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1 Introduction

The main topic of this thesis is convex analysis for set-valued functions. The main achievement is
the perception that every important formula from the scalar theory has a set-valued counterpart.
We will prove a set-valued version of the Fenchel-Moreau-Theorem, weak and strong duality, a
set-valued max-formula for the directional derivative and provide a full calculus for the conjugate,
directional derivative and the subdifferential of set-valued functions. The results rely on an
appropriate choice of an lattice ordered subset of the power set of an quasi-ordered linear space
as image space for set-valued functions.

”Closed convex sets in a locally convex topological vector space may be described in a dual
way: they are identical with the intersection of the closed half-spaces which contain them.
... Closed convex functions in a locally convex topological vector space also permit a dual
description...: they are pointwise least upper bounds of the affine functions which do not exceed
them in size. Such a duality permits one to establish a connection between a convex function
and the dual object — the conjugate function.” [59]

”The theorems of convex analysis relate the operations of conjugation... and taking a subd-
ifferential with algebraic, set-theoretic and ordering operations over convex sets and functions.
Other subjects of study include all possible dual relations between... functions and their conju-
gates...” [58]

In the following, we will introduce an approach to set-valued convex analysis which is based
on constructions presented in [23] and in total accordance with the well-known scalar theory as
presented in [62]. There are two fundamental questions arising, when dealing with set-valued
functions mapping one locally convex topological vector space X into the power set P (Z) of
another locally convex topological vector space Z. The first is the question of an appropriate
dual space, the other that of the difference between two sets.

In most approaches known to the author, the dual space has been chosen to be L (X,Z), the
set of linear continuous operators mapping X into Z, compare [7, 48, 49, 57, 60, 63] and others.
Once the dual problem is considered as a set-valued, rather then a vector-valued problem,
a change of image spaces from infimum-oriented to supremum-oriented sets can be observed,
compare [39, 38, 48, 54], which is due to the difference in the formulation of the dual problem.
This is natural, as long as the difference between two sets is defined as the algebraic difference.
Moreover, most frequently additional structural assumptions have to be made on the image
space. One frequently used assumption is that the topological interior of the ordering cone
C ⊆ Z is nonempty, compare [4, 12, 24, 53, 56].

In our approach, we will only assume X and Z to be rich enough to allow the classic
separation theorems inX×Z and, moreover, Z to be quasi ordered by a closed convex cone {0} (
C ( Z. The dual variables will be pairs (x∗, z∗) ∈ X∗ × C∗ \ {0} and by introducing an order
theoretically motivated difference between subsets of Z, we are able to translate virtually every
concept of the scalar theory to the set-valued theory of convex functions, such as conjugate and
biconjugate functions, the directional derivative or the subdifferential. The main contribution of
this thesis is, that we are able to supply a full calculus for the conjugate, directional derivative
and the subdifferential of set-valued functions. Along the way, we are able to prove weak and,
under an additional constrained assumption, strong duality.

One characteristic of the presented results is that each set-valued result has an equivalent
representation through a family of basically scalar results. Notice, however, that we are not
scalarizing the original problem in the ordinary way but rather represent it through a family
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of scalarizations without loss of information on the original problem. The vector-valued situ-
ation can be rediscovered in the results by replacing a vector-valued function by a set-valued
extension. Thus, the presented results generalize known results in vector-valued convex analysis
to more general image spaces. Apart from the various applications of set-valued analysis, such
as in multicriteria-optimization, the author believes that the almost one-to-one correspondence
between the scalar theory and the presented set-valued theory is in itself highly interesting.

The present text focuses on central concepts (conjugate, subdifferential, directional deriva-
tive, tangent and normal cone for epigraphs) for set-valued convex functions and their mutual
relationships (max-formula, biconjugation, subdifferential calculus etc.). This leaves e.g. appli-
cation to set and vector optimization problems for future research. While most of the funda-
mental theorems of convex analysis are presented in their set-valued form, it has not been the
intention of the author to go into greater detail about more specialized results under additional
assumptions. Also, most of the text is restricted to the analysis of convex functions. Though
it presents no greater problem to generalize to more general functions, the author believes that
the basic structure is more obvious this way.

The text is structured as follows. In the second chapter, we will collect some basic facts
about order relations, conlinear spaces and functions mapping one conlinear space into another.
We will introduce a difference operation on quasi-ordered conlinear spaces which is, to our
knowledge, new. We then turn to a special case of a conlinear, quasi-ordered space, the power
set P (Z) of a locally convex topological vector space Z, quasi-ordered by a closed convex cone
C. We will discuss special classes of set-valued functions and specify the associated image
spaces. In the end of this chapter, we will introduce a slightly altered version of the previously
introduced difference operator on the power set P (Z). This is the first of many places, where
the representation of a set-valued expression through a family of basically scalar expressions will
occur.

The third chapter is dedicated to the scalarized representation of set-valued functions. This
chapter supplies us with a strong tool in proving most of the subsequent statements. In fact,
the set-valued theory presented in this thesis can either be derived from the scalar theory, which
is the approach chosen in most parts of this thesis, or independent from this and including
the scalar results a special case. The second approach has been chosen in some proofs, but is
exploited to a greater extend in [23].

The fourth chapter introduces a convex conjugate and biconjugate of Fenchel-Rockafellar
type. After discussing some basic results of these functions, we will prove a number of basic
duality results, such as a sum- and chain-rule, as well as weak and, under additional assumptions,
strong duality and a sandwich theorem. The results in this chapter are closely related to those
presented in [23]. Exploiting the full potency of the difference of sets presented earlier, we are
able to translate the conjugates presented there into convex functions in accordance to the classic
Fenchel-Rockafellar conjugate.

In the fifth chapter the directional derivative of set-valued functions is defined and its basic
properties will be discussed.

The sixth chapter is dedicated to the subdifferential of a convex set-valued function. In
fact, this chapter contains the most notable difference between the classic scalar theory and our
theory. While the subdifferential of a proper convex scalar function ϕ : X → IR∪{+∞} at a point
x0 ∈ domϕ can be equally described via the directional derivative of ϕ at x0 or the conjugate
ϕ∗ : X∗ → IR∪{+∞}, these two definitions yield to different concepts of a subdifferential in our
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case. While at first glance this seems to be a shortcoming of our approach, the reason for this
difference has to be sought in the scalar theory, as we neither assume x0 ∈ domF , nor do we
assume properness for the set-valued function. In the non-pathological cases, we will prove that
both concepts of the subdifferential coincide in our theory as well, while the equality does not
hold even in the scalar case when extending the definition of the subdifferential to non-proper
functions ϕ : X → IR ∪ {±∞}.

The seventh chapter is concerned with the tangent and normal cones of certain extensions
of a convex set-valued function. In accordance to the scalar results, a connection between
the tangent cone and the directional derivative on the one hand and the normal cone and the
subdifferential on the other hand is proven. Note that we do not, in general, use the tangent or
normal cone of the epigraph of F at some element (x, z) ∈ X ×Z, but rather stick to the family
of cones associated with the family of scalarizations introduced earlier.

The Appendix consists of two parts, the first one dedicated to illustrating the presented
theory on some standard examples, the second summarizing some known facts of scalar convex
analysis as well as extending the classic definitions therein to the case of non-proper functions.
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2 Basic Framework

The power set of a real linear space Z has been shown to be a conlinear space as introduced in
[22]. Also, if Z is quasi ordered by a non trivial convex cone C ⊆ Z, then this order relation
can be extended to an order relation on P (Z). A more detailed discussion of this ordering can
be found in [35] and also in [22, 23]. As pointed out in the references, there are in fact two
canonical extensions to an order relation on the power set, one being appropriate when dealing
with concavity, the other when dealing with convexity. As we are only interested in convex
functions in the following, we will refrain from introducing both extensions.

After introducing the basic notions, we will introduce a difference operation on quasi-ordered
conlinear spaces in subsection 2.2.2, which is, to our knowledge new. This difference operation
will prove to be of great importance in the following chapters, as through it we will be able to
define concepts such as conjugate functions, the directional derivative or the subdifferential of
a function F : X → P (Z) (in a point x0 ∈ X) in total accordance to the well-known scalar
definitions. In fact, in the special case of the conlinear space IR ∪ {±∞}, the new difference
is an extension of the classic ′′−′′ as will be illustrated in subsection 8.2. In sequence, we will
introduce the basic notations for functions mapping one conlinear space into another and then
turn to the special case of set-valued functions, which will be the focus of the rest of this thesis.

In subsection 2.3, we will introduce certain subsets of the power set of a locally convex
space as the image spaces of convex and closed set-valued functions and identify these spaces
as ordered conlinear spaces and then turn our attention to certain, ”almost linear” set-valued
functions. The set of these conlinear functions will serve as a replacement for the topological
dual space later on.

Finally in subsection 2.4, we will specify the difference operation on conlinear spaces to the
special case of the power set of a locally convex separable and quasi-ordered space.

2.1 Order structures

2.1.1 Definition. [16] Let Y be a nonvoid set and ≤ a binary relation in Y . Then ≤ is called

a) reflexive, if for all y ∈ Y it holds y ≤ y,

b) transitive, if x ≤ y and y ≤ z implies x ≤ z for all x, y, z ∈ Y ,

c) antisymmetric, if x ≤ y and y ≤ x implies x = y for all x, y ∈ Y .

If ≤ is reflexive and transitive, then ≤ is called a quasi-order and the couple (Y,≤) is called
a quasi-ordered set. If ≤ is reflexive, transitive and antisymmetric, then ≤ is called a partial
order and the couple (Y,≤) is called a partially ordered set.

If (Y,≤) is quasi-ordered (partially ordered), then for any subset M of Y the couple (M,≤)
is quasi-ordered (partially ordered). For x, y ∈ Y with x ≤ y we also write y ≥ x.

Having a quasi-ordered set (Y,≤), it is a standard procedure to define equivalence classes,
denoted by

[y] := {x ∈ Y | x ≤ y, y ≤ x} .

The set of all equivalence classes together with the relation

[y1] ≤ [y2] ⇔ y1 ≤ y2
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is a partially ordered set.
A subset M ⊆ Y of Y is called bounded from above (below), if in Y exists an element y such,

that for all m ∈M it holds m ≤ y (y ≤ m). In this case, y is called an upper (lower) bound of
M . If for an upper (lower) bound y of M ⊆ Y holds y ≤ ỹ (ỹ ≤ y) for all upper (lower) bounds
of M , then y is called infimum (supremum) of M , denoted by infM (supM). The infimum and
supremum of Y are, if they exist, unique. A quasi-ordered set (Y,≤) is called order complete, if
every nonvoid subset M ⊆ Y has an infimum and supremum in Y . If (Y,≤) is order complete
and ordered, that the infimum and supremum of each subset of Y exists and is unique. By
definition, we set inf ∅ = supY and sup ∅ = inf Y .

Let (Y,≤) be an order complete set, {yλ}λ∈Λ ⊆ Y a net in Y . We define

lim inf
λ→0

yλ = sup
ρ∈Λ

inf
λ≤ρ

yλ

and
lim sup
λ→0

Aλ = inf
ρ∈Λ

sup
λ≤ρ

yλ.

Let (Y,≤) be a quasi-ordered set, P (Y ) the set of all subsets of Y , including the empty set
and Y . We extend the order relation ≤ to a quasi-order 4 on P (Y ) by

M 4 N :⇔ ∀n ∈ N : ∃m ∈M : m ≤ n.

If M = {m} and N = {n}, then M 4 N holds if and only if m ≤ n. If N ⊆ M , then it holds
M 4 N . Thus, ∅ is the largest element of P (Z) with respect to 4 and Y is the smallest element
of P (Z) with respect to 4.

2.1.2 Example. Let Y be a nonvoid set endowed with the order relation =. The extension
4 of = equals ⊇ and (P (Y ),⊇)is a partially ordered, order complete set. The infimum and
supremum of a subset A ⊆ P (Y ) with respect to ⊇are

inf ⊇A =
⋃
A∈A

A,

sup⊇A =
⋂
A∈A

A.

For any A ∈ P (Y ) it holds ∅ ⊆ A ⊆ Y , therefore the smallest element of P (Y ) with respect to
⊇ is Y , the greatest ∅.

The set of all equivalence classes in P (Y ) with respect to 4 together with the relation

[M ] 4 [N ] ⇔ M 4 N

is partially ordered and order complete. This set can be identified with a subset of (P (Y ),⊇).

2.2 Ordered conlinear spaces

2.2.1 Basic notations

2.2.1 Definition (Conlinear Space). [22] A nonvoid set Y together with an addition ”+” and
a multiplication with nonnegative reals ”·” is said to be a real conlinear space (Y,+, ·), if
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a) (Y,+) is a commutative monoid, that is

∀x, y, z ∈ Y : x+ (y + z) = (x+ y) + z,

∀x, y ∈ Y : x+ y = y + x,

∃0 ∈ Y : ∀x ∈ Y : 0 + x = x,

b) ·(t, y) = ty for every t ≥ 0 and y ∈ Y satisfies the following conditions.

∀s, t ≥ 0, y ∈ Y : s(ty) = (st)y,
∀y ∈ Y : 1y = y,

∀y ∈ Y : 0y = 0,
∀t ≥ 0, y1, y2 ∈ Y : t(y1 + y2) = ty1 + ty2.

If X ⊆ Y is closed under addition and multiplication positive reals, then (X,+, ·) is called a
conlinear subspace of (Y,+, ·).

Note that no multiplication with negative real numbers is defined. Also, the second distribu-
tive law (s + t)y = sy + ty does not have to be valid even for s, t ≥ 0. As a consequence, the
conlinear structure is stable under passing to the power set of Y , P (Y ) when the addition and
multiplication are defined adequately. Here, as throughout the text, P (Z) denotes the set of all
subsets of Y , including the empty set ∅ and Y itself.

2.2.2 Definition. Let (Y,+, ·) be a conlinear space. The Minkowski sum of two subsets A,B ∈
P (Z) and the product of a subset A ∈ P (Z) with a real number are defined as follows.

∀A,B ∈ P (Y ) : A+B := {a+ b| a ∈ A, b ∈ B}
∀t ∈ IR \ {0} , A ∈ P (Y ) : tA := {ta| a ∈ A}

∀A ∈ P (Y ) : 0A := {0}

For any set A ∈ P (Z) it holds A+ ∅ = ∅+A = ∅ and 0∅ = {0}. We will abbreviate A+ {z}
by A+ z, A+ {−z} by A− z and A−B for A+ (−1)B for z ∈ Z and A,B ∈ P (Z).

2.2.3 Proposition. [22] Let (Y,+, ·) be a conlinear space, then (P (Y ),+, ·) supplied with the
multiplication with nonnegative real numbers defined in 2.2.2 is a conlinear space.

2.2.4 Definition (ordered conlinear spaces). [22] Let (Y,+, ·) be a conlinear space and ≤ a
quasi-order on Y satisfying

a) For all x, y, z ∈ Y , x ≤ y implies x+ z ≤ y + z.

b) For x, y ∈ Y and 0 ≤ t, x ≤ y implies tx ≤ ty.

Then (Y,+, ·,≤) is called a quasi-ordered conlinear space. If ≤ is a partial order, then (Y,+, ·,≤)
is called an ordered conlinear space.

If (Y,+, ·,≤) is an ordered conlinear space, then (P (Y ),+, ·,⊇) and (P (Y ),+, ·,⊆) with the
Minkowski sum and the multiplication defined in 2.2.2 are order complete, ordered conlinear
spaces.
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2.2.5 Proposition. Let (Y,+, ·,≤) be an order complete quasi-ordered conlinear space, M,N ⊆
Y subsets of Y and t ≥ 0.

a) It holds t infM = inf tM and t supM = sup tM .

b) If M ⊆ N then infM ≥ inf N and supM ≤ supN .

c) It holds inf(M +N) ≥ infM + inf N and sup(M +N) ≤ supM + supN

Proof.

a) First, let t = 0, then tM = {0} and 0 = t infM = inf {0}. If t > 0 and M 6= ∅, then

∀x ∈M : t ∈M ≤ tx,

so t infM ≤ inf tM and equally infM ≤ 1
t inf tM ≤ infM . As (Y,+, ·,≤) is quasi ordered

and order complete, this proves the first statement. If M = ∅ and t > 0, then t infM =
inf tM = supY . By the same arguments, t supM = sup tM holds.

b) Let M 6= ∅. As inf N ≤ n holds for all n ∈ N , inf N ≤ m holds for all m ∈M ⊆ N and thus
inf N ≤ infM . If M = ∅, then infM = supY and the inequality is immediate. The same
argumentation proves supM ≤ supN .

c) If M = ∅, then M +N = ∅ and infM + inf N = inf(M +N) = supY . Now let M,N 6= ∅,
then it holds

∀m ∈M, n ∈ N : infM + inf N ≤ m+ n,

hence infM + inf N ≤ inf(M +N). Likewise the inequality sup(M +N) ≤ supM + supN
can be shown.

As pointed out in [38], the last two inequalities are in general no equalities.
A subset A ⊆ Y is called convex, if

∀t ∈ (0, 1) : (tA+ (1− t)A) ⊆ A.

The convex hull of A ⊆ Y is a convex set defined by

coA :=
⋂
A⊆B,

B⊆Y is convex

B

and again is a convex subset of Y .
A subset A ⊆ Y is called a cone iff for all t > 0 it holds tA = A. The conical hull of A ⊆ Y

is a cone defined by
coneA := {ta| t > 0, a ∈ A} .

A cone A ⊆ Y is a convex subset of Y if and only if A+A ⊆ A.
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2.2.2 The inf–difference in order complete conlinear spaces

The classic difference operation ′′−′′ on IR has two basic interpretations. Firstly, and most
commonly used is the algebraic character, that is ′′−′′ serves as an inverse operator to +. On
the other hand, an order-theoretic interpretation can be given, as

a− b = inf {c ∈ IR| b+ c ≥ a}

for all a, b ∈ IR. Especially, −a = 0 − a is the inverse element of a ∈ IR. One characteristic of
conlinear spaces Y is that in general no inverse element of a ∈ Y exists. Thus it is not possible
to define a− b by a+(−b). However, the order-theoretic view provides a possibility to define an
order-difference C on an quasi-ordered conlinear space Y . Obviously, the operator depends on
the specific order relation in use. To avoid confusion, we will use the sign 0 C a, when referring
to the order theoretic difference of 0 and a ∈ Y , while −a denotes the inverse element of a ∈ Y
or −1a, if this element exists.

To our knowledge, the generalization to an operator on quasi-ordered conlinear spaces has
not been done before. In subsection 2.4 and subsection 8.2, we will go into more details about
the properties of the difference when the space under consideration is the power set of a quasi-
ordered locally convex separable space or the set of the extended real numbers.

Notice that in fact the order-theoretic interpretation could also be stated as

a− b = sup {c ∈ Y | b+ c ≤ a}

for all a, b ∈ Y . This interpretation proves appropriate when dealing with concavity rather than
convexity, as in that case also the addition even on the extended real numbers is appropriately
defined as the sup-addition rather then the inf-addition, compare [49] or [23].

2.2.6 Definition (inf-difference in conlinear spaces). In an order complete, quasi-ordered con-
linear space (Y,+, ·,≤) we define the operation C by

∀x, y ∈ Y : x C y := inf {z ∈ Y | y + z ≥ x}

2.2.7 Lemma. Let (Y,+, ·,≤) be an order complete, quasi-ordered conlinear space with largest
element +∞ and smallest element −∞. Let 0 ≤ t ∈ IR and a, b, x, y ∈ Y . If (+∞) + (−∞) =
+∞, then it holds

a) a C (+∞) = −∞, and

(−∞) C a = −∞,

b) t(a C b) = ta C tb,

c) if a ≤ b, then a C x ≤ b C x and x C b ≤ x C a,

d) a C b ≤ (a C x) + (x C b)

e) (a+ x) C (x+ b) ≤ a C b

f) (a+ x) C (b+ y) ≤ (a C b) + (x C y).

Proof.
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a) By definition, a C b = inf {s ∈ Y | b+ s ≥ a}. Replacing a by −∞ or b by +∞, the result is
immediate.

b) If a = −∞ or b = +∞, then t(a C b) = t(−∞), equality holds. Let a 6= −∞ and b 6= +∞.
From 2.2.5 it holds

∀t > 0 : t(a C b) = inf {tx| b+ x ≥ a}
= inf {x| tb+ x ≥ ta}
= (ta C tb).

If t = 0, then 0(a C b) = 0 and (0a C 0b) = 0.

c) Let a ≤ b, then x+ y ≥ b implies x+ y ≥ a and a+ y ≥ x implies b+ y ≥ x. Hence,

a C x ≤ b C x

and
x C b ≤ x C a

holds true by 2.2.5.

d) Let a ≤ x+ s, x ≤ b+ t, then x+ s ≤ b+ t+ s holds by 2.1.1 and a ≤ b+ t+ s by 2.2.4. By
2.2.5,

a C b ≤ (a C x) + (x C b)

is proven.

e) Let b+ s ≥ a, then b+ s+ x ≥ a+ x. Again, the proof goes by 2.2.5.

f) Let b+ s ≥ a, y + t ≥ x then b+ y + s+ t ≥ a+ x. Again, the inequality holds by 2.2.5.

2.2.3 Functions mapping into order complete conlinear spaces

Let (X,+, ·) be a conlinear space and (Y,+, ·,≤) be an order complete, quasi-ordered conlinear
space with largest element +∞ and smallest element −∞. The set F := {f : X → Y } supplied
with the point-wise addition and multiplication

∀f1, f2 ∈ F , x ∈ X : (f1 + f2)(x) = f1(x) + f2(x),
∀t > 0, f ∈ F , x ∈ X : (tf)(x) = t(f(x)),

∀f ∈ F , x ∈ X : (0f)(x) = 0

is a conlinear space with neutral element f ≡ 0. Supplied with the point-wise order

f1 ≤ f2 ⇔ ∀x ∈ X : f1(x) ≤ f2(x),

The quadruple (F ,+, ·,≤) is an order complete, quasi-ordered conlinear space with largest ele-
ment f ≡ +∞ and smallest element f ≡ −∞. If ≤ is a partial order on Y , then (F ,+, ·,≤) is
an ordered conlinear space. The inf-difference on (F ,+, ·,≤) is the pointwise inf-difference,

∀x ∈ X : (f1 C f2)(x) = f1(x) C f2(x).
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Let (Z,+, ·) be another conlinear space, g : Z → Y a function from Z into Y and A : X → Z

a function satisfying

∀x1, x2 ∈ X : A(x1 + x2) = A(x1) +A(x2),
∀x ∈ X, t > 0 : A(tx) = tA(x),

A(0) = 0.

Then we define

∀x ∈ X : gA(x) := g(Ax),
∀z ∈ Z : (Af)(z) = inf

Ax=z
f(x).

The infimal convolution of f1, f2 : X → Y is defined as (f1�f2) : X → Y with

(f1�f2)(x) := inf
x1+x2=x

(f1(x1) + f2(x2)) .

2.2.8 Definition. The domain of a function f : X → Y is defined by

dom f := {x ∈ X| f(x) 6= +∞} .

A function f : X → Y is proper, if dom f 6= ∅ and f(x) 6= −∞ for all x ∈ X.

2.2.9 Definition. A function f : X → Y is

a) convex, if

∀t ∈ (0, 1), x1, x2 ∈ X : f(tx1 + (1− t)x2) ≤ tf(x1) + (1− t)f(x2),

b) positively homogeneous, if

∀t > 0, x ∈ X : f(tx) = tf(x),

c) subadditive, if
∀x1, x2 ∈ X : f(x1 + x2) ≤ f(x1) + f(x2)

and additive, if
∀x1, x2 ∈ X : f(x1 + x2) = f(x1) + f(x2),

d) sublinear, if f is positively homogeneous and subadditive.

2.2.10 Example. The indicator function IM : X → Y of M ⊆ X is defined as

IM (x) :=
{

0, if x ∈M ;
+∞, else.

The function IM : X → Y is convex if and only if M ⊆ X is a convex subset of X, positively
homogeneous, if and only if M ⊆ X is a cone, proper if and only if ∅ 6= M 6= X and 0 6= −∞
holds for 0,−∞ ∈ Y .
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2.3 Set-valued functions

In this chapter, we introduce a class of functions mapping a linear space X, into the power set
of a linear space Z, quasi-ordered by a convex cone C ( Z with {0} ( C. When introducing
topological properties of the functions, we assume X and Z to be supplied with a locally convex
separated topology. The topological duals ofX and Z will be denoted byX∗ and Z∗, respectively.
We will define the epigraph of a set-valued function as a subset of X ×Z. The power set P (Z)
endowed with the Minkowski sum, a multiplication with positive real numbers and the order
relation ⊇ is an order complete ordered conlinear space with greatest element ∅ and smallest
element Z. The convexity notion we will choose coincides with the so called cone-convexity or C-
convexity, compare [8, 14, 37] and others. By definition, we call a function F : X → P (Z) closed,
iff its epigraph is closed. The images of convex and closed functions have certain characteristic
properties, through which we identify conlinear subspaces of (P (Z),+, ·,⊇) as the adequate
image spaces for our further investigations.

In subsection 2.3.2, we will introduce a set of functions with ”almost linear” structure, the
conlinear functions mapping X into P (Z), and in sequence the conaffine functions, which are
our counterpart to the scalar affine functions. The set of the conlinear functions will serve as a
dual space later on. In fact, for fixed z∗ ∈ C∗ \ {0} , the set

{
S(x∗,z∗)|x∗ ∈ X∗

}
can be identified

with X∗. Thus, instead of speaking of one dual space, we could as well speak of a family of
dual spaces, each equivalent to X∗. This structure, namely a ”scalar” family representing one
set-valued singleton without loss of information will appear throughout this thesis in various
forms.

At this point, we would like to mention that one major difference of our approach to most of
the known approaches to set-valued convex analysis lies in the fact, that we do not use the set
L (X,Z) as dual space, compare for example [6, 31, 37, 56]. The functions T ∈ L (X,Z) will be
represented by a family of conlinear functions, namely

{
S(−T ∗z∗,z∗) : X → P (Z)| z∗ ∈ C∗ \ {0}

}
.

Thus, any result about the classic dual space L (X,Z) can be deduced from our theory as well.
Related approaches to ours have been presented in [3, 4, 23] and [39].

2.3.1 Set-valued proper, convex and closed functions

From now on, we will assume X and Y to be real linear spaces containing at least two elements
and C ⊆ Z to be a convex cone with 0 ∈ C and C 6= Z. The cone C generates a quasi-order ≤C
on Z by means of z1 ≤C z2 if and only if z2 ∈ z1 +C for z1, z2 ∈ Z. Again, (P (Z),+, ·,⊇)is an
order complete ordered conlinear space. The extension of ≤C to an order relation on P (Z) is
defined by

A 4C B ⇔ B ⊆ A+ C,

For a more detailed discussion of this order relation, see [22, 23, 34]. The order relation 4{0} is
equal to the relation ⊇. For 4Z it holds

∀A 6= ∅, ∀B ∈ P (Z) : A 4Z B
{B ∈ P (Z)| ∅ 4Z B} = {∅} .

Two elements A,B ∈ P (Z) are equivalent with respect to 4C if A ⊆ B+C and B ⊆ A+C,
therefore we can identify the subset

P C(Z) := {A ∈ P (Z)| A = A+ C}
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of P (Z) with the set of equivalence classes with respect to 4C . It holds A 4C B for A,B ∈
P C(Z) if and only if A ⊇ B. Modifying the multiplication with 0 by 0A = C for A ∈ P C(Z),
(P C(Z),+, ·,⊇) with the modified scalar multiplication is an order complete, ordered conlinear
subspace of (P (Z),+, ·,⊇).

2.3.1 Definition. A set-valued function F : X → P C(Z) is proper if and only if

domF = {x ∈ X| F (x) 6= ∅} 6= ∅,
∀x ∈ X : F (x) 6= Z.

If additionally (F (x)− C) \ F (x) 6= ∅ holds for all x ∈ domF , then F is called C-proper.

The definition of proper set-valued functions is a special case of 2.2.8, while the definition of
C-proper functions cannot, in general be derived from the former definition. If C is generating,
then a function F : X → P C(Z) is proper if and only if it is C-proper.

The images of a convex function F : X → (P (Z),+, ·,4C) have certain properties which
allows us to work with even more specialized subspaces. Recall that F : X → (P (Z),+,4C) is
convex if

∀t ∈ (0, 1), ∀x1, x2 ∈ X : F (tx1 + (1− t)x2) 4C tF (x1) + (1− t)F (x2)

or equivalently if the epigraph of F ,

epiF := {(x, z) ∈ X × Z| F (x) 4C {z}}

is convex.
If a function F : X → (P (Z),+,4C) is convex, then F (x) + C ∈ P C(Z) is convex for

all x ∈ X, not necessarily F (x) itself. Therefore, we identify F : X → (P (Z),+,4C) with
F̃ : X → P C(Z) defined by F̃ (x) = F (x) + C. Thus, a convex set-valued function maps into
the set of with respect to C lower convex subsets of Z,

QC(Z) := {A ⊆ Z| A = co (A+ C)} .

Note that (QC(Z),+, ·,⊇) is an order complete, ordered conlinear subspaces of (P C(Z),+, · ⊇).
Moreover, the second distributive law

∀A ∈ QC(Z), ∀t1, t2 ≥ 0 : t1A+ t2A = (t1 + t2)A

holds and (QC(Z),+, · 4C) is an ordered cone in the sense of [32].
The convex hull of a function F : X → (P (Z),+,4C) is (uniquely) defined by

z ∈ (coF )(x) :⇔ (x, z) ∈ co epiF

It holds epi coF = co epiF and it is obvious that coF is a convex function mapping X into the
space (QC(Z),+,⊇).

From now on, X and Z will be assumed to be supplied with a separated locally convex
topology. The topological dual spaces of X and Z will be denoted by X∗ and Z∗. There exists
a neighborhood base of 0 ∈ X, UX , consisting of convex balanced absorbing open sets only.
In the following, let UX , UZ always denote such a neighborhood base of 0 ∈ X and 0 ∈ Z,
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respectively. The value of a linear continuous function x∗ ∈ X∗ at x ∈ X will be denoted by
x∗(x). Analogously, z∗(z) will denote the value of z∗ ∈ Z∗ at z ∈ Z. We set

H(z∗) := {z ∈ Z| z∗(z) ≤ 0}

for any z∗ ∈ Z∗. If z∗ 6= 0, the set H(z∗) is a closed half space.
The order cone C ⊆ Z is considered to be closed, the (negative) dual cone of C is denoted

by
C∗ := {z∗ ∈ Z∗| ∀c ∈ C : z∗(c) ≤ 0} .

Obviously, 0 ∈ C∗ and the set C∗ \ {0} is not empty, as C ( Z holds. Moreover, as C is
closed and convex,

C = {z ∈ Z| ∀z∗ ∈ C∗ : z∗(z) ≤ 0} =
⋂

z∗∈C∗\{0}
{z ∈ Z| z∗(z) ≤ 0}

holds true. If z∗ ∈ C∗ \ {0} , then H(z∗) ⊇ C holds true.

2.3.2 Definition. A function F : X → (P (Z),+, ·,4C) is said to be closed iff epiF is closed
with respect to the product topology on X × Z.

2.3.3 Lemma. If F : X → (P (Z),+, ·,4C) is closed, then F (x) +C is closed, possibly empty,
for each x ∈ X.

Proof. It holds z ∈ cl (F (x)+C) if and only if for any V ∈ U Z it holds ({z}+V )∩(F (x)+C) 6=
∅. This implies that for any U × V ∈ U X ×U Z it holds ({(x, z)}+U × V )∩ cl epiF 6= ∅, hence
(x, z) ∈ epiF .

Thus, a closed function F : X → (P (Z),+, ·,4C) maps into the set of all lower closed
subsets of Z, defined as

P t
C(Z) := {A ∈ P (Z)| A = cl (A+ C)} .

The Minkowski sum of two closed sets is not automatically closed. Redefining the addition
for elements A,B ∈ P t

C(Z) by
A⊕B := cl (A+B)

and the multiplication with 0 ∈ IR by 0A = C, (P t
C(Z),⊕, ·,⊇) is again an order complete,

ordered conlinear subspace of (P (Z),+, ·,⊇).
The closed hull of a function F : X → (P (Z),+, ·,4C) is (uniquely) defined by

z ∈ (clF )(x) :⇔ (x, z) ∈ cl epiF.

It holds epi (clF ) = cl epiF and it is obvious that clF is a closed function mapping X into the
space (P t

C(Z),+, ·,⊇).

2.3.4 Lemma. Let F1, F2 : X → P (Z), F2 closed and

∀x ∈ X : F2(x) ⊇ F1(x),

then it holds
∀x ∈ X : F2(x) ⊇ (clF1)(x).
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Proof. The epigraph of F2 is a closed set with epiF2 ⊇ cl epiF1, which proves the statement.

The values of a closed convex function F : X → (P (Z),+, ·,4C) satisfy F (x) = cl co (F (x)+
C), thus we obtain

QtC(Z) := {A ∈ P (Z)| A = cl co (A+ C)} ,

the set of all lower closed convex subsets of Z. Again, (QtC(Z) ,⊕·,⊇) is an order complete,
ordered conlinear subspace of (P (Z),+, ·,⊇).

The closed convex hull of a function F : X → (P (Z),+, ·,4C) is defined via

z ∈ (cl coF )(x) :⇔ (x, z) ∈ cl co epiF.

The function cl coF is a closed convex function with epi (cl coF ) = cl co epiF mapping X to
(QtC(Z) ,⊕ ⊇).

Notice that even for a single-valued function F : X → (P (Z),+, ·,4C), the operations cl ,
co and cl co produce mappings into P t

C(Z), QC(Z) and QtC(Z), respectively.
For a subset A ⊆ QtC(Z) of QtC(Z) , the infimum inf CA ∈ QtC(Z) (supremum sup CA ∈

QtC(Z) ) of A is the greatest (smallest) lower (upper) bound of A, that is

inf CA = cl co
⋃
A∈A

A

and
sup CA =

⋂
A∈A

A.

The largest element of QtC(Z) is ∅, the smallest Z.
The limes inferior of a function F : X → QtC(Z) in x ∈ X is defined via

lim inf
y→0

F (x+ y) := sup
U∈U X

inf
y∈U\{0}

F (x+ y),

therefore,
lim inf
y→0

F (x+ y) :=
⋂

U∈U X

cl co
⋃

y∈U\{0}
F (x+ y).

2.3.5 Corollary. For any convex function F : X → QtC(Z) it holds

(clF )(x) =
⋂

U∈U X

cl
⋃
y∈U

F (x+ y).

The function F is closed if and only if lim inf
y→0

F (x+ y) ⊆ F (x) holds for all x ∈ X.

Proof. By definition we have

cl epiF = {(x, z)| ∀U ∈ U X , V ∈ UZ : ({(x, z)}+ U × V ) ∩ epiF 6= ∅} .

This can be rewritten as

cl epiF =

(x, z)| z ∈
⋂

U∈U X

cl
⋃
y∈U

F (x+ y)


obtaining (clF )(x) = lim inf

y→0
F (x+ y) ∪ F (x).
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On the other hand, if lim inf
y→0

F (x + y) ⊆ F (x), then cl (F (x)) = (clF )(x) by the above

formula. As F maps into QtC(Z) , we have by definition cl (F (x)) = F (x) and so we obtained
the desired result.

If F is not closed at x0 ∈ X, i.e. lim inf
y→0

F (x0+y) ) F (x), then lim inf
y→0

F (x0+y) = (clF )(x0).
Otherwise, if lim inf

y→0
F (x0 + y) ⊆ F (x0), then F (x) = (clF )(x) holds true.

2.3.6 Remark. For a set-valued function F : X → (QC(Z),+,⊇), the epigraph and the graph
of F

graphF := {(x, z)| z ∈ F (x)}

are identical, as
F (x) 4C {z} ⇔ z ∈ F (x) = F (x) + C.

If F : X → P (Z) is a closed convex function, then F and the extension FC : X → QtC(Z) of
F , defined by

∀x ∈ X : FC(x) := cl (F (x) + C)

have the same epigraph. This does not hold for more general set-valued functions. However, as
C is considered to be closed and convex, a vector-valued function f : X → Z ∪ {+∞} and its
set-valued extension FC : X → QtC(Z) defined by

∀x ∈ X : FC(x) := f(x) + C,

with +∞ + C = ∅ have the same epigraph. Therefore, it is more convenient to use the notion
epiF in the following, rather than graphF .

2.3.2 Set-valued conlinear and conaffine functions

For (x∗, z∗) ∈ X∗ × Z∗ \ {0}, we define S(x∗,z∗) : X → P (Z) by

∀x ∈ X : S(x∗,z∗)(x) = {z ∈ Z| − z∗(z) ≥ x∗(x)} .

In fact, S(x∗,z∗) : X → (QtH(z∗)(Z),+, ·,4H(z∗)) holds. Moreover, S(x∗,z∗) : X → QtC(Z) is true
if and only if z∗ ∈ C∗ \ {0} . Functions of the type of S(x∗,z∗) : X → P (Z) with z∗ ∈ C∗ \ {0}
are called conlinear, which is motivated by the following properties.

2.3.7 Proposition. Let (x∗, z∗) ∈ X∗ × C∗ \ {0} , then

a) S(x∗,z∗) : X → QtC(Z) and domS(x∗,z∗) = X.

b) S(x∗,z∗) : X → QtC(Z) is proper. If additionally z∗ ∈ C∗ \ −C∗, then S(x∗,z∗) is C-proper.

c) For each x ∈ X, x∗ ∈ X∗ it holds S(0,z∗)(x) = S(x∗,z∗)(0) = H(z∗).

d) S(x∗,z∗) : X → QtC(Z) is closed, positively homogenous and additive. In particular, S(x∗,z∗)(x)+
S(x∗,z∗)(−x) = H(z∗).

e) If z ∈ Z is chosen such, that −z∗(z) = 1, then

∀x ∈ X : S(x∗,z∗)(x) = x∗(x)z +H(z∗).
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Proof. Direct calculation.

2.3.8 Proposition. [23] A conlinear function S(x∗,z∗) is proper if and only if z∗ ∈ C∗ \ {0}
holds, it is C-proper if and only if z∗ ∈ C∗ \ −C∗.

For any z∗ ∈ Z∗ \ {0}, the set
{
S(x∗,z∗)| x∗ ∈ X∗

}
supplied with the pointwise addition and

multiplication with positive reals

(S(x∗1,z∗) + S(x∗2,z∗))(x) = S(x∗1+x2,z∗)(x),
(tS(x∗,z∗))(x) = S(tx∗,z∗)(x)

for all x ∈ X, x∗1, x∗2, x∗ ∈ X∗, t ∈ IR and the neutral element S(0,z∗) ≡ H(z∗) is isomorph to
X∗, see [23].

For t > 0 it holds

∀x ∈ X : S(tx∗,z∗)(x) = S(x∗, 1
t
z∗)(x) = tS(x∗,z∗)(x)

and
∀x ∈ X : S(−tx∗,z∗)(x) = {0} Cz∗ S(x∗, 1

t
z∗)(x) = {0} Cz∗ tS(x∗,z∗)(x).

2.3.9 Proposition. [23] Let T ∈ L (X,Z) be a linear continuous operator. Then

∀x ∈ X : T (x) ∈ S(x∗,z∗)(x) ⇔ x∗ = −T ∗(z∗).

It holds S(−T ∗z∗,z∗)(x) = Tx+H(z∗) for all x ∈ X.

From 2.3.9, it can be derived, that a linear continuous operator T ∈ L (X,Z) can be repre-
sented without loss of information by the family{

S(−T ∗z∗,z∗)| z∗ ∈ Z∗
}
.

As we are only dealing with functions mapping into QtC(Z) , it is without loss of generality when
we represent T ∈ L (X,Z) by the set of all S(−T ∗z∗,z∗) with z∗ ∈ C∗ \ {0} . It is easy to prove
that for a function F : X → QtC(Z) it holds

epiT = {(x, z) ∈ X × Z| T (x) ≤ z} ⊇ epiF

if and only if

∀z∗ ∈ C∗ \ {0} , ∀x ∈ X : S(−T ∗z∗,z∗)(x) ⊇ F (x).

Thus, T (x) ≤ z holds for all x ∈ X and z ∈ F (x) if and only if S(−T ∗z∗,z∗) is a conlinear minorant
of F for all z∗ ∈ C∗ \ {0} .

A function F : X → QtC(Z) is called conaffine, if there is (x∗, z∗) ∈ X∗ × C∗ \ {0} and
z ∈ Z such, that

∀x ∈ X : F (x) = S(x∗,z∗)(x) + z.

2.3.10 Proposition. [23] Let F : X → QtC(Z) be a function. The following statements are
equivalent:

a) F is the pointwise supremum of its C-proper (proper, but not C-proper) conaffine minorants,
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b) F is closed, convex and C-proper (proper, but not C-proper) or F ≡ ∅ or F ≡ Z.

