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Abstract
In this paper we prove that in opposite to the cases of 6 and 8 variables, the Maiorana-
McFarland construction does not describe the whole class of cubic bent functions in n
variables for all n ≥ 10. Moreover, we show that for almost all values of n, these func-
tions can simultaneously be homogeneous and have no affine derivatives.
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1 Introduction

Bent functions, introduced by Rothaus in [35], are Boolean functions having the maximum
Hamming distance from the set of all affine functions. Being extremal combinatorial objects,
they have been intensively studied in the last four decades, due to their broad applications to
cryptography, coding theory and theory of difference sets.

Cubic bent functions, i.e. bent functions of algebraic degree three, attracted a lot of atten-
tion from researchers, partly because small algebraic degree of these functions allows to
investigate them exhaustively, when the number of variables is not too large. For instance,
all cubic bent functions in six and eight variables are well-understood: the classification is
given in [3,35], the enumeration was obtained in [23,33], and all these functions belong to
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the completed Maiorana-McFarland class M# [3,10]. A couple of infinite families of cubic
bent functions were constructed recently, however, some of them [5,24] are proved to be the
members ofM#, while some of them are not analyzed yet [14,28]. Therefore, it is not clear,
whether an n-variable cubic bent function can be outside theM# class whenever n ≥ 10. At
the same time, cubic bent functions, which are homogeneous or have no affine derivatives,
are of a special interest.

A cubic function has no affine derivatives, if all its non-trivial first-order derivatives are
quadratic, what makes cryptographic systems with such components more resistant to certain
differential attacks. It is well-known that cubic bent functions without affine derivatives exist
for all even n ≥ 6, n �= 8, as it was shown in in [4,20]. Recently Mandal, Gangopadhyay
and Stănică in [26] constructed two classes of cubic bent functions without affine derivatives
insideM# and proved their mutual inequivalence. They also suggested to find such functions
outside theM# class and evaluate their significance for cryptographic applications [26, Sect.
1.6].

A Boolean function is called homogeneous, if all the monomials in its algebraic normal
form have the same algebraic degree. Homogeneous cubic bent functions were firstly con-
sidered by Qu et al. in [34], motivated by faster evaluation in cryptographic systems. The
only known homogeneous bent functions are quadratic and cubic, moreover, it is not known,
whether homogeneous bent functions of higher degrees exist. While the characterization
of homogeneous quadratic bent functions is well-known [25, Chapter 15], it is in general
a difficult task to construct a homogeneous cubic bent function. The only known primary
construction was given by Seberry et al. in [36]. They proved, that a proper linear transfor-
mation of variables can bring special non-homogeneous cubic bent function from M# to
a homogeneous one. Unfortunately, all functions of this type have many affine derivatives.
Another approach is based on the concatenation of homogeneous cubic bent functions in a
small number of variables via direct sum. The known computational construction methods
of such functions include:

– The tools from the modular invariant theory, as it was shown by Charnes, Rötteler and
Beth in [8];

– The significant reduction of the search space, suggested by Meng et al. in [27].

Using these approaches, the mentioned authors constructed a lot of homogeneous cubic bent
functions in a small number of variables 6 ≤ n ≤ 12. However, since all these examples
have not been analyzed with respect to being outside the M# class and having no affine
derivatives, it is not clear, which properties can the concatenations of these functions have.

The aim of this paper is two-fold. First, we analyze the known homogeneous cubic bent
functions in ten and twelve variables from [8,27] and show, that some of these functions do
not belong to the theM# class and all of them are different from the primary construction of
Seberry, Xia and Pieprzyk [36].Moreover, some of them have no affine derivatives. Secondly,
we extend these results for infinite families, by showing, that proper direct sums of these
functions inherit the properties of its summands. Consequently, we prove that for any n ≥ 8
there exist cubic bent functions insideM#, but different from the primary construction [36].
Further, we consider cubic bent functions with respect to the following three properties:
outside M#, without affine derivatives, and homogeneous. We show, that n-variable cubic
bent functions with at least two of the three mentioned properties exist for all n ≥ n0, where
n0 depends on the selected combination of properties. In this way, we prove that in general the
whole class of cubic bent functions in n variables is not described by theM# class, whenever
n ≥ 10. Finally, we show existence of cubic bent functions without affine derivatives outside
M#, thus solving a recent open problem by Mandal et al. [26, Sect. 1.6].
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The paper is organized in the following way. In Subsect. 1.1 we introduce some basic
notions and background on Boolean functions. Section 2 describes geometric invariants of
Boolean functions, which we use in the next section in order to distinguish inequivalent
functions. Section 3 deals with the construction of new homogeneous cubic bent functions
from old. First, in Subsect. 3.1 we survey the known homogeneous bent functions, provide
the classification of known examples and show, that some of them are not in theM# class. In
Subsect. 3.2, we show that proper concatenations of homogeneous cubic functions can never
be equivalent to the primary construction. Finally, in Subsect. 3.3 we introduce an approach,
aimed to produce many homogeneous functions from a single given one without increasing
the number of variables, and illustrate its application for homogeneous cubic bent functions
in 12 variables. Section 4 deals with the construction of cubic bent functions outside theM#

class, using the direct sum. In Subsect. 4.1 we provide a sufficient condition, explaining how
one should select bent functions f and g, such that the direct sum f ⊕ g is outside M#.
In Subsect. 4.2 we show, that certain cubic bent functions in 6 ≤ n ≤ 12 variables satisfy
our new sufficient condition and thus lead to infinitely many cubic bent functions outside the
M# class, which are homogeneous or do not have affine derivatives. The paper is concluded
in Sect. 5 and cubic bent functions, used in the paper, are given in the Appendix.

1.1 Preliminaries

Let F2 = {0, 1} be the finite field with two elements and let F
n
2 be the vector space of

dimension n over F2. Mappings f : F
n
2 → F2 are called Boolean functions in n variables.

A Boolean function on F
n
2 can be uniquely expressed as a multivariate polynomial in the

ring F2[x1, . . . , xn]/(x1 ⊕ x21 , . . . , xn ⊕ x2n ). This representation is unique and called the
algebraic normal form (denoted further as ANF), that is,

f (x) =
⊕

v∈Fn2
cv

(
n∏

i=1

xvi
i

)
,

where x = (x1, . . . , xn) ∈ F
n
2, cv ∈ F2 and v = (v1, . . . , vn) ∈ F

n
2. The complement

of a Boolean function f is defined by f̄ := f ⊕ 1. The algebraic degree of a Boolean
function f , denoted by deg( f ), is the algebraic degree of its ANF. We call a Boolean func-
tion d-homogeneous, if all the monomials in its ANF have the same degree d , and simply
homogeneous, if the degree is clear from the context.

With a Boolean function f : F
n
2 → F2 one can associate the mapping Da f (x) := f (x ⊕

a) ⊕ f (x), which is called the first-order derivative of a function f in the direction a ∈ F
n
2.

