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ABSTRACT

This thesis deals with the numerical solution approximation of large-scale (autonomous)
differential Riccati equations. The first part of the thesis focuses on the differential
Lyapunov equation. We recapitulate well-known explicit solution formulas and use them
to motivate a Galerkin approach for the numerical solution approximation. For the trial
space of the Galerkin method, we propose to use a system of orthonormal eigenvectors of
the solution of the algebraic Lyapunov equation. We motivate our choice by estimating
the projection error on the trial space using the Loewner partial order. Then, the
Galerkin condition yields a system of a smaller order, which can be treated numerically
more efficiently. Finally, we compare the proposed Galerkin approach with the BDF-ADI
method in terms of accuracy and computational time in several numerical experiments.

In the second part, we extend the proposed Galerkin method to the differential Riccati
equation. First, we review the essential analytical properties of the solution of the
differential Riccati equation. Then, we estimate the projection error of the solution of the
differential Riccati equation using the Loewner partial order and, therefore, motivating
a Galerkin approach based on a system of orthonormal eigenvectors of the solution of
the algebraic Riccati equation. The Galerkin condition yields a small-scale differential
Riccati equation. We recapitulate the Davison–Maki and the modified Davison–Maki
method for the numerical solution of the small-scale differential Riccati equation. We
compare the proposed Galerkin approach with different splitting methods in terms of
accuracy and computing time in several numerical experiments. Furthermore, we discuss
a possible extension of the Galerkin method to the case of non-zero initial conditions.
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ZUSAMMENFASSUNG

Diese Arbeit befasst sich mit der numerischen Lösungsapproximation von großskaligen
(autonomen) Riccati–Differentialgleichungen. Der erste Teil der Arbeit konzentriert sich
auf die Lyapunov–Differentialgleichung. Wir rekapitulieren bekannte explizite Lösungs-
formeln und leiten anhand dessen einen Galerkinansatz zur numerischen Lösungsapprox-
imation her. Für den Ansatzraum des Galerkinverfahrens schlagen wir vor ein System
orthonormalen Eigenvektoren der Lösung der algebraisch Lyapunov–Gleichung zu ver-
wenden. Wir motivieren unsere Wahl durch die Abschätzung des Projektionsfehlers
auf den Ansatzraum durch Nutzung der Loewner–Halbordnung. Die Galerkinbedingung
liefert dann ein System kleinerer Ordnung, welches sich numerisch effizienter behandeln
lässt. Schließlich vergleichen wir das vorgeschlagene Galerkinverfahren mit dem BDF-
ADI Verfahren hinsichtlich der Genauigkeit und Rechenzeit in mehreren numerischen
Experimenten.

Im zweiten Teil erweitern wir das vorgeschlagene Galerkinverfahren auf die Riccati–
Differentialgleichung. Zunächst wiederholen wir wichtige analytische Eigenschaften der
Lösung der Riccati–Differentialgleichung. Wir geben eine Abschätzung des Projektions-
fehlers der Lösung der Riccati–Differentialgleichung unter Ausnutzung der Loewner–
Halbordnung an und motivieren dadurch einen Galerkinansatz basierend auf einem Sys-
tem von orthonormalen Eigenvektoren der Lösung der algebraischen Riccati–Gleichung
zur numerischen Approximation zu verwenden. Die Galerkinbedingung führt dann auf
eine kleinskalige Riccati–Differentialgleichung. Zur numerischen Lösung der kleinskali-
gen Riccati–Differentialgleichung rekapitulieren wir das Davison–Maki und das modi-
fizierte Davison–Maki Verfahren. Wir vergleichen das vorgeschlagene Galerkinverfahren
mit verschiedenen Splitting Verfahren hinsichtlich der Genauigkeit und Rechenzeit in
mehreren numerischen Experimenten. Des Weiteren diskutieren wir eine mögliche Er-
weiterung des Galerkinverfahrens auf den Fall von Nichtnull–Anfangsbedingungen.
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CHAPTER 1

INTRODUCTION

Contents
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1 Motivation

This thesis deals with the numerical solution of the large-scale autonomous differential
Riccati equation

Ẋ(t) = ATX(t) +X(t)A−X(t)BBTX(t) + CTC,

X(0) = X0

The differential Riccati equation plays an important role in many fields of applied
mathematics like model order reduction, optimal control and differential games; cf. [1,
22,26,66,84]. The equation finds applications in symplectic geometry as well; cf. [11,85].

As the differential Riccati equation is a nonlinear system of n2 scalar equations, the
numerical approximation of the solution X(t) ∈ Rn×n comes with high computational
complexity and storage demands if n is large. Consider for example n = 105 and assume
that X(tk) is approximated by the matrix Xk of size n× n. If Xk is stored in IEEE 754
double-precision, this would require about 80 Gigabytes memory.

Stationary points of the differential Riccati equation are solutions of the algebraic
Riccati equation

0 = ATX +XA−XBBTX + CTC.

The algebraic Riccati equation has similar applications as the differential Riccati equa-
tion. Here, of primary interest are symmetric positive semidefinite solutions X ∈ Rn×n.
During the last 20 years, efficient low-rank approaches were developed for the nu-
merical approximation of the solution of the large-scale algebraic Riccati equation;
cf. [19, 74, 82, 105, 123]. These approaches circumvent the large memory requirements
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1 Introduction

by approximating the solution as a product of low-rank matrices ZZT ≈ X, where the
numbers of columns of Z is much smaller than n, and are based on the property that
the solution X often admits a quick eigenvalue decay; cf. [13, 18,94,108].

Example 1.1 (Algebraic Riccati Equation: Eigenvalue Decay, [40, p. 15]):
We illustrate the eigenvalue decay of the symmetric positive semidefinite solution of the
algebraic Riccati Equation by an example in Figure 1.1. We have chosen the matrices
of the TRIDIAG(α) benchmark problem with α ∈ {1, 2, 3, 5, 10, 50, 104} (Table A.1). We
have used the variable-precision arithmetic of MATLAB with 512 significant digits for
the numerical solution approximation and eigenvalue computations. Figure 1.1 visualizes
the eigenvalues arranged in a non-increasing order.

1 20 40 60 80 100
10−105

10−90

10−75

10−60

10−45

10−30

10−15

100

k

λ
↓ k
(X
∞
)

α = 1

α = 2

α = 3

α = 5

α = 10

α = 50

α = 104

Fig. 1.1: Eigenvalue Decay of the Solution of the Algebraic Riccati Equation.

An implicit time discretization scheme applied to the differential Riccati leads to a
series of algebraic Riccati equations with additional indefinite terms of low-rank. There-
fore, the achievements in efficiently solving the algebraic Riccati equation have trans-
ferred to the solution of the differential Riccati equation. The relevant works analyze the
discretization schemes in view of definiteness of the resulting low-rank approximations
and propose variants of the low-rank approximation with possible indefinite low-rank
approximations; [80, 113].
However, an indefinite low-rank approximation LkDkL

T
k ≈ X(tk) has still to be com-

puted and stored for every grid-point in time. Here, the low-rank factor Lk is still of size
n× lk. As calculated above, if n was 105 and the low-rank factors Lk had 100 columns
each, then storing the approximation to the differential Riccati equation on 1000 dis-
crete time steps would require approximately 80 Gigabytes of memory. Generally, the
memory demand for these approaches scales with nnt, where nt is the number of discrete
time points.
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1.2 Outline of the Thesis

To decouple the memory and computational requirements in n and nt, methods that
approximate X(t) by QX̃(t)QT have gained interest recently. Here, usually the matrix
Q ∈ Rn×k has orthonormal columns and the time-dependent matrix X̃(t) is of size k×k.
Hence, the memory requirements scale down to kn+ k2nt. These methods then differ in
how the basis Q is chosen and how the approximated X̃(t) is computed; see [49, 65, 70]
for Krylov subspace approaches combined with backward differentiation formula time
integration. A major result of this thesis adds an algorithm to this class of methods that
chooses Q depending on a low-rank approximation of the associated algebraic Riccati
equation and computes X̃(t) by a suitable modification of the Davison–Maki method.

Although it could be seen as a special case of the differential Riccati equation, the
differential Lyapunov equation

Ẋ(t) = ATX(t) +X(t)A+ CTC,

X(0) = X0

is a major section of this thesis. The linearity of the differential Lyapunov equation
allows for the application of spectral theory which we use to reassemble known solution
representations, and that serves as a motivation for numerical approximations.

Similarly to the algorithm for the differential Riccati equation, this thesis proposes to
parametrize the solution of the differential Lyapunov equation in the space spanned by
the eigenvectors corresponding to the largest eigenvalues of the low-rank approximation
of the stationary point and provides an analysis of this approximation.

All proposed numerical methods are thoroughly tested in benchmark examples and
compared to state-of-the-art implementations of comparable approaches.

Even with advanced mathematical techniques, the numerical approximation of large-
scale matrix valued differential equations easily reach dimensions that require the use of
computing clusters. Because of differing individual configurations of compute servers,
any implementation of numerical algorithms performs differently in different environ-
ments. This makes general assessments of the performance of the algorithms difficult,
even if they are reported relative to other approaches and for acknowledged benchmark
problems.

Therefore, a focus of this thesis has been laid on the development of a code repository
that resorts to low-level routines or to established function implementation of MAT-
LAB. The code and all scripts needed to reproduce the numerical experiments are made
publicly available.

1.2 Outline of the Thesis

This thesis is organized as follows. In Chapter 2, necessary mathematical notation,
concepts, and fundamental results from the theory of ordinary differential equations are
introduced. In Chapters 3 and 4 and Chapters 5 and 6, the algebraic and differential
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Code and Data Availability
The data and the source code of the implementations used to compute the presented
results is available from:

doi:10.5281/zenodo.4460618

Fig. 1.2: Link to Source Code and Data.

Lyapunov and Riccati equations are treated, respectively. We first consider the alge-
braic version for both problem classes and derive and review solution representations
and properties. Then the corresponding differential equations are described, and solu-
tion formulas and numerical solution approaches are discussed. Thirdly, the collected
theoretical results and considerations are cast into an algorithm for numerical approxi-
mation. Where appropriate, generalizations are discussed. The numerical performance
is discussed in the individual chapters, whereas the plots of the simulations are ap-
pended in Appendix D. The appendix also includes the specification of the hardware
and software ecosystem. Furthermore, the appendix explains basic routines used for
the approximation and a description of the benchmark examples. The thesis itself is
completed by a conclusion in Chapter 7.
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CHAPTER 2

MATHEMATICAL PRELIMINARIES

Contents
2.1 Loewner Partial Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Matrix Square Root . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Linear Functional Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3.1 Bounded Linear Operators . . . . . . . . . . . . . . . . . . . . . . 7
2.3.2 Hilbert Space Adjoint Operator and Normal Operator . . . . . . . 8
2.3.3 Projection and Best Approximation . . . . . . . . . . . . . . . . . 8

2.4 Matrix Nearness Problems . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4.1 Best Low-Rank Approximation . . . . . . . . . . . . . . . . . . . 9
2.4.2 Best Hermitian Approximation . . . . . . . . . . . . . . . . . . . 10
2.4.3 Best Hermitian Positive Semidefinite Approximation . . . . . . . 10

2.5 Matrix Exponential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.6 Logarithmic Norm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.7 Numerical Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.8 Ordinary Differential Equations . . . . . . . . . . . . . . . . . . . . . . . 15

2.8.1 Existence and Uniqueness of Solutions . . . . . . . . . . . . . . . 16
2.8.2 Linear Initial Value Problems . . . . . . . . . . . . . . . . . . . . 17

2.9 Hadamard Product, Kronecker Product, and Vectorization . . . . . . . . 18
2.10 Hamiltonian Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.11 Krylov Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.12 Stable, Center, and Unstable Subspace . . . . . . . . . . . . . . . . . . . 20

This chapter collects basic mathematical concepts used throughout this thesis. It
is organized as follows. Sections 2.1 and 2.2 deal with Hermitian positive semidefinite
(hpsd) matrices. The Loewner partial ordering is recalled, and its fundamental prop-
erties are summarized. An existence and uniqueness theorem about the hpsd matrix
square root of a hpsd matrix is given. Section 2.3 summarizes bounded linear operators,
adjoint operators, normal operators, projections, and best approximations. Section 2.4
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presents some best approximation problems for matrices. Section 2.5 focuses on the ma-
trix exponential and the exponential of a bounded linear operator. Then, Sections 2.6
and 2.7 consider the logarithmic norm, the numerical range, and states connections to
the matrix exponential. Section 2.8 gives facts of the theory of ordinary differential
equations (ODEs). Section 2.9 recalls the Hadamard product, the Kronecker product,
and the vectorization of a matrix. Sections 2.10 and 2.11 review Hamiltonian and Krylov
matrices. Finally, Section 2.12 is about the stable, center, and unstable subspace of a
matrix.

2.1 Loewner Partial Order

We define the Loewner partial order. Theorem 2.4 presents some relevant properties.

Definition 2.1 ([59, Def. 7.7.1]):
Let A,B ∈ Cn×n be Hermitian. We write A 4 B if B − A is hpsd. ♦

Lemma 2.2 (Partial Order, [59, Sec. 7.7]):
The relation 4 is a partial order on the set of Hermitian matrices. That is, for all
Hermitian A,B,C ∈ Cn×n, it holds:

(i) A 4 A.

(ii) If A 4 B and B 4 A, then A = B.

(iii) If A 4 B and B 4 C, then A 4 C. ♦

Definition 2.3 (Loewner Partial Order, [59, Sec. 7.7]):
The partial order 4 on the set of Hermitian matrices is called Loewner partial order. ♦

There are Hermitian matrices such that neither A 4 B nor B 4 A holds. Therefore,
the Loewner partial order is not a total order.

Theorem 2.4 ([59, Thm. 7.7.2, Cor. 7.7.4, Prob. 7.1.P1]):
Let A,B ∈ Cn×n be Hermitian, and S ∈ Cn×m. It holds:

(i) λ↓n(A)I 4 A 4 λ↓1(A)I.

(ii) −‖A‖2 I 4 A 4 ‖A‖2 I.

(iii) If A 4 B, then SHAS 4 SHBS.

(iv) If A 4 B, then λ↓k(A) ≤ λ↓k(B) for all k = 1, . . . , n.

(v) If 0 4 A 4 B, then ‖A‖2 ≤ ‖B‖2.

(vi) If 0 4 A, then
∣∣Ai,j

∣∣ ≤
√
Ai,iAj,j for all i, j = 1, . . . , n. ♦
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Theorem 2.4 (iv) is a direct consequence of the Courant–Fischer–Weyl min-max prin-
ciple; cf. [59, Thm. 4.2.6]. If A is Hermitian, then

‖A‖2 = max
λ∈Λ(A)

|λ| .

Therefore, (ii) and (v) of Theorem 2.4 follow from (i) and (iv), respectively.

Lemma 2.5 ([59, Obs. 7.1.6]):
Let A ∈ Cn×n be hpsd and let x ∈ Cn. Then

xHAx = 0 ⇐⇒ Ax = 0. ♦

Lemma 2.6 (Image and Loewner Partial Order, [59, Prob. 7.7.P6]):
Let A,B ∈ Cn×n be Hermitian. If 0 4 A 4 B, then im(A) ⊆ im(B). ♦

2.2 Matrix Square Root

The principal square root of a number can be generalized to Hermitian matrices. Here,
we recall the existence and uniqueness of a hpsd matrix square root.

Definition/Theorem 2.7 (Matrix Square Root, [59, Thm. 7.2.6]):
Let A ∈ Cn×n be hpsd. Then there is a unique hpsd matrix B ∈ Cn×n such that B2 = A

hold. We define the matrix square root of A as A1/2 := B. If A is real, then A1/2 is
real. ♦

Clearly, by considering diagonal matrices, the equation B2 = A may have multiple
solutions. The condition “B is hpsd” ensures uniqueness.

2.3 Linear Functional Analysis

Section 2.3 is divided into Sections 2.3.1, 2.3.2, and 2.3.3. Section 2.3.1 reviews equiva-
lent conditions for the continuity of a linear operator and the operator norm definition.
Adjoint and normal operators on a Hilbert space are part of Section 2.3.2. Then, Sec-
tion 2.3.3 collects the primary results of projections and best approximations. Through-
out Section 2.3, we consider all linear spaces to be over the field of real or complex
numbers.

2.3.1 Bounded Linear Operators

We start with a characterization of the continuity of linear operators.

Lemma 2.8 (Continuity of Linear Operators, [3, Sec. 5.1]):
Let (X, ‖·‖X) and (Y, ‖·‖Y ) be normed linear spaces. T : X → Y linear, and x0 ∈ X.
Then the conditions are equivalent:
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(i) T is continuous.

(ii) T is continuous at x0.

(iii) sup
‖x‖X≤1

‖Tx‖Y <∞.

(iv) There exists a constant C with ‖Tx‖Y ≤ C ‖x‖X for all x ∈ X. ♦

Next, we continue with bounded linear operators and their operator norm.

Definition 2.9 (Bounded Linear Operator/Operator Norm, [62, Sec. 3.1]):
Let (X, ‖·‖X) and (Y, ‖·‖Y ) be normed linear spaces. If T : X → Y is linear and
continuous, then T is called bounded linear. The operator norm of T is defined as

‖T‖ := sup
‖x‖X≤1

‖Tx‖Y . ♦

If X is finite-dimensional, then each linear T : X → Y is bounded linear; cf. [62,
Sec. 3.1].

2.3.2 Hilbert Space Adjoint Operator and Normal Operator

Here, we consider bounded linear operators acting on Hilbert spaces. We review the
definitions of an adjoint of an operator and a normal operator.

Definition/Theorem 2.10 (Hilbert Space Adjoint, [62, Sec. 7.3, Thm. 7.5]):
Let (H, 〈·, ·〉H) and (G, 〈·, ·〉G) be Hilbert spaces. If T : H → G is bounded linear, then
there exists a unique bounded linear T ∗ : G→ H such that

〈Tx, y〉G = 〈x, T ∗y〉H ,

for all x ∈ H and y ∈ G. The operator T ∗ is called the adjoint of T . ♦

Definition 2.11 (Normal Operator, [62, Sec. 7.3, Def.]):
Let (H, 〈·, ·〉H) be a Hilbert space. A bounded linear operator T : H → H is called
normal if

TT ∗ = T ∗T. ♦

2.3.3 Projection and Best Approximation

We are concerned with the best approximation problem in a Hilbert space and projec-
tions.
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Definition/Theorem 2.12 (Best Approximation, [3, Thm. 4.3]):
Let (H, 〈·, ·〉H) be a Hilbert space, and let Y ⊆ X be nonempty, closed, and convex.
Then there exists a unique function P : X → X such that

‖x− P (x)‖H = inf
y∈Y
‖x− y‖H

for all x ∈ H. The map P is called the (orthogonal) projection onto Y . ♦

Definition 2.13 (Projection, [3, Def. 9.13]):
Let X be a linear space, and Y ⊆ X be a subspace of X. A linear function P : X → X

is called (linear) projection onto Y if

P 2 = P and im(P ) = Y. ♦

The following theorem gives equivalent characterizations of the orthogonal projection.

Theorem 2.14 (Orthogonal Projection, [3, Lem. 9.18]):
Let (H, 〈·, ·〉H) be a Hilbert space, and P : H → H be linear. Then the conditions are
equivalent:

(i) P is the orthogonal projection onto im(P ), i.e., ‖x− Px‖ ≤ ‖x− Py‖ for all
x, y ∈ H.

(ii) 〈x− Px, Py〉H = 0 for all x, y ∈ H.

(iii) P 2 = P and 〈Px, y〉H = 〈x, Py〉H for all x, y ∈ H.

(iv) P 2 = P and P is bounded linear, with ‖P‖ ≤ 1. ♦

2.4 Matrix Nearness Problems

Section 2.4 deals with some best approximation problems for matrices. The term “matrix
nearness problems” is also frequently used in the literature; cf. [55]. The problem consists
of finding the nearest matrix with some prescribed properties to a given matrix X. The
nearest matrix of rank at most k is given in terms of the singular value decomposition
(SVD) (Theorem 2.15). We also consider the nearest Hermitian matrix (Theorem 2.16)
and the nearest hpsd matrix problems (Theorem 2.18).

2.4.1 Best Low-Rank Approximation
Theorem 2.15 (Eckart–Young/Schmidt–Mirsky, [117, Thm. 5.8–5.9]):
Let X = UΣV H be an SVD of X ∈ Cn×m with unitary matrices

U =
[
u1, . . . , un

]
∈ Cn×n, V =

[
v1, . . . , vm

]
∈ Cm×m,
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and diagonal matrix

Σ = diag
(
σ1(X), . . . , σmin{n,m}(X)

)
∈ Rn×m.

For any number 0 ≤ k < min{n,m} let Xk =
k∑
i=1

σi(X)uiv
H
i . Then

‖X −Xk‖2 = inf
Y ∈Cn×m

rank(Y )≤k

‖X − Y ‖2 = σk+1(X),

‖X −Xk‖F = inf
Y ∈Cn×m

rank(Y )≤k

‖X − Y ‖F =
√
σk+1(X)2 + · · ·+ σmin{n,m}(X)2. ♦

2.4.2 Best Hermitian Approximation
Theorem 2.16 (Fan/Hoffman, [56, Thm. 8.7]):
Let XH = 1

2

(
X +XH

)
be the Hermitian part of X ∈ Cn×n and let ‖·‖ be any unitarily

invariant norm. Then XH is a best possible Hermitian approximation to X, i.e.,

‖X −XH‖ = inf{‖X − Y ‖ | Y is Hermitian}.

The solution is unique in the Frobenius norm. ♦

2.4.3 Best Hermitian Positive Semidefinite Approximation
Definition/Theorem 2.17 (Polar Decomposition, [56, Thm. 8.1]):
Let X ∈ Cm×n with m ≥ n. There exists a matrix U ∈ Cm×n with orthonormal columns
and a unique hpsd matrix P ∈ Cn×n such that

A = UP.

The decomposition is called polar decomposition. ♦

Theorem 2.18 (Higham, [56, Thm. 8.8]):
Let X ∈ Cn×n be, XH = 1

2

(
X +XH

)
be the Hermitian part of X, and let XH = UP be

a polar decomposition. Then Xpsd = 1
2
(XH + P ) is the unique solution to

∥∥X −Xpsd
∥∥

F
= inf{‖X − Y ‖F | Y is hpsd}. ♦

Results on best hpsd approximations in the 2–norm and the computational aspects of
the problem are studied in [53,55].

Remark 2.19 (Nearest hpsd Matrix to a Hermitian Matrix):
Let X ∈ Cn×n be Hermitian, and X = QDQH be its spectral decomposition. Then

X =
(
QDUQ

H
)(
QDPQ

H
)

= UP
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is a polar decomposition of X, where DU and DP are diagonal matrices such that

(DU)i,i = sgn
(
Di,i

)
and (DP )i,i =

∣∣Di,i

∣∣ .

The best possible hpsd approximation is given by

Xpsd = 1
2
(X + P ) = 1

2
Q(D +DP )QH.

Therefore, the negative eigenvalues of X are replaced by 0, and the nonnegative ones
remain unchanged. ♦

2.5 Matrix Exponential

In this section, we review the matrix exponential and the exponential of a bounded linear
operator. Theorem 2.21 summarizes essential properties of the matrix exponential. We
begin with the definition of the matrix exponential of a square matrix.

Definition 2.20 (Matrix Exponential, [125, §18 II.]):
The matrix exponential of A ∈ Cn×n is defined to be

eA :=
∞∑

k=0

1
k!
Ak. ♦

Theorem 2.21 (Matrix Exponential, [125, §18 III., §18 V.]):
For the matrix exponential, it holds:

(i) d
dt
etA = AetA for all t ∈ R.

(ii) If AB = BA, then eA+B = eAeB.

(iii) If B is nonsingular, then eB−1AB = B−1eAB.

(iv)
(
eA
)−1

= e−A.

(v)
(
eA
)H

= eA
H .

(vi) If A = diag(a1, . . . , an), then eA = diag(ea1 , . . . , ean). ♦

Definition 2.22 (Exponential of an Operator, [3, Ch. 5, Ex. 5.10]):
Let (X, ‖·‖X) be a Banach space over the complex or real numbers. The exponential of
a bounded linear operator A : X → X is defined to be

eA :=
∞∑

k=0

1
k!
Ak. ♦

The exponential of a bound linear operator is a bounded linear operator, and the
properties Theorem 2.21 (i)–(iv) also apply; cf. [3, Ch. 3 Ex. 3.10].
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2.6 Logarithmic Norm

We review bounds on the norm of the matrix exponential. For that, we recall the
logarithmic norm introduced in 1958 by Dahlquist and Lozinskii; cf. [107]. We start
with the definition of a stable matrix.

Definition 2.23 (Stable Matrix):
If each eigenvalue of A ∈ Cn×n has a negative real-part, then A is called stable, i.e.,

A is stable :⇐⇒ Λ(A) ⊆ C−. ♦

Theorem 2.24 (Matrix Exponential Bound, [56, Thm. 10.12], [125, §29 V.]):
Let A ∈ Cn×n be and α ∈ R with spa(A) < α. Then there is a positive constant γ such
that

et spa(A) ≤
∥∥etA

∥∥
2
≤ γeαt (2.1)

for all t ≥ 0. ♦

If A is stable, then the constant α can be chosen negatively, and the norm of the matrix
exponential decays exponentially. Conversely, if there is an eigenvalue with a positive
real part, the norm of the matrix exponential grows exponentially. The constant γ
depends on α and may, in general, not be known explicitly.
If A is normal, then A can be unitarily diagonalized. The 2-norm is unitarily invariant,

and we obtain
∥∥etA

∥∥
2

=
∥∥∥etUDUH

∥∥∥
2

=
∥∥UetDUH

∥∥
2

=
∥∥etD

∥∥
2

=
√

max
λ∈Λ(A)

etλetλ = et spa(A) (2.2)

for all t ≥ 0. Therefore, the norm of the matrix exponential of a normal matrix can be
bounded without an additional constant. By introducing the logarithmic norm, we can
extend this to a larger class of matrices.

Definition 2.25 (Logarithmic Norm, [39, Ch. II 8], [107]):
The logarithmic norm of A ∈ Cn×n is the right-sided derivative of ‖·‖2 at I in direction
A, i.e.,

µ2[A] := lim
h↘0

‖I + hA‖2 − 1

h
. (2.3)

♦

Each convex function defined on a linear space has a right-sided derivative. Hence,
the limit (2.3) exists; cf. [60, Thm. 3.50].

Theorem 2.26 ([39, Ch. II 8], [60, Thm. 3.51], [107], [118, Thm. 17.4]):
For the logarithmic norm, it holds:

(i) µ2[αA] = αµ2[A] for all α ≥ 0.

12



2.7 Numerical Range

(ii) µ2[A+B] ≤ µ2[A] + µ2[B].

(iii) spa(A) ≤ µ2[A].

(iv) µ2[A] ≤ ‖A‖2.

(v) µ2[A] = λ↓1
(

1
2

(
A+ AH

))
.

(vi)
∥∥etA

∥∥
2
≤ etµ2[A] for all t ≥ 0.

(vii) The logarithmic norm is the initial slope of the norm of the matrix exponential,
i.e.,

lim
h↘0

∥∥ehA
∥∥

2
− 1

h
= µ2[A]. ♦

If the logarithmic norm µ2[A] is negative, then Theorem 2.26 (iii) ensures that A is
stable. Generally, the converse is not true.

If A is normal, then Theorem 2.26 (iii) and (v) yield

λ↓1
(

1
2

(
A+ AH

))
= spa(A) = µ2[A].

Consequently, A is normal and stable is equivalent to A is normal and the logarithmic
norm µ2[A] is negative – and Equation (2.2) can be stated as

∥∥etA
∥∥

2
= etµ2[A].

On the other hand, the logarithmic norm of a nonnormal matrix might be nonnegative.
We summarize.

A is normal and µ2[A] < 0⇔ A is normal and stable⇒ µ2[A] < 0⇒ A is stable.

Therefore, the logarithmic norm concept gives bounds on the matrix exponential with-
out additional constants under more general assumptions; cf. Theorem 2.26 (vi).

2.7 Numerical Range

We present the definition of the numerical range. Theorem 2.28 collects some properties
of the numerical range. Example 2.1 illustrates a few aspects of Theorems 2.26 and 2.28.

Definition 2.27 (Numerical Range, [58, Def. 1.1.1]):
The numerical range of A ∈ Cn×n is defined by

W(A) :=
{
xHAx | x ∈ Cn, ‖x‖2 = 1

}
. ♦

Theorem 2.28 ([58, Prop. 1.2.1–1.2.6, Prop. 1.2.9, Lem. 1.5.7]):
For the numerical range, it holds:

(i) Toeplitz–Hausdorff Theorem: W(A) is a compact and convex set in C.

