Untersuchungen neuartiger liposomaler Gentransfersysteme

Beiträge zur Charakterisierung von Transfektionseigenschaften und zytotoxischem Potenzial

DISSERTATION

zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.)

vorgelegt der Naturwissenschaftlichen Fakultät I Biowissenschaften der Martin-Luther-Universität Halle-Wittenberg von Herrn Dipl. Pharm. Martin Heinze

geb. am 23.01.1980 in Gera

Gutachter/in:

- 1. Prof. Dr. rer. nat. A. Langner
- 2. Prof. Dr. rer. nat. H. Richter
- 3. Prof. Dr. rer. nat. G. Bendas

Halle / Saale, 28.06.2010

So eine Arbeit wird eigentlich nie fertig, man muss sie für fertig erklären, wenn man nach Zeit und Umständen das möglichste getan hat.

Johann Wolfgang von Goethe

I. Inhaltsverzeichnis

I.	Inha	ltsve	erzeichnis	
II.	Abki	ürzu	ngsverzeichnis	V
III.	Abbi	ildur	ngsverzeichnis	IX
IV.	Tabe	ellen	verzeichnis	XV
1.	Einle	eitun	g und Zielstellung	1
1.1	Som	atisc	he Gentherapie	1
1.2	Nukl	einsä	iuren als Arzneistoffe	2
1.3	Gent	rans	fersysteme	5
1.3	.1	Phys	sikalische Vektoren	5
1.3	.2	Biolo	ogische Vektoren	6
1.3	.3	Chei	mische Vektoren	10
1.4	Ziels	tellu	ng der Arbeit	21
2.	Mate	erial	und Methoden	22
2.1	Mate	rialie	n	22
2.1	.1	Gerä	ite	22
2.1	.2	Verb	rauchsmaterialien	24
2.1	.3	Biolo	gisches Material und Chemikalien	25
2.1	.4	Zellk	ulturmedien und Supplements	26
2.1	.5	Lösu	ingen	26
2.1	.6	Verv	vendete Lipide	29
2.1	.7	Soft	vare	30
2.2	Meth	oder	۱	31
2.2	.1	Hers	tellung der Liposomen	31
2.2	.2	Parti	kelgrößenmessung	31
2.2	.3	Plas	mid und Plasmidisolierung	32
	2.2.3	.1	Plasmid	32
	2.2.3	.2	Transformation kompetenter E. coli Zellen	32
	2.2.3	.3	Plasmidisolierung	33
2.2	.4	Zellk	ultur	35
	2.2.4	.1	Zelltypen	35
	2.2.4	.2	Subkultivierung	36
	2.2.4	.3	Bestimmung der Zellzahl und Versuchsvorbereitung	36
2.2	.5	Viab	ilitätsuntersuchungen	37
	2.2.5	.1	MTT-Test	38
	2.2.5	.2	Neutralrottest	38

6.	Anh	ang	1	12
5.	Lite	raturverzeichnis		97
4.	Zus	ammenfassung und Ausblick		94
	verzweig	ten Fettsäureamiden		91
	3.2.8	Vergleichende Betrachtungen zwischen Malonsäurediamiden	und	α-
	3.2.7	Partikelgrößenbestimmung		90
	3.2.6	Transfektionsuntersuchungen in serumhaltigem Medium		89
	3.2.5	Zeitabhängige Transfektionsuntersuchungen		88
	3.2.4	α-Verzweigtes Fettsäureamid 7		87
	3.2.3	α-Verzweigte Fettsäureamide 5 - 6		84
	3.2.2	α-Verzweigte Fettsäureamide 3 - 4		82
	3.2.1	α-Verzweigte Fettsäureamide 1 - 2		81
3.	2 Tran	sfektionslipide aus α-verzweiαten Fettsäureamiden		81
	3.1.11	Partikelgrößenbestimmung		78
	3.1.10	Transfektionsuntersuchungen in serumhaltigem Medium		75
	3.1.9	FACS Analysen		72
	318	Zeitabhängige Transfektionsuntersuchungen		68
	317	DMPC als Helferlinid		66
	316	Multikomponente Linosomen		64
	315	Malonsäurediamide 13 - 15		61
	314	Malonsäurediamide 10 - 12		59
	313	Malonsäurediamide 7 - 0		43 54
	312	Malonsäurediamide 4 - 6		41 10
э.	1 11an		•••••	40 47
ა. ი	Erge 1 Trop	ephilsse und Diskussion		40 16
2	2.2.12 Erad	Statistische Auswertung		40
	2.2.11	Statistische Auswertung		43
	2.2.10	Proteinbestimmung		42
	2.2.9	Quantifizierung der β-Galactosidaseaktivität (ONPG-Assay)		41
	2.2.8	X-Gal Test.	•••••	40
	2.2.7	Berechnung der N/P-Verhältnisse		40
	2.2.6	Transfektionsexperimente		39

II. Abkürzungsverzeichnis

ADA	Adenosindeaminase-Defizienz
AIDS	erworbenes Immundefektsyndrom
ATCC	American Type Culture Collection
bspw.	beispielsweise
bzw.	beziehungsweise
CFTR	Cystic Fibrosis transmembrane
	conductance regulator
Chol	Cholesterol
DC-Cholesterol	3β-[N-(N',N'-Dimethylaminoethyl)carb-
	amoyl]cholesterol
DMEM	Dulbeco's modified Eagle Medium
DMF	Dimethylformamid
DMPC	Dimyristoyl-sn-phosphatidlycholin
DMRIE	Dimyristyloxypropyl-3-dimethyl(hydroxy-
	ehtyl)ammoniumbromid
DMSO	Dimethylsulfoxid
DNA	Desoxiribunukleinsäure
DOPE	Dioleoyl-L-α-phosphatidylethanolamin
DOPC	Dioleoyl-L-a-phosphatidycholin
DOSPA	Dioleyloxy-N-[2-(spermincarboxamido)-
	ethyl]-N,N-dimethyl-1-propanammonium-
	trifluoracetat
DOTAP	1,2-Dioleoyloxy-3-(trimethylammonio)-
	propanchlorid
DOTMA	N-[1-(2,3-Dioleyloxy)propyl]-N,N,N-tri-
	methylammoniumchlorid
DPPC	Dipalmitoyl-L-a-phosphatidycholin
ds	doppelsträngig
DSMZ	Deutsche Sammlung von Mikroorganismen
	und Zellkulturen GmbH
EAHP	Europäische Vereinigung der Krankenhaus-
	apotheker
EDTA	Ethylentetraminessigsäure
EGF	Epidermaler Wachstumsfaktor
FBS	Fötales Rinderserum
GIXD	Röntgendefraktometrie unter streifendem
	Einfall des Röntgenstrahls

h	Stunde
HEPES	4-(2-Hydroxyethyl)piperazin-1-ethansulfon-
	säure
HLA-B7	Human Leucozyte Antigen B
	Protein des humanen Haupthistokompa-
	tibilitätskomplexes (MHC)
HSV-1	Herpes Simplex Virus 1
IL	Interleukin
kD	Kilodalton
kV	Kilovolt
L	Liter
LDL	Low density lipoproteine
LUV	large unilamellar vesicels
	Große unilamellare Vesikel
MA1	N-(2-Aminoethyl)-N',2-dihexadecylpropan-
	diamid
MA2	N-(2-Aminoethyl)-2-hexadecyl-N'-[(9Z)-
	octadec-9-enyl]propandiamid
MA3	N-(2-Aminoethyl)-N',2-di[(9Z)-octadec-9-
	enyl]propandiamid
MA4	N-[Bis(2-aminoethyl)amino]ethyl-N',2-di-
	hexadecylpropandiamid
MA5	N-[Bis(2-aminoethyl)amino]ethyl-2-hexadecyl-
	N'-[(9Z)-octadec-9-enyl]propandiamid
MA6	N-[Bis(2-Aminoethyl)amino]ethyl-N',2-di[(9Z)-
	octadec-9-enyl]propandiamid
MA7	N-2[(2,6-Diamino-1-oxohexyl)amino]ethyl-
	2,N-(dihexadecyl)propandiamid
MA8	N-2-[(2,6-Diamino-1-oxohexyl)amino]ethyl-2-
	hexadecyl-N-[(9Z)-octadec-9-enyl]propan
	diamid
MA9	N-2-[(2,6-Diamino-1-oxo-hexyl)amino]ethyl-
	2,N-di[(9Z)-octadec-9-enyl]propandiamid
MA10	N-[2-(N-(2-aminoethyl)-N-{2-[N-(2,6-diamino-
	1-oxohexyl)amino]ethyl}amino)ethyl]-N',2-di-
	hexadecylpropandiamid
MA11	N-[2-(N-(2-aminoethyl)-N-{2-[N-(2,6-diamino-
	1-oxohexyl)amino]ethyl}amino)ethyl]-2-hexa-
	decyl-N'-[(9Z)-octadec-9-enyl]-propandiamid

MA12	N-[2-(N-(2-aminoethyl)-N-{2-[N-(2,6-diamino-
	1-oxohexyl)amino]ethyl}amino)ethyl]-N',2-
	[(9Z)-octadec-9-enyl]propandiamid
MA13	N-[2-(N,N'-Bis{2-[N-(2,6-diamino-1-oxohexyl)-
	amino]ethyl}amino)ethyl]-N´,2-dihexadecyl-
	propandiamid
MA14	N-[2-(N,N'-Bis{2-[N-(2,6-diamino-1-oxohexyl)-
	amino]ethyl}amino)ethyl]-2-hexadecyl-N'-
	[(9Z)-octadec-9-enyl]-propandiamid
MA15	N-[2-(N,N'-Bis{2-[N-(2,6-diamino-1-oxohexyl)-
	amino]ethyl}amino)ethyl]-N',2-[(9Z)-octa-
	dec-9-enyl]propandiamid
β2-Mikroglobulin	lösliche Untereinheit des MHC
min	Minute
mL	Milliliter
MLV	Multilamellare Vesikel
MVV	Multivesikläre Vesikel
μL	Mikroliter
μE	Mikroeinheiten
NTF	Nuklearer Transportfaktor
PBS	Phosphate Buffered Saline
PEG	Polyethylenglykol
PNP	Purin-Nukleosid-Phosphorylase
QSAR	Quanatitative Struktur-Wirkungsanalyse
Ran	Guanin-Nukleotid-bindendes Protein
RES	Reticuloendotheliales System
RNA	Ribonukleinsäure
RT	Raumtemperatur
SCID	schwerer kombinierter Immundefekt
SDS	Natriumdodecylsulfat
siRNA	Small Interfering Ribonukleinsäure
SS	einsträngig
Tris-Base	2-Amino-2-(hydroxymethyl)-1,3-propan-
	diol
u.a.	und andere
VF1	2-Octylhexadecansäure-N-(2-aminoethyl)amid
VF2	2-Tetradecylhexadecansäure-N-(2-amino-
	ethyl)amid

VF3	2-Tetradecylhexadecansäure-N-{2-(2-amino-
	ethyl)amino]ethyl}amid
VF4	2-Tetradecylhexadecansäure-N-{2-[bis(2-
	aminoethyl)amino]ethyl}amid
VF5	2-Octylhexadecansäure-N-[2-(2,6-diamino-1-
	oxohex-1-yl)aminoethyl]amid
VF6	2-Tetradecylhexadecansäure-N-[2-(2,6-di-
	amino-1-oxohex-1-yl)aminoethyl]amid
VF7	2-Tetradecylhexadecansäure-N-{3-[4-(3-
	aminopropyl)aminobutyl]aminopropyl}amid
vgl.	vergleiche
X-ray	Röntgenreflektivitäsmessungen

III. Abbildungsverzeichnis

Abbildung 1 Schematisch dargestellter Ablauf des Gentransfers	3
Abbildung 2 Kationische Polymere für den nicht viralen Gentransfer	11
Abbildung 3 Strukturformeln ausgewählter kationischer Lipide	14
Abbildung 4 Schematische Darstellung der lamellaren (L _{α} -Phase) und	
invershexagonalen Phase (H _{II} -Phase) bei Lipoplexen - DNA Stränge schwarz	<u>z</u> -
Kopfgruppen von Cyto-fektinen und Colipiden rot und blau dargestellt	17
Abbildung 5 Schematische Darstellung der hexagonalen Phase (H _I -Phase) von	
Lipoplexen – DNA-Stränge grau, Kopfgruppen der Cytofektine rot und Kopfg	ruppen
der Colipide blau dargestellt	18
Abbildung 6 Grundkörper der Malonsäurediamide 1 - 9	
Abbildung 7 Grundkörper der α-verzweigten Fettsäureamide	
Abbildung 8 Grundkörper der Malonsäurediamide 10 - 15	
Abbildung 9 Schematischer Aufbau des Plasmids pCMV SPORT-βGal	
Abbildung 10 Gelelektrophorese nach Plasmidisolierung	
Abbildung 11 Strukturformel des X-Gal Test Reaktionsproduktes 5,5´-Dibrom-4,4	4 <i>`</i> -
dichlorindigo	41
Abbildung 12 Reaktionsmechanismus der BCA Proteinbestimmung (farbgebend	е
Reaktion)	
Abbildung 13 X-Gal Test nach Transfektion mit Lipoplexen aus MA1/DOPE 1:1 ((n/n) -
LLC PK1 - N/P 2:1 - 2,5 µg DNA/mL - t = 48 h - Vergrößerung 1:200	47
Abbildung 14 MTT basierter Viabilitätstest von MA1/ DOPE 1:1 (n/n) und	
MA1/Cholesterol 1:1 (n/n) - LLC PK1 - 0,1 µg DNA/well - t = 24 h	47
Abbildung 15 Transfektion der Lipoplexe aus MA2/Cholesterol - LLC PK1 - t = 44	8 h -
0,1 μg DNA/well	
Abbildung 16 MTT-Test der Lipoplexe aus MA2/Cholesterol - LLC PK1 - t = 24 h	- 0,1 μg
DNA/well	
Abbildung 17 Transfektion der Lipoplexe aus MA3 in Kombination mit Cholestere	ol und
DOPE an LLC PK1	
Abbildung 18 MTT-Test der Lipoplexe aus MA3 in Kombination mit Cholesterol u	und
DOPE an LLC PK1	
Abbildung 19 Transfektion von MA4 in Kombination mit DOPE an LLC PK1	
Abbildung 20 Transfektion von MA5 in Kombination mit DOPE an LLC PK1	
Abbildung 21 Transfektion von MA6 mit DOPE und Cholesterol an LLC PK1 - t =	= 48 h -
0,1 μg DNA/well	50
Abbildung 22 Transfektion MA6/Cholesterol 2:1 (n/n) vs. LipofectAmine [®] und Su	perFect®
an LLC PK1	50

Abbildung 23 MTT-Test von MA6/Cholesterol 2:1 (n/n), LipofectAmine [®] und SuperFect [®] an LLC PK1
Abbildung 24 Neutralrottest von MA6/Cholesterol 2:1 (n/n), LipofectAmine [®] und SuperFect [®] an LLC PK1
Abbildung 25 Transfektion und Zellviabilität von MA6/Cholesterol 2:1 (n/n) an der Zelllinie A549 im Vergleich mit LipofectAmine [®] und SuperFect [®] - t = 48 h bzw. 24 h - 0,1 μg DNA/well
Abbildung 26 Transfektion der Lipide MA4-MA6 in Kombination mit DOPE oder
Cholesterol im Verhältnis 1:1 an LLC PK1 - N/P 6:153
Abbildung 27 Transfektion der Lipide MA4-MA6 in Kombination mit DOPE oder
Cholesterol in verschiedenen molaren Verhältnis an LLC PK153
Abbildung 28 Vergleich der Transfektionsergebnisse von gelagerten
MA6/Cholesterol 2:1 (n/n) Proben an LLC PK1 - t = 48 h - 0,1 µg DNA/well54
Abbildung 29 Vergleich der MTT-Tests von gelagerten MA6/Cholesterol 2:1 (n/n) Proben an LLC PK1 - t = 48 h - 0.1 ug DNA/well
Abbildung 30 Einfluss der Kopfgruppe auf die Transfektion von Malonsäurediamiden mit
Hexadecylresten in äquimolarer Kombination mit Cholesterol – t = 48 h – c_{MA} =
10,8 µmol/L
Abbildung 31 A-Gai Test hach Transfertion mit MAO/Cholesterol 1.1 (II/II) - LLC PK1 - $N/P 4:1 - 2.5 \text{ ug DNA/ml} = t - 48 \text{ h} - Vergrößerung 1:400 55.$
Abbildung 32 Transfektion von MA8 in Kombination mit Cholesterol und DOPE an LLC
PK1 nach 48 h
Abbildung 33 Transfektion MA8/Cholesterol 1:1 (n/n) an LLC PK1 - t = 48 h - 0.1 ug
DNA/well
Abbildung 34 MTT- u. Neutralrottest an LLC PK1 von MA8/Cholesterol 1:1 (n/n) - t = 24 h
Abbildung 35 MTT-Test von Lipoplexen aus MA8 und Cholesterol – LLC PK1 – t = 24 h –
0,1 µg DNA/well – Abbildung ohne Standardabweichung
Abbildung 36 Ergebnisse des ONPG und MTT Assay von MA8/Cholesterol 1:1 (n/n) an $A549 - t = 48/24$ h
Abbildung 37 Transfektion von MA9 mit DOPE und Cholesterol an LLC PK1 - t = 48 h -
0,1 μg DNA/well58
Abbildung 38 Ergebnisse des ONPG und MTT Assay von MA9/Cholesterol 1:1 (n/n) an LLC PK1
Abbildung 39 Ergebnisse des ONPG und MTT Assay von MA9/Cholesterol 1:1 (n/n) an
A549
Abbildung 40 Transfektion von Liposomen aus MA12 und DOPE an $A549 - t = 48 h60$
Abbildung 41 MTT-Test von MA12 in Kombination mit DOPE und Cholesterol an A549 –
t = 24 h60

Abbildung 42 Transfektion der Malonsäurediamide 13-15 in Kombination mit Cholesterol
und DOPE an LLC PK1 - t = 48 h – 0,1 μ g DNA/well – N/P variiert61
Abbildung 43 X-Gal Assay nach Transfektion mit MA15/DOPE 2:1 (n/n) an LLC PK1 – t =
48 h – N/P 1,5 – A Vergrößerung 1:10 – B Vergrößerung 1:20061
Abbildung 44 Transfektion von MA14 und MA15 in Kombination mit Cholesterol und
DOPE im Vergleich mit LipofectAmine [®] und SuperFect [®] an LLC PK1 – t = 48 h – 0,1
μg DNA/well
Abbildung 45 Abbildung 46 MTT-Test von MA14 und MA15 haltigen Lipoplexen im
Vergleich mit LipofectAmine [®] und SuperFect [®] an LLC PK1 – t = 24 h – 0,1 μ g
DNA/well
Abbildung 47 Transfektion und Zellviabilität von MA15/DOPE 2:1 (n/n) an der Zelllinie
A549 im Vergleich mit LipofectAmine [®] und SuperFect [®] - t = 48 h bzw. 24 h - 0.1 μ g
DNA/well
Abbildung 48 Transfektion von multikomponenten Liposomen an LLC PK1 - t = 48 h -
0.1 µg DNA/well
Abbildung 49 Transfektion binärer Liposomen vs. multikomponente Mischungen an LLC
PK1
Abbildung 50 MTT-Test von multikomponenten Liposomen an LLC PK1 - t = 24 h - c_{MA}
entspricht der summierten Konzentration aller Transfektionslipide
Abbildung 51 MTT-Test von multikomponenten Liposomen an A549 - t = 24 h - c_{MA}
entspricht der summierten Konzentration aller Transfektionslipide
Abbildung 52 Transfektion DMPC haltiger Liposomen an LLC PK1 – t = 48 h – 0.1 μ g
DNA/well
Abbildung 53 MTT basierte Zellviabilität der DMPC haltigen Lipoplexe an LLC PK1 – t =
24 h
Abbildung 54 Transfektionsergebnisse kationischer Lipoplexe nach 12, 24 und 48 h an
LLC PK1
Abbildung 55 Transfektion ausgewählter Lipoplexe an A549 nach 24 h - 0.1 ug DNA/well
Abbildung 56 Transfektion ausgewählter Lipoplexe an A549 nach 48 h - 0.1 ug DNA/well
Abbildung 57 Transfektion ausgewählter Lipoplexe an A549 nach 72 h - 0.1 ug DNA/well
Abbildung 58 FACS Verteilung von YOYO [®] -1/DNA Fluoreszenzintensitäten nach 4 h
Inkubation an der Zelllinie A549 - 2,5 μ g DNA/mL - c _{YOYO} = 0,1 μ mol/L 1. Kontrolle
mit YOYO [®] -1/DNA, 2. Transfektion der YOYO [®] -1 markierten DNA mit
MA15/DOPE 2:1 (n/n)

Abbildung 59 Ergebnisse der FACS Messungen von YOYO [®] -1/DNA nach 4 h
Transfektion an LLC PK1 mit ausgewählten Lipoplexen - 2,5 µg DNA/mL - c _{YOYO} =
0,1 μmol/L
Abbildung 60 Einfluss des Mediumwechsels auf die Transfektion mit MA15/DOPE 2:1
(n/n) an LLC PK1 und A549 - t = 48 h - 0,1 μg DNA/well
Abbildung 61 Ergebnisse der FACS Messungen von YOYO [®] -1/DNA nach 4 h
Transfektion an A549 mit ausgewählten Lipoplexen - 2,5 μ g DNA/mL - c _{YOYO} =
0,1 μmol/L74
Abbildung 62 Ergebnisse der FACS Messung von YOYO [®] -1/DNA nach 4 h bzw. 24 h
Transfektion an A549 mit ausgewählten Lipoplexen - 2,5 μ g DNA/mL - c _{YOYO} =
0,1 μmol/L74
Abbildung 63 Ergebnisse des Neutralrottests nach Tranfektion mit YOYO [®] -1/DNA
haltigen Lipoplexen an LLC PK1 - t = 4 h - 0,1 μg DNA/well74
Abbildung 64 Ergebnisse des Neutralrottests nach Tranfektion mit YOYO [®] -1/DNA
haltigen Lipoplexen an A549 - t = 4 h - 0,1 μg DNA/well74
Abbildung 65 X-Gal Assay an LLC PK1 - t = 4 h - 2,5 μ g DNA/mL - 1. MA1/DOPE 1:1
(n/n) N/P 4 - 2. MA6/Chol 2:1 (n/n) N/P 6,75 - 3. MA8/Chol 1:1 (n/n) N/P 4 - 4.
MA7/DOPE 1:1 (n/n) N/P 4 - 5. LipofectAmine [®] - 6. MA15/DMPC 1:1 (n/n) N/P 3,5 -
Vergrößerung 1:100
Abbildung 66 Ergebnisse der Transfektion unter Serumeinfluss an LLC PK1 mit ausge-
wählten Vektoren im Vergleich zu einem serumfreien Intervall von 4h - t = 48 h -
0,1 μg DNA/well
Abbildung 67 Transfektion unter Serumeinfluss (10% FBS) an LLC PK1 - t = 48 h -
0,1 μg DNA/well
Abbildung 68 Ergebnisse der Transfektion unter Serumeinfluss an A549 mit Lipoplexen
aus MA12 und DOPE im Vergleich zu einem serumfreien Intervall von 4 h - t = 48 h -
0,1 μg DNA/well77
Abbildung 69 MTT-Test nach Transfektion mit Lipoplexen aus MA12/DOPE 1:3 (n/n) mit
und ohne serumfreies Intervall von 4 h - t = 24 h - 0,1 μ g DNA/well77
Abbildung 70 Ergebnisse der PCS Messungen ausgewählter Liposomen und Lipoplexe -
Änderung der Partikelgröße als Funktion der steigenden Cytofektinkonzentration -
Abbildung ohne Standardabweichung - Linienkontur angepasst
Abbildung 71 Ergenisse des MTT-Tests von VF2 in Kombination mit DOPE und
Cholesterol an A549 -t = 24 h - 0,1 µg DNA/well82
Abbildung 72 Ergenisse des MTT-Tests von VF2 in Kombination mit DOPE an LLC PK1
- t = 24 h – 0,1 μg DNA/well82
Abbildung 73 Transfektionseffizienz der Lipoplexe aus VF3 und DOPE an LLC PK1 –
t = 48 h – 0,1 μg DNA/well83

Abbildung 74 Transfektionseffizienz der Lipoplexe aus VF4 und DOPE an LLC PK1 –
t = 48 h – 0,1 μg DNA/well83
Abbildung 75 Transfektion von Lipoplexen aus VF3 und VF4 im Vergleich mit
LipofectAmine® und SuperFect® an LLC PK1 - t = 48 h - 0,1 µg DNA/well84
Abbildung 76 Ergebnisse des MTT Viabilitätstest mit Lipoplexen aus VF3, VF4 und
DOPE an LLC PK1 - t = 24 h - 0,1 μg DNA/well84
Abbildung 77 Transfektionseffizienz der Lipoplexe aus VF5 und DOPE an A549 –
t = 48 h – 0,1 μg DNA/well85
Abbildung 78 Transfektionseffizienz der Lipoplexe aus VF6 und DOPE an A549 –
t = 48 h – 0,1 μg DNA/well85
Abbildung 79 Transfektion von Lipoplexen aus VF5 und VF6 im Vergleich mit
LipofectAmine® und SuperFect® an A549 - t = 48 h - 0,1 µg DNA/well85
Abbildung 80 Ergebnisse des MTT Viabilitätstest mit Lipoplexen aus VF5, VF6 und
DOPE an A549 - t = 24 h - 0,1 μg DNA/well85
Abbildung 81 Ergebnisse der Transfektion mit Lipoplexen aus VF6 und DOPE an
LLC PK1 – t = 48 h – 0,1 μg DNA/well86
Abbildung 82 Ergebnisse des MTT Viabilitätstest mit Lipoplexen aus VF6 und DOPE an
LLC PK1 - t = 24 h - 0,1 μg DNA/well86
Abbildung 83 Transfektion von VF7/DOPE 1:1 (n/n) an A549 im Vergleich mit
LipofectAmine® und SuperFect® - t = 48 h – 0,1 μ g DNA/well
Abbildung 84 Transfektion von Lipoplexen aus VF7 und DOPE oder Cholesterol an
LLC PK1 – t = 48 h – 0,1 μg DNA/well87
Abbildung 85 Ergebnisse des MTT-Tests von VF7/DOPE 1:1 (n/n) an A549 im Vergleich
mit LipofectAmine [®] und SuperFect [®] - t = 24 h - 0,1 μ g DNA/well
Abbildung 86 Transfektion ausgewählter Vektoren an A549 zu verschiedenen
Zeitpunkten - VF5 N/P 1,5:1 - VF6 N/P 1,5:1 - VF7 N/P 3:188
Abbildung 87 Transfektion ausgewählter Vektoren an LLC PK1 zu verschiedenen
Zeitpunkten - VF7 N/P jeweils 3:188
Abbildung 88 Vergleich der Transfektion von Lipoplexen aus VF5, VF6 und VF7 in
Kombination mit DOPE an A549 in serumfreiem Medium und 10% FBS - t = 48 h -
0,1 μg DNA/well - VF5 1,5 - VF6 N/P 1,5 und 2 - VF7 N/P 3 und 489
Abbildung 89 Ergebnisse der PCS Messungen ausgewählter Liposomen und Lipoplexe -
Änderung der Partikelgröße als Funktion der steigenden Cytofektinkonzentration -
Abbildung ohne Standardabweichung - Linienkontur angepasst
Abbildung 90 Vergleich der Transfektionswerte von Lipiden mit Bis(2-Aminoethyl)amino-
ethylamid Kopfgruppe an LLC PK1 - t = 48 h - 0,1 μg DNA/well92
Abbildung 91 Vergleich der MTT-Tests von Lipiden mit Bis(2-Aminoethyl)aminoethylamid
Kopfgruppe an LLC PK1 - t = 24 h - 0,1 μg DNA/well92

Abbildung 92 Einfluss des lipohilen Molekülteils auf den Gentransfer von Lipiden mit	
Lysin Kopfgruppe an LLC PK1 - t = 48 h - 0,1 μg DNA/well	. 92
Abbildung 93 Einfluss des lipohilen Molekülteils auf die Toxizität von Lipiden mit Lysin	
Kopfgruppe an LLC PK1 - t = 24 h - 0,1 μg DNA/well	. 92

IV. Tabellenverzeichnis

Tabelle 1 Auswahl an Erkrankungen, die mit Hilfe der Gentherapie besser therapiert
werden sollen2
Tabelle 2 Auswahl kommerziell erhältlicher nicht-viralen Gentransfersysteme
Tabelle 3 Strukturen und Summenformeln der Malonsäurediamide
Tabelle 4 Strukturen und Summenformeln der α-verzweigten Fettsäureamide
Tabelle 5 Daten der Plasmid-Quantifizierung nach Isolierung
Tabelle 6 Ergebnisse der MTT basierten Viabilitätsbestimmung von MA8-haltigen
Lipoplexen an LLC PK157
Tabelle 7 Transfektionsergebnisse kationischer Lipoplexe in Abhängigkeit von der
Detektionszeit an LLC PK169
Tabelle 8 Mischungs- und Ladungsverhältnisse der an A549 untersuchten Lipoplexe71
Tabelle 9 Mischungs- und Ladungsverhältnisse der in serumhaltigem Medium
untersuchten Lipoplexe - N/P im Vergleich mit Transfektion ohne Serum
Tabelle 10 PCS ermittelte Partikelgrößen ausgewählter Liposomen und Lipoplexe – z-
average Werte der Lipoplexe stellvertretend für das N/P-Verhältnis mit der maximalen
Transfektionseffizienz an der entsprechenden Zelllinie

1. Einleitung und Zielstellung

Auch zu Beginn des 21. Jahrhunderts ist es trotz moderner, teils patientenoptimierter Pharmakotherapie in vielen Fällen nicht möglich, die Ursachen vieler Erkrankungen medikamentös zu behandeln. Vor dem Hintergrund der vielschichtigen, teilweise noch vollständig verstandenen Pathophysiologie von vielen Krankheiten nicht wie Bluthochdruck, Diabetes Typ II, koronare Herzkrankheit u.a. ist dies nicht verwunderlich. Ausnahmen bilden Erkrankungen bakteriellen Ursprungs, deren Auslöser in den meisten Fällen medikamentös gut zugänglich sind. Während bei den so genannten Volkskrankheiten zwar keine kausale Behandlung möglich ist, sind die Therapieoptionen für diese mittlerweile mannigfaltig und die Patienten sind in aller Regel gut versorgt. Anders sieht es bei Erkrankungen aus, die durch fehlerhaftes Erbgut verursacht werden. Patienten, die beispielsweise an Mukoviszidose, Adenosindeaminase-Defizienz (ADA-SCID) oder Haemophilie leiden, können nur durch aufwendige Substitution des fehlenden Proteins oder den Krankheitsverlauf abmildernde (nicht)medikamentöse Therapieformen behandelt werden. Deshalb stellt der Ersatz bzw. die Ergänzung falscher oder fehlender genetischer Informationen für diese Patienten eine plausible Behandlungsstrategie dar ¹.

1.1 Somatische Gentherapie

Somatische Gentherapie bezeichnet die Expression eines eingebrachten Gens in Körperzellen oder Gewebe mit dem Ziel, fehlende Sequenzen eines Genabschnitts zu ersetzen, fehlerhafte Sequenzen durch funktionell intakte Kopien auszutauschen oder eine Inaktivierung pathogener Genprodukte hervorzurufen, um einen therapeutischen Effekt beim Patienten zu erzielen ^{2, 3}. Gene und andere Nukleinsäurereagenzien sollen damit eine Alternative zu kleinen Wirkstoffmolekülen darstellen, um eine Kausaltherapie zu ermöglichen ⁴. Neben dem Einsatz bei der Behandlung monogenetischer Krankheiten erhofft man, neue Therapieoptionen bei der Behandlung von Tumoren ⁵⁻⁷ und neurodegenarativen Erkrankungen wie Alzheimer und Parkinson etablieren zu können ^{8, 9}. Damit geht der Einsatz von therapeutischen Nukleinsäuren weit über die Behandlung monogenetischer Erkrankungen hinaus. Die somatische Gentherapie muss jedoch von Veränderungen von Keimbahnzellen abgegrenzt werden. Diese sind in Deutschland nach dem Embryonenschutzgesetz verboten ¹⁰.

Die Verabreichung therapeutischer Gene kann entweder *in-vivo* oder *ex-vivo* erfolgen. Die Nukleinsäuren werden dem Patienten direkt appliziert (*in-vivo*) oder es erfolgt eine Entnahme der Zellen, deren Erbgut modifiziert werden soll, um diese nach Kultivierung im Labor dem Patienten kontrolliert zurückzuführen (*ex-vivo*). Mit dieser Methode wurden bereits Anfang der 90er Jahre des letzten Jahrhunderts erste Erfolge bei der Behandlung

der ADA-SCID erzielt ¹¹. Aufgrund des enormen Potenzials, das die Gentherapie in sich birgt, wird diese sowohl in der Grundlagenforschung als auch im Bereich klinischer Anwendung intensiv untersucht. Tabelle 1 (modifiziert nach ¹²) zeigt beispielhaft einige Erkrankungen, bei welchen die somatische Gentherapie große Fortschritte bei der Behandlung bringen soll.

Krankheit	defektes Gen/therapeutischer	zu behandelnder Zelltyp	
	Ansatzpunkt		
ADA-SCID	Adenosindeaminase und Purin-	T- & B-Lymphozyten	
	nucleosidphosphorylase (PNP)		
familäre	Low density lipoprotein (LDL)	Hepatozyten	
Hypercholesterinämie	Rezeptor		
Fanconi-Anämie	FAA und FAC Gene	CD34+ Zellen	
Haemophilie A und B	Gerinnungsfaktoren VIII und IX	Thrombozyten	
Morbus Gaucher	Glucocerebrosidase	Macrophagen	
Mukoviszidose	Cystic Fibrosis transmembrane	Lungen- und Pankreasepithel	
	conductance regulator (CFTR)		
Muskeldystrophie	Dystrophin	Muskelzellen	
Typ Duchenne	<u> </u>		
Phenylketonurie	Phenylalanin-Hydroxylase	Hepatozyten	
Sichelzellenanämie	B-Globolin	Erythrozyten	
Tumorerkrankungen	Induktion des Immunsystems durch den Transfer Cytokin codierender	Tumor Zellen	
	Gene		
	Inaktivierung von Genexpression		
	durch Antisense-Nucleotide oder		
	Small Interfering RNA (siRNA)		
	Einleitung Apoptose durch p53		
AIDS	Inhibition der Virusreplikation bzw.	T-Lymphozyten	
	Infektion		

Tabelle 1 Auswahl an Erkrankungen, die mit Hilfe der Gentherapie besser therapiert werden sollen

1.2 Nukleinsäuren als Arzneistoffe

Die Umsetzung des scheinbar einfachen Therapieansatzes durch Einbringen von Nukleinsäuren somatische Zellen kontrolliert zu beeinflussen und damit eine Therapie verschiedener Erkrankungen zu ermöglichen, ist in der Praxis nicht ohne Probleme durchführbar. Obwohl seit Ende der 80er Jahre mehr als 1300 Studien zum Thema Gentherapie durchgeführt wurden ¹³, kann man noch nicht von einer breiten medizinischen Anwendung sprechen. Um diesen Widerspruch genauer zu analysieren, muss man sich den Weg der DNA bzw. RNA von der Applikation am Patienten bis zum endgültigen Ergebnis der Behandlung und die dabei auftretenden Probleme vor Augen führen. Aufgrund der Struktur und physiko-chemischen Eigenschaften der Nukleinsäuren können diese nicht ohne weiteres als Arzneistoff eingesetzt werden. Zuerst einmal muss das therapeutisch verwendete Gen zum Zielgewebe gelangen und möglichst nur in die gewünschten Zellen "eintreten".

Durch ihre Größe und die polyanionische Struktur sind Nukleinsäuren nicht in der Lage die Zellmembran zu überwinden und damit an ihren eigentlichen Bestimmungsort zu gelangen. Auch in der Zelle ist ungeschützte DNA einem raschem enzymatischem Abbau ausgesetzt und es findet kein gezielter Transport in Richtung Zellkern statt. Aus diesem Grund ist die direkte Injektion der "nackten" DNA-Sequenz in das Zytosol wenig sinnvoll. Außerdem lässt sich dieses Verfahren nur *ex-vivo* anwenden. Zwar kann "nackte" DNA erfolgreich direkt in Tumore injiziert werden ¹⁴⁻¹⁶, wird aber bei systemischer Anwendung schnell eliminiert und ist deshalb für diese ungeeignet ^{17, 18}.

Für den Transport der DNA zu und in die Zielzellen, den Schutz vor abbauenden Enzymen und das Einschleusen in den Zellkern ist ein geeignetes Vehikel, der so genannte Vektor notwendig. Abbildung 1 (modifiziert nach ¹⁹) zeigt schematisch den Ablauf eines Gentransfers sowie die Barrieren, die Vektor/DNA-Komplexe überwinden müssen, um eine erfolgreiche Transfektion zu ermöglichen.

Zuerst erfolgt die Komplexierung der Nukleinsäuren durch den Vektor bzw. der Einbau in diesen (1). Nach Applikation und Transport zum Zielgewebe interagieren die Vektor/DNA-Komplexe mit der Zellmembran (2) und werden dann durch Endozytose in die Zellen aufgenommen (3). Dieser Schritt kann durch Asialoglycoprotein-²⁰, Transferrin-²¹⁻²⁴ und andere Rezeptoren ^{25, 26} vermittelt werden. Nach der Aufnahme in die Zelle muss die eingesetzte Nukleinsäure das Endosom wieder verlassen, um einem späterem Abbau im Lysosom zu entgehen. Dieser Schritt kann mit oder ohne Vektor geschehen, sollte aber durch diesen vermittelt werden (4).

Abbildung 1 Schematisch dargestellter Ablauf des Gentransfers

Nach der Freisetzung ins Zytoplasma (5) müssen Plasmide, Antisense-Nucleotide oder *Small Interfering RNA* (siRNA) vom Vektor dissoziieren (6) und in den Zellkern gelangen (7). Da Kernporen einen Durchmesser von 25 bis 50 nm haben und der Kontrolle des Nuclearporenkomplexes unterliegen, können nur Verbindungen mit einer Größe unter 45 kD durch passive Diffusion in den Zellkern gelangen²⁷. Für die erfolgreiche Aufnahme größerer Nukleinsäuren ist dann ein aktiver Transfermechanismus notwenig. Dafür eignen sich Kernlokalisierungsequenzen mit Proteinen wie Importin β , oder Nuclearem Transportfaktor (NTF), wie sie in Viren gefunden werden¹.

Auch die "Beschaffenheit" der eingesetzten Nukleinsäuren hat Einfluss auf das Ausmaß der Transfektion. Aus diesem Grund wurden derartige Einflüsse schon frühzeitig untersucht²⁸. Durch gezielte Modifikationen der Basensequenz außerhalb des therapeutischen Gens lässt sich eine stärkere Expression hervorrufen. So kann die Verwendung bestimmter Introns zu einem verbesserten Transport in den Zellkern und einer verstärkten m-RNA Prozessierung führen²⁹. Eine weitere Möglichkeit, die Expression des gewünschten Gens zu steigern, ist der Einbau geeigneter Poly(A)-Sequenzen¹ sowie die Verwendung eukaryotischer Promotoren viralen Ursprungs aus Cytomegalo- (CMV) oder Rous Sarkom Viren³⁰. Allerdings können diese eine ungewollte Immunreaktionen hervorrufen, sodass die Verwendung von gewebespezifischen Promotoren humanen Ursprungs mitunter sinnvoller erscheint³¹.

Auch für Antisense-Oligonukleotide gibt es einen Einfluss der Struktur auf die biologische Aktivität. Bei einer Länge zwischen 12 und 28 Basen wirken sie am effizientesten ^{32, 33}. Durch chemische Modifikation des Rückrats wie Substitution des Sauerstoffs der Phosphatgruppe durch Schwefel oder Methylierung lässt sich die Stabilität gegenüber Nukleasen und die Hydrophobizität erhöhen ^{32, 34}. Folglich steigt die Halbwertszeit dieser modifizierten Oligonukleotide und damit die Möglichkeit mit den jeweiligen endogenen Zielstrukturen zu interagieren. Mit Formivirsen-Na (Vitravene[®]), einem Arzneimittel zur Behandlung von Cytomegalie-Virus ausgelöster Retinitis wurde bereits 1998 das erste Antisense-Oligonukleotid in den USA auf den Markt gebracht ¹⁹. In Europa wird es aber seit 2002 nicht mehr vertrieben.

Trotz intensiver Forschung sind momentan noch nicht alle ablaufenden Prozesse des Nukleinsäuretransports verstanden ³⁵. Besonders die Effizienz des Gentransfers stellt den limitierenden Faktor im Hinblick auf eine breite therapeutische Anwendung von Nukleinsäuren als Arzneistoffe dar. Deren Wirksamkeit wird hauptsächlich von der Beschaffenheit und Art des Vektors bestimmt.

1.3 Gentransfersysteme

Neben all den Möglichkeiten die eingesetzten Nukleinsäuren für die jeweilige Zielstellung zu optimieren, ist die Wahl des Vektors der wesentliche Faktor für einen erfolgreichen Gentransfer. Wie aufgezeigt, ist der Weg des "Arzneistoffes" DNA bzw. RNA zum Zielort umständlich und erfordert vom eingesetzten Transportsystem teils gegensätzliche Anforderungen abhängig von der Lokalisation der Vektor/DNA-Komplexe im Organismus. So sollen die Nukleinsäuren vor dem Eintritt in die Zelle fest im bzw. am Vektor verankert sein, damit die Hydrolyse durch Nukleasen und andere Interaktionen verhindert werden. Um aber aus dem Endosom zu "entkommen" und den Zellkern zu erreichen, müssen sich die Nukleinsäuren vom Vektor ablösen können, da sonst keine therapeutische Wirkung erzielt werden kann.

Ein Vektor für den Gentransfer kann demzufolge als System beschrieben werden, das einen effizienten Transport des therapeutischen Gens in die Zielzellen und deren Zellkern ermöglicht, das Gen vor dessen Zerstörung schützt und eine kontrollierte Expression am Zielort hervorruft ³⁶. Ein "idealer" Vektor erfüllt nicht nur diese Anforderungen, sondern sollte außerdem untoxisch, bioabbaubar und nicht immunogen sein, um klinisch angewendet werden zu können. Des Weiteren ist eine preiswerte Herstellung in großen Mengen anzustreben.

Vehikel für die somatische Gentherapie kann man in Abhängigkeit von Art des Nukleinsäuretransfers in physikalische, biologische und chemische Vektoren unterteilen. Trotz intensiver Bemühungen der Forschung in den letzten 20 Jahren existiert momentan noch kein Gentransfersystem, das alle bereits genannten Forderungen erfüllt und damit die breite therapeutische Anwendung der somatischen Gentherapie ermöglicht.

1.3.1 Physikalische Vektoren

1982 entwickelten Neumann und Mitarbeiter mit der Elektroporation eine Methode, mit der in kurzer Zeit eine große Anzahl an Zellen transfiziert werden kann ^{37, 38}. Durch Anlegen einer elektrischen Spannung bis zu 1 kV werden in der Zellmembran für kurze Zeit Poren erzeugt, die es der zugefügten DNA ermöglichen durch Diffusion oder unter Beteiligung der Elektrophorese in die Zelle zu gelangen ³⁹. Durch die Entwicklung eines einfachen Elektroporators ⁴⁰ konnte diese Transfektionsmethode im Labor für eine große Anzahl von Zelltypen genutzt werden. Das grundlegende Prinzip dieser Methode ist in der pharmazeutischen Technologie auch als Iontophorese bekannt. Damit besteht die Möglichkeit diese Art des Gentransfers *in-vivo* zumindest für Haut- und Muskelzellen durchzuführen. Entsprechende Untersuchungen an Versuchstieren wurden bereits publiziert ⁴¹. Neben der Elektroporation können Nukleinsäuren auch durch Bioballistik in Gewebe eingebracht werden. Mit der so genannten "Gene-Gun" Technologie werden DNA beladene Goldpartikel in die entsprechenden Zielgewebe geschossen ^{42, 43}. Mit Hilfe von komprimiertem Stickstoff oder Helium als Treibgas werden die Partikel auf bis zu 900 m/s beschleunigt und können so durch das Stratum Corneum in lebende Hautschichten gelangen ¹. Erste Untersuchungen an Versuchstieren zeigten auch für diese Variante des Gentransfers Erfolge ^{44, 45}. So konnte in Mäusen Tumorwachstum durch Gene, die für Interleukin-2 und Interferon Gamma codieren, teilweise gestoppt werden ⁴⁶. Ein großer Nachteil der "Gene-Gun" sind die hohen Entwicklungskosten und die teilweise geringe Stabilität der Nukleinsäuren auf den Goldpartikeln. Die physikalischen Vektoren sind außerdem nicht in der Lage eine systemische Verteilung der therapeutischen Gene zu ermöglichen. Sicherlich ist dies einer der Hauptgründe, dass trotz vielversprechender Ansätze die klinische Erprobung am Menschen bei diesen Gentransfersystemen eine untergeordnete Rolle spielt ⁴⁷.

1.3.2 Biologische Vektoren

Biologische Vektoren viralen Ursprungs gelten als Gentransfersysteme der ersten Stunde². Als infektiöse Agenzien sind Viren in der Lage ohne große Schwierigkeiten Nukleinsäuren in Zellen zu transportieren und diese exprimieren zu lassen¹². Durch rezeptorvermittelte Adsorption infizieren sie spezifisch bestimmte Zelltypen⁴⁸, was für eine systemische Anwendung im Rahmen der somatischen Gentherapie äußerst vorteilhaft ist. Diese Rezeptoren haben zumeist normale Funktionen im Stoffwechsel der Zellen, sodass eine Vielzahl an Geweben durch viralen Gentransfer erreicht werden kann. Beispielsweise adsorbieren Retroviren mit Hilfe von CD4-, CAT-, Ram-1- und ALV-A Rezeptoren⁴⁹, die in verschiedenen Geweben lokalisiert sind. Nach dem Eintritt in die Zelle und dem Freisetzen der Nukleinsäuren (uncoating) erfolgt die rasche und nahezu vollständige Translokation des Virusgenoms in den Zellkern. Bestimmte Peptidsequenzen der Proteinhülle ermöglichen nicht nur die Freisetzung aus Endo- und Lysosomen, sondern vermitteln auch die Aufnahme ins Karyosol³. Beispiele dafür sind die bereits erwähnten Proteine Importin β, Guanin-Nukleotid-bindendes Protein (Ran) und NTF¹.

Für die somatische Gentherapie werden immer modifizierte Viren als Vektoren eingesetzt. Mit Hilfe rekombinanter Techniken werden die Bereiche des Virusgenoms, die für Pathogenität und Replikation verantwortlich sind, durch die gewünschten Nukleinsäuresequenzen ersetzt. Bringt man diese mit Hilfe der modifizierten Viren in die entsprechenden Gewebe ein, bezeichnet man den Vorgang als Transduktion. Biologische Vektoren rekrutieren sich aus der Gruppe der Retro-, Adeno-, Adeno-assoziierten-, Herpes- und Pockenviren. Aufgrund ihrer hohen Transduktionsrate und den bereits erwähnten Vorteilen, werden biologische Vektoren bei mehr als zwei Drittel aller klinischen Studien eingesetzt ^{2, 19, 47}.

Eine der größten Gruppen nehmen dabei die retroviralen Systeme ein. Diese membranumhüllten RNA-Viren eignen sich hervorragend, um genetisches Material in die gewünschten Zellen einzuschleusen^{12, 50}. Außerdem wird die doppelsträngige DNA (ds DNA), die nach dem Umschreiben durch die Reverse Transktriptase aus der einsträngigen RNA (ss RNA) entstanden ist, stabil in das Genom der tranduzierten Zellen integriert. Man hofft, dadurch eine dauerhafte Heilung monogentischer Erkrankungen zu erzielen. Allerdings weist das Genom von Retroviren nur eine Größe von ca. 10 kB auf, wovon 8 kB substituiert werden können. Dies kann gerade für große Gene ein limitierender Faktor für den Gentransfer sein. Retrovirale Vektoren transduzieren nur Zellen, die sich in der Mitose befinden ⁵¹. Daraus resultiert, dass Retroviren bevorzugt exvivo angewendet werden sollten. Durch Verwendung von Lentiviren, einer Untergruppe der Retroviren zu denen auch das HI Virus gehört, soll diese Einschränkung überbrückt werden, da diese Vektoren auch ausdifferenzierte Zellen transduzieren 52, 53. Somit können lentivirale Genfähren auch zur Behandlung von Tumorerkrankungen eingesetzt werden ⁵⁴. Mittels retroviraler *ex-vivo* Gentherapie konnten in letzter Zeit beachtliche Erfolge bei der Behandlung der ADA- und X-SCID erzielt werden. So zeigten alle Patienten, die genetisch veränderte autologe Blutstammzellen reinfundiert bekamen, einen 100%igen Therapieerfolg 55-57.

Dass diese überaus erfreulichen Ergebnisse nicht zum großen Durchbruch der somatischen Gentherapie führten, liegt an den nach der Behandlung aufgetretenen Nebenwirkungen. So entwickelten fünf der 20 gegen X-SCID behandelten Kinder eine T-Zell Leukämie, durch die ein Kind verstarb⁵⁸. Bedingt wurde die Tumorentstehung durch die dauerhafte Integration der applizierten Nukleinsäuren in das Genom der Blutzellen. Problematisch ist dabei, dass Retroviren und davon abgeleitete Vektoren bevorzugt in Stellen des Genoms integrieren, die aktiv transkribiert werden⁵⁸. Dies kann in der Nähe von Protoonkogenen geschehen⁵⁷ oder auch in Genen, deren Produkte an der Regulation des Zellzyklus beteiligt sind⁵⁹. Damit können retrovirale Vektoren unter bestimmten Voraussetzungen als potente Mutagene angesehen werden, auch wenn die Ursachen der Nebenwirkungen in der erwähnten Studien momentan noch kontrovers diskutiert werden⁵⁸.

Um einigen Nachteilen der Retroviren entgegenzuwirken, wurden Adenoviren für die Gentherapie eingesetzt. Dieser Virustyp hat keine Lipidhülle und ein ds DNA Genom von ca. 35 – 40 kB. Er infiziert verschiedene Spezies und ist u.a. für die Entstehung von Atemwegsinfekten verantwortlich. Adenoviren transduzieren sowohl sich teilende als auch ausdifferenzierte Zellen. Sie replizieren sich episomal, das heißt, die virale DNA wird nicht ins Wirtsgenom integriert⁶⁰, was die Gefahr potentieller Onkogenese minimiert. Derzeit sind mehr als 50 Subtypen bekannt, von denen im Rahmen der Gentherapie die Typen 2

und 5 eingesetzt werden ¹². Modifizierte Adenoviren wurden bereits bei einer Reihe von Untersuchungen erfolgreich angewendet. So konnten sowohl bei in-vitro als auch bei invivo Versuchen tumorschädigende Effekte erzielt werden^{61, 62}. Da Adenoviren eine hohe Affinität zu epithelialem Gewebe aufweisen, wurden CFTR Gen modifizierte adenovirale Vektoren an Mukoviszidosepatienten untersucht. Die nasale Applikation der Vektor/DNA-Komplexe führte zwar zu einer vorübergehenden Wiederherstellung des defekten Chloridkanals⁶³, allerdings war die Effizienz des Gentransfers so gering, dass keine Verbesserung der Symptomatik bei den Patienten erreicht wurde ⁶⁴. Bei einer weiteren Studie zur Anwendung am Nasen- und Bronchialepithel durch Einsatz eines Aerosols wurde ebenfalls eine transiente Expression des CTRF Gens erreicht, ohne das dabei nennenswerte immunologische Reaktionen auftraten 65. Diese Nebenwirkung stellt ein großes Problem bei der Anwendung adenoviraler Genfähren dar. So verstarb während einer klinischen Studie ein Patient, der gegen Ornithin-Transcarbamylase Defizienz (OTCD) behandelt worden war, an einer Überreaktion des Immunsystems gegen den eingesetzten adenoviralen Vektor, obwohl die eingesetzten Dosen zu niedrig waren, um eine signifikante Verbesserung der Krankheitssymptome zu erzielen ⁶⁶. Trotz möglicher Immunreaktionen basiert das erste weltweit zugelassene Gen-Therapeutikum (Gendicine[®], China Oktober 2003, Behandlung von Tumorerkrankungen mittels p53 Gen) auf modifizierten Adenoviren⁶⁷.

Adeno-assoziierte Viren (AAV), die zur Familie der Parvoviren gehören, enthalten einsträngige DNA (ss DNA) als Erbgut. Diese lässt sich bis zu einer Größe von 5 kB substituieren. Obwohl dies ein limitierender Faktor für den somatischen Gentransfer sein kann, haben Vektoren auf der Basis dieses Virustyps einige Vorteile. Zwar zeigt die Mehrzahl der Menschen seropositive Tests auf AAV, jedoch gibt es keine nachgewiesene Erkrankung durch diesen Virustyp¹². Das Risiko einer überschießenden Immunreaktion ist demzufolge geringer einzustufen. Nach Infektion wird die Virus-DNA stabil in das Genom der Wirtszelle integriert. Dies geschieht beim Wildtyp immer im Chromosom 19⁶⁸, wohingegen für den Gentransfer modifizierte Viren diese Spezifität verlieren. Man vermutet, dass dies mit dem dann fehlenden Replikationsgen zusammenhängt¹². Trotz der begrenzten Kapazitzät, die AAV Vektoren aufweisen, konnte gezeigt werden, dass dieses System geeignet ist, Muskel-, Leber- und weitere Zelltypen erfolgreich zu transduzieren^{69, 70}.

Alle bisher beschriebenen viralen Vektoren weisen eine relativ geringe Transportkapazität für therapeutische Nukleinsäuren auf. Anders ist dies bei der Gruppe der Herpes- und Pockenviren. Hier können im Rahmen der Modifizierung 30 bis 50 bzw. 25 kB große Nukleinsäuren substituiert werden. Damit liegen die Herpesviren an der Spitze der Transportkapazität der viralen Gentransfersysteme ⁷¹. Das Herpes-Simplex-Virus 1 (HSV-1) kann eine große Bandbreite an Zellen, sowohl sich teilende als auch ausdifferenzierte, infizieren. Durch Herausschneiden von DNA Sequenzen, die für entzündungsfördernde

virale Proteine codieren, versucht man die Zytotoxizität der HSV-1 abgeleiteten Vektoren zu reduzieren ^{12, 72}. HSV-1 siedelt sich bevorzugt in neuronalen Geweben an. Dieser Effekt soll bei der Behandlung von Hirntumoren ausgenutzt werden. So konnte gezeigt werden, dass durch den Einsatz von Vektoren dieses Typs in Kombination mit Ganciclovir das Überleben von Versuchstieren mit malignen Gliomen gegenüber der Einzeltherapie verlängert werden konnte^{73, 74}. Ein weiterer Vorteil von HSV-1 Vektoren ist die große Stabilität der Partikel. Dadurch können sie auf sehr hohe Virustiter konzentriert werden, was für eine effektive *in-vivo* Gentherapie wichtig ist. Trotzdem haben auch diese viralen Genfähren einige Nachteile, die einer breiten Anwendung bisher im Weg stehen. Modifizierte Herpesviren sind immer latent infektiös. Da der Wildtyp bei vielen Menschen in den Nervenzellen persistiert, kann es im Rahmen des Gentransfers zur Rekombination und dadurch zum Auftreten von Krankheitssymtomen kommen. Zudem besitzen HSV abgeleitete Gentransfersysteme starke zytotoxische Eigenschaften ¹².

Zusammenfassend lässt sich festhalten, dass modifizierte Viren sehr effiziente Vektoren gerade für den *in-vivo* Gentransfer darstellen, wobei jeder Typ gewisse Vorteile gegenüber den anderen aufweist. Demzufolge ist es nicht verwunderlich, dass die bereits zugelassenen Gen-Therapeutika virale Vektoren als Bestandteil enthalten. Hingegen sind diese, wie aufgezeigt, mit einer Reihe von Nachteilen behaftet. Sie können als potenzielle Onkogene wirken und weisen mitunter eine hohe Immunogenität auf. Außerdem sind spontane Rekombinationen zum Wildtyp möglich. Nicht unerwähnt sollte bleiben, dass auch modifizierte Viren immer als Allergene anzusehen sind. Aufgrund der Tatsache, dass das Kapsid aus Proteinen besteht, ist eine Antikörperbildung nach Erstkontakt jederzeit möglich und limitiert damit eine mehrfache Applikation.

1.3.3 Chemische Vektoren

Bedingt durch die teils gravierenden Nebenwirkungen, die mit dem viralen Gentransfer einhergehen, ist man seit Jahren bestrebt, Alternativen zur Transfektion von eukaryotischen Zellen zu entwickeln. Zwar ist die Applikation von "nackter" DNA direkt ins Muskelgewebe erfolgreich möglich ⁷⁵ und stellt somit bei klinischen Studien immer noch den größten Anteil an nicht-viralem Gentransfer dar ⁴⁷, allerdings ist diese Variante wie bereits erwähnt für die systemische Anwendung völlig ungeeignet. Deshalb muss für einen umfassenden Einsatz die DNA durch ein geeignetes Vehikel geschützt werden. Unter den chemischen Vektoren sind es die Polymere und Liposomen, denen das meiste Potenzial für den nicht-viralen Gentransfer zugeschrieben wird. Die Gemeinsamkeit dieser Vektoren sind kationische Strukturelemente, durch die sie mit der DNA elektrostatisch interagieren können. Beim Mischen entstehen spontan Komplexe, die als Poly- bzw. Lipoplexe bezeichnet werden.

Durch einen Überschuss an positiver Ladung gelingt es diesen Systemen mit negativ geladenen Strukturen der Zelloberfläche, wie Proteoglycanen, zu interagieren und dann mittels adsorptionsvermittelter Endozytose in die Zelle einzutreten ^{18, 76}. Dieser Mechanismus hat den Nachteil, dass die Transfektion nicht gewebespezifisch abläuft. Um dieses Problem zu lösen, wurde das Konzept des Rezeptor-vermittelten Gentransfers entwickelt. Dabei werden die chemischen Vektoren so modifiziert, dass sie mit Liganden für die Erkennung zielspezifischer zellulärer Rezeptoren ausgestattet sind. Beispiele dafür sind die unter Punkt 1.2 erwähnten Asialoglycoprotein, Transferrin, Nucleolin, aber auch Hormone wie Insulin⁷⁷ oder Antikörper gegen den Rezeptor des Epidermalen Wachstumsfaktors (EGF)⁷⁸ und weitere. So konnte für kationische Liposomen, die neben Polyethylenglycol (PEG) mit 0,3 mol% HIV TAT Peptiden modifiziert worden waren, eine gesteigerte Zellaufnahme und damit eine gesteigerte Transfektion nachgewiesen werden ⁷⁹. Nach erfolgter Bindung an die Zelloberfläche erfolgt der Eintritt der Vektor/DNA-Komplexe. Dies geschieht entweder auf Clathrin-abhängigen oder Clathrinunabhängigem Weg. Die große Mehrheit der Rezeptor-Ligand Komplexe wird durch Clathrin-vermittelte Endozytose in die Zelle aufgenommen. Dabei sammeln sich auf der zytoplasmatischen Seite der Zellmembran gitternetzartige Proteinstrukturen an (bedingt durch die Proteinstruktur von Clathrin), die zur Bildung von korbförmigen Einstülpungen führen, welche die Poly- bzw. Lipoplexe umschließen und dem endosomalen System zuführen⁸⁰. Die alternative Variante verläuft über cholesterol- und sphingolipidreiche Einbuchtungen der Zellmembran, die mit dem Protein Caveolin markiert sind (Caveolae). Über einen cholesterolabhängigen Weg werden sie internalisiert und dienen zur Aufnahme größerer Moleküle, Toxine, Bakterien und einiger Viren⁸¹.

Die chemischen Vektoren haben gegenüber viralen Systemen einige Vorteile. Viele der eingesetzten Substanzen sind bereits in klassischen Bereichen der Pharmazeutischen Technologie bekannt und relativ preiswert zu produzieren. Außerdem können physikalische und chemische Eigenschaften genau charakterisiert werden. Ferner erlauben sie wesentlich höhere DNA Beladungsraten. Sie wirken kaum immunogen und induzieren keine allergischen Reaktionen, sodass eine Mehrfachapplikation möglich sein sollte. Allerdings existieren unmodifiziert weder Gewebespezifität noch ein gezielter Transfer der Nukleinsäuren zwischen Zytosol und Zellkern. Des Weiteren führen sie nur zu einer transienten Expression der eingeschleusten Gene und weisen eine deutlich geringere Transferleistung als virale Vektoren auf ¹. Aus diesen Gründen werden sie zum jetzigen Zeitpunkt bevorzugt in der Zellkultur und am Tiermodell untersucht ². Für die Bearbeitung von Zellkulturen gibt mittlerweile eine Vielzahl kommerziell verfügbarer Produkte ⁸². Tabelle 2 listet einige von diesen auf.

Tabelle 2 Auswahl kommerziel	Il erhältlicher n	nicht-viralen	Gentransfers	<i>y</i> steme
------------------------------	-------------------	---------------	--------------	----------------

Transfektionsreagenz	Hersteller/Vertreiber	Reagenzklasse/Beschreibung
LipofectAmine	Invitrogen	kationische Liposomen
TransIT-LT1	Mirus Bio	kationische Liposomen
FuGENE 6	Roche	Lipidmischung in 80% Ethanol
JetPEI	Polyphus	Polyethylenimin, linear, 22 kDa
SuperFect	Quiagen	Polykationisches Dendrimer, verzweigt
PolyFect	Quiagen	Polykationisches Dendrimer, verzweigt

Zu den kationischen Polymeren werden Substanzen aus verschiedenen Strukturklassen gezählt. In Abbildung 2 sind die wichtigsten Vertreter dargestellt.

Abbildung 2 Kationische Polymere für den nicht viralen Gentransfer

Werden diese Polymere mit DNA kombiniert, entstehen die so genannten Polyplexe. Durch Variation von Kettenlänge, Verzweigungsgrad des Polymers und des molaren Verhältnisses zur Nukleinsäure können Nettoladung, Bindungsstärke und Größe der Komplexe variiert werden. Obwohl alle kationischen Polymere die DNA über elektrostatische Wechselwirkungen binden und den gleichen Mechanismus beim Eintritt in die Zellen aufweisen, unterscheiden sich Zytotoxizität und Transfektionseffizienz erheblich⁸³. Eines der ersten Polymere, das für den Gentransfer angewendet wurde, war Poly-L-Lysin (PLL)⁸⁴. Durch seine lineare Polypeptidstruktur ist es sehr gut biodegradierbar und damit ein potenzieller Vektor für den *in-vivo* Gentransfer. Allerdings wird es stark an Plasmaproteine gebunden und dadurch schnell aus der systemischen Zirkulation eliminiert^{85, 86}. Für die nasale Applikation wiesen mit PEG modifizierte PLL-Partikel erste Erfolge hinsichtlich Verträglichkeit und Genexpression in einer doppelblinden Studie an Mukoviszidosepatienten auf⁸⁷.

Das wohl am meisten untersuchte und aktivste kationische Polymer ist Polyethylenimin (PEI)⁸³. Es wurde 1995 als effizienter und einfach zu modifizierender Vektor vorgestellt⁸⁸. Mittlerweile ist es in unterschiedlichen Molekulargewichten sowohl in linearer als auch in verzweigter Form kommerziell erhältlich. Da jedes dritte Atom ein Stickstoff ist, ergibt sich eine hohe Dichte an positiven Ladungen und somit eine gute Pufferkapazität über einen weiten pH-Bereich. Fällt der pH-Wert beispielsweise auf einen Wert von 5 ab, wie es während des endosomalen Transports der Polyplexe durch den Einstrom von Protonen geschieht, verhindert der so genannte "Protonenschwammeffekt" ein weiteres Absinken des pH-Wertes. Um den sich bildenden Ladungsgradienten auszugleichen, erfolgt ein passiver Transport von Chloridionen ins Endosom. Die damit einhergehende höhere Osmolarität führt zum Einstrom von Wasser, dem Anschwellen des Endosoms und dessen Ruptur. Die endosomolytischen Eigenschaften von PEI fördern dadurch die Freisetzung der Nukleinsäuren⁸⁹. Diesen Effekt weisen PLL Vektoren nicht auf, da die Amingruppen des Lysins keine pKs-Werte zwischen 5 und 7 besitzen. Man vermutet, dass deshalb die Transfektionsleistung von PLL Vektoren geringer ist als von PEI Systemen, obwohl beide DNA ähnlich gut in Zellen transportieren können ^{90, 91}.

Sowohl verzweigtes als auch lineares PEI weisen sehr gute *in-vitro* und moderate *in-vivo* Transfektionsraten auf, wobei Polyplexe aus linearem PEI weniger zytotoxisch zu sein scheinen. Aufgrund der guten Stabilität und geringen Größe der Polyplexe eignen sie sich für die Anwendung im Aerosol und führten an Mäusen in niedriger Dosis zur erfolgreichen Genexpression ohne Anzeichen von Entzündungsreaktionen ⁹². Sowohl für lineares als auch für verzweigtes PEI gibt es einen Zusammenhang zwischen Transfektionsaktivität/ Zytotoxizität und der molekularen Masse, deren Optima bei ca. 22 kDa bzw. ca. 25 kDa liegen. Abweichungen können zwar zu höheren Transfektionsraten führen, wirken sich aber mitunter nachteilig auf die zytotoxischen Eigenschaften der Polyplexe aus ⁸³. Eine weitere Möglichkeit, die Eigenschaften des Polymers zu ändern, ist die Modifizierung der Oberfläche mit Substanzen wie PEG, Peptiden oder Zuckern. So konnte durch partielle PEGlierung die Verweildauer dieser Vektoren im Organismus gesteigert werden 93 und durch den Einbau zyklischer Pentapeptide bei Verwendung einer p53 codierenden Plasmid-DNA in Mäusen antitumorale Effekte nachgewiesen werden ⁹⁴. Um das interessante Feld der Verwendung von siRNA für die kationischen Polymere zu erschließen, wurden diese mit PEG so modifiziert, damit ein effizienter Transport dieses Nukleinsäuretyps möglich ist ^{95, 96}. Ein großer Nachteil von PEI basierten Vektoren ist die schlechte Bioabbaubarkeit des Polymers. Dieses Problem versucht man durch chemische Modifizierung zu lösen. So kann beispielsweise durch Crosslinking kurzer linearer PEI Ketten über spaltbare Disulfidbrücken das Polymer in kleinere Fragmente abgebaut werden und ist dadurch weniger zytotoxisch. Untersuchungen an verschiedenen Zellkulturen sowie an Mäusen bescheinigen den bioabbaubaren PEI Polymeren eine gute Transfektion bei akzeptabler Zytotoxizität im Vergleich zu anderen nicht-viralen Vektoren 97, 98. Einige Systeme basierend auf kationischen Polymeren als Vektoren wurden bereits in klinischen Studien für eine lokale Anwendung bei Zystischer Fibrose oder Tumorerkrankungen untersucht. Durch erneute Optimierung und Veränderung dieser Genfähren möchte man weitere klinische Untersuchungen anstreben und die zielgerichtete Entwicklung vorantreiben ⁹⁹.

Neben den polymerbasierten Vektoren sind die kationischen Liposomen Gegenstand intensiver Forschungsarbeit. Liposomen sind kugelig in sich abgeschlossene Vesikel, deren Membran aus Lipiddoppelschichten (Bilayer) amphiphiler Lipide bestehen. Sie trennen einen wässrigen Innenraum von einer kontinuierlichen wässrigen Phase ab. sind die Lipiddoppelschichten SO angeordnet, dass die Dabei hydrophilen Molekülstrukturen zur wässrigen Seite gerichtet sind, während die lipophilen Molekülteile den Innenbereich der Membran bilden ¹⁰⁰. Ihr Durchmesser liegt zwischen 20 nm und mehreren µm. In Abhängigkeit von Größe und Lammellenzahl werden verschiedene Grundtypen wie beispielsweise multilamellare (MLV) oder große unilamellare Vesikel (LUV) unterschieden. Diese Einteilung wurde bereits 1977 von der New York Academy of Science vorgenommen¹⁰¹ und inzwischen erweitert.

Die Besonderheit kationischer Liposomen ist die positiv geladene Oberfläche, die durch den Einbau Stickstoff-funktionalisierter Amphiphile erreicht wird und damit eine Komplexierung und Kondensation von DNA ermöglicht. Bereits 1987 stellte eine Arbeitsgruppe um Felgner mit *N*-[1-(2,3-Dioleyloxy)propyl]-*N*,*N*,*N*-trimethylammonium-chlorid (DOTMA) das erste für den Gentransfer geeignete kationische Lipid (Cytofektin) vor ¹⁰². Durch systematische Weiterentwicklungen folgten kurz darauf analoge Substanzen wie 1,2-Dioleoyloxy-3-(trimethylammonium)propanchlorid (DOTAP), 1,2-Dimyristyloxypropyl-3-dimethyl(hydroxyehtyl)ammoniumbromid (DMRIE) und 2,3-Dioleyloxy-N-[2-(spermin-carboxamido)ethyl]-N,N-dimethyl-1-propanammoniumtrifluor-

acetat (DOSPA)^{18, 103, 104}. Mittlerweile sind viele verschiedene kationische Lipide, die sich nicht mehr nur vom Aminoglycerol ableiten, synthetisiert und auf ihre Eignung für den Gentransfer untersucht worden¹⁰⁵. Einige dieser teils kommerziell erhältlichen Cytofectine sind in Abbildung 3 dargestellt.

Abbildung 3 Strukturformeln ausgewählter kationischer Lipide

Obwohl die Mehrzahl der Cytofektine verschiedenen Stoffklassen angehört, weisen alle folgende drei Strukturdomänen auf:

- 1. hydrophile, kationische Kopfgruppe
- 2. hydrophober Molekülteil
- 3. Linker zwischen den beiden Moleküldomänen

Wichtig für die elektrostatischen Wechselwirkungen mit den Nukleinsäuren ist die Struktur und Form der Kopfgruppe. Dabei unterscheidet man in Abhängigkeit von der Anzahl der Aminfunktionen mono- und multivalente Moleküldomänen. Anfangs wurden hauptsächlich Lipide mit monovalenten Ammoniumgruppen synthetisiert. Um die Bioverträglichkeit der Substanzen zu verbessern, versuchte man die Ammoniumgruppe zu ersetzen. Eine Arbeitsgruppe um Hoekstra stellte 1997 kationische Pyridiniumderivate vor, die bei höherer Transfektionsrate weniger zellschädigende Effekte aufwiesen als Lipofectin^{® 106}. Da schon lange bekannt war, dass eine höhere Anzahl an kationischen Gruppen die Fähigkeit zur Komplexierung von DNA steigert ¹⁰⁷, ging man dazu über, neue Cytofektine Kopfgruppen herzustellen. Erste Beispiele mit multivalenten dafür waren Dioctadecylamidoglycylspermin (DOGS) und DOSPA. Inzwischen ist man bestrebt, durch

Einführung von verzweigten bzw. mehrfach verzweigten Kopfgruppen die Effizienz des Gentransfers weiter zu steigern ¹⁰⁸. Außerdem erhofft man durch derartige Strukturen auch die Eigenschaften der Cytofectine hinsichtlich der zellulären Barrieren zu modifizieren. So zeigten Lipide mit Dendrimer-ähnlichen Polyamidoamin-Kopfgruppen (PANAM) höhere Transfektionsraten als DC-Cholesterol ¹⁰⁹. Dies wurde auf die gesteigerte Pufferkapazität des Systems während des endosomalen Transports der Lipoplexe zurückgeführt. Für die Eigenschaften der Substanzen hinsichtlich DNA-Komplexierung, Effizienz des Gentransfers und Verträglichkeit ist aber nicht nur der hydrophile Anteil des Lipids, sondern das Zusammenspiel aller Molekülbereiche verantwortlich. Schon Felgner zeigte mit der Einführung von DMRIE, dass auch die Kettenlänge des Cytofectins Einfluss auf die Transfektionsleistung der kationischen Liposomen hat ¹⁰⁴. Dieser Effekt wird auf eine gesteigerte Tendenz zur Verdichtung von DNA durch fluide Amphiphile zurückgeführt ¹¹⁰. Damit scheint neben den elektrostatischen Wechselwirkungen die Fähigkeit eines kationischen Lipids DNA zu komplexieren einen entscheidenden Einfluss auf die Transfektion zu haben ¹¹¹.

Für viele Cytofectine ist der Einfluss der Kettenlänge auf den Gentransfer untersucht worden. Allerdings gibt es diesbezüglich noch keinen einheitlichen Konsens. So zeigen in Analogie zu DOTMA - DMRIE auch ähnliche Aminoglycerolderivate gesteigerte Gentransferraten bei einer Verkürzung der Alkylkettenlänge von C18 auf C12¹¹². Andererseits lässt sich diese Beobachtung nicht unbedingt auf andere kationische Lipide mit PANAM-Struktur übertragen. Für Substanzen wurde eine höhere Transfektionsleistung bei steigender Alkylkettenlänge nachgewiesen¹¹³. Aufgrund der Heterogenität in der Grundstruktur von kationischen Lipiden sind allgemeingültige Regeln bezüglich der optimalen Kettenlänge des lipophilen Molekülteils nicht unbedingt zu erwarten. Allerdings sollten es vornehmlich fluide Ketten sein. Dies bedeutet aber auch, dass für jede weitere Gruppe von Substanzen der Einfluss von Strukturmodifikationen auf die Transfektion und die Verträglichkeit der daraus resultierenden Vektoren erneut untersucht werden muss.

Neben der Verwendung von Fettsäuren oder aliphatischen Alkylketten besteht die Möglichkeit Cholesterol und andere Steroide einzusetzen. Gao und Huang stellten bereits 1991 3*β*-[N-(N',N'-Dimethylaminoethyl)carbamoyl]cholesterol (DC-Cholesterol) vor ¹¹⁴. Durch Modifizierung u. a. mit dem Polyamin Spermin wurden Substanzen entwickelt, die noch höhere Tranfektionsleistungen aufzeigten und dies sogar bei *in-vivo* Experimenten bestätigen konnten ^{115, 116}. Da kationische Liposomen, die Cholesterol enthalten, bei Zerstäubungsvorgängen eine hohe Stabilität aufweisen, eignen sich darauf basierende Vektoren gut für die nasale bzw. pulmonale Applikation therapeutischer Nukleinsäuren ¹¹⁷. Entsprechende Studien an Mukoviszidosepatienten zeigten erste Erfolge ^{118, 119}. Allerdings sollte auch erwähnt werden, dass die Verbesserung des Chloridionentransports zwar

signifikant, aber minimal ausfiel und teilweise Immunreaktionen in Form von grippeähnlichen Symptomen auftraten ¹²⁰.

