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Zusammenfassung

Bergbaufolgelandschaften bieten die seltene Gelegenheit den Prozess einer Primirsukzession nach
massiver anthropogener Storung zu verfolgen. Die Analyse von Vegetationsmustern in Raum und Zeit
ermoglicht Einblicke in die grundlegenden 6kologischen Prozesse der pflanzlichen Wiederbesiedlung
und trigt damit zum Verstidndnis von Vegetationsdynamik bei. Obwohl der Sukzessionsprozess auf
ehemaligen Bergbauflichen oftmals sehr langsam verlduft, waren bisherige Forschungsprogramme
zumeist auf die iiblichen Forderzeitrdiume von drei bis fiinf Jahren beschriinkt. Die vorgelegte Disser-
tation prisentiert nun Ergebnisse einer Langzeitstudie zur Sukzession von Sandtrockenrasenbestinden
in der Bergbaufolgelandschaft Goitzsche. Es wurden sowohl 6kologische Fragen zur raum-zeitlichen
Vegetationsdynamik im untersuchten System als auch methodische Aspekte zur Beobachtung und
Analyse derartiger Prozesse bearbeitet. Die Entwicklung von Algorithmen zur Uberfiihrung von sig-
masoziologischen Vegetationsaufnahmen in Markov-Modelle erméglichte die Bestimmung von Uber-
gangswahrscheinlichkeiten zwischen verschiedenen Vegetationsstadien und somit eine Quantifi-
zierung von Sukzessionsraten und -wegen. Die Analysen zeigten, dass die verschiedenen Pflanzenge-
sellschaften durch ein raum-zeitliches Netzwerk in Verbindung stehen, innerhalb dessen komplexe
Ubergiinge und sowohl progressive als auch regressive Entwicklungen moglich sind. Ein Zeitreihen-
vergleich von rdumlich-expliziten Habitatmodellen zeigte, dass die Bedeutung biotischer Prozesse,
wie Konkurrenz und Nachbarschaftseffekte im Sukzessionsverlauf variiert, wodurch Vegetations-

Standortbeziehungen modifiziert werden.

Nach mehr als 30 Jahren weitgehend ungestorter Vegetationsentwicklung war das untersuchte System
noch immer weitgehend geprégt von frithen Sukzessionsstadien wie Silbergraspionierfluren und Sand-
trockenrasen. Dabei handelt es sich jedoch nicht um ein rigides Vegetationssystem, sondern eher um
ein miBig-dynamisches raum-zeitliches Vegetationsmosaik verschiedener Sandtrockenrasenbesténde,
die miteinander interagieren. Riumliche Vegetationsmuster sowie Sukzessionsraten und -wege waren
teilweise durch die am Standort herrschende Bodenaziditit determiniert. Die Analysen ergaben aber
auch einen erheblichen Anteil an autokorrelativer Musterbildung, was auf starke Nachbarschaftseffek-
te durch lokale Ausbreitungsprozesse hinweist. Im Laufe der Untersuchungszeit fand jedoch eine zu-
nehmende Standortbindung und —differenzierung der unterschiedlichen Pflanzengemeinschaften statt.
Die Wahrscheinlichkeit, dass Vegetationstypen einander ersetzten erhohte sich mit der Zeit, was auf
eine Beschleunigung des Sukzessionsprozesses und/oder stirkere Fluktuationen hinweist. Insgesamt
lassen die Ergebnisse darauf schliefen, dass die vorgefundenen Vegetationsmuster durch ein Zusam-

menspiel von Ausbreitungsprozessen, Standortheterogenitit und zwischenartlichen Wechselbeziehun-
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gen generiert waren, wobei mit fortschreitender Sukzession die Bedeutung von stochastischen Prozes-
sen abnahm, wihrend deterministische Steuerungsfaktoren durch zunehmende biotische Interaktionen
an Einfluss gewannen. SchlieBlich wurde der Effekt von unterschiedlichen Samplingstrategien auf die
Vorhersagegiite von Markov-Modellen mittels einer Simulationsstudie untersucht. Stichprobengréfe,
Linge der Studie und Untersuchungsfrequenz zeigten signifikante und interaktive Effekte auf die Mo-
delgiite. Besonders aber betonten die Ergebnisse die Bedeutung von Langzeitbeobachtungen fiir die
Entwicklung statistischer Modelle sowie deren Evaluierung und Modifikation und letztlich somit fiir

unser Verstidndnis von Vegetationsdynamik in Raum und Zeit.



Summary

Surface mining is one of the most important human-mediated disturbances that create the conditions
for primary succession. Thus, post-mining landscapes provide the unique opportunity for studying
spatial and temporal vegetation patterns to gain insights into the underlying ecological processes, with
the final aim to understand and to explain vegetation change. However, permanent plot studies in min-
ing sites rarely exceeded the usual funding periods of three to five years or comprised only a limited
number of samples. This dissertation presents a long-term study on the succession of a sandy dry
grassland system in the post-mining landscape of Goitzsche. Addressing the theoretical ecological
questions of long-term processes, special emphasis was put on methodological issues of how to ob-
serve and analyse such processes. The development of algorithms for converting multivariate ecologi-
cal time series into Markov transition matrices offered the possibility to estimate the probability of
transition events between stages, resulting in quantification of succession rates and pathways. The
system’s trajectories are conceived as a network, in which several stages can develop in two or more
other stages and both progressive and retrogressive pathways are possible. Subsequently, temporal
comparisons of spatially explicit habitat models provided insights into changing biotic community

processes in a system that was not at equilibrium with environmental drivers.

More than 30 years after the start of the succession, the study area was still largely covered by acidic
dry grassland communities. However, what superficially appeared to be a stable or merely fluctuating
system, turned out to rather be a shifting mosaic of different sandy dry grassland stages. Transitions
among vegetation types changed significantly in space and over time but both rates and pathways were
to a certain degree determined by environmental site factors. In the earlier phase of succession, soil
acidity tended to play a minor role in pattern generation than neighbourhood effects. With ongoing
succession, a higher confinement of vegetation patterns to a specific environment occurred. The re-
placement rate of one vegetation type by another tended to increase with time, indicating that the
speed of succession accelerated or fluctuations became stronger. The results suggest that the system is
formed by an interplay of dispersal, site heterogeneity and species interactions but shifted during suc-

cession from being dominated by stochastic processes to a higher degree of deterministic control.