13



2 Mathematical Preliminaries

(ii) If A is normal, then W(A) is the convex hull of Λ(A).

(iii) Each eigenvalue of A is contained in W(A), i.e., Λ(A) ⊆W(A).

(iv) W(A+ zI) = W(A) + {z} and W(zA) = zW(A) for all z ∈ C.

(v) W(A+B) ⊆W(A) + W(B).

(vi) <(W(A)) = W
(

1
2

(
A+ AH

))
and =(W(A)) = W

(
1
2ı

(
A− AH

))
.

(vii) max{<(z) | z ∈W(A)} = λ↓1
(

1
2

(
A+ AH

))
.

(viii) If the columns of Q ∈ Cn×k are orthonormal, then W
(
QHAQ

)
⊆W(A). ♦

Theorem 2.28 (vi) gives information about the projection of the numerical range onto
the real and imaginary axis. The matrices

1
2

(
A+ AH

)
and 1

2ı

(
A− AH

)

are Hermitian. Therefore, their numerical ranges are the convex hulls of their extremal
eigenvalues.
Combining Theorem 2.26 (v) and Theorem 2.28 (vii) yields that the logarithmic norm

µ2[A] is the rightmost extent of the numerical range of A. Using Theorem 2.28 (viii), we
have µ2

[
QHAQ

]
≤ µ2[A]. In particular, if the logarithmic norm of A is negative, QHAQ

is stable.

Example 2.1 (Numerical Range and Logarithmic Norm):
We illustrate the numerical range, the logarithmic norm, and the bound of the matrix
exponential by an example in Figure 2.1. We consider the matrices

A1 = 1
2

[
−1 4

−1 −1

]
and A2 = 1

2

[
−1 2

−1 −1

]
.

Both matrices are stable, and the real part of all eigenvalues of A1 and A2 is equal. We
have

Λ(A1) =
{
−1

2
± 1ı

}
and Λ(A2) =

{
−1

2
± 1√

2
ı
}
.

Moreover, µ2[A1] = 1
4
and µ2[A2] = −1

4
. For the numerical ranges, it holds

<(W(A1)) =
[
−5

4
, 1

4

]
, =(W(A1)) =

[
−5

4
, 5

4

]
,

<(W(A2)) =
[
−3

4
,−1

4

]
, =(W(A2)) =

[
−3

4
, 3

4

]
. ♦

Figure 2.1 visualizes the numerical range, the spectrum, and the logarithmic norm of A1

and A2. Figure 2.2 shows the norm of the matrix exponential and the logarithmic norm
bound on the interval [0, 2]. The logarithmic norm of A1 is positive. Therefore, the
bound etµ2[A1] grows exponentially, whereas the norm of the matrix exponential exhibits
a transient growth phase and decays exponentially after some time; cf. Figure 2.2a.
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2.8 Ordinary Differential Equations

In Figure 2.2b, both quantities decay exponentially, as the logarithmic norm of A2 is
negative. Moreover, the functions

∥∥etAi
∥∥

2
and etµ2[Ai] have the same initial slope at

t = 0; cf. Theorem 2.26 (vii).

(a)

−1 1

−1ı

1ı

R

ıR W(A1)

Λ(A1)

µ2[A1]

(b)

−1 1

−1ı

1ı

R

ıR W(A2)

Λ(A2)

µ2[A2]

Fig. 2.1: (a), (b): The Numerical Range, the Spectrum, and the Logarithmic Norm of A1

and A2.

(a)

0 0.5 1 1.5 2
0

0.5

1

1.5

t ∈ [0, 2]

∥∥etA1
∥∥
2

etµ2[A1]

(b)

0 0.5 1 1.5 2
0

0.5

1

1.5

t ∈ [0, 2]

∥∥etA2
∥∥
2

etµ2[A2]

Fig. 2.2: (a), (b): The Norm of the Matrix Exponential and the Logarithmic Norm Bound.

2.8 Ordinary Differential Equations

Section 2.8 recalls the fundamental results of the theory of ODEs. Section 2.8.1 reviews
the existence and uniqueness results of solutions of initial value problems (IVPs). Finally,
Section 2.8.2 focuses on linear IVPs.
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2.8.1 Existence and Uniqueness of Solutions

We start with the Peano existence theorem, the Picard-Lindelöf theorem, and a result
on maximal solutions.

Theorem 2.29 (Peano, Picard–Lindelöf, and Maximal Solutions):
Let G ⊆ R× Rn be an open set with (t0, x0) ∈ G. We consider the IVP

ẋ(t) = f(t, x(t)), (2.4a)
x(t0) = x0, (2.4b)

where f : G→ Rn. It holds:

• If f is continuous, then the IVP (2.4) has a maximal solution

x : (t−, t+)→ Rn

with t0 ∈ (t−, t+); cf. [95, Thm. 6.1.1, Thm. 6.2.1].

• If f is continuous and locally Lipschitz continuous with respect to x, then the
IVP (2.4) has a unique maximal solution

x : (t−, t+)→ Rn

with t0 ∈ (t−, t+); cf. [95, Thm. 2.2.2, Thm. 2.3.2].

We have the following alternatives for the right-endpoint t+:

(i) t+ =∞.

(ii) t+ <∞ and lim
r↘0

inf{dist((t, x(t)), ∂G) | t+ − r < t < t+} = 0.

(iii) t+ <∞ and lim
r↘0

inf{dist((t, x(t)), ∂G) | t+ − r < t < t+} > 0 and lim
t↗t+
‖x(t)‖ =∞.

Analogous conditions hold for the left-endpoint t−; cf. [95, Thm. 2.3.2, Thm. 6.2.1]. ♦

The alternative (ii) of Theorem 2.29 means that the solution comes arbitrarily close
to the boundary of G. The case (iii) is commonly referred as escape in finite-time. In
particular, if G = R × Rn, then ∂G = ∅ and dist((t, x(t)), ∂G) = ∞. Therefore, either
t+ =∞ holds or the solution escapes in finite-time.
Usually, we omit the word “maximal” and write (t−, t+) to refer to themaximal interval

of existence. In general, the maximal interval of existence depends on t0 and on the initial
value x0.

Lemma 2.30 (Locally Lipschitz Continuous, [95, Prop. 2.1.5], [125, §10 V.]):
Let G ⊆ R×Rn be an open set and f : G→ Rn be continuous. If all partial derivatives
∂f
∂xi

(t, x) are continuous, then f is locally Lipschitz continuous with respect to x. ♦
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2.8.2 Linear Initial Value Problems

We recall results about linear IVPs. We begin with the homogeneous linear IVP.

Theorem 2.31 (Wronski, [125, §15 I., §15 III.]):
Let I ⊆ R be an open interval with t0 ∈ I, A : I→ Rn×n be a continuous matrix-valued
function, and Φ0 ∈ Rn×n. The homogeneous linear IVP

Φ̇(t) = A(t)Φ(t),

Φ(t0) = Φ0

has a unique solution Φ: I→ Rn×n, and the determinant of Φ(t) fulfills

det(Φ(t)) = det(Φ0) exp




t∫

t0

tr(A(s)) ds


. (2.5)

♦

Equation (2.5) is also known as the Abel–Jacobi–Liouville identity. The determinant
det(Φ(t)) is called Wronskian determinant or just Wronskian. If Φ0 is nonsingular, then
Φ(t) is nonsingular for all t ∈ I, and Φ(t) is called fundamental matrix of the system
ẋ(t) = A(t)x(t).

Theorem 2.32 (Variation of Constants Formula, [125, §16 III.]):
Let I ⊆ R be an open interval with t0 ∈ I, A : I → Rn×n and b : I → Rn be continuous
functions, and x0 ∈ Rn. The inhomogeneous linear IVP

ẋ(t) = A(t)x(t) + b(t),

x(t0) = x0

has a unique solution x : I→ Rn given by

x(t) = Φ(t)x0 +

t∫

t0

Φ(t)Φ(s)−1b(s) ds,

where Φ(t) is the fundamental matrix of the system ẋ(t) = A(t)x(t) with Φ(t0) = I. ♦

Theorem 2.33 (Variation of Constants Formula, [125, §18 VI.]):
Let A ∈ Rn×n, b ∈ Rn, x0 ∈ Rn, and t0 ∈ R. The autonomous inhomogeneous linear IVP

ẋ(t) = Ax(t) + b,

x(t0) = x0

has a unique solution x : R→ Rn given by

x(t) = e(t−t0)Ax0 +

t∫

t0

e(t−s)Ab ds. ♦
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2.9 Hadamard Product, Kronecker Product, and
Vectorization

This section recalls the Hadamard product, the Kronecker product, and the vectorization
of a matrix.

Definition 2.34 (Hadamard Product, [58, Def. 5.0.1]):
The Hadamard product of A ∈ Cm×n and B ∈ Cm×n is defined by

A�B :=
(
Ai,jBi,j

)
i=1,...,m
j=1,...,n

. ♦

Definition 2.35 (Kronecker Product, [58, Def. 4.2.1]):
The Kronecker product of A ∈ Cm×n and B ∈ Cp×q is denoted by A⊗ B and is defined
to be the block matrix

A⊗B :=



A1,1B · · · A1,nB

... . . . ...
Am,1B · · · Am,nB


 ∈ Cmp×nq. ♦

Definition 2.36 (Vectorization, [58, Def. 4.2.9]):
The vectorization of A ∈ Cm×n is defined to be

vec(A) :=
[
A1,1, . . . , Am,1, A1,2, . . . , Am,2, . . . , A1,n, . . . , Am,n

]T ∈ Cmn. ♦

Lemma 2.37 (Kronecker Product and Vectorization, [58, Lem. 4.3.1]):
Let A ∈ Cm×n, X ∈ Cn×p, and B ∈ Cp×q. It holds:

vec(AXB) =
(
BT ⊗ A

)
vec(X). ♦

Theorem 2.38 (Kronecker Products and Eigenvalues, [58, Thm. 4.4.5]):
Let A ∈ Cm×m and B ∈ Cn×n. It holds:

Λ(In ⊗ A+B ⊗ Im) = Λ(A) + Λ(B). ♦

Lemma 2.39 (Mixed Product Property, [58, Lem. 4.2.10]):
Let A ∈ Cm×n, B ∈ Cp×q, C ∈ Cn×k, and D ∈ Cq×r. It holds:

(A⊗B)(C ⊗D) = (AC)⊗ (BD). ♦
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2.10 Hamiltonian Matrices

We define a Hamiltonian matrix and collect some valuable properties.

Definition 2.40 (Matrix J, [24, Sec. 1.5]):
We define

J :=

[
0 In
−In 0

]
∈ C2n×2n. ♦

Lemma 2.41 (Properties of J, [1, Def. 2.1.1], [24, Sec. 1.5]):
It holds:

J−1 = JT = −J and J2 = −I. ♦

Definition 2.42 (Hamiltonian Matrix, [1, Def. 2.1.1], [24, Sec. 1.5]):
A matrix H ∈ C2n×2n is called Hamiltonian if JH is Hermitian, i.e.,

JH = (JH)H. ♦

Definition 2.43 (Symplectic Matrix, [1, Def. 2.1.1], [24, Sec. 1.5]):
A matrix M ∈ C2n×2n is called symplectic if

MHJM = J. ♦

Lemma 2.44 (Hamiltonian Matrix, [1, Lem. 2.2.3], [24, Sec. 1.5]):
Let H ∈ C2n×2n be a Hamiltonian matrix. It holds:

(i) If H is nonsingular, then H−1 is Hamiltonian.

(ii) The spectrum of H is symmetric around the origin, i.e., λ ∈ Λ(H) implies that
−λ ∈ Λ(H).

(iii) The matrix exponential etH is symplectic for all t ∈ R.

(iv) Let S,Q ∈ Cn×n be Hermitian and A ∈ Cn×n. The block matrix
[
A −S
−Q −AH

]

is Hamiltonian. Conversely, each Hamiltonian matrix has such a block structure.
♦
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2.11 Krylov Matrix

We define the Krylov matrix and recall some properties of its image.

Definition 2.45 (Krylov Matrix, [25, Def. 1.1.9]):
Let A ∈ Cn×n and B ∈ Cn×b. The Krylov matrix generated by A and B is defined to be

K(A,B) :=
[
B,AB, . . . , An−1B

]
∈ Cn×nb. ♦

The image of the Krylov matrix im(K(A,B)) ⊆ Cn is an A-invariant subspace, and,
generally, its dimension is not n. The orthogonal complement of the image of the Krylov
matrix is the kernel of the conjugated transposed Krylov matrix, i.e.,

im(K(A,B))⊥ = ker
(
K(A,B)H

)
.

It holds

x ∈ ker
(
K(A,B)H

)
⇐⇒




BH

BHAH

...
BHAHn−1


x = 0.

Furthermore, the Cayley–Hamilton theorem yields

x ∈ ker
(
K(A,B)H

)
⇐⇒ BHAHkx = 0 for all k ∈ N0.

The linear space ker
(
K(A,B)H

)
is an AH-invariant subspace.

2.12 Stable, Center, and Unstable Subspace

We consider the stable, center, and unstable subspace of a real square matrix.

Definition 2.46 (Stable, Center, and Unstable Subspace, [100, Def. 18.13]):
Let A ∈ Rn×n be and χA be its characteristic polynomial. Assume that χA is factored
into a product of real monic polynomials χA = χsχcχu such that the roots of χs, χc, and
χu are subsets of C−, ıR, and C+, respectively. We define

• the stable subspace Es(A) := ker(χs(A)) ⊆ Rn,

• the center subspace Ec(A) := ker(χc(A)) ⊆ Rn, and

• the unstable subspace Eu(A) := ker(χu(A)) ⊆ Rn. ♦

The stable, center, and unstable subspace of a matrix can be defined equivalently and
more explicitly by its Jordan canonical form; cf. [24, Sec. 1.4.2], [104, Def. 2.4]. Usually,
the more explicit description makes the proofs more involved.
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Theorem 2.47 ([47, Sec. 13.2, Cor.II], [100, Thm. 18.14]):
It holds:

(i) The stable, center, and unstable subspace are real A-invariant subspaces.

(ii) Rn = Es(A)⊕ Ec(A)⊕ Eu(A).

(iii) Es(A) = im(χcχu(A)), Ec(A) = im(χsχu(A)), and Eu(A) = im(χsχc(A)).

(iv) The orthogonal complements of the stable, center, and unstable subspace are given
by

Es(A)⊥ = Ec
(
AT
)
⊕ Eu

(
AT
)
,

Ec(A)⊥ = Es
(
AT
)
⊕ Eu

(
AT
)
, and

Eu(A)⊥ = Es
(
AT
)
⊕ Ec

(
AT
)
.

♦
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ALGEBRAIC LYAPUNOV AND SYLVESTER EQUATIONS
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In this chapter, we consider the algebraic Sylvester equation (ASE)

AX −XB = C, (3.1)

for square matrices A ∈ Rn×n, B ∈ Rm×m, and a right-hand side C ∈ Rn×m. The
associated bounded linear operator

SX = AX −XB, (3.2)

is called a Sylvester operator. The algebraic Lyapunov equation (ALE)

AX +XAT = C (3.3)

is a special case of the ASE (3.1).
The ASE and ALE play a key role in control theory, model order reduction, and

stability analysis for linear systems; cf. [7,26,42]. The ASE also arises in finite difference
discretizations of partial differential equations and numerical approximation of matrix
functions; cf. [36, 41,98] and [56, Sec. 4.6].
We organize this chapter as follows. Section 3.1 reviews the existence and uniqueness

of solutions of the ASE (3.1). In Section 3.2, we study the Sylvester operator S and
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its spectral decomposition. A particular choice of the inner product ensures that the
Sylvester operator S is normal. The spectral decomposition of S then yields a solu-
tion formula (Section 3.3, Theorem 3.6). Further solution representations are discussed
in Section 3.3. Section 3.4 recalls the alternating directions implicit (ADI) method. Sec-
tion 3.5 summarizes results on the singular value decay of the solution of the ASE and
ALE. These results motivate us to consider low-rank approximations of the solution in
the large-scale setting. In Section 3.6, we consider the ALE with a negative semidefinite
right-hand side

AX +XAT = −FFT. (3.4)

Section 3.7 reviews the low-rank ADI method for the numerical approximation of the
solution of the ALE (3.4).

3.1 Existence and Uniqueness of Solutions

In this section, we are concerned with the existence and uniqueness of solutions of
the ASE (3.1)

AX −XB = C.

We provide a proof of Theorem 3.1 because the argumentation of [59, Lem. 2.4.4.0,
Thm. 2.4.4.1] is incomplete.

Theorem 3.1 (Existence and Uniqueness, [59, Lem. 2.4.4.0, Thm. 2.4.4.1]):
The ASE (3.1) has a unique solution X ∈ Rn×m if and only Λ(A) ∩ Λ(B) = ∅, that is,
if and only if A and B have no eigenvalue in common. ♦

Proof. The unique solvability of the ASE (3.1) is equivalent to ker(S) = {0}. IfX ∈ ker(S),
then

AX = XB and AkX = XBk

for all k ∈ N0. Consequently,
p(A)X = Xp(B)

for any polynomial p. Let

χB(t) =
m∏

i=1

(t− λi)

be the characteristic polynomial of B. The Cayley–Hamilton theorem yields χB(B) = 0.
We obtain

0 = χB(A)X −XχB(B) = χB(A)X.

If Λ(A) ∩ Λ(B) = ∅, then each of the factors A − λiI is nonsingular. Hence, χB(A) is
nonsingular and X = 0. Therefore, Λ(A) ∩ Λ(B) = ∅ implies ker(S) = {0}.
Conversely, let λ ∈ Λ(A) ∩ Λ(B) be a common eigenvalue of A and B and x, y 6= 0

eigenvectors such that
Ax = λx and BTy = λy.
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Then, we have
SxyT = AxyT − xyTB = λxyT − λxyT = 0.

Therefore, 0 6= xyT ∈ ker(S).
Finally, if X satisfies the ASE, then so does the complex conjugated X, because the

matrices A and B are real. The unique solvability implies that X must be real.

Alternatively, the equivalent representation of the ASE (3.1) as a linear equation
system (

Im ⊗ A−BT ⊗ In
)

vec(X) = vec(C)

can be used to prove Theorem 3.1; cf. Section 2.9 and [1, Thm. 1.1.3].

3.2 Spectral Decomposition of the Sylvester
Operator

We consider the Sylvester operator (3.2)

S : Cn×m → Cn×m, SX = AX −XB.

The Sylvester operator S has been thoroughly studied in [28,68,69,111]. The eigenvalues
and eigenvectors of S are related to those of A and B; cf. [1, Rem. 1.1.2.], [7, Sec. 6.1.1],
and [67].

We show that the Sylvester operator S (3.2) is normal if A and B are diagonalizable
and if a suitably chosen inner product on a Hilbert space is considered. The inner
product depends on the spectral decomposition of A and B. The eigenspaces of S can
be constructed from the eigenspaces of A and B. This approach leads to a spectral
decomposition of S and enables us to derive a solution formula (Theorem 3.6). In
particular, this solution formula resembles the results of [42, Sec. 4.1.1] and [61].

Lemma 3.2 (Spectrum of the Sylvester Operator, [111, Ch. V, Cor. 1.4]):
For the spectrum of the Sylvester operator, it holds Λ(S) = Λ(A)− Λ(B). ♦

Lemma 3.3 (Sylvester Operator and Commuting Operators, [123]):
The Sylvester operator S splits into a sum of bounded linear commuting operators
S = L + R, where LX = AX and RX = −XB. ♦

Lemma 3.4 ([15, Lem. 2]):
Assume that A ∈ Rn×n and B ∈ Rm×m are diagonalizable, and let A = UDAU

−1

and BT = V DBTV −1 be the spectral decompositions of A and BT. Furthermore, let
U =

[
u1, . . . , un

]
∈ Cn×n and V =

[
v1, . . . , vm

]
∈ Cm×m be the columns of U and V . It

holds:

(i) 〈X, Y 〉U,V :=
〈
U−1XV −T, U−1Y V −T

〉
F
is an inner product on Cn×m.
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(ii)
(
uiv

T
j

)
i=1,...,n
j=1,...,m

is an orthonormal basis of Cn×m with respect to 〈·, ·〉U,V .

(iii) The adjoint operator S∗ : Cn×m → Cn×m with respect to 〈·, ·〉U,V is given by
S∗X = UDAU

−1X −XV −TDBTV T.

(iv) S is a normal operator with respect to 〈·, ·〉U,V . ♦

Proof.

(i) It is straightforward to verify that 〈·, ·〉U,V is an inner product on Cn×m.

(ii) Because of the identity
〈
uiv

T
j , ukv

T
l

〉
U,V

=
〈
U−1uiv

T
j V
−T, U−1ukv

T
l V
−T〉

F
=
〈
eie

T
j , eke

T
l

〉
F

= δikδjl,

the matrices uivTj ∈ Cn×m are orthogonal with respect to 〈·, ·〉U,V and therefore
linearly independent. Because of dim(Cn×m) = n ·m, the tuple (uiv

T
j ) i=1,...,n

j=1,...,m
forms

an orthonormal basis of Cn×m.

(iii), (iv) We make use of the splitting S = L + R given by Lemma 3.3. The adjoints of L
and R are given by

L∗X = UDAU
−1X and R∗X = −XV −TDBTV T,

because

〈LX, Y 〉U,V =
〈
U−1AXV −T, U−1Y V −T

〉
F

=
〈
DAU

−1XV −T, U−1Y V −T
〉

F

=
〈
U−1XV −T, U−1UDAU

−1Y V −T
〉

F
= 〈X,L∗Y 〉U,V ,

and
〈RX, Y 〉U,V = −

〈
U−1XBV −T, U−1Y V −T

〉
F

= −
〈
U−1XV −TDBT , U−1Y V −T

〉
F

= −
〈
U−1XV −T, U−1Y V −TDBTV TV −T

〉
F

= 〈X,R∗Y 〉U,V ,

for all X, Y ∈ Cn×m. We have

S∗ = (L + R)∗ = L∗ + R∗.

The operators L, R, L∗, and R∗ pairwise commute. Consequently, S and S∗ com-
mute as well. Therefore, S is normal with respect to 〈·, ·〉U,V .

We formulate the Spectral Decomposition Theorem for the Sylvester operator S. Uti-
lizing Lemma 3.4, the proof basically requires standard arguments; cf. [72, Ch. 3.1].

Theorem 3.5 (Spectral Decomposition, [15, Lem. 3]):
Let the assumptions of Lemma 3.4 hold. Moreover, let α1, . . . , αn ∈ C and β1, . . . , βm ∈
C be the diagonal entries of DA and DBT , respectively. Then we have:
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3.2 Spectral Decomposition of the Sylvester Operator

(i) The matrix uivTj ∈ Cn×m is an eigenvector of S corresponding to the eigenvalue
αi − βj for all i = 1, . . . , n and j = 1, . . . ,m.

(ii) The operator Pi,j : Cn×m → Cn×m, Pi,jX =
〈
X, uiv

T
j

〉
U,V

uiv
T
j is the orthogonal

projection onto span
{
uiv

T
j

}
⊆ Cn×m with respect to 〈·, ·〉U,V for all i = 1, . . . , n

and j = 1, . . . ,m.

(iii) The projectors are pairwise orthogonal, i.e., Pi,jPk,l = 0 for all i, k = 1, . . . , n and
j, l = 1, . . . ,m such that (i, j) 6= (k, l).

(iv) The projectors form a partition of the identity, i.e. idCn×m =
n∑
i=1

m∑
j=1

Pi,j.

(v) The Sylvester operator can be decomposed into S =
n∑
i=1

m∑
j=1

(
αi − βj

)
Pi,j and

S(X) = U

((
αi − βj

)
i=1,...,n
j=1,...,m

� U−1XV −T
)
V T. ♦

Proof.

(i) From AU = UDA and BTV = V DBT , we deduce

Suiv
T
j = Auiv

T
j − uivTj B = αiuiv

H
j − βjuivTj =

(
αi − βj

)
uiv

T
j .

(ii) Pi,j is a projection onto span
{
uiv

T
j

}
, because Lemma 3.4 (ii) implies P2

i,j = Pi,j
and

Pi,jX =
〈
X, uiv

T
j

〉
U,V

uiv
T
j ∈ span

{
uiv

T
j

}

for all X ∈ Cn×m. Moreover,
〈
Pi,jX −X, uivTj

〉
U,V

=
〈
Pi,jX, uiv

T
j

〉
U,V
−
〈
X, uiv

T
j

〉
U,V

=
〈
X, uiv

T
j

〉
U,V

〈
uiv

T
j , uiv

T
j

〉
U,V
−
〈
X, uiv

T
j

〉
U,V

= 0,

which means that Pi,j is the orthogonal projection onto span
{
uiv

T
j

}
⊆ Cn×m.

(iii) The assertion follows from Lemma 3.4 (ii).

(iv) According to Lemma 3.4 (ii), each X ∈ Cn×m can be represented with respect to
the orthonormal basis

(
uiv

T
j

)
i=1,...,n
j=1,...,m

. Therefore,

X =
n∑

i=1

m∑

j=1

〈
X, uiv

T
j

〉
U,V

uiv
T
j =

n∑

i=1

m∑

j=1

PijX, (3.5)

for all X ∈ Cn×m.
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(v) We represent X as in Equation (3.5) and get

SX = S

n∑

i=1

m∑

j=1

〈
X, uiv

T
j

〉
U,V

uiv
T
j

=
n∑

i=1

m∑

j=1

〈
X, uiv

T
j

〉
U,V

Suiv
T
j

=
n∑

i=1

m∑

j=1

(
αi − βj

) 〈
X, uiv

T
j

〉
U,V

uiv
T
j (3.6)

= U
((
αi − βj

) 〈
X, uiv

T
j

〉
U,V

)
i=1,...,n
j=1,...,m

V T (3.7)

= U

((
αi − βj

)
i=1,...,n
j=1,...,m

�
(〈
U−1XV −T, eie

H
j

〉
F

)
i=1,...,n
j=1,...,m

)
V T (3.8)

= U

((
αi − βj

)
i=1,...,n
j=1,...,m

� U−1XV −T
)
V T. (3.9)

3.3 Solution Representations

In this section, we consider explicit solution formulas for the ASE (3.1)

AX −XB = C.

First, we use Theorem 3.5 and obtain a solution formula based on the spectral decom-
position of the Sylvester operator S (Theorem 3.6). After that, we review a well-known
integral based solution formula.

Theorem 3.6 (Solution via Spectral Decomposition, [15, Lem. 3]):
Let the assumptions of Theorem 3.5 hold. Moreover, assume that Λ(A) ∩ Λ(B) = ∅.
Then the unique solution of the ASE (3.1) is given by

X = U

((
1

αi − βj

)
i=1,...,n
j=1,...,m

� U−1CV −T
)
V T. (3.10)

♦

Proof. We apply Theorem 3.5 and show that the inverse of the Sylvester operator S is
given by

S−1 =
n∑

i=1

m∑

j=1

1

αi − βj
Pi,j.
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It holds that

S

(
n∑

k=1

m∑

l=1

1

αk − βl
Pk,l

)
(v)
=

(
n∑

i=1

m∑

j=1

(
αi − βj

)
Pi,j

)(
n∑

k=1

m∑

l=1

1

αk − βl
Pk,l

)

=
n∑

i,k=1

m∑

j,l=1

αi − βj
αk − βl

Pi,jPk,l

(ii), (iii)
=

n∑

i=1

m∑

j=1

Pi,j
(iv)
= idCn×m .

Therefore,

X = S−1C =
n∑

i=1

m∑

j=1

1

αi − βj
Pi,jC =

n∑

i=1

m∑

j=1

1

αi − βj
〈
C, uiv

T
j

〉
U,V

uiv
T
j .

The claim follows using similar algebraic manipulations as in Theorem 3.5 Equations
(3.6)–(3.9).

The explicit solution representation of Theorem 3.7 is important, hence we provide
the proof.

Theorem 3.7 (Integral Representation, [23, Thm. VII.2.3]):
Assume that A and −B are stable. Then the unique solution of the ASE (3.1) is given
by

X = −
∞∫

0

etACe−tB dt. (3.11)
♦

Proof. The convergence of the integral (3.11) can be established by means of Theo-
rem 2.24. We have

AX −XB = −
∞∫

0

AetACe−tB − etACe−tBB dt = −etACe−tB
∣∣∣∣
∞

0

= C.

