Synthese und Charakterisierung nanoskaliger hydraulisch hochreaktiver Phasen des Portland- und Tonerdezements

Dissertation

zur Erlangung des akademischen Grades

doctor rerum naturalium (Dr. rer. nat.)

vorgelegt der

Naturwissenschaftlich Fakultät III

(Agrar-, Geowissenschaften, Mathematik und Informatik)

der Martin-Luther-Universität Halle-Wittenberg

von Herrn Bastian Raab

geb. am 16.04.1983 in Neuendettelsau

Gutachter:

- 1. Prof. Dr. Dr. Herbert Pöllmann
- 2. Prof. Dr. Jürgen Neubauer

Halle (Saale), 18. Oktober 2010

Inhaltsverzeichnis

	Inhaltsverzeichnis	I
	Nomenklatur und Abkürzungen	V
	Kurzzusammenfassung	VI
1.	Einleitung	1
	1.1. Einführung	1
	1.2. Fragestellung	4
	1.3. Grundlagen und Kenntnisstand - Synthesemethoden	5
	1.3.1. Sol-Gel-Methode	5
	1.3.2. Glycin-Nitrat-Prozess GNP (Verbrennugssynthese)	6
	1.3.3. Polymer-Precursor-Synthese ("Pechini Method", "Citrate Gel Method" oder Precursor Process")	"Polymeric 7
	1.3.4. Sprühverfahren	8
	1.4. Lösungsansatz und Vorgehensweise	10
2.	Experimentelle Methoden	11
	2.1. Untersuchungsmethoden	11
	2.1.1. Röntgenpulverdiffraktometrie	11
	2.1.1.1. In-situ XRD Hydratationsversuche	12
	2.1.1.2. Hochtemperatur XRD	12
	2.1.1.3. Berechnung der Kristallitgrößen (Domänengrößen)	12
	2.1.2. Rasterelektronenmikroskopie	13
	2.1.2.1. Kryo-Transfer-Präparationsmethode	14
	2.1.3. Thermoanalyse (TG/DTA)	14
	2.1.4. Infrarot-Spektroskopie	15
	2.1.5. Messung der spezifischen Oberfläche	15
	2.1.5.1. Oberflächenbestimmung nach BLAINE	15
	2.1.5.2. Oberflächenbestimmung nach BET	15
	2.1.6. Wärmeflusskalorimetrie	15
	2.2. Herstellung der Precursorphasen	17
	2.2.1. Festkörpersynthese	18
	2.2.2. Sol-Gel-Methode	18
	2.2.3. Glycin-Nitrat-Prozess	18
	2.2.4. Polymer-Precursor-Synthese	19
	2.2.5. Sprühverfahren	20
	2.2.6. Sinterbedingungen	22

3.	Synthese und Phasenbildung der Zementphasen	23
	3.1. Calciumaluminate (System CaO-Al ₂ O ₃)	23
	3.1.1. CaO·Al ₂ O ₃ (CA)	23
	3.1.2. 12CaO·7Al ₂ O ₃ (C ₁₂ A ₇)	31
	3.1.3. 3CaO·Al ₂ O ₃ (C ₃ A)	35
	3.2. Calciumsilikate (System CaO-SiO ₂)	37
	3.2.1. 2CaO·SiO ₂ (C ₂ S)	37
	3.2.2. 3CaO·SiO ₂ (C ₃ S)	46
	3.3. Calciumaluminiumsilikate (System CaO-Al ₂ O ₃ -SiO ₂)	49
	3.3.1. CaO·Al ₂ O ₃ ·2SiO ₂ (CAS ₂)	49
	3.3.2. $Ca_{5,3}\Box_{2,7}AI_{10,7}Si_{5,3}O_{32}$	55
	3.3.3. 2CaO·Al ₂ O ₃ ·SiO ₂ (C ₂ AS)	57
	3.4. Calciumaluminumferrate - Ca ₂ (Al _x Fe _{2-x})O ₅	59
	3.5. Calciumaluminiumsulfat - $4CaO\cdot 3Al_2O_3\cdot SO_3$ (C_4A_3s)	67
	3.6. Calciumaluminiummagnesiumsilikate Ca $_{20}$ Al $_{32-2x}$ Mg $_x$ Si $_x$ O $_{68}$	69
	3.7. Kurzzusammenfassung: Synthese und Phasenbildung der Zementphasen	73
4.	Hydratation der Zementphasen	75
	4.1. Calciumaluminate (System CaO-Al ₂ O ₃)	75
	4.1.1. CaO·Al ₂ O ₃ (CA)	
	4.1.2. 12CaO·7Al ₂ O ₃ (C ₁₂ A ₇)	81
	4.1.2.1. 2CaO·Al ₂ O ₃ ·8±xH ₂ O (C ₂ AH _{8±x})	
	4.1.3. 3CaO·Al ₂ O ₃ (C ₃ A)	
	4.2. Calciumsilikate (System CaO-SiO ₂)	
	4.2.1. 2CaO·SiO ₂ (C ₂ S)	
	4.2.2. 3CaO·SiO ₂ (C ₃ S)	
	4.3. Calciumaluminiumsilikate (System CaO-Al ₂ O ₃ -SiO ₂)	
	4.4. Calciumaluminiumferrate Ca ₂ (Al _x Fe _{2-x})O ₅	
	4.5. Kurzzusammenfassung: Hydratation der Zementphasen	106
5.	Zumischung der synthetisierten Phasen zu kommerziellen Zementen.	107
	5.1. Portlandzement (PZ CEM I 42,5R)	107
	5.1.1. Zumischung von $\alpha_L^-2CaO\cdot SiO_2$	108
	5.1.2. Zumischung von $Ca_2(Al_xFe_{2-x})O_5$	108
	5.2. Tonerdeschmelzzement (TSZ)	109
	5.2.1. Zumischung von Ca ₂ (Al _x Fe _{2-x})O ₅	109
	5.2.2. Zumischung von orthorhombischem CaO·Al ₂ O ₃	110
	5.3. Tonerdezement (TZ)	110
	5.3.1. Zumischung von orthorhombischem CaO·Al ₂ O ₃	111
	5.3.2. Zumischung von 12CaO·7Al ₂ O ₃	111
	5.4. Kurzzusammenfassung: Zumischung der hochreaktiven Phasen zu Zementen	112

6. Herstellung der Zementphasen mittels eines Sprühverfahrens	113
6.1. Synthese, Charakterisierung, Sprühtrocknung und Zersetzung der Metallformiate und	110
Retailionnat-Hydrate	113
6.1.1.1. Lithiumformiat	110
6.1.1.2. Notriumformiat	115
6.1.1.2. Nathumiormiat	115
6.1.2. Erdalkalimatallformiata	115
6.1.2.1 Magnosiumformiat	110
6.1.2.2 Calciumformiat	110
6.1.2.3. Strontiumformiat	110
6 1 2 4 Bariumformiat	120
6 1 3 Zwischenmetall(II)formiate	121
6.1.3.1. Mangan(II)formiat	122
6.1.3.2. Fisen(II)formiat	
6.1.3.3. Cobalt(II)formiat	125
6.1.3.4. Nickel(II)formiat	126
6.1.3.5. Kupfer(II)formiat	127
6.1.3.6. Zinkformiat	128
6.1.4. Aluminiumformiat	129
6.2. Synthese von Zementphasen durch das Sprühverfahren	132
6.2.1. CaO·Al ₂ O ₃ (CA)	132
6.2.2. 2CaO·SiO ₂ (C ₂ S)	134
6.3. Kurzzusammenfassung: Sprühverfahren	137
7. Diskussion und Zusammenfassung	139
8. Literaturverzeichnis	151
9. Anhang	164
9.1. Gitterparameter und Reflexlisten	164
9.1.1. Zementphasen	164
9.1.2. Hydrationsprodukte	176
9.1.3. Metallformiat-Hydrate und Metallformiate	181
9.2. TG/DTA-Diagramme	229
9.2.1. Metallformiat-Hydrate und Metallformiate	229
9.3. IR-Daten	243
9.3.1. Zementphasen	243
9.3.2. Metallformiate-Dihydrate	244
9.4. REM-Aufnahmen der sprühgetrockneten Metallformiate und deren Zersetzungsprodukt	e . 248

Abbildungsverzeichnis	269
Tabellenverzeichnis	279
Danksagung	282
Erklärung	283
Lebenslauf	284

Nomenklatur und Abkürzungen

In der Zementchemie werden die oft komplex zusammengesetzten Klinkerphasen und deren Hydratationsprodukte unter der Verwendung des CCNS (Cement Chemical Nomenclature System) angegeben. In dieser Arbeit wurden dafür die folgenden Abkürzungen aus dieser Nomenklatur übernommen:

Α	Al ₂ O ₃	С	CaO	F	Fe_2O_3
f	FeO	н	H ₂ O	S	SiO ₂
S	SO ₃	С	CO ₂		

Folgende Abkürzungen wurden darüber hinaus verwendet:

BET	Brunauer-Emmett-Teller
DIN	Deutsches Institut für Normung e.V.
DTA	Differenzthermoanalyse
EDX	Energy Dispersive X-ray Spectroscopy (Energiedispersive Röntgenspektroskopie)
FS	Festkörpersynthese
GNP	Glycin-Nitrat-Prozess
нт	Hochtemperatur
ICDD	International Centre for Diffraction Data
IR-Spektroskopie	Infrarot-Spektroskopie
KS	Kristallsystem
PPS	Polymer-Precursor-Synthese
PZ	Portlandzement
REM	Rasterelektronenmikroskopie / Rasterelektronenmikroskop
r.F.	relative Feuchte
RG	Raumgruppe
RT	Raumtemperatur
TEOS	Tetraethylorthosilikat
TG	Thermogravimetrie
TZ	Tonerdezement
TSZ	Tonerdeschmelzzement
W/F	Wasser-Feststoff-Verhältnis
XRD	X-ray Diffraction (Röntgenbeugung)
р.А.	zur Analyse

Kurzzusammenfassung

Bei der Produktion konventioneller Portlandzemente (PZ) und Tonerdezemente (TZ) werden Herstellungstemperaturen von ca. 1450°C (PZ) bzw. 1500°C - 1600°C (TZ) benötigt. Als Calciumlieferant kommt vor allem Kalkstein zum Einsatz. Aufgrund der hohen Sintertemperatur und der Decarbonatisierung des CaCO₃ werden bei der Herstellung enorme Mengen an CO₂ emittiert (0,63t_{CO2}/t_{PZ}). Um die CO₂-Bilanz zu verbessern werden Prozessparameter optimiert, dem fertigen Zement latent-hydraulische Stoffe zugegeben und alternative Roh- und Abfallstoffe für die Herstellung verwendet. Auch wird intensiv an kalkärmeren Zementen geforscht und versucht die Zementfraktion von Alt-Beton zu dehydratisieren und wieder als Bindemittel zu verwenden.

Die Phasenbildung der Zementphasen ausgehend von den üblichen Rohstoffen, die wie bei der industriellen Herstellung über einen Mahlprozess zerkleinert und homogenisiert werden, ist gut untersucht. Bei der Verwendung von manchen Abfallstoffen oder bei der Dehydratation von bereits hydratisiertem Zement liegen die Rohstoffe oft sehr homogen verteilt vor. Für solche Mischungen sind nur wenige Informationen zur Phasenbildung bekannt; die hydraulischen Eigenschaften der Zementphasen wurden meist nicht weiter untersucht.

Aus diesem Grund sollte in der hier vorgelegten Arbeit die Bildung der Verbindungen des PZ und TZ bei einer sehr guten Vermischung der Ausgangsstoffe beschrieben, die bei niedrigen Sintertemperaturen entstehenden Phasen charakterisiert und deren Hydratationsverhalten untersucht werden.

Die Herstellung der Phasen erfolgte mittels einer Sol-Gel-Synthese, einer Polymer-Precursor-Synthese und einer Verbrennugssynthese (Glycin-Nitrat-Prozess). Dabei konnte gezeigt werden, dass sich – im Vergleich zur konventionellen Herstellung – einige Phasen bei erheblich niedrigeren Sintertemperaturen herstellen lassen und dabei deutlich höhere hydraulische Reaktivitäten besitzen. So bildet sich die Hochtemperaturmodifikation des C₂S (α'_L -C₂S) bei 650°C und ist dabei bis zu 8-mal so reaktiv wie das bei 1100°C erhaltene β -C₂S. Hochreaktive eisenreiche Brownmillerite konnten bei 700°C synthetisiert werden. Die metastabilen Calciumaluminate C₅A₃ und CA (orthorhombische Modifikation) kristallisieren bei 900°C. Die hydraulische Reaktivität der Calciumaluminate ist dabei so hoch, dass die Phasen nach der Haupthydratationsreaktion vollständig hydratisiert sind. Es konnte damit in der vorliegenden Arbeit gezeigt werden, dass bei ausreichend guter Homogenisierung kalkärmere Verbindungen bei wesentlich niedrigeren Sintertemperaturen als bisher bekannt, hergestellt werden können und diese Verbindungen ausreichend hohe hydraulische Reaktivitäten für die Verwendung als Bindemittel besitzen.

Grund für die wesentlich niedrigeren Herstellungstemperaturen sind neben der besseren Homogenisierung die geringen Partikel- und Kristallitgrößen von 10nm bis 50nm. Diese haben zur Folge, dass die Decarbonatisierungstemperatur des Calcits auf 550°C gesenkt wird. Die geringen Partikel- und Kristallitgrößen sorgen zudem dafür, dass sich die Phasen schneller bilden, da die Diffusion an Korngrenzen schneller als im Kristallgitter abläuft und sind im Wesentlichen auch für die höhere hydraulische Reaktivität der Zementphasen verantwortlich.

Mittels eines Sprühverfahren gelang es zudem, in der Arbeit hydraulisch hochreaktives α'_L -C₂S und CA (orthorhombische Modifikation) bei gleichzeitig niedrigen Sintertemperaturen, z.B. wie bei Verwendung der Polymer-Precursor-Synthese, herzustellen. Die optimierten Parameter der aufgebauten Sprühanlage ermöglichen somit die Herstellung dieser Phasen, aber auch anderer oxidischer oder metallischer Pulver mit Korn- und Kristallitgrößen von 10nm bis 50nm in einem größeren Maßstab (Up-Scaling).

Durch die Verwendung der optimierten Syntheseparameter konnte zudem gezeigt werden, dass sich eine Vielzahl metastabiler Phasen bei niedrigeren Sintertemperaturen bildet. Damit eröffnet sich die Möglichkeit, bei Verwendung dieser Niedrigtemperatur-Synthesemethoden weitere metastabile Phasen mit völlig neuen Eigenschaften herzustellen.

1. Einleitung

1.1. Einführung

Die Reaktivität aller Materialen wird wesentlich durch deren spezifische Oberfläche beeinflusst; je höher diese ist, desto kleiner ist in der Regel die Partikelgröße und desto reaktiver sind die Materialien. So sind hydraulische Reaktivität und damit auch die Festigkeitsentwicklung von der Feinheit der Zemente abhängig. Zusätzlich spielt die mineralogische Zusammensetzung der Zemente eine essenzielle Rolle bei der Hydratation. Aufgrund der hohen Temperatur von ca. 1450°C bei der Herstellung von PZ und des hohen Kalksteingehalts werden enorme Mengen an CO₂ (0,63t_{CO2}/t_{Zement} in Deutschland) emittiert (WALENTA 2009). Um die CO₂-Bilanz zu verbessern, werden Prozessparameter optimiert, dem fertigen Zement latent-hydraulische Stoffe zuzugeben und alternative Roh- und Abfallstoffe für die Herstellung verwendet. Derzeit wird zusätzlich verstärkt an calciumärmeren Zementen geforscht und auch versucht bereits hydratisierten Zement bzw. Beton wieder zu dehydratisieren, um diese anschließend wieder als Bindemittel zu verwenden. Die Hauptphasen von Portland- und Tonerdezementen sind calciumreiche Verbindungen im System CaO-Al₂O₃-SiO₂ (Abb. 1). Eine Zusammenfassung der vorkommenden Phasen in den verschiedensten Zementen wurde von PöLLMANN *et al.* (2001; 2002; 2006) gegeben.

Abb. 1: Lage von PZ und TZ (MOTZET 1998) im Dreistoffsystem CaO-Al₂O₃-SiO₂ nach OSBORN & MUAN (1960); Temperaturangaben in °C

Bei den gegenwärtigen Versuchen zur Herstellung von calciumärmeren Zementen, werden Untersuchungen zu Belit-, Belitferrat-, Belitsulfoaluminat- und Belitsulfoaluminatferratzementen durchgeführt. Dabei wird das $3CaO \cdot SiO_2$ (C₃S), die Hauptphase des PZ, durch die kalkärmere weniger reaktive Phase $2CaO \cdot SiO_2$ (C_2S) ersetzt, die sich bei niedrigeren Temperaturen herstellen lässt (CHATTERJEE 1996). POPESCU et al. (2003) zeigten in einem Großversuch, dass die Herstellung von Belitferratzementen oder Belitsulfoaluminatferratzementen zwischen 1260°C und 1300°C möglich ist, die Frühfestigkeiten bei diesen Zementen jedoch geringer als beim konventionellen PZ sind. Um die Reaktivität in diesen Zementen zu erhöhen, erfolgte eine Stabilisierung der reaktiveren Hochtemperaturmodifikationen α-C₂S, α'₁-C₂S oder β-C₂S mittels NaF (KACIMI et al. 2009), B₂O₃ (EL-DIDAMONY et al. 1996) oder Na₂O (MORSLI et al. 2007). In neueren Untersuchen wird jedoch deutlich aufgezeigt, dass auch stabilisiertes α -C₂S, α `_L-C₂S und β -C₂S, im Vergleich mit C₃S nur sehr langsam reagieren (CUBEROS et al. 2009). Dies hat deutlich geringere Früh- und 28-Tage-Festigkeiten zur Folge (KACIMI et al. 2009; POPESCU et al. 2003). Belitsulfoaluminatzemente (GLASSER & ZHANG 2001; QUILLIN 2001) oder Belitsulfoferratzemente (POPESCU et al. 2003) enthalten zusätzlich die sulfathaltige Phase Ye'elimit $4CaO \cdot 3Al_2O_3 \cdot SO_3$ (C₄A₃s). MARTÍN-SEDEÑO et al. (2010) zeigten, dass die stabilisierten α -C₂S Modifikationen auch in Belitsulfoaluminatzement nur langsam hydratisieren. In einem Patent von STEMMERMANN et al. (2007) wird über die Herstellung von Zementen über einen hydrothermalen Prozess berichtet; Ziel dieses Verfahrens ist es reaktive calciumärmere Zemente bei niedrigen Temperaturen herzustellen.

Neben der Herstellung von belitreichen Zementen wird versucht, bereits hydratisierten Zement oder Beton zu dehydratisieren, um ihn anschließend wieder als hydraulisches Bindemittel zu verwenden (ALONSO & FERNANDEZ 2004; CASTELLOTE *et al.* 2004; HANDOO *et al.* 2002; SHUI *et al.* 2009; SHUI *et al.* 2008). Dabei kommt es zwischen 500°C und 600°C zur Abnahme des Ca(OH)₂-Gehalts (HANDOO *et al.* 2002) und ab ca. 600°C zur C₂S-Bildung (CASTELLOTE *et al.* 2004). SHUI *et al.* (2008) zeigten, dass ab einer Sintertemperatur von 800°C Brownmillerit vorliegt. Die Dehydratation von einigen hydratisierten reinen Zementphasen wurde von SPLITTGERBER & MUELLER (2003) beschrieben. SHUI *et al.* (2009; 2008) wiesen darauf hin, dass der Wasserbedarf bei der Hydratation von dehydratisiertem Beton sehr hoch ist und dies mit ein Grund für die geringen Festigkeiten darstellt.

Um Energie bei der Herstellung von Zementen einzusparen werden oft Abfallstoffe, beispielsweise keramische Reststoffe (PUERTAS *et al.* 2008) verwendet. Diese enthalten meist keine Carbonate, sind gut homogenisiert und können dadurch auch mit einem geringeren Energieaufwand zu Zementen weiterverarbeitet werden.

Aus der Literatur kann zusammengefasst werden, dass folgende hydraulisch reaktive Hauptphasen bei der Herstellung von PZ, TZ, Belitzementen oder der Dehydration von Beton oder bereits hydratisiertem Zement entstehen können:

Calciumsilikate:	$3CaO \cdot SiO_2$ (C ₃ S), $2CaO \cdot SiO_2$ (C ₂ S)		
Calciumaluminate:	$3CaO \cdot Al_2O_3 (C_3A), 12CaO \cdot 7Al_2O_3 (C_{12}A_7),$		
	CaO·Al ₂ O ₃ (CA)		
Calciumaluminiumsilikate:	$2CaO \cdot Al_2O_3 \cdot SiO_2 (C_2AS)$		
Calciumaluminiumferrate:	$Ca_2(AI_xFe_{2-x})O_5(C_4A_xF_{2-x})$		
Calciumaluminiumsulfat:	$4CaO\cdot 3Al_2O_3\cdot SO_2$ (C ₄ A ₄ s)		
Calciumaluminiummagnesiumsilikate:	Ca ₂₀ Al _{32-2x} Mg _x Si _x O ₆₈		

Zusätzlich berichtetet YOSHIOKA (1970b), dass metastabile Mischkristalle im Phasendreieck CA-CA₂-CAS₂ existieren, die zum Teil hydraulische Eigenschaften besitzen.

Die Phasenbildung und Sinterbedingungen dieser reinen Zementphasen über die herkömmliche Festkörpersynthese, bei der die jeweiligen Oxide als Ausgangsstoffe verwendet werden, sind bekannt. Die Synthesebedingungen für die Phasen des PZ wurden noch einmal von WESSELSKY & JENSEN (2009) zusammengefasst. Bei der Verwendung von einigen Abfallstoffen oder der Dehydratation von bereits hydratisierten Zementen oder Beton ist die Homogenisierung der Ausgangsstoffe jedoch wesentlich besser als in der Synthese über Oxide. Dadurch kommt es zu einer anderen Phasenbildung, die bei niedrigeren Temperaturen stattfinden kann, was bis jetzt nur von einigen Zementphasen bekannt ist. In den meisten dieser Arbeiten wurden zudem die hydraulischen Eigenschaften der Phasen nicht beschrieben. Ein Vergleich der übrigen Arbeiten bezüglich der hydraulischen Reaktivität ist nur begrenzt möglich, da unterschiedliche Ausgangsstoffe, Sinterzeiten und temperaturen, Aufheiz- und Abkühlraten, spezifische Oberflächen, W/F-Werte und Anmischtechniken die hydraulischen Reaktivitäten stark beeinflussen.

1.2. Fragestellung

Aufgrund der in der Einführung angesprochenen Problematik sollte in den Untersuchungen die Phasenbildung der Zementphasen, ausgehend von einer sehr guten Homogenisierung der Ausgangsstoffe, beschrieben werden. Die entstehenden Zementphasen sollten dabei in Abhängigkeit von der Sintertemperatur charakterisiert und anschließend die hydraulischen Reaktivitäten bestimmt werden.

Für die Homogenisierung der Ausgangsstoffe wurden verschiedene Niedrigtemperatur-Synthesemethoden verglichen und optimiert, um so optimale Parameter zur Herstellung von phasenreinen Verbindungen bei niedrigen Sintertemperaturen zu finden.

Zusätzlich sollte untersucht werden, welchen Einfluss die Zumischung der bei niedrigeren Sintertemperaturen synthetisierten Phasen auf die Hydratationskinetik von konventionellen Zementen hat.

Im Anschluss musste ein Konzept erarbeitet werden, wie hochreaktive Zementphasen und auch andere Verbindungen durch die Verwendung von einfachen metallorganischen Verbindungen, z.B. Metallformiaten, hergestellt werden können. Als Voruntersuchungen sollten diese Metallformiate charakterisiert werden, um die Phasenbildung ausgehend von den Formiaten bis zu den Oxiden bzw. Metallen zu verstehen und Informationen über die Stabilitätsbereiche der intermediär gebildeten Phasen zu erhalten.

In dieser Arbeit sollte somit die Phasenbildung der Zementphasen dargestellt werden und dadurch die niedrigste Bildungstemperatur der Zementphasen und deren hydraulische Reaktivität ermittelt werden. Die Arbeit soll dadurch Grundlagen für die Verwendung von gut homogenisierten und sehr feinen Roh- und Abfallstoffen liefern, die durch einen alternativen Herstellungsprozess weiter als hydraulische Bindemittel genutzt werden können. Des Weiteren sollte aufgezeigt werden, wie sich die hydraulischen Reaktivitäten von Zement-reinphasen in Abhängigkeit vom Syntheseverfahren und den Sintertemperaturen verhalten.

1.3. Grundlagen und Kenntnisstand - Synthesemethoden

Bei der Festkörpersynthese geraten beim Aufmahlen und der Homogenisieren kommerziell erhältlicher fester Ausgangsstoffe mit Partikelgrößen im µm-Bereich, herkömmliche Mahl und Zerkleinerungsverfahren an ihre Grenzen. Infolgedessen werden hohe Sintertemperaturen, lange Sinterzeiten und dazwischenliegende Homogenisierungsschritte benötigt, um phasenreine Verbindungen zu erhalten. Deshalb werden alternative Synthesemethoden verwendet, bei denen die Homogenisierung der Ausgangsstoffe in einer Lösung oder Gasphase stattfindet (SCHUBERT & HÜSING 2000). Die Homogenisierung in der Gasphase und die Abscheidung anorganischer Verbindungen ist meist auf die Beschichtung von Substraten beschränkt und findet bei der Synthese von Pulvern nur sehr selten Anwendung (WEGNER et al. 2004). Die Herstellung pulverförmiger Verbindungen bei niedrigeren Temperaturen erfolgt dahingegen meist aus einer Lösung (KOZUKA 2004; RAHAMAN 2007; SCHUBERT & HÜSING 2000). Für die Herstellung anorganischer Verbindungen wurden bisher im Wesentlichen Sol-Gel-Verfahren, Polymer-Precursor-Prozesse (engl.: Polymer Precursor Process, Pechini Method oder Citrate Gel Method) und Verbrennungssynthesen (SPCS = Self Propagating Combustion Synthesis oder GNP = Glycine Nitrate Process) verwendet. Zusätzlich wird beschrieben, dass anorganische Verbindungen durch die Zersetzung von Metallsalzen, die zuvor in einer Lösung homogenisiert wurden, bei niedrigeren Sintertemperaturen hergestellt werden können. Eine Zusammenfassung zum Stand der Technik der jeweiligen Syntheseverfahren wird in den folgenden Kapiteln gegeben.

1.3.1. Sol-Gel-Methode

Der Begriff "Sol" bezeichnet eine Dispersion mit Kolloiden in einem Größenbereich von 1nm bis 500nm. Die Herstellung der Sole erfolgt über die Hydrolyse eines Silans (z.B. Tetraethylorthosilikat = TEOS). Die Grundlagen der Hydrolyse- und Kondensationsreaktion aus Silanen für die Herstellung von silikatischen Phasen wurde von BERGNA (1994) und LIVAGE (2004) zusammengefasst. BERGNA (1994) beschreibt zudem die Stabilitätsbereiche von silikatischen Solen in wässrigen Lösungen.

Der "klassische" Sol-Gel-Prozess basiert auf einer Änderung der Reaktionsparameter (pH-Wert) in einer Lösung, was eine Destabilisierung der Sole und eine Gelbildung zur Folge hat. Das wasserhaltige Gel (Hydrogel) wird anschließend langsam getrocknet und das entstehende Xerogel gesintert. Der schematische Ablauf dieses Prozesses ist in Abb. 2 dargestellt (BRINKER & SCHERER 1990). Diese Methode wird oft zur Synthese von Gläsern oder Keramiken verwendet und findet in der Industrie Anwendung als Beschichtungsverfahren. Calciumsilikate lassen sich aus Silanen oder einem kommerziell erhältlichen SiO₂-Sol und einem Calciumsalz herstellen. FU & LIN (2003), SARAVANAPAVAN & HENCH (2003) und MARTINEZ *et al.* (2000) stellten Calciumsilikatgläser aus Calciumnitrat und Tetraethyl-

orthosilicat (TEOS) her. CHRYSAFI et al. (2007) zeigten, dass die Bildung von C2S bei 600°C möglich ist und es bei RT zur Stabilisierung von β-C₂S kommt. Sie verglichen zudem die Phasenbildung bei der Verwendung von Wasser und Ethanol als Lösungsmittel, stellten aber keine Unterschiede fest. CATAURO & LAUDISIO (1998) synthetisierten Calciumsilikate aus Calciumacetat und Tetramethylorthosilicat (TMOS) mittels des Lösungsmittels Dimethylsulfoxid. STEPHAN & WILHELM (2004) und STEPHAN & PLANK (2007) verwendeten kommerziell erhältliches SiO₂- und Al₂O₃-Sol, um Calciumsilikate und Calciumaluminate herzustellen. Calciumsilikate wurden ebenfalls unter Verwendung von fertigen SiO₂-Solen von WANG & THOMSON (1996) und FUJIMORI et al. (2001) synthetisiert. Bei der Synthese von Calciumaluminaten werden Aluminiumalkoxide oder Al₂O₃-Sole sowie Calciumsalze eingesetzt. Die Herstellung von amorphen Calciumaluminaten mittels Sol-Gel-Methode mit den Ausgangsstoffen Calciumnitrat und Aluminium-sec-butylat (Al(OC4H9)3) wurde von GOKTAS & WEINBERG (1991) und KERNS et al. (1998) beschrieben. GHOSH & PRAMANIK (1997A; 1997C; 1997B) verwendeten Aluminiumformiat für die Herstellung keramischer Phasen, um die vergleichsweise teuren Aluminiumalkoxide zu ersetzen. PAGE et al. (1991) stellten mittels Sol-Gel-Methode bereits Weißzement her. Genereller Nachteil bei der Verwendung von Silanen und Aluminiumalkoxiden im Vergleich zu der Verwendung von fertigen Solen ist, dass die Gelierungszeiten länger sind (minimal 3 bis 6 Tage) und wesentlich komplizierter gesteuert werden können. Aufgrund der einfacheren Handhabung ist die Verwendung von fertigen Solen daher von Vorteil.

Abb. 2: Schematische Darstellung des Sol-Gel-Prozesses nach BRINKER & SCHERER (1990)

1.3.2. Glycin-Nitrat-Prozess GNP (Verbrennugssynthese)

Die Synthesemethode dient der Herstellung sehr feiner oxidischer Pulver. Es kommt dabei zu einer stark exothermen Redoxreaktion zwischen dem Oxidationsmittel, für das meist Metallnitrate eingesetzt werden, und einem Reduktionsmittel, das in den meisten Arbeiten als "Brennstoff (fuel)" bezeichnet wird. Die Homogenisierung der Metallnitrate und des Brennstoff, für den meist Amide oder Hydrazide eingesetzt werden, erfolgt in einer wässrigen Lösung. Diese Lösung wird nach der Homogenisierung bis zur Gelbildung getrocknet. Danach ist für die Verbrennungsreaktion eine Starttemperatur von ca. 250°C notwendig. Aufgrund der stark exothermen Redoxreaktion, die innerhalb von einigen Sekunden abläuft, wird das Verfahren als Verbrennungsverfahren oder "Self Propagating Combustion Synthesis (SPCS)" bezeichnet. In vielen Arbeiten wurden als Oxidationsmittel Metallnitrat und als Brennstoff Glycin verwendet. In diesem speziellen Fall hat sich der Name Glycin-Nitrat-Prozess (GNP; engl.: Glycine Nitrate Process) etabliert. Das Verfahren verwendeten bereits KINGSLEY & PATIL (1988), um dotiertes Aluminiumoxid herzustellen. TAS (1998) synthetisierte verschiedene Calciumaluminate aus den entsprechenden Metallnitraten und Harnstoff. HWANG et al. (2004) und HWANG & WU (2004) setzten verschiedene Brennstoffe und unterschiedliche Brennstoff/Nitrat-Verhältnisse bei der Synthese von Zinkoxid ein und zeigten, dass dadurch die Temperatur bei der exothermen Reaktion und somit auch die Kristallinität des Produkts beeinflusst werden kann. Calciumsilikate wurden von CHANDRAN et al. (1995), HUANG & CHANG (2007) und SREEKANTH-CHAKRADHAR et al. (2006) synthetisiert, die als Ausgangssubstanzen Calciumnitrat und kolloidales SiO₂-Sol verwendeten. STIEVANO et al. (2007) beschrieb, dass es zwischen kolloidalem Silica und Glycin bei einer Starttemperatur von 170°C ebenfalls zu einer stark exothermen Reaktion kommt. Des Weiteren wurden Verbrennungssynthesen von CHICK et al. (1990), KIM et al. (1999), YANG et al. (2000), MIMANI & PATIL (2001), PENG et al. (2006) und BOSKOVIĆ et al. (2007) beschrieben. Ein weiteres Verbrennungsverfahren zeigten YI et al. (2002), bei dem Energie aus der Reaktion zwischen Titan und B_2O_3 gewonnen wird. Dieses Verfahren hat allerdings den Nachteil, dass das Syntheseprodukt mit TiB₂ verunreinigt ist.

1.3.3. Polymer-Precursor-Synthese ("Pechini Method", "Citrate Gel Method" oder "Polymeric Precursor Process")

Bei dieser Synthesemethode werden die Metallkationen der oxidischen Verbindungen über die stöchiometrischen Mengen gut löslicher Metallsalze in einer wässrigen Lösung homogenisiert. Zur Lösung werden zusätzlich die Edukte eines Polymers zugegeben, das durch thermische Aktivierung zur Polymerisation gebracht wird und die Kationen des Metallsalzes bindet. Die jeweiligen oxidischen Phasen werden dann durch die Zersetzung des Polymerprecursors gewonnen. Die Polymer-Precursor-Synthese wird unter anderem als Beschichtungsverfahren verwendet, um oxidische Verbindungen bei niedrigen Temperaturen auf Substraten zu sintern. Aufgrund der relativ einfachen Handhabung wird es jedoch oft für die Herstellung von feinen Pulvern verwendet. PECHINI (1967) patentierte die Synthesemethode und verwendete Zitronensäure und Ethylenglykol als Edukte für die Polymerbildung. Daher wird die Methode bei Verwendung dieser Edukte oft als "Pechini Method" oder "Citrate Gel Method" bezeichnet. Bei Verwendung von anderen Polymeren hat sich der Name "Polymeric Precursor Process" etabliert. In der eigenen Arbeit wurde das Syntheseverfahren deshalb als Polymer-Precursor-Synthese bezeichnet. Die Synthesemethode basiert somit auf einer Kondensationsreaktion zwischen einer multifunktionellen Carbonsäure (z.B. Zitronensäure) und einem Glykol (z.B. Ethylenglykol) zu einem Ester (Abb. 3). Die sich bei der Kondensationsreaktion bildenden Citratkomplexe und die Zersetzungsreaktionen des Esters wurden von NISHIO & TSUCHIYA (2004) und PETRYKIN & KAKIHANA (2004) zusammengefasst. NISHIO & TSUCHIYA (2004) zeigten zudem, dass auch die Metallkationen als Brückenbildner zwischen der Zitronensäure wirken können, wodurch auch die Wertigkeit der Kationen einen Einfluss auf die Polymerisation hat. Neben der Art des Polymers hat auch dessen Menge einen Einfluss auf die Zersetzungsreaktion, die Phasenbildung und die Partikelgröße der gebildeten anorganischer Verbindungen (CHAI et al. 2002; LEE & LEE 2003). GÜLGÜN et al. (1994), HONG & YOUNG (1999), LEE et al. (2000), PATI et al. (2002), ANJOS et al. (2005), LEE & KRIVEN (2005), KAKALI et al. (2007) und GAKI et al. (2007a; 2007b) stellten bereits Calciumaluminate und Calciumsilikate mit dieser Methode her und verwendeten als Edukte für die Polymerbildung Zitronensäure und Ethylenglykol.

Abb. 3: Schematischer Ablauf der Polymerisationsreaktion aus Zitronensäure (ZS), Ethylenglykol (EG) und den Metallkationen (Ca^{2+} , Al^{3+}) zum Ester; Darstellung in der Orbitalstruktur, C-Atome = Schwarz, H-Atome = Weiß, O-Atome = Blau, Ca-Atome = Rot und Al-Atome = Türkis

1.3.4. Sprühverfahren

Metallsalze, die in einer Lösung homogenisiert, getrocknet und anschließend zersetzt werden, werden oft für die Herstellung oxidischer Phasen verwendet (ITO *et al.* 1975). Für die schnelle Trocknung der Lösungen können Sprühtrockner eingesetzt werden. Diese zerteilen die zu versprühende Lösung in Teilchen von 1µm bis 2mm, trocknen die schwebenden Teilchen mit erhitzter Luft und trennen die getrockneten Partikel ab. Der Trocknungsprozess sollte dabei schnell ablaufen, so dass es während der Trocknung von verschiedenen Metallsalzen zu keinen Entmischungen kommt. Als Ursache für das Zerfallen des Flüssigkeitsstrahls sind Schwingungs- und Flatterbewegungen anzusehen, wenn der Flüssigkeitsstrahl aus der Sprühdüse kommt. Meist entstehen dadurch runde Partikel, die rieselfähig sind und sich gut weiterverarbeiten lassen (GABLENZ 2001).

Für einen reibungslosen Prozessablauf sollten die Metallsalze dabei folgende Parameter aufweisen:

Die **Löslichkeit** muss so hoch sein, dass sich die Metallsalze im Lösungsmittel vollständig lösen. Ist die Löslichkeit jedoch zu hoch oder ist das versprühte Produkt zu stark hygroskopisch agglomerieren die Partikel im Auffanggefäß, da das Sprühgut bei der Sprühtrocknung eine Restfeuchte von ca. 3-5% besitzt (DOUY & GERVAIS 2000). Beim gleichzeitigen Versprühen von Metallsalzen unterschiedlicher Löslichkeit kann es zur Bildung von hohlen Partikel kommen (SCHUBERT & HÜSING 2000). Die **Zersetzungstemperaturen** der Salze sollten so hoch sein, dass sie sich erst bei einem anschließenden Sinterprozess zersetzen und direkt aus Metallformiaten die oxidischen bzw. metallischen Verbindungen entstehen. Zum Anderen sollten die Zersetzungstemperaturen so niedrig sein, dass für die Herstellung der Phasen die **Sintertemperaturen** so niedrig wie möglich sind, um den Energieaufwand so gering wie möglich zu halten sowie ein Korngrößenwachstum bei höheren Sintertemperaturen zu verhindern. Bei der Zersetzungsteromsprodukte entstehen.

Aufgrund der Löslichkeiten, der Zersetzungstemperaturen und der Zersetzungsprodukten eignen sich viele Salze organischen Säuren, z.B. die Formiate, für die Sprühtrocknung. Metallnitrate und -chloride haben meist eine zu hohe Löslichkeit bzw. sind zu hygroskopisch, so dass die feinen Partikel im Auffanggefäß des Sprühtrockners agglomerieren oder wieder in Lösung gehen. Diese Probleme erwähnten bereits DOUY & GERVAIS (2000) bei der Sprühtrocknung von Calciumaluminiumnitrat-Lösungen und SEVERIN et al. (1988) beim Versuch YBa₂Cu₃O_X herzustellen. Metallnitrate und -chloride haben aufgrund ihrer hohen Löslichkeiten dafür bei der Sprühpyrolyse den Vorteil, dass die einzelnen Partikel weniger stark agglomerieren (LENGGORO et al. 2003). Grundsätzlicher Unterschied der Sprühpyrolyse gegenüber der Sprühtrocknung ist, dass bei der Sprühpyrolyse die Metallsalze im heißen Luftstrom direkt zu den jeweiligen Metallen bzw. Oxiden zersetzt werden. Bei der Sprühtrocknung werden die Metallsalze lediglich getrocknet und müssen in einem anschließenden Temperschritt zersetzt werden (MESSING et al. 1993; STOPIC et al. 2005; STOPIC et al. 2006). BLOCK & DOLHERT (1991) sprühtrockneten eine Formiat-Lösung mit der stöchiometrischen Zusammensetzung des YBa₂Cu₃O_{7-δ}. PESHEV & PECHEVA (1978) synthetisierten Lithiumferrit-Spinelle aus einer sprühgetrockneten Lösung bestehend aus Lithiumformiat-Monohydrat und Eisen(III)formiat. Dabei beschreiben sie die direkte Phasenbildung des Spinells aus den zersetzten Formiaten; auch bleibt die sphärische Gestalt der Partikel nach der Zersetzung erhalten. KIM et al. (2008) zeigten, dass bei der Sprühtrocknung von SiO₂-Sol sphärische Agglomerate im µm-Bereich entstehen.

1.4. Lösungsansatz und Vorgehensweise

Für die Herstellung der Zementphasen über die Niedrigtemperatursynthesen wird das Sol-Gel-Verfahren, die Polymer-Precursor-Synthese und der Glycin-Nitrat-Prozess verwendet. Die Homogenisierung der Ausgangsphasen erfolgt bei all diesen Niedrigtemperatursynthesen in einer wässrigen Lösung. Als Ausgangsstoffe sind für jede dieser Methoden Metallsalze mit einer sehr hohen Löslichkeit von Vorteil. Deshalb werden bei diesen Methoden die sehr gut löslichen Metallnitrat-Hydrate als Ausgangsstoffe verwendet. Als Referenz zur Beurteilung der hydraulischen Reaktivitäten und der Phasenbildung werden die Zementphasen mit der herkömmlichen Festkörpersynthese hergestellt.

Im Anschluss an diese Arbeiten soll versucht werden, die hochreaktiven Phasen durch die Sprühtrocknung der Metallformiate und deren anschließende Zersetzung herzustellen, da mit dieser Herstellungstechnik auch eine Produktion der Phasen in größerem Maßstab realisierbar ist.

Ein Schema zur Durchführung der Arbeit ist in Abb. 4 dargestellt.

Abb. 4: Vorgehensweise bei der Durchführung der Arbeit

2. Experimentelle Methoden

2.1. Untersuchungsmethoden

2.1.1. Röntgenpulverdiffraktometrie

Die pulverdiffraktometrischen Untersuchungen wurden an einem Diffraktometer der Firma PANalytical B.V. mit Bragg-Brentano Geometrie und X`Celerator Detektor durchgeführt. Die Kalibration des Nullpunktes und die Kontrolle der Reflexintensitäten wurden mit äußeren Standards durchgeführt (Si-Standard bzw. Al₂O₃-Standard, NIST Standard Reference Material 1976). Zur qualitativen Phasenanalyse und Gitterkonstantenverfeinerung wurden die Messungen mit den Parametern aus Tab. 1 durchgeführt.

Probenträger:	Durchmesser 17mm
Probenpräparationsmethode:	"Back-Loading"-Verfahren
Maske:	10mm
prim. und sek. Blenden:	variabel (10 mm bestrahlte Länge)
prim. und sek. Soller Slits:	0,04rad (2,3°)
Schrittweite:	0,017°20
Messzeit pro Schritt:	20s

Tab. 1: Parameter für die pulverdiffraktometrischen Untersuchungen

Parameter, die abhängig vom Anodenmaterial variiert wurden, sind in Tab. 2 aufgelistet. Die Messungen wurden standardmäßig mit einer Kupferröhre durchgeführt; nur sehr kobalt-, eisen- und nickelreiche Proben wurden mit einer Kobaltröhre gemessen.

Tab. 2: Parameter für die pulverdiffraktometrischen Untersuchungen, die abhängig vom Anodenmaterial variiert wurden

Anodenmaterial:	Kupfer (Cu _{Kα1} = 1,54056Å)	Kobalt (Co _{Kα1} = 1,78901Å)	
Spannung [kV]:	45	40	
Stromstärke [mA]:	40	35	
Messbereich [°20]:	5 - 90	5 - 110	
Filtermaterial:	Nickel	Eisen	

Für die qualitative Auswertung der röntgenographischen Daten wurde das Programm X`Pert High Score Plus 2.2 der Firma PANalytical B.V. verwendet. Die Verfeinerung der Gitterkonstanten erfolgte nach dem "Least-Square"-Verfahren mit dem Program CelRef V3 (ALTERMATT & BROWN 1987). Für die Berechnung der integralen Intensitäten und den Verfeinerungen der Gitterkonstanten nach der "Whole-Powder-Pattern-Fitting"-Methode wurde das Programm TOPAS 3.0 der Firma BRUKER AXS verwendet. Die Reinphasen wurden zusätzlich mit zugemischtem Silizium ($a_0 = 5,4309$ Å, Fluka, 99,999% z.A.) gemessen, um den Präparathöhenfehler zu korrigieren. Für die Berechnungen der RIR- Werte (reference intensity ratio) wurde die integrale Intensität des intensitätsstärksten Reflexes (1 1 6-Reflex) von α -Al₂O₃ (FLUKA) verwendet.

2.1.1.1. In-situ XRD Hydratationsversuche

Der Hydratationsverlauf wurde mittels eines speziellen Probenträgers der Firma PANalytical B.V. für feuchte Proben durchgeführt, um ein Austrocknen oder Carbonatisieren der Proben zu vermeiden. Das Gemisch aus Zementphase und Wasser wird dabei in den Probenträger eingefüllt und mit einer Kapton-Folie (Abb. 5a) abgedeckt. Für die Korrektur des Höhenfehlers wurden die Untersuchungen zusätzlich mit Silizium als internem Standard durchgeführt.

Abb. 5: Komponenten des speziellen Probenträgers für feuchte Proben: a) Kapton-Folie, b) Probenträger, c) Spannring für die Folie, d) Halterung

Abb. 6: Mit Zementpaste gefüllter Probenträger, der mittels einer Kapton-Folie verschlossen wurde

2.1.1.2. Hochtemperatur XRD

Untersuchungen zur Phasenbildung von Zementphasen, zur Dehydratation von Metallformiat-Hydraten und Zersetzung von Metallformiaten wurde mit der Heizkammer HTK-16 der Firma ANTON-PAAR durchgeführt. Die Kalibration der Temperatur in der Heizkammer erfolgte mit Bornitrid. Als interner Standard wurde bis 500°C Silizium und bei höheren Temperaturen α -Al₂O₃ verwendet, um den Höhenfehler zu korrigieren.

2.1.1.3. Berechnung der Kristallitgrößen (Domänengrößen)

Bei der Aufnahme von Röntgenpulverdiagrammen kommt es durch kleine Domänengrößen (umgangssprachlich als Kristallitgröße bezeichnet) oder Gitterverzerrungen zur Vergrößerung der Halbwertsbreite (FWHM = Full With at Half Maximum) von Reflexen. Im Umkehrschluss lassen sich somit aus den Halbwertsbreiten Domänengrößen und Gitterverzerrungen berechnen. Die Beziehung zwischen der Domänengröße und Halbwertsbreite wurde von SCHERER (1918) vgl. KLUG UND ALEXANDER (1974) erstmals beschrieben. STOKES & WILSON (1942) führten unter Verwendung der integralen Halbwertsbreite β_i eine verallgemeinerte Formel zur Beschreibung der volumengemittelten durchschnittlichen kohärenten Domänengröße L_{vol} ein, die unabhängig von der Kristallitform ist.

$$\beta_i = \frac{\lambda}{\mathbf{L}_{\mathrm{vol}} \cdot \cos\Theta}$$

Aus der volumengemittelten durchschnittlichen kohärenten Domänengröße L_{vol} von STOKES & WILSON (1942) lässt sich bei der Annahme von sphärischen Partikeln der Durchmesser D₀ berechnen:

$$D_0 = \frac{4 \cdot L_{\text{vol}}}{3}$$

Die Verbreiterung der Reflexe durch Mikro-Verzerrungseffekten ist nach STOKES & WILSON (1944) wie folgt definiert:

$$\beta = 4 \cdot \varepsilon_0 \cdot tan\theta$$

wobei β die Halbwertsbreite (FWHM), ε_0 die Gitterverzerrung und θ der Bragg-Winkel ist. Die Gitterverzerrung ε_0 ist definiert als $\Delta d/d$ und gibt den maximalen Wert der Gitterverzerrung an. Die Formeln für die Berechnung der Domänengrößen und der Mikro-Verzerrungen sind unterschiedlich abhängig vom Beugungswinkel θ und lassen sich somit simultan verfeinern. Nach CHEARY *et al.* (2004) erlaubt die Verwendung des Fundamentalparameteransatzes, wie er im Programm TOPAS 3.0 verwendet wird, die Bestimmung der Linienverbreiterung ohne die Verwendung von Referenzproben. Auf dieser Grundlage wurde der mittlere Durchmesser D₀ der Kristallitgrößen in dieser Arbeit berechnet.

2.1.2. Rasterelektronenmikroskopie

Mittels Rasterelektronenmikroskopie (REM) wurden die verschiedenen Syntheseprodukte optisch charakterisiert, um die Partikelform und die Partikelgröße zu ermitteln. Zusätzlich wurden mittels energiedispersiver Mikroanalyse (EDX) möglich Nebenphasen chemisch charakterisiert. Für die Untersuchungen stand ein REM der Firma JEOL vom Typ JSM 6300 zur Verfügung. Des Weiteren wurden Messungen an einem LEO 1525 und LEO 1530VP an der Zentrum für Werkstoffanalytik Lauf GmbH in Lauf a. d. Pegnitz durchgeführt. An diesen Geräten stand auch ein InLens-Detektor für hochauflösende Aufnahmen zur Verfügung.

2.1.2.1. Kryo-Transfer-Präparationsmethode

Die Kryoskopie ist eine spezielle Probenpräparationsmethode der Elektronenmikroskopie für die Untersuchung von wasserhaltigen und nicht hochvakuumstabilen Proben. Die Präparationsmethode ist notwendig, um die Dehydratation von Hydratphasen zu vermeiden (FYLAK *et al.* 2006; GÖSKE *et al.* 2001; PÖLLMANN *et al.* 2007). Für die Probenpräparation stand ein System der Firma GATAN zur Verfügung. Hierbei wird ein Tropfen der Zementpaste auf eine Messingöse gebracht, die bis zum gewünschten Hydratationszeitpunkt bei 100%-iger Luftfeuchte gelagert wird. Das Stoppen der Hydratationsreaktion erfolgt durch Einfrieren der Probe in evakuiertem flüssigen Stickstoff (-210°C). Die Probe wird nach dem Einfrieren mit Hilfe eines Transfer-Moduls in die Präparationskammer überführt. Fortan wird die Temperatur in der Präparations- und Probenkammer des REM durch Kühltische kontrolliert. Anschließend erfolgt das Brechen des Zementtropfens, um Oberflächenartefakte auszuschließen. Gefrorenes Wasser wird sublimiert (Tab. 3), um einen dreidimensionalen Eindruck der Hydratationsprodukte zu erhalten. Weiter wird die Probe mit Platin beschichtet, um Aufladungen zu vermieden. Daraufhin gelangt die Probe direkt von der Präparationskammer in die Pröbenkammer des REM und kann dort untersucht werden.

Temperatur [°C]:	-85	
Vakuum [mbar]:	0,20	
Zeit [min]:	8	

Tab. 3: Sublimationsparameter bei der Kryo-Transfer-Präparation

2.1.3. Thermoanalyse (TG/DTA)

Um Aussagen über die Stabilität der verschiedenen Precursorphasen, Hydratstufen der Metallformiate und mögliche Zersetzungsprodukte bei definierter Atmosphäre machen zu können, wurden thermoanalytische Messungen durchgeführt. Die ermittelten Temperaturen bei der Zersetzung der Precursorphasen dienen als Grundlage für Sinterversuche bei unterschiedlichen Temperaturen. Für die Untersuchungen wurde ein Thermoanalyse-System TG/DTA 320U der Firma SEIKO mit den Parametern aus Tab. 4 verwendet. Die in der Arbeit angegebenen Dehydratations- und Zersetzungstemperaturen wurden aus den "Onset"-Punkten der DTA-Diagramme ermittelt.

Starttemperatur [°C]:	25
Heizrate [°C/min]:	10
Tiegelmaterial:	Al (≤ 500°C); Pt (> 500°C)
Spülgas:	synthetische Luft oder Stickstoff

Tab. 4: Parameter für die Thermoanalytik

2.1.4. Infrarot-Spektroskopie

Um Aussagen über die Bindungsverhältnisse der Metallsalze machen zu können wurden IR-spektroskopische Untersuchungen durchgeführt. Die IR-Spektren wurden im Bereich von 4000cm⁻¹ bis 400cm⁻¹ (mittleres IR-Spektrum) mit einem FT-IR-Spektrometer der Firma BRUKER vom Typ IR EQUINOX 55 aufgenommen. Bei der Präparation wurden 3mg Kaliumbromid (MERCK) mit einer geringen Menge der Pulverprobe vermischt und bei 10kN zu Tabletten gepresst. Die einzelnen IR-Banden wurden zusätzlich mit Buchstaben versehen, um die ungefähre Intensität der Absorptionsbanden angeben zu können (s=stark, m=mittel, w=schwach und sh=Schulter). Zusätzlich wurden IR-Spektren von röntgen-amorphen oxidischen Phasen aufgenommen, um Aussagen über die Bindungsverhältnisse in den Pulvern zu treffen.

2.1.5. Messung der spezifischen Oberfläche

2.1.5.1. Oberflächenbestimmung nach BLAINE

Das Luftdurchlässigkeitsverfahren nach BLAINE ist ein genormtes Prüfverfahren nach DIN EN 196-6 für die Bestimmung der Mahlfeinheit von Zementen. Bei der Methode wird die Zeit ermittelt, die eine bestimmte Luftmenge benötigt, um ein Pulverbett mit definiertem Volumen und definierter Porosität zu durchströmen. Die Anzahl und Größe der Poren im Pulverbett werden durch die Partikelgrößenverteilung der Zementpartikel definiert. Diese wiederum beeinflussen die für den Luftdurchgang benötigte Zeit.

2.1.5.2. Oberflächenbestimmung nach BET

Die Methode beruht auf dem von BRUNAUER *et al.* (1938) beschriebenen Messprinzip. Es wird dabei die Menge eines Gases bestimmt, die notwendig ist, um auf der durch das Gas zugänglichen Probenoberfläche eine Adsorbat-Mono-Schicht zu bilden. Für die Messungen wurde ein Gerät der Firma MICROMERITICS verwendet, bei dem Stickstoff als Adsorptivgas diente.

2.1.6. Wärmeflusskalorimetrie

Um den Wärmefluss bei der Hydratation der Zementphasen zu messen, um somit Rückschlüsse auf die Reaktivität zu ziehen, kam die isoperibole Wärmeflusskalorimetrie nach der Betriebsart von KUZEL (1984) und PÖLLMANN *et al.* (1991) zum Einsatz. Die Berechnung der Kalibrationskonstanten für die einzelnen Messplätze erfolgte mit einem $10k\Omega$ Präzisionswiderstand und einer Spannung von 10V. Bei der Probenpräparation kam die Injektionsmethode zum Einsatz, bei der entsalztes Wasser über ein kleines Loch im Deckel in den Kupfertiegel mit einer Spritze zugegeben wird. Die Lagerung des Anmachwassers und der Zementphase erfolgte vor der Injektion im Kalorimeter, um Temperaturunterschiede auszugleichen. Untersuchungen abweichend von RT wurden nach dem von SCHMIDT & PÖLLMANN (2008) beschriebenen Versuchsaufbau durchgeführt. Die Zugabe des Anmachwassers erfolgte im Überschuss, um zu gewährleisten, dass während der Anfangsphase der Hydratation genügend Wasser zur Verfügung steht. Der Wärmefluss (W) und die umgesetzte Wärme (Q) wurden gegen die Zeit aufgetragen, um daraus den maximalen Wärmefluss (W_{tmax}), dessen Zeitpunkt (t_{max}) sowie die freiwerdende Wärme nach definierten Zeitpunkten zu ermitteln.

2.2. Herstellung der Precursorphasen

In den folgenden Kapiteln werden die verwendeten Parameter für die verschiedenen Synthesemethoden beschrieben. Eine Aufstellung der verwendeten Chemikalien befindet sich in Tab. 5.

Verbindungsname	Formel	Molare Masse [g/Mol]	Reinheits- grad	Hersteller
Calciumcarbonat	CaCO ₃	100,09	p.A.	Fluka
Aluminiumoxid	Al ₂ O ₃	101,94	p.A.	Fluka
Siliciumdioxid (Quarz)	SiO ₂	60,08	p.A.	Fluka
Eisen(III)oxid	Fe ₂ O ₃	159,68	p.A.	Fluka
Calciumnitrat-Tetrahydrat	Ca(NO ₃) ₂ ·4H ₂ O	236,15	p.A.	Carl Roth
Aluminiumnitrat-Nonahydrat	AI(NO ₃) ₃ ·9H ₂ O	375,15	p.A.	Merck
Eisen(III)nitrat-Nonahydrat	Fe(NO ₃) ₃ ·9H ₂ O	404,00	p.A.	Merck
Magnesiumnitrat-Hexahydrat	Mg(NO ₃) ₂ ·6H ₂ O	256,41	p.A.	Fluka
Zinknitrat-Hexahydrat	Zn(NO ₃) ₂ ·6H ₂ O	297,48	p.A.	Fluka
Nickel(II)nitrat-Hexahydrat	Ni(NO ₃) ₂ ·6H ₂ O	290,81	p.A.	Fluka
Cobalt(II)nitrat-Hexahydrat	Co(NO ₃) ₂ ·6H ₂ O	291,03	p.A.	Fluka
Kupfer(II)nitrat-Hydrat	Cu(NO ₃) ₂ ·2,5H ₂ O	232,59	p.A.	J.T. Baker
Zitronensäure	C ₆ H ₈ O ₇	192,13	p.A.	Merck Schuchardt
Ethylenglykol	$C_2H_6O_2$	62,07	p.A.	AppliChem
Glycin	$C_2H_5NO_2$	75,07	≥99%	AppliChem
Schwefelsäure (30%-ig)	H_2SO_4	98,08		AppliChem
Tetraethylorthosilicat	C ₈ H ₂₀ O ₄ Si	208,33	≥98%	Merck Schuchardt
Al ₂ O ₃ -Sol Aerodisp W630 (29,7% Feststoffgehalt)	Al ₂ O ₃			Degussa Aerosil
SiO₂-Sol Lutox [™] (50,1% Feststoffgehalt)	SiO ₂			Grace Davison
Ameisensäure	CH ₂ O ₂	46,03	p.A.	AppliChem
Lithiumcarbonat	Li ₂ CO ₃	73,89	≥99%	Ferak Laborat
Natriumcarbonat	Na ₂ CO ₃	105,99	p.A.	Merck
Kaliumcarbonat	K ₂ CO ₃	138,21	p.A.	Merck
Rubidiumcarbonat	Rb ₂ CO ₃	230,95	≥99,9%	ChemPur
Cäsiumcarbonat	Cs ₂ CO ₃	325,82	≥99,9%	ChemPur
Magnesiumoxid	MgO	40,31	p.A.	Fluka
Strontiumcarbonat	SrCO₃	147,63	≥98%	Aldrich
Bariumcarbonat	BaCO₃	197,34	≥99%	Merck
Mangan(II)carbonat (basisch)	MnCO₃·aq		p.A.	Alfa Aesar
Eisen (Pulver)	Fe	55,85	≥99%	Fluka
Kobalt(II)carbonat (basisch)	CoCO₃·aq	118,94	≥99%	Acros Organics
Nickel(II)carbonat (basisch)	NiCO₃·2Ni(OH)₂·aq	304,17	≥99%	Fluka
Kupfer(II)carbonat (basisch)	CuCO ₃ ·2Cu(OH) ₂	221,10	p.A.	Fluka
Zinkcarbonat (basisch)	2ZnCO ₃ ·3Zn(OH) ₂	548,96	p.A.	Fluka
Aluminium (Band)	Al	26,97		Glicwe POCH
Quecksilberchlorid	HgCl ₂	271,50	p.A.	Merck

Tab. 5: Aufstellung der verwendeten Chemikalien

2.2.1. Festkörpersynthese

Für die Festkörpersynthese wurden die stöchiometrischen Einwaagen der Oxide CaO, Al₂O₃, SiO₂ und Fe₂O₃ verwendet. CaO wurde durch einen einstündigen Sinterprozess bei 1000°C aus CaCO₃ hergestellt. Die Sinterprozesse erfolgten bei den in Tab. 6 angegebenen maximalen Temperaturen. Die synthetisierten Pulverproben wurden nach den Sinterschritten in einer Scheibenschwingmühle der Firma RETSCH des Typs RS1 in einem mit Achat ausgekleideten Mahltopf für 5min bei 700U/min aufgemahlen und homogenisiert.

Tab. 6: Maximale Sintertemperaturen bei der Festkörpersynthese

Phasen	C₃S	C ₂ S	C ₃ A	C₄AF	СА	C ₁₂ A ₇
T _{max} in [°C]	1500	1400	1400	1250	1500	1300

2.2.2. Sol-Gel-Methode

Für die Sol-Gel-Synthesen wurde kommerziell erhältliches Al₂O₃-Sol und SiO₂-Sol verwendet. Die Homogenisierung zwischen den Solen und den Metallnitraten erfolgte in einer wässrigen Lösung. Die optimierten pH-Werte und Temperaturen für kurze Gelierungszeiten wurden aus der Arbeit von STEPHAN & WILHELM (2004) entnommen. Für Calciumsilikate wurde demnach ein pH-Wert von 5,5 und für die Calciumaluminate ein pH-Wert von 6,5 eingestellt. Die Reaktionstemperatur bis zur Gelierung betrug 70°C. Die Trocknung der gebildeten Hydrogele erfolgte bei 150°C. Die daraus entstehenden Xerogele wurden als Precursorphasen der Sol-Gel-Methode verwendet.

2.2.3. Glycin-Nitrat-Prozess

Als Ausgangsmaterialien für den Glycin-Nitrat-Prozess (GNP) dienten die Metallnitrat-Hydrate Ca(NO₃)₂·4H₂O, Al(NO₃)₃·9H₂O, Fe(NO₃)₃·9H₂O, SiO₂-Sol und TEOS. Die stöchiometrischen Mengen der Salze wurden in Wasser gelöst bevor Glycin (C₂H₅N₂O) zugegeben wurde. Das molare Verhältnis von Glycin zu den Kationen betrug 1,5, da bei diesem Verhältnis HwANG & WU (2004) die maximale Verbrennungstemperatur erreichten. Zudem entstehen bei diesem Verhältnis theoretisch nur sehr geringe Mengen nitroser Gase wie die folgende Formel am Beispiel von Monocalciumaluminat (CA) zeigt:

 $9Ca(NO_{3})_{2} \cdot 4H_{2}O + 18Al(NO_{3})_{3} \cdot 9H_{2}O + 40C_{2}H_{5}NO_{2} + 36O_{2}$ $\xrightarrow{170^{\circ}C - 250^{\circ}C}$ $9(CaO \cdot Al_{2}O_{3}) + 112N_{2} + 80CO_{2} + 298H_{2}O$

Die wässrige Lösung wurde für ca. 15min homogenisiert und in eine Aluminiumschale überführt. Die Trocknung erfolgte bei 170°C bis zur Gelbildung auf einer Heizplatte. Durch eine Temperaturerhöhung auf 250°C kommt es zum Überschreiten der Starttemperatur und die Verbrennungsreaktion findet statt. Nach dem Abkühlen liegt ein voluminöser Schaum vor, der für die weiteren Versuche als Precursorphase dient.

2.2.4. Polymer-Precursor-Synthese

Bei der Polymer-Precursor-Synthese wurden als Ausgangsmaterialien die Metallnitrat-Hydrate Ca(NO₃)₂·4H₂O, Al(NO₃)₃·9H₂O, Mg(NO₃)₂·6H₂O, Fe(NO₃)₃·9H₂O und als SiO₂-Ausgangsmaterial SiO₂-Sol oder TEOS verwendet. Für die Polymerbildung kamen Zitronensäure (C₆H₈O₇) und Ethylenglykol (C₂H₆O₂) zum Einsatz. Als Erstes wurden die Zitronensäure und die stöchiometrischen Mengen der Metallnitrat-Hydrate in entsalztem Wasser bei 60°C gelöst und anschließend das SiO₂-Ausgangsmaterial zugegeben (molares Verhältnis: Zitronensäure/Metallkationen = 1). Im nächsten Schritt wurde Ethylenglykol zur Lösung gegeben (molares Verhältnis: Ethylenglykol/Zitronensäure = 2). Die Homogenisierung erfolgte mittels eines Magnetrührers bei 150°C für 15min. Das Becherglas mit der Lösung wurde dann in den auf 150°C vorgeheizten Trockenschrank gestellt und verblieb dort bis zur vollständigen Polymerbildung (je nach Wassermenge ca. 3h bis 8h). Die gebildeten Polymere, in denen die Ionen gebunden sind, dienten dann als Precursor für die Polymer-Precursor-Synthese (=Polymerprecursor) (Abb. 7-2).

Abb. 7: Eingeengte Lösung für die Polymer-Precursor-Synthese mit den gelösten Metallsalzen und den Ausgangsstoffen für die Polymerbildung (1) sowie das fertige Polymer (2)

2.2.5. Sprühverfahren

Für die Sprühtrocknung der Metallformiate wurde der Sprühtrockner B-191 der Firma BÜCHI Labortechnik AG verwendet (Abb. 8).

Abb. 8: Verwendeter Sprühtrockner B-191 der Firma BÜCHI Labortechnik AG

Die wässrige Lösung der Metallformiate wird durch eine Pumpe in die Sprühdüse befördert und mit Hilfe anliegender Druckluft in kleine Tröpfchen zerteilt. Das Verstopfen der Sprühdüse wird durch einen pneumatisch gesteuerten Durchstechmechanismus in der Düse verhindert. Beim Kontakt der Tröpfchen mit Luft, die über eine Heizung erwärmt wird, kommt es zur Verdampfung des Lösungsmittels. Die maximale Temperatur der vorgewärmten Luft (T_{Ein}) beträgt 220°C. Die tatsächlich an den Partikeln anliegende Temperatur ist jedoch geringer, sie entspricht in etwa der Ausgangstemperatur T_{Aus} (Abb. 9). Das im Sprühzylinder getrocknete Pulver wird über einen Zyklon vom gasförmigen Lösungsmittel-Luft Gemisch abgetrennt und fällt in das Auffanggefäß. Der Aspirator saugt Luft an und erzeugt einen leichten Unterdruck im System. Ein vorgeschalteter Filter sorgt dafür, dass zu kleine Partikel, die nicht im Zyklon abgetrennt werden können, nicht in den Aspirator gelangen. In Abb. 9 ist der schematische Aufbau und die Funktionsweise des verwendeten Sprühtrockners dargestellt.

Abb. 9: Schematischer Aufbau des verwendeten Sprühtrockners B-191 der Firma BÜCHI Labortechnik AG

Ziel der Untersuchungen ist es, möglichst kleine Partikel bei einem gleichzeitig akzeptablen Mengendurchsatz, herzustellen. Für die Versuche wurde daher die maximale Eingangstemperatur von 220°C gewählt, da sich die Formiate bei diesen Temperaturen noch nicht zersetzen. Der Aspirator wurde mit einer maximalen Förderleistung von 35m³/h betrieben. Die 0,25 molaren Lösungen wurden mit einem Druckluftdurchfluss von 600l/h in der Sprühdüse zerteilt. Über die Pumpenleistung kann nun Einfluss auf die versprühte Menge und damit auch auf die Ausgangstemperatur genommen werden (Abb. 10). Vorversuche zeigten, dass es zu einem stabilen Prozessablauf bei einer Pumpenleistung von 320ml/h kommt. Bei höheren Pumpenleistungen und damit größeren zu trocknenden Lösungsmengen kommt es zum Niederschlag von Lösung an der Glaswandung des Sprühzylinders.

Abb. 10: Experimentell ermittelte Abhängigkeit zwischen der Förderleistung der Pumpe und der Ausgangstemperatur für den verwendeten Sprühtrockner

Die verwendeten und maximal einstellbaren Parameter für den Sprühtrockner sind in Tab. 7 zusammengefasst.

Einstellungen	Verwendete Werte	Maximalwerte	
Eingangstemperatur [°C]:	220 (=100%)	220	
Pumpenleistung [ml/h]:	320 (=20%)	1600	
Aspiratorleistung [m ³ /h]:	35 (=100%)	35	
Druckluft [l/h]:	600 (=75%)	800	
Konzentration [molar]:	0,1 - 0,5	-	

Tab. 7: Parameter für die Sprühtrocknung der Metallformiate und Maximalwerte des Sprühtrockners

Aus dem Volumen des Sprühzylinders und der Leistung des Aspirators kann berechnet werden, dass bei den verwendeten Parametern, die Tröpfchen bzw. Partikel etwa 0,4sec im Sprühzylinder verweilen (GABLENZ 2001). Das sprühgetrocknete Produkt dient für die weiteren Untersuchungen als Precursor des Sprühverfahrens.

2.2.6. Sinterbedingungen

Die mit den verschiedenen Synthesemethoden hergestellt Precursorphasen wurden in Platin- oder Korundtiegeln gesintert. Die Tiegel wurden nicht mit einem Deckel verschlossen, da es bei der Zersetzung des Polymerprecursors sonst zu stark reduzierenden Bedingungen kommen würde. Bei allen Versuchen wurde eine konstante Heizrate von 10°C/min verwendet. Nach dem Sintervorgang (je 2h) wurden die Tiegel aus dem Ofen bei maximaler Sintertemperatur entnommen und bei RT an Luft abgekühlt. So konnten auch Synthesen aus verschieden Öfen bei vergleichbaren Bedingungen abkühlt werden. Die in der anschließenden Tab. 8 aufgeführten Muffelöfen wurden in der Arbeit verwendet.

Temperaturbereich	Hersteller	Model-Nummer
RT-1000°C	Nabertherm	L3CL 9409033
1000-1300°C	Nabertherm	L 08/14
1300-1500°C	Carbolite	RHF 15-3

Tab. 8: Verwendete Muffelöfen

3. Synthese und Phasenbildung der Zementphasen

Im folgenden Kapitel wird die Phasenbildung der Reinphasen unter Verwendung der verschiedenen Synthesemethoden beschrieben.

3.1. Calciumaluminate (System CaO-Al₂O₃)

Als Grundlage für die Untersuchungen im System CaO-Al₂O₃ diente die zusammenfassende Arbeit zum Phasendiagramm von HALLSTEDT (1990).

3.1.1. CaO·Al₂O₃ (CA)

Vom CA sind eine monokline und eine orthorhombische Modifikation bekannt. Die orthorhombische Modifikation ist metastabil und bildet sich, ausgehend von sehr gut homogenisierten amorphen Ausgangsprodukten, ab einer Sintertemperaturen von etwa 900°C. Die Einheitszelle der orthorhombischen Modifikation und die Phasenumwandlung bei Verwendung von höheren Sintertemperaturen wurden von ITO *et al.* (1975) beschrieben. BACHIORRINI (1985) synthetisierte die orthorhombische Modifikation und untersuchte die Phasenumwandlung zum monoklinen CA mittels IR-Spektroskopie. DOUY & GERVAIS (2000) stellten orthorhombisches CA über die Sprühtrocknung und anschließende Zersetzung von Metallnitraten her. Gülgün *et al.* (1994) und GAKI *et al.* (2007b) beschrieben die Synthese von orthorhombischem CA mittels Polymer-Precursor-Synthese. Weitere Untersuchungen zur Synthese und zum Kristallisationsverhalten von Calciumaluminaten aus amorphen Precursoren wurden von UBEROI & RISBUD (1990) und VALLINO (1984) durchgeführt. JANÁKOVÁ *et al.* (2007) beschrieben die Struktur von metastabilem mit Eu³⁺ dotiertem CA. Die stabile monokline Modifikation des CA wurde ausführlich beschrieben, da sie Hauptphase im TZ ist (HOERKNER & MUELLER-BUSCHBAUM 1976).

Die Herstellung von CA mittels **Festkörpersynthese** erfolgte aus den stöchiometrischen Mengen der Oxide. Nach zwei Sinterschritten bei 1500°C (je 8h) und einer dazwischenliegenden Homogenisierung kommt es zur Bildung von monoklinem CA. Orthorhombisches CA konnte auf diesem Syntheseweg nicht hergestellt werden.

Orthorhombisches CA lag bei der **Sol-Gel-Synthese** ab 1000°C vor. Zusätzlich konnte jedoch $C_{12}A_7$ als Nebenphasen identifiziert werden. Trotz der guten Homogenisierung waren somit Sintertemperaturen von 1500°C (2 x 8h) notwendig, um CA reinphasig zu erhalten. Aufgrund der hohen Sintertemperaturen ist dann die monokline Modifikation des CA stabil. Die gleichen hohen Sintertemperaturen benötigten STEPHAN & WILHELM (2004) für die Synthese von CA mittels Sol-Gel-Methode.

Mittels **Polymer-Precursor-Synthese** kann kristallines orthorhombisches CA reinphasig ab einer Sintertemperatur von 900°C erhalten werden. Die Zersetzungsreaktion des Precursors wurde bereits von GüLGÜN *et al.* (1994) untersucht. Sie verwendeten ein Verhältnis von 60Ma.-% Zitronensäure (ZS) und 40Ma.-% Ethylenglykol (EG) zur Herstellung des Polymers. Für die Untersuchungen in der vorliegenden Arbeit wurde das molare Verhältnis von Metall-kationen/ZS/EG: 1/1/2 verwendet, was dem Verhältnis von GüLGÜN *et al.* (1994) sehr nahe kommt: 1mol Zitronensäure entspricht 60,25Ma.-% und 2mol Ethylenglykol entsprechen 39,75Ma.-%. Nach den Untersuchungen von GüLGÜN *et al.* (1994) lässt sich die Phasenbildung ausgehend vom Polymerprecursor in drei Schritte einteilen.

- Verkohlung des Polymers (400°C)
- Thermische Zersetzung des Polymers (500°C)
- Entweichen von Kohlenstoff (900°C)

Aufgrund der Tatsache, dass nach GÜLGÜN et al. (1994) Kohlenstoff entsteht, müssen stark reduzierende Bedingungen während des Sintervorgangs herrschen. Um die Phasenbildung deshalb bei unterschiedlichen Sauerstoffgehalten zu untersuchen, wurden TG/DTA-Untersuchungen bei unterschiedlichen Atmosphären durchgeführt. Um stark oxidierende Bedingungen nachzustellen, wurde synthetische Luft mit einem Durchfluss von 50ml/min als Spülgas verwendet. Bei der Verwendung von Stickstoff (N₂) als Spülgas wird der Sauerstoffgehalt reduziert. Die TG- und DTA-Diagramme (Abb. 11 und Abb. 12) zeigen, dass mit abnehmendem Sauerstoffgehalt der letzte Schritt des Gewichtsverlustes zu höheren Temperaturen verschoben wird. Höhere Durchflussraten an synthetischer Luft mit 100ml/min und 200ml/min zeigen einen Zersetzungsprozess analog zum Gasfluss von 50ml/min. Die unvollständig zersetzten Proben (N₂-Spülung) wiesen nach dem Abkühlen eine schwarze Färbung auf, was auf das Vorhandensein von Kohlenstoff hindeutet. Um auszuschließen, dass es sich bei diesem Gewichtsverlust um die Decarbonatisierung von zwischenzeitlich gebildetem Calciumcarbonat handelt, wurde eine Probe unter N_2 (200ml/min) und eine unter synthetischer Luft (50ml/min) bei jeweils 700°C gesintert und anschließend mittels IR-Spektroskopie charakterisiert. Es konnten in beiden Fällen keine CO₃²⁻-Banden detektiert werden, womit das Vorliegen von Carbonaten ausgeschlossen werden kann. Bei Vergrößerung der TG- und DTA-Diagramme bei Messungen mit 50ml/min synthetischer Luft (Abb. 13, schwarzes Rechteck in Abb. 11) zeigt sich, dass es zu einem sehr geringen Gewichtsverlust bei 951°C kommt, der mit einer leicht exothermen Reaktion verbunden ist. Nach Untersuchungen von GÜLGÜN et al. (1994) kommt es bei dieser Temperatur zur Freisetzung von Kohlenstoff. HERNANDEZ & GONZALEZ (2002) stellten Aluminiumoxid mittels Polymer-Precursor-Synthese her und zeigten auch, dass es zwischen 900°C und 1100°C zur Freisetzung von sehr geringen Mengen an Kohlenstoff kommt. LIN *et al.* (2008) zeigten, dass es bei der Zersetzung von aluminium-organischen Verbindungen zur Bildung von -O-Al-C-O-Al-O- Bindungen kommt und geringe Mengen an Kohlenstoff oberflächennah in röntgenamorphes Al₂O₃ eingebaut werden können. Diese Verbindungen sind nach LIN *et al.* (2008) bis zu einer Sintertemperatur von ca. 900°C stabil und erklären somit den geringen Gewichtsverlust.

Abb. 11: Gewichtsverlust (TG) bei der Zersetzung des Polymerprecursors (CA) in Abhängigkeit vom Spülgas (Sauerstoffgehalt); Heizrate: 10°C/min; Vergrößerter Ausschnitt des schwarzen Rechtecks in Abb. 13

Abb. 12: DTA-Diagramme zu den TG-Untersuchungen aus Abb. 11 bei der Zersetzung des Polymerprecursors (CA) in Abhängigkeit vom Spülgas (Sauerstoffgehalt); Heizrate: 10°C/min

Abb. 13: Vergrößerter Ausschnitt der TG/DTA-Diagramme des Polymerprecursors (schwarzer Ausschnitt aus Abb. 11); Heizrate: 10°C/min; Spülgas: synthetische Luft; Gasfluss: 50ml/min

Für die Synthesen im Platin- oder Korundtiegel wurde der Polymerprecursor locker in den Tiegel geschüttet und nicht verdichtet, der Precursor wies keine schwarze Färbung nach der Zersetzung bei 700°C auf. Folglich ist für die Verbrennung des Polymers bei den Synthesen im PT-Tiegel in dem verwendeten Ofen genügend Sauerstoff vorhanden.

Das bei 900°C gebildete orthorhombische CA (Abb. 14a) wandelt sich zwischen 1100°C und 1300°C langsam in monoklines CA (Abb. 14e) um. Bei niedrigeren Sintertemperaturen als 900°C ist der Precursor röntgenamorph. Die verfeinerten Gitterkonstanten der beiden Modifikationen sind in Tab. 9 dargestellt.

Abb. 14: Ausschnitte aus den XRD-Diagrammen des bei den folgenden Sinterschritten zersetzten Polymerprecursors: a) 1000°C (2h), b) 1100°C (2h), c) 1200°C (2h) und d) 1300°C (2h); Phasenübergang vom orthorhombischen CA (a) zum monoklinen CA (d)

Modifikation	RG	a [Å]	b [Å]	c [Å]	β [°]	D _{XRD} [g/cm ³]
Orthorhombisch	-	8,737 (2)	8,076 (2)	15,125 (2)	90	2,95
Monoklin	P2 ₁ /n	8,700 (1)	8,092 (1)	15,191 (2)	90,19 (1)	2,96

Tab. 9: Verfeinerte Gitterkonstanten von orthorhombischem und monoklinem CA

REM-Aufnahmen des voluminösen Polymerprecursors mit den gebundenen Kationen sind in Abb. 15 und Abb. 16 dargestellt. Abb. 17 bis Abb. 19 zeigen Aufnahmen des durch die Zersetzung des Polymerprecursors bei 900°C (2h) hergestellten orthorhombischen CA. Demnach bleibt die schaumartige äußere Struktur des Polymerprecursors auch nach der Zersetzung des Polymers bei 900°C erhalten (Abb. 17). Durch dessen Zersetzung entsteht ein poröses Netzwerk aus feinen Partikeln mit einer Größe zwischen 20nm und 100nm (Abb. 18 und Abb. 19), die in der gleichen Größenordnung wie die berechnete mittlere Kristallit-größe von 51nm liegt. Beim weiteren Sintern des orthorhombischen CA zum monoklinen CA bei 1500°C kommt es zu einem deutlichen Korngrößenwachstum (Abb. 20).

Abb. 15: REM-Aufnahme des Polymerprecursors bei RT (Polymer mit den gebunden Kationen)

Abb. 16: REM-Aufnahme des Polymerprecursors bei RT (Polymer mit den gebunden Kationen); Vergrößerung aus Abb. 15

Abb. 17: REM-Aufnahme von orthorhombischem CA, hergestellt durch die Zersetzung des Polymerprecursors bei 900°C (2h)

Abb. 18: REM-Aufnahme von orthorhombischem CA, hergestellt durch die Zersetzung des Polymerprecursors bei 900°C (2h)

Abb. 19: REM-Aufnahme von orthorhombischem CA, hergestellt durch die Zersetzung des Polymerprecursors bei 900°C (2h); Vergrößerung aus Abb. 18

Abb. 20: REM-Aufnahme von monoklinem CA, hergestellt durch Sintern des orthorhombischen CA aus Abb. 17 bei 1500°C (2h)

Zusätzlich wurde der Kristallisationsverlauf bei der Polymer-Precursor-Synthese mittels IR-Spektroskopie verfolgt (Abb. 21). Auch hier zeigt sich, dass die Bildung des orthorhombischen CA zwischen 800°C und 900°C beginnt. Bei einer Erhöhung der Sintertemperatur ist das Entstehen von zusätzlichen Absorptionsbanden durch die Symmetrieerniedrigung vom orthorhombischen zum monoklinen Kristallsystem zwischen 900°C und 1300°C zu beobachten (Abb. 21). Die Zuordnung der Absorptionsbanden des CA erfolgte bereits durch BACHIORRINI (1985).

Abb. 21: IR-Diagramme des bei folgenden Sinterschritten zersetzen Polymerprecursors (CA): a) 600°C (2h), b) 700°C (2h), c) 800°C (2h), d) 900°C (2h), e) 1000°C (2h), f) 1100°C (2h), g) 1200°C (2h) und h) 1300°C (2h)

Untersuchungen mit der doppelten und der halben Menge an Polymer (Tab. 10) zeigten, dass die Variation des Polymergehalts in diesem Bereich keinen Einfluss auf die Phasenbildung bei der Synthese von CA hat.

Polymergehalt	Kationen	Zitronensäure (ZS)	Ethylenglykol (EG)
0,5	1	0,5	1
1,0	1	1	2
2,0	1	2	4

Tab. 10: Variierte Kationen/ZS/EG-Verhältnisse für die Synthese von CA

HT-XRD-Aufnahmen zeigten, dass es ab 1100°C zur Umwandlung von der orthorhombischen zur monoklinen Modifikation kommt (Abb. 22). Dadurch kann bestätigt werden, dass es sich beim orthorhombischen CA um eine metastabile Modifikation handelt, die sich aufgrund einer bevorzugten Keimbildung gegenüber der stabilen monoklinen Modifikation bei niedrigen Sintertemperaturen bildet. Es kann somit auch ausgeschlossen werden, dass im Temperaturbereich bis 1400°C eine Hochtemperaturmodifikation vorliegt.

