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INTRODUCTION

Chapter 1

Introduction

1.1 Motivation

The first basic considerations of the extrinsic spin Hall effect were published by Mott
and Massey [1] and Landau and Lifshitz [2] in 1965. Some years later, Dyakonov and
Perel [3] continued the theoretical discussion of the extrinsic mechanism. After many
years without any significant progress, Hirsch [4] proposed an experimental setup in
1999. Starting from this year, the spin Hall effect attracted a lot of attention because
of its possible application in the spintronic field of research [E7, 5–13]. In spintronics
the spin degree of freedom of an electron is used in addition to its charge [14–16].
Usually, spin polarized currents injected from a ferromagnet are necessary to address
the spin degree of freedom. However, this procedure is quite inefficient, especially, for
semiconductors [14,17,18]. The hope is that the spin Hall effect opens the opportunity
to create reasonable spin currents without the problem of spin injection.
In a simple picture the spin Hall effect (SHE) describes the transversal spin current
induced by a longitudinal charge current in a non-magnetic material as sketched in
Fig. 1.1. The driving mechanism is the spin-orbit coupling. At first glance, it seems

Figure 1.1: Principle of the spin Hall effect: Perpendicular to the applied charge current
(jx) spin accumulation accompanied by a spin current, is induced.
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easy but it already implies several crucial problems. First of all, a definition of a spin
current in comparison to a charge current is needed. Furthermore, a possible way of
measuring spin currents has to be established.
The usual and intuitive way of defining a spin current comes from the ”two current
model” of a non-relativistic discussion. The main assumption is a parallel circuit of two
independent spin channels contributing to the total current. The total charge current
density je is the sum of both,

je = j↑ + j↓, (1.1)

whereas, the spin current, namely the amount of transported spin, is given by the
difference

js = j↑ − j↓. (1.2)

The conductivity tensor σ↑(↓) is defined for both spin channels by

j↑(↓) = σ↑(↓)E , (1.3)

respectively. For a system with at least tetragonal symmetry the conductivity tensor
has the form

σ↑ =




a b 0
−b a 0
0 0 c


 , σ↓ =




a −b 0
b a 0
0 0 c


 . (1.4)

Such a system with spin Hall effect would have zero charge Hall current

σe = σ↑ + σ↓ =




2a 0 0
0 2a 0
0 0 2c


 (1.5)

and a non zero spin Hall current

σs = σ↑ − σ↓ =




0 2b 0
−2b 0 0
0 0 0


 . (1.6)

The spin Hall effect in this language is a non vanishing off-diagonal term in the con-
ductivity tensor. The usual way to quantify the spin Hall effect is to calculate the
ratio

α =
σyx

s

σxx
e

(1.7)

which is the so called spin Hall angle. Two problems remain with such a definition.
Firstly, we have not specified how the spin current can be measured. Secondly, the spin
is not conserved and not a good quantum number. It follows from the fact that the
spin operator does not commute with the operator of the spin-orbit coupling which is
the driving force of the effect. In fact, the idea of two currents flowing independently
through a sample is then questionable.
Already from the previous point of view a deeper understanding of the spin Hall effect
is necessary and several physical questions have to be solved. The spin-orbit interac-
tion, which is a purely relativistic effect has to be treated correctly. The spin relaxation
processes need to be considered, and possible measurements of a spin current have to
be understood.
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Figure 1.2: The experimental setup of Yang et al. [19] to switch the magnetization of a
small ferromagnet via a pure spin current. Substituting the spin current injected from
another ferromagnet by a spin Hall device would lead to a magnetization switching
device without a reference ferromagnet.

In addition, the spin Hall effect has a high potential for applications as already men-
tioned. As an example I shortly introduce the experiment of Yang et al. [19] (see Fig.
1.2). In this experiment it was possible to switch the magnetization of a small ferro-
magnet by a pure spin current. So far they used for the injection of the spin current
another ferromagnet. If one would replace this ferromagnet by a spin Hall device the
small magnet could be switched without any other magnet in the system. This ex-
periment implies two requirements for a spin Hall device in future applications. The
spin Hall angle should be large in order to minimize the charge current through the
nonmagnet. The largest angle reported so far is about 0.1 in a Au sample [11]. A new
proposal should be at least of comparable order of magnitude. On the other hand,
the induced spin current must survive in the nonmagnet until it reaches the ferromag-
net. The quantity characterizing the relaxation of the spin current is the spin diffusion
length lsf . It has to be large in comparison to the size of the device. Typical spin
Hall devices are prepared by electron beam lithography where the spatial resolution is
limited to about 20 nm. The spin diffusion length must be at least longer than this.
For maximizing the spin current it should be as large as possible. Both quantities are
determined by the spin-orbit interaction. The spin Hall effect needs a strong spin-orbit
coupling to induce a large spin Hall current, whereas, the spin diffusion length is infi-
nite for vanishing spin-orbit coupling. Maximizing both, the spin Hall angle and the
spin diffusion length, is a difficult task and material dependent calculations are needed.
To quantify the conditions for both quantities, future spin Hall devices require

α ≥ 0.1

and (1.8)

lsf ≥ 20 nm .

The aim of this thesis is to identify systems which exhibit a large spin Hall angle in
combination with a long spin diffusion length. For this purpose both, the spin Hall effect
and the spin relaxation process will be described by ab initio methods. Furthermore,
this work should contribute generally to a deeper understanding of the spin Hall effect,
its microscopic mechanisms, and the way how the spin-orbit interaction induces the
effect.
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1.2 Experimental observation of the spin Hall effect

During the last years several experimental results were published on the spin Hall ef-
fect. The first were optical measurements using Kerr rotation [5, 20]. They image the
spin accumulation at the lateral sites of a semiconductor induced by an applied lon-
gitudinal charge current. Subsequently, several groups were able to measure the spin
Hall effect in all-metallic devices electronically [8, 9, 11, 21–23]. For two reasons I will
restrict the further discussion of experiments to all-metal electronic devices. First of
all, the existing electronic measurements are much easier transferable to applications
than the optical measurements for semiconductors presented so far. Second, the theo-
retical discussion in this work is based on metallic materials.
To understand the experimental observation of the spin Hall effect two main con-
cepts are necessary. Those are the spin accumulation at ferromagnet/nonmagnet in-
terfaces [18, 24] and the non-local measurements of spin transport [25–29]. In Fig. 1.3
the spin accumulation model of Fert and Jaffrés is sketched schematically. They de-
rived it using separate diffusion equations for the spin channels including spin relaxation
processes. In Fig. 1.3 the chemical potential for both spin channels is sketched at the
ferromagnet/nonmagnet interface. Due to the imbalance of spins in the ferromagnet
the majority spins accumulate at the interface, whereas, the minority spins are pushed
away from it. Caused by spin relaxation the chemical potentials in the non-magnetic
electrode are equalized after a characteristic length, the spin diffusion length lsf . The
key point is that the chemical potential for the two spin channels separately are con-
tinuous functions at the interface but the averaged chemical potential has a jump. The
measured quantity in an experiment is the voltage drop, i.e. the jump in the averaged
chemical potential.
The second concept, depicted in Fig. 1.4, is the non-local measurement. The basic

Figure 1.3: The concept of spin accumulation according to Fert and Jaffrés [18] with
the dashed line as asymptotes for the case of vanishing spin diffusion length.
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Figure 1.4: The principle of a non-local measurement [29]. The measured quantity is
the non-local resistance Rs = V

Ie
given by the asymptotes (dashed lines).

idea is that the measurement of a charge current, or the injection of a charge current,
is locally separated from the measurement of the voltage drop. The hope is that such
a technique allows for a pure measurement of the effect of spin accumulation without
any other spurious effects. For an understanding of such an experiment the spin accu-
mulation at interfaces is essential. The current is driven from the first ferromagnet (see
Fig. 1.4 FM1) to the left arm of the nonmagnet (the blue electrode in Fig. 1.4). Due
to the concept of spin accumulation the majority electrons accumulate at the interface
and the concentration of minority electrons reduces. This leads to a spin current to
the right in the non-magnetic electrode. Majority electrons diffuse to the right and
minority electrons diffuse to the left, but no net charge is flowing. The second ferro-
magnet is used as a probe to measure the ”up” or ”down” electrons, respectively. If
the magnetization of the ferromagnetic electrodes is antiparallel the measured voltage
drop between the second ferromagnet and the right arm of the nonmagnet has the op-
posite sign in comparison to the parallel configuration. A typical measurement of that
type is presented in Fig. 1.5 [30]. Due to different coercive fields the two ferromagnets
switch at different applied magnetic fields and two states, parallel and antiparallel,
can be measured. The full and broken lines are a hysteresis cycle going from positive
to negative magnetic fields or vice versa. From such an experiment the spin diffusion
length can be easily extracted by varying the distance between the two ferromagnets.
The experimental diffusion length that we compare our results to is usually taken from
such type of experiment.
The extension from a lateral spin valve (non-local measurement) to a spin Hall ex-
periment is just replacing the second ferromagnet by a non-magnetic material. Figure
1.6 shows the scheme for the measurement of the inverse (a) and the direct (b) spin
Hall effect. For an explanation it is easier to start with the inverse effect since it is
quite similar to the spin accumulation measurements. In this case the charge current
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Figure 1.5: The non-local spin accumulation signal for a lateral spin valve (taken from
Jedema et al. [30]).

Figure 1.6: The measurement of the inverse and the direct spin Hall effect.

is driven from the ferromagnet to the left arm of the non-magnetic material. The
spin accumulation induces a pure spin current flowing to the right side. Due to the
spin-orbit interaction and the asymmetric scattering the ”up” and ”down” spins are
scattered to the same side since their drift velocity, induced by the spin accumulation,
points in opposite direction. If all electrons are mainly scattered to one side a voltage
drop can be measured in the non-magnetic Hall cross. Here, a pure spin current is
transformed into a charge current, voltage drop, which is the inverse spin Hall effect.
For the direct effect (1.6 a) the charge current is driven through the transverse arms



INTRODUCTION 11

Table 1.1: Experimental results are given for the longitudinal conductivity σxx, the
spin Hall conductivity σyx, the Hall angle α, and the spin diffusion length lsf .

material σxx

∣∣σs
yx

∣∣ |α| lsf reference
(µΩcm)−1 10−3(µΩcm)−1 nm

Al 0.1 0.034 0.00034 500 [8, 31](4.2 K)
Au 0.48 <11.0 <0.023 [22] (4.5 K)

0.25 0.4 0.0016 [23]
0.37 42.0 0.113 86 [11] (295 K)

Pt 0.024 0.16 0.0067 [23]
0.064 0.24 0.0037 7 [9] (295 K)
0.055 0.33 0.006 14 [21] (295 K)

of the non-magnetic Hall cross. The spin Hall effect induces a spin current into the
horizontal arms and the ferromagnet is used to measure the chemical potential of the
”up” or ”down” electrons, respectively.
A typical measured signal for both, the inverse and the direct spin Hall effect, is shown
in Fig. 1.7. The ∆V is the non-local voltage drop symmetrized around zero. The
spin Hall signal is the change of the non-local resistance ∆R = ∆V (+B)/I(+B) −
∆V (−B)/I(−B). In Table 1.1 some experimental results for the spin Hall and the
non-local spin diffusion measurements are summarized.

Figure 1.7: The measured signal of a) the inverse and b) the direct spin Hall effect
according to Kimura et al. [9].

Two important facts can be deduced from this table. Firstly, the Hall angle can change
over orders of magnitude even for a simple metal such as gold. This implies that ex-
trinsic effects like scattering from impurities must be important. Secondly, the spin
diffusion length changes over orders of magnitude for different materials. It is very
small for Pt and as long as 500 nm for Al which would be ideal for an application.
However, the problem is that in Al the observed Hall angle is quite small. From the
table Au seems to be a candidate for an application since it combines a large Hall angle
with a reasonable spin diffusion length of about 100 nm.
The aim of this thesis is to identify systems which provide the requested properties
and to understand the underlying mechanisms for possible tuning.
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1.3 Origin of the spin Hall effect

So far I never discussed the origin and mechanisms which lead to the spin Hall effect.
The only statement was that the spin-orbit interaction is necessary. This section gives
an inside into the various mechanisms and possibilities to create a spin Hall current.
This elementary knowledge is crucial for finding a way to be able to tune the spin Hall
angle and the spin diffusion length in a device.
First, the analogy of the spin Hall and the anomalous Hall effect (AHE) will be dis-
cussed briefly. It shows that the explanations which hold for the AHE are also valid
for the SHE. In the next part, the separation into intrinsic and extrinsic contributions
is introduced. Those two main contributions are discussed in the third and fourth part
in more detail. Various contributing mechanisms and their possible description are
explained.

The spin and the anomalous Hall effect

The only statement I gave so far about the mechanism responsible for the SHE is
that a spin-dependent asymmetric scattering of the flowing electrons leads to a spin
accumulation at the transversal edges of our sample (see Fig. 1.1). Due to the same
number of up and down electrons in a non-magnetic sample no voltage drop is mea-
surable. Imagine the same principle in a magnetic material. It necessarily leads to a
transversal voltage drop because of the net magnetization. Both cases are depicted
in Fig. 1.8. Although the microscopic origin of both effects is the same, namely the

Figure 1.8: The spin (left) and the anomalous Hall effect.

asymmetric spin-dependent scattering, the experimental result is quite different. In
one case, a transversal voltage is measurable (AHE), but this is not the case for the
SHE. In conclusion, all explanations and descriptions of the mechanism found for the
AHE should hold for the SHE as well, except the measuring principle.

The intrinsic and extrinsic mechanism

After the experimental finding of the anomalous Hall effect by E. H. Hall in 1880
no microscopic understanding of this effect was found for decades. It took about 70
years until Karplus and Luttinger [32] and Smit [33, 34] developed the first proper
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microscopic explanations for this effect. They used different approaches and found
different mechanisms.
Assume that we have an ideal crystal without any impurities. The explanation of
the AHE as the result of asymmetric scattering is in this case undefined since the
ideal Bloch states would never be scattered. Nevertheless, it was shown [32, 35–38]
that even without perturbations of the ideal crystal an anomalous Hall current can
be found. This effect is called the intrinsic contribution and it is usually explained in
terms of an anomalous velocity in addition to the normal velocity v = ∂E/∂k. The
other contributions induced by a perturbing potential are called extrinsic [33, 34, 39–
42]. The distinction sounds naturally but it causes problems, as we will see in the
next sections. The different authors used different approaches to derive the effects.
Namely, the description via a semiclassical Boltzmann like theory [32–40, 42] and the
calculation based on the quantum mechanical Kubo-Streda formula [41, 43, 44]. The
connection of both descriptions was shown by Sinitsyn et al. [43] for a 2-dimensional
model Hamiltonian.
In the next two sections I will mainly follow the semiclassical Boltzmann approach.
On the one hand, this description gives the most understandable microscopic inside
into the mechanisms, and, on the other hand, I employ the semiclassical Boltzmann
approach in my work to describe the SHE.
The current

J = −e
∑

k

vkfk (e > 0) (1.9)

is expressed in terms of the effective one-electron distribution function fk under the
action of an applied electric field E and the velocity vk is given for the crystal momen-
tum k. For the sake of simplicity, I omit the band index n. The distribution function
is usually separated into two parts

fk = f eq
k + gk , (1.10)

where f eq
k is the equilibrium distribution function and gk is the response on the applied

electric field. The distribution function is a solution of the Boltzmann equation for a
homogeneous system [35,44,45]

k̇
∂f eq

k

∂k
=

∑

k′
(Pk′kgk′ − Pkk′gk) , (1.11)

where a possible explicit time dependence is neglected. The scattering rates Pkk′ are
determined by a proper quantum mechanical description of the scattering process. In
addition, the force k̇ has to be expressed by the electric and magnetic fields. Here, the
Lagrangian approach of Sundaram and Niu [37] is a possible way to identify the force
term under applied fields.
The aim of the following sections is to identify the different contributions to the current
entering via the velocity, or via the distribution function, or via both of them.

The intrinsic contribution

Starting with Karplus and Luttinger [32] several authors [33, 34, 36, 37, 43] found an
impurity independent contribution to the AHE caused by the ideal crystal only. This
mechanism is not as intuitive as the asymmetric scattering but can, nevertheless, con-
tribute significantly to the anomalous Hall current.
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The origin of this contribution is an additional velocity usually called anomalous veloc-
ity. In the semiclassical Boltzmann approach the net velocity takes the form [37,38,44]

vk =
∂Ek

∂k
+ eE×Ωk . (1.12)

The first term is the usual velocity as the derivative of a band energy with respect to
the crystal momentum k. The second term is linear with the applied electric field E
and Ω is the so-called Berry curvature [46]. It can be expressed in terms of the periodic
part uk(r) of the Bloch wave function Ψk(r) = uk(r)e

ik·r:

Ωk = i




(
∂uk

∂ky
, ∂uk

∂kz

)
−

(
∂uk

∂kz
, ∂uk

∂ky

)
(

∂uk

∂kz
, ∂uk

∂kx

)
−

(
∂uk

∂kx
, ∂uk

∂kz

)
(

∂uk

∂kx
, ∂uk

∂ky

)
−

(
∂uk

∂ky
, ∂uk

∂kx

)


 . (1.13)

The second contribution is already linear in the electric field and omitting higher orders
the current is

Jintr = −e2
∑

k

E×Ωkf
eq
k . (1.14)

In a system with time inversion symmetry this would give a zero contribution to the
anomalous Hall current, because the Berry curvature vanishes Ω = 0.
Is it possible to understand in an easy way where the anomalous velocity comes from? It
is related to the basic assumption of the semiclassical approach. The assumption is that
the motion of a quasiparticle is restricted to only one band and no transition to other
bands are considered. Exactly this approximation is violated in the relativistic case
under an applied electric field. This was already found by Karplus and Luttinger [32]
and Smit [33, 34]. As a result, the off-diagonal matrix elements of the periodic part
of the Bloch functions with the Hamilton operator induced by the electric field are
non-zero

e
(
uν

k(r),E · r uν′
k (r)

)
= i e E

(
uν

k(r),
∂uν′

k (r)

∂k

)
6= 0 (1.15)

in the band indices ν. If the semiclassical language with one band only should be
retained, then the effect of interband transitions due to the electric field have to be
incorporated via the Berry curvature. This origin was nicely discussed by Shindou
and Imura [47]. Let us take the z-component of the Berry curvature (1.13) and assume
that the k-dependent Hamiltonian has for a certain k-point the eigenstates uν(r) which
form a complete set

N∑
ν=1

uν
k(r)(u

ν
k(r

′))∗ = δ(r− r′) . (1.16)

If we introduce this complete set into the definition of the Berry curvature (1.13) it
yields the expression

Ωz
k = i

∑
ν

[(
∂uk

∂kx

, uν
k

)(
uν

k,
∂uk

∂ky

)
−

(
∂uk

∂ky

, uν
k

)(
uν

k,
∂uk

∂kx

)]
. (1.17)

Neglecting the contributions of other bands would be perfectly alright if no other state
exist in the system. The complete set would be only one band

uk(r)(uk(r
′))∗ = δ(r− r′) (1.18)
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and the Berry curvature would read as

Ωz
k = i

[(
∂uk

∂kx

, uk

)(
uk,

∂uk

∂ky

)
−

(
∂uk

∂ky

, uk

)(
uk,

∂uk

∂kx

)]
. (1.19)

Using the normalization of the wave function (uk, uk) = 1, it can be shown

∂

∂k
(uk, uk) = 0 =

(
∂uk

∂k
, uk

)
+

(
uk,

∂uk

∂k

)
=

(
∂uk

∂k
, uk

)
+

(
∂uk

∂k
, uk

)∗
(1.20)

that all scalar products in Eq. (1.19) are pure imaginary. That yields into pure real
numbers for the products in Eq. (1.19) and in combination with the fact that the second
term is just the conjugate complex of the first term it gives

Ωz
k = 0 . (1.21)

It is true for a system with only one band.
The above consideration clearly shows that the Berry curvature of a single band system
would be zero. Furthermore, it is possible to proof [47] that describing the system in a
multiband model, including the complete set of a system, would yield into a vanishing
Berry curvature. The Berry curvature is an effect of the special way of describing
the system in the semiclassical approach. In a quantum mechanical (Kubo formalism)
description of the anomalous Hall effect [35,43,44] the anomalous velocity would show
up in the off-diagonal terms of the velocity matrix in the band representation which is
quite similar to what we discussed in the semiclassical approach.

The extrinsic contribution

Following the definition given above, the extrinsic contributions are caused by scatter-
ing events of Bloch states at impurities or any other imperfections of the ideal crystal.
Originally two main effects were considered - the skew scattering [33,34] and the side-
jump effect [39,40]. Already Smit [34] found the side-jump contribution but he argued
this term would identically cancel with the intrinsic contribution discussed above. It
turned out that this is not the case [39,40,42,44].
The two effects were described [39] starting with a wave packet which is scattered at
an imperfection of the lattice including spin-orbit interaction. If the expectation value
of the position operator is calculated after the collision event two contributions can be
identified. Firstly, the center of the wave packet is shifted instantaneously due to the
scattering event. This is called the side-jump contribution. Secondly, the expectation
value continuously deviates in time from the initial path of the wave packet which is
called skew scattering. The important fact is that the direction of the scattering is spin
dependent. If the spin points out of the plane spanned by the incoming direction and
the outgoing direction of the wave packet than it is scattered to the opposite side in
comparison to a wave packet with opposite spin. Both effects are depicted in Fig. 1.9
where the lines represent the expectation value of the position operator evolving in
time.
How can the charge current be described using Eqs. (1.9) and (1.11)? Both effects are
caused by scattering at imperfections. That is why the scattering has to be described
properly. Usually, Fermi’s Golden rule [44]

P νν′
kk′ =

2π

h̄
|T̃ νν′

kk′ |2δ(Eν
k − Eν′

k′) (1.22)
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Figure 1.9: The extrinsic contribution to the spin Hall effect is usually separated into
the side-jump and the skew scattering mechanism.

is used for the scattering part of the Boltzmann equation (1.11). The expression
connects the scattering rate with the corresponding scattering T̂ -matrix. Under the
influence of spin-orbit coupling the microscopic reversibility is not valid any more
(P νν′

kk′ 6= P ν′ν
k′k) which leads directly to the asymmetry needed to incorporate the skew

scattering mechanism.
The problem is that the side-jump contribution shows up as a phase change in the
scattering T̂ -matrix and is therefore not included in the scattering rate. For a descrip-
tion of the side-jump Sinitsyn et al. [42] proposed a renormalization of the velocity to
take the coordinate shifts into account. The velocity is then given by

vk = v0
k + vint

k + vsj
k =

∂Ek

∂k
+ eE×Ωk +

∑

k′
Pk′kδr

a
k′k , (1.23)

with the coordinate shift δra
k′k which can be expressed in terms of the Berry connec-

tion i(u, ∂u
∂k

) [42, 43]. This coordinate shift is independent on the perturbation and
just given by the band structure of the ideal crystal. The velocity correction due to
the side-jump effect is independent on the applied electric field. For the current being
linear in the electric field the corrections of the distribution function due to the electric
field have to be taken into account. The extrinsic contributions to the current are

Jextr = Jsj + Jss = −e
∑

k

(∑

k′
Pk′kδr

a
k′kgk +

∂Ek

∂k
gk

)
. (1.24)

In the literature the non-equilibrium part of the distribution function gk is sometimes
split into several contributions to identify the mechanisms more clearly. In addition,
it is possible to expand the transition rate in powers of the perturbing potential. This
can lead to a distinction of further contributions. Sinitsyn identified the intrinsic skew
scattering and a contribution caused by an anomalous distribution. Here, I will not
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comment on those contributions since throughout my work an additional assumption
for the scattering rate is made. The problem is restricted to dilute alloys where one
impurity can not interact with another one. Under such an assumption the scattering
rate (1.22) simplifies to

P νν′
kk′ =

2π

h̄
c0N |T νν′

kk′ |2δ(Eν
k − Eν′

k′) , (1.25)

where c0N is the number of impurities. The scattering rate is linear in the concen-
tration and the dependence of the conductivities on the concentration can easily be
discussed. Following the Boltzmann equation (1.11) the non-equilibrium distribution
function must be inversely proportional to the concentration. With the expression for
the extrinsic part of the current (1.24) the skew scattering is clearly inversely propor-
tional to the concentration and the side-jump effect is independent of the impurity
concentration. This result makes the separation into intrinsic and extrinsic contribu-
tions questionable. The side-jump is clearly a result of a scattering event but at the
same time the induced current is independent on the impurity concentration similar to
the intrinsic contribution (1.14).
In summary we identified three contributions to the AHE, i.e. the SHE. Those are the
intrinsic mechanism induced by the ideal crystal and the side-jump and skew scattering
effect induced by imperfections in the lattice. The total current is given by

JHall = Jintr(c
0
0) + Jsj(c

0
0) + Jss(c

−1
0 ) , (1.26)

where the parts show different dependencies on the impurity concentration. The lon-
gitudinal current in the dilute limit is also inversely proportional to the impurity con-
centration. In the appendix A I will show that under those assumptions the widely
used dependence

ρss
yx ∝ ρxx (1.27)

ρsj
yx ∝ (ρxx)

2 (1.28)

holds. It is correct if the scattering rate is proportional to the concentration but has
been shown to fail if this assumption is not valid [41]. In my work I focus on the
description of the skew scattering mechanism since this contribution could easily be
identified experimentally by varying the impurity concentration.
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THEORETICAL BACKGROUND

Chapter 2

Theoretical background

In this chapter the theoretical concepts and methods used throughout my work are
introduced. It is separated into four parts.