If the spectra Λ(A) and Λ(B) are separated by a line, Theorem 3.7 may also be applied
after a proper rotation. Theorem 3.7 also holds under weaker assumptions on Λ(A) and
Λ(B); cf. [78, Thm. 5].

Other solution representations based on a series or a contour integral are presented
in [23, Thm. VII.2.2, VII.2.4–VII.2.7]. In [38], annihilating polynomials are used to
derive a solution representation. A very detailed overview of solution formulas is given
in [78].
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3 Algebraic Lyapunov and Sylvester Equations

3.4 Alternating Direction Implicit Method

In preparation for Sections 3.5 and 3.7, we review the ADI method for the numerical
approximation of the solution of the ASE (3.1)

AX −XB = C.

The ADI method is a splitting method and originates from to the iterative numerical
solution of linear equation systems arising from the finite difference discretization of
partial differential equations; cf. [92]. In this setting, the linear systems to be solved are
of the form (L+R)x = b, and the matrices L and R commute. The ASE (3.1) is a linear
equation defined by two commuting linear transformations: S = L + R; cf. Lemma 3.3.
Therefore, the ASE is also known as a model problem for the ADI method; cf. [123]
and [124, Sec. 3].
The solutions of the linear systems

(A− qkI)Xk− 1
2

= Xk−1(B − qkI) + C,

Xk(B − pkI) = (A− pkI)Xk− 1
2
− C,

}
(3.12)

define the iterates of the ADI method. The shift parameters pk and qk are assumed to be
no eigenvalue of A and B, respectively. Their choice is crucial for the convergence of the
method. We reformulate the two-step iteration (3.12) to an one-step iteration and rep-
resent the error explicitly. We use the explicit representation of the error in Section 3.5,
therefore, we provide the proof.

Lemma 3.8 (ADI One-Step Iteration and Error Representation, e.g. [119]):
Let X be any solution of the ASE (3.1), and let pk ∈ C \ Λ(A) and qk ∈ C \ Λ(B) be
shift parameters. The two-step iteration (3.12) is equivalent to the one-step iteration

Xk = (A− pkI)(A− qkI)−1Xk−1(B − pkI)−1(B − qkI)

+ (qk − pk)(A− qkI)−1C(B − pkI)−1.
(3.13)

The error fulfills the recurrence relation

X −Xk = (A− pkI)(A− qkI)−1(X −Xk−1)(B − pkI)−1(B − qkI). (3.14)
♦

Proof. We multiply Equation (3.12) with (A− qkI)−1 and (B − pkI)−1 from the left and
right, respectively. We obtain

Xk− 1
2

= (A− qkI)−1Xk−1(B − qkI) + (A− qkI)−1C,

Xk = (A− pkI)Xk− 1
2
(B − pkI)−1 − C(B − pkI)−1.
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3.5 Bounds on the Singular Value Decay

We merge the latter two equations and obtain

Xk = (A− pkI)(A− qkI)−1Xk−1(B − pkI)−1(B − qkI)

+
(
(A− pkI)(A− qkI)−1 − I

)
C(B − pkI)−1.

The identity
(A− pkI)(A− qkI)−1 = I + (qk − pk)(A− qkI)−1

leads to the one-step iteration (3.13). Finally, if X is a solution of the ASE (3.1), then

(A− qkI)X = X(B − qkI) + C,

X(B − pkI) = (A− pkI)X − C.

By using the same algebraic manipulations, it follows that X satisfies (3.13), and we
obtain the recurrence relation (3.14)

3.5 Bounds on the Singular Value Decay

If n and m are large, the numerical approximation of the solution X ∈ Rn×m of
the ASE (3.1)

AX −XB = C

comes with possibly high memory demands. Here, one may try to find a low-rank
approximation X ≈ UV T where U and V are tall-and-skinny matrices. The absolute
and relative error of the best possible approximation of rank at most k is given by

σk+1(X) = inf
Y ∈Cn×m

rank(Y )≤k

‖X − Y ‖2 and
σk+1(X)

σ1(X)
= inf

Y ∈Cn×m
rank(Y )≤k

‖X − Y ‖2

‖X‖2

,

respectively; cf. Theorem 2.15. Therefore, a quick singular value decay of the solution
X ensures that the solution can be well approximated by low-rank matrices.
A very detailed overview of singular value bounds can be found in [42, Sec. 2.2, Sec. 3.2,

Sec. 4.2] and [43, 77, 88]. These bounds usually require the right-hand side C to be of
full rank.

Mostly, in the large-scale setting, the right-hand side C is given in low-rank form
C = C1C

T
2 , where C1 and C2 are tall-and-skinny matrices. Hence, the rank of C is much

smaller than n and m. Therefore, the derived bounds often may not become applicable.
If the rank of the right-hand side C is low, a strategy to obtain bounds of the singular

value decay can be summarized as follows. Let Xk be an approximation of rank at most
k to the solution X of the ASE (3.1). The approximation error must be larger or equal
to the error of the best possible approximation of rank at most k. Theorem 2.15 implies
that

σk+1(X) = inf
Y ∈Cn×m

rank(Y )≤k

‖X − Y ‖2 ≤ ‖X −Xk‖2 .
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3 Algebraic Lyapunov and Sylvester Equations

Finally, any bound on the absolute error ‖X −Xk‖2 bounds the singular value σk+1(X).
In this context, approximations based on the application of quadrature rules to the

solution representation Equation (3.11) of Theorem 3.7 were studied; cf. [17, 44–46,71].
Quadrature rule based techniques also apply in an infinite-dimensional setting; cf. [48,
91,114].
Singular value decay bounds based on the ADI method were presented in [12, 13, 18,

41, 94, 103, 108, 116, 119, 120]. We want to sketch the techniques and summarize at the
end of this section known results. We utilize the ADI method (Lemma 3.8) and consider
the rational function

Φ(z) =
k∏

i=1

z − pi
z − qi

,

where p1, . . . , pk ∈ C \ Λ(B) and q1, . . . , qk ∈ C \ Λ(A). Lemma 3.8 yields

‖X −Xk‖2 =
∥∥Φ(A)(X −X0)Φ(B)−1

∥∥
2
≤ ‖Φ(A)‖2

∥∥Φ(B)−1
∥∥

2
‖X −X0‖2 .

For simplicity, we assume A and B to be normal and get

‖Φ(A)‖2 = max
λ∈Λ(A)

|Φ(λ)| and
∥∥Φ(B)−1

∥∥
2

= max
λ∈Λ(B)

∣∣Φ(λ)−1
∣∣ .

The shift parameters were chosen arbitrarily, thus

‖X −Xk‖2 ≤ inf
p1,...,pk∈C\Λ(B)
q1,...,qk∈C\Λ(A)

max
λ∈Λ(A)

k∏

i=1

∣∣∣∣
λ− pi
λ− qi

∣∣∣∣ max
λ∈Λ(B)

k∏

i=1

∣∣∣∣
λ− qi
λ− pi

∣∣∣∣ ‖X −X0‖2 .

We choose X0 = 0 and examine the one-step iteration (3.13). If rank(C) ≤ c, then
rank(Xk) ≤ kc. Theorem 2.15 yields

σkc+1(X) ≤ inf
p1,...,pk∈C\Λ(B)
q1,...,qk∈C\Λ(A)

max
λ∈Λ(A)

k∏

i=1

∣∣∣∣
λ− pi
λ− qi

∣∣∣∣ max
λ∈Λ(B)

k∏

i=1

∣∣∣∣
λ− qi
λ− pi

∣∣∣∣σ1(X), (3.15)

for all k ≥ 1 such that 0 ≤ kc < min{n,m}. If the infimum of (3.15) is strictly smaller
than 1, then the obtained bound is nontrivial.

3.5.1 Algebraic Lyapunov Equation and Singular Value Decay

Penzl considered the ALE (3.3) with a symmetric coefficient matrix A. A specific choice
of shift parameters leads to a bound depending on the condition number of A.
Theorem 3.9 (Symmetric Coefficient Matrix, [94, Thm. 1]):
Assume that A ∈ Rn×n is symmetric and stable, and rank(C) ≤ c. Let X be the unique
solution of the ALE (3.3). Then

σkc+1(X) ≤
(

k∏

i=1

κ2(A)
2i−1
2k − 1

κ2(A)
2i−1
2k + 1

)2

σ1(X),

for all k ≥ 1 such that 0 ≤ kc < n. ♦
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3.5 Bounds on the Singular Value Decay

Theorem 3.9 was initially formulated for symmetric negative semidefinite matrix C. The
proof under the more general assumptions is analogous; cf. [94, Proof of Thm. 1].

Sorensen and Zhou considered the ALE (3.3) with diagonalizable coefficient matrix.

Theorem 3.10 (Diagonalizable Coefficient Matrix, [108, Thm. 2.1]):
Assume that A ∈ Rn×n is diagonalizable and stable, and rank(C) ≤ c. Moreover,
suppose that the columns of V ∈ Cn×n form a system of linearly independent right
eigenvectors of A. Let X be the unique solution of the ALE (3.3). Then

σkc+1(X) ≤ κ2(V )2 inf
q1,...,qk∈C\Λ(A)

max
λ∈Λ(A)

k∏

i=1

∣∣∣∣
λ+ qi
λ− qi

∣∣∣∣
2

σ1(X), (3.16)

for all k ≥ 1 such that 0 ≤ kc < n. ♦

For any λ ∈ C− and q ∈ C+ it holds that
∣∣∣∣
λ+ q

λ− q

∣∣∣∣ < 1.

Therefore, if the condition number of V is not too large, the bound (3.16) is nontrivial.
If A is unitarily diagonalizable (normal), then V can be chosen unitarily with κ2(V ) = 1.

3.5.2 Algebraic Sylvester Equation and Singular Value Decay

Similar to the one-step iteration (3.13), Beckermann and Townsend utilize rational func-
tions and get a bound depending on the Zolotarev number ; cf. [13, Thm. 2.1]. The
Zolotarev number is related to an extremal problem for rational functions on sets E and
F in the complex plane. If the sets E and F have a simple geometric shape, e.g., an
interval or a ball, the Zolotarev number is explicitly known; cf. [2, §50, §51], [110].

Theorem 3.11 ([13, Thm. 2.1, Sec. 3.1–3.2], [41, Thm. 2.1]):
Assume that A ∈ Rn×n and B ∈ Rm×m are symmetric, and rank(C) ≤ c. Moreover, let
α1, α2, β1 and β2 be real numbers such that α1 < α2, β1 < β2, [α1, α2] ∩ [β1, β2] = ∅,
Λ(A) ⊆ [α1, α2], and Λ(B) ⊆ [β1, β2] hold. LetX be the unique solution of the ASE (3.1),
and let γ = |β1−α1||β2−α2|

|β1−α2||β2−α1| . Then

σkc+1(X) ≤ 4 exp

(
− kπ2

ln(16γ)

)
σ1(X),

for all k ≥ 1 such that 0 ≤ kc < min{n,m}. ♦

Theorem 3.12 ([13, Thm. 2.1, Sec. 3.3], [110, p. 123], [116, Thm. 1]):
Assume that A ∈ Rn×n and B ∈ Rm×m are normal, and rank(C) ≤ c. Moreover, let
E =

{
z ∈ C |

∣∣z − b+a
2

∣∣ ≤ b−a
2

}
be a closed ball such that 0 < a < b, Λ(A) ⊆ −E, and

Λ(B) ⊆ E hold. Let X be the unique solution of the ASE (3.1). Then

σkc+1(X) ≤
(

1−
√
a/b

1 +
√
a/b

)2k

σ1(X),
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3 Algebraic Lyapunov and Sylvester Equations

for all k ≥ 1 such that 0 ≤ kc < min{n,m}. ♦

The influence of the deviation of the coefficient matrices A and B from normality is
discussed in [9,103] and [13, Cor. 2.2]. The study of Cauchy and Krylov matrices related
to the ASE (3.1) yield a bound on the singular value decay as well; cf. [8, 89].

3.6 Algebraic Lyapunov Equation

In this section, we consider the ALE (3.4)

AX +XAT = −FFT.

Most importantly, if A is stable, the unique solution of the ALE (3.4) is symmetric posi-
tive semidefinite (spsd) and its image or equivalently kernel can be explicitly character-
ized. The proof in [26, Sec. 13, Thm. 3] focuses on the differential Lyapunov equation.
For reasons of clarity, we provide the proof.

Theorem 3.13 (Image of the Solution, [26, Sec. 13, Thm. 3]):
Assume that A ∈ Rn×n is stable, then the unique solution X of the ALE (3.4) is spsd
and

im(X) = im(K(A,F )). ♦

Proof.
X is symmetric:
According to Theorem 3.1, the ALE (3.4) admits a unique solution X. The right-hand
side −FFT is symmetric. Hence, XT satisfies the equation as well, and the unique
solvability implies the symmetry of X.

X is spsd:
Utilizing Theorem 3.6, we have

xTXx =

∞∫

0

xTetAFFTetA
T

x dt =

∞∫

0

∥∥∥FTetA
T

x
∥∥∥

2

2
dt ≥ 0, (3.17)

for all x ∈ Rn. Hence, X is spsd.

ker(X) ⊆ ker
(
K(A,F )T

)
:

If x ∈ ker(X), then the integrand of Equation (3.17) must vanish. Therefore, we have

FTetA
T

x = 0

for all t ≥ 0. We differentiate the latter equation with respect to t, evaluate at t = 0

and obtain
FTATkx = 0
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for any power k ∈ N0. Therefore, x ∈ ker
(
K(A,F )T

)
.

ker
(
K(A,F )T

)
⊆ ker(X):

Conversely, if x ∈ ker
(
K(A,F )T

)
, then FTATkx = 0 for any power k ∈ N0. We have

FTetA
T

x =
∞∑

k=0

tk

k!
FTATkx = 0,

and Equation (3.17) yields x ∈ ker(X).

im(X) = im(K(A,F )):
Finally, we consider the orthogonal complements of the spaces and obtain

im(X) = ker(X)⊥ = ker
(
K(A,F )T

)⊥ = im(K(A,F )).

In [38, Thm. 2] the image and the kernel of the solution of the ASE (3.1) has been
studied.

3.7 Low-rank Alternating Direction Implicit Method

As in the previous Section 3.6, we consider the ALE (3.4)

AX +XAT = −FFT.

We assume that F has only a few columns, and focus on the large-scale case (n is large).
Theorem 3.13 yields that the unique solution X of the ALE (3.4) is spsd. The results
on the singular value decay of Section 3.5 motivate us to consider a low-rank approach

X ≈ ZZT

for the numerical solution, where the low-rank factor Z has only a moderate number
of columns. Here, the ADI method as a one-step iteration (3.13) can be reformulated
in a low-rank fashion suitable for the large-scale ALE (3.4); cf. [20, 74, 82, 93]. Low-
rank ADI methods for the ASE (3.1) have also been studied; cf. [21,74]. Efficient residual
approximation and reduced complex arithmetic have led to considerable computational
improvements; cf. [74]. A variant of the low-rank ADI method for the generalized ALE

AXMT +MXAT = −FFT (3.18)

is given in Algorithm 3.1. Algorithm 3.1 Line 3 requires a shift parameter α in each
iteration. There are various approaches and heuristics to this in the literature; cf. [103,
Sec. 3.2] and [124, Ch. 1, Ch. 4]. We present a heuristic approach given in [19, Sec.
4.5.1] and [76, Sec. 2.1.3].
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3 Algebraic Lyapunov and Sylvester Equations

Algorithm 3.1: Low-rank ADI Method for the ALE (3.18) [74, Alg. 4.3].
Input: matrices A,M ∈ Rn×n, F ∈ Rn×f defining Equation (3.18), and a

tolerance 0 < εrel � 1 for the relative residual
Assumptions: M is nonsingular, M−1A is stable, and f � n

Output: real matrix Z such that ZZT ≈ X, the absolute and relative residual
rabs and rrel

% initialization:
1 W := F ; Z := [ ]; rabs := ‖W‖2

2; γF := rabs;

% iterate until relative residual is smaller than εrel:
2 while rabs ≥ εrelγF do
3 obtain new shift parameter α;
4 V := (A+ αM)−1W ;
5 if =(α) = 0 then
6 W := W − 2<(α)MV ;
7 Z :=

[
Z,
√
−2αV

]
;

8 else
9 γ := 2

√
−<(α); δ := <(α)/=(α);

10 V̂ := γ(<(V ) + δ=(V ));
11 W := W + γMV̂ ;

12 Z :=
[
Z, V̂ , γ

√
1 + δ2=(V )

]
;

% update absolute residual:
13 rabs := ‖W‖2

2;

% set relative residual:
14 rrel := rabs/γF ;
15 return Z, rabs, rrel;
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3.7 Low-rank Alternating Direction Implicit Method

Heuristic 3.2: Shift Parameter Heuristic for Algorithm 3.1 line 3; [19, Sec. 4.5.1],
[76, Sec. 2.1.3].
Input: matrices A,M ∈ Rn×n,W ∈ Rn×f , Z ∈ Rn×z as in Algorithm 3.1 line 3

and a number l ∈ N
Output: shift parameter α ∈ C−

1 if Z is empty then
2 l := f ; Ẑ := W ;
3 else
4 l := min{l, z};
5 set Ẑ to the last l columns of Z;

6 compute a reduced QR decomposition of Ẑ:
QR := Ẑ;

7 AQ := QTAQ; MQ := QTMQ; RQ := QTW ;

8 H :=

[
AT
Q 0

RQR
T
Q −AQ

]
; E :=

[
MT

Q 0

0 MQ

]
;

9 compute the generalized eigenvalues and eigenvectors of (H,E):

HV = EVD with V =

[
v1, . . . , v2l

w1, . . . , w2l

]
and D = diag(α1, . . . , α2l);

10 α := −1; γ := 0;
11 for i = 1, . . . , 2l do
12 if <(αi) < 0 then
13 τ := ‖wi‖2

2 /
∣∣wH

i MQvi
∣∣;

14 if τ ≥ γ then
15 γ := τ ; α := αi;

16 return α;
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DIFFERENTIAL LYAPUNOV AND SYLVESTER
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In this chapter, we consider the differential Sylvester equation (DSE)

Ẋ(t) = AX(t)−X(t)B + C, (4.1a)
X(0) = X0, (4.1b)

for square matrices A ∈ Rn×n, B ∈ Rm×m, a right-hand side C ∈ Rn×m, and an initial
value X0 ∈ Rn×m. The differential Lyapunov equation (DLE)

Ẋ(t) = AX(t) +X(t)AT + FFT, (4.2a)
X(0) = X0, (4.2b)

where F ∈ Rn×f , is a special case of the ASE (3.3). Stationary points of the DSE
and DLE are solutions of the corresponding algebraic equations presented in Chapter 3.

Similar to the ASE and ALE, the DSE and DLE find applications in control theory,
model order reduction; cf. [7, 26,42].
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4 Differential Lyapunov and Sylvester Equations

We organize this chapter as follows. In Section 4.1, we consider the more general
nonautonomous version of the DSE and present a theorem about the existence and
uniqueness of solutions. We also present some solution formulas for the DSE (4.1).
In Section 4.2, we focus on the DLE (4.2) and develop a Galerkin approach for the
numerical approximation of the solution. Finally, Section 4.3 reviews a low-rank version
of the backward differentiation formula (BDF) method for the DLE (4.2).

4.1 Differential Sylvester Equation

In Section 4.1.1, we review the existence and uniqueness of solutions of the DSE (4.1).
Section 4.1.2 summarizes some explicit solution formulas.

4.1.1 Existence and Uniqueness of Solutions

Here, we recall a well-known result on the existence and uniqueness of solutions, which
applies to the more general nonautonomous DSE. The proof provided by [1, Thm. 1.1.5]
is relatively concise. Therefore, we give a more detailed version of the proof.

Theorem 4.1 (Existence and Uniqueness, [1, Thm. 1.1.5]):
Let I ⊆ R be an open interval with t0 ∈ I, A : I → Rn×n, B : I → Rm×m, C : I → Rn×m

continuous matrix-valued functions, and X0 ∈ Rn×m. The nonautonomous DSE

Ẋ(t) = A(t)X(t)−X(t)B(t) + C(t), (4.3a)
X(t0) = X0, (4.3b)

has a unique solution X : I→ Rn×m given by

X(t) = Φ(t)X0Ψ(t)T +

t∫

t0

Φ(t)Φ(s)−1C(s)Ψ(s)−TΨ(t)T ds, (4.4)

where Φ(t) and Ψ(t) are the fundamental matrices of the systems

ẋ(t) = A(t)x(t) and ẋ(t) = −B(t)Tx(t),

respectively, such that Φ(t0) = I and Ψ(t0) = I. ♦

Proof.
Existence:
Theorem 2.31 yields that Φ(t) and Ψ(t) are nonsingular for all t ∈ I. Utilizing Φ(t0) = I,
Ψ(t0) = I, and Equation (4.4), it follows that X(t0) = X0. By differentiating Equa-
tion (4.4), it can be verified that (4.4) defines a solution of the nonautonomous DSE (4.3)
on the interval I.
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4.1 Differential Sylvester Equation

Uniqueness:
If X̃ : J→ Rn×m solves the nonautonomous DSE (4.3) such that J ⊆ I is an open interval
with t0 ∈ J, then the difference E(t) := X(t)− X̃(t) satisfies

Ė(t) = A(t)E(t)− E(t)B(t),

E(t0) = 0.

We observe that
d

dt

(
Φ(t)−1E(t)Ψ(t)−T

)
= 0.

Therefore, Φ(t)−1E(t)Ψ(t)−T is constant on J. Because of E(t0) = 0, we have

Φ(t)−1E(t)Ψ(t)−T = 0

for all t ∈ J. Consequently, X(t) = X̃(t) for all t ∈ J.

Alternatively, we can utilize the equivalent representation

d
dt

vec(X(t)) =
(
In ⊗ A(t)−B(t)T ⊗ Im

)
vec(X(t)) + vec(C(t)),

vec(X(t0)) = vec(X0),

to ensure the existence and uniqueness of solutions; cf. Theorem 2.32 and Section 2.9.

4.1.2 Solution Representations

In this section, we focus on the autonomous DSE (4.1)

Ẋ(t) = AX(t)−X(t)B + C,

X(0) = X0

and explicit solution representations. Using the Sylvester operator (3.2), the DSE (4.1)
rewrites as

Ẋ(t) = SX(t) + C,

X(0) = X0.

4.1.2.1 Exponential of the Sylvester Operator

We consider the exponential of the Sylvester operator etS. We recall that S = L+R and
L and R commute; cf. Lemma 3.3.

Lemma 4.2 (Exponential of the Sylvester Operator S):
For the Sylvester operator S and its partial realizations LX = AX and RX = −XB, it
holds that:

etS = etLetR = etLetR (4.5)

for all t ∈ R. ♦
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4 Differential Lyapunov and Sylvester Equations

Proof. See Lemma 3.3 and Section 2.5.

Next, we give an explicit formula for the action of the exponential of the Sylvester
operator in terms of the spectral decomposition of A and B.
Theorem 4.3 (Exponential of S and Spectral Decomposition, [15, Lem. 3]):
Assume that A ∈ Rn×n and B ∈ Rm×m are diagonalizable. Let A = UDAU

−1 and
BT = V DBTV −1 be the spectral decompositions of A and BT, α1, . . . , αm ∈ C and
β1, . . . , βn ∈ C be the diagonal entries of DA and DBT , then

etSX = U

((
et(αi−βj)

)
i=1,...,n
j=1,...,m

� U−1XV −T
)
V T, (4.6)

for all t ∈ R. ♦

Proof. Using Theorem 3.5, we can decompose S into a linear combination of commuting
projectors

S =
n∑

i=1

m∑

j=1

(
αi − βj

)
Pi,j.

We have Pi,jPk,l = 0 for all (i, j) 6= (k, l), and P2
i,j = Pi,j for all i = 1, . . . , n and

j = 1, . . . ,m. Therefore,

Sk =

(
n∑

i=1

m∑

j=1

(
αi − βj

)
Pi,j

)k

=
n∑

i=1

m∑

j=1

(
αi − βj

)
kPi,j

for all k ∈ N. Hence,

etSX =
n∑

i=1

m∑

j=1

et(αi−βj)Pi,jX =
n∑

i=1

m∑

j=1

et(αi−βj)Pi,jX

=
n∑

i=1

m∑

j=1

et(αi−βj)
〈
X, uiv

T
j

〉
U,V

uiv
T
j .

Finally, Equation (4.6) follows by using similar algebraic manipulations as in Theo-
rem 3.5 Equations (3.6)–(3.9).

4.1.2.2 Variation of Constants Formula

The specification of Equation (4.4) to the autonomous case with constant coefficients is
straightforward by simply replacing the state transition matrix with the matrix expo-
nential; cf. Theorems 2.32 and 2.33. Utilizing Lemma 4.2, we obtain the solution formula

X(t) = etAX0e
−tB +

t∫

0

e(t−s)ACe−(t−s)B ds = etLetRX0 +

t∫

0

e(t−s)Le(t−s)RC ds

= etSX0 +

t∫

0

e(t−s)SC ds.
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4.1 Differential Sylvester Equation

Theorem 4.4 (Variation of Constants Formula, [1, Cor. 1.1.6]):
The DSE (4.1) has a unique solution X : R→ Rm×n given by

X(t) = etAX0e
−tB +

t∫

0

e(t−s)ACe−(t−s)B ds. (4.7)
♦

We combine Theorem 4.3 and Equation (4.7), and we find that, under the assumptions
of Theorem 4.3, the solution of the DSE has the form

X(t) = etSX0 +

t∫

0

e(t−s)SC ds

= U

((
et(αi−βj)

)
i=1,...,n
j=1,...,m

� U−1X0V
−T
)
V T

+

t∫

0

U

((
e(t−s)(αi−βj)

)
i=1,...,n
j=1,...,m

� U−1CV −T
)
V T ds

= U

((
et(αi−βj)

)
i=1,...,n
j=1,...,m

� U−1X0V
−T
)
V T

+ U






t∫

0

e(t−s)(αi−βj) ds


 i=1,...,n
j=1,...,m

� U−1CV −T


V T, (4.8)

with the involved scalar integrals given explicitly as:
t∫

0

e(t−s)(αi+βj) ds =

{
e
t(αi+βj)−1
αi+βj

if αi + βj 6= 0,

t if αi + βj = 0
.

Formula (4.8) resembles the results presented in [99]. The variation of constants for-
mula (Theorem 4.4) leads to another solution formula based on the ASE’s unique solu-
tion.
Theorem 4.5 ([26, Sec. 13]):
Assume Λ(A) ∩ Λ(B) = ∅, then the unique solution of the DSE has the form

X(t) = etSX0 − S−1C + etSS−1C. (4.9)
♦

Proof. Because of Λ(A) ∩ Λ(B) = ∅ and Theorem 3.1, the inverse S−1 exists, and we
can rewrite the solution formula (4.7) as

X(t) = etSX0 +

t∫

0

e(t−s)SC ds = etSX0 +

(
−S−1e(t−s)SC

∣∣∣∣
t

0

)

= etSX0 − S−1(C) + S−1etSC,

and confirm that X(0) = X0 holds.
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4 Differential Lyapunov and Sylvester Equations

4.2 Galerkin Approach for the Differential Lyapunov
Equation

In this section, we develop a Galerkin approach for the numerical approximation of the
solution of the DLE (4.2)

Ẋ(t) = AX(t) +X(t)AT + FFT, (4.10a)
X(0) = 0, (4.10b)

with zero initial conditions. We consider the large-scale case, that is, the state-space
dimension n is large, and F has only a few columns.

4.2.1 Solution Formula and Matrix Exponential

The solution representation of Theorem 4.5 serves as a motivation for our approach. If
A is stable, then

X(t) = X∞ − etAX∞etA
T

(4.11)

represents the solution of the DLE (4.10), where X∞ ∈ Rn×n is the unique spsd solution
of the ALE

AX∞ +X∞A
T = −FFT. (4.12)

4.2.2 Approximation of the Matrix Exponential Action and
Spectral Decomposition

Here, we focus on the action of the matrix exponential on the solution of the ALE (4.12)

etAX∞e
tAT

.