Auch andere kationische Lipide wurden bereits am Menschen für den somatischen Gentransfer untersucht. Durch DOSPA/DOPE Mischungen *ex-vivo* transfizierte autologe Tumorzellen und Fibroblasten, denen ein IL-2 codierendes Gen eingeschleust worden war, konnten den Krankheitsverlauf von Patienten, die an therapieresistenten fortgeschrittenen Tumorerkrankungen litten verlangsamen¹²¹. Die intratumorale Injektion von Allovectin-7 (Lipoplexe aus DMRIE/DOPE und Plasmid-DNA codierend für HLA-B7 und *β2*-Mikroglobulin) führte bei 18% der Patienten, die an metastasierendem Melanom erkrankt waren, zumindest teilweise zur Regression des Tumors¹²². Die gleiche Kombination wurde mit einer adaptiven Immuntherapie zusammen angewendet, um Patienten mit Melanom bzw. Nierenzellkarzinom der Stadien IV zu behandeln. Zwar konnte keine Tumorregression beobachtet werden, aber die *ex-vivo* transfizierten Zellen exprimierten auch nach Reinjektion das Antigen HLA-B7¹²³.

Diese ersten Erfolge mit den im Vergleich zu viralen Vektoren geringen Nebenwirkungen sind sicherlich ein Grund, warum klinische Studien mit chemischen Vektoren tendenziell zunehmen ⁴⁷. Nichts desto trotz reicht vor allem die Gentransferrate momentan nicht aus, um eine marktreife Anwendung zu gewährleisten. Deshalb besteht immer noch die Möglichkeit durch Verbesserung der Strukturen kationischer Lipide effizientere Vektoren zu kreieren. Neuentwicklungen mit verschiedensten Variationen sowohl im hydrophilen als auch im lipophilen Molekülteil verdeutlichen diesen Ansatz ¹²⁴.

Zur Herstellung kationischer Liposomen werden die Cytofectine häufig mit neutralen Amphiphilen, den so genannten Co- bzw. Helferlipiden kombiniert⁸³. In der Regel werden Dioleoyl-L-α-phosphatidylethanolamin (DOPE) und Cholesterol verwendet ¹²⁵, mitunter aber auch Phosphatidylcholine ^{124, 126}. Auch sie haben einen entscheidenden Anteil am Gentransfer. Der Einfluss der beiden erst genannten wird auf ihre Eigenschaft, den Übergang der Lipoplexe in die invershexagonale Phase (H_{\parallel} -Phase) zu induzieren, zurückgeführt. Diese ist von elementarer Bedeutung bei der Freisetzung der Nukleinsäuren aus dem Endosom^{111, 127-131}. Für DOPE konnte außerdem gezeigt werden, dass es Lipid-Flip-Flop zwischen Lipoplex und Endosomenmembran unterstützt, was ebenfalls für die Freisetzung der Nukleinsäuren wichtig ist ^{132, 133}. Die Induktion der H_{II}-Phase kann aber auch durch das kationische Lipid erreicht werden. So zeigten auf Aminozuckern basierende Geminilipide (Amphiphile mit zwei hydrophilen Kopfgruppen und zwei hydrophoben Ketten, die durch einen starren oder flexiblen Spacer direkt miteinander verknüpft sind) bei Absinken des pH-Wertes diesen Effekt, was zur Verschmelzung der Lipoplexe mit der Endosomenmembran führte und die DNA Freisetzung ermöglichte ¹³⁴.

Analog zu Biomembranen bilden auch kationische Liposomen lamellare Doppelschichten aus. Diese können auch dann noch nachgewiesen werden, wenn nach Kombination mit Nukleinsäuren spontan Lipoplexe entstehen. Bei niedrigen Konzentrationsverhältnissen von Cytofektin zu DNA können sich die Liposomen wie Perlen an einer Kette an der DNA anordnen ¹³⁵. Drastische Änderungen dieser durch Oberflächenassoziation gebildeten Strukturen ergeben sich bei ladungsneutralen Komplexen. Die Partikelgröße steigt an und fällt mit zunehmender Liposomenkonzentration wieder ab. Es bilden sich multilamellare Schichten. wobei **DNA-Moleküle** Monolaver sandwichartig als zwischen Lipiddoppelschichten komplexiert sind (L_{a} -Phase)¹³⁶. In Abhängigkeit von den Strukturparametern der eingesetzten Lipide (vergleiche Molekülformkonzept ¹⁸) kann eine Umwandlung in die H_{II}-Phase stattfinden. Dies geschieht, wenn die Kopfgruppen der verwendeten Lipide im Vergleich zum Volumen des lipophilen Teils klein sind. Dieser Prozess kann aber nicht nur von den Lipiden, sondern auch von Temperatur, Ionenstärke, Ladungsverhältnis und pH-Wert abhängig sein¹³¹. DOPE beispielsweise ist als Phospholipid mit Kephalinstruktur weniger hydratisiert, was ein kleineres Volumen der Kopfgruppe und damit die Induktion der H_{II}-Phase bedingt ^{129, 137}. Abbildung 4 (modifiziert nach ¹²⁷) stellt diese Vorgänge schematisch dar. In der H_{II}-Phase liegen DNA Stränge röhrenförmig in einer Lipidmonoschicht und bilden ein hexagonales Gitternetz.

Abbildung 4 Schematische Darstellung der lamellaren (L_{α} -Phase) und invershexagonalen Phase (H_{II} -Phase) bei Lipoplexen - DNA Stränge schwarz - Kopfgruppen von Cytofektinen und Colipiden rot und blau dargestellt

Für Lipide, deren hydrophile Domänen sehr große Ausmaße annehmen, wurde eine weitere Möglichkeit der Anordung zwischen kationischen Lipiden und DNA postuliert ^{138,} ¹³⁹. Die hexagonale Phase (H_I-Phase) ist gekennzeichnet durch Strukturen, bei denen die röhrenförmig angeordneten DNA-Stränge von mizellar gruppierten Lipiden überzogen sind

und zusammen ein dreidimensionales Bienenwabenmuster ergeben. Abbildung 5 (modifiziert nach ¹³⁹) veranschaulicht diesen Aufbau.

Abbildung 5 Schematische Darstellung der hexagonalen Phase (H_I-Phase) von Lipoplexen – DNA-Stränge grau, Kopfgruppen der Cytofektine rot und Kopfgruppen der Colipide blau dargestellt

Die Ausbildung dieser Strukturen wurde bei kationsichen Liposomen ermittelt, die neben 25 mol% Cytofektin Dioleoyl-L-α-phosphatidycholin (DOPC) enthielten. Hohe Gentransferraten bedingen eine gute endosomale Freisetzung der Nukleinsäuren aus diesen Komplexen. Da die DNA-Stränge im Gegensatz zur lamellaren Phase gut zugänglich sind, sobald ein Teil von ihnen aus dem Endosom freigesetzt wird, ist die H_I-Phase ebenfalls geeignet, Nukleinsäuren aus dem Endosom auszuschleusen ¹³⁹.

Während des endosomalen Transports spielt auch die Ionenpaarbildung eine Rolle. Man geht davon aus, dass die kationischen Lipide zumindest teilweise mit Phosphatidylserinen, die reichlich in der Endosomenmembran vorkommen, interagieren, was die Lockerung der DNA-Komplexierung und deren Freisetzung u. a. durch Umwandlung des Systems in nicht lamellare Phasen zur Folge hat ^{111, 129, 140, 141}.

Da der Austritt der Nukleinsäuren aus dem Endosom für einen erfolgreichen Gentransfer entscheidend ist ^{129, 131}, wird versucht funktionalisierte Liposomen zu entwickeln, die noch stärkere endosomolytische Eigenschaften besitzen. Dabei nutzt man die effizienten Methoden von Viren. So konnte nachgewiesen werden, dass LipofectAmine[®], welches mit einem Segment des Glycoproteins H (gH) von Herpes Simplex Viren ausgestatten war, höhere Gentransferraten aufzeigte als unmodifiziertes. Diese Beobachtungen wurden

sowohl auf die unterstützte Zellaufnahme als auch auf die Membranfusion fördernden Eigenschaften des Peptids zurückgeführt ¹⁴².

Auch nach Erreichen des Zytosols sind noch einige Barrieren bis zur Expression des Gens bzw. der Wirkung von verschiedenen RNAs zu überwinden. Die kationischen Vektoren schützen die Nukleinsäuren zwar vor enzymatischer Deaktivierung ¹²⁴, freilich wäre ein zielgerichteter Transport durch Manipulation zellulärer Strukturen, wie er von Viren bekannt ist, wünschenswert. Wie bereits beschrieben, stellen die Kernporen eine weitere Hürde dar. Ein direkter Vergleich zwischen viralen und nicht-viralen Vektoren verdeutlicht, dass weniger die Aufnahme in die Zellen und der endosomale Transport, sondern der Eintritt ins Karyosol und die Unterstützung des Transkriptionsprozesses durch den verwendeten Vektor letztendlich den Unterschied in der Genexpression ausmachen ¹⁴³.

Für die angestrebte systemische Anwendung der kationischen Liposomen als neben Weiterentwicklungen Gentransfersysteme muss zur Verbesserung des intrazellulären Transports und der Transkription vor allem die lang anhaltende und zielgerichtete Verteilung im Organismus gewährleistet sein. Unmodifizierte Lipoplexe werden nach i. v. Applikation sehr schnell aus dem systemischen Kreislauf eliminiert ^{144,} ¹⁴⁵. Durch Interaktion der Lipoplexe mit Polysacchariden und Proteinen des Blutes und verschiedener Gewebe können sich Aggregate bilden, die sehr schnell durch Zellen des Reticoloendothelialen Systems (RES) aufgenommen werden ¹²⁵. Andere Lipoplexe lösen sich einfach auf ^{146, 147}. Auch die Partikelgröße hat einen Einfluss auf die Geschwindigkeit der Elimination. Nur Partikel, die kleiner als 100 nm sind, können das RES umgehen. Außerdem weisen diese eine erhöhte Permeation in entzündete Gewebe und solide Tumore auf, was es ihnen auch ohne aktive Targetierung zumindest teilweise ermöglicht, diese Orte zu erreichen 125. Diese Vorraussetzung steht im Gegensatz zur in-vitro-Transfektion mit kationischen Lipiden, da bei diesen Versuchen auch bei Partikelgrößen über 500 nm gute Gentransferraten erreicht werden können ^{129, 141}. So zeigen DOTAPhaltige Lipoplexe an Zellkulturen bessere Transfektion, wenn die Partikelgröße 500 statt 100 nm aufweist ¹⁴⁸.

Neben der Adsorption von Albumin an Liposomenoberflächen und der daraus resultierenden Erkennung durch Zellen des RES spielen auch membranzerstörende Prozesse eine wichtige Rolle bei der Elimination von chemischen Vektoren. Für phospholipidhaltige Liposomen ist schon lange bekannt, dass Lipoproteine aufgrund von Lipidaustausch die Membran der applizierten Vehikel löchrig machen können. Besonders Systeme, die ungesättigte Fettsäuren enthalten, sind davon betroffen ¹⁴⁹. Damit ist auch die Wahl des Helferlipids ausschlaggebend. Denn obwohl DOPE den Gentransfer bei Applikation in den Atemwegen unterstützt, wird es als weniger geeignet für die systemische Applikation angesehen ^{83, 150}. Im Gegensatz dazu konnte gezeigt werden, dass Cholesterol die Strukturen von Lipoplexen im Blut stabilisieren kann ^{147, 151}. Um die

systemische Zirkulation von Liposomen zu verlängern, besteht die Möglichkeit höhere Dosen zu applizieren, da dadurch der Anteil ungebundener Vehikel größer wird ¹⁵². Vor dem Hintergrund eines zu erzielenden therapeutischen Effekts ist dies sicher in den wenigsten Fällen praktisch realisierbar. Außerdem können toxische Effekte zunehmen. Eine elegantere Methode stellt analog zu den kationischen Polymeren die Modifikation der Liposomen mit inerten Substanzen wie PEG dar. Dadurch können die Interaktionen mit den Blut- und Gewebebestandteilen minimiert und die systemische Zirkulation verlängert werden ^{153, 154}. Zu beachten ist, dass die Inkorporationen von PEG die Transfektionsaktivität der Vektoren verringern können ⁸³. Man versucht deshalb die Lipid-Polymer-Anteile so zu modifizieren, dass das Polymer vor dem Eintritt in die Zelle bzw. im Endosom "abgestreift" werden kann ^{154, 155}.

Zusammenfassend lässt sich feststellen, dass chemische Vektoren eine interessante Alternative zum viralen Gentransfer sind. Vorteilhaft ist ihre geringe immunogene Potenz, die relativ einfache und preiswerte Herstellung, die hohe Beladungskapazität nicht nur für Nukleinsäuren und die Möglichkeit der mehrfachen systemischen Applikation. Allerdings muss zwingend an der *in-vitro in-vivo* Korrelation gearbeitet werden. Gerade im Hinblick auf eine therapeutische Anwendung, die weit über den routinierten Einsatz in der Zellkultur hinaus geht, lässt sich dies sicherlich nur über in Serum stabile chemische Vektoren und deren weitere Funktionalisierung erreichen. Das wiederum eröffnet die Möglichkeit durch systematische Weiterentwicklung die Effizienz des Gentransfers auch bei systemischer Anwendung zu verbessern, um einen wichtigen Schritt zur Realisierung der somatischen Gentherapie zu vollziehen.

Mittlerweile steht diese in den Startlöchern. Auch wenn die Entwicklung nicht in dem Maße voranschreitet, wie es anfangs erwartet worden war, zeigt die Ausarbeitung von Leitlinien zum Umgang mit Gentherapeutika durch die Europäische Vereinigung der Krankenhausapotheker (EAHP), dass diese Therapieform auch für die Pharmazeutische Praxis zunehmend interessant wird und damit nicht mehr nur Gegenstand der Grundlagenforschung ist ¹⁵⁶.

1.4 Zielstellung der Arbeit

Nicht-virale Vektoren stehen aufgrund einiger Vorteile gegenüber modifizierten Viren im Focus der Untersuchungen zur somatischen Gentherapie. So wurde mit DOTMA bereits vor 22 Jahren das erste Lipid für den liposomalen Gentransfer vorgestellt. Inzwischen existiert eine Reihe von Substanzen, die sich hinsichtlich der Struktur und damit auch den physikalisch-chemischen Eigenschaften unterscheiden. Allen gemein ist der Aufbau aus lipophilem Molekülteil, kationischer Kopfgruppe und einem Linker, der die beiden Teile verbindet. Durch diesen amphiphilen Charakter können sie unter Verwendung weiterer Substanzen zu Liposomen verarbeitet werden. Obgleich die Entwicklung der kationischen Lipide Fortschritte erzielt hat, ist die Effizienz des Nukleinsäuretransports noch nicht mit dem viraler Vektoren vergleichbar.

Die vorliegende Arbeit soll einen Beitrag zur weiteren Erforschung des liposomalen Gentransfers leisten. Mit Hilfe neuartiger kationischer Lipide, die entweder auf Malonsäurediamiden oder α-verzweigten Fettsäureamiden basieren, sind durch Kombination mit Cholesterol, DOPE oder Phosphatidylcholinen Liposomen hergestellt worden. Diese wurden vor und nach Komplexierung mit Plasmid-DNA hinsichtlich Partikelgröße und Probendispersität charakterisert. Diese Kenngrößen wurden ebenfalls zur Beurteilung der Partikelveränderung nach Lagerung herangezogen. Die zentrale Aufgabe war jedoch die umfangreiche Untersuchung dieser Vektoren an verschiedenen Zelllinien zur Charakterisierung der Transfektionseigenschaften und des zytotoxischen Potenzials. Dafür wurden in einem Screening eine Vielzahl an Mischungsverhältnissen zwischen Transfektions- und Colipid zu Liposomen formuliert, mit einem Reportergen in unterschiedlichen Konzentrationen kombiniert und die Enzymaktivität zu verschiedenen Zeitpunkten analysiert. Des Weiteren wurde der Einfluss der applizierten Proben auf die Viabilität der Zellen mit zwei verschiedenen Untersuchungsmethoden ermittelt. Zur Einstufung des erreichten Niveaus hinsichtlich Gentransfer und Verträglichkeit erfolgte der direkte Vergleich mit den zwei kommerziell verfügbaren, etablierten, nicht-vialen Vektoren LipofectAmine[®] und SuperFect[®].

Vor dem Hintergrund der Weiterentwicklung der neuartigen Substanzklassen in der Arbeitsgruppe Biochemische Pharmazie der Martin-Luther-Universität Halle-Wittenberg sollten durch systematische Untersuchungen gezielt modifizierter Lipidstrukturen Aussagen zum Einfluss von hydrophilem und lipophilem Molekülteil auf die Transfektion und Zytotoxizität der eingesetzten Lipoplexe vorgenommen werden. In ersten Versuchen galt es außerdem nachzuprüfen, ob diesbezügliche Unterschiede durch unzureichende Endozytose der Vektoren hervorgerufen sein können.
2. Material und Methoden

2.1 Materialien

2.1.1 Geräte

Analysenwaage	Typ MC5-0CE, Sartorius AG, Göttingen,
	Deutschland
Autoklav	GVA 460, Fritz Gössner GmbH & Co. KG,
	Hamburg, Deutschland
Begasungsbrutschrank I	WTB Binder, Labortechnik GmbH,
	Tuttlingen, Deutschland
Begasungsbrutschrank II	Heraeus Laborgeräte AG, Zürich, Schweiz
CASY®-1 Zellzählgerät	Modell TT, Schärfe System, Reutlingen,
	Deutschland
Eppendorf Research [®] Pro Pipetten	Eppendorf AG, Hamburg, Deutschland
FACS Calibur Durchflusszytometer	Becton Dickinson GmbH, Heidelberg,
	Deutschland
Gelelektophorese	Blue Power 500, Blue Marine 200, Serva
	Elektrophoresis GmbH, Heidelberg,
	Deutschland
Gelektrophoresefotokammer	Eagle Eye II, Stratagene®, La Jolla, USA
Kühlzentrifuge	Centrifuge 5804R, Eppendorf AG,
	Hamburg, Deutschland
Magnetrührer	Variomag Elektronikrührer Monotherm,
	H+P Labortechnik GmbH,
	Oberschleißheim, Deutschland
Mikrotiterplattenphotometer	POLARstar Galaxy, BMG Labtechnologies
	GmbH, Offenburg, Deutschland
Mikroskop (Axiovert 25)	Axiovert 25, Carl Zeiss Jena, Deutschland
Mikroskop (Fluoreszenzmikroskop)	Typ CK 40 RFL, Olympus Hamburg,
	Deutschland
Mikroskopkamera	Camedia C 3030 zoom, Olympus
	Hamburg, Deutschland
pH Meter	inoLab pH Level 1, Wissenschaftlich-
	Technische Werkstätten GmbH, Weilheim,
	Deutschland
Photometer	Ultrospec 2000, Amersham Pharmacia
	Biotech, GE Healthcare Europe GmbH,
	München Deutschland

PipettierhilfeAccujet [®]	Brand GmbH & Co. KG, Wertheim,
	Deutschland
Präzisionswaage	BP 2215, Sartorius AG, Göttingen,
	Deutschland
Schüttler	Heidolph, Titramax 1000, Heidolph Elektro
	GmbH & Co. KG., Kelheim, Deutschland
Sicherheitswerkbank Klasse 2	Hera Safe KS, Kendro Laboratory Products
	GmbH, Langenselbold, Deutschland
Thermomixer	Thermomixer comfort, Eppendorf AG,
	Hamburg, Deutschland
Ultraschallbad	Transsonic T 660/H, Elma GmbH & Co.
	KG, Singen, Deutschland
Ultrazentrifuge	TL 100, Beckman Coulter GmbH, Krefeld,
	Deutschland
Vakuumpumpe (Zellkultur)	Typ 120 00 02 VEB Reglerwerk Dresden,
	Deutschland
Vakuumrotationsverdampfer	Büchi Rotavapor R114, Büchi Labortechnik
	AG, Fiawil, Schweiz
Vortexer	MS2 Minishaker, IKA Works Inc.,
	Wilmington, USA
Wasserbad	GFL [®] Typ 1092, Gesellschaft für
	Labortechnik mbH, Burgwedel,
	Deutschland
Wasserdestillationsanlage	Bidestillationsanlage GFL 2108
	Gesellschaft für Labortechnik mbH
	Burgwedel, Deutschland
Zentrifuge	Centrifuge 5804, Eppendorf AG, Hamburg,
	Deutschland

2.1.2 Verbrauchsmaterialien

Bei wieder verwendbaren Glasgeräten wie Erlenmeyerkolben, Messzylindern, Bechergläsern u. a. wurden laborübliche Produkte aus Jenaer Glas von verschiedenen Anbietern verwendet. Die Einmalmaterialien sind nachfolgend aufgelistet.

Einmalpipette 10 mL Einmalpipette 25 mL Einmalpipette 50 mL Einmalküvetten (Polystyrol) Impfösen Pasteurpipetten Petrischalen 35 mm Petrischalen 94 mm Pipettenspitzen 10 µL Pipettenspitzen 200 µL Pipettenspitzen 300 µL Pipettenspitzen 1000 µL Pipettenspitzen 5000 µL Polypropylenröhrchen 15 mL Polypropylenröhrchen 50 mL Reaktionsgefäße 0,5 mL Reaktionsgefäße 1,5 mL Reaktionsgefäße 2 mL Rotilabo[®] Spritzenfilter steril Spritzen 5 mL ohne Kanüle Sterilisationsklebeband Ultrazentrifugenröhrchen Zellkulturflasche 25 cm² Zellkulturflasche 75 cm² Zellkulturplatte 24 well Zellkulturplatte 96 well flach Zellkulturplatte 96 well U-Form

Greiner Bio One GmbH	Kat. Nr. 607107
Greiner Bio One GmbH	Kat. Nr. 760180
Greiner Bio One GmbH	Kat. Nr. 768180
Carl Roth GmbH	Kat. Nr. 8126
Greiner Bio One GmbH	Kat. Nr. 731171
Carl Roth GmbH	Kat. Nr. 45221
Greiner Bio One GmbH	Kat. Nr. 627161
Greiner Bio One GmbH	Kat. Nr. 633180
VWR International GmBH	Kat. Nr. 613-0364
VWR International GmBH	Kat. Nr. 613-3503
VWR International GmBH	Kat. Nr. 613-3504
VWR International GmBH	Kat. Nr. 613-3505
VWR International GmBH	Kat. Nr. 613-0339
Greiner Bio One GmbH	Kat. Nr. 188271
Greiner Bio One GmbH	Kat. Nr. 210261
VWR International GmBH	Kat. Nr. 211-2612
VWR International GmBH	Kat. Nr. 212-0198
VWR International GmBH	Kat. Nr. 211-2612
Carl Roth GmbH	Kat. Nr. P664.1
VWR International GmBH	Kat. Nr. 613-5401
VWR International GmBH	Kat. Nr. 481-0095
Beckmann Coulter GmbH	Kat. Nr. 355628
Greiner Bio One GmbH	Kat. Nr. 690175
Greiner Bio One GmbH	Kat. Nr. 658175
Greiner Bio One GmbH	Kat. Nr. 662160
Greiner Bio One GmbH	Kat. Nr. 655180
Greiner Bio One GmbH	Kat. Nr. 650180

2.1.3 Biologisches Material und Chemikalien

Agar	ICN Biomedicals	Kat. Nr. 150178
Agarose	Promega Corporations	Kat. Nr. V3121
Ampicillin	ICN Biomedicals	Kat. Nr. 194526
Bakterienstamm DH5α [™]	Invitrogen™	Kat. Nr. 10586-014
BCA	Sigma-Aldrich [®]	Kat. Nr. D 8284
BSA	Fluka Biochemika	Kat. Nr. 05473
CHAPS	MP Biomedicals	Kat. Nr. 190319
Cholesterol	Carl Roth GmbH	Kat. Nr. 8866.1
CuSO ₄	Sigma-Aldrich [®]	Kat. Nr. 61230
DMPC	BACHEM Biochemica GmbH	Kat. Nr. O-1135
DMSO	Carl Roth GmbH	Kat. Nr. 7029.2
DNA Leiter 1kB	Promega®	Kat. Nr. G6941
DOPE	Sigma-Aldrich [®]	Kat. Nr. 54008
Essigsäure 100%	Carl Roth GmbH	Kat. Nr. 6755.1
EDTA	Sigma-Aldrich [®]	Kat. Nr. E 6511
β-Galactosidase	Sigma-Aldrich [®]	Kat. Nr. 5635
Glucose	Sigma-Aldrich [®]	Kat. Nr. G 7021
Glycerol 86 – 88%	KMF Laborchemie GmbH	Kat. Nr. 08-224
Hefeextrakt	ICN Biomedicals	Kat. Nr. 194027
HEPES Puffer 1 M	Sigma-Aldrich [®]	Kat. Nr. H 0887
KCI	ICN Biomedicals	Kat. Nr. 194844
K ₃ [Fe(CN) ₆]	Sigma-Aldrich [®]	Kat. Nr. P 3667
K ₄ [Fe(CN) ₆]	Sigma-Aldrich [®]	Kat. Nr. P 9387
Ladepuffer für Gelektrophorese	Promega	Kat. Nr. G1881
Lipofectamine [™] Reagenz	Invitrogen™	Kat. Nr. 18324-012
MgCl ₂ •6H ₂ O	Sigma-Aldrich [®]	Kat. Nr. M 2392
MgSO ₄	ICN Biomedicals	Kat. Nr. 194833
MTT Reagenz	Sigma-Aldrich [®]	Kat. Nr. M 2128
Na ₂ CO ₃	Sigma-Aldrich [®]	Kat. Nr. S 8761
NaHCO ₃	Sigma-Aldrich [®]	Kat. Nr. S 6014
NaCl	ICN Biomedicals	Kat. Nr. S 194848
Na ₂ HPO ₄	Sigma-Aldrich [®]	Kat. Nr. S 5136
NaHPO ₄	Sigma-Aldrich [®]	Kat. Nr. S 5011
Natriumhydroxid reinst	Grüssing GmbH	Kat. Nr. 12156
Natriumtartrat	Carl Roth GmbH	Kat. Nr. T110.1
Neutralrot	Sigma-Aldrich [®]	Kat. Nr. N 4638
ONPG	Sigma-Aldrich [®]	Kat. Nr. N 1127

Plasmid pCMV SPORT β-Gal	Invitrogen™	Kat. Nr. 10586-014
Propidiumiodid	Invitrogen™	Kat. Nr. P3566
Quant-iT™ Picogreen reagent	Invitrogen™	Kat. Nr. P7581
QIAGEN Plasmid Mega Kit	QIAGEN	Kat. Nr. 12181
SDS	Sigma-Aldrich [®]	Kat. Nr. L 4509
SuperFect Transfektions Reagenz	QIAGEN	Kat. Nr. 301305
Tris-Base	Sigma-Aldrich [®]	Kat. Nr. 252859
Trypton	ICN Biomedicals	Kat. Nr. 1010817
Yoyo [®] -1	Invitrogen™	Kat. Nr. Y 3601
Zelllinie A549	Deutsche Sammlung von	ACC 107
	Mikroorganismen und	
	Zellkulturen GmbH (DSZM)	
Zelllinie LLC PK1	American Type Culure	ATCC [®] CL-101
	Collection (ATCC)	

2.1.4 Zellkulturmedien und Supplements

DMEM mit Phenolrot	Gibco® Invitrogen	Kat. Nr. 31053-028
DMEM ohne Phenolrot	Gibco® Invitrogen	Kat. Nr. 21969-035
DMSO (steril)	Sigma-Aldrich [®]	Kat. Nr. D 2650
FBS (Serum)	PAA Laboratories	Kat. Nr. A15-151
Gentamcin Lösung 10 mg/mL	PAA Laboratories	P11-004
Gentamicin-Glutamin Lösung	Sigma-Aldrich [®]	Kat. Nr. G 9654
L-Glutamin Lösung 200 mM	PAA Laboratories	M11-04
Medium 199 mit Phenolrot	Gibco® Invitrogen	Kat. Nr. 31150-022
Medium 199 mit Phenolrot	PAA Laboratories	Kat. Nr. E15-834
Medium 199 ohne Phenolrot	Gibco® Invitrogen	Kat. Nr. 11043-023
PBS (ohne Ca ²⁺ /Mg ²⁺)	PAA Laboratories	Kat. Nr. H15-002
Trypsin-EDTA Lösung 0,25%	PAA Laboratories	Kat. Nr. L11-004

2.1.5 Lösungen

Alle in dieser Arbeit verwendeten Lösungen wurden, wenn nicht anders angegeben mit destilliertem Wasser hergestellt. Die Mengenangaben beziehen sich jeweils auf 1 Liter. Gegebenenfalls wurden die Lösungen vor Verwendung autoklaviert oder sterilfiltriert. Lösungen, die in der Zellkultur Verwendung fanden, wurden unter aseptischen Bedingungen an der Laminar-Air-Flow Box zubereitet. Die Lagerung erfolgte wie angegeben.

Ampicillin Stammlösung	100 g	Lagerung: - 20℃
BCA Proteinbestimmung:		
Lösung A	10,0 g BCA	Lagerung: - 20℃,
	20,0 g Na ₂ CO ₃	pH Wert von 11,25
	4,0 g NaOH	mit 5 M NaOH
	1,6 g Natiumtartrat	eingestellt
	9,5 g NaHCO₃	
Lösung B	40,0 g CuSO ₄	Lagerung: - 20℃
EDTA Lösung 0,1 M	38,02 g	Lagerung: 4°C
EDTA Lösung 0,5 M	186,2 g	Lagerung: 4℃
Glucoselösung 2 M	360,3 g	Lagerung: - 20℃, sterilfiltriert
K ₃ [Fe(CN) ₆] Lösung 0,4 M	131,7 g	Lagerung: - 20℃, sterilfiltriert
K3[Fe(CN)6] Lösung 0,4 M	147,34 g	Lagerung: - 20℃, sterilfiltriert
LB Medium flüssig pH 7,5 ¹	10 g Trypton	Lagerung: 4℃,
	5 g Hefeextrakt	pH Wert mit 5 M
	10 g NaCl	NaOH eingestellt, autoklaviert
LB Medium fest pH 7,5	10 g Trypton	Lagerung: 4℃,
	5 g Hefeextrakt	pH Wert mit 5 M
	10 g NaCl	NaOH eingestellt,
	15 g Agar	autoklaviert
MgCl ₂ Lösung 0,2 M	19,04 g	Lagerung: - 20℃, sterilfiltriert
MgCl ₂ •6H ₂ O Lösung 1 M	203,3 g	Lagerung: - 20℃, sterilfiltriert
MgSO ₄ •7H ₂ O Lösung 1 M	246,47 g	Lagerung: - 20℃, sterilfiltriert
MTT Stammlösung	5g MTT in PBS	Lagerung: - 20°C

¹ Den LB Medien wurde nach dem Autoklavieren und abkühlen auf ca. 45 – 50°C Ampicillinstammlösung in der Verdünnung 1:1000 zugesetzt. LB Medium fest wurde dann in Petrischalen gegossen. Anschließend erfolgte die Lagerung.

MTT Lyse-Puffer	100 g SDS in 750 mL DMSO	Lagerung: 4℃
NaCH ösung 0.1 M	250 mL Essigsaure	Lagerung: 49
Nati Losung 0,1 M	22.46 a NaH-PO	Lagerung: 4°C
Na-HPO-Lösung	22,40 g Na 12 04	Lagerung: 4°C
Na ₂ riFO ₄ Losung	53,35 \overline{y} Na ₂ \overline{z} \overline{z} \overline{z}	Lagerung: 4°C
Neutraliot Stammosung		Lagerung: 4°C
Neutranot Lyse-Puner	500 mL Ethanol 96%	Lagerung. 4 C
Dhacabatauffar pH 7.2		
	720 mL Na HPO Lösung	Lagerung. 40
SOC Medium ²	20 a Trypton	
	5 a Hefeevtrakt	autoklaviert
		autokiavien
	0,2 g KCl	
ONGP Lösungen:	0,2 9 101	
Lysis-Puffer	3 075 a CHAPS	Lagerung: - 20°C
	50 mL HEPES Puffer 1 M	Lugorung. 200
2xAssay Puffer	1 33 a ONPG	Lagerung: - 20°C
	7 81 ml Mercaptoethanol	Lugorung. 200
	1 ml MaCla Lösung 0.2 M	
	in Phosphatouffer pH 7.3	
Stopplösung	$106 \text{ g Na}_2\text{CO}_3$	Lagerung: - 20℃
TAE Puffer (50x) pH 8,4	242 g Tris-Base	Lagerung: RT,
	57,1 mL Eisessig	pH Wert mit Essig-
	200 mL EDTA 0,5 M	säure eingestellt
TE Puffer	10 mL Tris-HCl 1 M (10 mM)	Lagerung: 4℃,
	50 mL NaCl 0,1 M (5 mM)	autoklaviert
	1 mL EDTA 0,1 M (0,1 mM)	
Tris-HCI 1 M pH 7,4	121,14 g	Lagerung: 4℃,
		pH Wert mit 0,2 M
		HCI eingestellt

 $^{^2}$ Dem SOC-Medium wurde unmittelbar vor Gebrauch jeweils 10 mL 1 M MgSO₄•7H₂O, 1 M MgCl₂•6H₂O und 2 M Glucoselösung zugegeben.

X-Gal Reagenzien:		
Fixierlösung	20 mL Formaldehyd	Lagerung: - 20℃
	2 mL Glutaraldehyd in PBS	
Färbelösung	10 mL MgCl ₂ Lösung 0,2 M	frisch zubereitet
	10 mL K ₃ [Fe(CN) ₆ 0,4 M	
	10 mL K ₃ [Fe(CN) ₆] 0,4 M	
	50 mL X-Gal Lösung in PBS	
X-Gal Lösung	20 g in DMF	Lagerung: - 20℃

2.1.6 Verwendete Lipide

Kationische Lipide auf der Basis von substituierten Malonsäurediamiden und αverzweigten Fettsäuren stellen eine interessante Strukturklasse von Amphiphilen für den nicht-viralen Gentransfer dar. Aus Malonsäurediethylester als Ausgangssubstanz lässt sich durch verschiedene chemische Reaktionen eine Vielzahl von Strukturvarianten synthetisieren, deren Produktion preiswert möglich ist. Beginnend mit ersten synthetischen Arbeiten, Erfolgen bei Gentransferexperimenten und physiko-chemischen Untersuchungen ^{157, 158} wurde die Entwicklung dieser Strukturklassen vorangetrieben, um systematische Untersuchungen möglich zu machen. Alle nachstehend aufgeführten Verbindungen entsprechen den Kriterien für die Produktgewinnung in der synthesechemischen Laborpraxis. Sie weisen DC-Reinheit auf und sind hinsichtlich hoch auflösendem Massenspektrum, NMR und Elementaranalyse charakterisiert. Die weiteren Lipide wie Cholesterol, DOPE und Dimyristoyl-sn-phosphatidylcholin (DMPC) wurden käuflich erworben.

Abbildung 6 Grundkörper der Malonsäurediamide 1 - 9

Abbildung 7 Grundkörper der α -verzweigten Fettsäureamide

Abbildung 8 Grundkörper der Malonsäurediamide 10 - 15

Substanz	R1	R2	R3	R4	Summenformel
MA1	Н	Н	C ₁₆ H ₃₃	C ₁₆ H ₃₃	$C_{37}H_{75}N_3O_2$
MA2	Н	Н	C ₁₆ H ₃₃	C ₁₈ H ₃₅ ∆ ⁹	$C_{39}H_{77}N_3O_2$
MA3	н	Н	C ₁₈ H ₃₅ ∆ ⁹	C ₁₈ H ₃₅ ∆ ⁹	$C_{41}H_{79}N_3O_2$
MA4	(CH ₂) ₂ NH ₂	(CH ₂) ₂ NH ₂	C ₁₆ H ₃₃	С ₁₆ Н ₃₃	$C_{41}H_{85}N_5O_2$
MA5	(CH ₂) ₂ NH ₂	(CH ₂) ₂ NH ₂	C ₁₆ H ₃₃	С ₁₈ Н ₃₅ ∆ ⁹	$C_{43}H_{87}N_5O_2$
MA6	(CH ₂) ₂ NH ₂	(CH ₂) ₂ NH ₂	С ₁₈ Н ₃₅	С ₁₈ Н ₃₅ ∆ ⁹	$C_{45}H_{89}N_5O_2$
MA7	Lys	Н	C ₁₆ H ₃₃	C ₁₆ H ₃₃	$C_{43}H_{87}N_5O_3$
MA8	Lys	Н	C ₁₆ H ₃₃	C ₁₈ H ₃₅ ∆ ⁹	$C_{45}H_{89}N_5O_3$
MA9	Lys	Н	С ₁₈ Н ₃₅	С ₁₈ Н ₃₅ ∆ ⁹	$C_{47}H_{91}N_5O_3$
MA10	н	Lys	C ₁₆ H ₃₃	C ₁₆ H ₃₃	$C_{47}H_{97}N_7O_3$
MA11	Н	Lys	C ₁₆ H ₃₃	С ₁₈ Н35 ∆ ⁹	$C_{49}H_{99}N_7O_3$
MA12	Н	Lys	С ₁₈ Н35 ∆ ⁹	С ₁₈ Н35 ∆ ⁹	$C_{51}H_{101}N_7O_3$
MA13	Lys	Lys	C ₁₆ H ₃₃	C ₁₆ H ₃₃	$C_{53}H_{109}N_9O_4$
MA14	Lys	Lys	C ₁₆ H ₃₃	C ₁₈ H ₃₅ ∆9	$C_{55}H_{111}N_9O_4$
MA15	Lys	Lys	C ₁₈ H ₃₅ ∆ ⁹	C ₁₈ H ₃₅ ∆ ⁹	$C_{57}H_{113}N_9O_4$

Tabelle 3 Strukturen und Summenformeln der Malonsäurediamide

Tabelle 4 Strukturen und Summenformeln der α-verzweigten Fettsäureamide

Substanz	R1	R2	R3	R4	Summenformel
VF1	Н	Н	C ₈ H ₁₇	C ₁₄ H ₂₉	$C_{26}H_{54}N_2O$
VF2	Н	Н	C ₁₄ H ₂₉	C ₁₄ H ₂₉	$C_{32}H_{66}N_2O$
VF3	Н	(CH ₂) ₂ NH ₂	C ₁₄ H ₂₉	C ₁₄ H ₂₉	C ₃₄ H ₇₁ N ₃ O
VF4	(CH ₂) ₂ NH ₂	(CH ₂) ₂ NH ₂	C ₁₄ H ₂₉	C ₁₄ H ₂₉	$C_{36}H_{76}N_4O$
VF5	Н	Lys	C ₈ H ₁₇	C ₁₄ H ₂₉	$C_{32}H_{66}N_4O_2$
VF6	Lys	Lys	C ₁₄ H ₂₉	C ₁₄ H ₂₉	$C_{38}H_{78}N_4O_2$
VF7	Н	(CH ₂) ₄ NH(CH ₂) ₃ NH ₂	C ₁₄ H ₂₉	C ₁₄ H ₂₉	$C_{40}H_{84}N_4O$

2.1.7 Software

CellQuest[™] Software Version 3.1 FLOUstar Galaxy Version 4.02 GraphPad Prism[®] 3 Microsoft[®] Office 2003 Olympus DP-Soft

- 1997 Becton Dickinson & Co.
- 1999 BMG Labtechnologies
- 1994 2000 GraphPad Software
- 1983 2003 Microsoft Corporation
- 1999 Olympus Software

2.2 Methoden

2.2.1 Herstellung der Liposomen

Es existieren eine Reihe von Methoden zur Bildung von Liposomen¹⁵⁹. Alle Präparationen dieser Arbeit wurden mit der Hydratationsmethode hergestellt. Dafür wurden Chloroform-Stammlösungen der entsprechenden Lipide in einem Mikroreagenzglas vereinigt und das Lösungsmittel Raumtemperatur Vakuumrotationsverdampfer bei am vorsichtig abdestilliert. Der entstandene Lipidfilm wurde für weitere 3 h im Vakuum getrocknet und anschließend mit bidestilliertem Wasser hydratisiert. Die Konzentration der Lösung wurde auf 2 mg Gesamtlipid pro mL eingestellt. Nach kurzem Temperieren im Wasserbad bei 45°C wurde durch Vortexen der Lipidfilm abgelöst und die Probe anschließend im temperiertem Ultraschallbad (T ~ 45°) bis zur Klarheit beschallt. Die so hergestellten Liposomenpräparationen wurden in Eppendorfgefäße umgefüllt und bei 4°C oder Raumtemperatur gelagert.

2.2.2 Partikelgrößenmessung

Die Größe der Liposomen und Lipoplexe wurde mit der Photonenkorrelationsspektroskopie (PCS) am Malvern HPPS-ET (Malvern, U.K.) bestimmt. Alle Messungen wurden bei 25℃ mit einem Brechungsindex von 1,25 und einer Viskosität von 0,8872 N·s·m⁻² in destilliertem Wasser durchgeführt. Die auch als dynamische Lichtstreuung bezeichnete Methode ermöglicht schnelle und einfach durchführbare Partikelgrößenmessungen im Submikronbereich ohne Kalibrierung und ohne erforderliche Kenndaten der dispersen Phase. Das Messprinzip beruht auf dem Partikelmerkmal der Brownschen Bewegung und den daraus resultierenden Unterschieden der Streulichtintensität nach Bestrahlung der Probe mit einem Lichtstrahl. Über die Stoke-Einstein-Gleichung kann der hydrodynamische Durchmesser (z-average) ermittelt werden ¹⁶⁰. Außerdem erhält man den so genannten Polydispersitätsindex (PDI), der als dimensionslose Größe ein Maß für die Verteilungsbreite liefert. Der z-average geht von der idealen Kugelform der Partikel aus, demzufolge spiegelt er nicht in jedem Fall die genaue Größe der Partikel wider. Eine Umrechnung, die der Elektronenmikroskopie ähnliche Ergebnisse liefert, ist möglich ¹⁶¹.

In einer Messküvette wurden 30 – 60 µL Liposomenlösung mit 1 mL sterilfiltriertem destilliertem Wasser vereinigt und dann vermessen. Für jede Probe erfolgte eine dreifache Messung mit je 10 Einzelmessungen von jeweils 10 s Dauer. Lipoplexe wurden analog zu den Transfektionsuntersuchungen (siehe Punkt 2.2.6) allerdings in destilliertem Wasser präpariert und auf eine DNA-Konzentration von 2,5 µg/mL eingestellt. 1 mL dieser

Lösung wurde für die Messung verwendet. Um eventuelle Veränderungen der Partikelgröße während der Lagerung nachzuvollziehen, erfolgte die Bestimmung der Partikelgröße für alle Liposomenproben sowohl nach der Herstellung als auch nach 4 und 12 Wochen.

2.2.3 Plasmid und Plasmidisolierung

2.2.3.1 Plasmid

Für alle Untersuchungen wurde das Plasmid pCMV SPORT–βGal (Invitrogen™ Kat. Nr. 10586-014) verwendet. Es handelt sich dabei um eine ringförmige Nukleinsäure mit 7854 Basenpaaren. Sie codiert für eine Betagalactosidase, deren enzymatische Umsetzung quantifizierbar ist und deshalb für die Überprüfung von Transfektionsuntersuchungen verwendet werden kann³⁷. Neben Poly A Sequenzen und Promotoren enthält es eine Ampicillinresistenz vermittelnde die für Selektionen Region, in diversen Bakterienstämmen notwendig ist. Bei der Verwendung von Betagalactosidase als Reportergen besteht außerdem die Möglichkeit, die Transfektionsrate, das heißt den Prozentsatz an transfizierten Zellen, zu ermitteln. Eine visuelle Überprüfung des erfolgreichen Experiments ist ebenfalls rasch möglich³⁷.

Abbildung 9 Schematischer Aufbau des Plasmids pCMV SPORT-βGal

2.2.3.2 Transformation kompetenter E. coli Zellen

Genaue Untersuchungen der Liposomenproben konnten nur mit einer ausreichenden Menge an Plasmid realisiert werden. Die Eigenschaft von Bakterien unter bestimmten Voraussetzungen Plasmide aufzunehmen, um beispielsweise Resistenzen oder andere Selektionsvorteile zu erlangen, wird im Labor ausgenutzt, um größere Mengen der gewünschten DNA zu erhalten. Die Transformation bezeichnet das Einschleusen von DNA in Prokaryoten mit Hilfe physikalischer Methoden. Transformiert werden so genannte kompetente Bakterien. Deren Membran ist durch Behandlung mit CaCl₂ temporär durchlässig für Fremd-DNA. Die Calcium-DNA Präzipitate werden dabei über einen noch nicht bekannten Mechanismus passiv in die Zelle aufgenommen¹⁶². Bakterien des Typs DH5a wurden vorsichtig auf Eis aufgetaut. Davon wurden 50 µL mit 5 ng Plasmid versetzt und sofort für 30 min auf Eis inkubiert. Anschließend wurden die Proben für 90 s bei 42°C im Wasserbad erwärmt und wiederum sofort auf Eis gelagert. 800 µL SOC-Medium wurde hinzugefügt und das Gefäß bei 37℃ 45 min vorsichtig geschüttelt. Es erfolgte die Aussaat von 20 µL des Ansatzes auf einer Agar Selektionsplatte (LB-Medium fest) mit Inkubation im Brutschrank über Nacht. Am nächsten Tag wurde der Abstrich einer einzelnen Kolonie erneut auf eine Agar Selektionsplatte übertragen und wieder 16 – 24 h inkubiert. Von dieser Platte wurden transformierte Bakterien der Plasmidisolierung zugeführt oder zur Aufbewahrung präpariert. Eine Kolonie der Agar Selektionplatte wurde in 5 mL LB-Medium überführt und über Nacht bei 37℃ und 300 rpm inkubiert. 2,8 mL dieses Ansatzes wurden dann mit 1,2 mL sterilem Glycerol 80% gemischt, in Kryogefäße aliquotiert und in einer Ethanol Trockeneis Mischung eingefroren. Dieser Glycerolstamm wurde für die weitere Verwendung bei - 80°C gelagert. Neben der Selektion durch Ampicillin wurde die Transformation durch Anfärbung überprüft. Dazu wurde eine Agar Selektionsplatte mit 2% X-Gal Lösung und jeweils 0,4% 200 mM MgCl₂, 400 mM K₃[Fe(CN)₆] und 400 mM K₄[Fe(CN)₆] versetzt. Eine Blaufärbung an den Kolonien zeigt eine unveränderte Expression des Plasmids und damit eine erfolgreiche Transformation an.

2.2.3.3 Plasmidisolierung

Um eine ordnungsgemäße Transfektion zu gewährleisten, ist die Isolierung hochreiner Plasmid-DNA notwendig. Traditionell wurde über viele Jahre die Cäsiumchlorid-Dichtegradientenzentrifugation angewendet. Aufgrund des Einsatzes vieler toxischer Substanzen wie CsCl, EtBr oder Phenol und dem beträchtlichen Zeitaufwand bei der Durchführung wurden weitere Methoden entwickelt ³⁷. Zunächst mussten die transformierten E. coli Zellen vermehrt werden, um eine Ernte des Plasmids vornehmen zu können. Dafür wurden diese auf eine Agar Selektivplatte aufgebracht und für 8 – 12 h bei 37℃ inkubiert. Eine Einzelkolonie wurde in 2-10 mL LB-Medium flüssig angeimpft. Nach 8 – 10 h Inkubation bei 37℃ und 300 rpm wurde die Kultur im Verhältnis 1:500 – 1:1000 mit frischem Medium verdünnt und abermals für 12 – 16 h bei 37℃ und 300 rpm behandelt. Die Bakterien konnten anschließend der Isolierung zugeführt werden ^{37, 163}. Bei dem verwendeten QUIAGEN[®] Plasmid Mega Kit handelt es sich um eine modifizierte alkalische Lyse, die in ursprünglicher Form 1983 von Birnboim beschrieben wurde ¹⁶⁴. Nach der Zerstörung der Bakterien, der Zugabe von RNase, dem Fällen von Proteinen, genomischer DNA, Zelltrümmern und SDS erfolgt die Bindung des Plasmids an eine Anionenaustauscher-Matrix mit anschließendem Waschschritt zur Abtrennung von Proteinresten, RNA und niedermolekularen Verunreinigungen. Abschließend wird durch Fällungen mit Isopropanol und Ethanol die DNA konzentriert und entsalzt. Die Aufbewahrung des isolierten Plasmids erfolgte in TE-Puffer pH 8. Alle Arbeitsschritte wurden nach den Anweisungen des Herstellers durchgeführt¹⁶³.

Die Ausbeutebestimmung der durchgeführten Plasmidisolierung erfolgte durch fotometrische Messung der Nucleinsäure bei 260 nm. Weiterhin wurde zur Untersuchung der Reinheit die Konzentration an Proteinen bei 280 nm vermessen. Das Verhältnis der beiden Absorptionswerte (E_{260/280}) stellt ein Maß für die Reinheit dar und sollte Werte zwischen 1,7 – 1,9 annehmen. Für ein 1:1 Verhältnis von DNA zu Protein erhält man einen Wert von 1,5 ³⁷. Außerdem wurde der Erfolg der Isolierung durch eine analytische Elektrophorese im 1%igen Agarosegel überprüft. Tabelle 5 enthält die Resultate der Konzentrationsbestimmungen aller verwendeten DNA Präparationen. Stellvertretend ist das Ergebnis einer Gelelektrophorese dargestellt.

Nummer	Absorption 260nm ± s	Absorption 280nm ± s	E _{260/280}
1	$0,477 \pm 0,004$	$0,250 \pm 0,003$	1,91
2	0,473 ± 0,001	$0,244 \pm 0,007$	1,94
3	$0,419 \pm 0,003$	$0,218 \pm 0,002$	1,92
4	0,301 ± 0,005	0,136 ± 0,001	2,22

Tabelle 5 Daten der Plasmid-Quantifizierung nach Isolierung

Abbildung 10 Gelelektrophorese nach Plasmidisolierung

1 DNA Leiter (1kB)

2 pCMV SPORT β-Gal nach Isolierung aus E. Coli (fragmentiert)

3 pCMV SPORT β-Gal nach Isolierung aus E. Coli

4 Probe 1 (Lysat nach Zerstörung der Bakterien und

Abtrennung zellulärer Bestandteile)

5 Probe 2 (Durchflussfraktion, Überschuss an Plasmid wird nicht von der Säule zurückgehalten)

6 Probe 3 (Lysat nach Waschen der Säule, Plasmid auf dieser zurückgehalten)

7 Probe 4 (Eluat der Säule, Plasmid-DNA abgewaschen)

8 pCMV SPORT β -Gal vor Transformation in E. Coli

2.2.4 Zellkultur

2.2.4.1 Zelltypen

Alle Arbeiten an der Zellkultur erfolgten an einer Laminar-Air-Flow Box. Die eingesetzten Nährmedien und Lösungen wurden, sofern nicht anders angegeben, vor der Verwendung auf 37°C temperiert. Zur Desinfektion der Gefäße und der Arbeitsoberflächen wurde 70%iger Ethanol verwendet.

Für alle Versuche wurden die Nierenepithelzelllinie vom Schwein LLC PK1 (porcine kidney epithelial cells, ATCC 101) sowie die humane Lungenkarzinomzelllinie A549 (human lung carcinoma, DSMZ Nr. ACC 107) verwendet. Beide Zelllinien wachsen konfluent und wurden bei 37°C, 5% CO2 und 95% relativer Luftfeuchte kultiviert. Der Wechsel des Zellkulturmediums erfolgte alle zwei bis drei Tage, die Passage der Zellen zweimal wöchentlich. Kultiviert wurde in 75 cm² Flaschen mit 12 - 15 ml Zellkulturmedium. LLC PK1 Zellen wurden 1976 aus der Niere eines männlichen Schweins isoliert und in Kultur gebracht 165. Als Nierenepithelzellen verfügen sie über ein breites Spektrum an Transportern, hauptsächlich aus der Familie der SLC-Transporter. P-qp und MRP konnten ebenfalls nachgewiesen werden ¹⁶⁶. Die Enzymausstattung ist sehr gut untersucht 167-169. Auf Grund dieser Eigenschaften stellt die Zelllinie LLC-PK1 ein etabliertes System zur Untersuchung von Transportvorgängen dar ¹⁷⁰. Mit einer Generationszeit von 9 h in der logarithmischen Phase ¹⁶⁵ handelt es sich um eine schnell wachsende Zelllinie. Dies eröffnet die Möglichkeit Aussagen zur Weitergabe von eingebrachten Nukleinsäuren nach Zellteilung innerhalb kurzer Zeiträume zu treffen. Obwohl LLC PK1 bis zu 300 Passagen stabil wächst ¹⁶⁵, wurden, um vergleichbare Ergebnisse zu erhalten, für die Untersuchungen nur Zellen zwischen den Passagen 5 und 30 verwendet. Die Kultivierung erfolgte in Medium 199 mit 10% fötalem Rinderserum (FBS) sowie 2 mM Glutamin und 50 µg/mL Gentamycin.

Die Zelllinie A549 wurde 1973 aus dem Lungenkarzinom eines 58 jährigen männlichen Patienten isoliert ¹⁷¹. Als Zelllinie mit typischen Eigenschaften von Typ II Alveolarzellen ist sie in der Lage Surfactant und andere oberflächenaktive Substanzen an das umgebende Milieu abzugeben ¹⁷². Typ II Alveolarzellen stellen 10 - 12% der Zellen des alveolaren Epithels ¹⁷³. Sie besitzen eine hohe metabolische Kompetenz ¹⁷⁴, wodurch ihnen neben der Sekretion eine wichtige Rolle im Fremdstoffwechsel der Lunge zugeschrieben wird ^{175, 176}. Die Zelllinie A549 wird häufig für Transfektionsuntersuchungen eingesetzt, da das Lungenepithel ein sinnvolles Target für Gentransferversuche darstellt. Für die Untersuchungen wurden Zellen der Passagen 20 bis 80 verwendet. Die Kultivierung erfolgte in DMEM mit 10% FBS sowie 2 mM Glutamin und 50 µg/mL Gentamycin.

2.2.4.2 Subkultivierung

Nach Eintreten eines konfluenten Zellrasens müssen Zellkulturen für weiteres ungestörtes Wachstum in neue Kulturgefäße umgesetzt (passagiert) werden. Es handelt sich dabei um die Verdünnung der Zelldichte bei gleichzeitigem Anlegen neuer Kulturgefäße ¹⁷⁷. Im Falle der vorliegenden Zelllinien geschah dies zweimal wöchentlich. Adhärent wachsende Zellen richten sich sofort nach dem Einsäen in das Kulturgefäß auf der Oberfläche ein. Mit Hilfe der Proteine Kollagen und Laminin heften sie sich mit ihrer basalen Zellmembran am Boden fest. Diese Zellkontaktstrukturen sind abhängig von Calciumionen ¹⁷⁸. Aus diesem Grund wird zum Ablösen der Zellen in den meisten Fällen eine Mischung aus Trypsin und EDTA verwendet.

Für die Subkultivierung wurde bei beiden Zelllinien das alte Medium entfernt und diese mit jeweils 7 – 10 mL PBS gespült. Dann wurde 3 mL 0,25% Trypsin/EDTA Lösung zugefügt. LLC PK1 Zellen wurden 3 min bei 37°C und A549 Zelle n 1 min bei Raumtemperatur inkubiert. Die Lösung wurde abgesaugt und die Kulturgefäße für weitere 2 – 5 min bei 37°C aufbewahrt. Durch anschließendes Klopfen auf den Boden der Flasche und mehrmaliges Spülen mit jeweils 10 mL frischem Medium wurden die Zellen resuspendiert. 3 mL (LLC PK1) bzw. 1 mL (A549) dieser Lösungen wurden auf 12 mL Medium in ein neues Kulturgefäß pipettiert. Nach Beschriftung erfolgte die Aufbewahrung im Zellkulturschrank. Die verbleibenden Lösungen wurden für Zellzahlbestimmungen und Versuche verwendet oder verworfen.

2.2.4.3 Bestimmung der Zellzahl und Versuchsvorbereitung

Zur Bestimmung der Zellzahl wurden 100 µL Zellsuspension in 10 mL CasyTon pipettiert und anschließend am Zellzählgerät Casy[®]-1 vermessen. Dieses basiert auf dem Coulter-Counter Messverfahren. Dabei werden Spannungsimpulse erfasst, die auftreten wenn sich ein in einem Puffer befindliches Partikel durch eine Mikrobohrung bewegt, die von Elektroden umgeben ist. Die dabei auftretenden Änderungen des elektrischen Feldes sind proportional zum Volumen der Partikel. Außerdem kann deren Anzahl registriert werden ¹⁷⁹. 16 bis 24 Stunden vor Versuchsbeginn wurden die Zellen mit Medium auf die gewünschte Zelldichte verdünnt und in 96 well bzw. 24 well Platten ausgesät. Die angestrebte Zelldichte wurde mit folgender Formel berechnet.

$$V_1 = \frac{Z_2 \times V_2}{Z_1}$$

V₁ Volumen der Ausgangslösung

- V₂ Volumen der gewünschten Lösung
- Z₁ Zellzahl der Zellsuspension nach Subkultivierung [Zellen/mL]
- *Z*₂ angestrebte Zellzahl für die Versuche [Zellen/mL]

Für Versuche an LLC PK1 wurde eine Zellzahl von 8*10³ bis1*10⁴ Zellen/mL und für A549 eine Zellzahl von 1,8*10⁴ bis 2*10⁴ Zellen/mL eingestellt. In jedes well wurden 0,2 mL (96 well Platte) bzw. 1 mL (24 well Platte) verdünnte Zellsuspension pipettiert. Dies ergab eine Konfluenz des Zellrasens von ca. 70 bis 80% zu Versuchsbeginn. Da Zellkulturen in den Vertiefungen einer Mikrotiterplatte in Abhängigkeit von deren Lokalisation unterschiedlich wachsen, wurden nur die inneren 60 wells für die Versuche verwendet. Zellen am äußeren Rand der Platten blieben unberücksichtigt.

2.2.5 Viabilitätsuntersuchungen

Durch verschiedene Einflüsse auf die Zellen kann es zum irreversiblen Verlust von essentiellen zellulären Funktionen und Strukturen kommen. Zur Erfassung des daraus resultierenden Zelltods werden Viabilitätsuntersuchungen eingesetzt. Es gibt eine Reihe von Methoden, die mit jeweils unterschiedlichen biochemischen Ansatzpunkten eine Quantifizierung der geschädigten Zellen erlauben. Hinsichtlich der Exposition des Agens muss man grundsätzlich zwei Klassen von Viabilitätstests unterscheiden. Üblicherweise durchgeführte Kurzzeittests zur Ermittlung der akuten Toxizität erfassen nur Zellen, die zum Zeitpunkt der Untersuchungen (d.h. nach der Noxenexposition) tot sind. Verspätete Reaktionen auf die Schädigung oder eventuelle Reparaturmechanismen werden nicht erfasst. Dafür sind Langzeittests notwenig, die eine eigentliche Bestimmung der Überlebensfähigkeit ermöglichen ¹⁸⁰. Viele der häufig durchgeführten Viabilitätstests beruhen auf dem Prinzip, dass bestimmte Farbstoffe in lebenden Zellen anders akkumulieren als in geschädigten. Tryptanblau-, Kristallviolett- und Neutralrottest basieren diesem Prinzip. Andererseits werden auch metabolische Reaktionen des auf Stoffwechsels der Zellen (MTT-Test), die Freisetzung von Inhalten (LDH-Test) oder der Einbau von ³H-Thymidin in die DNA als Messprinzip genutzt ¹⁷⁷.

Alle im Rahmen dieser Arbeit durchgeführten Viabilitätsuntersuchungen wurden in 96 well Platten durchgeführt. Das Überleben der Zellen wurde nach 4 bzw. 24 h ermittelt. Die Ergebnisse wurden dargestellt als % Viabilität bezogen auf eine mitgeführte unbehandelte Kontrolle. Die Umrechnung erfolgte mittels nachstehend genannter Formel.

Viabilität [%] =
$$\left(\frac{A_{behandelte Zellen} - A_0}{A_{unbehandle te Zellen} - A_0}\right) \times 100$$

A A₀ Absorption des Farbstoffes bei entsprechender Wellenlänge Blindwert bei entsprechender Wellenlänge

2.2.5.1 MTT-Test

Beim MTT-Test handelt es sich um eine häufig eingesetzte Methode zur Bestimmung der Zytotoxizität. Dabei wird die Menge lebensfähiger Zellen direkt über deren enzymatische Aktivität ermittelt. Das schwach gelbe 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromid (MTT) wird von den Zellen aufgenommen und durch mitochondriale Dehydrogenasen metabolisch aktiver Zellen gespalten. Das entstehende blaue Formazan lagert sich in den Zellen ab und kann aus diesen ausgewaschen werden ¹⁸¹. Die Menge an gebildetem Produkt korreliert mit der Stoffwechselaktivität der Zellen und stellt demzufolge ein Maß für die Viabilität dar. Mittlerweile existieren eine Reihe von Modifikationen zu diesem Test, die sich in üblichen Laborhandbüchern nachschlagen lassen ^{37, 177}. 24 Stunden nach Beginn der Transfektion wurde das Medium von den Zellen entfernt und durch 100 µl/well frisches ersetzt. Zusätzlich wurden 10 µL MTT Reagenz in jedes well pipettiert, wodurch eine Endkonzentration des Reagenz von 0,5 mg/mL erzielt wurde. Es erfolgte eine Inkubation von 3 h im Zellkulturschrank. Nach dieser Zeit wurde jedes well mit 100 µL MTT-Lyse-Puffer versehen, um das gebildete Formazan auszuwaschen. Die Platten wurden über Nacht erneut bei 37°C inkubiert und am nächsten Morgen mindestens 20 min intensiv geschüttelt. Abschließend wurde die Absorption bei 570 nm bestimmt.

2.2.5.2 Neutralrottest

Diese Viabilitätsuntersuchung basiert auf dem von Borenfreund und Puerner in den 80er Jahren publizierten Protokoll¹⁸². Der Vitalfarbstoff 3-Amino-7-dimethylamino-2methylphenazinhydrochloride (Neutralrot) ist bei pH Werten über 7,4 ungeladen. Er wird deshalb von lebenden Zellen aufgenommen und in die intakten Lysosomen und zum Teil auch in proliferierende DNA eingelagert ¹⁷⁷. Aufgrund des sauren pH Wertes in den Lysosomen wird Neutralrot protoniert, in diesen gehalten und färbt die Zellen deutlich sichtbar rot. Da tote Zellen weder intakte Lysosomen noch proliferierende DNA aufweisen, werden sie nicht angefärbt. Die Menge des eingelagerten Vitalfarbstoffs korreliert mit der Viabilität der Zellen. 24 Stunden nach Beginn der Transfektion wurde das Medium von den Zellen entfernt und diese einmal mit PBS gespült. Danach wurden 100 µL/well neutralrothaltiges Medium (c = 0.05 mg/mL) zugegeben. Die Zellen wurden 3 h im Zellkulturschrank inkubiert. Das Medium wurde verworfen und es erfolgten wiederum zwei Waschschritte mit PBS. Der Farbstoff wurde mit 200 µL einer Ethanol-Eisessig Mischung extrahiert und die Platte anschließend 15 min vorsichtig geschüttelt. Die Absorption der Lösung wurde bei 540 nm am Mikrotiterplattenphotometer gemessen.

2.2.6 Transfektionsexperimente

16 bis 24 Stunden nach Subkultivierung und Aussaat der Zellen wurden die Untersuchungen zur Transfektion vorgenommen. Das Medium wurde von den Zellen abgeschüttet und diese mit 50 - 100 µL PBS oder serumfreiem Medium für 15 min im Zellkulturschrank inkubiert. Das Waschen diente der Entfernung von Serum. Wie einleitend erwähnt, interagieren Liposomen bzw. Lipoplexe sehr stark mit verschiedenen Bestandteilen des Serums, was besonders bei *in-vivo*, aber auch bei *in-vitro* Applikation einen limitierenden Faktor für einen erfolgreichen Gentransfer darstellt. Um den negativen Einfluss der Serumproteine zu minimieren, wird eine Transfektionen an Zellkulturen häufig für ein bestimmtes Zeitintervall ohne Serum durchgeführt. In der vorliegenden Arbeit wurde dieses auf eine Dauer von 4 h festgelegt. Allerdings sollten neuartige liposomale Gentransfersysteme eine gewisse Toleranz gegenüber Wechselwirkungen mit Serum aufweisen. Bei Untersuchungen zu diesem Gesichtspunkt wurde die FBS-Konzentration mit Beginn des Versuchs auf 10% eingestellt.

Innerhalb der 15 min Inkubationszeit mit PBS oder serumfreiem Medium erfolgte die Herstellung der Lipoplexe. Dazu wurden die Liposomenlösungen in verschiedenen N/P Verhältnissen mit Plasmid-DNA in serumfreiem Medium kombiniert. Für alle Untersuchungen wurde die DNA mit 2,5 µg/mL Probe eingesetzt. Bei 96 well Platten resultierte daraus eine Konzentration von 0,1 µg DNA/well; bei 24 well Platten eine Konzentration von 1,25 µg/well. In Anlehnung an die Anwendungsvorschrift von LipofectAmine[®] [Anwendungsvorschrift Lipofectamine[™] Reagenz, Invitrogen[™], Kat. Nr. 18324-012], das in dieser Arbeit als Vergleich diente, wurde folgende Pipettiervorschrift angewendet.

- Verdünnung der entsprechenden Menge an Liposomenlösung in 5 μL serumfreiem Medium
- 2. Verdünnung von 0,1 µg Plasmid DNA in 5 µL serumfreiem Medium
- 3. 15 min Inkubation der Lipoplexe bei Raumtemperatur
- 4. Auffüllen der Probe mit 30 µL serumfreiem oder serumhaltigem Medium
- Zugabe der Probe zu den Zellen (40 µL/well einer 96 well Platte) und Inkubation im Zellkulturschrank

Für 24 well Platten wurden die Volumina entsprechend umgerechnet (500 μ L Probe pro well). Nach 4 h wurden in jedes well 160 μ L frisches Medium pipettiert und die Serumkonzentration auf 10% eingestellt. Mediumwechsel erfolgte 24 h nach Beginn der Transfektion. Die Zellen wurden für weitere 24 h im Zellkulturschrank aufbewahrt. Die Versuche endeten nach 12, 24, 48 sowie in einigen Fällen nach 72 h. Dann wurde das

Medium von den Zellen entfernt und diese entsprechend der nachfolgenden Tests weiterbehandelt.

2.2.7 Berechnung der N/P-Verhältnisse

Das N/P-Verhältnis gibt das Stoffmengenverhältnis von protonierbarem Stickstoff im kationischen Vektor zum Phosphat der DNA an. In Abhängigkeit vom Anteil der beiden Molekülgruppen ist die Ladung des Lipoplexes entweder negativ, neutral oder positiv. Für die vorliegenden Versuche wurde bei konstanter DNA-Konzentration die Menge an kationischem Liposom variiert. N/P-Verhältnisse geben stöchiometrische Beziehungen zwischen Vektor und DNA wieder. Aufgrund von räumlichen Einflüssen bei der Bildung der Lipoplexe können nicht alle basischen Stickstoffatome mit jeder freien Phosphatgruppe interagieren. Aus diesem Grund führt ein N/P-Verhältnisse aller in dieser Arbeit untersuchten Proben erfolgte mit der nachstehend genannten Formel. Für LipofectAmine[®] und SuperFect[®] wurden die Angaben des Herstellers verwendet [Anwendungsvorschrift SuperFect Transfektions Reagenz, Qiuagen, Kat. Nr. 301305]. In diesen Fällen entfällt die Angabe des N/P Verhältnisses.

$$N/P = \frac{m_{\text{Lipid}} \times n_{\text{N}} \times M_{\text{Nucleotid}} \times V_{\text{Liposomenlösung.}}}{M_{\text{Lipid}} \times m_{\text{DNA}} \times n_{\text{P}}}$$

<i>m_{Lipid}</i>	Masse des kationischen Lipids pro mL Liposomenlösung [mg/mL]
<i>m</i> _{DNA}	Masse an DNA pro well [mg]
<i>M_{Lipid}</i>	Molmasse des kationischen Lipids [g/mol]
M _{DNA}	durchschnittliche Molmasse eines Nucleotids [g/mol] (~ 308,94 g/mol)
n _N	Anzahl protonierbarer Stickstoffe im kationischen Lipid
n _P	Anzahl von Phosphat pro Nucleotid
V _{Liposomenlösung}	Volumen an Liposomenlösung pro well [mL]

2.2.8 X-Gal Test

Bei dieser Untersuchung handelt es sich um eine histochemische Analyse zur Detektion der β -Galactosidase Aktivität ¹⁸³. Bei Verwendung eines LacZ enthaltenden Reportergens wie pCMV SPORT β -Gal, welches für dieses Enzym codiert, kann eine erfolgreiche Transfektion schnell und ohne viel Aufwand bestimmt werden ¹⁸⁴. Das farblose Indolderivat 5-Brom-4-chlor-3-indolyl- β -D-galactopyranosid (X-Gal) penetriert in die Zellen

und wird von β-Galactosidasen gespalten. Das dabei deglycosilierte substituierte Indol wird durch eine Mischung aus rotem und gelbem Blutlaugensalz oxidiert und dimerisiert anschließend zu einem blauen Indigoderivat (Abbildung 11), welches sich in den Zellen niederschlägt [Produktinformation Sigma-Aldrich β-Galactosidase Reporter Gene Staining Kit Kat. Nr. GALS-1KT].

Abbildung 11 Strukturformel des X-Gal Test Reaktionsproduktes 5,5'-Dibrom-4,4'-dichlorindigo

Vorteilhaft ist, dass mit Hilfe dieser Bestimmung sehr schnell und unkompliziert eine Aussage über die Transfektion mit neuen Substanzen getroffen werden kann. Weiterhin ist durch Auszählen unter dem Mikroskop eine Ermittlung der Transfektionsrate möglich. Dies nimmt jedoch viel Zeit in Anspruch und ist stark fehlerbehaftet. Außerdem lassen sich erst relativ große Mengen an Enzym detektieren. Somit erfolgte eine genaue Quantifizierung der Reportergenaktivität nicht mit dem X-Gal Test.

Alle Untersuchungen wurden in 24 well Platten durchgeführt. 48 h nach Versuchsbeginn wurde das Medium von den Zellen entfernt und diese vorsichtig mit 500 μ L PBS gespült. Anschließend wurden die Zellen mit 250 μ L Fixierlösung überschichtet und 10 min bei Raumtemperatur inkubiert. In dieser Zeit wurde die Färbelösung, bestehend aus MgCl₂, K₃[Fe(CN)₆], K₄[Fe(CN)₆] und X-Gal hergestellt. Nach erneutem zwei-maligen Spülen mit PBS wurden in jedes well 240 μ L dieser Mischung pipettiert. Die Zellen wurden 2 bis 3 h im Zellkulturschrank inkubiert und konnten anschließend unter dem Mikroskop betrachtet werden. Zur Lagerung bei 4°C wurde die Färbelösung entfernt und die Zellen mit ca. 0,5 – 1 mL 70% Glycerol überschichtet.

2.2.9 Quantifizierung der β-Galactosidaseaktivität (ONPG-Assay)

Für eine genaue Quantifizierung der β-Galactosidaseaktivität im Zellextrakt ist ein effektiveres Substrat als X-Gal notwendig. *Ortho*-Nitrophenyl-β-D-galctopyranosid (ONPG) stellt ein solches dar ³⁷. Das Glycosid wird enzymatisch gespalten und das dabei freiwerdende *o*-Nitrophenol lässt sich photometrisch detektieren. Mit Hilfe einer Kalibriergerade, hergestellt aus kommerziell erhältlicher β-Galactosidase, kann aus den Absorptionswerten die Aktivität berechnet werden. Dabei entspricht eine Einheit der Menge an Enzym, die bei 37°C 1 µmol ONPG pro Minute hydrolysiert.

Nach Beenden der Transfektionsexperimente wurde, wie bereits erwähnt, das Medium von den Zellen entfernt und diese einmal mit 100 µL PBS gespült. Anschließend konnten die Platten bei – 20°C gelagert oder sofort weiterb earbeitet werden. In jedes well wurden 50 µL Lysis-Puffer pipettiert und für 15 min bei Raumtemperatur inkubiert. Nach intensivem Durchmischen wurde der Zellextrakt mit einer Pipette in Eppendorfgefäße überführt. Dabei wurden die Lösungen von zwei wells in einem Gefäß vereinigt. Es erfolgte ein Zentrifugationsschritt bei 10000 * g, 4°C für 10 min. Anschließend wurden die Proben auf Eis gelagert. 10 – 60 µL des Zellextraktes wurden dann erneut in 96 well Platten überführt und mit Lysis-Puffer auf 60 µL aufgefüllt. Es wurden 60 µL substrathaltige Lösung (2 x Assay Puffer) dazugegeben und die Mischung unter leichtem Schütteln für 30 min bei 37°C inkubiert. Die Reakti on wurde mit 100 µL 1 M Na₂CO₃ Lösung beendet und die Absorption der Lösungen bei 405 nm am Mikroplattenphotometer ermittelt.

2.2.10 Proteinbestimmung

Proteinbestimmungen sollten schnell durchführbar und resistent gegen störende Substanzen sein. Am häufigsten werden die Bestimmung nach Bradford oder die Bestimmung nach Lowry angewendet. Allerdings werden diese durch eine Reihe von Stoffen negativ beeinflusst. Die favorisierte Methode zur Proteinbestimmung in Gegenwart von Detergentien ist die BCA-Methode ¹⁸⁵. Deshalb wurde sie für alle Bestimmungen verwendet. Der Test mit 4,4´-Bichinchonsäure (BCA) erlaubt hohe Konzentrationen an oberflächenaktiven Substanzen und ist mit einer Nachweisgrenze von 0,5 µg/mL sehr empfindlich. Außerdem ist das nach 30 min gebildete Produkt stabil ¹⁸⁶. Der Reaktionsmechanismus der BCA-Methode ist in Abbildung 12 dargestellt. Kupfer(II)ionen werden in alkalischer Lösung durch Proteinbestandteile reduziert. Die entstehenden Kupfer(I)ionen bilden einen violetten Komplex mit BCA.

Abbildung 12 Reaktionsmechanismus der BCA Proteinbestimmung (farbgebende Reaktion)

Je 10 µL Zellextrakt wurden in 96 well Platten überführt und mit jeweils 200 µL einer Mischung aus Lösung A und B (50 VT Lösung A und 1 VT Lösung B) versetzt. Die Platte wurde bei leichtem Schütteln für 30 min bei 37℃ in kubiert. Anschließend wurde die Absorption bei 570 nm vermessen und diese durch Verwendung einer Kalibriergerade hergestellt aus Bovinem Serumalbumin (BSA) in Konzentrationen umgerechnet.