It starts with a brief introduction of the ab initio method which is based on density
functional theory (DFT) and the relativistic version of the Korringa-Kohn-Rostoker
(KKR) method. All calculations are based on that concept and, therefore, they are
restricted to the considered approximations. Since the spin-orbit interaction is the key
for the description of the spin Hall effect, all considerations are based on the solution
of the Dirac equation.

In the following the numerical procedure to find the eigenvalues and eigenvectors
of the electronic system described by the KKR method is explained. In addition, a
numerical robust method for the calculation of Fermi velocities is introduced. Also the
spin degree of freedom of the wave functions is discussed in detail.

The third part is dedicated to the description of spin-relaxation processes. It is
outlined how to calculate the spin-flip scattering time caused by impurities within the
KKR method.

Electronic transport is the topic of the last part of the chapter. It contains an
introduction to the linearized Boltzmann equation with a quantum mechanical collision
term and the charge and spin conductivity tensor in the semiclassical approach.
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2.1 Electronic structure

2.1.1 Density functional theory

The starting point of the quantum mechanical description of a solid is the Schrödinger
equation for the wave function |Ψ〉

Ĥ |Ψ〉 = E |Ψ〉 (2.1)

with a Hamiltonian Ĥ using the Dirac representation. This operator consists of the
following parts

T̂e ... kinetic energy of the electrons

T̂c ... kinetic energy of the nuclei

Ûee ... electron-electron interaction potential

Ûec ... electron-nuclei interaction potential

Ûcc ... nuclei-nuclei interaction potential .

The first and fundamental approximation is to separate the motion of the electrons
from the vibrations of the lattice. This is the Born-Oppenheimer approximation [48]
which is valid at T = 0 and for many systems it is also justified for higher temperatures,
since the velocity of the electrons is significantly larger than the mobility of the nuclei.
The Schrödinger equation for the electronic part

Ĥ |Ψe〉 = (T̂e + Ûee + Ûec) |Ψe〉 = E |Ψe〉 (2.2)

is still impossible to solve. The problematic term is the electron-electron interaction Ûee

which couples the motion of ∼1023 particles. The basic idea of Hohenberg and Kohn [49]
was to switch from a description of the system with a wave function depending on 1023

coordinates to an effective density

n(r) = N

∫
dr2...

∫
drN |Ψe(r, r2, ...rN)|2 , (2.3)

where the integration over the real space gives the number of particles N. Moreover,
the key result of the Hohenberg-Kohn theorem is that the external potential of the
electron-nuclei interaction can be written uniquely in terms of the effective density

〈Ψe|Uec |Ψe〉 = Uec [n(r)] =

∫
d3rU(r)n(r). (2.4)

The energy of the system is then given by a functional of the density

E = 〈Ψe| Ĥ |Ψe〉 = E [n(r)] (2.5)

and the energy of the ground state is the absolute minimum at the ground state density

E0 = E [n0(r)] ≤ E [n(r)] . (2.6)

In principle, the problem is solved by varying the functional with respect to the density

δE [n(r)]

δn(r)
= 0. (2.7)
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Figure 2.1: Schematic loop of the iteration process for solving the Kohn-Sham equations

However, the main problem is the unknown functional dependence of the electron-
electron interaction and the kinetic energy on the density

〈Ψe|Uee |Ψe〉 = Uee [n(r)] and (2.8)

〈Ψe|T |Ψe〉 = T [n(r)] . (2.9)

The widely used ansatz of Kohn and Sham [50] is based on a separation into a part
describing non-interacting electrons and an unknown functional of the effective one-
particle density describing the exchange and the correlation of the electrons

(
− h̄2

2m
∇2 + Ueff (r)

)
Ψi(r) = EiΨi(r) (2.10)

Ueff (r) = U(r) +

∫
d3r′

e2n(r′)
|r− r′| +

δExc [n(r)]

δn(r)
(2.11)

with Ψi(r) being the effective one-particle wave functions. Here the particle density is
given by

n(r) =
N∑

i=1

|Ψi(r)|2 . (2.12)

This set of equations (Kohn-Sham equations) can be solved iteratively as sketched in
Fig. (2.1). All problems are hidden in the unknown exchange and correlation poten-
tial Exc [n(r)]. One further widely used approach is the local-density approximation
(LDA), where a locally slow varying density is assumed. In this situation the exchange-
correlation potential can be expressed via the exchange-correlation functional of the
non-interacting homogeneous electron gas

ELDA
xc [n(r)] =

∫
d3rn(r)εhom

xc [n(r)] . (2.13)

With this at least an electronic structure calculation becomes possible and only the
method to solve the Kohn-Sham equations (2.10) has to be specified.
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2.1.2 Dirac equation

The basic ingredient for the description of the spin Hall effect is the spin-orbit cou-
pling. In principle, it could be included perturbatively starting with the non-relativistic
solution of the electronic structure calculations described above. We choose another
way by solving the Dirac equation instead of the Schrödinger or Pauli equation. For a
relativistic DFT the same theorems as in the non-relativistic description are used. The
relativistic Kohn-Sham-Dirac equations are expressed generally by [51]

ĤΨi(r) =
[
c α̂ · p̂ + β̂mc2 + I4Ueff [n,m] + β̂Σ̂ ·Beff [n,m]

]
Ψi(r), (2.14)

with the effective potential

Ueff [n,m] = Uext(r) +

∫
d3r′

e2n(r′)
|r− r′| +

δExc [n(r),m(r)]

δn(r)
, (2.15)

and the effective magnetic field

Beff [n,m] = Bext(r) +
δExc [n(r),m(r)]

δm(r)
, (2.16)

including an external magnetic field Bext(r). The Dirac matrices are given by

α̂ =

(
0 σ
σ 0

)
, Σ̂ =

(
σ 0
0 σ

)
, (2.17)

β̂ =

(
Î2 0

0 −Î2

)
, Î4 =

(
Î2 0

0 Î2

)
, (2.18)

where Î2 is the 2× 2 unit matrix, and σ are the Pauli matrices σx, σy, and σz.

2.1.3 Green function method

To solve the Kohn-Sham equations several methods were developed over the last
decades. In my thesis I use a Korringa-Kohn-Rostoker Green function method which
I now introduce briefly. As indicated by the name, it is based on the solution of the
differential equation via the Green function.
Lets assume we have two differential equations

Ĥ0

∣∣Ψ0
i

〉
= E0

i

∣∣Ψ0
i

〉
and

(Ĥ0 + V ) |Ψi〉 = Ei |Ψi〉 , (2.19)

where the operators on the left hand site differ by a scalar potential. Furthermore, the
solution of the first equation is known whereas the second one has to be solved. The
Green functions of the two systems are then defined by the operator equations

(E − Ĥ0)Ĝ0 = Î

and

(E − Ĥ0 − V )Ĝ = Î . (2.20)
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The product of the differential operator with the Green function operator is the unity
operator. The equations can symbolically be solved by inverting the differential oper-
ator

Ĝ0 = (E − Ĥ0)
−1

and

Ĝ = (E − Ĥ0 − V )−1 . (2.21)

From these expressions the Dyson equation for the unknown Green function

Ĝ = Ĝ0 + Ĝ0V Ĝ (2.22)

can be deduced. The known system is usually called the reference system.
A similar equation for the wave functions of the reference |Ψ0

i 〉 and the unknown |Ψi〉
systems

|Ψi〉 =
∣∣Ψ0

i

〉
+ Ĝ0V̂ |Ψi〉 (2.23)

is called the Lippmann-Schwinger equation [52]. Defining the t̂ operator with

t̂|Ψ0 >= V̂ |Ψ > (2.24)

yields
t̂ = V̂ (Î − Ĝ0V̂ )−1 . (2.25)

Thus, if the potential perturbation V̂ and the Green function of the reference system
Ĝ0 is known, the operator can be calculated and the wave function

|Ψ >= |Ψ0 > +Ĝ0t̂|Ψ0 > , (2.26)

as well as, the Green function of the real system under consideration

Ĝ = Ĝ0 + Ĝ0t̂Ĝ0 (2.27)

can be calculated.
As discussed above, in density functional theory the most important quantity is the
electron density, which is connected to the Green function using the spectral represen-
tation of Ĝ [53]

Ĝ(E + iη) =
∑

i

|Ψi〉 〈Ψi|
E + iη − Ei

. (2.28)

The wave functions are solutions of the hermitian operator
(
E + iη − Ĥ0 − V̂

)
|Ψi〉 = (E + iη − Ei) |Ψi〉 . (2.29)

The parameter E + iη represents the upper part of the complex energy plane with
η > 0. The relation between the Green function and the electron density is

n(r) =

∫ EF

−∞
dE n(r, E) = − 1

π

∫ EF

−∞
dE Im{G+(r, r, E)} , (2.30)

where only the imaginary part of the Green function , in the limit of η → 0, is needed.
Here, I used the real space representation of the diagonal element of the Green function

lim
η→0

〈
r
∣∣∣Ĝ(E + iη)

∣∣∣ r
〉

= G+(r, r, E) . (2.31)
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The density of states is calculated from the volume integral of the imaginary part of
the diagonal element of the Green function

n(E) = − 1

π

∫
d3r Im{G+(r, r, E)} . (2.32)

The + represents the limit in the upper part of the complex energy plane and the
Green function is called advanced Green function .

2.1.4 Relativistic KKR method

The code, which is used to solve the Dyson equation (2.22), is based on the Korringa-
Kohn-Rostoker method [54, 55]. In the present work a relativistic extension [51, 56] of
the screened KKR [57,58] is employed. The theoretical concepts of that extension were
developed by several authors [56,59–67] during the last 40 years.
Here, only the basics, which are important in the following chapters, are discussed. For
further details the reader is referred to the cited literature and the PhD thesis of P.
Zahn [68], J. Binder [69], and M. Czerner [70].
The starting point is the definition of the Green function (2.20)

Ĝ−1 = (E − Ĥ0 − V ) (2.33)

for the relativistic Dirac Hamiltonian as in Eq. (2.14). The potential is arbitrary and
the system can be an infinite crystal. The problem is numerically very demanding and
further approximations are necessary. The most important one is the restriction to
spherical symmetric potentials at every atomic position. It seems to be quite natural
since an isolated atom would have this symmetry. However, in a crystal this is not the
case and the approximation neglects non-spherical contributions to the potential. In
Fig. 2.2 a) the potential landscape in the so-called muffin-tin (MT) approximation is
sketched. In the non-overlapping muffin-tin spheres we have the potential V and in the
interstitial region the potential is fixed to a constant value. The problem of the muffin-
tin approximation is the empty space. To reduce it all spheres are enlarged until they
reach the volume of the system. This is called atomic sphere approximation (ASA) and
all spheres can overlap. The volume is correct and the interstitial region is neglected,
but all overlapping regions are counted twice in the system. This method is valid if the
integral over the overlapping regions give the same contribution as the interstitial, so
the quantity should vary slowly. Usually, the ASA approximation works well for metals.
For the description of the potential in ASA approximation cell-centered coordinates as
depicted in Fig. (2.3) are introduced. Using this, the crystal potential can be written
as

V (r) =
∑

n

V n(|rn −Rn|) , (2.34)

where the spherical potential at every atomic site is expressed by

V n(|rn −Rn|) =

{
V n

atom(|rn −Rn|) if |rn −Rn| < Rn
ASA

0 if |rn −Rn| > Rn
ASA

. (2.35)

Eq. (2.33) simplifies to
[
E +

h̄2

2m
∇2 − V n(r)

]
G(Rn + r,Rn′ + r′, E) = δn,n′δ(r− r′) , (2.36)
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which is an inhomogeneous differential equation. The inhomogeneity vanishes if the
coordinates are not in the same cell. This homogeneous differential equation defines the
multiple-scattering solution (structural Green function Gnn′

QQ′(E) ), since it connects the
different atomic positions. The inhomogeneous equation defines the single scattering
problem (on site Green function Gn

S(r, r′, E)) at a single atom. The full solution can
be written as the general solution of the homogeneous problem in combination with a
special solution of the inhomogeneous equation

Gnn′(r, r′, E) = δnn′G
n
S(r, r′, E) +

∑

QQ′
Φn

Q(r, E)×Gnn′
QQ′(E)Φn′

Q′(r
′, E) . (2.37)

Here the abbreviation

G(Rn + r,Rn′ + r′, E) = Gnn′(r, r′, E) (2.38)

for the Green function is used. The multiple-scattering term is expanded into the
scattering solutions of the single-site scatterer

Φn
Q(r, E) =

∑

Q′

(
gQ′Q(r)χQ′(r̂)
ifQ′Q(r)χQ̄′(r̂)

)
, (2.39)

where × means the conjugate complex of the non-radial part only

Φn
Q(r, E)× =

∑

Q′

(
gQ′Q(r)χ†Q′(r̂),−ifQ′Q(r)χ†

Q̄′(r̂)
)

. (2.40)

These regular solutions are expanded into the spin angular functions χQ(r̂) depending
on the direction of r and the radial solutions of the single site problem, gQ′Q(r) and
fQ′Q(r), depending on the norm r = |r|. The spin angular functions are labeled by the
index Q = {κ, µ} and Q̄ = {−κ, µ}. The quantum numbers κ and µ are defined by

Interstitial

Atom 1

Atom 2Atom 1

Atom 2

Interstitial

Atom 1

Atom 2Atom 1

Atom 2

a) b)

Figure 2.2: two-dimensional sketch of the potential landscape in a) muffin-tin (MT)
und b) atomic-sphere approximation (ASA)
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Figure 2.3: global (black) und cell-centered (grey) coordinates

χQ(r̂) being the eigenfunction of the square of the total angular momentum J2, its z

component Jz, and the operator K̂ = σ ·L + Î (spin-orbit interaction)

J2χQ(r̂) = j(j + 1)χQ(r̂)

JzχQ(r̂) = µχQ(r̂)

KχQ(r̂) = −κχQ(r̂). (2.41)

They can be expressed in terms of complex spherical harmonics Yl,m(r̂) and the spinor
basis functions φs [51]

χQ(r̂) =
∑

s

C(l, κ,
1

2
|(µ− s), s)Yl,µ−s(r̂)φs, (2.42)

where C(l, κ, 1
2
|(µ− s), s) are the Clebsh-Gordan coefficients.

The task is now to find the Green function Ĝ of the considered real system via the
Dyson equation (2.22) starting from a known reference system (Ĝ0). Inserting (2.37)
into (2.22) yields the Dyson equation for the on site Green function

gn
s (r, r′, E) = g̊n

s (r, r′, E) +

∫
dr′′̊gn

s (r, r′′, E)Vn(r′′)gn
s (r′′, r′, E) (2.43)

and an algebraic Dyson equation for the structural Green function

Gnn′
QQ′(E) = G̊nn′

QQ′(E) +
∑

Q′′,n′′

∑

Q′′′
G̊nn′′

QQ′′(E)tn
′′

Q′′Q′′′(E)Gn′′n′
Q′′′Q′(E). (2.44)

The matrix elements of the single site t-matrix are expressed by the single site scattering
solutions of the reference and the real system (2.24)

tnQ,Q′(E) =

∫
dr Φ̊n

Q(r) V n(r) Φn
Q′(r)

=
∑

Q′′

Rn
ASA∫

0

dr r2
(
g̊n

Q′′Qgn
Q′′Q′ + f̊n

Q′′Qfn
Q′′Q′

)
Vn(r). (2.45)
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Fourier transformation and structure constants

A typical problem is to solve the algebraic Dyson equation (2.44) for a three-dimensional
periodic crystal. This crystal is described by a basis and a set of three Bravais lattice
vectors. For this reason we introduce a new index µ running over the basis atoms and
the index n describes the different cells connected by the lattice vectors. Since the
periodic potential is independent of the cell index n, this is also true for the t-matrix.
The algebraic Dyson equation (2.44) becomes

Gµµ′ nn′
QQ′ = G̊µµ′ nn′

QQ′ +
∑

Q′′,µ′′,n′′

∑

Q′′′
G̊µµ′′ nn′′

QQ′′ tµ
′′

Q′′Q′′′G
µ′′µ′ n′′n′
Q′′′Q′ , (2.46)

and I omitted the energy dependence E. In such a form and for a periodic crystal it is
natural to apply a Fourier transformation

Gµµ′
QQ′(k) =

∑

n′
e+ikR0n′

Gµµ′0n′
QQ′ (2.47)

with the back transformation

Gµµ′nn′
QQ′ =

V

(2π)3

∫

VBZ

d3ke−ikRnn′
Gµµ′

QQ′(k) . (2.48)

In my notation V is the volume of the unit cell and VBZ = (2π)3/V the volume of the
first Brillouin zone. If we combine (2.48) and (2.46) we find the Fourier transformed
algebraic Dyson equation for the structural constants

Gµµ′
QQ′(k) = G̊µµ′

QQ′(k) +
∑

µ′′Q′′

∑

Q′′′
G̊µµ′′

QQ′′(k)tµ
′′

Q′′Q′′′G
µ′′µ′
Q′′′Q′(k) . (2.49)

Inverting this matrix equation and introducing the KKR matrix

Mµµ′′
QQ′(k) = G̊µµ′

QQ′(k)− δµµ′
[
t−1

]µ

QQ′ (2.50)

yields into

Gµµ′
QQ′(k) = −δµµ′

[
t−1

]µ

QQ′ −
∑

Q′′Q′′′

[
t−1

]µ

QQ′′
[
M−1(k)

]µµ′

Q′′Q′′′
[
t−1

]µ′

Q′′′Q′ . (2.51)

If the Green function is known, the electronic density can be calculated (2.30) and in
principle, the self-consistent procedure (see Fig. 2.1) can be applied. For a calculation
of the Green function using the introduced KKR method the reference system (the
known Green function ) has to be specified. One could use the free space since its
Green function is known analytically. However, several numerical disadvantages would
restrict the calculations to less than 100 atoms. The first problem is the long range
interaction of the free structural constants. Furthermore, the matrix inversion scales
with the number of atoms N as N3. Finally the solutions of the free space E = k2 are
at the same energy range as the solutions of the real system, that causes singularities
in the KKR-matrix. All these problems can be avoided using a screened reference
potential as shortly outlined in the next paragraph.
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The screening reference system

So far we never specified the reference system. As already mentioned the free space
is not the best choice and a screening potential is used (Screened KKR) [57, 58, 68].
The reference system has a repulsive potential at every atomic position screening the
structural constants and pushing all states above ∼1 Ry. The algebraic Dyson equation
(2.49) has to be solved in two steps. First, for the reference system g̃, and then for the
real system. The new equations for the real system are similar to Eqs. (2.49), (2.50),
and (2.51). Just the single-site t̂ matrix is replaced by the difference ∆t = t− t̃ of the
t̂ matrix for the reference system and the t̂ matrix of the real system with respect to
free space. The KKR matrix takes the form

Mµµ′′
QQ′(k) = G̃µµ′

QQ′(k)− δµµ′
[
∆t−1

]µ

QQ′ . (2.52)

In this notation G̃µµ′
QQ′(k) are the structural constants of the reference system which

are independent on the actual crystal potential and are only a property of the crystal
structure. In addition, the explicit k dependence is encoded in the structural constants
of the reference system.

2.1.5 Impurity problem within the KKR method

In my thesis the influence of impurity atoms on the electronic structure and the elec-
tronic transport properties of three-dimensional crystals is discussed. For this purpose
the method of calculating the electronic properties of systems with impurities is out-
lined in the following.
The Green function KKR method is well suited to tackle this problem without using a
supercell approach. All ingredients to find the electronic structure of the impurity sys-
tem are introduced in the previous sections. The key tool is again the Dyson equation.
Let us assume that we have solved the three-dimensional problem as discussed above,
so we denote the Green function of the system as G̊. The structural Green function of
the perturbed system including a substitutional impurity atom and allowing for charge
relaxation around the impurity can be calculated via a real space Dyson equation in
the region of the perturbed region. The algebraic Dyson equation has the form

Gnn′
QQ′(E) = G̊nn′

QQ′(E) +
∑

Q′′,n′′

∑

Q′′′
G̊nn′′

QQ′′(E)∆tn
′′

Q′′Q′′′(E)Gn′′n′
Q′′′Q′(E), (2.53)

where n and n′ are sums over the perturbed real space cluster. Since the reference
system of such an impurity calculation is the ideal crystal, the ∆t matrix is the dif-
ference of the t0 matrix of the ideal crystal and the t matrix of the perturbed system
with respect to free space. For a full impurity calculation the following procedure is
applied:

1. Calculation of the structural constants g̃ of the reference system with repulsive
potentials from a Fourier transformation of the structural Green function (2.47)
on a screened cluster in real space

2. Calculation of the t̂ matrix of the reference system with repulsive potentials

3. Calculation of the radial wave functions and t0 matrices of the periodic potential
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4. Calculation of the structural constants G̊ of the periodic system via the algebraic
Dyson equation in the reciprocal space (2.46)

5. Calculation of the structural Green function G̊ of the periodic system in a real
space cluster corresponding to the perturbed cluster

6. Calculation of the radial wave functions and t matrices of the perturbed cluster

7. Calculation of the structural Green function G in the perturbed cluster via the
real space version of the algebraic Dyson equation (2.53)

8. Summation of the on site Green function and the multiple scattering term to
calculate the perturbed Green function (2.51)

For further readings I refer to the PhD theses of P. Zahn [68] and J. Binder [69].
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2.2 Band structure and Fermi surface

In this chapter I outline the basic equations for how to extract the band structure,
the Bloch functions, and the Fermi velocity from the KKR method. In addition, the
method of calculating the spin expectation value of the Bloch functions is explained.
The first two sections about the band structure, and the wave function evaluation, as
well as, the Fermi surface construction are mainly short reviews of the PhD thesis of
P. Zahn [68] with extensions to the relativistic case.
The following two sections about the Fermi velocity and the spin expectation value are
new features which I implemented in the KKR code. A new way of calculating the
Fermi velocity based on an analytic k derivative of the KKR matrix is shown to be
much more stable than the numerical derivative of the band structure.

2.2.1 Evaluation of the eigenvalues and eigenfunctions

Here, the calculation of the band structure and the Bloch functions of the ideal crystal
is discussed. It is followed by a description of the wave functions of the perturbed
system.