Especially, any conaffine function is proper. It is C-proper, if z∗ ∈ C∗ \ −C∗ and proper,
but not C-proper, if z∗ ∈ C∗ ∩C∗. A function F : X → QtC(Z) has a conaffine minorant if and
only if cl coF : X → QtC(Z) is proper.

2.3.11 Example. The set-valued support function ΣM∗ : X → QtC(Z) of M∗ ⊆ X∗×C∗ \ {0}
is defined as

∀x ∈ X : ΣM∗(x) :=
⋂

(x∗,z∗)∈M∗
S(x∗,z∗)(x).

It holds ΣM∗ ≡ Z, if M∗ = ∅. If z∗ ∈ C∗ ∩ −C∗ holds true for all (x∗, z∗) ∈ M∗, then it holds
ΣM∗(x) = ΣM∗(x)− C for all x ∈ X, therefore ΣM∗(x) is not C-proper in this case.

2.4 The z∗-difference

In the following we will introduce a family of difference operators of the power set of a locally
convex separable space Z, quasi-ordered by a nontrivial closed convex cone C. Each such
difference operator Cz∗ with z∗ ∈ C∗ \ {0} happens to be the difference operator introduced
in subsection 2.2.2 on the quasi-ordered conlinear space (P (Z),⊕, ·,4H(z∗)). The difference
of two sets A,B ∈ P (Z) coincides with the difference of the z∗-hulls of A and B defined as
cl (A+H(z∗)) and cl (B +H(z∗)), respectively.

If cl (A+H(z∗)) 6= ∅ or Z, then cl (A+H(z∗) can be identified with a real number tA ∈ IR
via cl (A + H(z∗)) = zA + H(z∗) with zA ∈ Z and tA = −z∗(zA) and it holds {0} Cz∗ A =
{z ∈ Z| − z∗(z) ≥ −tA}. On the other hand, {0} Cz∗ ∅ = {z ∈ Z| − z∗(z) ≥ −∞} = Z and
{0} Cz∗ Z = {z ∈ Z| − z∗(z) ≥ +∞} = ∅. Identifying ∅ ∈ P (Z) with +∞ ∈ IR ∪ {±∞} and
Z ∈ P (Z) with −∞ ∈ IR∪{±∞}, this indicates a close relationship between the z∗-difference on
P (Z) and the order-difference C on IR ∪ {±∞}, which will be discussed in detail in subsection
8.2. The mentioned connection will be of virtual importance for the theory of vector-valued
convex functions as presented in this thesis.

In [20], a difference operation for subsets of the set IRn has been discussed, called the
Pontryagin-difference (P-difference) in reference to [46]. The same construction is used in [47, 55],
while in [18, 19] a slightly different approach is used, which is introduced in [13] and generalized
in [27]. The P-difference of two sets A,B ∈ QtC(Z) coincides with the intersection of all z∗-
differences of A and B and equals A C B, using the definition of the inf-difference given in 2.2.6.
The advantage of the z∗-difference is, that, contrary to the inf-difference, A Cz∗ B 6= ∅ holds
for all A,B ∈ QtC(Z) \ {∅, Z} and {0} Cz∗ A is the inverse of A with respect to the addition in
QtH(z∗)(Z), whenever A 6= ∅, and cl (A+H(z∗)) 6= Z holds.

2.4.1 Definition. Let A,B ∈ P (Z), then the difference A Cz∗ B with respect to z∗ ∈ Z∗ \ {0}
is defined by

A Cz∗ B := {z ∈ Z| B + z ⊆ cl (A+H(z∗))} .

Notice that for t > 0 it holds (A Ctz∗ B) = (A Cz∗ B).

2.4.2 Lemma. For A,B ∈ P (Z) and z∗ ∈ Z∗ \ {0} it holds

A Cz∗ B =
{
z ∈ Z| − z∗(z) ≥

[
inf
a∈A

(−z∗(a)) C inf
b∈B

(−z∗(b))
]}
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Proof. Let A,B ∈ P (Z). The set cl (A+H(z∗)) is convex consists of exactly those elements
z ∈ Z with −z∗(z) ≥ inf

a∈A
(−z∗(a)). Therefore it holds

A Cz∗ B =
{
z ∈ Z| ∀b ∈ B : (−z∗(b)− z∗(z)) ≥ inf

a∈A
(−z∗(a))

}
=
{
z ∈ Z| ( inf

b∈B
(−z∗(b))− z∗(z)) ≥ inf

a∈A
(−z∗(a))

}
.

By definition,(
inf
a∈A

(−z∗(a)) C inf
b∈B

(−z∗(b))
)

= inf
t∈IR

(
inf
b∈B

(−z∗(b)) + t ≥ inf
a∈A

(−z∗(a))
)

holds, see 8.2.1. Therefore, the assertion is proven.

2.4.3 Remark. From 2.4.2 it is immediate, that

A Cz∗ B =
(
cl (A+H(z∗)) Cz∗ cl (B +H(z∗))

)
∈ QtH(z∗)(Z)

holds for all A,B ⊆ Z and

inf
z∈(ACz∗B)

(−z∗(z)) = inf
a∈A

(−z∗(a)) C inf
b∈B

(−z∗(b)).

If z∗ ∈ C∗ \ {0}, then C ⊆ H(z∗) and (A Cz∗ B) ∈ QtC(Z) .

In fact Cz∗ is the inf-substraction on (QtH(z∗)(Z),+, ·,⊇) as defined in 2.2.6. If z∗ ∈ C∗ \ {0} ,
then (QtH(z∗)(Z),+, ·,⊇) is a conlinear subspace of (QtC(Z) ,+, ·,4C). The operation Cz∗ is not,
however the inf-substraction on QtC(Z) , as this would be given by

∀A,B ∈ QtC(Z) : A C B = cl co
⋃

M∈QtC(Z)
(B +M ⊆ A)

= {z ∈ Z| B + z ⊆ A} .

It holds
∀A,B ∈ QtC(Z) , ∀z∗ ∈ C∗ \ {0} : A C B ⊆ A Cz∗ B.

2.4.4 Proposition. For z∗ ∈ C∗ \ {0} , denote by 4z∗ the order relation defined by H(z∗). The
relation 4z∗ is a quasi-order on QtC(Z) . If A ⊇ B holds for A,B ∈ QtC(Z) , then A 4z∗ B holds
true. For any A ∈ QtC(Z) it holds

inf z∗ {A} = (A Cz∗ {0}) ∈ QtC(Z)

and for a non empty set A ⊆ QtC(Z) it holds

inf z∗A = cl
⋃
A∈A

(A Cz∗ {0}) ∈ QtC(Z) .

The quadruple (QtC(Z) ,+, ·,4z∗) is an order complete quasi-ordered conlinear space.

Proof. For A,B ∈ QtC(Z) it holds

A 4z∗ B ⇔ B ⊆ cl (A+H(z∗)).
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It is easily checked that 4z∗ is reflexive and transitive. Obviously, A 4z∗ B holds if A ⊇ B. The
set (A Cz∗ {0}) ∈ QtC(Z) is a lower bound of {A}. Moreover, if B 4z∗ A holds for B ∈ QtC(Z) ,
then B ⊇ (A Cz∗ {0}) holds, as B = clB and therefore (A Cz∗ {0}) = inf4z∗ {A}. For a
nonvoid set A ⊆ QtC(Z) it holds

∀A ∈ A : cl
⋃
A∈A

(A Cz∗ {0}) 4z∗ A.

If for B ∈ QtC(Z)

∀A ∈ A : B ⊇ A+H(z∗)

holds, then

B ⊇ cl
⋃
A∈A

(A Cz∗ {0})

holds, as B = clB holds true. Therefore, (QtC(Z) ,+, ·,4z∗) is order complete and the assertion
is proven.

2.4.5 Definition. For a subset A ⊆ Z and z∗ ∈ Z∗, the z∗-hull of A is defined by cl (A+H(z∗)).

It holds cl (∅ + H(z∗)) = ∅ for all z∗ ∈ Z∗. If A 6= ∅, then cl (A + H(0)) = Z and for all
z∗ ∈ Z∗ \ {0} the set cl (A+H(z∗)) is a closed half-space or equal to Z.

2.4.6 Definition. Let z∗ ∈ Z∗. A set A ⊆ Z is called z∗-proper, if ∅ 6= cl (A+H(z∗)) 6= Z.

2.4.7 Remark. Let A ⊆ Z and z∗ ∈ C∗ \ {0}, then (A Cz∗ {0}) = cl (A+H(z∗)) holds and

A⊕ ({0} Cz∗ A) =
{
H(z∗), if A is z∗-proper;
∅, else.

If A is z∗-proper, then (A Cz∗ A) = H(z∗) holds. Recall that H(z∗) is the neutral element in
QtH(z∗)(Z). A set A is z∗-proper for at least one z∗ ∈ C∗ \ {0} if and only if ∅ 6= cl (A+C) 6= Z.

Obviously no subset A ⊆ Z is 0-proper as H(0∗) = Z and either A = ∅ and cl (A+H(0)) = ∅,
or cl (A + H(0)) = Z. Also, A ( Z is by no means sufficient for A being z∗-proper for all
z∗ ∈ Z∗ \ {0}.

2.4.8 Remark. Denoting (Y,+, ·,≤) = (QtH(z∗)(Z),+, ·,⊇), then with 2.4.3 and 2.2.7 the fol-
lowing properties hold for any given A,B ∈ P (Z) and z∗ ∈ Z∗ \ {0}.

a) For t > 0 it holds tA Cz∗ tB = t(A Cz∗ B).

b) If A ⊆ B ⊕H(z∗), then (A Cz∗ D) ⊆ (B Cz∗ D) and (D Cz∗ B) ⊆ (D Cz∗ A).

c) It holds (A Cz∗ D)⊕ (D Cz∗ B) ⊆ A Cz∗ B.

d) It holds (A Cz∗ B) ⊆ (A⊕D) Cz∗ (D ⊕B).

e) It holds (A Cz∗ B)⊕ (D Cz∗ E) ⊆ (A⊕D) Cz∗ (B ⊕ E).
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It is easy to check that
A Cz∗ ∅ = Z Cz∗ A = Z

holds for all z∗ ∈ Z∗ and A ∈ P (Z). Moreover, if A is z∗-proper, then

A Cz∗ Z = ∅ Cz∗ A = ∅.

2.4.9 Proposition. Let z∗ ∈ Z∗ \ {0} and A,B,D and E ∈ P (Z)

a) It holds

∀s, t > 0 : A Cz∗ (tB ⊕ sB) = A Cz∗ (s+ t)B
(tA⊕ sA) Cz∗ B = (t+ s)A Cz∗ B.

b) If A and B ∈ P (Z) are z∗-proper, then it holds

(A Cz∗ B)⊕ (D Cz∗ E) = (A⊕D) Cz∗ (B ⊕ E).

c) If D and either A or B is z∗-proper, then it holds

A Cz∗ B = (A Cz∗ D)⊕ (D Cz∗ B)
= (A⊕D) Cz∗ (D ⊕B).

Proof.

a) If A and B ∈ P (Z) are z∗-proper, then it holds

(A Cz∗ B)⊕ (D Cz∗ E) = (A⊕D) Cz∗ (B ⊕ E).

As pointed out in 2.4.3, the sets A and B can be identified with their z∗-hulls. Moreover,
tA ⊕ sA = cl (tA + sA) = (t + s)A holds true as by assumption A is z∗-proper and thus
cl ((tA⊕ sA) +H(z∗)) = cl ((t+ s)A+H(z∗)) holds true.

b) As A and B are assumed to be z∗-proper, it holds ∅ 6= (A Cz∗ B) 6= Z. Without loss of
generality, assume that A,B,D and E ∈ QtH(z∗)(Z) holds true. If (D Cz∗ E) = ∅, then it
holds D 6= E and either D = ∅ or E = Z. In this case,

(A Cz∗ B)⊕ (D Cz∗ E) = (A⊕D) Cz∗ (B ⊕ E) = ∅.

If (D Cz∗ E) = Z, then either D = Z or E = ∅. In this case,

(A Cz∗ B)⊕ (D Cz∗ E) = (A⊕D) Cz∗ (B ⊕ E) = Z.

If (D Cz∗ E) is a z∗-proper set, then both D and E are z∗-proper sets. We identify A with
a real number a ∈ IR by

A = {z ∈ Z| − z∗(z) ≥ a}

and define b, d, e ∈ IR likewise. It holds

(A Cz∗ B)⊕ (D Cz∗ E) = {z ∈ Z| − z∗(z) ≥ (a− b) + (d− e)}
= {z ∈ Z| − z∗(z) ≥ (a+ d)− (b+ e)}
= (A⊕D) Cz∗ (B ⊕ E) = Z.
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c) If D and either A or B is z∗-proper, then by b) it holds

(A Cz∗ D)⊕ (D Cz∗ B) = (A⊕D) Cz∗ (D ⊕B).

If cl (A+H(z∗)) = Z or B = ∅, then

A Cz∗ B = (A Cz∗ D)⊕ (D Cz∗ B) = (A⊕D) Cz∗ (D ⊕B) = Z.

If A = ∅ or cl (B +H(z∗)) = Z, then

A Cz∗ B = (A Cz∗ D)⊕ (D Cz∗ B) = (A⊕D) Cz∗ (D ⊕B) = ∅,

as either A or B is assumed to be z∗-proper.

2.4.10 Remark. If S(x∗,z∗) : X → QtC(Z) is a conlinear function with x∗ ∈ X∗, z∗ ∈ C∗ \ {0} ,
then

S(x∗,z∗) (x1 − x2) = S(x∗,z∗) (x1) Cz∗ S(x∗,z∗) (x2) ,

which is another argument for the ”almost linearity” of these functions.

For functions F1, F2 : X → QtC(Z) , the difference (with respect to z∗ ∈ Z∗\{0}), (F1 Cz∗ F2)
is defined as the pointwise difference,

∀x ∈ X : (F1 Cz∗ F2)(x) = F1(x) Cz∗ F2(x).

Again, Cz∗ is the inf-difference on the conlinear space (
{
F : X → QtH(z∗)(Z)

}
,+, ·,⊇) for all

z∗ ∈ Z∗ \ {0}. It holds

∀F1, F2 : X → QtC(Z) , ∀z∗ ∈ Z∗ \ {0} : (F1 Cz∗ F2) : X → QtH(z∗)(Z)

and (F1 Cz∗ F2) : X → QtC(Z) if z∗ ∈ C∗ \ {0} . Notice that (F1 Cz∗ F2) ≡ Z, if cl (F1(x) +
H(z∗)) = Z for all x ∈ domF2. Moreover, if F : X → QtC(Z) and z∗ ∈ Z∗ \ {0}, then by 2.4.2
it holds

∀x ∈ X : (F Cz∗ {0})(x) =
{
z ∈ Z| − z∗(z) ≥ inf

z∈F (x)
(−z∗(z))

}
.
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3 Scalarization

In this chapter, we will show that each set-valued convex function F : X → QtC(Z) can be equiv-
alently described by a family of scalar functions

{
ϕ(F,z∗) : X → IR ∪ {±∞} | z∗ ∈ C∗ \ {0}

}
.

These scalar functions are convex (subadditive, positively homogeneous), if F : X → QtC(Z) is
convex (subadditive, positively homogeneous). The set-valued function is proper (C-proper), if
and only if at least one scalarization ϕ(F,z∗) : X → IR∪{±∞} with z∗ ∈ C∗ \ {0} (z∗ ∈ C∗\−C∗)
is proper. Topological properties turn out to be somewhat more difficult as in general the scalar-
izations of closed set-valued functions are not closed.

It will turn out later, that also the conjugate, directional derivative or the subdifferential
of a set-valued function are fully described by the set of the conjugates, directional derivatives
or the subdifferentials of these scalarizations. Therefore, this chapter provides us with a strong
tool allowing us to derive the set-valued theory of convex analysis from the well-known scalar
theory.

It has been pointed out in [23], that scalarization, in the way we apply it, is not ”as in
many references about vector-optimization problems (for example [29], [41]),... just a useful tool
to find real-valued substitutes for vector-valued problems, but another way of representing a
set-valued theory”.

It will be shown at another place that it is not necessary to apply the scalar theory to obtain
the theory presented in this thesis. This approach has its beauty in the fact that the scalar
convex analysis can be derived as a special case of the new set-valued theory as well as the
fact that it sheds some new light to the fundamental (algebraic) structures needed to deal with
convexity. On the other hand, the approach chosen in most part of the present work stresses
the fact, that the set-valued theory can be completely derived from the scalar theory. Thus, the
scalar and set-valued theory are in fact of equal power and one can be derived from the other.

Throughout this chapter, X, Y and Z will be locally convex, separable spaces with the dual
spaces X∗, Y ∗ and Z∗. As before, C ⊆ Z is a closed convex cone with {0} ( C ( Z and C∗ the
negative dual of C.

3.1 Definition and basic results

3.1.1 Proposition. For a function F : X → QtC(Z) and z∗ ∈ C∗ \ {0} it holds

∀x ∈ X : F (x) ⊆ (F Cz∗ {0})(x)

and domF = dom (F Cz∗ {0}). Moreover, it holds

∀x ∈ X : F (x) =
⋂

z∗∈C∗\{0}
(F Cz∗ {0})(x).

Proof. For all z∗ ∈ C∗ \ {0} , x ∈ X it holds (F Cz∗ {0})(x) = cl (F (x) + H(z∗)), thus
the first two assertions are immediate. For x0 ∈ domF , the set F (x) is convex, closed and
F (x) = F (x) + C. By 2.4.2,

∀z∗ ∈ C∗ \ {0} , ∀x ∈ X : (F Cz∗ {0})(x) =
{
z̄ ∈ Z| − z∗(z̄) ≥ inf

z∈F (x)
(−z∗(z))

}
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holds true. If F (x0) = Z, then

∀z∗ ∈ C∗ \ {0} : inf
z∈F (x0)

(−z∗(z)) = −∞,

(F Cz∗ {0})(x0) = Z.

Otherwise, let z0 /∈ F (x0), then by a separation argument it exists z∗ ∈ C∗ \ {0} such, that

−z∗(z0) < inf
z∈F (x)

(−z∗(z))

holds true and thus z0 /∈ (F Cz∗ {0})(x0).

3.1.2 Definition. With a function F : X → QtC(Z) and an element z∗ ∈ Z∗ \ {0}, associate
the function ϕ(F,z∗) : X → IR ∪ {±∞} defined by

ϕ(F,z∗) (x) := inf {−z∗(z)| z ∈ F (x)} .

In fact, for a fixed x ∈ X, then function z∗ 7→ ϕ(F,z∗) (x) is the negative support function of
F (x),

∀x ∈ X, z∗ ∈ Z∗ : ϕ(F,z∗) (x) = −σ(z∗|F (x)).

3.1.3 Example. If x∗ ∈ X∗ and z∗ ∈ C∗ \ {0} holds, then ϕ(S(x∗,z∗),tz∗)(x) = tx∗(x) holds for
all t > 0 and all x ∈ X, while ϕ(S(x∗,z∗),z̄∗) ≡ −∞ holds for all z̄∗ ∈ C∗ \ cl cone {z∗}.

3.1.4 Remark. From 2.4.2, we know that A Cz∗ {0} =
{
z ∈ Z| − z∗(z) ≥ inf

z∈A
(−z∗(z))

}
holds

for any A ∈ P (Z)and z∗ ∈ Z∗ \ {0}. Thus, for a function F : X → QtC(Z) and z∗ ∈ C∗ \ {0}
it holds

∀x ∈ X : (F Cz∗ {0})(x) =
{
z ∈ Z| − z∗(z) ≥ ϕ(F,z∗) (x)

}
,

ϕ(F,z∗) (x) = ϕ(FCz∗{0},z∗)(x).

Moreover, domϕ(F,z∗) = domF holds true by 3.1.1 and for x ∈ domF it holds ϕ(F,z∗) (x) = −∞
if and only if F (x) Cz∗ {0} = Z.

If z∗ /∈ cone
{
z̄∗
}
, then (F (x) Cz∗ {0}) Cz̄∗ {0} = Z holds for all x ∈ domF , thus

∀x ∈ domF : ϕ(FCz∗{0},z̄∗)(x) = −∞.

3.1.5 Lemma. Let F : X → QtC(Z) be a function.

a) For all z∗ ∈ Z∗ \ {0} it holds domF = domϕ(F,z∗) and ϕ(F,z∗) (x) ∈ IR holds if and only if
F (x) is a z∗-proper set.

b) For all z∗ ∈ Z∗ \ {0}, t > 0 we have

ϕ(F,tz∗)(x) = ϕ(tF,z∗)(x) = tϕ(F,z∗) (x)

and for z∗1 , z∗2 ∈ Z∗ \ {0} we have

ϕ(F,z∗1+z∗2 )(x) ≥ ϕ(F,z∗1 )(x) + ϕ(F,z∗2 )(x)

c) If z∗ /∈ (C∗ \ {0} ), then ϕ(F,z∗) (x) = −∞ for every x ∈ domF .
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Proof.

a) This is 3.1.4.

b) As for t > and z∗ ∈ Z∗ \ {0} it holds

∀x ∈ X : (F Cz∗ {0})(x) = (F Ctz∗ {0})(x),

the first statement is proven by direct calculation from the formula

∀x ∈ X : (F Cz∗ {0})(x) =
{
z ∈ Z| − z∗(z) ≥ ϕ(F,z∗) (x)

}
.

The second statement can be seen by easy calculation from the definition of ϕ(F,z∗) (x).

∀x ∈ X : ϕ(F,z∗1+z∗2 ) = inf
z∈F (x)

((z∗1 + z∗2)(z))

≥ inf
z∈F (x)

(z∗1(z)) + inf
z∈F (x)

(z∗2(z))

= ϕ(F,z∗1 )(x) + ϕ(F,z∗2 )(x).

c) If z∗ /∈ C∗ \ {0} , then cl (F (x) +H(z∗)) = Z holds for all x ∈ domF , therefore ϕ(F,z∗) (x) =
−∞ holds for all x ∈ domF .

For a function F : X → QtC(Z) and z∗ ∈ C∗ \ {0} it holds

(F Cz∗ {0})(x) =
{
z ∈ Z| − z∗(z) ≥ ϕ(F,z∗) (x)

}
,

thus

epi (F Cz∗ {0}) =
{
(x, z) ∈ X × Z| ∃(x, t) ∈ epiϕ(F,z∗) : −z∗(z) = t

}
epiϕ(F,z∗) = {(x, t) ∈ X × IR| ∃(x, z) ∈ epi (F Cz∗ {0}) : −z∗(z) = t} .

Moreover, as F (x) ⊆ (F Cz∗ {0})(x) holds for all x ∈ X, it holds

epiF ⊆
{
(x, z) ∈ X × Z| ∃(x, t) ∈ epiϕ(F,z∗) : −z∗(z) = t

}
epiϕ(F,z∗) ⊇ {(x, t) ∈ X × IR| ∃(x, z) ∈ epiF : −z∗(z) = t} .

The following example will show that in general equation holds in neither inclusion.

3.1.6 Example. Let C = IR2
+ and F : IR → P (IR2) be a function defined by

∀x ∈ IR : F (x) :=
{

(t, 1
t
)| t > 0

}
+ C.

Let z∗ = (0,−1), then for all (x, z) ∈ epiF it holds −z∗(z) > ϕ(F,z∗)(x) = 0. Therefore,

epiϕ(F,z∗) ⊇ {(x, r) ∈ X × IR| ∃(x, z) ∈ epiF : −z∗(z) = r}

epiF ⊆
{
(x, z) ∈ X × Z| ∃(x, r) ∈ epiϕ(F,z∗) : −z∗(z) = r

}
but equality does not hold in neither inclusion.
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3.1.7 Theorem. For a function F : X → QtC(Z) it holds

∀x ∈ X : F (x) =
⋂

z∗∈C∗\{0}

{
z ∈ Z| − z∗(z) ≥ ϕ(F,z∗) (x)

}
.

Proof. By 3.1.1, it holds

∀x ∈ X : F (x) =
⋂

z∗∈C∗\{0}
(F Cz∗ {0})(x)

and

∀x ∈ X : (F Cz∗ {0})(x) =
{
z ∈ Z| − z∗(z) ≥ ϕ(F,z∗) (x)

}
.

An immediate result from 3.1.7 is, that it holds

epiF =
⋂

z∗∈C∗\{0}

{
(x, z) ∈ X × Z| (x,−z∗(z)) ∈ epiϕ(F,z∗)

}
.

3.1.8 Remark. If t > 0, then (F (x) Ctz∗ {0}) = (F (x) Cz∗ {0}). Therefore, if C∗ \ {0} ∗ =
coneB∗ with B∗ ⊆ Z∗, then

∀x ∈ X : F (x) =
⋂

z∗∈B∗

{
z ∈ Z| − z∗(z) ≥ ϕ(F,z∗) (x)

}
holds true.

3.1.9 Proposition. If F : X → QtC(Z) is a function, x ∈ X, z ∈ Z and z∗ ∈ C∗ \ {0} , then
the following statements are equivalent

−z∗(z0) = ϕ(F,z∗) (x)
F (x) Cz∗ {0} = z0 +H(z∗)
F (x) Cz∗ {z0} = H(z∗).

Proof. It holds −z∗(z) = ϕ(F,z∗) (x) if and only if

F (x) Cz∗ {0} = {z ∈ Z| − z∗(z) ≥ −z∗(z0)} = z0 +H(z∗).

By 2.4.2,

F (x) Cz∗ {z0} =
{
z ∈ Z| − z∗(z) ≥ ϕ(F,z∗) (x)− (−z∗(z0))

}
holds, proving the equivalence.

3.1.10 Proposition (Scalarization of vector-valued functions). a) For a function F : X →
QtC(Z) it holds F (x) = z + C if and only if

∀z∗ ∈ C∗ \ {0} : −z∗(z) = ϕ(F,z∗) (x).

b) Let f : X → Z ∪ {±∞} be a vector-valued function and FC : X → QtC(Z) its set-valued
extension defined as F (x) = f(x) + C for all x ∈ X, then

∀z∗ ∈ C∗ \ {0} : ϕ(F,z∗) (x) =
{
−z∗(f(x)), if x ∈ domF ;
+∞, else.

For z∗1 , z∗2 ∈ C∗ \ {0} it holds

∀x ∈ X : ϕ(F,z∗1+z∗2 )(x) = ϕ(F,z∗1 )(x) + ϕ(F,z∗2 )(x).
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Proof.

a) It holds
z + C =

⋂
z∗∈C∗\{0}

{y ∈ Z| − z∗(y) ≥ −z∗(z)} ,

so if
∀z∗ ∈ C∗ \ {0} : −z∗(z) = ϕ(F,z∗) (x)

holds, then F (x) = {z}+ C is true.

On the other hand let F (x) = {z}+ C, then

∀z∗ ∈ C∗ \ {0} : F (x) Cz∗ {0} = z0 +H(z∗)

and therefore by above the statement holds true.

b) This is obvious from a).

The equation
∀x ∈ X : ϕ(F,z∗1+z∗2 )(x) = ϕ(F,z∗1 )(x) + ϕ(F,z∗2 )(x)

is not true in more general cases of F : X → QtC(Z) , as it is essential in 3.1.10, that the infimum
in the definition of ϕ(F,z∗) (x) is attained in the same element f(x) for all z∗ ∈ C∗ \ {0} .

3.2 Algebraic properties

3.2.1 Proposition. Let F, F1, F2 : X → QtC(Z) be three functions, z∗ ∈ C∗ \ {0} and t > 0.

a) It holds
∀x ∈ X : ϕ(tF,z∗)(x) = tϕ(F,z∗)(x).

b) It holds
∀x ∈ X : ϕ(F1⊕F2,z∗)(x) = ϕ(F1,z∗)(x) + ϕ(F2,z∗)(x).

c) It holds
∀x ∈ X : ϕ(F1Cz∗F2,z∗)(x) = ϕ(F1,z∗)(x) C ϕ(F2,z∗)(x)

d) It holds
∀x ∈ X : ϕ(F1�F2,z∗)(x) =

(
ϕ(F1,z∗)�ϕ(F2,z∗)

)
(x)

e) If A ∈ L (X,Y ) and G : Y → Z, then it holds

∀y ∈ Y : ϕ(AF,z∗)(y) = Aϕ(F,z∗)(y)
∀x ∈ X : ϕ(GA,z∗)(x) = ϕ(G,z∗)(Ax).

Proof.

a) By definition, ϕ(tF,z∗)(x) = inf
z∈tF (x)

(−z∗(z)), so the statement is immediate.
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b) By 2.4.4,

∀A ∈ QtC(Z) : inf z∗ {A} = (A Cz∗ {0}) ∈ QtC(Z)

holds and by 2.2.5, inf(A⊕B) ≤ inf A⊕ inf B holds for all A,B ∈ QtC(Z) . Thus by 3.1.4 it
holds

∀x ∈ X : ϕ(F1⊕F2,z∗)(x) ≤ ϕ(F1,z∗)(x) + ϕ(F2,z∗)(x).

It holds

∀A,B ∈ QtC(Z) : (A Cz∗ {0})⊕ (B Cz∗ {0}) ⊆ (A⊕B) Cz∗ ({0} ⊕ {0}) = (A⊕B) Cz∗ {0}

by 2.4.8 and hence

∀x ∈ X : ϕ(F1,z∗)(x) + ϕ(F2,z∗)(x) ≥ ϕ(F1⊕F2,z∗)(x)

holds true.

c) It holds
ϕ(F1Cz∗F2),z∗(x) = inf {−z∗(z)| z ∈ (F1(x) Cz∗ F2(x))}

And by 2.4.2 it holds

(F1(x) Cz∗ F2(x)) =
{
z ∈ Z| − z∗(z) ≥ ϕ(F1,z∗)(x) C ϕ(F2,z∗)(x)

}
,

which is the desired result.

d) By definition,

∀x ∈ X : (F1�F2)(x) := cl co
⋃

x1+x2=x
(F1(x1) + F2(x2))

holds. As X is a linear space,

∀x ∈ X : (F1�F2)(x) := cl co
⋃
x̄∈X

(F1(x̄) + F2(x− x̄))

holds. As −z∗ ∈ Z∗ holds,

∀x ∈ X : ϕ(F1�F2,z∗)(x) = inf
z∈
⋃
x̄∈X

(F1(x̄)+F2(x−x̄))
(−z∗(z))

and therefore

∀x ∈ X : ϕ(F1�F2,z∗)(x) = inf
x̄∈X

(
inf

z1∈F1(x̄),
z2∈F2(x−x̄)

(−z∗(z1 + z2))
)

= inf
x̄∈X

(
ϕ(F1,z∗)(x̄) + ϕ(F2,z∗)(x− x̄)

)
= (ϕ(F1,z∗)�ϕ(F2,z∗))(x)
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e) It holds

ϕ(AF,z∗)(y) = inf

−z∗(z)| z ∈ cl co
⋃

Ax=y
F (x)

 ,
hence

ϕ(AF,z∗)(y) = inf {inf {−z∗(z)| z ∈ F (x)} | Ax = y}
= (Aϕ(F,z∗))(y).

For the second equation note that

ϕ(GA,z∗)(x) = inf {−z∗(z)| z ∈ G(Ax)} ,

hence
ϕ(GA,z∗)(x) = ϕ(G,z∗)A(x).

3.2.2 Lemma. Let F,G : X → QtC(Z) be two functions. It holds

∀x ∈ X : F (x) ⊇ G(x)

if and only if
∀x ∈ X : ∀z∗ ∈ C∗ \ {0} : ϕ(F,z∗) (x) ≤ ϕ(G,z∗)(x).

Proof. If F (x) ⊇ G(x) holds for all x ∈ X, then by 3.1.2 it holds ϕ(F,z∗) (x) ≤ ϕ(G,z∗)(x) for
all x ∈ X and z∗ ∈ C∗ \ {0} . On the other hand, if ϕ(F,z∗) (x) ≤ ϕ(G,z∗)(x) holds for all x ∈ X
and z∗ ∈ C∗ \ {0} , then by 3.1.7 it holds F (x) ⊇ G(x) for all x ∈ X.

3.2.3 Lemma. If F : X → QtC(Z) is a function, then

a) F is convex if and only if for all z∗ ∈ C∗ \ {0} the function ϕ(F,z∗) : X → IR ∪ {±∞} is
convex.

b) It holds
∀x ∈ X, ∀z∗ ∈ C∗ \ {0} , : (coϕ(F,z∗) )(x) = ϕ(coF ),z∗(x).

Proof.

a) By definition 2.2.9, F is convex if and only if for each t ∈ (0, 1) and for x1, x2 ∈ X it holds

F (tx1 + (1− t)x2) ⊇ tF (x1) + (1− t)F (x2).

Therefore by 3.1.2 and 3.2.1, ϕ(F,z∗) (tx1 +(1− t)x2) ≤ tϕ(F,z∗) (x1)+(1− t)ϕ(F,z∗) (x2) holds
for all z∗ ∈ C∗ \ {0} .

If the function ϕ(F,z∗) is convex for all z∗ ∈ C∗ \ {0} , then

∀x1, x2 ∈ X, ∀t ∈ (0, 1) : ϕ(F,z∗) (tx1 + (1− t)x2) ≤ tϕ(F,z∗) (x1) + (1− t)ϕ(F,z∗) (x2).

Therefore, F (tx1 + (1− t)x2) ⊇ tF (x1) + (1− tF (x2) holds by 3.1.7, so F is convex.
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b) As ϕ(coF,z∗) is a convex minorant of ϕ(F,z∗) , we know that ϕ(coF,z∗) ≤ coϕ(F,z∗) .

The epigraph of coF is equal to co epiF and it holds

epiF =
⋂

z∗∈C∗\{0}

{
(x, z) ∈ X × Z| (x,−z∗(z)) ∈ epiϕ(F,z∗)

}
.

Thus,

epi coF = co
⋂

z∗∈C∗\{0}

{
(x, z) ∈ X × Z| (x,−z∗(z)) ∈ epiϕ(F,z∗)

}
⊆

⋂
z∗∈C∗\{0}

co
{
(x, z) ∈ X × Z| (x,−z∗(z)) ∈ epiϕ(F,z∗)

}
=

⋂
z∗∈C∗\{0}

{
(x, z) ∈ X × Z| (x,−z∗(z)) ∈ co epiϕ(F,z∗)

}
=

⋂
z∗∈C∗\{0}

{
(x, z) ∈ X × Z| (x,−z∗(z)) ∈ epi coϕ(F,z∗)

}
.

The function G : X → QtC(Z) defined by

epiG =
⋂

z∗∈C∗\{0}

{
(x, z) ∈ X × Z| (x,−z∗(z)) ∈ epi coϕ(F,z∗)

}
is convex and it holds

∀x ∈ X, ∀z∗ ∈ C∗ \ {0} : ϕ(coF,z∗)(x) = inf
(x,z)∈co epiF

(−z∗(z))

≥ inf
(x,z)∈epiG

(−z∗(z))

≥ coϕ(F,z∗) (x).

3.2.4 Remark. By similar proofs one can show that a function F : X → QtC(Z) is positively
homogenous, subadditive or sublinear if and only if for all z∗ ∈ C∗ \ {0} the function ϕ(F,z∗) :
X → IR ∪ {±∞} is positively homogeneous, subadditive or sublinear.

3.2.5 Lemma. Let F : X → QtC(Z) be a function and x ∈ domF .

a) It holds F (x) 6= Z if and only if there is a z∗ ∈ C∗ \ {0} such that ϕ(F,z∗)(x) ∈ IR.

b) It holds F (x) 6= F (x)− C if and only if there is a z∗ ∈ C∗ \ −C∗ such that ϕ(F,z∗)(x) ∈ IR.

c) It holds F (x) 6= Z and F (x) = F (x)−C if and only if there is a z∗ ∈ (C∗ ∩−C∗) \ {0} such
that ϕ(F,z∗)(x) ∈ IR and for all z∗ ∈ C∗ \ C∗ it holds ϕ(F,z∗)(x) = −∞.

Proof.

a) By 3.1.7, it holds

F (x) =
⋂

z∗∈C∗\{0}

{
z ∈ Z| − z∗(z) ≥ ϕ(F,z∗) (x)

}
,

thus, F (x) = Z holds if and only if

∀z∗ ∈ C∗ \ {0} : ϕ(F,z∗) (x) = −∞
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b) Let z0 ∈ F (x) and c ∈ C such, that z0 − c /∈ F (x). By a separation argument it exists
z∗ ∈ Z∗ \ {0} such, that −z∗(z0 − c) < ϕ(F,z∗) (x). As z0 was chosen as an element of F (x),
z∗ ∈ C∗ \ −C∗ holds true.

c) The third assertion is a combination of the first two.

In general, the scalarizations of a proper convex set-valued function are not proper, as the
following examples shows.

3.2.6 Example. a) Let C = cl cone {(0, 1)} ⊆ IR2 and F : X → P (IR2) be a function defined
by

∀x ∈ X : F (x) :=
{
(t, t2)| t ∈ IR

}
+ C

and z∗ = (−1, 0) ∈ C∗ ∩−C∗ and z∗n = (−1,− 1
n) for all n ∈ IN. The function F is C-proper

and core domF 6= ∅ and ϕz∗ is identically −∞ while ϕz∗n is identically −3
4n for all n ∈ IN.

b) Let C = cl cone {(1, 1)} ⊆ IR2 and F : X → P (IR2) be a function defined by

∀x ∈ X : F (x) = R2
+.

The function F is convex and C-proper and for all z∗ ∈ C∗ \R2
− it holds ϕz∗ ≡ −∞.

3.2.7 Definition. A function F : X → P (Z) is called z∗-proper for z∗ ∈ C∗ \ {0} , if (F Cz∗
{0}) : X → QtC(Z) is proper.

A function F : X → QtC(Z) is z∗-proper if and only if ϕ(F,z∗) : X → IR ∪ {±∞} is proper.

3.2.8 Lemma. If F : X → QtC(Z) is z∗-proper with z∗ ∈ C∗ \ {0} (z∗ ∈ C∗ \ −C∗), then F is
proper (C-proper).

Proof. Let F be z∗-proper with z∗ ∈ C∗ \ {0} , then domF = domϕ(F,z∗) 6= ∅. Moreover,

∀x ∈ X : F (x) ⊆ (F Cz∗ {0})(x) 6= Z

holds, thus F is proper. If additionally z∗ ∈ C∗ \ −C∗ holds, then

∀x ∈ domF : −∞ = inf
z∈F (x)−C

(−z∗(z)) < ϕ(F,z∗) (x),

thus F (x) 6= F (x)− C holds for all x ∈ domF and therefore F is C-proper.

3.2.9 Lemma. If F : X → QtC(Z) is a convex function and x0 ∈ core domF , then F is proper
(C-proper) if and only if it exists z∗ ∈ C∗ \ {0} (z∗ ∈ C∗ \−C∗) such that F (x0) is a z∗-proper
set.

Proof. If it exists z∗ ∈ C∗ \ {0} (z∗ ∈ C∗ \ −C∗) such that F is z∗-proper, then by 3.2.8 F is
proper (C-proper).

Let F : X → QtC(Z) be proper. By 3.2.3, ϕ(F,z∗) is convex for all z∗ ∈ C∗ \ {0} . By 3.2.5
there is z∗0 ∈ C∗ \ {0} such that ϕ(F,z∗0 )(x0) ∈ IR. If ϕ(F,z∗0 )(x) = −∞ for some x ∈ X, then by
8.3.1 it holds

∀x ∈ core domF : ϕ(F,z∗0 )(x) = −∞,

a contradiction. The proof for F being C-proper goes along parallel arguments with z∗0 ∈
C∗ \ −C∗.
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3.2.10 Theorem. If F : X → QtC(Z) is a convex and proper function and x0 ∈ core domF ,
then

F (x0) =
⋂

z∗∈C∗\{0} ,
ϕ(F,z∗) proper

{
z ∈ Z| (−z∗, z) ≥ ϕ(F,z∗) (x0)

}
.

If F is additionally C−proper, then

F (x0) =
⋂

z∗∈C∗\−C∗,
ϕ(F,z∗) proper

{
z ∈ Z| (−z∗, z) ≥ ϕ(F,z∗) (x0)

}
.

Proof. By 3.1.5,
∀z∗ ∈ C∗ \ {0} : domϕ(F,z∗) = domF

and therefore x0 ∈ core domϕ(F,z∗) for all z∗ ∈ C∗ \ {0} . By 3.2.3, each scalarization ϕ(F,z∗) :
X → IR ∪ {±∞} is convex and by 3.1.7 it holds

F (x0) =
⋂

z∗∈C∗\{0}

{
z ∈ Z| (−z∗, z) ≥ ϕ(F,z∗) (x0)

}
.

By 3.2.9, the set {
z∗ ∈ C∗ \ {0} : ϕ(F,z∗) (x0) ∈ IR

}
=
{
z∗ ∈ C∗ \ {0} : ϕ(F,z∗) : X → IR ∪ {±∞} is proper

}
is nonvoid. On the other hand if ϕ(F,z∗0 ) : X → IR ∪ {±∞} is not proper for z∗0 ∈ C∗ \ {0} , then

∀x ∈ core domϕ(F,z∗) : ϕ(F,z∗0 )(x) = −∞.

