Institut für Agrar- und Ernährungswissenschaften

der Naturwissenschaftlichen Fakultät III

der

Martin-Luther-Universität Halle-Wittenberg

Assoziationsstudie zur Resistenz gegen den echten Gerstenmehltau (*Blumeria graminis* f.sp. *hordei*) in einer genetisch diversen Gerstenpopulation (*Hordeum vulgare* L.)

Dissertation

zur Erlangung des akademischen Grades doctor agriculturarum (Dr. agr.)

vorgelegt von

Annika Johrde, Master of science geb. am 07.10.1980 in Lübeck

Gutachter: Prof. Dr. Andreas Graner Prof. Dr. Klaus Pillen Dr. habil. Patrick Schweizer

Verteidigung am 12. April 2010

Halle/Saale, Oktober 2009

Inhaltsverzeichnis

Abbildungsverzeichnis	V
Tabellenverzeichnis	VII
Abkürzungsverzeichnis	IX
1. Einleitung	1
1.1 Bedeutung der Gerste	1
1.2 Pathosystem Gerste / echter Mehltaupilz	2
1.2.2 Resistenzen der Gerste gegen den echten Mehltau	5
1.3 Allel-Merkmal-Assoziationsstudien und Linkage Disequilibrium	8
1.4 Unterdrückung der Genexpression im transienten System	13
1.5 Zielsetzung der Arbeit	14
2. Material und Methoden	15
2.1 Pflanzenmaterial	15
2.1.1 Verwendete Sorten und Akzessionen	15
2.1.2 Anzucht des Pflanzenmaterials	19
2.2 Pilzmaterial	19
2.2.1 Verwendete Pilzisolate	19
2.2.2 Erhaltung der Pilzisolate	20
2.3 Software und Datenbanken	21
2.4 Bestimmung des Phänotyps	23
2.4.1 Einzelblattanalyse	23
2.4.2 Feldversuch	24
2.4.3 Komplementationstest unter Verwendung eines BAC (Bacterial Artifical	
Chromosome) Klons, der das Mlo-Gen enthält	25
2.4.3.1 Verwendeter BAC-Klon	25
2.4.3.2 Herstellung der Goldsuspension und Beschichtung der Goldpartikel	25
2.4.3.3 Biolistischer Gentransfer	26

2.4.3.4 Inokulation mit Blumeria graminis f.sp. hordei	26
2.4.3.5 GUS-Färbung und Entfärbung der Blattsegmente	27
2.4.3.6 Mikroskopische und statistische Auswertung	27
2.5 Isolierung genomischer DNA aus Pflanzenmaterial	28
2.6 Isolierung von RNA aus Pflanzenmaterial und cDNA-Synthese	28
2.7 Bestimmung der Populationsstruktur mit Mikrosatelliten (SSR)-Marker	29
2.7.1 Verwendete Mikrosatelliten-Marker	29
2.7.2 Durchführung und Bedingungen der PCR-Reaktion	29
2.7.3 Polyacrylamid-Gelelektrophorese (PAGE)	32
2.7.4 Auswertung der Polyacrylamid-Gele	33
2.7.5 Berechnung der Populationsstruktur (Q-Matrix)	33
2.7.6 Berechnung der kinship-Matrix (k-Matrix)	33
2.8 Resequenzierung von Kandidatengenen	34
2.8.1 Auswahl der Kandidatengene	34
2.8.2 PCR-Amplifikation der Kandidatengenfragmente	41
2.8.3 Sequenzierung von Kandidatengenfragmenten	42
2.8.4 Sequenzauswertung	42
2.9 Assoziationsverrechnungen	42
2.10 Berechnung des LD (linkage disequilibrium = Kopplungsungleichgewicht)	43
2.11 Genetische Kartierung	43
2.12 Test auf Vorhandensein des mlo11-Allels mittels PCR-Analyse	44
2.13 Real-Time PCR	44
2.14 TIGS-transient induced gene silencing	46
2.14.1 Erstellung der RNAi-Konstrukte	46
2.14.2 Herstellung der Goldsuspension und Beschichtung der Goldpartikel	47
2.14.3 Biolistischer Gentransfer	47
2.14.4 Inokulation mit Blumeria graminis f.sp. hordei	48
2.14.5 GUS-Färbung und Entfärbung der Blattsegmente	48
2.14.6 Mikroskopische und statistische Auswertung	48
3. Ergebnisse	50
3.1 Assoziationsanalyse	50

3.1.1 Auswahl der Kandidatengene	50
3.1.2 Evaluierung des Mehltauresistenzphänotyps der Gerstenakzessionen	57
3.1.2.1 Einzelblattanalyse	57
3.1.2.2 Feldversuche	61
3.1.2.3 Test auf Vorhandensein des mlo-Resistenzgens in resistenten Akzes	sionen.63
3.1.2.4 Test auf rassenunspezifische Resistenz	66
3.1.3 Bestimmung der Populationsstruktur	68
3.1.3.1 Analyse zur Bestimmung von Untergruppen innerhalb der Populatio	n68
3.1.3.2 Berechnung der Q-Matrix	70
3.1.3.3 Berechnung der kinship-Matrix	73
3.1.4 SNP-und Haplotypdetektion, sowie statistische Auswertung der erhoben	en Daten
	78
3.1.4.1 Assoziation von Vrs1 mit Zeiligkeit – Beweis der Eignung der Popu	lation für
eine Assoziationsanalyse	78
3.1.4.2 Sequenzauswertung - SNP-und Haplotypenidentifizierung	80
3.1.4.3 Statistische Berechnung von Assoziationen unter Verwendung des M	AIXED-
LINEAR-MODEL	
3.1.4.4 Test auf falschpositive Assoziationen	94
3.1.4.5 Berechnung des intra- und intergenen Linkage Disequilibriums	100
3.1.4.6 Bestimmung des genetischen Diversitätsfaktors Tajima's D	
3.1.5. Identifizierung von Aminosäureaustauschen in assoziierten Genen	109
3.2 Genetische Kartierung assoziierter Gene	113
3.2.1 Kartierung assoziierter Gene im gesamten Gerstengenom	114
3.2.2 Assoziierte Gene auf Chromosom 5H	116
3.2.2.1 Assoziationsverrechnungen und LD-Analyse auf Chromosom 5HS	116
3.2.2.2 Funktionelle Analyse assoziierter Gene auf Chromosom 5HS mittels	TIGS
(transient induced gene silencing)	118
4. Diskussion	120
4.1 Resistenzphänotyp des verwendeten Gerstenmaterials	120
4.2 Assoziationsverrechnung	
4.2.1 Signifikant assoziierte Kandidatengene	
4.2.2 Gefahr der Identifizierung falsch-positiver Assoziationen	

4.2.3 LSD1 – Identifizierung des kausalen Gens des Resistenz QTLs auf Chromosom			
5H?	130		
4.2.4 Linkage Disequilibrium der analysierten Population im Vergleich zu a	inderen		
Populationen und Pflanzenarten	131		
4.2.5 Assoziationsgenetik für quantitative Mehltauresistenz			
5. Zusammenfassung	136		
6. Summary	137		
7. Literaturverzeichnis	138		
Danksagung			
Curriculum vitae	164		
Publikationen			
Erklärung	166		

Abbildungsverzeichnis

Abb. 1.1: Pathosystem Gerste/echter Gerstenmehltau
Abb. 1.2: Asexueller Lebenszyklus von Blumeria graminis f.sp. hordei
Abb. 1.3: Schematische Darstellung des pflanzlichen Immunsystems
Abb. 1.4: Funktionsschema einer Assoziationsanalyse
Abb. 1.5: Linkage Disequilibrium und Linkage Equilibrium im Vergleich
Abb. 1.6: Linkage Disequilibrium um eine Mutation in einem Gen
Abb. 1.7: Unterdrückung der Genexpression unter Verwendung des posttranskriptionalen
Gen-silencings
Abb. 2.1: Boniturschema – Klasseneinteilung nach befallener Blattfläche
Abb. 2.2: Schematische Darstellung der RNAi-Kassette in pIPKTA30N
Abb. 3.1: Ergebnisse für die Real-Time-PCR Analyse der Kandidatengene MIR1-MIR552
Abb. 3.2: Verteilung der 162 getesteten Genotypen mit unterschiedlicher phänotypischer
Ausprägung
Abb. 3.3: Verteilung von 66 Genotypen mit unterschiedlicher phänotypischer
Ausprägung60
Abb. 3.4: Korrelationsanalyse zwischen phänotypischen Daten aus Einzelblattanalyse und
Feldversuch
Abb. 3.5: Transienter Komplementationstest mittels Mlo-Gen enthaltendem BAC-Klon
(BAC F15)
Abb. 3.6: Test der 36 resistenten Akzessionen auf das mlo11-Resistenzgen mittels PCR65
Abb. 3.7: Berechnung der Anzahl an Untergruppen innerhalb der Population
Abb. 3.8: Klassifizierung der Gerstenakzessionen in die vier Untergruppen71
Abb. 3.9: Klassifizierung der Gerstenakzessionen in die vier Untergruppen, sortiert nach
Mehltau-resistent und Mehltauanfällig72
Abb. 3.10: Varianzanalyse der mittleren CMIA (calculation of mean infected area)
Abb. 3.11: LD-plot der analysierten Polymorphismen des Vrs1- Gens
Abb. 3.12: Linkage Disequilibrium-Blocks assoziierter Kandidatengene
Abb. 3.13: Intergenes Linkage Disequilibrium zwischen den 21 assoziierten
Kandidatengenen
Abb. 3.14: Position von 12 assoziierten Kandidatengenen (rot), in einer genetischen Karte
des Gerstengenoms

Abb. 3.15: -log(p)-Profile und LD-Abfall des Lokus auf Chromosom 5HS in den	
Kartierungspopulationen QSM und Steptoe/Morex, sowie in der Konsensus Karte	
beider Populationen	117
Abb. 3.16: Anfälligkeitsindex des mehltauanfälligen Kultivars Golden Promise nach	
Beschuss mit RNAi-Konstrukten ausgewählter Kandidaten	119
Abb. 4.1: Verschiedenartige makroskopisch sichtbare Ausprägungen der Resistenz	121
Abb. 4.2: Verschiedenartige mikroskopisch sichtbare Ausprägungen der Resistenz	122
Abb. 4.3: Genetische Karte der Gerste unter Angabe von Mehltau-Resistenzgenen,	
Mehltauresistenz-QTLs, signifikant assoziierter Kandidatengene	127
Abb. 4.4: Model der Kaskade zu programmierten Zelltodreaktion unter Einfluss von L	SD1
	131

Tabellenverzeichnis

Tab.	2.1: 112 Gersten-Akzessionen (aus der IPK-Genbank), die als Mehltau-resistent	
	beschrieben wurden	15
Tab.	2.2: 50 Gersten-Akzessionen (aus der IPK-Genbank), die als Mehltau-anfällig	
	beschrieben wurden	18
Tab.	2.3: Virulenzspektrum der Mehltauisolate 78P und D12-12	19
Tab.	2.4: Zusammensetzung der GUS-Färbelösung	27
Tab.	2.5: Zusammensetzung der Trichloressigsäurelösung	27
Tab.	2.6: PCR-Ansatz für SSR-Analyse	29
Tab.	2.7: Mikrosatellitenmarker, die für die Bestimmung der Populationsstruktur und	
	Kinship-Matrix verwendet wurden	30
Tab.	2.8: 10 x ABI TBE Puffer (pH:8,3)	32
Tab.	2.9: Zusammensetzung des Polyacrylamidgels	32
Tab.	2.10: Kandidatengene für Assoziationsanalyse mit Primerinformationen	35
Tab.	2.11: Standard-PCR-Reaktionsansatz	41
Tab.	2.12: 1xTAE-Puffer	41
Tab.	2.13: Kartierte Kandidatengene	43
Tab.	2.14: Ansatz für den Restriktionsverdau der Kartierung	44
Tab.	2.15: Primer für Test auf Vorhandensein des mlo11-Reistenzgens	44
Tab.	2.16: Reaktionsansatz <i>real-time</i> PCR	45
Tab.	2.17: Analysierte Gene mittels <i>real-time</i> PCR	45
Tab.	2.18: Genspezifische <i>sense</i> und <i>antisense</i> Primer für die Herstellung von RNAi-	
	Konstrukten.	46
Tab.	3.1: Kandidatengene mit TIGS-Effekt	50
Tab.	3.2: Kandidatengene mit pathogen-induzierten Expressionseffekt	54
Tab.	3.3: Kandidatengenauswahl aus der Literatur	55
Tab.	3.4: Kandidatengenauswahl aufgrund ihrer genetischen Kartenposition	56
Tab.	3.5: Verwendete Population für weiterführende Analysen	58
Tab.	3.6: Makroskopischer und mikroskopischer Resistenzphänotyp der resistenten	
	Akzessionen	66
Tab.	3.7: Anzahl verschiedener SSR-Allele der verwendeten SSR-Marker in der Populat	ion
		68
Tab.	3.8: Kinship Matrix nach Ritland	74

Tab.	3.9: Identifizierte SNPs und Haplotypen des <i>Vrs</i> 1-Gens
Tab.	3.10: Ergebnis der Assoziationsverrechnung für die <i>Vrs</i> 1-Polymorphismen mit
	Zeiligkeit
Tab.	3.11: Auflistung analysierter Kandidatengene
Tab.	3.12: Ergebnisse der Assoziationsverrechnung für die Kandidatengene, die eine
	signifikante Assoziation zur Mehltauresistenz, bzw. Mehltauanfälligkeit zeigten85
Tab.	3.13: Assoziierte Kandidatengene mit Zeiligkeit; getestet wurden 21 Kandidatengene,
	die eine signifikante Assoziation zur Mehltauresistenz zeigten
Tab.	3.14: Assoziierte Kandidatengene mit Pflanzenhöhe; getestet wurden 21
	Kandidatengene, die eine signifikante Assoziation zur Mehltauresistenz zeigten98
Tab.	3.15: Kandidatengene mit signifikanten Tajima's D-Werten109
Tab.	3.16: SNP- und Haplotypmuster von Kandidatengenen, bei denen ein Aminosäure-
	austausch stattgefunden hat110
Tab.	4.1: Signifikant assoziierte Kandidatengene mit zusätzlicher Information über TIGS-
	Effekt, Regulationseffekt und Kolokalisierung mit Mehltau-Resistenz QTLs134

Abkürzungsverzeichnis

А	Adenin
Abb	Abbildung
Abt	Abteilung
Ala	Alanin
Arg	Arginin
Avr-Gen	Avirulenz-Gen
BAC	bacterial artifical chromosome
BC	back cross
Boh	Blumeria graminis f sp. hordei
BLAST	basic local alignment search tool
hn	Basennaar
bzw	heziehungsweise
C	Cytosin
cDNA	komplementäre DNA
cM	centimorgan
CMIA	calculation of mean infected area
Cvs	Cystein
DAR	3 3-diaminohenzidine
DAD DArT	Diversity Array Technology
DEI	Deletion
dh	dass heißt
DNA	Desovyribonukleinsäure
FST	expressed sequence tag
Fa	Familie
f sn	forma specialis
G	Guanin
Ga	Gattung
GLM	general linear model
Gln	Glutamin
Ghu	Glutamat
Gly	Glucin
GUS	ß Chucuronidase
UUS HP	hypersensitive Realition
INDEI	Insertion/Deletion
Lig	Histidin
hni	hours post inoculation
Ну	Hordeum vulgare
IIV Ile	Isoleucin
IDV	Leibniz Institut für Dflanzengenetik und Kulturnflanzenforschung
h K kh	kilo Basen
KU K1	Klasse
ID	linkage disequilibrium
LD	linkage equilibrium
LL	Leucin
LCu I(K)	Lourn log probability of data
	logarithm of the odds
	logaritarili of the odds
	leucine-fich lepeat
Lys	Lysi

MAF	minor allele frequency			
MAMP	microbiell-associated molecular pattern			
MCMC	Markov chain Monte Carlo			
MIR	mlo-induzierte Resistenz			
MLM	mixed linear model			
NR	Nukleotid-Bindestelle			
NCBI	National Center for Biotechnology Information			
Ord	Ordnung			
n_Wert	Signifikanzniveau			
p-won n adi	adjustierter n-Wert			
	national associated molecular nattern			
	Prinzipialkomponentenanalyse			
DCD	Prinzipiaikomponentenanaryse			
PCT	primerase chain reaction (Polymerase-Kettenreaktion)			
PUI	primary germ tube			
Phe	Prenyialanin			
PT0 OTI	Prolin			
QIL	quantitative trait loci			
R-Gen	Resistenz-Gen			
R-Wert	Bestimmtheitsmaß			
R ² -Wert	Korrelationskoeffizient			
RNA	Ribonukleinsäure			
RNA1	RNA-interference			
ROS	Reaktive Sauerstoff Spezies			
Ser	Serin			
SNP	single nucleotide polymorphism			
siRNA	small interfering RNA			
ssp.	subspecies			
SSR	simple sequence repeat			
Т	Thymin			
Tab.	Tabelle			
Thr	Threonin			
TIGS	transient induced gene silencing			
Trp	Tryptophan			
Tyr	Tyrosin			
Unterabt.	Unterabteilung			
Val	Valin			
VB	Variationsbreite			
vgl.	vergleiche			
X-Gluc	5-Bromo-4-chloro-3-indoxyl-beta-D-glucuronic-Säure			
z.B.	zum Beispiel			

1. Einleitung

Die Gerste (Hordeum vulgare L.) gehört weltweit zu den wichtigsten Kulturpflanzen. Geordnet nach der Anbaubedeutung steht sie nach Weizen, Reis, Mais und Sojabohne weltweit an fünfter Stelle. In Deutschland ist ihre Anbaubedeutung höher einzustufen, hier nimmt sie nach Weizen den zweiten Platz ein. Gerste wird als Winter- oder Sommergerste angebaut, wobei sie als Wintergerste überwiegend in der Tierernährung Verwendung findet und in der Sommerform als Braugerste genutzt wird. Die Wintergerste zeichnet sich durch höhere Erträge im Vergleich zur Sommerform aus. Ein aktuelles Thema der heutigen Zeit ist die steigende Zahl der Weltbevölkerung und die damit verbundene Absicherung der Versorgung mit genügend Nahrungsmitteln. Ein ständiges Streben der modernen Pflanzenzüchtung ist daher die Steigerung des Ertragspotentials der verschiedenen Nahrungs- und Nutzpflanzen. Der theoretisch erreichbare Ertrag wird jedoch häufig in der Praxis nicht erzielt, da pflanzliche Pathogene weltweit 17,5% des potentiellen Ertrages vernichten (Oerke et al. 1997). Eine Möglichkeit, pflanzliche Pathogene abzuwehren, ist der Einsatz von Pflanzenschutzmitteln. Aus ökonomischer und ökologischer Sichtweise ist ein weltweiter häufiger Einsatz jedoch nicht sinnvoll. Das Einbringen von Resistenzgenen gegen Pathogene in landwirtschaftliche Nutzpflanzen stellt eine sinnvolle Alternative zum Einsatz von Pflanzenschutzmitteln dar, hierfür sind jedoch eine genaue Kenntnis der verschiedenen Pathosysteme sowie eine ständige Identifizierung und Nutzung neuer Resistenzgene nötig. Der Erreger des echten Mehltaus an Gerste (Blumeria graminis f.sp. hordel) ist sowohl ökonomisch als auch wissenschaftlich gesehen ein sehr bedeutsames Pathogen. Ein Befall der Gerste mit diesem Pilz kann zu hohen Ertragsverlusten führen; aus wissenschaftlicher Sicht wird das Pathosystem Gerste-echter Mehltau als Modelsystem genutzt, um die Interaktionen zwischen Wirtspflanze und Pathogen besser zu verstehen.

1.1 Bedeutung der Gerste

Die Gerste (Abt. *Spermatophyta* / Unterabt. *Magnoliophyta* / Kl. *Liliopsida* / Ord. *Poales* / Fa. *Poaceae* / *Hordeum vulgare* L.) gehört zu den ältesten Kulturpflanzen der Menschheit. Sie hat sich aus der Wildart *Hordeum spontaneum* im Vorderen Orient und der östlichen Balkanregion entwickelt. Die Gerste ist ein Selbstbefruchter und stellt nur geringe Ansprüche an Boden und Klima und benötigt in der Sommerform weniger als 100 Tage bis zur Reife. Die Gerste ist eine der wichtigsten Kulturpflanzen Europas. Mit einer

Anbaufläche von 13.749.000ha im Jahr 2007 ist sie in der Europäischen Union (27) nach Weizen (*Triticum aestivum* L.) mit 24.280.000ha die Kulturart mit der zweitgrößten Anbaufläche. In Deutschland nimmt die Gerste mit einer Anbaufläche von 1.934.000ha im Jahr 2007 eine vergleichbare bedeutende Stellung ein (ZMP-Marktbilanz 2008). Auf dem Weltmarkt ist die Bedeutung der Gerste geringer einzustufen, da neben dem Weizen auch Reis, Mais, und Sorghum eine starke Anbaubedeutung zukommt. Die weltweite Anbaufläche betrug für Gerste 57.276.000ha im Jahr 2007 (ZMP-Marktbilanz 2008). In der Bundesrepublik Deutschland wurde im Jahr 2007 auf 492.800ha Sommergerste angebaut und es wurde ein durchschnittlicher Ertrag von 42,7dt/ha erzielt.

1.2 Pathosystem Gerste / echter Mehltaupilz

1.2.1 Die anfällige Interaktion

Phytopathogene Erreger werden anhand ihres parasitären Verhältnisses zum Wirt in obligate und nichtobligate Pathogene unterteilt. Obligate Pathogene sind hoch spezialisiert und leben und vermehren sich nur in lebendem Medium (Schlösser, 1997). Nichtobligate Pathogene verbringen die meiste Zeit ihres Lebenszyklus auf ihrem Wirt, sie können aber auch auf totem Material überleben (Schlösser, 1997). Es existieren außerdem verschiedene Ernährungsformen der Pathogene. Biotrophe Pathogene ernähren sich ausschließlich von lebenden Pflanzenzellen und gehören zu den obligaten Pathogenen. Bei hemibiotrophen Pathogenen startet der Infektionsprozess an lebenden Pflanzenzellen, jedoch sterben diese im Laufe der Infektion ab. Nekrotrophe Pathogene töten die Wirtszelle sofort am Anfang des Infektionsprozesses ab (Schlösser, 1997). Der echte Mehltaupilz (R. Fungi / Abt. Ascomycota / K1. Leotiomycetes / Ord. Erysiphales / Fa. Erysiphaceae / Ga. Blumeria / Blumeria graminis (DC Speer) f.sp. hordei (Marchal), Bgh) gilt als bedeutendes Pathogen der Gerste. Er ist der Erreger der Mehltaukrankheit und verfolgt eine obligat biotrophe Lebensweise und kann somit nicht auf künstlichem Nährmedium kultiviert werden (Both et al. 2005). Typische Symptome infizierter Gerstenblätter sind weiße, watteähnliche Pusteln, die sich auf der Oberfläche von Blättern und Blattscheiden befinden. Der Befall von Bgh auf Gerste wird durch anfällige Gerstensorten, eine frühe Aussaat, dichte Bestände und eine feuchtwarme Witterung gefördert. Bei Mehltau-befallener Gerste können Ertragsverluste bis zu 20% auftreten, die meist durch die Reduktion des Tausendkorngewichts verursacht werden (Czembor 2002). Bgh kann seinen Lebenszyklus nur in lebenden Epidermiszellen

vollenden. In Abbildung 1.1 ist das Pathosystem Gerste-echter Mehltaupilz grafisch dargestellt.

(A) Anfällige Interaktion zwischen Gerste und dem echten Mehltau in einer Einzelblattuntersuchung

- (B) Elektronenmikroskopische Aufnahme einer Konidie des echten Gerstenmehltaus auf der Blattoberfläche 15 h nach Inokulation. (PGT = primäre Keimschlauch, S =Septum, = sekundärer Keimschlauch, App = Appressorium (verändert nach Zhang et al.
- (C) β-Glucuronidase (GUS)-gefärbte Epidermiszelle mit einem Haustorium

Abb. 1.1: Pathosystem Gerste/echter Gerstenmehltau

Der asexuelle Lebenszyklus von *Bgh* ist in Abbildung 1.2 dargestellt. Der Infektionsprozess beginnt mit dem Auftreffen windverbreiteter Konidien (asexuell entstandene Sporen) auf der Blattoberfläche, sie beginnen sofort mit der Ausbildung einer extrazellulären Matrix. Diese Matrix fungiert wahrscheinlich zum einen dafür, die Konidie an die Wirtspflanze anzuheften (Wright et al. 2005) und zum anderen wird vermutet, dass sie vom Pilz zum Einholen von (bio)chemischer Information von der Blattoberfläche genutzt wird (Wright et al. 2005). Innerhalb der ersten Stunde nach Inokulation beginnt die Konidie auszukeimen, indem sich der primäre Keimschlauch (PGT, *primary germ tube*) bildet, der eine Länge von 5-10µm aufweist (Zhang et al. 2005). Der primäre Keimschlauch greift die Pflanzenzelle nicht an. Vermutlich dient er zur Wirtserkennung, als Haftorgan und zur Wasseraufnahme (Heitefuss 2001).

Abb. 1.2: Asexueller Lebenszyklus von Blumeria graminis f.sp. hordei.

Die Prepenetrations-Phase startet beim nichtgekeimten Konidium und dauert bis zum funktionellen Appressorium (15hpi). In der penetrierten Zelle bildet der Pilz 24h nach Inokulation Haustorien. In der anschließenden Postpenetrations-Phase entwickeln sich Pilzhyphen auf der Blattoberfläche, die Konidien produzieren. Die Ernährung des Pilzes ist durch die Haustorien innerhalb der Wirtszellen gesichert (Both et al. 2005).

Vier bis acht Stunden nach der Inokulation entwickelt sich der sekundäre Keimschlauch (AGT, *appressorial germ tube*), der eine Länge von 30-40µm erreicht und an dessen Ende sich das hakenförmige Appressorium bildet. Aus dem Appressorium bildet sich etwa 15 Stunden nach der Inokulation der Penetrationsschlauch, der in einer anfälligen Interaktion die Epidermiszellwand der Wirtspflanze durchbrechen kann (Zhang et al. 2005). Der Pilz produziert lytische Enzyme, zum Bespiel Cellulasen, die die Zellwand schwächen und mit Hilfe mechanischen Drucks dringt der Penetrationsschlauch in die Zelle ein (Pryce-Jones et al. 1999). Aus dem Penetrationsschlauch bildet sich 24 Stunden nach Inokulation ein Ernährungsorgan mit fingerförmigen Ausläufern, das sogenannte Haustorium. Die Plasmamembran der Wirtszelle bleibt dabei unversehrt und wird nur eingestülpt (Zhang et al. 2005). Der eingestülpte Teil der Plasmamembran wird aufgrund von Änderungen in der Zusammensetzung und im Aufbau als extrahaustoriale Membran bezeichnet (Mendgen et al.

2002). Das Haustorium dient zur Nahrungsaufnahme des Pilzes (Zhang et al. 2005). Ca. 30 Stunden nach Inokulation bilden sich auf der Blattoberfläche sekundäre Hyphen aus, aus denen sich erneut sekundäre Appressorien und auch sekundäre Haustorien entwickeln. Nach ca. vier Tagen ist die Mehltaukolonie makroskopisch sichtbar. Fünf Tage nach Inokulation bilden sich Konidiophoren, von denen sich die Konidien abschnüren und einen neuen Infektionszyklus starten können (Zhang et al. 2005). *Blumeria graminis* befällt nur Sprossund Epidermiszellen und dringt nicht in tiefere Zellschichten wie z.B. Mesophyllzellen vor. Eine sexuelle Vermehrung des Pilzes findet über Ascosporen statt, die in sogenannten Kleistothezien gebildet werden. Kleistothezien bilden sich auf alternden Blättern. In dieser Form ist es dem Pilz möglich, ungünstigen Umweltbedingungen, wie zum Beispiel Trockenheit, hohe Temperaturen oder Fehlen der vitalen Wirtspflanze, zu überleben (Zhang et al. 2005).

1.2.2 Resistenzen der Gerste gegen den echten Mehltau

Pflanzen besitzen im Gegensatz zu Säugetieren keine mobilen Abwehrzellen. Die pflanzliche Abwehr beruht auf der Eigenabwehr jeder Zelle und auf systemischen Signalstoffen, die von der Infektionsstelle ausgesandt werden (Jones und Dangl 2006). Die pflanzliche Immunantwort begründet sich auf einem dreistufigen System: 1) Präformierte Barrieren (z.B. Kutikula), 2) PAMP-induzierte Abwehr, 3) Effektor-induzierte Abwehr. Für die PAMP-induzierte (2) und die Effektor-induzierte Abwehr (3) existiert das Co-Evolutionsmodell (Abbildung 1.3). In der ersten Phase werden pathogenassoziierte Strukturen (PAMPs) von der Pflanze erkannt, was in einer Immunität auf Seite der Pflanze resultiert. Diese inkompatible Interaktion wird auch als quantitative Resistenz oder Basalresistenz bezeichnet. Ihre Ausprägung ist durch induzierte mechanische Barrieren (z.B. Kutikula, Zellwand) und antimikrobiell wirkende Proteine und niedermolekulare Stoffe (Phytoalexine) gekennzeichnet (Jones et al. 2006). In Phase zwei kann das Pathogen durch die Bildung von Effektoren diese basalen Schutzmechanismen umgehen und den Wirt beseiedeln, was als Basiskompatibilität zwischen Pathogen und Wirt bezeichnet wird.

Abb. 1.3: Schematische Darstellung des pflanzlichen Immunsystems

Phase werden mikrobiell/pathogen-assoziierte molekulare In 1 Strukturen (MAMPs/PAMPs) von der Pflanze erkannt, was in einer von PAMPs/MAMPs ausgelösten Immunität resultiert. In Phase 2 können erfolgreiche Pathogene Effektoren (rote Kreise) abgeben, was zu einer Effektor-ausgelösten Anfälligkeit führen kann. In Phase drei werden diese Effektoren (rote Kreise) von einem NB-LRR-Protein auf Seiten der Pflanze erkannt und eine rassenspezifische Resistenz setzt ein. In Phase vier findet eine Selektion auf Pathogene statt, die die roten Effektoren verloren haben und neue Effektoren nutzen (blaue Kreise), was in einer erneuten Anfälligkeit resultiert. Selektion begünstigt neue Pflanzen NB-LRR-Allele, die die blauen Effektoren erkennen und somit wieder eine rassenspezifische Resistenz vorhanden ist (verändert nach Jones et al. 2006).

Im Verlauf der Co-Evolution war es Pflanzen möglich, eine Resistenz gegenüber den meisten Pathogenen wieder aufzubauen. In dieser dritten Phase werden Effektoren von einem speziellen NB-LRR-Protein erkannt. NB-LRR-Proteine weisen eine zentrale Nukleotid Bindestelle (NB) und C-terminale Leucin-reiche Sequenzwiederholungen (*leucine-rich repeats*, LRR) auf. Diese qualitative Resistenz ist rassenspezifisch und lässt sich mit dem Gen-für-Gen-Model von Flor (1997) erklären. Aufgrund des Genproduktes (NB-LRR-Protein) eines Resistenzgens (R-Gen) ist es der Pflanze möglich, das Pathogen anhand von Effektoren, die nun die Funktion von Avirulenzgenprodukten haben (*Avr*-Gen) zu erkennen und Abwehrmechanismen zu aktivieren. Die Abwehrreaktion erfolgt oft in einer hypersensitiven Zelltod-Reaktion (HR) an der Infektionsstelle (Jones et al. 2006).

Diese Effektor-induzierte Resistenz wird monogen vererbt und kann unter hohem Selektionsdruck vom Pathogen durch Effektormutation meist schnell überwunden werden. Die Loci im Genom, an denen R-Gene gegen Mehltau lokalisiert sind, werden in Gerste als *Ml(mildew resistance locus)* bezeichnet (Jørgensen 1994). Ein Beispiel hierfür ist das *Mla*-Gen, für das bisher über dreißig verschiedene Allele identifiziert wurden. Alle bisher klonierten *Mla*-Allele codieren für NB-LRR-Proteine (Wei et al. 2002, Shen et al. 2003, Haltermann und Wise 2004), die entweder direkt oder indirekt pilzliche Effektoren erkennen (Ridout 2006) und deren Resistenzausprägung in Form einer hypersensitiven Zelltod-Reaktion auftritt.

In der vierten Phase findet eine Selektion auf die Pathogene statt, die mutierte Effektoren aufweisen, welche von dem ursprünglichen NB-LRR-Protein nicht mehr erkannt werden können. Diese neuen Effektoren führen zu einer erneuten Anfälligkeit des Wirtes. Natürliche Selektion auf der Seite des Wirtes resultiert in veränderten R-Genen für neue NB-LRR-Proteine, die es ermöglichen, die mutierten oder weitere Effektoren zu erkennen und erneut eine rassenspezifische Resistenz aufbauen.

Wie bereits erwähnt wird rassenspezifische Resistenz monogen vererbt und wirkt sehr stark (qualitativ). Diese Resistenzart kann jedoch schnell vom Pathogen durchbrochen werden. Im Gegensatz dazu wird die quantitative Resistenz polygen vererbt, und ist dauerhaft. Diese Basalresistenz wirkt gegen mehrere Rassen eines Pathogens, bewirkt aber nur in seltenen Fällen einen vollständigen Resistenzphänotyp.

Als Bespiel für eine außergewöhnlich stark wirkende Basalresistenz steht die *mlo*-Gen vermittelte Resistenz der Gerste gegen *Bgh*. Das *mlo*-Resistenzgen wurde in der 30er Jahren in einer äthiopischen Landrasse (Grannenlose Zweizeilige) entdeckt und zeigt eine Wirksamkeit gegenüber sämtlichen Rassen von *Bgh*. Diese Resistenz wird durch eine Mutation im *Mlo*-Gen vermittelt (Piffanelli et al. 2002), die zu einer Unterdrückung der Genexpression führt. Die *mlo*-vermittelte Resistenz beruht auf einer Penetrationsresistenz: In attackierten Epidermiszellen von Gerstengenotypen, die das natürlich vorkommende *mlo*11-Allel oder künstliche Allele wie *mlo*5 aufweisen, wurde eine stärkere lokale Akkumulation von H₂O₂ an Penetrationsstellen beobachtet als in Gerstengenotypen, die das *Mlo*-Allel tragen (Hückelhoven et al. 2000; Piffanelli et al. 2002). H₂O₂ wird wahrscheinlich für das *cross-linking* der Zellwand bei der Papillenbildung (lokale Verdickung der Zellwand) benötigt. Die Abwehrmechanismen in *mlo*-Genotypen zeigen keinen Unterschied zu denen in *Mlo*-Genotypen, außer dass die Reaktionen wesentlich heftiger stattfinden. Dieser Sachverhalt lässt vermuten, dass das *Mlo*-Protein ein Suppressor der allgemeinen

Abwehrmechanismen darstellt (Büschges et al. 1997, von Röpenack et al. 1998). Gerstenpflanzen, die den *mlo*-Genotyp aufweisen, zeigen pleiotrophe Effekte wie z.B. Chlorosen und Nekrosen (Peterhänsel et al. 1997) und sind gegenüber hemibiotrophen Pathogenen wie z.B. *Magnaporthe grisea* anfälliger als *Mlo*-Genotypen (Kumar et al. 2001). Obwohl die *mlo*-Resistenz auf einem monogenen Vererbungsmuster beruht, ist sie nach rund 30 Jahren Gebrauch immer noch dauerhaft und kann als Basalresistenz bezeichnet werden. 1993 wiesen 70% der Sommergerstensorten in Deutschland und Groß-Britannien das *mlo*-Resistenzgen auf (Lyngkjaer et al. 2000) und bis heute ist keine dauerhafte Durchbrechung dieser Resistenz im Feld bekannt.

1.3 Allel-Merkmal-Assoziationsstudien und Linkage Disequilibrium

weisen Agronomisch wichtige Merkmale häufig ein komplexes genetisches Vererbungsmuster auf, das ihre Analyse mit existierenden Kartierungsmethoden erschwert. Diese Merkmale werden häufig von mehreren quantitativ wirkenden Loci bestimmt (QTL), weisen also eine polygene Vererbung auf. Bei der klassischen Methode der OTL-Kartierung ist die Erzeugung spaltender Populationen aus Kreuzungen notwendig, und es werden Markerintervalle auf einer genetischen Karte ermittelt, die einen signifikanten Effekt auf den zu untersuchenden Phänotyp aufweisen. Jedoch können mit diesem Ansatz nur merkmalsrelevante Gene identifiziert werden, die zwischen beiden Eltern der Kreuzung polymorph sind (Jannink et al. 2001).

Die Assoziationskartierung oder auch Assoziationsanalyse genannt (Abbildung 1.4), stellt Alternative zur Identifizierung von Genen und Genloci dar. Bei der eine Assoziationskartierung ist es nicht nötig, eine spaltende Population zu erstellen, sondern es werden Individuen ausgewählt, die sich in dem zu untersuchenden Merkmal unterscheiden. Für eine Assoziationsanalyse müssen drei Arten von Daten erhoben werden. Der erste Schritt ist die Bestimmung des Phänotyps von Interesse innerhalb der verwendeten Population. Die Bestimmung der Populationsstruktur in Form einer Q-Matrix, sowie die Bestimmung der Verwandtschaftsverhältnisse der verwendeten Genotypen in Form einer K-Matrix stellen den zweiten Schritt in der Durchführung dieser Analyse dar. Der dritte Schritt ist die Untersuchung der allelischen Diversität der verwendeten Marker (z.B. SNP (single nucleotide polymorphism)). Die Ergebnisse dieser drei Schritte werden für die Berechnung der Marker-Merkmal-Assoziation genutzt (Flint-Garcia et al. 2005). In Abhängigkeit der Größe und Diversität der untersuchten Population ist die Anzahl der erhaltenen Allele oft um ein vielfaches höher als in einer Population, die aus einer Kreuzung zweier

Elterngenotypen besteht. Mit Hilfe der Assoziationskartierung wird der Effekt der Rekombinationsfrequenz über viele Generationen in einer einzigen Analyse genutzt (Jorde et al. 2000). Im Vergleich zur klassischen QTL-Analyse stellt die Assoziationskartierung eine schnelle und kostengünstige Alternative dar, da keine Kreuzungen durchgeführt werden müssen, sondern lediglich die phänotypische Ausprägung der zu analysierenden Merkmale bestimmt wird. Bei Assoziationsstudien wird zwischen zwei Ansätzen bezüglich der Bestimmung allelischer Diversität unterschieden: Zum einen kann die Auswahl der Marker zur Bestimmung der genetischen Diversität durch die Position der Marker im Genom bestimmt sein; wird eine geeignete Anzahl Marker ausgewählt, die eine gleichmäßige Verteilung über das Genom aufweisen, handelt es sich um einen genomweiten Assoziationsansatz. Im Gegensatz dazu steht der Kandidatengen-basierte Ansatz, bei welchem Marker (z.B. SNP) analysiert werden, die in der Sequenz von Kandidatengenen mit vermuteter Funktion vorkommen. Die erfolgreiche Anwendung beider Methoden hängt von der Größe der verwendeten Population sowie von der Stärke des Kopplungsungleichgewichtes (Linkage Disequilibrium) innerhalb der Population ab. Der genomweite Ansatz ist in einer Population, die ein gemäßigtes bis starkes Kopplungsungleichgewicht aufweist, erfolgsversprechender. Der Kandidatengen-basierte Ansatz hingegen führt in einer Population mit geringem Kopplungsungleichgewicht zu einer effektiveren Identifizierung von Marker-Merkmal-Assoziationen (Flint-Garcia et al. 2005). Der Einfluss der Züchtung bei vielen Nutzpflanzen, sowie der begrenzte Gen-Fluss bei vielen Wild-Pflanzen hat zu einer komplexen Stratifizierung des genetischen Materials geführt (Sharbel et al. 2000). Diese Populationsstratifizierung, sowie eine ungleiche Verteilung von Allelen innerhalb einer Population, können zur Identifizierung von nichtfunktionalen, falschen Assoziationen führen. Daher ist die Einbeziehung der Populationsstruktur, die mit gleichmäßig über das Genom verteilten (unabhängigen) Markern berechnet wird, für die Assoziationsstudie unentbehrlich (Pritchard and Rosenberg 1999, Pritchard et al. 2000b).

Abb. 1.4: Funktionsschema einer Assoziationsanalyse (verändert nach Flint-Garcia).

Zu Beginn steht die Auswahl an diversem Material, dass in der Studie analysiert werden soll. Innerhalb des Materials wird erstens der Phänotyp von Interesse, zweitens die Populationsstruktur und drittens die allelische Diversität bestimmt. Die Ergebnisse dieser drei Abschnitte werden für die Berechnung der Assoziationsanalyse genutzt.

Der Ansatz der Assoziationskartierung wurde zuerst in der Humanmedizin beschrieben. Die gezielte Kreuzung zur Erstellung spaltender Populationen ist in diesem Bereich nicht möglich und somit auch nicht die Identifizierung von QTL mit der klassischen QTL-Kartierung. Die Assoziationskartierung ermöglicht in der Humangenetik den genetischen Hintergrund komplexer Krankheiten wie z.B. Asthma und Diabetes (Risch 2000) zu erforschen.

Das Wissen über das Kopplungsungleichgewicht (*Linkage disequilibrium*, LD) innerhalb der Population, die für die Assoziationsanalyse verwendet wird, ist essentiell. LD beschreibt die Wahrscheinlichkeit des gemeinsamen Auftretens zweier Allele an verschiedenen genetischen Orten innerhalb einer Population. In Abbildung 1.5 sind Beispiele für vollständiges *Linkage Disequilibrium* und vollständiges *Linkage Equilibrium* dargestellt. Die Korrelation zwischen Polymorphismen liegt in einem gemeinsamen Mutations-, Rekombinations- und Selektionshintergrund begründet (Flint-Garcia et al. 2003). Die genetische Distanz, über die LD in einer Population besteht, bestimmt somit die Anzahl an Markern, sowie das experimentelle Design für eine Assoziationsanalyse (Flint-Garcia et al. 2003).

vollständiges Linkage Disequilibrium

Abb. 1.5: Linkage Disequilibrium und Linkage Equilibrium im Vergleich

Linkage Disequilibrium beschreibt die überzufällig häufige Verbindung eines Allels mit einem anderen Allel an verschiedenen Positionen im Genom. Bei *Linkage Equilibrium* liegt eine zufällige Verteilung der Allele vor.

Die Genauigkeit der Lokalisierung von Kandidatengenen durch eine Assoziationsanalyse ist umso höher, je geringer das LD innerhalb der verwendeten Population ist, d.h. je mehr Meiosen und somit auch viele Rekombinationen zwischen genetisch verschiedenen Eltern stattgefunden haben.

In Abbildung 1.6 ist der LD-Abfall um eine Mutation nach vielen Generationen in verschiedenen Genotypen dargestellt. Nur noch Genabschnitte in direkter Nachbarschaft liegen im Kopplungsungleichgewicht zum mutierten Allel und können als molekulare Marker für das mutierte Allel verwendet werden.

Es besteht aber auch die Möglichkeit, dass Kopplungsungleichgewicht über größere physikalische Abstände auf einem Chromosom oder sogar zwischen verschiedenen Chromosomen auftritt. In diesen Fällen liegt die Ursache des Kopplungsungleichgewichtes im Selektionsdruck, der auf die gekoppelten Genbereiche gewirkt hat. Auch die rekombinationsunterdrückende Wirkung des Centromers führt zu Kopplungsungleichgewicht über größere physikalische Distanz (Mahtani und Huntington 1998).

= Marker, die eine Kopplung zum Phänotyp von Interesse aufweisen

Abb. 1.6: Linkage Disequilibrium um eine Mutation in einem Gen (verändert nach Snowdon et al. 2004)

Da häufig das genomweite Kopplungsungleichgewicht der verwendeten Population nicht bekannt ist, ist eine weiterführende Analyse von detektierten positiven Assoziationen ein Weg zur Verifizierung des Ergebnisses. Eine Möglichkeit, detektierte Assoziationen zu überprüfen, ist die Analyse des positiv assoziierten Polymorphismus in einer vollständig unterschiedlichen Population mit unabhängiger Populationsstruktur. Eine andere Möglichkeit ist die funktionale Analyse positiv assoziierter Kandidatengene. Dies kann zum Beispiel in Form von Unterdrückung der Genexpression des assoziierten Kandidatengens erfolgen und ist im folgenden Kapitel (1.4) beschrieben.

1.4 Unterdrückung der Genexpression im transienten System

Die Unterdrückung der Genexpression im transienten System stellt eine Möglichkeit dar, Gene funktional zu untersuchen. In diesem System wird der natürliche Mechanismus des RNA-vermittelten Gen-*silencings* genutzt. Dieser Mechanismus findet bei der Genregulation und der Abwehr von Viren und Transposons Anwendung (Tijsterman et al. 2002, Baulcombe 2004).

Als Auslöser des posttranskriptionalen Gen-*Silencings* dient doppelsträngige RNA (Meister und Tuschl 2004), die unter natürlichen Bedingungen z.B. bei der Reproduktion von Viren in der Zelle gebildet wird (Angell und Baulcombe 1997). Die pflanzliche Zelle erkennt diese doppelsträngige RNA und setzt Abwehrreaktionen zum Abbau in Gang. Das Enzym *Dicer*, ein RNase III-ähnliches Protein, erkennt die doppelsträngige RNA und schneidet sie in Stücke, die am 3'-Ende einen Nukleotid-Überhang aufweisen. Die Helicaseaktivität des *Dicers* spaltet die Doppelstrangstücke, sodass kurze RNA-Moleküle, sogenannte *small interfering* RNAs (siRNA), vorliegen (Susi et al. 2004). Diese siRNAs werden von dem Enzym RNA-*induced silencing complex* (RISC) erkannt und jeder Einzelstrang an eine Untereinheit des RISC-Komplexes gebunden. Der RISC-siRNA-Komplex ermittelt die komplementäre Einzelstrang-RNA und baut sie ab. Doppelsträngige RNA kann unter Verwendung von Haarnadel-Konstrukten künstlich gebildet werden. Diese Methode wird im TIGS (*transient induced gene silencing*)-System genutzt, um eine funktionale Analyse von Genen durchzuführen, in dem die Expression der Gene auf diese Weise unterdrückt wird (Schweizer et al. 1999, Kumagai et al. 1995; Douchkov et al. 2005).

Abb.1.7: Unterdrückung der Genexpression unter Verwendung des posttranskriptionalen Gen-silencings (verändert nach www.RNAiWeb.com).

Doppelsträngige RNA wird von einem Enzym (Dicer) erkannt und in Stücke (siRNA) geteilt. Der RISC-Komplex bindet an diese Stücke, teilt die doppelsträngige RNA und der RISC-Komplex mit einzelsträngiger RNA kann an homologe Ziel-RNA anlagern und diese abbauen.

Im TIGS-System wird ein Haarnadel-Konstrukt erstellt und analysiert, dass ein spezifisches Genfragment des zu analysierenden Gens trägt. Die Expression des zu analysierenden Gens wird in diesem System unter Verwendung des beschriebenen Mechanismus reduziert.

1.5 Zielsetzung der Arbeit

Das Ziel dieser Doktorarbeit war es, mit Hilfe einer assoziationsgenetischen Analyse Gene zu identifizieren und zu validieren, die für die Ausprägung einer dauerhaften quantitativen Resistenz in Sommergerste gegen den echten Mehltau verantwortlich sind, und neue Erkenntnisse über den genetischen Hintergrund der Resistenz gegen den echten Mehltaupilz in der Gerste zu erlangen. Die Assoziationsgenetik stellt eine moderne Analysemethodik im Bereich der Pflanzengenetik dar und verspricht hohe experimentelle Flexibilität und höhere genetische Auflösung als die herkömmliche Kreuzungsgenetik.

2. Material und Methoden

2.1 Pflanzenmaterial

2.1.1 Verwendete Sorten und Akzessionen

Das verwendete Pflanzenmaterial entstammt der Genbank des Leibniz-Instituts für Pflanzengenetik und Kulturpflanzenforschung Gatersleben (IPK). 112 Gerstenakzessionen (HOR-Akzessionen) (vgl. Tabelle 2.1) wurden aufgrund der Boniturergebnisse von Nover, Lehmann und Mansfeld (Nover und Mansfeld 1955, Nover und Mansfeld 1956, Nover und Lehmann 1968, Nover und Lehmann 1972, Nover und Lehmann 1973) für diese Studie ausgewählt. Diese Akzessionen wurden als rassenunspezifisch resistent gegen den echten Mehltau beschrieben. 48 Akzessionen (vgl. Tabelle 2.2) der "Barley Core Collection", sowie zwei Akzessionen des HOR-Sortiments der IPK-Genbank (vgl. Tabelle 2.2) wurden außerdem getestet, weil sie als sehr anfällig gegenüber den Gerstenmehltaupilz beschrieben wurden (Haseneyer et al. unveröffentlicht). In den Tabellen 2.1 und 2.2 sind die verwendeten Gerstenakzessionen aufgelistet. Neben den Test-Nummern und Genbank-Nummern finden sich in den Tabellen Informationen über die (sub)spezies, den Typ, den biologischen Status und die Herkunft (Herkunftsland oder Herkunftsregion) der Akzessionen. Beim biologischen Status wurde zwischen Wildgerste, Landrasse, verbesserte Sorte, Zuchtmaterial und eingetragener Sorte unterschieden. Im Rahmen der vorliegenden Arbeit fanden außerdem die Gerstensorten Ingrid, Ingrid BCm/05 und Golden Promise zu Vergleichszwecken Verwendung.

Lemnann 1908, Nover und Lemnann 1972, Nover und Lemnann 1975)					
	Genbank-			züchterischer	
Test-Nr.	Nr.	(Sub)Spezies	Тур	Status	Herkunft
1	HOR305	vulgare	Winter	Zuchtmaterial	Kroatien
2	HOR997	vulgare	Winter	Landrasse	Balkan
3	HOR1007	vulgare	Winter	Landrasse	Griechenland
4	HOR1013	vulgare	Winter	Landrasse	Balkan
5	HOR4413	vulgare	Sommer	verbesserte Sorte	Indien
6	HOR42	vulgare	Sommer	Landrasse	Äthiopien
7	HOR138	vulgare	Sommer	verbesserte Sorte	Libyen
8	HOR200	vulgare	Sommer	Landrasse	unbekannt
9	HOR214	vulgare	Sommer	Landrasse	Japan
10	HOR260	vulgare	Sommer	verbesserte Sorte	Australien
11	HOR261	vulgare	Sommer	verbesserte Sorte	USA

Tab. 2.1: 112 Gersten-Akzessionen (aus der IPK-Genbank), die als Mehltau-resistent beschrieben wurden (Nover und Mansfeld 1955, Nover und Mansfeld 1956, Nover und Lehmann 1968. Nover und Lehmann 1972. Nover und Lehmann 1973)

TORECEZU	Ganhank-		T IKZC551011	züchterischer	
Test-Nr	Nr	(Sub)Spazies	Typ	Statue	Herkunft
10			<u>Typ</u>	Zuchtmaterial	Delivion
12	HUR262	vulgare	Sommer	Zuchtmaterial	Bollvien
15	HOR203	vulgare	Sommer	verbesserte Sorte	
14	HURSUS	vulgare	Sommer	Verbesserie Sorie	
15	HOR683	vulgare	Sommer	Landrasse	Balkan
16	HOR/28	vulgare	Sommer	Landrasse	Balkan
1/	HOR/36	vulgare	Sommer	Landrasse	Griechenland
18	HOR /95	vulgare	Sommer	Landrasse	Athiopien
19	HOR800	vulgare	Sommer	Zuchtmaterial	Kroatien
20	HOR802	vulgare	Sommer	Sorte	Kroatien
21	HOR803	vulgare	Sommer	Landrasse	Kroatien
22	HOR804	vulgare	Sommer	verbesserte Sorte	USA
23	HOR805	vulgare	Sommer	Zuchtmaterial	unbekannt
24	HOR806	vulgare	Sommer	verbesserte Sorte	Indien
25	HOR811	vulgare	Sommer	verbesserte Sorte	Indien
26	HOR813	vulgare	Sommer	verbesserte Sorte	Australien
27	HOR831	vulgare	Sommer	Landrasse	unbekannt
28	HOR842	vulgare	Sommer	Landrasse	China
29	HOR843	vulgare	Sommer	Landrasse	China
30	HOR844	vulgare	Sommer	Landrasse	unbekannt
31	HOR847	vulgare	Sommer	Landrasse	Balkan
32	HOR878	vulgare	Sommer	Landrasse	Balkan
33	HOR1036	vulgare	Sommer	Landrasse	Balkan
34	HOR1135	vulgare	Sommer	Landrasse	Kreta
35	HOR1159	vulgare	Sommer	Landrasse	Balkan
36	HOR1166	vulgare	Sommer	Landrasse	Balkan
37	HOR1188	vulgare	Sommer	Landrasse	Anatholien
38	HOR1379	vulgare	Sommer	Landrasse	Kreta
39	HOR1454	vulgare	Sommer	Zuchtmaterial	Pakistan
40	HOR1457	vulgare	Sommer	Landrasse	Äthiopien
41	HOR1468	vulgare	Sommer	Zuchtmaterial	Pakistan
42	HOR1506	vulgare	Sommer	Landrasse	Äthiopien
43	HOR1581	vulgare	Sommer	Landrasse	Pakistan
44	HOR1646	spontaneum	Sommer	Wildgerste	unbekannt
45	HOR1647	spontaneum	Sommer	Wildgerste	Bot Garten Leinzig
46	HOR1677	vulgare	Sommer	Landrasse	Äthiopien
47	HOR1769	vulgare	Sommer	Landrasse	Tibet
48	HOR1873	vulgare	Sommer	Landrasse	Balkan
49	HOR1894	vulgare	Sommer	verbesserte Sorte	Kolumbien
50	HOR2543	vulgare	Sommer	I andrasse	Äthionien
51	HOR2551	vulgare	Sommer	Landrasse	Äthiopien
52	HOR2556	vulgare	Sommer	Landrasse	Äthiopien
53	HOR2558	vulgare	Sommer	Landrasse	Äthiopien
55	HOR2538	vulgare	Sommer	Landrasse	Äthiopien
55	HOR2575	vulgare	Sommer	Lallulasse	Australian
55 56	HOR2391	vulgare	Sommer	L andresserie Sorie	Australien Äthionion
50 57	HOR2390	vulgale	Sommer	Wildgerste	Aunopien Iron
51 50	$\Pi \cup K \ge \delta \ge 0$	spontaneum	Sommer	w nugerste	II all Äthionise
38 50	HUK2932	vulgare	Sommer		Athiopien
39 (0	HUK293/	vuigare	Sommer	verbesserte Sorte	Athiopien
60	HOR2940	vulgare	Sommer	verbesserte Sorte	Indien
61 (2	HOR2941	vulgare	Sommer	Zuchtmaterial	unbekannt
62	HOR3000	vulgare	Sommer	verbesserte Sorte	Deutschland
63	HOR3025	vulgare	Sommer	Zuchtmaterial	Athiopien

Fortsetzung von Tab. 2.1: 112 Gersten-Akzessionen (aus der IPK-Genbank)

101050020	Genhank-	2.1. 112 001000	11120551011	züchterischer	
Test-Nr	Nr	(Sub)Spezies	Typ	Status	Herkunft
64	HOR 3028	vulgare	Sommer	verbesserte Sorte	Äthiopien
65	HOR 3034	vulgare	Sommer	verbesserte Sorte	Pakistan
66	HOR 3036	vulgare	Sommer	Zuchtmaterial	Äthiopien
67	HOR3041	vulgare	Sommer	Zuchtmaterial	Indien
68	HOR3044	vulgare	Sommer	verbesserte Sorte	unbekannt
69	HOR3052	vulgare	Sommer	Sorte	Dänemark
70	HOR3075	vulgare	Sommer	Landrasse	Äthiopien
71	HOR3210	vulgare	Sommer	Landrasse	Äthiopien
72	HOR3270	vulgare	Sommer	Sorte	Türkei
73	HOR3271	vulgare	Sommer	verbesserte Sorte	Deutschland
74	HOR3272	vulgare	Sommer	verbesserte Sorte	Indien
75	HOR3275	vulgare	Sommer	verbesserte Sorte	China
76	HOR3280	vulgare	Sommer	Landrasse	Äthiopien
77	HOR3537	vulgare	Sommer	Landrasse	Äthiopien
78	HOR3540	vulgare	Sommer	Landrasse	Äthiopien
79	HOR3726	vulgare	Sommer	verbesserte Sorte	USA
80	HOR3817	vulgare	Sommer	verbesserte Sorte	Pakistan
81	HOR3866	vulgare	Sommer	Zuchtmaterial	Pakistan
82	HOR3941	vulgare	Sommer	Zuchtmaterial	Israel
83	HOR3962	vulgare	Sommer	Landrasse	Österreich
84	HOR3983	vulgare	Sommer	Zuchtmaterial	USA
85	HOR3984	vulgare	Sommer	Zuchtmaterial	USA
86	HOR3988	vulgare	Sommer	Landrasse	Indien
87	HOR3997	vulgare	Sommer	verbesserte Sorte	USA
88	HOR4020	vulgare	Sommer	verbesserte Sorte	USA
89	HOR4021	vulgare	Sommer	verbesserte Sorte	China
90	HOR4024	vulgare	Sommer	verbesserte Sorte	Indien
91	HOR4031	vulgare	Sommer	Landrasse	Indien
92	HOR4047	vulgare	Sommer	verbesserte Sorte	Israel
93	HOR4060	vulgare	Sommer	verbesserte Sorte	Israel
94 9 <i>7</i>	HOR4062	vulgare	Sommer	verbesserte Sorte	unbekannt
95	HOR4063	vulgare	Sommer	verbesserte Sorte	USA
96	HOR4064	vulgare	Sommer	verbesserte Sorte	Indien
97	HOR4077	vulgare	Sommer	Zuchtmaterial	Australien
98	HOR4259	vulgare	Sommer	Landrasse	Athiopien
99 100	HOR4260	vulgare	Sommer	Zuchtmaterial	Indien
100	HOR4266	vulgare	Sommer	verbesserte Sorte	Indien
101	HOR4281	vulgare	Sommer	Zuchtmaterial	Argentinien
102	HOR4282	vulgare	Sommer	Landrasse	unbekannt Daartaak laard
103	HOR4400	vulgare	Sommer	verbesserte Sorte	Deutschland
104	HOR4401	vulgare	Sommer	verbesserte Sorte	
105		vulgare	Sommer	verbesserte Sorte	Argontinion
100	HOR4400	vulgare	Sommer	verbesserte Sorte	Indian
107	ПОК440/ ПОР <i>44</i> 09	vulgare	Sommer	Landrasse	Äthionien
108	ПОК4408 ПОР <i>4414</i>	vuigate	Sommer	Wildgerste	Israel
109	HOR4414	agricoritiion	Sommer	wingersie Zuchtmaterial	151aUI Ungarn
110	HOR4413	vulgare	Sommer	Zuchtmaterial	Ungarn
117	HOR4910	vulgare	Sommer	verbesserte Sorte	Deutschland
112	1101(4030	vuigait	Sommer	verbesserte sorte	Deutsemanu

Fortsetzung von Tab. 2.1: 112 Gersten-Akzessionen (aus der IPK-Genbank)

	Genbank-			züchterischer	
Test-Nr.	Nr.	(Sub)Spezies	Тур	Status	Herkunft
1	BCC118	vulgare	Sommer	Landrasse	Libyen
2	BCC126	vulgare	Sommer	Landrasse	Marokko
3	BCC129	vulgare	Sommer	Landrasse	Marokko
4	BCC131	vulgare	Sommer	Landrasse	Marokko
5	BCC1374	vulgare	Sommer	verbesserte Sorte	Niederlande
6	BCC1376	vulgare	Sommer	verbesserte Sorte	Dänemark
7	BCC1377	vulgare	Sommer	verbesserte Sorte	Frankreich
8	BCC1378	vulgare	Sommer	verbesserte Sorte	Groß-Britannien
9	BCC1382	vulgare	Sommer	verbesserte Sorte	Groß-Britannien
10	BCC1389	vulgare	Sommer	verbesserte Sorte	Irland
11	BCC1390	vulgare	Sommer	verbesserte Sorte	Schweden
12	BCC1391	vulgare	Sommer	verbesserte Sorte	Deutschland
13	BCC1392	vulgare	Sommer	verbesserte Sorte	Dänemark
14	BCC1394	vulgare	Sommer	verbesserte Sorte	Niederlande
15	BCC1404	vulgare	Sommer	verbesserte Sorte	Groß-Britannien
16	BCC1405	vulgare	Sommer	verbesserte Sorte	Groß-Britannien
17	BCC1408	vulgare	Sommer	verbesserte Sorte	Groß-Britannien
18	BCC1412	vulgare	Sommer	verbesserte Sorte	Schweden
19	BCC1420	vulgare	Sommer	verbesserte Sorte	Niederlande
20	BCC1430	vulgare	Sommer	verbesserte Sorte	Frankreich
21	BCC1431	vulgare	Sommer	verbesserte Sorte	Österreich
22	BCC1439	vulgare	Sommer	verbesserte Sorte	Tschechien
23	BCC1450	vulgare	Sommer	verbesserte Sorte	Finnland
24	BCC1452	vulgare	Sommer	verbesserte Sorte	Niederlande
25	BCC1456	vulgare	Sommer	verbesserte Sorte	Russland
26	BCC1458	vulgare	Sommer	verbesserte Sorte	Russland
27	BCC1463	vulgare	Sommer	verbesserte Sorte	Russland
28	BCC1465	vulgare	Sommer	verbesserte Sorte	Ukraine
29	BCC1468	vulgare	Sommer	verbesserte Sorte	Kasachstan
30	BCC1481	vulgare	Sommer	Landrasse	Russland
31	BCC1487	vulgare	Sommer	Landrasse	Russland
32	BCC1488	vulgare	Sommer	Landrasse	Russland
33	BCC1498	vulgare	Sommer	Landrasse	Kirgistan
34	BCC173	vulgare	Sommer	Landrasse	Pakistan
35	BCC190	vulgare	Sommer	Landrasse	Syrien
36	BCC3	vulgare	Sommer	Landrasse	Afghanistan
37	BCC423	vulgare	Sommer	verbesserte Sorte	China
38	BCC447	vulgare	Sommer	verbesserte Sorte	China
39	BCC502	vulgare	Sommer	verbesserte Sorte	China
40	BCC745	vulgare	Sommer	verbesserte Sorte	Nepal
41	BCC806	vulgare	Sommer	verbesserte Sorte	Mexiko
42	BCC852	vulgare	Sommer	verbesserte Sorte	Kanada
43	BCC888	vulgare	Sommer	verbesserte Sorte	Kanda
44	BCC893	vulgare	Sommer	verbesserte Sorte	USA
45	BCC903	vulgare	Sommer	verbesserte Sorte	Kanada
46	BCC907	vulgare	Sommer	verbesserte Sorte	USA
4'/	BCC93	vulgare	Sommer	Landrasse	Irak
48	BCC942	vulgare	Sommer	verbesserte Sorte	USA
49	HOR2800	vulgare	Sommer	Landrasse	Iran
50	HOR2828	vulgare	Sommer	keine Angabe	Iran

Tab. 2.2: 50 Gersten-Akzessionen (aus der IPK-Genbank), die als Mehltau-anfällig beschrieben wurden (G. Haseneyer, persönliche Kommunikation)

2.1.2 Anzucht des Pflanzenmaterials

Die Aussaat für die Einzelblattanalyse und den Komplementationstest mit einem das *Mlo*-Gen enthaltenden BAC-Klon (BAC F15) erfolgte in Plastikpaletten (11 x 7 Vertiefungen), die mit Pikiererde gefüllt wurden. Pro Akzession wurden elf Samen ausgelegt (ein Samenkorn pro Vertiefung).