Abb. 22: Ausschnitt der HT-XRD-Aufnahme von orthorhombischem CA im Temperaturintervall zwischen 900°C und 1400°C; Erscheinen des -1 1 2 und -2 1 1-Reflexes durch die Umwandlung vom orthorhombischen zum monoklinen CA

Beim **GNP** kommt es durch die großen Mengen an frei werdenden Gasen während der exothermen Redoxreaktion zu einem Aufschäumen des Precursors. Aufgrund der schnell ablaufenden Verbrennungsreaktion kommt es nicht zur Kristallisation von Calciumaluminaten; stattdessen ist der Precursor röntgenamorph. Analoge Ergebnisse erhielt TAS (1998), der Harnstoff anstatt Glycin als Brennstoff nutzte. Um kristalline Phasen zu erhalten wurde der amorphe Precursor in anschließenden Sinterschritten getempert. Dabei entstehen sehr feine Partikel mit einer Größe zwischen 50nm und 300nm (Abb. 23 und Abb. 24). Analog zur Polymer-Precursor-Methode kommt es bei einem Sinterschritt von 900°C zur Kristallisation von orthorhombischem CA. Zur besseren Interpretation der kalorimetrischen Untersuchungen wurden die BLAINE-Werte der Phasen bestimmt (Tab. 11 und Tab. 12).

Abb. 23: REM-Aufnahme von orthorhombischem CA, hergestellt aus dem bei 900°C (2h) zersetzten Precursor des GNP

Abb. 24: REM-Aufnahme von orthorhombischem CA, hergestellt aus dem bei 900°C (2h) zersetztem Precursor des GNP; Vergrößerung aus Abb. 23

Tab. 11: Spezifische Oberfläche nach BLAINE von orthorhombischem CA; Sinterschritt: 900°C (2h)

	spez. Oberfläche (BLAINE)	Partikelgröße (REM)
Glycin-Nitrat-Prozess	23820 cm ² /g	50nm – 300nm
Polymer-Precursor-Synthese	21240 cm ² /g	50nm – 150nm

Tab. 12: Spezifische Oberfläche nach BLAINE von monoklinem CA; Sinterschritt: 1500°C (2h)

	Sintertemperatur [°C]	spez. Oberfläche (BLAINE)
Glycin-Nitrat-Prozess	1500	9490 cm²/g
Festkörpersynthese	1500	1950 cm ² /g

3.1.2. 12CaO·7Al₂O₃ (C₁₂A₇)

Mayenit 12CaO·7Al₂O₃ (C₁₂A₇; Dodecacalciumheptaaluminat) ist die reaktivste Phase im Tonerdezement. Neben dem C₁₂A₇ existiert das 5CaO·3Al₂O₃ (C₅A₃; Pentacalciumtrialuminat) mit ähnlicher chemischer Zusammensetzung, dass in der Zementchemie als metastabile Phase bezeichnet wird (TAYLOR 1997). Die Elementarzelle und Struktur des C₅A₃ wurden von ARUJA (1956) und VINCENT & JEFFERY (1978) beschrieben. Die Stabilitätsbereiche der beiden Phasen wurden von ZHMOIDIN & CHATTERJEE (1984) und BRISI *et al.* (1986) untersucht. Demnach kommt es nur bei vollkommen trockener Atmosphäre und unter Sauerstoffausschluss unterhalb von 1280°C zur Bildung von C₅A₃. BRISI *et al.* (1986) erwähnten jedoch auch, dass es im Fall einer sehr guten Homogenisierung der Ausgangsstoffe zwischen 900°C und 1000°C zur Bildung von C₅A₃ unter wasser- oder sauerstoffhaltiger Atmosphäre kommen kann. Die allgemeine Strukturformel des C₁₂A₇ kann nach ZHMOIDIN & CHATTERJEE (1984) wie folgt angegeben werden:

$$11CaO \cdot 7Al_2O_3 \cdot CaX_2$$
 (mit X = $\frac{1}{2}O^2 \cdot ,OH^-, Cl^-, F^-$)

Mittels **Festkörpersynthese** sind 5 Sinterschritte bei 1300°C von je 10h mit dazwischenliegenden Homogenisierungsschritten notwendig, um $C_{12}A_7$ reinphasig zu erhalten. Als Nebenphasen tritt bei den ersten Sinterschritten C_3A und CA auf.

Auch bei der **Sol-Gel-Synthese** sind lange Sinterschritte (3x10h) notwendig; geringe Mengen an C₃A sind auch noch nach mehreren Sinterschritten bei 1300°C vorhanden.

Bei Verwendung des **GNP** entsteht analog zum CA nach der Verbrennungsreaktion ein röntgenamorpher schaumartiger Precursor (Abb. 26 und Abb. 27). Ab einem zweistündigen Sintern von 800°C beginnt die Bildung von C₅A₃ (Abb. 25b). Die REM-Abbildungen (Abb. 28 und Abb. 29) bei diesem Sinterschritt (2h bei 800°C) zeigen, wie sich aus dem amorphen Schaum erste Partikel mit einer Größe von etwa 50nm beginnen zu bilden. Nach einer Sintertemperatur von 900°C ist die Kristallisation abgeschlossen. Geringe Mengen an C₃A entstehen, da die Stöchiometrie von C₅A₃ leicht von der Ausgangszusammensetzung des C₁₂A₇ abweicht. Die Berechnung der durchschnittlichen Kristallitgröße aus dem Pulver-diffraktogramm aus Abb. 25b ergab eine Größe von 43nm, was mit der Partikelgröße in den REM-Aufnahmen in etwa übereinstimmt (Abb. 31). Damit kann davon ausgegangen werden, dass einzelne Kristallite vorliegen. Nach einem weiteren Sinterschritt bei 1000°C (2h) beginnt die Bildung des stabilen C₁₂A₇ (Abb. 25d). Die Phasenumwandlung ist nach einem zweistündigen Sinterschritt bei 1200°C abgeschlossen (Abb. 25e) und es liegt C₁₂A₇ als Reinphase vor. Die Änderung der Partikelgröße und Partikelform von den sphärischen

Partikeln mit einer Größe von 50nm (800°C - 2h) über die Partikel der gleichen Größenordnung mit deutlich ausgebildeten Kristallflächen (900°C - 2h) bis zu einem deutlichen Korngrößenwachstum (Korngröße: 0,5µm bis 5µm) bei 1200°C (2h) ist mittels REM-Aufnahmen von Abb. 26 bis Abb. 33 dargestellt.

Abb. 25: XRD-Diagramme des Precursors aus dem GNP (Ausgangszusammensetzung des C₁₂A₇) nach folgenden Sinterschritten: a) RT, b) 800°C (2h), c) 900°C (2h), d) 1000°C (2h) und e) 1200°C (2h)

Abb. 26: REM-Aufnahme des röntgenamorphen Precursors aus dem GNP; XRD-Diagramm in Abb. 25a

Abb. 27: REM-Aufnahme des röntgenamorphen Precursors aus dem GNP; XRD-Diagramm in Abb. 25a

Abb. 28: REM-Aufnahme des bei 800°C (2h) gesinterten Precursors aus dem GNP; XRD-Diagramm in Abb. 25b

Abb. 29: REM-Aufnahme des bei 800°C (2h) gesinterten Precursor aus dem GNP; XRD-Diagramm in Abb. 25b

Abb. 30: REM-Aufnahme von C_5A_3 und geringen Mengen an C_3A , hergestellt durch Sintern des Precursors aus dem GNP bei 900°C (2h); XRD-Diagramm in Abb. 25c

Abb. 31: REM-Aufnahme von C_5A_3 und geringen Mengen an C_3A , hergestellt durch Sintern des Precursors aus dem GNP bei 900°C (2h); XRD-Diagramm in Abb. 25c

Abb. 32: REM-Aufnahme von $C_{12}A_7$, hergestellt durch Sintern des Precursors aus dem GNP bei 1200°C (2h); XRD-Diagramm in Abb. 25e

Abb. 33: REM-Aufnahme von $C_{12}A_7$, hergestellt durch Sintern des Precursors aus dem GNP bei 1200°C (2h); XRD-Diagramm in Abb. 25e

Bei der **Polymer-Precursor-Synthese** ist der Phasenverlauf analog zu dem des GNP, jedoch bilden sich bei 900°C bereits geringe Mengen der stabilen Phase $C_{12}A_7$. Für die vollständige Umsetzung des C_5A_3 und C_3A zum $C_{12}A_7$ ist auch ein Sinterschritt von 2h bei 1200°C notwendig. Die REM-Aufnahmen zeigen, dass die äußere Struktur des Polymerprecursors erhalten bleibt und die Partikel etwas stärker als beim GNP agglomeriert sind. Nach dem Sintern bei 1200°C (2h) liegt die Korngröße im Bereich zwischen 300nm und 1µm (Abb. 34 und Abb. 35).

Abb. 34: REM-Aufnahme von $C_{12}A_7$, hergestellt durch Sintern des Polymerprecursors bei 1200°C (2h)

 $1,26 \text{ m}^2/\text{g}$

BET

Abb. 35: REM-Aufnahme von C₁₂A₇, hergestellt durch Sintern des Polymerprecursors bei 1200°C (2h)

0,28

Die spezifischen Oberflächen des $C_{12}A_7$ wurden mittels BLAINE- und BET-Methode bestimmt und sind in Tab. 13 dargestellt.

C ₁₂ A ₇	Glycin-Nitrat-Prozess	Polymer-Precursor-Synthese	Festkörpersynthese			
BLAINE	4860 cm²/g	2970 cm²/g	1350 cm ² /g			

Tab. 13: Spezifische Oberfläche von C₁₂A₇, hergestellt mittels verschiedener Synthesemethoden

Untersuchungen mit dem doppelten und der halben Menge an Polymer (Tab. 14) zeigten, dass die Variation des Polymergehalts in diesem Bereich keinen Einfluss auf die Phasenbildung bei der Synthese von $C_{12}A_7$ hat.

 $1,47 \text{ m}^2/\text{g}$

Polymergehalt	Kationen	Zitronensäure (ZS)	Ethylenglykol (EG)
0,5	1	0,5	1
1,0	1	1	2
2,0	1	2	4

Tab. 14: Variierte Kationen/ZS/EG-Verhältnisse bei der Synthese von C12A7

3.1.3. 3CaO·Al₂O₃ (C₃A)

Tricalciumaluminat $3CaO \cdot Al_2O_3$ (C₃A) ist eine der Hauptphasen des PZ. Reines C₃A kristallisiert im kubischen Kristallsystem. Im PZ kommt es durch den Einbau von Na₂O zur Bildung einer orthorhombischen und einer monoklinen Phase, was von LEE & GLASSER (1979) und WISTUBA (2008) beschrieben wurde. Die Synthese von C₃A mittels verschiedener Methoden ist von LAZAU *et al.* (2005) beschrieben.

Um C₃A reinphasig zu erhalten ist bei der **Festkörpersynthese** ein Sinterschritt von 20h bei 1400°C notwendig.

Bei Verwendung des Precursors der **Sol-Gel-Methode** konnte nach einem zweistündigen Sinterschritt bei 1400°C C₃A reinphasig erhalten werden. Bei 1300°C (2h) lagen Nebenphasen an CaO und $C_{12}A_7$ vor.

Im Fall des **GNP** und der **Polymer-Precursor-Synthese** ist zweistündiges Sintern bei 1200°C notwendig, um C₃A phasenrein zu synthetisieren. Die Temperatur von 1200°C ist erforderlich, da sich bei 1000°C und 1100°C geringe Mengen an $C_{12}A_7$, CA und CaO bilden. Die Diffraktogramme in Abb. 36 zeigen die Phasenentwicklung und die Zunahme der Kristallinität bei höheren Sintertemperaturen.

Abb. 36: XRD-Diagramme von C₃A ausgehend vom Precursor der Polymer-Precursor-Synthese bei folgenden Sinterschritten: a) 1000°C (2h), b) 1100°C (2h) und c) 1200°C (2h)

In den REM-Aufnahmen des mittels Festkörpersynthese hergestellten C₃A, (Abb. 37) ist zu sehen, dass die Partikel aufgrund der hohen Sintertemperatur und langen Sinterzeit stark zusammengesintert sind. In Abb. 37 bis Abb. 40 sind REM-Aufnahmen des C₃A aus der Sol-Gel-Methode, Polymer-Precursor-Synthese und dem GNP im gleichen Maßstab dargestellt. Die Korngrößen des über den GNP (100nm-500nm) hergestellten C₃A sind deutlich geringer als die des mittels Polymer-Precursor-Synthese (100nm-2µm) und der Sol-Gel-Methode (500nm-4µm) hergestellten Produkts.

Abb. 37: REM-Aufnahme von C₃A, hergestellt mittels Festkörpersynthese bei 1400°C (20h)

Abb. 38: REM-Aufnahme von C₃A, hergestellt mittels des Precursors aus der Sol-Gel-Methode bei 1400°C (2h)

Abb. 39: REM-Aufnahme von C_3A , hergestellt mittels des Precursors aus der Polymer-Precursor-Synthese bei 1200°C (2h)

Abb. 40: REM-Aufnahme von C_3A , hergestellt mittels des Precursors aus dem GNP bei 1200°C (2h)

Die spezifischen Oberflächen nach BLAINE sind in Tab. 15 dargestellt.

Tab. 15: Spezifische Oberfläche nach BLAINE von C₃A bei Verwendung verschiedener Synthesemethoden

C ₃ A	GNP	Polymer-Precursor-Synthese	Festkörpersynthese	Sol-Gel-Synthese
BLAINE [cm ² /g]	4110	9030	500	3090

3.2. Calciumsilikate (System CaO-SiO₂)

3.2.1. 2CaO·SiO₂ (C₂S)

Dicalciumsilikat $2CaO \cdot SiO_2$ (C₂S) ist einer der Hauptphasen des PZ und TZ. Es sind fünf Modifikationen bekannt, die in Arbeiten von BARBIER & HYDE (1985), CHAN *et al.* (1992), MUMME *et al.* (1995), REMY *et al.* (1995) und TAYLOR (1997) zusammengefasst sind. CHAN *et al.* (1992) stellte bezüglich der Polymorphie von C₂S folgendes Schema auf:

Abb. 41: Polymorphie des C₂S nach CHAN et al. (1992)

Durch einen sehr schnellen Abkühlprozess oder dem Einbau von Fremdionen lassen sich α oder β -Modifikationen bei RT stabilisieren. CHAN *et al.* (1992) zeigten, dass sich β -C₂S auch durch Partikelgrößen von kleiner 10µm bei RT stabilisieren lässt. NETTLESHIP *et al.* (1993) und HONG & YOUNG (1999) synthetisierten C₂S mittels Pechini-Methode und beschrieben, dass es bei einer Sintertemperatur von 700°C zur Stabilisierung von α `_L-C₂S bei RT kommt. Bei Sintertemperaturen zwischen 800°C und 1200°C ist β -C₂S stabil, nach einer Sintertemperatur von 1400°C kommt es zur Bildung von γ -C₂S. KAKALI *et al.* (2007) synthetisierten ebenfalls β -C₂S mittels Pechini-Methode, enthielten aber erst bei einer Sintertemperatur von 1000°C eine Reinphase. NETTLESHIP *et al.* (1993) untersuchten zusätzlich bei der Synthese von C₂S den Einfluss des Polymergehalts auf die Zersetzungsreaktion. FUJIMORI *et al.* (2001) synthetisierten β -C₂S und verwendete dabei die "klassische" Sol-Gel-Methode. HUANG & CHANG (2007) stellten mittels einer Verbrennungssynthese C₂S her und beschrieben, dass zwischen einer Sintertemperatur von 650°C und 1100°C β -C₂S stabilisiert wird. DovÁL *et al.* (2006) synthetisierten bei 600°C β -C₂S aus Calciumnitrat-Hydrat und Silika-Sol. Sie enthielten jedoch bei niedrigen Sintertemperaturen als Nebenphase Ca(OH)₂. CHRYSAFI *et al.* (2007) synthetisierten C₂S mittels einer klassischen Sol-Gel-Methode in wässrigem und alkoholischem Lösungsmittel. Sie stellten jedoch nur sehr geringe Abweichungen in der Phasenbildung abhängig vom Lösungsmittel fest und erhielt mit beiden Methoden ab 600°C kristallines C₂S. Es kann somit zusammengefasst werden, dass sich C₂S bei ausreichend guter Homogenisierung durch die Verwendung von Niedrigtemperatur-Synthesemethoden bereits ab ca. 600°C bildet. Kontrovers sind die Angaben, ob α `_L-C₂S oder β -C₂S bei Sintertemperaturen zwischen 600°C und 1000°C vorliegt. Untersuchungen zur Phasenbildung von C₂S bei der Dehydration von hydratisiertem PZ (CASTELLOTE *et al.* 2004) oder Calciumsilikat-Hydraten (SHAW *et al.* 2000) zeigen ebenfalls, dass sich C₂S ab 600°C bildet. Die Stabilisierung von α `_L-C₂S und β -C₂S bei niedrigen Sintertemperaturen wurde auch bei der Herstellung von Belitzementen beobachtet (HUGHES *et al.* 2009). Bis 900°C werden demnach große Mengen an α `_L-C₂S stabilisiert und ab 1000°C bildet sich β -C₂S. In den hier vorliegenden eigenen Untersuchungen soll nun die Phasenbildung von C₂S in Abhängigkeit von der Sintertemperatur bei Verwendung der unterschiedlichen Synthesemethoden be-

schrieben werden.

Bei der Synthese von C₂S mittels **Festkörpersynthese** kommt es zwischen Sintertemperaturen von 1000°C und 1300°C zur Bildung eines Gemisches aus β -C₂S, γ -C₂S, CaO (C) und SiO₂ (S). Erst bei 1400°C liegen keine Nebenphasen vor und es kommt nach Abkühlung auf RT zur Stabilisierung von γ -C₂S (Abb. 42).

Abb. 42: XRD-Diagramme bei der Synthese von C_2S mittels Festkörpersynthese aus α -SiO₂ (S) und CaO (C) bei verschiedenen Sintertemperaturen

Bei der Herstellung von C₂S mittels **Polymer-Precursor-Synthese** wurde der Precursor zunächst thermoanalytisch untersucht. Bei Verwendung von synthetischer Luft als Spülgas kommt es bei 287°C und 423°C aufgrund der Zersetzung des Polymers zu stark exothermen Reaktionen, verbunden mit einem hohen Gewichtsverlust (Abb. 43). Im Anschluss kann ein weiterer geringer Gewichtsverlust zwischen 520°C bis 750°C detektiert werden. Bei Verwendung von Stickstoff als Spülgas ist analog zum CA die Zersetzung des Polymers unvollständig. Es bildet sich Kohlenstoff, der erst zwischen 800°C und 1300°C langsam verbrennt (Abb. 44).

Abb. 43: TG/DTA-Aufnahmen des C₂S-Polymerprecursors; Heizrate: 10°C/min; Spülgas: synthetische Luft; Spülrate: 50ml/min

Abb. 44: TG/DTA-Aufnahmen des C₂S-Polymerprecursors; Heizrate: 10°C/min; Spülgas: Stickstoff; Spülrate: 200ml/min

Röntgenographische Untersuchungen bei verschiedenen Sinterschritten zeigen, dass bei einem Sinterschritt von 2h bei 550°C fein kristalliner Calcit als Zwischenprodukt entsteht (Abb. 45a). Kristalline SiO₂-haltige Phasen konnten nach diesem Sinterschritt nicht identifiziert werden. Bei einer Sintertemperatur von 650°C kommt es nach dem Abkühlprozess auf RT zur Bildung von $\alpha`_L$ -C₂S (Abb. 45b). Die Reflexe des hier ohne Fremdionen stabilisierten $\alpha`_L$ -C₂S konnten mit der von SAALFELD (1975) und JELENIĆ & BEZJAK (1982) beschriebenen orthorhombischen Elementarzelle (a, 3b, c) indiziert werden (Tab. 16). Für die Verfeinerung wurde die von MUMME *et al.* (1995) beschriebene RG Pna2₁ verwendet. Bei den Sinterschritten bei 800°C (2h), 900°C (2h) und 1000°C (2h) kommt es zu einem Gemisch aus $\alpha`_L$ -C₂S und β -C₂S. Nach einem Sinterschritt von 1100°C (2h) liegt reines β -C₂S vor. Die Kristallitgröße des C₂S steigt mit höherer Sintertemperatur signifikant an (Abb. 46).

Abb. 45: Ausschnitt aus den XRD-Diagrammen bei der Synthese von C₂S mittels des Polymerprecursors bei folgenden Sinterschritten: a) 550°C (2h), b) 650°C (2h), c) 800°C (2h), d) 900°C (2h), e) 1100°C (2h); Aufspaltung der Hauptreflexe bei der Umwandlung von α_{L} -C₂S (Rot) zum β -C₂S (Blau); *Reflexe von Calcit

Tab.	16:	Verfeinerte	Gitterkonstanten	und	Kristallitgrößen	bei de	r Synthese	von	C_2S	mittels	des	Polymer	precur-
sors	bei v	verschieden	en Sinterschritter	ו									

Sinterschritt	RG	a [Å]	b [Å]	c [Å]	β [°]	L _{VOL} [nm]	Spez. Oberfläche nach BLAINE
2h - 650°C	Pna2 ₁	20,292 (2)	9,567 (2)	5,639 (2)	90	14	17040
2h - 700°C						14	16210
2h - 800°C		Misshupa	15	9490			
2h - 900°C	Mischung aus α_{L} -C ₂ S und β -C ₂ S						9170
2h - 1000°C							4210
2h - 1100°C	P2 ₁ /n	5,512 (1)	6,757 (1)	9,315 (1)	94,50 (2)	89	1570

Abb. 46: Berechneter Durchmesser der Kristallite von C₂S in Abhängigkeit von der Sintertemperatur bei Annahme sphärischer Kristallite

Abb. 47 bis Abb. 48 zeigen REM-Aufnahmen des Polymerprecursors. In Abb. 49 und Abb. 50 ist das bei 650°C (2h) gesinterte $\alpha_L^-C_2S$ dargestellt. Die Partikelgröße liegt zwischen 10nm und 30nm. Damit ist die Partikelgröße (REM) in etwa gleich der Kristallitgröße (XRD) und es kann angenommen werden, dass einzelne Kristallite vorliegen.

Abb. 47: REM-Aufnahme des C₂S-Polymerprecursors

Abb. 48: REM-Aufnahme des C2S-Polymerprecursors

Abb. 49: REM-Aufnahme von α_{L} - C_2 S hergestellt mittels Polymer-Precursor-Synthese; Sinterschritt: 650°C (2h)

Abb. 50: REM-Aufnahme von $\alpha_{L}^{-}C_{2}$ S hergestellt mittels Polymer-Precursor-Synthese; Sinterschritt: 650°C (2h)

Bei den REM-Aufnahmen ist bereits nach einer Sintertemperatur von 900°C (2h) ein deutlicher Anstieg der Korngröße (50nm bis 100nm) zu beobachten (Abb. 51 und Abb. 52). Die Kristallitgröße ist aufgrund des Korngrößenwachstums deutlich geringer als die Korngröße. Die Korngröße des bei 1100°C gesinterten β -C₂S liegt bereits zwischen 0,5µm und 2µm (Abb. 53 und Abb. 54).

Abb. 51: REM-Aufnahme von C_2S ($\alpha_L^-C_2S + \beta - C_2S$); Sinterschritt: 900°C (2h); Polymer-Precursor-Synthese

Abb. 52: REM-Aufnahme von C_2S ($\alpha_L^*-C_2S + \beta-C_2S$); Sinterschritt: 900°C (2h); Polymer-Precursor-Synthese

Abb. 53: REM-Aufnahme von β -C₂S; Sinterschritt: 1100°C (2h); Polymer-Precursor-Synthese

Abb. 54: REM-Aufnahme von β -C₂S; Sinterschritt: 1100°C (2h); Polymer-Precursor-Synthese

PUERTAS & TRIVINO (1985) zeigten, dass sich die einzelnen Modifikationen des C₂S mittels IR-Spektroskopie gut charakterisieren lassen. Aufgrund dessen wurden bei den jeweiligen Sinterschritten IR-spektroskopische Untersuchungen durchgeführt. Bei der Probe, die mit einem Temperschritt von 2h bei 550°C behandelt wurde, konnte die $v_2(CO_3^{2-})$ -Schwingung bei 874cm⁻¹ des mittels XRD identifizierten Calcits nachgewiesen werden. Ab 650°C sind die Carbonat-Banden vollständig verschwunden und es konnte $\alpha_L^-C_2S$ identifiziert werden. Damit kann zusätzlich ausgeschlossen werden, dass röntgenamorphes CaCO₃ vorliegt. Während der Sinterschritte von 650°C (2h) zu 1100°C (2h) kommt es zur Umwandlung zum β -C₂S, erkennbar an der charakteristischen $v_3(SiO_4^{4-})$ -Schwingung bei 995cm⁻¹ (PUERTAS &

TRIVINO 1985). Damit verbunden ist die Symmetrieerniedrigung der Elementarzelle (orthorhombisch nach monoklin), die eine erhöhte Anzahl an Absorptionsbanden zur Folge hat (Abb. 55).

Abb. 55: IR-Aufnahmen bei der Synthese von C₂S mittels des Polymerprecursors bei folgenden Sinterschritten: a) 550°C (2h) Calcit, b) 650°C (2h), α_{L} -C₂S (Rot), c) 800°C (2h), d) 900°C (2h) und e) 1100°C (2h), β -C₂S (Blau)

In weiteren Versuchen wurde die Phasenbildung von C₂S mittels HT-XRD untersucht (Abb. 56). Dafür wurde der Precursor in einem Ofen bei 500°C vorgesintert, um das Polymer zu zersetzen. Beim Aufheizen des Produkts zeigt sich, dass die Zersetzung des zwischenzeitlich gebildeten Calcits bei 500°C beginnt und bei 650°C vollständig abgeschlossen ist. Die Bildung von α `_L-C₂S beginnt ab 600°C. Beim Abkühlen nach einer Sintertemperatur von 700°C kommt es zur Bildung von α `_L-C₂S bei RT (Abb. 57).

Abb. 56: XRD-Diagramme beim Aufheizen des bei 500°C vorgesinterten C₂S-Polymerprecursors; Zersetzungsreaktion des Calcits (Weiß) und Bildung von α_{L}^{-} C₂S (Grau)

Abb. 57: XRD-Diagramme beim Abkühlen des bei 700°C gesinterten C₂S-Polymerprecursors, Stabilisierung von α `_L-C₂S (Grau)

Bei einer Sintertemperatur von 1100°C kommt es bei der Abkühlung zwischen 500°C und 600°C zur Umwandlung von α_{L} -C₂S (Grau) zum β -C₂S (Hellgrau), das auch bei RT stabil ist (Abb. 58). Durch das Sintern bei einer Temperatur von 1300°C ist bereits bei 600°C die Umwandlung zum β -C₂S abgeschlossen. Im Anschluss folgt zwischen 500°C und 400°C die Umwandlung zum γ -C₂S (Weiß) (Abb. 59). Die Ergebnisse zeigen somit, dass es bei einer geringeren Sintertemperatur zu einer Bildung von Hochtemperaturmodifikationen kommt, was auch von NETTLESHIP et al. (1993) und HONG & YOUNG (1999) beschrieben wurde. Zudem findet die Umwandlung von $\alpha_{L}^{-}C_{2}S$ zu β -C₂S infolge einer höheren Sintertemperatur auch bei höheren Temperaturen statt.

Abb. 58: XRD-Diagramme beim Abkühlen des bei 1100°C gesinterten C₂S-Polymerprecursors; Bildung von β -C₂S (Hellgrau)

Abb. 59: XRD-Diagramme beim Abkühlen des bei 1300°C gesinterten C₂S-Polymerprecursors, Bildung von γ -C₂S (Weiß)

Beim **GNP** kommt es zwischen Glycin und dem kolloidalen SiO₂-Sol zu einer stark exothermen Reaktion, die von STIEVANO et al. (2007) beschrieben wurde. Als Folge ist die Synthese schwer kontrollierbar und es können nur geringe Mengen des Precursors hergestellt werden. Als Ausgangsprodukt bei dem GNP liegt ein Gemisch aus CaCO₃ und geringen Mengen an $\alpha_{L}^{-}C_{2}S$ und $\beta_{L}C_{2}S$ vor. Bei einer Sintertemperatur von 600°C kommt es zur Decarbonatisierung des CaCO₃ und zu einem Gemisch aus $\alpha_L^-C_2S$, β -C₂S und CaO. Das CaO beginnt erst ab Sinterschritten von 1000°C (2h) mit dem amorphen SiO₂ zu reagieren. Als Folge der höheren Sintertemperaturen wird hier nur noch β-C₂S stabilisiert (Abb. 60). Zusätzlich liegen infolge der schlechteren Homogenisierung bei diesen Sinterschritten geringe Mengen der Nebenphasen Wollastonit-1A (CS) und Rankinit (C₃S₂) vor.

Die Synthese von C₂S durch Verwendung des Precursors aus der Sol-Gel-Methode zeigt eine identische Phasenbildung wie bei der Verwendung des Precursors aus dem GNP. Es bildet sich C₂S ab einer Sintertemperatur von 600°C. Zusätzlich entstehen bis zu einer Sintertemperaturen von 1000°C Nebenphasen an CaO, die erst ab einer Sintertemperatur

Temperatur [°C]

von 1000°C wieder abnehmen. Stabilisiert wird nach einer Sintertemperatur von 1000°C bei RT die β -Modifikation des C₂S aufgrund der geringen Partikelgröße (Abb. 61).

Abb. 60: REM-Aufnahmen des β -C₂S nach einer Sintertemperatur bei 1000°C; GNP **Abb.** 61: REM-Aufnahmen des β -C₂S nach einer Sintertemperatur bei 1000°C; Sol-Gel-Methode

Bei der Polymer-Precursor-Synthese, dem GNP und der Sol-Gel-Methode wurde versucht, die Homogenisierung dahingehend zu verbessern, dass als SiO₂-Ausgangsprodukt das Silan Tetraethylorthosilicat (TEOS) anstelle des kolloidalen SiO₂-Sol verwendet wird. Bei der Polymer-Precursor-Synthese und dem GNP beginnt die Bildung von C₂S ab 600°C, jedoch liegen immer Nebenphasen an CaO vor. Es stellte sich heraus, dass es bei der Zersetzung des Polymers bzw. der Verbrennungsreaktion des GNP zum Verdampfen der Silane kommt. Bei der Sol-Gel-Methode wurde ein alkoholisches Lösungsmittel verwendet. Die Bildung von C₂S beginnt ab 600°C, wobei α `_L-C₂S stabilisiert wird und zusätzlich geringe Mengen an CaO vorliegen. Im Anschluss ist ein Sinterschritt von 2h bei 1300°C notwendig, um phasenreines C₂S herzustellen.

3.2.2. 3CaO·SiO₂ (C₃S)

 C_3S ist die hauptfestigkeitsbildende Phase im PZ und liegt in einem Mengengehalt zwischen 50% und 80% vor. Die Polymorphie des C_3S wurde von REGOURD (1964) beschrieben und von TAYLOR (1997) zusammengefasst und mit anderen Arbeiten verglichen.

 $T_1 \xleftarrow{62\%C} T_2 \xleftarrow{92\%C} T_3 \xleftarrow{98\%C} M_1 \xleftarrow{99\%C} M_2 \xleftarrow{106\%C} M_3 \xleftarrow{107\%C} R$ *Abb.* 62: Polymorphie des C₃S nach Taylor (1997)

C₃S wird über 1250°C aus C₂S und CaO gebildet (PHILLIPS & MUAN 1959). Um C₃S phasenrein zu synthetisieren sind lange Sinterzeiten und dazwischenliegende Homogenisierungsschritte bei der Festkörpersynthese notwendig. WANG & THOMSON (1996) machten Untersuchungen zur Kinetik der C₃S-Bildung, ausgehend von einem über die klassische Sol-Gel-Methode hergestellten Precursor aus SiO₂-Sol und Calciumnitrat. Trotz der guten Homogenisierung waren Sintertemperaturen von 1450°C notwendig, um C₃S phasenrein zu erhalten. STEPHAN & WILHELM (2004) und STEPHAN & PLANK (2007) verwendeten die Sol-Gel-Methode zur Synthese von C₃S und benötigten mehrere Sinterschritte bei 1500°C (28h), um phasenreines C₃S zu erhalten. FUJIMORI *et al.* (2001) synthetisierten C₃S mittels einer Verbrennungssynthese. Übereinstimmend zeigten WANG & THOMSON (1996), FUJIMORI *et al.* (2001) und STEPHAN & PLANK (2007), dass es bei Verwendung dieser Niedrigtemperatur-Synthesemethoden bei RT zur Stabilisierung einer triklinen Modifikation kommt. In den eigenen Untersuchungen sollte nun die Phasenbildung bei Verwendung der unterschiedlichen Synthesemethoden untersucht werden.

Bei allen vier verwendeten Synthesemethoden wurden die Precursorphasen zunächst bei 1000°C gesintert, um das Polymer zu zersetzen und den Calcit zu decarbonatisieren. Bei den Niedrigtemperatur Synthesemethoden bilden sich β -C₂S und CaO, bei der Festkörpersynthese lag CaO und SiO₂ vor. Im Anschluss wurden die Synthesen für 2h bei 1500°C gesintert und an Luft abgekühlt, um C₃S zu stabilisieren. Bei allen Synthesemethoden sind geringe Gehalte an C₂S und CaO vorhanden, die sich durch wiederholte Sinterprozesse minimieren lassen. Bei Verwendung der Precursor aus dem **GNP**, der **Polymer-Precursor-Synthese** und der **Sol-Gel-Methode** kommt es nach dem Abkühlprozess vor allem zur Stabilisierung von triklinem C₃S mit der Modifikation T₁, die von REGOURD (1964) beschrieben wurde (ICDD: 00-031-0301). Bei der **Festkörpersynthese** hingegen wird die monokline Modifikation stabilisiert (MUMME & MELBOURNE (1995), ICDD: 00-049-0442). Ausschnitte aus den XRD-Diagrammen (Abb. 63) zeigen die für die Identifikation der unterschiedlichen Modifikationen relevanten Bereiche. Durch die starken Peaküberlagerungen bei den verschiedenen Modifikationen kann nicht ausgeschlossen werden, dass

zusätzlich einige Ma.-% an anderen Modifikationen vorhanden sind.

Abb. 63: Ausschnitte aus den XRD-Diagrammen von C₃S nach drei Sinterschritten von je 2h bei 1500°C; Vergleich der verschiedenen Synthese Methoden

In den rasterelektronenmikroskopischen Untersuchungen konnten bei allen Pulvern, die mittels **Niedrigtemperatur-Synthesen** hergestellt wurden, vergleichbare runde Kornformen und Korngrößen zwischen 1µm und 3µm bestimmt werden (Abb. 64 bis Abb. 66). Die Ergebnisse entsprechen denen von WANG & THOMSON (1996), die vergleichbare Kornformen und Korngrößen bei gleicher Sintertemperatur erhielten.

Mittels EDX konnten zusätzlich geringe Gehalte an calcium- und sauerstoffreichen Nebenphasen identifiziert werden (Abb. 68 und Abb. 69). Da die Proben bei Umgebungsbedingungen präpariert und mit Kohlenstoff bedampft wurden, kann nicht ausgeschlossen werden, dass das mittels XRD identifizierte CaO bereits hydratisiert (Ca(OH)₂) oder carbonatisiert (CaCO₃) ist. Bei der Festkörpersynthese sind die Kornformen unregelmäßiger und die Korngrößen variieren zwischen 0,5µm und 15µm (Abb. 67).

Abb. 64: REM-Aufnahme von C_3S ; Sol-Gel-Methode; Sintertemperatur 1500°C (3 x 2h)

Abb. 65: REM-Aufnahme von C₃S; Polymer-Precursor-Synthese; Sintertemperatur 1500°C (3 x 2h)

Abb. 66: REM-Aufnahme von C₃S; GNP; Sintertemperatur 1500°C (3 x 2h)

Abb. 67: REM-Aufnahme von C₃S; Festkörpersynthese; Sintertemperatur 1500°C (3 x 2h)

Abb. 68: REM-Aufnahme; Identifizierung von Nebenphasen nach dem Sintern des Polymerprecursors bei einer Sintertemperatur 1500°C (3 x 2h)

Abb. 69: EDX-Diagramm; Identifizierung von Kohlenstoff, Sauerstoff, Calcium und sehr wenig Silizium (durch Streustrahlung) aus dem in Abb. 68 rot gekennzeichnetem Bereich; Beschichtung der Probe mit Kohlenstoff

3.3. Calciumaluminiumsilikate (System CaO-Al₂O₃-SiO₂)

Bei der Synthese der Calciumaluminate mittels Sol-Gel-Methode und der Verwendung von kolloidalem Al_2O_3 -Sol waren sehr hohe Sintertemperaturen notwendig. Aufgrund dessen wurden für die Synthesen im Dreistoffsystem CaO-Al_2O_3-SiO_2 nur noch Untersuchungen mittels Polymer-Precursor-Synthese und dem GNP durchgeführt. Neben Gehlenit (2CaO·Al_2O_3·SiO_2) wurden hier auch Calciumaluminiumdisilikat (CaO·Al_2O_3·2SiO_2) und Yoshiokait (Ca_{8-X/2}□_{X/2}Al_{16-X}Si_XO₃₂) synthetisiert, da YOSHIOKA (1970b) berichtete, dass der Kalsilit-Typ des Yoshiokaits hydraulische Eigenschaften besitzt und damit als calciumarmes hydraulisches Bindemittel von Interesse ist.

3.3.1. CaO·Al₂O₃·2SiO₂ (CAS₂)

Calciumaluminiumdisilikat kommt in der Natur meist in der stabilen triklinen Modifikation, dem Anorthit, vor. In der Literatur sind weitere metastabile Modifikationen beschrieben. TAKÉUCHI & DONNAY (1959) machten Strukturuntersuchungen zu einer hexagonalen Modifikation des CAS₂. ITO (1976) postulierte, dass es sich anstatt der hexagonalen Modifikation um eine monokline (pseudo-hexagonale) Modifikationen handeln sollte. ABE et al. (1991), IYATOMI & AOKI (1992), ABE & SUNAGAWA (1995) und DANIEL et al. (1995) untersuchten die Stabilitätsbereiche der verschiedenen Modifikationen des CAS₂ und bestätigten die Aussagen von ITO (1976). Zusätzlich wurde eine orthorhombische Modifikation des CAS₂ beschrieben (ICDD: 00-005-0528). TAKÉUCHI et al. (1973) zeigten, dass die orthorhombische Modifikation piezoelektrische Eigenschaften besitzt und daher auch monoklin (pseudoorthorhombisch) sein muss. DANIEL et al. (1995) beschrieb mittels Raman-Spektroskopie neben den beiden monoklinen Phasen eine weitere Phase, zu der jedoch keine röntgenographischen Daten existieren. Die Synthese dieser metastabilen Modifikationen erfolgte in diesen Arbeiten in einem Heizmikroskop. Dabei wurde eine Schmelze abgekühlt und zwischen 900°C und 1200°C getempert. DIMITRIJEVIĆ et al. (1996) verfeinerten zudem mittels Rietveld-Methode eine Mischung, die die hexagonale Modifikation mit enthielt. WANG & TOMITA (1997) führten Synthesen unter hydrothermalen Bedingungen (300°C; 7,8MPa) durch und enthielten eine unbekannte Phase, die ähnlich der hexagonalen Phase von TAKEUCHI & DONNAY (1959) ist, bei der einige Reflexe jedoch verschoben sind. LEE & KIM (2002) und LEE & LEE (2003) synthetisierten Anorthit via Polymer-Precursor-Synthese und stellten fest, dass die hexagonale Modifikation des CAS₂ bei ca. 900°C beginnt auszukristallisieren und sich bei ca. 1000°C zum stabilen Anorthit umwandelt. Zusätzlich zeigten sie, dass ein höheres Polymer/Kationen-Verhältnis die Umwandlungstemperatur zum Anorthit begünstigt bzw. die Umwandlungstemperatur zum stabilen Anorthit senkt. Der Mineralname Dmisteinbergit (engl. Dmisteinbergite) wurde für die hexagonale Modifikation des CAS₂ vergeben, diese wurde in einigen der genannten Publikationen oft auch als "Omisteinbergite" bezeichnet. Zudem wurde der Mineralname oftmals auch für die monokline (pseudo-hexagonale) Modifikation verwendet. Neben diesen metastabilen Phasen existiert noch eine Hochdruckmodifikation, die wie der Anorthit triklin ist (ANGEL 1992). Eine Zusammenstellung der bekannten Modifikationen des CAS₂ befindet sich ist in Tab. 17.

1	Kristall- system	Hexagonal	Monoklin (pseudo- hexagonal)	Orthorhombisch	Monoklin (pseudo- orthorhombisch)	Triklin
Mir	neralname	Dmisteinbergit				Anorthit
	RG	P6/mcm	C2	P212121	P2 ₁	ΡĪ
	a [Å]	5,10	10,24	8,22	8,228	8,1820
nten	b [Å]	5,10	17,74	8,61	8,621	12,8690
ıstar	c [Å]	14,72	14,99	4,84	4,827	14,1690
erkor	α [°]	90	90	90	90	93,24
Gitte	β [°]	90	92,05	90	90	115,77
	γ [°]	90	90	90	90	91,21
	ICDD	00-051-0064 00-031-0247 01-074-0814		00-005-0528		01-089-1472
	ICSD	026486				086330
l	₋iteratur	Takéuchi & Donnay (1959)	Іто (1976)		Такéucні <i>et al.</i> (1973)	Angel <i>et al.</i> (1990)

 Tab. 17: Bekannte metastabile und stabile Modifikationen von CaO·Al₂O₃·2SiO₂

In den eigenen Untersuchungen soll nun versucht werden diese metastabilen Modifikationen mit Hilfe der Polymer-Precursor-Synthese herzustellen und die Umwandlungen der einzelnen Modifikationen zu beschreiben.

Zu Beginn der Untersuchung wurde CAS_2 mit der herkömmlichen **Festkörpersynthese** aus den Ausgangssubstanzen CaO, SiO₂ und Al₂O₃ synthetisiert. Um CAS₂ als Reinphase zu enthalten war ein zweistündiger Sinterschritt bei 1200°C notwendig. Als einzige stabile Modifikation entsteht dabei Anorthit.

Bei der **Polymer-Precursor-Synthese** wurde zunächst mit einem Verhältnis Kationen/ZS/ EG=1/1/2 gearbeitet; als SiO₂-Quelle wurde SiO₂-Sol verwendet. Bei einer Sintertemperatur von 900°C (2h) kommt es zu amorphen Ausgangsprodukten und erst bei 950°C (2h) zur Bildung der monoklinen (pseudo-hexagonalen) Modifikation mit sehr geringen Gehalten an monokliner (pseudo-orthorhombischer) und trikliner Modifikation. Aufgrund der Untersuchungen von LEE & KIM (2002) wurde zusätzlich der Polymergehalt variiert (Tab. 18), um dessen Einfluss zu untersuchen. Eine Reduzierung des Polymergehalts (0,25 und 0,5) hat zur Folge, dass bei gleichen Sinterbedingungen von 2h bei 950°C ausschließlich die monokline (pseudo-hexagonale) Modifikation stabilisiert wird (Tab. 19). Bei einem höheren Polymergehalt von 2 bildet sich eine Mischung mit höheren Anteilen an monokliner (pseudoorthorhombischer) und trikliner Modifikation, die nur noch geringe Mengen der monoklinen (pseudo-hexagonalen) Modifikation enthält. Werden die Proben einem zweiten Sinterschritt von 2h bei 950°C unterzogen, kommt es bereits zur Umwandlung zum stabilen Anorthit (Tab. 20).

Polymergehalt	Kationen	Zitronensäure (ZS)	Ethylenglykol (EG)
0,25	1	0,25	0,5
0,5	1	0,5	1
1,0	1	1	2
2,0	1	2	4

Tab. 18: Variierte Kationen/ZS/EG-Verhältnisse für die Synthese von CAS₂

Tab. 19: Kristalline Modifikationen des CAS₂ nach einem Sinterschritt von 2h bei 950°C in Abhängigkeit vom Polymergehalt (Tab. 18); die Mengenverhältnisse der verschieden Phasen wurden anhand der Intensitätsverhältnisse abgeschätzt und in folgenden Bereiche eingeteilt: ++++reinphasig, +++viel, ++mittel, +wenig und -nichts; in Klammern ist die volumengemittelte durchschnittliche Kristallitgröße L_{VOL} angegeben

CaO·Al ₂ O ₃ ·2SiO ₂	Kristalline Modifikationen bei einer Sintertemperatur von 950°C nach 2 Stunden					
Polymergehalt	Monoklin (pseudo-hexagonal)	Monoklin (pseudo-orthorhombisch)	Triklin			
0,25	++++ (36nm)	-	-			
0,5	++++ (40nm)	-	-			
1,0	+++ (42nm)	+	+			
2,0	+	++ (53nm)	++ (54nm)			

Tab. 20: Kristalline Modifikationen des CAS₂ nach einem zweiten Sinterschritt von 2h bei 950°C in Abhängigkeit vom Polymergehalt (Tab. 18); die Mengenverhältnisse der verschieden Phasen wurden anhand der Intensitäts-verhältnisse abgeschätzt und in folgenden Bereiche eingeteilt: ++++reinphasig, +++viel, ++mittel, +wenig und -nichts

CaO·Al ₂ O ₃ ·2SiO ₂	Kristalline Modifikationen bei einer Sintertemperatur von 950°C nach 2x2 Stunden				
Polymergehalt	Monoklin (pseudo-hexagonal)	Monoklin (pseudo-orthorhombisch)	Triklin		
0,25	++	-	++		
0,5	++	-	++		
1,0	+	+	++		
2,0		++	+++		

In den Untersuchungen konnte somit gezeigt werden, dass sich bei einem geringeren Polymergehalt bevorzugt die metastabile monokline (pseudo-hexagonale) Modifikation bildet. Zusätzlich kann es bei höheren Polymergehalten auch zur Bildung der monoklinen (pseudoorthorhombischen) Modifikation kommen. Aus den pulverdiffraktometrischen Untersuchungen wurden zusätzlich die Kristallitgrößen nach dem ersten Sinterschritt bei 950°C berechnet (Tab. 19). Es zeigt sich, dass bei einem höheren Polymergehalt bei gleichen Sinterbedingungen größere Kristallite entstehen. Die Untersuchungen korrelieren dabei mit denen von CHAI *et al.* (2002), der die gleichen Tendenzen bei der Synthese anderer oxidischer Verbindungen feststellte. Damit zeigt sich, dass bei kleinen Kristalliten bevorzugt die metastabilen Modifikationen stabilisiert werden und eine Umwandlung zum stabilen Anorthit erst bei höheren Sintertemperaturen und damit einhergehend auch größeren Kristalliten eintritt. In Tab. 21 sind die verfeinerten Gitterkonstanten zu den identifizierten metastabilen Verbindungen angegeben.

Kristallsystem		Monoklin (pseudo-hexagonal)	Monoklin (pseudo-orthorhombisch)	
Sintertemperatur		950°C	950°C	
	Polymergehalt	0,25	2	
Nebenphasen		-	Pseudo-hexagonale und trikline Modifikation	
RG		C2	P2 ₁	
Gitterkonstanten	a [Å]	10,214 (2)	8,250 (2)	
	b [Å]	17,730 (2)	8,637 (2)	
	c [Å]	14,976 (2)	4,837 (2)	
	β [°]	91,97 (2)	90,00 (2)	
	V [Å ³]	2710,5 (9)	344,7 (3)	
	D _{XRD} [g/cm ³]	2,73	2,70	

Tab. 21: Verfeinerte Gitterkonstanten der monoklinen Modifikationen des CAS₂, die mittels Polymer-Precursor-Synthese hergestellt wurden

Um die Phasenbildung besser verstehen zu können wurden zusätzlich thermoanalytische Untersuchungen der Polymerprecursoren durchgeführt. Die TG/DTA-Kurven mit einem Polymer/Kationen Verhältnis von 0,25 und 1 sind in Abb. 70 und Abb. 71 dargestellt und zeigen, dass die Zersetzung des Polymers bei 600°C abgeschlossen ist. Des Weiteren konnte ein geringer Gewichtsverlust zwischen 800°C und 1020°C detektiert werden, der wiederum auf die Zersetzung der -O-AI-C-O-AI-O- Bindungen zurückzuführen ist (LIN *et al.* 2008). Die exotherme Reaktion zwischen 1000°C und 1200°C ist auf die Phasenumwand-lung von der monoklinen (pseudo-hexagonalen) zur triklinen Modifikation zurückzuführen.

Abb. 70: TG/DTA-Diagramme des CAS₂-Precursors aus der Polymer-Precursor-Synthese; Polymergehalt: 0,25; Heizrate: 10°C/min; Spülgas: synthetische Luft; Spülrate: 200ml/min

Abb. 71: TG/DTA-Diagramme des CAS₂-Precursors aus der Polymer-Precursor-Synthese; Polymergehalt: 1,0; Heizrate: 10°C/min; Spülgas: synthetische Luft; Spülrate: 200ml/min

Bei Synthesen mittels **GNP** bildet sich bei 950°C nur die hexagonale Modifikation des CAS₂. Wird das Diagramm mit dem aus der Polymer-Precursor-Synthese verglichen zeigt sich jedoch aufgrund eines erhöhten Untergrunds im Pulverdiffraktogramm, dass neben dem kristallinen monoklinen (pseudo-hexagonalen) CAS₂ noch eine röntgenamorphe Phase vorliegt. Die Proben wurden deshalb in einem zweiten zweistündigen Sinterschritt bei 950°C getempert. Dabei kristallisieren Nebenphasen an Gehlenit C₂AS, Cristobalit SiO₂, geringe Mengen Anorthit CAS₂, Wollastonit-1A CS und Grossit CA₂ aus. Eine reinphasige Synthese von monoklinem (pseudo-hexagonalem) CAS₂ war somit bei 950°C nicht möglich. Wird die Sintertemperatur erhöht, kommt es bereits ab 1000°C zur Bildung des stabilen Anorthits. Ab einer Sintertemperatur von 1200°C liegt eine Reinphase des Anorthits vor.

In weiteren Versuchen wurde getestet, ob sich die monokline (pseudo-orthorhombische) Modifikation durch die Verwendung von **TEOS als SiO₂ Precursor** reinphasig herstellen lässt. Da bei Untersuchungen zum C₂S bereits festgestellt wurde, dass es zum Verdampfen der Silane kommt, wurde zusätzlich der Polymergehalt variiert, um dies zu verhindern oder den Effekt zu reduzieren. Die Versuche erfolgten analog zu denjenigen mit SiO₂-Sol. Wie in Tab. 22 zu sehen, kommt es sowohl bei einer Reduzierung als auch bei einer Erhöhung des Polymergehalts zur Bildung von SiO₂-ärmeren Phasen. Damit kann davon ausgegangen werden, dass es auch hier zum Verdampfen der Silane kommt. Zudem kommt es unter Verwendung des GNP mit TEOS als SiO₂-Precursor zur Bildung von Anorthit bei niedrigeren Sintertemperaturen.

Tab. 22: Kristalline Modifikationen	nach einem Sintersch	ritt von 2h bei 950°C i	in Abhängigkeit vom Po	olymergehalt
unter Verwendung von TEOS als	SiO ₂ -Precursor; die	Mengenverhältnisse	der verschieden Pha	isen wurden
anhand der Intensitätsverhältnisse	abgeschätzt und in	folgenden Bereiche e	eingeteilt: ++++reinpha	sig, +++viel,
++mittel, +wenig und -nichts				

Polymer/ Kationen Verhältnis	CAS (Yoshiokait)	Monoklines (pseudo- hexagonal) CAS₂	Monoklines (pseudo- orthorhombisch) CAS ₂	Triklines (Anorthit) CAS ₂	orthorhombisches CA
0,25	++++	-	-	-	-
0,5	+	+	+	++	-
1,0	+	+	++	++	-
2,0	-	+	++	++	++
4,0	-	+	++	++	++

3.3.2. Ca_{5,3} 2,7 Al_{10,7} Si_{5,3}O₃₂

YOSHIOKA (1970a; 1970b) synthetisierte und beschrieb die Verbindung als Erster und postulierte, dass metastabile Mischkristalle im Phasendreieck zwischen CA, CA₂ (CaO·2Al₂O₃) und CAS₂ existieren. Er beschrieb den Nephelin-Typ (YOSHIOKA 1970a) und Kalsilit-Typ (YOSHIOKA 1970b) des Yoshiokaits und gab die allgemeine Formel mit Ca_{8-X/2} $\square_{X/2}$ Al_{16-X}Si_XO₃₂ an. Der Nephelin-Typ wurde später ebenfalls von KIRKPATRICK & STEELE (1973) synthetisiert. Die Struktur des Nephelin-Typs wurde von STEELE & PLUTH (1990) gelöst, sie gaben die allgemeine Formal mit Ca_{5,3} $\square_{2,7}$ Al_{10,7}Si_{5,3}O₃₂ an. Natürlich vorkommende Yoshiokaite wurden von VANIMAN & BISH (1990) untersucht. Die Synthese des Yoshiokait erfolgte durch das Tempern eines Glases der entsprechenden Zusammensetzung zwischen 900°C und 1100°C (YOSHIOKA 1970a). Der Kalsilit-Typ des Yoshiokait taucht in der Literatur nicht weiter auf. Die in der Arbeit von YOSHIOKA (1970b) angegebenen Reflexe stimmen jedoch mit der metastabilen orthorhombischen Modifikation des CA überein, die von ITO *et al.* (1975) später beschrieben wurde.

Bei den Synthesen mittels Polymer-Precursor-Synthese und Verbrennugssynthese wurde für die Einwaagen die Formel von STEELE & PLUTH (1990) verwendet. Dabei zeigte sich, dass in beiden Fällen die Precursorphasen bis zu einer Sintertemperatur von 900°C röntgenamorph sind. Bei einem Sinterschritt von 950°C (2h) konnte ein sehr kleinen Peak an der Position des Gehlenit-Hauptreflexes identifiziert werden (Abb. 72a). Bei einem Sinterschritt von 1000°C (2h) kristallisiert dann Yoshiokait aus (Abb. 72b). Als Nebenphase liegen geringe Mengen an Gehlenit vor, da sich dieser bereits bei 950°C (2h) beginnt zu bilden. Ab 1100°C (2h) beginnt die Umwandlung des Yoshiokaits in die stabilen Phasen C_2AS , CAS_2 , CA₂ und geringe Mengen an Wollastonit-1A (CS). Bereits bei einem zweistündigen Sinterschritt von 1200°C ist die Umwandlung vollständig abgeschlossen und es liegt kein Yoshiokait mehr vor (Abb. 72c). Dass Yoshiokait nicht ohne geringe Mengen der Nebenphase Gehlenit synthetisiert werden konnte liegt daran, dass sich Gehlenit bei niedrigeren Sintertemperaturen als Yoshiokait bildet. Durch das Einstellen des Tiegels in den auf 1000°C vorgeheizten Ofen kann der Stabilitätsbereich des Gehlenit schnell überfahren werden; dies führte jedoch auch zur Bildung von geringen Mengen an Gehlenit. Die verfeinerten Gitterkonstanten und die Kristallitgröße des Yoshiokaits (Nephelin-Typ) sind in Tab. 23 angegeben.

Tab. 23: Verfeinerte Gitterkonstanten des Yoshiokait (geringe Mengen an Gehlenit als Nebenphase)

Sinterschritt	RG	a [Å]	b [Å]	c [Å]	L _{VOL} [nm]
2h - 1000°C	P3	9,937 (1)	9,937 (1)	8,259 (1)	51

Abb. 72: XRD-Diagramme des gesinterten Yoshiokait-Precursor der mittels Polymer-Precursor-Synthese hergestellt wurde und bei folgenden Sinterschritten zersetzt wurde: a) 950°C (2h), b) 1000°C (2h) und c) 1200°C (2h); die rote gestrichelte Linie zeigt den Hauptreflex (100%-Peak) des Gehlenits bei 31,39°2Theta an (ABE & SUNAGAWA)

HT-XRD-Aufnahmen des amorphen Yoshiokait-Precursors zeigen, dass ab 900°C Gehlenit, ab 1000°C Yoshiokait und ab 1100°C Anorthit entstehen. Ab 1200°C nimmt der Gehalt an Yoshiokait ab und es kommt zur Bildung der stabilen Phasen C₂AS, CAS₂ und CA₂. Dadurch kann gezeigt werden, dass Yoshiokait eine metastabile Phase ist, die sich bereits beim Aufheizen langsam in die stabilen Phasen umwandelt.

Abb. 73: Ausschnitt der HT-XRD-Aufnahme des amorphen bei 800°C vorgesinterten Polymerprecursors im Temperaturintervall zwischen 900°C und 1300°C; Zunahme von Gehlenit und Anorthit (Blau), Zunahme und anschließende Abnahme des Yoshiokaits (Rot)

3.3.3. $2CaO \cdot Al_2O_3 \cdot SiO_2$ (C₂AS)

Gehlenit ist einer der Hauptphasen in vielen Tonerdezementen (POELLMANN *et al.* 2006). DOVÁL *et al.* (2006) stellten die Phase bereits mittels einer Niedrigtemperatur-Synthese her. Sie verwendeten als Ausgangsprodukte Böhmit, Calciumnitrat-Hydrat und SiO₂-Sol, homogenisierten diese in einer wässrigen Lösung und dampften die Lösung ein. Es gelang ihnen, mit Hilfe dieses Precursors reinen Gehlenit bei 1250°C herzustellen. Ziel der Untersuchungen ist nun, die Phasenbildung von Gehlenit unter Verwendung der Precursoren aus der Polymer-Precursor-Synthese und des GNP zu untersuchen.

Die thermoanalytischen Untersuchungen (Abb. 74) des **Polymerprecursors** zeigen, dass die Zersetzung des Polymers bei 495°C abgeschlossen ist. Zusätzlich kommt es bei 788°C und 940°C zu geringen Gewichtsverlusten. Der Gewichtsverlust bei 788°C ist verbunden mit einer stark exothermen Reaktion und ist somit auf eine Zersetzungsreaktion zurückzuführen. Das Pulver ist nach dem Sinterschritt bei 850°C weiterhin röntgenamorph. Der Gewichtsverlust bei 940°C ist analog zu den Calciumaluminaten mit der Zersetzung der -O-Al-C-O-Al-O-Bindungen zu erklären. Ab 900°C konnte Gehlenit röntgenographisch neben geringen Mengen an β -C₂S und CA (orthorhombisch) identifiziert werden. Bis zur Sintertemperatur von 1300°C reduzieren sich die Mengen an β -C₂S und CA (Abb. 75); die Kristallinität des Gehlenits nimmt zu (Tab. 24).

Abb. 74: TG/DTA-Diagramm des C₂AS-Precursors der Polymer-Precursor-Synthese; Heizrate 10°C/min; Spülgas: synthetische Luft; Spülrate: 200ml/min

Abb. 75: XRD-Diagramme des C₂AS-Precursors in Abhängigkeit von der Sintertemperatur: a) RT (Precursor mit Polymer), b) 550°C (2h), c) 850°C (2h), d) 900°C (2h), e) 950°C (2h) und f) 1300°C (2h)

Tab. 24: Verfeinerte Gitterkonstanten und Kristallitgrößen des Gehlenits in Abhängigkeit von der Sintertemperatur

Sinterschritt	Nebenphasen	RG	a [Å]	c [Å]	L _{vo∟} [nm]	
<850°C (2h)	röntgenamorph	-	-	-	-	
900°C (2h)	CA, β -C ₂ S	P42₁m			38	
950°C (2h)	CA, β -C ₂ S		P42₁m	7,681 (1)	5,067 (1)	60
1300°C (2h)	-				89	

Beim **GNP** kommt es ausgehend von einem amorphen Precursor zu einem simultanen Phasenverlauf wie bei der Polymer-Precursor-Synthese. Als Nebenphasen bildeten sich bei 900° C und 1000° C zusätzlich geringe Mengen an C₁₂A₇.

3.4. Calciumaluminumferrate - Ca₂(Al_xFe_{2-x})O₅

 Fe_2O_3 ist sowohl in Portland- als auch in Tonerdezement vorhanden und wird hauptsächlich in Brownmillerit $Ca_2(Al_xFe_{2-x})O_5$ eingebaut. Brownmillerite bilden eine begrenzte Mischkristallreihe ($Ca_2(Al_xFe_{2-x})O_5$ mit 0<x<1,34) zwischen C_2F und dem hypothetischem " C_2A ". Eine zusammenfassende Arbeit zur Phasenbreite und Kristallchemie der Fe-Al-Brownmillerite wurde von REDHAMMER *et al.* (2004) publiziert. Ab einem Aluminiumgehalt von x=0,65 werden demnach Brownmillerite, die mittels einer Hochtemperatursynthese hergestellt wurden, bei RT in der RG I2mb stabilisiert, bei niedrigeren Gehalten an Aluminium in der RG Pnma. FUKUDA & ANDO (2002) zeigten, dass der RG-Wechsel (Abb. 76) bei einem Aluminiumgehalt von x=0,47 stattfindet. Bei Überschreiten einer Temperatur von ca. 700°C kommt es bei eisenreichen Brownmilleriten ebenfalls zu einem Wechsel der RG von Pnma nach I2mb (BERASTEGUI *et al.* 1999; FUKUDA & ANDO 2002; REDHAMMER *et al.* 2004).

Abb. 76: Vergleich der Strukturen der Brownmillerite mit der RG Pnma (links) und l2mb (rechts)

NEUBAUER *et al.* (2003) zeigten, dass für die reinphasige Synthese von aluminiumreichen Brownmilleriten mittels Festkörpersynthese längere Sinterschritte von 1250°C notwendig sind. Ähnlich hohe Sintertemperaturen wurden bei Verwendung der Festkörpersynthese von FUKUDA & ANDO (2002) und REDHAMMER *et al.* (2004) verwendet. Mittels Polymer-Precursor-Synthese stellten LEE *et al.* (1999) $Ca_4Al_2Fe_3O_{10}$ bei 700°C her, wobei die chemische Zusammensetzung nicht mit der aus den Untersuchungen von FUKUDA & ANDO (2002) und REDHAMMER *et al.* (2004) übereinstimmt. Für die eigenen Untersuchungen ist von Interesse, inwieweit sich Brownmillerite abhängig vom Al^{3+}/Fe^{3+} -Verhältnis bei milderen Sinterbedingungen bilden können.

Mittels **Festkörpersynthese** sind 5 Sinterschritte von je 12h bei 1250°C notwendig, um C_4AF phasenrein herzustellen.

Unter Verwendung der **Polymer-Precursor-Synthese** wurden Synthesen mit folgender Zusammensetzung durchgeführt: $Ca_2(Al_xFe_{2-x})O_5$ mit x=0; 0,2; 0,4; 0,6; 0,8; 1,0 und 1,2.

Die Zersetzung des Polymerprecursors ist bei einem Sinterschritt von 600°C (2h) abgeschlossen; es kommt dann zur Bildung von Calcit. Andere kristalline Phasen konnten nicht identifiziert werden. Die Decarbonatisierung des Calcits ist bei einem zweistündigen Sinterschritt von 700°C abgeschlossen und es bilden sich Brownmillerite. In Abb. 77 bis Abb. 80 sind die verfeinerten Gitterkonstanten (a₀, b₀, c₀) und das Volumen der Elementarzelle (V₀) in Abhängigkeit von der Sintertemperatur und dem Al/Fe-Verhältnis (x) dargestellt. Die Gitterkonstantenverfeinerungen der Brownmillerite mit hohen Aluminiumgehalten zeigen, dass sich bei 700°C Brownmillerite mit einer größeren Elementarzelle bilden. Bis zu einer Sintertemperatur von 1000°C nimmt das Volumen der Elementarzelle ab.

Abb. 77: Verfeinerte Gitterkonstante a_0 von $Ca_2(Al_xFe_{2-x})O_5$ in Abhängigkeit der Sintertemperatur und dem Aluminiumgehalt x

Abb. 79: Verfeinerte Gitterkonstante c_0 von $Ca_2(Al_xFe_{2-x})O_5$ in Abhängigkeit der Sintertemperatur und dem Aluminiumgehalt x

Abb. 78: Verfeinerte Gitterkonstante b_0 von $Ca_2(Al_xFe_{2-x})O_5$ in Abhängigkeit der Sintertemperatur und dem Aluminiumgehalt x

Abb. 80: Verfeinertes Volumen der Elementarzelle V₀ von Ca₂(Al_xFe_{2-x})O₅ in Abhängigkeit der Sintertemperatur und dem Aluminiumgehalt x

Es kann aus den Untersuchungen somit gefolgert werden, dass sich bei niedrigen Sintertemperaturen von 700°C zunächst eisenreiche Brownmillerite bilden und erst bei höheren Sintertemperaturen zwischen 800°C und 1000°C Aluminium in den Brownmillerit eingebaut wird und phasenreine Verbindungen entstehen.

Bei eisenreichen Brownmilleriten (x = 0; 0,2 und 0,4), die bei einer Sintertemperatur von 700°C reinphasig vorliegen, zeigte sich, dass die h+k+l=2n+1 Reflexe (1 1 1, 1 3 1 und 1 5 1), die für die RG Pnma charakteristisch sind, nicht vorhanden sind. Demnach werden bei diesen niedrigen Sintertemperaturen die eisenreichen Brownmillerite in der RG I2mb stabilisiert. Beim C₂F (x=0) kommt es erst nach einer Sintertemperatur von 800°C zur Bildung von Brownmilleriten in der RG Pnma (Abb. 81). Bei höheren Aluminiumgehalten kommt es erst bei 900°C (x=0,2) bzw. 1000°C (x=0,4) zur Bildung dieser Reflexe und damit zur Stabilisierung der Brownmillerite in der RG Pnma (Abb. 82 und Abb. 83).

Des Weiteren konnte beobachtet werden, dass es bei der Verbindung C₂F (x=0) bis 1000°C zu einer Zunahme der Gitterkonstante b₀ und Abnahme von c₀ kommt. Die Gitterkonstante a₀ und das Volumen der Elementarzelle bleiben nahezu unverändert. Von 1000°C bis 1200°C nimmt das Verhältnis von b₀/c₀ wieder ab (Abb. 78 und Abb. 79).

Abb. 81: XRD-Diagramme von C_2F (x=0) nach verschiedenen Sintertemperaturen und dem vergrößerten Bereich des 1 3 1- und 0 0 2 -Reflexes

Abb. 82: XRD-Diagramme von $C_{4}A_{0,2}F_{1,8}$ (x=0,2) nach verschiedenen Sintertemperaturen und dem vergrößerten Bereich des 1 3 1- und 0 0 2 - Reflexes

Abb. 83: XRD-Diagramme von $C_4A_{0,4}F_{1,6}$ (x=0,4) nach verschiedenen Sintertemperaturen und dem vergrößerten Bereich des 1 3 1- und 0 0 2 - Reflexes

Simultan zu den Gitterkonstanten wurde die Kristallitgröße verfeinert. Die Darstellung in Abb. 84 zeigt, dass bei hohen Aluminiumgehalten (0,8<x<1,2) und zugleich niedrigen Sintertemperaturen (bis 800°C) Pulver mit einer Kristallitgröße zwischen 10nm und 15nm entstehen. Bei diesen Verbindungen handelt es sich um aluminiumreiche Synthesen, bei denen zuerst eisenreiche Brownmillerite auskristallisieren (Abb. 84, grüner Bereich). Mit einem Anstieg der Sintertemperatur kommt es zum Auskristallisieren der stöchiometrischen Verbindungen, das mit einem Anstieg der Kristallitgröße korreliert. Bei den in Abb. 84 weiß eingezeichneten Punkten liegen phasenreine Verbindungen in der RG I2mb vor; bei den in gelb eingezeichneten Punkten liegen eisenreiche Brownmillerite in der RG Pnma vor. Ab 1000°C steigt bei den eisenreichen Brownmilleriten aufgrund der niedrigeren Schmelztemperatur die Kristallitgröße schneller als bei aluminiumreichen Brownmilleriten.

Abb. 84: Kristallitgröße von $Ca_2(Al_xFe_{2-x})O_5$ in Abhängigkeit von der Sintertemperatur und dem Aluminiumgehalt x bei der Annahme von sphärischen Kristalliten; weiße Punkte = RG l2mb, gelbe Punkte = RG Pnma; Farbverlauf von Grün nach Dunkelbraun korreliert mit dem tatsächlichen Färbung der Brownmillerite

Zusätzlich konnte beobachtet werden, dass es bei höheren Sintertemperaturen bei den Brownmilleriten zu Farbänderungen kommt. So hat das C₂F Pulver bei niedrigen Sintertemperaturen (700°C) einen Grünstich, bei höheren Sintertemperaturen (bis 1200°C) kommt es zu einer schwarz-braunen Färbung (Abb. 85). Bei der Variation des Al/Fe-Verhältnisses ist bei aluminiumreicheren Brownmilleriten eine intensivere Grünfärbung zu beobachten. Der Farbverlauf korreliert damit wie in Abb. 84 dargestellt mit dem Verlauf der Kristallitgröße.

Abb. 85: Änderung der Färbung während des Sinterns von Grün-grau (700°C-2h) nach Braun-schwarz (1000°C-2h) bei höheren Sintertemperaturen
Um den Einfluss des Fe²⁺/Fe³⁺-Verhältnisses auf den Farbverlauf zu untersuchen, erfolgte die Bestimmung des Fe²⁺-Gehalts mittels einer permanganometrischen Titration in salzsaurer Lösung (SCHULZE & SIMON 2009). Die resultierenden Fe²⁺/Fe³⁺-Verhältnisse des C₂F in Abhängigkeit von der Sintertemperatur sind in Abb. 86 dargestellt.

Abb. 86: Fe²⁺/Fe³⁺-Verhältnisses des C₂F in Abhängigkeit von der Sintertemperatur

REM-Aufnahmen der Verbindung C₂F zeigen, dass nach einem Sinterschritt von 700°C (2h) die Partikelgröße in etwa mit der Kristallitgröße von 50nm korreliert (Abb. 87 und Abb. 88). Bei einer Sintertemperatur von 1000°C (2h) steigt die Partikelgröße auf 0,5µm bis 2µm und es kommt zur Bildung von Partikeln mit gut ausgebildeten Kristallflächen (Abb. 89 und Abb. 90). Beim aluminiumreichen Brownmillerit C₄A_{1,2}F_{0,8} (x=1,2) liegt die Partikelgröße zwischen 50nm und 200nm (Abb. 91 und Abb. 92) und ist damit bei gleichen Sinterbedingungen wesentlich geringer als beim eisenreichen Brownmillerit C₂F.

Abb. 87: REM-Aufnahme von C₂F, hergestellt mittels Polymer-Precursor-Synthese; Sinterschritt: 700°C (2h)

Abb. 88: REM-Aufnahme von C₂F, hergestellt mittels Polymer-Precursor-Synthese; Sinterschritt: 700°C (2h)

Abb. 89: REM-Aufnahme von C₂F, hergestellt mittels Polymer-Precursor-Synthese; Sinterschritt: 1000°C (2h)

Abb. 90: REM-Aufnahme von C₂F, hergestellt mittels Polymer-Precursor-Synthese; Sinterschritt: 1000°C (2h)

Abb. 91: REM-Aufnahme von $C_4A_{1,2}F_{0,8}$, hergestellt mittels Polymer-Precursor-Synthese; Sinterschritt: 1000°C (2h)

Abb. 92: REM-Aufnahme von C₄A_{1,2}F_{0,8}, hergestellt mittels Polymer-Precursor-Synthese; Sinterschritt: 1000°C (2h)

Es konnte somit gezeigt werden, dass sich eisenreiche Brownmillerite bereits ab 700°C bilden können. Bei der Synthese von aluminiumreichen Brownmilleriten ist für einen vollständigen Einbau des Aluminiums in den Brownmillerit eine höhere Sintertemperatur von bis zu 1000°C (2h) notwendig. Bei niedrigen Sintertemperaturen und kleinen Kristallitgrößen bilden sich eisenreiche Brownmillerite in der Hochtemperaturmodifikation (RG: 12mb). Die berechneten Kristallitgrößen zeigen, dass sich bei Kristallitgrößen von größer 90nm Brownmillerite mit der RG Pnma bilden. Zusätzlich korreliert die Farbänderung bei unterschiedlichen Sintertemperaturen mit der berechneten Kristallitgröße. Die Änderung der Strichfarbe (Zerkleinerung des Pulvers zwischen zwei unglasierten Porzellanplatten) des bei 1200°C (2h) gesinterten schwarzbraunen C₂F nach Hellbraun bestätigt die Abhängigkeit der Farbgebung von der Partikelgröße. Zusätzlich ist jedoch ein Einfluss des erhöhten Fe²⁺/Fe³⁺-Verhältnisses bei niedrigen Sintertemperaturen nicht auszuschließen. Die Änderung der Verhältnisse der Gitterkonstanten b₀/c₀ korreliert mit den Fe²⁺/Fe³⁺-Verhältnissen. Ein ähnliches Verhalten wurde bei Brownmilleriten von ABAKUMOV *et al.* (2003) beschrieben. Für

eine genau strukturelle Erklärung sind jedoch weitere Untersuchungen notwendig.

Bei den Untersuchungen mittels **Verbrennungssynthese** wurde ausschließlich die Verbindung C₄AF synthetisiert. Die Untersuchungen zeigen, dass nach der Verbrennung bereits Brownmillerit und geringe Mengen an CaCO₃ vorliegen. Nach einem Sinterschritt von 2h bei 1000°C ist das C₄AF vollständig auskristallisiert. Die verfeinerten Gitterkonstanten der Verbindung sind in Tab. 25 angegeben. REM-Untersuchungen zeigen, dass die poröse Struktur des Precursors auch nach dem Sinterschritt bei 1000°C (2h) erhalten bleibt (Abb. 93 und Abb. 94) und die Korngröße zwischen 50nm und 200nm liegt (Abb. 95).

	T [°C]	RG	a [Å]	b [Å]	c [Å]	V [ų]	L _{vol} [nm]
$Ca_4AI_{1,0}Fe_{1,0}O_5$	RT	l2mb	5,352 (2)	14,545 (3)	5,537 (2)	432,5 (6)	23
Ca ₄ Al _{1,0} Fe _{1,0} O ₅	1000	l2mb	5,352 (2)	14,542 (3)	5,564 (2)	433,0 (6)	34

 Un
 Mag = 50/K : Ent > 50/W Anterior State 32/00 in Charlest = 43/60/00 mtl
 EDI Stay P. Del 9 Jog 27 ZWL

Abb. 93: REM-Aufnahme des C₄AF-Precursor, hergestellt mittels des GNP

Abb. 94: REM-Aufnahme von C_4AF , hergestellt mittels des GNP; Sinterschritt: 1000°C (2h)

Abb. 95: REM-Aufnahme von C₄AF, hergestellt mittels des GNP; Sinterschritt: 1000°C (2h)

Die Synthese von C₄AF war mittels **Sol-Gel-Methode** bei niedrigen Temperaturen nicht möglich. Es entstanden große Mengen an CaO, die erst bei 1200°C langsam zu C₄AF reagierten. Die Versuche wurden mit dieser Methode deshalb nicht weitergeführt.

3.5. Calciumaluminiumsulfat - 4CaO·3Al₂O₃·SO₃ (C₄A₃s)

Die Polymorphie des Ye'elimit 4CaO·3Al₂O₃·SO₃ (C₄A₃s) und die mögliche Substitution mit Natrium und Eisen wurde von ANDAC & GLASSER (1994) beschrieben. PUERTAS *et al.* (1995) zeigten die Zersetzung von Ye'elimit, der über die Festkörpersynthese hergestellt wurde. Sie beschrieben, dass ab 1300°C SO₂ entweicht und dafür CA und C₁₂A₇ gebildet werden. PALOU *et al.* (2007) untersuchten die Phasenbildung und hydraulische Reaktivität von Sulfoaluminatbelitzement, der mittels einer Sol-Gel-Methode synthetisiert wurde und enthielten ebenfalls die Phase Ye'elimit. Ziel der eigenen Untersuchungen ist, Ye'elimit mit der Polymer-Precursor-Synthese bei niedrigen Sintertemperaturen herzustellen.

Bei Vergleichsuntersuchungen mittels **Festkörpersynthese** wurde das Pulver schrittweise bei 1000°C (2h), 1100°C (2h), 1200°C (2h) und 1300°C (2h) gesintert. Nach dem letzten Sinterschritt bei 1300°C (2h) lag reiner Ye'elimit in der orthorhombischen von CALOS *et al.* (1995) beschriebenen Modifikation vor (Abb. 96).

Abb. 96: XRD-Diagramme bei der Synthese von C₄A₃s mittels Festkörpersynthese aus CaO, γ -Al₂O₃ und CaSO₄ (Cs) nach verschiedenen Sinterschritten; C₄A₃s = Blau, CaSO₄ (Cs) = Schwarz, CA = Rot, CaO = Grün, CA₂ = Türkis und C₁₂A₇ = Magenta

Unter Verwendung der **Polymer-Precursor-Synthese** mit den Ausgangssubstanzen Calciumnitrat-Hydrat, Aluminiumnitrat-Hydrat und der stöchiometrischen Menge an Schwefelsäure H_2SO_4 wurde der Polymerprecursor hergestellt. Beim Sintern des Precursors bei einer Temperatur von 1000°C (2h) entstehen zunächst orthorhombisches CA und CaSO₄ (Cs). Erst bei 1100°C beginnt sich C₄A₃s zu bilden. Bei 1200°C sind die Nebenphasen CA und Cs vorhanden. Bei weiteren Sinterschritten bei 1200°C oder der Verwendung von höheren Sintertemperaturen von 1300°C beginnt sich CaSO₄ zu zersetzen. Bei verkürzten

Sinterzeiten und einer Sintertemperatur von 1300°C kommt es bereits zur Zersetzung des C_4A_3s . Unterhalb von 1200°C reagiert das orthorhombische CA nur sehr langsam mit Cs zu C_4A_3s (Abb. 97).

Abb. 97: XRD-Diagramme bei der Synthese von C₄A₃s mittels Polymer-Precursor-Synthese nach verschiedenen Sinterschritten; C₄A₃s = Blau, Cs = Schwarz, CA = Rot, CaO = Grün, CA₂ = Türkis und C₁₂A₇ = Magenta

In einer weiteren Versuchsreihe wurde der Gehalt an Schwefelsäure bei der Herstellung des Polymerprecursors schrittweise um 10%, 20%, 30%, 50%, 70% und 100% im Vergleich zum Ausgangsgehalt erhöht. Die Synthesen erfolgten nach der Zersetzung des Polymers in einem verschlossenen Pt-Tiegel, um einen SO₃-Gegendruck im Tiegel zu erzeugen, der der Zersetzungsreaktion entgegenwirkt. Bei einem zusätzlichen Sulfatgehalt von bis zu 70% und einer Sintertemperatur von 1200°C (4h) traten sehr geringe Gehalte der Nebenphase CA auf. Bei 100% zusätzlichem Sulfatgehalt bildeten sich geringe Mengen an CaSO₄ als Nebenphase, durch deren Zersetzung bei längeren Sinterzeiten die Nebenphasen CaO entsteht. Ähnliche Probleme wurden bei Synthesen von NEUBAUER (1992) beschrieben, der versuchte SO₄²⁻ durch andere Anionen zu substituieren. Bei leichter flüchtigen Verbindungen erhielt er mittels Festkörpersynthese ebenfalls die Nebenphasen CA und C₁₂A₇.

Aus den Ergebnissen kann gefolgert werden, dass bei niedrigen Sintertemperaturen orthorhombisches CA und CaSO₄ stabil sind. Durch die höhere spezifische Oberfläche wird die Zersetzungstemperatur des CaSO₄ und des Ye'elimit stark gesenkt. Die reinphasige Synthese von Ye'elimit war somit bei den verwendeten Parametern mittels Polymer-Precursor-Synthese nicht möglich.

In diesem Kapitel soll versucht werden die tetragonale Phase Ca₂₀Al_{32-2x}Mg_xSi_xO₆₈ die in einigen TZ vorkommt (PÖLLMANN *et al.* 2006) mittels Polymer-Precursor-Methode herzustellen. Die Phase wird auch als Hanic-Phase, Q-Phase oder Pleochroit bezeichnet und wurde von TOUZO *et al.* (2001) im TZ identifiziert. KAPRÁLIK & HANIC (1980) machten erste systematische Untersuchungen im System CaO-Al₂O₃-SiO₂-MgO. Aus deren Ergebnissen ergab sich die allgemeine Formel für Pleochroit mit: Ca₂₀Al_{32-2x}Mg_xSi_xO₆₈ (mit: 2,5<x<3,5). Sie erwähnten bereits, dass die reinphasige Synthese äußerst problematisch ist und häufig Nebenphasen an C₂AS, CA, C₁₂A₇, C₂S, MgAl₂O₄ und MgO entstehen. Die Kristallstruktur des Pleochroit wurde dann von HANIC *et al.* (1980) beschrieben. SOURIE *et al.* (1994) zeigten, dass bei höheren SiO₂-Gehalten Gehlenit als Nebenphase auftritt und machten Strukturvorschläge zu den Verwachsungen zwischen Pleochroit und Gehlenit. DÓNDONY & BUSECK (2001) bestätigen diese Verwachsungstheorien mit TEM-Untersuchungen und zeigten, dass die Anzahl der Gehlenit-Module (G) zwischen den Ca₃Al₄MgO₁₀-Modulen (X) im Pleochroit variieren kann (Abb. 98).

Abb. 98: Kristallstruktur des Pleochroits mit den eingezeichneten Ca₂Al₂SiO₈ (G)- und Ca₃Al₄MgO₁₀ (X)-Modulen nach DÓNDONY & BUSECK (2001)

Der Einbau von Eisen bei unterschiedlichen Atmosphären und die Substitution von Mg²⁺ gegen Fe²⁺ und Al³⁺ gegen Fe³⁺ wurden von SOURIE *et al.* (1994) und PODWÓRNY *et al.* (2007) untersucht; ihnen gelangen jedoch keine reinphasigen Synthesen. MONTEIRO *et al.* (1989) erwähnten bereits, dass vermutlich eine vollständige Substitution von Zn²⁺ gegen Mg²⁺ möglich ist; sie konnten jedoch auch keine reinphasigen Verbindungen herstellen. Ziel der eigenen Untersuchungen ist die Phasenbildung und die Substitution von Mg²⁺ gegen Zn²⁺, Cu²⁺, Ni²⁺ oder Co²⁺ zu untersuchen, da nach PÖLLMANN (2007; 2010) bei der

Verwendung von Abfallstoffen diese Elemente mit auftreten können. Reinphasige Synthesen gelangen bis jetzt nur KAPRÁLIK & HANIC (1980) für die Verbindungen Ca₂₀Al₂₅Mg₃Si₃O₆₈, Ca₂₀Al₂₅Mg_{3,5}Si_{3,5}O₆₈ und Ca₂₀Al₂₆Mg₃Si₃O₆₈ bei einer Sintertemperatur von 1257°C für eine Sinterzeit von 24h. Als Ausgangssubstanzen verwendeten sie in wässrigen Lösungen homogenisierte Metallnitrate, die sie trockneten und im Anschluss zersetzten.