Therefore, the first assertion holds true
If F is C-proper, then exists z∗0 ∈ C∗ \ −C∗ such that ϕ(F,z∗0 ) is proper, compare 3.2.9. In

particular, ϕ(F,z∗0 )(x0) ∈ IR because of 3.2.5. Let z0 /∈ F (x0). As F (x0) = cl co (F (x0) + C), by
a separation argument there is z∗ ∈ C∗ \ {0} and ε > 0 such, that −z∗(z0) < ϕ(F,z∗) (x0)− 2ε.
Choosing t > 0 small enough it holds

−ε < −tz∗0(z0) < ε,

−ε < ϕ(F,tz∗0 )(x0) < ε.

Furthermore, (z∗ + tz∗0) ∈ C∗ \ −C∗ and

−(z∗ + tz∗0)(z0) < ϕ(F,z∗)(x0)− ε < ϕ(F,z∗) (x0) + ϕ(F,tz∗0 )(x0) ≤ ϕ(F,z∗+tz∗0 )(x0).

Therefore, the second assertion is proven.
The result of 3.2.10 does not hold for x /∈ core domF in general, as the following example

shows.

3.2.11 Example. Let C = cl cone {(0, 1)} ⊆ IR2 and F : IR → IR2 a function defined by

F (x) :=


H((0,−1)), if x > 0;
C, if x = 0;
∅, else.

Obviously core domF 6= ∅ holds and F is convex. ϕ(F,z∗) : X → IR ∪ {±∞} is proper if and
only if z∗ ∈ cone {(0,−1)} but

F (0) (
⋂
t>0

{
z ∈ IR2| − t(0,−1)(z) ≥ ϕ(F,t(0,−1))(0)

}
= H(z∗).
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3.3 Topological properties

It will turn out later on, that the richest theory is, as in the scalar case, that of proper closed
convex functions. Therefore, this subsection comprises the most important tools for our further
investigations. It will turn out that the correspondence between the topological properties of a
function F : X → QtC(Z) and those of its scalarizations ϕ(F,z∗) is not as immediate as it was
the case for the algebraic properties. Still, the results presented in the following will be sufficient
to develop a theory of set-valued convex functions in a one-to-one correspondence to the scalar
theory.

3.3.1 Lemma. Let F : X → QtC(Z) be a function and z∗ ∈ C∗ \ {0} .

a) It holds clϕ(F,z∗) (x) = ϕ(cl (FCz∗{0}),z∗)(x) for all x ∈ X.

b) The function (F Cz∗ {0}) : X → QtC(Z) is closed if and only if ϕ(F,z∗) is closed.

c) If ϕ(F,z∗) : X → IR ∪ {±∞} is closed for all z∗ ∈ C∗ \ {0} , then F is closed.

Proof.

a) By definition,

∀x ∈ X : clϕ(F,z∗) (x) = sup
U∈U X

inf
x̄∈U

ϕ(F,z∗) (x+ x̄)

and

epi (F Cz∗ {0}) =
{
(x, z) ∈ X × Z| − z∗(z) ≥ ϕ(F,z∗) (x)

}
.

It holds

− z∗(z) ≥ clϕ(F,z∗) (x)
⇔ ∀U ∈ U X , ∀ε > 0, ∃x̄ ∈ U : −z∗(z) + ε ≥ ϕ(F,z∗) (x+ x̄)
⇔ ∀U ∈ U X , ∀V ∈ U Z , ∃x̄ ∈ U, ∃z̄ ∈ V : −z∗(z + z̄) ≥ ϕ(F,z∗) (x+ x̄)
⇔ ∀U ∈ U X , ∀V ∈ U Z , ∃x̄ ∈ U, ∃z̄ ∈ V : (x+ x̄, z + z̄) ∈ epi (F Cz∗ {0})
⇔ (x, z) ∈ cl epi (F Cz∗ {0}).

Thus,

epi cl (F Cz∗ {0}) =
{
(x, z) ∈ X × Z| − z∗(z) ≥ clϕ(F,z∗) (x)

}
and ϕ(cl (FCz∗{0}),z∗)(x) = clϕ(F,z∗) (x) holds for all x ∈ X.

b) The function (F Cz∗ {0}) : X → QtC(Z) is closed if and only if epi (F Cz∗ {0}) is closed. In
this case,

∀x ∈ X : ϕ(F,z∗) (x) = inf
(x,z)∈epi (FCz∗{0})

(−z∗(z))

= inf
(x,z)∈cl epi (FCz∗{0})

(−z∗(z))

= clϕ(F,z∗) (x).

On the other hand, if ϕ(F,z∗) : X → IR ∪ {±∞} is closed, then epi (F Cz∗ {0}) is closed and
therefore (F Cz∗ {0}) is closed.
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c) If ϕ(F,z∗) is closed for all z∗ ∈ C∗ \ {0} , then epi (F Cz∗ {0}) is closed for all z∗ ∈ C∗ \ {0} .
By 3.1.7 or by 3.1.1,

epiF =
⋂

z∗∈C∗\{0}
epi (F Cz∗ {0})

and thus epiF is closed, therefore, F (x) = (clF )(x) holds for all x ∈ X.

A function F : X → QtC(Z) being closed does not mean that all ϕ(F,z∗) are necessarily
closed.

3.3.2 Example. The set-valued function F : IR → P (IR2) in 3.1.6 is proper, closed and
convex, as domF 6= ∅ and epiF is a closed, convex set. With z∗ = (0,−1), the scalarization
ϕ(F,z∗) : IR → IR ∪ {±∞} is not closed at 0, as ϕ(F,z∗) (0) = +∞ and clϕ(F,z∗) (0) = 0.

For a function F : X → QtC(Z) and z∗ ∈ C∗ \ {0} , it holds dom clϕ(F,z∗) ⊇ domϕ(clF,z∗) =
dom clF . As can be seen in 3.3.2, the opposite inclusion does not hold.

3.3.3 Definition. A function F : X → QtC(Z) is called z∗-closed for z∗ ∈ C∗ \ {0} , if (F Cz∗
{0}) : X → QtC(Z) is a closed function.

From 3.3.1 we know that a function F : X → QtC(Z) is closed, if it is z∗-closed for all
z∗ ∈ C∗ \ {0} . Moreover, F is z∗-closed if and only if ϕ(F,z∗) : X → IR ∪ {±∞} is closed.

The property 3.3.1c) (F is z∗-closed for all z∗ ∈ C∗ \ {0} ) is called C-upper hemicontinuity
in [45]. It is shown there that if all images of F : X → QtC(Z) can be represented as B(x) +C,
where B(x) ⊆ Z is a bounded set for all x ∈ X, then F : X → QtC(Z) is closed if and only if it
is z∗-closed for all z∗ ∈ C∗ \ {0} .

3.3.4 Lemma. For a given function F : X → QtC(Z) it holds

∀z∗ ∈ C∗ \ {0} : ∀x ∈ X : clϕ(clF,z∗)(x) = (clϕ(F,z∗) )(x) ≤ ϕ(clF,z∗)(x).

Proof. It holds

∀z∗ ∈ C∗ \ {0} : epiF ⊆ epi (F Cz∗ {0})

and thus

∀z∗ ∈ C∗ \ {0} : cl epiF ⊆ cl epi (F Cz∗ {0}).

Hence by 3.3.1, clϕ(F,z∗) (x) ≤ ϕ(clF,z∗)(x) holds for all x ∈ X. From this one can see that
clϕ(F,z∗) (x) ≤ clϕ(clF,z∗)(x) holds for all x ∈ X, as clϕ(clF,z∗) is the greatest closed mino-
rant of ϕ(clF,z∗). On the other hand, ϕ(clF,z∗)(x) ≤ ϕ(F,z∗) (x) holds for all x ∈ X and thus
clϕ(F,z∗) (x) ≥ clϕ(clF,z∗)(x).

3.3.5 Proposition. If F : X → QtC(Z) is convex, then

∀x ∈ X : (clF )(x) =
⋂

z∗∈C∗\{0}

{
z ∈ Z| − z∗(z) ≥ clϕ(F,z∗) (x)

}
.
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Proof. The inclusion ”⊆” holds by 3.3.4. As F is convex, the set cl
⋃
y∈U

F (x+ y) is convex for

any U ∈ U X .
It holds z0 /∈ (clF )(x0) if and only if (x0, z0) /∈ cl epiF . Therefore there are U0 ∈ U X , V0 ∈

U Z such that
(x0, z0) /∈ epiF + (U0 × V0)

an so z0 /∈ cl
⋃

y∈U0

F (x+ y).

If cl
⋃

y∈U0

F (x+ y) = ∅ for some U0 ∈ U X , then

∀z∗ ∈ C∗ \ {0} , y ∈ U0 : ϕ(F,z∗) (x+ y) = clϕ(F,z∗) (x) = +∞

and therefore
∅ = (clF )(x) =

⋂
z∗∈C∗\{0}

{
z ∈ Z| − z∗(z) ≥ clϕ(F,z∗) (x)

}
.

Now let cl
⋃

y∈U0

F (x+ y) 6= ∅. By a separation argument we get z∗ ∈ C∗ \ {0} , α ∈ IR such

that

−z∗(z0) < α ≤ inf

−z∗(z)| z ∈ cl
⋃
y∈U0

F (x+ y)

 = inf
y∈U0

ϕ(F,z∗) (x+ y) .

As we have inf
{
ϕ(F,z∗) (x+ y) | y ∈ U0

}
≤
(
clϕ(F,z∗)

)
(x), it follows that

z0 /∈
{
z ∈ Z| − z∗(z) ≥

(
clϕ(F,z∗)

)
(x)
}
.

Notice that the formula in 3.3.5 is stated only for convex functions.

3.3.6 Proposition. Let F : X → QtC(Z) be a convex function, z∗ ∈ C∗ \ {0} , x0 ∈ core domF .
Then either clF is z∗-proper and ϕ(F,z∗) (x0) = clϕ(F,z∗) (x0), or clϕ(F,z∗) (x) = −∞ for all
x ∈ domF .

Proof. The function ϕ(F,z∗) is convex for every z∗ ∈ C∗ \ {0} , so by 8.3.1, clϕ(F,z∗) (x0) =
ϕ(F,z∗) (x0) or clϕ(F,z∗) (x) = −∞ for all x ∈ domF . If clϕ(F,z∗) (x0) = ϕ(F,z∗) (x0) > −∞, then
by 3.3.4 clF is z∗-proper.

3.3.7 Proposition. Let F : X → QtC(Z) be a convex function, (x0, z0) ∈ int epiF . If F is
z∗-proper for z∗ ∈ C∗ \ {0} , then ϕ(F,z∗) : X → IR ∪ {±∞} is continuous at x0. If F is not
z∗-proper, then ϕ(F,z∗) (x) = −∞ holds for all x ∈ int domF .

Proof. It holds (x0, z0) ∈ int epiF if and only if there is U ∈ U X and V ∈ U Z such that
((x0, z0)+U×V ) ⊆ epiF . Therefore for all z∗ ∈ C∗ \ {0} exists ε > 0 such that {(x0,−z∗(z0))}+
U × (−ε, ε) ⊆ epiϕ(F,z∗) , so for all z∗ ∈ C∗ \ {0} it holds (x0,−z∗(z0)) ∈ int epiϕ(F,z∗) . If F is
z∗-proper, then ϕ(F,z∗) is proper and ϕ(F,z∗) (x0) ∈ IR. By 8.3.3 it holds ϕ(F,z∗) : X → IR∪{±∞}
is continuous. If F is not z∗-proper, then ϕ(F,z∗) (x̄) = −∞ holds for some x̄ ∈ X. Thus by
8.3.3, ϕ(F,z∗) (x) = −∞ holds for all x ∈ int domϕ(F,z∗) = int domF ,

3.3.8 Corollary. Let F : X → QtC(Z) be a sublinear function, (0, z0) ∈ int epiF . Then for all
x ∈ X there exists z ∈ Z such, that (x, z) ∈ int epiF .
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Proof. It holds (0, z0) ∈ int epiF if and only it exists U ∈ U X and V ∈ U Z such, that

∀(x, z) ∈ U × V : (x, z + z0) ∈ int epiF.

Moreover domF = coneU = X and

∀t > 0, ∀x ∈ U : F (tx) = tF (x)

and int epiF is a convex cone, thus

∀t > 0, ∀x ∈ U : (tx, t(z + z0)) ∈ int epiF.

The property (x, z) ∈ int epiF will prove to be an assumption strong enough to state various
strong duality results for convex functions. The same result can be achieved by the following
assumptions.

3.3.9 Proposition. Let F : X → QtC(Z) be a convex function, x0 ∈ domF and one of the two
following conditions holds.

a) The function F is C-continuous in x0 in the sense of [45], that is

∀U ∈ U Z : ∃V ∈ U X : ∀x ∈ V : F (x0) ⊆ F (x0 + x) + U, F (x0 + x) ⊆ F (x0) + U.

b) The function F is continuous in x0 in the sense of [21] Definition 2.5.1., that is if D ⊆ Z is
an open set, then

F (x0) ⊆ D ⇒ ∃UX ∈ U X : ∀x ∈ UX : F (x0 + x) ⊆ D,
F (x0) ∩D 6= ∅ ⇒ ∃UX ∈ U X : ∀x ∈ UX : F (x0 + x) ∩D 6= ∅.

If F is z∗-proper for z∗ ∈ C∗ \ {0} , then ϕ(F,z∗) : X → IR ∪ {±∞} is continuous at x0. If F is
not z∗-proper, then ϕ(F,z∗) (x) = −∞ holds for all x ∈ int domF .

Proof.

a) From

∀U ∈ U Z : ∃V ∈ U X : ∀x ∈ V : F (x0) ⊆ F (x0 + x) + U, F (x0 + x) ⊆ F (x0) + U,

it holds for all z∗ ∈ C∗ \ {0} , that

∀ε > 0 : ∃V ∈ U X : ∀x ∈ V : ϕ(F,z∗) (x0 + x)− ε ≤ ϕ(F,z∗) (x0) ≤ ϕ(F,z∗) (x0 + x) + ε,

hence each scalarization of F is continuous at x0 ∈ domϕ(F,z∗) or ϕ(F,z∗) (x0) = −∞. In the
latter case, ϕ(F,z∗) (x) = −∞ holds for all x ∈ int domF as ϕ(F,z∗) is convex.

b) Let z0 ∈ F (x0) hold, then

∀UZ ∈ U Z : ∃UX ∈ U X : ∀x ∈ UX : F (x0 + x) ∩ (z0 + UZ) 6= ∅,

therefore, for all z∗ ∈ C∗ \ {0} it holds

∀ε > 0 : ∃UX ∈ U X : ∀x ∈ UX : ϕ(F,z∗) (x0 + x) ≤ −z∗(z0) + ε ≤ ϕ(F,z∗) (x0) + ε.
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On the other hand, F (x0) ⊆ F (x0) + UZ holds for all UZ ∈ U Z and thus

∀UZ ∈ U Z : ∃UX ∈ U X : ∀x ∈ UX : F (x0 + x) ⊆ (F (x0) + UZ).

Therefore, for all z∗ ∈ C∗ \ {0} it holds

∀ε > 0 : ∃UX ∈ U X : ∀x ∈ UX : ϕ(F,z∗) (x0 + x) ≥ ϕ(F,z∗) (x0)− ε.

Hence, each scalarization of F is continuous at x0 ∈ domϕ(F,z∗) or ϕ(F,z∗) (x0) = −∞. In
the latter case, ϕ(F,z∗) (x) = −∞ holds for all x ∈ int domF as ϕ(F,z∗) is convex.

3.3.10 Remark. a) If (x0, z0) ∈ int epiF holds, then z0 ∈ intF (x0) is true, while this cannot
be derived from the assertions in 3.3.9.

b) From the proof of 3.3.9 it can be derived that F (x0) = (clF )(x0), if either

∀U ∈ U Z : ∃V ∈ U X : ∀x ∈ V : F (x0 + x) ⊆ F (x0) + U (3.3.1)

or for all open sets D ⊆ Z holds

F (x0) ⊆ D ⇒ ∃UX ∈ U X : ∀x ∈ UX : F (x0 + x) ⊆ D. (3.3.2)

If either (3.3.1) or (3.3.2) holds, then F is z∗-closed in x0 for all z∗ ∈ C∗ \ {0} .

3.3.11 Theorem. Let F : X → QtC(Z) be a closed convex function.

a) If F is proper, then

∀x ∈ X : F (x) =
⋂

z∗∈C∗\{0} ,
cl coϕ(F,z∗) proper

{
z ∈ Z| − z∗(z) ≥ clϕ(F,z∗) (x)

}
.

b) If F is C-proper, then

∀x ∈ X : F (x) =
⋂

z∗∈C∗\−C∗,
cl coϕ(F,z∗) proper

{
z ∈ Z| − z∗(z) ≥ clϕ(F,z∗) (x)

}
.

Proof.

a) The equation
F (x) =

⋂
z∗∈C∗\{0}

{
z ∈ Z| − z∗(z) ≥ clϕ(F,z∗) (x)

}
.

holds by 3.3.5. By 3.2.3, ϕ(F,z∗) is convex for all z∗ ∈ C∗ \ {0} . Suppose there is no
z∗ ∈ C∗ \ {0} such, that clϕ(F,z∗) is proper, then

F (x) =
{
Z, for x ∈ domF ;
∅, else.

holds by 8.3.1. This is a contradiction, as F is proper, therefore,

∃z∗0 ∈ C∗ \ {0} : clϕ(F,z∗0 ) is proper
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It holds z0 /∈ F (x) if and only if z0 /∈
⋂

U∈U X
cl
⋃
y∈U

F (x+ y).

If cl
⋃

y∈U0

F (x+ y) = ∅ for some U0 ∈ U X , then

∀z∗ ∈ C∗ \ {0} , y ∈ U0 : ϕ(F,z∗) (x+ y) = clϕ(F,z∗) (x) = +∞

and therefore

∅ = F (x) =
⋂

z∗∈C∗\{0} ,
clϕ(F,z∗) proper

{
z ∈ Z| − z∗(z) ≥ clϕ(F,z∗) (x)

}
.

Now let cl
⋃

y∈U0

F (x + y) 6= ∅ and z0 /∈ cl
⋃

y∈U0

F (x + y). By a separation argument we get

z∗ ∈ C∗ \ {0} , α ∈ IR such that

−z∗(z0) < α ≤ inf

−z∗(z)| z ∈ cl
⋃
y∈U0

F (x+ y)

 ≤ clϕ(F,z∗) (x) .

Especially, clϕ(F,z∗) is proper and

z0 /∈
{
z ∈ Z| − z∗(z) ≥

(
clϕ(F,z∗)

)
(x)
}
.

Therefore, the statement is proven.

b) Let F be C-proper. From the above we know that

∀x ∈ X : F (x) ⊆
⋂

z∗∈C∗\−C∗,
cl coϕ(F,z∗) proper

{
z ∈ Z| − z∗(z) ≥ clϕ(F,z∗) (x)

}
.

First, let x ∈ domF , then
∃z ∈ (F (x)− C) \ F (x). (3.3.3)

and there is z∗ ∈ C∗ \ {0} such, that clϕ(F,z∗) is proper and −z∗(z) < ϕ(F,z∗) (x). Suppose
z∗ ∈ C∗ ∩ −C∗, then by (3.3.3) it holds −z∗(z) ≥ ϕ(F,z∗) (x) ≥ clϕ(F,z∗) (x), which is a
contradiction, so

∃z∗0 ∈ C∗ \ −C∗ : clϕ(F,z∗0 ) is proper. (3.3.4)

If cl
⋃

y∈U0

F (x+ y) = ∅ for some U0 ∈ U X , then

∀z∗ ∈ C∗ \ {0} , y ∈ U0 : ϕ(F,z∗) (x+ y) = clϕ(F,z∗) (x) = +∞,

hence
∅ = F (x) =

⋂
z∗∈C∗\−C∗,

clϕ(F,z∗) proper

{
z ∈ Z| − z∗(z) ≥ clϕ(F,z∗) (x)

}
.

Now let cl
⋃

y∈U0

F (x+ y) 6= ∅ and z0 /∈ cl
⋃

y∈U0

F (x+ y). As before, by a separation theorem

there exist z∗ ∈ C∗ \ {0} , α ∈ IR such that

−z∗(z0) < α < clϕ(F,z∗) (x) .
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For any t > 0 it holds tz∗0 + z∗ ∈ C∗ \ −C∗.

If −(tz∗0 + z∗)(z0) < clϕ(F,tz∗0+z∗)(x) holds for some t > 0, then we are finished. Therefore
suppose that

∀t > 0 : −tz∗0(z0)− z∗(z0) ≥ clϕ(F,tz∗0+z∗)(x)
≥ cl (clϕ(F,tz∗0 )(x) + clϕ(F,z∗) (x))
> α+ tclϕ(F,z∗0 )(x)
> −z∗(z0) + t clϕ(F,z∗0 )(x).

Then
∀t > 0 : t(−z∗0(z0)− clϕ(F,z∗0 )(x)) > α+ z∗(z0) > 0

which is a contradiction with t small enough, as ϕ(F,z∗0 ) : X → IR ∪ {±∞} is proper.

Therefore, the statement is proven.

3.3.12 Corollary. Let F : X → QtC(Z) be a function with domF 6= ∅. If (cl coF ) : X →
QtC(Z) is proper, then

∀x ∈ X : (cl coF )(x) =
⋂

z∗∈C∗\{0} ,
cl coϕ(F,z∗) proper

{
z ∈ Z| − z∗(z) ≥ cl coϕ(F,z∗) (x)

}
.

If cl coF : X → QtC(Z) is C-proper, then

∀x ∈ X : (cl coF )(x) =
⋂

z∗∈C∗\−C∗,
cl coϕ(F,z∗) proper

{
z ∈ Z| − z∗(z) ≥ cl coϕ(F,z∗) (x)

}
.

Proof. For each z∗ ∈ C∗ \ {0} it holds

∀x ∈ X : clϕ(cl coF,z∗)(x) = cl coϕ(F,z∗) (x).

Thus, both assertions hold by 3.3.11.

3.3.13 Corollary. Let F : X → QtC(Z) be a function. The closed convex hull cl coF of F is
proper if and only if

∃z∗ ∈ C∗ \ {0} : cl coϕ(F,z∗) is proper.

The function cl coF is C-proper if and only if

∃z∗ ∈ C∗ \ −C∗ : cl coϕ(F,z∗) is proper.

Proof. Let cl coF be proper, from

∀x ∈ domF : (cl coF )(x) =
⋂

z∗∈C∗\{0} ,
cl coϕ(F,z∗) proper

{
z ∈ Z| − z∗(z) ≥ cl coϕ(F,z∗) (x)

}

we deduce the existence of at least one z∗ ∈ C∗ \ {0} with cl coϕ(F,z∗) proper. On the other
hand let cl coϕ(F,z∗0 ) be proper for z∗0 ∈ C∗ \ {0} , then domF 6= ∅ and

∀x ∈ domF : (cl coF )(x) ⊆
{
z ∈ Z| − z∗(z) ≥ ϕ(F,z∗) (x)

}
( Z,
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so cl coF is proper.
For the scalar functions ϕ(F,z∗) : X → IR ∪ {±∞} it is well-known, that cl coϕ(F,z∗) : X →

IR ∪ {±∞} is proper if and only if domϕ(F,z∗) 6= ∅ and it exists x∗ ∈ X∗ and t ∈ IR such, that
x∗(x)− t ≤ ϕ(F,z∗) (x) holds for all x ∈ X. Setting −z∗(e) = 1 with e ∈ Z, it holds

S(x∗,z∗)(x)− te = {z ∈ Z| − z∗(z) ≥ x∗(x)− t}

for all x ∈ X. Thus, cl coF is proper (C-proper) if and only if there is a (C-proper) conaffine
minorant of F and domF 6= ∅.
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4 Conjugation

In the case of a scalar function ϕ : X → IR ∪ {±∞}, the conjugate mapping of ϕ is defined as

ϕ∗(x∗) := sup
x∈X

(x∗(x)− ϕ(x)) (4.0.5)

for all x∗ ∈ X∗. The biconjugate is defined as

ϕ∗∗(x) := sup
x∈X

(x∗(x)− ϕ∗(x∗)) (4.0.6)

for all x ∈ X, compare [62] for both formulas.
For vector-valued functions, the conjugate of f : X → Z has been defined for example in

[9, 17, 36, 63] as

f∗(T ) := sup
x∈X

(T (x)− f(x)),

using L (X,Z) as the set of dual variables and understanding the supremum in the sense of
the vector-order. This approach requires the image space to be order-complete. Moreover, in
general the supremum of a set can be far away from the original set itself. Therefore, another
approach defines a set-valued conjugate of a vector-valued function, compare [40, 41, 54, 57],
as ”... for a vector problem, its dual ... is a problem whose objective function is set-valued
whatever the objective of the primal problem be.”([41], p.57). In these approaches, the dual
variables are also linear continuous operators T ∈ L (X,Z) and for many results the assumption
intC 6= ∅ is necessary. In [48, 54, 39] it can be observed how the difference in the definition of
set-valued conjugate of a function in fact causes a change of image-spaces from infimum-oriented
sets to supremum-oriented sets. This has been avoided in [23], but at the cost of the convexity
of the conjugate function. Our definition in fact is a variation of the one given in [23]. By
exploiting the possibilities of the z∗-difference introduced in subsection 2.4 we are able to define
a convex set-valued conjugate of a set-valued function F : X → QtC(Z) , the conjugate mapping
X∗×C∗ \ {0} into QtC(Z) . Likewise, the definition of the biconjugate will be inspired by (4.0.6).
In sequence, we will prove a Fenchel-Moreau-Theorem, a sum- and chain rule, weak duality and,
under an additional constrained assumption strong duality and a sandwich theorem.

Throughout this chapter, X, Y and Z are assumed to be locally convex separable spaces
with the corresponding dual spaces X∗, Y ∗ and Z∗ and Z is quasi-ordered by a closed convex
cone C ( Z with {0} ( C.

4.1 Definition and basic results

Let (x∗, z∗) ∈ X∗ ×C∗ \ {0} and −z ∈ Z generate an affine minorant of F : X → QtC(Z) , that
is

∀x ∈ X : F (x) + z ⊆ S(x∗,z∗)(x).

Then ⋂
x∈X

(
S(x∗,z∗)(x) Cz∗ F (x)

)
⊇ z +H(z∗).

Note that both sides of the inclusion are nonempty elements of QtH(z∗)(Z). Hence, S(x∗,z∗) − z :
X → QtC(Z) is an affine minorant of F : X → QtC(Z) if and only if

z ∈
⋂
x∈X

(
S(x∗,z∗)(x) Cz∗ F (x)

)
.
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4.1.1 Definition. Let F : X → P (Z) be a function.

a) The conjugate F ∗ : X∗ × C∗ \ {0} → QtC(Z) of F is defined by

F ∗(x∗, z∗) :=
⋂
x∈X

(
S(x∗,z∗)(x) Cz∗ F (x)

)
.

for all x∗ ∈ X∗ and z∗ ∈ C∗ \ {0} .

b) The convex biconjugate F ∗∗ : X → QtC(Z) is defined by

F ∗∗(x) :=
⋂

(x∗,z∗)∈X∗×C∗\{0}

(
S(x∗,z∗)(x) Cz∗ F ∗(x∗, z∗)

)
.

for all x ∈ X.

For convenience, we will abbreviate the conjugate and the biconjugate of the scalarizations
to ϕ∗(F,z∗) : X∗ → IR ∪ {±∞} and ϕ∗∗(F,z∗) : X → IR ∪ {±∞} for all z∗ ∈ C∗ \ {0} .

4.1.2 Lemma. Let F : X → QtC(Z) be a function. It holds

∀x∗ ∈ X∗, z∗ ∈ C∗ \ {0} : F ∗(x∗, z∗) =
{
z ∈ Z| − z∗(z) ≥ ϕ∗(F,z∗)(x

∗)
}

and
∀x∗ ∈ X∗, z∗ ∈ C∗ \ {0} : ϕ∗(F,z∗)(x

∗) = inf {−z∗(z)| z ∈ F ∗(x∗, z∗)} .

Proof. By 3.2.1c and 3.1.3 it holds ϕ((S(x∗,z∗)Cz∗F ),z∗)(x) = x∗(x) C ϕ(F,z∗) (x), so

∀(x∗, z∗) ∈ X∗ × C∗ \ {0} : F ∗(x∗, z∗) =
{
z ∈ Z| − z∗(z) ≥ ϕ∗(F,z∗)(x

∗)
}

(4.1.1)

holds, as by definition 8.3.7 ϕ∗(F,z∗)(x
∗) = sup

x∈X
(x∗(x) C ϕ(F,z∗) (x)) holds true. Moreover, from

(4.1.1) it is immediate that

∀x∗ ∈ X∗, z∗ ∈ C∗ \ {0} : inf {−z∗(z)| z ∈ F ∗(x∗, z∗)}

= inf
{
−z∗(z)| − z∗(z) ≥ ϕ∗(F,z∗)(x

∗)
}

= ϕ∗(F,z∗)(x
∗).

4.1.3 Proposition. Let F : X → QtC(Z) , z∗0 ∈ C∗ \ {0} and z∗ ∈ C∗ \ cl cone {z∗0}.

a) For all x∗ ∈ X∗ it holds

inf {−z∗(z)| z ∈ F ∗(x∗, z∗0)} =
{

+∞, if F ∗(x∗, z∗0) = ∅;
−∞, else.

If z∗ = tz∗0 holds for t > 0, then inf {−z∗(z)| z ∈ F ∗(x∗, z∗0)} = tϕ∗(F,z∗0 )(x
∗) holds for all

x∗ ∈ X∗.

b) For the conjugate of the z∗-hull of F it holds

(F Cz∗ {0})∗(x∗, z∗0) =


F ∗(x∗, z∗0), if z∗ ∈ cone {z∗0};
Z, if domF = ∅;
∅, else.
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Proof.

a) By 4.1.1 and 4.1.2,

F ∗(x∗, z∗0) =
⋂
x∈X

{
z ∈ Z| F (x) + z ⊆ S(x∗,z∗0 )(x)

}
=
{
z ∈ Z| − z∗0(z) ≥ ϕ∗(F,z∗0 )(x

∗)
}
∈ QtH(z∗0 )(Z)

holds. If F ∗(x∗, z∗0) = ∅, then

∀z∗ ∈ C∗ \ {0} : inf {−z∗(z)| z ∈ F ∗(x∗, z∗0)} = +∞.

If ∅ 6= F ∗(x∗, z∗0) ⊆ (S(x∗,z∗)(x) Cz∗ F (x)) ∈ QtH(z∗0 )(Z) holds, then

∀z∗ ∈ C∗ \ {0} : inf {−z∗(z)| z ∈ F ∗(x∗, z∗0)}

= inf
{
−z∗(z)| − z∗0(z) ≥ ϕ∗(F,z∗0 )(x

∗)
}

=
{
tϕ∗(F,z∗0 )(x

∗), if z∗ = tz∗0 , t > 0;
−∞, else.

b) By 2.4.3 it holds

∀x ∈ X : (F Cz∗ {0})(x) = F (x)⊕H(z∗).

For all z∗ ∈ C∗ \ {0} , t > 0 it holds H(tz∗) = H(z∗) and thus

∀x ∈ X : (F Cz∗ {0})(x) = (F Ctz∗ {0})(x).

Thus for x∗ ∈ X∗, z∗, z∗0 ∈ C∗ \ {0} and t > 0 it holds

(F Cz∗ {0})∗(x∗, z∗0) = (F Ctz∗ {0})(x∗, z∗0).

Again by 2.4.3 it holds

(F Cz∗ {0})∗(x∗, z∗0) =
⋂
x∈X

{
z ∈ Z| (F (x)⊕H(z∗)⊕H(z∗0)) + z ⊆ S(x∗,z∗0 )(x)

}

=


F ∗(x∗, z∗0), if z∗ ∈ cone {z∗0};
Z, if domF = ∅;
∅, else.

4.1.4 Remark. By the formula

∀x∗ ∈ X∗, ∀z∗ ∈ C∗ \ {0} , ∀t > 0 : (F Ctz∗ {0})∗(x∗, z∗) = F ∗(x∗, z∗),

it is tempting to try to define a conjugate of the z∗-hull of F : X → QtC(Z) , mapping X∗ to
QtH(z∗)(Z) by

∀x∗ ∈ X∗, ∀z∗ ∈ C∗ \ {0} : (F Cz∗ {0})∗(x∗) = F ∗(x∗, z∗).

This mapping would not be well defined, as (F Cz∗ {0})(x) = (F Ctz∗ {0})(x) holds for all t > 0
and x ∈ X, but in general

(F ∗(x∗, z∗) 6= F ∗(x∗, tz∗).

The same problem arises if the conjugate of F Cz∗ {0} is defined as a mapping from X∗ × IR+
to QtH(z∗)(Z) by

∀x∗ ∈ X∗, ∀z∗ ∈ C∗ \ {0} , ∀t > 0 : (F Cz∗ {0})∗(x∗, t) = F ∗(x∗, tz∗).
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4.1.5 Lemma. Let F : X → P (Z) be a function and z∗ ∈ C∗ \ {0}. It holds

∀x ∈ X : F ∗∗(x) =
⋂

z∗∈C∗\{0}

{
z ∈ Z| − z∗(z) ≥ ϕ∗∗(F,z∗)(x)

}

and ϕ∗∗(F,z∗)(x
∗) ≤ ϕ(F ∗∗,z∗)(x).

Proof. By 2.4.3, 3.1.3 and 4.1.2 it holds

(S(x∗,z∗)(x) Cz∗ F ∗(x∗, z∗)) =
{
z ∈ Z| − z∗(z) ≥ (x∗(x) C ϕ∗(F,z∗)(x

∗))
}

for all x∗ ∈ X∗ and all z∗ ∈ C∗ \ {0} . Therefore, by 8.3.7

∀x ∈ X : F ∗∗(x) =
⋂

z∗∈C∗\{0}

{
z ∈ Z| ∀x∗ ∈ X∗ : −z∗(z) ≥ (x∗(x) C ϕ∗(F,z∗)(x

∗))
}

=
⋂

z∗∈C∗\{0}

{
z ∈ Z| − z∗(z) ≥ ϕ∗∗(F,z∗)(x)

}
.

From this formula, inf
z∈F ∗∗(x)

−z∗(z) ≥ ϕ∗∗(F,z∗)(x) follows, hence ϕ∗∗(F,z∗)(x) ≤ ϕ(F ∗∗,z∗)(x).

The functions ϕ∗∗(F,z∗)(x) and ϕ(F ∗∗,z∗)(x) are not necessarily equal as the following example
shows.

4.1.6 Example. Let F : IR → P (IR2), C = IR2
+ be a function defined by

∀x > 0 : F (x) :=
{

( 1
x
, 0)
}

+ C

and F (x) = ∅ for x ≤ 0. Let z∗ = (0,−1) ∈ C∗ \−C∗, then F = F ∗∗ and ϕ(F,z∗)(0) = +∞ while
ϕ∗∗(F,z∗)(0) = 0.

A function F : X → P (Z) has the same conjugate (and therefore biconjugate) as the
function F̄ : X → QtC(Z) defined by F̄ (x) := cl co (F (x) + C). Therefore it is no restriction to
start with functions mapping into QtC(Z) .

One is tempted to define

F̃ ∗(x∗) =
⋂

z∗∈C∗\{0}
F ∗(x∗, z∗),

even more so as it holds

F̃ ∗(x∗) =
⋂

z∗∈C∗\{0}

{
z ∈ Z| − z∗(z) ≥ ϕ∗(F,z∗)(x

∗)
}
.

However, this definition would leave us with a poorer theory concerning the conjugate of a
set-valued function.

4.1.7 Example. Let F : X → Qtcone {(1,0)}(IR
2) be a function defined by F ≡ IR2

+ and z∗0 =
(−1, 1) ∈ C∗ \ {0} . Then

(F Cz∗0 {0}) ≡ Z

and hence F̃ ∗(x∗) ⊆ F ∗(x∗, z∗0) = ∅ for all x∗ ∈ X∗. On the other hand F ∗(x∗, z∗) = H(z∗) for
all (x∗, z∗) ∈ X∗ × (R2

+)∗ \ {0}.
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In [23], the negative set-valued conjugate has been defined, avoiding the substraction of
functions in the definition of F ∗ and F ∗∗. For a function F : X → QtC(Z) , the negative
conjugate and the biconjugate are defined by

−F ∗(x∗, z∗) := cl
⋃
x∈X

(
F (x) + S(x∗,z∗)(−x)

)
F̃ ∗∗(x) :=

⋂
(x∗,z∗)∈X∗×C∗\{0}

(
−F ∗(x∗, z∗) + S(x∗,z∗)(x)

)
.

for all x∗ ∈ X∗, z∗ ∈ C∗ \ {0} and x ∈ X. It turns out that F ∗(x∗, z∗) = ({0} Cz∗ −F ∗(x∗, z∗)),
while F ∗∗(x) = F̃ ∗∗(x) holds for all (x∗, z∗) ∈ X∗ × C∗ \ {0} and x ∈ X.

4.1.8 Proposition. Let F : X → QtC(Z) be a function, (x∗, z∗) ∈ X∗ × C∗ \ {0} and x ∈ X,
then it holds

∀(x∗, z∗) ∈ X∗ × C∗ \ {0} : F ∗(x∗, z∗) = ({0} Cz∗ −F ∗(x∗, z∗))

and

∀x ∈ X : F̃ ∗∗(x) = F ∗∗(x).

Proof. It holds

−F ∗(x∗, z∗) = cl
⋃
x∈X

cl
(
F (x) + S(x∗,z∗)(−x)

)
and by 3.2.1 b) and 3.1.3

cl (F (x) + S(x∗,z∗)(−x)) =
{
z ∈ Z| − z∗(z) ≥ ϕ(F,z∗) (x) + x∗(−x)

}
for every (x∗, z∗) ∈ X∗ × C∗ \ {0} . Thus,

−F ∗(x∗, z∗) =
{
z ∈ Z| − z∗(z) ≥ inf

x∈X
(ϕ(F,z∗) (x) + x∗(−x))

}
holds for all x∗ ∈ X∗, z∗ ∈ C∗ \ {0} . By 2.4.2,

{0} Cz∗ −F ∗(x∗, z∗) =
{
z ∈ Z| − z∗(z) + inf

x∈X
(ϕ(F,z∗) (x) + x∗(−x)) ≥ 0

}
holds and therefore

{0} Cz∗ −F ∗(x∗, z∗) =
⋂
x∈X

{
z ∈ Z| − z∗(z) + ϕ(F,z∗) (x) + x∗(−x) ≥ 0

}
=
⋂
x∈X

{
z ∈ Z| − z∗(z) + ϕ(F,z∗) (x) ≥ x∗(x)

}
=
⋂
x∈X

{
z ∈ Z| − z∗(z) ≥ (x∗(x) C ϕ(F,z∗) (x))

}
=
{
z ∈ Z| − z∗(z) ≥ ϕ∗(F,z∗)(x

∗)
}

= F ∗(x∗, z∗).

For all x ∈ X it holds

F ∗∗(x) =
{
z ∈ Z| ∀(x∗, z∗) ∈ X∗ × C∗ \ {0} : −z∗(z) ≥ (x∗(x) C ϕ∗(F,z∗)(x

∗))
}
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As x∗ maps into IR, it holds

∀x ∈ X : (x∗(x) C ϕ∗(F,z∗)(x
∗)) = x∗(x) + inf

y∈X
(ϕ(F,z∗) (x) + x∗(−y))

and thus it holds F ∗∗(x) = F̃ ∗∗(x) for all x ∈ X.
From now on, the conjugate and biconjugate of a function F : X → QtC(Z) will be defined

as in 4.1.1.

4.1.9 Lemma. Let F : X → QtC(Z) be a function.

a) The function F ∗z∗ : X∗ → QtC(Z) defined as F ∗z∗(x∗) = F ∗(x∗, z∗) for all x∗ ∈ X∗ is convex
for all z∗ ∈ C∗ \ {0} .

b) The function F ∗∗ : X → QtC(Z) is convex and closed.

c) For all x ∈ X it holds F ∗∗(x) ⊇ (cl coF )(x).

d) The Young-Fenchel inequality holds:

∀x ∈ X, (x∗, z∗) ∈ X∗ × (C∗ \ {0}) : F ∗(x∗, z∗) ⊆
(
S(x∗,z∗)(x) Cz∗ F (x)

)
Moreover, (S(x∗,z∗)− z) : X → QtC(Z) with x∗ ∈ X∗, z∗ ∈ C∗ \ {0} and z ∈ Z is a conaffine
minorant of F if and only if z ∈ F ∗(x∗, z∗) and

∀x ∈ X : F ∗(x∗, z∗)⊕ F (x) ⊆ S(x∗,z∗)(x)

e) If for all x ∈ X it holds F1(x) ⊇ F2(x), then

∀(x∗, z∗) ∈ X∗ × C∗ \ {0} : F ∗1 (x∗, z∗) ⊆ F ∗2 (x∗, z∗)

and
∀x ∈ X : F ∗∗1 (x) ⊇ F ∗∗2 (x).

f) For all (x∗, z∗) ∈ X∗ × (C∗ \ {0}) it holds F ∗(x∗, z∗) = (cl coF )∗(x∗, z∗).

g) For all x ∈ X, (x∗, z∗) ∈ X∗ × C∗ \ {0} it holds (F ∗∗)∗(x∗, z∗) = F ∗(x∗, z∗).