Die Anzucht erfolgte im Gewächshaus bei konstanten Umweltbedingungen (16h Belichtung, 20°C; 8h Dunkelheit, 17°C).

Die Sorte Golden Promise wurde für Versuche im transienten System verwendet. Die Anzucht erfolgte im Klimaschrank SANYO Biomedical MLR-350 bei konstanten Kulturbedingungen (16h Belichtung, 20°C; 8h Dunkelheit, 20°C).

2.2 Pilzmaterial

2.2.1 Verwendete Pilzisolate

Für die Phänotypisierung der Gerstenakzessionen wurden zwei Isolate (78P und D12-12) des Gerstenmehltaupilzes (*Blumeria graminis* (DC) Speer f. sp. *hordei*) verwendet, die vom Julius-Kühn-Institut in Klein-Machnow zur Verfügung gestellt wurden. Das Virulenzspektrum dieser Isolate ist in Tabelle 2.3 dargestellt. Angegeben sind die Boniturwerte nach Inokulation der Differentialsorten mit dem jeweiligen Isolat (0=resistent; 4=anfällig).

1 ab. 2.5. Virutenzspektrum der Weintaufsblate 761 und D12 12					
Differenzialsorte	Resistenzgen	78P	D12-12		
Alexis	mlo9	0	0		
Amazone	<i>Mlg</i> , U	2	4		
Apex	<i>mlo</i> 11, <i>Mlg</i> , <i>Ml</i> (CP)	0	0		
Aura	<i>MIa</i> 6, <i>MIa</i> 14, <i>MIg</i> , <i>MI</i> (CP)	3	0		
Banteng	<i>MI</i> (Ba)	4	4		
Borwina	<i>MI</i> (BW1,2)	2-3	2		
Camilla	U	2	4		
Dura	<i>MI</i> (Dr)	4	3-4		
Goldi	U, <i>Mla</i> 12, <i>MlLa</i>	3-4	0		
Gunnar	<i>Mla</i> 3, <i>Ml</i> (Tu2)	0	2-3		
Hellas	Не	4	3-4		
Hord. Spontaneum	<i>Mla</i> 16	0	0		
Hord. Spontaneum	<i>Mla</i> 17	1-2	2		
Hord. Spontaneum	<i>Mla</i> 18	0	0		
Hord. Spontaneum	<i>Mla</i> 19	0	0		
Hord. Spontaneum	<i>MIa</i> 20	1-2	0		
Hord. Spontaneum	<i>MIa</i> 26	1-2	0		

Tab. 2.3: Virulenzspektrum der Mehltauisolate 78P und D12-12

Differenzialsorte	Resistenzgen	78P	D12-12
Hord. Spontaneum	MIa27	0	4
Hord. Spontaneum	MIa28	2-3	0
Hord. Spontaneum	MIf	2	1
Hord. Spontaneum	MIj	2-3	2-3
Katharina	U	3	4
Kredit	<i>MI</i> (Kr)	4	2-3
Lerche	Mlg, Ml(CP), Mla7	3	2
Lotta	<i>MI</i> (Ab)	3-4	3
Maresi	<i>Mla</i> 12, <i>Ml</i> (AB), <i>Mlg</i> , <i>Ml</i> (CP)	2-3	3
Marinka	<i>Mlg</i> , <i>Ml</i> (CP), <i>Mla</i> 7	4	2-3
Meltan	U, <i>Mla</i> 13, <i>Ml</i> (Im9), <i>Ml</i> (Hu4)	3	0
Olga	U	4	0
P01	<i>Mla</i> 1	1-2	3
P02	MIa3	1-2	3
P03	<i>MIa</i> 6, <i>MIa</i> 14	4	0
P04 B	<i>MIa</i> 7, U	4	4
P06	<i>MIa</i> 7, <i>MI</i> (LG2)	4	0
P08B	MIa9	4	0
P09	<i>Mla</i> 10, <i>Ml</i> (Du2)	4	0
P10	<i>Mla</i> 12	4	4
P11	<i>Mla</i> 13, <i>Ml</i> (Ru3)	4	0
P12	MIa22	0	3
P13	<i>MIa</i> 23	2	2
P14	MIra	4	3-4
P15	<i>MI</i> (Ru2)	2-3	3
P17	MIK	4	2-3
P18	MInn	4	3
P19	MIp	2-3	3-4
P20	Mlat	2	3-4
P21	<i>M/g</i> , <i>M</i> (CP)	3	3
P22	mlo5	0	0
P23	<i>MI</i> (La)	4	3
P24	MIH	4	3-4
Sissy	<i>Mla</i> 12, <i>Mlg</i> , <i>Ml</i> (CP)	4	3-4
Steffi	<i>MI</i> (St1,2)	1-2	3-4
Teo	MIa7, MIg, MI(CP), MIk, MLa	3	1
Thuringia	<i>MI</i> (St1,2), U	2	3-4
Trumpf	<i>MIa</i> 7, <i>MI</i> (AB)	4	3-4

Fortsetzung von Tab. 2.3: Virulenzspektrum der Mehltauisolate 78P und D12-12

In transienten Versuchen fand auch das Schweizer Gerstenmehltauisolat CH4.8 für die Inokulation Verwendung.

2.2.2 Erhaltung der Pilzisolate

Die Produktion von Gerstenmehltau-Konidiosporen ist, auf Grund der obligat biotrophen Lebensweise des Pilzes, nur auf lebenden Pflanzen möglich. Die stark anfällige Sorte Golden Promise fand für die Erhaltung der Pilzisolate Verwendung. Die Erhaltung erfolgte in einer Percival Pflanzenzuchtkammer I-35 unter konstanten Kulturbedingungen (16h Belichtung, 20°C; 8h Dunkelheit, 20°C). Um eine Durchmischung der Isolate zu verhindern, wurden die mit den verschiedenen Isolaten inokulierten Pflanzen durch Käfige aus Gaze (Maschenweite: 0,1mm) voneinander separiert. Die Erhaltung des Schweizer Isolates CH4.2 erfolgte im Klimaschrank SANYO Biomedical MLR-350 bei konstanten Umweltbedingungen (16h Belichtung, 20°C; 8h Dunkelheit, 20°C).

Die Gerstenmehltauisolate wurden wöchentlich auf sieben Tage alte gesunde Gerstenpflanzen überimpft.

2.3 Software und Datenbanken

In dieser Arbeit wurden folgende Datenbanken, Internetdienste und Computerprogramme verwendet:

- BLAST (Basic Local Alignment Search Tool) gegen verschiedene Datenbanken, um Protein- und Nukleotidsequenzen mit homologen Genen, ESTs (expressed sequence tags) und Proteinen zu vergleichen
 - NCBI (*National Center for Biotechnology Information*)-Datenbanken http://blast.ncbi.nlm.nih.gov/Blast.cgi
 - Computational Biology and Functional Genomics Laboratory http://compbio.dfci.harvard.edu/tgi/cgi-bin/tgi/Blast/index.cgi
 - HarvESTWeb
 http://harvest-web.org/
 - CR-EST http://pgrc.ipk-gatersleben.de/cr-est/index.php
- European barley database enthält Informationen über Akzessionen http://barley.ipk-gatersleben.de/genres/index.php?scp=barley&thm=mat
- Grain Genes wurde genutzt, um Informationen über Lokalisierung von molekularen Markern und QTLs zu erhalten http://wheat.pw.usda.gov/GG2/index.shtml
- Das Programmpaket DNASTAR Lasergene 7 (DNASTAR, Inc., Madison, USA) wurde für Primerdesign (PrimerSelect), Sequenzauswertung mit anschließender SNP-Detektion (SeqMan), Sequenzanalyse (SeqBuilder) und Sequenzalignment (MegAlign) verwendet http://www.dnastar.com/

 Für die Entwicklung von CAPS-Markern für die Kartierung der Kandidatengene wurde das Programm SNP2CAPS (Thiel et al. 2004) verwendet. http://pgrc-35.ipk-

gatersleben.de/portal/page/portal/PG_BICGH/P_BICGH/P_BICGH_TOOLS/P_BICGH_I TOOLS_SNP2CAPS

 Die Kartierung der Kandidatengene erfolgte mit dem Programm Map Manager QTX (Manly et al. 2001)

http://www.mapmanager.org/mmQTX.html

- Die Erstellung von Consensus-Karten aus verschiedener Kartierungspopulationen wurde mit dem Programm JoinMap
 [®] 4 (Van Ooijen 2006) durchgeführt. http://www.kyazma.nl/index.php/mc.JoinMap/
- Die Auswertung der Polyacrylamid-Gele der Mikrosatellitenanalyse erfolgte mit den Programmpaketen GeneScan® und Genotyer® (Applied Biosystems, Foster City, USA) http://www.appliedbiosystems.com/support/software/
- Die Populationsstruktur wurde mit dem Programm structure (Pritchard et al. 2000) berechnet

http://pritch.bsd.uchicago.edu/structure.html

 Zur Berechnung der Kinship-Matrix wurde das Programm SPAGeDi1.2 (Hardy et al. 2002) genutzt.

http://www.ulb.ac.be/sciences/ecoevol/spagedi.html

 Das Programm TASSEL2.0.1 (Bradbury et al. 2007) wurde f
ür die Berechnung der Assoziationen genutzt.

http://www2.maizegenetics.net/index.php?page=bioinformatics/tassel/index.html

- Für die Berechnung der genetischen Diversitätsfaktoren wurde das Programm DnaSP4.50.1 verwendet (Rozas et al. 1995).
 http://www.ub.edu/dnasp/
- Die statistische Auswertung der transienten Experimente wurde mit dem Computerprogramm GraphPad InStat version 3.06, San Diego California USA, verwendet. http://www.graphpad.com
- Die Online-Datenbanken des ISI Web of KnowledgeSM (The Thomson Corporation) und von NCBI PubMed (National Center for Biotechnology Information) wurden f
 ür die Literatursuche genutzt.

http://isiknowledge.com

http://www.ncbi.nlm.nih.gov/sites/entrez?db=PubMed

2.4 Bestimmung des Phänotyps

2.4.1 Einzelblattanalyse

Für die Einzelblattuntersuchung fanden biologische Testschalen (23cm x 23cm) (Schütt, Göttingen) Verwendung, die mit Phytoagarlösung (5g Phytoagar (Duchefa Biochemie B.V. Haarlem, Niederlande), 500ml H₂O, 250µl Benzimidazol Sigma-Aldrich Chemie GmbH, München) (40mg/ml)) befüllt wurden.

Die Einzelblattuntersuchung erfolgte an 14 Tage alten Pflanzen. Pro Akzession wurde das zweite Blatt von bis zu acht Einzelpflanzen geerntet. Das geerntete Blatt wurde in zwei Teile separiert und jeder Teil auf eine Testschale aufgelegt. Die anfälligen Gerstensorten Golden Promise und Ingrid dienten als Positivkontrollen in der Phänotypbestimmung. Neun Blattstücke dieser anfälligen Gerstensorten wurden auf einer Testschale randomisiert aufgelegt. Somit ergaben sich zwei parallele Testschalen, die Blattsegmente identischer Genotypen beinhalteten; jede Testschale wurde mit einem der beiden Isolate inokuliert. Die Infektion erfolgte für jedes Isolat in einer jeweiligen Inokulationsbox. Die Boxen wiesen an vier Seiten ein Loch auf, durch die Mehltausporen von acht sporentragenden Blättern eingeblasen wurden. Die Inokulationsdichte entsprach ca. 10Sporen/mm².

Die inokulierten Blätter wurden unter natürlichem Tag-Nacht-Rhythmus sieben Tage bei einer konstanten Temperatur von 20°C und indirekter Sonneneinstrahlung inkubiert. Nach der Inkubationszeit erfolgte die Bonitur nach dem Schema in Abbildung 2.1 (Schweizer et al. 1995).

Jedes Einzelblatt wurde einer Boniturklasse zugeteilt. Die Berechnung der mittleren befallenen Blattfläche (CMIA=*calculation of mean infected area*) erfolgte nach folgender Formel:

CMIA=(n0 x 2,5 + n1 x 15,5 + n2 x 38 + n3 x 75,5)/N n0=Anzahl Blätter mit Klasse0 bonitiert n1=Anzahl Blätter mit Klasse1 bonitiert n2=Anzahl Blätter mit Klasse2 bonitiert n3=Anzahl Blätter mit Klasse3 bonitiert N=Anzahl aller bonitierter Blätter

(Schweizer et al. 1995).

Abb. 2.1: Boniturschema – Klasseneinteilung nach befallener Blattfläche

2.4.2 Feldversuch

Im Jahr 2008 fand am Standort Bergen/Wohlde bei der Saatzuchtfirma KWS/Lochow die Durchführung eines Feldversuchs statt. 36 Sommergerstenakzessionen, die in der Einzelblattanalyse einen resistenten Phänotyp zeigten, sowie 30 anfällige Sommergerstenakzessionen wurden im Feld getestet. Die Aussaat erfolgte in zwei Reihen zu je 25 Samen der ersten Filialgeneration, die im Gewächshaus im Winter 2006 produziert resistenten Akzessionen wurde. Von den wurden Genotypen von zwei Einzelkornnachkommenschaften analysiert, sowie eine Einzelkornnachkommenschaft von den anfälligen Akzessionen. Die Bonitur erfolgte nach einer Klasseneinteilung von 0 (=resistent) bis 9 (=anfällig) im Wachstumsstadium BBCH30.

Außerdem wurde im Wachstumsstadium BBCH59 die Pflanzenlänge (die Länge des Haupttriebes (vom Grund der Pflanze bis zum Beginn der Ähre)) von acht Einzelpflanzen pro Doppelreihe bestimmt. Die Ergebnisse pro Genotyp wurden gemittelt.

Die Zeiligkeit der Genotypen wurde zusätzlich im Wachstumsstadium BBCH59 ermittelt.

2.4.3 Komplementationstest unter Verwendung eines BAC (*Bacterial Artifical Chromosome*) Klons, der das *Mlo*-Gen enthält

2.4.3.1 Verwendeter BAC-Klon

Blattmaterial von 14 Tage alten Pflanzen diente als Testmaterial. Es wurde von sieben Einzelkornnachkommenschaften pro Genotyp das zweite Blatt geerntet und in zwei Teile geteilt und auf Petrischalen aufgelegt, sodass zwei Petrischalen mit identischem Genotypinhalt vorlagen.

Für den Komplementationstest fand der BAC F15 (Büschges et al. 1997), der unter anderem das *Mlo*-Gen enthält, Verwendung.

Blattsegmente der einen Petrischale wurden mit dem BAC F15 und dem Reportergenkonstrukt pUbiGUS, das für transiente Expression des β -Glucoronidase (GUS)-Gens unter Kontrolle des Mais Ubiquitin-Promotors genutzt wird, beschossen. Die Blattsegmente der anderen Petrischale wurden mit dem Reportergen allein beschossen.

2.4.3.2 Herstellung der Goldsuspension und Beschichtung der Goldpartikel

Für die Herstellung der Goldsuspension wurden 27,5mg Goldpartikel (1µm Durchmesser; Bio-Rad, Hercules, USA) in einem 1,5ml Reaktionsgefäß (Eppendorf, Hamburg) eingewogen. Anschließend wurden die Goldpartikel zweimal mit 1ml H₂O_{bidest} und einmal in einem ml Ethanol (100%) gewaschen. Dazu wurde die Suspension stark gemischt und 20sec im Ultraschallbad behandelt und anschließend zentrifugiert (16100 g, 30sec). Das Goldpellet wurde bei 50°C 10min getrocknet und anschließend in einem ml 50%igen Glyzerin aufgenommen.

Die Beschichtung der Goldpartikel wird im Folgenden beschrieben. Für den Beschuss der Blattsegmente mit dem BAC F15 wurden sieben µg Reportergen-Vektor (pUbiGUS) (Schweizer et al. 1999) mit 14µg BAC F15-DNA gemischt. Für den Beschuss ohne BAC F15 wurde nur der Reportergen-Vektor pUbiGUS verwendet. Zu diesen zwei Ansätzen wurde jeweils 2,4mg Goldsuspension gegeben. Die Gemische wurden mit Ca(NO₃)₂ auf eine Konzentration von 0,5M eingestellt. Die Suspension wurde anschließend 10min bei Raumtemperatur inkubiert und danach zentrifugiert (16100g, 15sec); der Überstand wurde verworfen. Die beschichteten pelletierten Goldpartikel wurden zuerst mit 70%igen Ethanol und anschließend mit 100%igen Ethanol gewaschen. Das Gold wurde in 30µl 100%igen Ethanol aufgenommen.
2.4.3.3 Biolistischer Gentransfer

Für den biolistischen Gentransfer wurde von 14 Tage alten Pflanzen das Sekundärblatt geerntet. Petrischalen wurden mit 0,5% igen Phytoagar (Duchefa Biochemie B.V. Haarlem, Niederlande), der mit 0,17mM Benzimidazol (Sigma-Aldrich Chemie GmbH, München) versetzt war, befüllt. In die Petrischalen wurden sieben Sekundärblätter, mit der adaxiale Seite nach oben, aufgelegt. Auf die Blattenden wurde je ein Magnetstab gelegt, um einen Beschuss auf die vollständige adaxiale Blattseite zu gewährleisten.

Die Partikel-Kanone Model PDS-1000/He, *Biolistic Particle Delivery System* (Bio-Rad, Hercules, USA) diente zur Durchführung des Gentransfers. Dazu wurden pro Schuss sieben (in 96%igen Ethanol gereinigte) Makrocarrierscheiben verwendet. Vier µl der plasmidbeschichteten Goldpartikel wurden auf jede Makrocarrierscheibe aufgetragen. Eine Zerreißscheibe (900 psi, Bio-Rad, Hercules, USA), die zuvor in 96%igen Ethanol gereinigt wurde, wurde in den Sprühkopf eingelegt. Anschließend wurde der Hepta-Adapter mit den beschichteten Macrocarrierscheiben in die Partikel-Kanone eingelegt; es folgten das Stoppgitter (Bio-Rad, Hercules, USA) und die zu transformierenden Blätter. In der Transformationskammer der Partikel-Kanone wurde mit Hilfe einer Membranpumpe ein Vakuum von 27mm Hg angelegt und ein Überdruck von ca. 1000kPa auf die Zerreißscheibe ausgeübt. Bei einem Druck von über 900 psi wurde die Zerreißscheibe zerstört, die Makrocarrierscheiben wurden gegen das Stoppgitter gepresst und die beschichteten Goldpartikel wurden in die Epidermiszellen der Blätter befördert.

2.4.3.4 Inokulation mit *Blumeria graminis* f.sp. *hordei*

Nach dem Beschuss wurden die Blätter 24 Stunden unter natürlichem Tag-Nacht-Rhythmus bei einer konstanten Temperatur von 20°C und indirektes Tageslicht inkubiert. Nach dieser Zeit wurden sie auf biologische Testschalen (23cm x 23cm) (Schütt, Göttingen) überführt, die mit Phytoagarlösung (5g Phytoagar (Duchefa Biochemie B.V. Haarlem, Niederlande), 500ml H₂O, 250µl Benzimidazol Sigma-Aldrich Chemie GmbH, München) (40mg/ml)) befüllt waren. Im direkten Anschluss erfolgte die Inokulation mit dem Isolat D12-12 bei einer Inokulationsdichte von ca. 60Sporen/mm². Bis zur Färbung wurden die inokulierten Blätter in den Testschalen bei konstanten Umweltbedingungen (natürlicher Tag-/Nacht-Rhythmus; 20°C; indirektes Tageslicht) inkubiert.

2.4.3.5 GUS-Färbung und Entfärbung der Blattsegmente

Die GUS-Färbung (Tabelle 2.4) wurde ca. 48 Stunden nach der Inokulation durchgeführt. Dazu wurden die Enden der Blattsegmente abgeschnitten und die Blattabschnitte in die GUS-Färbelösung überführt. Die Blätter wurden in einem Exikator unter Vakuum mit der Färbelösung infiltriert und anschließend 24 Stunden bei 37°C inkubiert.

seizang der GOS Faroerosung
5-Bromo-4-chloro-3-indoxyl-beta-D-glucuron-Säure
(X-Gluc)
Methanol
Na2H2PO4
Na2HPO4
Na-EDTA
Triton-X 100
Kaliumhexacyanoferrat (II)-Trihydrat

Tab. 2.4: Zusammensetzung der GUS-Färbelösung

Nach der Inkubationszeit wurden die Blattsegmente aus der GUS-Färbelösung in eine Trichloressigsäurelösung (Tabelle 2.5) überführt. Dieser Schritt stoppt die Färbereaktion und erhöht den Kontrast bei der mikroskopischen Auswertung.

Tab. 2.5: Zusammensetzung der TrichloressigsäurelösungTrichloressigsäurelösung7,5%(w/v)Trichloressigsäure

Methanol

2.4.3.6 Mikroskopische und statistische Auswertung

50%(v/v)

Die mikroskopische Auswertung erfolgte an dem Mikroskop Axioplan 2 (Carl Zeiss AG, Jena, Deutschland) bei 200facher Vergrößerung. Es wurden die GUS-gefärbten Epidermiszellen, sowie die Haustorien enthaltenden GUS-gefärbten Epidermiszellen gezählt und der Anfälligkeitsindex berechnet.

Anfälligkeitsindex = \sum GUS-gefärbter Epidermiszellen mit Haustorium / \sum aller GUSgefärbter Epidermiszellen Die sieben Blätter eines Schusses wurden ausgewertet und die Ergebnisse addiert und der Anfälligkeitsindex pro Schuss berechnet.

Diese Versuchsanordnung ergab für jeden Genotyp zwei Werte, zum einen der Anfälligkeitsindex nach Beschuss mit dem BAC F15 und zum anderen der Anfälligkeitsindex nach Beschuss ohne den BAC F15. Diese beiden Werte wurden verglichen, um eine Aussage über das Vorhandensein des *mlo*-Resistenzgens in den Akzessionen zu treffen.

Die DAB (3,3-diaminobenzidine)-Methode (Thordal Christensen et al. 1997) wurde verwendet, um eine H_2O_2 in situ Produktion in mehltauinfizierten Gerstenzellen zu identifizieren. Eine Lösung von 1% (w/v) DAB und H_2O wurde auf einen pH-Wert von 4,0 eingestellt und die DAB-Lösung wurde in die Blattzellen 18 Stunden nach *Bgh*-Inokulation induziert.

2.5 Isolierung genomischer DNA aus Pflanzenmaterial

Aus Blattmaterial von Einzelkornnachkommenschaftslinien der ersten Filialgeneration ausgewählter Gerstenakzessionen wurde genomische DNA isoliert. 50mg Blattmaterial des zweiten Blattes wurde geerntet und in Plastikröhrchen, die im 96er Format (8 x 12) angeordnet waren, gesammelt. Zu jeder Blattprobe wurde eine Metallkugel gegeben und anschließend in flüssigem Stickstoff eingefroren. Die Blattproben wurden in der Schwingmühle MM 300 (Retsch, Haan) pulverisiert. Aus dem Blattprobenpulver wurde die genomische DNA unter Verwendung des "DNeasy 96 Plant Kit" (Qiagen GmbH, Hilden) isoliert. Die genomische DNA-Isolierung erfolgte nach den Angaben des Herstellers.

2.6 Isolierung von RNA aus Pflanzenmaterial und cDNA-Synthese

Sieben Tage altes Blattmaterial der Gerstensorten Ingrid, Ingrid BC*mlo5* und Ingrid BC*mlo3* wurden mit dem *Bgh*-Isolat CH4.8 inokuliert. Nach 12 Stunden wurde sowohl von den inokulierten Pflanzen als auch von den nicht inokulierten Kontrollpflanzen (Ingrid, Ingrid BC*mlo5* und Ingrid BC*mlo3*) Blattmaterial geerntet und die Epidermis an der Blattunterseite vom Rest des Blattes abgelöst. Die Isolierung von gesamt-RNA erfolgte aus fein gemörserten Material nach der Methode von Chomczynsky et al. (1987); für die Epidermisund Restblattproben der verschieden behandelten Genotypen wurde die gesamt-RNA getrennt isoliert. Die isolierte Gesamt-RNA wurde einer DNAse-Behandlung mit dem DNA- *free*TM Kit (Ambion, Austin, USA) nach Angaben des Herstellers unterzogen. Die cDNA-Synthese erfolgte aus einem μ g DNAse-behandelter RNA unter Verwendung des *iScript cDNA synthesis* Kit (Bio-Rad CO., München) nach Angaben des Herstellers.

2.7 Bestimmung der Populationsstruktur mit Mikrosatelliten (SSR)-Marker

2.7.1 Verwendete Mikrosatelliten-Marker

Die Populationsstruktur wurde mit Hilfe von 46 Mikrosatelliten- bzw. SSR (*simple sequence repeats*) Markern (Stein et al. 2007) bestimmt. Die SSR-Motive und Primersequenzen sind in Tabelle 2.7 dargestellt. Die SSR-Marker wurden in neun Mischungen (Grit Haseneyer, persönliche Kommunikation) verwendet.

2.7.2 Durchführung und Bedingungen der PCR-Reaktion

Die SSR-PCR-Analyse erfolgte in einem 5µl Ansatz:

Tab. 2.6: PCR-Ansatz für SSR-Analyse

Volumen	Reagenz
0,5µl	genomische DNA (30ng/µl)
0,5µl	forward Primer (10ng)
0,5µl	reverse Primer (10ng)
2,5µl	Multiplex PCR Mix (Qiagen GmbH,
	Hilden)
1,5µl	H ₂ Obidest

Die SSR-PCR-Reaktion erfolgte in einem Gene AMP® PCR-System 9700 (Applied Biosystems, Foster City, USA) unter folgendem PCR-Programm:

95°C	15min	
94°C	30sec	J
60°C	30sec	> 40 Zyklen
72°C	15sec	J
72°C	10min	

Marker-		Frag-						
Name	Markierung	ment	Motiv	5'-Primer	Sequenz 5'-Primer	3'-Primer	Sequenz 3'-Primer	Chr.
GBM1054	FAM	176	CCG	ESSR417	5'-ATC TCC CTC CTA CCC CGA G-3'	ESSR418	5'-ACA CCC TTG ATG GAG GTC AG-3'	5H
GBM1516	FAM	100	СТ	GBM1516_f	5'-CCC TCT CCT TTC CCT ATC GT-3'	GBM1516_r	5'-GTG GGG TTG ATG TTC CTG TT-3'	7H
GBM1047	HEX	210	AGC	ESSR305	5'-GCA CGA CGG TAA CAG GTT TT-3'	ESSR306	5'-CGG AGT ACC TGA GCC TTC TG-3'	2H
GBM1218	HEX	112	GA	ESSR1083	5'-TGA CTG GCA CTC ACA ACA CA-3'	ESSR1084	5'-AGC GCT TCC ATC CTT GAC TA-3'	2H
GBM1020	TAMRA	245	AC	ESSR131	5'-CAG ACA AAC AGC AAC CCA GA-3'	ESSR132	5'-GAT TCT TTA CGG CGA ATG GA-3'	4H
GBM1419	TAMRA	161	CTCAT	ESSR1485	5'-CGT CAC GCC ACT CAC CTC-3'	ESSR1486	5'-CTT GAA GTC GGA ACC CAT GT-3'	7H
GBM1021	FAM	254	AC	ESSR137	5'-GGT TCT GAT CAA GGA ACC TTT T-3'	ESSR138	5'-TCA AAT ATA CGC CCT CCG TC-3'	6H
GBM1026	FAM	213	AC	ESSR149	5'-AGG CTC TTC ACC GTC TCG TA-3'	ESSR150	5'-CAT CAC CGC TTG GTT CTA CA-3'	5H
GBM1015	HEX	228	ACAT	ESSR115	5'-TTG TTG GAA CAT ACA AAC ATG C-3'	ESSR116	5'-GTT CCG TGT GAA TTA GCG GT-3'	4H
GBM1031	HEX	294	AG	ESSR177	5'-CAG TTG GCT TCT ACC CCA AA-3'	ESSR178	5'-GCT ACG ACC CAC AAC AAC AA-3'	3Н
GBM1176	TAMRA	285	AT	ESSR999	5'-TAT ACA TCA GCG GGC CTT TT-3'	ESSR1000	5'-CTC CAA CCT CGC AAA GAG TC-3'	5H
GBM1029	TAMRA	228	AG	ESSR165	5'-AGA ACC AAC AAG CCC TTC CT-3'	ESSR166	5'-AGA AGA CGC GAT CCT CTT GA-3'	$1\mathrm{H}$
GBM1043	FAM	210	AAC	ESSR229	5'-ACC AGT TCG CAT CAT CAC AA-3'	ESSR230	5'-TAC GGC TCC AAG AAC GAG AT-3'	3H
GBM1064	FAM	294	AGGG	ESSR583	5'-TAA AGA ATT GCT GGC TGG CT-3'	ESSR584	5'-GAA GGT GTT TTT GTG CCC AT-3'	5H
GBM1060	HEX	208	GGT	ESSR561	5'-CGG GGG AGA CTG GAT TTT AT-3'	ESSR562	5'-CTC CTC CAG AGG AAG CTC GT-3'	7H
GBM1035	HEX	282	CT	ESSR199	5'-ACT GAA GAG TGA AAA CGG CG-3'	ESSR200	5'-GGC GTA CCA CCA GTA CAT CC-3'	2H
GBM1075	TAMRA	300	GT	ESSR656	5'-AAC AAG AAG CCC ACC ATC AC-3'	ESSR660	5'-ATC CAA GGT GGC AGT CAA TC-3'	6H
GBM1003	TAMRA	199	CTT	ESSR25	5'-GCC GAC CAG ATC ATC AGA TT-3'	ESSR26	5'-TCG AAG ATT CAG TAG CGA CG-3'	4H
GBM1007	FAM	200	AC	ESSR41	5'-GTT CCG GTT TCT TTC GGT C-3'	ESSR42	5'-GTT AGC TAT GGT GCG GTG TG-3'	1H
GBM1404	FAM	245	TATG	ESSR1455	5'-CAA GCC AGC AAA CAA ACA AA-3'	ESSR1456	5'-GGG AGT ACG TGT TGC TCC AT-3'	6Н
GBM1280	HEX	259	CTT	ESSR1207	5'-CTT CTT CTT CTT GTT GGG CG-3'	ESSR1208	5'-AAG GGA TCA GTT TGG TTC CC-3'	3Н
GBM1461	TAMRA	210	CA	GBM1461_f	5'-AAA CCA TGC ATT CTT CAG AGA-3'	GBM1461_r	5'-TTT AGA CCG ACC CGA TGA AG-3'	1H
GBM1464	FAM	153	AT	GBM1464_f	5'-ATA GCC GTG CTC TTG CTC AT-3'	GBM1464_r	5'-CAA GAC CAC CAT TTG CAT TG-3'	7H
GBM1036	HEX	153	СТ	ESSR201	5'-CGA ATC AAT ACA AGG ACG CC-3'	ESSR202	5'-CCA GCA GCA ACA TTC AAA GA-3'	2H
GBM1002	TAMRA	194	CCT	ESSR19	5'-TCC AAA CAA ACA GAC TCG CA-3'	ESSR20	5'-CCC AGT AGC TCT TCT GCA CC-3'	1H

Marker-	Markianana	Frag-	Motiv	5' Drimor	Soquenz 5' Drimer	2! Drimor	Soquanz 2! Primar	Chr
	FAM	171						111
GBM1013	FAM	1/1	CIG	ESSR95	5-ICC CIG AIC CAI GIT III CC-3	ESSR96	5'-GAT GCC AAG TIC TIC TIC GC-3'	IH
GBM1033	FAM	280	AT	ESSR193	5'-AGC AAA IGI IGA GCA ACG G-3'	ESSR194	5'-ACT TCA TAG GGC GGA GGT CT-3'	/H
GBM1405	HEX	220	CGCA	ESSR1457	5'-TAC ACG CAC TGA AAA GAC GG-3'	ESSR1458	5'-CTC GCT GCT GAG TTT GTC TG-3'	3H
GBM1208	HEX	145	AG	ESSR1063	5'-CTA CCG AGC TCC TCC TCC TC-3'	ESSR1064	5'-GGC CTC CTT CTT GTC GTA GA-3'	2Н
GBM1110	TAMRA	238	AAG	ESSR867	5'-CAC CGA AGA AAA TCC ACC AT-3'	ESSR868	5'-CAC GCA AGC TTA GAA CCT CC-3'	3Н
GBM1061	TAMRA	330	GGT	ESSR563	5'-CTG AGA TCC CGA ACA CCA CT-3'	ESSR564	5'-TTG TCG TCC ACG CTC ACT AC-3'	1H
GBM1003	HEX	199	CTT	ESSR25	5'-GCC GAC CAG ATC ATC AGA TT-3'	ESSR26	5'-TCG AAG ATT CAG TAG CGA CG-3'	4H
GBM1256	HEX	350	GA	ESSR1159	5'-GCC TCG ATC TGT GGA AAG AA-3'	ESSR1160	5'-GTC TCG GAG AAG GTG ACG AT-3'	6H
GBM1483	TAMRA	172	GCG	GBM1483_f	5'-CAG TGA TAT GGA CTA CGG CG-3'	GBM1483_r	5'-CTT GTT CTC CAC CTC GAA GC-3'	5H
GBM1221	TAMRA	150	AC	ESSR1089	5'-ACC AGC AAT CCA AGT TAC GG-3'	ESSR1090	5'-TGC CTT GGT CTT GGT GTG TA-3'	4H
GBM1018	FAM	265	CCG	ESSR125	5'-CTG CAC ACA CAC ACC CTA GC-3'	ESSR126	5'-CCG TAC TTT GAG AAG AGG CG-3'	4H
GBM1334	FAM	130	GGC	ESSR1315	5'-CCT CTT CCG AAT CCA TCA AA-3'	ESSR1316	5'-GAG TTG GGG ACT TTG CTG AC-3'	1H
GBM1326	HEX	150	CTT	ESSR1299	5'-AGA GCA CAA CCC TTG GAG G-3'	ESSR1300	5'-GTA GAG GCA GCC CTT CTC CT-3'	7H
GBM1212	HEX	106	AGG	ESSR1071	5'-TGT TGC AAG AAG CAA GGA TG-3'	ESSR1072	5'-GCG CTT ACT CTC TCG TCG TC-3'	6H
GBM1008	TAMRA	182	AAC	ESSR47	5'-CAG CAA TGG ACA CTG AAT CAA-3'	ESSR48	5'-GTC GAA GGC TAT GTA GGC CC-3'	6H
GBM1363	TAMRA	130	AGG	ESSR1373	5'-AAG AAG GCC AAG CTG AGA CA-3'	ESSR1374	5'-CCT CGA TAG GCT CTG TCC TG-3'	5H
GBM1063	FAM	206	ACAT	ESSR579	5'-CGG TAC CAA TTC TTT GAT TAC CA-3'	ESSR580	5'-TCC AGT CTT CGC ATC ATC TG-3'	6H
GBM1413	FAM	150	TCATA	ESSR1473	5'-GGG TGA TTT CCC AGG TTT TT-3'	ESSR1474	5'-TTG AGA AAA CCA CAC CCA CA-3'	3Н
GBM1323	HEX	268	GCC	ESSR1293	5'-GCT CTC CAG GGT TCG TTT C-3'	ESSR1294	5'-CAC CGT CTT GCA GTT GAG AC-3'	4H
GBM1459	TAMRA	161	ACAT	GBM1459_f	5'-AAC ACA TCC ATA CTT CCC CG-3'	GBM1459_r	5'-AGC TGA ATA AAT GCC CAT GC-3'	2H
	TAMRA	279	TAGA	GBM1501 f	5'-TGT GGA CAG TCA AAC ACG CT-3'	GBM1501 r	5'-AAG GAG CAC CTG AAA AGC AA- 3'	4H

2.7.3 Polyacrylamid-Gelelektrophorese (PAGE)

Die Auftrennung der PCR-Produkte erfolgte auf einem Polyacrylamidgel im ABI PRISM® 377 DNA Sequencer (Applied Biosystems, Foster City USA). Als Laufpuffer wurde 1 x ABI TBE Puffer verwendet, der aus 10 x ABI TBE Puffer (vgl. Tabelle 2.8) verdünnt wurde.

Tab. 2.8: 1	0 x ABI TBE Puffer (pH:8,3)
Volumen	Reagenz
216,0g	Tris (Invitrogen, Carlsbad,
	USA)
110,0g	Borsäure (Merck, Darmstadt)
14,8g	EDTA
2,01	H ₂ Obidest

Es wurden 0,2mm dicke Polyacrylamidgele in Glasplatten mit den Maßen 25,0cm x 25,5cm für die Analyse verwendet. Die Gel-Zusammensetzung ist in Tabelle 2.9 beschrieben:

Tab. 2.9: Z	Tab. 2.9: Zusammensetzung des Polyacrylamidgels					
Volumen	Reagenz					
4,3ml	Harnstoff (50%)					
1,8ml	PAGE Plus (40%) (Ameresco, Solon,					
	USA)					
1,2ml	10 x TBE					
7µl	TEMED					
70µl	APS (10%)					
3,93ml	H ₂ Obidest					

satzung das Palvaar

Zum Auftragen der PCR-Proben wurde ein Ladepuffer/Standard-Mix benötigt, der sich wie folgt zusammensetzt:

Ladepuffer-Stammlösung:	200µl ABI-Stammlösung Ladepuffer				
	(25mM EDTA pH8, 100mg/ml Blue dextran (Sigma-Aldrich				
	Chemie GmbH, München))				
	800µl Formamid (Sigma-Aldrich Chemie GmbH, München)				
Ladepuffer / Standard-Mix:	450µl Ladepuffer-Stammlösung				
	30µl Standard MegaBace ET 400-Rox (Amersham,				
	Buckinghamshire, UK)				

Die PCR-Produkte wurden mit H₂O_{bidest} um den Faktor 100 verdünnt. Zwei µl verdünntes PCR-Produkt wurden mit 2µl Ladepuffer/Standard-Mix versetzt und 5min bei 95°C

denaturiert. Die Proben wurden bis zum Auftragen auf das Polyacrylamidgel auf Eis gelagert.

2.7.4 Auswertung der Polyacrylamid-Gele

Die Auswertung der Polyacrylamid-Gele erfolgte mit den software-Paketen GeneScan® und Genotyper® (Applied Biosystems, Foster City USA) nach Angaben des Herstellers. Aus der Auswertung resultierende Bandengrößen der verschiedenen SSR-Marker wurden für die Berechnung der Populationsstruktur verwendet.

2.7.5 Berechnung der Populationsstruktur (Q-Matrix)

Die Berechnung der Populationsstruktur wurde mit dem Computerprogramm structure2.1 (Pritchard et al. 2000) durchgeführt. Im Folgenden wird das verwendete Parameterset beschrieben. Es wurde eine Länge von "Burnin" Periode von 100000 ausgewählt und die "Anzahl an MCMC Wiederholungen nach der Burnin-Periode" auf 500000 festgesetzt. Die Auswahl fiel auf das "admixture Model" und die "Allel-Frequenzen" wurden als "korreliert" festgesetzt. Im erweiterten Parameterset wurde festgelegt, dass die Wahrscheinlichkeit der Daten für die Abschätzung von K (=Anzahl an Untergruppen) berechnet und die Q-Tabelle ausgegeben werden sollte. Die Berechnung wurde für eine Anzahl an Untergruppen von eins bis zehn Wiederholungen pro Berechnung festgesetzt.

Die Bandengrößen der Mikrosatelliten pro Genotyp fanden für die Berechnung der Populationsstruktur Verwendung. Fehlende Werte wurden mit "999999" gekennzeichnet. Die Berechnung der Anzahl an Untergruppen innerhalb der Population wurde nach Evanno et al. 2005 durchgeführt.

2.7.6 Berechnung der *kinship*-Matrix (k-Matrix)

Zur Berechnung der *kinship*-Matrix wurde das Computerprogramm SPAGeDi1.2 (Hardy et al. 2002) verwendet. Das Programm wurde nach Angaben der Entwickler benutzt. Es wurde der *kinship*-Koeffizient nach Ritland (Ritland 1996) berechnet. Zur Berechnung der *kinship*-Matrix wurden die Bandengrößen der Mikrosatelliten pro Genotyp verwendet. Fehlwerte wurde mit "0" gekennzeichnet. Folgendes Parameterset wurde für die Berechnung der *kinship*-Matrix verwendet. Als Statistik für die Einzelebene-Analyse wurde der *kinship*-Koeffizient nach Ritland (Ritland 1996) ausgewählt; die Berechnungsoptionen wurden als Benutzung einer Matrix für die Bestimmung der paarweisen-räumlichen Distanzen und

genetischen Koeffizienten ausgewählt; das Format der paarweisen-räumlichen und genetischen Distanzen wurde in Matrix- und in Spaltenform ausgegeben, wobei nur die Berechnungen aller Mikrosatellitendaten in Kombination (multilokus) verwendet wurden.

2.8 Resequenzierung von Kandidatengenen

2.8.1 Auswahl der Kandidatengene

Die in der Assoziationsstudie untersuchten Kandidatengene, wurden aufgrund von TIGS (*transient induced gene silencing*)-Effekten (Douchkov et al. unveröffentlicht), pathogeninduzierter Expression (Zierold et al. 2005, Himmelbach et al. unveröffentlicht) und Hinweisen aus der Literatur ausgewählt. Die untersuchten Kandidatengene sind in Tabelle 2.10 unter Angabe des Gennamens, der Akzessionsnummer und der Sequenzinformation der Primer für die Resequenzierung aufgelistet. Die Primersequenz besteht aus zwei Teilen. Der rot markierte Sequenzbereich der 5'- Primer bildet die komplementäre Sequenz zum T3-Sequenzierprimer; der rot markierte Bereich des 3'-Primer formt die Bindestelle für den T7-Sequenzierprimer. Schwarz markierte Sequenzbereiche der Primer sind die genspezifischen Bindestellen der Primer für das jeweilige Kandidatengen.

Akzessions-	Kandidatengen	5'-Primer	Sequenz 5'-Primer	3'-Primer	Sequenz 3'-Primer
Nr:					
CA023817	ACC-oxidase	ACC oxidase fl	5'-AAA AAT TAA CCC TCA CTA AAG GGC AGA GAA GCC ATA GAG CAG CAA CC-3'	ACC oxidase r1	5'-AAA TAA TAC GAC TCA CTA TAG GGG AAG GTG CTC TCC CAG TCC AG-3'
AL511111	ACC-synthase	ACC synthase fl	5'-AAA AAT TAA CCC TCA CTA AAG GGG CGA CGG CCA CGG CGA GAA CT-3'	ACC synthase r1	5'- <mark>AAA TAA TAC GAC TCA CTA TAG GG</mark> C TGG CCT TCC ACC CCC TCA CCT G-3'
		ACC synthase f2	5'-AAA AAT TAA CCC TCA CTA AAG GGG TGC CCA CGC CTT ACT ACC C-3'	ACC synthase r2	5'- <mark>AAA TAA TAC GAC TCA CTA TAG GG</mark> G CAG CAG CTT CAC CCC CGA CCT C-3'
Z26322	Alanine Aminotransferase	Alanin Aminotransferase fl	5'-AAA AAT TAA CCC TCA CTA AAG GGT GTG AGT ATG CTG TGC GTG GAG AG-3'	Alanin Aminotransferase r1	5'-AAA TAA TAC GAC TCA CTA TAG GGT GGC TAT GGC TGT ATG CTC CTG TTG-3'
		Alanin Aminotransferase f2	5'-AAA AAT TAA CCC TCA CTA AAG GGG GAT TCC CTG CTA ATG CTG ATG AC-3'	Alanin Aminotransferase r2	5'- <mark>AAA TAA TAC GAC TCA CTA TAG GG</mark> C CAC CTC TTT TAC CAC ACT CAC CA-3'
Anonymisiert	Alpha-beta-Hydrolase	Hydrolase f	VERTRAULICH (weitere Informationen: schweiz@ipk-gatersleben.de)	Hydrolase r	VERTRAULICH (weitere Informationen: schweiz@ipk-gatersleben.de)
AJ308488	AOC	AOC f2	5'-AAA AAT TAA CCC TCA CTA AAG GGG ACC TCG TCC CCT TCA CCA ACA-3'	AOC r2	5'- <mark>AAA TAA TAC GAC TCA CTA TAG GG</mark> C AGC TAG TCA GTG AAG TTG TTG AGG CAT-3'
AJ250864	AOS	AOS fl	5'-AAA AAT TAA CCC TCA CTA AAG GGC TCC ACC GTC GTC CGC ATC AAC-3'	AOS r1	5'-AAA TAA TAC GAC TCA CTA TAG GGG AGG CCG CCG TAG CTG TTG AAG AC-3'
		AOS f2	5'-AAA AAT TAA CCC TCA CTA AAG GGC TGC TGT TCG CCA CCG TCT TC-3'	AOS r2	5'-AAA TAA TAC GAC TCA CTA TAG GGC TGC CCT GCG TTG ATC CCT TTG-3'
AJ534447	Apoplastic invertase	Apoplastic Invertase f2	5'-AAA AAT TAA CCC TCA CTA AAG GGC AGG CTG ACG TGG AGG TGA G-3'	Apoplastic Invertase r2	5'- <mark>AAA TAA TAC GAC TCA CTA TAG GG</mark> C CCT TGG CTA TGT CAG TGT CA-3'
X56136	Aspartate protease gene	AP 1 f	5'-AAA AAT TAA CCC TCA CTA AAG GGA GTG ATC CTG TTT TCT CGT TCT GG-3'	AP 1 r	5'- <mark>AAA TAA TAC GAC TCA CTA TAG GG</mark> T GGG GCC AGC AAG CAG TGA-3'
		AP 2 f	5'-AAA AAT TAA CCC TCA CTA AAG GGG ATT GGT GCG GCT GGG GTA G-3'	AP 2 r	5'- <mark>AAA TAA TAC GAC TCA CTA TAG GG</mark> G CAC GGA GGC CAT TTG ATT TC-3'
contig8860	ATP-dependent RNA helicase	WIR1cuf	5'-AAA AAT TAA CCC TCA CTA AAG GGA TGC ACC AGG AAA CGG AGA AAG-3'	WIR1cur	5'-AAA TAA TAC GAC TCA CTA TAG GGC CGA TCA GGT GGT GGT GGA G-3'
Z34917	BAS1	BAS 1.1 f	5'-AAA AAT TAA CCC TCA CTA AAG GGC GTG TTC GAC CAG GAG TTC ATC-3'	BAS 1.1 r	5'- <mark>AAA TAA TAC GAC TCA CTA TAG GG</mark> C AGT TGG GCA GAC GAA GGT G-3'
		BAS 1.2 f	5'-AAA AAT TAA CCC TCA CTA AAG GGC AAC CTT GGT ATT GGC CGT AGT G-3'	BAS 1.2 r	5'-AAA TAA TAC GAC TCA CTA TAG GGC TTC ATC GAC TTT TCC CCA GGT T-3'
AJ290421	BAX-Inhibitor1	BAX fl	5'-AAA AAT TAA CCC TCA CTA AAG GGG CTT TGC ACT GGC CTC ATC TG-3'	BAX r1	5'- <mark>AAA TAA TAC GAC TCA CTA TAG GG</mark> G TCA AAG TCT ATG GCA AGC TCA ATC A-3'
		BAX f2	5'-AAA AAT TAA CCC TCA CTA AAG GGC ATC GCC TTT GGG TGC TTC TC-3'	BAX r2	5'-AAA TAA TAC GAC TCA CTA TAG GGT CGG ACG AGG ACG GCA ACA-3'
L27349	Calreticulin	Calreticulin fl	5'-AAA AAT TAA CCC TCA CTA AAG GGC AGC AAC AAG GAC AAG ACA CTC G-3'	Calreticulin r1	5'- <mark>AAA TAA TAC GAC TCA CTA TAG GG</mark> G GAA GAA TAT CCC AGT GCT CGT AGA-3'
		Calreticulin f2	5'-AAA AAT TAA CCC TCA CTA AAG GGG GAT GTG CCT TGC GAG ACT G-3'	Calreticulin r2	5'-AAA TAA TAC GAC TCA CTA TAG GGC CAT CTT CCT CAT CAT CCC AAT CC-3'
rbaal22m22	chloroplast inner envelope membrane polypeptide	WIR1bof	5'-AAA AAT TAA CCC TCA CTA AAG GGA GCC CCA AGC TCA AGG TCG TC-3'	WIR1bor	5'- <mark>AAA TAA TAC GAC TCA CTA TAG GG</mark> C ATC CTT GAA CCC TGC CTT TGT G-3'
TC140490	EDS1	EDS1.1 f	5'- <mark>AAA AAT TAA CCC TCA CTA AAG GG</mark> C TGC TGC TGC ACA ATG GGA GAA G-3'	EDS1.1 r	5'- <mark>AAA TAA TAC GAC TCA CTA TAG GG</mark> G ATC CTC GAA TGA TTT GCC GTT G-3'
		EDS1.2 f	5'-AAA AAT TAA CCC TCA CTA AAG GGG AAA GAC AGG GTG GGT AAA CTC G-3'	EDS1.2 r	5'- <mark>AAA TAA TAC GAC TCA CTA TAG GGC</mark> GAC GCG GAC CTG TGC TG-3'

Akzessions-	Kandidatengen	5'-Primer	Sequenz 5'-Primer	3'-Primer	Sequenz 3'-Primer	Fc
Nr:						orts
CA020732	Ethylene forming enzyme (HZ37G24)	HZ37G24 Ethylene f	5'-AAA AAT TAA CCC TCA CTA AAG GGC TGG CCA AGC TAC TCG ATT TAC AC-3'	HZ37G24 Ethylene r	5'-AAA TAA TAC GAC TCA CTA TAG GGG CCT CGG TCT TTT CTC ATC CAC-3'	etzu
CB880678	FMO1	FMO1 f2	5'-AAA AAT TAA CCC TCA CTA AAG GGG AGG GGA TGG TGG GAT GTA TGC T-3'	FMO1 r2	5'-AAA TAA TAC GAC TCA CTA TAG GGC CAG TCT TCC TTC TCG GGT TGC-3'	ng
contig16126	Galactosyltransferase (O. s.)	contig16126f	5'-AAA AAT TAA CCC TCA CTA AAG GGG CTC CTC GTG TTT GCA TAG TCA TC-3'	contig16126r	5'- <mark>AAA TAA TAC GAC TCA CTA TAG GG</mark> C GGC TGC GTG GAC AAC TAC TTC-3'	von
contig23773	Glutaredoxin-C1 precursor	HO05A19dof	5'-AAA AAT TAA CCC TCA CTA AAG GGC TAG GGG GAA GGA GAT GGA GAA G-3'	HO05A19dor	5'-AAA TAA TAC GAC TCA CTA TAG GGT GGG ACA TTG GGT AAC ACC TTG AC-3'	Tat
AB207242	Glutathione-S-transferase	Glutathion-S- transferase fl	5'-AAA AAT TAA CCC TCA CTA AAG GGG CTC CAA CCC GGT CCA CAA G-3'	Glutathion-S- transferase r1	5'- <mark>AAA TAA TAC GAC TCA CTA TAG GG</mark> C GTA GAC CTT CTC GGG CGA GTA GAG-3'	.2 .2
HvCeb0009B15r2	Helix-loop-helix DNA- binding domain containing protein	HO05A19aof	5'-AAA AAT TAA CCC TCA CTA AAG GGG AGA GCC CCG GTG AGG TTA TG-3'	HO05A19aor	5'- <mark>AAA TAA TAC GAC TCA CTA TAG GG</mark> C TGT ACA CGC AAG TCC TGA ATG G-3'	10: K
Anonymisiert	Transkriptionsfaktor	Transkript fl	VERTRAULICH (weitere Informationen: schweiz@ipk-gatersleben.de)	Transkript r1	VERTRAULICH (weitere Informationen: schweiz@ipk-gatersleben.de)	and
CD053985	HO02M14	HO02M14 f1	5'-AAA AAT TAA CCC TCA CTA AAG GGC ATG CTG GCG GTG CTG GAG-3'	HO02M14 r1	5'-AAA TAA TAC GAC TCA CTA TAG GGG ACA GCT ATG GCG ATG AGG TTG AC-3'	idate
		HO02M14 f2	5'-AAA AAT TAA CCC TCA CTA AAG GGG CTT CAG CCG CAC CAT CTA CAG-3'	HO02M14 r2	5'- <mark>AAA TAA TAC GAC TCA CTA TAG GG</mark> G AGT TCT GGG ACG GCG GGT-3'	enge
CD053970	HO02P09	HO02P09 f1	5'-AAA AAT TAA CCC TCA CTA AAG GGA CAT GGT GCC TTG AAA CGA AAA C-3'	HO02P09 r1	5'- <mark>AAA TAA TAC GAC TCA CTA TAG GG</mark> C TAT GCT TCA AGG CTG GAG AGG AC-3'	me
		HO02P09 f2	5'-AAA AAT TAA CCC TCA CTA AAG GGC AGT GGG AAG CTG AAT GGT GTA G-3'	HO02P09 r2	5'- <mark>AAA TAA TAC GAC TCA CTA TAG GG</mark> C TAT CAT CCT GGC TGG TGC TGA G-3'	für /
CD058363	HO05A19	HO05A19.1 f	5'-AAA AAT TAA CCC TCA CTA AAG GGC TGT TGC AGT GGG TAC GGG AGT C-3'	HO05A19.1 r	5'- <mark>AAA TAA TAC GAC TCA CTA TAG GG</mark> G CTC GGC AGC GGC ACC TC-3'	Asso
CD057973	HO06D23	HO06D23 f1	5'-AAA AAT TAA CCC TCA CTA AAG GGG AGG TGG TGA AGG GAG ATG ATG G-3'	HO06D23 r1	5'- <mark>AAA TAA TAC GAC TCA CTA TAG GG</mark> C TCA ACG CCT CAG AAG CAA ATG-3'	oziat
		HO06D23 f2	5'-AAA AAT TAA CCC TCA CTA AAG GGG TTA CTG GTG ATG GAA CTA ATG ATG C- 3'	HO06D23 r2	5'- <mark>AAA TAA TAC GAC TCA CTA TAG GG</mark> C CCC ATC TAG CAA CAT TCA CGA-3'	ionsa
CD057887	HO06J21	HO06J21 f1	5'-AAA AAT TAA CCC TCA CTA AAG GGC ATA TGC ATC AAG GCC GTG TAA TCC-3'	HO06J21 r1	5'- <mark>AAA TAA TAC GAC TCA CTA TAG GGC</mark> AAT CGG TAC CGG GAC TCT GG-3'	naly
CD054835	HO07H15	HO07H15 f1	5'-AAA AAT TAA CCC TCA CTA AAG GGC GAG ATC CCC AAC GAG CAG AC-3'	HO07H15 r1	5'- <mark>AAA TAA TAC GAC TCA CTA TAG GG</mark> G GTG GTG CCG GAG GAG TAT GG-3'	se n
		HO07H15 f2	5'-AAA AAT TAA CCC TCA CTA AAG GGC GAG ATC CCC AAC GAG CAG AC-3'	HO07H15 r2	5'- <mark>AAA TAA TAC GAC TCA CTA TAG GG</mark> G GTG GTG CCG GAG GAG TAT GG-3'	nit I
Anonymisiert	WIR-Gen	WIRf2	VERTRAULICH (weitere Informationen: schweiz@ipk-gatersleben.de)	WIR r2	VERTRAULICH (weitere Informationen: schweiz@ipk-gatersleben.de)	rim
CD055715	HO10A14	HO10A14 f1	5'-AAA ĀĀT TAA CCC TCA CTA AAG GGT CCC TCC GAG CCC CTG TAA G-3'	HO10A14 r1	5'-AAA TAA TAC GAC TCA CTA TAG GGC TTT ACA ATT TCC ACC CAT CTC TGA-3'	erin
CD056330	H011012	HO11O12 f1	5'-AAA AAT TAA CCC TCA CTA AAG GGC CGC CGG CGT GGT CAA G-3'	HO11O12 r1	5'- <mark>AAA TAA TAC GAC TCA CTA TAG GG</mark> G ATC AAG CTT TTC CAC GTC AAT ACA G-3'	forr
CD056330	H011012	HO11O12 f2	5'-AAA AAT TAA CCC TCA CTA AAG GGA CCG TGG CCA AAA CAA GTC C-3'	HO11O12 r2	5'- <mark>AAA TAA TAC GAC TCA CTA TAG GG</mark> T AGG CAC CGT GAG GAT AAC AGG-3'	natio
						nen

Akzessions-	Kandidatengen	5'-Primer	Sequenz 5'-Primer	3'-Primer	Sequenz 3'-Primer	Fc
Nr:						orts
CD056444	HO12E03	HO12E03 f1	5'-AAA AAT TAA CCC TCA CTA AAG GGA	HO12E03 r1	5'-AAA TAA TAC GAC TCA CTA TAG GGG	set
CD050444	11012205	11012E0511	CCC GGA CTC CCC CTA CAT CAG3'	1101220311	TAA TTG CAC TTA GGC TCA GAA AAC AG-3'	INZ
CD056469	HO12F09	HO12F09 f1	5'-AAA AAT TAA CCC TCA CTA AAG GGG	HO12F09 r1	5'-AAA TAA TAC GAC TCA CTA TAG GGC	gu
			5'-AAA AAT TAA CCC TCA CTA AAG GGC		S'-AAA TAA TAC GAC TCA CTA TAG GGA	2
CD056968	HO13M13	HO13M13 f2	ACA ACA TCC TGC CTG ACT ACT GC-3'	HO13M13 r2	CAG CTG CTC ATC AAG TCC AAC C-3'	nc
CD057147	11014E16	11014E16 fl	5'-AAA AAT TAA CCC TCA CTA AAG GGA	11014E16 #1	5'-AAA TAA TAC GAC TCA CTA TAG GGC	\neg
CD03/14/	H014E10	HU14E1011	GGA CAG CTG CCC GTT TAT CTT C-3'	HU14E1011	AGC AAG GAA CTA ACG GAA AAA TC-3'	ab
		HO14E16 f2	5'-AAA AAT TAA CCC TCA CTA AAG GGC	HO14E16 r2	5'-AAA TAA TAC GAC TCA CTA TAG GGA	
			GCU ICA AGA AGA IGG AIG GIC-3'		CAI GAA IGG GGI GGI GAG AAA GG- 3°	<u>1</u>
CD057214	HO14H18	HO14H18 f1	GAG CAC CAC AGG CAA CAG C-3'	HO14H18 r1	GGG GCG AAG AGA TAG AAA G-3'	<u>.</u>
		110141110 0	5'-AAA AAT TAA CCC TCA CTA AAG GGG	110141110 2	5'-AAA TAA TAC GAC TCA CTA TAG GGC TGC	X
		H014H18 12	ATT GGG CAG GCG CGT GGT ATT C-3'	HO14H18 r2	GGA AAT AGC TGA GGA GAA CC-3'	an
		HO14H18 f3	5'-AAA AAT TAA CCC TCA CTA AAG GGG	HO14H18 r3	5'-AAA TAA TAC GAC TCA CTA TAG GGG	d
		1101 1110 12	ACC GAC CAG CCA CCA CCA ACC-3'	1101 1110 10	GCT GCC TCC AAA CTA ACC AGT AAC G-3'	da
		HO14H18 f4	5'-AAA AAT TAA CUU TUA UTA AAG GGG CAG TGC ACG CCT TTT GAT TGG 3'	HO14H18 r4	5'-AAA TAA TAU GAU IUA UTA TAU GUU	ter
	****		5'-AAA AAT TAA CCC TCA CTA AAG GGC		5'-AAA TAA TAC GAC TCA CTA TAG GGG	ğ
CD057271	HO14K08	HO14K08 f2	ATT TGT TCC AGC AGC AGC AGG TAG-3'	HO14K08 r2	ACG GAT GTG GGG ACT TTG AA-3'	en
Anonymisiert	Unnamed protein	unnamed fl	VERTRAULICH (weitere Informationen:	unnamed r1	VERTRAULICH (weitere Informationen:	e f
Anonymistert	Official protein	unnamed 11	schweiz@ipk-gatersleben.de)	unnamed I I	schweiz@ipk-gatersleben.de)	μ̈́
BQ465010	HU02G09	HU02G09 f2	5'-AAA AAT TAA CCC TCA CTA AAG GGT	HU02G09 r2	5'-AAA TAA TAC GAC TCA CTA TAG GGC	\triangleright
			VERTRALILICH (weitere Informationen:		VERTRALILICH (weitere Informationen)	SS
Anonymisiert	unknowm	unknown fl	schweiz@ipk-gatersleben.de)	unknown r1	schweiz@ipk-gatersleben.de)	ZO
		LI 10/1 00 £2	5'-AAA AAT TAA CCC TCA CTA AAG GGG	HI 10/11 00 +2	5'-AAA TAA TAC GAC TĆA CTA TAG GGG	iat
		11004L0912	AAA TGA GTG CAA ACC CGT GTG G-3'	11004L0912	GGC AGG CTC AGC AAC AAA G-3'	<u>10</u>
DQ647619	HvGER1	HvGER1 f2	5'-AAA AAT TAA CCC TCA CTA AAG GGC	HvGEr1 r2	5'-AAA TAA TAC GAC TCA CTA TAG GGA	ns
			S'-AAA AAT TAA CCC TCA CTA AAG GGC		TAC ATT TTA ACT CCT CGC ATT GG- 3°	an
DQ647620	HvGER2	HvGER2 f2	TTC ATC AGC TCC TCC TCC AAC AC-3'	HvGER2 r2	GAC CTC ACA AGC GCA CGA AC-3'	aly
DO647621	U.CED2	U.CED2 fl	5'-AAA AAT TAA CCC TCA CTA AAG GGG	U.CED2=1	5'-AAA TAA TAC GAC TCA CTA TAG GGG	/se
DQ04/021	IIVUEK3	INVGERS II	CAA CTC ACA ATG GCT TCT TCT TCC-3'	INGERGII	GGT GTA TGT GCG GCG TGT TG-3'	'n
DQ647621	HvGER3	HvGER3 f2	5'-AAA AAT TAA CCC TCA CTA AAG GGC	HvGER3 r2	5'-AAA TAA TAC GAC TCA CTA TAG GGG	lit
			AAG GCC AGC AAG GTC AGG TC-3'		AAA CGC CGT GGC TAG AAC ATC- $3'$	$\mathbf{P_{1}}$
DQ647623	HvGER4	HvGER4 f2	TCG ACA AGC CTA GGG TGA CAA AC-3'	HvGEr4 r2	TGA CTT AAT TGT GGT TGT TCT CC-3'	-in-
DOCATION		U. OFD. (C	5'-AAA AAT TAA CCC TCA CTA AAG GGG	U CED(1	5'-AAA TAA TAC GAC TCA CTA TAG GGC GTC	lei
DQ64/625	HVGER6	HVGER6 11	CGA CGG CGG ACG ACT TCT-3'	HVGER6 rl	TAG CCT TTC ACT TCT TTG G-3'	ni.
AJ276227	HvPrx08	HvPrx08 f1	5'-AAA AAT TAA CCC TCA CTA AAG GGC	HvPrx08 r1	5'-AAA TAA TAC GAC TCA CTA TAG GGG	fo
1.0270227		1111 1100 11	ATG GCC GCC GTG AGC AGT GAC-3'	1111 1100 11	CGC CTG GCC GAT GGT GTG C-3'	m
		HvPrx08 f2	5-AAA AAT TAA CUU TUA UTA AAG GGG CAG TGC GGG ACC TTC AAG-3'	HvPrx08 r2	J -AAA TAA TAU GAU TUA UTA TAG GGU TGG CCC TGC GTC CCC GTC-3'	lat
			end ide dou ace ite and-j			101
						nei
						n