The wave functions of the ideal crystal

The eigenvalue equation of the ideal crystal

(E − Ĥ)
∣∣∣Ψ̊

〉
= 0 (2.54)

in the Green function representation

ˆ̊
G
−1 ∣∣∣Ψ̊

〉
= 0 (2.55)

follows from the definition of the Green function (2.20). Using the Dyson equation
(2.22) and the repulsive potential as reference system the homogeneous integral equa-
tion for the Bloch function has the form

Ψ̊nµ
k (r) =

∑

n′µ′

∫
d3r′ G̃µµ′ nn′(r, r′)V̊ µ′(r′)Ψ̊n′µ′

k (r′) . (2.56)

If we expand the Bloch function into the single-site scattering solutions

Ψ̊nµ
k (r) =

1√
V

∑
Q

eikRn

c̊µ
Q(k)R̊µ

Q(r) , (2.57)

ensuring normalization

〈
Ψ̊k|Ψ̊k

〉
=

∫

V

d3r
∣∣∣Ψ̊k(r)

∣∣∣
2

=
1

V

NEZ∑
µ=1

∑

QQ′

(̊
cµ
Q

)∗
c̊µ
Q′N

µ
QQ′ , (2.58)

and with the abbreviation

Nµ
QQ′ =

RMT∫

0

dr r2
∑

Q′′

[
g̊∗Q′′Qg̊Q′′Q′ + f̊ ∗Q′′Qf̊Q′′Q′

]
, (2.59)



THEORETICAL BACKGROUND 31

we obtain an algebraic eigenvalue equation for the expansion coefficients

∑

µ′

∑

Q′Q′′

[[
∆tµQQ′′

]−1
δµµ′ − G̃µµ′

QQ′′

]
∆tµ

′
Q′′Q′ c̊

µ′
Q′(k) = 0 . (2.60)

In this derivation we used the fact that the reference system has no solutions in the
energy region of interest. Combining the definition of the KKR matrix (2.52) with the
algebraic eigenvalue equation (2.60) yields

∑

µ′

∑

Q′Q′′
Mµµ′

Q′Q′′(k)∆tµ
′

Q′′Q′ c̊
µ′
Q′(k) = 0 , (2.61)

which has the matrix form

M(k, E)∆t(E )̊c(k) = 0 . (2.62)

In principle, the band structure is well defined by

λ(Ek,k) = 0 (2.63)

with the eigenvalue equation

M(E,k)a(k) = λ(E,k)a(k) . (2.64)

The problem is that the KKR matrix M is not hermitian in our definition, which makes
it difficult to find the solutions of Eq. (2.64). To solve this problem I apply additional
transformations to Eq. (2.62)

P T I M(E,k) I−1 P P−1 I ∆t(E )̊c(k) = 0 (2.65)

with the matrices

IQQ′ =
∑

s

C(l, κ,
1

2
|(µ− s), s)i−lδll′C(l′, κ′,

1

2
|(µ′ − s), s) (2.66)

and

PQQ′ =
∑

s

C(l, κ,
1

2
|(µ− s), s)eδ̃lδll′C(l′, κ′,

1

2
|(µ′ − s), s) . (2.67)

Here δ̃Q are the phase shifts of the reference system defined as

tan(δ̃l(E)) =
jl(
√

E rMT )

nl(
√

E rMT )
, (2.68)

where jl and nl are the spherical Bessel and Neumann functions, respectively. This
procedure is explained in detail in the PhD thesis of P. Zahn [68] and was generalized
to a relativistic description. Both transformations have a different origin. The I
transformation takes the special definition of the free space structural constants into
account [68]. The reason for the P transformation is the screened KKR formalism. Here
the ∆t matrix is used and not the ordinary t matrix with the free space as reference
system. To bring the KKR matrix in the same form as in the unscreened version the
phase shifts of the reference system have to be extracted. Both transformations are
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unitary and do not change the band structure. The new hermitian eigenvalue problem
takes the form

M̃(E,k)c̃(E,k) = 0 . (2.69)

The band structure of our system follows from the root zeros of the eigenvalue equation

M̃(E,k)c̃(E,k) = λ(E,k)c̃(E,k) , (2.70)

with
λ(Ek,k) = 0 (2.71)

and the expansion coefficients of the Bloch functions (2.57) are solutions at λ(Ek,k) = 0
after applying the back transformation

c̊(Ek,k) = ∆t−1I−1P c̃(Ek,k) . (2.72)

The wave functions of the perturbed system

So far we calculated the band structure and the wave functions of the ideal system.
However, we are interested in scattering processes. For a description of the perturbed
system we need in addition the perturbed wave functions Ψnµ

k (r). Those are not trans-
lational invariant but they are connected with the Bloch function of the ideal crystal
via a Lippmann-Schwinger equation (2.23). If the perturbed wave function is, similarly
to the Bloch function (2.57), expanded into the single site scattering solutions at each
position

Ψnµ
k (r) =

1√
V

∑
Q

eikRn

cnµ
Q (k)Rnµ

Q (r) , (2.73)

a Lippmann-Schwinger like equation for the expansion coefficients can be derived

cnµ
Q (k) = c̊nµ

Q (k) +
∑

n′,µ′,Q′

∑

Q′′
G̊nn′,µµ′

QQ′′ ∆tn
′,µ′

Q′′Q′c
n′µ′
Q′ (k) . (2.74)

The formal solution of this problem yields into

cnµ
Q (k) =

∑

n′,µ′,Q′
Dnn′,µµ′

QQ′ c̊n′µ′
Q′ (k′) (2.75)

with
Dnn′,µµ′

QQ′ = δnn′δµµ′δQQ′ +
∑

Q′′
Gnn′,µµ′

QQ′′ ∆tn
′µ′

Q′′Q′ , (2.76)

where we used the algebraic Dyson equation (2.53) for the real space cluster.

2.2.2 Evaluation of the Fermi surface

A nice feature of the KKR method is its k dependence. The important simplification is
that it is encoded in the structural constants, which are determined by the geometrical
structure only (see Eq. (2.60)). Furthermore, the k dependence is introduced via the
Fourier transformation of the screened structural constants, which is an easy numerical
procedure (see section 2.1.4). The influence of the actual potential is given by the ∆t
matrix, which is independent on k. All these features allow for an efficient calculation
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of the band structure and the Fermi surface.
To determine the Fermi surface we use a tetrahedron method explained in detail in the
literature [68,71–73]. The irreducible part of the Brillouin zone is filled with tetrahedra.
The iso-energetic surface is determined by calculating all intersections with the edges
of the tetrahedra. If the mesh of tetrahedra is small enough the intersections of the
iso-energetic surface with one tetrahedron is either a triangle or a quadrangle. All
intersections together form the iso-energetic surface.

2.2.3 Evaluation of the Fermi velocity

For all transport calculations the knowledge of the Fermi velocity of the electron states
is essential. In this section two methods of calculating the Fermi velocity are pre-
sented. The first one is a numerical differentiation of the band structure using the
determination of the iso-energetic surface as presented in the last section. The second
method is based on an analytic differentiation of the screened structural constants with
respect to k and a simple numerical differentiation because of the energy dependence
of the KKR matrix. The energy dependence is numerically much easier to treat and
it is a one dimensional derivative instead of the three-dimensional derivative in k space.

The numerical k derivative

The task is to find the quantity

vF (k) =
1

h̄

∂E(k)

∂k

∣∣∣∣
E=EF

. (2.77)

The most natural way is to perform the search for the iso-energetic surface (2.2.3) at
two energies - above EF + δE and below EF − δE the Fermi level. The intersections
with a tetrahedron are characterized by the points

k1,k2,k3 : EF + δE (2.78)

k̃1, k̃2, k̃3 : EF − δE (2.79)

Such points are schematically presented in Fig. (2.4). The approximated Fermi velocity
is then given by the system of linear equations

h̄(ki − k̃i)vF = 2δE . (2.80)

The accuracy of this procedure strongly depends on the number, i.e. the size, of the
used tetrahedra. Especially, for Fermi surfaces with large curvature a very large num-
ber of tetrahedra is needed for an accurate calculation of the Fermi velocity. This
makes the method inefficient. For this reason I present in the following an alternative
way for calculating the Fermi velocity.

The analytic k derivative

The main ideas were provided by Shirokovskii and Shilkova [74, 75]. Here they are
extended to non-hermitian matrices. The starting point for this procedure is the KKR
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Figure 2.4: The intersections of the iso-energetic surfaces slightly above EF + δE and
below EF − δE the Fermi energy with a tetrahedron in the Brillouin zone for the
numerical derivative of the dispersion relation.

eigenvalue problem (2.64) with the condition of zero eigenvalues

λ(E,k) = 0, E = E(k) . (2.81)

Lets take the total k derivative

dλ(E,k)

dk
=

∂λ(E,k)

∂E

∂E(k)

∂k
+

∂λ(E,k)

∂k
= 0 . (2.82)

The Fermi velocity is expressed by

h̄vF (k) =
∂Ek

∂k
= −∂λ(E,k)

∂k
/
∂λ(E,k)

∂E
. (2.83)

The energy derivative of the eigenvalues is numerically stable due to their linear depen-
dence on the energy [68]. What has to be found is the k derivative of the eigenvalues.
Due to the Hellmann-Feynman theorem the derivative of an eigenvalue can be ex-
pressed by the derivative of the hermitian operator (or the corresponding matrix) with
respect to the same parameter

∂λs(E,k)

∂k
= a†s(k)

∂M(E,k)

∂k
as(k) , (2.84)

where s labels the considered eigenvalue and as(k) is the corresponding eigenfunction.
An analogous formula for a non-hermitian eigenvalue problem can be written as

∂λs(E,k)

∂k
=

1

(bs(k), as(k))
b†s(k)

∂M(E,k)

∂k
as(k) , (2.85)

where as(k) and bs(k) are the right and left eigenvectors of the matrix M , respectively.
That is

M(E,k)as(k) = λs(E,k)as(k) ,

b†s(k)M(E,k) = λs(E,k)b†s(k) . (2.86)
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They are normalized by a†s(k)as(k) = b†s(k)bs(k) = 1. For the partial k derivative the
special properties of the KKR matrix are used. First, the k dependence of the KKR
matrix is given by the structural constants only (2.52). Second, this dependence comes
in via the Fourier transformation of the real space structural Green function (2.47) of
the screened reference system. The expression for the k derivative is derived analyti-
cally and has the form

∂Mµµ′
QQ′(E,k)

∂k
=

∂G̃µµ′
QQ′(E,k)

∂k
=

∑

n′
e+ikR0n′

G̃µµ′0n′
QQ′ iR0n′ . (2.87)

It is easy to evaluate in this form and it converges still reasonably fast with the size of
the real space cluster.
The advantage of the method is the numerical stability and the independence on the
number of tetrahedra in the Brillouin zone . If the iso-surface is known, no further
numerical k derivative is necessary. Throughout this work mainly the first method was
used since quite simple Fermi surfaces (Cu and Au) were considered. I specify where
the new method was applied.

2.2.4 Expectation value of the spin operator

The major goal of my work is to describe the spin Hall effect. An important property
of such a discussion is the spin state of the system. Now I describe the calculation of
the expectation value of the spin operator for a Bloch function.
For consistency with the used relativistic KKR method where the interaction with an
effective magnetic field (2.14) is described with the operator β̂Σ̂ ·Beff , we define the
vector spin operator as [66]

β̂Σ̂ =

(
σ 0
0 −σ

)
, (2.88)

with the Pauli matrices σx, σy, and σz. The operator does not commute with the Dirac
Hamiltonian (2.14) and its expectation value is not a conserved quantity. Therefore, the
spin is not a quantum number as it is the case in the non-relativistic situation. Since
this approach is consistent with the description of the interaction with an effective
magnetic field (see Eq. 2.14 ), the expectation value encodes important information
about the spin state of the system.
The quantity of interest is the k-dependent expectation value of the defined spin op-
erator for the Bloch states on the Fermi surface

s(k) =
〈
Ψ̊k

∣∣∣ β̂Σ̂
∣∣∣Ψ̊k

〉
. (2.89)
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Using the KKR expansion of the wave functions (2.57) and the known properties of
the Pauli matrices the z-component can be expressed as

〈Ψnk| β̂Σ̂z |Ψn′k〉 = −
∑

κ′µ′

∑

κ′′µ′′
an∗

κ′µ′ (k) an′
κ′′µ′′ (k)× (2.90)

×
∑
κµ

{(
2µ

2κ + 1

) ∫
g∗κµ;κ′µ′(r)gκµ;κ′′µ′′(r)r

2dr+

+
2µ

2κ− 1

∫
f ∗κµ;κ′µ′(r)fκµ;κ′′µ′′(r)r

2dr+

+

√
1−

(
2µ

2κ + 1

)2 ∫
g∗κµ;κ′µ′(r)g−κ−1,µ;κ′′µ′′(r)r

2dr−

−
√

1−
(

2µ

2κ− 1

)2 ∫
f ∗κµ;κ′µ′(r)f−κ+1,µ;κ′′µ′′(r)r

2dr



 .

Similar expressions can be found for the x and y component, but I leave further ex-
planations to the section 3.2 and the Ref. [E5]. Here, it is important to comment on
the non-magnetic case. Because of time inversion, Kramers degeneracy [76], and space
inversion symmetry, for all considered systems the wave functions are twofold degen-
erate at every k point. It means that any linear combination of the two solutions is
again a solution of the problem. Lets label the wave functions with Ψ̊1

k and Ψ̊2
k. They

have opposite spin 〈
Ψ̊1

k

∣∣∣ β̂Σ̂
∣∣∣Ψ̊1

k

〉
= −

〈
Ψ̊2

k

∣∣∣ β̂Σ̂
∣∣∣Ψ̊2

k

〉
(2.91)

since they are related to each other by time inversion symmetry. Due to the degeneracy,
the spin expectation value can point for any k in arbitrary direction.
However, for the definition of spin-flip scattering and a better understanding of the
microscopic processes it was useful to consider a selected axis for all k points.
The idea is simple: Let us apply a unitary transformation

∣∣Ψ3
k

〉
= c1 |Ψ1

k〉 + c2

∣∣Ψ2
k

〉
,

(2.92)∣∣Ψ4
k

〉
= −c∗2 |Ψ1

k〉 + c∗1
∣∣Ψ2

k

〉
,

1 = |c1|2 + |c2|2

to the degenerate subset at every k point to fulfill the condition

〈Ψ3
k| β̂Σ̂x |Ψ3

k〉 = 〈Ψ3
k| β̂Σ̂y |Ψ3

k〉 = 0 ,

(2.93)

〈Ψ4
k| β̂Σ̂x |Ψ4

k〉 = 〈Ψ4
k| β̂Σ̂y |Ψ4

k〉 = 0 .

Such a transformation can be defined at every k point. The details are discussed in
chapter 3.2 and Ref. [E5]. The wave function with the spin expectation value parallel
to z is labeled further on with Ψ̊+

k and the other with Ψ̊−
k .
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2.3 Spin relaxation

In this section the calculation of the spin relaxation time and the spin diffusion length
is introduced. At the beginning the basic mechanisms of spin relaxation is shortly
reviewed. In the following the used method and the most important expressions in
terms of the KKR expansion (2.57) are presented.
In the literature usually three distinct mechanisms of spin relaxation are discussed
[16, 77, 78]. Those are the Elliott-Yafet [79, 80], the D’yakonov-Perel’ [3], and the Bir-
Aronov-Pikus mechanism [81]. The last one describes electron-hole interactions in semi-
conductors and is irrelevant for metallic systems. The same holds for the D’yakonov-
Perel’ mechanism. In this case the spin relaxation is induced by band splittings in
systems with a lack of inversion symmetry. Since all considered systems have inversion
symmetry, the only remaining mechanism is the spin relaxation according to Elliott
and Yafet.
It describes the spin-flip process at perturbations of the ideal lattice. For every mo-
mentum scattering event the possibility exists that the spin flip occurs additionally.
The perturbations leading to momentum and spin-flip scattering are impurities, grain
boundaries, surfaces, and phonons. Whereas phonons are important for high tempera-
tures, the scattering at impurities dominates at low temperatures. Here all calculations
are performed at T = 0 which leads to the impurity induced Elliott-Yafet spin relax-
ation as the only remaining process.

The spin relaxation time

I restrict the consideration to metallic non-magnetic systems with space inversion
symmetry where the spin relaxation is induced by spin-flip processes at impurities.
These systems have degenerate bands even in the relativistic case, including spin-orbit
coupling. Since time inversion is present the systems show Kramers degeneracy [76]
(E+

k = E−
−k). In combination with space inversion symmetry all k states are two-fold

degenerate (E+
k = E−

k ). The wave functions of every doublet have opposite spin di-
rection. To have one axis for every k point, we apply the transformation sketched in
section 2.2.4. According to this axis (usually the z axis is used) we label the states of
the doublet with ”+” and ”−”, respectively.
With time dependent perturbation theory [82,83] the k-dependent spin-flip scattering
time τ sf

k can be connected to the scattering rate and the corresponding T̂ matrix via

1

τ sf
k

=
∑

k′
P+−

kk′ =
2π

h̄

∑

k′
|T+−

kk′ |2δ(E+
k − E−

k′) . (2.94)

The elements of the transition matrix are defined as

T+−
kk′ =

1

V

∑
n,µ

∫
d3r

(
Ψ̊−

k′(r)
)†

∆V n,µ(r)Ψ+
k (r) . (2.95)

Using the expansion of the perturbed and unperturbed wave functions into the single
site scattering solutions (2.57 and 2.73) the expression simplifies to

T+−
kk′ =

1

V

∑
n,µ,Q

(̊
c−Q(k′)

)∗
∆n,µ

Q c+
Q(k) . (2.96)
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The ∆n,µ
Q matrix is a radial integral over the perturbed potential and the perturbed

and unperturbed radial solutions. It is integrated numerically

∆n,µ
Q =

∫ Rn
µ,ASA

0

drr2
(
R̊

n,µ(r)
Q

)∗
∆V n,µ(r)Rn,µ

Q (r) . (2.97)

With the expression of the perturbed expansion coefficients via the unperturbed one
(2.74) the transition matrix is expressed by

T+−
kk′ =

1

V

∑
n,µ,Q

(̊
c−Q(k′)

)∗
∆n,µ

Q Dnn′,µµ′
QQ′ c̊+

Q′(k
′) . (2.98)

If the k-dependent spin-flip scattering time is known, the Fermi surface average is taken
by

1

τsf

=
V

(2π)3

∑
n

∫∫

Ek=EF

dSn

|vk|
1

τ sf
k

(2.99)

to find the spin-flip scattering time, comparable to experiments, for instance, conduc-
tion electron spin resonance (CESR).

The spin diffusion length

Usually, in non-local measurements not the spin relaxation time is extracted but the
spin diffusion length. The distance between spin-current injector and collector is varied
and the non-local signal is taken as a function of the distance. The spin diffusion length
is extracted by exponential model equations fitted to the experimental curve. The
equations are usually based on spin-dependent Boltzmann and diffusion equations. In
this respect the model of Valet and Fert [24] is well known.
To connect the spin diffusion length with the calculated spin relaxation time, the widely
used expression of Valet and Fert [24]

lsf =

√
λλsf

6
(2.100)

can be exploited. Here the momentum mean free path λ = τvF and the spin-flip
length λsf = τsfvF are determined by the momentum relaxation time τ and the spin-
flip scattering time τsf , respectively. The Fermi velocity is a quantity depending on
the host system only. However, to make the comparison to experiments easier another
formula [E8,84]

lsf =
π

2k2
F

√
3

2

h

e2

√
τsf

τ
σxx (2.101)

is used here to estimate the spin diffusion length. In a free-electron model both equa-
tions are equivalent. I present the proof in the attachment E. The momentum relax-
ation time τ , the spin-flip scattering time τsf , the longitudinal charge conductivity σxx

(see section 2.4), and the Fermi surface averaged wave vector kF are calculated from
our ab initio method. The resulting spin diffusion length is obtained with only one free
parameter, the impurity concentration.
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2.4 Electronic transport

In this part the method of calculating the electronic transport is described. I decided
to use the Boltzmann approach for charge and spin transport. This has two reasons.
First of all, this method gives a good insight into the microscopic origin of different
effects which are sometimes hidden in more sophisticated methods such as solving a
Kubo formula. In addition, the Boltzmann approach is well suited to deal with dilute
alloys where the extrinsic spin Hall effect is dominant. Furthermore, it is possible to
prepare such alloys experimentally in a well defined way. It was shown that numerical
calculations of the residual charge conductivity are in good agreement with experimen-
tal results [85, 86].
In the first part, the general form of the linearized Boltzmann equation and the ex-
pression for the scattering term within the KKR method is discussed. In the following
the expressions for the charge and spin conductivities are introduced.

2.4.1 Linearized Boltzmann equation

The starting point is the linearized Boltzmann equation (1.11) for a homogeneous
system [35,44,45]

k̇
∂f eq

k

∂k
=

∑

k′
(Pk′kgk′ − Pkk′gk) ,

which is widely used in the literature. It is an equation for the effective one-electron dis-
tribution function fk = f eq

k + gk separated in an equilibrium f eq
k and a non-equilibrium

part gk linear in the applied external fields. The equilibrium distribution function for
electrons is the Fermi-Dirac distribution f eq

k = (e(Ek−EF )/kbT + 1)−1. The k derivative
at T=0 is proportional to the Fermi velocity vF and a δ-function at EF . The perturbed
distribution function in linear response is given by

gk = e

(
∂f eq

k

∂Ek

)
ΛkE (2.102)

and is at zero temperature also restricted to the Fermi surface. Combining both and
using the semiclassical expression for the force term

k̇ = − e

h̄
E , (2.103)

the linearized Boltzmann equation is transformed into

Λν(k) = τ ν
k

[
vν

k +
∑

k′ν′
P ν′ν

k′kΛ
ν′(k′)

]
. (2.104)

Here ν is the number of bands available at the Fermi level. The anisotropic relaxation
time τn

k is calculated as the integral over all outgoing states of the transition rate

(τ ν
k)−1 =

∑

k′ν′
P νν′

kk′ . (2.105)

The Fermi velocity

vν
k =

1

h̄

∂Eν
k

∂k
, (2.106)
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describes the dispersion of the bands in the unperturbed crystal. Furthermore, the
scattering-in term

∑
k′ν′

P ν′ν
k′kΛ

ν′(k′) turns out to be essential for the description of the

spin Hall effect [E7]. It was shown by Butler [87] that the scattering-in term in the
Boltzmann approach is equivalent to the vertex corrections caused by impurities in
the dilute limit of the Kubo formula. This was confirmed by a comparison of the spin
Hall effect calculated in our approach to the solution of a Kubo-Streda formula [88] for
dilute alloys described by the coherent-potential approximation [89] (see Appendix D).
The anisotropic relaxation time includes the spin-conserving and spin-flipping contri-
butions. This is evident considering, for example Cu, with only two degenerate bands
at the Fermi level. Those are labeled according to their spin expectation value by
”+” and ”−”, respectively (see section 2.2.4). Thus, the anisotropic relaxation time is

1

τ+
k

=
1

τ++
k

+
1

τ+−
k

and
1

τ−k
=

1

τ−+
k

+
1

τ−−k

, (2.107)

where clearly spin-conserving τ++ and τ−−, as well as, spin-flip contributions τ+−

and τ−+ are included. The same holds for the mean free path. Therefore, the spin
relaxation process according to Elliott and Yafet [79] is fully taken into account [E7].
The important quantity is the scattering rate P νν′

kk′ which is connected to the transition
matrix by Fermi’s golden rule (see Eq. 1.25)

P νν′
kk′ =

2π

h̄
c0N

∣∣∣T νν′
kk′

∣∣∣
2

δ(Ek − Ek′) .

