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1 Introduction

The main topic of this thesis is convex analysis for set-valued functions. The main achievement is
the perception that every important formula from the scalar theory has a set-valued counterpart.
We will prove a set-valued version of the Fenchel-Moreau-Theorem, weak and strong duality, a
set-valued max-formula for the directional derivative and provide a full calculus for the conjugate,
directional derivative and the subdifferential of set-valued functions. The results rely on an
appropriate choice of an lattice ordered subset of the power set of an quasi-ordered linear space
as image space for set-valued functions.

"Closed convex sets in a locally convex topological vector space may be described in a dual
way: they are identical with the intersection of the closed half-spaces which contain them.

Closed convex functions in a locally convex topological vector space also permit a dual
description...: they are pointwise least upper bounds of the affine functions which do not exceed
them in size. Such a duality permits one to establish a connection between a convex function
and the dual object — the conjugate function.” [59]

"The theorems of convex analysis relate the operations of conjugation... and taking a subd-
ifferential with algebraic, set-theoretic and ordering operations over convex sets and functions.
Other subjects of study include all possible dual relations between... functions and their conju-
gates...” [58]

In the following, we will introduce an approach to set-valued convex analysis which is based
on constructions presented in [23] and in total accordance with the well-known scalar theory as
presented in [62]. There are two fundamental questions arising, when dealing with set-valued
functions mapping one locally convex topological vector space X into the power set P (Z) of
another locally convex topological vector space Z. The first is the question of an appropriate
dual space, the other that of the difference between two sets.

In most approaches known to the author, the dual space has been chosen to be £ (X, Z), the
set of linear continuous operators mapping X into Z, compare [7, 48, 49, 57, 60, 63] and others.
Once the dual problem is considered as a set-valued, rather then a vector-valued problem,
a change of image spaces from infimum-oriented to supremum-oriented sets can be observed,
compare [39, 38, 48, 54], which is due to the difference in the formulation of the dual problem.
This is natural, as long as the difference between two sets is defined as the algebraic difference.
Moreover, most frequently additional structural assumptions have to be made on the image
space. One frequently used assumption is that the topological interior of the ordering cone
C C Z is nonempty, compare [4, 12, 24, 53, 56].

In our approach, we will only assume X and Z to be rich enough to allow the classic
separation theorems in X x Z and, moreover, Z to be quasi ordered by a closed convex cone {0} C
C C Z. The dual variables will be pairs (z*,2*) € X* x C*\ {0} and by introducing an order
theoretically motivated difference between subsets of Z, we are able to translate virtually every
concept of the scalar theory to the set-valued theory of convex functions, such as conjugate and
biconjugate functions, the directional derivative or the subdifferential. The main contribution of
this thesis is, that we are able to supply a full calculus for the conjugate, directional derivative
and the subdifferential of set-valued functions. Along the way, we are able to prove weak and,
under an additional constrained assumption, strong duality.

One characteristic of the presented results is that each set-valued result has an equivalent
representation through a family of basically scalar results. Notice, however, that we are not
scalarizing the original problem in the ordinary way but rather represent it through a family



of scalarizations without loss of information on the original problem. The vector-valued situ-
ation can be rediscovered in the results by replacing a vector-valued function by a set-valued
extension. Thus, the presented results generalize known results in vector-valued convex analysis
to more general image spaces. Apart from the various applications of set-valued analysis, such
as in multicriteria-optimization, the author believes that the almost one-to-one correspondence
between the scalar theory and the presented set-valued theory is in itself highly interesting.

The present text focuses on central concepts (conjugate, subdifferential, directional deriva-
tive, tangent and normal cone for epigraphs) for set-valued convex functions and their mutual
relationships (max-formula, biconjugation, subdifferential calculus etc.). This leaves e.g. appli-
cation to set and vector optimization problems for future research. While most of the funda-
mental theorems of convex analysis are presented in their set-valued form, it has not been the
intention of the author to go into greater detail about more specialized results under additional
assumptions. Also, most of the text is restricted to the analysis of convex functions. Though
it presents no greater problem to generalize to more general functions, the author believes that
the basic structure is more obvious this way.

The text is structured as follows. In the second chapter, we will collect some basic facts
about order relations, conlinear spaces and functions mapping one conlinear space into another.
We will introduce a difference operation on quasi-ordered conlinear spaces which is, to our
knowledge, new. We then turn to a special case of a conlinear, quasi-ordered space, the power
set P (Z) of a locally convex topological vector space Z, quasi-ordered by a closed convex cone
C. We will discuss special classes of set-valued functions and specify the associated image
spaces. In the end of this chapter, we will introduce a slightly altered version of the previously
introduced difference operator on the power set P (Z). This is the first of many places, where
the representation of a set-valued expression through a family of basically scalar expressions will
occur.

The third chapter is dedicated to the scalarized representation of set-valued functions. This
chapter supplies us with a strong tool in proving most of the subsequent statements. In fact,
the set-valued theory presented in this thesis can either be derived from the scalar theory, which
is the approach chosen in most parts of this thesis, or independent from this and including
the scalar results a special case. The second approach has been chosen in some proofs, but is
exploited to a greater extend in [23].

The fourth chapter introduces a convex conjugate and biconjugate of Fenchel-Rockafellar
type. After discussing some basic results of these functions, we will prove a number of basic
duality results, such as a sum- and chain-rule, as well as weak and, under additional assumptions,
strong duality and a sandwich theorem. The results in this chapter are closely related to those
presented in [23]. Exploiting the full potency of the difference of sets presented earlier, we are
able to translate the conjugates presented there into convex functions in accordance to the classic
Fenchel-Rockafellar conjugate.

In the fifth chapter the directional derivative of set-valued functions is defined and its basic
properties will be discussed.

The sixth chapter is dedicated to the subdifferential of a convex set-valued function. In
fact, this chapter contains the most notable difference between the classic scalar theory and our
theory. While the subdifferential of a proper convex scalar function ¢ : X — IRU{+o0c} at a point
xo € dom ¢ can be equally described via the directional derivative of ¢ at xy or the conjugate
©* : X* — IRU{+o00}, these two definitions yield to different concepts of a subdifferential in our



case. While at first glance this seems to be a shortcoming of our approach, the reason for this
difference has to be sought in the scalar theory, as we neither assume x¢ € dom F, nor do we
assume properness for the set-valued function. In the non-pathological cases, we will prove that
both concepts of the subdifferential coincide in our theory as well, while the equality does not
hold even in the scalar case when extending the definition of the subdifferential to non-proper
functions ¢ : X — IR U {*o0}.

The seventh chapter is concerned with the tangent and normal cones of certain extensions
of a convex set-valued function. In accordance to the scalar results, a connection between
the tangent cone and the directional derivative on the one hand and the normal cone and the
subdifferential on the other hand is proven. Note that we do not, in general, use the tangent or
normal cone of the epigraph of F' at some element (z,z) € X x Z, but rather stick to the family
of cones associated with the family of scalarizations introduced earlier.

The Appendix consists of two parts, the first one dedicated to illustrating the presented
theory on some standard examples, the second summarizing some known facts of scalar convex
analysis as well as extending the classic definitions therein to the case of non-proper functions.



2 Basic Framework

The power set of a real linear space Z has been shown to be a conlinear space as introduced in
[22]. Also, if Z is quasi ordered by a non trivial convex cone C' C Z, then this order relation
can be extended to an order relation on P (Z). A more detailed discussion of this ordering can
be found in [35] and also in [22, 23]. As pointed out in the references, there are in fact two
canonical extensions to an order relation on the power set, one being appropriate when dealing
with concavity, the other when dealing with convexity. As we are only interested in convex
functions in the following, we will refrain from introducing both extensions.

After introducing the basic notions, we will introduce a difference operation on quasi-ordered
conlinear spaces in subsection 2.2.2, which is, to our knowledge new. This difference operation
will prove to be of great importance in the following chapters, as through it we will be able to
define concepts such as conjugate functions, the directional derivative or the subdifferential of
a function F' : X — P (Z) (in a point 9 € X) in total accordance to the well-known scalar
definitions. In fact, in the special case of the conlinear space IR U {£o0}, the new difference

" as will be illustrated in subsection 8.2. In sequence, we will

is an extension of the classic ”—
introduce the basic notations for functions mapping one conlinear space into another and then
turn to the special case of set-valued functions, which will be the focus of the rest of this thesis.

In subsection 2.3, we will introduce certain subsets of the power set of a locally convex
space as the image spaces of convex and closed set-valued functions and identify these spaces
as ordered conlinear spaces and then turn our attention to certain, "almost linear” set-valued
functions. The set of these conlinear functions will serve as a replacement for the topological
dual space later on.

Finally in subsection 2.4, we will specify the difference operation on conlinear spaces to the

special case of the power set of a locally convex separable and quasi-ordered space.

2.1 Order structures

2.1.1 Definition. [16] Let Y be a nonvoid set and < a binary relation in'Y. Then < is called
a) reflexive, if for all y € Y it holds y < y,

b) transitive, if x <y and y < z implies x < z for all x,y,z €Y ,

¢) antisymmetric, if x <y and y < x implies x =y for all x,y € Y.

If < is reflexive and transitive, then < is called a quasi-order and the couple (Y, <) is called
a quasi-ordered set. If < is reflerive, transitive and antisymmetric, then < is called a partial
order and the couple (Y, <) is called a partially ordered set.

If (Y, <) is quasi-ordered (partially ordered), then for any subset M of Y the couple (M, <)
is quasi-ordered (partially ordered). For z,y € Y with x <y we also write y > x.
Having a quasi-ordered set (Y, <), it is a standard procedure to define equivalence classes,
denoted by
] ={zeY|z <y y<a}.

The set of all equivalence classes together with the relation

il <] <y <y



is a partially ordered set.

A subset M CY of YV is called bounded from above (below), if in Y exists an element y such,
that for all m € M it holds m <y (y < m). In this case, y is called an upper (lower) bound of
M. If for an upper (lower) bound y of M C Y holds y <7 (¢ < y) for all upper (lower) bounds
of M, then y is called infimum (supremum) of M, denoted by inf M (sup M). The infimum and
supremum of Y are, if they exist, unique. A quasi-ordered set (Y, <) is called order complete, if
every nonvoid subset M C Y has an infimum and supremum in Y. If (Y, <) is order complete
and ordered, that the infimum and supremum of each subset of Y exists and is unique. By
definition, we set inf ) = supY and sup() = inf Y.

Let (Y, <) be an order complete set, {yx} cp € Y anet in Y. We define

liinf ys, = sup fuf 4
and
limsup Ay = inf sup y).
A—0 PEA N<p

Let (Y, <) be a quasi-ordered set, P (Y') the set of all subsets of Y, including the empty set

and Y. We extend the order relation < to a quasi-order < on P (Y') by

M<N & VYVneN:dneM: m<n.

If M ={m} and N = {n}, then M < N holds if and only if m < n. If N C M, then it holds
M < N. Thus, ) is the largest element of P (Z) with respect to < and Y is the smallest element
of P (Z) with respect to <.

2.1.2 Example. Let Y be a nonvoid set endowed with the order relation =. The extension
< of = equals O and (P (Y),D)is a partially ordered, order complete set. The infimum and
supremum of a subset A C P (Y') with respect to Dare

inf5A = U A,
AeA

Sup;A: ﬂ A
AcA

For any A € P(Y) it holds ) C A CY, therefore the smallest element of P (Y) with respect to
D is Y, the greatest ().

The set of all equivalence classes in P (Y) with respect to < together with the relation
[M][N] & M<XN

is partially ordered and order complete. This set can be identified with a subset of (P (Y), D).

2.2 Ordered conlinear spaces
2.2.1 Basic notations

2.2.1 Definition (Conlinear Space). [22] A nonvoid set Y together with an addition "+ 7 and

»o»

a multiplication with nonnegative reals is said to be a real conlinear space (Y, +,-), if



a) (Y,4) is a commutative monoid, that is

Vr,y,z€Y: z4+(y+z) = (z+y)+z,
Ve,yeY: x4y = y+uz,
HVeY:VeeY: O+z

z,

b) -(t,y) =ty for everyt >0 and y € Y satisfies the following conditions.

Vs,t >0,y €Y : s(ty) = (st)y,
YyeY: ly = vy,
VyeY: 0Oy = 0,
VEZ0,y,y2 €Y 0ty 1) =ty +tye.

If X CY is closed under addition and multiplication positive reals, then (X, +,-) is called a
conlinear subspace of (Y, +,-).

Note that no multiplication with negative real numbers is defined. Also, the second distribu-
tive law (s + t)y = sy + ty does not have to be valid even for s,t > 0. As a consequence, the
conlinear structure is stable under passing to the power set of Y, P (Y') when the addition and
multiplication are defined adequately. Here, as throughout the text, P (Z) denotes the set of all
subsets of Y, including the empty set () and Y itself.

2.2.2 Definition. Let (Y,+,-) be a conlinear space. The Minkowski sum of two subsets A, B €
P (Z) and the product of a subset A € P(Z) with a real number are defined as follows.

VA, BeP(Y): A+B = {a+blac A be B}
Vtie R\{0},AeP((Y): tA = {talae€ A}
VAeP(Y): 04 := {0}

For any set A € P(Z) it holds A+ 0 =0+ A =0 and 00 = {0}. We will abbreviate A+ {z}
by A+z, A+ {—2} by A—zand A— B for A+ (—1)Bfor z€ Z and A,B € P (Z).

2.2.3 Proposition. [22] Let (Y,+,-) be a conlinear space, then (P (Y),+,-) supplied with the
multiplication with nonnegative real numbers defined in 2.2.2 is a conlinear space.

2.2.4 Definition (ordered conlinear spaces). [22] Let (Y,+,-) be a conlinear space and < a
quasi-order on Y satisfying

a) For all x,y,z €Y, x <y impliesx+ 2z < y+ z.
b) Forxz,y €Y and 0 <t, x <y implies tx < ty.

Then (Y,+, -, <) is called a quasi-ordered conlinear space. If < is a partial order, then (Y, 4+, -, <)
is called an ordered conlinear space.

If (Y, +, -, <) is an ordered conlinear space, then (P (Y),+,-,2) and (P (Y), +, -, C) with the
Minkowski sum and the multiplication defined in 2.2.2 are order complete, ordered conlinear
spaces.



2.2.5 Proposition. Let (Y, +, -, <) be an order complete quasi-ordered conlinear space, M, N C
Y subsets of Y and t > 0.

a) It holds tinf M = inftM and tsup M = suptM.

b) If M C N then inf M > inf N and sup M < sup N.

¢) It holds inf(M + N) > inf M + inf N and sup(M + N) < sup M +sup N

PROOF.

a) First, let ¢ = 0, then tM = {0} and 0 = tinf M = inf {0}. If ¢ > 0 and M # (), then
Vee M: te M <tx,

so tinf M < inftM and equally inf M < %inf tM < inf M. As (Y,+,-, <) is quasi ordered
and order complete, this proves the first statement. If M = () and ¢t > 0, then tinf M =
inftM = sup Y. By the same arguments, ¢t sup M = suptM holds.

b) Let M # (). As inf N < n holds for all n € N, inf N < m holds for all m € M C N and thus
inf N <inf M. If M = (), then inf M = supY and the inequality is immediate. The same
argumentation proves sup M < sup N.

c) If M =0, then M + N = and inf M + inf N = inf(M 4+ N) = supY. Now let M, N # (),
then it holds
VmeM,ne N: inf M+inf N <m+n,

hence inf M + inf N < inf(M + N). Likewise the inequality sup(M + N) < sup M + sup N
can be shown. |

As pointed out in [38], the last two inequalities are in general no equalities.
A subset A CY is called conver, if

Vte (0,1): (tA+(1—-1t)A) C A
The convex hull of A CY is a convex set defined by

coA = ﬂ B
ACB,
BCYis convex
and again is a convex subset of Y.
A subset A CY is called a cone iff for all t > 0 it holds tA = A. The conical hull of ACY
is a cone defined by
cone A := {ta|t > 0,a € A}.

A cone A CY is a convex subset of Y if and only if A+ A C A.



2.2.2 The inf-difference in order complete conlinear spaces

" on IR has two basic interpretations. Firstly, and most

The classic difference operation
commonly used is the algebraic character, that is ”/—" serves as an inverse operator to +. On

the other hand, an order-theoretic interpretation can be given, as
a—b=inf{ceR|b+c>a}

for all a,b € IR. Especially, —a = 0 — a is the inverse element of ¢ € IR. One characteristic of
conlinear spaces Y is that in general no inverse element of a € Y exists. Thus it is not possible
to define a — b by a+ (—b). However, the order-theoretic view provides a possibility to define an
order-difference <1 on an quasi-ordered conlinear space Y. Obviously, the operator depends on
the specific order relation in use. To avoid confusion, we will use the sign 0 <1 a, when referring
to the order theoretic difference of 0 and a € Y, while —a denotes the inverse element of a € Y
or —1la, if this element exists.

To our knowledge, the generalization to an operator on quasi-ordered conlinear spaces has
not been done before. In subsection 2.4 and subsection 8.2, we will go into more details about
the properties of the difference when the space under consideration is the power set of a quasi-
ordered locally convex separable space or the set of the extended real numbers.

Notice that in fact the order-theoretic interpretation could also be stated as

a—b=sup{ceY|b+c<a}

for all a,b € Y. This interpretation proves appropriate when dealing with concavity rather than
convexity, as in that case also the addition even on the extended real numbers is appropriately
defined as the sup-addition rather then the inf-addition, compare [49] or [23].

2.2.6 Definition (inf-difference in conlinear spaces). In an order complete, quasi-ordered con-
linear space (Y,+, -, <) we define the operation < by

Ve,yeY: z<y:=inf{zeY|y+z>za}

2.2.7 Lemma. Let (Y,+,-, <) be an order complete, quasi-ordered conlinear space with largest
element +o0o and smallest element —oco. Let 0 <t € R and a,b,z,y € Y. If (+00) + (—o0) =
400, then it holds

a) a < (4+00) = —o0, and

(~00) <0 = —c0,
b) t(a <b) =ta < tb,
c)ifa<b, thena<zr<b<zandzx<b<zda,
d) a<b<(a<z)+ (x<b)
e) (a+z)<(z+b)<a<b
f)la+z)<(b+y) <(a<b)+ (z<y).

PROOF.



a) By definition, a < b =inf {s € Y| b+ s > a}. Replacing a by —oo or b by +o00, the result is

immediate.

b) If a = —o0 or b = 400, then t(a < b) = t(—o0), equality holds. Let a # —oo and b # +00.
From 2.2.5 it holds

Vi>0: tla<b) = inf{tx|b+z>a}
= inf{z|tb+x > ta}
= (ta <td).
If t =0, then 0(a < b) =0 and (0a < 0b) = 0.
c) Let a < b, then z +y > b implies x + y > a and a + y > z implies b+ y > x. Hence,

a<dz<bgzx

and
r<b<zx<<a

holds true by 2.2.5.

d) Let a <z +s,x <b+t, then x+s <b+t+sholds by 2.1.1 and a < b+t + s by 2.2.4. By
2.2.5,
a<db<(a<z)+(z<b)

is proven.
e) Let b+ s > a, then b+ s+ x > a + x. Again, the proof goes by 2.2.5.

f) Letb+s>a,y+t>xthenb+y+s+t>a+ x. Again, the inequality holds by 2.2.5. R

2.2.3 Functions mapping into order complete conlinear spaces

Let (X, +,-) be a conlinear space and (Y, +, -, <) be an order complete, quasi-ordered conlinear
space with largest element +oo and smallest element —co. The set F := {f : X — Y} supplied
with the point-wise addition and multiplication

ViLheF,xeX: (fitfo)lx) = filx)+ fa(w),
Vi>0,feF,zeX: (tf)(z) =t(
VieF,zeX: (0f)(z) =0

is a conlinear space with neutral element f = 0. Supplied with the point-wise order

H<f evVeeX: fi(z) < folx),

The quadruple (F,+,-, <) is an order complete, quasi-ordered conlinear space with largest ele-
ment f = +oo and smallest element f = —oco. If < is a partial order on Y, then (F,+,-, <) is
an ordered conlinear space. The inf-difference on (F,+, -, <) is the pointwise inf-difference,

Vee X : (fi < fo)(z) = fi(z) < folz).



Let (Z,+, ) be another conlinear space, g : Z — Y a function from Z into Y and A: X — Z
a function satisfying
Vaep,xe € X0 Az +x2) = A(z) + A(xo),
Vee X,t>0: A(tz) = tA(x),

A(0) = 0
Then we define
Vee X: gAx) = g(Az),
Ve Z: (Af)(z) = Ai;lzfzf(x).

The infimal convolution of f1, fo : X — Y is defined as (f10f2) : X — Y with

(fi80f)(z) == inf (fi(z1) + fo(w2)).

r1+xTo=x

2.2.8 Definition. The domain of a function f: X — Y is defined by
dom f := {x € X| f(x) # +o0}.
A function f: X —Y is proper, if dom f # () and f(x) # —oo for all z € X.
2.2.9 Definition. A function f: X — Y is
a) convex, if

YVt € (O, 1),331,.%2 e X: f(ta:l + (1 — t)xg) < tf(fL'l) + (1 — t)f(xg),

b) positively homogeneous, if

Vi>0,zeX: f(tx) =tf(x),
¢) subadditive, if
Vai,z9 € X : f(:El + .CL'Q) < f(.l?l) + f(ZL'Q)
and additive, if
Va1, 29 € X : f(.%'l + 1'2) = f(.%‘l) + f(.rg),
d) sublinear, if f is positively homogeneous and subadditive.

2.2.10 Example. The indicator function Ip; : X — Y of M C X is defined as

0, ifee M;
400, else.

In(z) := {

The function Ip; : X — Y is conver if and only if M C X is a convex subset of X, positively
homogeneous, if and only if M C X is a cone, proper if and only if 0 # M # X and 0 # —o0
holds for 0,—oc0 € Y.
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2.3 Set-valued functions

In this chapter, we introduce a class of functions mapping a linear space X, into the power set
of a linear space Z, quasi-ordered by a convex cone C' C Z with {0} € C. When introducing
topological properties of the functions, we assume X and Z to be supplied with a locally convex
separated topology. The topological duals of X and Z will be denoted by X* and Z*, respectively.
We will define the epigraph of a set-valued function as a subset of X x Z. The power set P (Z)
endowed with the Minkowski sum, a multiplication with positive real numbers and the order
relation O is an order complete ordered conlinear space with greatest element () and smallest
element Z. The convexity notion we will choose coincides with the so called cone-convexity or C-
convexity, compare [8, 14, 37] and others. By definition, we call a function F' : X — P (Z) closed,
iff its epigraph is closed. The images of convex and closed functions have certain characteristic
properties, through which we identify conlinear subspaces of (P (Z),+,+,2) as the adequate
image spaces for our further investigations.

In subsection 2.3.2, we will introduce a set of functions with ”almost linear” structure, the
conlinear functions mapping X into P (Z), and in sequence the conaffine functions, which are
our counterpart to the scalar affine functions. The set of the conlinear functions will serve as a
dual space later on. In fact, for fixed z* € C* \ {0}, the set {S(ac*,z*)’ x* € X*} can be identified
with X*. Thus, instead of speaking of one dual space, we could as well speak of a family of
dual spaces, each equivalent to X*. This structure, namely a ”scalar” family representing one
set-valued singleton without loss of information will appear throughout this thesis in various
forms.

At this point, we would like to mention that one major difference of our approach to most of
the known approaches to set-valued convex analysis lies in the fact, that we do not use the set
L (X, Z) as dual space, compare for example [6, 31, 37, 56]. The functions T' € £ (X, Z) will be
represented by a family of conlinear functions, namely {S(_T*Z*7Z*) : X = P(2)] 2z e C*\ {0} }
Thus, any result about the classic dual space £ (X, Z) can be deduced from our theory as well.
Related approaches to ours have been presented in [3, 4, 23] and [39].

2.3.1 Set-valued proper, convex and closed functions

From now on, we will assume X and Y to be real linear spaces containing at least two elements
and C' C Z to be a convex cone with 0 € C and C # Z. The cone C generates a quasi-order <¢
on Z by means of z; <¢ 29 if and only if 25 € 21 + C for 21,29 € Z. Again, (P (Z),+,-,2)is an
order complete ordered conlinear space. The extension of < to an order relation on P (Z) is
defined by

A<cB & BCA+C,

For a more detailed discussion of this order relation, see [22, 23, 34]. The order relation <o} I8
equal to the relation D. For <z it holds

VA#0O),VBeP(Z): A<z B
{BeP(2) 0=z B} ={0}.

Two elements A, B € P (Z) are equivalent with respect to ¢ if AC B+C and BC A+C,
therefore we can identify the subset

Po(Z):={AeP(Z) A=A+ C}
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of P(Z) with the set of equivalence classes with respect to <¢. It holds A <¢ B for A, B €
P c(Z) if and only if A D B. Modifying the multiplication with 0 by 0A = C for A € P (Z2),
(Pc(Z),+,-,2) with the modified scalar multiplication is an order complete, ordered conlinear
subspace of (P (Z),+,, D).

2.3.1 Definition. A set-valued function F': X — P ¢(Z) is proper if and only if

domF = {z € X|F(x)# 0} #0,
VeeX: Flx)#7Z

If additionally (F(x) — C)\ F(x) # 0 holds for all x € dom F, then F is called C-proper.

The definition of proper set-valued functions is a special case of 2.2.8, while the definition of
C-proper functions cannot, in general be derived from the former definition. If C is generating,
then a function F': X — P ¢(Z) is proper if and only if it is C-proper.

The images of a convex function F' : X — (P (Z),+,+,<c) have certain properties which
allows us to work with even more specialized subspaces. Recall that F': X — (P (Z),+, <¢) is
convex if

Vit € (O, 1), Vri,29 € X : F(t.fEl + (1 — t):L’Q) <c tF(l’l) + (1 — t)F(.TQ)
or equivalently if the epigraph of F,
epiF :={(z,2) € X x Z| F(x) ¢ {z}}

is convex.

If a function F' : X — (P(Z),+,<c¢) is convex, then F(x) + C € P(Z) is convex for
all € X, not necessarily F(x) itself. Therefore, we identify F' : X — (P (Z),+,=<¢) with
F : X — Pc(Z) defined by F(z) = F(z) 4+ C. Thus, a convex set-valued function maps into
the set of with respect to C' lower convex subsets of Z,

Qc(Z) = {ACZ| A=co(A+O)}.

Note that (Qc(Z),+, -, 2) is an order complete, ordered conlinear subspaces of (P ¢(Z), +,- D).
Moreover, the second distributive law

VA€ Qo(Z), Vi1, ta >0: t1A+1tA= (t1 +t2)A

holds and (Qc(Z),+,- <¢) is an ordered cone in the sense of [32].
The convex hull of a function F : X — (P (Z),+,<c) is (uniquely) defined by

z € (coF)(x) :& (x,z) € coepi F

It holds epico F' = coepi F' and it is obvious that co F’ is a convex function mapping X into the
space (Qc(2), +, 2).

From now on, X and Z will be assumed to be supplied with a separated locally convex
topology. The topological dual spaces of X and Z will be denoted by X* and Z*. There exists
a neighborhood base of 0 € X, Ux, consisting of convex balanced absorbing open sets only.
In the following, let Ux, Uz always denote such a neighborhood base of 0 € X and 0 € Z,
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respectively. The value of a linear continuous function x* € X* at x € X will be denoted by
x*(z). Analogously, z*(z) will denote the value of z* € Z* at z € Z. We set

H(z"):={z€ Z| z*(z) <0}

for any z* € Z*. If z* # 0, the set H(z*) is a closed half space.
The order cone C' C Z is considered to be closed, the (negative) dual cone of C' is denoted
by
C*:={z"e€ Z*|Vee C: z*(c) <0}.
Obviously, 0 € C* and the set C* \ {0} is not empty, as C C Z holds. Moreover, as C' is
closed and convex,

C={ze€Z|Vz"eC": 2%(2) <0} = ﬂ {z € Z] z"(2) <0}
2+€C\{0}

holds true. If z* € C* \ {0}, then H(z*) D C holds true.

2.3.2 Definition. A function F: X — (P (Z),+,-,<¢) is said to be closed iff epi F' is closed
with respect to the product topology on X x Z.

2.3.3 Lemma. If F: X — (P(Z),+,-,<¢) is closed, then F(x)+ C is closed, possibly empty,
for each x € X.

PROOF. It holds z € ¢l (F(z)+C) if and only if for any V' € U 7 it holds ({z}+V)N(F(x)+C) #
(). This implies that for any U x V € U x x U z it holds ({(x,2)} +U x V) Nclepi F' # (), hence
(x,z) € epi F. [ |

Thus, a closed function F' : X — (P (Z),+,-,<¢) maps into the set of all lower closed
subsets of Z, defined as

PL(Z) ={AeP(Z)| A=cl(A+O)}.

The Minkowski sum of two closed sets is not automatically closed. Redefining the addition
for elements A, B € PL(Z) by
A® B :=cl(A+ B)

and the multiplication with 0 € IR by 04 = C, (PL(Z),®,-,D) is again an order complete,
ordered conlinear subspace of (P (Z),+,-, D).
The closed hull of a function F': X — (P (Z),+, -, <¢) is (uniquely) defined by

z € (clF)(x) & (x,z) € clepi F.

It holds epi(cl F') = clepi F' and it is obvious that cl F' is a closed function mapping X into the
space (Ptc’(Z)7 +7 %y 2)

2.3.4 Lemma. Let F1,Fy: X — P (Z), Fy closed and
Ve e X : Fy(x) D Fi(x),
then it holds

Ve e X : Fy(x) D (cl F1)(x).
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PRrOOF. The epigraph of F5 is a closed set with epi F» D clepi F}, which proves the statement.
|
The values of a closed convex function F' : X — (P (Z),+, -, <¢) satisfy F(x) = clco (F(x)+
(), thus we obtain
QL(Z) :=={AeP(Z) A=clco(A+O)},

the set of all lower closed convex subsets of Z. Again, (QL(Z),®-, D) is an order complete,
ordered conlinear subspace of (P (Z),+,-, D).
The closed convex hull of a function F': X — (P (Z),+, -, <¢) is defined via

z € (clco F)(x) & (x,2) € clcoepi F.

The function clco F' is a closed convex function with epi(clco F') = clcoepi F' mapping X to
(QL(Z),® D).

Notice that even for a single-valued function F' : X — (P (Z),+,-,<¢), the operations cl,
co and clco produce mappings into P4 (Z), Qc(Z) and QL (Z), respectively.

For a subset A C OL(Z) of QL (Z), the infimum inf A € QL (Z) (supremum sup oA €
OL(Z)) of A is the greatest (smallest) lower (upper) bound of A, that is

inf oA = clco U A
AcA

and

sup oA = ﬂ A.
AcA

The largest element of Q% (Z) is 0, the smallest Z.
The limes inferior of a function F : X — QL (Z) in x € X is defined via

liminf F'(x 4+ y) := su inf F(x+y),
y—0 ( v) UEMpX yeU\{0} ( v)

therefore,

limi(r)lfF(x +y):= ﬂ clco U F(x +y).
v Uel x yeU\{0}

2.3.5 Corollary. For any convex function F : X — QL(Z) it holds

(cl F)(x) = ﬂ cl UF(w—Fy)

UelU x yelU

The function F is closed if and only if lim i(I)lfF(:L‘ +vy) C F(x) holds for all z € X.
y‘}
PrROOF. By definition we have
clepi F = {(z,2)|VU e U x,V €Uz : ({(z,2)} +U x V) NepiF # 0}.

This can be rewritten as

clepiF:{(ﬂw‘)lzG M UF(%L?/)}

Uel x yelU

obtaining (cl F')(z) = lim iélfF(l‘ +y) U F(x).
y—)
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On the other hand, if lim ié1fF(:n +vy) C F(x), then cl(F(x)) = (clF)(x) by the above
y—)

formula. As F' maps into QL (Z), we have by definition cl (F(z)) = F(z) and so we obtained
the desired result. [}
If Fis not closed at zp € X, i.e. lim iéafF(:ro +y) 2 F(z), then lim iglfF(xm—y) = (cl F)(x0).

y— y—

Otherwise, if lim iélfF(.%‘o +vy) C F(xo), then F(z) = (cl F')(z) holds true.
y*)

2.3.6 Remark. For a set-valued function F : X — (Qc(Z),+,2), the epigraph and the graph
of F
graph F' := {(x,z)| z € F(x)}

are identical, as
F(z) ¢ {2} ©z2€ F(z)=F(x)+C.