Akzessions-	Kandidatengen	5'-Primer	Sequenz 5'-Primer	3'-Primer	Sequenz 3'-Primer	Fo
Nr:						rts
CK567319	HvPrx40	HvPrx40 f2	5'-AAA AAT TAA CCC TCA CTA AAG GGC	HvPrx40 r2	5'-AAA TAA TAC GAC TCA CTA TAG GGC TTT	etz
			GGT GCA CAC ACA ATC GGC-3'		CUT GIU GAT CAU GIT CIG GIA GIA-3'	, m
HvSMef00011N09r2	HvSMef00011N09r2	HvSMef0001f	GAA CAA GAA CTG GCA AAA ACA TC-3'	HvSMef0001r	ATG TTT CCA TCC GCG TTT AGT G-3'	50 D
AT 502026	111/12/01/1	10002011 0	5'-AAA AAT TAA CCC TCA CTA AAG GGC	1000011 1	5'-AAA TAA TAC GAC TCA CTA TAG GGG	VO
AL503936	HW03011	HW0301111	GAT CAA CAC CAA CGC ACG AAC-3'	HW03O11 fl	GCG CCC ATC CCC AAC C-3'	ň
Anonymisiert	NADPH reductase	Reductase f2	VERTRAULICH (weitere Informationen:	Reductase r2	VERTRAULICH (weitere Informationen:	Ц.
			schweiz@ipk-gatersleben.de)		schweiz@ipk-gatersleben.de)	b
AL510956	HY06I14	HY06I14 f1	CCA CCA CCA CCA GCC CAC TC-3'	HY06I14 r1	TAG CGA ACG GCA CTG ACC AAC-3'	N
AT 5005 47	10/00/02	INVOCEO2 CI	5'-AAA AAT TAA CCC TCA CTA AAG GGC	112/00/202 1	5'-AAA TAA TAC GAC TCA CTA TAG GGC	
AL50854/	HY08E03	HY08E03 11	AGG GAA ACA GAG GAA AAC CAA G-3'	HY08E03 r1	GCG ACG CTG CTC AAG AAC-3'	
contig10757	IQ calmodulin-binding	WIR1dof	5'-AAA AAT TAA CCC TCA CTA AAG GGC	WIR1dor	5'-AAA TAA TAC GAC TCA CTA TAG GGA	Kε
	motif family protein		TAA GCG GGA AAG AGC AAT GG-3'		GGG ATA GCC GCT TCT TGG TTG-3'	n
contig24522	Lectin protein kinase	contig24522f	ACA GAG ACA TCA AGC CAA GCA AG-3'	contig24522r	ACC GGC ATC CTC AGA G-3'	lid
. 10.407	T 1 1 1 1	11005410	5'-AAA AAT TAA CCC TCA CTA AAG GGG	11005 1 10	5'-AAA TAA TAC GAC TCA CTA TAG GGT GCC	at
contig10497	L-galactose dehydrogenase	HO05A19cuf	AGA ATG TTG CTG CTG CTG TTG-3'	HO05A19cur	CAC AAA TTC CAA ACA AAG-3'	en
AL506955	LOX2	LOX2 fl	5'-AAA AAT TAA CCC TCA CTA AAG GGA	LOX2 r1	5'-AAA TAA TAC GAC TCA CTA TAG GGG	ge
THE OUT OF	Lonz	201211	GAT GGA TAT GCT GTT CGG GAT GC-3'	LONZII	GGC ACG GCG ACC TCA AG-3'	ne
		LOX2 f2	5'-AAA AAT TAA CUU TUA UTA AAG GGU	LOX2 r2	5'-AAA TAA TAC GAC TCA CTA TAG GGC	Ę
			5'-AAA AAT TAA CCC TCA CTA AAG		UAU CTU ACC ACC UCC AAU AU-5	Ħ.
contig24522	LLRK2	contig24522f	GGC ACA GAG ACA TCA AGC CAA GCA	contig24522r	5'-AAA TAA TAC GAC TCA CTA TAG GGC	As
C		0	AC-3'	0	GUT ACC GGC ATC CTC AGA G-3	osi
TC148045	LSD1	LSD 1.1 f	5'-AAA AAT TAA CCC TCA CTA AAG GGG	LSD 1.1 r	5'-AAA TAA TAC GAC TCA CTA TAG GGC GTC	Ž.
			TAT CCA CAT GGA GCA CCT TCT G-3'		GAC AGT CAT AGG GTT CTC-3'	ati.
		LSD 1.2 f	GTC GAC GAA AAG GGT AAA CTG G-3'	LSD 1.2 r	CGA CGT GCA TGC TTT CCT TG-3'	on
FUE 45000			5'-AAA AAT TAA CCC TCA CTA AAG GGG		5'-AAA TAA TAC GAC TCA CTA TAG GGG	sa
EU545232	LSDI	LSDI SHII	CCA TGG GTG CAG GAG CGT TC-3'	LSD1 5Hr1	TGC CTG TGC TAA GAT TCC TAT GTA AC-3'	na
		LSD1 5Hf2	5'-AAA AAT TAA CCC TCA CTA AAG GGG	LSD1 5Hr2	5'-AAA TAA TAC GAC TCA CTA TAG GGC	ly
			TGC CAG ACG GIG TTA ATG TAT CC-3'		CCG ACT ACG ACG TTG CTC ACC TGC-3'	e
contig3489	MBD10	HO05A19eof	TGA TAC CCC AAG GCG TTC TGC-3'	HO05A19eor	TGC TGG AGA CGG AAC G-3'	B.
			VERTRAULICH (weitere Informationen:	N 4	VERTRAULICH (weitere Informationen:	I T
Anonymisiert	Methionine-Synthase 2	Methionine 11	schweiz@ipk-gatersleben.de)	Methionine r1	schweiz@ipk-gatersleben.de)	n i
CD057851	MIR3	MIR3 f	5'-AAA AAT TAA CCC TCA CTA AAG GGG	MIR3 r	5'-AAA TAA TAC GAC TCA CTA TAG GGT TGT	m
02007001			CTG CCT ACT GCT CGC CTT C-3'		ACA TAA GCT GCA AGT CAC C-3'	en.
DN181805	MIR4	MIR4.1 f	TCC TCA TGG GCA TCC TCA ACG-3'	MIR4.1 r	TCC GGC GTG TCA GAA GTC-3'	nf
D1101005			5'-AAA AAT TAA CCC TCA CTA AAG GGC) (TD 4.2	5'-AAA TAA TAC GAC TCA CTA TAG GGG	0n
DN181805	MIK4	MIK4.2 I	CTC GTT CGC GTG GGT TTT C-3'	MIK4.2 r	ATC AGC GAA TCT TCC CAC G-3'	na
CD057781	MIR5	MIR5.2 f	5'-AAA AAT TAA CCC TCA CTA AAG GGG	MIR5.2 r	5'-AAA TAA TAC GAC TCA CTA TAG GGT GCC	tic
			AGG GCG ATC GGG AAG GAC C-3'		CCT TAT TCA TGA GTG TAG CC-3'	Эпе
						'n

Akzessions-	Kandidatengen	5'-Primer	Sequenz 5'-Primer	3'-Primer	Sequenz 3'-Primer	Fc
Nr:						orts
CA019052	MID(MID (fl	5'-AAA AAT TAA CCC TCA CTA AAG GGG	MID (=1	5'-AAA TAA TAC GAC TCA CTA TAG GGT GTA	šet
CA018055	MIR6	MIKO II	GAG GTG GTG TTG GTT GCG TTA TC-3'	MIK0 FI	CGC CTT AGC CAT TTC AGT G-3'	nz
		MIR6 f2	5'-AAA AAT TAA CCC TCA CTA AAG GGG	MIR6 r2	5'-AAA TAA TAC GAC TCA CTA TAG GGC	au
		12	GAA GGT CAT CGG CAA GAG AAA C-3'	1111012	ATA GCC TTT GCC AGT AGA GC-3'	<
AL507668	MIR7	MIR7 fl	5'-AAA AAT TAA CCC TCA CTA AAG GGG	MIR7 r1	5'-AAA TAA TAC GAC TCA CTA TAG GGC	10
			GAA IGG GAG GIG GIG GAA IG-3'		ACC ACT TCC CCT GCA CTC ATT $G-3^{\circ}$	
		MIR7 f2	ACA GCT GCT CAT CAA GTC CAA CC-3'	MIR7 r2	AAC CCT AAC ATG GAA AAC TTG AG-3'	Га
			5'-AAA AAT TAA CCC TCA CTA AAG GGG		5'-AAA TAA TAC GAC TCA CTA TAG GGC TAC	b.
CD057283	MIR8	MIR8 f	CAA CAC CGA AGG CGA CAT C-3'	MIR8 r	AGC CTC TCC CAG CAG TTT C-3'	N
1 5 5 2 6 2			5'-AAA TAA TAC GAC TCA CTA TAG GGC		5'-AAA AAT TAA CCC TCA CTA AAG GGG	-
AF523683	Mla	MIa fI	ACC CGC ACG CCG AGA CTG-3'	Mla r l	GAA TTG CCG TCC ACA GTT TG-3'	<u> </u>
783834	Mlo	Mlo A f	5'-AAA AAT TAA CCC TCA CTA AAG GGC	Mlo A r	5'-AAA TAA TAC GAC TCA CTA TAG GGC	K
203034	WIIO	MIO A I	GTG TGC GTA CCT GGT AGA G-3'	WIIO A I	AAG CCA AGA CGA CAA TCA-3'	an
		Mlo C f	5'-AAA AAT TAA CCC TCA CTA AAG GGT	Mlo C r	5'-AAA TAA TAC GAC TCA CTA TAG GGA	d:
			GTT TGG CGT ATG GAG TCA G-3'		GAA ACC GGA GAG GAG AAG G-3'	da
		Mlo D f	5'-AAA AAT TAA CUU TUA UTA AAG GGU	Mlo D r	5'-AAA TAA TAU GAU IUA UTA TAG GGU GTU	tej
					AGA GCA GTI CAT CAG C- 3	80 10
TC135892	NEC1	NEC1.1 f	CTG CTC GAG TAC CTG CCC AAG AT-3'	NEC1.1 r	TGT ACG CCC CGA ACT GG-3'	en
			5'-AAA AAT TAA CCC TCA CTA AAG GGG		5'-AAA TAA TAC GAC TCA CTA TAG GGG CTC	ē
		NEC1.2 f	AAC GCC ACC ACG TCC AAG AAG-3'	NEC1.2 r	GTC GCC CGT GAA GTT G-3'	fü
TC145211	NDD 1	NDD 1 40	5'-AAA AAT TAA CCC TCA CTA AAG GGG	NIDD 1 -2	5'-AAA TAA TAC GAC TCA CTA TAG GGC ATT	r /
10145511	INFKI	NPKI 12	TAG TGG CTT TGG CGA GGA TAA TG-3'	NPKI 12	CAG CTT GCA ATT AGT CCA GA-3'	S
CB879141	NUDT7	NUDT7 fl	5'-AAA AAT TAA CCC TCA CTA AAG GGC	NUDT7 r1	5'-AAA TAA TAC GAC TCA CTA TAG GGC TCC	so
00077141	NOD17		CTT CGC CGG GTC ACT GG-3'	NOD1/11	GCG TGG TGG TAC TTG AAT C-3'	Ŋ.
CK567317	OPD reductase	OPD reductase f1	5'-AAA AAT TAA CCC TCA CTA AAG GGA	OPD reductase r1	5'-AAA TAA TAC GAC TCA CTA TAG GGC TTC	ati
			IGG AAA CCG AIC GIC AAI GG-3'			10
		OPD reductase f2	GGA TGG TGA ATA TTG GTG AAA AG 3'	OPD reductase r2	5-AAA TAA TAC GAC ICA CTA TAG GGG ATG GGG ATG GGA GGG ATT C 3'	lSĉ
			5'-AAA AAT TAA CCC TCA CTA AAG GGG		5'-AAA TAA TAC GAC TCA CTA TAG GGG CTT	n
BU983076	Oxidoreductase	HO05A19bof	CCT CCT CAC CCT GCT CTT C-3'	HO05A19bor	GTT GCT CTG CTG GTG TTC-3'	J
TC121(00	D-m-m-d-min	Demonstration 1.6	5'-AAA AAT TAA CCC TCA CTA AAG GGG	Demonstration 1 m	5'-AAA TAA TAC GAC TCA CTA TAG GGA	/S€
10131000	Peroxyredoxin	Peroxyredoxin 1 1	CCG GGG CTC ACC ATT G-3'	Peroxyredoxin 1 r	GGC CTC GAT GTC CTT GGT C-3'	ä
		Peroxyredoxin 2 f	5'-AAA AAT TAA CCC TCA CTA AAG GGA	Peroxyredoxin 2 r	5'-AAA TAA TAC GAC TCA CTA TAG GGC TTG	<u>Pi</u>
		i eloxyredoxiii 2 i	CAA GGA GTG GAC CAA GGA CAT C-3'	r croxyredoxiii 2 r	GTG AAG CGG AGG TAG CC-3'	P
contig17340	Protein kinase family	WIR1duf	5'-AAA AAT TAA CCC TCA CTA AAG GGG	WIR1dur	5'-AAA TAA TAC GAC TCA CTA TAG GGC ATT	Ξ
8	protein Destan series series		GIC ATT GGT GCA GIG GGT TIC-3'		TCG CTG CAC TTG ATT CTG G-3'	ne
contig7919	ovidasel	WIR1buf	AGC ATT ACA AAG GCG GAC AAC 3'	WIR1bur	5-AAA TAA TAC GAC ICA CTA TAG GGG	Ħ.
	UNIUGUI		AGE ATT ACA AND UCU UNU ANC-J			nfe
						011
						В
						ati.
						on
						er

Akzessions-	Kandidatengen	5'-Primer	Sequenz 5'-Primer	3'-Primer	Sequenz 3'-Primer
Nr:					
AJ344223	RACB	RACB 1 f	5'-AAA AAT TAA CCC TCA CTA AAG GGG	RACB 1 r	5'-AAA TAA TAC GAC TCA CTA TAG GGG
		RACB 2 f	5'-AAA AAT TAA CCC TCA CTA AAG GGC	RACB 2 r	5'-AAA TAA TAC GAC TCA CTA TAG GGG GCT GCA GTA CCA CCT TTA TTG-3'
AJ871131	RBOHA	RBOHA 1 f	5'-AAA AAT TAA CCC TCA CTA AAG GGG AGC TCA AGG CCG GGG TGT C-3'	RBOHA 1 r	5'-AAA TAA TAC GAC TCA CTA TAG GGG CAG CTC GTC CTT GTT GAT GTG GT-3'
		RBOHA 2 f	5'-AAA AAT TAA CCC TCA CTA AAG GGC AGT TGG AGA CGT TGC TAT TGC-3'	RBOHA 2 r	5'-AAA TAA TAC GAC TCA CTA TAG GGT GCC CGT GCA GCT CTT GTA T-3'
EBes01_SQ002_A2	SRP40	WIR1aof	5'-AAA AAT TAA CCC TCA CTA AAG GGG TTA GCA AGA AGA GGA AAC TGG AAG- 3'	WIR1aor	5'- <mark>AAA TAA TAC GAC TCA CTA TAG GG</mark> C TTC ACC CGT TGG AAT GCA CTT TTA-3'
contig583	Thiosulfate sulfotransferase	HO05A19auf	5'-AAA AAT TAA CCC TCA CTA AAG GGT GCC CGC AGA GCA AAG GAA TC-3'	HO05A19aur	5'-AAA TAA TAC GAC TCA CTA TAG GGG GCT GCA ACT TCG CTT CAA ATG-3'
contig1035	Ubiquitin	HO05A19duf	5'-AAA AAT TAA CCC TCA CTA AAG GGT CAT CAG GGG ACA CAA CCA AAC-3'	HO05A19dur	5'-AAA TAA TAC GAC TCA CTA TAG GGC TCC GCC TCA GGG GTG GTA TG-3'
contig4923	Unknown 2	HO05A19cof	5'-AAA AAT TAA CCC TCA CTA AAG GGC CAA GGG TGA TGC AGT GAA GC-3'	HO05A19cor	5'- <mark>AAA TAA TAC GAC TCA CTA TAG GG</mark> G CAA AAA CAA CGC AGG GTA TTC-3'
contig11213	Unknown 3	WIR1cof	5'-AAA AAT TAA CCC TCA CTA AAG GGC GTC CGT CCG TCC ACC ATA AC-3'	WIR1cor	5'- <mark>AAA TAA TAC GAC TCA CTA TAG GG</mark> A GGA TGA AGC TGG GAT TAG ATG G-3'
contig13951	Unknown 4	WIR1eof	5'- <mark>AAA AAT TAA CCC TCA CTA AAG GG</mark> G AAA GGA GAG CAA GAA GAG GAT G-3'	WIR1eor	5'-AAA TAA TAC GAC TCA CTA TAG GGT TAA GCT ACA CGA CCC ACC AAT AC-3'
Anonymisiert	Unknown 1	unknown f	VERTRAULICH (weitere Informationen: schweiz@ipk-gatersleben.de)	unknown r	VERTRAULICH (weitere Informationen: schweiz@ipk-gatersleben.de)
Anonymisiert	Vacuolar targeting receptor	Vac targ rec f	VERTRAULICH (weitere Informationen: schweiz@ipk-gatersleben.de)	Vac targ rec r	VERTRAULICH (weitere Informationen: schweiz@ipk-gatersleben.de)
AB259783	VRS1	VRS1.1 f	5'-AAA AAT TAA CCC TCA CTA AAG GGG GTG CGG CGG AGG GGA TGG-3'	VRS1.1 r	5'-AAA TAA TAC GAC TCA CTA TAG GGC GCA CAT CAT CAG GTC ATC GTC CC-3'
		VRS1.2 f	5'-AAA AAT TAA CCC TCA CTA AAG GGC CAG CAG CAG CCG GGT TTC AG-3'	VRS1.2 r	5'- <mark>AAA TAA TAC GAC TCA CTA TAG GG</mark> C CAG CTC GTC TCA ACT TCA AAT CAC AG-3'
AL450670	WAK3	WAK3.1 f	5'-AAA AAT TAA CCC TCA CTA AAG GGG CTC CCC AAG TAG GCA TTC CAT C-3'	WAK3.1 r	5'- <mark>AAA TAA TAC GAC TCA CTA TAG GG</mark> G ATG ATA TCA AGA ACG AGG AGA GCA C-3'
		WAK3.2 f	5'-AAA AAT TAA CCC TCA CTA AAG GGG CTA GCT CCG CCG CCT CTT C-3'	WAK3.2 r	5'-AAA TAA TAC GAC TCA CTA TAG GGT CCG GAG TAC ATG CAA ACC AAC C-3'
Contig15923	WAK128b (O.s.)	contig15923f	5'-AAA AAT TAA CCC TCA CTA AAG GGT CCT TCA TTG TTG GCC TGT CGT C-3'	contig15923r	5'-AAA TAA TAC GAC TCA CTA TAG GGC CGG TGC TGG TAT ATG AGT TTG TC-3'
contig6520	WIR1A (Triticum aestivum)	WIR1auf	5'-AAA AAT TAA CCC TCA CTA AAG GGT GGC GTC TAC CGG CAG TCG TC-3'	WIRlaur	5'- <mark>AAA TAA TAC GAC TCA CTA TAG GG</mark> G CTA GGC CGC CAT TTC CGA G-3'
AJ536667	WRKY1	WRKY1 fl	5'-AAA AAT TAA CCC TCA CTA AAG GGG GAG GAG AAC TTC ATG CCA CTC AAG-3'	WRKY1 r1	5'-AAA TAA TAC GAC TCA CTA TAG GGC CGA CCC GCC CTC CGA CG-3'
		WRKY1 f2	5'-AAA AAT TAA CCC TCA CTA AAG GGA TGG CGC AAG TAC GGG CAG A-3'	WRKY1 r2	5'-AAA TAA TAC GAC TCA CTA TAG GGG GGT CCC TCG TCA GCG TCA-3'
AJ853838	WRKY2	WRKY2 fl	5'- <mark>AAA AAT TAA CCC TCA CTA AAG GG</mark> C GAG TGG GCG AGG AGA ACA G-3'	WRKY2 r1	5'- <mark>AAA TAA TAC GAC TCA CTA TAG GG</mark> T CGG CGT GGA CGT AGA CCT T-3'
EF488104	WRKY3	WRKY3 f2	5'- <mark>AAA AAT TAA CCC TCA CTA AAG GG</mark> G CAA GAA AAG GAG CAG GGA GAG-3'	WRKY3 r2	5'- <mark>AAA TAA TAC GAC TCA CTA TAG GG</mark> G TGG TTG TGC TCG CCT TCG T-3'

2.8.2 PCR-Amplifikation der Kandidatengenfragmente

Kandidatengen-Fragmente von einer durchschnittlichen Größe von 450 Basenpaaren wurden mittels PCR (Polymerase Chain Reaction) in der genomischen DNA der verwendeteten Gerstenakzessionen amplifiziert.

Der Standard-PCR-Reaktionsansatz setzte sich wie in Tabelle 2.11 beschrieben zusammen:

Tab. 2.11: Standard-PCR-Reaktionsansatz				
Volumen	Reagenz			
1µl	genomische DNA (30ng/µl)			
2µl	forward Primer (1µM)			
2µl	reverse Primer (1µM)			
5µl	Taq PCR Mastermix Kit (Qiagen GmbH,			
	Hilden)			

Die PCR-Reaktion wurde in einem Gene AMP® PCR-System 9700 (Applied Biosystems, Foster City, USA) unter folgendem PCR-Programm durchgeführt:

94°C	2min	
94°C	30sec	J
AT °C	30sec	> 40 Zyklen
72°C	30sec	J
72°C	7min	

Die Annealing-Temperatur (AT) ist abhängig von den verwendeten Primern; sie wurde auf unter der niedrigeren Schmelztemperatur beider Primer festgesetzt. 5°C Die Sequenzinformation der verwendeten Primer ist in Tabelle 2.10 zusammengestellt.

Ein µl der PCR-Reaktion wurde auf ein 1%iges TAE-Agarosegel aufgetragen und elektrophoretisch aufgetrennt.

Tab. 2.12: 1xTAE-Puffer				
Konzentration	Reagenz			
400mM	Tris-Puffer,			
	pH7,8			
100mM	Na-Acetat			
10mM	EDTA			

Die PCR-Produkte wurden mit Hilfe des PCR *clean-up* NucleoFast®96PCR (Macherey-Nagel, Düren) nach Angaben des Herstellers aufgereinigt und zur Sequenzierung gegeben.

2.8.3 Sequenzierung von Kandidatengenfragmenten

Die Sequenzierung der PCR-Produkte erfolgte auf dem 3730xl DNA Analyzer (Applied Biosystems, Foster City, USA) unter Verwendung des Big Dye®Terminator 3.1 *Cycle Sequencing Kit* (Applied Biosystems, Foster City, USA) nach Angaben des Herstellers. Es wurden die Sequenzierprimer T3 und T7 verwendet:

T3 5'-AAT TAA CCC TCA CTA AAG GG-3'

T7 5'-GTA ATA CGA CTC ACT ATA GGG C-3'

2.8.4 Sequenzauswertung

Die Sequenzauswertung erfolgte mit dem Computerprogramm SeqMan, Lasergene7 (DNASTAR, Inc., Madison, USA). Die Sequenzierergebnisse aller Genotypen eines Sequenzierprimers für ein Kandidatengenfragment wurden zusammen analysiert und manuell editiert, um Sequenzierfehler und Fehler aufgrund schlechter Sequenzqualität auszuschließen. Das manuelle Editieren erfolgte anhand der *.scf trace*-Dateien, die eine Darstellung der Sequenz in Form eines Kurvendiagramms ermöglichen.

Die korrigierten Sequenzen aller Genotypen eines Fragments wurden in SeqMan, Lasergene7 abgeglichen und die SNPs (*single nucleotide polymorphisms*) wurden extrahiert und in einer Excel-Tabelle zusammengestellt. Anhand des SNP-Musters wurden die Haplotypen bestimmt.

2.9 Assoziationsverrechnungen

Die Assoziationsverrechnungen erfolgten mit dem Programm TASSEL2.0.1 nach den Angaben der Entwickler. Für jedes Gen wurden, sowohl für die SNP- als auch für die Haplotyp-Daten, das GLM (GENERAL-LINEAR-MODEL) und das MLM (MIXED-LINEAR-MODEL) berechnet.

Bei der Berechnung der beiden Modelle (GLM und MLM) wurden mehrere ungeplante Vergleiche durchgeführt, die das multiple Risiko erhöhen. Das Signifikanzniveau wurde in jedem einzelnen Vergleich mit dem multiplen Testverfahren nach Bonferroni-Holm korrigiert. Das Signifikanzniveau wurde auf 1% festgesetzt.

2.10 Berechnung des LD (*linkage disequilibrium* = Kopplungsungleichgewicht)

Das LD wurde mit dem Programm TASSEL2.0.1 nach Angaben der Entwickler berechnet. Für die Berechnung des LDs wurden 1000 Permutationen durchgeführt. Als Messwerte für LD wurde zum einen der p-Wert bestimmt, der die Signifikanz des LDs zwischen zwei Polymorphismen angibt, sowie der R²-Wert, der die Stärke des Zusammenhangs zwischen zwei Polymorphismen beschreibt.

2.11 Genetische Kartierung

Die Kartierung erfolgte in der Kartierungspopulation Steptoe/Morex (S/M). Fragmente der zu kartierenden Gene wurden in den Kartierungseltern resequenziert. In den resultierenden Elternsequenzen wurden mit Hilfe des Computerprogramms SNP2CAPS (Thiel et al. 2004) CAPS-Marker für die Kartierung entwickelt. In Tabelle 2.13 sind die kartierten Gene mit verwendeter Kartierungspopulation, Primern und CAPS-Marker dargestellt. Fragmente der zu kartierenden Gene wurden in einer PCR-Reaktion amplifiziert (vgl. Tabelle 2.11) und mit Hilfe des PCR *clean-up* NucleoFast®96PCR (Macherey-Nagel, Düren) nach Angaben des Herstellers aufgereinigt. Die PCR-Produkte wurden in einem 20µl Ansatz (Tabelle 2.14) mit den entsprechenden Enzymen (vgl. Tabelle 2.13) drei Stunden verdaut. Die verdauten PCR-Produkte wurden auf ein 2%iges TAE-Agarosegel aufgetragen und elektrophoretisch aufgetrennt. Jeder Elter zeigte ein spezifisches Bandenmuster, dem ein Buchstabe zugeteilt wurde (Elter1: A; Elter2: B). Den Nachkommen in der Kartierungspopulation wurde anhand des Gelbildes der Buchstabe des Elters1 oder des Elters2 zugewiesen. Das resultierende AB-Muster fand in dem Computerprogramm Map Manager QTX (Manly et al. 2001) für die Kartierung Verwendung.

	5'-	3'-		CAPS-		
Gen-ID	Primer	Primer	Population	Marker	Puffer	Temperatur
Unknown 1						
(anonymisiert)	504	505	S/M	PstI	PufferO	37°C
LLRK						
(CK566915)	243	244	S/M	<i>Xho</i> I	PufferR	37°C
Calreticulin						
(L27349)	464	465	S/M	EcoRV	PufferR	37°C
WIR1						
(CK568328)	219	220	S/M	Ac/I	NEBuffer4	37°C
Vacuolar						
targeting						
receptor						
(anonymisiert)	412	413	S/M	HphI	NEBuffer4	37°C
WRKY1						
(AJ536667)	135	136	S/M	BstM	NEBuffer2	37°C

Tab. 2.13: Kartierte Kandidatengene

I ab. 2.14: Ansatz für den Restriktionsverdau der Kartierung				
Volumen	Reagenz			
200ng	PCR-Produkt			
1µl	Enzym			
2µl	Puffer			
Rest	H ₂ Obidest			

T 1 0 1 4

Zur Erstellung einer Konsensuskarte zwischen verschiedenen Kartierungspopulationen wurde das Computerprogramm JoinMap® 4 (Stam et al. 1993) nach Vorgaben der Entwickler verwendet.

2.12 Test auf Vorhandensein des mlo11-Allels mittels PCR-Analyse

Akzessionen, die in der Einzelblattanalyse einen resistenten Phänotyp gegenüber beiden verwendeten Mehltauisolaten aufwiesen, wurden unter Verwendung spezifischer Primer auf das Vorhandensein des *mlo*11-Reistenzgens geprüft (Piffanelli et al. 2004). Die verwendeten Primer sind in Tabelle 2.15 dargestellt.

Primername	Primersequenz
ADUP7	5'-CTC AAG CTT GCC ACC ATG TCG GAC AAA AAA
mlo11	GGG G-3'
Mlo6 mlo11	5'-CAT CTA CTA CTA GCA TGT ACC-3'

Tab. 2.15: Primer für Test auf Vorhandensein des mlo11-Reistenzgens

Bei Verwendung der Primerkombination "ADUP7 mlo11" und "Mlo6 mlo11" wird bei Vorhandensein des *m*/o11-Reistenzgens in der PCR-Reaktion ein Produkt amplifiziert. Weist der zu analysierende Genotyp das *Mlo*-Allel auf, wird kein PCR-Produkt amplifiziert. Die PCR wurde unter den gleichen Bedingungen, wie in Kapitel 2.8.2 beschrieben, durchgeführt (Annealingtemperatur: 53°C) und gelelektrophoretisch aufgetrennt.

2.13 Real-Time PCR

Die *real-time* PCR Analyse wurde unter Verwendung des Power SYBR® Green PCR Master Mix Kits (Applied Biosystems, Foster City, USA) durchgeführt. Die Analyse erfolgte im ABI 7900HT Fast Real-Time PCR System (Applied Biosystems, Foster City, USA). Für die Auswertung wurde das Computerprogramm SDS 2.2.1 (Applied Biosystems, Foster City, USA) verwendet. Die Analyse erfolgte in einer 384er-Platte unter Verwendung von Standardkurven für jedes verwendete Primerpaar. Die Standardkurven bestanden aus

Tab. 2.16: Reaktionsansatz real-time PCR				
Volumen Reagenz				
1µl	cDNA			
1µl	forward Primer (1µM)			
1µl	reverse Primer (1µM)			
51	Power SYBR® Green PCR			
Jμi	Master Mix			
2µ1	H2Obidest			

vier 1:5-Verdünnungsschritten. Jede Reaktion (vgl. Tabelle 2.16) wurde in dreifacher Wiederholung pipettiert.

Die *real-time* PCR wurde unter folgendem Programm durchgeführt:

Real-time PCR-Programm:

- 2) 95°C 10min
- 3) 95°C 15sec ~
- 4) AT°C 30sec >40 Zyklen
- 5) 72°C 30sec J
- 6) 95°C 15sec
- 7) 60°C 15sec
- 8) 95°C 15sec

Die analysierten Gene mit Primersequenzinformation sind in Tabelle 2.17 dargestellt.

Gen	5'-Primer	Sequenz 5'-Primer	3'-Primer	Sequenz 3'-Primer
MIR1	MIR1 forw	5'-GAG CAA TGG AGA ATA TGG GAA AAA TC-3'	MIR1rev	5'-GGA GCC AGC CAG CCA AAC AC-3'
MIR2	MIR2forw	5'-CAG TGC CAC TGA AGC GGA AG-3'	MIR2rev	5'-CGA TCT AAC TGA GGA TGC CAC TG-3'
MIR3	MIR3forw	5'-GCA ATA ACA ATA GGG TAA CTG GGA AC-3'	MIR3rev	5'-GCA CCA TGG AAG CCG AAA TC-3'
MIR4	MIR4forw	5'-CTG GTG CCA TCG TCC TGT GC-3'	MIR4rev	5'-TGG CCT TGG ACA GCG AAA TG-3'
MIR5	MIR5forw	5'-GGT CGG GTG CCT GGA TAC G-3'	MIR5rev	5'-AGT AGC GCG TGT AGT AGC CGA TG-3'
MIR6	MIR6forw	5'-GTG TTG TCC CTC GGG CTG TTC-3'	MIR6rev	5'-GAT TGG TTC TTG TAG GGC GAG GT-3'
MIR7	MIR7forw	5'-AGT GCG CCC AGC AGT AGT CAG-3'	MIR7rev	5'-GAA GCG GCA TTT GTT CAA GTA GT-3'
MIR8	MIR8forw	5'-CCA GGA CAC GCT CAA GAC TAC ACG-3'	MIR8rev	5'-GAC TCT TAA CGG GAT AAA AGG CTA CAG-3'
MIR9	MIR9forw	5'-CTC CCC ACC ACC GAC TAC TAA GC-3'	MIR9rev	5'-GAT GGA TTC ATT CAT TCA AAG CAA AC-3'
MIR10	MIR10forw	5'-GCA TGA CCA CCC AGA ACC TTG-3'	MIR10rev	5'-GCA GCG TTG GTG ATT GAG TTC-3'

Die Datenerfassung erfolgte während des PCR-Programms bei den Schritten drei und vier, sowie zwischen dem siebten und achten Schritt. Die SDS2.2.1-software berechnete mit Hilfe der Standardkurven die Konzentration in den einzelnen Reaktionen. Wie bereits erwähnt, wurde jede Reaktion in dreifacher Wiederholung pipettiert. Die drei Ergebnisse einer Reaktion wurden auf Ausreißer mit dem Grubbs-Test (Grubbs 1969) analysiert und Werte eliminiert, die nach Grubbs zu mindestens 95% als Ausreißer zählten. Anschließend wurden die Wiederholungen einer Reaktion gemittelt. Alle Werte der zu untersuchenden Gene wurden auf die Ergebnisse von *GAPDH* und *UBC* normalisiert. Diese Gene dienten zur Normalisierung, da sie eine stabile Transkriptmenge aufweisen (Altpeter et al. 2005).

2.14 TIGS-transient induced gene silencing

Das TIGS-System dient zur funktionellen Charakterisierung von Genen, indem die Genexpression über RNAi auf Einzelzellebene beeinflusst wird. RNAi-Konstrukte werden zusammen mit dem Reportergenkonstrukt pUbiGUS auf Goldpartikel gefällt und über ein biolistisches System in Gersten-Epidermiseinzelzellen gebracht.

2.14.1 Erstellung der RNAi-Konstrukte

Die RNAi-Konstrukte wurden über ein *Gateway*-Klonierungssystem, wie bei Douchkov et al. 2005 beschrieben, erstellt. Für die PCR wurden cDNA-Klone aus der IPK-Bank (http://pgrc.ipk-gatersleben.de/cr-est/index.php) verwendet.

verwendeten cDNA-Klone. 5'- Primer ID Template 3'- Primer contig583 HC15K02 5'-CCC TTC CTC TCA TCC 5'-TGG CAG CAT ATG TGG CAG TCC TAC TCC-3' ATT AG-3' contig3489 5'-CCG ACG GAT GGG CCA 5'-GTT CTG CGG GAG CTG GAG HY08D12 AGA AG-3' TG-3' contig10220 HO08G11 5'-GCC AGT GCC AGA CGG 5'-TAT TAT CCA CAC CCG CAC TGT TA-3' CCT C-3' contig7919 5'-AAA TTC TAT TAT CCG 5'-CCT CCT AGG AAT AAC CCG HDP32M11 CCA GTT GC-3' TCG-3' contig23773 Genomic DNA 5'-GCT TGA TCG ATG GAG 5'-GGT TTG CCT TAG TCT TCG CAG GTG-3' TCA TC-3' (GP) HA28H16 HA28H16 5'-CGC TCT AGA ACT AGT 5'-TCG AGG TCG ACG GTA TC-GGA TC-3' (SK-Primer) 3' (KS-Primer) contig24522 cDNA (Ingrid) 5'-AAA AAT TAA CCC TCA CTA AAG GGC ACA GAG 5'-AAA TAA TAC GAC TCA CTA ACA TCA AGC CAA GCA TAG GGC GCT ACC GGC ATC AC-3' CTC AGA G-3 contig24190 HO05A19 5'-GGC CAA GAT CAG GGA 5'-CTC ACT AAA GGG AAC TGT AGC-3' (Zierold 2005) AAA AGC TGG AG-3' (MVR-26)

Tab. 2.18: Genspezifische *sense* und *antisense* Primer für die Herstellung von RNAi-Konstrukten: Dargestellt sind *Harvest*-contig-Identifikationen, Sequenzinformationen der verwendeten Primer, sowie als Template verwendeten cDNA-Klone

Die cDNA-Fragmente der zu analysierenden Kandidatengene wurden mit zwei genspezifischen Primern (vgl. Tabelle 2.18) in einem 20µl PCR-Ansatz mit einer *blunt end*-produzierenden Polymerase (*Pfu*-DNA-Polymerase, Fermentas) amplifiziert und in den Zwischenvektor pIPKTA38 kloniert (bei Douchkov et al. 2005 beschrieben). Als Endvektor wurde der pIPKTA30N-Vektor verwendet.

Abb. 2.2: Schematische Darstellung der RNAi-Kassette in pIPKTA30N

Die RNAi-Kassette befindet sich unter Kontrolle des CaMV 35S-Promotors. Die beiden Wiederholungssequenzen (cDNA) entsprechen einem durch PCR ausgewählten Sequenzbereich des Zielgens, die Wiederholungssequenzen weisen die gleiche Basenabfolge in umgekehrter Reihenfolge auf. Zwischen den beiden Wiederholungssequenzen befindet sich das RGA2-Intron aus *Triticum aestivum*. Die RNAi-Kassette wird durch den CaMV 35S-Terminator am Ende begrenzt (Douchkov et al. 2005).

2.14.2 Herstellung der Goldsuspension und Beschichtung der Goldpartikel

Die Herstellung der Goldsuspension erfolgte auf gleiche Weise, wie bereits in Kapitel 2.4.3.2 beschrieben. Die Beschichtung der Goldpartikel wird im Folgenden dargestellt. Sieben μ g Reportergen-Vektor (pUbiGUS) (Schweizer et al. 1999) wurden mit sieben μ g Kontroll-Vektor (pIPKTA30N) (Douchkov et al. 2005), bzw. RNAi-Konstrukt gemischt. Zu diesem Gemisch wurden 2,4mg Goldsuspension gegeben. Das Gemisch wurde mit Ca(NO₃)₂ auf eine Konzentration von 0,5M eingestellt. Die Suspension wurde anschließend 10 min bei Raumtemperatur inkubiert und danach zentrifugiert (16100g, 15sec); der Überstand wurde verworfen. Die beschichteten pelletierten Goldpartikel wurden zuerst mit 70%igen Ethanol und anschließend mit 100%igen Ethanol gewaschen. Das Gold wurde in 30µl 100%igen Ethanol aufgenommen.

2.14.3 Biolistischer Gentransfer

Für den biolistischen Gentransfer wurden sieben Tage alte Primärblätter verwendet. Petrischalen wurden mit 0,5%igen Phytoagar (Duchefa Biochemie B.V. Haarlem, Niederlande), versetzt mit 0,17mM Benzimidazol (Sigma-Aldrich Chemie GmbH, München), befüllt. In die Petrischalen wurden sieben Primärblätter, mit der adaxiale Seite nach oben, aufgelegt. Auf die Blattenden wurde je ein Magnetstab gelegt, um einen Beschuss auf die vollständige adaxiale Blattseite zu gewährleisten.

Der Gentransfer wurde mit der Partikel-Kanone Model PDS-1000/He, *Biolistic Particle Delivery System* (Bio-Rad, Hercules, USA) auf gleiche Weise, wie in Kapitel 2.4.3.3 beschrieben, durchgeführt.

2.14.4 Inokulation mit *Blumeria graminis* f.sp. *hordei*

Nach dem Beschuss wurden die Blätter drei Tage unter natürlichem Tag-Nacht-Rhythmus bei einer konstanten Temperatur von 20°C und indirekter Sonneneinstrahlung inkubiert. Nach dieser Zeit wurden sie auf biologische Testschalen (23cm x 23cm) (Schütt, Göttingen) überführt, die mit Phytoagarlösung (5g Phytoagar (Duchefa Biochemie B.V. Haarlem, Niederlande), 500ml H₂O, 250µl Benzimidazol Sigma-Aldrich Chemie GmbH, München) (40mg/ml)) befüllt waren. Im direkten Anschluss erfolgte die Inokulation mit dem Schweizer Isolat CH4.8 bei einer Inokulationsdichte von ca. 200Sporen/mm². Bis zur Färbung wurden die inokulierten Blätter in den Testschalen bei konstanten Umweltbedingungen (siehe oben) inkubiert.

2.14.5 GUS-Färbung und Entfärbung der Blattsegmente

Die GUS-Färbung und die Entfärbung der Testblätter unter Verwendung von Trichloressigsäurelösung erfolgten auf gleiche Weise, wie bereits in Kapitel 2.4.3.5 beschrieben.

2.14.6 Mikroskopische und statistische Auswertung

Die mikroskopische Auswertung erfolgte an dem Mikroskop Axioplan 2 (Carl Zeiss AG, Jena, Deutschland) bei 200facher Vergrößerung. Es wurden die GUS-gefärbten Epidermiszellen, sowie die von Haustorien befallenen GUS-gefärbten Epidermiszellen gezählt und der Anfälligkeitsindex berechnet.

Anfälligkeitsindex = \sum GUS-gefärbter Epidermiszellen mit Haustorium / \sum aller GUSgefärbter Epidermiszellen

Die sieben Blätter eines Schusses wurden ausgewertet, die Ergebnisse addiert und der Anfälligkeitsindex pro Schuss berechnet. In jedem Experiment wurden drei leere Vektor Kontrollen analysiert, und für die Auswertung des Versuches gemittelt. Der Anfälligkeitsindex der zu testenden Konstrukte wurde zur leeren Vektorkontrolle in Relation gesetzt und somit der relative Anfälligkeitsindex jedes Konstruktes in Prozent ermittelt. Die statistische Auswertung jedes Konstruktes erfolgte anhand der relativen Werte von fünf unabhängigen Experimenten. Die Ergebnisse dieser fünf Experimente wurden mit Hilfe des Grubbs-Tests (Grubbs 1996) auf Ausreißer getestet. Es wurden Werte eliminiert, die nach Grubbs zu mindestens 95% als Ausreißer zählten. Die statistische Auswertung erfolgte unter Anwendung des zweiseitigen t-Tests; es wurde das Computerprogramm GraphPad InStat version 3.06, San Diego California USA verwendet. Es wurde überprüft, ob die Ergebnisse des zu testenden Konstrukts im Mittel signifikant von der leeren Vektorkontrolle (=100) abweichen. Folgende Formel fand bei der statistischen Berechnung Anwendung:

t=(x-100)/(s/ \sqrt{n}), wobei x dem Mittelwert, s der Standardabweichung und n der Anzahl Experimente entspricht.

3. Ergebnisse

3.1 Assoziationsanalyse

Die Assoziationsanalyse diente zur Identifizierung von Genen, die an quantitativer Mehltauresistenz beteiligt sind. Einundneunzig Kandidatengene wurden in dieser Studie auf signifikante Assoziation zu quantitativer Mehltauresistenz in einer Sommer-Gersten-Population getestet.

3.1.1 Auswahl der Kandidatengene

Die Assoziationsstudie wurde als Kandidatengen-basierter Ansatz durchgeführt. Es wurden Gene aufgrund von Effekten in vorherigen Versuchen selektiert und für die Analyse verwendet. Die Auswahl der Kandidatengene erfolgte anhand unterschiedlicher Kriterien. Es wurden Kandidatengene ausgewählt, die einen Effekt im TIGS (transient induced gene *silencing*)-System zeigten, die bei Mehltaubefall eine Veränderung in ihrem Expressionsprofil aufwiesen, die in der Literatur im Zusammenhang mit einem Mehltauresistenzverhalten genannt wurden und die aufgrund ihrer genetischen Kartenposition (Kolokalisation zu Mehltauresistenz-QTL) interessant erschienen. Im TIGS-System wurden Kandidatengene identifiziert, die einen signifikanten Effekt auf die Mehltauresistenz in Gerste ausüben (Douchkov unveröffentlicht). 25 dieser TIGS-Kandidaten mit signifikantem Effekt wurden in dieser Assoziationsanalyse untersucht, diese Kandidatengene sind in Tabelle 3.1 aufgelistet.

Klon-ID	Akzessionsnummer	Funktion
Anonymisiert	Anonymisiert	WRKY7
HO02M14	CD053985	Cellulose synthase-like protein
HO02P09	CD053970	Asconitate hydratase 1
HO06D23	CD057973	P-type ATPase
HO06J21	CD057887	Unknown protein 4
HO07H15	CD054835	4-coumarate coenzyme A ligase
Anonymisiert	Anonymisiert	WIR1
HO10A14	CD055715	Unknown protein 5
HO11O12	CD056330	Unknown protein 6
HO12E03	CD056444	Unknown protein 7
HO12F09	CD056469	SNAP-34
HO14E16	CD057147	Unknown protein 8
HO14H18	CD057214	Arm repeat-containing protein

Tab. 3.1: Kandidatengene mit TIGS-Effekt

Forsetzung von Tab. 5.1. Kandidatengene mit TIGS-Effekt						
Klon-ID	Akzessionsnummer	Funktion				
HO14K08	CD057271	Cellulose synthase				
Anonymisiert	Anonymisiert	Unknown protein 1				
Anonymisiert	Anonymisiert	Alpha/beta hydrolase				
Anonymisiert	Anonymisiert	Unknown protein 3				
HU02G09	BQ465010	Subtilisin-like protein				
Anonymisiert	Anonymisiert	Unknown protein 2				
Anonymisiert	Anonymisiert	Vacuolar targeting receptor				
HW03O11	AL503936	Band 7 protein				
Anonymisiert	Anonymisiert	NADPH-cytochrome P450 reductase				
HY06I14	AL510956	defensin [Triticum aestivum]				
HY08E03	AL508547	Caffeic acid O-methyltransferase				
anonymisiert	anonymisiert	Methionine synthase 2 enzyme				

Fortsetzung	von Tab. 3.1: Kandidater	ngene mit TIGS-Effekt	
Klon-ID	Akzessionsnummer	Funktion	

Aus der Veröffentlichung von Zierold et al. 2005 wurden 10 Kandidatengene aufgrund einer signifikant stärkeren Expression in *mlo*-resistenten Genotypen nach Inokulation mit Blumeria graminis f.sp. hordei ausgewählt. Die Expression dieser zehn Kandidatengene wurde in einem *Real-Time*-PCR-Experiment im Rahmen dieser Doktorarbeit überprüft und die Ergebnisse sind im Folgenden dargestellt.

Die Transkriptmenge der zehn Kandidatengene wurde in der Epidermis und im Mesophyll 12 Stunden nach Inokulation in den Sorten Ingrid, IngridBCmlo5 und IngridBCmlo3 bestimmt. Es wurden zwei unabhängige Versuche durchgeführt. Die Ergebnisse sind in der Abbildung 3.1 dargestellt. Die Streuungsbalken stellen die Standardabweichung zwischen den Ergebnissen der zwei unabhängigen Versuche dar. Die Kandidatengene MIR1, MIR3, MIR4, MIR5, MIR6, MIR7 und MIR8 (MIR=m/o-induzierte Resistenz) zeigten eine klare Regulation durch Mehltaubefall in allen drei analysierten Genotypen (Ingrid, IngridBC*mlo3* und IngridBCm/05). In Blattproben, die mit Blumeria graminis f.sp. hordei inokuliert wurden, konnte für diese sieben MIR-Gene eine höhere Transkriptmenge nachgewiesen werden, als in den nicht inokulierten Blattproben. Die Real-Time-PCR-Ergebnisse für die Kandidatengene MIR2 und MIR9 zeigten keine Expressionsunterschiede zwischen inokulierten und nicht-inokulierten Material. Es zeigten sich eindeutige Expressionsunterschiede zwischen inokulierten und nicht-inokulierten Blattmaterial für MIR10 in den Genotypen IngridBC*mlo3* und IngridBC*mlo5*, aber nicht bei der Sorte Ingrid.

Abb. 3.1: Ergebnisse für die Real-Time-PCR Analyse der Kandidatengene MIR1-MIR5 Dargestellt ist die normalisierte Transkriptmenge von Epidermis (schwarz) und Blatt (weiß) 12 Stunden nach *Bgh*-Inokulation, sowie der nicht inokulierten Kontrolle, von drei verschiedenen Genotypen.

Fortsetzung von Abb. 3.1: Ergebnisse für die *Real-Time*-PCR Analyse der Kandidatengene MIR6-MIR10

Bei den Genen, deren Expressionsunterschiede nicht bestätigt werden konnte, war möglicherweise zum Zeitpunkt der Probennahme der Induktionsunterschied noch nicht detektierbar. Zum anderen besteht die Möglichkeit, dass es bei den Arrayanalysen von Zierold et al. 2005 zu Kreuzhybridisierungen gekommen ist und falsche Kandidaten für die *Real-time* PCR Analyse ausgewählt wurden.

Da Epidermis- und Mesophyllmaterial getrennt voneinander analysiert wurden, konnte auch eine Aussage getroffen werden, für welches Blattgewebe die Expression dieser Kandidatengene spezifisch ist. MIR1 zeigte überwiegend in der Epidermis bei Mehltaubefall eine Erhöhung der Transkriptmenge; dieses Gen codiert für eine Peroxidase (*Hv*Prx40). Es wurde gezeigt, dass diese Peroxidase wesentlich zur Mehltauresistenz bei Gerste beiträgt (Johrde et al. 2008).

Im Gegensatz zu MIR1 zeigte MIR3 eine höhere Transkriptmenge im mehltaubefallenen Mesophyll als in mehltaubefallener Epidermis. Auch für MIR10 ließ sich eine mesophyllspezifische Expression beobachten.

Aufgrund dieser Ergebnisse wurden die Kandidatengene MIR1, MIR3, MIR4, MIR5, MIR6, MIR7 und MIR8 als Teil der Kandidatengenkollektion für die Assoziationsstudie ausgewählt, da sie in allen drei verwendeten Genotypen eine klare Expressionsregulierung aufgrund von Mehltaubefall zeigten.

Außerdem zeigten die Kandidatengene *Hv*GER1, *Hv*GER3, *Hv*GER4 und *Hv*GER5 (Zimmermann et al. 2006) bei Mehltaubefall eine Änderung ihres Expressionsprofils und wurden in die Kandidatengenkollektion für die Assoziationsstudie aufgenommen. In Tabelle 3.2 sind die Kandidatengene aufgelistet, die aufgrund ihres Expressionsprofils für diese Studie ausgewählt wurden.

Gen-Name	Akzessionsnummer	Funktion
MIR1 (HvPrx40)	CK567319	Peroxidase
MIR3	CD057851	Pectin-lyase like Protein
MIR4	DN181805	Zucker Transporter
MIR5	CD057781	Chitinase
MIR6	CA018053	Chorismate Synthase
MIR7	AL507668	DnaJ-like Protein
MIR8	CD057283	Rezeptor-like Kinase
HvGER1	DQ647619	Oxalatoxidase
HvGER3	DQ647621	Germin-like Protein
HvGER4	DQ647623	Superoxiddismutase
HvGER5	DQ647624	Germin-like Protein
HO05A19	CD058363	Lectin-like Rezeptor-Kinase

Tab. 3.2: Kandidatengene mit pathogen-induzierten Expressionseffekt

Aus Literaturrecherchen wurden 32 Kandidatengene, für die eine Beteiligung an Pathogenresistenz beschrieben wurde, ausgewählt. Ferner wurden die Gene HvGER2 und HvGER6 in die Liste mit aufgenommen, um diese Genfamilie möglichst vollständig zu testen. Eine Auflistung dieser Kandidatengene ist in Tabelle 3.3 gegeben.

Gen-Name	Akzessionsnummer	Funktionale Einordnung	Literatur
BAX-Inhibitor1	AJ290421	Abwehr	Hückelhoven et al. 2001
MLA	AF523683	Abwehr	Halterman et al. 2004
MLO	Z83834	Abwehr	Büschges et al. 1997
NPR1	CA008881	Abwehr	Zhang et al. 2004
HvPrx08	AJ276227	Abwehr	Green 1991
Alanine Aminotransferase	Z26322	Metabolismus	Muench et al. 1994
Apoplastic invertase	AJ534447	Metabolismus	Weschke et al. 2003
Aspartate protease gene	X56136	Metabolismus	Runeberg-Roos 1991
BAS1	Z34917	Metabolismus	Baier et al. 1991
EDS1	BJ479753	Metabolismus	Sato et al. 2002 (unpublished)
FMO1	CB880678	Metabolismus	Zhang et al. 2004
Glutathione-S- transferase	AB207242	Metabolismus	Kunieda et al. 2005
HvGER2	DQ647620	unbekannt	Zimmermann et al. 2006
HvGER6	DQ647625	unbekannt	Zimmermann et al. 2006
LOX2	AL506955	Metabolismus	Michalek et al. 2002
LSD1	BU986406	Metabolismus	Zhang et al. 2004
NEC1	AY972626	Metabolismus	Rostoks et al. 2006
NUDT7	CB879141	Metabolismus	Zhang et al. 2004
Peroxyredoxin	BU985101	Metabolismus	Zhang et al. 2004
RACB	AJ344223	Metabolismus	Schultheiss et al. 2002
RBOHA	AJ871131	Metabolismus	Trujillo et al. 2006
WAK3	AL450670	Metabolismus	Michalek et al. 2002
AOC	AJ308488	Signal	Wasternack et al. unpublished
AOS	AJ250864	Signal	Maucher et al. 2000
12-OPD-reductase	CK567317	Signal	Zierold et al. 2005
ACC-oxidase	CA023817	Signal	Zhang et al. 2004
ACC-synthase	AL511111	Signal	Michalek et al. 2002
Calreticulin	L27349	Signal	Chen et al. 1994
Ethylene forming enzyme	CA020732	Signal	Zhang et al. 2004
WRKY1	AJ536667	Signal	Eulgem et al. 1999
WRKY2	AJ853838	Signal	Eulgem et al. 1999
WRKY3	EF488104	Signal	Eulgem et al. 1999

Tab. 3.3: Kandidatengenauswahl aus der Literatur

Die ersten Kandidatengene, die in der Assoziationsstudie analysiert wurden, waren Kandidatengene, die einen TIGS-Effekt aufwiesen und bei Mehltaubefall eine Veränderung des Expressionsprofils zeigten. Zwei dieser Kandidaten, die mit dem Merkmal Mehltauresistenz signifikant assoziierten, wiesen auf einen interessanten Genombereich auf Chromosom 5HS hin, der daraufhin intensiver analysiert wurde. 22 Gene, die in diesem Genombereich liegen, wurden zusätzlich in dieser Assoziationsstudie analysiert. Diese 22 Kandidatengene sind in Tabelle 3.4 aufgelistet.

Gen-Name	HarvEST-IDs (assembly25)
ATP-dependent RNA helicase (<i>Oryza sativa</i>)	Contig8860
chloroplast inner envelope membrane polypeptide (<i>Oryza sativa</i>)	rbaal22m22
Galactosyltransferase (<i>Oryza sativa</i>)	Contig16126
Glutaredoxin-C1 precursor (Oryza sativa)	Contig23773
Helix-loop-helix DNA-binding domain containing protein	HvCeb0009B15r2
Unknown protein 12	HvSMef00011N09r2
IQ calmodulin-binding motif family protein (<i>Oryza sativa</i>)	Contig10757
Lectin protein kinase (Oryza sativa)	Contig24522
L-galactose dehydrogenase	Contig10497
MBD10 (Arabidopsis thaliana)	Contig3489
OsWAK128b (<i>Oryza sativa</i>)	Contig15923
Oxidoreductase	BU983076 (HA28H16)
Protein kinase family protein (Oryza sativa)	Contig17340
Protoporphyrinogen oxidaseI (Oryza sativa)	Contig7919
SRP40 (<i>Oryza sativa</i>)	EBes01_SQ002_A24
Thiosulfate sulfotransferase (Oryza sativa)	Contig583
Ubiquitin	Contig1035
Unknown protein 9	Contig4923
Unknown protein10	Contig11213
Unknown protein 11	Contig13951
WIR1A (Triticum aestivum)	Contig6520
LSD1	EU545232

Tab. 3.4: Kandidatengenauswahl aufgrund ihrer genetischen Kartenposition (5HS QTL-Lokus)

3.1.2 Evaluierung des Mehltauresistenzphänotyps der Gerstenakzessionen

Der Mehltauresistenzphänotyp des verwendeten Pflanzenmaterials wurde mit Hilfe einer Einzelblattanalyse bestimmt. Die Population, die für die Assoziationsstudie genutzt wurde, setzte sich aus zwei Gruppen zusammen, die sich bezüglich des Resistenzphänotyps äußerst stark voneinander unterschieden. Zum einen wurden Akzessionen ausgewählt, die einen starken Resistenzphänotyp zeigten, zum anderen Akzessionen mit sehr starker Mehltauanfälligkeit.

3.1.2.1 Einzelblattanalyse

In dieser Studie wurden 162 Gerstenakzessionen (siehe Tabelle 2.1 und 2.2), die der IPK-Genbank entstammen, mit zwei Mehltauisolaten untersucht. Pro Akzessionen wurden maximal acht Blätter pro Einzelkornnachkommenschaft getestet. Boniturwerte von 0 wurden als resistent gewertet; Boniturwerte von 1-2 wurden als moderat resistent gewertet und Boniturwerte von 3 gaben den Hinweis auf einen extrem anfälligen Genotyp. Für jeden Genotyp wurde für jedes Isolat die mittlere befallene Blattfläche berechnet. Aus beiden Ergebnissen wurde der Mittelwert ermittelt, sodass für jede Akzession ein Wert vorlag, der den Phänotyp beschreibt. Im Anhang in sind die Boniturwerte aller getesteten Gerstenakzessionen aufgeführt.

In Abbildung 3.2 wurde das zu untersuchende Merkmal "Mehltau-befallene Blattfläche" in acht Klassen (von null bis 80%) eingeteilt. Die Verteilung der Genotypen in den verschiedenen Gruppen ist mit Ausnahme von 50-70% befallene Blattfläche recht gleichmäßig.

Das Interesse in dieser Studie lag in der Identifizierung und Analyse von quantitativer, rassenunspezifischer, dauerhafter Mehltauresistenz. Daher wurden als resistente Gerstenakzessionen nur diejenigen ausgewählt, die gegen beide verwendeten Mehltauisolate eine zumindest partielle Resistenz aufwiesen. Unter Verwendung dieser Kriterien wurden 51 Gerstenakzessionen als quantitativ resistent eingestuft. Aufgrund der Zielsetzung Kandidatengene einer *mlo*-unabhängigen quantitativen Mehltauresistenz aufzudecken, wurden resistente Akzessionen, von denen auf Basis von Genbankinformationen bekannt war, dass sie das *mlo*-Resistenzgen enthalten, in dieser Studie nicht verwendet. Außerdem wurden 30 mehltauanfällige Gerstenakzessionen ausgewählt. Die zusammengestellte Population von 36 resistenten und 30 anfälligen Akzessionen ist in Tabelle 3.5 dargestellt. In der Tabelle sind für jede Akzession Angaben über die Test-Nummer, die Akzessions-Nummer der IPK-Genbank, die mittlere befallene Blattfläche (CMIA=calculation of mean *infected area*) nach Inokulation mit den zwei verschiedenen Pilzisolaten 78P und D12-12, sowie die halbe Variationsbreite (1/2 VB) der Ergebnisse zweier unabhängiger Experimente, sowie der Mittelwert der CMIA beider Isolate dargestellt. Akzessionen, die einen resistenten Phänotyp aufwiesen wurden zweimal getestet; anfällige Akzessionen wurden einmal analysiert. Außerdem wurde von jeder Akzession die Zeiligkeit, sowie die Pflanzenhöhe bestimmt. Zu beachten beim Merkmal Pflanzenhöhe ist jedoch, dass es sich hier um vorläufige Ergebnisse handelt, die nur einjährig und an einem Ort erhoben wurden.