In den ersten Versuchen wurde der Phasengehalt in Abhängigkeit von der Sintertemperatur untersucht. Für diese Untersuchung wurde die von KAPRÁLIK & HANIC (1980) reinphasig synthetisierte Verbindung Ca₂₀Al₂₆Mg₃Si₃O₆₈ (x=3) mittels Polymer-Precursor-Synthese hergestellt. Es zeigte sich, dass bei der Sintertemperatur von 900°C und 1000°C, nach der Zersetzung des Polymers orthorhombisches CA, C₁₂A₇ und Mischkristalle aus Gehlenit und Åkermanit (SWAINSON *et al.* 1992) entstehen. Das Polymer wurde aufgrunddessen bei 800°C zersetzt und das Produkt anschließend in einem auf 1200°C vorgeheiztem Ofen gesintert, um in den Stabilitätsbereich des Pleochroits zu kommen und die Bildung der bei 1000°C stabilen Nebenphasen zu reduzieren. Trotz dieses Vorgehens entstehen geringe Mengen an Nebenphasen, die erst nach wiederholten Sinterschritten zwischen 1200°C und 1300°C langsam abnehmen.

In einer zweiten Versuchsreihe wurde die Phasenbreite der Pleochroite untersucht. Dabei wurde ausgehend von der Formel von KAPRÁLIK & HANIC (1980) $Ca_{20}AI_{32-2x}Mg_xSi_xO_{68}$ 2AI³⁺ gegen Si⁴⁺ und Mg²⁺ substituiert. Die Synthesen liegen somit in einer Ebene zwischen C₃A, CA und MgSiO₃ (MS), auf der Verbindungslinie zwischen dem hypothetischen "C₅A₄" und C₅A₃MS (Abb. 99).

Abb. 99: Vierphasensystem CaO-Al₂O₃-SiO₂-MgO mit der eingezeichneten Ebene C₃A-CA-MS (Blau) und der Verbindungslinie zwischen dem hypothetischen "C₅A₄" und C₅A₃MS (Rot) auf der nach der Formel Ca₂₀Al_{32-2x}Mg_xSi_xO₆₈ (mit: 2,5<x<3,5) von KAPRÁLIK & HANIC (1980) die Pleochroite liegen

Die Untersuchungen zeigen, dass nur für die Verbindung $Ca_{20}AI_{26}Mg_3Si_3O_{68}$ mit x=3 eine Reinphase entsteht. Bei x<3 entsteht die Nebenphase CA und bei x=1,5 zusätzlich $C_{12}A_7$. Bei Synthese mit x>3 kommt es zusätzlich zur Bildung von Gehlenit. Abb. 100 zeigt einen Ausschnitt der XRD-Diagramme, bei denen $2AI^{3+}$ gegen Si⁴⁺ und Mg²⁺ substituiert wurden.

Abb. 100: Ausschnitt aus den XRD-Diagrammen bei denen x ($Ca_{20}AI_{32-2x}Mg_xSi_xO_{68}$) zwischen 1,5 und 4,0 variiert wurde; P=Pleochroit

In weiteren Experimenten sollte ermittelt werden, ob Mg²⁺ durch Zn²⁺, Cu²⁺, Ni²⁺ oder Co²⁺ substituiert werden kann. Da bei den vorangehenden Versuchen Pleochroit nur mit x=3 reinphasig erhalten wurde, wurde für diese Untersuchungen nur diese Verbindung verwendet. Die Untersuchungen zeigten, dass Co²⁺ und Zn²⁺ gegen Mg²⁺ ersetzt werden kann, Ni²⁺ und Cu²⁺ hingegen nicht bei den verwendeten Parametern in den Pleochroit eingebaut werden können. Bei der Substitution von Mg²⁺ gegen Ni²⁺ und Cu²⁺ bildet sich CA als Hauptphase; in geringen Konzentrationen liegen zusätzlich β -C₂S, γ -C₂S, C₁₂A₇, C₂AS und die jeweiligen Oxide NiO bzw. CuO und Cu₂O vor (Tab. 26). Bei der Substitution von Mg²⁺ gegen Zn²⁺ kommt es zum Teil zum Verdampfen des Zn²⁺. Als optimale Syntheseparameter wurde deshalb die Sinterzeit und Sintertemperatur etwas reduziert und geringe Gehalte an Nebenphasen von Gehlenit in Kauf genommen. Die Verfeinerung des Co-Pleochroit ist in Abb. 101 und Abb. 102 dargestellt. Die verfeinerten Gitterkonstanten der Pleochroite sind in Tab. 27 aufgelistet.

,			
Me ²⁺	Verbindung	Sinterschritt	Entstehende Phasen
Mg	Ca ₂₀ Al ₂₆ Mg ₃ Si ₃ O ₆₈	1300°C - 8h	Mg-Pleochroit (+sehr wenig C ₂ AS)
Со	Ca ₂₀ Al ₂₆ Co ₃ Si ₃ O ₆₈	1270°C - 50h	Co-Pleochroit (+sehr wenig C ₂ AS)
Ni	Ca ₂₀ Al ₂₆ Ni ₃ Si ₃ O ₆₈	1250°C - 5h	CA, β -C ₂ S, γ -C ₂ S, C ₁₂ A ₇ , C ₂ AS, NiO
Cu	Ca ₂₀ Al ₂₆ Cu ₃ Si ₃ O ₆₈	1250°C - 5h	CA, β -C ₂ S, γ -C ₂ S, C ₁₂ A ₇ , C ₂ AS, CuO, Cu ₂ O
Zn	Ca ₂₀ Al ₂₆ Zn ₃ Si ₃ O ₆₈	1250°C - 50h	Zn-Pleochroit, (+sehr wenig C ₂ AS)

Tab. 26: Phasenzusammensetzung nach den angegebenen Sinterschritten bei dem Versuch Mg²⁺ durch Zn²⁺, Cu²⁺, Ni²⁺ oder Co²⁺ im Pleochroit zu ersetzen

Abb. 101: Graphische Darstellung der Verfeinerung von Ca20Al26Co3Si3O68 mittels eines Powley-Fits

Abb. 102: Vergrößerte graphische Darstellung der Verfeinerung von Ca₂₀Al₂₆Co₃Si₃O₆₈ mittels eines Pawley-Fits; Abweichungen im berechneten Diagramm bei 31,421°2Theta durch geringe Mengen Gehlenit

Tab. 27: Verfeinerte Gitterkonstanten der Pleochroite

Me ²⁺	Verbindung	T [°C]	RG	a [Å]	b [Å]	c [Å]	V [ų]
Mg	Ca ₂₀ Al ₂₆ Mg ₃ Si ₃ O ₆₈	1300	Pmmn	27,618 (2)	10,804 (2)	5,119 (1)	1527,4 (10)
Со	Ca ₂₀ Al ₂₆ Co ₃ Si ₃ O ₆₈	1270	Pmmn	27,621 (2)	10,804 (2)	5,120 (1)	1528,0 (10)
Zn	Ca ₂₀ Al ₂₆ Zn ₃ Si ₃ O ₆₈	1250	Pmmn	27,625 (2)	10,807 (2)	5,120 (1)	1530,5 (10)

3.7. Kurzzusammenfassung: Synthese und Phasenbildung der Zementphasen

Zusammenfassend konnte in diesem Kapitel gezeigt werden, dass sich ein Großteil der Zementphasen mittels alternativer Synthesemethoden mit mehreren hundert Kelvin niedrigeren Sintertemperaturen herstellen lässt. So konnte mittels Polymer-Precursor-Synthese α_{L} -C₂S bei 650°C, CA bei 900°C und C₂F bei 700°C synthetisiert werden. Bei Verwendung des GNP war die Herstellung von Calciumaluminaten bei ebenso niedrigen Sintertemperaturen möglich. Die "klassische" Sol-Gel-Methode erwies sich aufgrund der langen Gelierungszeiten und aufwendigen Herstellung als unpraktisch. Zudem konnten die Zementphasen nicht reinphasig bei solch niedrigen Sintertemperaturen, wie sie bei der Polymer-Precursor-Synthese verwendet wurden, hergestellt werden. In der folgenden Tabelle sind die notwendigen Sintertemperaturen für die Herstellung reinphasiger Verbindungen zusammengefasst (Tab. 28).

Tab.	. 28:	Notwendig	Sinterschritte	für den	Erhalt de	r jeweiligen	reinphasigen	Verbindungen	mittels	verschiedener
Synt	these	methoden;	*geringe Men	gen an	Nebenpha	asen				

	Festkörper- synthese	Polymer-Precursor- Synthese	Glycin-Nitrate- Prozess	Sol-Gel- Methode
CA	1500°C (16h)	900°C (2h)	900°C (2h)	1500°C (16h)
C ₅ A ₃	-	900°C (2h)	900°C (2h)	-
C ₁₂ A ₇	1300°C (50h)	1200°C (2h)	1200°C (2h)	1300°C (30h)*
C ₃ A	1400°C (20h)	1200°C (2h)	1200°C (2h)	1400°C (2h)
amorphes CaO und A ₂ O ₃	-	700°C (2h)	-	-
C ₂ S	1400°C (2h)	650°C (2h)	1000°C (2h)	1000°C (2h)
C ₃ S	1500°C (12h)	1500°C (12h)	1500°C (12h)	1500°C (12h)
C ₂ AS	-	1300°C (2h)	1300°C (2h)	-
CAS ₂	1200°C (2h)	900°C (2h)	900°C (2h)	-
CAS	-	950°C (2h)	-	-
C ₄ A _{1,0} F _{1,0}	1250°C (60h)	1000°C (2h)	1000°C (2h)	1250°C (20h)*
C ₂ F	-	700°C (2h)	-	-
C ₄ A ₃ s	1300°C (60h)	1250°C (60h)*	-	-
C ₅ A ₃ MS	-	1300°C (8h)	-	-

Aufgrund der niedrigeren Sintertemperaturen und besseren Homogenisierung kommt es, verglichen mit der Festkörpersynthese, zusätzlich zur Bildung der folgenden metastabilen Verbindungen:

- CA (orthorhombische Modifikation), C₅A₃,
- $\alpha_{L}^{-}C_{2}S, \beta C_{2}S,$
- eisenreiche Brownmillerite mit der RG I2mb,
- Yoshiokait und die beiden monoklinen Modifikationen des CAS₂.

Fehlerbetrachtung der Meßergebnisse:

Für die verfeinerten Gitterkonstanten wurde der jeweilige Fehler unter Berücksichtigung der Kristallinität für alle Verbindungen abgeschätzt. Die absoluten Fehler für die mittleren verfeinerten Kristallitgrößen sollten mit ±10% angegeben werden (UVAROV & POPOV 2007). Die Berechnungen sind jedoch reproduzierbar und durch die Verwendung der gleichen XRD-Geräteparameter und Verfeinerungsstrategien kann ein systematischer Fehler angenommen werden kann. Dadurch erlauben die Ergebnisse eine tendenzielle Beurteilung der Kristallit-größen.

Die Partikelmorphologie der synthetisierten Pulver weichen von denen der konventionellen Zemente ab. Die absoluten Werte der spezifischen Oberfläche nach BLAINE sind daher untereinander nur bedingt vergleichbar. Die Messungen wurden trotz alledem durchgeführt, da aus den Ergebnissen in etwa die hydraulischen Reaktivitäten und der dafür benötigte Wassergehalt abgeschätzt werden kann.

Bei der Phasenbildung der Zementreinphasen aus amorphen Precursorphasen muss in Betracht gezogen werden, dass amorphe Phasen in geringen Prozentsätzen mit vorliegen, die jedoch diffraktometrisch nicht nachgewiesen werden können. Diese können dann auch zu einem geringen Teil die Hydratationskinetik bei den kalorimetrischen Messungen beeinflussen.

4. Hydratation der Zementphasen

In diesem Kapitel soll die hydraulische Reaktivität von den in Kapitel 3 synthetisierten Zementphasen beurteilt werden. Die kinetischen Messungen diesbezüglich werden mithilfe der Wärmeflusskalorimetrie durchgeführt. Aufgrund der höheren spezifischen Oberflächen bei den Zementphasen, die mittels Niedrigtemperatur-Synthese hergestellt wurden, steigt der Wasserbedarf bei der Hydratation an und muss infolge dessen für die jeweiligen Phasen optimiert werden. Ergänzend wurden röntgenographische und optische Untersuchungen an den Hydratationsprodukten durchgeführt.

4.1. Calciumaluminate (System CaO-Al₂O₃)

Bei den Calciumaluminaten ist bekannt, dass calciumreichere Verbindungen schneller hydratisieren, was von GAWLICKI *et al.* (1984) gezeigt wurde.

4.1.1. CaO·Al₂O₃ (CA)

EDMONDS & MAJUMDAR (1988a) untersuchten das Hydratationsverhalten von CA in Abhängigkeit von der Temperatur. Bei Temperaturen <20°C bildet sich nur die Hydratphase CaO·Al₂O₃·10H₂O (CAH₁₀). Im Temperaturbereich zwischen 21°C und 30°C entsteht zusätzlich das lamellare Hydratationsprodukt 2CaO·Al₂O₃·8H₂O (C₂AH₈). Bei Temperaturen von >30°C ist die Umwandlung zum stabilen Hydrogranat 3CaO·Al₂O₃·6H₂O (C₃AH₆) und Gibbsit Al(OH)₃ (AH₃) beschleunigt bzw. entstehen diese Phasen direkt. Nach Untersuchungen von GÖTZ-NEUNHOEFFER (2006) ist der Zeitpunkt der Haupthydratationsreaktion von monoklinem CA bei verschiedenen Synthesen und der Zugabe von entsalztem Wasser nicht reproduzierbar. Es sollten daher für die Beurteilung der Reaktivität die freigesetzten Wärmemengen betrachtet werden. Ziel der eigenen Untersuchungen ist das Hydratationsverhalten des orthorhombischen CA zu untersuchen, die hydraulische Reaktivität des CA aus den verschiedenen Synthesemethoden zu vergleichen und das röntgenamorphe CaO·Al₂O₃ (Sintertemperaturen: 700°C-2h und 800°C-2h), hergestellt mittels Polymer-Precursor-Synthese, zu hydratisieren. Zunächst wurde das Hydratationsverhalten des orthorhombischen CA, das mittels GNP hergestellt wurde, in Abhängigkeit vom W/F-Verhältnis untersucht, da dieses CA die größte Oberfläche besitzt.

Untersuchungen, bei denen das CA (GNP) bei verschiedenen W/F-Werten angemischt wurde, zeigten, dass es erst bei einem W/F-Wert von 8 zu einer pastösen Konsistenz beim Mischen kommt. Bei W/F-Werten von 6 und kleiner wird das Wasser sofort gebunden und eine Homogenisierung der Pasten ist daher nur bedingt möglich. Die Wärmeflusskurven zeigen, dass es unmittelbar nach der Zugabe des Wassers durch das Benetzen des CA bei

einem W/F-Wert von 6 zum maximalen Wärmefluss kommt (Abb. 103). Die Berechnung der Wärmemenge bis 0,6h nach der Zugabe des Wassers zeigt, dass die maximale Wärme bei einem W/F-Wert von 8 frei wird (Abb. 104). Bei einem W/F-Wert von 10 nimmt der maximale Wärmefluss wieder ab und die Reaktion ist leicht verzögert.

Abb. 103: Wärmefluss des CA (GNP) in Abhängigkeit vom W/F-Wert; T=20°C; 0-0,6h

Abb. 104: Freigesetzte Wärme des CA (GNP) in Abhängigkeit vom W/F-Wert; T=20°C; 0-0,6h

Bei der Hauptreaktion des CA (GNP) ist der Wärmefluss bei einem W/F-Wert von 8 maximal (Abb. 105). Die Berechnung der Wärmemenge zeigt bei diesem W/F-Wert einen maximalen Wert von 784J/g (Abb. 106). Bei einem W/F-Wert von 1 ist keine vollständige Hydratation zu CAH₁₀ möglich, weshalb auch die freiwerdende Wärme begrenzt ist.

Abb. 105: Wärmefluss des CA (GNP) in AbhängigkeitAbb. 106: Freigesetzte Wärme des CA (GNP) in Ab-
hängigkeit vom W/F-Wert; T=20°C; 2-18h

Röntgenographische Untersuchungen der Hydratationsprodukte nach 50h Hydratationszeit bestätigen, dass nur die Probe mit einem W/F-Verhältnis von 1 unvollständig hydratisiert ist. Die Probe mit dem W/F-Verhältnis von 2 zeigt den größten Anteil an kristallinem CAH₁₀. Mit steigendem W/F-Wert von 2 nach 10 nimmt der kristalline Anteil an CAH₁₀ ab und der amorphe Anteil zu, zu sehen an dem erhöhten Untergrund in den Diagrammen in Abb. 107.

Abb. 107: XRD-Diagramme des hydratisierten CA (GNP) in Abhängigkeit vom W/F-Wert nach einer Hydratationszeit von 50h; T=20°C

Im Anschluss wurde der Einfluss der Synthesemethode auf die hydraulische Reaktivität, mit denen das orthorhombische CA hergestellt wurde, untersucht (Abb. 108). CA, das mittels Polymer-Precursor-Synthese hergestellt wurde, zeigt einen erhöhten Wärmefluss vor der Haupthydratationsreaktion. Bei der Hauptreaktion kommt es zum maximalen Wärmefluss beim CA, das über den GNP hergestellt wurde (Abb. 109). Der Vergleich der freiwerdenden Wärme (Abb. 110) des orthorhombischen CA zeigt für beide Synthesemethoden im Rahmen des Fehlers vergleichbare Werte. Röntgenographische Untersuchungen nach 50h Hydratationszeit bestätigten, dass das CA in beiden Fällen vollständig hydratisiert ist. Das über die Festkörpersynthese und durch einen zusätzlichen Sinterprozess bei 1500°C aus orthorhombischen CA, das bei niedrigeren Sintertemperaturen hergestellt wurde. Röntgenographische Untersuchungen nach 50h Hydratationszeit zeigen große Mengen an unhydratisiertem monoklinem CA. Bei der Hydratation, des über die Festköpersynthese hergestelltem CA, kommt es neben CAH₁₀ außerdem zur Bildung von geringen Mengen an C₂AH₈ und C₂AH_{7.5}.

Abb. 108: Wärmefluss des orthorhombischen und monoklinen CA, hergestellt mittels verschiedener Synthesemethoden; T=20°C; 0-0,6h

Abb. 109: Wärmefluss des orthorhombischen und monoklinen CA, hergestellt mittels verschiedener Synthesemethoden; T=20°C; 2-30h

Abb. 110: Freigesetzte Wärme des orthorhombischen und monoklinen CA, hergestellt mittels verschiedener Synthesemethoden; T=20°C; 0-30h

In einem weiteren Versuch konnte gezeigt werden, dass röntgenamorphes CA (700°C - 2h), hergestellt mittels Polymer-Precursor-Synthese, ebenfalls hydraulisch reaktiv ist. Das Maximum der Hauptreaktion setzt jedoch erst 70h nach der Zugabe von entsalztem Wasser ein (Abb. 111). Die Untersuchungen wurden deshalb mit gesättigter Calciumhydroxid-Lösung wiederholt, da nach GÖTZ-NEUNHOEFFER (2006) die Haupthydratationsreaktion dann bei vergleichbaren Hydratationszeiten stattfindet. Die hydraulischen Reaktivitäten des röntgenamorphen CA, hergestellt bei einer Sintertemperatur von 700°C, erreichen einen maximalen Wärmefluss von 93mW/g; mit steigender Sintertemperatur des CA nimmt dieser ab (Abb. 112).

Die kalorimetrischen Untersuchungen zeigten somit, dass der schematische Hydratationsverlauf des orthorhombischen und amorphen CA analog dem des monoklinen CA ist, die maximalen Wärmeflüsse jedoch erhöht sind und das CA vollständig hydratisiert. Grund dafür ist unter anderem die höhere spezifische Oberfläche des orthorhombischen CA, da dies bei deutlich niedrigeren Sintertemperaturen hergestellt wurde.

Abb. 111: Wärmefluss des CA (Polymer-Precursor-Synthese) in Abhängigkeit von der Sintertemperatur; T=20°C; W/F-Wert=8

Abb. 112: Wärmefluss des CA (Polymer-Precursor-Synthese) in Abhängigkeit von der Sintertemperatur, T=20°C; W/F-Wert=8 (W nur hier gesättigte Calciumhydroxid-Lösung)

Kryo-REM-Aufnahmen von PÖLLMANN *et al.* (2008) zeigten, dass die Hydratationsprodukte von kommerziellem TZ nach der Haupthydratationsreaktion dicht gepackt sind. Eigene Aufnahmen der Hydratationsprodukte des reinen orthorhombischen CA, das mittels Polymer-Precursor-Synthese hergestellt wurde, zeigen ebenfalls ein dichtes Gefüge. Dabei konnten die typische prismatische Form von CAH₁₀ (SCRIVENER & TAYLOR 1990) beobachtet werden (Abb. 113 und Abb. 114). Zum Vergleich wurden Kryo-REM-Aufnahmen des monoklinen, über die Festkörpersynthese hergestellten, CA aufgenommen. Das Gefüge ist auch hier nach 15h Hydratationszeit sehr dicht. In einigen Fällen konnten jedoch lamellare Phasen (röntgenographisch: C_2AH_8 und $C_2AH_{7,5}$) optisch nachgewiesen werden (Abb. 115).

Abb. 113: Kryo-REM-Aufnahme von orthorhombischem CA, hergestellt mittels Polymer-Precursor-Synthese; Hydratationszeit: 14h; W/F=8

Abb. 114: Kryo-REM-Aufnahme von orthorhombischem CA, hergestellt mittels Polymer-Precursor-Synthese; Hydratationszeit: 14h; W/F=8

Abb. 115: Kryo-REM-Aufnahme von monoklinem CA, hergestellt mittels Festkörpersynthese; Hydratationszeit: 15h; W/F=2; vereinzelt sind lamellare Phasen beobachtbar, die röntgenographisch als C_2AH_8 und $C_2AH_{7,5}$ identifiziert wurden

4.1.2. 12CaO·7Al₂O₃ (C₁₂A₇)

Das Hydratationsverhalten von $C_{12}A_7$ wurde von EDMONDS & MAJUMDAR (1988b) untersucht. Demnach entsteht neben amorphen gelartigen Phasen als kristalline Hydratationsprodukte unterhalb von 20°C C_2AH_8 und CAH_{10} , zwischen 20°C und 30°C nur C_2AH_8 und über 30°C wird die Umwandlung zum stabilen Hydrogranat C_3AH_6 und Gibbsit AH_3 beschleunigt. EDMONDS & MAJUMDAR (1988b) beschreiben weiter, dass der Großteil der entstehenden Hydratphasen röntgenamorph ist und die Bildung der kristallinen Phasen bei 20°C nicht mit den kalorimetrischen Untersuchungen korreliert. Bei 20°C beobachteten sie eine verzögerte Hydratationsreaktion während es bei höheren (40°C) oder niedrigeren (4°C) Temperaturen zu einer beschleunigenden Hydratationsreaktion kommt. Die Verzögerung erklärten sie mit einer erschwerten Keimbildung des C_2AH_8 bei einer Temperatur um 20°C.

You *et al.* (2006) zeigten den Einfluss der Kristallinität des $C_{12}A_7$ auf das Hydratationsverhalten. Nach deren Untersuchungen sind bei den Wärmeflusskurven des $C_{12}A_7$ zwei Maxima (Peaks) zu erkennen. Beim ersten Maximum ist der Wärmefluss bei der amorphen Probe stark erhöht gegenüber der gut kristallinen Probe. Das zweite Hydratationsmaximum ist bei der amorphen Probe zu früheren Zeiten verschoben und wesentlich geringer. Die freigewordene Wärme ist nach 72h beim kristallinen $C_{12}A_7$ höher als beim amorphen $C_{12}A_7$. Sie führen dieses Verhalten auf die schnelle Bildung einer dichten Hydrathülle (1.Maximum) um das amorphe $C_{12}A_7$ zurück, was in der weiteren Hydratationsreaktion (2.Maximum) den Ionentransport durch diese Hülle hemmt.

QIJUN *et al.* (1997) untersuchten das Hydratationsverhalten von 11CaO·7Al₂O₃·CaF₂ in Abhängigkeit von der Temperatur und stellten fest, dass bei einer Temperatur von 30°C nach einer Hydrationszeit von 2h der Hydratationsgrad maximal ist. Bei niedrigeren Temperaturen ist das anfängliche Lösen des 11CaO·7Al₂O₃·CaF₂ langsamer, dafür verläuft die Reaktion im Anschluss beschleunigt ab und das 11CaO·7Al₂O₃·CaF₂ ist zu einem früheren Zeitpunkt vollständig hydratisiert. Grund für die gehemmte Reaktion bei höheren Temperaturen ist nach QIJUN *et al.* (1997), dass das schnelle Ausfallen von Hydratationsprodukten um die 11CaO·7Al₂O₃·CaF₂-Körner zur Bildung einer dichten Hydrathülle führt, die die weitere Hydratation hemmt. Dagegen bilden sich die Hydratphasen bei niedrigeren Temperaturen langsamer, sind besser kristallin und die Hydrathülle ist folglich durchlässiger. Des Weiteren zeigten sie, dass mit einer höheren spezifischen Oberfläche und höherem Wassergehalt auch der Hydratationsgrad zunimmt.

In den eigenen Untersuchungen soll die Reaktivität des C₁₂A₇ aus den verschiedenen Synthesemethoden verglichen werden und zusätzlich der Hydratationsverlauf in dem Temperaturbereich zwischen 10°C und 30°C näher betrachtet werden.

Zu Beginn der Untersuchungen wurde für das über die Niedrigtemperatur-Synthesemethoden hergestellte C₁₂A₇ ein notwendiger Wassergehalt von 2 ermittelt. Dieser W/F-Wert ist verglichen mit dem von CA, das mittels der Niedrigtemperatur-Synthesemethoden hergestellt wurde, niedriger, da die spezifischen Oberflächen durch die relativ hohe Sintertemperatur von 1200°C (2h), die zur Synthese von C₁₂A₇ notwendig ist, ein starkes Abnehmen der spezifischen Oberfläche und Porosität zur Folge hat. Da die Proben der Festkörpersynthese zu Vergleichszwecken mit dem gleichen W/F-Wert präpariert werden sollten, wurde der Einfluss des W/F-Wertes auf das Hydratationsverhalten untersucht. Wie bereits von QIJUN *et al.* (1997) beschrieben, beschleunigt ein höherer W/F-Wert das System leicht (Abb. 116 und Abb. 117). Da der Einfluss jedoch sehr gering ist wurde beim C₁₂A₇ für alle Messungen ein W/F-Wert von 2 verwendet.

Abb. 116: Wärmefluss von C₁₂A₇ (Festkörpersynthese) in Abhängigkeit vom W/F-Wert; T=20°CAbb. 117: Freigesetzte Wärme von C₁₂A₇ (Festkörpersynthese) in Abhängigkeit vom W/F-Wert; T=20°C

In Abb. 118 ist der Wärmefluss bei verschiedenen Temperaturen von C₁₂A₇, das mittels Festkörpersynthese hergestellt wurde, dargestellt. Das Maximum des ersten Peaks nimmt mit niedrigeren Temperaturen ab. Dies ist mit der geringeren Löslichkeit des C₁₂A₇ bei tieferen Temperaturen zu erklären und korreliert mit den Untersuchungen von QIJUN et al. (1997). Bei der temperaturabhängigen Hydratation von $C_{12}A_7$, synthetisiert mittels GNP (Abb. 122 und Abb. 123) und Polymer-Precursor-Synthese (Abb. 120 und Abb. 121), sind tendenziell die gleichen Effekte zu beobachten. Die Wärmeflüsse sind jedoch aufgrund der höheren spezifischen Oberfläche und niedrigeren Sintertemperatur, verglichen mit der Festkörpersynthese, deutlich höher. Das Maximum der zweiten Hydratationsreaktion nimmt mit fallender Temperatur zu. Dies ist auf die Bildung von weniger dichten oder dünneren Hydrathüllen um die C12A7-Körner bei niedrigen Temperaturen zurückzuführen (erster Peak). Dadurch ist ein Ionentransport durch die porösere Hydrathülle möglich und damit auch eine stärker fortschreitende Hydratationsreaktion. Das Maximum der zweiten Hydratationsreaktion von C₁₂A₇, das mittels Festkörpersynthese hergestellt wurde, ist bei 15°C maximal verzögert, was mit der langsameren Keimbildung von C₂AH₈ bei diesen Temperaturen erklärt wird (EDMONDS & MAJUMDAR 1988b). Bei der Hydratation von C₁₂A₇,

hergestellt *via* Polymer-Precursor-Synthese oder GNP, ist die maximale Verzögerung bei einer Temperatur von 20°C zu beobachten.

Abb. 118: Wärmefluss von C₁₂A₇ (Festkörpersynthese) in Abhängigkeit von der Temperatur; W/F=2

Abb. 120: Wärmefluss von C₁₂A₇ (Polymer-Precursor-Synthese) in Abhängigkeit von der Temperatur; W/F=2

Abb. 122: Wärmefluss von C₁₂A₇ (GNP) in Abhängigkeit von der Temperatur; W/F=2

Abb. 119: Freigesetzte Wärme von C₁₂A₇ (Festkörpersynthese) in Abhängigkeit von der Temperatur; W/F=2

Abb. 121: Freigesetzte Wärme von C₁₂A₇ (Polymer-Precursor-Synthese) in Abhängigkeit von der Temperatur; W/F=2

Abb. 123: Freigesetzte Wärme von C₁₂A₇ (GNP) in Abhängigkeit von der Temperatur; W/F=2

Die freigesetzten Wärmemengen sind bei den verschiedenen Temperaturen nur bedingt vergleichbar, da es zur Bildung von unterschiedlichen Hydratationsprodukten kommt. Sie wurden trotz alledem dargestellt, um zu zeigen, dass es bei niedrigen Temperaturen von 10° C analog zum $11CaO \cdot 7Al_2O_3 \cdot CaF_2$ wie von QIJUN *et al.* (1997) gezeigt, zur weiteren Hydratationsreaktion bis 30h nach der Wasserzugabe kommt. Dagegen konnte bei einer Hydratationstemperatur von 28°C nach 18h, trotz ausreichend Wasser und mittels XRD nachgewiesenem unreagierten C₁₂A₇, keine fortschreitende Reaktion mehr gemessen werden.

Beim direkten Vergleich der Reaktivitäten des $C_{12}A_7$, hergestellt mittels verschiedener Synthesemethoden, zeigte sich, dass bei einer Temperatur von 20°C das über den GNP hergestellte $C_{12}A_7$ die höchste Reaktivität besitzt (Abb. 124 und Abb. 125). Grund dafür sind in erster Linie die höheren spezifischen Oberflächen bei dem über die Niedrigtemperatur-Synthesemethoden hergestellten $C_{12}A_7$. Zusätzlich muss jedoch in Betracht gezogen werden, dass auch die niedrigere Sintertemperatur und damit eine höhere Anzahl an Oberflächendefekten die hydraulische Reaktivität beeinflusst.

Abb. 124: Wärmefluss von $C_{12}A_7$ in Abhängigkeit von
der Synthesemethode; W/F=2; T=20°CAbb. 125: Freigesetzte Wärme von $C_{12}A_7$ in Abhän-
gigkeit von der Synthesemethode; W/F=2; T=20°C

Bei der röntgenographischen Charakterisierung der Hydratationsprodukte 50h nach der Wasserzugabe zum $C_{12}A_7$ (Festkörpersynthese) konnten bei <20°C eine Mischung von CAH_{10} , C_2AH_8 und $C_2AH_{7,5}$ identifiziert werden. Bei 20°C und 25°C kristallisieren C_2AH_8 und $C_2AH_{7,5}$ aus. Bei 28°C kommt es zusätzlich zur Bildung von sehr geringen Mengen an C_3AH_6 . Beim $C_{12}A_7$ aus dem GNP und der Polymer-Precursor-Synthese kommt es zur Bildung der gleichen Hydratphasen mit der Ausnahme, dass keine oder nur sehr geringe Mengen an $C_2AH_{7,5}$ entstehen und das $C_{12}A_7$ nach 50h Hydratationszeit bereits vollständig hydratisiert ist. Die röntgenographischen Untersuchungen der Hydratationsprodukte von hochreaktivem $C_{12}A_7$ (GNP) zeigen außerdem, dass das C_2AH_8 wesentlich besser kristallin ist als die Hydratationsprodukte des mittels Festkörpersynthese hergestelltem $C_{12}A_7$. Dies

stimmt mit den Beobachtungen von SCHELLER & KUZEL (1974) überein, die bei der Hydratation von Calciumaluminat-Gläsern eine erhöhte Kristallinität der lamellaren Hydratationsprodukte feststellten.

Kryo-REM-Untersuchungen sollten die Theorien bestätigen, dass sich Hydrathüllen um die $C_{12}A_7$ -Körner bilden. Die Aufnahmen erfolgten 2h nach der Zugabe des Wassers, wobei während der Hydratation eine Temperatur von 20°C herrschte. Abb. 126 zeigt hydratisiertes $C_{12}A_7$, das mittels des GNP hergestellt wurde. Dieses poröse $C_{12}A_7$ ist mit einer dichten Hydrathülle überzogen (Abb. 126a). Im gefrorenen Wasser sind Ausfällungen als Folge des Gefrierprozess zu beobachten (Abb. 126b). Im rechten Bildrand sind erste Hydratationsprodukte zu sehen, die sich aus der Lösung bilden (Abb. 126c). Beim Vergleich der Hydrathüllen des $C_{12}A_7$, ist zu erkennen, dass die Hydrathüllen bei dem mittels Festkörpersynthese hergestelltem $C_{12}A_7$ wesentlich poröser sind als bei dem mittels GNP hergestelltem $C_{12}A_7$ (Abb. 127 und Abb. 128). Damit zeigen die Untersuchungen, dass neben der höheren spezifischen Oberfläche auch die niedrigere Sintertemperatur und die damit verbundene höhere Anzahl an Gitterdefekten zu einer höheren hydraulischen Reaktivität des $C_{12}A_7$ beitragen. Die Ergebnisse korrelieren damit auch mit denen von You *et al.* (2006), die dichtere Hydrathüllen bei schlechter kristallinem $C_{12}A_7$ nachgewiesen haben.

Abb. 126: Kryo-REM-Aufnahme von C₁₂A₇ synthetisiert mittels des GNP; Hydratationszeit: 2h; W/F=2; T=20°C; a) C₁₂A₇-Korn mit Hydrathülle, b) Ausfällungen aus der gefrorenen Lösung, c) feinkristalline Hydratationsprodukte

Abb. 127: Kryo-REM-Aufnahme von C₁₂A₇, synthetisiert mittels Festkörpersynthese; Hydratationszeit: 2h; W/Z=2; T=20°C; C₁₂A₇-Korn mit grobkristalliner poröser Hydrathülle

Abb. 128: Kryo-REM-Aufnahme von $C_{12}A_7$, synthetisiert mittels des GNP; Hydratationszeit: 2h; W/Z=2; T=20°C; $C_{12}A_7$ -Korn mit feinkristalliner dichter Hydrathülle

4.1.2.1. 2CaO·Al₂O₃·8±xH₂O (C₂AH_{8±x})

Gründe für den geringeren Anteil an $C_2AH_{7,5}$ und höheren Anteil an C_2AH_8 bei der Hydratation von hochreaktivem $C_{12}A_7$, das mittels GNP oder Polymer-Precursor-Synthese hergestellt wurde, werden im fortlaufenden Kapitel geklärt.

C₂AH₈ und C₂AH_{7,5} gehören zur Gruppe der AFm-Phasen und sind aus der Hauptschicht $[Ca_2Al(OH)_6]^+$ und einer Zwischenschicht mit variablem Wassergehalt $[Al(OH)_4 \cdot nH_2O]^$ aufgebaut. Abhängig von Temperatur, Luftfeuchte und Druck sind mehrere Hydratstufen bekannt, die in der Literatur anhand des d-Werts des ersten 001-Reflexes beschrieben werden (ist in Klammern nach der Verbindung angegeben). Übereinstimmend wurde dabei gezeigt, dass die lamellaren Phasen als hexagonale oder pseudo-hexagonale Blättchen kristallisieren. So beschrieb ROBERTS (1957), dass α-C₂AH₈ (10,7Å) und β-C₂AH₈ (10,4Å) existieren und es bei der Dehydratation zur Bildung von C2AH7,5 (10,6Å) kommt. ARUJA (1960) schlug für α -C₂AH₈ eine hexagonale Elementarzelle mit einem c₀-Gitterparameter von 22Å oder 64Å vor. ARUJA (1961) diskutierte zudem eine mögliche Mischkristallbildung des C₂AH₈ mit dem 4CaO·Al₂O₃·19H₂O (C₄AH₁₉). Nach SCHELLER & KUZEL (1974) existiert nur C₂AH₈ (10,7Å) und C₂AH_{7,5} (10,4Å), die Hydratstufe mit einem Basisabstand von 10,6Å (ROBERTS 1957) bezeichneten sie als zwischenzeitliches Dehydratationsprodukt des C₂AH₈. UKRAINCZYK et al. (2007) zeigten das Dehydratationsverhalten bei höheren Temperaturen bzw. geringeren Luftfeuchten vom C_2AH_8 zum $2CaO \cdot AI_2O_3 \cdot 5H_2O$ (C_2AH_5) bzw. 2CaO·Al₂O₃·4H₂O (C₂AH₄). Das Dehydratationsverhalten mittels DSC wurde von DAS et al. (1996) untersucht. In-situ XRD-Untersuchungen an Tonerdezementen unter Verwendung eines Probenträgers mit Kapton-Folie von GÖTZ-NEUNHOEFFER (2006) und PÖLLMANN et al. (2008) zeigten, dass bei der Hydratation von Calciumaluminaten zunächst C₂AH₈ entsteht,

das nach kurzer Zeit zu $C_2AH_{7,5}$ dehydratisiert. Weitere *in-situ* XRD-Experimente zur Hydratation von C_3A wurden von CHRISTENSEN *et al.* (2003) durchgeführt. In Tab. 29 sind Gitterparameter und Basisabstände der lamellaren Phasen zum $C_2AH_{8\pm x}$ aus der Literatur zusammengefasst.

Bez.	a [Å]	b [Å]	c [Å]	α [°]	β [°]	γ [°]	d (00l)	Literatur	T und r.F.
C_2AH_8	5,74	-	-	90	90	120	10,70	(Scheller & Kuzel 1974)	<20°C, >45%r.F.
$C_2AH_{7,5}$	9,93	5,74	42,2	90	97,0	90	10,4	(Scheller & Kuzel 1974)	RT, <45%r.F.
C ₂ AH ₈	-	-	-	-	-	-	10,65	ICDD: 00-011-0205	
C_2AH_8	5,79	5,79	64,696	90	90	120	10,81	ICDD: 00-045-0564	
α -C ₂ AH ₈	-	-	-	-	-	-	10,7	(ROBERTS 1957)	81-99%r.F.
β -C ₂ AH ₈	-	-	-	-	-	-	10,4	(Roberts 1957)	81-99%r.F.
C ₂ AH _{7,5}	-	-	-	-	-	-	10,6	(ROBERTS 1957)	34%r.F.
α -C ₂ AH ₈	-	-	-	-	-	-	10,7	(Rasнid <i>et al.</i> 1994)	-
β -C ₂ AH ₈	-	-	-	-	-	-	10,5	(Rasнid <i>et al.</i> 1994)	-
C ₂ AH _{7,5}	9,946	5,733	43,138	90	97,96	90	10,4	(Richard <i>et al.</i> 1995)	-

Tab. 29: Bekannte kristallographische Parameter zu den Hydratstufen des 2CaO·Al₂O₃·8±xH₂O (C₂AH_{8±x})

Um den Phasenverlauf zu verfolgen wurde das Hydratationsverhalten mittels *in-situ* XRD untersucht. Die Ergebnisse zeigen, dass es nach der Wasserzugabe zum $C_{12}A_7$ (GNP) zur Entstehung einer bis dahin nicht beschriebenen Hydratstufe des $C_2AH_{(8+x)}$ mit einem Basisabstand von 10,87Å kommt (Abb. 129). Die 0 0 I-Reflexe bewegen sich im weiteren Hydratationsverlauf langsam zu höheren °2Theta Werten. Es kommt im Folgenden zur Bildung von C_2AH_8 und größeren Mengen an $C_2AH_{7,5}$. Durch die Überlagerung aller Diagramme in einem 2D-Plot (Abb. 130) konnten eindeutig diese drei Hydratstufen identifiziert werden.

Es kommt somit bei den XRD-Untersuchungen nach den kalorimetrischen Messungen und den *in-situ* XRD-Untersuchungen zu unterschiedlichen Mengenverhältnissen an C_2AH_8 und $C_2AH_{7,5}$, trotz gleicher Temperatur und gleichem W/F-Wert. Einziger Unterschied ist die Präparationsmethode, wobei bei den *in-situ* XRD-Untersuchungen die Zementpaste in den Probenträger gestrichen und stärker verdichtet wurde als bei den kalorimetrischen Messungen. Bei XRD-Untersuchungen bei denen das $C_{12}A_7$ (GNP) im Kalorimeter-Tiegel stark verdichtet wurde und anschließend das Wasser, wie bei den vorherigen Messungen mittels Injektionsmethode zugegeben wurde, kommt es ebenfalls zur Bildung von C_2AH_8 und größeren Mengen an $C_2AH_{7,5}$. Grund für die Bildung der unterschiedlichen Verhältnisse der Hydratstufen C_2AH_8 und $C_2AH_{7,5}$ ist somit die **unterschiedliche Schüttdichte bzw. Porosität** des $C_{12}A_7$, bei den unterschiedlichen Synthesemethoden. Erklärbar ist dieses Phänomen damit, dass bei einer höheren Schüttdichte bzw. geringer Porosität des $C_{12}A_7$ die bildenden Hydratphasen Druck aufeinander ausüben und es dadurch zur teilweisen Dehydratation vom C_2AH_8 zum $C_2AH_{7,5}$ kommt.

Abb. 129: In-situ XRD Hydratationsverlauf von $C_{12}A_7$ (GNP); W/F=2; T=25°C; vollständige Hydratation des $C_{12}A_7$ (•) nach 3,5h; Abnahme des amorphen Untergrunds (24°2Theta - 30°2Theta) mit Bildung des $C_2AH_{8\pm x}$

Abb. 130: 2D-Plot aller Aufnahmen des in-situ XRD-Hydratationsverlaufes von C₁₂A₇ (GNP) aus Abb. 129; W/F=2; T=25°C; deutlich Aufspaltung der 0 0 I - Reflexe in drei definierte Positionen

Im Folgenden werden die Syntheseparamerter der einzelnen Hydratstufen und Aussagen über die Stabilitätsverhältnisse der drei identifizierten lamellaren Phasen des $C_2AH_{8\pm x}$ zusammengefasst. Die verfeinerten Gitterkonstanten der Verbindungen sind in Tab. 30 aufgelistet.

Hydratstufe mit einem Basisabstand von 10,87Å (2CaO·Al₂O₃·8+xH₂O):

Die Synthese erfolgte aus amorphem, über den GNP oder die Polymer-Precursor-Synthese hergestelltem, $C_{12}A_7$ mit einem W/F-Wert von 2. Die Hydratation fand in einem Probenträger, der mittels Kapton-Folie verschlossen wurde, statt, um eine Carbonatisierung und Dehydratation zu verhindern (T=25°C). Die Hydratstufe mit dem Basisabstand von 10,87Å ist nur unmittelbar nach dem Auskristallisieren aus einer gesättigten Lösung stabil und geht dann in die Hydratstufen mit den Basisabständen von 10,73Å und 10,45Å über. Es wird dabei angenommen, dass ein konstantes Ca/Al-Verhältnis von 1 vorliegt und die Änderung im Gitterparameter c_0 auf einen variierenden Wassergehalt in der Zwischenschicht zurückzuführen ist.

Hydratstufe mit einem Basisabstand von 10,73Å (2CaO·Al₂O₃·8H₂O):

Bei dem über den GNP und die Polymer-Precursor-Synthese hergestellten sehr porösen $C_{12}A_7$ mit geringer Schüttdichte kommt es bei der Hydratation mit einem W/F-Wert von 2 nach 48h zur Bildung der Hydratstufe mit einem Basisabstand von 10,73Å. Die Temperatur bei der Hydratation muss dabei über 21°C liegen, um die Bildung von CAH₁₀ zu verhindern und sollte zugleich unter 28°C liegen, da es ansonsten zur Dehydratation (C₂AH_{7,5}) und zur Bildung von C₃AH₆ kommt.

Hydratstufe mit einem Basisabstand von 10,42Å (2CaO·Al₂O₃·7,5H₂O):

Die Synthese erfolgte aus amorphem, über die Polymer-Precursor-Synthese hergestelltem, $C_{12}A_7$ mit einem W/F-Wert von 2 bei 25°C in einer Glove-Box, um einen Carbonateinbau in der Zwischenschicht zu verhindern. Nach einer Reaktionszeit von 48h wurde die Paste 72h über einer gesättigten CaCl₂-Lösung (34%r.F.) getrocknet, damit das gebildete C₂AH₈ vollständig zu C₂AH_{7,5} dehydratisiert. Als Ausgangswerte für die Verfeinerung der Gitterparameter (Tab. 30) wurde die von SCHELLER & KUZEL (1974) vorgeschlagene monokline Elementarzelle verwendet.

Dx Hydratstufe d [Å] KS RG a₀ [Å] b₀ [Å] C₀ [Å] β [°] [g/cm³] 5,775 (2) 2CaO·Al₂O₃·8,2H₂O 10,88 Hexagonal 5,775 (2) 65,274 (2) 90 1,91 _ 2CaO·Al₂O₃·8,0H₂O 5,784 (2) 90 1,91 10,75 Hexagonal -5,784 (2) 64,486 (2) 2CaO·Al₂O₃·7,5H₂O 10,45 C2/c 9,927 (2) 5,724 (2) 42,226 (2) 1,96 Monoklin 98,19 (2)

Tab. 30: Verfeinerte Gitterparameter der Hydratstufen des 2CaO·Al₂O₃·8±xH₂O (C₂AH_{8±x})

Da beim Hydratisieren von Calciumaluminaten ein Gemisch aus amorphen Phasen und den kristallinen Hydratationsprodukten entsteht (EDMONDS & MAJUMDAR 1988b), wurde der Wassergehalt der bisher unbekannten Hydratstufe (d=10,87Å) über die lineare Extrapolation gegen den Schichtabstand bestimmt (Abb. 131). Die Extrapolation ergab für den Basisabstand von 10,87Å einen Wassergehalt von 8,2Mol H₂O.

Abb. 131: Extrapolation des Wassergehalts x ($2CaO \cdot AI_2O_3 \cdot xH_2O$) gegen den Schichtabstand der lamellaren Phasen

Für die Interpretation der Ergebnisse wurden in der Literatur meist der 0 0 6-Reflex beim $C_2AH_{8,2}$ und C_2AH_8 oder der 0 0 4-Reflex beim $C_2AH_{7,5}$ verwendet. Da sich diese Reflexe stark überlagern, erwies es sich in der Arbeit als praktikabler den 0 0 18-Reflex beim $C_2AH_{8,2}$ und C_2AH_8 oder den 0 0 12-Reflex beim $C_2AH_{7,5}$ für die Identifizierung der einzelnen Hydratstufen heranzuziehen (Abb. 132).

Abb. 132: Vergrößerte Darstellung aus Abb. 130; Verschiebung der 0 0 I-Reflexe bei der Hydratation von $C_{12}A_7$ (GNP); Darstellung der 0 0 18-Reflexe des $C_2AH_{8,2}$ und C_2AH_8 sowie des 0 0 12-Reflexes des $C_2AH_{7,5}$

4.1.3. 3CaO·Al₂O₃ (C₃A)

Bei der Hydratation von C₃A bildet sich nach BREVAL (1976) und GARTNER *et al.* (2002) unmittelbar nach der Zugabe von Wasser bei 20°C eine röntgenamorphe Hydrathülle um die C₃A-Körner, aus der sich die lamellaren Hydratationsprodukte C₄AH₁₉ und C₂AH₈ bilden.

Die kalorimetrischen Untersuchungen des C₃A, hergestellt mittels verschiedenen Synthesemethoden, zeigen große Unterschiede im Reaktionsverhalten (Abb. 133 und Abb. 134). Der Wassergehalt wurde der jeweiligen Reaktivität des C₃A angepasst. C₃A aus dem GNP ist am reaktivsten und hat einen maximalen Wärmefluss von 835mW/g. Es folgt das C₃A, hergestellt über die Polymer-Precursor-Synthese und das der Sol-Gel-Methode. Das C₃A aus der Festkörpersynthese weist die niedrigste hydraulische Reaktivität auf.

Abb. 133: Wärmefluss von C_3A in Abhängigkeit von
der Synthesemethode; T=20°C; 0-1hAbb. 134: Wärmefluss von C_3A in Abhängigkeit von
der Synthesemethode; T=20°C; 0-48h

Die Kryo-REM-Aufnahmen von C₃A, hergestellt mittels Festkörpersynthese, zeigen 30min nach der Wasserzugabe ein nicht vollständig hydratisiertes C₃A-Korn, das von lamellaren Hydratationsprodukten umgeben ist (Abb. 135). Bei höheren Vergrößerungen ist die amorphe Hydrathülle zwischen dem unreagierten C₃A-Korn und den lamellaren Phasen zu beobachten, die zur Seite der lamellaren Phasen hin scharf begrenzt ist (Abb. 136). Bei dem reaktivsten C₃A aus dem GNP ist die poröse Struktur des Ausgangsmaterials mit einer amorphen Hydrathülle überzogen. Hier kommt es erst außerhalb der C₃A-Aggregate zur Bildung der lamellaren Phasen (Abb. 137).

Die pulverdiffraktometrischen Untersuchungen der Hydratationsprodukte, 72h nach der Zugabe des Wassers, zeigen einen Doppelpeak bei den 0 0 I-Reflexen was auf die Existenz von α_1 - und α_2 -3CaO·Al₂O₃·Ca(OH)₂·18H₂O (C₄AH₁₉) hinweist und bereits von ARUJA (1961) vermutet wurde. Zusätzlich kommt es bei der Hydratation von C₃A zur Bildung von C₂AH₈ und C₃AH₆.

Abb. 135: Kryo-REM-Aufnahme von C₃A (Festkörpersynthese); unreagiertes C₃A-Korn mit umgebenden lamellaren Phasen; Hydratationszeit: 2h: W/F=2, T=20°C

Abb. 136: Kryo-REM-Aufnahme von C₃A (Festkörpersynthese); Reaktionszone zwischen dem C₃A-Korn und den lamellaren Phasen; Hydratationszeit: 2h; W/F=2; T=20°C

Abb. 137: Kryo-REM-Aufnahme von C₃A (GNP); C₃A-Körner sind überzogen mit einer Hydrathülle; außerhalb der C₃A-Aggregate bilden sich idiomorphe lamellare Phasen; Hydratationszeit 2h; W/F=5; T=20°C

4.2. Calciumsilikate (System CaO-SiO₂)

4.2.1. 2CaO·SiO₂ (C₂S)

 C_2S gilt im Portlandzement als wenig reaktiv, da es nur über Wochen oder Monaten hinweg hydratisiert. Durch die Möglichkeit C_2S bei niedrigeren Sintertemperaturen herzustellen, kann deren Reaktivität jedoch erhöht werden. So beschrieben DOVÁL *et al.* (2006) die Hydratation von C_2S , dass sie bei 900°C synthetisierten. HONG & YOUNG (1999) stellten C_2S mittels Pechini-Methode bei 700°C her und zeigten, dass das stabilisierte $\alpha_L^-C_2S$ sehr reaktiv ist. Des Weiteren wurde die Hydratation von hochreaktivem β - C_2S in zahlreichen Arbeiten untersucht (ISHIDA *et al.* 1992a; ISHIDA *et al.* 1992b; ISHIDA *et al.* 1992c; ISHIDA *et al.* 1992d; OKADA *et al.* 1994; SASAKI *et al.* 1993).

In den eigenen Untersuchungen wurde das Hydratationsverhalten des *via* **Polymer-Precursor-Synthese** hergestellten C₂S in Abhängigkeit von der Sintertemperatur untersucht. Die kalorimetrischen Messungen zeigen, dass der Wärmefluss bei der Sintertemperatur von 650°C (2h) nach 21,2h maximal ist und einen Wert von 1,5mW/g erreicht. Mit einer Erhöhung der Sintertemperatur sinkt der maximale Wärmefluss rapide ab bis das, bei einer Sintertemperatur von 1100°C (2h) hergestellte, β -C₂S fast nicht mehr reagiert (Abb. 138). Deutlich wird die hohe hydraulische Reaktivität des α'_L -C₂S (650°C-2h) bei Betrachtung der freiwerdenden Wärmemenge in Abb. 139; es erreicht nach 120h eine Wärmemenge von 259J/g. Das bei höheren Temperaturen gesinterte C₂S setzt deutlich geringere Wärmemengen frei. Demzufolge ist auch der Hydratationsgrad niedriger. Dies zeigt sich auch in den röntgenographischen Untersuchungen der Hydratationsprodukte. Das hochreaktive α'_L -C₂S nahezu alle Reflexe die gleichen Intensitäten wie vor der Hydratation aufweisen und demzufolge das β -C₂S nur geringfügig hydratisiert ist.

Abb. 138: Wärmefluss von C₂S (Polymer-Precursor-Synthese) in Abhängigkeit von der Sintertemperatur; W/F=3; T=20°C; 0-120h

Abb. 139: Freiwerdende Wärmemenge von C₂S (Polymer-Precursor-Synthese) in Abhängigkeit von der Sintertemperatur; W/F=3; T=20°C; 0-120h

Abb. 140: Phasenzusammensetzung des C₂S (Polymer-Precursor-Synthese) nach 200h Hydratationszeit in Abhängigkeit von der Sintertemperatur; W/F=3; T=20°C

Um das Hydratationsverhalten des hochreaktiven $\alpha_L^-C_2S$ (650°C-2h) besser zu charakterisieren wurde zusätzlich der Hydratationsprozess röntgenographisch verfolgt. Dabei nehmen die Reflexe des $\alpha_L^-C_2S$ bis 72h nach der Zugabe des Wasser kontinuierlich ab und die der CSH-Phasen zu (Abb. 140). Die geringen Gehalte an Calcit sind auf die Diffusion von CO₂ durch die Kapton-Folie oder auf gelöstes CO₂ im Anmachwasser zurückzuführen.

Abb. 141: In-situ XRD-Aufnahme von α_L -C₂S, T=25°C, CSH-Phasen = rote Linien, Calcit = blaue Linien

Bei der Auswertung der hydratisierten C₂S Proben ließen sich die Reflexe der CSH-Phasen mit der Referenzkarte 00-033-0306 aus der ICDD-Datenbank identifizieren. Als chemische

Zusammensetzung wurde dabei 1,5CaO·SiO₂·xH₂O angegeben. Neueren Untersuchungen nach liegt der CaO-Gehalt dieser Phasen jedoch etwa zwischen 1,7 und 1,8 (TAYLOR 1997). Dies erklärt weshalb bei den XRD-Untersuchungen kein oder nur sehr geringe Mengen an Portlandit neben den CSH-Phasen gefunden wurden.

Kryo-REM-Aufnahmen des $\alpha_{L}^{-}C_{2}S$ (650°C-2h) 24h nach der Zugabe des Wassers zeigen beträchtliche Mengen an CSH-Phasen und sehr feine C₂S-Partikel (Abb. 142). Nach einer Hydratationszeit von 7 Tagen sind gut ausgebildete CSH-Phasen zu beobachten (Abb. 143).

Abb. 142: Kryo-REM-Aufnahme von $\alpha_{L}^{-}C_{2}S$ nach 24h Hydratationszeit; W/F=3; T=20°C

Abb. 143: Kryo-REM-Aufnahme von α`_L-C₂S nach 7d Hydratationszeit; W/F=3; T=20°C

Die Wärmeflüsse des β -C₂S (**Sol-Gel-Methode**; Sintertemperatur 1000°C) und des γ -C₂S (**Festkörpersynthese**; Sintertemperatur 1400°C) sind ähnlich niedrig wie die des β -C₂S aus der Polymer-Precursor-Methode bei einer Sintertemperatur von 1100°C (Abb. 144).

Abb. 144: Wärmefluss von C₂S (Sol-Gel-Methode und Festkörpersynthese); W/F=2; T=20°C

Die hohen hydraulischen Reaktivitäten des C₂S konnten somit nur bei niedrigen Sintertemperaturen (ca. 700°C), die eine hohe Oberfläche, kleine Korngröße und Bildung von $\alpha_L^-C_2S$ zur Folge haben, erreicht werden.

4.2.2. $3CaO \cdot SiO_2$ (C₃S)

Bei der Hydratation von C₃S entstehen CSH-Phasen und Calciumhydroxid (CH) (TAYLOR 1997). Die Unterschiede in der hydraulischen Reaktivität sind beim C₃S, das mittels der vier verschieden Synthesemethoden hergestellt wurde, weniger signifikant, da alle Proben bei den gleichen Sintertemperaturen von 1500°C hergestellt wurden. Die Ergebnisse der kalorimetrischen Untersuchungen aus Abb. 145 und Abb. 146 sind in Tab. 31 zusammengefasst. Der maximale Wärmefluss ist beim C₃S, hergestellt mittels Festkörpersynthese, am geringsten. Der maximale Wärmefluss und die maximale Wärmemenge wurden beim C₃S, hergestellt durch die Polymer-Precursor-Synthese, erreicht. Die Ergebnisse zum C₃S aus der Sol-Gel-Methode korrelieren mit denen von STEPHAN & WILHELM (2004), die ebenfalls zeigten, dass das C₃S verzögert und höhere maximale Wärmeflüsse gegenüber dem C₃S aus der Festkörpersynthese besitzt.

Abb. 145: Wärmefluss von C₃S, synthetisiert mittels verschiedener Synthesemethoden; T=20°C; W/F=2

Abb. 146: Wärmemenge von C_3S , synthetisiert mittels verschiedener Synthesemethoden; T=20°C; W/F=2

Synthesemethode	Oberfläche nach BLAINE [cm²/g]	t _{max} [h]	W _{tmax} [mW/g]	Q _{120h} [J/g]
Polymer-Precursor-Synthese	6850	19,7	5,0	305
Sol-Gel-Methode	7340	19,0	3,3	241
Glycin-Nitrat-Prozess	5600	10,3	2,8	174
Festkörpersynthese	2050	16,2	2,6	188

Tab. 31: Ergebnisse der kalorimetrischen Untersuchungen zum C₃S

Bei den röntgenographischen Untersuchungen konnte festgestellt werden, dass das mittels Polymer-Precursor-Synthese hergestellte C_3S nach 200h Hydratationszeit den höchsten Hydratationsgrad aufweist und bei allen hydratisierten Proben unreagiertes C_3S neben Portlandit und CSH-Phasen vorliegt. Optische Untersuchungen mittels Kryo-REM zeigen nach 15h Hydratationszeit unterschiedliche Morphologien der CSH-Phasen. Bei dem, mittels Festkörpersynthese hergestelltem, C₃S sind die CSH-Phasen gleichmäßig um die C₃S-Körner ausgebildet und besitzen eine fein-verfilzte Struktur (Abb. 147 und Abb. 148). Beim Vergleich mit dem C₃S, hergestellt mittels Polymer-Precursor-Synthese, sind die CSH-Phasen nur an vereinzelten Stellen an der Oberfläche zu beobachten (Abb. 149 und Abb. 150). Die faserige Morphologie der CSH-Phasen ist dabei wesentlich gröber als beim C₃S der Festkörpersynthese.

Abb. 147: Kryo-REM-Aufnahme von C₃S (Festkörpersynthese); W/F=2; T=20°C; Hydratationszeit: 15h

Abb. 148: Kryo-REM-Aufnahme von C₃S (Festkörpersynthese); W/F=2; T=20°C; Hydratationszeit: 15h

Abb. 149: Kryo-REM-Aufnahme von C₃S (Polymer-Precursor-Synthese); W/F=2; T=20°C; Hydratationszeit: 15h

Abb. 150: Kryo-REM-Aufnahme von C_3S (Polymer-Precursor-Synthese); W/F=2; T=20°C; Hydratations-zeit: 15h

4.3. Calciumaluminiumsilikate (System CaO-Al₂O₃-SiO₂)

In diesem Kapitel wurde untersucht ob die metastabile monokline (pseudo-hexagonale) Modifikation des CAS₂ und der Yoshiokait hydraulisch reaktiv sind, da nach YOSHIOKA (1970b) der Kalsilit-Typ des Yoshiokaits hydraulische Eigenschaften besitzt.

Von beiden Proben wurden deshalb wärmeflusskalorimetrische Untersuchungen bei 20°C und einem W/F von 2 durchgeführt. Nach der Zugabe des Wassers konnte in den darauffolgenden 200h kein Wärmefluss detektiert werden. Somit kommt es auch zu keiner Lösungsreaktion oder Hydratphasenbildung (Abb. 151). Auch röntgenographische Untersuchungen im Anschluss bestätigten, dass es zu keiner Hydratphasenbildung kommt.

Abb. 151: Wärmefluss von Yoshiokait, hergestellt mittels Polymer-Precursor-Synthese; W/F=2; T=20°C; 0-200h

4.4. Calciumaluminiumferrate Ca₂(Al_xFe_{2-x})O₅

Die Hydratation der Brownmillerite wurde von NEGRO & SAFFERI (1979) beschrieben. Kalorimetrische Untersuchungen bei konstanten BLAINE-Werten von 3100cm²/g wurden von NEUBAUER *et al.* (2003) durchgeführt. Dadurch ist bekannt, dass aluminiumreiche Brownmillerite schneller hydratisieren. NEGRO & SAFFERI (1979) beschrieben zudem, dass bei 20°C und einem W/F-Wert von 0,6, Mischkristalle an C₄(A;F)H₁₃ und C₃(A;F)H₆ entstehen und bei aluminiumreicheren Synthesen zusätzlich C₂(A;F)H₈ vorliegt.

Die ersten Untersuchungen zum Hydratationsverhalten (T=20°C; W/F=2) des Ca₂(Fe_{2-x}Al_x)O₅ wurden nach einer konstanten Sintertemperatur der Brownmillerite von 1000°C (2h) in Abhängigkeit vom Aluminiumgehalt durchgeführt, da bei dieser Sintertemperatur das Aluminium vollständig in alle Brownmillerite eingebaut ist. Mit einem steigenden Aluminiumgehalt wird das Hydratationsmaximum dabei zu früheren Zeiten verschoben und der maximale Wärmefluss wird erhöht (Abb. 152 und Tab. 32).

Abb. 152: Wärmefluss von C₄A_xF_{2-x} (0<x<1,2) in Abhängigkeit vom Aluminiumgehalt x; W/F=2; T=20°C; 0-0,6h; Polymer-Precursor-Synthese (Sintertemperatur: 1000°C)

Die berechneten freiwerdenden Wärmemengen nach 0,6h verhalten sich nicht in analoger Reihenfolge wie die Wärmeflüsse. Bei der Verbindung mit x=0,4 und x=0,6 werden höhere Wärmemengen als bei der Verbindung mit x=0,8 frei (Abb. 153 und Tab. 32). Die integralen Wärmemengen nach einer Hydratationszeit von 60h steigen dagegen wieder mit höheren Aluminiumgehalten ohne Ausnahmen (Abb. 154 und Tab. 32).

Abb. 153: Freiwerdende Wärmemenge von $C_{4}A_{x}F_{2-x}$ in Abhängigkeit vom Aluminiumgehalt x; W/F=2; T=20°C, 0-0,6h; Polymer-Precursor-Synthese (Sintertemperatur: 1000°C)

Abb. 154: Freiwerdende Wärmemenge von $C_4A_xF_{2-x}$ in Abhängigkeit vom Aluminiumgehalt x; W/F=2; T=20°C; 0-60h; Polymer-Precursor-Synthese (Sintertemperatur: 1000°C)

Tab. 32: Charakteristische Werte zum Hydratationsverhalten der Brownmillerite in Abhängigkeit vom Aluminiumgehalt x bei einer konstanten Sintertemperatur von 1000°C (2h); W/F=2; T=20°C; Polymer-Precursor-Synthese

Verbindung	RG	L _{vo∟} [nm]	Porosität [%]	Spez. O [cm²/g]	t _{max} [h]	W _{tmax} [mW/g]	Q _{0,6h} [J/g]	Q _{60h} [J/g]
$Ca_4Fe_{2,0}O_5$	Pnma	76	55	4760	0,47	36,9	53	324
$Ca_4AI_{0,2}Fe_{1,8}O_5$	Pnma	73	58	7520	0,37	107,7	153	393
$Ca_4AI_{0,4}Fe_{1,6}O_5$	Pnma	68	60	9840	0,13	342,8	260	424
$Ca_4AI_{0,6}Fe_{1,4}O_5$	l2mb	60	57	5770	0,10	445,6	310	461
$Ca_4AI_{0,8}Fe_{1,2}O_5$	l2mb	58	55	5420	0,07	466,0	231	462
$Ca_4AI_{1,0}Fe_{1,0}O_5$	l2mb	55	57	7390	0,05	1069,2	313	529
$Ca_4AI_{1,2}Fe_{0,8}O_5$	l2mb	51	65	9990	0,04	2314,6	378	619

Als Hydratationsprodukte entstehen lamellare Phasen (AFm-Phasen), die sich mit einer hexagonalen Elementarzelle indizieren lassen und deren verfeinerte Gitterkonstanten a_0 und c_0 in Abb. 155 dargestellt sind.

Die Gitterkonstante a_0 der lamellaren Phase ist bei x=0 (C₂F) 5,872Å und liegt damit in der gleichen Größenordnung wie die von anderen lamellaren Calciumferrat-Hydraten (GÖTZ-NEUNHOEFFER 1996). Dadurch kann davon ausgegangen werden, dass bei x=0 Verbindungen entstehen, bei denen die Hauptschicht aus $[Ca_4Fe_2(OH)_{12}]^{2+}$ aufgebaut ist. Bei vollständiger Besetzung der Hauptschicht mit Aluminium $[Ca_4AI_2(OH)_{12}]^{2+}$ nimmt nach KUZEL & PÖLLMANN (ICDD: 00-042-0487) die Gitterkonstante a_0 einen Wert von 5,747Å ein. Die kontinuierliche Abnahme der Gitterkonstanten a_0 von x=0 bis x=0,8 weist somit darauf hin, dass Fe³⁺ durch Al³⁺ substituiert wird (Abb. 155). Bei der Annahme eines linearen Verlaufs der Gitterkonstante a_0 bei einer Substitution von Fe³⁺ (a_0 =5,872Å) gegen Al³⁺ (a_0 =5,747Å) kommt es damit in Abhängigkeit vom Aluminiumgehalt x der Brownmillerite zur Bildung von lamellaren Hydratphasen, die in Tab. 33 aufgelistet sind.

Die Gitterkonstante c₀ ist zwischen x=0 und x=1,0 annähernd konstant bei Werten zwischen 63,8Å und 63,9Å. Nach KUZEL & PÖLLMANN (ICDD: 00-042-0487) besteht die Zwischen-

schicht bei diesem Basisabstand aus $[2(OH) \cdot 12H_2O]^{2^-}$. Die deutliche Erhöhung der Gitterkonstante c₀ bei x=1,0 zeigt, dass es analog zum C₂AH₈, wie in Kapitel 4.1.2.1 beschrieben, zum Einbau von Aluminium in die Zwischenschicht $[2AI(OH)_4 \cdot 6H_2O]^{2^-}$ kommt.

Abb. 155: Verfeinerte Gitterkonstanten a_0 und c_0 der lamellaren Hydratationsprodukte in Abhängigkeit vom Aluminiumgehalt x der Brownmillerite [$Ca_2(Al_xFe_{2-x})O_5$]; T=20°C; W/F=2

x [Ca ₂ (Al _x Fe _{2-x})O ₅]	Hydratphasen	Kurzname
0	[Ca ₄ Fe _{2,00} (OH) ₁₂] ²⁺ [2(OH)·12H ₂ O] ²⁻	C4FH ₁₉
0,2	$[Ca_4(Al_{0,32}Fe_{1,68})(OH)_{12}]^{2+}[2(OH)\cdot 12H_2O]^{2-}$	C ₄ (A _{0,16} F _{0,84})H ₁₉
0,4	$[Ca_4(Al_{0,56}Fe_{1,44})(OH)_{12}]^{2+}[2(OH)\cdot 12H_2O]^{2-}$	C ₄ (A _{0,28} F _{0,72})H ₁₉
0,6	[Ca4(Al1,25Fe0,75)(OH)12] ²⁺ [2(OH)·12H2O] ²⁻	C ₄ (A _{0,62} F _{0,38})H ₁₉
0,8	[Ca4(Al1,70Fe0,30)(OH)12] ²⁺ [2(OH)·12H2O] ²⁻	C ₄ (A _{0,85} F _{0,15})H ₁₉
1,0	$\begin{array}{l} \left[\text{Ca}_4(\text{AI}_{1,70}\text{Fe}_{0,30})(\text{OH})_{12}\right]^{2+}\left[2(\text{OH})\cdot12\text{H}_2\text{O}\right]^{2-}\\ \left[\text{Ca}_4(\text{AI}_{1,70}\text{Fe}_{0,30})(\text{OH})_{12}\right]^{2+}\left[2\text{AI}(\text{OH})_4\cdot6\text{H}_2\text{O}\right]^{2-}\end{array}$	$C_4(A_{0,85}F_{0,15})H_{19}$ (sehr geringe Mengen) $C_4(A_{1,85}F_{0,15})H_{16}$ oder $C_2(A_{0,93}F_{0,07})H_8$
1,2	[Ca ₄ (AI _{1,75} Fe _{0,25})(OH) ₁₂] ²⁺ [2AI(OH) ₄ ·6H ₂ O] ²⁻	$C_4(A_{1,87}F_{0,13})H_{16} oder C_2(A_{0,94}F_{0,06})H_8$

Tab. 33: Zusammensetzung der Hydratphasen nach 72h Hydratationszeit in Abhängigkeit vom Aluminiumgehalt x der Brownmillerite; T=20°C; W/F=2

Bei x=1,0 konnte beobachtet werden, dass die Intensitäten der lamellaren Phasen in den XRD-Diagrammen abnehmen (Abb. 156). Dies ist durch den zusätzlichen Einbau von Aluminium in die Zwischenschicht zu erklären, was zur Folge hat, dass insgesamt weniger Aluminium für die Bildung der lamellaren Phasen zur Verfügung steht und damit auch weniger lamellare Phasen gebildet werden können. Beim Vergleich der Ca/Al-Verhältnisse im Brownmillerit und den entstehenden Hydratphasen zeigt sich, dass das Verhältnis nahezu identisch ist. Damit kann davon ausgegangen werden, dass das Aluminium nahezu vollständig in die lamellaren Hydratphasen eingebaut wird. Zusätzlich müssen somit eisenreiche Phasen vorliegen. Röntgenographisch konnten nur geringe Mengen an Halbcarbonat $3CaO \cdot (Fe_2O_3,AI_2O_3) \cdot 0.5Ca(OH)_2 \cdot 0.5CaCO_3 \cdot 11.5H_2O$ identifiziert werden, die während der Präparation entstehen, jedoch keine eisenreichen Verbindungen. Kryo-REM-Untersuchungen zeigen, dass eisenreiche gelartige Phasen neben den lamellaren Hydratationsprodukten vorliegen (Abb. 157).

Abb. 156: Integrale Intensität des 0 0 6-Reflexes der lamellaren Hydratationsprodukte in Abhängigkeit vom Aluminiumgehalt x der Brownmillerite; T=20°C; W/F=2

Abb. 157: Kryo-REM-Aufnahmen von eisenreichen gelartigen Phasen zwischen den lamellaren Hydratationsprodukten nach 30min Hydratationszeit; T=20°C; W/F-Wert=5; Ausgangszusammensetzung: $C_4A_{1,0}F_{1,0}$; Polymer-Precursor-Synthese

Grund für die höhere freiwerdende Wärmemenge bei x=0,4 und x=0,6 (Abb. 159) nach 0,6h, die auch von NEUBAUER *et al.* (2003) bei konstanten BLAINE-Werten beobachtet wurden, könnte somit auf die Bildung von unterschiedlichen Hydratationsprodukten zurückzuführen sein. Auffällig ist jedoch auch, dass es trotz der gleichen Handhabung aller Proben nicht zu einem linearen Verlauf der spezifischen Oberfläche kommt (Abb. 158) und diese Anomalie bei der Änderung der RG von Pnma nach I2mb liegt. Die niedrigere Hydratstufe der lamellaren Phasen bei den Untersuchungen von NEGRO & SAFFERI (1979) sind möglicherweise auf den niedrigeren W/F-Wert zurückzuführen.

Zusammenfassend kann somit ausgesagt werden, dass aluminiumreiche Brownmillerite bei einer konstanten Sintertemperatur schneller hydratisieren als eisenreiche Brownmillerite. Grund dafür ist die wesentlich kleinere Partikel- und Kristallitgröße der aluminiumreichen Brownmillerite sowie der bevorzugte Einbau von Aluminium in die entstehenden lamellaren Hydratationsprodukte.

Abb. 158: Kristallitgröße und BLAINE-Werte in Abhängigkeit vom Aluminiumgehalt x

Abb. 159: Maximaler Wärmefluss und freiwerdende Wärmemenge nach 0,6h in Abhängigkeit vom Aluminiumgehalt x

In einer weiteren Versuchsreihe wurde das Hydratationsverhalten des C₂F in Abhängigkeit von der Sintertemperatur untersucht, da sich die eisenreicheren Brownmillerite bei niedrigeren Sintertemperaturen herstellen lassen. In den Wärmeflusskurven (Abb. 160 und Abb. 162) können je zwei Peaks identifiziert werden. Der maximale Wärmefluss der ersten Reaktion ist bei den Proben, die bei niedriger Temperatur gesintert wurden, sehr hoch und nimmt bei steigender Sintertemperatur rapide ab (Abb. 160). Diese Reaktion findet bei allen Proben zwischen 0,12h und 0,15h nach der Zugabe des Wassers statt. Bei der zweiten Reaktion nimmt der maximale Wärmefluss mit steigender Sintertemperatur ab und verschiebt sich zu späteren Zeiten. Die Auswertung der kalorimetrischen Ergebnisse befindet sich in Tab. 34. Die freiwerdenden Wärmemengen nach 1,5h sind bei niedrigen Sintertemperaturen deutlich erhöht (Abb. 161). Nach 48h ist die freigesetzte Wärme bei der 800°C gesinterten Probe jedoch höher als die der 700°C gesinterten Probe (Abb. 163). Grund dafür

ist, dass bei den unterschiedlichen Reaktionen (1 und 2) unterschiedliche Hydratphasen entstehen und folglich unterschiedliche Wärmemengen frei werden. Beim C_2F , das bei 700°C und 800°C gesintert wurde konnte nach 100h Hydratationszeit röntgenographisch nur C_4FH_{19} und kein C_2F mehr nachgewiesen werden, wohingegen geringe Mengen an C_2F bei den 900°C und 1000°C gesinterten Proben identifiziert werden konnten.

Abb. 160: Wärmefluss von C₂F in Abhängigkeit von der Sintertemperatur; W/F=2; T=20°C

Abb. 162: Wärmefluss von C₂F in Abhängigkeit von der Sintertemperatur; W/F=2; T=20°C

Abb. 161: Freiwerdende Wärmemenge von C₂F in Abhängigkeit von der Sintertemperatur; W/F=2; T=20°C

Abb. 163: Freiwerdende Wärmemenge von C₂F in Abhängigkeit von der Sintertemperatur; W/F=2; T=20°C

Tab.	34:	Charakteristische	Werte zum	Hydratationsverhalten	von C ₂ F in	Abhängigkeit von	der Sintertemperatur
					-	00	

Sinterschritt	Porosität [%]	Spez. O BLAINE	t _{max1} [h]	W _{tmax1} [mW/g]	t _{max2} [h]	W _{tmax2} [mW/g]	Q _{1,5h} [J/g]	Q _{48h} [J/g]
700°C (2h)	75	21140	0,12	352	0,25	174	342	413
800°C (2h)	70	13760	0,12	62	0,27	201	317	364
900°C (2h)	61	7170	0,15	15	0,58	49	164	318
1000°C (2h)	55	4760	0,13	14	0,47	37	123	313

Das Hydratationsverhalten des C₂F erinnert dabei an das des C₁₂A₇, wobei das molare Verhältnis von Ca²⁺/Al³⁺ bzw. Fe³⁺ ähnlich ist. Es kann daraus gefolgert werden, dass das

erste Hydratationsmaximum auf die Bildung einer amorphen Hydrathülle um die C₂F-Körner zurückzuführen ist. Beim zweiten Hydratationsmaximum kommt es zum weiteren Lösen des C₂F und zur Bildung von lamellaren Hydratationsprodukten. Bei den aluminiumreichen Brownmilleriten konnte nur ein Hydratationsmaximum identifiziert werden, da die Hauptreaktion (zweites Maximum) stark beschleunigt ist und sich somit beide Reaktionen überlagern.

Der direkte Vergleich der hydraulischen Reaktivität des $C_4A_{1,0}F_{1,0}$ macht deutlich, wie groß der Einfluss der Synthesemethode und folglich die niedrigere Sintertemperatur auf die hydraulische Reaktivität ist (Abb. 164).

Abb. 164: Wärmefluss von $C_4A_{1,0}F_{1,0}$, hergestellt mittels folgender Synthesemethoden: Festkörpersynthese (Sintertemperatur: 1250°C), Polymer-Precursor-Synthese (Sintertemperatur: 1000°C) und Glycin-Nitrat-Prozess (Sintertemperatur: 1000°C); T=20°C

Es konnte somit in diesem Kapitel gezeigt werden, dass sich eisenreiche Brownmillerite ab 700°C bilden und dabei sehr hohe hydraulische Reaktivitäten, aufgrund der hohen spezifischen Oberfläche und kleinen Partikelgröße, besitzen.

4.5. Kurzzusammenfassung: Hydratation der Zementphasen

Zusammenfassend kann in diesem Kapitel somit die Aussage gemacht werden, dass die Zementphasen, die mittels Polymer-Precursor-Synthese und dem GNP bei niedrigeren Sintertemperaturen hergestellt wurden, deutlich reaktiver sind.

Bei allen untersuchten Calciumaluminaten, dem CA, C₁₂A₇ und C₃A, kommt es aufgrund der kleinen Partikelgrößen und niedrigeren Sintertemperaturen zur vollständigen Hydratation der Zementphasen bei der Haupthydratationsreaktion. Folglich sind die gemessen **Wärmeflüsse bis zu 8-mal höher** als bei der herkömmlichen Festkörpersynthese. Als extremstes Beispiel sollte hier röntgenamorphes "CA", das bei 700°C gesintert wurde, oder orthorhombisches CA, das bei 900°C gesintert wurde, erwähnt werden. Es kommt bei diesen Calciumaluminaten innerhalb der Haupthydratationsreaktion zur vollständigen Hydratation und zu einer maximal freiwerden Wärmemenge von ca. 780J/g. Das mittels herkömmlichen Festkörpersynthese hergestellte CA muss zur Herstellung bei 1500°C gesintert werden und erreicht eine freiwerdende Wärmemenge von 380J/g. Damit ist es möglich diese Calciumaluminate bei der **Hälfte der Sintertemperatur** herzustellen, die dann bei der Hydratation in etwa den **doppelten Hydratationsgrad** aufweisen.

Neben dem Hydratationsgrad können die höheren Reaktivitäten einen Einfluss auf die Hydratationsprodukte haben. Bei der Hydratation von hochreaktivem C₁₂A₇ ist die Kristallinität der entstehenden lamellaren Hydratationsprodukte um ein Vielfaches erhöht. Aufgrund dessen konnten die verschieden Hydratstufen des 2CaO·Al₂O₃·8±xH₂O genau identifiziert und charakterisiert werden.

Beim $\alpha_L^-C_2S$, das mittels Polymer-Precursor-Synthese bei einer Sintertemperatur von 650°C hergestellt wurde, konnten mehr als **10-mal höhere Wärmeflüsse** als bei der Festkörpersynthese gemessen werden. Das $\alpha_L^-C_2S$ ist zudem innerhalb der ersten 72h vollständig hydratisiert.

Außerdem konnten extrem hohe hydraulische Reaktivitäten bei den eisenreichen Brownmilleriten gemessen werden, die sich bei 700°C herstellen lassen. Des Weiteren konnte gezeigt werden, dass eine Mischkristallbildung zwischen dem C_4FH_{19} und C_4AH_{19} möglich ist.

Zusammenfassend konnte somit gezeigt werden, dass die kalkärmeren Phasen $\alpha_{L}^{-}C_{2}S$, $C_{2}F$ und röntgenamorphes oder orthorhombisches CA bei deutlich niedrigeren Sintertemperaturen hergestellt werden können und innerhalb von weniger als 100h vollständig hydratisieren.

5. Zumischung der synthetisierten Phasen zu kommerziellen Zementen

In diesem Kapitel soll untersucht werden in wie weit die Zumischung von hochreaktiven Zementreinphasen bei kalorimetrischen Messungen einen Einfluss auf die Hydratationskinetik eines kommerziellen PZ, TZ oder TSZ hat. Der Zement wurde jeweils durch die äquivalente Menge der synthetisierten Reinphasen (Angaben in Ma.-%) ersetzt, so dass eine konstante Menge von 2g (PZ + Reinphasen) und 1g (TZ/TSZ + Reinphasen) des Zementgemisches für die kalorimetrischen Messungen verwendet wurde. Die Homogenisierung der Reinphasen mit dem Zement erfolgte in einer Kugelmühle der Firma RETSCH Typ MM200 (Mischzeit: 4min; Frequenz: 10s⁻¹), wobei Kunststoffkugeln verwendet wurden, um das Aufmahlen des Gemisches zu reduzieren und eine Homogenisierung des Zements mit den zugemischten Phasen zu erreichen. Die Temperatur bei den kalorimetrischen Messungen betrug 20°C.

