constant M > 0 depending only on n and σ such that for any nonnegative
and sufficiently smooth function u in (−4ρ2, ρ2) ×B4ρ(y) satisfying

∂tu− ∆u = 0 in (−4ρ2, ρ2) ×B4ρ(y),

there holds the inequality
sup
Q−

u ≤ M inf
Q+

u.

For more general results on Harnack inequalities in the elliptic and parabolic case we refer to
[20], [29], [42] [51], and the references given therein.

Concerning non-local operators it is known that the Harnack inequality also holds for frac-
tional powers of the negative Laplacian. Let α ∈ (0, 1) and suppose that u is a sufficiently smooth
function on Rn that is nonnegative everywhere and satisfies (−∆)αu = 0 in B4ρ(y). Then

sup
Bρ(y)

u ≤ M inf
Bρ(y)

u,

where the constant M depends only on α and n, cf. [5, Theorem 5.1]. We point out that here
the Harnack inequality fails, if the global positivity assumption is replaced by a local one, cf.
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[40]. This is due to the non-local nature of (−∆)α. More general results on Harnack estimates
for integro-differential operators like (−∆)α can be found in [2].

The main objective of this chapter is to show that a Harnack inequality also holds for the
Riemann-Liouville fractional derivation operator ∂α

t with α ∈ (0, 1).
To state the main result we need some notation. Given 0 ≤ t1 < t2 we define the space

Z(t1, t2) by
Z(t1, t2) = {u ∈ C([0, t2]) : g1−α ∗ u|[t1,t2] ∈ H1

1 ([t1, t2])}.

For t∗ ≥ 0, 0 < σ1 < σ2 < σ3, and ρ > 0 we introduce the intervals

W− = (t∗ + σ1ρ, t∗ + σ2ρ), W+ = (t∗ + σ2ρ, t∗ + σ3ρ).

Then the main result of this chapter is the following.

Theorem 8.1.1 Let t∗ ≥ 0, 0 < σ1 < σ2 < σ3, and ρ > 0. Let further α ∈ (0, 1) and u0 ≥ 0.
Then for any function u ∈ Z(t∗, t∗ + σ3ρ) that is nonnegative on (0, t∗ + σ3ρ) and that satisfies

∂α
t (u− u0)(t) = 0, a.a. t ∈ (t∗, t∗ + σ3ρ), (8.1)

there holds the inequality

sup
W−

u ≤
σ3

σ1
inf
W+

u. (8.2)

Note that in Theorem 8.1.1 we do not assume that u(0) = u0. So by setting u0 = 0 we obtain the
Harnack inequality for the Riemann-Liouville fractional derivative. If we assume in addition that
u(0) = u0 then Theorem 8.1.1 yields the Harnack inequality for the so-called Caputo fractional
derivation operator, which is a regularized version of the Riemann-Liouville fractional derivative,
cf. the monographs [44] and [67].

In Section 8.3 we will show that, similarly to the case of the fractional Laplacian, the Harnack
inequality fails if the global positivity assumption is replaced by a local one. Furthermore, we
will demonstrate that the above Harnack estimate breaks down if the relation ∂α

t (u− u0) = 0 is
only satisfied on the smaller interval (t∗ + σ1ρ, t∗ + σ3ρ).

In the last section of this chapter we generalize Theorem 8.1.1 to nonnegative solutions of
the fractional differential equation

∂α
t (u− u0)(t) + µu(t) = f(t), a.a. t ∈ (t∗, t∗ + σ3ρ), (8.3)

where u0, µ ≥ 0 and f ∈ Lp([t∗, t∗ + σ3ρ]) for some p > 1/α, see Theorem 8.4.1 below.
It is highly desirable to have a Harnack inequality also for nonnegative solutions of time

fractional diffusion equations the prototype of which reads

∂α
t (u− u0)(t, x) − ∆u(t, x) = 0, t ∈ (0, T ), x ∈ Ω, (8.4)

where T > 0, Ω is a domain in R
N , α ∈ (0, 1), and u0 = u0(x) is a given function. This is an

open problem, even for the Laplacian. However, the results of this contribution indicate that
a Harnack inequality should also hold in this situation. The author believes that the estimates
obtained in Chapter 6 are potentially very useful to solve this problem.