IfF: X — P(Z) is a closed convex function, then F and the extension Fo : X — Q4L(Z) of
F, defined by

Vee X: Fo(z):=cl(F(z)+C)

have the same epigraph. This does not hold for more general set-valued functions. However, as
C' is considered to be closed and convex, a vector-valued function f : X — Z U {+oco} and its
set-valued extension Fo : X — QL (Z) defined by

Vee X: Feo(x):= f(x)+C,

with 400 + C = () have the same epigraph. Therefore, it is more convenient to use the notion
epi F' in the following, rather than graph F.

2.3.2 Set-valued conlinear and conaffine functions
For (z*,2%) € X* x Z* \ {0}, we define S« .«) : X — P (Z) by
Ve e X Spe.(z)={2€ 2| —2"(2) >2%(2)}.

In fact, S(gr ooy 1 X — (Q%(Z*)(Z),—i—, -, < H(>+)) holds. Moreover, S« .+ : X — QF(Z) is true
if and only if 2* € C*\ {0} . Functions of the type of Sy« .+) : X — P (Z) with 2* € C*\ {0}
are called conlinear, which is motivated by the following properties.

2.3.7 Proposition. Let (z*,2*) € X* x C*\ {0}, then

a) Sige vyt X — OL(Z) and dom S(ar ) = X.

b) Sge oyt X — QL(Z) is proper. If additionally z* € C*\ —C*, then S(q+ 2+) s C-proper.
¢) For each v € X, x* € X™ it holds S .=\ (%) = S(p+ .+)(0) = H(2").

d) Sgr oy X — QL(Z) is closed, positively homogenous and additive. In particular, S,z () +

e) If z € Z is chosen such, that —z*(z) = 1, then

Ve € X1 S n(2) = 2" (2)z + H(2").
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PROOF. Direct calculation. [ |

2.3.8 Proposition. [23] A conlinear function S(y- .+ is proper if and only if z* € C*\ {0}
holds, it is C-proper if and only if z* € C*\ —C*.

For any z* € Z*\ {0}, the set {S(x*7z*)| x* e X*} supplied with the pointwise addition and
multiplication with positive reals

(S(w“f,z*) + S(z%,z*))(m) = S(z*{—&—:cg,z*)(x)a
(tS(x*,z*))(w) = S(tx*,z*)(x)

for all z € X, 7,23,2" € X*, t € R and the neutral element S, .~y = H(z") is isomorph to
X*, see [23].
For ¢ > 0 it holds

Vx I~ X : S(t$*7z*)($) = S(m*’%z*)(-’ﬂ) = tS(:C*,Z*)(x)

and

Vo€ X @ S(_yge ooy (z) = {0} <o S(m*%z*)(x) = {0} <o tS(gx o) ().
2.3.9 Proposition. [23] Let T € L (X, Z) be a linear continuous operator. Then
Vee X: T(z) € Spe.(x) & 2" = -T7(2").
It holds S(_p« o=y (v) = Tx + H(z") for all z € X.

From 2.3.9, it can be derived, that a linear continuous operator 7' € £ (X, Z) can be repre-
sented without loss of information by the family

{S(_T*z*yz*)

Z*GZ*}.

As we are only dealing with functions mapping into Q. (Z), it is without loss of generality when
we represent T € L (X, Z) by the set of all S(_p-.« .«) with 2* € C*\ {0}. It is easy to prove
that for a function F : X — Q%L (Z) it holds

epiT ={(z,2) e X x Z|T(x) <z} Depi F
if and only if
V2* e C*\ {0}, Vo € X1 S(_pese oy (7) 2 F(2).

Thus, T'(z) < z holds for all » € X and z € F'() if and only if S(_7-+ .+ is a conlinear minorant
of F for all z* € C*\ {0}.
A function F : X — QL(Z) is called conaffine, if there is (z*,2*) € X* x C*\ {0} and
z € Z such, that
Vee X : F(x)= 5S4 () + 2

2.3.10 Proposition. [23] Let F : X — QL(Z) be a function. The following statements are
equivalent:

a) F is the pointwise supremum of its C'-proper (proper, but not C-proper) conaffine minorants,
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b) F is closed, convex and C-proper (proper, but not C-proper) or F =0 or F = Z.

Especially, any conaffine function is proper. It is C-proper, if z* € C*\ —C* and proper,
but not C-proper, if z* € C*NC*. A function F : X — QtC(Z ) has a conaffine minorant if and
only if clco F : X — QL(Z) is proper.

2.3.11 Example. The set-valued support function ¥+ : X — QL (Z) of M* C X* x C*\ {0}
is defined as
Ve e X : Xpy-(x) = ﬂ S+ ) (T).
(z*,2*)eM*
It holds Xp« = Z, if M* = 0. If z* € C* N —C* holds true for all (x*,2*) € M*, then it holds
Yp+(z) = Ep+(z) — C for all x € X, therefore Xpr-(x) is not C-proper in this case.

2.4 The z*-difference

In the following we will introduce a family of difference operators of the power set of a locally
convex separable space Z, quasi-ordered by a nontrivial closed convex cone C. Each such
difference operator <.« with z* € C*\ {0} happens to be the difference operator introduced
in subsection 2.2.2 on the quasi-ordered conlinear space (P (Z),®,, <g(.+)). The difference
of two sets A, B € P (Z) coincides with the difference of the z*-hulls of A and B defined as
cl(A+ H(z*)) and cl (B + H(z*)), respectively.

If cl(A+ H(z*)) # 0 or Z, then cl (A + H(z*) can be identified with a real number ¢4 € IR
via cl (A + H(z*)) = za + H(z*) with z4 € Z and t4 = —2*(z4) and it holds {0} <,- A =
{z€ Z| —2*(z) > —ta}. On the other hand, {0} <, 0 = {z € Z| — 2*(2) > —o0} = Z and
{0} <+ Z ={z€ Z| —2*(2) > +oo} = 0. Identifying § € P (Z) with +00 € R U {£oo} and
Z € P(Z) with —oo € IRU{+o0}, this indicates a close relationship between the z*-difference on
P (Z) and the order-difference < on IR U {£o00}, which will be discussed in detail in subsection
8.2. The mentioned connection will be of virtual importance for the theory of vector-valued

convex functions as presented in this thesis.

In [20], a difference operation for subsets of the set IR"™ has been discussed, called the
Pontryagin-difference (P-difference) in reference to [46]. The same construction is used in [47, 55],
while in [18, 19] a slightly different approach is used, which is introduced in [13] and generalized
in [27]. The P-difference of two sets A, B € QL(Z) coincides with the intersection of all z*-
differences of A and B and equals A < B, using the definition of the inf-difference given in 2.2.6.
The advantage of the z*-difference is, that, contrary to the inf-difference, A <1, B # () holds
for all A, B € QL(Z) \ {0, Z} and {0} <.~ A is the inverse of A with respect to the addition in
QtH(z*)(Z), whenever A # (), and cl (A + H(z*)) # Z holds.

2.4.1 Definition. Let A, B € P (Z), then the difference A <,» B with respect to z* € Z*\ {0}
s defined by
A<+ B:={z€Z|B+zCcl(A+H(z"))}.

Notice that for ¢t > 0 it holds (A <.« B) = (A <.« B).

2.4.2 Lemma. For A,B € P(Z) and z* € Z*\ {0} it holds

A<, B= {z €Z| —2%(2) > ggg(*z*(a)) < gglg(Z*(b))}}



PROOF. Let A, B € P(Z). The set cl (A + H(z*)) is convex consists of exactly those elements
z € Z with —z*(z) > ing(—z* (a)). Therefore it holds
ac

Ad. B— {z CZIWEB: (—*(b) — 2*(2)) > ggg(—z*(a))}

acA

_ {z € 7] (juf (~= () — #*(2) > inf(—z*(a))} .

By definition,

f (o (o —inf (inf(—2* > inf(—o*
(10t (-2 (@) < uf (~2"(8))) = int (fnf (=) + ¢ > fnf (~+"(a) )
holds, see 8.2.1. Therefore, the assertion is proven. [ |

2.4.3 Remark. From 2.4.2 it is immediate, that
A< B=(cl(A+ H(z")) < (B + H(2Y))) € Q. (2)
holds for all A, B C Z and

L nE (=) = nf (=" (@) < fnf (<= (B),

If z* € C*\ {0}, then C C H(z*) and (A <.+ B) € QL(Z).

In fact <.+ is the inf-substraction on (Q%(z*)(Z), +,,2) as defined in 2.2.6. If z* € C*\ {0},
then (Q (), +, -, 2) is a conlinear subspace of (Q¢(Z) , +,, <¢). The operation <.- is not,
however the inf-substraction on QtC(Z ), as this would be given by

VA BeQy(Z): A<B=clco |J (B+MCA)
MthC(Z)

={ze€Z|B+zCA}.

It holds
VA,B € QL(Z),Vz* € C*\ {0} : A< BC A<, B.

2.4.4 Proposition. For z* € C*\ {0}, denote by <.+ the order relation defined by H(z*). The
relation <.+ is a quasi-order on Q4 (Z) . If A D B holds for A, B € QL.(Z), then A <.+ B holds
true. For any A € Qg(Z) it holds

inf ,« {A} = (A <.~ {0}) € QL (2)
and for a non empty set A C QL(Z) it holds

inf .+ A =cl | J (4 <. {0}) € QL(2).
AcA

The quadruple (QL(Z) ,+,-,<.+) s an order complete quasi-ordered conlinear space.
C

PROOF. For A, B € QL(Z) it holds

A<+B < BCcl(A+H(Z)).
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It is easily checked that <.« is reflexive and transitive. Obviously, A <, B holds if A D B. The
set (A <.+ {0}) € QL(Z) is a lower bound of {A}. Moreover, if B <.« A holds for B € Q% (Z),
then B O (A <.~ {0}) holds, as B = clB and therefore (A <.« {0}) = inf5 , {A}. For a
nonvoid set A C Q4 (Z) it holds

VAe A: o (J (A< {0}) 5+ A
AeA

If for B € QL(2)
VAe A: BDOA+H(zY

holds, then

B2d |J(A<.-{0})
AeA

holds, as B = ¢l B holds true. Therefore, (QL(Z),+,, <,+) is order complete and the assertion
is proven. |

2.4.5 Definition. For a subset A C Z and z* € Z*, the z*-hull of A is defined by cl (A+H (z")).

It holds cl (0 + H(z*)) = 0 for all 2* € Z*. If A # (), then cl(A+ H(0)) = Z and for all
z* € Z*\ {0} the set cl (A + H(z*)) is a closed half-space or equal to Z.

2.4.6 Definition. Let z* € Z*. A set A C Z is called z*-proper, if ) # cl (A+ H(z*)) # Z.

2.4.7 Remark. Let A C Z and z* € C* \ {0}, then (A <.~ {0}) = cl(A+ H(z*)) holds and

A ({0} <. A) = { H(z*), if A is z*-proper;

0, else.

If A is z*-proper, then (A <, A) = H(z*) holds. Recall that H(z*) is the neutral element in
Q’}{(Z*)(Z). A set A is z*-proper for at least one z* € C* \ {0} if and only if O # cl (A+C) # Z.

Obviously no subset A C Z is O-proper as H(0*) = Z and either A = () and ¢l (A+H(0)) = 0,
or cl(A+ H(0)) = Z. Also, A C Z is by no means sufficient for A being z*-proper for all
z* e Z*\ {0}.

2.4.8 Remark. Denoting (Y,+,-,<) = (Q'}J(z*)(Z),Jr, -, D), then with 2.4.8 and 2.2.7 the fol-
lowing properties hold for any given A,B € P(Z) and z* € Z* \ {0}.

a) Fort >0 it holds tA <i,» tB =t(A <.~ B).
b) If AC B® H(z"), then (A <, D) C (B <+ D) and (D <,» B) C (D <, A).
¢) It holds (A <i;» D)@ (D <.+ B) C A <.~ B.
d) It holds (A <, B) C (A® D) <.« (D& B).

e) It holds (A <;» B)® (D <, E) C(A® D) <« (B E).
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It is easy to check that
A<y 0=Z<A=2Z

holds for all z* € Z* and A € P (Z). Moreover, if A is z*-proper, then

A< Z=0<,« A=0.

2.4.9 Proposition. Let z* € Z*\ {0} and A,B,D and E € P (Z)

a) It holds

Vs,t>0: A< (tB®sB) = A<, (s+1)B
(tA® sA) <.« B = (t+s)A <.~ B.

b) If A and B € P (Z) are z*-proper, then it holds

(A<, B)® (D <« E) = (A® D) <,» (B® E).

c) If D and either A or B is z*-proper, then it holds

A<+ B=(A<:+D)® (D <.« B)
=(A® D) <.« (D@ B).

PROOF.

a)

If Aand B € P (Z) are z*-proper, then it holds
(A< B)® (D <+ E)=(A® D) <.« (B® E).

As pointed out in 2.4.3, the sets A and B can be identified with their z*-hulls. Moreover,
tA® sA = cl(tA+ sA) = (t + s)A holds true as by assumption A is z*-proper and thus
cl((tA® sA) + H(z*)) =cl((t+s)A+ H(z*)) holds true.

As A and B are assumed to be z*-proper, it holds () # (A <1, B) # Z. Without loss of
generality, assume that A, B,D and F € Q’ELI(Z*)(Z) holds true. If (D <.« E) = (), then it
holds D # E and either D = () or E = Z. In this case,

If (D <1,» E) = Z, then either D = Z or E = (). In this case,
(A<« B)® (D <, E)=(A®D) <.« (BOEFE)=Z.

If (D <1,+ E) is a z*-proper set, then both D and E are z*-proper sets. We identify A with
a real number a € IR by

A={zeZ| —2z"(z) >a}
and define b, d, e € IR likewise. It holds

(A< B)® (D <y« E)={z€ Z| —2"(z
={zeZ] —2(z



c) If D and either A or B is z*-proper, then by b) it holds
(A<, D)& (D <, B) = (A& D) <« (D& B).
If cl(A+ H(2*)) = Z or B =0, then
A<y B=(A<+D)®(D < B)=(A®D) <.« (D® B) = Z.
If A=0 or cl(B+ H(z*)) = Z, then
A<+ B=(A<»D)® (D <.+ B)=(A@ D) <, (D& B) =0,
as either A or B is assumed to be z*-proper. |

2.4.10 Remark. If Sy« .+ : X — Qp(Z) is a conlinear function with x* € X*, 2* € C*\ {0},
then

S(:c*,z*) (l’l — :L‘Q) = S(x*’z*) (1‘1) < S(:v*,z*) (:L‘Q) ,
which is another argument for the “almost linearity” of these functions.

For functions Fy, Fy : X — QL (Z), the difference (with respect to z* € Z*\{0}), (F} <.« F3)
is defined as the pointwise difference,

Ve e X : (F1 <, Fg)(l‘) = Fl(ll?) < FQ(ZL’)

Again, <.~ is the inf-difference on the conlinear space ({F X — Q'}{(z*)(Z)} ,+,+,2) for all
z* € Z*\ {0}. It holds

VP, Py X — Qu(Z), V2" € Z°\ {0} : (Fi < F2) : X — Qly(,(2)

and (Fy <.+ F2) : X — QL(Z) if z* € C*\ {0}. Notice that (Fy <, F2) = Z, if ¢l (Fi(z) +
H(z*)) = Z for all z € dom Fy. Moreover, if F': X — QL (Z) and z* € Z* \ {0}, then by 2.4.2
it holds

Vee X: (F <, {0})(z)= {z ezl —z"(z) > Zellr;fx)(—z*(z))} .
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3 Scalarization

In this chapter, we will show that each set-valued convex function F : X — QL (Z) can be equiv-
alently described by a family of scalar functions {‘P(F,z*) : X - RU{too}| 2" € C*\ {0} }
These scalar functions are convex (subadditive, positively homogeneous), if F': X — QL (Z) is
convex (subadditive, positively homogeneous). The set-valued function is proper (C-proper), if
and only if at least one scalarization ¢(p,.+) : X — IRU{Zo0} with z* € C* \ {0} (2" € C*\-C%)
is proper. Topological properties turn out to be somewhat more difficult as in general the scalar-
izations of closed set-valued functions are not closed.

It will turn out later, that also the conjugate, directional derivative or the subdifferential
of a set-valued function are fully described by the set of the conjugates, directional derivatives
or the subdifferentials of these scalarizations. Therefore, this chapter provides us with a strong
tool allowing us to derive the set-valued theory of convex analysis from the well-known scalar
theory.

It has been pointed out in [23], that scalarization, in the way we apply it, is not "as in
many references about vector-optimization problems (for example [29], [41]),... just a useful tool
to find real-valued substitutes for vector-valued problems, but another way of representing a
set-valued theory”.

It will be shown at another place that it is not necessary to apply the scalar theory to obtain
the theory presented in this thesis. This approach has its beauty in the fact that the scalar
convex analysis can be derived as a special case of the new set-valued theory as well as the
fact that it sheds some new light to the fundamental (algebraic) structures needed to deal with
convexity. On the other hand, the approach chosen in most part of the present work stresses
the fact, that the set-valued theory can be completely derived from the scalar theory. Thus, the
scalar and set-valued theory are in fact of equal power and one can be derived from the other.

Throughout this chapter, X, Y and Z will be locally convex, separable spaces with the dual
spaces X*, Y* and Z*. As before, C' C Z is a closed convex cone with {0} C C' C Z and C* the
negative dual of C.

3.1 Definition and basic results

3.1.1 Proposition. For a function F : X — QL(Z) and 2* € C*\ {0} it holds
Vee X: F(z)C(F < {0})(2)

and dom F' = dom (F' <1« {0}). Moreover, it holds

Vee X: F(z)= ﬂ (F <, {0})(x).
eC*\{0}

PrOOF. For all 2* € C*\ {0}, x € X it holds (F <.~ {0})(z) = cl(F(z) + H(z*)), thus
the first two assertions are immediate. For xg € dom F', the set F'(x) is convex, closed and
F(xz) = F(xz)+ C. By 2.4.2,

Vzr e C*\ {0}, Ve e X: (F <,- {0})(x) = {Z €zl —2%(z) > Zeiggx)(—z*(z))}
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holds true. If F'(z9) = Z, then

EECI ) F ) = e

(F <.« {0})(x0) = Z.
Otherwise, let zp ¢ F(x0), then by a separation argument it exists z* € C* \ {0} such, that

() <_inf (~7"(2)

holds true and thus zg ¢ (F <.« {0})(zo). |

3.1.2 Definition. With a function F : X — QL(Z) and an element z* € Z* \ {0}, associate
the function p(p .+ : X — IR U {Foco} defined by

O(Fzy () = 1inf {—=2"(2)| z € F(z)} .

In fact, for a fixed x € X, then function z* + ¢(f.+) (z) is the negative support function of
F(z),
Ve€X,2" €2 g () = —0(2"|F(2)).
3.1.3 Example. If z* € X* and z* € C* \ {0} holds, then @(S(z*yz*),tz*)(x) = tz*(x) holds for
all t >0 and all x € X, while P(S(gr any,5*) = —O0 holds for all z* € C* \ clcone {z*}.

3.1.4 Remark. From 2.4.2, we know that A <.« {0} = {z eZ| —z%z) > igg(—z*(z))} holds

for any A € P(Z)and z* € Z*\ {0}. Thus, for a function F : X — QL (Z) and z* € C*\ {0}
it holds

VreX: (F<-{0)(@)={z€2| -2°(2) > p(par) (@)},
P(Far) (T) = P(ra,.{0},2+) (T)-

Moreover, dom ¢(p .~y = dom F' holds true by 5.1.1 and for x € dom I it holds ¢, .- (x) = —oc0
if and only if F(x) <. {0} = Z.
If z* ¢ cone {z*}, then (F(x) <, {0}) <x {0} = Z holds for all x € dom F, thus

Ve edomF :  ppy_(oy,#) () = —00.
3.1.5 Lemma. Let F': X — QL(Z) be a function.

a) For all z* € Z*\ {0} it holds dom F' = dom (. .+) and @ .+ (z) € R holds if and only if
F(z) is a z*-proper set.

b) For all z* € Z* \ {0}, t > 0 we have

P(Ftz) (T) = Prx) (T) = tp(p ) (2)

and for z},z5 € Z*\ {0} we have
PRt +23)(T) = @) (@) + o(F25) (T)

c) If 2* ¢ (C*\ {0}), then ¢(f.+) (x) = —o0 for every x € dom F.
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PROOF.
a) This is 3.1.4.
b) As for ¢t > and z* € Z*\ {0} it holds
VeeX: (F <. {0})() = (F < {0})(@),
the first statement is proven by direct calculation from the formula
VreX: (F< {0)@) ={2€2| —2(2) > oo (@)}
The second statement can be seen by easy calculation from the definition of ¢ p . (7).

Ve e X1 Qi) = Inf ((21 + 22)(2))

zeF(x)
> B Bt 0

= SD(F,ZI)(‘,I’.) + SD(F,z;‘)(w)

c) If 2% ¢ C*\ {0}, then cl (F(z) + H(2*)) = Z holds for all z € dom F, therefore ¢(p .+ (7) =
—oo holds for all x € dom F'. [ |

For a function F : X — QL(Z) and z* € C*\ {0} it holds
(F < {0})(2) = {2 € 2] = 2°(2) > p(pary (00}

thus

epi (F <.« {0}) = {(:c,z) € X x Z| A(z,t) €epip(p+y 1 —27(2) = t}
= {(=,

epi o(p,2+) (x,t) € X x R| I(x,2) € epi (F <« {0}) : —2%(2) =t}.
Moreover, as F(xz) C (F <,- {0})(z) holds for all x € X, it holds

epi ' C {(:L’,Z) € X x Z| I(z,t) € epippry + —27(2) = t}
epi () 2 {(7,t) € X x R| I(w, 2) €epi F: —2"(2) = t}.

The following example will show that in general equation holds in neither inclusion.

3.1.6 Example. Let C = R2 and F: R — P (R?) be a function defined by
Vr e : F@kz{@iﬂt>0}+0
Let z* = (0,—1), then for all (z,z) € epi I it holds —z*(2) > ¢(p.+)(x) = 0. Therefore,
epi p(f,z+) 2 {(z,r) € X xR| I(x,2) €epi F': —z"(z) =r}

epi F' C {(x,z) € X X Z| Iz,r) € epip(pey 1 —2"(2) = 7’}

but equality does not hold in neither inclusion.
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3.1.7 Theorem. For a function F : X — QL (Z) it holds

Vee X: F(zx)= ﬂ {z€Z| —2°(2) = O(F) (x)}
2+e0*\{0}
ProOF. By 3.1.1, it holds
VzeX: F(x)= ()] (F<-{0})(z)
z*eC*\{0}

and

VreX: (F < {0)(@)={z€2| —2"(2) > ¢(pr) (@)} -

|
An immediate result from 3.1.7 is, that it holds
epi F = ﬂ {(m,z) € X x Z| (x,—2"(2)) € epip(f,.x) }
z*eC*\{0}

3.1.8 Remark. Ift > 0, then (F(z) <.~ {0}) = (F(z) <. {0}). Therefore, if C*\ {0}* =
cone B* with B* C Z*, then

Vee X: F(x)= ﬂ {z € Z| —27(2) = p(p.27) (ZL‘)}
z*eB*

holds true.

3.1.9 Proposition. If F : X — QL(Z) is a function, x € X, z € Z and z* € C*\ {0}, then
the following statements are equivalent

—2"(20) = P(F,2+) (T)
F(z) <.« {0} = 20 + H(2")
F(x) <z {20} = H(z").
PROOF. It holds —2*(2) = ¢(f,.+) (7) if and only if
F(z) <, {0} ={z€ Z| —z"(z) > —2"(20)} = 20 + H(z").
By 2.4.2,
Fr) Qe {20} = {2 € 2] = #'(2) 2 9(ra) (@) = (=27 (0) }
holds, proving the equivalence. |

3.1.10 Proposition (Scalarization of vector-valued functions). a) For a function F : X —
OL(Z) it holds F(z) = z+ C if and only if

V2r e C*\{0} : —2"(2) = ¢(rz) (2).

b) Let f: X — Z U {+oo} be a vector-valued function and Fo : X — QL(Z) its set-valued
extension defined as F(x) = f(z) + C for all x € X, then

—2*(f(z)), ifxredomF ;
400, else.

V2 e C"\{0} : @ () = {
For ZT’ Z; cC* \ {0} it holds

Ve € Xt oFaria)(@) = @Fen (@) + 0(F) (@)
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PROOF.

a) It holds

2+C= (] {yezl -2y =-2"(2)},
2+eC*\{0}

so if

V2t e O\ {0} : —2"(2) = ¢(pz) (7)
holds, then F(x) = {z} + C is true.
On the other hand let F(z) = {z} + C, then

vzt e C"\{0} = F(z) <.» {0} = 20 + H(27)
and therefore by above the statement holds true.

b) This is obvious from a). [ |

The equation
Ve € Xt Qi) () = oren (@) + ope (@)

is not true in more general cases of F' : X — QL (Z), as it is essential in 3.1.10, that the infimum
in the definition of ¢(f .« () is attained in the same element f(z) for all z* € C*\ {0} .

3.2 Algebraic properties

3.2.1 Proposition. Let F, F1, Fy : X — QL(Z) be three functions, z* € C*\ {0} and t > 0.

a) It holds
Vee X : SD(tF,z*)(x) = th(EZ*)(l‘).
b) It holds
Ve € X1 Qrar,)(T) = @) (T) + Ory, o) (7).
c) It holds
Ve e X : QD(F1<IZ*F2,z*)(x) = QO(Fl,z*)(x) < @(Fg,z*)(x)
d) It holds

Ve € X @mam,.) () = (@(Fl,z*)D@(FQ,z*))(HC)

e) IfAc L(X,Y) and G:Y — Z, then it holds

YyeY : our.)(y) = Ao (y)
Ve € X1 ¢ga(T) = 9@~ (Az).

PROOF.

a) By definition, ¢ p .« (7) = Zeigﬂf&z)(—z* (2)), so the statement is immediate.
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b) By 2.4.4,
VAe QL(Z) : inf.{A} = (4 <, {0}) € QL(2)

holds and by 2.2.5, inf(A & B) < inf A @ inf B holds for all A, B € QL(Z). Thus by 3.1.4 it
holds

Vo€ X Qmar,)(T) <@ ,)(T) + 0m, ().
It holds
VA, Be€ QL(Z) : (A<, {0})® (B <, {0}) C (A B) <.+ ({0} @ {0}) = (A® B) <.~ {0}
by 2.4.8 and hence

Ve € X1 o) () + Q) (T) = Omam,~)(T)
holds true.

c¢) It holds
PR < Fy) 20 (1) = Inf{=27(2)| z € (Fi(z) <= Fa(2))}
And by 2.4.2 it holds
(Fi(x) <2 Fa(@)) = {2 € 2] = 2"(2) = oy oy (@) < (o) (@) }
which is the desired result.

d) By definition,

Vz e X: (F1DF2)(x) :=clco U (F1((E1) + FQ(JJQ))

Tr1+xTo=I

holds. As X is a linear space,

VeeX: (ROR)(x):=clc |J (Fi(z)+ F(z - 2))

reX
holds. As —z* € Z* holds,
Ve e X: oo (T)= inf —2%(z
(/M OFs, )( ) e U (Fl(ir)+F2(x—i))( ( ))
reX

and therefore

Ve e X orOR..(T) = ilg(( Z1Ei£1f(i)7 (2% (21 + Zz)))
20€F>(x—7)

= inf (@(Fl,z*)@) + Py, (T — f))

= (¢(m1,29 00 (F,24)) (%)
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e) It holds

©(AF,z+)(y) = inf {—z*(z)| z € clco U F(az)} ,

Axz=y

hence
pare)(y) = inf{inf{-2"(2)| z € F(x)}| Az = y}
= (ASO(F,z*))(y)-
For the second equation note that
Plaaz () = inf {=2"(2)] z € G(Ax)},

hence
VA (T) = 0@ AlT).

3.2.2 Lemma. Let F,G : X — QL (Z) be two functions. It holds
Vee X: F(x)2G(x)

if and only if
Vee X VzreC*\{0} : @) (7) < @@ (T).

Proor. If F(z) 2 G(x) holds for all z € X, then by 3.1.2 it holds ¢ (5.« (z) < (g .+ (z) for
all z € X and 2* € C*\ {0}. On the other hand, if ¢ (g .+ (¥) < (g .+)(2) holds for all z € X
and z* € C*\ {0}, then by 3.1.7 it holds F'(z) O G(z) for all x € X. [ |

3.2.3 Lemma. If F: X — QL(Z) is a function, then

a) F is conver if and only if for all z* € C*\ {0} the function pp .+ + X — IR U{Foo} is

CONVET.

b) It holds
Ve e X, vzt e CF \ {0} x (CO P(F,z*) )(I’) = P(co F),z* (:U)

PROOF.
a) By definition 2.2.9, F' is convex if and only if for each t € (0,1) and for z;,z9 € X it holds
F(trxy + (1 — t)z2) D tF(z1) + (1 — t)F(z2).

Therefore by 3.1.2 and 3.2.1, @(p ) (tr1 + (1 —t)12) < to(p .y (1) + (1 —1)p(p 2+ (z2) holds
for all z* € C*\ {0}.

If the function ¢(f .+ is convex for all z* € C*\ {0}, then
Vo, xg € X, VE€ (0,1) 1 p(peey (tzr + (1= 1)w2) < topze) (1) + (1 — 1)@+ (T2).

Therefore, F (tz1 + (1 — t)xe) D tF(x1) + (1 — tF(x2) holds by 3.1.7, so F is convex.
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b) As ¢(co Fz+) 18 @ convex minorant of ¢ (g, .+), we know that ¢ p2x) < €0 P(f 2+ -
The epigraph of co F' is equal to coepi F' and it holds
epi F' = ﬂ {(x,z) € X X Z| (z,—2"(2)) Eepi¢(F7Z*)}.
2+eC*\{0}

Thus,

epico F = co ﬂ {(ZL‘, z) € X x Z’ (v, —2"(2)) € epi@(F,z*)
2*eC*\{0}
C N co{(@2)eX xZ|(z,~"(2)) € ePig(ra
z*€C*\{0}

2*€C*\{0}

J

j

= N {@2) e X x 2 (2.-2(2)) € coepipgmr) |

- N {(x, 2) € X x Z| (x,—2%(2)) € epicoppm }
se0m\(0)

The function G : X — QL (Z) defined by

epi G = ﬂ {(x,z) € X x Z| (x,—%%(2)) € epicop(p .+ }
z*€C*\{0}

is convex and it holds

Ve e X, V2" € C*\ {0} :  @ror.+)(z) = inf  (—2%(2))

(z,z)Ecoepi F

>  inf  (—z*
- (m,z%rélepiG( i <Z))

2 CO QO(F,Z*) (l‘)
|

3.2.4 Remark. By similar proofs one can show that a function F : X — QL (Z) is positively
homogenous, subadditive or sublinear if and only if for all z* € C*\ {0} the function ¢(f .+ :
X — R U {£o0} is positively homogeneous, subadditive or sublinear.

3.2.5 Lemma. Let F': X — QL(Z) be a function and x € dom F.
a) It holds F(z) # Z if and only if there is a z* € C* \ {0} such that ¢ .+ (z) € R.

¢) It holds F(x) # Z and F(z) = F(xz) — C if and only if there is a z* € (C*N—C*)\ {0} such

()

b) It holds F'(x) # F(z) — C if and only if there is a z* € C* \ —=C™ such that ¢p.+)(z) € R.

()
that p(p.+)(z) € R and for all z* € C*\ C* it holds (5 .+ (z) = —o0.