Proof.

a) The function ϕ∗(F,z∗)(x
∗) is convex, 3.1.5, therefore F ∗z∗ : X∗ → QtC(Z) is convex.

b) The biconjugate ϕ∗∗(F,z∗) is convex and closed for any z∗ ∈ C∗ \ {0} and by 4.1.5 it holds
ϕ∗∗(F,z∗) ≤ ϕ(F ∗∗,z∗), so ϕ∗∗(F,z∗) ≤ cl coϕ(F ∗∗,z∗) holds true. By 3.2.3 and 3.3.5 it holds

∀x ∈ X : (cl coF ∗∗)(x) =
⋂

z∗∈C∗\{0}

{
z ∈ Z| − z∗(z) ≥ cl coϕ(F ∗∗,z∗)(x)

}
⊆ F ∗∗(x).

Therefore, F ∗∗ is convex and closed.

c) It holds ϕ∗∗(F,z∗) ≤ ϕ(F,z∗), therefore

∀x ∈ X : F ∗∗(x) ⊇
⋂

z∗∈C∗\{0}

{
z ∈ Z| − z∗(z) ≥ ϕ(F,z∗) (x)

}
= F (x).

As F ∗∗ is closed and convex, F ∗∗(x) ⊇ (cl coF )(x) holds for all x ∈ X.
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d) The first inequality holds by definition. The function S(x∗,z∗) − z is a conaffine minorant of
F if and only if −z∗(z) ≥ ϕ∗(F,z∗)(x

∗), that is z ∈ F ∗(x∗, z∗). Also, S(x∗,z∗) − z is a conaffine
minorant of F if and only if S(x∗,z∗) is a conlinear minorant of F+z, thus the second inclusion
holds.

e) If for all x ∈ X it holds F1(x) ⊇ F2(x), then for all z∗ ∈ C∗ \ {0} it holds ϕ∗(F1,z∗)(x
∗) ≥

ϕ∗(F2,z∗)(x
∗) for all x∗ ∈ X∗ and ϕ∗∗(F1,z∗)(x) ≤ ϕ∗∗(F2,z∗)(x) for all x ∈ X, giving the desired

result.

f) It holds
∀z∗ ∈ C∗ \ {0} , x∗ ∈ X∗ : ϕ∗(F,z∗)(x

∗) = (cl coϕ(F,z∗))∗(x∗).

Moreover,

∀z∗ ∈ C∗ \ {0} , x ∈ X : cl coϕ(F,z∗) (x) ≤ ϕ(cl coF,z∗)(x),
ϕ(cl coF,z∗)(x) ≤ ϕ(F,z∗) (x)

holds by 3.2.3 and 3.3.4. It holds

∀z∗ ∈ C∗ \ {0} , x∗ ∈ X∗ : ϕ∗(cl coF,z∗)(x
∗) = ϕ∗(F,z∗)(x

∗).

Combined with 4.1.2, this is the desired result.

g) It holds
∀(x∗, z∗) ∈ X∗ × C∗ \ {0} : (ϕ∗∗(F,z∗))

∗(x∗) = ϕ∗(F,z∗)(x
∗)

and therefore ϕ∗(F ∗∗,z∗)(x
∗) = ϕ∗(F,z∗)(x

∗). Applying 4.1.2, the claim is proven.

Let F : X → QtC(Z) be a function, then cl coF : X → QtC(Z) is proper if and only if there
is a conaffine minorant S(x∗,z∗)−z : X → QtC(Z) of F with (x∗, z∗) ∈ C∗ \ {0} and z ∈ Z. Such
a minorant exists on the other hand if and only if F ∗(x∗, z∗) ⊇ z +H(z∗), so

z ∈ (F ∗(x∗, z∗) Cz∗ {0}) = F ∗(x∗, z∗)

and (x∗, z∗) ∈ domF ∗.

4.1.10 Lemma. Let F : X → QtC(Z) be a function.

a) It holds domF = ∅ if and only if F ∗ ≡ Z, if and only if F ∗(x∗0, z∗0) = Z for some (x∗0, z∗0) ∈
X∗ × C∗ \ {0} .

b) It holds domF ∗(·, z∗) = ∅ if and only if (cl co (F Cz∗ {0}))(x0) = Z for some x0 ∈ X.

c) There is x0 ∈ X with (cl coF )(x0) = Z if and only if domF ∗ = ∅.

d) cl coF : X → QtC(Z) is proper if and only if F ∗ : X∗ × C∗ \ {0} → QtC(Z) is proper.

e) cl coF : X → QtC(Z) is proper but not C-proper if and only if cl coF : X → QtC(Z) is proper
and domF ∗ ⊆ X∗ × (C∗ \ −C∗).

Proof.
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a) It holds domF = ∅ if and only if domϕ(F,z∗) = ∅ holds for all (for one) z∗ ∈ C∗ \ {0} . This
is equivalent to ϕ∗(F,z∗) ≡ −∞ for all (for one) z∗ ∈ C∗ \ {0} .

b) It holds F ∗(x∗, z∗) = ∅ if and only if ϕ∗(F,z∗)(x
∗) = +∞. This is equivalent to cl coϕ(F,z∗) (x0) =

−∞, which is true if and only if (cl co (F Cz∗ {0}))(x0) = Z.

c) It holds domF ∗ = ∅ if and only if F : X → QtC(Z) has no conaffine minorant. This is the
case if and only if (cl coF )(x0) = Z.

d) Direct conclusion of the above.

e) The function cl coF is not C-proper if and only if F has no C-proper conaffine minorant,
that is F ∗(x∗, z∗) = ∅ for all z∗ ∈ C∗ ∩ −C∗.

Recall that in general (cl co (F Cz∗ {0}))(x) ) (cl coF Cz∗ {0})(x), hence cl coF : X →
QtC(Z) is z∗-proper if F ∗(x∗, z∗) 6= ∅.

4.1.11 Definition. The function

Σ (·|epiF ) : (X∗ × C∗ \ {0} )× C∗ \ {0} → QtC(Z) ,

defined by
Σ (((x∗, z∗1), z∗2)|epiF ) :=

⋂
(x,z)∈epiF

S((x∗,z∗1 ),z∗2 )(x, z)

for all x∗ ∈ X∗ and z∗1 , z∗2 ∈ C∗ \ {0} . is called the set-valued support function of epiF , mapping
(X∗ × C∗ \ {0} )× C∗ \ {0} into QtC(Z) .

The definition of Σ (·|epiF ) : (X∗ × C∗ \ {0} ) × C∗ \ {0} → QtC(Z) is in analogy to the
scalar support function of the epigraph of a function ϕ : X → IR ∪ {±∞}, which is defined by

σ((x∗, t)|epiϕ) = sup
(x,r)∈epiϕ

(x∗, t)(x, r)

for all x∗ ∈ X∗ and t ∈ IR.
For all x∗ ∈ X∗ and z∗1 , z∗2 ∈ C∗ \ {0} and (x, z) ∈ X × Z it holds

S((x∗,z∗1 ),z∗2 )(x, z) = {y ∈ Z| − z∗2(y) ≥ x∗(x) + z∗1(z)} ∈ QtH(z∗2 )(Z).

Thus, S((x∗,z∗1 ),z∗2 )(x, z) ⊆ H(z∗2) holds if and only if z ∈ S(x∗,z∗1 )(x). Moreover, S((x∗,z∗1 ),z∗2 )(x, z) ⊇
z̄ +H(z∗2) holds if and only if −z∗2(z̄) ≥ x∗(x) + z∗1(z).

4.1.12 Proposition. Let F : X → QtC(Z) be a function, x∗ ∈ X∗ and z∗1 , z∗2 ∈ C∗ \ {0} . It
holds Σ (((x∗, z∗1), z∗2)|epiF ) ∈ QtH(z∗2 ) and with −z∗2(e) = 1 it holds

Σ (((x∗, z∗1), z∗2)|epiF ) =


∅, if F ∗(x∗, z∗1) = ∅;
Z, if F ∗(x∗, z∗1) = Z;
ϕ∗(F,z∗1 )(x

∗)e+H(z∗2), else.

Proof. By definition, it holds

F ∗(x∗, z∗1) =
{
z̄ ∈ Z| epiS(x∗,z∗1 ) ⊇ epi (F + z̄)

}
= {z̄ ∈ Z| ∀(x, z) ∈ epiF : x∗(x) + z∗1(z) ≤ −z∗1(z̄)} .
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It holds F ∗(x∗, z∗1) = Z if and only if epiF = ∅. In this case it holds Σ(·|epiF ) ≡ Z.
If F ∗(x∗, z∗1) = ∅ holds, then for all t ∈ IR there is (x, z) ∈ epiF such, that x∗(x)+ z∗1(z) > t,

thus Σ(((x∗, z∗1), ·)|epiF ) ≡ ∅.
The set F ∗(x∗, z∗1) is neither empty nor Z if and only if ϕ∗(x∗,z∗1 ) ∈ IR. In this case,

sup {x∗(x) + z∗1(z)| (x, z) ∈ epiF} = ϕ∗(F,z∗1 )(x
∗) ∈ IR

and with −z∗2(e) = 1 it holds

Σ(((x∗, z∗1), z∗2)|epiF ) ⊇ ϕ∗(F,z∗1 )(x
∗)e+H(z∗).

For z̄ ∈ Σ(((x∗, z∗1), z∗2)|epiF ) \ (ϕ∗(F,z∗1 )(x
∗)e+H(z∗)) it holds −z∗(z̄) < ϕ∗(F,z∗1 ) and

∀(x, z) ∈ epiF : x∗(x) + z∗1(z) ≤ −z∗2(z̄),

a contradiction.
The image of Σ (((x∗, z∗1), z∗2)|epiF ) is a translation of F ∗(x∗, z∗1) into the space QtH(z∗2 )(Z).

4.1.13 Proposition. Let F : X → QtC(Z) be a function, x∗ ∈ X∗ and z∗1 , z∗2 ∈ C∗ \ {0} , then⋂
(x,z)∈epiF

S(x∗,z∗1 ,z
∗
2 )(x, z) = I∗epiF (x∗, z∗1 , z∗2),

F ∗(x∗, z∗) = I∗epiF (x∗, z∗, z∗).

Proof. For all x∗ ∈ X∗ and z∗1 , z∗2 ∈ C∗ \ {0} it holds

I∗epiF ((x∗, z∗1), z∗2) =
⋂

(x,z)∈X×Z

[
S((x∗,z∗1 ),z∗2 )(x, z) Cz∗ IepiF (x, z)

]
=

⋂
(x,z)∈epiF

S((x∗,z∗1 ),z∗2 )(x, z).

If −z∗(e) = 1 holds for z∗ ∈ C∗ \ {0} , then F ∗(x∗, z∗) = ϕ∗(F,z∗)(x
∗)e+H(z∗) holds by 4.1.2, if

F ∗(x∗, z∗) is a proper set. Thus, the claim holds by 4.1.12.

4.1.14 Lemma. Let F : X → QtC(Z) be a function.

a) domF = ∅ if and only if domF ∗∗ = ∅.

b) There is x0 with (cl coF )(x0) = Z if and only if F ∗∗ ≡ Z.

c) cl coF is proper if and only if F ∗∗ : X → QtC(Z) is proper.

Proof.

a) For all z∗ ∈ C∗ \ {0} it holds domF = domϕ(F,z∗) . Therefore, domF = ∅ is equivalent to

∀z∗ ∈ C∗ \ {0}x ∈ X : ϕ∗∗(F,z∗)(x) = +∞,

therefore it is equivalent to domF ∗∗ = ∅.

b) (cl coF )(x0) = Z if and only if for all z∗ ∈ C∗ \ {0} it holds cl coϕ(F,z∗) = −∞. This is
equivalent to

∀z∗ ∈ C∗ \ {0} , x ∈ X : ϕ∗∗(F,z∗)(x) = −∞,

which again is equivalent to F ∗∗ being identically Z.
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c) From 4.1.9, F ∗∗(x) ⊇ (cl coF )(x). With the above, this is the statement.

4.1.15 Theorem (Fenchel-Moreau-Theorem). Let F : X → QtC(Z) be a function.

a) It holds
∀x ∈ X : F ∗∗(x) ⊇ (cl coF )(x).

b) It holds
∀x ∈ X : F ∗∗(x) = (cl coF )(x)

if and only if cl coF is proper or identically Z or ∅.

c) If F is convex and x0 ∈ domF such that F (x0) = (clF )(x0), then F ∗∗(x0) = F (x0). If
additionally F (x0) 6= Z, then F ∗∗ = clF and F ∗∗ is proper.

Proof.

a) See 4.1.9.

b) By 4.1.14, F ∗∗ = cl coF if cl coF is identically ∅ or Z. Furthermore, F ∗∗ is proper if and
only if cl coF is proper. Let cl coF be proper. In this case, by 3.3.11 it holds

∀x ∈ X : (cl coF )(x) =
⋂

z∗∈C∗\{0},
cl coϕ(F,z∗) is proper

{
z ∈ Z| z∗(z) ≥ cl coϕ(F,z∗) (x)

}

=
⋂

z∗∈C∗\{0}

{
z ∈ Z| z∗(z) ≥ ϕ∗∗(F,z∗)(x)

}
= F ∗∗(x).

If for x0 ∈ X it holds (cl coF )(x0) = Z, then ϕ∗∗(F,z∗) is identically −∞, therefore F ∗∗ ≡ Z

and (cl coF )(x) = F ∗∗(x) holds for all x ∈ X if and only if F ≡ Z.

c) If F (x0) = (clF )(x0) = Z, then F ∗∗ is identically Z, especially F ∗∗(x0) = F (x0) = Z. Let
(clF )(x0) 6= Z. Then, by 3.3.5 it exists z∗ ∈ C∗\{0} such that clϕ(F,z∗)(x0) ∈ IR. Therefore,
clϕ(F,z∗) is proper and clF is proper. Thus, (clF )(x) = F ∗∗(x) holds for all x ∈ X, especially
F ∗∗(x0) = F (x0) 6= Z and F ∗∗ is proper.

4.1.16 Remark. If x ∈ domF or domF = ∅, then ϕ∗∗(F,z∗)(x) = clϕ(F ∗∗,z∗)(x).

Proof. In general, ϕ∗∗(F,z∗)(x) ≤ clϕ(F ∗∗,z∗)(x) and clϕ(F ∗∗,z∗)(x) ≤ cl coϕ(F,z∗) (x) holds for all
x ∈ X. If x ∈ domF or domF = ∅, then ϕ∗∗(F,z∗)(x) = cl coϕ(F,z∗) (x), therefore, ϕ∗∗(F,z∗)(x) =
clϕ(F ∗∗,z∗)(x) holds true.

4.2 Calculus

4.2.1 Proposition. Let G : Y → QtC(Z), t > 0 and A : X → Y be a linear homeomorphism,
y0 ∈ Y , z0 ∈ Z and (x∗0, z∗0) ∈ X∗ × C∗ \ {0} and F : X → QtC(Z) is defined by

F (x) = tG(Ax+ y0) + S(x∗0,z
∗
0 )(x) + z0

for all x ∈ X.

a) If domG = ∅ holds, then F ∗ ≡ Z.
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b) If domG 6= ∅ and z∗ /∈ cone {z∗0} holds, then F ∗(x∗, z∗) = ∅.

c) If z∗ = sz∗0 holds for s > 0, then

F ∗(x∗, sz∗0) = tG∗(1
t
A−1∗(1

s
x∗ − x∗0), z∗0) + S(A−1∗(x∗0−

1
s
x∗),z∗0 )(y0)− z0

= tG∗(1
t
A−1∗(1

s
x∗ − x∗0), z∗0) Cz∗

(
S(A−1∗( 1

s
x∗−x∗0),z∗0 )(y0) + z0

)
holds for all x∗ ∈ X∗.

Proof.

a) If domG = ∅, then domF = ∅ and thus by 4.1.10 it holds F ∗ ≡ Z.

b) If domG 6= ∅ and z∗ /∈ cone {z∗0} holds, then domF 6= ∅ and for all x ∈ domF it holds
F (x) Cz∗ {0} = Z. Thus by 4.1.10 it holds F ∗(x∗, z∗) = ∅.

c) By definition,

F ∗(x∗, z∗) =
⋂
x∈X

(
S(x∗,z∗)(x) Cz∗ F (x)

)
holds. If s > 0, then

S(x∗,sz∗)(x) Cz∗ F (x) =
{
z ∈ Z| tG(Ax+ y0) + S(x∗0,z

∗
0 )(x) + z0 + z ⊆ S(x∗,sz∗0 )(x)

}
=
{
z ∈ Z| tG(Ax+ y0) + S(x∗0,z

∗
0 )(x) + z ⊆ S(x∗,sz∗0 )(x)

}
− z0

holds. Recall that for s > 0 and (x∗, z∗) ∈ X∗ × C∗ \ {0} it holds S(x∗,sz∗)(x) = S( 1
s
x∗,z∗)(x)

for all x ∈ X. Moreover,

S(x∗0,z
∗
0 )(x) ∈ QtH(z∗)(Z) \ {∅, Z}

S(x∗0,z
∗
0 )(x) + S(−x∗0,z

∗
0 )(x) = H(z∗)

holds and thus for y = Ax+ y0 it holds

S(x∗,sz∗)(x) Cz∗ F (x) =
{
z ∈ Z| tG(Ax+ y0) + z ⊆ S( 1

s
x∗−x∗0,z

∗
0 )(x)

}
− z0

= t
{
z ∈ Z| G(Ax+ y0) + z ⊆ S( 1

t
( 1
s
x∗−x∗0),z∗0 )(x)

}
− z0

= t
{
z ∈ Z| G(y) + z ⊆ S( 1

t
A−1∗( 1

s
x∗−x∗0),z∗0 )(y − y0)

}
− z0

= t
{
z ∈ Z| G(y) + z ⊆ S( 1

t
A−1∗( 1

s
x∗−x∗0),z∗0 )(y)

}
+ S(A−1∗( 1

s
x∗−x∗0),z∗0 )(−y0)− z0.

Thus it holds

F ∗(x∗, sz∗0) = tG∗((1
t
A−1∗(1

s
x∗ − x∗0), z∗0)) + S(A−1∗( 1

s
x∗−x∗0),z∗0 )(−y0)− z0

= tG∗(1
t
A−1∗(1

s
x∗ − x∗0), z∗0) + S(A−1∗(x∗0−

1
s
x∗),z∗0 )(y0)− z0.

Also,

S(A−1∗( 1
s
x∗−x∗0),z∗0 )(−y0)− z0 = {0} Cz∗

(
S(A−1∗( 1

s
x∗−x∗0),z∗0 )(y0) + z0

)
∈ QtH(z∗0 )(Z) \ {∅, Z}

holds and thus

F ∗(x∗, sz∗0) = tG∗(1
t
A−1∗(1

s
x∗ − x∗0), z∗0) Cz∗

(
S(A−1∗( 1

s
x∗−x∗0),z∗0 )(y0) + z0

)
.
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Under the assumptions of 4.2.1, domF ∗ ⊆
{
S(x∗,z∗0 )| x∗ ∈ X∗

}
holds if domG 6= ∅.

The claim in 4.2.1c) is in accordance to the scalar result which can be found in [26], Propo-
sition 3.3.3.4.

4.2.2 Proposition. Let Fi : X → QtC(Z) for n ≥ 2 and i = 1, ..., n.

a) If F (x) = inf
i=1,..,n

Fi(x) = cl co
⋃

i=1,...,n
Fi(x) holds for all x ∈ X, then

F ∗(x∗, z∗) =
⋂

i=1,...,n
F ∗i (x∗, z∗)

holds for all (x∗, z∗) ∈ X∗ × C∗ \ {0} .

b) If F (x) = sup
i=1,..,n

Fi(x) =
⋂

i=1,...,n
Fi(x) holds for all x ∈ X, then

F ∗(x∗, z∗) ⊇ co ( inf
i=1,...,n

F ∗i )(x∗, z∗)

holds for all (x∗, z∗) ∈ X∗ × C∗ \ {0} .

c) Let F (x) = sup
i=1,..,n

Fi(x) =
⋂

i=1,...,n
Fi(x) hold for all x ∈ X. If for all i = 1, ..., n the functions

Fi are convex and domFi = X and for all except possibly one Fi one of the assumptions in
3.3.7 and 3.3.9 holds for all x ∈ X, then

F ∗(x∗, z∗) = co ( inf
i=1,...,n

F ∗i )(x∗, z∗)

holds for all x∗ ∈ X∗. Moreover for every x∗ ∈ X∗ with (x∗, z∗) ∈ domF ∗ there exist
(x∗i , z∗) ∈ domF ∗i , i = 1, ..., n and nonnegative numbers ti, i = 1, ..., n adding up to 1 such
that t1x∗1 + ...+ tnx

∗
n = x∗ and

F ∗(x∗, z∗) = t1F
∗
1 (x∗1, z∗) + ...+ tnF

∗(x∗n, z∗).

Proof.

a) For all (x∗, z∗) ∈ X∗ × C∗ \ {0} it holds

F ∗(x∗, z∗) =
⋂
x∈X

(
S(x∗,z∗)(x) Cz∗ cl co

⋃
i=1,...,n

Fi(x)
)
.

By 2.4.3,

S(x∗,z∗)(x) Cz∗ cl co
⋃

i=1,...,n
Fi(x)

=S(x∗,z∗)(x) Cz∗
⋃

i=1,...,n
Fi(x),

thus

F ∗(x∗, z∗) =
⋂
x∈X

z ∈ Z| ⋃
i=1,...,n

Fi(x) + z ⊆ S(x∗,z∗)(x)


=

⋂
i=1,...,n

⋂
x∈X

{
z ∈ Z| Fi(x) + z ⊆ S(x∗,z∗)(x)

}
=

⋂
i=1,...,n

F ∗i (x∗, z∗)
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b) For all i = 1, ..., n it holds

(S(x∗,z∗)(x) Cz∗ Fi(x)) ⊆ (S(x∗,z∗)(x) Cz∗
⋂

i=1,...,n
Fi(x))

for all (x∗, z∗) ∈ X∗ × C∗ \ {0} and x ∈ X, thus the claim holds.

c) If F ∗(x∗, z∗) = ∅, then we are done, so without loss of generality we can assume that
F ∗(x∗, z∗) ∈ QtH(z∗)(Z) \ {∅}.

If F1(x) Cz∗ {0} = Z holds for some x ∈ X, then F ∗1 (·, z∗) ≡ ∅ and⋂
i=1,...,n

Fi(x) =
⋂

i=2,...,n
Fi(x),

cl
⋃

i=1,...n
F ∗i (x∗, z∗) = cl

⋃
i=2,...n

F ∗i (x∗, z∗),

so without loss of generality we can assume that Fi is z∗-proper for all i = 1, ..., n and all
z∗ ∈ C∗ \ {0} . Thus, for every z∗ ∈ C∗ \ {0} the scalarizations of all Fi are finite everywhere
and all except for possibly one are continuous. Applying [26], 3.3.4,Theorem 2 it holds

ϕ∗(F,z∗)(x
∗) = co ( inf

i=1,...,n
ϕ∗(Fi,z∗))(x

∗).

and for every x∗ ∈ X∗ with x∗ ∈ domϕ∗(F,z∗) there exist x∗i ∈ domϕ∗(Fi,z∗), i = 1, ..., n and
nonnegative numbers ti, i = 1, ..., n adding up to 1 such that t1x∗1 + ...+ tnx

∗
n = x∗ and

ϕ∗(F,z∗)(x
∗) = t1ϕ

∗
(F1,z∗)(x

∗) + ...+ tnϕ
∗
(Fn,z∗)(x

∗).

Thus,

F ∗(x∗, z∗) =
{
z ∈ Z| − z∗(z) ≥ ϕ∗(F,z∗)(x

∗)
}

=
{
z ∈ Z| − z∗(z) ≥ t1ϕ∗(F1,z∗)(x

∗) + ...+ tnϕ
∗
(Fn,z∗)(x

∗)
}

= t1
{
z ∈ Z| − z∗(z) ≥ ϕ∗(F1,z∗)(x

∗)
}

+ ...+ tn
{
z ∈ Z| − z∗(z) ≥ ϕ∗(Fn,z∗)(x

∗)
}

= t1F
∗
1 (x∗, z∗) + ...+ tnF

∗
n(x∗, z∗)

⊆ co (F ∗1 + ...+ F ∗n)(x∗, z∗)

holds, proving the claim.

Notice that the result in 4.2.2c) in fact is slightly more general than the known scaler result as
we do not assume properness for the functions Fi : X → QtC(Z) .

4.2.3 Definition. For F1, F2 : X∗×C∗ \ {0} → QtC(Z) , the infimal convolution of F ∗1 and F ∗2
in (x∗, z∗) ∈ X × C∗ \ {0} is defined by

(F ∗1�F ∗2 )(x∗, z∗) := cl
⋃

x∗∈X∗
(F ∗1 (x̄∗, z∗) + (F2)∗(x∗ − x̄∗, z∗)).

Notice that in fact the infimal convolution (F ∗1�F ∗2 ) is an operation defined on the set{
G : X∗ → QtC(Z)

}
, thus identifying F ∗(x∗, z∗) = F ∗z∗(x∗) for all z∗ ∈ C∗ \ {0} and all x∗ ∈ X∗,

this is the ordinary definition of the infimal convolution, introduced in subsection 2.2.3.

52



4.2.4 Proposition. Let Fi : X → QtC(Z) for n ≥ 2 and i = 1, ..., n.

a) If F (x) = (F1�...�Fn)(x) holds for all x ∈ X and domF1 + ..+ domFn 6= ∅, then it holds

F ∗(x∗, z∗) = (F ∗1 + ..+ F ∗n)(x∗, z∗)

for all (x∗, z∗) ∈ X∗ × C∗ \ {0} .

b) If F (x) = (F1 + ...+ Fn)(x) holds for all x ∈ X, then it holds

F ∗(x∗, z∗) ⊇ (F ∗1�...�F ∗n)(x∗, z∗)

for all (x∗, z∗) ∈ X∗ × C∗ \ {0} .

c) If F (x) = (F1 + ... + Fn)(x) holds for all x ∈ X and for all i = 1, ..., n the functions Fi
are convex and z∗0-proper for z0 ∈ C∗ \ {0} and for all except possibly one Fi one of the
assumptions in 3.3.7 and 3.3.9 holds in x0 ∈

⋂
i=1,...n

domFi, then

F ∗(x∗, z∗0) = (F ∗1�...�F ∗n)(x∗, z∗0)

holds for all x∗ ∈ X∗. Moreover for every x∗ ∈ X∗ with (x∗, z∗0) ∈ domF ∗ there exist
(x∗i , z∗0) ∈ domF ∗i , i = 1, ..., n such that x∗1 + ...+ x∗n = x∗ and

F ∗(x∗, z∗0) = F ∗1 (x∗1, z∗0) + ...+ F ∗(x∗n, z∗0).

Proof.

a) Without loss of generality, assume n = 2. By definition,

(F1�F2)(x) = cl co
⋃
y∈X

(F1(y) + F2(x− y))

holds for all x ∈ X. Thus by 2.4.8e) and 2.4.3 it holds

(F1�F2)∗(x∗, z∗) =
⋂
x∈X

(
S(x∗,z∗)(x) Cz∗

⋃
y∈X

(F1(y) + F2(x− y))
)

=
⋂
x∈X

z ∈ Z| ⋃
y∈X

(F1(y) + F2(x− y) + z) ⊆ S(x∗,z∗)(x)


=

⋂
x,y∈X

(
S(x∗,z∗)(x) Cz∗ (F1(y) + F2(x− y))

)

By assumption it exists x0, y0 ∈ X such, that y0 ∈ domF1 and x0 − y0 ∈ domF2. If
y /∈ domF1 or x− y /∈ domF2, then

S(x∗,z∗)(x) Cz∗ (F1(y) + F2(x− y)) = Z.

Therefore it holds

(F1�F2)∗(x∗, z∗) =
⋂

y∈domF1,
x∈domF2+y

S(x∗,z∗)(x) Cz∗ (F1(y) + F2(x− y)).
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If for y ∈ domF1 and x ∈ domF2 + y it holds F1(y) Cz∗ {0} = Z or F (x− y) Cz∗ {0} = Z,
then (F1(y) + F (x− y)) Cz∗ {0} = Z and

S(x∗,z∗)(x) Cz∗ (F1(y) + F (x− y)) = (S(x∗,z∗)(y) Cz∗ F1(y)) + (S(x∗,z∗)(y) Cz∗ F (x− y)) = ∅.

for all x∗ ∈ X∗. In this case, (F1�F2)∗(·, z∗) = F ∗1 (·, z∗) + F ∗2 (·, z∗) ≡ ∅. From now on, let
F1 and F2 be z∗-proper functions and y ∈ domF1 and x ∈ domF2 + y. By 2.4.8e) it holds

S(x∗,z∗)(x) Cz∗ (F1(y) + F (x− y)) = (S(x∗,z∗)(y) Cz∗ F1(y)) + (S(x∗,z∗)(y) Cz∗ F (x− y))

for all x∗ ∈ X∗. Thus,

(F1�F2)∗(x∗, z∗) =
⋂

x,y∈X
(S(x∗,z∗)(y) Cz∗ F1(y)) + (S(x∗,z∗)(x− y) Cz∗ F2(x− y))

= F ∗1 (x∗, z∗) + F ∗2 (x∗, z∗).

b) Without loss of generality, assume n = 2. By 2.4.8e) it holds

(F1 + F2)∗(x∗, z∗) =
⋂
x∈X

(
S(x∗,z∗)(x) Cz∗ (F1(x) + F2(x))

)
=
⋂
x∈X

(
(S(x̄∗,z∗)(x) + S(x∗−x̄∗,z∗)(x)) Cz∗ (F1(x) + F2(x))

)
⊇
⋂
x∈X

(
(S(x̄∗,z∗)(x) Cz∗ F1(x)) + (S(x∗−x̄∗,z∗)(x) Cz∗ +F2(x))

)
⊇ F ∗1 (x̄∗, z∗) + F ∗2 (x∗ − x̄∗, z∗).

for all x∗, x̄∗ ∈ X∗ and all z∗ ∈ C∗ \ {0} .

c) By assumption, the scalarizations ϕ(Fi,z∗0 ) : X → IR ∪ {±∞} are convex and proper and for
all but possibly one i ∈ {1, ..., n} there is ti ∈ IR such, that (x0, ti) ∈ int epiϕ(Fi,z∗0 ). Thus, all
but possibly one scalarization ϕ(Fi,z∗0 ) are continuous at x0. By the scalar sum rule as found
in [26], 3.3.4, Theorem 1 and by 3.2.1 d)it holds

ϕ∗(F,z∗0 )(x
∗) = (ϕ∗(F1,z∗0 )�...�ϕ

∗
(Fn,z∗0 ))(x

∗)

holds for all x∗ ∈ X∗. Moreover for every x∗ ∈ X∗ with x∗ ∈ domϕ∗(F,z∗0 ) there exist
x∗i ∈ domϕ∗(Fi,z∗0 ), i = 1, ..., n such that x∗1 + ...+ x∗n = x∗ and

ϕ∗(F,z∗0 )(x
∗) = ϕ∗(F1,z∗0 )(x

∗
1) + ...+ ϕ∗(Fn,z∗0 )(x

∗
n).

Thus by 4.1.2 it holds

F ∗(x∗, z∗0) = F ∗1 (x∗1, z∗0) + ...+ F ∗n(x∗n, z∗0) ⊆ (F ∗1�...F ∗n)(x∗, z∗0)

And thus the equation is proven.

4.2.5 Definition. If A : X → Y is a linear continuous operator, G : Y → QtC(Z) and F →
QtC(Z) , then the functions A∗G∗ : X∗×C∗ \ {0} → QtC(Z) and F ∗A∗ : Y ∗×C∗ \ {0} → QtC(Z)
are defined by

(A∗G∗)(x∗, z∗) := cl
⋃

A∗y∗=x∗
G∗(y∗, z∗)

for all x∗ ∈ X∗ and z∗ ∈ C∗ \ {0} and

F ∗A∗(y∗, z∗) := F ∗(A∗y∗, z∗)

for all y∗ ∈ Y ∗ and z∗ ∈ C∗ \ {0} .
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Identifying F ∗(x∗, z∗) = F ∗z∗(x∗) for all z∗ ∈ C∗ \ {0} and all x∗ ∈ X∗, this is the ordi-
nary definition of A∗G∗z∗ : X∗ → QtH(z∗)(Z) and F ∗z∗A

∗ : Y ∗ → QtC(Z) tH(z∗)(Z) introduced in
subsection 2.2.3.

4.2.6 Proposition. Let A : X → Y be a linear continuous operator, G : Y → QtC(Z) and
F → QtC(Z) .

a) It holds

(AF )∗(y∗, z∗) = F ∗A∗(y∗, z∗)

for all (y∗, z∗) ∈ Y ∗ × C∗ \ {0} .

b) It holds

(GA)∗(x∗, z∗) ⊇ A∗G∗(x∗, z∗)

for all (x∗, z∗) ∈ X∗ × C∗ \ {0} .

c) If G is convex and one of the assumptions in 3.3.7 and 3.3.9 holds in Ax0, x0 ∈ X, then

(GA)∗(x∗, z∗) = A∗G∗(x∗, z∗)

holds for all (x∗, z∗) ∈ X∗ × C∗ \ {0} . Moreover for every (x∗, z∗) ∈ dom (GA)∗ there exist
(y∗, z∗) ∈ domY ∗ × C∗ \ {0} , such that A∗y∗ = x∗ holds and

(GA)∗(x∗, z∗) = G∗(y∗, z∗).

Proof.

a) For all (y∗, z∗) ∈ Y ∗ × C∗ \ {0} it holds

S(y∗,z∗)(y) Cz∗ cl
⋃

Ax=y
F (x) =

⋂
Ax=y

S(A∗y∗,z∗)(x) Cz∗ F (x).

Thus the claim is immediate.

b) For all (y∗, z∗) ∈ Y ∗ × C∗ \ {0} it holds⋂
y∈Y

(
S(y∗,z∗)(y) Cz∗ G(y)

)
⊆
⋂
x∈X

(
S(y∗,z∗)(Ax) Cz∗ GA(x)

)
=
⋂
x∈X

(
S(A∗y∗,z∗)(x) Cz∗ GA(x)

)
And thus the inclusion is proven.

c) By 3.2.1e) and 4.1.2 it holds

(GA)∗(x∗, z∗) =
{
z ∈ Z| − z∗(z) ≥ (ϕ(G,z∗)A)∗(x∗)

}
for all z∗ ∈ C∗ \ {0} and x∗ ∈ X∗. By assumption, ϕ(G,z∗) : X → IR ∪ {±∞} is either
continuous at Ax0 ∈ domG or ϕ(G,z∗)(x) = −∞ holds for all y ∈ domG. In the latter
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case, domϕ∗(GA,z∗) = ∅, as Ax0 ∈ domG. Thus, in this case (GA)∗(·, z∗) ≡ ∅, proving the
statement. If ϕ(G,z∗)(Ax0) ∈ IR, then

(ϕ(G,z∗)A)∗(x∗) = A∗ϕ∗(G,z∗)(x
∗)

holds and for all x∗ ∈ dom (ϕ(G,z∗)A)∗ there exists y∗ ∈ Y ∗ with A∗y∗ = x∗ such, that

(ϕ(G,z∗)A)∗(x∗) = ϕ∗(G,z∗)(y
∗),

compare [26], 3.3.4 Theorem 3. Thus by 4.1.2, for all (x∗, z∗) ∈ dom (GA)∗ there exists
y∗ ∈ Y ∗ with A∗y∗ = x∗ such, that

(GA)∗(x∗, z∗) = G∗(y∗, z∗) ⊆ A∗G∗(x∗, z∗),

proving the statement.

The result of 4.2.6c) is stronger then the well-known scalar result as it can be found in [26], as
we do not need any properness assumption on G : X → QtC(Z) .

4.2.7 Remark. For A ∈ L (X,Y ), x∗0 ∈ X∗, y∗0 ∈ Y ∗ and z∗0 ∈ C∗ \ {0} it holds

(AS(x∗0,z
∗
0 ))∗(y∗, z∗) = Icone{(x∗0,z∗0 )}(A

∗y∗, z∗) +H(z∗0)

and
(S(y∗0 ,z

∗
0 )A)∗(x∗, z∗) = Icone{(Ay∗0 ,z∗0 )}(x

∗, z∗) +H(z∗0).

4.2.8 Proposition (Chain-rule). Let F : X → QtC(Z) and G : Y → QtC(Z) and A : X → Y a
continuous linear operator. It holds

(F +GA)∗(x∗, z∗) ⊇ F ∗(x∗ +A∗y∗, z∗) +G∗(−y∗, z∗)

for all x∗ ∈ X∗, y∗ ∈ Y ∗ and z∗ ∈ C∗ \ {0} . If additionally F and G are convex and z∗-proper
and it exists x0 ∈ X such, that x0 ∈ domF and (Ax0, z0) ∈ int epiG for some z0 ∈ Z, then
equality holds and for all x∗ ∈ X∗ it exists y∗0 ∈ Y ∗ such, that

(F +GA)∗(x∗, z∗) = F ∗(x∗ −A∗y∗0, z∗) +G∗(y∗0, z∗) 6= Z

Proof. The first inclusion is immediate from 4.2.4b) and 4.2.6b). Under the additional as-
sumptions,

∃y∗ ∈ Y ∗ : (F +GA)∗(x∗, z∗) = F ∗(x∗ −A∗y∗0, z∗) +G∗(y∗0, z∗)

holds with 4.2.4c) and 4.2.6c) for all x∗ ∈ X∗. As dom (F + GA) 6= ∅ is assumed, (F +
GA)∗(x∗, z∗) 6= Z holds for all x∗ ∈ X∗ and z∗ ∈ C∗ \ {0} .

With the assumption in 4.2.8 it holds

(F +GA)∗(0, z∗) =
⋂
x∈X

({0} Cz∗ (F (x) +G(Ax))

= {0} Cz∗ cl co
⋃
x∈X

(F (x) +G(Ax))

⊇ cl
⋃

y∗∈Y ∗
(F ∗(A∗y∗, z∗) +G∗(−y∗, z∗)).

With this we are now able to state a Fenchel-Rockafellar type duality theorem.
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4.2.9 Theorem (Fenchel-Rockafellar-Duality). Let F : X → QtC(Z) and G : Y → QtC(Z) and
A : X → Y a continuous linear operator. Denote

P := cl co
⋃
x∈X

(F (x) +GA(x))

and
D :=

⋂
(y∗,z∗)∈Y ∗×(C∗\{0})

[{0} Cz∗ (F ∗(A∗y∗, z∗) +G∗(−y∗, z∗))] .

a) It holds D ⊇ P .

b) If additionally F and G are convex and z∗-proper and x0 ∈ domF and (Ax0, z) ∈ int epiG
for some z ∈ Z, then

P Cz∗ {0} = D Cz∗ {0} 6= ∅

and there is y∗ ∈ Y ∗ such that

(P Cz∗ {0}) = (D Cz∗ {0}) = {0} Cz∗ (F ∗(A∗y∗, z∗) +G∗(−y∗, z∗)).

c) If F and G are convex and z∗-proper for all z∗ ∈ C∗ \ {0} and x0 ∈ domF and (Ax0, z) ∈
int epiG for some z ∈ Z, then

P = D 6= ∅

and to every z∗ ∈ C∗ \ {0} there is y∗z∗ ∈ Y ∗ such that

P = D =
⋂

z∗∈C∗\{0}

(
{0} Cz∗ (F ∗(A∗y∗z∗ , z∗) +G∗(−y∗z∗ , z∗))

)
.

Proof.

a) For all z∗ ∈ C∗ \ {0} it holds

{0} Cz∗ P = (F +GA)∗(0, z∗)

and
{0} Cz∗ D = {0} Cz∗ cl

⋃
(y∗,z∗)∈Y ∗×(C∗\{0})

(F ∗(A∗y∗, z∗) +G∗(−y∗, z∗)).

Therefore {0} Cz∗ D ⊆ {0} Cz∗ P holds for all z∗ ∈ C∗ \ {0} by 4.2.8 and thus

∀z∗ ∈ C∗ \ {0} : P Cz∗ {0} ⊆ D Cz∗ {0} .