Derivatives of higher orders are defined recursively, i.e. the k-th order derivative of a function
f is given by Dak Dak−1 . . . Da1 f (x) := Dak (Dak−1 . . . Da1 f )(x). For instance, the second-
order derivative of f is given by Da,b f (x) := Db(Da f )(x) = f (x⊕ a ⊕ b) ⊕ f (x⊕ a) ⊕
f (x⊕b)⊕ f (x). The point a ∈ F

n
2 is called a fast point of a function f : F

n
2 → F2 if it satisfies

deg(Da f ) < deg( f )− 1 and a slow point, if deg(Da f ) = deg( f )− 1. The set of fast points
FP f forms a vector subspace and its dimension is bounded by dim(FP f ) ≤ n − deg( f ), as
it was shown in [15]. A cubic function has no affine derivatives, if dim(FP f ) = 0, i.e. all its
non-trivial first-order derivatives are quadratic functions.

The direct sum of two functions f : F
n
2 → F2 and g : F

m
2 → F2 is a function h : F

n+m
2 →

F2, defined by h(x, y) := f (x)⊕g(y). We also define the k-fold direct sum k · f : F
k·n
2 → F2

as k · f (x1, . . . , xk) := f (x1) ⊕ · · · ⊕ f (xk), for xi ∈ F
n
2 .

Definition 1.1 A Boolean function f : F
n
2 → F2 is called bent, if for all a ∈ F

n
2 with a �= 0

and all b ∈ F2 the equation Da f (x) = b has 2n−1 solutions x ∈ F
n
2.
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Remark 1.2 It is well-known, that bent functions in n variables exist only for n even and have
degree at most n/2 (see [35]).

On the set of all Boolean functions one can introduce an equivalence relation in the following
way: two functions f , f ′ : F

n
2 → F2 are called equivalent, if there exists a non-degenerate

affine transformation A ∈ AGL(n, 2) and an affine function l(x) = 〈a, x〉n ⊕ b on F
n
2

(where x ∈ F
n
2, b ∈ F2 and 〈·, ·〉n is a non-degenerate bilinear form on F

n
2), such that

f ′(x) = f (xA) ⊕ l(x) holds for all x ∈ F
n
2.

Further we will analyze inequivalence of Boolean functions with the help of incidence
structures and linear codes. Recall that an incidence structure is a triple S = (P,B, I),

where P = {p1, . . . , pv} is a set of elements called points and B = {B1, . . . , Bb} is a set
of elements called lines, and I ⊆ P × B is a binary relation, called incidence relation. The
incidence matrix of M(S) = (mi j ) of S is a binary b× v matrix withmi j = 1 if p j ∈ Bi and
mi j = 0 otherwise. Two incidence structures S and S

′ are isomorphic, if there are permutation
matrices P and Q such that P · M(S) · Q = M(S′).

The linear code of S over F2 is the subspace C(S) of F
v
2, spanned by the row vectors of

the incidence matrix M(S). It is clear, that the incidence matrix M(S) and the linear code
C(S) depend on the labeling of the points and lines of S, however these objects are essentially
unique up to row and column permutations. We refer to [12,13] about incidence structures
and their linear codes.

Finally, wewill use the following notation for vectors andmatrices: jn is the all-one-vector
of length n, by In and Jn we denote the identity matrix and the all-one-matrix of order n.
The all-zero-matrix of order n and size r × s is denoted by On and Or ,s respectively.

1.2 The completed generalizedMaiorana-McFarland class of Boolean functions

The generalized Maiorana-McFarland class Mr ,s of Boolean functions in n = r + s vari-
ables [7, p. 354] is the set of Boolean functions of the form

fπ,φ(x, y) = 〈x, π(y)〉r ⊕ φ(y), (1.1)

where x ∈ F
r
2, y ∈ F

s
2, φ is an arbitrary Boolean function on F

s
2 and π : F

s
2 → F

r
2 is some

mapping. A function f belongs to the completed generalized Maiorana-McFarland class
M#

r ,s , if it is equivalent to some function from Mr ,s . In the case r = s, which corresponds
to the original Maiorana-McFarland class of bent functions M, a function f is bent if and
only if the mapping π is a permutation [7, p. 325]. The completed version of M is denoted
by M#. We will call (1.1) a Maiorana-McFarland representation of a given function f on
F
n
2, if there exists a non-degenerate linear transformation A, such that f (zA) = fπ,φ(x, y)

for some mappings π and φ.
A characterization of the completed Maiorana-McFarland class M# of bent functions is

given in [11, p. 102] and [6, Lemma 33]. In the case of the M#
r ,s class, the proof is similar.

Proposition 1.3 Let f be a Boolean function on F
n
2 with n = r + s. The following statements

are equivalent:

1. The function f belongs to the M#
r ,s class.

2. There exists a vector subspace U of dimension r such that the second order derivatives
Da,b f vanish for all a,b ∈ U, that means Da,b f = 0.

3. There exists a vector subspace U of dimension r such that the function f is affine on
every coset of U.
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Cubic bent functions outside the completed Maiorana-McFarland class 1705

Motivated by this characterization,we introduceM-subspaces ofBoolean functions, as those,
which satisfy the second statement of the Proposition 1.3.

Definition 1.4 We will call a vector subspace U an M-subspace of a Boolean function
f : F

n
2 → F2, if for all a,b ∈ U the second-order derivatives Da,b f are constant zero

functions, i.e Da,b f = 0. We denote by MSr ( f ) the collection of all r -dimensional M-
subspaces of f and by MS( f ) the collection

MS( f ) :=
n⋃

r=1

MSr ( f ).

The following invariant, called linearity index [40, p. 82], measures the maximal possible
number of variables of linear functions in a Maiorana-McFarland representation (1.1) of a
Boolean function.

Definition 1.5 The linearity index ind( f ) of a Boolean function f : F
n
2 → F2 is the maximal

possible r , such that f ∈ M#
r ,s . In terms of M-subspaces, the linearity index of f is given

by ind( f ) = max
U∈MS( f )

dim(U ).

Example 1.6 Let f (x) := x1x4 ⊕ x2x5 ⊕ x3x6 ⊕ x1x2x3 be a cubic Maiorana-McFarland
bent function on F

6
2. Second-order derivatives of f are given by the function Da,b f (x) =

c0(a,b) ⊕ (a3b2 ⊕ a2b3)x1 ⊕ (a3b1 ⊕ a1b3)x2 ⊕ (a2b1 ⊕ a1b2)x3, where the constant term
c0(a,b) depends on a,b and is given by c0(a,b) := a1(a2b3 ⊕ a3b2 ⊕ b2b3) ⊕ b1(a2a3 ⊕
a2b3 ⊕ a3b2)⊕ a1b4 ⊕ a2b5 ⊕ a3b6 ⊕ a4b1 ⊕ a5b2 ⊕ a6b3. One can check that the subspace
U = 〈(0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 1)〉 is an M-subspace of f , since its
second-order derivatives Da,b f , which correspond to all two-dimensional vector subspaces
〈a,b〉 of U , are constant zero functions
〈
0 0 0 0 1 0
0 0 0 0 0 1

〉
�→ 0,

〈
0 0 0 1 0 0
0 0 0 0 0 1

〉
�→ 0,

〈
0 0 0 1 1 0
0 0 0 0 0 1

〉
�→ 0,

〈
0 0 0 1 0 0
0 0 0 0 1 0

〉
�→ 0,

〈
0 0 0 1 0 1
0 0 0 0 1 0

〉
�→ 0,

〈
0 0 0 1 0 0
0 0 0 0 1 1

〉
�→ 0,

〈
0 0 0 1 0 1
0 0 0 0 1 1

〉
�→ 0.