PROOF.

a) By 3.1.7, it holds

Fay= () {z€2] —=2(:) 2 ¢ (@)}
2+eC*\{0}

thus, F'(z) = Z holds if and only if

V'€ C*\{0} 1 g+ (7) = —00
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b) Let zp € F(x) and ¢ € C such, that zg — ¢ ¢ F(x). By a separation argument it exists
z* € Z*\ {0} such, that —2*(20 — ¢) < @(p.+) (¥). As 2o was chosen as an element of F'(z),
z* € C*\ —C* holds true.

c¢) The third assertion is a combination of the first two. |

In general, the scalarizations of a proper convex set-valued function are not proper, as the
following examples shows.

3.2.6 Example. a) Let C = clcone {(0,1)} € R? and F : X — P (IR?) be a function defined
by
VeeX: F(z)={tA)|teR}+C

and z* = (—1,0) € C*N—=C* and 2} = (-1, —%) for all n € IN. The function F is C-proper
and coredom F' # () and @« is identically —oo while @« is identically —%n for alln € IN.

b) Let C =clcone {(1,1)} CIR? and F : X — P (IR?) be a function defined by
Vo e X: F(z)=R%
The function F is convex and C-proper and for all z* € C*\ R% it holds ¢, = —cc.

3.2.7 Definition. A function F : X — P (Z) is called z*-proper for z* € C*\ {0}, if (F <
{0}): X — QL(Z) is proper.

A function F : X — QL (Z) is z*-proper if and only if @(F+) * X — IR U{Fo0} is proper.

3.2.8 Lemma. If F: X — QL(Z) is z*-proper with z* € C*\ {0} (2* € C*\ —C*), then F is
proper (C-proper).

PROOF. Let F' be z*-proper with 2* € C*\ {0}, then dom F' = dom ¢ .« # (). Moreover,
Vee X: F(zr) C(F <. {0})(x) #Z

holds, thus F is proper. If additionally z* € C* \ —C* holds, then

V d F . - — i f —2* *
pedmPi o= it (~3(2) < gnen (@)
thus F'(x) # F(x) — C holds for all x € dom F' and therefore F' is C-proper. [ ]

3.2.9 Lemma. If F: X — QtC(Z) is a convex function and xg € coredom F', then F' is proper
(C-proper) if and only if it exists z* € C* \ {0} (2* € C*\ —=C*) such that F(x) is a z*-proper
set.

PRrOOF. If it exists z* € C* \ {0} (2" € C* \ —C*) such that F' is z*-proper, then by 3.2.8 F is
proper (C-proper).

Let F: X — QF(Z) be proper. By 3.2.3, ¢(p .+ is convex for all z* € C*\ {0}. By 3.2.5
there is 2 € C* \ {0} such that ¢(p .5 (z0) € R. If ¢(F.x)(x) = —oco for some 2 € X, then by
8.3.1 it holds

Vz € coredom F' : cp(RZg)(ac) = —00,

a contradiction. The proof for F' being C-proper goes along parallel arguments with z; €

C*\ —C*. -
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3.2.10 Theorem. If F : X — QL(Z) is a convex and proper function and zo € coredom F,
then

Fo)= () {z€Zl(-2"2) = ¢ (20)}.-
z*eC*\{0},
@(F,z*) proper

If F is additionally C'—proper, then

F(xg) = ﬂ {z € Z| (—=2%,2) = Q(rz (:no)}.

2 eCH\—C*,

@ (F,=+) PTOpET
Proor. By 3.1.5,

V2" e C*\ {0} : domy(p,+) =domF
and therefore xg € coredom o+ for all z* € C*\ {0} . By 3.2.3, each scalarization ¢(p .+) :
X — IR U {+£o0} is convex and by 3.1.7 it holds
F(zo) = ﬂ {z € Z| (=2, 2) = ¢(F,2%) (xo)}.
2*eC*\{0}
By 3.2.9, the set

{z €™\ {0} : p(pse) (w0) € R
= {z* € C"\ {0} : ¢z : X — R U {£oo}is proper}
is nonvoid. On the other hand if ¢(f,.x) : X — IRU{+oo} is not proper for z5 € C* \ {0}, then
Vz € coredom p(p .+ : @(F%S)(a;) = —o0.

Therefore, the first assertion holds true
If F is C-proper, then exists z; € C*\ —C* such that Q(Fz;) Is proper, compare 3.2.9. In
particular, ¢(p.«)(z0) € R because of 3.2.5. Let zo ¢ F(zo). As F(xo) = clco (F(zo) + C), by
a separation argument there is 2* € C* \ {0} and ¢ > 0 such, that —2"(20) < ¢(F .+ (¥0) — 2¢.
Choosing t > 0 small enough it holds
—e < —tzy(20) < €,
—e < (p(Etzg)(l'o) <e.

Furthermore, (2* 4 tzj) € C* \ —C* and

_(Z* + tZE)k)(ZO) < QD(F,Z*)(CUO) —e< P(F,z%) (.’L‘o) + SO(F,tzS)(xO) < <)0(F,z*+tz(’§)(x0)'

Therefore, the second assertion is proven. |
The result of 3.2.10 does not hold for x ¢ coredom F' in general, as the following example
shows.

3.2.11 Example. Let C' = clcone {(0,1)} CIR? and F : R — IR? a function defined by

H((0,-1)), ifz>0;
F(z):=4 C, if v = 0;

0, else.

Obviously coredom F' # () holds and F is convexz. Oy + X — R U{Foo} is proper if and
only if z* € cone {(0,—1)} but

F(0) ¢ (V{2 € R =0, ~1)(2) > ¢(rs0.-1))(0) } = H(=").
t>0
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3.3 Topological properties

It will turn out later on, that the richest theory is, as in the scalar case, that of proper closed
convex functions. Therefore, this subsection comprises the most important tools for our further
investigations. It will turn out that the correspondence between the topological properties of a
function F : X — QL(Z) and those of its scalarizations ©(Fz+) 1s not as immediate as it was
the case for the algebraic properties. Still, the results presented in the following will be sufficient
to develop a theory of set-valued convex functions in a one-to-one correspondence to the scalar
theory.

3.3.1 Lemma. Let F: X — QL(Z) be a function and z* € C*\ {0}.

a) It holds clp(p .+ (T) = Q(c1 (Fa..{0}),2+) () for all x € X.

b) The function (F <1~ {0}) : X — Q¢(Z) is closed if and only if o(p.+) is closed.
¢) If o(p2+) + X — R U {Foo} is closed for all z* € C* \ {0}, then I is closed.
PROOF.

a) By definition,

Ve e X1 clgge« (r) = sup inf g« (v +7)

UEL{XQEGU
and
epi (F <.« {0}) = {(x,z) EXXZ| —2"(2) > P(F,2*) (:1:)}
It holds
—2"(2) = clopz- (2)
SVWelUx,Ve>0,I7€U: —2"(2) +e 2> ¢ (v +7T)
SV elUx,VWeldyz, JzelU, I2eV: —2"(2+2) 2 ¢ (T +7)
eV eludx,VWeldy,JzeclU, IzeV: (v+7,2+ %) € epi(F <+ {0})
& (z,2) € clepi (F <+ {0}).
Thus,

epicl (F < {0}) = {(x, z) € X X Z| —2"(2) > clo(p,+ (m)}
and ¢ (1 (Fa..{0}),2+)(T) = clp(p ) (z) holds for all z € X.

b) The function (F <.« {0}) : X — QL(Z) is closed if and only if epi (F' <.« {0}) is closed. In
this case,

Vo e X : 2 (z) = inf —2"(z
P(rz (2) (z,2)€epi (F<,+{0}) =)
— inf (=2%(2))

- (z,2)€Eclepi (F<1,+{0})

=cl P(F,z*) (.%')
On the other hand, if p(p.+) : X — IR U {#o0} is closed, then epi (F' <.« {0}) is closed and
therefore (F' <1, {0}) is closed.
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c) If p(p,+) is closed for all z* € C* \ {0}, then epi (F' <I,~ {0}) is closed for all z* € C* \ {0} .
By 3.1.7 or by 3.1.1,

epi F' = ﬂ epi (F <, {0})
2+€C*\{0}

and thus epi F' is closed, therefore, F'(z) = (cl F')(z) holds for all z € X. [ |

A function F : X — QL(Z) being closed does not mean that all ©(F,-+) are necessarily
closed.

3.3.2 Example. The set-valued function F : R — P (IR?) in 3.1.6 is proper, closed and
convez, as dom F # () and epi F is a closed, conver set. With z* = (0,—1), the scalarization
O(Fzy - IR — R U {Fo0} is not closed at 0, as p(p,.+) (0) = +oo and cly(g,+) (0) = 0.

For a function F' : X — Qf(Z) and z* € C* \ {0}, it holds dom cl@(p,.«) 2 dom @ (g o) =
domcl F. As can be seen in 3.3.2, the opposite inclusion does not hold.

3.3.3 Definition. A function F : X — QL(Z) is called z*-closed for z* € C*\ {0}, if (F <
{0}): X — QL(Z) is a closed function.

From 3.3.1 we know that a function F' : X — QL(Z) is closed, if it is z*-closed for all
z* € C*\ {0} . Moreover, I is z*-closed if and only if p(p+) : X — IR U {#o0} is closed.

The property 3.3.1c) (F is z*-closed for all z* € C* \ {0} ) is called C-upper hemicontinuity
in [45]. It is shown there that if all images of F: X — Q%L (Z) can be represented as B(z) + C,
where B(z) C Z is a bounded set for all z € X, then F : X — QL (Z) is closed if and only if it
is z*-closed for all z* € C*\ {0} .

3.3.4 Lemma. For a given function F : X — QL (Z) it holds
V2R e C*\{0} : Vo e X: clyur.)(r) = (clor.)(@) < oer-)(T).
PROOF. It holds
Vz* e C*\ {0} : epiF Cepi(F <.~ {0})
and thus
Vz* e C*\ {0} : clepiF C clepi(F <.+ {0}).

Hence by 3.3.1, clo(p.«) () < (a1 Fe+)(z) holds for all z € X. From this one can see that
clorzy (z) < el pe+)(z) holds for all x € X, as clgp.+) is the greatest closed mino-
rant of @1 pz+). On the other hand, ¢ p.+)(¥) < ¢(F.+) (z) holds for all x € X and thus
clp(p ) (T) > Lo paxy (). u

3.3.5 Proposition. If F: X — QL(Z) is convex, then

vreX: (AP @)= () {2 —2()>dpp @)}
z*eC*\{0}
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PROOF. The inclusion "C” holds by 3.3.4. As F' is convex, the set ¢l |J F(z+y) is convex for
yelU
any U e U x.

It holds zg ¢ (cl F')(x¢) if and only if (xg,20) ¢ clepi F'. Therefore there are Uy € U x, V) €
U 7 such that
(0,20) & epi F + (Uo x Vo)

ansozp¢cl U F(z+y).
yeUop

Ifcl U F(x+y) =0 for some Uy € U x, then
yeUo

V2" e C*\{0},y €Ut @z (T +y) =cloes () = +o0

and therefore
V=)@ = [ {rezl —2() 2 cpp) @)}
z*eC*\{0}

Now let ¢l |J F(z +y) # (). By a separation argument we get z* € C*\ {0}, o € IR such
yeUo
that

—2"(20) < a < inf {—z*(z)| z €cl ygjﬂ F(z+ y)} = yienlﬁo OF) (T +Y).

As we have inf {gp(RZ*) (x+y)|ye Uo} < (cl gp(Ez*)) (z), it follows that

20 ¢ {z €Z| —2%(z) > (clgo(F’Z*)> (x)}

Notice that the formula in 3.3.5 is stated only for convex functions.

3.3.6 Proposition. Let F : X — QL(Z) be a convez function, z* € C*\ {0}, z¢ € coredom F.
Then either cl F' is z*-proper and ¢(p =) (20) = cly(p .« (7o), or clpp .« (¥) = —oo for all
z € dom F.

PrOOF. The function ¢z .+ is convex for every z* € C*\ {0}, so by 8.3.1, cly(p .+ (w0) =
@(F,2+) (T0) or clp(p .+ (z) = —oc for all z € dom F. If clp(p ) (T0) = ¢(F,2+) (T0) > —00, then
by 3.3.4 cl F' is z*-proper. |

3.3.7 Proposition. Let F : X — QL(Z) be a convexr function, (xo,20) € intepi F. If F is
Z*-proper for z* € C*\ {0}, then (.- : X — IR U {F+oc} is continuous at xo. If F is not
Z*-proper, then ¢ (g, .+ (v) = —00 holds for all x € int dom F.

PROOF. It holds (xg,z9) € intepi F' if and only if there is U € U x and V € U » such that
((xo,20)+UxV) C epi F. Therefore for all z* € C* \ {0} exists e > 0 such that {(zo, —2"(20)) }+
U x (—¢,¢€) C epig(p«, so for all 2* € C*\ {0} it holds (w0, —2"(20)) € int epipp«). If F is
z*-proper, then ¢(f .+ is proper and ¢(z,.+) (zo) € IR. By 8.3.3 it holds ¢ (5.« : X — RU{+o0}
is continuous. If F' is not z*-proper, then ¢ ) () = —oo holds for some z € X. Thus by
8.3.3, ¢(F,z+) (x) = —00 holds for all x € int dom ¢ +) = int dom F, |

3.3.8 Corollary. Let F : X — QL(Z) be a sublinear function, (0,zy) € intepi F. Then for all
x € X there exists z € Z such, that (x,z) € intepi F.
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PROOF. It holds (0, zp) € intepi F' if and only it exists U € U x and V € U z such, that
V(z,2) e UxV: (x,z+2) € intepiF.
Moreover dom F' = coneU = X and
Vt>0,VeeU: F(tx)=1tF(z)
and int epi F' is a convex cone, thus
Vit >0,Ve e U: (tx,t(z + 20)) € intepiF.

|

The property (z, z) € int epi F' will prove to be an assumption strong enough to state various

strong duality results for convex functions. The same result can be achieved by the following
assumptions.

3.3.9 Proposition. Let F : X — QL(Z) be a convex function, xo € dom F and one of the two
following conditions holds.

a) The function F is C-continuous in xo in the sense of [45], that is

VUeUyz:IVeUx : Ve eV :F(xg) CF(xo+z)+ U, F(rg+z)C F(xg)+ U.

b) The function F is continuous in xo in the sense of [21] Definition 2.5.1., that is if D C Z is
an open set, then

Flxo) €D = AWUx eUx: Ve eUx: F(xg+x)

cD,
Flxo)NnD#0 = WUxeUx: Ve eUx: F(zg+x)ND

# 0.

If F is z*-proper for z* € C* \ {0}, then p(p ) : X — R U{Foo} is continuous at xo. If I is
not z*-proper, then ¢ g, .+ () = —0o holds for all x € int dom F.

PROOF.

a) From
YVUeUyz:FVeUdx: VeV :F(xy) CF(xo+x)+U, F(xg+x) C F(xg) + U,
it holds for all z* € C* \ {0}, that
Ve>0:3VelUx: VeV :ipp. (zo+x)—e < o) () < pper (To+ ) +6,

hence each scalarization of F' is continuous at xg € dom ¢(f,.+) Or ¥(f.+) (T0) = —00. In the
latter case, p(f .+ (r) = —oc holds for all x € int dom F as ¢(f,.+) is convex.

b) Let zg € F(xo) hold, then
VUzeUyz: AUx €U x : VeeUx: F($0+x)ﬂ(20—|—Uz)7ﬁ@,
therefore, for all z* € C*\ {0} it holds

Ve>0:3Ux cUx: Ve eUx: @ (xo+ 1) < —2"(20) +€ < @pen (o) + €.
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On the other hand, F(xg) C F(xg) + Uz holds for all Uz € U z and thus
YUzeUyz: WWx eUx Ve eUx: F(xog+x) C (F(x) + Uz).
Therefore, for all z* € C*\ {0} it holds
Ve>0:3Ux €Ux: Ve eUx: @pzx) (To+T) = o) (T0) — €.

Hence, each scalarization of F' is continuous at xg € dom (g +) Or Q(p .+ (rg) = —o0. In
the latter case, p(f .+ (¥) = —oc holds for all x € int dom F as ¢(p,.+) is convex. [ |

3.3.10 Remark. a) If (xg,20) € intepi F' holds, then zy € int F'(zq) is true, while this cannot
be derived from the assertions in 3.3.9.

b) From the proof of 3.8.9 it can be derived that F(xg) = (cl F)(xo), if either
VUelUyz:IVeUx:VreV  :F(zg+x)C Flaxg)+U (3.3.1)
or for all open sets D C Z holds
F(zg)CD = WUxeUx: VreUx: F(zg+x) CD. (3.3.2)
If either (3.3.1) or (3.3.2) holds, then F' is z*-closed in xo for all z* € C*\ {0}.
3.3.11 Theorem. Let F: X — QL(Z) be a closed convex function.
a) If F is proper, then
VeeX: F(z)= N {z€2] —2(2) > A (@)}

z*eC*\{0},
clcop(p,.*y proper

b) If F is C-proper, then
VeeX: F(z)= ﬂ {z€Z| —2"(2) >l (:r)}
*eC*\—C*,

clcop(p, .+) proper

ProoFr.
a) The equation

F)= ) {z € Z| —2%(2) = clopx (:c)}
z*€C*\{0}

holds by 3.3.5. By 3.2.3, ¢(p.+) is convex for all z* € C*\ {0}. Suppose there is no
z* € C*\ {0} such, that cly(f .« is proper, then

Z, for x € dom F;
F — ) )
() { 0, else.

holds by 8.3.1. This is a contradiction, as F' is proper, therefore,

J25 € C*\{0} © clo(p.:) is proper
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It holds zp ¢ F(z) if and only if z0 ¢ () cl U F(z+y).
ved x  yeU

Ifcl U F(x+y) =0 for some Uy € U x, then
yeUo

vVt e C"\{0}, y €Un: @) (T +y) =cly.s (z) = +o0
and therefore
)=F(x)= ﬂ {z6Z| —2°(2) = cly(p (:U)}

z*eC*\{0},
clo(F,.x) proper

Now let ¢l | F(z+y)# 0 and 29 ¢ cI U F(r+y). By a separation argument we get
yeUp yeUp
z* € C*\ {0}, o € IR such that

—2"(20) < a < inf {—z*(z)\ z€ecl U F(z —i—y)} < clopaey (2).

yelo

Especially, cl¢(p .«) is proper and
20 ¢ {z €Z| —2%(z) > (clgo(p’z*)> (x)}

Therefore, the statement is proven.

Let F' be C-proper. From the above we know that

Vee X: F(z)C ﬂ {z€Z| —Z*(Z)ECIQO(F7Z*)(QL’)}.
*eCH\—C*,
clcoy(p, .+) proper

First, let z € dom F', then

dze (F(z)—C)\ F(x). (3.3.3)
and there is z* € C*\ {0} such, that cl¢p«) is proper and —2*(z) < ¢(p.+) (z). Suppose
z* € C* N —=C*, then by (3.3.3) it holds —2"(2) > @) (z) > clop.+) (z), which is a
contradiction, so

d25 € C*\ =C": cly(py) is proper. (3.3.4)

Ifcl U F(x+y) =0 for some Uy € U x, then
yeUo

V2" e C*\ {0}, y € Up: @z (& +y) = clopp. (x) = +oo,

hence

)=F(x)= ﬂ {zeZ\ —2"(2) =l (:):)}
z*eC*\—-C*,
clo(Fp,.+) proper

Now let ¢l U F(z+y)#0and zp ¢ cl U F(xz+y). As before, by a separation theorem
yelo y€Uo
there exist z* € C* \ {0}, a € IR such that

—2"(20) < a < clpp ) (7).
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For any ¢ > 0 it holds tz§ + z* € C*\ —C*.

If —(t25 + 2%)(20) < cl(pzs42+)(2) holds for some ¢ > 0, then we are finished. Therefore
suppose that

VE>0:  —tzg(20) — 2(20) = @mzg ) (@)
> cl(clori (@) + Lo (7))
> a+ttcoE. ()
> —2"(20) + tel(r ) ().

Then
VE>0:  t(—z(20) — clopze () > a+ 2" (20) > 0

which is a contradiction with ¢ small enough, as @) : X = R U {£o0} is proper.

Therefore, the statement is proven. |

3.3.12 Corollary. Let F : X — QL(Z) be a function with domF # (. If (clcoF) : X —
OL.(Z) is proper, then
Vee X: (clecoF)(z)= ﬂ {zeZ| — 2%(2) > clco (g .+ (:U)}
z*eC*\{0},
clecop(p,.*y proper
IfclcoF : X — QL(Z) is C-proper, then
Vee X: (clecoF)(z)= ﬂ {zeZ| — 2%(2) > clco (g, .+ (:U)}
*E€CH\—C*,

clecop(p .+ proper

PRrROOF. For each z* € C*\ {0} it holds

Ve € X1 cl@ico e (T) = clcop(p+) ().
Thus, both assertions hold by 3.3.11. |

3.3.13 Corollary. Let F : X — QL(Z) be a function. The closed convex hull clco F of F is
proper if and only if
32" € C*\ {0} 1 clcop(p,~) is proper.

The function clco F' is C-proper if and only if
32" € C*\ =C* . clcopp,~) is proper.
PROOF. Let clco F' be proper, from

Vz €domF : (clcoF)(x)= ﬂ {z € Z| —2"(2) = clcoppzx) (:U)}
z*eC*\{0},
clcop(p,.*) proper

we deduce the existence of at least one z* € C*\ {0} with clcop .+« proper. On the other
hand let clco ¢(p.+) be proper for 25 € C*\ {0}, then dom F' # §) and

VzedomF: (cleoF)(x) C{z€ 2| —'(2) > ppa (2)} € 2,
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so clco F' is proper. [ ]

For the scalar functions (g .+) : X — IR U {£o0} it is well-known, that clco g« : X —
IR U {#+o0} is proper if and only if dom ¢(f .-y # ) and it exists #* € X* and ¢ € IR such, that
r*(z) —t < ¢(p,.+) (z) holds for all z € X. Setting —2*(e) = 1 with e € Z, it holds

Sar () —te={z € Z| —2"(2) > 2" (x) — t}

for all z € X. Thus, clco F' is proper (C-proper) if and only if there is a (C-proper) conaffine
minorant of F and dom F # ().
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4 Conjugation

In the case of a scalar function ¢ : X — IR U {#00}, the conjugate mapping of ¢ is defined as

¢ (a%) = sup (" (x) — () (4.0.5)
zeX

for all z* € X*. The biconjugate is defined as

™ (x) := sup(z*(z) — " (z")) (4.0.6)
zeX

for all x € X, compare [62] for both formulas.
For vector-valued functions, the conjugate of f : X — Z has been defined for example in
[9, 17, 36, 63] as
fH(T) := sup(T(x) — f(x)),

zeX

using £ (X, Z) as the set of dual variables and understanding the supremum in the sense of
the vector-order. This approach requires the image space to be order-complete. Moreover, in
general the supremum of a set can be far away from the original set itself. Therefore, another
approach defines a set-valued conjugate of a vector-valued function, compare [40, 41, 54, 57],

2

as for a vector problem, its dual ... is a problem whose objective function is set-valued
whatever the objective of the primal problem be.”([41], p.57). In these approaches, the dual
variables are also linear continuous operators T' € £ (X, Z) and for many results the assumption
int C' # () is necessary. In [48, 54, 39] it can be observed how the difference in the definition of
set-valued conjugate of a function in fact causes a change of image-spaces from infimum-oriented
sets to supremum-oriented sets. This has been avoided in [23], but at the cost of the convexity
of the conjugate function. Our definition in fact is a variation of the one given in [23]. By
exploiting the possibilities of the z*-difference introduced in subsection 2.4 we are able to define
a convex set-valued conjugate of a set-valued function F' : X — Q%L (Z) , the conjugate mapping
X*xC*\ {0} into Q4 (Z) . Likewise, the definition of the biconjugate will be inspired by (4.0.6).
In sequence, we will prove a Fenchel-Moreau-Theorem, a sum- and chain rule, weak duality and,
under an additional constrained assumption strong duality and a sandwich theorem.

Throughout this chapter, X, Y and Z are assumed to be locally convex separable spaces
with the corresponding dual spaces X*, Y* and Z* and Z is quasi-ordered by a closed convex
cone C' C Z with {0} C C.

4.1 Definition and basic results

Let (z*,2*) € X* x C*\ {0} and —z € Z generate an affine minorant of F': X — QL (Z), that
is

Ve e X F(x)+2C S . (2).
Then

N (Siee)(@) Qo0 F(x)) 2 24 H(").
zeX

Note that both sides of the inclusion are nonempty elements of Q?I(Z*)(Z ). Hence, S0y — 2
X — QL(Z) is an affine minorant of F: X — QL (Z) if and only if

z € ﬂ (S(x*7z*)(x) L F(x)) :

zeX
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4.1.1 Definition. Let F : X — P (Z) be a function.

a) The conjugate F* : X* x C*\ {0} — QL(Z) of F is defined by

F*(z*, 2%) == ﬂ (S’(x*’z*)(x) Ly F(:L')) .

zeX
for all z* € X* and z* € C*\ {0} .
b) The convex biconjugate F** : X — QL(Z) is defined by

F**(z) = N (Star o) (@) <2 F*(27,2%)).
(z*,2*)eX*xC*\{0}

forallz e X.

For convenience, we will abbreviate the conjugate and the biconjugate of the scalarizations
t0 {1 X* = IR U{£o0} and ¢} .y : X — IR U {£o0} for all 2* € C*\ {0}.

4.1.2 Lemma. Let F: X — Q4 (Z) be a function. It holds
Vat € X' 2t € CT\{0}: P2t 2" = {z € 2| - 2(2) > ¢fpn (@)}

and

Vot e X*, 2" € C"\{0} 1 p(p . (27) =inf {—2"(2)] z € F" (2", 27)}.
PROOF. By 3.2.1c and 3.1.3 it holds ¢((s,. .. F),2+) (T) = (@) <D @(px) (2), s0
V@, 2) € XFx O\ {0} 1 Fr(a*, ) = {2 € 2] —2"(2) > g @®)} (4.1.1)

holds, as by definition 8.3.7 cp?FZ*)(x*) = sup(z*(x) < ¢(F,.+) (z)) holds true. Moreover, from
’ zEX
(4.1.1) it is immediate that

Vet e X*, 2z e C*\ {0} : inf{—2%(2)| z € F*(z*,2")}
— inf {—z*(z)y —2*(2) > ﬁpﬁz*)(x*)}

= (p?F,Z*) (1'*).

4.1.3 Proposition. Let F: X — QL(Z), 2z € C*\ {0} and 2* € C*\ clcone {z;}.
a) For all x* € X* it holds

+o0, if F*(x*, z5) = 0;

inf {—2"(2)| z € F* (2%, 20)} = { —o00, else

If 2 =tz holds for t > 0, then inf {—2*(z)| z € F*(z*, 23)} = tgofﬂzg)(:n*) holds for all
x* e X*.
b) For the conjugate of the z*-hull of F it holds

F*(z*,25), if 2* € cone {z3};
(F <= {0)"(«", ) = { Z, if dom F = {);
0, else.

41



PROOF.

a) By 4.1.1 and 4.1.2,

F*a*, ) = ) {z €Z|F(z)+zC S($*7za)(az)}
rxeX

={z €2l —2(2) 2 ¥{pg) @)} € Q) (2)
holds. If F*(x*, z5) = (), then
V2t e C*\ {0} :  inf{—2"(2)| z € F*(z*,2))} = +o0.
If 0 # F*(27,25) C (S(ze 2 (2) <o+ F(x)) € Qy(.2)(Z) holds, then
Vz* e C*\ {0} : inf{—2"(2)| z € F*(z*, 2)}

. % ¥ X N tolp o (2%), if 2% =tzg5, t > 0;
:mf{—z ()| —2z5(2) > SO(F’ZS)(Q; )} — { (F25) 0

0, clse.
b) By 2.4.3 it holds
Vee X: (F < {0})(z) =F(x)® H(z").
For all z* € C*\ {0}, t > 0 it holds H(tz*) = H(z*) and thus
Vee X (F < {0})(x) = (F Q- {0})(2).
Thus for 2* € X*, z*, 25 € C*\ {0} and ¢t > 0 it holds
(F" <2+ {0})" (27, 2p) = (F <rzx {0})(27, 25)-
Again by 2.4.3 it holds
(F <.+ {0)"(2%,285) = () {2 € 2] (F(x) ® H(z") ® H(2§)) + 2 C S(ze ) (@) }

zeX
F*(z*,25), if 2* € cone {z}};
=< Z, if dom F' = (;
0, else.

4.1.4 Remark. By the formula
Vet e X*, V2" e C*\ {0}, Vt>0: (F <= {0})* (2, 2%) = F* (2", 27),

it is tempting to try to define a conjugate of the z*-hull of F : X — QL(Z), mapping X* to

Vo* e X* V25 e C*\ {0} :  (F <.« {0})*(z") = F*(z", 2%).
This mapping would not be well defined, as (F <.« {0})(z) = (F <+ {0})(x) holds for allt >0

and x € X, but in general
(F*(z*,2") # F*(x*, tz").

The same problem arises if the conjugate of F <,» {0} is defined as a mapping from X* x Ry

Vot € X*, W2t e O\ {0}, VE > 0 (F < {0)) (2%, ) = F* (2, t2%).
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4.1.5 Lemma. Let F': X — P (Z) be a function and z* € C*\ {0}. It holds

vzeX: FU@)= [ {z€Z] -2() > ¢l @)}
z*eC*\{0}

and cp?;’Z*)(x*) < cp(F**x*)(a:).
Proor. By 2.4.3, 3.1.3 and 4.1.2 it holds
(S o) (@) @or F*(2%,2%) = {2 € 2] = 2*(2) > (¢ (2) < @l (7))}

for all z* € X* and all z* € C* \ {0} . Therefore, by 8.3.7

Vee X: F*™(z)= n {z €Z|Vx* e X*: —2"(2) > (2" (x) < ¢?F7Z*)(a:*))}
€0\ {0}
= N {zezl-2@) 260}
2*eC*\ {0}

From this formula, }nf( )—z*(z) > @(f () follows, hence @[} . (2) < p(pre o) (z). W
Ze * %k x b )

The functions 4,0’(“; Z*)(:c) and @ (g« =) () are not necessarily equal as the following example
shows.

4.1.6 Example. Let F: IR — P (R?),C = IRi be a function defined by

1
Ve>0: F(z):= {(1‘,0)} +C
and F(z) =0 forx <0. Let z* = (0, 1) € C*\ =C*, then F' = F** and ¢ .+)(0) = +00 while
A function F' : X — P (Z) has the same conjugate (and therefore biconjugate) as the
function F : X — Q% (Z) defined by F(x) := clco (F(x) + C). Therefore it is no restriction to

start with functions mapping into Q%L (Z).
One is tempted to define

2*€C*\{0}

Fa)= (1 {2€2l =2"() 2 ¢l @)}
2+eC*\{0}

However, this definition would leave us with a poorer theory concerning the conjugate of a
set-valued function.

4.1.7 Example. Let F : X — Qione{(l 0)}(IR2) be a function defined by F = IR and 2 =
(—1,1) e C*\ {0}. Then

(F'<;:{0}) =2
and hence F*(z*) C F*(x*,23) = 0 for all x* € X*. On the other hand F*(x*,2*) = H(2*) for
all (z*,2*) € X* x (R%)*\ {0}.
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In [23], the negative set-valued conjugate has been defined, avoiding the substraction of
functions in the definition of F* and F**. For a function F : X — QL(Z), the negative
conjugate and the biconjugate are defined by

—F*(z*,2%) = «cl U (F(:r)%—S(x*,Z*)(—x))

zeX

F(x) = N (—F*(@*,2") + S(a.2) (@) -
(z*,2*)eX*xC*\{0}

for all z* € X*, 2* € C*\ {0} and x € X. It turns out that F*(z*, 2*) = ({0} <.« —F*(a*, 2%)),
while F**(x) = F**(z) holds for all (z*,2*) € X* x C*\ {0} and z € X.