As

P =
⋂

z∗∈C∗\{0}
(P Cz∗ {0}),

D =
⋂

z∗∈C∗\{0}
(D Cz∗ {0})

holds, the inclusion is proven.
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b) Under the additional assumptions by 4.2.8 it holds

∃y∗0 ∈ Y ∗ : (F +GA)∗(0, z∗) = (F ∗(A∗y∗0, z∗) +G∗(−y∗0, z∗)) 6= Z

and

(F ∗(A∗y∗0, z∗) +G∗(−y∗0, z∗)) = cl
⋃

y∗∈Y ∗
(F ∗(A∗y∗, z∗) +G∗(−y∗, z∗)).

The statement holds as

P Cz∗ {0} = {0} Cz∗ (F +GA)∗(0, z∗),
D Cz∗ {0} = {0} Cz∗ (F ∗(A∗y∗, z∗) +G∗(−y∗, z∗)) 6= ∅.

c) As the assumptions of b) hold for all z∗ ∈ C∗ \ {0} , the result is easily derived from the
previous result as

P =
⋂

z∗∈C∗\{0}
(P Cz∗ {0}),

D =
⋂

z∗∈C∗\{0}
(D Cz∗ {0})

holds.

4.2.10 Corollary (Sandwich-Theorem). Let F : X → QtC(Z) and G : Y → QtC(Z) be convex
and z∗-proper and A : X → Y a continuous linear operator. If it exists x0 ∈ domF such that
(Ax0, z) ∈ int epiG for some z ∈ Z and for every x ∈ X it holds F (x) ⊆ {0} Cz∗ G(Ax), then
there exist y∗ ∈ Y ∗ and z0 ∈ Z such that

∀x ∈ X : F (x) ⊆ S(A∗y∗,z∗)(x)− z0 ⊆ {0} Cz∗ G(Ax),

and

z0 ∈ F ∗(Ay∗, z∗),
z0 ∈ {0} Cz∗ G∗(−y∗, z∗)

holds. If additionally F (x0) Cz∗ {0} = {0} Cz∗ G(Ax0), then z0 can be chosen such that

F ∗(Ay∗, z∗) = z0 +H(z∗),
G∗(−y∗, z∗) = −z0 +H(z∗).

Proof.
As both F and GA are z∗-proper, it holds

∅ 6= F (x) ⊆ {0} Cz∗ G(Ax) 6= Z,

H(z∗) ⊇ F (x) +G(Ax) 6= ∅

for all x ∈ domF ∩ domGA. Moreover,

cl
⋃
x∈X

(F (x) +G(Ax)) = cl
⋃

x∈domF∩domGA

(F (x) +G(Ax)).
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Applying 4.2.9 there exists y∗ ∈ Y ∗ such, that

H(z∗) ⊇ (
⋃
x∈X

(F (x) +G(Ax))) Cz∗ {0} = {0} Cz∗
(
F ∗(A∗y∗, z∗) +G∗(−y∗)

)
6= ∅.

Thus by 2.4.9 it holds

Z 6= F ∗(A∗y∗, z∗) ⊇ {0} Cz∗ G∗(−y∗) 6= ∅.

Therefore, for all z ∈ {0} Cz∗ G∗(−y∗, z∗) it holds

F (x) ⊆ S(y∗,z∗)(Ax)− z,
G(Ax) ⊆ S(−y∗,z∗)(Ax) + z.

As by 4.1.9 S(x∗,z∗) − z is a conaffine minorant of F if and only if z ∈ F ∗(x∗, z∗), the inclusion
G(Ax) ⊆ S(−y∗,z∗)(Ax) + z can be transformed into

{0} Cz∗ G(Ax) ⊇ ({0} Cz∗ S(y∗,z∗)(Ax))− z
= S(A∗y∗,z∗)(x)− z

proving the claimed inclusions. If additionally F (x0) Cz∗ {0} = {0} Cz∗ G(Ax0), then holds

H(z∗) = {0} Cz∗
(
F ∗(A∗y∗, z∗) +G∗(−y∗)

)
6= ∅

and thus

Z 6= F ∗(A∗y∗, z∗) = {0} Cz∗ G∗(−y∗) 6= ∅

and therefore there exists z0 ∈ Z such that

z0 +H(z∗) = F ∗(A∗y∗, z∗) = {0} Cz∗ G∗(−y∗)

and

F (x) ⊆ S(y∗,z∗)(Ax)− z0 ⊆ {0} Cz∗ G(Ax)

holds by the same calculations as above.
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5 Directional Derivative

In [10, 26, 50], the directional derivative of a convex function f : X → IR∪{+∞} at x0 ∈ dom f

is defined as

f ′(x0, x) = lim
t↓0

1
t
(f(x0 + tx)− f(x0)) (5.0.1)

for x ∈ X, when the limit exists in IR∪{±∞}. It is well-known that for convex proper functions
and x0 ∈ dom f it holds

f ′(x0, x) = inf
t>0

1
t
(f(x0 + tx)− f(x0))

as the difference quotient 1
t (f(x0 + tx)− f(x0)) does not increase, as t > 0 converges towards 0.

Moreover, if cl (f ′(x0, ·))(0) = 0 holds, then

∃s ∈ IR, s ≥ f(x0) : cl epi (f ′(x0, ·)) = Tepi f (x0, s) (5.0.2)

holds, where Tepi f (x0, s) := cl {t(epi f − (x0, s))| t > 0} denotes the tangent cone of epi f at
(x0, s) ∈ epi f . Of course, as f(x0) ∈ IR, it has to holds s = f(x0).

If cl epi (f ′(x0, ·))(0) = 0, then

f ′(x0, x) = sup
{
x∗(x)| x∗ ≤ f ′(x0, ·)

}
holds for all x ∈ X, compare [62]. If an additional constrained assumption holds, then the
max-formula

f ′(x0, x) = max
{
x∗(x)| x∗ ≤ f ′(x0, ·)

}
holds for all x ∈ X, compare [10].

Replacing the classic difference ′′−′′ by the inf-difference ′′ C′′, we succeed to prove that each
of the mentioned properties of the directional derivative, but (5.0.2), holds in the more general
case of f : X → IR ∪ {±∞} with x0 ∈ X, f(x0) not necessarily finite. The formula (5.0.2) can
only be achieved, if x0 ∈ dom f holds. If f(x0) = −∞, then

∀s ∈ IR : cl epi (f ′(x0, ·)) = Tepi f (x0, s) = (dom f − x0)× IR.

The formulas (5.0.1) and (5.0.2) gave rise to various definitions of a directional derivative
of vector-valued and set-valued functions, compare for example [15, 44, 65, 7, 14, 31, 28, 5]
and the references therein. Closest related to our approach appears to be the definition of the
derivative or epiderivative in [1]. The most popular approach seems to be that of the contingent
epiderivative, introduced in [28], compare also [51, 52] and related concepts. As the aim in those
works is to establish a subdifferential which is a subset of L (X,Z), the contingent epiderivative
is vector-valued. We will return to discuss this approach later on in section 7.

For the present, we restrict our further investigations on the case of convex set-valued func-
tions F : X → QtC(Z) and define a family of set-valued directional derivatives of F at x0 ∈ X
parallel to (5.0.1), namely

F ′z∗(x0, x) = inf
t>0

1
t
(F (x0 + tx) Cz∗ F (x0))
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for every x ∈ X and z∗ ∈ C∗ \ {0} . It will be shown in subsection 7.1, that a formula related
to (5.0.2) holds for all x0 ∈ domF , that is

∀x0 ∈ domF : ∃z0 ∈ F (x0) Cz∗ {0} : cl epi (F ′z∗(x0, ·)) = Tepi (FCz∗{0})(x0, z0).

It is notable, that again we do not assume that the function F : X → QtC(Z) or its z∗-hull
F Cz∗ {0} : X → QtH(z∗)(Z) is proper, neither do we assume that x0 ∈ domF holds. Each
directional derivative will prove to be sublinear and the difference quotient

G(t) = 1
t
(F (x0 + tx) Cz∗ F (x0))

proves to be non-increasing as t > 0 converges towards 0, that is for 0 < t1 < t2 it holds
G(t1) ⊇ G(t2).

We will prove that if (cl (F ′z∗(x0, ·)))(0) = H(z∗), then (cl (F ′z∗(x0, ·))) is the pointwise supre-
mum of the conlinear minorants of cl (F ′z∗(x0, ·)) and under an additional constrained assumption
we will provide a set-valued max-formula.

In subsection 5.2, we will summarize some calculus rules for the directional derivatives,
including a sum- and a chain-rule.

The results achieved in this chapter very naturally lead to one possible definition of the
subdifferential, or rather a family of subdifferentials of a convex set-valued function mapping
into QtC(Z) , which will be discussed in detail in the following section 6. In fact this approach
will turn out to coincide in all but the ”pathological” cases with the subdifferentials defined via
the conjugate of F : X → QtC(Z) .

Throughout this chapter, X, Y and Z are assumed to be locally convex separable spaces
with the corresponding dual spaces X∗, Y ∗ and Z∗ and Z is quasi-ordered by a closed convex
cone C ( Z with {0} ( C.

5.1 Definition and basic results

5.1.1 Definition. Let F : X → QtC(Z) be a convex function. The directional derivative
F ′z∗(x0, ·) : X → P (Z) in x0 ∈ X with respect to z∗ ∈ C∗ \ {0} is defined by

F ′z∗(x0, x) := cl
⋃
t>0

1
t

(F (x0 + tx) Cz∗ F (x0)) .

Especially, if F : X → QtC(Z) is a convex function and x0 ∈ X, then

F ′z∗(x0, 0) =
{
F (x0) Cz∗ {0} , if F (x0) 6= ∅;
Z, else.

holds and therefore F ′z∗(x0, 0) = Z if F (x0) is not a z∗-proper set, that is if (F (x0) Cz∗ {0}) ∈
{∅, Z}, compare 2.4.6.

5.1.2 Lemma. Let F : X → QtC(Z) be a convex function, x0 ∈ X and z∗ ∈ C∗ \ {0} . It holds

F ′z∗(x0, ·) : X → QtH(z∗)(Z)

with
∀x ∈ X : F ′z∗(x0, x) =

{
z ∈ Z| − z∗(z) ≥ ϕ′(F,z∗)(x0, x)

}
.

61



Proof. By definition,

∀x ∈ X : F ′z∗(x0, x) =
{
z ∈ Z| ∀t > 0 : −z∗(z) ≥ 1

t
(ϕ(F,z∗) (x0 + tx) C ϕ(F,z∗) (x0))

}
=

{
z ∈ Z| − z∗(z) ≥ inf

t>0

1
t
(ϕ(F,z∗) (x0 + tx) C ϕ(F,z∗) (x0))

}
=

{
z ∈ Z| − z∗(z) ≥ ϕ′(F,z∗)(x0, x)

}
∈ QtH(z∗)(Z).

5.1.3 Lemma. Let F : X → QtC(Z) be a convex function, x ∈ X and s > 0.

a) It holds ϕ(F ′
z∗ (x0,·),sz∗)(x) = sϕ′(F,z∗)(x0, x).

If z∗0 ∈ C∗ \ cl cone {z∗}, then ϕ(F ′
z∗ (x0,·),z∗0 )(x) = −∞, if x ∈ domF ′z∗(x0, ·) and +∞, else.

b) It holds
∀s > 0 : F ′sz∗(x0, x) = F ′z∗(x0, x).

Proof.

a) From 5.1.2, it holds ϕ(F ′
z∗ (x0,·),z∗)(x) = ϕ′(F,z∗)(x0, x) and ϕ(F ′

z∗ (x0,·),sz∗)(x) = sϕ′(F,z∗)(x0, x).

If z∗0 ∈ C∗ \ (cone {z∗} ∪ {0}, then ϕ(F ′
z∗ (x0,·),z∗0 )(x) = −∞ holds if x ∈ domF ′z∗(x0, ·), as

F ′z∗ : X → QtH(z∗)(Z). If F ′z∗(x0, x) = ∅, then

ϕ(F ′
z∗ (x0,·),z∗0 )(x) = inf {−z∗0(z)| z ∈ ∅} = +∞.

b) Let s > 0, then

∀x ∈ X : F ′sz∗(x0, x) =
{
z ∈ Z| − sz∗(z) ≥ ϕ′(F,sz∗)(x0, x) = sϕ′(F,z∗)(x0, x)

}
= F ′z∗(x0, x).

5.1.4 Proposition. For a convex function F : X → QtC(Z) and z∗ ∈ C∗ \ {0} it holds

∀x0, x ∈ X : F ′z∗(x0, x) = (F Cz∗ {0})′z∗(x0, x) = (F ′z∗(x0, ·) Cz∗ {0})(x).

Moreover, F ′z∗(x0, ·) is closed if and only if it is z∗-closed, proper if and only if it is z∗-proper,
C-proper, if and only if it is proper and z∗ ∈ C∗ \ −C∗.

Proof. As
∀x ∈ X : F ′z∗(x0, x) =

{
z ∈ Z| − z∗(z) ≥ ϕ′(F,z∗)(x0, x)

}
holds by 5.1.2, the equality of F ′z∗(x0, x) and (F ′z∗(x0, ·) Cz∗ {0})(x) for all z∗ ∈ C∗ \ {0} and
all x0, x ∈ X is immediate with 3.1.4. With 2.4.3 it holds

(F (x0 + sx) Cz∗ F (x0)) =
(
(F Cz∗ {0})(x0 + sx) Cz∗ (F Cz∗ {0})(x0)

)
,

thus F ′z∗(x0, x) = (F Cz∗ {0})′z∗(x0, x) holds for all z∗ ∈ C∗ \ {0} and all x0, x ∈ X. As
F ′z∗(x0, ·) maps into QtH(z∗)(Z), F ′z∗(x0, ·) is proper if and only if it is z∗-proper, C-proper if and
only if it is proper and z∗ ∈ C∗ \ −C∗. Applying 3.3.1, F ′z∗(x0, ·) is closed if and only if it is
z∗-closed.
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5.1.5 Lemma. Let F : X → QtC(Z) be a convex function, z∗ ∈ C∗ \ {0} .

a) If F (x0) = ∅, then F ′z∗(x,x) = Z for all x ∈ X.

b) If (F (x0) Cz∗ {0}) = Z, then

F ′z∗(x0, x) =
{
Z, if ∃t > 0 : x0 + tx ∈ domF ;
∅, else.

In this case, F ′z∗(x0, 0) = Z.

c) If (F (x0 + s0x) Cz∗ {0}) = Z for some s0 > 0, then it holds F ′z∗(x0, x) = Z.

Proof.

a) If F (x0) = ∅, then

∀x ∈ X, ∀t > 0 : 1
t

(
F (x0 + tx) Cz∗ F (x0)

)
= Z

holds an thus F ′z∗(x0, ·) ≡ Z.

b) If F (x0) Cz∗ {0} = Z and (x0 + tx) ∈ domF , then for all s ∈ (0, t) it holds F (x0 + sx) Cz∗
{0} = Z and thus

∀s ∈ (0, t) : 1
s

(
F (x0 + sx) Cz∗ F (x0)

)
= Z,

therefore F ′z∗(x0, x) = Z.

c) If (F (x0 + s0x) Cz∗ {0}) = Z, then ϕ(F,z∗) (x0 + s0x) = −∞. If x0 ∈ domF , then it holds
ϕ(F,z∗) (x0 + sx) = −∞ for all s ∈ (0, s0) and by 2.4.3 it holds

F ′z∗(x0, x) = cl
⋃
s>0

1
s

{
z ∈ Z| − z∗(z) ≥ (ϕ(F,z∗) (x0 + sx) C ϕ(F,z∗) (x0))

}
= Z.

If x0 /∈ domF , then we can apply a), completing the proof.

5.1.6 Corollary. If F : X → QtC(Z) is a convex function and z∗ ∈ C∗ \ {0} , then F ′z∗(x0, ·) :
X → QtH(z∗)(Z) is positively homogeneous. If additionally x0 ∈ domF and F (x0) Cz∗ {0} 6= Z

holds, then F ′z∗(x0, 0) = H(z∗).

Proof. Let s > 0, then

∀t > 0 : 1
t

(
F (x0 + tsx) Cz∗ F (x0)

)
= s

1
ts

(
F (x0 + tsx) Cz∗ F (x0)

)
∈ QtH(z∗)(Z)

and thus the function F ′z∗(x0, ·)X → QtH(z∗)(Z) is positively homogeneous. If F (x0) is a z∗-proper
set, then F (x0) Cz∗ F (x0) = H(z∗), proving the statement.

5.1.7 Proposition. Let F : X → QtC(Z) be a convex function and z∗ ∈ C∗ \ {0}.

a) If F (x0) is z∗-proper, then F ′z∗(x0, 0) = H(z∗) and F ′z∗(x0, 0) = Z, else.

b) If x0 ∈ domF , then domF ′z∗(x0, ·) = {0} ∪ cone (domF + {−x0}).

c) The function F ′z∗(x0, ·) : X → QtH(z∗)(Z) is sublinear.
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d) If F (x0) is z∗-proper, then

∀x ∈ X : {0} Cz∗ F ′z∗(x0, x) ⊇ F ′z∗(x0,−x).

e) For z∗0 , z∗ ∈ C∗ \ {0} it holds

(F ′z∗0 (x0, ·))∗(x∗, z∗) =
{
H(z∗), if S(x∗,z∗) 4 F

′
z∗0

(x0, ·) ;
∅, else.

Especially, (F ′z∗0 (x0, ·))∗(x∗, z∗) = ∅, if z∗0 /∈ cone {z∗}.

f) It holds
(F ′z∗(x0, ·))∗∗(x) =

⋂
S(x∗,z∗)4F

′
z∗ (x0,·)

(S(x∗,z∗)(x)).

Proof.

a) For all x0 ∈ X it holds

F ′z∗(x0, 0) = F (x0) Cz∗ F (x0) =
{
H(z∗), if F (x0) is a z∗-proper set;
Z, else.

b) It holds 0 ∈ domF ′z∗(x0, ·). If x 6= 0 and t > 0, then

1
t

(
F (x0 + tx) Cz∗ F (x0)

)
6= ∅ ⇔ x ∈ 1

t
(domF − x0).

Thus, domF ′z∗(x0, ·) = {0} ∪ cone (domF − x0) holds, as

F ′z∗(x0, x) 6= ∅ ⇔ ∃t > 0 : x ∈ 1
t
(domF − x0).

c) Define G : X → QtH(z∗)(Z) by

G(x) = F (x0 + x) Cz∗ F (x0)

for all x ∈ X. It holds

epiG = {(x, z) ∈ X × Z| F (x0) + z ⊆ F (x0 + x)} .

If t ∈ (0, 1) and (x1, z1), (x2, z2) ∈ epiG, then F (x0) ⊆ tF (x0) + (1− t)F (x0) and

F (x0) + (tz1 + (1− t)z2) ⊆ t(F (x0) + z1) + (1− t)(F (x0) + z2)
⊆ tF (x0 + x1) + (1− t)F (x0 + x2)
⊆ F (x0 + tx1 + (1− t)x2),

as F is convex. Thus, epiG is a convex set and G a convex function. If 0 < s1 < s2 holds,
then there is t ∈ (0, 1) such, that s1 = ts2 + (1− t)0, therefore

G(s1x) ⊇ tG(s1x) + (1− t)G(0)
1
s1
G(s1x) ⊇

1
s2
G(s1x) + 1− t

ts2
G(0)

=
{ 1

s2
G(s1x), if F (x0) is a z∗-proper set;

1
s2
G(s1x) + Z, else.
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Thus, the difference quotient 1
tG(tx) is, not increasing when t > 0 is decreasing.

First, let s > 0 and x ∈ X. Then 1
tG(tsx) = s 1

tsG(tsx) and hence F ′z∗(x0, ·) is positively
homogeneous as

F ′z∗(x0, sx) = s cl
⋃
ts>0

1
ts
G(tsx) = sF ′z∗(x0, x).

Involving 2.4.8e) and the facts that F is a convex function and F (x0) is a convex set it can
be seen that

F ′z∗(x0, x1 + x2) ⊇ cl
⋃
t>0

1
t

(
G(tx1) +G(tx2)

)
.

For 0 < s < t it holds

G(tx1) +G(sx2) ⊆ G(tx1) +G(tx2),

thus F ′z∗(x0, ·) is subadditive.

d) As F ′z∗(x0, ·) is sublinear, it holds

F ′z∗(x0, x) + F ′z∗(x0,−x) ⊆ F ′z∗(x0, 0).

If F (x0) is z∗-proper, then F ′z∗(x0, 0) = H(z∗). Thus,

F ′z∗(x0,−x) ⊆
{
z ∈ Z| F ′z∗(x0, x) + z ⊆ H(z∗)

}
= {0} Cz∗ F ′z∗(x0, x).

e) By definition,

(F ′z∗0 (x0, ·))∗(x∗, z∗) =
⋂
x∈X

(S(x∗,z∗)(x) Cz∗ F ′z∗0 (x0, x))

holds. Especially,

(F ′z∗0 (x0, ·))∗(x∗, z∗) ⊆ (S(x∗,z∗)(0) Cz∗ F ′z∗0 (x0, 0)) (5.1.1)

holds and F ′z∗0 (x0, 0) ∈ {Z,H(z∗0)}. Thus (F ′z∗0 (x0, ·))∗(x∗, z∗) = ∅ if z∗0 /∈ cone {z∗}. By 5.1.3
it holds F ′tz∗0 (x0, x) = F ′z∗0

(x0, x) for all x ∈ X and t > 0, thus without loss we can assume
z∗ = z∗0 from now on.

If F ′z∗0 (x0, 0) = Z, then F ′z∗0 (x0, ·) has no conlinear minorant and by (5.1.1) it holds

(F ′z∗(x0, ·))∗(x∗, z∗) = ∅.

From now on suppose F ′z∗(x0, 0) = H(z∗) By (5.1.1) it holds (F ′z∗(x0, ·))∗(x∗, z∗) ⊆ H(z∗).

If S(x∗,z∗)(x) ⊇ F ′z∗(x0, x) holds for all x ∈ X, then

(S(x∗,z∗)(x) Cz∗ F ′z∗(x0, x)) ⊇ H(z∗)

and thus

(F ′z∗(x0, ·))∗(x∗, z∗) = H(z∗).
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Both S(x∗,z∗) and F ′z∗(x0, ·) map into QtH(z∗)(Z). If S(x∗,z∗) is not a conlinear minorant of
F ′z∗(x0, ·), then there is x ∈ X such, that F ′z∗(x0, x) ⊃ S(x∗,z∗)(x) holds and it exists s > 0
such that

(S(x∗,z∗)(x) Cz∗ F ′z∗(x0, x)) ⊆ se+H(z∗)

with z∗(e) = 1. As both functions are positively homogeneous, we can apply 2.4.8a to prove

(F ′z∗(x0, ·))∗(x∗, z∗) ⊆
⋂
t>0

(S(x∗,z∗)(tx) Cz∗ F ′z∗(x0, tx))

⊆
⋂
t>0

(tS(x∗,z∗)(x) Cz∗ tF ′z∗(x0, x))

⊆
⋂
t>0

t(S(x∗,z∗)(x) Cz∗ F ′z∗(x0, x))

⊆
⋂
t>0

tse+H(z∗)

= ∅.

f) By definition,

(F ′z∗(x0, ·)∗∗(x) =
⋂

(x∗,z)∈X∗×C∗\{0}

(
S(x∗,z∗)(x) Cz∗ (F ′z∗(x0, ·)∗(x∗, z∗)

)

and therefore

(F ′z∗(x0, ·)∗∗(x) =
⋂

S(x∗,z∗)4F
′
z∗ (x0,·)

(
S(x∗,z∗)(x) Cz∗ H(z∗)

)
=

⋂
S(x∗,z∗)4F

′
z∗ (x0,·)

S(x∗,z∗)(x).

The function (F ′z∗(x0, ·))∗ : (X∗×C∗ \ {0} )→ QtH(z∗)(Z) can be understood as the indicator
function of the set

{
(x∗, z∗)| S(x∗,z∗) 4 F

′
z∗(x0, ·)

}
mapping into QtH(z∗)(Z), a subset of QtC(Z) .

Recall that the neutral element in QtH(z∗)(Z) is H(z∗) ⊇ C, while C is the neutral Element in
QtC(Z) .

Let F : X → QtC(Z) be a convex function. From 5.1.7 it is immediate, that if F (x0) is a
z∗-proper set and F ′z∗(x0, x) = Z holds, then F ′z∗(x0,−x) = ∅. Moreover, domF ′z∗(x0, ·) = X if
x0 ∈ core domF .

5.1.8 Theorem. If F : X → QtC(Z) is a convex function and x0 ∈ core domF , then domF ′z∗(x0, ·) =
X and the following are equivalent.

a) The set F (x0) is z∗-proper.

b) The function F is z∗-proper.

c) The directional derivative F ′z∗(x0, ·) is proper.
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Proof. As domF ′z∗(x0, ·) = cone (domF + x0) holds, the first result is immediate. The set
F (x0) is z∗-proper if and only if ϕ(F,z∗) (x0) ∈ IR. As F is convex and x0 ∈ core domF =
core domϕ(F,z∗) holds by assumption, ϕ(F,z∗) is convex and ϕ(F,z∗) (x0) ∈ IR holds if and only if
ϕ(F,z∗) is a proper function. This is equivalent to F being z∗-proper, thus the first equivalence
is proven. If F ′z∗(x0, ·) is proper, then F ′z∗(x0, 0) = H(z∗) and thus F (x0) is z∗-proper. On the
other hand, if F (x0) is z∗-proper, then F ′z∗(x0, 0) = H(z∗) and

∀ {0} Cz∗ F ′z∗(x0, x) ⊇ F ′z∗(x0,−x).

If F ′z∗(x0, x) = Z, then F ′z∗(x0,−x) = ∅, a contradiction, as domF ′z∗(x0, ·) = X.

5.1.9 Proposition. If F : X → QtC(Z) is a convex function and x0 ∈ domF , then there exists
z0 ∈ F (x0) Cz∗ {0} such, that

epiF ′z∗(x0, ·) ⊇ cone (epiF − (x0, z0)) ∪ ({0} ×H(z∗)).

Proof. If F (x0) Cz∗ {0} = Z, then by 5.1.5

epiF ′z∗(x0, ·) =
(
cone (domF − x0)× Z

)
∪
(
{0} × Z

)
⊇ cone (epiF − (x0, z)) ∪ ({0} ×H(z∗))

holds for all z ∈ F (x0) Cz∗ {0}. If F (x0) Cz∗ {0} 6= Z, then it exists z0 ∈ Z such, that
F (x0) Cz∗ {0} = z0 +H(z∗) and

∀x ∈ X : F ′z∗(x0, x) ⊇ F (x0 + x)− z0 +H(z∗)

and F ′z∗(x0, 0) = H(z∗). Thus,

epiF ′z∗(x0, ·) ⊇ cone (epiF − (x0, z0)) ∪ ({0} ×H(z∗))

holds, as F ′z∗(x0, ·) is a sublinear map from X into QtH(z∗)(Z).

5.1.10 Lemma. Let F : X → QtC(Z) be a convex function, z∗ ∈ C∗ \ {0} and s > 0.

a) It holds ϕ(clF ′
z∗ (x0,·),sz∗)(x) = sclϕ′(F,z∗)(x0, x).

If z∗0 ∈ C∗ \ cl cone {z∗}, then ϕ(clF ′
z∗ (x0,·),z∗0 )(x) = −∞.

b) It holds
(clF ′z∗(x0, ·))(x) =

{
z ∈ Z| − z∗(z) ≥ clϕ′(F,z∗)(x0, x)

}
.

Proof.

a) By 3.1.5 and 3.3.1 it holds

ϕ(clF ′
z∗ (x0,·),sz∗)(x) = s clϕ(F ′

z∗ (x0,·),z∗)(x).

By 5.1.3, it holds

ϕ(clF ′
z∗ (x0,·),sz∗)(x) = s clϕ′(F,z∗)(x0, x)

and the second claim.
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b) By 3.3.5, the claim is immediate.

5.1.11 Lemma. Let z∗ ∈ C∗ \ {0} and F : X → QtC(Z) be a convex z∗-proper function. If
F ′z∗(x0, 0) = (clF ′z∗(x0, ·))(0) = H(z∗) holds, then

∀x ∈ X : (clF ′z∗(x0, ·))(x) =
⋂

S(x∗,z∗)4F
′
z∗ (x0,·)

S(x∗,z∗)(x).

Proof. By 5.1.10 it holds

∀x ∈ X : (clF ′z∗(x0, ·))(x) =
{
z ∈ Z| − z∗(z) ≥ clϕ′(F,z∗)(x0, x)

}
.

If F ′z∗(x0, 0) = (clF ′z∗(x0, ·))(0) = H(z∗) holds, then ϕ′(F,z∗)(x0, 0) = clϕ′(F,z∗)(x0, 0) = 0, thus
by 8.3.14 it holds

∀x ∈ X : clϕ′(F,z∗)(x0, x) = sup
x∗≤ϕ′(F,z∗)(x0,·)

x∗(x).

5.1.12 Lemma. Let F : X → QtC(Z) be a convex function and x0 ∈ domF , then clF ′z∗(x0, ·) :
X → QtC(Z) is proper if and only if F ′z∗(x0, 0) = (clF ′z∗(x0, ·))(0) = H(z∗).

Proof. Again, with

(clF ′z∗(x0, ·))(x) =
{
z ∈ Z| − z∗(z) ≥ clϕ′(F,z∗)(x0, x)

}
.

and the scalar result 8.3.14.

5.1.13 Proposition. If F : X → QtC(Z) is a convex function and (x0, z̄) ∈ int epiF , then for
all x ∈ X it exists z ∈ Z such, that (x, z) ∈ int epiF ′z∗(x0, ·). If additionally F (x0) Cz∗ {0} 6= Z,
then F ′z∗(x0, ·) is proper.

Proof. By 5.1.9, it exists z0 ∈ F (x0) Cz∗ {0} such, that

epiF ′z∗(x0, ·) ⊇ cone (epiF − (x0, z0)) ∪ {0} ×H(z∗).

Thus, if (x0, z̄) ∈ int epiF holds, then (0, z̄ − z0) ∈ int epiF ′z∗(x0, ·). The function F ′z∗(x0, ·) is
sublinear, thus by 3.3.8 for all x ∈ X it exists z ∈ Z such, that (x, z) ∈ int epiF ′z∗(x0, ·). The
remaining claim is 5.1.8, as x0 ∈ int domF = core domF is assumed.

5.1.14 Proposition. Let F : X → QtC(Z) be a convex proper function and x0 ∈ domF . If F
is z∗-proper for z∗ ∈ C∗ \ {0} and (x0, z0) ∈ int epiF , then

∀x ∈ X : ∃S(x∗,z∗) 4 F
′
z∗(x0, ·) : F ′z∗(x0, x) = S(x∗,z∗)(x).

Proof. By 3.3.7, the scalarization ϕ(F,z∗) : X → IR ∪ {±∞} is proper and continuous in
x0 ∈ int domϕ(F,z∗) . Thus, by 8.3.15 it holds

∀x ∈ X : ϕ′(F,z∗)(x0, x) = cl (ϕ′(F,z∗)(x0, ·))(x) ∈ IR.

Thus by 5.1.2 and 3.3.1

∀x ∈ X : F ′z∗(x0, x) = cl (F ′z∗(x0, ·))(x)
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and each image F ′z∗(x0, x) is a z∗-proper set. Moreover, by 8.3.15 it holds

∀x ∈ X : ∃x∗ ≤ ϕ′(F,z∗)(x0, ·) : ϕ′(F,z∗)(x0, x) = x∗0(x).

It holds x∗ ≤ ϕ′(F,z∗)(x0, ·) if and only if S(x∗,z∗) 4 F ′z∗(x0, ·) and ϕ′(F,z∗)(x0, x) = x∗0(x) holds if
and only if S(x∗,z∗)(x) = F ′z∗(x0, x), thus the claim is proven.

In fact, the assumption of (x0, z0) ∈ int epiF could be replaced by either of the conditions
introduced in 3.3.9. The next theorem will provide another version of the set-valued max-
Formula introduced in 5.1.14.

5.1.15 Theorem (The Max-Formula). Let F : X → QtC(Z) be a convex proper (C-proper)
function and x0 ∈ domF . If (x0, z0) ∈ int epiF , then it exists z∗ ∈ C∗ \ {0} (z∗ ∈ C∗ \ −C∗)
such that F is z∗-proper and

∀x ∈ X : ∃z ∈ Z : (x, z) ∈ int epi (F ′z∗(x0, ·)).

Moreover, F ′z∗(x0, ·) proper, domF ′z∗(x0, ·) = X and

∀x ∈ X : ∃S(x∗,z∗) 4 F
′
z∗(x0, ·) : F ′z∗(x0, x) = S(x∗,z∗)(x)

Proof. A function is proper (C-proper) if and only if it is z∗-proper for at least one z∗ ∈
C∗ \ {0} (z∗ ∈ C∗ \ −C∗). Thus, by 5.1.13 F ′z∗(x0, ·) proper and domF ′z∗(x0, ·) = X and

∀x ∈ X : ∃z ∈ Z : (x, z) ∈ int epi (F ′z∗(x0, ·)).

By 5.1.14, the final formula holds true.

5.2 Calculus

5.2.1 Proposition. Let G : Y → QtC(Z) be a convex function and t > 0, A ∈ L (X,Y ), y0 ∈ Y ,
z0 ∈ Z, (x∗0, z∗0) ∈ X∗×C∗ \ {0} and z∗ ∈ C∗ \ {0} . The function F : X → QtC(Z) is defined by

F (x) = tG(Ax+ y0) + S(x∗0,z
∗
0 )(x) + z0

for all x ∈ X.

a) If x0 ∈ domF and z∗ /∈ cone {z∗0} holds, then

F ′z∗(x0, x) =
{
Z, if x ∈ cone (domF − x0);
∅, else.

b) If z∗ ∈ cone {z∗0} holds, then

F ′z∗(x0, x) = tG′z∗(Ax0 + y0, Ax) + S(x∗0,z
∗
0 )(x).

Proof.

a) If x0 ∈ domF and z∗ /∈ cone {z∗0} holds, then F (x0) Cz∗ {0} = Z. Thus the claim holds by
5.1.5.
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b) If z∗ ∈ cone {z∗0} holds, then

F ′z∗(x0, x) = F ′z∗0 (x0, x)

holds for all x ∈ X by 5.1.3. For all s > 0 it holds

1
s
F (x0 + sx) Cz∗ F (x0)

=1
s

(
(tG(Ax0 + y0 + sAx) + S(x∗0,z∗)(x0 + sx) + z0) Cz∗ (tG(Ax0 + y0) + S(x∗0,z∗)(x0) + z0)

)
=1
s

(
(tG(Ax0 + y0 + sAx) + S(x∗0,z∗)(x0 + sx)) Cz∗ (tG(Ax0 + y0) + S(x∗0,z∗)(x0))

)
.

Recall that for s, t > 0 and (x∗, z∗) ∈ X∗ × C∗ \ {0} it holds tS(x∗,z∗)(sx) = sS(tx∗,z∗)(x) for
all x ∈ X. Moreover it holds

∀x ∈ X : S(x∗0,z
∗
0 )(x) ∈ QtH(z∗)(Z) \ {∅, Z} ,

S(x∗0,z
∗
0 )(x) + S(−x∗0,z

∗
0 )(x) = H(z∗),

so
1
s
F (x0 + sx) Cz∗ F (x) = 1

s

(
(tG(Ax0 + y0 + sAx) + sS(x∗0,z∗)(x)) Cz∗ tG(Ax0 + y0)

)
= t

1
s

(
(G(Ax0 + y0 + sAx) + sS( 1

t
x∗0,z

∗)(x)) Cz∗ G(Ax0 + y0)
)

= t
1
s

(
G(Ax0 + y0 + sAx) Cz∗ G(Ax0 + y0)

)
+ S(x∗0,z∗)(x)

holds and the claim is proven as

F ′z∗(x0, x) = cl
⋃
s>0

1
s
F (x0 + sx) Cz∗ F (x)

= t cl
⋃
s>0

1
s

(
G(Ax0 + y0 + sAx) Cz∗ G(Ax0 + y0)

)
+ S(x∗0,z∗)(x).

Recall that F ′z∗(x0, ·) ≡ Z holds, if x0 /∈ domF .

5.2.2 Proposition. Let Fi : X → QtC(Z) for n ≥ 2 and i = 1, ..., n be convex functions and
z∗ ∈ C∗ \ {0} .

a) If F (x) = (co ( inf
i=1,...,n

Fi))(x) = (co (cl co
⋃

i=1,...,n
Fi))(x) holds for all x ∈ X and Fj(x0) Cz∗

{0} = F (x0) Cz∗ {0} for j = 1, ...,m ≤ n and x0 ∈ X, then

F ′z∗(x0, x) ⊇
⋃

j=1,...,m
F ′jz∗(x0, x)

holds for all x ∈ X. Especially, if Fk(x0) = F (x0) holds for k = 1, ..., l ≤ n, then

F ′z̄∗(x0, x) ⊇
⋃

j=1,...,m
F ′jz̄∗(x0, x)

holds for all x ∈ X and z̄∗ ∈ C∗ \ {0} .
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b) If F (x) = sup
i=1,..,n

Fi(x) =
⋂

i=1,...,n
Fi(x) holds for all x ∈ X and Fj(x0) Cz∗ {0} = F (x0) Cz∗

{0} for j = 1, ...,m ≤ n and x0 ∈ X, then

F ′z∗(x0, x) ⊆
⋂

j=1,...,m
F ′jz∗(x0, x)

holds for all x ∈ X. Especially, if Fk(x0) = F (x0) holds for k = 1, ..., l ≤ n, then

F ′z̄∗(x0, x) ⊆
⋂

j=1,...,m
F ′jz̄∗(x0, x)

holds for all x ∈ X and z̄∗ ∈ C∗ \ {0} .

Proof.

a) If F (x) = cl co
⋃

i=1,...,n
Fi(x) holds for all x ∈ X and Fj(x0) Cz∗ {0} = F (x0) Cz∗ {0} for

j = 1, ...,m ≤ n and x0 ∈ X, then

F (x0 + x) Cz∗ F (x0) ⊇ Fj(x0 + x) Cz∗ Fj(x0)

holds for all x ∈ X. The difference quotient

1
t

(
Fj(x0 + tx) Cz∗ Fj(x0)

)
is non-increasing, as t > 0 converges to 0. Thus,

cl
⋃
t>0

1
t
(F (x0 + tx) Cz∗ F (x0)) ⊇ cl

⋃
t>0

1
t
(Fj(x0 + tx) Cz∗ Fj(x0))

holds and therefore F ′z∗(x0, x) ⊇ F ′jz∗(x0, x) holds for all x ∈ X and j = 1, ...m. If F (x0) =
Fk(x0) then especially F (x0) Cz̄∗ {0} = Fk(x0) Cz̄∗ {0} holds for all z̄∗ ∈ C∗ \ {0} , thus the
second inclusion is a special case of the first.

b) If F (x) = sup
i=1,..,n

Fi(x) =
⋂

i=1,...,n
Fi(x) holds for all x ∈ X and Fj(x0) Cz∗ {0} = F (x0) Cz∗

{0} for j = 1, ...,m ≤ n and x0 ∈ X, then F : X → QtC(Z) is convex and

F (x0 + x) Cz∗ F (x0) ⊆ Fj(x0 + x) Cz∗ Fj(x0)

holds for all x ∈ X. Thus F ′z∗(x0, x) ⊆ F ′jz∗(x0, x) holds for all x ∈ X and j = 1, ...m. If
F (x0) = Fk(x0) then especially F (x0) Cz̄∗ {0} = Fk(x0) Cz̄∗ {0} holds for all z̄∗ ∈ C∗ \ {0} ,
thus the second inclusion is a special case of the first.

5.2.3 Proposition. Let Fi : X → QtC(Z) be convex functions for n ≥ 2 and i = 1, ..., n and
z∗ ∈ C∗ \ {0} .

a) If F (x) = (F1�...�Fn)(x) holds for all x ∈ X and F1(x1).. + Fn(xn) = F (x0) holds for
xi ∈ X with x1 + ...+ xn = x0 and F (x0) is a z∗-proper set, then it holds

F ′z∗(x0, x) = (F ′1z∗(x1, ·)�...�F ′nz∗(xn, ·))(x)

for all x ∈ X.
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b) If F (x) = (F1 + ...+ Fn)(x) holds for all x ∈ X, then it holds

F ′z∗(x0, x) ⊇ F ′1z∗(x0, x) + ...+ F ′nz∗(x0, x)

for all x0, x ∈ X.

c) If F (x) = (F1 + ...+ Fn)(x) holds for all x ∈ X and domFi = X and Fi is z∗-proper for all
but possibly one i ∈ {1, ..., n}, then

F ′z∗(x0, x) = F ′1z∗(x0, x) + ...+ F ′nz∗(x0, x)

for all x0, x ∈ X.