Finally, a simulation study highlighted the effects of different sampling intensity in space and time on
the model’s power to adequately describe the trajectories. It turned out that all sampling features, i.e.
sample size, study length and observation frequency, interactively affected the Markov models’ qual-
ity. In particular, the results emphasized the importance of long-term studies for model building, but

also for model evaluation and adjustment, thus for our ability to understand vegetation dynamics.
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General Introduction

Processes in natural systems and the resulting vegetation patterns vary in space and time. The funda-
mental goal of vegetation science is to relate the observations taken at these different scales to an ex-
planatory theoretical framework (e.g. Mueller-Dombois & Ellenberg 1974, Glenn-Lewin & van der
Maarel 1992, Pickett & Cadenasso 2005). Studying vegetation patterns, both spatial and temporal, is
an important first step to gain insights into the underlying ecological processes, thus, to understand
and to explain vegetation change (e.g. Anand & Li 2001, Miller et al. 2002, Mark & Wilson 2005,
Seabloom et al. 2005, Kéfi et al. 2007, McIntire & Fajardo 2009). However, scientific understanding
of observed reality is not usually an end in itself; there are many practical tasks which challenge our
ability to predict vegetation change in certain circumstances. The preservation of species, communities
and landscapes depend on our ability to predict the consequences of human activities. Strategies for
ecosystem restoration and management need to be deeply rooted in a thorough knowledge of the pat-
terns and processes of vegetation change (e.g. Palmer et al. 1997, Suding et al. 2004, van Andel &
Aronson 2006, Lindenmayer et al. 2008, Hobbs & Suding 2009). These patterns and processes have
been studied extensively in the field of succession ecology. Succession can be most simply defined as
changes of vegetation composition or structure at a certain place over time (e.g. Walker & del Moral
2003). Ecological restoration and management are usually aimed at the purposeful manipulation of
these changes, thus are intrinsically linked to succession (e.g. Walker et al. 2007, Prach & Hobbs
2008, Walker & del Moral 2009, Matthews & Endress 2010).

Examples for the intrinsic alliance between restoration and succession research are mining sites (e.g.
Cooke & Johnson 2002, Norman et al. 2006, Tischew & Kirmer 2007, Rehounkovd & Prach 2010,
Tropek et al. 2010). Besides natural disturbances such as floods, earthquakes, hurricanes and volcanic
eruptions, surface mining is one of the most important human-mediated disturbances that create the
conditions for primary succession (e.g. Walker & del Moral 2003). Sites affected by surface mineral
extraction cover around one percent of the Earth’s land (ibid.). The direct impacts of surface mining
are usually severe with the large-scale removal of soil, vegetation, and animals (e.g. Bradshaw 1997,
2000). In Eastern Germany, surface mining of lignite led to the destruction of entire landscapes and
the interlinked ecosystems during the last century (e.g. Hildmann & Wiinsche 1996, Hiittl 1998,
Stottmeister et al. 2002). An area of around 2000 km? was directly affected by surface mining or by
lowering the groundwater table (LMBYV 2001). The land destruction has been compared with the mass
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turnover during the last ice age (Miiller & Eissmann 1991). After the German reunification in 1990, 32
of 39 mining sites across East Germany were shut down (Pflug 1998, Steinhuber 2005). During the
last decades, post-mining landscapes offered a unique chance to observe primary succession and have
been subject to scientific research on spontaneous or initiated restoration of heavily destroyed sites
(e.g. Felinks et al. 1998, Kirmer & Mahn 2001, Wiegleb & Felinks 2001a, Tischew 2004, Esfeld et al.
2008, Kirmer et al. 2008).

However, in spite of a general sentiment among scientists that long-term permanent plot studies are
invaluable for the development and testing of ecological theories as well as for the detection of long-
term processes and changes (Strayer et al. 1986, Franklin 1989, Bakker et al. 1996, Pickett & Cade-
nasso 2005, Bekker et al. 2007, Miiller et al. 2010), research projects and monitoring schemes often
deal with shorter time scales due to constraints in financial resources imposed by funding agencies or
because rapid results are required (e.g. in the context of restoration activities). Permanent plot studies
in mining sites rarely exceeded the usual funding periods of three to five years (e.g. Wiegleb & Fe-
links 2001a, Szarek-Lukaszewska & Grodziriska 2007, Felinks & Wiegand 2008) and/or comprised
only a limited number of samples (e.g. Kirmer & Mahn 2001). Probably most of projects used
chronosequences (space-for-time substituting, Pickett 1989) inferring a successional sequence from a
series of plots differing in age, i.e. time since last disturbance (e.g. Wali 1999, Wiegleb & Felinks
2001b, Holl 2002, Tischew & Lorenz 2005, Rehounkovd & Prach 2006, Frouz et al. 2008). Although
this approach is unquestioned useful for qualitative purposes and for hypothesis generation, it is unfea-
sible for quantitative analyses of spatial and temporal vegetation dynamics (see also Collins & Adams
1983, Jackson et al. 1988, Pickett 1989, Johnson & Miyanishi 2008). Thus, most projects lack either
the long-term perspective or the spatial coverage for a quantitative analysis on vegetation change,
both, in the sense of spatial pattern over time and in the sense of temporal pattern in space. Actually,
these are not only typical issues of succession research, but a general challenge of any study or moni-
toring program having to handle the trade-offs between costs and benefits, thus, between study inten-

sity in time and space (e.g. Caughlan & Oakley 2001).

For this dissertation, I have had, and gratefully acknowledge, the opportunity to continue and analyze
a permanent plot study in a post-mining grassland system. The “sandy dry grassland” dataset from the
post-mining landscape of Goitzsche in East-Germany now covers more than a decade (1995-2007) and
has been compiled with the aim to monitor the speed and pathways of primary succession. With this
data set at hand I was interested in both addressing theoretical ecological questions of long-term proc-

esses and methodological questions in the field of observation and analysis of such processes.