Now we describe a naive algorithm, which one can use to construct the collection MSr ( f )
for a given function f and a fixed r . For a more efficient algorithm we refer to [6, Algorithm
2].

Algorithm 1 Construct the collection MSr ( f ).
Input: A Boolean function Da,b f : F

n
2 → F2 and 2 ≤ r ≤ n.

Output: The collection MSr ( f ).
1: Construct MS2( f ) := {〈a,b〉 : dim(U ) = 2 and Da,b f = 0}.
2: for all subspaces U ∈ MS2( f ) do
3: repeat
4: Determine subspaces Ũ = 〈U , ũ〉 for all ũ /∈ U , such that for any two-dimensional vector subspace

〈a,b〉 ⊆ U second-order derivatives Da,b f = 0.

5: Put U ← Ũ for the obtained subspaces Ũ .
6: until dim(U ) = r .
7: Output subspaces U of dimension r .
8: end for
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Remark 1.7 Algorithm 1 can be used to compute the linearity index of a given function f in
the following way: ind( f ) is the biggest r , for which MSr ( f ) �= ∅.

Remark 1.8 For a given M-subspace U ∈ MSr ( f ) of a function f : F
n
2 → F2 one can

construct an invertible matrix AU , which brings f to its Maiorana-McFarland representa-
tion (1.1), i.e. f (zAU ) = 〈x, π(y)〉r ⊕φ(y), with z ∈ F

n
2, x ∈ F

r
2 and y ∈ F

s
2, in the following

way: since the values of 〈x, π(y)〉r ⊕ φ(y) on the coset F
r
2 ⊕ y for y ∈ F

s
2 coincide with the

values of f on the coset U ⊕ ū for ū ∈ Ū , we can construct AU using the change of basis
formula

AU =
(
Or ,s Ir
Is Os,r

)
·
(
GJB(Ū )

GJB(U )

)
. (1.2)

Here GJB(U ) denotes the Gauss-Jordan basis of a vector space U and Ū is the complement
of U , i.e. dim(U ) + dim(Ū ) = n and U ∩ Ū = {0}, which we compute as in [6, Sect. 4].

2 Geometric invariants of Boolean functions

In this section we study invariants of Boolean functions, which arise from certain binary
matrices. We call these invariants geometric, since any (0, 1)-matrix defines an incidence
structure, and hence a finite geometry, and will use them in the next section to distinguish
inequivalent homogeneous cubic bent functions.

2.1 Incidence structures from Boolean functions

For a subset A of an additive group (G,+) the development dev(A) of A is an incidence
structure, whose points are the elements in G, and whose lines are the translates A + g :=
{a + g : a ∈ A}. For a Boolean function f : F

n
2 → F2, we will use developments of two

types:

– dev(D f ), the development of the support D f := {x ∈ F
n
2 : f (x) = 1}, and

– dev(G f ), the development of the graph G f := {(x, f (x)) : x ∈ F
n
2}.

For the combinatorial properties of supports and graphs of bent functions as well as for
their developments we refer to [32, Sect. 3]. We also note the following advantage of
dev(G f ) over dev(D f ): equivalent Boolean functions f , f ′ on F

n
2 lead to isomorphic inci-

dence structures dev(G f ) and dev(G f ′), but at the same time dev(D f ) and dev(D f ′) can
be non-isomorphic [21, Example 9.3.28]. For this reason we will mostly be interested in
combinatorial invariants, like p-ranks [16, p. 787] or Smith normal forms [19, p. 494], of the
incidence matrix M(dev(G f )).

Definition 2.1 A diagonal matrix D with non-negative entries d1, d2, . . . , dn such that
d1|d2| · · · |dn is called the Smith normal form of an integral matrix A of order n, if there
exist integral matrices U and V with det(U ), det(V ) = ±1, such that U AV = D. The
diagonal entries di are called elementary divisors of A. The p-rank of A is the rank of A over
the field Fp .

Throughout the paper we will use the following geometric invariants of Boolean functions
f : F

n
2 → F2, which are defined as follows:

– 2-rank( f ) is the 2-rank ofM(dev(D f )), for bent functions 2-ranks have been extensively
studied in [37,38];
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– �-rank( f ) is the 2-rank of M(dev(G f )), �-ranks( f ) were mostly studied in the context
of inequivalence of vectorial mappings [17,18];

– SNF( f ) is the Smith normal form of the incidence matrix M(dev(G f )), given by the
multiset SNF( f ) = {∗dm1

1 , . . . , dmk
k ∗}, where di |di+1 and mi is the multiplicity of di .

Finally we emphasize, that �-rank( f ) and SNF( f ) are invariants under equivalence for all
Boolean functions f : F

n
2 → F2, while 2-rank( f ) is invariant under equivalence only for

Boolean functions f with deg( f ) ≥ 2.

2.2 The relation between geometric invariants

In this subsection we show, that �-rank and 2-rank coincide for all non-constant Boolean
functions. We also show, how a small modification of the incidence matrix M(dev(D f )) can
help to compute the Smith normal form of a Boolean function f in a more efficient way.
Finally, we partially specify elementary divisors for bent functions.

First, we will use the following notation for incidence matrices of developments

M f := M(dev(D f )) = ( f (x ⊕ y))x,y∈Fn2 and N f := M(dev(G f )).

Note that, since (x ⊕ y, 1) ∈ G f ⇔ f (x ⊕ y) = 1 and (x ⊕ y, 0) ∈ G f ⇔ f̄ (x ⊕ y) = 1,
we can write N f without loss of generality as the following block-matrix, where Vi :=
{(x, i) : x ∈ F

n
2} for a fixed i ∈ F2:

N f =
V1 V0( )
M f M f̄ V0
M f̄ M f V1

. (2.1)

Now we summarize some well-known statements about higher-order derivatives, which we
will use to show the connection between geometric invariants of Boolean functions.

Result 2.2 [22] Let f be a Boolean function on F
n
2 and a1, . . . , ak ∈ F

n
2 .

1. If a1, . . . , ak are linearly dependent, then Dak Dak−1 . . . Da1 f = 0.
2. Let now a1, . . . , ak be linearly independent. The derivatives of f are independent of the

order in which the derivation is taken, i.e. the equality

Dak Dak−1 . . . Da1 f (x) = Daπ(k) Daπ(k−1) . . . Daπ(1) f (x) =
⊕

a∈〈a1,...,ak 〉
f (x ⊕ a)

holds for any permutation π on {1, . . . , k}.
In the next theorem we prove that for Boolean functions of degree at least two the �-rank
and 2-rank coincide and show, that all the information about the SNF( f ) can be recovered
from a matrix obtained through a small modification of M f .