Neben der Quantifizierung der β-Galactosidaseaktivität wurden die Ergebnisse der Proteinbestimmungen in die Ergebnisbetrachtung mit einbezogen. Dieser Schritt sollte nicht nur Schwankungen durch unterschiedliche Ausgangszellzahlen minimieren, er erlaubt ebenso eine Aussage zur Viabilität der Zellen zum Ende des Versuchs, da man Proteinbestimmungen auch zur Einstufung der Zytotoxizität von Substanzen verwenden kann¹⁸⁷. Die Enzymaktivität wurde auf die Masse an Gesamtprotein im Zellextrakt bezogen. Die Proteinkonzentrationen der Zellen der unbehandelten Kontrolle wurden ebenso berücksichtigt. Dieser Schritt ist dem Problem geschuldet, dass stark zytotoxische Liposomenpräparationen, die trotzdem noch geringe Enzymaktivitäten in den verbliebenen Zellen bedingen, durch sehr niedrige Gesamtproteinkonzentrationen sehr hohe Werte für das Ergebnis der Transfektion erzielen würden. Um Ergebnisse von Proben, die bei geringer Transfektion gleichzeitig einen ausgeprägt negativen Einfluss auf die Viabiltät der Zellen hatten, nicht falsch positiv zu deuten, wurde die Wirksamkeit der Lipofektion durch einen Quotienten aus ermittelter Enzymaktiviät pro Volumeneinheit [µE/µL] und Mittelwert der Proteinkonzentrationen von Probe und unbehandelter Kontrolle [µg/µL] berechnet.

2.2.11 Durchflusszytometrische Bestimmungen

Das Prinzip der Untersuchung mittels Fluorescence activated cell sorting (FACS) beruht auf der Emission optischer Signale von Zellen, wenn diese einen Laserstrahl passieren ¹⁸⁸. Durch Beladung der Zellen mit Fluorophoren oder detektierbaren Antikörpern können diese Signale verstärkt bzw. erweitert werden. Somit ermöglichen FACS Messungen die automatisierte Analyse von Lichtstreuung bzw. Lichtbrechung oder Fluoreszenzintensitäten einzelner Zellen innerhalb heterogener Zellgemische. Die wichtigsten Parameter bei der Einteilung und Auftrennung von Zellen sind das Vorwärtsstreulicht FSC (Forward Scatter) und das Seitwärtsstreulicht SSC (Side Scatter). FSC ist ein Maß für die Beugung des Streulichts im flachen Messwinkel und charakterisiert die Zellgröße. SSC wird im rechten Winkel zum einfallenden Licht gemessen und gibt Auskunft über Form und innere Struktur der Zelle (z. B. Größe und Struktur des Zellkerns). Ein weiterer Vorteil von FACS Messungen ist die computergesteuerte Quantifizierung einer sehr großen Anzahl von Zellen und damit eine hohe statistische Aussagesicherheit. Das Ergebnis ist eine Verteilung von

Fluoreszenzintensitäten, aus denen sich nicht nur Durchschnittswerte, sondern auch Subpopulationen bestimmen lassen.

Die Analyse von Transfektionsuntersuchungen mittels FACS wird sehr häufig durchgeführt. Bei der Verwendung von Green Fluoreszenz Protein (GFP) lässt sich das Ergebnis des Experiments auf diese Weise schnell und ohne viel Aufwand quantifizieren. Gewiss analysiert man dabei auch den Endpunkt der Transfektion. Wie bereits erwähnt, stehen zwischen der Inkubation der Zellen mit den Lipoplexen und dem expremierten Genprodukt viele Schritte. In dieser Arbeit wurden FACS Messungen angewendet, um eine Aussage über den ersten Schritt der Transfektion, die Aufnahme der Lipoplexe in die Zellen, zu treffen. Um dieser Fragestellung nachzugehen, muss man entweder das Vehikel oder die Nukleinsäure intrazellulär detektierbar machen. Dies geschah durch Markierung der DNA mit YOYO[®]-1. Dieser interkalierende Fluoreszenzfarbstoff zeichnet sich durch eine sehr hohe Stabilität des DNA-Farbstoffkomplexes aus. Das Fluoreszenzsignal von gebundenem Farbstoff ist um den Faktor 3200 höher als von freiem und er bindet fast ausschließlich ds DNA¹⁸⁹⁻¹⁹¹. Aus diesem Grund werden zur Untersuchung dieser Fragestellung unsymmetrische häufig Cyaninfarbstoffe verwendet ¹⁹²⁻¹⁹⁴. Außerdem ist die Bindungsaffinität von YOYO[®]-1 zu DNA um den Faktor 100 höher als die zwischen kationischen Lipiden und DNA¹⁹³.

Alle Versuche wurden in 24 well Platten durchgeführt. 2 h vor Versuchsbeginn wurde die DNA mit Farbstofflösung im Verhältnis 5:1 (DNA-Basenpaar zu Farbstoffmolekül) gemischt und bei Raumtemperatur im Dunkeln inkubiert. Das entspricht einer Verdünnung von 1:10000 der 1 mM YOYO[®]-1 Stammlösung. Die Kombination von Liposomen und DNA erfolgte analog den Vorschriften für ONPG bzw. X-Gal Assay. Jede Lipoplexprobe wurde pro Versuch in 2 wells auf den Zellen inkubiert. 4 bzw. 24 h nach Beginn des Experiments wurde das Medium von den Zellen entfernt und diese dreimal vorsichtig mit PBS gewaschen. Anschließend wurden die Zellen mit Trypsin (0,2 mL/well) von der Unterlage abgelöst. Eine Anfärbung mit Propidiumiodid erfolgte nicht, da dieser Interkalator die Messungen von YOYO[®]-1/DNA Komplexen stört ¹⁹³. Darum erfolgte unter Versuchsbedingungen Viabilitätsbestimmung gleichen eine separate mittels Neutralrottest. Nach Aufnahme in 4°C kaltem PBS unt er Vereinigung der Lösungen von zwei wells in ein Eppendorfgefäß wurde für 2 min bei 4°C und 2000 rpm zentrifugiert. Der Überstand wurde vorsichtig abgesaugt, 0,5 mL kaltes PBS hinzugefügt und das entstandene Pellet durch Vortexen homogenisiert. Nach erneuter Durchführung der gesamten Prozedur wurden die Zellen bis zur Vermessung auf Eis gelagert.

Die Messungen wurden an einem FACS Calibur Durchflusszytometer durchgeführt. Dieses Gerät besitzt einen Argon-Laser der Anregungswellenlänge 488 nm sowie 3 Wellenlängenbereiche zur Detektion. YOYO[®]-1 markierte Plasmid-DNA wurde bei 530 nm vermessen. Die Durchflussrate wurde so gewählt, dass max. 300 Ereignisse pro Sekunde registriert werden konnten. Alle Photodetektoren wurden auf logarithmische Verstärkung eingestellt. In der FSC-SSC-Auftragung wurde die Zellpopulation durch Einstellen eines Analysenfensters, welches eng um die unbehandelte Kontrolle gesetzt wurde, eingegrenzt. Pro Probe wurden 10000 Zellen innerhalb des gewählten Fensters vermessen. Die Verstärkung der Fluoreszenzsignale im Fluoreszenzkanal wurde so gewählt, dass das Signal der unbehandelten Kontrolle mittlere Fluoreszenzwerte unter 10 erhielt. Ausgewertet wurden die Daten mit dem Programm *CellQuest* in Form von Histogrammen, in denen die Fluoreszenzintensität als Abszisse und die Anzahl der Zellen als Ordinate aufgetragen wurden. Daraus wurde die mittlere Fluoreszenzintensität ermittelt. Als Maß für die Aufnahme der Plasmid-DNA in die Zellen diente das Fluoreszenz-Aktivitätsverhältnis (FAR). Dazu wird die mittlere Fluoreszenzintensität jeder Probe auf die der unbehandelten Kontrolle bezogen. Der daraus resultierende Wert gibt an, um welchen Faktor die Fluoreszenzintensität und damit die DNA-Aufnahme im Vergleich zur unbehandelten Kontrolle erhöht ist.

2.2.12 Statistische Auswertung

Alle Messdaten sind als Mittelwert ± Standardabweichung von n \ge 3 unabhängigen Experimenten angegeben. Die Untersuchungen auf Transfektion und Zytotoxizität der eingesetzten Liposomen wurde an unterschiedlichen Zellpassagen in 12- oder 6-fach Bestimmungen pro Versuch durchgeführt. Für X-Gal Tests und FACS-Messungen waren es jeweils Doppelbestimmungen. Zur Prüfung auf signifikante Unterschiede zwischen einzelnen Gruppen wurden eine Varianzanalyse (ANOVA) und Bonferoni's multipler Vergleichstest angewendet. Dabei wurde eine Irrtumswahrscheinlichkeit P von α < 0,05 als statistisch signifikant angesehen.

3. Ergebnisse und Diskussion

Alle in dieser Arbeit getesteten Substanzen wurden, wie bereits erwähnt, immer mit weiteren Amphiphilen kombiniert und die daraus hergestellten kationischen Liposomen auf ihre Eignung als Gentransfersysteme untersucht. Außerdem wurde der Einfluss der applizierten Lipoplexe auf die Viabiltät der eingesetzten Zellen bestimmt. Um die bestmögliche Liposomenzusammensetzung zu ermitteln, erfolgte in der Regel zuerst die Kombination der einzelnen Transfektionslipide mit DOPE oder Cholesterol im molaren Verhältnis 1:1. Zeigten sich durch diese Proben positive Reaktionen in Bezug auf den Gentransfer, erfolgte die Herstellung und Untersuchung weiterer Liposomen mit erhöhtem bzw. erniedrigtem Anteil an Cytofektin. Das Colipid DMPC wurde nur bei bestimmten Substanzen verwendet. Auch die Kombination von mehr als zwei verschiedenen Lipiden erfolgte lediglich in ausgewählten Fällen, sodass es sich bei der Mehrzahl der vorgestellten Liposomen um binäre Mischungen handelt.

Da eine Reihe von Proben keine oder lediglich sehr geringe Gentransferraten aufzeigte, ist deren detaillierte Darstellung wenig sinnvoll und würde den Rahmen der Arbeit sprengen. Deshalb werden ausgewählte Messwerte präsentiert. Für die genaue Betrachtung der ermittelten Daten wird auf die tabellarische Zusammenfassung im Anhang verwiesen. Diese beinhaltet die Ergebnisse der Transfektions- und Viabilitätstests, sowie die Daten der Partikelgrößenbestimmung aller untersuchten Liposomen und Lipoplexe.

3.1 Transfektionslipide mit Malonsäurediamidstruktur

Kennzeichen dieser Transfektionslipide ist das von der Malonsäure abgeleitete Grundgerüst. Durch Umwandlung in Diamide liegt ein planares System vor. Die Besonderheit besteht darin, dass die hydrophoben Alkylketten zum einen über eine Amidbindung und zum anderen über C2 des Grundgerüsts angeknüpft sind (siehe Strukur Kapitel 2.1.6). Der hydrophile Molekülteil wird wiederum über eine Amidbindung an die Malonsäure gekoppelt. Vorteilhaft ist dabei, dass Amide im Vergleich zu Estern eine höhere biologische Beständigkeit aufweisen. Ferner können sie Wasserstoffbrücken ausbilden, die dem System eine gewisse Stabilität verleihen. Durch den Aufbau aus Malonsäureestern und deren CH Acidität an C2 können relativ problemlos verschiedene Alkylketten substituiert und ebenso neue Strukturklassen synthetisiert werden ¹⁵⁷. Das ist im Hinblick auf die systematische Entwicklung von Transfektionslipiden eine wesentliche Vorraussetzung.

3.1.1 Malonsäurediamide 1 - 3

Charakteristisch für diese drei Substanzen ist der kleine hydrophile Teil der Transfektionslipide, die pro Molekül nur einen protonierbaren Stickstoff enthalten. Damit stellen sie in Analogie zu DOTMA monovalente Cytofektine dar. Im Gegensatz zu DOTMA handelt es sich nicht um Ammoniumionen, sondern um primäre aliphatische Amine. Eigentlich sollte die hydrophile Komponente 2-Aminoethylamid lediglich als Spacer für weitere basische Substituenten dienen, trotzdem konnte in Abhängigkeit vom lipophilen Molekülteil und dem verwendeten Helferlipid auch bei diesen Substanzen eine erfolgreiche Transfektion nachgewiesen werden.

Das gelang aber erst bei Verwendung von MA2 und MA3, deren hydrophobe Reste zunehmend fluider werden. So zeigte die Substanz MA1, die mit zwei Alkylketten vom Typ C₁₆H₃₃ einen relativ starren lipophilen Molekülteil aufweist, keine Transfektion an der Zelllinie LLC PK1. Die fehlende β-Galactosidaseaktivität verdeutlicht Abbildung 13. Während jedoch Lipoplexe aus MA1/DOPE 1:1 (n/n) trotz der hohen Konzentrationen keinen Einfluss auf die Viabiltät der Zellen haben, wird deren Überlebensfähigkeit durch Liposomen, die aus MA1 und Cholesterol zusammengesetzt sind, erheblich beeinflusst. Schon bei geringen Konzentrationen an Liposomenlösung (N/P 1:1) sterben ca. 35% der Zellen ab. Eine Erhöhung der Cytofektinkonzentration verringert die Viabilität nicht weiter. Daraus geht hervor, dass nicht nur die Fähigkeit zum Gentransfer, sondern auch die Zusammensetzung und Struktur der Lipoplexe für die Verträglichkeit entscheidend sind. Dabei scheinen nicht nur die Konzentration, sondern auch die Art und der molare Anteil des Helferlipids wichtig zu sein. Abbildung 14 veranschaulicht die Ergebnisse der MTT basierten Zytotoxizitätsuntersuchungen des Transfektionslipids MA1.

Abbildung 13 X-Gal Test nach Transfektion mit Lipoplexen aus MA1/DOPE 1:1 (n/n) - LLC PK1 - N/P 2:1 - 2,5 μ g DNA/mL - t = 48 h - Vergrößerung 1:200

Abbildung 14 MTT basierter Viabilitätstest von MA1/ DOPE 1:1 (n/n) und MA1/Cholesterol 1:1 (n/n) -LLC PK1 - 0,1 μ g DNA/well - t = 24 h

Die stufenweise Substitution der gesättigten Alkylketten durch Reste des Typs $C_{18}H_{35}\Delta^9$ führte zu messbaren Transfektionsergebnissen. Diese Beobachtungen untermauern den einleitend genannten Einfluss des lipophilen Molekülteils auf den Gentransfer. Außerdem wurde die Menge an kationischen Liposomen im Lipoplex erhöht. Interessanterweise lieferte MA2 nur positive Ergebnisse in Kombination mit Cholesterol, während für DOPE haltige Lipoplexe lediglich bei Mischungen mit MA3 Enzymaktivitäten nachgewiesen werden konnten. Auch bei diesen Versuchen zeigten die applizierten Lipoplexe einen Einfluss auf die Viabiltät der Zellen. Dieser ist neben der Konzentration des Cytofektins vor allem von der Zusammensetzung der Lipoplexe abhängig. So schädigen auf MA3/DOPE basierende Vektoren die Zellen in geringerem Maße als jene, die sich aus MA2/Cholesterol zusammensetzen, obwohl beide nach 48 h eine ähnliche Enzymaktivität hervorrufen. Die nachstehenden Graphen bilden die Ergebnisse von ONPG und MTT-Test ab.

Abbildung 15 Transfektion der Lipoplexe aus MA2/ Cholesterol - LLC PK1 - t = 48 h - 0,1 μ g DNA/well

Abbildung 16 MTT-Test der Lipoplexe aus MA2/ Cholesterol - LLC PK1 - t = 24 h - 0,1 μ g DNA/well

125 100 [%] 75 /iabilität 50 25 0 Kontrolle 2:1 4:1 1:1 3:1 N/P MA3/DOPE 1:1 (n/n) 🚥 MA3/Cholesterol 2:1 (n/n)

Abbildung 17 Transfektion der Lipoplexe aus MA3 in Kombination mit Cholesterol und DOPE an LLC PK1

Abbildung 18 MTT-Test der Lipoplexe aus MA3 in Kombination mit Cholesterol und DOPE an LLC PK1

Obwohl bei Verwendung der Liposomen MA2/Cholesterol 1:1 und 2:1 (n/n) sowie MA3/DOPE 2:1 (n/n) eine vergleichsweise hohe β-Galactosidaseaktivität nachgewiesen werden konnte, erreichen diese Proben nach 48 h Versuchsdauer lediglich 40 - 50% der Transfektionsaktivität von LipofectAmine[®] und SuperFect[®]. Aus diesem Grund wurde der hydrophile Strukturteil der Malonsäurediamide erweitert, um die Effizienz des Gentransfers weiter zu steigern.

3.1.2 Malonsäurediamide 4 - 6

Die hydrophile Kopfgruppe dieser 3 Transfektionslipide ist durch die Struktur Bis(2aminoethyl)aminoethylamid gekennzeichnet. Es handelt sich demzufolge um multivalente Cytofektine mit je einem tertiären und zwei primären Aminfunktionen. Die verzweigte Struktur soll eine gute Komplexierung der DNA und damit eine hohe Transferaktivität ermöglichen. Außerdem kann sie als Grundlage für die Entwicklung von PANAM analogen Lipiden eingesetzt werden, da diese als sehr effiziente kationische Vektoren beschrieben wurden^{113, 139}. Obwohl diese Malonsäurediamide mit drei basischen Stickstoffatomen pro Molekül eine hohe Ladungsdichte auf der Liposomenoberfläche vermuten lassen, konnte für das rigide Lipid MA4 gezeigt werden, dass es in Monoschichtexperimenten an der Langmuir Filmwaage selbst bei pH 3 nur einmal protoniert ist¹⁹⁵. Im Vergleich mit fluideren Lipiden wurde ermittelt, dass auch der Protonierungsgrad der Substanzen von den dessen Packungseigenschaften, also maßgeblich vom lipophilen Molekülteil abhängig ist.

Auf die Transfektion wirkt sich die Einführung der vergrößerten Kopfgruppe positiv aus. Bereits MA4 enthaltende Liposomen sind in der Lage die Plasmid-DNA in LLC PK1 Zellen zu transportieren und eine Expression der β -Galactosidase hervorzurufen. Genau wie bei MA5 eigenen sich dafür besonders Kombinationen mit dem fluiden Phospholid DOPE. Die Schwierigkeit, die optimale Mischung jeder Substanz mit dem entsprechenden Colipid zu finden, veranschaulichen Abbildung 19 und Abbildung 20.

Abbildung 19 Transfektion von MA4 in Kombination mit DOPE an LLC PK1

Abbildung 20 Transfektion von MA5 in Kombination mit DOPE an LLC PK1

Nicht immer lassen sich eindeutige Tendenzen für einen verbesserten Gentransfer erkennen, da die ermittelten Werte stark streuen können und durch veränderte Liposomenzusammensetzung ein sprunghafter Anstieg der Transfektion nicht zwingend ist. Vergleicht man beispielsweise MA4/DOPE 2:1 (n/n) mit MA4/DOPE 1:2 (n/n) ist der Unterschied in Bezug auf die Transfektion deutlich erkennbar, während dies für andere

Mischungen nicht so ist. In diesem Fall lohnt sich ein Blick auf die Viablitätswerte, da bei gleicher Transfektion weniger toxische Proben als günstiger einzustufen sind.

Obwohl für MA4- und MA5-haltige Liposomen Transfektion nach 48 h an der Zelllinie LLC PK1 nachgewiesen wird, sind die Werte nicht hoch genug, um mit kommerziell erhältlichen Vektoren zu konkurrieren. Das gelingt erst bei Verwendung von MA6, da dieses Lipid besonders in Kombination mit Cholesterol zur ausgepägten Expression des Plasmids führt. Abbildung 21 stellt diese Ergebnisse graphisch dar. Auch wenn bei N/P 4,5 die Standardabweichung sehr hoch ausfällt, ist eine sprunghafte Verbesserung der Transfektionsleistung durch die Kombination MA6/Cholesterol 2:1 (n/n) erkennbar. Basierend auf dem guten Ergebnis wurde diese Probe in weiteren Kombinationen mit DNA für den Gentransfer eingesetzt und mit LipofectAmine[®] und SuperFect[®] verglichen. Abbildung 22 präsentiert die Resultate.

Abbildung 21 Transfektion von MA6 mit DOPE und Cholesterol an LLC PK1 - $t = 48 h - 0.1 \mu g DNA/well$

Abbildung 22 Transfektion MA6/Cholesterol 2:1 (n/n) vs. LipofectAmine[®] und SuperFect[®] an LLC PK1

MA6/Cholesterol 2:1 (n/n) weiten Daraus geht hervor. dass über einen Konzentrationsbereich eine hohe β-Galactosidaseaktivität ermöglicht. Die Mittelwerte der Transfektionseffektivität liegen ab einem N/P Verhältnis von 5,25 über den Ergebnissen für die beiden kommerziell erhältlichen Vektoren. Für die gekennzeichneten Ladungsverhältnisse sind die Unterschiede im Vergleich zu LipofectAmine[®] statistisch singnifikant (*).

Neben der Transfektionsleistung ist, wie bereits mehrfach erwähnt, die Verträglichkeit eines Vektors ein wichtiges Kriterium für dessen Anwendung. Aus diesem Grund wurde der Einfluss von MA6/Cholesterol 2:1 (n/n) auf die Viabilität der Zellen sowohl mit dem MTT- als auch mit dem Neutralrottest analysiert. Abbildung 23 und Abbildung 24 stellen die entsprechenden Resultate dar.

Positiv ist, dass die prozentuale Zellviabilität größenteils über 80% liegt. So zeigen die Ergebnisse beider Toxizitätsuntersuchungen anfänglich keinen statistisch signifikanten Einfluss auf die Viabilität der Zellen. Erst bei sehr hohen Konzentrationen an kationischen Liposomen überleben weniger Zellen eine 24-stündige Inkubation. Nimmt man das

N/P Verhältnis 6,75, bei dem die höchste Transfektion detektiert wird, und vergleicht die Viabilität mit der von LipofectAmine[®] und SuperFect[®], ergeben sich beim MTT-Test, anders als beim Neutralrotest, keine statistisch signifikanten Unterschiede.

Abbildung 23 MTT-Test von MA6/Cholesterol 2:1 (n/n), LipofectAmine[®] und SuperFect[®] an LLC PK1

Abbildung 24 Neutralrottest von MA6/Cholesterol 2:1 (n/n), LipofectAmine[®] und SuperFect[®] an LLC PK1

Schwankungen zwischen den Ergebnissen der Testmethoden sind möglich, da beide unterschiedliche Ansatzpunkte für die Detektion der Zellviabilität aufweisen ¹⁸⁷. So wird Neutralrot nur von intakten, vitalen Zellen aufgenommen und akkumuliert. Die höhere Viabilität für N/P 6,75 bei MTT basierten Messungen könnte durch eine verbleibende mitochondriale Aktivität in leicht geschädigten Zellen erklärbar sein.

Um die gute Gentransferaktivität von MA6/Cholesterol 2:1 (n/n) zu untermauern, wurde diese Probe ebenso an der Zelllinie A549 untersucht. Auch bei diesen Experimenten zeigt der Vektor eine gesteigerte Transfektion im Vergleich zu den kommerziell erhältlichen Produkten. Abbildung 25 veranschaulicht die Ergebnisse der β-Galactosidase- und Viabilitätsbestimmungen.

An der Zelllinie A549 ist der Unterschied in der Transfektionsleistung gegenüber beiden Vergleichsvektoren statistisch signifikant und tritt bei höheren Ladungsverhältnissen auf (*). Bei N/P 6 übertrifft MA6/Cholesterol 2:1 (n/n) die anderen Gentransfersysteme um 42 bzw. 75%. Die Ergebnisse der Viabiltätsuntersuchungen zeigen aber, dass mit steigender Konzentration an kationischen Liposomen die Verträglichkeit des Vektors vermindert ist. Zwar liegen die Mittelwerte noch über dem von LipofectAmine[®], sinken aber auf 72%. Auffällig ist die gute Verträglichkeit des an dieser Zelllinie vergleichsweise schlecht transfizierenden SuperFect[®], dessen Wert sich von den gekennzeichneten Lipoplexen statistisch signifikant unterscheidet (^).Trotzdem kann aber festgehalten werden, dass kationische Liposomen in der Kombination MA6/Cholesterol 2:1 (n/n) sehr gute Vektoren für den *in-vitro* Gentransfer verschiedener Zelltypen sind und in niedrigen Konzentrationen (bis ca. 18,2 µmol/L Cytofektin, N/P 6,75) relativ gut vertragen werden.

Abbildung 25 Transfektion und Zellviabilität von MA6/Cholesterol 2:1 (n/n) an der Zelllinie A549 im Vergleich mit LipofectAmine[®] und SuperFect[®] - t = 48 h bzw. 24 h - 0,1 µg DNA/well

Eine Verbesserung des Gentransfers auf Strukturelemente der Lipide zurückzuführen, wie es bspw. bei Enzyminhibitoren im Rahmen einer QSAR-Analyse geschieht, ist im Falle kationischer Liposomen nicht ohne weiteres möglich, da auch die Konzentration und der Anteil des Colipids, sowie die Größe und Struktur der Lipoplexe und die daraus resultierenden physiko-chemischen Eigenschaften des Systems maßgeblichen Einfluss auf Transfektion und Verträglichkeit des Vektors haben. Desweiteren variieren die Maxima der Transfektion in Abhängigkeit von der eingesetzten Konzentration an kationischem Liposom. Da das Ergebnis der Transfektion kein fester Wert ist, sondern wie noch gezeigt werden wird, ebenfalls vom Zeitpunkt der Detektion abhängt, können keine K_i-Wert analogen Daten erhoben werden.

Alle drei Substanzen zeigen sowohl in Kombination mit DOPE als auch mit Cholesterol Gentransferaktivität an der Zelllinie LLC PK1, aber besonders MA6 enthaltende Vektoren führen zur ausgeprägten Expression des Plasmids pCMV SPORT β-Gal. Diese Beobachtung legt nahe, dass die Fluidisierung des lipophilen Molekülteils durch Einführung von zwei Oleylresten zur Steigerung der Gentransferaktivität führt. Gewiss darf bei der Betrachtung der Anteil des Cytofektins im Liposom nicht außer Acht gelassen werden. Mit Hilfe von Abbildung 26 und Abbildung 27 soll dieser Sachverhalt näher erläutert werden.

Abbildung 26 Transfektion der Lipide MA4-MA6 in Kombination mit DOPE oder Cholesterol im Verhältnis 1:1 an LLC PK1 - N/P 6:1

Auf beiden graphischen Darstellungen ist zu erkennen, dass erst MA6 kombiniert mit Cholesterol den Gentransfer maßgeblich steigert, sowohl im Vergleich mit den DOPEhaltigen Liposomen als auch bei Gegenüberstellung der Transfektionslipide untereinander. Bei einem Cytofektin/Helferlipid Verhältnis von 1:1 spielt es keine Rolle, mit welchem Lipid DOPE kombiniert wird. Die Unterschiede sind statistisch nicht signifikant. Betrachtet man aber die jeweils beste Kombination der Substanzen MA4-MA6 mit den Helferlipiden untereinander (Abbildung 27), dann wird deutlich, dass auch hier die Kombination von DOPE mit MA6 den beiden anderen Transfektionslipiden überlegen ist. In diesem Falle kann der Effekt aber nicht ausschließlich auf den hydrophoben Molekülteil zurückgeführt werden, da Liposomenkonzentration und Anteil an Colipid ebenfalls variieren.

1250

750 500 250

PE1.2 Min

Protein 1000

Aktivität ß-Gal/m [pt/j]

Dennoch kann festgehalten werden, dass die Einführung fluider Alkylketten vom Typ $C_{18}H_{35}\Delta^9$ in Malonsäurediamide mit Bis(2-Aminoethyl)aminoethylamid Kopfgruppe die Transfektion steigert, unabhängig davon welches Colipid verwendet wird. MA6/Cholesterol 2:1 (n/n) führt konzentrationsabhängig bei akzeptabler Verträglichkeit zu sehr guten Gentransferraten an zwei verschiedenen Zelllinien und ist dabei den kommerziell erhältlichen Produkten LipofectAmine[®] und SuperFect[®] überlegen.

Für eine praktisch relevante Beurteilung dieser Ergebnisse wurden zwei Liposomenpräparationen aus MA6/Cholesterol 2:1 (n/n) nach 3 Monaten Lagerung nicht verworfen, sondern für insgesamt 12 Monate bei Raumtemperatur (RT) bzw. 4°C gelagert. Die beiden Proben wurden anschließend erneut sowohl auf ihre Transfektionseigenschaften als auch auf ihr zytotoxisches Potenzial untersucht. Abbildung 28 und Abbildung 29 stellen die Ergebnisse graphisch dar. Es fällt auf, dass für die untersuchten N/P Verhältnisse kein großer Unterschied zu frisch präparierten Liposomen besteht. Lediglich die bei Raumtemperatur gelagerte Probe hat in der Transfektionsleistung nachgelassen. Zwar erreichen beide nicht den Maximalwert, der vor der Lagerung erzielt wird (ab N/P > 6 Werte um 1000 μ E/ μ g, auf Abbildung 28 nicht dargestellt), nichtsdestotrotz liegt besonders die bei 4°C aufbewahrte Probe immer noch im Bereich von LipofectAmine® und SuperFect®.

Abbildung 28 Vergleich der Transfektionsergebnisse von gelagerten MA6/Cholesterol 2:1 (n/n) Proben an LLC PK1 - t = $48 \text{ h} - 0,1 \mu \text{g}$ DNA/well

Abbildung 29 Vergleich der MTT-Tests von gelagerten MA6/Cholesterol 2:1 (n/n) Proben an LLC PK1 - t = $48 \text{ h} - 0.1 \mu \text{g}$ DNA/well

Bei höheren Konzentrationen hat diese auch einen größeren Einfluss auf die Viabilität der Zellen als die beiden anderen Liposomenproben.

Festzustellen ist aber, dass die Liposomenpräparation MA6/Cholesterol 2:1 (n/n) auch nach 12 Monaten Lagerung ohne weitere pharmazeutisch technologische Vorkehrungen wie Gefriertrocknung oder Verwendung von Puffern immer noch sehr gute Transfektionsleistungen ermöglicht.

3.1.3 Malonsäurediamide 7 - 9

Aufgrund der Tatsache, dass die Histone, um welche die DNA im Zellkern "gewickelt" ist, zu fast 25% aus den basischen Aminosäuren Lysin und Arginin bestehen ¹⁹⁶, sollte versucht werden mit deren Einführung eine gute Komplexierung der DNA zu ermöglichen. Bereits für andere Transfektionslipide konnte durch Verwendung von basischen Aminosäuren und deren Derivaten in der Kopfgruppe der Lipide ein verbesserter Gentransfer nachgewiesen werden ^{112, 139}. Dies sollte auch für die Malonsäurediamide untersucht werden. Da sich Lysin und entsprechende Derivate in der Synthese einfacher handhaben lassen, wurde dieses für die Kupplung an die Malonsäurediamide 1-3 verwendet. Dadurch entstehen Cytofektine, deren Kopfgruppe wegen des Ethylendiaminspacers weiter nach außen ragt und die zwei basiche primäre Aminfunktionen zur Interaktion mit der DNA zur Verfügung haben.

In Abhängigkeit vom lipophilen Rest konnte zunächst keine verbesserte Transfektion ermittelt werden. Im Gegenteil, die Substanz MA7 scheint für den Gentransfer ungeeignet. Zwar lassen sich sowohl mit DOPE als auch mit Cholesterol Liposomen herstellen, allerdings zeigte lediglich die Probe MA7/Cholesterol 1:1 (n/n) nach 48 h minimale Tranfektion an der Zelllinie LLC PK1. Betrachtet man nur den Einfluss der Kopfgruppe durch Vergleich von MA1, MA4 und MA7 kann man schlussfolgern, dass die Aminosäure Lysin im Vergleich zu Bis(2-Aminoethyl)aminoethylamid und Ethylendiamin als hydrophiler

Molekülteil die Transfektion verbessert, wenn die Lipide mit Cholesterol kombiniert werden (Abbildung 30). Da sich aber dieser Einfluss auf einem niedrigen Niveau abspielt, stellt dies keine grundlegende Verbesserung der Vektoren dar.

Abbildung 30 Einfluss der Kopfgruppe auf die Transfektion von Malonsäurediamiden mit Hexadecylresten in äquimolarer Kombination mit Cholesterol – t = $48 \text{ h} - c_{MA} = 10.8 \mu \text{mol/L}$

Abbildung 31 X-Gal Test nach Transfektion mit MA8/Cholesterol 1:1 (n/n) - LLC PK1 - N/P 4:1 - 2,5 μ g DNA/mL - t = 48 h - Vergrößerung 1:400

Ein ganz anderes Bild ergibt sich, wenn im Molekül eine Hexadecylkette durch einen Oleylrest substituiert wird. Wie Abbildung 31 zeigt, führt die Transfektion mit MA8 zur ausgeprägten Expression der β -Galactosidase an der Zelllinie LLC PK1. Dieses Lipid erwies sich als überaus erfolgreich für den Gentransfer (Abbildung 32).

Abbildung 32 Transfektion von MA8 in Kombination mit Cholesterol und DOPE an LLC PK1 nach 48 h

Alle Liposomen, die aus MA8 und Cholesterol präpariert wurden, erreichen Ergebnisse, die vergleichbar oder höher sind als die Resultate der kommerziell erhältlichen Produkte.

Analog zum Lipid MA6 stellen DOPE-haltige Liposomen unter den gegebenen Versuchsbedingungen die schlechteren Vektoren dar. Nur die Kombination MA8/DOPE 1:1 (n/n) liefert LipofectAmine[®] und SuperFect[®] vergleichbare Maxima. Vor dem Hintergrund der Verwendung kostengünstiger Ausgangstoffe ist dies erfreulich, weil Cholesterol um ein vielfaches preiswerter ist als DOPE. Da die höchsten Absolutwerte für die Liposomen MA8/Cholesterol 1:1 (n/n) erzielt wurden, erfolgte eine genauere Analyse dieser Probe (Abbildung 33). Auch hier ergibt sich eine sehr gute Transfektion (2-2,5 fach) über einen weiten Konzentrationsbereich, die den Vergleichsvektoren statistisch signifikant überlegen ist (*^).

Abbildung 33 Transfektion MA8/Cholesterol 1:1 (n/n) an LLC PK1 - t = 48 h - 0,1 μ g DNA/well

Abbildung 34 MTT- u. Neutralrottest an LLC PK1 von MA8/Cholesterol 1:1 (n/n) - t = 24 h

Außerdem sinken die Werte für die Viabiltitätsbestimmung sowohl beim MTT- als auch beim Neutralrottest im Durchschnitt nicht unter 80%, was eine gute Akzeptanz des Vektors nahe legt (Abbildung 34). Wie schon bei anderen Lipoplexen haben bereits niedrige Liposomenkonzentrationen (kleines N/P-Verhältnis) einen Einfluss auf das Überleben der Zellen, der nicht mit dem Ausmaß der Transfektion korreliert. Interessanterweise bewirkt auch die Erhöhung der Cytofektinkonzentration bis N/P 5 an dieser Zelllinie keine (MTT) bzw. nur eine geringe Abnahme (Neutralrottest) der Viabilität. Zytotoxische Einflüsse können demzufolge nicht nur auf die Eigenschaften des Transfektionslipids zurückgeführt werden. Betrachtet man die Ergebnisse der MTT basierten Viabiltätsbestimmungen aller MA8 haltigen Liposomen fällt auf, welchen entscheidenden Einfluss auch die Liposomenzusammensetzung einnimmt (Abbildung 35). Da das N/P Verhältnis allein durch den Anteil des kationischen Lipids und den der DNA charakterisiert wird, ist die eingesetzte Cytofektinkonzentration bei gleichem Ladungsverhältnis für alle Lipoplexe konstant (N/P 1 entspricht 4,05 µmol/L MA8). Dies wiederum bedeutet, dass die größere Zytotoxizität von MA8/Cholesterol 1:3 & 1:2 (n/n) im Vergleich zu den anderen Proben auf die erhöhte Konzentration an Colipid und vor allem auf die steigende Gesamtlipidkonzentration zurückgeführt werden kann. Demzufolge kann nicht davon ausgegangen werden, dass Liposomen mit einem erhöhten Anteil an Helferlipid weniger zellschädigend sind. Diese Effekte, die besonders bei Lipoplexen aus MA8 und Cholesterol auftreten, deuten sich auch für die Kombinationen mit DOPE an (Tabelle 6). So unterscheiden sich die Viabilitätswerte von MA8/DOPE 2:1 (n/n) statitisch signifikant von den anderen Mischungen mit diesem Helferlipid.

Abbildung 35 MTT-Test von Lipoplexen aus MA8 und Cholesterol – LLC PK1 – t = 24 h – 0,1 μ g DNA/well – Abbildung ohne Standardabweichung

Probe	с _{ма8} [µmol/L]	c _{н∟} [µmol/L]	Viabilität [%]	s [%]
	4,05	12,15	60,51	12,49
MA8/Cholesterol 1:3 (n/n)	8,10	24,30	50,36	12,42
	12,15	36,45	42,75	8,90
	16,20	48,60	43,37	7,55
	4,05	8,10	55,01	18,84
MA8/Cholesterol 1:2 (n/n)	8,10	16,20	65,32	16,34
	12,15	24,30	44,10	6,43
	16,20	32,40	46,27	8,48
	4,05	4,05	81,18	16,11
MA8/Cholesterol 1:1 (n/n)	8,10	8,10	87,45	16,44
	12,15	12,15	83,75	15,17
	16,20	16,20	85,16	14,52
	4,05	2,03	87,44	17,82
MA8/Cholesterol 2:1 (n/n)	8,10	4,05	95,89	16,19
	12,15	6,08	93,46	11,59
	16,20	8,10	82,04	8,33
	4,05	1,35	94,02	11,83
MA8/Cholesterol 3:1 (n/n)	8,10	2,70	99,80	13,25
	12,15	4,05	103,70	9,20
	16,20	5,40	91,69	10,25
	4,05	8,10	85,90	9,22
MA8/DOPE 1:2 (n/n)	8,10	16,20	85,04	6,47
	12,15	24,30	74,74	8,55
	16,20	32,40	80,18	8,31

Tabelle 6 Ergebnisse der MTT basier	ten Viabilitätsbestimmung v	von MA8-haltigen Lij	poplexen an LLC PK1	
	J			
	4,05	4,05	85,73	10,16
--------------------	-------	-------	--------	-------
MA8/DOPE 1:1 (n/n)	8,10	8,10	90,49	11,27
	12,15	12,15	89,39	11,39
	16,20	16,20	81,68	13,19
	4,05	2,03	98,58	7,27
MA8/DOPE 2:1 (n/n)	8,10	4,05	100,82	7,82
	12,15	6,08	99,97	7,32
	16,20	8,10	97,21	7,96

Da sich MA8-basierte Vektoren als überaus geeignetes System für den Gentransfer heraustellten, wurden sie auch an der Zelllinie A549 untersucht. Die Ergebnisse der Transfektions- und Viabilitätsmessungen sind in Abbildung 36 dargestellt. Auch wenn an den humanen Lungenkarzinomzellen das Ausmaß der Transfektion nicht mehr so stark ausgeprägt ist, erreicht MA8/Cholesterol 1:1 (n/n) immer noch das Niveau der Vergleichsvektoren. Gegenüber LipofectAmine[®] ist es sogar statistisch singnifikant weniger zellschädigend (*). Wie bei MA6 nimmt auch bei dieser Probe mit steigender Konzentration an kationischen Liposomen die Transfektion zu und die durchschnittliche Viabilität ab. Allerdings sind die Unterschiede in Bezug auf die Zytotoxizität innerhalb der untersuchten Konzentrationen nicht statistisch signifikant. Eventuell kann durch die Erhöhung des N/P Verhältnisses die Transfektion weiter gesteigert werden, allerdings dürfte darunter die Verträglichkeit der Lipoplexe leiden.

Abbildung 36 Ergebnisse des ONPG und MTT Assay von MA8/Cholesterol 1:1 (n/n) an A549 – t = 48/24 h

Abbildung 37 Transfektion von MA9 mit DOPE und Cholesterol an LLC PK1 - t = $48 \text{ h} - 0,1 \mu \text{g}$ DNA/well

Substituiert man die Hexadecylreste des Lysin-tragenden Malonsäurediamids komplett mit Ketten des Typs $C_{18}H_{35}\Delta^9$ erhält man die Verbindung MA9. Auch diese weist in vielen Kombinationen sowohl mit DOPE als auch mit Cholesterol gute Eigenschaften für den liposomalen Gentransfer auf, wobei die Mischung MA9/Cholesterol 1:1 (n/n) heraussticht (Abbildung 37). Hervorzuheben ist weiterhin, dass diese Probe sowohl von der Zelllinie LLC PK1 als auch von A549 gut vertragen wird, da es erst bei höheren Absinken der Liposomenkonzentrationen zum Zellviabilität kommt. Auch Gegenüberstellung mit LipofectAmine[®] und SuperFect[®] ist MA9/Cholesterol 1:1 (n/n) positiv zu bewerten. Anders als MA8 erreicht MA9 an LLC PK1 Werte, die den beiden

kommerziell erhältlichen Vektoren vergleichbar sind und erzielt an A549 statistisch signifikant (*^) höhere Enzymaktivitäten (Abbildung 38 und Abbildung 39). Damit kann auch für Malonsäurediamide, die Lysin als Kopfgruppe tragen, festgehalten werden, dass die Fluidisierung des lipophilen Molekülteils wesentlich zur Steigerung der Transfektion beiträgt. Diese Beobachtungen sind konform mit Ergebnissen, die wie einleitend erwähnt auch an anderen Stoffklassen postuliert wurden. Im Gegensatz zu den Lipiden 4-6 reicht aber bei Lysin tragenden Malonsäurediamiden schon eine partielle Substituion der gesätigten Alkylkette, um die Gentransferaktivität in relevantem Ausmaß zu steigern.

Abbildung 38 Ergebnisse des ONPG und MTT Assay von MA9/Cholesterol 1:1 (n/n) an LLC PK1

Abbildung 39 Ergebnisse des ONPG und MTT Assay von MA9/Cholesterol 1:1 (n/n) an A549

Die bei MA8, MA9 und SuperFect[®] getätigte Beobachtung, dass chemische Vektoren an verschiedenen Zelllinien zu unterschiedlichen Gentransferraten führen, wurde auch für andere nicht-virale Systeme belegt ¹⁹⁷. Da nicht funktionalisierte kationische Vektoren über adsorptionsvermittelte Endozytose in die Zellen gelangen und sich das Glycosylierungsmuster verschiedener Zelltypen unterscheidet, kann dadurch eine ungleiche Aufnahme der Lipoplexe resultieren. Überdies haben verschiedene Zelltypen unterschiedliche Enzymausstattungen und Transkriptionsaktivitäten, sodass es zu Abweichungen bei der Expression der eingeschleusten DNA kommen kann. Daraus folgt, dass auch Liposomen mit sehr guter Gentransferaktivität für weitere Verbesserungen nicht ohne Funktionalisierung auskommen werden.

3.1.4 Malonsäurediamide 10 - 12

Aufbauend auf den guten Ergebnissen der Lipide 1-9 wurden die Kopfgruppen der Transfektionslipide vergrößert. Ausgehend vom Molekülteil Bis(2-Aminoethyl)aminoethylamid der Substanzen MA4-MA6 erfolgte die Einführung von Lysin zunächst an einer primären Aminogruppe. Um Beobachtungen zum Einfluss der Alkylketten zu untermauern, wurden diese beibehalten. Kennzeichnend für diese 3 Cytofektine ist die geometrisch unsymetrisch angeordnete Kopfgruppe mit drei primären und einer tertiären Aminfunktion. Wie bereits erwähnt, ist Lysin aufgrund der pK_s-Werte der Aminogruppen nicht befähigt einen "Protonenschwammeffekt" im Endosom auszulösen. Durch die freien Aminfunktionen im Spacer dieser Moleküle können sich weitere Protonierungsstellen ergeben.

Welchen Einfluss die Struktur der Amphiphile auf die Liposomenbildung hat, wurde bei den Lipiden MA10 und MA11 deutlich. Diese waren weder in Mischungen mit Cholesterol noch mit DOPE in der Lage lamellare Strukturen zu bilden. Trotz des Einsatzes hoher Schallenergie bildeten die Lösungen stets kristalline Aggregate, die beim Stehenlassen der Probe zu Boden sanken. Da dieses Verhalten mit keinem anderen Lipid zu beobachten war, wurden die Bemühungen, Liposomen herzustellen nach erfolgloser Durchführung der Mischungen 1:2 bis 2:1 (n/n) eingestellt. Aus diesem Grund konnten nur MA12-haltige Liposomen Versuchen an A549 zugeführt werden. Insbesondere Mischungen mit DOPE wiesen eine gute Transfektion auf. Für Cholesterol enthaltende Liposomen wurde nach 48 h nur bei MA12/Cholesterol 1:1 (n/n) Enzymaktivität detektiert. Dabei ist die Effizienz des Gentransfers um den Faktor 4 niedriger (578 μ E/ μ g vs. 147 μ E/ μ g). Bei zunehmender Größe des hydrophilen Molekülteils des Transfektionslipids scheint demzufolge die Kombination mit einem Helferlipid, das ebenfalls eine große Kopfgruppe trägt, für die Gentransfereigenschaften günstig zu sein.

125 100 Viabilität [%] 75 50 25 0 Kontrolle 1:1 2:1 3:1 4:1 N/P ■ MA12/DOPE 1:3 (n/n) E ■ MA12/DOPE 1:2 (n/n) **MA12/Chol 1:2 (n/n)** — MA12/Chol 1:1 (n/n)

Abbildung 40 Transfektion von Liposomen aus MA12 und DOPE an A549 – t = 48 h

Abbildung 41 MTT-Test von MA12 in Kombination mit DOPE und Cholesterol an A549 – t = 24 h

Abbildung 40 zeigt die Ergebnisse des ONPG Assay nach Transfektion mit verschiedenen Lipoplexen. MA12 enthaltenden Wie zu sehen ist. liefert die Mischung MA12/DOPE 1:2 (n/n) konzentrationsabhängig die besten Ergebnisse. Die ermittelten Werte liegen im Bereich von LipofectAmine® und SuperFect® ohne diese statistisch signifikant zu übertreffen. Indes sinkt die Viabilität der Zellen bei N/P 4 auf 74% (Abbildung 41). Dieser Wert ist zwar größer als die durchschnittliche Viabiltät nach Transfektion mit LipofectAmine[®] (68%), aber auch wesentlich niedriger als die für SuperFect[®] ermittelte Zellschädigung (88%). Auch bei dieser Probe hätten bei höheren Ladungsverhältnissen vielleicht noch bessere Transfektionsleistungen erzielt werden können, allerdings lässt die konzentrationsabhängige Zunahme der Zytotoxizität steigende Schädigungen der Zellpopulation vermuten. Zwar ist die Beeinträchtigung der Zellen bei den nicht transfizierenden Cholesterol enthaltenden Liposomen weniger stark ausgeprägt, liegt aber auf einem ähnlichen Niveau wie MA12/DOPE 1:3 (n/n). Damit kann auch für dieses Malonsäurediamid und die daraus hergestellten Liposomen abgeleitet werden, dass die Eigenschaften des Lipoplexes für die Zytotoxizität des Vektors verantwortlich sind. Ob dieser erfolgreich transfiziert spielt diesbezüglich keine Rolle.

3.1.5 Malonsäurediamide 13 - 15

Bei diesen Derivaten wurden alle freien Aminfunktionen von Bis(2-Aminoethyl)aminoethylamid mit Lysin verknüpft und damit eine räumlich große, verzweigte Kopfgruppe mit 5 basischen Stickstoffatomen ins Molekül eingeführt. Dadurch resultiert auf der Liposomenoberfläche eine hohe Dichte an positiven Ladungen. Aufgrund sterischer Anordnungen können sicherlich nicht alle Aminfunktionen komplexierend mit der DNA reagieren, sodass diese freien Gruppen die Eigenschaften des Lipoplexes während der Transfektion beeinflussen können.

Entgegen dem Verhalten, das bei den partiell substituierten Lipiden 10-12 beobachtet worden war, lassen sich mit allen Malonsäurediamiden 13-15 Liposomen herstellen. In Analogie zu den bereits vorgestellten Verbindungen zeigen die Lipide mit Alkylresten des Typs $C_{18}H_{35}\Delta^9$ eine deutlich bessere Transfektionsleistung, die besonders in Mischungen mit DOPE auftreten (Abbildung 42).

Abbildung 42 Transfektion der Malonsäurediamide 13-15 in Kombination mit Cholesterol und DOPE an LLC PK1 - t = $48 h - 0,1 \mu g DNA/well - N/P$ variiert

Abbildung 43 X-Gal Assay nach Transfektion mit MA15/DOPE 2:1 (n/n) an LLC PK1 – t = 48 h – N/P 1,5 – A Vergrößerung 1:10 – B Vergrößerung 1:200

Die sehr guten Ergebnisse von MA15/DOPE 2:1 (n/n) konnten auch histochemisch bestätigt werden. Abbildung 43 zeigt das Resultat eines X-Gal Assays nach Transfektion mit diesem Vektor. Die intensive Blaufärbung des größtenteils unbeschädigten Zellrasens ist deutlich erkennbar. Außerdem sieht man an der Intensität der Färbung, dass viele Zellen die β-Galactosidase sehr stark exprimieren. Mit den eingesetzten Konzentrationen,

sowohl an kationischem Liposom als auch an DNA, lässt sich nicht jede Zelle transfizieren. Wenn dies aber geschieht, wird eine hohe Wirkung erreicht. Die Anordnung der enzymaktiven Zellen in Gruppen legt nahe, dass zumindest über den gemessenen Zeitraum von 48 h die eingeschleuste DNA auf die Tochterzellen weitergegeben wird. Ob die Erbinformation dauerhaft in das Genom der Zellen integriert wurde, lässt sich mit diesem Test nicht aussagen und ist unwahrscheinlich.

Wie Abbildung 44 verdeutlicht, erreichen bereits MA14 enthaltende Vektoren im Bezug auf den Gentransfer das Niveau von LipofectAmine[®] und SuperFect[®]. Allerdings können erst Liposomen, die MA15 enthalten diese zumindest teilweise statistisch singnifikant übertreffen (*).

100 95 [%] 90 85 Viabilität 80 75 70 65 WASDOFE .: I UM WASOPEZIUM WAMOPE 12 INN 60 WA-15Crol 1.2 mm Lipoter

Abbildung 44 Transfektion von MA14 und MA15 in Kombination mit Cholesterol und DOPE im Vergleich mit LipofectAmine[®] und SuperFect[®] an LLC PK1 – t = 48 h – 0,1 μ g DNA/well

Abbildung 45 Abbildung 46 MTT-Test von MA14 und MA15 haltigen Lipoplexen im Vergleich mit LipofectAmine[®] und SuperFect[®] an LLC PK1 – t = $24 h - 0.1 \mu g$ DNA/well

Bemerkenswert ist weiterhin, dass das Maximum der Transfektion für die Probe MA15/DOPE 2:1 (n/n) schon bei einen relativ niedrigen N/P-Verhältnis von 1,5 erzielt wird. Hier spielt sicherlich die hohe Ladungsdichte des kationischen Lipids eine wichtige Rolle. Bis auf MA15/DOPE 1:1 (n/n) liegen die Mittelwerte der MTT basierten Zellviabilitätsbestimmung für Konzentrationen, bei denen die maximale Transfektion nachgewiesen wurde, über 80% (Abbildung 45). Indes muss ebenso erwähnt werden, dass besonders das gut verträgliche SuperFect[®] statistisch signifikant weniger Einfluss auf die Viabilität der Zellen hat als Liposomen aus MA15 und DOPE. Die Mischung MA14/DOPE 1:2 (n/n) wiederum vereint bei der abgebildeten Konzentration einen geringen zytotoxischen Effekt und vergleichbar gute Transfektionsleistungen.

Wie die Lipide MA6, MA8 und MA9 wurde auch die Mischung MA15/DOPE 2:1 (n/n) an der Zelllinie A549 untersucht. Abbildung 47 bildet die in den Versuchen erhaltenen Resultate ab. Wie bei den anderen Vektoren auch steigt die Transfektion mit zunehmender Liposomenkonzentration. Bei N/P 3,5 werden 1,7 fach bzw. doppelt so hohe Enzymaktivitäten bezogen auf die Gesamtproteinkonzentration gemessen als bei den Vergleichsvektoren. Die Unterschiede sind überdies statistisch signifikant (*).

Außerdem sind die nur geringfügig streuenden hohen Zellviabiltätswerte über 82% hervorzuheben, die anfangs keine Konzentrationsabhängigkeit zeigen.

Im direkten Vergleich mit dem liposomalen Vektor LipofectAmine[®] wird bei deutlich höherer Transfektion die Viabilität der Zellen wesentlich weniger beeinträchtigt (83% vs. 68%). Zwar gibt es auch in Bezug auf die Zytotoxizität einen statistisch signifikanten Unterschied zu SuperFect[®] (^), jedoch ist die Differenz mit 5% relativ gering. Es kann festgehalten werden, dass kationische Liposomen der Mischung MA15/DOPE 2:1 (n/n) sehr gute Transfektionraten ermöglichen und außerdem eine gute Verträglichkeit aufweisen. Damit können sie im Vergleich mit den ausgewählten Vektoren als geeignetere Gentransfersysteme angesehen werden.

Abbildung 47 Transfektion und Zellviabilität von MA15/DOPE 2:1 (n/n) an der Zelllinie A549 im Vergleich mit LipofectAmine[®] und SuperFect[®] - t = 48 h bzw. 24 h - 0,1 µg DNA/well

3.1.6 Multikomponente Liposomen

Von der Beobachtung ausgehend, dass sich die Transfektion mit DOTAP und DC-Cholesterol enthaltenden Liposomen steigern lässt, wenn diese in multikomponenten Lipoplexen verarbeitet sind ¹⁹⁸, wurde versucht diesen Effekt auch für die Malonsäurediamide zu erzielen. Dafür wurden die Lipide MA6, MA8, MA9 und MA15, die sich als besonders gut geeignet für den Gentransfer gezeigt hatten, in verschiedenen Mischungen untereinander und mit Helferlipiden kombiniert. Um möglichst die Vorteile des jeweiligen Lipids zu nutzen, erfolgte u.a. auch die Herstellung von Liposomen, die den Kombinationen mehrerer binärer Mischungen nachempfunden war. Aus diesem Grund ergeben sich mitunter Liposomenzusammensetzungen, die auf den ersten Blick ungewöhnlich erscheinen.

Abbildung 48 präsentiert die Ergebnisse von Untersuchungen an der Zelllinie LLC PK1. weiten Konzentrationsbereich Auch diese Proben weisen über einen hohe Transfektionseffizienzen auf, die auf dem Niveau von LipofectAmine[®] und SuperFect[®] liegen (850 µE/µg für MA6/MA8/Cholesterol 1:1:1 (n/n/n) N/P 5 vs. 595 µE/µg und 742 µE/µg). Es fällt auf, dass mit Zunahme des Cholesterolanteils sowie durch Erhöhung der Komponentenanzahl die Transfektion sinkt. Dies legt nahe, dass multikomponente Liposomen, die aus Malonsäurediamiden bestehen, eine höhere Konzentration an Cytofektin und nicht zu viele Bestandteile enthalten sollten.

Abbildung 48 Transfektion von multikomponenten Liposomen an LLC PK1 - $t = 48 h - 0.1 \mu g DNA/well$

Abbildung 49 Transfektion binärer Liposomen vs. multikomponente Mischungen an LLC PK1

Im direkten Vergleich mit Liposomen, die aus jeweils nur einem Transfektions- und Helferlipid zusammensetzt sind, ist eindeutig erkennbar, dass kein Vorteil im Hinblick auf den Gentransfer erzielt wird (Abbildung 49). Im Gegenteil, die Transfektion nimmt ab. Wie derartige zusammengesetzte Lipoplexe die Viabilität der Zellen beinflussen verdeutlicht die nächste Abbildung. Aufgetragen sind die Zellviabilitäten der einzelnen Proben gegen die Lipidkonzentration.

Abbildung 50 MTT-Test von multikomponenten Liposomen an LLC PK1 - $t = 24 h - c_{MA}$ entspricht der summierten Konzentration aller Transfektionslipide

Nachteile mit multikomponenten Liposomen ergeben sich nicht nur bezüglich des Gentransfers. Ebenso nimmt die prozentuale Zellviabilität nach Inkubation mit den Lipoplexen stark ab. Der Effekt ist in besonderem Maße bei einer erhöhten Anzahl an Komponenten und vor allem bei höheren Konzentrationen zu beobachten. Obwohl die Summe der Cytofektinkonzentrationen zwischen den Proben konstant ist, wirkt sich die Anwesenheit von mehreren Cytofektinen nachteilig aus. Diesen Einfluss allein auf die Cholesterolkonzentrationen der Liposomen zu beziehen, wird der Überlegung nicht gerecht. Denn obwohl der prozentuale Anteil des Steroids in den Vektoren bei den abgebildeten Proben von ca. 33 auf bis zu 50% ansteigt, was wiederum höhere Konzentrationen sowohl an Cholesterol als auch an Gesamtlipid bedingt (8,1 µmol/L bis 16,2 μ mol/L bei c_{MA} = 16,2 μ mol/L), kann dies nicht der alleinige Grund für den Abfall der Viabilität sein. MA8/Cholesterol 1:1 (n/n) wurde exakt bei gleichen Konzentrationen vermessen wie die Probe, die aus 4 Komponenten besteht ($c_{desamt} = 8,10 - 32,4 \mu mol/L$). Demzufolge muss die Zusammensetzung der Liposomen aus mehreren Bestandteilen die Eigenschaften der Lipoplexe dahingehend verändern, dass nicht nur die Transfektion, sondern vor allem die Verträglichkeit leidet.

Der Vergleich zwischen multikomponenten und binären Proben führt an der Zelllinie A549 zu einem ähnlichen Ergebnis. Selbst Liposomen der Zusammensetzung MA6/MA15/ DOPE/Cholesterol 2:2:1:1 (n/n/n/n), deren einzelne Lipide in binären Mischungen sehr hohe Transfektionseffizienzen aufweisen, erreichen lediglich einen durchschnittlichen Wert von maximal 327 μ E/ μ g (N/P 8) und liegen damit nicht einmal auf dem Niveau der kommerziell erhältlichen Produkte (578 μ E/ μ g und 471 μ E/ μ g). Der Einfluss steigender Komponentenanzahl auf die Transfektion scheint allerdings nicht wie an LLC PK1 zu sein. Anders als dort wird die höchste Transfektion an A549 mit den Liposomen, die aus 4 Komponenten bestehen, erreicht (496 μ E/ μ g N/P 3,75). Ein Vorteil gegenüber den "Einzelproben" ist trotzdem nicht erkennbar. Auch der Einfluss auf die Zellviabilität fällt nicht so drastisch aus, denn erst bei wesentlich höheren Cytiofektinkonzentrationen über 16,2 µmol/L werden die Zellen in erheblichem Maße geschädigt (Abbildung 51). Bis dahin sinken die durchschnittlichen Viabilitätswerte nicht unter 75%. Derartige Unterschiede in der Toxizität der applizierten Lipoplexe sind bekannt, da auch die Verträglichkeit der Vektoren vom Zelltyp abhängig ist ⁸³.

Obwohl die Beeinträchtigung des Zellüberlebens an A549 nicht so ausgeprägt ist, kann grundsätzlich festgehalten werden, dass durch multikomponente Liposomen, die aus mehreren Malonsäurediamiden und Helferlipiden zusammengesetzt sind, keine Verbesserung der Vektoren erzielt wird. Derartige Liposomenzusammensetzungen verringern nicht nur die Transfektion, sondern wirken sich mitunter in besonderem Maße negativ auf die Verträglichkeit der Systeme aus. "Klassische" Vehikel aus zwei Komponenten stellen somit die bessere Variante dar.

Abbildung 51 MTT-Test von multikomponenten Liposomen an A549 - $t = 24 h - c_{MA}$ entspricht der summierten Konzentration aller Transfektionslipide

3.1.7 DMPC als Helferlipid

Auch Phosphatidylcholine werden mittlerweile als Helferlipide für den liposomalen Gentransfer eingesetzt. Insbesondere, wenn man sie mit Cytofektinen, die stark verzweigte, voluminöse Kopfgruppen enthalten, kombiniert, können hohe Gentransferraten erzielt werden ¹⁹⁹. Obwohl Phosphatidylcholine lamellare Phasen ausbilden und damit keine H_{II}-Phase induzieren ²⁰⁰, ist die Freisetzung der Lipoplexe aus den Endosomen möglich. Mit den Malonsäurdediamiden 13-15 liegen ebenfalls Verbindungen vor, die einen relativ großen, verzweigten hydrophilen Molekülteil besitzen.

Dies prädestiniert sie für erste Untersuchungen mit Phophatidylcholinen. Die publizierten Arbeiten zu dieser Fragestellung verwenden DOPC als Colipid ^{139, 199}. Aus diesem Grund wären sicherlich Prüfungen einer Reihe von Kombinationen mit verschieden Phosphatidylcholinen sinnvoll gewesen. Aus Zeitgründen war dies leider nicht möglich. Da mit Verkürzung der Kettenlänge von Phospholipiden mit gesättigten Fettsäuren deren Phasenübergangstemperatur sinkt ²⁰¹ und somit die Ketten fluider werden, erfolgte zunächst die Herstellung von DMPC haltigen Liposomen.

Abbildung 52 und Abbildung 53 zeigen die Ergebnisse der Transfektions- und Viablitätsbestimmungen. Daraus geht hervor, dass auch diese Vektoren befähigt sind, das Plasmid in die Zellen zu transportieren. Zugegebenermaßen erreichen sie nach 48 h nicht das Niveau, das die Lipide MA14 und MA15 in Kombination mit DOPE oder Cholesterol erzielen (z. B. MA14/DOPE 1:2 (n/n) 700 μ E/ μ g).

Abbildung52TransfektionDMPChaltigerAbbildung53MTTbasierteZellviabilitätderLiposomen an LLC PK1 – t = 48 h – 0,1 μ g DNA/wellDMPC haltigen Lipoplexe an LLC PK1 – t = 24 h

Des Weiteren schwanken die Werte bis auf die Probe MA15/DMPC 2:1 (n/n) N/P 3,5 sehr stark, was einen statistischen Vergleich erschwert. Bei der Ermittlung der Zellviabilitäten nach Transfektion mit diesen Lipoplexen zeigen alle Proben ähnliche Resultate. Unabhängig von der Konzentration an Lipiden schwanken die Werte durchschnittlich zwischen 75 und 85%.

Für die bisher vorgestellten Malonsäurediamide ist DMPC als Helferlipid weniger geeignet. Dies kann zum einen in einer ungenügend großen Kopfgruppe der Cytofektine zum anderen aber ebenso in den Eigenschaften von DMPC begründet sein. Eventuell kann durch Kombinationen mit DOPC, dessen Phasenübergangstemperatur tiefer liegt, die Transfektion verbessert werden. Freilich besteht auch die Möglichkeit, dass Phosphatidylcholine nicht für Mischungen mit den vorgestellten Malonsäurediamiden geeignet sind.

3.1.8 Zeitabhängige Transfektionsuntersuchungen

Nutzt man im Labor kommerziell erhältliche Transfektionsreagenzien zum Zwecke der Modifizierung bestimmter Zelltypen, empfiehlt es sich, zur Prozessoptimierung den Erfolg des Gentransfers zu verschiedenen Zeitpunkten zu überprüfen. Genauso sollten derartige Überlegungen bei der Entwicklung neuer Vektoren eine Rolle spielen. Da unmodifizierte nicht-virale Systeme die Nukleinsäuren nur transient einschleusen, ist es von entscheidender Bedeutung zu wissen, wann und vor allem wie lange die Gene exprimiert werden.

Demnach wurden bestimmte Proben entsprechenden Untersuchungen zugeführt. In der Regel geschah dies mit den Liposomen jedes Lipids, welches nach 48 h die höchste Transfektionseffizienz aufwies. Außerdem wurde nur das günstigste N/P-Verhältnis, sprich nur eine Konzentration des Liposoms vermessen. Die Enzymaktivität an LLC PK1 wurde nach 12, 24 und 48 h detektiert, da diese Zelllinie eine kurze Generationszeit besitzt. An A549 erfolgte die Bestimmung nach 24, 48 und 72 h. Für die Beurteilung der Ergebnisse ist die Betrachtung folgender Faktoren wichtig.

Mediumwechsel erfolgte erst nach 24 h, sodass die Lipoplexe über diesen gesamten Zeitraum von den Zellen aufgenommen werden konnten. In Abhängigkeit von der Zeit erhöht sich durch Zellteilung die Anzahl der Zellen. Da die Enzymaktivität stets auf die Gesamtproteinkonzentration bezogen wird und diese mit fortschreitender Zeit zunimmt, wird der Wert für die Transfektionseffizienz geringer, wenn das Gen nicht auf Tochterzellen übertragen wird. Der Umkehrschluss ist in diesem Falle aber nicht angebracht, da zytotoxische Einflüsse des Vektors, der β-Galactosidase und verbleibende Zeit zur Endozytose der Lipoplexe nicht außer Acht gelassen werden dürfen. Auch wenn die Interpretation der Ergebnisse nicht unproblematisch ist, spiegeln sie dennoch einen interessanten Aspekt des liposomalen Gentransfers wider. Abbildung 54 gibt eine graphische Gesamtübersicht, deren Ergebnisse in Tabelle 7 detailliert aufgelistet sind.

Abbildung 54 Transfektionsergebnisse kationischer Lipoplexe nach 12, 24 und 48 h an LLC PK1

Sowohl die Abbildung als auch die tabellarisch aufgelisteten Werte verdeutlichen, dass die verschiedenen Vektoren das Maximum der Enzymexpression zu unterschiedlichen Zeiten erreichen. Besonders mit LipofectAmine[®] und SuperFect[®] führt der Gentransfer rasch in besonderem Maße zur Produktion der β-Galactosidase. Zu den Zeitpunkten 12 und 24 h ist ihnen keine der präparierten Proben überlegen. Allerdings besteht bei den rot und grün markierten Ergebnissen kein statistisch signifikanter Unterschied zu den kommerziell erhältlichen Systemen zum jeweiligen Zeitpunkt. Blau hervorgehoben sind die Daten jener Probe, die in vorangegangenen Kapiteln aufgezeigten, dass nach 48 h eine Transfektionseffizienz auf oder über dem Niveau von LipofectAmine[®] und SuperFect[®] ermöglicht werden kann.

Interessant bei dieser Betrachtung ist, dass Liposomen wie MA3/DOPE 2:1 (n/n), für die nach 48 h ein mäßiges Transfektionsergebnis ermittelt wurde, zum Zeitpunkt t = 12 h in der Lage sind, mit den Vergleichsvektoren zu konkurrieren. Einen ähnlichen Verlauf zeigen auch die Lipide MA4, MA5 und MA15 in Kombination mit Cholesterol und DMPC.

Lipid	Colipid	n/n	N/P	Aktivität _{β-Gal} / ^m Protein ± s [μΕ/μg] 12 h	Aktivität _{β-Gal} / ^m Protein ± s [μΕ/μg] 24 h	Aktivität _{β-Gal} / ^m Protein ± s [μΕ/μg] 48 h	Statistische Signifikanz	
MA2	Chol	1:2	1	226,6 ± 125,2	305,1 ± 302,9	352,3 ± 190,8		
MA3	DOPE	2:1	4	1060,5 ± 286,1	677,3 ± 261,0	276,3 ± 157,2	12 - 24 - 48h	
MA4	DOPE	1:2	3	842,6 ± 409,9	644,7 ± 315,2	189,5 ± 68,8	24 - 48h	
MA5	DOPE	3:1	6	784,1 ± 286,5	895,5 ± 388,8	156,3 ± 38,2	24 - 48h	
MA6	Chol	2:1	6,75	1282,2 ± 280,3	1108,2 ± 226,1	1018,3 ± 206,1		
MA7	Chol	1:1	3	459,4 ± 299,7	402,8 ± 254,6	116,9 ± 36,7	24 - 48h	
MA8	Chol	1:1	5	695,1 ± 256,9	1343,3 ± 540,5	1589,3 ± 325,9	24 - 48h	
MA8	Chol	2:1	3	1394,6 ± 478,3	1146,7 ± 473,1	1245,6 ± 568,9		
MA9	Chol	1:1	2	246,5 ± 35,6	549,1 ± 220,7	691,9 ± 190,1	12 - 24h	
MA13	DMPC	1:1	2,5	375,7 ± 158,1	434,7 ± 62,5	238,07 ± 198,8		
MA14	DMPC	1:1	2,5	130,65 ± 56,9	150,2 ± 58,3	238,9 ± 109,1		
MA14	DOPE	1:2	3,33	402,4 ± 157,1	613,6 ± 292,8	699,5 ± 262,6		
MA15	DMPC	1:1	3,33	1075,9± 255,8	1010,2 ± 487,8	274,5 ± 155,3	24 - 48h	
MA15	Chol	1:2	2,5	918,6 ± 174,4	835,5 ± 385,4	437,6 ± 172,1	24 - 48h	
MA15	DOPE	2:1	1,67	463,6 ± 235,1	483,5 ± 305,2	881,1 ± 109,1	24 - 48h	
L	LipofectAmine®			1090,1 ± 328,35	1226,9 ± 529,44	595,02 ± 240,04	24 - 48h	
	SuperFect®			1066,9 ± 184,73	1516,6 ± 734,39	741,9 ± 174,83	24 - 48h	

Tabelle 7 Transfektionsergebnisse kationischer Lipoplexe in Abhängigkeit von der Detektionszeit an LLC PK1

Diese Vektoren werden vermutlich schneller von den Zellen aufgenommen oder der intrazelluläre Weg der Lipoplexe findet in einem kürzeren Zeitraum statt. Allerdings wird das Gen nicht sehr lange exprimiert, da besonders ab dem Zeitpunkt 24 h (Mediumwechsel) die Enzymaktivität statistisch nachgewiesen sinkt. Dies gilt auch für LipofectAmine[®] und SuperFect[®]. Lipoplexe aus MA8/Cholesterol 1:1 (n/n), MA9 oder MA15/DOPE 2:1 (n/n) hingegen scheinen mehr Zeit zu benötigen, um das Plasmid in die Zelle zu transportieren, da sie den Maximalwert erst nach 48 h erreichen.

Es gibt aber auch Lipoplexe wie MA2, MA7 oder die DMPC-Mischungen von MA13 und MA14, die über den gesamten Zeitraum auf einem niedrigen Level β-Galactosidase exprimieren. Diese Proben sind keinesfalls als sinnvolle Weiterentwicklungen kationischer Hervorgehoben müssen Vektoren anzusehen. werden die Lipoplexe aus MA6/Cholesterol 2:1 (n/n) und MA8/Cholesterol 2:1(n/n), da diese bereits nach 12 h eine hohe Transfektionseffizienz aufweisen und dieses Niveau über den den gesamten Zeitraum aufrechterhalten. Eine "Kinetik" dieser Form ist sicherlich anzustreben. Schließlich besteht das Ziel darin, dass die applizierte Nukleinsäure möglichst lange in den Zellen exprimiert wird.

Entsprechende Untersuchungen wurden ebenfalls an A549 durchgeführt. Aufgrund der längeren Generationszeit dieser Zelllinie kann die Enzymaktivität auch nach 3 Tagen bestimmt werden ohne das es zu Wachstumsproblemen innerhalb der well Platten kommt. Die folgenden Graphiken bilden die Ergebnisse der Transfektion mit verschieden kationischen Vektoren ab. Auch an dieser Zelllinie variieren die Ergebnisse zu den verschiedenen Zeitpunkten. Anfangs sind es Vektoren aus MA6, MA8 sowie MA12 und MA15 die eine hohe Expression der β-Galactosidase ermöglichen und dadurch LipofectAmine[®] statistisch signifikant überlegen sind (*). Nach 48 h sind es von ihnen nur noch MA6 und MA15.

Abbildung 55 Transfektion ausgewählter Lipoplexe an A549 nach 24 h - 0,1 μ g DNA/well

Abbildung 56 Transfektion ausgewählter Lipoplexe an A549 nach 48 h - 0,1 μg DNA/well

Lipid Colipid n/n N/P 2:1 MA6 Chol 6 MA8 Chol 1:1 4 MA8 Chol 2:1 4 MA9 Chol 1:1 3 **MA12** Chol 1:2 4 1:3 3 **MA12** DOPE MA12 DOPE 1:2 4 MA15 DOPE 2:1 3,5

Abbildung 57 Transfektion ausgewählter Lipoplexe an A549 nach 72 h - 0,1 μg DNA/well

Tabelle 8 Mischungs- und Ladungsverhältnisse deran A549 untersuchten Lipoplexe

Letzteres erreicht trotz steigender Proteinkonzentration einen ähnlichen Absolutwert, was nahe legt, dass die Genexpression innerhalb dieses Zeitraums zumindest auf dem Niveau zum Zeitpunkt 24 h gehalten werden kann. Für MA8/Cholesterol 1:1 (n/n), MA9 und MA12/DOPE 1:2 (n/n) steigt die Expression des Enzyms zwischen 24 und 48 h. Eventuell können diese Lipoplexe nicht so schnell von den Zellen endozytiert werden und erreichen dadurch das Maximum der Genexpression später. Überhaupt ist es sehr interessant, welchen Einfluss die Zusammensetzungen der Liposomen auf die "Kinetik" des Gentransfers haben. Betrachtet man die Lipoplexe mit MA8 und MA12, wird deutlich, dass Variationen des Cytofektin-Colipid Verhältnisses die Eigenschaften der Lipoplexe so verändern können, dass die Geschwindigkeit der Transfektion verändert wird. Ein anderes Helferlipid kann ferner dafür verantwortlich sein, dass die Expession des eingeschleusten Gens nur über einen kurzen Zeitraum möglich ist (MA12/Cholesterol 1:2 (n/n) keine Enzymaktivität nach 48 h).

Durch steigende Proteinkonzentrationen bedingt sinken nach 72 h die Absolutwerte für die Transfektionseffizienz. Zu diesem Zeitpunkt weisen nur noch Liposomen, die aus MA12 und DOPE bestehen, ein Level ähnlich dem von LipofectAmine[®] auf. Anders als an LLC PK1 können Vektoren aus MA6, MA8 und MA15 an A549 nicht über mehrere Zellteilungen die β -Galactosidase in hohem Umfang exprimieren. Diese Ergenisse bestätigen einmal mehr, dass die Ergebnisse des *in-vitro* Gentransfers vor allem auch vom Zelltyp abhängig sind.