4.1.8 Proposition. Let F : X — QL (Z) be a function, (z*,2*) € X* x C*\ {0} and z € X,
then it holds

V(z*,z*) e X* x C*\ {0} :  F*(z%,z%) = ({0} <o« —F*(z*,2"))
and
Vee X : F*(z)=F"(x).
PrOOF. It holds

—F*a*,z")=d (J o (F(ac) + S(x*7z*)(—x))
zeX

and by 3.2.1 b) and 3.1.3

A (F(@) + S(r oy (—2)) = {2 € 2] = 2°(2) > p(pr) (@) + 27 () }

for every (z*,2*) € X* x C*\ {0}. Thus,

Pt ) = {2 € 2] - (2) 2 it (pipan () + 07 (-0) |

holds for all z* € X*, z* € C*\ {0} . By 2.4.2,

(0) 9w =", 2) = {2 € 2] = () + int (grer) (@) +2"(-2) 2 0
holds and therefore

{0} @ —F*(a*,2%) = () {z € 2| = 2(2) + p(p2r) (2) + 2" (~2) > 0}
zeX

= N {ze2l —=() + o) (@) 2 2" ()]
zeX

= ﬂ {z €Z| —2"(2) > (2" (x) < p(pz+) (55))}

zeX
={z€2| -2*(2) > 2"}
= F*(z*,2").

For all z € X it holds

F*(z) = {2 € Z| ¥(2*,2") € X* x C*\ {0} : =2"(2) > (2*(2) <@gy (=")) }
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As z* maps into IR, it holds
Vo€ X (27() Qe(pen (@) =27 (2) + inf (ope) (2) +27(-y)

and thus it holds F**(z) = F**(z) for all z € X. [ |
From now on, the conjugate and biconjugate of a function F : X — Q% (Z) will be defined
as in 4.1.1.

4.1.9 Lemma. Let F: X — QL (Z) be a function.

a) The function Ff : X* — QL(Z) defined as Fi(x*) = F*(x*,2*) for all z* € X* is convex
for all z* € C*\ {0}.

b) The function F** : X — QL(Z) is convex and closed.
c¢) For all z € X it holds F**(z) D (clco F)(z).
d) The Young-Fenchel inequality holds:
¥z € X, (2%,2) € X* x (C*\{0}) : F*(2%,2") C (S(aror)(2) <o F(2))

Moreover, (Sig» .y — 2) : X — Q¢(Z) with x* € X*, z* € C*\ {0} and z € Z is a conaffine
minorant of F if and only if z € F*(z*,2*) and

Vee X F*(a",2%)© F(x) C Sge . (z)

e) If for all x € X it holds Fl x) D FQ x), then
V(z*,2") e X* x C*\ {0} : Ff(z*, 2%) C F5(z*,2")

and
Vee X : Ff*(z) 2D Fy* ().

f) For all (z*,2%) € X* x (C*\ {0}) it holds F*(z*,z*) = (clco F')*(z*, z*).

g) Forallz € X, (z*,2*) € X* x C*\ {0} it holds (F**)*(x*,2*) = F*(z*, 2¥).
PROOF.

a) The function goz‘Rz*)(:c*) is convex, 3.1.5, therefore F : X* — QL (Z) is convex.

b) The biconjugate ©(F .+ is convex and closed for any z* € C* \ {0} and by 4.1.5 it holds
@Z‘;’Z*) < P(er 2v), SO ‘P?;,z*) < clco p(px o) holds true. By 3.2.3 and 3.3.5 it holds

VzeX: (deoF™) (@)= [\ {z€2] —2"(2) > ceop(pm .y (2) } € F*(a).
z*eC*\{0}

Therefore, F** is convex and closed.

c¢) It holds Pk 2r) S (k) therefore

Vee X : F*™(z) D ﬂ {zeZ\ —2°(2) = o(F,2% (x)}:F(x)
zxeC*\{0}

As F** is closed and convex, F**(x) D (clco F))(x) holds for all z € X.
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d) The first inequality holds by definition. The function S« ,«) — 2 is a conaffine minorant of
F if and only if —z*(2) > @Z‘FZ*)(;U*), that is 2 € F*(2*,2"). Also, S(y« .) — 2 is a conaffine
minorant of F if and only if S+ .«) is a conlinear minorant of F'+ z, thus the second inclusion
holds.

e) If for all z € X it holds Fi(x) 2 Fi(x), then for all z* € C*\ {0} it holds ¢f, . (z*) =

kok

elr, Z*)(x*) for all 2* € X* and ¢(p, Z*)(x) < ik, Z*)(x) for all x € X, giving the desired

result.
f) It holds
V2" e O\ {0}, 2" € X1 (g, (27) = (clecopp )" (z7).
Moreover,
V2t e CF \ {0}7 reX: clco (P(F,z*) (.%') < @(clcoF,z*)(x)y
(P(clcoF,z*)(x) < P(F,z*) (l’)

holds by 3.2.3 and 3.3.4. It holds
Vz* e C*\ {0}, 2" € X™: go’("dcoﬂz*)(x*) = gp?Rz*)(a;*).
Combined with 4.1.2, this is the desired result.

g) It holds
V(2",27) € XT x CT\{0} = (@) (27) = @20 (27)
and therefore ng‘F** Z*)(x*) = @?FZ*)(m*). Applying 4.1.2, the claim is proven.
|

Let F': X — OQL(Z) be a function, then clco F : X — QL(Z) is proper if and only if there
is a conaffine minorant Sy« .y — 2 : X — Q4 (Z) of F with (z*,2*) € C*\ {0} and z € Z. Such
a minorant exists on the other hand if and only if F*(z*,2*) D z + H(z*), so

z € (F*(z*,2") <z« {0}) = F*(z", 2%)
and (z*,z*) € dom F*.
4.1.10 Lemma. Let F: X — ch(Z) be a function.

a) It holds dom F = 0 if and only if F* = Z, if and only if F*(xf, z5) = Z for some (x§, 24) €
X*x C*\{0}.

b) It holds dom F*(-,z*) = 0 if and only if (clco (F <.~ {0}))(x0) = Z for some xy € X.
¢) There is xy € X with (clco F)(xzo) = Z if and only if dom F* = ().
d) clcoF : X — QL(Z) is proper if and only if F*: X* x C*\ {0} — QL(Z) is proper.

e) clecoF : X — QL(Z) is proper but not C-proper if and only if clco F : X — QL(Z) is proper
and dom F* C X* x (C*\ —C*).

PROOF.
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a) It holds dom F' = ) if and only if dom ¢(f.+) = 0 holds for all (for one) z* € C*\ {0} . This
is equivalent to ¢f ., = —oo for all (for one) z* € C*\ {0}.

b) It holds F*(z*, 2*) = () if and only if PlF 20 (%) = +o0. This is equivalent to clco ¢(f .+ (¥0) =
—o00, which is true if and only if (clco (F' <1, {0}))(x0) = Z.

¢) It holds dom F* = @ if and only if F: X — QL (Z) has no conaffine minorant. This is the
case if and only if (clco F')(zo) = Z.

d) Direct conclusion of the above.

e) The function clco F' is not C-proper if and only if F' has no C-proper conaffine minorant,
that is F*(z*, 2*) = () for all 2* € C* N —C"*. [ |

Recall that in general (clco (F' <.« {0}))(z) 2 (clcoF <.~ {0})(x), hence clcoF : X —
QL(Z) is z*-proper if F*(z*,2*) # 0.

4.1.11 Definition. The function
S (lepi F) + (X* x C*\{0}) x C*\ {0} — Qu(2),

defined by

X (((x*,zi‘),zg)]eplF) = ﬂ S((x*,zi‘),zé‘)(xvz)
(xz,z)€epi F’

forall x* € X* and 27,25 € C*\ {0} . is called the set-valued support function of epi F', mapping
(X* x C*\ {0}) x C*\ {0} into QL(Z).

The definition of ¥ (-lepi F) : (X* x C*\ {0}) x C*\ {0} — QL(Z) is in analogy to the
scalar support function of the epigraph of a function ¢ : X — IR U {#00}, which is defined by
o((",t)lepig) = sup (2", t)(z,7)

(z,r)Eepip

for all z* € X* and t € R.
For all * € X* and 27,25 € C*\ {0} and (z,2) € X x Z it holds

S(@= 1)) (@, 2) = {y € Z| = 23(y) 2 ™ (2) + 21 (2)} € Qly(ep)(2).

Thus, S((z* 21),25)(2, 2) € H(z3) holds if and only if z € S

1

Z 4+ H(z3) holds if and only if —25(2) > x*(x) + 2] (2).

x*,zi‘)(l')' Moreover, S((w*,zf),zg)(aj,z) )

4.1.12 Proposition. Let F : X — QL (Z) be a function, x* € X* and 25,25 € C*\ {0} . It
holds X (((x*, 27),23)|epi F') € Q%(Z;) and with —z3(e) =1 it holds

0;
7

)

2 (", ), Hlepi F) = { 2 if P*(a*,20)
‘P?Rz;)(x*)e + H(z3), else.

PROOF. By definition, it holds

F (@, 27) = {2 € Z| epi Sy 1) D epi (F + 2)}
={zeZ|V(x,z) €epi F: x*(x) + 2](2) < —2](2)}.
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It holds F*(z*,2]) = Z if and only if epi F = (). In this case it holds X(-|epi F) = Z.

If F*(z*, 27) = 0 holds, then for all ¢ € IR there is (z, z) € epi F such, that z*(x) + 27 (2) > t,
thus X(((z*, 27),)|epi F) = 0.

The set F*(z*, z7) is neither empty nor Z if and only if Pl 2 € IR. In this case,

sup{z*(z) + 2] (2)| (z,2) € epi F'} = @Z‘szf)(a:*) eR
and with —z3(e) = 1 it holds
(2", 21), 23)|epi F) 2 @(p vy (a”)e + H(27).
For z € ¥(((z*, 27), 23)|epi F) \ (go’{EzI)(x*)e + H(z*)) it holds —z*(z) < QOFF,Z;‘) and
V(z,z) €epiF:  z*(z)+ 21(2) < —25(2),

a contradiction. [}
The image of 3 (((z*, 27), 23)|epi F') is a translation of F*(z*, 2{) into the space QE(ZS)(Z).

4.1.13 Proposition. Let F : X — QL (Z) be a function, z* € X* and 2}, 25 € C* \ {0}, then

m S(x*,zi‘,z;)(x7z) = I:piF(x*7ZT7z;)7
(z,z)€epi F

F*(x",2%) = I3, p(2", 2%, 27).
PRrROOF. For all * € X* and z{, 25 € C*\ {0} it holds

pir(@2),5) = () S (®2) e Lepin(a, 2)]
(x,2)eXxZ

= m S((z*,zi‘),z;)(x7z)-

(z,z)€epi F

If —2*(e) = 1 holds for z* € C*\ {0}, then F*(z*,2") = @[}, ., (z")e + H(2*) holds by 4.1.2, if
F*(x*,2*) is a proper set. Thus, the claim holds by 4.1.12. |

4.1.14 Lemma. Let F : X — QL(Z) be a function.
a) dom F = 0 if and only if dom F** = ().
b) There is xy with (clco F)(xo) = Z if and only if F** = Z.
¢) cleo F is proper if and only if F** : X — QL(Z) is proper.
PROOF.
a) For all z* € C*\ {0} it holds dom F' = dom ¢(,.+) . Therefore, dom F' = () is equivalent to
V2" € C*\ {0}z € X 1 ¢f () = +0o0,
therefore it is equivalent to dom F** = ().

b) (cleo F)(zo) = Z if and only if for all 2* € C* \ {0} it holds clcop(f.+) = —oo. This is
equivalent to
V2" € C*\{0},z € Xt ¢+ (2) = —00,

which again is equivalent to F** being identically Z.
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c) From 4.1.9, F**(x) D (clco F)(x). With the above, this is the statement. [ |
4.1.15 Theorem (Fenchel-Moreau-Theorem). Let F : X — OL(Z) be a function.

a) It holds
Vee X: F*(x) 2 (clcoF)(x).

b) It holds
Vee X: F™(x)= (clcoF)(x)
if and only if clco I is proper or identically Z or ().

c) If F is convex and xy € dom F such that F(xg) = (clF)(xo), then F**(x9) = F(xo). If
additionally F(xo) # Z, then F** = clF and F** is proper.

PRrooOF.
a) See 4.1.9.

b) By 4.1.14, F** = clco F if clco F is identically () or Z. Furthermore, F** is proper if and
only if clco F' is proper. Let clco F' be proper. In this case, by 3.3.11 it holds

Vee X: (clcoF)(z) = ﬂ {Z€Z| 2" (z) chcogo(ﬂz*)(m)}
Z*€C*\{0},
clcop(p ,*) is proper
— ﬂ {z €Z| 2*(z) > @2‘}7z*)(a:)}
€0\ {0}
= F*(x).

If for g € X it holds (clco F)(zg) = Z, then ©(F, ) 1s identically —oo, therefore F** = Z
and (clco F)(z) = F**(x) holds for all x € X if and only if F = Z.

c) If F(zg) = (cl F)(x0) = Z, then F** is identically Z, especially F**(xg) = F(z9) = Z. Let
(cl F')(z0) # Z. Then, by 3.3.5 it exists 2* € C*\ {0} such that cl o .~)(z0) € IR. Therefore,
cly(f,.+) is proper and cl F is proper. Thus, (cl F')(z) = F**(x) holds for all z € X, especially
F**(z9) = F(x9) # Z and F** is proper. [ |

4.1.16 Remark. If x € dom F' or dom F = 0, then ¢}, ,.\(x) = clg(pss .- ().

PROOF. In general, ga?‘;z*)(m) cl(pes o) (z) and clp(pes ) (z) < clco (g .+ (z) holds for all

<
z e X. If v € domF or domF = (), then Plr ) (X) = cleco@(pe) (x), therefore, Pl (@) =

cl(pes .+ (x) holds true. [ ]

4.2 Calculus

4.2.1 Proposition. Let G: Y — QL(Z),t >0 and A: X — Y be a linear homeomorphism,
Y €Y, 20 € Z and (z§, 25) € X* x C*\ {0} and F : X — QL(Z) is defined by

F(m) = tG(A.T + yo) + S(xg’zé)(ﬁ) + 29
forallz e X.

a) If dom G = () holds, then F* = Z.
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b) If dom G # 0 and z* ¢ cone {z§} holds, then F*(z*,z*) = 0.

c) If z* = sz holds for s > 0, then

* (% * * 1 —1x% 1 * * *
F* (a7, sz5) = tG (EA ' (;x _m0)720)+S(A*1*(x3—%m*)7z(’;)(y0) — 20

* 1 —1x% 1 * * *
=1G (;A (gfL’ — %), %) D (S(A e (Lor—gg) 2 )(y0)+z0)

holds for all z* € X*.
PRrOOF.

a) If dom G = (), then dom F' = () and thus by 4.1.10 it holds F* = Z.

b) If dom G # 0 and 2* ¢ cone {2z} holds, then dom F' # () and for all z € dom F' it holds
F(z) <.+ {0} = Z. Thus by 4.1.10 it holds F*(z*, z*) = 0.

c¢) By definition,
F (@*,2%) = () (S (2) <0 F(2))

zeX
holds. If s > 0, then

S(x*’sz*)(x) < F(x) = {z € Z| tG(Ax + yo) + S(xg,zg;)(l“) + 20+ 2 C S(m*’szg)(x)}
= {z € Z| tG(Az + yo) + S(ag.) (@) +2 C S(:c*,sza‘)(x)} — 20
holds. Recall that for s > 0 and (27, 2%) € X* x C* \ {0} it holds Sy s (%) = 51, ) (2)

for all x € X. Moreover,
Sz 20y () € Q?I(z*)(z) \ {0, Z}
Sz z2) (@) + S(—ap 2y (@) = H(2")
holds and thus for y = Ax + yo it holds
Siar o) (@) )= {2 € 21 tG(Az +yo) + 2 € S0 _ys o) (@)} — 70
t

zEZ\GAJ:—i—yO)—i—zCS( (Lo~ *)Z*)(ﬂf)}—?«’o

0

{ (
=t{2€ 2] Gy) +2 S S a1 (g o)W = 90) } — 20
{z € ZIG(y) +2 C 51 g-1e(1ye gy (Y )}

+ a1 (1av—az) ) (—¥0) — Z0-
Thus it holds

k(% * * 1 —1x% 1 * *
F*(z7%, sz5) = tG ((;A ' (gfc —20):20)) +S(A Le(Lgx —x*)zo)(_yo) — 20

* 1 — L% 1
=167 (54 ! (5 " = 2p),20) + 841 (a5 - o) z5) (Y0) — Z0-
Also,
S(a-1+(Lar—az).z) (—¥0) = 20 = {0} <= (S(A (Lot —ap),25) (W0) + ZO) < Q%(ZS)(Z) U

holds and thus
1

* * * * 1 — 1% * * *
F (2%, s29) = tG7 (5 A ' (52" = 2g), %) <er (S(Afl*(gx*—xg),zg)(yo)+Zo)-
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Under the assumptions of 4.2.1, dom F™* C {S(x*726<)| T* € X*} holds if dom G # (.
The claim in 4.2.1c) is in accordance to the scalar result which can be found in [26], Propo-
sition 3.3.3.4.

4.2.2 Proposition. Let F; : X — QL(Z) forn>2 andi=1,...,n.
a) If F(z) = inf Fj(r)=clco

=15 i=1,...,n

U Fi(x) holds for all x € X, then
17 )
F*(z*,2%) = ﬂ Ff(x*, 2%)

holds for all (z*,2*) € X* x C*\ {0}.

b) If F(x) = sup Fj(x)= [\ Fi(x) holds for all x € X, then
= i=1,...,

i=1,..,n n

F*(x*,2") D co( inf F)(z" 2")

i=1,...,n
holds for all (z*,z*) € X* x C*\ {0} .
c) Let F(x) = sup Fi(z)= [\ Fi(x) hold for allx € X. If for alli =1, ...,n the functions
' i=1

i=1,..,n =1,....,n
F; are convexr and dom F; = X and for all except possibly one F; one of the assumptions in

3.3.7 and 3.3.9 holds for all x € X, then
F*(z*,2*) =co( inf F)(z* z%)

=1,...,n

holds for all x* € X*. Moreover for every x* € X* with (z*,z*) € dom F* there exist
(xf,2*) € dom Ff, i = 1,...,n and nonnegative numbers t;, i = 1,...,n adding up to 1 such
that t1x5 + ... + tpx), = x* and

F*(a*,2%) = t1 Fy (27, 2%) + ... + to, F* (), 27).
PROOF.
a) For all (z*, z*) € X* x C*\ {0} it holds

F*(z*,2") = ﬂ (S(x*,z*)(a:) <+ clco U E(m))
i=1,..,n

zeX
By 2.4.3,
S(g#,2+)(T) <Qpx cleo U Fi(z)
i=1,....,n
:S(x*,z*)(x) L U Fl(x)a
1=1,....,n
thus

zeX

= N ﬂ{zeZ

i=1,...,nxeX
_ ﬂ Fi*(a:*,z*)
i=1,...,n

F*(z*,2") = ﬂ {z € Z| U Fi(z)+ 2 C S(x*’z*)(l')}
i=1,...,n
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b) For all i = 1,...,n it holds
(S(z+ 24 () Qe Fi(x)) C (Spe (@) <+ [ Filw))
i=1,...,n
for all (*,2*) € X* x C*\ {0} and z € X, thus the claim holds.
c) If F*(z*,2*) = 0, then we are done, so without loss of generality we can assume that
F(a*,2) € Qe (2)\ {0,
If Fi(z) <.+ {0} = Z holds for some z € X, then F;(-,2*) =0 and

N E@= (] E@

i=1,...,n 1=2,...,n

cl U Ef(z*,2") =cl U FEf(x*, 2%),

i=1,..n 1=2,..n

so without loss of generality we can assume that F; is z*-proper for all ¢ = 1,...,n and all
z* € C*\ {0}. Thus, for every z* € C* \ {0} the scalarizations of all F; are finite everywhere
and all except for possibly one are continuous. Applying [26], 3.3.4,Theorem 2 it holds

Plre (@) = co( inf olp )(@).

i=1,...,n

and for every z* € X* with z* € dom SD?Fz*) there exist z] € dom ‘P?Fi ) i=1,...,n and
nonnegative numbers ¢;, ¢ = 1,...,n adding up to 1 such that t127 + ... + t,z) = 2" and

Plr (@) = Lp(p o (@7) + o+t p(p, oo (27).

Thus,

)={z€2| - 2"(2) > ¢fpm (=)}

{2€2] = 2°(2) > g, ooy (&) + oo+ tal, o) (27 }

h{z€ 2] —2°(2) 2 gl oy (@)} + ot ta {2 € 2] = 2°(2) 2 9l o (29}
=t Fy (2%, 2%) + ...+t F(x", 2%)

Cco(Fy + ...+ E))(z", 2")

holds, proving the claim. |

Notice that the result in 4.2.2¢) in fact is slightly more general than the known scaler result as
we do not assume properness for the functions F; : X — QL(Z).

4.2.3 Definition. For Fy, Fy : X* x C*\ {0} — QL(Z), the infimal convolution of Fy and F
in (z*,2%) € X x C*\ {0} is defined by

(FYOF3) (", 2%) :==cl ] (F7(@*2") + (F)* (=" — 2*,2%)).
rreX*

Notice that in fact the infimal convolution (FyOFy) is an operation defined on the set
{G: X* — QL(Z)}, thus identifying F*(z*, 2*) = FJ (z*) for all z* € C* \ {0} and all z* € X*,
this is the ordinary definition of the infimal convolution, introduced in subsection 2.2.3.
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4.2.4 Proposition. Let F; : X — QL(Z) forn>2 andi=1,...,n.
a) If F(z) = (FA0O..0F,)(z) holds for all x € X and dom Fy + .. + dom F,, # ), then it holds
F*(x*,2") = (F + ..+ F)) (2", 2%)
for all (x*,2*) € X* x C*\ {0} .
b) If F(z) = (F1 + ... + F,)(x) holds for all x € X, then it holds
F*(z*,2*) 2 (FyO..0F)) (2%, 2%)
for all (z*,2*) € X* x C*\ {0}.

c) If F(x) = (F1 + ... + Fy)(z) holds for all x € X and for all i = 1,...,n the functions F;
are conver and zy-proper for zop € C*\ {0} and for all except possibly one F; one of the
assumptions in 3.3.7 and 3.3.9 holds in xo € () dom Fj, then

i=1,..n

FY(a", %) = (F{O..0F) (2", )

holds for all x* € X*. Moreover for every z* € X* with (z*,2§) € dom F* there exist
(xf,z5) € dom F, i = 1,...,n such that x§ + ... + ), = =* and

F* (2%, 25) = F{' (27, 20) + ... + F* (25, 25)-
PROOF.

a) Without loss of generality, assume n = 2. By definition,

(FOR)(x) = cleo | (Fi(y) + Fa(z — y))
yeX

holds for all z € X. Thus by 2.4.8e) and 2.4.3 it holds

(FOR) (2%, 2%) = ) (S(x*,z*)(x) < |J (F(y) + Ba(z - y)))

zeX yeX

=N {z ezl U FE@)+Fr-y)+2)C S(x*,z*)(x)}
zeX yeX

= () (St (@) e (Fily) + Fale — )
r,yeX

By assumption it exists xg,y9 € X such, that yg € dom F} and zg — yg € dom Fy. If
y ¢ dom Fy or x — y ¢ dom Fy, then

S(x*,z*)(x) T (Fl(y) + FQ(:L' - y)) =27
Therefore it holds

(AOR)*(«*,2") =[] Seee(@) < (Fily) + Rz —y)).
yedom F7y,
r€dom Fa+y
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If for y € dom F} and = € dom F, + y it holds Fy(y) <,« {0} = Z or F(x — y) <.« {0} = Z,

then (Fi(y) + F(x —y)) <.« {0} = Z and

S(a}*,z*)(x) L (Fl(y) + F(x - y)) - (S(x*,z*)(y) L Fl(y)) + (S(:c*,z*)<y) L F(x - y)) = 0.

for all z* € X*. In this case, (F10OF,)*(-,2%) = F} (-, 2*) + F5 (-, 2*) = (. From now on, let

Fy and F; be z*-proper functions and y € dom F} and = € dom F» + y. By 2.4.8¢) it holds
S(x*,z*)(gj) <z (Fl(y) + F(‘/L‘ - y)) = (S(z*,z*)(y) T+ Fl(y)) + (S(x*,z*)(y) L F(CC - y))

for all * € X*. Thus,

(F1DF2)*(SL'*, Z*) = ﬂ (S(x*,z*)(y) T Fl(y)) + (‘S’(ac*,z*)(x - y) <z* F2(7~3 - y))
z,yeX

— F{a",2") + F5 (2", 2").
Without loss of generality, assume n = 2. By 2.4.8e) it holds

(F+ F)* (2%, 2%) = () (S o) (@) 920 (Fi(w) + Fa()))
reX

= ) ((Sa+2)(®) + S(er—a o) (@) < (Fi(w) + Fa(w)))

rzeX

> () (S (@) <o Fi(®)) + (Ser—e 2 (@) <o +Fa(x)))
zeX

D Fy(z*, 2%) + Fy(a* — 2%, 2%).
for all *,z* € X* and all z* € C*\ {0}.

By assumption, the scalarizations ¢ Fizg) X — IR U {+oo} are convex and proper and for
all but possibly one i € {1, ...,n} there is t; € IR such, that (z¢,t;) € int €PiQ(F, 27)- Thus, all
but possibly one scalarization ¢ Fy,2;) are continuous at xo. By the scalar sum rule as found
in [26], 3.3.4, Theorem 1 and by 3.2.1 d)it holds
SOE(F,ZS)(x*) = (@?Fl,zS)D"'D(P?Fn,zS))(:L‘*)
holds for all z* € X*. Moreover for every z* € X* with * € dom goz‘an) there exist
x; € domcpszi 20 ¢ =1,...,n such that 2] + ... + 2}, = 2* and
902‘1?,25)(35*) = @?Fl,zg)(xik) +o Tt SOTFn,zg)<$:L)'
Thus by 4.1.2 it holds
F*(z*, 25) = Fy(27,20) + ... + Fy (), z5) C (FYO.LE)) (27, 25)

And thus the equation is proven. |

4.2.5 Definition. If A: X — Y is a linear continuous operator, G : Y — QL(Z) and F —
QL(Z) , then the functions A*G* : X*xC*\ {0} — QL(Z) and F*A* : Y*xC*\ {0} — QL (2)
are defined by

(A*G")(x*,2") :=cl U G*(y*, z")

A*y*:I*

for all z* € X* and z* € C*\ {0} and

for all y* € Y* and z* € C*\ {0}.
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Identifying F*(z*,2*) = Fj(x*) for all z* € C*\ {0} and all z* € X*, this is the ordi-
nary definition of A*G%. : X* — Q?I(Z*)(Z) and FLA* : Y* — QL(Z) ’}I(Z*)(Z) introduced in
subsection 2.2.3.

4.2.6 Proposition. Let A : X — Y be a linear continuous operator, G : Y — QL(Z) and
F - QL(Z).

a) It holds
(AF)"(y", 2") = FTA*(y", 2")
for all (y*,2*) e Y* x C*\ {0}.
b) It holds
(GA)*(z*,2%) D A*G™ (2™, 2%)
for all (z*,2*) € X* x C*\ {0} .
c) If G is convex and one of the assumptions in 3.3.7 and 3.3.9 holds in Axy, xo € X, then
(GA)*(z*,2%) = A*G™ (2™, 2%)

holds for all (z*,z*) € X* x C*\ {0} . Moreover for every (z*, z*) € dom (GA)* there exist
(y*,2*) € domY* x C*\ {0}, such that A*y* = x* holds and

(GA)* (2", 2") = G*(y", 2").
PRrROOF.

a) For all (y*,2*) € Y* x C*\ {0} it holds

S(y*’z*)(y) QZ* Cl U F(SC) == m S(A*y*7z*)(x) <]Z* F(.T)
Az=y Az=y

Thus the claim is immediate.

b) For all (y*,2*) € Y* x C*\ {0} it holds

N (S ®) <2 Gw) € () (Syry (A7) < GA(z))

yey zeX

= () (Starys 2y () <2 GA())
zeX

And thus the inclusion is proven.

c) By 3.2.1e) and 4.1.2 it holds

(GA)(2%,2") = {2 € 2] = "(2) > (6. A) (2") |

for all z* € C*\ {0} and z* € X*. By assumption, ¢(g.~) : X — IR U {+oo} is either
continuous at Arg € domG or ¢(g .+)(¥) = —oo holds for all y € domG. In the latter
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case, dom Qg o) = (0, as Azg € dom G. Thus, in this case (GA)*(+, 2*) = 0, proving the
statement. If ¢ .+)(Azo) € R, then

(P(amA) (") = A%pg .o (")

holds and for all z* € dom (g .+)A)* there exists y* € Y™ with A*y* = 2" such, that

(P A (@7) = (g (¥),
compare [26], 3.3.4 Theorem 3. Thus by 4.1.2, for all (z*,z*) € dom (GA)* there exists
y* € Y* with A*y* = x* such, that
(GA)* (2%, 27) = G*(y", ") € A'G™ (a7, 27),
proving the statement. |

The result of 4.2.6¢) is stronger then the well-known scalar result as it can be found in [26], as
we do not need any properness assumption on G : X — QtC(Z ).

4.2.7 Remark. For Ae L(X,Y), z§ € X*, y5 € Y* and 2§ € C* \ {0} it holds
(AS(;E&;;S))*(Z/*, Z*) = Icone{(:cg,zS)}(A*y*? Z*) + H(ZS)
and
(St ) A" (@, 2) = T [y o (7 27) + H(=5).
4.2.8 Proposition (Chain-rule). Let F: X — QL(Z) and G:Y — QL(Z) and A: X —Y a
continuous linear operator. It holds

for all z* € X*, y* € Y* and z* € C*\ {0} . If additionally F' and G are convex and z*-proper
and it exists xg € X such, that xog € dom F and (Axo, z9) € intepiG for some zy € Z, then
equality holds and for all x* € X™* it exists y5 € Y™ such, that

(F'+GA) (a7, 27) = F" (¢ = Ay, 27) + G"(y, 27) # Z
PROOF. The first inclusion is immediate from 4.2.4b) and 4.2.6b). Under the additional as-
sumptions,
Jy*eY*: (F+GA)*(z",2%) = F* (2" — A%y, 2%) + G (yp, 27)

holds with 4.2.4c) and 4.2.6¢) for all z* € X*. As dom (F + GA) # () is assumed, (F +
GA)*(z*,z*) # Z holds for all z* € X* and z* € C*\ {0}. [ |
With the assumption in 4.2.8 it holds

(F+GA)*(0,2") = ﬂ ({0} <.+ (F(x) + G(Ax))
zeX

= {0} <.~ clco U (F(x) + G(Ax))
rzeX

Dl U (F*(A*y*, 2") + G*(—y*, 2%)).
y*EY*

With this we are now able to state a Fenchel-Rockafellar type duality theorem.
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4.2.9 Theorem (Fenchel-Rockafellar-Duality). Let F': X — QL(Z) and G:Y — QL(Z) and
A: X —Y a continuous linear operator. Denote

P :=clco U (F(x) +GA(z))
zeX

and

D= N {0} <ze (F7(A%y", 2") + G*(=y", 2"))].
(" =)V * X (C\{0})

a) It holds D DO P.

b) If additionally F' and G are convex and z*-proper and xo € dom F' and (Axg,z) € intepiG
for some z € Z, then

P <, {0} =D <,- {0} #0
and there is y* € Y* such that

(P <2+ {0}) = (D <=+ {0}) = {0} < (F7(A"y", 27) + G7 (=97, 27)).