Tab. 3.5: Verwendete Population für weiterführende Analysen – angegeben sind di	e
phänotypischen Merkmale Mehltauresistenz, Zeiligkeit und Pflanzenhöhe	

Zumin	anotyp Mem		1ai.)					
Test- Nr:	Akzession- Nr:	C M I A (78P)	½ VB (78P)	C M I A (D12/12)	½ VB (D12-12)	Mittelwert (CMIA) beider Isolate	Zeiligkeit	Pflanzenhöhe [cm]
9	HOR214	28,53	12,06	11,76	1,60	20,14	6	54,83
11	HOR261	2,50	0,00	24,06	14,40	13,28	6	73,97
12	HOR262	13,43	10,87	19,71	5,96	16,57	6	64,00
14	HOR303	30,40	5,43	26,31	8,57	28,35	2	60,42
15	HOR683	13,58	1,88	13,31	8,39	13,44	6	42,75
16	HOR728	5,75	0,00	13,65	4,28	9,70	6	51,77
17	HOR736	16,68	6,27	5,75	4,59	11,21	6	44,06
18	HOR795	7,96	7,73	8,18	8,04	8,07	2	54,03
19	HOR800	18,68	6,80	22,31	10,25	20,5	6	65,78

(1/2 Variationsbreite (VB) stellt die Streuung der Ergebnisse der zwei unabhängigen Inokulationsexperimente zum Phänotyp Mehltauresistenz dar.)

0.1

Fortsetzung von Tab. 3.5 Verwendete Population für weiterführende Analysen								
- ·					44.145	Mittelwert		54
lest-	A kzession-		1/2 V B		/2 V B	(CMIA)	Zeiligkeit	Pflanzenhohe
NT.	141.	(70P)	(100)	(D12/12)	(D12-12)	Isolate	-	[ciii]
22	HOR804	19.18	21.30	3 31	1 14	11 25	6	57.50
27	HOR831	38 21	3 93	29.28	0.39	33,75	2	45.00
28	HOR842	3 58	1 53	3 58	1.53	3 58	-	63.09
33	HOR 1036	3,30	1,55	3 31	1,55	3 31	6	68.42
35	HOR1159	20.68	12 55	12 40	7 11	16 54	6	59.13
38	HOR1379	7.96	5 43	11.87	5.12	9.97	6	38.72
40	HOR1457	2,50	0.00	3.58	1.53	3.04	2	57.06
40	HOR1457	2,50	15.60	21.23	1,55	21.28	2	<i>16</i> 97
42	HOR1506	21,55	0.00	21,25	0.00	21,20	2	54.67
42	HOR1500	2,50	0,00	2,50	0,00	2,50	2	59,07
43	HOR1047	2,50	12.86	20.02	1,14	2,90	:	<i>16</i> 30
40 50	HOR18/3	17,03	12,00	7.06	6,01	23,84	0	40,39
50	HOR2343	4,93	1,14	7,00	0,43	0,00	2	43,23
54	HUR25/3	2,50	0,00	2,50	0,00	2,50	0	55,94
55 50	HUR2591	4,12	2,29	2,50	0,00	5,51	0	47,02
58 (7	HOR2932	4,12	2,29	4,93	3,44	4,53	6	61,19
6/	HOR3041	21,60	11,25	13,21	15,15	17,41	2	48,59
70	HOR30/5	5,10	3,67	2,50	0,00	3,80	6	52,50
72	HOR3270	2,50	0,00	2,50	0,00	2,50	6	44,38
73	HOR3271	25,12	18,20	13,00	14,84	19,06	2	51,52
77	HOR3537	2,50	0,00	2,50	0,00	2,50	2	52,83
79	HOR3726	2,50	0,00	2,50	0,00	2,50	6	56,68
84	HOR3983	9,00	9,19	6,562	1,14	7,78	6	63,61
85	HOR3984	9,81	1,14	14,25	5,12	12,03	6	63,02
86	HOR3988	17,43	21,12	10,40	11,18	13,92	6	82,17
89	HOR4021	2,50	0,00	4,125	2,29	3,31	6	60,04
103	HOR4400	21,50	11,40	23,25	7,60	22,37	2	53,38
108	HOR4408	2,50	0,00	2,50	0,00	2,50	2	61,47
30	HOR844	32,37	0,00	45,96	1,98	39,17	2	44,22
57	HOR2826	38,00	0,00	26,75	15,90	32,37	2	66,72
75	HOR3275	40,34	3,31	37,65	33,63	39,00	6	52,69
82	HOR3941	61,43	13,25	59,09	23,20	60,26	2	34,41
87	HOR3997	41,28	8,61	45,03	3,31	43,15	2	52,03
91	HOR4031	55,34	15,24	60,03	21,87	57,68	6	61,08
93	HOR4060	75,50	0,00	54,40	23,20	64,95	2	34,53
118	BCC1376	70,81		66,12		68,46	2	50,16
122	BCC1389	52,06		70,81		61,43	2	48,78
127	BCC1404	75,50		75,50		75,50	2	n.a.
128	BCC1405	66,37		75,50		70,93	2	60,63
129	BCC1408	61,43		75,50		68,46	2	55,06
130	BCC1412	75,50		75,50		75,50	2	61,50
131	BCC1420	75,50		75,50		75,50	2	51,84
132	BCC1430	75,50		75,50		75,50	2	68,00
133	BCC1431	75,50		75,50		75,50	2	62,81
135	BCC1450	75,50		75,50		75,50	6	52,75
136	BCC1452	75,50		75,50		75,50	6	64,94
141	BCC1468	75,50		75,50		75,50	2	54,53
144	BCC1488	75,50		75,50		75,50	6	66,31
145	BCC1496	75,50		75,50		75,50	6	47,14
146	BCC1498	75,50		75,50		75,50	2	51,41
147	BCC190	69.25		65,50		67.37	2	49.78
148	BCC3	52,06		70,81		61,43	6	68,09

Fortsetzung von Tab. 3.5 Verwendete Population für weiterführende Analysen								
Test- Nr:	A kzession- N r:	C M I A (78P)	½ VB (78P)	C M I A (D12/12)	½ VB (D12-12)	Mittelwert (CMIA) beider Isolate	Zeiligkeit	Pflanzenhöhe [cm]
149	BCC423	75,50		75,50		75,50	6	77,50
152	BCC745	75,50		75,50		75,50	6	52,47
154	BCC852	70,81		75,50		73,15	6	61,69
155	BCC888	75,50		75,50		75,50	6	49,75
156	BCC893	75,50		75,50		75,50	2	52,22
157	BCC903	75,50		75,50		75,50	6	47,69

Sechsundsechzig Genotypen wurden für weiterführende Analysen ausgewählt (vgl. Tabelle 3.5). Die Verteilung dieser Genotypen in acht Unterklassen (null bis 80% befallene Blattfläche) ist in Abbildung 3.3 dargestellt.

Abb. 3.3: Verteilung von 66 Genotypen mit unterschiedlicher phänotypischer Ausprägung Die Klasseneinteilung erfolgte anhand der prozentual befallener Blattfläche (Mittelwert beider Isolate).

Die Auswahl von Genotypen, die einen starken Unterschied in ihrer phänotypischen Ausprägung zeigen, ist in dieser Grafik deutlich zu erkennen. Die größte Anzahl an Genotypen ist in den Extrem-Gruppen "starke Resistenz" (0-10% befallene Blattfläche) und "starke Anfälligkeit" (70-80% befallene Blattfläche) zu beobachten.

3.1.2.2 Feldversuche

Zusätzlich zur Phänotypbestimmung mit Hilfe der Einzelblattanalyse wurde das Mehltauresistenzverhalten der in Tabelle 3.5 aufgelisteten Akzessionen im Feld evaluiert. Der Feldversuch fand im Jahr 2008 am Standort Bergen/Wohlde (Niedersachsen) statt. Der Feldversuch diente zur Bestätigung des Resistenzphänotyps, der in der Einzelblattanalyse ermittelt wurde. Die Akzessionen im Feld unterlagen dem natürlichen Infektionsdruck durch Mehltausporen an diesem Standort. Zwischen den Einzelblattanalyse-Boniturdaten des Mehltauisolats 78P und den Boniturwerten aus dem Feldversuch zeigte sich eine Korrelation von R=0,6847, der Korrelationskoeffizient zwischen den Einzelblattanalyse-Boniturwerten des Mehltauisolats D12-12 und den Boniturdaten aus dem Feldversuch betrug R=0,7004. Die Ergebnisse der Rangkorrelationsanalyse zwischen den Boniturwerten der Einzelblattanalysen und dem Feldversuch sind in Abbildung 3.4 dargestellt.

Abb. 3.4: Korrelationsanalyse zwischen phänotypischen Daten aus Einzelblattanalyse und Feldversuch In der Einzelblattanalyse wurden die Isolate 78P und D12-12 verwendet; die Infektion im Feld erfolgte unter natürlichen Bedingungen.

3.1.2.3 Test auf Vorhandensein des *mlo*-Resistenzgens in resistenten Akzessionen

Von besonderem Interesse in dieser Studie war die Evaluierung von quantitativer Mehltauresistenz in Sommergerste, die unabhängig vom *mlo*-Resistenzgen auftritt.

Genotypen, die das *mlo*-Resistenzgen tragen, sollten von dieser Studie ausgeschlossen werden. Um diese Genotypen trotz fehlender Passportdaten bezüglich *mlo*-Resistenz zu erkennen, wurden zwei Ansätze verfolgt, die eine Identifizierung des *mlo*-Resistenzgens ermöglichen. Zum einen wurden die 36 als resistent bonitierten Gerstenakzessionen in einem Komplementationstest mit einem Mlo-Gen enthaltenden BAC-Klon (BAC F15) im transienten Expressionssystem getestet. Die Sorte IngridBC*m/05* diente als Positivkontrolle. Nach Beschuss von IngridBC*mlo5* mit dem Reportergen allein (ohne BAC F15) wurde ein Anfälligkeitsindex von 0,001 ermittelt. Der Anfälligkeitsindex erhöhte sich jedoch signifikant nach Beschuss mit dem Reportergen kombiniert mit dem BAC F15 auf 0,044. Dieser signifikante Unterschied der Anfälligkeitsindices eines Genotyps nach Beschuss ohne den BAC F15 und nach Beschuss mit dem BAC F15 weist auf Komplementation und daher auf Vorhandensein des *mlo*-Resistenzgens in diesem Genotyp hin. Außerdem diente die Sorte Ingrid in diesem Versuch als Kontrollgenotyp, um einen eventuellen Einfluss des BAC F15 auf den Anfälligkeitsindex bei Vorhandensein des Mlo-Allels aufzudecken. Für die Sorte Ingrid zeigte sich jedoch kein Unterschied im Anfälligkeitsindex nach Beschuss ohne den BAC F15 und nach Beschuss mit dem BAC F15. Der BAC F15 beeinflusst folglich nicht den Anfälligkeitsindex von Genotypen mit einem *Mlo*-Hintergrund.

Die Ergebnisse des Komplementationstests sind in Abbildung 3.5 dargestellt. Die drei resistenten Akzessionen HOR3537, HOR1506 und HOR1457 zeigten in diesem Komplementationstest eine starke bis vollständige Komplementation und scheinen das *mlo*-Resistenzgen zu enthalten, das eine starke papilläre Resistenz vermittelt. Genotypen, die dieses Resistenzgen aufweisen, werden mit Klasse 0 bonitiert. Die Boniturwerte für diese drei Akzessionen unterstreichen das Ergebnis des Komplementationstests, da sie bei beiden verwendeten Mehltau-Isolaten eine CMIA (*calculation of mean infected area*) von 2,5 zeigten. Fünf Akzessionen (HOR842, HOR3988, HOR831, HOR2543 und HOR3271) zeigten eine partielle Komplementation. Die CMIA-Werte schwankten bei diesen Akzessionen zwischen 3,58 (HOR842) und 38,22 (HOR831). Die restlichen 28 Akzessionen zeigten bei diesem Test keine Komplementation zum *mlo*-Resistenzgen.

Abb. 3.5: Transienter Komplementationstest mittels Mlo-Gen enthaltendem BAC-Klon (BAC F15)
Für jede Akzession wurde der Anfälligkeitsindex nach Beschuss mit einem Reportergen-Vektor (pUbiGUS (Schweizer et al. 1999) (schwarz)) und nach Beschuss mit dem *Mlo*-Gen enthaltenden BAC-Klon (BAC F15) (weiß) bestimmt – angegeben sind jeweils die Einzelwerte eines Schusses

das hier verwendete Pflanzenmaterial bisher kaum Wie bereits erwähnt ist in artifizieller die Züchtungsprozesse unter Verwendung *mlo*-Allele, aus Mutationsexperimenten am Risoe Institut in Dänemark stammen, eingeflossen. Bei detektierter *mlo*-Resistenz kann es sich folglich ausschließlich um natürlich vorkommende mlo-Allele handeln. Das mlo11-Allel ist das einzig natürlich vorkommende Allel, das aus der Literatur bekannt ist (Piffanelli et al. 2004). Die 36 resistenten Akzessionen wurden mittels eines PCR-Ansatzes auf das Vorhandensein des *mlo11*-Resistenzgens geprüft. Es handelte sich bei diesem Test um einen Anwesenheits- oder Abwesenheitspolymorphismus. Bei Vorhandensein des *mlo*11-Allels im getesteten Genotyp konnte ein PCR-Produkt von 1.100 bp amplifiziert werden. Das Ergebnis dieses Tests ist in Abbildung 3.6 dargestellt. Ein positives Resultat für *m*/*o*11 ließ sich für die Genotypen mit den Testnummern HOR1457, HOR1506, HOR2543, HOR3537 und HOR4408 bestimmen (auf dem Gelbild rot markiert). Dieses Ergebnis deckte sich mit dem des Komplementationstests: Die Genotypen HOR3537, HOR1457 und HOR1506 zeigten eine vollständige Komplementation und HOR2543 eine partielle Komplementation. Nur bei HOR4408 war keine Übereinstimmung der Ergebnisse zu beobachten.

Abb. 3.6: Test der 36 resistenten Akzessionen auf das mlo11-Resistenzgen mittels PCR Rot- umrandete Banden weisen auf das *mlo*11-Allel hin.

Eine Produktamplifikation schien auch bei HOR214, HOR800 und HOR2573 erfolgt zu sein, jedoch hatte die Bande die falsche Größe und wies eine geringere amplifizierte Produktmenge auf. Es handelte sich wahrscheinlich um unspezifische Produkte. Die fünf Genotypen HOR1457, HOR1506, HOR2543, HOR3537 und HOR4408 wurden von der folgenden Assoziationsstudie ausgeschlossen, da sie sowohl komplementierten als auch positiv auf das *mlo*11-Allel getestet wurden.

3.1.2.4 Test auf rassenunspezifische Resistenz

Das Interesse in dieser Studie lag in der Identifizierung von rassenunspezifischer Mehltauresistenz. Das Resistenzverhalten der resistenten Gerstenakzessionen wurde zusätzlich mit vier Mehltauisolaten aus Israel, die eine Virulenz gegenüber eine Anzahl von *Mla*-Allelen aus *Hordeum spontaneum* aufweisen, makroskopisch analysiert und außerdem wurde die Resistenzausprägung (hypersensitive Zelltodreaktion oder Papillenbildung) mikroskopisch mit der DAB-Analyse bestimmt. Das Ergebnis dieser Analysen ist in Tabelle 3.6 dargestellt.

Tab. 3.6: Makroskopischer und mikroskopischer Resistenzphänotyp der resistenten Akzessionen (CMIA=*calculation of mean infected area*, HR= hypersensitive Reaktion, Papille=papilläre Resistenz), bei CMIA ist jeweils der Mittelwert angegeben (In Spalte zwei ist der Mittelwert der mittleren befallenen Blattfläche der zwei europäischen Isolate angegeben, in Spalte drei der Mittelwert der Bonitur nach Inokulation mit vier israelischen Isolaten)

Accession	Europa CMIA [%]	Israel CMIA[%]	Resistenztyp
HOR214	20,15	45,03	HR
HOR261	13,28	42,69	HR
HOR262	16,58	41,28	HR
HOR303	28,36	38,94	HR
HOR683	13,45	42,69	HR
HOR728	9,70	43,63	HR
HOR736	11,22	54,41	HR
HOR795	8,08	26,75	HR
HOR800	20,50	41,28	HR
HOR804	11,25	45,97	HR
HOR831	33,75	45,03	HR
HOR842	3,58	14,47	HR
HOR1036	3,31	40,81	HR
HOR1159	16,55	34,72	HR
HOR1379	9,92	52,06	HR
HOR1457	3,04	2,50	Papille
HOR1468	21,28	4,13	HR
HOR1506	2,50	2,50	Papille
HOR1647	2,91	k.A.	HR
HOR1873	23,84	48,31	HR
HOR2543	6,00	6,34	Papille

Resistenzpila	потур		
Accession	Europa CMIA [%]	Israel CMIA[%]	Resistenztyp
HOR2573	2,50	32,38	HR
HOR2591	3,31	49,72	HR
HOR2932	4,53	32,38	HR
HOR3041	17,41	5,75	HR
HOR3075	3,80	29,56	HR
HOR3270	2,50	5,75	HR
HOR3271	19,06	2,50	HR
HOR3537	2,50	2,50	Papille
HOR3726	2,50	11,44	Papille
HOR3983	7,78	42,69	HR
HOR3984	12,03	42,69	HR
HOR3988	13,92	9,97	HR
HOR4021	3,31	7,38	HR
HOR4400	22,38	2,50	HR
HOR4408	2,50	2,50	Papille

Fortsetzung von Tab. 3.6: Makroskopischer und mikroskopischer Resistenzphänotyp

Der überwiegende Teil der resistenten Akzessionen zeigte eine höhere Anfälligkeit gegenüber den israelischen Isolaten verglichen mit den europäischen. Dies könnte auf das Vorhandensein von *Mla*-Allelen hindeuten, die gegen die europäischen Isolate noch wirksam sind. Jedoch konnte in diesem Experiment keine Isolatspezifität beobachtet werden; es konnte keine Resistenzspezifität zwischen Akzessionen und bestimmten Isolaten beobachtet werden. Die höheren Infektionswerte nach Inokulation mit den israelischen Isolaten hindeuten. Ferner sind unterschiedliche Testbedingungen als Ursache nicht auszuschließen, da die phänotypische Analyse mit den israelischen Isolaten in einem Partnerlabor in England stattfand. Zusammenfassend kann vorerst keine klare Aussage darüber getroffen werden, ob die beobachteten Resistenzen rassenspezifisch oder quantitativ waren.

Die mikroskopische Analyse des resistenten Materials ergab bei 83% der Akzessionen eine HR-bedingte Resistenz, der Pilz konnte die Zelle penetrieren, die in späterem Stadium abstarb. Nur 17% der Akzessionen wiesen eine Penetrationsresistenz auf. Die Literatur geht bisher davon aus, dass es sich um eine rassenspezifische Resistenz handelt, wenn der Pilz in die Wirtszelle eindringen kann und erst im späteren Entwicklungsstadium durch eine hypersensitive Reaktion gestoppt wird (Boyd et al. 1995; Jones et al. 2006). Zusammen mit der fehlenden Isolatspezifität kann folglich keine Aussage darüber getroffen werden, ob es sich hier um eine quantitative oder rassenspezifische Resistenz handelt.

3.1.3 Bestimmung der Populationsstruktur

Die Bestimmung der Populationsstruktur ist ein wichtiger Bestandteil einer Assoziationsstudie. Die Einbeziehung der Populationsstruktur in die Assoziationsverrechnungen verringert die Gefahr, falsch-positive Assoziationen zu berechnen.

Für die Bestimmung der Populationsstruktur wurden 46 SSR-Marker, die eine gleichmäßige Verteilung über das Gerstengenom aufweisen, verwendet. Vier der 46 SSR-Marker ergaben keine auswertbaren Allelgrößen, sodass die Werte von 42 SSR-Markern in die endgültige Berechnung der Populationsstruktur einflossen.

3.1.3.1 Analyse zur Bestimmung von Untergruppen innerhalb der Population

Die Allelgröße jedes SSR-Markers wurde für jeden Genotyp bestimmt. Die Anzahl der Allele jedes Markers innerhalb der verwendeten Gerstenpopulation ist in Tabelle 3.7 dargestellt.

Der SSR-Marker GBM1015 wies mit 14 Allelen die höchste Diversität innerhalb dieser Population auf. Die Marker GBM1020, GBM1404, GBM1029 und GBM1212 zeigten nur zwei verschiedene Allelgrößen innerhalb der verwendeten Population.

Unter Verwendung des Programms structure 2.1 (Pritchard et al. 2001) wurde die Populationsstruktur bestimmt. Die Berechnung erfolgte für eine mögliche Anzahl an Untergruppen von eins bis zehn (K=1 bis K=10) auf Basis des Algorithmus nach Bayes. Es wurden zehn Wiederholungsberechnungen für jede mögliche Anzahl an Untergruppen (K) durchgeführt, sodass die Ergebnisse von insgesamt 100 Berechnungen vorlagen.

	1		
Markername	Anzahl Allele	Markername	Anzahl Allele
GBM1516	4	GBM1031	6
GBM1218	4	GBM1029	2
GBM1047	5	GBM1176	6
GBM1419	5	GBM1013	3
GBM1020	2	GBM1033	6
GBM1043	3	GBM1110	4
GBM1064	4	GBM1061	8
GBM1060	3	GBM1208	4
GBM1035	4	GBM1405	5
GBM1003	7	GBM1221	7
GBM1075	4	GBM1256	7
GBM1007	7	GBM1334	3
GBM1404	2	GBM1018	3

Tab. 3.7: Anzahl verschiedener SSR-Allele der verwendeten SSR-Marker in der Population

Markername	Anzahl Allele	Markername	Anzahl Allele
GBM1280	4	GBM1212	2
GBM1461	9	GBM1326	5
GBM1464	8	GBM1008	3
GBM1036	3	GBM1413	4
GBM1002	5	GBM1063	4
GBM1026	3	GBM1323	5
GBM1021	8	GBM1501	5
GBM1015	14	GBM1459	6
GBM1516	4	GBM1031	6
GBM1218	4	GBM1029	2
GBM1047	5	GBM1176	6
GBM1419	5	GBM1013	3
GBM1020	2	GBM1033	6
GBM1043	3	GBM1110	4
GBM1064	4	GBM1061	8
GBM1060	3	GBM1208	4
GBM1035	4	GBM1405	5
GBM1003	7	GBM1221	7
GBM1075	4	GBM1256	7
GBM1007	7	GBM1334	3
GBM1404	2	GBM1018	3
GBM1280	4	GBM1212	2
GBM1461	9	GBM1326	5
GBM1464	8	GBM1008	3
GBM1036	3	GBM1413	4
GBM1002	5	GBM1063	4
GBM1026	3	GBM1323	5
GBM1021	8	GBM1501	5
GBM1015	14	GBM1459	6

Fortsetzung von Tab. 3.7: Anzahl verschiedener SSR-Allele

Für jede Berechnung gab structure 2.1 einen Wahrscheinlichkeitswert *log probability of data* (L(K)) aus, der nach Pritchard et al. 2001 die Anzahl an vorhandenen Untergruppen (K) angab. Diese Werte konnten für die Schätzung einer Wahrscheinlichkeitsfunktion genutzt werden. Der Wendepunkt dieser Funktion (Steigung=0) gibt die Anzahl an vorhandenen Untergruppen (K) an. Die Verteilung von L(K) zeigt die wahre Anzahl an Untergruppen (K) jedoch nicht genau an (Evanno et al. 2005). Evanno et al. 2005 beschreiben die Berechnung von ΔK , eine *ad hoc quantity* basierend auf der ersten Ableitung der Wahrscheinlichkeitsfunktion. Die Funktion zu ΔK soll ein Maximum bei der wahren Anzahl an Untergruppen (K) anzeigen. Das Ergebnis für die Berechnung der Anzahl

an Untergruppen der in dieser Studie verwendeten Gerstenpopulation ist in Abbildung 3.7 dargestellt.

 Abb. 3.7: Berechnung der Anzahl an Untergruppen innerhalb der Population nach Evanno et al.(2005)
 Das Maximum der △K-Funktion (rote Kurve) gibt die Anzahl Untergruppen der Population an (Evanno et al. 2005)

Darin wurden sowohl die Funktion L(K) (blaue Kurve) als auch die Δ K-Funktion (rote Kurve) dargestellt. Das Maximum der Δ K-Funktion (rote Kurve) war bei K=4 abzulesen. Folglich wurde eine Untergliederung der Population in vier Untergruppen angenommen.

3.1.3.2 Berechnung der Q-Matrix

Wie bereits in Kapitel 3.1.3.1 beschrieben, wurde das Programm structure 2.1 für die Berechnung der Populationsstruktur verwendet. Die Berechnungen nach Evanno et al. 2005 ergaben eine Strukturierung in vier Untergruppen (K=4). Structure 2.1 gab für jede mögliche Anzahl an Untergruppen eine Q-Matrix aus. Die Q-Matrix beinhaltet Werte, die die Wahrscheinlichkeit angeben, dass der zu analysierende Genotyp zu einer der Untergruppen gehört. In Abbildung 3.8 sind die Q-Werte der einzelnen Genotypen für K=4 in einem Säulendiagramm dargestellt.

Abb. 3.8: Klassifizierung der Gerstenakzessionen in die vier Untergruppen Jeder Balken symbolisiert eine Akzession; das Farbmuster jedes Balkens spiegelt die Wahrscheinlichkeit der Zugehörigkeit der Akzession zu einer Untergruppe wieder. Die hier verwendete Population gruppiert sich aufgrund der Herkünfte.

Abbildung 3.8 in blauer Farbe markiert, setzte sich aus Akzessionen aus dem nahen Osten zusammen. Grün markierte Akzessionen stammen aus Europa und Afrika und bilden die zweite Untergruppe. Die rote Untergruppe (3) beinhaltet Akzessionen aus Ostasien und Genotypen aus Amerika und Balkan werden in der braunen Gruppe (4) zusammengefasst. Abbildung 3.9 zeigt die Klassifizierung der vier Untergruppen sortiert nach Mehltauresistenten und -anfälligen Phänotyp. Vertreter jeder Untergruppe sind sowohl bei den resistenten als auch bei den anfälligen Genotypen vorhanden. Jedoch zeigt die blaue Untergruppe (naher Osten) eine Überrepräsentation in den anfälligen Akzessionen.

Die Berechnung der Varianzanalyse der mittleren befallenen Blattfläche zwischen den vier Untergruppen soll Aufschluss über signifikante Unterschiede zwischen den Gruppen liefern und somit auf eine Gruppierung in Bezug auf Mehltauresistenz hinweisen.

Die Varianzanalyse der CMIA (mittlere befallene Blattfläche) zwischen den vier Untergruppen zeigte jedoch keine signifikanten Unterschiede (Abb. 3.10), somit scheint keine Gruppierung bezüglich Mehltauresistenz vorzuliegen.

Die Populationsstruktur präsentierte eine Gruppierung der Genotypen aufgrund ihrer Herkunft, es zeigte sich keine Gruppierung in Bezug auf die Mehltauresistenz bzw. Mehltauanfälligkeit der Akzessionen.

Es wurde die Q-Matrix für K=4 ausgewählt und für die Assoziationsberechnungen verwendet.

Abb. 3.10: Varianzanalyse der mittleren CMIA (*calculation of mean infected area*) [%] über die vier Untergruppen (Untergruppe 1 beinhaltet Akzessionen aus dem Nahen Ostern, Untergruppe 2 sind Akzessionen aus Ostasien, Untergruppe 3 sind Akzessionen mit der Herkunft Europa und Afrika und Untergruppe 4 beinhaltet Akzessionen aus Amerika und dem Balkan)

3.1.3.3 Berechnung der kinship-Matrix

Die Berechnung der kinship-Matrix erfolgte anhand der SSR-Markerdaten unter Verwendung von SPAGeDi 2.1 (Hardy et al. 2002). Der kinship-Koeffizient kann auf Populationsebene oder zwischen zwei Individuen bestimmt werden. Dieser Koeffizient stellt einen Wahrscheinlichkeitswert zur Abstammung dar. Der Wert "0" in der Matrix bedeutet, dass die zwei verglichenen Individuen vermutlich kein verwandtschaftliches Verhältnis aufweisen

Die Berechnung der *kinship*-Matrix erfolgte nach Ritland (1996). Die *k*-Matrix ist in Tabelle 3.8 dargestellt. Diese *k*-Matrix wurde bei der Berechnung des *Mixed-Linear-Models* für die Assoziationsverrechnungen verwendet.

	103	11	12	14	15	16	17	18	19	22	27	28	33	35	38	41	45	48	54	55	58	67	70	72	73	79	84	85	86	89	9	
03	0,00	0,00	0,00	0,07	0,00	0,02	0,00	0,01	0,02	0,00	0,00	0,00	0,01	0,00	0,00	0,00	0,00	0,00	0,02	0,00	0,04	0,00	0,01	0,00	0,20	0,00	0,00	0,00	0,00	0,00	0,00	ab
11	0,00	0,00	0,10	0,00	0,08	0,08	0,05	0,00	0,02	0,00	0,00	0,00	0,04	0,03	0,04	0,00	0,00	0,06	0,00	0,00	0,09	0,00	0,00	0,10	0,00	0,00	0,03	0,04	0,00	0,00	0,00	თ
12	0,00	0,10	0,00	0,00	0,10	0,12	0,16	0,03	0,02	0,00	0,00	0,00	0,13	0,09	0,03	0,00	0,00	0,12	0,00	0,17	0,00	0,00	0,00	0,02	0,00	0,00	0,28	0,29	0,00	0,00	0,00	ö
14	0,07	0,00	0,00	0,00	0,00	0,00	0,00	0,04	0,00	0,00	0,06	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,07	0,00	0,08	0,00	0,06	0,00	0,09	0,00	0,00	0,00	0,00	0,00	0,00	$\overline{\mathbf{x}}$
15	0,00	0,08	0,10	0,00	0,00	0,04	0,43	0,00	0,00	0,00	0,00	0,00	0,04	0,10	0,21	0,00	0,00	0,20	0,00	0,33	0,00	0,00	0,00	0,19	0,00	0,00	0,08	0,09	0,02	0,00	0,00	ЦЦ.
16	0,02	0,08	0,12	0,00	0,04	0,00	0,14	0,00	0,03	0,00	0,00	0,00	0,06	0,16	0,17	0,00	0,00	0,09	0,00	0,10	0,00	0,00	0,00	0,02	0,00	0,00	0,12	0,11	0,00	0,00	0,00	shi
17	0,00	0,05	0,16	0,00	0,43	0,14	0,00	0,00	0,03	0,00	0,00	0,00	0,20	0,20	0,30	0,00	0,00	0,42	0,00	0,38	0,00	0,00	0,00	0,11	0,00	0,00	0,10	0,11	0,00	0,00	0,00	q
18	0,01	0,00	0,03	0,04	0,00	0,00	0,00	0,00	0,00	0,00	0,13	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,51	0,00	0,29	0,00	0,50	0,00	0,02	0,00	0,00	0,00	0,00	0,00	0,00	Ň
19	0,02	0,02	0,02	0,00	0,00	0,03	0,03	0,00	0,00	0,00	0,00	0,00	0,23	0,16	0,00	0,01	0,05	0,00	0,00	0,07	0,00	0,01	0,00	0,07	0,00	0,00	0,08	0,08	0,00	0,00	0,00	lt
22	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,44	0,00	0,00	0,00	0,11	0,00	0,00	0,00	0,00	0,00	0,14	0,00	0,00	0,00	0,61	0,00	0,00	0,19	0,61	0,46	<u> </u>
27	0,00	0,00	0,00	0,06	0,00	0,00	0,00	0,13	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,17	0,00	0,08	0,04	0,17	0,00	0,03	0,00	0,00	0,00	0,00	0,00	0,00	na
28	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,44	0,00	0,00	0,00	0,00	0,00	0,03	0,00	0,00	0,00	0,00	0,00	0,06	0,00	0,00	0,00	0,74	0,00	0,00	0,14	0,64	0,53	h
33	0,01	0,04	0,13	0,00	0,04	0,06	0,20	0,00	0,23	0,00	0,00	0,00	0,00	0,31	0,16	0,00	0,00	0,01	0,00	0,08	0,00	0,00	0,00	0,04	0,00	0,00	0,05	0,06	0,00	0,00	0,00	R
35	0,00	0,03	0,09	0,00	0,10	0,16	0,20	0,00	0,16	0,00	0,00	0,00	0,31	0,00	0,07	0,03	0,00	0,05	0,00	0,09	0,00	0,03	0,00	0,12	0,00	0,00	0,21	0,21	0,00	0,00	0,00	tla
38	0,00	0,04	0,03	0,00	0,21	0,17	0,30	0,00	0,00	0,00	0,00	0,00	0,16	0,07	0,00	0,00	0,00	0,21	0,00	0,15	0,00	0,00	0,00	0,12	0,00	0,00	0,10	0,10	0,00	0,00	0,00	nd
41	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,01	0,11	0,00	0,03	0,00	0,03	0,00	0,00	0,16	0,00	0,00	0,00	0,00	1,06	0,00	0,00	0,00	0,04	0,00	0,00	0,04	0,04	0,03	
45	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,05	0,00	0,00	0,00	0,00	0,00	0,00	0,16	0,00	0,00	0,00	0,00	0,00	0,02	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	9
48	0,00	0,06	0,12	0,00	0,20	0,09	0,42	0,00	0,00	0,00	0,00	0,00	0,01	0,05	0,21	0,00	0,00	0,00	0,00	0,11	0,00	0,00	0,00	0,28	0,00	0,00	0,04	0,04	0,00	0,00	0,00	96
54	0,02	0,00	0,00	0,07	0,00	0,00	0,00	0,51	0,00	0,00	0,17	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,23	0,00	0,61	0,00	0,03	0,00	0,00	0,00	0,00	0,00	0,00	\cup
55	0,00	0,00	0,17	0,00	0,33	0,10	0,38	0,00	0,07	0,00	0,00	0,00	0,08	0,09	0,15	0,00	0,00	0,11	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,22	0,23	0,00	0,00	0,00	
58	0,04	0,09	0,00	0,08	0,00	0,00	0,00	0,29	0,00	0,00	0,08	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,23	0,00	0,00	0,00	0,22	0,00	0,07	0,00	0,00	0,00	0,00	0,00	0,00	
67	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,01	0,14	0,04	0,06	0,00	0,03	0,00	1,06	0,02	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,07	0,00	0,00	0,09	0,07	0,05	
70	0,01	0,00	0,00	0,06	0,00	0,00	0,00	0,50	0,00	0,00	0,17	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,61	0,00	0,22	0,00	0,00	0,00	0,01	0,00	0,00	0,00	0,00	0,00	0,00	
72	0,00	0,10	0,02	0,00	0,19	0,02	0,11	0,00	0,07	0,00	0,00	0,00	0,04	0,12	0,12	0,00	0,00	0,28	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,06	0,06	0,00	0,00	0,00	
73	0,20	0,00	0,00	0,09	0,00	0,00	0,00	0,02	0,00	0,00	0,03	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,03	0,00	0,07	0,00	0,01	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	
/9	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,61	0,00	0,74	0,00	0,00	0,00	0,04	0,00	0,00	0,00	0,00	0,00	0,07	0,00	0,00	0,00	0,00	0,00	0,00	0,16	0,79	0,70	
84 95	0,00	0,03	0,28	0,00	0,08	0,12	0,10	0,00	0,08	0,00	0,00	0,00	0,05	0,21	0,10	0,00	0,00	0,04	0,00	0,22	0,00	0,00	0,00	0,06	0,00	0,00	0,00	0,55	0,00	0,00	0,00	
83 96	0,00	0,04	0,29	0,00	0,09	0,11	0,11	0,00	0,08	0,00	0,00	0,00	0,00	0,21	0,10	0,00	0,00	0,04	0,00	0,23	0,00	0,00	0,00	0,00	0,00	0,00	0,55	0,00	0,00	0,00	0,00	
80 80	0,00	0,00	0,00	0,00	0,02	0,00	0,00	0,00	0,00	0,19	0,00	0,14	0,00	0,00	0,00	0,04	0,00	0,00	0,00	0,00	0,00	0,09	0,00	0,00	0,00	0,10	0,00	0,00	0,00	0,10	0,14	
09	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,01	0,00	0,04	0,00	0,00	0,00	0,04	0,00	0,00	0,00	0,00	0,00	0,07	0,00	0,00	0,00	0,79	0,00	0,00	0,10	0,00	0,00	
9 710	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,40	0,00	0,55	0,00	0,00	0,00	0,03	0,00	0,00	0,00	0,00	0,00	0,05	0,00	0,00	0,00	0,70	0,00	0,00	0,14	0,00	0,00	
215	0,22	0,00	0,00	0,10	0,00	0,04	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,19	0,00	0,00	0,00	0,00	0,00	0,00	
(16	0.10	0.03	0.03	0,00	0.04	0.11	0.01	0,00	0.00	0,00	0,00	0,00	0.00	0.04	0.08	0,00	0,00	0,00	0,00	0.00	0,00	0,00	0,00	0,00	0.10	0,00	0.02	0.02	0,00	0,00	0,00	
217	0.17	0.02	0,00	0,00	0.04	0,00	0.00	0,00	0,00	0,00	0,00	0,00	0,00	0,04	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0.02	0.21	0,00	0,02	0,02	0,00	0,00	0,00	
(18	0.10	0.00	0.03	0.18	0.00	0,00	0,00	0,00	0,00	0,00	0.05	0,00	0,00	0,00	0.00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0.00	0.14	0,00	0,00	0,00	0,00	0,00	0,00	
(19	0.08	0.01	0,00	0.18	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0.00	0.00	0,00	0.00	0,00	0,00	0,00	0,00	0,00	0.00	0.00	0.00	0,00	0.16	0.00	0,00	0.00	0.00	0.00	0,00	
(20)	0.03	0.00	0,00	0.01	0.01	0.04	0,00	0.01	0,00	0,00	0.02	0.00	0.00	0,00	0.04	0,00	0,00	0.02	0.04	0,00	0.07	0.00	0.03	0,00	0.19	0.00	0,00	0.00	0.00	0.00	0,00	
21	0.14	0.00	0.00	0.11	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.00	0.00	0.00	0.00	0.18	0.00	0.00	0.00	0.00	0.00	0.00	
323	0.00	0.00	0.06	0.00	0.00	0.00	0.01	0.00	0.05	0.00	0.00	0.00	0.14	0.04	0.04	0.00	0.00	0.01	0.00	0.05	0.00	0.00	0.00	0.00	0.00	0.00	0.04	0.05	0.01	0.00	0.00	
×24	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.18	0.00	0.00	0.00	0.08	0.00	0.00	0.00	0.05	0.00	0.00	0.07	0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.04	0.00	0.01	0.02	
			1.5.5						/ -	1.5.5				1.5.5						× · · ·	1	/		1.5.5		/						

	103	11	12	14	15	16	17	18	19	22	27	28	33	35	38	41	45	48	54	55	58	67	70	72	73	79	84	85	86	89	9
K29	0,09	0,09	0,00	0,12	0,00	0,00	0,00	0,00	0,00	0,00	0,04	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,05	0,13	0,00	0,00	0,00	0,07	0,00	0,00	0,00	0,00	0,00	0,00
K30A	0,01	0,00	0,00	0,07	0,00	0,00	0,00	0,13	0,00	0,00	0,91	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,17	0,00	0,06	0,04	0,17	0,00	0,05	0,00	0,00	0,00	0,00	0,00	0,00
K32	0,09	0,00	0,00	0,13	0,00	0,01	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,08	0,00	0,00	0,00	0,00	0,00	0,08	0,00	0,00	0,10	0,00	0,00	0,00	0,00	0,00	0,00
K33	0,00	0,02	0,11	0,00	0,00	0,03	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,03	0,00	0,00	0,01	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,13	0,13	0,00	0,00	0,00
K35	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,01	0,00	0,00	0,20	0,00	0,00	0,00	0,00	0,01	0,18	0,00	0,00	0,00	0,00	0,07	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
K36	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,11	0,01	0,21	0,00	0,00	0,00	0,00	0,23	0,00	0,00	0,00	0,00	0,05	0,00	0,00	0,00	0,18	0,00	0,00	0,00	0,08	0,15
K37	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,16	0,00	0,16	0,00	0,00	0,00	0,09	0,01	0,00	0,00	0,00	0,00	0,15	0,00	0,00	0,03	0,13	0,05	0,05	0,28	0,13	0,06
K40	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,09	0,01	0,09	0,00	0,00	0,00	0,10	0,00	0,00	0,01	0,00	0,00	0,11	0,01	0,00	0,00	0,08	0,00	0,00	0,11	0,08	0,04
K42	0,00	0,12	0,01	0,00	0,01	0,13	0,03	0,00	0,16	0,00	0,00	0,00	0,02	0,04	0,07	0,00	0,00	0,00	0,00	0,10	0,00	0,00	0,00	0,02	0,00	0,00	0,00	0,00	0,03	0,00	0,00
K43	0,00	0,00	0,00	0,00	0,00	0,01	0,00	0,00	0,23	0,00	0,00	0,00	0,05	0,00	0,00	0,04	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,03	0,00	0,00	0,00	0,00	0,07	0,00	0,00
K44	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,14	0,07	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,04	0,00	0,00	0,00	0,00	0,02	0,00	0,00
K45	0,06	0,00	0,00	0,16	0,07	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,02	0,02	0,00	0,00	0,01	0,02	0,10	0,00	0,00	0,01	0,00	0,00	0,00
K49	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,15	0,03	0,10	0,00	0,00	0,00	0,01	0,16	0,00	0,00	0,00	0,00	0,03	0,00	0,01	0,00	0,10	0,00	0,00	0,02	0,10	0,01
K5/A	0,00	0,00	0,00	0,00	0,00	0,07	0,04	0,00	0,00	0,00	0,01	0,00	0,00	0,00	0,00	0,00	0,00	0,08	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,05	0,06	0,00	0,00	0,00
K0 V75 A	0,25	0,02	0,00	0,21	0,00	0,00	0,00	0,00	0,01	0,00	0,07	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,04	0,00	0,03	0,00	0,03	0,00	0,20	0,00	0,00	0,00	0,00	0,00	0,00
K/JA	0,00	0,00	0,00	0,00	0,10	0,00	0,00	0,05	0,07	0,00	0,00	0,00	0,09	0,07	0,00	0,00	0,00	0,00	0,07	0,04	0,00	0,00	0,00	0,07	0,00	0,00	0,02	0,05	0,00	0,00	0,00
KOZA V97A	0,01	0,00	0,01	0,00	0,00	0,04	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,01	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,02	0,01	0,00	0,00	0,00
KO/A VOLA	0,00	0,14	0,11	0,00	0,15	0,14	0,10	0,00	0,09	0,00	0,00	0,00	0,12	0,17	0,08	0,00	0,00	0,10	0,00	0,23	0,00	0,00	0,00	0,11	0,00	0,00	0,18	0,19	0,00	0,00	0,00
K03A	0,00	0,00	0.05	0,00	0,04	0,00	0,00	0,00	0,00	0,23	0,00	0,11	0,00	0,00	0,00	0,09	0,00	0,00	0,00	0,00	0,00	0,12	0,00	0,00	0,00	0,09	0,00	0,00	0,55	0,09	0,04
K95A	0,00	0,00	0,03	0,00	0,00	0,07	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,03	0,00	0,00	0,00	0,01	0,01	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,08	0,00	0,00	0,00

Fortsetzung von Tab. 3.8: Kinship-Matrix nach Ritland (1996)

	K10	K15	K16	K17	K18	K19	K20	K21	K23	K24	K29	K30A	K32	K33	K35	K36	K37	K40	K42	K43	K44	K45	K49	K57A	K6	K75A	K82A	K87A	K91A	K93A
103	0,22	0,05	0,10	0,17	0,10	0,08	0,03	0,14	0,00	0,00	0,09	0,01	0,09	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,06	0,00	0,00	0,25	0,00	0,01	0,00	0,00	0,00
11	0,00	0,06	0,03	0,02	0,00	0,01	0,00	0,00	0,00	0,02	0,09	0,00	0,00	0,02	0,00	0,00	0,00	0,00	0,12	0,00	0,00	0,00	0,00	0,00	0,02	0,00	0,00	0,14	0,00	0,00
12	0,00	0,06	0,03	0,00	0,03	0,00	0,00	0,00	0,06	0,00	0,00	0,00	0,00	0,11	0,00	0,00	0,00	0,00	0,01	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,01	0,11	0,00	0,05
14	0,16	0,00	0,00	0,21	0,18	0,18	0,01	0,11	0,00	0,00	0,12	0,07	0,13	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,16	0,00	0,00	0,21	0,00	0,00	0,00	0,00	0,00
15	0,00	0,03	0,04	0,04	0,00	0,00	0,01	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,01	0,00	0,00	0,07	0,00	0,00	0,00	0,10	0,00	0,13	0,04	0,00
16	0,04	0,08	0,11	0,00	0,00	0,00	0,04	0,00	0,00	0,00	0,00	0,00	0,01	0,03	0,00	0,00	0,00	0,00	0,13	0,01	0,00	0,00	0,00	0,07	0,00	0,00	0,04	0,14	0,00	0,07
17	0,00	0,03	0,01	0,00	0,00	0,00	0,00	0,00	0,01	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,03	0,00	0,00	0,00	0,00	0,04	0,00	0,00	0,00	0,18	0,00	0,00
18	0,00	0,00	0,00	0,00	0,00	0,00	0,01	0,00	0,00	0,00	0,00	0,13	0,00	0,00	0,01	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,05	0,00	0,00	0,00	0,00
19	0,00	0,02	0,00	0,00	0,00	0,00	0,00	0,00	0,05	0,18	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,16	0,23	0,00	0,00	0,00	0,00	0,01	0,07	0,00	0,09	0,00	0,00
22	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,11	0,16	0,09	0,00	0,00	0,00	0,00	0,15	0,00	0,00	0,00	0,00	0,00	0,23	0,00
27	0,00	0,00	0,00	0,00	0,05	0,00	0,02	0,00	0,00	0,00	0,04	0,91	0,00	0,00	0,20	0,01	0,00	0,01	0,00	0,00	0,00	0,00	0,03	0,01	0,07	0,00	0,00	0,00	0,00	0,00
28	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,21	0,16	0,09	0,00	0,00	0,00	0,00	0,10	0,00	0,00	0,00	0,00	0,00	0,11	0,00
33	0,00	0,11	0,00	0,00	0,00	0,00	0,00	0,00	0,14	0,08	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,02	0,05	0,14	0,00	0,00	0,00	0,00	0,09	0,00	0,12	0,00	0,00
35	0,00	0,07	0,04	0,00	0,00	0,00	0,00	0,00	0,04	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,04	0,00	0,07	0,00	0,00	0,00	0,00	0,07	0,00	0,17	0,00	0,00
38	0,00	0,00	0,08	0,00	0,00	0,00	0,04	0,00	0,04	0,00	0,00	0,00	0,00	0,03	0,00	0,00	0,00	0,00	0,07	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,01	0,08	0,00	0,03
41	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,08	0,00	0,01	0,00	0,09	0,10	0,00	0,04	0,00	0,00	0,01	0,00	0,00	0,00	0,00	0,00	0,09	0,00
45	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,05	0,00	0,00	0,00	0,00	0,18	0,23	0,01	0,00	0,00	0,00	0,00	0,00	0,16	0,00	0,00	0,00	0,00	0,00	0,00	0,00
48	0,00	0,00	0,00	0,00	0,00	0,00	0,02	0,00	0,01	0,00	0,00	0,00	0,00	0,01	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,08	0,00	0,00	0,00	0,16	0,00	0,00
54	0,00	0,00	0,00	0,00	0,00	0,00	0,04	0,00	0,00	0,00	0,00	0,17	0,00	0,00	0,00	0,00	0,00	0,01	0,00	0,00	0,00	0,02	0,00	0,00	0,04	0,07	0,00	0,00	0,00	0,01
55	0,00	0,02	0,00	0,00	0,00	0,00	0,00	0,03	0,05	0,07	0,05	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,10	0,00	0,00	0,02	0,00	0,00	0,00	0,04	0,00	0,25	0,00	0,01
58	0,00	0,00	0,00	0,00	0,00	0,00	0,07	0,00	0,00	0,00	0,13	0,06	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,03	0,00	0,00	0,00	0,00	0,00
67	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,04	0,08	0,00	0,07	0,05	0,15	0,11	0,00	0,00	0,00	0,00	0,03	0,00	0,00	0,00	0,00	0,00	0,12	0,00
70	0,00	0,00	0,00	0,00	0,00	0,00	0,03	0,00	0,00	0,00	0,00	0,17	0,00	0,00	0,00	0,00	0,00	0,01	0,00	0,00	0,00	0,01	0,00	0,00	0,03	0,06	0,00	0,00	0,00	0,00
72	0,00	0,00	0,00	0,02	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,02	0,03	0,04	0,02	0,01	0,00	0,00	0,07	0,00	0,11	0,00	0,00
73	0,19	0,00	0,10	0,21	0,14	0,16	0,19	0,18	0,00	0,00	0,07	0,05	0,10	0,00	0,00	0,00	0,03	0,00	0,00	0,00	0,00	0,10	0,00	0,00	0,20	0,00	0,00	0,00	0,00	0,00
79	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,18	0,13	0,08	0,00	0,00	0,00	0,00	0,10	0,00	0,00	0,00	0,00	0,00	0,09	0,00
84	0,00	0,09	0,02	0,00	0,00	0,00	0,00	0,00	0,04	0,03	0,00	0,00	0,00	0,13	0,00	0,00	0,05	0,00	0,00	0,00	0,00	0,00	0,00	0,05	0,00	0,02	0,02	0,18	0,00	0,08
85	0,00	0,08	0,02	0,00	0,00	0,00	0,00	0,00	0,05	0,04	0,00	0,00	0,00	0,13	0,00	0,00	0,05	0,00	0,00	0,00	0,00	0,01	0,00	0,06	0,00	0,03	0,01	0,19	0,00	0,08
86	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,01	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,28	0,11	0,03	0,07	0,02	0,00	0,02	0,00	0,00	0,00	0,00	0,00	0,33	0,00
89	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,01	0,00	0,00	0,00	0,00	0,00	0,08	0,13	0,08	0,00	0,00	0,00	0,00	0,10	0,00	0,00	0,00	0,00	0,00	0,09	0,00
9	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,02	0,00	0,00	0,00	0,00	0,00	0,15	0,06	0,04	0,00	0,00	0,00	0,00	0,01	0,00	0,00	0,00	0,00	0,00	0,04	0,00
K10	0,00	0,08	0,20	0,29	0,16	0,20	0,15	0,18	0,00	0,00	0,10	0,00	0,11	0,00	0,00	0,00	0,00	0,00	0,00	0,01	0,00	0,14	0,00	0,00	0,22	0,00	0,03	0,00	0,00	0,05
K15	0,08	0,00	0,18	0,08	0,00	0,00	0,02	0,02	0,08	0,02	0,06	0,00	0,19	0,05	0,00	0,00	0,00	0,00	0,00	0,11	0,20	0,00	0,00	0,02	0,00	0,05	0,00	0,03	0,00	0,00
K16	0,20	0,18	0,00	0,15	0,02	0,07	0,17	0,08	0,03	0,00	0,10	0,00	0,02	0,02	0,00	0,00	0,00	0,00	0,04	0,00	0,04	0,00	0,00	0,00	0,08	0,00	0,00	0,00	0,00	0,03

Fortsetzung von Tab. 3.8: Kinship-Matrix nach Ritland (1996)

	K10	K15	K16	K17	K18	K19	K20	K21	K23	K24	K29	K30A	K32	K33	K35	K36	K37	K40	K42	K43	K44	K45	K49	K57A	K6	K75A	K82A	K87A	K91A	K93A
K17	0,29	0,08	0,15	0,00	0,25	0,26	0,15	0,21	0,01	0,00	0,01	0,00	0,14	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,19	0,00	0,00	0,19	0,00	0,00	0,00	0,00	0,00
K18	0,16	0,00	0,02	0,25	0,00	0,16	0,07	0,19	0,06	0,00	0,00	0,07	0,10	0,00	0,00	0,00	0,00	0,00	0,00	0,01	0,00	0,18	0,00	0,00	0,11	0,00	0,00	0,00	0,00	0,00
K19	0,20	0,00	0,07	0,26	0,16	0,00	0,07	0,16	0,00	0,00	0,00	0,00	0,10	0,00	0,11	0,00	0,00	0,00	0,00	0,02	0,00	0,12	0,00	0,00	0,13	0,00	0,17	0,00	0,00	0,18
K20	0,15	0,02	0,17	0,15	0,07	0,07	0,00	0,19	0,04	0,00	0,02	0,00	0,09	0,00	0,00	0,00	0,01	0,00	0,00	0,00	0,00	0,10	0,00	0,00	0,07	0,00	0,05	0,00	0,00	0,04
K21	0,18	0,02	0,08	0,21	0,19	0,16	0,19	0,00	0,12	0,03	0,03	0,01	0,08	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,15	0,00	0,00	0,09	0,00	0,02	0,03	0,00	0,00
K23	0,00	0,08	0,03	0,01	0,06	0,00	0,04	0,12	0,00	0,22	0,00	0,00	0,00	0,00	0,00	0,00	0,01	0,00	0,07	0,02	0,12	0,10	0,00	0,00	0,00	0,07	0,00	0,01	0,00	0,00
K24	0,00	0,02	0,00	0,00	0,00	0,00	0,00	0,03	0,22	0,00	0,00	0,00	0,00	0,05	0,00	0,00	0,00	0,00	0,30	0,01	0,02	0,00	0,00	0,00	0,00	0,01	0,00	0,05	0,00	0,01
K29	0,10	0,06	0,10	0,01	0,00	0,00	0,02	0,03	0,00	0,00	0,00	0,05	0,07	0,00	0,00	0,05	0,01	0,11	0,00	0,00	0,05	0,02	0,02	0,00	0,13	0,00	0,01	0,00	0,06	0,04
K30A	0,00	0,00	0,00	0,00	0,07	0,00	0,00	0,01	0,00	0,00	0,05	0,00	0,00	0,00	0,21	0,01	0,00	0,03	0,00	0,00	0,00	0,00	0,03	0,01	0,08	0,00	0,00	0,00	0,00	0,00
K32	0,11	0,19	0,02	0,14	0,10	0,10	0,09	0,08	0,00	0,00	0,07	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,02	0,02	0,03	0,00	0,00	0,06	0,00	0,10	0,00	0,00	0,14
K33	0,00	0,05	0,02	0,00	0,00	0,00	0,00	0,00	0,00	0,05	0,00	0,00	0,00	0,00	0,06	0,07	0,02	0,00	0,01	0,00	0,05	0,00	0,05	0,00	0,00	0,06	0,04	0,03	0,00	0,07
K35	0,00	0,00	0,00	0,00	0,00	0,11	0,00	0,00	0,00	0,00	0,00	0,21	0,00	0,06	0,00	0,17	0,00	0,00	0,00	0,00	0,00	0,00	0,39	0,00	0,00	0,00	0,03	0,00	0,00	0,01
K36	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,05	0,01	0,00	0,07	0,17	0,00	0,07	0,09	0,00	0,00	0,00	0,00	0,33	0,15	0,00	0,00	0,00	0,00	0,08	0,01
K37	0,00	0,00	0,00	0,00	0,00	0,00	0,01	0,00	0,01	0,00	0,01	0,00	0,00	0,02	0,00	0,07	0,00	0,14	0,00	0,04	0,00	0,00	0,09	0,00	0,00	0,00	0,00	0,00	0,21	0,00
K40	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,11	0,03	0,00	0,00	0,00	0,09	0,14	0,00	0,00	0,00	0,00	0,00	0,16	0,04	0,00	0,00	0,00	0,00	0,36	0,00
K42	0,00	0,00	0,04	0,00	0,00	0,00	0,00	0,00	0,07	0,30	0,00	0,00	0,00	0,01	0,00	0,00	0,00	0,00	0,00	0,23	0,00	0,00	0,00	0,00	0,00	0,06	0,00	0,17	0,00	0,00
K43	0,01	0,11	0,00	0,00	0,01	0,02	0,00	0,00	0,02	0,01	0,00	0,00	0,02	0,00	0,00	0,00	0,04	0,00	0,23	0,00	0,02	0,05	0,02	0,00	0,00	0,09	0,00	0,00	0,01	0,02
K44	0,00	0,20	0,04	0,00	0,00	0,00	0,00	0,00	0,12	0,02	0,05	0,00	0,02	0,05	0,00	0,00	0,00	0,00	0,00	0,02	0,00	0,00	0,00	0,00	0,00	0,10	0,00	0,02	0,01	0,00
K45	0,14	0,00	0,00	0,19	0,18	0,12	0,10	0,15	0,10	0,00	0,02	0,00	0,03	0,00	0,00	0,00	0,00	0,00	0,00	0,05	0,00	0,00	0,00	0,00	0,14	0,19	0,00	0,00	0,01	0,00
K49	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,02	0,03	0,00	0,05	0,39	0,33	0,09	0,16	0,00	0,02	0,00	0,00	0,00	0,36	0,00	0,00	0,02	0,00	0,00	0,01
K57A	0,00	0,02	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,01	0,00	0,00	0,00	0,15	0,00	0,04	0,00	0,00	0,00	0,00	0,36	0,00	0,00	0,00	0,00	0,00	0,00	0,00
K6	0,22	0,00	0,08	0,19	0,11	0,13	0,07	0,09	0,00	0,00	0,13	0,08	0,06	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,14	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
K75A	0,00	0,05	0,00	0,00	0,00	0,00	0,00	0,00	0,07	0,01	0,00	0,00	0,00	0,06	0,00	0,00	0,00	0,00	0,06	0,09	0,10	0,19	0,00	0,00	0,00	0,00	0,00	0,09	0,00	0,00
K82A	0,03	0,00	0,00	0,00	0,00	0,17	0,05	0,02	0,00	0,00	0,01	0,00	0,10	0,04	0,03	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,02	0,00	0,00	0,00	0,00	0,00	0,00	0,93
K87A	0,00	0,03	0,00	0,00	0,00	0,00	0,00	0,03	0,01	0,05	0,00	0,00	0,00	0,03	0,00	0,00	0,00	0,00	0,17	0,00	0,02	0,00	0,00	0,00	0,00	0,09	0,00	0,00	0,00	0,00
K91A	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,06	0,00	0,00	0,00	0,00	0,08	0,21	0,36	0,00	0,01	0,01	0,01	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
K93A	0,05	0,00	0,03	0,00	0,00	0,18	0,04	0,00	0,00	0,01	0,04	0,00	0,14	0,07	0,01	0,01	0,00	0,00	0,00	0,02	0,00	0,00	0,01	0,00	0,00	0,00	0,93	0,00	0,00	0,00

Fortsetzung von Tab. 3.8: Kinship-Matrix nach Ritland (1996)

3.1.4 SNP-und Haplotypdetektion, sowie statistische Auswertung der erhobenen Daten

Fragmente der zu analysierenden Kandidatengene wurden aus genomischer DNA der Akzessionen mittels PCR amplifiziert und resequenziert. Die Primer für die Resequenzierung wurden auf Basis von EST (*expressed sequence tag*)-Sequenzinformation für die einzelnen Kandidatengene erstellt. Es wurden sowohl die Exon- als auch die Intronbereiche der DNAs analysiert und SNP (*single nucleotide polymorphism*) identifiziert.

3.1.4.1 Assoziation von *Vrs*1 mit Zeiligkeit – Beweis der Eignung der Population für eine Assoziationsanalyse

Die in dieser Studie verwendete Population weist eine relativ geringe Anzahl an Genotypen auf. Die Größe der Population wurde durch die begrenzte Anzahl von 33 Genotypen, die im Keimlingsstadium eine starke, *mlo*-unabhängige Mehltauresistenz gegenüber beiden verwendeten Mehltauisolaten aufwiesen, bestimmt.

Es ist bekannt, dass das *Vrs1*-Gen einen maßgeblichen Einfluss auf die Zeiligkeit der Gerste hat. Liegt das *Vrs1*-Gen als rezessives Allel vor, wird eine sechszeilige Ähre ausgebildet. Die dominante Allelform des *Vrs1*-Gens bedingt eine zweizeilige Ährenmorphologie (Komatsuda et al. 2007). Die Zeiligkeit der hier verwendeten Gerstenakzessionen wurde im Gewächshaus bestimmt. Es sind DNA-Polymorphismen bekannt, die für eine dominante oder rezessive Ausprägung des *Vrs1*-Gens verantwortlich sind (Komatsuda et al. 2007) und somit mit dem Phänotyp ,Zeiligkeit' eine Assoziation zeigen müssten. Einige dieser DNA-Polymorphismen wurden in der Population, die in dieser Studie verwendet wurde, identifiziert und auf eine Assoziation mit Zeiligkeit hin analysiert, um die vorhandene Population auf ihre Tauglichkeit zu testen, wahre Assoziationen zwischen Kandidatengenen und einen Phänotyp von Interesse zu identifizieren.

Ein Fragment des *Vrs1*-Gens wurde in der Gerstenpopulation resequenziert und sieben SNP wurden identifiziert (vgl. Tabelle 3.9). Neben der Intron-Exon-Information, ist die Position des SNP nach dem Start-ATG angegeben. Unter anderem wurde ein InDel (Insertion/Deletion)- Polymorphismus (SNP3, DEL=Deletion, Tabelle 3.9), der für ein Null-Allel des Gens verantwortlich ist, ermittelt.

					······································		
SNP1	SNP2	SNP3	SNP4	SNP5	SNP6	SNP7	
Exon	Intron	Exon	Exon	Exon	Exon	Exon	
225		456	550	693	772	905	
С	С	DEL	А	Т	G	С	H1
С	С	G	А	С	G	С	H2
С	С	G	А	С	G	Т	Н3
С	С	G	А	С	Т	С	H4
С	С	G	А	Т	G	С	Н5
С	Т	G	Α	С	Т	С	H6
С	Т	G	G	С	Т	С	H7
G	С	G	А	С	G	С	H8

Tab.3.9: Identifizierte SNPs und Haplotypen des Vrs1-Gens

Tab. 3.10: Ergebnis der Assoziationsverrechnung für die *Vrs*1-Polymorphismen mit Zeiligkeit

Kandidatengen	Polymorphismus	р	p_adj	Rsq_model	Rsq_marker
Vrs1	SNP5	1,84E-05	2,00E-03	0,5575	0,181
	SNP3	3,89E-04	2,50E-03	0,5071	0,1307
	SNP1	0,0623	0,00333333	0,4156	0,0392
	SNP2	0,1439		0,4008	0,0244
	SNP6	0,7825		0,3773	8,87E-04
	H2	5,56E-06	2,00E-03	0,5759	0,1995
	H1	3,89E-04	2,50E-03	0,5071	0,1307
	H8	0,0623	0,00333333	0,4156	0,0392
	H4	0,1229		0,4035	0,0271
	H6	0,1736		0,3976	0,0212

Es wurde für alle sieben detektierten Polymorphismen eine Assoziationsanalyse (*Mixed linear Model*, TASSEL 2.0.1) berechnet (Tabelle 3.10). Zwei der sieben Polymorphismen zeigten eine signifikante Assoziation zur Zeiligkeit (SNP 3 und SNP 5) bei Annahme einer Signifikanzschwelle des Bonferroni-Holm-korrigierten p-Wertes von 0,01 (orange hinterlegt). Unter diesen zwei signifikant assoziierten Polymorphismen befand sich auch die G-Deletion ($p= 2,37E^{-04}$). In Abbildung 3.11 ist der LD-*plot* der analysierten Polymorphismen des *Vrs*1-Gens dargestellt. Polymorphismus 3 und Polymorphismus 5, die beide eine signifikante Assoziation zum Phänotyp der Zeiligkeit aufwiesen, befinden sich im stark signifikanten Kopplungsungleichgewicht zueinander bei einem R²-Wert von 80%.