Nichtsdestotrotz konnte gezeigt werden, dass mit verschiedenen Liposomen Gentransfer möglich ist und dass Variationen der Zusammensetzung die Eigenschaften der Lipoplexe so verändern, dass das Maximum der Genexpression zu unterschiedlichen Zeitpunkten stattfinden kann. Erklärungen dafür können unterschiedlich schneller Eintritt in die Zelle oder zeitliche Differenzen beim Überwinden der intrazellulären Barrieren sein.

3.1.9 FACS Analysen

Durchflusszytometrische Untersuchungen wurden im Rahmen dieser Arbeit eingesetzt um abzuklären, ob Strukturvariationen der Lipide dazu führen, dass bestimmte Lipoplexe nicht in die Zellen eintreten. Zur Feststellung etwaiger Unterschiede wurden Liposomenproben von MA1, VF2 und MA7 (keine oder nur geringe Transfektionseffizienz) mit MA6, MA8, MA9, MA12, MA15 und LipofectAmine[®] (hohe Transfektionseffizienz) miteinander verglichen. Abbildung 58 verdeutlicht beispielhaft wie sich die Verteilung der Fluoreszenzintensitäten zu höheren Werten verschiebt, wenn die Zellen mit Lipoplexen inkubiert wurden.

Abbildung 58 FACS Verteilung von YOYO[®]-1/DNA Fluoreszenzintensitäten nach 4 h Inkubation an der Zelllinie A549 - 2,5 μ g DNA/mL - c_{YOYO} = 0,1 μ mol/L 1. Kontrolle mit YOYO[®]-1/DNA, 2. Transfektion der YOYO[®]-1 markierten DNA mit MA15/DOPE 2:1 (n/n)

Ausgehend von diesen Beobachtungen kann man das Maß der Erhöhung der Fluoreszenzintensität in Korrelation mit dem Eintritt der Lipoplexe in die Zellen ansehen. Da es sich um Verteilungen von Fluoreszenzaktivitäten handelt, die in ihrer Breite durchaus variieren können, ist sicherlich nicht zwischen jeder Probe eine Differenz quantifizierbar, dennoch zeigt Abbildung 59 auf, welche Unterschiede sich ergeben, wenn die markierte DNA mit verschiedenen Vektoren transfiziert wird.

Abbildung 59 Ergebnisse der FACS Messungen von YOYO[®]-1/DNA nach 4 h Transfektion an LLC PK1 mit ausgewählten Lipoplexen - 2,5 μ g DNA/mL - c_{YOYO} = 0,1 μ mol/L

Abbildung 60 Einfluss des Mediumwechsels auf die Transfektion mit MA15/DOPE 2:1 (n/n) an LLC PK1 und A549 - t = 48 h - 0,1 μ g DNA/well

Dabei wurde für jede Probe jenes N/P-Verhältnis gewählt, dass auch bei den Transfektionsuntersuchungen zu den Zeitpunkten 12 und 24 h verwendet worden war (siehe Tabelle 7). Es fällt auf, dass die Lipoplexe aus MA6, MA8, MA15/DMPC sowie LipofectAmine® im Kontrolle Vergleich zur besonders hohe mittlere Fluoreszenzintensitäten hervorrufen. Diese Proben zeigen bereits nach 12 h hohe Transfektionsraten an LLC PK1. Da jedoch die Werte stark streuen, können Abweichungen zwischen den 4 Proben nicht festgestellt werden. Dennoch ist die Differenz zu MA1 und MA7 (N/P 4), die sich beide kaum von den Kontrollzellen abheben, sichtbar, was nahe legt, dass diese beiden Vektoren innerhalb des gemessenen Zeitraums insgesamt weniger DNA in die Zellen transportieren.

Es stellt sich jedoch die Frage, warum MA15/DOPE 2:1 (n/n) nur eine so geringe DNA-Aufnahme ermöglicht. Obwohl es an LLC PK1 nach 12 h erst halb so hohe Transfektionseffizienzen wie LipofectAmine[®] ermöglicht (siehe Tabelle 7), übertrifft es dieses nach 48 h und kann damit zu den geeigneten Vektoren gezählt werden. Um zu überprüfen inwieweit dies mit den geringen Fluorenzenzintensitäten der FACS Messungen übereinstimmt, wurde die Probe an beiden Zelllinien mit einem modifizierten Protokoll eingesetzt. Abbildung 60 verdeutlicht, dass die Transfektionseffizienz entscheidend sinkt, wenn das Medium bereits nach 4 h gewechselt wird. Dies bestätigt indirekt, dass bei Transfektion mit MA15/DOPE 2:1 (n/n) nach 4 h nur ein Bruchteil der DNA in die Zellen gelangt ist.

An A549 wurden ebenfalls entsprechende Untersuchungen vorgenommen. Auch hier kam das N/P-Verhältnis zum Einsatz, welches zur Messung der Transfektion nach 24, 48 und 72 h verwendet worden war (siehe Tabelle 8). Abbildung 61 stellt die Resultate der Messungen nach 4 h dar. Es fällt auf, das lediglich MA6 innerhalb dieses kurzen Zeitraums eine sehr große Menge an DNA in die Zellen transportieren kann. Es übertrifft allen anderen Vektoren inklusive LipofectAmine[®] deutlich (mind. Faktor 3) und statistisch signifikant. Im Vergleich zu den Lipoplexen aus VF2 und VF7 kann jedoch auch für die anderen Proben ein höherer Anteil an markierter DNA detektiert werden. Die DNA-Aufnahme nach Transfektion mit Lipoplexen aus VF2, MA6, MA8 und MA12 wurde zusätzlich nach 24 h bestimmt (Abbildung 62). Dabei wird ersichtlich, dass bei MA8 und MA12 basierten Systemen nach weiteren 20 h mehr DNA in die Zellen gelangt ist, was sich durch Deteketion von β-Galactosidaseaktivität bestätigen lässt. Die mittlere Fluorszenintesität bei MA6 ändert sich nicht mehr, genau wie jene von VF2. Dies belegt zum einem, dass MA6/Cholesterol 2:1 (n/n) innerhalb von kurzer Zeit die Plasmid-DNA in die Zellen transportieren kann und zum anderen, dass eine Transfektion bei Verwendung von VF2 basierten Vektoren auch nach lägerer Inkubationszeit nicht gelingt.

180 160 YOYO®-1/DNA 140 120 100 80 FAR 60 40 20 0 4h 24h VF2/DOPE 1:1 (n/n) ■ MA6/Chol 2:1 (n/n) ⊐ M A 8/C hol 2:1 (n/n) ■ M A 12/DOPE 1:2 (n/n) -

Abbildung 61 Ergebnisse der FACS Messungen von YOYO[®]-1/DNA nach 4 h Transfektion an A549 mit ausgewählten Lipoplexen - 2,5 μ g DNA/mL - $C_{YOYO} = 0,1 \ \mu$ mol/L

Abbildung 62 Ergebnisse der FACS Messung von YOYO[®]-1/DNA nach 4 h bzw. 24 h Transfektion an A549 mit ausgewählten Lipoplexen - 2,5 μ g DNA/mL - $c_{YOYO} = 0,1 \ \mu$ mol/L

Zur Abklärung, ob die DNA nicht durch zytotoxische Einflüsse in die Zellen gelangt, wurde die Viabilität der Zellen unter den gegebenen Versuchsbedingungen bestimmt (Abbildung 63, Abbildung 64).

Unterschiede bei der DNA-Aufnahme zwischen den Proben können nicht durch zytotoxische Einflüsse bedingt sein, da insbesondere an A549 nach 4 h keine Veränderung der Zellviabilität festgestellt wurde. An LLC PK1 sind es noch eher die ungeeigneten Vektoren basierend auf MA1 und MA7, die die Lebensfähigkeit schon nach kurzer Zeit statistisch signifikant absinken lassen.

Um sicherzustellen, dass nur aufgenommene Plasmid-DNA bestimmt wurde und nicht Lipoplexe, die noch auf der Zelloberfläche haften, mussten diese entfernt werden. Die vorgenommene Behandlung mit Trypsin wird als geeignetes Hilfsmittel betrachtet, nicht nur Proteine, sondern auch Partikel von der Oberfläche der Zellen zu entfernen ^{194, 202}. Die nachstehenden Bilder von X-Gal Assays an LLC PK1 nach 4 h Transfektion bestätigen wiederum indirekt, dass die gemessene Fluoreszenzintensität von intrazellulärer Plasmid-DNA stammt oder diese im Falle von MA1 und MA7 nicht aufgenommen wurde.

Abbildung 63 Ergebnisse des Neutralrottests nach Tranfektion mit YOYO[®]-1/DNA-haltigen Lipoplexen an LLC PK1 - t = 4 h - 0,1 μ g DNA/well

Abbildung 64 Ergebnisse des Neutralrottests nach Tranfektion mit YOYO[®]-1/DNA haltigen Lipoplexen an A549 - t = 4 h - 0,1 μ g DNA/well

Zusammenfassend legen die Resultate nahe, dass die ungeeigneten Vektoren wie MA1/DOPE, MA7/DOPE oder VF2/DOPE nicht in der Lage sind, DNA in ausreichendem

Maße in die Zellen zu transportieren und schon für die Initialisierung der Lipoplexe ungeeignet scheinen. Andererseits benötigen viele Lipoplexe bis auf MA6/Cholesterol 2:1 (n/n) abhängig von der Zelllinie länger als 4 h, um die Plasmid-DNA in größerem Umfang in die Zellen zu transportieren.

Abbildung 65 X-Gal Assay an LLC PK1 - t = 4 h - 2,5 μ g DNA/mL - 1. MA1/DOPE 1:1 (n/n) N/P 4 - 2. MA6/Chol 2:1 (n/n) N/P 6,75 - 3. MA8/Chol 1:1 (n/n) N/P 4 - 4. MA7/DOPE 1:1 (n/n) N/P 4 - 5. LipofectAmine[®] - 6. MA15/DMPC 1:1 (n/n) N/P 3,5 - Vergrößerung 1:100

3.1.10 Transfektionsuntersuchungen in serumhaltigem Medium

Für eine etwaige *in-vivo* Anwendung neuartiger kationischer Liposomen ist es von elementarer Bedeutung deren Serumeinfluss zu untersuchen. Wie in der Einleitung detailliert erläutert, stellen Serumproteine eine große Hürde für die systemische Applikation von Liposomen dar. Um dieses Interaktionspotenzial zu minimieren, ist es wichtig, kleine Partikel mit relativ geringer Oberflächenladung einzusetzen, die unter physiologischen Bedingungen keine Veränderungen hinsichtlich Partikelgöße und Oberflächenstruktur zeigen ¹²⁵. Auch wenn sich derartige Eigenschaften durch Oberflächenmodifizierung kreieren lassen, würden Systeme, deren Transfektionseffizienz nur gering durch Serumbestandteile beeinflusst wird, einen wichtigen Schritt in Richtung der systemischen Applikation vollziehen.

Aus diesem Grund wurden ausgewählte Malonsäurediamide in Gegenwart von 10% FBS im Medium zu Versuchsbeginn analysiert. Durch Verwendung eines hochkonzentrierten Serumproduktes erreicht man damit ca. 50 – 60% der humanen Plasmaproteinkonzentration, die beim gesunden Erwachsenen Werte zwischen 66 und 83 g/L annimmt ²⁰³. Damit ist eine anfängliche Einstufung des Serumeinflusses möglich.

Welchen immensen Einfluss die Anwesenheit von Serumproteinen zu Beginn der Transfektion auf alle Vektoren hat, veranschaulicht Abbildung 66.

Abbildung 66 Ergebnisse der Transfektion unter Serumeinfluss an LLC PK1 mit ausgewählten Vektoren im Vergleich zu einem serumfreien Intervall von 4h - t = 48 h - 0,1 µg DNA/well

Die Transfektionseffizienz jeder eingesetzten Probe nimmt deutlich ab. Mitunter sinken die Werte um 50% und mehr. Dabei scheint es keine Rolle zu spielen, ob DOPE oder Cholesterol als Helferlipid verwendet wird. Es wird deutlich, wie wichtig ein serumfreies Intervall für ein später folgendes hohes Ausmaß an Enzymexpression ist. Der geringste Einfluss durch Serumproteine wurde für MA8/Cholesterol 2:1 (n/n) und SuperFect[®] ermittelt (durchschnittliche Abnahme ca. 33% bzw. 44%), wobei dieser MA8 enthaltende Vektor ca. 1,75 fach höhere Werte erzielt als SuperFect[®].

Betrachtet man die Ergbenisse der Transfektion in 10% FBS genauer (Abbildung 67) kommt man zu dem Schluss, dass auch unter den veränderten Versuchsbedingungen MA6, MA8 und MA15 enthaltende Liposomen statistisch signifikant höhere Gentransferraten aufweisen als LipofectAmine[®] (*) und SuperFect[®] (^).

Lipid	Colipid	n/n	N/P serumfrei	N/P 10% FBS
MA6	Chol	2:1	6,75	4,5
MA8	Chol	1:1	5	2
MA8	Chol	2:1	3	2
MA8	Chol	3:1	3	2
MA9	Chol	1:1	2	3
MA15	DOPE	2:1	1,5	3,5
LipofectAmine [®]			5	5
S	SuperFect [®]	0,5 µL pro 0,1 µg DNA		

Abbildung 67 Transfektion unter Serumeinfluss (10% FBS) an LLC PK1 - t = 48 h - 0.1 µg DNA/well

Tabelle 9Mischungs- und Ladungsverhältnisseder in serumhaltigem Medium untersuchtenLipoplexe - N/P im Vergleich mit Transfektionohne Serum

Generell transfizieren viele Vektoren, die auf Malonsäurediamiden basieren, bei serumfreien Versuchsbedingungen sehr gut. Deshalb liegen deren Werte trotz Abnahme bei Anwesenheit von hohen Proteinkonzentrationen immer noch auf dem Niveau, das LipofectAmine[®] ohne Serum erreicht. Sicherlich ist weniger Einfluss durch Proteine wünschenswert, dennoch stellt auch diese Beobachtung schon ein erfreuliches Resultat dar. Bei den meisten Proben sinkt das N/P-Verhältnis bei dem die maximale Transfektionseffizienz ermittelt wurde, im Vergleich mit der Transfektion in einem serumfreien Intervall (Tabelle 9). Ob die Verringerung der Liposomenkonzentration auch zu einem niedrigeren Zetapotential der Partikel führt, können nur entsprechende Messungen klären. Jedenfalls ändert sich dabei die Partikelgröße der Lipoplexe. Da jedoch keine einheitliche Tendenz zu gößeren bzw. kleineren Parikeln erkennbar ist und die PCS-Messungen nicht in physiologischem Milieu stattgefunden haben, ist es in diesem Falle nicht möglich, Aussagen über einen Zusammenhang von Partikelgröße und Transfektion in Gegenwart von Serum zu treffen.

Auch an A549 wurden Versuche in serumhaltigem Medium durchgeführt. Aus Zeitgründen konnten im Rahmen dieser Arbeit leider nicht mehr alle geeigneten Malonsäurediamidderivate an A549 untersucht werden. Folglich können lediglich zwei Liposomenproben aus MA12 und DOPE mit LipofectAmine[®] verglichen werden. Abbildung 68 stellt diese Ergebnisse graphisch dar.

Abbildung 68 Ergebnisse der Transfektion unter Serumeinfluss an A549 mit Lipoplexen aus MA12 und DOPE im Vergleich zu einem serumfreien Intervall von 4 h - t = 48 h - 0,1 μ g DNA/well

Abbildung 69 MTT-Test nach Transfektion mit Lipoplexen aus MA12/DOPE 1:3 (n/n) mit und ohne serumfreies Intervall von 4 h - t = 24 h - 0,1 μ g DNA/well

Erschreckend groß ist die Abnahme der Transfektionseffizienz nach 48 h bei LipofectAmine[®], wenn es bei Anwesenheit von Serum auf die Zellen appliziert wird. Trotz des Einsatzes verschiedener Konzentrationen konnte kein höherer Wert ermittelt werden. Das bestätigt einmal mehr, dass die Ergebnisse von Gentransferexperimenten zwischen verschiedenen Zelllinien erheblich schwanken können.

Schon allein aufgrund dieses Resultats übertreffen die beiden Proben aus MA12 und DOPE LipofectAmine[®] in erheblichem Maße. Interessanterweise konnte für MA12/DOPE 1:3 (n/n) N/P 4 bei Transfektion in serumhaltigem Medium ein höherer Absolutwert für die Transfektion ermittelt werden als bei einem 4 h Intervall ohne Serum. Dabei spielt sicherlich auch die Zytotoxizität eine gewisse Rolle. Abbildung 69 verdeutlicht, dass bei hohen Lipidkonzentrationen bereits nach 24 h die Viabilität der Zellen und damit die Gesamtproteinkonzentration nach Transfektion in Serum stärker

beeinflusst werden. Dennoch ist das Ergebnis, dass Serumproteine auf MA12 enthaltende Vektoren keinen negativen Einfluss auf den Gentransfer haben, sehr gut. Zugegebenermaßen könnten an dieser Stelle weitere Untersuchnungen mit bspw. höheren Proteinkonzentrationen ein genaueres Bild geben. Aus genannten Gründen war dies nicht mehr möglich.

Zusammenfassend kann festgehalten werden, dass unmodifizierte Liposomen mit Ausnahme von MA12/DOPE 1:3 (n/n) ebenfalls durch Serumproteine in ihrer Fähigkeit Gene zu transferieren beeinträchtigt werden. Da die untersuchten Proben auch nach Minderung der Transfektionseffizienz Werte erreichen, die auf dem Level von LipofectAmine[®] liegen, wenn dies in Abwesenheit von Serum als Vektor eingesetzt wird, können sie als besser geeignete Systeme für eine Transfektion in serumhaltigem Medium angesehen werden. Aufbauend auf ersten positiven Beobachtungen mit MA12 können zukünftig weiterentwickelte kationische Liposomen auf der Basis von Malonsäurediamiden hergestellt werden.

3.1.11 Partikelgrößenbestimmung

Die Ermittlung der Partikelgröße mittels PCS-Messung dient als wichtiges und einfach zu handhabendes Verfahren zur Charakterisierung der verwendeten Liposomen und Lipoplexe. Obwohl der Zusammenhang zwischen Lipoplexgröße und Transfektion immer noch kontrovers diskutiert wird, scheint sich zu bestätigen, dass für die systemische Anwendung Partikel unter 100 nm und für die *in-vitro* Transfektion Partikel mit Größen zwischen 200 - 400 nm geeignet sind. Gerade beim *in-vitro* Gentransfer können Abweichnungen von diesem Bereich durchaus möglich sein, denn gerade bei aktiv endozytierenden Zelllinien können größere Partikel bevorzugt über zelluläre Barrieren gelangen, da große "Teilchen" einen besseren Membrankontakt ermöglichen, während die Partikelgröße bei bei anderen Zelllinien keine Rolle spielen muss. Es gibt zwar Aussagen zur Korrelation von Partikelgröße und Transfektion, dennoch gelten diese nur für die untersuchten Lipidsysteme ¹³¹.

Ob sich ein derartiger Zusammenhang auch für die Malonsäurediamide herstellen lässt, sollen die nachfolgenden Betrachtungen zeigen. Einschränkend muss aber erwähnt werden, dass die PCS Messungen in Wasser idealisierte Bedingungen darstellen, da störende Fremdionen fehlen. Dies erschwert Vergleiche mit physiologischen Bedingungen. Da trotz Sterilfiltration reines Zellkulturmedium immer einen Messwert im µm Bereich zeigte, konnten die Lipoplexe nicht unter diesen Bedingungen vermessen werden. Aufgrund der Herstellungsart handelt es sich bei den Liposomenlösungen nicht um monodisperse Proben. Demzufolge dürfen geringe Änderungen des z-average nicht überinterpretiert werden. Bei den anschließenden Abbildungen wird hauptsächlich auf

dessen Änderung eingegangen, da dieser ein Maß für die Partikelgröße darstellt. Änderungen des PDI, die teilweise die Bildung monodisperser Lipoplexe aus polydispersen Liposomenlösungen zeigten, können im Anhang betrachtet werden. Generell gelten für alle Vektoren, die auf kationischen Liposomen basieren, folgende Zusammernhänge zwischen N/P Verhältnis bzw. Cytofektinkonzentration und Partikelgröße. Steigt der Anteil an Liposomenlösung im Lipoplex, erhöht sich ebenfalls die Partikelgröße. Diese Tendenz setzt sich bis zur Ladungsneutralität des Komplexes fort. Bei höheren N/P Verhältnissen nimmt dann die Partikelgröße wieder ab ^{4, 18}. Abbildung 70 dokumentiert ein ähnliches Verhalten an verschiedenen Liposomenproben.

Abbildung 70 Ergebnisse der PCS Messungen ausgewählter Liposomen und Lipoplexe - Änderung der Partikelgröße als Funktion der steigenden Cytofektinkonzentration - Abbildung ohne Standardabweichung - Linienkontur angepasst

Unter der Voraussetzung, dass das Maximum der Lipoplexgröße annähernden Ladungsausgleich bedeutet, wird dieser in Abhängigkeit von der Cytofektinstruktur und der Zusammensetzung der Probe bei verschieden Konzentrationen an Transfektionslipid erreicht. Für die Substanzen MA1-3 und MA7-9 sind die abgebildeten Konzentrationen mit N/P-Verhältnissen 1-4 gleichzusetzen. Für MA4-6 sind es N/P 1,5-6, für MA13-15 0,83-3,33. Vergleicht man diese, wird zum einem deutlich, dass wie erwartet, die Konzentration an Cytofektin mit wenigen Aminfunktionen größer sein muss, um die negativen Ladungen der DNA auszugleichen. Andererseits ergeben sich bei gleicher Strukur der Kopfgruppe Verschiebungen des Maximums in Abhängigkeit von der Art des lipophilen Restes.

Geht man von einer Neuordnung der Struktur aus, wenn Lipoplexe entstehen, wie dies bei der lamellaren Phase der Fall ist (Aufbau siehe Einleitung), dann stehen theoretisch alle kationischen Lipide zur Komplexierung der eingelagerten DNA-Stränge zur Verfügung. Da sich die Alkylketten innerhalb der Bilayer mit steigendem Sättigungsgrad dichter packen lassen, können bei konstanter DNA-Konzentration mehr Cytofektinmoleküle elektrostatisch mit dieser in Wechselwirkung treten. Dies kann erklären, warum die maximale Partikelgröße von MA3, dessen fluide Alkyketten mehr Platz innerhalb der Bilayer benötigen bei geringeren Konzentrationen als bei MA2 und MA1 erreicht wird. Die beschriebene Verschiebung des Maximums zu niedrigeren Konzentrationen bei geringerer Partikelgröße wird ebenso für die Lipoplexe beobachtet, die aus MA4-6, MA7-9 und Cholesterol hergestellt wurden.

Da es sich bei den eingesetzten Liposomen aber stets um Mischungen mit DOPE oder Cholesterol handelt, kann diese Erklärung nicht universell auf jeden Lipoplex übertragen werden. Schließlich ist nicht einmal erwiesen, dass sich Transfektions- und Helferlipid in jeder Kombination im Lipoplex auch homogen mischen oder nicht auch Phasenseperationen vorkommen.

Unterschiede zwischen Proben, die gut transfizieren und jenen, die nicht für den liposomalen Gentransfer geeignet sind, können bedauerlicherweise nicht ausgemacht werden. Damit kann die Partikelgröße bei den Malonsäurediamiden nicht als charakteristischer Parameter für Gentransferexperimente herangezogen werden. Es sei jedoch angemerkt, dass mit Ausnahme von MA15 die mittleren Partikeldurchmesser der Lipoplexe aus MA6, MA8, MA9 lediglich geringfügig größer sind als die der reinen Liposomenlösungen (Tabelle 10). MA15/DOPE 2:1 (n/n) zeigt damit zum einen, dass bei der Komplexierung von DNA durch kationische Liposomen strukturelle Veränderungen auftreten, die sogar zur Verdichtung der Systeme und damit zu kleineren z-average Werten führen können. Andererseits liefert es auch den Beleg, dass beim *in-vitro* Gentransfer auch goße Partikel erfolgreich transfizieren können.

entsprechenden Zellinie							
Lipid	Colipid	n/n	z-average ± s [nm] Liposomenlösung	z-average ± s [nm] Lipoplex LLC PK1	z-average ± s [nm] Lipoplex A549		
MA6	Cholesterol	2:1	88 ± 17	134 ± 1	95 ± 1		
MA8	Cholesterol	1:1	90 ± 4	150 ± 1	137 ± 1		
MA8	Cholesterol	2:1	89 ± 5	298 ± 1	178 ± 1		
MA9	Cholesterol	1:1	94 ± 1	258 ± 1	124 ± 1		

1592 ± 98

450 ± 7

 1415 ± 53

MA15

DOPE

2:1

Tabelle 10 PCS ermittelte Partikelgrößen ausgewählter Liposomen und Lipoplexe – z-average Werte der Lipoplexe stellvertretend für das N/P-Verhältnis mit der maximalen Transfektionseffizienz an der entsprechenden Zelllinie

3.2 Transfektionslipide aus α-verzweigten Fettsäureamiden

Das strukturelle Kennzeichen dieser Gruppe von Cytofektinen ist die Anknüpfung der kationischen Kopfgruppe über eine Amidbindung an α-verzweigte Fettsäuren, die als lipophiler Molekülteil dienen. Wiederum ausgehend vom Malonsäureester wird dieser an C2 vollständig deprotoniert und anschließend alkyliert. Nach Verseifung des Esters und Decarboxylierung erhält man die freie α-verzweigte Fettsäure, deren Kettenlänge durch den Einsatz verschiedener Alkylhalogenide relativ einfach variiert werden kann ^{157, 158}. Wie bei den Malonsäurediamiden können dann unterschiedliche kationische Kopfgruppen ins Molekül eingeführt werden. In physikochemischen Untersuchungen konnte zudem festgestellt werden, dass bei gleicher Struktur des hydrophilen Molekülteils die Fluidität der Ketten höher ist als bei einem Malonsäurdediamid mit gesättigten Alkylresten ¹⁹⁵.

Von Phospholipiden mit verzweigten Fettsäuren ist bekannt, dass die Phasenübergangstemperatur auf ein Minimum sinkt, wenn die α-Verzweigung eines Palmitoylrestes C8:0 darstellt ²⁰⁴. Inwieweit diese Beobachtungen auf α-verzweigte Fettsäuramide übertragbar sind und welche Konsequenz sich daraus für den Gentranfer ergibt, sollten die Experimente mit den Lipiden VF1 und VF5 zeigen, deren Fettsäure unsymmetrisch verzweigt ist.

3.2.1 α-Verzweigte Fettsäureamide 1 - 2

Kennzeichnend für diese beiden Lipide ist die anolog zu den Verbindungen MA1-3 hydrophile Domäne mit der Struktur 2-Aminoethylamid. Es handelt sich demzufolge um monovalente Cytofektine. Während der lipophile Teil von VF1 unsymmetrisch aufgebaut ist, besteht er bei MA2 ausgehend von der Verzweigung aus 2 Dodecylresten.

Aus beiden Lipiden konnten sowohl mit DOPE als auch mit Cholesterol Liposomen hergestellt werden. Beim Einbringen dieser Lösungen in Zellkulturmedium erwiesen sich lediglich VF2 enthaltende Liposomen als stabil. VF1 Proben agglomerieren vor Zugabe der DNA und machen damit eine Analyse von Tranfektionseigenschaften und Zytotoxizitätspotenzial der Liposomen unmöglich. Über die Ursache dieses Phänomens kann nur diskutiert werden. Die Kombination aus kleiner Kopfgruppe und einer kurzen Alkylkette reicht nicht aus, um das Membranpotenzial in physiologischer Umgebung aufrecht zu erhalten. Denkbar wäre, dass die lipophilen Reste innerhalb der Bilayer verzahnt angeordnet sind. Durch Ionen des Mediums werden die positiven Ladungen der Aminogruppen abgeschirmt. Als Folge davon können die Moleküle näher zusammenrücken, was eine Agglomeration bewirken kann.

Obwohl mit Liposomen aus VF2 und Helferlid die Lipoplexbildung in physiologischer Umgebung möglich war, zeigen diese Vektoren in Analogie zu MA1 weder an LLC PK1

noch an A549 Gentransferaktivität. Aus diesem Grund können lediglich die Ergebnisse der Viabilitätsuntersuchungen nach 24 h Inkubation dargestellt werden (Abbildung 71, Abbildung 72).

Abbildung 71 Ergenisse des MTT-Tests von VF2 in Kombination mit DOPE und Cholesterol an A549 - $t = 24 h - 0.1 \mu g DNA/well$

Abbildung 72 Ergenisse des MTT-Tests von VF2 in Kombination mit DOPE an LLC PK1 - t = 24 h - 0,1 µg DNA/well

Während Lipoplexe aus VF2 und DOPE bzw. Cholesterol an A549 zwar statistisch signifikante, jedoch nur geringe Auswirkungen auf die Viabilität der Zellen haben und sich untereinander ausschließlich im N/P-Verhältnis 2 unterscheiden, erhöht sich an LLC PK1 Zellen die Toxizität der Systeme besonders bei zunehmender Konzentration. Dieser Effekt wird durch eine Erhöhung der DOPE bzw. der Gesamtkonzentration der Lipide weiter gesteigert.

Aufgrund dieser Beobachtungen und dem fehlenden Gentranfer können auch αverzweigte Fettsäuren mit 2-Aminoethylamid als Kopfgruppe als nicht geignete Lipide für liposomale Vektoren eingestuft werden.

3.2.2 α-Verzweigte Fettsäureamide 3 - 4

Diese beiden Derivate unterscheiden sich nicht im lipophilen, sondern im hydrophilen Molekülteil. Während die Kopfgruppe von VF3 linear angeordnet ist und je eine primäre und eine sekundäre Aminfunktion besitzt, handelt es sich bei VF4 um das Strukturanalogon von MA4-6 mit Bis(2-Aminoethyl)aminoethylamid als hydrophile Domäne. Damit enthält es numerisch drei basische Stickstoffatome. Beide Lipide stellen Palmitinsäureamide dar, die in α -Position der Fettsäure mit einem Myristylrest substituiert sind.

Wie bei den Malonsäurediamiden führt auch bei diesen Molekülen die Erweiterung der Kopfgruppe zu einem Anstieg des Gentransfers. Dabei ist festzuhalten, dass lediglich für Liposomenmischungen aus VF3 bzw. VF4 und DOPE eine Aktivität der β-Galactosidase ermittelt werden konnte. Die nachstehenden Abbildungen verdeutlichen, dass dies über

eine große Breite an Mischungsverhältnissen möglich ist. Bei VF3 profitiert das System von einem erhöhten Anteil an Colipid. Vektoren, die aus VF4 und DOPE bestehen, zeigen die maximalen Enzymaktivitäten entweder, wenn der Anteil an Transfektions- oder der Anteil an Colipid besonders hoch ist. VF4 erreicht nach 48 h höhere Transfektionseffizienzen als VF3. Auch wenn die N/P-Verhältnisse strukturbedingt variieren, handelt es sich um die gleichen Konzentrationen an Cytofektin. Damit bestätigen die biologischen Experimente die Ergebnisse von Monoschichtuntersuchungen, Röntgenreflektivitätsstudien (X-ray) sowie Röntgendefraktometrie unter streifendem Einfall des Röntgenstrahls (GIXD) zur Protonierung und DNA-Bindekapazität der beiden Lipide ²⁰⁵. Demzufolge eigenet sich die verzweigte Kopfgruppe von VF4 bei pH8 besser als die linear angeordnete von VF3, um DNA zu komplexieren, was schlussendlich höhere Gentransferraten bedingt.

Abbildung 73 Transfektionseffizienz der Lipoplexe aus VF3 und DOPE an LLC PK1 – t = 48 h – 0,1 μ g DNA/well

Abbildung 74 Transfektionseffizienz der Lipoplexe aus VF4 und DOPE an LLC PK1 – t = 48 h – 0,1 μ g DNA/well

Abbildung 75 zeigt den Vergleich mit LipofectAmine[®] und SuperFect[®]. Zwar liegen die Durchschnittswerte der Transfektionseffizienzen bei allen Lipoplexen aus α-verzweigten Fettsäuren unter denen der Vergleichsvektoren, doch sind beide nur der Mischung aus VF3/DOPE 1:3 (n/n) statistisch signifikant überlegen. Dennoch können auch die Liposomen aus VF4 und DOPE im Vergleich zu den kommerziell erhältlichen Produkten nicht als Verbesserung angesehen werden.

Abbildung 76 bildet die Ergebnisse der MTT basierten Viabilitätsuntersuchungen nach Transfektion mit VF3 und VF4-haltigen Lipoplexen ab. Um eine gemeinsame Auftragung die ermittelten Zellviabilitätswerte zu gewährleisten sind als Funktion der Cytofektinkonzentration dargestellt. Ausgewählt wurden die Liposomenproben, die entweder viel Transfektionslipid oder viel DOPE enthalten. Unabhängig von der Zusammensetzung der Probe wird die Überlebensfähigkeit der Liposomen schon bei niedrigen Cytofektinkonzentrationen beeinflusst. Bis auf eine Probe nimmt die Viabilität mit steigender Konzentration an VF ab. In besonderem Maße beobachtet man diesen Effekt bei den Liposomen, die einen höheren Anteil an Helferlipid aufweisen.

Abbildung 75 Transfektion von Lipoplexen aus VF3 und VF4 im Vergleich mit LipofectAmine® und SuperFect® an LLC PK1 - t = $48 h - 0.1 \mu g DNA/well$

Abbildung 76 Ergebnisse des MTT Viabilitätstest mit Lipoplexen aus VF3, VF4 und DOPE an LLC PK1 - t = 24 h - 0,1 μ g DNA/well

Diese Feststellung ist konform mit Ergebnissen von Liposomen aus MA8 und DOPE bzw. Cholesterol, wonach besonders bei steigender Gesamtkonzentration an applizierten Lipiden die Verträglichkeit der Vektoren in besonderem Maße leidet. Sicherlich spielen neben dem zytotoxischen Potenzial der Lipide auch andere Vorgänge wie Partikelladung und -größe oder eine sehr starke Expression der zellfremden β-Galactosidase bei der Bewertung der Zelltoxiziät eine nicht zu vernächlässigende Rolle. Die Beobachtungen legen aber nahe, dass Liposomen mit höherem Cytofektinanteil günstiger einzustufen sind, da tendenziell weniger Gesamtlipid appliziert werden muss, was wiederum geringere Zelltoxizität bedeutet.

3.2.3 α-Verzweigte Fettsäureamide 5 - 6

Die Lipide VF5 und 6 leiten sich strukturell von VF1 und VF2 ab. Analog zu den Malonsäurediamiden MA7-9 wurde der hydrophile Molekülteil mit Lysin erweitert. Die Vergrößerung der Kopfgruppe verändert die Eigenschaften der Lipide hinsichtlich DNA Komplexierung, Gentransfer und Stabilität der daraus hergestellten Partikel. So sind Liposomenlösungen aus VF5 in physiologischem Medium stabil. Trotz der identischen Anordung unterschiedlich langer Ketten im lipophilen Molekülteil agglomerieren die Partikel nicht wie dies bei VF1 der Fall ist. Anscheinend stabilisiert die größere Kopfgruppe die lamellare Struktur.

Für die Transfektion wirkt sich die Einführung der basischen Aminosäure auch bei αverzweigten Fettsäuren positiv aus. Sowohl VF5 als auch VF6 zeigen wiederum nur in Kombination mit DOPE Gentransferaktivität an A549 (Abbildung 77, Abbildung 78). Dabei fällt auf, dass schon bei geringen N/P-Verhältnissen, also niedrigen Cytofektinkonzentrationen, β-Galactosidaseaktivität nachgewiesen werden kann. Beide Lipide zeigen die höchsten Transfektionseffizienzen, wenn sie mit einem höheren Anteil an DOPE kombiniert werden. Bei VF6 hingegen kann auch für die Proben, die weniger DOPE enthalten, Gentransfer auf dem Level von VF5/DOPE 1:3 (n/n) belegt werden, allerdings erst bei steigenden Konzentrationen an Liposomenlösung.

Abbildung 77 Transfektionseffizienz der Lipoplexe aus VF5 und DOPE an A549 – t = 48 h – 0,1 μ g DNA/well

Abbildung 78 Transfektionseffizienz der Lipoplexe aus VF6 und DOPE an A549 - t = 48 h - 0,1 μg DNA/well

Für Untersuchungen, bei denen das Ergebnis der Transfektion nach 48 h ermittelt wurde, führte die Verkürzung einer Kette der α-verzweigten Fettsäure zu einer Verringerung des Gentransfers. Damit erweist sich diese Modifizierung als Nachteil.

Abbildung 79 stellt den Vergleich mit den etablierten Gentransportern dar. Hier liegt die Probe VF6/DOPE 1:3 (n/n) auf einem Niveau mit LipofectAmine[®] und SuperFect[®]. Dagegen kann die gute Verträglichkeit des polymerbasierten Vektors an A549 nicht erreicht werden (88% Viabilität). Mit durchschnittlich 70% Viabilität beim dargestellten N/P Verhältnis 1,5 liegt es im Bereich von LipofectAmine[®] (68%).

Abbildung 79 Transfektion von Lipoplexen aus VF5 und VF6 im Vergleich mit LipofectAmine® und SuperFect® an A549 - t = 48 h - 0,1 μ g DNA/well

Abbildung 80 Ergebnisse des MTT Viabilitätstest mit Lipoplexen aus VF5, VF6 und DOPE an A549 - t = $24 \text{ h} - 0.1 \mu \text{g}$ DNA/well

Dass die Verträglichkeit der Vektoren auch von der Lipidstruktur abhängt, zeigt Abbildung 80. Zwar sinken auch bei den dargestellten Proben die Viabilitätswerte mit zunehmender Menge an Lipid, allerdings werden trotz des Einsatzes geringerer Volumina an Liposomenlösung die Zellen teilweise erheblich geschädigt. Die Probe VF5/Cholesterol 1:1 (n/n) ist nicht nur ein weiteres Beispiel dafür, dass mitunter auch nicht transfizierende Lipoplexe das Zellwachstum in besonderem Maße beeinträchtigen, sondern zeigt auch, dass bereits 8,1 µmolare Lösungen (Gesamtlipidkonzentration) mehr Schaden verursachen können als höhere Konzentrationen an Liposomenlösungen, die aus anderen Lipiden zusammengesetzt sind (vgl. Abbildung 35, Abbildung 76). Innerhalb der Reihe von Mischungen aus VF6 und DOPE deuten die Ergebnisse erneut darauf hin, dass größere Liposomenkonzentrationen geringere Viabilitätswerte bedingen.

Vektoren aus VF6 und DOPE wurden ebenfalls an LLC PK1 untersucht. Auch an dieser Zelllinie zeigen viele Liposomenmischungen gute Transfektion besonders VF6/DOPE 3:1 (n/n) (Abbildung 81). Der Maximalwert der Transfektionseffizienz bei N/P 3 liegt mit 772 μ E/ μ g über dem von SuperFect[®] und LipofectAmine[®] (742 μ E/ μ g und 595 μ E/ μ g). Der Unterschied ist indes nicht statistisch signifikant. Im Durchschnitt überleben 79% der Zellen eine Transfektion bei diesem Ladungsverhältnis. Damit ist der schädigende Einfluss größer als der der beiden Vergleichsproben (84% und 90%).

Abbildung 81 Ergebnisse der Transfektion mit Lipoplexen aus VF6 und DOPE an LLC PK1 – t = 48 h – 0,1 μ g DNA/well

Abbildung 82 Ergebnisse des MTT Viabilitätstest mit Lipoplexen aus VF6 und DOPE an LLC PK1 - t = $24 \text{ h} - 0.1 \text{ }\mu\text{g}$ DNA/well

Auf Abbildung 82 sind die Ergebnisse der Viabilitätsuntersuchungen für diese Zelllinie dargestellt. Obwohl die eingesetzten Konzentrationen an VF6 etwas von denen abweichen, die an A549 verwendet wurden (Abbildung 80), ist ebenso ersichtlich, dass spätestens bei $c_{VF6} \ge 10.8 \ \mu mol/L$ die Viabilität unter 80% sinkt. Für Lipoplexe, deren Gesamtlipidkonzentration höher ist (VF6/DOPE 1:2 & 1:1 (n/n)) beginnt diese Tendenz bereits bei 8,10 $\mu mol/L$.

Fest steht, dass bei α-verzweigten Fettsäuen der Gentransfer wesentlich verbessert wird, wenn Lysin, überbrückt von Ethylendiamin, an diese gekoppelt ist. Das führt an zwei Zelllinen zu Transfektionseffizienzen, die etablierten Systemen vergleichbar sind. Bedauerlicherweise geht diese Eigenschaft mit einem gewissen Maß an Zellschädigung einher, sodass sich gegenüber den malonsäurebasierten Liposomen und kommerziell verfügbaren Vektoren kein Vorteil ergibt.

3.2.4 α-Verzweigtes Fettsäureamid 7

Bei Transfektonslipiden auf der Basis der α -verzweigten Fettsäure wurde erstmals das Polyamin Spermin als Kopfgruppe verwendet. Auch wenn eine Aminfunktion des Spermins nach Kupplung an den lipophilen Molekülteil ihre Basizität einbüßt, erzeugen zwei sekundäre und eine primäre Aminogruppe zumindest nummerisch eine hohe Ladungsdichte auf der Liposomenoberfläche. Diese für den Gentranfer vorteilhafte Eigenschaft haben bereits andere Arbeitsgruppen ausgenutzt und mit entsprechenden Derivaten teils vielversprechende Ergebnisse sogar an Versuchstieren erzielt ¹¹⁵.

VF7 wurde sowohl an A549 als auch an LLC PK1 untersucht. Dabei ist interessant, dass nach 48 h an A549 sehr hohe Transfektionseffizienzen ermittelt werden konnten, während an LLC PK1 nur minimale β-Galactosidaseaktivität nachgewiesen wurde (Abbildung 83, Abbildung 84). Der Unterschied beträgt eine Zehnerpotenz.

Abbildung 83 Transfektion von VF7/DOPE 1:1 (n/n) an A549 im Vergleich mit LipofectAmine® und SuperFect® - $t = 48 h - 0,1 \mu g DNA/well$

Abbildung 84 Transfektion von Lipoplexen aus VF7 und DOPE oder Cholesterol an LLC PK1 – $t = 48 h - 0.1 \mu g DNA/well$

Der genaue Grund für diese Beobachtung kann nicht angegeben werden. Sicherlich ist er u. a. in ungleichen Zellzyklen der beiden Zelllinien zu suchen. Die Untersuchungen, bei

Abbildung 85 Ergebnisse des MTT-Tests von VF7/DOPE 1:1 (n/n) an A549 im Vergleich mit LipofectAmine[®] und SuperFect[®] - t = 24 h - 0,1 μ g DNA/well

Enzymaktivität zu früheren denen die Zeitpunkten als nach 48 h ermittelt wurde, zeigen, dass auch an LLC PK1 hohe Expressionsraten möglich sind (siehe Kapitel 3.2.5). Erstaunlich ist außerdem. dass an A549 die Maximalwerte der proteinbezogenen Enzymaktivität die der Vergleichsvektoren N/Pbei vielen Verhältnissen um mehr als das Doppelte übertreffen. Die an A549 ermittelten Zellviabilitätswerte (Abbildung 85) verdeutlichen, dass wie bei anderen Lipiden

auch das Zellüberleben mit zunehmender Liposomenkonzentration sinkt. Da aber bereits bei einem niedrigen N/P-Verhältnis von 2 sehr hohe Gentransferraten erreicht werden und bei der daraus resultierenden Lipidkonzentration die Zellviabilität über 90% liegt, könnte das liposomale System VF7/DOPE 1:1 (n/n) als Alternative zu LipofectAmine[®] und SuperFect[®] angesehen werden, wenn die Transfektion an LLC PK1 nicht so schlecht wäre. Dies limitiert eine breite Anwendung an verschiedenen Zelltypen und unterminiert eine tendenzielle Weiterentwicklung.

3.2.5 Zeitabhängige Transfektionsuntersuchungen

Wie bei den Malonsäurediamiden wurde auch bei ausgewählten α -verzweigten Fettsäureamiden die β -Galactosidaseaktivität zu weiteren Zeitpunkten detektiert. Abbildung 86 stellt die Ergebnisse an der Zelllinie A549, Abbildung 87 jene an LLC PK1 dar. Hier wird deutlich, dass gerade VF5 und 6 enthaltende Vektoren innerhalb von 24 h sehr hohe Enzymaktivitäten ermöglichen. Dieses Niveau sinkt dann allerdings mit zunehmender Versuchsdauer.

Abbildung 86 Transfektion ausgewählter Vektoren an A549 zu verschiedenen Zeitpunkten - VF5 N/P 1,5:1 - VF6 N/P 1,5:1 - VF7 N/P 3:1

Abbildung 87 Transfektion ausgewählter Vektoren an LLC PK1 zu verschiedenen Zeitpunkten - VF7 N/P jeweils 3:1

Anders verhält sich die Probe VF7/DOPE 1:1 (n/n). An A549 ist die gemessene Enzymexpression anfangs noch gering und erfährt den Maximalwert nach 48 h. Nach einem weiteren Tag ist sie fast verschwunden und kann nicht mehr mit LipofectAmine[®] konkurrieren. Bei Versuchen an LLC PK1 zeigt sich, dass die maximale Transfektion bereits nach 12 h erreicht wird und dann stetig sinkt, sodass eine hohe Enzymexpression nicht lange aufrechterhalten werden kann. Die Kombination mit Cholesterol führt hier zwar ebenfalls zu nachweisbarem Gentransfer (anders als an A549), freilich nur auf sehr niedrigem Level.

Bezieht man diese Ergebnisse beider Zelllinien in die Bewertung der α-verzweigten Fettsäureamide mit ein, so kann konstatiert werden, dass besonders mit Lysin substituierte Lipide rasch zu einer sehr hohen Genexpression führen, diese aber nicht

75sehr lange aufrecht erhalten können. Sie weisen ferner einen ungünstigen Einfluss auf die Zellviabilität auf.

3.2.6 Transfektionsuntersuchungen in serumhaltigem Medium

Liposomen der Lipide VF5, VF6 und VF7 wurden ebenfalls auf ihre Fähigkeit zum Gentransfer in Gegenwart von Serum untersucht, um zu analysieren, wie diese Systeme auf hohe Proteinkonzentrationen reagieren. Abbildung 88 verdeutlicht einen messbaren Einfluss auf den Gentransfer. Nach 48 h sinkt bei allen Proben die proteinbezogene Enzymaktivität. Besonders stark ist dies bei VF5 und VF7 zu beobachten. Hier nehmen die Werte um ca. eine Zehnerpotenz ab. Sie liegen damit im Bereich von LipofectAmine[®], das wie bereits angeführt, an A549 ebenfalls so dramatisch in der Gentransferleistung abnimmt, wenn Serum zu Beginn der Versuche zugesetzt wurde.

Abbildung 88 Vergleich der Transfektion von Lipoplexen aus VF5, VF6 und VF7 in Kombination mit DOPE an A549 in serumfreiem Medium und 10% FBS - t = 48 h - 0,1 μ g DNA/well - VF5 1,5 - VF6 N/P 1,5 und 2 - VF7 N/P 3 und 4

Damit konnte gezeigt werden, dass eine unsymmetrische Kettenverzweigung auch unter diesem Gesichtspunkt nicht zu befürworten ist. Außerdem wird das sehr gute Ergebnis von VF7, welches unter serumfreien Bedingungen erzielt werden konnte, durch diese Untersuchungen ebenfalls relativiert. Substanzen, die Spermin gekoppelt an α -verzweigte Fettsäuren enthalten, liefern unter physiologisch nahen Bedingungen keine zufriedenstellenden Ergebnisse. Die Transfektionseffizienz der Liposomenpräparation VF6/DOPE 1:3 (n/n) hingegen sinkt vergleichweise wenig, kann aber nicht das Ergebnis erzielen, das bei Experimenten mit einem 4 h serumfreien Intervall erreicht wird.

Demzufolge gilt auch für die α-verzweigten Fettsäureamide, dass deren Vektoren nicht von Serumeinfluss befreit sind. Am ehesten ist dies noch für das VF6 basierte System zu beobachten. Hier könnte eine andere Liposomenzusammensetzung mit weniger DOPE eventuell Abhilfe schaffen. Ob sich damit aber der Einfluss der Serumproteine gänzlich aufheben lässt, können nur weitere Untersuchungen zeigen.

3.2.7 Partikelgrößenbestimmung

Selbstverständlich wurden auch die Liposomen und Lipoplexe dieser Strukturklasse den PCS Messungen zugeführt. Abbildung 89 stellt ausgewählte Proben dar.

Abbildung 89 Ergebnisse der PCS Messungen ausgewählter Liposomen und Lipoplexe - Änderung der Partikelgröße als Funktion der steigenden Cytofektinkonzentration - Abbildung ohne Standardabweichung - Linienkontur angepasst

Die Graphen zeigen, dass bedingt durch die Cytofektinstruktur, der "typische" Kurvenverlauf von Lipoplexen abhängig ist von der eingesetzten Konzentration. Dessen ungeachtet darf nicht unerwähnt bleiben, dass sich die Unterschiede in der Partikelgröße zwischen verschieden Liposomenproben kaum in einen Zusammenhang bringen lassen. Obwohl bspw. VF6 basierte Lipoplexe bei den dargestellten Konzentrationen nicht in jedem Fall die maximale Partikelgröße erreichen, zeigen sie durchaus beachtliche Transfektionsraten. Bei Verwendung von VF2-enthaltenden Vektoren gelingt dies trotz höherer Konzentrationen an Liposomenlösung nicht. Vielleicht kann man den Einfluss von DOPE auf die Komplexbildung in geringen Tendenzen ableiten. Betrachtet man VF3, VF4 und VF6, fällt auf, dass bei gleicher Cytofektinkonzentration ein erhöhter DOPE-Anteil dazu führt, dass die Lipoplexe kleiner werden bzw. die Änderung der Partikelgröße nach dem "Maximum" deutlicher ausfällt. Dies kann ein Hinweis dafür sein, dass unabhängig von der Komplexierung durch die Transfektionslipide die Kondensation der DNA durch fluide Moleküle wie DOPE verbessert wird. Dass die Fluidität des lipophilen Molekülteils sehr wichtig für Komplexierung und Transfektion ist, wurde in der Einleitung ausführlich erläutert.

Dennoch muss festgehalten werden, dass sich die Partikelgröße nicht eignet, um Unterschiede zwischen den Proben hinsichtlich des Gentransfers abzuleiten. Derartige Beurteilungen können allenfalls in einem engen Rahmen getätigt werden.

3.2.8 Vergleichende Betrachtungen zwischen Malonsäurediamiden und αverzweigten Fettsäureamiden

Aufgrund der Tatsache, dass die beiden vorgestellten Gruppen von Transfektionslipiden zumindest teilweise mit identischen hydrophilen Strukturelementen ausgestattet sind, lohnt sich eine vergleichende Betrachtung, um eventuell Unterschiede, die durch den lipophilen Teil hervorgerufen sein können, auszumachen. Dies ist aber nur für DOPE enthaltende Liposomen möglich, da die α-verzweigten Fettsäuren VF1-6 keinen Gentransfer in Kombination mit Cholesterol ermöglichen und derartige Liposomen entsprechend weniger umfangreich analysiert wurden. Ohne graphische Darstellung kann für cholesterolhaltige Liposomen demzufolge eine steigende Gentransferaktivität in der Reihenfolge VF4-MA4-MA5-MA6 bzw. VF6-MA7-MA8-MA9 (letztgenannt abhängig von der Zelllinie) konstatiert werden.

Die Auswirkungen des lipophilen Molekülteils auf den Gentransfer und die Verträglichkeit bei Kombination der Cytofektine mit DOPE können genauer analysiert werden. Für die Gegenüberstellungen der Transfektionsergebnisse werden die Resultate der Bestimmung nach 48 h herangezogen. Zur Beurteilung der Viabilitätsbeeinflussung dienen die Daten des MTT-Tests. Darüber hinaus hängen vergleichende Überlegungen auch vom Verhältnis Transfektions-/Colipid ab. Wie bereits beschrieben, wird besonders bei VF4 und VF6 die Transfektion durch einen höheren Anteil an DOPE gefördert. Bis auf MA4 trifft dies Malonsäurediamiden nicht zu.

Abbildung 90Vergleich der Transfektionswerte vonLipidenmitBis(2-Aminoethyl)aminoethylamidKopfgruppe an LLCPK1 - t = 48 h - 0,1 μ g DNA/well

Stellt man Liposomen, die Lipide Bis(2-Aminoethyl)aminoethylamid als Kopfgruppe enthalten, gegenüber, ist VF4 den Malonsäurediamiden hinsichtlich des Gentransfers überlegen (Abbildung 90). Dieser Vorteil wird aber von einer gesteigerten Toxitität gerade bei höheren Konzentrationen begleitet. Selbst die Probe MA4/DOPE 1:2 (n/n), die aufgrund ihrer Mischung bei noch höheren Gesamtlipidkonzentrationen vermessen wurde, beeinträchtigt die Zellviabilität nicht in dem Maße wie VF4/DOPE 3:1 (n/n) (Abbildung 91). Zieht man die Lipide MA7-9 und VF6, denen ein über Ethylendiamin gekoppeltes Lysin gemein ist, heran, sind die Verhältnisse differenziert zu betrachten.

Bei der Prüfung der Liposomenmischungen 1:2 des entsprechenden Lipids mit DOPE wird deutlich, dass VF6 basierte Lipoplexe schon bei geringeren Konzentrationen höhere Transfektionsefizienzen ermöglichen (Abbildung 92).

Abbildung 92 Einfluss des lipohilen Molekülteils auf den Gentransfer von Lipiden mit Lysin Kopfgruppe an LLC PK1 - t = 48 h - 0,1 µgDNA/well

Abbildung 93 Einfluss des lipohilen Molekülteils auf die Toxizität von Lipiden mit Lysin Kopfgruppe an LLC PK1 - t = $24 \text{ h} - 0,1 \mu \text{g}$ DNA/well

Ein Vorteil hinsichtlich der Verträglichkeit ergibt sich daraus aber nicht. Im Gegenteil, obwohl bspw. MA9/DOPE 1:2 (n/n) in höheren Konzentrationen verwendet wird, verringert es die Zellviabilität nicht in dem Maße wie VF6 enthaltende Lipoplexe (Abbildung 93).

Demzufolge legen die Ergebnisse dieser Gegenüberstellung dar, dass zumindest an LLC PK1 α-verzweigte Fettsäureamide weniger geeignet sind als die entsprechenden strukturanalogen Malonsäurediamide. Außerdem erreicht die Liposomenmischung MA8/DOPE 1:1 (n/n) an LLC PK1 Transfektionseffizienzen auf dem Niveau von VF6/DOPE 3:1 (n/n) (633 vs. 777 μE/μg, statistisch nicht signifikant), sodass in der Gesamtheit betrachtet VF6/DOPE Mischungen den Malonsäurediamiden hinsichtlich Gentransfer nicht überlegen sind. Ein Vergleich dieser beiden Proben kann allerdings nicht auf die lipophile Komponente zurückgeführt werden, da das Cytofektin/Colipid Verhältnis variiert.

Leider konnten Liposomen der Zusammensetzung MA6, MA8 oder MA9 mit DOPE nicht mehr an A549 getestet werden, um auch an dieser Zelllinie eine Gegenüberstellung zu ermöglichen. Es sollte aber beachtet werden, dass die Cholesterol-Mischungen von MA6, MA8 und MA9 an beiden Zelllinen den Vektoren VF4 und VF6 (in Kombination mit DOPE) hinsichtlich Gentransfer und Verträglichkeit gleichwertig oder überlegen sind. Für Lipide mit Lysin bzw. Bis(2-Aminoethyl)aminoethylamid als hydrophilem Molekülteil liefern Malonsäurediamid basierte Lipide damit die besseren Vektoren.
4. Zusammenfassung und Ausblick

Vor ungefähr 30 bis 35 Jahren entwickelte sich die Idee der somatischen Gentherapie. Man hoffte, durch Substitution oder Ersatz defekter bzw. fehlender Gene oder dem Ausschalten schädigender Proteine eine kausale Therapie für genetisch bedingte Erkrankungen etablieren zu können. Desweiteren sollte dieser Therapieansatz benutzt werden, um neue Behandlungsstrategien für AIDS, Tumorerkrankungen oder Morbus Parkinson einzuführen. Nach anfänglicher Euphorie stellte sich schnell heraus, dass die somatische Gentherapie aufgrund der vielschichtigen Prozesse nicht so einfach umzusetzen ist. Die therapeutische Nukleinsäure muss in applikationsfähiger Form nach Verabreichung an den Patienten lange genug im Organismus zirkulieren, um sicher zum und in das entsprechende Zielgewebe zu gelangen. Nach Eintritt in die Zellen müssen intrazelluläre Barrieren wie Endo- und Lysosom, Zytoplasma und Kernmembran überwunden werden. Außerdem soll, so denn gewünscht, eine konstante Expression des Gens gewährleistet werden.

DNA ist, bis auf wenige Ausnahmen, nicht in der Lage, diese Prozesse ungeschützt zu durchlaufen. Deshalb benötigt man ein geeignetes Transportsystem. Modifizierte Viren sind Vektoren der ersten Stunde. Da diese Partikel natürlicherweise mannigfaltige Mechanismen aufweisen, um Zellen zu infiltrieren und anschließend Nukleinsäuren exprimieren zu lassen, legt dies eine Anwendung unter dem Gesichtspunkt der Gentherapie nahe. Es stellte sich rasch heraus, dass zwar hohe Transferraten möglich sind, aber auch bei veränderten Viren können Probleme wie Immunogenität, Tumorinduktion, Allergenisierung, aufwendige Chargenreproduzierbarkeit und geringe Beladungskapazität auftreten.

Durch diese Nachteile gelangte die Erforschung nicht-viraler Vektoren, wie "Gene Gun", kationische Polymere und Liposomen in den Focus des Interesses. Die beiden letztgenannten sind mittlerweile Standardinstrumente zur Arbeit an Zellkulturen geworden und vielfältig kommerziell vergfügbar. Hauptgründe dafür sind neben der preiswerten Herstellung die hohe Beladungskapazität und fehlende Immunogenität. Inzwischen gibt es eine große Anzahl an nicht-viralen Vektoren, die sich aus unterschiedlichsten Strukturklassen rekrutieren. Allen gemein ist die im Vergleich zu viralen Systemen geringe Gentransferrate und fehlende Gewebespezifität, wodurch deren Übergang zur *in-vivo* Applikation erschwert wird.

Mit den neuartigen Transfektionslipiden basierend auf Malonsäuredi- und α-verzweigten Fettsäureamiden wird versucht, die Entwicklung des Lipid-basierten Gentransfers voranzutreiben. Dafür wurden im Rahmen dieser Arbeit 22 Substanzen mit anderen Amphiphilen wie Cholesterol, DOPE oder DMPC zu Liposomen verarbeitet, diese hinsichtlich Partikelgröße und Dispersität charakterisiert und anschließend umfassend auf Transfektionseigenschaften und zytotoxisches Potenzial an Schweinenierenepithel- und

humanen Lungenkarzinomzellen untersucht. Um die ermittelten Werte besser einschätzen zu können, erfolgte der Vergleich mit den zwei etablierten nicht-viralen Vektoren LipofectAmine[®] und SuperFect[®]. Von der Vielzahl an Liposomenpräparationen (ca. 140) weisen etliche Proben bei Untersuchungen zum Gentransfer Ergebnisse auf, die den beiden gleichgestellt sind oder sie statistisch signifikant übertreffen. In vielen Fällen wird dabei die Viabilität der Zellen weniger oder zumindest nicht stärker beeinflusst. Unabhängig von der Grundstruktur der beiden Substanzgruppen trifft dies vor allem auf Lipide mit multivalenten Kopfgruppen wie Bis(2-Aminoethyl)aminoethylamid, Lysin oder mit Lysin verknüpftes Bis(2-Aminoethyl)aminoethylamid zu. Dabei ist zu erwähnen, dass der besonders hohe Gentransfer bei einer MA6-haltigen Probe auch noch nach einem Jahr Lagerung ohne zusätzliche Stabilisierung der Lösung ermittelt werden konnte.

Für die Malonsäurediamide konnte nachgewiesen werden, dass die Fluidisierung des lipophilen Molekülteils mittels Substitution der Hexadecylketten durch Oleylreste zu einer Verbesserung des Gentransfers führt. Dieser Effekt wurde bereits bei anderen Substanzklassen beobachtet. Auffällig ist außerdem, dass gerade für Lipide, die Lysin oder Bis(2-Aminoethyl)aminoethylamid als hydrophilen Teil enthalten, Cholesterol das besser geeignete Helferlipid ist. Werden die Kopfgruppen größer, ist DOPE die bessere Wahl, um kationische Liposomen mit möglichst hohen Gentransferraten herzustellen. Hier gilt jedoch zu beachten, dass bei Lipiden, die noch voluminösere basische Strukturen aufweisen, aufgrund der Tendenz zur Bildung von hexagonalen Phasen andere Colipide wie Phosphatidylcholine zur Kombination mit herangezogen werden sollten.

Bei den α -verzweigten Fettsäureamiden führen nur DOPE-haltige Liposomen zu nenneswertem Gentransfer. Besonders wenn die basische Aminosäure Lysin ins Molekül eingeführt wird, steigert dies die Fähigkeit zum DNA-Transport. Werden die Kopfgruppen durch Polyamine gestellt, bestätigen die biolgischen Untersuchungen die Ergebnisse von Monoschicht- und Röngtenreflektivitätstudien, wonach verzweigte Kopfgruppen DNA besser komplexieren als lineare. Die Modifizierungen der Fettsäurekettenlänge durch Verkürzung der α-Verzweigung wirken sich nachteilig aus. Vergleicht man Substanzen beider Lipidgruppen, die Lysin oder Bis(2-Aminoethyl)aminoethylamid enthalten untereinander, legen die an diesen beiden Zelllinien erhobenen Daten nahe, dass Malonsäurediamid-basierte Vektoren Gentransfer günstiger hinsichtlich und zytotoxischem Potenzial einzustufen sind.

Die Verträglichkeit der Lipoplexe ist neben der Zelllinie im Wesentlichen von Konzentration bzw. Menge an applizierten Proben abhängig. Auch diese Beobachtung stimmt mit Literaturdaten überein. Bei Lipiden wie MA8, VF3, VF4 zeigt sich, dass bei Liposomen, die einen höheren Anteil an Helferlipid und damit eine höhere Gesamtlipidkonzentration enthalten, die Zellviabilität nach Applikation stark abnimmt. Gerade die α-verzweigten Fettsäureamide zeigen, dass die Transfektion bei niedrigeren Liposomenkonzentrationen kein Vorteil sein muss, wenn dies mit einer erhöhten Toxizität

einhergeht. Alle untersuchten Liposomen beeinflussen bis auf sehr wenige Ausnahmen die Viabilität der Zellen. Dabei spielt es keine Rolle, ob die Liposomen Gentransfer ermöglichen oder nicht. Hohe Gentransferraten gehen fast immer mit einer gewissen Beeinflussung der Zellviabilität einher. Freilich kann dieses Außmaß stark variieren. Der Umkehrschluss, wonach Vektoren mit geringer Transfektionsrate weniger toxisch sind, ist nicht obligat.

Werden die Liposomen aus mehr als zwei Komponenten hergestellt, ergibt sich bezüglich Gentransfer und Toxizität kein Vorteil. Diese Liposomen weisen bei geringeren Transfektionseffizienzen zum Teil erhöhte Toxizität auf. Binäre Mischungen von Malonsäurediamiden sind somit günstiger einzustufen. Vor dem Hintergrund einer umfassenden Bewertung der Transfektionseigenschaften der kationischen Liposomen wurde die Enzymaktivität der β-Galactosidase zu verschiedenen Zeitpunkten analysiert, um besser einzuschätzen zu könenn, ob und wie lange das Enzym exprimiert wird. Hierbei zeigte sich, dass die Aufnahmegeschwindigkeit der Proben variieren kann und das Maximum der Enzymexpression zu unterschiedlichen Zeitpunkten erreicht wird. So können Proben, die nach 48 h geringe Transfektionseffizienzen zeigen, bereits nach 12 h viel höhere Werte erzielen. Hier sind es wiederum Lysin bzw. Bis(2-Aminoethyl)-aminoethylamid enthaltende Lipide, die in der Kombination mit Cholesterol hohe Expression des Enzyms über den gesamten gemessenen Zeitraum ermöglichen. Außerdem wurde herausgestellt, dass der nicht nachweisbare Gentransfer einiger Proben durch ungenügende Aufnahme der Lipoplexe in die Zellen bedingt sein kann.

Der Übergang der kationischen Vektoren zur *in-vivo* Applikation wird vor allem auch durch deren Empfindlichkeit gegenüber Serumproteinen erschwert. In ersten Studien zur Transfektion unter Serumeinfluss zeigten zwar auch die vorgestellten Liposomen eine Abnahme der Transferrate, allerdings nicht in dem Maße wie LipofectAmine[®] und SuperFect[®]. Mitunter erreichen die Proben sogar das Niveau, welches die kommerziell erhältlichen Produkte erzielen, wenn die Versuche in einem zeitlich begrenzten serumfreien Intervall stattfinden.

Zur Verbesserung des Gentransfers *in-vivo* müssen chemische Vektoren modifiziert werden und so werden sicherlich Partikel, die Vorteile von nicht-viralen und viralen Vektoren verbinden, in Zukunft eine größere Rolle spielen. Vermutlich wird es auch nicht den universell einsetzbaren Vektor geben, sondern dieser entsprechend der zu behandelnden Erkrankung "konstruiert" werden müssen. Die Zulassung von Gen-Therapeutika viralen Ursprungs in den USA und China zeigt, dass sich auch diese Therapieform etablieren wird, wenn auch nicht so schnell wie anfangs erwartet. Die Tatsache, dass die EAHP bereits Leitlinien zum Umgang mit Gen-Therapeutika verfasst hat, verdeutlicht, dass der hochkomplexe und spannende Bereich der somatischen Gentherapie auch innerhalb der Pharmazie zunehmend an Bedeutung gewinnt und sicherlich im nächsten Jahrzent in der Entwicklung voranschreiten wird.