Theorem 2.3 Let f be a Boolean function on F
n
2 . Then the following hold:

1. If deg( f ) ≥ 1, then the all-one-vector j2n can be expressed as a sum of an even number
of vectors from the linear code C(dev(D f )).

2. If deg( f ) < 1, then �-rank( f ) = 2, otherwise �-rank( f ) = 2 − rank( f ).
3. SNF( f ) = {∗dm1

1 , . . . , dmk
k , 02

n−1∗}, where all di ’s are elementary divisors of thematrix(
M f jT2n
j2n 2

)
.
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Proof 1. It was shown in [37, Lemma 3.1], that j2n ∈ C(dev(D f )). We will prove this
statement, by expressing j2n as a sum of an even number of vectors from the linear code
C(dev(D f )). Let d denotes the degree of a function f . First, we observe that the number
of slow points of a function f is bounded from below by 2n − 2n−d . Thus there exist a
sequence of slow points a1, . . . , ad , such that the d-th order derivative Dad Dad−1 . . . Da1 f
is the constant one function. Finally since the following equality holds for all x ∈ F

n
2 due to

Result 2.2

Dad Dad−1 . . . Da1 f (x) =
⊕

a∈〈a1,...,ad 〉
f (x ⊕ a) = 1,

one can see, the all-one-vector j2n is as a sum of 2d elements of C(dev(D f )).

2. Assume that the matrix N f is of the form (2.1). Performing elementary row and column
operations one can bring the matrix N f to the form

N f
(I)�

(
M f M f̄
J2n J2n

)
(II)�

(
M f J2n
J2n O2n

)
.

Note, that elementary column operations change the linear code C(dev(D f )), however its
dimension, which is equal to �-rank( f ), remains the same. If deg( f ) < 1, i.e. f is a constant
function, clearly �-rank( f ) = 2. By the previous statement j2n can be expressed as a sum
of an even number of rows of M f . Since the matrix M f is symmetric, the vector jT2n can be
expressed as a sum of an even number of columns of the matrix M f . In this way, the matrix
N f can be brought to the form

N f
(I)-(II)�

(
M f J2n
J2n O2n

)
(III)�

(
M f O2n

O2n O2n

)

and hence �-rank( f ) = rank( f ).

3. Performing elementary row and column operations, as in the proof of the previous state-
ment, but over the ring Z, one can bring the matrix N f to the form

N f �

⎛

⎝
M f jT2n
j2n 2

O2n+1,2n−1

O2n−1,2n+1 O2n−1,2n−1

⎞

⎠ .

In this way, SNF( f ) = {∗dm1
1 , . . . , dmk

k , 02
n−1∗}, where di ’s are elementary divisors of the

matrix

(
M f jT2n
j2n 2

)
. ��

In the following proposition we partially specify the SNF of a bent function.

Proposition 2.4 Let f be a bent function onF
n
2 and its Smith normal form given bySNF( f ) =

{∗dm1
1 , . . . , dmk

k , 02
n−1∗}. Then the following holds.

1. All elementary divisors di in the SNF( f ) are powers of two.
2. �-rank( f ) = m1, where m1 is the multiplicity of one in the SNF( f ).

Proof 1. Let d1|d2| . . . |d2n+1 be elementary divisors and α1, α2, . . . , α2n+1 be eigenvalues
of the matrix N f respectively. By [29, Theorem 6], for all 1 ≤ i1 < · · · < ik ≤ 2n+1 and
k = 1, . . . , 2n+1 − 1 the following relation between products of elementary divisors and
eigenvalues holds: d1 · · · dk |αi1 · · · αik . Since αi1 · · · αik |α2

i1
· · · α2

ik
it is enough to show, that
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all nonzero α2
i are powers of two. Since N f is symmetric, we have N 2

f = N f NT
f . By [31,

Lemma 1.1.4], the matrix N f NT
f has eigenvalue 22n (multiplicity 1), 2n (multiplicity 2n)

and 0 (multiplicity 2n − 1). Thus the product of any k nonzero elementary divisors of N f

is 2l for some l, and hence all di are powers of two. Finally, since the p-rank is the number
of elementary divisors, coprime with p and all elementary divisors are powers of two, we
conclude that �-rank( f ) = m1. ��
Remark 2.5 We computed SNF( f ) for many n-variable bent functions of different degrees
on F

n
2 with 6 ≤ n ≤ 12. Based on our numerical experiments, we observe the following kind

of symmetry in the SNF( f ) of a bent function f on F
n
2:

1. SNF( f ) = {∗dm1
1 , . . . , dmn

n , 02
n−1∗}, where all elementary divisors di are of the form

di = 2i−1 for i = 1, . . . , n.
2. Multiplicities of elementary divisors mi satisfy mn = 1, mn−1 = m1 − 2 and mn/2−i =

mn/2+i for i = 1, . . . , n/2 − 2.

We do not know how to prove this statement in general andwemake the following conjecture.

Conjecture 2.6 The SNF( f ) of a bent function f on F
n
2 satisfies Remark 2.5.

3 Homogeneous cubic bent functions

In this section we first survey the known homogeneous cubic bent functions. We also classify
the known examples in 10 and 12 variables, constructed in [8,27] by using sophisticated
computational approaches, and show that:

– Some of them are not covered by the Maiorana-McFarland construction;
– All of them are not equivalent to the only one known analytic construction (for this

reason we will call it later “the primary construction”) of Seberry, Xia and Pieprzyk,
given in [36].

Subsequently, we extend the latter result to an arbitrary number of variables, by proving, that
proper concatenations of homogeneous cubic bent functions in a small number of variables
cannever be equivalent to the primary construction. Finallyweprovide a constructionmethod,
aimed to generate a lot of homogeneous bent functions from a single given example. Using
this approach we construct many new homogeneous cubic bent functions in 12 variables and
show, that some of them are not equivalent to all the previously known ones.

3.1 The known examples and constructions

The existence of homogeneous cubic bent functions on F
n
2 for all n ≥ 6 was shown in two

independentways. Seberry,Xia andPieprzyk in [36, Theorem8] proved that one can construct
such functions on F

n
2 for all even n �= 8, from special Maiorana-McFarland functions by a

proper change of basis. We will call their construction primary and denote any n-variable
function of this type by hnpr ..