Here we assumed a dilute alloy with c0N as the number of non-interacting impurity
atoms. Following section 2.3 the transition matrix for non-magnetic systems is given
by

T+−
kk′ =

1

V

∑
n,µ,Q

[(̊
cnµ
Q (k′)

)∗]−
∆n,µ

Q Dnn′,µµ′
QQ′

[
c̊n′µ′
Q′ (k′)

]+

, (2.108)

where the same definitions for ∆n,µ
Q and Dnn′,µµ′

QQ′ are used (see Eqs. (2.97) and (2.74)).
Finally the integral equation (2.104) is solved iteratively including the scattering-in
term. This method was used and explained by several authors [69,86,90–92].

2.4.2 Charge conductivity and spin transport

After solving the linearized Boltzmann equation (2.104) the next step is to calculate
the charge and conductivity tensors. As introduced already in chapter 1.3 the charge
current density is expressed by a Fermi surface integral over the distribution function
and the Fermi velocity (1.9). Using the expression for the distribution function (1.10)
and the Ansatz for the non-equilibrium part (2.102) the charge current is expressed by

J = −e2
∑

k

(
∂f eq

k

∂Ek

)

T=0

vk ◦Λk E . (2.109)

The symbol ◦ stands for the tensor product. A comparison to Ohm’s law yields an
expression for the conductivity tensor

σ =
e2

h̄

∑
ν

1

(2π)3

∫∫

Ek=EF

dSν

|vν
k|

vν
k ◦Λν

k = σ+ + σ− . (2.110)
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The semiclassical expression for the spin conductivity is similar

σs
z =

e2

h̄

∑
ν

1

(2π)3

∫∫

Ek=EF

dSν

|vν
k|

sν
z(k)vν

k ◦Λν
k . (2.111)

In addition, the spin expectation value of the wave functions sν
z(k) is included. Here,

I used already the fact that the spin expectation values along x and y direction are
zero (see section 2.2.4). In the non-relativistic limit, without spin-orbit coupling, the
expression simplifies to (s+

z = −s−z = 1)

σs =
e2

h̄

1

(2π)3

∫∫

Ek=EF

dS

|vk|vk ◦ (Λ+
k −Λ−

k ) = σ+ − σ− (2.112)

with the assumption of only one degenerate band at the Fermi level. It is nothing else
but the two-current model introduced in section 1.1.
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Chapter 3

Results

This chapter summarizes the results of the present work. It is a cumulative thesis
which means that after an extended summary the published articles are included. The
following pages are used to present the most important results of all considered publi-
cations extended by additional explanations.
The idea of my work was a description of the microscopic mechanism of skew scattering
in order to contribute to the general understanding of the spin Hall effect. Furthermore,
materials showing a strong spin Hall effect in combination with a long spin diffusion
length should be identified. These materials are important for any application of the
spin Hall effect in spin current generating techniques.
Since we had already some experience in describing the spin relaxation time due to the
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Figure 3.1: Spin-flip scattering time for different impurities in Cu. The perturbative
approach [E4] (Sec. 3.1) and the fully relativistic treatment in comparison to the
experimental data [93]. Considering the spin-orbit coupling at the impurity site only
fails for light impurities in a heavier host completely. Whereas the fully relativistic
description works well.
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Elliott-Yafet mechanism [E4], it was quite natural to start with a proper description
of this mechanism in a fully relativistic treatment. In a first attempt, a perturbative
description of the spin-orbit interaction at the impurity site was used [E4]. It turned
out that impurities showing comparable spin-orbit coupling to the host atoms were
well described. The description of spin-flip processes for light impurities failed com-
pletely. In the following, the approach introduced in section 2.3 was applied [E6] to
the description of the scattering process. In Fig. 3.1 the results for the perturbative
and the fully relativistic description in a Cu host in comparison to conduction spin
electron resonance (CESR) experiments are shown. For impurities with a comparable
atomic number to Cu both approaches work well, whereas the perturbative approach
fails completely for Li. This very light impurity exhibits vanishing spin-orbit interac-
tion and the relaxation mechanism is driven by the spin-orbit coupling of the host.
For a microscopic understanding of this effect two properties of the unperturbed Bloch
functions must be analyzed. Those are the angular momentum decomposition and the
spin-mixing character of the wave function. In the KKR method, the Bloch functions
are expanded into complex spherical harmonics (2.57). If the wave function is normal-
ized to one the angular momentum character is just the fraction of the coefficients with
a certain l [94]. The spin-mixing character of the wave functions is discussed using the
expectation value of the spin operator Σ [E5] (see section 2.2.4). Due to the twofold
degeneracy of the wavefunctions in a non-magnetic host with inversion symmetry, any
linear combination is again a solution at a given k point. From this it follows that
any direction of the spin expectation value can be chosen. For simplicity we choose
the z direction for all k points and apply the unitary transformation explained in sec-
tion 2.2.4 [E5]. After the transformation the β̂Σ̂z operator is of interest. In Fig. 3.2
the corresponding expectation value for three metals, the same as used for the further
calculations, is presented. I always show both degenerate bands with opposite spin
polarization to make clear that no net magnetization is in the system. In the non-
relativistic case (without spin-orbit coupling) the spin expectation values for the two
bands would be +1 or −1, respectively. In that case spin is a good quantum number
and the language of ”spin-up” and ”spin-down” states can be used. Including spin-
orbit interaction yields a reduction of this value which is a measure of the spin mixing
of the wave functions. They are not pure ”spin-up” or ”spin-down” states anymore.
Two main contributions influence the strength of the spin mixing. One is the atomic
number which enters the spin-orbit coupling term. The other mechanism is the pres-
ence of several bands close to each other. In this case the spin-orbit interaction can
lead to a significant spin mixing which can be understood in a two-level perturbation
model [E5,77].
Both effects can be well seen in the presented spin polarization of Fig. 3.2. Starting
with Cu (3.2 a) the spin mixing is very small and the non-relativistic value (±1) is
nearly restored. The next system is Au (3.2 b) with a similar electronic structure but
with a much larger atomic number. The spin mixing is strongly increased. However, it
is still smaller than 10%. Going to Pt (3.2 c) the spin mixing reaches 100% (sz(k) = 0)
at some k points. This is not induced by the atomic number which is even smaller than
for Au but by the mixing of several bands close to the Fermi level. Only the degenerate
9th (sz(k) < 0) and 10th (sz(k) > 0) from several bands at the Fermi level are shown.
A more detailed discussion was given in Ref. [E5].
These results can be used to understand the k-dependent spin-flip scattering time as
presented in Fig. 3.3. As an example, a Ga impurity in a Cu host is used. It is nec-
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Figure 3.2: The spin expectation value
〈
β̂Σ̂z

〉
for the two degenerate bands in a non-

magnetic material for a) Cu, b) Au and c) Pt (the 9th and 10th bands). Increasing
the atomic number leads to stronger mixing (Cu→ Au). Spin-orbit driven avoided
crossings enhances the spin mixing drastically (Au→Pt)
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Figure 3.3: The k-dependent spin-flip scattering time (τ sf
k middle) can be understood

using the l decomposition (left figure) and spin-mixing character (right figure) of the
Bloch functions of the ideal crystal. The example is a Ga impurity in a Cu host.

essary to mention that Ga is an sp scatterer. Since the effective spin-orbit interaction
of s states is zero, mainly p electrons contribute to the spin-flip scattering time. It
is obvious that the anisotropic spin-flip scattering time has the same reduced symme-
try in comparison with the non-relativistic case as the spin expectation value. The
relativistic symmetry is present with only 8 operations instead of 48 non-relativistic
symmetry operations of the cubic lattice (see Appendix F). The red regions with long
scattering times (in the middle picture), i.e. weak scattering, are clearly connected to
regions on the Fermi surface with a lack of p electrons in a Cu host. In addition, the
spin mixing for these regions is smallest which points to the reduced effective spin-orbit
coupling of these k states. The regions with strongest scattering (purple) are related
to strong spin mixing of the host wave functions. Such a consideration can be used for
any combination of host and impurity atoms to understand the microscopic origin of
the scattering rates [E6] (see Sec. 3.3).
After the discussion of the spin-flip scattering time we move our attention to the charge
and spin transport of the considered systems as discussed in Ref. [E7] (see Sec. 3.4).
The charge conductivity is calculated by using an iterative solution of the linearized
Boltzmann equation (Sec. 2.4.1). This method is not new and was already applied by
our group to several systems [85,86,92,95]. I extended the method to relativistic wave
functions in the scattering term. To convince the reader of the quality of the method
experimental results of the residual longitudinal conductivity of dilute alloys are shown
in comparison with the calculated values in Fig. 3.4. The agreement is very good for
all shown systems.
The next step is the calculation and the understanding of the skew scattering mecha-
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Figure 3.4: Longitudinal conductivities σxx for different impurities in Au with an im-
purity concentration of 1 at.% in comparison to experimental results [93]

nism. Some values for the spin Hall angle α in Cu and Au hosts are shown in Fig. 3.5.
The first obvious result is the strong variation of the spin Hall angle on the impurity
atom. For both hosts, Cu and Au, values up to nearly 0.1 are obtained even for light
impurities such as C in Au. A sign change for selected impurity-host combinations is
as well present.
Let us try to explain the experimentally found spin Hall angles (see Tab. 1.1) by our
calculations. The most interesting result is the possible explanation of the gigantic
spin Hall effect in Au (Seki et al. [11] ) by light contaminations such as C and N.
Moreover, the variation of the Au results [22, 23] can be explained by the existence of
other impurities in Au as for instance Ag.
In the following it is necessary to explain the obtained results and to give a better
understanding of the microscopic mechanism of the SHE. First, a microscopic picture
of the skew scattering will be given. According to the discussion of section 1.3, the
skew scattering mechanism is the asymmetric scattering of ”spin-up” and ”spin-down”
electrons due to the spin-orbit interaction and a perturbing potential. In our relativis-
tic language, introduced in section 2.2.4, it is the asymmetric scattering of ”+” and
”-” states.
For an illustration, the difference of the scattering rates P++

k0k′−P−−
k0k′ for a fixed incom-

ing Bloch state is shown in Fig. 3.6. The incoming direction is along x axis and the
examples are Li (a), Zn (b) and Au (c) impurities in a Cu host. It is obvious that in the
case of Li ”+” states are mainly scattered in y direction and ”-” states in −y direction.
The result for Zn is opposite. The corresponding sign change is seen in Fig. 3.5. Such
a simple picture is nice for an easy understanding but in general the situation is much
more complicated. In Fig. 3.6 c) the skew scattering effect for a Au impurity in Cu
is shown. From a first view, it looks like for Zn, however, it turns out that the spin
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Figure 3.5: The calculated spin Hall angle for different impurities (with the atomic
number in brackets) in a Cu and a Au host.

Hall conductivity has the same sign as for Li [E8] (see Sec. 3.5). Considering the effect
in Fig. 3.6 c) in detail, it turns out that a strong back scattering contribution occurs,
where the sign of the skew scattering is opposite to the forward scattering part. This
example should illustrate that the strong k dependence of the scattering mechanism
makes it difficult to find a simple explanation for the actual sign of the spin Hall effect.
So far a real calculation is required and no general argument can be found.
For an explanation of the strongly varying values for the Hall angle in different sys-

Figure 3.6: The microscopic picture of the skew scattering mechanism. The difference
of the scattering rates P++

kk′ − P−−
kk′ for ”+” and ”-” states for a) Li, b) Zn, and c) Au

impurities in Cu.
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Figure 3.7: The differences between the scattering phase shifts of an impurity and the
host atom for the levels j = 1/2 and j = 3/2 (l = 1) in Cu and Au.

tems the scattering phase shifts δj of the impurity and host atoms can be used [E8]
(see Sec. 3.5). For Cu and Au hosts the differences of the scattering phase shifts
∆δj = δimpurity

j − δhost
j are shown in Fig. 3.7. Here we consider the total angular mo-

mentum j = l + 1/2 and j = l− 1/2 for p electrons (l = 1) only. This is valid because
all considered atoms (except for Pt) are mainly s and p scatterers, and the spin-orbit
coupling for s electrons is zero. From Fig. 3.7 it is obvious that only C, N, and Bi are
strong p scatterers with large phase shifts. In all other cases the p scattering is weak.
Furthermore, the splitting of the j = 1/2 and j = 3/2 levels indicates the strength
of the effective spin-orbit coupling. Since the spin-orbit interaction is responsible for
the SHE, systems with a large asymmetry between ∆δ1/2 and ∆δ3/2 phase shifts can
exhibit a large spin Hall angle. This asymmetry behaves differently for Cu and Au
hosts. Whereas for Cu the Bi impurity induces the largest asymmetry, in Au it is
maximal for the light elements C and N. The reason for that is the different spin-orbit
coupling of the hosts. The displayed phase shifts are the difference between the host
and impurity atoms. Thus, the asymmetry is a measurement of the difference in the
spin-orbit couplings between the host and the impurity atom. For a Cu host it is quite
weak and the spin-orbit interaction is mostly induced by the impurity atom. For Au
this is different since the spin-orbit coupling of p electrons in Au, Pt, and Bi is similar
due to their comparable atomic numbers. That leads to a reduction of the asymmetry
for Pt and Bi and to a strong increase for light impurities such as Li, C, and N. Com-
bining the strong p scattering and the large asymmetry induced for Bi in Cu and for
the light impurities in Au the Hall angles of Fig. 3.5 can be explained.
In the last part I show that the spin Hall angle is tunable by the type of impurity
atoms [E7]. For experiments and applications the spin diffusion length is equally im-
portant [E8] (see Sec. 3.5). All ingredients are available to use the formula introduced
in section 2.3 for calculation of the spin diffusion length. The only free parameter is
the impurity concentration. For a comparison to experimental results the longitudinal
charge conductivity measured in non-local Hall devices [21, 22, 27] is used. From this
the impurity concentrations cexp are estimated assuming only one type of impurity
atom to occur in the sample

cexp =
σcalc

xx

σexp
xx

c0 . (3.1)
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For applications systems with large Hall angles in combination with long spin diffusion
lengths are of interest, therefore both quantities are shown in Fig. 3.8 for all considered
materials. I can clearly identify three systems with the desired properties. Those are
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Figure 3.8: The spin diffusion length lsf versus the spin Hall angle α for a fixed
longitudinal conductivity ( σxx(Cu) = 0.7 (µΩcm)−1 [27], σxx(Au) = 0.48 (µΩcm)−1

[22], and σxx(Pt) = 0.08 (µΩcm)−1 [21]).

the C and N impurities in Au and Bi impurities in Cu. The required concentrations to
reproduce the measured longitudinal conductivities are reasonable with respect to the
dilute limit, which means the approach I used is valid. The spin diffusion length for
all three systems is of the order of 100 nm which is long enough for any nanoelectronic
application. The Hall angle is larger than 0.06 which is comparable to the largest value
measured so far [11].
The results for Pt based alloys are not very promising. In these systems the spin-orbit
coupling of the Pt host plays the dominant role and the spin diffusion length as well
as the spin Hall angle are nearly unaffected by the impurity type. In addition, both
quantities are small, the spin diffusion length being not longer than 10 nm. From that
point of view, Pt is not a very promising material for applications taking advantage of
the spin Hall effect. One should rather use Cu. In a Cu host the spin diffusion length
is tunable over many orders of magnitude and, at the same time, the Hall angle can
be very large.
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3.1 First-principles calculations of spin relaxation

times of conduction electrons in Cu with non-

magnetic impurities
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First-principles calculations of spin relaxation times of conduction electrons in Cu
with nonmagnetic impurities

D. V. Fedorov,1 P. Zahn,1,* M. Gradhand,2 and I. Mertig1,2
1Fachbereich Physik, Martin-Luther-Universität Halle-Wittenberg, D-06099 Halle, Germany
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We have performed ab initio calculations of the spin relaxation time of conduction electrons in Cu contain-
ing different types of substitutional non-magnetic impurities. The results obtained with the treatment of the
spin-flip transition matrix in the Born approximation are in good agreement with conduction electron spin
resonance experiments. The distribution of the spin relaxation time over the Fermi surface is strongly related
to the electronic properties of the impurity atom. The important role of charge relaxation around the impurity
is discussed.

DOI: 10.1103/PhysRevB.77.092406 PACS number�s�: 71.70.Ej, 72.25.Rb, 76.30.�v, 85.75.�d

Spintronics is a rapidly emerging field that exploits the
spin degree of freedom of the electrons to store, transfer, and
process information.1–4 In this respect, it is highly desirable
to know how long the electron spin can be conserved without
significant changes. To answer this question, one may use
either the spin relaxation time measuring the temporal dis-
tance of two scattering events or the spin diffusion length
characterizing the spatial separation of two spin-flip events.
Recent spintronics experiments5–7 are able to estimate the
spin diffusion length because this quantity is closely related
to the spatial distribution of observables. However, the criti-
cal point for a theoretical prediction of the spin diffusion
length is the calculation of the spin relaxation time.8,9 More-
over, the latter can also be determined experimentally. For
instance, in the first observation of the spin Hall effect,10 the
spin relaxation time was estimated by the decay of the Kerr
signal in an external magnetic field. As discussed in Ref. 11,
the characteristic behavior of the spin relaxation time ob-
served experimentally points to the dominant role of the
Elliott–Yafet12,13 spin-flip scattering mechanism in metals. In
this Brief Report, we examine this spin relaxation mecha-
nism caused by the spin-orbit interaction at the impurity site,
and we restrict our considerations to bulk Cu at zero tem-
perature. The considered processes are particularly important
for the understanding of the extrinsic spin Hall effect.14–16

Originally, the spin or magnetization relaxation time was
introduced by Bloch17 to describe the relaxation of magneti-
zation in nuclear magnetic resonance experiments. Dyson18

gave a definition of the spin relaxation time in the case of
conduction electrons. Since the discovery of conduction
electron spin resonance �CESR�,19 such experiments were
widely used to determine the spin relaxation time in metals.
The full width at half amplitude of the absorption resonance
with respect to the magnetic field �H shows a linear increase
with impurity concentration.20 The spin relaxation time T1,
characterizing the finite lifetime of the spin state, is directly
related to the linewidth of the CESR signal by �H=2 /�T1.

20

Here, � is the gyromagnetic factor.
Our present work is based on the determination of the

spin-flip scattering time by means of the probability of a
transition between electronic states with opposite spin
orientations.21,22 The spin-flip scattering cross section related

to this time will be compared to the results of a simple model
based on the scattering phase shift approach.23,24 A very good
agreement with experimental CESR data is obtained. The
shortcomings of a non-self-consistent treatment of the impu-
rity problem are discussed.

The electronic structure of bulk Cu was self-consistently
calculated in the framework of the nonrelativistic screened
Korringa–Kohn–Rostoker multiple scattering Green’s func-
tion method.25–27 Spherical potentials in the atomic sphere
approximation �ASA� were used. Exchange and correlation
effects were included within the local-density approximation
in the parametrization of Vosko et al.28 The impurity problem
was self-consistently solved in real space on a cluster of 55
atoms, including four nearest neighbor shells around the sub-
stitutional impurity to account for charge relaxation.

In the case of a non-magnetic system, the spin relaxation
time T1 is connected with the spin-flip scattering time �sf

=�↑↓=�↓↑ by using the relation T1= �1 /�↑↓+1 /�↓↑�−1=�sf /2.9
The k-dependent spin-flip scattering time �k

sf �where k is a
shorthand notation for the Bloch wave vector k and band
index n�

1

�k
sf =

1

�k
↑↓ = �

k�

Pkk�
↑↓ �1�

can be calculated by applying Fermi’s golden rule

Pkk�
↑↓ = 2�c0N�Tkk�

↑↓ �2��Ek − Ek�� . �2�

Here, c0 is the concentration of impurities and c0N is the
number of impurity atoms in the system. The linear depen-
dence on the concentration holds for the case of dilute alloys
and is based on the assumption that the impurity atoms are
noninteracting. The elastic scattering probability Pkk�

↑↓ of the
transition of an electron from the “spin-up” state ��k

↑� into
the “spin-down” state ��k�

↓ � is determined by the spin-flip
transition matrix for one defect,

Tkk�
↑↓ = �

	ASA
imp

dr �k
↑†�r�� 2

c2r

dV�r�
dr

L̂ · Ŝ	�k�
↓ �r� . �3�
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The integration is performed over the impurity ASA
sphere. In this Brief Report, Rydberg units are used with the
speed of light c=274.074. The nonrelativistic spinors �k

↑�r�
and �k�

↓ �r� are the perturbed Bloch waves of the dilute alloy
related to the corresponding Bloch functions of the ideal host
by a Lippmann–Schwinger equation.29 For a non-magnetic
system, they are

�k
↑�r� = �k�r� 
 
1

0
� and �k�

↓ �r� = �k��r� 
 
0
1
� .

Thus, Eq. �3� is a Born approximation for the spin-flip tran-
sition matrix where the nonvanishing contributions are given

by the L̂−Ŝ+ component only by applying the expansion of

L̂ · Ŝ= �L̂+Ŝ−+ L̂−Ŝ+� /2+ L̂zŜz.
With the usual angular momentum expansion of the wave

function in the case of spherical atomic potentials,

�k�r� = �
lm

Clm�k�Rl�r�Ylm�r̂� , �4�

we can write

1

�k
sf =

2�c0
	BZ

�
lm

�
l�m�

�l�l�Clm
� �k�Cl�m��k�


 �l�l + 1� − m�m + 1��l��l� + 1� − m��m� + 1�


 

Ek�=EF

dSk�
�vk��

Cl,m+1�k��Cl�,m�+1
� �k�� . �5�

Here, 	BZ is the volume of the Brillouin zone and vk denotes
the group velocity vector of state k at the Fermi level EF. The
functions Ylm�r̂� are the complex spherical harmonics, and
the coefficients �l are given by the following expression:

�l = �
0

RASA
imp

dr�Rl�r��2
r

c2
dV�r�
dr

, �6�

where the radial functions Rl�r� are normalized to unity:
�drr2�Rl�r��2=1. Thus, �l corresponds to half of the spin-orbit
constants introduced in Ref. 13. To compare with the experi-
ment, we use the spin-flip scattering time averaged over the
Fermi surface by using the following procedure:21,22 1 /�sf

= �1 /�k
sf�k. This average can be related to the spin-flip scatter-

ing cross section20

�sf = 	ws/vF�sfc0, �7�

where vF is the Fermi surface average of the Fermi velocity
and 	ws denotes the volume of the bulk Wigner–Seitz cell,
which gives the inverse density of atoms in the host.

The spin-flip scattering cross section �sf can also be ex-
pressed in terms of differences of the phase shifts � j for the
levels j= l
1 /2,23,24

�sf =
2

3

4�

EF
�
l�0

l�l + 1�
2l + 1

sin2��l+1/2�EF� − �l−1/2�EF�� . �8�

Let us now assume a weak scattering and replace the sine
in Eq. �8� by the difference of the phase shifts. To first order
in the spin-orbit interaction, it can be written as23

�l+1/2�EF�−�l−1/2�EF���nl�EF��l /2, where nl�EF� is the an-
gular momentum resolved impurity local density of states at
the Fermi level. As a result, we obtain

�sf = �
l�0

�sf�l� =
2

3

�3

EF
�
l�0

l�l + 1�
2l + 1

�l
2nl

2�EF� . �9�

Similar approximations were made in Ref. 24, and it was
demonstrated that a good agreement with experiment can be
reached for a Mg host.30 Equation �9� provides a possibility
for a simplified analysis of the results discussed below.

Table I summarizes the spin relaxation time T1 for bulk
Cu with different types of impurities calculated by our ab
initio method. Our calculation is compared with CESR ex-
periments of Monod and Schultz20 and with the calculation
of Holzwarth and Lee.22 A good agreement between our re-
sults and the experimental data is found. The values obtained
in Ref. 22 show a significant deviation from the experimental
data, except in the case of Ga and Ge impurities. Holzwarth
and Lee22 neglected spin-orbit interactions in the Cu host and
performed a relativistic treatment of impurity scattering
based on the solution of the Dirac equation for the muffin-tin
model. Nevertheless, approximate muffin-tin potentials were
constructed for substitutional impurities in Cu by superposi-
tion of atomic potentials. Thus, the lack of a self-consistent
solution for the impurity problem, including charge relax-
ation around the impurity, seems to be the main reason for
this discrepancy. In addition, we present our results for the
momentum relaxation time � �Table I� to make a comparison
with T1. In the case of Au impurities, both relaxation times
are already of the same order of magnitude. The reason is
that the momentum scattering is quite weak since Au and Cu
are isovalent. At the same time, the spin-flip scattering is
much stronger for Au with respect to other impurities be-
cause of the large atomic number of Au.