Abb. 3.11: LD-plot der analysierten Polymorphismen des *Vrs*1-Gens Unterhalb der Diagonale ist die Signifikanz (p-Wert) angegeben; oberhalb der Diagonale die Stärke des LD (R²-Wert)

Die Haplotypen H1 und H2 zeigten eine signifikante Assoziation zum Phänotyp der Zeiligkeit, bei der Annahme einer Bonferroni-Holm-korrigierten Irrtumswahrscheinlichkeit von p<0,01 (orange hinterlegt). Die Gerstenpopulation ist folglich, trotz der geringen Genotypenanzahl, für eine Assoziationsanalyse geeignet.

3.1.4.2 Sequenzauswertung - SNP-und Haplotypenidentifizierung

Unter Verwendung des Programms SeqMan Lasergene 7 (DNASTAR, Inc., Madison, USA) wurden die Sequenzen der resequenzierten Genfragmente analysiert. Die detektierten SNP wurden in eine Excel-Tabelle extrahiert. Die Kombination der verschiedenen SNP eines Kandidatengens bildeten die verschiedenen Haplotypen eines Gens. Für die Assoziationsanalyse wurden nur SNP und Haplotypen verwendet, die in mindestens 5% der verwendeten Genotypen vorkamen, also eine MAF (*minor allele frequency*) größer als 0,05 aufwiesen. Die Sequenzanalyse von 90 untersuchten Kandidatengenen zeigten eindeutig auswertbare Sequenzen; von dem Kandidatengen HvGER5 war es nicht möglich genspezifische Fragmente zu amplifizieren. Von den 90 analysierten Kandidatengenen waren 9 Gene monomorph und 81 polymorph. Tabelle 3.11 gibt eine Übersicht über die

analysierten Gene, unter Angabe der analysierten Sequenzmenge, der Anzahl detektierter SNP (MAF >5%) und Haplotypen.

Gen-Name	Gen-ID	Au s wahl- kriterium	Analysierte Sequenz [bp]	Anzahl detektierter SNP	Anzahl detektierter Haplotypen	1SNP/ <i>x</i> bp
WRKY7	Anonymisiert	TIGS-Effekt	339	1	2	339
Cellulose synthase- like protein	HO02M14	TIGS-Effekt	555	8	5	69
Asconitate hydratase 1	HO02P09	TIGS-Effekt	713	8	5	89
P-type ATPase	HO06D23	TIGS-Effekt	1011	19	3	53
Unknown protein 4	HO06J21	TIGS-Effekt	220	15	3	14
4-coumarate coenzyme A ligase	HO07H15	TIGS-Effekt	200	0	1	
WIR1	Anonymisiert	TIGS-Effekt	313	24	6	13
Unknown protein 5	HO10A14	TIGS-Effekt	250	0	1	
Unknown protein 6	HO11O12	TIGS-Effekt	494	7	4	70
Unknown protein 7	HO12E03	TIGS-Effekt	1431	37	6	38
SNAP-34	HO12F09	TIGS-Effekt	559	5	3	111
Unknown protein 8	HO14E16	TIGS-Effekt	730	0	1	
ARM repeat- containing protein	HO14H18	TIGS-Effekt	1120	18	3	62
Cellulose synthase	HO14K08	TIGS-Effekt	250	7	5	35
Unknown protein 1	Anonymisiert	TIGS-Effekt	622	20	5	31
Alpha/beta Hydrolase	Anonymisiert	TIGS-Effekt	421	4	2	105
Unknown protein 2	Anonymisiert	TIGS-Effekt	533	2	3	266
Subtilisin-like protein	HU02G09	TIGS-Effekt	336	23	3	14
Unknown protein 3	Anonymsiert	TIGS-Effekt	526	3	6	175
Vacuolar targeting receptor	Anonymsiert	TIGS-Effekt	596	23	5	25
Band 7 protein	HW03O11	TIGS-Effekt	384	2	3	192
NADPH-cytochrome P450 Reductase	Anonymisiert	TIGS-Effekt	719	3	3	239

Tab. 3.11: Auflistung analysierter Kandidatengene, unter Angabe der analysierten Sequenz, Anzahl identifizierter SNP (MAF>5%) und Haplotypen, sowie 1SNP/xbp

Fortsetzung von Tab. 3.11: Auflistung analysierter Kandidatengene

Gen-Name	Gen-ID	Auswahl- kriterium	Analysierte Sequenz [bp]	Anzahl detektierter SNP	Anzahl detektierter Haplotypen	1SNP/ xbp
Defensin	HY06I14	TIGS-Effekt	453	9	3	50
Caffeic acid O- methyltransferase	HY08E03	TIGS-Effekt	411	4	2	102
Methionine Synthase	Anonymsiert	TIGS-Effekt	496	4	4	124
Lectin-like receptor kinase	HO05A19	Regulation	243	21	5	11
HvGER1	DQ647619	Regulation	324	3	2	108
HvGER3	DQ647621	Regulation	847	18	3	47
HvGER4	DQ647623	Regulation	503	5	4	100
HvGER5	DQ647624	Regulation	0	0	0	
HvPrx40	CK567319	Regulation	250	13	4	19
MIR3	CD057851	Regulation	461	7	2	65
MIR4	DN181805	Regulation	590	0	1	
MIR5	CD057781	Regulation	360	0	1	
MIR6	CA018053	Regulation	1600	10	3	160
MIR7	AL507668	Regulation	1085	18	5	60
MIR8	CD057283	Regulation	1123	56	5	20
WRKY1	AJ536667	Literatur	724	10	6	72
WRKY2	AJ853838	Literatur	639	8	5	79
WRKY3	EF488104	Literatur	430	24	4	17
12-OPD-reductase	CK567317	Literatur	1009	7	5	144
ACC-oxidase	CA023817	Literatur	525	8	2	65
ACC-synthase	AL511111	Literatur	1018	8	5	127
Alanine Aminotransferase	Z26322	Literatur	1751	4	4	437
AOC	AJ308488	Literatur	511	1	2	511
AOS	AJ250864	Literatur	1411	10	3	141
Apoplastic invertase	AJ534447	Literatur	440	1	2	440

Fortsetzung von Tab. 3.11: Auflistung analysierter Kandidatengene

Gen-Name	Gen-ID	Auswahl- kriterium	Analysierte Sequenz [bp]	Anzahl detektierter SNP	Anzahl detektierter Haplotypen	1SNP/ xbp
Aspartate protease gene	X56136	Literatur	970	16	5	60
BAS1	Z34917	Literatur	707	1	2	707
BAX-Inhibitor1	AJ290421	Literatur	775	6	4	129
Calreticulin	L27349	Literatur	1126	9	5	125
EDS1	BJ479753	Literatur	625	0	1	
Ethylene forming enzyme	CA020732	Literatur	517	5	4	103
FMO1	CB880678	Literatur	545	2	2	272
Glutathione-S- transferase	AB207242	Literatur	475	52	4	9
HvGER2	DQ647620	Literatur	379	4	3	94
HvGER6	DQ647625	Literatur	543	0	1	
HvPrx08	AJ276227	Literatur	356	12	4	29
LOX2	AL506955	Literatur	898	5	2	179
LSD1	BU986406	Literatur	743	5	3	148
MLA	AF523683	Literatur	500	11	4	45
MLO	Z83834	Literatur	1472	3	5	490
NEC1	AY972626	Literatur	506	0	1	
NPR1	CA008881	Literatur	483	6	2	80
NUDT7	CB879141	Literatur	362	6	6	60
Peroxyredoxin	BU985101	Literatur	895	5	4	179
RACB	AJ344223	Literatur	846	8	6	105
RBOHA	AJ871131	Literatur	402	2	3	201
WAK3	AL450670	Literatur	512	5	5	102
Ubiquitin	contig1035	QTL 5HS	586	21	5	27
L-galactose dehydrogenase IO calmodulin-	contig10497	QTL 5HS	177	3	2	59
binding motif family protein	contig10757	QTL 5HS	660	19	13	34

Fortsetzung von Tab. 3.11: Auflistung analysierter Kandidatengene

Gen-Name	Gen-ID	Auswahl- kriterium	Analysierte Sequenz [bp]	Anzahl detektierter SNP	Anzahl detektierter Haplotypen	1SNP/ xbp
Unknown protein 10	contig11213	QTL 5HS	345	3	3	115
Unknown protein 11	contig13951	QTL 5HS	304	0	1	
OsWAK128b	contig15923	QTL 5HS	477	2	3	238
Galactosyltransferase	contig16126	QTL 5HS	524	8	10	65
Protein kinase family protein	contig17340	QTL 5HS	324	1	2	324
Glutaredoxin	contig23773	QTL 5HS	344	7	5	49
Lectin protein kinase	contig24522	QTL 5HS	422	57	8	7
MBD10	Contig3489	QTL 5HS	579	9	5	64
Unknown protein 9	contig4923	QTL 5HS	446	13	14	34
Thiosulfate sulfotransferase	contig583	QTL 5HS	1008	13	9	77
WIR1a	contig6520	QTL 5HS	405	64	11	6
Protoporphyrinogen oxidase 1	contig7919	QTL 5HS	552	10	7	55
ATP-dependent RNA helicase	contig8860	QTL 5HS	345	11	9	31
SRP40	EBes01_SQ002_ A24	QTL 5HS	650	17	9	38
Oxidoreductase	HA28H16	QTL 5HS	311	12	4	25
Helix-loop-helix DNA-binding domain containing protein	HvCeb0009B15r2	QTL 5HS	620	14	8	44
Unknown protein 12	HvSMef00011N0 9r2	QTL 5HS	282	22	9	12
LSD1_10220	Contig10220	QTL 5HS	1190	9	7	132
Chloroplast inner envelope membrane polypeptide	rbaal22m22	QTL 5HS	487	14	9	34
Vrs1	BC12348	Kontrolle	1055	7	8	150

3.1.4.3 Statistische Berechnung von Assoziationen unter Verwendung des MIXED-LINEAR-MODEL

Die Assoziationsverrechnungen der SNP und Haplotypen mit dem Phänotyp der Mehltauresistenz (vgl. Tab. 3.5) wurden mit dem Programm TASSEL 2.0.1 durchgeführt. Im Folgenden werden die Ergebnisse der Assoziationsverrechnungen, die eine signifikante SNP- oder Haplotyp-Assoziation zu Mehltauresistenz bzw. Mehltauanfälligkeit ergaben, näher vorgestellt. In der Tabelle 3.12 sind der Genname, die Polymorphismusbezeichnung, der p-Wert, der Bonferroni-Holm-korriergierte p-Wert (p_adj), sowie der Rsq-model und der Rsq-marker-Wert angegeben. Der Rsq-model-Wert beschreibt den Einfluß des gerechneten Models auf die phänotypische Ausprägung; der Rsq-marker-Wert enthält die Information, wie viel Einfluss der analysierte Polymorphismus auf den Phänotyp ausübt. SNP und Haplotypen mit einer MAF<5% sind nicht in die Berechnung mit eingeflossen und dementsprechend in der Tabelle nicht aufgelistet.

Tab. 3.12: Ergebnisse der Assoziationsverrechnung für die Kandidatengene, die eine signifikante Assoziation zur Mehltauresistenz, bzw. Mehltauanfälligkeit zeigten. Signifikant assoziierte SNPs und Haplotypen (p<0,01) sind orange gekennzeichnet. Angegeben sind der Genname, der Polymorphismus, der p-Wert, der adjustierte Bonferroni-Holm-korrigierte p-Wert für eine Fehlerwahrscheinlichkeit von 1%, sowie der Rsq_model-Wert und der Rsq_marker-Wert. Die SNP und Haplotypen sind gemäß ihrer p-Werte geordnet; n.g.=nicht gezeigt

Kandidatengen	Polymorphismus	р	p_adj	Rsq_model	Rsq_marker
ACC-oxidase	SNP1	0,0062	0,00125	0,302	0,1007
(CA023817)	SNP3	0,0468	n.g.	0,2562	0,0549
	SNP8	0,0752	n.g.	0,2393	0,0455
	SNP2	0,2041	n.g.	0,2242	0,0229
	SNP4	0,2041	n.g.	0,2242	0,0229
	SNP6	0,2041	n.g.	0,2242	0,0229
	SNP9	0,2078	n.g.	0,217	0,0231
	SNP10	0,2078	n.g.	0,217	0,0231
	H1	0,0024	0,005	0,3236	0,1224
	H5	0,0468	0,01	0,2561	0,0549

Kandidatengen	Polymorphismus	р	p_adj	Rsq_model	Rsq_marker
Aspartate protease gene	SNP2	4,69E-04	6,25E-04	0,3593	0,158
(X56136)	SNP1	0,0483	0,000666	0,2555	0,0542
	SNP3	0,0483	n.g.	0,2555	0,0542
	SNP4	0,0483	n.g.	0,2555	0,0542
	SNP5	0,0483	n.g.	0,2555	0,0542
	SNP7	0,0483	n.g.	0,2555	0,0542
	SNP9	0,0483	n.g.	0,2555	0,0542
	SNP15	0,0483	n.g.	0,2555	0,0542
	SNP17	0,0483	n.g.	0,2555	0,0542
	SNP18	0,0533	n.g.	0,2533	0,052
	SNP19	0,0533	n.g.	0,2533	0,052
	SNP8	0,0761	n.g.	0,2453	0,044
	SNP14	0,0786	n.g.	0,2446	0,0433
	SNP13	0,4125	n.g.	0,2109	0,0096
	SNP12	0,5026	n.g.	0,2077	0,0064
	SNP16	0,5026	n.g.	0,2077	0,0064
	H2	0,0011	0,002	0,3407	0,1394
	H6	0,0533	0,0025	0,2533	0,052
	H5	0,0761	n.g.	0,2453	0,044
	H1	0,4125	n.g.	0,2109	0,0096
	H4	0,619	n.g.	0,2048	0,0036
BAS1 (Z34917)	SNP1	6,77E-04	0,01	0,3513	0,1501
			0.001.000		
BAX-INNIDITORI	SNPI	0,001	0,001666	0,3424	0,1412
(AJ29042T)	SNP8	0,0587	0,002	0,251	0,0498
	SNP0 SNP2	0,0645	n.g.	0,249	0,04//
	SNP3 SND4	0,1891	n.g.	0,2257	0,0244
	SNP4 SND5	0,1891	n.g.	0,2257	0,0244
	SINFS	0,7704	n.g.	0,2024	0,0012
	H1	0,0052	0,0025	0,3062	0,1049
	H7	0,0587	n.g.	0,2511	0,0498
	H3	0,1891	n.g.	0,2257	0,0244
	Н5	0.5709	n.g.	0.2059	0.0046
0 - 1 + +		-)	U	,	-)
Gaireticulin	SNP12	4,56E-04	0,001111	0,36	0,1586
(L27349)	SNP12 SNP4	4,56E-04 0,0022	0,001111 0,00125	0,36 0,3239	0,1586 0,1268
(L27349)	SNP12 SNP4 SNP5	4,56E-04 0,0022 0,0022	0,001111 0,00125 n.g.	0,36 0,3239 0,3239	0,1586 0,1268 0,1268
(L27349)	SNP12 SNP4 SNP5 SNP9	4,56E-04 0,0022 0,0022 0,0846	0,001111 0,00125 n.g. n.g.	0,36 0,3239 0,3239 0,2429	0,1586 0,1268 0,1268 0,0417
(L27349)	SNP12 SNP4 SNP5 SNP9 SNP10	4,56E-04 0,0022 0,0022 0,0846 0,0846	0,001111 0,00125 n.g. n.g. n.g.	0,36 0,3239 0,3239 0,2429 0,2429	0,1586 0,1268 0,1268 0,0417 0,0417
(L27349)	SNP12 SNP4 SNP5 SNP9 SNP10 SNP1	4,56E-04 0,0022 0,0022 0,0846 0,0846 0,106	0,001111 0,00125 n.g. n.g. n.g. n.g. n.g.	0,36 0,3239 0,3239 0,2429 0,2429 0,2429 0,2347	0,1586 0,1268 0,1268 0,0417 0,0417 0,0376
(L27349)	SNP12 SNP4 SNP5 SNP9 SNP10 SNP1 SNP7	4,56E-04 0,0022 0,0022 0,0846 0,0846 0,106 0,2407	0,001111 0,00125 n.g. n.g. n.g. n.g. n.g. n.g.	0,36 0,3239 0,3239 0,2429 0,2429 0,2429 0,2347 0,2208	0,1586 0,1268 0,1268 0,0417 0,0417 0,0376 0,0196
(L27349)	SNP12 SNP4 SNP5 SNP9 SNP10 SNP1 SNP7 SNP2	4,56E-04 0,0022 0,0022 0,0846 0,0846 0,106 0,2407 0,6978	0,001111 0,00125 n.g. n.g. n.g. n.g. n.g. n.g. n.g. n.g	0,36 0,3239 0,3239 0,2429 0,2429 0,2429 0,2347 0,2208 0,1871	0,1586 0,1268 0,1268 0,0417 0,0417 0,0376 0,0196 0,0023

Kandidatengen Polymorphismus p p. adj Rsq. model Rsq. marker Calreticulin H6 0.0019 0.002 0.3282 0.127 (L27349) H1 0.2407 0.0025 0.2208 0.0196 H3 0.4234 n.g. 0.2104 0.0092 H8 0.5494 n.g. 0.2021 8,92E-04 Glutaredoxin SNP2 0.0547 n.g. 0.2526 0.0514 (contig23773) SNP4 0.0547 n.g. 0.2526 0.0514 SNP5 0.3669 n.g. 0.2045 0.0032 SNP6 0.6346 n.g. 0.2045 0.0032 SNP7 0.6346 n.g. 0.2045 0.0032 SNP6 0.8213 n.g. 0.2022 7.34E-04 H3 9.00E-04 0.002 0.343 0.1418 H2 0.054 0.0025 0.2529 0.00121 H5 0.6346 n.g. 0.2047 0.0121	die eine signifika	ante Assoziation zur N	Aehltauresist	tenz, bzw. Meł	iltauanfälligkei	t zeigten.
Calreticulin (L27349) H6 0.0019 0.002 0.3382 0.127 (L27349) H1 0.2407 0.0025 0.2208 0.0196 H3 0.4234 n.g. 0.2104 0.0092 H8 0.5494 n.g. 0.2021 8.92F-04 Glutaredoxin (contig23773) SNP2 0.0547 n.g. 0.2526 0.0514 SNP3 0.0547 n.g. 0.2526 0.0514 SNP4 0.0547 n.g. 0.2526 0.0514 SNP5 0.3669 n.g. 0.2134 0.0121 SNP5 0.3646 n.g. 0.2045 0.0032 SNP7 0.6346 n.g. 0.202 7.34F-04 H2 0.0547 0.022 0.233 0.0317 H4 0.3569 n.g. 0.2134 0.0121 SNP6 0.8213 n.g. 0.202 7.34F-04 Unknown protein 1 0.8213 n.g. 0.2045 0.0032 H1 <	Kandidatengen	Polymorphismus	р	p_adj	Rsq_model	Rsq_marker
(L27349) H1 0.2407 0.0025 0.2208 0.0196 H3 0.4234 n.g. 0.2104 0.0092 H8 0.5494 n.g. 0.2021 8.92E-04 Glutaredoxin (contig23773) SNP2 0.0547 n.g. 0.2526 0.0514 SNP4 0.0547 n.g. 0.2526 0.0514 SNP5 0.3569 n.g. 0.2526 0.0514 SNP4 0.0547 n.g. 0.2526 0.0514 SNP5 0.3569 n.g. 0.2134 0.0121 SNP6 0.6346 n.g. 0.2045 0.0032 SNP6 0.8213 n.g. 0.202 7,34E-04 H2 0.054 0.0025 0.2529 0.0032 SNP6 0.8213 n.g. 0.202 7,34E-04 H4 0.3569 n.g. 0.2134 0.0121 H5 0.6346 n.g. 0.202 7,34E-04 Unknown SNP26 0.0059	Calreticulin	H6	0,0019	0,002	0,3282	0,127
H3 0.4234 n.g. 0.2104 0.0092 Glutaredoxin (contig23773) SNP2 0.0547 n.g. 0.2021 8,92E-04 Glutaredoxin (contig23773) SNP2 0.0547 n.g. 0.2526 0.0514 SNP3 0.0547 n.g. 0.2526 0.0514 SNP5 0.3569 n.g. 0.2134 0.0121 SNP5 0.3669 n.g. 0.2144 0.0032 SNP7 0.6346 n.g. 0.20245 0.0032 SNP6 0.8213 n.g. 0.202 7,34E-04 H2 0.054 0.0025 0.2529 0.0517 H4 0.3569 n.g. 0.2134 0.0121 H2 0.054 0.0025 0.2529 0.0517 H4 0.3569 n.g. 0.2134 0.0121 H5 0.6346 n.g. 0.2025 7,34E-04 Unknown SNP26 0.0059 n.g. 0.3407 0.1141 SNP27	(L27349)	H1	0,2407	0,0025	0,2208	0,0196
H8 0,5494 n.g. 0,2064 0,0051 Glutaredoxin (contig23773) SNP2 0,0547 0,00142857 0,2526 0,0514 SNP4 0,0547 n.g. 0,2526 0,0514 SNP4 0,0547 n.g. 0,2526 0,0514 SNP4 0,0547 n.g. 0,2526 0,0514 SNP5 0,3569 n.g. 0,2134 0,0121 SNP6 0,8213 n.g. 0,2045 0,0032 SNP6 0,8213 n.g. 0,2134 0,0121 H2 0,054 0,0025 0,2529 0,0032 SNP6 0,8213 n.g. 0,202 7,34E-04 H4 0,3569 n.g. 0,2134 0,0121 H5 0,6346 n.g. 0,202 7,34E-04 Introvern SNP27 0,0059 n.g. 0,3407 0,1141 SNP27 0,0059 n.g. 0,3407 0,1141 SNP28 0,0059 n.g.		H3	0,4234	n.g.	0,2104	0,0092
H9 0,8034 n.g. 0,2021 8,92E-04 Glutaredoxin (contig23773) SNP2 0,0547 0,00142857 0,2526 0,0514 SNP4 0,0547 n.g. 0,2526 0,0514 SNP5 0,3569 n.g. 0,2134 0,0121 SNP6 0,8213 n.g. 0,2045 0,0032 SNP7 0,6346 n.g. 0,2020 7,34E-04 H2 0,0547 0,0025 0,2529 0,0517 H4 0,3569 n.g. 0,2020 7,34E-04 H2 0,054 0,0025 0,2529 0,0517 H4 0,3569 n.g. 0,2045 0,0032 H1 0,8213 n.g. 0,202 7,34E-04 Unknown SNP26 0,0059 0,3407 0,1141 SNP27 0,0059 n.g. 0,3407 0,1141 SNP28 0,0059 n.g. 0,3407 0,1141 SNP29 0,0059 n.g. 0,3407 <td></td> <td>H8</td> <td>0.5494</td> <td>n.g.</td> <td>0.2064</td> <td>0.0051</td>		H8	0.5494	n.g.	0.2064	0.0051
Glutaredoxin (contig23773) SNP2 0,0547 n.g. 0,212. 0,014 SNP3 0,0547 n.g. 0,2526 0,0514 SNP4 0,0547 n.g. 0,2526 0,0514 SNP5 0,3569 n.g. 0,2134 0,0121 SNP6 0,3569 n.g. 0,2045 0,0032 SNP7 0,6346 n.g. 0,2045 0,0032 SNP6 0,8213 n.g. 0,202 7,34E-04 H2 0,0547 n.g. 0,202 7,34E-04 H4 0,3569 n.g. 0,2134 0,0121 H5 0,6346 n.g. 0,202 7,34E-04 H4 0,3559 n,00052 0,2751 Inknown SNP2 4,84E-06 5,00E-04 0,502 0,2751 Ianonymisiert) SNP2 0,0059 n.g. 0,3407 0,1141 SNP26 0,0059 n.g. 0,3407 0,1141 SNP27 0,0059 n.g. </td <td></td> <td>H9</td> <td>0 8034</td> <td>ng</td> <td>0 2021</td> <td>8 92E-04</td>		H9	0 8034	ng	0 2021	8 92E-04
Glutaredoxin (contig23773) SNP2 0,0547 0,00142857 0,2526 0,0514 SNP3 0,0547 n.g. 0,2526 0,0514 SNP4 0,0547 n.g. 0,2134 0,0121 SNP5 0,3569 n.g. 0,2134 0,0121 SNP1 0,6346 n.g. 0,2045 0,0032 SNP6 0,8213 n.g. 0,202 7,34E-04 H3 9.90E-04 0,002 0,343 0,1418 H2 0,054 0,0025 0,2529 0,0517 H4 0,3569 n.g. 0,2134 0,0121 H5 0,6346 n.g. 0,2045 0,0032 H1 0,8213 n.g. 0,202 7,34E-04 Unknown SNP2 4,84E-06 5,00E-04 0,502 0,2751 (anonymisiert) SNP2 0,0059 n.g. 0,3407 0,1141 SNP2 0,0059 n.g. 0,3407 0,1141 SNP3 0,00			0,0021		0,2021	0,7 = 2 0 1
Contig23773) SNP3 0,0547 n.g. 0,2526 0,0514 SNP4 0,0547 n.g. 0,2526 0,0514 SNP5 0,3569 n.g. 0,2134 0,0121 SNP1 0,6346 n.g. 0,2045 0,0032 SNP1 0,6346 n.g. 0,2045 0,0032 SNP6 0,8213 n.g. 0,202 7,34E-04 H2 0,054 0,0025 0,2529 0,0517 H4 0,3569 n.g. 0,2134 0,0121 H5 0,6346 n.g. 0,202 7,34E-04 Unknown SNP2 4,84E-06 5,00E-04 0,502 0,2751 (anonymisiert) SNP2 0,0059 n.g. 0,3407 0,1141 SNP28 0,0059 n.g. 0,3407 0,1141 SNP29 0,0059 n.g. 0,3407 0,1141 SNP30 0,0071 n.g. 0,3362 0,1096 SNP4 0,0059	Glutaredoxin	SNP2	0.0547	0.00142857	0 2526	0.0514
Unknown protein 1 SNP2 0,0517 n.g. 0,2256 0,0514 SNP4 0,0547 n.g. 0,2356 0,0514 SNP5 0,3569 n.g. 0,2134 0,0121 SNP1 0,6346 n.g. 0,2045 0,0032 SNP6 0,8213 n.g. 0,202 7,34E-04 H3 9,90E-04 0,002 0,343 0,1418 H2 0,054 0,0025 0,2529 0,0517 H4 0,3569 n.g. 0,2134 0,0121 H5 0,6346 n.g. 0,2045 0,0032 H1 0,8213 n.g. 0,202 7,34E-04 Unknown SNP2 4,84E-06 5,00E-04 0,502 0,2751 (anonymisiert) SNP2 0,0059 n.g. 0,3407 0,1141 SNP28 0,0059 n.g. 0,3407 0,1141 SNP30 0,0059 n.g. 0,3407 0,1141 SNP31 0,0059	(contig23773)	SNP3	0.0547	n σ	0,2526	0.0514
JRP5 0,057/ SNP5 1.g. 0,2134 0,0121 0,0032 SNP1 0,6346 n.g. 0,2045 0,0032 SNP7 0,6346 n.g. 0,202 7,34E-04 H3 9,90E-04 0,002 0,343 0,1418 H2 0,054 0,0025 0,2529 0,0517 H4 0,3569 n.g. 0,2134 0,0121 H5 0,6346 n.g. 0,202 7,34E-04 H1 0,8213 n.g. 0,202 7,34E-04 Unknown protein 1 (anonymisiert) SNP2 4,84E-06 5,00E-04 0,502 0,2751 (anonymisiert) SNP26 0,0059 n.g. 0,3407 0,1141 SNP28 0,0059 n.g. 0,3407 0,1141 SNP30 0,0059 n.g. <t< td=""><td>(00111920110)</td><td>SNP/</td><td>0.0547</td><td>n.g.</td><td>0,2526</td><td>0,0514</td></t<>	(00111920110)	SNP/	0.0547	n.g.	0,2526	0,0514
SNP1 0,0309 n.g. 0,2145 0,0121 SNP1 0,6346 n.g. 0,2045 0,0032 SNP6 0,8213 n.g. 0,202 7,34E-04 H3 9,90E-04 0,002 0,343 0,1418 H2 0,054 0,0025 0,2529 0,0517 H4 0,3569 n.g. 0,2134 0,0121 H5 0,6346 n.g. 0,2025 0,2529 0,0032 H1 0,8213 n.g. 0,202 7,34E-04 Unknown SNP2 4,84E-06 5,00E-04 0,502 0,2751 (anonymisiert) SNP2 0,0059 n.g. 0,3407 0,1141 SNP28 0,0059 n.g. 0,3407 0,1141 SNP28 0,0059 n.g. 0,3407 0,1141 SNP29 0,0059 n.g. 0,3407 0,1141 SNP30 0,0071 n.g. 0,3362 0,1096 SNP4 0,0451 n.		SND5	0,0547	n.g.	0,2320	0,0314
SNP1 0,0340 n.g. 0,2045 0,0032 SNP6 0,8213 n.g. 0,202 7,34E-04 H3 9,90E-04 0,002 0,343 0,1418 H2 0,054 0,0025 0,2529 0,0517 H4 0,3569 n.g. 0,2134 0,0121 H5 0,6346 n.g. 0,202 7,34E-04 Unknown NP2 4,84E-06 5,00E-04 0,502 0,2751 (anonymisiert) SNP2 4,84E-06 5,00E-04 0,502 0,2751 (anonymisiert) SNP26 0,0059 n.g. 0,3407 0,1141 SNP27 0,0059 n.g. 0,3407 0,1141 SNP28 0,0059 n.g. 0,3407 0,1141 SNP30 0,0059 n.g. 0,3407 0,1141 SNP31 0,0059 n.g. 0,3407 0,1141 SNP33 0,0071 n.g. 0,3362 0,1096 SNP4 0,0059 <td></td> <td>SINF J SNID1</td> <td>0,5309</td> <td>n.g.</td> <td>0,2134</td> <td>0,0121</td>		SINF J SNID1	0,5309	n.g.	0,2134	0,0121
SNP7 0,0540 n.g. 0,2043 0,0052 SNP6 0,8213 n.g. 0,202 7,34E-04 H3 9,90E-04 0,0025 0,2529 0,0517 H4 0,3569 n.g. 0,2134 0,0121 H5 0,6346 n.g. 0,2045 0,0032 H1 0,8213 n.g. 0,202 7,34E-04 Unknown SNP2 4,84E-06 5,00E-04 0,502 0,2751 (anonymisiert) SNP26 0,0059 n.g. 0,3407 0,1141 SNP27 0,0059 n.g. 0,3407 0,1141 SNP28 0,0059 n.g. 0,3407 0,1141 SNP29 0,0059 n.g. 0,3407 0,1141 SNP30 0,0071 n.g. 0,3407 0,1141 SNP31 0,0071 n.g. 0,3407 0,1141 SNP3 0,0071 n.g. 0,3422 0,1096 SNP4 0,0451 n.g. <td< td=""><td></td><td>SINF I SNID7</td><td>0,0340</td><td>n.g.</td><td>0,2045</td><td>0,0032</td></td<>		SINF I SNID7	0,0340	n.g.	0,2045	0,0032
SNP6 0,8213 n.g. 0,202 7,34E-04 H3 9,90E-04 0,002 0,343 0,1418 H2 0,054 0,0025 0,2529 0,0517 H4 0,3569 n.g. 0,2134 0,0121 H5 0,6346 n.g. 0,202 7,34E-04 Unknown protein 1 SNP2 4,84E-06 5,00E-04 0,502 0,2751 (anonymisiert) SNP26 0,0059 n.g. 0,3407 0,1141 SNP28 0,0059 n.g. 0,3407 0,1141 SNP29 0,0059 n.g. 0,3407 0,1141 SNP30 0,0059 n.g. 0,3407 0,1141 SNP31 0,0059 n.g. 0,3407 0,1141 SNP33 0,0071 n.g. 0,3362 0,1096 SNP4 0,0451 n.g. 0,2893 0,0627 SNP10 0,0767 n.g. 0,276 0,0494 SNP12 0,0864 n.g.		SINP /	0,0340	n.g.	0,2045	0,0032
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		SNP6	0,8213	n.g.	0,202	/,34E-04
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		112		0.002	0.2.42	0 1 4 1 9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			9,90E-04	0,002	0,343	0,1410
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		H2	0,054	0,0025	0,2529	0,0517
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		H4	0,3569	n.g.	0,2134	0,0121
H1 $0,8213$ $n.g.$ $0,202$ $7,34E-04$ Unknown protein 1 (anonymisiert)SNP2 $4,84E-06$ $5,00E-04$ $0,502$ $0,2751$ SNP26 $0,0059$ $0,00052632$ $0,3407$ $0,1141$ SNP27 $0,0059$ $n.g.$ $0,3407$ $0,1141$ SNP28 $0,0059$ $n.g.$ $0,3407$ $0,1141$ SNP30 $0,0059$ $n.g.$ $0,3407$ $0,1141$ SNP31 $0,0059$ $n.g.$ $0,3407$ $0,1141$ SNP3 $0,0059$ $n.g.$ $0,3407$ $0,1141$ SNP31 $0,0059$ $n.g.$ $0,3407$ $0,1141$ SNP3 $0,0071$ $n.g.$ $0,3362$ $0,1096$ SNP4 $0,0451$ $n.g.$ $0,2788$ $0,0522$ SNP1 $0,0767$ $n.g.$ $0,2778$ $0,0522$ SNP1 $0,0767$ $n.g.$ $0,276$ $0,0494$ SNP5 $0,0767$ $n.g.$ $0,2744$ $0,0478$ SNP52 $0,282$ $n.g.$ $0,2453$ $0,0186$ SNP7 $0,3368$ $n.g.$ $0,2294$ $0,0115$ SNP16 $0,6986$ $n.g.$ $0,2294$ $0,0115$ SNP16 $0,6986$ $n.g.$ $0,2267$ $4,03E-05$ H6 $3,12E-04$ $0,002$ $0,4119$ $0,185$ H1 $0,0165$ $0,0025$ $0,3147$ $0,0881$ H11 $0,0816$ $n.g.$ $0,22474$ $0,0024$ H7 $0,9603$ $n.g.$ $0,2247$ $4,03E-05$		H5	0,6346	n.g.	0,2045	0,0032
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		H1	0,8213	n.g.	0,202	7,34E-04
Unknown protein 1 (anonymisiert) SNP2 4.84E-06 5.00E-04 0.502 0.2751 (anonymisiert) SNP26 0.0059 0.00052632 0.3407 0.1141 SNP27 0.0059 n.g. 0.3407 0.1141 SNP28 0.0059 n.g. 0.3407 0.1141 SNP29 0.0059 n.g. 0.3407 0.1141 SNP30 0.0059 n.g. 0.3407 0.1141 SNP30 0.0059 n.g. 0.3407 0.1141 SNP31 0.0059 n.g. 0.3407 0.1141 SNP30 0.0059 n.g. 0.3407 0.1141 SNP31 0.0059 n.g. 0.3407 0.1141 SNP30 0.0059 n.g. 0.3407 0.1141 SNP30 0.0059 n.g. 0.3362 0.1096 SNP4 0.0051 n.g. 0.2788 0.0522 SNP12 0.0684 n.g. 0.276 0.0494 SNP22 0.0816						
protein 1 (anonymisiert) SNP26 0,0059 0,00052632 0,3407 0,1141 SNP27 0,0059 n.g. 0,3407 0,1141 SNP28 0,0059 n.g. 0,3407 0,1141 SNP29 0,0059 n.g. 0,3407 0,1141 SNP30 0,0059 n.g. 0,3407 0,1141 SNP31 0,0059 n.g. 0,3407 0,1141 SNP30 0,0059 n.g. 0,3407 0,1141 SNP31 0,0059 n.g. 0,3407 0,1141 SNP30 0,0071 n.g. 0,3362 0,1096 SNP4 0,0051 n.g. 0,3362 0,1096 SNP4 0,0451 n.g. 0,2788 0,0522 SNP1 0,0767 n.g. 0,276 0,0494 SNP5 0,0767 n.g. 0,276 0,0494 SNP12 0,0816 n.g. 0,2744 0,0478 SNP32 0,282 n.g. 0,2244 <td>Unknown</td> <td>SNP2</td> <td>4,84E-06</td> <td>5,00E-04</td> <td>0,502</td> <td>0,2751</td>	Unknown	SNP2	4,84E-06	5,00E-04	0,502	0,2751
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	protein i	(D) ID2(0.0070	0.00050(22	0.2407	0.11.41
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(anonymisiert)	SNP26	0,0059	0,00052632	0,3407	0,1141
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		SNP27	0,0059	n.g.	0,3407	0,1141
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		SNP28	0,0059	n.g.	0,3407	0,1141
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		SNP29	0,0059	n.g.	0,3407	0,1141
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		SNP30	0,0059	n.g.	0,3407	0,1141
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		SNP31	0,0059	n.g.	0,3407	0,1141
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		SNP3	0,0071	n.g.	0,3362	0,1096
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		SNP6	0,0071	n.g.	0,3362	0,1096
SNP12 0,0684 n.g. 0,2788 0,0522 SNP1 0,0767 n.g. 0,276 0,0494 SNP5 0,0767 n.g. 0,276 0,0494 SNP19 0,0767 n.g. 0,276 0,0494 SNP12 0,0816 n.g. 0,2744 0,0478 SNP22 0,0816 n.g. 0,2453 0,0186 SNP32 0,282 n.g. 0,2453 0,0149 SNP33 0,4063 n.g. 0,2294 0,0115 SNP16 0,6986 n.g. 0,2267 4,03E-05 H6 3,12E-04 0,002 0,4119 0,185 H1 0,0165 0,0025 0,3147 0,0881 H11 0,0816 n.g. 0,2744 0,0478 H2 0,6986 n.g. 0,2291 0,0024 H7 0,9603 n.g. 0,2291 0,0024		SNP4	0,0451	n.g.	0,2893	0,0627
SNP1 0,0767 n.g. 0,276 0,0494 SNP5 0,0767 n.g. 0,276 0,0494 SNP19 0,0767 n.g. 0,276 0,0494 SNP22 0,0816 n.g. 0,2744 0,0478 SNP32 0,282 n.g. 0,2453 0,0186 SNP7 0,3368 n.g. 0,2294 0,0115 SNP16 0,6986 n.g. 0,2291 0,0024 SNP17 0,9603 n.g. 0,2267 4,03E-05 H6 3,12E-04 0,002 0,4119 0,185 H1 0,0165 0,0025 0,3147 0,0881 H11 0,0816 n.g. 0,2744 0,0478 H2 0,6986 n.g. 0,2267 4,03E-05		SNP12	0,0684	n.g.	0,2788	0,0522
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		SNP1	0,0767	n.g.	0,276	0,0494
SNP19 0,0767 n.g. 0,276 0,0494 SNP22 0,0816 n.g. 0,2744 0,0478 SNP32 0,282 n.g. 0,2453 0,0186 SNP7 0,3368 n.g. 0,2294 0,0115 SNP16 0,6986 n.g. 0,2267 4,03E-05 H6 3,12E-04 0,002 0,4119 0,185 H1 0,0165 0,0025 0,3147 0,0881 H11 0,0816 n.g. 0,2744 0,0478 H2 0,6986 n.g. 0,2291 0,0024 H7 0,9603 n.g. 0,2267 4,03E-05		SNP5	0.0767	n.g.	0.276	0.0494
SNP22 0,0816 n.g. 0,2744 0,0478 SNP32 0,282 n.g. 0,2453 0,0186 SNP7 0,3368 n.g. 0,2415 0,0149 SNP33 0,4063 n.g. 0,2294 0,0115 SNP16 0,6986 n.g. 0,2291 0,0024 SNP17 0,9603 n.g. 0,2267 4,03E-05 H6 3,12E-04 0,002 0,4119 0,185 H1 0,0165 0,0025 0,3147 0,0881 H11 0,0816 n.g. 0,2744 0,0478 H2 0,6986 n.g. 0,2291 0,0024 H7 0,9603 n.g. 0,2267 4,03E-05		SNP19	0.0767	n.g.	0.276	0.0494
SNP32 0,282 n.g. 0,2453 0,0186 SNP7 0,3368 n.g. 0,2415 0,0149 SNP33 0,4063 n.g. 0,2294 0,0115 SNP16 0,6986 n.g. 0,2291 0,0024 SNP17 0,9603 n.g. 0,2267 4,03E-05 H6 3,12E-04 0,002 0,4119 0,185 H1 0,0165 0,0025 0,3147 0,0881 H11 0,0816 n.g. 0,2744 0,0478 H2 0,6986 n.g. 0,2291 0,0024 H7 0.9603 n.g. 0,2267 4,03E-05		SNP22	0.0816	n g	0 2744	0.0478
SNP7 0,3368 n.g. 0,2415 0,0149 SNP33 0,4063 n.g. 0,2294 0,0115 SNP16 0,6986 n.g. 0,2291 0,0024 SNP17 0,9603 n.g. 0,2267 4,03E-05 H6 3,12E-04 0,002 0,4119 0,185 H1 0,0165 0,0025 0,3147 0,0881 H11 0,0816 n.g. 0,2744 0,0478 H2 0,6986 n.g. 0,2291 0,0024 H7 0.9603 n.g. 0,2267 4,03E-05		SNP32	0.282	n.g.	0.2453	0.0186
SNP33 0,4063 n.g. 0,2294 0,0115 SNP16 0,6986 n.g. 0,2291 0,0024 SNP17 0,9603 n.g. 0,2267 4,03E-05 H6 3,12E-04 0,002 0,4119 0,185 H1 0,0165 0,0025 0,3147 0,0881 H11 0,0816 n.g. 0,2744 0,0478 H2 0,6986 n.g. 0,2291 0,0024 H7 0.9603 n.g. 0,2267 4,03E-05		SNP7	0,202	n.g.	0.2415	0.0149
SNP16 0,6986 n.g. 0,2291 0,0024 SNP17 0,9603 n.g. 0,2267 4,03E-05 H6 3,12E-04 0,002 0,4119 0,185 H1 0,0165 0,0025 0,3147 0,0881 H11 0,0816 n.g. 0,2291 0,0024 H2 0,6986 n.g. 0,2267 4,03E-05		SNP33	0,0063	n.g.	0,22113	0,0115
SINT 10 0,0550 n.g. 0,2291 0,0024 SNP17 0,9603 n.g. 0,2267 4,03E-05 H6 3,12E-04 0,002 0,4119 0,185 H1 0,0165 0,0025 0,3147 0,0881 H11 0,0816 n.g. 0,2744 0,0478 H2 0,6986 n.g. 0,2291 0,0024 H7 0.9603 n.g. 0,2267 4,03E-05		SND16	0,4005	n.g.	0,2297 0 2201	0.0024
H63,12E-040,0020,41190,185H10,01650,00250,31470,0881H110,0816n.g.0,27440,0478H20,6986n.g.0,22910,0024H70.9603n.g.0.22674,03E-05		SINI IO SNID17	0,0200	п. <u>д</u> .	0,2291	1 03E 05
H63,12E-040,0020,41190,185H10,01650,00250,31470,0881H110,0816n.g.0,27440,0478H20,6986n.g.0,22910,0024H70.9603n.g.0.22674,03E-05		SINE 17	0,2005	п. <u></u> .	0,2207	+,05E-05
H10,01650,00250,31470,0881H110,0816n.g.0,27440,0478H20,6986n.g.0,22910,0024H70.9603n.g.0.22674,03E-05		H6	3.12E-04	0.002	0.4119	0.185
H11 0,0816 n.g. 0,2744 0,0478 H2 0,6986 n.g. 0,2291 0,0024 H7 0.9603 n.g. 0.2267 4.03E-05		H1	0,0165	0,0025	0,3147	0,0881
H2 0,6986 n.g. 0,2291 0,0024 H7 0.9603 n.g. 0.2267 4.03E-05		H11	0.0816	n.g.	0.2744	0.0478
H7 0.9603 n.g. 0.2267 4.03E-05		Н2	0,6986	n g	0,2291	0.0024
		H7	0,9603	n.g.	0,2267	4,03E-05

die eine signifikante	e Assoziation zur M	lehltauresist	tenz, bzw. Me	hltauanfälligkei	t zeigten.
Kandidatengen	Polymorphismus	р	p_adj	Rsq_model	Rsq_marker
Alpha-beta- Hvdrolase	SNP5	1,57E-04	2,50E-03	0,3825	0,1811
(anonymisiert)	SNP6	1.57E-04	3.33E-03	0.3825	0.1811
(SNP2	0.0028	0.005	0.3199	0.1185
	SNP3	0.0028	0.01	0 3199	0 1185
		0,0020	0,01	0,0177	0,1100
	Н2	1 57E-04	0.005	0 3825	0 1811
	HI	0.0058	0.01	0.3039	0.1025
	111	0,0050	0,01	0,5057	0,1025
Vacuolar targeting	SNP6	3 29F-05	4 35E-04	0 4232	0 2146
Recentor	SNP16	0.002	4 45E-04	0.3361	0.1275
(anonymisiert)	SNP17	0.002	n,τεΞ 01	0.3361	0,1275
(anonymistorit)	SNP21	0,002	n.g. n σ	0,3361	0,1275
	SNP1	0,002	n.g.	0,3083	0,0007
	SNP2	0,0007	n g	0,3083	0,0997
	SNPQ	0,0007	n.g.	0,3083	0,0007
	SINF 9 SND10	0,0007	n.g.	0,3083	0,0997
	SINF IU SNID12	0,0007	n.g.	0,3083	0,0997
	SINP 15 SNIP 22	0,0007	n.g.	0,3083	0,0997
	SNP22	0,0067	n.g.	0,3083	0,0997
	SNP23	0,0067	n.g.	0,3083	0,0997
	SNP24	0,0067	n.g.	0,3083	0,0997
	SNP25	0,0067	n.g.	0,3083	0,0997
	SNP26	0,0067	n.g.	0,3083	0,0997
	SNP27	0,0067	n.g.	0,3083	0,0997
	SNP18	0,0074	n.g.	0,2952	0,1124
	SNP7	0,0213	n.g.	0,2819	0,0733
	SNP8	0,0213	n.g.	0,2819	0,0733
	SNP3	0,112	n.g.	0,2444	0,0358
	SNP4	0,112	n.g.	0,2444	0,0358
	SNP15	0,1634	n.g.	0,2363	0,0277
	SNP20	0,2113	n.g.	0,2309	0,0224
	SNP5	0,3917	n.g.	0,2192	0,0106
	H3	6,42E-04	2,00E-03	0,3608	0,1523
	H1	0,0067	0,0025	0,3083	0,0997
	H8	0,1482	n.g.	0,2384	0,0298
	H5	0,1945	n.g.	0,2327	0,0241
	H2	0,3917	n.g.	0,2192	0,0106
Methionine-	SNIP2	0.0025	0.0025	0 323	0 1217
Synthase 2	SNP3	0.859	0.00333333	0.2017	4 54F-04
(anonymiciart)	SIND 5	0,859	0,00 <i>33333</i>	0,2017 0.2017	т,Этв-04 И 5ИЕ 0И
(anonymisiert)	SINF 5 SND4	0,859	n.g.	0,2017	4,34E-04 5 42E 04
	51NE 4	0,0020	11.g.	0,1750	3,420-04
	H1	0.0025	0.0025	0.323	0.1217
	H5	0.0023	3 33E-03	0 3061	0 10/0
	н <i>у</i> Н/	0.3488	5,55 Δ- 05	0.2138	0.0125
	11 1 112	0,0400	n.g.	0,2130	8 51E 04
	114	0,00/0	11.g.	0,2021	0,511-04

Kandidatengen	Polymorphismus	р	p_adj	Rsq_model	Rsq_marker
LSD1a	SNP10	2,42E-04	2,00E-03	0,3733	0,1721
(TC148045)	SNP3	0,0745	0,0025	0,2457	0,0445
· · · ·	SNP5	0,0745	n.g.	0,2457	0,0445
	SNP8	0,1495	n.g.	0,2306	0,0293
	SNP2	0.2941	n.g.	0.2169	0.0157
	~ ~ ~ ~	-,	8	• ; • • •	•,• •
	H4	0.0059	3.33E-03	0.3033	0.102
	Н6	0 0745	ng	0 2457	0 0445
	H8	0.4601	n.g.	0.2091	0.0078
	110	0,1001		0,2071	0,0070
LSD1b	SNP11	0,0017	1,11E-03	0,3424	0,1301
(EU545232)	SNP5	0,0196	n.g.	0,2759	0,0747
	SNP1	0,0426	n.g.	0,2583	0,057
	SNP10	0,0856	n.g.	0,2539	0,0416
	SNP3	0,0932	n.g.	0,2408	0,0395
	SNP13	0,0932	n.g.	0,2408	0,0395
	SNP12	0,2106	n.g.	0,2235	0,0222
	SNP8	0,4374	n.g.	0,1401	0,0112
	SNP14	0,9002	n.g.	0,2015	2,26E-04
			-		
	H3	1,12E-05	1,43E-03	0,4472	0,2348
	H12	0,0404	1,67E-03	0,2707	0,0584
	H10	0,0856	n.g.	0,2539	0,0416
	H7	0,0893	n.g.	0,2529	0,0406
	H2	0,2428	n.g.	0,2318	0,0195
	H9	0,2774	n.g.	0,2291	0,0169
	H8	0 50			
	110	0,59	n.g.	0,2165	0,0042
	CNID16	0,59	n.g.	0,2165	0,0042
MBD10	SNP15	0,59 4,90E-04	n.g.	0,2165 0,3308	0,0042 0,1861
MBD10 (contig3489)	SNP15 SNP7 SNP8	0,59 4,90E-04 0,0584 0.0584	n.g. 1,11E-03 0,00125	0,2165 0,3308 0,2043 0,2042	0,0042 0,1861 0,0597 0,0597
MBD10 (contig3489)	SNP15 SNP7 SNP8 SNP14	0,59 4,90E-04 0,0584 0,0584 0,121	n.g. 1,11E-03 0,00125 n.g.	0,2165 0,3308 0,2043 0,2043 0,2043	0,0042 0,1861 0,0597 0,0597 0,0285
MBD10 (contig3489)	SNP15 SNP7 SNP8 SNP14 SNP11	0,59 4,90E-04 0,0584 0,0584 0,131 0,2014	n.g. 1,11E-03 0,00125 n.g. n.g. p.g.	0,2165 0,3308 0,2043 0,2043 0,183 0,1571	0,0042 0,1861 0,0597 0,0597 0,0385 0,0126
MBD10 (contig3489)	SNP15 SNP7 SNP8 SNP14 SNP11 SNP12	0,59 4,90E-04 0,0584 0,0584 0,131 0,3914 0,4081	n.g. 1,11E-03 0,00125 n.g. n.g. n.g. n.g.	0,2165 0,3308 0,2043 0,2043 0,183 0,1571 0,1562	0,0042 0,1861 0,0597 0,0597 0,0385 0,0126 0,0117
MBD10 (contig3489)	SNP15 SNP7 SNP8 SNP14 SNP11 SNP12 SNP6	0,59 4,90E-04 0,0584 0,0584 0,131 0,3914 0,4081 0,7006	n.g. 1,11E-03 0,00125 n.g. n.g. n.g. n.g. n.g. n.g.	0,2165 0,3308 0,2043 0,2043 0,183 0,1571 0,1563 0,1471	0,0042 0,1861 0,0597 0,0597 0,0385 0,0126 0,0117 0,0026
MBD10 (contig3489)	SNP15 SNP7 SNP8 SNP14 SNP11 SNP12 SNP6 SNP5	0,59 4,90E-04 0,0584 0,0584 0,131 0,3914 0,4081 0,7006 0,7475	n.g. 1,11E-03 0,00125 n.g. n.g. n.g. n.g. n.g. n.g. n.g.	0,2165 0,3308 0,2043 0,2043 0,183 0,1571 0,1563 0,1471 0,1463	0,0042 0,1861 0,0597 0,0597 0,0385 0,0126 0,0117 0,0026 0,0018
MBD10 (contig3489)	SNP15 SNP7 SNP8 SNP14 SNP11 SNP12 SNP6 SNP5 SNP9	0,59 4,90E-04 0,0584 0,0584 0,131 0,3914 0,4081 0,7006 0,7475 0,8165	n.g. 1,11E-03 0,00125 n.g. n.g. n.g. n.g. n.g. n.g. n.g. n.g. n.g.	0,2165 0,3308 0,2043 0,2043 0,183 0,1571 0,1563 0,1471 0,1463 0,1325	0,0042 0,1861 0,0597 0,0597 0,0385 0,0126 0,0117 0,0026 0,0018 9.84E.04
MBD10 (contig3489)	SNP15 SNP7 SNP8 SNP14 SNP11 SNP12 SNP6 SNP5 SNP9 H9	0,59 4,90E-04 0,0584 0,0584 0,131 0,3914 0,4081 0,7006 0,7475 0,8165 8,53E-04	n.g. 1,11E-03 0,00125 n.g. n.g. n.g. n.g. n.g. n.g. n.g. n.g. n.g. n.g. 0,002	0,2165 0,3308 0,2043 0,2043 0,183 0,1571 0,1563 0,1471 0,1463 0,1325 0,3533	0,0042 0,1861 0,0597 0,0597 0,0385 0,0126 0,0117 0,0026 0,0018 9,84E-04 0 1494
MBD10 (contig3489)	SNP15 SNP7 SNP8 SNP14 SNP11 SNP12 SNP6 SNP5 SNP9 H9 H6	0,59 4,90E-04 0,0584 0,0584 0,131 0,3914 0,4081 0,7006 0,7475 0,8165 8,53E-04 0,2889	n.g. 1,11E-03 0,00125 n.g. n.g. n.g. n.g. n.g. n.g. n.g. n.g. n.g. 0,002 0,0025	0,2165 0,3308 0,2043 0,2043 0,183 0,1571 0,1563 0,1471 0,1463 0,1325 0,3533 0,2203	0,0042 0,1861 0,0597 0,0597 0,0385 0,0126 0,0117 0,0026 0,0018 9,84E-04 0,1494 0,0166
MBD10 (contig3489)	SNP15 SNP7 SNP8 SNP14 SNP11 SNP12 SNP6 SNP5 SNP9 H9 H6 H8	0,59 4,90E-04 0,0584 0,0584 0,131 0,3914 0,4081 0,7006 0,7475 0,8165 8,53E-04 0,2889 0,3975	n.g. 1,11E-03 0,00125 n.g. n.g. n.g. n.g. n.g. n.g. n.g. n.g. 0,002 0,0025 n g	0,2165 0,3308 0,2043 0,2043 0,183 0,1571 0,1563 0,1471 0,1463 0,1325 0,3533 0,2203 0,2143	0,0042 0,1861 0,0597 0,0597 0,0385 0,0126 0,0117 0,0026 0,0018 9,84E-04 0,1494 0,0166 0,0106
MBD10 (contig3489)	SNP15 SNP7 SNP8 SNP14 SNP12 SNP6 SNP5 SNP9 H9 H6 H8 H12	0,59 4,90E-04 0,0584 0,0584 0,131 0,3914 0,4081 0,7006 0,7475 0,8165 8,53E-04 0,2889 0,3975 0,6314	n.g. 1,11E-03 0,00125 n.g.	0,2165 0,3308 0,2043 0,2043 0,2043 0,183 0,1571 0,1563 0,1471 0,1463 0,1325 0,3533 0,2203 0,2143 0,2071	0,0042 0,1861 0,0597 0,0597 0,0385 0,0126 0,0117 0,0026 0,0018 9,84E-04 0,1494 0,0166 0,0106 0,0034