Result 3.1 [36, Theorem 6] Let fid,φ be a Maiorana-McFarland bent function on F
2m
2

where φ is a homogeneous cubic function without affine derivatives on F
m
2 . Then there exists

a nonsingular matrix T , such that hnpr .(x, y) := fid,φ((x, y)T ) is a homogeneous cubic bent
function.
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1710 A. A. Polujan, A. Pott

Table 1 First n/2 elementary
divisors of the Smith normal
form SNF(hni ) for the known
homogeneous cubic bent
functions from [8, p. 149]
and [27, p. 15]

h10i SNF(h10i )

h101 {∗120, 286, 4130, 8143, 16268, · · · ∗}
h102 {∗120, 278, 4138, 8147, 16260, · · · ∗}
h103 {∗120, 2108, 4110, 8129, 16292, · · · ∗}
h104 {∗122, 2154, 490, 881, 16332, · · · ∗}
h12i SNF(h12i )

h121 {∗122, 2142, 4276, 8493, 16630, 32972, · · · ∗}
h122 {∗122, 2126, 4276, 8517, 16646, 32924, · · · ∗}
h123 {∗124, 2127, 4260, 8525, 16674, 32878, · · · ∗}
h124 {∗122, 2104, 4256, 8525, 16698, 32888, · · · ∗}
h125 {∗126, 2196, 4392, 8419, 16490, 321052, · · · ∗}

Another approach, suggested by Charnes et al. in [8], consists of two steps. First, they
constructed homogeneous cubic bent functions in a small number of variables using the tools
from modular invariant theory, and second, they extended these examples to an arbitrary
number of variables, using the direct sum construction.

Result 3.2 [36, Theorem2]The direct sum h(x, y) = f (x)⊕g(y) is bent and d-homogeneous
on F

n+m
2 if and only if the functions f and g are bent and d-homogeneous on F

n
2 and F

m
2

respectively.

Further we classify the known homogeneous cubic bent functions in a small number of
variables and show, that some of them are not the members of the M# class.

Theorem 3.3 The homogeneous cubic bent functions in n = 10 or n = 12 variables from [8,
p. 149] and [27, p. 15] satisfy:

1. If n = 10, there are 4 equivalence classes, with 2 of them being outside the completed
Maiorana-McFarland class M#.

2. If n = 12, there are 5 equivalence classes, which are subclasses of M#.

Proof First, we compute the Smith normal forms for the mentioned homogeneous cubic bent
functions and check whether those, having the same ones, are equivalent. We check equiv-
alence of bent functions via equivalence of linear codes [18, Theorem 9] and isomorphism
of designs [1, Corollary 10.6] in Magma [2]. Consequently, we found 4 and 5 equivalence
classes in 10 and 12 variables, respectively. We denote representatives of the obtained classes
by hni and list them in the Appendix. We provide only the first n/2 elementary divisors for
the Smith normal forms of bent functions due to Remark 2.5.
Further we use the parallel implementation of Algorithm 1 in Mathematica [39] in order
to check, whether the functions hni belong to M#. As a result, only functions h103 and h104
do not belong to the M# class, while all the functions h12i are in M#. Finally, we list all the
M-subspaces of functions from M# in the Appendix. ��

3.2 Homogeneous cubic bent functions, different from the primary construction

Using the facts about 2-ranks and the relation between �-rank and 2-rank, obtained in the
previous section, we derive the following corollary.
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Cubic bent functions outside the completed Maiorana-McFarland class 1711

Corollary 3.4 Let f and g be Boolean functions on F
n
2 and F

m
2 , respectively, with deg( f ) ≥ 1

and deg(g) ≥ 1.

1. Let h be a Boolean function on F
n
2 × F

m
2 defined as the direct sum of functions f and g,

then

�-rank(h) = �-rank( f ) + �-rank(g) − 2. (3.1)

2. Let fid,φ be a Maiorana-McFarland bent function on F
n
2 , then

�-rank( fid,φ) = n + 2 if and only if deg(φ) ≤ 3. (3.2)

3. For the primary construction of homogeneous cubic bent functions hnpr . on F
n
2 we have

�-rank(hnpr .) = n + 2.

Proof The first and the second claims hold, since the statements (3.1) and (3.2) were proven
in [37,38] for 2-ranks, and by Theorem 2.3 we know, that 2-ranks and�-ranks coincide for all
non-constant Boolean functions. Finally, the third claim follows from (3.2) and the definition
of the primary construction. ��
Nowwe proof the existence of homogeneous cubic bent functions, different from the primary
construction.

Theorem 3.5 There exist homogeneous cubic bent functions on F
n
2 , inequivalent to the pri-

mary construction hnpr ., whenever n ≥ 8.

Proof We construct a homogeneous cubic bent function hn in n = 6i + 8 j + 10k + 12l
variables with j + k + l �= 0 as the following concatenation:

hn := i · h6∗ ⊕ j · h8∗ ⊕ k · h10∗ ⊕ l · h12∗ , (3.3)

where h6∗ and h8∗ are arbitrary homogeneous cubic bent functions in 6 and 8 variables respec-
tively, and h10∗ , h12∗ are arbitrary homogeneous cubic bent functions in 10 and 12 variables
from Table 1. Since any homogeneous cubic bent function in 6 variables is equivalent to the
primary construction h6pr ., we have �-rank(h6∗) = 8. One can check that for any cubic bent
function h8∗ in 8 variables we have �-rank(h8∗) ∈ {14, 16}. By Proposition 2.4 one can see,
that �-ranks of functions h10∗ and h12∗ are multiplicities of the entry one in Table 1. Finally,
comparing the lower bound of the �-rank(hn) with �-rank(hnpr .), one can see immediately
that

�-rank(hn) ≥ 8i + 14 j + 20k + 22l − 2(i + j + k + l − 1)

= n + 2 + 4( j + 2(k + l)) > n + 2 = �-rank(hnpr .)

and hence the function hn is never equivalent to hnpr . for all n ≥ 8. ��

3.3 Constructing new homogeneous functions from old, without increasing the
number of variables

In this subsection we show, that in some cases one can use the power of the Maiorana-
McFarland construction to produce a lot of homogeneous bent functions, provided that a
single one, member of the M# class, is given. Our approach is based on a generalization of
the following observation.
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1712 A. A. Polujan, A. Pott

Observation 3.6 Let f := h123 and g := h124 . Our computations show, that homogeneous
cubic bent functions f and g have a commonM-subspace U of dimension 6, which together
with its complement Ū is given by:

GJB(U ) =
(

1 1 O1,10

O5,2 I5 I5

)
and GJB(Ū ) =

(
0 1 O1,10

O5,2 O5 I5

)
. (3.4)

By Remark 1.8 one can bring functions f and g to their Maiorana-McFarland representa-
tions (1.1) using the same linear invertible transformation AU , given by (1.2):

f (zAU ) = fπ,φ(x, y) and g(zAU ) = gπ,ψ(x, y),

where π : F
6
2 → F

6
2 is a permutation and φ,ψ : F

6
2 → F2 are Boolean functions. In this way,

one can construct homogeneous function g from the function f as follows:

g(z) := fπ,φ⊕ω((x, y)T ), where ω := φ ⊕ ψ and T := A−1
U . (3.5)

Let hπ,φ : F
n
2 → F2 be a bent function from the M#

r ,s class, which is equivalent to a d-
homogeneous one, i.e. there exist an invertible matrix T of order n, such that hπ,φ((x, y)T )

is d-homogeneous. We will denote by ΩT (hπ,φ) the set

ΩT (hπ,φ) := {ω : F
s
2 → F2 | hπ,φ⊕ω((x, y)T ) is d-homogeneous bent}.

This is the set of all Boolean functions ω on F
s
2, which preserve d-homogeneity and bentness

of the function hπ,φ⊕ω with respect to the linear transformation T .