General Introduction

Dry acidic grasslands and the study site

Dry acidic grassland communities dominated by grey hair-grass, Corynephorus canescens used to be
widespread on European inland sand dunes. Due to habitat destruction, afforestation and atmospheric
nitrogen deposition these grasslands became increasingly rare and are currently more endangered than
bogs or calcareous grasslands (Ssymank et al. 1998, Jentsch & Breyschlag 2003). Besides military
training areas (e.g. Jentsch et al. 2009), post-mining sites often constitute the last larger remnants of
these grassland communities (e.g. Wiegleb & Felinks 2001a, Tischew 2004). In the northern mining
regions of the Central-German lignite area dry acidic grasslands are relatively widespread. The study
site is part of the post-mining landscape of Goitzsche located in Saxony-Anhalt between the towns
Bitterfeld and Delitzsch (Plate 1). Until 1974 the investigated area was used first for brown coal sur-
face mining and then to dump overburden layers that consisted of mixed Quaternary and Tertiary ma-
terial. Since 1993, the process of succession of sandy dry grasslands has been observed at the site (e.g.
Mahn & Tischew 1995, Jakob et al. 1996, Schmiedeknecht 1996, Tischew & Mahn 1998, Fromm et
al. 2002, Tischew et al. 2004a). Based on small-scale vegetation sampling, a spatial mosaic of plant
communities has been observed (see Plates 2-5), which are considered a temporal sequence in grass-
land succession on inland sand dunes (Passarge 1960, Fukarek 1961, Berger-Landefeldt & Sukopp
1965, Ellenberg 1996). Like on dunes, pioneer stages are dominated by Corynephorus canescens
forming either the Spergulo morisonii-Corynephoretum canescentis typicum Tx. (1928) or the Sper-
gulo morisonii-Corynephoretum canescentis cladonietosum Tx. (1928) 1955 when additionally cov-
ered by the moss Polytrichum piliferum and Cladonia lichen species. For sites of more favourable
nutrient supply a rapid development into Festuco-Sedetalia-communities characterized by different
herbaceous species (e.g. Helichrysum arenarium, Trifolium campestre and T. arvense, Artemisia
campestris) has been proposed (Fromm et al. 2002, Tischew et al. 2004a). However, merely a descrip-
tion of spatio-temporal grassland stages and their characteristic species is given, while the turnover of
stages has rarely been observed. Since 1995, additionally to relevés of small homogeneous plots which
are usually taken to study succession, sigma relevés visually estimating the areal extension of pre-
defined vegetation types have been collected from the study site. Sigma relevés have been collected in
a 10 m-grid on the total area of 4.8 hectare (160 m x 300 m) every three years starting 1995 up to
2007. This method offers the advantage of the census of vegetation complexes to monitor shifts in the
dispersion and dominance patterns at a larger scale than feasible with usual relevés of small homoge-
neous plots. However, statistically sound analyses of spatial and temporal patterns on the basis of
sigma relevés have not been made yet. Thus, one challenge was to transfer methodological approaches
that are often based on small-scale investigations of species at the level of plant communities. The
reduced mapping effort is more time efficient and therefore more feasible in long-term monitoring
studies, however, it remains to be seen whether such analyses still provide sufficient detailedness for

model building and hypothesis testing.
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Plate 1. Central German lignite mining district
(LMBV 2008, modified)

Red circle: post-mining landscape of Goitzsche
Red star: location of the study site

Light green areas: mining sites in recultivation
Brown areas: active mining sites

Olive-green / beige areas: post-mining sites
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General Introduction

Plate 3. Pioneer stages
dominated by grey hair-grass
Corynephorus canescens —
left-hand: C. canescens on
bare soil, right-hand: C.
canescens and Polytrichum

piliferum.

(F. Kommraus, 2005).

Plate 4. Sandy dry grassland
communities characterized by
different herbaceous species
— left-hand: with Helichrysum
arenarium, right-hand: with

Trifolium arvense.

(A. Baasch, 2008)

Plate 5. Degenerate phases
of sandy dry grasslands —
left-hand: Calamagrostis epi-
geios dominance stand, right-
hand: sapling of Pinus sylves-

tris.

(A. Baasch, 2008)
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Conceptual framework of succession theory

Developed at the beginning of the twentieth century, succession is one of the oldest concepts in ecol-
ogy (Johnson 1979). Since then, succession ecology has experienced a series of concept developments
and is characterized by “a succession of ideas about succession” (Walker & del Moral 2003). Numer-
ous studies on primary succession are provided in the literature from many different sites, e.g. volcanic
deposits (e.g. Whittaker et al. 1989, del Moral 2009), dunes (e.g. van der Maarel et al. 1985, Lichter
2000), glacial forefields (e.g. Chapin et al. 1994, Mori et al. 2008), and mining sites (e.g. Prach 1987,
Felinks & Wiegand 2008), and several textbooks summarize the current knowledge (e.g. Glenn-Lewin
et al. 1992, Walker & del Moral 2003, van der Maarel 2005). It is out of reach to give a complete out-

line here; therefore I will highlight only some aspects that have influenced my own work.

The first conceptual framework and comprehensive theory of plant succession was offered by
Clements during the first three decades of the twentieth century (Clements 1904, 1916, 1928). Succes-
sion was viewed as a highly directional, deterministic and predictable process towards a stable climax,
which is controlled solely by the regional climate (see also Clements 1936). This concept was chal-
lenged by Gleason’s reductionistic approach, which focused on the unique, individualistic behaviour
of species and the importance of chance events leading to interdeterminate and unpredictable proc-
esses (Gleason 1917, 1926, 1927, 1939). With the corresponding shift towards more reductionist per-
spectives, proximate causes and mechanisms of vegetation change were emphasized and several non-
mutually exclusive theories were put forward. An alternative to Clements’ successional concept of
waves of species colonizing after the previous species have altered the habitat conditions (relay floris-
tic) was presented by Egler (1954). Egler suggested that succession might be simply the consequence
of differential longevity and processes of population dynamics, leading to the sequential conspicuous-
ness of species that all arrive at the beginning but grow at different rates (initial floristic composition).
The competitive-sorting model introduced by Margalef (1963, 1968) stressed the importance of spe-
cies competition causing a temporal gradient in level of community organization and predictability.
Pickett (1976) proposed succession as being a gradient-in-time where biological characteristics of
species explain their distribution along temporal gradients. Finally, several approaches concentrated

on the role of disturbance to explain spatial patterns during succession (e.g. Pickett & White 1985).

Even so, the shift of focus from holistic explanations to more reductionistic and mechanistic ap-
proaches was connected with a strong emphasis on prediction as a central issue in studying vegetation
dynamics (Glenn-Lewin et al. 1992). Ecologists paid more attention to components rather than gener-
alities and predictions were based on empirical site-specific information. Anyway, the ratio between
deterministic and stochastic processes during succession is still being discussed (e.g. Hobbs et al.
2007a, Woods 2007, MacDougall et al. 2008). Deterministic factors include soil properties and biotic

processes such as competition or facilitation that can alter species responses. These factors can be
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assessed and used to predict vegetation patterns (e.g. del Moral 2009). However, studies on early pri-
mary succession have often failed to detect strong correlations between vegetation and environmental
site factors (e.g. del Moral et al. 1995, Wiegleb & Felinks 2001b, Tischew et al. 2004b, del Moral &
Lacher 2005), suggesting that stochastic processes dominate. However, there is uncertainty about the
subsequent importance of deterministic processes in pattern generation (e.g. LepS & Rejmének 1991,
Tischew et al. 2004b). A related question is concerned with the ratio of exogenous processes (e.g. soil
properties) to endogenous processes (e.g. dispersal, biotic community processes) during succession,
since spatial patterns usually result from a mixture of both (e.g. Fortin & Dale 2005). Indeed, these
questions are quite difficult to answer, since the most of frequently used statistical tools remain phe-
nomenological rather than mechanistic and do provide a static view on a dynamic world, i.e. dynamic
aspects of ecological reality such as dispersal or species interaction are not directly represented (e.g.
Guisan & Zimmermann 2000, Austin 2002, Guisan & Thuiller 2005, Dormann et al. 2007). Therefore,
in my work I sought for methodological approaches that allowed for including dynamic components

(see “The choice of methodological approaches” and chapter II).