Before giving the proof of Theorem 8.1.1, let us remark again (cf. Section 5.1) that a weak
Harnack inequality is valid for nonnegative supersolutions of (8.3), see [83]. Adopting the nota-
tion of the present note and assuming for simplicity that f = 0 and µ = 0 it is shown in [83] that
for any function u ∈ Z(t∗, t∗ + σ3ρ) that is nonnegative on (0, t∗ + σ3ρ) and that satisfies

∂α
t (u − u0)(t) ≥ 0, a.a. t ∈ (t∗, t∗ + σ3ρ), u(0) = u0,
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we have

ρ−1/p|u|Lp((t∗,t∗+σ1ρ)) ≤ C inf
W+

u, (8.5)

for all 0 < p < 1
1−α , where the constant C > 0 depends only on 0 < σ1 < σ2 < σ3, p, and

α ∈ (0, 1). The critical exponent 1
1−α is optimal. Notice that on the left of (8.5) we have the

interval (t∗, t∗ + σ1ρ), not W− as in (8.2).

8.2 Proof of the Harnack inequality

Suppose u ∈ Z(t∗, t∗ + σ3ρ) is nonnegative on (0, t∗ + σ3ρ) and satisfies (8.1). We introduce the
shifted time s = t− t∗ and define the function ũ by means of ũ(s) = u(s+ t∗), s ∈ (0, σ3ρ). Then
(8.1) implies that

∂α
s ũ(s) = g1−α(t∗ + s)u0 + h(s), s ∈ (0, σ3ρ), (8.6)

where the history term h(s) is given by

h(s) =

∫ t∗

0

[−ġ1−α(t∗ + s− τ)]u(τ) dτ, s ∈ (0, σ3ρ). (8.7)

Here, by ġ we mean the derivative of the function g.
Since (g1−α ∗ ũ)(0) = 0 and gα ∗ g1−α = 1, we have

gα ∗ ∂α
s ũ = gα ∗ ∂s(g1−α ∗ ũ) = ∂s(gα ∗ g1−α ∗ ũ) = ũ.

Therefore convolving (8.6) with gα yields

ũ(s) = u0

(

gα ∗ g1−α(· + t∗)
)

(s) + (gα ∗ h)(s), s ∈ (0, σ3ρ). (8.8)

The first term on the right-hand side of (8.8) can be rewritten by the use of the identity

(

gα ∗ g1−α(· + t∗)
)

(s) =

∫ s

0

gα(s− σ)g1−α(t∗ + σ) dσ

= s

∫ 1

0

gα(s− rs)g1−α(t∗ + rs) dr

=

∫ 1

0

gα(1 − r)g1−α(r +
t∗
s

) dr (8.9)

=: ϕ(s), s ∈ (0, σ3ρ).

Similarly, we have for the second term

(gα ∗ h)(s) =

∫ s

0

gα(s− σ)

∫ t∗

0

[−ġ1−α(t∗ + σ − τ)]u(τ) dτ dσ

=
1

s

∫ 1

0

gα(1 − r)

∫ t∗

0

[−ġ1−α(r +
t∗ − τ

s
)]u(τ) dτ dr (8.10)

=: ψ(s), s ∈ (0, σ3ρ).

Consequently, (8.8) is equivalent to

ũ(s) = u0ϕ(s) + ψ(s), s ∈ (0, σ3ρ).
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Let now s ∈ (σ1ρ, σ2ρ) and s̄ ∈ (σ2ρ, σ3ρ). Since g1−α is nonincreasing, we evidently have
ϕ(s) ≤ ϕ(s̄). As to ψ, we use the positivity of u on (0, t∗) and the monotonicity of −ġ1−α to
estimate as follows.

ψ(s) ≤
1

σ1ρ

∫ 1

0

gα(1 − r)

∫ t∗

0

[−ġ1−α(r +
t∗ − τ

σ2ρ
)]u(τ) dτ dr

≤
σ3

σ1s̄

∫ 1

0

gα(1 − r)

∫ t∗

0

[−ġ1−α(r +
t∗ − τ

s̄
)]u(τ) dτ dr

=
σ3

σ1
ψ(s̄).

By positivity of u0, we thus obtain

ũ(s) ≤
σ3

σ1
ũ(s̄),

which immediately implies inequality (8.2). This completes the proof of Theorem 8.1.1.

Remark 8.2.1 Note that in case t∗ = 0 relation (8.1) implies u(t) = u0 for all t ∈ [0, σ3ρ], thus
the Harnack inequality (8.2) trivially holds with the constant σ3

σ1
> 1 being replaced by 1.

8.3 Counterexamples

Example 8.3.1 We show first that the Harnack inequality fails for nonnegative functions u ∈
Z(t∗ + σ1ρ, t∗ + σ3ρ) satisfying the relation ∂α

t (u − u0) = 0 only on the smaller interval (t∗ +
σ1ρ, t∗ + σ3ρ).