Proposition 3.7 Let hπ,φ be a Maiorana-McFarland bent function on F
2m
2 , which is equiv-

alent to a d-homogeneous bent function, i.e. there exist an invertible matrix T , such that
hπ,φ((x, y)T ) is d-homogeneous bent. Then the set ΩT (hπ,φ) is a vector space over F2.

Proof Let ω1, ω2 ∈ ΩT (hπ,φ) with ω1 �= ω2 and ω := ω1 ⊕ ω2. We will show that

ω ∈ ΩT (hπ,φ). Let the invertible matrix T be of the form T =
(
A B
C D

)
with all the

submatrices of order m. First, we observe that 0 ∈ ΩT (hπ,φ) and for any ωi ∈ ΩT (hπ,φ) we
have

hπ,φ⊕ωi ((x, y)T ) = hπ,φ((x, y)T ) ⊕ ωi (xB ⊕ yD),

from what follows, that ωi (xB ⊕ yD) is either d-homogeneous or constant zero function,
since hπ,φ((x, y)T ) is d-homogeneous. Thus ω ∈ ΩT (hπ,φ), since bentness of hπ,φ⊕ω is
independent on the choice of a function ω on F

m
2 and ω(xB ⊕ yD) is a d-homogeneous

function. ��

Note that for a homogeneous bent function hπ,φ ∈ M#
r ,s the set ΩT (hπ,φ) is not a vector

space in general. Nevertheless, for a given homogeneous bent function h ∈ M#
r ,s one can

still construct the set ΩT (hπ,φ), in order to get more, possibly inequivalent, homogeneous
functions. We will summarize these ideas in the form of an algorithm below.
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Table 2 First n/2 elementary
divisors of the Smith normal
form SNF(hni ) for the new
homogeneous cubic bent
functions h126 , h127 in 12 variables

h12i SNF(h12i )

h126 {∗124, 2123, 4292, 8497, 16674, 32878, · · · ∗}
h127 {∗124, 2123, 4272, 8516, 16674, 32880, · · · ∗}

Algorithm 2 New d-homogeneous bent functions from a single one in M#
r ,s .

Input: Homogeneous bent function h : F
n
2 → F2, h ∈ M#

r ,s of degree d.

Output: The set H of new d-homogeneous bent functions fromM#
r ,s .

1: Put H ← {}.
2: for all M-subspaces U ∈ MSr (h) do
3: Construct a linear mapping AU as in Remark 1.8, in order to get the Maiorana-McFarland representa-

tion (1.1), i.e. hπ,φ(x, y) := h(zAU ).

4: Put H ← H ∪ {hπ,φ⊕ω((x, y)T ) : ω ∈ ΩT (hπ,φ)}, where T := A−1
U .

5: end for

Remark 3.8 Using Algorithm 2 and the mapping T , defined in (3.5), one can construct 2(
6
3)

new homogeneous cubic bent functions from any of functions h123 and h125 , members of
the M# class. Such a big number of new functions can be explained in the following way.
Let h ∈ {h123 , h125 }. First, we observe that the image of y after the linear transformation
y �→ y′ = xB ⊕ yD is given by:

y �→ y′ = (x1 ⊕ x2, x3 ⊕ y2, x4 ⊕ y3, x5 ⊕ y4, x6 ⊕ y5, y1 ⊕ y6). (3.6)

Since any two coordinates of the vector y′ do not contain common variables xi and y j ,
the linear transformation, defined in (3.6), is homogeneity-preserving. Thus, ΩT (hπ,φ) is

generated by monomials ω : F
6
2 → F2 of degree 3, and hence |ΩT (hπ,φ)| = 2(

6
3). Finally,

we note that some of the constructed homogeneous cubic bent functions are not equivalent
to any of the known one, since their Smith normal forms, listed in Table 2, are different from
those given in Table 1.

Theorem 3.9 There are at least 7 pairwise inequivalent homogeneous cubic bent functions
on F

12
2 , inequivalent to h12pr ..

Finally we want to emphasize the fundamental difference between the primary construction
hnpr . and functions, constructed in Remark 3.8. For the primary construction of homogeneous
cubic bent function hnpr . one needs to find a special Boolean function φ of degree 3, such
that the non-homogeneous cubic Maiorana-McFarland function fid,φ is homogeneous after
the change of coordinates. In some sense, the identity permutation id has a “defect”, which
makes fid,0 never equivalent to a homogeneous cubic function. But the specific choice of a
cubic function φ helps to repair it. Since the functions constructed in Remark 3.8 are in that
sense “defect free”, it is essential to construct such functions systematically.

Open Problem 3.10 Are there infinite families of permutations π : F
m
2 → F

m
2 , such that

for some non-degenerate linear transformation T the function, defined by (x, y) �→
fπ,ψ((x, y)T ), is homogeneous cubic bent for all homogeneous cubic functions ψ : F

m
2 →

F2?
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4 Bent functions outside theM# class via direct sum construction

In this section we show how one can choose bent functions f and g, such that the direct sum
f ⊕ g is not a member of the completed Maiorana-McFarland class M#. The idea of the
approach is based on the following observation: if one can measure the maximum dimension
of relaxed M-subspaces (which we introduce below) of the components f and g, then one
can provide an upper bound for the linearity index ind( f ⊕ g) and if it small enough, then
f ⊕ g /∈ M#.
Finally, using this recursive approach, we prove the series of results about the existence

of cubic bent functions outside the M# class, which can simultaneously be homogeneous
and have no affine derivatives.

4.1 The sufficient condition in terms of relaxedM-subspaces

Further, we identify F
n+m
2 with F

n
2 × F

m
2 . In this way, any vector v ∈ F

n+m
2 is uniquely

represented by a pair (vx, vy), where vx ∈ F
n
2 and vy ∈ F

m
2 . Now let U ∈ MS(h), i.e. for

all a,b ∈ U we have, that second-order derivatives satisfy Da,bh = 0. This takes place
if and only if Dax,bx f = Day,byg = ca,b, where ca,b ∈ F2 is a constant, depending on a
and b, since g and h do not have common variables. This observation leads to the following
generalization of M-subspaces (see Definition 1.4).

Definition 4.1 Wewill call a vector subspaceU a relaxedM-subspace of a Boolean function
f : F

n
2 → F2, if for all a,b ∈ U second order derivatives Da,b f are either constant zero or

constant one functions, i.e Da,b f = 0 or Da,b f = 1.We denote byRMSr ( f ) the collection
of all r -dimensional relaxed M-subspaces of f and by RMS( f ) the collection

RMS( f ) :=
n⋃

r=1

RMSr ( f ).

While the linearity index of a Boolean function (see Definition 1.5) is defined as the maximal
possible dimension of its M-subspace, it is reasonable to define its analogue for relaxed
M-subspaces.

Definition 4.2 For a Boolean function f : F
n
2 → F2 its relaxed linearity index r-ind( f ) is

defined by r-ind( f ) := max
U∈RMS( f )

dim(U ).