We consider a spectral decomposition of X∞ of the form

X∞ = Q∞D∞Q
T
∞, (4.13a)

Q∞ =
[
q1, . . . , qn

]
∈ Rn×n, (4.13b)

D∞ = diag(λ↓1(X∞), . . . , λ↓n(X∞)) ∈ Rn×n, (4.13c)

where q1, . . . , qn ∈ Rn is a system of orthonormal eigenvectors corresponding to the
nonnegative eigenvalues λ↓1(X∞), . . . , λ↓n(X∞) ∈ R. For sufficiently quick eigenvalue
decay, the solution of the ALE (4.12) can be well approximated using the eigenvectors
corresponding to the k-largest eigenvalues, i.e.,

X∞ ≈ Q∞,kQ
T
∞,kX∞Q∞,kQ

T
∞,k and

∥∥X∞ −Q∞,kQT
∞,kX∞Q∞,kQ

T
∞,k
∥∥

2
= λ↓k+1(X∞),
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4.2 Galerkin Approach for the Differential Lyapunov Equation

where Q∞,k :=
[
q1, . . . , qk

]
∈ Rn×k; cf. Theorem 2.15 and Section 3.5. This motivates us

to study a similar approximation of the time-dependent part of the solution representa-
tion (4.11) given by

etAX∞e
tAT ≈ Q∞,kQ

T
∞,ke

tAX∞e
tAT

Q∞,kQ
T
∞,k.

Furthermore, we consider the linear space

Qk :=
{
Q∞,kY Q

T
∞,k | Y ∈ Rk×k}

together with its orthogonal projection with respect to the Frobenius inner product

Pk : Rn×n → Qk, PkX = Q∞,kQ
T
∞,kXQ∞,kQ

T
∞,k.

Next, we give a bound on the projection error.

Lemma 4.6 (Approximation of the Matrix Exponential Action):
Assume that A is stable and let X∞ be the unique spsd solution of the ALE (4.12).
Then for all k = 1, . . . , n− 1 and all t ≥ 0, the approximation error is bounded by

∥∥∥etAX∞etA
T − Pke

tAX∞e
tAT
∥∥∥

2
≤ 2
√
λ↓k+1(X∞)λ↓1(X∞). (4.14)

♦

Proof. As X∞ is spsd, we have 0 4 etAX∞e
tAT . According to Theorem 3.7, the solution

X∞ can be represented as

X∞ =

∞∫

0

esAFFTesA
T

ds.

With that, we get

0 4 etAX∞e
tAT

=

∞∫

0

e(s+t)AFFTe(s+t)AT

ds =

∞∫

t

esAFFTesA
T

ds

4

∞∫

0

esAFFTesA
T

ds = X∞.

Theorem 2.4 (ii) yields

0 4 etAX∞e
tAT

4 X∞ = PkX∞ +X∞ − PkX∞

4 PkX∞ + ‖X∞ − PkX∞‖2 I = PkX∞ + λ↓k+1(X∞)I

= Q∞,kQ
T
∞,kX∞Q∞,kQ

T
∞,k + λ↓k+1(X∞)I.

We apply the projection matrix I −Q∞,kQT
∞,k and get

0 4
(
I −Q∞,kQT

∞,k
)
etAX∞e

tAT(
I −Q∞,kQT

∞,k
)
4 λ↓k+1(X∞)

(
I −Q∞,kQT

∞,k
)
,
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4 Differential Lyapunov and Sylvester Equations

where we have used that
(
I −Q∞,kQT

∞,k
)
Q∞,k vanishes. Next, Theorem 2.4 (v) yields

∥∥∥
(
I −Q∞,kQT

∞,k
)
etAX

1/2
∞
∥∥∥

2

2
=
∥∥∥
(
I −Q∞,kQT

∞,k
)
etAX∞e

tAT(
I −Q∞,kQT

∞,k
)∥∥∥

2

≤
∥∥∥λ↓k+1(X∞)

(
I −Q∞,kQT

∞,k
)∥∥∥

2

= λ↓k+1(X∞).

Finally,
∥∥∥etAX∞etA

T − Pke
tAX∞e

tAT
∥∥∥

2
=
∥∥∥etAX∞etA

T −Q∞,kQT
∞,ke

tAX∞e
tAT

Q∞,kQ
T
∞,k

∥∥∥
2

=
∥∥∥
(
I −Q∞,kQT

∞,k
)
etAX∞e

tAT
∥∥∥

2
+

∥∥∥Q∞,kQT
∞,ke

tAX∞e
tAT(

I −Q∞,kQT
∞,k
)∥∥∥

2

≤ 2
∥∥∥
(
I −Q∞,kQT

∞,k
)
etAX∞e

tAT
∥∥∥

2

≤ 2
∥∥∥
(
I −Q∞,kQT

∞,k
)
etAX

1/2
∞
∥∥∥

2

∥∥∥X1/2
∞ etA

T
∥∥∥

2

= 2
∥∥∥
(
I −Q∞,kQT

∞,k
)
etAX

1/2
∞
∥∥∥

2

√∥∥etAX∞etAT
∥∥

2

≤ 2
√
λ↓k+1(X∞) ‖X∞‖2 = 2

√
λ↓k+1(X∞)λ↓1(X∞).

If the eigenvalues of the solution X∞ decay quick enough, Bound (4.14) ensures that
the time-dependent part can be well-approximated in a low-rank fashion using a system
of orthonormal eigenvectors corresponding to the k-largest eigenvalues.

4.2.3 Approximation of the Matrix Exponential Action and
Approximate Solution

We consider a low-rank approximation ZZT of the solution of the ALE (4.12), i.e.,

AZZT + ZZTAT + FFT = R,

where R is the residual. If Z = QSV T is an compact SVD of the low-rank factor
Z, then the columns of the matrix Q form a system of orthonormal eigenvectors of
the approximation ZZT. We replace in Equation (4.11) the exact solution X∞ by its
low-rank approximation ZZT and get

X(t) ≈ ZZT − etAZZTetA
T

.

We focus on the action of the matrix exponential etAZ and its approximation by pro-
jection QQTetAZ.
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4.2 Galerkin Approach for the Differential Lyapunov Equation

Lemma 4.7 (Approximation of the Matrix Exponential Action):
Assume that µ2[A] < 0. Let ZZT be an approximate solution of the ALE (4.12) with
residual R and Z = QSV T be its compact SVD. Then for all t ≥ 0, the projection error
is bounded by

∥∥etAZ −QQTetAZ
∥∥

2
≤

√√√√√‖R‖2

t∫

0

e2sµ2[A] ds. (4.15)

♦

Proof. The proof is similar to that of Lemma 4.6. Theorem 3.7 yields

ZZT =

∞∫

0

esA
(
FFT −R

)
esA

T

ds.

Theorem 2.4 (ii) and Theorem 2.26 (vi) yield

0 4 etAZZTetA
T

=

∞∫

t

esA
(
FFT −R

)
esA

T

ds 4

∞∫

0

esAFFTesA
T

ds−
∞∫

t

esAResA
T

ds

=

∞∫

0

esA
(
FFT −R

)
esA

T

ds+

t∫

0

esAResA
T

ds 4 ZZT +

t∫

0

esAResA
T

ds

4 ZZT +

∥∥∥∥∥∥

t∫

0

esAResA
T

ds

∥∥∥∥∥∥
2

I 4 ZZT + ‖R‖2

t∫

0

e2sµ2[A] dsI.

We apply the projection matrix I −QQT to the latter inequality from the left and right
and get

0 4
(
I −QQT

)
etAZZTetA

T(
I −QQT

)
4 ‖R‖2

t∫

0

e2sµ2[A] ds
(
I −QQT

)
.

Finally, Theorem 2.4 (v) yields
∥∥etAZ −QQTetAZ

∥∥2

2
=
∥∥(I −QQT

)
etAZ

∥∥2

2
=
∥∥∥
(
I −QQT

)
etAZZTetA

T(
I −QQT

)∥∥∥
2

≤

∥∥∥∥∥∥
‖R‖2

t∫

0

e2sµ2[A] ds
(
I −QQT

)
∥∥∥∥∥∥

2

= ‖R‖2

t∫

0

e2sµ2[A] ds.

If the logarithmic norm of A is nonnegative, then Lemma 4.7 holds as well, but
the integral term dominates for large times. Alternatively, the bound on the matrix
exponential of Theorem 2.24 can be applied.
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4.2.4 Galerkin Approach

The bounds on the projection error (Lemmas 4.6 and 4.7) motivate the Galerkin ap-
proach QX̃(t)QT for the approximation of the action of the matrix exponential

etAZZTetA
T

,

where Z = QSV T is the compact SVD of the low-rank factor Z. The action of the
matrix exponential satisfies the DLE

Ẋ(t) = AX(t) +X(t)AT,

X(0) = ZZT.

Combining the Galerkin approach and the latter equation yields the defect equation

D(t) := Q ˙̃X(t)QT − AQX̃(t)QT −QX̃(t)QTAT.

We impose the Galerkin condition
〈
D(t), QY QT

〉
F

= 0 for all Y ∈ Rk×k

and get
˙̃X(t) = QTAQX̃(t) + X̃(t)QTATQ.

If we require X̃(0) = S2, then

QX̃(0)QT = QS2QT = QSV TV SQT = ZZT = etAZZTetA
T

∣∣∣∣
t=0

.

Hence, the initial condition is satisfied exactly by the Galerkin approach. Furthermore,
this gives

X̃(t) = etQ
TAQS2etQ

TATQ

and the Galerkin approximation

QetQ
TAQS2etQ

TATQQT ≈ etAZZTetA
T

.

The matrices Q and Z have the same number of columns. Hence, if the low-rank factor
Z ∈ Rn×k has only a few columns (k � n), then the matrix exponential etQTAQ of size
k × k can be approximated, e.g., by the scaling and squaring method. Here, the main
issue is that the matrix QTAQ might not be stable. If the logarithmic norm of A is
negative, then QTAQ is stable; cf. Section 2.7. Nevertheless, generally, the Galerkin
approach does not preserve stability.
Remark 4.8:
We note that similar arguments also hold for the generalized DLE

MẊ(t)MT = AX(t)MT +MX(t)AT + FFT, (4.17a)
X(0) = 0, (4.17b)

with M ∈ Rn×n nonsingular. ♦

In summary, the proposed approach reads as written down in Algorithm 4.1.
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4.2 Galerkin Approach for the Differential Lyapunov Equation

Algorithm 4.1: Galerkin Approach for the DLE (4.17) (ALE-Galerkin-DLE).
Input: M ∈ Rn×n, A ∈ Rn×n, F ∈ Rn×f , truncation tolerance toltrunc > 0, step

size h > 0, final time tf > 0.
Assumptions: M−1A is stable.
Output: X(kh) ≈ ZZT −QX̃kQ

T that approximates the solution to the
generalized DLE.

% solve the ALE:
1 ATX∞M +MTX∞A+ CTC = 0 for X∞ ≈ ZZT;

% compute compact SVD and truncate:
2 use Algorithm B.1 with (Z, toltrunc) as input and obtain the truncated

compact SVD (Z,Q, S) as output;

% compute matrix:
3 Ã := QTM−TATQ;

% compute matrix exponential:
4 Θh := expm(hÃ);

% iterate up to final time:
5 k := 0; z0 := S; X̃0 := z0z

T
0 ;

6 while kh < tf do
7 zk+1 := Θhzk;
8 k := k + 1;
9 X̃k := zkz

T
k ;

4.2.4.1 Numerical Results

To quantify and illustrate the performance of ALE-Galerkin-DLE (Algorithm 4.1), we
consider DLEs arising from the RAIL benchmark problem (Table A.1). Namely, we
consider the DLEs:

MẊ(t)MT = AX(t)MT +MX(t)AT +BBT, X(0) = 0 (RAIL_N)

and
MTẊ(t)M = ATX(t)M +MTX(t)A+ CTC, X(0) = 0. (RAIL_T)

We carried out all computations on the Silver Node (Appendix A). ALE-Galerkin-DLE
(Algorithm 4.1 line 1) requires a low-rank approximation ZZT of the solution of the
corresponding ALE. For this task, we have used the low-rank ADI method Algorithm 3.1.
We report the absolute and relative residuals

∥∥AZZTMT +MZZTAT +BBT
∥∥

2
or
∥∥ATZZTM +MTZZTA+ CTC

∥∥
2
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and
∥∥AZZTMT +MZZTAT +BBT

∥∥
2

‖BBT‖2

or

∥∥ATZZTM +MTZZTA+ CTC
∥∥

2

‖CTC‖2

.

For the truncation tolerance toltrunc, we have used machine precision εmach and the coarser
value √εmach. The achieved values for the different test setups as well as the number of
columns of the corresponding of the truncated low-rank factor Z are listed in Table 4.1.
Table 4.2 reports the computational timings for the numerical solution of the ALE. The
step sizes are given in Table 4.3.

Instance toltrunc Size of Galerkin system Absolute residual Relative residual
√
εmach 214 6.95 · 10−27 3.17 · 10−13

RAIL_N
εmach 419 7.22 · 10−27 3.29 · 10−13

√
εmach 190 3.26 · 10−14 2.72 · 10−15

RAIL_T
εmach 297 3.15 · 10−14 2.62 · 10−15

Tab. 4.1: Residuals for the Numerical Approximation of the Solution of the ALE.

Instance Time to solve ALE (s)

RAIL_N 1.84

RAIL_T 0.75

Tab. 4.2: Time to solve the ALE.

Instance Step sizes h

RAIL_N {20, 2−1, . . . , 2−8}
RAIL_T {20, 2−1, . . . , 2−8}

Tab. 4.3: Step Sizes h.

Comparison with BDF Methods
We compare the Galerkin approach ALE-Galerkin-DLE (Algorithm 4.1) with the low-
rank BDF/ADI method of orders 1, 2, . . . , 6 abbreviated by BDF1, BDF2, BDF3, BDF4, BDF5,
and BDF6, respectively; cf. Section 4.3. Because of memory limitations, we consider the
BDF/ADI methods to the DLEs RAIL_N and RAIL_T on the time interval [0, 100]. For the
Galerkin approach ALE-Galerkin-DLE, we have used the larger interval [0, 4512].
The computational timings for both methods are given in Figures D.1 and D.2. Al-

though the time intervals for both setups are different, the Galerkin approach
ALE-Galerkin-DLE outperforms the BDF/ADI methods in terms of computational time
for both problem instances RAIL_N and RAIL_T.
For the accuracy evaluation, we consider the absolute and relative errors

‖X(t)−Xref(t)‖2 and
‖X(t)−Xref(t)‖2

‖Xref(t)‖2

.

We utilized the spectral decomposition of (A,M) and solution representation (4.8) to
construct the reference solution Xref(t). In order to measure the approximation quality
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of the trial space of the ALE-Galerkin-DLE method, we report the absolute and rela-
tive error of the best approximation of the reference solution. More precisely, the best
approximation is given by

Xbest(t) := QQTXref(t)QQ
T,

where Q is the matrix of (Algorithm 4.1 line 2). Indeed, Xbest(t) is the orthogonal pro-
jection with respect to the Frobenius inner product of Xref(t) onto the trial space. The
numerical errors for the ALE-Galerkin-DLE method are presented in Figures D.3a–D.3d
and D.6a–D.6d. We report the convergence to the stationary point and the norm of
the reference solution in Figures D.4, D.5, D.7, and D.8. Figures D.9a–D.11f show the
numerical errors for the BDF/ADI methods. Based on the numerical results, the following
observations can be made. At first, the best approximation Xbest(t) for the truncation
tolerance εmach is very accurate; cf. Figures D.3d and D.6d. Hence, the choice of the trial
space of the ALE-Galerkin-DLE method is justified. The reference solution of RAIL_T
itself is large in norm what makes the absolute error comparatively large; cf. Figure D.7
with Figures D.6c and D.11e. Interestingly, the error of the ALE-Galerkin-DLE approx-
imations increases with decreasing h; cf. Figures D.3a, D.3c, D.6a, and D.6c. A decrease
of the step size results in an increased number of time steps. Hence, the rounding er-
rors possibly accumulate during time stepping; cf. Algorithm 4.1 lines 5–9. The relative
error of the BDF/ADI approximation and the ALE-Galerkin-DLE with toltrunc =

√
εmach

approximation are nearly at the same level; cf. Figures D.3d and D.9f and Figures D.6d
and D.11f. But the ALE-Galerkin-DLE (toltrunc = εmach) approximation is more accurate
than the BDF/ADI approximation.

4.3 Backward Differentiation Formula for the
Differential Lyapunov Equation

This section follows [80]. We review BDFs for the DLE

Ẋ(t) = AX(t) +X(t)AT + FFT, (4.18a)
X(0) = Z0Z

T
0 , (4.18b)

where A ∈ Rn×n, F ∈ Rn×f , and Z0 ∈ Rn×z. We consider the large-scale case and assume
that Z0 and F have only a few columns and n is large. Let h > 0 be the step size. We
define the step size h = tk − tk−1. The s-step BDF method applied to the DLE (4.18) is
given by

Xk −
s∑

j=1

αjXk−j = hβ
(
AXk +XkA

T + FFT
)
,

where αj and β are coefficients of the BDF method; cf. [51, Ch. III.1, Eqn. (1.22”)].
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s β α1 α2 α3 α4 α5 α6

1 1 1

2 2
3

4
3

−1
3

3 6
11

18
11

− 9
11

2
11

4 12
25

48
25

−36
25

16
25

− 3
25

5 60
137

300
137

−300
137

200
137

− 75
137

12
137

6 60
147

120
49
−150

49
400
147

−75
49

24
49
− 10

147

Tab. 4.4: Coefficients of the s-step BDF Method.

The iterate Xk approximates X(tk). The parameter s is the order of the BDF method.
We recall that for s > 6, the method is not numerically stable, and for s = 1, the BDF
method coincides with the implicit Euler method. A minor rearrangement shows that
the current iterate Xk can be obtained as the solution of the ALE

(
hβA− 1

2
I
)
Xk +Xk

(
hβA− 1

2
I
)
T = −hβFFT −

s∑

j=1

αjXk−j. (4.19)

Since for s ≥ 2, some coefficients αj are negative, the ALE (4.19) has a symmetric but
possibly indefinite right-hand side, making the standard low-rank ADI method infeasi-
ble; cf. Section 3.7. For this reason, a low-rank LDLT-decomposition for the numerical
approximation is proposed, and suitable modifications of the low-rank ADI method have
been developed; [80]. Assume that Xi ≈ LiDiL

T
i for i = 0, . . . , k, Li ∈ Rn×li , Di ∈ Rli×li

and li � n, then the right-hand side can be factored as

−hβFFT −
s∑

j=1

αjXk−j ≈ −GkSkG
T
k ,

Gk =
[
F,Lk−1, . . . , Lk−s

]
,

Sk =




hβI

α1Dk−1

. . .
αsDk−s


 .

The LDLT-type low-rank ADI method can be used to approximate Xk ≈ LkDkL
T
k .

Remark 4.9:
The BDF method also extends to the generalized DLE

MẊ(t)MT = AX(t)MT +MX(t)AT + FFT,

X(0) = Z0Z
T
0

and applies to the nonautonomous case as well. ♦
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CHAPTER 5

ALGEBRAIC RICCATI EQUATION
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We consider the algebraic Riccati equation (ARE)

ATX +XA−XBBTX + CTC = 0, (5.1)

for matrices A ∈ Rn×n, B ∈ Rn×b, and C ∈ Rc×n.
The ARE (5.1) arises frequently in control and systems theory. In particular, the

linear-quadratic regulator and the feedback stabilization problem of the linear-time in-
variant system

ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t)

are important applications; cf. [1, Ch. 8], [84, Ch. 4], and [66, Ch. 9].
We organize this chapter as follows. In Section 5.1, we review the one-to-one corre-

spondence between solutions of the ARE (5.1) and invariant subspaces of the associated
real Hamiltonian matrix

H =

[
A −BBT

−CTC −AT

]
. (5.3)

Usually, the ARE (5.1) admits multiple solutions. Therefore, we focus in Section 5.2 on
the stabilizing solution, and review existence and uniqueness conditions. Furthermore,
we review spsd solutions of the ARE (5.1) and study the image or equivalently the kernel
of the stabilizing solution.
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5 Algebraic Riccati Equation

5.1 Solutions and Subspaces

First, we review the definition of a graph subspace. Next, we state the one-to-one
correspondence between solution of the ARE (5.1) and invariant graph subspace of the
Hamiltonian matrix H (5.3).

Definition 5.1 (Graph Subspace, [1, Def. 2.1.1]):
A linear subspace S ⊆ C2n is called a graph subspace if there are matrices U, V ∈ Cn×n

with U nonsingular such that

S = im

([
U

V

])
. ♦

Clearly, a graph subspace is n-dimensional. Because of

im

([
U

V

])
= im

([
U

V

]
U−1

)
= im

([
I

V U−1

])
,

every graph subspace has the form

G(X) := im

([
I

X

])
(5.4)

for some matrix X ∈ Cn×n.
Theorem 5.2 (Solutions and Invariant Subspaces [1, Sec. 2.1, Thm. 2.1.2]):
The matrix X ∈ Cn×n satisfies the ARE (5.1) if and only if G(X) is an H-invariant
subspace. ♦

Proof. If G(X) is an H-invariant subspace, then there is a matrix T ∈ Cn×n such that

H

[
I

X

]
=

[
I

X

]
T. (5.5)

Combining the first and second block row of the latter equation gives

−CTC − ATX = XT = X
(
A−BBTX

)
,

which is equivalent to the ARE (5.1).
On the other hand, if X satisfies the ARE (5.1), then it can be verified that Equa-

tion (5.5) holds with
T = A−BBTX.

Hence, G(X) is an H-invariant subspace.

Theorem 5.2 shows that there is a one-to-one correspondence between the solutions
of the ARE (5.1) and all invariant graph subspaces of the Hamiltonian matrix H. In
particular, if

im

([
U

V

])
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5.2 Stabilizing Solutions

is an n-dimensional H-invariant graph subspace, then V U−1 defines a solution of the
ARE (5.1). Furthermore, the solution depends only on the subspace rather than on the
chosen basis. More specifically, assume that

im

([
U

V

])
= im

([
Ũ

Ṽ

])

for some matrices Ũ , Ṽ ∈ Cn×n. The n-dimensional linear spaces are equal, hence, there
is a nonsingular matrix T such that

[
U

V

]
=

[
Ũ

Ṽ

]
T.

Because of U and T are nonsingular, the matrix Ũ is nonsingular and

V U−1 =
(
Ṽ T
)(
ŨT
)
−1 = Ṽ Ũ .

5.2 Stabilizing Solutions

If X ∈ Cn×n is a solution of the ARE (5.1), then

H

[
I

X

]
=

[
I

X

] (
A−BBTX

)
;

cf. proof of Theorem 5.2. The ARE (5.1) may have several solutions or even uncountable
many; cf. [1, Ex. 2.1.5]. Therefore, we require in addition that A−BBTX is stable.

Definition 5.3 (Stabilizing Solution, [84, Sec. 5.3]):
A solution X ∈ Cn×n of the ARE (5.1) is called stabilizing if A−BBTX is stable. ♦

5.2.1 Uniqueness of Stabilizing Solutions

Here, we review the uniqueness and some properties of the stabilizing solution of the
ARE (5.1). We provide a proof of Theorem 5.4 because the argumentation in [84,
Thm. 5.5] is partly incomplete and slightly more technical.

Theorem 5.4 (Uniqueness of Stabilizing Solutions, [84, Thm. 5.5, Thm. 5.9]):
Assume that X ∈ Cn×n is a stabilizing solution of the ARE (5.1). Then it follows that:

(i) X is symmetric.

(ii) X is unique.

(iii) X is real.

(iv) X is spsd.
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5 Algebraic Riccati Equation

(v) X is maximal: If X̃ is a real symmetric solution of the ARE (5.1), then X < X̃.
♦

Proof. (i) If X satisfies the ARE (5.1), then XT does too. With that, we subtract

ATX +XA−XBBTX + CTC = 0,

ATXT +XTA−XTBBTXT + CTC = 0

and obtain the ALE
(
A−BBTX

)
T(X −XT) + (X −XT)

(
A−BBTX

)
= 0.

Because A − BBTX is stable, the equation is uniquely solvable. Therefore, X is
symmetric.

(ii) Let X1, X2 ∈ Cn×n be stabilizing solutions of the ARE (5.1). Again, we subtract

ATX1 +X1A−X1BB
TX1 + CTC = 0,

ATX2 +X2A−X2BB
TX2 + CTC = 0,

use the symmetry of X1 and X2, and get the ASE
(
A−BBTX2

)
T(X1 −X2) + (X1 −X2)

(
A−BBTX1

)
= 0.

As A−BBTXi is stable, it follows that X1 = X2.

(iii) If X is a stabilizing solution, then X is also a stabilizing solution. The uniqueness
implies that X is real.

(iv) If X is a stabilizing solution, then X is symmetric and satisfies the ALE
(
A−BBTX

)
TX +X

(
A−BBTX

)
= −XBBTX − CTC.

Theorem 3.13 yields that X is spsd.

(v) The difference of
ATX +XA−XBBTX + CTC = 0,

ATX̃ + X̃A− X̃BBTX̃ + CTC = 0

rewrites as an ALE
(
A−BBTX

)
T(X − X̃) + (X − X̃)

(
A−XBBTX

)
= −(X̃ −X)BBT(X̃ −X).

Theorem 3.13 gives X < X̃.
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5.2.2 Existence of Stabilizing Solutions

We focus on the existence of the stabilizing solution of the ARE (5.1). First, we review
the definition of the pair (A,B) to be stabilizable and give some equivalent charac-
terizations. Then, we review an existence theorem for the stabilizing solution of the
ARE (5.1).

Definition 5.5 (Stabilizable, [1, Def. A.1.4]):
Let A ∈ Rn×n and B ∈ Rn×b. The pair (A,B) is called stabilizable, if there exists a
matrix K ∈ Rb×n such that A−BK is stable. ♦

Theorem 5.6 (Stabilizable, [1, Thm. A.1.5], [100, Thm. 18.28, Cor. 18.29]):
Let A ∈ Rn×n and B ∈ Rn×b. The following conditions are equivalent:

(i) (A,B) is stabilizable.

(ii) If x is a left-eigenvector of A corresponding to an eigenvalue λ with <(λ) ≥ 0, then
xHB 6= 0.

(iii) rank
([
A− λI B

])
= n for all λ ∈ C with <(λ) ≥ 0.

(iv) Ec(A)⊕ Eu(A) ⊆ im(K(A,B)).

(v) Es(A) + im(K(A,B)) = Rn. ♦

Theorem 5.7 (Existence of Stabilizing Solutions, [73, Thm. 3]):
The ARE (5.1) has a stabilizing solution if and only if the following conditions both
hold:

(i) (A,B) is stabilizable.

(ii) No eigenvalue of the Hamiltonian matrix H has zero real part, i.e., Λ(H)∩ıR = ∅.
♦

5.2.3 Symmetric Positive Semidefinite Solutions

The stabilizing solution of the ARE (5.1) is spsd; cf. Theorem 5.4. In this subsection, we
focus on the uniqueness of spsd solutions of the ARE (5.1). We introduce the notion of
a detectable matrix pair and give equivalent conditions. Finally, we review an existence
and uniqueness result for spsd solutions of the ARE (5.1).

Definition 5.8 (Detectable, [1, Def. A.1.5]):
Let A ∈ Rn×n and C ∈ Rc×n. The pair (A,C) is called detectable, if there exists a matrix
K ∈ Rn×c such that A−KC is stable. ♦
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5 Algebraic Riccati Equation

Theorem 5.9 (Detectable, [1, Thm. A.1.6], [100, Thm. 18.31]):
Let A ∈ Rn×n and C ∈ Rc×n. The following conditions are equivalent:

(i) (A,C) is detectable.

(ii) (AT, CT) is stabilizable.

(iii) If x is an eigenvector of A corresponding to an eigenvalue λ with <(λ) ≥ 0, then
Cx 6= 0.

(iv) rank

([
A− λI
C

])
= n for all λ ∈ C with <(λ) ≥ 0.

(v) ker
(
K
(
AT, CT

)
T
)
⊆ Es(A).

(vi) (Ec(A)⊕ Eu(A)) ∩ ker
(
K
(
AT, CT

)
T
)

= {0}. ♦

Theorem 5.10 (Uniqueness of spsd Solutions, [84, Thm. 5.8]):
Assume that (A,C) is detectable and that X ∈ Cn×n is a hpsd solution of the ARE (5.1).
Then X is a stabilizing solution. ♦

If the pair (A,C) is detectable, then Theorem 5.4 and Theorem 5.10 yield that
the ARE (5.1) has at most one spsd solution X ∈ Rn×n. Next, we review an im-
portant Lemma about the Hamiltonian Matrix H to prepare for Theorem 5.12, the final
result in this section.

Lemma 5.11 ([84, Lem. 5.2]):
Assume that (A,B) is stabilizable and (A,C) is detectable. Then Λ(H) ∩ ıR = ∅. ♦

Finally, Theorem 5.12 follows by Theorems 5.4, 5.7, and 5.10 and Lemma 5.11.