Kandidatengen	Polymornhismus	n	n adi	Rsg model	Rsg marker
MIR6	SNP3	$\frac{P}{1.66E_{-}04}$	$1.00E_03$	0.3793	0.1844
(CA018053)	SNP15	8 10E 04	1,00E-03	0,375	0.1471
(0.0010000)	SNP1	0.0107	0.00125	0,350	0,1471
	SINI I SNID?	0,0107	0,00125	0,2855	0,0908
	SINF Z	0,0107	n.g.	0,2855	0,0908
	SINPO SNID11	0,0127	n.g.	0,2705	0,089
	SNP11	0,8868	n.g.	0,2091	2,94E-04
	SNP12	0,8868	n.g.	0,2091	2,94E-04
	SNP13	0,8868	n.g.	0,2091	2,94E-04
	SNP14	0,8868	n.g.	0,2091	2,94E-04
	SNP9	0,8876	n.g.	0,2029	2,98E-04
	H8	0,0048	3,33E-03	0,3079	0,1067
	H2	0,0098	n.g.	0,2917	0,0903
	H1	0.8796	n.g.	0.2016	3.30E-04
		.,	8	-,	-,
12-0PD-reductase	SNP9	8,49E-04	1,43E-03	0,3631	0,1443
(CK567317)	SNP6	0,0065	1,67E-03	0,3652	0,1002
	SNP1	0,0173	n.g.	0,3429	0,078
	SNP3	0,0403	n.g.	0,3236	0,0587
	SNP7	0,0403	n.g.	0,3236	0,0587
	SNP4	0,289	n.g.	0,2811	0,0162
	SNP5	0,3985	n.g.	0,2752	0,0103
	H5	6 38F-04	0.002	0.435	0 1535
	H5 H3	6,38E-04	0,002 0,0025	0,435 0,3701	0,1535
	H5 H3 H1	6,38E-04 0,0115 0.0147	0,002 0,0025	0,435 0,3701 0,3643	0,1535 0,0887 0,0829
	H5 H3 H1	6,38E-04 0,0115 0,0147 0,2460	0,002 0,0025 n.g.	0,435 0,3701 0,3643 0,201	0,1535 0,0887 0,0829 0,0106
	H5 H3 H1 H8	6,38E-04 0,0115 0,0147 0,2469 0,825	0,002 0,0025 n.g. n.g.	0,435 0,3701 0,3643 0,301 0,282	0,1535 0,0887 0,0829 0,0196 6,425,04
	H5 H3 H1 H8 H6	6,38E-04 0,0115 0,0147 0,2469 0,835	0,002 0,0025 n.g. n.g. n.g.	0,435 0,3701 0,3643 0,301 0,282	0,1535 0,0887 0,0829 0,0196 6,43E-04
Ovidoraductasa	H5 H3 H1 H8 H6	6,38E-04 0,0115 0,0147 0,2469 0,835	0,002 0,0025 n.g. n.g. n.g.	0,435 0,3701 0,3643 0,301 0,282	0,1535 0,0887 0,0829 0,0196 6,43E-04
Oxidoreductase	H5 H3 H1 H8 H6 SNP3 SNP10	6,38E-04 0,0115 0,0147 0,2469 0,835 4,02E-05 0,0149	0,002 0,0025 n.g. n.g. n.g. 8,33E-04 9 1E-04	0,435 0,3701 0,3643 0,301 0,282 0,4105 0,2822	0,1535 0,0887 0,0829 0,0196 6,43E-04 0,2092 0,0809
Oxidoreductase (BU983076)	H5 H3 H1 H8 H6 SNP3 SNP10 SNP15	6,38E-04 0,0115 0,0147 0,2469 0,835 4,02E-05 0,0149 0,0679	0,002 0,0025 n.g. n.g. n.g. 8,33E-04 9,1E-04 p.g.	0,435 0,3701 0,3643 0,301 0,282 0,4105 0,2822 0,2478	0,1535 0,0887 0,0829 0,0196 6,43E-04 0,2092 0,0809 0,0465
Oxidoreductase (BU983076)	H5 H3 H1 H8 H6 SNP3 SNP10 SNP15 SNP5	6,38E-04 0,0115 0,0147 0,2469 0,835 4,02E-05 0,0149 0,0679 0,2765	0,002 0,0025 n.g. n.g. n.g. 8,33E-04 9,1E-04 n.g.	0,435 0,3701 0,3643 0,301 0,282 0,4105 0,2822 0,2478 0,2182	0,1535 0,0887 0,0829 0,0196 6,43E-04 0,2092 0,0809 0,0465 0,0160
Oxidoreductase (BU983076)	H5 H3 H1 H8 H6 SNP3 SNP10 SNP15 SNP5 SNP6	6,38E-04 0,0115 0,0147 0,2469 0,835 4,02E-05 0,0149 0,0679 0,2765	0,002 0,0025 n.g. n.g. n.g. 8,33E-04 9,1E-04 n.g. n.g. n.g.	0,435 0,3701 0,3643 0,301 0,282 0,4105 0,2822 0,2478 0,2182	0,1535 0,0887 0,0829 0,0196 6,43E-04 0,2092 0,0809 0,0465 0,0169 0,0160
Oxidoreductase (BU983076)	H5 H3 H1 H8 H6 SNP3 SNP10 SNP15 SNP5 SNP6 SNP7	6,38E-04 0,0115 0,0147 0,2469 0,835 4,02E-05 0,0149 0,0679 0,2765 0,2765	0,002 0,0025 n.g. n.g. n.g. 8,33E-04 9,1E-04 n.g. n.g. n.g. n.g.	0,435 0,3701 0,3643 0,301 0,282 0,4105 0,2822 0,2478 0,2182 0,2182 0,2182	0,1535 0,0887 0,0829 0,0196 6,43E-04 0,2092 0,0809 0,0465 0,0169 0,0169 0,0169
Oxidoreductase (BU983076)	H5 H3 H1 H8 H6 SNP3 SNP10 SNP15 SNP5 SNP6 SNP7 SNP11	6,38E-04 0,0115 0,0147 0,2469 0,835 4,02E-05 0,0149 0,0679 0,2765 0,2765 0,2765	0,002 0,0025 n.g. n.g. n.g. 8,33E-04 9,1E-04 n.g. n.g. n.g. n.g. n.g.	0,435 0,3701 0,3643 0,301 0,282 0,4105 0,2822 0,2478 0,2182 0,2182 0,2182 0,2182	0,1535 0,0887 0,0829 0,0196 6,43E-04 0,2092 0,0809 0,0465 0,0169 0,0169 0,0169
Oxidoreductase (BU983076)	H5 H3 H1 H8 H6 SNP3 SNP10 SNP15 SNP5 SNP6 SNP7 SNP11 SNP12	6,38E-04 0,0115 0,0147 0,2469 0,835 4,02E-05 0,0149 0,0679 0,2765 0,2765 0,2765 0,2765	0,002 0,0025 n.g. n.g. n.g. 8,33E-04 9,1E-04 n.g. n.g. n.g. n.g. n.g. n.g. n.g.	0,435 0,3701 0,3643 0,301 0,282 0,282 0,2478 0,2182 0,2182 0,2182 0,2182 0,2181 0,2181	0,1535 0,0887 0,0829 0,0196 6,43E-04 0,2092 0,0809 0,0465 0,0169 0,0169 0,0169 0,0168
Oxidoreductase (BU983076)	H5 H3 H1 H8 H6 SNP3 SNP10 SNP10 SNP15 SNP5 SNP6 SNP7 SNP11 SNP12 SNP17	6,38E-04 0,0115 0,0147 0,2469 0,835 4,02E-05 0,0149 0,0679 0,2765 0,2765 0,2765 0,2768 0,2768	0,002 0,0025 n.g. n.g. n.g. s. 8,33E-04 9,1E-04 n.g. n.g. n.g. n.g. n.g. n.g. n.g. n.g	0,435 0,3701 0,3643 0,301 0,282 0,4105 0,2822 0,2478 0,2182 0,2182 0,2182 0,2182 0,2181 0,2181	0,1535 0,0887 0,0829 0,0196 6,43E-04 0,2092 0,0809 0,0465 0,0169 0,0169 0,0169 0,0168 0,0168
Oxidoreductase (BU983076)	H5 H3 H1 H8 H6 SNP3 SNP10 SNP10 SNP15 SNP5 SNP6 SNP7 SNP11 SNP12 SNP17 SNP17	6,38E-04 0,0115 0,0147 0,2469 0,835 4,02E-05 0,0149 0,0679 0,2765 0,2765 0,2765 0,2768 0,2768 0,2768	0,002 0,0025 n.g. n.g. n.g. s. 8,33E-04 9,1E-04 n.g. n.g. n.g. n.g. n.g. n.g. n.g. n.g	0,435 0,3701 0,3643 0,301 0,282 0,4105 0,2822 0,2478 0,2182 0,2182 0,2182 0,2182 0,2181 0,2181 0,2181	0,1535 0,0887 0,0829 0,0196 6,43E-04 0,2092 0,0809 0,0465 0,0169 0,0169 0,0168 0,0168 0,0168 0,0168
Oxidoreductase (BU983076)	H5 H3 H1 H8 H6 SNP3 SNP10 SNP10 SNP15 SNP5 SNP6 SNP7 SNP11 SNP12 SNP17 SNP17 SNP1	6,38E-04 0,0115 0,0147 0,2469 0,835 4,02E-05 0,0149 0,0679 0,2765 0,2765 0,2765 0,2768 0,2768 0,2768 0,2768 0,2768	0,002 0,0025 n.g. n.g. n.g. s,33E-04 9,1E-04 n.g. n.g. n.g. n.g. n.g. n.g. n.g. n.g	0,435 0,3701 0,3643 0,301 0,282 0,282 0,2478 0,2182 0,2182 0,2182 0,2182 0,2181 0,2181 0,2181 0,2131	0,1535 0,0887 0,0829 0,0196 6,43E-04 0,2092 0,0809 0,0465 0,0169 0,0169 0,0168 0,0168 0,0168 0,0119
Oxidoreductase (BU983076)	H5 H3 H1 H8 H6 SNP3 SNP10 SNP15 SNP5 SNP5 SNP6 SNP7 SNP11 SNP12 SNP17 SNP17 SNP1 SNP12 SNP17 SNP1	6,38E-04 0,0115 0,0147 0,2469 0,835 4,02E-05 0,0149 0,0679 0,2765 0,2765 0,2765 0,2768 0,2768 0,2768 0,2768 0,2768 0,2768 0,2768	0,002 0,0025 n.g. n.g. n.g. s. 8,33E-04 9,1E-04 n.g. n.g. n.g. n.g. n.g. n.g. n.g. n.g	0,435 0,3701 0,3643 0,301 0,282 0,282 0,2478 0,2182 0,2182 0,2182 0,2182 0,2181 0,2181 0,2181 0,2131 0,2131	0,1535 0,0887 0,0829 0,0196 6,43E-04 0,2092 0,0809 0,0465 0,0169 0,0169 0,0168 0,0168 0,0168 0,0168 0,0119 0,0119
Oxidoreductase (BU983076)	H5 H3 H1 H8 H6 SNP3 SNP10 SNP10 SNP15 SNP5 SNP6 SNP7 SNP11 SNP12 SNP17 SNP17 SNP17 SNP1 SNP1 SNP18 SNP9	6,38E-04 0,0115 0,0147 0,2469 0,835 4,02E-05 0,0149 0,0679 0,2765 0,2765 0,2765 0,2768 0,2768 0,2768 0,2768 0,2768 0,2768 0,2768 0,2768 0,2768 0,2768 0,2768 0,2768 0,2768 0,3623 0,3623	0,002 0,0025 n.g. n.g. n.g. n.g. 8,33E-04 9,1E-04 n.g. n.g. n.g. n.g. n.g. n.g. n.g. n.g	0,435 0,3701 0,3643 0,301 0,282 0,282 0,2478 0,2182 0,2182 0,2182 0,2182 0,2181 0,2181 0,2181 0,2181 0,2131 0,2131 0,2131	0,1535 0,0887 0,0829 0,0196 6,43E-04 0,2092 0,0809 0,0465 0,0169 0,0169 0,0168 0,0168 0,0168 0,0168 0,0119 0,0119 0,0119
Oxidoreductase (BU983076)	H5 H3 H1 H8 H6 SNP3 SNP10 SNP15 SNP5 SNP6 SNP7 SNP11 SNP12 SNP17 SNP12 SNP17 SNP1 SNP18 SNP9 H6	6,38E-04 0,0115 0,0147 0,2469 0,835 4,02E-05 0,0149 0,0679 0,2765 0,2765 0,2765 0,2768 0,2768 0,2768 0,2768 0,2768 0,2768 0,2768 0,2768 0,2768 0,2768 0,2768 0,3623 0,3623 0,3623	0,002 0,0025 n.g. n.g. n.g. s. 8,33E-04 9,1E-04 n.g. n.g. n.g. n.g. n.g. n.g. n.g. n.g	0,435 0,3701 0,3643 0,301 0,282 0,282 0,2478 0,2182 0,2182 0,2182 0,2182 0,2181 0,2181 0,2181 0,2131 0,2131 0,2131 0,2131	0,1535 0,0887 0,0829 0,0196 6,43E-04 0,2092 0,0809 0,0465 0,0169 0,0169 0,0168 0,0168 0,0168 0,0168 0,0168 0,0119 0,0119 0,0119 0,0119
Oxidoreductase (BU983076)	H5 H3 H1 H8 H6 SNP3 SNP10 SNP10 SNP15 SNP5 SNP6 SNP7 SNP11 SNP12 SNP17 SNP12 SNP17 SNP17 SNP1 SNP18 SNP9 H6 H8	6,38E-04 0,0115 0,0147 0,2469 0,835 4,02E-05 0,0149 0,0679 0,2765 0,2765 0,2765 0,2768 0,2768 0,2768 0,2768 0,2768 0,2768 0,2768 0,2768 0,2768 0,2768 0,3623 0,3623 0,3623	0,002 0,0025 n.g. n.g. n.g. n.g. 8,33E-04 9,1E-04 n.g. n.g. n.g. n.g. n.g. n.g. n.g. n.g	0,435 0,3701 0,3643 0,301 0,282 0,4105 0,2822 0,2478 0,2182 0,2182 0,2182 0,2182 0,2181 0,2181 0,2181 0,2181 0,2131 0,2131 0,2131 0,2131	0,1535 0,0887 0,0829 0,0196 6,43E-04 0,2092 0,0809 0,0465 0,0169 0,0169 0,0168 0,0168 0,0168 0,0168 0,0119 0,0119 0,0119 0,0119
Oxidoreductase (BU983076)	H5 H3 H1 H8 H6 SNP3 SNP10 SNP10 SNP15 SNP5 SNP6 SNP7 SNP11 SNP12 SNP17 SNP17 SNP17 SNP17 SNP1 SNP18 SNP9 H6 H8 H4	6,38E-04 0,0115 0,0147 0,2469 0,835 4,02E-05 0,0149 0,0679 0,2765 0,2765 0,2765 0,2768 0,2768 0,2768 0,2768 0,2768 0,2768 0,2768 0,2768 0,2768 0,2768 0,2768 0,2768 0,2768 0,3623 0,3623 0,3623	0,002 0,0025 n.g. n.g. n.g. n.g. 8,33E-04 9,1E-04 n.g. n.g. n.g. n.g. n.g. n.g. n.g. n.g	0,435 0,3701 0,3643 0,301 0,282 0,2822 0,2478 0,2182 0,2182 0,2182 0,2182 0,2181 0,2181 0,2181 0,2131 0,2131 0,2131 0,2131 0,2131	0,1535 0,0887 0,0829 0,0196 6,43E-04 0,2092 0,0809 0,0465 0,0169 0,0169 0,0168 0,0168 0,0168 0,0168 0,0119 0,0119 0,0119 0,0119 0,0119

die eine signifikante Assoziation zur Mehltauresistenz, bzw. Mehltauanfälligkeit zeigten.						
Kandidatengen	Polymorphismus	р	p_adj	Rsq_model	Rsq_marker	
Peroxyredoxin	SNP4	4,55E-04	2,00E-03	0,3599	0,1587	
(TC131600)	SNP2	0,0035	0,0025	0,3148	0,1136	
. ,	SNP3	0,0035	n.g.	0,3148	0,1136	
	SNP5	0,044	n.g.	0,2576	0,0563	
	SNP1	0,1487	n.g.	0,2307	0,0295	
			-			
	H2	0,0035	0,0025	0,3148	0,1136	
	H4	0,044	n.g.	0,2576	0,0563	
	H1	0,1487	n.g.	0,2307	0,0295	
	H6	0,2007	n.g.	0,2245	0,0232	
		-	C	-		
II PK (Loctin-liko						
LLNK (LEUIII-IIKE	CNID1	2 995 04	4.760.04	0.2624	0.162	
(CDOE9262)	SINP I SNIP2	3,88E-04	4,70E-04	0,3034 0.2624 $0.16'$	0,102	
(00000000)	SINP2 SNIP2	2,00E-04	5,00E-04	0,3034 $0,10.$	0.162	
	SINP5	3,88E-04	5,26E-04	0,3034	0,162	
	SNP5 SNP7	3,88E-04	5,56E-04	0,3634	0,162	
	SNP/	3,88E-04	5,88E-04	0,3634	0,162	
	SNP8	3,88E-04	6,25E-04	0,3634	0,162	
	SNP9	3,88E-04	6,6/E-04	0,3634	0,162	
	SNP10	3,88E-04	/,14E-04	0,3634	0,162	
	SNP11	3,88E-04	7,69E-04	0,3634	0,162	
	SNP13	3,88E-04	8,33E-04	0,3634	0,162	
	SNP14	3,88E-04	9,09E-04	0,3634	0,162	
	SNP15	3,88E-04	1,00E-03	0,3634	0,162	
	SNP16	3,88E-04	1,11E-03	0,3634	0,162	
	SNP17	3,88E-04	1,25E-03	0,3634	0,162	
	SNP18	3,88E-04	1,43E-03	0,3634	0,162	
	SNP19	3,88E-04	1,67E-03	0,3634	0,162	
	SNP20	3,88E-04	2,00E-03	0,3634	0,162	
	SNP21	3,88E-04	2,50E-03	0,3634	0,162	
	SNP12	0,0469	3,33E-03	0,2562	0,0549	
	SNP4	0,0488	n.g.	0,2553	0,054	
	SNP6	0,2442	n.g.	0,2206	0,0193	
	H5	3,88E-04	2,00E-03	0,3635	0,162	
	HI	0,0085	0,0025	0,295	0,0938	
	H2	0,0468	n.g.	0,2561	0,0549	
	H3	0,0488	n.g.	0,2552	0,054	
	H4	0,2441	n.g.	0,2205	0,0193	

die eine signifikant	e Assoziation zur M	1ehltaures1s	tenz, bzw. Me	ehltauanfälligke	eit zeigten.
Kandidatengen	Polymorphismus	р	p_adj	Rsq_model	Rsq_marker
WIR1	SNP3	0,0121	4,17E-04	0,2852	0,0893
(contig5974)	SNP4	0,0348	n.g.	0,2602	0,0642
	SNP10	0,0348	n.g.	0,2602	0,0642
	SNP11	0,0348	n.g.	0,2602	0,0642
	SNP23	0,0408	n.g.	0,2564	0,0605
	SNP14	0,3123	n.g.	0,2112	0,0152
	SNP5	0,3178	n.g.	0,2108	0,0149
	SNP6	0,3178	n.g.	0,2108	0,0149
	SNP7	0,3178	n.g.	0,2108	0,0149
	SNP12	0,3178	n.g.	0,2108	0,0149
	SNP13	0,3178	n.g.	0,2108	0,0149
	SNP15	0,3178	n.g.	0,2108	0,0149
	SNP17	0,3178	n.g.	0,2108	0,0149
	SNP18	0,3178	n.g.	0,2108	0,0149
	SNP19	0,3178	n.g.	0,2108	0,0149
	SNP20	0,3178	n.g.	0,2108	0,0149
	SNP24	0,3178	n.g.	0,2108	0,0149
	SNP25	0,3178	n.g.	0,2108	0,0149
	SNP1	0,3656	n.g.	0,2082	0,0122
	SNP21	0,3922	n.g.	0,3452	0,0129
	SNP2	0,4011	n.g.	0,2065	0,0105
	SNP9	0,4011	n.g.	0,2065	0,0105
	SNP16	0,4225	n.g.	0,2056	0,0096
	SNP22	0,6021	n.g.	0,1797	0,0046
	111	2 40E 04	1 (75 02	0.2752	0.1701
		2,40E-04	1,6/E-03	0,3752	0,1/91
	H4	0,0121	0,002	0,2852	0,0893
	H8	0,0348	n.g.	0,2602	0,0642
	H3	0,0408	n.g.	0,2564	0,0605
	H2	0,1103	n.g.	0,2334	0,0374
	H9	0,3656	n.g.	0,2082	0,0122
					0.1.4.0
WKKY1	SNP8	7,83E-04	1,00E-03	0,3642	0,1462
(AJ536667)	SNP2	0,0055	1,11E-03	0,321	0,1031
	SNP5	0,2602	n.g.	0,2358	0,018
	SNP4	0,3607	n.g.	0,2297	0,0119
	SNP10	0,502	n.g.	0,2242	0,0064
	SNP11	0,502	n.g.	0,2242	0,0064
	SNP1	0,5161	n.g.	0,2239	0,006
	SNP6	0,5612	n.g.	0,2226	0,0048
	SNP9	0,7016	n.g.	0,2199	0,0021
	SNP3	0.9486	n.g.	0.2179	5.97E-05

Fortsetzung von Tab. 3.12: Ergebnisse der Assoziationsverrechnung für die Kandidatengene, die eine signifikante Assoziation zur Mehltauresistenz, bzw. Mehltauanfälligkeit zeigten.

die eine signifikante Assoziation zur Mehltauresistenz, bzw. Mehltauanfälligkeit zeigten.					eit zeigten.
Kandidatengen	Polymorphismus	р	p_adj	Rsq_model	Rsq_marker
WRKY1	H6	0,0295	1,67E-03	0,283	0,0651
(AJ536667)	H2	0,2602	n.g.	0,2358	0,018
	H3	0,3607	n.g.	0,2297	0,0119
	H8	0,5612	n.g.	0,2226	0,0048
	H7	0,7288	n.g.	0,2195	0,0017
	H4	0,787	n.g.	0,2188	0,001
			-		
WRKY2	SNP6	1,79E-04	1,25E-03	0,3798	0,1784
(AJ853838)	SNP2	0,0014	1,43E-03	0,335	0,1336
	SNP1	0,333	1,67E-03	0,2146	0,0134
	SNP7	0,4869	n.g.	0,2082	0,0069
	SNP8	0,4869	n.g.	0,2082	0,0069
	SNP9	0,4869	n.g.	0,2082	0,0069
	SNP4	0,8003	n.g.	0,2022	9,20E-04
	SNP3	0,9241	n.g.	0,2014	1,30E-04
	H8	1,79E-04	2,00E-03	0,3798	0,1784
	H7	0,0707	0,0025	0,2469	0,0457
	Н3	0,7111	n.g.	0,2032	0,002
	H6	0,7933	n.g.	0,2022	9,88E-04
	H1	0,8468	n.g.	0,2018	5,37E-04

Fortsetzung von Tab. 3.12: Ergebnisse der Assoziationsverrechnung für die Kandidatengene, die eine signifikante Assoziation zur Mehltauresistenz, bzw. Mehltauanfälligkeit zeigten.

Alle Ergebnisse, die in Tabelle 3.12 dargestellt sind, resultieren aus der Berechnung des MIXED-LINEAR-MODELS. Neben dem MIXED-LINEAR-MODEL wurde auch das GENERAL-LINEAR-MODEL berechnet. Da aber keine Ergebnisunterschiede beobachtet werden konnten, sind hier nur die Ergebnisse des MIXED-LINEAR-MODELs angegeben. Es sind sowohl die Kandidatengennamen, als auch die Polymorphismusbezeichnungen aufgelistet. In der dritten Spalte der Tabelle finden sich die von TASSEL ausgegebenen p-Werte. Um einer alpha-Fehler-Kumulierung entgegen zu wirken, wurde der adjustierte p-Wert nach Bonferroni-Holm (Köhler et al. 2001) berechnet (siehe 4. Spalte). Für alle Assoziationsberechnugen wurde eine Irrtumswahrscheinlichkeit von weniger als einem Prozent (p=1%) angenommen. Die von TASSEL ausgegebenen p-Wert kleiner als der adjustierte p-Wert, lag eine signifikante Assoziation vor.

Einundzwanzig Kandidatengene zeigten eine signifikante Assoziation von SNP und/oder Haplotypen zur Mehltauresistenz, bzw. Mehltauanfälligkeit bei einer angenommenen Irrtumswahrscheinlichkeit von weniger als einem Prozent. Die getesteten Gene Aspartate protease gene, BAS1, BAX-Inhibitor1, LSD1 (TC148045), MIR6, Peroxyredoxin und WRKY1 wiesen ausschließlich signifikant assoziierte SNP aber keine signifikant assoziierten Haplotypen auf. Haplotypen der Kandidatengene ACC-oxidase, Glutaredoxin, LSD1 (EU545232) und WIR1 waren signifikant mit Mehltauresistent assoziiert, während kein detektierter SNP dieser Kandidaten eine signifikante Assoziation zeigte. Sowohl SNPals auch Haplotypenassoziationen konnten für die Gene Calreticulin, *protein with unknown function*, alpha-beta-Hydrolase, Vacuolar-targeting-receptor, Methionine-Synthase 2, MBD10, 12-OPD-Reductase, Oxidoreductase, LLRK als auch WRKY2 aufgedeckt werden.

Auch Genfragmente der Mehltauresistenzgene *mlo* und *Mla* wurden in dieser Studie auf Polymorphismen und deren Assoziation zu Mehltauresistenz untersucht; für diese Gene konnten keine signifikanten Assoziationen detektiert werden, sodass sie in der hier verwendeten Population wahrscheinlich nicht an der beobachteten Mehltauresistenz beteiligt sind. Bei der Auswahl der resistenten Akzessionen wurde gegen die *mlo*-Resistenz selektiert, sodass die nicht vorhandene Assoziation zu *mlo* ein erwartetes Ergebnis darstellt.

3.1.4.4 Test auf falschpositive Assoziationen

Die Verifizierung detektierter Assoziationen als echte Assoziationen stellt ein Problem von Assoziationsstudien dar. Die Anwendung des MLM minimiert die Gefahr falsche Assoziationen aufzuspüren. Um die Gefahr falsche Assoziationen entdeckt zu haben, abzuschätzen, wurden alle detektierten Polymorphismen der Kandidatengene mit zwei anderen Merkmalen (Zeiligkeit und Pflanzenhöhe, vgl. Tabelle 3.5) verrechnet. Die Ergebnisse der Assoziationsverrechnungen für die Merkmale Zeiligkeit und Pflanzenhöhe der 21 mit dem Phänotyp Mehltauresistenz assoziierten Kandidatengene, sind in folgenden zwei Tabellen (Tabelle 3.13 und Tabelle 3.14) dargestellt.

Tab. 3.13: Assoziierte Kandidatengene mit Zeiligkeit; getestet wurden 21 Kandidatengene, die eine signifikante Assoziation zur Mehltauresistenz zeigten. Signifikant assoziierte SNPs und Haplotypen sind orange gekennzeichnet. Angegeben sind der Genname, der Polymorphismus, der p-Wert, der adjustierte p-Wert (p=1%), sowie der Rsq_model- und der Rsq_marker-Wert; n.g.=nicht gezeigt

Kandidatengen	Polymorphismus	<u>р</u>	p_adj	Rsq_model	Rsq_marker
Aspartate protease		4,59E-			
gene (X56136)	SNP14	04	6,25E-04	0,5121	0,1233
	SNP1	0,0012	0,00066667	0,4954	0,1067
	SNP3	n.g.		0,4954	0,1067
	SNP4	n.g.		0,4954	0,1067
	SNP5	n.g.		0,4954	0,1067
	SNP7	n.g.		0,4954	0,1067
	SNP9	n.g.		0,4954	0,1067
	SNP15	n.g.		0,4954	0,1067
	SNP17	n.g.		0,4954	0,1067
	SNP2	n.g.		0,4941	0,1054
	SNP18	n.g.		0,4401	0,0514
	SNP19	n.g.		0,4401	0,0514
	SNP12	n.g.		0,4227	0,0339
	SNP16	n.g.		0,4227	0,0339
	SNP13	n.g.		0,4044	0,0156
	SNP8	n.g.		0,3893	5,96E-04
		2.0.45			
	110	3,04E-	0.000	0.5100	0.1201
	H2	04	0,002	0,5189	0,1301
	H6	0,028/	0,0025	0,4401	0,0514
	H4	n.g.		0,4245	0,0358
		n.g.		0,4044	0,0156
	HS	n.g.		0,3893	5,96E-04
LLRK (CD058363)	SNP1	0.0013	0.00047619	0.4949	0.1062
()	SNP2	n.g.	- ,	0,4949	0,1062
	SNP3	n.g.		0.4949	0.1062
	SNP5	n.g.		0,4949	0,1062
	SNP7	n.g.		0,4949	0,1062
	SNP8	n.g.		0,4949	0,1062
	SNP9	n.g.		0,4949	0,1062
	SNP10	n.g.		0,4949	0,1062
	SNP11	n.g.		0,4949	0,1062
	SNP13	n.g.		0,4949	0,1062
	SNP14	n.g.		0,4949	0,1062
	SNP15	n.g.		0,4949	0,1062
	SNP16	n.g.		0,4949	0,1062
	SNP17	n.g.		0,4949	0,1062
	SNP18	n.g.		0,4949	0,1062
	SNP19	n.g.		0,4949	0,1062
	SNP20	n.g.		0,4949	0,1062
	SNP21	n.g.		0,4949	0,1062
	SNP6	n.g.		0,4507	0,0619
	SNP4	n.g.		0,4112	0,0225
	SNP12	n.g.		0,3962	0,0075

Kandidatengen	Polymorphismus	р	p_adj	Rsq_model	Rsq_marker
LLRK (CD058363)	H5	0,0013	0,002	0,4949	0,1062
	H1	0,0025	0,0025	0,483	0,0943
	H4	n.g.		0,4507	0,0619
	H3	n.g.		0,4112	0,0225
	H2	n.g.		0,3962	0,0075
Oxidoreductase					
(BU983076)	SNP15	0,0012	1,11E-03	0,4934	0,122
	SNP14	n.g.		0,4547	0,0832
	SNP11	n.g.		0,4467	0,0752
	SNP12	n.g.		0,419	0,0475
	SNP5	n.g.		0,4004	0,0289
	SNP9	n.g.		0,3866	0,0288
	SNP6	n.g.		0,3792	0,0076
	SNP7	n.g.		0,3751	0,0036
	SNP8	n.g.		0,3751	0,0036
		6,68E-			
	H6	05	2,00E-03	0,5711	0,1484
	H8	0,0048	0,0025	0,5026	0,0797
	H4	n.g.		0,4472	0,0245
	H2	n.g.		0,4272	0,0045
	H3	n.g.		0,4237	9,53E-04
$W_{1}P_{1}$ (contin 5074)	SNID22	0.0109	0.00041667	0.465	0.0784
WINT (contry 5374)	SINF 22 SNID21	0,0108	0,00041007	0,403	0,0784
	SINF 21 SNID1 4	n.g.		0,4113	0,104
	SINF 14 SNID5	n.g.		0,4092	0,0300
	SNP6	n g		0,4594	0,0467
	SNP7	n g		0,4594	0,0467
	SNP12	n.g.		0,4594	0,0467
	SNP13	n.g.		0,4594	0,0467
	SNP15	n.σ.		0 4594	0.0467
	SNP17	n.σ.		0 4594	0.0467
	SNP18	n.g. n σ		0 4594	0.0467
	SNP19	ng		0 4594	0.0467
	SNP20	ng.		0 4594	0.0467
	SNP24	ng		0 4594	0.0467
	SNP25	n.g.		0.4594	0.0467
	SNP3	n.g.		0.4454	0.0327
	SNP2	n.g.		0.4434	0.0308
	SNP9	n.g.		0,4434	0,0308
	SNP4	n.g.		0.436	0,0233
	SNP10	n.g.		0.436	0,0233
	SNP11	n.g.		0.436	0,0233
	SNP23	n.g.		0,4304	0,0178
	SNP1	n.g.		0,4268	0,0142
	SNP16	n.g.		0.4131	3.56E-04

Fortsetzung von Tab. 3.13: Assoziierte Kandidatengene mit Zeiligkeit; getestet wurden 21 Kandidatengene, die eine signifikante Assoziation zur Mehltauresistenz zeigten.

Kandidatengen	Polymorphismus	р	p_adj	Rsq_model	Rsq_marker
WIR1 (contig5974)	H5	0,0013	0,002	0,4948	0,1062
	H1	0,0025	0,0025	0,483	0,0943
	H4	n.g.		0,4506	0,0619
	H3	n.g.		0,4111	0,0225
	H2	n.g.		0,3961	0,0075
		-			
WRKY2		6,48E-			
(AJ853838)	SNP6	04	1,25E-03	0,5061	0,1175
	SNP4	0,0121	0,00142857	0,4553	0,0667
	SNP1	n.g.		0,4552	0,0665
	SNP2	n.g.		0,4517	0,0632
	SNP7	n.g.		0,4329	0,0443
	SNP8	n.g.		0,4329	0,0443
	SNP9	n.g.		0,4329	0,0443
	SNP3	n.g.		0,3939	0,0052
		6,48E-			
	H8	04	2,00E-03	0,5061	0,1175
	H1	0,0122	0,0025	0,4552	0,0665
	H7	n.g.		0,4541	0,0655
	H3	n.g.		0,3917	0,0031
	H6	n.g.		0,3893	5,77E-04

Fortsetzung von Tab. 3.13: Assoziierte Kandidatengene mit Zeiligkeit; getestet wurden 21 Kandidatengene, die eine signifikante Assoziation zur Mehltauresistenz zeigten.

Die Kandidatengene Aspartate protease gene, Oxidoreductase, LLRK, WIR1 und WRKY2 wiesen neben einer signifikanten Assoziation zur Mehltauresistenz, bzw. Mehltauanfälligkeit auch eine signifikante Assoziation zur Zeiligkeit auf.

SNP14 des Aspartate protease genes assoziierte signifikant zur Mehltauresistenz. SNP2 und Haplotyp2 dieses Gens wiesen eine signifikante Assoziation zur Zeiligkeit auf.

Haplotyp6 der Oxidoreductase ist sowohl mit Mehltauresistenz als auch mit Zeiligkeit assoziiert.

Das Gen LLRK zeigte eine starke Assoziation von 18 SNP und einem Haplotypen (H5) zum Phänotyp Mehltauresistent, bzw. Mehltauanfälligkeit. Dieser Haplotyp5 assoziierte jedoch auch signifikant zum Phänotyp Zeiligkeit.

Auch der Haplotyp1 des Kandidatengens WIR1 wies eine signifikante Assoziation zur Mehltauresistenz sowie zur Zeiligkeit auf.

SNP6 und Haplotyp8 von WRKY2 assoziierten mit der Zeiligkeit; wohingegen SNP8 von WRKY2 mit Mehltauresistenz signifikant assoziierte.

In der folgenden Tabelle 3.14 sind die Ergebnisse der Assoziationsverrechnung mit dem Phänotyp Pflanzenhöhe angegeben. Die Pflanzenhöhe wurde 2008 an zwei Standorten bestimmt. Der zweite Standort bestätigte die Ergebnisse des erstens Standortes
(R²=32,97%), es zeigte sich für das Merkmal Pflanzenhöhe eine Heritabilität von 94,53% (P. Schweizer, persönliche Kommunikation).

Die ACC-oxidase zeigte sowohl zur Mehltauresistenz (Haplotyp1) als auch zur Pflanzenhöhe (SNP3 und Haplotyp5) eine signifikante Assoziation.

Die LLRK assoziierte signifikant zur Mehltauresistenz, Zeiligkeit und Pflanzenhöhe. 18 SNP wiesen eine signifikante Assoziation zur Mehltauresistenz auf, aber kein SNP assoziierte mit dem Phänotyp Zeiligkeit. SNP4 zeigte als einziger SNP eine Assoziation zur Pflanzenhöhe; dieser SNP assoziierte jedoch nicht mit Mehltauresistenz. Haplotyp5 assoziierte signifikant sowohl zur Mehltauresistenz als auch zum Phänotyp Zeiligkeit. Eine Haplotypassoziation der LLRK mit Pflanzenhöhe konnte für Hapotyp3 beobachtet werden.

Tab. 3.14: Assoziierte Kandidatengene mit Pflanzenhöhe; getestet wurden 21 Kandidatengene, die eine signifikante Assoziation zur Mehltauresistenz zeigten. Signifikant assoziierte SNPs und Haplotypen sind orange gekennzeichnet. Angegeben sind der Genname, der Polymorphismus, der p-Wert, der adjustierte p-Wert (p=1%), sowie der Rsg model- und der Rsg marker-Wert; n.g.=nicht gezeigt

Kandidatengen	Polymorphismus	р	p_adj	Rsq_model	Rsq_marker
ACC-oxidase					
(CA023817)	SNP3	0,0011	0,00125	0,2461	0,1619
	SNP9	0,018	0,00142857	0,1771	0,0907
	SNP10	n.g.		0,1771	0,0907
	SNP2	n.g.		0,1723	0,0881
	SNP4	n.g.		0,1723	0,0881
	SNP6	n.g.		0,1723	0,0881
	SNP1	n.g.		0,0848	5,87E-04
	SNP8	n.g.		0,0868	4,08E-04
	H5	0,0011	0,005	0,2461	0,1619
	H1	0,6726	0,01	0,0872	0,003

Kandidatengen	Polymorphismus	р	p_adj	Rsq_model	Rsq_marker
		1,94E-			
LLRK (CD058363)	SNP4	04	4,76E-04	0,2902	0,206
	SNP6	0,0249	0,0005	0,165	0,0808
	SNP12	n.g.		0,105	0,0208
	SNP1	n.g.		0,096	0,0118
	SNP2	n.g.		0,096	0,0118
	SNP3	n.g.		0,096	0,0118
	SNP5	n.g.		0,096	0,0118
	SNP7	n.g.		0,096	0,0118
	SNP8	n.g.		0,096	0,0118
	SNP9	n.g.		0,096	0,0118
	SNP10	n.g.		0,096	0,0118
	SNP11	n.g.		0,096	0,0118
	SNP13	n.g.		0,096	0,0118
	SNP14	n.g.		0,096	0,0118
	SNP15	n.g.		0,096	0,0118
	SNP16	n.g.		0,096	0,0118
	SNP17	n.g.		0,096	0,0118
	SNP18	n.g.		0,096	0,0118
	SNP19	n.g.		0,096	0,0118
	SNP20	n.g.		0,096	0,0118
	SNP21	n.g.		0,096	0,0118
		1,94E-			
	H3	04	0,002	0,2902	0,206
	H4	0,0249	0,0025	0,165	0,0808
	H2	n.g.		0,105	0,0208
	H5	n.g.		0,096	0,0118
	H1	n.g.		0,0921	0,0079

Fortsetzung von Tab. 3.14: Assoziierte Kandidatengene mit Pflanzenhöhe; getestet wurden 21 Kandidatengene, die eine signifikante Assoziation zur Mehltauresistenz zeigten.

Die Analyse auf falsch positive Assoziationen wies darauf hin, dass einige Assoziationen sowohl mit Mehltauresistenz als auch mit Zeiligkeit zu beobachten sind. In der analysierten Population zeigte sich ein Trend zu höher Mehltauresistenz der sechszeiligen Akzessionen. Auch bei der Analyse mit dem Merkmal Pflanzenhöhe zeigten zwei Kandidatengene, LLRK und ACC-oxidase, signifikante Assoziationen. Die genetische Position im Gerstengenom ist für das Gen LLRK bekannt. Es kartiert auf Chromosom 5HS in eine Region, die als Mehltauresistenz-QTL beschrieben ist (vgl. Kapitel 3.2.1). Es ist außerdem bekannt, dass in dieser Region ein QTL für Planzenhöhe lokalisiert ist (www.graingenes.org). Diese Kolokalisierung der QTLs für die verschiedenen Merkmale kann eine Erklärung dafür sein, dass das Gen LLRK sowohl mit Mehltauresistenz als auch mit Pflanzenhöhe signifikant assoziierte.

Die meisten Assoziationen in dieser Studie wurden zum Merkmal Mehltauresistenz identifiziert. Diese Tatsache deutet auf echte Assoziationen hin, da hier der Kandidatengenbasierte Ansatz gewählt wurde, dem eine Vorselektion der Kandidatengene auf Mehltauresistenz vorraus ging.

3.1.4.5 Berechnung des intra- und intergenen Linkage Disequilibriums

SNP mit einer MAF (*minor allele frequency*) von größer als fünf Prozent wurden für die Berechnung des *Linkage Disequilibriums* (LD) innerhalb der Kandidatengene, sowie zwischen den Kandidatengenen verwendet. Im Folgenden sind die LD-*plots* der Kandidatengene aufgezeigt, die eine signifikante Assoziation zur Mehltauresistenz, bzw. Mehltauanfälligkeit aufwiesen (vgl. 3.1.4.3). Für das signifikant assoziierte Kandidatengen BAS1 konnte keine LD-Berechnung durchgeführt werden, da nur ein analysierbarer SNP detektiert wurde.

Die LD-*plots* zeigen paarweise Vergleiche der SNP je Kandidatengen. Jeder *plot* wird durch eine Diagonale in zwei Teile unterteilt. Der untere Teil zeigt die p-Werte jedes Vergleiches an, er gibt eine Aussage über die Signifikanz des LDs zwischen den SNP. Der obere Teil des *plots* zeigt den R²-Wert, der als Maß für die Stärke des LDs interpretiert wird. Die LD-*plots* der mit Mehltauresistenz signifikant assoziierten Kandidatengene sind in Abbildung 3.12 dargestellt. Im Folgenden bezieht sich der Term "Assoziation" immer auf die Assoziation zur Mehltauresistenz, bzw.-anfälligkeit.

Der LD-*plot* des Gens ACC-oxidase zeichnete sich durch ein höchst signifikantes LD zwischen allen analysierten SNPs aus; und auch die R²-Werte zwischen den SNPs dieses Gens zeigten hohe Korrelationen von 60-100%. Eine signifikante Assoziation zeigte jedoch keiner der analysierten SNP der ACC-oxidase. SNP2 des *Aspartate protease genes* zeigte eine signifikante Assoziation zum Phänotyp. Dieser SNP wies in der LD-Analyse zwar ein signifikantes LD zu anderen SNP dieses Gens auf, jedoch nur mit einem relativ geringen R²-Wert von maximal 60%. Bei der Analyse des BAX-Inhibitor1 wurde ein SNP (SNP1) mit einer signifikanten Assoziation detektiert. Dieser SNP wies ein signifikantes LD zu SNP6 auf, jedoch mit einer geringen Korrelation von 40%.

Innerhalb des Kandidatengens Calreticulin konnte nur ein geringes intragenes LD beobachtet werden. SNP12 von Calreticulin zeigte eine signifikante Assoziation. Dieser SNP wies ein signifikantes LD mit einer Korrelation von 90% zu SNP4 und SNP5 auf. Diese zwei SNP zeigten keine signifikante Assoziation, aber nach SNP12 die geringsten p-Werte in der Assoziationsanalyse.

Kein SNP des Gens Glutaredoxin offenbarte eine signifikante Assoziation. Zwischen den SNP2, 3 und 4 zeigte sich ein starkes LD (p-Wert<0,0001, R²-Wert 100%), diese drei SNP zeigten auch bei der Assoziationsanalyse den gleichen p-Wert.

Abb. 3.12: *Linkage Disequilibrium*-Blocks assoziierter Kandidatengene Unterhalb der Diagonale ist die Signifikanz (p-Wert) angegeben; oberhalb der Diagonale die Stärke des LD (R²-Wert)

Fortsetzung von Abb. 3.12: *Linkage Disequilibrium*-Blocks assoziierter Kandidatengene Unterhalb der Diagonale ist die Signifikanz (p-Wert) angegeben; oberhalb der Diagonale die Stärke des LD (R²-Wert)

Fortsetzung von Abb. 3.12:

Linkage Disequilibrium-Blocks assoziierter Kandidatengene Unterhalb der Diagonale ist die Signifikanz (p-Wert) angegeben; oberhalb der Diagonale die Stärke des LD (R²-Wert)

Fortsetzung von Abb. 3.12:

2: *Linkage Disequilibrium*-Blocks assoziierter Kandidatengene Unterhalb der Diagonale ist die Signifikanz (p-Wert) angegeben; oberhalb der Diagonale die Stärke des LD (R²-Wert)

Fortsetzung von Abb. 3.12:

Linkage Disequilibrium-Blocks assoziierter Kandidatengene Unterhalb der Diagonale ist die Signifikanz (p-Wert) angegeben; oberhalb der Diagonale die Stärke des LD (R²-Wert) Bei der Analyse des Kandidatengens protein with unknown function wurde ausschließlich für SNP2 eine signifikante Assoziation festgestellt; dieser SNP zeigte nur eine geringe Kopplung (40%) zu anderen SNPs.

Vier SNPs des Kandidatengens alpha-beta-Hydrolase wurden in der Assoziationsverrechnung analysiert und alle vier SNPs zeigten eine signifikante Assoziation zum Phänotyp von Interesse. Der LD-*plot* dieses Gens unterstützt das Ergebnis der Assoziationsanalyse. Alle analysierten SNP dieses Gens befanden sich bei einer Korrelation von 70-100% in starkem signifikantem Kopplungsungleichgewicht zueinander.

Die Analyse des Kandidatengens Vacuolar targeting receptor ergab eine signifikante Assoziation für SNP6. Dieser SNP zeigte nur sehr geringes Kopplungsungleichgewicht zu anderen SNP.

SNP2 des analysierten Gens Methionine-Synthase 2 assoziierte signifikant zur Mehltauresistenz, bzw. Mehltauanfälligkeit und zeigte im LD-Block einen geringen R²-Wert von 30-40%, jedoch bei starker Signifikanz zu anderen SNP.

SNP10 vom Gen LSD1 (TC148045) zeigte als einziger SNP eine starke signifikante Assoziation. Die vier anderen analysierten SNP waren nicht assoziiert. Die Analyse des Kopplungsungleichgewichtes ergab keine Kopplung von SNP10 zu anderen SNP dieses Kandidatengens.

In dieser Studie wurde ein zweites LSD1-Gen analysiert (EU545232). Die extrahierten SNP zeigten keine Assoziation zum Resistenzverhalten der Genotypen gegen den echten Gerstenmehltau. Der LD-*plot* dieses LSD1-Gens zeigte ein geringes intragenes Kopplungsungleichgewicht.

SNP15 des analysierten Kandidatengens MBD10 wies als einziger SNP eine signifikante Assoziation auf; dieser SNP befand sich zusätzlich in sehr geringem (maximaler R²-Wert: 30%, p-Wert: <0,001) Kopplungsungleichgewicht zu den anderen SNP dieses Gens.

MIR6 war ein weiteres Gen, das in dieser Assoziationsstudie signifikante SNP zur Mehltauresistenz aufwies. SNP3 und SNP15 assoziierten signifikant zum Phänotyp von Interesse und zeigten ein starkes LD zueinander (p-Wert<0,0001, R²-Wert: 90%), obwohl nicht assoziierte Polymorphismen zwischen SNP 3 und SNP 15 lokalisiert waren.

SNP9, detektiert bei Kandidatengen 12-0PD-reductase, zeigte eine signifikante Assoziation sowie ein geringes Kopplungsungleichgewicht zu anderen SNP dieses Gens.

12 SNP des Gens Oxidoreductase wurden in dieser Studie analysiert und für SNP3 konnte eine signifikante Assoziation aufgedeckt werden. Dieser assoziierte SNP zeigte zwar signifikantes Kopplungsungleichgewicht in der LD-Analyse aber einen relativ geringen R²-Wert von maximal 70%.

Die Assoziationsanalyse des Kandidatengens Peroxyredoxin ergab ein positives signifikantes Ergebnis für SNP4. Dieser SNP zeigte nur sehr geringes LD zu anderen SNP.

21 SNP des Gens LLRK flossen in die Assoziationsstudie ein und 18 SNP zeigten eine starke Assoziation zur Mehltauresistenz bei sehr niedrigen p-Werten. Die Berechnung des Kopplungsungleichgewichts zeigte vollständiges LD zwischen den assoziierten SNP (p-Wert<0,0001, R²-Wert: 100%). Die drei nicht assoziierten SNP zeigten weder LD zu den assoziierten SNP noch wiesen sie untereinander Kopplungsungleichgewicht auf.

Bei der Analyse des Kandidatengens WIR1 konnte kein signifikant assoziierter SNP detektiert werden. Der LD-*plot* zeigte ein starkes intragenes Kopplungsungleichgewicht für WIR1.

SNP8 von WRKY1 assoziierte stark mit dem Phänotyp von Interesse. Die Analyse des Kopplungsungleichgewichts zeigte ein geringes intragenes LD für dieses Kandidatengen und SNP8 befand sich nicht im Kopplungsungleichgewicht zu anderen SNP.

Die Assoziationsanalyse von SNP, die in den resequenzierten Sequenzen vom Kandidatengen WRKY2 aufgedeckt wurden, ergaben positive signifikante Ergebnisse für SNP6 und SNP2. Diese beiden SNP standen im signifikanten Kopplungsungleichgewicht (R^2 -Wert: 90%) zueinander.

Das intergene *Linkage Disequilibrium* zwischen den 21 Kandidatengenen, die eine signifikante Assoziation zum Phänotyp Mehltauresistenz bzw. Mehltauanfälligkeit aufwiesen, ist in Abbildung 3.13 dargestellt. Innerhalb der hier verwendeten Gerstenpopulation ist ein geringes intergenes Kopplungsungleichgewicht zu beobachten. Lediglich das Kandidatengen LLRK zeigte signifikantes LD zu anderen Kandidatengenen, insbesondere zu WIR1, jedoch bei einer sehr geringen Korrelation (0-10%). Die genetische Distanz zwischen diesen Kandidatengenen beträgt 3,7cM. Signifikantes LD zwischen Kandidatengenen bei genetischer Distanz von mehreren centiMorgan deutet auf gleichen Selektionsdruck hin. Es ist anzunehmen, dass beide Gene an Mehltauresistenz beteiligt sind und daher auf ihre positiven Allele parallel selektiert wurde, was sich in einem signifkanten LD widerspiegelt.

Innerhalb einiger assoziierter Kandidatengene ist ein starkes Kopplungsungleichgewicht zu beobachten, jedoch ist das intergene *Linkage Disequilibrium* in dieser Population sehr gering. Diese Beobachtung unterstützt die Aussage, dass es sich in dieser Studie um genetisch sehr diverses Material handelt.

Abb. 3.13: Intergenes *Linkage Disequilibrium* zwischen den 21 assoziierten Kandidatengenen Unterhalb der Diagonale ist die Signifikanz (p-Wert) angegeben; oberhalb der Diagonale die Stärke des LD (R²-Wert)

3.1.4.6 Bestimmung des genetischen Diversitätsfaktors Tajima's D

Der genetische Diversitätsfaktor Tajima'D wurde mit dem Programm DnaSP4.50.1 (Rozas et al. 1995) berechnet. Es wird hierbei die Hypothese getestet, ob die Mutationen der Gensequenzen unter einem Selektionsdruck standen. Dieser Test basiert auf den Unterschieden zwischen der Anzahl an segregierenden Loci und der durchschnittlichen Anzahl an Nukleotid-Unterschieden. Weist der Tajima's D-Wert einen negativen Wert für ein Gen auf, so ist auf ein Vorkommen von seltenen Allelen zu schließen; nimmt Tajima's D positive Werte an, so sind häufige Allele angereichert. Das verwendete Computerprogramm DnaSP 4.50.1 errechnet auch die Signifikanz des Tajima's D-Wertes. Weist der Tajima's D einen Wert signifikant kleiner als null auf, so deutet es auf das Wirken einer diversitätsmindernden (purifying) Selektion hin. Ist der Tajima's D-Wert signifikant größer als null, so gibt dieser Wert einen Hinweis auf das Wirken balancierender Selektion.

Wert=diversitäts-minder	nde Selektion	; Hd=Haploty	pdiversität)		
Gene	Pi	Theta	Tajima' s D	Signifikanz	Hd
FMO1 (CB880678)	0,00179	0,00077	2,18799	p<0,05	0,485
Glutathione-S-transferase	0,0131	0,02814	-1,81689	p<0,05	0,603
(AB207242)					
HO02M14 (CD053985)	0,00669	0,00343	2,17264	p<0,05	0,713
HO06D23 (CD057973)	0,01245	0,00537	4,0221	p<0,001	0,659
HU02G09 (BQ465010)	0,08425	0,04263	3,37139	p<0,001	0,734
HvGER2 (DQ647620)	0,00572	0,0028	2,23658	p<0,05	0,623
HvPrx08 (AJ276227)	0,01656	0,00708	3,77769	p<0,001	0,655
MIR1 (HvPrx40)	0,02585	0,01282	2,90995	p<0,01	0,682
(CK567319)					
WIR1 (contig5974)	0,04061	0,02305	2,48115	p<0,05	0,805

Tab. 3.15: Kandidatengene mit signifikanten Tajima's D-Werten (positiver Tajima's D-Wert=balancierende Selektion, negativer Tajima's D-Wert=diversitäts-mindernde Selektion; Hd=Haplotypdiversität)

Die Sequenzen aller analysierten Kandidatengene sind auf genetische Diversität überprüft worden. Die Kandidatengene mit einem signifikanten Tajima's D-Wert sind in Tabelle 3.15 aufgelistet. In der Tabelle sind der Genname, der Pi-Wert, der Theta-Wert, der Tajima's D-Wert, die Signifikanz des Tajima's D-Wertes und die Haplotypendiversität angegeben. Die Kandidatengene FM01, H002M14, H006D23, HU02G09, *Hv*GER2, *Hv*Prx08, *Hv*Prx40 und WIR1 weisen positive Tajima's D-Werte auf, was auf balancierte Selektion oder auf einen Populationsengpass hindeutet. Das Gen Glutathione-S-transferase zeigte einen signifikanten negativen Tajima's D-Wert und scheint somit unter aufgereinigtem Selektionsdruck zu stehen.

3.1.5 Identifizierung von Aminosäureaustauschen in assoziierten Genen

SNP- und oder Haplotypen von 21 analysierten Kandidatengenen zeigte eine Assoziation zu Mehltauresistenz bzw. Mehltauanfälligkeit. Die assoziierten SNP sowie SNP, die an der Bildung eines assoziierten Haplotyps beteiligt waren, wurden auf ihren Einfluss, einen Aminosäureaustausch zur Folge zu haben, untersucht.

In Tabelle 3.16 sind die SNP- und Haplotypenmuster assoziierter Kandidatengene, bei denen ein Aminosäureaustausch stattgefunden hat, angegeben. Ein Aminosäureaustausch assoziierter SNP, bzw. SNP, die einen assoziierten Haplotyp formten, konnte bei sechs Kandidatengenen beobachtet werden.

Calreticulin

Exon	Intron	Intron	Exon	Exon	Exon	Intron									
397	317	312	250	177	473	516	618	648	675	773	819	849	861	889	
SNP1	SNP2	SNP3	SNP4	SNP5	SNP6	SNP7	SNP8	SNP9	SNP10	SNP11	SNP12	SNP13	SNP14	SNP15	
Α	G	А	Т	G	С	С	С	А	Т	G	А	Т	С	G	H1
Α	G	А	Т	G	С	Т	С	А	Т	G	А	Т	С	G	H2
Α	Т	А	Т	G	С	Т	С	А	Т	G	А	Т	С	G	H3
А	Т	А	Т	G	С	Т	С	А	Т	Т	А	Т	С	G	H4
G	А	А	Т	G	С	Т	С	G	С	G	А	Т	Т	G	H5
G	G	А	С	Α	С	Т	С	G	С	G	С	Т	С	G	H6
G	G	А	Т	G	С	Т	С	G	С	G	А	С	С	G	H7
G	G	А	Т	G	С	Т	С	G	С	G	А	Т	С	G	H8
G	G	А	Т	G	С	Т	С	G	С	G	А	Т	Т	G	H9
G	G	G	Т	G	А	Т	Т	G	С	G	А	Т	Т	А	H10
			Gly>Arg												

Alpha-beta-Hydrolase

•	-						
Intron	Exon	Exon	Exon	Exon	Exon		-
283	325	360	398	422	472		
SNP1	SNP2	SNP3	SNP4	SNP5	SNP6		
С	А	Т	С	Т	Т	H1	
С	G	С	С	А	G	H2	
Т	G	С	Т	А	G	H3	
	Gln	Val		Trp			
	>Arg	>Ala		>Arg			

 Tab. 3.16: SNP- und Haplotypmuster von Kandidatengenen, bei denen ein Aminosäureaustausch stattgefunden hat. Angegeben sind Intron- und Exoninformationen sowie Positionen der SNPs nach Start-ATG (assoziierte SNP und Haplotypen sind grau markiert)

ERGEBNISSE

UXIUUIEUUUlase

Intron	Intr	ron l	Intron	Intron	Intro	on In	ntron	Intron	Intron	Intror	n Intr	on Ir	tron	Intron	Intron	Intron	Intron	Exon	Exe	on	F
562	57	2	612	618	641	. (653	657	671	702	70	9	714	715	721	729	732	794	82	5	5AUI
SNP1	SN	P2 3	SNP3	SNP4	SNP	5 S	NP6	SNP7	SNP8	SNP9	O SNF	P10 SN	JP11 S	SNP12	SNP13	SNP14	SNP15	SNP1	6 SNI	P 17	
Α	C	C	G	Α	C		A	Т	Α	А	А	L .	C	А	С	С	С	G	G	i I	11
Α	G	Ĵ	G	Α	C		A	Т	Α	А	А	L .	C	А	С	С	С	G	G	i I	12 2
Α	G	Ĵ	G	А	Т		G	А	А	А	A	.	C	А	С	Т	С	G	G	H H	-13 E
А	G	Ĵ	G	А	Т		G	А	А	А	T		C	А	С	С	С	G	G	i I	14 Š
Α	G	Ĵ	G	G	C		A	Т	A	А	А		C	А	С	С	С	G	G	H H	15
G	G	Ĵ	А	А	C		A	Т	G	С	Т		A	G	С	С	G	G	C	E F	16
G	G	Ĵ	G	А	C		A	Т	G	C	Т	`	A	G	С	С	С	G	C	E F	17
G	G	Ĵ	G	Α	C		A	Т	G	C	Т		A	G	C	С	G	G	C	H	18
G	G	Ĵ	G	A	C		A	Т	G	C	T		A	G	C	C	G	G	C	H	19 E
G	G	j ,	G	A	C		A	Т	G	C C	1		A	G	G	C	C	G			10 4
G	6	J	G	А	C		A	1	G	C	1		C	A	C	C	C	A		H	11 1
																			11	11	=
																			>S	er	2
																			>S	er	
																			>8	er	
LLR	K																		>8	er	
LLR	K																		>8	er	
LLR	K	Exon	Exon	Exon	Exon	Exon	Exon	Exon	Exon	Exon	Exon	Exon	Exon	Exon	Exon	Exon	Exon	Exon	Exon	Exon	
LLR Exon 615	K Exon 616	Exon 621	Exon 624	Exon 636	Exon 637	Exon 649	Exon 651	Exon 669	Exon 672	Exon 688	Exon 689	Exon 717	Exon 720	Exon 729	Exon 730	Exon 733	Exon 744	Exon 756	>S Exon 759	Exon 771	
LLR Exon 615 SNP1	K Exon 616 SNP2	Exon 621 SNP3	Exon 624 SNP4	Exon 636 SNP5	Exon 637 SNP6	Exon 649 SNP7	Exon 651 SNP8	Exon 669 SNP9	Exon 672 SNP10	Exon 688 SNP11	Exon 689 SNP12	Exon 717 SNP13	Exon 720 SNP14	Exon 729 SNP15	Exon 730 SNP16	Exon 733 SNP17	Exon 744 SNP18	Exon 756 SNP19	>S Exon 759 SNP20	Exon 771 SNP21	
LLR Exon 615 SNP1	K Exon 616 SNP2	Exon 621 SNP3	Exon 624 SNP4	Exon 636 SNP5	Exon 637 SNP6	Exon 649 SNP7	Exon 651 SNP8	Exon 669 SNP9	Exon 672 SNP10	Exon 688 SNP11	Exon 689 SNP12	Exon 717 SNP13	Exon 720 SNP14	Exon 729 SNP15	Exon 730 SNP16	Exon 733 SNP17	Exon 744 SNP18	Exon 756 SNP19	Exon 759 SNP20	Exon 771 SNP21	
LLR Exon 615 SNP1 A	K Exon 616 SNP2 T	Exon 621 SNP3 C	Exon 624 SNP4 A	Exon 636 SNP5 G	Exon 637 SNP6 G	Exon 649 SNP7 A	Exon 651 SNP8 C	Exon 669 SNP9 C	Exon 672 SNP10 C	Exon 688 SNP11 C	Exon 689 SNP12 G	Exon 717 SNP13 G	Exon 720 SNP14 T	Exon 729 SNP15 C	Exon 730 SNP16 A	Exon 733 SNP17 C	Exon 744 SNP18 C	Exon 756 SNP19 T	Exon 759 SNP20 A	Exon 771 SNP21 T	HI
LLR Exon 615 SNP1 A A	K Exon 616 SNP2 T T T	Exon 621 SNP3 C C	Exon 624 SNP4 A A	Exon 636 SNP5 G G	Exon 637 SNP6 G G	Exon 649 SNP7 A A	Exon 651 SNP8 C C	Exon 669 SNP9 C C	Exon 672 SNP10 C C	Exon 688 SNP11 C C	Exon 689 SNP12 G T	Exon 717 SNP13 G G	Exon 720 SNP14 T T	Exon 729 SNP15 C C C	Exon 730 SNP16 A A	Exon 733 SNP17 C C C	Exon 744 SNP18 C C	Exon 756 SNP19 T T	Exon 759 SNP20 A A	Exon 771 SNP21 T T	H1 H2
LLR Exon 615 SNP1 A A A	K Exon 616 SNP2 T T T T	Exon 621 SNP3 C C C	Exon 624 SNP4 A A G	Exon 636 SNP5 G G G	Exon 637 SNP6 G G G	Exon 649 SNP7 A A A	Exon 651 SNP8 C C C	Exon 669 SNP9 C C C	Exon 672 SNP10 C C C	Exon 688 SNP11 C C C C	Exon 689 SNP12 G T G	Exon 717 SNP13 G G G	Exon 720 SNP14 T T T	Exon 729 SNP15 C C C C	Exon 730 SNP16 A A A	Exon 733 SNP17 C C C C	Exon 744 SNP18 C C C C	Exon 756 SNP19 T T T	Exon 759 SNP20 A A A	Exon 771 SNP21 T T	H1 H2 H3
LLR Exon 615 SNP1 A A A	K Exon 616 SNP2 T T T T	Exon 621 SNP3 C C C C	Exon 624 SNP4 A A G	Exon 636 SNP5 G G G	Exon 637 SNP6 G G G	Exon 649 SNP7 A A A	Exon 651 SNP8 C C C C	Exon 669 SNP9 C C C C	Exon 672 SNP10 C C C C	Exon 688 SNP11 C C C C C	Exon 689 SNP12 G T G G	Exon 717 SNP13 G G G	Exon 720 SNP14 T T T	Exon 729 SNP15 C C C C	Exon 730 SNP16 A A A A	Exon 733 SNP17 C C C C	Exon 744 SNP18 C C C C C	Exon 756 SNP19 T T T T	Exon 759 SNP20 A A A	Exon 771 SNP21 T T T	H1 H2 H3
LLR Exon 615 SNP1 A A A A A	K Exon 616 SNP2 T T T T T T	Exon 621 SNP3 C C C C C C C	Exon 624 SNP4 A A G A	Exon 636 SNP5 G G G G	Exon 637 SNP6 G G G G C	Exon 649 SNP7 A A A A A	Exon 651 SNP8 C C C C C C	Exon 669 SNP9 C C C C C C C	Exon 672 SNP10 C C C C	Exon 688 SNP11 C C C C	Exon 689 SNP12 G T G G	Exon 717 SNP13 G G G G G	Exon 720 SNP14 T T T T	Exon 729 SNP15 C C C C C C	Exon 730 SNP16 A A A A A	Exon 733 SNP17 C C C C C C	Exon 744 SNP18 C C C C C	Exon 756 SNP19 T T T T	Exon 759 SNP20 A A A A A	Exon 771 SNP21 T T T T	H1 H2 H3 H4
LLR Exon 615 SNP1 A A A A A G	K Exon 616 SNP2 T T T T T T C	Exon 621 SNP3 C C C C C C C C	Exon 624 SNP4 A A A G A A A A	Exon 636 SNP5 G G G G G	Exon 637 SNP6 G G G G C C	Exon 649 SNP7 A A A A A A C	Exon 651 SNP8 C C C C C C C C C C C	Exon 669 SNP9 C C C C C C C C C	Exon 672 SNP10 C C C C C C C C	Exon 688 SNP11 C C C C C C C C T	Exon 689 SNP12 G T G G G G G	Exon 717 SNP13 G G G G G A	Exon 720 SNP14 T T T T T C	Exon 729 SNP15 C C C C C C C C	Exon 730 SNP16 A A A A A G	Exon 733 SNP17 C C C C C C C T	Exon 744 SNP18 C C C C C C C C A	Exon 756 SNP19 T T T T T T	Exon 759 SNP20 A A A A A C	Exon 771 SNP21 T T T T G	H1 H2 H3 H4 H5

ERGEBNISSE

WIF	R1 (co	ntig5	974)																						_
Intron	Intron	Intron	Intron	Intron	Intron	Intron	Intron	Intron	Exon	Exon	Exon	Exon	Exon	Exon	Exon	Exon	Exon	Exon	3'UTR	3'UTR	3'UTR	3'UTR	3'UTR	3'UTR	
282	285	297	319	326	333- 335	357	358	385	405	420	432	457	461	472	481	485	487	500-505	525- 548	549	550	558	561- 564	567	
SNP1	SNP2	SNP3	SNP4	SNP5	SNP6	SNP7	SNP8	SNP9	SNP10	SNP11	SNP12	SNP13	SNP14	SNP15	SNP16	SNP17	SNP18	SNP19	SNP20	SNP21	SNP22	SNP23	SNP24	SNP25	
Α	Α	Α	С	Del	Т	Т	Т	Т	Т	С	C	С	А	G	С	G	Α	G	С	Del	Del	Del	Del	С	H1
Α	Α	Α	С	TCC	С	Α	Т	Т	Т	С	Т	Α	С	С	С	С	G	Del	Α	Α	Del	Del	TTCC	Α	H2
Α	Α	Α	С	TCC	С	Α	Т	Т	Т	С	Т	Α	С	С	С	C	G	Del	Α	G	С	Α	TTCC	Α	H3
Α	Α	G	С	Del	Т	Т	Т	Т	Т	С	C	С	А	G	С	G	Α	G	С	Del	Del	Del	Del	С	H4
Α	Т	Α	С	TCC	С	Α	C	С	Т	С	Т	Α	С	С	G	С	G	Del	Α	А	Del	Del	TTCC	Α	H5
Α	Т	Α	С	TCC	С	Α	Т	C	Т	C	Т	Α	А	C	G	С	G	Del	Α	А	Del	Del	TTCC	Α	H6
Α	Т	А	С	TCC	С	А	Т	С	Т	С	Т	А	С	С	С	С	G	Del	А	А	Del	Del	TTCC	Α	H7
Α	Т	Α	Т	TCC	С	А	Т	С	С	Т	Т	А	С	С	С	С	G	Del	А	А	Del	Del	TTCC	Α	H8
Т	Т	Α	С	TCC	С	А	Т	С	Т	С	Т	Α	С	С	С	С	G	Del	А	С	А	Del	TTCC	Α	H9
												Gln >Lys	His >Pro	Gly >Arg	Arg >Gly	Arg >Thr	lle >Val	Ser, Lys, Gly>Pro							

SNP19: G=GTAAAG SNP20: <u>A=ACCCTATTAACGGCGCGCCCCCC</u>; QP.->PY.RRAPP

WRKY2

Exon	Exon	Exon	Exon	Exon	Exon	Exon	Exon	Exon	
600	607	629	815	817-819	842	868	871	872	
SNP1	SNP2	SNP3	SNP4	SNP5	SNP6	SNP7	SNP8	SNP9	
А	А	Т	Т	Del	С	С	G	С	H1
А	А	Т	А	Del	С	G	Т	Т	H2
G	А	Т	А	Del	С	С	G	С	Н3
G	А	Т	А	GTG	С	G	Т	Т	H4
G	А	Т	Т	Del	С	С	G	С	Н5
G	А	С	А	Del	С	С	G	С	H6
G	А	С	А	Del	С	G	Т	Т	H7
G	С	С	А	Del	А	G	Т	Т	H8
G	С	С	А	Del	А	С	Т	Т	H9
G	С	С	А	Del	С	G	Т	Т	H10
		Ser>Phe	Gln>Leu	+Val	Ala>Glu	Leu>Val		Val>Ala	

ERGEBNISSE Fortsetzung Tab. 3.16: SNP- und Haplotypmuster von Kandidatengenen, bei denen ein Aminosäureaustausch stattgefunden hat. Angegeben sind Intron- und Exoninformationen sowie Positionen der SNPs nach Start-ATG

Bei Calreticulin zeigte SNP12 eine signifikante Assoziation zum Phänotyp von Interesse; dieser SNP12 ist im Intronbereich des Gens gelegen. Außerdem assoziierte Haplotyp6 signifikant zu Mehltauresistenz. Dieser Haplotyp unterscheidet sich unter anderem durch die Allelform von SNP4 von anderen Haplotypen dieses Gens. SNP4 per se zeigte keine signifikante Assoziation, ist aber ein Exon-SNP, der einen Aminosäurewechsel zur Folge hat; es findet ein Austausch der Aminosäure Glycin zu Argin statt.