To this purpose fix W− = (1, 2) and W+ = (2, 3) and consider the family of functions uε,
ε ∈ (0, 1], defined by

uε(t) =

{

0 : 0 ≤ t ≤ 1 − ε
1
ε (t− 1 + ε) : 1 − ε ≤ t ≤ 1,

(8.11)

and
∂α

t uε = 0, a.a. t ∈ (1, 3). (8.12)

Apparently uε|[0,1] ∈ H1
1 ([0, 1]) so that (8.12) means that with s = t − 1 and ũε(s) = uε(s + 1)

we have
ũε(s) = (gα ∗ hε)(s), s ∈ (0, 2), (8.13)

where

hε(s) =

∫ 1

0

[−ġ1−α(1 + s− τ)]uε(τ) dτ, s ∈ (0, 2).

Observe that uε is nonnegative on (0, 3) and that uε ∈ Z(1, 3) for all ε ∈ (0, 1]. From uε = 0 in
[0, 1 − ε] and uε ≤ 1 in [1 − ε, 1] we infer the estimate

hε(s) ≤

∫ 1

1−ε

[−ġ1−α(1 + s− τ)] dτ = g1−α(s) − g1−α(s+ ε), s ∈ (0, 2).

In view of (8.13) this gives for s ∈ (1, 2)

ũ(s) ≤

∫ s

0

gα(s− σ)[g1−α(σ) − g1−α(σ + ε)] dσ

=

∫ 1

0

gα(1 − r)[g1−α(r) − g1−α(r +
ε

s
)] dr

≤

∫ 1

0

gα(1 − r)[g1−α(r) − g1−α(r + ε)] dr =: δ(ε).
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By the dominated convergence theorem, δ(ε) vanishes as ε→ 0+. Hence

lim
ε→0+

inf
W+

uε = 0.

On the other hand we have uε(1) = ũ(0) = 1 for all ε ∈ (0, 1], and therefore

sup
W−

uε ≥ 1, ε ∈ (0, 1].

This shows that an estimate of the form

sup
W−

u ≤ M inf
W+

u

with M independent of u cannot hold.

Example 8.3.2 We next show that the Harnack inequality fails if the positivity assumptions
u0 ≥ 0 and u ≥ 0 in (0, t∗) are dropped.

Fix t∗ > 0 and consider the family of functions uε, ε > 0, defined by

uε(t) =
1

ε
(t− t∗ + ε), 0 ≤ t ≤ t∗,

and
∂α

t (uε − u0,ε) = 0, a.a. t > t∗, (8.14)

where

u0,ε = uε(0) = 1 −
t∗
ε
.

Observe that uε has negative values in [0, t∗] if and only if ε ∈ (0, t∗). Setting s = t − t∗ and
ũε(s) = uε(s+ t∗), s ≥ 0, (8.14) is equivalent to

ũε(s) = u0,ε

(

gα ∗ g1−α(· + t∗)
)

(s) + (gα ∗ hε)(s), s > 0, (8.15)

where

hε(s) =

∫ t∗

0

[−ġ1−α(t∗ + s− τ)]uε(τ) dτ

=
[

g1−α(t∗ + s− τ)uε(τ)
]τ=t∗

τ=0
−

∫ t∗

0

g1−α(t∗ + s− τ)u̇ε(τ) dτ

= g1−α(s) − g1−α(t∗ + s)u0,ε +
1

ε

(

g2−α(s) − g2−α(s+ t∗)
)

, s > 0.

Inserting the last identity into (8.15) yields

ũε(s) = 1 +
1

ε
(gα ∗ [g2−α − g2−α(· + t∗)])(s), s ≥ 0.

In particular ũε is differentiable in (0,∞) and we have

˙̃uε(s) =
1

ε
(gα ∗ [g1−α − g1−α(· + t∗)])(s) −

1

ε
gα(s)g2−α(t∗)

<
1

ε

(

1 − gα(s)g2−α(t∗)
)

, s > 0.
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This shows that ũε is strictly decreasing in the interval [0, s∗] with

s∗ =
t∗

[Γ(α)Γ(2 − α)]1/(1−α)
.

Selecting
ε = (gα ∗ [g2−α(· + t∗) − g2−α])(s∗),

we have
ũε(s∗) = 0 and ũε(s) > 0, s ∈ [0, s∗). (8.16)

Note that ε < t∗, for otherwise we would have u0,ε ≥ 0 and uε > 0 in (0, t∗], which by (8.15),
entails strict positivity of ũε, a contradiction.

Choosing the parameters in such a way that s∗ = t∗ + σ3ρ, (8.16) shows that an estimate of
the form

sup
W−

uε ≤ M inf
W+

uε

cannot hold.

8.4 Nonhomogeneous fractional differential equations

In this section we derive a Harnack estimate for nonnegative solutions of the more general
equation

∂α
t (u− u0)(t) + µu(t) = f(t), a.a. t ∈ (t∗, t∗ + σ3ρ), (8.17)

here µ ≥ 0 is another parameter and we assume that f ∈ Lp([t∗, t∗ + σ3ρ]) for some p > 1/α.
The other parameters are as before.