Theorem 5.12 ([84, Thm. 5.10]):
Assume that (A,B) is stabilizable and (A,C) is detectable, then the ARE (5.1) has a
unique spsd solution X ∈ Rn×n. Moreover, the solution X ∈ Rn×n is stabilizing. ♦

5.2.4 Image of the Solution

Here, we study the image or, equivalently, the kernel of the stabilizing solution of the
ARE (5.1). First, there is a natural motivation to study the kernel/image of the stabi-
lizing solution of the ARE (5.1), because the kernel/image is an important feature of a
matrix. Second, knowledge about the image of the stabilizing solution of the ARE can
be used to develop numerical methods for the solution approximation.

Theorem 5.13 is the main result in this section. Theorems 5.14 and 5.15 are just
specializations of Theorem 5.13. The proof of Theorem 5.13 given by [86, Thm. 7] is
relatively concise, hence we provide a more detailed proof.
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Theorem 5.13 (Kernel/Image of the Stabilizing Solution I, [86, Thm. 7]):
Assume that (A,B) is stabilizable and that Λ(H) ∩ ıR = ∅. Then for the stabilizing
solution X ∈ Rn×n of the ARE (5.1) it holds

ker(X) = ker
(
K
(
AT, CT

)
T
)
∩ Es(A) (5.6)

or equivalently

im(X) = im
(
K
(
AT, CT

))
+
(
Ec
(
AT
)
⊕ Eu

(
AT
))
. (5.7)

♦

Proof. According to Theorem 5.4 (i), the stabilizing solution X ∈ Rn×n of the ARE (5.1)
is symmetric. Hence, using the orthogonal complement, it is easy to see that Equa-
tion (5.6) and Equation (5.7) are equivalent; cf. Theorem 2.47 (iv).

We divide the proof into three parts:

(i) ker(X) ⊆ ker
(
K
(
AT, CT

)
T
)
.

(ii) ker(X) ⊆ Es(A).

(iii) ker
(
K
(
AT, CT

)
T
)
∩ Es(A) ⊆ ker(X).

(i) Let x ∈ ker(X). We multiply the ARE (5.1) with xT from the left and with x

from the right and get xTCTCx = 0. It follows that Cx = 0. Again, we multiply
the ARE (5.1) with x from the right, use that Cx = 0, and get XAx = 0. This
means that ker(X) is an A-invariant subspace. Consequently, we have shown
ker(X) ⊆ ker

(
K
(
AT, CT

)
T
)
.

(ii) Here, we can assume that ker(X) is nontrivial. Let the columns of the matrix N
be a basis of ker(X). We have already seen in (i) that ker(X) is an A-invariant
subspace. Therefore, there is a real matrix Ã such that

AN = NÃ. (5.8)

With that, the characteristic polynomial χÃ of Ã divides the characteristic poly-
nomial χA of A. Now, the main observation is

(
A−BBTX

)
N = AN = NÃ.

This means that ker(X) is
(
A−BBTX

)
-invariant, and, therefore, the character-

istic polynomial χÃ divides the characteristic polynomial of A − BBTX as well.
As A− BBTX is stable, it follows that the roots of χÃ are a subset of C−. With
the notation of Definition 2.46, we have that χÃ divides χs. This yields

ker(χÃ(A)) ⊆ ker(χs(A))
def.
= Es(A). (5.9)
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Next, the Cayley–Hamilton theorem and Equation (5.8) yield

χÃ(A)N = NχÃ(Ã) = 0.

This means im(N) ⊆ ker(χÃ(A)). The columns of N were chosen to be a basis of
ker(X), thus,

ker(X) ⊆ ker(χÃ(A)). (5.10)

Finally, we combine Equations (5.9) and (5.10).

(iii) Again, we assume that ker
(
K
(
AT, CT

)
T
)
∩Es(A) is nontrivial and that the columns

of N are a basis of this space. We have CN = 0. Because ker
(
K
(
AT, CT

)
T
)

and Es(A) are A-invariant, the intersection of these spaces is A-invariant as well.
Therefore, there is a real matrix Ã such that AN = NÃ. Moreover, the matrix Ã
is stable.1 Next, if X is the stabilizing solution of the ARE (5.1), then

(
A−BBTX

)
TX +XA+ CTC = 0.

We multiply the latter equation with N from the right, use CN = 0 and AN = NÃ

and observe that the product XN satisfies the ASE
(
A−BBTX

)
TXN +XNÃ = 0.

As A−BBTX and Ã are stable, the ASE has the unique solution XN = 0; cf. The-
orem 3.1. Consequently,

ker
(
K
(
AT, CT

)
T
)
∩ Es(A) = im(N) ⊆ ker(X),

and, the proof is complete.

Theorem 5.14 (Algebraic Bernoulli Equation):
Assume that (A,B) is stabilizable and Λ(A)∩ ıR = ∅. Then for the stabilizing solution
X ∈ Rn×n of the algebraic Bernoulli equation (ABE)

ATX +XA−XBBTX = 0 (5.11)

it holds that ker(X) = Es(A) or equivalently im(X) = Eu
(
AT
)
. ♦

Proof. The associated Hamiltonian matrix H to the ABE (5.11) is given by

H =

[
A −BBT

0 −AT

]
.

The Hamiltonian matrix H is block upper triangular, therefore, Λ(H) = Λ(A)∪Λ(−A).
As A has no eigenvalue with zero real part, the associated Hamiltonian matrix H also

10 = χs(A)N,AN = NÃ, Ãx = λx gives 0 = χs(A)Nx = Nχs(Ã)x = χs(λ)Nx, hence, χs(λ) = 0.
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not. Theorems 5.4 and 5.7 yield the existence of a unique stabilizing solution X ∈
Rn×n of the ABE (5.11). Moreover, the solution X is spsd. Utilizing Theorem 5.13,
we have ker(X) = Es(A) or equivalently im(X) = Es(A)⊥. Because of A has no
eigenvalues with zero real part, the center subspace of A is trivial, e.g., Ec(A) = {0},
and Theorem 2.47 (iv) completes the proof.

Theorem 5.15 (Kernel/Image of the Stabilizing Solution II):
Assume that (A,B) is stabilizable and that (A,C) is detectable. Then for the stabilizing
solution X ∈ Rn×n of the ARE (5.1) it holds

ker(X) = ker
(
K
(
AT, CT

)
T
)
or equivalently im(X) = im

(
K
(
AT, CT

))
. ♦

Proof. Combine Theorems 5.9 (v), 5.11 and 5.13.

Theorems 5.14 and 5.15 are special cases of Theorem 5.13 or [86, Thm. 7]. Both results
have been rediscovered several times in the literature. In particular, Theorem 5.14 can
be found in a similar form in [10, Prop. 1]. Furthermore, Theorem 5.15 has been proven
in [14, Thm. 3.2] and [4, Sec. 3.3].

Theorem 5.15 is of great importance for the numerical approximation of the solution
of large-scale AREs because the explicit characterization of the image justifies the choice
of the trial space of Krylov subspace methods for the numerical approximation of the
solution of the ARE (5.1); cf. [105,106] and [18, Sec. 4.1]. Theorem 5.14 finds application
in the numerical solution of large-scale ABEs; cf. [54, Sec. 7.4.3, Alg. 7.4.3].
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In this chapter, we consider the nonsymmetric differential Riccati equation (NDRE),
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6 Differential Riccati Equation

symmetric differential Riccati equation (SDRE), and the differential Riccati equation
(DRE). Similar to the ARE, these equations find applications in control and system
theory. Throughout this chapter, we focus on the autonomous version of the NDRE,
SDRE, and DRE.
We organize Chapter 6 as follows. In Section 6.1, we introduce the NDRE and review

the existence and uniqueness of solutions. Section 6.2 focuses on the SDRE and reviews
the monotonicity and comparison theorem. Section 6.3 deals with the DRE. Section 6.4
contrasts the Davison–Maki and modified Davison–Maki method for the numerical so-
lution of the NDRE. In Section 6.5, we develop a Galerkin approach for the numerical
solution of the large-scale DRE. Finally, Section 6.6 reviews the splitting schemes for
the DRE.

6.1 Nonsymmetric Differential Riccati Equation

We consider the NDRE

Ẋ(t) = M22X(t)−X(t)M11 −X(t)M12X(t) +M21, (6.1a)
X(0) = M0 (6.1b)

for matrices M11 ∈ Rn×n, M12 ∈ Rn×m, M21 ∈ Rm×n, M22 ∈ Rm×m and an initial value
M0 ∈ Rm×n.

6.1.1 Existence and Uniqueness of Solutions

We review the existence and uniqueness of solutions of the NDRE (6.1).

Theorem 6.1 (Existence and Uniqueness, [1, Sec. 3.1]):
The NDRE (6.1) has a unique solution X : (t−, t+)→ Rm×n. ♦

Proof. We utilize Lemma 2.37. We define x(t) := vec(X(t)) and consider the equivalent
representation of the NDRE (6.1)

ẋ(t) =
(
In ⊗M22 −MT

11 ⊗ Im
)
x(t)−

(
X(t)T ⊗X(t)

)
vec(M12) + vec(M21), (6.2a)

x(0) = vec(M0). (6.2b)

We note that X(t) = vec−1(x(t)). The right-hand side associated to Equation (6.2a) is
given by

f : R× Rmn → Rmn

f(t, x) =
(
In ⊗M22 −MT

11 ⊗ Im
)
x−

(
vec−1(x)T ⊗ vec−1(x)

)
vec(M12) + vec(M21).

Each component of f(t, x) is a (multivariate) polynomial in the variables x1, . . . , xmn.
Consequently, f is locally Lipschitz continuous with respect to x; cf. Lemma 2.30. The-
orem 2.29 completes the proof.
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6.1 Nonsymmetric Differential Riccati Equation

6.1.2 Radon’s Lemma

We review Radon’s Lemma. Radon’s Lemma is a fundamental tool for the NDRE, as
it relates the solution of the nonlinear NDRE to the solution of a linear system of size
(m+ n)× (m+ n).

Theorem 6.2 (Radon’s Lemma, [1, Thm. 3.1.1]):
Let I ⊆ R be an open interval with 0 ∈ I. The following holds:

(i) Let X : I → Rm×n be the solution of the NDRE (6.1) and U : I → Rn×n be the
solution of the linear IVP

U̇(t) = (M11 +M12X(t))U(t),

U(0) = I.
(6.3)

Moreover, let V (t) := X(t)U(t). Then U : I→ Rn×n and V : I→ Rm×n define the
solution of

[
U̇(t)

V̇ (t)

]
= M

[
U(t)

V (t)

]
:=

[
M11 M12

M21 M22

] [
U(t)

V (t)

]
,

[
U(0)

V (0)

]
=

[
I

M0

]
. (6.4)

(ii) If
[
U

V

]
: I→ R(m+n)×n is a solution of Equation (6.4) and the matrix U(t) is nonsin-

gular for all t ∈ I, then X : I→ Rm×n, X(t) = V (t)U(t)−1 solves the NDRE (6.1).
♦

Proof.

(i) Utilizing Theorem 2.31, the linear IVP (6.3) has a unique solution U defined on
the interval I. It can be verified that U and V satisfy Equation (6.4).

(ii) We differentiate X(t) = V (t)U(t)−1 and get

Ẋ(t) = V̇ (t)U(t)−1 − V (t)U(t)−1U̇(t)U(t)−1.

The claim follows from Equation (6.4) and the identity X(t) = V (t)U(t)−1.

Radon’s Lemma (Theorem 6.2) also holds for time-dependent continuous matrix-
valued functions as coefficients; cf. [1, Thm. 3.1.1]. Usually, the solution of the NDRE
(6.1) has finite-time escape, while the solution of the system (6.4) exists for all t ∈ R;
cf. Theorem 2.31. As the function U is a solution of the linear IVP (6.3) and U(0) = I

is nonsingular, the determinant of U(t) can not vanish on the interval I. It follows that
the matrix U(t) is nonsingular for all t ∈ I; cf. Theorem 2.31 Equation (2.5). Therefore,
as long as the solution of the NDRE (6.1) exists, it can be recovered from the solution
of the system (6.4) with the transformation X(t) = V (t)U(t)−1.
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6 Differential Riccati Equation

6.2 Symmetric Differential Riccati Equation

Section 6.2 focuses on the SDRE

Ẋ(t) = ATX(t) +X(t)A−X(t)SX(t) +Q, (6.5a)
X(0) = X0, (6.5b)

for symmetric matrices S,Q,X0 ∈ Rn×n and coefficient matrix A ∈ Rn×n. We recall the
existence and uniqueness of a symmetric solution. Then, we present the monotonicity
theorem and the comparison theorem for the SDRE (6.5) (Theorems 6.5 and 6.7). This
section is based on [1, Sec. 4.1.1] and [66, Sec. 10.1–10.2].

6.2.1 Existence and Uniqueness of Solutions

We review the existence and uniqueness of symmetric solutions of the SDRE (6.5).
Theorem 6.3 (Existence and Uniqueness, [1, Sec. 4.1]):
The SDRE (6.5) has a unique solution X : (t−, t+) → Rn×n, and X(t) is symmetric for
all t ∈ (t−, t+). ♦

Proof. Theorem 6.1 ensures the existence and uniqueness of solutions. As the matrices
S,Q, and X0 are symmetric, X(t)T satisfies the SDRE (6.5) as well. Therefore, X(t) is
symmetric for all t ∈ (t−, t+).

6.2.2 Monotonicity Theorem

In preparation of Theorem 6.5, we show that the number of negative, zero, and positive
eigenvalues of the derivative Ẋ(t) is constant as long as Ẋ(t) exists. The reference [66,
Hilfssatz 10.4] states a slightly weaker result, hence we provide a proof of Lemma 6.4.
Lemma 6.4 (Inertia of the Derivative, [66, Hilfssatz 10.4]):
Let X : (t−, t+) → Rn×n be the unique solution of the SDRE (6.5). Then the inertia of
the derivative Ẋ(t) is constant for all t ∈ (t−, t+). ♦

Proof. We differentiate the SDRE (6.5a), use the symmetry of S and X(t), and get

Ẍ(t) = (A− SX(t))TẊ(t) + Ẋ(t)(A− SX(t))

Ẋ(0) = ATX(0) +X(0)A−X(0)SX(0) +Q.

Therefore, the derivative Ẋ satisfies a DLE. Theorem 4.1 yields

Ẋ(t) = Φ(t)Ẋ(0)Φ(t)T

for all t ∈ (t−, t+), where Φ(t) is the fundamental matrix of the system

ẋ(t) = (A− SX(t))Tx(t)

with Φ(0) = I. Consequently, the matrices Ẋ(t) and Ẋ(0) are congruent and Sylvester’s
law of inertia completes the proof.
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6.2 Symmetric Differential Riccati Equation

Theorem 6.5 (Monotonicity Theorem, [1, Lem. 4.1.12]):
Let X : (t−, t+)→ Rn×n be the unique solution of the SDRE (6.5). It holds:

• If Ẋ(0) < 0, then X(t1) 4 X(t2) for all t1, t2 ∈ (t−, t+) such that t1 ≤ t2, i.e., X is
monotonic non-decreasing on (t−, t+).

• If Ẋ(0) 4 0, then X(t1) < X(t2) for all t1, t2 ∈ (t−, t+) such that t1 ≤ t2, i.e., X is
monotonic non-increasing on (t−, t+). ♦

Proof. We assume that Ẋ(0) < 0. Lemma 6.4 yields that Ẋ(t) < 0 for all t ∈ (t−, t+).
It holds that

X(t2)−X(t1) =

t2∫

t1

Ẋ(s) ds < 0.

If Ẋ(0) 4 0, then the claim can be shown by similar arguments.

The monotonicity property of the solution of the SDRE is remarkable, because the
Loewner ordering is only a partial ordering on the set of symmetric matrices, and, hence
not all symmetric matrices are comparable.

6.2.3 Comparison Theorem

The comparison theorem (Theorem 6.7) is the main result of this subsection. The
next lemma states that, if a matrix function X(t) satisfies the differential inequality
(6.6a) and is spsd at time t0, then X(t) remains spsd at all subsequent times. To avoid
confusion, we provide a proof of Lemma 6.6 and Theorem 6.7 because the given references
consider the SDRE backward in time.

Lemma 6.6 (Linear Differential Inequality, [1, Thm. 4.1.2]):
Let I ⊆ R be an open interval with t0 ∈ I, A : I→ Rn×n be continuous, andX : I→ Rn×n

be continuously differentiable. If X satisfies the inequalities

Ẋ(t) < A(t)TX(t) +X(t)A(t), (6.6a)
X(t0) < 0, (6.6b)

then X(t) < 0 for all t ∈ I such that t ≥ t0. ♦

Proof. Let Φ(t) be the fundamental matrix of the system

ẋ(t) = −A(t)x(t)

with Φ(t0) = I. We differentiate the matrix

Y (t) := Φ(t)TX(t)Φ(t)
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and get

Ẏ (t) = −Φ(t)T
(
A(t)TX(t) +X(t)A(t)

)
Φ(t) + Φ(t)TẊ(t)Φ(t) < 0.

Therefore, Y (t) is monotonically non-decreasing on I. We have

Φ(t)TX(t)Φ(t) = Y (t) < Y (t0) = X(t0) < 0. (6.7)

for all t ∈ I such that t ≥ t0. The matrix Φ(t) is nonsingular. Multiplication of Equa-
tion (6.7) with Φ(t)−T and Φ(t)−1 from the left and the right, respectively, completes
the proof.

In order to formulate the comparison theorem (Theorem 6.7), it is useful to associate
the real Hamiltonian matrix

H =

[
A −S
−Q −AT

]

to the SDRE (6.5)

Ẋ(t) = ATX(t) +X(t)A−X(t)SX(t) +Q,

X(0) = X0.

With that, we can write the SDRE (6.5) as

Ẋ(t) =

[
I

X(t)

]T [
Q AT

A −S

] [
I

X(t)

]
= −

[
I

X(t)

]T
JH

[
I

X(t)

]
,

X(0) = X0,

where

J =

[
0 I

−I 0

]
;

cf. Definition 2.40. The comparison theorem yields that solution X(t) depends mono-
tonically on the real symmetric matrix −JH and on the initial value X0.

Theorem 6.7 (Comparison Theorem, [1, Thm. 4.1.4]):
Let Ii ⊆ R be open intervals with 0 ∈ Ii and Xi : Ii → Rn×n (i = 1, 2) be the solutions
of the SDREs

Ẋi(t) = AT
i Xi(t) +Xi(t)Ai −Xi(t)SiXi(t) +Qi,

Xi(0) = X0,i.

If X0,1 4 X0,2 and −JH1 4 −JH2, then X1(t) 4 X2(t) for all t ≥ 0 such that t ∈ I1∩I2.♦
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Proof. We consider the difference X(t) := X2(t)−X1(t) and get

Ẋ(t) =−
[

I

X2(t)

]T
JH2

[
I

X2(t)

]
+

[
I

X1(t)

]T
JH1

[
I

X1(t)

]

=−
[

I

X2(t)

]T
JH2

[
I

X2(t)

]
+

[
I

X1(t)

]T
JH2

[
I

X1(t)

]

+

[
I

X1(t)

]T
(JH1 − JH2)

[
I

X1(t)

]

<−
[

I

X2(t)

]T
JH2

[
I

X2(t)

]
+

[
I

X1(t)

]T
JH2

[
I

X1(t)

]

=AT
2X(t) +X(t)A2 −X2(t)S2X2(t) +X1(t)S2X1(t).

Hence, X satisfies the inequalities

Ẋ(t) < A(t)TX(t) +X(t)A(t),

X(0) = X0,2 −X0,1 < 0,

where A(t) := A2 − 1
2
S2(X2(t) +X1(t)). The claim follows from Lemma 6.6.

6.3 Differential Riccati Equation

In this section, we consider the DRE

Ẋ(t) = ATX(t) +X(t)A−X(t)BBTX(t) + CTC, (6.8a)
X(0) = Z0Z

T
0 , (6.8b)

for matrices A ∈ Rn×n, B ∈ Rn×b, C ∈ Rc×n, and Z0 ∈ Rn×z0 . The DRE (6.8) is a
special case of the SDRE (6.5).

We organize this section as follows. In Section 6.3.1, we discuss the existence and
uniqueness, the definiteness, and the long-time existence of solutions of the DRE (6.8).
In Section 6.3.2, we study the image or equivalently the kernel of the solution of the
DRE (6.8). We review the convergence of the solution of the DRE (6.8) to the stationary
point in Section 6.3.3. Finally, in Section 6.3.4, we review an explicit solution formula
based on the solution of the ARE.

6.3.1 Existence and Uniqueness of Solutions

Here, we review the existence and uniqueness of solutions of the DRE (6.8). The initial
condition (6.8b) yields that X(0) is spsd and this is essential to establish the definiteness
and long-time existence of the solutionX(t). We provide a proof of Theorem 6.8, because
the given references consider the DRE backward in time and hence the terminology
slightly differs.
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Theorem 6.8 (Existence and Uniqueness,[1, Thm. 4.1.6], [66, Sec. 10.2]):
The DRE (6.8) admits a unique solution X : (t−,∞) → Rn×n, and X(t) is symmetric
for all t ∈ (t−,∞). Furthermore, X(t) is spsd for all t ≥ 0. ♦

Proof.
Existence, Uniqueness, and Symmetry:
Theorem 6.3 ensures the existences, uniqueness and symmetry of the solution.

X(t) is spsd:
The solution X satisfies

Ẋ(t) <
(
A− 1

2
BBTX(t)

)
TX(t) +X(t)

(
A− 1

2
BBTX(t)

)
,

X(0) = Z0Z
T
0 < 0.

Hence, Lemma 6.6 yields that X(t) is spsd for all t ≥ 0.

Long-time Existence:
It remains to show that the maximal interval of existence is (t−,∞). For this, let
Xu : R→ Rn×n be the unique solution of the DLE

Ẋ(t) = ATX(t) +X(t)A+ CTC,

X(0) = Z0Z
T
0 ,

and assume that t+ <∞ holds. We make use of the comparison theorem (Theorem 6.7)
and get X(t) 4 Xu(t) for all t ∈ [0, t+). Therefore,

0 4 X(t) 4 Xu(t)

for all t ∈ [0, t+). Theorem 2.4 (ii) gives ‖X(t)‖2 4 ‖Xu(t)‖2. Hence, the solution X

does not escape in finite-time (in positive direction of time), and Theorem 2.29 completes
the proof.

In general, the left-endpoint t− of the maximal interval of existence (t−,∞) of the
solution of the DRE (6.8) is finite. We illustrate this by an example.

Example 6.1 (Finite-Time Escape):
We consider the scalar DRE

ẋ(t) = −x(t)− x(t)2,

x(0) = 1.
♦

The solution is given by x(t) = 1
2et−1

. The maximal interval of existence is (− ln(2),∞).
Figure 6.1 shows the graph of the solution x(t) and the finite-time escape in negative
direction of time.

70



6.3 Differential Riccati Equation

− ln(2) 0 1 2 3
10−2

10−1

100

101

102

103

104

t

x(t)

Fig. 6.1: Finite-time Escape of the Solution in Negative Direction of Time.

6.3.2 Image of the Solution

We focus on the image or equivalently the kernel of the solution of the DRE (6.8). Knowl-
edge of the image of the solution of the DRE (6.8) finds application in Krylov subspace
methods for the numerical solution approximation of large-scale DREs; cf. [6,49,65,70].
Theorem 6.9 gives an upper bound on the image of the solutions. Theorem 6.10 focuses
on the solution with zero initial conditions. Theorem 6.11 yields a results for positive
times and is based on the latter two theorems and the comparison theorem Theorem 6.7.

Theorem 6.9 (Image of the Solution I):
Let X : (t−,∞)→ Rn×n be the unique solution of the DRE (6.8). Then

im(X(t)) ⊆ im
(
K
(
AT,

[
CT, Z0

]))

for all t ∈ (t−,∞). ♦

Proof. If X satisfies the DRE (6.8), then X also satisfies the DSE

Ẋ(t) = ATX(t) +X(t)
(
A−BBTX(t)

)
+ CTC,

X(0) = Z0Z
T
0 ,

with coefficient matrices AT and A−BBTX(t). Theorem 4.1 yields

X(t) = etA
T

Z0Z
T
0 Ψ(t)T +

t∫

0

e(t−s)AT

CTCΨ(s)−1Ψ(t)T ds, (6.9)
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where Ψ(t) is the fundamental matrix of the system

ẋ(t) =
(
A−BBTX(t)

)
Tx(t)

with Ψ(0) = I. We assume that C 6= 0 or Z0 6= 0. Let the columns of the matrix Q be
an orthonormal basis of the linear space

im
(
K
(
AT,

[
CT, Z0

]))
⊆ Rn.

The space is AT-invariant, and the matrix QQT represents its orthogonal projection.
Therefore,

ATQ = QQTATQ,

from which it follows that
etA

T

Q = QetQ
TATQ. (6.10)

Moreover,
CT = QQTCT and Z0 = QQTZ0. (6.11)

We combine Equations (6.9)–(6.11). The identity

X(t) = etA
T

QQTZ0Z
T
0 Ψ(t)T +

t∫

0

e(t−s)AT

QQTCTCΨ(s)−1Ψ(t)T ds

= Q


etQTATQQTZ0Z

T
0 Ψ(t)T +

t∫

0

e(t−s)QTATQQTCTCΨ(s)−1Ψ(t)T ds




completes the proof.

Theorem 6.10 (Image of the Solution II):
Let X : (t−,∞)→ Rn×n be the unique solution of the DRE (6.8a) such that X(0) = 0.
Then

im(X(t)) = im
(
K
(
AT, CT

))

for all t ∈ (t−,∞) \ {0}. ♦

Proof. First, we show that im
(
K
(
AT, CT

))
⊆ im(X(t)). We divide the proof into three

parts:

(i) X(t)x = 0 implies Cx = 0,

(ii) X(t)x = 0 implies Ẋ(t)x = 0,

(iii) ker(X(t)) is A-invariant,

for all t ∈ (t−,∞) \ {0}.
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(i) If X satisfies the DRE (6.8a), then

Ẋ(t) =
(
A− 1

2
BBTX(t)

)
TX(t) +X(t)

(
A− 1

2
BBTX(t)

)
+ CTC,

X(0) = 0.

Theorem 4.1 yields

X(t) =

t∫

0

Φ(t)Φ(s)−1CTCΦ(s)−TΦ(t)T ds,

where Φ(t) is the fundamental matrix of the system

ẋ(t) =
(
A− 1

2
BBTX(t)

)
Tx(t)

with Φ(0) = I. Let x ∈ ker(X(t)) be and assume that t > 0. We have

0 = xTX(t)x =

t∫

0

∥∥CΦ(s)−TΦ(t)Tx
∥∥2

2
ds

For reasons of continuity, it follows that

CΦ(s)−TΦ(t)Tx = 0

for all s ∈ [0, t]. Therefore, for s = t, it follows that Cx = 0. The argumentation
for t < 0 is analoguous.

(ii) The assumption X(0) = 0 gives Ẋ(0) = CTC < 0. Lemma 6.4 yields Ẋ(t) < 0.
We know that X(t)x = 0 implies Cx = 0. We multiply the DRE with xT from the
left and with x from the right,

0 ≤ xTẊ(t)x = xT
(
ATX(t) +X(t)A−X(t)BBTX(t) + CTC

)
x = 0.

Lemma 2.5 gives Ẋ(t)x = 0.

(iii) We have X(t)x = 0 implies Cx = 0 and Ẋ(t)x = 0 for all t 6= 0. We multiply
the DRE (6.8a) from the right with x and get

0 = Ẋ(t)x = ATX(t)x+X(t)Ax−X(t)BBTX(t)x+ CTCx = X(t)Ax.

Consequently, X(t)x = 0 implies X(t)Ax = 0. Hence, ker(X(t)) is A-invariant.

Parts (i), (ii), and (iii) give

ker(X(t)) ⊆ ker
(
K
(
AT, CT

)
T
)
.

We consider the orthogonal complements of the spaces and get

im
(
K
(
AT, CT

))
⊆ im(X(t)).

Theorem 6.9 provides the other inclusion.
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Theorem 6.11 (Image of the Solution III):
Let X : (t−,∞)→ Rn×n be the unique solution of the DRE (6.8). Then

im
(
K
(
AT, CT

))
⊆ im(X(t)) ⊆ im

(
K
(
AT,

[
CT, Z0

]))

for all t > 0. ♦

Proof. Let Xl be the unique solution of the DRE (6.8a) such that Xl(0) = 0. We have

0 = Xl(0) 4 Z0Z
T
0 = X(0).