Für das Gen alpha-beta-Hydrolase konnten drei signifikant assoziierte SNP detektiert werden, die einen Aminosäureaustausch zur Folge haben. Bei SNP2 findet ein Wechsel der Aminosäure Glutamin zu Arginin statt; die Aminosäure Valin wird von der Aminosäure Alanin bei SNP3 ersetzt; und SNP5 bewirkt einen Austausch der Aminosäure Tryptophan mit Arginin.

Das Kandidatengen Oxidoreductase wies einen assoziierten SNP (SNP3) und zwei assoziierte Haplotypen (H6 und H8) auf. SNP3 ist im Intronbereich des Gens lokalisiert und kann somit für keinen Aminosäureaustausch verantwortlich sein. Die signifikant assoziierten Haplotypen H6 und H8 unterscheiden sich unter anderem durch die Allelform von SNP17 zu anderen Haplotypen dieses Gens. Dieser SNP17 ist ein Exon-SNP, der zwar keine signifikante Assoziation zur Mehltauresistenz zeigte, aber für einen Aminosäurewechsel verantwortlich ist (Threonin zu Serin).

Drei signifikant assoziierte SNP der LLRK bewirken einen Aminosäureaustausch, SNP2 (Tyrosin zu Histidin), SNP7 (Threonin zu Alanin), SNP11 (Arginin zu Cystein) und SNP16 (Serin zu Glycin). Auch SNP6 veranlasst einen Aminosäureaustausch (Glutaminsäure zu Glutamin), ebenso auch SNP12 (Arginin zu Leucin); aber beide SNP (SNP6 und SNP12) zeigten keine signifikante Assoziation zur Mehltauresistenz.

Haplotyp1 des Kandidaten W1R1 zeigte eine signifikante Assoziation; dieser Haplotyp wird von mehreren SNP bestimmt, die im Exonbereich des Gens liegen und auch Aminosäureaustausche bedingen (vgl. Tab. 3.16). Keiner dieser SNP zeigte jedoch eine signifikante Assoziation zur Mehltauresistenz.

Für das Gen WRKY2 konnten zwei signifikante SNP, die im Exonbereich des Gens liegen bestimmt werden. SNP2 ist ein *silent* Polymorphismus, während SNP6 zu einem Aminosäureaustausch von Alanin zu Glutaminsäure führt.

3.2 Genetische Kartierung assoziierter Gene

Einundzwanzig Kandidatengene zeigten eine signifikante Assoziation zu Mehltauresistenz, bzw. Mehltauanfälligkeit. Zwölf assoziierte Kandidatengene konnten auf einer genetischen Karte, die eine Consensus-Karte aus den Populationen Nurex x Tremois; L94 x Vada; CebadaCapa x SusPtrit; SusPtrit x Vada; Oregon Wolfe Barleys und Steptoe x Morex darstellt, kartiert werden (Abbildung 3.14).

3.2.1 Kartierung assoziierter Gene im gesamten Gerstengenom

Die Kandidatengene Vacuolar targeting receptor, protein with unknown function und Calreticulin kartierten auf Chromosom 2H der Gerste. Sie wiesen keine Kolokalisierung zu bekannten Mehltauresistenz-QTLs auf. Sieben signifikant assoziierte Kandidatengene waren auf dem Gersten-Chromosom 5H lokalisiert. Eine Gruppe von sechs assoziierten Kandidaten auf dem kurzen Arm dieses Chromosoms ist in einem Bereich gelegen, der als Mehltauresistenz-QTL aus dem "Dom" Eltern der *Oregon Wolfe Barley* Population beschrieben wurde (Aghnoum et al. 2010). Dieser Bereich auf Chromosom 5H wird in Kapitel 3.2.2 ausführlich besprochen. Außerdem kartierten ein LSD1-Gen auf dem langen Arm von Chromosom 5H in einem Bereich, der als QTL-Region für Mehltauresistenz (Genotyp: Vada) beschrieben wurde. Der signifikant assoziierte Kandidat BAX-Inhibitor1 war auf Chromosom 6H lokalisiert. Auch dieses Gen kartierte in einem QTL-Intervall für Mehltauresistenz (Genotyp: CebadaCapa). Der Transkriptionsfaktor WRKY1 zeigte eine signifikante Assoziation zu Mehltauresistenz und war auf Chromosom 7H der Gerste lokalisiert.

Für die signifikant assoziierten Kandidaten ACC-oxidase, Aspartate protease gene, BAS1, alpha-beta-Hydrolase, Methionine-Synthase 2, MIR6, 12-OPD-reductase, Peroxiredoxin und WRKY2 liegen keine Kartierungsergebnisse vor, da die verwendete Kartierungspopulation Steptoe x Morex keinen Polymorphismus im analysierten Genfragment aufwies.

Auf Chromosom 1H der Gerste ist die komplexe allelische Serie des Mehltauresistenzgens *Mla* lokalisiert; das *mlo*-Resistenzgen kartiert auf Chromosom 4H. Keines der signifikant assoziierten Kandidatengene, deren genetische Kartenposition in dieser Studie bestimmt wurde, war auf einem dieser beiden Chromosomen (1H und 4H) lokalisiert, was gegen eine scheinbare Assoziation durch Kopplung an das *Mla*- oder *mlo*-Gen spricht.

Abb. 3.14: Position von 12 assoziierten Kandidatengenen (rot) in einer genetischen Karte des Gerstengenoms mit Angabe zu Kolokalisierung zu Mehltauresistenz-QTL (ausgefüllter Balken: Mehltauresistenz-QTL im Keimlingsstadium; schraffierter Balken: Mehltauresistenz-QTL im Adultpflanzenstadium) (verändert nach Aghnoum et al. 2010).

3.2.2 Assoziierte Gene auf Chromosom 5H

Die ersten Kartierungsergebnisse signifikant assoziierter Kandidatengene mit Mehltauresistenz ergaben eine enge Kolokalisierung der Kandidaten LLRK und WIR1 auf Chromosom 5H. Diese beiden Kandidatengene kartierten in eine Genregion, die als QTL für Mehltauresistenz beschrieben wurde (Aghnoum et al. 2010) (vgl. Abbildung 3.14). Aufgrund dieses Sachverhalts wurde eine ausführliche Untersuchung dieses Genombereiches in Angriff genommen und benachbarte Gene in die Assoziationsstudie mit einbezogen.

3.2.2.1 Assoziationsverrechnungen und LD-Analyse auf Chromosom 5HS

Genfragmente von 22 Kandidatengenen, die in direkter Umgebung der Gene LLRK und WIR1 auf Chromosom 5H positioniert waren, wurden auf ihre Assoziation zu Mehltauresistenz hin untersucht. Die Position der benachbarten Gene wurde auf Basis verschiedener Kartierungspopulationen bestimmt (QSM (Moscou persönliche Kommunikation) und Steptoe/Morex). Polymorphismen von sechs Kandidatengenen wiesen eine signifikante Assoziation zur Mehltauresistenz auf. Es handelte sich hier um die Kandidatengene MBD10, Glutaredoxin, Oxidoreductase, WIR1, LLRK und LSD1. Die Ergebnisse der Assoziationsverrechnungen wurden bereits in Kapitel 3.1.4.3 beschrieben; eine Darstellung des intragenen Kopplungsungleichgewichts dieser Kandidaten erfolgte bereits in Kapitel 3.1.4.5.

Die Assoziationsverrechnung wurde sowohl für SNP-Daten als auch für Haplotyp-Daten der Kandidaten durchgeführt. In Abbildung 3.15 sind die –log (p)-Werte und die LD (*linkage disequilibrium*)-Abfälle dieses Lokus dargestellt. Es wurden drei verschiedene Ansätze zur Berechnung der genetischen Distanzen verfolgt: Die beiden verwendeten Populationen wurden zum einen getrennt voneinander betrachtet und der dritte Ansatz beschreibt die genetischen Distanzen auf Basis einer Konsensuskarten-Berechnung zwischen den verschiedenen Populationen. Die Konsensus-Berechnung erfolgte mit dem Programm JoinMap® 4 (Van Ooijen (2006)). Auf der linken Seite der Abbildung sind die verschiedenen –log(p)-Profile dargestellt. Es wurde pro Gen der signifikanteste SNP und Haplotyp ausgewählt. Signifikant assoziierte SNP, bzw. Haplotypen sind mit einer ausgefüllten Raute (•) dargestellt, nicht assoziierte SNPs und Haplotypen sind mit einer leeren Raute (◊) dargestellt. In der grafischen Darstellung des LD-Abfalls sind die signifikant assoziierten Gene rot, nicht signifikant assoziierte Gene sind schwarz dargestellt.

Abb. 3.15: -log(p)-Profile und LD-Abfall des Lokus auf Chromosom 5HS in den Kartierungspopulationen QSM und Steptoe/Morex, sowie in der Konsensus Karte beider Populationen
Referenzgen der Berechnung des LD-Abfalls in der QSM-Population (0cM)=Oxidoreductase; Referenzgen der Berechnung des LD-Abfalls in der SM-Population und Konsensus-Karte (0cM)=WIR1.

Vier Kandidatengene sind in der QSM-Population kartiert worden. Drei dieser Gene (Oxidoreductase, LLRK und Glutaredoxin) zeigten eine signifikante Assoziation zu Mehltauresistenz. Als Referenzpunkt (0cM) des LD-Profils der QSM-Population wurde das Gen Oxidoreductase gewählt, ein leichter Anstieg des R²-Wertes zwischen den Kandidaten Oxidoreductase und LLRK ist zu beobachten.

In der Steptoe/Morex Population sind zehn Kandidatengene analysiert worden. Die Gene WIR1 und ein *unknown protein* zeigten eine signifikante Assoziation zur Mehltauresistenz, was sich auch in den hohen –log(p)-Werten widerspiegelt. Das LD fällt in der benachbarten Region zu WIR1 (Referenzpunkt (0cM) des LD-Profils des Steptoe/Morex-Population) stark und schnell ab. Ein leichter Anstieg ist zum unknown protein zu beobachten.

Die Darstellung des –log(p)-Profils der Konsensus Positionen zeigt verschiedene peaks an diesem Lokus. Der –log(p)-Wert des signifikantesten Haplotyps des Kandidaten LSD1 bot ein herausragendes Ergebnis. Dieser Kandidat kartierte auf Position 45,06cM und wies einen –log(p)-Wert von 5 auf. An dieser Position kartierte auch der *Peak-Marker* des Mehltauresistenz-QTLs aus *Oregon Wolfe Barley*.

Das LD in diesem Genombereich (WIR1 als Referenzpunkt (0cM)) ist jedoch allgemein niedrig. Es steigt zwar zwischen den assoziierten Kandidaten schwach an, jedoch nicht über einen R²-Wert von mehr als 0,24. Die assoziierten Kandidatengene an diesem Lokus scheinen nicht aufgrund genetischer Kopplung signifikante Assoziationen zu zeigen, sondern aufgrund von Selektion.

3.2.2.2 Funktionelle Analyse assoziierter Gene auf Chromosom 5HS mittels TIGS (*transient induced gene silencing*)

Die assoziationsgenetische Analyse wies auf einen Bereich auf Chromosom 5H hin, in dem Gene lokalisiert sind, die an einer Resistenzausprägung der Gerste bei Mehltaubefall beteiligt zu sein scheinen. Dieser Bereich war als QTL-Region für Mehltauresistenz beschrieben und die assoziationsgenetische Analyse identifizierte mit Mehltauresistenz signifikant assoziierte Kandidaten. Signifikante Assoziationen können das Gen aufdecken, das kausal an der Phänotypausprägung beteiligt ist, sie können aber auch mit dem kausalverantwortlichen Gen gekoppelte Bereiche darstellen. Ohne das Wissen über das gesamtgenomische *Linkage Disequilibrium* innerhalb der verwendeten Population, kann somit die Identifizierung eines gekoppelten Bereiches anstatt des kausalen Gens nicht ausgeschlossen werden.

Abb. 3.16: Anfälligkeitsindex des mehltauanfälligen Kultivars Golden Promise nach Beschuss mit RNAi-Konstrukten ausgewählter Kandidaten von Chromosom 5HS in Relation zur (RNAi-Konstrukt-freien) Kontrolle (100%)

Eine Möglichkeit Gene, die in der Assoziationsstudie identifiziert wurden, funktional zu analysieren, bietet das *transient induced silencing* (TIGS)-System. Acht Kandidatengene, die auf Chromosom 5HS kartieren, wurden in diesem System funktional getestet. Für jedes der acht Kandidatengene wurde ein RNAi-Konstrukt erstellt und mittels biolistischen Gentransfers in Epidermiszellen des Kultivars Golden Promise transferiert. Die behandelten Blätter wurden mit Mehltau inokuliert und der Anfälligkeitsindex transformierter Zellen wurde berechnet. Die Ergebnisse jedes Konstruktes wurden zur leeren Vektorkontrolle (=100%) in Relation gesetzt (Abbildung 3.16).

Die Kandidaten Glutaredoxin, Thiosulfate sulfurtransferase, Protoporphyrinogen oxidase, LSD1, LLRK und WIR1 (Douchkov et al. unveröffentlicht) wiesen einen signifikanten Effekt auf (p<0,05). Die Herabregulierung der Expression dieser Gene hatte eine Reduktion des Anfälligkeitsindexes zur Folge.

Das Ergebnis der signifikanten Assoziation zu Mehltauresistenz konnte für die Kandidaten WIR1, Glutaredoxin, LLRK und LSD1 mit der funktionalen TIGS-Analyse bestätigt werden.

4. Diskussion

4.1 Resistenzphänotyp des verwendeten Gerstenmaterials

Jones et al. 2006 stellten das pflanzliche Immunsystem schematisch dar (vgl. Abbildung 1.3), in dem sie zwischen quantitativer Basalresistenz und rassenspezifisch-qualitativer Resistenz unterschieden. Die Basalresistenz wird polygen vererbt und zeichnet sich durch eine Penetrationsimmunität aus; Zellwandverstärkungen verhindern das Eindringen des Pilzes in die Wirtspflanzenzelle. Die rassenspezifisch-qualitative Resistenz hingegen ist monogen vererbt. Der Pilz kann die Wirtspflanzenzelle penetrieren und die Abwehr resultiert in einer hypersensitiven Zelltodreaktion (Jones et al. 2006). Im Pathosystem der Gerste mit Gerstenmehltau sind verschiedene, einzeln wirkende Haupt-Resistenzgene (R-Gene) bekannt, die zu einer inkompatiblen Interaktion führen. Ein gut untersuchter Resistenzlokus stellt *Mla* (*mildew locus a*) dar. Dieser Resistenzlokus zeichnet sich durch eine hohe Diversität an Resistenzphänotypen aus. Das Genprodukt des Mla1-Allels führt zum Beispiel 18-24 Stunden nach Inokulation zu einer epidermalen hypersensitiven Zelltodreaktion, während bei Vorhandensein des Resistenzgenallels Mla7 erst 36-60 Stunden nach Inokulation hypersensitive Zelltodreaktionen in der Epidermis und im Mesophyll zu beobachten sind (Boyd et al. 1995). Es ist möglich, dass diese monogen bedingte Abwehrart in Form von nekrotischen Flecken makroskopisch sichtbar ist.

Das Ziel dieser Doktorarbeit war die Identifizierung eines dauerhaften, quantitativen und m/o-unabhängigen Resistenzphänotyps in Akzessionen der Sommergerste gegen den Gerstenmehltau (*Bgh*), und die Assoziation allelischer Diversität in Kandidatengenen mit dieser Art von Resistenz. Die Resistenztests erfolgten mit zwei aus Deutschland stammenden Mehltau-Isolaten, die eine Virulenz gegenüber 42 Resistenzgene (R-Gene) (vgl. Tabelle 2.3) aufwiesen. Als resistente Akzessionen wurden nur diejenigen ausgewählt, die einen resistenten Phänotyp gegenüber beiden Isolaten zeigten. 74,2% der resistenten Akzessionen offenbarten im "*detached leaf assay*" makroskopisch sichtbare nekrotische Flecken. Die restlichen 25,8% der Genotypen zeigten nach Inokulation mit *Bgh* chlorosenund nekrosenfreies, grünes Blattgewebe (Beispiele siehe Abbildung 4.1). In dieser Studie wurden unter anderem Landrassen unterschiedlicher Herkunft verwendet, die züchterisch bisher kaum genutzt wurden und folglich nicht im aktuellen Sortenmaterial vorhanden sind. Es stellte sich nun die Frage, ob die Resistenz, die durch makroskopisch sichtbare nekrotische Flecken gekennzeichnet war, wirklich eine rassenunabhängige, quantitative Resistenz darstellt oder doch von R-Genen abhängt, die im aktuellen, in Deutschland angebauten Zuchtmaterial bisher nicht verwendet wurden. Im letzteren Fall hätte bisher kein Selektionsdruck auf die hier verwendeten deutschen Mehltau-Isolate bestanden, diese R-Gene zu überwinden. Um die Möglichkeit einer R-Gen bedingten Resistenz besser beurteilen zu können, wurden die resistenten Genotypen mit vier weiteren Mehltauisolaten aus Israel getestet (vgl. Tab. 3.6). Die Auswahl dieser vier Isolate erfolgte aufgrund ihrer Virulenz für *Mla*-Allele der Wildgerste (*Hordeum vulgare* ssp. *spontaneum*), die in europäischem Zuchtmaterial bisher noch nicht genutzt werden. Somit sollten diese Isolate Resistenzen aufgrund von *Mla*-Allelen in dem hier verwendeten Material brechen (Dreiseitel and Dinoor 2004). Bei diesem Test konnte allerdings lediglich für einen Genotyp (HOR3988) das *Mla18*-Gen nachgewiesen werden.

Abb. 4.1: Verschiedenartige makroskopisch sichtbare Ausprägungen der Resistenz

In allen anderen Akzessionen konnte auf diese Weise kein rassenspezifisches R-Gen identifiziert werden. Die Interaktion zwischen den resistenten Gerstenakzessionen und dem Mehltaupilz wurde außerdem mikroskopisch untersucht, um den resistenten Phänotyp näher zu beschreiben. Dabei wurde eine Klassifizierung in papilläre- und Post-Penetrationsresistenz (hypersensitive Zelltodreaktion) durchgeführt (siehe Abbildung 4.2).

Bei 80,6% der Akzessionen konnte *Bgh* penetrieren und innerhalb der ersten 48 Stunden elongierende, sekundäre Hyphen bilden. Bei 19,4% der Akzessionen lag eine papilläre Penetrationsresistenz vor. Diese Beobachtung weist im Gegensatz zur makroskopischen Resistenzanalyse mit den verwendeten sechs *Bgh*-Isolaten auf die Wirkung von monogenvererbten Haupt -R-Genen hin (Boyd et al. 1995; Jones und Dangl 2006).

Abb. 4.2: Verschiedenartige mikroskopisch sichtbare Ausprägungen der Resistenz

Möglicherweise lag eine Kombinationswirkung von Resistenz-QTLs (rassenunabhängig) und moderat wirksamen R-Gen(en) (HR) vor, wie kürzlich Hu et al. 2008 für Reis beschrieben. Reis-Sorten, die durch eine Pyramidisierung von QTLs und R-Gen gekennzeichnet waren, zeigten einen stärker ausgeprägten Resistenzphänotyp als Sorten, die lediglich das R-Gen aufwiesen. Auch die Kombination von QTLs allein (ohne R-Gen) zeigte einen verstärkten Resistenzphänotyp. Die Akkumulation von QTLs und R-Genen, die für sich allein einen geringen Resistenzphänotyp zeigen, in Kombination jedoch stark wirken, bieten eine wertvolle Quelle für die Entwicklung von dauerhaften Resistenzen in der Pflanzenzüchtung.

Um weitere Hinweise auf das Vererbungsmuster der beobachteten Resistenzen zu erhalten, wurden im Winter 2008/2009 Kreuzungen zwischen ausgewählten resistenten Akzessionen (HOR2573, HOR2932, HOR3271, HOR3726) und der mehltauanfälligen Sorte Morex durchgeführt (V. Korzun, KWS-Lochow AG, unpubliziert). Entsprechende F2-Populationen sollen im Anschluss an diese Arbeit hinsichtlich des Segregationsverhaltens der Resistenzen getestet werden. Im Falle eines normalverteilten (transgressiven) Phänotyps kann auf eine maßgebliche Beteiligung von Resistenz-QTLs geschlossen werden.

4.2 Assoziationsverrechnung

Gerste ist ein Selbstbefruchter und weist daher einen hohen Grad an Homozygotie auf. Diese Homozygotie ermöglicht und vereinfacht viele genetische Untersuchungen und erlaubt einen effizienten Einsatz neuer Analysemethoden in der Gerstengenetik. Die vielen Ergebnisse zu Kartierungspopulationen und QTLs in der Gerste, die in den letzten Jahren erzielt wurden, bieten gute Rahmenbedingungen für die Interpretation von Ergebnissen aus genetischen Assoziationsberechnungen.

Das hohe, aktuelle Interesse an Assoziationsgenetik liegt in der Möglichkeit begründet, eine große Menge an unterschiedlichen Genotypen gleichzeitig zu analysieren, was das Auffinden multipler Allele an einem Lokus ermöglicht. Im Gegensatz dazu steht die klassische QTL-Kartierungsanalyse, bei der lediglich Allele von zwei Kreuzungseltern analysiert werden. Die genetischen Intervalle sind in einer Population für Assoziationsanalyse wesentlich geringer als bei einer biparentalen Population, da in dem Material viel mehr Meiosen stattfanden. Die Assoziationskartierung zeichnet sich folglich durch eine höhere Präzision aus, da die genetischen Kopplungsintervalle geringer sind (Hayes et al. 2006).

In der hier durchgeführten Assoziationsanalyse wurde der Kandidatengen-gestütze Ansatz zur Identifizierung von Sequenzpolymorphismen gewählt. Die Auswahl der Kandidatengene für die Assoziationsanalyse erfolgte aufgrund ihrer vermuteten Beteiligung an der Basalresistenz der Gerste gegen Pilzpathogene, insbesondere gegen *Bgh*. Die Auswahl basierte auf den Ergebnissen folgender experimenteller Analysen: Expressions-Analysen und TIGS-Experimente.

Weitere Kandidaten wurden auf der Basis von Literaturangaben zu Modellpflanzen wie *Arabidopsis thaliana* ausgewählt, insbesondere Gene, die im Zusammenhang mit Signalwegen wie zum Beispiel dem Jasmonat- oder Ethylenweg beschrieben wurden. Trotz der noch fehlenden phänotypischen Ergebnisse im Zielsystem Gerste-*Bgh* wurden in dieser Arbeit auch für letztere Kandidatengen-Kategorie signifikante Assoziationen mit Resistenz gefunden.

4.2.1 Signifikant assoziierte Kandidatengene

Das signifikant assoziierte Kandidatengen ACC-oxidase ist in den Syntheseweg der Signalsubstanz Ethylen involviert. Eine Mutation dieses Gens kann zu einer veränderten Menge des Pflanzenhormons Ethylen führen. Dieses Hormon besitzt regulatorische Wirkung beim Reifeprozess und bei der Seneszenz (Giovanonni 2001). Haplotyp 2 der Aspartate Protease zeigte eine signifikante Assoziation. Der überwiegende Teil der Genotypen, die diesen Haplotypen aufwiesen, präsentierten eine hypersensitive Zelltodreaktion als Resistenzantwort. Proteasen sind in Protolysevorgänge involviert. Die Protolyse spielt eine wichtige Rolle in biologischen Prozessen, wie zum Beispiel Proteinabbau und Pathogenabwehr. In Tomate und Tabak wurde eine Aspartate Protease beschrieben, die in der Hydrolyse von extrazellulären Proteinen beteiligt ist, die der Pathogenabwehr dienen (Runeberg-Roos et al. 1994). Es ist anzunehmen, dass die Hydrolyse dieser Proteine an der beobachteten Zelltodreaktion beteiligt ist. BAS1 gehört zur Gruppe der Peroxiredoxine. Sowohl BAS1 als auch ein weiteres Peroxiredoxin zeigten signifikante Assoziationen. Peroxiredoxine agieren als antioxidative Enzyme und zersetzen H₂O₂. Wasserstoffperoxyd kann sowohl eine giftige Wirkung auf die lebende Pflanzenzelle ausüben, es kann aber auch die Funktion eines Signalstoffes innerhalb des pflanzlichen Organismus innehaben. Die Mengenregulation von H₂O₂ spielt im pflanzlichen Organismus folglich eine wichtige Rolle. Die Proteinfamilie der Peroxiredoxine zeigen sowohl antioxidative Wirkung als auch regulatorische Funktionen in Signalwegen (Dietz et al. 2006). Das signifikant assoziierte Gen BAX-Inhibitor1 dient in der pflanzlichen Zelle als Suppressor von Zelltodreaktion und ist am Endoplasmatischen Reticulum lokalisiert. In Gerste und Arabidopsis wurde dieses Gen in Zusammenhang mit Pathogenabwehr diskutiert. (Hückelhoven et al. 2003; Ihara-Ohori et al. 2007).

Ca²⁺ dient als Signalstoff in der pflanzlichen Zelle. Calreticulin ist ein Protein, das Ca²⁺ speichert. Calreticulin zeigte eine signifikante Assoziation zur Mehltauanfälligkeit. Es ist anzunehmen, dass eine Veränderung der Ca²⁺-Konzentration in den Wirtszellen als Signalstoff in der Gersten-Mehltau-Interaktion dient. Ein analysierter Haplotyp des Kandidatengens Glutaredoxin zeigte eine signifikante Assoziation zur Mehltauresistenz. Glutaredoxine sind Glutathione-abhängige Oxidoreduktasen, die Proteine vor Schädigung durch einen *oxidative burst* schützen (Sundaram et al. 2008). Glutaredoxin scheint in die Resistenzantwort einer hypersensitiven Zelltodreaktion involviert zu sein, da diese Art von

Resistenz von einem oxidative burst geprägt ist. Alle identifizierten SNP und Haplotypen alpha-beta-Hydrolase wiesen eine signifikante Assoziation auf. Diese große der Proteinfamilie katalysiert hydrolytische Reaktionen unter Verwendung einer Vielzahl von Substraten. In Reis wurde das Gen Pir7B beschrieben, das für eine alpha-beta-Hydrolase codiert und in der Resistenzreaktion von Reis gegen den Erreger des Reisbrandes Pyricularia oryzae involviert ist (Wäspi et al. 1998). Das Kandidatengen Vacuolar targeting receptor wies einen signifikant assoziierten SNP auf; dieses Gen scheint eine Rezeptorfunktion für den Transport zwischen Golgi-Apparat und Vacuole auszuüben (Kirsch et al. 1994). Für das Kandidatengen Methionine-Synthase 2 konnten ein SNP und ein Haplotyp identifiziert werden, die eine signifikante Assoziation aufwiesen. Dieser Klon codiert für eine Methionin-Synthase. Methionin ist eine Aminosäure, die neben ihrer Funktion als Baustein für Proteine, auch eine Bedeutung in der Synthese von Pflanzenhormonen wie z.B. Cytokinin und Ethylen aufweist und der somit auch eine Bedeutung in der Pathogenabwehr zugesprochen wird (Ravanel et al. 1998). MBD10 wies sowohl einen signifikant assoziierten SNP als auch Haplotyp auf. Dieses Gen codiert für ein methyl-binding protein, diese Proteinfamilie ist an der epigenetischen Regulation von Genexpression involviert; diese Proteine erkennen methylierte DNA-Stellen und binden an diese. Sie spielen eine Rolle im Entwicklungsprozess der Pflanze (Yano et al. 2006).

Das Enzym Chorismat-Synthase befindet sich an siebter Stelle des Shikimat-Synthese-Wegs. Das Kandidatengen MIR6 codiert für dieses Enzym und zwei SNP wiesen eine signifikante Assoziation auf. Der Shikimat-Synthese-Weg dient zur Bildung von aromatischen Aminosäuren und ist für den Proteinaufbau wichtig. Ein SNP und ein Haplotyp des Gens 12-OPD-Reduktase zeigten eine Assoziation zur Mehltauresistenz. Dieses Gen ist bei der Bildung von Jasmonat, einem pflanzlichen Enzym, das auch bei der Pathogenabwehr eine Rolle spielt, von Bedeutung (Zierold 2005). Das Enzym Oxidoreduktase spielt bei der Bildung von reaktiven Sauerstoffradikalen, die bei der Pathogenabwehr genutzt werden, eine wichtige Rolle. Zwei Haplotypen und ein SNP dieses Gens wurden in dieser Studie als signifikant assoziiert nachgewiesen. 86% der detektierten SNP, sowie ein Haplotyp des Kandidatengens LLRK zeigten signifikante Assoziation. Rezeptorkinasen stellen eine große Genfamilie in Pflanzen dar, sie sind in Signalwege, die durch Hormone gesteuert werden, Meristementwicklung, Differenzierung von Zellen und Pathogenabwehr involviert. WIR1 stellt ein Gen dar, welches die pflanzliche Pathogenabwehr beeinflusst und in der pflanzlichen Zellwand lokalisiert ist (Schweizer et al. 1999). In dieser Studie wurde ein Haplotyp dieses Gens als signifikant assoziiert identifiziert. Zwei Kandidaten aus der WRKY-Transkriptionsfaktor-Familie WRKY1 und WRKY2 wurden in dieser Studie als "signifikant assoziiert" analysiert. Diese Faktoren dienen als negative Regulatoren der Pathogenabwehr (Eulgem et al. 1999, Shen et al. 2007).

LSD1 (*lesion simulating disease*1) wurde in der Literatur als Regulator von hypersensitiver Zelltodreaktion (HR) beschrieben (Keisa et al. 2008). In Gerste sind drei homologe LSD1 Gene bekannt, die alle eine Zink-Finger-Domäne aufweisen. Zwei homologe LSD1 Gene wurden in der hier durchgeführten Assoziationsanalyse getestet, und beide zeigten eine signifikante Assoziation zur Mehltauresistenz. Diese Gene weisen hoch konservierte Exon-Längen, sowie identische Anordnung der Zink-Finger-Domänen auf. Die hohe Ähnlichkeit dieser zwei homologen Gene deutet auf eine Genduplikation hin.

Abbildung 4.3 zeigt die genetische Lokalisierung von 12 assoziierten Kandidatengenen im Gerstengenom (Aghnoum et al. 2010). Außerdem beinhaltet diese Karte die genetischen Positionen von Mehltauresistenz-QTLs und R-Genen. QTL-Regionen sind durch Balken an der rechten Seite des Chromosoms gekennzeichnet. Schraffierte Balken bezeichnen Adult-Pflanzen QTLs, ausgefüllte Balken kennzeichnen QTLs, die im Keimlingsstadium entdeckt wurden. Die Position von R-Genen ist durch eine grüne Färbung dargestellt. Die Position der assoziierten Kandidatengene ist in roter Farbe hervorgehoben. Die Kandidaten Vacuolartargeting-receptor, Calreticulin und BAX-Inhibitor 1 kolokalisieren zu Resistenz-QTLs bei adulten Pflanzen. Glutaredoxin, Oxidoreductase, WIR1, LLRK und LSD1 kartieren in einen QTL-Intervall für Keimlingsresistenz auf Chromosom 5H. Auch das zweite analysierte LSD1 Gen kartieret auf dem langen Arm von Chromosom 5H in einen Keimlingsresistenz-QTL. Kein assoziiertes Kandidatengen, für das eine genetische Position bekannt ist, kartiert in die Nähe von bekannten R-Genen. Comadran et al. (2009) fanden hingegen in ihrer Studie mit Mehltauresistenz assoziierte DArT-Marker, die in Regionen kartierten, wo auch R-Gene (z.B. Mla auf Chromosom 1H) lokalisiert sind. Die in dieser Studie beobachtet Kolokalisierung zu Resistenz-QTLs deutet darauf hin, dass bei den hier beobachteten Resistenzphänotypen quantitative Basalresistenz eine Rolle spielt.

Die Ergebnisse der Assoziationsanalyse wiesen auf einen interessanten Bereich auf Chromosom 5H hin. Zwei Kandidatengene, die eine signifikante Assoziation zur Mehltauresistenz aufwiesen, kartierten in die gleiche Region auf diesem Chromosom.

Abb. 4.3: Genetische Karte der Gerste unter Angabe von Mehltau-Resistenzgenen (grün), Mehltauresistenz-QTLs (ausgefüllte Balken = Resistenz-QTLs im Keimlingsstadium; schraffierte Balken = Resistenz-QTLs im adulten Stadium), signifikant assoziierte Kandidatengene (rot) (verändert nach Aghnoum et al. 2010).

WIR1 kartierte bei 37,78cM und LLRK bei 41,48cM. Interessanterweise wurde dieser Chromosombereich im "Dom" Eltern der *Oregon Wolfe Barley* Population als Mehltau-QTL identifiziert (Aghnoum et al. 2010) und auch benachbarte Gene zeigten eine signifikante Assoziation zur Mehltauresistenz (Glutaredoxin, Oxidoreductase und LSD1). Eine detaillierte Analyse des Einflusses der assoziierter SNP und Haplotypen auf die Funktion des Gens gibt außerdem einen Hinweis auf einen kausalen Zusammenhang der identifizierten Assoziationen zum Phänotyp. Die signifikant assoziierten Polymorphismen wurden dahingehend untersucht, ob sie einen Aminosäureaustausch zur Folge haben, was zu einer Veränderung der Proteinstruktur und letztendlich zu einer Änderung der Funktion des Proteins führen kann.

4.2.2 Gefahr der Identifizierung falsch-positiver Assoziationen

Das Problem der Identifizierung von falsch positiven Assoziationen darf nicht unterschätzt werden. Es existieren verschiedene Methoden, diese Gefahr zu minimieren (Oraguzie et al. 2007). Eine Verringerung des Risikos falsch-positive Assoziationen zu detektieren, wird durch die Einbeziehung der Populationsstruktur (Q-Matrix) und der Verwandschaftskoeffizienten (K-Matrix) in die statistische Berechnung erreicht. Eine weitere, einfache aber effiziente Methode stellt die Hauptkomponentenanalvse (PCA) dar. Für die vorliegende Arbeit wurde eine Kombination aus Populationsstruktur (Q-Matrix) und Verwandtschaftsanalyse (K-Matrix) in einem "mixed linear model" berechnet und in die Assoziationsanalyse einbezogen. Die Populationsstruktur des hier verwendeten Materials zeichnete sich durch vier Untergruppen aus. Die Gerstenakzessionen zeigten eine Gruppierung aufgrund ihrer Herkünfte. Kraakman et al. (2004) beobachteten in ihrer Analyse eine Gruppierung der zwei- sowie der sechszeiligen Genotypen; Rostoks et al. (2006b) beschrieben auch zwei Untergruppen in ihrer Population, hier zeigte sich eine Gruppierung der Sommergersten und eine Gruppierung der Wintergersten. In der Assoziationsstudie von Comadran et al. (2009) wurde eine Populationsstruktur in fünf Untergruppen beschrieben, die sich auch in den Herkünften des Materials begründete. In der Studie von Comadran et al. (2009) wurden DArT (*Diversity Array Technology*)-Marker auf eine signifikante Assoziation zu Mehltauresistenz untersucht. Comadran et al. (2009) verfolgten mehrere Ansätze in ihrer Studie. Im ersten Ansatz berechneten sie die Assoziationsanalyse ohne Einbeziehung der Populationsstruktur. In anderen Ansätzen korrigierten sie die Analyse unter Einbeziehung der Q-Matrix und der K-Matrix. In der Assoziationsanalyse ohne Korrektur auf Populationsstruktur assoziierten 45,5% der DArT-Marker mit Mehltauresistenz. Die korrigierte Berechnung unter Verwendung der K-Matrix

lieferte das stringenteste Ergebnis (0,9% assoziierte DArT-Marker; 6,5% assoziierte Marker bei Einbeziehung der Q-Matrix) (Comadran et al. 2009). Die Einbeziehung der Populationsstruktur in Assoziationsverrechnungen ist essentiell, um die Anzahl falschpositiver Assoziationen zu minimieren.

Die hohe genetische und physiologische Diversität des hier verwendeten Materials spiegelt sich in der klaren Gruppierung in vier Untergruppen wider. Die Populationsstruktur basiert auf den geografischen Herkünften, was auf die unterschiedlichen Umwelten und Selektionsdrücke hindeutet und zusammen mit relativ unabhängigen Zuchtprozessen wohl die hohe genetische Diversität geprägt hat. Eine Gruppierung aufgrund von Herkünften kann allerdings auch erfolgen, wenn das Material einer Herkunft einen "Schlüsselvorfahr" aufweist. So zeigt türkisches Gerstenmaterial Beispiel zum ein enges Verwandtschaftsverhältnis, da die Verwandschaftsbeziehungen stark von der Sorte Tokak geprägt sind (Kilian et al. 2006).

In der hier vorgestellten Analyse wurden zusätzliche Assoziationsverrechnungen zu zwei weiteren phänotypischen Eigenschaften (Zeiligkeit und Pflanzenhöhe) durchgeführt. Polymorphismen von fünf Kandidatengenen zeigten neben einer signifikanten Assoziation zu Mehltauresistenz auch signifikante Assoziationen zur Zeiligkeit. Aufgrund dieser Ergebnisse stellt sich die Frage, ob die Populationsstruktur (Q-Matrix) richtig gewählt wurde oder ob eine Strukturabhängigkeit zur Zeiligkeit übersehen wurde. Wie bereits erwähnt, spiegelte die hier analysierte Populationsstruktur die Herkünfte der Akzessionen wider. Jedoch zeigt sich auch innerhalb der Untergruppen eine ungleiche Verteilung der zwei- und sechszeiligen Akzessionen (Untergruppe 1: 73% zweizeilig, 27% mehrzeilig; in Untergruppe 2: 18% zweizeilig, 82% mehrzeilig; Untergruppe 3: 9% zweizeilig, 91% mehrzeilig; Untergruppe 4: 85% zweizeilig, 15% mehrzeilig). Die Populationsstruktur der vier Untergruppen spiegelt somit neben den Herkünften auch die ungleiche Verteilung der Zeiligkeit der Population wider und sollte demnach auch dem Einfluss der Zeiligkeit bei den Assoziationsverrechnungen entgegenwirken.

Zwei Kandidatengene assoziierten sowohl mit Mehltauresistenz als auch mit Pflanzenhöhe. Die Assoziation der LLRK sowohl zu Mehltauresistenz als auch zu Pflanzenhöhe lässt sich mit der Lokalisierung dieses Gens im Gerstengenom erklären. LLRK kartiert in eine Region, in der sowohl ein QTL für Mehltauresistenz als auch für Pflanzenhöhe beschrieben ist.

Eine zusätzliche Analysemethode zum Auffinden richtig- oder falsch positiver Assoziationen stellt die funktionelle Analyse der Kandidatengene in Form einer TIGS-Analyse (*transient induced gene silencing*) dar. Die Expression signifikant assoziierter Gene in der interessanten Genregion auf Chromosom 5H wurde mittels RNAi unterdrückt und der Einfluss auf Mehltaubefall untersucht. Die Expressionsreduzierung von WIR1 zeigte den stärksten Effekt und führte zu einer signifikant höheren Anfälligkeit. Auch für LSD1 konnte ein signifikanter Effekt in der funktionellen Analyse nachgewiesen werden, hier wurde die Anfälligkeit signifikant reduziert. Das positive Ergebnis aus der Assoziationsanalyse konnte für WIR1 und LSD1 mittels TIGS bestätigt werden, diese zwei Gene sind am Resistenzverhalten der Gerste gegen Mehltau beteiligt.

4.2.3 LSD1 – Identifizierung des kausalen Gens des Resistenz QTLs auf Chromosom 5H?

LSD1 (*lesion simulating disease*1) wird in der Literatur als Regulator von hypersensitiver Zelltodreaktion (HR) beschrieben (Keisa et al 2008) (vergleiche Kapitel 4.2.1). Zwei LSD1 Gene wurden in dieser Studie analysiert, die beide eine signifikante Assoziation zur Mehltauresistenz aufwiesen. Ein LSD1-Gen kartierte in das QTL-Intervall (ca. 15-45cM) auf Chromosom 5H. Von allen analysierten Kandidatengenen zeigte LSD1 das signifikanteste Assoziationsniveau zu Mehltauresistenz. Außerdem haben der peak-Marker dieses Resistenz-QTLs und LSD1 die gleiche genetische Position. Auch die funktionale Analyse von LSD1mittels TIGS führte zu einem signifikanten Ergebnis. Die Summe der positiven Ergebnisse von LSD1 in den verschiedenen Bereichen Assoziationsanalyse, genetische Kartierung, sowie funktionale Analyse, machen dieses Gen zum interessantesten Kandidaten dieser Studie und fordern somit eine intensivere Diskussion.

LSD1 scheint ein negativer Regulator von Zelltodreaktion zu sein und ist vermutlich in die Regulation der Expression von *superoxide dismutase* involviert (Epple et al. 2003). Außerdem wurde bestätigt, dass LSD1 an der Regulation von ROS (*reactive oxygene species*) beteiligt ist (Mateo et al. 2004). Obwohl die genaue Funktion, wie LSD1 programmierte Zelltodreaktion beeinflusst, nicht bekannt ist, haben Versuche in *Arabidopsis thaliana* zu der These geführt, dass LSD1 als ein zellulärer Drehpunkt wirkt (Kaminaka et al. 2006). Abbildung 4.4 zeigt ein Model, wie LSD1 programmierter Zelltodreaktion beeinflussen könnte. Während der Photosynthesereaktion finden Redoxreaktionen statt, die zu einer Bildung von *reactive oxygen species* (ROS) führen. Diese ROS können der Pflanze bei der Pathogenabwehr von Nutzen sein. Eine Kontrolle der Redoxreaktionen ist jedoch nötig, um einer Überproduktion von ROS entgegenzuwirken. LSD1 scheint hier eine Kontrollfunktion auszuüben. Es wird durch die Redoxreaktionen in den Plastoquinonen

reguliert und unterdrückt die ROS-Produktion aus der Photorespiration. Ethylen dient als Signal für programmierte Zelltodreaktion. Die Produktion dieses Hormons wird indirekt von LSD1 beeinflusst, da LSD1 auf die Bildung von EDS1 und PAD4 einwirkt. Außerdem reguliert LSD1 direkt oder indirekt die Expression von SOD (*superoxide dismutase*) und CAT (*catalase*) (Mühlenbock et al. 2008). Auch in *Brassica oleracea* wurde ein Einfluss von *At*LSD1 homologen Genen auf programmierte Zelltodreaktionen beschrieben (Coupe et al. 2004).

Abb. 4.4: Model der Kaskade zu programmierten Zelltodreaktion unter Einfluss von LSD1 LSD1 weist Kontrollfunktion auf; es wird über Redoxreaktionen reguliert; LSD1 reguliert indirekt die Ethylen (ET) Produktion. (verändert nach Mühlenbock et al. 2008).

4.2.4 Linkage Disequilibrium der analysierten Population im Vergleich zu anderen Populationen und Pflanzenarten

Hohe Homozygotie resultiert in einer reduzierten Effektivität an Rekombination, was wiederum zu einer Erhöhung des Kopplungsungleichgewichts (*Linkage Disequilibrium*) führt. Kenntnisse über das Ausmaß von LD in einer Population sind von essentiellen Nutzen, um eine Korrelation zwischen genotypischen und phänotypischen Daten zu identifizieren (Hayes et al. 2006). Dem Assoziationsgenetiker muss bekannt sein, über

welche Distanz LD in einer Population auftritt, um eine Aussage über die Nützlichkeit von molekularen Markern treffen zu können. Erstreckt sich LD über geringe genetische Distanzen, so ist eine hohe Anzahl an molekularen Markern nötig, um das gesamte Genom für eine genetische Analyse abzudecken. Jedoch bietet ein schneller LD-Abfall die Möglichkeit, Merkmale sehr genau zu kartieren. Erstreckt sich das LD über größere genetische Distanzen, ist zum einen eine geringe Anzahl an molekularen Markern für eine genomweite Analyse nötig, die Möglichkeit der Feinkartierung eines Merkmals besteht jedoch nicht (Barker et al. 2009). In dieser Studie wurde das LD anhand der identifizierten SNP berechnet. Das Kopplungsungleichgewicht dieser Population kann als gering eingestuft werden. Die SNP-Frequenz innerhalb einer Population und ihre Verteilung werden vom Selektionsdruck beeinflusst. Auch Populations-bottlenecks, die auf die Kulturart eingewirkt haben, beeinflussen das LD. Die Anzahl an Mutationen variiert zwischen Kulturarten und auch zwischen verschiedenen Populationen (Barker et al. 2009). Barker et al. (2009) analysierten in ihrer Studie SNP-Daten von Gerste, Weizen, Mais und Reis. Sie beschreiben SNP-Frequenzen von 6,3 SNP/kb für Gerste, 16,5 SNP/kb für Weizen, 8,9SNP/kb für Mais und 4,2 SNP/kb für Reis. In der hier vorliegenden Gersten-Studie wurden 56.265 Basenpaare in 61 Genotypen analysiert und es wurden 977 SNP identifiziert. Diese Werte entsprechen einer SNP-Frequenz von 17,36 SNP/kb, die deutlich höher ist, als die von Barker et al. (2009) beschriebene Frequenz (6,3 SNP/kb). In dieser Studie wurde folglich hoch diverses Material eingesetzt (Landrassen), was sich auch in einem geringen LD der Population widerspiegelt. Dieses Ergebnis deckt sich mit den Beobachtungen von Caldwell et al. (2006) und Morell et al. (2005), die auch ein geringeres LD in Landrassen als im Sortenmaterial von Gerste beschrieben.

4.2.5 Assoziationsgenetik für quantitative Mehltauresistenz

Das Ziel dieser assoziationsgenetischen Analyse war die Identifizierung von Kandidatengenen, die an quantitativer Mehltauresistenz beteiligt sind.

Die Phänotypisierung des verwendeten Pflanzenmaterials hinsichtlich rassenspezifischer, bzw. rassenunspezifischer Resistenz stellte sich als schwierig dar.

Folgende Ergebnisse sprechen für eine rassenunspezifische Resistenz des Materials: Die Gerstenakzessionen wurden mit sechs verschiedenen Mehltauisolaten getestet, die unterschiedliche Virulenzspektren aufweisen. Die Boniturwerte ergaben, bis auf eine Ausnahme (M/a18), keine klaren Unterschiede der Reaktion auf die verschiedenen Pilzisolate mit unterschiedlichem Virulenzspektrum. Im Feldversuch, der unter natürlichem

Infektionsdruck stattfand, konnte das Resistenzverhalten der Akzessionen auch bestätigt werden.

Obwohl nicht sehr wahrscheinlich, könnte allerdings die beobachtete allgemein höhere Anfälligkeit der Akzessionen gegenüber den israelischen Isolaten auf neue rassenspezifische Resistenzgene hindeuten, die gegen die europäischen Isolate noch wirksam sind, gegen die israelischen Isolate aber nicht differenzieren. Der überwiegende Teil der Akzessionen wies in der makroskopischen Untersuchung nekrotische Flecken auf. In der mikroskopischen Untersuchung zeigten viele Akzessionen eine hypersensitive Zelltodreaktion als Resistenzantwort. Die Literatur geht davon aus, dass es sich um eine rassenspezifische Resistenz handelt, wenn der Pilz durch eine hypersensitive Zelltodreaktion gestoppt wird (Boyd et al. 1995; Jones und Dangl 2006), was wiederum für das Vorhandensein von rassenspezifischen Resistenzen spricht.

Die Analyse des Segregationsverhaltens in F2-Populationen, die aus einer Kreuzung zwischen Mehltau-resistenter und -anfälliger Sorte hervorgeht, stellt eine Möglichkeit dar, die Art der Resistenz genau zu bestimmen. Im Falle eines normalverteilten Phänotyps kann auf eine maßgebliche Beteiligung von Resistenz-QTLs geschlossen werden. Zum Abschluss der Arbeit wurden durch KWS-Lochow GmbH vier F2 Populationen resistenter Akzessionen mit der anfälligen Sorte Morex erzeugt, die aber aus Zeitgründen nicht mehr phänotypisiert werden konnten.

Die Populationsgröße und Populationszusammensetzung hat einen Einfluß auf die Durchführung einer Assoziationsanalyse. Die geringe Populationsgröße in dieser Studie läßt eine geringe statistische Leistung bei der Berechnung der Assoziationen vermuten. Die Unterteilung der Population in vier Untergruppen, gemäß der ermittelteten Struktur, verringert die statistische Leitung zusätzlich. Jedoch konnten signifikante Assoziationen erfolgreich identifiziert werden, da es sich hier um vorselektiertes Material handelt. Die Population wurde gezielt ausgewählt, sie besteht aus zwei Extremgruppen bezüglich Mehltauresistenz und –Anfälligkeit und ermöglichte somit eine erfolgreiche Durchführung der Studie.

Bei der Interpretation von positiven Ergebnissen einer Assoziationsanalyse muss beachtet werden, dass es sich auch um einen genetisch-gekoppelten Bereich handeln kann, der an der Ausprägung des gewünschten Merkmals nicht beteiligt ist. Eine funktionale Analyse der Kandidatengene liefert weitere Hinweise für eine kausale Beteiligung an der Merkmalsausprägung. In der folgenden Tabelle 4.1 sind die 21 signifikant assoziierten Kandidatengene dieser Studie aufgelistet. Diese Tabelle enthält außerdem die Information
über einen möglichen TIGS- oder Regulationseffekt des Gens (funktionale Analyse), sowie über mögliche Kolokalisierung zu Resistenz-QTLs.

Gen-Name	Gen-ID	Assoziation mit Mehltauresistenz/- anfälligkeit (p<0.01)	TIGS- Effekt	Regulations- effekt	Kolokalisierung mit Mehltau- Resistenz QTL
Glutaredoxin	contig23773	9,90E-04	JA	n.a.	5H
MBD 10	contig3489	4,90E-04	n.a.	n.a.	5H
Oxidoreductase	HA28H16	4,02E-05	NEIN	n.a.	5H
Lectin-like receptor kinase	HO05A19	3,88E-04	JA	JA	5H
WIR1	anonymisiert	2,40E-04	JA	n.a.	5Н
LSD1 a	contig10220	2,42E-04	JA	n.a.	5H
12-OPD-reductase	CK567317	6,38E-04	n.a.	n.a.	unbekannt
ACC-oxidase	CA023817	2,40E-03	n.a.	n.a.	unbekannt
Aspartate protease gene	X56136	4,69E-04	n.a.	n.a.	unbekannt
BAS1	Z34917	6,77E-04	n.a.	n.a.	unbekannt
BAX-Inhibitor1	AJ290421	1,00E-03	JA	n.a.	6Н
Calreticulin	L27349	4,56E-04	n.a.	n.a.	2H
Unknown protein 1	anonymisiert	4,84E-06	JA	n.a.	unbekannt
Alpha/beta Hydrolase	anonymisiert	1,57E-04	JA	n.a.	unbekannt
Vacuolar targeting receptor	anonymisiert	3,29E-05	JA	n.a.	2Н
Methionine Synthase	anonymisiert	2,50E-03	JA	n.a.	unbekannt
LSD1 b	EU545234	1,21E-05	n.a.	n.a.	unbekannt
MIR6	CA018053	1,66E-04	n.a.	JA	unbekannt
Peroxyredoxin	BU985101	4,55E-04	n.a.	n.a.	unbekannt
WRKY1	AJ536667	7,83E-04	JA	n.a.	unbekannt

Tab. 4.1: Signifikant assoziierte Kandidatengene mit zusätzlicher Information über TIGS-Effekt, Regulationseffekt und Kolokalisierung mit Mehltau-Resistenz QTLs (n.a.=nicht analysiert)

Die Kandidaten aus Tabelle 4.1 konnten in einer kleinen Population, die eine relativ geringe statistische Leistung aufweist, identifiziert werden. Sie zeigten eine positive Assoziation auch bei der Berechnung des *mixed linear models*, das nach Comadran et al. (2009) die stringenteste Berechnungsmethode darstellt.

Eine nähere Betrachtung der funktionalen Einordnung der Kandidaten (vgl. Kapitel 4.2.1) zeigt eine überwiegende Einteilung in zwei Gruppen. Die erste Gruppe (z.B. Glutaredoxin, Oxidoreduktase, BAX-Inhibitor1) ist direkt oder indirekt an hypersensitiven Zelltodreaktionen und *oxidative burst* beteiligt. Die zweite Gruppe (z.B. ACC-oxidase, Chorismate Synthase, LLRK) fungiert im Bereich der Signalwege der Pflanze; diese Kandidaten sind zum Beispiel an der Bildung von Pflanzenhormonen, wie Ethylen oder Jasmonat involviert. Die unterschiedliche funktionale Einteilung der Kandidaten spiegelt auch die verschiedenartige phänotypische Ausprägung der Resistenz in der Population wider.

Es konnten Kandidaten identifiziert werden, die neben einer signifikanten Assoziation, auch einen funktionalen Effekt oder einen regulatorischen Effekt zeigten. Diese sind die vielversprechensten Kandidaten für weiterführende Analysen, wie zum Beispiel genetische Transformationsversuche und die Herstellung von Mutanten.

In dieser Kandidatengen-gestützten assoziationsgenetischen Studie ist es gelungen, agronomisch wichtige Kandidaten-Gene für Mehltauresistenz in Gerste zu identifizieren.

5. Zusammenfassung

Das Ziel dieser Doktorarbeit war die Identifizierung von Genen, die eine dauerhafte quantitative, *mlo*-unabhängige Mehltauresistenz in Gerste bedingen. Mehltau (*Blumeria graminis* f.sp.*hordei*) stellt eine der wichtigsten Krankheiten bei Gerste dar.

Im Zuge dieser Arbeit wurden Gersten-Akzessionen identifiziert, die eine starke Resistenzantwort gegen polyvirulente Mehltauisolate aufweisen.

Die Analysemethodik der Assoziationsstudie konnte erfolgreich angewendet werden, um Gene zu identifizieren, die im Pathosystem Gerste-Mehltau involviert sind. Trotz der geringen Populationsgröße war es möglich signifikante Assoziationen zu identifizieren. In dieser Studie wurden 21 signifikant assoziierte Gene identifiziert. Es wurden SNP- und Haplotypmarker identifiziert, die für Selektionsvorgänge in der Züchtung nutzbar sind. Die Beteiligung an einer Mehltauresistenzantwort war bei einem Teil der identifizierten Genen bereits bekannt wie zum Beispiel beim BAX-Inhibitor 1 (Hückelhoven et al. 2003). Es zeigten aber auch Gene, wie zum Beispiel LSD1 eine signifikante Assoziation, deren Beteiligung an Resistenz in Gerste gegen Mehltau bisher noch nicht beschrieben wurde.

Die genetische Kartierung assoziierter Gene und die Kolokalisierung dieser Gene zu Mehltauresistenz-QTLs ermöglichte die gezielte Analyse eines QTL-Intervalls. In diesem Intervall wurde LSD1 detektiert. Dieses Gen zeigte signifikante Assoziation zu Mehltauresistenz, es wies eine Kolokalisierung mit dem peak Marker dieses QTLs auf und zeigte in der funktionellen TIGS-Analyse einen signifikanten Effekt. Somit konnte mit LSD1 möglicherweise das kausale Gen des Mehltauresistenz-QTLs auf Chromosom 5H identifiziert werden. Der schnelle LD-Abfall an diesem Lokus unterstützt außerdem die Annahme, dass LSD1 das ursächliche Gen dieses QTLs ist. LSD1 könnte also von entscheidender Bedeutung für das Resistenzverhalten der Gerste gegenüber dem echten Gerstenmehltaupilz sein.

Die Ergebnisse der Assoziationsstudie wurden mit Ergebnissen aus vorangegangenen Expressionsstudien sowie nachfolgenden funktionalen Analysen (TIGS = *transient induced gene silencing*) im Sinne einer Validierung zusammengeführt (vgl. Tab. 4.1).

Diese Gene stehen für zukünftige Studien und weiterführende Analysen zur Verfügung. Außerdem wurde in dieser Studie eine Gerstenpopulation beschrieben, die für Grundlagenund angewandte Forschung hinsichtlich der Mehltauresistenz eine wertvolle Ressource darstellt.

6. Summary

The aim of this thesis was the identification of genes which are responsible for a quantitative, durable and *mlo*-independent powdery mildew resistance. Powdery mildew is a very important disease in barley.

Barley accessions with novel genetic sources for powdery mildew resistance were identified. The method of association genetics were successfully used for the identification of genes which may be involved in the pathosysteme of barley with powdery mildew. It was possible to identify significant associations although the population size was very low. In this study 21 significant associated genes could be identified. SNP and haplotype markers were identified which can be used for selection in the barley breeding process. For some genes such as BAX-inhibitor 1 (Hückelhoven et al. 2003) the influence in powdery mildew resistance in barley was already known. In addition, we could also detect genes for which an effect on resistance mechanisms in barley was not yet shown (for example LSD1). The genetic mapping of associated candidate genes and the colocalisation to powdery mildew resistance QTLs made it possible to analyse specific candidate genes in a QTL interval on chromosome 5HS. The most significant association was found with LSD1. In addition this gene was colocalised with the peak-marker of a powdery mildew QTL on chromosome 5H and exhibited a significant effect upon silencing in the TIGS (transient induced gene silencing) system.

Thus, it was possible to identify LSD1 as an excellent candidate gene of the powdery mildew resistance QTL on chromosome 5HS.

In general, the results of this association study were validated with results from QTL analyses, from expression profiling and from gene silencing (TIGS). The most significant genes are now available for further analyses. Also the population I described here represents a valuable resource, which can be used in basic and applied research in barley.

7. Literaturverzeichnis

- Aghnoum, R., Thierry, M., Johrde, A., Pecchino, N., Schweizer, P., Niks, R. (2010) Basal resistance of barley to barley powdery mildew: connecting QTLs and candidate genes. Mol Plant-Microbe Interactions 23 (1), 91-102.
- Altpeter, F., Varshney, A., Abderhalden, O., Douchkov, D., Sautter, C., Kumlehn, J., Dudler, R., Schweizer, P. (2005). Stable expression of a defense-related gene in wheat epidermis under transcriptional control of a novel promoter confers pathogen resistance. Plant Mol Biol, 57(2), 271-283.
- Angell, S. M., Baulcombe, D. C. (1997). Consistent gene silencing in transgenic plants expressing a replicating potato virus X RNA. Embo Journal, 16(12), 3675-3684.
- Baier, M., Dietz, K. J. (1996). Primary structure and expression of plant homologues of animal and fungal thioredoxin-dependent peroxide reductases and bacterial alkyl hydroperoxide reductases. Plant Mol Biol, 31(3), 553-564.
- Barker, J. S., Frydenberg, J., Gonzalez, J., Davies, H. I., Ruiz, A., Sorensen, J. G., Loeschcke, V. (2009). Bottlenecks, population differentiation and apparent selection at microsatellite loci in Australian Drosophila buzzatii. Heredity, 102(4), 389-401.
- Baulcombe, D. (2004). RNA silencing in plants. Nature, 431(7006), 356-363.
- Bolwell, G. P. (1999). Role of active oxygen species and NO in plant defence responses. Curr Opin Plant Biol, 2(4), 287-294.
- Both, M., Csukai, M., Stumpf, M. P. H., Spanu, P. D. (2005). Gene expression profiles of Blumeria graminis indicate dynamic changes to primary metabolism during development of an obligate biotrophic pathogen. Plant Cell, 17(7), 2107-2122.
- Boyd, L. A., Smith, P. H., Foster, E. M., Brown, J. K. (1995). The effects of allelic variation at the Mla resistance locus in barley on the early development of Erysiphe graminis f.sp. hordei and host responses. Plant J, 7, 959-968.
- Bradbury, P. J., Zhang, Z., Kroon, D. E., Casstevens, T. M., Ramdoss, Y., Buckler, E.
 S. (2007). TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics, 23(19), 2633-2635.
- Buschges, R., Hollricher, K., Panstruga, R., Simons, G., Wolter, M., Frijters, A., van Daelen, R., Van der Lee, T., Diergaarde, P., Groenendijk, J., Töpsch, S., Vos, P., Salamini, F., Schulze-Lefert, P. (1997). The barley Mlo gene: a novel control element of plant pathogen resistance. Cell, 88(5), 695-705.