Suppose u ∈ Z(t∗, t∗ + σ3ρ) is nonnegative on (0, t∗ + σ3ρ) and satisfies (8.17). Setting
s = t− t∗ and ũ(s) = u(s+ t∗), f̃(s) = f(s+ t∗), g̃1−α(s) = g1−α(s+ t∗), s ∈ (0, σ3ρ), we infer
from (8.17) that

∂α
s ũ(s) + µũ(s) = g̃1−α(s)u0 + h(s) + f̃(s), s ∈ (0, σ3ρ), (8.18)

where h(s) is given by (8.7). Let rα, µ denote the resolvent kernel corresponding to (8.17), that
is

rα, µ(s) + µ(rα, µ ∗ gα)(s) = gα(s), s > 0.

Equation (8.18) then implies

ũ(s) = (rα, µ ∗ [g̃1−αu0 + h+ f̃ ])(s), s ∈ (0, σ3ρ). (8.19)

Recall that (cf. (5.52))

rα, µ(s) = Γ(α)gα(s)Eα,α(−µsα), s > 0,

where Eα,β denotes the generalized Mittag-Leffler-function defined in (5.53).
Let now ω > 0 be a fixed constant and assume that

µρα ≤ ω.

By continuity and strict positivity of Eα,α in (−∞, 0] we then have

0 < c1 := min
z∈[0,ωσα

3 ]
Eα,α(−z) ≤ Eα,α(−µsα) ≤ max

z∈[0,ωσα
3 ]
Eα,α(−z) =: c2, s ∈ (0, σ3ρ).
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Setting Ci = Ci(α, ω, σ3) = ciΓ(α), i = 1, 2, we thus have

C1gα(s) ≤ rα, µ(s) ≤ C2gα(s), s ∈ (0, σ3ρ). (8.20)

Further,

max
s∈[0,σ3ρ]

(gα ∗ |f̃ |)(s) ≤ |gα|Lp′([0,σ3ρ])|f̃ |Lp([0,σ3ρ]) = C3ρ
α− 1

p |f̃ |Lp([0,σ3ρ]), (8.21)

with

C3 =
σ

α− 1
p

3

Γ(α)[(α − 1)p′ + 1]1/p′
.

Using the functions ϕ and ψ from Section 8.2, we infer from (8.19), (8.20), and (8.21) that

ũ(s) ≤ C2

(

ϕ(s)u0 + ψ(s) + C3ρ
α− 1

p |f̃ |Lp([0,σ3ρ])

)

, s ∈ (0, σ3ρ), (8.22)

as well as
ũ(s) ≥ C1

(

ϕ(s)u0 + ψ(s)
)

− C2C3ρ
α− 1

p |f̃ |Lp([0,σ3ρ]), s ∈ (0, σ3ρ). (8.23)

Suppose now that s ∈ (σ1ρ, σ2ρ) and s̄ ∈ (σ2ρ, σ3ρ). Employing (8.22), (8.23), and the
estimates for ϕ and ψ from Section 8.2, we have

ũ(s) ≤ C2

(

ϕ(s̄)u0 +
σ3

σ1
ψ(s̄) + C3ρ

α− 1
p |f̃ |Lp([0,σ3ρ])

)

≤
C2σ3

C1σ1

(

C1[ϕ(s̄)u0 + ψ(s)] − C2C3ρ
α− 1

p |f̃ |Lp([0,σ3ρ])

)

+ C2C3

(

1 +
C2σ3

C1σ1

)

ρα− 1
p |f̃ |Lp([0,σ3ρ])

≤
C2σ3

C1σ1
ũ(s̄) + C2C3

(

1 +
C2σ3

C1σ1

)

ρα− 1
p |f̃ |Lp([0,σ3ρ]).

We have thus proved the following result.

Theorem 8.4.1 Let ω > 0 be fixed. Let t∗, µ ≥ 0, 0 < σ1 < σ2 < σ3, and ρ > 0. Let further
α ∈ (0, 1), u0 ≥ 0, and f ∈ Lp([t∗, t∗+σ3ρ]) for some p > 1/α. Assume that µρα ≤ ω. Then there
exists a positive constant M = M(α, p, σ1, σ3, ω) such that for any function u ∈ Z(t∗, t∗ + σ3ρ)
that is nonnegative on (0, t∗ + σ3ρ) and that satisfies (8.17) there holds the inequality

sup
W−

u ≤ M
(

inf
W+

u+ ρα− 1
p |f |Lp([t∗,t∗+σ3ρ])

)

. (8.24)
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