Monod and Schultz20 made estimations based on the vir-
tual bound state �VBS� model, including the spin-orbit inter-
action. The obtained values for the spin-flip scattering cross
section are reasonable but do not quantitatively reproduce

TABLE I. Spin relaxation time T1 and momentum relaxation
time � in bulk Cu with an impurity concentration of 1 at. %. The
experimental results for T1 were derived from the data for �H of
Tables III and IV of Ref. 20. For the calculation of �, the scheme
described in Ref. 29 was applied. All values are given in
picoseconds.

Impurity
Other calculationa

T1

CESRb

T1

Our results

T1 �

Ni 4.0 2.2
0.2 1.9 0.057

Zn 125 64
9 58 0.078

Ga 33 30
4 26 0.017

Ge 14 14
2 12 0.0072

As 8.6
0.7 6.7 0.0043

Au 2.0
0.4 0.62
0.21 0.67 0.48

aReference 22.
bReference 20.
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the experimental situation.20 We performed calculations of
�sf by using Eq. �7�, with the values of �sf=2T1 taken from
Table I, and by using Eq. �9� for comparison. Figure 1
shows �sf for bulk Cu with different types of impurities ob-
tained by our calculations. For comparison, the values de-
rived from the experimental data20 and the estimations based
on the VBS model20 are shown. We emphasize that the
spin-flip scattering cross section used in Ref. 20 is
actually twice the �sf. To follow the calculation of Ref. 20,
we use for Eq. �7� the same value of the averaged Fermi
velocity vF=1.57
108 cm /s taken from Ref. 31, while
vF=1.1
108 cm /s was obtained in our calculation. The
corresponding scaling procedure was also applied to Eq. �9�
to ensure a correct comparison of �sf values.

It is obvious from Fig. 1 that Eq. �9� provides a good
agreement with the results obtained by applying Eq. �7� as
well as with the experimental data. Moreover, as shown in
Table II, the experiment can be well reproduced by restrict-
ing the sum of Eq. �9� to the l=2 �d electrons� term only for
Ni impurities and to the l=1 �p electrons� term only for the
sp impurities considered. For Au impurities, the l=1 and the
l=2 terms are of comparable orders due to the large atomic
number. Thus, the assumption made in Ref. 20, taking into
account merely one type of scattered electron �p or d�, is
quite reasonable. The main reason for the deviation of the
VBS model from experiment is the lack of charge relaxation
around the impurity. The atomic parameters for the spin-orbit
constant and the phase shifts for an impurity atom differ
remarkably from those for an isolated atom. In particular, the
spin-orbit constant for p electrons at Zn impurities used in

Ref. 20 was assumed to be 48 meV, whereas our self-
consistent calculation gives 180 meV.

The distributions of the momentum relaxation time � and
the spin relaxation time T1 on the Fermi surface of Cu are
represented in Fig. 2 for Ni, Zn, and Ga impurities. The color
scale indicates the increase in relaxation times going from
magenta to red. With respect to the Fermi surface of Cu, it is
known that the lack of s electrons is largest at the necks, the
lack of p electrons is between the necks, and the lack of d
electrons is mostly located around the van Hove singularities
in the �100� direction.29 First, let us consider the distribution
of �. The electronic configuration of the impurity atom de-
termines the scattering properties. For example, a Ni impu-
rity is a typical d scatterer.29 It is important to keep in mind

TABLE II. The l-decomposed spin-flip scattering cross section
�sf�l� for impurities in Cu according to Eq. �9�. All values are given
in cm2.

Impurity �sf�l=1� �sf�l=2� �sf�l=3�

Ni 3.2
10−20 2.2
10−18 3.1
10−29

Zn 8.1
10−20 4.6
10−21 4.4
10−29

Ga 2.0
10−19 8.1
10−22 7.0
10−29

Ge 5.0
10−19 3.8
10−22 1.1
10−28

As 9.8
10−19 2.8
10−22 1.5
10−28

Au 5.3
10−18 2.2
10−18 2.8
10−25

Ni Zn Ga Ge As Au
10
-21

10
-20

10
-19

10
-18

10
-17

10
-16

sf
(c
m
2 )

Eq. (7)
Eq. (9)
CESR [20]
VBS [20]

FIG. 1. �Color online� Spin-flip scattering cross section for im-
purities in bulk Cu �the ordinate is a logarithmic scale�. The lines
are to guide the eyes.

FIG. 2. �Color online� Anisotropic � �left� and T1 �right� on the
Fermi surface of Cu for �a� Ni, �b� Zn, and �c� Ga impurities with a
defect concentration of 1 at. %. All values on the logarithmic scale
are given in femtoseconds.
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that the maximal values correspond to the red areas and in-
dicate weak scattering, while the magenta areas indicate
strong scattering. In the case of Ni impurity, the weakest
scattering occurs exactly where a d character is missing. Zn
and Ga impurities are typical sp scatterers.29 However, the
scattering of s electrons dominates for Zn, and the scattering
of p electrons is dominant for Ga. In the case of the spin-flip
scattering, according to Eq. �5�, s-like electrons do not give
any contributions since the spin-orbit interaction vanishes. It
is obvious from the top row of Fig. 2 that the momentum and
the spin relaxation time show practically the same distribu-
tion of scattering strength for Ni impurities. For Zn impuri-
ties, the difference is much more pronounced because s elec-
trons dominating the momentum relaxation time do not
contribute to the spin relaxation. Spin-flip scattering is weak
where a p character is missing, while scattering is strong for
the states with a dominant p character. The distributions of
the two relaxation times for Ga are quite similar to each
other. The picture is determined by p electrons. The corre-
sponding pictures for Ge, As, and Au impurities are qualita-
tively the same as those for Ga impurities. Actually, as can
be seen in Table II, Au impurities cause significant spin-flip

scattering contributions in both p and d channels. In general,
p electrons dominate for the considered sp scatterers.

In summary, we have performed ab initio calculations of
the spin relaxation time and the corresponding scattering
cross section of the conduction electrons in bulk Cu contain-
ing different types of impurities within the Born approxima-
tion for the spin-flip transition matrix. The obtained results
are in good agreement with CESR experiments.20 Generally,
the spin relaxation time is smaller by several orders of mag-
nitude in comparison to the momentum relaxation time, ex-
cept for heavy impurities such as Au where spin and momen-
tum relaxation times are of the same order of magnitude. As
in the case of the momentum relaxation time, there is a
strong relation between the distribution of the spin relaxation
time over the Fermi surface and the electronic properties of
the impurity atom. The spin-flip scattering is dominated by d
electrons for Ni impurities, by p electrons for Zn, Ga, Ge,
and As impurities, and by electrons of both characters for Au
impurities. It is shown that the self-consistent solution of the
impurity problem, including charge relaxation, is essential in
properly describing the spin relaxation time.
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Erratum: First-principles calculations of spin relaxation times of conduction electrons in Cu with
nonmagnetic impurities [Phys. Rev. B 77, 092406 (2008)]

D. V. Fedorov, P. Zahn, M. Gradhand, and I. Mertig
�Received 15 January 2009; published 10 February 2009�

DOI: 10.1103/PhysRevB.79.059901 PACS number�s�: 71.70.Ej, 72.25.Rb, 76.30.�v, 85.75.�d, 99.10.Cd

The results for the anisotropic spin relaxation time T1 presented in our paper were obtained using the symmetry group of
the nonrelativistic Hamiltonian. In reality, the spin-orbit interaction in Eq. �3� reduces the symmetry. The corrected Fig. 2 is
given below. The momentum relaxation time � is unchanged.

(b)

(a)

(c)

FIG. 2. �Color online�Anisotropic � �left� and T1 �right� on the Fermi surface of Cu for �a� Ni, �b� Zn, and �c� Ga impurities with a defect
concentration of 1 at. %. All values on the logarithmic scale are given in femtoseconds.
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The integration over the Fermi surface in Eq. �5� was performed in our paper using the irreducible part of the Brillouin zone
corresponding to the symmetry group of the non-relativistic Hamiltonian. It is six times smaller than the irreducible part of the
Brillouin zone in the presence of the spin-orbit coupling. The correction causes small deviations of the averaged values for T1
presented in the column “Our results” of Table I. The momentum relaxation time � is not influenced at all.
In fact, the correction gives a reduction of the values of T1 for all k points with nonzero component along z axis

�quantization axis�. As a consequence, we obtain a systematic reduction of the averaged values for T1 in comparison to the
published ones.
The values of the spin-flip scattering cross section �sf calculated by Eq. �7� have to be corrected along these lines. But, the

corresponding changes are nearly invisible in Fig. 1 due to the logarithmic scale. We emphasize that the whole discussion of
our results as well as the conclusions made in our paper are still valid.

TABLE I. Spin relaxation time T1 and momentum relaxation time � in bulk Cu with an impurity concen-
tration of 1 at. %. The experimental results for T1 were derived from the data for �H of Tables III and IV of
Ref. 20. For the calculation of �, the scheme described in Ref. 29 was applied. All values are given in
picoseconds.

Other calculationa CESRb Our results

Impurity T1 T1 T1 �

Ni 4.0 2.2�0.2 1.6 0.057

Zn 125 64�9 49 0.078

Ga 33 30�4 22 0.017

Ge 14 14�2 10 0.0072

As 8.6�0.7 5.7 0.0043

Au 2.0�0.4 0.62�0.21 0.56 0.48

aReference 22.
bReference 20.
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Spin polarization on Fermi surfaces of metals by the KKR method
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With the implementation of a relativistic Korringa-Kohn-Rostoker Green’s function and band-structure
method, we analyze the spin-expectation value of the electron states on the Fermi surface of nonmagnetic as
well as magnetic metals. It is shown that for relatively light elements such as Cu the spin states are well
defined. A separation of all electron states to “up” and “down” spin-polarized states can be done even in the
case of quite heavy but monovalent elements such as Au. In contrast, for heavy polyvalent metals such as Pt,
the expectation value of the spin operator can be close to zero in large regions of the Fermi surface. In this case
the nonrelativistic language of well-defined “spin-up” and “spin-down” states is not valid anymore. For mag-
netic materials, the relativistic Fermi surfaces change their topology with respect to the nonrelativistic majority
and minority sheets because of spin-orbit driven avoided crossings of the bands. As a result, regions with
vanishing spin polarization appear.

DOI: 10.1103/PhysRevB.80.224413 PACS number�s�: 71.15.�m, 71.18.�y, 71.20.�b

I. INTRODUCTION

The spin degree of freedom of an electron has attracted a
lot of attention over the last years.1–6 Since the field of spin-
tronics opened new perspectives in data storage and informa-
tion technology. After the discovery of giant
magnetoresistance,7,8 tunneling magnetoresistance,9–12 and
current-induced switching,13–16 phenomena such as spin Hall
effect1,4,17,18 and anomalous Hall effect19–22 attracted atten-
tion. The latter effects are caused by spin-orbit interaction.
Thus, a detailed insight into the microscopic origin requires a
relativistic description of the electron system.

While the intrinsic contribution to the anomalous Hall
conductivity was discussed originally in terms of an integral
of the Berry curvature over all occupied states, it was later
shown that for low temperatures this quantity can be ex-
pressed as a Fermi-surface property.23,24 The same holds for
the spin Hall effect in nonmagnetic materials. For an under-
standing of these effects the spin degree of freedom of an
electron state is an important quantity. Experimentally, the
spin orientation can be changed with respect to the lattice
structure either by spin injection from a ferromagnet into a
nonmagnetic material or by an external magnetic field. As a
consequence spin-flip scattering is observed to be
anisotropic.25 To account for related effects, we present a
method to analyze the spin-expectation value of the elec-
tronic states at the Fermi surface within a fully relativistic
�FR� treatment.

A further motivation for our work is the existence of so-
called spin hot spots. They are characterized by zero spin
polarization and occur at the Fermi surface.26 Level cross-
ings at the zone boundary or at high-symmetry points, or
lines of accidental degeneracy are typical locations on the
Fermi surface. Spin hot spots exist usually for polyvalent
metals such as Al, Pd, Mg, and Be and cause an unexpected
fast spin relaxation.26

For magnetic materials the spin hot spots are caused by
spin-orbit driven hybridization points, i.e., k points with

avoided crossing. That is, the considered states would be
degenerate in a nonrelativistic �NR� treatment, “spin-up” and
“spin-down” bands cross each other. Spin-orbit interaction
forces a splitting of the two states and the spin polarization
vanishes at the splitting points. If such points occur close to
the Fermi level, they can enhance spin-flip scattering by sev-
eral orders of magnitude and cause ultrafast
demagnetization.27 For a theoretical study of this problem, it
is very desirable to know the spin-mixing parameter of the
electron states in the vicinity of the Fermi level.28

The aim of this paper is to introduce our ab initio method
that provides a scheme for the calculation of the relativistic
band structure and wave functions. In the application of this
method, we present relativistic Fermi surfaces and consider
the spin polarization of the corresponding electronic states.

We start with a short introduction of the relativistic
Korringa-Kohn-Rostoker �KKR� band-structure theory29–38

and discuss the treatment of degenerate bands in a nonmag-
netic system with space inversion symmetry. For the Fermi-
surface calculation, we present Cu, Au, and Pt as nonmag-
netic and Fe as magnetic examples. Different spin-mixing
parameters obtained for several materials will be discussed in
detail.

II. METHOD

For the self-consistent procedure, we use a screened
KKR-Green’s function method,39,40 generalized
relativistically.35,38 It is based on the density-functional
theory in the local spin-density approximation with the pa-
rametrization of Vosko et al.41 The magnetic moments are
forced to be collinear. An angular momentum cutoff lmax=3
is used for the Green’s function expansion. The relativistic
Kohn-Sham-Dirac equation

Ĥ�r��nk�r� =Wn�k��nk�r� �1�

with the Hamiltonian
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Ĥ�r� =
�

i
c�̂�r + Î4Vef f�r� + �̂� · Bef f�r� + mc2�̂ �2�

and the 4�4 matrices

�̂ = � 0 �

� 0 �, �̂ = � Î2 0

0 − Î2
�, Î4 = � Î2 0

0 Î2
� �3�

is solved. Here Î2 is the 2�2 unit matrix, n is the band
index, and k is the Bloch vector. First we use the KKR-
Green’s function method to obtain the scalar potential Vef f�r�
and the vector of the effective magnetic field Bef f�r� self-
consistently. Then, the KKR band-structure method is ap-
plied to compute the electron energy spectrum

Wn�k� = En�k� + mc2. �4�

The band structure En�k� is calculated on the real energy axis
with an angular momentum cutoff lmax=3. The cluster used
to calculate the screened structure constants contained at
least 225 atoms depending on the crystal structure.

We have different options to analyze the influence of rela-
tivistic effects. First of all, the results of the FR calculation
can be compared with the ones obtained from the NR equa-
tion. In addition, in the fully relativistic calculation, the spin-
orbit interaction can be scaled to zero.42 This corresponds to
the so-called scalar-relativistic approximation �SRA�. The
scaling of spin-orbit coupling can be performed by a continu-
ous variable x. Calculations without scaling �FR�x=1�� and
with scaling to zero �FR�x=0�� are discussed, respectively.

The relativistic band-structure calculations are performed
analogously to the NR case.43 However, the wave functions
are expanded now into spin-angular functions 	Q as38

�nk�r� = �
Q

�
Q�

aQ�
n �k�� gQQ��r�	Q�r̂�

ifQQ��r�	Q̄�r̂�
� , �5�

where Q= 	
�
 and Q̄= 	−
�
. The solutions of the radial
differential equation in the atomic sphere approximation for
the effective potential are gQQ��r� for the large and fQQ��r�
for the small component, respectively. The band structure
En�k� is evaluated from the secular KKR equation

det�Ĝ�k,E� − ��t̂�E��−1� = 0 �6�

with the screened structural Green’s function Ĝ�k ,E� and the
difference of the single-site t matrices �t̂�E�= t̂− t̂r with t̂r
being the t matrix of the reference system formed by repul-
sive potential wells. The expansion coefficients aQ�

n �k� are
calculated from the KKR eigenvalue problem

�
Q�

�GQQ��k,En� − ��t−1�En��QQ��cQ�
n �k� = 0 �7�

via

aQ
n �k� = �

Q�

��t−1�En��QQ�cQ�
n �k� . �8�

In the case of a nonmagnetic crystal with inversion symme-
try every k state is twofold degenerate.44,45 Let us label the

two orthonormal wave functions corresponding to that de-
generacy as ��k

1� and ��k
2�. All linear combinations of these

functions are also solutions at the same energy En�k�. In the
nonrelativistic case one would associate them with spin-up
and spin-down states relative to an arbitrary quantization
axis. For the relativistic treatment we have to define a quan-
tization axis. In an experimental situation, this axis can be
given by a ferromagnet used for injection of spin-polarized
electrons. For a theoretical consideration, we can choose, for
instance, the z direction as the quantization axis. Then, we
apply the following unitary transformation:

��k
3� = c1��k

1� + c2��k
2� ,

��k
4� = − c2

���k
1� + c1

���k
2� �9�

with �c1�2+ �c2�2=1. Here the coefficients c1 and c2 should
fulfill the conditions of spin alignment along z direction for
the two new states


�k
3��̂
x��k

3� = 
�k
3��̂
y��k

3� = 0,


�k
4��̂
x��k

4� = 
�k
4��̂
y��k

4� = 0. �10�

In fact, the upper conditions automatically provide the lower
one in Eq. �10�. Explicit expressions for the coefficients c1
and c2 are given in the Appendix. The normalization


�k
3��k

3� = 
�k
4��k

4� = 1 �11�

and the orthogonality


�k
3��k

4� = 0 �12�

are conserved under the unitary transformation in Eq. �9�.
The choice of the quantization axis in z direction is not
unique and any arbitrary direction can be chosen. For the
further discussion of the results the expectation value of the
z component of the spin with the transformed wave functions

Pk = 
�k
3��̂
z��k

3� = − 
�k
4��̂
z��k

4� �13�

will be referred to as spin polarization. For a clear interpre-
tation, as what follows, we shall label the states constructed
from the degenerate band with Pk�0 by ��k

+� and those with
Pk�0 by ��k

−�. In the nonrelativistic case �without spin-orbit
coupling� the two states simplify to the degenerate spin-up
��k

+�= ��k ,↑� and spin-down states ��k
−�= ��k ,↓�.

III. RESULTS

A. Band structure

First, we present the band-structure calculations to show
that our relativistic code works properly. Pt is chosen as a
nonmagnetic example since the large atomic number leads to
significant relativistic effects in the electronic structure. Fig-
ure 1 shows the relativistic band structure of Pt, in compari-
son to a nonrelativistic approximation which fails for such a
heavy element. The electronic structures obtained with the
two approaches differ strongly over the whole Brillouin
zone. Our relativistic results are in very good agreement to
earlier calculations.46
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To illuminate the origin of changes in the band structure
going from NR to the FR calculation, we perform the FR
�x=0� calculation. The results are presented in Fig. 2. Espe-
cially, the flat bands are affected and the degeneracy at sym-
metry points is lifted by the spin-orbit coupling, whereas the
band bottom at the � point is correctly reproduced within
SRA �FR�x=0��.

In contrast, the band structure of Fe shown in Fig. 3 is
only slightly affected by relativistic effects since Fe is a light
element in comparison to Pt. However, the changes are im-
portant because some degeneracies are lifted leading to
avoided crossings of former majority and minority
bands.46–48 It causes a mixing of bands which were well
separated with respect to the spin in the nonrelativistic cal-
culation. This result is especially important for the topology
of the Fermi surface and the spin-polarization analysis in the
following section.

B. Fermi surface

Here we present the relativistic Fermi surfaces of Cu, Au,
Pt, and Fe with the spin polarization of the electronic states.

Let us first analyze the polarization of the nonmagnetic
Fermi surfaces. The quantization axis is defined by the trans-
formation in Eqs. �9� and �10� explained in Sec. II. The po-
larization of ��k

+� states only is shown in Fig. 4. A figure for
��k

−� states would look the same but with opposite sign. For
the monovalent metals Au and Cu the band at the Fermi level

FIG. 1. �Color online� Band structure of Pt from the fully rela-
tivistic �gray, red� and the nonrelativistic �black� calculation.

FIG. 2. �Color online� Band structure of Pt from the fully rela-
tivistic �gray, red� and the relativistic with the spin-orbit coupling
scaled to zero �black� calculation.

FIG. 3. �Color online� Calculated fully relativistic band structure
of bcc Fe. The small inset shows a comparison to the calculation
with the spin-orbit coupling scaled to zero �x=0�. The spin-orbit
interaction leads to avoided crossings.

(b)(a)

(c) (d)

FIG. 4. �Color online� Calculated relativistic Fermi surface of
Cu �upper left�, Au �upper right�, and Pt �lower left: nineth band and

lower right: 11th band�, and the expectation values of �̂
z for the
��k

+� states are indicated as color code. Note the different scale for
Cu and Au in comparison to Pt.
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is shown. Pt, which is a polyvalent metal, exhibits a very
strong influence of the spin-orbit coupling that can be seen
from the shown bands with small spin polarization in large
regions of k space. All polarization values between 0 and +1
for the ��k

+� states are obtained for Pt. The effect is much
weaker for Cu and even for Au. Notice the different scales in
Fig. 4. It is important to mention that the symmetry of the
spin polarization P is lower than the symmetry of the Fermi
surface. The spin degree of freedom is coupled to the lattice
because of spin-orbit interaction. The operator �̂� does not
commute with the relativistic Hamiltonian of Eq. �2� and the
chosen quantization axis is reflected in the symmetry. If the
transformation is applied using the quantization axis along x,
the pictures in Fig. 4 would be rotated by 90° around y axis.

There are two reasons why the influence of the spin-orbit
coupling is increased. First, Au and Pt are heavier than Cu
with atomic numbers of Z=79 and Z=78 in comparison to
Z=29. Since the spin-orbit coupling strength is proportional
to Z, the effect in Pt and Au is stronger. Second, the band
structure affects directly the strength of the spin mixing. As it
was discussed in Ref. 26, the spin polarization in regions
where two bands are close to each other can be approxi-
mately written as P=� /��2+4VSO

2 . This expression is based
on the consideration of a two-level system with the spin-orbit
interaction as a perturbation, where � is a band separation
and VSO is some effective spin-orbit interaction. It is evident
that for k points with small energetic separation of a few
bands, small spin polarizations are obtained. Especially, if
certain k points have degeneracy ��=0� in the nonrelativistic
case, the spin polarization vanishes for them.

For example, a degeneracy is lifted close to the Fermi
energy at the X point of Pt �Fig. 2�. This leads to the spin
polarization P close to zero at the Fermi surface �Fig. 4,
ninth band�. The same holds for the L point of the 11th band
�compare Figs. 2 and 4�. In the literature other examples
such as Al �Ref. 26� and Co �Ref. 27� are discussed with
special emphasis on the influence on experimental results.
Especially, spin-flip scattering rates can be strongly influ-
enced by this effect.