Proof.

a) Without loss of generality we assume n = 2. If F (x) = (F1�F2)(x) holds for all x ∈ X and
∅ 6= F1(x1) + F2(x2) = F (x0) 6= Z holds for xi ∈ X with x1 + x2 = x0, then it holds

F ′z∗(x0, x̄) = cl
⋃
t>0

cl
⋃

x̄1+x̄2=x̄

1
t

(
(F1(x1 + tx̄1) + F2(x2 + x̄2)) Cz∗ (F1(x1) + F2(x2))

)
= cl

⋃
x̄1+x̄2=x̄

cl
⋃
t>0

1
t

(
(F1(x1 + tx̄1) Cz∗ F1(x1)) + (F2(x2 + x̄2) Cz∗ F2(x2))

)

As the difference quotient 1
t (Fi(xi + tx̄i) Cz∗ Fi(xi)) is not increasing as t converges towards

0, it holds

F ′z∗(x0, x̄) = cl
⋃

x̄1+x̄2=x̄
(F ′1z∗(x1, x̄1) + F ′2z∗(x2, x̄2))

= (F ′1z∗(x1, ·)�F ′2z∗(x2, ·))(x̄).

b) Again we assume n = 2. If F (x) = (F1 + F2)(x) holds for all x ∈ X, then by 2.4.8 it holds

F (x0 + x) Cz∗ F (x0) ⊇ (F (x0 + x) Cz∗ F1(x0)) + (F2(x0 + x) Cz∗ F2(x0))

for all x0, x ∈ X. As the difference quotient 1
t (Fi(xi + tx̄i) Cz∗ Fi(xi)) is not increasing as t

converges towards 0, it holds

F ′z∗(x0, x) ⊇ (F ′1z∗(x0, x) + F ′2z∗(x0, x)).

c) We assume n = 2 and the additional assumptions are fulfilled by F1 : X → QtC(Z) . Then
F1(x) /∈ {∅, Z} holds for all x ∈ X and hence

F1(x) + ({0} Cz∗ F1(x)) = H(z∗).

Therefore,

F (x0 + x) Cz∗ F (x0)
= {z ∈ Z| (F1(x0) + F2(x0)) + z ⊆ (F1(x0 + x) + F2(x0 + x))}
= {z ∈ Z| (F2(x0)) + z ⊆ F2(x0 + x))}+ (F1(x0 + x) + ({0} Cz∗ F1(x0))
= (F2(x0 + x) Cz∗ F2(x0)) + (F1(x0 + x) Cz∗ F1(x0)).

Again, as the difference quotients are decreasing as t > 0 converges towards 0, the claim is
proven.
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5.2.4 Proposition. Let A : X → Y be a linear continuous operator and G : Y → QtC(Z) and
F → QtC(Z) convex functions and z∗ ∈ C∗ \ {0} .

a) It holds

(GA)′z∗(x0, x) = G′z∗(Ax0, Ax)

for all x0, x ∈ X.

b) If AF (Ax0) = F (x0) holds for x0 ∈ X, then

(AF )′z∗(Ax0, Ax) ⊇ F ′z∗(x0, x)

holds for all x ∈ X.

Proof.

a) This is immediate from 5.2.1.

b) If AF (Ax) = F (Ax), then

AF (Ax0 +Ax) Cz∗ AF (Ax0) ⊇ F (x0 + x) Cz∗ F (x0)

holds for all x ∈ X. The rest is immediate, as F is assumed to be convex.

73



6 Subdifferential

In classic scalar convex analysis, the subdifferential of a proper convex function f : X →
IR ∪ {+∞} at x0 ∈ dom f can be defined equivalently as the set of those elements x∗ ∈ X∗

majorized by the directional derivative f ′(x0, ·) of f in x0,

∀x ∈ X : x∗(x− x0) ≤ f(x)− f(x0) (6.0.1)

or those, for which the Young-Fenchel inequality holds for x0 with equality,

∀x ∈ X : x∗(x0)− f(x0) ≥ x∗(x)− f(x), (6.0.2)

compare [10, 50, 62, 64]. These two concepts are no longer equivalent even for extended real
functions, when f : X → IR∪{±∞} is not proper. However, they coincide for convex functions,
whenever f(x0) ∈ IR ∪ {+∞} and the domain of f is not empty.

The distinction can be found implicitly in [63], where the subdifferential of a vector-valued
function f : X → Z is defined by the an inequality of the type of (6.0.1) and it is pointed out,
that T ∈ L (X,Z) is a subgradient of f at x0 ∈ dom f if and only if

f c(T ) := sup
x∈X

(T (x)− f(x))

exists and T (x0)− f(x0) = f c(T ).
The relation between both concepts of subdifferentials will hold valid in the concept of

subdifferentials of convex set-valued functions as presented in the following. We will distinguish
between the subdifferential of a convex function F : X → QtC(Z) in x0 ∈ X obtained via the
directional derivative, ∂F (x0) and the extended subdifferential of a convex function F : X →
QtC(Z) in x0 ∈ X obtained via the conjugate, ∂ext F (x0), both consisting of conlinear set-valued
functions S(x∗,z∗) : X → QtC(Z) with x∗ ∈ X∗ and z∗ ∈ C∗ \ {0} . Both kinds of subdifferentials
can be represented by a family of (extended) z∗-subdifferentials in X∗, denoted accordingly
by ∂z∗F (x0) and ∂ext ,z∗F (x0). While the z∗-subdifferential and extended z∗-subdifferential
coincide, whenever F : X → QtC(Z) is a z∗-proper function, the subdifferential and extended
subdifferential of F coincide if and only if F is z∗-proper for all z∗ ∈ C∗ \ {0} . The latter
situation occurs naturally, if F majorizes a vector-valued function f : X → Z or at least F (x0)
and −F (x0) are minorized by elements z+, z− ∈ Z. This situation has been exploited in various
approaches in the literature, compare [6, 12, 37, 61].

In subsection 7.2 we will point out that the z∗-subdifferential of a convex function at x0 ∈ X
can be equally defined via the normal cone of epi (F Cz∗ {0}) at an element (x0, z0) with
z0 ∈ F (x0) Cz∗ {0}. Closely related to this are approaches introduced in [1] or [42, 43], differing
from our concept mainly by the choice of the normal cone. Also, the concept of our simple
z∗-subdifferential ∂z∗F (x0) appears as a scalarized characterization of the subdifferential in [56].

In [4], the subdifferential of a function is defined via a scalarized version of the Young-
Fenchel equality. The Azimov-subdifferential of F in (x0, z0) is closely related to the extended
z∗-subdifferential of F at x0 in our approach.

Whenever the subdifferential of a vector- or set-valued function is understood to be a subset
of L (X,Z) as in [60], there are basically two different types of relation to our approach. The
fist appears, whenever the defining inequality is formulated via the inclusion in T (x− x0) + C,
as in [6, 60] and others. In this case, T ∈ L (X,Z) is a vector-valued subgradient of F : X →
QtC(Z) if and only if S(−T ∗z∗,z∗) ∈ ∂G(x0) (or ∈ ∂extG(x0)) holds for all z∗ ∈ C∗ \ {0} for
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a certain minorant G : X → QtC(Z) of F . On the other hand, if empty intersection with
T (x − x0) − intC as in [12, 48, 54] in the defining inequality is used, then T ∈ L (X,Z) is a
vector-valued subgradient if and only if S(−T ∗z∗0 ,z

∗
0 ) ∈ ∂G(x0) (or ∈ ∂extG(x0)) holds for at least

one z∗0 ∈ C∗ \ {0} for a specified minorant G : X → QtC(Z) of F .
Exemplarily, we will illuminate the connection between our subdifferential and the approach

chosen in [60] and [65] in the final part of this chapter.
Throughout this chapter, X, Y and Z are assumed to be locally convex separable spaces

with the corresponding dual spaces X∗, Y ∗ and Z∗ and Z is quasi-ordered by a closed convex
cone C ( Z with {0} ( C.

6.1 Definition and basic results

6.1.1 Definition. Let F : X → QtC(Z) be a convex function

a) The subdifferential of F in x0 ∈ X is defined as

∂F (x0) :=
{
S(x∗,z∗)| x∗ ∈ X∗, z∗ ∈ C∗ \ {0} , ∀x ∈ X : S(x∗,z∗)(x) ⊇ F ′z∗(x0, x)

}
.

The subdifferential of F in x0 ∈ X with respect to z∗ ∈ C∗ \ {0} is defined as

∂z∗F (x0) :=
{
x∗ ∈ X∗| S(x∗,z∗) ∈ ∂F (x0)

}
.

b) The extended subdifferential of F in x0 is defined as

∂extF (x0) :=
{
S(x∗,z∗)| x∗ ∈ X∗, z∗ ∈ C∗ \ {0} , S(x∗,z∗)(x0) Cz∗ F (x0) ⊆ F ∗ (x∗, z∗)

}
.

The extended subdifferential of F in x0 ∈ X with respect to z∗ ∈ C∗ \ {0} is defined as

∂z∗,extF (x0) :=
{
x∗ ∈ X∗| S(x∗,z∗) ∈ ∂ext F (x0)

}
.

Recall that for all x∗ ∈ X∗ and z∗ ∈ C∗ \ {0} it holds S(x∗,z∗)(x) = {z ∈ Z| − z∗(z) ≥ x∗(x)} ∈
QtH(z∗)(Z) for all x ∈ X or equally, with e ∈ Z such that −z∗(e) = 1, then S(x∗,z∗)(x) =
x∗(x)e+H(z∗) holds for all x ∈ X.

Also, for x∗ ∈ X∗, z∗ ∈ C∗ \ {0} and t > 0 it holds

S(tx∗,tz∗)(x) = S(x∗,z∗)(x)

for all x ∈ X. Thus, t∂z∗F (x) = ∂tz∗F (x) holds for all t > 0 and z∗ ∈ C∗ \ {0} . Moreover,
S(x∗,z∗) ∈ ∂F (x) holds if and only if S(tx∗,tz∗) ∈ ∂F (x) holds for all t > 0.

6.1.2 Corollary. For a function convex F : X → QtC(Z) , x ∈ X and z∗ ∈ C∗ \ {0} it holds

∂z∗F (x) =
{
x∗ ∈ X∗| ∀x ∈ X : x∗(x) ≤ ϕ′(F,z∗)(x0, x)

}
and

∂z∗,extF (x) =
{
x∗ ∈ X∗| ∀x ∈ X : x∗(x0) C ϕ(F,z∗) (x0) ≤ ϕ∗(F,z∗)(x

∗)
}
.
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Proof. It holds

inf {−z∗(z)| z ∈ F (x∗, z∗)} = ϕ∗(F,z∗)(x
∗),

inf
{
−z∗(z)| z ∈ F ′z∗(x0, x)

}
= ϕ′(F,z∗)(x0, x)

and

inf
{
−z∗(z)| z ∈ S(x∗,z∗)(x)

}
= x∗(x).

Thus, the result is immediate with 2.4.2.

6.1.3 Lemma. Let F : X → QtC(Z) be a convex function, x0 ∈ X and z∗ ∈ C∗ \ {0} . If
domF = ∅ or F (x0) Cz∗ {0} = Z, then ∂z∗(x0) = ∅ and ∂z∗,extF (x0) = X∗. Otherwise it holds
∂z∗F (x0) = ∂z∗,extF (x0).

Proof. If domF = ∅, then F ∗ ≡ Z and F ′z∗(x0, ·) ≡ Z for all z∗ ∈ C∗ \ {0} , thus ∂z∗,extF (x) =
X∗ and ∂z∗F (x) = ∅ holds for all z∗ ∈ C∗ \ {0} . If F (x0) Cz∗ {0} = Z, then S(x∗,z∗)(x0) Cz∗
F (x0) = ∅ holds for all x∗ ∈ X∗, thus ∂z∗,extF (x) = X∗. Moreover, F ′z∗(x0, 0) = Z holds and
thus ∂F (x0) = ∅. From now on suppose that F (x0) is a z∗-proper set. It holds F (x0) Cz∗ {0} /∈
{∅, Z} and by standard argumentation

∀x ∈ X : S(x∗,z∗)(x0) Cz∗ F (x0) ⊆ S(x∗,z∗)(x) Cz∗ F (x)

is equivalent to

∀x ∈ X : S(x∗,z∗)(x) ⊇
1
t
(F (x0 + tx) Cz∗ F (x)).

Therefore, ∂z∗F (x0) = ∂z∗,extF (x0) holds.

6.1.4 Proposition. Let F : X → QtC(Z) be a convex function, z∗ ∈ C∗ \ {0} . If domF 6= ∅
and F (x0) Cz∗ {0} 6= Z holds, then the following statements are equivalent:

a)
x∗ ∈ ∂z∗F (x0),

b)
∀x ∈ X : S(x∗,z∗)(x− x0) ⊇ F (x) Cz∗ F (x0) ,

c)
∀x ∈ X : F (x0)⊕ S(x∗,z∗)(x− x0) ⊇ F (x) .

Proof. It holds x∗ ∈ ∂z∗F (x0) if and only if for all t > 0 and all x ∈ X holds

S(x∗,z∗)(tx) ⊇ F (x0 + tx) Cz∗ F (x0).

With x̄ = x0 + tx this is equivalent to

∀x ∈ X : S(x∗,z∗)(x̄− x0) ⊇ F (x̄) Cz∗ F (x0) .

If F (x0) = ∅ and x ∈ domF , then ∂z∗F (x0) = ∅ and equally

∀x∗ : ∅ = F (x0)⊕ S(x∗,z∗)(x− x0) + F (x).
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On the other hand if F (x0) Cz∗ {0} /∈ {∅, Z}, then

F (x0)⊕ ({0} Cz∗ F (x0)) = H(z∗)

and thus x∗ ∈ ∂z∗F (x0) holds if and only if

∀x ∈ X : Sx∗,z∗(x̄− x0)⊕ F (x0) ⊇ F (x̄) .

6.1.5 Remark. If F : X → QtC(Z) is a convex function, x0 ∈ domF and F (x0) Cz∗ {0} 6= Z,
then for all x∗ ∈ X∗ and z∗ ∈ C∗ \ {0} it exists z0 ∈ Z such that S(x∗,z∗)(x0) Cz∗ F (x0) =
z0 + H(z∗). Moreover, it holds x∗ ∈ ∂z∗,extF (x0) if and only if S(x∗,z∗) − z0 is a conaffine
minorant of F . This again is true if and only if z0 ∈ F ∗(x∗, z∗).

6.1.6 Corollary. If F : X → QtC(Z) is a convex and z∗0-proper function for z∗0 ∈ C∗ \ {0} ,
then

0 ∈ ∂z∗0F (x0) ⇔ F (x0) Cz∗0 {0} = cl
⋃
x∈X

(F (x) Cz∗0 {0}).

and

F (x0) = cl
⋃
x∈X

F (x) ⇔ ∀z∗ ∈ C∗ \ {0} : S(0,z∗) ∈ ∂extF (x0).

Proof. It holds S(0,z∗)(x − x0) = H(z∗) for all x ∈ X, so if F : X → QtC(Z) is a convex and
z∗0-proper function for z∗0 ∈ C∗ \ {0} , then by 6.1.4 it holds 0 ∈ ∂z∗0F (x0) if and only if

∀x ∈ X : F (x0) Cz∗0 {0} ⊇ F (x) .

As F (x0) Cz∗0 {0} ∈ Q
t
H(z∗0 )(Z), the first claim is proven.

As by assumption F is z∗0-proper, it holds domF 6= ∅ and either it holds F (x0) Cz∗ {0} = Z,
or ∂z∗F (x0) = ∂z∗,extF (x0), therefore the second claim holds.

6.1.7 Lemma. Let F1, F2 : X → QtC(Z) be two convex functions, x0 ∈ X and z∗ ∈ C∗ \ {0} .
If F1(x) ⊇ F2(x) holds for all x ∈ X and F1(x0) Cz∗ {0} = F2(x0) Cz∗ {0}, then

∂z∗F1(x0) ⊆ ∂z∗F2(x0),
∂z∗,extF1(x0) ⊆ ∂z∗,extF2(x0).

Especially, if F1(x0) = F2(x0) holds, then

∂F1(x0) ⊆ ∂F2(x0),
∂extF1(x0) ⊆ ∂extF2(x0).

Proof. As F1(x0) Cz∗ {0} = F2(x0) Cz∗ {0} holds, it can be proven by direct calculation that
F ′1z∗(x0, x) ⊇ F ′2z∗(x0, x) holds for all x ∈ X, thus the first inclusion holds. By assumption,
F ∗1 (x∗, z∗) ⊆ F ∗2 (x∗, z∗) holds for all x∗ ∈ X∗, compare 4.1.9, thus the second inclusion holds. If
F1(x0) = F2(x0) holds, then F1(x0) Cz∗ {0} = F2(x0) Cz∗ {0} holds for all z∗ ∈ C∗ \ {0} .

6.1.8 Proposition. Let F : X → QtC(Z) be a convex function, z∗ ∈ C∗ \ {0} .
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a) If ∂z∗,extF (x0) 6= ∅, then

F (x0) Cz∗ {0} = (cl (F Cz∗ {0}))(x0),
∂z∗,extF (x0) = ∂z∗,ext (cl coF )(x0),

∂z∗F (x0) = ∂z∗(cl coF )(x0)

holds.

b) If ∂z∗,extF (x0) 6= ∅ holds for all z∗ ∈ C∗ \ {0} , then

F (x0) = (clF )(x0),
∂extF (x0) = ∂ext (cl coF )(x0),
∂F (x0) = ∂(cl coF )(x0)

holds.

Proof.

a) It holds x∗ ∈ ∂z∗extF (x0) if and only if

S(x∗,z∗)(x0) Cz∗ F (x0) ⊆ F ∗(x∗, z∗)

and F ∗(x∗, z∗) = (cl (F Cz∗ {0}))∗(x∗, z∗) holds for all x∗ ∈ X∗. If

F (x0) Cz∗ {0} ( (cl (F Cz∗ {0}))(x0)

holds, then

S(x∗,z∗)(x0) Cz∗ F (x0) ) S(x∗,z∗)(x0) Cz∗ (cl (F Cz∗ {0}))(x0) ⊇ F ∗(x∗, z∗),

a contradiction. The second equation is immediate from the definition 6.1.1.

As either domF = ∅, F (x0) Cz∗ {0} = Z or ∂z∗F (x0) = ∂z∗,extF (x0) holds by compare 6.1.3
and the same holds for (cl (F Cz∗ {0})), the last equation is immediate.

b) If ∂z∗,extF (x0) 6= ∅ holds for all z∗ ∈ C∗ \ {0} , then

F (x0) Cz∗ {0} = (cl (F Cz∗ {0}))(x0),
∂z∗,extF (x0) = ∂z∗,ext (clF )(x0),

∂z∗F (x0) = ∂z∗(clF )(x0)

holds for all z∗ ∈ C∗ \ {0} . By 6.1.1, the rest is immediate.

6.1.9 Corollary. Let F : X → QtC(Z) be a convex function, x ∈ X and z∗ ∈ C∗ \ {0} . If

∂z∗F (x) 6= ∅,

then F is z∗-proper, x ∈ domF and F (x0) Cz∗ {0} = (cl (coF Cz∗ {0})(x0) If

∀z∗ ∈ C∗ \ {0} : ∂z∗F (x) 6= ∅,

then F (x) = (cl coF )(x) and ∂F (x) = ∂(cl coF )(x).
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Proof. By 6.1.3, x ∈ domF holds and F is z∗-proper, as ∂z∗F (x) 6= ∅. The rest is immediate
by 6.1.8.

Let F : X → QtC(Z) be a convex function, x ∈ X. It is easy to see that for every z∗ ∈ C∗\{0}.
the set ∂z∗F (x) is convex, possibly empty. In general, the set{

(x∗, z∗) ∈ X∗ × C∗ \ {0} | S(x∗,z∗) ∈ ∂F (x)
}

is not convex, as the following example shows.

6.1.10 Example. Let F : IR → P (IR2), C = IR2
+ be a function defined by

F (0) :=
{

(t, 1
t
)| t > 0

}
+ C

F (1) :=
{

(t, 1
2t

)| t > 0
}

+ C

and for 0 < s < 1 F (s) := sF (1)+(1− s)F (0) and F (x) := ∅, else. Then S(0,(−2,0)), S(0,(0,−2)) ∈
∂F (0) but S(0,(−1,−1)) ∈ co ∂F (0) \ ∂F (0)

Proof.
Let z∗ ∈ {(−2, 0), (0,−2)}, then

ϕ′(F,z∗)(0, x) =
{

+∞, if x < 0;
0, else.

and therefore S(0,z∗) ∈ ∂F (0). On the other hand, let z∗ = (−1,−1). Then

ϕ(F,z∗)(x) =
{

2 + x(
√

2− 2), if 0 ≤ x ≤ 1;
+∞, else.

Therefore,
ϕ′(F,z∗)(0, 1) =

√
2− 2

and S(0,(−1,−1)) /∈ ∂F (0).

6.1.11 Lemma. Let F : X → QtC(Z) be a sublinear function, z∗ ∈ C∗ \ {0} .

a) The set ∂z∗F (0) is not empty if and only if

(cl (F Cz∗ {0}))(0) = F (0) Cz∗ {0} = H(z∗).

In this case,

∂z∗F (0) =
{
x∗ ∈ X∗| ∀x ∈ X : S(x∗,z∗)(x) ⊇ F (x)

}
,

∀x ∈ X : ∂z∗F (x) =
{
x∗ ∈ ∂z∗F (0)| S(x∗,z∗)(x) = F (x) Cz∗ {0}

}
holds and

∀x ∈ X : (cl (F Cz∗ {0}))(x) =
⋂

x∗∈∂z∗F (0)
S(x∗,z∗)(x).
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b) If ∂z∗F (0) is not empty for all z∗ ∈ C∗ \ {0} , then

∀x ∈ X : (clF ) =
⋂

x∗∈∂z∗F (0),
z∗∈C∗\{0}

S(x∗.z∗)(x).

Proof.

a) If ∂z∗F (0) 6= ∅, then by 6.1.9 and 6.1.3

(cl (F Cz∗ {0}))(0) = F (0) Cz∗ {0} = H(z∗)

as F (0) Cz∗ {0} ∈ {∅, H(z∗), Z} holds.

The scalarization ϕ(F,z∗) : X → IR ∪ {±∞} is sublinear and proper and ϕ(F,z∗) (0) =
clϕ(F,z∗) (0). Thus,

ϕ∗(F,z∗)(x
∗) =

{
0, if ∀x ∈ X : x∗(x) ≤ ϕ(F,z∗) (x);
+∞, else.

And ϕ∗(F,z∗)(x
∗
0) 6= +∞ holds for at least one x∗ ∈ X∗.

By 6.1.2, and 4.1.2

∂z∗F (0) = {x∗ ∈ X∗| F ∗(x∗, z∗) 6= ∅}

=
{
x∗ ∈ X∗| ∀x ∈ X : S(x∗,z∗)(x) ⊇ F (x)

}
holds and by 6.1.1

∂z∗F (x) =
{
x∗ ∈ X∗| ∀x ∈ X : S(x∗,z∗)(x) ⊇ F (x), S(x∗,z∗)(x) = F (x) Cz∗ {0}

}
holds for all x ∈ X.

Obviously,

∀x ∈ X : (cl (F Cz∗ {0}))(x) ⊆
⋂

x∗∈∂z∗F (0)
S(x∗,z∗)(x)

holds. On the other hand, suppose

(x0, z0) ∈
⋂

x∗∈∂z∗F (0)
epiS(x∗,z∗) \ cl epi (F Cz∗ {0})

Notice that

∂z∗F (0) = {x∗ ∈ X∗| sup {x∗(x) + z∗(z)| (x, z) ∈ epiF} = 0}

Then by a separation argument it exists (x∗0, z∗0) ∈ X∗ × Z∗ \ {(0, 0)} such, that

x∗0(x0) + z∗0(z∗0) > sup {x∗0(x) + z∗0(z)| (x, z) ∈ cl epi (F Cz∗ {0})} = 0

as (0, 0) ∈ epi (F Cz∗ {0}) and F is sublinear. Suppose z∗0 = 0, then

∀x∗ ∈ ∂z∗F (0) : ∀x ∈ X : S(x∗+x∗0,z∗)(x) ⊇ F (x),

a contradiction. Thus without loss of generality it holds z∗0 = z∗ and it holds

∀x∗ ∈ ∂z∗F (0) : ∀x ∈ X : S(x∗+x∗0,z∗)(x) ⊇ F (x),

a contradiction.
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b) If ∂z∗F (0) is not empty for all z∗ ∈ C∗ \ {0} , then

∀z∗ ∈ C∗ \ {0} , ∀x ∈ X : (cl (F Cz∗ {0}))(x) =
⋂

x∗∈∂z∗F (0)
S(x∗,z∗)(x)

holds and

(clF )(x) =
⋂

z∗∈C∗\{0}
(cl (F Cz∗ {0}))(x).

6.1.12 Lemma. Let F : X → QtC(Z) be a convex function and x0 ∈ X, then

∂z∗F (x0) = ∂z∗F
′
z∗(x0, 0),

∂F (x0) =
⋃

z∗∈C∗\{0}
∂F ′z∗(x0, 0).

Proof. As the functions S(x∗,z∗) : X → QtH(z∗)(Z) are closed, it holds

∂z∗F (x0) =
{
x∗ ∈ X∗| ∀x ∈ X : S(x∗,z∗)(x) ⊇ (cl (F ′z∗(x0, ·)))(x)

}
.

If (cl (F ′z∗(x0, ·)))(0) = F ′z∗(x0, 0) holds, then we can apply 6.1.11, proving the result. Otherwise
(cl (F ′z∗(x0, ·)))(0) = Z and thus ∂z∗F (x0) = ∅. Again, by 6.1.11 this is the desired result.

6.1.13 Corollary. Let F : X → QtC(Z) be a convex function and x0 ∈ domF . For z∗ ∈ C∗\{0}
the following statements are equivalent.

a) ∂z∗F (x0) 6= ∅,

b) (clF ′z∗(x0, ·))(0) = F ′z∗(x0, 0) = H(z∗).

If one of these statement is true, then clF ′z∗(x0, ·) is proper and

∀x ∈ X (clF ′z∗(x0, ·))(x) =
⋂

S(x∗,z∗)∈∂F (x0)
S(x∗,z∗)(x). (6.1.1)

Proof. The equivalence holds by 6.1.12 and 6.1.11.
If (clF ′z∗(x0, ·))(0) = F ′z∗(x0, 0) = H(z∗), then by 6.1.11

∀x ∈ X (clF ′z∗(x0, ·))(x) =
⋂

S(x∗,z∗)∈∂F (x0)
S(x∗,z∗)(x) (6.1.2)

holds and hence F ′z∗(x0, ·) is proper.

6.1.14 Theorem (Max-Formula). If F : X → QtC(Z) be a convex function and (x0, z) ∈
int epiF , then

∀x ∈ X : ∃z ∈ Z : (x, z) ∈ int epi (F ′z∗(x0, ·)).

If additionally F is z∗-proper, then F ′z∗(x0, ·) : X → QtH(z∗)(Z) is proper with domF ′z∗(x0, ·) = X

and
∀x ∈ X : ∃S(x∗,z∗) ∈ ∂F (x0) : F ′z∗(x0, x) = S(x∗,z∗)(x).

81



Proof. By 5.1.13 it holds

∀x ∈ X : ∃z ∈ Z : (x, z) ∈ int epi (F ′z∗(x0, ·))

and F ′z∗(x0, ·) : X → QtH(z∗)(Z) is proper with domF ′z∗(x0, ·) = X if F is z∗-proper. By 5.1.15,
the last equation holds true.

6.1.15 Definition. Let F : X → QtC(Z) be a function and z∗ ∈ C∗ \ {0} . Then F ∗z∗ : X∗ →
QtH(z∗)(Z) is defined by

F ∗z∗(x∗) := F ∗(x∗, z∗)

for all x∗ ∈ X∗. The subdifferential of F ∗z∗ in x∗0 ∈ X∗ is defined as

∂F ∗z∗(x∗0) :=
{
x ∈ X| ∀x∗ ∈ X∗ : S(x∗−x∗0,z∗)(x) ⊇ F

∗(x∗, z∗) Cz∗ F ∗(x∗0, z∗)
}
.

The extended subdifferential of F ∗z∗ in x∗0 ∈ X∗ is defined as

∂ext F
∗
z∗(x∗0) :=

{
x ∈ X| ∀x∗ ∈ X∗ : S(x∗0,z∗)(x) Cz∗ F

∗(x∗0, z∗) ⊆ S(x∗,z∗)(x) Cz∗ F ∗(x∗, z∗)
}
.

As by 4.1.9 the function F ∗z∗ is convex, it holds

∀x∗ ∈ X∗ : (F ∗z∗)′z∗(x∗0, x∗) = cl
⋃
t>0

1
t

(
F ∗z∗(x∗0 + tx∗) Cz̄∗ F ∗z∗(x∗0)

)
.

For convenience, we will abbreviate (F ∗z∗)′z∗(x∗0, x∗) = (F ∗z∗)′(x∗0, x∗).

6.1.16 Lemma. For F : X → QtC(Z) and z∗ ∈ C∗ \ {0} the function F ∗z∗ : X∗ → QtH(z∗)(Z)
is convex. The directional derivative of F ∗z∗ : X∗ → QtH(z∗)(Z) with respect to z̄∗ ∈ C∗ \ {0} is

(F ∗z∗)′z̄∗(x∗0, x∗) = (F ∗z∗)′z∗(x∗0, x∗) Cz̄∗ {0} .

Proof. If x∗0 /∈ domF ∗z∗ , then

∀z̄∗ ∈ C∗ \ {0} , ∀x∗ ∈ X∗ : (F ∗z∗)′z̄∗(x∗0, x∗) = Z.

Else, if x∗0 ∈ domF ∗z∗ , then for all x∗ ∈ X∗ it holds

F ∗z∗(x∗) Cz̄∗ F ∗z∗(x∗0) =
(
F ∗z∗(x∗) Cz∗ F ∗z∗(x∗0)

)
Cz̄∗ {0} ,

proving the statement.

6.1.17 Lemma. If F : X → QtC(Z) is a function and z∗ ∈ C∗ \ {0} , then it holds

∂F ∗z∗(x∗0) =
{
x ∈ X| ∀x∗ ∈ X∗ : S(x∗,z∗)(x) ⊇ (F ∗z∗)′(x∗0, x∗)

}
,

∂ext F
∗
z∗(x∗0) =

{
x ∈ X| ∀x∗ ∈ X∗ : S(x∗0,z∗)(x) Cz∗ F

∗(x∗0, z∗) ⊆ F ∗∗(x) Cz∗ {0}
}
.
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Proof. It holds x ∈ ∂F ∗z∗(x∗0) if and only if

∀x∗ ∈ X∗ : S(x∗−x∗0,z∗)(x) ⊇ F
∗(x∗, z∗) Cz∗ F ∗(x∗0, z∗).

in this case, for t > 0 and x̄∗ = tx∗ + x∗0 it holds

∀x∗ ∈ X∗ : S(x∗,z∗)(x) ⊇
1
t

(
F ∗(x∗, z∗) Cz∗ F ∗(x∗0, z∗)

)
,

proving the first statement. The second statement is immediate, as

F ∗∗(x) Cz∗ {0} =
⋂

x∗∈X∗
(S(x∗,z̄∗) Cz∗ F

∗(x∗, z∗)).

6.1.18 Lemma. Let F : X → QtC(Z) is a function and z∗ ∈ C∗ \ {0} . If domF = ∅ or
(cl coF )(x0) Cz∗ {0} = Z for x0 ∈ X, then

∂F ∗z∗(x∗0) = ∅,
∂ext F

∗
z∗(x∗0) = X.

If (cl coF ) : X → QtC(Z) is a z∗-proper function, then

∂F ∗z∗(x∗) = ∂ext F
∗
z∗(x∗)

holds for all x∗ ∈ X∗.

Proof. If it holds domF = ∅, then F ∗z∗ ≡ Z holds for all z∗ ∈ C∗ \ {0} , thus

(F ∗z∗)′(x∗0, ·) ≡ Z,
F ∗∗ ≡ ∅,

while

S(x∗0,z∗)(x) Cz∗ F
∗(x∗0, z∗) = ∅.

On the other hand let (cl coF )(x0) Cz∗ {0} = Z, then F ∗z∗ ≡ ∅ holds for all z∗ ∈ C∗ \ {0} , thus

(F ∗z∗)′(x∗0, ·) ≡ Z,
F ∗∗ ≡ Z,

Thus, by 6.1.17 the desired statement holds if (cl coF ) is not z∗-proper. Next, let (cl coF ) :
X → QtC(Z) be z∗-proper, then F ∗∗(x) Cz∗ {0} = (cl coF )(x) Cz∗ {0} holds for all x ∈ X and
thus F ∗∗ is z∗-proper. In this case, F ∗z∗ : X → QtC(Z) is z∗-proper and it holds

∀x∗ ∈ X∗ : S(x∗−x∗0,z∗)(x0) ⊇ F ∗(x∗, z∗) Cz∗ F ∗(x∗0, z∗)

if and only if

∀x∗ ∈ X∗ : S(x∗0,z∗)(x0) Cz∗ F ∗(x∗0, z∗) ⊇ S(x∗,z∗)(x0) Cz∗ F ∗(x∗, z∗).

Thus, the claim is proven.
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6.1.19 Proposition. Let F : X → QtC(Z) be a function and z∗ ∈ C∗ \ {0} . For x∗0 ∈ X∗ it
holds

∂F ∗z∗(x∗0) = {x0 ∈ X| x∗0 ∈ ∂z∗F ∗∗(x0)} ,
∂ext F

∗
z∗(x∗0) = {x0 ∈ X| x∗0 ∈ ∂z∗,extF ∗∗(x0)} .

If additionally (cl coF ) : X → QtC(Z) is a z∗-proper function, then

∂F ∗z∗(x∗0) = ∂ext F
∗
z∗(x∗0)

= {x0 ∈ X| x∗0 ∈ ∂z∗(cl coF )(x0)}
= {x0 ∈ X| x∗0 ∈ ∂z∗,ext (cl coF )(x0)} .

Proof. By 4.1.9, F ∗∗ : X → QtC(Z) is a convex function and (F ∗∗)∗(x∗, z∗) = F ∗(x∗, z∗)
holds for all x∗ ∈ X∗ and z∗ ∈ C∗ \ {0} . Moreover, F ∗∗ is either z∗-proper, or domF ∗∗ = ∅ or
F ∗∗ Cz∗ {0} ≡ Z. If domF ∗∗ = ∅, then F ∗z∗ ≡ Z and

∀x ∈ X, ∀x∗ ∈ X∗ : x ∈ ∂ext F ∗z∗(x∗), x∗ ∈ ∂z∗,extF ∗∗(x),
∂F ∗z∗(x∗) = ∅, ∂z∗F ∗∗(x) = ∅.

Equally, if F ∗∗ Cz∗ {0} ≡ Z holds, then domF ∗z∗ = ∅ and

∀x ∈ X, ∀x∗ ∈ X∗ : x ∈ ∂ext F ∗z∗(x∗), x∗ ∈ ∂z∗,extF ∗∗(x),
∂F ∗z∗(x∗) = ∅, ∂z∗F ∗∗(x) = ∅.

From now on, suppose that F ∗∗ is z∗-proper. Then F ∗z∗ : X∗ → QtH(z∗)(Z) is a proper function,
especially, F ∗z∗ is a z∗-proper convex function. Thus, by 6.1.18

∀x∗0 ∈ X∗ : ∂extF
∗
z∗(x∗0) = ∂F ∗z∗(x∗0)

holds. Moreover,

∀x0 ∈ X : ∂z∗F
∗∗(x0) = ∂z∗,extF

∗∗(x0)

holds. If x0 ∈ ∂F ∗z∗(x∗0) holds, then

S(x∗0,z∗) Cz∗ F
∗∗(x0) ⊆ (F ∗∗)∗(x∗0, z∗),

thus x∗0 ∈ ∂z∗F ∗∗(x0). The same inclusion provides

S(x∗0,z∗) Cz∗ F
∗(x∗0, z∗) ⊆ F ∗∗(x0),

if x∗0 ∈ ∂z∗F ∗∗(x0), so in this case x0 ∈ ∂F ∗z∗(x∗0).
If (cl coF ) : X → QtC(Z) is a z∗-proper function, then (cl coF )(x) = F ∗∗(x) holds for all

x ∈ X, proving the statement.

6.1.20 Theorem. Let F : X → QtC(Z) be a convex z∗-proper function for z∗ ∈ C∗ \ {0} . If

∀x ∈ X : F (x) Cz∗ {0} = (clF )(x) Cz∗ {0}

holds, then

∂F ∗z∗(x∗) = ∂ext F
∗
z∗(x∗)

holds for all x∗ ∈ X∗ and

∂F ∗z∗(x∗0) = {x0 ∈ X| x∗0 ∈ ∂z∗F (x0)} .
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Proof. If F : X → QtC(Z) is z∗-proper and

∀x ∈ X : F (x) Cz∗ {0} = (cl coF )(x) Cz∗ {0}

holds, then (cl coF ) : X → QtC(Z) is z∗-proper and by 6.1.19

∂F ∗z∗(x∗) = ∂ext F
∗
z∗(x∗)

holds for all x∗ ∈ X∗ and

∂F ∗z∗(x∗0) = {x0 ∈ X| x∗0 ∈ ∂z∗(cl coF )(x0)} .

Moreover,

∂z∗F (x0) = {x0 ∈ X| x∗0 ∈ ∂z∗(clF )(x0)}

holds for all x0 ∈ X, proving the statement.

6.1.21 Corollary. If F : X → QtC(Z) is a closed convex function which is z∗-proper for all
z∗ ∈ C∗ \ {0} , then

∀x ∈ X : ∂F (x) =
{
S(x∗,z∗)| x ∈ ∂F ∗z∗(x∗)

}
.

Proof. As

∀x ∈ X : ∂F (x) =
⋃

z∗∈C∗\{0}

{
S(x∗,z∗)| x∗ ∈ ∂z∗F (x)

}
holds and by 6.1.20

∀x ∈ X : ∂z∗F (x) = {x∗ ∈ X∗| x ∈ ∂z∗F (x)} ,

the claim is immediate.

6.2 Calculus

Recall that it holds

∂z∗F (x0) : =
{
x∗ ∈ X∗| S(x∗,z∗) ∈ ∂F (x0)

}
=
{
x∗ ∈ X∗| S(x∗,z∗) ∈ ∂(F Cz∗ {0})(x0)

}
.

Moreover it holds

∂F (x0) =
⋃

z∗∈C∗\{0}

{
S(x∗,z∗)| x∗ ∈ ∂z∗F (x0)

}
.

Thus without loss of generality we can assume F (x) = (F Cz∗ {0})(x) for all x ∈ X when
dealing with the set ∂z∗F (x0).

If domF = ∅ or F (x0) Cz∗ {0} = Z holds, then by 6.1.4 it holds

∀x∗ ∈ X∗ : S(x∗,z∗)(x0) Cz∗ F (x0) ⊆ F ∗ (x∗, z∗) = Z (6.2.1)

and ∂z∗F (x0) = ∅. In any other case (that is domF 6= ∅ and F (x0) Cz∗ {0} 6= Z) it holds

∂z∗F (x0) =
{
x∗ ∈ X∗| S(x∗,z∗)(x0) Cz∗ F (x0) ⊆ F ∗(x∗, z∗)

}
. (6.2.2)
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6.2.1 Proposition. Let G : Y → QtC(Z) be a convex function and t > 0, y0 ∈ Y , z0 ∈ Z and
(x∗0, z∗0) ∈ X∗×C∗\{0} and A : X → Y a linear homeomorphism. The function F : X → QtC(Z)
is defined by

F (x) = tG(Ax+ y0) + S(x∗0,z
∗
0 )(x) + z0

for all x ∈ X.

a) For all x0 ∈ X it holds

∂F (x0) = ∂(F Cz∗0 {0})(x0).

Especially, S(x∗,z∗) ∈ ∂F (x0) holds if and only if

(x∗, z∗) ∈ cone
(
∂z∗0F (x0)× {z∗0}

)
.

b) It holds

∂z∗0F (x0) = tA∗∂z∗0G(Ax0 + y0) + x∗

and

∂F (x0) =
{
S(tA∗y∗+x∗0,z∗)| S(y∗,z∗0 ) ∈ ∂G(Ax0 + y0)

}
.

Proof.

a) Notice that F (x) = (F Cz∗0 {0})(x) holds for all x ∈ X. Moreover, S(tx∗,tz∗)(x) = S(x∗,z∗)(x)
holds for all t > 0 and (x∗, z∗) ∈ X∗×C∗ \ {0} . If x0 /∈ domF , then ∂F (x0) = ∅. From now
on, assume that x0 ∈ domF . It holds S(x∗,z∗) ∈ ∂F (x0) if and only if

∀x ∈ X : S(x∗,z∗)(x) ⊇ F ′z∗(x0, x) ∈ QtH(z∗)(Z).