The comparison theorem (Theorem 6.7) yields Xl(t) 4 X(t) for all t ≥ 0. The matrix
X(t) is spsd for all t ≥ 0. Hence, 0 4 Xl(t) 4 X(t) for all t ≥ 0. Theorems 6.9 and 6.10
and Lemma 2.6 yield

im
(
K
(
AT, CT

))
= im(Xl(t)) ⊆ im(X(t)) ⊆ im

(
K
(
AT,

[
CT, Z0

]))
.

for all t > 0.

6.3.3 Convergence to a Stationary Point

Here, we focus on the convergence of the solution of the DRE (6.8). First, we prove that
the solution is bounded if the pair (A,B) is stabilizable.
The proof of Theorem 6.12 provided by both references make use of a cost functional

of a linear-quadratic regulator problem associated with the DRE. Alternatively, it is
sufficient to utilize the comparison theorem (Theorem 6.7).

Theorem 6.12 (Bounded Solutions, [66, Proof of Satz 10.5], [34, Thm. 8.8]):
Assume that the pair (A,B) is stabilizable. Then the solution of the DRE (6.8) is
bounded on the interval [0,∞). ♦

Proof. With (A,B) stabilizable, there exists a matrix K ∈ Rb×n such that A − BK is
stable. Let Xu : R→ Rn×n be the solution of the DLE

Ẋu(t) = (A−BK)TXu(t) +Xu(t)(A−BK) +KTK + CTC,

Xu(0) = Z0Z
T
0 .

As the matrix A−BK is stable, the solution Xu converges for t→∞. In particular, Xu

is bounded on the interval [0,∞). We consider the corresponding Hamiltonian matrices
and get

[
CTC AT

A −BBT

]
= −JH 4 −JHu =

[
KTK + CTC (A−BK)T

A−BK 0

]
.

Hence, the comparison theorem (Theorem 6.7) and the definiteness of the solution X

of the DRE (6.8) (Theorem 6.8) give 0 4 X(t) 4 Xu(t) for all t ≥ 0. Finally, Theo-
rem 2.4 (ii) yields ‖X(t)‖2 ≤ ‖Xu(t)‖2 for all t ≥ 0.
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If X(0) = 0, then Ẋ(0) = CTC � 0. Therefore, the monotonicity theorem (Theo-
rem 6.5) yields that X is monotonically non-decreasing. If in addition the pair (A,B) is
stabilizable, then the solution is bounded. Hence, we can prove that X converges to a
stationary point and obtain an existence results of a real spsd solution of the ARE (5.1)
under weak assumptions. The second part of Theorem 6.13 is not provided in the ref-
erences. Furthermore, we use some arguments in Theorem 6.14, therefore, we provide a
proof.

Theorem 6.13 (ARE: spsd Solutions, [66, Satz 10.5], [79, Thm. 7.9.3]):
Assume that (A,B) is stabilizable. Then the ARE (5.1) has a spsd solution Xm ∈ Rn×n.
Moreover, Xm is minimal, i.e., Xm 4 Xs for all real spsd solutions of the ARE (5.1). ♦

Proof.
Existence:
Let X be the solution of the DRE (6.8a) such that X(0) = 0. According to Theorems 6.5
and 6.12 the solution X is monotonically non-decreasing and bounded. We consider the
real-valued scalar functions

hi(t) = eTi X(t)ei and hi,j(t) =
(
ei + ej

)
TX(t)

(
ei + ej

)
.

The functions are bounded and monotonically non-decreasing on [0,∞), and, there-
fore, convergent. The convergence of hi(t) implies that every diagonal entry of X(t) is
convergent. The off-diagonal entries of X(t) can be written as

eTi X(t)ej = 1
2

(
hi,j(t)− hi(t)− hj(t)

)
.

Therefore, the off-diagonal entries converge as well. Hence, there is a real matrix Xm

such that
lim
t→∞

X(t) = Xm.

The limit Xm is real spsd because the set of real spsd matrices is closed. Finally, as Xm

is the limit of the solution of the DRE (6.8), it must be a stationary point; cf. [125, §10
XI. (h)].

Minimality:
If Xs ∈ Rn×n is a spsd solution of the ARE (5.1), then Xs is also a constant solution
of the DRE. Because of X(0) = 0 4 Xs, the comparison theorem (Theorem 6.7) yields
X(t) 4 Xs for all t ≥ 0, and, hence, Xm 4 Xs.

Here, we review the convergence of the solution of the DRE (6.8) under the assump-
tion that (A,B) is stabilizable and (A,C) is detectable. The proof makes use of the
comparison theorem (Theorem 6.7).

Theorem 6.14 (Convergence to the Stationary Point, [66, Satz 10.3]):
Assume that (A,B) is stabilizable and (A,C) is detectable. Then the solution of
the DRE (6.8) converges to the unique real spsd stabilizing solution of the ARE (5.1)
for t→∞. ♦
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Proof. Let X be the unique solution of the DRE (6.8). We will consider a monotonically
non-decreasing lower solution and a monotonically non-increasing upper solution.

Lower Solution:
Let Xl be the unique solution of the DRE (6.8a) such that Xl(0) = 0. Then, it follows
from Xl(0) 4 Z0Z

T
0 = X(0) that Xl(t) 4 X(t) for all t ≥ 0; cf. Theorem 6.7. Moreover,

Xl is monotonically non-decreasing.

Upper Solution:
The construction of a monotonically non-increasing upper solution is more involved. Let
Q ∈ Rn×n be a symmetric positive definite matrix such that CTC 4 Q. Theorem 6.13
yields that the ARE

ATX +XA−XBBTX +Q = 0

has a real spsd solution Xm. Because of Q is positive definite, the solution Xm is positive
definite as well. Therefore, there is real number α > 1 such that Z0Z

T
0 4 αXm. Let Xu

be the unique solution of the DRE

Ẋ(t) = ATX(t) +X(t)A−X(t)BBTX(t) + CTC,

X(0) = αXm.

Because of
Ẋu(0) = α

(
ATXm +XmA

)
− α2XmBB

TXm + CTC

=
(
α− α2

)
XmBB

TXm + CTC −Q 4 0,

the solution Xu is monotonically non-increasing; cf. Theorem 6.5. By construction, it
holds that X(0) 4 Xu(0). Hence, Theorem 6.7 gives X(t) 4 Xu(t) for all t ≥ 0.

Squeezing Argument:
With similar arguments as in the proof of Theorem 6.13, we infer that Xl and Xu

converge to real spsd solutions of the ARE. Theorem 5.10 yields that there is a unique
real spsd solution of the ARE (5.1). Hence,

lim
t→∞

Xl(t) = X∞ = lim
t→∞

Xu(t).

Finally, the inequality Xl(t) 4 X(t) 4 Xu(t) gives lim
t→∞

X(t) = X∞.

The convergence of the solution to a stationary point has been extensively studied in
the literature. Convergence criteria under weaker assumptions as in Theorem 6.14 have
been established; cf. [30–33].

6.3.4 Solution Representation

Radon’s Lemma (Theorem 6.2) enables certain solution representation for the DRE (6.8):
Theorem 6.8 ensures that the DRE (6.8) has a unique solution defined on the interval
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(t−,∞). By Radon’s Lemma (Theorem 6.2), we have that U(t) is nonsingular on the
same interval.

The matrices U(t) and V (t) are determined by the linear initial value problem
[
U̇(t)

V̇ (t)

]
= −H

[
U(t)

V (t)

]
,

[
U(0)

V (0)

]
=

[
I

Z0Z
T
0

]
. (6.12)

We obtain [
U(t)

V (t)

]
= e−tH

[
I

Z0Z
T
0

]
.

The strategy is to decompose the Hamiltonian matrix H, such that Equation (6.12)
decouples. The solution formula of Theorem 6.15 was presented in the references without
proof. Since the existence of the involved inverse is not trivially established, we provide
a proof.

Theorem 6.15 (Solution Representation, [32, Thm. 1], [96]):
Let (A,B) be stabilizable, (A,C) be detectable, and X∞ ∈ Rn×n be the unique spsd
stabilizing solution of the ARE (5.1). Moreover, let Â := A−BBTX∞ be andXL ∈ Rn×n

be the unique spsd solution of the ALE

ÂXL +XLÂ
T +BBT = 0. (6.13)

Then the solution of the DRE (6.8) is represented by

X(t) = X∞ − etÂ
T

(X∞ −X0)
(
I −

(
XL − etÂXLe

tÂT
)

(X∞ −X0)
)−1

etÂ,

where X0 = Z0Z
T
0 . ♦

Proof. Similar to the proof of Theorem 5.7, we use similarity transformations to decom-
pose the Hamiltonian matrix H. This is also known as a Riccati–Lyapunov transforma-
tion [1, Ch. 3.1.1]. We obtain

S−1HS :=

[
I 0

−X∞ I

] [
A −BBT

−CTC −AT

] [
I 0

X∞ I

]
=

[
Â −BBT

0 −ÂT

]
,

and

T−1S−1HST :=

[
I XL

0 I

] [
Â −BBT

0 −ÂT

] [
I −XL

0 I

]
=

[
Â 0

0 −ÂT

]
=: Ĥ.

We use Theorem 2.21 and get

e−tH = e−tST ĤT
−1S−1

= STe−tĤT−1S−1

=

[
I −XL

X∞ I −X∞XL

] [
e−tÂ 0

0 etÂ
T

][
I −XLX∞ XL

−X∞ I

]

=

[
e−tÂ (I −XLX∞) +XLe

tÂX∞ e−tÂXL −XLe
tÂT

X∞e
−tÂ(I −XLX∞)− (I −X∞XL)etÂX∞ X∞e

−tÂXL + (I −X∞XL)etÂ

]
. (6.14)
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With that, we get
[
U(t)

V (t)

]
= e−tH

[
I

X0

]
=

[
e−tÂ(I −XL(X∞ −X0)) +XLe

tÂT

(X∞ −X0)

X∞e
−tÂ(I −XL(X∞ −X0))− (X∞XL + I)etÂ

T

(X∞ −X0)

]
. (6.15)

Now, we observe that

U(t) = e−tÂ
(
I −

(
XL − etÂXLe

tÂT
)

(X∞ −X0)
)
, (6.16)

V (t) = X∞e
−tÂ
(
I −

(
XL − etÂXLe

tÂT
)

(X∞ −X0)
)
− etÂT

(X∞ −X0)

= X∞U(t)− etÂT

(X∞ −X0).

As the matrices U(t) and e−tÂ are nonsingular, the matrix in brackets (Equation (6.16))
is nonsingular as well. Therefore,

X(t) = V (t)U(t)−1

= X∞ − etÂ
T

(X∞ −X0)
(
I −

(
XL − etÂXLe

tÂT
)

(X∞ −X0)
)−1

etÂ.

From the proof of Theorem 6.15, it is clear that the property that X∞ is a stabilizing
solution of the ARE (5.1) can be weakened to

Λ(Â) ∩ Λ(−ÂT) = ∅.

With this condition, the ALE (6.13) has a unique solution. Therefore, it is sufficient
to assume that X∞ ∈ Rn×n is a symmetric and strictly unmixed solution [1, Thm.
4.2.1]. In [5, Ch. 15.4], one can find another solution formula which holds under more
restrictive assumptions. A solution formula based on the Jordan canonical form of the
Hamiltonian matrix H is given in [1, Thm. 3.2.1]. Other solution representations can
be found in [101,109].

6.4 Davison–Maki and Modified Davison–Maki
Method

In this section we review the Davison–Maki and modified Davison–Maki method for the
numerical solution of the NDRE (6.1)

Ẋ(t) = M22X(t)−X(t)M11 −X(t)M12X(t) +M21,

X(0) = M0.

Both methods are based on Radon’s Lemma (Theorem 6.2) and on the linear IVP (6.4)
[
U̇(t)

V̇ (t)

]
= M

[
U(t)

V (t)

]
=

[
M11 M12

M21 M22

] [
U(t)

V (t)

]
,

[
U(0)

V (0)

]
=

[
In
M0

]
.
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6.4.1 Davison–Maki Method

The Davison–Maki method for the NDRE (6.1) was proposed in [37]. The method
is based on first computing the matrix exponential ehM for a given step size h > 0.
According to Radon’s Lemma (Theorem 6.2), we have that

[
U(h)

V (h)

]
= ehM

[
In
M0

]
, X(h) = V (h)U(h)−1.

The next step is then to make use of the semigroup property of the matrix exponential
(Theorem 2.21 (ii)):

[
U(kh)

V (kh)

]
= ekhM

[
In
M0

]
=
(
ehM

)k
[
In
M0

]
, X(kh) = V (kh)U(kh)−1.

Another variant of the Davison–Maki method updates U and V instead of the matrix
exponential. The variant follows from

[
U(kh)

V (kh)

]
= ekhM

[
In
M0

]
= ehMe(k−1)hM

[
In
M0

]
= ehM

[
U((k − 1)h)

V ((k − 1)h)

]
.

Both variants of the method are given in Algorithms 6.1 and 6.2.

6.4.2 Modified Davison–Maki Method

When the Davison–Maki method (Algorithms 6.1 and 6.2) is applied to the DRE (6.8),
usually numerical instabilities occur because each block of the matrix exponential of the
Hamiltonian matrix e−tH as well as U(t) and V (t) contains the matrix e−tÂ; cf. Equa-
tions (6.14) and (6.15). Since Â = A − BBTX∞ is stable, the matrix exponential of
−tÂ exhibits exponential growth, which becomes problematic for large t. The occur-
rence of these numerical problems with the Davison–Maki method was also pointed out
in [35, 64, 81, 122]. Another reason is that the spectrum of a real Hamiltonian matrix
comes in quadruples; cf. Lemma 2.44 (ii). Therefore, the spectrum of the Hamiltonian
matrix usually contains eigenvalues with positive real part, and its matrix exponential
grows for large times.
A suitable modification of the Davison–Maki method was proposed in [64]. Neverthe-

less, the modified method originates back to [63, p. 9].
By Radon’s Lemma (Theorem 6.2), we have the identities

[
Ũ

Ṽ

]
:= e−hM

[
In

X((k − 1)h)

]
, X(kh) = Ṽ Ũ−1.

The modified Davison–Maki method is given in Algorithm 6.3.
Any computationally efficient norm can be used for the matrix exponential in Al-

gorithm 6.3 line 3. The modified Davison–Maki method is also more efficient than
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Algorithm 6.1: Davison–Maki Method I for the NDRE (6.1) [37].
Input: real matrices M0 and Mij as in Equation (6.1), a step size h > 0, and a

final time tf > 0

Assumptions: The solution X of the NDRE (6.1) exists on the interval [0, tf ).
Output: matrices X0, . . . , Xk such that X(kh) = Xk for k ∈ N0 and kh < tf
% initialization:

1 X0 := M0; k := 1;

% compute matrix exponential:

2 Θh := exp

(
h

[
M11 M12

M21 M22

])
;

variant with matrix exponential update:
3 Θ := Θh;
4 while kh < tf do

5 partition

m n[ ]
= Θ;m Θ11 Θ12

n Θ12 Θ22

6 Udm := Θ11 + Θ12M0;
7 Vdm := Θ21 + Θ22M0;
8 Xk := VdmU

−1
dm ;

9 Θ := ΘΘh;
10 k := k + 1;

11 return X0, . . . , Xk;

the Davison–Maki method in both variants because fewer matrix-matrix products are
needed per time step; cf. Algorithm 6.1 lines 4–10 and Algorithm 6.2 lines 6–10 with Al-
gorithm 6.3 lines 6–10.
A decrease of the step size h > 0 does not improve the accuracy in general because, in

theory, the exact values of U(kh) and V (kh) are computed with the matrix exponential.
In practice, the accuracy is determined by the accuracy of the matrix exponentiation,
the repeated multiplication by the exponential, and the involved matrix inversion.
For the realization in a simulation, the following considerations can be made. The

step size should not be chosen arbitrarily large as the matrix exponential may become
too large in the norm, leading to cancellation errors. Thus, we suggest computing the
norm of the matrix exponential before the iteration starts. If the norm is too large, then
the step size has to be decreased. On the other hand, a small time step means more
multiplications with the matrix exponential and possibly accumulating rounding errors.
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Algorithm 6.2: Davison–Maki Method II for the NDRE (6.1) [37].
Input: real matrices M0 and Mij as in Equation (6.1), a step size h > 0, and a

final time tf > 0

Assumptions: The solution X of the NDRE (6.1) exists on the interval [0, tf ).
Output: matrices X0, . . . , Xk such that X(kh) = Xk for k ∈ N0 and kh < tf
% initialization:

1 X0 := M0; k := 1;

% compute matrix exponential:

2 Θh := exp

(
h

[
M11 M12

M21 M22

])
;

variant with updating U and V :
3 Udm := Im;
4 Vdm := M0;

5 partition

m n[ ]
:= Θ;m Θ11 Θ12

n Θ12 Θ22

6 while kh < tf do
7 Udm := Θ11Udm + Θ12Vdm;
8 Vdm := Θ21Udm + Θ22Vdm;
9 Xk := VdmU

−1
dm ;

10 k := k + 1;

11 return X0, . . . , Xk;

In the k-th iteration of modified Davison–Maki method (Algorithm 6.3), we have
[
Umod_dm

Vmod_dm

]
= ehM

[
In

X((k − 1)h)

]
=

[
Θ11 Θ12

Θ21 Θ22

] [
In

X((k − 1)h)

]
,

and the norm of the iterates can be bounded by

‖Umod_dm‖2 ≤ ‖Θ11‖2 + ‖Θ12‖2 ‖X((k − 1)h)‖2 ,

‖Vmod_dm‖2 ≤ ‖Θ21‖2 + ‖Θ22‖2 ‖X((k − 1)h)‖2 .

For small step sizes of h > 0, it holds ehM ≈ In+m + hM and

Θ11 ≈ In + hM11, Θ12 ≈ hM12, Θ21 ≈ hM21, and Θ22 ≈ Im + hM22.

Therefore, for small enough step size and moderate norm of the solution ‖X(t)‖2, the
norm of the iterates cannot grow heavily in contrast to the Davison–Maki method (Al-
gorithms 6.1 and 6.2). Assuming that the matrix exponential in line 2 of Algorithm 6.3
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Algorithm 6.3: Modified Davison–Maki Method for the NDRE (6.1) [63, 64].
Input: real matrices M0 and Mij as in Equation (6.1), a step size h > 0, a final

time tf > 0, and a moderate large number tolexp > 0

Assumptions: The solution X of the NDRE (6.1) exists on the interval [0, tf ).
Output: matrices X0, . . . , Xk such that X(kh) = Xk for k ∈ N0 and kh < tf

% initialization:
1 X0 := M0; k := 1;

% compute matrix exponential:

2 Θ := exp

(
h

[
M11 M12

M21 M22

])
;

% check the norm of the matrix exponential:
3 if ‖Θ‖1 > tolexp then
4 error (“1-norm of the matrix exponential is too large.”);

5 partition

m n[ ]
= Θ;m Θ11 Θ12

n Θ12 Θ22

6 while kh < tf do
7 Umod_dm := Θ11 + Θ12Xk−1;
8 Vmod_dm := Θ21 + Θ22Xk−1;
9 Xk := Vmod_dmU

−1
mod_dm;

10 k := k + 1;

11 return X0, . . . , Xk;
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was approximated using the scaling and squaring method, then the intermediates of the
squaring phase can be used, so that the matrix exponential is not recomputed from
scratch.
Example 6.2 (Davison–Maki Method: Exponential Growth):
We applied the Davison–Maki method (Algorithm 6.1) with step size h = 2−8 to a DRE
defined by the matrices of the TRIDIAG(α) example with α = 5 (Table A.1). We have
used the variable-precision arithmetic vpa of MATLAB with 512 significant digits. We
plot the 2-norm of the iterates Udm and Vdm as well as the 2-norm condition number of
Udm on the interval [0, 1]. Figure 6.2 shows that all quantities grow exponentially over
time. Therefore, eventually, either a floating-point overflow will occur, or the matrix
inversion ceases to be executed accurately. Figure 6.3 shows the same quantities for the
iterates Umod_dm and Vmod_dm of the modified Davison–Maki method (Algorithm 6.3).
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Fig. 6.2: Davison–Maki Method and the Growth of Udm and Vdm.
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Fig. 6.3: Modified Davison–Maki Method and the Growth of Umod_dm and Vmod_dm.

If a symmetric solution is expected, then line 9 of Algorithm 6.3 should be altered to

Xk := 1
2

(
Xk +XT

k

)

because due to numerical errors, the symmetry will be lost after some iterations; cf. The-
orem 2.16. Similar, if a spsd solution is expected, one may compute the nearest spsd
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matrix. However, usually, this involves the computation an expensive polar decomposi-
tion; cf. Section 2.4.3 and Theorem 2.18.

6.5 Galerkin Approach

In this section, we develop a Galerkin approach approach for the numerical approxima-
tion of the solution of the DRE (6.8a)

Ẋ(t) = ATX(t) +X(t)A−X(t)BBTX(t) + CTC,

X(0) = 0

with zero initial conditions.
According to Theorem 6.5, the solution X is monotonically non-decreasing for all

t ∈ (t−,∞) and spsd for all t ≥ 0. Moreover, we assume that the corresponding ARE
has a unique stabilizing solution X∞ ∈ Rn×n, and that X(t) converges to X∞; cf. The-
orem 6.14. By combining these results, we get the inequality

0 4 X(t) 4 X∞ (6.17)

for all t ≥ 0. Theorem 2.4 (iv) gives that the k-largest eigenvalue t 7→ λ↓k(X(t)) is
monotonically non-decreasing function, and that the inequality

0 ≤ λ↓k(X(t)) ≤ λ↓k(X∞),

holds for all t ≥ 0. Therefore, the number of eigenvalues of X(t) greater than or equal
to a given threshold is monotonically non-decreasing over time.

Example 6.3 (Eigenvalue Decay):
We illustrate this by an example in Figure 6.4. We have chosen the matrices of the
TRIDIAG(α) benchmark problem with α = 5 (Table A.1). We have used the variable-
precision arithmetic of MATLAB with 512 significant digits and the modified Davison–
Maki method with step size h = 2−5 for the numerical approximation. The eigenvalues
of X(t) are plotted for t ∈ {0.5, 1, . . . , 15}. The functions t 7→ λ↓k(X(t)) are highlighted
in green for k ∈ {10, 20, 30, 40, 50}. All data below 10−60 were truncated. The shadowed
green plane is drawn at the level of machine precision εmach.
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Fig. 6.4: Eigenvalues λ↓k(X(t)) of the Numerical Approximation of X(t).

Furthermore, if X(t) solves the DRE (6.8) then X(t) solves the ALE

ATX(t) +X(t)A = Ẋ(t) +X(t)BBTX(t)− CTC.

According to Lemma 6.4, the derivative Ẋ(t) has constant rank, i.e.,

rank(Ẋ(t)) = rank(Ẋ(0)) = rank(ATZ0Z
T
0 + Z0Z

T
0 A− Z0Z

T
0 BB

TZ0Z
T
0 + CTC).

Therefore, if Z0 and B0 have only a few columns and C has only a few rows then the
rank of the right-hand side

Ẋ(t) +X(t)BBTX(t)− CTC

is much smaller than the state-space dimension n and the bounds on the singular value
decay or eigenvalue decay presented in Section 3.5 apply.

6.5.1 Projection Error and Eigenvalue Decay

We consider a spectral decomposition of the stabilizing solution of the ARE (5.1) of the
form

X∞ = Q∞D∞Q
T
∞, (6.18a)

Q∞ =
[
q1, . . . , qn

]
∈ Rn×n, (6.18b)

D∞ = diag(λ↓1(X∞), . . . , λ↓n(X∞)) ∈ Rn×n, (6.18c)

where q1 . . . , qn ∈ Rn is a system of orthonormal eigenvectors of X∞ corresponding to
the eigenvalues λ↓1(X∞), . . . , λ↓n(X∞). We represent the solution of the DRE as

X(t) = Q∞Q
T
∞X(t)Q∞Q

T
∞.
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This representation has the advantage that the absolute value of the entries of the matrix

QT
∞X(t)Q∞ =

(
qTi X(t)qj

)
i=1,...,n
j=1,...,n

can be bounded in terms of the eigenvalues λ↓1(X∞), . . . , λ↓n(X∞).

Lemma 6.16:
Assume that (A,B) is stabilizable and (A,C) is detectable. Moreover, let X∞ ∈ Rn×n be
the stabilizing solution of the ARE (5.1) and q1, . . . , qn ∈ Rn be a system of orthonormal
eigenvectors of X∞ corresponding to the eigenvalues λ↓1(X∞), . . . , λ↓n(X∞) as in (6.18).
Then the bounds

∣∣qTi X(t)qj
∣∣ ≤





√(
λ↓i (X∞)− qTi X(t)qi

)(
λ↓j(X∞)− qTj X(t)qj

)
if i 6= j,

λ↓i (X∞) if i = j,

(6.19)

∣∣qTi X(t)qj
∣∣ ≤

√
λ↓i (X∞)λ↓j(X∞) (6.20)

hold for all t ≥ 0, where X is the unique solution of the DRE (6.8a) with X(0) = 0. ♦

Proof. As already discussed, Inequality (6.17)

0 4 X(t) 4 X∞

holds for all t ≥ 0; cf. Theorems 6.5 and 6.14. This implies 0 4 X∞−X(t). Multiplying
the latter inequality with QT

∞ from the left and with Q∞ from the right gives

0 4 QT
∞(X∞ −X(t))Q∞ = D∞ −QT

∞X(t)Q∞.

The matrixD∞ is diagonal and contains the eigenvalues on its diagonal. Theorem 2.4 (vi)
yields

∣∣qTi X(t)qj
∣∣ ≤

√(
λ↓i (X∞)− qTi X(t)qi

)(
λ↓j(X∞)− qTj X(t)qj

)
.

for all i 6= j. Again, Inequality (6.17) implies

0 ≤ qTi X(t)qi ≤ qTi X∞qi = λ↓i (X∞)

and the claim follows.

Example 6.4 (Decay of Absolute Values and Eigenvalue Decay):
We illustrate the decay of

∣∣qTi X(t)qj
∣∣ and the Bounds (6.19) and (6.20) of Lemma 6.16.

We have chosen the matrices of the TRIDIAG(α) example with α = 5 (Table A.1).
To improve the visualization, all values in Figures 6.5a–6.5h and 6.5j below machine
precision were set to machine precision εmach. Figures 6.5a–6.5d show the absolute value
of the entries of

QT
∞X(t)Q∞ =

(
qTi X(t)qj

)
i=1,...,n
j=1,...,n
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for t ∈ {1, 3, 5, 7}. Figures 6.5e–6.5h show the time-dependent Bound (6.19). The
eigenvalue decay of the stabilizing solution X∞ of the corresponding ARE is shown in
Figure 6.5i. Figure 6.5j visualizes the time-independent Bound (6.20). The eigenvalues
of X∞ are sorted in a non-increasing fashion, therefore, the quantity

√
λ↓i (X∞)λ↓j(X∞) ♦

is monotonically non-increasing in i and j. From a geometric point of view, the surface
of Figure 6.5j is on top of the surfaces of Figures 6.5a–6.5d. The same holds true for
Figures 6.5e–6.5h and Figures 6.5a–6.5d, respectively.
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Fig. 6.5: (a)–(d) and (e)–(h) Decay of
∣∣qTi X(t)qj

∣∣ and Bound (6.19) for t ∈ {1, 3, 5, 7}.
(i) The Eigenvalue Decay of X∞. (j) Bound (6.20).

Projection Error in the Frobenius Norm

For quick enough eigenvalue decay, we expect that

∣∣qTi X(t)qj
∣∣ ≤

√
λ↓i (X∞)λ↓j(X∞) ≈ 0

for i or j large enough. We have

X(t) = Q∞Q
T
∞X(t)Q∞Q

T
∞ = Q∞

(
qTi X(t)qj

)
i=1,...,n
j=1,...,n

QT
∞ =

n∑

i,j=1

(
qTi X(t)qj

)
qiq

T
j .