5. Literaturverzeichnis

- 1. Kayser, E., and Kiderlen, A. F. (2003) *Nicht-viraler Gentransfer und Gentherapie*. Deutsche Apotheker Zeitung 143, 5839-5846
- 2. Breuning, M., Lungwitz, U., and Göpferich, A. (2008) *Bioaabaubare Polymere als Transporter ins Zellinnere*. Pharmazeutische Zeitung 153, 288-295
- 3. Rubanyi, G. M. (2001) *The future of human gene therapy*. Mol Aspects Med 22, 113-142
- 4. Miller, A. D. (1998) *Kationische Liposomen für die Gentherapie*. Angewandte Chemie 110, 1862-1880
- 5. Hunt, K. K., and Vorburger, S. A. (2002) *Tech.Sight. Gene therapy. Hurdles and hopes for cancer treatment.* Science 297, 415-416
- 6. Galanis, E., and Russell, S. (2001) *Cancer gene therapy clinical trials: lessons for the future*. Br J Cancer 85, 1432-1436
- 7. El-Aneed, A. (2004) *Current strategies in cancer gene therapy*. Eur J Pharmacol 498, 1-8
- 8. Kaplitt, M. G., Feigin, A., Tang, C., Fitzsimons, H. L., Mattis, P., Lawlor, P. A., Bland, R. J., Young, D., Strybing, K., Eidelberg, D., and During, M. J. (2007) Safety and tolerability of gene therapy with an adeno-associated virus (AAV) borne GAD gene for Parkinson's disease: an open label, phase I trial. Lancet 369, 2097-2105
- 9. Baekelandt, V., De Strooper, B., Nuttin, B., and Debyser, Z. (2000) *Gene therapeutic strategies for neurodegenerative diseases*. Curr Opin Mol Ther 2, 540-554
- 10. <u>http://bundesrecht.juris.de/eschg/ 5.html</u>. Bundesministerium der Justiz Gesetz zum Schutz der Embryonen Stand September 2009
- Blaese, R. M., Culver, K. W., Miller, A. D., Carter, C. S., Fleisher, T., Clerici, M., Shearer, G., Chang, L., Chiang, Y., Tolstoshev, P., Greenblatt, J. J., Rosenberg, S. A., Klein, H., Berger, M., Mullen, C. A., Ramsey, W. J., Muul, L., Morgan, R. A., and Anderson, W. F. (1995) *T lymphocyte-directed gene therapy for ADA-SCID: initial trial results after 4 years*. Science 270, 475-480
- 12. Walther, W., and Stein, U. (2000) *Viral vectors for gene transfer: a review of their use in the treatment of human diseases.* Drugs 60, 249-271
- 13. Gene Therapy Clinical Trials 1989-2009. <u>www.wiley.co.uk/genmed/clinical/</u>.
- 14. Walther, W., Stein, U., Fichtner, I., Voss, C., Schmidt, T., Schleef, M., Nellessen, T., and Schlag, P. M. (2002) *Intratumoral low-volume jet-injection for efficient nonviral gene transfer*. Mol Biotechnol 21, 105-115
- 15. Shi, F., Rakhmilevich, A. L., Heise, C. P., Oshikawa, K., Sondel, P. M., Yang, N. S., and Mahvi, D. M. (2002) *Intratumoral injection of interleukin-12 plasmid DNA, either naked or in complex with cationic lipid, results in similar tumor regression in a murine model.* Mol Cancer Ther 1, 949-957

- 16. Yang, J. P., and Huang, L. (1996) *Direct gene transfer to mouse melanoma by intratumor injection of free DNA*. Gene Ther 3, 542-548
- 17. Kawabata, K., Takakura, Y., and Hashida, M. (1995) The fate of plasmid DNA after intravenous injection in mice: involvement of scavenger receptors in its hepatic uptake. Pharm Res 12, 825-830
- 18. Lasic, D. D. (1997) *Liposomes in Gene Delivery*. Bota Raton New York: CRC Press. 0-8493-3109-9
- 19. Patil, S. D., Rhodes, D. G., and Burgess, D. J. (2005) *DNA-based therapeutics and DNA delivery systems: a comprehensive review.* Aaps J 7, E61-77
- 20. Wu, G. Y., and Wu, C. H. (1988) *Receptor-mediated gene delivery and expression in vivo*. J Biol Chem 263, 14621-14624
- 21. Zenke, M., Steinlein, P., Wagner, E., Cotten, M., Beug, H., and Birnstiel, M. L. (1990) *Receptor-mediated endocytosis of transferrin-polycation conjugates: an efficient way to introduce DNA into hematopoietic cells.* Proc Natl Acad Sci U S A 87, 3655-3659
- 22. Wagner, E., Zenke, M., Cotten, M., Beug, H., and Birnstiel, M. L. (1990) *Transferrin-polycation conjugates as carriers for DNA uptake into cells*. Proc Natl Acad Sci U S A 87, 3410-3414
- 23. Wagner, E., Cotten, M., Foisner, R., and Birnstiel, M. L. (1991) *Transferrin*polycation-DNA complexes: the effect of polycations on the structure of the complex and DNA delivery to cells. Proc Natl Acad Sci U S A 88, 4255-4259
- 24. Wagner, E., Cotten, M., Mechtler, K., Kirlappos, H., and Birnstiel, M. L. (1991) DNA-binding transferrin conjugates as functional gene-delivery agents: synthesis by linkage of polylysine or ethidium homodimer to the transferrin carbohydrate moiety. Bioconjug Chem 2, 226-231
- 25. Thurnher, M., Wagner, E., Clausen, H., Mechtler, K., Rusconi, S., Dinter, A., Birnstiel, M. L., Berger, E. G., and Cotten, M. (1994) *Carbohydrate receptormediated gene transfer to human T leukaemic cells*. Glycobiology 4, 429-435
- 26. Chen, X., Kube, D. M., Cooper, M. J., and Davis, P. B. (2008) *Cell surface nucleolin serves as receptor for DNA nanoparticles composed of pegylated polylysine and DNA*. Mol Ther 16, 333-342
- 27. Bonner, W. M. (1975) Protein migration into nuclei. I. Frog oocyte nuclei in vivo accumulate microinjected histones, allow entry to small proteins, and exclude large proteins. J Cell Biol 64, 421-430
- 28. Anderson, W. F. (1984) *Prospects for human gene therapy*. Science 226, 401-409
- 29. Fitzsimons, H. L., Bland, R. J., and During, M. J. (2002) *Promoters and regulatory elements that improve adeno-associated virus transgene expression in the brain.* Methods 28, 227-236
- 30. Walther, W., and Stein, U. (1996) *Cell type specific and inducible promoters for vectors in gene therapy as an approach for cell targeting.* J Mol Med 74, 379-392

- 31. Weeratna, R. D., Wu, T., Efler, S. M., Zhang, L., and Davis, H. L. (2001) Designing gene therapy vectors: avoiding immune responses by using tissuespecific promoters. Gene Ther 8, 1872-1878
- 32. Crooke, S. T. (1999) *Molecular mechanisms of action of antisense drugs*. Biochim Biophys Acta 1489, 31-44
- 33. Engels, J. W., and Uhlmann, E. (2000) *Chemistry of Oligonucleotides*. In Pharmaceutical Aspects of Oligonucleotides, C. Malvy and P. Couvreur, eds. London: Taylor & Francis, pp. 35-78
- Shoji, Y., Akhtar, S., Periasamy, A., Herman, B., and Juliano, R. L. (1991) Mechanism of cellular uptake of modified oligodeoxynucleotides containing methylphosphonate linkages. Nucleic Acids Res 19, 5543-5550
- Rubanyi, G. M. (2007) Gene Therapy Basic principles and the road from bench to beside. In Handbook of Pharmaceutical Biotechnology, S.C. Gad, ed. New Jersey: John Wiley & Sons, INC., pp. 945 - 970
- 36. Gardlik, R., Palffy, R., Hodosy, J., Lukacs, J., Turna, J., and Celec, P. (2005) *Vectors and delivery systems in gene therapy*. Med Sci Monit 11, RA110-121
- 37. Schrimpf, G. (2002) *Gentechnische Methoden: eine Sammlung von Arbeitsanleitungen für das molekularbiologische Labor*, 3. Auflage Edition. Berlin: Spektrum Akademischer Verlag. 3-8274-1103-3
- 38. Neumann, E., Schaefer-Ridder, M., Wang, Y., and Hofschneider, P. H. (1982) Gene transfer into mouse lyoma cells by electroporation in high electric fields. Embo J 1, 841-845
- 39. Klenchin, V. A., Sukharev, S. I., Serov, S. M., Chernomordik, L. V., and Chizmadzhev Yu, A. (1991) *Electrically induced DNA uptake by cells is a fast process involving DNA electrophoresis*. Biophys J 60, 804-811
- 40. Potter, H., Weir, L., and Leder, P. (1984) *Enhancer-dependent expression of human kappa immunoglobulin genes introduced into mouse pre-B lymphocytes by electroporation.* Proc Natl Acad Sci U S A 81, 7161-7165
- 41. Titomirov, A. V., Sukharev, S., and Kistanova, E. (1991) *In vivo electroporation and stable transformation of skin cells of newborn mice by plasmid DNA*. Biochim Biophys Acta 1088, 131-134
- 42. Yang, N. S., Burkholder, J., Roberts, B., Martinell, B., and McCabe, D. (1990) *In vivo and in vitro gene transfer to mammalian somatic cells by particle bombardment*. Proc Natl Acad Sci U S A 87, 9568-9572
- 43. Yang, N. S., and Sun, W. H. (1995) *Gene gun and other non-viral approaches for cancer gene therapy*. Nat Med 1, 481-483
- 44. Williams, R. S., Johnston, S. A., Riedy, M., DeVit, M. J., McElligott, S. G., and Sanford, J. C. (1991) *Introduction of foreign genes into tissues of living mice by DNA-coated microprojectiles*. Proc Natl Acad Sci U S A 88, 2726-2730
- 45. Cheng, L., Ziegelhoffer, P. R., and Yang, N. S. (1993) *In vivo promoter activity and transgene expression in mammalian somatic tissues evaluated by using particle bombardment*. Proc Natl Acad Sci U S A 90, 4455-4459

- 46. Sun, W. H., Burkholder, J. K., Sun, J., Culp, J., Turner, J., Lu, X. G., Pugh, T. D., Ershler, W. B., and Yang, N. S. (1995) *In vivo cytokine gene transfer by gene gun reduces tumor growth in mice*. Proc Natl Acad Sci U S A 92, 2889-2893
- 47. Edelstein, M. L., Abedi, M. R., and Wixon, J. (2007) *Gene therapy clinical trials* worldwide to 2007--an update. J Gene Med 9, 833-842
- 48. Römpp (2000) *Lexikon Biochemie und Molekularbiologie*. Stuttgart: Georg Thieme Verlag. 3-13-116681-9
- 49. Weiss, R. A., and Tailor, C. S. (1995) *Retrovirus receptors*. Cell 82, 531-533
- 50. Salmons, B., and Günzburg, W. H. (1997) *Retroviral Vectors*. In Concepts in Gene Therapy, M. Strauss and J.A. Barrenger, eds. New York: Walter de Gruyter, pp. 3-24
- 51. Miller, D. G., Adam, M. A., and Miller, A. D. (1990) *Gene transfer by retrovirus* vectors occurs only in cells that are actively replicating at the time of infection. Mol Cell Biol 10, 4239-4242
- 52. Buchschacher, G. L., Jr., and Wong-Staal, F. (2000) *Development of lentiviral* vectors for gene therapy for human diseases. Blood 95, 2499-2504
- 53. Lewis, P. F., and Emerman, M. (1994) Passage through mitosis is required for oncoretroviruses but not for the human immunodeficiency virus. J Virol 68, 510-516
- 54. Pang, S., Kang, M. K., Kung, S., Yu, D., Lee, A., Poon, B., Chen, I. S., Lindemann, B., and Park, N. H. (2001) *Anticancer effect of a lentiviral vector capable of expressing HIV-1 Vpr.* Clin Cancer Res 7, 3567-3573
- 55. Aiuti, A., Cattaneo, F., Galimberti, S., Benninghoff, U., Cassani, B., Callegaro, L., Scaramuzza, S., Andolfi, G., Mirolo, M., Brigida, I., Tabucchi, A., Carlucci, F., Eibl, M., Aker, M., Slavin, S., Al-Mousa, H., Al Ghonaium, A., Ferster, A., Duppenthaler, A., Notarangelo, L., Wintergerst, U., Buckley, R. H., Bregni, M., Marktel, S., Valsecchi, M. G., Rossi, P., Ciceri, F., Miniero, R., Bordignon, C., and Roncarolo, M. G. (2009) *Gene therapy for immunodeficiency due to adenosine deaminase deficiency*. N Engl J Med 360, 447-458
- Cavazzana-Calvo, M., Hacein-Bey, S., de Saint Basile, G., Gross, F., Yvon, E., Nusbaum, P., Selz, F., Hue, C., Certain, S., Casanova, J. L., Bousso, P., Deist, F. L., and Fischer, A. (2000) Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 288, 669-672
- 57. Howe, S. J., Mansour, M. R., Schwarzwaelder, K., Bartholomae, C., Hubank, M., Kempski, H., Brugman, M. H., Pike-Overzet, K., Chatters, S. J., de Ridder, D., Gilmour, K. C., Adams, S., Thornhill, S. I., Parsley, K. L., Staal, F. J., Gale, R. E., Linch, D. C., Bayford, J., Brown, L., Quaye, M., Kinnon, C., Ancliff, P., Webb, D. K., Schmidt, M., von Kalle, C., Gaspar, H. B., and Thrasher, A. J. (2008) *Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID-X1 patients*. J Clin Invest 118, 3143-3150
- 58. Winckler, T. (2009) *Aktueller Stand der Gentherapie der schweren Immundefizienz*. Pharmazie in unserer Zeit 38, 204-206

- Hacein-Bey-Abina, S., Garrigue, A., Wang, G. P., Soulier, J., Lim, A., Morillon, E., Clappier, E., Caccavelli, L., Delabesse, E., Beldjord, K., Asnafi, V., MacIntyre, E., Dal Cortivo, L., Radford, I., Brousse, N., Sigaux, F., Moshous, D., Hauer, J., Borkhardt, A., Belohradsky, B. H., Wintergerst, U., Velez, M. C., Leiva, L., Sorensen, R., Wulffraat, N., Blanche, S., Bushman, F. D., Fischer, A., and Cavazzana-Calvo, M. (2008) *Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1*. J Clin Invest 118, 3132-3142
- 60. Yeh, P., Dedieu, J.-F., Vigne, E., Orsini, C., and Perricaudet, M. (1997) *Adenoviral Vectors.* In Concepts in Gene Therapy, M. Strauss and J.A. Barrenger, eds. New York: Walter de Gruyter, pp. 25-42
- 61. Roy, I., Holle, L., Song, W., Holle, E., Wagner, T., and Yu, X. (2002) *Efficient* translocation and apoptosis induction by adenovirus encoded VP22-p53 fusion protein in human tumor cells in vitro. Anticancer Res 22, 3185-3189
- 62. Heise, C., Hermiston, T., Johnson, L., Brooks, G., Sampson-Johannes, A., Williams, A., Hawkins, L., and Kirn, D. (2000) *An adenovirus E1A mutant that demonstrates potent and selective systemic anti-tumoral efficacy.* Nat Med 6, 1134-1139
- 63. Zabner, J., Couture, L. A., Gregory, R. J., Graham, S. M., Smith, A. E., and Welsh, M. J. (1993) Adenovirus-mediated gene transfer transiently corrects the chloride transport defect in nasal epithelia of patients with cystic fibrosis. Cell 75, 207-216
- 64. Knowles, M. R., Hohneker, K. W., Zhou, Z., Olsen, J. C., Noah, T. L., Hu, P. C., Leigh, M. W., Engelhardt, J. F., Edwards, L. J., Jones, K. R., and et al. (1995) *A controlled* study of adenoviral-vector-mediated gene transfer in the nasal *epithelium of patients with cystic fibrosis*. N Engl J Med 333, 823-831
- 65. Bellon, G., Michel-Calemard, L., Thouvenot, D., Jagneaux, V., Poitevin, F., Malcus, C., Accart, N., Layani, M. P., Aymard, M., Bernon, H., Bienvenu, J., Courtney, M., Doring, G., Gilly, B., Gilly, R., Lamy, D., Levrey, H., Morel, Y., Paulin, C., Perraud, F., Rodillon, L., Sene, C., So, S., Touraine-Moulin, F., Pavirani, A., and et al. (1997) *Aerosol administration of a recombinant adenovirus expressing CFTR to cystic fibrosis patients: a phase I clinical trial.* Hum Gene Ther 8, 15-25
- Raper, S. E., Yudkoff, M., Chirmule, N., Gao, G. P., Nunes, F., Haskal, Z. J., Furth, E. E., Propert, K. J., Robinson, M. B., Magosin, S., Simoes, H., Speicher, L., Hughes, J., Tazelaar, J., Wivel, N. A., Wilson, J. M., and Batshaw, M. L. (2002) A pilot study of in vivo liver-directed gene transfer with an adenoviral vector in partial ornithine transcarbamylase deficiency. Hum Gene Ther 13, 163-175
- 67. Peng, Z. (2005) *Current status of gendicine in China: recombinant human Ad-p53 agent for treatment of cancers.* Hum Gene Ther 16, 1016-1027
- 68. Kotin, R. M., Linden, R. M., and Berns, K. I. (1992) Characterization of a preferred site on human chromosome 19q for integration of adeno-associated virus DNA by non-homologous recombination. Embo J 11, 5071-5078
- 69. Koeberl, D. D., Alexander, I. E., Halbert, C. L., Russell, D. W., and Miller, A. D. (1997) *Persistent expression of human clotting factor IX from mouse liver after*

intravenous injection of adeno-associated virus vectors. Proc Natl Acad Sci U S A 94, 1426-1431

- Fisher, K. J., Jooss, K., Alston, J., Yang, Y., Haecker, S. E., High, K., Pathak, R., Raper, S. E., and Wilson, J. M. (1997) *Recombinant adeno-associated virus for muscle directed gene therapy*. Nat Med 3, 306-312
- 71. Latchman, D. S. (2001) *Gene delivery and gene therapy with herpes simplex virus-based vectors*. Gene 264, 1-9
- 72. El-Aneed, A. (2004) An overview of current delivery systems in cancer gene therapy. J Control Release 94, 1-14
- 73. Moriuchi, S., Wolfe, D., Tamura, M., Yoshimine, T., Miura, F., Cohen, J. B., and Glorioso, J. C. (2002) *Double suicide gene therapy using a replication defective herpes simplex virus vector reveals reciprocal interference in a malignant glioma model*. Gene Ther 9, 584-591
- 74. Kramm, C. M., Chase, M., Herrlinger, U., Jacobs, A., Pechan, P. A., Rainov, N. G., Sena-Esteves, M., Aghi, M., Barnett, F. H., Chiocca, E. A., and Breakefield, X. O. (1997) *Therapeutic efficiency and safety of a second-generation replication-conditional HSV1 vector for brain tumor gene therapy*. Hum Gene Ther 8, 2057-2068
- 75. Wolff, J. A., Malone, R. W., Williams, P., Chong, W., Acsadi, G., Jani, A., and Felgner, P. L. (1990) *Direct gene transfer into mouse muscle in vivo*. Science 247, 1465-1468
- 76. Mislick, K. A., and Baldeschwieler, J. D. (1996) *Evidence for the role of proteoglycans in cation-mediated gene transfer.* Proc Natl Acad Sci U S A 93, 12349-12354
- 77. Zhang, Y., Boado, R. J., and Pardridge, W. M. (2003) *Marked enhancement in gene expression by targeting the human insulin receptor.* J Gene Med 5, 157-163
- 78. Cristiano, R. J., and Roth, J. A. (1996) *Epidermal growth factor mediated DNA delivery into lung cancer cells via the epidermal growth factor receptor.* Cancer Gene Ther 3, 4-10
- 79. MacKay, J. A., Li, W., Huang, Z., Dy, E. E., Huynh, G., Tihan, T., Collins, R., Deen, D. F., and Szoka, F. C., Jr. (2008) *HIV TAT peptide modifies the distribution of DNA nanolipoparticles following convection-enhanced delivery*. Mol Ther 16, 893-900
- 80. Brodsky, F. M., Chen, C. Y., Knuehl, C., Towler, M. C., and Wakeham, D. E. (2001) *Biological basket weaving: formation and function of clathrin-coated vesicles*. Annu Rev Cell Dev Biol 17, 517-568
- 81. Parton, R. G., and Richards, A. A. (2003) *Lipid rafts and caveolae as portals for endocytosis: new insights and common mechanisms*. Traffic 4, 724-738
- 82. Boktov, J., Hirsch-Lerner, D., and Barenholz, Y. (2007) *Characterization of the interplay between the main factors contributing to lipoplex-mediated transfection in cell cultures.* J Gene Med 9, 884-893
- 83. Gao, X., Kim, K. S., and Liu, D. (2007) *Nonviral gene delivery: what we know and what is next.* Aaps J 9, E92-104

- 84. Wu, G. Y., and Wu, C. H. (1987) *Receptor-mediated in vitro gene transformation* by a soluble DNA carrier system. J Biol Chem 262, 4429-4432
- 85. Ward, C. M., Read, M. L., and Seymour, L. W. (2001) Systemic circulation of poly(L-lysine)/DNA vectors is influenced by polycation molecular weight and type of DNA: differential circulation in mice and rats and the implications for human gene therapy. Blood 97, 2221-2229
- 86. Dash, P. R., Read, M. L., Barrett, L. B., Wolfert, M. A., and Seymour, L. W. (1999) *Factors affecting blood clearance and in vivo distribution of polyelectrolyte complexes for gene delivery*. Gene Ther 6, 643-650
- Konstan, M. W., Davis, P. B., Wagener, J. S., Hilliard, K. A., Stern, R. C., Milgram, L. J., Kowalczyk, T. H., Hyatt, S. L., Fink, T. L., Gedeon, C. R., Oette, S. M., Payne, J. M., Muhammad, O., Ziady, A. G., Moen, R. C., and Cooper, M. J. (2004) Compacted DNA nanoparticles administered to the nasal mucosa of cystic fibrosis subjects are safe and demonstrate partial to complete cystic fibrosis transmembrane regulator reconstitution. Hum Gene Ther 15, 1255-1269
- 88. Boussif, O., Lezoualc'h, F., Zanta, M. A., Mergny, M. D., Scherman, D., Demeneix, B., and Behr, J. P. (1995) *A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine*. Proc Natl Acad Sci U S A 92, 7297-7301
- 89. Sonawane, N. D., Szoka, F. C., Jr., and Verkman, A. S. (2003) *Chloride* accumulation and swelling in endosomes enhances DNA transfer by polyamine-DNA polyplexes. J Biol Chem 278, 44826-44831
- 90. Akinc, A., and Langer, R. (2002) *Measuring the pH environment of DNA delivered* using nonviral vectors: implications for lysosomal trafficking. Biotechnol Bioeng 78, 503-508
- 91. Tiera, M. J., Winnik, F. O., and Fernandes, J. C. (2006) Synthetic and natural polycations for gene therapy: state of the art and new perspectives. Curr Gene Ther 6, 59-71
- 92. Gautam, A., Densmore, C. L., Xu, B., and Waldrep, J. C. (2000) *Enhanced gene expression in mouse lung after PEI-DNA aerosol delivery*. Mol Ther 2, 63-70
- 93. Kichler, A. (2004) *Gene transfer with modified polyethylenimines*. J Gene Med 6 Suppl 1, S3-10
- 94. Moffatt, S., Wiehle, S., and Cristiano, R. J. (2006) *A multifunctional PEI-based cationic polyplex for enhanced systemic p53-mediated gene therapy.* Gene Ther 13, 1512-1523
- 95. Malek, A., Czubayko, F., and Aigner, A. (2008) *PEG grafting of polyethylenimine* (*PEI*) exerts different effects on DNA transfection and siRNA-induced gene targeting efficacy. J Drug Target 16, 124-139
- 96. Mao, S., Neu, M., Germershaus, O., Merkel, O., Sitterberg, J., Bakowsky, U., and Kissel, T. (2006) *Influence of polyethylene glycol chain length on the physicochemical and biological properties of poly(ethylene imine)-graft-poly(ethylene glycol) block copolymer/SiRNA polyplexes*. Bioconjug Chem 17, 1209-1218

- 97. Breunig, M., Lungwitz, U., Liebl, R., and Goepferich, A. (2007) *Breaking up the correlation between efficacy and toxicity for nonviral gene delivery*. Proc Natl Acad Sci U S A 104, 14454-14459
- 98. Russ, V., Elfberg, H., Thoma, C., Kloeckner, J., Ogris, M., and Wagner, E. (2008) Novel degradable oligoethylenimine acrylate ester-based pseudodendrimers for in vitro and in vivo gene transfer. Gene Ther 15, 18-29
- 99. Schaffert, D., and Wagner, E. (2008) *Gene therapy progress and prospects: synthetic polymer-based systems*. Gene Ther 15, 1131-1138
- 100. Müller, R. H., and Hildebrand, G. E. (1998) *Pharmazeutische Technologie: Moderne Arzneiformen*, 2. erweiterte Auflage Edition. Wissenschaftliche Verlags-Gesellschaft: Stuttgart. 3-8047-1549-4
- 101. New York Academy of Science. (1977) *The use of liposomes in biology and medicine*. Conference Proceedings
- 102. Felgner, P. L., Gadek, T. R., Holm, M., Roman, R., Chan, H. W., Wenz, M., Northrop, J. P., Ringold, G. M., and Danielsen, M. (1987) *Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure.* Proc Natl Acad Sci U S A 84, 7413-7417
- 103. Leventis, R., and Silvius, J. R. (1990) Interactions of mammalian cells with lipid dispersions containing novel metabolizable cationic amphiphiles. Biochim Biophys Acta 1023, 124-132
- 104. Felgner, J. H., Kumar, R., Sridhar, C. N., Wheeler, C. J., Tsai, Y. J., Border, R., Ramsey, P., Martin, M., and Felgner, P. L. (1994) *Enhanced gene delivery and mechanism studies with a novel series of cationic lipid formulations.* J Biol Chem 269, 2550-2561
- 105. Liu, D., Ren, T., and Gao, X. (2003) *Cationic transfection lipids*. Curr Med Chem 10, 1307-1315
- 106. van der Woude, I., Wagenaar, A., Meekel, A. A., ter Beest, M. B., Ruiters, M. H., Engberts, J. B., and Hoekstra, D. (1997) *Novel pyridinium surfactants for efficient, nontoxic in vitro gene delivery*. Proc Natl Acad Sci U S A 94, 1160-1165
- 107. Braunlin, W. H., Strick, T. J., and Record, M. T., Jr. (1982) *Equilibrium dialysis* studies of polyamine binding to DNA. Biopolymers 21, 1301-1314
- 108. Ewert, K., Ahmad, A., Evans, H. M., Schmidt, H. W., and Safinya, C. R. (2002) *Efficient synthesis and cell-transfection properties of a new multivalent cationic lipid for nonviral gene delivery*. J Med Chem 45, 5023-5029
- 109. Takahashi, T., Kono, K., Itoh, T., Emi, N., and Takagishi, T. (2003) Synthesis of novel cationic lipids having polyamidoamine dendrons and their transfection activity. Bioconjug Chem 14, 764-773
- 110. Spector, M. S., and Schnur, J. M. (1997) *DNA ordering on a lipid membrane*. Science 275, 791-792
- 111. Zuhorn, I. S., Oberle, V., Visser, W. H., Engberts, J. B., Bakowsky, U., Polushkin, E., and Hoekstra, D. (2002) Phase behavior of cationic amphiphiles and their mixtures with helper lipid influences lipoplex shape, DNA translocation, and transfection efficiency. Biophys J 83, 2096-2108

- 112. Heyes, J. A., Niculescu-Duvaz, D., Cooper, R. G., and Springer, C. J. (2002) Synthesis of novel cationic lipids: effect of structural modification on the efficiency of gene transfer. J Med Chem 45, 99-114
- 113. Takahashi, T., Kojima, C., Harada, A., and Kono, K. (2007) *Alkyl chain moieties* of polyamidoamine dendron-bearing lipids influence their function as a nonviral gene vector. Bioconjug Chem 18, 1349-1354
- 114. Gao, X., and Huang, L. (1991) *A novel cationic liposome reagent for efficient transfection of mammalian cells*. Biochem Biophys Res Commun 179, 280-285
- 115. Stewart, L., Manvell, M., Hillery, E., Etheridge, C. J., Cooper, R. G., Stark, H., van-Heel, M., Preuss, M., Alton, E. W. F. W., and Miller, A. D. (2001) *Physico-chemical analysis of cationic liposome–DNA complexes (lipoplexes) with respect to in vitro and in vivo gene delivery efficiency*. J. Chem. Soc., Perkin Trans. 2, 624-632
- 116. Aissaoui, A., Oudrhiri, N., Petit, L., Hauchecorne, M., Kan, E., Sainlos, M., Julia, S., Navarro, J., Vigneron, J. P., Lehn, J. M., and Lehn, P. (2002) *Progress in gene delivery by cationic lipids: guanidinium-cholesterol-based systems as an example*. Curr Drug Targets 3, 1-16
- 117. Densmore, C. L., Giddings, T. H., Waldrep, J. C., Kinsey, B. M., and Knight, V. (1999) *Gene transfer by guanidinium-cholesterol: dioleoylphosphatidyl-ethanolamine liposome-DNA complexes in aerosol.* J Gene Med 1, 251-264
- Hyde, S. C., Southern, K. W., Gileadi, U., Fitzjohn, E. M., Mofford, K. A., Waddell, B. E., Gooi, H. C., Goddard, C. A., Hannavy, K., Smyth, S. E., Egan, J. J., Sorgi, F. L., Huang, L., Cuthbert, A. W., Evans, M. J., Colledge, W. H., Higgins, C. F., Webb, A. K., and Gill, D. R. (2000) *Repeat administration of DNA/liposomes to the nasal epithelium of patients with cystic fibrosis*. Gene Ther 7, 1156-1165
- Alton, E. W., Stern, M., Farley, R., Jaffe, A., Chadwick, S. L., Phillips, J., Davies, J., Smith, S. N., Browning, J., Davies, M. G., Hodson, M. E., Durham, S. R., Li, D., Jeffery, P. K., Scallan, M., Balfour, R., Eastman, S. J., Cheng, S. H., Smith, A. E., Meeker, D., and Geddes, D. M. (1999) *Cationic lipid-mediated CFTR gene transfer to the lungs and nose of patients with cystic fibrosis: a double-blind placebo-controlled trial*. Lancet 353, 947-954
- 120. Davis, P. B., and Cooper, M. J. (2007) Vectors for airway gene delivery. Aaps J 9, E11-17
- 121. Veelken, H., Mackensen, A., Lahn, M., Kohler, G., Becker, D., Franke, B., Brennscheidt, U., Kulmburg, P., Rosenthal, F. M., Keller, H., Hasse, J., Schultze-Seemann, W., Farthmann, E. H., Mertelsmann, R., and Lindemann, A. (1997) *A phase-I clinical study of autologous tumor cells plus interleukin-2-genetransfected allogeneic fibroblasts as a vaccine in patients with cancer.* Int J Cancer 70, 269-277
- 122. Stopeck, A. T., Jones, A., Hersh, E. M., Thompson, J. A., Finucane, D. M., Gutheil, J. C., and Gonzalez, R. (2001) *Phase II study of direct intralesional gene transfer of allovectin-7, an HLA-B7/beta2-microglobulin DNA-liposome complex, in patients with metastatic melanoma.* Clin Cancer Res 7, 2285-2291
- 123. Meijer, S. L., Dols, A., Urba, W. J., Hu, H. M., Smith, I. J., Vetto, J., Wood, W., Doran, T., Chu, Y., Sayaharuban, P., Alvord, W. G., and Fox, B. A. (2002) Adoptive cellular therapy with tumor vaccine draining lymph node lymphocytes

after vaccination with HLA-B7/beta2-microglobulin gene-modified autologous tumor cells. J Immunother 25, 359-372

- 124. Mintzer, M. A., and Simanek, E. E. (2009) *Nonviral vectors for gene delivery*. Chem Rev 109, 259-302
- 125. Li, W., and Szoka, F. C., Jr. (2007) *Lipid-based nanoparticles for nucleic acid delivery*. Pharm Res 24, 438-449
- 126. Mukherjee, K., Sen, J., and Chaudhuri, A. (2005) *Common co-lipids, in synergy, impart high gene transfer properties to transfection-incompetent cationic lipids.* FEBS Lett 579, 1291-1300
- 127. Koltover, I., Salditt, T., Radler, J. O., and Safinya, C. R. (1998) An inverted hexagonal phase of cationic liposome-DNA complexes related to DNA release and delivery. Science 281, 78-81
- 128. Simberg, D., Danino, D., Talmon, Y., Minsky, A., Ferrari, M. E., Wheeler, C. J., and Barenholz, Y. (2001) *Phase behavior, DNA ordering, and size instability of cationic lipoplexes. Relevance to optimal transfection activity.* J Biol Chem 276, 47453-47459
- 129. Zuhorn, I. S., Engberts, J. B., and Hoekstra, D. (2007) *Gene delivery by cationic lipid vectors: overcoming cellular barriers*. Eur Biophys J 36, 349-362
- Zuhorn, I. S., Bakowsky, U., Polushkin, E., Visser, W. H., Stuart, M. C., Engberts, J. B., and Hoekstra, D. (2005) *Nonbilayer phase of lipoplex-membrane mixture determines endosomal escape of genetic cargo and transfection efficiency*. Mol Ther 11, 801-810
- 131. Ma, B., Zhang, S., Jiang, H., Zhao, B., and Lv, H. (2007) *Lipoplex morphologies and their influences on transfection efficiency in gene delivery*. J Control Release 123, 184-194
- 132. Xu, Y., and Szoka, F. C., Jr. (1996) *Mechanism of DNA release from cationic liposome/DNA complexes used in cell transfection.* Biochemistry 35, 5616-5623
- 133. Farhood, H., Serbina, N., and Huang, L. (1995) *The role of dioleoyl phosphatidylethanolamine in cationic liposome mediated gene transfer.* Biochim Biophys Acta 1235, 289-295
- 134. Bell, P. C., Bergsma, M., Dolbnya, I. P., Bras, W., Stuart, M. C., Rowan, A. E., Feiters, M. C., and Engberts, J. B. (2003) *Transfection mediated by gemini surfactants: engineered escape from the endosomal compartment*. J Am Chem Soc 125, 1551-1558
- 135. Felgner, P. L., and Ringold, G. M. (1989) *Cationic liposome-mediated transfection*. Nature 337, 387-388
- 136. Radler, J. O., Koltover, I., Salditt, T., and Safinya, C. R. (1997) *Structure of DNA-cationic liposome complexes: DNA intercalation in multilamellar membranes in distinct interhelical packing regimes.* Science 275, 810-814
- 137. Siegel, D. P., and Epand, R. M. (1997) *The mechanism of lamellar-to-inverted hexagonal phase transitions in phosphatidylethanolamine: implications for membrane fusion mechanisms*. Biophys J 73, 3089-3111

- 138. Ghirlando, R., Wachtel, E. J., Arad, T., and Minsky, A. (1992) *DNA packaging induced by micellar aggregates: a novel in vitro DNA condensation system.* Biochemistry 31, 7110-7119
- 139. Ewert, K. K., Evans, H. M., Zidovska, A., Bouxsein, N. F., Ahmad, A., and Safinya, C. R. (2006) *A columnar phase of dendritic lipid-based cationic liposome-DNA complexes for gene delivery: hexagonally ordered cylindrical micelles embedded in a DNA honeycomb lattice.* J Am Chem Soc 128, 3998-4006
- 140. Hafez, I. M., and Cullis, P. R. (2001) *Roles of lipid polymorphism in intracellular delivery*. Adv Drug Deliv Rev 47, 139-148
- 141. Hoekstra, D., Rejman, J., Wasungu, L., Shi, F., and Zuhorn, I. (2007) *Gene delivery by cationic lipids: in and out of an endosome*. Biochem Soc Trans 35, 68-71
- 142. Tu, Y., and Kim, J. S. (2008) A fusogenic segment of glycoprotein H from herpes simplex virus enhances transfection efficiency of cationic liposomes. J Gene Med 10, 646-654
- 143. Hama, S., Akita, H., Ito, R., Mizuguchi, H., Hayakawa, T., and Harashima, H. (2006) *Quantitative comparison of intracellular trafficking and nuclear transcription between adenoviral and lipoplex systems*. Mol Ther 13, 786-794
- 144. Woodle, M. C., Collins, L. R., Sponsler, E., Kossovsky, N., Papahadjopoulos, D., and Martin, F. J. (1992) Sterically stabilized liposomes. Reduction in electrophoretic mobility but not electrostatic surface potential. Biophys J 61, 902-910
- 145. Mahato, R. I., Kawabata, K., Takakura, Y., and Hashida, M. (1995) *In vivo disposition characteristics of plasmid DNA complexed with cationic liposomes.* J Drug Target 3, 149-157
- 146. Simberg, D., Weisman, S., Talmon, Y., Faerman, A., Shoshani, T., and Barenholz, Y. (2003) *The role of organ vascularization and lipoplex-serum initial contact in intravenous murine lipofection.* J Biol Chem 278, 39858-39865
- 147. Li, S., Tseng, W. C., Stolz, D. B., Wu, S. P., Watkins, S. C., and Huang, L. (1999) Dynamic changes in the characteristics of cationic lipidic vectors after exposure to mouse serum: implications for intravenous lipofection. Gene Ther 6, 585-594
- 148. Simberg, D., Weisman, S., Talmon, Y., and Barenholz, Y. (2004) *DOTAP (and other cationic lipids): chemistry, biophysics, and transfection.* Crit Rev Ther Drug Carrier Syst 21, 257-317
- 149. Hain, I., and Pepen, G. (1990) *Phospholipids: Biochemical, Pharmaceutical and Analytical Conciderations*. New York: Plenum Press. 0-306-43698-1
- 150. Matsuura, M., Yamazaki, Y., Sugiyama, M., Kondo, M., Ori, H., Nango, M., and Oku, N. (2003) *Polycation liposome-mediated gene transfer in vivo*. Biochim Biophys Acta 1612, 136-143
- 151. Song, Y. K., Liu, F., Chu, S., and Liu, D. (1997) *Characterization of cationic liposome-mediated gene transfer in vivo by intravenous administration*. Hum Gene Ther 8, 1585-1594

- 152. Oja, C. D., Semple, S. C., Chonn, A., and Cullis, P. R. (1996) *Influence of dose* on *liposome clearance: critical role of blood proteins*. Biochim Biophys Acta 1281, 31-37
- 153. Fenske, D. B., MacLachlan, I., and Cullis, P. R. (2001) *Long-circulating vectors* for the systemic delivery of genes. Curr Opin Mol Ther 3, 153-158
- 154. Ambegia, E., Ansell, S., Cullis, P., Heyes, J., Palmer, L., and MacLachlan, I. (2005) *Stabilized plasmid-lipid particles containing PEG-diacylglycerols exhibit extended circulation lifetimes and tumor selective gene expression*. Biochim Biophys Acta 1669, 155-163
- 155. Guo, X., and Szoka, F. C., Jr. (2001) *Steric stabilization of fusogenic liposomes by a low-pH sensitive PEG--diortho ester--lipid conjugate*. Bioconjug Chem 12, 291-300
- 156. Schöning, T. (2009) *Leitlinie zum Umgang mit Gen-Therapeutika in der Apotheke*. Krankenhauspharmazie 30. Jahrgang, Heft 2, 49-56
- 157. Schulze, I. C. (2006) *Synthese von Lipiden für die liposomale Gentransfektion*. Dissertation, Martin-Luther-Universität Halle-Wittenberg
- 158. Folz, M. (2006) *Beiträge zur Synthese und Charakterisierung von Transfektionslipiden*. Diplomarbeit, Martin-Luther-Universität Halle-Wittenberg
- 159. Torchilin, V. P., and Weissig, V. (2003) *Liposomes: a practical approach*, 2. Auflage Edition. Oxford: University Press. 0-19-963655-9
- 160. Nitzsche, R. (1997) Photonenkorrelationsspektroskopie (PCS): Partikelgrößenmessung im Submikronbereich. CLB Chemie in Labor und Biotechnik 48, 422 - 427
- 161. Thomas, J. C. (1987) *The Determination of log normal particle size distributions by dynamic light scattering*. Journal of Colloid and Interface Scinece 177
- 162. Dingermann, T. (1999) *Biotechnik: Prinzipien und Anwendungen in Pharmazie und Medizin*. Wissenschaftliche Verlagsgesellschaft Stuttgart.3-8047-1597-4
- 163. Quiagen[®] Plasmid Purification handbook. www1.qiagen.com/Plasmid/handbooks.aspx.
- 164. Birnboim, H. C. (1983) A rapid alkaline extraction method for the isolation of plasmid DNA. Methods Enzymol 100, 243-255
- 165. Hull, N. R., Cherry, W. R., and Weaver, G. W. (1976) The origin and characteristics of a pig kidney cell strain LLC-PK₁. In Vitro 12, 670-677
- 166. Schlatter, P., Gutmann, H., and Drewe, J. (2006) *Primary porcine proximal tubular cells as a model for transepithelial drug transport in human kidney*. Eur J Pharm Sci 28, 141-154
- 167. Lever, J. E. (1986) *Expression of Differentiated Functions in Kidney Epithelial Cell Lines.* Mineral Electrolyte Metab 12, 14-19
- 168. Gstraunthaler, G., Pfaller, W., and Kotanko, P. (1985) *Biochemical characterization of renal epithelial cell cultures (LLC-PK1 and MDCK)*. Am J Physiol 248, F536-544

- 169. Gstraunthaler, G., Pfaller, W., and Kotanko, P. (1985) *Lack of fructose-1,6-bisphosphatase activity in LLC-PK1 cells*. Am J Physiol 248, C181-183
- 170. Brandt, T. (2008) Untersuchung und Charakterisierung von Inhibitoren des P-Glykoproteins zur Überwindung der Mutidrug Resistance, Dissertation. Martin-Luther-Universität Halle-Wittenberg
- 171. Giard, D. J., Aaronson, S. A., Todaro, G. J., Arnstein, P., Kersey, J. H., Dosik, H., and Parks, W. P. (1973) *In vitro cultivation of human tumors: establishment of cell lines derived from a series of solid tumors.* J Natl Cancer Inst 51, 1417-1423
- 172. Lieber, M., Smith, B., Szakal, A., Nelson-Rees, W., and Todaro, G. (1976) *A* continuous tumor-cell line from a human lung carcinoma with properties of type II alveolar epithelial cells. Int J Cancer 17, 62-70
- 173. Finkelstein, J. N. (1990) *Physiologic and toxicologic responses of alveolar type II cells*. Toxicology 60, 41-52
- 174. Castranova, V., Rabovsky, J., Tucker, J. H., and Miles, P. R. (1988) *The alveolar type II epithelial cell: a multifunctional pneumocyte*. Toxicol Appl Pharmacol 93, 472-483
- 175. Devereux, T. R., Diliberto, J. J., and Fouts, J. R. (1985) *Cytochrome P-450* monooxygenase, epoxide hydrolase and flavin monooxygenase activities in Clara cells and alveolar type II cells isolated from rabbit. Cell Biol Toxicol 1, 57-65
- 176. Devereux, T. R., Massey, T. E., Van Scott, M. R., Yankaskas, J., and Fouts, J. R. (1986) *Xenobiotic metabolism in human alveolar type II cells isolated by centrifugal elutriation and density gradient centrifugation*. Cancer Res 46, 5438-5443
- 177. Lindl, T. (2002) *Zell- und Gewebekultur: Einführung in die Grundlagen sowie ausgewählte Methoden und Anwendungen*, Volume 5. Auflage. Heidelberg-Berlin: Spektrum akademischer Verlag. 3-8274-1194-7
- 178. Boxberger, J. (2007) *Leitfaden für die Zell- und Gewebekultur*. WILEY-VHC Verlag GmbH & Co. KGaA Weinheim. 978-3527-31468-3
- 179. Ammon, H. P. T. (2004) *Hunius: pharmazeutisches Wörterbuch*, Volume 9. neu bearbeitete und erweiterte Auflage. Berlin-New York: Walter de Gruyter. 3-11-017475-8
- 180. Freshney, R. I. (1990) *Tierische Zellkultur ein Methodenhandbuch*, Deutsche Ausgabe der 2.Auflage. Berlin-New York: Walter de Gruyter
- 181. Mosmann, T. (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65, 55-63
- 182. Borenfreund, E., and Puerner, J. A. (1985) *Toxicity determined in vitro by morphological alterations and neutral red absorption*. Toxicol Lett 24, 119-124
- Horwitz, J. P., Chua, J., Curby, R. J., Tomson, A. J., Darooge, M. A., Fisher, B. E., Mauricio, J., and Klundt, I. (1964) Substrates for Cytochemical Demonstration of Enzyme Activity. I. Some Substituted 3-Indolyl-Beta-D-Glycopyranosides. J Med Chem 7, 574-575

- 184. MacGregor, G. R. (1991) Use of E. coli lacZ (b-Galactosidase) as a Reporter Gene. In Methods in Molecular Biology, Volume 7 Chapter 17, Gene Transfer and Expression Protocols Edition, E.J. Murray, ed. New York: The Humana Press Inc., pp. 217-235
- 185. Rosenberg, I. M. (1996) *Protein Analysis and Purification: Benchtop techniques*. Boston: Birkenhäuser. 0-8176-3717-6
- 186. Rehm, H. (2006) *Proteinbiochemie/Proteomics*, 5. Auflage. Elsevier GmbH. 978-3-8274-1726-8
- 187. Fotakis, G., and Timbrell, J. A. (2006) *In vitro cytotoxicity assays: comparison of LDH, neutral red, MTT and protein assay in hepatoma cell lines following exposure to cadmium chloride*. Toxicol Lett 160, 171-177
- 188. Herzenberg, L. A., and Sweet, R. G. (1976) *Fluorescence-activated cell sorting*. Sci Am 234, 108-117
- 189. Hirons, G. T., Fawcett, J. J., and Crissman, H. A. (1994) *TOTO and YOYO: new very bright fluorochromes for DNA content analyses by flow cytometry*. Cytometry 15, 129-140
- Rye, H. S., Yue, S., Wemmer, D. E., Quesada, M. A., Haugland, R. P., Mathies, R. A., and Glazer, A. N. (1992) Stable fluorescent complexes of double-stranded DNA with bis-intercalating asymmetric cyanine dyes: properties and applications. Nucleic Acids Res 20, 2803-2812
- 191. Spence, M. T. Z. (2005) *The Handbook—A Guide to Fluorescent Probes and Labeling Technologies*, Tenth edition. Invitrogen Molecular Probes. 0-9710636-4-8
- 192. Lleres, D., Dauty, E., Behr, J. P., Mely, Y., and Duportail, G. (2001) *DNA* condensation by an oxidizable cationic detergent. Interactions with lipid vesicles. Chem Phys Lipids 111, 59-71
- 193. Wong, M., Kong, S., Dragowska, W. H., and Bally, M. B. (2001) Oxazole yellow homodimer YOYO-1-labeled DNA: a fluorescent complex that can be used to assess structural changes in DNA following formation and cellular delivery of cationic lipid DNA complexes. Biochim Biophys Acta 1527, 61-72
- 194. Ogris, M., Wagner, E., and Steinlein, P. (2000) *A versatile assay to study cellular uptake of gene transfer complexes by flow cytometry*. Biochim Biophys Acta 1474, 237-243
- 195. Antipina, M. N., Dobner, B., Konovalov, O. V., Shapovalov, V. L., and Brezesinski, G. (2007) *Investigation of the protonation state of novel cationic lipids designed for gene transfection.* J Phys Chem B 111, 13845-13850
- 196. Nelson, D., and Cox, M. (2001) *Lehninger Biochemie*, 3. Aufllage. Berlin; Heidelberg; New York; Barcelona; Hongkong; London; Mailand; Paris: Springer. 3-540-41813-X
- 197. Kim, S. W., Ogawa, T., Tabata, Y., and Nishimura, I. (2004) *Efficacy and cytotoxicity of cationic-agent-mediated nonviral gene transfer into osteoblasts*. J Biomed Mater Res A 71, 308-315

- 198. Caracciolo, G., Pozzi, D., Caminiti, R., Marchini, C., Montani, M., Amici, A., and Amenitsch, H. (2007) *Transfection efficiency boost by designer multicomponent lipoplexes*. Biochim Biophys Acta 1768, 2280-2292
- 199. Ewert, K. K., Evans, H. M., Bouxsein, N. F., and Safinya, C. R. (2006) *Dendritic cationic lipids with highly charged headgroups for efficient gene delivery*. Bioconjug Chem 17, 877-888
- Lasic, D. D., and Barenholz, Y. (1996) Handbook of Nonmedical Applications of Liposomes: Theory and Basic Sciences, Volume I. Boca Raton, New York, London, Tokyo: CRC Press. 0-8493-4731-9
- 201. Cevc, G. (1993) *Phospholipids Handbook*. New York: MARCEL DEKKER, INC. 0-8247-9050-2
- 202. Tseng, W., Purvis, N. B., Haselton, F. R., and Giorgio, T. D. (1996) *Cationic liposomal delivery of plasmid to endothelial cells measured by quantitative flow cytometry*. Biotechnol Bioeng 50, 548-554
- Schaller, J., Gerber, S., Kaempfer, U., Lejon, S., and Trachsel, C. (2008) Human Blood Plasma Proteins. Chichester-West Sussex: John Wiley & Sons Ltd. 978-0-470-01674-9
- Nuhn, P., Brezesinski, G., Dobner, B., Forster, G., Gutheil, M., and Dorfler, H. D. (1986) Synthesis, calorimetry, and X-ray diffraction of lecithins containing branched fatty acid chains. Chem Phys Lipids 39, 221-236
- Antipina, M. N., Schulze, I., Heinze, M., Dobner, B., Langner, A., and Brezesinski, G. (2009) *Physical-chemical properties and transfection activity of cationic lipid/DNA complexes*. Chemphyschem 10, 2471-2479

6. Anhang

PCS Messung der Liposomen nach Lagerung

Probe	PCS Messung nach Herstellung		PCS Messung 4 Wochen		PCS Messung 12 Wochen	
	z-average [nm] PDI	S	z-average [nm] PDI	S	z-average [nm] PDI	S
MA1/DOPE 1:2 (n/n)	89 0.252	4 0.034	92 0.297	1 0.029	118 0.419	3 0.016
MA1/DOPE 1:1 (n/n)	122	1	116	3	115	8
MA1/DOPE 2:1 (n/n)	50	0	66	1	78	1
MA1/Cholesterol 1:2 (n/n)	0,290	0,021	0,142	0,014	0,248 Lösung ag	glomeriert
MA1/Cholesterol 1:1 (n/n)	0,291	0,010	0,230	0,018	170	1
MA1/Cholesetrol 2:1 (n/n)	0,355	0,041	0,315	0,051	0,253	0,002
MA2/DOPE 1:2 (n/n)	0,425 68	0,009	0,263 75	0,003	0,436 87	0,018 7
MA2/DOPE 1:1 (n/n)	0,390 99	0,017 10	0,390	0,012 25	0,485 111	0,029 8
	0,224 153	0,044 3	0,244 88	0,035	0,271 84	0,022 4
MAZ/DOPE 2:1 (n/n)	0,495	0,032	0,397	0,015	0,409	0,006
MA2/Cholesterol 1:2 (n/n)	0,388	0,034	0,410	0,029	0,415	0,026
MA2/Cholesterol 1:1 (n/n)	0,349	3 0,042	0,377	0,018	0,385	0,067
MA2/Cholesetrol 2:1 (n/n)	150 0,350	15 0,090	159 0,378	12 0,063	165 0,352	14 0,058
MA3/DOPE 1:2 (n/n)	220 0,551	7 0,028	220 0,555	4 0,013	193 0,482	6 0,051
MA3/DOPE 1:1 (n/n)	107 0.410	10 0.140	129 0.342	1	135 0.478	10 0.044
MA3/DOPE 2:1 (n/n)	120	1	122 0.259	1	126 0.326	10
MA3/Cholesterol 1:2 (n/n)	112	1	146	1	217	35
MA3/Cholesterol 1:1 (n/n)	107	3	131	1	163	13
MA3/Cholesetrol 2:1 (n/n)	151	2	67	1	91	4
MA3/Cholesetrol 3:1 (n/n)	0,415	0,024 23	0,333	0,010	0,446	0,021 8
	0,316 91	0,098 0	0,399 87	0,017 1	0,420 76	0,015 1
	0,405 104	0,008	0,411	0,013 1	0,368 106	0,009
MA4/DOPE 1:3 (n/n)	0,286	0,004	0,428	0,022	0,421	0,022
MA4/DOPE 1:2 (n/n)	0,342	0,073	0,255	0,016	0,374	0,010
MA4/DOPE 1:1 (n/n)	0,397	4 0,017	92 0,233	0,011	92 0,250	0,008
MA4/DOPE 2:1 (n/n)	90 0,281	3 0,079	92 0,248	0 0,012	120 0,306	24 0,059
MA4/Cholesterol 1:2 (n/n)	120 0.361	3 0.006	140 0.335	1 0.064	192 0.413	1 0.016
MA4/Cholesterol 1:1 (n/n)	63 0.236	1	113 0.314	1	134 0.369	2
MA4/Cholesterol 2:1 (n/n)	106	4	113	1	115	3
MA5/DOPE 1:2 (n/n)	113	1	135	4	116	1
MA5/DOPE 1:1 (n/n)	0,384 94	0,021	92	3	0,407	10
MA5/DOPF 2.1 (n/n)	0,335 114	0,009 1	0,392	0,029	0,487 111	0,011 2
	0,383	0,017	0,347	0,040	0,365	0,008

MA5/DOPE 3:1 (n/n)	121	1	132	3	128	5
	0,543	0,004	0,549	0,031	0,517	0,141
MA5/DOPE 4:1 (n/n)	82	3	106	1	84	1
	0,354	0,021	0,464	0,008	0,430	0,013
MA5/Cholostorol 1:2 (n/n)	145	14	131	4	150	15
WAS/Cholesteror 1.2 (II/II)	0,411	0,014	0,419	0,044	0,446	0,077
MAE/Chalastaral 4.4 (m/m)	102	2	111	2	111	5
WAS/Cholesterol 1:1 (n/n)	0,442	0,043	0,448	0,005	0,440	0,005
	92	11	111	3	101	3
MA5/Cholesterol 2:1 (n/n)	0.496	0.034	0.483	0.047	0.478	0.016
	96	2	105	2	101	1
MA6/DOPE 1:2 (n/n)	0.309	0.032	0 404	0.021	0 449	0.075
	143	1	141	13	160	7
MA6/DOPE 1:1 (n/n)	0.265	0.012	0.290	0.028	0.280	0.040
	87	16	78	1	81	2
MA6/DOPE 2:1 (n/n)	0.258	0.016	0.258	0.010	0 274	0.013
	80	1	79	6	80	2
MA6/DOPE 3:1 (n/n)	0 309	0.042	0.311	0.034	0.275	0.009
	122	0,042	274	0,034	129	0,003
MA6/Cholesterol 1:2 (n/n)	0.420	0.019	1 000	2	0.427	0.029
	109	0,010	1,000	0,000	0,427	0,030
MA6/Cholesterol 1:1 (n/n)	0.220	0.012	0.222	0.011	0.224	0.012
	0,239	17	0,200	0,011	101	0,012
MA6/Cholesterol 2:1 (n/n)	00	1/	3/	1	101	1
	0,308	0,043	0,221	0,002	0,218	0,002
MA6/Cholesterol 3:1 (n/n)	95	10	101	2	103	10
	0,236	0,002	0,403	0,004	0,453	0,070
MA7/DOPE 1:1 (n/n)	108	1	67	2	/0	2
	0,392	0,005	0,242	0,005	0,246	0,015
MA7/DOPE 2:1 (n/n)	99	2	153	12	95	1
	0,220	0,009	0,302	0,034	0,190	0,013
MA7/Cholesterol 1:2 (n/n)	288	12	Lösung ag	alomeriert	Lösung ag	alomeriert
	0,415	0,022	5.00	5	J	5
MA7/Cholesterol 1:1 (n/n)	139	0	100	4	181	2
	0,276	0,023	0,227	0,013	0,508	0,019
MA7/Cholesterol 2:1 (n/n)	134	1	137	7	149	1
	0,202	0,017	0,210	0,037	0,200	0,014
MA8/DOPE 1:2 (n/n)	96	5	99	13	87	2
MA8/DOPE 1.2 (n/n)		5	00		÷.	
MA8/DOPE 1:2 (n/n)	0,354	0,017	0,328	0,038	0,317	0,046
MA8/DOPE 1:2 (n/n)	0,354 131	0,017 46	0,328 93	0,038 8	0,317 60	0,046 4
MA8/DOPE 1:2 (n/n) MA8/DOPE 1:1 (n/n)	0,354 131 0,361	0,017 46 0,101	0,328 93 0,395	0,038 8 0,060	0,317 60 0,349	0,046 4 0,030
MA8/DOPE 1:2 (n/n) MA8/DOPE 1:1 (n/n) MA8/DOPE 2:1 (n/n)	0,354 131 0,361 318	0,017 46 0,101 10	0,328 93 0,395 354	0,038 8 0,060 3	0,317 60 0,349 339	0,046 4 0,030 14
MA8/DOPE 1:2 (n/n) MA8/DOPE 1:1 (n/n) MA8/DOPE 2:1 (n/n)	0,354 131 0,361 318 0,527	0,017 46 0,101 10 0,030	0,328 93 0,395 354 0,541	0,038 8 0,060 3 0,014	0,317 60 0,349 339 0,454	0,046 4 0,030 14 0,104
MA8/DOPE 1:2 (n/n) MA8/DOPE 1:1 (n/n) MA8/DOPE 2:1 (n/n) MA8/Cholesterol 1:3 (n/n)	0,354 131 0,361 318 0,527 127	0,017 46 0,101 10 0,030 7	0,328 93 0,395 354 0,541 218	0,038 8 0,060 3 0,014 2	0,317 60 0,349 339 0,454 253	0,046 4 0,030 14 0,104 4
MA8/DOPE 1:2 (n/n) MA8/DOPE 1:1 (n/n) MA8/DOPE 2:1 (n/n) MA8/Cholesterol 1:3 (n/n)	0,354 131 0,361 318 0,527 127 0,416	0,017 46 0,101 10 0,030 7 0,032	0,328 93 0,395 354 0,541 218 0,270	0,038 8 0,060 3 0,014 2 0,007	0,317 60 0,349 339 0,454 253 0,308	0,046 4 0,030 14 0,104 4 0,047
MA8/DOPE 1:2 (n/n) MA8/DOPE 1:1 (n/n) MA8/DOPE 2:1 (n/n) MA8/Cholesterol 1:3 (n/n) MA8/Cholesterol 1:2 (n/n)	0,354 131 0,361 318 0,527 127 0,416 111	0,017 46 0,101 10 0,030 7 0,032 8	0,328 93 0,395 354 0,541 218 0,270 150	0,038 8 0,060 3 0,014 2 0,007 18	0,317 60 0,349 339 0,454 253 0,308 145	0,046 4 0,030 14 0,104 4 0,047 4
MA8/DOPE 1:2 (n/n) MA8/DOPE 1:1 (n/n) MA8/DOPE 2:1 (n/n) MA8/Cholesterol 1:3 (n/n) MA8/Cholesterol 1:2 (n/n)	0,354 131 0,361 318 0,527 127 0,416 111 0,423	0,017 46 0,101 10 0,030 7 0,032 8 0,044	0,328 93 0,395 354 0,541 218 0,270 150 0,549	0,038 8 0,060 3 0,014 2 0,007 18 0,133	0,317 60 0,349 339 0,454 253 0,308 145 0,555	0,046 4 0,030 14 0,104 4 0,047 4 0,034
MA8/DOPE 1:2 (n/n) MA8/DOPE 1:1 (n/n) MA8/DOPE 2:1 (n/n) MA8/Cholesterol 1:3 (n/n) MA8/Cholesterol 1:2 (n/n)	0,354 131 0,361 318 0,527 127 0,416 111 0,423 90	0,017 46 0,101 10 0,030 7 0,032 8 0,044 4	0,328 93 0,395 354 0,541 218 0,270 150 0,549 95	0,038 8 0,060 3 0,014 2 0,007 18 0,133 2	0,317 60 0,349 339 0,454 253 0,308 145 0,555 95	0,046 4 0,030 14 0,104 4 0,047 4 0,034 8
MA8/DOPE 1:2 (n/n) MA8/DOPE 1:1 (n/n) MA8/DOPE 2:1 (n/n) MA8/Cholesterol 1:3 (n/n) MA8/Cholesterol 1:2 (n/n) MA8/Cholesterol 1:1 (n/n)	0,354 131 0,361 318 0,527 127 0,416 111 0,423 90 0,253	0,017 46 0,101 10 0,030 7 0,032 8 0,044 4 0,016	0,328 93 0,395 354 0,541 218 0,270 150 0,549 95 0,276	0,038 8 0,060 3 0,014 2 0,007 18 0,133 2 0,046	0,317 60 0,349 339 0,454 253 0,308 145 0,555 95 0,268	0,046 4 0,030 14 0,104 4 0,047 4 0,034 8 0,058
MA8/DOPE 1:2 (n/n) MA8/DOPE 1:1 (n/n) MA8/DOPE 2:1 (n/n) MA8/Cholesterol 1:3 (n/n) MA8/Cholesterol 1:2 (n/n) MA8/Cholesterol 1:1 (n/n) MA8/Cholesterol 2:1 (n/n)	0,354 131 0,361 318 0,527 127 0,416 111 0,423 90 0,253 89	0,017 46 0,101 10 0,030 7 0,032 8 0,044 4 0,016 5	0,328 93 0,395 354 0,541 218 0,270 150 0,549 95 0,276 97	0,038 8 0,060 3 0,014 2 0,007 18 0,133 2 0,046 1	0,317 60 0,349 339 0,454 253 0,308 145 0,555 95 0,268 99	0,046 4 0,030 14 0,104 4 0,047 4 0,034 8 0,058 3
MA8/DOPE 1:2 (n/n) MA8/DOPE 1:1 (n/n) MA8/DOPE 2:1 (n/n) MA8/Cholesterol 1:3 (n/n) MA8/Cholesterol 1:2 (n/n) MA8/Cholesterol 1:1 (n/n) MA8/Cholesterol 2:1 (n/n)	0,354 131 0,361 318 0,527 127 0,416 111 0,423 90 0,253 89 0,238	0,017 46 0,101 10 0,030 7 0,032 8 0,044 4 0,016 5 0,006	0,328 93 0,395 354 0,541 218 0,270 150 0,549 95 0,276 97 0,232	0,038 8 0,060 3 0,014 2 0,007 18 0,133 2 0,046 1 0,003	0,317 60 0,349 339 0,454 253 0,308 145 0,555 95 0,268 99 0,289	0,046 4 0,030 14 0,104 4 0,047 4 0,034 8 0,058 3 0,021
MA8/DOPE 1:2 (n/n) MA8/DOPE 1:1 (n/n) MA8/DOPE 2:1 (n/n) MA8/Cholesterol 1:3 (n/n) MA8/Cholesterol 1:2 (n/n) MA8/Cholesterol 1:1 (n/n) MA8/Cholesterol 2:1 (n/n)	0,354 131 0,361 318 0,527 127 0,416 111 0,423 90 0,253 89 0,238 79	0,017 46 0,101 10 0,030 7 0,032 8 0,044 4 0,016 5 0,006 1	0,328 93 0,395 354 0,541 218 0,270 150 0,549 95 0,276 97 0,232 130	0,038 8 0,060 3 0,014 2 0,007 18 0,133 2 0,046 1 0,003 8	0,317 60 0,349 339 0,454 253 0,308 145 0,555 95 0,268 99 0,289 83	0,046 4 0,030 14 0,104 4 0,047 4 0,034 8 0,058 3 0,021 1
MA8/DOPE 1:2 (n/n) MA8/DOPE 1:1 (n/n) MA8/DOPE 2:1 (n/n) MA8/Cholesterol 1:3 (n/n) MA8/Cholesterol 1:2 (n/n) MA8/Cholesterol 1:1 (n/n) MA8/Cholesterol 2:1 (n/n)	0,354 131 0,361 318 0,527 127 0,416 111 0,423 90 0,253 89 0,238 79 0,210	0,017 46 0,101 10 0,030 7 0,032 8 0,044 4 0,016 5 0,006 1 0,018	0,328 93 0,395 354 0,541 218 0,270 150 0,549 95 0,276 97 0,232 130 0,406	0,038 8 0,060 3 0,014 2 0,007 18 0,133 2 0,046 1 0,003 8 0,010	0,317 60 0,349 339 0,454 253 0,308 145 0,555 95 0,268 99 0,289 83 0,217	0,046 4 0,030 14 0,104 4 0,047 4 0,034 8 0,058 3 0,021 1 0,003
MA8/DOPE 1:2 (n/n) MA8/DOPE 1:1 (n/n) MA8/DOPE 2:1 (n/n) MA8/Cholesterol 1:3 (n/n) MA8/Cholesterol 1:2 (n/n) MA8/Cholesterol 1:1 (n/n) MA8/Cholesterol 2:1 (n/n) MA8/Cholesterol 3:1 (n/n)	0,354 131 0,361 318 0,527 127 0,416 111 0,423 90 0,253 89 0,238 79 0,210 191	0,017 46 0,101 10 0,030 7 0,032 8 0,044 4 0,016 5 0,006 1 0,018 3	0,328 93 0,395 354 0,541 218 0,270 150 0,549 95 0,276 97 0,232 130 0,406 114	0,038 8 0,060 3 0,014 2 0,007 18 0,133 2 0,046 1 0,003 8 0,010 3	0,317 60 0,349 339 0,454 253 0,308 145 0,555 95 0,268 99 0,289 83 0,217 104	0,046 4 0,030 14 0,104 4 0,047 4 0,034 8 0,058 3 0,021 1 0,003 2
MA8/DOPE 1:2 (n/n) MA8/DOPE 1:1 (n/n) MA8/DOPE 2:1 (n/n) MA8/Cholesterol 1:3 (n/n) MA8/Cholesterol 1:2 (n/n) MA8/Cholesterol 1:1 (n/n) MA8/Cholesterol 2:1 (n/n) MA8/Cholesterol 3:1 (n/n)	0,354 131 0,361 318 0,527 127 0,416 111 0,423 90 0,253 89 0,238 79 0,210 191 0,449	0,017 46 0,101 10 0,030 7 0,032 8 0,032 8 0,044 4 0,016 5 0,006 1 0,018 3 0,038	0,328 93 0,395 354 0,541 218 0,270 150 0,549 95 0,276 97 0,232 130 0,406 114 0,431	0,038 8 0,060 3 0,014 2 0,007 18 0,133 2 0,046 1 0,003 8 0,010 3 0,007	0,317 60 0,349 339 0,454 253 0,308 145 0,555 95 0,268 99 0,289 83 0,217 104 0,408	0,046 4 0,030 14 0,104 4 0,047 4 0,034 8 0,058 3 0,021 1 0,003 2 0,009
MA8/DOPE 1:2 (n/n) MA8/DOPE 1:1 (n/n) MA8/DOPE 2:1 (n/n) MA8/Cholesterol 1:3 (n/n) MA8/Cholesterol 1:2 (n/n) MA8/Cholesterol 1:1 (n/n) MA8/Cholesterol 2:1 (n/n) MA8/Cholesterol 3:1 (n/n) MA9/DOPE 1:2 (n/n)	0,354 131 0,361 318 0,527 127 0,416 111 0,423 90 0,253 89 0,253 89 0,238 79 0,210 191 0,449 426	0,017 46 0,101 10 0,030 7 0,032 8 0,032 8 0,044 4 0,016 5 0,006 1 0,018 3 0,038 6	0,328 93 0,395 354 0,541 218 0,270 150 0,549 95 0,276 97 0,232 130 0,406 114 0,431 510	0,038 8 0,060 3 0,014 2 0,007 18 0,133 2 0,046 1 0,003 8 0,010 3 0,007 19	0,317 60 0,349 339 0,454 253 0,308 145 0,555 95 0,268 99 0,289 83 0,217 104 0,408 511	0,046 4 0,030 14 0,104 4 0,047 4 0,034 8 0,058 3 0,021 1 0,003 2 0,009 26
MA8/DOPE 1:2 (n/n) MA8/DOPE 1:1 (n/n) MA8/DOPE 2:1 (n/n) MA8/Cholesterol 1:3 (n/n) MA8/Cholesterol 1:2 (n/n) MA8/Cholesterol 1:1 (n/n) MA8/Cholesterol 2:1 (n/n) MA8/Cholesterol 3:1 (n/n) MA9/DOPE 1:2 (n/n)	0,354 131 0,361 318 0,527 127 0,416 111 0,423 90 0,253 89 0,238 79 0,210 191 0,449 426 0,400	0,017 46 0,101 10 0,030 7 0,032 8 0,032 8 0,044 4 0,016 5 0,006 1 0,018 3 0,038 6 0,030	0,328 93 0,395 354 0,541 218 0,270 150 0,549 95 0,276 97 0,232 130 0,406 114 0,431 510 0,531	0,038 8 0,060 3 0,014 2 0,007 18 0,133 2 0,046 1 0,003 8 0,010 3 0,007 19 0,021	0,317 60 0,349 339 0,454 253 0,308 145 0,555 95 0,268 99 0,289 83 0,217 104 0,408 511 0,409	0,046 4 0,030 14 0,104 4 0,047 4 0,034 8 0,058 3 0,021 1 0,003 2 0,009 26 0,031
MA8/DOPE 1:2 (n/n) MA8/DOPE 1:1 (n/n) MA8/DOPE 2:1 (n/n) MA8/Cholesterol 1:3 (n/n) MA8/Cholesterol 1:2 (n/n) MA8/Cholesterol 1:1 (n/n) MA8/Cholesterol 2:1 (n/n) MA8/Cholesterol 3:1 (n/n) MA9/DOPE 1:2 (n/n) MA9/DOPE 1:1 (n/n)	0,354 131 0,361 318 0,527 127 0,416 111 0,423 90 0,253 89 0,238 79 0,210 191 0,449 426 0,400 121	0,017 46 0,101 10 0,030 7 0,032 8 0,032 8 0,044 4 0,016 5 0,006 1 0,018 3 0,038 6 0,030 2	0,328 93 0,395 354 0,541 218 0,270 150 0,549 95 0,276 97 0,232 130 0,406 114 0,431 510 0,531 120	0,038 8 0,060 3 0,014 2 0,007 18 0,133 2 0,046 1 0,003 8 0,010 3 0,007 19 0,021 3	0,317 60 0,349 339 0,454 253 0,308 145 0,555 95 0,268 99 0,289 83 0,217 104 0,408 511 0,409 114	0,046 4 0,030 14 0,104 4 0,047 4 0,034 8 0,058 3 0,021 1 0,003 2 0,009 26 0,031 2
MA8/DOPE 1:2 (n/n) MA8/DOPE 1:1 (n/n) MA8/DOPE 2:1 (n/n) MA8/Cholesterol 1:3 (n/n) MA8/Cholesterol 1:2 (n/n) MA8/Cholesterol 1:1 (n/n) MA8/Cholesterol 2:1 (n/n) MA8/Cholesterol 3:1 (n/n) MA9/DOPE 1:2 (n/n) MA9/DOPE 2:1 (n/n)	0,354 131 0,361 318 0,527 127 0,416 111 0,423 90 0,253 89 0,238 79 0,210 191 0,449 426 0,400 121 0,374	0,017 46 0,101 10 0,030 7 0,032 8 0,032 8 0,044 4 0,016 5 0,006 1 1 0,018 3 0,038 6 0,030 2 0,022	0,328 93 0,395 354 0,541 218 0,270 150 0,549 95 0,276 97 0,232 130 0,406 114 0,431 510 0,531 120 0,385	0,038 8 0,060 3 0,014 2 0,007 18 0,133 2 0,046 1 0,003 8 0,010 3 0,007 19 0,021 3 0,006	0,317 60 0,349 339 0,454 253 0,308 145 0,555 95 0,268 99 0,289 83 0,217 104 0,408 511 0,409 114 0,382	0,046 4 0,030 14 0,104 4 0,047 4 0,034 8 0,058 3 0,021 1 0,003 2 0,009 26 0,031 2 0,009
MA8/DOPE 1:2 (n/n) MA8/DOPE 1:1 (n/n) MA8/DOPE 2:1 (n/n) MA8/Cholesterol 1:3 (n/n) MA8/Cholesterol 1:2 (n/n) MA8/Cholesterol 1:1 (n/n) MA8/Cholesterol 2:1 (n/n) MA8/Cholesterol 3:1 (n/n) MA9/DOPE 1:2 (n/n) MA9/DOPE 2:1 (n/n) MA9/DOPE 2:1 (n/n)	0,354 131 0,361 318 0,527 127 0,416 111 0,423 90 0,253 89 0,238 79 0,210 191 0,449 426 0,400 121 0,374 140	0,017 46 0,101 10 0,030 7 0,032 8 0,032 8 0,044 4 0,016 5 0,006 1 1 0,018 3 0,038 6 0,030 2 0,022 6	0,328 93 0,395 354 0,541 218 0,270 150 0,549 95 0,276 97 0,232 130 0,406 114 0,431 510 0,531 120 0,385 161	0,038 8 0,060 3 0,014 2 0,007 18 0,133 2 0,046 1 0,003 8 0,010 3 0,007 19 0,021 3 0,006 1	0,317 60 0,349 339 0,454 253 0,308 145 0,555 95 0,268 99 0,289 83 0,217 104 0,408 511 0,409 114 0,382 190	0,046 4 0,030 14 0,104 4 0,047 4 0,034 8 0,058 3 0,021 1 0,003 2 0,009 26 0,031 2 0,009 3
MA8/DOPE 1:2 (n/n) MA8/DOPE 1:1 (n/n) MA8/DOPE 2:1 (n/n) MA8/Cholesterol 1:3 (n/n) MA8/Cholesterol 1:2 (n/n) MA8/Cholesterol 1:1 (n/n) MA8/Cholesterol 2:1 (n/n) MA8/Cholesterol 3:1 (n/n) MA9/DOPE 1:2 (n/n) MA9/DOPE 2:1 (n/n)	0,354 131 0,361 318 0,527 127 0,416 111 0,423 90 0,253 89 0,238 79 0,210 191 0,449 426 0,400 121 0,374 140 0,432	0,017 46 0,101 10 0,030 7 0,032 8 0,044 4 0,016 5 0,006 1 0,018 3 0,038 6 0,030 2 0,022 6 0,023	0,328 93 0,395 354 0,541 218 0,270 150 0,549 95 0,276 97 0,232 130 0,406 114 0,431 510 0,531 120 0,385 161 0,408	0,038 8 0,060 3 0,014 2 0,007 18 0,133 2 0,046 1 0,003 8 0,010 3 0,007 19 0,021 3 0,006 1 0,006 1 0,046	0,317 60 0,349 339 0,454 253 0,308 145 0,555 95 0,268 99 0,289 83 0,217 104 0,408 511 0,409 114 0,382 190 0,357	0,046 4 0,030 14 0,104 4 0,047 4 0,034 8 0,058 3 0,021 1 0,003 2 0,009 26 0,031 2 0,009 3 0,009 3 0,041
MA8/DOPE 1:2 (n/n) MA8/DOPE 1:1 (n/n) MA8/DOPE 2:1 (n/n) MA8/Cholesterol 1:3 (n/n) MA8/Cholesterol 1:2 (n/n) MA8/Cholesterol 1:1 (n/n) MA8/Cholesterol 2:1 (n/n) MA8/Cholesterol 3:1 (n/n) MA9/DOPE 1:2 (n/n) MA9/DOPE 2:1 (n/n) MA9/Cholesterol 1:2 (n/n)	0,354 131 0,361 318 0,527 127 0,416 111 0,423 90 0,253 89 0,238 79 0,210 191 0,449 426 0,400 121 0,374 140 0,432 94	0,017 46 0,101 10 0,030 7 0,032 8 0,044 4 0,016 5 0,006 1 0,018 3 0,038 6 0,030 2 0,022 6 0,023 1	0,328 93 0,395 354 0,541 218 0,270 150 0,549 95 0,276 97 0,232 130 0,406 114 0,431 510 0,531 120 0,385 161 0,408 96	0,038 8 0,060 3 0,014 2 0,007 18 0,133 2 0,046 1 0,003 8 0,010 3 0,007 19 0,021 3 0,006 1 0,006 1 0,046 1	0,317 60 0,349 339 0,454 253 0,308 145 0,555 95 0,268 99 0,289 83 0,217 104 0,408 511 0,409 114 0,382 190 0,357 83	0,046 4 0,030 14 0,104 4 0,047 4 0,034 8 0,058 3 0,021 1 0,003 2 0,009 26 0,031 2 0,009 26 0,031 2 0,009 3 0,009 3 0,041 5
MA8/DOPE 1:2 (n/n) MA8/DOPE 1:1 (n/n) MA8/DOPE 2:1 (n/n) MA8/Cholesterol 1:3 (n/n) MA8/Cholesterol 1:2 (n/n) MA8/Cholesterol 1:1 (n/n) MA8/Cholesterol 2:1 (n/n) MA8/Cholesterol 3:1 (n/n) MA9/DOPE 1:2 (n/n) MA9/DOPE 2:1 (n/n) MA9/Cholesterol 1:2 (n/n)	0,354 131 0,361 318 0,527 127 0,416 111 0,423 90 0,253 89 0,238 79 0,210 191 0,449 426 0,400 121 0,374 140 0,432 94 0,371	0,017 46 0,101 10 0,030 7 0,032 8 0,044 4 0,016 5 0,006 1 0,018 3 0,038 6 0,030 2 0,022 6 0,023 1 0,022	0,328 93 0,395 354 0,541 218 0,270 150 0,549 95 0,276 97 0,232 130 0,406 114 0,431 510 0,531 120 0,385 161 0,408 96 0,366	0,038 8 0,060 3 0,014 2 0,007 18 0,133 2 0,046 1 0,003 8 0,010 3 0,007 19 0,021 3 0,006 1 0,006 1 0,0046 1 0,0026	0,317 60 0,349 339 0,454 253 0,308 145 0,555 95 0,268 99 0,289 83 0,217 104 0,408 511 0,409 114 0,382 190 0,357 83 0,363	0,046 4 0,030 14 0,104 4 0,047 4 0,034 8 0,058 3 0,021 1 0,003 2 0,009 26 0,031 2 0,009 26 0,031 2 0,009 3 0,004 1 5 0,064
MA8/DOPE 1:2 (n/n) MA8/DOPE 1:1 (n/n) MA8/DOPE 2:1 (n/n) MA8/Cholesterol 1:3 (n/n) MA8/Cholesterol 1:2 (n/n) MA8/Cholesterol 1:1 (n/n) MA8/Cholesterol 2:1 (n/n) MA8/Cholesterol 3:1 (n/n) MA9/DOPE 1:2 (n/n) MA9/DOPE 1:2 (n/n) MA9/Cholesterol 1:2 (n/n) MA9/Cholesterol 1:1 (n/n)	0,354 131 0,361 318 0,527 127 0,416 111 0,423 90 0,253 89 0,238 79 0,210 191 0,449 426 0,400 121 0,374 140 0,432 94 0,371 107	0,017 46 0,101 10 0,030 7 0,032 8 0,044 4 0,016 5 0,006 1 0,018 3 0,038 6 0,030 2 0,022 6 0,023 1 0,022 4	0,328 93 0,395 354 0,541 218 0,270 150 0,549 95 0,276 97 0,232 130 0,406 114 0,431 510 0,531 120 0,385 161 0,408 96 0,366 103	0,038 8 0,060 3 0,014 2 0,007 18 0,133 2 0,046 1 0,003 8 0,010 3 0,007 19 0,021 3 0,006 1 0,026 1 0,026 1	0,317 60 0,349 339 0,454 253 0,308 145 0,555 95 0,268 99 0,289 83 0,217 104 0,408 511 0,409 114 0,382 190 0,357 83 0,363 102	0,046 4 0,030 14 0,104 4 0,047 4 0,034 8 0,058 3 0,021 1 0,003 2 0,009 26 0,009 26 0,009 26 0,009 26 0,009 3 0,004 1 5 0,064 1
MA8/DOPE 1:2 (n/n) MA8/DOPE 1:1 (n/n) MA8/DOPE 2:1 (n/n) MA8/Cholesterol 1:3 (n/n) MA8/Cholesterol 1:2 (n/n) MA8/Cholesterol 1:1 (n/n) MA8/Cholesterol 2:1 (n/n) MA8/Cholesterol 3:1 (n/n) MA9/DOPE 1:2 (n/n) MA9/DOPE 1:2 (n/n) MA9/Cholesterol 1:2 (n/n) MA9/Cholesterol 1:1 (n/n)	0,354 131 0,361 318 0,527 127 0,416 111 0,423 90 0,253 89 0,238 79 0,210 191 0,449 426 0,400 121 0,374 140 0,432 94 0,371 107 0,360	0,017 46 0,101 10 0,030 7 0,032 8 0,044 4 0,016 5 0,006 1 0,018 3 0,038 6 0,038 6 0,030 2 0,022 6 0,023 1 0,022 4 0,053	0,328 93 0,395 354 0,541 218 0,270 150 0,549 95 0,276 97 0,232 130 0,406 114 0,431 510 0,531 120 0,385 161 0,408 96 0,366 103 0,396	0,038 8 0,060 3 0,014 2 0,007 18 0,133 2 0,046 1 0,003 8 0,010 3 0,007 19 0,021 3 0,006 1 0,006 1 0,0046 1 0,0026 1 0,026 1 0,001	0,317 60 0,349 339 0,454 253 0,308 145 0,555 95 0,268 99 0,289 83 0,217 104 0,408 511 0,408 511 0,409 114 0,382 190 0,357 83 0,363 102 0,400	0,046 4 0,030 14 0,104 4 0,047 4 0,034 8 0,058 3 0,021 1 0,003 2 0,009 26 0,009 26 0,009 26 0,009 26 0,009 3 0,009 3 0,004 1 5 0,064 1 0,026
MA8/DOPE 1:2 (n/n) MA8/DOPE 1:1 (n/n) MA8/DOPE 2:1 (n/n) MA8/Cholesterol 1:3 (n/n) MA8/Cholesterol 1:2 (n/n) MA8/Cholesterol 1:1 (n/n) MA8/Cholesterol 2:1 (n/n) MA8/Cholesterol 3:1 (n/n) MA9/DOPE 1:2 (n/n) MA9/DOPE 1:1 (n/n) MA9/Cholesterol 1:2 (n/n) MA9/Cholesterol 1:1 (n/n) MA9/Cholesterol 2:1 (n/n)	0,354 131 0,361 318 0,527 127 0,416 111 0,423 90 0,253 89 0,238 79 0,210 191 0,449 426 0,400 121 0,374 140 0,432 94 0,371 107 0,360 62	0,017 46 0,101 10 0,030 7 0,032 8 0,044 4 0,016 5 0,006 1 0,018 3 0,038 6 0,030 2 0,022 6 0,023 1 0,022 4 0,053 1	0,328 93 0,395 354 0,541 218 0,270 150 0,549 95 0,276 97 0,232 130 0,406 114 0,431 510 0,531 120 0,385 161 0,408 96 0,366 103 0,396 62	0,038 8 0,060 3 0,014 2 0,007 18 0,133 2 0,046 1 0,003 8 0,010 3 0,007 19 0,021 3 0,006 1 0,026 1 0,026 1 0,001 1	0,317 60 0,349 339 0,454 253 0,308 145 0,555 95 0,268 99 0,289 83 0,217 104 0,408 511 0,409 114 0,382 190 0,357 83 0,363 102 0,400 61	0,046 4 0,030 14 0,104 4 0,047 4 0,034 8 0,058 3 0,021 1 0,003 2 0,009 26 0,031 2 0,009 3 0,041 5 0,064 1 0,026 1
MA8/DOPE 1:2 (n/n) MA8/DOPE 1:1 (n/n) MA8/DOPE 2:1 (n/n) MA8/Cholesterol 1:3 (n/n) MA8/Cholesterol 1:2 (n/n) MA8/Cholesterol 1:1 (n/n) MA8/Cholesterol 2:1 (n/n) MA8/Cholesterol 3:1 (n/n) MA9/DOPE 1:2 (n/n) MA9/DOPE 1:1 (n/n) MA9/Cholesterol 1:2 (n/n) MA9/Cholesterol 1:1 (n/n) MA9/Cholesterol 2:1 (n/n)	0,354 131 0,361 318 0,527 127 0,416 111 0,423 90 0,253 89 0,238 79 0,210 191 0,449 426 0,400 121 0,374 140 0,432 94 0,371 107 0,360 62 0,283	0,017 46 0,101 10 0,030 7 0,032 8 0,044 4 0,016 5 0,006 1 0,018 3 0,038 6 0,030 2 0,022 6 0,023 1 0,022 4 0,053 1 0,042	0,328 93 0,395 354 0,541 218 0,270 150 0,549 95 0,276 97 0,232 130 0,406 114 0,431 510 0,531 120 0,385 161 0,408 96 0,366 103 0,396 62 0,283	0,038 8 0,060 3 0,014 2 0,007 18 0,133 2 0,046 1 0,003 8 0,010 3 0,007 19 0,021 3 0,006 1 0,021 3 0,006 1 0,046 1 0,021 3 0,006 1 0,026 1 0,026 1 0,026 1 0,026 1 0,026 1 0,026 1 0,026 1 0,026 1 0,026 1 0,026 1 0,026 1 0,026 1 0,026 1 0,026 1 0,026 1 0,026 1 0,027 1 0,026 1 0,027 1 0,027 1 0,027 1 0,007 1 0,007 1 0,003 0,007 1 0,003 0,007 1 0,003 0,007 1 0,003 0,007 1 0,003 0,007 1 0,003 0,007 1 0,007 1 0,003 0,007 1 0,007 1 0,007 1 0,007 1 0,003 1 0,007 1 0,007 1 0,007 1 0,007 1 0,007 1 0,007 1 0,007 1 0,007 1 0,006 1 0,006 1 0,006 1 0,006 1 0,0046 1 0,006 1 0,0046 1 0,0046 1 0,0046 1 0,0046 1 0,0046 1 0,0046 1 0,0046 1 0,0046 1 0,0046 1 0,0046 1 0,0046 1 0,0046 1 0,0046 1 0,0046 1 0,0046 1 0,0046 1 0,0042 1 0,0042	0,317 60 0,349 339 0,454 253 0,308 145 0,555 95 0,268 99 0,289 83 0,217 104 0,408 511 0,409 114 0,382 190 0,357 83 0,363 102 0,400 61 0,317	0,046 4 0,030 14 0,104 4 0,047 4 0,034 8 0,058 3 0,021 1 0,003 2 0,009 26 0,009 26 0,009 26 0,031 2 0,009 3 0,041 5 0,064 1 0,026 1 0,022
MA8/DOPE 1:2 (n/n) MA8/DOPE 1:1 (n/n) MA8/DOPE 2:1 (n/n) MA8/Cholesterol 1:3 (n/n) MA8/Cholesterol 1:2 (n/n) MA8/Cholesterol 1:1 (n/n) MA8/Cholesterol 2:1 (n/n) MA8/Cholesterol 3:1 (n/n) MA9/DOPE 1:2 (n/n) MA9/DOPE 1:1 (n/n) MA9/Cholesterol 1:2 (n/n) MA9/Cholesterol 1:1 (n/n) MA9/Cholesterol 2:1 (n/n) MA9/Cholesterol 2:1 (n/n)	0,354 131 0,361 318 0,527 127 0,416 111 0,423 90 0,253 89 0,238 79 0,210 191 0,449 426 0,400 121 0,374 140 0,432 94 0,371 107 0,360 62 0,283 103	0,017 46 0,101 10 0,030 7 0,032 8 0,044 4 0,016 5 0,006 1 0,018 3 0,038 6 0,030 2 0,022 6 0,022 4 0,022 4 0,053 1 0,042 2	0,328 93 0,395 354 0,541 218 0,270 150 0,549 95 0,276 97 0,232 130 0,406 114 0,431 510 0,531 120 0,385 161 0,531 120 0,385 161 0,385 161 0,396 62 0,283 101	0,038 8 0,060 3 0,014 2 0,007 18 0,133 2 0,046 1 0,003 8 0,010 3 0,007 19 0,021 3 0,006 1 0,006 1 0,046 1 0,006 1 0,021 3 0,006 1 0,007 9	0,317 60 0,349 339 0,454 253 0,308 145 0,555 95 0,268 99 0,289 83 0,217 104 0,408 511 0,409 114 0,382 190 0,357 83 0,363 102 0,400 61 0,317 100	0,046 4 0,030 14 0,104 4 0,047 4 0,034 8 0,058 3 0,021 1 0,003 2 0,009 26 0,031 2 0,009 3 0,041 5 0,064 1 0,026 1 0,022 2
MA8/DOPE 1:2 (n/n) MA8/DOPE 1:1 (n/n) MA8/DOPE 2:1 (n/n) MA8/Cholesterol 1:3 (n/n) MA8/Cholesterol 1:2 (n/n) MA8/Cholesterol 1:1 (n/n) MA8/Cholesterol 2:1 (n/n) MA8/Cholesterol 3:1 (n/n) MA9/DOPE 1:2 (n/n) MA9/DOPE 1:1 (n/n) MA9/Cholesterol 1:2 (n/n) MA9/Cholesterol 1:1 (n/n) MA9/Cholesterol 2:1 (n/n) MA12/DOPE 1:3 (n/n)	0,354 131 0,361 318 0,527 127 0,416 111 0,423 90 0,253 89 0,238 79 0,210 191 0,449 426 0,400 121 0,374 140 0,432 94 0,371 107 0,360 62 0,283 103 0,245	0,017 46 0,101 10 0,030 7 0,032 8 0,044 4 0,016 5 0,006 1 0,018 3 0,038 6 0,030 2 0,022 6 0,023 1 0,022 4 0,053 1 0,042 2 0,020	0,328 93 0,395 354 0,541 218 0,270 150 0,549 95 0,276 97 0,232 130 0,406 114 0,431 510 0,531 120 0,385 161 0,385 161 0,408 96 0,366 103 0,396 62 0,283 101 0,235	0,038 8 0,060 3 0,014 2 0,007 18 0,133 2 0,046 1 0,003 8 0,010 3 0,007 19 0,021 3 0,006 1 0,006 1 0,026 1 0,0046 1 0,026 1 0,0046 1 0,006 1 0,007 19 0,021 3 0,006 1 0,007 19 0,021 3 0,006 1 0,007 19 0,007 19 0,007 19 0,007 19 0,007 19 0,007 19 0,007 19 0,007 19 0,007 19 0,007 19 0,007 19 0,007 19 0,007 19 0,007 19 0,007 19 0,007 19 0,006 1 0,007 19 0,006 1 0,007 19 0,007 19 0,007 19 0,006 1 0,006 1 0,006 1 0,007 19 0,006 1 0,006 1 0,006 1 0,006 1 0,006 1 0,007 19 0,007 19 0,0021 3 0,006 1 0,0046 1 0,0046 1 0,0046 1 0,0046 1 0,0046 1 0,0046 1 0,0046 1 0,0046 1 0,0046 1 0,0046 1 0,0046 1 0,0046 1 0,0026 1 0,0010 1 0,0026 1 0,0010 1 0,0026 1 0,0010 1 0,0026 1 0,0010 1 0,0010 1 0,0026 1 0,0010 1 0,0010 1 0,0026 1 0,0012 1 0,0012 1 0,0012	0,317 60 0,349 339 0,454 253 0,308 145 0,555 95 0,268 99 0,289 83 0,217 104 0,408 511 0,409 114 0,382 190 0,357 83 0,363 102 0,400 61 0,317 100 0,242	0,046 4 0,030 14 0,104 4 0,047 4 0,034 8 0,058 3 0,021 1 0,003 2 0,009 26 0,031 2 0,009 26 0,031 2 0,009 3 0,041 5 0,064 1 0,022 2 0,017
MA8/DOPE 1:2 (n/n) MA8/DOPE 1:1 (n/n) MA8/DOPE 2:1 (n/n) MA8/Cholesterol 1:3 (n/n) MA8/Cholesterol 1:2 (n/n) MA8/Cholesterol 1:1 (n/n) MA8/Cholesterol 2:1 (n/n) MA8/Cholesterol 3:1 (n/n) MA9/DOPE 1:2 (n/n) MA9/DOPE 1:1 (n/n) MA9/Cholesterol 1:2 (n/n) MA9/Cholesterol 1:1 (n/n) MA9/Cholesterol 2:1 (n/n) MA9/Cholesterol 2:1 (n/n) MA12/DOPE 1:3 (n/n)	0,354 131 0,361 318 0,527 127 0,416 111 0,423 90 0,253 89 0,238 79 0,210 191 0,449 426 0,400 121 0,374 140 0,432 94 0,371 107 0,360 62 0,283 103 0,245 68	0,017 46 0,101 10 0,030 7 0,032 8 0,044 4 0,016 5 0,006 1 0,018 3 0,038 6 0,030 2 0,022 6 0,023 1 0,022 4 0,022 4 0,042 2 0,020 1	0,328 93 0,395 354 0,541 218 0,270 150 0,549 95 0,276 97 0,232 130 0,406 114 0,431 510 0,531 120 0,385 161 0,408 96 0,385 161 0,408 96 0,366 103 0,396 62 0,283 101 0,235 71	0,038 8 0,060 3 0,014 2 0,007 18 0,133 2 0,046 1 0,003 8 0,010 3 0,007 19 0,021 3 0,006 1 0,026 1 0,046 1 0,026 1 0,026 1 0,004 1 0,026 1 0,004 1 0,005 1 0,007 19 0,006 1 1 0,006 1 1 0,006 1 0,006 1 0,006 1 0,006 1 0,006 1 0,007 19 0,0021 1 0,0046 1 0,0046 1 0,0046 1 0,0046 1 0,0021 1 0,0046 1 0,0026 1 0,0046 1 0,0026 1 0,0026 1 0,0010 1 0,0026 1 0,0010 1 0,0026 1 0,0026 1 0,0010 1 0,0026 1 0,0010 1 0,0026 1 0,0010 1 0,0026 1 0,0010 1 0,0026 1 0,0010 1 0,0026 1 0,0012 1 0,0012 1 1	0,317 60 0,349 339 0,454 253 0,308 145 0,555 95 0,268 99 0,289 83 0,217 104 0,408 511 0,409 114 0,382 190 0,357 83 0,363 102 0,400 61 0,317 100 0,242 68	0,046 4 0,030 14 0,104 4 0,047 4 0,034 8 0,058 3 0,021 1 0,003 2 0,009 26 0,031 2 0,009 26 0,031 2 0,009 3 0,041 5 0,064 1 0,026 1 0,022 2 0,017 2
MA8/DOPE 1:2 (n/n) MA8/DOPE 1:1 (n/n) MA8/DOPE 2:1 (n/n) MA8/Cholesterol 1:3 (n/n) MA8/Cholesterol 1:2 (n/n) MA8/Cholesterol 1:1 (n/n) MA8/Cholesterol 2:1 (n/n) MA8/Cholesterol 3:1 (n/n) MA9/DOPE 1:2 (n/n) MA9/DOPE 1:1 (n/n) MA9/Cholesterol 1:2 (n/n) MA9/Cholesterol 1:1 (n/n) MA9/Cholesterol 2:1 (n/n) MA12/DOPE 1:3 (n/n) MA12/DOPE 1:2 (n/n)	0,354 131 0,361 318 0,527 127 0,416 111 0,423 90 0,253 89 0,238 79 0,210 191 0,449 426 0,400 121 0,374 140 0,432 94 0,371 107 0,360 62 0,283 103 0,245 68 0,335	0,017 46 0,101 10 0,030 7 0,032 8 0,044 4 0,016 5 0,006 1 0,018 3 0,038 6 0,030 2 0,022 6 0,023 1 0,022 4 0,053 1 0,042 2 0,020 1 0,019	0,328 93 0,395 354 0,541 218 0,270 150 0,549 95 0,276 97 0,232 130 0,406 114 0,431 510 0,531 120 0,385 161 0,408 96 0,385 161 0,408 96 0,366 103 0,396 62 0,283 101 0,235 71 0,394	0,038 8 0,060 3 0,014 2 0,007 18 0,133 2 0,046 1 0,003 8 0,010 3 0,007 19 0,021 3 0,006 1 0,026 1 0,046 1 0,026 1 0,042 9 0,012 1 0,022	0,317 60 0,349 339 0,454 253 0,308 145 0,555 95 0,268 99 0,289 83 0,217 104 0,408 511 0,409 114 0,382 190 0,357 83 0,363 102 0,400 61 0,317 100 0,242 68 0,361	0,046 4 0,030 14 0,104 4 0,047 4 0,034 8 0,058 3 0,021 1 0,003 2 0,009 26 0,009 26 0,009 26 0,009 26 0,009 26 0,009 26 0,009 3 0,041 5 0,064 1 0,026 1 0,022 2 0,017 2 0,014
MA8/DOPE 1:2 (n/n) MA8/DOPE 1:1 (n/n) MA8/DOPE 2:1 (n/n) MA8/Cholesterol 1:3 (n/n) MA8/Cholesterol 1:2 (n/n) MA8/Cholesterol 1:1 (n/n) MA8/Cholesterol 2:1 (n/n) MA8/Cholesterol 3:1 (n/n) MA9/DOPE 1:2 (n/n) MA9/DOPE 1:2 (n/n) MA9/Cholesterol 1:2 (n/n) MA9/Cholesterol 1:1 (n/n) MA9/Cholesterol 2:1 (n/n) MA9/Cholesterol 2:1 (n/n) MA12/DOPE 1:3 (n/n) MA12/DOPE 1:2 (n/n)	0,354 131 0,361 318 0,527 127 0,416 111 0,423 90 0,253 89 0,238 79 0,210 191 0,449 426 0,400 121 0,374 140 0,432 94 0,371 107 0,360 62 0,283 103 0,245 68 0,335 79	0,017 46 0,101 10 0,030 7 0,032 8 0,044 4 0,016 5 0,006 1 0,018 3 0,038 6 0,030 2 0,022 6 0,023 1 0,022 4 0,022 4 0,042 2 0,020 1 0,019 1	0,328 93 0,395 354 0,541 218 0,270 150 0,549 95 0,276 97 0,232 130 0,406 114 0,431 510 0,531 120 0,385 161 0,408 96 0,366 103 0,396 62 0,283 101 0,235 71 0,394 79	0,038 8 0,060 3 0,014 2 0,007 18 0,133 2 0,046 1 0,003 8 0,010 3 0,007 19 0,021 3 0,006 1 0,006 1 0,026 1 0,046 1 0,026 1 0,042 9 0,012 1 0,022 1	0,317 60 0,349 339 0,454 253 0,308 145 0,555 95 0,268 99 0,289 83 0,217 104 0,408 511 0,409 114 0,382 190 0,357 83 0,363 102 0,400 61 0,317 100 0,242 68 0,361 80	0,046 4 0,030 14 0,104 4 0,047 4 0,034 8 0,058 3 0,021 1 0,003 2 0,009 26 0,009 26 0,009 26 0,009 3 0,009 3 0,009 3 0,009 3 0,009 3 0,009 3 0,009 3 0,009 3 0,009 3 0,009 3 0,009 3 0,009 3 0,009 3 0,009 3 0,009 3 0,009 3 0,009 3 0,004 1 0,003 2 0,009 3 0,009 3 0,004 1 0,003 2 0,009 3 0,009 3 0,004 1 0,003 2 0,009 3 0,009 3 0,004 1 0,003 2 0,009 3 0,009 3 0,004 1 0,003 2 0,009 3 0,009 3 0,004 1 0,003 2 0,009 3 0,009 3 0,004 1 0,003 2 0,009 3 0,004 1 0,003 2 0,009 3 0,004 1 0,003 1 0,003 2 0,009 3 0,004 1 0,002 1 0,005 3 0,004 1 0,002 1 0,007 3 0,004 1 0,002 1 0,007 1 0,007 1 0,007 1 0,007 1 0,007 1 0,007 1 0,007 1 0,007 1 0,009 3 0,009 3 0,004 1 0,0026 1 0,0026 1 0,0026 1 0,0026 1 0,0026 1 0,0026 1 0,0026 1 0,0026 1 0,0026 1 1 0,0026 1 0,0017 2 0,0014 1 1 0,0014 1 1 0,0014 1 0,0014 1 0,0014 1 1 0,0014 1 1 0,0014 1 1