5.1. Portlandzement (PZ CEM I 42,5R)

Für die Untersuchungen wurde ein PZ CEM I 42,5R verwendet. Die spezifische Oberfläche nach BLAINE betrug 4780cm²/g. Die chemische Zusammensetzung und der quantitative Phasengehalt des PZ sind in Tab. 35 und Tab. 36 dargestellt. Dem Zementgemisch (2g) wurden bei den kalorimetrischen Messungen 1ml entsalztes Wasser (W/F=0,5) mittels der Injektionsmethode zugegeben. Die Herstellung der dem PZ zugemischten hochreaktiven Phasen $\alpha_L^-C_2S$ (650°C - 2h) und Ca₂(Al_xFe_{2-x})O₅ (1000°C - 2h) erfolgte mittels Polymer-Precursor-Synthese.

Tab. 35: Chemische Zusammensetzung des CEM I 42,5R in Ma.-%

LOI	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	CaO	MgO	TiO ₂
2,11%	18,20%	5,19%	3,14%	61,10%	2,13%	0,24%
K ₂ O	MnO	SO ₃	CI	P ₂ O ₅		
1,29%	0,04%	5,32%	0,04%	0,74%		

Tab. 36: Phasenzusammensetzung des CEM I 42,5R in Ma.-%

C₃S	C ₂ S	C ₃ A _{kubisch}	$C_3A_{Orthorhombisch}$	C₄AF	CaO
58,5%	12,9%	4,1%	2,1%	12,3%	0,7%
CaCO ₃	Periklas	Arcanit	Anhydrit	Bassanit	
1,2%	0,7%	2%	3,3%	2,2%	

5.1.1. Zumischung von $\alpha_L^-2CaO\cdot SiO_2$

In dieser Versuchsreihe wurde $\alpha_L^-C_2S$ in unterschiedlichen Mengen dem PZ zugemischt. Die Untersuchungen zeigen, dass das Minimum der Induktionsperiode und der maximale Wärmefluss, mit steigendem $\alpha_L^-C_2S$ Gehalt abnehmen (Abb. 165). Das Hydratationsmaximum wird mit steigendem $\alpha_L^-C_2S$ Gehalt zu späteren Zeitpunkten verschoben. Die freiwerdende Wärmemenge sinkt mit steigendem $\alpha_L^-C_2S$ -Gehalt (Abb. 166).

Abb. 165: Wärmeflusskurven von PZ bei der Zumischung von α`_L-C₂S; T=20°C; W/F=0,5

Abb. 166: Freigesetzte Wärmemenge von PZ bei der Zumischung von α`_L-C₂S; T=20°C; W/F=0,5

5.1.2. Zumischung von Ca₂(Al_xFe_{2-x})O₅

Zunächst wurde $C_4A_{1,0}F_{1,0}$ in verschiedenen Mengenverhältnisse zugemischt. Das Maximum des Wärmeflusses und die damit verbundene silikatische Hauptreaktion wird mit höheren $C_4A_{1,0}F_{1,0}$ -Gehalten abgeschwächt (Abb. 167). Zusätzlich wurde dem PZ 5Ma.-% C_2F bzw. $C_4A_{1,2}F_{0,8}$ zugemischt, um den Einfluss des erhöhten Eisengehaltes im Brownmillerit zu veranschaulichen (Abb. 168). Die Zumischung von C_2F hat zur Folge, dass das Hydratationsmaximum wesentlich stärker unterdrückt und verzögert wird als beim aluminiumreichen Brownmillerit $C_4A_{1,2}F_{0,8}$.

Abb. 167: Wärmeflusskurven von PZ bei der Zumischung von $C_4A_{1,0}F_{1,0}$; T=20°C; W/F=0,5

Abb. 168: Wärmeflusskurven von PZ bei der Zumischung von 5 Ma.-% an C₂F und C₄A_{1,2}F_{0,8}; T=20°C; W/F=0.5

5.2. Tonerdeschmelzzement (TSZ)

Für die Untersuchungen wurde ein eisenreicher TSZ verwendet. Die spezifische Oberfläche nach BLAINE betrug 3630cm²/g. Die chemische Zusammensetzung und der quantitative Phasengehalt des TSZ sind in Tab. 37 und Tab. 38 dargestellt. Die Einwaage des Zement-gemisches bei den kalorimetrischen Messungen betrug jeweils 1g; mittels Injektion wurde 1ml entsalztes Wasser (W/F=1) zugegeben. Die Herstellung des dem TSZ zugemischten hochreaktiven $Ca_2(Al_xFe_{2-x})O_5$ (1000°C - 2h) und orthorhombischen CA (900°C - 2h) erfolgte mittels Polymer-Precursor-Synthese.

Tab. 37: Chemische Zusammensetzung des TSZ in Ma.-%

SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	CaO	MgO	TiO ₂	SO₃	Na ₂ O+K ₂ O
4,8%	39,7%	15,4%	36,5%	0,5%	1,8%	0,1%	0,1%

Tab. 38: Phasenzusammensetzung des TSZ in Ma.-%

CA	C ₂ AS	C ₁₂ A ₇	C₄AF	Spinell	C ₂ S	C ₅ A ₃ MS	C₃FT
52,5%	13,3%	1,8%	6,8%	5,8%	6,3%	5,2%	8,3%

5.2.1. Zumischung von Ca₂(Al_xFe_{2-x})O₅

Die Zumischung von 10Ma.-% Brownmilleriten unterschiedlicher Zusammensetzung zeigt, dass aluminiumreiche Brownmillerite die Hydratation beschleunigen (Abb. 169) und die berechnete freigesetzte Wärmemenge erhöhen (Abb. 170). Die Zumischung von C_2F hat nahezu keinen Einfluss auf den Wärmefluss.

Abb. 169: Wärmeflusskurven von TSZ bei der Zumischung von 10Ma.-% aluminiumreichen Brownmilleriten; T=20°C; W/F=1

Abb. 170: Freigesetzte Wärmemenge von TSZ bei der Zumischung von 10Ma.-% aluminiumreichen Brownmilleriten; T=20°C; W/F=1

5.2.2. Zumischung von orthorhombischem CaO·Al₂O₃

Die Haupthydratation des TSZ wird durch die Zumischung von CA verzögert (Abb. 171). Die freiwerdende Wärmemenge steigt jedoch mit einem höheren Gehalt an zugemischtem CA (Abb. 172) an.

Abb. 171: Wärmeflusskurven von TSZ bei der Zumischung von orthorhombischem CA; T=20°C; W/F=1

Abb. 172: Freigesetzte Wärmemenge von TSZ bei der Zumischung von orthorhombischem CA; T=20°C; W/F=1

5.3. Tonerdezement (TZ)

Für die Untersuchungen wurde ein eisenarmer Tonerdezement (TZ) verwendet. Die spezifische Oberfläche nach BLAINE betrug 4670cm²/g. Die chemische Zusammensetzung und der quantitative Phasengehalt des TZ sind in Tab. 39 und Tab. 40 dargestellt. Die Einwaage des Zementgemisches bei den kalorimetrischen Messungen betrug jeweils 1g; mittels Injektion wurde 1ml entsalztes Wasser (W/F=1) zugegeben. Die Herstellung des dem TZ zugemischten hochreaktiven $C_{12}A_7$ (1200°C - 2h) und orthorhombischen CA (900°C - 2h) erfolgte mittels Polymer-Precursor-Synthese.

Tab. 39: Chemische Zusammensetzung des TZ in Ma.-%

SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	CaO	MgO	TiO₂	SO₃	Na ₂ O+K ₂ O
5,4%	52,1%	2,0%	36,9%	0,4%	2,4%	0,1%	0,3%

Tab. 40: Phasenzusammensetzung des TZ in Ma.-%

CA	C ₂ AS	C ₁₂ A ₇	Т	СТ	CA ₂	C₃FT
70,3%	22,7%	0,4%	0,1%	1,3%	2,5%	2,7%

5.3.1. Zumischung von orthorhombischem CaO·Al₂O₃

Die Zumischung von unterschiedlichen Mengen an orthorhombischem CA zeigt, dass die Hauptreaktion mit steigendem CA-Gehalt verzögert stattfindet (Abb. 173). Die freiwerdende Wärme steigt mit einem höheren Gehalt an zugemischtem CA jedoch an (Abb. 174).

Abb. 173: Wärmeflusskurven von TZ bei der Zumischung von orthorhombischem CA; T=20°C; W/F=1

Abb. 174: Freigesetzte Wärmemenge von TZ bei der Zumischung von orthorhombischem CA; T=20°C; W/F=1

5.3.2. Zumischung von 12CaO·7Al₂O₃

Die Zumischung von $C_{12}A_7$ zeigt, dass mit einem steigenden Gehalt an $C_{12}A_7$ die Hydratationsreaktion beschleunigt wird (Abb. 175) und die freiwerdende Wärmemenge zunimmt (Abb. 176).

Abb. 175: Wärmeflusskurven von TZ bei der Zumischung von $C_{12}A_7$ in verschiedenen Mengen; T=20°C; W/F=1

Abb. 176: Freigesetzte Wärme von TZ bei der Zumischung von $C_{12}A_7$ in verschiedenen Mengen; T=20°C; W/F=1

5.4. Kurzzusammenfassung: Zumischung der hochreaktiven Phasen zu Zementen

Zusammenfassend konnte gezeigt werden, dass 20 Ma.-% des PZ mit C₂S ersetzt werden können und die freigesetzte Wärmemenge während der Hauptreaktion nur unwesentlich abnimmt. Dabei muss beachtet werden, dass die freiwerdende Wärmemenge aufgrund des geringeren CH-Gehaltes bei der Hydratation von C₂S verglichen mit C₃S niedriger ist. Bei der Zumischung von Brownmilleriten wird bei einem zu hohen Eisengehalt die silikatische Reaktion abgeschwächt.

Beim TZ und TSZ wirkt die Zumischung von orthorhombischem CA verzögernd auf die Haupthydratationsreaktion. Durch die Zumischung der hochreaktiven Phasen, die - wie in Kapitel 4 gezeigt - vollständig hydratisieren, steigt jedoch der Anteil an freiwerdender Wärmemenge an. Ein höherer Hydratationsgrad und eine beschleunigte Hydratation konnten bei der Zumischung von aluminiumreichen Brownmilleriten zum TSZ sowie bei der Zumischung von C₁₂A₇ zum TZ beobachtet werden.

Aus den wärmeflusskalorimetrischen Untersuchungen lässt sich somit der Schluss ziehen, dass die Mischungen aus den synthetisierten hochreaktiven Zementphasen und den kommerziellen Zementen für einen Einsatz als hydraulisches Bindemittel geeignet sein müssten.

6. Herstellung der Zementphasen mittels eines Sprühverfahrens

Für die Synthese der hochreaktiven calciumarmen Zementphasen C₂S, CA und C₂F werden bei der Polymer-Precursor-Synthese große Mengen an Polymer und gut lösliche Metallsalze benötigt, die eine Nutzung dieser Synthesemethode in größerem Maßstab nicht rentabel macht. Beim GNP ist die exotherme Reaktion schwer kontrollierbar, wodurch auch bei dieser Synthesemethode eine Produktion in größerem Maßstab nur schwer realisierbar ist. Im folgenden Kapitel wurden deshalb die Ausgangskomponenten für die Synthese der Zementphasen analog zu den in Kapitel 3 verwendeten Niedrigtemperatur-Synthesen in einer wässrigen Lösung homogenisiert. Anschließend wurden die Lösungen durch einen Sprühtrockner schnell getrocknet, um den hohen Homogenisierungsgrad beizubehalten und thermisch zersetzt. Dabei wurden die Metallsalze der kurzkettigsten Carbonsäure, der Ameisensäure, als Ausgangskomponenten verwendet.

6.1. Synthese, Charakterisierung, Sprühtrocknung und Zersetzung der Metallformiate und Metallformiat-Hydrate

In diesem Kapitel werden zunächst die Salze der Ameisensäure, die Metallformiate, bei RT auskristallisiert und die einzelnen Hydratstufen und Modifikationen charakterisiert. Aus den Metallsalzen wurden dann stöchiometrische Lösungen hergestellt, die sprühgetrocknet und im Anschluss bei unterschiedlichen Atmosphären zersetzt wurden. Damit soll untersucht werden in wieweit die einzelnen Metallformiate für dieses Sprühverfahren geeignet sind. Des Weiteren sollen Kenntnisse über die Phasenbildung, ausgehend von den Lösungen der Metallformiate bis hin zu den Carbonaten, Oxiden oder Metallen gewonnen werden. Die Dehydratationstemperaturen der Formiat-Hydrate und die Zersetzungstemperaturen der Formiate wurden mit T_{max} angegeben. Die ermittelten Temperaturen bei der Zersetzung der sprühgetrockneten Formiate wurden mit T_{Zersetzung} und die verwendeten maximalen Sintertemperaturen mit T_{Produkt} bezeichnet. Die jeweiligen Temperaturen wurden mittels thermoanalytischer Untersuchungen aus den Onset-Punkten der DTA-Diagramme ermittelt. Die TG/DTA- und IR-Diagramme sowie REM-Aufnahmen, aus denen die Korn- und Partikel-größen ermittelt wurden, befinden sich im Anhang.

6.1.1. Alkalimetallformiate

6.1.1.1. Lithiumformiat

Die Synthese von Lithiumformiat Li(HCOO) erfolgt aus einer Neutralisationsreaktion von Ameisensäure mit Lithiumcarbonat Li_2CO_3 . Bei RT kristallisiert aus der wässrigen Lösung Lithiumformiat-Monohydrat Li(HCOO)·H₂O aus, dessen Struktur aufgrund deren piezoelektrischen Eigenschaften (MOHANA-RAO & VISWAMITRA 1971) bereits ausgiebig untersucht

wurde (ENDRES-BRUMER & HARKEMA 1973; MOHANA-RAO & VISWAMITRA 1971; TELLGREN *et al.* 1974). Bei 59°C entweicht das Kristallwasser aus dem Li(HCOO)·H₂O und es kommt zur Bildung der hexagonalen Modifikation des Li(HCOO) (MÜLLER *et al.* 1992). Die monokline Modifikation des Li(HCOO) (KANSIKAS & HERMANSSON 1989), die auch bei RT stabilisiert werden konnte, ist zwischen 224-268°C stabil, bevor das Li(HCOO) schmilzt. Die Schmelze zersetzt sich bei 393°C und es entsteht Li₂CO₃. Thermoanalytische Untersuchungen wurden unter anderem von MEISEL *et al.* (1975) durchgeführt. Die möglichen Hydratstufen und Modifikationen des Lithiumformiats sind in Tab. 41 zusammengefasst. In Tab. 42 sind die verfeinerten Gitterkonstanten sowie deren mittels TG/DTA bestimmten Zersetzungstemperaturen dargestellt.

Formel	Name	Literatur
Li(HCOO)·H ₂ O	Lithiumformiat-Monohydrat	(Endres-Brumer & Harkema 1973; Mohana-Rao & Viswamitra 1971; Tellgren <i>et al.</i> 1974)
Li(HCOO)	Lithiumformiat (Hexagonal)	(Müller <i>et al.</i> 1992)
Li(HCOO)	Lithiumformiat (Monoklin)	(Müller <i>et al.</i> 1992), (Kansikas & Hermansson 1989)

	KS	RG	a [Å]	b [Å]	c [Å]	β [°]	T _{max} [°C]
Li(HCOO)·H ₂ O	Orthorhombisch	Pbn2 ₁	9,988 (1)	6,494 (1)	4,856 (1)	90	59
Li(HCOO)	Hexagonal	P63	14,930 (2)	14,930 (2)	5,543 (1)	120	224
Li(HCOO)	Monoklin	C2/c	12,066 (2)	12,067 (2)	13,529 (2)	101,02 (2)	268
Li(HCOO)	Schmelze						393

Tab. 42: Gitterkonstanten (25°C) und Zersetzungstemperaturen von Li(HCOO)·H₂O und Li(HCOO)

Bei der Sprühtrocknung der Lithiumformiat-Lösung kommt es zur Bildung sphärischer Partikel (Abb. 177), die aus einem Phasengemisch aus Lithiumformiat-Monohydrat und den beiden wasserfreien Modifikationen bestehen. Lithiumformiat schmilzt vor der Zersetzung auf, wodurch das reine Lithiumformiat für das Sprühverfahren ungeeignet ist, da die sphärische Gestalt der sprühgetrockneten Partikel durch den Schmelzvorgang verloren geht.

Abb. 177: REM-Aufnahme von sprühgetrocknetem Lithiumformiat; Phasengemisch aus Lithiumformiat-Monohydrat und den beiden wasserfreien Modifikationen

6.1.1.2. Natriumformiat

Die Synthese von Natriumformiat Na(HCOO) erfolgt aus einer Neutralisationsreaktion von Natriumcarbonat Na₂CO₃ und Ameisensäure. Das Natriumformiat-Trihydrat Na(HCOO)· $3H_2O$ und Natriumformiat-Dihydrat Na(HCOO)· $2H_2O$ ist nach MÜLLER *et al.* (1994) bei RT nicht stabil. Die Kristallstruktur von Na(HCOO) wurde von ZACHARIASEN (1940) und MARKILA *et al.* (1975) beschrieben. Die möglichen Hydratstufen und Modifikationen des Natriumformiats sind in Tab. 43 zusammengefasst.

Tab. 43: Hydratstufen und Modifikationen des Natriumformiats

Formel	Name	Literatur
Na(HCOO)·3H ₂ O	Natriumformiat-Trihydrat	Müller <i>et al.</i> (1994)
Na(HCOO)·2H ₂ O	Natriumformiat-Dihydrat	Müller <i>et al</i> . (1994)
Na(HCOO)	Natriumformiat	ZACHARIASEN (1940) und MARKILA <i>et al.</i> (1975)

Bei der Sprühtrocknung der Natriumformiat-Lösung kommt es zur Bildung von sphärischen Partikeln, die aus Na(HCOO) bestehen. Na(HCOO) schmilzt bei 239°C bevor es sich zum Na₂CO₃ zersetzt und ist somit nur bedingt für das Sprühverfahren geeignet. Für die Verfeinerung der Gitterkonstanten wurde das sprühgetrocknete Na(HCOO) verwendet (Tab. 44), da aus der wässrigen Lösung Na(HCOO) nadelig auskristallisiert und somit eine Vorzugsorientierung bei der Pulverpräparation für die XRD vermieden werden konnten.

Tab. 44: Verfeinerte Gitterkonstanten (25°C) und Zersetzungstemperatur des Natriumformiats

Formel	KS	RG	a [Å]	b [Å]	c [Å]	β [°]	T _{max} [°C]
Na(HCOO)	Monoklin	C2/c	6,257 (1)	6,754 (1)	6,172 (1)	116,16 (2)	239

6.1.1.3. Kalium-, Rubidium- und Cäsiumformiat

Kalium-, Rubidium- und Cäsiumformiat-Lösungen wurden aus den jeweiligen Carbonaten und Ameisensäure hergestellt. Problem dieser Formiate sind die hygroskopischen Eigenschaften, die bereits in Arbeiten von BATS & FUESS (1980) und MASUDA *et al.* (1998; 1995) erwähnt wurden. Die Lösungen konnten dadurch zwar sprühgetrocknet werden, die Formiate verflüssigen sich jedoch unmittelbar nach der Entnahme aus dem Sprühtrockner wieder. Reines Kalium-, Rubidium- oder Cäsiumformiat sind daher für die Sprühtrocknung und anschließende Zersetzung nicht geeignet.

6.1.2. Erdalkalimetallformiate

6.1.2.1. Magnesiumformiat

Magnesiumformiat-Dihydrat Mg(HCOO)₂·2H₂O wurde aus einer wässrigen Lösung, bestehend aus der stöchiometrischen Einwaage von Magnesiumoxid MgO und Ameisensäure, bei RT auskristallisiert. Die möglichen Hydratstufen und Modifikationen des Magnesiumformiats sind in Tab. 45 dargestellt. Das Dehydratationsverhalten und die Umwandlungsreaktionen der wasserfreien Modifikationen wurde zum Teil von DOLLIMORE *et al.* (1979) und VIERTELHAUS (2003) beschrieben.

Formel	Name	Literatur
Mg(HCOO) ₂ ·2H ₂ O	Magnesiumformiat-Dihydrat (Monoklin)	(Wітн <i>et al.</i> 1976)
Mg(HCOO) ₂ ·2H ₂ O	Magnesiumformiat-Dihydrat (Orthorhombisch)	(Malard <i>et al.</i> 1982)
Mg(HCOO) ₂	Magnesiumformiat (Röntgenamorph)	(Viertelhaus 2003) (Viertelhaus <i>et al.</i> 2005)
β-Mg(HCOO) ₂	Beta-Magnesiumformiat	(Viertelhaus 2003) (Viertelhaus <i>et al</i> . 2005)

Tab. 45: Hydratstufen und Modifikationen des Magnesiumformiats

Bis jetzt sind die Bildungsbedingungen der monoklinen und orthorhombischen Modifikation des Mg(HCOO)₂·2H₂O noch nicht klar (MALARD *et al.* 1982). Bei RT kristallisiert aus der wässrigen Lösung ein Gemisch der beiden Dihydrate aus. Versuche, eines der beiden Dihydrate bei höheren Temperaturen (25°C, 50°C und 100°C) oder einem niedrigeren pH-Wert (pH 3, Überschuss an HCOOH) auszukristallisieren, scheiterten. Die monokline Modifikation konnte jedoch reinphasig erhalten werden, indem eine Mischung der beiden Dihydrate bei 200°C dehydratisiert und anschließend bei 100% r.F. und 40°C wieder hydratisiert wurde. Da die orthorhombische Modifikation nicht reinphasig synthetisiert werden konnte, wurden die Gitterkonstanten aus der simultanen Verfeinerung mit der monokline Modifikation ermittelt (Tab. 46).

Tab. 46: Verfeinerte Gitterkonstanten (25°C) und Entwässerungs-, Umwandlungs- und Zersetzungstemperaturen der Hydratstufen und Modifikationen des Magnesiumformiats

Formel	KS	RG	a [Å]	b [Å]	c [Å]	β [°]	T _{max} [°C]
Mg(HCOO) ₂ ·2H ₂ O	Monoklin	P21/c	8,651 (1)	7,160 (1)	9,393 (1)	98,05 (2)	130
Mg(HCOO) ₂ ·2H ₂ O	Orthorhombisch	Pbca	8,711 (1)	8,435 (1)	7,479 (1)	90	-
Mg(HCOO) ₂	Röntgenamorph						246
β-Mg(HCOO) ₂	Orthorhombisch	Pca2 ₁	13,830 (1)	7,534 (1)	24,816 (2)	90	418

HT-XRD-Aufnahmen des monoklinen Mg(HCOO)₂·2H₂O zeigen, dass Mg(HCOO)₂ bis zu einer Temperatur von 246°C röntgenamorph ist und es erst dann zur Bildung der β -Modifikation des Mg(HCOO)₂ kommt (Abb. 178). Durch schnelles Abkühlen der β -Modifikation konnte diese bei RT stabilisiert werden.

Abb. 178: Levelplot der HT-XRD-Aufnahme von monoklinem Mg(HCOO)₂·2H₂O; Verwendung von Silicium als internem Standard

Aus den eigenen und bereits in der Literatur bekannten Untersuchungen ergibt sich somit folgender schematischer Verlauf bei einer Erhitzung bzw. der Hydratation von wasserfreiem Magnesiumformiat (Abb. 179).

Abb. 179: Schematischer Verlauf bei einer Temperaturerhöhung oder Hydratation von Mg(HCOO)2

Bei der Sprühtrocknung der Magnesiumformiat-Lösung kommt es zur Bildung sphärischer Partikel, die größtenteils röntgenamorph sind und geringe Mengen an orthorhombischem Mg(HCOO)₂·2H₂O enthalten (Abb. 180 und Abb. 181). IR-Aufnahmen des sprühgetrockneten Magnesiumformiats zeigten, dass es sich bei dem amorphen Anteil um wasserfreies Mg(HCOO)₂ handelt. Bei einer Temperaturerhöhung kristallisiert bei 280°C aus dem amorphen Mg(HCOO)₂ β -Mg(HCOO)₂ aus. Dieses zersetzt sich bei 433°C zu MgO mit einer Korngröße von 20nm bis 50nm und ist zu sphärischen Partikeln agglomeriert (Abb. 182 und Abb. 183).

Abb. 180: REM-Aufnahme von sprühgetrocknetem Magnesiumformiat

Abb. 181: REM-Aufnahme von sprühgetrocknetem Magnesiumformiat

Abb. 182: REM-Aufnahme von MgO, hergestellt durch die Zersetzung von sprühgetrocknetem Magnesiumformiat

Abb. 183: REM-Aufnahme von MgO, hergestellt durch die Zersetzung von sprühgetrocknetem Magnesiumformiat

6.1.2.2. Calciumformiat

 α -Calciumformiat wurde aus einer wässrigen Lösung, die durch die stöchiometrische Einwaage von Calcit und Ameisensäure hergestellt wurde, bei RT auskristallisiert. β -, γ - und δ -Calciumformiat sind nach MENTZEN & COMEL (1974) Hochtemperaturmodifikationen, die nicht direkt aus der Lösung entstehen. In Tab. 47 sind die vier bekannten Modifikationen des wasserfreien Calciumformiats zusammengefasst.

Formel	Name	ICDD	Literatur
α-Ca(HCOO) ₂	Alpha-Calciumformiat	00-014-0819	(Mentzen & Comel 1974)
β-Ca(HCOO) ₂	Beta- Calciumformiat	00-026-0937	(MATSUI <i>et al.</i> 1980; MENTZEN & COMEL 1974)
γ -Ca(HCOO) ₂	Gamma-Calciumformiat	00-026-0908	(Mentzen & Comel 1974)
δ-Ca(HCOO) ₂	Delta-Calciumformiat	00-032-0162	(MATSUI <i>et al.</i> 1980; MENTZEN & COMEL 1974)

Tab. 47: Modifikationen des Calciumformiats

Bei der Sprühtrocknung der Calciumformiat-Lösung wird durch den schnellen Abkühlprozess eine Mischung aus β - und γ -Ca(HCOO)₂ stabilisiert. Die beiden Modifikationen sind metastabil und wandeln sich innerhalb von einigen Tagen in die stabile α -Modifikation um, wobei es zur Agglomeration der sprühgetrockneten Partikel kommt (Abb. 184 und Abb. 185). Bei 462°C kommt es zur Zersetzung des δ -Ca(HCOO)₂ und zur Bildung von Calcit. Die verfeinerten Gitterkonstanten des α -Ca(HCOO)₂ und der bei RT stabilisierten β - und γ -Modifikationen des Ca(HCOO)₂ sind in Tab. 48 dargestellt.

Tab. 48: Verfeinerte Gitterkonstanten (25°C) des Calciumformiats

Formel	KS	RG	a [Å]	b [Å]	c [Å]	β [°]	
α-Ca(HCOO) ₂	Orthorhombisch	Pbca	13,406 (2)	10,188 (2)	6,285 (1)	90	25°C
β-Ca(HCOO) ₂	Tetragonal	P41212	6,773 (1)	6,773 (1)	9,478 (1)	90	25°C
γ-Ca(HCOO) ₂	Monoklin	P2/m	6,710 (1)	6,089 (1)	5,635 (1)	118,45 (2)	25°C

Abb. 184: REM-Aufnahme von sprühgetrocknetem Calciumformiat; 4h nach der Sprühtrocknung; Mischung aus β - und γ -Ca(HCOO)₂

Abb. 185: REM-Aufnahme von sprühgetrocknetem Calciumformiat; 4 Wochen nach der Sprühtrocknung; α-Ca(HCOO)₂

6.1.2.3. Strontiumformiat

Die Herstellung des bei RT stabilen Strontiumformiat-Dihydrat erfolgt mittels einer Neutralisationsreaktion von Ameisensäure mit Strontiumcarbonat. Die Modifikationen des wasserfreien Strontiumformiats wurden von MENTZEN & COMEL (1974) und COMEL & MENTZEN (1974) beschrieben und sind in Tab. 49 dargestellt.

Formel	Name	ICDD	Literatur
Sr(HCOO) ₂ ·2H ₂ O	Strontiumformiat-Dihydrat	00-014-0824	(Clark 1964)
α-Sr(HCOO)₂	Alpha-Strontiumformiat	00-014-0820	(Mentzen & Comel 1974; Watanabe & Matsui 1978)
β-Sr(HCOO)₂	Beta-Strontiumformiat	00-028-1217	(Matsui <i>et al.</i> 1980; Mentzen & Comel 1974)
δ(c)-Sr(HCOO) ₂	Delta(c)-Strontiumformiat	00-028-1218	(Mentzen & Comel 1974)
δ(t)-Sr(HCOO) ₂	Delta(t)-Strontiumformiat	00-028-1219	(Mentzen & Comel 1974)

Tab. 49: Hydratstufen und Modifikationen des Strontiumformiats

Nach MENTZEN & COMEL (1974) entsteht bei der Dehydratation von Sr(HCOO)₂·2H₂O das α -Sr(HCOO)₂. Eigene HT-XRD-Aufnahmen zeigen, dass es bei der Dehydratation zu einem Gemisch aus α -Sr(HCOO)₂ und β -Sr(HCOO)₂ kommt (Abb. 186). Während des Temper-prozesses ändert sich bei β -Sr(HCOO)₂, wie von MENTZEN & COMEL (1974) beschrieben, das Verhältnis der Gitterkonstanten c₀/a₀ von 1,345 bei 70°C zu 1,437 bei 346°C. Die Vergrößerung der c₀-Gitterkonstante ist deutlich am 0 0 4-Reflex beobachtbar (Abb. 186). Dabei kommt es zu einem Wechsel der tetragonalen RG von P4₁2₁2 nach I41/amd.

Abb. 186: Levelplot der HT-XRD-Aufnahme von Sr(HCOO)2.2H2O

Bei der Sprühtrocknung der Strontiumformiat-Lösung bildet sich ein Gemisch aus α - und β -Sr(HCOO)₂, wobei die β -Modifikation metastabil ist und sich langsam in die α -Modifikation umwandelt. Die Umwandlungsreaktion ist jedoch weit langsamer als beim Calciumformiat und dauert einige Monate. Die verfeinerten Gitterkonstanten der bei RT stabilisierten Modifikationen sind in Tab. 50 dargestellt. Bei der Zersetzung des sprühgetrockneten Strontiumformiats (T_{Zersetzung} = 438°C, Heizrate: 10°C/min, Spülgas: syn. Luft, Spülrate 200ml/min) kommt es zur Bildung von Strontiumcarbonat mit einer Korngröße zwischen 50nm und 200nm (Abb. 187 und Abb. 188).

Tab. 50: Gitterkonstanten des Strontiumformiat-Dihydrats und der bei RT stabilisierten Strontiumformiate

Verbindung	KS	RG	a [Å]	b [Å]	c [Å]	T _{XRD} [25°C]	T _{max} [°C]
Sr(HCOO) ₂ ·2H ₂ O	Orthorhombisch	P212121	7,325 (1)	12,054 (2)	7,151 (1)	25	61
α-Sr(HCOO) ₂	Orthorhombisch	$P2_{1}2_{1}2_{1}$	6,871 (1)	8,754 (1)	7,264 (1)	25	223
β-Sr(HCOO) ₂	Tetragonal	P41212	7,144 (1)	7,144 (1)	9,533 (1)	25	-

Abb. 187: REM-Aufnahme von Strontiumcarbonat; Zersetzungsprodukt der sprühgetrockneten Strontiumformiate; T_{Produkt} = 500°C

Abb. 188: REM-Aufnahme von Strontiumcarbonat; Zersetzungsprodukt der sprühgetrockneten Strontiumformiate; Vergrößerung aus Abb. 187; T_{Produkt} = 500°C

6.1.2.4. Bariumformiat

Die Herstellung von Bariumformiat Ba(HCOO)₂ erfolgt mittels einer Neutralisationsreaktion von Ameisensäure mit Bariumcarbonat. Die Struktur des Ba(HCOO)₂ wurde von WATANABE & MATSUI (1978) bestimmt. Neben dem wasserfreien Ba(HCOO)₂ existieren keine weiteren Hydratstufen oder Modifikationen. Als Produkt bei der Sprühtrocknung entsteht kristallines Bariumformiat, das sich bei 353°C zu Bariumcarbonat zersetzt.

Tab. 51: Verfeinerte Gitterkonstanten (25°C) des Bariumformiats

		1 ,				
Verbindung	KS	RG	a [Å]	b [Å]	c [Å]	T _{max} [°C]
Ba(HCOO) ₂	Orthorhombisch	P212121	6,800 (1)	8,893 (1)	7,664 (1)	353

6.1.3. Zwischenmetall(II)formiate

6.1.3.1. Mangan(II)formiat

Wässrige Mangan(II)formiat-Lösung wird aus einer Neutralisationsreaktion von Mangan(II)carbonat-Hydrat mit Ameisensäure hegestellt. Aus der wässrigen Lösung fällt bei RT Mangan(II)formiat-Dihydrat aus, das gewaschen und bei 40°C getrocknet wurde. Die Dehydratationsreaktion des Mangan(II)formiat-Dihydrats wurden von CLARKE & THOMAS (1969b; 1969a) untersucht. Neben dem Dihydrat ist wasserfreies Mangan(II)formiat bekannt, das von VIERTELHAUS (2003) beschrieben wurde (Tab. 52). Untersuchungen zur Mischkristallreihe zwischen dem strukturisotypen Mangan(II)formiat-Dihydrat und Kupfer(II)formiat-Dihydrat machte STOILOVA *et al.* (1994). Die verfeinerten Gitterkonstanten der Verbindungen sind in Tab. 53 dargestellt.

Tab.	52: Hydratstufen	und Modifikationen	des Mangan(II)formiats
------	------------------	--------------------	------------------------

Formel	Name	Literatur
Mn(HCOO) ₂ ·2H ₂ O	Mangan(II)formiat-Dihydrat	(Kay <i>et al.</i> 1968)
Mn(HCOO) ₂	Beta-Mangan(II)formiat	(VIERTELHAUS 2003)

Tab. 53: Verfeinerte	Gitterkonstanten	des Mangan(II)formiat	t-Dihydrats und	Mangan(II)formiats
----------------------	------------------	-----------------------	-----------------	--------------------

Verbindung	KS	RG	a [Å]	b [Å]	c [Å]	β [°]	T _{max} [°C]
Mn(HCOO) ₂ ·2H ₂ O	Monoklin	P21/c	8,831 (1)	7,281 (1)	9,607 (1)	97,67 (1)	110
Mn(HCOO) ₂	Orthorhombisch	Pnca	5,838 (2)	7,545 (2)	9,494 (2)	90	261

Bei der Sprühtrocknung der Mangan(II)formiat-Lösung (0,25mol) entsteht ein röntgenamorphes Produkt. IR-spektroskopisch konnte nachgewiesen werden, dass es sich um wasserfreies Mangan(II)formiat handelt. Bei einer Temperatur von 188°C kristallisiert das amorphe Mangan(II)formiat aus. Die Zersetzungsprodukte des sprühgetrockneten Mangan(II)formiats sind abhängig vom Spülgas in Tab. 54 zusammengefasst. Die Partikelgröße dieser Zersetzungsprodukte liegt zwischen 10nm und 50nm (Abb. 189 und Abb. 190).

Tab. 54: Zersetzung des sprühgetrockneten Mangan(II)formiats; Heizrate: 10°C/min; Gasfuß: 200ml/min

Spülgas	T _{Zersetzung}	T _{Produkt}	Produkte
Synthetische Luft	261	500	Mn ₃ O ₄
N ₂	340	500	MnO und Mn ₃ O ₄

Abb. 189: REM-Aufnahme des Gemisches aus MnO und Mn₃O₄, hergestellt durch Zersetzung von sprühgetrocknetem Manganformiat bei 500°C unter Verwendung von N₂ als Spülgas; Gasfluss: 200ml/min; Heizrate: 10°C/min

Abb. 190: REM-Aufnahme des Gemisches aus MnO und Mn_3O_4 , hergestellt durch Zersetzung von sprühgetrocknetem Manganformiat bei 500°C unter Verwendung von N_2 als Spülgas; Gasfluss: 200ml/min; Heizrate: 10°C/min; Vergrößerung aus Abb. 189

6.1.3.2. Eisen(II)formiat

Für die Synthese von Eisen(II)formiat-Dihydrat wurde Eisenpulver mit einem 50%-igem Überschuss an Ameisensäure für eine Stunde gekocht. Die Menge an Wasser wurde so berechnet, dass das Löslichkeitsprodukt bei 100°C unterschritten wurde. Aus der heißen gesättigten Eisen(II)formiat-Lösung wurde nicht gelöstes Eisen abfiltriert und die Lösung in eine Petrischale überführt. Beim Abkühlen auf RT kristallisiert innerhalb einer Stunde Eisen(II)formiat-Dihydrat aus, das mit Aceton gewaschen und anschließend bei 40°C getrocknet wurde. Die Synthese erfolgte innerhalb von 2h, da das Fe²⁺ in der Lösung schnell zu Fe³⁺ oxidiert. Die bekannten Hydratstufen und Modifikationen des Eisen(II)formiats sind in Tab. 55 dargestellt.

Formel	Name	Literatur
Fe(HCOO) ₂ ·2H ₂ O	Eisen(II)formiat-Dihydrat	(Weber 1980)
Fe(HCOO) ₂	Eisen(II)formiat	

Fe(HCOO)₂ wurde durch die Dehydratation des Fe(HCOO)₂·2H₂O hergestellt. TG-Untersuchungen zeigen, dass die Zersetzung des Fe(HCOO)₂ unmittelbar nach der Dehydratation beginnt. Kristallographische Daten zum Fe(HCOO)₂ unter Atmosphärendruck sind bisher nicht bekannt. Das XRD-Diagramm passt zudem nicht zu einer der drei Eisen(II)formiate, die von VIERTELHAUS (2003) unter solvothermalen Bedingungen synthetisiert wurden. Stattdessen konnten die Zelle ausgehend von den Gitterparametern und der RG des Mangan(II)formiats verfeinert werden (Tab. 56).

Tab. 56: Verfeinerte Gitterkonstanten des Eisen(II)formiat-Dihydrats und Eisen(II)formiats

Verbindung	KS	RG	a [Å]	b [Å]	c [Å]	β [°]	T _{max} [°C]
Fe(HCOO) ₂ ·2H ₂ O	Monoklin	P21/c	8,739 (1)	7,197 (1)	9,432 (1)	97,48 (2)	110
Fe(HCOO) ₂	Orthorhombisch	Pnca	5,775 (2)	7,478 (2)	9,251 (2)	90	170

Für die Sprühtrocknung wurde unmittelbar vor der dem Sprühvorgang aus Eisen(II)formiat-Dihydrat eine 0,1 molare Lösung hergestellt. Das sprühgetrocknete röntgenamorphe Produkt besitzt eine Restfeuchte von 8,2Ma.-%. Die Zersetzungsreaktion ist abhängig vom Spülgas in Tab. 57 zusammengefasst. Die Partikelgröße der Zersetzungsprodukte liegt zwischen 10nm und 40nm.

Tab. 57: Zersetzung des sprühgetrockneten Eisen(II)formiats; Heizrate: 10°C/min; Gasfluss: 200ml/min

Spülgas	Tzersetzung	T _{Produkt}	Produkt
Synthetische Luft	255	375	Fe_3O_4 (+wenig γ -Fe ₂ O ₃)
N ₂	315	500	γ -Fe ₂ O ₃ und α -Fe ₂ O ₃

6.1.3.3. Cobalt(II)formiat

Cobalt(II)formiat-Lösung wird aus einer Neutralisationsreaktion von basischem Cobaltcarbonat mit Ameisensäure hegestellt. Bei einer stöchiometrischen Mischung fallen geringe Mengen an Co_3O_4 aus. Das Co_3O_4 wurde abfiltriert und aus der Restlösung Cobalt(II)formiat-Dihydrat bei RT auskristallisiert (Tab. 59).

Tab. 58: Bekannte Modifikationen des Cobalt(II)formiats

Formel	Name	Literatur
Co(HCOO) ₂ ·2H ₂ O	Cobalt(II)formiat-Dihydrat	(Алтзузнкіла <i>et al.</i> 1967; Каџгмал <i>et al.</i> 1993)
Co(HCOO) ₂	Cobalt(II)formiat	(Baraldi 1979)

Wasserfreies Cobalt(II)formiat ist unter atmosphärischen Bedingungen bei RT röntgenamorph (VIERTELHAUS 2003). Versuche, es langsam aus einer heißen Lösung auskristallisieren zu lassen oder über mehrere Tage bei hohen Temperaturen zu tempern, scheiterten und führten nicht zu einem kristallinen Produkt.

Tab. 59: Verfeinerte Gitterkonstanten des Cobalt(II)formiat-Dihydrats (25°C)

Verbindung	KS	RG	a [Å]	b [Å]	c [Å]	β [°]	T _{max} [°C]
Co(HCOO) ₂ ·2H ₂ O	Monoklin	P2 ₁ /c	8,683 (1)	7,170 (1)	9,282 (1)	97,44 (2)	117
Co(HCOO) ₂	Röntgenamorph						

Für die Sprühtrocknung wurde eine 0,1 molare Lösung verwendet. Das Produkt der Sprühtrocknung ist röntgenamorph, konnte mittels IR-Spektroskopie jedoch als ein Gemisch aus Co(HCOO)₂·2H₂O und Co(HCOO)₂ identifiziert werden. Die Restfeuchte der Partikel beträgt 7,5Ma.-%. In Tab. 60 sind die Parameter zur Zersetzungsreaktion gegeben. Die Partikelgröße der Zersetzungsprodukte liegt zwischen 10nm und 40nm.

Tab. 60: Zersetzung des sprühgetrockneten Cobalt(II)formiats; Heizrate: 10°C/min; Gasfluss: 200ml/min

Spülgas	Tzersetzung	T _{Produkt}	Produkt
Synthetische Luft	300	500	Co ₃ O ₄
N ₂	297	350	α-Co, β-Co, CoO, Co ₃ O ₄

6.1.3.4. Nickel(II)formiat

Die Herstellung von Nickel(II)formiat-Lösung erfolgt aus basischem Nickelcarbonat und Ameisensäure. Es wurde ein leichter Überschuss an Ameisensäure verwendet, da ansonsten Nickelcarbonat mit auskristallisiert. Aus der Lösung bildet sich bei RT Nickel(II)-formiat-Dihydrat. Die Kristalle wurden gewaschen und bei 60°C getrocknet.

Tab. 61: Bekannte Hydratstufen und Modifikationen des Nickel(II)formiats

Formel	Name	Literatur
Ni(HCOO) ₂ ·2H ₂ O	Nickel(II)formiat-Dihydrat	(Krogmann & Mattes 1963)
Ni(HCOO) ₂	Nickel(II)formiat	(VIERTELHAUS 2003)

Wasserfreies Nickel(II)formiat ist unter atmosphärischen Bedingungen bei RT röntgenamorph (VIERTELHAUS 2003). Versuche, es langsam aus einer heißen Lösung auskristallisieren zu lassen oder über mehrere Tage bei hohen Temperaturen zu tempern, führten zu keinem kristallinen Produkt.

 Tab. 62: Verfeinerte Gitterkonstanten des Nickel(II)formiat-Dihydrats

Verbindung	KS	RG	a [Å]	b [Å]	c [Å]	β [°]	T _{max} [°C]
Ni(HCOO) ₂ ·2H ₂ O	Monoklin	P21/c	8,604 (1)	7,078 (1)	9,227 (1)	97,44 (2)	134
Ni(HCOO) ₂	Röntgenamorph						

Für die Sprühtrocknung wurde eine 0,1 molare Lösung aus Nickel(II)formiat-Dihydrat verwendet. Das Produkt der Sprühtrocknung ist röntgenamorph, konnte mittels IR-Spektroskopie jedoch als Gemisch aus Ni(HCOO)₂·2H₂O und Ni(HCOO)₂ identifiziert werden. Die Restfeuchte beträgt nach der Sprühtrocknung 11,1Ma.-%. Die Zersetzungsreaktion ist abhängig vom Spülgas in Tab. 63 zusammengefasst. Die Partikelgröße der Zersetzungsprodukte liegt zwischen 10nm und 40nm.

Tab. 63: Zersetzung des sprühgetrockneten Nickel(II)formiats; Heizrate: 10°C/min; Gasfluss: 200ml/min

Spülgas	Tzersetzung	T _{Produkt}	Produkt
Synthetische Luft	251	500	NiO (geringe Mengen Ni)
N ₂	243	350	Ni (geringe Mengen NiO)

6.1.3.5. Kupfer(II)formiat

Die Herstellung von Kupfer(II)formiat-Tetrahydrat erfolgt aus einer wässrigen Lösung von basischem Kupfercarbonat und Ameisensäure, die in 20%-igem Überschuss zugegeben wurde, um die Bildung von Kupfer(II)hydroxidformiat-Hydraten zu vermeiden (ICDD: 00-050-0663). Unterschiede im Dehydratationsverhalten von Kupfer(II)formiat-Dihydrat bei verschiedenen Herstellungsmethoden wurde von MASUDA (1980) beschrieben. Mischkristalle des Kupfer(II)formiat-Dihydrats mit anderen strukturisotypen Zwischenmetallformiaten wurden von STOILOVA *et al.* (1993; 2000; 2001; 1994) untersucht. Eine Zusammenfassung der bekannten Hydratstufen und Modifikationen des Kupfer(II)formiat ist in Tab. 64 gegeben.

Tab. 64: Bekannte Hydratstufen und Modifikationen des Kupfer(II)formiats

Formel	Name	Literatur	
Cu(HCOO) ₂ ·4H ₂ O	Kupfer(II)formiat-Tetrahydrat	(Burger & Fuess 1979; Кігіуама <i>et al.</i> 1954; Lomer 1971; Омиги <i>et al.</i> 2002)	
Cu(HCOO) ₂ ·2H ₂ O	Kupfer(II)formiat-Dihydrat	(Викоwsка-Strzyewsка 1965; Кау <i>et al.</i> 1968)	
Cu(HCOO) ₂	Kupfer(II)formiat (Orthorhombisch)	(ICDD: 00-032-0332)	
Cu(HCOO) ₂	Kupfer(II)formiat (Monoklin)	(Günter 1980)	

Aus der Kupfer(II)formiat-Lösung kristallisiert bei RT Cu(HCOO)₂·4H₂O aus, das nur in gesättigter Lösung stabil ist. Die verfeinerten Gitterkonstanten der Dehydratationsprodukte des Cu(HCOO)₂·4H₂O sind in Tab. 65 dargestellt.

 Tab. 65: Verfeinerte Gitterkonstanten der Hydratstufen und Modifikationen des Kupfer(II)formiats (25°C)

Verbindung	KS	RG	a [Å]	b [Å]	c [Å]	β [°]	T _{max} [°C]
Cu(HCOO) ₂ ·4H ₂ O	Monoklin	P2 ₁ /a	8,171 (1)	8,121 (1)	6,310 (1)	100,94 (2)	RT
Cu(HCOO) ₂ ·2H ₂ O	Monoklin	P21/c	8,683 (1)	7,170 (1)	9,282 (1)	97,44 (2)	101
Cu(HCOO) ₂	Orthorhombisch	Pbca	14,203 (2)	8,945 (1)	6,234 (1)	90	201
Cu(HCOO) ₂	Monoklin	P2 ₁ /a	8,187 (1)	7,956 (1)	3,617 (1)	122,10 (2)	201

Für die Sprühtrocknung wurde eine 0,25 molare Kupfer(II)formiat-Lösung hergestellt. Das versprühte Produkt ist zum größten Teil röntgenamorph und enthält geringe Mengen an kristallinem orthorhombischen Cu(HCOO)₂. Die Zersetzungsreaktion ist, abhängig vom Spülgas, in Tab. 66 zusammengefasst.

Tab. 66: Zersetzung des sprühgetrockneten Kupfer(II)formiats; Heizrate: 10°C/min; Gasfluss: 200ml/min

Spülgas	T _{Zersetzung}	T _{Produkt}	Produkt
N ₂	153	250	Cu (+wenig Cu ₂ O)
Synthetische Luft	160	250	Cu ₂ O (+wenig CuO)
Synthetische Luft	160	500	CuO

Durch die Beeinflussung der Atmosphäre ist somit die Synthese von Kupfer- (N₂; 250°C) bis hin zu Kupfer(II)oxid-Partikeln (syn. Luft; 500°C) mit einer Partikelgröße zwischen 10nm und 50nm möglich.

6.1.3.6. Zinkformiat

Zinkformiat-Dihydrat kristallisiert bei RT aus einer wässrigen Lösung, die aus einer Neutralisationsreaktion von basischem Zinkcarbonat und Ameisensäure hergestellt wurde, aus. Aus der Literatur sind bisher folgende Hydratstufen und Modifikationen des Zinkformiats bekannt (Tab. 67).

Tab. 67: Bekannte Hydratstufen und Modifikationen des Zinkformiats

Formel	Name	Literatur
Zn(HCOO) ₂ ·2H ₂ O	Zinkformiat-Dihydrat	(LIPTION <i>et al.</i> 2002)
Zn(HCOO) ₂	Zinkformiat	(VIERTELHAUS 2003)

Bei RT kristallisiert $Zn(HCOO)_2 \cdot 2H_2O$ (LIPTION *et al.* 2002) aus. Die Dehydratation des $Zn(HCOO)_2 \cdot 2H_2O$ beginnt bei 100°C. Die Zersetzung des gebildeten Zinkformiats findet bei 276°C statt.

Tab. 68: Verfeinerte Gitterkonstanten des Zinkformiat Hydrat und Zinkformiat bei 25°C

Verbindung	KS	RG	a [Å]	b [Å]	c [Å]	β [°]	Т _{тах} [°С]
Zn(HCOO) ₂ ·2H ₂ O	Monoklin	P21/c	8,696 (1)	7,148 (1)	9,308 (1)	97,61 (2)	100
Zn(HCOO) ₂	Orthorhombisch	Pbca	7,646 (1)	13,602 (2)	12,550 (2)	101,48 (2)	276

Das sprühgetrocknete Produkt der Zinkformiat-Lösung ist zum größten Teil röntgenamorph und enthält geringe Mengen an kristallinem Zinkformiat. Die Restfeuchte des Produkts beträgt 3,6Ma.-%. Vor der Zersetzung der sprühgetrockneten Partikel bei 270°C kristallisiert bei 145°C Zinkformiat aus. Bei der Zersetzung bildet sich unabhängig vom Spülgas (N₂ oder syn. Luft) ab 270°C Zinkoxid. Die Partikelgröße des Zinkoxids liegt bei einer Sintertemperatur von 500°C liegt zwischen 20nm und 50nm.

6.1.4. Aluminiumformiat

REYES-LÓPEZ *et al.* (2006) stellten Aluminiumformiat aus metallischem Aluminium und Ameisensäure unter Verwendung von Quecksilberchlorid (HgCl₂) als Katalysator her. Die Synthese ist außerdem über Aluminiumhydroxid, das aus Aluminiumchlorid oder -nitrat und Ammonium- oder Natriumhydroxid (CHAPLYGINA *et al.* 1984; CHAPLYGINA *et al.* 1985) ausgefällt wird, möglich. Bei der Verwendung von kommerziellem Gibbsit Al(OH)₃ oder Böhmit AlO(OH) entsteht ein Gemisch aus Aluminiumhydroxiformiat und Aluminiumformiat (NARAYANAN & LAINE 2000). Weiter kann Aluminium-*iso*-Propoxid als Precursor für die Synthese verwendet werden (LIU *et al.* 1998; MEHROTRA 1953). Eine allgemeine Formel für die Additionsverbindungen aus Aluminiumformiat, -hydroxid und -oxid stellte LANDRY *et al.* (1995) auf. Ein zu hoher Überschuss an Ameisensäure kann zudem zur Bildung von Additionsverbindungen Al(HCOO)₃·HCOOH führen (CHAPLYGINA *et al.* 1985). In der Literatur wurden bis jetzt folgende Verbindungen und Zersetzungsprodukte des Aluminiumformiats beschrieben (Tab. 69).

Formel	Verbindungsname	Literatur
AI(HCOO) ₃ ·3H ₂ O	Aluminiumformiat-Hydrat	(CHAPLYGINA <i>et al.</i> 1984)
AI(HCOO) ₃	Aluminiumformiat	(CHAPLYGINA <i>et al.</i> 1984)
AI(OH)(HCOO) ₂ ·xH ₂ O	Aluminiumhydroxidformiat-Hydrat	(CHAPLYGINA <i>et al.</i> 1984)
AI(OH)(HCOO) ₂	Aluminiumhydroxidformiat	(CHAPLYGINA <i>et al.</i> 1984)
Al ₂ O(HCOO) ₄	Aluminiumoxiformiat	(REYES-LÓPEZ <i>et al.</i> 2006)
AI(HCOO)₃·HCOOH	Aluminiumformiat mit Ameisesäuremolekühl	(CHAPLYGINA <i>et al.</i> 1985)

Tab. 69: Bekannte Modifikationen, Hydratstufen und Zwischenprodukt bei der Zersetzung des Aluminiumformiats

Bei dem Versuch Aluminiumformiat aus gefälltem Aluminiumhydroxid (Aluminiumchlorid und Natriumhydroxid) zu synthetisieren, kristallisierten trotz des 6-maligen Waschens des Aluminiumhydroxids noch geringe Mengen NaCl aus. Die Herstellung der Aluminiumformiat-Lösung erfolgte deshalb, aus metallischem Aluminium und Ameisensäure unter Verwendung von HgCl₂ als Katalysator. Ausfallendes Quecksilber wurde nach dem vollständigen Lösen des Aluminiums abfiltriert. Aus der Lösung entsteht dann durch langsames Einengen eine Gelphase, aus der bei 20°C innerhalb von 7 Tagen Al(OH)(HCCO)₂·xH₂O (ICDD: 00-054-0318) auskristallisiert (Abb. 191). Thermoanalytische Untersuchungen zeigten, dass sich Al(OH)(HCOO)₂·xH₂O bei 274°C zu amorphem Al₂O₃ zersetzt. Al(HCOO)₃·3H₂O oder Al(HCOO)₃ konnte beim langsamen Auskristallisieren aus der Lösung bei RT nicht nach-gewiesen werden.

Für die Sprühtrocknung wurde eine 0,25 molare Aluminiumformiat-Lösung verwendet. Das Produkt der Sprühtrocknung ist röntgenamorph, konnte mittels IR-Spektroskopie jedoch als ein Gemisch von Al(OH)(HCOO)₂·xH₂O und amorphem Al₂O₃ identifiziert werden. Die

Zersetzungsreaktion des sprühgetrockneten Produkts beginnt bei 205°C. Bei den thermogravimetrischen Untersuchungen des amorphen Al₂O₃ konnte ein weiterer geringer Gewichtsverlust von 2,4Ma.-% beginnend bei 947°C detektiert werden (Abb. 192). Der Gewichtsverlust ist auf die Zersetzung der -O-Al-C-O-Al-O-Bindungen zurückzuführen, die bei der Zersetzung von aluminium-organischen Ausgangsprodukten entstehen (LIN *et al.* 2008). In den REM-Aufnahmen waren zudem in der Oberfläche, in den bei 1300°C gesinterten Partikel, kleine Löcher sichtbar, die darauf schließen lassen, dass flüchtige Verbindungen entwichen sind (Abb. 195 und Abb. 196). Bei den bei 860°C gesinterten Proben konnten diese Löcher nicht beobachtet werden (Abb. 194).

Abb. 191: XRD-Diagramme beim langsamen Auskristallisieren von Aluminiumformiat-Lösung; Bildung von Al(OH)(HCOO)₂'xH₂O

Abb. 192: TG/DTA-Diagramm von sprühgetrocknetem Aluminiumformiat, Heizrate: 10°C/min; Spülgas: synthetische Luft; Gasfluss: 200ml/min

Abb. 193: REM-Aufnahme von sprühgetrocknetem Aluminiumformiat

Abb. 194: REM-Aufnahme von sprühgetrocknetem Aluminiumformiat, das bei 860°C (2h) zersetzt wurde

Abb. 195: REM-Aufnahme von sprühgetrocknetem Aluminiumformiat, das bei 1300°C (2h) gesintert wurde

Abb. 196: REM-Aufnahme von sprühgetrocknetem Aluminiumformiat, das bei 1300°C (2h) gesintert wurde

6.2. Synthese von Zementphasen durch das Sprühverfahren

Ausgehend von den Lösungen der Metallformiate sollen in diesem Kapitel die Zementphasen CA und C₂S mittels des Sprühverfahrens hergestellt werden. In früheren Untersuchungen wurde die Synthese von β -C₂S (ROY & OYEFESOBI 1977) und CA (DOUY & GERVAIS 2000) mittels Sprühtrocknung und anschließender Zersetzung unter Verwendung der Ausgangssubstanzen Ca(NO₃)₂·4H₂O, Al(NO₃)₃·9H₂O und SiO₂-Sol bereits beschrieben.

6.2.1. CaO·Al₂O₃ (CA)

Die Herstellung von CA mittels des Sprühverfahrens erfolgte aus einer stöchiometrischen 0,5 molaren Calciumaluminiumformiat-Lösung. Optische Untersuchungen zeigten, dass es zu sphärischen Partikeln bei der Sprühtrocknung kommt (Abb. 197), deren runde Form auch nach den Sinterschritten bei 700°C-2h (Abb. 198), 900°C-2h (Abb. 199) und 1300°C-2h (Abb. 200) erhalten bleibt.

Abb. 197: REM-Aufnahme von sprühgetrocknetem Calciumaluminiumformiat

Abb. 198: REM-Aufnahme von sprühgetrocknetem Calciumaluminiumformiat, das bei 700°C (2h) zersetzt wurde

Abb. 199: REM-Aufnahme von sprühgetrocknetem Calciumaluminiumformiat, das bei 900°C (2h) gesintert wurde

Abb. 200: REM-Aufnahme von sprühgetrocknetem Calciumaluminiumformiat, das bei 1300°C (2h) gesintert wurde

Die pulverdiffraktometrischen Untersuchungen zeigen, dass das sprühgetrocknete und bei 700°C gesinterte Produkt röntgenamorph ist. Nach einem Sinterschritt von 900°C (2h) liegt orthorhombisches CA und nach 1300°C (2h) monoklines CA vor (Abb. 201). Die TG/DTA-Diagramme in Abb. 202 zeigen den Zersetzungsverlauf des sprühgetrockneten Precursors.

Abb. 201: XRD-Diagramme von sprühgetrockneter Calciumaluminiumformiat-Lösung (CA), das bei folgenden Temperaturen gesintert wurde: a) RT, b) 700°C (2h), c) 900°C (2h) und d) 1300°C (2h)

Abb. 202: TG/DTA-Diagramm von sprühgetrockneten Calciumaluminiumformiat zur Herstellung von CA; Heizrate: 10°C/min; Spülgas: synthetischer Luft; Gasfluss: 200ml/min

Die wärmeflusskalorimetrischen Untersuchungen des orthorhombischen CA nach einer Sintertemperatur bei 900°C (2h) zeigen, dass die hydraulische Reaktivität mit der aus der Polymer-Precursor-Synthese vergleichbar ist (Abb. 203). Pulverdiffraktometrische Untersuchungen bestätigen, dass das CA nach 48h vollständig hydratisiert ist.

Abb. 203: Wärmeflussdiagramm von orthorhombischem CA, hergestellt mittels des Sprühverfahren bei einer Sintertemperatur von 900°C (2h); W/F-Wert=4, T=20°C

6.2.2. 2CaO·SiO₂ (C₂S)

Für die Synthese von C₂S wurde eine 0,25 molare Lösung aus Calciumformiat und SiO₂-Sol sprühgetrocknet. Als Produkt liegt eine Mischung aus amorphem SiO₂, β - und γ -Ca(HCOO)₂ vor. Die thermoanalytische Untersuchung zeigt, dass sich das Calciumformiat bei 407°C zersetzt und als Zwischenprodukt CaCO₃ entsteht, das sich wiederum bei 532°C zersetzt. Im direkten Anschluss an die Zersetzung des CaCO₃ bildet sich α `_L-C₂S (Abb. 204).

Abb. 204: TG/DTA-Diagramm von sprühgetrocknetem Calciumformiat und SiO₂-Sol zur Herstellung von C₂S; Spülgas: synthetische Luft; Spülrate: 200ml/min; Heizrate: 10°C/min

Nach einem zweistündigen Sinterprozess bei 700°C wird bei RT phasenreines $\alpha_{L}^{-}C_{2}S$ stabilisiert, dass eine Kristallitgröße von 18nm besitzt. Die optischen Untersuchen zeigen, dass die Kristallitgröße der mittels REM ermittelten Partikelgröße sehr nahe kommt (Abb. 206). Diese ca. 20nm großen Partikel sind agglomeriert, wobei sich die sphärische Form der Agglomerate durch die Sprühtrocknung ergibt (Abb. 205).

Abb. 205: REM-Aufnahme von $\alpha_{L}^{-}C_{2}S$, hergestellt mittels Sprühtrocknung von Calciumformiat und SiO₂-Sol und anschließender Zersetzung bei einer Sintertemperatur von 700°C (2h)

Abb. 206: REM-Aufnahme von $\alpha_L^-C_2S$, hergestellt mittels Sprühtrocknung von Calciumformiat und SiO₂-Sol und anschließender Zersetzung bei einer Sintertemperatur von 700°C (2h); Bildausschnitt des in Abb. 205 rot gekennzeichneten Rechtecks
Die wärmeflusskalorimetrische Untersuchung des $\alpha_L^-C_2S$, hergestellt mittels des Sprühverfahrens, zeigt, dass die hydraulische Reaktivität nur geringfügig niedriger ist als die des $\alpha_L^-C_2S$, hergestellt mittels Polymer-Precursor-Synthese (Abb. 207). Die freiwerdende Wärme beträgt nach 100h 236J/g. Die röntgenographische Untersuchung der Hydratationsprodukte nach 150h zeigt, dass das $\alpha_L^-C_2S$ vollständig hydratisiert ist.

Abb. 207: Wärmeflussdiagramm von α_{L} -C₂S (Sprühverfahren); Sinterbedingungen 700°C (2h); W/F-Wert=3; T=20°C; Freiwerdende Wärme nach 100h: 236J/g

6.3. Kurzzusammenfassung: Sprühverfahren

Die reinen Alkaliformiate eignen sich nicht für die Sprühtrocknung, da sie zu hygroskopisch sind oder vor der Zersetzung aufschmelzen. Die Herstellung von Verbindungen, die zusätzlich andere Formiate enthalten, ist jedoch möglich. So beschrieb PESHEV & PECHEVA (1978) die Synthese von Lithium-Eisen-Spinellen über die Sprühtrocknung und anschließende Zersetzung der entsprechenden Formiate und zeigte, dass es zu keinem Aufschmelzen vor der Zersetzung der Formiate kommt. Im Gegensatz dazu sind die reinen Erdalkalimetallformiate sowie die untersuchten Zwischenmetall(II)formiate (Mn-, Fe-, Co-, Ni-, Cu- und Zn-Formiat) aufgrund ihrer Löslichkeit und den hygroskopischen Eigenschaften für die Sprühtrocknung und die anschließende Zersetzung geeignet. In allen Fällen bildeten sich Partikel mit kugelförmiger Gestalt, die trotz der relativ hohen Restfeuchte bei der Sprühtrocknung nicht agglomerieren. Bei der Verwendung von Calcium- und Strontiumformiat sollte jedoch beachtet werden, dass es nach der Sprühtrocknung innerhalb von einigen Tagen zur Agglomeration der Partikel kommt. Grund dafür ist die Umwandlung von den bei der Sprühtrocknung stabilisierten Hochtemperaturmodifikationen (β- und γ-Modifikation) zur stabileren α -Modifikation in Verbindung mit der hohen Restfeuchte nach der Sprühtrocknung.

Die Charakterisierung der aus der Lösung auskristallisierten und sprühgetrockneten Alkali-, Erdalkali- und Zwischenmetall(II)formiate ergab, dass folgende Formiate strukturisotyp zueinander sind; die Arbeit von VIERTELHAUS (2003) wird damit ergänzt.

Н																	He
Li	Ве											В	С	Ν	0	F	Ne
Na	Mg											AI	Si	Ρ	S	CI	Ar
К	Са	Sc	Ti	V	Cr	<mark>M</mark> n	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Υ	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Хе
Cs	Ba																

Strukturisotype Metallformiate Dihydrate (Monokin P21/c)
Strukturisotype Metallformiate (orthorhombisch Pnca)
Strukturisotype Metallformiate (monoklin P2 ₁ , Pca2 ₁); c-Paramter bei Mg(HCOO) ₂ verdoppelt
Strukturisotype wasserfreie Metallformiate (orthorhombisch P2 ₁ 2 ₁ 2 ₁)
Strukturisotype Metallformiate (tetragonal P4 ₁ 2 ₁ 2)
Strukturisotype Metallformiate (tetragonal I4 ₁ /amd)

Abb. 208: Strukturisotype Metallformiat-Hydrate und Metallformiate

Ergänzend zu diesen Untersuchungen sind weitere wasserfreie Metallformiate und Additionsverbindungen mit Ameisensäuremolekülen bekannt, die von VIERTELHAUS (2003) unter hydrothermalen Bedingungen synthetisiert und beschrieben wurden.

Bei der Zersetzung der Alkali- und Erdalkalimetallformiate entstehen die jeweiligen Carbonate mit Ausnahme des Magnesiumformiats; hier kommt es zur Bildung von MgO. Die zweiwertigen Zwischenmetallformiate (Mn-, Fe-, Co-, Ni-, Cu- und Zn-Formiat) zersetzen sich abhängig vom Sauerstoffgehalt zu den Metallen oder Oxiden der jeweiligen Verbindung. Die sprühgetrockneten kugelförmigen Partikel bleiben auch nach der Zersetzung in ihrer Gestalt erhalten, jedoch liegen Agglomerate aus den jeweiligen Metallen, Oxiden oder Carbonate vor. Die mittels REM identifizierte Korngröße der Metalle, Oxide oder Carbonate liegt bei allen Verbindungen zwischen 10nm und 100nm.

Die Herstellung des CA (900°C-2h) und C₂S (700°C-2h) war bei den gleichen niedrigen Sintertemperaturen wie bei der Polymer-Precursor-Synthese möglich. Es kommt aufgrund der niedrigen Sintertemperatur zur Bildung des metastabilen orthorhombischen CA und des $\alpha_{L}^{-}C_{2}S$. Die Partikel und Korngrößen der Verbindungen sind ebenso gering wie die aus den anderen Niedrigtemperatur-Synthesemethoden. Zudem sind das CA (orthorhombisch) und $\alpha_{L}^{-}C_{2}S$ ebenso hydraulisch hochreaktiv wie die Pulver aus der Polymer-Precursor-Synthese.

7. Diskussion und Zusammenfassung

Synthese und Phasenbildung der Zementphasen

In der vorliegenden Arbeit wurden verschiedene Synthesemethoden getestet und optimiert, um die Phasenbildung von Zementphasen ausgehend von einer sehr guten Homogenisierung im Labormaßstab zu untersuchen. Die sich dadurch bei niedrigeren Sintertemperaturen gebildeten Phasen wurden charakterisiert und deren hydraulische Reaktivitäten bestimmt. Ausgehend von der Polymer-Precursor-Synthese konnte gezeigt werden, dass sich folgende Phasen (Tab. 70) bei erheblich niedrigeren Sintertemperaturen, verglichen mit der Festkörpersynthese, reinphasig herstellen lassen.

Tab. 70: Verbindungen, die bei den niedrigsten Sintertemperaturen zwischen 700°C und 950°C hergestellt werden konnten; *geringe Gehalte an Nebenphasen

Phase	Sintertemperatur bei der Polymer-Precursor-Synthese	Sintertemperatur bei der Festkörpersynthese
C ₂ S	650°C (α` _L -C ₂ S)	1400°C (γ-C ₂ S)
Ca ₂ (Al _x Fe _{2-x})O ₅ mit 0 <x<0,4< td=""><td>700°C (RG: I2mb)</td><td>1250°C (RG: Pnma)</td></x<0,4<>	700°C (RG: I2mb)	1250°C (RG: Pnma)
CA	900°C (Orthorhombisch)	1500°C (Monoklin)
C ₅ A ₃	900°C*	-
C ₂ AS	900°C*	1250°C
CAS ₂	900°C (Monoklin)	900°C (Triklin)
Ca _{5,3} , _{2,7} Al _{10,7} Si _{5,3} O ₃₂	950°C*	-

Ursachen für die Bildung der Phasen bei den niedrigeren Sintertemperaturen (Tab. 70), verglichen mit der Festkörpersynthese, sind folgende Faktoren:

- Bessere Homogenisierung der Ausgangsstoffe
- Erniedrigung der Decarbonatisierungstemperatur des CaCO₃ auf ca. 550°C
- schnellere Diffusion an Korngrenzen, verglichen mit der im Kristallgitter (KODAS & HAMPDEN-SMITH 1999)

Grund für die erhebliche Erniedrigung der Decarbonatisierungstemperatur sind die geringen Partikelgrößen zwischen 10nm und 50nm nach der Zersetzung des Polymerprecursors. Diese nanoskaligen Partikel haben einen höheren Dampfdruck als mikroskalige Partikel, da sich mehr Atome an der Partikeloberfläche befinden, die weniger Kontaktpunkte zu Nachbaratomen haben und damit eine höhere Mobilität besitzen (KODAS & HAMPDEN-SMITH 1999). Die Erniedrigung der Decarbonatisierungstemperatur bei Verwendung der Niedrigtemperatur-Synthesemethoden wurde unter Anderem von RIES *et al.* (2003) bei der Zersetzung von Strontium- und Bariumcarbonat beobachtet.

Bei den folgenden Phasen, die mittels Polymer-Precursor-Synthese hergestellt wurden, kommt es unterhalb der angegebenen Sintertemperatur T_{U} zur Bildung von den in der rechten Spalte (Tab. 71) aufgelisteten Verbindungen.

Phase	Τυ	Stabile Phasen unterhalb von T_{U}
C ₃ S	1250°C	C ₂ S, CaO
C ₁₂ A ₇	1000°C	C_5A_3
C ₃ A	900°C	C ₅ A ₃ , C ₁₂ A ₇ , C ₃ A
C ₂ AS	900°C	C ₂ AS, C ₂ S, CA (ortho.)
Ca ₂ (Al _x Fe _{2-x})O ₅ mit 0,6 <x<1,2< td=""><td>1000°C</td><td>Ca₂(Al_xFe_{2-x})O₅ (0<x<0,4)< td=""></x<0,4)<></td></x<1,2<>	1000°C	Ca ₂ (Al _x Fe _{2-x})O ₅ (0 <x<0,4)< td=""></x<0,4)<>
C ₄ A ₃ s	1000°C	CA (ortho.), Cs
Ca ₂₀ Al _{32-2x} Mg _x Si _x O ₆₈	1100°C	CA (ortho.), CAS ₂

Tab. 71: Phasen, die erst bei höheren Temperaturen (>900°C) gebildet werden

Es kommt somit ausgehend von sehr gut homogenisierten Ausgangsprodukten bei niedrigen Sintertemperaturen zur Bildung metastabiler Verbindungen, die in Tab. 72 aufgelistet sind. Die zugehörigen stabilen Phasen, die bei höheren Sintertemperaturen oder längeren Sinterschritte aus den metastabilen Phasen entstehen, sind in der rechten Spalte der Tab. 72 aufgeführt.

Metastabile Phase	Stabile Phase
α` _L -C ₂ S	γ-C ₂ S
β-C ₂ S	γ-C ₂ S
Ca ₂ (Al _x Fe _{2-x})O ₅ mit 0 <x<0,4 (rg:="" i2mb)<="" td=""><td>Ca₂(Al_xFe_{2-x})O₅ mit 0<x<0,4 (rg:="" pnma)<="" td=""></x<0,4></td></x<0,4>	Ca ₂ (Al _x Fe _{2-x})O ₅ mit 0 <x<0,4 (rg:="" pnma)<="" td=""></x<0,4>
CA (Orthorhombisch)	CA (Monoklin)
Ca _{5,3} , _{2,7} Al _{10,7} Si _{5,3} O ₃₂	CA, CA ₂ , CAS ₂ , CS
CAS ₂ (Monoklin – Pseudo-hexagonal)	CAS ₂ (Triklin)
CAS ₂ (Monoklin – Pseudo-orthorhombisch)	CAS ₂ (Triklin)
C_5A_3 (+geringe Mengen C_3A)	C ₁₂ A ₇

Tab. 72: Metastabile und dazugehörige stabile Phasen, die in den untersuchten Systemen gebildet wurden

Bei der Herstellung von C_2S werden bei niedrigen Sintertemperaturen die Hochtemperaturmodifikationen ($\alpha_L^-C_2S$ und β - C_2S) gebildet. Mit höheren Sintertemperaturen und damit Verbunden auch steigenden Kristallit- und Korngrößen kommt es zur Bildung der stabilen γ -Modifikation (Tab. 73).

Tab. 73: Gebildete Modifikationen des C_2S nach verschiedenen Sinterschritten unter Verwendung der Polymer-Precursor-Synthese

Modifikation	Sinterschritt	D _{XRD} [g/cm ³]
α` _L -C ₂ S	650°C (2h)	3,14
β-C ₂ S	1100°C (2h)	3,31
γ-C ₂ S	1300°C (2h)	2,96

Dass geringe Partikelgrößen die Bildung von β -C₂S fördern und die Umwandlung zum γ -C₂S vermeiden, wurde bereits von CHAN *et al.* (1992) beschrieben. In diesem Zusammenhang wurde auch gezeigt, dass bei nanokristallinen Partikeln Phasen mit einer höheren Packungsdichte der Atome, hervorgerufen durch den prozentual höheren Anteil an Oberflächenenregie, gebildet werden (WEGNER *et al.* 2004). Die ermittelte Röntgendichte des β -C₂S ist wesentlich geringer als die des γ -C₂S und bestätigt somit diese These. Mit der höheren Packungsdichte kann jedoch nicht die Bildung von α `_L-C₂S begründet werden, da dessen Dichte geringer als die des β -C₂S ist. Die Bildung des höhersymetrischen α `_L-C₂S ist somit vermutlich auf eine höhere Keimbildungswahrscheinlichkeit bei niedrigen Sintertemperaturen (600°C) zurückzuführen.

Analog zum C₂S wird auch bei eisenreichen Brownmilleriten $Ca_2(Al_xFe_{2-x})O_5$ mit 0 < x < 0,4 die Hochtemperaturmodifikation (RG: I2mb) bei niedrigen Sintertemperaturen gebildet. Mit einem steigenden Aluminiumgehalt x von 0 bis 0,4 ist zudem die Hochtemperaturmodifikation bis zu höheren Sintertemperaturen, 700°C auf 900°C, stabil. Demnach wird auch hier bei niedrigeren Sintertemperaturen die höhersymmetrische Hochtemperaturmodifikation gebildet. Die Berechnung der Kristallitgröße zeigt jedoch auch, dass die Umwandlung der metastabilen Hochtemperaturmodifikation zur stabilen Modifikation stattfindet, wenn die Kristallitgröße 90nm übersteigt. Demnach kann davon ausgegangen werden, dass die Kristallitgröße in diesem System ein Indikator für die Phasenumwandlung ist oder sogar einen Einfluss auf die Bildung der metastabilen Phase hat.

Bei den monoklinen Modifikationen des CAS₂, dem Yoshiokait als auch der orthorhombischen Modifikation des CA, ist die Bildung der metastabilen Phasen auf eine höhere Keimbildungswahrscheinlichkeit bei niedrigen Sintertemperaturen zurückzuführen. Bei diesen Phasen sind keine Hochtemperaturmodifikationen der entsprechenden Phasen bekannt und konnten in der Arbeit bei HT-XRD-Aufnahmen auch nicht beobachtet werden. Bei den eigenen Untersuchungen zum CAS₂ bildet sich bei niedrigen Sintertemperaturen bevorzugt die monokline (pseudo-hexagonale) Modifikation, da diese nach ABE *et al.* (1991) bei niedrigeren Sintertemperaturen als die monokline (pseudo-orthorhombische) Modifikation gebildet wird und der amorphe Precursor von RT aus aufgeheizt wird. Wird dagegen eine Schmelze auf etwa 950°C bis 1250°C abgekühlt und getempert, kommt es nach IYATOMI & AOKI (1992) bevorzugt zur Bildung der monoklinen (pseudo-orthorhombischen) Modifikation, die sich nach ABE *et al.* (1991) bei höheren Temperaturen bildet.

Die mittels XRD **berechneten Kristallitgrößen** von C_2S , C_2F , C_5A_3 und orthorhombischem CA, die unmittelbar nach der Zersetzung des zwischenzeitlich gebildeten CaCO₃ entstehen,

stimmen in etwa mit der mittels REM bestimmten Korngröße überein. Deshalb kann davon ausgegangen werden, dass unmittelbar nach der Bildung der Phasen einzelne Kristallite vorliegen. Bei höheren Sintertemperaturen kommt es zu einem raschen Korngrößenwachstum. Folglich ist die im REM beobachtete Korngröße wesentlich größer als die berechnete Kristallitgröße.

Bei allen synthetisierten aluminiumhaltigen Verbindungen, die mittels Polymer-Precursor-Synthese hergestellt wurden, kommt es nach der Zersetzung des Polymerprecursors zur Bildung eines röntgenamorphen Produkts bis zu einer Sintertemperatur von 800°C. Ab einem Sinterschritt von 900°C kristallisieren aluminiumhaltige Verbindungen aus. TG-Untersuchungen zeigten, dass es zu einem geringen Gewichtsverlust von 0,2Ma.-% bis 2Ma.-% zwischen 900°C und 1050°C kommt. Gülgün et al. (1994) und HernAndez & GONZÁLEZ (2002) stellten im gleichen Temperaturintervall einen Gewichtsverlust bei Verwendung der Polymer-Precursor-Synthese bei aluminiumhaltigen Verbindungen fest und zeigten, dass es dabei zur Freisetzung von Kohlenstoff kommt. GÜLGÜN et al. (1994) vermuteten, dass es sich um an der Oberfläche anhaftenden Kohlenstoff aus der Zersetzung des Polymers handelt. Eigene thermoanalytische Untersuchungen mit hohen Spülraten an synthetischer Luft und somit einem ausreichend hohen Sauerstoffgehalt, der für die Zersetzung des Polymerprecursors zur Verfügung steht, konnten ausschließen, dass es sich um Restkohlenstoff aus der Zersetzung des Polymers handelt. Das Vorhandensein von CaCO₃ konnte mittels IR-spektroskopischer Untersuchungen ausgeschlossen werden. Zudem beobachteten HERNÁNDEZ & GONZÁLEZ (2002) den Gewichtsverlust zwischen 900°C und 1050°C auch bei der Synthese von Al₂O₃. Eine Erklärung für den Gewichtsverlust lieferten die Untersuchungen von LIN et al. (2008), die zeigten, dass es bei der Zersetzung von "Aluminium-Kohlenstoff"-Verbindungen zur Bildung von -O-Al-C-O-Al-O- Bindungen kommt und somit geringe Mengen an Kohlenstoff in die amorphe Al₂O₃ Struktur eingebaut werden können. Folglich konnte dieser Gewichtsverlust in der Arbeit auch bei der Zersetzung von Al(OH)(HCOO)₂ xH₂O detektiert werden, das ebenfalls diese Bedingungen aufweist. In optischen Untersuchen konnten nach dem Gewichtsverlust an der Oberfläche der Al₂O₃-Partikel einige Nanometer große Löcher nachgewiesen werden, die offensichtlich als Diffusionskanäle wirken. Die Vermutung liegt nahe, dass es aufgrund der Bindung des Kohlenstoffs im amorphen Al₂O₃ erst bei 900°C zur Bildung von kristallinen Calciumaluminaten kommt. Untersuchungen von DOUY & GERVAIS (2000), die sprühgetrocknete Calcium- und Aluminiumnitrat-Hydrate für die Herstellung von CA und C₁₂A₇ bzw. C₅A₃ verwendeten, zeigten jedoch, dass es auch hier erst bei ca. 900°C zur Bildung von kristallinen Calciumaluminaten kommt. Dadurch kann ausgeschlossen werden, dass der gebundene Kohlenstoff die Bildung der Calciumaluminate verhindert. Es muss hier jedoch

darauf hingewiesen werden, dass bei dieser Arbeit konstante Sinterschritte von je 2h verwendet wurden. Die Verwendung von längeren Sinterzeiten hat zur Folge, dass die calciumreichen Verbindungen C₃A, C₁₂A₇ oder C₅A₃, wie von TAS (1998) gezeigt, auch bei niedrigeren Sintertemperaturen auskristallisieren können. Aus Untersuchungen von TURRILLAS *et al.* (2001) und SPLITTGERBER & MUELLER (2003) ist des Weiteren bekannt, dass sich bei der Dehydratation von C₃AH₆ ab 600°C C₃A und C₁₂A₇ bilden können. In den eigenen Untersuchungen bei Verwendung der Polymer-Precursor-Methode und des GNP kommt es zunächst zur Bildung von C₅A₃ und nicht von C₁₂A₇. Dies ist auf die sehr feuchte Atmosphäre bei der Dehydratation des C₃AH₆ zurückzuführen, die die Bildung von C₁₂A₇ begünstigt (BRISI *et al.* 1986; ZHMOIDIN & CHATTERJEE 1984).

Einige Phasen ließen sich mittels alternativen Synthesemethoden nicht bei niedrigeren Sintertemperaturen herstellen, z.B. Hochtemperaturphasen wie das C_3S . Grund dafür ist, dass bei Verwendung von Niedrigtemperatur-Synthesen unterhalb des Stabilitätsfeldes von C_3S , bei 1250°C, C_2S und CaO entstehen. Für die Synthese von C_3S sind damit analog hohe Sintertemperaturen wie bei der Festkörpersynthese notwendig, da es aufgrund der Bildung von C_2S und CaO zu einer Entmischung des Ausgangsprecursors kommt.

Das gleiche Problem trat bei der Synthese von **Ye'elimit (C₄A₃s)** auf. Hier entstehen bei 900°C Cs und das metastabile orthorhombische CA. Die beiden Verbindungen sind relativ stabil und reagieren nur langsam ab 1000°C zu C₄A₃s. Zudem kommt es hier aufgrund der geringeren Partikelgrößen, analog zum CaCO₃ wie in Kapitel 3.2.1 beschrieben, zu einer Erniedrigung der Zersetzungstemperaturen des Cs und C₄A₃s. Folglich zersetzt sich das Cs und C₄A₃s, bevor sich C₄A₃s reinphasig bilden konnte.