The dominant bands for Fe in a relativistic calculation are
shown in Fig. 5, where the spin polarization is given as color
code. The calculated Fermi surface is in very good agree-
ment to results of Wang et al.24 We obtain the same bands
�5–10� but only four bands �7–10� are shown here. Since
only very small pockets are formed by the bands 5 and 6,
they are skipped for further discussion. From the picture of
spin polarization, one can see that the nineth band is domi-

nated by electrons with 
�̂
z��1 and the tenth band by


�̂
z��−1 only. This is obvious from a comparison to the
Fermi surface of a nonrelativistic calculation shown in Fig.
6. The sixth band of the majority electrons is definitely re-
lated to the nineth band of the relativistic calculation. The
same holds for the fourth minority band in Fig. 6 and the
tenth band in Fig. 5. Since Fe is still a relatively light ele-
ment, the relativistic treatment gives absolute values of the
spin polarization close to the one �namely, P=1� obtained by
the nonrelativistic approach with well-defined spin-up and
spin-down states. For the bands 7 and 8 the result is different
since they are mixtures of the fifth majority and the third

minority band. In a nonrelativistic calculation both bands are
well separated by the spin quantum number. Including rela-
tivistic effects, the spin is not any more conserved and the
bands intermix. It is an important change that should influ-

(b)(a)

(c) (d)

FIG. 5. �Color online� Calculated relativistic Fermi surface for

the bands 7–10 of bcc Fe. The expectation values of the �̂
z opera-
tor are given as color code.

(b)(a)

(c) (d)

FIG. 6. �Color online� Calculated nonrelativistic Fermi surface
of bcc Fe �upper left: fifth majority band, upper right: third minor-
ity, lower left: sixth majority band, and lower right: fourth minority
band�.
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ence spin sensitive measurements. Values close to zero are
obtained in small regions where the spin polarization
changes sign. These states are complete mixtures of spin-up
and spin-down states. For special symmetry lines this effect
was discussed by Ackermann et al.49 They have found the

transition from spin-expectation value 
�̂
z��1 to 
�̂
z�
�−1 at anticrossing points in �-H direction of Fe. However,
their discussion was not focused on the k points at the Fermi
level which are the important states for the spin-dependent
electronic transport.

To compare the effect of the spin-orbit coupling in differ-
ent materials, a histogram of the k-dependent spin-mixing
parameter �1− �Pk�� is shown in Fig. 7 ���P� is the probability
to find states at the Fermi level with the polarization P� for
Li, Mg, Al, Fe, Cu, Pt, and Au. Here we introduce k as a
combined index for the band number n and the crystal mo-
mentum k. Li, Cu, and Au are examples with only one band
at the Fermi level far from points of degeneracy. The distri-
butions of ��P� are very narrow for these three materials and
mainly shifted by the difference in the atomic number. In
contrast, the distributions for Mg, Al, Fe, and Pt are very
broad with a linear slope in the double-logarithmic plot. In
the case of the light elements Mg and Al, spin-mixing pa-
rameters comparable to Cu are possible. It has two reasons as
explained by Fabian and Das Sarma.26 First, Fermi-surface
sheets are close to the Brillouin-zone boundaries that in-
creases the spin mixing. Second, it is due to the crossing of
bands �accidental degeneracy� at the Fermi level which leads
to an increase in the spin-orbit coupling strength. As shown
in Ref. 26 spin-mixing parameters up to unity can be re-
solved, if a very fine k mesh is used around the hot spots
where the degeneracy is lifted. However, these points are
statistically irrelevant and do not contribute significantly to

Fermi-surface averages. The slope of the probability ampli-
tude ��P� with the long tail is similar for Al and Mg and can
explain a special behavior of Al and Mg in conduction
electron-spin-resonance experiments.26 For the understand-
ing it is instructive to compare also Cu with Fe and Au with
Pt. In both cases the atomic number Z is very similar for the
two compared materials. Due to the multisheeted Fermi sur-
face of Fe and Pt with several lifted degeneracies, the spin
mixing parameter is strongly enhanced and the distribution is
broadened. This result shows that for Fe similar effects as
discussed for Co by Pickel et al.27 should be measurable.
They found that the spin hot spots increase the spin-
relaxation process drastically.

Figure 7 reflects perfectly the situation with the assump-
tion of well-defined spin-up and spin-down states. For light
elements with a simple Fermi surface such as Li, the assump-
tion works fine. That is quite reasonable even for Cu. In
contrast, it is already questionable to assume well-defined
spin states in the case of heavy materials such as Pt or poly-
valent light materials such as Al. The averaged spin-mixing
parameters are summarized in Table I. For Fe and Cu, the
elements with comparable atomic numbers, the averaged
spin mixing parameters differ by a factor of 10. It is caused
by the avoided crossings of bands in Fe. For Pt and Au a
similar behavior is obvious. The present results for the aver-
aged spin mixing parameters of Fe, Cu, and Au are in good
agreement with similar calculations published recently.28

IV. CONCLUSION

We present the implementation of relativistic band struc-
ture, Fermi surface, and wave-function calculations in the
relativistic screened KKR method. By means of these quan-
tities, the spin polarization on the Fermi surface of several
metals is discussed. Such information is important for a the-
oretical analysis of spin and electronic transports. It is shown
that for monovalent metals such as Li, Cu, and Au, the “up”
and “down” spin-polarized states are well defined for all k
points on the Fermi surface. Whereas for polyvalent materi-
als such as Mg, Al, Fe, and Pt, electron states with zero spin
polarization exist. The effect is drastic in the case of heavy
elements where large regions with vanishing spin polariza-
tion exist. As an additional mechanism, spin hot spots occur
for magnetic materials such as Fe at the avoided crossing
points of the exchange-split bands. For such materials it can
be essential to take relativistic effects into account for a
proper description of spin-dependent phenomena. In addi-
tion, an appropriate method to treat the spin polarization of
degenerate bands in nonmagnetic materials is proposed.
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FIG. 7. �Color online� A histogram ��P� of calculated spin mix-
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double-logarithmic scale. Fabian and Das Sarma �Ref. 26� found for
Al the same dependency by treating the spin-orbit coupling as per-
turbation. Lattice constants are taken from experiment: Li�bcc, a
=3.509 Å�, Mg�hex, a=3.210 Å�, Al�fcc, a=4.050 Å�, Fe�bcc, a
=2.867 Å�, Cu�fcc, a=3.614 Å�, Pt�fcc, a=3.924 Å�, and Au�fcc,
a=4.078 Å�. For Mg it was necessary to take a relaxed c /a ratio of
1.48 since in this system c /a is crucial to obtain the spin hot spots.

TABLE I. Averaged spin mixing parameter 
1− �Pk��k for dif-
ferent metals �scaled by a factor of 103�.

Li Mg Al Fe Cu Pt Au

0.005 0.049 0.083 49 3 118 60

SPIN POLARIZATION ON FERMI SURFACES OF METALS… PHYSICAL REVIEW B 80, 224413 �2009�

224413-5



Forschungsgemeinschaft �SFB 762�. M. Gradhand is a mem-
ber of the International Max Planck Research School for Sci-
ence and Technology of Nanostructures.

APPENDIX: TRANSFORMATION TO A GLOBAL
QUANTIZATION AXIS

In order to apply the transformation given by Eqs. �9� and
�10�, we need to calculate matrix elements such as


�nk��̂
z��n�k�

= − �

���

�

���

a
���
n� �k�a
���

n� �k�

� �

�
�� 2�

2
 + 1
�� g
�;
���

� �r�g
�;
����r�r
2dr

+
2�

2
 − 1
� f
�;
���

� �r�f
�;
����r�r
2dr

+�1 − � 2�

2
 + 1
�2� g
�;
���

� �r�g−
−1,�;
����r�r
2dr

−�1 − � 2�

2
 − 1
�2� f
�;
���

� �r�f−
+1,�;
����r�r
2dr� ,

�A1�


�nk��̂
+��n�k�

= − �

���

�

���

a
���
n� �k�a
���

n� �k��

�
��
2 − 1/4 − ��� − 1�

� � 2

2
 + 1
� g
�;
���

� �r�g
�−1;
����r�r
2dr

+
2

2
 − 1
� f
�;
���

� �r�f
�−1;
����r�r
2dr�

+
��2
 + 1 − 2���2
 + 3 − 2��

2
 + 1

�� g
�;
���
� �r�g−
−1,�−1;
����r�r

2dr

+
��2
 − 1 + 2���2
 − 3 + 2��

2
 − 1

�� f
�;
���
� �r�f−
+1,�−1;
����r�r

2dr� , �A2�

and


�nk��̂
−��n�k�

= − �

���

�

���

a
���
n� �k�a
���

n� �k��

�

���
2 − 1/4 − ��� + 1�

� � 2

2
 + 1
� g
�;
���

� �r�g
�+1;
����r�r
2dr

+
2

2
 − 1
� f
�;
���

� �r�f
�+1;
����r�r
2dr�

−
��2
 + 1 + 2���2
 + 3 + 2��

2
 + 1

�� g
�;
���
� �r�g−
−1,�+1;
����r�r

2dr

−
��2
 − 1 − 2���2
 − 3 − 2��

2
 − 1

�� f
�;
���
� �r�f−
+1,�+1;
����r�r

2dr� . �A3�

The expressions above are written in a general form valid for
nonmagnetic as well as magnetic systems. Actually, in the
nonmagnetic case, they can be simplified due to the depen-
dence of the radial solutions on 
 only.38 Thus, with n�=n in
Eq. ��A1�, we have the expression for the spin polarization
used in our calculations.

The implementation of the ladder operators 
+=
x+ i
y
and 
−=
x− i
y in Eqs. ��A2� and �A3� provides us an easier
way for dealing with the conditions given by Eq. �10�. Fi-
nally, we can write the coefficients of the transformation in
Eqs. �9� and �10� in the following form:

c1 =
1
�2�1 +

�a�
��a�2 + 4�d�2

�A4�

and

c2 = − � �a�
a
� d�2
��a�2 + 4�d�2 + �a���a�2 + 4�d�2

, �A5�

where the parameters a and d are given by

a = 2i Im	
�k
1��̂
y��k

2�
�k
2��̂
x��k

1�
 �A6�

and

d = 
�k
2��̂
x��k

1�
�k
1��̂
y��k

1� − 
�k
2��̂
y��k

1�
�k
1��̂
x��k

1� .
�A7�

Here we use c1= �c1� as the choice of an arbitrary phase,
which does not influence the results.
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Fully relativistic ab initio treatment of spin-flip scattering caused by impurities

Martin Gradhand,1,2,* Dmitry V. Fedorov,2 Peter Zahn,2 and Ingrid Mertig2,1
1Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, D-06120 Halle, Germany

2Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, D-06099 Halle, Germany
�Received 8 October 2009; published 7 January 2010�

We present a fully relativistic approach for the first-principles calculation of the spin-relaxation time of
conduction electrons caused by substitutional impurities. It is an extension of our previous nonrelativistic
perturbative approach. The approach is based on a relativistic Korringa-Kohn-Rostoker Green’s function and
band-structure method. As an application, we obtain the spin-flip scattering time for a Cu host with different
types of impurities. It is shown that the perturbative approach fails for impurities lighter than the host atoms,
while the relativistic treatment provides good agreement with conduction-electron spin-resonance experiments
for all considered impurities.

DOI: 10.1103/PhysRevB.81.020403 PACS number�s�: 71.15.Rf, 72.25.Rb, 76.30.�v, 85.75.�d

Spin relaxation becomes an increasingly important prob-
lem because of the progress in spintronics.1–4 Since this pro-
cess is connected with the spin-orbit interaction, an appropri-
ate relativistic treatment is imperative. In particular, the
microscopic understanding of the spin-relaxation anisotropy,
which was found to be as large as 20% in graphene,5 requires
a relativistic treatment.

One of the most important spin-relaxation mechanisms is
the Elliott-Yafet mechanism.6,7 For this case, the spin relax-
ation can be described by a spin-flipping process. It is based
on the fact that in the presence of spin-orbit interaction, the
spin is not anymore a good quantum number and all elec-
tronic states are mixtures of pure “spin-up” and “spin-down”
states. As a consequence, impurities, grain boundaries, inter-
faces, and phonons cause spin-flip scattering processes in
addition to the usual momentum scattering.6–8 Spin-flip scat-
tering can also be initiated by the spin-orbit interaction of
impurities and by the phonon-modulated spin-orbit interac-
tion of the lattice ions.8,9

In our recent paper,10 we have shown that in certain situ-
ations spin-flip scattering caused by impurities can be prop-
erly described using the spin-flip transition matrix calculated
in the Born approximation. The spin-orbit interaction was
taken into account as an additional perturbation at the impu-
rity site only. This approach is valid if spin-orbit interaction
in the host material is negligible in comparison to the spin-
orbit interaction at the impurity site.

In this Rapid Communication we present a fully relativis-
tic treatment of the Elliott-Yafet mechanism based on the
self-consistent solution of the Kohn-Sham-Dirac equation for
the host as well as for the impurity problem. In other words,
we extend our previous method for the calculation of the
spin-flip scattering time10 to the fully relativistic case. The
main point of interest is how to define spin-flip scattering
since the spin is not anymore a conserved quantity. The rela-
tivistic spin operator �̂�� does not commute with the Hamil-
tonian Ĥ�r� of the Kohn-Sham-Dirac equation �we restrict
our consideration to a nonmagnetic system�,

Ĥ�r��n�r� = ��

i
c��̂ · �� r + �̂mc2 + I4V�r���n�r� . �1�

For the solution of Eq. �1�, the relativistic Korringa-Kohn-
Rostoker method11–15 is applied.16 We use spherical poten-

tials in the atomic sphere approximation �ASA�,

V�r� = �
j

Vj��r − R j��, with �r − R j� � RASA
j . �2�

Then the eigenfunctions of Ĥ�r� inside the jth ASA sphere
can be written �for the case of a system with translational
symmetry� in the following form:17

�nk�r + R j� = �
	


a	

n,j�k�� g	

j �r��	
�r̂�
if	

j �r��−	
�r̂�
	 , �3�

where a	

n,j�k� are the expansion coefficients given for each

band n and momentum k and the functions g	
j �r� and f	

j �r�
are the so-called “large” and “small” components, respec-
tively. In addition, �	
�r̂� denotes the relativistic spinor
functions.17,18 The corresponding electron eigenvalues are
Wn�k�=En�k�+mc2, where En�k� can be related to the non-
relativistic energy spectrum. All the wave functions given by
Eq. �3� have a spin-mixed character, and one cannot use the
language of the nonrelativistic treatment with well-defined
spin-up and -down states anymore.

Let us consider the case of a nonmagnetic system with
space-inversion symmetry. For each pair of degenerate
states6 we can apply the transformation described in Ref. 16
to get two new states �nk

+ �r� and �nk
− �r� with the spin polar-

ization along a chosen quantization axis. Let us fix the quan-
tization axis along the z direction. Then the superposition of
the two original states has to fulfill the condition of zero

expectation value for the operators �̂�x and �̂�y. In combi-
nation with the orthonormalization condition the unitary
transformation is defined uniquely at every k point. Then, the
spin polarization is defined as

Pnk = 
�nk
+ ��̂�z��nk

+ � = − 
�nk
− ��̂�z��nk

− � . �4�

In fact, it is a generalization of the procedure used in Ref. 19
to the case of the Dirac bispinor wave functions. Using such
a definition of “+” and “−” states, we can introduce the rela-
tivistic spin-relaxation time T1

k as �k is a shorthand notation
for k and n�
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1

T1
k =

1

�k
+− +

1

�k
−+ = �

k�

�Pkk�
+− + Pkk�

−+ � . �5�

In the equation above, the spin-flip scattering times �k
+− and

�k
−+ are connected with the corresponding transition prob-
abilities Pkk�

+− and Pkk�
−+ . They are calculated by Fermi’s golden

rule. For instance, the microscopic probability for a transi-
tion from a + state k into a − state k� is given by

Pkk�
+− = 2
c0N�Tkk�

+− �2��Ek − Ek�� . �6�

Here and further on we use Rydberg atomic units. The linear
dependence of Pkk�

+− on the number of impurities c0N �where
c0 is the impurity concentration and N is the number of at-
oms in the system� holds for dilute alloys. It is based on the
assumption of noninteracting impurities. The corresponding
spin-flip transition matrix Tkk�

+− has to be calculated from the
change in the potential �V�r� in the disturbed region around
the impurity atom,20,21

Tkk�
+− = �

j
�

�ASA
j

dr �̊k�
−†�r + R j��Vj�r��k

+�r + R j� . �7�

Here, the bispinor functions �̊k�
− and �k

+ are unperturbed and
perturbed wave functions, respectively. The disturbed region,
where charge relaxation is allowed, is restricted in our cal-
culations to a cluster of 55 atoms that corresponds to four
nearest-neighbor shells around the substitutional impurity.
Using Eq. �3�, this expression simplifies to

Tkk�
+− = �

j
�
	



å	

−,j�k�����	

j a	

+,j�k� , �8�

where �	
j is given by

�	
j = �

0

RASA
j

dr r2
g̊	
j��r�g	

j �r� + f̊	
j��r�f	

j �r���Vj�r� . �9�

The averaged value over the Fermi surface is calculated via
1 /T1= 
1 /T1

k�Ek=EF.
21,22

Actually, choosing the quantization axis in other direc-
tions �for instance, along 
111� instead of 
001� direction�
should provide for T1 different results. This effect is caused
by the interaction between the spin and the lattice. Generally,
a detailed analysis of the anisotropy of the spin-relaxation
time with respect to the orientation of the quantization axis is
very desirable. Here, we do not concentrate on this point
since we expect that the effect should be small for a Cu host.

The most important advantage of our relativistic approach
is the consideration of the spin-orbit interaction of the host
material. For comparison a method without this influence is
introduced in addition. As it was discussed in our previous
paper,10 the spin-relaxation time is related to the spin-flip
scattering cross section �sf=�ws /vF2T1c0, where �ws is the
volume of the Wigner-Seitz cell and vF denotes the Fermi
velocity. Within a spherical band approximation, the scatter-
ing cross section can be expressed in terms of differences of
the phase shifts � j for the levels j= l�1 /2 of an
impurity,23,24

�sf =
2

3

4


EF
�
l�0

l�l + 1�
2l + 1

sin2
�l+1/2�EF� − �l−1/2�EF�� . �10�

Here, the relativistic phase shifts at the impurity site are used
but the spin-orbit coupling of the host is neglected.

Table I shows the spin-relaxation time T1 for different
impurities in a Cu host calculated using Eq. �5� as well as
Eq. �10� in comparison to conduction-electron spin-
resonance �CESR� experiments.25 For all impurities we have
a reasonable agreement with experimental data. For the
heavier impurities — Ni, Zn, Ga, Ge, As, and Au — our
previous nonrelativistic perturbative approach10 works also
well. For impurities with a weaker spin-orbit interaction in
comparison to a Cu host �Li and Ti�, the fully relativistic
description is mandatory to describe the spin-relaxation pro-
cess properly. The reason is that in our previous method we
neglected the spin-orbit coupling in the host, which becomes
increasingly important when the impurity atom is lighter in
comparison to the host material. In the present approach, the
spin-orbit coupling of the host as well as of the impurities is
completely taken into account via the relativistic wave func-
tions.

The values of T1 obtained using Eq. �10� mostly repro-
duce the results of the perturbative approach and the experi-
mental situation. However, for Li the spin-relaxation time
calculated from the phase shifts cannot describe the experi-
mental data. This is evident since the phase shifts account for
the spin-orbit coupling at the impurity site only. The atomic
number of Li is small and the spin-orbit coupling is negli-
gible. A spin-flip process is only possible if the incoming
wave function is already a superposition of spin-up and

TABLE I. Spin-relaxation time T1 in bulk Cu with an impurity
concentration of 1 at. %. The experimental results for T1 were de-
rived from the data for the linewidth of the CESR signal �H in
Tables III and IV of Ref. 25. The results of the nonrelativistic ap-
proach are from Ref. 10. All values are given in ps.

CESRa
Perturbative
approachb

Our results �relativistic�
From Eq. �5� From Eq. �10�

Impurity T1 T1 T1 T1
Li 44�10 2.8�107 19 3.2�107

Ti 4.2�0.5 18 2.8 9.1

Ni 2.2�0.2 1.6 3.2 3.9

Zn 64�9 49 31 41

Ga 30�4 22 16 16

Ge 14�2 10 9.6 7.1

As 8.6�0.7 5.7 5.4 4.6

Au 0.62�0.21 0.56 0.47 0.38

aReference 25.
bReference 10.
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-down states. A relatively light impurity, like Li, acts just asa
momentum scattering center. The spin relaxation is only pro-
vided by the mixed spin character of the Bloch wave
function.6

This can be seen from the structure of the transition ma-
trix in Eq. �7�. The perturbation is just given by the differ-
ence of the potential. The action of spin-orbit coupling is
hidden in the superposition of spin states of the unperturbed
and perturbed wave functions. If the impurity atom is quite
light, the spin mixing of the perturbed and unperturbed wave
functions is comparable and determined by the spin-orbit
coupling of the host material.

It is obvious for Li. For Ti in Cu we have an intermediate
situation where both atoms have comparable spin-orbit cou-
pling strengths. In such a case, both contributions, from the
host and the impurity site, are important. For all other con-
sidered elements the spin-orbit interaction of the impurity
atom dominates the relaxation process. It is evident from a
comparison to the results calculated using Eq. �10�.

Another way of visualizing the influence of unperturbed
and perturbed wave functions is to discuss the anisotropic
distribution of T1

k over the Fermi surface shown in Fig. 1. As
mentioned in Ref. 10, Ga is mainly a p scatterer, and Ni is
mainly a d scatterer. Here, Li is comparable to Zn, which is
mainly an s scatterer.10 This can be seen from the left column
of Fig. 1, where the momentum relaxation time is shown.
The largest �k values are obtained for states k where the
corresponding s, p, or d angular momentum character of the
host wave function is small.10,26

The right-hand side of Fig. 1 shows the spin-relaxation
time T1

k. General features of the distributions over the Fermi
surface are similar for all impurities considered, although the
absolute values differ substantially. This result is different
from the one obtained by the treatment of the spin-orbit cou-
pling as a perturbation at the impurity site only.10 Under the
previous approximation, Zn �s scatterer� and Ga �p scatterer�
had similar distributions over the Fermi surface, but Ni �d
scatterer� behaved completely different. This was due to the
fact that s electrons are not affected by the spin-orbit inter-
action and for both, Zn and Ga, impurities only p electrons
were scattered. The distributions of T1

k were only determined
by the orbital character of the electrons in a Cu host and the
impurity atom.10 Here, we have taken into account the spin-
mixed character of the unperturbed wave functions, which
is visible in the distribution of the spin-relaxation time.
The purple regions with small values of the spin-relaxation
time mean strong scattering and coincide with regions of
strong spin mixing in Cu.16 The green, yellow, and
red regions are related to the wave functions with small
spin mixing and correspondingly weak spin-flip scatter-
ing.

In addition, the angular momentum character of the wave
functions in a Cu host is important to understand the red
regions in the distributions of the spin-relaxation time. For
Ga and Li, which are p scatterers, since s states do not con-
tribute to the spin relaxation, the red areas are related to the
minimal p character of the electronic states in Cu.10,26 For Ni
impurities the red circles are due to small d character of the
electronic states in the host.

In summary, we present a fully relativistic ab initio ap-

proach for investigations of the spin relaxation caused by
substitutional defects. The results obtained for a Cu host are
in good agreement with CESR experiments. In particular,
they demonstrate that a fully relativistic treatment is needed
for a proper description of spin-flip scattering caused by light
impurities with a weak spin-orbit interaction in comparison
to the host. We discuss the different contributions of unper-
turbed and perturbed wave functions to the spin-relaxation
time for light as well as heavy impurities. For defects such as
Ni, Au, and Zn, the spin-orbit coupling in a Cu host could be
neglected, but for Li it is essential to describe the situation
properly. In addition, we discuss the anisotropic distribution
of the scattering times over the Fermi surface of Cu. We

FIG. 1. �Color� Anisotropic �k=2�1 /�k
+++1 /�k

−−�−1 �left� and T1
k

�right� on the Fermi surface of Cu for �a� Li, �b� Ni, and �c� Ga
impurities with a defect concentration of 1 at. %. All results are
given in fs.
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show that all main features can be explained by the orbital
and the spin-mixing characters of the wave functions in a Cu
host in combination with the orbital angular momentum
character of the impurity atom. The method presented in this
Rapid Communication can be applied for a theoretical study
of the Elliott-Yafet spin-relaxation mechanism caused by

impurities in all nonmagnetic materials with space-inversion
symmetry.