- Chen, F., Hayes, P. M., Mulrooney, D. M., Pan, A. (1994). Identification and characterization of cDNA clones encoding plant calreticulin in barley. Plant Cell, 6(6), 835-843.
- Chomczynsky, B., Sacchi N. (1987). Single step method of RNA isolation by acid guanidinium thiocyanate phenol chloroform extraction. Ann Biochem 162, 156-159.
- Comadran, J., Thomas, W. T., van Eeuwijk, F. A., Ceccarelli, S., Grando, S., Stanca, A. M., Pecchioni, N., Akar, T., Al-Yassin, A., Benbelkacem, A., Ouabbou, H., Bort, J., Romagosa, I., Hackett, C.A., Russell, J.R. (2009). Patterns of genetic diversity and linkage disequilibrium in a highly structured Hordeum vulgare association-mapping population for the Mediterranean basin. Theor Appl Genet, 119(1), 175-187.
- Coupe, S. A., Watson, L. M., Ryan, D. J., Pinkney, T. T., Eason, J. R. (2004). Molecular analysis of programmed cell death during senescence in Arabidopsis thaliana and Brassica oleracea: cloning broccoli LSD1, Bax inhibitor and serine palmitoyltransferase homologues. J Exp Bot, 55(394), 59-68.
- Czembor, J. H. (2002). Resistance to powdery mildew in selections from Moroccan barley landraces. Euphytica, 125(3), 397-409.
- Dietz, K. J., Jacob, S., Oelze, M. L., Laxa, M., Tognetti, V., de Miranda, S. M., Baier, M., Finkemeier, I. (2006). The function of peroxiredoxins in plant organelle redox metabolism. J Exp Bot, 57(8), 1697-1709.
- Douchkov, D., Nowara, D., Zierold, U., Schweizer, P. (2005). A high-throughput genesilencing system for the functional assessment of defense-related genes in barley epidermal cells. Molecular Plant-Microbe Interactions, 18(8), 755-761.
- Dreiseitl, A. D. A. (2004). Phenotypic diversity of barley powdery mildew resistance sources Genetic Resources and Crop Evolution, 51(3), 251-257.
- Eckey, C., Korell, M., Leib, K., Biedenkopf, D., Jansen, C., Langen, G., Kogel, K.H. (2004). Identification of powdery mildew-induced barley genes by cDNA-AFLP: functional assessment of an early expressed MAP kinase. Plant Molecular Biology, 55(1), 1-15.
- Epple, P., Mack, A. A., Morris, V. R., Dangl, J. L. (2003). Antagonistic control of oxidative stress-induced cell death in Arabidopsis by two related, plant-specific zinc finger proteins. Proc Natl Acad Sci U S A, 100(11), 6831-6836.

- Eulgem, T., Rushton, P. J., Schmelzer, E., Hahlbrock, K., Somssich, I. E. (1999). Early nuclear events in plant defence signalling: rapid gene activation by WRKY transcription factors. Embo J, 18(17), 4689-4699.
- Evanno, G., Regnaut, S., Goudet, J. (2005). Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology, 14(8), 2611-2620.
- Flint-Garcia, S. A., Thornsberry, J. M., Buckler, E. S. (2003). Structure of linkage disequilibrium in plants. Annual Review of Plant Biology, 54, 357-374.
- Flint-Garcia, S. A., Thuillet, A. C., Yu, J. M., Pressoir, G., Romero, S. M., Mitchell, S. E., Doebley, J., Kresovich, S., Goodman, M.M., Buckler, E.S. (2005). Maize association population: a high-resolution platform for quantitative trait locus dissection. Plant Journal, 44(6), 1054-1064.
- Flor, H. H. (1971). Current Status of Gene-for-Gene Concept. Annual Review of Phytopathology, 9, 275-&.
- Giovannoni, J. (2001). Molecular Biology of Fruit Maturation and Ripening. Annu Rev Plant Physiol Plant Mol Biol, 52, 725-749.
- Green, R. M. (1991). Isolation and characterisation of genes induced in barley during powdery mildew infection. Thesis, University of Cambridge, UK.
- Grubbs, F. E. (1969). Procedures for Detecting Outlying Observations in Samples. Technometrics, 11(1), 1-&.
- Halterman, D. A., Wise, R. P. (2004). A single-amino acid substitution in the sixth leucinerich repeat of barley MLA6 and MLA13 alleviates dependence on RAR1 for disease resistance signaling. Plant J, 38(2), 215-226.
- Halterman, D. A., Wise, R. P. (2004). A single-amino acid substitution in the sixth leucinerich repeat of barley MLA6 and MLA13 alleviates dependence on RAR1 for disease resistance signaling. Plant J, 38(2), 215-226.
- Hardy, O. J., Vekemans, X. (2002). SPAGEDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Molecular Ecology Notes, 2(4), 618-620.
- Hayes, P., Szucs, P. (2006). Disequilibrium and association in barley: thinking outside the glass. Proc Natl Acad Sci U S A, 103(49), 18385-18386.
- Heitefuss, R. (2001). Defence reactions of plants to fungal pathogens: principles and perspectives, using powdery mildew on cereals as an example. Naturwissenschaften, 88(7), 273-283.

- Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics, 6, 65-70.
- Hu, K.-M., Qiu, D.Y., Shen, X.L., Li, X.H. Wang, S.P. (2008). Isolation and manipulation of quantitative trait loci for disease resistance in rice using a candidate gene approach. Molecular Plant, 1(5), 786-793.
- Huckelhoven, R., Dechert, C., Kogel, K. H. (2003). Overexpression of barley BAX inhibitor 1 induces breakdown of mlo-mediated penetration resistance to Blumeria graminis. Proc Natl Acad Sci U S A, 100(9), 5555-5560.
- Huckelhoven, R., Dechert, C., Trujillo, M., Kogel, K. H. (2001). Differential expression of putative cell death regulator genes in near-isogenic, resistant and susceptible barley lines during interaction with the powdery mildew fungus. Plant Mol Biol, 47(6), 739-748.
- Huckelhoven, R., Trujillo, M., Kogel, K. H. (2000). Mutations in Ror1 and Ror2 genes cause modification of hydrogen peroxide accumulation in mlo-barley under attack from the powdery mildew fungus. Molecular Plant Pathology, 1, 287-292.
- Ihara-Ohori, Y., Nagano, M., Muto, S., Uchimiya, H., Kawai-Yamada, M. (2007). Cell death suppressor Arabidopsis bax inhibitor-1 is associated with calmodulin binding and ion homeostasis. Plant Physiol, 143(2), 650-660.
- Jannink, J. L., Bink, M. C. A. M., Jansen, R. C. (2001). Using complex plant pedigrees to map valuable genes. Trends in Plant Science, 6(8), 337-342.
- Johrde, A., Schweizer, P. (2008). A class III peroxidase specifically expressed in pathogenattacked barley epidermis contributes to basal resistance. Molecular Plant Pathology, 9(5), 687-696.
- Jones, J. D., Dangl, J. L. (2006). The plant immune system. Nature, 444(7117), 323-329.
- Jorde, L. B. (2000). Linkage disequilibrium and the search for complex disease genes. Genome Research, 10(10), 1435-1444.
- Jorgensen, J. H. (1994). Genetics of Powdery Mildew Resistance in Barley. Critical Reviews in Plant Sciences, 13(1), 97-119.
- Kaminaka, H., Nake, C., Epple, P., Dittgen, J., Schutze, K., Chaban, C., et al. (2006). bZIP10-LSD1 antagonism modulates basal defense and cell death in Arabidopsis following infection. Embo J, 25(18), 4400-4411.
- Keisa, A. K., K.; Gill, U.; Kleinhofs, A.; Rostoks, N. (2008). Cloning and characterization of barley homologues of the Arabidopsis LSD1 gene: putative regulators of hypersensitive response. Acta Universitatis Latviensis 000, 87-101.

- Kilian, B., Ozkan, H., Kohl, J., von Haeseler, A., Barale, F., Deusch, O., Brandolini, A., Yucel, C., Martin, W., Salamini, F. (2006). Haplotype structure at seven barley genes: relevance to gene pool bottlenecks, phylogeny of ear type and site of barley domestication. Mol Genet Genomics, 276(3), 230-241.
- Kirsch, T., Paris, N., Butler, J.M., Beevers, L., Rogers, J.C. (1994). Purification and initial characterization of a potential plant vacuolar targeting receptor. PNAS, 91(8), 3403-3407.
- Köhler, W., Schachtel, G., Voleske, P. (2001). Biostatistik, 3. Auflage. Springer Verlag.
- Komatsuda, T., Pourkheirandish, M., He, C. F., Azhaguvel, P., Kanamori, H., Perovic, D., Stein, N., Graner, A., Wicker, T., Tagiri, A., Lundqvist, U., Fujimura, T., Matsuoka, M., Matsumoto, T., Yano, M. (2007). Six-rowed barley originated from a mutation in a homeodomain-leucine zipper I-class homeobox gene. Proceedings of the National Academy of Sciences of the United States of America, 104(4), 1424-1429.
- Kraakman, A. T., Niks, R. E., Van den Berg, P. M., Stam, P., Van Eeuwijk, F. A. (2004). Linkage disequilibrium mapping of yield and yield stability in modern spring barley cultivars. Genetics, 168(1), 435-446.
- Kumagai, M. H., Donson, J., Dellacioppa, G., Harvey, D., Hanley, K., Grill, L. K. (1995). Cytoplasmic Inhibition of Carotenoid Biosynthesis with Virus-Derived Rna. Proceedings of the National Academy of Sciences of the United States of America, 92(5), 1679-1683.
- Kumar, J., Huckelhoven, R., Beckhove, U., Nagarajan, S., Kogel, K. H. (2001). A Compromised Mlo Pathway Affects the Response of Barley to the Necrotrophic Fungus Bipolaris sorokiniana (Teleomorph: Cochliobolus sativus) and Its Toxins. Phytopathology, 91(2), 127-133.
- Kunieda, T., Fujiwara, T., Amano, T., Shioi, Y. (2005). Molecular cloning and characterization of a senescence-induced tau-class Glutathione S-transferase from barley leaves. Plant Cell Physiol, 46(9), 1540-1548.
- Lyngkjaer, M. F., Newton, A. C., Atzema, J. L., S.J., B. (2000). The barley mlo-gene: an important powdery mildew resistance source. Agronomie, 20, 745-756.
- Mahtani, M.M., Huntington, F.W. (1998). Physical and genetic mapping of the human X Chromosome Centromere: Repression and Recombination. Genome Res, 8, 100-110.

- Manly, K. F., Cudmore, R. H., Jr., Meer, J. M. (2001). Map Manager QTX, crossplatform software for genetic mapping. Mamm Genome, 12(12), 930-932.
- Mateo, A., Muhlenbock, P., Rusterucci, C., Chang, C. C., Miszalski, Z., Karpinska, B., Parker, J.E., Mullineaux, P.M., Karpinski, S. (2004). LESION SIMULATING DISEASE 1 is required for acclimation to conditions that promote excess excitation energy. Plant Physiol, 136(1), 2818-2830.
- Maucher, H., Hause, B., Feussner, I., Ziegler, J., Wasternack, C. (2000). Allene oxide synthases of barley (Hordeum vulgare cv. Salome): tissue specific regulation in seedling development. Plant J, 21(2), 199-213.
- Meister, G., & Tuschl, T. (2004). Mechanisms of gene silencing by double-stranded RNA. Nature, 431(7006), 343-349.
- Mendgen, K., & Hahn, M. (2002). Plant infection and the establishment of fungal biotrophy. Trends Plant Sci, 7(8), 352-356.
- Michalek, W., Weschke, W., Pleissner, K. P., Graner, A. (2002). EST analysis in barley defines a unigene set comprising 4,000 genes. Theor Appl Genet, 104(1), 97-103.
- Muench, D. G., Good, A. G. (1994). Hypoxically inducible barley alanine aminotransferase: cDNA cloning and expression analysis. Plant Mol Biol, 24(3), 417-427.
- Muhlenbock, P., Szechynska-Hebda, M., Plaszczyca, M., Baudo, M., Mateo, A., Mullineaux, P. M., Parkerc, J.E., Karpinskad, B., Karpinskie, S. (2008). Chloroplast signaling and LESION SIMULATING DISEASE1 regulate crosstalk between light acclimation and immunity in Arabidopsis. Plant Cell, 20(9), 2339-2356.
- Nover, I., Mansfeld, R. (1955). Resistenzeigenschaften im Gersten- und Weizensortiment Gatersleben. I. Prüfung von Sommergersten auf ihr Verhalten gegen *Erysiphe* graminis DC. f.sp. hordei Marchal. Genetic resources and crop evolution, (3), 105-113
- Nover, I., Mansfeld, R. (1956). Resistenzeigenschaften im Gersten- und Weizensortiment Gatersleben. 2. Prüfung von Wintergersten auf ihr Verhalten gegen *Erysiphe* graminis DC. f.sp. hordei Marchal. Genetic resources and crop evolution, (4), 341-349

- Nover, I., Lehmann, C.O. (1968). Resistenzeigenschaften im Gersten- und Weizensortiment Gatersleben. 9. Prüfung von Wintergersten-Neuzugängen auf ihr Verhalten gegen Mehltau (*Erysiphe graminis* DC. f.sp. *hordei* Marchal) und Zwergrost (*Puccinia hordei* Otth). Genetic resources and crop evolution, (16), 231-241
- Nover, I., Lehmann, C.O. (1972). Resistenzeigenschaften im Gersten- und Weizensortiment Gatersleben. 14. Pr
 üfung von Sommergersten auf ihr Verhalten gegen Mehltau (*Erysiphe graminis* DC. f.sp. *hordei* Marchal). Genetic resources and crop evolution, (19), 283-298
- Nover, I., Lehmann, C.O. (1973). Resistenzeigenschaften im Gersten- und Weizensortiment Gatersleben. 17. Pr
 üfung von Sommergersten auf ihr Verhalten gegen Mehltau (*Erysiphe graminis* DC. f.sp. *hordei* Marchal). Genetic resources and crop evolution, (21), 275-294
- Oerke, E. C., Dehne, H. W. (1997). Global crop production and the efficacy of crop protection - Current situation and future trends. European Journal of Plant Pathology, 103(3), 203-215.
- Oraguzie, N. C., Rikkerink, E. H. A., Gardiner, S. E., de Silva, H.N. (2007). Association mapping in plants. Springer Verlag.
- Peterhansel, C., Freialdenhoven, A., Kurth, J., Kolsch, R., Schulze-Lefert, P. (1997). Interaction Analyses of Genes Required for Resistance Responses to Powdery Mildew in Barley Reveal Distinct Pathways Leading to Leaf Cell Death. Plant Cell, 9(8), 1397-1409.
- Piffanelli, P., Ramsay, L., Waugh, R., Benabdelmouna, A., D'Hont, A., Hollricher, K., Jørgensen, J.H., Schulze-Lefert, P., Panstruga[,] R. (2004). A barley cultivationassociated polymorphism conveys resistance to powdery mildew. Nature, 430(7002), 887-891.
- Piffanelli, P., Zhou, F., Casais, C., Orme, J., Jarosch, B., Schaffrath, U., Collins, N.C., Panstruga, R., Schulze-Lefert, P. (2002). The barley MLO modulator of defense and cell death is responsive to biotic and abiotic stress stimuli. Plant Physiol, 129(3), 1076-1085.
- Pritchard, J. K., Rosenberg, N. A. (1999). Use of unlinked genetic markers to detect population stratification in association studies. American Journal of Human Genetics, 65(1), 220-228.

- Pritchard, J. K., Stephens, M., Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics, 155(2), 945-959.
- Pritchard, J. K., Stephens, M., Rosenberg, N. A., Donnelly, P. (2000b). Association mapping in structured populations. American Journal of Human Genetics, 67(1), 170-181.
- Pryce-Jones, E., Carver, T., Gurr, S. J. (1999). The roles of cellulase enzymes and mechanical force in host penetration by Erysiphe graminis f.sp hordei. Physiological and Molecular Plant Pathology, 55(3), 175-182.
- Ravanel, S., Gakiere, B., Job, D., Douce, R. (1998). The specific features of methionine biosynthesis and metabolism in plants. Proc Natl Acad Sci U S A, 95(13), 7805-7812.
- Ridout, C. J., Skamnioti, P., Porritt, O., Sacristan, S., Jones, J. D., Brown, J. K. (2006).
 Multiple avirulence paralogues in cereal powdery mildew fungi may contribute to parasite fitness and defeat of plant resistance. Plant Cell, 18(9), 2402-2414.
- Risch, N. J. (2000). Searching for genetic determinants in the new millennium. Nature, 405(6788), 847-856.
- Ritland, K. (1996). A marker-based method for inferences about quantitative inheritance in natural populations. Evolution, 50, 1062-1073.
- Rostoks, N., Ramsay, L., MacKenzie, K., Cardle, L., Bhat, P. R., Roose, M. L., Jan T. Svensson, J.T., Stein, N., Varshney, R.K., Marshall, D.F., Graner, A., Close, T.J., Waugh, R. (2006 b). Recent history of artificial outcrossing facilitates whole-genome association mapping in elite inbred crop varieties. Proc Natl Acad Sci U S A, 103(49), 18656-18661.
- Rostoks, N., Schmierer, D., Mudie, S., Drader, T., Brueggeman, R., Caldwell, D. G., Waugh, R., Kleinhofs, A. (2006 a). Barley necrotic locus nec1 encodes the cyclic nucleotide-gated ion channel 4 homologous to the Arabidopsis HLM1. Mol Genet Genomics, 275(2), 159-168.
- Rozas, J., Rozas, R. (1995). DnaSP, DNA sequence polymorphism: an interactive program for estimating population genetics parameters from DNA sequence data. Comput Appl Biosci, 11(6), 621-625.
- Runeberg-Roos, P., Kervinen, J., Kovaleva, V., Raikhel, N. V., Gal, S. (1994). The aspartic proteinase of barley is a vacuolar enzyme that processes probarley lectin in vitro. Plant Physiol, 105(1), 321-329.

- Runeberg-Roos, P., Tormakangas, K., Ostman, A. (1991). Primary structure of a barleygrain aspartic proteinase. A plant aspartic proteinase resembling mammalian cathepsin D. Eur J Biochem, 202(3), 1021-1027.
- Schlösser, E. (1997). Allgemeine Phytopathologie. Georg Thieme Verlag, Stuttgart.
- Schultheiss, H., Dechert, C., Kogel, K. H., Huckelhoven, R. (2002). A small GTP-binding host protein is required for entry of powdery mildew fungus into epidermal cells of barley. Plant Physiol, 128(4), 1447-1454.
- Schweizer, P., Vallélian-Bindschedler, L., Mösinger, E. (1995). Heat-induced resistance in barley to the powdery mildew fungus Erysiphe graminis f.sp. hordei. Physiological and Molecular Plant Pathology, 47, 51-66
- Schweizer, P., Pokorny, J., Abderhalden, O., Dudler, R. (1999). A transient assay system for the functional assessment of defense-related genes in wheat. Molecular Plant-Microbe Interactions, 12(8), 647-654.
- Sharbel, T. F., Haubold, B., Mitchell-Olds, T. (2000). Genetic isolation by distance in Arabidopsis thaliana: biogeography and postglacial colonization of Europe. Molecular Ecology, 9(12), 2109-2118.
- Shen, Q. H., Saijo, Y., Mauch, S., Biskup, C., Bieri, S., Keller, B., Seki, H., Ülker, B., Somssich, I.E., Schulze-Lefert, P. (2007). Nuclear activity of MLA immune receptors links isolate-specific and basal disease-resistance responses. Science, 315(5815), 1098-1103.
- Shen, Q. H., Zhou, F., Bieri, S., Haizel, T., Shirasu, K., Schulze-Lefert, P. (2003). Recognition specificity and RAR1/SGT1 dependence in barley Mla disease resistance genes to the powdery mildew fungus. Plant Cell, 15(3), 732-744.
- Snowdon, R. J., Friedt, W. (2004). Molecular markers in Brassica oilseed breeding: current status and future possibilities. Plant Breeding, 123(1), 1-8.
- Stam, P. (1993). Construction of Integrated Genetic-Linkage Maps by Means of a New Computer Package Joinmap. Plant Journal, 3(5), 739-744.
- Stein, N., Prasad, M., Scholz, U., Thiel, T., Zhang, H., Wolf, M., Kota, R., Varshney, R.K., Perovic, D., Grosse, I., Graner, A. (2007). A 1,000-loci transcript map of the barley genome: new anchoring points for integrative grass genomics. Theor Appl Genet, 114(5), 823-839.

- Stracke, S., Presterl, T., Stein, N., Perovic, D., Ordon, F., Graner, A. (2007). Effects of introgression and recombination on haplotype structure and linkage disequilibrium surrounding a locus encoding Bymovirus resistance in barley. Genetics, 175(2), 805-817.
- Sundaram, S., Rathinasabapathi, B., Ma, L. Q., Rosen, B. P. (2008). An arsenateactivated glutaredoxin from the arsenic hyperaccumulator fern Pteris vittata L. regulates intracellular arsenite. J Biol Chem, 283(10), 6095-6101.
- Susi, P., Hohkuri, M., Wahlroos, T., Kilby, N. J. (2004). Characteristics of RNA silencing in plants: similarities and differences across kingdoms. Plant Molecular Biology, 54(2), 157-174.
- Tajima, F. (1989). Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics, 125, 585-595.
- Thiel, T., Kota, R., Grosse, I., Stein, N., Graner, A. (2004). SNP2CAPS: a SNP and INDEL analysis tool for CAPS marker development. Nucleic Acids Res, 32(1)
- Tijsterman, M., Ketting, R. F., Plasterk, R. H. A. (2002). The genetics of RNA silencing. Annual Review of Genetics, 36, 489-519.
- Trujillo, M., Altschmied, L., Schweizer, P., Kogel, K. H., Huckelhoven, R. (2006). Respiratory Burst Oxidase Homologue A of barley contributes to penetration by the powdery mildew fungus Blumeria graminis f. sp hordei. Journal of Experimental Botany, 57(14), 3781-3791.
- Van Ooijen, J. W. (2006). JoinMap ® 4, Software for the calculation of genetic linkage maps in experimental populations. Kyazma B.V., Wageningen, Netherlands.
- Von Ropenack, E., Parr, A., Schulze-Lefert, P. (1998). Structural analyses and dynamics of soluble and cell wall-bound phenolics in a broad spectrum resistance to the powdery mildew fungus in barley. J Biol Chem, 273(15), 9013-9022.
- Waspi, U., Misteli, B., Hasslacher, M., Jandrositz, A., Kohlwein, S. D., Schwab, H., Dudler, R. (1998). The defense-related rice gene Pir7b encodes an alpha/beta hydrolase fold protein exhibiting esterase activity towards naphthol AS-esters. Eur J Biochem, 254(1), 32-37.
- Wei, F., Wing, R. A., Wise, R. P. (2002). Genome dynamics and evolution of the Mla (powdery mildew) resistance locus in barley. Plant Cell, 14(8), 1903-1917.

- Weschke, W., Panitz, R., Gubatz, S., Wang, Q., Radchuk, R., Weber, H., Wobus, U. (2003). The role of invertases and hexose transporters in controlling sugar ratios in maternal and filial tissues of barley caryopses during early development. Plant J, 33(2), 395-411.
- Wright, A. J., Thomas, B. J., Carver, T. L. W. (2002). Early adhesion of Blumeria graminis to plant and artificial surfaces demonstrated by centrifugation. Physiological and Molecular Plant Pathology, 61(4), 217-226.
- Yano, A., Kodama, Y., Koike, A., Shinya, T., Kim, H. J., Matsumoto, M., Ogita, S., Wada, Y., Ohad, N., Sano, H. (2006). Interaction between methyl CpG-binding protein and ran GTPase during cell division in tobacco cultured cells. Ann Bot (Lond), 98(6), 1179-1187.
- Zhang, H., Sreenivasulu, N., Weschke, W., Stein, N., Rudd, S., Radchuk, V., Potokina,
 E., Scholz, U., Schweizer, P., Zierold, U., Langridge, P., Varshney, R.K.,
 Wobus, U., Graner, A. (2004). Large-scale analysis of the barley transcriptome based on expressed sequence tags. Plant J, 40(2), 276-290.
- Zhang, Z., Henderson, C., Perfect, E., Carver, T. L. W., Thomas, B. J., Skamnioti, P., Gurr, S. J. (2005). Of genes and genomes, needles and haystacks: Blumeria graminis and functionality. Molecular Plant Pathology, 6(5), 561-575.
- Zierold, U. (2005). Transkriptomanalyse mehltaubefallener Gerstenepidermis in Abhängigkeit des mlo-Resistenzgens. Dissertation. Martin-Luther-Universität Halle-Wittenberg
- Zierold, U., Scholz, U., Schweizer, P. (2005). Transcriptome analysis of mlo-mediated resistance in the epidermis of barley. Molecular Plant Pathology, 6(2), 139-151.
- Zimmermann, G., Baumlein, H., Mock, H. P., Himmelbach, A., Schweizer, P. (2006).The multigene family encoding germin-like proteins of barley. Regulation and function in basal host resistance. Plant Physiology, 142(1), 181-19

Test-Nr:	A kzessions- Nr:	CMIA (78P)	½ VB (78P)	CMIA (D12/12)	½ VB (D12/12))	Mittelwert (CMIA) beider Isolate
1	HOR 305	11,81		10,63		11,22
2	HOR 997	26,75		29,81		28,28
3	HOR 1007	5,75		15,06		10,41
4	HOR 1013	26,31		29,56		27,94
5	HOR 4413	18,31		20,69		19,50
6	HOR 42	2,50	0,00	2,50	0,00	2,50
7	HOR 138	43,16	6,09	38,94	15,00	41,05
8	HOR 200	35,19	2,81	37,53	0,47	36,36
9	HOR 214	28,53	8,53	11,76	1,14	20,15
10	HOR 260	43,63	0,94	39,19	26,94	41,41
11	HOR 201	2,50	0,00	24,00	10,19	15,28
12	HOR 202	15,44 30/11	7,09	19,72	4,22	10,38
13	HOR 203	30,41	3,10	26.31	6.06	28.36
15	HOR 683	13 58	1 33	13 31	5 94	13 45
16	HOR 728	5.75	0.00	13.66	3.03	9.70
17	HOR 736	16.69	4.44	5.75	3.25	11.22
18	HOR 795	7,97	5,47	8,19	5,69	8,08
19	HOR 800	18,69	4,81	22,31	7,25	20,50
20	HOR 802	55,34	6,09	19,66	15,53	37,50
21	HOR 803	59,09	7,03	36,38	11,25	47,73
22	HOR 804	19,19	15,06	3,31	0,81	11,25
23	HOR 805	58,31	10,94	24,94	22,44	41,63
24	HOR 806	23,75	8,25	20,25	17,75	22,00
25	HOR 811	38,03	14,03	36,13	3,75	37,08
26	HOR 813	49,88	0,63	33,31	14,06	41,59
27	HOR 831	38,22	2,78	29,28	0,28	33,75
28	HOR 842	5,58 14,62	1,08	3,38 26.75	1,08	3,38
29	HOR 843	14,03	12,13	20,73	11,23	20,09
31	HOR 847	29.56	5.63	30.97	1,41	30.27
32	HOR 878	29,30	3,63	33 78	4 22	29.05
33	HOR 1036	3 31	0.81	3 31	0.81	3 31
34	HOR 1135	17,66	5,84	24,31	8.06	20,98
35	HOR 1159	20,69	8,88	12,41	5,03	16,55
36	HOR 1166	28,16	7,03	16,25	8,88	22,20
37	HOR 1188	15,43	12,93	23,91	7,66	19,67
38	HOR 1379	7,97	3,84	11,88	3,63	9,92
39	HOR 1454	24,31	10,88	9,59	7,09	16,95
40	HOR 1457	2,50	0,00	3,58	1,08	3,04
41	HOR 1468	21,34	11,04	21,23	8,33	21,28
42	HOR 1506	2,50	0,00	2,50	0,00	2,50
43	HOR 1581	22,44	2,69	39,41	5,16	30,92
44	HOR 1646	32,38	5,63	36,59	1,41	34,48
45	HOR 164/	2,50	0,00	3,31	0,81	2,91
40	HOR 10//	4,72	2,22	4,72	12.66	4,72
47	HOR 1873	17.66	9,97	30.03	6.09	23,84
40	HOR 1894	13.84	2,02 8,09	17.85	13 72	15 84
50	HOR 2543	4 94	0.81	7 06	4 56	6 00
51	HOR 2551	2.50	0.00	2.50	0.00	2.50
52	HOR 2556	2,50	0.00	2.50	0.00	2,50
53	HOR 2558	2,50	0,00	2,50	0,00	2,50
54	HOR 2573	2,50	0,00	2,50	0,00	2,50
55	HOR 2591	4,13	1,63	2,50	0,00	3,31
56	HOR 2596	49,72	11,72	20,25	17,75	34,98
57	HOR 2826	38,00	0,00	26,75	11,25	32,38

Boniturwerte aller analysierter Akzessionen

Test-Nr:	Akzessions- Nr:	CMIA (78P)	½ VB (78P)	C M I A (D12/12)	½ VB (D12/12))	Mittelwert (CMIA) beider Isolate
58	HOR 2932	4,13	1,63	4,94	2,44	4,53
59	HOR 2937	5,53	3,03	7,88	5,38	6,70
60	HOR 2940	32,38	5,63	15,44	11,31	23,91
61	HOR 2941	2,50	0,00	2,50	0,00	2,50
62	HOR 3000	36,59	1,41	42,69	4,69	39,64
63	HOR 3025	2,50	0,00	2,50	0,00	2,50
64	HOR 3028	2,50	0,00	2,50	0,00	2,50
65	HOR 3034	39,88	1,88	19,78	17,28	29,83
66	HOR 3036	2,50	0,00	2,50	0,00	2,50
67	HOR 3041	21,60	7,96	13,22	10,72	17,41
68	HOR 3044	31,57	6,43	20,25	17,75	25,91
69	HOR 3052	43,25	2,25	21,90	11,60	32,58
70	HOR 3075	5,10	2,60	2,50	0,00	3,80
71	HOR 3210	2,50	0,00	2,50	0,00	2,50
72	HOR 3270	2,50	0,00	2,50	0,00	2,50
73	HOR 3271	25,13	12,88	13,00	10,50	19,06
74	HOR 3272	34,72	5,16	31,97	29,47	33,34
75	HOR 3275	40,34	2,34	37,66	23,78	39,00
76	HOR 3280	2,50	0,00	2,50	0,00	2,50
77	HOR 3537	2,50	0,00	2,50	0,00	2,50
78	HOR 3540	2,50	0,00	2,50	0,00	2,50
79	HOR 3726	2,50	0,00	2,50	0,00	2,50
80	HOR 3817	51,13	24,38	57,69	17,81	54,41
81	HOR 3866	49,25	11,25	30,50	/,50	39,88
82	HOR 3941	61,44	9,38	59,09	16,41	60,27
83	HOR 3962	28,16	7,03	37,06	4,69	32,61
84	HOR 3983	9,00	6,50	6,56 14,25	0,81	/,/8
83 96	HOR 3964	9,81	0,81	14,23	5,05 7,01	12,05
80 87	HOR 3988	17,44	14,94	10,41	7,91	13,92
0/ 80	HOR 3997	41,28	0,09	43,03	2,34	43,10
80	HOR 4020	2 50	0,00	20,23	163	3 3 1
90	HOR 4021	19 50	0,00 4 44	38 59	4 09	29.05
91	HOR 4031	55 34	10.78	60.03	15 47	57.69
92	HOR 4047	50.66	1 41	41.28	3 28	45 97
93	HOR 4060	75 50	0.00	54 41	16 41	64 95
94	HOR 4062	48 71	10 71	46.04	8 04	47.38
95	HOR 4063	47.38	1.88	62.38	5.63	54.88
96	HOR 4064	41.62	1.74	50.72	3.35	46.17
97	HOR 4077	35,19	2,81	38,00	0,00	36.59
98	HOR 4259	2,50	0,00	2,50	0,00	2,50
99	HOR 4260	23,94	0,00	25,13	7,25	24,53
100	HOR 4266	61,44	0,00	63,78	2,34	62,61
101	HOR 4281	2,50	0,00	2,50	0,00	2,50
102	HOR 4282	61,44	14,06	46,91	5,16	54,17
103	HOR 4400	21,50	8,06	23,25	5,38	22,38
104	HOR 4401	60,97	7,03	52,53	7,97	56,75
105	HOR 4405	75,50	0,00	75,50	0,00	75,50
106	HOR 4406	66,13	4,69	49,72	7,03	57,92
107	HOR 4407	75,50	0,00	55,19	7,81	65,34
108	HOR 4408	2,50	0,00	2,50	0,00	2,50
109	HOR 4414	51,13	24,38	37,67	2,48	44,40
110	HOR 4415	43,16	13,59	50,19	15,94	46,67
111	HOR 4416	42,22	9,84	57,69	17,81	49,95
112	HOR 4850	42,84	7,66	41,13	0,63	41,98
K	Ingrid	57,70	3,11	53,10	4,30	55,40

ACC-Oxidase (CA023817)

SNP1	SNP2	SNP3	SNP4	SNP5	SNP6	SNP7	SNP8	SNP9	SNP10	
Intron	Exon	Exon	Exon	Exon	Intron	5'UTR	5'UTR	5'UTR	5'UTR	
283	173	155	150	147	125- 126	64	-23	-48	-58	
С	Т	Т	G	С	TA	G	G	Т	C	H1
С	Т	Т	G	С	TA	G	Ν	Ν	Ν	H2
С	Т	Т	G	С	TA	Т	G	Т	С	H3
С	Т	Т	G	G	TA	G	G	Т	С	H4
Т	А	DEL	Α	С	DEL	G	С	G	Т	Н5
Т	А	Т	Α	С	DEL	G	С	G	Т	H6
Т	Т	Т	G	С	TA	G	С	Т	С	Η7
Т	Т	Т	G	С	TA	G	G	Т	С	H8

Alpha-beta-Hydrolase

Keine Ang	aben über Pos	itionen, da es s	sich hier um e	in anonymisi	ertes Gen ha	ndelt
SNP1	SNP2	SNP3	SNP4	SNP5	SNP6	
С	А	Т	С	Т	Т	H1
С	G	С	С	А	G	H2
Т	G	С	Т	Α	G	H3

Positionsangaben der SNP beziehen sich auf das erste Methionin des blast-x Ergebnisses der vorhandenen Sequenz (wenn keine abweichenden Angaben gemacht wurden)

Aspartate protease gene (X56136)

SNP1	SNP2	SNP3	SNP4	SNP5	SNP6	SNP7	SNP8	SNP9	SNP10	SNP11	SNP12	SNP13	SNP14	SNP15	SNP16	SNP17	SNP18	SNP19	SNP20	
Intron	Exon	Exon	Intron																	
827-																				
828	840	860	964	973	978	983	1007	975	993	1035	1097	1119	1216	1228	1243	1249	1272	1313	1378	
AT	С	G	Т	G	Т	Т	Т	G	С	Α	С	С	А	А	С	Т	Т	Т	Т	H1
AT	Т	G	Т	G	Т	Т	Т	G	С	А	С	Т	Α	А	С	Т	Т	Т	Т	H2
AT	Т	G	Т	G	Т	Т	Т	G	С	А	С	Т	Т	Α	С	Т	Т	Т	Т	H3
AT	Т	G	Т	G	Т	Т	Т	G	С	А	C	Т	Α	А	С	Т	Т	Т	Т	H4
DEL	С	С	Α	Т	Т	С	Т	А	С	А	Т	Т	Т	G	Т	DEL	Т	Т	Т	Н5
DEL	С	С	Α	Т	Т	С	С	А	С	А	Т	Т	Т	G	Т	DEL	Т	Т	Т	H6
DEL	С	С	Α	Т	Т	С	Т	А	С	А	С	Т	Т	G	С	DEL	С	А	Т	H7
DEL	С	С	Α	Т	Т	С	Т	А	С	А	С	Т	Т	G	С	DEL	Т	Т	Т	H8
DEL	С	С	Α	Т	Т	С	Т	А	Т	А	С	Т	Т	G	С	DEL	Т	Т	Т	H9
DEL	С	С	А	Т	Т	С	Т	А	С	G	С	Т	Т	G	С	DEL	Т	Т	Т	H10
DEL	С	С	А	Т	C	С	Т	А	С	Α	C	Т	Т	G	С	DEL	Т	Т	Т	H11
DEL	С	С	А	Т	Т	С	Т	А	С	А	С	Т	Т	G	С	DEL	Т	Т	С	H12

BAS1 (Z34917)

Intron

-41 - -81 (gezählt vom ersten ATG in vorhandener Sequenz) TCCTTGCGCGAGCAAAACTGTGCTCGGCCCGGATGATAATT DEL

DAX			023042	,				
SNP1	SNP2	SNP3	SNP4	SNP5	SNP6	SNP7	SNP8	
		598-						
253	439	599	661	711	712	736	754	
Intron	Exon	Intron	Intron	Intron	Intron	Intron	Intron	
С	С	CG	С	Α	Т	С	С	H1
С	С	CG	С	G	Т	С	С	H2
Т	С	DEL	Т	G	С	С	С	H3
Т	С	DEL	Т	G	G	С	С	H4
Т	С	CG	С	А	С	С	С	Н5
Т	С	CG	С	А	Т	С	С	H6
Т	С	CG	С	А	Т	С	Т	H7
Т	С	CG	С	А	Т	Т	С	H8
Т	Т	CG	С	А	С	С	С	Н9

BAX-Inhibitor 1 (AJ290421)

Calreticulin (L27349)

Exon	Intron	Intron	Exon	Exon	Exon	Intron									
397	317	312	250	177	473	516	618	648	675	773	819	849	861	889	
SNP1	SNP2	SNP3	SNP4	SNP5	SNP6	SNP7	SNP8	SNP9	SNP10	SNP11	SNP12	SNP13	SNP14	SNP15	
Α	G	А	Т	G	С	С	С	Α	Т	G	Α	Т	С	G	H1
Α	G	Α	Т	G	С	Т	С	А	Т	G	Α	Т	С	G	H2
Α	Т	Α	Т	G	С	Т	С	А	Т	G	А	Т	С	G	H3
Α	Т	А	Т	G	С	Т	С	А	Т	Т	А	Т	С	G	H4
G	Α	А	Т	G	С	Т	С	G	С	G	Α	Т	Т	G	H5
G	G	A	С	А	С	Т	С	G	С	G	С	Т	С	G	Н6
G	G	А	Т	G	С	Т	С	G	С	G	А	С	С	G	H7
G	G	А	Т	G	С	Т	С	G	С	G	А	Т	С	G	H8
G	G	А	Т	G	С	Т	С	G	С	G	А	Т	Т	G	H9
G	G	G	Т	G	А	Т	Т	G	С	G	А	Т	Т	А	H10

Glutar	edoxin	(contig	23773)				
Intron	Intron	Intron	Intron	Intron	Intron	Intron	
181-							Gezählt vom ersten ATG
182	212	221	226	235	240	266	in vorhandener Sequenz
SNP1	SNP2	SNP3	SNP4	SNP5	SNP6	SNP7	
DEL	С	Α	G	С	G	Α	H1
DEL	С	Α	G	С	Т	Α	H2
DEL	Т	G	С	С	Т	Α	Н3
DEL	Т	G	С	G	Т	Α	H4
TT	Т	G	С	C	Т	G	H5

Oxidoreductase (BU983076)

Intron	Exon	Exon															
562	572	612	618	641	653	657	671	702	709	714	715	721	729	732	794	825	
SNP1	SNP2	SNP3	SNP4	SNP5	SNP6	SNP7	SNP8	SNP9	SNP10	SNP11	SNP12	SNP13	SNP14	SNP15	SNP16	SNP17	
А	С	G	А	С	А	Т	А	А	А	С	А	С	С	С	G	G	H1
А	G	G	А	С	А	Т	А	А	А	С	А	С	С	С	G	G	H2
А	G	G	А	Т	G	А	А	А	А	С	А	С	Т	С	G	G	H3
А	G	G	А	Т	G	А	А	А	Т	C	А	С	С	С	G	G	H4
А	G	G	G	С	А	Т	А	А	Α	С	А	С	С	С	G	G	H5
G	G	А	А	С	А	Т	G	С	Т	А	G	С	С	G	G	С	H6
G	G	G	А	С	А	Т	G	С	Т	А	G	С	С	С	G	С	H7
G	G	G	А	С	А	Т	G	С	Т	А	G	С	С	G	G	С	H8
G	G	G	А	С	А	Т	G	С	Т	А	G	С	С	G	G	С	H9
G	G	G	А	С	А	Т	G	С	Т	А	G	G	С	С	G	С	H10
G	G	G	А	С	А	Т	G	С	Т	C	А	C	С	С	А	G	H11

LLRK	(CD058363)
------	------------

Exon																					
615	616	621	624	636	637	649	651	669	672	688	689	717	720	729	730	733	744	756	759	771	
SNP1	SNP2	SNP3	SNP4	SNP5	SNP6	SNP7	SNP8	SNP9	SNP10	SNP11	SNP12	SNP13	SNP14	SNP15	SNP16	SNP17	SNP18	SNP19	SNP20	SNP21	
А	Т	С	А	G	G	А	С	С	С	С	G	G	Т	С	А	С	С	Т	А	Т	H1
А	Т	С	А	G	G	А	С	С	С	С	Т	G	Т	С	А	С	С	Т	А	Т	H2
А	Т	С	G	G	G	А	С	С	С	С	G	G	Т	С	А	С	С	Т	А	Т	Н3
А	Т	С	А	G	С	А	С	С	С	С	G	G	Т	С	А	С	С	Т	А	Т	H4
G	С	Т	А	С	G	G	G	Т	Т	Т	G	А	С	Т	G	Т	А	C	С	G	Н5

LSD1 (TC148045)

Exon	Intron	Exon	Intron	-						
128	158	186	214	253	332	369	390	409	-13	
SNP1	SNP2	SNP3	SNP4	SNP5	SNP6	SNP7	SNP8	SNP9	SNP10	
А	С	G	С	А	G	А	Т	С	С	H1
G	С	G	С	А	Α	А	Т	С	С	H2
G	С	G	С	А	G	А	Т	С	С	H3
G	С	G	С	А	G	А	Т	С	G	H4
G	С	G	С	А	G	G	Т	С	G	Н5
G	С	Т	C	G	G	А	Т	С	С	Н6
G	Т	G	А	А	G	А	Т	С	С	H7
G	Т	G	С	А	G	А	DEL	С	С	H8
G	Т	G	С	А	G	А	DEL	Т	C	H9

LSD1 (EU545232)

Intron	Intron	Intron	Intron	Intron	Intron	Intron								
146	180	246	337	464	467	472	528-554	575	583	590	229	377	384	
SNP1	SNP2	SNP3	SNP4	SNP5	SNP6	SNP7	SNP8	SNP9	SNP10	SNP11	SNP12	SNP13	SNP14	
Α	Α	Α	Α	G	G	Α	AATTATGGAGGATTTGAATCCGTAGG	Т	Α	Т	G	G	С	H1
Α	Α	Α	G	Α	G	G	AATTATGGAGGATTTGAATCCGTAGG	Т	Α	С	Α	G	С	H2
Α	Α	Α	G	Α	G	G	AATTATGGAGGATTTGAATCCGTAGG	Т	Α	С	G	G	С	H3
Α	Α	Α	G	G	Α	G	AATTATGGAGGATTTGAATCCGTAGG	Т	Α	Т	G	G	С	H4
Α	Α	Α	G	G	G	Α	AATTATGGAGGATTTGAATCCGTAGG	Т	Α	Т	G	G	С	H5
Α	Α	Α	G	G	G	G	AATTATGGAGGATTTGAATCCGTAGG	Α	А	Т	G	G	С	H6
Α	Α	Α	G	G	G	G	AATTATGGAGGATTTGAATCCGTAGG	Т	Α	Т	G	G	С	H7
А	А	А	G	G	G	G	AATTATGGAGGATTTGAATCCGTAGG	Т	Α	Т	G	G	Т	H8
Α	Α	Α	G	G	G	G	AATTATGGAGGATTTGAATCCGTAAG	Т	Α	Т	G	G	С	H9
Α	Α	G	G	G	G	G	DEL	Т	G	С	G	С	С	H10
A	С	Α	G	G	G	G	AATTATGGAGGATTTGAATCCGTAGG	Т	Α	С	G	G	С	H11
G	Α	Α	G	G	G	G	AATTATGGAGAATTTGAATCCGTAGG	Т	Α	Т	G	G	С	H12

MBD10 (contig3489)

Exon	Exon	Intron														
191	226	365	372	374	375	411	425	436	496	501	511	522	531	570	574	
SNP1	SNP2	SNP3	SNP4	SNP5	SNP6	SNP7	SNP8	SNP9	SNP10	SNP11	SNP12	SNP13	SNP14	SNP15	SNP16	
С	Т	C	G	Т	С	С	Т	G	С	G	Α	G	С	С	С	H1
G	С	С	G	Α	С	Т	Α	С	С	G	С	G	С	С	С	H2
G	Т	Α	G	Α	С	С	Т	С	С	G	С	G	С	С	С	Н3
G	Т	С	А	Т	С	С	Т	G	С	G	С	Т	С	С	С	H4
G	Т	С	G	Α	С	С	Т	С	С	G	С	G	С	С	С	H5
G	Т	С	G	Α	С	С	Т	С	С	G	С	G	Т	С	С	H6
G	Т	С	G	А	С	С	Т	Т	С	G	С	G	С	С	С	H7
G	Т	С	G	Α	С	Т	Α	С	С	А	С	G	С	С	С	H8
G	Т	С	G	Α	С	Т	А	С	С	G	С	G	С	Т	С	H9
G	Т	С	G	Α	С	Т	Α	С	Т	G	С	G	С	С	Т	H10
G	Т	С	G	Т	С	С	Т	G	С	G	А	G	С	С	С	H11
G	Т	C	G	Т	Т	C	Т	G	С	G	С	G	С	С	C	H12

Methionin-Synthase 2

Keine Angaben über Positionen, da es sich hier um ein anonymisiertes Gen handelt

MIR6

(CA018053)

(0/10	10000	,													
Intro	Intro	Intro			Intro	Intro	Intro	Intro		Intro	Intro	Intro	Intro	Intro	
n	n	n	Exon	Exon	n	n	n	n	Intron	n	n	n	n	n	
472	432	423	389	329	279	246	255	257	261-332	675	708	730	881	1159	
										SNP1	SNP1	SNP1	SNP1	SNP1	
SNP1	SNP2	SNP3	SNP4	SNP5	SNP6	SNP7	SNP8	SNP9	SNP10	1	2	3	4	5	
С	А	А	Т	С	С	G	Т	G	DEL	Т	G	Т	Т	Т	H1
С	А	Α	Т	С	С	G	Т	Т	DEL	С	Т	С	G	Т	H2
С	А	Α	Т	Т	С	G	Т	Т	DEL	С	Т	С	G	Т	H4
С	А	G	Α	С	С	G	G	Т	DEL	С	Т	С	G	Т	H5
									AAATAAGCAGTGGTTTTCCTG						
C	Δ	G	Δ	C	G	G	т	т	TTGGATGGCTCCTCTTTATTTT	С	т	C	G	т	
C	Α	U	Δ	C	U	U	1	1	TCTTTTATTTCAGTTCTTGCTT	C	-	C		-	
									GACCTA						H6
С	А	G	Т	С	С	Α	Т	Т	DEL	С	Т	С	G	С	H7
C	А	G	Т	С	C	G	Т	Т	DEL	C	Т	C	G	С	H8
Т	G	Α	Т	С	Т	G	Т	Т	DEL	С	Т	C	G	Т	H11
															H3, H9 un

H3, H9 und H10 gelöscht

12 01	0100	luotas		501011)					
Intron	Intron	Intron	Intron	Intron	Intron	Exon	Exon	Exon	Exon	
109	143	155	159	193	200	484	522	455	478	
SNP1	SNP2	SNP3	SNP5	SNP6	SNP7	SNP8	SNP9	SNP10	SNP11	
Α	G	Т	Α	Α	С	G	Α	С	Т	H1
Ν	G	Α	А	А	Α	G	Α	С	Т	H2
Т	С	Т	А	С	С	G	С	С	Т	H4
Т	G	Α	А	Α	Α	Α	Α	С	Т	H5
Т	G	Т	Α	Α	Α	G	Α	С	Т	H7
Т	G	Т	Α	Α	С	G	Α	А	Т	H8
Т	G	Т	Α	Α	С	G	Α	С	Т	H9
Т	G	Т	Α	Α	С	G	Ν	С	Т	H10
Т	G	Т	Α	А	G	G	Α	С	Т	H11
Т	G	Т	Α	С	С	G	Α	С	Т	H12
Т	G	Т	G	С	С	G	Α	С	С	H13
										H3 und H6 gelöscht

12-OPD-reductase (CK567317)

Peroxyredoxin (TC131600)

Exon	Exon	Exon	Exon	Exon	Intron	
157	175	179	216	499	529	
SNP1	SNP2	SNP3	SNP4	SNP5	SNP6	
А	Т	А	G	G	G	H1
С	Α	Т	G	G	G	H2
С	Т	А	Α	G	G	H3
С	Т	А	А	Т	G	H4
С	Т	А	G	G	С	H5
С	Т	А	G	G	G	H6

unknown

Keine Angaben über Positionen, da es sich hier um ein anonymisiertes Gen handelt

						••••••			,	•••••••													
SNP1	SNP2	SNP3	SNP4	SNP5	SNP6	SNP7	SNP8	SNP9	SNP10	SNP11	SNP12	SNP13	SNP14	SNP15	SNP16	SNP17	SNP18	SNP19	SNP20	SNP21	SNP22	SNP23	SNP24
С	С	Т	G	С	С	А	С	С	А	А	DEL	Т	А	С	G	С	G	G	Т	Т	Т	G	А
С	С	Т	G	С	С	С	С	С	А	А	DEL	Т	А	С	А	С	G	G	Т	Т	Т	G	Α
С	С	Т	G	С	С	С	С	С	А	А	DEL	Т	А	С	G	С	G	G	Т	Т	Т	G	А
С	С	Т	G	С	С	С	С	С	Α	А	DEL	Т	А	С	G	С	G	G	Т	Т	Т	G	Α
С	C	Т	G	С	C	С	С	С	G	А	DEL	С	А	С	G	С	G	G	Т	Т	Т	G	Α
С	Т	С	С	С	Т	Α	С	С	А	А	DEL	Т	А	С	G	С	G	G	Т	Т	Т	G	А
С	Т	С	G	С	Т	Α	С	С	А	А	DEL	Т	А	С	G	А	G	G	Т	Т	Т	G	Α
С	Т	С	G	С	Т	Α	С	С	А	А	DEL	Т	А	С	G	С	G	G	G	Т	Т	G	Α
С	Т	С	G	С	Т	Α	С	С	А	А	DEL	Т	А	С	G	С	G	G	Т	G	Т	G	Α
С	Т	С	G	С	Т	Α	С	С	А	А	DEL	Т	А	С	G	С	G	G	Т	Т	Т	G	Α
Т	С	С	С	Т	Т	Α	С	С	А	А	TACG	Т	А	С	G	С	G	Α	Т	Т	С	G	Α
Т	С	С	С	Т	Т	Α	С	С	А	А	TACG	Т	А	С	G	С	G	Α	Т	Т	Т	G	А
Т	С	С	С	Т	Т	Α	Т	G	А	Т	DEL	Т	Т	G	G	С	С	А	Т	Т	Т	С	G

Fortsetzung von Tabelle unknown

Keine Angaben über Positionen, da es sich hier um ein anonymisiertes Gen handelt

SNP25	SNP26	SNP27	SNP28	SNP29	SNP30	SNP31	SNP32	SNP33	SNP34	
С	DEL	DEL	А	DEL	DEL	DEL	CTTCTT	GGCGTCGTC	TTTCTT	H1
С	DEL	DEL	А	DEL	DEL	DEL	CTTCTT	GGCGTCGTC	TTTCTT	H2
С	DEL	DEL	А	DEL	DEL	DEL	CTTCTT	GGCGTCGTC	TTTCTT	H3
С	С	ACC	G	Т	CTTCTT	GTCG	CTTCTT	GGCGTCGTC	TTTCTT	H4
С	С	ACC	G	Т	CTTCTT	GTCG	CTTCTT	GGCGTCGTC	TTTCTT	H5
С	С	ACC	G	Т	CTTCTT	GTCG	CTTCTT	GGCGTCGTC	TTTCTT	H6
С	С	ACC	G	Т	CTTCTT	GTCG	CTTCTT	GGCGTCGTC	TTTCTT	H7
С	С	ACC	G	Т	CTTCTT	GTCG	DEL	DEL	TTTCTT	H8
С	С	ACC	G	Т	CTTCTT	GTCG	CTTCTT	DEL	DEL	H9
С	С	ACC	G	Т	CTTCTT	GTCG	DEL	DEL	TTTCTT	H10
С	С	ACC	G	Т	CTTCTT	GTCG	DEL	DEL	TTTCTT	H11
С	С	ACC	G	Т	CTTCTT	GTCG	DEL	DEL	TTTCTT	H12
Т	С	ACC	G	Т	CTTCTT	GTCG	CTTCTT	GACGTCGTC	TTTCTT	H13

Vacuolar targeting receptor

Keine Angaben über Positionen, da es sich hier um ein anonymisiertes Gen handelt

SNP1	SNP2	SNP3	SNP4	SNP5	SNP6	SNP7	SNP8	SNP9	SNP10	SNP11	SNP12	SNP13	SNP14	SNP15	SNP16	SNP17	SNP18
Α	С	Α	G	G	G	DEL	С	Α	Т	G	G	G	G	G	Α	Α	AAA
G	Т	Α	G	Α	Α	DEL	С	С	Α	G	G	А	G	G	G	Т	DEL
G	Т	Α	G	G	Α	DEL	С	С	Α	G	G	А	G	G	G	Т	DEL
G	Т	Α	G	G	G	Т	Т	C	Α	G	G	А	С	Т	Α	Α	AA
G	Т	Α	G	G	G	Т	Т	С	А	G	G	А	G	G	G	Т	DEL
G	Т	Α	G	G	G	Т	Т	С	Α	Т	С	А	G	Т	Α	Α	AAA
G	Т	DEL	DEL	G	G	Т	Т	С	А	G	G	А	G	Т	А	Α	AA
G	Т	DEL	DEL	G	G	Т	Т	C	А	G	G	А	G	Т	Α	Α	AA

Fortsetzung von Tabelle Vacuolar targeting receptor

Keine Angaben über Positionen, da es sich hier um ein anonymisiertes Gen handelt

SNP19	SNP20	SNP21	SNP22	SNP23	SNP24	SNP25	SNP26	SNP27	
А	А	CCAAATCATCACC	А	А	С	С	G	С	H1
А	Α	DEL	Т	DEL	G	А	Т	G	H2
А	А	DEL	Т	DEL	G	А	Т	G	Н3
С	G	CCAAATCATCACC	Т	DEL	G	А	Т	G	H4
А	А	DEL	Т	DEL	G	А	Т	G	Н5
А	G	CCAAATCATCACC	Т	DEL	G	А	Т	G	H6
А	А	CCAAATCATCACC	Т	DEL	G	А	Т	G	Η7
А	G	CCAAATCATCACC	Т	DEL	G	Α	Т	G	H8

WIR1 (contig5974)

Intron	Intron	Intron	Intron	Intron	Intron	Intron	Intron	Intron	Exon	3'UTR	3'UTR	3'UTR	3'UTR	3'UTR	3'UTR										
282	285	297	319	326	333- 335	357	358	385	405	420	432	457	461	472	481	485	487	500- 505	525- 548	549	550	558	561- 564	567	
SNP1	SNP2	SNP3	SNP4	SNP5	SNP6	SNP7	SNP8	SNP9	SNP10	SNP11	SNP12	SNP13	SNP14	SNP15	SNP16	SNP17	SNP18	SNP19	SNP20	SNP21	SNP22	SNP23	SNP24	SNP25	_
Α	Α	Α	C	Del	Т	Т	Т	Т	Т	С	С	С	Α	G	С	G	Α	G	С	Del	Del	Del	Del	С	H1
Α	Α	Α	С	TCC	С	Α	Т	Т	Т	С	Т	Α	С	С	С	С	G	Del	Α	А	Del	Del	TTCC	А	H2
Α	Α	Α	С	TCC	С	Α	Т	Т	Т	С	Т	Α	С	С	С	С	G	Del	Α	G	С	Α	TTCC	Α	H3
Α	Α	G	С	Del	Т	Т	Т	Т	Т	С	С	С	А	G	С	G	А	G	C	Del	Del	Del	Del	С	H4
Α	Т	Α	C	TCC	С	Α	С	С	Т	С	Т	Α	С	С	G	С	G	Del	Α	А	Del	Del	TTCC	А	H5
Α	Т	Α	С	TCC	С	Α	Т	С	Т	С	Т	Α	Α	С	G	С	G	Del	Α	А	Del	Del	TTCC	Α	H6
Α	Т	Α	С	TCC	С	Α	Т	С	Т	С	Т	Α	С	С	С	С	G	Del	Α	Α	Del	Del	TTCC	Α	H7
Α	Т	Α	Т	TCC	С	Α	Т	С	С	Т	Т	Α	С	С	С	С	G	Del	Α	Α	Del	Del	TTCC	Α	H8
Т	Т	Α	С	TCC	С	Α	Т	С	Т	С	Т	Α	С	С	С	С	G	Del	Α	C	А	Del	TTCC	Α	H9
SNP1	9: G=0	GTAA	AG							-															
SNP2	0: A=4	ACCC	ΓΑΤΤΑ	AACG	GCGC	GCCC	CCCC																		

WRKY1 (AJ536667)

	· ·		/								
Exon	Exon	Intron	Intron	Intron	Intron	Intron	Intron	Intron	Intron	Intron	
624	631	653	839	840	842-844	851	870	895	898	900	
SNP1	SNP2	SNP3	SNP4	SNP5	SNP6	SNP7	SNP8	SNP9	SNP10	SNP11	
А	А	Т	Α	DEL	DEL	G	С	G	Т	Т	H1
А	А	Т	А	Т	DEL	G	С	С	G	С	H2
А	А	Т	Т	DEL	DEL	G	С	С	G	С	H3
G	А	С	А	DEL	DEL	G	С	С	G	С	H4
G	Α	С	А	DEL	DEL	G	С	С	Т	Т	H5
G	А	С	А	DEL	DEL	G	С	G	Т	Т	H6
G	А	Т	А	DEL	DEL	G	С	С	G	С	H7
G	Α	Т	Α	DEL	GTG	G	С	G	Т	Т	H8
G	С	С	А	DEL	DEL	С	А	G	Т	Т	H9
G	С	С	А	DEL	DEL	G	А	С	Т	Т	H10
G	С	С	А	DEL	DEL	G	А	G	Т	Т	H11
G	С	С	А	DEL	DEL	G	С	G	Т	Т	H12

Exon	Exon	Exon	Exon	Exon	Exon	Exon	Exon	Exon	
600	607	629	815	817-819	842	868	871	872	
SNP1	SNP2	SNP3	SNP4	SNP5	SNP6	SNP7	SNP8	SNP9	
А	А	Т	Т	Del	С	С	G	С	H1
А	А	Т	А	Del	С	G	Т	Т	H2
G	А	Т	А	Del	С	С	G	С	Н3
G	А	Т	А	GTG	С	G	Т	Т	H4
G	А	Т	Т	Del	С	С	G	С	Н5
G	А	С	А	Del	С	С	G	С	H6
G	А	С	А	Del	С	G	Т	Т	H7
G	С	С	А	Del	А	G	Т	Т	H8
G	С	С	А	Del	А	C	Т	Т	H9
G	С	С	А	Del	C	G	Т	Т	H10

WRKY2 (AJ853838)

Danksagung

Mein herzlicher Dank gilt:

Herrn Dr. habil. Patrick Schweizer für die Möglichkeit zur Durchführung dieser Arbeit und die zahlreichen engagierten Diskussionen.

Danke Patrick, dass Du als Ansprechpartner immer zur Verfügung standest und immer Zuversicht ausstrahlst.

Herrn Prof. Dr. Andreas Graner für die Übernahme der wissenschaftlichen Betreuung, die die Erstellung meiner Promotionsarbeit ermöglichte.

Frau Manuela Knauft für ihren überaus engagierten Einsatz bei allen durchgeführten Experimenten.

Danke Manu, für die vielen Stunden am Mikrokop, wo Du hervorragende Arbeit geleistet hast und in einem enormen Tempo unsere DAB-Färbungen ausgewertet hast. Danke für die Klonierungen und Transformationen und die Schießexperimente. Danke für die vielen PCRs, danke für die Unterstützung beim *detached leaf assay* und die Erhaltung unserer Isolate. Ich danke Dir für Deine ständige Unterstützung während meiner Zeit in Gatersleben.

Frau Susanne König für ihren unermüdlichen Einsatz bei der Vielzahl an PCR-Reaktionen und der Sequenzierung aller PCR-Fragmente.

Danke Susanne, dass Du mich immer so zügig mit "neuen" SNP versorgt hast.

Allen Mitarbeitern der Arbeitsgruppe Transkriptomanalyse, die jeden Tag für ein schönes Arbeitsumfeld gesorgt haben.

Frau Grit Haseneyer für die hilfreichen Anregungen zur Erstellung der Populationsstruktur.

Frau Dr. Rosemary Bayles für die lehrreichen Wochen, die ich in Ihrer Arbeitsgruppe am NIAB in Cambridge verbringen durfte.

Herrn Dr. Viktor Korzun und Herrn Adrian Broda (KWS Lochow) für die Durchführung des Feldversuches der Sommergersten-Akzessionen.

Karl, für die ständige Appelierung an mein Durchhaltevermögen.

Und besonders danke ich meiner Familie für ihren Beistand in allen Lebenslagen.

Curriculum vitae

Persönliche Daten
Name: Annika Johrde
Geburtsdatum: 07.10.1980 in Lübeck
Geschlecht: weiblich
Familienstand: ledig

Beruflicher Werdegang

seit März 2009: Leiterin des Gewebekulturlabors der Winterrapszüchtung bei Syngenta Seeds GmbH, Bad Salzuflen

November 2005-Februar 2009: Wissenschaftliche Mitarbeiterin am Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

Hochschulausbildung

Oktober 2000-Juli 2005:	Studium der Agrarwissenschaften mit dem Schwerpunkt			
	Pflanzenproduktion an der Justus-Liebig-Universität, Gießen			
	Abschluss: Master of Science			

Schulausbildung

August 1991-Juni 2000:	Ernestinenschule zu Lübeck (städtisches Gymnasium)				
	Abschluss: Allgemeine Hochschulreife				
August 1987-August 1991:	Grundschule Krummesse				

Publikationen

- Johrde, A., Schweizer, P. (2008). A class III peroxidase specifically expressed in pathogenattacked barley epidermis contributes to basal resistance. Molecular Plant Pathology 9:687-696
- Aghnoum, R., Thiery, M., Johrde, A., Pecchino, N., Schweizer, P., Niks, R. (2010). Basal resistance of barley powdery mildew: connecting QTLs and candidate genes. Mol Plant-Microbe Interaction 23 (1), 91-102.
- Johrde, A., Schweizer, P. (2007). An association-genetic approach to durable powderymildew resistance in barley.- Posterpräsentation of XII. International Congress on Molecular Plant-Microbe Interactions, Sorrento/Italy

Erklärung

Hiermit erkläre ich, dass mit dieser wissenschaftlichen Arbeit noch keine vergeblichen Promotionsversuche unternommen wurden, die Arbeit selbständig und ohne fremde Hilfe verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet und die den benutzten Werken wörtlich oder inhaltlich entnommenen Stellen als solche kenntlich gemacht wurden.

Des Weiteren erkläre ich, dass keine Strafverfahren gegen mich anhängig sind.

Halle/Saale, Oktober 2009