Bei der Synthese von **Pleochroit Ca**₂₀**Al**₂₆**Mg**₃**Si**₃**O**₆₈ kommt es bei einer Sintertemperatur von 900°C zur Bildung von orthorhombischem CA und einem Mischkristall aus Gehlenit und Åkermanit (SWAINSON *et al.* 1992), wodurch die Synthese von Ca₂₀Al₂₆Mg₃Si₃O₆₈ nur nach längeren Sinterschritten bei 1320°C möglich ist. Bei den Untersuchungen zur Substitution von Mg²⁺ gegen Co²⁺ und Zn²⁺ konnten folgende Verbindungen synthetisiert werden:

- Ca₂₀Al₂₆Zn₃Si₃O₆₈
- Ca₂₀Al₂₆Co₃Si₃O₆₈.

Damit kann davon ausgegangen werden, dass sich bei der Verwendung von sehr gut homogenisierten Ausgangsprodukten bei Sintertemperaturen <950°C bevorzugt die in Tab. 70 angegebenen Phasen bilden. Bezogen auf das System CaO-Al₂O₃-SiO₂ kann es infolgedessen bei niedrigen Sintertemperaturen zur Bildung der in Abb. 209 rot eingezeichneten metastabilen Phasen kommen.

Abb. 209: Mögliche metastabile Phasen (rot) im System CaO-Al₂O₃-SiO₂, die sich aufgrund der Verwendung von gut homogenisierten Ausgangsprodukten außerhalb ihres Stabilitätsfeldes bei niedrigen Sintertemperaturen bilden können

Vergleich der Synthesemethoden

Für die Herstellung der Zementphasen wurden folgende Synthesemethoden verwendet:

- Polymer-Precursor-Synthese
- Glycin-Nitrat-Prozess = GNP (Verbrennugssynthese)
- Sol-Gel-Methode

Phasenreine Synthesen bei den niedrigsten Sintertemperaturen waren mittels **Polymer-Precursor-Synthese** möglich. Zusätzlich konnte bei dieser Synthesemethode die Phasenbildung am besten untersucht werden. Ein Grund dafür ist, dass die Ausgangsstoffe bei sehr guter Löslichkeit homogen verteilt in das Polymer eingebaut werden und zum Anderen die Phasen kontrolliert, durch die Zersetzung des Polymers, hergestellt werden können. Voraussetzung für die Polymer-Precursor-Synthese ist jedoch, dass für die Zersetzung des Polymerprecursors genügend Sauerstoff zur Verfügung steht, da es andernfalls zur Bildung von Kohlenstoff und stark reduzierenden Bedingungen kommt.

Generelles Problem des **Glycin-Nitrat-Prozesses** ist, dass die stark exotherme Verbrennungsreaktion besonders bei der Verwendung von SiO₂-Sol schwer kontrollierbar ist. Die dabei entstehenden Temperaturen können nicht genau bestimmt werden, wodurch eine Untersuchung der Bildungsbedingungen der Phasen nur bedingt möglich ist. Ausnahmen sind die Calciumaluminate, da diese nach der Verbrennungsreaktion röntgenamorph sind und die Bildung der kristallinen Phasen durch gezielte Sinterschritte untersucht werden kann. Calciumaluminate die mittels dieser Synthesemethode hergestellt wurden, wiesen zudem die höchsten spezifischen Oberflächen auf und waren infolgedessen bei den kalorimetrischen Untersuchungen am reaktivsten.

Bei der **Sol-Gel-Methode** unter Verwendung der kommerziellen Sole trat das Problem auf, dass aluminium- und siliziumhaltige Phasen erst bei höheren Sintertemperaturen, verglichen mit der Polymer-Precursor-Methode, reinphasig hergestellt werden konnten. Bei niedrigen Sintertemperaturen bildeten sich geringe Gehalte an Nebenphasen. Da bei Phasengemischen eine klare Interpretation der kalorimetrischen Ergebnisse nicht möglich ist wurden die jeweiligen Phasen bei höheren Temperaturen gesintert.

Hydratation der Zementreinphasen:

Nach der Phasenbildung wurden die hydraulischen Reaktivitäten der synthetisierten reinphasigen Verbindungen untersucht. Die bei den niedrigsten möglichen Sintertemperaturen hergestellten Phasen

- CA (röntgenamorph oder orthorhombische Modifikation)
- α`_L-C₂S
- Ca₂(Al_xFe_{2-x})O₅ (0<x<1,2)

zeigten bei den wärmeflusskalorimetrischen Messungen, dass die

- maximalen Wärmeflüsse bis um das 8-fache erhöht sind, die
- Zementphasen vollständig hydratisiert sind und folglich die
- maximal mögliche freiwerdende Wärmemenge erreicht wird.

Ursachen für die wesentlich höheren hydraulischen Reaktivitäten dieser Phasen sind:

- höhere spezifische Oberflächen bzw. kleinere Kristallit-, Korn- und Partikelgrößen,
- höhere Anzahl an Oberflächendefekten (Fehlstellen, Versetzungen, Korngrenzen und Verzwillingungen) und die
- Bildung von metastabilen Phasen (Tab. 72)

Nanoskalige Partikel besitzen eine größere Dichte von Kristallgitterfehlern aufgrund von veränderten atomaren Bindungslängen an der Kristalloberfläche (WEGNER *et al.* 2004). Dass Lösungsreaktionen an Fehlstellen beginnen, wiesen LASAGA & LÜTTGE (2003) nach. Demnach sind nanoskalige Partikel mit hoher Defektdichte besonders reaktiv. Die Folgen dieser höheren hydraulischen Reaktivität konnten in den eigenen Untersuchungen bei der Hydratation von $C_{12}A_7$ mittels Kryo-REM-Aufnahmen sichtbar gemacht werden. So konnten bei $C_{12}A_7$, das bei niedrigeren Sintertemperaturen hergestellt wurde, sehr dichte Hydrathüllen um die $C_{12}A_7$ -Körner infolge des schnelleren Lösungsprozesses beobachtet werden.

Aufgrund der sehr hohen spezifischen Oberflächen der Zementphasen bei niedrigen Sintertemperaturen und der höheren Reaktivität ist der Wasserbedarf zu Beginn der Hydratationsreaktion erhöht. Um die maximale Reaktivität der Zementphasen beurteilen zu können, wurde deshalb für die Experimente der Wassergehalt für die jeweiligen Verbindungen erhöht.

Neben dem Hydrationsgrad haben die verwendeten Synthesemethoden für die jeweiligen Verbindungen auch einen Einfluss auf die Hydratationsprodukte. So ist die Kristallinität der entstehenden lamellaren Hydratationsprodukte bei der Hydratation von hochreaktivem $C_{12}A_7$, C_3A oder den Brownmilleriten um ein Vielfaches erhöht. Ein simultanes Verhalten beobachteten SCHELLER & KUZEL (1974) bei der Hydratation von amorphem " $C_{12}A_7$ ". Zusätzlich hat die schaumartige Partikelmorphologie des $C_{12}A_7$ einen Einfluss auf die Schüttdichte und damit auch auf die Packungsdichte (Porosität) der hydratisierten Phasen. Dadurch sind Hydratphasen mit einem höheren Wassergehalt stabil. Folgende Hydratstufen der lamellaren Phasen 2CaO·Al₂O₃·8±xH₂O konnten dadurch identifiziert und beschrieben werden:

- 2CaO·Al₂O₃·8,2H₂O (d₀₀₁ = 10,87Å)
- 2CaO·Al₂O₃·8,0H₂O (d₀₀₁ = 10,73Å)
- 2CaO·Al₂O₃·7,5H₂O (d₀₀₁ = 10,42Å)

Bei der Hydratation von Brownmilleriten mit verschiedenen Al/Fe-Verhältnissen konnte durch die hohe Reaktivität der Zementphasen gezeigt werden, dass eine Mischkristallbildung der folgenden lamellaren Hydratationsprodukte möglich ist:

[Ca₄(AI,Fe)₂(OH)₁₂]²⁺ [2(OH)·12H₂O]²⁻.

In Abb. 210 ist die Kristallitgröße, spezifische Oberfläche und Porosität neben den Kennwerten der Hydratationsreaktion (max. Wärmefluss und freiwerdende Wärmemenge nach 120h) von C₂S bei verschiedenen Sintertemperaturen aufgetragen. Dadurch wird noch einmal verdeutlicht, wie stark die spezifische Oberfläche und die hydraulische Reaktivität infolge einer höheren Sintertemperatur abnehmen, bzw. die Kristallitgröße zunimmt.

Abb. 210: Spezifische Oberfläche, Porosität, Kristallitgröße, Maximaler Wärmefluss und Freiwerdende Wärmemenge des C₂S, hergestellt mittels Polymer-Precursor-Synthese in Abhängigkeit von der Sintertemperatur

Phasenbildung und hydraulische Reaktivität bezogen auf das PZ- und TZ-System

Aus den kombinierten Ergebnissen der Phasenbildung und der hydraulischen Reaktivität bezogen auf das **Portlandzementsystem** ist somit die Synthese von hydraulisch hochreaktivem α_{L} -C₂S und die von eisenreichen Brownmilleriten bei 700°C möglich, wenn die Ausgangsstoffe in einer ausreichenden Homogenisierung vorliegen. Damit konnte gezeigt werden, dass es möglich ist, bei wesentlich niedrigeren Sintertemperauren kalkärmere Verbindungen herzustellen, die eine ausreichende hydraulische Reaktivität für die Verwendung von Bindemitteln besitzen. Zugleich kann gezeigt werden, dass auch eisen-reichere Brownmillerite eine ausreichend hohe hydraulische Reaktivität besitzen können, die einen Einsatz als Bindemittel zulässt. Damit wird auch der Einsatz von eisenreichen Rohstoffen, die meist günstiger als aluminiumreiche Rohstoffe sind, für die Herstellung solcher Bindemittel denkbar.

Bezogen auf das System der **Calcium Aluminat Zemente** konnte gezeigt werden, dass sich die Hauptphase CA bei 900°C in der metastabilen orthorhombischen Modifikation herstellen lässt, amorphes "CA" sogar bei 700°C. Die Verbindung besitzt bei den niedrigen Sintertemperaturen eine erheblich höhere spez. Oberfläche, die ca. die doppelte hydraulische Reaktivität als das bei 1500°C hergestellte monokline CA zur Folge hat.

Es sollte dabei zusätzlich in Betracht gezogen werden, dass bei realen Systemen Fremdionen mit in die Klinkerphasen eingebaut werden, die meist die Sintertemperatur weiter senken und die hydraulische Reaktivität erhöhen.

Problematik bei der Herstellung von Silikatischen Phasen

In der Arbeit wurde als SiO₂-Precursor ausschließlich kommerziell erhältliches SiO₂-Sol verwendet, um eine konstante Qualität des SiO₂-Precursors zu garantieren. Als SiO₂-Ausgangsprodukt ist ein solches Sol für die Herstellung der Phasen in einem größeren Maßstab zu teuer und nicht verfügbar. Als mögliches alternatives SiO₂-Ausgangsmaterial für die Herstellung der Phasen in größerem Maßstab eignet sich jedoch beispielweise Reisschalenasche; RODRIGUES (2003a; 2003b) synthetisierte damit bereits C₂S bei 600°C.

Problematik bei der Anwendung solch reaktiver Phasen in hydraulischen Systemen

Liegen sehr gut homogenisierte Verbindungen mit der Stöchiometrie der Zementphasen vor, können hochreaktive Zementphasen bei niedrigen Sintertemperaturen hergestellt werden. Werden solch hochreaktive Zementphasen in der Praxis hydratisiert, sollte jedoch die Verwendung von Verflüssigern in Betracht gezogen werden, da die Pulver eine solche hohe Oberfläche besitzen, dass der Wasserbedarf für eine geeignete Verarbeitbarkeit sehr hoch ist und es dadurch trotz einer vollständigen Hydratation nur zu einer geringen Festigkeitsentwicklung kommt. Zusätzliches Problem ist dabei, dass die Pulver eine sehr geringe Schüttdichte besitzen. In weiteren Experimenten sollte deshalb der Einsatz von Verflüssigern und die Verwendung von geringeren W/F-Werten auf die Verarbeitbarkeit und die Festigkeitsentwicklung untersucht werden. Ausgehend von dieser Problematik ist es zu vermuten, dass bei höheren Sintertemperaturen die hydraulische Reaktivität etwas geringer ist jedoch eventuell höhere Festigkeiten erreicht werden könnten. Diese Problematik des erhöhten Wasserbedarfs bei niedrigen Sintertemperaturen wurde bei der Dehydratation von bereits hydratisiertem Zement bereits von SHUI *et al.* (2009) angesprochen.

Zumischung der synthetisierten Phasen zu kommerziellen Zementen

Durch die Zumischung von sehr feinen hochreaktiven Zementphasen ist es möglich den Zementgehalt in Betonen zu verringern und dadurch die Festigkeiten zu erhöhen (LAGERBLAD & VOGT 2009). Es wurde deshalb untersucht, welchen Einfluss die Zumischung der hochreaktiven Phasen auf die Hydratationskinetik von kommerziellen Zementen hat. Die wärmeflusskalorimetrischen Untersuchungen bei der Zumischung von $\alpha_L^-C_2S$ zum PZ zeigten, dass ausgehend von den hydraulischen Eigenschaften es zu keiner gravierenden Beeinflussung der Hydratationsverhaltens kommt und somit ein Einsatz als Bindemittel denkbar ist. Die Hydratationsgrad erkennbar durch die höher freiwerdenden Wärmemengen an. In Zukunft sollten deshalb in diesen Systemen auch Festigkeitsuntersuchungen durchgeführt werden.

Sprühverfahren

Die Charakterisierung der Metallformiate zeigte, dass sich die reinen Alkaliformiate nicht für die Sprühtrocknung eignen, da sie zu hygroskopisch sind oder vor der Zersetzung aufschmelzen. Im Gegensatz dazu sind die reinen Erdalkalimetallformiate sowie die untersuchten Zwischenmetall(II)formiate (Mn-, Fe-, Co-, Ni-, Cu- und Zn-Formiat) aufgrund ihrer Löslichkeit und den hygroskopischen Eigenschaften für die Sprühtrocknung und die anschließende Zersetzung geeignet. Bei der Zersetzung der Alkali- und Erdalkalimetall-formiate entstehen die jeweiligen Carbonate mit Ausnahme des Magnesiumformiats, hier kommt es zur direkten Bildung von MgO. Die zweiwertigen Zwischenmetallformiate (Co-, Ni-, Cu-Formiat) können abhängig vom Sauerstoffgehalt zu den Metallen oder Oxiden zersetzt werden.

Die Herstellung der Zementphasen CA (orthorhombisch) und $\alpha_{L}^{-}C_{2}S$ war mittels des Sprühverfahrens, verglichen mit der Polymer-Precursor-Synthese, bei analog niedrigen Sintertemperaturen möglich. Es kommt aufgrund der niedrigen Sintertemperatur ebenfalls zur Bildung der metastabilen Modifikationen, die ebenso hydraulisch reaktiv sind wie die Pulver aus der Polymer-Precursor-Synthese.

Vorteil bei der Synthese von Pulvern mittels des Sprühverfahrens ist, dass die Partikelgröße der Formiate bei der Sprühtrocknung durch die Konzentration der Ausgangslösung gezielt variiert werden kann. Diese Partikelgröße entspricht nach dem Zersetzen der Formiate der Agglomeratgröße der jeweiligen Metalle, Oxide oder Carbonate (Abb. 211). Zusätzlich kann auf die Korn- bzw. Kristallitgröße des Pulvers, die nach der Zersetzung der Formiat zwischen 15nm und 50nm beträgt, durch einen anschließenden Sinterprozess Einfluss genommen werden.

Abb. 211: Pulver (α_{L} -C₂S), das mittels Sprühverfahren hergestellt wurde; Agglomeratgröße (weiß), beeinflussbar durch die Konzentration der Ausgangslösung; Korngröße (rot), die bei niedrigen Sintertemperaturen in etwas der Kristallitgröße entspricht (ca. 20nm) und durch einen anschließenden Sinterprozess erhöht werden kann

Es konnte somit gezeigt werden, dass eine Herstellung dieser metastabilen Phasen in größerem Maßstab durch die schnelle Trocknung der in der Lösung homogenisierten Metallformiate und deren anschließenden Zersetzung realisierbar ist. Bei der Polymer-Precursor-Synthese und dem GNP ist eine industrielle Nutzung äußerst problematisch, da entweder große Mengen an Polymer zersetzt werden müssen oder die kontrollierte Steuerung der Verbrennungssynthesen schwierig ist. Sprühtrockner sind zudem in industriellen Maßstäben vorhanden und können dafür eingesetzt werden.

Neben der Herstellung von Zementphasen können über dieses Sprühverfahren somit auch andere oxidische oder metallische feinkristalline Phasen hergestellt werden. Die zahlreichen metastabilen Phasen in dem untersuchten Gebiet zeigen zudem, dass sich ausgehend von gut homogenisierten Ausgangsprodukten eine Vielzahl metastabiler Phasen bei niedrigeren Sintertemperaturen herstellen lässt, die die Möglichkeiten eröffnen Materialien mit völlig neuen Eigenschaften herzustellen.

8. Literaturverzeichnis

- ABAKUMOV, A. M., M. G. ROZOVA, A. M. ALEKSEEVA, M. L. KOVBA, E. V. ANTIPOV, O. I. LEBEDEV and G. V. TENDELOO (2003): Synthesis and structure of Sr₂MnGaO_{5+δ} brownmillerites with variable oxygen content. Solid State Sciences 5, 871-882.
- **ABE, T., K. TSUKAMOTO and I. SUNAGAWA (1991):** Nucleation, Growth and Stability of CaAl₂Si₂O₈ Polymorphs. Physics and Chemistry of Minerals 17, 473-484.
- **ABE, T. and I. SUNAGAWA (1995):** Hexagonal CaAl₂Si₂O₈ in a high temperature solution; metastable crystallization and transformation to anorthite. Mineralogical Journal 17(6), 257-281.
- ALONSO, C. and L. FERNANDEZ (2004): Dehydration and Rehydration Processes of Cement Paste Exposed to High Temperature Environments. Journal of Material Science 39, 3015-3024.
- ALTERMATT, U. D. and I. D. BROWN (1987): A Real-Space Computer-Based Symmetry Algebra. Acta Crystallographica A43, 125-130.
- ANDAC, O. and F. P. GLASSER (1994): Polymorphism of Calcium Sulphoaluminate (Ca₄Al₆O₁₆·SO₃) and its Solid Solutions. Advances in Cement Research 6(22), 57-60.
- ANGEL, R. J., M. A. CAPENTER and L. W. FINGER (1990): Structural Variation Associated with Compositional Variation and Order-Disorder Behavior in Anorthite-rich Feldspars. American Mineralogist 75, 150-162.
- **ANGEL, R. J. (1992):** Order-disorder and the high-pressure PĪ-IĪ transition in anorthite. American Mineralogist 77, 923-929.
- ANJOS, P. N. M., E. C. PEREIRA and Y. G. GOBATO (2005): Study of the structure and optical properties of rareearth-doped aluminate particles prepared by an amorphous citrate sol-gel process. Journal of Alloys and Compounds 391, 277-283.
- ANTSYSHKINA, A. S., M. K. GUSEINOVA and M. A. PORAI-KOSHITS (1967): Crystal Structure of Cobalt Formate Dihydrate. Journal of Structural Chemistry 8(2), 321-322.
- **ARUJA, E. (1956):** The Unit Cell of Orthorhombic Pentacalcium Trialuminate, 5CaO·3Al₂O₃. Acta Crystallographica 10, 337-339.
- **ARUJA, E. (1960):** Unit Cell and Space-Group Determination of Tetra- and Di-Calcium Aluminate Hydrates. Acta Crystallographica 12(12), 1018.
- **ARUJA, E. (1961):** The Unit Cell and Space Group of 4CaO·Al₂O₃·19H₂O Polymorphs. Acta Crystallographica 14, 1213-1216.
- BACHIORRINI, A. (1985): Polymorphism of Monocalcium Aluminate. Study by Infrared Spectroscopy. Cement and Concrete Research 15(1), 167-173.
- BARALDI, P. (1979): Thermal Behaviour of Metal Carboxylates: Metal Formates. Spectrochimica Acta 35A, 1003-1007.
- **BARBIER, J. and B. G. Hype (1985):** The Structures of the Polymorphs of Dicalcium Silicate, Ca₂SiO₄. Acta Crystallographica B41, 383-390.
- BATS, J. W. and H. FUESS (1980): Potassium Formate. Acta Crystallographica B36, 1940-1942.
- **BERASTEGUI, P., S. G. ERIKSSON and S. HULL (1999):** A Neutron Diffraction Study of the Temperature Dependence of Ca₂Fe₂O₅. Materials Research Bulletin 34(2), 303-314.
- BERGNA, H. E. (1994): The Colloid Chemistry of Silica. In H. E. BERGNA: The Colloid Chemistry of Silica An Overview. American Chemical Society, Washington, 1-51.
- BLOCK, J. and L. E. DOLHERT (1991): Preparation of Orthorhombic YBa₂Cu₃O₇₋₅ by Spray Drying Formate Solutions. Material Letters 11(10/11/12), 334-338.

- BOSKOVIĆ, S. B., B. Z. MATOVIC, M. D. VLAJIĆ and V. D. KRISITIĆ (2007): Modified Glycine Nitrate Procedure (MGNP) for the Synthesis of SOFC Nanopowders. Ceramics International 33, 89-93.
- BREVAL, E. (1976): C₃A Hydration. Cement and Concrete Research 6(1), 129-138.
- BRINKER, J. and G. W. SCHERER (1990): Sol-gel Science: The Physics and Chemistry of Sol-gel Processing. Academic Press, Boston.
- BRISI, C., M. LUCCO-BORLERA, L. MONTANARO and A. NEGRO (1986): Hydration of 5CaO·3Al₂O₃. Cement and Concrete Research 16, 156-160.
- BRUNAUER, S., P. H. EMMETT and E. TELLER (1938): Adsorption of Gases in Multimolecular Layers. Journal of the American Chemical Society 60(2), 309-319.
- BUKOWSKA-STRZYEWSKA, M. (1965): The Crystal Structure of Copper(II) Formate Dihydrate. Acta Crystallographica 19, 357-362.
- BURGER, N. and H. FUESS (1979): Neutron Diffraction of the Paraelectric and Antiferroelectric Phase of Deuterated Copper Formate Tetrahydrate. Ferroelectrics 22, 847-852.
- CALOS, N. J., C. H. L. KENNARD, A. K. WHITTAKER and R. L. DAVIS (1995): Structure of Calcium Aluminate Sulfate Ca₄Al₆O₁₆S. Journal of Solid State Chemistry 119, 1-7.
- CASTELLOTE, M., C. ALONSO, C. ANDRADE, X. TURRILLAS and J. CAMPO (2004): Composition and Microstructural Changes of Cement Pastes upon Heating, as Studied by Neutron Diffraction. Cement and Concrete Research 34, 1633-1644.
- CATAURO, M. and G. LAUDISIO (1998): Sol-gel Processing and Crystallization of Calcium Silicate Glasses. Journal of Material Science Letters 17, 311-312.
- CHAI, Y. L., D. T. RAY, G. J. CHEN and Y. H. CHANG (2002): Synthesis of LaSr_{0.8}Co_{0.2}Ni_{0.5}O₃₋₅ Thin Films for High Sensitivity Sensing Material Using the Pechini Process. Journal of Alloys and Compounds 333, 147-153.
- CHAN, C. J., W. M. KRIVEN and J. F. YOUNG (1992): *Physical Stabilization of the* $\beta \rightarrow \gamma$ *Transformation in Dicalcium Silicate*. Journal of the American Ceramic Society 75(6), 1621-1627.
- CHANDRAN, R. G., K. C. PATIL and G. T. CANDRAPPA (1995): Combustion Synthesis, Characterization, Sintering and Microstructure of Mullite-Cordierite Composites. Journal of Material Science Letters 14, 548-551.
- CHAPLYGINA, N., I. BABIEVSKAYA and N. IVANOV (1984): Preparation and Physicochemical Properties of *AI(HCOO)*₃·3H₂O. Russian Journal of Inorganic Chemistry 29, 2206-2210.
- CHAPLYGINA, N. M., I. Z. BABIEVSKAYA and N. I. ICANOVA (1985): The Al(HCOO)₃ HCOOH H₂O System at 50°C. Russian Journal of Inorganic Chemistry 30(8), 1218-1219.
- CHATTERJEE, A. K. (1996): High Belite Cements Present Status and Future Technological Options: Part 1. Cement and Concrete Research 26(8), 1213-1225.
- CHEARY, R. W., A. A. COELHO and J. P. CLINE (2004): Fundamental Parameters Line Profile Fitting in Laboratory Diffractometers. Journal of Research of the National Institute of Standards and Technology 109, 1-25.
- CHICK, L. A., L. R. PEDERSON, G. D. MAUPIN, J. L. BATES, L. E. THOMAS and G. J. EXARHOS (1990): Clycine-Nitrate Combustion Synthesis of Oxide Ceramic Powders. Materials Letters 10(1), 6-12.
- CHRISTENSEN, A. N., N. V. Y. SCARLETT, I. C. MADSEN, T. R. JENSEN and J. C. HANSON (2003): Real time study of cement and clinker phases hydration. Dalton, 1529-1536.
- CHRYSAFI, R., T. PERRAKI and G. KAKALI (2007): Sol-gel Preparation of 2CaO·SiO₂. Journal of the European Ceramic Society 27, 1707-1710.
- CLARK, J. R. (1964): Comment on Three Proposed Hydrate Structures. Acta Crystallographica 17, 459-461.

- CLARKE, T. A. and J. M. THOMAS (1969a): Kinetic Studies of the Solid-state Decomposition of Manganese(II) Formate Dihydrate. Part 2: Isothermal and Dynamic Methods of Studying Powdered Samples. Journal of the Chemical Society A, 2230-2232.
- CLARKE, T. A. and J. M. THOMAS (1969b): Kinetic Studies of the Solid-state Decomposition of Manganese(II) Formate Dihydrate. Part 1: Microscopic and Isothermal Gravimetric Measurements on Single Crystals. Journal of the Chemical Society A, 2227-2230.
- COMEL, C. and B. F. MENTZEN (1974): Comparative Study of the Polymorphic Species of Strontium and Calcium Formates. I. Differential Thermal Analysis (DTA). Journal of Solid State Chemistry 9, 210-213.
- CUBEROS, A. J. M., Á. G. D. L. TORRE, M. C. MARTÍN-SEDEÑO, L. MORENO-REAL, M. MERLINI, L. M. ORDÓNEZ and M. A. G. ARANDA (2009): Phase Development in Conventional and Active Belite Cement Pastes by Rietveld Analysis and Chemical Constraints. Cement and Concrete Research 39, 833–842.
- DANIEL, P., I. D. GILLET, P. GILLET, P. F. McMILLAN and P. RICHET (1995): An In-Situ High-Temperature Structural Study of Stable and Metastable CaAl₂Si₂O₈ Polymorphs. Mineralogical Magazine 59, 25-33.
- DAS, S. K., A. MITRA and P. K. D. PODDAR (1996): Thermal Analysis of Hydrated Calcium Aluminates. Journal of Thermal Analysis 47, 765-774.
- DIMITRIJEVIĆ, R., V. DONDUR and A. KREMENOVIĆ (1996): Thermally Induced Phase Transformations of Caexchanged LTA and FAU Zeolite Frameworks: Rietveld Refinement of the Hexagonal CaAI₂Si₂O₈ Diphyllosilicate Structure. Zeolites 16, 294-300.
- DOLLIMORE, D., P. GUPTA and D. V. NOWELL (1979): The Thermal Decomposition of Metal Formates. II. Solid State Thermal Decomposition Studies on Magnesium Formate Dihydrate. Thermochemical Acta 30, 339-350.
- DÓNDONY, I. and P. R. BUSECK (2001): Polysomatism and Modules of Gehlenite Composition and Structure in the Hanic Phase (Ca₅Al₆MgSiO₁₇). Physics and Chemistry of Minerals 28, 428-434.
- Douy, A. and M. GERVAIS (2000): Crystallization of Amorphous Precursors in the Calcia–Alumina System: A Differential Scanning Calorimetry Study. Journal of the American Ceramic Society 83(1), 70-76.
- **DovÁL, M., M. PALOU and S. C. MOJUMDAR (2006):** *Hydration Behaviour of C*₂*S and C*₂*AS Nanomaterials, Synthesized by Sol-Gel Method.* Journal of Thermal Analysis and Calorimetry 86(3), 595-599.
- EDMONDS, R. N. and A. J. MAJUMDAR (1988a): The Hydration of Monocalcium Aluminate at Different Temperatures. Cement and Concrete Research 18, 311-320.
- **EDMONDS, R. N. and A. J. MAJUMDAR (1988b):** The Hydration of 12CaO·7Al₂O₃ at Different Temperatures. Cement and Concrete Research 18, 473-478.
- EL-DIDAMONY, H., A. M. SHARARA, I. M. HELMY and S. A. EL-ALEEM (1996): Hydration Characteristics of β -C₂S in the Presence of some Accelerators. Cement and Concrete Research 26(8), 1179-1187.
- ENDRES-BRUMER, A. and S. HARKEMA (1973): The Crystal Structure of Lithium Formate Monohydrate. Acta Crystallographica B29, 682-685.
- Fu, Y.-P. and C.-H. LIN (2003): Synthesis and microwave characterization of 2(MgO,CaO)-2Al₂O₃-5SiO₂ glass ceramics from the sol-gel process. Journal of Material Science Letters 38, 3081-3084.
- FUJIMORI, H., D. YAHATA, N. YAMAGUCHI, D. IKEDA, K. IOKU and S. GOTO (2001): Synthesis of Calcium Silicate by a Chelate Route with Aqueous Solution of Citric Acid. Journal of the Ceramic Society of Japan 109(5), 391-395.
- **FUKUDA, K. and H. ANDO (2002):** Determination of the Pcmn/lbm2 Phase Boundary at High Temperatures in the System Ca₂Fe₂O₅–Ca₂Al₂O₅. Journal of the American Ceramic Society 85(4), 1300-1302.
- FYLAK, M., J. GÖSKE, W. KACHLER, R. WENDA and H. PÖLLMANN (2006): Cryotransfer Scanning Electron Microscopy for the Study of Cementitious Systems. Microscopy & Analysis 102, 9-12.
- **GABLENZ, S. (2001):** Sprühtrocknung und Sprühhydrolyse Neue Methoden zur Herstellung von Metalloxiden und zur Modifizierung von BaTiO₃. Dissertation, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale).

- GAKI, A., R. CHRYSAFI and G. KAKALI (2007a): Chemical Synthesis of Hydraulic Calcium Aluminate Compounds Using the Pechini Technique. Journal of the European Ceramic Society 27, 1781–1784.
- GAKI, A., T. PERRAKI and G. KAKALI (2007b): Wet Chemical Synthesis of Monocalcium Aluminate. Journal of the European Ceramic Society 27, 1785–1789.
- **GARTNER, E. M., J. F. YOUNG, D. A. DAMIDOT and I. JAWED (2002):** *Hydration of Portland Cement.* In J. BENSTED and P. BARNES: *Structure and Performance of Cements.* Spon Press 2nd Edition, London, 57-113.
- GAWLICKI, M., W. NOCUŃ-WCZELIK and M. PYZALSKI (1984): Studies on the Hydration of Calcium Aluminates. Journal of Thermal Analysis 29, 1005-1008.
- GHOSH, N. N. and P. PRAMANIK (1997a): Synthesis of Mullite Powders Using Precipitated Silica and Tetraethoxy Silane and Aluminium-Formate as Precursor Materials in Aqueous Medium. Bulletin Material Science 20(2), 283-286.
- GHOSH, N. N. and P. PRAMANIK (1997b): Synthesis of Spodumene and Spodumene-Zirconia Composite Powders Using Aqueous Sol-gel Method. Bulletin Material Science 20(2), 247-257.
- GHOSH, N. N. and P. PRAMANIK (1997c): Synthesis of Nano-Sized Ceramic Powders using Precipitated Silica in Aqueous Sol-Gel Method. Nano Structured Materials 8(8), 1041-1045.
- GLASSER, F. P. and L. ZHANG (2001): High-Performance Cement Matrices Based on Calcium Sulfoaluminate-Belite Compositions. Cement and Concrete Research 31, 1881–1886.
- GOKTAS, A. A. and M. C. WEINBERG (1991): Preparation and Crystallization of Sol-Gel Calcia-Alumina Compositions. Journal of the American Ceramic Society 74(5), 1066-1070.
- GÖSKE, J., H. PÖLLMANN and H. G. PANKAU (2001): Hydration of High Alumina Cement Investigations with Low Temperature SEM (Cryo-Technique). Calcium Aluminate Cements, Edingburgh/UK, 189-196.
- Götz-NEUNHOEFFER, F. (1996): Synthese und mineralogische Charakterisierung von Calciumferrathydraten -Speicherminerale für die Anwendung in Reststoffdeponien. Dissertation, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen.
- Götz-NEUNHOEFFER, F. (2006): Modelle zur Kinetik der Hydratation von Calciumaluminatzementen mit Calciumsulfat aus kritsallchemischer und mineralogischer Sicht. Habilitation, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen.
- GÜLGÜN, M. A., O. O. POPOOLA and W. M. KRIVEN (1994): Chemical Synthesis and Characterization of Caclium Aluminate Powders. Journal of the American Ceramic Society 77(2), 531-539.
- GÜNTER, J. R. (1980): The Crystal Structure of Topotactically Dehydrated Copper(II) Formate Tetrahydrate. Journal of Solid State Chemistry 35, 43-49.
- **HALLSTEDT, B. (1990):** Assessment of the CaO-Al₂O₃ System. Journal of the American Ceramic Society 73(1), 15-23.
- HANDOO, S. K., S. AGARWAL and S. K. AGARWAL (2002): *Physicochemical, Mineralogical and Morphological Characteristics of Concrete Exposed to Elevated Temperatures.* Cement and Concrete Research 32, 1009-1018.
- HANIC, F., M. HANDLOVIČ and I. KAPRÁLIK (1980): The Structure of a Quaternary Phase Ca₂₀Al_{32-2X}Mg_xSi_xO₆₈. Acta Crystallographica B36, 2863-2869.
- HERNÁNDEZ, M. T. and M. GONZÁLEZ (2002): Synthesis of resins as alpha-alumina precursors by the Pechini method using microwave and infrared heating. Journal of the European Ceramic Society 22, 2861-2868.
- HOERKNER, W. and H. MUELLER-BUSCHBAUM (1976): Zur Kristallstruktur von CaAl₂O₄. Journal of Inorganic and Nuclear Chemistry 38, 983-984.
- HONG, S.-H. and J. F. YOUNG (1999): Hydration Kinetics and Phase Stability of Dicalcium Silicate Synthesized by the Pechini Process. Journal of the American Ceramic Society 87(7), 1681-1686.

- **HUANG, X.-H. and J. CHANG (2007):** Low-temperature synthesis of nanocrystalline beta-dicalcium silicate with high specific surface area. Journal of Nanoparticle Research 9, 1195-1200.
- HUGHES, D. C., D. JAGLIN, R. KOZŁOWSKI and D. MUCHA (2009): Roman cements Belite cements calcined at low temperature. Cement and Concrete Research 39, 77-89.
- Hwang, C.-C. and T.-Y. Wu (2004): Synthesis and characterization of nanocrystalline ZnO powders by a novel combustion synthesis method. Materials Science and Engineering B111, 197-206.
- Hwang, C.-C., T.-Y. Wu and J. Wan (2004): Design and modify the combustion synthesis method to synthesize ceramic oxide powders. Journal of Material Science 39, 4687-4691.
- ISHIDA, H., K.SASAKI, Y. OKADA and T. MITSUDA (1992a): *Highly Reactive β-Dicalcium Silicate: III, Hydration Behavior at 40-80*°C. Journal of the American Ceramic Society 75(9), 2541-2546.
- **ISHIDA, H., Y. OKADA and T. MITSUDA (1992b):** *Highly Reactive β-Dicalcium Silicate: II, Hydration Behavior at 25°C Followed by* ²⁹*Si Nuclear Magnetic Resonance.* Journal of the American Ceramic Society 75(2), 359-363.
- **ISHIDA, H., K. SASAKI and T. MITSUDA (1992c):** *Highly Reactive* β-Dicalcium Silicate: *I, Hydration Behavior at Room Temperature.* Journal of the American Ceramic Society 75(2), 353-358.
- ISHIDA, H., K. SASAKI, A. MIZUNO, Y. OKADA and T. MITSUDA (1992d): *Highly Reactive β-Dicalcium Silicate: IV, Ball-Milling and Static Hydration at Room Temperature.* Journal of the American Ceramic Society 75(10), 2779-2781.
- **ITO, J. (1976):** *High Temperature Solvent Growth of Anorthite on the Join CaAl*₂Si₂O₈ SiO₂. Contributions to Mineralogy and Petrology 59, 187-194.
- ITO, S., K. IKAI, K. SUZUKI and M. INAGAKI (1975): *Metastable Orthorhombic CaO*·Al₂O₃. Journal of the American Ceramic Society 58(1-2), 79-80.
- **ΙΥΑΤΟΜΙ, Ν. and Υ. ΑΟΚΙ (1992):** *Crystallization behaviour of P2*¹ *and C2 phases of anorthite composition.* Neues Jahrbuch für Mineralogie Monatshefte 4, 177-192.
- JANÁKOVÁ, S., L. SALAVCOVÁ, G. RENAUDIN, Y. FILINCHUK, D. BOYER and P. BOUTINAUD (2007): Preparation and structural investigations of sol-gel derived Eu³⁺-doped CaAl₂O₄. Journal of Physics and Chemistry of Solids 68, 1147-1151.
- JELENIĆ, I. and A. BEZJAK (1982): Electron Diffraction Evidence for Superstructures in α'-Modification of Dicalcium Silicate. Cement and Concrete Research 12, 785-788.
- KACIMI, L., A. SIMON-MASSERON, S. SALEM, A. GHOMARI and Z. DERRICHE (2009): Synthesis of belite cement clinker of high hydraulic reactivity. Cement and Concrete Research 39, 559-565.
- KAKALI, G., R. CHRYSAFI, A. GAKI, T. PERRAKI and A. TSITOURAS (2007): Wet Chemical synthesis of hydraulic compounds and materials. 12th International Congress on the Chemistry of Cement, Montreal/Canada.
- KANSIKAS, J. and K. HERMANSSON (1989): The Structure of Lithium Formate. Acta Crystallographica C45, 187-191.
- **KAPRÁLIK, I. and F. HANIC (1980):** 23-Studies of the System CaO-Al₂O₃-MgO-SiO₂ in Relation of the Quaternary Phase Q. Transactions and Journal of the British Ceramic Society 79, 128-133.
- KAUFMAN, A., C. AFSHAR, M. ROSSI, D. E. ZACHARIAS and J. P. GLUSKER (1993): Metal Ion Coordination in Cobalt Formate Dihydrate. Structural Chemistry 4(3), 191-198.
- KAY, M. I., I. ALMODOVAR and S. F. KAPLAN (1968): Hydrogen Atom Position in Manganous Formate Dihydrate and a Rerefinement of Copper Formate Dihydrate. Acta Crystallographica B24, 1312-1316.
- KERNS, L., M. C. WEINBERG, S. MYERS and R. ASSINK (1998): Al coordination in sol-gel and conventional calcium aluminate. Journal of Non-Crystalline Solids 232-234, 86-92.
- KIM, C. S., K. W. AHN, S. C. RAH and S. G. KIM (2008): Preparation of Silica Nanostructured Spheres by Sol Spray Drying. Drying Technology 26, 260-264.

- KIM, W. J., J. Y. PARK, S. J. OH, Y. S. KIM, G. W. HONG and I. H. KUK (1999): Characteristics and sintering behavior of yttria powders synthesized by the combustion process. Journal of Material Science Letters 18, 411-413.
- **KINGSLEY, J. J. and K. C. PATIL (1988):** A Novel Combustion Process for the Synthesis of Fine Particles α-Alumina and Related Oxide Materials. Materials Letters 6(11/12), 427-432.
- KIRIYAMA, R., H. IBAMOTO and K. MATSUO (1954): The Crystal Structure of Cupric Formate Tetrahydrate, Cu(HCO₂)₂·4H₂O. Acta Crystallographica 7, 482-482.
- KIRKPATRICK, R. J. and I. M. STEELE (1973): Hexagonal CaAl₂SiO₆: A new synthetic phase. American Mineralogist 58, 945-946.
- KLUG, H. P. and L. E. ALEXANDER (1974): X-Ray Diffraction Procedures: For Polycrystalline and Amorphous Materials. John Wiley & Sons, New York.
- KODAS, T. T. and M. J. HAMPDEN-SMITH (1999): Aerosol Processing of Materials. Wiley-VCH, New York.
- KOZUKA, H. (2004): Volume I: Sol-Gel Porcessing. In H. KOZUKA: Handbook of Sol-Gel Science and Technology: Processing Characterization and Applications - Volume I: Sol-Gel Processing. Kluwer Academic Publishers, Norwell.
- **KROGMANN, K. and R. MATTES (1963):** *Die Kristallstruktur von Nickelformiat, Ni(HCOO)*₂·2*H*₂O. Zeitschrift für Kristallographie 118, 291-302.
- Kuzel, H.-J. (1984): Ein leistungsfähiges Wärmeleitungskalorimeter. TIZ-Fachberichte 108(1), 46-50.
- LAGERBLAD, B. and C. VOGT (2009): Fillers and ultrafine fillers for low cement concrete to reduce the carbon footprint. Tagung Bauchemie der GDCh-Fachgruppe Bauchemie, Freiberg/Deutschland, 1-9.
- LANDRY, C. C., N. PAPPE, M. R. MASON, A. W. APBLETT, A. N. TYLER, A. N. MACLNNES and A. R. BARREN (1995): From Minerals to Materials: Synthesis of Alumoxanes from the Reaction of Boehmite with Carboxylic Acids. Journal of Materials Chemistry 5(2), 331-341.
- LASAGA, A. C. and A. LÜTTGE (2003): A model for crystal dissolution. European Journal of Mineralogy 15, 603-615.
- LAZAU, I., C. PACURARIU and Z. ESCEDI (2005): *Tricalcium Aluminate Synthesis by Unconventional Methods*. Romanian International Conference on Chemistry and Chemical Engineering, Bucharest/Romania.
- LEE, F. C. and F. P. GLASSER (1979): Powder diffraction data for compounds in the series Na_X(Ca_{3-X}Na_X)Al₂O₆. Journal of Applied Crystallography 12, 407-410.
- LEE, S.-J., E. A. BENSON and W. M. KRIVEN (1999): Preparation of Portland Cement Components by Poly(vinyl alcohol) Solution Polymerization. Journal of the American Ceramic Society 82(8), 2049-2055.
- LEE, S.-J., C.-H. LEE and W. M. KRIVEN (2000): Synthesis of oxide ceramic powders by polymerized organic inorganic complex route. Journal of Ceramic Processing Research 1(2), 92-95.
- LEE, S.-J. and G.-S. KIM (2002): Characteristics and densification behavior of anorthite powder synthesized by a solution process employing a polymer carrier. Journal of Ceramic Processing Research 3(3), 136-140.
- LEE, S.-J. and M.-H. LEE (2003): Effect of degree of polymerization on synthesis of anorthite-type powder by wetchemical method employing PVA. Journal of Material Science Letters 22, 1291-1293.
- LEE, S.-J. and W. M. KRIVEN (2005): Synthesis and hydration study of Portland cement components prepared by the organic steric entrapment method. Materials and Structures 38, 87-92.
- LENGGORO, I. W., Y. ITOH, N. IIDA and K. OKUYAMA (2003): Control of size and morphology in NiO particles prepared by a low-pressure spray pyrolysis. Materials Research Bulletin 38, 1819-1827.
- LIN, C., M. Y. Z. CHENG, C. ZHANG, Q. MENG and J. LIN (2008): Bluish-White Emission from Radical Carbonyl Impurities in Amorphous Al₂O₃ Prepared via the Pechini-Type Sol-Gel Process. Inorganic Chemistry 47, 49-55.

- LIPTION, A. S., M. D. SMITH, R. D. ADAMS and P. D. ELLIS (2002): *Zn Solid-State and Single-Crystal NMR* Spectroscopy and X-Ray Crystal Structure of Zinc Formate Dihydrate. Journal of American Chemical Society 124(3), 410-414.
- LIU, Y., Z. F. ZHANG, J. HALLORAN and R. M. LAINE (1998): Yttrium Aluminum Garnet Fibers from Metalloorganic Precursors. Journal of the American Ceramic Society 81(3), 629-645.
- LIVAGE, J. (2004): Basic Principles of Sol-Gel Chemistry. In M. A. AEGERTER and M. MENNING: Sol-Gel Technologies for the Producers and Users. Kluwer Academic Publishers, Boston, 4-14.
- LOMER, T. R. (1971): The unit cell and space group of the antiferroelectric phase of copper formate tetrahydrate. Acta Crystallographica B27, 859-860.
- MALARD, C., H. PEZERAT, P. HERPIN and P. TOLEDANO (1982): Structure et stabilité thermique des deux formes du formiate de magnesium dihydraté. Journal of Solid State Chemistry 41, 67-74.
- MARKILA, P. L., S. J. RETTIG and J. TROTTER (1975): Sodium Formiate. Acta Crystallographica B31, 2927-2928.
- MARTÍN-SEDEÑO, M. C., A. J. M. CUBEROS, Á. G. D. L. TORRE, G. ÁLVAREZ-PINAZO, L. M. ORDÓNEZ, M. GATESHKI and M. A. G. ARANDA (2010): Aluminum-rich belite sulfoaluminate cements: Clinkering and early age hydration. Cement and Concrete Research 40, 359-369.
- MARTINEZ, A., I. IZQUIERDO-BARBA and M. VALLET-REGI (2000): *Bioactivity of a CaO-SiO₂ Binary Glasses System*. Chemistry of Materials 12, 3080-3088.
- MASUDA, Y. (1980): Thermal Decompositions of Formates. Part IV. Thermal Dehydration Reaction of Copper(II) Formate Dihydrate. Thermochimica Acta 89, 235-241.
- MASUDA, Y., A. YAHATA and H. OGAWA (1995): Thermal Phase Transition of Cesium Formate. Inorganic Chemistry 34, 3130-3133.
- MASUDA, Y., W. MORITA, A. YAHATA and Y. YUKAWA (1998): Structural studies on the phase transition of rubidium formate. Thermochimica Acta 318, 39-43.
- MATSUI, M., T. WATANABÉ, N. KAMIJO, R. L. LAPP and R. A. JACOBSON (1980): The Structures of Calcium Formate β-Ca(HCOO)₂ and δ-Ca(HCOO)₂, and the Tetragonal Mixed Crystals Ca(HCOO)₂-Sr(HCOO)₂. Acta Crystallographica B36, 1081-1091.
- MEHROTRA, R. C. (1953): Preparation of Aluminium Tri-Soaps. Nature 172, 74.
- MEISEL, T., Z. HALMOS, K. SEYBOLD and E. PUNGOR (1975): The Thermal Decomposition of Alkalimetal Formates. Journal of Thermal Analysis 7, 73-80.
- MENTZEN, B. F. and C. COMEL (1974): Comparative Study of the Polymorphic Species of Strontium and Calcium Formates. II. X-Ray Diffraction. Journal of Solid State Chemistry 9, 214-223.
- MESSING, G. L., S. C. ZHANG and G. V. JAYANTHI (1993): Ceramic Powder Synthesis by Spray Pyrolysis. Journal of the American Ceramic Society 76(11), 2707-2726.
- MIMANI, T. and K. C. PATIL (2001): Solution Combustion Synthesis of Nanoscale Oxides and their Composites. Materials Physics and Mechanics 4, 134-137.
- Монала-Rao, J. K. and M. A. VISWAMITRA (1971): Crystal Structure of Piezoelectric Lithium Formate Monohydrate. Ferroelectrics 2, 209-216.
- MONTEIRO, R. C. C., F. P. GLASSER and E. E. LACHOWSKI (1989): Crystallization of CaO-Al₂O₃-SiO₂ and CaO-MO-Al₂O₃-SiO₂ (M = Mg, Zn) glasses. Journal of Material Science 24, 2839-2844.
- MORSLI, K., Á. G. D. LATORRE, S. STÖBER, A. J. M. CUBEROS, M. ZAHIR and M. A. G. ARANDA (2007): Quantitative Phase Analysis of Laboratory-Active Belite Clinkers by Synchrotron Powder Diffraction. Journal of the American Ceramic Society 90(10), 3205–3212.
- **MOTZET, H. (1998):** Entwicklung eines Sinterverfahrens zur Herstellung von eisenreichem Tonerdezement im Drehrohrofen. Dissertation, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale).

- MÜLLER, K., A. M. HEYNS, K.-J. RANGE and M. ZABEL (1992): The Polymorphism of Alkali Metal Formates, Part 3 A Raman Spectroscopic, X-Ray and Thermoanalytical Study of the Polymorphism of Lithium Formate. Zeitschrift für Naturforschung 47b, 238-246.
- MÜLLER, K., K.-J. RANGE and A. M. HEYNS (1994): Alkalimetallformiate, V Die Kristallstruktur von Natriumformiat-Dihydrat, NaHCO₂·2H₂O. Zeitschrift für Naturforschung 49b, 1179-1182.
- MUMME, W. G., R. J. HILL, G. BUSHNELL-WYE and E. R. SEGNIT (1995): Rietveld crystal structure refinements, crystal chemistry and calculated powder diffraction data for the polymorphs of dicalcium silicate and related phases. Neues Jahrbuch für Mineralogie - Abhandlungen 169(1), 35-68.
- **MUMME, W. G. and P. MELBOURNE (1995):** Crystal structure of tricalcium silicate from a Portland cement clinker and its application to quantitative XRD analysis. Neues Jahrbuch für Mineralogie Monatshefte(4), 145-160.
- NARAYANAN, R. and R. M. LAINE (2000): Synthesis of soluble aluminium carboxylates directly from aluminium hydroxide. Journal of Materials Chemistry 10, 2097-2104.
- **NEGRO, A. and L. STAFFERI (1979):** Über die Hydratation der Calcium-Ferrite und Calciumaluminat-Ferrite. Zement-Kalk-Gips(2), 83-88.
- **NETTLESHIP, I., J. L. SHULL and W. M. KRIVEN (1993):** Chemical Preparation and Phase Stability of Ca₂SiO₄ and Sr₂SiO₄ Powders. Journal of the European Ceramic Society 11, 291-298.
- **NEUBAUER, J. (1992):** Realisierung des Dpeoniekonzeptes der "Inneren Barriere" für Rauchgasreinigungsrückstände aus Müllverbrennungsanlagen. Dissertation, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen.
- **NEUBAUER, J., F. GOETZ-NEUNHOEFFER and I. LINDNER (2003):** Investigation of Hydration Behaviour of Ferrite Phase $C_6A_XF_{3-X}$ with Different AI^{3+} -content in Mixes with C_3A and Gypsum using a Revised Highly Efficient Isothermal Calorimeter. 11th International Congress on the Chemistry of Cement, Durban/South Africa.
- NISHIO, K. and T. TSUCHIYA (2004): Sol-Gel Processing of Thin Films with Metal Salts. In H. KOZUKA: Handbook of Sol-Gel Science and Technology: Processing Characterization and Applications - Volume I: Sol-Gel Processing. Kluwer Academic Publishers, Norwell/USA.
- **ΟΚΑΔΑ, Y., H. ISHIDA, K. SASAKI, J. F. YOUNG and T. MITSUDA (1994):** *Characterization of C-S-H from Highly Reactive* β-*Dicalcium Silicate Prepared from Hillebrandite.* Journal of the American Ceramic Society 75(4), 1313-1318.
- Омики, T., C. M. Каzuyukiitoн, S. Ikeda and H. Fukazawa (2002): Structural Change of Cu(HCOO)₂·4H₂O Associated with the antiferroelectric phase transition. Ferroelectrics 270, 375-380.
- **OSBORN, E. F. and A. MUAN (1960):** The System CaO-Al₂O₃-SiO₂. In E. M. LEVIN, C. M. ROBINS and H. F. MCMURDIE: Phase Diagrams for Ceramists Volume I (1985). The American Ceramic Society, Columbus/Ohio.
- PAGE, C. H., C. H. THOMBARE, R. D. KAMAT and A. K. CHARTTERJEE (1991): Development of Sol-gel Technology for Cement Manufacture. British ceramic: transactions and journal 16, 643-660.
- PALOU, M., M. DOVÁL and M. DRÁBIK (2007): Applications of sol-gel technique to synthesize inorganic binder materials with upgraded hydration characteristics. 12th International Congress on the Chemistry of Cement, Montreal/Canada.
- PATI, R. K., A. B. PANDA and P. PRAMANIK (2002): Preparation of Nanocrystalline Calcium Aluminate Powders. Journal of Materials Synthesis and Processing 10(4), 157-161.
- PECHINI, M. P. (1967): US-Patent. No: 3 330697, USA.
- PENG, T., X. LIU, K. DAI, J. XIAO and H. SONG (2006): Effect of acidity on the glycine-nitrate combustion synthesis of nanocrystalline alumina powder. Materials Research Bulletin 41, 1638-1645.
- **PESHEV, P. and M. PECHEVA (1978):** Preparation of Spinel Lithium Ferrite by Thermal Treatment of Spray-Dried Formates. Material Research Bulletin 13(11), 1167-1174.

- **PETRYKIN, V. and M. KAKIHANA (2004):** Chemistry and Applications of Polymeric Gel Precursors. In S. SAKKA: Handbook of Sol-Gel Science and Technology: Processing Characterisation and Applications - Volume I: Sol-Gel Processing. Kluwer Academic Publishers, Norwell (USA).
- **PHILLIPS, B. and A. MUAN (1959):** Phase Equilibria in the System CaO-Iron Oxide-SiO₂ in Air. Journal of the American Ceramic Society 42(9), 413-423.
- PODWÓRNY, J., T. WALA and J. SAWKÓW (2007): Microstructural Studies on the Q-phase in Alumina Cement Clinker. Solid State Phenomena 130, 225-228.
- POELLMANN, H., N. WINKLER, R. OBERSTE-PADTBERG, R. MEYER, J. GOESKE and B. RAAB (2006): Quantitative mineralogical, chemical and application investigations on some High Alumina Cements from different sources. 28th International Conference on Cement Microscopy, Denver (USA), 150-187.
- PÖLLMANN, H., H. J. KUZEL and H. W. MEYER (1991): Heat-flow calorimetry in cement chemistry Construction and Application of a low cost high sensitive calorimeter. 13th International Conference on Cement Microcopy, Florida/USA, 303-313.
- PÖLLMANN, H. (2001): *Mineralogy and Crystal Chemistry of Calcium Aluminate Cement*. Calcium Aluminate Cements, Edinburgh/UK, IOM Communications Ltd, 79-119.
- **PÖLLMANN, H. (2002):** Composition of cement phases. In J. BENSTED and P. BARNES: Structure and Performance of Cements. Spon Press 2nd Edition, London, 25-56.
- PÖLLMANN, H., N. WINKLER, R. OBERSTE-PADTBERG, R. MEYER, J. GOESKE and B. RAAB (2006): Quantitative mineralogical, chemical and application investigations on some High Alumina Cements from different sources. 28th International Conference on Cement Microscopy, Denver/USA, 150-187.
- Pöllmann, H. (2007): Immobilisierung von Schadstoffen durch Speichermineralbildung. Shaker Verlag, Aachen.
- PÖLLMANN, H., R. WENDA, M. FYLAK, J. GÖSKE and W. KACHLER (2007): Cryotransfer Scanning Electron Microscopy on Cementitious Systems: Applications and Examples. 12th International Congress on the Chemistry of Cement, Montreal/Canada.
- PÖLLMANN, H., R. WENDA, M. FYLAK and J. GÖSKE (2008): Cryo-SEM-FEG Investigations on Calcium Aluminate Cements. Calcium Aluminate Cements, Avignon/France, 123-138.
- Pöllmann, H. (2010): Mineralisation of Wastes and Industrial Residues. Shaker Verlag, Aachen.
- POPESCU, C. D., M. MUNTEAN and J. H. SHARP (2003): Industrial trial production of low energy belite cement. Cement & Concrete Composites 25, 689-693.
- **PUERTAS, F. and F. TRIVINO (1985):** *Examination by Infra-Red Spectroscopy for the Polymorphs of Dicalcium Silicate.* Cement and Concrete Research 15, 127-133.
- **PUERTAS, F., M. T. B. VARELA and S. G. MOLINA (1995):** *Kinetics of the Thermal Decomposition of C*₄A₃*s in Air.* Cement and Concrete Research 25(3), 572-580.
- PUERTAS, F., I. GARCÍA-DÍAZ, A. BARBA, M. F. GAZULLA, M. PALACIOS, M. P. GÓMEZ and S. MARTÍNEZ-RAMÍREZ (2008): Ceramic wastes as alternative raw materials for Portland cement clinker production. Cement & Concrete Composites 30, 798-805.
- **QIJUN, Y., F. XIUJI and S. SHUICHI (1997):** *Hydration characteristics of 11CaO*·7*Al*₂*O*₃·*CaF*₂. 10th International Congress on the Chemistry of Cement, Gothenburg /Sweden, 2ii043-8.
- QUILLIN, K. (2001): Performance of belite-sulfoaluminate cements. Cement and Concrete Research 31, 1341-1349.
- RAHAMAN, M. N. (2007): Ceramic Processing. CRC Press, Boca Raton.
- RASHID, S., P. BARNES, J. BENSTED and X. TURRILLAS (1994): Conversion of calcium aluminate cement hydrates re-examined with synchrotron energy-dispersive diffraction. Journal of Material Science Letters 13, 1232-1234.

- **REDHAMMER, G. J., G. TRIPPELT, G. ROTH and G. AMTHAUER (2004):** Structural variations in the brownmillerite series Ca₂(Fe_{2-x}Al_x)O₅: Single-crystal X-ray diffraction at 25 °C and high-temperature X-ray powder diffraction (25 °C ≤ T ≤ 1000 °C). American Mineralogist 89, 405-420.
- **REGOURD, M. (1964):** Détermination des réseaux de cristaux microscopiques. Application aux différentes formes du silicate tricalcique. Bulletin de la Société Française de Minéralogie et de Cristallographie 87, 241-272.
- **REMY, C., F. GUYOT and M. MADON (1995):** High Pressure Polymorphism of Dicalcium Silicate Ca₂SiO₄. A Transmission Electron Microscopy Study. Physics and Chemistry of Minerals 22, 419-427.
- REYES-LÓPEZ, S. Y., J. SERRATO-RODRÍGUEZ and S. SUGITA-SUEYOSHI (2006): Low-Temperature Formation of Alpha Alumina Powders via Metal Organic Synthesis. Advances in Technology of Materials and Materials Processing 8(1), 55-62.
- **RICHARD, N., N. LEQUEUX and P. BOCH (1995):** Local environment of Al and Ca in CAH₁₀ and C₂AH₈ by X-ray absorption spectroscopy. European Journal of Inorganic Chemistry 32(7/8), 649-662.
- RIES, A., A. Z. SIMÕES, M. CILENSE, M. A. ZAGHETE and J. A. VARELA (2003): Barium strontium titanate powder obtained by polymeric precursor method. Materials Characterization 50, 217-221.
- ROBERTS, M. H. (1957): New Calcium Aluminate Hydrates. Journal of Applied Chemistry 7, 543-546.
- **RODRIGUES, F. A. (2003a):** Low-temperature synthesis of cements from rice hull ash. Cement and Concrete Research 33, 1525-1529.
- **RODRIGUES, F. A. (2003b):** Synthesis of chemically and structurally modified dicalcium silicate. Cement and Concrete Research 33, 823-827.
- **Roy, D. M. and S. O. OYEFESOBI (1977):** Preparation of Very Reactive Ca₂SiO₄ Powder. Journal of the American Ceramic Society 3-4, 178-180.
- **SAALFELD, H. (1975):** *X-Ray Investigation of Single Crystals of* β -Ca₂SiO₄ (*Larnite*) at High Temperatures. American Mineralogist 60, 824-827.
- SARAVANAPAVAN, P. and L. L. HENCH (2003): Mesoporous calcium silicate glasses. I. Synthesis. Journal of Non-Crystalline Solids 318, 1-13.
- **SASAKI, K., H. ISHIDA, Y. OKADA and T. MITSUDA (1993):** *Highly Reactive β-Dicalcium Silicate: V, Influence of Specific Surface Area on Hydration.* Journal of the American Ceramic Society 76(4), 870-874.
- SCHELLER, T. and H. J. KUZEL (1974): Studies on Dicalcium Aluminate Hydrates. International Congress on the Chemistry of Cement, Moscow/Russia.
- SCHMIDT, M. and H. PÖLLMANN (2008): Hydration Behaviour of CAC at Various Temperatures by Isoperibolic Heat Flow Calorimetry Using Acetates. Calcium Aluminate Cements, Avignon/France, 93-108.
- SCHUBERT, U. and N. HÜSING (2000): Synthesis of Inorganic Materials. WILEY-VCH, Weinheim.
- SCHULZE, G. and J. SIMON (2009): Jander/Jahr Maßanalysen. Walter de Gruyter GmbH & Co. KG, Berlin.
- SCRIVENER, K. and H. F. W. TAYLOR (1990): Microstructural Development in Pastes of a Calcium Aluminate Cement. In R. J. MANGAVHAI: Calcium Aluminate Cements. E.&F.N. Spon, London.
- SEVERIN, J. W., G. D. WITH and H. A. M. V. HAL (1988): Low-Temperature Synthesis Route for YBa₂Cu₃O_x Powder. Pysica C152, 159-160.
- SHAW, S., C. M. B. HENDERSON and B. U. KOMANSCHEK (2000): Dehydration/recrystallization mechanisms, energetics, and kinetics of hydrated calcium silicate minerals: an in situ TG/DSC and synchrotron radiation SAX/WAXS study. Chemical Geology 167, 141-159.
- SHUI, Z., D. XUAN, H. WAN and B. CAO (2008): Rehydration reactivity of recycled mortar from concrete waste experienced to thermal treatment. Construction and Building Materials 22, 1723-1729.

- SHUI, Z., D. XUAN, W. CHEN, R. YU and R. ZHANG (2009): Cementitious characteristics of hydrated cement paste subjected to various dehydration temperatures. Construction and Building Materials 23, 531-537.
- SOURIE, A., F. P. GLASSER and E. E. LACHOWSKI (1994): *Microstructural studies on pleochroite*. British Ceramic Transactions 93(2), 41-48.
- **SPLITTGERBER, F. and A. MUELLER (2003):** Inversion of the Cement Hydration as a new method for Identification and/or Recycling? 11th International Congress on the Chemistry of Cement, Durban/South Africa.
- SREEKANTH-CHAKRADHAR, R. P., B. M. NAGABHUSHANA, G. T. CHANDRAPPA, K. P. RAMESH and J. L. RAO (2006): Solution combustion derived nanocrystalline macroporous wollastonite ceramics. Materials Chemistry and Physics 95(1), 169-175.
- STEELE, I. M. and J. J. PLUTH (1990): Crystal structure of synthetic yoshiokaite, a stuffed derivative of the tridymite structure. American Mineralogist 75, 1186-1191.
- STEMMERMANN, P., K. GARBEV, U. SCHWEIKE and G. BÄUCHLE (2007): Belite-Based Binder Production Method. No: WO 2007/017142 A2,
- STEPHAN, D. and P. WILHELM (2004): Synthesis of Pure Cementitious Phases by Sol-Gel Process as Precursor. Zeitschrift für Anorganische und Allgemeine Chemie 630, 1477-1483.
- **STEPHAN, D. and J. PLANK (2007):** *Influence of Foreign Oxides on Lattice Parameters and Reactivity of Pure Cement Phases of OPC.* 12th International Congress on the Chemistry of Cement, Montreal/Canada.
- STIEVANO, L., L. Y. PIAO, I. LOPES, M. MENG, D. COSTA and J.-F. LAMBERT (2007): Glycine and lysine and reactivity on the surface of amorphous silica. European Journal of Mineralogy 19, 321-331.
- STOILOVA, D. (1993): On Solid Solution Formation in the Cu(HCOO)₂ Co(HCOO)₂ H₂O System. Journal of Solid State Chemistry 104, 404-411.
- STOILOVA, D., S. PETER and H. D. LUTZ (1994): Metal Ion Distribution and Solubility of Mn_{1-x}Cu_x(HCOO)₂·2H₂O Mixed Crystals. Zeitschrift für anorganische und allgemeine Chemie 920, 1793-1798.
- **STOILOVA, D. and V. KOLEVA (2000):** *IR study of solid phases formed in the Mg(HCOO)*₂ *Cu(HCOO)*₂ *H*₂O *system.* Journal of Molecular Structure 553, 131-139.
- STOILOVA, D. and V. KOLEVA (2001): Infrared spectroscopic study of mixed copper-cobalt and copper-nickel formate dihydrates (cation distribution in mixed crystals). Spectrochimica Acta A57, 2629-2636.
- STOKES, A. R. and A. J. C. WILSON (1942): A method of calculating the integral breadths of Debye-Scherrer lines. Mathematical Proceedings of the Cambridge Philosophical Society, Cambridge University Press 313-322.
- STOKES, A. R. and A. J. C. WILSON (1944): The Diffraction of X-ray by Distorted Crystal Aggregates I. Proceedings of the Physical Society of London, 174-181.
- STOPIC, S., P. DOVRAK and B. FRIEDRICH (2005): Synthesis of Spherical Nanosized Copper Powder by Ultrasonic Spray Pyrolysis. World of Metallurgy Erzmetalle 58(4), 191-197.
- STOPIC, S., P. DVORAK and B. FRIEDRICH (2006): Synthesis of spherical nanosized silver powder by ultrasonic spray pyrolysis. Metall 60, 299-304.
- SWAINSON, I. P., M. T. DOVE, W. W. SCHMAHL and A. PUTNIS (1992): Neutron Powder Diffraction Study of the Åkermanite-Gehlenite Solid Solution Series. Physics and Chemistry of Minerals 19, 185-195.
- Такéuсні, Y. and G. Donnay (1959): The Crystal Structure of Hexagonal CaAl₂Si₂O₈. Acta Crystallographica 12, 465-470.
- Такéucнi, Y., N. Haga and J. Ito (1973): The crystal structure of monoclinic CaAl₂Si₂O₈: a case of monoclinic structure closely simulating orthorhombic symmetry. Zeitschrift für Kristallographie 137, 380-398.
- TAS, A. C. (1998): Chemical Preparation of the Binary Compounds in the Calcia-Alumina System by Self-Propagating Combustion Synthesis. Journal of the American Ceramic Society 81(11), 2853-2863.

TAYLOR, H. F. W. (1997): Cement Chemistry. Academic Press, London.

- TELLGREN, R., P. S. RAMANUJAM and R. LIMINGA (1974): A Neutron Diffraction Study of Lithium Formate Monohydrate, LiHCOO·H₂O. Ferroelectrics 6, 191-196.
- Touzo, B., A. GLOTER and K. L. SCRIVENER (2001): *Mineralogical Composition of Fondu Revisited*. Calcium Aluminate Cements, Edinburgh/UK, 129-138.
- TURRILLAS, X., P. CONVERT, T. HANSEN., A. H. D. AZA, P. PENA, M. A. RODRIGUEZ and S. D. AZA (2001): The Dehydration of Calcium Aluminate Hydrates Investigated by Neutron Thermodiffractometry. Calcium Aluminate Cements, Edinburgh/UK, 517-531.
- **UBEROI, M. and S. H. RISBUD (1990):** Processing of Amorphous Calcium Aluminate Powders at <900°C. Journal of the American Ceramic Society 73(6), 1768-1770.
- UKRAINCZYK, N., T. MATUSINOVIC, S. KURAJICA, B. ZIMMERMANNB and J. SIPUSIC (2007): Dehydration of a layered double hydroxide-C₂AH₈. Thermochimica Acta 464, 7-15.
- UVAROV, V. and I. POPOV (2007): Metrological characterization of X-ray diffraction methods for determination of crystallite size in nano-scale materials. Materials Characterization 58, 883-891.
- VALLINO, M. (1984): Kinetic Study of the Crystallization of Amorphous Derived CaO·2Al₂O₃. Ceramics International 10(1), 30-32.
- VANIMAN, D. T. and D. L. BISH (1990): Yoshiokaite, a new Ca,Al-silicate mineral from the Moon. American Mineralogist 75, 676-686.
- VIERTELHAUS, M. (2003): Darstellung und Charakterisierung wasserfreier Metall(II)- und Metall(III)formiate. Dissertation, Universität Karlsruhe, Karlsruhe.
- VIERTELHAUS, M., C. E. ANSON and A. K. POWELL (2005): Solvothermal Synthesis and Crystal Structure of One-Dimensional Chains of Anhydrous Zinc and Magnesium Formate. Zeitschrift für Allgemeine Chemie 631, 2365-2370.
- VINCENT, M. G. and J. W. JEFFERY (1978): The Crystal Structure of Pentacalcium Trialuminate, 5CaO·3Al₂O₃. Acta Crystallographica B34, 1422-1428.
- **WALENTA, G. (2009):** Reduction of Cement specific CO₂ emissions using XRD Rietveld. Building and Material Analysis Workshop, Halle/Germany.
- WANG, J. and A. TOMITA (1997): Hydrothermal Reaction of Kaolinite with Calcium Hydroxide and Dissolution of Reaction Products in Hydrochloric Acid. Industrial & Engineering Chemistry Research 36, 5258-5264.
- WANG, Y. and W. Y. THOMSON (1996): Kinetic studies of tricalcium silicate formation from sol-gel precursors. Journal of Material Science 31, 1319-1325.
- **WATANABE, T. and M. MATSUI (1978):** A Redetermination of the Crystal Structures of α-Calcium Formate, α-Strontium Formate and Barium Formate. Acta Crystallographica B34, 2731-2736.
- WEBER, G. (1980): Iron(II) Formate Dihydrate. Acta Crystallographica B36, 3107-3109.
- WEGNER, K., S. E. PRATSINIS and M. KÖHLER (2004): Chemische Technik: Prozesse und Produkte. In R. DITTMEYER, W. KEIM, G. KREYSA and A. OBERHOLZ: Nanomaterialien und Nanotechnologie. WILEY-VCH Verlag GmbH &Co.KGaA Band 2: Neue Technologie, Weinheim.
- WESSELSKY, A. and O. M. JENSEN (2009): Synthesis of pure Portland cement phases. Cement and Concrete Research 39, 973–980.
- WISTUBA, S. P. (2008): Einfluss der Na₂O-Dotierung von Tricalciumaluminat und Portlandzementklinker auf die Wechselwirkung mit Polycarboxylat-basierten Fließmitteln. Dissertation, Technischen Universität München, Münschen.
- WITH, G. D., S. HARKEMA and G. J. V. HUMMEL (1976): Magnesium Formate Dihydrate: a Crystal Structure Redetermination at 130 and 293 K. Acta Crystallographica B32, 1980-1983.

- YANG, Y. J., T. L. WEN, H. TU, D. Q. WANG and J. YANG (2000): Characteristics of lanthanum strontium chromite prepared by glycine nitrate process. Solid State Ionics 135, 475-479.
- YI, H. C., J. Y. GUIGNE, J. J. MOORE, F. D. SCHOWENGERDT, L. A. ROBINSON and A. R. MANERBINO (2002): Preparation of calcium aluminate matrix composites by combustion synthesis. Journal of Materials Science 37, 4537-4543.
- YOSHIOKA, T. (1970a): Metastable Solid Solution with Nepheline-type Structure in the CaO-Al₂O₃-SiO₂ System. Bulletin of the Chemical Society of Japan 43, 1981-1987.
- YOSHIOKA, T. (1970b): A New Crystal with Kalsilite-type Structure on the CaAl₂O₄-SiO₂ Join. Bulletin of the Chemical Society of Japan 43, 2317-2321.
- You, K.-S., J.-W. AHN, K.-H. LEE and S. GOTO (2006): Effects of crystallinity and silica content on the hydration kinetics of 12CaO·7Al₂O₃. Cement & Concrete Composites 28, 119-123.
- ZACHARIASEN, W. H. (1940): The Crystal Structure of Sodium Formate, NaHCO₂. Journal of American Chemical Society 62(5), 1011-1013.
- ZHMOIDIN, G. I. and A. K. CHATTERJEE (1984): Conditions and Mechanism of Interconvertibility of Compounds 12CaO·7Al₂O₃ and 5CaO·3Al₂O₃. Cement and Concrete Research 14, 386-396.