¢) If F and G are convex and z*-proper for all z* € C*\ {0} and xg € dom F' and (Axg,z) €
intepi G for some z € Z, then

P=D#1
and to every z* € C*\ {0} there is yi. € Y* such that

P=D= () ({0} < (F*(A"y5, ") + G*(~yi,2)).
2+eC*\{0}

PROOF.

a) For all z* € C*\ {0} it holds
{0} <.+ P = (F+GA)*(0,z")

and
{0} <1« D = {0} <1+ cl U (F*(A*y", 2%) + G*(—y*, 2")).
(y*,z*)€Y* x (C*\{0})

Therefore {0} <1,« D C {0} <,» P holds for all z* € C*\ {0} by 4.2.8 and thus

Ve ¢\ {0} : P <, {0} C D <, {0}

P = n (P <.+ {0}),

z*eC*\{0}

D= () (D<.-{0})

2*eC*\{0}

holds, the inclusion is proven.
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b) Under the additional assumptions by 4.2.8 it holds
o eV (F+GA)(0,2") = (F* (A%, 2") + G (=0, 27)) # 2
and
(F* (A5, 2") + G (—y, 2")) = b | (F*(A%"2%) + G (—y", 7).
y*ey*
The statement holds as
P <, {0} ={0} <, (F+GA)*(0,z"),
D <2+ {0} = {0} <z- (F*(A™y", 2") + G (=y", 27)) # 0.

c) As the assumptions of b) hold for all z* € C*\ {0}, the result is easily derived from the
previous result as

P= (] (P<-{0}),

zxeC*\{0}

D= (] (D<.-{0})

2+eC*\{0}
holds. [ |

4.2.10 Corollary (Sandwich-Theorem). Let F : X — Q4(Z) and G : Y — QL(Z) be convex
and z*-proper and A : X — Y a continuous linear operator. If it exists xo € dom F' such that
(Axg, z) € intepi G for some z € Z and for every x € X it holds F(x) C {0} <,» G(Azx), then
there exist y* € Y* and zg € Z such that

Ve € X @ F(x) C Saey ) () — 20 € {0} <x G(Ax),
and

20 € F*(Ay", 2%),
20 € {0} <.» G*(—y*, 2%)

holds. If additionally F(zo) <, {0} = {0} <.« G(Axp), then zo can be chosen such that

F*(Ay*vz*) =20+ H(Z*)a
G* (—y*,2") = —z0+ H(z").

PROOF.
As both F' and GA are z*-proper, it holds

0 # F(x) C {0} <. G(Ax) # Z,
H(z*) D F(z)+ G(Az) #0

for all x € dom F' N dom GA. Moreover,

 |J (F(z)+ G(Az)) =l U (F(z) + G(Ax)).
zeX z€dom FNdom GA
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Applying 4.2.9 there exists y* € Y™ such, that

H(=) 2 (| (Fx) + G(Ax))) e {0} = {0} < (F*(A7y",27) + G*(—y)) # 0.

reX

Thus by 2.4.9 it holds
Z # F* (A%, 2%) 2 {0} <.- G*(—y") # 0.
Therefore, for all z € {0} <.~ G*(—y*, z*) it holds

F(x) C S(y o) (Az) — 2,
G(Ax) C S(_y .+ (Az) + 2.

As by 4.1.9 Sz« .+ — 2 is a conaffine minorant of F" if and only if z € F™*(z*, z*), the inclusion
G(Az) € Sy« .+)(Ax) + z can be transformed into

{0} <2+ G(Ax) 2 ({0} <or S(ye o) (AT)) — 2

= S(ary ) (T) — 2
proving the claimed inclusions. If additionally F'(xg) <.« {0} = {0} <.« G(Axg), then holds
H(') = {0} < (F* (A" =) + G(—y")) #0
and thus
Z # F*(A*y*, 2%) = {0} <.« G*(—y*) £ 0
and therefore there exists zg € Z such that
20+ H(2") = F*(A"y", 2%) = {0} <z G*(—y")
and
F(x) C S(y*vz*)(Ax) — 29 C {0} <, G(Ax)

holds by the same calculations as above. |
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5 Directional Derivative

In [10, 26, 50], the directional derivative of a convex function f : X — IRU{+o0} at zp € dom f
is defined as

f'(ao,) = lim 5 (f (o + t2) = [ (w0)) (50.)

for x € X, when the limit exists in RU{=£o0}. It is well-known that for convex proper functions
and zg € dom f it holds

F/(0,2) = g 3 (Fwo + t2) — f(x0))

as the difference quotient 1 (f (2o +tz) — f(z0)) does not increase, as t > 0 converges towards 0.
Moreover, if ¢l (f/(zo,-))(0) = 0 holds, then

ds € R, s> f(zo): clepi(f'(wo,-)) = Tepi f(20, ) (5.0.2)

holds, where Ty, r(x0,s) = cl {t(epi f — (xo,s))| t > 0} denotes the tangent cone of epi f at
(z0,s) € epi f. Of course, as f(xg) € IR, it has to holds s = f(x).
If clepi (f'(xo,-))(0) = 0, then

f'(wo, x) = sup {a" ()| 2" < ['(z0,-)}

holds for all z € X, compare [62]. If an additional constrained assumption holds, then the
max-formula

f'(wo, ») = max {a"(z)| 2" < f'(z0,)}

holds for all € X, compare [10].

Replacing the classic difference ”—"

by the inf-difference ” <", we succeed to prove that each
of the mentioned properties of the directional derivative, but (5.0.2), holds in the more general
case of f: X — IRU{zxoo} with 2o € X, f(x¢) not necessarily finite. The formula (5.0.2) can
only be achieved, if 2y € dom f holds. If f(zp) = —o0, then

Vs €eR: clepi(f'(zo,-)) = Tepi f(20,8) = (dom f — z9) x RR.

The formulas (5.0.1) and (5.0.2) gave rise to various definitions of a directional derivative
of vector-valued and set-valued functions, compare for example [15, 44, 65, 7, 14, 31, 28, 5]
and the references therein. Closest related to our approach appears to be the definition of the
derivative or epiderivative in [1]. The most popular approach seems to be that of the contingent
epiderivative, introduced in [28], compare also [51, 52] and related concepts. As the aim in those
works is to establish a subdifferential which is a subset of £ (X, Z), the contingent epiderivative
is vector-valued. We will return to discuss this approach later on in section 7.

For the present, we restrict our further investigations on the case of convex set-valued func-
tions F : X — QL (Z) and define a family of set-valued directional derivatives of F at zg € X
parallel to (5.0.1), namely

L (P(ao + tz) <ur F(20))

Fien)=jaf;
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for every z € X and z* € C*\ {0}. It will be shown in subsection 7.1, that a formula related
to (5.0.2) holds for all xg € dom F, that is

Vg € dom F : 329 € F(xo) <o+ {0} : clepi (FL«(20,-)) = Tupi(F<..{0})(T0, 20)-

It is notable, that again we do not assume that the function F : X — QL(Z) or its z*-hull
F <, {0} : X — Q'}{(Z*)(Z) is proper, neither do we assume that ¢ € dom F' holds. Each
directional derivative will prove to be sublinear and the difference quotient

Glt) = %(F(:Uo ttx) < F(xo))

proves to be non-increasing as ¢ > 0 converges towards 0, that is for 0 < ¢; < t2 it holds
G(t1) 2 G(t2).

We will prove that if (cl (FL.(xg,)))(0) = H(z*), then (cl (F..(zo,-))) is the pointwise supre-
mum of the conlinear minorants of ¢l (FJ. (zo, -)) and under an additional constrained assumption
we will provide a set-valued max-formula.

In subsection 5.2, we will summarize some calculus rules for the directional derivatives,
including a sum- and a chain-rule.

The results achieved in this chapter very naturally lead to one possible definition of the
subdifferential, or rather a family of subdifferentials of a convex set-valued function mapping
into QL (Z), which will be discussed in detail in the following section 6. In fact this approach
will turn out to coincide in all but the ”pathological” cases with the subdifferentials defined via
the conjugate of F': X — QL(Z).

Throughout this chapter, X, Y and Z are assumed to be locally convex separable spaces
with the corresponding dual spaces X*, Y* and Z* and Z is quasi-ordered by a closed convex
cone C C Z with {0} C C.

5.1 Definition and basic results
5.1.1 Definition. Let F : X — QL(Z) be a convex function. The directional derivative
Fl(zo,") : X = P(Z) in xg € X with respect to z* € C*\ {0} is defined by

«(xp,x) :=cl U F(xo+tz) <« F(x0)) .
t>0

Especially, if F': X — QL(Z) is a convex function and z¢ € X, then

F(zo) <2+ {0}, if F(xo) # 0;

holds and therefore F..(xg,0) = Z if F(xz¢) is not a z*-proper set, that is if (F(x¢) <.« {0}) €
{0, Z}, compare 2.4.6.

5.1.2 Lemma. Let F: X — QL(Z) be a convex function, zg € X and z* € C*\ {0} . It holds
with

Ve e X: Fl(xg,z)= {z ezl —2%(z) > go’(F,Z*)(:co,x)}.
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PROOF. By definition,

Vee X: Fl(vo,x) = 2€Z|Vt>0: —2"(2) >

~ | =

((F2v) (0 +tx) < Q2% (wo))}

t>0 ¢

o1
= {Z S Z‘ — Z*(Z) > inf 7(80(1‘—',2*) (xo +tx) < P(F,2*) ((l)o))}
{z€2] —2(2) 2 ¢{pm)(20,2) } € Qlyory(2).

5.1.3 Lemma. Let F: X — QL(Z) be a convex function, x € X and s > 0.
a) It holds (p(Fz/*(x07,)7sz*)(ﬂ?) = scp’(EZ*)(xo,;r).
If 25 € C* \ cleone {2}, then O _(ay,),22)(¥) = —00, if x € dom F.(z0,-) and +o0, else.

b) It holds
Vs >0: Fl.(zo,z) = Fl«(x0, ).

PROOF.

a) From 5.1.2, it holds @(F;*(xo,-),z*)(x) = (,DI(EZ*)(.%'(), x) and QD(FZ/*(x07,)’SZ*)(£U) = scsz’Z*)(xg,x).
If z5 € C*\ (cone {z*} U {0}, then @(z_(4y,),22)(z) = —oo holds if € dom F_.(zo, "), as
Flo: X = QY (Z). If Fle(x0,2) = 0, then

PP (w0,),2) (®) = Inf {—=25(2)] z € I} = Fo00.
b) Let s > 0, then

Ve e X : Fl.(xo,x) = {z €Z| —sz"(z) > gpl(ﬂsz*)(a:o,aj) = scp'(Fyz*)(mo,:n)}
= Fl.(z0, 7).

5.1.4 Proposition. For a convez function F : X — QL (Z) and z* € C*\ {0} it holds
Voo, 2 € X 1 Flu(wo,2) = (F <+ {0}).x(20,7) = (Flu(0,-) <2+ {0})(2).
Moreover, Fl.(xg,-) is closed if and only if it is z*-closed, proper if and only if it is z*-proper,
C-proper, if and only if it is proper and z* € C*\ —C*.
PROOF. As
VeeX: Fl.(zg,z)= {z €Z| —2%(z) > cp'(EZ*)(xo,:c)}
holds by 5.1.2, the equality of Fl.(x,z) and (Fl.(zo,) <+ {0})(x) for all z* € C*\ {0} and
all zg,z € X is immediate with 3.1.4. With 2.4.3 it holds
(F (0 + 52) <z Fla0)) = ((F <2e {0}) (w0 + 52) <2 (F <2 {0})(20)),

thus Fl.(zo,x) = (F <y {0}).-(zo,x) holds for all z* € C*\ {0} and all zg,z € X. As
Fl.(zg,-) maps into QE(Z*)(Z), Fl.(xg,-) is proper if and only if it is z*-proper, C-proper if and
only if it is proper and z* € C* \ —C*. Applying 3.3.1, F..(z0,-) is closed if and only if it is
z*-closed. |
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5.1.5 Lemma. Let F : X — QL(Z) be a convex function, z* € C* \ {0}.
a) If F(xo) =0, then Fl.(x x) = Z for allxz € X.
b) If (F(ag) <t {0}) = Z, then

Z, if 3t >0: g+ tx € domF;
0, else.

Fl.(zo,2) = {
In this case, Fl.(x9,0) = Z.
¢) If (F(zo + soz) <+ {0}) = Z for some sy > 0, then it holds Fl.(xg,x) = Z.
PROOF.

a) If F(zo) =0, then
1
Vze X,Vt>0: g(F(iU0+tZL“) < F(:Bo)) =7

holds an thus Fl.(zg, ) = Z.

b) If F(zp) <.+ {0} = Z and (z¢ + tx) € dom F, then for all s € (0,¢) it holds F(xo + sz) <=
{0} = Z and thus

1
Vs € (0,t) : g<F(x0 + sx) e F(:co)) =Z,
therefore F..(xo,x) = Z.
c) If (F(zo + soz) <+ {0}) = Z, then p(p .+ (0 + sox) = —o0. If 79 € dom F, then it holds

PO(F2%) (xo + sx) = —oo for all s € (0,s0) and by 2.4.3 it holds

1 *
Flo(ao,z) =l |J S {z € 2| =2°(2) = (prrzr) (@0 + 52) < o(ramy (20) } = Z.
s>0

If g ¢ dom F, then we can apply a), completing the proof. [ |

5.1.6 Corollary. If F : X — QL(Z) is a convex function and z* € C*\ {0}, then Fl.(xo,") :
X — Q?I(Z*)(Z) is positively homogeneous. If additionally xo € dom F' and F(xo) <+ {0} # Z
holds, then Fl.(xzo,0) = H(z*).

PRroOF. Let s > 0, then
1 1 .
Vt>0: ;(F(:cg +tsz) <av Fl0)) = SE(F@O +tsz) v F(20)) € Qyory(2)

and thus the function F..(xg, ) x — qu(z*) (Z) is positively homogeneous. If F'(x¢) is a z*-proper
set, then F'(zg) <+ F(xo) = H(z*), proving the statement. [ |

5.1.7 Proposition. Let F: X — QL(Z) be a convex function and z* € C* \ {0}.
a) If F(xg) is z*-proper, then Fl.(x0,0) = H(z*) and Fl.(x0,0) = Z, else.
b) If xg € dom F, then dom F.(xg,-) = {0} U cone (dom F + {—x¢}).

¢) The function Fl.(zg,-): X — Q%(z*)(Z) is sublinear.

63



d) If F(xg) is z*-proper, then

Ve e X: {0} <« Flo(zg,7) 2 Flu(z0, —1).

e) For z§,z* € C*\ {0} it holds

H(Z*)v Zf S(x*,z*) < F;S (l’o, ) ;

O
Especially, (FZ’O (@o,-)) (x*,2%) =0, if 25 ¢ cone {z*}.

f) It holds
(FL (w0, )™ () = N (S(a=,2) (7))

S(m*,z*) '\<le* (J?(),')
PROOF.

a) For all xp € X it holds

H(z*), if F(xo) is a z*-proper set;

, B _
F..(20,0) = F(z0) <z F(xo) = { Z, else.

b) It holds 0 € dom F..(xg,-). If x # 0 and t > 0, then
1 1
;(F(CEO +tx) <+ F(zo)) #0 & z € ;(domF — x0).
Thus, dom Fl.(zg,-) = {0} U cone (dom F' — x() holds, as

1
Flizg,z) #0 & 3t >0: z € ;(domF—xo).

c¢) Define G: X — Q?I(Z*)(Z) by
G(z) = F(zo + ) <z F(x0)
for all z € X. It holds
epiG = {(z,2) € X x Z| F(x0) + 2 C F(zo+2)} .
If t € (0,1) and (21, 21), (z2, 22) € epi G, then F(xg) C tF(xg) + (1 — t)F(zp) and

F(l’o) + (tZl =+ (1 — t)ZQ) C t(F(I'()) —+ 21) + (1 — t)(F(I'()) =+ 22)
CtF(zo+x1)+ (1 —t)F(xo + x2)
- F(mo +tx1 + (1 — t)xg),

as F' is convex. Thus, epiG is a convex set and G a convex function. If 0 < s1 < so holds,
then there is ¢ € (0, 1) such, that s; = tsy + (1 — ¢)0, therefore

G(s1z) 2 tG(s1z) + (1 — t)G(0)

1 1 1-1¢

- o

o G(s1z) 2 SQG(slx) + ™~ G(0)
B éG(Sla}), if F(z0) is a z*-proper set;
B éG(slx) + 7, else.

64



Thus, the difference quotient %G (tx) is, not increasing when ¢ > 0 is decreasing.

First, let s > 0 and z € X. Then 1G(tsz) = s1G(tsz) and hence F..(wy,-) is positively
homogeneous as

1
Fl.(z0,s2) = scl U —G(tsz) = sFL.(z9, ).
s
ts>0

Involving 2.4.8e) and the facts that F' is a convex function and F'(x() is a convex set it can
be seen that

1
Fl.(zo, 21 +32) Dcl U ;(G(tazl) + G(tz2)).
>0

For 0 < s <t it holds

G(tr1) + G(sz2) C G(try) + G(txs),
thus Fl.(zo,-) is subadditive.
As Fl.(xq,-) is sublinear, it holds

Fl.(z0,2) + Fl (20, —x) C Fl.(x0,0).
If F(x¢) is z*-proper, then F..(zo,0) = H(z*). Thus,

Fl.(zg,—x) C {z € Z| Fl(x0,2) + 2 C H(z*)}
= {0} <+ Flu(mo, 7).

By definition,

(Fle(z0,-))" (%, 2%) = [) (S(ar o) (&) <o Fle (w0, 2))
zeX

holds. Especially,

(FZ= (0, )" (2", 2%) C (S(a=,2+)(0) <zr Fl: (20,0)) (5.1.1)

0
holds and Fz/;; (20,0) € {Z, H(z})}. Thus (Fz/g (xo,))*(z*,2*) = 0 if 2§ ¢ cone {z*}. By 5.1.3
it holds Ft/za‘ (xo,x) = FZ/S (zg,x) for all x € X and ¢ > 0, thus without loss we can assume
2" = 2 from now on.

If FZ/S (x0,0) = Z, then F;S (x0, -) has no conlinear minorant and by (5.1.1) it holds
(FL« (o, )" (2", 2%) = 0.

From now on suppose F..(x0,0) = H(z*) By (5.1.1) it holds (F..(xo,-))*(z*,2*) C H(z*).
If S(g« .+y(x) 2 F/. (w0, x) holds for all x € X, then

(See,z+)(®) Qzx Fla(xo, 7)) 2 H(2")
and thus

(Fl-(z0,))" (27, 2%) = H(2").
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Both S(;+ .« and Fl.(zo,-) map into Q?I(Z*)(Z). If S(y+ .+) is not a conlinear minorant of
Fl.(x0,-), then there is x € X such, that F}. (20, %) DO Sz« .+)(x) holds and it exists s > 0
such that

(S(gr 2y () <o Fl.(zg,7)) C se+ H(z")
with z*(e) = 1. As both functions are positively homogeneous, we can apply 2.4.8a to prove

(F;*(x(b ))*(QZ*,Z*) - ﬂ(s(x*,z*)(tx) Lzx Fé* ($0,t$))
t>0

- ﬂ(tS(x*vz*)(m) < tFL(mo, 7))
>0

- ﬂ t(S(x*’z*)(l‘) <o+ Fli(z0,7))
t>0

- ﬂ tse + H(z")

t>0

= 0.
f) By definition,
(Fi(wo, )™ (@)= () (See (@) <e (Flu(oo,)(2%,2%))
(x*,2)eX*xC*\{0}
and therefore
(Fla(zo, )" @) = (1 (Seen(@) 9 HE))
S(x*,z*)#FZl*(mO")

S(z*,z*) ﬁF‘;* (3307')
|

The function (FL.(zg,-))* : (X*xC*\ {0}) — Q%(Z*)(Z) can be understood as the indicator
function of the set {(a:*, 2°)] S(ze 20y < Flu (o, )} mapping into Q;I(Z*)(Z), a subset of QL (2).
Recall that the neutral element in Qﬁq( .+(Z) is H(z*) 2 C, while C is the neutral Element in
QL(2).

Let F: X — QL(Z) be a convex function. From 5.1.7 it is immediate, that if F(z) is a
z*-proper set and Fl.(zg,x) = Z holds, then F..(xo, —x) = (. Moreover, dom F..(xg, ) = X if
ro € coredom F.

5.1.8 Theorem. IfF : X — OL(Z) is a convex function and xg € coredom F, then dom F.(x¢, ") =
X and the following are equivalent.

a) The set F(xg) is z*-proper.
b) The function F is z*-proper.

¢) The directional derivative Fl.(xo,-) is proper.
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PROOF. As dom Fl.(zg,-) = cone (dom F' + z() holds, the first result is immediate. The set
F(x0) is z*-proper if and only if ¢p,+) (v0) € R. As F is convex and xo € coredom F' =
coredom ¢, .«) holds by assumption, ¢p .« is convex and ¢(f .« (zo) € IR holds if and only if
¢(F,-+) is a proper function. This is equivalent to F' being z*-proper, thus the first equivalence
is proven. If F..(xo,-) is proper, then F..(xg,0) = H(z*) and thus F(z) is z*-proper. On the
other hand, if F(z¢) is z*-proper, then F..(x,0) = H(z*) and

V{0} <« Fl.(mg,2) D Fl.(z0, —2).
If Fl.(zg,x) = Z, then Fl.(x¢,—x) = (), a contradiction, as dom F..(xg,-) = X. [ ]

5.1.9 Proposition. If F : X — Q4(Z) is a convez function and xo € dom F, then there exists
20 € F(xo) <y« {0} such, that

epi Fl.(xg, ) 2 cone (epi F — (x¢,20)) U ({0} x H(z")).
PRrROOF. If F(z9) <.+ {0} = Z, then by 5.1.5
epi Fl.(zo,") = (cone (dom F' — xq) X Z) U ({0} X Z)
D cone (epi F' — (x0,2)) U ({0} x H(z"))

holds for all z € F(zg) <~ {0}. If F(zg) <.+ {0} # Z, then it exists zyp € Z such, that
F(z0) <2+ {0} = 20 + H(2*) and

Ve e X: Fl.(zg,z) 2 F(zo+x) — 20 + H(2¥)
and Fl.(x0,0) = H(z*). Thus,
epi FL. (0, ) 2 cone (epi F' — (g, 20)) U ({0} x H(z¥))
holds, as F..(zo,-) is a sublinear map from X into Q’}{(Z*)(Z). [ |

5.1.10 Lemma. Let F : X — QL(Z) be a convex function, z* € C*\ {0} and s > 0.

a) It holds QD(CIF;*(IO7.)7SZ*)($) = scl (,OI(EZ*)(:E(],ZL').
If 25 € C* \ clcone {z*}, then go(chZ/*(x07,)7zg)(x) = —0o0.

b) It holds
(cl Fli(z0,))(x) = {z €Z| —z2%(z) >cl <p'(F’Z*)(m0,az)}.

PROOF.

a) By 3.1.5 and 3.3.1 it holds

P F!, (w0,),52%) (T) = SCLO(F_(29,1),2%) ()

By 5.1.3, it holds

Pcl F! (x0,),52%) (1:) =scl SOI(F,z*) (l’o, :L')

and the second claim.
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b) By 3.3.5, the claim is immediate. [ |

5.1.11 Lemma. Let z* € C*\ {0} and F : X — QL(Z) be a convexr z*-proper function. If
Fl.(20,0) = (cl Fl.(x0,-))(0) = H(2z*) holds, then

Vz € X : (cl Fl(zg,-))(x) = N Sz 2% ().
S(z*,z*)ﬁFé* ($07')

ProoF. By 5.1.10 it holds
Vo € X : (cFl(xg,-))(z) = {z €Z| —2%(z) > Cl(p/(RZ*)(l‘o,w)} .

If Fl.(x0,0) = (cl Fl«(x0,-))(0) = H(z*) holds, then ‘p/(F,z*)($070) = clgo’(F’z*)(xo,O) = 0, thus
by 8.3.14 it holds

Vee X : cl gOI(F’Z*)(.%o,ZL') = sup x*(x).
$*S80/(F72*)($07')

5.1.12 Lemma. Let F: X — QL(Z) be a convex function and x¢ € dom F, then cl Fl.(xo,") :
X — QL(Z) is proper if and only if Fl.(xo,0) = (cl Fl.(x0,-))(0) = H(z*).

PROOF. Again, with
(cl Fli(z0,"))(x) = {z €zl —2%(z) > clgo’(EZ*)(a:o,x)}.
and the scalar result 8.3.14. [ |

5.1.13 Proposition. If F : X — QL(Z) is a convex function and (z, z) € intepi F, then for
all x € X it exists z € Z such, that (x,z) € int epi Fl«(xo,-). If additionally F(xo) <, {0} # Z,
then Fl.(xq,-) is proper.

PROOF. By 5.1.9, it exists zp € F(xg) <.+ {0} such, that
epi FL.(zo,+) 2 cone (epi F' — (xq, 20)) U {0} x H(z").

Thus, if (z9,2) € intepi F' holds, then (0,Z — z) € intepi FL.(xq,-). The function Fl.(zg,-) is
sublinear, thus by 3.3.8 for all z € X it exists z € Z such, that (x,z) € intepi F.(zo,-). The
remaining claim is 5.1.8, as g € int dom F' = coredom F' is assumed. |

5.1.14 Proposition. Let F : X — QL(Z) be a convex proper function and zo € dom F. If F
is z*-proper for z* € C*\ {0} and (zo,20) € intepi F, then

Ve e X : 35(1*72*) < Fé*(l’o, ) : Fé*(:co,a:) = S(x*’z*)(aj)

PROOF. By 3.3.7, the scalarization ¢(p.«) : X — IR U {00} is proper and continuous in
zo € intdom (g .+) . Thus, by 8.3.15 it holds

Ve e X : (,OI(RZ*)(:L'(),:L') =cl (Qﬁl(p,z*)(ffo, N(x) € R.
Thus by 5.1.2 and 3.3.1

Ve e X: Fl(zo,z) = cl(Fl(zo,))(x)
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and each image FJ.(zo,x) is a z*-proper set. Moreover, by 8.3.15 it holds
Vee X Jda* < ¢2F’Z*)($0, ) tp/(Ez*)(xg,x) = zo(z).

It holds x* < gp’(F’z*)(a:O, ) if and only if Siy« .+ < Fl+ (0, -) and go/(F’z*)(a:O,x) = z4(x) holds if
and only if (g« .+)(2) = F.« (w0, ), thus the claim is proven. [ |

In fact, the assumption of (zg, 29) € intepi F' could be replaced by either of the conditions
introduced in 3.3.9. The next theorem will provide another version of the set-valued max-
Formula introduced in 5.1.14.

5.1.15 Theorem (The Max-Formula). Let F : X — QL (Z) be a convex proper (C-proper)
function and o € dom F'. If (xg, z0) € intepi F, then it exists z* € C*\ {0} (z* € C*\ —C*)
such that F' is z*-proper and

Vee X:3z€Z: (x,z2) € intepi(Fl(z,")).
Moreover, Fl.(xg,-) proper, dom F..(xg,-) = X and
Vo€ X+ 3S oo) < Flu(wo,7) 1 Flu(@0,2) = S(gr 20y (2)

PROOF. A function is proper (C-proper) if and only if it is z*-proper for at least one z* €
C*\ {0} (z* € C*\ —C*). Thus, by 5.1.13 Fl.(x0,-) proper and dom F’.(x¢,-) = X and

Vee X:3z€Z: (z,2)€intepi(FL.(zo,")).
By 5.1.14, the final formula holds true. |

5.2 Calculus

5.2.1 Proposition. Let G : Y — QL(Z) be a convez function andt >0, A€ L(X,Y), y €Y,
20 € Z, (xf, 25) € X* x C*\ {0} and 2* € C*\ {0} . The function F : X — QL (Z) is defined by

F(x) = tG(AJ? + yO) + S(xa,zé‘)(x) + 20
forallx € X.
a) If zop € dom F' and z* ¢ cone {23} holds, then

Z, if x € cone (dom F' — xg);

Fl.(zo,2) = { 0

else.
b) If z* € cone {z3} holds, then
Fé* (zg,x) = tGIZ* (Axo + yo, Ax) + S(IS’Z:;)(JZ).

PROOF.

a) If 2o € dom F and z* ¢ cone {z;} holds, then F(zo) <1, {0} = Z. Thus the claim holds by
5.1.5.
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b) If 2* € cone {zj} holds, then

zZ

/ o
Fo(wo, @) = Fox (20, 2)
holds for all z € X by 5.1.3. For all s > 0 it holds
1
gF(xo + sx) < F(x0)

1
= ((tG(Aa;o +yo + sAzx) + S(xaz*)(wo + sx) + 20) <2+ (tG(Azmo + yo) + S(z(*),z*)(fUO) + zo))

1
== ((¢G(Awo + o + 5AT) + Sy oo) (w0 + 57)) <z (HG(ATo + Yo) + S(a ) (20)) ).

Recall that for s,¢ > 0 and (2%, 2*) € X* x C*\ {0} it holds ¢S« ) (s7) = 5S4 .+)(x) for
all x € X. Moreover it holds

Vo€ X i Spr . (x) € Q) (2)\ {0, 2},
Stag,) () + S(ag ) (€) = H(z7),

SO
1
S

=t- ((G(Axo + yo + sAzx) + SS(%xS,z*)(x)) Qo+ G(Azg + yo))

1
EF(CCQ + sx) < F(x) ((tG(Al‘o +yo + sAz) + SS(:ES,Z*)(QS‘)) < tG(Azp + yo))

—

— ®»

=t- (G(Al‘o + yo + sAzx) < G(Axy + yo)) + S(ag ) (2)

VA

holds and the claim is proven as

1
Fl.(zg,2) = cl U ;F(xo + sx) < F(x)
5>0

1
—td | g(G(Axo + 1o + $A7) <2+ G(Az0 +90) ) + S(apn) (2):
s>0

Recall that Fl.(zg,-) = Z holds, if z¢ ¢ dom F.

5.2.2 Proposition. Let F; : X — QL (Z) forn > 2 and i = 1,...,n be convex functions and

z*e C*\{0}.

a) If F(x) = (co (. ilnf Fi))(z) = (co(clco U Fi))(x) holds for all z € X and Fj(xg) <
i=1,...,n i=1

=1,..,n

{0} = F(x0) <z« {0} forj=1,....,m <n and o € X, then

Fl.(zg,2) 2 U Fl (0, )

7j=1,....m

holds for all x € X. Especially, if Fy(zo) = F(x¢) holds for k =1,....;1 <n, then

Fé*(l‘o,x‘) 2 U FJ{E*(.%(),Z')

Jj=1,....m

holds for all x € X and z* € C*\ {0} .
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b) If F(z) = ‘_sup Fi(z) = ﬂ F( ) holds for all v € X and Fj(xo) <.~ {0} = F(x0) <=

-----

{0} forj=1,.. mgnand:coeX, then
Fl.(zo,2) C ﬂ Fl (0, )
j=1,...m
holds for all x € X. Especially, if Fy(zo) = F(xg) holds for k =1,....;1 <n, then
Fl.(zo,2) C ﬂ Fl (20, )
j=1,..;m

holds for all x € X and z* € C*\ {0}.

PROOF.

a) If F(z) = clco U Fj(x) holds for all z € X and Fj(zg) <.+ {0} = F(xo) <.~ {0} for

i=1,...n

j=1..m<n and xo € X, then
F(zo+ ) < F(xo) 2 Fj(xo+ ) < Fj(zo)

holds for all z € X. The difference quotient

1
- (Fj(.%'() + th‘) <* Fj(.%'o))
t

is non-increasing, as t > 0 converges to 0. Thus,

cl U F(xo+tz) <+ F(xp)) 2 cl U Fj(zo + tx) <. Fj(x0))
ot =0t

holds and therefore F.(z,2) 2 F},(wo,z) holds for all z € X and j = 1,..m. If F(z¢) =
Fi(z0) then especially F'(zg) <z« {0} = Fj(x¢) <z {0} holds for all z* € C* \ {0}, thus the
second inclusion is a special case of the first.