Another topic I paid attention to in my work was the predictability of temporal patterns, thus the suc-
cessional sequence of a system. Knowledge of succession rates and pathways is crucial for devising
restoration strategies of highly disturbed ecosystems, such as surface-mined land. Restoration ecolo-
gists whish to know both, rates and pathways, because these determine to what extent and when a site
will fulfil desired functions (e.g. Zedler & Callaway 1999). Vegetation scientists are interested in de-
riving general rules and conclusions by comparing results across different site-specific succesional
seres (e.g. Walker & del Moral 2003, Prach et al. 2007). Studies suggest that rates and trajectories are
affected by several site-specific factors such as site heterogeneity (e.g. Elgersma 1998, Leps et al.
2000), proximity to colonists (e.g. del Moral et al. 1995, Prach & Rehounkova 2006, Vojtéch & Leps
2009), priority effects and local dominance patterns (e.g. Wiegleb & Felinks 2001a, Trowbridge 2007,
del Moral et al. 2009). Trajectories can be characterized by the following properties (see Walker & del
Moral 2003). Vegetation that initially varies in species composition may become increasingly domi-
nated by the same set of species, i.e. individually trajectories converge to resemble one vegetation type
(convergence, e.g. Christensen & Peet 1984, Hatton & West 1987, Poli Marchese & Grillo 2000).
Likewise, composition can become increasingly heterogeneous with time (divergence, e.g. Leps et al.
2000, Sarmiento et al. 2003, del Moral 2007) or may develop from distinct starting points to distinct
endpoints (parallel trajectories, e.g. Elgersma 1998). Trajectories also can form networks when one
stage develops in two or more stages (e.g. Bliss & Gold 1994, Fastie 1995). There may be not only
progressive but also retrogressive trajectories, cyclic patterns and fluctuations (e.g. Lough et al. 1987,

Mark & Wilson 2005, Walker & Reddell 2007).

Unfortunately, most studies about succession refer to rates in a general way without references to ab-

solute time (Walker & del Moral 2003). Likewise, succession schemes are often expressed without
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quantification (e.g. Wiegleb & Felinks 2001a), i.e. without stating the expected time to reach a certain
stage or without weighting of multiple trajectories (see also “Methodological approaches”). Wiegleb
& Felinks (2001a) presented a conceptual model of spontaneous vegetation development in the Lusa-
tian post-mining landscape inferred from on a comprehensive 4-year survey and analysis of chronose-
quences (see Fig. 1.1). Likewise, Tischew & Lorenz 2005 review the results of several studies on
succession in more than 100 mining sites in eastern Germany (e.g. Tischew & Kirmer 2003, Tischew
2004, see also Tischew & Kirmer 2007) and presented a succession model mainly based on classifica-

tion and ordination analyses of chronosequences (see Fig. 1.2).

Both studies showed that Corynephorus pioneer stages are often the starting point for many different
pathways. In particular, under extreme site conditions (dry, extremely acid) which act as a filter and
only allow the colonization and persistence of a few specialist communities of dry psammophytic
grasslands, the Corynephorus pioneer stages can remain stable for a long time. On sites of intermedi-
ate site quality first-comer effects of plants with clonal growth (e.g. Calamagrostis epigejos) or high
seed production (e.g. Betula pendula) play a decisive role for the first seral stages. Wiegleb & Felinks
(2001a) also stressed the unique position of Calamagrostis being dominant likewise in pioneer stages
and also in temporary final stages, inhibiting the invasion of woody species. With ongoing succession
the transition to initial woody stages with birch or pine can be expected. However, the exact duration
of each stage and the probability of developing into the next stages were not yet quantifiable, because
only a few transitions have actually been observed within the study periods. Therefore, one goal of my
study was to seek for methodological approaches to quantify successional rates and pathways on the

basis of sigma-relevés (see “The choice of methodological approaches” and chapter III).

Moreover, I was also interested in the question to which extent results of field studies provide a suffi-
cient basis to derive general rules for both, reconstructing past events and forecasting future develop-
ments of a system. It is well known that the quality of all inferences strongly depend on study intensity
in time and space (e.g. Abella & Covington 2004, MacKenzie & Royle 2005). The choice of field
methods, study length, observation frequency and sample size is a fundamental challenge in planning
and implementation of any study or monitoring program (e.g. Block et al. 2001, Archaux & Berges
2008). While some studies have tested the effects of different techniques or field methods on study
results (e.g. Kercher et al. 2003, Korb et al. 2003, Carlsson et al. 2005, Vittoz & Guisan 2007, Milberg
et al. 2008, Godinez-Alvarez et al. 2009), surprisingly few case studies have addressed the interactive
effects of study frequency, study length and sample size (but see Gerrodette 1987, Mac Nally 1997,
Mac Nally et al. 2004). Making use of the “sandy dry grassland” data set with its high number of rep-
licates both in space and time I addressed these issues by creating different sets of study scenarios with

varying sampling effort (see chapter V).
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The choice of methodological approaches