Next, we truncate the parts of the sum with possibly small contribution to the solution
and get

X(t) ≈
k∑

i,j=1

(
qTi X(t)qj

)
qiq

T
j = Q∞,kQ

T
∞,kX(t)Q∞,kQ

T
∞,k,

where Q∞,k :=
[
q1, . . . , qk

]
∈ Rn×k. We consider the corresponding linear space

Qk :=
{
Q∞,kY Q

T
∞,k | Y ∈ Rk×k}

together with
Pk : Rn×n → Qk, PkX = Q∞,kQ

T
∞,kXQ∞,kQ

T
∞,k. (6.21)

Using that the matrix Q∞,k has orthonormal columns, it can be verified that

P2
kX = PkX and

〈
X − PkX,Q∞,kY Q

T
∞,k
〉

F
= 0

holds. Hence, Pk is the orthogonal projection onto Qk and Pk(X(t)) is the best approxi-
mation of X(t) in Qk; cf. Section 2.3.3. The matrices

(
qiq

T
j

)
i,j=1,...,n form an orthonormal
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basis of the Hilbert space (Rn×n, 〈·, ·〉F). In this setting, it is more convenient to express
the coefficients using the inner product, e.g.,

qTi X(t)qj =
〈
X(t), qiq

T
j

〉
F
.

The projection error in Frobenius norm can be bounded using Parseval’s identity and
Bound (6.20)

‖X(t)− PkX(t)‖F =

∥∥∥∥∥
n∑

i,j=1

(
qTi X(t)qj

)
qiq

T
j −

k∑

i,j=1

(
qTi X(t)qj

)
qiq

T
j

∥∥∥∥∥
F

=

∥∥∥∥∥∥∥∥

n∑

i,j=1
i>k∨j>k

(
qTi X(t)qj

)
qiq

T
j

∥∥∥∥∥∥∥∥
F

=

∥∥∥∥∥∥∥∥

n∑

i,j=1
i>k∨j>k

〈
X(t), qiq

T
j

〉
F
qiq

T
j

∥∥∥∥∥∥∥∥
F

=

√√√√√
n∑

i,j=1
i>k∨j>k

∣∣qTi X(t)qj
∣∣2 (6.20)
≤

√√√√√
n∑

i,j=1
i>k∨j>k

λ↓i (X∞)λ↓j(X∞). (6.22)

Projection Error in the 2-Norm

We measure the projection error in the 2-norm to simplify Bound (6.22).

Theorem 6.17 (Projection Error in the 2-norm):
Assume that (A,B) is stabilizable and (A,C) is detectable. Moreover, let X∞ ∈ Rn×n

be the stabilizing solution of the ARE (5.1). Then for all k = 1, . . . , n− 1 and all t ≥ 0,
the projection error is bounded by

‖X(t)− PkX(t)‖2 ≤ 2
√
λ↓k+1(X∞) ‖X(t)‖2 ≤ 2

√
λ↓k+1(X∞)λ↓1(X∞), (6.23)

whereX is the unique solution of the DRE (6.8a) withX(0) = 0, and Pk is the orthogonal
projection (6.21). ♦

Proof. Again, we utilize Inequality (6.17) 0 4 X(t) 4 X∞. We use Theorem 2.4 (ii) and
get

X∞ = PkX∞ +X∞ − PkX∞ 4 PkX∞ + ‖X∞ − PkX∞‖2 I = PkX∞ + λ↓k+1(X∞)I.

We combine the inequalities and get

0 4 X(t) 4 PkX∞ + λ↓k+1(X∞)I = Q∞,kQ
T
∞,kX∞Q∞,kQ

T
∞,k + λ↓k+1(X∞)I. (6.24)

The projection matrix I − Q∞,kQT
∞,k is symmetric, and

(
I −Q∞,kQT

∞,k
)
Q∞,k vanishes.

We multiply Inequality (6.24) from the left and right with I −Q∞,kQT
∞,k and get

0 4
(
I −Q∞,kQT

∞,k
)
X(t)

(
I −Q∞,kQT

∞,k
)
4 λ↓k+1(X∞)

(
I −Q∞,kQT

∞,k
)
; (6.25)
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cf. Theorem 2.4 (iii). Inequality (6.25) and Theorem 2.4 (v) give
∥∥∥
(
I −Q∞,kQT

∞,k
)
X(t)1/2

∥∥∥
2

2
=
∥∥(I −Q∞,kQT

∞,k
)
X(t)

(
I −Q∞,kQT

∞,k
)∥∥

2

≤
∥∥∥λ↓k+1(X∞)

(
I −Q∞,kQT

∞,k
)∥∥∥

2

= λ↓k+1(X∞).

We get

‖X(t)− PkX(t)‖2 =
∥∥X(t)−Q∞,kQT

∞,kX(t)Q∞,kQ
T
∞,k
∥∥

2

=
∥∥(I −Q∞,kQT

∞,k
)
X(t) +Q∞,kQ

T
∞,kX(t)

(
I −Q∞,kQT

∞,k
)∥∥

2

≤ 2
∥∥∥
(
I −Q∞,kQT

∞,k
)
X(t)1/2

∥∥∥
2

∥∥∥X(t)1/2
∥∥∥

2

≤ 2
√
λ↓k+1(X∞) ‖X(t)‖2.

Inequality (6.17) and Theorem 2.4 (ii) yield ‖X(t)‖2 ≤ ‖X∞‖2 = λ↓1(X∞), and the proof
is complete.

Example 6.5 (Projection Error in the 2-norm):
We illustrate the projection error and Bound (6.23) of Theorem 6.17 by an example.
We have chosen the matrices of the TRIDIAG(α) example with α = 5 (Table A.1).
Figures 6.6a–6.6c show the projection error and Bound (6.23) for k ∈ {50, 60, 70}.

(a)

0 5 10 15
10−20
10−18
10−16
10−14
10−12
10−10
10−8
10−6

k = 50, t ∈ [0, 15]

(b)

0 5 10 15
10−20
10−18
10−16
10−14
10−12
10−10
10−8
10−6

k = 60, t ∈ [0, 15]

(c)

0 5 10 15
10−20
10−18
10−16
10−14
10−12
10−10
10−8
10−6

k = 70, t ∈ [0, 15]

‖X(t)− PkX(t)‖2 2
√
λ↓k+1(X∞)λ↓1(X∞)

Fig. 6.6: (a)–(c) The Projection Error and Bound (6.23).

6.5.2 Solution Formula and Matrix Exponential

According to Theorem 6.15, the solution of the DRE (6.8a)

Ẋ(t) = ATX(t) +X(t)A−X(t)BBTX(t) + CTC,

X(0) = 0
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with zero initial conditions is given by

X(t) = X∞ − etÂ
T

X∞

(
I −

(
XL − etÂXLe

tÂT
)
X∞

)−1

etÂ,

where X∞ is the stabilizing solution of the ARE, Â = A − BBTX∞, and XL is the
solution of the ALE (6.13). The identity (I − P (t))−1 = I + (I − P (t))−1P (t) leads to

X(t) = X∞ − etÂ
T

X∞e
tÂ

− etÂT

X∞

(
I −

(
XL − etÂXLe

tÂT
)
X∞

)−1(
XL − etÂXLe

tÂT
)
X∞e

tÂ,
(6.26)

We focus on the action of the matrix exponential on X∞.
Lemma 6.18 (Action of the Matrix Exponential on X∞):
Assume that (A,B) is stabilizable and (A,C) is detectable. Moreover, let X∞ ∈ Rn×n

be the stabilizing solution of the ARE (5.1). Then for all k = 1, . . . , n− 1 and all t ≥ 0,
it holds ∥∥∥etÂT

X∞ −Q∞,kQT
∞,ke

tÂT

X∞

∥∥∥
2
≤
√
λ↓k+1(X∞)λ↓1(X∞). (6.27)

♦

Proof. If X∞ is the stabilizing solution of the ARE (5.1), then X∞ satisfies the ALE

ÂTX∞ +X∞Â = −X∞BBTX∞ − CTC.

We apply Theorem 3.7 and get

X∞ =

∞∫

0

esÂ
T(
X∞BB

TX∞ + CTC
)
esÂ ds.

We multiply the latter equation with the matrix exponential and get

0 4 etÂ
T

X∞e
tÂ =

∞∫

0

e(t+s)ÂT(
X∞BB

TX∞ + CTC
)
e(t+s)Â ds

4

∞∫

0

esÂ
T(
X∞BB

TX∞ + CTC
)
esÂ ds = X∞.

The remaining arguments are similar as in the proof of Theorem 6.17. We get

0 4 etÂ
T

X∞e
tÂ 4 X∞ 4 Q∞,kQ

T
∞,kX∞Q∞,kQ

T
∞,k + λ↓k+1(X∞)I.

We multiply with the projection matrix I −Q∞,kQT
∞,k from the left and right and get

0 4
(
I −Q∞,kQT

∞,k
)
etÂ

T

X∞e
tÂ
(
I −Q∞,kQT

∞,k
)
4 λ↓k+1(X∞)

(
I −Q∞,kQT

∞,k
)
.

It follows that
∥∥∥
(
I −Q∞,kQT

∞,k
)
etÂ

T

X∞

∥∥∥
2

2
≤
∥∥∥
(
I −Q∞,kQT

∞,k
)
etÂ

T

X
1/2
∞
∥∥∥

2

2

∥∥∥X1/2
∞
∥∥∥

2

2

≤ λ↓k+1(X∞)λ↓1(X∞).
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For sufficiently quick eigenvalue decay, we expect Bound (6.27) of Lemma 6.18 to be
small. This motivates to approximate the action of the matrix exponential by

etÂ
T

X∞ ≈ Q∞,kQ
T
∞,ke

tÂT

X∞.

Moreover, we approximate the stabilizing solution X∞ of the ARE by its best approxi-
mation of rank at most k

X∞ ≈ Q∞,kQ
T
∞,kX∞Q∞,kQ

T
∞,k = Q∞,kD∞,kQ

T
∞,k,

whereD∞,k := diag(λ↓1(X∞), . . . , λ↓k(X∞)) ∈ Rk×k. We combine this with Equation (6.26)
and get an approximation of the form

X(t) ≈ Q∞,kD∞,kQ
T
∞,k −Q∞,kX̃(t)QT

∞,k. (6.28)

6.5.3 Galerkin System

Because of the results in Sections 6.5.1 and 6.5.2, we propose to set up a trial space
for the Galerkin approach using a system of orthonormal eigenvectors corresponding to
the largest eigenvalues. This can be obtained by using a low-rank method to obtain a
numerical approximation of the solution of the ARE. A compact SVD of the numerical
low-rank approximation of X∞ can be used to approximate the eigenvectors correspond-
ing to the largest eigenvalues. By virtue of Bounds (6.22) and (6.23), we remove the
small singular values from the compact SVD. This also reduces the dimension of the trial
space. Let Z = QSV T be the truncated compact SVD of the low-rank approximation.
With that, the trial space for the Galerkin approach is given by

{
QY QT | Y ∈ Rk×k}.

As X(t) converges to X∞ and X∞ ≈ ZZT, we propose the Galerkin approach

X(t) ≈ ZZT −QX̃(t)QT =: X̂(t), (6.29)

for the numerical approximation similar as in Equation (6.28). We insert the Ap-
proach (6.29) into the DRE (6.8a) and consider the defect

D(t) :=
˙̂
X(t)−

(
ATX̂(t) + X̂(t)A− X̂(t)BBTX̂(t) + CTC

)
.

We require the defect D(t) to be orthogonal to the trial space, e.g.,
〈
D(t), QY QT

〉
F

= 0 for all Y ∈ Rk×k.

This gives

0 = QTD(t)Q

= QT
(

˙̂
X(t)−

(
ATX̂(t) + X̂(t)A− X̂(t)BBTX̂(t) + CTC

))
Q.

92



6.5 Galerkin Approach

Combining the latter equation with Equation (6.29) yields a SDRE for the unknown
X̃(t) ∈ Rk×k

˙̃X(t) = QT
(
A−BBTZZT

)
TQX̃(t) + X̃(t)QT

(
A−BBTZZT

)
Q

+ X̃(t)QTBBTQX̃(t)−QTRQ,

where R is the residual of the low-rank approximation ZZT, i.e.,

R = ATZZT + ZZTA− ZZTBBTZZT + CTC.

We assume that the numerical low-rank approximation is accurate enough such that
∥∥QTRQ

∥∥
2
≤ ‖R‖2 � 1.

This means that the projected residual QTRQ is even smaller than the residual of the
low-rank approximation R, therefore, we neglect the residual. Using the initial condition
X(0) = 0 and the truncated compact SVD (Z = QSV T) of the low-rank factor Z, we
obtain

0 = ZZT −QX̃(0)QT.

This yields X̃(0) = S2 and the Galerkin system for X̃ is given by

˙̃X(t) = QT
(
A−BBTZZT

)
TQX̃(t) + X̃(t)QT

(
A−BBTZZT

)
Q

+ X̃(t)QTBBTQX̃(t),

X̃(0) = S2.

6.5.4 Algorithm

With minor adjustments, all arguments also hold for the generalized DRE

MTẊ(t)M = ATX(t)M +MTX(t)A−MTX(t)BBTX(t)M + CTC, (6.30a)
X(0) = 0, (6.30b)

with M ∈ Rn×n nonsingular that can accommodate, e.g., a mass matrix from a finite el-
ement discretization. In summary, the proposed Galerkin approach can be implemented
based on Algorithm 6.4.

6.5.5 Numerical Experiments

Setup

To quantify the performance of the ARE-Galerkin-DRE method (Algorithm 6.4), we con-
sider several (generalized) DREs arising from the benchmark problems RAIL, CONV_DIFF,
FLOW, and COOKIE; cf. Table A.1.
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Algorithm 6.4: Galerkin Approach for the DRE (6.30) (ARE-Galerkin-DRE).
Input: M ∈ Rn×n, B ∈ Rn×b, C ∈ Rc×n, truncation tolerance toltrunc > 0.
Assumptions: (AM−1, B) is stabilizable and (AM−1, CM−1) is detectable.
Output: X(t) ≈ ZZT −QX̃(t)QT that approximates the solution to the

generalized DRE.

% solve the ARE:
1 ATX∞M +MTX∞A−MTX∞BB

TX∞M + CTC = 0 for X∞ ≈ ZZT;

% compute compact SVD and truncate:
2 use Algorithm B.1 with (Z, toltrunc) as input and obtain the truncated

compact SVD (Z,Q, S) as output;

% compute matrices:
3 Ã := QT

(
AM−1 −BBTZZT

)
Q;

4 B̃ := QTB;

% solve the SDRE using the modified Davison–Maki method (Algorithm 6.3):

5
˙̃X(t) = ÃTX̃(t) + X̃(t)Ã+ X̃(t)B̃B̃TX̃(t), X̃(0) = S2;

We compare the Galerkin method (Algorithm 6.4) with the splitting methods (Sec-
tion 6.6). The action of the matrix exponential was approximated utilizing the Gauss–
Legendre Runge–Kutta method. We employed the Lie and Strang splittings of order 1

and 2, respectively, and the symmetric splittings of order 2, 4, 6, and 8. We abbreviate
the methods by LIE, STRANG, SYMMETRIC2, SYMMETRIC4, SYMMETRIC6, and SYMMETRIC8.
To evaluate the error, we computed a reference solution Xref using SYMMETRIC8 with

a constant time step size h. Table 6.1 gives basic information about the setup of the
benchmark problems.

Instance n Interval Reference Solution

RAIL 5177 [0, 4512] SYMMETRIC8, h = 2−5

CONV_DIFF 6400 [0, 0.125] SYMMETRIC8, h = 2−20

FLOW 9669 [0, 0.25] SYMMETRIC8, h = 2−21

COOKIE 7488 [0, 4] SYMMETRIC8, h = 2−16

Tab. 6.1: Information about the Benchmark Problems.

The reference solution Xref was computed on the Gold Node (Appendix A). All other
computations were carried out on the Silver Node (Appendix A).
We report the absolute and relative errors

‖X(t)−Xref(t)‖ and
‖X(t)−Xref(t)‖
‖Xref(t)‖

,
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in the 2-norm and Frobenius norm, where X(t) is the numerical approximation, and
Xref is the reference solution. We give the norm of the reference solution Xref and the
convergence to the stationary point ‖Xref(t)−X∞‖2.
Furthermore, we evaluate the best approximation in the trial space of the reference

solution, which is given by

Xbest(t) := QQTXref(t)QQ
T = arg min

X∈{QY QT|Y ∈Rk×k}
‖X −Xref(t)‖F ,

where Q is the matrix of Algorithm 6.4 line 2.
Numerical results for the Galerkin approximation of Algorithm 6.4 and for the splitting

scheme solvers can be found in Appendices D.2.2 and D.2.3. The computational times
for both methods are given in Appendix D.2.1.

Galerkin Approach and Splitting Schemes

The initial step of Algorithm 6.4 requires the solution of the associated (generalized)
ARE. For this task, we use the RADI algorithm that iteratively computes the numerical
solution to the following absolute and relative residuals

∥∥ATZZTM +MTZZTA−MTZZTBBTZZTM + CTC
∥∥

2

and ∥∥ATZZTM +MTZZTA−MTZZTBBTZZTM + CTC
∥∥

2

‖CTC‖2

.

The achieved values for the different test setups and the number of columns of the
corresponding low-rank factor Z after truncation (Algorithm 6.4 line 2), that define the
dimension of the reduced model, are listed in Table 6.4.

The 1-norm bound for the matrix exponential tolexp of the modified Davison–Maki
method (Algorithm 6.3) was set to 1010. The resulting step sizes are given in Table 6.3.
We used two values for the truncation threshold toltrunc, namely the machine precision
εmach and the rougher value √εmach.
We plot the numerical errors for the ARE-Galerkin-DREmethod in Figures D.17, D.20,

D.23, and D.26. The Figures D.18, D.19, D.21, D.22, D.24, D.25, D.27, and D.28 show
the norm of the reference solution and the convergence to the stationary point. In view
of the performance, we can interpret the presented numbers and plots as follows: As dis-
cussed in Section 6.4, the accuracy of the modified Davison–Maki method is nearly
independent of the step size; cf. Figures D.17b/D.17d, D.20b/D.20d, D.23b/D.23d,
and D.26b/D.26d.

The computational times for ARE-Galerkin-DRE include the numerical solution of the
corresponding ARE and the subsequent integration of the projected dense DRE. Since
the efforts for the time integration exactly doubles with a bisection of the step size,
from the timings for the RAIL problem, with, e.g., 79s (h = 2−3) and 148s (h = 2−4)
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(see Figure D.13a, toltrunc = εmach), one infers that most of the time is spent solving the
dense DRE.
The reference solution for the RAIL and FLOW problem is large in norm which makes

the absolute error comparatively large; cf. Figures D.18 and D.24 in Appendix D.2.2.
The LIE, STRANG, and SYMMETRIC2 splitting schemes gave an absolute and relative

error nearly at the same level. Therefore, the Figures D.29–D.35 only show the error of
the SYMMETRIC2 splitting scheme.
In all examples, in terms of accuracy, the ARE-Galerkin-DRE (toltrunc = εmach) ap-

proximation is nearly at the same level as the high-order splitting schemes; cf. Fig-
ures D.17b/D.29f, D.20b/D.31f, D.23b/D.33f,and D.26b/D.35f. However, we note that
the ARE-Galerkin-DRE method does not give the best possible approximation in the
trial space; compare the error levels for Xbest.
In any case, the ARE-Galerkin-DREmethod outperforms the splitting methods in com-

putational time versus accuracy in all test examples. The performance can be further
improved by adapting the truncation threshold toltrunc; cf. line 2 of Algorithm 6.4. Apart
from the savings in the timings, the reduced memory requirements can be significant;
cf. Figures D.13a, D.14a, D.15a, and D.16a. For the RAIL example, the rougher tolerance√
toltrunc instead of machine precision reducing the storage by a factor of 2792/1932 ≈ 2;

cf. Table 6.4. Indeed, these savings come at the expense of accuracy. For the RAIL
example, this means a relative error level of about 10−9 versus 10−11 if truncation has
happened to machine precision; cf. Figure D.17b. For the other examples, the approxi-
mation accuracy was only slightly affected by the larger truncation tolerance. The most
favorable example is the FLOW example, where the relaxed truncation threshold led to
savings of a factor 407s/107s ≈ 4 (h = 2−20) in the timings (Figure D.15a) and a factor of
2522/1152 ≈ 5 in memory requirements (Table 6.4) while, except for a short initial phase,
maintaining the same approximation accuracy (Figure D.23d).

Instance Time to solve ARE (s)

RAIL 0.85

CONV_DIFF 1.59

FLOW 2.06

COOKIE 2.51

Tab. 6.2: Time to solve the ARE.

Instance Step sizes h

RAIL {20, 2−1, . . . , 2−5}
CONV_DIFF {2−12, 2−13, . . . , 2−16}

FLOW {2−15, 2−16, . . . , 2−20}
COOKIE {2−15, 2−16, . . . , 2−20}

Tab. 6.3: Step sizes h for the modified
Davison–Maki Method.
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Instance n toltrunc Galerkin System Abs. Residual Rel. Residual
√
εmach 193 2.91 · 10−14 2.43 · 10−15

RAIL 5177
εmach 279 3.25 · 10−14 2.71 · 10−15

√
εmach 36 1.37 · 10−10 3.06 · 10−14

CONV_DIFF 6400
εmach 54 1.39 · 10−10 3.11 · 10−14

√
εmach 115 2.85 · 10−8 2.85 · 10−8

FLOW 9669
εmach 252 1.06 · 10−11 1.06 · 10−11

√
εmach 122 1.29 · 10−14 3.07 · 10−12

COOKIE 7488
εmach 169 1.33 · 10−14 3.16 · 10−12

Tab. 6.4: Residuals for the generalized ARE 0 = ATXM +MTXA−MTXBBTXM + CTC.

Large-scale Examples

We consider the benchmark problems RAIL, CONV_DIFF, and COOKIE for finer space
discretization resulting in a larger state-space dimension n. Moreover, we consider the
CHIP model; cf. Table A.1. As the computation of reference solutions for large-order
systems by the high-order splitting methods easily exceeds computational resources, we
only report residuals and the computational timings. Table 6.5 reports the state-space
dimension n of the models, the size of the resulting Galerkin system, and the absolute
and relative residual of the numerical approximation of the ARE. Detailed information
about computational timings of the ARE-Galerkin-DRE method Algorithm 6.4 are given
in Table 6.6. We report the time for the numerical approximation of the ARE (tARE),
the computation of the singular value decomposition (tsvd), the assembly of the system
matrices of the Galerkin system (tgal), the approximation of the matrix exponential and
the norm computation (texpm); cf. Algorithm 6.4 line 1, line 2, lines 3–4, and Algorithm 6.3
lines 2–3. The computational time for the time-stepping of the modified Davison–Maki
method (Algorithm 6.3 lines 6–10) is excluded. All timings are given in seconds.
As the timings suggest, for similar setups, increasing system sizes almost exclusively

affect the time needed to solve the ARE, and to some extent, to compute the compact
SVD for truncating the basis. As the truncation extracts the relevant directions, the
resulting sizes of the projected systems only show a moderate increase. Accordingly, the
efforts for solving the projected equations increase slightly.
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Instance n toltrunc Galerkin System Abs. Residual Rel. Residual
√
εmach 224 6.75 · 10−14 5.63 · 10−15

RAIL_20K 20 209
εmach 323 6.37 · 10−14 5.31 · 10−15

√
εmach 254 6.13 · 10−14 5.11 · 10−15

RAIL_79K 79 841
εmach 353 5.90 · 10−14 4.92 · 10−15

√
εmach 48 2.16 · 10−9 1.93 · 10−14

CONV_DIFF_160K 160 000
εmach 79 2.16 · 10−9 1.93 · 10−14

√
εmach 52 1.94 · 10−8 2.77 · 10−14

CONV_DIFF_1M 1 000 000
εmach 82 1.93 · 10−8 2.76 · 10−14

√
εmach 57 3.72 · 10−7 5.91 · 10−14

CONV_DIFF_9M 9 000 000
εmach 101 3.02 · 10−7 4.80 · 10−14

√
εmach 156 5.09 · 10−14 6.43 · 10−10

COOKIE_425K 425 272
εmach 238 5.06 · 10−14 6.40 · 10−10

√
εmach 163 1.58 · 10−13 5.59 · 10−9

COOKIE_1185K 1 185 586
εmach 309 1.60 · 10−13 5.65 · 10−9

√
εmach 168 4.51 · 10−13 3.58 · 10−8

COOKIE_2656K 2 656 643
εmach 306 1.05 · 10−13 8.35 · 10−9

√
εmach 103 6.81 · 10−10 6.81 · 10−10

CHIP 20 082
εmach 198 1.79 · 10−12 1.79 · 10−12

Tab. 6.5: Residuals for the generalized ARE 0 = ATXM +MTXA−MTXBBTXM + CTC

and the Size of the Galerkin System.

6.5.6 Nonzero Initial Conditions

In this section, we extend our discussion to the case of spsd nonzero initial conditions
X(0) = Z0Z

T
0 . Here, the Inequality (6.17) (0 4 X(t) 4 X∞) needs to be established by

other means than Theorem 6.5, which requires Ẋ(0) < 0.
We distinguish the cases of Ẋ(0) symmetric positive semidefinite, negative semidefi-

nite, and indefinite.
If Ẋ(0) < 0, then, as for X0 = 0, the solution is monotonically non-decreasing and

Inequality (6.17) holds; cf. Theorem 6.5.
Interestingly, the case of Ẋ(0) 4 0 fits the framework without relying on the solution

of the ARE. In fact, in this case, the solution X(t) is monotonically non-increasing;
cf. Theorem 6.5. Still, the solution X(t) is spsd for all t ≥ 0, so that the inequality

0 4 X(t) 4 Z0Z
T
0

holds for all t ≥ 0; cf. Theorem 6.8. In particular, it follows that im(X(t)) ⊆ im(Z0) for
all t ≥ 0 (Lemma 2.6), and a trial space is readily defined by a basis of im(Z0). Thus, a
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Instance n toltrunc tARE tsvd tgal texpm ttotal
√
εmach 3.23 0.41 0.17 4.66 · 10−2 3.86

RAIL_20K 20 209
εmach 3.48 0.43 0.25 6.87 · 10−2 4.23
√
εmach 11.13 1.76 0.67 6.80 · 10−2 13.63

RAIL_79K 79 841
εmach 11.96 1.92 0.94 6.95 · 10−2 14.89
√
εmach 22.56 0.75 0.08 2.98 · 10−2 23.42

CONV_DIFF_160K 160 000
εmach 22.35 0.80 0.14 5.71 · 10−3 23.29
√
εmach 159.53 5.10 0.48 4.22 · 10−3 165.12

CONV_DIFF_1M 1 000 000
εmach 160.22 5.82 0.85 6.16 · 10−3 166.90
√
εmach 2754.57 45.40 5.61 8.75 · 10−2 2805.66

CONV_DIFF_9M 9 000 000
εmach 2739.42 46.46 9.22 4.31 · 10−2 2795.14
√
εmach 193.43 6.40 10.52 1.58 · 10−2 210.36

COOKIE_425K 425 272
εmach 192.66 6.85 13.33 2.03 · 10−2 212.86
√
εmach 874.55 26.66 42.15 1.45 · 10−2 943.38

COOKIE_1185K 1 185 586
εmach 869.38 27.30 59.20 2.47 · 10−2 955.90
√
εmach 2364.17 56.35 109.58 2.31 · 10−2 2530.12

COOKIE_2656K 2 656 643
εmach 2376.80 57.15 155.41 3.28 · 10−2 2589.40
√
εmach 4.97 0.25 0.07 1.51 · 10−2 5.30

CHIP 20 082
εmach 5.33 0.21 0.10 1.85 · 10−2 5.65

Tab. 6.6: Timings for the Large-scale Examples.

basis can be computed by a QR factorization or a compact SVD of Z0.
The symmetric but indefinite case that we write as

Ẋ(0) = Z+Z
T
+ − Z−ZT

−

requires additional reasoning. One may compute a suitable upper bound X̃∞ that re-
places X∞ in Inequality (6.17) as follows. Consider the modified DRE

˙̃X(t) = ATX̃(t) + X̃(t)A− X̃(t)BBTX̃(t) + CTC + Z−Z
T
−,

X̃(0) = Z0Z
T
0 .

By construction, it holds ˙̃X(0) = Z+Z
T
+ < 0 so that X̃(t) is monotonically non-decreasing

for all t ≥ 0; cf. Theorem 6.5. Moreover, with (A,B) stabilizable and (A,C) detectable,
the solution X̃(t) converges to the unique positive semidefinite solution X̃∞ of the ARE

0 = ATX̃∞ + X̃∞A− X̃∞BBTX̃∞ + CTC + Z−Z
T
−;
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cf. Theorem 6.14. This gives 0 4 X̃(t) 4 X̃∞ for all t ≥ 0. The comparison theorem
(Theorem 6.7) yields X(t) 4 X̃(t) for all t ≥ 0. With that, the inequality

0 4 X(t) 4 X̃(t) 4 X̃∞

holds for all t ≥ 0, and the bounds on the projection error Bound (6.22) and Theo-
rem 6.17 can be established analogously.