By 5.2.1, F ′z∗(x0, 0) = Z if z∗ /∈ cone {z∗0}, thus the claim is proven.

b) The set F (x0) is z∗0-improper if and only if the set G(Ax0 + y) is z∗0-improper. In this case

∂z∗0F (x0) = tA∗∂z∗0G(Ax0 + y0) + x∗ = ∅.

Therefore let us assume that F (x0) is a z∗0-proper set. By 4.2.1 it holds

F ∗(x∗, z∗0) =
(
tG∗(1

t
A−1∗(x∗ − x∗0), z∗0) Cz∗ S(x∗−x∗0,z

∗
0 )(A−1y0)

)
− z0.

Thus by ((6.2.2)) it holds

∂z∗0F (x0)

=
{
x∗ ∈ X∗|

(
S(x∗,z∗0 )(x0) Cz∗ F (x0)

)
⊆ F ∗(x∗, z∗0)

}
=
{
x∗ ∈ X∗|

(
S(x∗−x∗0,z

∗
0 )(x0 +A−1y0) Cz∗ tG(Ax0 + y0)

)
⊆ tG∗(1

t
A−1∗(x∗ − x∗0), z∗0)

}
=
{
x∗ ∈ X∗|

(
S( 1
t
A−1∗(x∗−x∗0),z∗0 )(Ax0 + y0) Cz∗ G(Ax0 + y0)

)
⊆ G∗(1

t
A−1∗(x∗ − x∗0), z∗0)

}
= tA∗

{
y∗ ∈ Y ∗|

(
S(y∗,z∗0 )(Ax0 + y0) Cz∗ G(Ax0 + y0)

)
⊆ G∗(y∗, z∗0)

}
+ x∗0

= tA∗∂z∗0G(Ax0 + y0) + x∗0.
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6.2.2 Proposition. Let Fi : X → QtC(Z) for n ≥ 2 and i = 1, ..., n be convex functions.

a) If F (x) = (co ( inf
i=1,...,n

Fi))(x) = (co (cl co
⋃

i=1,...,n
Fi))(x) holds for all x ∈ X and Fj(x0) Cz∗

{0} = F (x0) Cz∗ {0} for j = 1, ...,m ≤ n and x0 ∈ X, then

∂z∗F (x0) ⊆
⋂

j=1,...,m
∂z∗Fj(x0).

Especially, if Fk(x0) = F (x0) holds for k = 1, ..., l ≤ n, then

∂F (x0) ⊆
⋂

k=1,...,l
∂Fk(x0).

b) If F (x) = sup
i=1,..,n

Fi(x) =
⋂

i=1,...,n
Fi(x) holds for all x ∈ X and Fj(x0) Cz∗ {0} = F (x0) Cz∗

{0} for j = 1, ...,m ≤ n and x0 ∈ X, then

∂z∗F (x0) ⊇ co
⋃

j=1,...,m
∂z∗Fj(x0).

Especially, if Fk(x0) = F (x0) holds for k = 1, ..., l ≤ n, then

∂F (x0) ⊇ co
⋃

k=1,...,m
∂Fk(x0).

Proof.

a) By 5.2.2, F ′z∗(x0, x) ⊇ F ′jz∗(x0, x) holds for all x ∈ X, if Fj(x0) Cz∗ {0} = F (x0) Cz∗ {0}.
Thus,

∂z∗F (x0) =
{
x∗ ∈ X∗| ∀x ∈ X : S(x∗,z∗)(x) ⊇ F ′z∗(x0, x)

}
⊆ ∂z∗Fj(x0).

If Fk(x0) = F (x0), then for all z∗ ∈ C∗ \ {0} above inclusion holds true.

b) By 5.2.2, F ′z∗(x0, x) ⊆ F ′jz∗(x0, x) holds for all x ∈ X, if Fj(x0) Cz∗ {0} = F (x0) Cz∗ {0}.
Thus,

∂z∗F (x0) =
{
x∗ ∈ X∗| ∀x ∈ X : S(x∗,z∗)(x) ⊇ F ′z∗(x0, x)

}
⊇ ∂z∗Fj(x0).

If Fk(x0) = F (x0), then for all z∗ ∈ C∗ \ {0} above inclusion holds true.

6.2.3 Proposition. Let Fi : X → QtC(Z) be convex functions for n ≥ 2 and i = 1, ..., n.

a) If F (x) = (F1�...�Fn)(x) holds for all x ∈ X and domF1 + ..+ domFn 6= ∅, then it holds

∂F (x) ⊇
⋂

i=1,...n
∂Fi(xi)

for all x ∈ X with x = x1 + ...+ xn.
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b) If F (x) = (F1 + ...+ Fn)(x) holds for all x ∈ X, then it holds

∂z∗F (x0) ⊆ ∂z∗F1(x0) + ...+ ∂z∗Fn(x0),

∂F (x0) ⊆
{
S(x∗,z∗)| x∗ ∈ ∂z∗F1(x0) + ...+ ∂z∗Fn(x0)

}
for all x0 ∈ X.

c) If F (x) = (F1 + ... + Fn)(x) holds for all x ∈ X and for all i = 1, ..., n the functions Fi are
convex and z∗-proper and for all except possibly one Fi it holds

∃z ∈ Z : (x0, z) ∈ int epiF,

for all x0 ∈
⋂

i=1,...,n
domFi, then

∂z∗F (x) = ∂z∗F1(x) + ...+ ∂z∗Fn(x)

holds for all x ∈ X. If additionally the functions Fi are z∗-proper for all z∗ ∈ C∗ \ {0} , then

∂F (x) =
{
S(x∗,z∗)| x∗ ∈ ∂z∗F1(x) + ...+ ∂z∗Fn(x)

}
holds for all x ∈ X.

Proof.

a) Let n = 2 and x∗ ∈ ∂z∗F1(x̄) ∩ ∂z∗F2(x − x̄). Then F1(x̄) and F2(x − x̄) are z∗-proper sets
and by 2.4.9 it holds

S(x∗,z∗)(x) Cz∗ (F (x̄) + F2(x− x̄)) ⊆ F ∗(x∗, z∗),

hence x∗ ∈ ∂z∗F (x).

b) By 5.2.3, F ′z∗(x0, x) ⊆ F ′1z∗(x0, x) + ...+ F ′nz∗(x0, x) holds for all x ∈ X. Thus if

x∗ = x∗1 + ...+ x∗n,

∀i = 1, ..., n, ∀x ∈ X : S(x∗i ,z∗)(x) ⊇ F
′
iz∗(x0, x)

holds, then

∀x ∈ X : S(x∗,z∗)(x) ⊇ F ′z∗(x0, x)

and hence the claim is proven.

c) Without loss of generality we assume n = 2 and (x0, z) ∈ int epiF1 for x0 ∈ domF2 and
z ∈ Z. If ∂F (x) = ∅ for x ∈ X, then we are finished, as ∂F (x) ⊇ ∂F1(x) + ∂2F (x). Now
suppose S(x∗,z∗) ∈ ∂F (x), then x ∈ domF1 ∩ domF2 = domF and by 5.1.13 it holds

∀x̄ ∈ X : ∃z ∈ Z : (x̄, z) ∈ int epiF ′z∗(x, ·)

And for all x̄ ∈ X it holds F ′z∗(x0, x) 6= Z. If F2z∗(x, ·) is proper we can apply 4.2.4c) and
5.1.7e) to achieve

∂z∗F (x) =
{
x∗ ∈ X∗| (x∗, z∗) ∈ domF ′z∗(x, ·)∗

}
=
{
x∗ ∈ X∗| (x∗, z∗) ∈ domF ′1z∗(x, ·)∗ + domF ′2z∗(x, ·)∗

}
= ∂z∗F1(x) + ∂z∗F2(x).

88



As x ∈ domF2 holds, domF ′2z∗(x, ·) 6= ∅. Therefore, suppose F ′2z∗(x, y) = Z for y ∈ X.
Then, by 5.2.3 it holds

F ′z∗(x, y) ⊇ F ′1z∗(x, y) + F ′2z∗(x, y) = Z

and thus ∂z∗F (x) = ∅, a contradiction.

6.2.4 Proposition. Let A : X → Y be a linear continuous operator and G : Y → QtC(Z) and
F → QtC(Z) convex functions.

a) It holds

∂z∗(AF )(Ax) ⊇ A∗∂z∗F (Ax)

for all x ∈ X and all z∗ ∈ C∗ \ {0} . If AF (Ax) Cz∗ {0} = F (Ax) Cz∗ {0}, then equality
holds.

b) It holds

A∗∂z∗G(Ax) ⊆ ∂z∗GA(x)

for all x ∈ X and all z∗ ∈ C∗ \ {0} .

c) If for G one of the assumptions in 3.3.7 and 3.3.9 holds in Ax0, x0 ∈ X, then

A∗∂z∗G(Ax) = ∂z∗GA(x)

holds for all x ∈ X and all z∗ ∈ C∗ \ {0} . Especially,

∂GA(x) =
{
S(A∗y∗,z∗)| S(y∗,z∗) ∈ ∂G(Ax)

}
Proof.

a) By 4.2.6 it holds (AF )∗(y∗, z∗) = F ∗(A∗y∗, z∗). In general it holds

S(y∗,z∗)(Ax) Cz∗ AF (Ax) ⊆ S(A∗y∗,z∗)(x) Cz∗ F (Ax),

thus by (6.2.1) it holds ∂z∗(AF )(Ax) ⊇ A∗∂z∗(F )(Ax). If AF (Ax) Cz∗ {0} = F (Ax) Cz∗ {0},
then

S(y∗,z∗)(Ax) Cz∗ AF (Ax) = S(A∗y∗,z∗)(x) Cz∗ F (Ax)

and y∗ ∈ ∂z∗(AF )(Ax) holds if and only if A∗ ∈ A∗∂z∗F (Ax).

b) It holds G∗(y∗, z∗) ⊆ A∗G∗(A∗y∗, z∗) ⊆ (GA)∗(A∗y∗, z∗) and thus

A∗∂z∗G(Ax) ⊆
{
A∗y∗ ∈ X∗| S(A∗y∗,z∗)(x) Cz∗ GA(x) ⊆ (GA)∗(A∗y∗, z∗)

}
⊆ ∂z∗GA(x).

c) Under the additional assumptions by 4.2.6, for every (x∗, z∗) ∈ X∗×C∗ \ {0} with (GA)∗(x∗, z∗) 6=
∅ there exists y∗ ∈ Y ∗ such, that

A∗y∗ = x∗, (GA)∗(x∗, z∗) = G∗(y∗, z∗).

If G∗(x∗, z∗) = ∅, then S(x∗,z∗) /∈ ∂(GA)(x). Otherwise,

A∗∂z∗G(Ax) =
{
A∗y∗ ∈ X∗| S(A∗y∗,z∗)(x) Cz∗ GA(x) ⊆ (GA)∗(A∗y∗, z∗)

}
= ∂z∗GA(x)

holds and thus the claim holds.
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6.3 Comparison to vector-valued convex analysis

From now on, we consider a convex function f mapping a nonempty set dom f ⊆ X to Z and
define f(x) = +∞ for x /∈ dom f . Furthermore it will be assumed that x0 ∈ int dom f , f is
continuous at x0 regarded as a mapping from X to Z.

The set-valued extension of f is defined as F : X → QtC(Z) with

∀x ∈ X : F (x) := f(x) + C

with {+∞}+ C = ∅. The epigraph of f is defined as

epi f := {(x, z) ∈ X × Z| z ∈ f(x) + C} .

Notice that in fact epiF = epi f .
For f : X → Z ∪ {+∞} and z∗ ∈ Z∗, the function z∗f : X → IR ∪ {±∞} is defined by

∀x ∈ X : z∗f(x) = z∗(f(x))

with z∗(+∞) := +∞ and it holds ϕ(F,z∗) (x) = (−z∗f)(x) for ll x ∈ X.
As by assumption dom f = domF is nonempty and for every x ∈ X it holds f(x) +C 6= Z,

the set-valued extension F of f is z∗-proper for all z∗ ∈ C∗ \ {0} .

6.3.1 Lemma. For every z∗ ∈ C∗ \ {0} the function ϕ(F,z∗) : X → IR ∪ {±∞} is continuous
at x0 ∈ int dom f and F (x0) = (clF )(x0).

Proof. As ϕ(F,z∗) (x) = −z∗(f(x)) holds for all x ∈ dom f , the function ϕ(F,z∗) : X →
IR ∪ {+∞} is proper and x0 ∈ int domϕ(F,z∗) . As f is continuous at x0, it holds

∀V ∈ U Z : ∃U ∈ U X : ∀x ∈ U : f(x0 + x) ∈ f(x0) + V.

From this it follows that

∀ε > 0 : ∃U ∈ U X : ∀x ∈ U : −z∗(f(x0))− ε ≤ −z∗(f(x0 + x)) ≤ −z∗(f(x0)) + ε.

Therefore the function ϕ(F,z∗) : X → IR ∪ {±∞} is continuous at x0 for all z∗ ∈ C∗ \ {0} and
by 3.3.5 it holds that F : X → QtC(Z) is closed at x0.

The subdifferential of f at x0 ∈ int dom f is defined as

∂f(x0) := {T ∈ L (X,Z)| ∀x ∈ X : T (x− x0) ≤ f(x)− f(x0)} . (6.3.1)

6.3.2 Theorem. Let T ∈ L(X,Z) be a linear continuous operator. Then T ∈ ∂f(x0) if and
only if

∀z∗ ∈ C∗ \ {0} : S(−T ∗z∗,z∗) ∈ ∂F (x0).

Proof. By 6.1.4, the statement

∀z∗ ∈ C∗ \ {0} : S(−T ∗z∗,z∗) ∈ ∂F (x0)

is true if and only if

∀z∗ ∈ C∗ \ {0} , x ∈ X : −z∗(Tx) ≤ −z∗(f(x0 + x)− f(x0)).

This is true if and only if

∀x ∈ X, f(x0 + x)− f(x0) ∈ {Tx}+ C,

which is by definition T ∈ ∂f(x0).
Under the assumptions of 6.3.2, −z∗(∂f(x0)) ⊆ ∂ϕ(F,z∗) (x0) holds true.
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6.3.3 Proposition. If for all z∗ ∈ C∗ \ {0} the set ∂z∗F (x0) =
{
x∗ ∈ X∗| S(x∗,z∗) ∈ ∂F (x0)

}
is single valued and intC∗ 6= ∅, then there exists −T ∗ ∈ L (Z∗, X∗σ) such, that

∂F (x0) =
{
S(−T ∗z∗,z∗)| z∗ ∈ C∗ \ {0}

}
and ∂f(x0) = {T}.

Proof. It is to prove that the function −t∗ : C∗ \ {0} → X∗ defined by

∀z∗ ∈ C∗ \ {0} : −t∗(z∗) := x∗, ∂ϕ(F,z∗) (x0) = {x∗}

can be uniquely extended to a mapping −T ∗ ∈ L (Z∗, X∗σ). The equation

∂F (x0) =
{
S(−T ∗z∗,z∗)| z∗ ∈ C∗ \ {0}

}
is then a immediate conclusion of 6.1.2 and ∂f(x0) = {T} holds by 6.3.2.

Define −t∗(0) = 0. As for t > 0 holds S(tx∗,tz∗) = S(x∗,z∗) for all (x∗, z∗) ∈ X∗ × C∗ \ {0} ,
−t∗ is obviously positively homogenous.

As ϕ(F,z∗1+z∗2 )(x) = ϕ(F,z∗1 )(x) + ϕ(F,z∗2 )(x) for all x ∈ X, z∗1 , z∗2 ∈ C∗ \ {0} holds under the
given assumptions and f(x0) ∈ Z, −t∗ is additive.

As intC∗ 6= ∅ has been presumed, each z∗ ∈ Z∗ can be represented as z∗ = z∗1 − z∗2 , with
z∗1 , z

∗
2 ∈ C∗ and −t∗ can be uniquely extended to a linear mapping −T ∗ : Z∗ → X∗ defined by

−T ∗(z∗) = −t∗(z∗1)− (−t∗)(z∗2).

Now let U ⊆ X∗ be defined through x ∈ X \ {0} with

U := {x∗ ∈ X∗| − 1 < x∗(x) < 1} .

Now choose 0 < t small enough for x0 ± tx ∈ dom f and define V ⊆ Z∗ by

V := {z∗ ∈ Z∗| − t < z∗(f(x0 + tx) + f(x0)), z∗(f(x0 − tx)− f(x0)) < t} .

Thus,

∀z∗ ∈ V ∩ C∗ \ {0} : −T ∗z∗(tx) ≤ ϕ′(F,z∗)(x0, tx) ≤ −z∗(f(x0 + tx) + f(x0)) < t,

−T ∗z∗(−tx) ≤ ϕ′(F,z∗)(x0,−tx) ≤ −z∗(f(x0 − tx) + f(x0)) < t,

that is −T ∗(V ∩C∗ \ {0} ) ⊆ U . Since intC∗ 6= ∅, there is an open setW ⊆ Z∗ and z∗0 ∈ C∗ \ {0}
such, that

{z∗0}+W ⊆ C∗ \ {0} ∩ V
and we get

−T ∗({z∗0}+W ) ⊆ U.
Therefore, −T ∗ ∈ L (Z∗, X∗σ).

Under the assumptions of 6.3.3, F ′z∗(x0, x) = T (x) +H(z∗) holds for all z∗ ∈ C∗ \ {0} and
x ∈ X. The above proof is based on the idea of the proof of Proposition 2.5. in [65].

6.3.4 Corollary. [65] Let X be a reflexive Banach space, intC∗τ 6= ∅ and all order intervals
[z1, z2] ⊆ Z are relatively compact in Zσ. As always, f : X → Z ∪ {+∞} is convex and f is
continuous at x0 ∈ int dom f and F : X → QtC(Z) is the set-valued extension on f . Then

∀z∗ ∈ C∗ \ {0} : −z∗∂f(x0) = ∂ϕ(F,z∗) (x0).

6.3.5 Theorem. Under the assumptions of 6.3.4, ∂f(x0) is single valued if and only if

∂F (x0) =
{
S(−T ∗z∗,z∗)| z∗ ∈ C∗ \ {0}

}
.

Proof. Immediate from 6.3.3 and 6.3.4.
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7 Tangent Cone and Normal Cone

The results in this chapter will provide an alternative description of the z∗-directional derivatives
F ′z∗(x0, ·) and the z∗-subdifferentials ∂z∗F (x0) of a convex function F : X → QtC(Z) . In 7.1.4
it will be proven that for any x0 ∈ domF there exists z0 ∈ F (x0) Cz∗ {0} such, that

cl (epiF ′z∗(x0, ·)) = Tepi (FCz∗{0})(x0, z0)

and in 7.2.4, that x∗ ∈ ∂z∗F (x0) holds if and only if

∃z0 ∈ F (x0) Cz∗ {0} : (x∗, z∗) ∈ Nepi (FCz∗{0})(x0, z0).

This far, we are in accordance to the well-known scalar results, compare [10, 50]. It turns out
that the tangent cone of epiF at (x0, z0) ∈ epiF in general is a subset of the epigraph of the
supremum of the z∗-directional derivatives of F at x0. Likewise, the normal cone of epiF at
(x0, z0) ∈ epiF coincides with the set{

(x∗, z∗) ∈ X∗ × C∗ \ {0} | S(x∗,z∗) ∈ ∂F (x0)
}

only in the special case when F (x0) = z0 + C holds.
As it has be shown in [10], the tangent cone and the contingent cone (for definition, see [2])

of epiF at (x0, z0) ∈ epiF coincide when F is a convex function and thus epiF is a convex
set. The statement in [10] is stated in the finite dimensional case, while the proof does not
make use of the finite dimension, thus it holds in the more general case as well. Thus, the z∗-
directional derivatives are minorants of the (set-valued extension of the) contingent epiderivative
DF (x0, z0) : X → Z of F in (x0, z0) ∈ epiF defined in [31], when it exists, and DF (x0, z0) will
turn out to be the pointwise supremum of the z∗-directional derivatives, if it exists. The same
holds true for the derivative and epiderivative of F in (x0, z0) ∈ epiF , as defined in [1], as
there the tangent cone is already used as an initial concept. In those concepts, an element
(x0, z0) ∈ epiF is fixed and the derivatives are defined with respect to this point. It is notable
that in our approach, in general z0 ∈ F (x0) does not hold and moreover is not fixed in advance.

Throughout this chapter, X and Z are assumed to be locally convex separable spaces with
the corresponding dual spaces X∗ and Z∗, and Z is quasi-ordered by a closed convex cone C ( Z

with {0} ( C.

7.1 Tangent cone

7.1.1 Definition. [1] Let Y be a locally convex separable space, M ⊆ Y a convex set and
y0 ∈M . The tangent cone of M in y0 is defined by

TM (y0) := cl cone (M − y0).

7.1.2 Corollary. Let F : X → QtC(Z) be a convex function, z∗ ∈ C∗ \ {0} . For (x0, z0) ∈
epi (F Cz∗ {0}), the tangent cone of epi (F Cz∗ {0}) in (x0, z0) is given by

Tepi (FCz∗{0}) (x0, z0) := cl
⋃
t>0

1
t

(epi (F Cz∗ {0})− (x0, z0)) .

Proof. Setting Y = X × Z, M = epi (F Cz∗ {0}) and y0 = (x0, z0) ∈ epi (F Cz∗ {0}), the
result is immediate from 7.2.1.
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7.1.3 Lemma. Let F : X → QtC(Z) be a convex function, z∗ ∈ C∗ \ {0} and (x0, z0) ∈
epi (F Cz∗ {0}).

a) If z0 +H (z∗) ( (F (x0) Cz∗ {0}), then

Tepi (FCz∗{0}) (x0, z0) = cone (domF − x0)× Z.

b) If z0 +H (z∗) = F (x0) Cz∗ {0}, then

Tepi (FCz∗{0}) (x0, z0) = cl epiF ′z∗ (x0, ·) .

Proof.

a) If z0 + H (z∗) ( (F (x0) Cz∗ {0}), then z0 ∈ intF (x0) Cz∗ {0} holds and the statement is
immediate with 7.1.1.

b) If z0 +H (z∗) = F (x0) Cz∗ {0}, then

epi (F ′z∗(x0, ·) =
⋃
t>0

1
t

(epi (F Cz∗ {0})− (x0, z0)) ,

proving the claim.

7.1.4 Theorem. If F : X → QtC(Z) is a convex function, x0 ∈ domF and z∗ ∈ C∗ \ {0} , then
there is z0 ∈ F (x0) Cz∗ {0} such, that

Tepi (FCz∗{0}) (x0, z0) = cl epiF ′z∗ (x0, ·) .

If additionally (cl (F ′z∗(x0, ·)))(0) = H(z∗) holds, then

Tepi (FCz∗{0}) (x0, z0) =
⋂

x∗∈∂z∗F (x0)
epiS(x∗,z∗).

Proof. The first equation is proven in 5.1.9, the second in 5.1.11.
Even if F (x0) is a z∗-proper set, in general there is no z0 ∈ F (x0) such that z0 +H (z∗) =

F (x0) Cz∗ {0} as the following example will show. Therefore the assumption of (x0, z0) ∈
epi (F Cz∗ {0}) in 7.1.3 is notably weaker than z0 ∈ F (x0).

7.1.5 Example. Let F : X → QtIR2
+

(
IR2
)
defined by F ≡

{(
t, 1
t

)
| t > 0

}
+ IR2

+ and z∗ =
(−1, 0), then F Cz∗ {0} ≡ (0, 0) +H(z∗) holds true, while

∀(x, z) ∈ epiF : z +H(z∗) ( F (x) Cz∗ {0} .

Thus, Tepi (FCz∗{0}) (x0, z0) = X × Z for all (x0, z0) ∈ epiF while

∀x ∈ domF : T(F,z∗) (x, (0, 0)) = X ×H (z∗) = cl epi
(
F ′z∗ (x0, ·)

)
.

As epiF ⊆ epi (F Cz∗ {0} holds for all z∗ ∈ C∗ \ {0} , it can be seen that

TepiF (x0, z0) ⊆
⋂

z∗∈C∗\{0}
T(F,z∗) (x0, z0)

holds true. The inclusion is in general not an equality, as the following example shows.
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7.1.6 Example. [33], p. 199. Let F : X → P
(
l1
)
, C :=

{
z = (zn)n∈IN ∈ l1| ∀n ∈ IN : zn ≥ 0

}
and F ≡ C. The dual cone is C∗ =

{
z∗ = (z∗n)n∈IN ∈ l∞| ∀n ∈ IN : z∗n ≤ 0

}
. For all z∗ ∈

C∗ \ {0} it holds ϕ(F,z∗) ≡ 0. Take z0 ∈ C with

∀n ∈ IN : z0,n =
(1

2

)n−1
,

then
∀z∗ ∈ C∗ \ {0} : z0 +H (z∗) ( (F (0) Cz∗ {0})

and Tepi (FCz∗{0}) (0, z0) = X × l1 while

TepiF (0, z0) = X × cl
{
z ∈ l1| ∃t > 0∀n ∈ IN : zn ≥ −t

(1
2

)n−1
}

and for all x ∈ X and for z :=
(
−
(

3
4

)n−1
)
n∈IN

it holds (x, z) /∈ TepiF (0, z0).

Proof. As

epiF − (0, z0) = X ×
{
z ∈ l1| ∀n ∈ IN : zn ≥ −

(1
2

)n−1
}

holds, (x, z) ∈ TepiF (0, z0) holds if and only if

∀ε > 0 : ∃xε ∈ l1, t > 0 :
∑
n∈IN
|xε,n| < ε,

∀n ∈ IN : −
(3

4

)n−1
+ xε,n ≥ −t

(1
2

)n−1
.

Thus,

∀n ∈ IN : xε,n ≥
((3

2

)n−1
− t
)(1

2

)n−1
,

a contradiction to xε ∈ l1.

7.1.7 Corollary. Let F : X → QtC(Z) be a convex function, x0 ∈ X. If F (x0) = z0 + C, then

TepiF (x0, z0) =
⋂

z∗∈C∗\{0}
T(F,z∗) (x0, z0) .

If additionally (cl (F ′z∗0 (x0, ·)))(0) = H(z∗0) holds for at least one z∗0 ∈ C∗ \ {0} , then

TepiF (x0, z0) =
⋂

S(x∗,z∗)∈∂F (x0)
epiS(x∗,z∗).

Proof. By assumption it holds F (x0) = z0 + C, so F (x0) Cz∗ {0} = z0 +H(z∗) holds for all
z∗ ∈ C∗ \ {0} and thus

∀x ∈ X, ∀z∗ ∈ C∗ \ {0} : F (x) Cz∗ F (x0) = F (x) Cz∗ {z0} .

Therefore,

∀x ∈ X : F (x)− z0 =
⋂

z∗∈C∗\{0}
(F (x) Cz∗ {z0})
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holds and therefore

epiF − (x0, z0) =
⋂

z∗∈C∗\{0}
(epi (F Cz∗ {0})− (x0, z0)).

This proves
TepiF (x0, z0) =

⋂
z∗∈C∗\{0}

T(F,z∗) (x0, z0) .

If additionally (cl (F ′z∗0 (x0, ·)))(0) = H(z∗0) holds for at least one z∗0 ∈ C∗ \ {0} , then

Tepi (FCz∗0
{0}) (x0, z0) =

⋂
x∗∈∂z∗0

F (x0)
epiS(x∗,z∗0)

holds by 7.1.4. By 5.1.12,

Tepi (FCz∗{0})(x0, z0) = cl cone (domF − x0)× Z

if and only if (cl (F ′z∗0 (x0, ·)))(0) = Z. In this case, ∂z∗F (x0) = ∅ and

Tepi (FCz∗0
{0}) (x0, z0) ∩ Tepi (FCz∗{0}) (x0, z0) =

⋂
x∗∈∂z∗0

F (x0)
epiS(x∗,z∗0) ∩

⋂
x∗∈∂z∗F (x0)

epiS(x∗,z∗),

thus the statement is proven.

7.1.8 Remark. In [31], the contingent epiderivative of a set-valued function F : X → P (Z) at
(x0, z0) ∈ epiF is defined as a single-valued function DF (x0, z0) : X → Z with

epi (DF (x0, z0)) = TepiF (x0, z0).

As we are only interested in (C-)convex functions, the contingent cone in the original definition
coincides with the tangent cone of epiF in (x0, z0) ∈ epiF , compare [10]. Moreover, let FC :
X → QtC(Z) be defined by

∀x ∈ X : FC(x) := cl (F (x) + C).

Then for all (x0, z0) ∈ epiF it holds

TepiFC (x0, z0) = TepiF (x0, z0)

and thus DF (x0, z0) = DFC(x0, z0) holds for all (x0, z0) ∈ epiF . Thus without loss of gen-
erality suppose that F (x) = FC(x) holds for all x ∈ X. If DF (x0, z0) exists, then especially
DF (x0, z0)(0) ∈ Z holds. By definition, the set

DF (x0, z0)(0) + C = {z̄ ∈ Z| (0, z̄) ∈ epiDF (x0, z0)}

is given by

{z̄ ∈ Z| (0, z̄) ∈ cl cone (epiF − (x0, z0))} ⊇ cl {t(z − z0) ∈ Z| z ∈ F (x0), t > 0} .

Therefore,

∀z ∈ F (x0) : ∀z∗ ∈ C∗ \ {0} : inf
t>0
−tz∗(z − z0) ≥ 0.
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Thus, ϕ(F,z∗) (x0) ≥ −z∗(z0) holds for all z∗ ∈ C∗ \ {0} and therefore F (x0) ⊆ z0 + C holds
true. As z0 ∈ F (x0) holds by assumption and F (x0) ∈ QtC(Z) , it holds F (x0) = z0 + C.

Likewise, if DF (x0, z0) exists, then for all x ∈ X it holds

∀z∗ ∈ C∗ \ {0} : inf
{
−z∗(z)| z ∈ (clF ′z∗(x0, ·))(x)

}
≥ −z∗(DF (x0, z0)(x))

by 7.1.7 and therefore

∀z∗ ∈ C∗ \ {0} : (clF ′z∗(x0, ·))(x) = DF (x0, z0)(x) +H(z∗),

DF (x0, z0)(x) + C =
⋂

z∗∈C∗\{0}
(clF ′z∗(x0, ·))(x)

holds for all x ∈ X, as TepiF (x0, z0) ⊆ Tepi (FCz∗{0})(x0, z0) holds for all z∗ ∈ C∗ \ {0} .

7.1.9 Corollary. Let F : X → QtC(Z) be a convex function, z0 ∈ F (x0). If F (x0) = z0 + C,
then

∂F (x0) =
{
S(x∗,z∗)| epiS(x∗,z∗) ⊇ TepiF (x0, z0)

}
.

Proof. The set ∂F (x0) is nonempty if and only if (cl (F ′z∗0 (x0, ·)))(0) = H(z∗0) holds for at
least one z∗0 ∈ C∗ \ {0} . In this case, the statement is proven by 7.1.7. On the other hand, let
∂F (x0) = ∅ holds. Then

∀z∗ ∈ C∗ \ {0} : (cl (F ′z∗(x0, ·)))(0) = Z

holds and as TepiF (x0, z0) =
⋂

z∗∈C∗\{0}
Tepi (FCz∗{0})(x0, z0) holds by 7.1.7,

{
S(x∗,z∗)| epiS(x∗,z∗) ⊇ TepiF (x0, z0)

}
= ∅

holds true.
The case of F (x0) = z0 + C occurs naturally when F (x) := f (x) + C for all x ∈ X, where

f : X → Z is a vector-valued function.

7.2 Normal cone

7.2.1 Definition. [1] Let Y be a locally convex separable space, M ⊆ Y a convex set and
y0 ∈M . The normal cone of M in y0 is defined by

NM (y0) := {y∗ ∈ Y ∗| ∀y ∈M : y∗(y − y0) ≤ 0} .

7.2.2 Corollary. Let F : X → QtC(Z) be a convex function, z∗ ∈ C∗ \ {0} . For (x0, z0) ∈
epi (F Cz∗ {0}), the normal cone of epi (F Cz∗ {0}) in (x0, z0) is defined by

Nepi (FCz∗{0}) (x0, z0) := {(x∗, z̄∗) ∈ X∗ × Z∗| ∀(x, z) ∈ epi (F Cz∗ {0}) : x∗(x− x0) + z̄∗(z − z0) ≤ 0} .

Proof. Setting Y = X × Z, M = epi (F Cz∗ {0}) and y0 = (x0, z0) ∈ epi (F Cz∗ {0}), the
result is immediate from 7.2.1.

7.2.3 Remark. If F : X → QtC(Z) is a convex function, z∗ ∈ C∗ \ {0} and (x0, z0) ∈
epi (F Cz∗ {0}), then

Nepi (FCz∗{0}) (x0, z0) = (Tepi (FCz∗{0})(x0, z0))∗

=
{
(x∗, z̄∗) ∈ X∗ × Z∗| Tepi (FCz∗{0})(x0, z0) ⊆ epiS(x∗,z̄∗)

}
⊆ X∗ × (cone {z∗0} ∪ {0})

holds true.
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7.2.4 Theorem. Let F : X → QtC(Z) be a convex function, z∗ ∈ C∗ \ {0} . If x0 ∈ domF ,
then it exists z0 ∈ F (x0) Cz∗ {0} such, that

Nepi (FCz∗{0})(x0, z0) = cone {(x∗, z∗)| x∗ ∈ ∂z∗F (x0)} ∪ {(x∗, 0)| ∀x ∈ domF : x∗(x) ≤ 0} .

Moreover, x∗ ∈ ∂z∗F (x0) holds if and only if

∃z0 ∈ F (x0) Cz∗ {0} : (x∗, z∗) ∈ Nepi (FCz∗{0})(x0, z0).

Proof. The first result is immediate from 7.2.3 and 7.1.4. The second holds true as x∗ ∈
∂z∗F (x0) holds if and only if S(x∗,z∗) is a minorant of F ′z∗(x0, ·). Applying the first result, the
statement is proven.

7.2.5 Lemma. If F : X → QtC(Z) is a convex function and (x0, z0) ∈ epiF , then it holds

NepiF (x0, z0) ⊇
⋃

z∗∈C∗\{0}
Nepi (FCz∗{0})(x0, z0).

Proof. It holds

NepiF (x0, z0) = (TepiF (x0, z0))∗

and ⋃
z∗∈C∗\{0}

Nepi (FCz∗{0})(x0, z0) =
⋃

z∗∈C∗\{0}
(Tepi (FCz∗{0})(x0, z0))∗

⊆ (
⋂

z∗∈C∗\{0}
Tepi (FCz∗{0})(x0, z0))∗

= (TepiF (x0, z0))∗

= NepiF (x0, z0).

Example 7.1.6 supplies an example where the inclusion is real.

7.2.6 Proposition. Let F : X → QtC(Z) be a convex function, z∗ ∈ C∗ \ {0} . If F (x0) =
z0 + C, then

NepiF (x0, z0) =
⋃

z∗∈C∗\{0}
Nepi (FCz∗{0})(x0, z0).

Proof. By 7.1.9,

∂F (x0) =
{
S(x∗,z∗)| z∗ ∈ C∗ \ {0} , (x∗, z∗) ∈ Nepi (FCz∗{0})(x0, z0)

}
.

Moreover,

NepiF (x0, z0) =
{
(x∗, z∗) ∈ X∗ × C∗ \ {0} | S(x∗,z∗) ∈ ∂F (x0)

}
∪ {(x∗, 0) ∈ X∗ × Z∗|∀x ∈ domF : x∗(x) ≤ 0}

=
⋃

z∗∈C∗\{0}
Nepi (FCz∗{0}(x0, z0).
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8 Appendix

8.1 Examples

In this chapter, we will present some special functions in order to illustrate the theory presented
in the main part of this work.

8.1.1 Example (Conlinear functions). Let (x∗0, z∗0) ∈ X∗ × C∗ \ {0} and F = S(x∗0,z
∗
0 ) : X →

QtC(Z) . Then

a) Let z∗ ∈ C∗ \ {0} , then

∀x ∈ X : : ϕ(F,z∗)(x) =
{
tx∗0(x), if z∗ = tz∗0 with t > 0;
−∞, else.

Moreover,
{
z∗ ∈ C∗ \ {0} | ϕ(F,z∗) : X → IR ∪ {±∞} is proper

}
= cone {z∗0}.

b) The function F : X → QtC(Z) is conlinear, proper and closed. If z∗0 ∈ C∗ \ −C∗, then F is
C-proper

c) It holds domF = X and epiF is a closed half space in X × Z.

d) Let z∗ ∈ C∗ \ {0} , then

∀x0, x ∈ X : : F ′z∗(x0, x) =
{
tF (x), if z∗ = tz∗0 with t > 0;
Z, else.

e) Let x∗ ∈ X∗, z∗ ∈ C∗ \ {0} , then it holds

F ∗(x∗, z∗) =
{
H(z∗0), if (x∗, z∗) ∈ cone {(x∗0, z∗0)};
∅, else.

f) It holds
∀x ∈ X : F ∗∗(x) = F (x)

g) It holds
∀x ∈ X : ∂F (x) =

{
S(x∗0,z

∗
0 )
}

and
∀x ∈ X : ∂extF (x) =

{
S(x∗0,z

∗
0 )
}
∪
{
S(x∗,z∗)| z∗ ∈ C∗ \ cone {z∗0}

}
.

Proof.

a) For z∗ ∈ C∗ \ {0} , the function ϕ(F,z∗) : X → IR ∪ {±∞} is defined by

∀x ∈ X : ϕ(F,z∗) (x) := inf
z∈F (x)

{−z∗(z)}

and F (x) = {z ∈ Z| − z∗0(z) ≥ x∗0(x)} for all x ∈ X, thus for z∗ ∈ C∗ \ {0} it holds

∀x ∈ X : : ϕ(F,z∗)(x) =
{
tx∗0(x), if z∗ = tz∗0 with t > 0;
−∞, else.

Therefore,
{
z∗ ∈ C∗ \ {0} | ϕ(F,z∗) : X → IR ∪ {±∞} is proper

}
= cone {z∗0}.
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b) As
∀x ∈ X : F (x) = (F Cz∗0 {0})(x)

holds by 3.3.1, F : X → QtC(Z) is closed and by proper by 3.2.5. Also by 3.2.5, F is
C-proper, if and only if z∗0 ∈ C∗ \ −C∗.

c) It holds domF = domϕ(F,z∗) = X for all z∗ ∈ C∗ \ {0} and

epiF = {(x, z)| − z∗0(z) ≥ x∗0(x)} ,

a closed half space in X × Z.

d) The directional derivative of F : X → QtC(Z) in x0 ∈ X with respect to z∗ ∈ C∗ \ {0} is
defined by

∀x ∈ X : F ′z∗(x0, x) =
{
z ∈ Z| − z∗(z) ≥ ϕ′(F,z∗)(x0, x)

}
thus

∀x ∈ X : F ′z∗(x0, x) =
{
F (x), if z∗ = tz∗0 with t > 0;
Z, else.

e) If (x∗, z∗) ∈ cone {(x∗, z∗)} holds, then

∀x ∈ X : S(x∗,z∗)(x) = S(x∗0,z
∗
0 )(x).

The conjugate of F : X → QtC(Z) is given by

∀x∗ ∈ X∗, z∗ ∈ C∗ \ {0} : F ∗(x∗, z∗) =
{
z ∈ Z| − z∗(z) ≥ ϕ∗(F,z∗)(x

∗)
}

and
ϕ∗(F,z∗)(x

∗) = ιcone{(x∗0,z∗0 )}(x
∗, z∗),

so
∀x∗ ∈ X∗, z∗ ∈ C∗ \ {0} : F ∗(x∗, z∗) =

(
Icone{(x∗0,z∗0 )} Cz∗ {0}

)
(x∗, z∗).

f) As F : X → QtC(Z) is closed and proper, F = F ∗∗ : X → QtC(Z) holds by 4.1.15.

g) By 6.1.2 , the subdifferential of F : X → QtC(Z) in x ∈ X is given by

∂F (x) =
{
S(x∗,z∗) x

∗ ∈ ∂ϕ(F,z∗) (x)
}
,

thus ∂F (x) =
{
S(x∗0,z

∗
0 )
}
. On the other hand, by 6.1.4 it holds

∂extF (x) = ∂F (x) ∪
{
S(x∗,z∗) z

∗ ∈ C∗ \ (cone {z∗0} ∪ {0})
}
.

8.1.2 Example (Conaffine functions). Let (x∗0, z∗0) ∈ X∗ × C∗ \ {0}, z0 ∈ Z and

∀x ∈ X : F (x) = S(x∗0,z
∗
0 )(x) + {z0} .

a) It holds

∀x ∈ X, z∗ ∈ C∗ \ {0} : : ϕ(F,z∗)(x) =
{
t(x∗0(x)− z∗0(z0)), if z∗ = tz∗0 with t > 0;
−∞, else.