Most modelling approaches developed for predicting spatial vegetation patterns have their roots either
in statistically quantifying species—environment relationships (e.g. habitat models: Guisan &
Zimmermann 2000, Austin 2002, Guisan & Thuiller 2005) or in quantifying neighbourhood relation-
ships which belong to the domain of spatial statistics (e.g. Cressie 1993, Fortin & Dale 2005). The
strength of habitat models is their ability to predict the realized niches of species that are actually ob-
served in nature, relying on Hutchinson’s view of species being excluded from a part of their funda-
mental niche by biotic interactions (Ellenberg 1953, Hutchinson 1957, Malanson et al. 1992,
Malanson 1997, Silvertown 2004). Hence, the observed pattern is affected not only by environmental
factors but also by dispersal, competition, facilitation and other ecological interactions. The domain of
spatial statistics is to quantify the pattern itself regardless whether caused by exogenous processes (e.g.
soil properties), endogenous processes (e.g. dispersal, biotic community processes) or a combination
of both (e.g. Fortin & Dale 2005). Combining both approaches can be expected to allow inferences of
the relative importance of environmental factors and endogenous community processes in pattern gen-
eration (e.g. Legendre 1993, Lichstein 2002, Dormann et al. 2007). However, a spatial pattern is usu-
ally “a single realization” of a process or a combination of processes at one given time (e.g. Fortin et
al. 2003). Data are usually sampled during a limited period of time, thus models only reflect a snap-
shot view of the expected relationships (e.g. Fortin & Dale 2005, Guisan & Thuiller 2005). Therefore,
situations with successional dynamics can only be modelled with difficulty (e.g. Guisan &
Zimmermann 2000, Perry & Millington 2008). Nevertheless, to do justice to a successional system —
or to vegetation change in general — concepts and models should include a temporal component. This
could be achieved by a series of “snapshots” along a temporal gradient. However, so far, I am not
aware of any study on succession that carried out a temporal comparison of spatially explicit habitat

models (chapter II).

There is a broad set of tools for studying vegetation dynamics including multivariate approaches as
well as analytical and statistical models (e.g. Glenn-Lewin & van der Maarel 1992, Walker & del
Moral 2003, Taylor et al. 2009). Ordination methods were frequently used to infer rates and trajecto-
ries of succession (e.g. Rehounkové & Prach 2006, del Moral 2007, Matthews & Endress 2010). Most
methods for estimating succession rates are based on measures of species turnover (e.g. Anderson
2007), calculate (dis)similarity between successive samples (e.g. Sarmiento et al. 2003) or simply
compare the changes in cover or abundance between sample points (e.g. Prach et al. 1993). A short-
coming of these methods is the lack of any estimation of probabilities of events, which are required for
quantifying pathways. Thus, rates and pathways are merely expressed in general ways. There are two
principal modelling approaches that provide probabilities. Firstly, population dynamic models treat
every species separately and then integrate the single models in a community model (e.g. van Hulst

1992). Secondly, statistical models that find stochastic expressions for the transitions from one state to
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another state, so-called Markov models (e.g. Usher 1992). Because succession processes can be con-
ceived as a chain of discrete displacement events, the latter approach seems to be the method of choice
for quantifying successional trajectories. Markov models are the best-known models which incorpo-
rate stochasticity and can be built on the basis of observed changes in the field. However, Markov
models are usually based on point observations on single individuals. Thus, data from sigma relevés
are not directly convertible into Markov transition matrices (see Usher 1992). Therefore, a great chal-
lenge was to find a satisfying solution for converting multivariate ecological time series into transition

matrices (chapter III).

Thesis objectives

The objectives of this thesis were derived from the open questions as outlined in the preceding chap-
ters. One general aim was to use the long-term dataset to analyse spatial and temporal vegetation pat-
terns and to gain insights into the processes of vegetation change and its underlying driving factors.
Another overarching aim was to provide novel and innovative approaches in the field of monitoring
vegetation change, with a strong emphasis on methodological issues. The specific objectives of this

study can be grouped in three different research topics:

Spatial patterns in time
*  How well are vegetation patterns linked to environmental site factors, e.g. soil acidity?
* Do vegetation types shift their realized niche with time?

*  Does the relative importance of stochastic and deterministic processes change within time, i.e. is

the match between vegetation and environment becoming better in the course of succession?
*  Which processes determine the generation of spatial patterns during primary succession?

*  How can the relative importance between different processes in pattern generation be assessed?

Temporal pattern (in space)
*  What are the main trajectories in sandy dry grassland succession?
*  Are trajectories and rates determined by environmental site factors, i.e. soil acidity?
* Do the trajectories and rates vary within time?
*  How can the successional rates and different pathways be quantified?

*  To which degree can the future development of the system be predicted?
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Monitoring intensity in time and space

*  How well does a survey reflect successional processes if the sampling effort varies a) in space
b) in length of the total observation period, ¢) in observation frequency, and d) in a combination

of these factors?

*  What are the practical implications of the above mentioned issues for devising monitoring pro-

grams?

The dissertation presented is a cumulative work. In principle, Chapters II to V each are independent
papers referring to spatial patterns in time (Chapter II), temporal patterns (Chapter III und IV) and the

effects of survey intensity on study results (Chapter V).

In chapter II, we will use a temporal comparison of spatially explicit habitat models for assessing the
effect of biotic processes on habitat specificity of species or communities. The issue of the ratio be-

tween stochastic and deterministic factors during succession will be addressed.

Chapters III and IV refer to rates and pathways of the sandy dry grassland succession. A solution for
converting multivariate ecological time series into transition matrices is presented. The chapters focus
on the Markov approach’s applicability for measuring rates, quantifying pathways and weighting mul-
tiple trajectories as well as for reconstructing past events and forecasting the future development of the

system. In addition, rates and trajectories with respect to soil conditions are assessed.

Chapter V presents the results of a simulation approach to highlight the effects of different survey
intensities in time and space. A stepwise reduction of sample size, survey lengths and observation
frequency is simulated and the effects on Markov models’ quality are assessed. The results are dis-

cussed with respect for drawing practical implications for devising monitoring programs.

Finally, a synthesis is presented in chapter VI making clear the relationships between the partial results

and creating the necessary frame for the joint discussion.

20



Chapter Il

Insights into succession processes using temporally repeated habitat models:
results from a long-term study in a post-mining landscape

Baasch, A., Tischew, S. & Bruelheide, H. 2009.
Journal of Vegetation Science 20: 629-638.

Abstract

Questions: The early phases of primary succession are governed by chance events and dispersal-related proc-
esses in an environment that is largely free of competition. Thus, the predictability of vegetation patterns using
environmental site factors can be expected to be low and spatial autocorrelation to be high. We asked whether
the match between vegetation and environment becomes better in the course of succession, and whether vegeta-

tion types shift their realized niche with time.
Location: Lignite mining region in Central Germany, the post-mining landscape of Goitzsche (Saxony-Anhalt).

Methods: Vegetation types were mapped in a 10-m grid (total area 4.8 ha), starting in 1995, at 3-year intervals
until 2007. We used a temporal comparison of habitat models. We applied: GLS regression to partition the varia-
tion in coverage of vegetation types into environmental (soil pH) and spatial components; logistic regression to
model the presence/absence of vegetation types along a soil acidity gradient; and autologistic regression allow-

ing for soil acidity and neighbourhood effects.