6.6 Splitting Methods

This section is based on [112,113]. We consider splitting methods for the DRE (6.8)

Ẋ(t) = ATX(t) +X(t)A−X(t)BBTX(t) + CTC,

X(0) = Z0Z
T
0 .

We focus on the large-scale case. This means that n is large and the matrices B, CT,
and Z0 have only a few columns. The key idea of the splitting methods is to divide the
problem into a linear subproblem

Ẋ(t) = ATX(t) +X(t)A+ CTC, (6.31a)
X(0) = Z0Z

T
0 , (6.31b)

and nonlinear subproblem

Ẋ(t) = −X(t)BBTX(t), (6.32a)
X(0) = Z0Z

T
0 . (6.32b)

6.6.1 Lie and Strang Splitting Methods

The major motivation for the splitting is that the linear problem (6.31) and the nonlinear
problem (6.32) are easier to solve than the original problem. Next, we introduce the
solution operators or the flow maps for both equations. For this, we fix a positive step
size h > 0. The solution operator for the linear problem (6.31) is

Fh : Rn×n → Rn×n, X 7→ ehA
T

XehA +

h∫

0

esA
T

CTCesA ds. (6.33)

For the nonlinear subproblem (6.32), we restrict the domain of definition to the spsd
matrices,

Gh :
{
X ∈ Rn×n | X < 0

}
→
{
X ∈ Rn×n | X < 0

}
,

X 7→
(
I + hXBBT

)−1X.
(6.34)
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As the matrices X and BBT are real spsd, it follows that all eigenvalues of the product
XBBT are nonnegative; cf. [59, Cor. 7.6.2 (b)]. Therefore, the matrix I + hXBBT is
nonsingular. Moreover, the identity

(
I + hXBBT

)
X = X

(
I + hBBTX

)

yields that
(
I + hXBBT

)−1X is symmetric. The matrix X is spsd. Therefore, we write
X = ZZT for some matrix Z and verify that

Gh(X) =
(
I + hXBBT

)−1X =
(
I + hZZTBBT

)−1ZZT

= Z
(
I + hZTBBTZ

)−1ZT < 0.
(6.35)

Lemma 6.19 ([112]):
Assume that h > 0. The operators Fh and Gh map spsd matrices to spsd matrices. ♦

To generate an approximation of the solution of the DRE (6.8), we use the solution
operators to alternate between the linear and nonlinear subproblem. One time step of
the Lie and Strang splitting method are given by

GhFh and Gh/2FhGh/2,

respectively. We apply the time-stepping k times and obtain the approximations

X(kh) ≈ (GhFh)
kZ0Z

T
0 ,

X(kh) ≈
(
Gh/2FhGh/2

)
kZ0Z

T
0 ,

where X is the solution of the DRE (6.8). The Lie and the Strang splitting methods
are of first and second-order accuracy, respectively. Both methods generate real spsd
approximations; cf. Lemma 6.19.

6.6.2 Numerical Realization

We focus on the numerical realization of the splitting schemes. Here, the main problem
is the application of the operators Fh and Gh. Because of memory limitations, it is
crucial to implement the method in a low-rank fashion.
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Application of the Operator Gh

Using Equation (6.34), the application of the operator Gh on a low-rank product ZZT

can be implemented as in Algorithm 6.5.
Algorithm 6.5: Application of the Operator Gh [112, Sec. II B].
Input: matrix B of the DRE (6.8), real low-rank factor Z, and step size h > 0

Output: matrix Z̃ such that Z̃Z̃T = GhZZ
T

% compute a Cholesky factorization:
1 L := chol(I + hZTBBTZ);

% solve the linear system:
2 Z̃ := ZL−1;
3 return Z̃;

Application of the Operator Fh

The application of the operator Fh on a low-rank product ZZT is more involved. Here,
the action of the matrix exponential on the low-rank factor Z

ehA
T

Z

and the integral term
h∫

0

esA
T

CCTesA ds (6.36)

have to be approximated.

Action of the Matrix Exponential
Plenty of methods are available to approximate the action of the matrix exponential on
a vector or a matrix, e.g., Krylov subspace methods [50, 57, 102] or interpolation-based
methods [29, 87]. Here, we focus on fully implicit Runge–Kutta methods applied to the
corresponding linear IVP

˙̃Z(t) = ATZ̃(t),

Z̃(0) = Z.

Let
c A

bT

be the Butcher tableau of an s-stage Runge–Kutta method with weights b ∈ Rs, nodes
c ∈ Rs, and coefficients A ∈ Rs×s. We assume that A is nonsingular, then one step of
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the s-stage Runge–Kutta method with step size h > 0 requires the solution of the linear
system

(
A−1 ⊗ I − hIs ⊗ AT

)


Ẑ1
...
Ẑs


 = h



ATZ
...

ATZ


 (6.37)

for the unknowns Ẑ1, . . . , Ẑs. The approximate Z̃1 ≈ Z̃(h) can be computed as

Z̃1 = Z̃(0) +
s∑

i=1

diẐi = Z +
s∑

i=1

diẐi,

where d = bTA−1; cf. [52, IV.8]. The direct application of sparse-direct methods to
System (6.37) should be avoided. The matrix

A−1 ⊗ I − hIs ⊗ AT =




A−1
1,1I − hAT A−1

1,2I · · · A−1
1,sI

A−1
2,1I

. . . A−1
2,sI

... . . . ...
A−1
s,1I A−1

s,2I · · · A−1
s,sI − hAT




is of size ns × ns, and each of s2 blocks represents a sparse matrix of size n × n. We
diagonalize the coefficient matrix (A = VDV−1) to decouple System (6.37); cf. [27]. We
use Lemma 2.39. System (6.37) transforms to a block diagonal system

(
D−1 ⊗ I − hIs ⊗ AT

)
V−1 ⊗ I



Ẑ1
...
Ẑs


 = hV−1 ⊗ I



ATZ
...

ATZ


 . (6.38)

As A is real, the eigenvalues and eigenvectors of A come in complex conjugated pairs.
Therefore, we can assume that the matrices D and V have the forms

D = diag(α1, α1, . . . , αm, αm, αm+1, . . . , αr),

V =
[
v1,v1, . . . ,vm,vm,vm+1, . . . ,vr

]
.

(6.39)

Hence, also, the rows of V−1 come in complex conjugated pairs, i.e.,

V−1 =
[
w1,w1, . . . ,wm,wm,wm+1, . . . ,wr

]T
. (6.40)

We combine Equations (6.38)–(6.40) and notice that for each complex conjugated pair
of eigenvalues only one linear system has to be solved. Algorithm 6.6 summarizes our
considerations.
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Algorithm 6.6: Approximation of ehAT
Z with an Implicit Runge–Kutta Method.

Input: matrix A of the DRE (6.8), real low-rank factor Z, step size h > 0,
coefficients A and weights b of the implicit Runge–Kutta method, and vector
d = bTA−1

Assumptions: A is nonsingular and is diagonalizable; A = VDV−1.
The matrices V,D, and V−1 are sorted as in Equations (6.39) and (6.40).
Output: matrix Z̃ such that Z̃ ≈ ehA

T
Z

% prepare the right-hand side:
1 Zrhs := hATZ;

% apply the implicit Runge–Kutta method:
2 for i = 1, . . . , s do

% sum entries of i-th row of V−1:

3 γ :=
s∑
j=1

V−1
i,j ;

% solve the linear system:

4 Ztemp,i :=
(

1
αi
I − hAT

)−1

γZrhs;

5 if =(αi) 6= 0 then
6 Ztemp,i+1 := Ztemp,i;
7 i := i+ 1;

% back transform the solution and advance in time:
8 Z̃ := Z;
9 for i = 1, . . . , s do

10 Z̃ := Z̃ + di
s∑
j=1

Vi,jZtemp,j;

11 return Z̃;

The action of the matrix exponential to a low-rank matrix has to be approximated in
each time step of the splitting method. Algorithm 6.6 line 4 requires the solution of a
sparse linear system. If sparse-direct methods are employed, and if the step size h does
not change, then the factorizations can be reused.

Integral Term
For the approximation of the integral term (6.36), we focus on quadrature rules. Alterna-
tively, Krylov subspace methods also apply; cf. [75]. The quadrature rule approximation
is given by

h∫

0

esA
T

CTCesA ds ≈
k∑

i=0

wie
τiA

T

CCTeτiA = Z̃Z̃T,
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where wi > 0 are the weights, τi are the nodes, and

Z̃ =
[√
w0e

τ0A
T
C, . . . ,

√
wke

τkA
T
C
]
.

Here, the action of the matrix exponential eτkAT
C can be approximated using Algo-

rithm 6.6. To reduce the memory requirements, the product Z̃Z̃T should be truncated
using a compact SVD.
Algorithm 6.7: Approximation of the Integral Term (6.36) [112, Alg. 2].
Input: matrices A and C of the DRE (6.8), positive weights w0, . . . , wk and

nodes τ0, . . . , τk of the quadrature rule

Output: matrix Z̃ such that
h∫
0

esA
T
CTCesA ds ≈ Z̃Z̃T

% apply the quadrature rule:
1 Z̃ := [ ];
2 for i = 0, . . . , k do
3 use Algorithm 6.6 to approximate eτiAT

C ≈ Ztemp;
4 Z̃ :=

[
Z̃,
√
wiZtemp

]
;

5 truncate Z̃ using Algorithm B.1;
6 return Z̃;

6.6.3 Higher-order Splitting Methods

Higher-order splitting methods can be obtained by additive combinations of the solution
operators Fh and Gh. We consider the symmetric splitting method

s∑

k=1

γk
(
Fh/kGh/k

)
k + γk

(
Gh/kFh/k

)
k,

where the coefficients γ1, . . . , γs ∈ R are appropriately chosen; cf. Table 6.7. The sym-
metric splitting method has order 2s. The main disadvantage is that some coefficients
may be negative. Here, the definiteness preserving low-rank formulation ZZT for the
approximations is not applicable. Similar as for the BDF methods (Section 4.3), an
LDLT-type low-rank formulation is proposed. In this setting, the application of the
operators Fh and Gh can be implemented like in Algorithms 6.5 and 6.6.
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6 Differential Riccati Equation

2s γ1 γ2 γ3 γ4

2 1
2

4 −1
6

2
3

6 1
48
− 8

15
81
80

8 − 1
720

8
45
−729

560
512
315

Tab. 6.7: Coefficients γ of the Symmetric Splitting Methods of Orders 2, 4, 6, and 8.

Remark 6.20:
The Lie, Strang, and the symmetric splitting methods also apply to the generalized DRE
(M nonsingular)

MTẊ(t)M = ATX(t)M +MTX(t)A−MTX(t)BBTX(t)M + CTC,

X(0) = Z0Z
T
0 .

♦
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CHAPTER 7

CONCLUSIONS

Contents
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7.1 Conclusions and Future Research Perspectives

This work investigated representations and properties of solutions of the autonomous
DLE and DRE. A numerical approach was derived that uses the space spanned by
a system of orthonormal eigenvectors corresponding to the largest eigenvalues of the
solution approximation of the ALE and ARE. The proposed Galerkin approach comes
with error bounds related to the projection of the solution onto the trial space. Several
numerical results have shown superior performance in terms of memory requirements
and computational times over BDF/ADI and splitting methods of high-order for problems
with stable coefficient matrix and homogeneous initial conditions.

The key result that ensures feasibility and performance of the approach bases on a
lower and an upper bound of the solution with respect to the Loewner ordering and a
sufficiently quick eigenvalue decay of the solution of their algebraic counterparts; cf. In-
equality (6.17). While for the DLE, the bounds can be derived from the solution rep-
resentation Equation (4.11), for the DRE, the ordering can be derived by monotonicity
and comparison arguments.

The derivation of lower and upper bounds is also key to generalizing the obtained
results to other problem classes; as it is discussed in Section 6.5.6 for nonzero initial
values. The treatment of the particular cases has been fully characterized in theory,
however, the numerical computation of the decompositions needed for setting up the
auxiliary problems have not been investigated. In this respect, the performance of the
algorithms for nonzero initial conditions has not been tested.

A further generalization would concern problems with time-varying matrices. Here,
the upper bound on the solution may, in general, not be a priori available. However, as
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7 Conclusions

much as the bounds are concerned, one may investigate periodic coefficients and resort
to theoretical results and numerical approaches on periodic DREs; cf. [1, 121].
Another open problem relates to the error and defect estimates for the Galerkin ap-

proximation.
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APPENDIX A

HARDWARE, SOFTWARE AND BENCHMARK
PROBLEMS

Contents
A.1 Hardware and Software Specifications . . . . . . . . . . . . . . . . . . . . 111
A.2 Benchmark Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

A.1 Hardware and Software Specifications

The hardware and software specifications of the computing server nodes used for the
numerical experiments are listed below.

Silver Node

• operating system: CentOS Linux release 7.5.1804

• kernel release: 3.10.0–862.9.1.el7.x86_64

• CPU type: Intel® Xeon® Silver 4110

• number of physical CPUs: 2

• number of cores (virtual): 16

• RAM: 192GB

• MATLAB R2019b

• environment variable: MKL_ENABLE_INSTRUCTIONS=AVX2

Gold Node

• operating system: CentOS Linux release 7.5.1804

• kernel release: 3.10.0–862.9.1.el7.x86_64

• CPU type: Intel® Xeon® Gold 6130
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A. Hardware, Software and Benchmark Problems

• number of physical CPUs: 2

• number of cores (virtual): 32

• RAM: 192GB

• MATLAB R2019b

A.2 Benchmark Problems

Information about the benchmark problems used for the numerical experiments are listed
below and the running example TRIDIAG(α).

Instance n Matrices Reference

CHIP 20 082

M diagonal positive definite,

[115]
A symmetric and stable,
M−1A stable,
B ∈ Rn×1, C ∈ R5×n

CONV_DIFF 6400

M = In,
[93]A nonsymmetric and stable,

B ∈ Rn×1, C ∈ R1×n

COOKIE 7488

M nonsymmetric,

[97]
A nonsymmetric and stable,
M−1A stable,
B ∈ Rn×1, C ∈ R4×n

FLOW 9669

M diagonal positive definite,

[115]
A symmetric and stable,
M−1A stable,
B ∈ Rn×1, C ∈ R5×n

RAIL 5177

M symmetric positive definite,

[90]
A symmetric,
M−1A stable,
B ∈ Rn×6, C ∈ R7×n

TRIDIAG(α) 100

parameter α ∈ R,

[40, p. 15]
A = tridiag(α,−1,−α) ∈ Rn×n,
Λ(A) =

{
−1 + 2 |α| cos

(
k π
n+1

)
ı | k = 1, . . . , n

}
,

A is stable and normal,
CT = B =

[
1, . . . , 1

]T ∈ Rn×1

Tab. A.1: Information about the Benchmark Problems and the Running Example.
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APPENDIX B

TRUNCATION OF A LOW-RANK PRODUCT

Algorithm B.1: Truncation of a Low-rank Product ZZT.
Input: real low-rank factor Z ∈ Rn×m and truncation tolerance toltrunc > 0

Output: real matrices Z̃, Q̃, S̃ such that Z̃ = Q̃S̃, Q̃ has orthonormal columns,
S̃ is diagonal, and

∥∥∥ZZT − Z̃Z̃T
∥∥∥

2
≤ tol2trunc

∥∥ZZT
∥∥

2

% compute a compact SVD:
1
[
Q, S, ∼

]
:= svd(Z, 0);

% determine index k:
2 k := m;
3 τ = toltrunc · S1,1;
4 for i = 1, . . . ,m do
5 if Si,i < τ then
6 k := i− 1;
7 break;

8 k := max{1, k};
% select the first k columns of Q:

9 Q̃ := Q∗,{1,...,k};

% select the first k rows and columns of S:
10 S̃ := S{1,...,k},{1,...,k};

% compute matrix Z̃:
11 Z̃ := Q̃S̃;
12 return Z̃, Q̃, S̃;
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APPENDIX C

RADI METHOD

We review the RADI method for the numerical low-rank solution of the generalized ARE

ATXM +MTXA−MTXBBTXM + CTC = 0. (C.1)

The RADI method is an iterative method generating a monotonic non-decreasing se-
quence of positive-semidefinite low-rank approximations. The RADI method can be
seen as an extension of the low-rank ADI method (Algorithm 3.1) and requires a shift
parameter in each iteration as well. It can be shown that the RADI method is equiv-
alent to the quadratic ADI method [126, 127] and the Cayley subspace iteration [83].
The RADI method and a shift parameter heuristic is given in Algorithms C.1 and C.2,
respectively.
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C. RADI Method

Algorithm C.1: RADI Method for the Generalized ARE (C.1) [19, Alg. 2].
Input: matrices A,M ∈ Rn×n, B ∈ Rn×b, C ∈ Rc×n defining Equation (C.1), and

a tolerance 0 < εrel � 1 for the relative residual
Assumptions: M is nonsingular, (AM−1, B) is stabilizable, (AM−1, CM−1) is

detectable, and b, c� n

Output: real matrix Z such that ZZT ≈ X, the absolute and relative residual
rabs and rrel

% initialization:
1 W := CT; K = 0; Z := [ ]; rabs := ‖W‖2

2; γC := rabs;

% iterate until relative residual is smaller than εrel:
2 while rabs ≥ εrelγC do
3 obtain new shift parameter α;
4 V :=

(
A−BKT + αE

)−TW ;
5 if =(α) = 0 then
6 VB := V TB; Y := I + VBV

T
B ;

7 L := chol(Y ); V := V L−1; Z :=
[
Z,
√
−2αV

]
; V̂ := ETV L−T;

8 K := K − 2αV̂ ; W := W − 2αV̂ VB;
9 else

10 αa := |α|; αr := <(α); αi := =(α);
11 V1 :=

√−2αr<(V ); V2 :=
√−2αr=(V ); Vr := V T

1 B; Vi := V T
2 B;

12 F1 :=

[
−αr/αaVr − αi/αaVi
αi/αaVr − αr/αaVi

]
; F2 :=

[
Vr
Vi

]
; F3 :=

[
αi/αaIc
αr/αaIc

]
;

13 Y :=

[
Ic 0

0 1/2Ic

]
− 1

4αr
F1F

T
1 − 1

4αr
F2F

T
2 − 1

2
F3F

T
3 ;

14 L := chol(Y ); V :=
[
V1 V2

]
L−1; V̂ := ETV L−T;

15 K := K + V̂ F2; W := W +
√−2αrV̂∗,{1,...,c};

% update absolute residual:
16 rabs := ‖W‖2

2;

% set relative residual:
17 rrel := rabs/γC ;
18 return Z, rabs, rrel;

116



Heuristic C.2: Shift Parameter Heuristic for Algorithm C.1 line 3; [19, Sec.
4.5.1], [76, Sec. 2.1.3].
Input: matrices A,M ∈ Rn×n,W ∈ Rn×c, B ∈ Rn×b, K ∈ Rb×n, Z ∈ Rn×z as

in Algorithm C.1 line 3 and a number l ∈ N
Output: shift parameter α ∈ C−

1 if Z is empty then
2 l := c; Ẑ := W ;
3 else
4 l := min{l, z};
5 set Ẑ to the last l columns of Z;

6 compute a reduced QR decomposition of Ẑ:
QR := Ẑ;

7 BQ := QTB; AQ := QTAQ−BQK
TQ; MQ := QTMQ; RQ := QTW ;

8 H :=

[
AT
Q BQB

T
Q

RQR
T
Q −AQ

]
; E :=

[
MT

Q 0

0 MQ

]
;

9 compute the generalized eigenvalues and eigenvectors of (H,E):

HV = EVD with V =

[
v1, . . . , v2l

w1, . . . , w2l

]
and D = diag(α1, . . . , α2l);

10 α := −1; γ := 0;
11 for i = 1, . . . , 2l do
12 if <(αi) < 0 then
13 τ := ‖wi‖2

2 /
∣∣wH

i MQvi
∣∣;

14 if τ ≥ γ then
15 γ := τ ; α := αi;

16 return α;
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D. Numerical Results

D.1 Differential Lyapunov Equation

D.1.1 Computational Timings
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Fig. D.1: RAIL_N: (a) Timings for ALE-Galerkin-DLE. (b) Timings for BDF/ADI.
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Fig. D.2: RAIL_T: (a) Timings for ALE-Galerkin-DLE. (b) Timings for BDF/ADI.
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D.1 Differential Lyapunov Equation

D.1.2 ALE-Galerkin-DLE (Algorithm 4.1)
D.1.2.1 RAIL_N

MẊ(t)MT = AX(t)MT +MX(t)AT +BBT, X(0) = 0.
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Fig. D.3: (a), (c) Absolute Error of the ALE-Galerkin-DLE and Best Approximation.
(b), (d) Relative Error of the ALE-Galerkin-DLE and Best Approximation.
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D. Numerical Results

D.1.2.2 RAIL_T

MTẊ(t)M = ATX(t)M +MTX(t)A+ CTC, X(0) = 0.
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Fig. D.6: (a), (c) Absolute Error of the ALE-Galerkin-DLE and Best Approximation.
(b), (d) Relative Error of the ALE-Galerkin-DLE and Best Approximation.
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D.1 Differential Lyapunov Equation

D.1.3 BDF/ADI

D.1.3.1 RAIL_N

MẊ(t)MT = AX(t)MT +MX(t)AT +BBT, X(0) = 0.
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Fig. D.9: (a), (c), (e) Absolute Error of the BDF/ADI Approximation.
(b), (d), (f) Relative Error of the BDF/ADI Approximation.
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D. Numerical Results
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Fig. D.10: (a), (c), (e) Number of Columns of the Low-rank Factor Lk of the BDF1 Scheme.
(b), (d), (f) Number of Columns of the Low-rank Factor Lk of the BDF6 Scheme.
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D.1 Differential Lyapunov Equation

D.1.3.2 RAIL_T

MTẊ(t)M = ATX(t)M +MTX(t)A+ CTC, X(0) = 0.
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Fig. D.11: (a), (c), (e) Absolute Error of the BDF/ADI Approximation.
(b), (d), (f) Relative Error of the BDF/ADI Approximation.
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Fig. D.12: (a), (c), (e) Number of Columns of the Low-rank Factor Lk of the BDF1 Scheme.
(b), (d), (f) Number of Columns of the Low-rank Factor Lk of the BDF6 Scheme.
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D.2 Differential Riccati Equation

D.2 Differential Riccati Equation

D.2.1 Computational Timings
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Fig. D.13: RAIL: (a) Timings for ARE-Galerkin-DRE. (b) Timings for Splitting Schemes.
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Fig. D.14: CONV_DIFF: (a) Timings for ARE-Galerkin-DRE. (b) Timings for Splitting
Schemes.
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D. Numerical Results

(a)

2−202−192−182−172−162−15

100

101

102

103

104

105

106

FLOW, n = 9669, Step Size h

C
om

pu
ta

ti
on

al
T

im
e

in
Se

co
nd

s

(b)

2−192−182−172−162−15

100

101

102

103

104

105

106

FLOW, n = 9669, Step Size h

C
om

pu
ta

ti
on

al
T

im
e

in
Se

co
nd

s

ARE-Galerkin-DRE, toltrunc =
√
εmach ARE-Galerkin-DRE, toltrunc = εmach

LIE STRANG SYMMETRIC2 SYMMETRIC4 SYMMETRIC6 SYMMETRIC8

Fig. D.15: FLOW: (a) Timings for ARE-Galerkin-DRE. (b) Timings for Splitting Schemes.
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Fig. D.16: COOKIE: (a) Timings for ARE-Galerkin-DRE. (b) Timings for Splitting Schemes.
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D.2 Differential Riccati Equation

D.2.2 ARE-Galerkin-DRE (Algorithm 6.4)
D.2.2.1 RAIL

MTẊ(t)M = ATX(t)M +MTX(t)A−MTX(t)BBTX(t)M + CTC, X(0) = 0.
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Fig. D.17: (a), (c) Absolute Error of the ARE-Galerkin-DRE and Best Approximation.
(b), (d) Relative Error of the ARE-Galerkin-DRE and Best Approximation.
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Fig. D.18: Norm of the Reference Solution.
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Fig. D.19: Convergence to the Stationary
Point.
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D. Numerical Results

D.2.2.2 CONV_DIFF

Ẋ(t) = ATX(t) +X(t)A−X(t)BBTX(t) + CTC, X(0) = 0.
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Fig. D.20: (a), (c) Absolute Error of the ARE-Galerkin-DRE and Best Approximation.
(b), (d) Relative Error of the ARE-Galerkin-DRE and Best Approximation.
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Fig. D.21: Norm of the Reference Solution.
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Fig. D.22: Convergence to the Stationary
Point.
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D.2 Differential Riccati Equation

D.2.2.3 FLOW

MTẊ(t)M = ATX(t)M +MTX(t)A−MTX(t)BBTX(t)M + CTC, X(0) = 0.
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Fig. D.23: (a), (c) Absolute Error of the ARE-Galerkin-DRE and Best Approximation.
(b), (d) Relative Error of the ARE-Galerkin-DRE and Best Approximation.
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Fig. D.24: Norm of the Reference Solution.
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Fig. D.25: Convergence to the Stationary
Point.
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D. Numerical Results

D.2.2.4 COOKIE

MTẊ(t)M = ATX(t)M +MTX(t)A−MTX(t)BBTX(t)M + CTC, X(0) = 0.
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Fig. D.26: (a), (c) Absolute Error of the ARE-Galerkin-DRE and Best Approximation.
(b), (d) Relative Error of the ARE-Galerkin-DRE and Best Approximation.
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Fig. D.27: Norm of the Reference Solution.

0 1 2 3 4
10−6
10−4
10−2
100

102

104

106

COOKIE, n = 7488, t ∈ [0, 4]

C
on

ve
rg

en
ce

to
th

e
St

at
io

na
ry

P
oi

nt

‖Xref(t)−X∞‖2

Fig. D.28: Convergence to the Stationary
Point.
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D.2 Differential Riccati Equation

D.2.3 Splitting Schemes

D.2.3.1 RAIL

MTẊ(t)M = ATX(t)M +MTX(t)A−MTX(t)BBTX(t)M + CTC, X(0) = 0.
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Fig. D.29: (a), (c), (e) Absolute Error of the Splitting Scheme Approximation.
(b), (d), (f) Relative Error of the Splitting Scheme Approximation.
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D. Numerical Results
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Fig. D.30: (a), (c), (e) Number of Columns of the Low-rank Factor Lk of the LIE Scheme.
(b), (d), (f) Number of Columns of the Low-rank Factor Lk of the SYMMETRIC8
Scheme.
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D.2 Differential Riccati Equation

D.2.3.2 CONV_DIFF

Ẋ(t) = ATX(t) +X(t)A−X(t)BBTX(t) + CTC, X(0) = 0.
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Fig. D.31: (a), (c), (e) Absolute Error of the Splitting Scheme Approximation.
(b), (d), (f) Relative Error of the Splitting Scheme Approximation.
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Fig. D.32: (a), (c), (e) Number of Columns of the Low-rank Factor Lk of the LIE Scheme.
(b), (d), (f) Number of Columns of the Low-rank Factor Lk of the SYMMETRIC8
Scheme.
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D.2 Differential Riccati Equation

D.2.3.3 FLOW

MTẊ(t)M = ATX(t)M +MTX(t)A−MTX(t)BBTX(t)M + CTC, X(0) = 0.
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Fig. D.33: (a), (c), (e) Absolute Error of the Splitting Scheme Approximation.
(b), (d), (f) Relative Error of the Splitting Scheme Approximation.
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Fig. D.34: (a), (c), (e) Number of Columns of the Low-rank Factor Lk of the LIE Scheme.
(b), (d), (f) Number of Columns of the Low-rank Factor Lk of the SYMMETRIC8
Scheme.
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D.2 Differential Riccati Equation

D.2.3.4 COOKIE

MTẊ(t)M = ATX(t)M +MTX(t)A−MTX(t)BBTX(t)M + CTC, X(0) = 0.
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Fig. D.35: (a), (c), (e) Absolute Error of the Splitting Scheme Approximation.
(b), (d), (f) Relative Error of the Splitting Scheme Approximation.
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Fig. D.36: (a), (c), (e) Number of Columns of the Low-rank Factor Lk of the LIE Scheme.
(b), (d), (f) Number of Columns of the Low-rank Factor Lk of the SYMMETRIC8
Scheme.
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