Moreover,
{
z∗ ∈ C∗ \ {0} | ϕ(F,z∗) : X → IR ∪ {±∞} is proper

}
= cone {z∗0}.
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b) The function F : X → QtC(Z) is conaffine and closed and proper. If z∗0 ∈ C∗ \ −C∗, then F
is C-proper.

c) It holds domF = X and epiF is a shifted closed half space of X × Z.

d) The directional derivative of F in x0 with respect to z∗ ∈ C∗ \ {0} is given by

∀x0, x ∈ X, z∗ ∈ C∗ \ {0} : : F ′z∗(x0, x) =
{
tS(x∗0,z

∗
0 )(x), if z∗ = tz∗0 with t > 0;

Z, else.

e) The conjugate F ∗ : X∗ × C∗ \ {0} → QtC(Z) of F is

∀x∗ ∈ X∗, z∗ ∈ C∗ \ {0} : F ∗(x∗, z∗) =
{
−z0 +H(z∗0), if (x∗, z∗) ∈ cone {(x∗0, z∗0)};
∅, else.

f) For all x ∈ X it holds F ∗∗(x) = F (x).

g) The subdifferential of F in x ∈ X is

∀x ∈ X : ∂F (x) =
{
S(x∗0,z

∗
0 )
}

and
∀x ∈ X : ∂extF (x) =

{
S(x∗0,z

∗
0 )
}
∪
{
S(x∗,z∗)| z∗ ∈ C∗ \ (cone {z∗0} ∪ {0})

}
.

Proof. Let G : X → QtC(Z) be defined as G(x) = S(x∗0,z
∗
0 )(x) for all x ∈ X, then

∀z∗ ∈ C∗ \ {0} , x ∈ X : ϕ(F,z∗) (x) = ϕ(G,z∗)(x)− z∗(z0).

a) By 8.1.1 for z∗ ∈ C∗ \ {0} it holds
{
z∗ ∈ C∗ \ {0} | ϕ(F,z∗) : X → IR ∪ {±∞} is proper

}
=

cone {z∗0} and

∀x ∈ X : : ϕ(F,z∗)(x) =
{
t(x∗0(x)− z∗0(z0)), if z∗ = tz∗0 with t > 0;
−∞, else.

b) As
∀x ∈ X : F (x) = (F Cz∗0 {0})(x)

holds by 3.3.1, F : X → QtC(Z) is closed and by proper by 3.2.5. Also by 3.2.5, F is
C-proper, if and only if z∗0 ∈ C∗ \ −C∗.

c) It holds domF = domϕ(F,z∗) = X for all z∗ ∈ C∗ \ {0} and

epiF = {(x, z)| − z∗0(z) ≥ x∗0(x) + z∗(z0)} ,

a shifted closed half space in X × Z.

d) The directional derivative of F : X → QtC(Z) in x0 ∈ X with respect to z∗ ∈ C∗ \ {0} is
defined by

∀x ∈ X : F ′z∗(x0, x) =
{
z ∈ Z| − z∗(z) ≥ ϕ′(F,z∗)(x0, x)

}
and ϕ′(F,z∗)(x0, x) = ϕ′(G,z∗)(x0, x) for all x0, x ∈ X, thus

∀x ∈ X : F ′z∗(x0, x) =
{
S(x∗0,z

∗
0 )(x), if z∗ = tz∗0 with t > 0;

Z, else.
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e) The conjugate of F : X → QtC(Z) is given by

∀x∗ ∈ X∗, z∗ ∈ C∗ \ {0} : F ∗(x∗, z∗) =
{
z ∈ Z| − z∗(z) ≥ ϕ∗(F,z∗)(x

∗)
}

and
ϕ∗(F,z∗)(x

∗) = ιcone{(x∗0,z∗0 )}(x
∗, z∗) + z∗(z0),

so
∀x∗ ∈ X∗, z∗ ∈ C∗ \ {0} : F ∗(x∗, z∗) =

(
Icone{(x∗0,z∗0 )} Cz∗ {0}

)
(x∗, z∗)− z0.

f) As F : X → QtC(Z) is closed and proper, F = F ∗∗ : X → QtC(Z) holds by 4.1.15.

g) By 6.1.2 , the subdifferential of F : X → QtC(Z) in x ∈ X is given by

∂F (x) =
{
S(x∗,z∗) x

∗ ∈ ∂ϕ(F,z∗) (x)
}
,

thus ∂F (x) =
{
S(x∗0,z

∗
0 )
}
. On the other hand, by 6.1.4 it holds

∂extF (x) = ∂F (x)
{
S(x∗,z∗) z

∗ ∈ C∗ \ (cone {z∗0} ∪ {0})
}
.

8.1.3 Example (Sublinear functions and the set-valued support function). Let ∅ 6= M∗ ⊆
X∗ × C∗ \ {0} , then the support-function Σ(·|M∗) : X → QtC(Z) of M∗ is defined by

∀x ∈ X : Σ(x|M∗) :=
⋂

(x∗,z∗)∈M∗
S(x∗,z∗)(x).

The function Σ(·|M∗) : X → QtC(Z) is proper, closed and sublinear. It holds C ⊆ Σ(0|M∗) and

cl co (coneM∗) =
{
(x∗, z∗)| ∀x ∈ X : S(x∗,z∗)(x) ⊇ Σ(x|M∗)

}
⊆ X∗ × C∗.

Let P : X → QtC(Z) be a proper, sublinear closed function, then

∀x ∈ X : P (x) = Σ(x|M∗P )

with
M∗P :=

{
(x∗, z∗)| ∀x ∈ X : S(x∗,z∗)(x) ⊇ P (x)

}
⊆ X∗ × C∗.

The set M∗P is a nonempty, closed, convex cone.

a) Let M∗(P,z∗) = {x∗ ∈ X∗| (x∗, z∗) ∈M∗P } for all z∗ ∈ C∗ \ {0} , then

∀z∗ ∈ C∗ \ {0} , x ∈ X : clϕ(P,z∗)(x) = σ(x|M∗(P,z∗))

where σ(·|M∗(P,z∗)) : X → IR ∪ {±∞} denotes the scalar support function. and{
z∗ ∈ C∗ \ {0} : clϕ(F,z∗) : X → IR ∪ {±∞} is proper

}
=
{
z∗ ∈ C∗ \ {0} |M∗(P,z∗) 6= ∅

}
.

b) The sets domP and epiP are convex cones, P is C−proper, if and only if there exists
(x∗0, z∗0) ∈M∗P with z∗0 ∈ C∗ \ −C∗.
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c) Let z∗ ∈ C∗ \ {0} , then it holds

∀x0, x ∈ X : P ′z∗(x0, x) ⊇
{
P (x) Cz∗ {0} , if x0 ∈ domP and M(P,z∗) 6= ∅;
Z, else.

d) The conjugate of P is given by

∀(x∗, z∗) ∈ X∗ × C∗ \ {0} : P ∗(x∗, z∗) =
{
H(z∗), if (x∗, z∗) ∈M∗P ;
∅, else.

and P ∗∗(x) = P (x) for all x ∈ X.

e) The subdifferential of P in x ∈ X is given by

∀x ∈ X : ∂P (x) =
{
S(x∗,z∗)| (x∗, z∗) ∈M∗P \ (X∗ × {0}) : S(x∗,z∗)(x) = (P Cz∗ {0})(x)

}
.

and
∂extP (x) = ∂P (x) ∪

{
S(x∗,z∗)| (x∗, z∗) ∈ ((X∗ × C∗ \ {0} ) \M∗P )

}
.

For x = 0 it holds ∂P (0) = M∗P \ (X∗ × {0}).

Proof. As
epi (Σ(·|M∗) =

⋂
(x∗,z∗)∈M∗

{z ∈ Z| x∗(x) + z∗(z) ≤ 0}

and ∅ 6= M∗ ⊆ X∗ × C∗ hold, C ⊆ Σ(0, |M∗) and epi (Σ(·|M∗) is a closed convex cone. The set

M̄∗ :=
{
(x∗, z∗) ∈ X∗ × C∗| ∀x ∈ X : S(x∗,z∗)(x) ⊇ Σ(x|M∗)

}
is identical to the set

{(x∗, z∗)| ∀x ∈ X : {z ∈ Z| x∗(x) + z∗(z) ≤ 0} ⊇ {z ∈ Z| ∀(x∗, z∗) ∈M∗ : x∗(x) + z∗(z) ≤ 0}} .

As S(x∗,z∗)(x) = S(tx∗,tz∗)(x) holds for all t > 0, M̄∗ = cone M̄∗. Obviously, M̄∗ ⊆ (X∗ × C∗).
If (x∗, z∗) ∈ (X∗ × C∗) \ cl co (coneM∗), then by a separation argument there exists (0, 0) 6=
(x, z) ∈ X × Z and α ∈ IR such, that

x∗(x) + z∗(z) > α ≥ σ((x, z)|M∗).

Taking (x0, z0) ∈ X × Z such, that x∗(x0) + z∗(z0) = −α, then

x∗(x+ x0) + z∗(z + z0) > 0 ≥ σ((x+ x0, z + z0)|M∗),

and therefore (x∗, z∗) /∈ M̄∗. Thus,

M̄∗ = cl co (coneM∗).

A proper, sublinear closed function P : X → QtC(Z) is nonempty at 0, as by 3.3.11 it holds

∀x ∈ X : P (0) =
⋂

z∗∈C∗\{0} ,
clϕ(P,z∗) proper

{
z ∈ Z| − z∗(z) ≥ clϕ(P,z∗)(0)

}
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and the functions clϕ(P,z∗) : X → IR ∪ {±∞} are sublinear. Therefore, if clϕ(P,z∗) is proper,
then clϕ(P,z∗)(0) = 0, so C ⊆ P (0). By 8.3.2, for a proper sublinear and closed function
clϕ(P,z∗) : X → IR ∪ {±∞} it holds

∀x ∈ X : clϕ(P,z∗)(x) = sup
{
x∗(x)| ∀y ∈ X : x∗(y) ≤ ϕ(P,z∗)(y)

}
.

The function x∗ ∈ X∗ is a minorant of ϕ(P,z∗) if and only if S(x∗,z∗) is a minorant of P and
moreover

∀x ∈ X :
{
z ∈ Z| − z∗(z) ≥ clϕ(P,z∗)(x)

}
=

⋂
x∗≤ϕ(P,z∗)

S(x∗,z∗)(x).

Thus
∀x ∈ X : P (x) = Σ(x|M∗P )

with
M∗P :=

{
(x∗, z∗)| ∀x ∈ X : S(x∗,z∗)(x) ⊇ P (x)

}
⊆ X∗ × C∗

holds. As P is proper,M∗P in nonempty. By the same arguments as used for M̄∗ = cl co (coneM∗),
M∗P = cl co (coneM∗P ) is proven .

a) This has already been shown above.

b) The first statement is immediate.

P : X → QtC(Z) is C-proper if and only if there is a C-proper affine minorant S(x∗,z∗) + z

of P . As P is sublinear, z = 0 must hold. The function S(x∗,z∗) : X → QtC(Z) is C-proper if
and only if z∗ ∈ C∗ \ −C∗ and it is a minorant of P if and only if (x∗, z∗) ∈M∗P .

c) If x0 /∈ domP or M(P,z∗) = ∅, then ϕ′(F,z∗)(x0, ·) ≡ −∞, thus

∀x ∈ X : F ′z∗(x0, x) =
{
z ∈ Z| − z∗(z) ≥ ϕ′(F,z∗)(x0, x)

}
= Z.

Otherwise,

∀x ∈ X : F ′z∗(x0, x) = cl
⋃
t>0

1
t

(P (x0 + tx) Cz∗ P (x0))

⊇ cl
⋃
t>0

1
t

(P (x0) + tP (x) Cz∗ P (x0))

⊇ cl
⋃
t>0

(P (x0) Cz∗ P (x0)) + (P (x) Cz∗ {0})

⊇ cl
⋃
t>0

(P (x) Cz∗ {0}) .

d) For all z∗ ∈ C∗ \ {0} it holds ϕ∗(P,z∗)(x
∗) = ιM∗(P,z∗)(x

∗, z∗). The first statement follows from

∀(x∗, z∗) ∈ X∗ × C∗ \ {0} : P ∗(x∗, z∗) =
{
z ∈ Z| − z∗(z) ≥ ϕ∗(P,z∗)(x

∗)
}
.

As P is closed, convex, proper, P ∗∗(x) = P (x) holds for all x ∈ X.
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e) It holds
∀x ∈ X : ∂F (x) =

{
S(x∗,z∗)| x∗ ∈ ∂ϕ(F,z∗) (x)

}
.

The set ∂ϕ(F,z∗) (x) in nonempty if and only if ϕ(F,z∗) (0) = clϕ(F,z∗) (0) = 0, if and only if
M∗(P,z∗) 6= ∅. In this case it holds by 8.3.13

∂F (0) =
{
S(x∗,z∗)| x∗ ∈M∗(P,z∗)

}
∀x ∈ X : ∂F (x) =

{
S(x∗,z∗)| x∗ ∈M∗(P,z∗), S(x∗,z∗)(x) = P (x)

}
and

∂extF (x) = ∂F (x) ∪
{
S(x∗,z∗)|M∗(P,z∗) = ∅

}
.

8.1.4 Example (Indicator function). Let M ⊆ X and F = IM : X → QtC(Z) defined by

∀x ∈ X : IM (x) :=
{
C, if x ∈M ;
∅, else.

a) For all z∗ ∈ C∗ \ {0} it holds ϕ(F,z∗)(x) = ιM (x) with ιM : X → IR ∪ {+∞} denoting the
scalar indicator function of M .

b) It holds domF = M and epiF = M × C

c) The function IM : X → QtC(Z) is convex (closed) if and only if M ⊆ X is convex (closed),
C-proper if and only if M 6= ∅.

d) The conjugate of F : X → QtC(Z) is the support function of M ,

∀x∗ ∈ X∗, z∗ ∈ C∗ \ {0} : F ∗(x∗, z∗) =
⋂
x∈M

S(x∗,z∗)(x).

e) For all x ∈ X it holds F ∗∗(x) = (cl coF )(x) = Icl coM (x)

f) If M is a convex subset of X and x0 ∈M , then

F ′z∗(x0, x) =
(
Icone (M−x0)∪{0} Cz∗ {0}

)
(x)

g) If M is a convex subset of X and x0 ∈M , then

∂F (x0) =
{
S(x∗,z∗)| ∀x ∈M : x∗(x− x0) ≤ 0

}
and ∂extF (x0) = ∂F (x0).

Proof.

a) It holds
∀z∗ ∈ C∗ \ {0} , x ∈ X : ϕ(F,z∗)(x) = inf −z∗(z)| z ∈ F (x).

Therefore, for all z∗ ∈ C∗ \ {0} it holds ϕ(F,z∗) = ιM (x).

b) Direct calculation
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c) The convex (closed) hull of F : X → QtC(Z) is defined via the convex (closed) hull of the
epigraph of F , thus

∀x ∈ X : coF (x) = {z ∈ Z| (x, z) ∈ co epiF} = {z ∈ Z| (x, z) ∈ coM × C} .

The indicator function is C-proper if and only if ϕ(F,z∗) : X → IR∪{±∞} is proper for some
z∗ ∈ C∗ \ −C∗, thus if and only if M 6= ∅.

d) By definition,
F ∗(x∗, z∗) =

⋂
x∈X

(
S(x∗,z∗)(x) Cz∗ F (x)

)
,

so
F ∗(x∗, z∗) =

⋂
x∈M

S(x∗,z∗)(x).

e) It holds cl co epiF = (cl coM) × C, therefore, for all x ∈ X, (cl coF )(x) = Icl coM (x). By
4.1.5 it holds

∀x ∈ X : F ∗∗(x) =
⋂

z∗∈C∗\{0}

{
z ∈ Z| − z∗(z) ≥ ϕ∗∗(F,z∗)(x)

}
As

ϕ∗∗(F,z∗)(x) = sup {x∗(x)− σ(x∗|cl coM)} = ιcl coM (x)

for all x ∈ X,

∀x ∈ X : F ∗∗(x) =
⋂

z∗∈C∗+\{0}
{z ∈ Z| − z∗(z) ≥ ιcl coM (x)}

which is F ∗∗ = Icl coM .

f) By 5.1.2,
F ′z∗(x0, x) =

{
z ∈ Z| − z∗(z) ≥ ϕ′(F,z∗)(x0, x)

}
.

For all x ∈ X it holds ϕ′(F,z∗)(x0, x) = ιcone (M+{−x0})(x), therefore

F ′z∗(x0, x) = Icone (M+{−x0})(x) +H(z∗).

g) By 6.1.2,
∂F (x0) =

{
S(x∗,z∗)| ∀x ∈ X : x∗(x) ≤ ϕ′(F,z∗)(x0, x)

}
Each scalarization ϕ(F,z∗) is equal to the scalar indicator function of M , so

∂F (x0) =
{
S(x∗,z∗)| ∀x ∈M : x∗(x− x0) ≤ 0

}
.

∂F (x0) = ∂ext F (x0) =
{
S(x∗,z∗)| ∀x ∈M : S(x∗,z∗)(x− x0) ⊇ H(z∗)

}

8.1.5 Example (Scalar functions). Let f : X → IR ∪ {±∞} be a function and C = IR+. The
set-valued extension F : X → P (IR) of f is defined by

F (x) :=


f(x) + C, if f(x) ∈ IR;
IR, if f(x) = −∞;
∅, if f(x) = +∞.

The set C∗ \ {0} is the set {t ∈ IR| t < 0}.
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a) If t ∈ C∗ \ {0} , then

∀x ∈ X : ϕ(F,t)(x) = −tϕ(F,−1)(x) = −tf(x).

Especially, f(x) = ϕ(F,−1)(x) for all x ∈ X. Moreover, if f is proper, then{
t ∈ C∗ \ {0} : ϕ(F,t) : X → IR ∪ {±∞} is proper

}
= C∗ \ {0} .

b) It holds domF = dom f and epiF = epi f .

c) The function F is convex (C−proper, subadditive, positively homogeneous, closed), if and
only if f is convex (proper, subadditive, positively homogeneous, closed).

d) If f is convex, then the directional derivative of F in x0 ∈ dom f with respect to t ∈ C∗ \ {0}
is

∀x0, x ∈ X : F ′t(x0, x) =
{
r ∈ IR| − t(z) ≥ (−tf)′(x0, x) = −tf ′(x0, x)

}
= f ′(x0, x) + C.

If f(x0) = +∞, then F ′t(x0, x) = IR for all x ∈ X.

e) The conjugate of F is

∀(x∗, t) ∈ X∗ × C∗ \ {0} : F ∗(x∗, t) = F ∗(−1
t
x∗,−1)

=
{
r ∈ IR| r ≥ f∗(−1

t
x∗)
}

= f∗(−1
t
x∗) + C.

f) For the biconjugate of F it holds

∀x ∈ X : F ∗∗(x) =
⋂

t∈C∗\{0}
{r ∈ IR| − tr ≥ (−tf)∗∗(x) = −tf∗∗(x)}

= f∗∗(x) + C.

g) If f is convex and x0 ∈ X, then x∗ ∈ ∂f(x0) (x∗ ∈ ∂ext f(x0)) if and only if

S(x∗,−1) ∈ ∂F (x0) (S(x∗,−1) ∈ ∂extF (x0)).

8.1.6 Example (Extended vector-valued functions). Let f : X → Z∪{+∞} be a convex proper
function, F (x) = f(x) + C.

a) Let z∗ ∈ C∗ \ {0} , then
∀x ∈ X : ϕ(F,z∗)(x) = −z∗(f(x))

and {
z∗ ∈ C∗ \ {0} : ϕ(F,z∗) : X → IR ∪ {±∞} is proper

}
= C∗ \ {0} .

b) It holds domF = dom f and epiF = epi f .

c) The function F is convex and proper, C−proper if C∗ \−C∗ 6= ∅. Moreover, F is subadditive
(positively homogeneous), if and only if f is subadditive (positively homogeneous).
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d) If f is convex, then the directional derivative of F in x0 ∈ dom f with respect to z∗ ∈ C∗ \ {0}
is given by

∀z∗ ∈ C∗ \ {0} , x0, x ∈ X : F ′z∗(x0, x) =
{
z ∈ Z| − z∗(z) ≥ (−z∗f)′(x0, x)

}
.

If f(x0) = +∞, then F ′z∗(x,x) = Z for all x ∈ X.

e) The conjugate of F is defined by

∀(x∗, z∗) ∈ X∗ × C∗ \ {0} : F ∗(x∗, z∗) = {z ∈ Z| − z∗(z) ≥ (−z∗f)∗(x∗)} .

f) For the biconjugate of F it holds

∀x ∈ X : F ∗∗(x) =
⋂

z∗∈C∗\{0}
{z ∈ Z| − z∗(z) ≥ (−z∗f)∗∗(x)} .

g) If f is convex, x0 ∈ int dom f and T ∈ L(X,Z), then T ∈ ∂f(x0) if and only if

∀z∗ ∈ C∗ \ {0} : S(−T ∗z∗,z∗) ∈ ∂F (x0) = ∂extF (x0).

Proof.

a) By definition,

∀x ∈ X : ϕ(F,z∗)(x) = inf {−z∗(z)| z ∈ f(x) + C} = −z∗(f(x)).

b) The effective domain of F is

domF = {x ∈ X| f(x) + C 6= ∅} = dom f,

and for the epigraph it holds

epiF = {(x, z) ∈ X × Z| z ∈ (f(x) + C)} = epi f,

c) As
∀z∗ ∈ C∗ \ {0} : ϕ(F,z∗) : X → IR ∪ {±∞} is proper and convex,

by 3.2.5 and 3.2.3 F is convex and C-proper if C∗ \ −C∗ 6= ∅. Equally, F is positively
homogeneous or subadditive if and only if for all z∗ ∈ C∗ \ {0} the scalarization ϕ(F,z∗) is,
which is equivalent to f : X → Z being positively homogeneous or subadditive.

d) As ϕ(F,z∗) (x) = −z∗(f(x)) holds for all z∗ ∈ C∗ \ {0} , x ∈ X, this is immediate with 5.1.2.

e) This holds by 4.1.2.

f) This is 4.1.5

g) This is 6.3.2.

8.1.7 Example (Vector Norm). In [30], a function f : X → C is called a vector norm if

VN1) It holds f(x) = 0 if and only if x = 0.
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VN2) For all t ∈ IR, x ∈ X it holds f(tx) = |t| · f(x).

VN3) For all x1, x2 ∈ X it holds f(x1) + f(x2) ∈ f(x1 + x2) + C.

Let f : X → C be a vector norm defined everywhere. For F : X → QtC(Z) defined by

∀x ∈ X : F (x) := f(x) + C

and z∗ ∈ C∗ \ {0} , it holds

VN1’) The scalarization ϕ(F,z∗)(x) = −z∗(f(x)) is a semi-norm, ϕ(F,z∗)(x) = 0 if and only if
f(x) ∈ H(z∗) ∩ −H(z∗).

VN2’) It holds
{x ∈ X| F (x) = C} = {x ∈ X| f(x) ∈ C ∩ −C} .

VN3’) For all t ∈ IR, x ∈ X it holds F (tx) = |t| · F (x).

VN4’) For all x1, x2 ∈ X it holds F (x1) + F (x2) ⊆ F (x1 + x2).

Let
Uz∗ := {x ∈ X| − z∗f(x) ≤ 1} ,

then for G :
{
S(x∗,z∗)| (x∗, z∗) ∈ X∗ × C∗ \ {0}

}
→ QtC(Z) defined by

∀(x∗, z∗) ∈ X∗ × C∗ \ {0} : G(S(x∗,z∗)) :=
⋂

x∈Uz∗
S(x∗,z∗)(x)

it holds

VN1* For all z∗ ∈ C∗ \ {0} , the function ϕ(G,z∗)(x∗) = sup
x∈Uz∗

x∗(x) is a norm.

VN2* It holds G(S(x∗,z∗)) = H(z∗) if and only if x∗ = 0.

VN3* For all t ∈ IR, x ∈ X it holds G(S(tx∗,z∗)) = |t| ·G(S(x∗,z∗)).

VN4* For all S(x∗1,z∗), S(x∗2,z∗) ∈ X it holds G(S(x∗1+x∗2,z∗)) ⊆ G(S(x∗1,z∗)) +G(S(x∗2,z∗)).

It holds

a) It holds
F ∗(x∗, z∗) = I{S(x∗,z∗)| ϕ(G,z∗)(x∗)≤1}(S(x∗,z∗)) +H(z∗).

b) If z∗f(x) = 0, then

∂F (x) =
{
S(x∗,z∗)| ϕ(G,z∗)(x∗) ≤ 1, x∗(x) = 0

}
.

and else
∂F (x) =

{
S(x∗,z∗)| ϕ(G,z∗)(x∗) = 1

}
.

Proof.
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a) ϕ∗(F, z∗)(x∗) = supx ∈ X(x∗(x) C ϕ(F,z∗)(x)) = ιx∗∈X∗| x∗≤ϕ(F,z∗)(x
∗)

If x∗ ≤ ϕ(F,z∗), then for x ∈ Uz∗ it holds x∗(x) ≤ 1. On the other hand, if x∗(x) ≤ 1 holds
for all x ∈ Uz∗ , then x∗ ≤ ϕ(F,z∗) holds. Therefore,

ϕ∗(F, z∗)(x∗) = ι{x∗∈X∗| ∀x∈Uz∗ :x∗(x)≤1}(x∗).

Therefore,
F ∗(x∗, z∗) = I{S(x∗,z∗)| ϕ(G,z∗)(x∗)≤1}(S(x∗,z∗)) +H(z∗).

b)
∀x ∈ X : ∂ϕ(F,z∗)(x) =

{
x∗ ∈ X∗| ϕ(F,z∗)(x)− x∗(x) ≤ −ϕ(F,z∗)(x∗)

}
.

Therefore,
∀x ∈ X : ∂ϕ(F,z∗)(x) ⊆ {x∗ ∈ X∗| ∀x ∈ Uz∗ : x∗(x) ≤ 1} .

Let ϕ(F,z∗)(x) = t 6= 0, then 1
|t|x ∈ Uz∗ and

∂ϕ(F,z∗)(x) =
{
x∗ ∈ X∗| x∗( 1

|t|
x) ≥ 1

}
,

so
∂ϕ(F,z∗)(x) =

{
S(x∗,z∗)| ϕ(G,z∗)(x∗) = 1

}
Let ϕ(F,z∗)(x) = 0, x∗ ∈ {x∗ ∈ X∗| ∀x ∈ Uz∗ : x∗(x) ≤ 1}. Then ϕ(F,z∗)(x) − x∗(x) ≤
−ϕ∗(F,z∗)(x

∗) if and only if x∗(x) ≥ 0. On the other hand,

∂ϕ(F,z∗)(x) =
{
x∗ ∈ X∗| ∀x̄ ∈ X : ϕ(F,z∗)(x̄)− x∗(x̄) ≥ ϕ(F,z∗)(x)− x∗(x)

}
,

therefore x∗(x) ≤ 0, so

∂F (x) =
{
S(x∗,z∗)| ϕ(G,z∗)(x∗) ≤ 1, x∗(x) = 0

}
.
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8.2 Arithmetic in the extended real numbers

Viewing the extended real numbers as an extension of the ordered linear space (IR,+, ·,≤), it is
necessary to extend the addition, multiplication with positive real numbers, especially 0 and the
difference defined on IR to operators defined on IR ∪ {±∞}. Again, the algebraic interpretation
of the difference will not be obtained for the extended definition of the difference operator.

An investigation of concavity rather then convexity would require a change from the inf-
addition and -difference to the sup-addition and -difference. In fact, this can be achieved by the
”multiplication with −1”, causing a change of spaces.

The set IR is ordered by the relation ≤ generated by the cone IR+ ∪ {0} = {t ∈ IR| t ≥ 0}.
By defining (−∞)+A = IR and (+∞)+A = ∅ for any nonvoid subset A ⊆ IR, the order relation
extends to IR ∪ {±∞} by r ≤ s if and only if s ∈ r + IR+ ∪ {0} for r, s ∈ IR ∪ {±∞}.

We will extend the operation + : IR × IR → IR to an operation on IR ∪ {±∞} by means of

∀r, s ∈ IR ∪ {±∞} : r + s := inf {x+ y| x, y ∈ IR, x ≥ r, y ≥ s} .

In particulary, (+∞) + r = +∞ for all r ∈ IR ∪ {±∞}.
Moreover, IR∪{±∞} is supplied with a multiplication with positive real numbers by means

of

0 · r = 0,
t · r = inf {tx ∈ IR| x ≥ r}

for all t > 0 and r ∈ IR ∪ {±∞}.
The set IR ∪ {±∞} supplied with extended addition and the multiplication with positive

numbers along with the order ≤ is an order complete, ordered conlinear space.
Notice that in general no inverse element −x exists for x ∈ IR ∪ {±∞}. Anyway, for s, t ≥ 0

it holds (s+ t)x = sx+ tx for all x ∈ IR ∪ {±∞}. Therefore, (IR ∪ {±∞} ,+, ·,≤) is an ordered
cone in the sense of [32].

Analog to the addition, the substraction − : IR × IR → IR can be extended to an operation
on IR ∪ {±∞} which coincides with the inf-difference on (IR ∪ {±∞} ,+, ·,≤).

8.2.1 Proposition. The inf -difference C: IR ∪ {±∞} × IR ∪ {±∞} → IR ∪ {±∞} is given by

∀r, s ∈ IR ∪ {±∞} : r C s = inf {t ∈ IR| s+ t ≥ r} .

If r, s ∈ IR holds, then (r C s) = r − s.

Proof. By definition,

r C s = inf {t ∈ IR| s+ t ≥ r}

=


+∞, if {t ∈ IR| s+ t ≥ r} = ∅;
−∞, if {t ∈ IR| s+ t ≥ r} = IR;
r − s, else.

= inf {t ∈ IR ∪ {±∞} | s+ t ≥ r}

holds for all r, s ∈ IR ∪ {±∞}.
In particulary, (−∞) C r = −∞ and r C (+∞) = −∞ for all r ∈ IR ∪ {±∞}.

8.2.2 Lemma. Let t ≥ 0, a, b, x, y ∈ IR ∪ {±∞}. It holds
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a)

a C (+∞) = −∞,
(−∞) C a = −∞,

b)
t(a C b) = ta C tb,

c) if a ≤ b, then
a C x ≤ b C x

and
x C b ≤ x C a,

d)
a C b ≤ (a C x) + (x C b)

e)
(a+ x) C (x+ b) ≤ a C b

f)
(a+ x) C (b+ y) ≤ (a C b) + (x C y)

Proof. By 2.2.7, it is only left to prove

∀a ∈ IR ∪ {±∞} : a C (+∞) = −∞,
(−∞) C a = −∞.

By definition, (a C b) = inf {x ∈ IR| b+ x ≥ a}. As

∀x ∈ IR, b ∈ IR ∪ {±∞} : b+ x ≥ −∞
+∞+ x = +∞

holds, the result is immediate.
Obviously, in the last three inequalities equality holds if a, b, x, y ∈ IR. Otherwise though,

equality is not true in general. An easy result is

a C a =
{

0, if a ∈ IR;
−∞, else.

and 0 C a = −a with −(±∞) := (∓∞).

8.2.3 Example. a) Let a, b = 0 and x = +∞, then a C b = 0 while

(a C x) + (x C b) = +∞
(a+ x) C (x+ b) = −∞.

b) Let a, x, y = +∞, b = 0, then

(a C b) + (x C y) = +∞
(a+ x) C (b+ y) = −∞.
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If r ≤ s holds for r, s ∈ IR ∪ {±∞} we have

(0 C r) ≥ (0 C s)

We will not define a multiplication with negative numbers on IR ∪ {±∞}, instead we will
make use of the expression 0 C r. For r ∈ IR it holds 0 C r = −r, while 0 C (±∞) = (∓∞) and
therefore s+ (0 C s) ≥ 0 for s ∈ IR ∪ {±∞}.

It is important to remember that + andC are not inverse operators in general. The advantage
of making use of these operators is that we no longer have to restrict ourselves from terms like
(+∞)− (−∞) as both addition and substraction are defined on the whole space IR ∪ {±∞}.

8.3 Scalar Convex Analysis

In the following, we will summarize some well-known facts from the theory of scalar convex
analysis as presented in [10, 25, 50, 62, 64]. As it is common, and also necessary, to reduce
definitions such as that of the directional derivative or the subdifferential of a scalar function
ϕ : X → IR ∪ {±∞} to the case of |ϕ(x0)| 6= +∞ when using the classic difference ′′−′′, we
will also include some extended definitions and discuss the new special cases occurring when
using the inf-difference instead. It turns out that the extended definitions coincide with the
classic ones everywhere but in ”pathological” cases. The proves of each such statement can be
easily done by applying the definition of C. Throughout this chapter, X will be a locally convex
separable space with the dual space X∗.

8.3.1 Basic facts and definitions

Let X be a locally convex separable space.
For a function ϕ : X → IR ∪ {±∞}, the effective domain of ϕ is defined as

domϕ := {x ∈ X| ϕ(x) 6= +∞} .

The epigraph of ϕ is defined as

epiϕ = {(x, t) ∈ X × IR : | t ≥ ϕ(x)} .

8.3.1 Lemma. [62] Let ϕ : X → IR ∪ {±∞} be a convex function

a) If x0 ∈ core domϕ with ϕ(x) ∈ IR, then ϕ is proper.

b) If ϕ is closed then either ϕ is proper or ϕ(x) = −∞ for all x ∈ domϕ.

c) If x0 ∈ core domϕ, then either clϕ(x0) = −∞ or clϕ(x) = ϕ(x) holds for all x ∈ domϕ.

8.3.2 Lemma. If clϕ is sublinear and proper, then clϕ(0) = 0 and

clϕ(x) = sup {x∗(x)|x∗ ≤ ϕ} .

Proof. As clϕ is assumed to be sublinear and proper, it holds clϕ(0) ∈ {+∞, 0}. As moreover
clϕ is proper, there exists x0 ∈ dom clϕ and it holds clϕ(0) ≤ lim

t↓0
clϕ(tx0) = 0, thus clϕ(0) 6=

+∞. By [11], every closed proper convex function is the pointwise supremum of its affine
minorants. As clϕ(0) = 0, the statement is proven.
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8.3.3 Lemma. [26] If ϕ : X → IR ∪ {±∞} is convex and (x0, s) ∈ int epiϕ for some s ∈ IR,
then ϕ is continuous at x0 ∈ domϕ or ϕ(x) = −∞ for all x ∈ domϕ.

8.3.4 Definition. [26] Let Y be another locally convex space and A : X → Y is a linear
homeomorphism. If ϕ : X → IR ∪ {±∞}, then

∀y ∈ Y : Aϕ(y) = inf
Ax=y

ϕ(x).

If γ : Y → IR ∪ {±∞}, then

∀x ∈ X : γA(y) = γ(Ax).

8.3.5 Definition. [11] Let M ⊆ X and M∗ ⊆ X∗. the support function of M is defined by

∀x∗ ∈ X∗ : σ(x∗|M) = sup {x∗(x)| x ∈M}

and likewise the support function of M∗ is defined by

∀x ∈ X : σ(x|M∗) = sup {x∗(x)| x∗ ∈M∗}

8.3.6 Definition. [11] The indicator function of M ⊆ X is defined by

∀x ∈ X : ιM (x) = sup {x∗(x)| x ∈M}
{

0, if x ∈M ;
+∞, else.

We use the notion ιM : X → IR ∪ {+∞} for the scalar indicator function in order to
distinguish it from the set-valued indicator function IM : X → QtC(Z) in the main part of this
thesis.

8.3.2 Conjugation

8.3.7 Definition. [11] For a function ϕ : X → IR ∪ {±∞}, the convex conjugate ϕ∗ : X∗ →
IR ∪ {±∞} is defined by

ϕ∗(x∗) := sup
x∈X

(x∗(x) C ϕ(x)),

the biconjugate ϕ∗∗ : X → IR ∪ {±∞}

ϕ∗∗(x) := sup
x∗∈X∗

(x∗(x) C ϕ∗(x∗)).

Obviously, the conjugate and the biconjugate are classically defined with − instead of C.
As x∗ : X → IR has only real values, the extended substraction makes no difference in the
definition.

8.3.3 Directional derivative and subdifferential

8.3.8 Definition. The directional derivative of a convex function ϕ : X → IR∪{±∞} is defined
by

ϕ′(x0, x) = lim
s↓0

1
s

(ϕ(x0 + sx) C ϕ(x0))

when the limit exists in IR ∪ {±∞}.

xvi



If ϕ : X → IR ∪ {±∞} is a proper function and x0 ∈ domϕ, then our directional derivative
coincides with the classic one for every x ∈ X as found in [26] and others. If x0 /∈ domϕ, then
ϕ′(x0, x) = −∞ holds for all x ∈ X. If ϕ(x0) = −∞, then for all s > 0 and x ∈ X it holds

ϕ(x0 + sx) C ϕ(x0) =
{
−∞, if ϕ(x0 + sx) = −∞ ;
+∞, else.

8.3.9 Lemma. If ϕ : X → IR ∪ {±∞} is a convex function, then the directional derivative in
x0 ∈ X exists for all x ∈ X and it holds

ϕ′(x0, x) = inf
t>0

1
t

(ϕ(x0 + tx) C ϕ(x0)) .

Proof. If ϕ is proper and x0 ∈ domϕ, then this is the classic case as found in [26]. Otherwise,
if x0 /∈ domϕ, then ϕ′(x0, x) = −∞ holds for all x ∈ X. If ϕ(x0) = −∞, then either x /∈
cone (domϕ− x0) and ϕ′(x0, x) = +∞, or

∃s > 0 : ϕ(x0 + sx)−∞

and thus ϕ′(x0, x) = −∞.

8.3.10 Remark. Let ϕ : X → IR ∪ {±∞} be a convex function, ϕ(x0) = −∞.

a) Take x /∈ domϕ′(x0, ·). Then ϕ′(x0, x) = +∞, but ϕ′(x0, 0) = −∞ 6= 0 = 0(ϕ′(x0, x)).
Therefore, the directional derivative is not positively homogeneous under the definition in-
cluding 0, found in [21].

b) For any x ∈ X, the directional derivative ϕ′(x0, ·) can take values in {±∞} at −x, x ∈ X.
Therefore the inequality

0 C ϕ′(x0, x) ≤ ϕ′(x0,−x)

in general does not hold if ϕ(x0) = −∞.

8.3.11 Definition. The subdifferential of a convex function ϕ : X → IR ∪ {±∞} is defined by

∂ϕ(x0) :=
{
x∗ ∈ X∗| ∀x ∈ X : x∗(x) ≤ ϕ′(x0, x)

}
.

The extended subdifferential of a function ϕ : X → IR ∪ {±∞} is defined by

∂extϕ(x0) := {x∗ ∈ X∗| x∗(x0) C ϕ(x0) ≥ ϕ∗(x∗)} .

8.3.12 Lemma. Let ϕ : X → IR ∪ {±∞} be a convex function and x0 ∈ X. If ϕ(x0) = −∞ or
domϕ = ∅, then

∂ϕ(x0) = ∅,
∂ext ϕ(x0) = X∗.

If ϕ is proper, then

∂ϕ(x0) = ∂ext ϕ(x0).
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Proof. If ϕ(x0) = −∞ or domϕ = ∅, then

ϕ′(x0, ·) ≡ −∞,

ϕ∗ ≡
{
−∞, if domϕ = ∅;
+∞, if ϕ(x0) = −∞.

Thus, ∂ϕ(x0) = ∅ and ∂ext ϕ(x0) = X∗. If ϕ : X → IR ∪ {+∞} is proper, then the equality is
well-known, compare [62].

The statement in 8.3.12 shows, that in fact our definitions are very easy extensions of the
classic definition subdifferential, where ∂ϕ(x0) is only defined for proper functions with x0 ∈
domϕ, see [62].

8.3.13 Lemma. [62]Let ϕ : X → IR ∪ {±∞} be a sublinear function, then ∂ϕ(0) 6= ∅ if and
only if clϕ(0) = ϕ(0) = 0. In this case, ϕ is proper and

∂ϕ(0) = {x∗ ∈ X∗| ∀x ∈ X : x∗(x) ≤ ϕ(x)}

and

∀x ∈ X : ∂ϕ(x) = {x∗ ∈ ∂ϕ(0)| x∗(x) = ϕ(x)}
clϕ(x) = sup

x∗∈∂ϕ(0)
x∗(x).

8.3.14 Lemma. [62] Let ϕ be a convex function, then ∂ϕ(x0) 6= ∅ if and only if ϕ′(x0, 0) =
clϕ′(x0, 0) = 0. In this case, ϕ is proper and it holds

clϕ′(x0, x) = sup {x∗(x)|x∗ ∈ ∂ϕ(x0)} .

8.3.15 Lemma (Max-Formula). [62] Let ϕ be a convex proper function and x0 ∈ domϕ. If ϕ
is continuous at x0, then ∂ϕ(x0) 6= ∅, ϕ′(x0, ·) is continuous and finite and

∀x ∈ X : ∃x∗0 ∈ ∂ϕ(x0) : ϕ′(x0, x) = x∗0(x).
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