9. Anhang

9.1. Gitterparameter und Reflexlisten

9.1.1. Zementphasen

Tab. 74: Monocalciumaluminat CaO·Al ₂ O ₃ (metastabil))
--	---

		Monocalciumaluminat	CaO·Al ₂ O ₃	(CA)	
a ₀ = 8,737 (2) Å		b ₀ = 8,076 (2) Å		c ₀ = 15,125 (2) Å	
$\alpha = 90^{\circ}$		β = 90°		γ = 90°	
V = 1067,2 (7) Å ³		Z = 12		$D_x = 2,95 \text{ g/cm}^3$	
KS: Orthorhombiscl	า	RG: -		RIR: 0,58	
R ₁₀ = 26,0 (0,0033;	116)	Div. Blende: variabel		$λ = 1,5406 Å (Cu_{Kα1})$	
$2\theta_{EXP}[^{\circ}]$	I/I ₀	d _{EXP} [Å]	h	k	I
16,039	0,9	5,5214	1	1	1
16,039	0,9	5,5214	0	1	2
19,001	1,4	4,6668	1	1	2
20,321	1,6	4,3666	1	0	3
20,321	1,6	4,3666	2	0	0
22,000	5,2	4,0370	0	2	0
25,989	1,0	3,4257	2	1	2
25,989	1,0	3,4257	0	1	4
26,984	1,6	3,3016	2	0	3
26,984	1,6	3,3016	1	2	2
27,962	1,7	3,1883	1	1	4
28,293	1,5	3,1517	0	2	3
29,198	2,4	3,0561	2	1	3
30,107	100,0	2,9658	2	2	0
30,107	100,0	2,9658	1	2	3
30,672	2,3	2,9125	3	0	0
30,672	2,3	2,9125	2	2	1
31,249	7,0	2,8601	3	0	1
31,249	7,0	2,8601	2	0	4
31,249	7,0	2,8601	1	0	5
31,558	2,3	2,8328	0	1	5
32,404	0,8	2,7607	2	2	2
32,404	0,8	2,7607	0	2	4
35,571	61,0	2,5218	3	0	3
35,571	61,0	2,5218	0	0	6
37,333	40,7	2,4068	0	1	6
37,333	40,7	2,4068	3	1	3
37,820	1,0	2,3768	2	1	5
37,820	1,0	2,3768	0	3	3
38,544	3,4	2,3339	3	2	1
38,544	3,4	2,3339	2	2	4
38,544	3,4	2,3339	1	2	5
38,785	2,8	2,3199	1	1	6
39,279	3,5	2,2919	2	3	0
39,279	3,5	2,2919	1	3	3

39,746	2,0	2,2660	2	3	1
40,633	2,4	2,2186	3	1	4
41,121	6,3	2,1933	2	3	2
41,121	6,3	2,1933	0	3	4
41,300	8,6	2,1843	4	0	0
41,300	8,6	2,1843	2	0	6
41,747	1,8	2,1619	4	0	1
41,747	1,8	2,1619	0	0	7
42,233	6,0	2,1381	0	2	6
42,233	6,0	2,1381	3	2	3
42,663	1,5	2,1176	2	2	5
42,854	1,4	2,1086	4	1	0
42,854	1,4	2,1086	2	1	6
43,069	2,5	2,0986	4	0	2
43,069	2,5	2,0986	3	0	5
43,069	2,5	2,0986	1	0	7
43,289	1,9	2,0884	4	1	1
43,289	1,9	2,0884	0	1	7
43,289	1,9	2,0884	2	3	3
44,854	12,1	2,0191	0	4	0
45,203	2,0	2,0043	4	0	3
45,203	2,0	2,0043	3	2	4
45,203	2,0	2,0043	0	4	1
46,278	3,5	1,9602	3	3	1
46,278	3,5	1,9602	2	3	4
46,278	3,5	1,9602	1	3	5
46,872	4,1	1,9368	2	0	7
47,294	30,6	1,9205	2	2	6
47,294	30,6	1,9205	4	2	0
48,871	1,4	1,8621	4	2	2
48,871	1,4	1,8621	3	2	5
48,871	1,4	1,8621	1	2	7
49,474	3,9	1,8408	0	1	8
49,474	3,9	1,8408	3	3	3
49,474	3,9	1,8408	0	3	6
49,706	3,8	1,8328	2	4	0
49,706	3,8	1,8328	1	4	3
50,816	1,3	1,7953	4	2	3
51,248	1,0	1,7812	2	4	2
51,248	1,0	1,7812	0	4	4
51,567	1,0	1,7709	4	0	5
52,168	1,5	1,7519	3	3	4
52,706	1,6	1,7353	3	0	7
52,706	1,6	1,7353	2	0	8
53,985	2,2	1,6972	5	1	1

3

2

4 2

0

1

1

3

3

0

1,6972

1,6972

1,6972

1,6972

1,6805

2,2

2,2

2,2

2,2

1,7

53,985

53,985

53,985

53,985

54,563

7

8 0

6

9

54,563

1,7

54 563	17	1 6805	0	4	5
55 474	5.1	1,0000	4	3	2
55 474	5 1	1,6551	3	3	5
55,474	5,1	1,6551	1	3	5
55 619	3.8	1,0531	5	9	3
55,619	3.8	1,0511	3 4	0	6
55,619	3,0	1,0511	-	0	0
55,019	3,0	1,0511	2	0	5
55,619	ى,o م	1,0011	3	4	1
55,619	3,0	1,0511	2	4	4
55,619	3,8	1,0010	1	4	5
56,714	1,2	1,6218	4	2	5
56,714	1,2	1,6218	3	4	2
56,873	1,0	1,6177	5	1	3
56,873	1,0	1,6177	4	1	6
56,873	1,0	1,6177	1	1	9
57,763	1,3	1,5948	5	2	1
57,763	1,3	1,5948	3	2	7
57,763	1,3	1,5948	2	2	8
58,104	3,0	1,5863	5	0	4
58,104	3,0	1,5863	3	0	8
58,372	3,9	1,5796	1	5	1
58,372	3,9	1,5796	0	5	2
58,514	5,6	1,5761	3	4	3
58,514	5,6	1,5761	0	4	6
59,324	3,5	1,5565	5	1	4
59,324	3,5	1,5565	3	1	8
59,324	3,5	1,5565	3	3	6
59,324	3,5	1,5565	1	5	2
59,700	3,7	1,5476	4	3	4
59,700	3,7	1,5476	0	3	8
60,192	9,5	1,5361	4	0	7
60,534	32,5	1,5283	5	2	3
60,534	32,5	1,5283	4	2	6
60,534	32,5	1,5283	1	2	9
60,534	32,5	1,5283	1	3	8
60,923	9,2	1,5194	3	4	4
61,204	4,3	1,5131	5	0	5
61,204	4,3	1,5131	0	0	10
61,460	2,3	1,5074	2	5	1
62,245	2,1	1,4903	1	0	10
62,471	2,2	1,4855	2	5	2
62,471	2,2	1,4855	0	5	4
62,752	1,7	1,4795	4	3	5
63,871	41,5	1,4562	6	0	0
63,871	41,5	1,4562	3	0	9
63,871	41,5	1,4562	4	4	2
63,871	41,5	1,4562	3	4	5
63,871	41,5	1,4562	1	4	7
65,354	0,2	1,4267	6	1	1

8

	Calciumal	uminiumdisilikat CaO	·Al ₂ O ₃ ·2SiC	0 ₂ (CAS ₂)		
a ₀ = 10,214 (2) Å	b	₀ = 17,730 (2) Å		c ₀ = 14,976 (2) Å		
α = 90°	β	= 91,97 (2)°		γ = 90°		
V = 2710,4 (9) Å ³	Z	= 16		$D_x = 2,73 \text{ g/cm}^3$		
KS: Monoklin	F	RG: C2		RIR: 0,38		
F ₁₀ = 10,5 (0,0100; 95)	D	iv. Blende: variabel		λ = 1,5406 Å (Cu _{Kα1})		
2θ _{ΕΧΡ} [°]	I/I ₀	d _{EXP} [Å]	h	k	I	
11,842	4,9	7,4674	0	0	2	
11,842	4,9	7,4674	1	1	1	
20,018	34,2	4,4320	0	4	0	
20,018	34,2	4,4320	2	2	0	
23,309	100,0	3,8131	0	4	2	
23,774	58,1	3,7397	0	0	4	
26,608	25,1	3,3474	2	4	0	
26,608	25,1	3,3474	1	5	0	
26,608	25,1	3,3474	3	1	0	
26,883	11,1	3,3138	0	4	3	
27,126	10,2	3,2847	3	-1	-1	
27,126	10,2	3,2847	2	-4	-1	
27,316	8,6	3,2622	2	2	3	
27,523	5,7	3,2381	3	1	1	
31,274	83,5	2,8579	0	4	4	
31,274	83,5	2,8579	1	-1	-5	
35,036	88,3	2,5591	2	6	0	
35,036	88,3	2,5591	1	3	5	
35,449	0,0	2,5302	-4	0	1	
35,449	0,0	2,5302	2	-6	-1	
35,559	1,9	2,5226	2	-4	-4	
35,664	2,3	2,5155	2	-2	-5	
35,664	2,3	2,5155	2	6	1	
36,530	6,9	2,4578	1	7	0	
36,910	5,4	2,4333	4	-2	-1	
36,910	5,4	2,4333	2	-6	-2	
36,910	5,4	2,4333	3	-5	-1	
37,116	5,7	2,4203	1	-1	-6	
37,733	2,6	2,3821	1	1	6	
38,262	3,2	2,3504	3	-3	-4	
38,262	3,2	2,3504	3	-5	-2	
38,262	3,2	2,3504	3	3	4	
39.641	1.4	2.2718	-2	0	6	
39.717	5.3	2.2676	3	-1	-5	
39.899	2.9	2.2577	1	-3	-6	
40,147	3,7	2,2443	1	-5	-5	
40,674	3,7	2,2164	0	8	0	
41,357	4,3	2,1814	3	5	3	
41,534	10,4	2,1725	4	2	3	
41.534	10.4	2.1725	0	- 4	6	
42,343	6.6	2.1329	3	-3	-5	
42,502	20,6	2,1252	0	8	2	

Tab. 75: Calciumaluminiumdisilikat CaO·Al₂O₃·2SiO₂ (metastabil)

44,532

10,8

44,606	2,4	2,0297	3	5	4
44,893	6,7	2,0174	2	-8	-1
47,007	3,8	1,9315	4	6	0
47,676	7,5	1,9060	5	3	1
47,676	7,5	1,9060	0	6	6
47,676	7,5	1,9060	0	8	4
47,676	7,5	1,9060	1	-7	-5
48,630	26,0	1,8708	0	0	8
51,109	11,9	1,7857	4	6	3
51,174	8,1	1,7836	2	4	7
54,766	1,3	1,6748	2	10	0
55,216	2,9	1,6622	2	10	1
56,220	10,2	1,6349	0	2	9
57,839	3,5	1,5929	3	5	7
57,839	3,5	1,5929	2	-10	-3
57,839	3,5	1,5929	6	0	3
57,979	12,1	1,5894	5	7	0
57,979	12,1	1,5894	1	-3	-9
57,979	12,1	1,5894	1	-11	-1
57,979	12,1	1,5894	6	-4	-1
60,310	2,9	1,5334	1	-9	-6
60,310	2,9	1,5334	-4	0	8
60,560	4,2	1,5277	6	-4	-3
60,792	5,3	1,5224	2	-6	-8
60,792	5,3	1,5224	2	10	4
61,267	10,1	1,5117	4	-2	-8
61,419	8,8	1,5084	4	6	6
62,842	25,2	1,4776	0	12	0
62,042	25,2	1,4770	5	-7	-4
62,992	10,9	1,4744	0	0	0
62,992	10,9	1,4744	4	-0	-5 0
64,021	6,0 4 E	1,4505	3	1	0
64,021	4,5	1,4532	<i>'</i>	10	0
65 025	10, 1 5 1	1,4192	2	12	0
65.025	5,1	1,4150	1	0	0
66.036	3, I 3, 7	1,4100	-4 2	12	9
67 402	3,7	1,3900	2	-12	-2
69 447	4,7	1,3003	5	1	5 8
69,447	10,9	1,3323	_1	1	0
69,678	4,5	1,3484	7	5	0
73 328	3.8	1,0404	7	1	5
73 328	3.8	1,2000	2	2	11
73,520	10.5	1,2300	2	12	0
74 086	10,5	1 2787	- 2	۲ <u>د</u> ۵	a
74,205	4 7	1 2769	4	-6	-9
76.817	3.9	1,2399	5	3	9
76.817	3.9	1,2399	7	7	2
76.817	3.9	1.2399	1	-1	- 12
· - , - · ·	-,-	.,	•	•	

0

hang					169
77,672	3,7	1,2284	2	12	6
77,854	2,8	1,2259	8	4	0
77,854	2,8	1,2259	8	0	3
77,854	2,8	1,2259	6	-1	-1
77,854	2,8	1,2259	2	-14	-1
77,854	2,8	1,2259	6	2	8

	U	0	,	,			
Precursor	T [°C]	RG	a [Å]	b [Å]	c [Å]	V [ų]	L _{VOL} [nm]
Ca ₂ FeO ₅	700	l2mb	5,423 (2)	14,767 (3)	5,594 (2)	448,0 (6)	38
Ca_2FeO_5	800	Pnma	5,423 (1)	14,771 (2)	5,592 (1)	447,9 (3)	69
Ca_2FeO_5	900	Pnma	5,419 (1)	14,788 (2)	5,587 (1)	447,7 (3)	71
Ca_2FeO_5	1000	Pnma	5,420 (1)	14,790 (2)	5,586 (1)	447,8 (3)	76
Ca ₂ FeO ₅	1100	Pnma	5,421 (1)	14,778 (2)	5,590 (1)	447,8 (3)	86
Ca_2FeO_5	1200	Pnma	5,424 (1)	14,765 (2)	5,594 (1)	448,0 (3)	119
$Ca_4Fe_{1,8}AI_{0,2}O_5$	700	l2mb	5,410 (2)	14,706 (3)	5,596 (2)	445,2 (6)	33
$Ca_4Fe_{1,8}AI_{0,2}O_5$	800	l2mb	5,409 (2)	14,717 (3)	5,593 (2)	445,2 (6)	52
$Ca_4Fe_{1,8}AI_{0,2}O_5$	900	Pnma	5,405 (1)	14,738 (2)	5,583 (1)	444,7 (3)	64
$Ca_4Fe_{1,8}AI_{0,2}O_5$	1000	Pnma	5,406 (1)	14,733 (2)	5,585 (1)	444,8 (3)	73
$Ca_4Fe_{1,8}AI_{0,2}O_5$	1100	Pnma	5,407 (1)	14,726 (2)	5,586 (1)	444,8 (3)	78
$Ca_4Fe_{1,8}AI_{0,2}O_5$	1200	Pnma	5,408 (1)	14,715 (2)	5,590 (1)	444,9 (3)	92
Ca ₄ Fe _{1,6} Al _{0,4} O ₅	700	l2mb	5,398 (2)	14,662 (3)	5,592 (2)	442,5 (6)	27
Ca ₄ Fe _{1,6} Al _{0,4} O ₅	800	l2mb	5,393 (2)	14,648 (3)	5,592 (2)	441,8 (6)	42
Ca ₄ Fe _{1,6} Al _{0,4} O ₅	900	l2mb	5,392 (2)	14,669 (3)	5,585 (2)	441,7 (6)	59
Ca ₄ Fe _{1,6} Al _{0,4} O ₅	1000	Pnma	5,391 (1)	14,681 (2)	5,580 (1)	441,7 (3)	68
Ca4Fe _{1,6} Al _{0,4} O ₅	1100	Pnma	5,391 (1)	14,683 (2)	5,578 (1)	441,5 (3)	70
Ca ₄ Fe _{1,6} Al _{0,4} O ₅	1200	Pnma	5,393 (1)	14,667 (2)	5,584 (1)	441,7 (3)	80
Ca ₄ Fe _{1,4} Al _{0,6} O ₅	700	l2mb	5,388 (2)	14,643 (3)	5,586 (2)	440,7 (6)	21
Ca ₄ Fe _{1,4} Al _{0,6} O ₅	800	l2mb	5,375 (2)	14,588 (3)	5,584 (2)	437,8 (6)	28
Ca4Fe1,4Al0,6O5	900	l2mb	5,375 (2)	14,592 (3)	5,586 (2)	438,1 (6)	50
Ca ₄ Fe _{1,4} Al _{0,6} O ₅	1000	l2mb	5,375 (1)	14,622 (2)	5,579 (1)	438,5 (3)	60
Ca ₄ Fe _{1,4} Al _{0,6} O ₅	1100	l2mb	5,372 (1)	14,631 (2)	5,574 (1)	438,1 (3)	63
$Ca_4Fe_{1,4}AI_{0,6}O_5$	1200	l2mb	5,374 (1)	14,618 (2)	5,579 (1)	438,2 (3)	67
Ca ₄ Fe _{1,2} Al _{0,8} O ₅	700	l2mb	5,388 (2)	14,653 (3)	5,587 (2)	441,0 (6)	18
Ca ₄ Fe _{1,2} Al _{0,8} O ₅	800	l2mb	5,370 (2)	14,600 (3)	5,575 (2)	437,1 (6)	21
Ca ₄ Fe _{1,2} Al _{0,8} O ₅	900	l2mb	5,360 (2)	14,557 (3)	5,570 (2)	434,6 (6)	25
Ca ₄ Fe _{1,2} Al _{0,8} O ₅	1000	l2mb	5,358 (1)	14,569 (2)	5,570 (1)	434,8 (3)	58
Ca4Fe1,2Al0,8O5	1100	l2mb	5,357 (1)	14,582 (2)	5,564 (1)	434,6 (3)	62
Ca4Fe _{1,2} Al _{0,8} O ₅	1200	l2mb	5,357 (1)	14,573 (2)	5,567 (1)	434,6 (3)	66
Ca ₄ Fe _{1,0} Al _{1,0} O ₅	700	l2mb	5,387 (2)	14,657 (3)	5,590 (2)	441,4 (6)	11
Ca ₄ Fe _{1,0} Al _{1,0} O ₅	800	l2mb	5,364 (2)	14,599 (3)	5,574 (2)	436,5 (6)	15
Ca ₄ Fe _{1,0} Al _{1,0} O ₅	900	l2mb	5,347 (2)	14,523 (3)	5,553 (2)	431,2 (6)	25
Ca ₄ Fe _{1,0} Al _{1,0} O ₅	1000	l2mb	5,340 (1)	14,530 (2)	5,554 (1)	431,0 (3)	55
Ca ₄ Fe _{1,0} Al _{1,0} O ₅	1100	l2mb	5,339 (1)	14,543 (2)	5,549 (1)	430,8 (3)	60
Ca ₄ Fe _{1,0} Al _{1,0} O ₅	1200	l2mb	5,339 (1)	14,532 (2)	5,551 (1)	430,7 (3)	66
Ca ₄ Fe _{0,8} Al _{1,2} O ₅	700	l2mb	5,410 (2)	14,707 (3)	5,594 (2)	445,1 (6)	11
Ca ₄ Fe _{0,8} Al _{1,2} O ₅	800	l2mb	5,357 (2)	14,592 (3)	5,572 (2)	435,5 (6)	11
Ca ₄ Fe _{0,8} Al _{1,2} O ₅	900	l2mb	5,344 (2)	14,522 (3)	5,550 (2)	430,7 (6)	13
Ca ₄ Fe _{0,8} Al _{1,2} O ₅	1000	l2mb	5,320 (1)	14,494 (2)	5,532 (1)	426,6 (3)	51
Ca ₄ Fe _{0,8} Al _{1,2} O ₅	1100	l2mb	5,319 (1)	14,516 (2)	5,527 (1)	426,8 (3)	58
$Ca_4Fe_{0,8}AI_{1,2}O_5$	1200	l2mb	5,319 (1)	14,507 (2)	5,528 (1)	426,6 (3)	62

Tab. 76: Verfeinerte Gitterkonstanten der Brownmillerite Ca₂(Al_xFe_{2-x})O₅ in Abhängigkeit von der Sintertemperatur und dem Aluminiumgehalt x; Herstellung mittels Polymer-Precursor-Synthese

		Co-Pleochroit Ca	20Al26C03Si3O	68		
a₀ = 27.621 (2) Å		$b_0 = 10.804$ (2) Å		$c_0 = 5.120(1)$ Å		
$a = 90^{\circ}$		$\beta = 90^{\circ}$		$v = 90^{\circ}$	$v = 90^{\circ}$	
$V = 1527.9(10) \text{ Å}^3$		7 = 1		$D_{x} = 3.10 \text{ g/cm}^{3}$		
KS: Orthorhombisch		RG [·] Pmmn		BIR: 0.38		
$R_{30} = 242.1 \ (0.0021:59)$		Div. Blende: variabel		λ=1,54056 Å (Cuκα1)		
2θ _{EXP} [°]	I/Io	dexp [Å]	h	k		
16 303	1.2	5 4030	0	2	0	
17,618	1,2	5,4050	2	2	0	
10,265	1,1 3 /	4 6035	6	0	0	
21 475	5, 1 6 8	4,0000	3	1	1	
23,475	8.1	3 7550	5	0	1	
23,075	0,1 14 7	3,7350	0	2	1	
23,027	14,7 14 Q	3 7065	7	1	0	
24,146	4 2	3 6829	, 1	2	1	
25 305	-,2 2.5	3,5025	6	2	0	
26,560	2,5	3 3534	3	2	0	
20,300	3.8	3 2633	9 6	1	1	
28,536	3,0	3 1254	7	0	1	
28,030	30.2	3 0838	5	2	1	
20,930	2.0	3,0030	7	2	1	
29,754	2,9 13 /	2 9520	γ 0	1	0	
30,252	5.8	2,9520	9	3	1	
30,318	5,6	2,9407	0	3	1	
31,014	100,0	2,0012	2	ა ი	1	
31,070	10,0	2,0052	3	3	1	
32,320	00,2	2,7072	0	1	1	
33,033	F1,9	2,7090	4	ა ი	1	
33,060	0,1	2,7055	7	2	1	
33,139	1,7	2,7011	0	4	0	
33,071	1,1	2,0597	<i>/</i>	3	0	
33,765	0,9	2,0510	2	4	0	
34,040	0,4	2,0317	9	0	1	
34,477	2,4	2,5995	5	3	1	
35,024	2,2	2,5599	0	0	2	
35,058	1,5	2,5575	9	1	1	
35,176	2,0	2,5492		0	2	
35,637	2,4	2,5173	2	0	2	
35,005	3,6	2,5154	4	4	0	
30,175	0,9	2,4811		1	2	
30,175	0,9	2,4811	6	3	1	
36,385	1,3	2,4672	3	0	2	
36,510	12,1	2,4591	10	2	0	
30,627	15,6	2,4515	2	1	2	
36,715	1,1	2,4459	11	1	U	
36,945	7,0	2,4311	10	U	1	
37,369	8,9	2,4045	3	1	2	
37,437	2,9	2,4003	4	U	2	
37,620	7,4	2,3891	U	4	1	
37,905	0,5	2,3/1/	10	1	1	

Tab. 77: Co-Pleochroit, Calciumaluminiumcobaltsilikat Ca20Al26Co3Si3O68
38,002	11,1	2,3659	9	2	1
38,096	14,9	2,3603	7	3	1
38,624	13,2	2,3292	6	4	0
38,742	8,1	2,3224	5	0	2
38,896	1,4	2,3136	0	2	2
38,896	1,4	2,3136	3	4	1
39,038	3,8	2,3055	1	2	2
39,459	1,3	2,2818	2	2	2
39,653	1,3	2,2711	5	1	2
39,915	2,5	2,2568	4	4	1
40,161	2,5	2,2436	3	2	2
40,213	7,1	2,2408	8	3	1
40,657	2,2	2,2173	10	2	1
41,111	2,8	2,1939	4	2	2
41,111	2,8	2,1939	5	4	1
41,171	2,2	2,1908	6	1	2
42,317	5,4	2,1341	5	2	2
42,460	1,5	2,1273	8	4	0
42,602	1,6	2,1205	6	4	1
42,663	3,7	2,1176	12	2	0
42,898	5,9	2,1065	7	1	2
43,468	4,2	2,0802	11	2	1
43,468	4,2	2,0802	1	3	2
43,759	1,9	2,0670	6	2	2
43,852	3,1	2,0629	2	3	2
44,289	4,0	2,0435	7	4	1
44,487	19,3	2,0349	3	3	2
44,831	7,9	2,0201	8	1	2
44,952	3,4	2,0149	10	3	1
45,963	6,6	1,9729	14	0	0
46,641	3,9	1,9458	3	5	1
46,938	5,0	1,9342	9	1	2
47,021	27,3	1,9310	13	1	1
47,021	27,3	1,9310	10	4	0
47,966	4,1	1,8951	7	5	0
48,236	2,6	1,8851	9	4	1
48,437	1,6	1,8778	10	0	2
48,566	1,0	1,8731	5	5	1
48,978	2,4	1,8583	0	4	2
49,122	9,0	1,8532	14	2	0
49,216	0,9	1,8499	10	1	2
49,784	6,4	1,8301	13	3	0
50,265	5,8	1,8137	12	3	1
50,467	0,4	1,8069	10	4	1
50,659	23,3	1,8005	0	6	0
50,848	8,9	1,7943	4	4	2
50,895	4,6	1,7927	11	0	2
51,365	3,1	1,7774	7	5	1
51,484	25,9	1,7736	10	2	2
51,692	7,2	1,7669	9	5	0

51,879	23,0	1,7610	5	4	2
52,468	3,2	1,7426	14	2	1
52,468	3,2	1,7426	4	6	0
52,867	5,4	1,7304	11	4	1
53,002	5,7	1,7263	16	0	0
53,057	10,0	1,7246	8	5	1
53,106	5,5	1,7232	13	3	1
53,106	5,5	1,7232	6	4	2
53,490	2,2	1,7117	12	0	2
53,661	3,4	1,7066	0	0	3
53,844	4,7	1,7013	11	2	2
53,930	2,4	1,6988	0	6	1
54,043	5,0	1,6955	1	6	1
54,225	4,8	1,6902	12	1	2
54,649	0,9	1,6781	3	0	3
54,691	8,5	1,6769	6	6	0
56,049	8,6	1,6395	15	3	0
56,049	8,6	1,6395	2	5	2
56,049	8,6	1,6395	14	3	1
56,115	5,2	1,6377	4	1	3
56,115	5,2	1,6377	11	5	0
56,219	1,5	1,6349	13	0	2
56,366	5,3	1,6310	5	0	3
56,498	2,1	1,6275	0	2	3
56,579	3,5	1,6253	3	5	2
59,133	4,6	1,5611	5	2	3
59,169	0,7	1,5602	7	6	1
59,588	5,2	1,5503	7	1	3
59,654	8,6	1,5487	17	0	1
59,766	5,9	1,5461	12	3	2
60,265	5,6	1,5345	6	2	3
60,265	5,6	1,5345	18	0	0
60,458	1,1	1,5300	8	0	3
60,801	1,1	1,5222	3	7	0
60,849	13,8	1,5211	3	3	3
61,125	3,9	1,5149	8	1	3
61,125	3,9	1,5149	13	5	0
61,559	10,8	1,5053	4	3	3
61,743	1,6	1,5012	14	2	2
62,187	2,3	1,4916	9	0	3
62,303	6,6	1,4891	13	3	2
62,303	6,6	1,4891	16	3	1
62,303	6,6	1,4891	17	2	1
62,463	3,1	1,4856	5	3	3
62,682	18,2	1,4810	17	3	0
62,682	18,2	1,4810	15	1	2
62,840	1,8	1,4776	9	1	3
62,840	1,8	1,4776	0	7	1
63,071	3,9	1,4728	0	6	2
63,575	1,8	1,4623	6	3	3

76,225

3,4

9,2

1,2502

1,2480

4

13

1 3

63,733	3,4	1,4591	3	7	1
63,954	3,0	1,4546	16	4	0
63,954	3,0	1,4546	3	6	2
63,954	3,0	1,4546	9	5	2
64,084	6,1	1,4519	10	0	3
64,536	3,2	1,4428	0	4	3
64,642	5,2	1,4407	15	2	2
64,642	5,2	1,4407	1	4	3
64,642	5,2	1,4407	4	6	2
64,813	7,5	1,4373	7	7	0
64,858	4,3	1,4365	7	3	3
65,004	2,3	1,4336	14	3	2
65,119	2,3	1,4313	16	0	2
65,544	6,9	1,4231	5	6	2
65,544	6,9	1,4231	17	3	1
66,109	7,9	1,4123	4	4	3
66,328	3,0	1,4081	8	3	3
66,393	3,7	1,4069	11	6	1
66,393	3,7	1,4069	6	7	1
66,617	4,0	1,4027	6	6	2
66,857	6,0	1,3983	19	0	1
66,983	0,6	1,3959	5	4	3
67,641	4,0	1,3840	7	7	1
67,822	2,6	1,3807	15	3	2
67,861	2,1	1,3800	7	6	2
68,667	2,2	1,3658	11	2	3
68,962	8,9	1,3606	17	1	2
68,962	8,9	1,3606	18	3	1
68,962	8,9	1,3606	12	1	3
69,092	13,4	1,3584	8	7	1
69,554	5,4	1,3505	0	8	0
69,698	2,8	1,3481	19	3	0
69,788	1,7	1,3465	10	3	3
70,569	3,5	1,3335	20	0	1
70,569	3,5	1,3335	2	5	3
70,801	6,5	1,3297	17	2	2
71,667	5,4	1,3158	2	7	2
71,727	1,6	1,3148	4	5	3
72,169	3,1	1,3079	15	4	2
72,401	6,2	1,3042	16	5	1
72,401	6,2	1,3042	1	8	1
72,942	4,4	1,2959	6	8	0
73,206	3,2	1,2919	13	2	3
74,086	5,2	1,2787	1	0	4
74,086	5,2	1,2787	18	2	2
74,086	5,2	1,2787	10	4	3
74,365	1,8	1,2746	2	0	4
75,949	5,2	1,2519	15	0	3

Anhang								
76,361	5,7	1,2461	16	6	0			
76,494	1,6	1,2443	1	2	4			
78,789	7,7	1,2137	16	0	3			

9.1.2. Hydratationsprodukte

Calciumaluminiumhydroxid-Aluminathydrat 2CaO·Al ₂ O ₃ ·8,2H ₂ O								
$a_0 = 5,775$ (2) Å $b_0 = 5,775$ (2) Å $c_0 = 65,274$ (2) Å								
$\alpha = 90^{\circ}$		β = 90°	γ = 120°					
V = 1885,3 (13) Å ³		Z = 6		Dx = 1,91 g/cm3				
KS: Hexagonal		RG: /		RIR: 0,38				
F ₁₀ = 14,9 (0,0103;	65)	Div. Blende: variabel		λ = 1,5406 Å (Cu _K	α1)			
2θ _{EXP} [°]	I/I ₀	d _{EXP} [Å]	h	k	Ι			
8,147	61,2	10,8443	0	0	6			
16,288	89,5	5,4375	0	0	12			
22,383	3,4	3,9688	0	1	10			
24,516	50,5	3,6282	0	0	18			
31,068	91,8	2,8763	1	1	2			
31,434	14,6	2,8436	1	1	4			
32,895	2,1	2,7206	0	0	24			
33,907	75,7	2,6417	1	1	10			
33,907	75,7	2,6417	0	1	21			
36,002	50,4	2,4926	0	2	2			
36,329	27,7	2,4710	0	2	4			
36,567	38,9	2,4554	1	1	14			
36,567	38,9	2,4554	0	2	5			
38,033	56,9	2,3640	0	2	9			
43,707	37,6	2,0694	1	1	22			
49,823	41,7	1,8288	1	2	9			
55,063	100,0	1,6665	0	3	1			
55,063	100,0	1,6665	0	3	0			
55,732	45,7	1,6480	0	3	6			
57,786	35,8	1,5943	1	2	22			
57,786	35,8	1,5943	0	3	12			
64,577	47,8	1,4420	2	2	2			
67,898	10,0	1,3793	1	3	5			
67,898	10,0	1,3793	2	2	14			
68,703	20,3	1,3651	0	1	46			

Tab. 78: Calciumaluminiumhydroxid-Aluminathydrat 2CaO·Al₂O₃·8,2H₂O

Calciumaluminiumhydroxid-Aluminathydrat 2CaO·Al ₂ O ₃ ·8H ₂ O								
a ₀ = 5,787 (2) Å		b ₀ = 5,787 (2) Å		c ₀ = 64,609 (2) Å				
α = 90°		β = 90°		γ = 90°				
V = 1874,1 (13) Å ³		Z = 6		$D_x = 1,90 \text{ g/cm}^3$				
KS: Hexagonal		RG:-		RIR: 0,38				
F ₃₀ = 31,18 (0,0130	; 74)	Div. Blende: variabel		λ = 1,5406 Å (Cu _{Kα1})			
2θ _{ΕΧΡ} [°]	I/I ₀	d _{EXP} [Å]	h	k	I			
8,229	100,0	10,7355	0	0	6			
16,463	68,5	5,3804	0	0	12			
17,757	0,2	4,9909	0	1	1			
19,532	0,8	4,5412	0	1	6			
20,171	0,9	4,3987	0	1	7			
20,850	1,9	4,2570	0	1	8			
21,625	3,3	4,1062	0	1	9			
22,452	4,4	3,9568	0	1	10			
23,325	3,6	3,8106	0	1	11			
24,264	1,9	3,6653	0	1	12			
24,788	49,2	3,5890	0	0	18			
25,216	2,0	3,5290	0	1	13			
27,270	2,5	3,2676	0	1	15			
30,905	4,7	2,8911	1	1	1			
31,181	29,1	2,8661	1	1	3			
32,017	4,1	2,7932	1	1	6			
33,253	13,2	2,6921	0	0	24			
33,371	14,5	2,6829	1	1	9			
35,205	36,8	2,5472	1	1	12			
35,856	6,2	2,5024	1	1	13			
35,935	3,5	2,4971	0	2	2			
36,040	4,8	2,4901	0	2	3			
36,250	7,4	2,4761	0	2	4			
36,500	6,3	2,4597	0	2	5			
36,618	3,2	2,4521	1	1	14			
36,802	4,5	2,4403	0	2	6			
37,156	3,2	2,4178	0	2	7			
37,419	18,9	2,4014	1	1	15			
37,538	2,2	2,3941	0	2	8			
37,538	2,2	2,3941	0	0	27			
37,918	4,1	2,3710	0	1	24			
38,010	4,2	2,3654	0	2	9			
38,505	3,0	2,3362	0	2	10			
39,192	5,5	2,2968	0	1	25			
39,644	4,9	2,2716	0	2	12			
40,000	10,8	2,2522	1	1	18			
40,478	3,6	2,2267	0	1	26			
41,778	7,2	2,1604	0	1	27			
42,880	27,2	2,1074	1	1	21			
43,116	1,5	2,0964	0	1	28			
43,219	3,5	2,0916	0	2	17			
44,028	3,7	2,0550	0	2	18			

Tab. 79: Calciumaluminiumhydroxid-Aluminathydrat 2CaO·Al₂O₃·8H₂O

0,1

44,456	5,2	2,0362	0	1	29
44,876	3,8	2,0181	0	2	19
45,795	7,2	1,9798	0	2	20
46,017	12,0	1,9707	1	1	24
46,715	5,6	1,9429	0	2	21
47,191	2,0	1,9244	0	1	31
47,668	1,2	1,9063	0	2	22
48,527	3,0	1,8745	1	2	5
48,753	1,8	1,8664	1	2	6
49,063	0,2	1,8553	1	2	7
49,381	17,7	1,8441	1	1	27
49,381	17,7	1,8441	1	2	8
50,152	0,6	1,8175	1	2	10
50,814	9,8	1,7954	0	0	36
51,738	2,4	1,7655	1	1	29
52,946	1,9	1,7280	1	1	30
53,949	0,0	1,6982	0	2	28
54,921	24,2	1,6705	0	3	0
55,630	15,8	1,6508	0	3	6
57,185	2,1	1,6096	0	1	38
57,297	1,2	1,6067	0	3	11
57,441	0,8	1,6030	0	2	31
57,729	13,8	1,5957	0	3	12
58,696	1,1	1,5717	0	2	32
60,535	0,9	1,5283	1	2	25
60,660	1,8	1,5254	1	1	36
61,123	6,2	1,5150	0	3	18
62,472	2,6	1,4855	1	2	27
64,493	15,0	1,4437	2	2	3
64,968	2,1	1,4343	2	2	6
65,773	5,2	1,4187	2	2	9
66,913	3,9	1,3972	2	2	12
67,745	5,8	1,3821	1	3	5
68,345	8,0	1,3714	2	2	15
69,069	4,2	1,3588	1	3	10
70,047	2,3	1,3422	2	2	18
72,047	0,8	1,3098	1	1	44
78,114	3,1	1,2225	0	3	36
83,114	3,1	1,1612	0	3	40
84,571	2,0	1,1449	1	3	32
89,706	9,3	1,0922	0	4	29
Zusätzliche Reflex	(e:				
2θ _{EXP} [°]	I/I ₀	d _{EXP}	[Å]	Phase	
6.209	15	14.2	230	CaO·Al ₂ O ₃ .1	0H ₂ O
10.954	3	8.07	07	CaO·Al ₂ O ₃ ·1	- 0H ₂ O
12,301	13	7,18	97	CaO·Al ₂ O ₃ ·1	0H ₂ O
-		,		-	

4,7375

 $CaO \cdot Al_2O_3 \cdot 10H_2O$

36,976

37,352

37,740

37,975

40,025

40,633

41,844

42,829

43,484

44,259

44,576

45,117

45,908

47,007

48,449

48,948

49,176

50,145

31,8

15,2

13,5

12,9

13,2

14,4

24,7

17,2

14,9

19,6

16,6

13,8

14,3

14,5

21,9

10,7

14,2

13,2

2,4291

2,4055

2,3817

2,3675

2,2509

2,2186

2,1571

2,1098

2,0795

2,0449

2,0311

2,0079

1,9752

1,9315

1,8774

1,8594

1,8513

1,8177

	Calciumalu	miniumhydroxid-Alum	inathydrat 2	CaO·Al ₂ O ₃ ·7,5H ₂ O		
$a_0 = 9,927 (1) \text{ Å}$ $\alpha = 90^{\circ}$ $V = 2375,1 (12) \text{ Å}^3$		b ₀ = 5,724 (1) Å β = 98,19° Z = 8		$c_0 = 42,226 (2) \text{ Å}$ $\gamma = 90^\circ$ $D_x = 1,96 \text{ g/cm}^3$		
$F_{00} = 10.2 (0.0124)$	84)	NG.02/0 Div Blende: variab	اد	λ = 1 5406 Å (Cu	 (1) 	
20-v= [°]	1/1-		ה א	л = 1,5400 A (Сар	(α1) Ι	
20EXP[]	1/10		11	K	1	
8,474	100,0	10,4256	0	0	4	
16,949	70,8	5,2269	0	0	8	
17,907	2,0	4,9494	1	1	0	
18,728	2,2	4,7342	1	1	2	
20,401	6,2	4,3497	1	1	4	
21,189	6,1	4,1896	0	0	10	
22,788	9,4	3,8992	1	1	6	
23,558	11,1	3,7735	2	0	6	
23,866	7,0	3,7255	-1	1	8	
25,558	29,3	3,4825	0	0	12	
27,246	6,6	3,2704	1	1	9	
28,563	1,9	3,1226	1	-1	-11	
31,184	55,9	2,8658	-3	1	2	
31,435	17,3	2,8436	3	1	0	
32,289	6,6	2,7702	3	1	2	
32,789	13,8	2,7291	-2	0	14	
33,155	5,8	2,6999	3	-1	-7	
33,891	10,6	2,6429	-1	1	14	
34,294	13,6	2,6127	0	0	16	
34,880	8,2	2,5702	3	-1	-9	
35,526	15,0	2,5249	3	1	6	
36,154	45.6	2,4825	-4	0	2	
36,525	33.1	2,4581	2	2	1	
36 621	25.9	2 4519	- 3	- 1	7	

-4

2

-1 2

2

4

-4

4

3

-4

-2

2

2

-4

3

5

4

1

0

2

1

2

-2

0

0

0

1

0

2

2

-2

0

1

-1

-2

-1

6

3

16

4

-9

6

12

8

12

14

13

11

-14

16

15

-6

-6

-22

Tab. 8

51,312	20,0	1,7791	4	2	5	
52,409	15,4	1,7444	0	2	19	
55,489	64,4	1,6547	-6	0	4	
56,981	9,4	1,6148	6	0	2	
57,240	7,6	1,6082	-2	2	21	
58,070	11,1	1,5871	5	1	11	
59,480	11,1	1,5528	3	-3	-11	
60,297	14,2	1,5337	-3	3	12	
61,024	11,2	1,5172	2	-2	-23	
62,121	9,4	1,4930	0	0	28	
64,885	29,9	1,4359	-3	1	27	
68,640	13,1	1,3662	-7	1	8	
69,294	13,1	1,3549	-3	1	29	
90,321	21,6	1,0863	-1	5	12	
92,843	8,9	1,0633	6	-4	-11	
Zusätzliche Reflex	(e:					
2θ _{ΕΧΡ} [°]	I/I ₀	d _{EXP}	[Å]	Phase		
11,714	6	7,54	86	3CaO·Al₂O₃·CaC	O ₃ ·11H ₂ O	
21,900	1	4,05	52	Nicht indiz	iert	
34,142	2	2,62	40	Nicht indiz	iert	
38,532	3	2,33	46	Nicht indiz	iert	

9.1.3. Metallformiat-Hydrate und Metallformiate

Tab.	81:	Lithiumformiat-Monohvdrat Li(HCOO)·H ₂ O
	• • • •	

Lithiumformiat-Monohydrat Li(HCOO)·H₂O								
$a_0 = 9,988 (1) \text{ Å}$ $b_0 = 6,494 (1) \text{ Å}$ $c_0 = 4,856 (1) \text{ Å}$								
$\alpha = 90^{\circ}$		β = 90°		γ = 9	γ = 90°			
V = 314,9 (2) Å	3	Z = 4		D _x =	1,47 g/cm ³			
KS: Orthorhom	oisch	RG: Pbn2 ₁		RIR	: 3,57			
F ₃₀ = 134,1 (0,0	062; 36)	Div. Blende	e: fest	$\lambda = 1$	1,5406 Å (Cu _{Kα}	1)		
2θ _{EXP} [°]	I/Io	d _{EXP} [Å]	h	k		∆2θ [°]		
16,289	18,7	5,4372	1	1	0	0,020		
17,757	1,4	4,9908	2	0	0	0,010		
22,442	18,9	3,9584	2	1	0	0,001		
22,854	6,0	3,8879	0	1	1	0,004		
24,547	22,3	3,6235	1	1	1	0,001		
25,566	30,5	3,4814	2	0	1	-0,002		
27,446	16,9	3,2470	0	2	0	-0,002		
28,888	100,0	3,0881	1	2	0	-0,004		
29,083	17,1	3,0679	2	1	1	0,002		
30,134	32,6	2,9633	3	1	0	-0,008		
32,885	0,8	2,7214	2	2	0	0,008		
34,389	34,5	2,6056	1	2	1	-0,002		
35,462	14,2	2,5293	3	1	1	-0,005		
35,944	2,5	2,4965	4	0	0	0,006		
36,995	10,5	2,4279	0	0	2	-0,003		
37,854	3,4	2,3748	2	2	1	-0,007		
38,613	4,9	2,3298	4	1	0	0,012		
38,697	1,5	2,3249	3	2	0	-0,009		
40,593	14,1	2,2206	4	0	1	-0,003		
41,311	8,0	2,1837	2	0	2	-0,006		
43,025	6,1	2,1006	4	1	1	0,009		
43,119	2,6	2,0962	3	2	1	0,007		
43,703	0,3	2,0695	2	1	2	-0,001		
45,648	5,7	1,9858	2	3	0	0,004		
46,702	1,1	1,9434	0	2	2	0,023		
46,809	0,2	1,9392	1	3	1	0,003		
47,600	2,1	1,9088	1	2	2	-0,009		
48,438	0,6	1,8777	3	1	2	0,001		
49,549	6,4	1,8382	2	3	1	-0,001		
49,686	0,3	1,8334	4	2	1	-0,018		
50,238	1,0	1,8146	3	3	0	0,003		
50,325	0,0	1,8116	2	2	2	0,005		
51,374	1,5	1,7771	5	1	1	-0,010		
53,849	3,9	1,7011	5	2	0	0,007		
54,607	4,4	1,6792	3	2	2	-0,012		
56,195	0,9	1,6355	4	3	0	0,000		
56,657	4,2	1,6233	0	4	0	0,004		
57,333	3,5	1,6057	5	2	1	-0,006		
57,481	0,9	1,6019	1	4	0	0,015		
58,566	1,2	1,5748	6	0	1	-0,009		

59,579	3,7	1,5504	4	3	1	-0,022
60,053	1,6	1,5393	2	0	3	0,013
60,452	0,4	1,5301	6	1	1	0,006
60,841	1,1	1,5213	1	4	1	0,016
61,785	2,0	1,5003	5	1	2	0,021
61,892	0,9	1,4979	2	1	3	0,007
63,130	0,6	1,4715	2	4	1	-0,012
63,297	0,0	1,4680	5	3	0	-0,004
63,732	0,2	1,4590	3	4	0	0,004
65,009	1,6	1,4334	1	2	3	0,002
65,690	1,4	1,4202	3	1	3	0,006
66,476	0,2	1,4053	5	3	1	-0,011
67,106	2,3	1,3936	7	1	0	-0,007
68,261	0,1	1,3729	6	0	2	-0,001
69,111	0,7	1,3580	4	0	3	0,004
69,615	0,7	1,3494	0	4	2	0,002
70,207	1,3	1,3395	7	1	1	-0,003
71,997	0,6	1,3105	4	4	1	-0,003
72,267	0,5	1,3063	7	2	0	-0,006
72,495	0,7	1,3027	2	4	2	-0,001
74,444	0,2	1,2734	6	3	1	-0,005
75,275	0,4	1,2614	7	2	1	-0,002
75,744	1,4	1,2547	2	3	3	-0,010
76,011	0,4	1,2510	3	4	2	-0,026
76,212	0,3	1,2482	8	0	0	0,017
77,211	0,1	1,2345	5	1	3	0,004
77,865	0,4	1,2258	8	1	0	0,014
78,350	0,3	1,2194	5	4	1	0,002
78,552	0,2	1,2168	2	5	1	0,001
79,101	0,6	1,2097	3	5	0	0,016
81,556	0,5	1,1794	2	0	4	0,011
82,105	0,8	1,1729	5	2	3	-0,022
83,187	0,5	1,1603	6	0	3	0,004
84,075	0,4	1,1503	7	2	2	-0,004
85,127	0,2	1,1388	1	4	3	-0,010
85,965	0,4	1,1298	1	2	4	-0,012
87 199	0.1	1 1170	2	4	3	0.013

Tab. 82: Lithiumformiat Li(HCOO)

Lithiumformiat Li(HCOO)		
$a_0 = 12,066 (2) \text{ Å}$ $b_0 = 12,067 (2) \text{ Å}$ $c_0 = 1$	3,529 (2) Å	
$\alpha = 90^{\circ}$ $\beta = 101,02^{\circ}$ $\gamma = 90^{\circ}$)°	
$V = 1933,6 (9) Å^3$ $Z = 32$ $D_x = 1$	1,43 g/cm ³	
KS: Monoklin RG: C2/c RIR: (0,25	
$F_{30} = 75,0 (0,0100; 40)$ Div. Blende: fest $\lambda = 1,$	78901 Å (Co _{Kα}	1)
$2\theta_{\text{EXP}}[^{\circ}]$ I/I_0 $d_{\text{EXP}}[Å]$ h k		Δ 2θ [°]
12,157 3,1 8,4476 1 1	0	0,008
13,488 36,2 7,6172 -1 1	1	-0,001
17,070 35,8 6,0272 0 2	0	0,018
17,385 53,2 5,9187 2 0	0	0,010
18,755 58,5 5,4897 0 2	1	0,012
20,995 35,6 4,9097 -2 0	2	0,002
23,123 1,6 4,4631 0 2	2	0,012
24,452 21,6 4,2240 2 2	0	0,014
24,828 1,2 4,1611 -1 1	3	0,004
25,517 4,7 4,0505 2 0	2	0,008
26,679 100,0 3,8770 2 2	1	0,003
27,184 23,4 3,8063 -2 2	2	0,016
(1 3	0)	·
27.244 7.1 3.7981 -3 1	1	-0,017
27,589 26,8 3,7515 3 1	0	0,006
27.845 69.8 3.7177 1 1	3	0.007
28.745 71.4 3.6037 1 3	1	-0.006
29.053 16.3 3.5662 0 2	3	0.024
29.132 1.5 3.5568 -3 1	2	-0.015
30.057 0.9 3.4497 3 1	1	0.008
30,859 7.0 3,3622 2 2	2	0.014
31.273 39.3 3.3187 0 0	4	0.013
31.565 72.4 3.2887 -2 2	3	0.003
32.008 24.2 3.2444 -1 1	4	0.000
32.267 0.1 3.2191 1 3	2	0.005
32.840 26.3 3.1644 -2 0	4	0.011
34.213 11.9 3.0410 3 1	2	-0.024
34.502 28.3 3.0163 0 4	0	0.007
35.242 30.5 2.9549 1 1	4	0.015
35,422 30.2 2,9404 0 4	1	0.019
35.679 73.2 2.9198 -4 0	2	-0.001
36,350 3.7 2,8677 2 2	3	0.001
37.022 2.4 2.8174 3 3	0	0.002
37 198 2.9 2.8046 1 3	3	-0.018
38,023 20.5 2,7459 -3 1	4	0.005
(0 4	2)	0,000
38 903 5.2 2 6861 2 0	4	-0.011
39.642 18.3 2.6380 -1 1	5	0.013
40.402 9.4 2.5904 2 4	- 1	0.015
41.421 15.0 2.5294 4 0	2	0.018
41,506 0.1 2,5244 4 2	-	0.001
42,054 6,3 2,4930 0 4	3	-0,001

42,393	2,3	2,4740	-4	2	3	-0,003
42,767	10,3	2,4533	2	2	4	0,000
43,180	4,6	2,4310	0	2	5	-0,001
43,745	9,5	2,4011	-2	2	5	0,001
44,445	9,4	2,3651	1	5	0	-0,006
45,054	13,1	2,3348	-5	1	2	-0,003
45,498	1,4	2,3132	1	5	1	-0,003
46,024	0,1	2,2882	3	1	4	0,012
46,347	0,2	2,2731	-4	2	4	0,020
46,734	1,7	2,2553	-1	5	2	-0,004
47,237	6,5	2,2327	0	4	4	0,002
47,633	16,2	2,2152	2	4	3	-0,025
49,912	2,1	2,1201	-1	5	3	-0,008
50,968	5,5	2,0790	-3	1	6	-0,007
,	,		(-3	3	5)	
51.304	2.9	2.0663	-3	5	1	0.000
52,395	6,7	2,0262	4	0	4	-0,009
52,979	2,9	2,0055	2	4	4	0,011
53,314	2,3	1,9938	0	4	5	-0,007
54.006	1.4	1.9701	5	3	1	-0.022
54.088	0.0	1.9673	-1	3	6	-0.013
54.857	1.7	1.9419	-3	5	3	0.021
54,952	0,0	1,9388	4	4	2	-0,001
55,979	12,8	1,9060	-6	2	1	0,008
56,414	2,2	1,8925	1	5	4	-0,004
57,448	5,7	1,8613	-2	6	2	-0,005
58,482	0,3	1,8312	0	6	3	-0,003
59,571	1,5	1,8007	-1	5	5	-0,001
			(6	0	2)	
60,403	1,5	1,7782	-5	1	6	-0,006
61,261	0,2	1,7556	5	1	4	0,004
62,110	3,3	1,7340	1	5	5	-0,014
64,159	4,0	1,6843	-2	0	8	-0,001
64,621	1,5	1,6735	-4	6	1	-0,017
65,709	2,1	1,6488	2	2	7	-0,001
66,248	3,1	1,6369	-6	0	6	-0,010
66,715	2,1	1,6268	-5	1	7	-0,001
67,578	1,8	1,6084	6	4	1	-0,021
70,174	0,2	1,5561	7	1	2	0,008
,	,		(-7	1	5)	,
73,856	2,5	1,4888		3	8	-0,012
74,917	1,5	1,4708	-3	7	4	0.006
75,547	3,5	1,4603	-2	8	1	0,010
77,580	3,5	1,4279	0	8	3	-0,004
80,071	1,7	1,3906	5	3	6	0,010
83,938	1,9	1,3376	-8	4	3	0,006

		Natriu	mformiat Na(⊦	ICOO)		
a ₀ = 6,257 (1) Å	N N	b ₀ = 6,754	(1) Å	c ₀ =	6,172 (1) Å	
$\alpha = 90^{\circ}$		β = 116,16	(2)°	γ = 9	90°	
V = 234,1 (2) Å	3	Z = 4		D _x =	1,93 g/cm ³	
KS: Monoklin		RG: C2/c		RIR	: 0,38	
F ₃₀ = 95,0 (0,00	81; 39)	Div. Blende	e: fest	$\lambda = 2$	1,5406 Å (Cuка	1)
2θ _{ΕΧΡ} [°]	I/I ₀	d _{EXP} [Å]	h	k	I	∆ 2θ [°]
20,554	82,4	4,3176	1	1	0	0,003
21,361	2,2	4,1562	-1	1	1	0,003
26,373	97,9	3,3767	0	2	0	0,004
30,233	41,3	2,9538	1	1	1	0,007
30,992	7,2	2,8832	0	2	1	0,004
31,858	39,5	2,8068	2	0	0	0,013
32,303	100,0	2,7691	0	0	2	0,007
33,974	1,6	2,6367	-2	0	2	0,005
39,292	52,2	2,2912	-2	2	1	0,010
41,803	2,6	2,1591	2	2	0	-0,001
42,172	19,2	2,1411	0	2	2	0,010
43,265	27,6	2,0895	1	3	0	0,006
43.685	12.9	2.0704	-1	3	1	0.006
44,420	11,7	2,0378	1	1	2	0,011
45.778	28.5	1.9805	-3	1	1	0.011
46.442	11.5	1.9537	-1	1	3	0.008
49.014	17.1	1.8570	1	3	1	0.005
50,229	8.7	1,8149	2	2	1	-0.019
53,188	22.5	1,7207	-2	2	3	0.000
53,840	9.1	1,7014	-3	-	3	-0.003
54,302	0.0	1.6880	0	4	0	0.021
55.927	11.9	1.6427	2	0	2	-0.003
56.777	4.4	1.6202	0	2	3	-0.003
56.958	0.4	1.6154	0	4	1	-0.008
59.162	2.2	1.5604	-4	0	2	-0.018
59.581	9.2	1.5504	1	3	2	-0.003
60,270	3,1	1,5343	3	1	1	-0,013
60.818	0.9	1.5218	1	1	3	-0.016
61.235	0.4	1.5125	-1	3	3	-0.008
62.478	4.1	1.4853	-2	4	1	-0.013
62,864	3,2	1,4771	2	2	2	0,004
64.314	1.6	1.4473	2	4	0	-0.010
64,583	0.6	1.4419	0	4	2	-0.006
65,585	2,2	1,4223	-2	4	2	-0,012
67,052	6,6	1,3947	-4	2	1	-0,009
67,596	1.4	1,3848	0	0	4	0.002
69,532	2.6	1,3509	-4	2	3	-0.012
71,481	3.3	1,3187	-4	0	4	-0,016
72,107	2.0	1,3088	-1	5	1	-0.013
73,309	4.2	1,2903	-2	4	3	-0.010
73,795	2.6	1,2830	1	3	3	0,010
76,124	1,5	1,2495	1	5	1	-0,005

77,023	0,6	1,2371	-1	5	2	0,005
77,585	0,1	1,2295	-5	1	2	-0,002
77,700	1,4	1,2280	-4	2	4	0,016
79,476	0,5	1,2050	1	1	4	0,018
82,088	1,5	1,1731	-1	1	5	-0,001
83,064	3,0	1,1618	4	2	1	-0,008
83,380	1,8	1,1582	-2	2	5	-0,022
85,024	1,1	1,1399	-5	1	4	0,029
85,563	1,7	1,1341	-4	4	1	0,014
85,813	1,2	1,1315	-3	5	1	0,015
86,296	0,6	1,1264	-1	5	3	0,017
86,644	1,7	1,1227	-3	5	2	-0,022
88,575	0,9	1,1032	0	6	1	0,001
89,377	1,4	1,0953	3	5	0	0,009

		Magnesiumform	niat-Dihydrat N	lg(HCO₂)₂·2H₂O	1	
a ₀ = 8,651 (1) Å	4	b ₀ = 7,160	(1) Å	c ₀ =	: 9,393 (1) Å	
α = 90°		β = 98,05 ((2)°	γ =	90°	
V = 576,0 (3) Å	3	Z = 4		D _x =	= 1,73 g/cm ³	
KS: Monoklin		RG: P2 ₁ /c		RIR	:: 0,212	
F ₃₀ = 121,8 (0,0	056; 44)	Div. Blend	e: fest	λ =	1,5406 Å (Cuка	1)
2θ _{ΕΧΡ} [°]	I/I ₀	d _{EXP} [Å]	h	k	I	∆2θ [°]
10,337	3,96	8,5506	1	0	0	0,010
15,622	3,80	5,6680	0	1	1	0,001
17,999	100,00	4,9244	-1	1	1	-0,004
19,081	46,32	4,6474	0	0	2	-0,005
19,490	61,24	4,5510	1	1	1	-0,003
20,419	19,25	4,3459	-1	0	2	0,002
20,750	31,08	4,2773	2	0	0	0,010
23,021	0,86	3,8602	1	0	2	0,016
23,953	3,38	3,7122	-1	1	2	0,015
24,218	31,83	3,6722	2	1	0	0,001
24,966	3,14	3,5637	-2	1	1	0,008
26,197	70,84	3,3990	1	1	2	-0,001
26,683	38,84	3,3381	0	2	1	-0,001
26,993	9,56	3,3006	1	2	0	-0,003
28,179	12,27	3,1643	-1	2	1	-0,001
29,173	25,94	3,0587	1	2	1	-0,004
30,289	12,91	2,9485	2	0	2	0,002
31,548	9,77	2,8336	0	2	2	0,007
31,851	12,52	2,8073	-1	1	3	0,003
32,388	21,99	2,7620	-1	2	2	-0,002
32,608	1,56	2,7439	2	2	0	0,006
33,808	21,77	2,6492	3	1	0	0,009
33,915	23,22	2,6410	-3	1	1	-0,008
34,151	0,29	2,6234	1	2	2	0,015
34,479	39,66	2,5991	-3	0	2	-0,005
			(1	1	3)	
34,885	17,69	2,5698	2	2	1	0,003
35,572	2,84	2,5217	-2	1	3	0,000
36,459	7,25	2,4624	-2	2	2	-0,011
36,763	2,04	2,4427	-3	1	2	-0,003
38,426	2,48	2,3408	0	2	3	0,012
38,737	10,78	2,3227	0	0	4	0,007
38,960	16,35	2,3099	0	3	1	-0,004
39,277	3,68	2,2920	3	0	2	0,005
39,588	1,40	2,2747	2	2	2	0,009
40,033	1,59	2,2504	-1	3	1	-0,014
40,266	0,78	2,2379	2	1	3	0,017
40,521	2,55	2,2245	-3	2	1	0,004
40,774	14,55	2,2112	1	3	1	-0,011
40,995	8,10	2,1998	1	2	3	0,004
41,317	2,44	2,1834	3	1	2	-0,010
41,866	2,09	2,1560	-3	1	3	0,017

Tab. 84: Magnesiumformiat-Dihydrat Mg(HCO₂)₂·2H₂O

41,940	2,30	2,1524	-2	2	3	-0,003
42,203	1,27	2,1396	4	0	0	0,000
42,696	2,13	2,1160	3	2	1	0,016
42,980	6,80	2,1027	-3	2	2	-0,007
43,244	18,34	2,0905	-1	3	2	0,002
43,604	21,59	2,0741	1	1	4	-0,011
44,020	22,13	2,0554	-4	0	2	0,011
44,135	7,20	2,0503	4	1	0	-0,009
44,622	3,90	2,0291	1	3	2	0,000
45,217	3,02	2,0037	2	3	1	-0,003
46,074	7,97	1,9685	2	2	3	-0,005
46,559	4,71	1,9491	-1	2	4	0,019
46,804	0,34	1,9394	-3	0	4	-0,006
46,999	7,67	1,9318	2	0	4	-0,011
47,966	2,76	1,8951	3	1	3	0,010
48,095	1,25	1,8904	0	3	3	-0,024
48,394	6,51	1,8793	-1	3	3	-0,006
49,017	0,77	1,8569	-2	2	4	0,009
49,129	5,91	1,8530	1	2	4	0,005
49,270	3,99	1,8480	4	0	2	-0,008
49,392	1,94	1,8437	-4	2	1	0,008
49,608	3,77	1,8362	4	2	0	0,000
49,779	0,97	1,8303	3	3	0	-0,020
49,892	6,11	1,8264	-3	3	1	0,003
50,298	6,92	1,8126	1	3	3	0,005
51,042	3,10	1,7879	0	4	0	0,015
51,192	9,84	1,7830	-4	2	2	-0,019
51,749	4,93	1,7651	3	3	1	0,006
51,874	0,71	1,7611	4	2	1	0,013
52,019	1,19	1,7566	-3	3	2	0,012
53,392	12,33	1,7146	1	1	5	-0,015
53,912	9,24	1,6993	2	2	4	0,006
54,635	3,31	1,6785	-5	1	1	0,010
54,964	4,53	1,6692	0	4	2	-0,008
55,128	1,38	1,6646	5	1	0	0,002
55,656	4,46	1,6501	2	4	0	-0,001
55,972	12,41	1,6415	4	2	2	0,001
56,628	1,99	1,6241	-3	1	5	0,000
57,323	3.61	1,6060	-2	3	4	0,007
57.514	1.39	1.6011	5	1	1	0.004
57.851	1.90	1,5926	4	3	0	-0.004
58,199	0.11	1.5839	2	1	5	-0.023
58,228	2.05	1,5832	-	2	5	0.002
59 284	4 97	1 5575	-5	1	3	-0.003
60 493	8 26	1,5292	2	4	2	-0.004
60 629	2 24	1 5261	-2	0	- 6	0 006
61 553	<u>-,</u> 3 01	1 5054	1	4	3	0.012
62 096	1 40	1 4935	5	2	1	-0 028
62 703	1,38	1 4805	-5	0	4	0,020
52,700	1,00	1,7000	(_4	3	3)	0,001
			(-	0	σ,	

63,005	3,83	1,4742	4	0	4	0,008
64,216	1,61	1,4492	-3	0	6	-0,023
65,650	4,59	1,4210	0	2	6	0,011
65,842	0,50	1,4173	0	4	4	-0,013
66,113	2,59	1,4122	-6	1	1	-0,003
66,561	3,30	1,4038	-2	2	6	0,001
67,317	10,19	1,3898	5	1	3	-0,013
67,824	2,25	1,3807	-2	4	4	0,014
67,973	2,13	1,3780	3	3	4	0,025
68,122	4,49	1,3754	-4	4	1	0,004
68,296	2,40	1,3723	4	4	0	-0,006
68,622	5,25	1,3666	-3	3	5	0,002
68,804	1,75	1,3634	4	2	4	-0,017
69,038	1,03	1,3593	-1	5	2	-0,020
69,077	0,73	1,3586	-1	5	2	0,019
69,406	2,14	1,3530	5	3	1	-0,008
69,743	2,85	1,3473	-4	0	6	0,003
70,162	1,68	1,3403	4	4	1	-0,005
71,080	1,91	1,3252	6	2	0	-0,016
71,842	2,23	1,3130	6	0	2	0,000
72,689	0,03	1,2998	2	2	6	-0,002
72,950	5,50	1,2958	-1	5	3	-0,020
73,453	5,75	1,2881	6	2	1	0,022
73,635	0,39	1,2854	-2	3	6	0,005
74,013	0,76	1,2798	-6	2	3	0,005
74,445	1,79	1,2734	5	1	4	0,009
75,649	4,47	1,2561	3	5	1	0,017
75,819	7,38	1,2537	4	3	4	0,020
77,369	6,54	1,2324	6	2	2	0,012
77,486	3,36	1,2308	-4	4	4	0,000
78,513	3,09	1,2173	5	2	4	-0,023
81,548	2,25	1,1795	-7	1	3	-0,001
			(-5	3	5)	
83,648	1,13	1,1551	2	2	7	-0,007
83,696	1,49	1,1546	-4	4	5	-0,007
87,379	0,57	1,1152	6	4	0	-0,002

	Beta-N	lagnesiumformiat β-Mg	g(HCO ₂) ₂			
a ₀ = 13,830 (2) Å	b ₀ =	7,534 (1) Å	-	c ₀ =	24,816 (2	2) Å
α = 90°	β = 9	00°	,	/ = 9	90°	
V = 2585,5 (11) Å ³	Z = 2	24	1	D _x =	1,76 g/ci	m ³
KS: Orthorhombisch	RG:	Pca2₁	1	RIR	: 0,21	
F ₃₀ = 34,1 (0,010; 88)	Div.	Blende: fest		<i>\</i> = ۱	1,5406 Å	(Cu _{Kα1})
2θ _{EXP} [°]	I/I ₀	d _{EXP} [Å]	h	k	1	Δ 2 θ [°]
7,123	10	12,3999	0	0	2	0,005
13,284	58	6,6595	2	0	1	0,003
13,738	41	6,4404	0	1	2	-0,002
14,291	52	6,1924	0	0	4	0,027
14,656	100	6,0392	2	0	2	0,003
16,700	9	5,3045	2	0	3	0,003
17,152	34	5,1655	1	1	3	0,004
17,747	8	4,9938	2	1	1	-0,013
18.814	14	4.7129	2	1	2	-0.001
19,614	18	4,5223	1	1	4	0,014
20.456	1	4.3382	2	1	3	-0.003
21.490	2	4.1317	0	0	6	0.023
22.570	11	3.9364	2	1	4	0.004
24.688	11	3.6032	0	2	2	0.009
25.079	17	3.5479	2	0	6	0.012
25.541	9	3.4848	1	2	2	0.023
26.727	7	3.3327	4	0	2	-0.018
27.675	4	3.2207	0	2	4	-0.008
28,365	9	3,1439	4	1	0	-0.015
29.285	27	3.0473	4	1	2	-0.011
29.546	15	3.0209	4	0	4	-0.008
30.586	4	2.9205	2	2	4	-0.018
30.713	3	2,9087	2	1	7	0.012
31.384	3	2.8481	3	1	6	0.020
31,464	3	2.8410	3	2	2	-0.017
32,506	30	2,7522	2	2	5	0.004
33.765	6	2.6525	4	0	6	0.003
34.518	3	2,5963	5	1	0	0.003
34.693	3	2,5836	2	2	6	-0.004
35.391	12	2,5342	4	2	1	-0.006
35.858	17	2.5023	4	1	6	-0.003
00.007	0	_,	4	2	3	0,000
30,887	9	2,4348	(3	1	8)	-0,008
39,213	0,9	2,2956	1 (6	3 0	4 1)	-0,002
39,700	9	2,2685	2	3	3	0,023
41,067	5	2,1961	3 (1	3 2	1 9)	0,009
41,558	10	2,1713	3	3	2	-0,002
42,400	18	2,1301	6	1	3	-0,007
43,724	9	2,0686	4	2	7	-0,001
44,137	8	2,0502	2	3	6	-0,005
44,649	14	2,0279	1	3	7	-0,020

An	hang
----	------

45,735	8	1,9822	2 (0 12	-0,023
46,684	0,9	1,9441	6	16	0,026
48,418	2	1,8785	2	38	-0,002
48,529	1	1,8744	6	24	-0,006
51,408	3	1,7760	6	26	-0,012
52,449	2	1,7432	3	4 0	0,010
53,518	3	1,7109	2 3	3 10	-0,020
54,405	7	1,6851	8	1 0	-0,005
55,162	5	1,6637	2	4 6	0,000
58,721	3	1,5711	8 (6	20 36)	0,003
59,177	0,1	1,5601	8	16	0,014
60,943	0,6	1,5190	0	1 16	0,006
61,865	0,6	1,4986	4	47	0,012
62,142	0,5	1,4925	4 (0 15	-0,009
62,680	0,5	1,4810	9	1 3	0,012
65,917	18	1,4159	0	56	-0,011
66,671	13	1,4017	8	28	-0,006
70,760	8	1,3304	4	55	0,017
79,531	4	1,2043	7 ⁻ (8 3	1 16 3 11)	0,002
85,151	0,2	1,1386	5	62	-0,006
87,696	0,4	1,1120	1	1 22	0,000

				(100)		
		Strontiumform	lat-Dihydrat S	r(HCO ₂) ₂ ·2H ₂ O		
a ₀ = 7,325 (1) Å		b ₀ = 12,054	4 (2) Å	C ₀ =	= 7,151 (1) Å	
α = 90°		β = 90°		γ =	90°	
V = 631,3 (4) Å ³	3	Z = 4		Dx	= 2,24 g/cm ³	
KS: Orthorhomb	bisch	RG: P2121	2 ₁	RIF	R: 0,54	
$F_{30} = 139,8 (0,0)$	0058; 37)	Div. Blende	e: fest	λ =	1,5406 (Cu _{Kα1})	
2θ _{ΕΧΡ} [°]	I/I ₀	d _{EXP} [Å]	h	k	I	∆2θ [°]
14,139	100,0	6,2591	1	1	0	0,001
14,384	9,4	6,1528	0	1	1	-0,007
14,684	26,8	6,0278	0	2	0	-0,003
18,821	12,9	4,7112	1	1	1	-0,005
19,072	4,0	4,6496	1	2	0	0,018
19,238	31,9	4,6099	0	2	1	-0,006
22,772	15,0	3,9019	1	2	1	-0,008
24,272	3,3	3,6640	2	0	0	-0,011
24,882	11,0	3,5756	0	0	2	-0,002
25,397	0,5	3,5042	2	1	0	0,000
25,960	0,5	3,4295	0	1	2	-0,014
27,330	2,5	3,2606	2	0	1	-0,007
27,732	21,1	3,2143	1	0	2	-0,011
28,219	34,4	3,1599	1	3	1	0,001
28,492	33,9	3,1303	2	2	0	-0,004
28,737	39,4	3,1041	1	1	2	0,005
29.015	0.4	3.0749	0	2	2	0.001
31,162	30.6	2.8679	2	2	1	-0.007
31.526	20.7	2.8355	1	2	2	-0.003
32.090	2.6	2.7870	1	4	0	-0.002
32.206	30.2	2.7772	0	4	1	-0.004
33.055	0.8	2.7078	2	3	0	-0.014
34,511	6.3	2,5968	1	4	1	-0,003
35.045	4.9	2.5585	2	0	2	-0.001
35.429	6.0	2.5316	2	3	1	-0.003
35.770	2.9	2.5083	1	3	2	0.016
35.849	7.6	2.5029	2	1	2	-0.004
37.564	1.6	2.3925	3	1	0	0.009
38,186	21.5	2.3549	2	2	2	0.001
38,462	6.9	2.3386	0	1	3	-0.006
38.666	4.1	2.3268	2	4	0	0.003
39.058	0.6	2.3043	0	4	2	-0.003
39.315	7.5	2,2899	1	5	0	0.000
39.680	4.1	2,2696	3	1	1	-0.006
40,462	3.2	2,2275	1	1	3	0.000
40.742	24.7	2.2129	2	4	1	-0.003
41.367	15.3	2,1809	1	5	1	-0.002
41.826	5.5	2.1580	2	3	2	0.000
42.578	18.7	2,1216	-	2	- 3	-0.002
43,326	1.2	2.0867	3	- 3	0 0	-0.004
44 142	5.6	2,0500	0 0	3	3	0,000
44,920	5,9	2,0163	3	0	2	0,001
· -		, -				

Tab. 86: Strontiumformiat-Dihydrat Sr(HCO₂)₂·2H₂O

45,094	3,9	2,0089	0	6	0	0,001
45,234	15,6	2,0030	3	3	1	0,001
45,342	3,1	1,9985	0	5	2	0,008
45,578	12,6	1,9887	3	1	2	-0,001
45,928	9,3	1,9744	1	3	3	-0,006
46,518	1,1	1,9507	2	4	2	-0,010
46,950	6,6	1,9337	0	6	1	0,008
47,072	2,0	1,9290	1	5	2	-0,018
47,514	5,7	1,9121	3	2	2	0,001
47,914	0,5	1,8971	3	4	0	0,000
47,935	0,9	1,8963	2	2	3	0,000
48,659	2,2	1,8697	1	6	1	0,006
49,677	4,5	1,8338	3	4	1	-0,005
49,752	3,5	1,8312	4	0	0	0,001
50,334	9,6	1,8114	1	4	3	0,000
51,015	12,1	1,7888	2	3	3	0,002
51,654	4,2	1,7681	0	1	4	0,007
51,863	3,9	1,7615	2	6	0	-0,005
52,083	1,0	1,7546	2	5	2	-0,002
52,187	3,5	1,7513	0	6	2	0,003
52,664	3,5	1,7366	1	0	4	0,005
53,255	1,0	1,7187	1	1	4	0,008
53,365	0,5	1,7154	3	5	0	0,002
53,550	4,3	1,7099	2	6	1	0,010
53,696	0,6	1,7056	3	0	3	-0,001
53,772	5,1	1,7034	1	6	2	0,000
53,825	3,6	1,7018	4	2	1	-0,002
54,058	1,5	1,6951	0	5	3	-0,003
54,274	1,1	1,6888	3	1	3	-0,001
54,714	3,7	1,6763	1	7	0	-0,001
54,994	5,4	1,6684	3	5	1	-0,010
55,124	1,1	1,6648	2	4	3	0,011
55,604	2,4	1,6515	1	5	3	-0,008
55,984	4,3	1,6412	3	2	3	-0,003
56,325	1,4	1,6321	1	7	1	-0,003
56,412	2,8	1,6298	4	0	2	0,003
56,674	0,4	1,6229	4	3	1	-0,001
56,961	1,4	1,6153	4	1	2	-0,007
57,851	4,6	1,5926	2	1	4	-0,007
58.356	3.0	1.5800	2	6	2	0.000
58.632	0.5	1.5732	4	2	2	0.005
58,764	1,1	1,5700	3	3	3	-0,001
59.535	2.0	1.5515	0	7	2	-0.006
59.725	1.8	1.5470	3	5	2	-0.017
60.098	2.7	1.5383	2	5	3	-0.005
60,191	0.0	1.5362	0	6	3	-0.003
60,509	4.4	1,5289	4	4	- 1	-0.005
60,994	3.9	1,5179	1	7	2	-0.006
61,636	2.6	1,5036	1	6	3	-0.008
62,180	0.4	1,4917	2	3	4	-0.001
	,	, -		-		- ,

62,525	4,6	1,4843	3	4	3	0,001
62,990	0,6	1,4745	0	8	1	-0,007
63,961	2,2	1,4544	5	1	0	-0,007
64,559	3,4	1,4424	3	0	4	0,001
64,896	0,5	1,4357	0	5	4	0,013
65,081	0,7	1,4321	3	1	4	0,006
65,268	0,7	1,4284	2	7	2	0,005
65,438	0,4	1,4251	5	1	1	-0,001
65,521	2,1	1,4235	5	2	0	0,000
65,694	0,2	1,4202	0	1	5	0,001
65,883	0,1	1,4166	2	6	3	0,000
66,135	0,2	1,4118	4	2	3	-0,002
66,364	1,4	1,4074	3	7	0	-0,014
66,603	2,0	1,4030	3	2	4	-0,011
66,989	0,5	1,3958	0	7	3	-0,002
67,131	2,5	1,3932	2	8	0	0,010
67,179	2,4	1,3923	3	5	3	0,000
67,398	4,2	1,3884	0	8	2	0,005
68,597	2,9	1,3670	1	2	5	0,004
68,760	2,3	1,3641	1	8	2	0,001
69,256	0,7	1,3556	5	0	2	0,000
69,396	1,2	1,3532	4	6	0	0,009
69,489	2,4	1,3516	5	3	1	-0,005
69,744	2,9	1,3473	0	3	5	0,004
70,373	3,2	1,3368	2	5	4	0,005
70,800	0,9	1,3298	4	6	1	-0,001
71,145	0,8	1,3241	2	1	5	-0,002
71,796	3,0	1,3137	1	6	4	0,006
72,065	2,3	1,3095	3	7	2	-0,005
72,653	1,5	1,3003	3	6	3	-0,009
72,957	1,6	1,2957	1	9	1	-0,002
73,198	0,1	1,2920	0	4	5	0,002
74,533	3,8	1,2721	4	1	4	-0,005
74.988	1.0	1.2655	4	6	2	0.012
75.062	3.1	1.2645	2	3	5	0.002
75.767	1.5	1.2544	4	7	0	0.000
75.981	0.2	1.2514	4	2	4	-0.009
76.533	1.8	1.2438	4	5	3	0.009
76.792	0.9	1.2402	0	7	4	-0.003
76.892	0.5	1,2389	2	9	1	-0.005
77.094	0.9	1,2361	-	9	2	0.005
77.318	1.6	1.2331	5	5	- 1	0.005
77.553	0.4	1.2300	0	5	5	0.003
78,142	1.5	1,2221	5	2	3	0.001
78 403	0.4	1 2187	4	-	4	0.014
79 157	1.0	1 2090	3	2	5	-0.004
79,319	1.0	1,2069	3	- 8	2	0,000
80,144	0.4	1,1966	6	2	-	-0 006
80.522	1 1	1 1919	5	-	3	-0 001
80 790	1 7	1 1886	0	10	1	-0 004
50,150	1,1	1,1000	0	10	I	-0,004

195

80,943	0,5	1,1868	2	9	2	-0,019
81,215	1,0	1,1835	5	6	0	0,015
81,371	0,8	1,1816	5	5	2	-0,001
81,495	0,7	1,1801	6	2	1	-0,002
81,532	0,6	1,1797	3	3	5	-0,003
81,767	0,0	1,1769	4	6	3	-0,001
81,812	0,8	1,1763	1	0	6	-0,002
81,975	2,9	1,1744	3	9	0	-0,017
82,219	2,3	1,1716	3	6	4	0,010
82,563	1,3	1,1676	0	9	3	0,004
82,701	1,9	1,1659	2	5	5	0,004
82,932	1,4	1,1633	4	8	0	0,018
83,346	1,9	1,1586	3	9	1	0,014
83,631	1,5	1,1553	6	0	2	-0,002
83,843	1,9	1,1530	1	9	3	0,008
84,091	0,8	1,1502	6	1	2	-0,012
84,257	0,9	1,1483	4	8	1	0,004
84,833	2,9	1,1420	3	4	5	-0,002
85,195	1,8	1,1381	1	8	4	0,001
85,656	1,4	1,1331	5	0	4	-0,002
85,897	1,7	1,1306	2	10	1	-0,003
85,951	1,7	1,1300	4	5	4	-0,003
86,130	2,0	1,1281	5	1	4	0,003
86,559	1,2	1,1236	5	6	2	0,008
86,687	0,6	1,1223	4	1	5	-0,004
87,165	1,7	1,1174	6	4	1	0,022
87,335	1,1	1,1156	3	9	2	-0,001
87,533	1,4	1,1136	5	2	4	-0,001
87,641	1,0	1,1125	2	9	3	-0,007
88,064	0,6	1,1082	0	4	6	0,001
88,261	1,0	1,1063	4	8	2	0,010
89,880	0,5	1,0905	5	3	4	0,006

Tab. 87: Alpha-Strontiumformiat α -Sr(HCO₂)₂

Alpha-Strontiumformiat α-Sr(HCO ₂) ₂								
a ₀ = 6,871 (1) Å		b ₀ = 8,754 (1) Å		c ₀ = 7,264 (1) Å				
$\alpha = 90^{\circ}$		$\beta = 90^{\circ}$		γ = 90°				
V = 436,9 (2) Å ³		Z = 4		$D_x = 2,70 \text{ g/cm}^3$				
KS: Orthorhombisc	ch	RG: P212121		RIR: 1,38				
F ₃₀ = 294 (0,0030;	34)	Div. Blende: variabe	el	λ = 1,5406 Å (Cu _r	<α1)			
2θ _{ΕΧΡ} [°]	I/Io	d _{EXP} [Å]	h	k	I			
15,840	12,9	5,5904	0	1	1			
16,390	100,0	5,4042	1	1	0			
20,269	4,7	4,3777	0	2	0			
20,461	1,3	4,3370	1	1	1			
24,089	1,7	3,6915	1	2	0			
24,492	4,8	3,6316	0	0	2			
25,911	7,8	3,4359	2	0	0			
26,551	0,3	3,3544	0	1	2			
27,072	28,6	3,2911	1	2	1			
27,767	2,5	3,2103	1	0	2			
27,875	3,6	3,1981	2	1	0			
28,715	0,9	3,1064	2	0	1			
29,606	36,2	3,0149	1	1	2			
30,515	31,6	2,9272	2	1	1			
31,996	1,3	2,7950	0	2	2			
33,053	23,9	2,7079	0	3	1			
33,130	16,6	2,7019	2	2	0			
33,337	3,2	2,6855	1	3	0			
34,619	1,0	2,5889	1	2	2			
35,406	0,3	2,5332	2	2	1			
35,618	1,3	2,5186	1	3	1			
35,954	26,7	2,4959	2	0	2			
37,435	0,3	2,4004	2	1	2			
38,549	9,9	2,3336	0	1	3			
39,431	0,3	2,2834	1	0	3			
39,584	0,3	2,2749	0	3	2			
40,686	14,0	2,2158	3	1	0			
41,218	3,9	2,1884	0	4	0			
41,305	0,3	2,1840	3	0	1			
41,624	10,7	2,1680	2	2	2			
41,793	0,9	2,1596	1	3	2			
42,473	25,3	2,1266	2	3	1			
42,639	0,2	2,1187	0	2	3			
42,639	0,2	2,1187	3	1	1			
44,609	2,5	2,0296	3	2	0			
44,729	25,1	2,0244	1	2	3			
45,200	16,9	2,0045	1	4	1			
46,419	28,4	1,9546	3	2	1			
47,036	3,1	1,9304	2	1	3			
48,059	18,3	1,8917	3	1	2			
48,526	2,7	1,8746	0	4	2			
48,837	11,1	1,8633	0	3	3			

63,299

63,509

63,732 64,153

64,153

65,021

65,021

65,630

66,519

66,893

67,251

67,673

69,133

69,358

69,478

69,567

70,005

71,128

71,239

1,6

0,3

1,4

1,5

13,1

13,1

0,6

0,6

0,3

4,8

0,7

5,4

0,6

7,1

3,5

4,2

0,0

4,6

7,7

0,6

1,5072

1,4680

1,4637

1,4591

1,4505

1,4505

1,4332

1,4332

1,4214

1,4045

1,3976

1,3910

1,3834

1,3577

1,3538

1,3518

1,3503

1,3429

1,3244

1,3226

2

2

4

0

4

3

0

2

1

3

0

3

4

5

0

1

5

2

3

2

2

4

2

6

3

4

1

5

0

1

4

5

1

1

6

2

0

6

4

1

4

3

2

0

1

2

5

2

5

4

4

0

3

0

2

5

1

0

3

ang					
49,334	6,7	1,8457	2	4	0
50,198	3,1	1,8160	0	0	4
50,415	0,2	1,8087	1	4	2
50,574	0,8	1,8033	2	2	3
50,616	0,7	1,8019	3	3	0
50,728	0,6	1,7982	1	3	3
52,048	0,5	1,7557	1	0	4
52,264	2,9	1,7489	3	3	1
53,165	9,6	1,7214	1	1	4
53,287	2,4	1,7177	4	0	0
53,822	0,9	1,7019	0	5	1
54,000	4,2	1,6967	1	5	0
54,370	2,9	1,6861	4	1	0
54,679	3,8	1,6772	0	2	4
55,161	0,6	1,6637	3	0	3
55,820	2,8	1,6456	2	4	2
55,954	4,9	1,6420	4	1	1
56,108	15,9	1,6379	2	3	3
56,429	0,0	1,6293	1	2	4
57,018	1,1	1,6139	3	3	2
57,350	5,1	1,6053	2	0	4
57,594	6,0	1,5991	4	2	0
58,357	8,9	1,5800	1	4	3
59,116	0,8	1,5615	4	2	1
59,380	4,4	1,5552	3	2	3
59,479	5,0	1,5528	4	0	2
59,770	10,0	1,5460	3	4	1
60,142	7,8	1,5373	1	5	2
60,500	0,6	1,5290	4	1	2
60,665	2,3	1,5253	2	5	1

5,7

ang					
71,370	0,0	1,3205	2	6	1
71,942	1,1	1,3114	2	5	3
71,942	1,1	1,3114	5	2	0
72,645	2,4	1,3005	0	3	5
72,741	5,6	1,2990	3	5	2
73,030	1,9	1,2945	2	4	4
73,311	14,7	1,2903	5	2	1
74,568	5,1	1,2716	5	1	2
74,928	2,4	1,2664	4	4	2
75,167	9,0	1,2630	4	3	3
75,345	0,0	1,2604	0	5	4
75,403	4,8	1,2596	2	6	2
76,235	3,2	1,2479	4	0	4
76,832	4,1	1,2397	1	5	4
77,365	0,8	1,2325	0	7	1
77,507	1,2	1,2306	3	6	0
77,507	1,2	1,2306	1	7	0
78,588	5,2	1,2163	2	3	5
78,828	0,5	1,2132	3	6	1
78,828	0,5	1,2132	1	7	1
79,043	1,2	1,2105	0	4	5
79,043	1,2	1,2105	0	0	6
79,155	1,2	1,2090	4	5	1
79,382	0,3	1,2061	3	5	3
79,861	1,8	1,2001	4	2	4
80,255	0,4	1,1952	5	0	3
80,496	0,4	1,1922	1	0	6
80,511	3,3	1,1920	1	4	5
81,397	7,7	1,1813	3	2	5
81,397	7,7	1,1813	1	1	6
82,628	0,5	1,1668	0	2	6
82,750	4,2	1,1654	1	7	2
82,750	4,2	1,1654	3	6	2
83,211	1,3	1,1601	2	7	1

82,628	0,5	1,1668	0	2
82,750	4,2	1,1654	1	7
82,750	4,2	1,1654	3	6
83,211	1,3	1,1601	2	7
83,850	3,0	1,1529	5	2
84,077	0,0	1,1503	1	2
84,188	4,8	1,1491	5	4
84,337	0,2	1,1475	4	3
84,553	1,7	1,1451	6	0
84,858	3,4	1,1417	2	0
84,858	3,4	1,1417	2	4
85,264	2,6	1,1373	0	6
85,744	0,4	1,1322	2	1
85,834	0,6	1,1312	6	0
86,730	2,9	1,1218	6	1
86,730	2,9	1,1218	1	6
87,091	1,5	1,1181	2	7
87,091	1,5	1,1181	0	3
87,091	1,5	1,1181	0	5

1,1120

Anhang					199
87,773	0,6	1,1112	0	7	3
87,970	0,2	1,1092	4	0	5
88,058	0,6	1,1083	5	4	2
88,291	0,5	1,1060	5	3	3
88,468	4,7	1,1042	3	5	4
88,857	2,0	1,1004	4	1	5
89,135	2,6	1,0977	3	7	0
89,528	4,0	1,0939	4	5	3
89,717	3,5	1,0921	6	0	2

Bariumformiat Ba(HCO ₂) ₂								
$a_0 = 6,800(1)$	4	b ₀ = 8,893	(1) Å		c ₀ = 7,664 (1) Å			
α = 90°		β = 90°			$\gamma = 90^{\circ}$			
V = 463,5 (2) Å	3	Z = 4			$D_x = 3,26 \text{ g/cm}^3$			
KS: Orthorhom	bisch	RG: P2121	2 ₁		RIR: 0,65			
F ₃₀ = 187,6 (0,0	039; 41)	Div. Blende	e: fest		λ = 1,5406 (Cu _{Kα1})			
2θ _{EXP} [°]	I/Io	d _{EXP} [Å]	h	k	l	∆2θ [°]		
15,255	50,8	5,8035	0	1	1	0,006		
16,395	100,0	5,4022	1	1	0	-0,002		
19,955	19,5	4,4458	0	2	0	0,004		
20,093	32,0	4,4156	1	1	1	-0,002		
23,194	31,5	3,8319	0	0	2	0,001		
23,892	11,1	3,7215	1	2	0	0,000		
25,291	2,9	3,5186	0	1	2	0,004		
26,194	8,6	3,3993	2	0	0	0,004		
26,610	61,5	3,3472	1	2	1	0,005		
26,675	8,2	3,3392	1	0	2	-0,007		
28,076	11,2	3,1756	2	1	0	0,001		
28,537	58,2	3,1253	1	1	2	0,001		
28,702	38,4	3,1078	2	0	1	0,000		
30,445	20,6	2,9338	2	1	1	0,001		
30,778	8,1	2,9028	0	2	2	0,001		
32,355	67,8	2,7648	0	3	1	0,000		
32,937	1,6	2,7172	1	3	0	0,003		
33,147	5,5	2,7005	2	2	0	0,005		
33,546	21,0	2,6693	1	2	2	0,006		
35,011	4,0	2,5608	1	3	1	0,005		
35,216	18,3	2,5464	2	2	1	0,013		
35,264	11,8	2,5431	2	0	2	0,002		
36,572	12,2	2,4551	0	1	3	0,005		
36,721	9,9	2,4455	2	1	2	-0,005		
37,571	2,2	2,3920	1	0	3	-0,010		
38,972	16,6	2,3092	1	1	3	0,004		
40,331	19,4	2,2345	2	3	0	-0,002		
40,547	6,4	2,2231	0	4	0	0,004		
40,678	10,6	2,2162	1	3	2	0,008		
40,834	15,3	2,2081	2	2	2	-0,010		
41,518	0,6	2,1733	3	0	1	0,004		
42,088	14,7	2,1452	2	3	1	-0,003		
42,796	34,1	2,1113	3	1	1	0,002		
42,905	15,2	2,1062	1	2	3	0,000		
44,326	6,2	2,0419	2	0	3	0,010		
44,435	15,8	2,0372	1	4	1	0,001		
44,849	16,5	2,0193	3	2	0	0,001		
45,533	10,2	1,9906	2	1	3	0,000		
46,464	0,9	1,9528	3	2	1	-0,003		
46,909	7,6	1,9353	0	3	3	-0,003		
47,040	14,9	1,9302	2	3	2	-0,001		
47,411	2,5	1,9160	0	0	4	0,000		

47,685	1,7	1,9056	3	1	2	-0,001
48,560	7,3	1,8733	0	1	4	-0,008
48,891	11,8	1,8614	1	3	3	-0,003
49,028	3,9	1,8565	2	2	3	-0,016
49,187	4,8	1,8509	1	4	2	-0,011
49,369	7,0	1,8445	1	0	4	-0,008
50,437	4,4	1,8079	2	4	1	0,010
50,503	3,5	1,8057	1	1	4	0,002
50,644	0,3	1,8010	3	3	0	-0,013
51,087	13,5	1,7864	3	2	2	0,002
51,925	1,0	1,7595	0	2	4	0,002
52,791	2,1	1,7327	0	5	1	-0,004
53,180	4,3	1,7210	1	5	0	-0,006
53.762	3.6	1.7037	1	2	4	-0.006
54.043	5.1	1.6955	3	0	3	-0.001
54.514	6.7	1.6819	2	3	3	-0.003
54.666	4.4	1.6776	0	4	3	-0.018
54,791	3.4	1.6741	2	4	2	-0.008
54,951	3.6	1,6696	4	1	0	0.004
55 100	6.4	1 6654	3	1	3	0,001
55,306	6.9	1,6597	4	0	1	-0.004
56,006	24	1,6607	2	1	4	-0.003
56 439	2, 4 7 7	1,0400	2	3	2	0,000
57 031	0.9	1,0231	0	5	2	-0.008
58 064	6,9	1,0100	3	4	2	-0,000
58 516	0,9	1,5075	2	5	0	-0,000
58 777	5.2	1,5701	2 1	5	2	-0,003
58 038	0,2	1,5057	1	3	2	0,002
50,950	0,9	1,5050	2	2	4	-0.003
50 300	2,0	1,5020	2	2		-0,003
50 947	0,0	1,5340	-	5	1	0,004
60 427	0,9	1,5442	2	1	1	-0,020
61 616	2,0	1,5507	4	1	2	0,000
	2,2	1,5040	2	4	с С	0,003
62,011	0,9	1,4954	1	0	5	-0,005
62,622	2,5	1,4822	0	6	0	-0,002
62,975	6,2	1,4748	4	3	0	-0,005
63,368	6,5	1,4666	3	4	2	-0,009
63,807	1,6	1,4575	2	5	2	0,001
63,960	2,1	1,4544	2	3	4	0,002
64,228	4,4	1,4490	0	2	5	0,006
64,490	1,2	1,4438	3	1	4	0,004
65,322	2,1	1,4274	1	5	3	-0,009
65,526	0,5	1,4234	1	6	1	-0,020
65,730	2,3	1,4195	1	4	4	-0,002
65,949	1,9	1,4153	4	0	3	-0,003
66,892	2,8	1,3976	4	1	3	0,002
67,313	2,8	1,3899	3	2	4	0,001
67,731	3,5	1,3823	0	6	2	0,004
67,839	5,0	1,3804	2	1	5	0,001
68,060	12,7	1,3765	3	5	1	0.003