If F(x) = sup Fi(z) = () Fi(z) holds for all z € X and Fj(zg) <.+ {0} = F(zg) <.

i=1,..,n i=1,...,n

{0} for j=1,...,m <nand zp € X, then F: X — QL (Z) is convex and
F(xo+x) <+ F(xg) C Fj(.l‘(] +x) <y Fj(l‘o)

holds for all x € X. Thus Fl.(zo,2) C Fj,«(z9,z) holds for all z € X and j = 1,..m. If
F(z0) = Fi(zo) then especially F(zg) <z+ {0} = Fi(z0) <z+ {0} holds for all z* € C*\ {0},
thus the second inclusion is a special case of the first.

5.2.3 Proposition. Let F; : X — QL (Z) be convex functions forn > 2 and i = 1,...,n and
z* e C*\{0}.

9

If F(x) = (F10..0F,)(z) holds for all x € X and Fi(x1).. + Fp(zn) = F(xo) holds for
x; € X with x1 + ... + &, = 2o and F(xg) is a z*-proper set, then it holds

Fl.(xg,z) = (F| «(z1,)0..0F . (xpn,))(2)

forallx € X.
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b) If F(z) = (F1 + ... + F,)(z) holds for all x € X, then it holds
Fl.(zg,2) 2 Fy,«(x0, %) + ... + F} .« (w0, )
for all xg,x € X.

¢) If F(z) = (F1 + ... + F,)(z) holds for all x € X and dom F; = X and F; is z*-proper for all
but possibly one i € {1,...,n}, then

Fl.(zg,z) = F{,-(z0,2) + ... + F . (20, )
for all xg,x € X.
PROOF.
a) Without loss of generality we assume n = 2. If F((x) = (F10F)(x) holds for all x € X and
0 # Fi(z1) + Fao(xe) = F(x0) # Z holds for z; € X with 21 + 29 = x0, then it holds

F;* (xo, i’) =cl U cl U %((Fl(-fl + tij) + FQ(.Z‘Q + i’g)) <], (Fl(xl) + FQ(ZL‘Q)))

t>0 T1+T2=T

=ad J aly %((Fl(l'l +tZ1) <o Fi(21)) + (Fa(2z + Z2) <av F2(332))>

T1+Z2=x t>0

As the difference quotient 1 (Fj(z; + tZ;) <I.~ F;(x;)) is not increasing as ¢ converges towards
0, it holds

Fl(zo,@)=cl |J (Fl.-(z1,%1) + e (22, 72))

b) Again we assume n = 2. If F(z) = (F; + F»)(z) holds for all z € X, then by 2.4.8 it holds
F(zo + 2) <z F(xo) 2 (F(zo + ) <z+ Fi(zo)) + (Fa2(20 + 2) <2+ Fa(20))

for all 2o,z € X. As the difference quotient +(F;(z; + tZ;) <.~ F;(z;)) is not increasing as ¢
converges towards 0, it holds

Fz/'* (.T(],.I‘) 2 (Fllz* (.Z'(), .%') + FQIZ* (LU(),.%))-

¢) We assume n = 2 and the additional assumptions are fulfilled by F} : X — OL(Z). Then
Fi(x) ¢ {0, Z} holds for all x € X and hence

Fi(xz)+ ({0} <z« Fi(x)) = H(2").
Therefore,
F(xo+ x) <+ F(xo)
={z € Z| (Fi(xo) + Fa(x0)) + 2z C (Fi(zo + x) + Fa(xo +x))}
={z € Z| (Fy(x0)) + 2 C Fo(zo + )} + (Fi(zo + ) + ({0} <2+ Fi(x0))
= (Fa(zo + ) <ox Fa(z0)) + (Fi(wo + o) <z Fi(wo))-

Again, as the difference quotients are decreasing as t > 0 converges towards 0, the claim is
proven.
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5.2.4 Proposition. Let A: X — Y be a linear continuous operator and G : Y — QL (Z) and
F — QL(Z) convex functions and z* € C* \ {0}.

a) It holds
(GA)L.(z0,7) = G . (Az0, Ax)
for all xg,x € X.
b) If AF(Axg) = F(x¢) holds for z¢g € X, then
(AF)L.(Axo, Az) 2 Fl. (20, 7)
holds for all x € X.

PROOF.
a) This is immediate from 5.2.1.
b) If AF(Az) = F(Ax), then
AF(Axg + Ax) <, AF(Axy) 2 F(xg+ x) <+ F(x0)

holds for all z € X. The rest is immediate, as F' is assumed to be convex. |
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6 Subdifferential

In classic scalar convex analysis, the subdifferential of a proper convex function f : X —
R U {400} at 9 € dom f can be defined equivalently as the set of those elements z* € X*
majorized by the directional derivative f’(zg,-) of f in o,

Vee X: a"(x—mzo) < f(x) — f(zo) (6.0.1)
or those, for which the Young-Fenchel inequality holds for x¢ with equality,
Vee X : a%(xg) — f(xo) > 2" (z) — f(z), (6.0.2)

compare [10, 50, 62, 64]. These two concepts are no longer equivalent even for extended real
functions, when f : X — IRU{+£o0o} is not proper. However, they coincide for convex functions,
whenever f(zg) € IR U {+oo} and the domain of f is not empty.

The distinction can be found implicitly in [63], where the subdifferential of a vector-valued
function f : X — Z is defined by the an inequality of the type of (6.0.1) and it is pointed out,
that T € L (X, Z) is a subgradient of f at x¢ € dom f if and only if

JUT) == sup(T'(z) — f(x))
zeX
exists and T'(zg) — f(xo) = f(T).

The relation between both concepts of subdifferentials will hold valid in the concept of
subdifferentials of convex set-valued functions as presented in the following. We will distinguish
between the subdifferential of a convex function F : X — QL (Z) in zp € X obtained via the
directional derivative, OF (z¢) and the extended subdifferential of a convex function F' : X —
OL(Z) in zp € X obtained via the conjugate, eyt (), both consisting of conlinear set-valued
functions Sy« .+ : X — Q4(Z) with 2* € X* and z* € C* \ {0} . Both kinds of subdifferentials
can be represented by a family of (extended) z*-subdifferentials in X*, denoted accordingly
by 0.« F(xo) and Oegt .+ F(x0). While the z*-subdifferential and extended z*-subdifferential
coincide, whenever F' : X — OL(Z) is a z*-proper function, the subdifferential and extended
subdifferential of F' coincide if and only if F' is z*-proper for all z* € C*\ {0}. The latter
situation occurs naturally, if F' majorizes a vector-valued function f: X — Z or at least F'(zo)
and —F(x) are minorized by elements zy,z_ € Z. This situation has been exploited in various
approaches in the literature, compare [6, 12, 37, 61].

In subsection 7.2 we will point out that the z*-subdifferential of a convex function at zg € X
can be equally defined via the normal cone of epi(F <,- {0}) at an element (zo,z0) with
20 € F(x0) <2+ {0}. Closely related to this are approaches introduced in [1] or [42, 43], differing
from our concept mainly by the choice of the normal cone. Also, the concept of our simple
z*-subdifferential 0. F (z() appears as a scalarized characterization of the subdifferential in [56].

In [4], the subdifferential of a function is defined via a scalarized version of the Young-
Fenchel equality. The Azimov-subdifferential of F' in (zg, 29) is closely related to the extended
z*-subdifferential of F' at xg in our approach.

Whenever the subdifferential of a vector- or set-valued function is understood to be a subset
of L(X,Z) as in [60], there are basically two different types of relation to our approach. The
fist appears, whenever the defining inequality is formulated via the inclusion in T'(z — xg) + C,
as in [6, 60] and others. In this case, T' € £ (X, Z) is a vector-valued subgradient of F' : X —
Q¢ (Z) if and only if S(_qu vy € OG(x0) (or € eyt G(x0)) holds for all z* € C*\ {0} for
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a certain minorant G : X — QL (Z) of F. On the other hand, if empty intersection with
T(x — xz9) —int C as in [12, 48, 54] in the defining inequality is used, then T' € £ (X,Z) is a
vector-valued subgradient if and only if S(_p+x .-y € 0G(20) (or € Dext G(70)) holds for at least
one zi € C* \ {0} for a specified minorant G : X — QL (Z) of F.

Exemplarily, we will illuminate the connection between our subdifferential and the approach
chosen in [60] and [65] in the final part of this chapter.

Throughout this chapter, X, Y and Z are assumed to be locally convex separable spaces
with the corresponding dual spaces X*, Y* and Z* and Z is quasi-ordered by a closed convex
cone C' C Z with {0} C C.

6.1 Definition and basic results

6.1.1 Definition. Let F : X — QL (Z) be a convex function

a) The subdifferential of F' in x¢ € X is defined as
OF (0) := {S(zr o) 2 € X*,2° € C*\ {0}, V& € X : (e oy (2) 2 Fla(20,) }.-
The subdifferential of F' in xo € X with respect to z* € C*\ {0} is defined as
0.+ F(wo) := {2" € X" S(ge o) € IF(20) }
b) The extended subdifferential of F' in xo is defined as
Deat F(20) := {S(zn o] 2 € X*,2° € C*\{0}, S(ur oy (20) <o F (20) € F* (2, 2%) }.
The extended subdifferential of F in xo € X with respect to z* € C*\ {0} is defined as

82*,,3% F(.%'O) = {x* c X*‘ S(]:*,Z*) & 6ezt F(xo)} .

Recall that for all z* € X* and z* € C* \ {0} it holds S(y« .)(z) = {2z € Z] —2"(2) > 2"(2)} €
Qfg(z*)(Z) for all z € X or equally, with e € Z such that —2*(e) = 1, then S .« (7) =
x*(z)e + H(z*) holds for all z € X.

Also, for z* € X*, z* € C*\ {0} and ¢ > 0 it holds

S(tm*,tz*)(x) = S(w*,z*) (.T)

for all x € X. Thus, t0,«F(x) = O« F(x) holds for all ¢ > 0 and z* € C*\ {0}. Moreover,
S(a*,2+) € OF () holds if and only if Sy« 4.+) € OF (x) holds for all ¢ > 0.

6.1.2 Corollary. For a function convex F : X — QL (Z), x € X and 2* € C*\ {0} it holds
0 F(x) = {aj* e X' Ve eX: z"(x) < cp'(EZ*)(xo,x)}
and

Dy ext F(x) = {x* € X*| Vo € X 1 2%(20) < p(F,2+) (T0) < cpfsz*)(m*)} .
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Proor. It holds
inf {—2"(2)| 2 € P(", 2)} = glpom) (),
inf {—2"(2)| 2 € Fl.(20,2)} = ¢, (20, 2)
and
inf {=2*(2)] 2 € S(pe 2y (@) } = 27(2).
Thus, the result is immediate with 2.4.2. |

6.1.3 Lemma. Let F : X — OL(Z) be a convex function, o € X and z* € C*\{0}. If
dom F =0 or F(xg) <.+ {0} = Z, then 0.«(x¢) =0 and O« ¢zt F(x0) = X*. Otherwise it holds
0+ F(x0) = Ozx eat F(20).

PROOF. If dom F' = (), then F* = Z and Fl.(zo,-) = Z for all z* € C* \ {0}, thus O« eyt F(z) =
X* and 0,«F(z) = () holds for all z* € C*\ {0}. If F(xg) <.« {0} = Z, then S(y+ (o) <o
F(zp) = 0 holds for all z* € X*, thus 0« ¢zt F'(x) = X*. Moreover, F..(z9,0) = Z holds and
thus 0F (x¢) = (). From now on suppose that F(zg) is a z*-proper set. It holds F(z¢) <.~ {0} ¢
{0, Z} and by standard argumentation

Ve € X S any(@0) G F20) € Sae oy (@) <o F(a)
is equivalent to
Ve € X : S ao(z) 2 %(F(mo +tx) <, F()).
Therefore, 0.+ F(x0) = 0.+ ezt F'(x0) holds. [ ]

6.1.4 Proposition. Let F : X — QL(Z) be a conver function, z* € C*\ {0}. If dom F # 0
and F(xg) <« {0} # Z holds, then the following statements are equivalent:

a)
z* e az*F(xO),

b)
Ve e X : 5(1*72*)(.I — xo) D) F(:E) < F(:L‘o),

¢)
Ve € X @ F(x0) ® Sige 2oy (x — 20) 2 F (7).

PROOF. It holds z* € 0, F(xy) if and only if for all ¢ > 0 and all z € X holds
S(gr ) (tx) 2 F(x0 + tx) <o F(20).
With z = x¢ + tz this is equivalent to
Vo € X 0 Sige ) (T —x0) 2 F (T) <ox F (20) -
If F(xzo) =0 and z € dom F, then 0,«F(zp) = 0 and equally

Va*: 0= F(20) ® Sgr ) (x — x0) 2 Fl(x).
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On the other hand if F(zg) <.+ {0} ¢ {0, Z}, then
F(xzo) ® ({0} <= F(xo)) = H(2")
and thus z* € 0.« F(z¢) holds if and only if
Ve e X @ Spe (T — ) ® F(zo) D F(Z).
|

6.1.5 Remark. If F: X — QL(Z) is a convex function, xg € dom F and F(xg) <« {0} # Z,
then for all x* € X* and z* € C*\ {0} it exists 20 € Z such that S(y .«)(x0) <.+ F(wo) =
20 + H(2*). Moreover, it holds x* € O« eqt F'(20) if and only if S= .«y — 20 is a conaffine
minorant of F. This again is true if and only if zg € F*(x*, 2*).

6.1.6 Corollary. If F : X — QL(Z) is a convex and z§-proper function for zi € C*\ {0},
then
0€d.:F(xo) & F(x) <z {0} =cl | (F(z) < {0}).
rzeX
and
F(ZL‘()) =cl U F(SE) & Vel \ {0} : S(O,z*) € Oent F(ZL‘())
reX
PROOF. It holds S(g .+ (z — 2z0) = H(2*) for all z € X, soif F: X — Qf(Z) is a convex and
zg-proper function for 2§ € C*\ {0}, then by 6.1.4 it holds 0 € 0,: F'(z¢) if and only if
Ve e X : F(xg) <.z {0} 2 F ().

As F(z0) <z {0} € QtH(ZS)(Z), the first claim is proven.
As by assumption F' is z§-proper, it holds dom F' # () and either it holds F(zg) <1,« {0} = Z,
or 0.« F(x0) = Oy+ eqt F'(z0), therefore the second claim holds. [ ]

6.1.7 Lemma. Let F1,Fy : X — QL(Z) be two convex functions, zo € X and z* € C*\ {0} .
If Fi(z) D Fy(x) holds for all x € X and Fy(xg) <.+ {0} = Fa(xo) <.+ {0}, then

0+ F1(xq) C 0.+ Fa(x0),
az*,emt Iy (370) C az*,emt F2(:If'0)-

Especially, if F1(xo) = Fa(xo) holds, then

8F1(£Co) Q aFQ({EO),
Oeat F1 (xO) C Oeat F2(x0)-

PROOF. As Fi(xzg) <.+ {0} = Fa(xo) <+ {0} holds, it can be proven by direct calculation that
Fl. «(xo,2) D F},«(x0,x) holds for all x € X, thus the first inclusion holds. By assumption,
Ff(x*, 2*) C F5(z*, z*) holds for all z* € X*, compare 4.1.9, thus the second inclusion holds. If
Fi(z0) = Fa(xg) holds, then Fy(xg) <.+ {0} = Fa(xg) <.+ {0} holds for all z* € C*\ {0}. W

6.1.8 Proposition. Let F: X — QL(Z) be a convex function, z* € C*\ {0} .
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CL) If az*,extF(CUO) ?é @, then

F(x0) <2» {0} = (el (F <2+ {0})) (o),
Oz ext F'(x0) = Ozx eat (clco F)(zp),
02+ F(z0) = 0:+(clco F)(zo)

holds.
b) If Oy ear F(x0) # 0 holds for all z* € C*\ {0}, then

F(x0) = (c1 F)(wo),
Oext F(20) = Oext (clco F')(zp),
OF (xg) = 0(clco F)(xp)

holds.
PRrOOF.
a) It holds x* € Oy ext F'(x0) if and only if
S(z*yz*)(mo) Qg+ F(x9) C F* (2", 2%)
and F*(z*, 2%) = (cl (F <,+ {0}))*(z*, 2*) holds for all z* € X*. If
F(xzo) <z- {0} & (el (F <2+ {0}))(x0)
holds, then
S(ar 2y (T0) <o F(0) 2 S 2+)(0) <o (cl (F < {01)) (o) 2 F*(x*,2"),

a contradiction. The second equation is immediate from the definition 6.1.1.

As either dom F' = (), F(zg) <.+ {0} = Z or 0, F(z0) = O+ ext F(z0) holds by compare 6.1.3
and the same holds for (cl (F' <.« {0})), the last equation is immediate.

b) If O, eqr F'(x0) # 0 holds for all z* € C* \ {0}, then

F(x0) <2+ {0} = (el (F <+ {0}))(0),
az",eth’(:L'O) = az*,e:rt (Cl F)(xO)a
0x+F(x0) = Oy (cl F)(z0)

holds for all z* € C*\ {0}. By 6.1.1, the rest is immediate. |
6.1.9 Corollary. Let F : X — QL(Z) be a convex function, z € X and z* € C*\ {0}. If
0z~ F(x) # 0,
then F' is z*-proper, x € dom F and F(xg) <, {0} = (cl(co F <« {0})(x0) If
Vz* e C*\ {0} :  0.,-F(z) #0,

then F(z) = (clco F)(x) and OF (x) = d(clco F)(x).
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PROOF. By 6.1.3, x € dom F holds and F is z*-proper, as 0,«F(x) # (). The rest is immediate
by 6.1.8. m

Let F': X — QL(Z) be a convex function, z € X. It is easy to see that for every z* € C*\{0}.
the set 0, F(x) is convex, possibly empty. In general, the set

{(@" ) € X x C\{0}] Sy ov) € OF ()}
is not convex, as the following example shows.

6.1.10 Example. Let F': IR — P (R?),C = R% be a function defined by

and for 0 < s <1 F(s) := sF(1)+(1—s)F(0) and F(z) := 0, else. Then S(o,—2,0))>S(0,(0,—2)) €
8F(0) but 5(07(_17_1)) € co 8F(0) \ 8F(0)

PROOF.
Let z* € {(—2,0), (0,—2)}, then

400, if x <0;

/ * 0, —
PFe )( z) {0, else.

and therefore S .+) € 0F(0). On the other hand, let z* = (—1,—~1). Then

2+2(vV2-2), if0<x<1;
QP(F’Z*)(QU) - 400, else.
Therefore,
Op(0,1) = V2 -2
and S(O,(—l,—l)) ¢ 8F(0) |

6.1.11 Lemma. Let F': X — QL(Z) be a sublinear function, z* € C*\ {0} .
a) The set 0.« F(0) is not empty if and only if
(el (F <2+ {0}))(0) = F(0) <=~ {0} = H(z").
In this case,
0+ F(0) = {a* € X*| V2 € X : Sgeo)(w) 2 F(2)},
Vo€ X 0.F(x) = {2" €0 F(0)] S 2y (w) = Fl) <z {0}}
holds and

VeeX: ((F <-{0})x)= () S
z*€0,+ F(0)
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b) If 0.~ F(0) is not empty for all z* € C*\ {0}, then
z*€0,+ F(0),
z*eC*\{0}
PRrooOF.
a) If 0,-F(0) # 0, then by 6.1.9 and 6.1.3
(el (F <= {0}))(0) = F(0) <+ {0} = H(z")
as F'(0) <+ {0} € {0, H(z*), Z} holds.

The scalarization (g .«) : X — IR U {+oo} is sublinear and proper and ¢z« (0) =
cl¢(r,z+) (0). Thus,

0, itV € X : 2*(z) < (v (2);
400, else.

@?F,z*)($*) = {
And goZ‘F’Z*)(mé) # +o00 holds for at least one z* € X*.
By 6.1.2, and 4.1.2
0.+F(0) = {a* € X*| F*(2,2") # 0}
={a* € X*| Ve € X : S(pe (@) 2 Flw)}

holds and by 6.1.1

O F(w) = {0" € X*| Vo € X & S(ge o)) 2 F(2), S(pe 2y (2) = F(w) <z {0}}
holds for all z € X.

Obviously,

Vee X : (c(F <.+ {0}))(x) C ﬂ Sz 2%y ()
z*€0,+ F(0)

holds. On the other hand, suppose

(x0,20) € ﬂ epi S(g= .+ \ clepi (F <.« {0})
I*Gaz*F(O)

Notice that
0,+F(0) = {z* € X*| sup{z*(z) + 2*(2)| (z,2) € epi F'} = 0}
Then by a separation argument it exists (z{, 25) € X* x Z*\ {(0,0)} such, that
xg(zo) + 25(25) > sup {zg(z) + 25(2)] (z,2) € clepi (F <.« {0})} =0
as (0,0) € epi (F <.+ {0}) and F is sublinear. Suppose z} = 0, then
Va* € 0:-F(0) 1 Vo € Xt Siprjap ) (x) 2 F(w),
a contradiction. Thus without loss of generality it holds z; = z* and it holds
Vz* € 0:-F(0) 1 Vo € Xt Sipejap ) (x) 2 F(w),

a contradiction.
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b) If 9, F(0) is not empty for all z* € C*\ {0}, then

Ve {0}, Ve € X1 (l(F < {0))@) =[] Steesy(®)
z*€0,x F(0)

holds and

(lF)(@)= (] (cl(F < {0}))(2).

2*€C*\{0}

6.1.12 Lemma. Let F: X — ch(Z) be a convex function and rg € X, then

az*F(.CE‘()) = 8Z*F;* (xo, 0),

6F(:1:0) = U aFé* (x(], 0).
z+eC*\{0}

PROOF. As the functions S« .« 1 X — Q%(Z*)(Z) are closed, it holds

.+ F(10) = {ac € X*| V2 € X : S(ge ooy () 2 (cl (Fla (o, -)))(a:)}.

F..(x0,0) holds, then we can apply 6.1.11, proving the result. Otherwise

If (cl (F7- (20, -)))(0) =
= Z and thus 0,«F(x0) = 0. Again, by 6.1.11 this is the desired result. W

(el (FZ- (o, )))(0)

6.1.13 Corollary. Let F : X — QL(Z) be a convex function and g € dom F. For z* € C*\{0}
the following statements are equivalent.

a) 0.+ F(xo) # 0,
b) (clF}.(xo,-))(0) = F7.(z0,0) = H(2").
If one of these statement is true, then cl Fl.(xg,-) is proper and

VreX (AF.(z0.)@) = ()  Seeao(@) (6.1.1)
S(z*’z*)éaF(xo)

ProOOF. The equivalence holds by 6.1.12 and 6.1.11.
If (cl Fl.(x0,-))(0) = Fl.(x0,0) = H(z*), then by 6.1.11

Vz e X (cFl.(xg,-))(x) = N Sz 24y () (6.1.2)
S(m*,z*)eaF(ajO)

holds and hence F..(x,-) is proper. [ ]

6.1.14 Theorem (Max-Formula). If F : X — QL(Z) be a convex function and (z¢,z) €
intepi F', then

Vee X:3z€Z: (x,z2) € intepi(Fl(zo,")).

If additionally F is z*-proper, then Fl.(xg,-) : X — Q%(Z*)(Z) is proper with dom F.(xg,-) = X
and
Vee X : 38 ) € OF (20) 1 Flu(zo,2) = S(pe ) ().
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PrRoOOF. By 5.1.13 it holds
VeeX:3z2€Z: (x,2) € intepi(Fl.(xo,"))

and Fl.(zg,-): X — QtH(z*)(Z) is proper with dom Fl.(z,) = X if F is z*-proper. By 5.1.15,
the last equation holds true. |

6.1.15 Definition. Let F : X — QL (Z) be a function and z* € C*\ {0}. Then Fi : X* —
Q'}{(Z*)(Z) is defined by

Fl(z%) == F* (2", 2")
for all x* € X*. The subdifferential of FJ in xf € X* is defined as
OF (x) := {:c € X|Va" € X* 1 Sipe_ur ooy() 2 F¥ (2", 2%) <o F*(xS,z*)}
The extended subdifferential of F7. in xy € X* is defined as
Oeat F- (w5) = {2 € X| V2™ € X* & S(yp ) (2) v F*(25,2") € S oy (2) v F*(2%,2) )
As by 4.1.9 the function F7. is convex, it holds

Vot e X*: (FR)(ahat)=d | (F (a5 + ta") <=+ Fi(x3)).

>0t
For convenience, we will abbreviate (Fi)L.(x§, 2*) = (F&) (x§, 2*).

6.1.16 Lemma. For F : X — QL(Z) and z* € C*\ {0} the function Fi : X* — Q?I(Z*)(Z)
is convex. The directional derivative of Ff : X* — Q'}{(z*)(Z) with respect to z* € C* \ {0} is

(FZ)z (g, 27) = (FZ2)% (25, 27) <z {0}
PrOOF. If z§ ¢ dom F7., then
Vzt e C*\ {0}, Vz* € X (F)L(xf,2") = Z.

Else, if z(, € dom F7., then for all z* € X™ it holds

Fi(a") <z Fi(xg) = (Fi(a") <ae Fi(a3)) <z {0},
proving the statement. |
6.1.17 Lemma. If F : X — QL(Z) is a function and 2z* € C*\ {0}, then it holds
OF (af) = {w € X| V2" € X* & S(ge oo(2) 2 (F2) (25,27) }
Oeat Fe (a) = {z € X| V2" € X" S(y oy (2) v F¥(25,27) C F™(2) v {0}}
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PROOF. It holds z € OF}.(xf) if and only if

Vr® € X* 1 Sipe gz o (w) 2 F7 (27, 27) <o F* (20, 27).
in this case, for ¢ > 0 and z* = tz* + x{ it holds

Vo' € X* 1 Sge . (2) 2 %(F*(x*,z*) S F*(:U(’S,z*)),
proving the first statement. The second statement is immediate, as

F*(z) <+ {0} = ﬂ (S(a= ze) ex F¥(27,27)).
rreX*
|

6.1.18 Lemma. Let F : X — OL(Z) is a function and z* € C*\{0}. If domF = 0 or
(clco F)(zp) <z« {0} = Z for xzg € X, then

865515 F;* (xa) X

If (cleco F) : X — QL(Z) is a z*-proper function, then
OF 2. (2) = Dyay F2 (o)
holds for all x* € X*.
ProOF. If it holds dom F' = ), then F}. = Z holds for all z* € C* \ {0}, thus

(F2) (a5,) = Z,

while
S(ag 27 (x) Qe F*(25,27) = 0.
On the other hand let (clco F)(zg) <i,+ {0} = Z, then F. = () holds for all z* € C*\ {0}, thus

(F:*)/(xgv ) = Z?
=17z

Thus, by 6.1.17 the desired statement holds if (clco F') is not z*-proper. Next, let (clcoF') :
X — QL(Z) be z*-proper, then F**(z) <.+ {0} = (clco F)(z) <.+ {0} holds for all z € X and
thus F** is z*-proper. In this case, Fli : X — QL (Z) is z*-proper and it holds

Vz*t € X* 1 Sipregp ) (@o) 2 F7 (27, 27) <o F(20,27)
if and only if
Vet € X* 1 S(gr oy(@0) Qv F(20,27) 2 S(ax 2x)(0) Qar FF (27, 27).

Thus, the claim is proven. |
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6.1.19 Proposition. Let F : X — QL(Z) be a function and z* € C*\ {0}. For zf € X* it

holds
OF (z) = {xo € X| xp € 0+ F(x0)},

Oext Fu(27) = {x0 € X| 25 € Ozr et F*" (20) } -

If additionally (clco F) : X — QL (Z) is a z*-proper function, then
OF(x) = Oeat Fl ()
= {xo € X|zj € 0,+(clco F)(zo)}
= {x0 € X| 2y € O+ ext (clco F) (o)}

PROOF. By 4.1.9, F** : X — QL (Z) is a convex function and (F**)*(z*,2*) = F*(z*,2*)
holds for all z* € X* and 2z* € C*\ {0}. Moreover, F** is either z*-proper, or dom F** = () or
F** <.« {0} = Z. If dom F** = {), then F}. = Z and

Ve e X, Vo' € X*: 2 € Oept F(27), " € Oy o0t (),
OF (z*) =0, ELF**(Q:) = 0.
Equally, if F** <.+ {0} = Z holds, then dom F. =) a
Vee X, Vo' € X*: 2 € gt FJ(2%), " € Oy eqt F™ (),
OF(2") =0, 0.+ F(z) = 0.

From now on, suppose that F** is z*-proper. Then F : X* — Qt ( ) is a proper function,
especially, F}. is a z*-proper convex function. Thus, by 6.1.18

Vag € X* 1 Oegt Flv(xg) = OF ()
holds. Moreover,
Vog € X 1 0+F(20) = Oz et F** ()
holds. If zg € OF%.(xf) holds, then
Stz zx F7 (o) © (F7) (g, 27),
thus z§ € 0.« F**(x¢). The same inclusion provides
Stag or) v F*(w5,2%) € F*(a),

if xf € 0.« F**(x), so in this case xg € IF} (z().
If (clcoF) : X — QL(Z) is a z*-proper function, then (clco F)(z) = F**(z) holds for all
x € X, proving the statement. |

6.1.20 Theorem. Let F : X — QL(Z) be a convex z*-proper function for z* € C*\ {0}. I,
Vee X: F(zx) <., {0} = (clF)(z) <.~ {0}
holds, then
OF2. (%) = Opur F2.(a)
holds for all x* € X* and
OF (zg) = {xo € X| xy € 0+ F(x0)} .
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PrROOF. If F : X — QL (Z) is z*-proper and
Vee X: F(z) < {0} = (clco F)(z) <, {0}
holds, then (clco F) : X — QL (Z) is z*-proper and by 6.1.19
OF?. (2%) = By F2 ()
holds for all z* € X* and
OF . (x5) = {xo € X| x5 € 0.+ (clco F)(zo)} -
Moreover,
02+ F(z0) = {xo € X| xg € Oz (cl F) (o)}
holds for all zg € X, proving the statement. [ |

6.1.21 Corollary. If F : X — QL(Z) is a closed convex function which is z*-proper for all
2z e C*\ {0}, then

Vi€ X: OF(x) = {4 v € OFL (")}
PROOF. As

vreX: 0F@ = |J {Sw.
z*eC*\{0}

x* e 8Z*F(x)}

holds and by 6.1.20
Vee X: 0xF(x)={2"€ X*|z€0,-F(x)},

the claim is immediate. [ |

6.2 Calculus
Recall that it holds
0. F(x0) : = {2 € X*| S(ge ov) € OF(20) }
(0% € X*| S(gr 2y € O(F <ze {0})(w0) } -

Moreover it holds

OF(wo) = | {S@wle” €0:Flao)}.
z*eC*\{0}

Thus without loss of generality we can assume F'(z) = (F <, {0})(z) for all z € X when
dealing with the set 0.« F(xg).
If dom F = () or F(zg) <+ {0} = Z holds, then by 6.1.4 it holds

Vo' € X* 1 Spge oy (w0) <or F(20) € F* (27,27) = Z (6.2.1)
and 0.« F(xo) = 0. In any other case (that is dom F' # () and F(z¢) <1, {0} # Z) it holds

0o+ F(w0) = {a" € X*| S(p 2o (w0) v Flwo) C F*(a*,2)}. (6.2.2)
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6.2.1 Proposition. Let G : Y — QL(Z) be a convex function and t > 0, yo €Y, zy € Z and
(zf, 28) € X*xC*\{0} and A: X — 'Y a linear homeomorphism. The function F : X — QL(Z)
is defined by

F(z) =tG(Az + yo) + S(ag.22) (@) + 20
forallz e X.
a) For all xo € X it holds

OF (o) = O(F <5z {0})(20).

Especially, Sy« .~y € OF (x0) holds if and only if

(x*,2%) € cone (8z8F(ZL'0) X {zé‘})

b) It holds
Dx F(wo) = tA"0.: G(Azo + yo) + @
and
OF (w0) = { Sty +ap )| Sy ) € DG (Ao +10) } -
ProoF.