Results: For most vegetation types, the proportion of variation explained by space was high but declined during
succession. The outcome of autologistic models suggests that soil acidity often plays a minor role compared to
neighbourhood effects in the earlier phase of succession than 12 years later. For four vegetation types, the pH
range in which the type was expected to be dominant clearly became smaller with time. These trends support the
view that the role of processes related to chance and dispersal decrease with time, while those related to envi-

ronmental filtering mediated by biotic interactions increase.

Conclusions: We conclude that temporal comparisons of spatially explicit habitat models provide insights into
changing biotic community processes and their effects on habitat specificity of species or their communities.
Thus, this approach may be particularly important for analysis of ecological systems that are not in equilibrium

with their environmental drivers.

Keywords: Acidic dry grassland; Competitive sorting; Dispersal; Environmental filtering; Environmental range;

GLS; pH; Realized niche; Spatio-temporal analysis; Vegetation dynamics.
Nomenclature: Wisskirchen & Haeupler (1998)

Abbreviations: GLS=generalized least-squares.
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Twelve years of succession on sandy substrates in a post-mining landscape:
a Markov chain analysis

Baasch, A., Tischew, S. & Bruelheide, H. 2010.
Ecological Applications 20: 1136-1147.

Abstract

Knowledge of succession rates and pathways is crucial for devising restoration strategies of highly disturbed
ecosystems, such as surface-mined land. As these processes have often only been described in qualitative terms,
we used Markov models to quantify transitions between successional stages. However, Markov models are often
considered not attractive for some reasons, such as model assumptions (e.g. stationarity in space and time, or the
high expenditure of time required to estimate successional transitions in the field). Here we present a solution for
converting multivariate ecological time series into transition matrices and demonstrate the approach’s applicabil-

ity for a dataset that resulted from monitoring the succession of sandy dry grassland in a post-mining landscape.

We analyzed five transition matrices, four one-step matrices referring to specific periods of transition (1995-
1998, 1998-2001, 2001-2004, 2004-2007), and one matrix for the whole study period
(stationary model, 1995-2007). Finally, the stationary model was enhanced to a partly time-variable model. Ap-
plying the stationary and the time-variable models, we started a prediction well outside our calibration period,
beginning with 100% bare soil in 1974 as the known start of the succession, and generated the coverage of

twelve pre-defined vegetation types in three-year-intervals.

Transitions among vegetation types changed significantly in space and over time. While the probability of colo-
nization was almost constant over time, the replacement rate tended to increase, indicating that the speed of
succession accelerated with time or fluctuations became stronger. The predictions of both models agreed surpris-
ingly well with the vegetation data observed more than two decades later. This shows that our dry grassland
succession in a post-mining landscape can be adequately described by comparably simple types of Markov mod-
els, although some model assumptions have not been fulfilled and within-plot transitions have not been observed

with point exactness.

The major achievement of our proposed way to convert vegetation time series into transition matrices is the
estimation of probability of events — a strength not provided by other frequently used statistical methods in vege-

tation science.

Keywords: Acidic dry grassland; Markov models; Prediction; Succession; Transition matrix; Vegetation

dynamics.
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Chapter IV

Long-term monitoring of sandy dry grassland in a post-mining landscape

Baasch, A., Tischew, S. & Bruelheide, H. 2008. In Decleer K. (ed.): Short papers of SER.
Proceedings of the 6th Europaen Conference on Ecological Restoration.
Ghent, No. 157, pp. 1-4.

Abstract

We applied the Markov approach to a dataset that resulted from monitoring the succession in a post-mining
landscape in East Germany. The data have been compiled over more than a decade. We calculated probabilities
of processes that determine succession (e.g. colonization, replacement). More than 30 years after start of succes-
sion, the study area is still largely covered by acidic dry grassland communities. Particularly at sites character-
ized by a high substrate acidity, the speed of succession is low and communities with high conservation priority
persist over decades. The preservation of suitable sites for such rare communities should be an important goal in

restoration schemes for mining areas.
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Chapter V

How much effort is required for proper monitoring? Assessing the
effects of different survey scenarios in a dry acidic grassland

Baasch, A., Tischew, S. & Bruelheide, H.
Journal of Vegetation Science 21: in press.
DOI: 10.1111/j.1654-1103.2010.01193.x

Abstract

Questions: The quality of any inferences derived from field studies or monitoring programs depends on the
expenditure of time and effort to make the underlying observations. Here, we used a long-term dataset that re-
sulted from a succession monitoring scheme to assess the effect of different survey scenarios. We address the
following questions: (1) How well does a survey reflect successional processes if the sampling effort varies a) in
space b) in length of the total observation period, c) in observation frequency, and d) in a combination of these

factors? (2) What are the practical implications for devising monitoring programs?
Location: Lignite mining region of Central Germany, post-mining landscape of Goitzsche (Saxony-Anhalt)

Methods: Based on our full data set we constructed subsamples. For the full dataset and all subsets, we con-
structed Markov models and compared them based on the predictions they made. We assessed the effects of

survey intensity on model performance by using generalized linear models and multiple logistic regressions.

Results: Exploring the effects of different survey scenarios revealed significant effects of all three main features
of survey intensity (sample size, length, frequency). The most important sampling feature was study length.
However, we found interactive effects of sample size with study length and observation interval on model pre-
dictions. This indicates that for long-term observations with multiple recording intervals a lower sample size in
space is required to reveal the same amount of information as required in a shorter study or one with fewer inter-

vals. Conversely, a high sample size may to some degree compensate for relatively short studies.

Conclusions: Monitoring activities should not be restricted to an intensive sampling over only a few years. With
clearly limited resources a decrease of sampling intensity in space and stretching these resources over a longer
period would probably pay off much more than totally abandoning monitoring activities after an intensive but

short campaign.

Keywords: Markov models; Monitoring; Observation frequency; Sampling intensity; Study length; Succession;

Vegetation dynamics.
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Chapter Vi

Synthesis

This chapter starts with a short summary of study results presented in chapters II to V. Thereafter, I
consolidate and discuss the results of my thesis. This discussion does not only repeat the interpreta-
tions already discussed in the previous four chapters, but rather takes a broader view and focuses on
integrative aspects. Throughout the chapter, I also point out the questions that still remain and give an

outlook on future studies.