68,909	0,8	1,3616	0	3	5	0,000
69,092	0,8	1,3584	2	6	0	0,018
69,311	1,5	1,3546	1	6	2	0,003
69,674	2,0	1,3485	4	2	3	0,008
69,895	1,8	1,3447	5	1	0	-0,025
70,116	2,2	1,3410	2	5	3	0,016
70,308	4,6	1,3379	2	6	1	0,000
70,480	9,5	1,3350	1	3	5	0,004
70,791	2,0	1,3299	4	4	1	0,003
71,152	2,1	1,3240	5	1	1	0,005
71,899	5,6	1,3121	3	3	4	0,000
72,446	1,6	1,3035	0	5	4	0,001
72,644	1,0	1,3005	5	2	0	0,002
73,858	3,7	1,2821	0	6	3	-0,002
73,975	3,1	1,2803	1	5	4	-0,006
74,160	0,2	1,2776	0	0	6	-0,018
74,189	0,7	1,2772	4	3	3	0,000
74,432	0,6	1,2736	4	4	2	0,004
74,703	2,9	1,2696	3	0	5	0,005
74,782	2,2	1,2685	5	1	2	0,002
75,073	2,8	1,2643	0	1	6	0,004
75,246	2,1	1,2618	0	4	5	0,009
75,468	0,9	1,2587	4	1	4	0,009
75,596	1,0	1,2569	3	1	5	0,008
75,697	2,2	1,2554	1	0	6	-0,003
75,851	1,0	1,2533	0	7	1	0,007
76,159	1,0	1,2490	1	7	0	-0,007
76,587	0,4	1,2430	1	1	6	0,001
76,770	1,0	1,2405	3	6	0	-0,001
77,442	2,9	1,2314	5	2	2	0,005
77,757	2,8	1,2272	3	5	3	-0,001
78,119	4,2	1,2225	4	2	4	0,010
78.241	1.3	1.2209	3	2	5	0.005
78.805	0.8	1.2135	4	5	1	-0.008
79,223	0,7	1,2082	1	2	6	-0,001
79.908	2.0	1,1995	2	6	3	0.006
80.359	0.7	1,1939	4	4	3	-0.003
80.703	2.2	1.1897	5	1	3	-0.003
80.899	_,_ 2.1	1.1873	1	7	2	0.007
81.085	1.1	1.1851	2	1	6	0.001
81.246	0.7	1,1831	2	4	5	-0.001
81.807	0.2	1.1764	5	3	2	-0.001
81.844	1.0	1,1760	2	7	-	0.002
82,145	0.7	1,1724	0	6	4	-0.006
82 337	0.6	1 1702	4	5	2	0.003
82.468	0.9	1,1686	4	3	- 4	-0.002
83.315	2.0	1,1589	5	2	3	0.004
83.579	1.3	1.1559	- 1	3	6	0.007
83.670	4.1	1.1549	2	2	6	-0.017
84.378	1.6	1.1470	5	- 4	1	0.006
,	-,-	, .	-	-	-	-,

Anhang						203
04 000	0.0	4 4 4 4 5	4	r	F	0.000
84,602	0,3	1,1445	1	5	5	0,002
85,335	0,8	1,1366	2	1	2	-0,002
85,635	1,2	1,1334	6	0	0	-0,005
86,038	2,6	1,1291	4	1	5	0,008
86,711	0,4	1,1220	1	7	3	-0,006
87,306	1,3	1,1159	3	6	3	0,000
87,643	2,1	1,1125	6	1	1	-0,018
87,855	1,3	1,1103	5	4	2	0,002
88,150	1,9	1,1074	4	5	3	0,006
88,354	3,0	1,1054	4	6	1	0,014
88,500	1,8	1,1039	4	4	4	-0,010
88,632	1,4	1,1026	3	4	5	-0,003
88,883	1,1	1,1001	0	8	1	0,000
89,037	1,9	1,0986	2	5	5	0,018
89,220	2,0	1,0969	3	7	1	-0,002
89.602	0.7	1.0932	1	4	6	-0.002

		Manganformia	t-Dihydrat Mn	(HCO ₂) ₂ ·2H ₂ O			
a ₀ = 8,831 (1) Å	4	b ₀ = 7,281	(1) Å	c ₀ = 9,608 (1) Å			
α = 90°		β = 97,67 ((2)°	γ =	90°		
V = 612,3 (2) Å	3	Z = 4		D _x =	= 1,96 g/cm ³		
KS: Monoklin		RG: P2 ₁ /c		RIR			
F ₃₀ = 86,2 (0,006; 58)		Div. Blende: fest		λ =	n1)		
2θ _{EXP} [°]	I/Io	d _{EXP} [Å]	h	k	l	∆2θ [°]	
10,106	1,6	8,7455	1	0	0	0,007	
17,668	100,0	5,0160	-1	1	1	0,001	
18,631	58,6	4,7589	0	0	2	0,008	
19,054	75,9	4,6540	1	1	1	0,004	
19,990	6,7	4,4382	-1	0	2	0,000	
20,287	66,2	4,3738	2	0	0	0,010	
23.712	19.5	3.7493	2	1	0	0.009	
24,447	8.6	3.6382	0	2	0	0.017	
25,563	45.4	3,4819	1	1	2	0.006	
25,752	0.0	3,4567	-2	0	2	0,025	
26,193	19.7	3,3996	0	2	1	0,008	
26.506	2.6	3.3601	2	1	1	0.007	
-,•	_,-	- , •	- (1	2	0)	-,	
27,675	7.0	3,2208	-1	2	1	0,011	
28.594	12.8	3.1193	1	2	1	0.005	
30.901	28.2	2.8914	0	2	2	0.006	
31,772	11.1	2.8142	-1	2	2	0.007	
33.051	16.5	2,7081	3	-	0	-0.002	
33.233	60.8	2.6937	-3	1	1	0.004	
33,606	44.9	2,6647	1	1	3	0,005	
33,799	7.7	2.6499	-3	0	2	0.002	
34,123	7.5	2,6254	2	2	1	-0.003	
35.541	3.0	2.5239	3	1	1	-0.003	
35,773	23.6	2,5080	-2	2	2	0.000	
37,760	20.8	2,3805	0	0	4	-0.001	
38,236	12.0	2,3519	0	3	1	0,000	
,	, -		(3	0	2)	,	
38,664	11.6	2,3269	2	2	2	0.009	
39,313	9.7	2,2900	-1	3	1	0.007	
39,816	5.0	2,2622	0	1	4	0,007	
39,994	25.9	2,2525	1	3	1	0.005	
40,279	1.3	2,2372	3	1	2	0.009	
40,638	1.4	2,2183	-2	0	4	0,015	
41.013	12.5	2.1989	-3	1	3	0.002	
41.121	1.0	2.1933	-2	2	3	0.016	
41.231	15.1	2.1878	4	0	0	0.003	
42.148	10.0	2.1423	-3	2	2	0.005	
42.419	11.1	2.1292	-1	- 3	- 2	0.006	
42,500	11.4	2,1253	1	1	4	0.017	
42 994	32	2 1020	-2	3	1	-0.028	
43 111	34 9	2,1020		0	, 2	0.011	
44 272	4 5	2,0000	- - - 2	े २	<u>د</u> 1	-0.012	
, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	7,5	2,0 11 0	4	5	1	-0,012	

Tab. 89: Manganformiat-Dihydrat Mn(HCO₂)₂·2H₂O

44,934	8,6	2,0157	2	2	3	-0,004
			(-4	1	2)	
45,489	16,1	1,9924	0	2	4	-0,001
45,722	9,9	1,9828	2	0	4	0,002
46,675	14,6	1,9445	3	1	3	0,001
47,416	18,7	1,9158	-1	3	3	-0,001
47,992	22,7	1,8942	4	0	2	0,007
48,328	4,3	1,8818	-4	2	1	-0,014
48,501	18,0	1,8754	4	2	0	-0,003
48,896	13,0	1,8612	-3	3	1	-0,001
			(-4	3	1)	
49,162	22,5	1,8518	-1	1	5	-0,003
50,162	24,7	1,8172	-4	2	2	0,001
50,607	14,8	1,8022	3	3	1	-0,002
51,976	23,1	1,7579	1	1	5	-0,008
52,498	17,6	1,7417	2	2	4	-0,011
52,879	3,1	1,7300	-4	0	4	0,000
53,400	12,3	1,7144	-5	1	1	-0,002
53,866	12,3	1,7006	0	4	2	-0,012
54,297	0,1	1,6881	0	2	5	-0.025
54,334	0.9	1,6871	3	1	4	0,004
54,556	24.0	1,6807	2	4	0	-0.001
,		,	(4	2	2)	,
54.860	20.2	1.6721	-3	3	3	-0.004
55,399	6.2	1.6571	-3	1	5	0.008
56.061	12.1	1.6391	1	3	4	0.007
56.570	2.7	1.6256	4	3	0	-0.019
57.124	3.0	1.6111	-2	4	2	-0.006
58.031	10.2	1.5881	-5	1	3	0.003
59,183	21.9	1.5599	2	4	2	0.002
,	,.	.,	(-2	0	6)	-,
59.552	1.7	1.5511	3	3	3	0.022
61 194	4.5	1 5134	4	0	4	-0.001
61,352	0.0	1,5099	-5	0	4	-0.011
61 661	2.6	1,5030	-1	3	5	0,009
62 997	0.8	1 4743	3	1	5	-0.009
63 935	10.3	1 4549	2	4	3	-0.007
00,000	10,0	1,1010	2 (0	2	6)	0,001
64 358	43	1 4464	(8	2	2	-0.001
64 978	4,0 10 1	1 4341	-2	2	6	-0.005
65 456	14.7	1,4341	5	1	3	-0,000
65 Q14	14,7 A A	1,4160	1	5	1	-0.002
66 370	4,4 7 0	1,4100	2	3	1	-0,003
00,370	7,0	1,4073	-2	4	4	0,005
66 000	12.0	1 2002	(1	2	0)	0.010
67 000	12,U 6.6	1 2029	4 2	4 2	5	0,010
07,090 67 690	0,0	1,0000	-3 1	э Е	ວ ດ	-0,010
000,10	5,9 7 4	1,0000	- 1	5	~	0,024
01,122	(,	1,3825	D A	3		0,000
00,152	4,7	1,3/48	-4	U	6	-0,001
68,753	0,2	1,3643	-6	2	1	0,001

69,344	7,3	1,3541	6	2	0	-0,004
70,626	7,7	1,3326	2	2	6	-0,006
71,079	1,4	1,3252	-6	0	4	-0,014
71,439	4,3	1,3194	-1	4	5	-0,010
72,796	6,2	1,2981	1	5	3	-0,004
73,596	1,1	1,2860	-4	2	6	0,011
73,951	7,7	1,2807	3	5	1	0,001
75,237	5,9	1,2620	6	2	2	-0,006
75,788	8,4	1,2542	-4	4	4	-0,009
76,021	0,3	1,2509	-7	0	2	0,007

Tab. 90: Beta-Manganformiat β-Mn(HCO₂)₂

Beta-Manganformiat β-Mn(HCO ₂) ₂							
a ₀ = 5,838 (1) Å	t	b ₀ = 7,545 (1) Å			c ₀ = 9,494 (1) Å		
$\alpha = 90^{\circ}$		β = 90°		$\gamma = 90^{\circ}$			
V = 418,2 (2) Å ³		Z = 4		D _x =	2,30 g/cm ³		
KS: Orthorhombisch		RG: Pnca		RIR	= 0,79		
F ₃₀ = 36,8 (0,012; 68)		Div. Blende: fest		λ = 1,5406 Å (CuK _{α1})			
2θ _{EXP} [°]	I/I ₀	d _{EXP} [Å]	h	k	I	∆2θ [°]	
14,977	100,0	5,9106	0	1	1	-0,009	
21,365	47,9	4,1555	1	1	1	-0,016	
24,127	3,2	3,6857	1	0	2	-0,016	
26,912	18,3	3,3102	1	1	2	-0,003	
29,675	4,4	3,0080	1	2	1	-0,024	
30,247	1,6	2,9525	0	2	2	0,010	
30,609	3,0	2,9183	0	1	3	0,001	
32,857	24,9	2,7237	2	1	0	-0,014	
33,974	38,0	2,6366	1	2	2	-0,016	
34,252	25,7	2,6158	2	1	1	0,017	
36,090	1,4	2,4868	2	0	2	-0,002	
36,929	1,5	2,4321	0	3	1	-0,016	
37,895	2,7	2,3723	0	0	4	0,020	
38,971	11,6	2,3093	2	2	0	-0,010	
40,232	13,5	2,2397	1	2	3	-0,011	
42,791	0,8	2,1115	1	1	4	-0,012	
43,835	2,6	2,0637	2	1	3	0,006	
45,116	4,5	2,0080	0	2	4	0,024	
46,078	4,3	1,9683	0	3	3	0,017	
47,823	2,6	1,9005	1	2	4	-0,021	
48,719	21,4	1,8676	2	3	1	0,016	
49,464	8,7	1,8412	0	1	5	0,007	
50,654	11,1	1,8007	3	0	2	0,001	
54,606	3,6	1,6793	1	4	2	-0,015	
55,492	2,5	1,6546	2	2	4	0,013	
56,806	10,5	1,6194	3	1	3	-0,010	
58,249	5,9	1,5827	0	0	6	-0,012	
59,272	2,5	1,5578	2	1	5	-0,013	
60,986	4,2	1,5180	3	2	3	-0,015	
62,888	1,5	1,4766	0	4	4	0,005	
65,878	3,8	1,4166	2	4	3	0,002	
68,939	2,6	1,3610	4	2	0	0,013	
69,896	3,0	1,3447	2	3	5	0,016	
		Eisen(II)formia	t-Dihydrat Fe	HCOO) ₂ ·2H ₂ O			
--	---------------	-----------------------------	---------------	---------------------------------------	---------------	------------------	
a ₀ = 8,739 (1)	Å	b ₀ = 7,197	(1) Å	c ₀ =	: 9,432 (1) Å		
α = 90°		$\beta = 97,48 (2)^{\circ}$		y =			
V = 588,2 (2) Å	3	Z = 4		D _x =			
KS: Monoklin		RG: P2 ₁ /c		RIR			
F ₃₀ = 58,6 (0,0 ⁻	109; 47)	Div. Blende: fest		λ =	α1)		
2θ _{EXP} [°]	I/Io	d _{EXP} [Å]	h	k		∆ 2 θ [°]	
11.874	2.71	8.6479	1	0	0	0.023	
18 041	0.66	5 7051	0	1	1	-0.005	
20,835	53 75	4 9471	-1	1	1	0,003	
22 074	24 66	4 6725	0	0	2	0.017	
22 436	47 21	4 5981	1	1	-	0.007	
23 703	0.00	4 3555	-1	0	2	0.019	
23 849	100 00	4 3292	2	0	0	0.018	
27 899	13 53	3 7106	2	1	0	0.009	
28,800	3 59	3 5969	0	2	0	0.013	
28,870	25 14	3 5883	-2	1	1	0.013	
30 204	2.08	3 4333	1	1	2	0,009	
30 459	13.26	3 4052	-2	0	2	0.014	
30,903	2 17	3 3575	0	2	1	0,009	
31 241	3 44	3 3221	1	2	0	0.012	
32 663	7 45	3 1811	-1	2	1	0,009	
33 745	0.24	3 0819	1	2	1	0,005	
34 832	0,24	2 9886	2	0	2	0,016	
36 094	13 61	2,3000	2	0	0	0,010	
36 560	7 27	2,8519	0	2	2	-0.001	
37 618	10.99	2,0313	-1	2	2	0,001	
38 987	43.45	2,7744	-1	- 1	0	-0.002	
39 261	21 60	2,0000	-3	1	1	-0,002	
39,201	4 86	2,0020	-5	1	3	0,011	
40 308	4,00	2,0240	2	2	1	0,009	
40,000	0,00	2,0002	2	- 1	1	0,000	
42 389	10.03	2,4300	-2	2	2	-0.004	
42,000	0.11	2,4742	-3	1	2	0,004	
44 638	0,11	2,4502	-5	2	2	0,015	
45,000	6.72	2,3375	0	0	4	0,010	
45,000	0,72	2,3373	0	3	1	-0.008	
45,272	4 02	2,0241	2	2	2	0,000	
46 571	4,02	2,2550	_1	2	1	0,013	
40,371	4,51	2,2020	-1	0	0)	0,001	
16 796	0.34	2 2520	(4	2	0)	0.011	
40,700	0,04	2,2323	-3 2	2	1		
47 386	12 28	2,2720	-J 1	2	1	0,007	
000, 1 7	12,20	2,2201	1 _1	J 1	і Л		
47,433 18 700	5,51 17 Q/	2,2211	- I _ 2	1	4 2	-0,001	
40,130 10 205	0.22	2,1007	-0 2	י ס	1	0,003	
49,090	0,23	2,1400	о О	2	ו ס	0,002	
49,039	0,37	2,1300	U	3	2	-0,014	
50,044	3,35	2,1148	-3 1	2	2	0,003	
50,382	6,68	∠,1016	- 1	3	2	0,004	

Tab. 91: Eisen(II)formiat-Dihydrat Fe(HCOO)₂:2H₂O

50,626	5,29	2,0921	1	1	4	0,006
50,915	3,26	2,0810	-4	1	1	-0,010
51,104	10,51	2,0738	4	1	0	0,012
51,187	14,24	2,0707	-4	0	2	0,009
51,902	0,34	2,0441	1	3	2	0,010
52,548	0,67	2,0207	2	3	1	0,001
53,448	2,14	1,9891	2	2	3	0,006
54,288	6,62	1,9607	0	2	4	-0,004
54,488	3,52	1,9540	2	0	4	-0,002
54,742	0,52	1,9456	-3	0	4	-0,012
55,505	5,75	1,9210	3	1	3	-0,001
			(-3	2	3)	
56,124	0,00	1,9015	0	3	3	-0,010
56,545	6,09	1,8885	-1	3	3	0,006
56,995	5,28	1,8748	4	0	2	-0,004
57,358	4,28	1,8639	-2	2	4	0,009
57,476	2,44	1,8604	-4	2	1	0,000
57,625	7,27	1,8560	4	2	0	-0,005
58,171	4.36	1,8401	-3	3	1	-0,010
58.627	5.15	1.8271	1	3	3	-0.005
58.928	3.62	1.8186	-1	1	5	-0.004
59.068	0.92	1.8146	4	1	2	-0.018
59.628	1.65	1.7991	0	4	0	0.004
59.779	10.36	1,7950	-4	2	2	-0.002
60.228	4.62	1.7829	4	2	1	-0.001
60.815	0.11	1.7673	-3	3	2	0.009
62.316	11.07	1.7289	1	1	5	0.003
62.781	5.09	1.7173	2	2	4	-0.008
63.348	1.86	1,7035	-4	0	4	-0.008
63.657	7.08	1.6961	-5	1	1	-0.007
64.361	3.82	1.6795	0	4	2	-0.014
65.108	8.74	1.6624	4	2	2	0.010
65.674	6.31	1.6496	-3	3	3	-0.014
66.626	0.76	1,6287	-3	1	5	0.013
66,909	1.56	1,6226	5	1	1	0.003
67.362	4.52	1,6130	-2	3	4	0.008
67,601	0.48	1,6080	4	3	0	-0.010
68 410	0.09	1 5912	-2	4	2	-0.011
69 597	4 27	1,5674	-5	1	- 3	0.003
	-,	.,	(-4	3	2)	0,000
70 928	4 88	1 5417	2	4	2	-0.006
71 483	1 16	1 5314	-2	0	6	0.007
73 505	1.86	1 4949	4	0	4	0.002
74 258	0.40	1,1010	-3	4	2	0,002
74 410	0,36	1 4793	-1	3	5	0.008
75 925	0,00	1 4541	3	1	5	-0 028
77 230	1 59	1 4333	-6	0	2	0 007
77,419	.,00	1 4304	0 0	2	- 6	-0 006
78,790	10 21	1 4094	5	- 1	3	0.003
. 0,700	10,21	1,1004	(2	0	6)	0,000
			\ `	0	5,	

79,020	1,02	1,4060	-6	1	2	-0,011
79,468	1,81	1,3994	1	5	1	0,004
80,287	3,19	1,3875	-2	4	4	0,004
80,516	3,19	1,3842	4	4	0	-0,008
81,372	2,60	1,3721	3	2	5	0,001
81,644	2,84	1,3684	5	3	1	-0,015
82,888	1,02	1,3514	-4	0	6	-0,011
83,737	2,60	1,3402	6	2	0	0,000
84,387	2,79	1,3318	6	0	2	-0,001
85,015	1,03	1,3238	-1	1	7	0,017
85,942	2,08	1,3123	2	2	6	0,000
86,374	1,76	1,3070	0	3	6	-0,001
86,738	1,72	1,3026	3	0	6	0,002
			(-6	0	4)	
88,502	2,13	1,2819	1	5	3	0,003
			(-4	3	5)	
			(3	1	6)	
90,239	1,51	1,2624	3	3	5	-0,015
90,654	1,15	1,2579	-3	1	7	0,002
91,475	3,18	1,2490	6	2	2	-0,002
92,618	3,72	1,2371	-7	0	2	0,002
			(-4	4	4)	
97,449	1,49	1,1902	7	1	1	0,003
97,586	1,73	1,1890	-7	1	3	-0,001
100,670	1,79	1,1620	0	6	2	-0,016
106,261	1,33	1,1181	-5	1	7	-0,026
107,344	2,62	1,1103	-5	5	1	0,016
			(-2	2	8)	
107,744	2,26	1,1075	-7	3	1	-0,001

Eisen(II)formiat Fe(HCOO) ₂								
a ₀ = 5,775 (1) Å		b ₀ = 7,478 (1) Å		c ₀ = 9,251 (1) Å				
$\alpha = 90^{\circ}$		$\beta = 90^{\circ}$		γ = 90°				
V = 399,5 (2) Å ³		Z = 4		$D_x = 2,43 \text{ g/cm}^3$				
KS: Orthorhombiso	ch	RG: Pnca		RIR: -				
F ₁₃ = 30,1 (0,0083)	; 52)	Div. Blende: variab	el	λ = 1,78901 Å (Co	Οκα1)			
2θ _{EXP} [°]	I/I ₀	d _{EXP} [Å]	h	k	I			
17,6904	100,0	5,0096	0	1	1			
25,1904	60,7	3,5325	1	1	1			
31,9091	29,7	2,8024	1	1	2			
34,9928	7,9	2,5622	1	2	1			
35,8106	6,3	2,5055	0	2	2			
36,0533	9,8	2,4892	2	0	0			
38,7397	63,4	2,3225	2	1	0			
40,2613	68,2	2,2382	1	2	2			
40,4186	25,0	2,2298	2	1	1			
40,9144	16,7	2,2040	1	1	3			
46,0471	17,7	1,9695	2	2	0			
47,9454	30,4	1,8959	1	2	3			
57,8434	22,2	1,5928	2	3	1			
58,2279	26,5	1,5832	1	3	3			
58,5178	10,7	1,5760	3	1	1			
59,3269	10,3	1,5565	2	0	4			
59,653	13,8	1,5487	0	1	5			
60,3477	22,0	1,5326	3	0	2			
67,6515	15,4	1,3838	3	2	2			
68,0991	8,7	1,3758	3	1	3			
68,1928	17,8	1,3741	1	2	5			

Tab. 92: Eisen(II)formiat Fe(HCOO)₂

Cobaltformiat-Dihvdrat Co(HCOO) ₂ ·2H ₂ O							
a ₀ = 8.683 (1) Å	λ	b₀ = 7.167	(1) Å	, C_ =	9.282 (1) Å		
α = 90°		β = 97.44	(2)°	v =	90°		
V = 572.7 (3) Å	3	Z = 4	()	- D _x =	$= 2.15 \text{ g/cm}^3$		
KS: Monoklin		RG: P2₁/c		RIR	: 0.92		
F ₃₀ = 89,6 (0,00)62; 54)	Div. Blend	e: fest	λ = 1,78901 Å (Coκα1)			
2θ _{EXP} [°]	I/I ₀	d _{EXP} [Å]	h	k		Δ 2θ [°]	
11,946	4,37	8,5959	1	0	0	0,019	
18,196	0.62	5.6571	0	1	1	-0.008	
21.009	70.94	4,9065	-1	1	1	0.011	
22,423	37.36	4.6006	0	0	2	0.007	
22,618	55,54	4,5614	1	1	1	0.008	
24,003	100,00	4,3017	2	0	0	0,018	
28,063	9,61	3,6893	2	1	0	0,008	
28,917	2,51	3,5826	0	2	0	0,007	
29,084	1,16	3,5624	-2	1	1	0,018	
30,545	18,61	3,3959	1	1	2	0,001	
30,799	2,12	3,3685	-2	0	2	0,002	
31,083	6,86	3,3385	0	2	1	0,008	
31,377	1,11	3,3080	1	2	0	0,004	
32,848	2,11	3,1636	-1	2	1	0,002	
33,944	4,30	3,0644	1	2	1	0,009	
34,128	0,41	3,0483	-2	1	2	0,006	
36,885	8,65	2,8275	0	2	2	-0,002	
37,935	4,83	2,7520	-1	2	2	-0,002	
39,239	5,83	2,6641	3	1	0	0,003	
39,530	23,24	2,6452	-3	1	1	0,004	
40,396	19,36	2,5908	1	1	3	-0,002	
			(-3	0	2)		
42,261	0,53	2,4813	3	1	1	-0,009	
42,751	6,63	2,4542	-2	2	2	0,005	
43,079	0,22	2,4364	-3	1	2	-0,006	
45,143	0,38	2,3304	0	2	3	0,002	
45,515	2,85	2,3124	0	3	1	0,000	
45,760	5,98	2,3007	0	0	4	0,007	
46,164	2,82	2,2816	2	2	2	-0,004	
46,821	2,33	2,2514	-1	3	1	0,006	
47,629	5,18	2,2153	1	3	1	-0,002	
48,090	1,69	2,1954	1	2	3	0,010	
48,190	0,90	2,1911	0	1	4	-0,005	
49,128	6,28	2,1517	4	0	0	0,017	
49,239	1,59	2,1472	-2	0	4	0,023	
49,331	2,79	2,1435	-3	1	3	-0,008	
50,442	1,90	2,0992	-3	2	2	0,002	
50,731	2,48	2,0881	-1	3	2	-0,004	
51,424	5,67	2,0618	4	1	0	-0,009	
51,618	6,81	2,0546	-4	0	2	-0,004	
52,860	0,15	2,0096	2	3	1	0,011	
54,007	0,83	1,9701	2	2	3	-0,003	

Tab. 93: Cobaltformiat-Dihydrat; Divergenzblende: fest

55,032	2,92	1,9362	0	2	4	0,001
55,274	1,93	1,9284	2	0	4	-0,005
55,528	0,32	1,9202	-3	0	4	0,012
56,117	3,14	1,9017	3	1	3	-0,001
56,658	0,04	1,8850	0	3	3	-0,003
57,064	2,32	1,8727	-1	3	3	-0,002
57,502	2,27	1,8597	4	0	2	-0,004
57,871	1,27	1,8488	-4	2	1	0,011
57,998	3,51	1,8451	4	2	0	0,002
58,106	2,20	1,8420	-2	2	4	0,016
58,523	1,93	1,8300	-3	3	1	-0,004
59,179	2,04	1,8115	1	3	3	-0,003
59,601	2,69	1,7999	4	1	2	0,003
59,920	4,32	1,7912	-1	1	5	-0,006
60,255	1,85	1,7821	-4	2	2	0,006
60,604	2,67	1,7728	3	3	1	-0,007
63,325	4,68	1,7041	1	1	5	-0,004
63,570	1,59	1,6982	2	2	4	-0,009
64,137	3,38	1,6848	-5	1	1	0,010
64,790	1,36	1,6696	0	4	2	0,002
65,480	1,57	1,6540	2	4	0	0,010
65,624	1,90	1,6507	4	2	2	-0,009
66,280	2,71	1,6362	-3	3	3	0,005
67,418	1,73	1,6118	5	1	1	0,007
67,616	1,18	1,6076	-3	1	5	-0,008
68,868	0,27	1,5819	-2	4	2	0,000
69,026	1,41	1,5787	2	1	5	0,001
70,263	2,03	1,5544	-5	1	3	-0,011
71,404	0,48	1,5328	2	4	2	-0,012
72,051	0,50	1,5209	3	3	3	0,005
74,399	0,18	1,4795	4	0	4	-0,013
74,770	0,11	1,4732	-5	0	4	-0,006
75,425	0,05	1,4623	-1	3	5	0,015
77,892	0,71	1,4230	-6	0	2	0,013
78,473	0,75	1,4142	1	3	5	-0,012
·			(1	5	0)	·
78,724	0,64	1,4104	0	2	6	-0,012
79,579	2,36	1,3977	5	1	3	-0,010
80,111	1,53	1,3900	-2	2	6	-0,003
81,011	1,27	1,3772	4	4	0	-0,007
81,106	1,25	1,3758	-2	4	4	0,008
81,718	0,22	1,3673	4	2	4	0,002
81,965	0,17	1,3639	2	1	6	-0,004
82,232	1,02	1,3603	5	3	1	-0,017
- , -	, -	,	(2	5	0)	- , -
82,462	1,11	1,3572	-3	3	5	0.015
82,974	0,08	1,3503	-4	4	2	0,003
83,345	0,16	1,3454	-6	1	3	-0.009
84,343	1,06	1,3324	6	2	0	-0.022
85,136	1,17	1,3223	6	0	2	-0,015
	•	•				, -

85,925	0,19	1,3125	2	4	4	0,002
86,686	0,20	1,3032	-1	1	7	0,023
87,357	2,21	1,2952	-6	0	4	-0,005
			(2	2	6)	
89,217	0,49	1,2738	1	5	3	0,011
91,461	0,59	1,2492	3	3	5	0,009
92,322	1,48	1,2401	6	2	2	0,025
93,327	0,12	1,2298	7	0	0	0,012
			(3	4	4)	
93,598	1,23	1,2271	-5	0	6	-0,012
98,323	0,41	1,1823	7	1	1	0,017
98,586	0,49	1,1800	-7	1	3	0,004
101,017	0,28	1,1591	-1	3	7	0,005
101,379	0,36	1,1561	0	6	2	0,010
101,703	0,16	1,1534	4	3	5	0,013
105,320	0,33	1,1251	1	3	7	0,000
106,005	0,22	1,1200	6	4	0	0,004
			(4	2	6)	
108,270	0,64	1,1038	-5	1	7	-0,004
			(-1	2	8)	
108,670	0,41	1,1010	-7	3	1	-0,025
109,184	0,69	1,0975	1	6	3	-0,016

	,	Nickelformia	t-Dihydrat Ni(H	COO) ₂ ·2H ₂ O		
a ₀ = 8.604 (1) Å	Å	b₀ = 7.078	(1) Å	C ₀ =	9.227 (1) Å	
$\alpha = 90^{\circ}$	-	$\beta = 97.44(2)^{\circ}$		v =		
$V = 557.2(3) Å^3$		7 = 4		т D _v =		
KS: Monoklin				RIR	· 0.66	
$F_{30} = 51,2 (0,00)$	096; 61)	Div. Blende: fest		λ =)	
2θεχρ [°]	I/Io	dexe [Å]	h	k		<u>,</u>
10 387	2.5	8 5095	1	0	0	0.027
15,834	2,5	5 5926	0	1	1	0,027
18 245	100.0	4 8587	-1	1	1	0,017
19,245	83.6	4,5706	-1	0	2	0,007
19,400	62 5	4,5100	1	1	1	0,010
20 828	02,5	4,5190	2	0	0	0,001
20,020	9 4 ,9 10 0	3,6527	2	1	0	0,021
24,349	10,9	3,5370	2	2	0	0,000
25,152	2,2	2,5379	0	2	1	0,009
25,192	2,5	3,0322	-2	1	י ר	-0,013
20,443	24,5	2 2406	1 2	1	2	0,000
20,003	1,0	3,3400	-2	0	2	0,020
27,003	10,4	3,2994	0	2	1	0,012
27,250	1,0	3,2092	1	2	0	-0,002
28,523	3,7	3,1269	-1	2	1	0,010
29,447	5,1	3,0309	1	2	1	0,003
29,531	0,8	3,0225	-2	1	2	0,004
31,952	10,1	2,7987	0	2	2	0,006
32,858	7,4	2,7236	2	2	0	0,002
33,952	9,2	2,6382	3	1	0	0,007
34,205	23,6	2,6194	-3	1	1	0,017
34,872	29,8	2,5708	1	1	3	0,017
35,118	2,4	2,5533	2	2	1	0,002
36,532	1,1	2,4577	3	1	1	0,006
36,971	11,0	2,4295	-2	2	2	0,012
38,965	0,7	2,3096	0	2	3	0,012
39,384	15,5	2,2860	3	0	2	0,002
39,864	4,8	2,2596	2	2	2	0,002
40,525	5,9	2,2243	-1	3	1	0,013
41,203	6,8	2,1892	1	3	1	0,002
41,470	5,2	2,1757	3	1	2	-0,005
42,364	8,4	2,1319	4	0	0	0,021
42,491	6,8	2,1257	-3	1	3	0,001
43,503	3,0	2,0786	-3	2	2	0,006
43,814	5,6	2,0646	2	3	0	0,002
			(-1	3	2)	
44,170	7,8	2,0488	1	1	4	0,012
44,304	5,0	2,0429	-2	1	4	0,007
44,442	6,4	2,0369	-4	0	2	-0,005
46,463	1,8	1,9529	2	2	3	0,000
47,297	4,8	1,9203	3	2	2	-0,001
47,426	6,1	1,9154	2	0	4	-0,008
48,191	4,6	1,8868	3	1	3	-0,008

Tab. 94: Nickelformiat-Dihydrat Ni(HCOO)₂·2H₂O

49,117	4,8	1,8534	-1	3	3	0,016
49,397	3,2	1,8435	4	0	2	0,009
49,868	9,7	1,8272	-2	2	4	0,009
50,363	4,1	1,8104	-3	3	1	-0,016
50,869	3,0	1,7936	1	3	3	0,001
51,298	4,2	1,7796	-1	1	5	-0,002
51,737	13,5	1,7655	-4	2	2	-0,009
52,097	2,9	1,7541	4	2	1	0,010
54,125	6,8	1,6931	1	1	5	-0,010
54,422	7,9	1,6846	2	2	4	-0,008
54,941	5,0	1,6699	-5	1	1	-0,015
55,646	3,3	1,6504	0	4	2	0,001
56,205	7,8	1,6353	4	2	2	-0,003
56,760	5,2	1,6206	-3	3	3	-0,017
57,691	4,7	1,5966	-3	1	5	-0,022
58,266	1,1	1,5823	4	3	0	-0,002
59,013	1,6	1,5640	-2	4	2	-0,001
			(1	2	5)	
59,987	3,2	1,5409	-5	1	3	-0,004
61,081	5,2	1,5159	2	4	2	-0,014
61,256	0,9	1,5120	-4	2	4	-0,026
61,858	3,1	1,4987	-2	0	6	-0,004
63,294	2,2	1,4681	4	0	4	-0,007
64,162	2,4	1,4503	-1	3	5	-0,005
65,396	0,4	1,4259	3	1	5	-0,016
66,179	13,1	1,4109	-6	0	2	-0,021
66,760	4,0	1,4001	0	2	6	0,017
67,534	4,4	1,3859	-3	4	3	-0,002
			(5	1	3)	
67,744	2,5	1,3821	5	3	0	0,029
67,869	1,8	1,3799	-2	2	6	0,008
68,050	1,0	1,3766	1	5	1	-0,023
68,867	4,9	1,3623	-2	4	4	-0,006
69,842	3,0	1,3456	-3	3	5	0,004
71,421	3,2	1,3197	6	2	0	-0,019
71,998	2,3	1,3106	6	0	2	0,002
72,956	2,2	1,2957	-1	1	7	-0,016
73,599	5,1	1,2859	2	2	6	0,002
			(4	1	5)	
75,403	0,6	1,2596	1	5	3	0,006
76,879	3,8	1,2390	3	3	5	-0,024
77,465	1,0	1,2311	-3	1	7	0,027
77,645	2,0	1,2287	6	2	2	0,023
78 684	31	1 2151	-4	4	4	0 003

Kupferformiat-Tetrahvdrat Cu(HCO ₂) ₂ ·4H ₂ O							
a₀ = 8.171 (1) Å	b ₀ = 8	3.122 (1) Å	(C₀ =	6.310 (1)	Å	
$\alpha = 90^{\circ}$	β = 1	00.94 (2)°	1	/ = 9	90°		
$V = 411.13 (3) Å^3$	7 = 2		ſ)~ =	1.823 a/c	m ³	
KS: Monoklin	RG: F	⊃2₁	F	RIR	= 1.24		
$F_{30} = 99.7 (0.0070; 43)$	Div. E	Blende: fest	,	\ = ^	1.5406 Å (Cu _{ka1})	
2θ _{EXP} [°]		dexe [Å]	h	k		Δ2θ [°]	
14.289	100.0	6.1934	0	0	1	0.004	
15.511	82.1	5,7081	1	1	0	-0.002	
17 989	1.5	4 9272	0	1	1	-0.005	
19 652	21.5	4 5137	-1	1	1	-0,006	
21 857	0.5	4 0632	0	2	0	-0.013	
22,007	3.3	4 0110	2	0	0	0.001	
22 534	22.9	3,9426	- 1	1	1	-0.010	
24 546	10.3	3 6237	1	2	0	-0.004	
24,738	33	3 5960	2	1	0	0,003	
26 199	1 1	3,3987	0	2	1	-0.019	
26,429	0.5	3 3697	-2	1	1	-0.003	
27 398	9,5	3 2527	_1	2	1	-0.012	
28,787	57.4	3,2327	- 1	0	2	-0,012	
30,876	37,4 11 Q	2,8038	0	1	2	0,006	
31,325	11,5	2,0550	2	2	2	0,000	
32 705	11,5	2,0000	-2	2	1	0,003	
32,705	4,5	2,7300	-2	2	י 2	0,002	
34 733	0,2	2,7134	-2	1	2	0,001	
34,733	3,0	2,5007	1	י ר	2	-0,005	
34,933	3,2	2,5004	ו ס	3 1	0	-0,018	
35,300	1,0	2,5400	ა ა	1	1	-0,009	
35,072	2,4	2,3149	-3	י ר	1	-0,004	
30,303	9,1	2,4007	2	2	ו ס	-0,004	
30,430	4,4	2,4025	1	2	2	0,000	
37,007	0,3	2,4221	-1	ა ი	1	0,000	
38,703	0,6	2,3212	1	ა ი	ו ר	-0,007	
39,917	2,3	2,2307	-2	2	2	-0,010	
40,142	2,7	2,2445	2	3	0	-0,011	
40,674	4,0	2,2104	-3	2		-0,006	
41,557	0,7	2,1714	2	1	2	0,002	
41,082	0,9	2,1052	-3	1	2	-0,008	
43,797	4,8	2,0654	0	0	3	-0,006	
44,404	6,2	2,0385	0	3	2	-0,001	
44,566	2,5	2,0315	-1	1	3	0,004	
44,726	1,6	2,0246	-4	0 1	1	-0,014	
45,263	4,5	2,0018	(3	2	1)	-0,009	
45,392	0,5	1,9964	-2	0	3	0,008	
46,016	6,2	1,9708	2	2	2	-0,009	
47,049	3,9	1,9299	0	4	1	-0,012	
47,317	2,4	1,9196	1	3	2	-0,008	
47,782	2,8	1,9020	-1	4	1	-0,009	
48,053	1,0	1,8919	-3	3	1	-0,003	

Tab. 95: Kupferformiat-Tetrahydrat Cu(HCO₂)₂·4H₂O

48 818	10.6	1 8640	-1 2 3	0 004
49 475	2 0	1,8040	0 2 3	-0 001
50 333	3.7	1 811/	-4 2 1	0.001
50,555	5,7	1,0114	(2 4 0)	0,001
50,731	2,5	1,7981	4 2 0	0,004
51,276	1,8	1,7803	-2 4 1	0,002
51,725	1,7	1,7659	-3 1 3	-0,006
52,110	3,3	1,7537	3 3 1	-0,009
52,920	0,7	1,7288	-3 3 2	-0,007
53,893	4,6	1,6998	2 4 1	0,004
54,275	0,2	1,6888	3 2 2	0,010
54,417	0,4	1,6847	-4 2 2	-0,003
54,850	0,5	1,6724	2 1 3	-0,008
55,546	0,9	1,6531	4 2 1	0,007
56,549	1,3	1,6261	-2 4 2	-0,018
57,618	2,0	1,5985	-4 0 3	-0,007
57,860	0,5	1,5924	1 5 0	-0,014
58,561	2,4	1,5750	2 2 3	0,002
59,053	0,2	1,5630	1 3 3	-0,004
59,345	1,3	1,5560	-1 5 1	0,005
59,642	1,0	1,5490	0 0 4	-0,007
60,370	1,0	1,5320	3 3 2	-0,021
60 546	0.4	1 5290	1 5 1	0.006
00,540	0,4	1,5260	(-4 3 2)	0,000
60,794	1,3	1,5224	-5 1 2 (3 4 1)	0,003
61.585	0.5	1.5047	4 3 1	0.001
62.374	0.6	1.4875	-2 5 1	-0.001
62,850	0.2	1.4774	3 1 3	-0.007
63 587	0.3	1 4621	5 1 1	-0.003
64 090	0.4	1 4518	4 2 2	-0.009
64,306	1.0	1 4474	0 2 4	-0.015
64 440	1,0	1 4447	233	0,010
64 539	0.8	1,4428	-3 1 1	0,014
64 771	1.0	1 4382	-1 5 2	0,014
65 365	1,0	1,4365	-1 5 2	0,000
65,503	1,2	1,4200	4 4 0	0,010
05,504	0,2	1,4230	-243	-0,006
66,955	0,8	1,3905	-531	0,003
67,402	0,5	1,3883	3 5 0	0,001
67,648	0,3	1,3838	-351	0,015
67,824	0,5	1,3807	5 3 0	-0,022
68,077	0,2	1,3762	-4 3 3	0,011
68,524	1,0	1,3683	-4 4 2	-0,010
68,830	0,8	1,3629	-1 3 4	0,003
69,180	0,4	1,3569	-4 0 4	-0,009
69,522	0,5	1,3510	4 4 1	0,006
69,891	0,5	1,3448	-5 3 2	0,016
69,991	0,2	1,3431	-2 3 4	-0,002
70,480	3,3	1,3350	1 6 0	-0,015
70,983	0,8	1,3268	3 5 1	0,019
71,637	0,9	1,3163	-3 5 2	-0,003

71,811	0,3	1,3135	-1 (3	6 3	1 3)	-0,008
72,145	0,8	1,3082	5	1	2	0,007
72,501	0,7	1,3027	5	3	1	0,011
73,266	2,6	1,2910	-6	2	1	-0,014
73,720	0,5	1,2841	-1	5	3	0,022
73,826	0,3	1,2825	2	6	0	0,001
74,599	1,7	1,2712	-5	4	1	0,000
74,698	0,3	1,2697	6	2	0	0,019
75,541	1,7	1,2576	-6	2	2	-0,023
76,397	1,0	1,2457	-1	4	4	0,004
76,435	0,2	1,2451	-5	3	3	0,014
76,741	0,9	1,2409	2	6	1	0,010
76,808	0,8	1,2400	-1	6	2	0,008
77,250	0,3	1,2340	4	4	2	0,014
77,452	0,4	1,2313	0	4	4	0,011
77,507	0,1	1,2306	-2	4	4	-0,008
77,959	1,1	1,2246	0	1	5	0,025
78,977	0,8	1,2113	-2	6	2	-0,004
79,269	0,4	1,2076	3	4	3	0,009
79,687	0,4	1,2023	-3 (6	1 2	5 1)	0,001
79,956	0,6	1,1989	6	3	0	-0,008
80,834	0,3	1,1881	-6	3	2	0,004
81,089	0,5	1,1850	0	2	5	0,009
81,440	0,3	1,1808	-6	2	3	0,014
81,627	0,5	1,1786	1	1	5	-0,020
83,184	0,1	1,1604	2	6	2	-0,002
83,516	0,4	1,1566	-4	0	5	0,020
84,714	0,1	1,1433	-1	3	5	-0,008
85,297	0,0	1,1370	-2	3	5	-0,001
85,536	0,1	1,1344	-1	7	1	0,018
85,787	0,1	1,1317	-1	5	4	-0,007

		Zinkformiat-	Dihydrat Zn(H	CO ₂) ₂ ·2H ₂ O		
a₀ = 8.696 (1) Å	1	b₀ = 7.148	(1) Å	 C =	9.308 (1) Å	
α = 90°		β = 97.61 ((2)°	v =	90°	
V = 573.5 (3) Å	V = 573.5 (3) Å ³		7 = 4		= 2.22a/cm ³	
KS: Monoklin		RG: P2₁/c		RIR = 0.97		
F ₃₀ = 75,6 (0,00	81; 49)	Div. Blende	e: fest	λ =	1,5406 Å (Cuκα	1)
2θ _{EXP} [°]	I/Io	d _{EXP} [Å]	h	k	1	∆2θ [°]
10,271	1,5	8.6058	1	0	0	0,016
15.667	1.1	5.6519	0	1	1	-0.003
18.059	100.0	4.9080	-1	1	1	0.014
19.245	67.7	4.6083	0	0	2	0.021
19.461	75.2	4.5577	1	1	1	0.006
20.601	65.7	4.3080	2	0	0	0.007
23.032	0.4	3.8583	1	0	2	0.011
24.104	11.6	3.6891	2	1	0	0.010
24,900	5.8	3.5731	0	2	0	0.008
26.225	27.5	3,3954	1	-	2	0,009
26 728	12.6	3,3326	0	2	- 1	0,002
26,987	1.3	3 3013	1	2	0	0.003
28,221	3.2	3,1597	-1	2	1	0,001
29 163	7.9	3 0597	1	2	1	0,000
30 166	0.0	2 9602	2	0	2	-0.005
31 131	0,0	2,0002	2	0	0	0.026
31 654	0, <u>2</u> 16.0	2,8744	0	1	3	0,020
32,096	0.3	2,0244	-1	1	3	0,000
32 525	8.7	2,7507	2	2	0	0,005
33 600	6.4	2,7007	2	1	0	0,008
33,808	0, 1 22.2	2,0001	-3	1	1	0,000
34 164	0.6	2,0402	1	2	2	0,002
34 580	32.0	2,0224	1	1	2	0,002
34 776	2.0	2,5376	2	2	1	-0.003
36 189	2,0	2,0170	2	1	1	-0,003
36 556	2,2 14 Q	2,4002	-2	2	2	-0.002
36 783	0.1	2,4001	-2	1	2	-0,002
38 611	0,1	2,77,17	-9	2	2	0,000
39.027	18.5	2,0200	-1	0	3 4	-0.007
39 504	8.0	2,0001	2	2	- 2	-0,007
40 104	0,0 7 1	2,2754		2	1	0,004
40,788	9.8	2,2400	-1	3	1	-0.001
41 087	3,8 4 3	2,2105	0	1	1	-0,001
41,007	4,5 8.6	2,1931	0	0	4	0,000
41,097	0,0	2,1545	4	1	3	0,004
42,002	4,3	2,1494	-5	2	1	-0,001
72,410	0,5	2,1200 2,1192	0	2	י ס	-0,005
42,049 12 005	0,0 2 0	2,1100 2 1015	2	ວ ົ	2	-0,020
40,000 12 261	2,9 6.0	2,1010	-0 0	2	2	
10,017	0,0 01 E	2,0001	۲ ۸	о О	0	0,004
40,917	21,3	2,0000	- 4 1	0	2	-0,007
44,049 15 115	0,7	2,0219	י 2	ວ ຊ	∠ 1	-0,007
40,140	0,9	∠,0007	2	5	1	-0,000

Tab. 96: Zinkformiat-Dihydrat Zn(HCO₂)₂·2H₂O

46,048	1,6	1,9695	2	2	3	-0,003
46,841	6,0	1,9380	0	2	4	0,002
47,048	5,2	1,9299	2	0	4	0,003
47,773	11,0	1,9023	3	1	3	-0,009
48,285	0,4	1,8834	0	3	3	0,007
48,594	6,3	1,8721	-1	3	3	0,000
48,912	3,4	1,8607	-3	1	4	0,012
49,340	11,9	1,8455	4	2	0	-0,005
49,836	6,2	1,8283	-3	3	1	0,011
49,969	0,0	1,8237	-4	1	3	-0,005
50,369	5,3	1,8102	1	3	3	-0,011
50,676	0,6	1,8000	4	1	2	0,006
50,804	3,5	1,7957	-1	1	5	0,005
51,152	8,2	1,7843	-4	2	2	0,008
51,582	5,8	1,7704	3	3	1	0,002
52,028	0,6	1,7563	-3	3	2	-0,008
53,653	8,4	1,7069	1	1	5	-0,011
53,947	8,4	1,6983	2	2	4	0,000
54,241	2,4	1,6898	-5	0	2	0,001
54,310	3,8	1,6878	-5	1	1	-0,012
55.056	6.1	1.6667	0	4	2	-0.009
55,398	0,2	1,6572	0	3	4	0,004
55.639	7.6	1.6506	2	4	0	0.008
56.126	7.5	1.6374	-3	3	3	-0.004
56.751	0.3	1.6208	4	1	3	0.000
57.043	5.8	1.6132	-3	1	5	-0.016
57.621	1.2	1.5984	4	3	0	-0.009
58.352	1.6	1.5801	2	1	5	0.008
59,259	4,1	1,5581	-5	1	3	0,005
60,125	0,9	1,5377	0	0	6	0,001
60,469	7,0	1,5298	2	4	2	0,003
60,917	0,9	1,5196	3	3	3	0,006
61.190	1.3	1.5135	5	1	2	0.014
61.627	0.3	1.5038	1	4	3	-0.006
62.732	2.3	1,4799	4	0	4	-0.003
62.918	0.1	1,4760	2	2	5	-0.007
63.096	0.3	1,4723	-3	4	2	0.007
63,492	0.9	1,4640	-1	3	5	-0.005
64.333	0,1	1,4469	-5	1	4	0.016
64.822	1.4	1.4372	-3	0	6	0.004
65.374	0.8	1,4264	-6	0	2	-0.008
65.624	0.3	1.4215	-1	2	6	0.016
66.015	1.9	1,4140	1	3	5	0.014
66 098	22	1 4125	3	4	2	-0.001
66.204	<u>_,_</u> 0.0	1,4105	1	5	-	-0.003
66.300	0.0	1,4087	6	1	0	-0 017
66.580	1,5	1,4034	-5	3	1	-0.002
66.868	4.3	1,3981	5	1	3	-0 013
67,105	2.3	1,3937	-2	2	e 6	-0 018
67.324	<u>_,0</u> 1.9	1,3897	_ 1	- 5	1	0,002
	.,0	.,		5	•	0,002

67,516	0,0	1,3862	-4	2	5	-0,024
67,865	0,4	1,3799	3	3	4	-0,004
67,950	0,8	1,3784	-5	3	2	-0,003
68,099	3,7	1,3758	-2	4	4	0,006
68,567	1,0	1,3675	1	2	6	0,008
69,020	4,5	1,3596	-3	3	5	-0,003
69,600	0,9	1,3497	-4	4	2	0,007
69,947	0,7	1,3439	4	4	1	0,011
70,264	0,9	1,3386	-4	0	6	-0,018
70,598	1,8	1,3331	6	2	0	-0,012
71,015	0,9	1,3263	-5	3	3	0,007
71.100	1.1	1.3249	-6	2	2	-0.015
71.224	0.7	1.3229	6	0	2	-0.010
71.953	1.3	1.3113	2	4	4	0.003
72.219	0.6	1.3071	-1	1	7	-0.001
72,758	0.9	1,2987	5	3	2	-0.006
72,921	3.3	1,2962	0	1	7	-0.001
73,131	0.9	1,2930	-1	5	3	-0.022
73 394	0.7	1 2890	4	4	2	-0 021
73,902	0.1	1 2814	-6	2	3	0.024
74,008	03	1,2014	3	5	0	0,024
74,560	0,3 1 4	1,2730	1	5	3	-0.007
75 106	1, 1 0 1	1,2717	-2	3 4	5	0,007
75 533	2.0	1,2623	-2	5	1	0,000
75,850	2,0	1,2570	3	2	6	0,000
75,050	0,5	1,2000	-4	2	5	0,002
70,149	1,0	1,2491	3	3	5	0,000
70,042	0,9	1,2437	-5	1	7	0,010
70,751	1,9	1,2400	5 4	4	0	-0,000
77,099	3,1 0.5	1,2200	-4	4	4	-0,002
70,000	0,5	1,2233	5	3	3	-0,007
78,243	0,3	1,2208	-0	2	4	0,004
78,791	0,3	1,2137	-5	1	6	-0,016
79,292	0,4	1,2073	-3	5	3	-0,004
80,559	0,1	1,1915	-2	5	4	0,003
81,236	1,2	1,1832	1	1	1	0,002
81,494	0,2	1,1801	1	6	0	0,004
81,851	0,3	1,1759	-5	3	5	0,010
82,529	1,0	1,1679	5	1	5	0,002
83,122	0,3	1,1611	-1	3	7	-0,011
83,410	0,4	1,1578	3	5	3	-0,010
83,658	0,4	1,1550	-2	4	6	-0,022
83,814	1,7	1,1533	0	0	8	0,001
84,068	0,1	1,1504	-4	4	5	0,000
85,038	0,2	1,1398	4	4	4	0,002
85,723	0,3	1,1324	-1	5	5	0,006
86,166	0,3	1,1277	3	1	7	0,001
86,303	0,6	1,1263	1	3	7	-0,014
86,564	0,4	1,1236	-2	6	2	0,009
86,879	0,4	1,1203	4	2	6	0,018
86.939	0.4	1.1197	6	4	0	-0.004

Anhang						223
87,315	0,5	1,1158	-3	3	7	0,015
88,002	0,4	1,1089	1	5	5	0,017
88,137	0,9	1,1075	-5	1	7	0,008
88,510	0,8	1,1038	-5	5	1	-0,009
88,758	0,4	1,1014	-7	3	1	0,015
89,141	2,3	1,0976	0	2	8	-0,007
89,792	0,1	1,0914	-5	5	2	0,009

Tab. 97: Beta-Zinkformiat β-Zn(HCO₂)₂

		Beta-Zinkformiat β-Zn(HCO ₂)	2			
a ₀ = 7,646 (1) Å	b	₀ = 13,602 (2) Å	(c ₀ =	12,550 (2) Å	
α = 90°	β	= 101,48 (2)°	$\gamma = 90^{\circ}$			
V = 1279,1 (5) Å ³	Z	= 12	$D_x = 2,42 \text{ g/cm}^3$			
KS: Monoklin	R	G: P2 ₁	F	RIR	= 0,79	
F ₃₀ = 119,1 (0,0063; 41)	D	iv. Blende: fest)	\ = <i>`</i>	1,5406 Å (Cu _{Kα1}))
2θ _{ΕΧΡ} [°]	I/I ₀	d _{EXP} [Å]	h	k	I	Δ 2θ [°]
9,701	0,6	9,1101	0	1	1	0,013
11,805	1,1	7,4904	1	0	0	0,004
12,544	2,3	7,0511	-1	0	1	0,003
13,486	15,7	6,5606	1	1	0	0,005
14,132	20,9	6,2621	-1	1	1	-0,002
14,403	51,7	6,1447	0	0	2	0,012
14,882	100,0	5,9481	0	2	1	0,009
15,808	3,8	5,6016	0	1	2	0,006
16,374	3,7	5,4091	1	1	1	0,008
16,718	5,5	5,2988	-1	0	2	0,000
17,601	12,5	5,0348	1	2	0	0,004
17,951	5,1	4,9374	-1	1	2	0,000
18,099	2,1	4,8974	-1	2	1	-0,007
19,914	10,0	4,4549	1	2	1	0,005
20,417	3,4	4,3462	1	0	2	0,009
20,862	0,3	4,2547	0	3	1	-0,003
21,223	3,6	4,1830	-1	2	2	-0,016
21,446	17,9	4,1400	1	1	2	0,009
22,538	6,5	3,9418	-1	0	3	0,002
22,912	4,9	3,8784	1	3	0	0,004
23,309	11,8	3,8132	-1	3	1	0,004
23,478	10,2	3,7861	-1	1	3	0,001
23,721	0,2	3,7479	-2	0	0	-0,009
24,275	3,5	3,6636	1	2	2	-0,001
24,638	3,2	3,6105	2	1	0	0,010
24,759	2,9	3,5931	1	3	1	0,011
25,215	0,8	3,5290	-2	0	2	-0,019
25,353	1,9	3,5102	0	2	3	0,007
25,843	1,9	3,4448	-1	3	2	0,001
26,112	10,6	3,4099	-1	2	3	0,005
26,843	4,5	3,3186	-2	2	1	-0,006
27,140	5,9	3,2830	2	2	0	-0,013
27,583	1,4	3,2313	1	1	3	0,015
28,434	8,6	3,1365	1	3	2	0,016
28,869	3,3	3,0902	-2	0	3	-0,015
29,129	7,0	3,0632	-1	4	1	-0,002
29,349	5,8	3,0407	0	3	3	0,002
29,616	0,6	3,0139	-2	1	3	-0,020
29,852	7,1	2,9906	1	2	3	-0,010
30,014	8,5	2,9748	-1	3	3	0,000
30,294	1,7	2,9480	2	0	2	0,014
30,332	2,1	2,9444	1	4	1	0,016

30,671	2,7	2,9126	-2 3 1	0,002
30,959	4,5	2,8862	2 3 0	0,020
31,002	4,9	2,8822	2 1 2	0,001
31,806	3,3	2,8112	-2 2 3	0,011
31,979	6,2	2,7964	-1 2 4	-0,006
32,124	13,0	2,7841	-2 3 2	-0,006
32,907	2,1	2,7196	2 3 1	0,008
33,073	2,2	2,7064	2 2 2	-0,007
33,389	6,0	2,6815	1 3 3	0,020
33,424	5,6	2,6787	1 4 2	-0,002
33,697	1,8	2,6576	051	-0,020
33,815	5,4	2,6487	-2 0 4	0,010
34,275	13,7	2,6141	1 1 4	0,008
35,140	22,8	2,5517	-2 3 3	0,012
35,294	15,5	2,5409	-1 3 4	-0,008
35,633	7,5	2,5176	2 4 0	0,005
36,122	9,5	2,4846	2 1 3	-0,008
36,309	23,7	2,4722	2 3 2	0,000
36,346	13,8	2,4698	151	0,008
36,551	8,9	2,4564	3 1 0	0,003
36,670	8,6	2,4487	-1 1 5	-0,013
37,123	10,2	2,4199	-1 5 2	0,002
37,360	4,5	2,4051	2 4 1	-0,012
37,976	0,5	2,3674	2 2 3	0,016
38,160	10,2	2,3565	3 0 1	0,024
38,353	10,4	2,3451	3 2 0	-0,010
38,909	14,7	2,3128	0 2 5	0,006
39,025	1,9	2,3062	152	-0,001
39,166	1,0	2,2982	1 3 4	-0,020
39,362	5,2	2,2872	-2 3 4	0,005
39,480	5,2	2,2807	0 4 4	-0,001
39,570	6,7	2,2757	-2 0 5	-0,024
40,261	4,9	2,2382	-1 5 3	0,014
40,453	10,4	2,2280	2 4 2	-0,001
40,758	1,3	2,2121	-2 5 1	0,001
40,792	3,5	2,2103	1 0 5	0,002
40,861	1,8	2,2067	2 3 3	0,005
41,271	3,7	2,1857	-3 3 2	-0,017
41,894	1,6	2,1546	-2 5 2	-0,015
42,052	6,9	2,1469	2 1 4	-0,003
42,175	7,5	2,1409	3 1 2	0,010
42,308	2,3	2,1345	-3 1 4	-0,017
42,446	18,9	2,1279	0 6 2	-0,018
42,523	7,1	2,1242	2 5 1	-0,001
42,905	5,4	2,1062	1 5 3	0,003
43,008	17,0	2,1014	1 2 5	0,016
43,227	2,7	2,0912	3 3 1	0,014
43,272	9,4	2,0892	-2 4 4	0,016
43,355	2,3	2,0854	-1 0 6	0,007
43,785	11,8	2,0659	3 2 2	0,002
				,

43,889	3,0	2,0613	-1 1 6	0,008
44,333	2,7	2,0416	-2 5 3	-0,005
44,389	18,8	2,0392	-3 4 1	0,004
44,460	4,8	2,0361	-1 5 4	-0,022
45,065	2,5	2,0101	1 6 2	0,000
45,473	4,6	1,9931	045	-0,001
45,685	4,6	1,9843	0 6 3	-0,011
46,295	7,4	1,9596	2 3 4	0,019
46,514	2,1	1,9508	-2 1 6	-0,004
46,593	1,7	1,9477	-2 6 1	-0,020
46,807	2,7	1,9393	2 6 0	0,005
47,662	1,3	1,9065	-2 6 2	0,011
47,880	7,4	1,8983	-2 5 4	-0,009
48,011	8,9	1,8935	-2 2 6	-0,008
48,312	11,1	1,8823	-4 1 2	-0,004
48,569	9,1	1,8730	2 1 5	-0,005
48,719	16,2	1,8676	0 3 6	0,007
49,158	4,8	1,8519	2 5 3	-0,019
49,541	2,6	1,8385	-4 2 1	-0,008
49,762	7,6	1,8308	-4 2 2	-0,014
50,001	3,4	1,8226	-1 6 4	0,011
50,484	4,4	1,8063	4 2 0	-0,011
50,741	4,1	1,7978	-3 3 5	-0,002
51,150	9,5	1,7844	-4 2 3	-0,017
51,297	17,7	1,7796	-3 5 3	-0,026
51,405	7,3	1,7761	-1 1 7	0,008
52,050	6,2	1,7556	046	-0,002
52,200	13,6	1,7509	-3 1 6	0,021
52,480	13,6	1,7422	0 1 7	0,011
52,929	7,9	1,7285	-2 0 7	0,001
53,345	6,2	1,7160	3 2 4	0,006
53,482	4,4	1,7119	-4 3 3	-0,007
53,559	0,1	1,7096	-3 2 6	-0,003
53,847	19,0	1,7012	0 2 7	-0,001
53,955	2,3	1,6980	2 5 4	0,010
54,308	0,2	1,6878	2 6 3	-0,019
54,344	3,3	1,6868	4 1 2	0,006
54,640	4,7	1,6784	3 6 0	0,009
54,721	5,9	1,6761	-1 6 5	-0,009
55,066	12,3	1,6664	-1 3 7	-0,002
55,149	12,0	1,6641	2 0 6	0,006
55,597	4,3	1,6517	3 3 4	-0,001
55,804	5,7	1,6461	-3 3 6	-0,011
55,891	4,6	1,6437	-4 3 4	-0,015
55,978	10,1	1,6414	-1 7 4	0,001
56,042	11,0	1,6396	1 0 7	0,000
56,483	12,4	1,6279	1 1 7	-0,001
56,689	10,5	1,6225	272	0,004
56,834	12,2	1,6187	-1 8 2	0,009
57,905	7,2	1,5913	4 3 2	0,024

57,958	15,3	1,5899	3 1 5	-0,014
58,962	1,6	1,5652	-4 4 4	0,004
59,095	13,3	1,5620	2 3 6	0,012
59,253	3,2	1,5582	-1 1 8	0,009
59,788	5,4	1,5456	-3 7 1	-0,015
59,999	1,1	1,5406	-2 4 7	0,010
60,302	7,3	1,5336	3 7 0	0,001
60,484	6,1	1,5294	-4 5 3	-0,022
60,705	4,4	1,5244	-5 0 1	0,003
60,862	5,2	1,5208	2 8 1	-0,007
61,007	4,2	1,5176	-5 1 2	0,022
61,601	7,4	1,5043	-3 3 7	-0,022
61,858	4,8	1,4987	-5 0 0	-0,006
62,305	10,1	1,4890	-2 8 3	0,019
62,415	3,4	1,4867	-1 8 4	0,016
62,657	5,2	1,4815	2 0 7	-0,002
62,748	5,9	1,4796	-4 5 4	0,002
63,075	3,5	1,4727	2 1 7	0,003
63,530	2,9	1,4632	520	0,012
63,715	8,7	1,4594	1 7 5	-0,003
64,283	18,9	1,4479	3 4 5	0,012
64,451	2,0	1,4445	-3 7 4	0,010
64,617	0,8	1,4412	3 1 6	0,000
65,035	7,5	1,4330	184	0,015
65,157	6,3	1,4306	-5 3 3	-0,001
65,817	1,4	1,4178	0 9 3	0,010
65,948	3,1	1,4153	-4 5 5	0,017
66,010	21,4	1,4141	-3 8 1	0,011
66,164	1,0	1,4112	-1 9 3	-0,005
66,669	8,5	1,4017	2 9 0	-0,011
66,938	3,3	1,3968	3 6 4	0,006
67,101	3,2	1,3938	502	-0,011
67,375	5,8	1,3888	0 6 7	-0,002
67,651	1,3	1,3838	-2 7 6	-0,002
67,899	16,6	1,3793	-3 7 5	-0,002
68,104	4,3	1,3757	-3 3 8	0,003
68,315	4,5	1,3719	4 5 3	-0,012
68,892	5,3	1,3618	-4 7 1	0,001
69,130	2,7	1,3577	-2 9 3	-0,014
69,471	4,4	1,3519	0 10 1	0,001
69,716	3,2	1,3477	-2 2 9	-0,003
69,939	4,8	1,3440	-5 0 6	-0,006
70,222	8,2	1,3393	2 8 4	0,000
70,619	3,8	1,3327	-1 3 9	-0,002
71,051	2,0	1,3257	2 1 8	0,013
71,402	2,4	1,3200	4 7 1	0,012
71,541	3,8	1,3178	-1 8 6	0,002
71,725	23,1	1,3149	194	-0,020
73,141	3,1	1,2929	3 9 0	0,010
73,320	1,5	1,2901	-3 2 9	0,002

74,216	3,0	1,2768	129	-0,023
74,698	5,7	1,2697	-4 8 1	0,001
75,185	5,7	1,2627	-6 1 1	-0,009
75,861	0,1	1,2531	177	-0,001
75,992	11,9	1,2513	-4 8 3	0,007
76,806	2,8	1,2400	2 6 7	0,007
77,588	0,6	1,2295	3 4 7	0,009
77,986	3,3	1,2242	-2 2 10	-0,020
78,243	1,1	1,2208	-1 7 8	-0,017

9.2. TG/DTA-Diagramme

9.2.1. Metallformiat-Hydrate und Metallformiate

Abb. 212: TG/DTA-Diagramm von Lithiumformiat-Monohydrat, Heizrate: 10°C/min; Spülgas: synthetische Luft, Spülrate: 200ml/min

Abb. 213: TG/DTA-Diagramm von sprühgetrocknetem Natriumformiat, Heizrate: 10°C/min; Spülgas: N₂, Spülrate: 200ml/min

Abb. 214: TG/DTA-Diagramm von Magnesiumformiat-Dihydrat (Monoklin), Heizrate: 10°C/min; Spülgas: synthetische Luft, Spülrate: 200ml/min

Abb. 215: TG/DTA-Diagramm von sprühgetrocknetem Magnesiumformiat, Heizrate: 10°C/min; Spülgas: synthetische Luft, Spülrate: 200ml/min

Abb. 216: TG/DTA-Diagramm von alpha-Calciumformiat, Heizrate: 10°C/min; Spülgas: synthetische Luft, Spülrate: 200ml/min

Abb. 217: TG/DTA-Diagramm von sprühgetrocknetem Calciumformiat; Heizrate: 10°C/min; Spülgas: synthetische Luft, Spülrate: 200ml/min

Abb. 218: TG/DTA-Diagramm von Strontiumformiat-Dihydrat, Heizrate: 10°C/min; Spülgas: synthetische Luft, Spülrate: 200ml/min

Abb. 219: TG/DTA-Diagramm von sprühgetrocknetem Strontiumformiat; Heizrate: 10°C/min; Spülgas: synthetische Luft; Spülrate: 200ml/min

Abb. 220: TG/DTA-Diagramm von sprühgetrocknetem Bariumformiat; Heizrate: 10°C/min; Spülgas: synthetische Luft, Spülrate: 200ml/min

Abb. 221: TG/DTA-Diagramm von Mangan(II)formiat-Dihydrats; Heizrate: 10°C/min; Spülgas: synthetische Luft; Spülrate: 200ml/min

Abb. 222: TG/DTA-Diagramm von sprühgetrocknetem Mangan(II)formiat; Heizrate: 10°C/min; Spülgas: N₂, Spülrate: 200ml/min

Abb. 223: TG/DTA-Diagramm von sprühgetrocknetem Mangan(II)formiat; Heizrate: 10°C/min; Spülgas: synthetische Luft; Spülrate: 200ml/min

Abb. 224: TG/DTA-Diagramm von Eisen(II)formiat-Dihydrat; Heizrate: 10°C/min; Spülgas: synthetische Luft; Spülrate: 200ml/min

Abb. 225: TG/DTA-Diagramm von sprühgetrocknetem Eisen(II)formiat; Heizrate: 10°C/min; Spülgas: synthetische Luft; Spülrate: 200ml/min

Abb. 226: TG/DTA-Diagramm von sprühgetrocknetem Eisen(II)formiat; Heizrate: 10°C/min; Spülgas: N₂; Spülrate: 200ml/min

Abb. 227: TG/DTA-Diagramm von Cobalt(II)formiat-Dihydrat; Heizrate: 10°C/min; Spülgas: N₂; Spülrate: 200ml/min

Abb. 228: TG/DTA-Diagramm von sprühgetrocknetem Cobalt(II)formiat; Heizrate: 10°C/min; Spülgas: synthetische Luft; Spülrate: 200ml/min

Abb. 229: TG/DTA-Diagramm von sprühgetrocknetem Cobalt(II)formiat; Heizrate: 10°C/min; Spülgas: N₂; Spülrate: 200ml/min

Abb. 230: TG/DTA-Diagramm von Nickel(II)formiat-Dihydrat, Heizrate: 10°C/min; Spülgas: N₂; Spülrate: 200ml/min

Abb. 231: TG/DTA-Diagramm von sprühgetrocknetem Nickel(II)formiat; Heizrate: 10°C/min; Spülgas: synthetische Luft; Spülrate: 200ml/min

Abb. 232: TG/DTA-Diagramm von sprühgetrocknetem Nickel(II)formiat; Heizrate: 10°C/min; Spülgas: N₂, Spülrate: 200ml/min

Abb. 233: TG/DTA-Diagramm von Kupfer(II)formiat-Tetrahydrat; Heizrate: 10°C/min; Spülgas: N₂; Spülrate: 200ml/min

Abb. 234: TG/DTA-Diagramm von sprühgetrocknetem Kupfer(II)formiat; Heizrate: 10°C/min; Spülgas: N₂; Spülrate: 200ml/min

Abb. 235: TG/DTA-Diagramm von sprühgetrocknetem Kupfer(II)formiat; Heizrate: 10°C/min; Spülgas: synthetische Luft; Spülrate: 200ml/min

Abb. 236: TG/DTA-Diagramm von Zinkformiat-Dihydrat; Heizrate: 10°C/min; Spülgas: N₂; Spülrate: 200ml/min

Abb. 237: TG/DTA-Diagramm von sprühgetrocknetem Zinkformiat; Heizrate: 10°C/min; Spülgas: N₂, Spülrate: 200ml/min

Abb. 238: TG/DTA-Diagramm von sprühgetrocknetem Zinkformiat; Heizrate: 10°C/min; Spülgas: synthetische Luft; Spülrate: 200ml/min

Abb. 239: TG/DTA-Diagramm von Al(OH)(HCOO)₂·xH₂O; Heizrate: 10°C/min; Spülgas: N₂; Spülrate: 200ml/min

9.3. IR-Daten

9.3.1. Zementphasen

Tab. 98: Zuordnung der IR-Schwingungsbanden von C₂S nach verschiedenen Sintertemperaturen, hergestellt mittels Polymer-Precursor-Synthese; s=stark, m=mittel, w=schwach und sh=Schulter

Sintartamparatur	2h-550°C	2h-650°C	2h-1100°C
Sintertemperatur	Calcit + amorphe Phase	α`∟-C₂S	β-C₂S
··· (00 ²)	1432s	1432sh	
$V_3 (CO_2^{-})$	1113sh		
		997sh	995s
			948sh
ν ₃ (SiO₄ ⁴⁻)		922s	911s
		881sh	892w
			878sh
V ₂ (CO ₃ ²⁻)	874s		
			870w
V₃ (SiO₄ ⁴⁻)		848m	847m
			724w
V4 (CO ₃ ²⁻)	714s		
			562sh
		520s	521s
V₄ (SiO₄ ⁴⁻)		506sh	508sh
			501sh
			459sh

Abb. 240: IR-Spektren der Metallformiate-Dihydrate; a) $Mg(HCO_2)_2 \cdot 2H_2O$ (Monoklin), b) $Mn(HCO_2)_2 \cdot 2H_2O$, c) $Fe(HCO_2)_2 \cdot 2H_2O$, d) $Co(HCO_2)_2 \cdot 2H_2O$, e) $Ni(HCO_2)_2 \cdot 2H_2O$, f) $Zn(HCO_2)_2 \cdot 2H_2O$

			Wellenza	ahl [cm ⁻¹]		
Banden	Mg(HCO ₂) ₂ ·2H ₂ O (Monoklin)	Mn(HCO ₂) ₂ ·2H ₂ O	Fe(HCO ₂) ₂ ·2H ₂ O	Co(HCO ₂) ₂ ·2H ₂ O	Ni(HCO ₂) ₂ ·2H ₂ O	Zn(HCO ₂)2 [.] 2H ₂ O
	3382m	3357m	3359sh	3348sh	3362w	3355w
ν (OH)	3302m	3282m	3309m	3297m	3277w	3279w
-	3257sh	3224sh	3219m	3212m	3211w	3210sh
	3007w	2982m	2983m	2983m	2984m	2984w
-	2906s	2887m	2895m	2902s	2903m	2901m
ν ₁ (CH)	2891m	2875w	2882w	2885w	2893m	2889sh
-					2787w	2785sh
	2791w	2771w	2773w	2774w	2779w	2777w
V ₁ (CH) oder	2766m	2750s	2748s	2748s	2745s	2748s
$v_2 + v_5$ oder	2723	2707m	2704m	2705m	2702w	2699
2 V5 -				2509w	2519w	
	1684s	1665w	1671w	1672w	1375m	1666m
V ₄ (COO)	1600s	1578s	1579s	1578s	1578s	1579s
	1404s	1394s	1395s	1396s	1399s	1397s
ν₅ (δCH)	1391sh	1389sh	1383sh			1384sh
-	1380m	1385sh	1379w	1378m	1379m	1379
	1374m	1372m	1371m	1371w	1373sh	1372sh
V ₂ (COO)	1364s	1357s	1356s	1354s	1354s	1353s
ν ₆ (γCH)	1081w	1073w	1074w	1074w	1075w	1076w
	842m	840sh	851sh	868w	890s	878m
-		824m	832m	841w	851m	837m
ν ₃ (δCOO)				780sh	796w	780sh
-	761s	755s	760s	762m	771s	766s
-	697m	692m	715m			721w
	577s	574s	575s	571s	566s	565s
γ (H ₂ O)						556w
ν (Me-O)					416m	

Tab. 99: Zuordnung der IR-Schwingungsbanden der Metallformiat-Dihydrate; s=stark, m=mittel, w=schwach und sh=Schulter

Abb. 241: IR-Spektren der Metallformiate: a) $Mg(HCO_2)_2$ (Amorph), b) β - $Mg(HCO_2)_2$, c) $Mn(HCO_2)_2$, d) $Co(HCO_2)_2$, e) $Ni(HCO_2)_2$, f) $Zn(HCO_2)_2$

v (OH) 3400 3348s 2560m 3306w 3417s 3 v (OH) 3291m 3233w 3255sh 3 3034w 3014m 3005m 2977sh 2982sh 2 v (CH) 2923sh 3 3 2 3 v (CH) 2923sh 2 2 2 2 3 v (CH) 2923sh 2 3 3 2 3	COJHUZ 356m 281m 120sh 028w 989w 971w 948w
V (OH) 3400 3348s 2560m 3306w 3417s 3 3291m 3233w 3255sh 3 3235sh 3 3235sh 3 3034w 3014m 3005m 2977sh 2982sh 2 3034w 3014m 3005m 2977sh 2982sh 2 2903m 2 2903m 2 2903m 2 2 2 2896sh 2941sh 2 2 2904m 2881s 2905s 2893s 2 2871m 2876w 2 2 2 2761w 2788w 2782m 2745w 2754w 2 2750w 2749m 2671w 2681sh 2 2 2736w 2697m 2681sh 2 2	356m 281m 120sh 028w 989w 971w 948w
V (OH) 3291m 3233w 3255sh 3 3235sh 3235sh 3 3 3 3034w 3014m 3005m 2977sh 2982sh 2 3034w 3014m 3005m 2977sh 2982sh 2 2903m 2 2903m 2 2 2904m 2881s 2905s 2893s 2 2904m 2881s 2905s 2893s 2 2761w 2788w 2782m 2745w 2754w 2 2761w 2736w 2749m 2671w 2681sh 2 2736w 2697m 2631sh 2 2	281m 120sh 028w 989w 971w 948w
3235sh 3 3034w 3014m 3005m 2977sh 2982sh 2 2903m 2 2903m 2 2903m 2 2 2 2896sh 2941sh 2 2 2904m 2881s 2905s 2893s 2 2871m 2876w 2 2 2761w 2788w 2782m 2745w 2754w 2 2750w 2749m 2671w 2681sh 2 2736w 2697m 2 2 2	120sh 028w 989w 971w 948w
V₁ (CH) 3034w 3014m 3005m 2977sh 2982sh 2 2903m 2 2903m 2 2896sh 2941sh 2 2904m 2881s 2905s 2893s 2 2871m 2876w 2 2 2761w 2788w 2782m 2745w 2754w 2 2750w 2749m 2671w 2681sh 2 2736w 2697m 2 2 2	028w 989w 971w 948w
№1 (CH) 3034w 3014m 3005m 2977sh 2982sh 2 №1 (CH) 2923sh 2 2903m 2 2896sh 2941sh 2 2 2904m 2881s 2905s 2893s 2 2871m 2876w 2 2 2761w 2788w 2782m 2745w 2754w 2 2750w 2749m 2671w 2681sh 2 2736w 2697m 2 2 2	989w 971w 948w
V₁ (CH) 2903m 2 2896sh 2941sh 2 2904m 2881s 2905s 2893s 2 2871m 2876w 2 2 2761w 2788w 2782m 2745w 2754w 2 2750w 2749m 2671w 2681sh 2 271(CH) oder 2736w 2697m 2	971w 948w
ν₁ (CH) 2923sh 2 2896sh 2941sh 2 2904m 2881s 2905s 2893s 2 2871m 2876w 2 2 2761w 2788w 2782m 2745w 2754w 2 2750w 2749m 2671w 2681sh 2 ν₁ (CH) oder 2736w 2697m 2	Signal 3356m 3356m 3281m 3120sh 3028w 2989w 2971w 2948w 2820w 2896s 2879m 2771w 2758sh 27741w 2706w 26690sh 2669w 2669w 2649sh 1653m 1583s 1402sh 1395s 1381w 1369s 1355m 1328sh 1069w 1059w 818sh 810s 798w
2896sh 2941sh 2 2904m 2881s 2905s 2893s 2 2871m 2876w 2 2 2761w 2788w 2782m 2745w 2754w 2 2750w 2749m 2671w 2681sh 2 V1 (CH) oder 2736w 2697m 2	
2904m 2881s 2905s 2893s 2 2871m 2876w 2 2 2761w 2788w 2782m 2745w 2754w 2 2750w 2749m 2671w 2681sh 2 ν1 (CH) oder 2736w 2697m 2	820w
2871m 2876w 2 2761w 2788w 2782m 2745w 2754w 2 2750w 2749m 2671w 2681sh 2 v1 (CH) oder 2736w 2697m 2	896s
2761w 2788w 2782m 2745w 2754w 2 2750w 2749m 2671w 2681sh 2 ν1 (CH) oder 2736w 2697m 2	879m
2750w 2749m 2671w 2681sh 279 ν₁ (CH) oder 2736w 2697m 2681sh 279	771w
ν ₁ (CH) oder 2736w 2697m 2	758sh
	2879m 754w 2771w 81sh 2758sh 2741w
v ₂ + v ₅ 2712w 2	706w
205	390sh
2	669w
24	349sh
1675sh 1680m 1650sh 1653sh 1	653m
ν₄(COO)	583s
1400w 1404m 1402sh 1388sh 1383sh 14	402sh
1391w 1397s 1	395s
ν₅ (δC-H) 1371m 1	381w
1	369s
1	355m
1349s 1348s 1354sh 1334s 1333s 1	336s
ν₂(COO) 1341s 1175sh 11	328sh
1069w 1076w 1059w 1061w 1061w 1	069w
ν ₆ (γCH) 1	059w
808w 8	18sh
	310s
	′98w
V ₃ (OCOO) 791s 789s 792s 788s 798s	
640w	783s
616w	783s

Tab. 100: Zuordnung der IR-Schwingungsbanden der Metallformiat; s=stark, m=mittel, w=schwach und sh=Schulter