This work was supported by the Deutsche Forschungsge-
meinschaft �SFB 762� and the International Max Planck Re-
search School for Science and Technology.
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We present an ab initio description of the spin Hall effect in metals. Our approach is based on density

functional theory in the framework of a fully relativistic Korringa-Kohn-Rostoker method and the solution

of a linearized Boltzmann equation including the scattering-in term (vertex corrections). The skew

scattering mechanism at substitutional impurities is considered. Spin-orbit coupling in the host as well

as at the impurity atom and the influence of spin-flip processes are fully taken into account. A sign change

of the spin Hall effect in Cu and Au hosts is obtained as a function of the impurity atom, and even light

elements like Li can cause a strong effect. It is shown that the gigantic spin Hall effect in Au can be caused

by skew scattering at C and N impurities which are typical contaminations in a vacuum chamber.
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During recent years the spin Hall effect (SHE) has
attracted a lot of interest caused by its potential to generate
spin currents in nonmagnetic materials. It would allow for
spintronic devices without the problem of spin injection
from a ferromagnet into a nonmagnet. Besides this tech-
nological aspect, the microscopic understanding of the
effect is of great interest, since it has the same origin as
the anomalous Hall effect (AHE). A proper description of
the SHE provides the possibility of an extension of the
method to magnetic materials and a treatment of the
anomalous Hall effect.

After the first proposal of skew scattering [1,2] and the
following detailed discussion of the extrinsic SHE by
Dyakonov and Perel [3], a possible experimental setup
was suggested by Hirsch [4]. Several mechanisms were
found to contribute to the SHE and AHE [5–12]. These
were the intrinsic contribution described by the Berry
curvature [5,11], and the extrinsic contribution where the
side jump mechanism [8,9] and skew scattering [6,7] at
defects can be distinguished [10,12]. The intrinsic part of
the SHE was already calculated for metallic systems by
ab initio methods [13]. Whereas the extrinsic part, in
particular the skew scattering, will be the subject of this
Letter.

The SHE was first demonstrated optically in semicon-
ductors [14], and only later were electrical measurements
on metallic devices [15–17] performed. These experiments
on Al, Cu, Pt, and Au provide a variety of results which can
only partly be explained by the intrinsic mechanism
[13,18]. Unfortunately, no reliable information is available
about defects in the samples under consideration, which
makes a comparison between experiment and theory
difficult.

Here the extrinsic mechanism caused by the skew scat-
tering at substitutional impurities is considered. Our cal-
culations give an insight into the microscopic mechanism
and we propose another explanation for the gigantic SHE

observed in Au [17], besides a Kondo resonance at Fe
impurities [18].
In the first part of the Letter we introduce the approach

based on the Korringa-Kohn-Rostoker method and the
solution of the linearized Boltzmann equation. Our main
focus is the Boltzmann equation since the band structure
calculation was mainly described in Refs. [19,20].
Afterwards, first results of the approach are discussed.
For the description of the transport properties we choose

the Boltzmann equation which is well suited to describe
dilute alloys and allows for separation of the different
microscopic mechanisms contributing to the Hall current.
The nonequilibrium distribution function fnðkÞ ¼
fn0ðkÞ þ gnðkÞ of the considered system is separated into

the equilibrium function fn0 ðkÞ and gnðkÞ the responser of
the system to the perturbation. These functions depend on
the crystal momentum k and the band index n. According
to Kohn and Luttinger [21,22], the Boltzmann equation for
a homogeneous system

_k nrkfn0ðkÞ ¼
X
k0n0
½Pn0n

k0kg
n0 ðk0Þ � Pnn0

kk0g
nðkÞ� (1)

is given by the force term (l.h.s.) and the collision term
(r.h.s.). A crucial point for the skew scattering mechanism
is the fact that in the presence of spin-orbit interaction the
microscopic reversibility is not any more valid for the

scattering probability (Pnn0
kk0 � Pn0n

k0k), although the systems

under consideration are space-inversion invariant (Pnn0
kk0 ¼

Pnn0
�k;�k0) [2]. The electrons are driven by an applied elec-

tric field _kn ¼ �eE (e > 0) and the system is forced to a
steady state by the collision term. This term is calculated in
the dilute limit of impurity concentrations (c0N—number
of impurities) from Fermi‘s golden rule [20,23]

Pnn0
kk0 ¼

2�

@
c0NjTnn0

kk0 j2�ðEn
k � En0

k0 Þ: (2)
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The transition matrix in the atomic sphere approximation is
given by [20]

Tnn0
kk0 ¼

X
j

Z
�j

ASA

dr�
� n0y
k0 ðrþ RjÞ�VjðrÞ�n

kðrþ RjÞ: (3)

It describes the scattering of Bloch waves (four compo-
nent spinors) with spin-mixed character resulting from
the relativistic treatment of the ideal and perturbed system
at a potential perturbation �VjðrÞ. Here j runs over all

atoms of the impurity cluster. The impurity problem for
the potential and the perturbed wave functions �n

kðrÞ is
solved self-consistently on a real space cluster of 55 atoms
via Dyson and Lippman-Schwinger equations starting
from the unperturbed ideal crystal with the Bloch states

�
� n
kðrÞ [23].
Under the approximation of a weak electric field and the

knowledge of a Fermi-Dirac distribution in equilibrium,
the linearized Boltzmann equation

� nðkÞ ¼ �nk

�
vnk þ

X
k0n0

Pn0n
k0k�

n0 ðk0Þ
�

(4)

is obtained. Here the unknown quantity is the mean free
path �nðkÞ determined by the relaxation time

ð�nkÞ�1 ¼X
k0n0

Pnn0
kk0 ; (5)

the group velocity

v n
k ¼

1

@

@En
k

@k
; (6)

and the scattering-in term
P
k0n0P

n0n
k0k�

n0 ðk0Þ [24,25]. The
linearized Boltzmann equation is an integral equation and
can be solved iteratively [23,25,26]. In the low temperature
limit the conductivity tensor is given by a Fermi surface
integral [23]

� ¼ e2

@

X
n

1

ð2�Þ3
ZZ

Ek¼EF

dSn
jvnkj

vnk ��nðkÞ: (7)

For the spin conductivity �s, the spin polarization, defined
as the expectation value of the spin operator for the states
�nk on the Fermi surface

snz ðkÞ ¼ h�nkj�̂�zj�nki; (8)

has to be included

� s ¼ e2

@

X
n

1

ð2�Þ3
ZZ

Ek¼EF

dSn
jvnkj

snz ðkÞvnk ��nðkÞ: (9)

The conductivities (� and �s) include the vertex correc-
tions in the dilute limit [27] due to the scattering-in term in
Eq. (4). For degenerate bands in a nonmagnetic system
with space-inversion symmetry, the procedure introduced

in Ref. [19] is applied to put the quantization axis along the
z direction for each k point. This is necessary to simulate a
tiny external magnetic field or ferromagnetic leads to align
the electron spins. Following Ref. [19], we denote the wave
functions with a positive spin expectation value as�þ and
with a negative one as �� states, respectively.
The quantum mechanical properties of the system, i.e.,

the result of the ab initio calculation, enter the conductivity
evaluation threefold. First, the topology of the Fermi sur-
face determines the states contributing to the conductivity.
Second, their Fermi velocities vnk, defined by Eq. (6), are
taken into account. Finally, the collision term in the
Boltzmann equation is calculated from the unperturbed

�
� n
kðrÞ and the perturbed�n

kðrÞ wave functions of a system
with substitutional impurities.
From Fermi‘s golden rule [Eq. (2)] it follows immedi-

ately that, in the dilute limit, the conductivity scales in-
versely with the number of impurities c0N. Consequently
the ratio of spin Hall conductivity �s

yx and charge conduc-

tivity �xx is independent on the impurity concentration c0.
This ratio

� ¼ �s
yx

�xx

(10)

is called the Hall angle [16–18].
All calculations presented below are performed with a

k-point mesh larger than 2000 points on a piece of the
Fermi surface which lies in the irreducible part of the
Brillouin zone. The angular momentum cutoff of lmax ¼
3 is used. A convergence test for these parameters, as well
as for the size of the perturbed cluster (55 atoms), turned
out that the relative errors of the Hall angle are smaller
than 2%.

FIG. 1 (color online). The Hall angle � for different substitu-
tional impurities in a Cu host. The number in parentheses gives
the core charge connected with the spin-orbit coupling strength
at the impurity site.
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As the first result, in Fig. 1 the Hall angle � is presented
for different substitutional impurities in a Cu host. Without
going into details three conclusions can be drawn. First, the
very light element Li, which provides nearly no spin-orbit
coupling at the impurity site, produces a larger effect than
the much heavier element Ag. Second, sign changes of the
SHE can occur for some impurities. Finally, the influence
of the spin-flip scattering is almost negligible for all
impurities.

The presence of a strong extrinsic SHE caused by light
impurities is the consequence of the size of the transition
matrix elements in Eq. (3). Important for a strong scatter-
ing from state k into k0 is a large potential difference
�VjðrÞ. The spin-orbit coupling is contained in the wave

functions already and provided by the host material.
Although the spin-orbit interaction caused by Ag is much
stronger, the small potential change induced by this iso-
electronic element in Cu prevents a sizeable SHE. The
mechanism is similar to the effect of the strong spin-flip
scattering at light impurities explained in Ref. [20].

The sign change caused by Mg and Zn impurities is
more subtle and needs a closer look into the microscopic
scattering process included in the Boltzmann equation. As
introduced above, the states are separated in �þ and ��
states by the orientation of their spin polarization along the
z axis. The skew scattering process, which is considered
here, leads to different scattering amplitudes for these
states [6,7,10]. Assuming the incoming state to propagate
along the x direction gives an outgoing wave function
scattered mainly to the left (þy) or right (�y) depending
on the spin state of the wave function. In Fig. 2 the micro-
scopic scattering probabilities for a given state k are shown
as a function of the final states k0 on the Fermi surface of
Cu. To visualize the effect of skew scattering, which is
usually much weaker than the momentum scattering, the
difference (Pþþkk0 � P��kk0 ) between the probabilities for�

þ

and �� states is shown. The spin-conserving scattering is
considered only. The clear asymmetry between the two
spin channels is the origin of the spin current and the
spatial spin separation, i.e., of the SHE. In addition, the
spin separation processes for Zn [Fig. 2(a)] and Li impu-
rities [Fig. 2(b)] are opposite and cause the different sign of
the SHE (Fig. 1).

This analysis considers incoming electrons in the x
direction only, the spin separation caused by the skew
scattering depends strongly on the wave vector k. For the
evaluation of the conductivity tensor, all directions of
incoming states have to be considered.

Furthermore, we present the SHE for different impuri-
ties in a Au host. The idea is to check if the gigantic SHE of
�� 0:1 measured by Seki et al. [17] can be understood in
the framework of our approach. As discussed already
above, there are several requirements to create a system
that exhibits a large SHE. First, a host has to provide
significantly spin-mixed Bloch functions. Second, either

the spin-orbit coupling at the impurity site should be strong
or the perturbation of the potential has to be large.
Consequently, the heavy impurities Ag and Pt are calcu-
lated in a Au host. In addition, the light atoms Li, C, and N
are considered. The results for � in Au, summarized in
Fig. 3, show a very counterintuitive picture. Heavy impu-
rities like Pt and Ag cannot explain the large effect, but
typical contaminations in a standard vacuum chamber, like
C and N, cause a gigantic Hall angle. This result is not in
contradiction to the already proposed mechanism originat-
ing from a Kondo resonance at Fe impurities, since we are
not able to judge which explanation is relevant for the
samples investigated in Ref. [17]. Whether the Kondo
resonance or the scattering at light impurities causes the
gigantic spin Hall effect has to be proven experimentally.
In the last part, two important aspects of our calculations

are elucidated. Namely, we show how the spin relaxation is
included in our calculations. In addition, the importance of
the scattering-in term will be discussed. In Cu and Au hosts
only two bands are present at the Fermi level with�þ

k and
��k degenerate states, according to the spin orientation
along the z axis [19]. As a sum over all bands in Eq. (4),
we obtain the following expression

�þðkÞ ¼ �þk
�
vþk þ

X
k0
fPþþk0k�þðk0Þ þ P�þk0k�

�ðk0Þg
�

(11)

with spin-conserving contributions Pþþk0k�
þðk0Þ and spin-

flip contributions P�þk0k�
�ðk0Þ. It turns out that the influ-

ence of the spin-flip processes is of minor importance and
qualitatively similar results are obtained neglecting the
spin-flip contribution (see Figs. 1 and 3).
We show the importance of the scattering-in term using

�s in the anisotropic relaxation time approximation. This
means that the mean free path of Eq. (4) is taken without

FIG. 2 (color). The skew scattering for (a) Zn and (b) Li
impurities in a Cu host. The distribution of (Pþþkk0 � P��kk0 ) is

shown (in arbitrary units) for states k0 at the Fermi level, where
the incoming momentum k points in the [100] direction. The
spin polarization for all wave functions is aligned in [001] for
�þ states and in the ½00�1� direction for �� states, respectively.
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the scattering-in term: �n
ð0ÞðkÞ ¼ �nkv

n
k. Inserting this into

Eq. (9) and taking into account that the spins point along
the z direction with sþz ðkÞ ¼ �s�z ðkÞ ¼ jszðkÞj, the fol-
lowing expression for the spin conductivity is obtained

�sð0Þ
xy ¼ e2

@

1

ð2�Þ3
ZZ dS

jvkj jszðkÞjð�
þ
k � ��k Þvxkvyk: (12)

From Eq. (12) it is obvious that �sð0Þ
xy ¼ �sð0Þ

yx . On the other
hand, since the quantization axis is along the z direction
and the considered crystals are cubic, C4 symmetry is
present meaning x and y axes are equivalent. So, the
symmetry of the system requires an antisymmetric spin

conductivity tensor �sð0Þ
xy ¼ ��sð0Þ

yx . Thus, both conditions

together imply �sð0Þ
xy ¼ 0. It shows that the scattering-in

term (vertex corrections) is mandatory for the description
of the SHE.

In summary, we show that our ab initio calculations in
combination with the solution of the linearized Boltzmann
equation, taking into account the scattering-in term, allow
for a description of the skew scattering mechanism in the
SHE. The importance of a strong potential perturbation at
the impurity site in competition with the strength of the
spin-orbit interaction of the substitutional atom is dis-
cussed. The sign change of the SHE provided by different
impurity atoms in Cu is explained in terms of the micro-
scopic transition probabilities. The extremely large Hall
angle induced by C impurities in a Au host is proposed as a
possible explanation of the gigantic SHE measured in Au.
The theoretical results presented here are obtained in the
dilute limit of the number of impurities neglecting the
intrinsic contribution. For an experimental realization this
would mean concentrations of about 1 at.%.
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We performed ab initio studies to search for materials where a large spin Hall effect caused by skew
scattering is accompanied by a long spin diffusion length. Samples with such properties are promising candi-
dates for all-metallic spintronics devices. Here we consider Cu, Au, and Pt hosts which are typical materials
used in experiments. In particular, we identified light impurities such as C and N in Au and heavy impurities
such as Bi in Cu to meet this criterion. They exhibit a large spin Hall angle ���0.06� and an appropriate spin
diffusion length of about 100 nm. In addition, a pronounced dependence of the spin diffusion length on the
scattering properties of the impurity is found for Cu and Au hosts, in contrast to Pt where much smaller
variations are obtained.
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I. INTRODUCTION

The spin Hall effect �SHE� is a key issue of spintronics
since it allows for the creation of spin currents in nonmag-
netic materials avoiding the problem of spin injection from a
ferromagnet. Several groups1–3 succeeded to measure the ef-
fect electronically in metallic devices. Particularly high val-
ues for the spin Hall angle � of about 0.1 were obtained for
Au wires.3 This angle is defined as the ratio of the spin Hall
conductivity �yx

s to the longitudinal charge conductivity �xx.
Two possible explanations are already proposed for this gi-
gantic SHE in Au—a Kondo resonance at Fe impurities4 and
skew scattering at substitutional C impurities.5 Both theoret-
ical studies elucidate only one aspect of the measurement: is
it possible to create a large spin current? However, for prac-
tical applications of the SHE the spin diffusion length is as
well of crucial importance since it limits the size of a spin
Hall device.
In this paper, we present a theoretical study of the extrin-

sic SHE and the spin diffusion length. Considering the influ-
ence of substitutional impurities in Cu, Au, and Pt hosts, we
identify favorable systems for future spintronics applications.

II. METHOD

The Hall angle is calculated by means of an ab initio
relativistic Korringa-Kohn-Rostoker method in combination
with the solution of a linearized Boltzmann equation.5–9 The
method is valid in the dilute limit of the impurity concentra-
tion c, assuming well separated, noninteracting impurity at-
oms. In this limit the scattering term, included in the Boltz-
mann equation,5 is proportional to the impurity concentration
c. As a consequence, the conductivity tensor � is inversely
proportional to c,

� �
1

c
. �1�

Thus, in the dilute limit the Hall angle is evidently indepen-
dent on the impurity concentration.5 If the scattering prob-
abilities are known for a certain dilute alloy, the momentum
relaxation �, as well as, the spin-flip scattering time �sf can

be derived.9 Both scattering times scale inversely propor-
tional to the impurity concentration and their ratio is inde-
pendent of c. Using both times the spin diffusion length lsf is
obtained according to Valet and Fert.10 In their theory this
quantity

lsf =���sf

6
�2�

is determined by the �momentum� mean-free path �=�vF and
the spin-flip length �sf=�sfvF.

11 Here vF is the Fermi veloc-
ity. In a free-electron model the expression above is equiva-
lent to12,13

lsf =
	

2kF
2�3

2

h

e2
��sf

�
�xx, �3�

including the Fermi wave vector kF. Although both formulas
are based on a free-electron model they are nevertheless
widely used in the literature. The advantage of our approach
is that all parameters of Eq. �3� are calculated from first
principles taking into account the anisotropy of the Fermi
surface and the scattering. In other words, the used kF, �sf,
and � are Fermi-surface averages. Moreover, �xx is obtained
by a full solution of the Boltzmann equation including the
scattering-in term.5

Our main objective is to identify systems of dilute alloys
which exhibit a large spin Hall angle in combination with a
long spin diffusion length. Such materials are highly desir-
able for potential applications of the SHE. In the first part of
the next section we present results for the spin Hall angle, the
longitudinal and the spin Hall conductivity for the consid-
ered hosts with different impurities. Then we discuss the spin
diffusion length and estimate a reasonable impurity concen-
tration for experimental samples.

III. RESULTS

A. Extrinsic spin Hall effect

In Table I the calculated values of the spin Hall angle are
summarized for several dilute alloys. Since the conductivi-
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ties �longitudinal and transverse� are inversely proportional
to the impurity concentration in the dilute limit, � is inde-
pendent of the number of impurities. The conductivities are
given for a fixed concentration of 1 at. %. As it was dis-
cussed already in Ref. 5, C and N impurities in a Au host
provide a very high spin Hall angle. The values are compa-
rable to � found experimentally.3 Smaller values obtained by
other experimental groups14,15 can be explained by the pres-
ence of impurities such as Cu and Ag in Au samples. In
addition, we find a very large spin Hall angle for Bi impuri-
ties in Cu.
The high � values in a Au host with light impurities are a

quite counterintuitive result. Nevertheless, it can be ex-
plained by means of the scattering phase shifts at the impu-
rity site. Such an approach is justified by the topology of the
Fermi surface of Au and Cu,8 which allows to use a spherical
band approximation. To estimate the strength of the SHE, we
can consider the differences of the scattering phase shifts

 j�EF� at the Fermi energy EF for the total angular momenta
j= l�1 /2 �l�0� of an impurity atom and the host atoms.
Moreover, for the considered systems it is sufficient to dis-
cuss just l=1 since scattering of p electrons dominates the
effect. Thus, we can restrict our considerations to the p phase
shift differences �
1/2�EF�=
1/2

imp�EF�−
1/2
host�EF� and

�
3/2�EF�=
3/2
imp�EF�−
3/2

host�EF�. They account for the scatter-
ing strength and for the spin-orbit interaction of the impurity,
as well as, of the host atom. As it is well known, the splitting
of the p1/2 and p3/2 levels is proportional to the spin-orbit
interaction. In the same spirit the difference of �
3/2�EF� and
�
1/2�EF� is a measure of the relevant spin-orbit splitting at
the impurity site including both the spin-orbit interaction of
the host and of the impurity atom. This difference of the p
phase shifts is responsible for the left/right asymmetry of
scattering for s=1 /2 and s=−1 /2 electrons.
Figures 1�a� and 1�b� show �
3/2�EF� and �
1/2�EF� for

Cu and Au hosts, respectively. It turns out that the differ-
ences of the scattering phase shifts �
3/2�EF�−�
1/2�EF� in
Au are particularly large for light impurities. In combination
with a strong scattering indicated by large absolute values of
�
1/2�EF� and �
3/2�EF�, a large spin Hall conductivity is

expected. From this perspective, C and N in Au as well as Bi
in Cu are the best candidates for a large extrinsic SHE. They
are strong p scatterers with large differences of spin-orbit
interaction between host and impurity atoms. The other con-
sidered impurities are mainly s or d �for example, Pt� scat-
terers which leads to small phase shifts in the l=1 channel.
The picture is confirmed by C and N impurities in Cu. Al-

TABLE I. The spin Hall angle � as a function of the impurity atom for Cu, Au, and Pt hosts. In addition, the longitudinal charge
conductivity �xx and the transversal spin Hall conductivity �yx

s are shown at an impurity concentration of 1 at. %.

Cu Au Pt

�
10−3

�xx

�
� cm�−1
�yx
s

�103 
� cm�−1
�
10−3

�xx

�
� cm�−1
�yx
s

�103 
� cm�−1
�
10−3

�xx

�
� cm�−1
�yx
s

�103 
� cm�−1

Li 2.3 1.22 2.8 7.2 0.60 4.3 −2.3 0.29 −0.65

C 6.6 0.16 1.0 96.0 0.12 12.0 −2.8 0.26 −0.73

N 7.0 0.11 0.75 64.0 0.08 5.3 11.0 0.19 2.2

Mg −1.5 1.57 −2.3 −8.2 0.67 −5.5 −3.8 0.29 −1.1

Cu −0.44 2.96 −1.3 −5.2 0.42 −2.2

Ag 0.26 30.2 7.9 4.8 3.47 17.0 −2.7 0.48 −1.3

Pt 27.0 0.51 13.6 10.0 0.93 9.0

Au 7.8 2.37 18.5 −1.1 0.83 −0.94

Bi 81.0 0.22 18.1 14.0 0.13 1.9 −1.2 0.25 −0.29

FIG. 1. �Color online� The differences between the scattering
phase shifts of an impurity and the host atom for the levels j
= l�1 /2 with l=1 �a� Cu host and �b� Au host. As insets the phase
shifts of the impurity atoms only are shown.
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though they are as well strong p scatterers, the SHE is com-
parable small since the spin-orbit interaction is negligible for
these impurities and for the Cu host. Only heavy p scatterers
such as Bi can produce a large � in Cu because of the strong
spin-orbit interaction of Bi with respect to Cu. However, the
Hall angle for Bi impurities in Au is smaller since the spin-
orbit interaction of Bi and Au compensate each other partly.
The difference of the phase shifts of Au and Bi atoms, the
effective splitting ��
3/2�EF�−�
1/2�EF�� is smaller in Au
than in Cu �compare Figs. 1�a� and 1�b��.
To highlight the different nature of the large SHE in Cu

with Bi impurities and in Au with C and N impurities, we
present as insets of Fig. 1 the phase shifts 
1/2

imp�EF� and

3/2
imp�EF� of the impurity atoms in the considered hosts. Here
the phase shift differences between the p1/2 and p3/2 levels
are a measure of the spin-orbit coupling strength of the im-
purity atoms, only. The light elements, such as C and N,
show negligible spin-orbit coupling while for Pt, Au, and Bi
the difference between the p1/2 and p3/2 level is clearly vis-
ible. With that knowledge the origin of the large SHE in the
Cu�Bi� alloy can clearly be attributed to the spin-orbit cou-
pling induced by Bi impurities. Whereas, for C and N in a Au
host, the spin-orbit coupling at the Au atoms is responsible
for the large SHE.
The strong variation in � by 2 orders of magnitude as a

function of the impurity atom in Cu and Au is attributed to
the relatively weak spin-orbit interaction of the hosts. In con-
trast, the dominant spin-orbit interaction of Pt suppresses the
impurity-specific variations. It results in Hall angles which
differ by 1 order of magnitude only. In the Pt-based alloys
the effect is mainly provided by the host wave functions
showing a much stronger spin-mixed character.8 The spheri-
cal band approximation is not valid for Pt because of its
complicated Fermi surface8 with mainly d character of the
wave functions at the Fermi level. Therefore, such a simple
analysis as it was performed above for Au and Cu is impos-
sible for Pt.
To summarize, C and N impurities in Au and Bi impuri-

ties in Cu are promising candidates for spintronics applica-
tions. However, the preparation of well-defined concentra-
tions of C and N atoms in Au can be rather difficult. In this
respect, the dilute Cu�Bi� alloy is preferable since it is known
to exist. In addition, a Pt host with N impurities would be as
well of interest since we predict a reasonable high spin Hall
angle.
An important point to note is that the strength of the SHE

in Cu- and Pt-based alloys is of comparable order. Of course,
here we neglect the intrinsic SHE which should be much
stronger for Pt than for Cu since for Pt several bands cross
the Fermi level in contrast to Cu �and Au� with only one
band.8,16 Nevertheless, our calculated extrinsic spin Hall con-
ductivities are of comparable magnitude to the intrinsic
contribution.16 Therefore, the latter one cannot drastically
change � in Pt at low impurity concentrations. Thus, Cu
based alloys are equally suited to measure the SHE as Pt
based alloys.