Summary of results

In chapter II I combined the strength of habitat models and of spatial statistics for predicting spatial
vegetation patterns. Using a series of model “snapshots” along a temporal gradient and taking into
account dynamic ecological processes overcame the restrictions of static statistical models. I showed
that temporal comparisons of spatially explicit habitat models allow insights into changing biotic
community processes and their effects on the match between vegetation and environment. In the ear-
lier phase of succession soil acidity often played a minor role in pattern generation than neighbour-
hood effects. However, deterministic control of vegetation patterns increased during succession. Most
vegetation types shifted their realized niche with time exhibiting an increasing restriction to particular
site conditions, resulting in an increasing match between vegetation and environment during succes-
sion. These results suggest that the role of processes related to chance and dispersal decrease with
time, while those related to environmental filtering mediated by biotic interactions became increas-
ingly important.

An approach for converting multivariate ecological time series into Markov transition matrices is pre-
sented in chapter ITI. The successional system could be adequately described by comparably simple
types of Markov models, although some model assumptions had not been fulfilled and within-plot
transitions had not been observed with point exactness. I found that trajectories and rates of succession
were varying in space and over time. While the rate of colonization was almost constant over time, it
changed in space, because environmentally favourable sites developed more quickly than stressful
sites. The replacement rate tended to increase with time and was also varying in space, i.e. the prob-

ability of replacement events was lower at sites with high soil acidity.
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In chapter IV I showed that not only rates but also pathways are determined by environmental site
factors. Trajectories in harsh environments are more restricted than those observed under favourable
conditions. Finally, I demonstrated that simple stationary Markov models, despite their power to
measure rates, quantify pathways and reconstruct past events, have limited use in forecasting the fu-

ture development of the system, making time-variable models indispensable (chapter III).

In chapter V, the results of a simulation study have been presented, which addressed the effects of
different sampling intensity in space and time on study results. I showed that all sampling features, i.e.
sample size, study length and observation frequency, interactively affected the quality of study results.
Long-term studies required a lower sample size to capture the same amount of information than simu-
lated short-term studies. A high sample size in space did to some degree compensate for a short-term
study perspective. Nevertheless, the most important sampling feature was study length. Thus, our find-
ings highlighted the importance of long-term studies not only for model building, but also for model

evaluation and adjustment.

Discussion

When I started my analyses I did not expect to find such a high variability of vegetation patterns in
time and space as was finally encountered. Looking only at the average composition of the system I
had the impression that the grassland system changed only slightly between years. Unsurprisingly, the
amount of bare soil tended to decrease and shrubs and trees slowly but steadily increased. All other
vegetation types did not show any obvious directional trend. More than 30 years after the start of the
succession, the study area was still largely covered by acidic dry grassland communities, indicating
that sandy, acidic and nutrient-deficient successional sites in former mining areas offer long-term habi-
tats for competitively inferior species and plant communities Thus, the preservation of suitable sites
for such rare communities should be an important goal in restoration schemes for mining areas (see

also Schulz & Wiegleb 2000, Tischew & Kirmer 2007, Kirmer et al. 2008).

However, what appeared to be a stable or just fluctuating system, rather turned out to be a shifting
mosaic of different sandy dry grassland stages. Analyzes on temporal vegetation patterns revealed a
considerable amount of replacement events, although the net change in the area covered by vegetation
types was comparably small (Table III.2 and Table II1.3). Trajectories can be best described as a net-
work, in which several stages can develop in two or more other stages and both progressive and retro-
gressive pathways are possible. However, the major achievement was to obtain the estimated
probability of transition events and thus to reveal that some of the trajectories are more likely than

others (Fig. I11.3).

Shifts in vegetation patterns were by no means absolutely random, even though stochastic dispersal

related processes certainly have played a decisive role in succession (see also del Moral et al. 1995,
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Prach & Rehounkova 2006). Both, rates and pathways were to some degree determined by environ-
mental site factors (Table IIL.5, Fig. IV.2) and temporal changes often led to a higher confinement of
spatial vegetation patterns to a specific environment (Fig. I1.3, Fig. 11.4). Thus, the network can be
conceived as interplay of stochastic dispersal, site heterogeneity and species interactions (see also e.g.
Bliss & Gold 1994, del Moral 2007). Within this interplay, a shift from stochastic processes to more
deterministic control took place as dispersal limitations became less important and species interactions

more intense.

There are a few studies that detected either dominant dispersal effects (e.g. Wood & del Moral 1987,
del Moral et al. 1995, Prach & Rehounkova 2006, Rehounkové & Prach 2008, Vojtéch & Leps 2009)
or greater deterministic control in succession (e.g. Hodkinson et al. 2003, Shiels et al. 2008). This
study disclosed that both processes can dominate a system at the same location but at different times.
Thus, this finding points to a trade-off between both types of processes. Recently, del Moral (2009)
published an interesting paper, in which he demonstrated that deterministic control of vegetation de-
velopment also increased during primary succession on Mount St. Helens over 16 years (1993-2008).
The shift from spatial to environmental factors was revealed by covariance analysis. In the first years
(1993, 1997, 2001) only spatial effects were significant, while later these effects were no longer sig-
nificant and soil factors became prominent predictors (del Moral 2009). Thus, the shift from stochastic
dispersal related processes to those more related to environmental filtering as a result of stronger biotic
interactions seems to be similar in both studies, but the causes might be different. On Mount St. Hel-
ens, the development of deterministic effects was associated with a decline of ephemeral species and
increasing dominance of persistent species with strong vegetative growth and greater longevity. This
development might conform to some aspects of the gradient-in-time model as species were distributed
along a temporal gradient based on their biological characteristics (Pickett 1976). In contrast, the aver-
age composition of the post-mining grassland system remained more or less constant, and almost the
same set of characteristic species was present from the beginning and throughout the study period.
This fact, together with more narrow environmental ranges of vegetation types’ dominance, argued for
some aspects of the competitive-sorting model implying niche width restrictions due to competitive

interactions within the same set of species over time (Margalef 1963, 1968).