Example 4.3 Let f : F
6
2 → F2 be the function from Example 1.6. One can check, that the

subspaceU = 〈(0, 1, 0, 0, 0, 1), (0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 1, 1)〉 is a relaxedM-subspace
of f , since its second-order derivatives Da,b f , which correspond to all two-dimensional
vector subspaces 〈a,b〉 of U , are constant zero or constant one functions

〈
0 0 0 1 0 0
0 0 0 0 1 1

〉
�→ 0,

〈
0 1 0 0 0 1
0 0 0 0 1 1

〉
�→ 1,

〈
0 1 0 1 0 1
0 0 0 0 1 1

〉
�→ 1,

〈
0 1 0 0 0 1
0 0 0 1 0 0

〉
�→ 0,

〈
0 1 0 0 1 0
0 0 0 1 0 0

〉
�→ 0,

〈
0 1 0 0 0 1
0 0 0 1 1 1

〉
�→ 1,

〈
0 1 0 0 1 0
0 0 0 1 1 1

〉
�→ 1.

Nowwe present some properties of collections ofM-subspaces as well as of relaxed ones.
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Proposition 4.4 Let f : F
n
2 → F2 be a Boolean function and let n = r + s. The following

hold:

1. MS( f ) ⊆ RMS( f ).
2. |MSr ( f )| and |RMSr ( f )| as well as ind( f ) and r-ind( f ) are invariants under equiv-

alence.
3. ind( f ) ≤ r-ind( f ) and f /∈ M#

r ,s for all r > r-ind( f ).

Proof 1. This follows from the definitions of collections MS( f ) and RMS( f ).

2. Let f and f ′ be equivalent, i.e. f ′(x) = f (xA) ⊕ l(x). Assume U ∈ RMSr ( f ) and
let U ′ = U A−1 with a′,b′ ∈ U ′. Denoting y = xA, one can see from the following
computations

Da′,b′ f ′(x) = f ′(x ⊕ a′ ⊕ b′) ⊕ f ′(x ⊕ a′) ⊕ f ′(x ⊕ b′) ⊕ f ′(x′)
= f (y ⊕ a ⊕ b) ⊕ f (y ⊕ a) ⊕ f (y ⊕ b) ⊕ f (y) = Da,b f (y)

that U ′ ∈ RMSr ( f ′). Since A−1 maps different subspaces to different ones, we have that
|RMSr ( f )| = ∣∣RMSr ( f ′)

∣∣ and |MSr ( f )| = ∣∣MSr ( f ′)
∣∣. Since dim(U ) = dim(U ′), we

have ind( f ) = ind( f ′) and r-ind( f ) = r-ind( f ′).
3. First, since MS( f ) ⊆ RMS( f ) the inequality ind( f ) ≤ r-ind( f ) holds. The statement
f /∈ M#

r ,s for all r > r-ind( f ) now follows from the maximality of the linearity index. ��
In the next theorem we will show, that each relaxed M-subspace of f ⊕ g is contained

in another relaxed M-subspace from RMS( f ⊕ g), constructed via the direct product of
relaxed M-subspaces of f and g.

Theorem 4.5 Let h(x, y) := f (x) ⊕ g(y), for x ∈ F
n
2 and y ∈ F

m
2 .

1. If V ∈ RMS( f ) and W ∈ RMS(g), then V × W ∈ RMS(h).
2. For any U ∈ RMS(h) there exist V ∈ RMS( f ) and W ∈ RMS(g), such that

U ⊆ V × W.
3. r-ind(h) ≤ r-ind( f ) + r-ind(g).

Proof 1. LetU = V ×W . Since V ∈ RMS( f ) andW ∈ RMS(g), then for all v1, v2 ∈ V
holds Dv1,v2 f = cv1,v2 and for all w1,w2 ∈ W holds Dw1,w2g = cw1,w2 , where cv1,v2 and
cw1,w2 are some constants. In this way, for all pairs u1 = (v1,w1) and u2 = (v2,w2) holds
Du1,u2h = Dv1,v2 f ⊕ Dw1,w2g = cv1,v2 ⊕ cw1,w2 and, hence, U ∈ RMS(h).

2. Recall that any vector v ∈ F
n+m
2 is identified with a pair (vx, vy), where vx ∈ F

n
2 and

vy ∈ F
m
2 . We define two vector subspaces V ⊆ F

n
2 and W ⊆ F

m
2 as follows:

V = span({ux : u ∈ U }) and W = span({uy : u ∈ U }).
We will show, that V ∈ RMS( f ) and W ∈ RMS(g). We define two functions
f ′, g′ : F

n+m
2 → F

n+m
2 as f ′(x, y) := f (x) for all y ∈ F

m
2 and g′(x, y) := g(y) for all

x ∈ F
n
2. Since U ∈ RMS(h), then for all u1,u2 ∈ U the equality

Du1,u2h(x, y) = Du1,u2 f
′(x, y) ⊕ Du1,u2g

′(x, y) = cu1,u2 (4.1)

holds for all (x, y) ∈ F
n+m
2 . Let x1, x2 ∈ F

n
2 and consider the following equalities

Du1,u2 f
′(x1, y) ⊕ Du1,u2g

′(x1, y) =cu1,u2 (4.2)

Du1,u2 f
′(x2, y) ⊕ Du1,u2g

′(x2, y) =cu1,u2 , (4.3)
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which hold for any y ∈ F
m
2 due to (4.1). Adding Eqs. (4.2)–(4.3), one gets Du1,u2 f

′(x1, y) =
Du1,u2 f

′(x2, y) since g′ depends on the variable x “fictively”. Now, since f ′ depends on the
variable y “fictively”, we get that for all v1, v2 ∈ V the equality Dv1,v2 f (x1) = Dv1,v2 f (x2)
holds for all x1, x2 ∈ F

n
2 and hence Dv1,v2 f = cv1,v2 (one can think about v1 and v2 as

(u1)x and (u2)x, respectively). Thus we have shown, that V ∈ RMS( f ). Since f and g are
interchangeable, we getW ∈ RMS(g). Clearly,U ⊆ V ×W and by the previous statement
we have V × W ∈ RMS(h).

3. Let U ∈ RMS(h) and dim(U ) = r-ind(h). By the previous statement there exist V ∈
RMS( f ) and W ∈ RMS(g), such that U ⊆ V × W . Now, using the following series of
inequalities

r-ind(h) = dim(U ) ≤ dim(V × W ) = dim(V ) + dim(W )

≤ max
V∈RMS( f )

dim (V ) + max
W∈RMS(g)

dim (W )

= r-ind( f ) + r-ind(g).

we complete the proof. ��
The next corollary provides a sufficient condition on bent functions f and g for f ⊕ g being
not in the M# class in terms of their relaxed M-subspaces.

Corollary 4.6 Let f : F
n
2 → F2 and g : F

m
2 → F2 be two Boolean bent functions. If f and g

satisfy r-ind( f ) < n/2 and r-ind(g) ≤ m/2, then f ⊕ k · g /∈ M# on F
n+km
2 for all k ∈ N.