B. Spin diffusion length

Now the question arises if it is possible to measure the
obtained Hall angles in a real experiment where the system

size is limited by the spin diffusion length. Equation �3�
shows that for a given host material, with a fixed longitudinal
conductivity, the ratio of the spin-flip scattering time and the
momentum relaxation time determines lsf. Figure 2 summa-
rizes this ratio which is, in the used approximation of dilute
alloys, independent on the impurity concentration. For Pt a
very weak influence of the impurity character is found. It is
different for Cu where the ratio changes over several orders
of magnitude. For Au the character of the impurity atom
influences the ratio by only 1 order of magnitude. This can
be explained by the relatively weak spin mixing of the Au
electron states in comparison to the strong mixing induced in
Pt.8 For a Cu host the spin-orbit coupling is weak and the
main contribution arises from the spin-orbit coupling of the
impurity atom. In contrast, the spin-orbit interaction in the Pt
based alloys is essentially provided by the host.

C. SHE vs spin diffusion length

For the calculation of the spin diffusion length the longi-
tudinal charge conductivity has to be considered as well.
However, the conductivity is, in the dilute limit, inversely
proportional to the impurity concentration which is not
known in experiments. For this purpose the impurity concen-
tration was deduced from experimental data for �xx pub-
lished in relation to the SHE and the spin diffusion
length.14,17,18 We estimated the concentration cexp of a spe-
cific impurity by assuming that only one type of impurity
atom exists in the sample,

cexp =
�xx
calc

�xx
exp c0. �4�

Based on these concentrations, a spin diffusion length
lsf�cexp� for experimental setups is obtained and summarized
in Table II.
For all considered impurities in Pt the value of lsf is nearly

the same of about 7 nm, which is in reasonable agreement
with experimentally found values in the range of 7–14
nm.18,19 For a Au host moderate variations with respect to
impurities occur between 42 and 120 nm, which is also in

FIG. 2. �Color online� The ratio of the spin-flip scattering time
�sf and the momentum relaxation time � for different impurity at-
oms in Cu, Au, and Pt hosts.
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good agreement with experimentally found values of lsf
=35–100 nm.3,20–24 The spin diffusion length in Cu varies
between 44 nm for Au and 910 nm for N impurities. Experi-
mentally reported values are in the range of 200–1000
nm.2,17,21,23–25 Interestingly, the systems with the highest � in
Au �C and N impurities� have also the longest lsf which is
provided by relatively small longitudinal conductivities.
These impurities induce large potential changes which lead
to a high resistivity already at low concentrations. The same
holds for Bi impurities in Cu and Au lattices. The measured
conductivity is reproduced with a small concentration of
about 0.3 at. %. At such low concentrations the spin diffu-
sion length is reasonably long �lsf	100 nm� for experimen-
tal requirements.
Combining the results for the spin Hall conductivity and

the estimation of the spin diffusion length, the systems with
N and C impurities in Au are good candidates for spintronics
applications. In addition, Bi impurities in Cu provide both, a
long spin diffusion length and a large spin Hall angle. On the
other hand, there is no advantage to use Pt instead of Cu as a
host material for spin Hall measurements. The spin diffusion
length lsf in Cu is more than one order of magnitude larger
than in Pt which implies that Cu should be used instead of Pt.

IV. CONCLUSION

We have investigated the influence of several substitu-
tional defects in Cu, Au, and Pt bulk crystals on the spin Hall
angle and the spin diffusion length. It is shown that tailoring
these quantities is possible for a light hosts such as Cu.
Whereas, the role of impurities is minor for materials with
strong intrinsic spin-orbit interaction like Pt. C and N impu-
rities in a Au host and Bi impurities in a Cu host are identi-
fied as best candidates for all-metallic spin-current genera-
tion. At impurity concentrations feasible in experiment they
show a spin Hall angle of 0.096, 0.064, and 0.081 combined
with a spin diffusion length of 101 nm, 124 nm, and 120 nm,
respectively. In addition, we find that Cu is a more attractive
host material in comparison to Pt for the analysis of the skew
scattering contribution to the SHE since Cu exhibits an ex-
trinsic SHE comparable to Pt-based alloys and has at the
same time a much longer spin diffusion length.
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SUMMARY

Chapter 4

Summary

With this work I presented an ab initio description of two effects driven by the spin-
orbit coupling. The first one is the Elliott-Yafet spin relaxation mechanism and the
second one is the extrinsic spin Hall effect. Both of them are induced by spin-orbit
scattering of conduction electrons at impurities. Using a relativistic Korringa-Kohn-
Rostoker method it is possible to treat the host as well as the impurity atoms taking
into account spin-orbit interaction by means of a solution of the Dirac equation, which
is essential to describe the effects properly. For the relaxation mechanism I calculated
the microscopic transition probabilities which are the origin of the spin relaxation and
the spin Hall effect. For the electronic and the spin transport I solved the linearized
Boltzmann equation including the scattering-in term (vertex correction), which turns
out to be mandatory for a description of the skew scattering mechanism.
I showed, that taking the spin-orbit coupling of the host into account allows for a
proper description of conduction electron spin resonance experiments even for light
impurities with vanishing spin-orbit interaction. The agreement between the calculated
and measured spin relaxation times is convincing.
Concerning the spin Hall effect, I identified two possibilities to create a large spin Hall
angle. Since the difference of the spin-orbit coupling between host and impurity atom
is shown to be the most important quantity, systems consisting of a heavy host with
light impurities or vice versa are of interest. With light elements such, as C or N, I gave
an alternative explanation for the gigantic spin Hall effect measured in Au. However, a
Cu host with Bi impurities yields a comparable large Hall angle. Small Hall angles can
be obtained for many other impurity atoms, which explains the wide range of measured
Hall angles in Au.
Having access to the spin state and the total angular momentum decomposition of the
wavefunctions on the Fermi surface allows for a clear understanding of the microscopic
origin of the Elliott-Yafet mechanism as well as the spin Hall effect. The scattering
probabilities give a clear picture of the skew scattering mechanism responsible for the
extrinsic spin Hall effect.
From the spin relaxation time it is possible to calculate the spin diffusion length which
is in good agreement to the measured ones. Whereas for Cu and Au hosts the spin
diffusion length strongly depends on the impurity atom, this is not the case for Pt.
Combining the spin relaxation and the conductivity calculations makes it possible to
identify three attractive systems for possible future spintronics applications. They are
Au(N), Au(C), and Cu(Bi) dilute alloys which show a large spin Hall angle with a
reasonably long spin diffusion length of the order of 100 nm.
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APPENDIX A

Appendix A

Dependence of ρyx on ρxx in the
dilute limit

To find an expression for the Hall resistivity in terms of the longitudinal conductivity
we need the connection between the resistivity and the conductivity tensor for a crystal
with cubic symmetry

ρ = σ−1 =




σxx σH 0
−σH σyy 0

0 0 σzz



−1

. (A.1)

Inverting the conductivity yields

ρ =




σxx

σ2
xx+σ2

H
− σH

σ2
xx+σ2

H
0

σH

σ2
xx+σ2

H

σxx

σ2
xx+σ2

H
0

0 0 1
σzz


 . (A.2)

In chapters 1.3 and 2.4 it was discussed that the longitudinal conductivity is inversely
proportional to the impurity concentration

σxx ∝ c−1 (A.3)

whereas, the Hall conductivity

σH = σintr
H + σss

H + σsj
H (A.4)

shows different dependencies on the impurity concentration in the dilute limit for the
three distinct mechanisms

σintr
H ∝ c0, σss

H ∝ c−1, and σsj
H ∝ c0 . (A.5)

Inserting this into Eq. (A.2) for the different mechanisms separately gives

ρss ∝



c −c 0
c c 0
0 0 c


 (A.6)

for the skew scattering contribution, and

ρintr/sj ∝



c/2 − c2

1+c2
0

c2

1+c2
c/2 0

0 0 c


 ≈




c/2 −c2 0
c2 c/2 0
0 0 c


 (A.7)
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for the intrinsic and the side-jump mechanism. Consequently, the dependence of the
Hall resistivity on the longitudinal conductivity is linear for the skew scattering mech-
anism

ρss
H ∝ ρxx (A.8)

and quadratic for the other two contributions

ρintr
H ∝ ρ2

xx (A.9)

and
ρsj

H ∝ ρ2
xx . (A.10)

The additional quadratic term for the skew scattering mechanism found by Crepieux
and Bruno [41] is caused by higher orders in the concentration dependence of the
longitudinal conductivity σxx which is already beyond the dilute limit regime.
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Appendix B

Numerical parameters within the
KKR method

The presented results were checked for convergence with respect to several numerical
parameters within the used KKR method. Those are for example the:

• k mesh for the Green function of the periodic system

• k mesh for the Fermi surface integration

• cluster size of the perturbed cluster

• cluster size of the screening cluster

• imaginary part of the energy for the evaluation of the perturbed Green function
at the Fermi level

I present here some of the convergence tests and list the typically used parameters
for the discussed results. For all test calculations presented in the this chapter Ga
impurities in a Cu host were used.

B.1 Periodic host system

Self-consistent calculation

Since the self-consistent bulk calculations are well established for many years, I skip
any convergence tests for this part. Only the most prominent parameters are collected
in Table B.1.

Table B.1: A collection of the numerical parameters typically used for the self-consistent
calculation of the periodic host system

k-mesh screening cluster imaginary part of the energy

64x64x64 141 sites 108 meV
(eight nearest neighbor shells)
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Determination of the Fermi surface, the wavefunctions, and the
Fermi velocity of the periodic host system

Table B.2: A collection of the numerical parameters typically used for the evaluation
of the Fermi surface properties in the irreducible part of the Brillouin zone

screening imaginary part ∆E for the numerical k-points
cluster of the energy energy derivative

249 sites 0.0 eV 13.6 µeV ≈ 40000
(twelve nearest
neighbor shells)

B.2 Self-consistent impurity problem

For the impurity problem the Green function of the host system is needed (see Sec.
2.1.5). The numerical parameters are equivalent to the self-consistent host calculation
in Sec. B.1. The only further parameter is the size of the perturbed cluster with 55
atoms. I checked the convergence of the spin Hall angle α and the ratio of the spin-
flip scattering τsf and momentum relaxation times τ with respect to the size of the
perturbed cluster (Fig. B.1). It is obvious that 55 atoms is large enough.
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Figure B.1: The convergence test for τsf/τ and α with respect to the perturbed cluster
in the impurity calculation.
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B.3 Transport calculation

The implementation to calculate the scattering term using the relativistic band struc-
ture and wavefunctions of the system was a main part of the thesis. Here, I present
convergence tests for the spin Hall angle and the ratio of the spin-flip scattering and
momentum relaxation times with respect to several numerical parameters. It is sepa-
rated in two parts. The first one contains parameters for the calculation of the impurity
Green function and the second part the numerics for the Fermi surface averages.

Calculation of the Green function of the impurity system

Table B.3: A collection of the numerical parameters typically used for the calculation
of the Green function of the host system for the transport calculation

screening imaginary part k-points
cluster of the energy

249 sites 5.4 meV 400x400x400
(twelve nearest neighbor shells)

For a calculation of the Green function of the impurity system the Green function
of the host system has to be known. The two important numerical parameters are
the imaginary part of the energy and the number of k points. In principle, the Green
function with vanishing imaginary part of the energy is needed. However, in this case
a numerical integration is impossible due to the poles caused by the states of the host
system. The number of k points would be infinitely large. In reality a compromise
between the number of k points and the imaginary part of the energy must be found.
The typically used parameters are summarized in Tab. B.3. It turned out that the
actual calculated numbers are quite robust against the parameters. Especially an
increase of the size of the screening cluster has nearly no influence. The number of k
points is already more crucial for small imaginary parts of the energy. Using 5.4 meV
as imaginary part, the influence of the number of k points on the calculated values is
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Figure B.2: The convergence test for τsf/τ and α with respect to the k mesh used in
the evaluation of the host Green function for the transport calculation.
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Figure B.3: The convergence test for τsf/τ and α with respect to the imaginary part
of the energy used in the evaluation of the host Green function for the transport
calculation

shown in Fig. B.2. The ratio of the relaxation times is perfectly well converged whereas
for the error of the Hall angle small oscillations of about 2 % are visible. However, this
accuracy is good enough for all discussion of the Hall angles.
A similar result I obtain changing the imaginary part of the energy (see Fig. B.3).
The ratio of the relaxation times is nearly independent of the imaginary part of the
energy and the error is smaller than 0.1 %. For the Hall angle α the influence is more
pronounced. With the exception of the largest imaginary part all deviations are smaller
than 2 % which is good enough for all discussions.

K-mesh for the Fermi surface integration

Here an important quantity, the number of k points used in the Fermi surface integra-
tion, is discussed. For all calculations I used at least 2000 k points in the irreducible
part of the Fermi surface. Figure B.4 turns out that increasing the k points would
change the results only within 1 %.

0 50 100 150 200 250 300 350
-0.10

-0.08

-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

0.08

0.10

number of k points [x100]

 [%
]

re
la

tiv
e 

er
ro

r o
f 

sf
/

0 20 40 60 80 100 120 140 160 180 200
-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

re
la

tiv
e 

er
ro

r o
f 

 
[%

]

 

number of k points [x100]

Figure B.4: The convergence test for τsf/τ and α with respect to the number of k
points used in the Fermi surface integration. The actual number of k points on the full
Fermi surface is larger by the factor of 8 due to the used symmetry operations.
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Appendix C

Fermi velocity for different metals

Here, I will compare the results of the two methods presented in section 2.2.3 for the
calculation of the Fermi velocity. In Fig. C.1 the x component of the Fermi velocity
for three non-magnetic materials is shown. First of all it is obvious that for the here
considered simple Fermi surfaces both methods show a reasonable agreement. That
is the reason why for all calculations presented in this thesis the already implemented
numerical method was used to calculate the Fermi velocity. However comparing both
methods in more detail turns out that for the numerical derivative (Fig. C.1 left
column) the Fermi velocity depends on the orientation of the tetrahedron. This leads
to small jumps going from one tetrahedron to the other. This is especially pronounced
in regions of a strongly bent Fermi surface. For the analytical k derivative (Fig. C.1
right column) this feature vanishes due to the direct evaluation of the Fermi velocity for
a certain k state. The advantage of the analytical k derivative is evident. Whereas for
the numerical method the k mesh must be increased for a strongly bent Fermi surface
to compute the Fermi velocity correctly the new method is much more stable and can
be evaluated on a smaller mesh which saves computing time.
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Figure C.1: Comparison of the velocity calculations with the two method introduced
in section 2.2.3 (left column: numerical k derivative, right column: the analytic k
derivative ). Shown is the x component of the Fermi velocity v (arbitrary units)for the
non-magnetic materials a) Cu, b) Au and c) Pt (the 11th band). For the numerical k
derivative an influence of the orientation of the tetrahedron can be see, especially for
Pt, whereas for the analytical k derivative the orientation of the tetrahedron has no
influence.
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Appendix D

Influence of vertex corrections
(scattering-in term) on the spin
Hall effect

The importance of the scattering-in term for the description of the SHE was discussed
in Sec. 3.4 [E7], but should be highlighted ones more. The scattering-in term in
the Boltzmann equation is given by

∑
k′ν′

P ν′ν
k′kΛ

ν′(k′) and is needed if one goes beyond

the anisotropic relaxation time approximation. Butler [87] showed that this term is
equivalent to the vertex corrections of the Kubo formula in the dilute limit of the
impurity concentration. The interesting point is that the skew scattering part of the
spin Hall effect is purely encoded by the scattering-in term. It follows from the absence
of the spin Hall effect in the anisotropic relaxation time approximation. This fact was
confirmed by out calculations, but one can understand it in a more general way. The
spin Hall conductivity e is given in the anisotropic relaxation time approximation
by [E7]

σs
xy =

e2

h̄

1

(2π)3

∫∫
dS

|vk| |sz(k)| (τ+
k − τ−k )vx

kv
y
k . (D.1)

It follows obviously that σs
xy = σs

yx. On the other hand, the reduced symmetry of the
relativistic description requires, due to the presence of C4 symmetry operations, an
antisymmetric conductivity tensor with σs

xy = −σs
yx. Both conditions imply that the

Hall conductivity is zero in the anisotropic relaxation time approximation. Neglecting
the scattering-in term leads to a zero spin Hall current. It is clear that taking it into
account is mandatory for the description of the spin Hall effect. I remind the reader of
the fact that the scattering-in term is equivalent to the vertex corrections of the Kubo
formalism in the dilute limit of the impurity concentration [87]. Therefore, the vertex
corrections are crucial to describe the skew scattering within the Kubo formalism.
Recently, the group of H. Ebert has solved the Kubo-Streda equation [88] for several
random alloys including the vertex corrections for the antisymmetric part of the con-
ductivity tensor. A comparison of their [89] and my data showed the importance of
the vertex corrections in the dilute limit and identified different extrinsic and intrinsic
contributions to the SHE. It turned out that the linearized Boltzmann equation is valid
up to 10 at. % of the impurity concentration. The agreement for the calculated skew
scattering contribution is very good between the two methods (see Fig. D.1).
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Figure D.1: The spin Hall conductivity caused by the skew scattering contribution for
different dilute alloys (1 at. %). The considered contribution in the Kubo formalism
is extracted using a linear fit for the dependence of σs

yx on σxx in the dilute limit [89].
The inset shows a comparison of the longitudinal charge conductivity σxx for the same
alloys.
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Appendix E

Spin diffusion length in a
free-electron like model

Here, I want to show the equivalence of the two formulas for the spin diffusion length
lsf , Eqs. (2.100) and (2.101) introduced in section 2.3, in a free electron like model.
Let us start with the expression (2.101)

lsf =
π

2k2
F

√
3

2

h

e2

√
τsf

τ
σxx , (E.1)

where the spin diffusion length is expressed by the relaxation times τ and τsf and the
longitudinal conductivity σxx. The task is to find the conductivity for the free electron
like model. In the relaxation time approximation with one band at the Fermi level

σxx = 2
e2

h̄

τ

(2π)3

∫∫

Ek=EF

dS

|vk|(vk,x)
2 , (E.2)

where the velocity, assuming a free electron dispersion, is given by

vk,x =
1

h̄

∂Ek

∂kx

=
h̄kx

m
. (E.3)

The Fermi surface integral for a spherical band (free electrons) simplifies to

σxx =
e2

m

τ

(2π)3

2

3

∫∫

Ek=EF

d2k

k
k2 (E.4)

with k = |k|. The actual integral is
∫∫

Ek=EF

d2k

k
k2 = 4πk3

F , (E.5)

which results in a longitudinal conductivity

σxx =
e2

m

τ

2π2

2

3
k3

F . (E.6)

Inserting this result into Eq. (E.1) yields

lsf =
kF h̄

m

√
τsfτ

6
=

√
τsfτ

6
vF (E.7)

which is equivalent to Eq. (2.100) using the definitions λ = vF τ and λsf = vF τsf .
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APPENDIX F

Appendix F

Relativistic symmetry of a cubic
lattice

Throughout all calculations presented in this work the symmetry of the system was used
to reduce the computational effort. This is just one of the reasons why the symmetry
of a cubic lattice in the presence of spin-orbit coupling is outlined shortly. In addition,
the symmetry gives a nice argument why the SHE vanishes in absence of spin-orbit
coupling.
The systems under consideration (Cu, Au, and Pt) have the fcc cubic lattice with 48
symmetry operations. Including spin-orbit interaction in the Hamiltonian reduces the
symmetry of the system since the Hamiltonian does not commute with all 48 symmetry
operations anymore. If the quantization axis is chosen to be along z, only a symmetry
operation Â which fulfill the condition




0
0
z′


 =

1

det|Â|Â



0
0
z


 =




0
0
z


 (F.1)

is still allowed in the relativistic case. As a consequence only the rotation of 90◦, 180◦,
and 270◦ around the z axis in combination with the inversion are proper symmetry
operations. That reduces the number to 8 symmetry operations. That implies that the
irreducible part is 1/8 of the whole Brillouin zone . This is used for the self-consistent
calculation of the host crystal as well as for the evaluation of the cluster Green function
and the Fermi surface integrals. The reduced symmetry is nicely visualized comparing
the k-dependent momentum relaxation and spin-flip scattering times in the perturba-
tive approach (see Sec. 3.1 [E4]).
The argument that with full non-relativistic symmetry the SHE would vanish is quite
simple and follows from the presence of the additional mirror planes along xz and yz.
With all 48 symmetry operations it follows that the conductivity tensor for each spin
channel σs has to be diagonal. This leads to a zero spin Hall current.
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[41] A. Crèpieux, P. Bruno. Theory of the anomalous Hall effect from the Kubo
formula and the Dirac equation. Phys. Rev. B 64, 014 416 (2001).

[42] N. A. Sinitsyn, Q. Niu, A. H. MacDonald. Coordinate shift in the
semiclassical Boltzmann equation and the anomalous Hall effect. Phys. Rev. B
73, 075 318 (2006).

[43] N. A. Sinitsyn, A. H. MacDonald, T. Jungwirth, V. K. Dugaev,
J. Sinova. Anomalous Hall effect in a two-dimensional Dirac band: The
link between the Kubo-Streda formula and the semiclassical Boltzmann equation
approach. Phys. Rev. B 75, 045 315 (2007).

[44] N. A. Sinitsyn. Semiclassical theories of the anomalous Hall effect. J. Phys.:
Condens. Matter 20, 023 201 (2008).

[45] W. Kohn, J. M. Luttinger. Quantum Theory of Electrical Transport
Phenomena. Phys. Rev. 108, 590 (1957).



108

[46] M. V. Berry. Quantal phase factors accompanying adiabatic changes. Proc. R.
Soc. Lond. A. 392, 45 (1984).

[47] R. Shindou, K. I. Imura. Noncommutative geometry and non-Abelian Berry
phase in the wave-packet dynamics of Bloch electrons. Nuclear Phys. B 720, 399
(2005).

[48] M. Born, R. Oppenheimer. Zur Quantentheorie der Moleküle. Annalen der
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