MA12/Cholesterol 1:2 (n/n)	72	1	83	1	83	2
	0,224	0,005	0,252	0,051	0,273	0,064
MA12/Cholesterol 1.1 (n/n)	107	2	92	2	95	14
	0,324	0,019	0,249	0,033	0,278	0,089
MA12/Cholostorol 2:1 (n/n)	119	1	240	59	281	51
WATZ/Cholesterol 2.1 (h/h)	0,254	0,014	0,174	0,029	0,185	0,026
	232	6	362	12	177	3
MA13/DOPE 1:1 (n/n)	0.461	0.025	0.361	0.032	0.340	0.040
	99	0	207	28	91	1
MA13/Cholesterol 1:2 (n/n)	0.255	0.012	0.642	0.174	0.210	0.002
	0,235	0,012	0,043	0,174	0,219	0,002
MA13/Cholesterol 1:1 (n/n)	00	5	105	0	90	9
	0,764	0,021	0,740	0,121	0,477	0,081
MA13/Cholesterol 2:1 (n/n)	131	51	87	3	Lösung ag	alomeriert
	0,713	0,370	0,659	0,021		5
MA13/DMPC 1-1 (n/n)	261	6	276	9	281	17
	0,228	0,014	0,355	0,057	0,359	0,043
MA14/DORE 1.3 (n/n)	58	1	89	24	69	15
MA14/DOPE 1:3 (n/n)	0,385	0,013	0,332	0,197	0,375	0,141
	623	67	792	115	787	11
MA14/DOPE 1:2 (n/n)	0.721	0.178	0.688	0.203	0.645	0.019
	86	1	85	9	88	1
MA14/DOPE 1:1 (n/n)	0 244	0.009	0.238	0.098	0.271	0.033
	55	1	55	1	62	8
MA14/DOPE 2:1 (n/n)	0.263	0 003	0.360	0.011	0.401	0 127
-	5,203	1	0,000	1	105	1
MA14/Cholesterol 1:2 (n/n)	0.000		90		COI	0.000
. ,	0,262	0,016	0,215	0,032	0,323	0,022
MA14/Cholesterol 1:1 (n/n)	91	1	//	1	86	0
	0,215	0,010	0,200	0,012	0,275	0,033
MA14/Cholesterol 2:1 (n/n)	48	1	47	1	44	2
	0,321	0,035	0,391	0,018	0,393	0,025
MA14/DMPC 1.1 (n/n)	45	8	43	2	60	4
	0,501	0,065	0,532	0,121	0,612	0,094
MA15/DORE 1-2 (n/n)	72	1	68	2	76	4
WA15/DOFE 1.2 (11/11)	0,272	0,006	0,295	0,040	0,295	0,021
MA15/DORE 1.1 (n/n)	166	2	160	1	216	11
MAIS/DOPE I.I (II/II)	0,269	0,010	0,256	0,013	0,448	0,076
	1592	98	1239	86	864	18
MA15/DOPE 2:1 (n/n)	0,161	0,069	0,171	0,034	0,280	0,017
	94	1	119	15	126	2
MA15/DOPE 3:1 (n/n)	0.264	0.014	0.309	0.058	0.415	0.023
	121	2	119	2	129	4
MA15/Cholesterol 1:3 (n/n)	0.258	0.005	0.247	0.007	0.356	0.022
	142	6	120	1	123	1
MA15/Cholesterol 1:2 (n/n)	0.371	0.063	0.255	0.014	0.277	0.010
	0,371	0,003	0,200	0,014	97	0,013
MA15/Cholesterol 1:1 (n/n)	0.266	2	0.240	0.026	0 222	0.006
	0,200	0,010	0,249	0,030	0,222	0,000
MA15/Cholesterol 2:1 (n/n)	00	4	00	1	00	1
. ,	0,398	0,014	0,305	0,048	0,383	0,022
MA15/DMPC 1:2 (n/n)	110	6	101	4	112	9
	0,327	0,045	0,323	0,035	0,345	0,010
MA15/DMPC 1:1 (n/n)	11	8 0.000	/3	3	/4	2
	0,403	0,099	0,618	0,159	0,415	0,011
MA15/DMPC 2:1 (n/n)	114	30	92	5	101	12
	0,497	0,189	0,470	0,015	0,465	0,086
MA6/MA8/Cholesterol	87	1	86	1	88	1
1:1:1 (n/n/n)	0,248	0,021	0,227	0,016	0,259	0,004
MA6/MA9/Cholesterol	97	5	95	1	98	1
1:1:1 (n/n/n)	0,252	0,038	0,247	0,003	0,331	0,008
MA6/MA8/Cholesterol	82	1	80	0	80	2
4:3:5 (n/n/n)	0,224	0,006	0,240	0,024	0,227	0,009
MA6/MA8/MA9/Cholesterol	126	5	145	6	186	13
1:1:1:1 (n/n/n/n)	0,410	0,032	0,399	0,078	0,452	0,099
MA6/MA15/Cholesterol/	118	4	115	6	115	2
DOPE 2:2:1:1 (n/n/n/n)	0.301	0.045	0.280	0.017	0.315	0.006
	124	4	112	3	113	1
VF1/DOPE 1:1 (n/n)	0.416	0.092	0.325	0.044	0.338	0.009
	183	7	235	35	343	24
VF1/Cholesterol 1:1 (n/n)	0.538	0.076	0.568	0.099	0 429	0.077
	141	59	104	20	106	10
VF2/DOPE 1:2 (n/n)	0.365	50 5000	0 410	0.055	0 431	0.071
-	126	6	126	29	127	12
VF2/DOPE 1:1 (n/n)	0.251	0 033	0 /27	0 154	0.514	0.210
1	0,551	0,000	0,437	0,104	0,014	0,210

		-				-
VF2/DOPE 2:1 (n/n)	129	3	120	13	123	3
	0,270	0,017	0,296	0,019	0,458	0,013
VF2/DOPE 3:1 (n/n)	1/3	2	1/2	4	164	6
	0,278	0,013	0,295	0,069	0,313	0,021
VF2/Cholesterol 1:1 (n/n)	85	1	95	/	Lösung ac	alomeriert
	0,321	0,016	0,263	0,029		
VF3/DOPE 1:3 (n/n)	84	4	57	/	//	30
	0,475	0,016	0,376	0,039	0,305	0,116
VF3/DOPE 1:2 (n/n)	100	7	247	56	81	15
	0,472	0,041	0,220	0,021	0,540	0,093
VF3/DOPE 1:1 (n/n)	107	2	115	12	126	26
	0,252	0,011	0,256	0,063	0,280	0,033
VF3/DOPE 2:1 (n/n)	52	3	63	3	65	2
	0,401	0,025	0,453	0,032	0,431	0,061
VF3/DOPE 3:1 (n/n)	82	5	91	11	134	49
	0,424	0,046	0,462	0,134	0,488	0,037
VF4/DOPE 1:3 (n/n)	63	3	66	1	/5	1
	0,400	0,028	0,396	0,014	0,459	0,073
VF4/DOPE 1:2 (n/n)		1	84	3	11	3
	0,260	0,005	0,425	0,041	0,297	0,023
VF4/DOPE 1:1 (n/n)	95	2	105	12	11/	6
	0,313	0,015	0,312	0,056	0,336	0,047
VF4/DOPE 2:1 (n/n)	/3	1	/5	4	/1	8
	0,392	0,036	0,410	0,011	0,415	0,059
VF4/DOPE 3:1 (n/n)	69	11	132	58	64	3
	0,281	0,081	0,286	0,086	0,396	0,024
VF5/DOPE 1:4 (n/n)	0.442	0.015	0.580	20	Lösung ag	glomeriert
	72	0,015	0,309	0,095		
VF5/DOPE 1:3 (n/n)	0.370	0.010	0 393	0.044	Lösung ag	glomeriert
	127	43	109	15	120	5
VF5/DOPE 1:2 (n/n)	0 435	0.028	0.661	0.006	0 741	0.019
	143	4	137	7	159	15
VF5/DOPE 1:1 (n/n)	0.534	0.047	0.644	0.050	0.919	0.140
	240	6	212	12	226	5
VF5/DOPE 2:1 (n/n)	0.559	0.026	0.510	0.041	0.568	0.011
	181	3	212	5	225	17
VF5/Cholesterol 1:1 (h/h)	0,367	0,048	0,335	0,026	0,369	0,048
VE6/DOBE 1.4 (p/p)	73	1	123	1	139	5
VF0/DOFE 1.4 (1/1)	0,265	0,007	0,538	0,021	0,553	0,553
VE6/DOPE 1.3 (n/n)	77	1	84	2	82	2
	0,302	0,017	0,425	0,042	0,414	0,049
VE6/DOPE 1.2 (n/n)	83	4	122	1	124	2
	0,396	0,028	0,318	0,040	0,291	0,022
VF6/DOPE 1:1 (n/n)	65	1	69	3	66	5
	0,471	0,016	0,468	0,057	0,563	0,006
VF6/DOPE 2:1 (n/n)	203	8	114	50	//	6
	0,515	0,068	0,461	0,102	0,626	0,024
VF6/DOPE 3:1 (n/n)	0.595	9	0.500	3/	182	25
	0,000	0,077	0,090	0,036	0,000	0,024
VF6/Cholesterol 1:1 (n/n)	00	0.006	200	2	0.260	23
	0,300	0,000	62	0,004	50	0,0303
VF7/DOPE 1:3 (n/n)	0.398	0.018	0.258	0 129	0 389	0.0260
	116	1	90	6	106	3
VF7/DOPE 1:2 (n/n)	0.262	0.023	0.438	0.123	0.282	0.019
	131	2	124	1	125	3
VF7/DOPE 1:1 (n/n)	0.246	0.006	0.243	0.009	0.303	0.113
	114	35	173	39	174	83
VF7/DOPE 2:1 (n/n)	0,597	0,265	0,389	0,164	0,430	0,178
VE7/DOBE 2.4 (=/=)	84	4	75	5	60	1
VF/100PE 3:1 (n/n)	0,431	0,036	0,393	0,046	0,393	0,021
VE7/Cholesterol 1:2 (n/n)	137	1	144	7	141	10
	0,341	0,049	0,480	0,105	0,517	0,024
VF7/Cholesterol 1.1 (n/n)	163	1	153	3	142	3
	0,219	0,010	0,260	0,045	0,200	0,010
VF7/Cholesterol 2:1 (n/n)	143	1	168	3	164	4
	0,404	0,023	0,388	0,0125	0,396	0,026

PCS-Messungen, Transfektionsergebnisse (48 h) und MTT basierte Zellviabilitäten (24 h) der Liposomen und Lipoplexe an LLC PK1

Probe	N/P	z-average ± s [nm]	PDI ± s	Aktivität _{β-} Gal/ ^M Protein ±s [μE/μg]	Viabilität ± s [%] MTT-Test 24h
	Liposomenlösung	106 ± 19	0,450 ± 0,045		
	1:1	255 ± 9	$0,489 \pm 0,023$	kein	70,71 ± 9,550
MA1/DOPE 1:2 (n/n)	2:1	289 ± 12	0,476 ± 0,035	Gentransfer	72,68 ± 11,05
	3:1	457 ± 16	$0,429 \pm 0,098$		72,73 ± 11,18
	4:1	399 ± 7	$0,431 \pm 0,057$		74,96 ± 11,03
	Liposomeniosung	81 ± 3	$0,492 \pm 0,012$		00.07 0.000
MA1/DORE 1:1 (n/n)	2:1	218 ± 3	$0,508 \pm 0,030$	kein	96,07 ± 2,826
	2.1	203 ± 31 574 + 64	$0,332 \pm 0,102$ 0.926 ± 0.052	Gentransfer	$95,47 \pm 9,094$ 97 35 + 5 252
	<u> </u>	232 + 5	$0,320 \pm 0,052$ 0 489 + 0 061	-	98 90 + 5 458
	Liposomenlösung	50 ± 1	$0,400 \pm 0,001$ 0.290 ± 0.021		00,00 ± 0,400
	1:1	147 ± 2	0,282 ± 0,012	-	83,75 ± 11,83
MA1/DOPE 2:1 (n/n)	2:1	111 ± 2	0,266 ± 0,028	Kein	80,66 ± 11,78
	3:1	119 ± 1	0,251 ± 0,008	Gentiansier	82,96 ± 13,11
	4:1	185 ± 1	0,422 ± 0,051		85,70 ± 10,74
	Liposomenlösung	135 ± 2	0,291 ± 0,010	-	
MA1/Cholesterol	1:1	232 ± 2	0,401 ± 0,032	kein	59,49 ± 10,82
1:2 (n/n)	2:1	208 ± 1	$0,360 \pm 0,013$	Gentransfer	$57,51 \pm 11,07$
	3:1	689 ± 9	$0,753 \pm 0,045$		61,47 ± 11,06
	4.1	339 ± 10	$0,461 \pm 0,049$ 0.355 ± 0.041		$57,29 \pm 6,100$
	1·1	231 +6	$0,535 \pm 0,041$ 0.588 ± 0.050	-	66 93 + 14 21
MA1/Cholesterol	2:1	233 ± 10	0.433 ± 0.040	kein	64.58 ± 14.72
1:1 (n/n)	3:1	330 ± 11	$0,490 \pm 0.059$	Gentransfer	68.61 ± 9.220
	4:1	343 ± 9	$0,531 \pm 0,121$		64,47 ± 10,29
	Liposomenlösung	192 ± 37	$0,425 \pm 0,009$		
MA1/Cholesterol	1:1	250 ± 5	0,385 ± 0,017	kein	68,07 ± 6,239
2:1 (n/n)	2:1	250 ± 6	0,579 ± 0,031	Gentransfer	66,00 ± 9,087
()	3:1	293 ± 1	$0,426 \pm 0,002$	Gentransier	68,52 ± 7,548
	4:1	327 ± 8	$0,421 \pm 0,030$		84,18 ± 14,82
		68 ± 2	$0,390 \pm 0,017$		07.67 . 10.71
MA2/DOPE 1.2 (n/n)	2.1	112 ± 1	$0,200 \pm 0,024$ 0.754 ± 0.141	kein	$07,07 \pm 13,71$ 04.33 ± 10.73
	3.1	239 + 6	$0,754 \pm 0,141$ 0.467 ± 0.030	Gentransfer	98 04 + 9 587
	4:1	207 ± 3	$0,410 \pm 0.013$		99.72 ± 9.116
	Liposomenlösung	99 ± 10	$0,224 \pm 0,044$		
	1:1	110 ± 1	0,188 ± 0,012	koin	89,65 ± 8,205
MA2/DOPE 1:1 (n/n)	2:1	221 ± 4	0,603 ± 0,028	Gentransfer	89,88 ± 7,633
	3:1	2108 ± 67	0,411 ± 0,103	Ochitansici	90,65 ± 8,003
	4:1	205 ± 2	$0,392 \pm 0,035$		90,79 ± 7,061
	Liposomeniosung	153 ± 3	$0,495 \pm 0,032$		02.22 . 7.016
MA2/DOPE 2:1 (n/n)	2:1	114 ± 1 199 ± 4	$0,387 \pm 0,038$	kein	$93,32 \pm 7,010$ 92.65 ± 0.120
	2.1	100 ± 4 337 + 2	$0,404 \pm 0,015$ 0.586 ± 0.070	Gentransfer	$92,03 \pm 9,120$ 102 4 + 10 91
	4:1	1055 + 36	0.523 ± 0.033	-	98.10 + 9.013
	Liposomenlösung	190 ± 6	0.388 ± 0.034		00,10 = 0,010
MAO/Chalastanal	1:1	249 ± 6	0,381 ± 0,023	233 ± 97	79,55 ± 8,78
1.2 (n/n)	2:1	219 ± 2	0,313 ± 0,015	241 ± 137	66,03 ± 8,39
1.2 (1011)	3:1	411 ± 15	$0,389 \pm 0,029$	125 ± 52	52,34 ± 7,08
	4:1	227 ± 1	$0,227 \pm 0,005$	85 ± 4	$44,65 \pm 6,43$
	Liposomenlösung	108 ± 3	$0,349 \pm 0,042$	050 01	00.00 00 57
MA2/Cholesterol	1:1	136 ± 1	$0,236 \pm 0,023$	352 ± 91	92,93 ± 20,57
1:1 (n/n)	2.1	291 ± 4 251 ± 2	0.365 ± 0.002	234 ± 90 222 ± 95	$10, 21 \pm 20, 20$ 65 10 ± 10 20
	<u>لا الم</u>	204 ± 2 228 + 6	$0,303 \pm 0,023$ 0,383 + 0.010	232 ± 03 218 + 08	59.41 + 16.35
	Liposomenlösung	150 + 15	0.350 ± 0.090	210 ± 00	50,71 ± 10,00
	1:1	240 ± 5	0,346 ± 0,000	192 ± 55	88,82 ± 5,82
MA2/Cholesterol	2:1	248 ± 3	0,395 ± 0,014	374 ± 104	80,60 ± 7,01
2:1 (1/1)	3:1	369 ± 20	0,456 ± 0,033	281 ± 94	71,42 ± 6,92
	4:1	1378 ± 34	$0,309 \pm 0,034$	233 ± 51	64,51 ± 13,26