) (@)

a) Notice that F(z) = (F <x {0})(z) holds for all z € X. Moreover, Sz~ 1.+)(7) =
= 0. From now

holds for all ¢ > 0 and (z*,2*) € X* x C*\ {0}. If 9 ¢ dom F, then 8F(a;0)
on, assume that xo € dom F. It holds S, .-y € OF(xo) if and only if

Ve € X i S oo)(®) 2 Flu (w0, ) € Qlyony(2).
By 5.2.1, Fl.(x0,0) = Z if z* ¢ cone {zj}, thus the claim is proven.
b) The set F(zg) is zj-improper if and only if the set G(Axg + y) is zj-improper. In this case
ast(ZCO) = tA*aZSG(ACL‘Q + yo) +z* = 0.
Therefore let us assume that F'(xg) is a zj-proper set. By 4.2.1 it holds
(e, 25) = (16" AT (@ — 28),25) <or S(oe—ap (A 30)) — 20

Thus by ((6.2.2)) it holds
0z F'(wo)

= {#* € X*| (Sar z5)(w0) Qv Flw0)) € F*(a*,20)}

* * * 1 — 1% * * *
= {90 € X7 ( (@ —ap,z) (T0 + A7 yo) < tG (Ao +yo)) ciG (;A e —950)720)}
= {x* € X" (S(%A—l*(x*_x8)7zg)(14x0 + o) <z G(Axg —i—yo)) - G*( AT (2* —xp), zg‘)}

= tA" {y" € Y"| (Syr ) (Ao + y0) <» G(Azo +10)) € G (v, zz;>} +
= tA*0,: G(Azo + yo) + zj.
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6.2.2 Proposition. Let F; : X — QL(Z) forn>2 andi=1,...,n be convex functions.

a) If F(x) = (co (i_ilnf F;))(xz) = (co(clco '_U F;))(z) holds for all x € X and Fj(zg) <.~

= i=1,...,n

{0} = F(zg) <, {0} forj=1,....m<n and xo € X, then

0.+ F(z0) C ﬂ 0.+ Fj(z0).

j=1,....m

Especially, if Fi,(xo) = F(xg) holds for k =1,...,1 <n, then

OF (z0) € () OF(xo).
k=1,

b) If F(z) = sup Fi(z) = ‘:10 Fi(x) holds for all x € X and Fj(xg) <. {0} = F(x0) <=

i=1,..,n

{0} forj=1,...,m<n andzL.‘.(; € X, then

0.+ F(x0) 2 co U 0.+ Fj ().

Especially, if Fi,(xo) = F(xo) holds for k =1,...,1 <n, then

OF (z9) 2 co U OF(x0).

k=1,...m
PRrROOF.

a) By 5.2.2, Fl.(zo,2) 2 Fj,«(z0,2) holds for all x € X, if Fj(zo) <« {0} = F(x0) <.+ {0}.
Thus,

0. F(wo) = {a* € X*| V2 € X 1 S(ge 2o (x) 2 Flu(0,2) |
C 9.+ Fj(xo).
If Fy(z¢) = F(z0), then for all z* € C*\ {0} above inclusion holds true.

b) By 5.2.2, Fl.(wo,z) C F,.(wo, ) holds for all z € X, if Fj(wo) <.+ {0} = F(z0) <.~ {0}.
Thus,

0. F (o) = {a* € X*| V2 € Xt Sy o) (x) 2 Flu (20, 2) |

2 0.+ Fj(xo).

If Fi(x0) = F(=0), then for all z* € C* \ {0} above inclusion holds true.

6.2.3 Proposition. Let F; : X — QL(Z) be convex functions forn >2 andi=1,...,n.
a) If F(z) = (FA0O..0F,)(x) holds for all x € X and dom Fy + .. + dom F,, # (), then it holds

0F(x) D ﬂ OF;(x;)

i=1,..n

forallx € X withx =x1 4 ... + xp.
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b) If F(z) = (F1 + ... + F,)(x) holds for all x € X, then it holds
02+ F(20) € 0+ Fi(20) + ... + 0z Fi(20),
OF (0) C {S(ar o) #* € o Fi(wo) + .. + 0or Fr(0) }
for all xg € X.

c) If F(z) = (F1 + ... + Fy,) () holds for all x € X and for all i = 1,...,n the functions F; are
convex and z*-proper and for all except possibly one F; it holds

dzeZ: (xg,2z) €intepiF,

for-allzg € () domF;, then

i=1,0,n
0 F(x) = 0+ F1(x) 4 ... + 0+ F(2)
holds for all x € X. If additionally the functions F; are z*-proper for all z* € C*\ {0}, then
OF (2) = {S(or o) 2" € 0 Fi() + .. + 0o F(2) }
holds for all x € X.
PROOF.

a) Let n =2 and z* € 0.« F1(Z) N 0.« Fao(x — z). Then Fy(Z) and Fy(x — ) are z*-proper sets
and by 2.4.9 it holds

S(ar ) (@) Qo= (F(2) + Fole —2)) © F (2", 27),
hence z* € 0.+ F(x).
b) By 5.2.3, Fl.(z0,2) C F{,.(zo,z) + ... + F} - (x0, x) holds for all 2 € X. Thus if

zr=ax]+ ...+,

Vi=1,.,nVe€X: Sgr.@)2 F!,.(xg, )
holds, then
Ve e X :  Sge . (x) 2 Fl(zo,7)
and hence the claim is proven.

c) Without loss of generality we assume n = 2 and (z9,z) € intepiF; for g € dom Fy and
z€ Z. If OF(x) = () for x € X, then we are finished, as OF(z) D 90Fi(x) + 02F(z). Now
suppose S(g« o) € OF (x), then € dom F; Ndom Fy = dom F' and by 5.1.13 it holds

Vie X:3z€Z: (Z,2)€intepi Fl.(x,")

And for all z € X it holds Fl.(zg,x) # Z. If Fy,«(x,-) is proper we can apply 4.2.4¢) and
5.1.7e) to achieve

0 F(x) = {z* € X*| (z*,2") € dom Fl.(x,-)*}
={z* € X*| (2*,2") € dom F} . (z, )" + dom F . (z, )"}
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As z € dom F, holds, dom Fy,.(z,-) # (). Therefore, suppose Fj..(z,y) = Z for y € X.
Then, by 5.2.3 it holds

Flo(@,y) 2 Fl-(2,y) + Fa-(2,y) = Z
and thus 0, F(x) = ), a contradiction. [ |

6.2.4 Proposition. Let A: X — Y be a linear continuous operator and G : Y — QL(Z) and
F — QL(Z) convex functions.

a) It holds
0.+(AF)(Az) D A%0,«F(Ax)

for all x € X and all z* € C*\{0}. If AF(Ax) <.« {0} = F(Ax) <Q,- {0}, then equality
holds.

b) It holds
A*0,+G(Ax) C 0,«GA(x)
forallz € X and all z* € C*\ {0}.
c) If for G one of the assumptions in 3.3.7 and 3.3.9 holds in Axy, xo € X, then
A*0,+G(Ax) = 0,«GA(x)
holds for all x € X and all z* € C*\ {0} . Especially,
OGA(x) = {S(aryr on)| Sy 2v) € OG(A2) }
PROOF.
a) By 4.2.6 it holds (AF)*(y*, z*) = F*(A*y*, z*). In general it holds
S(y* ) (Az) <o AF(Ax) C S(pnye o+ (7) <o F(Ax),

thus by (6.2.1) it holds 0.+ (AF)(Axz) D A*0.«(F)(Ax). If AF(Azx) <,- {0} = F(Ax) <.~ {0},
then

Sy ) (AT) < AF(Az) = S(pry» 2oy (7) <ox F(Az)
and y* € 0,«(AF)(Ax) holds if and only if A* € A*0,-F(Ax).
b) It holds G*(y*, z*) C A*G*(A*y*, z*) C (GA)*(A*y*, z*) and thus
A0+ G(Ar) C {A"Y" € X[ S(aryr oy (2) <o GA() C (GA) (A"y",2")}
C 0,+GA(x).
c¢) Under the additional assumptions by 4.2.6, for every (z*, 2*) € X*xC* \ {0} with (GA)*(z*, 2*) #
() there exists y* € Y* such, that
Ary* = 2, (GA) (2%, 2) = G*(y", 2%).
If G*(z*,2*) = (), then Sz 2) ¢ O(GA)(x). Otherwise,
A"0.-G(Ax) = {A™y" € X[ S(arye 2 (w) Qv GA(w) C (GAY (A", 2Y)}
= 0,-GA(x)
holds and thus the claim holds. |
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6.3 Comparison to vector-valued convex analysis

From now on, we consider a convex function f mapping a nonempty set dom f C X to Z and
define f(z) = +oo for ¢ dom f. Furthermore it will be assumed that xo € intdom f, f is
continuous at zg regarded as a mapping from X to Z.

The set-valued extension of f is defined as F': X — OL(Z) with

Vee X: F(z):=f(z)+C
with {+00} + C' = (). The epigraph of f is defined as
epif:={(z,2) e X x Z| z € f(z)+ C}.

Notice that in fact epi F' = epi f.
For f: X — Z U {400} and z* € Z*, the function z*f : X — IR U {£o0} is defined by

Ve e X : 2% f(x) =2"(f(z))

with 2*(+00) := +o00 and it holds ¢(p.+) (z) = (=2*f)(x) for l z € X.
As by assumption dom f = dom F is nonempty and for every x € X it holds f(z) + C # Z,
the set-valued extension F of f is z*-proper for all z* € C*\ {0}.

6.3.1 Lemma. For every z* € C*\ {0} the function ¢+ : X — R U {£oo} is continuous
at xo € intdom f and F(zg) = (cl F)(xo).

PROOF. As ¢(p.+) (r) = —2*(f(z)) holds for all x € dom f, the function pp.-) @ X —
IR U {+00} is proper and zg € int dom ¢(f.+). As f is continuous at z, it holds

Weldyz: Weldx: VeeU: flxg+x) € f(xg) + V.
From this it follows that
Ve>0: U eUx: Ve eU: —2"(f(xg)) —e < —2"(f(zo+ 7)) < —2"(f(x0)) +&.

Therefore the function g« : X — IR U {#£o0} is continuous at g for all z* € C*\ {0} and
by 3.3.5 it holds that F': X — QL (Z) is closed at zo. |
The subdifferential of f at g € int dom f is defined as

Of(xg) :={T € L(X,Z)|Ve € X : T(x —x) < f(x) — f(z0)}. (6.3.1)

6.3.2 Theorem. Let T' € L(X,Z) be a linear continuous operator. Then T € Of(xo) if and

only if
\V/Z* S C* \ {O} . S(—T*z*,z*) S aF(fEO)

ProoOF. By 6.1.4, the statement
V' € O\ {0} 1 S(_pez o) € OF (20)
is true if and only if
Vz* e C*\ {0}, z € X : —2"(Tx) < —2*(f(z0 + ) — f(x0)).
This is true if and only if
Ve € X, f(xzo+x) — f(xo) € {Tx} + C,
which is by definition T € 9 f(z9). [ |
Under the assumptions of 6.3.2, —z*(9f(z0)) € 0 .+) (v0) holds true.
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6.3.3 Proposition. If for all z* € C*\ {0} the set 0.« F(x9) = {x* € X*| (g 24y € (9F(x0)}
is single valued and int C* # (), then there exists —T* € L(Z*, X}) such, that

OF (20) = {S(_pez | 2" € C*\ {0} }
and Of(zo) = {T'}.
PROOF. It is to prove that the function —t* : C* \ {0} — X* defined by

V2t e O\ {0} :  —t7(2") == 2", Op(p vy (T0) = {27}

can be uniquely extended to a mapping —1™ € L (Z*, X}). The equation

OF (0) = { (e )| 2" € C*\ {0} }
is then a immediate conclusion of 6.1.2 and df(xo) = {T'} holds by 6.3.2.

Define —t*(0) = 0. As for ¢ > 0 holds Sz« 1.+) = Sz+ o+ for all (z*%,2*) € X* x C*\ {0},

—t* is obviously positively homogenous.

As SO(F7ZI+ZS)(:I;) = QD(F’ZT)(LL’) + go(F,Z;)(a:) for all z € X, 27,25 € C*\ {0} holds under the
given assumptions and f(zg) € Z, —t* is additive.

As int C* # () has been presumed, each z* € Z* can be represented as z* = 2] — 23, with
27,25 € C* and —t* can be uniquely extended to a linear mapping —7™ : Z* — X* defined by

ST = () — () (25).
Now let U C X* be defined through z € X \ {0} with
U={z"e X" —1<z"(z) <1}.
Now choose 0 < t small enough for zg + tx € dom f and define V' C Z* by
Vi={z" € 27 —t <27 (f(wo + tx) + f(w0)), 2" (f (w0 — tz) — f(20)) <t}
Thus,
Vz*e VnCr\ {0} : —T*z*(tx) < 90/(F7Z*)($0,t$) < —2*(f(zo + tx) + f(z0)) < t,
T () € Pl (0, 1) < —2*(f (w0 — t2) + F(z0)) <1,
that is —=7*(VNC*\ {0} ) C U. Since int C* # (), there is an open set W C Z* and 25 € C* \ {0}

such, that
{zn}+W "\ {0} nV
and we get
-T*({z}+ W) CU.
Therefore, —T* € L (Z*, X}). [ |
Under the assumptions of 6.3.3, Fl.(xg,z) = T(x) + H(z*) holds for all z* € C*\ {0} and
x € X. The above proof is based on the idea of the proof of Proposition 2.5. in [65].

6.3.4 Corollary. [65] Let X be a reflexive Banach space, int C* # () and all order intervals
[21,22] C Z are relatively compact in Z,. As always, f: X — Z U {+o0} is convex and f is
continuous at xo € intdom f and F : X — QL (Z) is the set-valued extension on f. Then

Vz* e C*\{0} :  —2"0f(z0) = Op(r+ (20)-
6.3.5 Theorem. Under the assumptions of 6.3.4, Of(xo) is single valued if and only if
OF (x0) = {S<_T*z*,z*> 2 e 0\ {0} }
PROOF. Immediate from 6.3.3 and 6.3.4. |
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7 Tangent Cone and Normal Cone

The results in this chapter will provide an alternative description of the z*-directional derivatives
F!l.(zp,-) and the z*-subdifferentials 9.« F(x¢) of a convex function F : X — Q4L (Z). In 7.1.4
it will be proven that for any zo € dom F' there exists zgp € F'(zg) <.+ {0} such, that

cl (epi FLu (0, -)) = Tepi (P {o}) (%0, 20)

and in 7.2.4, that x* € 0, F(x) holds if and only if

dzp € F(l‘o) < {0} : (JE*,Z ) S Nepl(qu*{O})(xm'ZO)'

This far, we are in accordance to the well-known scalar results, compare [10, 50]. It turns out
that the tangent cone of epi F' at (x,20) € epiF' in general is a subset of the epigraph of the
supremum of the z*-directional derivatives of F' at xgy. Likewise, the normal cone of epi F' at
(x0,20) € epi F' coincides with the set

{(@",2) € X* x C"\ {0} | (g ) € OF (20) }

only in the special case when F(z9) = 29 + C holds.

As it has be shown in [10], the tangent cone and the contingent cone (for definition, see [2])
of epi F' at (z9,z20) € epi F' coincide when F' is a convex function and thus epi F' is a convex
set. The statement in [10] is stated in the finite dimensional case, while the proof does not
make use of the finite dimension, thus it holds in the more general case as well. Thus, the z*-
directional derivatives are minorants of the (set-valued extension of the) contingent epiderivative
DF(xg,20) : X — Z of F in (x0, 20) € epi F defined in [31], when it exists, and DF(x¢, zp) will
turn out to be the pointwise supremum of the z*-directional derivatives, if it exists. The same
holds true for the derivative and epiderivative of F' in (x¢,29) € epiF, as defined in [1], as
there the tangent cone is already used as an initial concept. In those concepts, an element
(20, 20) € epi F' is fixed and the derivatives are defined with respect to this point. It is notable
that in our approach, in general zy € F'(x¢) does not hold and moreover is not fixed in advance.

Throughout this chapter, X and Z are assumed to be locally convex separable spaces with
the corresponding dual spaces X* and Z*, and Z is quasi-ordered by a closed convex cone C' C Z
with {0} € C.

7.1 Tangent cone

7.1.1 Definition. [1] Let Y be a locally convex separable space, M C 'Y a conver set and
Yo € M. The tangent cone of M in yg is defined by

T (yo) := clcone (M — yp).
7.1.2 Corollary. Let F : X — QL(Z) be a conver function, z* € C*\ {0}. For (zo,20) €
epi (F <.+ {0}), the tangent cone of epi (F <.+ {0}) in (xq, 20) is given by

Topi (Fa.-{0}) (%0, 20) := cl U (epi (F <= {0}) — (20, 20)) -
t>0

PROOF. Setting Y = X x Z, M = epi (F <,» {0}) and yo = (79, 20) € epi (F <.« {0}), the
result is immediate from 7.2.1. |
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7.1.3 Lemma. Let F : X — QL(Z) be a convex function, z* € C*\ {0} and (zo,20) €
epi (F <.+ {0}).

a) If zo+ H (2%) C (F (z9) <+ {0}), then

Tepi (Fa..{0}) (%0, 20) = cone (dom F' — x9) X Z.
b) If zo+ H (2*) = F (x0) <, {0}, then
Tepi (P {0}) (0, 20) = clepi FL. (20, ) .

PROOF.

a) If 2o + H (2*) C (F (x0) <.+ {0}), then zy € int F'(zg) <, {0} holds and the statement is

=

immediate with 7.1.1.

b) If zo + H (2*) = F (x9) <+ {0}, then

epi (FL-(20,7) = {J 7 (epi (F < {0}) — (20, 20)),

t>0

proving the claim. |

7.1.4 Theorem. If F : X — QL(Z) is a convex function, xg € dom F and z* € C*\ {0}, then
there is zo € F(xg) <.+ {0} such, that

Tepi (Fa..{0}) (0, 20) = clepi Fl. (z0,-) .
If additionally (cl (Fl.(z0,-)))(0) = H(z*) holds, then

Tepi (Fanfoh) (0,20) = () epiS(p ooy
z*€0,+ F(x0)

PRrROOF. The first equation is proven in 5.1.9, the second in 5.1.11.

Even if F'(zg) is a z*-proper set, in general there is no zg € F' (z9) such that zo + H (2*)
F (z9) <.+ {0} as the following example will show. Therefore the assumption of (zg,z0) €
epi (F <+ {0}) in 7.1.3 is notably weaker than zp € F' (x).

7.1.5 Example. Let F : X — QfRi (IR2> defined by F = {(t, %) |t > O} +IR% and z* =
(—1,0), then F <1,- {0} = (0,0) + H(z*) holds true, while

V(z,z) €epiF: z+ H(z") C F(x) <, {0}.
Thus, Tepi (F..{0}) (T0, 20) = X X Z for all (z9,20) € epi F" while
VeedomF: Tip.(z,(0,0)) =X x H(z") = clepi (FL. (zo,")) -
As epi F C epi (F <.+ {0} holds for all z* € C*\ {0}, it can be seen that

Tepir (20,20) € [ T(r.z) (w0, 20)
2+eC*\{0}

holds true. The inclusion is in general not an equality, as the following example shows.
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7.1.6 Example. [33], p. 199. Let F: X — P (I'), C:= {z = (zn)pew €| VR €N : 2, > 0}
and F = C. The dual cone is C* = {z" = (2}),cn €| Vn € N: 2z <0}. For all z* €
C*\ {0} it holds p(f.+) = 0. Take 2o € C with

1 n—1
Vn € IN : Zo,n=(2> ;

then
V2" e C*\{0} :  zo+ H (2") & (F(0) <z {0})

and Tepi(F<]z* {0}) (0, Z(]) = X x I while

1 n—1
TepiF(O,zO):chl{zGlHEIt>OVn€]N:znZ—t(z) }

n—1
and for all x € X and for z := (— (%) ) it holds (z,2) ¢ Tepir (0, 20).
n€lN

PROOF. As

1 n—1
epiF—(O,Zo):XX{zElHVnE]N:zn2—<2> }
holds, (x,2) € Tepir (0, 29) holds if and only if

Ve>0:3z.€llt>0: Z|IE€,”|<E,
nelN

3 n—1 1 n—1
IN: — (- em > —t | = .
Vn € (4> + ze, <2)

3 n—1 1 n—1

a contradiction to x. € I |

Thus,

7.1.7 Corollary. Let F: X — QL(Z) be a convex function, vo € X. If F (zo) = 20 + C, then

Tepir (m0,20) =[] T(rze) (w0, 20) -
€0\ {0}
If additionally (cl (F..(xo,-)))(0) = H(z}) holds for at least one z§ € C*\ {0}, then

*
0

Tepi F (20, 20) = ﬂ epiS(gx 24
S(z*7z*)€8F(aco)

PROOF. By assumption it holds F (zg) = z9 + C, so F(xo) <+ {0} = 29 + H(z*) holds for all
z* € C*\ {0} and thus

Ve e X, V2" e C*\ {0} :  F(x) <« F(xg) = F(x) <.+ {20} -
Therefore,

Vee X: F(x)—z = ﬂ (F(z) <2+ {20})
z*eC*\{0}

94



holds and therefore

epi F — (z0,20) = [ (epi (F <= {0}) — (20, 20))-
2+eC*\{0}
This proves
Tepir (x0,20) = [ T(rs) (@0, 20) -
2+eC*\ {0}

If additionally (cl (F..(xo,-)))(0) = H(z}) holds for at least one z§ € C* \ {0}, then

*
0

Tepi (F<1,x{0}) (.%(), ZO) = m epi S(m*,z(’)‘)
0 a:*east(ato)

holds by 7.1.4. By 5.1.12,
Tepi (Fa..{0})(T0, 20) = clcone (dom F' — z¢) x Z
if and only if (cl (7 (x0,-)))(0) = Z. In this case, 0« F(xo) = § and

Tepi (Pas {0}) (20, 20) N Tepi (P {0}) (T, 20) = [ epi S(anz5) N () epiSus .,
x*east(mo) w*EaZ*F(ajo)

thus the statement is proven. |

7.1.8 Remark. In [31], the contingent epiderivative of a set-valued function F : X — P (Z) at
(x0,20) € epi F' is defined as a single-valued function DF(xq,z9) : X — Z with

epi (DF(xg, 29)) = TepiF(fUO, 20)-

As we are only interested in (C-)convex functions, the contingent cone in the original definition
coincides with the tangent cone of epi F' in (x,20) € epi F', compare [10]. Moreover, let F¢ :
X — QL(Z) be defined by

Vee X: Fo(x):=c(F(z)+C).
Then for all (zo, z0) € epi F' it holds
Tepi Fe. (205 20) = Tepi (0, 20)

and thus DF(xo,20) = DFc(xo,20) holds for all (zo,z0) € epi F'. Thus without loss of gen-
erality suppose that F(x) = Fo(x) holds for all x € X. If DF(xq,z0) exists, then especially
DF(x0,20)(0) € Z holds. By definition, the set

DF(xg,20)(0)+C ={z € Z]| (0,z) € epi DF (0, 20)}
s given by
{z € Z](0,2) € clcone (epi F' — (x0,20))} 2 cl {t(z — 20) € Z| z € F(xp), t > 0}.
Therefore,

Vz € Fxg): Vz*eC*\ {0} : %gg —tz"(z — 29) > 0.

95



Thus, @Fz+) (o) > —2"(20) holds for all z* € C*\ {0} and therefore F'(x9) C 20 + C holds
true. As 2o € F(z0) holds by assumption and F(zo) € Q. (Z), it holds F(xg) = 29 + C.
Likewise, if DF(xg, z) exists, then for all x € X it holds
V2t e C*\ {0} :  inf{—2"(2)| z € (1 Fl.(z0,))(x)} > —2*(DF(x0, 20)(2))
by 7.1.7 and therefore
V2 e C*\ {0} :  (cl Fl.(z0,"))(x) = DF (0, 20)(z) + H(2¥),

DF (g, 20)(x) + C = ﬂ (cl Fl(z0,))(x)
2+eC*\ {0}
holds for all x € X, as Tepi (20, 20) € Tepi (Fa.. {0}) (%0, 20) holds for all z* € C*\ {0} .
7.1.9 Corollary. Let F : X — QL(Z) be a convex function, zy € F (x¢). If F (z) = 20 + C,
then
OF (xg) = {S(m*7z*)| epi S(x*,z*) D TepiF (o, ZO)} .
PRrROOF. The set OF (zp) is nonempty if and only if (cl (F;S (x0,-)))(0) = H(z§) holds for at
least one z5 € C*\ {0} . In this case, the statement is proven by 7.1.7. On the other hand, let
OF (z9) = 0 holds. Then

Vet e C*\ {0} (cl(Fla(z0,-)))(0) = Z

holds and as Tepi p(0, 20) = N Tepi (Fa..{0})(Z0, 20) holds by 7.1.7,
2*eC*\ {0}
{S(x*,z*)’ epi S(:p*,z*) 2 TepiF ($07 ZO)} =0
holds true. u

The case of F(xy) = zo + C occurs naturally when F' (z) := f (z) + C for all x € X, where
f: X — Z is a vector-valued function.

7.2 Normal cone

7.2.1 Definition. [1] Let Y be a locally convex separable space, M C 'Y a convex set and
Yo € M. The normal cone of M in vy is defined by

Nas (yo) :=={y" € Y*|Vy € M : y"(y —yo) <0}
7.2.2 Corollary. Let F : X — QL(Z) be a convex function, z* € C*\ {0}. For (zo,20) €
epi (F <+ {0}), the normal cone of epi (F <.« {0}) in (o, 20) is defined by
N,

epi
PROOF. Setting Y = X x Z, M = epi (F <.~ {0}) and yo = (x0,20) € epi (F <.+ {0}), the
result is immediate from 7.2.1. |
7.2.3 Remark. If F : X — QL(Z) is a convex function, z* € C*\ {0} and (xo,20) €
epi (F <.« {0}), then

(Fa..{0}) (70, 20) := {(z%,2") € X* x Z%| ¥(x, 2) € epi (F <1« {0}) : 2" (z — w0) + 2" (2 — 20) < 0}.

Nepi (F<,%{0}) (.%'(),Z() ( epi (F<1,+{0}) (waZO))*
{ : _* E X" xZzZ ‘ epi ( F<]Z*{O})(x0az()> - epiS(x*,Z*)}
C X* x (cone {25} U{0})

holds true.
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7.2.4 Theorem. Let F : X — QL(Z) be a convex function, z* € C*\ {0}. If 9 € dom F,
then it exists zo € F(xg) <y« {0} such, that

Nepi (Fa.- {0}) (0, 20) = cone {(z7,2")| 2" € 0.« F(x0)} U {(z",0)| Vo € dom F': z*(z) < 0} .
Moreover, x* € 0,«F(xg) holds if and only if
Jz0 € F(x0) <2+ {0} 1 (27, 2%) € Nepi (r . {0)) (T05 20)-

Proor. The first result is immediate from 7.2.3 and 7.1.4. The second holds true as xz* €
0.+« F(z0) holds if and only if Sy« .+ is a minorant of F_.(xo,-). Applying the first result, the
statement is proven. |

7.2.5 Lemma. If F: X — QL(Z) is a convex function and (z¢,z20) € epi F, then it holds

Nepi #(20,20) 2 | Nepi(Fa.. o) (0, 20)-
2+eC*\{0}

Proor. It holds

NepiF(x0> ZO) = (TepiF(-rOa ZO))*

and
U Neiraiop@oz0) = U Tepi(ra.. oy (0, 20))"
z*eC*\{0} z*eC*\{0}
SO ) Tepi(raop(0,20)*
z*eC*\{0}

= (Tepi r(0, 20))"

= Nepi r(20, 20).

|
Example 7.1.6 supplies an example where the inclusion is real.
7.2.6 Proposition. Let F : X — QL(Z) be a convex function, z* € C*\ {0}. If F(xg) =
zo + C, then
Nepir(z0,20) = |J  Nepi(ra,- {0} (%0, 20)-
zxeC*\{0}
PrRooOF. By 7.1.9,
aF(Jfo) = {S(x*,z*)’ 2feC” \ {0}, (IL’*, Z*) S Nepi(qu*{O})(frOa Zo)} .
Moreover,
NepiF(CC(),Z()) = {(l‘*,Z*) e X*xC* \ {0} | S(m*’z*) S 8F($0)}
U{(z*,0) € X* x Z*|Vx € dom F' : z*(x) < 0}
= U Nepi (FQZ*{O}(xOu ZO)'
eC*\{0}

|
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8 Appendix

8.1 Examples

In this chapter, we will present some special functions in order to illustrate the theory presented
in the main part of this work.

8.1.1 Example (Conlinear functions). Let (z,25) € X* x C*\ {0} and F' = Sigz .oy : X —
QL(Z). Then

a) Let z* € C*\ {0}, then

tey(z), if 2 =tzy witht > 0;
—00, else.

Ve e X : :pp.(r)= {

Moreover, {z* € C"\ {0} | ¢(pz+y : X = IR U {£oo} is proper} = cone {z;}.

b) The function F : X — QL(Z) is conlinear, proper and closed. If z§ € C*\ —C*, then F is
C-proper

¢) It holds dom F = X and epi F is a closed half space in X x Z.
d) Let z* € C*\ {0}, then

tF if 2% =25 with t > 0:
Vzg,z € X ¢ 1 Flu(zo,x) = (z), if =z 24 wi > 0;
Z7 else.
e) Let x* € X*, 2* € C*\ {0}, then it holds

H(z), if (27, 2%) € cone {(25, 25)};

F*(z*,2") = {

0, else.
f) It holds
Vee X: F*(x)=F(x)
g) It holds
VzeX: OF(@)={Sus.)}
and
Vee X Ot Fx) = {S(IS:ZS)} U {S(x*’z*) z* € C*\ cone {26‘}} .

PROOF.

a) For z* € C*\ {0}, the function ¢(f.+) : X — IR U {£o0} is defined by

Ve € X1 g (1) = 261%{:5) {=2"(2)}

and F(z) ={z € Z| — z§(z) > zj(z)} for all x € X, thus for z* € C* \ {0} it holds

tey(x), if 2* =tz§ with t > 0;
—00, else.

Vee X: QO(RZ*)(.%) = {

Therefore, {z* € C*"\ {0} | oy : X = IR U {£o0} is proper} = cone {z3}.



b) As
Vee X: F(r)=(F < {0})(z)

holds by 3.3.1, F : X — QL(Z) is closed and by proper by 3.2.5. Also by 3.2.5, F is
C-proper, if and only if zj € C*\ —C*.

c¢) It holds dom F' = dom ¢(f .~y = X for all z* € C*\ {0} and
epl F = {(z,2)| —2(2) > 2p(2)},
a closed half space in X x Z.

d) The directional derivative of F': X — QL(Z) in xp € X with respect to z* € C*\ {0} is
defined by
VeeX: Fl.(xo,x)= {z €Z| —2%(z) > go/(EZ*)(azo,x)}

thus
F(z), if 2" =tz§ with t > 0;
Z, else.

Vee X: Fl(xg,x)= {
e) If (z*,2*) € cone {(z*, z*)} holds, then
Ve e X : S(:c*,z*)<m) = S(IS’ZS)(&?)
The conjugate of F : X — QL (Z) is given by
Vat € X', 2 € CT\{0} : F(a*,2%) = {2 € 2| - 2(2) > ¢fpon (@) }

and
Plran (@) = Lcone{(xg,zg)}(x*aZ*)7
SO
vVt e X*, 2 e 0"\ {0} :  F*(2*,2%) = (Icone{(:cg;,zg)} Dy {0}) (z*, 2%).

f) As F: X — QL (Z) is closed and proper, F = F**: X — Q% (Z) holds by 4.1.15.
g) By 6.1.2 , the subdifferential of F': X — Q4 (Z) in z € X is given by
OF () = {S(a ) " € Op(per) (@)}
thus 0F (x) = {S(wévzé)}' On the other hand, by 6.1.4 it holds

Oext F(x) = OF () U {S(x*’z*) z* € C*\ (cone {7z} U {O})} .