9.4. REM-Aufnahmen der sprühgetrockneten Metallformiate und deren Zersetzungsprodukte

Abb. 242: REM-Aufnahme von sprühgetrockneter Lithiumformiat-Lösung

Abb. 243: REM-Aufnahme von sprühgetrockneter Lithiumformiat-Lösung

Abb. 244: REM-Aufnahme von sprühgetrockneter Natriumformiat-Lösung

Abb. 245: REM-Aufnahme von sprühgetrockneter Natriumformiat-Lösung

Abb. 246: REM-Aufnahme von sprühgetrockneter Magnesiumformiat-Lösung

Abb. 247: REM-Aufnahme von sprühgetrockneter Magnesiumformiat-Lösung

Abb. 248: REM-Aufnahme von sprühgetrockneter Calciumformiat-Lösung; 4h nach dem Sprühprozess

Abb. 249: REM-Aufnahme von sprühgetrockneter Calciumformiat-Lösung; 4h nach dem Sprühprozess

Abb. 250: REM-Aufnahme von sprühgetrockneter Calciumformiat-Lösung; 4 Wochen nach dem Sprühprozess

Abb. 251: REM-Aufnahme von sprühgetrockneter und bei 500°C zersetzter Calciumformiat-Lösung; Calcit

Abb. 252: REM-Aufnahme von sprühgetrockneter und bei 500°C zersetzter Strontiumformiat-Lösung; Strontiumcarbonat

Abb. 253: REM-Aufnahme von sprühgetrockneter und bei 500°C zersetzter Strontiumformiat-Lösung; Strontiumcarbonat

Abb. 254: REM-Aufnahme von sprühgetrockneter Bariumformiat-Lösung; Bariumformiat

Abb. 255: REM-Aufnahme von sprühgetrockneter Bariumformiat-Lösung; Bariumformiat

Abb. 256: REM-Aufnahme von Mn₃O₄, hergestellt durch Zersetzung von sprühgetrockneter Mangan(II)formiat-Lösung bei 500°C; Spülgas: synthetische Luft; Gasfluss: 200ml/min; Heizrate: 10°C/min

Abb. 257: REM-Aufnahme von Mn₃O₄, hergestellt durch Zersetzung von sprühgetrockneter Mangan(II)formiat-Lösung bei 500°C; Spülgas: synthetische Luft; Gasfluss: 200ml/min; Heizrate: 10°C/min

Abb. 258: REM-Aufnahme eines Gemisches aus MnO und Mn₃O₄, hergestellt durch Zersetzung von sprühgetrockneter Mangan(II)formiat-Lösung bei 500°C; Spülgas: N₂; Gasfluss: 200ml/min; Heizrate: 10°C/min

Abb. 259: REM-Aufnahme eines Gemisches aus MnO und Mn₃O₄, hergestellt durch Zersetzung von sprühgetrockneter Mangan(II)formiat-Lösung bei 500°C; Spülgas: N₂; Gasfluss: 200ml/min; Heizrate: 10°C/min

Abb. 260: REM-Aufnahme von sprühgetrockneter Eisen(II)formiat-Lösung

Abb. 261: REM-Aufnahme von sprühgetrockneter Eisen(II)formiat-Lösung

Abb. 262: REM-Aufnahme eines Gemisches aus Fe₃O₄ und γ-Fe₂O₃, hergestellt durch Zersetzung von sprühgetrockneter Eisen(II)formiat-Lösung bei 500°C; Spülgas: N₂; Gasfluss: 200ml/min; Heizrate: 10°C/min

Abb. 263: REM-Aufnahme eines Gemisches aus Fe_3O_4 und γ - Fe_2O_3 , hergestellt durch Zersetzung von sprühgetrockneter Eisen(II)formiat-Lösung bei 500°C; Spülgas: N₂; Gasfluss: 200ml/min; Heizrate: 10°C/min

Abb. 264: REM-Aufnahme von einem Gemisch aus α -Fe₂O₃ und γ -Fe₂O₃, hergestellt durch Zersetzung von sprühgetrockneter Eisen(II)formiat-Lösung bei 375°C; Spülgas: synthetische Luft; Gasfluss: 200ml/min; Heizrate: 10°C/min

Abb. 265: REM-Aufnahme von einem Gemisch aus α -Fe₂O₃ und γ -Fe₂O₃, hergestellt durch Zersetzung von sprühgetrockneter Eisen(II)formiat-Lösung bei 375°C; Spülgas: synthetische Luft; Gasfluss: 200ml/min; Heizrate: 10°C/min

Abb. 266: REM-Aufnahme von sprühgetrockneter Cobalt(II)formiat-Lösung

Abb. 267: REM-Aufnahme von sprühgetrockneter Cobalt(II)formiat-Lösung

Abb. 268: REM-Aufnahme von Co₃O₄, hergestellt durch Zersetzung von sprühgetrockneter Cobalt(II)formiat-Lösung bei 500°C; Spülgas: synthetische Luft als; Gasfluss: 200ml/min; Heizrate: 10°C/min

Abb. 269: REM-Aufnahme von Co₃O₄, hergestellt durch Zersetzung von sprühgetrockneter Cobalt(II)formiat-Lösung bei 500°C; Spülgas: synthetische Luft als; Gasfluss: 200ml/min; Heizrate: 10°C/min

Abb. 270: REM-Aufnahme von einem Gemisch aus α -Co, β -Co, CoO und Co₃O₄, hergestellt durch Zersetzung von sprühgetrockneter Cobalt(II)formiat-Lösung bei 350°C; Spülgas: N₂; Gasfluss: 200ml/min; Heizrate: 10°C/min

Abb. 271: REM-Aufnahme von einem Gemisch aus α -Co, β -Co, CoO und Co₃O₄, hergestellt durch Zersetzung von sprühgetrockneter Cobalt(II)formiat-Lösung bei 350°C; Spülgas: N₂; Gasfluss: 200ml/min; Heizrate: 10°C/min

Abb. 272: REM-Aufnahme von sprühgetrockneter Kupfer(II)formiat-Lösung

Abb. 273: REM-Aufnahme von sprühgetrockneter Kupfer(II)formiat-Lösung

Abb. 274: REM-Aufnahme von Cu (+wenig Cu₂O), hergestellt durch Zersetzung von sprühgetrockneter Kupfer(II)formiat-Lösung bei 250°C; Spülgas: N₂; Gasfluss: 200ml/min; Heizrate: 10°C/min

Abb. 275: REM-Aufnahme von Cu (+wenig Cu₂O), hergestellt durch Zersetzung von sprühgetrockneter Kupfer(II)formiat-Lösung bei 250°C; Spülgas: N₂; Gasfluss: 200ml/min; Heizrate: 10°C/min

Abb. 276: REM-Aufnahme von Cu (+wenig Cu₂O), hergestellt durch Zersetzung von sprühgetrockneter Kupfer(II)formiat-Lösung bei 250°C; Spülgas: N₂; Gasfluss: 200ml/min; Heizrate: 10°C/min

Abb. 277: REM-Aufnahme von CuO, hergestellt durch Zersetzung von sprühgetrockneter Kupfer(II)formiat-Lösung bei 500°C; Spülgas: synthetische Luft; Gasfluss: 200ml/min; Heizrate: 10°C/min

Abb. 278: REM-Aufnahme von CuO, hergestellt durch Zersetzung von sprühgetrockneter Kupfer(II)formiat-Lösung bei 500°C; Spülgas: synthetische Luft; Gasfluss: 200ml/min; Heizrate: 10°C/min

Abb. 279: REM-Aufnahme von sprühgetrockneter Zinkformiat-Lösung

Abb. 280: REM-Aufnahme von sprühgetrockneter Zinkformiat-Lösung

Abb. 281: REM-Aufnahme von ZnO, hergestellt durch Zersetzung von sprühgetrockneter Zinkformiat-Lösung bei 500°C; Spülgas: synthetische Luft; Gasfluss: 200ml/min; Heizrate: 10°C/min

Abb. 282: REM-Aufnahme von ZnO, hergestellt durch Zersetzung von sprühgetrockneter Zinkformiat-Lösung bei 500°C; Spülgas: synthetische Luft; Gasfluss: 200ml/min; Heizrate: 10°C/min

Abbildungsverzeichnis

Abb. 1:	Lage von PZ und TZ (MOTZET 1998) im Dreistoffsystem CaO-Al ₂ O ₃ -SiO ₂ nach OSBORN & MUAN (1960); Temperaturangaben in °C
Abb. 2:	Schematische Darstellung des Sol-Gel-Prozesses nach BRINKER & SCHERER (1990)
Abb. 3:	Schematischer Ablauf der Polymerisationsreaktion aus Zitronensäure (ZS), Ethylenglykol (EG) und den Metallkationen (Ca ²⁺ , Al ³⁺) zum Ester; Darstellung in der Orbitalstruktur, C-Atome = Schwarz, H-Atome = Weiß, O-Atome = Blau, Ca-Atome = Rot und Al-Atome = Türkis
Abb. 4:	Vorgehensweise bei der Durchführung der Arbeit 10
Abb. 5:	Komponenten des speziellen Probenträgers für feuchte Proben: a) Kapton-Folie, b) Probenträger, c) Spannring für die Folie, d) Halterung
Abb. 6:	Mit Zementpaste gefüllter Probenträger, der mittels einer Kapton-Folie verschlossen wurde 12
Abb. 7:	Eingeengte Lösung für die Polymer-Precursor-Synthese mit den gelösten Metallsalzen und den Ausgangsstoffen für die Polymerbildung (1) sowie das fertige Polymer (2)
Abb. 8:	Verwendeter Sprühtrockner B-191 der Firma BÜCHI Labortechnik AG 20
Abb. 9:	Schematischer Aufbau des verwendeten Sprühtrockners B-191 der Firma BÜCHI Labortechnik AG 21
Abb. 10:	Experimentell ermittelte Abhängigkeit zwischen der Förderleistung der Pumpe und der Ausgangstemperatur für den verwendeten Sprühtrockner
Abb. 11:	Gewichtsverlust (TG) bei der Zersetzung des Polymerprecursors (CA) in Abhängigkeit vom Spülgas (Sauerstoffgehalt); Heizrate: 10°C/min; Vergrößerter Ausschnitt des schwarzen Rechtecks in Abb. 13 25
Abb. 12:	DTA-Diagramme zu den TG-Untersuchungen aus Abb. 11 bei der Zersetzung des Polymerprecursors (CA) in Abhängigkeit vom Spülgas (Sauerstoffgehalt); Heizrate: 10°C/min
Abb. 13:	Vergrößerter Ausschnitt der TG/DTA-Diagramme des Polymerprecursors (schwarzer Ausschnitt aus Abb. 11); Heizrate: 10°C/min; Spülgas: synthetische Luft; Gasfluss: 50ml/min
Abb. 14:	Ausschnitte aus den XRD-Diagrammen des bei den folgenden Sinterschritten zersetzten Polymerprecursors: a) 1000°C (2h), b) 1100°C (2h), c) 1200°C (2h) und d) 1300°C (2h); Phasenübergang vom orthorhombischen CA (a) zum monoklinen CA (d)
Abb. 15:	REM-Aufnahme des Polymerprecursors bei RT (Polymer mit den gebunden Kationen) 27
Abb. 16:	REM-Aufnahme des Polymerprecursors bei RT (Polymer mit den gebunden Kationen); Vergrößerung aus Abb. 15
Abb. 17:	REM-Aufnahme von orthorhombischem CA, hergestellt durch die Zersetzung des Polymerprecursors bei 900°C (2h)
Abb. 18:	REM-Aufnahme von orthorhombischem CA, hergestellt durch die Zersetzung des Polymerprecursors bei 900°C (2h)
Abb. 19:	REM-Aufnahme von orthorhombischem CA, hergestellt durch die Zersetzung des Polymerprecursors bei 900°C (2h); Vergrößerung aus Abb. 18
Abb. 20:	REM-Aufnahme von monoklinem CA, hergestellt durch Sintern des orthorhombischen CA aus Abb. 17 bei 1500°C (2h)
Abb. 21:	IR-Diagramme des bei folgenden Sinterschritten zersetzen Polymerprecursors (CA): a) 600°C (2h), b) 700°C (2h), c) 800°C (2h), d) 900°C (2h), e) 1000°C (2h), f) 1100°C (2h), g) 1200°C (2h) und h) 1300°C (2h)
Abb. 22:	Ausschnitt der HT-XRD-Aufnahme von orthorhombischem CA im Temperaturintervall zwischen 900°C und 1400°C; Erscheinen des -1 1 2 und -2 1 1-Reflexes durch die Umwandlung vom orthorhombischen zum monoklinen CA
Abb. 23:	REM-Aufnahme von orthorhombischem CA, hergestellt aus dem bei 900°C (2h) zersetzten Precursor des GNP
Abb. 24 :	REM-Aufnahme von orthorhombischem CA, hergestellt aus dem bei 900°C (2h) zersetztem Precursor des GNP; Vergrößerung aus Abb. 23
Abb. 25:	XRD-Diagramme des Precursors aus dem GNP (Ausgangszusammensetzung des $C_{12}A_7$) nach folgenden Sinterschritten: a) RT, b) 800°C (2h), c) 900°C (2h), d) 1000°C (2h) und e) 1200°C (2h) 32
Abb. 26:	REM-Aufnahme des röntgenamorphen Precursors aus dem GNP; XRD-Diagramm in Abb. 25a 32

Abb. 27:	REM-Aufnahme des röntgenamorphen Precursors aus dem GNP; XRD-Diagramm in Abb. 25a 32
Abb. 28:	REM-Aufnahme des bei 800°C (2h) gesinterten Precursors aus dem GNP; XRD-Diagramm in Abb. 25b
Abb. 29:	REM-Aufnahme des bei 800°C (2h) gesinterten Precursor aus dem GNP; XRD-Diagramm in Abb. 25b
Abb. 30:	REM-Aufnahme von C_5A_3 und geringen Mengen an C_3A , hergestellt durch Sintern des Precursors aus dem GNP bei 900°C (2h); XRD-Diagramm in Abb. 25c
Abb. 31:	REM-Aufnahme von C_5A_3 und geringen Mengen an C_3A , hergestellt durch Sintern des Precursors aus dem GNP bei 900°C (2h); XRD-Diagramm in Abb. 25c
Abb. 32:	REM-Aufnahme von C ₁₂ A ₇ , hergestellt durch Sintern des Precursors aus dem GNP bei 1200°C (2h); XRD-Diagramm in Abb. 25e
Abb. 33:	REM-Aufnahme von C ₁₂ A ₇ , hergestellt durch Sintern des Precursors aus dem GNP bei 1200°C (2h); XRD-Diagramm in Abb. 25e
Abb. 34:	REM-Aufnahme von C ₁₂ A ₇ , hergestellt durch Sintern des Polymerprecursors bei 1200°C (2h)
Abb. 35:	REM-Aufnahme von C ₁₂ A ₇ , hergestellt durch Sintern des Polymerprecursors bei 1200°C (2h)
Abb. 36:	XRD-Diagramme von C ₃ A ausgehend vom Precursor der Polymer-Precursor-Synthese bei folgenden Sinterschritten: a) 1000°C (2h), b) 1100°C (2h) und c) 1200°C (2h)
Abb. 37:	REM-Aufnahme von C ₃ A, hergestellt mittels Festkörpersynthese bei 1400°C (20h)
Abb. 38:	REM-Aufnahme von C ₃ A, hergestellt mittels des Precursors aus der Sol-Gel-Methode bei 1400°C (2h)
Abb. 39:	REM-Aufnahme von C ₃ A, hergestellt mittels des Precursors aus der Polymer-Precursor-Synthese bei 1200°C (2h)
Abb. 40:	REM-Aufnahme von C ₃ A, hergestellt mittels des Precursors aus dem GNP bei 1200°C (2h)
Abb. 41:	Polymorphie des C_2S nach Chan et al. (1992)
Abb. 42:	XRD-Diagramme bei der Synthese von C ₂ S mittels Festkörpersynthese aus α -SiO ₂ (S) und CaO (C) bei verschiedenen Sintertemperaturen
Abb. 43:	TG/DTA-Aufnahmen des C ₂ S-Polymerprecursors; Heizrate: 10°C/min; Spülgas: synthetische Luft; Spülrate: 50ml/min
Abb. 44:	TG/DTA-Aufnahmen des C ₂ S-Polymerprecursors; Heizrate: 10°C/min; Spülgas: Stickstoff; Spülrate: 200ml/min
Abb. 45:	Ausschnitt aus den XRD-Diagrammen bei der Synthese von C ₂ S mittels des Polymerprecursors bei folgenden Sinterschritten: a) 550°C (2h), b) 650°C (2h), c) 800°C (2h), d) 900°C (2h), e) 1100°C (2h); Aufspaltung der Hauptreflexe bei der Umwandlung von α ` _L -C ₂ S (Rot) zum β -C ₂ S (Blau); *Reflexe von Calcit
Abb. 46:	Berechneter Durchmesser der Kristallite von C ₂ S in Abhängigkeit von der Sintertemperatur bei Annahme sphärischer Kristallite
Abb. 47:	$REM-Aufnahme \ des \ C_2S-Polymer precursors \dots 41$
Abb. 48:	$REM-Aufnahme \ des \ C_2S-Polymer precursors$
Abb. 49:	REM-Aufnahme von α` _L -C ₂ S hergestellt mittels Polymer-Precursor-Synthese; Sinterschritt: 650°C (2h)
Abb. 50:	REM-Aufnahme von α` _L -C ₂ S hergestellt mittels Polymer-Precursor-Synthese; Sinterschritt: 650°C (2h)
Abb. 51:	REM-Aufnahme von C_2S (α ` _L - C_2S + β - C_2S); Sinterschritt: 900°C (2h); Polymer-Precursor-Synthese . 42
Abb. 52:	$eq:REM-Aufnahme von C_2S (a`_L-C_2S + \beta-C_2S); Sinterschritt: 900°C (2h); Polymer-Precursor-Synthese . 42$
Abb. 53:	REM-Aufnahme von β -C ₂ S; Sinterschritt: 1100°C (2h); Polymer-Precursor-Synthese
Abb. 54:	REM-Aufnahme von β -C ₂ S; Sinterschritt: 1100°C (2h); Polymer-Precursor-Synthese
Abb. 55:	IR-Aufnahmen bei der Synthese von C ₂ S mittels des Polymerprecursors bei folgenden Sinterschritten: a) 550°C (2h) Calcit, b) 650°C (2h), α`L-C ₂ S (Rot), c) 800°C (2h), d) 900°C (2h) und e) 1100°C (2h), β-C ₂ S (Blau)43
Abb. 56:	XRD-Diagramme beim Aufheizen des bei 500°C vorgesinterten C ₂ S-Polymerprecursors; Zersetzungsreaktion des Calcits (Weiß) und Bildung von $\alpha_{L}^{-}C_{2}S$ (Grau)

Abb. 57:	XRD-Diagramme beim Abkühlen des bei 700°C gesinterten C_2S-Polymerprecursors, Stabilisierung von α `L-C ₂ S (Grau)
Abb. 58:	XRD-Diagramme beim Abkühlen des bei 1100°C gesinterten C ₂ S-Polymerprecursors; Bildung von β -C ₂ S (Hellgrau)
Abb. 59:	XRD-Diagramme beim Abkühlen des bei 1300°C gesinterten C ₂ S-Polymerprecursors, Bildung von γ -C ₂ S (Weiß)
Abb. 60:	REM-Aufnahmen des β-C ₂ S nach einer Sintertemperatur bei 1000°C; GNP
Abb. 61:	REM-Aufnahmen des β-C ₂ S nach einer Sintertemperatur bei 1000°C; Sol-Gel-Methode
Abb. 62:	Polymorphie des C ₃ S nach Taylor (1997)
Abb. 63:	Ausschnitte aus den XRD-Diagrammen von C ₃ S nach drei Sinterschritten von je 2h bei 1500°C; Vergleich der verschiedenen Synthese Methoden
Abb. 64:	REM-Aufnahme von C ₃ S; Sol-Gel-Methode; Sintertemperatur 1500°C (3 x 2h)
Abb. 65:	REM-Aufnahme von C ₃ S; Polymer-Precursor-Synthese; Sintertemperatur 1500°C (3 x 2h) 48
Abb. 66:	REM-Aufnahme von C ₃ S; GNP; Sintertemperatur 1500°C (3 x 2h)
Abb. 67:	REM-Aufnahme von C ₃ S; Festkörpersynthese; Sintertemperatur 1500°C (3 x 2h) 48
Abb. 68:	REM-Aufnahme; Identifizierung von Nebenphasen nach dem Sintern des Polymerprecursors bei einer Sintertemperatur 1500°C (3 x 2h)
Abb. 69:	EDX-Diagramm; Identifizierung von Kohlenstoff, Sauerstoff, Calcium und sehr wenig Silizium (durch Streustrahlung) aus dem in Abb. 68 rot gekennzeichnetem Bereich; Beschichtung der Probe mit Kohlenstoff
Abb. 70:	TG/DTA-Diagramme des CAS ₂ -Precursors aus der Polymer-Precursor-Synthese; Polymergehalt: 0,25; Heizrate: 10°C/min; Spülgas: synthetische Luft; Spülrate: 200ml/min
Abb. 71:	TG/DTA-Diagramme des CAS ₂ -Precursors aus der Polymer-Precursor-Synthese; Polymergehalt: 1,0; Heizrate: 10°C/min; Spülgas: synthetische Luft; Spülrate: 200ml/min
Abb. 72:	XRD-Diagramme des gesinterten Yoshiokait-Precursor der mittels Polymer-Precursor-Synthese hergestellt wurde und bei folgenden Sinterschritten zersetzt wurde: a) 950°C (2h), b) 1000°C (2h) und c) 1200°C (2h); die rote gestrichelte Linie zeigt den Hauptreflex (100%-Peak) des Gehlenits bei 31,39°2Theta an (ABE & SUNAGAWA)
Abb. 73:	Ausschnitt der HT-XRD-Aufnahme des amorphen bei 800°C vorgesinterten Polymerprecursors im Temperaturintervall zwischen 900°C und 1300°C; Zunahme von Gehlenit und Anorthit (Blau), Zunahme und anschließende Abnahme des Yoshiokaits (Rot)
Abb. 74:	TG/DTA-Diagramm des C ₂ AS-Precursors der Polymer-Precursor-Synthese; Heizrate 10°C/min; Spülgas: synthetische Luft; Spülrate: 200ml/min
Abb. 75:	XRD-Diagramme des C ₂ AS-Precursors in Abhängigkeit von der Sintertemperatur: a) RT (Precursor mit Polymer), b) 550°C (2h), c) 850°C (2h), d) 900°C (2h), e) 950°C (2h) und f) 1300°C (2h)
Abb. 76:	Vergleich der Strukturen der Brownmillerite mit der RG Pnma (links) und I2mb (rechts) 59
Abb. 77:	$\label{eq:constant} \begin{array}{llllllllllllllllllllllllllllllllllll$
Abb. 78:	$\label{eq:constant} \begin{array}{llllllllllllllllllllllllllllllllllll$
Abb. 79:	$\label{eq:constant} \begin{array}{llllllllllllllllllllllllllllllllllll$
Abb. 80:	Verfeinertes Volumen der Elementarzelle V ₀ von Ca ₂ (Al _x Fe _{2-x})O ₅ in Abhängigkeit der Sintertemperatur und dem Aluminiumgehalt x
Abb. 81:	XRD-Diagramme von C_2F (x=0) nach verschiedenen Sintertemperaturen und dem vergrößerten Bereich des 1 3 1- und 0 0 2 -Reflexes
Abb. 82:	XRD-Diagramme von C ₄ A _{0,2} F _{1,8} (x=0,2) nach verschiedenen Sintertemperaturen und dem vergrößerten Bereich des 1 3 1- und 0 0 2 - Reflexes
Abb. 83:	XRD-Diagramme von C ₄ A _{0,4} F _{1,6} (x=0,4) nach verschiedenen Sintertemperaturen und dem vergrößerten Bereich des 1 3 1- und 0 0 2 - Reflexes
Abb. 84:	Kristallitgröße von Ca ₂ (Al _x Fe _{2-x})O ₅ in Abhängigkeit von der Sintertemperatur und dem Aluminiumgehalt x bei der Annahme von sphärischen Kristalliten; weiße Punkte = RG l2mb, gelbe Punkte = RG Pnma; Farbverlauf von Grün nach Dunkelbraun korreliert mit dem tatsächlichen Färbung der Brownmillerite 63

Abb.	. 85:	Änderung der Färbung während des Sinterns von Grün-grau (700°C-2h) nach Braun-schwarz (1000°C-2h) bei höheren Sintertemperaturen
Abb.	86:	Fe ²⁺ /Fe ³⁺ -Verhältnisses des C ₂ F in Abhängigkeit von der Sintertemperatur
Abb.	. 87:	REM-Aufnahme von C ₂ F, hergestellt mittels Polymer-Precursor-Synthese; Sinterschritt: 700°C (2h) . 64
Abb.	. 88:	REM-Aufnahme von C ₂ F, hergestellt mittels Polymer-Precursor-Synthese; Sinterschritt: 700°C (2h) . 64
Abb.	. 89:	REM-Aufnahme von C ₂ F, hergestellt mittels Polymer-Precursor-Synthese; Sinterschritt: 1000°C (2h) 65
Abb.	90:	REM-Aufnahme von C ₂ F, hergestellt mittels Polymer-Precursor-Synthese; Sinterschritt: 1000°C (2h) 65
Abb.	91:	REM-Aufnahme von C ₄ A _{1,2} F _{0,8} , hergestellt mittels Polymer-Precursor-Synthese; Sinterschritt: 1000°C (2h)
Abb.	92:	REM-Aufnahme von C ₄ A _{1,2} F _{0,8} , hergestellt mittels Polymer-Precursor-Synthese; Sinterschritt: 1000°C (2h)
Abb.	93:	REM-Aufnahme des C ₄ AF-Precursor, hergestellt mittels des GNP
Abb.	94:	REM-Aufnahme von C ₄ AF, hergestellt mittels des GNP; Sinterschritt: 1000°C (2h)
Abb.	95:	REM-Aufnahme von C ₄ AF, hergestellt mittels des GNP; Sinterschritt: 1000°C (2h)
Abb.	. 96:	XRD-Diagramme bei der Synthese von C ₄ A ₃ s mittels Festkörpersynthese aus CaO, γ -Al ₂ O ₃ und CaSO ₄ (Cs) nach verschiedenen Sinterschritten; C ₄ A ₃ s = Blau, CaSO ₄ (Cs) = Schwarz, CA = Rot, CaO = Grün, CA ₂ = Türkis und C ₁₂ A ₇ = Magenta
Abb.	. 97:	XRD-Diagramme bei der Synthese von C_4A_3s mittels Polymer-Precursor-Synthese nach verschiedenen Sinterschritten; C_4A_3s = Blau, Cs = Schwarz, CA = Rot, CaO = Grün, CA ₂ = Türkis und $C_{12}A_7$ = Magenta
Abb.	98:	Kristallstruktur des Pleochroits mit den eingezeichneten Ca ₂ Al ₂ SiO ₈ (G)- und Ca ₃ Al ₄ MgO ₁₀ (X)-Modulen nach Dóndony & Buseck (2001)
Abb.	. 99:	Vierphasensystem CaO-Al ₂ O ₃ -SiO ₂ -MgO mit der eingezeichneten Ebene C ₃ A-CA-MS (Blau) und der Verbindungslinie zwischen dem hypothetischen "C ₅ A ₄ " und C ₅ A ₃ MS (Rot) auf der nach der Formel Ca ₂₀ Al _{32-2x} Mg _x Si _x O ₆₈ (mit: 2,5 <x<3,5) &="" (1980)="" die="" hanic="" kaprálik="" liegen70<="" pleochroite="" th="" von=""></x<3,5)>
Abb.	. 100:	Ausschnitt aus den XRD-Diagrammen bei denen x (Ca ₂₀ Al _{32-2x} Mg _x Si _x O ₆₈) zwischen 1,5 und 4,0 variiert wurde; P=Pleochroit
Abb.	. 101:	Graphische Darstellung der Verfeinerung von Ca20Al26Co3Si3O68 mittels eines Powley-Fits
Abb.	. 102:	Vergrößerte graphische Darstellung der Verfeinerung von Ca ₂₀ Al ₂₆ Co ₃ Si ₃ O ₆₈ mittels eines Pawley-Fits; Abweichungen im berechneten Diagramm bei 31,421°2Theta durch geringe Mengen Gehlenit
Abb.	. 103:	Wärmefluss des CA (GNP) in Abhängigkeit vom W/F-Wert; T=20°C; 0-0,6h
Abb.	. 104:	Freigesetzte Wärme des CA (GNP) in Abhängigkeit vom W/F-Wert; T=20°C; 0-0,6h
Abb.	. 105:	Wärmefluss des CA (GNP) in Abhängigkeit vom W/F Wert; T=20°C; 2-18h
Abb.	. 106:	Freigesetzte Wärme des CA (GNP) in Abhängigkeit vom W/F-Wert; T=20°C; 2-18h
Abb.	. 107:	XRD-Diagramme des hydratisierten CA (GNP) in Abhängigkeit vom W/F-Wert nach einer Hydratationszeit von 50h; T=20°C
Abb.	. 108:	Wärmefluss des orthorhombischen und monoklinen CA, hergestellt mittels verschiedener Synthesemethoden; T=20°C; 0-0,6h
Abb.	. 109:	Wärmefluss des orthorhombischen und monoklinen CA, hergestellt mittels verschiedener Synthesemethoden; T=20°C; 2-30h
Abb.	. 110:	Freigesetzte Wärme des orthorhombischen und monoklinen CA, hergestellt mittels verschiedener Synthesemethoden; T=20°C; 0-30h
Abb.	. 111:	Wärmefluss des CA (Polymer-Precursor-Synthese) in Abhängigkeit von der Sintertemperatur; T=20°C; W/F-Wert=8
Abb.	. 112:	Wärmefluss des CA (Polymer-Precursor-Synthese) in Abhängigkeit von der Sintertemperatur, T=20°C; W/F-Wert=8 (W nur hier gesättigte Calciumhydroxid-Lösung)
Abb.	. 113:	Kryo-REM-Aufnahme von orthorhombischem CA, hergestellt mittels Polymer-Precursor-Synthese; Hydratationszeit: 14h; W/F=8
Abb.	. 114:	Kryo-REM-Aufnahme von orthorhombischem CA, hergestellt mittels Polymer-Precursor-Synthese; Hydratationszeit: 14h; W/F=8
Abb.	. 115:	Kryo-REM-Aufnahme von monoklinem CA, hergestellt mittels Festkörpersynthese; Hydratationszeit:

		15h; W/F=2; vereinzelt sind lamellare Phasen beobachtbar, die röntgenographisch als C_2AH_8 und $C_2AH_{7.5}$ identifiziert wurden
Abb.	116:	Wärmefluss von C ₁₂ A ₇ (Festkörpersynthese) in Abhängigkeit vom W/F-Wert; T=20°C
Abb.	117:	Freigesetzte Wärme von C ₁₂ A ₇ (Festkörpersynthese) in Abhängigkeit vom W/F-Wert; T=20°C 82
Abb.	118:	Wärmefluss von C ₁₂ A ₇ (Festkörpersynthese) in Abhängigkeit von der Temperatur; W/F=2
Abb.	119:	Freigesetzte Wärme von C ₁₂ A ₇ (Festkörpersynthese) in Abhängigkeit von der Temperatur; W/F=2 83
Abb.	120:	Wärmefluss von C ₁₂ A ₇ (Polymer-Precursor-Synthese) in Abhängigkeit von der Temperatur; W/F=2 83
Abb.	121:	Freigesetzte Wärme von C ₁₂ A ₇ (Polymer-Precursor-Synthese) in Abhängigkeit von der Temperatur W/F=2
Abb.	122:	Wärmefluss von C ₁₂ A ₇ (GNP) in Abhängigkeit von der Temperatur; W/F=2
Abb.	123:	Freigesetzte Wärme von C ₁₂ A ₇ (GNP) in Abhängigkeit von der Temperatur; W/F=2
Abb.	124:	Wärmefluss von C ₁₂ A ₇ in Abhängigkeit von der Synthesemethode; W/F=2; T=20°C
Abb.	125:	Freigesetzte Wärme von C ₁₂ A ₇ in Abhängigkeit von der Synthesemethode; W/F=2; T=20°C
Abb.	126:	Kryo-REM-Aufnahme von C ₁₂ A ₇ synthetisiert mittels des GNP; Hydratationszeit: 2h; W/F=2; T=20°C a) C ₁₂ A ₇ -Korn mit Hydrathülle, b) Ausfällungen aus der gefrorenen Lösung, c) feinkristalling Hydratationsprodukte
Abb.	127:	Kryo-REM-Aufnahme von C ₁₂ A ₇ , synthetisiert mittels Festkörpersynthese; Hydratationszeit: 2h; W/Z=2 T=20°C; C ₁₂ A ₇ -Korn mit grobkristalliner poröser Hydrathülle
Abb.	128:	Kryo-REM-Aufnahme von C ₁₂ A ₇ , synthetisiert mittels des GNP; Hydratationszeit: 2h; W/Z=2; T=20°C C ₁₂ A ₇ -Korn mit feinkristalliner dichter Hydrathülle
Abb.	129:	In-situ XRD Hydratationsverlauf von C ₁₂ A ₇ (GNP); W/F=2; T=25°C; vollständige Hydratation des C ₁₂ A ₇ (•) nach 3,5h; Abnahme des amorphen Untergrunds (24°2Theta - 30°2Theta) mit Bildung des C ₂ AH _{8±x}
Abb.	130:	2D-Plot aller Aufnahmen des in-situ XRD-Hydratationsverlaufes von $C_{12}A_7$ (GNP) aus Abb. 129 W/F=2; T=25°C; deutlich Aufspaltung der 0 0 I - Reflexe in drei definierte Positionen
Abb.	131:	Extrapolation des Wassergehalts x (2CaO·Al ₂ O ₃ ·xH ₂ O) gegen den Schichtabstand der lamellarer Phasen
Abb. Abb.	131: 132:	Extrapolation des Wassergehalts x (2CaO·Al ₂ O ₃ ·xH ₂ O) gegen den Schichtabstand der lamellarer Phasen
Abb. Abb. Abb.	131: 132: 133:	Extrapolation des Wassergehalts x (2CaO·Al ₂ O ₃ ·xH ₂ O) gegen den Schichtabstand der lamellarer Phasen
Abb. Abb. Abb. Abb.	131: 132: 133: 134:	Extrapolation des Wassergehalts x (2CaO·Al ₂ O ₃ ·xH ₂ O) gegen den Schichtabstand der lamellarer Phasen
Abb. Abb. Abb. Abb. Abb.	131: 132: 133: 134: 135:	Extrapolation des Wassergehalts x (2CaO·Al ₂ O ₃ ·xH ₂ O) gegen den Schichtabstand der lamellarer Phasen
Abb. Abb. Abb. Abb. Abb. Abb.	131: 132: 133: 134: 135: 136:	Extrapolation des Wassergehalts x (2CaO·Al ₂ O ₃ ·xH ₂ O) gegen den Schichtabstand der lamellarer Phasen
Abb. Abb. Abb. Abb. Abb. Abb.	 131: 132: 133: 134: 135: 136: 137: 	Extrapolation des Wassergehalts x (2CaO·Al ₂ O ₃ ·xH ₂ O) gegen den Schichtabstand der lamellarer Phasen
Abb. Abb. Abb. Abb. Abb. Abb. Abb.	131: 132: 133: 134: 135: 136: 137: 138:	Extrapolation des Wassergehalts x (2CaO·Al ₂ O ₃ ·xH ₂ O) gegen den Schichtabstand der lamellarer Phasen
Abb. Abb. Abb. Abb. Abb. Abb. Abb. Abb.	131: 132: 133: 134: 135: 136: 137: 138: 138: 139:	Extrapolation des Wassergehalts x (2CaO·Al ₂ O ₃ ·xH ₂ O) gegen den Schichtabstand der lamellarer Phasen
Abb. Abb. Abb. Abb. Abb. Abb. Abb. Abb.	131: 132: 133: 134: 135: 136: 137: 138: 139: 140:	Extrapolation des Wassergehalts x (2CaO·Al ₂ O ₃ ·xH ₂ O) gegen den Schichtabstand der lamellarer Phasen
Abb. Abb. Abb. Abb. Abb. Abb. Abb. Abb.	131: 132: 133: 134: 135: 136: 137: 138: 139: 140: 141:	Extrapolation des Wassergehalts x (2CaO·Al ₂ O ₃ ·xH ₂ O) gegen den Schichtabstand der lamellarer Phasen
Abb. Abb. Abb. Abb. Abb. Abb. Abb. Abb.	131: 132: 133: 134: 135: 136: 137: 138: 139: 140: 141: 142:	Extrapolation des Wassergehalts x (2CaO·Al ₂ O ₃ ·xH ₂ O) gegen den Schichtabstand der lamellarer Phasen
Abb. Abb. Abb. Abb. Abb. Abb. Abb. Abb.	 131: 132: 133: 134: 135: 136: 137: 138: 139: 140: 141: 142: 143: 	Extrapolation des Wassergehalts x (2CaO·Al ₂ O ₃ ·xH ₂ O) gegen den Schichtabstand der lamellarer Phasen
Abb. Abb. Abb. Abb. Abb. Abb. Abb. Abb.	 131: 132: 133: 134: 135: 136: 137: 138: 139: 140: 141: 142: 143: 144: 	Extrapolation des Wassergehalts x (2CaO·Al ₂ O ₃ ·xH ₂ O) gegen den Schichtabstand der lamellarer Phasen
Abb. Abb. Abb. Abb. Abb. Abb. Abb. Abb.	 131: 132: 133: 134: 135: 136: 137: 138: 139: 140: 140: 141: 142: 144: 144: 144: 145: 	Extrapolation des Wassergehalts x (2CaO·Al ₂ O ₃ ·xH ₂ O) gegen den Schichtabstand der lamellarer Phasen

Abb.	147:	Kryo-REM-Aufnahme von C ₃ S (Festkörpersynthese); W/F=2; T=20°C; Hydratationszeit: 15h
Abb.	148:	$eq:Kryo-REM-Aufnahme von C_3S (Festkörpersynthese); W/F=2; T=20^\circC; Hydratationszeit: 15h \dots 97$
Abb.	149:	Kryo-REM-Aufnahme von C ₃ S (Polymer-Precursor-Synthese); W/F=2; T=20°C; Hydratationszeit: 15h
Abb.	150:	Kryo-REM-Aufnahme von C ₃ S (Polymer-Precursor-Synthese); W/F=2; T=20°C; Hydratationszeit: 15h
Abb.	151:	Wärmefluss von Yoshiokait, hergestellt mittels Polymer-Precursor-Synthese; W/F=2; T=20°C; 0-200h
Abb.	152:	Wärmefluss von C ₄ A _x F _{2-x} (0 <x<1,2) (sintertemperatur:="" 0-0,6h;="" 1000°c)<="" abhängigkeit="" aluminiumgehalt="" f="2;" in="" polymer-precursor-synthese="" t="20°C;" th="" vom="" w="" x;=""></x<1,2)>
Abb.	153:	Freiwerdende Wärmemenge von C ₄ A _x F_{2-x} in Abhängigkeit vom Aluminiumgehalt x; W/F=2; T=20°C, 0-0,6h; Polymer-Precursor-Synthese (Sintertemperatur: 1000°C)
Abb.	154:	$\label{eq:constraint} \begin{tabular}{lllllllllllllllllllllllllllllllllll$
Abb.	155:	$\label{eq:constant} \begin{array}{l} \mbox{Verfeinerte Gitterkonstanten a_0 und c_0 der lamellaren Hydratationsprodukte in Abhängigkeit vom Aluminiumgehalt x der Brownmillerite [Ca_2(Al_xFe_{2-x})O_5]; $T=20^\circ$C; $W/F=2$$
Abb.	156:	Integrale Intensität des 0 0 6-Reflexes der lamellaren Hydratationsprodukte in Abhängigkeit vom Aluminiumgehalt x der Brownmillerite; T=20°C; W/F=2
Abb.	157:	$\label{eq:Kryo-REM-Aufnahmen von eisenreichen gelartigen Phasen zwischen den lamellaren Hydratationsprodukten nach 30min Hydratationszeit; T=20°C; W/F-Wert=5; Ausgangszusammensetzung: C_4A_{1,0}F_{1,0}; Polymer-Precursor-Synthese$
Abb.	158:	Kristallitgröße und BLAINE-Werte in Abhängigkeit vom Aluminiumgehalt x
Abb.	159:	Maximaler Wärmefluss und freiwerdende Wärmemenge nach 0,6h in Abhängigkeit vom Aluminiumgehalt x
Abb.	160:	Wärmefluss von C_2F in Abhängigkeit von der Sintertemperatur; W/F=2; T=20°C 104
Abb.	161:	Freiwerdende Wärmemenge von C_2F in Abhängigkeit von der Sintertemperatur; W/F=2; T=20°C 104
Abb.	162:	Wärmefluss von C ₂ F in Abhängigkeit von der Sintertemperatur; W/F=2; T=20°C 104
Abb.	163:	Freiwerdende Wärmemenge von C_2F in Abhängigkeit von der Sintertemperatur; W/F=2; T=20°C 104
Abb.	164:	Wärmefluss von $C_4A_{1,0}F_{1,0}$, hergestellt mittels folgender Synthesemethoden: Festkörpersynthese (Sintertemperatur: 1250°C), Polymer-Precursor-Synthese (Sintertemperatur: 1000°C) und Glycin-Nitrat-Prozess (Sintertemperatur: 1000°C); T=20°C
Abb.	165:	Wärmeflusskurven von PZ bei der Zumischung von α `L-C ₂ S; T=20°C; W/F=0,5 108
Abb.	166:	Freigesetzte Wärmemenge von PZ bei der Zumischung von α `L-C ₂ S; T=20°C; W/F=0,5 108
Abb.	167:	Wärmeflusskurven von PZ bei der Zumischung von C_4A_{1,0}F_{1,0}; T=20°C; W/F=0,5 108
Abb.	168:	Wärmeflusskurven von PZ bei der Zumischung von 5 Ma% an C ₂ F und C ₄ A _{1,2} F _{0,8} ; T=20°C; W/F=0,5 108
Abb.	169:	Wärmeflusskurven von TSZ bei der Zumischung von 10Ma% aluminiumreichen Brownmilleriten; T=20°C; W/F=1
Abb.	170:	Freigesetzte Wärmemenge von TSZ bei der Zumischung von 10Ma% aluminiumreichen Brownmilleriten; T=20°C; W/F=1
Abb.	171:	Wärmeflusskurven von TSZ bei der Zumischung von orthorhombischem CA; T=20°C; W/F=1 110
Abb.	172:	Freigesetzte Wärmemenge von TSZ bei der Zumischung von orthorhombischem CA; T=20°C; W/F=1
Abb.	173:	Wärmeflusskurven von TZ bei der Zumischung von orthorhombischem CA; T=20°C; W/F=1 111
Abb.	174:	Freigesetzte Wärmemenge von TZ bei der Zumischung von orthorhombischem CA; T=20°C; W/F=1
Abb.	175:	Wärmeflusskurven von TZ bei der Zumischung von C ₁₂ A ₇ in verschiedenen Mengen; T=20°C; W/F=1
Abb.	176:	Freigesetzte Wärme von TZ bei der Zumischung von C ₁₂ A ₇ in verschiedenen Mengen; T=20°C; W/F=1
Abb.	177	REM-Aufnahme von sprühgetrocknetem Lithiumformiat; Phasengemisch aus Lithiumformiat-

		Monohydrat und den beiden wasserfreien Modifikationen 1	14
Abb.	178:	Levelplot der HT-XRD-Aufnahme von monoklinem Mg(HCOO) ₂ ·2H ₂ O; Verwendung von Silicium a internem Standard	als 17
Abb.	179:	Schematischer Verlauf bei einer Temperaturerhöhung oder Hydratation von $Mg(HCOO)_2$ 1	17
Abb.	180:	REM-Aufnahme von sprühgetrocknetem Magnesiumformiat 1	18
Abb.	181:	REM-Aufnahme von sprühgetrocknetem Magnesiumformiat 1	18
Abb.	182:	REM-Aufnahme von MgO, hergestellt durch die Zersetzung von sprühgetrocknetem Magnesiumform 1	iat 18
Abb.	183:	REM-Aufnahme von MgO, hergestellt durch die Zersetzung von sprühgetrocknetem Magnesiumform 1	niat 18
Abb.	184:	REM-Aufnahme von sprühgetrocknetem Calciumformiat; 4h nach der Sprühtrocknung; Mischung a β - und γ -Ca(HCOO) ₂	ius 19
Abb.	185:	REM-Aufnahme von sprühgetrocknetem Calciumformiat; 4 Wochen nach der Sprühtrocknur α -Ca(HCOO) ₂	าg; 19
Abb.	186:	Levelplot der HT-XRD-Aufnahme von Sr(HCOO) ₂ ·2H ₂ O	20
Abb.	187:	REM-Aufnahme von Strontiumcarbonat; Zersetzungsprodukt der sprühgetrockneten Strontiumformia T _{Produkt} = 500°C	te; 21
Abb.	188:	REM-Aufnahme von Strontiumcarbonat; Zersetzungsprodukt der sprühgetrockneten Strontiumformia Vergrößerung aus Abb. 187; T _{Produkt} = 500°C	te; 21
Abb.	189:	REM-Aufnahme des Gemisches aus MnO und Mn $_3O_4$, hergestellt durch Zersetzung v sprühgetrocknetem Manganformiat bei 500°C unter Verwendung von N $_2$ als Spülgas; Gasflus 200ml/min; Heizrate: 10°C/min	′on ss: 23
Abb.	190:	REM-Aufnahme des Gemisches aus MnO und Mn ₃ O ₄ , hergestellt durch Zersetzung v sprühgetrocknetem Manganformiat bei 500°C unter Verwendung von N ₂ als Spülgas; Gasflus 200ml/min; Heizrate: 10° C/min; Vergrößerung aus Abb. 189	′on ss: 23
Abb.	191:	XRD-Diagramme beim langsamen Auskristallisieren von Aluminiumformiat-Lösung; Bildung v Al(OH)(HCOO) ₂ ·xH ₂ O	on 30
Abb.	192:	TG/DTA-Diagramm von sprühgetrocknetem Aluminiumformiat, Heizrate: 10°C/min; Spülga synthetische Luft; Gasfluss: 200ml/min	as: 30
Abb.	193:	REM-Aufnahme von sprühgetrocknetem Aluminiumformiat 1	31
Abb.	194:	REM-Aufnahme von sprühgetrocknetem Aluminiumformiat, das bei 860°C (2h) zersetzt wurde 1	31
Abb.	195:	REM-Aufnahme von sprühgetrocknetem Aluminiumformiat, das bei 1300°C (2h) gesintert wurde 1	31
Abb.	196:	REM-Aufnahme von sprühgetrocknetem Aluminiumformiat, das bei 1300°C (2h) gesintert wurde 1	31
Abb.	197:	REM-Aufnahme von sprühgetrocknetem Calciumaluminiumformiat1	32
Abb.	198:	REM-Aufnahme von sprühgetrocknetem Calciumaluminiumformiat, das bei 700°C (2h) zersetzt wur	de 32
Abb.	199:	REM-Aufnahme von sprühgetrocknetem Calciumaluminiumformiat, das bei 900°C (2h) gesintert wur	de 32
Abb.	200:	REM-Aufnahme von sprühgetrocknetem Calciumaluminiumformiat, das bei 1300°C (2h) gesint wurde	ert 32
Abb.	201:	XRD-Diagramme von sprühgetrockneter Calciumaluminiumformiat-Lösung (CA), das bei folgend Temperaturen gesintert wurde: a) RT, b) 700°C (2h), c) 900°C (2h) und d) 1300°C (2h) 1	len 33
Abb.	202:	TG/DTA-Diagramm von sprühgetrockneten Calciumaluminiumformiat zur Herstellung von C Heizrate: 10°C/min; Spülgas: synthetischer Luft; Gasfluss: 200ml/min	CA; 33
Abb.	203:	Wärmeflussdiagramm von orthorhombischem CA, hergestellt mittels des Sprühverfahren bei ein Sintertemperatur von 900°C (2h); W/F-Wert=4, T=20°C	ner 34
Abb.	204:	TG/DTA-Diagramm von sprühgetrocknetem Calciumformiat und SiO ₂ -Sol zur Herstellung von C ₂ Spülgas: synthetische Luft; Spülrate: 200ml/min; Heizrate: 10°C/min	₂S; 34
Abb.	205:	REM-Aufnahme von $\alpha_L^-C_2S$, hergestellt mittels Sprühtrocknung von Calciumformiat und SiO ₂ -Sol u anschließender Zersetzung bei einer Sintertemperatur von 700°C (2h)	ınd 35
Abb.	206:	REM-Aufnahme von $\alpha_L^-C_2S$, hergestellt mittels Sprühtrocknung von Calciumformiat und SiO ₂ -Sol u anschließender Zersetzung bei einer Sintertemperatur von 700°C (2h); Bildausschnitt des in Abb. 2	ind 205

		rot gekennzeichneten Rechtecks
Abb.	207:	$\label{eq:constraint} \begin{array}{llllllllllllllllllllllllllllllllllll$
Abb.	208:	Strukturisotype Metallformiat-Hydrate und Metallformiate
Abb.	209:	Mögliche metastabile Phasen (rot) im System CaO-Al ₂ O ₃ -SiO ₂ , die sich aufgrund der Verwendung von gut homogenisierten Ausgangsprodukten außerhalb ihres Stabilitätsfeldes bei niedrigen Sintertemperaturen bilden können
Abb.	210:	Spezifische Oberfläche, Porosität, Kristallitgröße, Maximaler Wärmefluss und Freiwerdende Wärmemenge des C ₂ S, hergestellt mittels Polymer-Precursor-Synthese in Abhängigkeit von der Sintertemperatur
Abb.	211:	Pulver (α` _L -C ₂ S), das mittels Sprühverfahren hergestellt wurde; Agglomeratgröße (weiß), beeinflussbar durch die Konzentration der Ausgangslösung; Korngröße (rot), die bei niedrigen Sintertemperaturen in etwas der Kristallitgröße entspricht (ca. 20nm) und durch einen anschließenden Sinterprozess erhöht werden kann
Abb.	212:	TG/DTA-Diagramm von Lithiumformiat-Monohydrat, Heizrate: 10°C/min; Spülgas: synthetische Luft, Spülrate: 200ml/min
Abb.	213:	TG/DTA-Diagramm von sprühgetrocknetem Natriumformiat, Heizrate: 10°C/min; Spülgas: N ₂ , Spülrate: 200ml/min
Abb.	214:	TG/DTA-Diagramm von Magnesiumformiat-Dihydrat (Monoklin), Heizrate: 10°C/min; Spülgas: synthetische Luft, Spülrate: 200ml/min
Abb.	215:	TG/DTA-Diagramm von sprühgetrocknetem Magnesiumformiat, Heizrate: 10°C/min; Spülgas: synthetische Luft, Spülrate: 200ml/min
Abb.	216:	TG/DTA-Diagramm von alpha-Calciumformiat, Heizrate: 10°C/min; Spülgas: synthetische Luft, Spülrate: 200ml/min
Abb.	217:	TG/DTA-Diagramm von sprühgetrocknetem Calciumformiat; Heizrate: 10°C/min; Spülgas: synthetische Luft, Spülrate: 200ml/min
Abb.	218:	TG/DTA-Diagramm von Strontiumformiat-Dihydrat, Heizrate: 10°C/min; Spülgas: synthetische Luft, Spülrate: 200ml/min
Abb.	219:	TG/DTA-Diagramm von sprühgetrocknetem Strontiumformiat; Heizrate: 10°C/min; Spülgas: synthetische Luft; Spülrate: 200ml/min
Abb.	220:	TG/DTA-Diagramm von sprühgetrocknetem Bariumformiat; Heizrate: 10°C/min; Spülgas: synthetische Luft, Spülrate: 200ml/min
Abb.	221:	TG/DTA-Diagramm von Mangan(II)formiat-Dihydrats; Heizrate: 10°C/min; Spülgas: synthetische Luft; Spülrate: 200ml/min
Abb.	222:	TG/DTA-Diagramm von sprühgetrocknetem Mangan(II)formiat; Heizrate: 10°C/min; Spülgas: N ₂ , Spülrate: 200ml/min
Abb.	223:	TG/DTA-Diagramm von sprühgetrocknetem Mangan(II)formiat; Heizrate: 10°C/min; Spülgas: synthetische Luft; Spülrate: 200ml/min
Abb.	224:	TG/DTA-Diagramm von Eisen(II)formiat-Dihydrat; Heizrate: 10°C/min; Spülgas: synthetische Luft; Spülrate: 200ml/min
Abb.	225:	TG/DTA-Diagramm von sprühgetrocknetem Eisen(II)formiat; Heizrate: 10°C/min; Spülgas: synthetische Luft; Spülrate: 200ml/min
Abb.	226:	TG/DTA-Diagramm von sprühgetrocknetem Eisen(II)formiat; Heizrate: 10°C/min; Spülgas: N ₂ ; Spülrate: 200ml/min
Abb.	227:	TG/DTA-Diagramm von Cobalt(II)formiat-Dihydrat; Heizrate: 10°C/min; Spülgas: N ₂ ; Spülrate: 200ml/min
Abb.	228:	TG/DTA-Diagramm von sprühgetrocknetem Cobalt(II)formiat; Heizrate: 10°C/min; Spülgas: synthetische Luft; Spülrate: 200ml/min
Abb.	229:	TG/DTA-Diagramm von sprühgetrocknetem Cobalt(II)formiat; Heizrate: 10°C/min; Spülgas: N ₂ ; Spülrate: 200ml/min
Abb.	230:	TG/DTA-Diagramm von Nickel(II)formiat-Dihydrat, Heizrate: 10°C/min; Spülgas: N ₂ ; Spülrate: 200ml/min
Abb.	231:	TG/DTA-Diagramm von sprühgetrocknetem Nickel(II)formiat; Heizrate: 10°C/min; Spülgas: synthetische Luft; Spülrate: 200ml/min

Abb.	232:	TG/DTA-Diagramm von sprühgetrocknetem Nickel(II)formiat; Heizrate: 10°C/min; Spülgas: N Spülrate: 200ml/min	2, 9
Abb.	233:	TG/DTA-Diagramm von Kupfer(II)formiat-Tetrahydrat; Heizrate: 10°C/min; Spülgas: N ₂ ; Spülrate 200ml/min	e: 9
Abb.	234:	TG/DTA-Diagramm von sprühgetrocknetem Kupfer(II)formiat; Heizrate: 10°C/min; Spülgas: N Spülrate: 200ml/min	2; •0
Abb.	235:	TG/DTA-Diagramm von sprühgetrocknetem Kupfer(II)formiat; Heizrate: 10°C/min; Spülgas synthetische Luft; Spülrate: 200ml/min	s: 0
Abb.	236:	TG/DTA-Diagramm von Zinkformiat-Dihydrat; Heizrate: 10°C/min; Spülgas: N ₂ ; Spülrate: 200ml/mi 24	in 1
Abb.	237:	TG/DTA-Diagramm von sprühgetrocknetem Zinkformiat; Heizrate: 10°C/min; Spülgas: N ₂ , Spülrate 200ml/min	e: 1
Abb.	238:	TG/DTA-Diagramm von sprühgetrocknetem Zinkformiat; Heizrate: 10°C/min; Spülgas: synthetisch Luft; Spülrate: 200ml/min	e 2
Abb.	239:	TG/DTA-Diagramm von Al(OH)(HCOO) ₂ ·xH ₂ O; Heizrate: 10°C/min; Spülgas: N ₂ ; Spülrate: 200ml/m 24	in 2
Abb.	240:	IR-Spektren der Metallformiate-Dihydrate; a) $Mg(HCO_2)_2 \cdot 2H_2O$ (Monoklin), b) $Mn(HCO_2)_2 \cdot 2H_2O$ c) $Fe(HCO_2)_2 \cdot 2H_2O$, d) $Co(HCO_2)_2 \cdot 2H_2O$, e) $Ni(HCO_2)_2 \cdot 2H_2O$, f) $Zn(HCO_2)_2 \cdot 2H_2O$), 4
Abb.	241:	IR-Spektren der Metallformiate: a) $Mg(HCO_2)_2$ (Amorph), b) β -Mg(HCO ₂) ₂ , c) $Mn(HCO_2)_2$, c) $Co(HCO_2)_2$, e) $Ni(HCO_2)_2$, f) $Zn(HCO_2)_2$	d) 6
Abb.	242:	REM-Aufnahme von sprühgetrockneter Lithiumformiat-Lösung	8
Abb.	243:	REM-Aufnahme von sprühgetrockneter Lithiumformiat-Lösung	8
Abb.	244:	REM-Aufnahme von sprühgetrockneter Natriumformiat-Lösung	9
Abb.	245:	REM-Aufnahme von sprühgetrockneter Natriumformiat-Lösung	.9
Abb.	246:	REM-Aufnahme von sprühgetrockneter Magnesiumformiat-Lösung	0
Abb.	247:	REM-Aufnahme von sprühgetrockneter Magnesiumformiat-Lösung	0
Abb.	248:	REM-Aufnahme von sprühgetrockneter Calciumformiat-Lösung; 4h nach dem Sprühprozess 25	1
Abb.	249:	REM-Aufnahme von sprühgetrockneter Calciumformiat-Lösung; 4h nach dem Sprühprozess 25	1
Abb.	250:	REM-Aufnahme von sprühgetrockneter Calciumformiat-Lösung; 4 Wochen nach dem Sprühprozes	s
			2
Abb.	251:	REM-Aufnahme von sprühgetrockneter und bei 500°C zersetzter Calciumformiat-Lösung; Calcit 25	2
Abb.	252:	REM-Aufnahme von sprühgetrockneter und bei 500°C zersetzter Strontiumformiat-Lösung Strontiumcarbonat	д; З
Abb.	253:	REM-Aufnahme von sprühgetrockneter und bei 500°C zersetzter Strontiumformiat-Lösung Strontiumcarbonat	д; З
Abb.	254:	REM-Aufnahme von sprühgetrockneter Bariumformiat-Lösung; Bariumformiat	4
Abb.	255:	REM-Aufnahme von sprühgetrockneter Bariumformiat-Lösung; Bariumformiat	4
Abb.	256:	REM-Aufnahme von Mn ₃ O ₄ , hergestellt durch Zersetzung von sprühgetrockneter Mangan(II)formia Lösung bei 500°C; Spülgas: synthetische Luft; Gasfluss: 200ml/min; Heizrate: 10°C/min	t- 5
Abb.	257:	REM-Aufnahme von Mn ₃ O ₄ , hergestellt durch Zersetzung von sprühgetrockneter Mangan(II)formia Lösung bei 500°C; Spülgas: synthetische Luft; Gasfluss: 200ml/min; Heizrate: 10°C/min	t- 5
Abb.	258:	REM-Aufnahme eines Gemisches aus MnO und Mn ₃ O ₄ , hergestellt durch Zersetzung vor sprühgetrockneter Mangan(II)formiat-Lösung bei 500°C; Spülgas: N ₂ ; Gasfluss: 200ml/min; Heizrate 10°C/min	n e: 6
Abb.	259:	REM-Aufnahme eines Gemisches aus MnO und Mn ₃ O ₄ , hergestellt durch Zersetzung vor sprühgetrockneter Mangan(II)formiat-Lösung bei 500°C; Spülgas: N ₂ ; Gasfluss: 200ml/min; Heizrate 10°C/min	n e: 6
Abb.	260:	REM-Aufnahme von sprühgetrockneter Eisen(II)formiat-Lösung	7
Abb.	261:	REM-Aufnahme von sprühgetrockneter Eisen(II)formiat-Lösung	7
Abb.	262:	REM-Aufnahme eines Gemisches aus Fe ₃ O ₄ und γ -Fe ₂ O ₃ , hergestellt durch Zersetzung vor sprühgetrockneter Eisen(II)formiat-Lösung bei 500°C; Spülgas: N ₂ ; Gasfluss: 200ml/min; Heizrate	n e:

		10°C/min
Abb.	263:	REM-Aufnahme eines Gemisches aus Fe $_3O_4$ und γ -Fe $_2O_3$, hergestellt durch Zersetzung von sprühgetrockneter Eisen(II)formiat-Lösung bei 500°C; Spülgas: N $_2$; Gasfluss: 200ml/min; Heizrate: 10°C/min
Abb.	264:	REM-Aufnahme von einem Gemisch aus α -Fe ₂ O ₃ und γ -Fe ₂ O ₃ , hergestellt durch Zersetzung von sprühgetrockneter Eisen(II)formiat-Lösung bei 375°C; Spülgas: synthetische Luft; Gasfluss: 200ml/min; Heizrate: 10°C/min
Abb.	265:	REM-Aufnahme von einem Gemisch aus α -Fe ₂ O ₃ und γ -Fe ₂ O ₃ , hergestellt durch Zersetzung von sprühgetrockneter Eisen(II)formiat-Lösung bei 375°C; Spülgas: synthetische Luft; Gasfluss: 200ml/min; Heizrate: 10°C/min
Abb.	266:	REM-Aufnahme von sprühgetrockneter Cobalt(II)formiat-Lösung
Abb.	267:	REM-Aufnahme von sprühgetrockneter Cobalt(II)formiat-Lösung
Abb.	268:	REM-Aufnahme von Co ₃ O ₄ , hergestellt durch Zersetzung von sprühgetrockneter Cobalt(II)formiat- Lösung bei 500°C; Spülgas: synthetische Luft als; Gasfluss: 200ml/min; Heizrate: 10°C/min
Abb.	269:	REM-Aufnahme von Co ₃ O ₄ , hergestellt durch Zersetzung von sprühgetrockneter Cobalt(II)formiat- Lösung bei 500°C; Spülgas: synthetische Luft als; Gasfluss: 200ml/min; Heizrate: 10°C/min
Abb.	270:	REM-Aufnahme von einem Gemisch aus α -Co, β -Co, CoO und Co ₃ O ₄ , hergestellt durch Zersetzung von sprühgetrockneter Cobalt(II)formiat-Lösung bei 350°C; Spülgas: N ₂ ; Gasfluss: 200ml/min; Heizrate: 10°C/min
Abb.	271:	REM-Aufnahme von einem Gemisch aus α -Co, β -Co, CoO und Co ₃ O ₄ , hergestellt durch Zersetzung von sprühgetrockneter Cobalt(II)formiat-Lösung bei 350°C; Spülgas: N ₂ ; Gasfluss: 200ml/min; Heizrate: 10°C/min
Abb.	272:	REM-Aufnahme von sprühgetrockneter Kupfer(II)formiat-Lösung
Abb.	273:	REM-Aufnahme von sprühgetrockneter Kupfer(II)formiat-Lösung
Abb.	274:	REM-Aufnahme von Cu (+wenig Cu ₂ O), hergestellt durch Zersetzung von sprühgetrockneter Kupfer(II)formiat-Lösung bei 250°C; Spülgas: N ₂ ; Gasfluss: 200ml/min; Heizrate: 10°C/min
Abb.	275:	REM-Aufnahme von Cu (+wenig Cu ₂ O), hergestellt durch Zersetzung von sprühgetrockneter Kupfer(II)formiat-Lösung bei 250°C; Spülgas: N ₂ ; Gasfluss: 200ml/min; Heizrate: 10°C/min
Abb.	276:	REM-Aufnahme von Cu (+wenig Cu ₂ O), hergestellt durch Zersetzung von sprühgetrockneter Kupfer(II)formiat-Lösung bei 250°C; Spülgas: N ₂ ; Gasfluss: 200ml/min; Heizrate: 10°C/min
Abb.	277:	REM-Aufnahme von CuO, hergestellt durch Zersetzung von sprühgetrockneter Kupfer(II)formiat- Lösung bei 500°C; Spülgas: synthetische Luft; Gasfluss: 200ml/min; Heizrate: 10°C/min
Abb.	278:	REM-Aufnahme von CuO, hergestellt durch Zersetzung von sprühgetrockneter Kupfer(II)formiat- Lösung bei 500°C; Spülgas: synthetische Luft; Gasfluss: 200ml/min; Heizrate: 10°C/min
Abb.	279:	REM-Aufnahme von sprühgetrockneter Zinkformiat-Lösung
Abb.	280:	REM-Aufnahme von sprühgetrockneter Zinkformiat-Lösung
Abb.	281:	REM-Aufnahme von ZnO, hergestellt durch Zersetzung von sprühgetrockneter Zinkformiat-Lösung bei 500°C; Spülgas: synthetische Luft; Gasfluss: 200ml/min; Heizrate: 10°C/min
Abb.	282:	REM-Aufnahme von ZnO, hergestellt durch Zersetzung von sprühgetrockneter Zinkformiat-Lösung bei 500°C; Spülgas: synthetische Luft; Gasfluss: 200ml/min; Heizrate: 10°C/min

Tabellenverzeichnis

Tab. 1:	Parameter für die pulverdiffraktometrischen Untersuchungen	
Tab. 2:	Parameter für die pulverdiffraktometrischen Untersuchungen, die abhängig vom Anodenmaterial variiert wurden	
Tab. 3:	Sublimationsparameter bei der Kryo-Transfer-Präparation	
Tab. 4:	Parameter für die Thermoanalytik 14	
Tab. 5:	Aufstellung der verwendeten Chemikalien 17	
Tab. 6:	Maximale Sintertemperaturen bei der Festkörpersynthese	
Tab. 7:	Parameter für die Sprühtrocknung der Metallformiate und Maximalwerte des Sprühtrockners	
Tab. 8:	Verwendete Muffelöfen	
Tab. 9:	Verfeinerte Gitterkonstanten von orthorhombischem und monoklinem CA	
Tab. 10:	Variierte Kationen/ZS/EG-Verhältnisse für die Synthese von CA 29	
Tab. 11:	Spezifische Oberfläche nach BLAINE von orthorhombischem CA; Sinterschritt: 900°C (2h) 30	
Tab. 12:	Spezifische Oberfläche nach BLAINE von monoklinem CA; Sinterschritt: 1500°C (2h) 30	
Tab. 13:	Spezifische Oberfläche von $C_{12}A_7$, hergestellt mittels verschiedener Synthesemethoden	
Tab. 14:	Variierte Kationen/ZS/EG-Verhältnisse bei der Synthese von C12A7	
Tab. 15:	Spezifische Oberfläche nach BLAINE von C_3A bei Verwendung verschiedener Synthesemethoden 36	
Tab. 16:	Verfeinerte Gitterkonstanten und Kristallitgrößen bei der Synthese von C ₂ S mittels des Polymerprecursors bei verschiedenen Sinterschritten	
Tab. 17:	Bekannte metastabile und stabile Modifikationen von CaO·Al $_2O_3$ ·2SiO $_2$	
Tab. 18:	Variierte Kationen/ZS/EG-Verhältnisse für die Synthese von CAS2	
Tab. 19:	Kristalline Modifikationen des CAS ₂ nach einem Sinterschritt von 2h bei 950°C in Abhängigkeit vom Polymergehalt (Tab. 18); die Mengenverhältnisse der verschieden Phasen wurden anhand der Intensitätsverhältnisse abgeschätzt und in folgenden Bereiche eingeteilt: ++++reinphasig, +++viel, ++mittel, +wenig und -nichts; in Klammern ist die volumengemittelte durchschnittliche Kristallitgröße L _{VOL} angegeben	
Tab. 20:	Kristalline Modifikationen des CAS ₂ nach einem zweiten Sinterschritt von 2h bei 950°C in Abhängigkeit vom Polymergehalt (Tab. 18); die Mengenverhältnisse der verschieden Phasen wurden anhand der Intensitätsverhältnisse abgeschätzt und in folgenden Bereiche eingeteilt: ++++reinphasig, +++viel, ++mittel, +wenig und -nichts	
Tab. 21:	Verfeinerte Gitterkonstanten der monoklinen Modifikationen des CAS ₂ , die mittels Polymer-Precursor- Synthese hergestellt wurden	
Tab. 22:	Kristalline Modifikationen nach einem Sinterschritt von 2h bei 950°C in Abhängigkeit vom Polymergehalt unter Verwendung von TEOS als SiO ₂ -Precursor; die Mengenverhältnisse der verschieden Phasen wurden anhand der Intensitätsverhältnisse abgeschätzt und in folgenden Bereiche eingeteilt: ++++reinphasig, +++viel, ++mittel, +wenig und -nichts	
Tab. 23:	Verfeinerte Gitterkonstanten des Yoshiokait (geringe Mengen an Gehlenit als Nebenphase) 55	
Tab. 24:	Verfeinerte Gitterkonstanten und Kristallitgrößen des Gehlenits in Abhängigkeit von der Sintertemperatur	
Tab. 25:	Verfeinerte Gitterkonstanten des C ₄ AF bei Verwendung des Precursors aus dem GNP 66	
Tab. 26:	Phasenzusammensetzung nach den angegebenen Sinterschritten bei dem Versuch Mg ²⁺ durch Zn ²⁺ , Cu ²⁺ , Ni ²⁺ oder Co ²⁺ im Pleochroit zu ersetzen	
Tab. 27:	Verfeinerte Gitterkonstanten der Pleochroite	
Tab. 28:	Notwendig Sinterschritte für den Erhalt der jeweiligen reinphasigen Verbindungen mittels verschiedener Synthesemethoden; *geringe Mengen an Nebenphasen	
Tab. 29:	Bekannte kristallographische Parameter zu den Hydratstufen des $2CaO \cdot AI_2O_3 \cdot 8\pm xH_2O$ ($C_2AH_{8\pm x}$) 87	
Tab. 30:	$Verfeinerte Gitterparameter der Hydratstufen des 2CaO \cdot Al_2O_3 \cdot 8 \pm xH_2O \ (C_2AH_{8\pm x}) \ \ 89$	
Tab. 31:	Ergebnisse der kalorimetrischen Untersuchungen zum C ₃ S	
Tab. 32:	Charakteristische Werte zum Hydratationsverhalten der Brownmillerite in Abhängigkeit Aluminiumgehalt x bei einer konstanten Sintertemperatur von 1000°C (2h); W/F=2; T=20°C; Polyr Precursor-Synthese	vom mer- 100
----------	---	--------------------
Tab. 33:	Zusammensetzung der Hydratphasen nach 72h Hydratationszeit in Abhängigkeit vom Aluminiumge x der Brownmillerite; T=20°C; W/F=2	ehalt 101
Tab. 34:	Charakteristische Werte zum Hydratationsverhalten von C ₂ F in Abhängigkeit von der Sintertemper	ratur 104
Tab. 35:	Chemische Zusammensetzung des CEM I 42,5R in Ma%	107
Tab. 36:	Phasenzusammensetzung des CEM I 42,5R in Ma%	107
Tab. 37:	Chemische Zusammensetzung des TSZ in Ma%	109
Tab. 38:	Phasenzusammensetzung des TSZ in Ma%	109
Tab. 39:	Chemische Zusammensetzung des TZ in Ma%	110
Tab. 40:	Phasenzusammensetzung des TZ in Ma%	110
Tab. 41:	Hydratstufen und Modifikationen des Lithiumformiats	114
Tab. 42:	Gitterkonstanten (25°C) und Zersetzungstemperaturen von Li(HCOO)·H ₂ O und Li(HCOO)	114
Tab. 43:	Hydratstufen und Modifikationen des Natriumformiats	115
Tab. 44:	Verfeinerte Gitterkonstanten (25°C) und Zersetzungstemperatur des Natriumformiats	115
Tab. 45:	Hydratstufen und Modifikationen des Magnesiumformiats	116
Tab. 46:	Verfeinerte Gitterkonstanten (25°C) und Entwässerungs-, Umwandlungs- Zersetzungstemperaturen der Hydratstufen und Modifikationen des Magnesiumformiats	und 116
Tab. 47:	Modifikationen des Calciumformiats	119
Tab. 48:	Verfeinerte Gitterkonstanten (25°C) des Calciumformiats	119
Tab. 49:	Hydratstufen und Modifikationen des Strontiumformiats	120
Tab. 50:	Gitterkonstanten des Strontiumformiat-Dihydrats und der bei RT stabilisierten Strontiumformiate	121
Tab. 51:	Verfeinerte Gitterkonstanten (25°C) des Bariumformiats	121
Tab. 52:	Hydratstufen und Modifikationen des Mangan(II)formiats	122
Tab. 53:	Verfeinerte Gitterkonstanten des Mangan(II)formiat-Dihydrats und Mangan(II)formiats	122
Tab. 54:	Zersetzung des sprühgetrockneten Mangan(II)formiats; Heizrate: 10°C/min; Gasfuß: 200ml/min	122
Tab. 55:	Hydratstufen und Modifikationen des Eisen(II)formiats	124
Tab. 56:	Verfeinerte Gitterkonstanten des Eisen(II)formiat-Dihydrats und Eisen(II)formiats	124
Tab. 57:	Zersetzung des sprühgetrockneten Eisen(II)formiats; Heizrate: 10°C/min; Gasfluss: 200ml/min	124
Tab. 58:	Bekannte Modifikationen des Cobalt(II)formiats	125
Tab. 59:	Verfeinerte Gitterkonstanten des Cobalt(II)formiat-Dihydrats (25°C)	125
Tab. 60:	Zersetzung des sprühgetrockneten Cobalt(II)formiats; Heizrate: 10°C/min; Gasfluss: 200ml/min	125
Tab. 61:	Bekannte Hydratstufen und Modifikationen des Nickel(II)formiats	126
Tab. 62:	Verfeinerte Gitterkonstanten des Nickel(II)formiat-Dihydrats	126
Tab. 63:	Zersetzung des sprühgetrockneten Nickel(II)formiats; Heizrate: 10°C/min; Gasfluss: 200ml/min	126
Tab. 64:	Bekannte Hydratstufen und Modifikationen des Kupfer(II)formiats	127
Tab. 65:	Verfeinerte Gitterkonstanten der Hydratstufen und Modifikationen des Kupfer(II)formiats (25°C)	127
Tab. 66:	Zersetzung des sprühgetrockneten Kupfer(II)formiats; Heizrate: 10°C/min; Gasfluss: 200ml/min	127
Tab. 67:	Bekannte Hydratstufen und Modifikationen des Zinkformiats	128
Tab. 68:	Verfeinerte Gitterkonstanten des Zinkformiat Hydrat und Zinkformiat bei 25°C	128
Tab. 69:	Bekannte Modifikationen, Hydratstufen und Zwischenprodukt bei der Zersetzung Aluminiumformiats	des 129
Tab. 70:	Verbindungen, die bei den niedrigsten Sintertemperaturen zwischen 700°C und 950°C herges werden konnten; *geringe Gehalte an Nebenphasen	stellt 139

Tab. 71:	Phasen, die erst bei höheren Temperaturen (>900°C) gebildet werden	140
Tab. 72:	Metastabile und dazugehörige stabile Phasen, die in den untersuchten Systemen gebildet wurden .	140
Tab. 73:	Gebildete Modifikationen des C ₂ S nach verschiedenen Sinterschritten unter Verwendung der Polyn Precursor-Synthese	mer- 140
Tab. 74:	Monocalciumaluminat CaO·Al ₂ O ₃ (metastabil)	164
Tab. 75:	$Calcium a luminium disilikat \ CaO\cdot Al_2O_3\cdot 2SiO_2 \ (metastabil) \ \$	167
Tab. 76:	Verfeinerte Gitterkonstanten der Brownmillerite Ca ₂ (Al _x Fe _{2-x})O ₅ in Abhängigkeit von Sintertemperatur und dem Aluminiumgehalt x; Herstellung mittels Polymer-Precursor-Synthese	der 170
Tab. 77:	Co-Pleochroit, Calciumaluminiumcobaltsilikat Ca20Al26Co3Si3O68	171
Tab. 78:	Calciumaluminiumhydroxid-Aluminathydrat 2CaO·Al ₂ O ₃ ·8,2H ₂ O	176
Tab. 79:	Calciumaluminiumhydroxid-Aluminathydrat 2CaO·Al ₂ O ₃ ·8H ₂ O	177
Tab. 80:	Calciumaluminiumhydroxid-Aluminathydrat 2CaO·Al ₂ O ₃ ·7,5H ₂ O	179
Tab. 81:	Lithiumformiat-Monohydrat Li(HCOO)·H ₂ O	181
Tab. 82:	Lithiumformiat Li(HCOO)	183
Tab. 83:	Natriumformiat Na(HCOO)	185
Tab. 84:	Magnesiumformiat-Dihydrat Mg(HCO ₂) ₂ ·2H ₂ O	187
Tab. 85:	Beta-Magnesiumformiat β-Mg(HCO ₂) ₂	190
Tab. 86:	Strontiumformiat-Dihydrat Sr(HCO ₂) ₂ ·2H ₂ O	192
Tab. 87:	Alpha-Strontiumformiat α -Sr(HCO ₂) ₂	196
Tab. 88:	Bariumformiat Ba(HCO ₂) ₂	200
Tab. 89:	Manganformiat-Dihydrat Mn(HCO ₂) ₂ ·2H ₂ O	204
Tab. 90:	$Beta-Mangan formiat \ \beta-Mn (HCO_2)_2$	207
Tab. 91:	Eisen(II)formiat-Dihydrat Fe(HCOO) ₂ ·2H ₂ O	208
Tab. 92:	Eisen(II)formiat Fe(HCOO) ₂	211
Tab. 93:	Cobaltformiat-Dihydrat; Divergenzblende: fest	212
Tab. 94:	Nickelformiat-Dihydrat Ni(HCOO) ₂ ·2H ₂ O	215
Tab. 95:	Kupferformiat-Tetrahydrat Cu(HCO ₂) ₂ ·4H ₂ O	217
Tab. 96:	Zinkformiat-Dihydrat Zn(HCO ₂) ₂ ·2H ₂ O	220
Tab. 97:	Beta-Zinkformiat β-Zn(HCO ₂) ₂	224
Tab. 98:	Zuordnung der IR-Schwingungsbanden von C ₂ S nach verschiedenen Sintertemperaturen, herges mittels Polymer-Precursor-Synthese; s=stark, m=mittel, w=schwach und sh=Schulter	stellt 243
Tab. 99:	Zuordnung der IR-Schwingungsbanden der Metallformiat-Dihydrate; s=stark, m=mittel, w=schwach sh=Schulter	und 245
Tab. 100:	Zuordnung der IR-Schwingungsbanden der Metallformiat; s=stark, m=mittel, w=schwach sh=Schulter	und 247

Danksagung

Die vorliegende Arbeit entstand am Institut für Geowissenschaften in der Naturwissenschaftlichen Fakultät III der Martin-Luther-Universität Halle-Wittenberg und wurde zwischen Oktober 2006 und Juli 2010 durchgeführt.

Meinem Doktorvater Herrn **Prof. Dr. Dr. Herbert Pöllmann** möchte ich dabei ganz herzlich für die hervorragenden Arbeitsmöglichkeiten am Institut, die hilfreichen fachlichen Diskussionen sowie die moralische Unterstützung bei der Durchführung der Arbeit danken.

Prof. Dr. Jürgen Neubauer möchte ich für die Bereitschaft zur Begutachtung der Arbeit danken.

Prof. Dr. Richard Wenda danke ich für die Diskussionen und Durchsicht der Arbeit, für zahlreiche gute Ratschläge und Tipps während der Durchführung der Promotion sowie für die hervorragende Ausbildung während des Studiums an der FH Nürnberg.

Den Geschäftsführern der Zentrum für Werkstoffanalytik Lauf GmbH, Herrn Dr. Jürgen Göske und Werner Kachler, sowie deren Mitarbeiten möchte ich ganz herzlich für die Messmöglichkeiten an den Rasterelektronenmikroskopen sowie für die sehr gute Ausbildung während des Studiums danken, wodurch sie in mir den Spaß am wissenschaftlichen Arbeiten geweckt haben.

Prof. Dr. Stefan Ebbinghaus der Arbeitsgruppe Anorganische Chemie an der MLU Halle gilt mein Dank für die Möglichkeit der Nutzung des Sprühtrockners sowie seine Unterstützung beim Aufbau.

Ganz besonders möchte ich meinen Kollegen Dr. Thomas Witzke, Dr. Stefan Stöber, Michael Schmidt, Marc Fylak, Katrin Schollbach, Martin Riedl, Dr. Thomas Kühn und Beatrix Brömme danken für die zahlreichen Diskussion während der Mittagspause sowie das freundschaftliche Verhältnis während der Promotion. Den Laborantinnen Frau Steller, Frau Sieber, Frau Kummer, Frau Ostrecha, Steffi Bürger, Frau Becher sowie unserer Sekretärin Frau Henne möchte ich ganz herzlich für die fachliche und moralische Unterstützung während den vergangen Jahren danken. Zudem danke ich allen nicht namentlich erwähnten Personen für die Unterstützung bei dem Anfertigen dieser Arbeit.

Von ganzem Herzen möchte ich zudem meiner Familie und Freundin Katharina danken, die mich während der vergangenen Jahre moralisch unterstützt haben.

Erklärung

Hiermit versichere ich, dass ich die vorliegende Arbeit selbständig und ohne fremde Hilfe verfasst, andere als die von mir angegebenen Quellen und Hilfsmittel nicht benutzt und die den benutzten Werken wörtlich oder inhaltlich entnommenen Stellen als solche kenntlich gemacht habe.

Halle, 18. Oktober 2010

Bastian Raab

Lebenslauf

Persönliche Daten

Name:	Bastian Raab
Geburtsdatum:	16.04.1983
Geburtsort:	Neuendettelsau
Familienstand:	ledig

Schulbildung

1989 – 1995	Volksschule Lichtenau
1995 – 1999	Realschule Heilsbronn
1999 – 2001	Fachoberschule Ansbach

Ersatzdienst

2001 – 2002	Dia-Med-Centrum Clir	nic Neuendettelsau
2001 2002	Bia moa oona an on	no nouonaolloida

Hochschulstudium

2002 – 2006	Georg-Simon-Ohm Fachhochschule Nürnberg
	Fachbereich: Werkstofftechnik
	Abschluss: Diplom-Ingenieur (FH)
2006 – 2010	Martin-Luther-Universität Halle-Wittenberg
	Arbeitsgruppe: Mineralogie und Geochemie
	Promotionsstudium

Berufliche Tätigkeit

2005 – 2006	Zentrum für Werkstoffanalytik Lauf GmbH
	Wissenschaftlicher Mitarbeiter
2006 – 2010	Martin-Luther-Universität Halle-Wittenberg
	Arbeitsgruppe: Mineralogie und Geochemie
	Wissenschaftlicher Mitarbeiter
2006 – 2010	Selbständig-Freiberufliche Tätigkeit
	Quantifizierung von Portlandzementklinkern
seit 2010	Mapei GmbH – Cement Grinding Additives Division
	Sales-Ingenieur

Halle (Saale), 18. Oktober 2010