	Liposomenlösung	220 ± 7	0,551 ± 0,028		
	1.1	219 ± 1	0.446 ± 0.072		<u> 90 70 ± 0 297</u>
	1.1	210 ± 1	0,440 ± 0,072	kein	00,79±9,307
MA3/DOPE 1:2 (n/n)	2:1	41/±6	$0,711 \pm 0,030$	Contransfor	78,89 ± 15,29
	3:1	142 ± 1	0.245 ± 0.002	Gentialisiei	80.08 ± 12.92
	4.1	176 - 0	0,420 + 0,065		77.60 + 11.10
	4.1	170 ± 2	0,429 ± 0,005		$11,00 \pm 11,19$
	Liposomenlösung	107 ± 10	0,410 ± 0,140		
	1.1	209 + 2	0.430 ± 0.077	13 + 5	79 71 + 8 413
MA2/DODE 1.1 (n/n)	0:4	447.0		2044	
WA3/DOPE 1.1 (1/11)	2:1	147 ± 3	$0,370 \pm 0,009$	32 ± 11	84,15 ± 11,22
	3:1	307 ± 3	0,646 ± 0,137	51 ± 15	88,71 ± 9,797
	4.1	704 + 7	0.573 ± 0.084	88 + 29	92 15 + 9 334
	Linggamanlägung	100 - 1		00 1 20	02,10 2 0,001
	Liposomeniosung	120 ± 1	$0,240 \pm 0,010$		
	1:1	329 ± 5	0,609 ± 0,012	45 ± 7	76,16 ± 11,07
MA3/DOPE 2:1 (n/n)	2.1	2000 + 42	0.607 ± 0.105	69 + 35	81 95 + 10 79
	2:1	242 - 2		100 ± 00	70.01 + 0.001
	3.1	343 ± 3	$0,404 \pm 0,000$	123 ± 72	79,01±9,001
	4:1	171 ± 2	0,300 ± 0,016	276 ± 157	84,99 ± 13,42
	Liposomenlösung	112 + 1	0.383 ± 0.019		
	1.1	152 ± 1	0.284 ± 0.023	0	20 76 ± 12 22
MA3/Cholesterol 1:2	1.1	132 ± 1	0,204 ± 0,023	0	00,70 ± 12,20
(n/n)	2:1	196 ± 2	0,266 ± 0,016	0	90,67 ± 10,26
(1011)	3:1	1445 ± 30	0.370 ± 0.043	0	85.05 ± 11.31
	1:1	320 ± 4	0.321 ± 0.020	20 + 8	82.36 ± 12.47
	4.1	J29 ± 4	0,321 ± 0,020	30±0	02,30 ± 12,47
	Liposomeniosung	107 ± 3	$0,360 \pm 0,048$	<u> </u>	
MA2/Obalasters144	1:1	172 ± 4	$0,345 \pm 0.009$	0	86,00 ± 10.46
wA3/Cholesterol 1:1	2.1	970 + 38	0.485 ± 0.073	0	93 81 + 10 77
(n/n)	<u> </u>	010 ± 00			00.40 0.00
	3:1	643 ± 19	0,551 ± 0,041	14 ± 11	93,12 ± 9,92
	4:1	255 ± 1	0,372 ± 0.020	17 ± 14	93,33 ± 11.97
	Liposomenlösung	151 + 2	0.415 + 0.024	1	. ,-
	1.1	112 . 2	0.228 + 0.027	0	80.04.14.00
MA3/Cholesterol 2:1	1.1	112 ± 3	0,238 ± 0,027	0	09,94 ± 14,90
(n/n)	2:1	950 ± 15	$0,520 \pm 0,084$	18 ± 10	94,89 ± 12,77
()	3:1	681 ± 33	$0,522 \pm 0,056$	29 ± 13	93,66 ± 13,18
	4:1	369 + 8	0.472 ± 0.012	21 + 14	96.39 + 13.39
	Lipocomonlösung	102 ± 22	0.316 ± 0.008		,
	Liposomeniosung	103 ± 23	0,310 ± 0,090	_	00.45 40.54
MA3/Cholesterol 3.1	1:1	189 ± 3	$0,372 \pm 0,040$	kein Gentransfer	88,15 ± 13,54
(n/n)	2:1	278 ± 1	0,497 ± 0,094		89,04 ± 11,95
(1711)	3:1	258 + 3	0.411 ± 0.031		92.37 + 13.39
	1:1	525 ± 4	0.302 ± 0.040		02.01 ± 11.24
	4.1	01 4	0,392 ± 0,049		32,31 ± 11,34
	Liposomeniosung	91 ± 1	$0,405 \pm 0,008$		
	1,5:1	145 ± 1	0,148 ± 0,018	155 ± 74	101,0 ± 14,26
WA4/DUPE 1.4	2.1	160 . 0	0 172 + 0 012	136 ± 100	00.01 ± 9.951
MA4/DOPE 1:4	J. J.	102 ± 2	0.172 ± 0.013	100 ± 103	90.91 ± 0.001
(n/n)	<u> </u>	102 ± 2 136 ± 8	$0,172 \pm 0,013$ 0.266 ± 0.113	103 + 70	90,91±0,031 85.65±8.448
(n/n)	4,5:1	102 ± 2 136 ± 8	$0,172 \pm 0,013$ $0,266 \pm 0,113$ $0,174 \pm 0.013$	103 ± 79	85,65 ± 8,448
(n/n)	4,5:1 6:1	162 ± 2 136 ± 8 109 ± 2	$\begin{array}{r} 0,172 \pm 0,013 \\ 0,266 \pm 0,113 \\ 0,174 \pm 0,013 \end{array}$	$ \begin{array}{r} 103 \pm 103 \\ 103 \pm 79 \\ 97 \pm 64 \end{array} $	85,65 ± 8,448 86,27 ± 12,86
(n/n)	4,5:1 6:1 Liposomenlösung	$ 102 \pm 2 \\ 136 \pm 8 \\ 109 \pm 2 \\ 104 \pm 1 $	$0,172 \pm 0,013$ $0,266 \pm 0,113$ $0,174 \pm 0,013$ $0,286 \pm 0,004$	$\frac{130 \pm 103}{103 \pm 79}$ 97 ± 64	90,91 ± 8,031 85,65 ± 8,448 86,27 ± 12,86
(n/n)	4,5:1 6:1 Liposomenlösung	$ \begin{array}{r} 162 \pm 2 \\ 136 \pm 8 \\ 109 \pm 2 \\ 104 \pm 1 \\ 248 \pm 6 \end{array} $	$0,172 \pm 0,013$ $0,266 \pm 0,113$ $0,174 \pm 0,013$ $0,286 \pm 0,004$ 0.691 ± 0.013	$ \begin{array}{r} 103 \pm 103 \\ 103 \pm 79 \\ 97 \pm 64 \\ \hline 32 \pm 14 \end{array} $	$85,65 \pm 8,448$ $86,27 \pm 12,86$ 97.40 ± 8.32
(n/n) MA4/DOPE 1:3	4,5:1 6:1 Liposomenlösung 1,5:1	$ \begin{array}{r} 162 \pm 2 \\ 136 \pm 8 \\ 109 \pm 2 \\ 104 \pm 1 \\ 248 \pm 6 \\ 545 \pm 8 \\ \end{array} $	$\begin{array}{c} 0,172 \pm 0,013\\ 0,266 \pm 0,113\\ 0,174 \pm 0,013\\ 0,286 \pm 0,004\\ 0,691 \pm 0,013\\ 0,092 \pm 0,020\\ \end{array}$	$ \begin{array}{r} 103 \pm 103 \\ 103 \pm 79 \\ 97 \pm 64 \\ \hline 32 \pm 14 \\ 51 \pm 20 \\ \end{array} $	$\begin{array}{r} 30,91 \pm 8,831 \\ 85,65 \pm 8,448 \\ 86,27 \pm 12,86 \\ \hline \\ 97,40 \pm 8,32 \\ 92,02 \pm 8,77 \end{array}$
(n/n) MA4/DOPE 1:3 (n/n)	4,5:1 6:1 Liposomenlösung 1,5:1 3:1	162 ± 2 136 ± 8 109 ± 2 104 ± 1 248 ± 6 545 ± 8	$\begin{array}{c} 0,172 \pm 0,013\\ 0,266 \pm 0,113\\ 0,174 \pm 0,013\\ 0,286 \pm 0,004\\ 0,691 \pm 0,013\\ 0,983 \pm 0,030\\ \end{array}$	$ \begin{array}{r} 103 \pm 103 \\ 103 \pm 79 \\ 97 \pm 64 \\ \hline 32 \pm 14 \\ 51 \pm 30 \\ \end{array} $	$\begin{array}{r} 50,31 \pm 0,031 \\ 85,65 \pm 8,448 \\ 86,27 \pm 12,86 \\ \hline \\ 97,40 \pm 8,32 \\ 92,02 \pm 8,77 \\ \hline \end{array}$
(n/n) MA4/DOPE 1:3 (n/n)	4,5:1 6:1 Liposomenlösung 1,5:1 3:1 4,5:1	162 ± 2 136 ± 8 109 ± 2 104 ± 1 248 ± 6 545 ± 8 2016 ± 40	$\begin{array}{c} 0,172 \pm 0,013\\ 0,266 \pm 0,113\\ 0,174 \pm 0,013\\ 0,286 \pm 0,004\\ 0,691 \pm 0,013\\ 0,983 \pm 0,030\\ 0,393 \pm 0,080\\ \end{array}$	$ \begin{array}{r} 103 \pm 109 \\ 103 \pm 79 \\ 97 \pm 64 \\ \hline 32 \pm 14 \\ 51 \pm 30 \\ 30 \pm 21 \\ \end{array} $	$\begin{array}{r} 50,31\pm 8,031\\ 85,65\pm 8,448\\ 86,27\pm 12,86\\ \hline \\ 97,40\pm 8,32\\ 92,02\pm 8,77\\ 88,94\pm 9,66\\ \end{array}$
(n/n) MA4/DOPE 1:3 (n/n)	4,5:1 6:1 Liposomenlösung 1,5:1 3:1 4,5:1 6:1	$ \begin{array}{r} 162 \pm 2 \\ 136 \pm 8 \\ 109 \pm 2 \\ 104 \pm 1 \\ 248 \pm 6 \\ 545 \pm 8 \\ 2016 \pm 40 \\ 127 \pm 1 \end{array} $	$\begin{array}{c} 0,172 \pm 0,013\\ 0,266 \pm 0,113\\ 0,174 \pm 0,013\\ 0,286 \pm 0,004\\ 0,691 \pm 0,013\\ 0,983 \pm 0,030\\ 0,393 \pm 0,080\\ 0,176 \pm 0,029 \end{array}$	$ \begin{array}{r} 130 \pm 103 \\ 103 \pm 79 \\ 97 \pm 64 \\ \hline 32 \pm 14 \\ 51 \pm 30 \\ 30 \pm 21 \\ 41 \pm 23 \\ \end{array} $	$\begin{array}{c} 30,31\pm 8,331\\ 85,65\pm 8,448\\ 86,27\pm 12,86\\ \hline \\ 97,40\pm 8,32\\ 92,02\pm 8,77\\ 88,94\pm 9,66\\ 84,53\pm 13,28\\ \end{array}$
(n/n) MA4/DOPE 1:3 (n/n)	3.1 4,5:1 6:1 Liposomenlösung 1,5:1 3:1 4,5:1 6:1	162 ± 2 136 ± 8 109 ± 2 104 ± 1 248 ± 6 545 ± 8 2016 ± 40 127 ± 1 104 ± 7	$\begin{array}{c} 0,172 \pm 0,013\\ 0,266 \pm 0,113\\ 0,174 \pm 0,013\\ 0,286 \pm 0,004\\ 0,691 \pm 0,013\\ 0,983 \pm 0,030\\ 0,393 \pm 0,080\\ 0,176 \pm 0,029\\ 0,342 \pm 0,073\end{array}$	$ \begin{array}{r} 103 \pm 103 \\ 103 \pm 79 \\ 97 \pm 64 \\ \hline 32 \pm 14 \\ 51 \pm 30 \\ 30 \pm 21 \\ 41 \pm 23 \\ \end{array} $	$\begin{array}{r} 50,31 \pm 8,031 \\ 85,65 \pm 8,448 \\ 86,27 \pm 12,86 \\ \hline \\ 97,40 \pm 8,32 \\ 92,02 \pm 8,77 \\ 88,94 \pm 9,66 \\ 84,53 \pm 13,28 \\ \end{array}$
(n/n) MA4/DOPE 1:3 (n/n)	4,5:1 6:1 Liposomenlösung 1,5:1 3:1 4,5:1 6:1 Liposomenlösung	162 ± 2 136 ± 8 109 ± 2 104 ± 1 248 ± 6 545 ± 8 2016 ± 40 127 ± 1 104 ± 7	$\begin{array}{c} 0,172 \pm 0,013\\ 0,266 \pm 0,113\\ 0,174 \pm 0,013\\ 0,286 \pm 0,004\\ 0,691 \pm 0,013\\ 0,983 \pm 0,030\\ 0,393 \pm 0,080\\ 0,176 \pm 0,029\\ 0,342 \pm 0,073\\ 0,342 \pm 0,072\\ 0,342 \pm 0,073\\ 0,342 \pm 0,072\\ 0,342 \pm 0,072\\$	$ \begin{array}{r} 103 \pm 103 \\ 103 \pm 79 \\ 97 \pm 64 \\ \hline 32 \pm 14 \\ 51 \pm 30 \\ 30 \pm 21 \\ 41 \pm 23 \\ \hline \end{array} $	$\begin{array}{r} 50,31 \pm 8,331 \\ 85,65 \pm 8,448 \\ 86,27 \pm 12,86 \\ \hline \\ 97,40 \pm 8,32 \\ 92,02 \pm 8,77 \\ 88,94 \pm 9,66 \\ 84,53 \pm 13,28 \\ \hline \\ \end{array}$
(n/n) MA4/DOPE 1:3 (n/n) MA4/DOPE 1:2	3.1 4,5:1 6:1 Liposomenlösung 1,5:1 3:1 4,5:1 6:1 Liposomenlösung 1,5:1	162 ± 2 136 ± 8 109 ± 2 104 ± 1 248 ± 6 545 ± 8 2016 ± 40 127 ± 1 104 ± 7 269 ± 3	$\begin{array}{c} 0,172 \pm 0,013\\ 0,266 \pm 0,113\\ 0,174 \pm 0,013\\ 0,286 \pm 0,004\\ 0,691 \pm 0,013\\ 0,983 \pm 0,030\\ 0,393 \pm 0,080\\ 0,176 \pm 0,029\\ 0,342 \pm 0,073\\ 0,556 \pm 0,078\\ \end{array}$	$ \begin{array}{r} 130 \pm 103 \\ 103 \pm 79 \\ 97 \pm 64 \\ \hline 32 \pm 14 \\ 51 \pm 30 \\ 30 \pm 21 \\ 41 \pm 23 \\ \hline 86 \pm 45 \\ \end{array} $	$\begin{array}{r} 30,31 \pm 8,031 \\ 85,65 \pm 8,448 \\ 86,27 \pm 12,86 \\ \hline 97,40 \pm 8,32 \\ 92,02 \pm 8,77 \\ 88,94 \pm 9,66 \\ 84,53 \pm 13,28 \\ \hline 85,26 \pm 11,96 \\ \end{array}$
(n/n) MA4/DOPE 1:3 (n/n) MA4/DOPE 1:2	3.1 4,5:1 6:1 Liposomenlösung 1,5:1 3:1 4,5:1 6:1 Liposomenlösung 1,5:1 3:1	$ \begin{array}{r} 162 \pm 2 \\ 136 \pm 8 \\ 109 \pm 2 \\ 104 \pm 1 \\ 248 \pm 6 \\ 545 \pm 8 \\ 2016 \pm 40 \\ 127 \pm 1 \\ 104 \pm 7 \\ 269 \pm 3 \\ 423 \pm 6 \end{array} $	$\begin{array}{c} 0,172 \pm 0,013 \\ 0,266 \pm 0,113 \\ 0,174 \pm 0,013 \\ 0,286 \pm 0,004 \\ 0,691 \pm 0,013 \\ 0,983 \pm 0,030 \\ 0,393 \pm 0,080 \\ 0,176 \pm 0,029 \\ 0,342 \pm 0,073 \\ 0,556 \pm 0,078 \\ 0,843 \pm 0,062 \end{array}$	$ \begin{array}{r} 130 \pm 109 \\ 103 \pm 79 \\ 97 \pm 64 \\ \hline 32 \pm 14 \\ 51 \pm 30 \\ 30 \pm 21 \\ 41 \pm 23 \\ \hline 86 \pm 45 \\ 190 \pm 69 \\ \end{array} $	$\begin{array}{r} 30,31 \pm 8,331 \\ 85,65 \pm 8,448 \\ 86,27 \pm 12,86 \\ \hline \\ 97,40 \pm 8,32 \\ 92,02 \pm 8,77 \\ 88,94 \pm 9,66 \\ 84,53 \pm 13,28 \\ \hline \\ 85,26 \pm 11,96 \\ 84,15 \pm 13,68 \\ \end{array}$
(n/n) MA4/DOPE 1:3 (n/n) MA4/DOPE 1:2 (n/n)	4,5:1 6:1 Liposomenlösung 1,5:1 3:1 4,5:1 6:1 Liposomenlösung 1,5:1 3:1 4,5:1	162 ± 2 136 ± 8 109 ± 2 104 ± 1 248 ± 6 545 ± 8 2016 ± 40 127 ± 1 104 ± 7 269 ± 3 423 ± 6 166 ± 3	$\begin{array}{c} 0,172 \pm 0,013\\ 0,266 \pm 0,113\\ 0,174 \pm 0,013\\ 0,286 \pm 0,004\\ 0,691 \pm 0,013\\ 0,983 \pm 0,030\\ 0,393 \pm 0,080\\ 0,176 \pm 0,029\\ 0,342 \pm 0,073\\ 0,556 \pm 0,078\\ 0,843 \pm 0,062\\ 0,245 \pm 0,022\\ \end{array}$	$ \begin{array}{r} 130 \pm 103 \\ 103 \pm 79 \\ 97 \pm 64 \\ \hline 32 \pm 14 \\ 51 \pm 30 \\ 30 \pm 21 \\ 41 \pm 23 \\ \hline 86 \pm 45 \\ 190 \pm 69 \\ 106 \pm 35 \\ \end{array} $	$\begin{array}{c} 30,31\pm 3,031\\ 85,65\pm 8,448\\ 86,27\pm 12,86\\ \hline\\ 97,40\pm 8,32\\ 92,02\pm 8,77\\ 88,94\pm 9,66\\ 84,53\pm 13,28\\ \hline\\ 85,26\pm 11,96\\ 84,15\pm 13,68\\ 85,31\pm 13,06\\ \end{array}$
(n/n) MA4/DOPE 1:3 (n/n) MA4/DOPE 1:2 (n/n)	3.1 4,5:1 6:1 Liposomenlösung 1,5:1 3:1 4,5:1 6:1 Liposomenlösung 1,5:1 3:1 4,5:1 6:1 Liposomenlösung 1,5:1 3:1 4,5:1	162 ± 2 136 ± 8 109 ± 2 104 ± 1 248 ± 6 545 ± 8 2016 ± 40 127 ± 1 104 ± 7 269 ± 3 423 ± 6 166 ± 3 130 ± 1	$\begin{array}{c} 0,172 \pm 0,013 \\ 0,266 \pm 0,113 \\ 0,174 \pm 0,013 \\ 0,286 \pm 0,004 \\ 0,691 \pm 0,013 \\ 0,983 \pm 0,030 \\ 0,393 \pm 0,080 \\ 0,176 \pm 0,029 \\ 0,342 \pm 0,073 \\ 0,556 \pm 0,078 \\ 0,843 \pm 0,062 \\ 0,245 \pm 0,022 \\ 0,25 \pm 0,008 \end{array}$	$ \begin{array}{r} 130 \pm 103 \\ 103 \pm 79 \\ 97 \pm 64 \\ \hline 32 \pm 14 \\ 51 \pm 30 \\ 30 \pm 21 \\ 41 \pm 23 \\ \hline 86 \pm 45 \\ 190 \pm 69 \\ 106 \pm 35 \\ 52 \pm 21 \\ \end{array} $	$\begin{array}{r} 90,31\pm 8,031\\ 85,65\pm 8,448\\ 86,27\pm 12,86\\ \hline\\ 97,40\pm 8,32\\ 92,02\pm 8,77\\ 88,94\pm 9,66\\ 84,53\pm 13,28\\ \hline\\ 85,26\pm 11,96\\ 84,15\pm 13,68\\ 85,31\pm 13,06\\ 86,17\pm 15,16\\ \hline\end{array}$
(n/n) MA4/DOPE 1:3 (n/n) MA4/DOPE 1:2 (n/n)	3:1 4,5:1 6:1 Liposomenlösung 1,5:1 3:1 4,5:1 6:1 Liposomenlösung 1,5:1 3:1 4,5:1 6:1 Liposomenlösung 1,5:1 3:1 4,5:1 6:1	162 ± 2 136 ± 8 109 ± 2 104 ± 1 248 ± 6 545 ± 8 2016 ± 40 127 ± 1 104 ± 7 269 ± 3 423 ± 6 166 ± 3 130 ± 1 440	$\begin{array}{c} 0,172 \pm 0,013\\ 0,266 \pm 0,113\\ 0,174 \pm 0,013\\ 0,286 \pm 0,004\\ 0,691 \pm 0,013\\ 0,983 \pm 0,030\\ 0,393 \pm 0,080\\ 0,176 \pm 0,029\\ 0,342 \pm 0,073\\ 0,556 \pm 0,078\\ 0,843 \pm 0,062\\ 0,245 \pm 0,022\\ 0,205 \pm 0,008\\ 0,205 \pm 0,008\\$	$\begin{array}{c} 130 \pm 103 \\ 103 \pm 79 \\ 97 \pm 64 \\ \hline \\ 32 \pm 14 \\ 51 \pm 30 \\ 30 \pm 21 \\ 41 \pm 23 \\ \hline \\ 86 \pm 45 \\ 190 \pm 69 \\ 106 \pm 35 \\ 52 \pm 21 \\ \end{array}$	$\begin{array}{c} 30,31\pm 8,031\\ 85,65\pm 8,448\\ 86,27\pm 12,86\\ \hline \\ 97,40\pm 8,32\\ 92,02\pm 8,77\\ 88,94\pm 9,66\\ 84,53\pm 13,28\\ \hline \\ 85,26\pm 11,96\\ 84,15\pm 13,68\\ 85,31\pm 13,06\\ 86,17\pm 15,16\\ \hline \end{array}$
(n/n) MA4/DOPE 1:3 (n/n) MA4/DOPE 1:2 (n/n)	3:1 4,5:1 6:1 Liposomenlösung 1,5:1 3:1 4,5:1 6:1 Liposomenlösung 1,5:1 3:1 4,5:1 6:1 Liposomenlösung 1,5:1 3:1 4,5:1 6:1 Liposomenlösung	$\begin{array}{r} 162 \pm 2 \\ \hline 136 \pm 8 \\ \hline 109 \pm 2 \\ \hline 104 \pm 1 \\ \hline 248 \pm 6 \\ \hline 545 \pm 8 \\ 2016 \pm 40 \\ \hline 127 \pm 1 \\ \hline 104 \pm 7 \\ \hline 269 \pm 3 \\ \hline 423 \pm 6 \\ \hline 166 \pm 3 \\ \hline 130 \pm 1 \\ \hline 118 \pm 4 \\ \end{array}$	$\begin{array}{c} 0,172 \pm 0,013\\ 0,266 \pm 0,113\\ 0,174 \pm 0,013\\ 0,286 \pm 0,004\\ 0,691 \pm 0,013\\ 0,983 \pm 0,030\\ 0,393 \pm 0,080\\ 0,176 \pm 0,029\\ 0,342 \pm 0,073\\ 0,556 \pm 0,078\\ 0,843 \pm 0,062\\ 0,245 \pm 0,022\\ 0,205 \pm 0,008\\ 0,397 \pm 0,017\\ \end{array}$	$ \begin{array}{r} 130 \pm 103 \\ 103 \pm 79 \\ 97 \pm 64 \\ \hline \\ 32 \pm 14 \\ 51 \pm 30 \\ 30 \pm 21 \\ 41 \pm 23 \\ \hline \\ 86 \pm 45 \\ 190 \pm 69 \\ 106 \pm 35 \\ 52 \pm 21 \\ \hline \end{array} $	$\begin{array}{c} 30,31 \pm 3,031 \\ 85,65 \pm 8,448 \\ 86,27 \pm 12,86 \\ \hline \\ 97,40 \pm 8,32 \\ 92,02 \pm 8,77 \\ 88,94 \pm 9,66 \\ 84,53 \pm 13,28 \\ \hline \\ 85,26 \pm 11,96 \\ 84,15 \pm 13,68 \\ 85,31 \pm 13,06 \\ 86,17 \pm 15,16 \\ \hline \\ \end{array}$
(n/n) MA4/DOPE 1:3 (n/n) MA4/DOPE 1:2 (n/n)	4,5:1 6:1 Liposomenlösung 1,5:1 3:1 4,5:1 6:1 Liposomenlösung 1,5:1 6:1 Liposomenlösung 1,5:1 1	$\begin{array}{r} 162 \pm 2 \\ 136 \pm 8 \\ 109 \pm 2 \\ 104 \pm 1 \\ 248 \pm 6 \\ 545 \pm 8 \\ 2016 \pm 40 \\ 127 \pm 1 \\ 104 \pm 7 \\ 269 \pm 3 \\ 423 \pm 6 \\ 166 \pm 3 \\ 130 \pm 1 \\ 118 \pm 4 \\ 249 \pm 8 \end{array}$	$\begin{array}{c} 0,172 \pm 0,013\\ 0,266 \pm 0,113\\ 0,174 \pm 0,013\\ 0,286 \pm 0,004\\ 0,691 \pm 0,013\\ 0,983 \pm 0,030\\ 0,393 \pm 0,080\\ 0,176 \pm 0,029\\ 0,342 \pm 0,073\\ 0,556 \pm 0,078\\ 0,843 \pm 0,062\\ 0,245 \pm 0,022\\ 0,205 \pm 0,008\\ 0,397 \pm 0,017\\ 0,533 \pm 0,069\\ \end{array}$	$\begin{array}{c} 130 \pm 103 \\ 103 \pm 79 \\ 97 \pm 64 \\ \hline \\ 32 \pm 14 \\ 51 \pm 30 \\ 30 \pm 21 \\ 41 \pm 23 \\ \hline \\ 86 \pm 45 \\ 190 \pm 69 \\ 106 \pm 35 \\ 52 \pm 21 \\ \hline \\ 4 \pm 15 \\ \end{array}$	$\begin{array}{c} 30,31\pm 3,331\\ 85,65\pm 8,448\\ 86,27\pm 12,86\\ \hline\\ 97,40\pm 8,32\\ 92,02\pm 8,77\\ 88,94\pm 9,66\\ 84,53\pm 13,28\\ \hline\\ 85,26\pm 11,96\\ 84,15\pm 13,68\\ 85,31\pm 13,06\\ 86,17\pm 15,16\\ \hline\\ 91,53\pm 24,54\\ \end{array}$
(n/n) MA4/DOPE 1:3 (n/n) MA4/DOPE 1:2 (n/n) MA4/DOPE 1:1	3.1 4,5:1 6:1 Liposomenlösung 1,5:1 3:1 4,5:1 6:1 Liposomenlösung 1,5:1 3:1 4,5:1 6:1 Liposomenlösung 1,5:1 3:1 3:1	162 ± 2 136 ± 8 109 ± 2 104 ± 1 248 ± 6 545 ± 8 2016 ± 40 127 ± 1 104 ± 7 269 ± 3 423 ± 6 166 ± 3 130 ± 1 118 ± 4 249 ± 8 876 ± 1	$\begin{array}{c} 0,172 \pm 0,013\\ 0,266 \pm 0,113\\ 0,174 \pm 0,013\\ 0,286 \pm 0,004\\ 0,691 \pm 0,013\\ 0,983 \pm 0,030\\ 0,393 \pm 0,080\\ 0,176 \pm 0,029\\ 0,342 \pm 0,073\\ 0,556 \pm 0,078\\ 0,843 \pm 0,062\\ 0,245 \pm 0,022\\ 0,205 \pm 0,008\\ 0,397 \pm 0,017\\ 0,533 \pm 0,069\\ 0,390 \pm 0,031\\ \end{array}$	$\begin{array}{c} 130 \pm 103 \\ 103 \pm 79 \\ 97 \pm 64 \\ \hline \\ 32 \pm 14 \\ 51 \pm 30 \\ 30 \pm 21 \\ 41 \pm 23 \\ \hline \\ 86 \pm 45 \\ 190 \pm 69 \\ 106 \pm 35 \\ 52 \pm 21 \\ \hline \\ 4 \pm 15 \\ 97 \pm 131 \\ \end{array}$	$\begin{array}{c} 30,31\pm 3,631\\ 85,65\pm 8,448\\ 86,27\pm 12,86\\ \hline \\ 97,40\pm 8,32\\ 92,02\pm 8,77\\ 88,94\pm 9,66\\ 84,53\pm 13,28\\ \hline \\ 85,26\pm 11,96\\ 84,15\pm 13,68\\ 85,31\pm 13,06\\ 86,17\pm 15,16\\ \hline \\ 91,53\pm 24,54\\ 96,41\pm 24,93\\ \hline \end{array}$
(n/n) MA4/DOPE 1:3 (n/n) MA4/DOPE 1:2 (n/n) MA4/DOPE 1:1 (n/n)	3.1 4,5:1 6:1 Liposomenlösung 1,5:1 3:1 4,5:1 6:1 Liposomenlösung 1,5:1 3:1 4,5:1 6:1 Liposomenlösung 1,5:1 6:1 Liposomenlösung 1,5:1 3:1 4,5:1 6:1 Liposomenlösung 1,5:1 3:1	162 ± 2 136 ± 8 109 ± 2 104 ± 1 248 ± 6 545 ± 8 2016 ± 40 127 ± 1 104 ± 7 269 ± 3 423 ± 6 166 ± 3 130 ± 1 118 ± 4 249 ± 8 876 ± 1	$\begin{array}{c} 0,172 \pm 0,013\\ 0,266 \pm 0,113\\ 0,174 \pm 0,013\\ 0,286 \pm 0,004\\ 0,691 \pm 0,013\\ 0,983 \pm 0,030\\ 0,393 \pm 0,080\\ 0,176 \pm 0,029\\ 0,342 \pm 0,073\\ 0,556 \pm 0,078\\ 0,843 \pm 0,062\\ 0,245 \pm 0,022\\ 0,205 \pm 0,008\\ 0,397 \pm 0,017\\ 0,533 \pm 0,069\\ 0,390 \pm 0,031\\ 0,234 \pm 0,022\\ 0,202 \pm 0,024\\ 0,205 \pm 0,008\\ 0,245 \pm 0,022\\ 0,245 \pm 0,022\\$	$\begin{array}{c} 130 \pm 103 \\ 103 \pm 79 \\ 97 \pm 64 \\ \hline \\ 32 \pm 14 \\ 51 \pm 30 \\ 30 \pm 21 \\ 41 \pm 23 \\ \hline \\ 86 \pm 45 \\ 190 \pm 69 \\ 106 \pm 35 \\ 52 \pm 21 \\ \hline \\ 4 \pm 15 \\ 97 \pm 131 \\ 101 \pm 66 \end{array}$	$\begin{array}{c} 30,31\pm 8,031\\ 85,65\pm 8,448\\ 86,27\pm 12,86\\ \hline \\ 97,40\pm 8,32\\ 92,02\pm 8,77\\ 88,94\pm 9,66\\ 84,53\pm 13,28\\ \hline \\ 85,26\pm 11,96\\ 84,15\pm 13,68\\ 85,31\pm 13,06\\ 86,17\pm 15,16\\ \hline \\ 91,53\pm 24,54\\ 96,41\pm 24,93\\ 100.5\pm 22,42\\ \end{array}$
(n/n) MA4/DOPE 1:3 (n/n) MA4/DOPE 1:2 (n/n) MA4/DOPE 1:1 (n/n)	3:1 4,5:1 6:1 Liposomenlösung 1,5:1 3:1 4,5:1 3:1 4,5:1	$\begin{array}{r} 162 \pm 2 \\ 136 \pm 8 \\ 109 \pm 2 \\ 104 \pm 1 \\ 248 \pm 6 \\ 545 \pm 8 \\ 2016 \pm 40 \\ 127 \pm 1 \\ 104 \pm 7 \\ 269 \pm 3 \\ 423 \pm 6 \\ 166 \pm 3 \\ 130 \pm 1 \\ 118 \pm 4 \\ 249 \pm 8 \\ 876 \pm 1 \\ 168 \pm 1 \\ 168 \pm 1 \\ \end{array}$	$\begin{array}{c} 0,172 \pm 0,013 \\ 0,266 \pm 0,113 \\ 0,174 \pm 0,013 \\ 0,286 \pm 0,004 \\ 0,691 \pm 0,013 \\ 0,983 \pm 0,030 \\ 0,393 \pm 0,080 \\ 0,176 \pm 0,029 \\ 0,342 \pm 0,073 \\ 0,556 \pm 0,078 \\ 0,843 \pm 0,062 \\ 0,245 \pm 0,022 \\ 0,205 \pm 0,008 \\ 0,397 \pm 0,017 \\ 0,533 \pm 0,069 \\ 0,390 \pm 0,031 \\ 0,224 \pm 0,012 \\ \end{array}$	$\begin{array}{c} 130 \pm 103 \\ 103 \pm 79 \\ 97 \pm 64 \\ \hline \\ 32 \pm 14 \\ 51 \pm 30 \\ 30 \pm 21 \\ 41 \pm 23 \\ \hline \\ 86 \pm 45 \\ 190 \pm 69 \\ 106 \pm 35 \\ 52 \pm 21 \\ \hline \\ 4 \pm 15 \\ 97 \pm 131 \\ 101 \pm 66 \\ \hline \end{array}$	$\begin{array}{c} 90,31 \pm 8,031 \\ 85,65 \pm 8,448 \\ 86,27 \pm 12,86 \\ \hline \\ 97,40 \pm 8,32 \\ 92,02 \pm 8,77 \\ 88,94 \pm 9,66 \\ 84,53 \pm 13,28 \\ \hline \\ 85,26 \pm 11,96 \\ 84,15 \pm 13,68 \\ 85,31 \pm 13,06 \\ 86,17 \pm 15,16 \\ \hline \\ 91,53 \pm 24,54 \\ 96,41 \pm 24,93 \\ 100,5 \pm 22,18 \\ \hline \end{array}$
(n/n) MA4/DOPE 1:3 (n/n) MA4/DOPE 1:2 (n/n) MA4/DOPE 1:1 (n/n)	3.1 4,5:1 6:1 Liposomenlösung 1,5:1 3:1 4,5:1 6:1	$\begin{array}{r} 162 \pm 2 \\ 136 \pm 8 \\ 109 \pm 2 \\ 104 \pm 1 \\ 248 \pm 6 \\ 545 \pm 8 \\ 2016 \pm 40 \\ 127 \pm 1 \\ 104 \pm 7 \\ 269 \pm 3 \\ 423 \pm 6 \\ 166 \pm 3 \\ 130 \pm 1 \\ 118 \pm 4 \\ 249 \pm 8 \\ 876 \pm 1 \\ 168 \pm 1 \\ 145 \pm 1 \\ \end{array}$	$\begin{array}{c} 0,172\pm0,013\\ 0,266\pm0,113\\ 0,174\pm0,013\\ 0,286\pm0,004\\ 0,691\pm0,013\\ 0,983\pm0,030\\ 0,393\pm0,080\\ 0,176\pm0,029\\ 0,342\pm0,073\\ 0,556\pm0,078\\ 0,843\pm0,062\\ 0,245\pm0,022\\ 0,205\pm0,008\\ 0,397\pm0,017\\ 0,533\pm0,069\\ 0,390\pm0,031\\ 0,224\pm0,012\\ 0,184\pm0,012\\ \end{array}$	$\begin{array}{c} 130 \pm 103 \\ 103 \pm 79 \\ 97 \pm 64 \\ \hline \\ 32 \pm 14 \\ 51 \pm 30 \\ 30 \pm 21 \\ 41 \pm 23 \\ \hline \\ 86 \pm 45 \\ 190 \pm 69 \\ 106 \pm 35 \\ 52 \pm 21 \\ \hline \\ 4 \pm 15 \\ 97 \pm 131 \\ 101 \pm 66 \\ 93 \pm 64 \\ \end{array}$	$\begin{array}{c} 30,31\pm 20,331\\ 85,65\pm 8,448\\ 86,27\pm 12,86\\ \hline \\ 97,40\pm 8,32\\ 92,02\pm 8,77\\ 88,94\pm 9,66\\ 84,53\pm 13,28\\ \hline \\ 85,26\pm 11,96\\ 84,15\pm 13,68\\ 85,31\pm 13,06\\ 86,17\pm 15,16\\ \hline \\ 91,53\pm 24,54\\ 96,41\pm 24,93\\ 100,5\pm 22,18\\ 96,28\pm 23,43\\ \end{array}$
(n/n) MA4/DOPE 1:3 (n/n) MA4/DOPE 1:2 (n/n) MA4/DOPE 1:1 (n/n)	3:1 4,5:1 6:1 Liposomenlösung 1,5:1 3:1 4,5:1 6:1 Liposomenlösung	$\begin{array}{r} 162 \pm 2 \\ 136 \pm 8 \\ 109 \pm 2 \\ 104 \pm 1 \\ 248 \pm 6 \\ 545 \pm 8 \\ 2016 \pm 40 \\ 127 \pm 1 \\ 104 \pm 7 \\ 269 \pm 3 \\ 423 \pm 6 \\ 166 \pm 3 \\ 130 \pm 1 \\ 118 \pm 4 \\ 249 \pm 8 \\ 876 \pm 1 \\ 168 \pm 1 \\ 145 \pm 1 \\ 96 \pm 1 \\ \end{array}$	$\begin{array}{c} 0,172 \pm 0,013\\ 0,266 \pm 0,113\\ 0,174 \pm 0,013\\ 0,286 \pm 0,004\\ 0,691 \pm 0,013\\ 0,983 \pm 0,030\\ 0,393 \pm 0,080\\ 0,176 \pm 0,029\\ 0,342 \pm 0,073\\ 0,556 \pm 0,078\\ 0,843 \pm 0,062\\ 0,245 \pm 0,022\\ 0,205 \pm 0,008\\ 0,397 \pm 0,017\\ 0,533 \pm 0,069\\ 0,390 \pm 0,031\\ 0,224 \pm 0,012\\ 0,184 \pm 0,012\\ 0,197 \pm 0,009\\ \end{array}$	$\begin{array}{c} 130 \pm 103 \\ 103 \pm 79 \\ 97 \pm 64 \\ \hline \\ 32 \pm 14 \\ 51 \pm 30 \\ 30 \pm 21 \\ 41 \pm 23 \\ \hline \\ 86 \pm 45 \\ 190 \pm 69 \\ 106 \pm 35 \\ 52 \pm 21 \\ \hline \\ 4 \pm 15 \\ 97 \pm 131 \\ 101 \pm 66 \\ 93 \pm 64 \\ \hline \end{array}$	$\begin{array}{c} 30,31\pm 0,031\\ 85,65\pm 8,448\\ 86,27\pm 12,86\\ 97,40\pm 8,32\\ 92,02\pm 8,77\\ 88,94\pm 9,66\\ 84,53\pm 13,28\\ \hline\\ 85,26\pm 11,96\\ 84,15\pm 13,68\\ 85,31\pm 13,06\\ 86,17\pm 15,16\\ \hline\\ 91,53\pm 24,54\\ 96,41\pm 24,93\\ 100,5\pm 22,18\\ 96,28\pm 23,43\\ \hline\end{array}$
(n/n) MA4/DOPE 1:3 (n/n) MA4/DOPE 1:2 (n/n) MA4/DOPE 1:1 (n/n)	3.1 4,5:1 6:1 Liposomenlösung 1,5:1 3:1 4,5:1 6:1 Liposomenlösung 1,5:1	$\begin{array}{r} 162 \pm 2 \\ 136 \pm 8 \\ 109 \pm 2 \\ 104 \pm 1 \\ 248 \pm 6 \\ 545 \pm 8 \\ 2016 \pm 40 \\ 127 \pm 1 \\ 104 \pm 7 \\ 269 \pm 3 \\ 423 \pm 6 \\ 166 \pm 3 \\ 130 \pm 1 \\ 118 \pm 4 \\ 249 \pm 8 \\ 876 \pm 1 \\ 168 \pm 1 \\ 145 \pm 1 \\ 96 \pm 1 \\ 423 \pm 4 \end{array}$	$\begin{array}{c} 0,172 \pm 0,013\\ 0,266 \pm 0,113\\ 0,174 \pm 0,013\\ 0,286 \pm 0,004\\ 0,691 \pm 0,013\\ 0,983 \pm 0,030\\ 0,393 \pm 0,080\\ 0,176 \pm 0,029\\ 0,342 \pm 0,073\\ 0,556 \pm 0,078\\ 0,843 \pm 0,062\\ 0,245 \pm 0,022\\ 0,205 \pm 0,008\\ 0,397 \pm 0,017\\ 0,533 \pm 0,069\\ 0,390 \pm 0,031\\ 0,224 \pm 0,012\\ 0,184 \pm 0,012\\ 0,197 \pm 0,009\\ 0,473 \pm 0,050\\ \end{array}$	$\begin{array}{c} 130 \pm 103 \\ 103 \pm 79 \\ 97 \pm 64 \\ \hline \\ 32 \pm 14 \\ 51 \pm 30 \\ 30 \pm 21 \\ 41 \pm 23 \\ \hline \\ 86 \pm 45 \\ 190 \pm 69 \\ 106 \pm 35 \\ 52 \pm 21 \\ \hline \\ 4 \pm 15 \\ 97 \pm 131 \\ 101 \pm 66 \\ 93 \pm 64 \\ \hline \\ 3 \pm 3 \\ \end{array}$	$\begin{array}{c} 30,31\pm 0,031\\ 85,65\pm 8,448\\ 86,27\pm 12,86\\ \hline \\ 97,40\pm 8,32\\ 92,02\pm 8,77\\ 88,94\pm 9,66\\ 84,53\pm 13,28\\ \hline \\ 85,26\pm 11,96\\ 84,15\pm 13,68\\ 85,31\pm 13,06\\ 86,17\pm 15,16\\ \hline \\ 91,53\pm 24,54\\ 96,41\pm 24,93\\ 100,5\pm 22,18\\ 96,28\pm 23,43\\ \hline \\ 83,28\pm 9,207\\ \hline \end{array}$
(n/n) MA4/DOPE 1:3 (n/n) MA4/DOPE 1:2 (n/n) MA4/DOPE 1:1 (n/n)	3.1 4,5:1 6:1 Liposomenlösung 1,5:1 3:1 4,5:1 6:1 Liposomenlösung 1,5:1 2:1	$\begin{array}{r} 162 \pm 2 \\ 136 \pm 8 \\ 109 \pm 2 \\ 104 \pm 1 \\ 248 \pm 6 \\ 545 \pm 8 \\ 2016 \pm 40 \\ 127 \pm 1 \\ 104 \pm 7 \\ 269 \pm 3 \\ 423 \pm 6 \\ 166 \pm 3 \\ 130 \pm 1 \\ 118 \pm 4 \\ 249 \pm 8 \\ 876 \pm 1 \\ 168 \pm 1 \\ 145 \pm 1 \\ 96 \pm 1 \\ 423 \pm 4 \\ 542 \pm 4 \\ \end{array}$	$\begin{array}{c} 0,172 \pm 0,013\\ 0,266 \pm 0,113\\ 0,174 \pm 0,013\\ 0,286 \pm 0,004\\ 0,691 \pm 0,013\\ 0,983 \pm 0,030\\ 0,393 \pm 0,080\\ 0,176 \pm 0,029\\ 0,342 \pm 0,073\\ 0,556 \pm 0,078\\ 0,843 \pm 0,062\\ 0,245 \pm 0,022\\ 0,205 \pm 0,008\\ 0,397 \pm 0,017\\ 0,533 \pm 0,069\\ 0,390 \pm 0,031\\ 0,224 \pm 0,012\\ 0,184 \pm 0,012\\ 0,197 \pm 0,009\\ 0,473 \pm 0,050\\ 0,660\\ 0,600\\ 0,6$	$\begin{array}{c} 130 \pm 103 \\ 103 \pm 79 \\ 97 \pm 64 \\ \hline \\ 32 \pm 14 \\ 51 \pm 30 \\ 30 \pm 21 \\ 41 \pm 23 \\ \hline \\ 86 \pm 45 \\ 190 \pm 69 \\ 106 \pm 35 \\ 52 \pm 21 \\ \hline \\ 4 \pm 15 \\ 97 \pm 131 \\ 101 \pm 66 \\ 93 \pm 64 \\ \hline \\ \\ 3 \pm 3 \\ 5 \pm 2 \end{array}$	$\begin{array}{c} 90,31 \pm 8,031 \\ 85,65 \pm 8,448 \\ 86,27 \pm 12,86 \\ \hline \\ 97,40 \pm 8,32 \\ 92,02 \pm 8,77 \\ 88,94 \pm 9,66 \\ 84,53 \pm 13,28 \\ \hline \\ 85,26 \pm 11,96 \\ 84,15 \pm 13,68 \\ 85,31 \pm 13,06 \\ 86,17 \pm 15,16 \\ \hline \\ 91,53 \pm 24,54 \\ 96,41 \pm 24,93 \\ 100,5 \pm 22,18 \\ 96,28 \pm 23,43 \\ \hline \\ 83,28 \pm 9,207 \\ 84,54 \pm 14,42 \\ \hline \end{array}$
(n/n) MA4/DOPE 1:3 (n/n) MA4/DOPE 1:2 (n/n) MA4/DOPE 1:1 (n/n) MA4/DOPE 2:1 (n/n)	3.1 4,5:1 6:1 Liposomenlösung 1,5:1 3:1	$\begin{array}{r} 162 \pm 2 \\ 136 \pm 8 \\ 109 \pm 2 \\ 104 \pm 1 \\ 248 \pm 6 \\ 545 \pm 8 \\ 2016 \pm 40 \\ 127 \pm 1 \\ 104 \pm 7 \\ 269 \pm 3 \\ 423 \pm 6 \\ 166 \pm 3 \\ 130 \pm 1 \\ 118 \pm 4 \\ 249 \pm 8 \\ 876 \pm 1 \\ 168 \pm 1 \\ 145 \pm 1 \\ 96 \pm 1 \\ 423 \pm 4 \\ 513 \pm 4 \\ \end{array}$	$\begin{array}{c} 0,172\pm0,013\\ 0,266\pm0,113\\ 0,174\pm0,013\\ 0,286\pm0,004\\ 0,691\pm0,013\\ 0,983\pm0,030\\ 0,393\pm0,080\\ 0,176\pm0,029\\ 0,342\pm0,073\\ 0,556\pm0,078\\ 0,843\pm0,062\\ 0,245\pm0,022\\ 0,245\pm0,022\\ 0,205\pm0,008\\ 0,397\pm0,017\\ 0,533\pm0,069\\ 0,390\pm0,031\\ 0,224\pm0,012\\ 0,184\pm0,012\\ 0,197\pm0,009\\ 0,473\pm0,050\\ 0,644\pm0,069\end{array}$	$\begin{array}{c} 130 \pm 103 \\ 103 \pm 79 \\ 97 \pm 64 \\ \hline \\ 32 \pm 14 \\ 51 \pm 30 \\ 30 \pm 21 \\ 41 \pm 23 \\ \hline \\ 86 \pm 45 \\ 190 \pm 69 \\ 106 \pm 35 \\ 52 \pm 21 \\ \hline \\ 4 \pm 15 \\ 97 \pm 131 \\ 101 \pm 66 \\ 93 \pm 64 \\ \hline \\ 3 \pm 3 \\ 5 \pm 3 \\ \hline \end{array}$	$\begin{array}{c} 30,31\pm 3,331\\ 85,65\pm 8,448\\ 86,27\pm 12,86\\ \hline \\ 97,40\pm 8,32\\ 92,02\pm 8,77\\ 88,94\pm 9,66\\ 84,53\pm 13,28\\ \hline \\ 85,26\pm 11,96\\ 84,15\pm 13,68\\ 85,31\pm 13,06\\ 86,17\pm 15,16\\ \hline \\ 91,53\pm 24,54\\ 96,41\pm 24,93\\ 100,5\pm 22,18\\ 96,28\pm 23,43\\ \hline \\ 83,28\pm 9,207\\ 84,51\pm 11,12\\ \hline \end{array}$
(n/n) MA4/DOPE 1:3 (n/n) MA4/DOPE 1:2 (n/n) MA4/DOPE 1:1 (n/n) MA4/DOPE 2:1 (n/n)	3:1 4,5:1 6:1 Liposomenlösung 1,5:1 3:1 4,5:1	$\begin{array}{r} 162 \pm 2 \\ 136 \pm 8 \\ 109 \pm 2 \\ 104 \pm 1 \\ 248 \pm 6 \\ 545 \pm 8 \\ 2016 \pm 40 \\ 127 \pm 1 \\ 104 \pm 7 \\ 269 \pm 3 \\ 423 \pm 6 \\ 166 \pm 3 \\ 130 \pm 1 \\ 118 \pm 4 \\ 249 \pm 8 \\ 876 \pm 1 \\ 168 \pm 1 \\ 145 \pm 1 \\ 96 \pm 1 \\ 423 \pm 4 \\ 513 \pm 4 \\ 130 \pm 1 \\ \end{array}$	$\begin{array}{c} 0,172\pm0,013\\ 0,266\pm0,113\\ 0,266\pm0,004\\ 0,691\pm0,003\\ 0,983\pm0,030\\ 0,393\pm0,080\\ 0,176\pm0,029\\ 0,342\pm0,073\\ 0,556\pm0,078\\ 0,843\pm0,062\\ 0,245\pm0,022\\ 0,245\pm0,022\\ 0,245\pm0,008\\ 0,397\pm0,017\\ 0,533\pm0,069\\ 0,390\pm0,031\\ 0,224\pm0,012\\ 0,184\pm0,012\\ 0,184\pm0,012\\ 0,197\pm0,009\\ 0,473\pm0,050\\ 0,644\pm0,069\\ 0,137\pm0,014\\ \end{array}$	$\begin{array}{c} 130 \pm 103 \pm 79 \\ 103 \pm 79 \\ 97 \pm 64 \\ \hline \\ 32 \pm 14 \\ 51 \pm 30 \\ 30 \pm 21 \\ 41 \pm 23 \\ \hline \\ 86 \pm 45 \\ 190 \pm 69 \\ 106 \pm 35 \\ 52 \pm 21 \\ \hline \\ 4 \pm 15 \\ 97 \pm 131 \\ 101 \pm 66 \\ 93 \pm 64 \\ \hline \\ 3 \pm 3 \\ 5 \pm 3 \\ 11 \pm 4 \\ \hline \end{array}$	$\begin{array}{c} 30,31\pm 0,031\\ 85,65\pm 8,448\\ 86,27\pm 12,86\\ 97,40\pm 8,32\\ 92,02\pm 8,77\\ 88,94\pm 9,66\\ 84,53\pm 13,28\\ \hline\\ 85,26\pm 11,96\\ 84,15\pm 13,68\\ 85,31\pm 13,06\\ 86,17\pm 15,16\\ \hline\\ 91,53\pm 24,54\\ 96,41\pm 24,93\\ 100,5\pm 22,18\\ 96,28\pm 23,43\\ \hline\\ 83,28\pm 9,207\\ 84,51\pm 11,12\\ 98,39\pm 14,92\\ \end{array}$
(n/n) MA4/DOPE 1:3 (n/n) MA4/DOPE 1:2 (n/n) MA4/DOPE 1:1 (n/n) MA4/DOPE 2:1 (n/n)	3:1 4,5:1 6:1 Liposomenlösung 1,5:1 3:1 4,5:1 6:1	$\begin{array}{r} 162 \pm 2 \\ 136 \pm 8 \\ 109 \pm 2 \\ 104 \pm 1 \\ 248 \pm 6 \\ 545 \pm 8 \\ 2016 \pm 40 \\ 127 \pm 1 \\ 104 \pm 7 \\ 269 \pm 3 \\ 423 \pm 6 \\ 166 \pm 3 \\ 130 \pm 1 \\ 118 \pm 4 \\ 249 \pm 8 \\ 876 \pm 1 \\ 168 \pm 1 \\ 145 \pm 1 \\ 96 \pm 1 \\ 423 \pm 4 \\ 513 \pm 4 \\ 130 \pm 1 \\ 231 \pm 2 \end{array}$	$\begin{array}{c} 0,172\pm0,013\\ 0,266\pm0,113\\ 0,266\pm0,004\\ 0,691\pm0,013\\ 0,983\pm0,030\\ 0,393\pm0,080\\ 0,176\pm0,029\\ 0,342\pm0,073\\ 0,556\pm0,078\\ 0,843\pm0,062\\ 0,245\pm0,022\\ 0,205\pm0,008\\ 0,397\pm0,017\\ 0,533\pm0,069\\ 0,397\pm0,017\\ 0,533\pm0,069\\ 0,390\pm0,031\\ 0,224\pm0,012\\ 0,184\pm0,012\\ 0,197\pm0,009\\ 0,473\pm0,050\\ 0,644\pm0,069\\ 0,137\pm0,014\\ 0,418\pm0,020\\ \end{array}$	$\begin{array}{c} 130 \pm 103 \\ 103 \pm 79 \\ 97 \pm 64 \\ \hline \\ 32 \pm 14 \\ 51 \pm 30 \\ 30 \pm 21 \\ 41 \pm 23 \\ \hline \\ 86 \pm 45 \\ 190 \pm 69 \\ 106 \pm 35 \\ 52 \pm 21 \\ \hline \\ 4 \pm 15 \\ 97 \pm 131 \\ 101 \pm 66 \\ 93 \pm 64 \\ \hline \\ 3 \pm 3 \\ 5 \pm 3 \\ 11 \pm 4 \\ 12 \pm 7 \\ \end{array}$	$\begin{array}{c} 30,31\pm 0,031\\ 85,65\pm 8,448\\ 86,27\pm 12,86\\ \hline \\ 97,40\pm 8,32\\ 92,02\pm 8,77\\ 88,94\pm 9,66\\ 84,53\pm 13,28\\ \hline \\ 85,26\pm 11,96\\ 84,15\pm 13,68\\ 85,31\pm 13,06\\ 86,17\pm 15,16\\ \hline \\ 91,53\pm 24,54\\ 96,41\pm 24,93\\ 100,5\pm 22,18\\ 96,28\pm 23,43\\ \hline \\ 83,28\pm 9,207\\ 84,51\pm 11,12\\ 98,39\pm 14,92\\ 96,41\pm 15,39\\ \end{array}$
(n/n) MA4/DOPE 1:3 (n/n) MA4/DOPE 1:2 (n/n) MA4/DOPE 1:1 (n/n) MA4/DOPE 2:1 (n/n)	3.1 4,5:1 6:1 Liposomenlösung 1,5:1 3:1 4,5:1 6:1 Liposomenlösung 1,5:1 6:1 Liposomenlösung 1,5:1 6:1 Liposomenlösung 1,5:1 6:1 Liposomenlösung	$\begin{array}{r} 162 \pm 2 \\ 136 \pm 8 \\ 109 \pm 2 \\ 104 \pm 1 \\ 248 \pm 6 \\ 545 \pm 8 \\ 2016 \pm 40 \\ 127 \pm 1 \\ 104 \pm 7 \\ 269 \pm 3 \\ 423 \pm 6 \\ 166 \pm 3 \\ 130 \pm 1 \\ 118 \pm 4 \\ 249 \pm 8 \\ 876 \pm 1 \\ 168 \pm 1 \\ 145 \pm 1 \\ 96 \pm 1 \\ 423 \pm 4 \\ 513 \pm 4 \\ 130 \pm 1 \\ 231 \pm 2 \\ 120 \pm 3 \\ \end{array}$	$\begin{array}{c} 0,172 \pm 0,013 \\ 0,266 \pm 0,113 \\ 0,266 \pm 0,013 \\ 0,286 \pm 0,004 \\ 0,691 \pm 0,013 \\ 0,983 \pm 0,030 \\ 0,393 \pm 0,080 \\ 0,176 \pm 0,029 \\ 0,342 \pm 0,073 \\ 0,556 \pm 0,078 \\ 0,843 \pm 0,062 \\ 0,245 \pm 0,022 \\ 0,205 \pm 0,008 \\ 0,397 \pm 0,017 \\ 0,533 \pm 0,069 \\ 0,397 \pm 0,017 \\ 0,533 \pm 0,069 \\ 0,390 \pm 0,031 \\ 0,224 \pm 0,012 \\ 0,184 \pm 0,012 \\ 0,197 \pm 0,009 \\ 0,473 \pm 0,050 \\ 0,644 \pm 0,069 \\ 0,137 \pm 0,014 \\ 0,418 \pm 0,020 \\ 0,361 \pm 0,006 \\ \end{array}$	$\begin{array}{c} 130 \pm 103 \\ 103 \pm 79 \\ 97 \pm 64 \\ \hline \\ 32 \pm 14 \\ 51 \pm 30 \\ 30 \pm 21 \\ 41 \pm 23 \\ \hline \\ 86 \pm 45 \\ 190 \pm 69 \\ 106 \pm 35 \\ 52 \pm 21 \\ \hline \\ 4 \pm 15 \\ 97 \pm 131 \\ 101 \pm 66 \\ 93 \pm 64 \\ \hline \\ 3 \pm 3 \\ 5 \pm 3 \\ 11 \pm 4 \\ 12 \pm 7 \\ \hline \end{array}$	$\begin{array}{c} 30,31\pm 8,031\\ 85,65\pm 8,448\\ 86,27\pm 12,86\\ \hline \\ 97,40\pm 8,32\\ 92,02\pm 8,77\\ 88,94\pm 9,66\\ 84,53\pm 13,28\\ \hline \\ 85,26\pm 11,96\\ 84,15\pm 13,68\\ 85,31\pm 13,06\\ 86,17\pm 15,16\\ \hline \\ 91,53\pm 24,54\\ 96,41\pm 24,93\\ 100,5\pm 22,18\\ 96,28\pm 23,43\\ \hline \\ 83,28\pm 9,207\\ 84,51\pm 11,12\\ 98,39\pm 14,92\\ 96,41\pm 15,39\\ \hline \end{array}$
(n/n) MA4/DOPE 1:3 (n/n) MA4/DOPE 1:2 (n/n) MA4/DOPE 1:1 (n/n) MA4/DOPE 2:1 (n/n)	3.1 4,5:1 6:1 Liposomenlösung 1,5:1 3:1 4,5:1 6:1 Liposomenlösung	162 ± 2 136 ± 8 109 ± 2 104 ± 1 248 ± 6 545 ± 8 2016 ± 40 127 ± 1 104 ± 7 269 ± 3 423 ± 6 166 ± 3 130 ± 1 118 ± 4 249 ± 8 876 ± 1 168 ± 1 145 ± 1 96 ± 1 423 ± 4 513 ± 4 130 ± 1 231 ± 2 120 ± 3 208 ± 6	$\begin{array}{c} 0,172\pm0,013\\ 0,266\pm0,113\\ 0,174\pm0,013\\ 0,286\pm0,004\\ 0,691\pm0,013\\ 0,983\pm0,030\\ 0,393\pm0,080\\ 0,176\pm0,029\\ 0,342\pm0,073\\ 0,556\pm0,078\\ 0,843\pm0,062\\ 0,245\pm0,022\\ 0,205\pm0,008\\ 0,397\pm0,017\\ 0,533\pm0,069\\ 0,397\pm0,017\\ 0,533\pm0,069\\ 0,390\pm0,031\\ 0,224\pm0,012\\ 0,184\pm0,012\\ 0,184\pm0,012\\ 0,197\pm0,009\\ 0,473\pm0,050\\ 0,644\pm0,069\\ 0,137\pm0,014\\ 0,418\pm0,020\\ 0,361\pm0,006\\ 0,470\pm0,024\\ 0,061\\ 0,006\\ 0,006\\ 0,006\\ 0,000\\ 0,$	$\begin{array}{c} 130 \pm 103 \\ 103 \pm 79 \\ 97 \pm 64 \\ \hline \\ 32 \pm 14 \\ 51 \pm 30 \\ 30 \pm 21 \\ 41 \pm 23 \\ \hline \\ 86 \pm 45 \\ 190 \pm 69 \\ 106 \pm 35 \\ 52 \pm 21 \\ \hline \\ 4 \pm 15 \\ 97 \pm 131 \\ 101 \pm 66 \\ 93 \pm 64 \\ \hline \\ 3 \pm 3 \\ 5 \pm 3 \\ 111 \pm 4 \\ 12 \pm 7 \\ \hline \\ \end{array}$	$\begin{array}{c} 30,31 \pm 8,031 \\ 85,65 \pm 8,448 \\ 86,27 \pm 12,86 \\ \hline \\ 97,40 \pm 8,32 \\ 92,02 \pm 8,77 \\ 88,94 \pm 9,66 \\ 84,53 \pm 13,28 \\ \hline \\ 85,26 \pm 11,96 \\ 84,15 \pm 13,68 \\ 85,31 \pm 13,06 \\ 86,17 \pm 15,16 \\ \hline \\ 91,53 \pm 24,54 \\ 96,41 \pm 24,93 \\ 100,5 \pm 22,18 \\ 96,28 \pm 23,43 \\ \hline \\ 83,28 \pm 9,207 \\ 84,51 \pm 11,12 \\ 98,39 \pm 14,92 \\ 96,41 \pm 15,39 \\ \hline \\ 90,04 \pm 10,70 \\ \hline \end{array}$
(n/n) MA4/DOPE 1:3 (n/n) MA4/DOPE 1:2 (n/n) MA4/DOPE 1:1 (n/n) MA4/DOPE 2:1 (n/n)	3.1 4,5:1 6:1 Liposomenlösung 1,5:1 3:1 4,5:1 6:1 Liposomenlösung 1,5:1 6:1 Liposomenlösung 1,5:1 6:1 Liposomenlösung 1,5:1	$\begin{array}{r} 162 \pm 2 \\ 136 \pm 8 \\ 109 \pm 2 \\ 104 \pm 1 \\ 248 \pm 6 \\ 545 \pm 8 \\ 2016 \pm 40 \\ 127 \pm 1 \\ 104 \pm 7 \\ 269 \pm 3 \\ 423 \pm 6 \\ 166 \pm 3 \\ 130 \pm 1 \\ 118 \pm 4 \\ 249 \pm 8 \\ 876 \pm 1 \\ 168 \pm 1 \\ 145 \pm 1 \\ 96 \pm 1 \\ 423 \pm 4 \\ 513 \pm 4 \\ 130 \pm 1 \\ 231 \pm 2 \\ 120 \pm 3 \\ 398 \pm 6 \\ 4000 = - \end{array}$	$\begin{array}{c} 0,172\pm0,013\\ 0,266\pm0,113\\ 0,266\pm0,004\\ 0,691\pm0,013\\ 0,983\pm0,030\\ 0,393\pm0,080\\ 0,176\pm0,029\\ 0,342\pm0,073\\ 0,556\pm0,078\\ 0,843\pm0,062\\ 0,245\pm0,022\\ 0,245\pm0,022\\ 0,245\pm0,022\\ 0,205\pm0,008\\ 0,397\pm0,017\\ 0,533\pm0,069\\ 0,390\pm0,031\\ 0,224\pm0,012\\ 0,184\pm0,012\\ 0,184\pm0,012\\ 0,197\pm0,009\\ 0,473\pm0,050\\ 0,644\pm0,069\\ 0,137\pm0,014\\ 0,418\pm0,020\\ 0,361\pm0,006\\ 0,479\pm0,081\\ 0,556\pm0,013\\ 0,561\pm0,006\\ 0,479\pm0,081\\ 0,512\\ 0,51$	$\begin{array}{c} 130 \pm 103 \\ 103 \pm 79 \\ 97 \pm 64 \\ \hline \\ 32 \pm 14 \\ 51 \pm 30 \\ 30 \pm 21 \\ 41 \pm 23 \\ \hline \\ 86 \pm 45 \\ 190 \pm 69 \\ 106 \pm 35 \\ 52 \pm 21 \\ \hline \\ 4 \pm 15 \\ 97 \pm 131 \\ 101 \pm 66 \\ 93 \pm 64 \\ \hline \\ 3 \pm 3 \\ 5 \pm 3 \\ 11 \pm 4 \\ 12 \pm 7 \\ \hline \\ 0 \\ \hline \end{array}$	$\begin{array}{c} 30,31\pm 0,031\\ 85,65\pm 8,448\\ 86,27\pm 12,86\\ \hline \\ 97,40\pm 8,32\\ 92,02\pm 8,77\\ 88,94\pm 9,66\\ 84,53\pm 13,28\\ \hline \\ 85,26\pm 11,96\\ 84,15\pm 13,68\\ 85,31\pm 13,06\\ 86,17\pm 15,16\\ \hline \\ 91,53\pm 24,54\\ 96,41\pm 24,93\\ 100,5\pm 22,18\\ 96,28\pm 23,43\\ \hline \\ 83,28\pm 9,207\\ 84,51\pm 11,12\\ 98,39\pm 14,92\\ 96,41\pm 15,39\\ \hline \\ 90,04\pm 10,79\\ 90,04\pm 10,79\\ \hline \\ 80,02\\ \hline \\$
(n/n) MA4/DOPE 1:3 (n/n) MA4/DOPE 1:2 (n/n) MA4/DOPE 1:1 (n/n) MA4/DOPE 2:1 (n/n) MA4/Cholesterol 1:2 (n/n)	3.1 4,5:1 6:1 Liposomenlösung 1,5:1 3:1	$\begin{array}{r} 162 \pm 2 \\ 136 \pm 8 \\ 109 \pm 2 \\ 104 \pm 1 \\ 248 \pm 6 \\ 545 \pm 8 \\ 2016 \pm 40 \\ 127 \pm 1 \\ 104 \pm 7 \\ 269 \pm 3 \\ 423 \pm 6 \\ 166 \pm 3 \\ 130 \pm 1 \\ 118 \pm 4 \\ 249 \pm 8 \\ 876 \pm 1 \\ 168 \pm 1 \\ 145 \pm 1 \\ 96 \pm 1 \\ 423 \pm 4 \\ 513 \pm 4 \\ 130 \pm 1 \\ 231 \pm 2 \\ 120 \pm 3 \\ 398 \pm 6 \\ 1009 \pm 73 \\ \end{array}$	$\begin{array}{c} 0,172\pm0,013\\ 0,266\pm0,113\\ 0,266\pm0,004\\ 0,691\pm0,013\\ 0,983\pm0,030\\ 0,393\pm0,080\\ 0,176\pm0,029\\ 0,342\pm0,073\\ 0,556\pm0,078\\ 0,843\pm0,062\\ 0,245\pm0,022\\ 0,245\pm0,022\\ 0,205\pm0,008\\ 0,397\pm0,017\\ 0,533\pm0,069\\ 0,397\pm0,017\\ 0,533\pm0,069\\ 0,390\pm0,031\\ 0,224\pm0,012\\ 0,184\pm0,012\\ 0,184\pm0,012\\ 0,197\pm0,009\\ 0,473\pm0,050\\ 0,644\pm0,069\\ 0,137\pm0,014\\ 0,418\pm0,020\\ 0,361\pm0,006\\ 0,479\pm0,081\\ 0,558\pm0,057\\ \end{array}$	$\begin{array}{c} 130 \pm 103 \\ 103 \pm 79 \\ 97 \pm 64 \\ \hline \\ 32 \pm 14 \\ 51 \pm 30 \\ 30 \pm 21 \\ 41 \pm 23 \\ \hline \\ 86 \pm 45 \\ 190 \pm 69 \\ 106 \pm 35 \\ 52 \pm 21 \\ \hline \\ 4 \pm 15 \\ 97 \pm 131 \\ 101 \pm 66 \\ 93 \pm 64 \\ \hline \\ 3 \pm 3 \\ 5 \pm 3 \\ 11 \pm 4 \\ 12 \pm 7 \\ \hline \\ 0 \\ 9 \pm 7 \\ \end{array}$	$\begin{array}{c} 30,31\pm 0,031\\ 85,65\pm 8,448\\ 86,27\pm 12,86\\ \hline \\ 97,40\pm 8,32\\ 92,02\pm 8,77\\ 88,94\pm 9,66\\ 84,53\pm 13,28\\ \hline \\ 85,26\pm 11,96\\ 84,15\pm 13,68\\ 85,31\pm 13,06\\ 86,17\pm 15,16\\ \hline \\ 91,53\pm 24,54\\ 96,41\pm 24,93\\ 100,5\pm 22,18\\ 96,28\pm 23,43\\ \hline \\ 83,28\pm 9,207\\ 84,51\pm 11,12\\ 98,39\pm 14,92\\ 96,41\pm 15,39\\ \hline \\ 90,04\pm 10,79\\ 97,20\pm 12,15\\ \end{array}$
(n/n) MA4/DOPE 1:3 (n/n) MA4/DOPE 1:2 (n/n) MA4/DOPE 1:1 (n/n) MA4/DOPE 2:1 (n/n) MA4/Cholesterol 1:2 (n/n)	3.1 4,5:1 6:1 Liposomenlösung 1,5:1 3:1 4,5:1	$\begin{array}{r} 162 \pm 2 \\ 136 \pm 8 \\ 109 \pm 2 \\ 104 \pm 1 \\ 248 \pm 6 \\ 545 \pm 8 \\ 2016 \pm 40 \\ 127 \pm 1 \\ 104 \pm 7 \\ 269 \pm 3 \\ 423 \pm 6 \\ 166 \pm 3 \\ 130 \pm 1 \\ 118 \pm 4 \\ 249 \pm 8 \\ 876 \pm 1 \\ 168 \pm 1 \\ 145 \pm 1 \\ 96 \pm 1 \\ 423 \pm 4 \\ 513 \pm 4 \\ 130 \pm 1 \\ 231 \pm 2 \\ 120 \pm 3 \\ 398 \pm 6 \\ 1009 \pm 73 \\ 954 \pm 22 \\ \end{array}$	$\begin{array}{c} 0,172\pm0,013\\ 0,266\pm0,113\\ 0,266\pm0,004\\ 0,691\pm0,013\\ 0,983\pm0,030\\ 0,393\pm0,080\\ 0,176\pm0,029\\ 0,342\pm0,073\\ 0,556\pm0,078\\ 0,843\pm0,062\\ 0,245\pm0,022\\ 0,205\pm0,008\\ 0,397\pm0,017\\ 0,533\pm0,069\\ 0,397\pm0,017\\ 0,533\pm0,069\\ 0,390\pm0,031\\ 0,224\pm0,012\\ 0,184\pm0,012\\ 0,184\pm0,012\\ 0,184\pm0,012\\ 0,197\pm0,009\\ 0,473\pm0,050\\ 0,644\pm0,069\\ 0,137\pm0,014\\ 0,418\pm0,020\\ 0,361\pm0,006\\ 0,479\pm0,081\\ 0,558\pm0,057\\ 0,515\pm0,427\\ \end{array}$	$\begin{array}{c} 130 \pm 103 \\ 103 \pm 79 \\ 97 \pm 64 \\ \hline \\ 32 \pm 14 \\ 51 \pm 30 \\ 30 \pm 21 \\ 41 \pm 23 \\ \hline \\ 86 \pm 45 \\ 190 \pm 69 \\ 106 \pm 35 \\ 52 \pm 21 \\ \hline \\ 4 \pm 15 \\ 97 \pm 131 \\ 101 \pm 66 \\ 93 \pm 64 \\ \hline \\ 3 \pm 3 \\ 5 \pm 3 \\ 11 \pm 4 \\ 12 \pm 7 \\ \hline \\ 0 \\ 9 \pm 7 \\ 14 \pm 7 \\ \end{array}$	$\begin{array}{r} 30,31\pm 0,031\\ 85,65\pm 8,448\\ 86,27\pm 12,86\\ \hline \\ 97,40\pm 8,32\\ 92,02\pm 8,77\\ 88,94\pm 9,66\\ 84,53\pm 13,28\\ \hline \\ 85,26\pm 11,96\\ 84,15\pm 13,68\\ 85,31\pm 13,06\\ 86,17\pm 15,16\\ \hline \\ 91,53\pm 24,54\\ 96,41\pm 24,93\\ 100,5\pm 22,18\\ 96,28\pm 23,43\\ \hline \\ 83,28\pm 9,207\\ 84,51\pm 11,12\\ 98,39\pm 14,92\\ 96,41\pm 15,39\\ \hline \\ 90,04\pm 10,79\\ 97,20\pm 12,15\\ 99,83\pm 11,32\\ \end{array}$
(n/n) MA4/DOPE 1:3 (n/n) MA4/DOPE 1:2 (n/n) MA4/DOPE 1:1 (n/n) MA4/DOPE 2:1 (n/n) MA4/Cholesterol 1:2 (n/n)	3.1 4,5:1 6:1 Liposomenlösung 1,5:1 3:1 4,5:1 6:1	$\begin{array}{r} 162 \pm 2 \\ 136 \pm 8 \\ 109 \pm 2 \\ 104 \pm 1 \\ 248 \pm 6 \\ 545 \pm 8 \\ 2016 \pm 40 \\ 127 \pm 1 \\ 104 \pm 7 \\ 269 \pm 3 \\ 423 \pm 6 \\ 166 \pm 3 \\ 130 \pm 1 \\ 118 \pm 4 \\ 249 \pm 8 \\ 876 \pm 1 \\ 168 \pm 1 \\ 145 \pm 1 \\ 96 \pm 1 \\ 423 \pm 4 \\ 513 \pm 4 \\ 130 \pm 1 \\ 231 \pm 2 \\ 120 \pm 3 \\ 398 \pm 6 \\ 1009 \pm 73 \\ 954 \pm 22 \\ 189 \pm 6 \\ \end{array}$	$\begin{array}{c} 0,172\pm0,013\\ 0,266\pm0,113\\ 0,174\pm0,013\\ 0,286\pm0,004\\ 0,691\pm0,013\\ 0,983\pm0,030\\ 0,393\pm0,080\\ 0,176\pm0,029\\ 0,342\pm0,073\\ 0,556\pm0,078\\ 0,843\pm0,062\\ 0,245\pm0,022\\ 0,205\pm0,008\\ 0,397\pm0,017\\ 0,533\pm0,069\\ 0,397\pm0,017\\ 0,533\pm0,069\\ 0,390\pm0,031\\ 0,224\pm0,012\\ 0,184\pm0,012\\ 0,197\pm0,009\\ 0,473\pm0,050\\ 0,644\pm0,069\\ 0,137\pm0,014\\ 0,418\pm0,020\\ 0,361\pm0,006\\ 0,479\pm0,081\\ 0,558\pm0,057\\ 0,515\pm0,427\\ 0,477\pm0,047\\ \end{array}$	$\begin{array}{c} 130 \pm 103 \\ 103 \pm 79 \\ 97 \pm 64 \\ \hline \\ 32 \pm 14 \\ 51 \pm 30 \\ 30 \pm 21 \\ 41 \pm 23 \\ \hline \\ 86 \pm 45 \\ 190 \pm 69 \\ 106 \pm 35 \\ 52 \pm 21 \\ \hline \\ 4 \pm 15 \\ 97 \pm 131 \\ 101 \pm 66 \\ 93 \pm 64 \\ \hline \\ 3 \pm 3 \\ 5 \pm 3 \\ 111 \pm 4 \\ 12 \pm 7 \\ \hline \\ 0 \\ 9 \pm 7 \\ 14 \pm 7 \\ 16 \pm 7 \\ \end{array}$	$\begin{array}{c} 90,31\pm 0,031\\ 85,65\pm 8,448\\ 86,27\pm 12,86\\ \hline \\ 97,40\pm 8,32\\ 92,02\pm 8,77\\ 88,94\pm 9,66\\ 84,53\pm 13,28\\ \hline \\ 85,26\pm 11,96\\ 84,15\pm 13,68\\ 85,31\pm 13,06\\ 86,17\pm 15,16\\ \hline \\ 91,53\pm 24,54\\ 96,41\pm 24,93\\ 100,5\pm 22,18\\ 96,28\pm 23,43\\ \hline \\ 96,28\pm 23,43\\ \hline \\ 83,28\pm 9,207\\ 84,51\pm 11,12\\ 98,39\pm 14,92\\ 96,41\pm 15,39\\ \hline \\ 90,04\pm 10,79\\ 97,20\pm 12,15\\ 99,83\pm 11,32\\ 94,09\pm 11,10\\ \hline \end{array}$
(n/n) MA4/DOPE 1:3 (n/n) MA4/DOPE 1:2 (n/n) MA4/DOPE 1:1 (n/n) MA4/DOPE 2:1 (n/n) MA4/Cholesterol 1:2 (n/n)	3:1 4,5:1 6:1 Liposomenlösung 1,5:1 3:1 4,5:1 6:1	$\begin{array}{r} 162 \pm 2 \\ 136 \pm 8 \\ 109 \pm 2 \\ 104 \pm 1 \\ 248 \pm 6 \\ 545 \pm 8 \\ 2016 \pm 40 \\ 127 \pm 1 \\ 104 \pm 7 \\ 269 \pm 3 \\ 423 \pm 6 \\ 166 \pm 3 \\ 130 \pm 1 \\ 118 \pm 4 \\ 249 \pm 8 \\ 876 \pm 1 \\ 168 \pm 1 \\ 145 \pm 1 \\ 96 \pm 1 \\ 423 \pm 4 \\ 513 \pm 4 \\ 130 \pm 1 \\ 231 \pm 2 \\ 120 \pm 3 \\ 398 \pm 6 \\ 1009 \pm 73 \\ 954 \pm 22 \\ 189 \pm 6 \\ 62 \pm 4 \\ \end{array}$	$\begin{array}{c} 0,172\pm0,013\\ 0,266\pm0,113\\ 0,266\pm0,004\\ 0,691\pm0,003\\ 0,983\pm0,030\\ 0,393\pm0,080\\ 0,176\pm0,029\\ 0,342\pm0,073\\ 0,556\pm0,078\\ 0,843\pm0,062\\ 0,245\pm0,022\\ 0,245\pm0,022\\ 0,245\pm0,022\\ 0,205\pm0,008\\ 0,397\pm0,017\\ 0,533\pm0,069\\ 0,390\pm0,031\\ 0,224\pm0,012\\ 0,184\pm0,012\\ 0,184\pm0,012\\ 0,197\pm0,009\\ 0,473\pm0,050\\ 0,644\pm0,069\\ 0,137\pm0,014\\ 0,418\pm0,020\\ 0,361\pm0,006\\ 0,479\pm0,081\\ 0,558\pm0,057\\ 0,515\pm0,427\\ 0,477\pm0,047\\ 0,26\pm0,005\\ \end{array}$	$\begin{array}{c} 130 \pm 103 \\ 103 \pm 79 \\ 97 \pm 64 \\ \hline \\ 32 \pm 14 \\ 51 \pm 30 \\ 30 \pm 21 \\ 41 \pm 23 \\ \hline \\ 86 \pm 45 \\ 190 \pm 69 \\ 106 \pm 35 \\ 52 \pm 21 \\ \hline \\ 4 \pm 15 \\ 97 \pm 131 \\ 101 \pm 66 \\ 93 \pm 64 \\ \hline \\ 3 \pm 3 \\ 5 \pm 3 \\ 11 \pm 4 \\ 12 \pm 7 \\ \hline \\ 0 \\ 9 \pm 7 \\ 14 \pm 7 \\ 16 \pm 7 \\ \hline \end{array}$	$\begin{array}{c} 90,31\pm 0,031\\ 85,65\pm 8,448\\ 86,27\pm 12,86\\ \hline \\ 97,40\pm 8,32\\ 92,02\pm 8,77\\ 88,94\pm 9,66\\ 84,53\pm 13,28\\ \hline \\ 85,26\pm 11,96\\ 84,15\pm 13,68\\ 85,31\pm 13,06\\ 86,17\pm 15,16\\ \hline \\ 91,53\pm 24,54\\ 96,41\pm 24,93\\ 100,5\pm 22,18\\ 96,28\pm 23,43\\ \hline \\ 96,28\pm 23,43\\ \hline \\ 83,28\pm 9,207\\ 84,51\pm 11,12\\ 98,39\pm 14,92\\ 96,41\pm 15,39\\ \hline \\ 90,04\pm 10,79\\ 97,20\pm 12,15\\ 99,83\pm 11,32\\ 94,09\pm 11,10\\ \hline \end{array}$
(n/n) MA4/DOPE 1:3 (n/n) MA4/DOPE 1:2 (n/n) MA4/DOPE 1:1 (n/n) MA4/DOPE 2:1 (n/n) MA4/Cholesterol 1:2 (n/n)	3.1 4,5:1 6:1 Liposomenlösung 1,5:1 3:1 4,5:1 6:1 Liposomenlösung	$\begin{array}{c} 162 \pm 2 \\ 136 \pm 8 \\ 109 \pm 2 \\ 104 \pm 1 \\ 248 \pm 6 \\ 545 \pm 8 \\ 2016 \pm 40 \\ 127 \pm 1 \\ 104 \pm 7 \\ 269 \pm 3 \\ 423 \pm 6 \\ 166 \pm 3 \\ 130 \pm 1 \\ 118 \pm 4 \\ 249 \pm 8 \\ 876 \pm 1 \\ 168 \pm 1 \\ 145 \pm 1 \\ 96 \pm 1 \\ 423 \pm 4 \\ 513 \pm 4 \\ 130 \pm 1 \\ 231 \pm 2 \\ 120 \pm 3 \\ 398 \pm 6 \\ 1009 \pm 73 \\ 954 \pm 22 \\ 189 \pm 6 \\ 63 \pm 1 \\ 400 \pm 1 \\ 100 \pm $	$\begin{array}{c} 0,172\pm0,013\\ 0,266\pm0,113\\ 0,266\pm0,004\\ 0,691\pm0,013\\ 0,983\pm0,030\\ 0,393\pm0,080\\ 0,176\pm0,029\\ 0,342\pm0,073\\ 0,556\pm0,078\\ 0,843\pm0,062\\ 0,245\pm0,022\\ 0,245\pm0,022\\ 0,205\pm0,008\\ 0,397\pm0,017\\ 0,533\pm0,069\\ 0,397\pm0,017\\ 0,533\pm0,069\\ 0,390\pm0,031\\ 0,224\pm0,012\\ 0,184\pm0,012\\ 0,184\pm0,012\\ 0,197\pm0,009\\ 0,473\pm0,050\\ 0,644\pm0,069\\ 0,137\pm0,014\\ 0,418\pm0,020\\ 0,361\pm0,006\\ 0,479\pm0,081\\ 0,558\pm0,057\\ 0,515\pm0,427\\ 0,477\pm0,047\\ 0,236\pm0,005\\ 0,475\pm0,005\\ 0,266\\ 0,475\pm0,005\\ 0,266\\ 0,475\pm0,005\\ 0,266\\ 0,005\\ 0,$	$\begin{array}{c} 130 \pm 103 \\ 103 \pm 79 \\ 97 \pm 64 \\ \hline \\ 32 \pm 14 \\ 51 \pm 30 \\ 30 \pm 21 \\ 41 \pm 23 \\ \hline \\ 86 \pm 45 \\ 190 \pm 69 \\ 106 \pm 35 \\ 52 \pm 21 \\ \hline \\ 4 \pm 15 \\ 97 \pm 131 \\ 101 \pm 66 \\ 93 \pm 64 \\ \hline \\ 3 \pm 3 \\ 5 \pm 3 \\ 11 \pm 4 \\ 12 \pm 7 \\ \hline \\ 0 \\ 9 \pm 7 \\ 14 \pm 7 \\ 16 \pm 7 \\ \hline \\ \end{array}$	$\begin{array}{c} 90,31\pm 0,031\\ 85,65\pm 8,448\\ 86,27\pm 12,86\\ \hline \\ 97,40\pm 8,32\\ 92,02\pm 8,77\\ 88,94\pm 9,66\\ 84,53\pm 13,28\\ \hline \\ 85,26\pm 11,96\\ 84,15\pm 13,68\\ 85,31\pm 13,06\\ 86,17\pm 15,16\\ \hline \\ 91,53\pm 24,54\\ 96,41\pm 24,93\\ 100,5\pm 22,18\\ 96,28\pm 23,43\\ \hline \\ 96,28\pm 23,43\\ \hline \\ 83,28\pm 9,207\\ 84,51\pm 11,12\\ 98,39\pm 14,92\\ 96,41\pm 15,39\\ \hline \\ 90,04\pm 10,79\\ 97,20\pm 12,15\\ 99,83\pm 11,32\\ 94,09\pm 11,10\\ \hline \\ 402.0\pm 2.57\\ \hline \end{array}$
(n/n) MA4/DOPE 1:3 (n/n) MA4/DOPE 1:2 (n/n) MA4/DOPE 1:1 (n/n) MA4/Cholesterol 1:2 (n/n)	3:1 4,5:1 6:1 Liposomenlösung 1,5:1	$\begin{array}{r} 162 \pm 2 \\ 136 \pm 8 \\ 109 \pm 2 \\ 104 \pm 1 \\ 248 \pm 6 \\ 545 \pm 8 \\ 2016 \pm 40 \\ 127 \pm 1 \\ 104 \pm 7 \\ 269 \pm 3 \\ 423 \pm 6 \\ 166 \pm 3 \\ 130 \pm 1 \\ 118 \pm 4 \\ 249 \pm 8 \\ 876 \pm 1 \\ 168 \pm 1 \\ 145 \pm 1 \\ 96 \pm 1 \\ 423 \pm 4 \\ 513 \pm 4 \\ 130 \pm 1 \\ 231 \pm 2 \\ 120 \pm 3 \\ 398 \pm 6 \\ 1009 \pm 73 \\ 954 \pm 22 \\ 189 \pm 6 \\ 63 \pm 1 \\ 421 \pm 1 \\ \end{array}$	$\begin{array}{c} 0,172\pm0,013\\ 0,266\pm0,113\\ 0,266\pm0,004\\ 0,691\pm0,013\\ 0,983\pm0,030\\ 0,393\pm0,080\\ 0,176\pm0,029\\ 0,342\pm0,073\\ 0,556\pm0,078\\ 0,843\pm0,062\\ 0,245\pm0,022\\ 0,205\pm0,008\\ 0,397\pm0,017\\ 0,533\pm0,069\\ 0,397\pm0,014\\ 0,418\pm0,020\\ 0,361\pm0,006\\ 0,479\pm0,081\\ 0,558\pm0,057\\ 0,515\pm0,427\\ 0,477\pm0,047\\ 0,236\pm0,005\\ 0,435\pm0,023\\ \end{array}$	$\begin{array}{c} 130 \pm 103 \\ 103 \pm 79 \\ 97 \pm 64 \\ \hline \\ 32 \pm 14 \\ 51 \pm 30 \\ 30 \pm 21 \\ 41 \pm 23 \\ \hline \\ 86 \pm 45 \\ 190 \pm 69 \\ 106 \pm 35 \\ 52 \pm 21 \\ \hline \\ 4 \pm 15 \\ 97 \pm 131 \\ 101 \pm 66 \\ 93 \pm 64 \\ \hline \\ 3 \pm 3 \\ 5 \pm 3 \\ 11 \pm 4 \\ 12 \pm 7 \\ \hline \\ 0 \\ 9 \pm 7 \\ 14 \pm 7 \\ 16 \pm 7 \\ \hline \\ 0 \\ \end{array}$	$\begin{array}{c} 90,31\pm 0,031\\ 85,65\pm 8,448\\ 86,27\pm 12,86\\ \hline \\ 97,40\pm 8,32\\ 92,02\pm 8,77\\ 88,94\pm 9,66\\ 84,53\pm 13,28\\ \hline \\ 85,26\pm 11,96\\ 84,15\pm 13,68\\ 85,31\pm 13,06\\ 86,17\pm 15,16\\ \hline \\ 91,53\pm 24,54\\ 96,41\pm 24,93\\ 100,5\pm 22,18\\ 96,28\pm 23,43\\ \hline \\ 96,28\pm 23,43\\ \hline \\ 83,28\pm 9,207\\ 84,51\pm 11,12\\ 98,39\pm 14,92\\ 96,41\pm 15,39\\ \hline \\ 90,04\pm 10,79\\ 97,20\pm 12,15\\ 99,83\pm 11,32\\ 94,09\pm 11,10\\ \hline \\ 102,0\pm 9,07\\ \hline \end{array}$
(n/n) MA4/DOPE 1:3 (n/n) MA4/DOPE 1:2 (n/n) MA4/DOPE 1:1 (n/n) MA4/Cholesterol 1:2 (n/n) MA4/Cholesterol 1:1	3.1 4,5:1 6:1 Liposomenlösung 1,5:1 3:1	$\begin{array}{r} 162 \pm 2 \\ 136 \pm 8 \\ 109 \pm 2 \\ 104 \pm 1 \\ 248 \pm 6 \\ 545 \pm 8 \\ 2016 \pm 40 \\ 127 \pm 1 \\ 104 \pm 7 \\ 269 \pm 3 \\ 423 \pm 6 \\ 166 \pm 3 \\ 130 \pm 1 \\ 118 \pm 4 \\ 249 \pm 8 \\ 876 \pm 1 \\ 168 \pm 1 \\ 145 \pm 1 \\ 96 \pm 1 \\ 423 \pm 4 \\ 513 \pm 4 \\ 130 \pm 1 \\ 231 \pm 2 \\ 120 \pm 3 \\ 398 \pm 6 \\ 1009 \pm 73 \\ 954 \pm 22 \\ 189 \pm 6 \\ 63 \pm 1 \\ 421 \pm 1 \\ 521 \pm 3 \\ \end{array}$	$\begin{array}{c} 0,172\pm0,013\\ 0,266\pm0,113\\ 0,174\pm0,013\\ 0,286\pm0,004\\ 0,691\pm0,013\\ 0,983\pm0,030\\ 0,393\pm0,080\\ 0,176\pm0,029\\ 0,342\pm0,073\\ 0,556\pm0,078\\ 0,843\pm0,062\\ 0,245\pm0,022\\ 0,245\pm0,022\\ 0,205\pm0,008\\ 0,397\pm0,017\\ 0,533\pm0,069\\ 0,397\pm0,017\\ 0,533\pm0,069\\ 0,390\pm0,031\\ 0,224\pm0,012\\ 0,184\pm0,012\\ 0,197\pm0,009\\ 0,473\pm0,050\\ 0,644\pm0,069\\ 0,137\pm0,014\\ 0,418\pm0,020\\ 0,361\pm0,006\\ 0,479\pm0,081\\ 0,558\pm0,057\\ 0,515\pm0,427\\ 0,477\pm0,047\\ 0,236\pm0,005\\ 0,435\pm0,023\\ 0,637\pm0,012\\ \end{array}$	$\begin{array}{c} 130 \pm 103 \\ 103 \pm 79 \\ 97 \pm 64 \\ \hline \\ 32 \pm 14 \\ 51 \pm 30 \\ 30 \pm 21 \\ 41 \pm 23 \\ \hline \\ 86 \pm 45 \\ 190 \pm 69 \\ 106 \pm 35 \\ 52 \pm 21 \\ \hline \\ 4 \pm 15 \\ 97 \pm 131 \\ 101 \pm 66 \\ 93 \pm 64 \\ \hline \\ 3 \pm 3 \\ 5 \pm 3 \\ 111 \pm 4 \\ 12 \pm 7 \\ \hline \\ 0 \\ 9 \pm 7 \\ 14 \pm 7 \\ 16 \pm 7 \\ \hline \\ 0 \\ 7 \pm 19 \\ \end{array}$	$\begin{array}{c} 90,31\pm 0,031\\ 85,65\pm 8,448\\ 86,27\pm 12,86\\ \hline \\ 97,40\pm 8,32\\ 92,02\pm 8,77\\ 88,94\pm 9,66\\ 84,53\pm 13,28\\ \hline \\ 85,26\pm 11,96\\ 84,15\pm 13,68\\ 85,31\pm 13,06\\ 86,17\pm 15,16\\ \hline \\ 91,53\pm 24,54\\ 96,41\pm 24,93\\ 100,5\pm 22,18\\ 96,28\pm 23,43\\ \hline \\ 96,28\pm 23,43\\ \hline \\ 83,28\pm 9,207\\ 84,51\pm 11,12\\ 98,39\pm 14,92\\ 96,41\pm 15,39\\ \hline \\ 90,04\pm 10,79\\ 97,20\pm 12,15\\ 99,83\pm 11,32\\ 94,09\pm 11,10\\ \hline \\ 102,0\pm 9,07\\ 100,4\pm 5,97\\ \hline \end{array}$
(n/n) MA4/DOPE 1:3 (n/n) MA4/DOPE 1:2 (n/n) MA4/DOPE 1:1 (n/n) MA4/DOPE 2:1 (n/n) MA4/Cholesterol 1:2 (n/n)	3:1 4,5:1 6:1 Liposomenlösung 1,5:1 3:1 4,5:1 3:1 4,5:1	$\begin{array}{r} 162 \pm 2 \\ 136 \pm 8 \\ 109 \pm 2 \\ 104 \pm 1 \\ 248 \pm 6 \\ 545 \pm 8 \\ 2016 \pm 40 \\ 127 \pm 1 \\ 104 \pm 7 \\ 269 \pm 3 \\ 423 \pm 6 \\ 166 \pm 3 \\ 130 \pm 1 \\ 118 \pm 4 \\ 249 \pm 8 \\ 876 \pm 1 \\ 168 \pm 1 \\ 145 \pm 1 \\ 96 \pm 1 \\ 423 \pm 4 \\ 513 \pm 4 \\ 130 \pm 1 \\ 231 \pm 2 \\ 120 \pm 3 \\ 398 \pm 6 \\ 1009 \pm 73 \\ 954 \pm 22 \\ 189 \pm 6 \\ 63 \pm 1 \\ 421 \pm 1 \\ 521 \pm 3 \\ 195 \pm 5 \\ \end{array}$	$\begin{array}{c} 0,172\pm0,013\\ 0,266\pm0,113\\ 0,266\pm0,004\\ 0,691\pm0,003\\ 0,983\pm0,030\\ 0,393\pm0,080\\ 0,176\pm0,029\\ 0,342\pm0,073\\ 0,556\pm0,078\\ 0,843\pm0,062\\ 0,245\pm0,022\\ 0,245\pm0,022\\ 0,245\pm0,022\\ 0,205\pm0,008\\ 0,397\pm0,017\\ 0,533\pm0,069\\ 0,397\pm0,017\\ 0,533\pm0,069\\ 0,390\pm0,031\\ 0,224\pm0,012\\ 0,184\pm0,012\\ 0,184\pm0,012\\ 0,197\pm0,009\\ 0,473\pm0,050\\ 0,644\pm0,069\\ 0,137\pm0,014\\ 0,418\pm0,020\\ 0,361\pm0,006\\ 0,479\pm0,081\\ 0,558\pm0,057\\ 0,515\pm0,427\\ 0,477\pm0,047\\ 0,236\pm0,005\\ 0,435\pm0,023\\ 0,637\pm0,012\\ 0,358\pm0,007\\ \end{array}$	$\begin{array}{c} 130 \pm 103 \\ 103 \pm 79 \\ 97 \pm 64 \\ \hline \\ 32 \pm 14 \\ 51 \pm 30 \\ 30 \pm 21 \\ 41 \pm 23 \\ \hline \\ 86 \pm 45 \\ 190 \pm 69 \\ 106 \pm 35 \\ 52 \pm 21 \\ \hline \\ 4 \pm 15 \\ 97 \pm 131 \\ 101 \pm 66 \\ 93 \pm 64 \\ \hline \\ 3 \pm 3 \\ 5 \pm 3 \\ 111 \pm 4 \\ 12 \pm 7 \\ \hline \\ 0 \\ 9 \pm 7 \\ 14 \pm 7 \\ 16 \pm 7 \\ \hline \\ 0 \\ 7 \pm 19 \\ 13 \pm 7 \\ \end{array}$	$\begin{array}{c} 90,91\pm 0,031\\ 85,65\pm 8,448\\ 86,27\pm 12,86\\ \hline\\ 97,40\pm 8,32\\ 92,02\pm 8,77\\ 88,94\pm 9,66\\ 84,53\pm 13,28\\ \hline\\ 85,26\pm 11,96\\ 84,15\pm 13,68\\ 85,31\pm 13,06\\ 86,17\pm 15,16\\ \hline\\ 91,53\pm 24,54\\ 96,41\pm 24,93\\ 100,5\pm 22,18\\ 96,28\pm 23,43\\ \hline\\ 90,04\pm 10,79\\ 97,20\pm 12,15\\ 99,83\pm 11,32\\ 94,09\pm 11,10\\ \hline\\ 102,0\pm 9,07\\ 100,4\pm 5,97\\ 102,6\pm 6,83\\ \hline\end{array}$
(n/n) MA4/DOPE 1:3 (n/n) MA4/DOPE 1:2 (n/n) MA4/DOPE 1:1 (n/n) MA4/DOPE 2:1 (n/n) MA4/Cholesterol 1:2 (n/n)	3.1 4,5:1 6:1 Liposomenlösung 1,5:1 3:1 4,5:1 <	$\begin{array}{r} 162 \pm 2 \\ 136 \pm 8 \\ 109 \pm 2 \\ 104 \pm 1 \\ 248 \pm 6 \\ 545 \pm 8 \\ 2016 \pm 40 \\ 127 \pm 1 \\ 104 \pm 7 \\ 269 \pm 3 \\ 423 \pm 6 \\ 166 \pm 3 \\ 130 \pm 1 \\ 118 \pm 4 \\ 249 \pm 8 \\ 876 \pm 1 \\ 168 \pm 1 \\ 145 \pm 1 \\ 96 \pm 1 \\ 423 \pm 4 \\ 513 \pm 4 \\ 130 \pm 1 \\ 231 \pm 2 \\ 120 \pm 3 \\ 398 \pm 6 \\ 1009 \pm 73 \\ 954 \pm 22 \\ 189 \pm 6 \\ 63 \pm 1 \\ 421 \pm 1 \\ 521 \pm 3 \\ 195 \pm 5 \\ 168 \pm 1 \\ \end{array}$	$\begin{array}{c} 0,172\pm0,013\\ 0,266\pm0,113\\ 0,274\pm0,013\\ 0,286\pm0,004\\ 0,691\pm0,013\\ 0,983\pm0,030\\ 0,393\pm0,080\\ 0,176\pm0,029\\ 0,342\pm0,073\\ 0,556\pm0,078\\ 0,843\pm0,062\\ 0,245\pm0,022\\ 0,245\pm0,022\\ 0,205\pm0,008\\ 0,397\pm0,017\\ 0,533\pm0,069\\ 0,397\pm0,017\\ 0,533\pm0,069\\ 0,390\pm0,031\\ 0,224\pm0,012\\ 0,184\pm0,012\\ 0,197\pm0,009\\ 0,473\pm0,050\\ 0,644\pm0,069\\ 0,137\pm0,014\\ 0,418\pm0,020\\ 0,361\pm0,006\\ 0,479\pm0,081\\ 0,558\pm0,057\\ 0,515\pm0,427\\ 0,477\pm0,047\\ 0,236\pm0,005\\ 0,435\pm0,023\\ 0,637\pm0,012\\ 0,358\pm0,007\\ 0,358\pm0,007\\ 0,368\pm0,007\\ 0,308\pm0,007\\ 0,308\pm0,0021\\ 0,308\pm0,002\\ 0,308\pm0,002\\ 0,308\pm0,002\\ 0,308\pm0,002\\ 0,308\pm0,00$	$\begin{array}{c} 130 \pm 103 \\ 103 \pm 79 \\ 97 \pm 64 \\ \hline \\ 32 \pm 14 \\ 51 \pm 30 \\ 30 \pm 21 \\ 41 \pm 23 \\ \hline \\ 86 \pm 45 \\ 190 \pm 69 \\ 106 \pm 35 \\ 52 \pm 21 \\ \hline \\ 4 \pm 15 \\ 97 \pm 131 \\ 101 \pm 66 \\ 93 \pm 64 \\ \hline \\ 93 \pm 64 \\ \hline \\ 3 \pm 3 \\ 5 \pm 3 \\ 11 \pm 4 \\ 12 \pm 7 \\ \hline \\ 0 \\ 9 \pm 7 \\ 14 \pm 7 \\ 16 \pm 7 \\ \hline \\ 0 \\ 7 \pm 19 \\ 13 \pm 7 \\ 28 \pm 27 \\ \end{array}$	$\begin{array}{c} 90,31\pm 0,031\\ 85,65\pm 8,448\\ 86,27\pm 12,86\\ \hline \\ 97,40\pm 8,32\\ 92,02\pm 8,77\\ 88,94\pm 9,66\\ 84,53\pm 13,28\\ \hline \\ 85,26\pm 11,96\\ 84,15\pm 13,68\\ 85,31\pm 13,06\\ 86,17\pm 15,16\\ \hline \\ 91,53\pm 24,54\\ 96,41\pm 24,93\\ 100,5\pm 22,18\\ 96,28\pm 23,43\\ \hline \\ 96,28\pm 23,43\\ \hline $

	Liposomenlösung	106 ± 4	$0,228 \pm 0,028$		
	15.1	353 + 2	0.289 ± 0.042	0	97 09 + 5 47
MA4/Cholesterol 2:1	2.1	600 + 0	0,200 ± 0,012	0	
(n/n)	3.1	090 ± 9	0,555 ± 0,069	0	102,6 ± 7,64
. ,	4,5:1	499 ± 5	$0,598 \pm 0,068$	15 ± 3	$104,4 \pm 8,69$
	6:1	278 ± 5	$0,292 \pm 0,028$	3 ± 1	102,4 ± 6,33
	Liposomenlösung	113 + 1	0.384 ± 0.021		
	1 5.1	199 + 2	0.536 ± 0.014	0	02.09 ± 0.12
MA5/DOPE 1:2	1,5.1	100 ± 2	0,550 ± 0,014	0	93,90 ± 9,12
(n/n)	3:1	169 ± 1	$0,380 \pm 0,018$	6±5	91,51 ± 8,73
()	4,5:1	281 ± 3	0,635 ± 0,037	10 ± 8	91,34 ± 8,93
	6:1	205 ± 1	0.507 ± 0.018	14 ± 13	88.91 ± 9.98
	Linosomenlösung	0/ + 1	0.335 ± 0.009		
		54 1	0,000 ± 0,000	40 40	05.00 4.00
MA5/DOPE 1:1	1,5:1	514 ± 3	$0,310 \pm 0,142$	46 ± 43	85,32 ± 4,30
(n/n)	3:1	81 ± 1	0,357 ± 0,035	62 ± 42	81,41 ± 4,59
(1711)	4,5:1	138 ± 2	$0,623 \pm 0,021$	39 ± 18	$82,44 \pm 6,48$
	6.1	88 + 1	0.408 ± 0.062	72 + 46	74 66 + 4 79
		111.1	$0,400 \pm 0,002$	12 ± 40	14,00 ± 4,10
	Liposomeniosung	114 ± 1	0,363 ± 0,017	-	
MA5/DOPE 2:1	1,5:1	469 ± 16	$0,489 \pm 0,053$	kein	96,23 ± 8,76
	3:1	827 ± 34	$0,469 \pm 0,147$	Contropotor	97,32 ± 10,11
(n/n)	4.5.1	184 + 3	0.427 ± 0.055	Gentransier	90 30 + 13 10
	6.1	271 + 2	0,121 ± 0,000	-	00,00 ± 10,10
	0.1	271±2	$0,378 \pm 0,031$		09,02 ± 11,03
	Liposomeniosung	112 ± 50	0,445 ± 0,108		
MAE/DODE 2-4	1,5:1	259 ± 35	0,605 ± 0,105	88 ± 59	96,38 ± 4,09
WAS/DOPE 3:1	3:1	252 ± 2	0.535 ± 0.040	169 ± 113	94.89 ± 6.21
(n/n)	4 5.1	143 + 3	0.308 ± 0.011	148 + 80	94 94 + 6 47
	т,J.1 С.4	140.4	0.000 ± 0.011	156 . 00	$01 E7 \cdot 0.00$
	0.1	113±1	$0,331 \pm 0,049$	100 ± 39	$91,37 \pm 0,39$
	Liposomenlösung	82 ± 3	0,354 ± 0,021		
MAE/DODE 44	1,5:1	234 ± 15	0,336 ± 0,035	0	98,89 ± 10,80
WIA5/DOPE 4:1	3.1	299 + 7	0.369 ± 0.045	0	95.93 + 11.47
(n/n)	4.5:1	197 + 2	0.321 ± 0.008	26 + 22	85 70 ± 12 20
	4,3.1	107 ± 2	0,321 ± 0,098	30 ± 22	00,70 ± 12,39
	6:1	134 ± 12	$0,405 \pm 0,007$	32 ± 20	81,28 ± 12,03
	Liposomenlösung	145 ± 14	0,411 ± 0,014		
	1,5:1	244 ± 3	$0,442 \pm 0,065$	0	94,98 ± 16,13
MA5/Cholesterol 1:2	3.1	587 + 7	0.519 ± 0.020	0	91 97 + 15 50
(n/n)	4 5:1	1607 . 4	0,010 ± 0,020	11.7	02.64 10.25
	4,5.1	1027 ± 4	$0,554 \pm 0,123$	11±7	93,64 ± 10,35
	6:1	2332 ± 20	0,317 ± 0,067	14 ± 10	94,10 ± 11,47
	Liposomenlösung	100 ± 3	0,419 ± 0,022		
	1.5:1	321 + 9	0.556 ± 0.040	0	92.75 + 15.52
MA5/Cholesterol 1:1	3.1	232 + 4	0.373 ± 0.013	0	02.85 ± 16.51
(n/n)	5.1	202 ± 4	0,373 ± 0,013	07 44	92,00 ± 10,01
	4,5:1	139 ± 1	$0,210 \pm 0,017$	27 ± 14	96,23 ± 15,21
	6:1	116 ± 1	$0,210 \pm 0,008$	31 ± 25	93,25 ± 15,93
	Liposomenlösung	111 ± 3	$0,483 \pm 0,047$		
	151	192 + 2	0.490 ± 0.041	0	92 55 + 17 25
MA5/Cholesterol 2:1	3.1	5/9 + 6	0.501 ± 0.039	9 + 6	$02,00 \pm 11,20$ 01.18 ± 18.30
(n/n)	5.1	543 ± 0	0,301 ± 0,039	3±0	94,40 ± 10,39
. ,	4,5:1	5//±1	$0,459 \pm 0,059$	12 ± 6	96,31 ± 24,04
	6:1	404 ± 5	$0,656 \pm 0,038$	17 ± 12	101,8 ± 13,10
	Liposomenlösuna	112 ± 7	0,389 ± 0.012		
	1.5.1	269 + 6	0.375 + 0.016	1.	98.76 + 8.651
MA5/Cholesterol 3:1	2.1	EEQ 1 0		kein	05 12 + 0.910
(n/n)	J.1	104 0	0,404 0,000	Gentransfer	04.00 7.044
	4,5:1	404 ± 6	0,421 ± 0,062	-	91,68 ± 7,641
	6:1	238 ± 17	0,337 ± 0,027		95,14 ± 7,560
	Liposomenlösuna	96 ± 2	$0,309 \pm 0.032$		
	1.5.1	133 + 2	0.267 + 0.014	1.	92.06 + 14.07
MA6/DOPE 1:2	2.1	100 ± 2	0,502 + 0,015	kein	96 79 ± 10 65
(n/n)	3.1	4/0±4	$0,002 \pm 0,010$	Gentransfer	$CO, IO \pm IU, OO$
. ,	4,5:1	289 ± 2	0,508 ± 0,071		81,95 ± 10,84
	6:1	323 ± 2	$0,489 \pm 0,005$		73,63 ± 13,15
	Liposomenlösuna	143 ± 1	0.265 ± 0.012		
	15.1	198 + 6	0.434 ± 0.051	67 + 69	82 02 + 5 06
MA6/DOPE 1:1	1,0.1	774 : 40	0,434 ± 0,031	07 ± 00	$02,02 \pm 0,00$
(n/n)	3.1	771±10	0,727 ± 0,045	90 ± 70	70,95 ± 0,02
. ,	4,5:1	333 ± 4	0,508 ± 0,025	83 ± 50	79,29 ± 6,53
	6:1	287 ± 4	0,531 ± 0,096	74 ± 41	78,06 ± 8,82
	Liposomenlösung	87 ± 16	0,265 ± 0.012		
	15.1	272 + 1	0.333 ± 0.010	0	96.08 + 13.13
MA6/DOPE 2:1	0.4		$0,000 \pm 0,010$	161 - 00	$00,00 \pm 10,10$
(n/n)	3:1	907 ± 5	$0,302 \pm 0,023$	101 ± 90	95,45 ± 12,28
	4,5:1	303 ± 6	$0,342 \pm 0,043$	272 ± 117	85,14 ± 15,37
	6:1	189 ± 1	0,153 ± 0,044	335 ± 106	81,89 ± 13,29
	Liposomenlösung	79 + 6	0.311 + 0.034		, -
	1 5.1	170 ± 9	0.337 ± 0.000	0	82 78 ± 0.05
MA6/DOPE 3:1	1,0.1	1/3 ± 0	0,007 ± 0,009		$02,10 \pm 9,00$
(n/n)	3:1	231 ± 4	0,416 ± 0,023	14 ± 9	96,98 ± 8,71
,	4,5:1	<u>190 ±</u> 2	0,378 ± 0,023	127 ± 49	88,79 ± 7,95
	6:1	127 ± 1	0,219 ± 0,006	279 ± 104	90,48 ± 5,61
	-				

	Liposomenlösung	123 ± 1	0,439 ± 0,018		
MA6/Cholesterol 1:2	1,5:1	266 ± 4	0,363 ± 0,041	koin	81,42 ± 10,64
(n/n)	3:1	135 ± 2	0,342 ± 0,016	Contransfor	73,41 ± 14,13
(171)	4,5:1	115 ± 2	0,339 ± 0,014	Gentransier	53,81 ± 13,10
	6:1	133 ± 1	0,455 ± 0,050		54,73 ± 13,05
	Liposomenlösung	108 ± 1	0,239 ± 0,012		
	1.5:1	421 ± 7	0.415 ± 0.043	0	81.23 ± 15.85
MA6/Cholesterol 1:1	3.1	253 + 1	0.337 + 0.011	93 + 96	83 83 + 17 09
(n/n)	4.5:1	157 ± 3	0.182 ± 0.019	322 ± 144	75.11 ± 24.28
	6.1	146 ± 2	$0,102 \pm 0,013$	322 ± 144 252 ± 108	70.00 ± 19.99
	U.I	140 ± 2	$0,242 \pm 0,000$	232 ± 100	70,99 ± 10,00
	Liposomeniosung	00 ± 17	$0,306 \pm 0,043$	0	00.00 0.44
	1,5:1	144 ± 4	$0,205 \pm 0,009$	0	96,09 ± 9,14
	3:1	209 ± 1	0,394 ± 0,031	147 ± 166	94,26 ± 10,89
MA6/Cholesterol 2:1	4,5:1	123 ± 2	0,134 ± 0,009	747 ± 509	90,59 ± 10,42
(n/n)	5,25:1	165 ± 1	0,370 ± 0,010	972 ± 199	75,25 ± 15,18
()	6:1	95 ± 1	0,131 ± 0,011	789 ± 118	83,26 ± 8,67
	6,75:1	134 ± 1	0,389 ± 0,019	1018 ± 212	81,48 ± 7,99
	7,5:1	81 ± 1	0,196 ± 0,010	968 ± 309	72,83 ± 20,17
	9:1	89 ± 1	0,204 ± 0,007	969 ± 181	78,41 ± 17,28
	Liposomenlösung	101 ± 2	$0,403 \pm 0,004$		
	1.5:1	434 ± 1	0.478 ± 0.059	11 ± 5	95.41 ± 7.03
MA6/Cholesterol 3:1	3.1	382 + 5	0 492 + 0 067	34 + 9	93 54 + 4 12
(n/n)	4 5.1	905 ± 5	0.495 ± 0.114	45 + 8	88 45 + 5 15
	6.1	1/55 ± 23	$0,433 \pm 0,114$ 0.588 ± 0.320	$\frac{43 \pm 0}{57 \pm 14}$	83.48 ± 4.64
	Lincomonlögung	1403 ± 25	$0,300 \pm 0,323$	57 ± 14	05,40 ± 4,04
		100 ± 1	$0,369 \pm 0,002$	_	70 11 17 10
	0:1	109 ± 2	$0,406 \pm 0,017$	kein	$12,11 \pm 17,19$
MA//DOPE 1:1 (n/n)	2:1	1333 ± 114	$0,408 \pm 0,043$	Gentransfer	83,96 ± 8,86
	3:1	1/5 ± 2	$0,367 \pm 0,009$	_	80,05 ± 13,51
	4:1	250 ± 13	0,607 ± 0,126		83,25 ± 12,21
	Liposomeniosung	99±2	$0,220 \pm 0,009$		
	1:1	168 ± 7	0,385 ± 0,054	kein	72,11 ± 17,19
MA7/DOPE 2:1 (n/n)	2:1	1708 ± 64	0,580 ± 0,076	Gentransfer	83,96 ± 8,86
	3:1	222 ± 5	0,371 ± 0,020	Contransier	80,05 ± 13,51
	4:1	140 ± 1	0,222 ± 0,006		83,25 ± 12,21
	Liposomenlösung	101 ± 1	0,330 ± 0,042		
MAZ/Chalasteral 4.2	1:1	278 ± 8	0,473 ± 0,023	koin	70,29 ± 15,47
WIA//Cholesterol 1:2	2:1	1106 ± 42	0,345 ± 0,007	kein	55,73 ± 5,48
(171)	3:1	331 ± 4	0.388 ± 0.024	Gentransfer	44.29 ± 6.96
	4:1	234 ± 3	0.347 ± 0.022		45.57 ± 6.31
	Liposomenlösung	139 ± 1	0.276 ± 0.023		
	1:1	193 + 5	0.243 + 0.024	0	90.28 + 8.78
MA7/Cholesterol 1:1	2.1	1692 + 36	0.264 ± 0.025	114 + 95	93 17 + 6 62
(n/n)	3.1	642+13	$0,204 \pm 0,020$	117 + 37	83 35 + 6 70
	<u> </u>	202 + 8	$0,244 \pm 0,015$	22 ± 10	95.71 ± 7.92
	4.1	102 + 2	$0,403 \pm 0,043$	23 ± 10	05,71 ± 7,02
		102 ± 3	$0,212 \pm 0,000$	_	02.42 . 44.04
MA7/Cholesterol 2:1	1.1	204 ± 2	$0,479 \pm 0,048$	kein	$92,12 \pm 11,01$
(n/n)	2:1	200 ± 2	$0,331 \pm 0,014$	Gentransfer	93,56 ± 11,95
	3:1	2074 ± 200	$0,486 \pm 0,067$	-	89,06 ± 13,04
	4:1	683 ± 14	$0,515 \pm 0,057$		86,93 ± 16,50
	Liposomeniosung	95 ± 5	$0,354 \pm 0,017$		
	1:1	114 ± 2	0,026 ± 0,029	93 ± 44	85,90 ± 9,22
MA8/DOPE 1:2 (n/n)	2:1	209 ± 1	0,439 ± 0,055	99 ± 70	85,04 ± 6,47
	3:1	1998 ± 120	$0,326 \pm 0,049$	224 ± 176	74,74 ± 8,55
	4:1	219 ± 3	0,391 ± 0,006	267 ± 104	80,18 ± 8,31
	Liposomenlösung	131 ± 46	0,361 ± 0,101		
	1:1	151 ± 1	$0,361 \pm 0,004$	0	85,73 ± 10,16
MA8/DOPE 1:1 (n/n)	2:1	300 ± 10	0,648 ± 0,103	46 ± 34	90,49 ± 11,27
	3:1	268 ± 7	0,487 ± 0,012	633 ± 263	89,39 ± 11,39
	4:1	155 ± 1	0.352 ± 0.026	562 ± 329	81.68 ± 13.19
	Liposomenlösung	318 ± 10	0.527 ± 0.038		. ,,
	1.1	235 + 1	0.238 + 0.020	112 + 16	98.58 + 7 27
MA8/DOPF 2.1 (n/n)	2.1	374 + 10	0 393 + 0 057	220 + 61	100.80 ± 7.82
	2.1	1410 + 50	0 302 ± 0,007	245 + 64	00 07 ± 7 22
	J.1 1·1	363 7 1	$0,302 \pm 0,000$ 0 101 \pm 0 012	240 ± 04	07 01 ± 7 06
	4.1	107 · 7	0,131 ± 0,012	230 ± 20	31,ZI ± 1,90
		121 ± 1	$0,410 \pm 0,032$		CO E1 + 40 40
MA8/Cholesterol 1:3	1.1	122 ± 1	$0,208 \pm 0,023$	U	00,51 ± 12,49
MA8/Cholesterol 1:3 (n/n)	0.1	055 57	0.054 0.000	404 00	
	2:1	855 ± 57	0,851 ± 0,039	131 ± 23	50,36 ± 12,42
(n/n)	2:1 3:1	855 ± 57 140 ± 1	$\begin{array}{c} 0,851 \pm 0,039 \\ 0,164 \pm 0,018 \end{array}$	131 ± 23 1089 ± 832	$50,36 \pm 12,42 \\ 42,75 \pm 8,90 \\ 12$