8.1.2 Example (Conaffine functions). Let (xf, z5) € X* x C*\ {0}, 20 € Z and
Ve e X: F(x)= Sz (@)+ {20}
a) It holds

t(wg(x) — 25(20)), if 2* = tzg with t > 0;

Vo€ X,2" € C*\ {0} : . (z) = { 0 else

Moreover, {z* € C*\ {0} | ¢(pz+y : X = IR U {£o0} is proper} = cone {z;}.
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b) The function F : X — QL(Z) is conaffine and closed and proper. If 2z} € C*\ —C*, then F
is C'-proper.

¢) It holds dom F = X and epi F is a shifted closed half space of X x Z.
d) The directional derivative of F in xo with respect to z* € C*\ {0} is given by

TS (p* o if 2* = tz5 with t ;
Vazg,z € X,2* € C*\ {0} : : Fl.(zo,2) = Sty (@), 2 2 with £>0;
Z, else.
e) The conjugate F* : X* x C*\ {0} — QL(Z) of F is

Vot e X*, 2 e O\ {0} F*(a*,2) = { (b—’ZOJrH(ZS)’ ZS(:*aZ*) € cone {(x5,25)};
f) For all x € X it holds F**(z) = F(x).
g) The subdifferential of F in x € X is

VeeX: OF(z)= {S(xs,za)}

and
Ve € X1 Oewt F(z) = {S(xs,z(’;)} U {S(z*,z*)

2% € C"\ (cone {25} U{0})}.
PROOF. Let G : X — QL (Z) be defined as G(z) = S(az 2z)(2) for all z € X, then
Ve C\{0} € X pppa () = pigan(@) — 2*(20)

a) By 8.1.1 for z* € C*\ {0} it holds {z* € C*\ {0} | p(pz+y : X — R U {£oo} is proper} =
cone {z;} and

t(xh(x) — 25(20)), if 2* = tzf with t > 0;
—0Q, else.

Ve e X o (z)= {
b) As
Vee X: F(z)=(F<; {0})(z)

holds by 3.3.1, F : X — QL(Z) is closed and by proper by 3.2.5. Also by 3.2.5, F is
C-proper, if and only if z5 € C*\ —C*.

c) It holds dom F' = dom ¢(f .~y = X for all z* € C*\ {0} and
epi ' = {(2, 2)| —2(2) = xp(x) + 2" (20)} ,
a shifted closed half space in X x Z.

d) The directional derivative of F': X — QL(Z) in zp € X with respect to z* € C*\ {0} is
defined by
Vee X: Fl(xg,x)= {z €Z| —2%(z) > QOI(F’Z*)(Z'(),Z‘)}

and go’(FZ*)(xo,x) = go’(G (@, @) for all zo, 2 € X, thus

S(xg,z(’;)(x)a if 2% = tz§ with ¢t > 0;

Vee X: Fl(xg,z)=
. 2+ (70, 2) { Z, else.
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e) The conjugate of F': X — OL(Z) is given by
Vot € X', 2 € CT\{0} : F(a*,2%) = {z € 2| = 2(2) > ¢fpon (@) }

and
Q?F,z*)(x*) = Lcone{(mé,zé)}(x*a Z*) + Z*(Zo),

SO
Vot € X*, 2 e C*\ {0} 1 F*(z*, ") = (Icone{(zg,zg)} Do {0}) (z*, 2°) — 2.

f) As F: X — QL (Z) is closed and proper, F = F**: X — Q4 (Z) holds by 4.1.15.
g) By 6.1.2 | the subdifferential of F': X — QL(Z) in z € X is given by
OF () = {S(a ) " € Op(pr) (@)}
thus OF (z) = {S(xévzé)}‘ On the other hand, by 6.1.4 it holds
Oeat F(z) = OF (z) {s(x*,z*) 2 € C*\ (cone {z} U {0})} .
|

8.1.3 Example (Sublinear functions and the set-valued support function). Let ) # M* C
X* x C*\ {0}, then the support-function X(-|M*) : X — QL(Z) of M* is defined by

VreX: S@MYi= (] Seew@).
(z*,z*)eM*

The function S(-|M*) : X — QL(Z) is proper, closed and sublinear. It holds C' C X(0|M*) and
clco (come M*) = {(a*,2%)| Y2 € X : Sge oo)(2) 2 D(x| M)} € X* x C*.
Let P: X — QtC(Z) be a proper, sublinear closed function, then
Vee X: P(z)=23(x|Mp)

with
Mp = {(@*,2)| V2 € X 1 S(guo)(w) 2 P(2) } € X* x C*.

The set M} is a nonempty, closed, convex cone.
a) Let M{p ) = {z* € X*| (z*,2%) € M}p} for all z* € C*\ {0}, then
Vzr e C"\{0}, 2 € X1 clyp.(z) = o(2|Mp,-))
where U('|M(*P,z*)) : X — IRU{+£oo} denotes the scalar support function. and

{z* € C"\ {0} : clgp. : X = RU{*o0} is proper} = {z* € C*\{0} | M(p .y # @}.

b) The sets dom P and epi P are convex cones, P is C—proper, if and only if there exists
(xf, 25) € Mp with 2§ € C*\ —C*.
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c) Let z* € C*\ {0}, then it holds

P(x) <.« {0}, if xo € dom P and Mp ) # 0;

X: P. D
Vo, @ € 2+ (20, 7) 2 { Z, else.

d) The conjugate of P is given by

(@, 2") € X* x C*\ {0} : P*(x*,z*):{ é{(z*)’ if (2%, 2) € Mp;

, else.
and P**(x) = P(z) for allz € X.
e) The subdifferential of P in x € X is given by
VzeX: OP(z)= {S(x*7z*)] (2%, 2%) € Mp\ (X* % {0}) : S(ge ooy (2) = (P < {0})(@} .

and

Ocx P(w) = 0P(2) U { S(ee | (2%, 2%) € (X" x "\ {0}) \ M)}
For x =0 it holds OP(0) = Mp \ (X* x {0}).
PROOF. As

epi (X(-|M*) = m {z € Z|z"(x) + 2" (2) <0}
(z*,z*)eM*

and () # M* C X* x C* hold, C' C (0, |M*) and epi (X(-|M*) is a closed convex cone. The set
M* = {(2*,2%) € X* x C*| V& € X & Sge oo)(w) D N(a|M")}

is identical to the set

{(z*,z")|Ve e X : {z € Z] 2" (x)+2"(2) <0} D{z € Z|V(z",2") € M™ : x*(x) + 2"(2) < 0}}.

As S(g+ .+)(¥) = S(g= 12+)(w) holds for all ¢ > 0, M* = cone M*. Obviously, M* C (X* x C*).
If (z*,2%) € (X* x C*) \ clco(cone M*), then by a separation argument there exists (0,0) #
(z,2) € X x Z and « € IR such, that

¥ (z) + 2%(2) > a > o(x, 2)|M™).
Taking (o, 20) € X X Z such, that 2*(zg) + 2*(20) = —«, then
¥ (z 4+ 20) + 2" (2 + 20) > 0 = o((z + 20, 2 + 20)|M7),
and therefore (z*, z*) ¢ M*. Thus,
M* = clco (cone M*).
A proper, sublinear closed function P : X — Q% (Z) is nonempty at 0, as by 3.3.11 it holds

veeX: PO)= () {2€2] —#() > dpp(0)]
z*eC*\{0},
clo(p, .y proper



and the functions cly(p.«) : X — IR U {£oo} are sublinear. Therefore, if clyp(p .+ is proper,
then clo(p.+)(0) = 0, so C C P(0). By 8.3.2, for a proper sublinear and closed function
cloipzsy : X — IR U {+oc} it holds

Vee X clop.-(z) =sup {x*(w)! Vy e X :at(y) < 90(p,z*)(y)} :

The function z* € X* is a minorant of ¢(p_ .« if and only if S(;« .«) is a minorant of P and

moreover
Ve e X : {z €zl —2(z) > clcp(pvz*)(x)} = ﬂ Sz 24y ().
T* <P (p,2*)
Thus
Vee X: P(z)=3X(xz|Mp)
with

Mp = {(z*,2)| Vo € X 1 S(p o) () 2 P(a)} € X* x C*

holds. As P is proper, M} in nonempty. By the same arguments as used for M* =clco (cone M™),
M3 = clco (cone M}) is proven .

a) This has already been shown above.

b) The first statement is immediate.

P: X — QL(Z) is C-proper if and only if there is a C-proper affine minorant Sr )+ 2
of P. As P is sublinear, z = 0 must hold. The function S« ,«) : X — QL. (Z) is C-proper if
and only if z* € C* \ —C* and it is a minorant of P if and only if (z*, 2*) € M}.

c) If 2o ¢ dom P or M(p_+) = (), then <p’(Fz*)(a;0, -) = —o0, thus

V€ X Fl(wo,z)={z€2| —2"(2) > ¢p.(20,2)} = Z

Otherwise,
Vee X: Fl(zg,z) = cl U P(zo+tx) <. P(x0))

t>0

O U P(z0) +tP(z) <z P(x0))
>0 !

5 o | (Plan) < Plao)) + (P(a) < {0))
>0

2 d U ) <= {0}).
>0

d) For all z* € C*\ {0} it holds ng‘PZ*)(x ) = LMy, *)(x*, z*). The first statement follows from

V(z*,2%) e X* x C*\ {0} : P*(z",2") = {Z €zl —2%(z) > <,0>("P7Z*)(33*)}.

As P is closed, convex, proper, P**(x) = P(x) holds for all x € X.
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e) It holds
V€ X OF(2) = { S o) 2 € Oppa (2) ]

The set ¢ (p,.+) (r) in nonempty if and only if ¢ g+ (0) = clpg .+ (0) = 0, if and only if
M{p . # (). In this case it holds by 8.3.13

VeeX:  OF(@)= {Su |2 € Mip., S (@) = Pa)}

and
Ocut F(:L') = 8F<m) U {S(ﬂﬁ*vz*)’ M(*P,z*) - Q)} )

8.1.4 Example (Indicator function). Let M C X and F = Iy : X — QL (Z) defined by

C, ifxreM;

0, else.

Vee X: Iy(x):= {
a) For all z* € C*\ {0} it holds p(p .~y (x) = tp(z) with tpr + X — IR U {+oc} denoting the
scalar indicator function of M.
b) It holds dom F = M and epi F' = M x C

¢) The function Inr : X — QL(Z) is convex (closed) if and only if M C X is convex (closed),
C-proper if and only if M # ().

d) The conjugate of F : X — QL.(Z) is the support function of M,

Vot e X*, 2" e C*\ {0} :  F*(z%,2") = ﬂ S(ge 2y ().
zeM

e) For all x € X it holds F**(x) = (clco F)(z) = I¢1co M ()
f) If M is a convex subset of X and xg € M, then
Fl(xo,z) = (Icone (M—0)U{0} Jz* {0}) (z)
g) If M is a convex subset of X and xo € M, then
OF (x¢) = {S(I*J*)] Ve e M : z*(x — x0) < O}
and Oegt F'(z0) = OF ().
ProOOF.

a) It holds
V' e C*\ {0}, 2 € X : g+ () = inf —2"(2)| z € F(z).

Therefore, for all 2* € C* \ {0} it holds ¢(f.+) = tamr(2).

b) Direct calculation
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¢) The convex (closed) hull of F' : X — O (Z) is defined via the convex (closed) hull of the
epigraph of F, thus

Vee X: coF(x)={z¢€Z|(x,z) €coepiF} ={z€ Z| (z,z) €ecoM x C}.

The indicator function is C-proper if and only if p(p .+ : X — IRU {400} is proper for some
z* € C*\ —=C*, thus if and only if M # 0.

d) By definition,
F(a*,2%) = (] (S (@) <0 F(3),

zeX
SO

F*(l'*,z*) - m S(J}*,Z*)(ZE)‘
zeM
e) It holds clcoepi F' = (clco M) x C, therefore, for all z € X, (clco F)(z) = I¢conm(z). By
4.1.5 it holds

vreX: F*@) = (] {2€2] —2(2) > ¢ (@)}
2eC*\{0}
As
P, (z) =sup {z*(z) — o(z"[clco M)} = tercont ()
forall z € X,
Vee X : F*™(z) = ﬂ {z€Z] —2%(2) > tacom ()}
z*eC*+\{0}

which is F** = clco M -
f) By 5.1.2,
Fl.(zo,x) = {z €zl —2%(z) > <p’(F7Z*)(:J:0,:B)} .
For all z € X it holds cszZ*)(xo, T) = Leone (M+{—=0})(T), therefore
F;* (.730, m) = Ieone (M+{-z0}) (ZL‘) + H(Z*)

g) By 6.1.2,
OF (w0) = { Sz )| ¥2 € X : 2*(2) < @l ey (w0,7) }

Each scalarization ¢(p.+) is equal to the scalar indicator function of M, so
OF (o) = {S(ar 2| ¥2 € M : 2*(z — ) < 0} .
OF (o) = dewt F(20) = {S(zr o) V& € M S(ge ooy (w — 20) D H(2")}
|

8.1.5 Example (Scalar functions). Let f : X — IR U {£oo} be a function and C = Ry. The
set-valued extension F : X — P (IR) of f is defined by

flz)+C, if f(z) e R;
F(z) =41 IR, if f(x) = —o0;
0, if f(xz) = +o0.

The set C*\ {0} s the set {t € R|t < 0}.
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a) If t € C*\ {0}, then
Vee X oy (x) = —tor-1)(r) = —tf(z).
Especially, f(z) = ¢p—1)(z) for all x € X. Moreover, if f is proper, then
{t € C"\{0} : ¢y : X - IR U{£oo} is p'roper} =C*\ {0}.

b) It holds dom F = dom f and epi F' = epi f.

¢) The function F is conver (C—proper, subadditive, positively homogeneous, closed), if and
only if f is convex (proper, subadditive, positively homogeneous, closed).

d) If f is convez, then the directional derivative of F' in xo € dom f with respect tot € C*\ {0}
18

Vao,x € X ¢ Ft/(.%'(],.l') = {T = IR‘ - t(Z) > (—tf)/(.%'(],l‘) = —tf/(l‘o,x)}
= f'(zo,2) + C.

If f(xg) = +o0, then Fl(xg,z) =R for all x € X.

e) The conjugate of F' is

V(a* t) € X* x C*\ {0} :  F*(a",8) = F*(—%x*, 1)

1
= {r eR|r> f*(—tx*)}
* 1 *
=f (—Ex )+ C.
f) For the biconjugate of F' it holds

VeeX: F*a)= () {reR| —tr>(—tf)*(@)=—tf*(z)}
teC*\{0}

= f"(z)+ C.
g) If f is convex and xy € X, then x* € 0f (xg) (x* € Oext f(20)) if and only if
S(a,—1) € OF (20) (S(z*,~1) € et F'(20)).
8.1.6 Example (Extended vector-valued functions). Let f : X — ZU{+o0} be a convex proper
function, F(x) = f(z) 4+ C.

a) Let z* € C*\ {0}, then
Ve e X @ (r) =—2"(f(z))

and

{z* € C"\ {0} : ¢z : X = IRU{Foo} is proper} =C*"\ {0}.
b) It holds dom F = dom f and epi F' = epi f.

¢) The function F is convex and proper, C—proper if C*\ —C* #£ (). Moreover, F is subadditive
(positively homogeneous), if and only if f is subadditive (positively homogeneous).
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d) If f is convex, then the directional derivative of F' in xg € dom f with respect to z* € C* \ {0}
s given by

Vz* € C*\ {0}, z0,2 € X : Flu(zo,z) ={z€ Z| —2"(2) > (—2"f) (w0, 2)} .
If f(zo) = 400, then Fl.(zx) = Z for all z € X.
e) The conjugate of F is defined by
V(z*,2") e X* x C*\ {0} : F*(@",z")={z€Z] —2"(2) > (2" f)"(«™)}.
f) For the biconjugate of F it holds

Vee X: F¥(x)= ﬂ {z€eZ| —2%(z) > (=" )™ (x)}.

2+eC*\{0}
g) If f is convez, xo € intdom f and T € L(X,Z), then T € df(xo) if and only if
V2" € C*\ {0} 1 S(_psze o) € OF (20) = Oecgt F (o).
PROOF.
a) By definition,
Vo€ X e () = inf {—2"(2)| 2 € f(2) + C} = =" (f(x)).
b) The effective domain of F' is
domF ={z € X| f(z)+ C # 0} = dom f,
and for the epigraph it holds

epiF ={(z,z2) e X x Z| z € (f(z) + C)} = epi f,

c) As
V2" € C*\ {0} :  ¢(p.+) : X — IR U{Foc} is proper and convex,

by 3.2.5 and 3.2.3 F is convex and C-proper if C* \ —C* # (. Equally, F' is positively
homogeneous or subadditive if and only if for all 2* € C*\ {0} the scalarization @ . is,
which is equivalent to f : X — Z being positively homogeneous or subadditive.

d) As g+ (v) = —2"(f(x)) holds for all z* € C*\ {0}, z € X, this is immediate with 5.1.2.
e) This holds by 4.1.2.

f) This is 4.1.5

g) This is 6.3.2. [ |

8.1.7 Example (Vector Norm). In [30], a function f: X — C is called a vector norm if

VN1) It holds f(z) = 0 if and only if x = 0.



VN2) For allt € R, x € X it holds f(tx) = |t| - f(z).

VN3) For all x1,x2 € X it holds f(x1) + f(z2) € f(x1+22) + C.

Let f: X — C be a vector norm defined everywhere. For F : X — QL(Z) defined by
Vee X: F(x):= f(x)+C

and z* € C*\ {0}, it holds

VN1’) The scalarization @p .« (x) = —2*(f(z)) is a semi-norm, @ .+ (x) = 0 if and only if
f(x) e H(z*)N—H(z*).

VN2’) It holds
{reX|F(x)=C}={zx e X| flx) e CN-C}.

VN3’) For allt € R, x € X it holds F(tx) = |t| - F(x)
VN4’) For all x1,29 € X it holds F(z1) + F(x2) C F(x1 + x2).

Let
Upy :={zeX| —2"f(x) <1},

then for G : {S(x*,z*) (x*,2%) € X* x C* \ {0}} — QL(Z) defined by

V(" 2*) € X*x C*\ {0} : G(S = ) Sz

QJEU *

it holds

VN1* For all z* € C*\ {0}, the function p(q .+ (") = sup x*(z) is a norm.
IEUZ*

VN2* Tt holds G(S(y- »)) = H(2*) if and only if z* = 0.
VN3* For allt € R, x € X it holds G(S(1z+ +)) = [t] - G(S(z= 2+))-
VNJ* For all Sy ooy, Stas oy € X it holds G(S(y: 1a3 ) € G(S(as 20)) + G(S(as 2o)-
It holds
a) It holds
FH (2%, 2%) = Irg o] o (@<t} (Sarz0) + H(ZT).
b) If z* f(x) =0, then

and else

OF () = { Sz )| PGy (@) = 1}

PROOF.
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a) ¢*(F,2%)(z") = supz € X(2*(2) < @(r2) (%)) = tarex+| o <o) (£7)
If 2% < p(f,2+), then for x € U« it holds *(x) < 1. On the other hand, if z*(z) < 1 holds
for all z € U, then ™ < ¢(f .+) holds. Therefore,

QO*(F, Z*)($*) = L{IE*GX*| VIGUZ*II*(w)SI}(:U*)'

Therefore,
F*(x*7 Z*) = I{S(r*,z*)‘ @(G,z*)(x*)gl}(s(x*VZ*)) + H(Z*)

V2 € X 0p(pan (@) = {27 € X () (2) — o) < —ppan (@)}

Therefore,
Vre X : aQO(F’Z*)(l') C{z e X¥| Ve e U, : x¥(x) < 1}.

Let SO(F,z*)(ﬂC) =1t # 0, then ﬁib € U,~ and

* * * 1
0P(F,2+)(T) = {x € Xz (mx) > 1},

SO
8SO(F,Z*)('TJ) - {S(x*,z*)’ @(G,z*)(x*) = 1}

Let ¢(pa(@) = 0, 27 € {27 € X' Vo € Use : 27(2) <1} Then (pany(2) — 27(z) <
—‘prz*)(x*) if and only if 2*(x) > 0. On the other hand,

Op(ror) (1) = {27 € X*|VE € X ¢ 9oy (&) = 2°(2) = o(ram(@) — 27 (2) },

therefore z*(z) <0, so

OF () = {S(a+ )
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8.2 Arithmetic in the extended real numbers

Viewing the extended real numbers as an extension of the ordered linear space (IR, +, -, <), it is
necessary to extend the addition, multiplication with positive real numbers, especially 0 and the
difference defined on IR to operators defined on IR U {#+00}. Again, the algebraic interpretation
of the difference will not be obtained for the extended definition of the difference operator.

An investigation of concavity rather then convexity would require a change from the inf-
addition and -difference to the sup-addition and -difference. In fact, this can be achieved by the
"multiplication with —1”, causing a change of spaces.

The set IR is ordered by the relation < generated by the cone Ry U {0} = {t € IR|t > 0}.
By defining (—00)+ A = IR and (4-00)+ A = ) for any nonvoid subset A C IR, the order relation
extends to R U {fo0} by r < s if and only if s € r + IRy U {0} for r,s € R U {£o0}.

We will extend the operation + : IR x R — IR to an operation on IR U {£o00} by means of

Vr,s€e RU{too}: r+s:=inf{z+y|lz,ycR,z>ry>s}.

In particulary, (+00) + 7 = 400 for all r € R U {£o00}.
Moreover, IR U {£o0} is supplied with a multiplication with positive real numbers by means
of

0-r=20,
t-r=inf{tr e R|z >r}

forallt > 0 and r € R U {£o0}.

The set IR U {£o0} supplied with extended addition and the multiplication with positive
numbers along with the order < is an order complete, ordered conlinear space.

Notice that in general no inverse element —z exists for € IR U {+oo}. Anyway, for s,¢ >0
it holds (s +t)x = sx + tx for all z € R U {£o0}. Therefore, (IR U {£o0},+,, <) is an ordered

cone in the sense of [32].
Analog to the addition, the substraction — : IR x IR — IR can be extended to an operation
on IR U {£o0} which coincides with the inf-difference on (R U {£o0},+, -, <).

8.2.1 Proposition. The inf-difference <: R U {£oo} x RU {00} — IR U {+o0} is given by
Vr,se RU{xoo}: r<s=inf{teR|s+t>r}.

If r,s € IR holds, then (r < s) =71 —s.

PROOF. By definition,

r<ds=inf{t e R|s+t>r}

+oo, if{teR|s+t>r}=0;
=4 —oo, if{teR|s+t>r}=1R; =inf{t e RU{£oo}|s+t>r}
r—s, else.

holds for all r, s € IR U {£o0}. [ |
In particulary, (—00) <7 = —o0 and r < (4+00) = —oo for all r € IR U {xo0}.

8.2.2 Lemma. Lett >0, a,b,z,y € R U {xoo}. It holds
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a<(4+o00) = —o0,

(—0)<a = —oo,

b)

t(a Qb) =ta < tb,

c) if a <b, then
a<dx<bzx

and
r<db<zx<a,
d)
a<db<(a<x)+(z<Db)
e)
(a+z)<(x+b)<a<bd
/)

(a+z)<(b+y) <(a<b)+ (zQy)
PRrROOF. By 2.2.7, it is only left to prove
Va e RU{*oc}: a<(+0) = —oo,
(—o0) <a = —o0.
By definition, (a <b) =inf{z € R| b+ 2z > a}. As
VeeR,be RU{fto0}: b+z>—-0
400+ =+00

holds, the result is immediate. |
Obviously, in the last three inequalities equality holds if a,b,x,y € IR. Otherwise though,
equality is not true in general. An easy result is

{o, if a € R;
a<la=

—o00, else.
and 0 <9 a = —a with —(£00) := (Fo0).

8.2.3 Example. a) Let a,b =0 and x = +o00, then a < b =0 while

(a<z)+(x<b) = +o0

(a+z)<(x+b) = —o0
b) Let a,x,y = +o0, b =0, then

(a<b)+(z<y) = +o0

(a+z)(b+y) = —oo.
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If r < s holds for 7, s € R U {+o0} we have
0<r)>(0<s)

We will not define a multiplication with negative numbers on IR U {£o0}, instead we will
make use of the expression 0 < r. For r € R it holds 0 << 7 = —r, while 0 < (£00) = (Foo) and
therefore s+ (0 <'s) > 0 for s € R U {£o00}.

It is important to remember that + and < are not inverse operators in general. The advantage
of making use of these operators is that we no longer have to restrict ourselves from terms like
(+00) — (—0) as both addition and substraction are defined on the whole space IR U {£oc}.

8.3 Scalar Convex Analysis

In the following, we will summarize some well-known facts from the theory of scalar convex
analysis as presented in [10, 25, 50, 62, 64]. As it is common, and also necessary, to reduce
definitions such as that of the directional derivative or the subdifferential of a scalar function
¢ : X — RU{+xoo} to the case of |o(xg)| # +00 when using the classic difference "—", we
will also include some extended definitions and discuss the new special cases occurring when
using the inf-difference instead. It turns out that the extended definitions coincide with the
classic ones everywhere but in "pathological” cases. The proves of each such statement can be
easily done by applying the definition of <. Throughout this chapter, X will be a locally convex
separable space with the dual space X*.

8.3.1 Basic facts and definitions

Let X be a locally convex separable space.
For a function ¢ : X — IR U {%o00}, the effective domain of ¢ is defined as

dom = {x € X| p(x) # +00} .
The epigraph of ¢ is defined as

epiop ={(z,t) e X xR : |t > p(z)}.
8.3.1 Lemma. [62] Let ¢ : X — R U{xo0} be a convex function
a) If xg € coredom ¢ with p(z) € IR, then ¢ is proper.
b) If ¢ is closed then either ¢ is proper or ¢(x) = —oo for all x € dom ¢.
¢) If zo € coredom ¢, then either clp(xg) = —oo or clyp(z) = (x) holds for all x € dom .
8.3.2 Lemma. If clp is sublinear and proper, then clp(0) =0 and

() = sup (2" (2))a" < 9}

PROOF. As clyp is assumed to be sublinear and proper, it holds cl¢(0) € {4+00,0}. As moreover
cly is proper, there exists zg € domclp and it holds cl¢(0) < lti%l clyp(txg) = 0, thus clp(0) #

+oo. By [11], every closed proper convex function is the pointwise supremum of its affine
minorants. As clg(0) = 0, the statement is proven. [ |
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8.3.3 Lemma. [26] If p : X — IR U {+oo} is conver and (xg,s) € intepig for some s € R,
then ¢ is continuous at xy € dom ¢ or p(x) = —oo for all x € dom .

8.3.4 Definition. [26] Let Y be another locally convex space and A : X — Y is a linear
homeomorphism. If ¢ : X — IR U {£o0}, then

vyeY: Ap(y) = inf o(z).
z=y

If v:Y - R U{too}, then
Vee X: ~vA(y) = v(Ax).
8.3.5 Definition. [11] Let M C X and M* C X*. the support function of M is defined by
Ve* e X*:  o(z*|M) =sup{z*(x)|z € M}
and likewise the support function of M™ is defined by
Vee X: o(x|M*) =sup{z*(z)|z* € M*}
8.3.6 Definition. [11] The indicator function of M C X is defined by

0, ife e M;

Vee X : wy(x) =sup{z*(z)|z € M}{
400, else.

We use the notion ¢y : X — IR U {400} for the scalar indicator function in order to
distinguish it from the set-valued indicator function I : X — Q4 (Z) in the main part of this
thesis.

8.3.2 Conjugation

8.3.7 Definition. [11] For a function ¢ : X — IR U {%o0}, the convexr conjugate ¢* : X* —
R U {£o0} is defined by

@*(2") := sup(”(x) < ¢(x)),
zeX

the biconjugate p** : X — IR U {do00}

@ (x) == sup (¢"(x) < @"(")).
T*eX*

Obviously, the conjugate and the biconjugate are classically defined with — instead of <.
As ¥ : X — IR has only real values, the extended substraction makes no difference in the
definition.

8.3.3 Directional derivative and subdifferential

8.3.8 Definition. The directional derivative of a convez function ¢ : X — IRU{+oo} is defined
by
1
#'(wo, ) = lim = (p(zo + s2) < p(w0))

when the limit exists in R U {£o0}.
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If o: X — IR U {£o00} is a proper function and zy € dom ¢, then our directional derivative
coincides with the classic one for every x € X as found in [26] and others. If zy ¢ dom ¢, then
¢ (xg, ) = —o0o holds for all x € X. If p(xg) = —o0, then for all s > 0 and x € X it holds

—o0, if p(xg+ sx) = —o0;

p(xo + sx) < p(x0) = {
400, else.

8.3.9 Lemma. If ¢ : X — R U {£o0} is a conver function, then the directional derivative in
xg € X exists for all x € X and it holds

L (oo + t2) < p(xp))

/ — 3 ff
¢’ (xo, ) inf -

PROOF. If ¢ is proper and zy € dom ¢, then this is the classic case as found in [26]. Otherwise,
if 9 ¢ dom ¢, then ¢'(zg,x) = —oo holds for all x € X. If p(xg) = —oo, then either z= ¢
cone (dom ¢ — x) and ¢'(xg,x) = +00, or

ds >0:  @(zo+sz)— 00
and thus ¢'(zg,z) = —o0. [ ]
8.3.10 Remark. Let o : X — IR U {+oo} be a convex function, p(zg) = —oo.

a) Take x ¢ dom ¢'(xo,-). Then ¢'(xg,x) = 400, but ¢'(29,0) = —o0 # 0 = 0(¢'(z0, 2)).
Therefore, the directional derivative is not positively homogeneous under the definition in-
cluding 0, found in [21].

b) For any x € X, the directional derivative ¢'(xg,-) can take values in {+oo} at —x,x € X.
Therefore the inequality
0 < ¢ (zo, ) < ¢ (w0, —)

in general does not hold if p(xp) = —oc.

8.3.11 Definition. The subdifferential of a convex function ¢ : X — IR U {£o0} is defined by
Op(mg) := {2 € X*¥| Vo € X : 2*(x) < ¢(z0,2)} .

The extended subdifferential of a function ¢ : X — IR U {£o00} is defined by
Oeat (o) := {2" € X7[ 2™ (20) < p(x0) = @™ (27)} -

8.3.12 Lemma. Let ¢ : X — IR U {xo0} be a convex function and ¢ € X. If p(xg) = —o0 or
dom ¢ = (), then

dp(xo) = 0,
Oeat p(10) = X™.

If ¢ is proper, then

0¢p(x0) = Oext ©(20)-
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PROOF. If p(z9) = —oc or dom ¢ = (), then

(p/(:po, ) = —o0,

«_ ] —oo, ifdomyp =10
7= +oo, if p(zg) = —o0.

Thus, dp(z9) = 0 and ezt p(z0) = X*. If ¢ : X — IR U {400} is proper, then the equality is
well-known, compare [62]. [ |

The statement in 8.3.12 shows, that in fact our definitions are very easy extensions of the
classic definition subdifferential, where d¢(x) is only defined for proper functions with zy €
dom ¢, see [62].

8.3.13 Lemma. [62/Let ¢ : X — IR U {£oo} be a sublinear function, then 0p(0) # 0 if and
only if clp(0) = p(0) = 0. In this case, ¢ is proper and

0p(0) ={z" € X*|Vx € X : 2"(z) < ¢(x)}
and
VreX: Op(z) = {o” € 0p(0)] *(x) = p(x)}
clo(z) = sup z*(z).
x*€dp(0)

8.3.14 Lemma. [62] Let ¢ be a convex function, then Op(xo) # O if and only if ¢'(x0,0) =
cl¢/(x9,0) = 0. In this case, ¢ is proper and it holds

cl¢'(zg, z) = sup {z*(z)|z* € dp(z0)} .

8.3.15 Lemma (Max-Formula). [62] Let ¢ be a convex proper function and xzo € dom . If ¢
is continuous at xo, then dp(xo) # 0, ¢'(xo,-) is continuous and finite and

Vo € X : Fzf € 0p(z0) = ¢ (20,7) = z§(2).
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