Unfortunately, successional processes at the study site have not been observed right from the start.
Thus, we can not say at which time certain species have actually reached the site und hence, whether
relay floristic (Clements 1904, 1916, 1928, Drury and Nisbet 1973) or rather initial floristic composi-
tion (Egler 1954) may apply to this succession sere. However, as both concepts are idealized represen-
tations of extreme conditions, it is most likely that aspects of both concepts have been emerged. No
strong evidence was encountered for the idea that well-defined waves of species colonized the site
after the habitat conditions had been altered by previous species (relay floristics). However, I found

that particularly in stressful sites, bare soil was almost exclusively colonized by pioneer stages
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(Fig. 1.3 and p. 58). Thus, site alteration by Corynephorus canescens and cryptogams might be an
important first step (see also Siifl et al. 2004, Felinks & Wiegand 2008). Other facilitative processes
might also be involved. For example, the preceding legume stages might have facilitated the spread of
Calamagrostis epigejos by enhanced nutrient supply (Fig. III.3; see also Schmidt & Briibach 1993,
Chapin et al. 1994, del Moral & Rozzell 2005). Unfortunately, no data of habitat modification by cer-
tain species is available for the study site. Even so, relay floristic will unlikely fully explain the shift-
ing mosaic and trajectory network observed in our study. Several studies stressed the role of small-
scale disturbances in creating dynamic mosaics of various successional stages in dry acidic grasslands
(e.g. Heinken 1990, Friedrich 2001, Jentsch 2001, Jentsch et al. 2002). Although bare substrate was
not often exposed in large amount at later stages of the succession (Table III.3), it might be that distur-
bance by ants or small mammals might have been important in pattern generation at finer spatial
scales. Shifting mosaics can also be caused by internal community processes which lead to cycling
trajectories with upgrade and downgrade phases in succession (e.g. Watt 1947, van der Maarel 1996,
Herben et al. 2000). A key point in the cycle is environmental change (e.g. resource availability) in-
duced by species occupying the site. By revisiting the main trajectories observed in our study site (Fig.
II1.3) some indications can be found that those cycles might have occurred at our study site. For ex-
ample, there is a considerable probability that pioneer stages have been developed into herbaceous
stages, which then were replaced by the Calamagrostis epigejos type, which in turn showed regressive
transitions back to the pioneer stages. However, in the statistical analyses we did not track the individ-
ual fate of certain plots. Therefore, it is questionable whether progressive and regressive succession
displaced each other at the same place over time, forming a “true” cycle or whether it is a matter of
progressive and regressive trajectories occurred at different sites (see also Fig. IV.2). The latter might
also appear as a cycle when successional dynamics are summarized and simplified. Hence, tracking

individual plot histories will be an important next step to gain further insight.

It might be that many of the species have arrived at the site quite early. For example, Pinus sylvestris
had already established the first individuals in the early eighties (1981/82, Kommraus 2008) but has
been expanding rapidly only in the last decade, after the first of the established individuals had set
fruit. Thus, succession also might be partly a result of differential longevity of species, which all ar-
rived at the beginning but then grew at different rates (initial floristic composition, Egler 1954). Inter-
estingly, the final stage dominated by shrubs and trees did often follow directly the pioneer stages
instead of displacing the herbaceous stages. However, as predicted by the time-variable Markov
model, the composition of the system will become increasingly dominated by Pinus sylvestris (Fig.
III.1). Individually trajectories probably will converge to resemble one vegetation type, and conver-
gence is a distinct characteristic of determinism (see also Glenn-Lewin & van der Maarel 1992,
Walker & del Moral 2003). In the next years, woody vegetation will become more and more evenly
distributed over the site and Pinus sylvestris is likely to become the all-dominant player in the system.

It is worth thinking about some consequences of this process for the predictability of vegetation pat-

32



Synthesis

terns, i.e. the match between vegetation type’s occurrence and particular site conditions. In our study
period, areas dominated by shrubs and trees seemed to occur rather independently of the soil acidity
but showed increasing neighbourhood effects due to patch growth around mature trees (e.g. Fig. I1.2).
This dispersal related process will increasingly form a mosaic of woody patches and gaps, whereby the
latter provides refuges for acidic dry grassland communities but the resulting spatial pattern will
probably be unpredictable by environmental soil factors. From this point of view, it seems that the
system will return to be dominated by chance and dispersal related processes rather than by determi-
nistic factors. Therefore, the ratio between stochastic and deterministic factors (and also endogenous
and exogenous processes) may shift once or several times during succession, and thus depends on the
time frame considered but also on the research focus (e.g. convergence in community assembly vs. the

degree of vegetation-environmental linkages; see also Hobbs et al. 2007a, Woods 2007).

It should be pointed out clearly that the inferences about the future development of the system are
usually worse than those about previous processes. Unexpected future events are a general drawback
of any predictions (Fig. III.1 and pp. 72-76). Therefore, the field observations have to continue to al-
low for evaluating model predictions and keeping the models updated. This thesis showed that tempo-
ral comparisons of spatially explicit habitat models can provide valuable insights into changing biotic
community processes in ecological systems that are not at equilibrium with their environmental driv-
ers (chapter II). Working with sigma-relevés turned out to be a reasonable approach. The results of this
thesis show that methodological approaches that have been used so far for small-scale investigations at
the level of individuals are also applicable to sigma-relevés, and thus still provide sufficient informa-
tion for model building and hypothesis testing. However, the approach did not only have the advan-
tage of a reduced mapping effort. Some patterns might have not been observable at a finer scale. What
turned out to be a shifting mosaic would most likely have appeared to be a fluctuation at the scale of
small-scale relevés or mapping of individual plants (unpubl. data, see also Tischew & Baasch 2004).
However, such a systematic comparison across scales has not been accomplished yet, but would be

worth doing in future.

Of course, there are also some disadvantages of sigma- relevés. A crucial point is the a priori state
definition, since a continuum is divided into a finite number of classes. The choice and the number of
defined states have to be subjective to some degree, regardless which method is used for definition
(e.g. Usher 1992, Lep$ & Smilauer 2003). The sandy dry grassland stages were defined in terms of
dominance of occurring species. However, other assemblages also occurred, which did not fit in a
priori defined states. With time such “other/undefined communities” will become more frequent chal-
lenging us to redefine states. Modifications will also be required to answer new arising questions. For
example, woody stages dominated by different tree species may play an important role in future, thus

should be separately mapped.
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Chapter VI

Although the results suggest an attractive solution of reducing the mapping effort by a further reduc-
tion of sample sizes (Fig. V.2), the future montoring of the site should adhere to the entire grid, and in
addition, continue to record relevés at fine scales as long as possible. The more time and effort will be
invested in the ongoing monitoring, the more precisely we will understand the pathways and mecha-
nism of community or ecosystem changes. The ratio between sampling effort and ecological informa-
tion gained to achieve a specific objective (e.g. monitoring successional pathways, chapter III) might
become disproportionate with increasing sampling effort, but with any reduction we have to accept
also the limitation of additional scientifically options (e.g. spatial analyses, chapter II). I am convinced
that studies that provide many replicates both in time and space are the best basis for the development
and testing of ecological theories. However, if forced to decide about a future reduction of effort, the

decision should be made in favour of the long-term perspective.
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