	Liposomenlösung	111 ± 8	$0,423 \pm 0,044$		
MAR/Chalastaral 4.2	1:1	294 ± 12	$0,533 \pm 0,008$	181 ± 166	55,01 ± 18,04
WA6/Cholesterol 1:2	2:1	241 ± 1	$0,200 \pm 0,033$	308 ± 121	65,32 ± 16,34
(n/n)	3.1	269 + 1	0.464 ± 0.010	626 + 312	44 10 + 6 43
	4.1	173 ± 1	0.333 ± 0.003	567 ± 100	16 27 ± 8 48
	4.1	00.1	0,000 ± 0,000	JUT ± 130	40,27 ± 0,40
	Liposomeniosung	90 ± 4	$0,253 \pm 0,016$	445 70	
	1:1	253 ± 6	$0,573 \pm 0,037$	115 ± 70	81,18 ± 16,11
	2:1	1296 ± 71	0,518 ± 0,022	714 ± 543	87,45 ± 16,44
MAR/Cholostorol 1.1	2,5:1	462 ± 6	0,367 ± 0,021	780 ± 113	94,48 ± 5,52
	3:1	274 ± 7	$0,429 \pm 0,040$	1353 ± 720	83,75 ± 15,17
(n/n)	3.5:1	212 ± 3	0.198 ± 0.021	1365 ± 488	84.50 ± 8.99
	4.1	137 + 1	0.175 ± 0.021	1293 + 534	85 16 + 14 52
	4.5.1	162 ± 1	$0,177 \pm 0,021$	1106 ± 552	84.24 ± 0.70
	4,5.1	103 ± 1	0,127 ± 0,030	1190 ± 332	$04,34 \pm 9,70$
	5:1	150 ± 1	$0,121 \pm 0,016$	1589 ± 346	$85,36 \pm 8,74$
	Liposomenlosung	89 ± 5	$0,238 \pm 0,006$		
MA8/Cholesterol 2:1	1:1	138 ± 1	$0,235 \pm 0,010$	0	87,44 ± 17,82
(n/n)	2:1	1309 ± 39	0,311 ± 0,024	494 ± 322	95,89 ± 16,19
(171)	3:1	298 ± 1	$0,149 \pm 0,028$	1246 ± 589	93,46 ± 11,59
	4.1	178 + 1	0.120 ± 0.024	1056 + 988	82 04 + 8 33
		70 ± 1	0.210 ± 0.018		02,0120,00
		142 + 1	0,210 ± 0,010	02 . 57	04.02 + 14.02
MA8/Cholesterol 3:1	1.1	142 ± 1	$0,305 \pm 0,020$	92 ± 3/	94,02 ± 11,83
(n/n)	2:1	3/2 ± 14	0,616 ± 0,083	745 ± 325	99,80 ± 13,25
	3:1	1906 ± 25	0,414 ± 0,139	784 ± 378	103,70 ± 9,20
	4:1	1555 ± 18	0,549 ± 0,085	715 ± 291	91,69 ± 10,25
	Liposomenlösung	191 ± 3	$0,049 \pm 0,038$		
	1:1	278 ± 2	$0,483 \pm 0,030$	38 ± 20	86,33 ± 11,16
	2:1	155 ± 1	$0,295 \pm 0,029$	162 ± 71	94,71 ± 11,88
(n/n)	3:1	112 + 2	0.226 ± 0.008	241 + 67	94.68 + 10.24
	4.1	134 + 2	0.266 ± 0.027	277 + 53	99 70 + 11 48
	Liposomenlösung	126 + 6	$0,200 \pm 0,021$	211 2 00	00,10 ± 11,10
	1.1	240 + 4	$0,400 \pm 0,000$	25 1 11	00.29 + 0.74
MA9/DOPE 1:1	1.1	240 ± 4	0,194 ± 0,023	20 ± 11	90,20 ± 9,74
(n/n)	2:1	458 ± 7	$0,427 \pm 0,042$	264 ± 188	61,41 ± 19,55
	3:1	1251 ± 58	0,201 ± 0,043	153 ± 64	45,17 ± 8,00
	4:1	492 ± 8	0,218 ± 0,011	151 ± 62	48,27 ± 7,12
	Liposomenlösung	121 ± 2	0,374 ± 0,022		
	1:1	234 ± 2	0,391 ± 0,019	18 ± 6	82,54 ± 10,57
(n/n)	2:1	583 ± 2	0,502 ± 0,011	309 ± 211	85,53 ± 10,17
(1711)	3:1	582 ± 4	$0,354 \pm 0,044$	102 ± 55	90,82 ± 9,08
	4:1	571 ± 1	0.710 ± 0.114	105 ± 55	88.80 ± 8.28
	Liposomenlösung	140 + 6	0.432 ± 0.023		
	1.1	243 + 5	0.348 ± 0.022	11 + 9	93 34 + 5 68
MA9/Cholesterol 1:2	2.1	210 ± 0	0.374 ± 0.007	120 ± 179	78.14 ± 10.50
(n/n)	2.1	274 + 1	0,014 ± 0,001	265 + 101	75,72 , 11,52
	J. 1	274 ± 1	$0,292 \pm 0,000$	203 ± 101	$73,73 \pm 11,32$
	4:1	159 ± 1	$0,263 \pm 0,011$	210 ± 113	73,41 ± 13,34
	Liposomeniosung	94 ± 1	$0,371 \pm 0,022$		
MA9/Cholesterol 1.1	1:1	611 ± 6	0,288 ± 0,025	6 ± 12	88,88 ± 9,08
(n/n)	2:1	258 ± 1	0,355 ± 0,013	692 ± 196	89,84 ± 7,84
(1011)	3:1	124 ± 1	0,179 ± 0,012	309 ± 119	90,29 ± 9,52
	4:1	95 ± 2	0,184 ± 0,003	214 ± 102	95,59 ± 11,50
	Liposomenlösuna	107 ± 4	0,360 ± 0.053		·
	1:1	213 ± 1	0.136 ± 0.022	11 ± 14	93.34 ± 15.68
MA9/Cholesterol 2:1	2.1	174 + 2	0.333 ± 0.017	465 + 101	78 14 + 10 50
(n/n)	3.1	118 + 2	0.206 ± 0.023	301 + 83	$75,73 \pm 11,52$
	4.1	104 . 1	0,200 ± 0,025	201 ± 007	72 /1 , 12 2/
	4.1	57 · 4	$0,210 \pm 0,000$	221 ± 107	10,41±10,04
		0/±1	$0,249 \pm 0,004$	404 70	00.40 40.04
MA9/DMPC 1:1	0,66:1	120 ± 5	$0,294 \pm 0,033$	121 ± /8	90,48 ± 10,61
(n/n)	1,33:1	358 ± 11	$0,583 \pm 0,090$	164 ± 121	83,41 ± 9,68
()	2:1	642 ± 8	0,416 ± 0,043	277 ± 116	78,84 ± 9,57
	2,67:1	261 ± 5	0,407 ± 0,012	348 ± 115	80,39 ± 6,45
	Liposomenlösung	232 ± 6	0,461 ± 0,025		
	0,83 :1	137 ± 2	0,409 ± 0.048	0	95,42 ± 12,93
MA13/DOPE 1:1	1.67 :1	159 ± 2	0.389 ± 0.033	0	100.3 ± 12.05
(n/n)	2.50.1	93 + 1	0.354 ± 0.003	92 + 63	101.8 + 14.73
	3 33 1	99 + 5	0.413 + 0.041	43 + 38	87.44 + 12.64
	Linosomenlösung	00 ± 0	0.255 ± 0.012	.0 ± 00	01, i∓ ± 12,07
		35 I I 014 - 44	$0,200 \pm 0,012$	0	9101 746
MA13/Cholesterol	0,03 .1	211±11	$0,347 \pm 0,018$	0	$04,94 \pm 1,10$
1:2 (n/n)	1,6/:1	1126 ± 22	$0,260 \pm 0,013$	U	85,39 ± 10,22
. ,	2,50 :1	199 ± 2	0,211 ± 0,010	0	86,03 ± 12,79
	3 33 -1	106 ± 1	0.179 ± 0.014	119 ± 107	84 59 + 5 93

			-	-	-
	Liposomenlösung	85 ± 5	0,764 ± 0,021		
	0.83 :1	125 ± 2	0.228 ± 0.013	15 ± 12	84.24 ± 9.91
MA13/Cholesterol	1.67.1	223 + 6	0.394 ± 0.018	82 + 55	90 97 + 10 78
1:1 (n/n)	2.50.1	220 ± 0	0.711 ± 0.027	159 + 54	96.77 ± 10.52
	2,30.1	244 ± 4	0,711±0,027	100 ± 04	$00,77 \pm 10,32$
	3,33 :1	124 ± 2	$0,250 \pm 0,007$	140 ± 76	93,97 ± 5,78
	Liposomenlösung	131 ± 51	0,713 ±0,370		
MA12/Chalasteral	0,83 :1	223 ± 14	0,501 ± 0,062	9 ± 6	86,45 ± 10,74
MAT3/Cholesterol	1.67 :1	307 ± 15	0.492 ± 0.035	29 ± 16	85.15 ± 20.89
2:1 (n/n)	2 50 .1	208 + 7	0.450 ± 0.068	47 + 27	89.66 + 8.77
	2,00.1	166 ± 3	$0,400 \pm 0,000$	76 ± 26	65.70 ± 25.82
	5,55.1	100 ± 5	0,440 ± 0,020	10 ± 20	05,75 ± 25,02
	Liposomeniosung	1 ± 80	$0,385 \pm 0,013$		
MA14/DOPE 1-3	0,83 :1	123 ± 1	$0,409 \pm 0,005$	70 ± 26	98,81 ± 11,85
(n/n)	1,67 :1	246 ± 13	0,611 ± 0,030	124 ± 67	91,67 ± 10,75
(1011)	2,50 :1	236 ± 1	0,101 ± 0,080	158 ± 54	85,41 ± 8,79
	3.33 :1	148 ± 2	0.148 ± 0.019	115 ± 33	73.92 ± 12.25
		623 + 67	0.721 ± 0.178		. 0,02 2 . 2,20
		510 ± 17	0,721±0,170	400 . 245	96.96 + 6.44
MA14/DOPE 1:2	0,03.1	519±17	$0,423 \pm 0,061$	496 ± 245	$60,20 \pm 0,44$
(n/n)	1,67 :1	938 ± 35	$0,306 \pm 0,126$	641 ± 239	82,94 ± 7,18
()	2,50 :1	1189 ± 51	0,161 ± 0,127	700 ± 364	86,58 ± 7,27
	3,33 :1	853 ± 29	$0,066 \pm 0,030$	700 ± 272	87,23 ± 8,69
	Liposomenlösuna	86 ± 1	0.244 ± 0.009		
	0.83.1	168 + 3	0.292 ± 0.024	588 + 316	77 12 + 15 09
MA14/DOPE 1:1	4 67 .4	700 - 00	0,202 ± 0,024	164 - 000	92 00 · 14 66
(n/n)	1,07.1	723 ± 20	$0,336 \pm 0,043$	104 ± 220	$63,09 \pm 14,00$
	2,50 :1	484 ± 15	$0,519 \pm 0,097$	117 ± 53	79,90 ± 14,64
	3,33 :1	312 ± 7	0,444 ± 0,033	84 ± 108	52,77 ± 10,34
	Liposomenlösung	55 ± 1	$0,263 \pm 0,003$		
	0,83 :1	129 ± 2	$0,259 \pm 0,034$	588 ± 316	95,64 ± 8,66
MA14/DOPE 2:1	1.67 :1	1086 + 33	0.347 ± 0.056	164 + 226	80.22 + 11.73
(n/n)	2 50 1	157 + 3	0.175 ± 0.010	117 + 53	85 87 + 11 39
	2,00.1	106 ± 1	0.176 ± 0.006	91 ± 109	84 28 ± 0.78
	3,33 . I	100 ± 1	0,170 ± 0,000	04 ± 100	$04,30 \pm 9,70$
	Liposomeniosung	56 ± 1	$0,262 \pm 0,016$		
MA14/Cholesterol 1.2	0,83 :1	103 ± 2	0,207 ± 0,014	128 ± 110	84,32 ± 13,62
(n/n)	1,67 :1	209 ± 4	0,213 ± 0,010	129 ± 43	90,80 ± 13,15
(1711)	2,50 :1	532 ± 10	0,563 ± 0,093	145 ± 34	98,98 ± 11,07
	3.33 :1	282 + 5	0.517 ± 0.047	122 + 3	92.74 + 9.82
	Linosomenlösung	91 + 1	0.215 ± 0.010		,
		102 . 2		20 1 10	07 00 1 10 52
MA14/Cholesterol 1:1	0,83.1	103 ± 2	$0,219 \pm 0,010$	20 ± 19	$07,09 \pm 10,03$
(n/n)	1,67 :1	103 ± 2	$0,231 \pm 0,016$	215 ± 66	88,27 ± 7,51
	2,50 :1	827 ± 13	0,297 ± 0,027	0	91,86 ± 7,09
	3,33 :1	1623 ± 73	0,413 ± 0,026	0	77,46 ± 6,54
	Liposomenlösung	48 ± 1	0,321 ± 0,035		
	0.83 :1	533 ± 42	0.254 ± 0.041	0	94.28 ± 9.61
MA14/Cholesterol 2:1	1.67.1	1092 + 8	0.375 ± 0.072	68 + 47	91 60 + 12 47
(n/n)	2.50.1	369 ± 6	0.260 ± 0.009	65 ± 51	94.70 ± 10.80
	2,30.1	117 · 1	0,200 ± 0,003	0.0 ± 0.1	$07.70 \pm 10,00$
	3,33.1	11/±1	$0,220 \pm 0,002$	220 ± 147	91,10 ± 1,98
	Liposomeniosung	/2 ± 1	$0,272 \pm 0,006$		
MA15/DOPF 1-2	0,83 :1	94 ± 2	0,257 ± 0,013	18 ± 7	91,98 ± 3,98
(n/n)	1,67 :1	107 <u>+</u> 1	$0,204 \pm 0,003$	283 ± 183	89,84 ± 5,59
(1711)	2,50 :1	216 ± 12	0,455 ± 0,043	33 ± 12	85.27 ± 9.87
	3.33 :1	1402 ± 34	0.319 ± 0.103	97 ± 96	77.84 ± 9.08
	Linosomenlösung	166 + 2	0.269 ± 0.010		
	0.82.1	107 ± 1	$0.2/3 \pm 0.001$	Q1 <u>+</u> 71	85 10 ± 0 12
MA15/DOPE 1:1	0,83.1	107 ± 1	0,243 ± 0,001	94 ± 7 1	00,49 ± 9,42
(n/n)	1,67:1	139 ± 2	$0,219 \pm 0,011$	642 ± 319	$77,85 \pm 7,46$
. ,	2,50 :1	1130 ± 33	$0,293 \pm 0,049$	181 ± 206	65,01 ± 6,76
	3,33 :1	579 ± 14	$0,335 \pm 0,037$	260 ± 105	54,34 ± 9,62
	Liposomenlösung	1592 ± 98	0,161 ± 0,069		
	0.83 :1	372 ± 6	0.304 ± 0.044	582 ± 160	85.94 ± 7.81
MA15/DOPE 2:1	1.67.1	450 + 7	0.306 ± 0.002	881 + 114	81 47 + 6 79
(n/n)	2 50 -1	108/ ± 22		673 + 174	72 25 ± 11 0F
	2,00.1	1004 ± 23	$0,370 \pm 0,009$	$0/3 \pm 1/4$	12,20 ± 11,00
	3,33 :1	1415 ± 53	0,319 ± 0,091	010 ± 282	09,54 ± 9,73
	Liposomenlösung	94 ± 1	0,264 ± 0,014		
	0,83 :1	126 ± 2	$0,415 \pm 0,023$	27 ± 10	92,55 ± 8,12
	1,67 :1	148 ± 1	0,266 ± 0,013	380 ± 172	92,93 ± 6,78
(1/1)	2,50 :1	302 ± 11	0,451 ± 0.016	456 ± 376	85,60 ± 9,86
	3.33 1	681 + 31	0.685 + 0.043	332 + 313	69.61 + 7.77
	-,-•.	· · · · · · · ·			,,-

	Liposomenlösung	121 ± 2	0,258 ± 0,005		
	0,83 :1	149 ± 9	0,147 ± 0,016	31 ± 7	88,93 ± 7,61
	1 67 1	162 + 4	0 143 + 0 029	104 + 36	91 46 + 3 99
MA15/Cholostorol	2.50.:1	675 ± 41	0.260 ± 0.008	6+3	86 42 ± 5 40
	2,30.1	075 ± 41	0,209 ± 0,008	0±3	$60,43 \pm 5,40$
1:3 (n/n)	3,33 :1	484 ± 9	$0,204 \pm 0,021$	211 ± /1	80,77 ± 6,16
	4,16:1	711 ± 15	0,307 ± 0,022	89 ± 32	71,05 ± 2,78
	5:1	1024 ± 37	0,303 ± 0,031	34 ± 28	59,50 ± 5,02
	6.66 [.] 1	277 + 4	0.288 ± 0.035	23 + 10	54 09 + 3 71
	Lipogomonlögung	142 + 6	0.271 ± 0.062	20 ± 10	04,00 ± 0,71
	Liposomeniosung	142 ± 0	0,371 ± 0,003	40 05	00.07 0.54
MA15/Cholesterol	0,83 :1	158 ± 1	$0,147 \pm 0,016$	42 ± 35	90,97 ± 6,54
1.2 (n/n)	1,67 :1	182 ± 4	0,169 ± 0,008	297 ± 167	93,15 ± 6,07
()	2,50 :1	992 ± 33	0,223 ± 0,027	438 ± 183	88,98 ± 4,80
	3.33 :1	1190 ± 34	0.196 ± 0.028	112 ± 145	88.31 ± 7.10
	Liposomenlösung	88 + 2	0.266 ± 0.018		
		00 ± 2	0,200 ± 0,010	2.0	00.74 . 0.50
MA15/Cholesterol	0,83 :1	141±1	$0,178 \pm 0,010$	3±3	86,74 ± 6,53
1.1 (n/n)	1,67 :1	356 ± 14	$0,450 \pm 0,025$	33 ± 14	89,01 ± 6,90
()	2,50 :1	1076 ± 33	0,341 ± 0,024	22 ± 8	85,48 ± 6,58
	3.33 :1	338 ± 3	0.319 ± 0.039	211 ± 79	81.33 ± 7.31
	Liposomenlösung	68 + 4	0.398 ± 0.014		- 1 1-
	0.92.1	100 - 2		25 . 16	01.00 . 11.00
MA15/Cholesterol	0,83.1	199 ± 3	0,367 ± 0,037	35 ± 16	91,00 ± 11,33
2.1(n/n)	1,67 :1	185 ± 5	$0,353 \pm 0,031$	10 ± 4	92,20 ± 8,08
()	2,50 :1	220 ± 5	0,367 ± 0,022	28 ± 23	98,70 ± 8,12
	3.33 :1	315 ± 5	0.432 ± 0.020	32 ± 16	93.37 ± 11.32
	Liposomenlösung	141 +59	0.365 ± 0.063		
	1.1	269 - 5	0,500 ± 0,000	1	02.05 . 7.60
VF2/DOPE 1:2		300 ± 3	0,039 ± 0,039	kein	$92,00 \pm 1,00$
(n/n)	2:1	180 ± 1	$0,376 \pm 0,020$	Gentransfer	84,30 ± 7,53
()	3:1	188 ± 4	0,399 ± 0,011	Contraineren	76,26 ± 5,09
	4:1	182 ± 2	0,410 ± 0,010		66,78 ± 6,52
	Liposomenlösung	126 + 6	0.351 ± 0.033		
	<u>1.1</u>	209 + 1	0.404 ± 0.046		90 66 + 9 36
VF2/DOPE 1:1	2:1	200 ± 1		kein	$07.55 \cdot 10.10$
(n/n)	2:1	310 ± 3	$0,439 \pm 0,015$	Gentransfer	87,55 ± 12,18
, , , , , , , , , , , , , , , , , , ,	3:1	427 ± 9	0,511 ± 0,017		86,65 ± 5,91
	4:1	271 ± 7	$0,459 \pm 0,022$		80,66 ± 5,02
	Liposomenlösung	129 ± 3	0,270 ± 0,017		
	1:1	185 + 1	0.301 ± 0.014		52.23 + 27.61
VF2/DOPE 2:1	2:1	164 ± 22	0.541 ± 0.113	kein	60.11 ± 20.40
(n/n)	2.1	404 ± 22	0,341 ± 0,113	Gentransfer	09,11±20,40
	3:1	458 ± 23	$0,635 \pm 0,086$		73,94 ± 18,23
	4:1	238 ± 7	0,469 ± 0,073		85,77 ± 25,72
	Liposomenlösung	174 ± 2	0,278 ± 0,013		
	1:1	192 ± 2	$0,293 \pm 0,036$		98,01 ± 12,25
VF2/DOPE 3:1	2.1	323 + 7	0.480 ± 0.021	kein	91 23 + 18 39
(n/n)	2:1	020 1 1	0.584 + 0.077	- Gentransfer	01,20 ± 10,00
	5.1	002 ± 10	0,304 ± 0,077	_	91,20 ± 12,10
	4:1	428 ± 22	$0,609 \pm 0,114$		85,55 ± 15,79
	Liposomenlösung	84 ± 3	0,475 ± 0,016		
	1:1	260 ± 10	0,491 ± 0,070	203 ± 116	85,70 ± 11,60
VF3/DOPE 1:3	2:1	214 + 2	0.372 ± 0.009	254 + 125	82.37 + 14.43
(n/n)	3.1	1/7 + 3	0.345 ± 0.018	226 + 116	73.80 ± 15.85
	4.4	100 . 4		1/2 . 54	64 47 - 14 22
	4.1	100 ± 1	$0,179 \pm 0,014$	143 ± 34	$04,47 \pm 14,32$
	Liposomeniosung	260 ± 10	0,495 ± 0,076		
	1:1	137 ± 1	0,239 ± 0,022	132 ± 94	98,13 ± 14,44
(n/n)	2:1	135 ± 1	0,346 ± 0,036	97 ± 48	85,36 ± 14,16
(1711)	3:1	115 ± 1	0,173 ± 0.023	64 ± 42	68,69 ± 13.74
	4.1	101 + 1	0.360 ± 0.005	60 + 28	68 29 + 20 81
	Linocomonlägung	107 . 2	0.050 ± 0.000	00 ± 20	00,20 ± 20,01
		107 ± 2	$0,232 \pm 0,011$	04 00	07.40 0.00
VF3/DOPE 1:1	1:1	∠58 ± /	$0,408 \pm 0,009$	01 ± 38	91,46 ± 6,82
(n/n)	2:1	262 ± 4	0,424 ± 0,014	101 ± 58	97,91 ± 8,81
(1917)	3:1	215 ± 1	0,413 ± 0,017	49 ± 27	92,20 ± 5,92
	4:1	166 ± 2	0.330 ± 0.023	10 ± 13	87,35 ± 9.67
	Linosomenlösung	52 + 3	0.401 ± 0.025		_ , = = 0,0.
		54 ± 5	0,454 . 0.025	42.00	100 7 . 10 00
	1.4	111.11	0 404 + 0 0/0	43 ± 22	$102,7 \pm 10,33$
VF3/DOPE 2:1	1:1	414± 14	0,101 ± 0,020	10	00 7
VF3/DOPE 2:1 (n/n)	1:1 2:1	414± 14 183 ± 1	0,396 ± 0,029	135 ± 77	93,75 ± 12,93
VF3/DOPE 2:1 (n/n)	1:1 2:1 3:1	$ 414 \pm 14 183 \pm 1 127 \pm 2 $	$\begin{array}{r} 0,396 \pm 0,029 \\ 0,272 \pm 0,018 \end{array}$	135 ± 77 84 ± 38	93,75 ± 12,93 92,65 ± 18,22
VF3/DOPE 2:1 (n/n)	1:1 2:1 3:1 4:1	$ \begin{array}{r} 414 \pm 14 \\ 183 \pm 1 \\ 127 \pm 2 \\ 894 \pm 37 \end{array} $	$0,396 \pm 0,029 \\ 0,272 \pm 0,018 \\ 0,648 \pm 0.047$	135 ± 77 84 ± 38 106 ± 28	93,75 ± 12,93 92,65 ± 18,22 79,48 ± 13,44
VF3/DOPE 2:1 (n/n)	1:1 2:1 3:1 4:1	$ \begin{array}{r} 414 \pm 14 \\ 183 \pm 1 \\ 127 \pm 2 \\ 894 \pm 37 \\ 82 \pm 5 \end{array} $	$0,396 \pm 0,029 \\ 0,272 \pm 0,018 \\ 0,648 \pm 0,047 \\ 0.424 \pm 0.046$	$ \begin{array}{r} 135 \pm 77 \\ 84 \pm 38 \\ 106 \pm 28 \end{array} $	93,75 ± 12,93 92,65 ± 18,22 79,48 ± 13,44
VF3/DOPE 2:1 (n/n)	1:1 2:1 3:1 4:1 Liposomenlösung	$ 414\pm 14 183 \pm 1 127 \pm 2 894 \pm 37 82 \pm 5 489 \pm 8 $	$0,134 \pm 0,029 \\ 0,272 \pm 0,018 \\ 0,648 \pm 0,047 \\ 0,424 \pm 0,046 \\ 0,544 \pm 0,038 \\ 0,03$	$ \begin{array}{r} 135 \pm 77 \\ 84 \pm 38 \\ 106 \pm 28 \\ \hline 39 \pm 11 \end{array} $	93,75 ± 12,93 92,65 ± 18,22 79,48 ± 13,44
VF3/DOPE 2:1 (n/n) VF3/DOPE 3:1	1:1 2:1 3:1 4:1 Liposomenlösung 1:1 2:1	$ 414\pm 14 183 \pm 1 127 \pm 2 894 \pm 37 82 \pm 5 489 \pm 8 246 \pm 5 $	$0,131 \pm 0,023$ $0,396 \pm 0,029$ $0,272 \pm 0,018$ $0,648 \pm 0,047$ $0,424 \pm 0,046$ $0,544 \pm 0,038$ $0,427 \pm 0,044$	$ \begin{array}{r} 135 \pm 77 \\ 84 \pm 38 \\ 106 \pm 28 \\ \hline 39 \pm 11 \\ 101 \pm 25 \\ \end{array} $	$93,75 \pm 12,93$ $92,65 \pm 18,22$ $79,48 \pm 13,44$ $94,35 \pm 7,92$ $08,07 \pm 8,72$
VF3/DOPE 2:1 (n/n) VF3/DOPE 3:1 (n/n)	1:1 2:1 3:1 4:1 Liposomenlösung 1:1 2:1	$414\pm 14 183\pm 1 127\pm 2 894\pm 37 82\pm 5 489\pm 8 246\pm 5 246\pm 5$	$\begin{array}{c} 0,131\pm0,023\\ 0,396\pm0,029\\ 0,272\pm0,018\\ 0,648\pm0,047\\ 0,424\pm0,046\\ 0,544\pm0,038\\ 0,437\pm0,011\\ 2,0016\\ 0,541\\ \end{array}$	$135 \pm 77 \\ 84 \pm 38 \\ 106 \pm 28 \\ 39 \pm 11 \\ 101 \pm 85 \\ 70 + 22 \\ 39 \pm 12 \\ 70 + 22 \\ 7$	$93,75 \pm 12,93$ $92,65 \pm 18,22$ $79,48 \pm 13,44$ $94,35 \pm 7,92$ $98,07 \pm 8,73$
VF3/DOPE 2:1 (n/n) VF3/DOPE 3:1 (n/n)	1:1 2:1 3:1 4:1 Liposomenlösung 1:1 2:1 3:1	$414\pm 14 183\pm 1 127\pm 2 894\pm 37 82\pm 5 489\pm 8 246\pm 5 157\pm 1$	$\begin{array}{c} 0,131 \pm 0.122 \\ 0,396 \pm 0.029 \\ 0,272 \pm 0.018 \\ 0,648 \pm 0.047 \\ 0,424 \pm 0.046 \\ 0,544 \pm 0.038 \\ 0,437 \pm 0.011 \\ 0,262 \pm 0.016 \end{array}$	$135 \pm 77 \\ 84 \pm 38 \\ 106 \pm 28 \\ 39 \pm 11 \\ 101 \pm 85 \\ 78 \pm 39$	$93,75 \pm 12,93$ $92,65 \pm 18,22$ $79,48 \pm 13,44$ $94,35 \pm 7,92$ $98,07 \pm 8,73$ $104,45 \pm 10,73$

	Liposomenlösung	63 ± 3	0.400 ± 0.028		
	15.1	232 + 3	0.448 ± 0.009	332 + 62	85 12 + 8 62
VF4/DOPE 1:3	2.1	092 ±17	0.046 ± 0.041	126 + 142	74.20 ± 10.01
(n/n)	3.1	902 ±17	0,940 ± 0,041	420 ± 142	74,29 ± 10,01
ζ, γ	4,5:1	164 ± 2	$0,334 \pm 0,010$	498 ± 263	66,83 ± 18,76
	6:1	188 ± 2	0,431 ± 0,011	462 ± 172	64,46 ± 13,91
	Liposomenlösung	77 ± 1	0.263 ± 0.005		
	1 5.1	215 ± 1	0.388 ± 0.024	131 ± 01	77 16 ± 15 81
VF4/DOPE 1:2	1,5.1	213 ± 1	0,300 ± 0,024	101 ± 31	77,10 ± 13,01
(n/n)	3:1	330 ± 2	$0,439 \pm 0,009$	195 ± 70	61,44 ± 21,09
	4,5:1	133 ± 2	0,250 ± 0,017	94 ± 35	53,77 ± 11,92
	6:1	109 ± 1	0,193 ± 0,017	100 ± 38	61,64 ± 17,00
	Liposomenlösung	95 + 2	0.313 ± 0.015		
	1 5.1	211 + 1	0.367 ± 0.025	$1/ \pm 10$	08.35 ± 7.40
VF4/DOPE 1:1	1,0.1	211 ± 4	0,007 ± 0,023	01 + 20	07.04 ± 10.05
(n/n)	3:1	205 ± 4	$0,387 \pm 0,007$	81 ± 32	97,24 ± 10,25
ζ, γ	4,5:1	375 ± 3	0,475 ± 0,023	106 ± 39	91,43 ± 8,05
	6:1	217 ± 3	0,405 ± 0,002	43 ± 22	83,74 ± 5,11
	Liposomenlösung	73 ± 1	0.393 ± 0.033		
	1 5.1	204 + 4	0.401 ± 0.019	94 + 51	82 63 + 16 88
VF4/DOPE 2:1	2.1	204 ± 4		150 + 100	74.42 + 20.74
(n/n)	3.1	220 ± 1	$0,367 \pm 0,012$	150 ± 100	$74,43 \pm 20,71$
ζ, γ	4,5:1	163 ± 1	$0,339 \pm 0,020$	218 ± 131	72,05 ± 23,07
	6:1	145 ± 1	0,279 ± 0,030	125 ± 57	59,44 ± 17,74
	Liposomenlösung	69 ± 11	0.281±0.081		
	15.1	201 + 2	0.379 + 0.026	229 + 123	94 55 + 8 48
VF4/DOPE 3:1	2.4	540 . 20	0.540 - 0.025	280 156	00.02 + 12.02
(n/n)	3.1	049 ± 30	0,049 ± 0,035	003 ± 100	90,02 ± 12,93
	4,5:1	204 ± 1	$0,428 \pm 0,009$	552 ± 255	//,1/ ± 13,06
	6:1	109 <u>+</u> 1	0,186 ± 0,002	321 ± 134	53,88 ± 18,59
	Liposomenlösuna	207 ± 110	0,365 ± 0,142		
	0.66:1	178 ± 2	0.246 ± 0.018	371 ± 125	92.25 ± 11.89
VF6/DOPE 1:2	1 33.1	307 ± 8	0.417 ± 0.025	458 ± 128	84 50 ± 15 70
(n/n)	1,00.1	202 + 1	0,417 ± 0,023	440 + 222	70.00 ± 10.70
	2.1	203 ± 1	0,355 ± 0,023	446 ± 233	$79,00 \pm 12,73$
	2,66:1	136 ± 1	$0,250 \pm 0,011$	412 ± 156	76,19 ± 17,38
	Liposomenlösung	68 ± 8	0,657 ± 0,317		
	0,66:1	216 ± 3	0,366 ± 0,005	99 ± 75	88,63 ± 10,88
	1,33:1	1137 ± 97	0,281 ± 0,011	389 ± 137	87,72 ± 11,01
(n/n)	2.1	342 + 10	0.670 ± 0.095	246 + 112	76 96 + 14 84
	2.6.1	275 ± 4	$0,070 \pm 0,000$	170 ± 102	50.20 ± 15.80
	2,00.1	213 ± 4	0,470 ± 0,020	173 ± 100	J3,23 ± 13,00
	Liposomeniosung	91 ± 9	$0,283 \pm 0,004$		
VE6/DOPE 2.1	0,66:1	165 ± 1	$0,289 \pm 0,047$	82 ± 67	98,03 ± 11,25
(n/n)	1,33:1	1182 ± 63	0,306 ± 0,011	102 ± 36	99,75 ± 10,49
(1011)	2:1	367 ± 17	0,519 ± 0,014	161 ± 109	91,42 ± 14,68
	2.66:1	304 + 9	0.500 ± 0.067	169 + 57	75.36 + 10.42
		00 + 0	0.585 ± 0.077		. 0,00 = . 0, . =
		156 . 7	0,000 ± 0,011	200 . 202	96.60 + 6.47
VF6/DOPE 3:1	0,00.1	100 ± 7	0,334 ± 0,026	299 ± 292	$00,09 \pm 0,47$
(n/n)	1,33:1	195 ± 5	$0,374 \pm 0,021$	483 ± 284	91,25 ± 8,55
()	2:1	401 ± 9	0,507 ± 0,084	752 ± 365	88,65 ± 12,32
	2,66:1	1017 ± 19	0,401 ± 0,056	777 ± 303	78,52 ±15,82
	Liposomenlösung	87 + 1	0.227 ± 0.016		
MA6/MA8/	1 25:1	137 + 1	0.286 ± 0.009	210 + 235	87 33 + 13 10
Cholesterol	0.5:4	107 ± 1	0,200 ± 0,000	210 ± 200	72.05 ± 15,15
1:1:1	2,5:1	1072 ± 23	$0,483 \pm 0,086$	760 ± 485	73,05 ± 15,35
(n/n/n)	3,75:1	491 ± 21	0,446 ± 0,020	678 ± 260	51,08 ± 7,79
	5:1	232 ± 1	$0,339 \pm 0,022$	850 ± 243	51,27 ± 9,09
	Liposomenlösung	97 ± 5	0,252 ± 0,038		
MA6/MA9/	1.25:1	131 + 1	0.220 ± 0.010	228 + 105	80.88 + 14.57
Cholesterol	2 5.1	1332 + 55	0.268 ± 0.042	794 + 557	88 33 + 18 57
1:1:1	2,0.1	200 + 2	0,200 ± 0,042	742 . 204	64.60 + 7.64
(n/n/n)	3,75.1	320 ± 2	0,340 ± 0,032	743 ± 204	$04,09 \pm 1,04$
	5:1	105 ± 1	$0,138 \pm 0,017$	034 ± 234	$50,12 \pm 14,65$
	Liposomenlösung	82 ± 1	0,224 ± 0,006		
MA6/MA8/	1,29:1	153 ± 1	0,365 ± 0,018	95 ± 81	71,43 ± 21,62
Cholesterol	2.57:1	1141 ± 153	0.356 ± 0.032	467 ± 174	77.79 ± 11.78
4:3:5	3,86.1	271 + 3	0.420 ± 0.007	422 + 168	58.84 + 19.86
(n/n/n)	5 14:1	177 ± 1	0.107 ± 0.011	206 + 88	11.47 ± 5.00
(0,14.1	204 . 40	0.646 . 0.400	200 ± 00	20.64 . 40.05
	0,43:1	294 ± 19	$0,040 \pm 0,100$	200 ± 72	39,04 ± 12,25
ΜΑ6/ΜΔ8/ΜΔ9	Liposomenlösung	126 ± 5	$0,410 \pm 0,032$		
Cholesterol	1,17:1	156 ± 3	0,340 ± 0,018	51 ± 15	93,55 ± 7,62
4.4.4.2	2,33:1	381 ± 11	0,486 ± 0,013	531 ± 87	91,85 ± 2,54
1.1:1:3 (m/m/m/m)	3,5:1	779 ± 55	0,514 ± 0.083	278 ± 272	62,13 ± 5.64
(n/n/n/n)	4.67.1	262 + 2	0.238 + 0.024	107 + 39	25.40 + 2.74
	Linosomenläsung	261 ± 6	0.228 ± 0.014		-0, 10 - 2,17
		201 ± 0	$0,220 \pm 0,014$	40.0	00.05 40.70
MA13/DMPC 1:1	0,83 :1	406 ± 6	$0,474 \pm 0,062$	16±8	89,95 ± 10,70
(n/n)	1,67 :1	121 ± 1	0,325 ± 0,013	130 ±70	88,53 ± 7,99
()	2,50 :1	<u>128 ±</u> 19	0,402 ± 0,081	<u>238 ± 199</u>	82, <u>18 ± 1</u> 1,90
	3,33 :1	122 ± 21	0,399 ± 0,150	236 ± 194	80,66 ± 14,05

MA14/DMPC 1:1	Liposomenlösung	43 ± 2	0,532 ± 0,121		
	0,83 :1	141 ± 7	0,384 ± 0,020	25 ± 15	87,67 ± 11,36
	1,67 :1	134 ± 1	$0,230 \pm 0,006$	77 ± 87	90,25 ± 10,59
(1011)	2,50 :1	130 ± 1	0,228 ± 0,010	239 ± 190	85,47 ± 17,44
	3,33 :1	2119 ± 88	$0,392 \pm 0,080$	148 ± 136	87,06 ± 19,78
	Liposomenlösung	101 ± 4	$0,323 \pm 0,035$		
MA15/DMBC 1.2	0,83 :1	245 ± 5	$0,408 \pm 0,046$	13 ± 8	75,61 ± 3,77
(n/n)	1,67 :1	196 ± 5	0,220 ± 0,018	139 ± 71	76,71 ± 5,56
(1011)	2,50 :1	125 ± 1	0,138 ± 0,030	87 ± 74	76,66 ± 5,18
	3,33 :1	100 ± 1	0,156 ± 0,021	75 ± 45	80,51 ± 5,11
	Liposomenlösung	73 ± 3	0,618 ± 0,159		
MA15/DMPC 1-1	0,83 :1	145 ±1	0,308 ± 0,023	38 ± 29	92,45 ± 10,41
	1,67 :1	107 ± 1	0,167 ± 0,014	194 ± 137	92,04 ± 11,06
(1011)	2,50 :1	125 ± 1	0,199 ± 0,021	232 ± 161	88,25 ± 15,29
	3,33 :1	104 ± 1	0,183 ± 0,007	275 ± 155	86,82 ± 18,24
MA15/DMPC 2:1 (n/n)	Liposomenlösung	114 ± 30	0,497 ± 0,189		
	0,83 :1	631 ± 47	0,242 ± 0,036	6 ± 19	85,92 ± 6,40
	1,67 :1	109 ± 1	0,135 ± 0,016	14 ± 23	77,80 ± 10,64
	2,50 :1	91 ± 1	0,170 ± 0,011	179 ± 50	89,62 ± 4,93
	3,33 :1	100 ±1	0,207 ± 0,021	344 ± 50	82,45 ±4,19

PCS-Messungen, Transfektionsergebnisse (48 h) und MTT basierte Zellviabilitäten (24 h) der Liposomen und Lipoplexe an A549

Probe	N/P	z-average ± s [nm]	PDI ± s	Aktivität _{β-} Gal [/] ^m Protein ±s [μΕ/μg]	Viabilität [%] ± s MTT-Test 24h
	Liposomenlösung			26 + 17	98 54 + 1 88
	3:1			145 ± 45	78,20 ± 4,33
MAG/Cholostorol 1:1	4,5:1	siaha Taballa	aiaha Tahalla	184 ± 35	73,57 ± 1,08
(n/n)	5,25:1	LLC PK1	LLC PK1	387 ± 217	57,56 ± 9,69
	6:1	-	-	159 ± 33	$70,33 \pm 1,94$
	0,751			331 ± 155 395 + 226	57,05 ± 7,49
	9:1			334 ± 164	45.79 ± 8.92
	Liposomenlösung				
MA6/Cholesterol 2:1	1:1	siehe Tabelle	siebe Tabelle	116 ± 110	87,76 ± 4,86
(n/n)	1,5:1	LLC PK1	LLC PK1	334 ± 181	82,42 ± 7,23
()	2:1			463 ± 243	77,02 ± 11,20
	3:1 Linosomenlösung			825 ± 157	72,35 ± 12,92
	1:1			68 + 65	87,16 + 11,41
MA8/Cholesterol 1:1	2:1	siehe Tabelle	siehe Tabelle LLC	131 ± 116	83,50 ± 12,82
(n/n)	3:1	LLC PK1	PK1	358 ± 136	80,31 ± 12,01
	4:1			570 ± 240	79,11 ± 10,09
	Liposomenlösung			10.1 00	00.04 0.54
MA8/Cholesterol 2:1	1:1	siehe Tabelle	siehe Tabelle LLC PK1	104 ± 92	80,91 ± 8,51
(n/n)	3.1	LLC PK1		255 ± 79 414 + 193	$70,13 \pm 9,00$ 73 42 + 7 93
	4:1			478 ± 136	$64,35 \pm 6,67$
	Liposomenlösung				
MA8/Cholesterol 3:1	1:1	siehe Tahelle	siehe Tabelle	12 ± 23	91,63 ± 13,17
(n/n)	2:1	LLC PK1	LLC PK1	23 ± 21	86,02 ± 12,35
	3:1			50 ± 25 122 ± 51	$79,56 \pm 12,51$ 75,40 ± 15,47
	Liposomenlösung			122 ± 51	75,49 ± 15,47
MAO/Chalastanal 4.4	1:1	sicho Tobollo	· · - · ·	36 ± 30	93,41 ± 9,66
(n/n)	2:1			652 ± 349	90,23 ± 10,33
()	3:1	LEOTIKI		819 ± 272	80,26 ± 5,93
	4:1	62 + 1	0.000 + 0.040	899 ± 418	$75,52 \pm 5,06$
	1.1	$\frac{02 \pm 1}{115 \pm 1}$	$0,265 \pm 0,042$ 0 265 ± 0.047	114 + 32	90 28 + 3 02
MA12/DOPE 1:4 (n/n)	2:1	124 ± 1	0.191 ± 0.006	122 ± 32	82.92 ± 7.04
	3:1	135 ± 1	0,196 ± 0,014	106 ± 53	79,51 ± 6,53
	4:1	228 ± 2	0,405 ± 0,022	113 ± 36	77,48 ± 9,08
	Liposomenlösung	103 ± 3	$0,245 \pm 0,020$	110 50	00.07 40.47
MA12/DOPE 1:3 (n/n)	2:1	141 ± 2 146 ± 2	$0,165 \pm 0,042$ 0.167 ± 0.021	110 ± 59 102 ± 60	$96,97 \pm 12,17$ 95.78 ± 12.20
	3:1	170 + 1	0.213 ± 0.025	363 + 102	88.76 + 12.43
	4:1	184 ± 1	$0,183 \pm 0,002$	375 ± 77	91,92 ± 13,63
	Liposomenlösung	68 ± 1	0,335 ± 0,019		
MA12/DOPE 1:2 (n/n)	1:1	137 ± 1	0,322 ± 0,013	19 ± 18	97,83 ± 6,27
	2:1	548 ± 27	$0,687 \pm 0,110$	334 ± 87	84,18 ± 11,61
	3.1 4·1	210 ± 0 109 ± 1	$0,450 \pm 0,060$ 0.156 ± 0.015	494 ± 67 578 + 125	$75,72 \pm 4,31$ 74.03 + 6.42
	Liposomenlösuna	79 ± 1	$0,254 \pm 0.009$	010 ± 120	, 7,00 ± 0,72
MA12/DOPE 1:1 (n/n)	1:1	160 ± 2	0,491 ± 0,004	0	99,56 ± 7,73
	2:1	210 ± 1	0,603 ± 0,041	0	99,09 ± 7,33
	3:1	464 ± 21	0,577 ± 0,016	51 ± 34	92,20 ± 12,83
	4:1	202 ± 1 72 ± 1	$0,218 \pm 0,021$	99 ± 39	$10,11 \pm 0,95$
		116 + 1	0.224 ± 0.005 0.337 ± 0.005		93.35 + 3.77
MA12/Cholesterol 1:2	2:1	186 ± 7	$0,539 \pm 0.037$	kein	89,50 ± 2,66
(n/n)	3:1	1013 ± 53	0,542 ± 0,056	Gentranster	89,12± 5,21
	4:1	440 ± 12	0,447 ± 0,019		91,26 ± 7,33

				-	
	Liposomenlösung	107 ± 2	0,324 ± 0,019		
	1:1	199 ± 12	0.339 ± 0.054	50 ± 36	93.86 ± 12.23
MA12/Cholesterol 1:1	2:1	590 + 26	0.345 ± 0.067	08 + 57	0272 ± 1211
(n/n)	2.1	J03 ± J0	0,345 ± 0,007	30 ± 37	$33,73 \pm 12,11$
. ,	3:1	210 ± 15	$0,289 \pm 0,076$	147 ± 35	89,28 ± 17,19
	4:1	154 ± 33	0,254 ± 0,015	172 ± 124	84,32 ± 11,32
	Liposomenlösung	119 + 1	0.254 ± 0.014		
	1.1	120 ± 2	0.256 ± 0.027	-	82 68 ± 5 54
MA12/Cholesterol 2:1	1.1	120 ± 2	0,230 ± 0,027	kein	$03,00 \pm 3,04$
(n/n)	2:1	202 ± 8	$0,430 \pm 0,042$	Gentransfer	84,94 ± 4,73
()	3:1	126 ± 1	0,219 ± 0,025	Contransion	83,66 ± 8,16
	4:1	196 ± 2	0.436 ± 0.073		77.01 ± 12.52
	Linosomenlösung		-,,		1- 1-
				44 . 00	0044.054
	0,83 :1	siehe Tabelle	siehe Tabelle	44 ± 36	88,14 ± 3,54
MA15/DOPE 2:1 (n/n)	1,67 :1			185 ± 162	90,27 ± 4,63
	2.50 :1	LLC FR1	LLOFKI	367 ± 241	89.89 ± 4.39
	3 33 1			985 + 183	82 71 + 3 76
				505 ± 105	$02,71 \pm 0,70$
MA6/MA8/	Liposomeniosung				
Cholesterol	1,25:1	siaha Tahalla	siehe Tabelle	20 ± 14	88,99 ± 5,22
Cholesteror	2,5:1			39 ± 11	88,15 ± 4,91
1:1:1	3 75 1	LLC PK1	LLC PK1	123 + 33	83 34 + 8 77
(n/n/n)	5,10.1			101 + 26	95.06 + 4.79
	0.1			101 ± 30	$00,00 \pm 4,70$
	Liposomeniosung				
MAGINAAO	1,25:1			39 ± 29	92,32 ± 1,94
	2.5:1		atab 🖛 K. M	103 ± 75	87,38 ± 5.60
Cholesterol	3 75.1	siene l'abelle	siene l'abelle	111 + 44	89 40 + 6 44
1:1:1	5,75.1	LLC PK1	LLC PK1	005 404	$03,40 \pm 0,44$
(n/n/n)	5:1			205 ± 194	84,82 ± 9,61
, , , , , , , , , , , , , , , , , , ,	6,25:1			399 ± 252	65,16 ± 5,72
	7,5:1			276 ± 207	67,26 ± 7,37
	Liposomenlösung				
MA6/MA8/	1 29.1			7 + 3	100 4 + 8 73
Chalasteral	0.57:4	siehe Tabelle LLC PK1	aiaha Tahalla	104 - 45	$100, 4 \pm 0, 70$
Cholesterol	2,57.1		Siene Tabelle	104 ± 45	96,31 ± 9,09
4:3:5	3,86:1		LLC PK1	262 ± 142	95,77 ± 11,13
(n/n/n)	5,14:1			294 ± 212	92,47 ± 17,21
	6,43:1			267 ± 245	86,37 ± 20,83
	Liposomenlösung		siehe Tabelle LLC PK1		
	1 17.1			20 ± 20	00.66 ± 1.70
	1,17.1	· · · · ·		30 ± 29	90,00 ± 1,79
Cholesterol	2,33:1	siehe Tabelle		146 ± 145	90,45 ± 5,10
1:1:1:3	3,5:1	LLC PK1		496 ± 142	86,59 ± 4,14
(n/n/n/n)	4,67:1			450 ± 125	80,26 ± 5,87
	5 83 1			439 + 71	76 31 + 3 36
	Liposomenlösung	124 ± 4	0.416 ± 0.092	100 111	10,01 ± 0,00
	Liposomemosung	124 ± 4	0,410 ± 0,092	Liposomen	Liposomen bei
	1:1	105 ± 1	$0,200 \pm 0,008$	bei Zugabe	Zugabe von
VF1/DOPE 1:1 (n/n)	2:1	119 ± 1	0,181 ± 0,027	von Medium	Medium
	3:1	261 ± 5	0,397 ± 0,009	oggregiort	oggragiart
	4.1	292 + 4	0.315 ± 0.035	aggregien	aggregien
	Linosomonlägung	192 ± 7	0.529 ± 0.076	1	
	Liposomeniosung	103 ± 7	0,538 ± 0,078	Liposomen	Liposomen bei
VF1/Cholesterol 1-1	1:1	198 ± 37	$0,416 \pm 0,092$	bei Zugabe	Zugabe von
(n/n)	2:1	158 ± 4	0,471 ± 0,053	von Modium	Modium
(1911)	3:1	235 ± 8	0,554 ± 0,042		oggradiant
	4.1	2663 + 354	0.525 ± 0.129	aggregien	aggregien
	Linosomenlösung		-,	1	
1	1.4				04 45 - 44 00
		siehe Tabelle	siehe Tabelle	kein	94,40 ± 11,20
VF2/DOPE 1:1 (n/n)	2:1	LLC PK1		Gentransfer	85,65 ± 9,03
	3:1			Contransion	91,30 ± 6,32
	4:1				91.12 ± 11.16
	Liposomenlösung	85 + 1	0.321 ± 0.016		, .,. <u>-</u>
VF2/Cholesterol 1:1 (n/n)	1.1	16/ ± 2	0.158 ± 0.020	kein Gentransfer	01.30 ± 0.61
	0.1	104 12	0,100 ± 0,029		00.44 5.04
	2:1	135 ± 2	$0,214 \pm 0,009$		98,11 ± 5,91
	3:1	195 ± 1	0,317 ± 0,009		92,92 ± 10,97
	4:1	236 ± 3	$0,233 \pm 0,029$		$96,92 \pm 4,39$
	Liposomenlösung	72 + 1	0.442 + 0.015		. ,
	0.5·1	1150 ± 144	0.674 ± 0.102	272 ± 109	85 62 ± 5 19
VF5/DOPE 1:4 (n/n)	0,5.1	100 ± 144	$0,074 \pm 0,102$		$00,02 \pm 0,10$
	4.4		$1 - 0.231 \pm 0.005$	95 ± 44	87,34 ± 6,93
VF5/DOPE 1:4 (n/n)	1:1	123 ± 1	0,201 2 0,000	45	00 · · · ·
VF5/DOPE 1:4 (n/n)	1:1 1,5:1	95 ± 1	$0,130 \pm 0,014$	154 ± 59	86,77 ± 4,61
VF5/DOPE 1:4 (n/n)	<u>1:1</u> <u>1,5:1</u> <u>2:1</u>	123 ± 1 95 ± 1 88 ± 1	$\begin{array}{r} 0,130 \pm 0,000 \\ 0,130 \pm 0,014 \\ 0,152 \pm 0,007 \end{array}$	154 ± 59 128 ± 83	86,77 ± 4,61 83,57 ± 6,05
VF5/DOPE 1:4 (n/n)	1:1 1,5:1 2:1 Liposomenlösuna	$ \begin{array}{r} 123 \pm 1 \\ 95 \pm 1 \\ 88 \pm 1 \\ 72 \pm 1 \end{array} $	$0,130 \pm 0,014 \\ 0,152 \pm 0,007 \\ 0,370 \pm 0.010$	154 ± 59 128 ± 83	86,77 ± 4,61 83,57 ± 6,05
VF3/DOPE 1:4 (n/n)	1:1 1,5:1 2:1 Liposomenlösung	$ \begin{array}{r} 123 \pm 1 \\ 95 \pm 1 \\ 88 \pm 1 \\ 72 \pm 1 \\ 607 \pm 10 \end{array} $	$0,130 \pm 0,014 \\ 0,152 \pm 0,007 \\ 0,370 \pm 0,010 \\ 0,600 \pm 0.031$	154 ± 59 128 ± 83	86,77 ± 4,61 83,57 ± 6,05
VF5/DOPE 1:4 (n/n)	1:1 1,5:1 2:1 Liposomenlösung 0,5:1	$ \begin{array}{r} 123 \pm 1 \\ 95 \pm 1 \\ 88 \pm 1 \\ 72 \pm 1 \\ 607 \pm 10 \\ 164 \pm 4 \end{array} $	$\begin{array}{c} 0,130 \pm 0,034 \\ 0,130 \pm 0,014 \\ 0,152 \pm 0,007 \\ 0,370 \pm 0,010 \\ 0,600 \pm 0,031 \\ 0,250 \pm 0,008 \end{array}$	$ 154 \pm 59 \\ 128 \pm 83 \\ 104 \pm 69 \\ 180 \pm 59 $	$\frac{86,77 \pm 4,61}{83,57 \pm 6,05}$ $\frac{81,80 \pm 5,19}{76,08 \div 2,47}$
VF5/DOPE 1:4 (n/n)	1:1 1,5:1 2:1 Liposomenlösung 0,5:1 1:1	$ \begin{array}{r} 123 \pm 1 \\ 95 \pm 1 \\ 88 \pm 1 \\ 72 \pm 1 \\ 607 \pm 10 \\ 164 \pm 4 \\ 102 \\ \hline \end{array} $	$\begin{array}{c} 0,130\pm0,034\\ 0,130\pm0,014\\ 0,152\pm0,007\\ 0,370\pm0,010\\ 0,600\pm0,031\\ 0,359\pm0,008\\ 0,008\end{array}$	$154 \pm 59 \\ 128 \pm 83 \\ 104 \pm 69 \\ 180 \pm 58 \\ 005 = 01$	$86,77 \pm 4,61$ $83,57 \pm 6,05$ $81,80 \pm 5,19$ $76,08 \pm 3,47$ $76,44 = -7$
VF5/DOPE 1:4 (n/n)	1:1 1,5:1 2:1 Liposomenlösung 0,5:1 1:1 1,5:1	$ \begin{array}{r} 123 \pm 1 \\ 95 \pm 1 \\ 88 \pm 1 \\ 72 \pm 1 \\ 607 \pm 10 \\ 164 \pm 4 \\ 129 \pm 2 \end{array} $	$\begin{array}{c} 0,130 \pm 0,014 \\ 0,152 \pm 0,007 \\ 0,370 \pm 0,010 \\ 0,600 \pm 0,031 \\ 0,359 \pm 0,008 \\ 0,317 \pm 0,031 \end{array}$	$154 \pm 59 \\ 128 \pm 83 \\ \hline \\ 104 \pm 69 \\ 180 \pm 58 \\ 205 \pm 64 \\ \hline \\$	$86,77 \pm 4,61$ $83,57 \pm 6,05$ $81,80 \pm 5,19$ $76,08 \pm 3,47$ $72,11 \pm 7,57$

	Liposomenlösung	127 ± 43	$0,435 \pm 0,028$		
VF5/DOPE 1:2 (n/n)	0.5.1	204 + 9	0.559 ± 0.072	85 + 12	85 70 + 5 71
	1.1	102 + 1	0.000 ± 0.002	115 . 20	76.06 + 4.27
	1.1	103 ± 1	$0,210 \pm 0,003$	110 ± 30	$70,00 \pm 4,27$
	1,5:1	93 ± 1	$0,247 \pm 0,003$	130 ± 37	78,36 ± 11,27
	2:1	92 ± 1	$0,292 \pm 0,008$	98 ± 20	76,09 ± 7,63
	Liposomenlösung	143 ± 4	$0,534 \pm 0,047$		
VF5/DOPE 1:1 (n/n)	0.5:1	708 ± 26	0.689 ± 0.177	28 ± 25	79.02 ± 16.11
	1.1	2529 + 9	0.660 ± 0.054	19 + 15	55 47 + 13 75
	1 5:1	2020 ± 0		17 . 6	52 91 ± 15,75
	1,5.1	204 ± 2	$0,365 \pm 0,006$	17 ± 0	52,61 ± 15,55
	2:1	250 ± 1	$0,495 \pm 0,021$	20 ± 17	49,95 ± 16,68
	Liposomenlösung	240 ± 6	0,559 ± 0,026		
	0,5:1	106 ± 1	0,279 ± 0,019	13 ± 7	83,83 ± 5,65
VF5/DOPE 2:1 (n/n)	1:1	118 ± 1	$0,261 \pm 0,002$	29 ± 16	80,47 ± 5,42
. ,	1.5.1	97 + 1	0.267 ± 0.008	24 + 6	75 85 + 6 93
	2.1	08 ± 2	0.362 ± 0.012	25 ± 6	77.07 ± 4.61
		30 ± 2	0,302 ± 0,012	25 ± 0	11,31 ± 4,01
	Liposomeniosung	181 ± 3	0,367 ± 0,048	-	
VE5/Cholesterol 1:1	0,5:1	223 ± 11	$0,372 \pm 0,069$	kein	62,09 ± 10,79
(n/n)	1:1	266 ± 10	0,471 ± 0,026	Gentransfer	43,79 ± 5,51
(1011)	1,5:1	267 ± 57	$0,322 \pm 0,022$	Gentiansier	42,67 ± 7,94
	2.1	370 + 65	0.804 ± 0.083		38 64 + 8 92
	Liposomenlösung	73 ± 1	0.265 ± 0.007		00,0110,02
		104 : 4	0,205 ± 0,007	04 . 57	04.00.00.00
	0,5:1	124 ± 1	$0,210 \pm 0,011$	84 ± 57	$91,33 \pm 20,38$
VF6/DOPE 1:4 (n/n)	1:1	198 ± 9	$0,328 \pm 0,017$	84 ± 48	91,67 ± 21,43
	1,5:1	244 ± 2	0,333 ± 0,013	98 ± 19	85,31 ± 17,79
	2:1	1739 ±72	0,876 ± 0,005	94 ± 54	81,67 ± 16,95
	Liposomenlösung	63 + 1	0.398 ± 0.018		
	0.5.1	121 + 1	0.264 ± 0.008	289 + 76	83 65 + 9 74
VE6/DOBE 1:2 (n/n)	1.1	166 . 2		425 1120	71.41 ± 5.22
	1.1	100 ± 2	$0,249 \pm 0,024$	425 ±150	71,41±0,22
	1,5:1	229 ± 7	$0,484 \pm 0,070$	553 ± 99	70,44 ± 5,17
	2:1	135 ± 1	0,200 ± 0,012	328 ± 59	66,75 ± 5,87
	Liposomenlösung	83 ± 4	$0,396 \pm 0,028$		
	0.5:1	175 ± 1	0.201 ± 0.030	57 ± 21	83.79 ± 4.60
VF6/DOPE 1:2 (n/n)	1.1	212 + 2	0.303 ± 0.025	197 + 75	77 98 + 5 2
	1.5.1	1691 ± 19	0.370 ± 0.020	101 ± 100 229 ± 109	75.80 ± 0,2
	1,3.1	1004 ± 40	0,379 ± 0,032	320 ± 100	$75,09 \pm 4,04$
	2:1	726 ± 22	$0,533 \pm 0,051$	374 ± 98	76,76 ±9,22
	Liposomenlösung	65 ± 1	0,471 ± 0,016		
	0,5:1	181 ± 5	$0,409 \pm 0,043$	56 ± 13	71,64 ± 8,63
VF6/DOPE 1:1 (n/n)	1:1	126 ± 1	$0,284 \pm 0,034$	144 ± 24	61,88 ± 10,75
	1.5:1	206 + 4	0.376 ± 0.012	229 + 66	66.67 + 13.72
	2:1	257 ± 7	0.513 ± 0.059	260 ± 00	62 54 + 5 86
	Linonomonlägung	207 1 9	0,515 ± 0,055	200 ± 33	$02,04 \pm 0,00$
	Liposomeniosung	203 ± 0	$0,313 \pm 0,000$	45 40	00.40 5.74
	0,5:1	116 ± 3	$0,353 \pm 0,014$	15 ± 13	$99,19 \pm 5,71$
VF6/DOPE 2:1 (n/n)	1:1	132 ± 3	$0,356 \pm 0,034$	15 ± 10	96,92 ± 5,67
	1,5:1	162 ± 5	0,331 ± 0,012	92 ± 29	93,65 ± 7,00
	2:1	2974 ± 57	0,352 ± 0,057	239 ± 93	86,03 ± 7,12
	Liposomenlösung	99 + +9	0.255 ± 0.007		
	0.5:1	140 ± 10	0.337 ± 0.050	22 + 2	0252 ± 110
	0,3.1	140 ± 10	0,337 ± 0,039	33 ± 2	93,33 ± 11,0
VF0/DOPE 3:1 (n/n)	1:1	1/6±/	$0,306 \pm 0,087$	33 ± 59	97,43 ± 7,49
	1,5:1	313 ± 26	0,201 ± 0,059	184 ± 78	101,62 ± 12,54
	2:1	401 ± 9	$0,254 \pm 0,088$	318 ± 163	77,38 ± 22,15
VF6/Cholesterol 1:1 (n/n)	Liposomenlösung	86 ± 1	$0,366 \pm 0,006$		
	1:1	148 ± 4	0,401 ± 0.013]	88,87 ± 4.16
	2.1	138 + 1	0.304 ± 0.010	kein	80.88 + 5.35
	3.1	175 ± 1	0.037 ± 0.010	Gentransfer	77 01 ± 6 50
	3.1	175 ± 1	0,413 ± 0,033	-	77,01 ± 0,30
	4:1	245 ± 22	$0,409 \pm 0,073$		12,23 ± 8,13
VF7/DOPE 1:3 (n/n)	Liposomenlösung	63 ± 1	0,330± 0,018		
	1:1	129 ± 6	0,365± 0,029	21 ± 37	90,08 ± 4,09
	2:1	334 ± 1	0,685± 0.077	135 ± 61	84,66 ± 2,98
	3:1	1652 + 31	0.403+ 0.101	163 + 50	75.96 + 2.62
	<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	507 + 14	0.388 ± 0.064	159 + 67	72 65 + 3 22
	Linocomonlägung	116 1	0.000 ± 0.004	100 ± 01	1 2,00 ± 0,22
			$0,202 \pm 0,023$	00 10	00.07 1.05
	1:1	114 ± 1	$0,202 \pm 0,016$	88 ± 40	99,37 ± 4,25
VF7/DOPE 1:2 (n/n)	2:1	307 ± 8	0,508 ± 0,040	304 ± 147	95,23 ± 6,74
	3:1	467 ± 5	$0,410 \pm 0,032$	236 ± 82	85,70 ± 7,44
	4:1	153 ± 1	0,194 ± 0.012	93 ± 30	83,65 ± 6.63
	Liposomenlösung	131 ± 2	0.246 ± 0.006		, -,
	1.1	173 + 2	0.318 ± 0.025	526 + 127	100 43 + 6 67
	2.4	FE2 :07	0,010 ± 0,020	1170 . 045	04.02 . 7.60
	2.1	503 ±27	$0,013 \pm 0,003$	$11/9 \pm 243$	$94,23 \pm 1,02$
	3:1	584 ± 42	$0,379 \pm 0,032$	1102 ± 145	85,28 ± 8,09
	4:1	157 ± 1	$0,120 \pm 0,032$	1149 ± 592	74,05 ± 7,84

VF7/DOPE 2:1 (n/n)	Liposomenlösung	114 ± 35	$0,264 \pm 0,040$		
	1:1	107 ± 1	$0,238 \pm 0,004$	97 ± 69	99,61 ± 3,74
	2:1	153 ± 4	$0,303 \pm 0,005$	376 ± 113	81,10 ± 8,35
	3:1	1904 ± 68	0,473 ± 0,208	206 ± 93	72,01 ± 12,05
	4:1	115 ± 1	0,100 ± 0,013	196 ± 63	58,10 ± 17,85
	Liposomenlösung	137 ± 1	0,341 ± 0,049		
VE7/Cholostorol 1:2	1:1	128 ± 1	0,238 ± 0,035	0	92,47 ± 13,62
(n/n)	2:1	1174 ± 23	0,314 ± 0,010	0	93,21 ± 10,02
(1711)	3:1	1245 ±16	0,426 ± 0,035	0	88,65 ± 8,51
	4:1	320 ± 3	0,223 ± 0,009	27 ± 8	76,86 ± 4,36
	Liposomenlösung	163 ± 1	0,219 ± 0,010		
	1:1	163 ± 1	0,210 ± 0,032	koin	97,74 ± 11,67
	2:1	185 ± 4	0,267 ± 0,015	Gentransfer	104,61 ± 8,86
(1711)	3:1	270 ± 8	0,369 ± 0,049		99,22 ± 10,81
	4:1	2303 ± 68	$0,430 \pm 0,054$		102,57 ± 6,99
VF7/Cholesterol 2:1 (n/n)	Liposomenlösung	143 ± 1	0,404 ± 0,023		
	1:1	176 ±4	0,200 ± 0,037	koin	101,94 ± 11,39
	2:1	224 ±2	0,254 ± 0,015	Gentransfer	99,92 ± 7,57
	3:1	2314 ±120	0,437 ± 0,054		104,06 ± 14,07
	4:1	2470 ± 63	0,467 ± 0,212		98,29 ± 12,14

Publikationen

Einige Daten dieser Arbeit wurden bereits veröffentlicht. Heinze, M., Schulze, I., Dobner, B., and Langner, A. (2007) *In Vitro Gene Delivery of Novel Cationic Lipids*. Posterbeitrag zur DPhG-Jahrestagung

Heinze, M., Dobner, B., and Langner, A. (2008) *Novel Cationic Liposomes for In Vitro Gene Delivery*. Kurzvortrag zur DPhG-Jahrestagung

Antipina, M. N., Schulze, I., Heinze, M., Dobner, B., Langner, A., and Brezesinski, G. (2009) *Physical-chemical properties and transfection activity of cationic lipid/DNA complexes*. Chemphyschem 10, 2471-2479

Heinze, M., Brezesinski, G., Dobner, B., and Langner, A. (2010) *Novel Cationic Lipids Based on Malonic Acid Amides Backbone: Transfection Efficacy and Cell Toxicity Properties.* Bioconjugate Chem., Received November 11, 2009; Die Publikation wurde im März 2010 akzeptiert und befindet sich in der Druckphase.

Danksagung

Meinem Betreuer, Herrn Prof. Dr. Andreas Langner, danke ich für die Bereitstellung dieses interessanten und spannenden Forschungsthemas und die Möglichkeit am Institut für Pharmazie in seiner Arbeitsgruppe meine Promotion selbstständig anfertigen zu können. Außerdem danke ich ihm für die vertrauensvolle Zusammenarbeit, das angenehme, freundschaftliche Arbeitsklima der gesamten Arbeitsgruppe sowie die Freiheiten bei der Bearbeitung der Aufgabenstellungen, ohne die eine selbstkritische Herangehensweise nicht möglich gewesen wäre. Durch die Chance der akademischen Arbeitszeitgestaltung ließen sich Familie und Beruf in Einklang bringen und trotzdem eine Vielzahl an Untersuchungen durchführen. Besonders für diese leider nicht überall selbstverständliche Arbeitssweise möchte ich mich nochmals bedanken!

Herr Prof. Dr. Bodo Dobner danke ich für die konstruktive Zusammenarbeit bei den Überlegungen zur Herstellung neuer Transfektionslipide, die Realisierung etlicher "Auftragssynthesen" sowie den regen Gedankenaustausch bei der Erstellung von Publikationen. Für Fragen zu letzteren möchte ich außerdem Herrn Dr. Simon Drescher, meiner "Anlaufstelle" für IT-Fragestellungen, und Frau Dr. Nina Großer danken. Beide haben durch ihren Erfahrungsschatz immer wieder Hinweise und ein offenes Ohr für mich gehabt. Mein besonderer Dank gilt Frau Munk. Ohne ihre verlässliche Mitarbeit im Labor und die Möglichkeit, alle Bestellungen zeitsparend durch sie erledigen lassen zu können, hätte meine Arbeit sicherlich nicht diesen Umfang.

Herrn Claudius Coburger danke ich für die Einarbeitung am Durchflusszytometer. Ihm und Frau Nicole Erdmann gilt mein Dank für Vorschläge, Hinweise und die ständige Diskussionsbereitschaft zum Thema des liposomalen Gentransfers. Frau Karen Schirmer, meiner Betreuerin während der Diplomzeit danke ich für die Einführung in die Arbeit mit Zellkulturen und das Gebiet des liposomalen Gentransfers. Diese Erfahrungen haben mir den Anfang der Promotionszeit sehr erleichtert. Meinen Diplomanden danke ich für die zuverlässige Umsetzung der Aufgabenstellungen, die den Umfang dieser Arbeit gesteigert haben. Außerdem möchte ich das sehr freundschaftliche Arbeitsklima mit allen jetzigen und ehemaligen Mitarbeitern der Abteilung Biochemische Pharmazie loben. Es hat viel Spaß gemacht hier zu arbeiten!

Herrn Prof. Dr. Heinrich Richter danke ich für die schöne Zusammenarbeit im Praktikum "Qualitative Anorganische Analyse". Auch wenn dies weniger mit der vorliegenden Arbeit zu tun hatte, möchte ich sagen, dass der akademische Wechsel zwischen Forschung und Lehre nicht immer einfach war, aber die Vermittlung von Wissen lohnenswert, nicht nur im Hinblick auf die eigene persönliche Entwicklung, ist.

Zuletzt möchte ich mich in besonderem Maße bei meiner Familie bedanken. Konstanze danke ich für die Liebe und Unterstützung gerade an jenen Tagen, welche durch Rückschläge und Misserfolge geprägt waren. Danke für ein offenes Ohr zu jeder Zeit
sowie die kritische Auseinandersetzung mit meiner Ausdrucksweise und Orthographie. Meiner Tochter Vanessa danke ich für "den Freudenschrei, der mich empfängt, wenn ich am Abend wiederkehr" und die wunderbare kindliche Begeisterung für die einfachen Dinge im Leben, die mir hoffentlich die richtige Einstellung zu meiner Dissertation ermöglicht hat.

Lebenslauf

Persönliche Daten

Name:	Martin Heinze
Geburtsdatum:	23.01.1980
Geburtsort:	Gera
Wohnort:	Reilstraße 18
	06114 Halle
Familienstand:	häusliche Gemeinschaft mit Kind
Ausbildung	
Schulausbildung:	September 1986 bis August 1991
	31. Polytechnische Oberschule Gera
	September 1991 bis August 1992
	"Albert-Schweitzer-Gymnasium" Gera
	September 1992 bis Juli 1998
	Sportgymnasium "Johann Chr. Fr. GuthsMuths" Jena
	Abschluss: Abitur
Grundwehrdienst:	Sanitätssoldat von September 1998 bis Juni 1999
Studium:	Oktober 1999 bis September 2003 Studium der
	Pharmazie an der Martin-Luther-Universität Halle-
	Wittenberg
	Abschluss des Studiums im September 2003
Praktisches Jahr:	01.10.2003 bis 31.03.2004 Pharmaziepraktikant in der
	01 04 2004 bis 30 09 2004 Diplomand am Institut für
	Pharmazie der Martin-Luther-Universität Halle-
	Wittenberg
	5
Approbation:	06.12.2004 Approbation zum Apotheker
Diplom:	10.05.2005 Diplomverteidigung
	Thema: "Untersuchungen von Liposomen als Vektoren
	für die Gentransfektion am Zellkulturmodell"

Beruflicher Werdegang

Berufsausübung: 01.01.2005 bis 30.10.2005 angestellter Apotheker in der "Neuen Apotheke" Halle 01.11.2005 bis 31.12.2009 wissenschaftlicher Mitarbeiter am Institut für Pharmazie der Martin-Luther-Universität Halle-Wittenberg seit 01.01.2010 angestellter Apotheker im Sädtischen Klinikum Dessau

Erklärung an Eides Statt

Hiermit erkläre ich gemäß § 5 (2) der Promotionsordnung der Fakultät, dass ich die vorliegende Arbeit selbstständig und ohne fremde Hilfe verfasst habe. Ich habe keine anderen als die angegebenen Quellen und Hilfsmittel verwendet und alle aus anderen Werken inhaltlich entnommenen Stellen als solche gekennzeichnet.

Ich versichere, dass ich mich zu keinem früheren Zeitpunkt an einer Universität oder Hochschule um einen Doktorgrad beworben habe.

Halle/Saale,

Martin Heinze