Remark 4.7 Throughout the paper we will call a Boolean function f on F
n
2 strongly extend-

able, if r-ind( f ) < n/2 and weakly extendable, if r-ind( f ) = n/2. In this way, if one wants
to extend a strongly extendable function f with Corollary 4.6, it is enough to take a weakly
extendable function g, while for the extension of a weakly extendable function g one has to
take a strongly extendable function f .

Remark 4.8 For a given function f one can compute the relaxed linearity index r-ind( f )
in the same way as the linearity index ind( f ), but with only one change. Instead of the
second-order derivative Da,b f , given by its ANF

Da,b f (x) =
⊕

v∈Fn2
cv(a,b)

(
n∏

i=1

xvi
i

)
,

where coefficients cv depend on a andb, one considers the“relaxed” second-order derivative
RDa,b f , defined by RDa,b f (x) := Da,b f (x)⊕c0(a,b) and use it as the input ofAlgorithm1
in the way already described in Remark 1.7.

4.2 Application to homogeneous cubic bent functions without affine derivatives

In order to use Corollary 4.6 for the construction of cubic bent functions outsideM#, which
can be homogeneous or have no affine derivatives, we need to find first such functions in a
small number of variables and check, whether they are weakly or strongly extendable.

First we check, whether the equivalence classes of cubic bent functions in six [35, p. 303]
and eight [3, p. 102] variables, contain functions with the mentioned properties. Since all
cubic bent functions in 6 and 8 variables are members of theM# class, as it was shown in [10,
p. 37] and [3, p. 103] respectively, the best what one expects to find is a weakly extendable
cubic bent function. In this way:
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Table 3 Extendable cubic bent
functions in a small number of
variables

# of variables, n 6 8 10 12

r-ind 3 4 4 6

Is homogeneous? × � � �
Has no aff. derivatives? � × � �
Example R3 h81 h104 h125

– The only (up to equivalence) weakly extendable cubic bent function in 6 variables is the
third Rothaus’ function [35, p. 303], denoted here by R3. It has no affine derivatives and
is not equivalent to any homogeneous cubic bent function.

– An example of weakly extendable homogeneous cubic bent function in 8 variables is
given by the function h81. Like any other cubic bent function in eight variables, it has
affine derivatives [20].

Now we analyze homogeneous cubic bent functions in 10 and 12 variables.

– An example of a strongly extendable cubic bent function in 10 variables is represented
by the function h104 , which is simultaneously homogeneous and has no affine derivatives.

– Since all the mentioned functions in 12 variables belong to the M# class, they can
not be strongly extendable. Nevertheless, among them we found a weakly extendable
homogeneous function h125 without affine derivatives.

We summarize these data in Table 3 and list all the used functions in the Appendix.
Now we proceed to the proof of our main theorem: the series of existence results about

cubic bent functions with nice cryptographic properties.

Theorem 4.9 On F
n
2 there exist:

1. Cubic bent functions outside M# for all n ≥ 10.
2. Cubic bent functions without affine derivatives outside M# for all n ≥ 26.
3. Homogeneous cubic bent functions outside M# for all n ≥ 26.
4. Homogeneous cubic bent functions without affine derivatives outsideM# for all n ≥ 50.

Proof In all the four cases the idea of the proof is the same: construct a strongly extendable
Boolean function hn in n = 6i + 8 j + 10k + 12l variables of the form

hn := i · R3 ⊕ j · h81 ⊕ k · h104 ⊕ l · h125 (4.4)

and find the minimal value n0, such that for all n ≥ n0 the function hn inherits the properties
of its components from Table 3. Since the only strongly extendable function is h104 in 10
variables, we require that in all the four cases below k �= 0:

Case 1. Since the first case has nothing to do with homogeneity and having no affine deriva-
tives, one can use all the components from Table 3. Clearly, the smallest value of n is n0 = 16
and in order to cover the missing values of n ∈ {12, 14}, we construct a function h′

n of the
form
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h′
n(x1, . . . , xn) := h104 (x1, . . . , x10) ⊕ Qk(x11, . . . , xn) with k = n − 10.

Here Qk := fid,0 is the quadratic bent function in k variables, defined by the “standard”
inner product on F

k
2. Since for the quadratic bent function Qk its relaxed linearity index

r-ind(Qk) = k, we can not use Corollary 4.6. However, by the second part of Theorem 4.5,
one can verify, that h′

n /∈ M#, by showing, that none of the vector subspaces U of the form
{
U ⊆ V × W : V ∈ RMS(

h104
)
,W ∈ RMS(Qk)

}

is an M-subspace of the function h′
n .

Case 2. Since there are no weakly extendable homogeneous cubic bent functions in six
variables, we can use only components h81, h

10
4 , h125 in the Eq. (4.4). One can see, that the

smallest value of n is n0 = 26 and the missing values are in the set {14, 16, 24}.
Case 3. First, we observe that the direct sum of two functions has no affine derivatives, if
and only if both of them have no affine derivatives. Hence, the only functions we can use are
R3, h104 , h125 . In this way, the smallest value of n is n0 = 26 and the missing values are in the
set {12, 14, 18, 24}.
Case 4. Finally, since the only extendable functions, which are simultaneously homogeneous
and have no affine derivatives are h104 and h125 , we observe, that the smallest value of n is
n0 = 50 and the missing values of n are in the set {12, 14, 16, 18, 24, 26, 28, 36, 38, 48},
which completes the proof. ��

5 Conclusion

In this paperwe proved the existence of cubic bent functions outside the completedMaiorana-
McFarland class M# on F

n
2 for all n ≥ 10 and showed that for almost all values of n these

functions can simultaneously be homogeneous and have no affine derivatives. The reason,
why some values of n are not covered by our proof is explained by the non-existence of
examples with desired properties in 6 and 8 variables, which are necessary for the used
recursive framework.

In general, we expect that homogeneous cubic bent functions without affine derivatives
outsideM# exist for all even n ≥ 10 and we leave this as an open problem. Since our proof
technique is based on the direct sum construction of functions, some of them being members
of M#, the functions constructed in such a way will presumably have bad cryptographic
primitives (see [7, p. 330]). Thus, we suggest the following problem.

Open Problem 5.1 Construct homogeneous cubic bent functions without affine derivatives
outside the M# class without the use of the direct sum.

The next problem, which we would like to address, is related to the normality of cubic
bent functions. Recall that a Boolean function f on F

n
2 is said to be normal (weakly normal),

when it is constant (affine, but not constant) respectively, on some affine subspace U of F
n
2

of dimension �n/2�. In this case f is said to be normal (weakly normal) with respect to the
flat U . It is well-known that all quadratic bent functions are normal. Moreover, one can also
construct non-normal as well as non-weakly normal bent functions of all degrees d ≥ 4, as
it follows from [6, Fact 22]. At the same time all cubic bent functions in n = 6 variables are
normal or weakly-normal, while for n = 8 they are proved to be normal [9].
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Since the functions h103 and h104 do not belong to the completed Maiorana-McFarland
class, they are good candidates to be checked for the normality. Based on our parallel imple-
mentation of [6, Algorithm 1] in Mathematica [39] we observe, that the function h103
is normal on the flat 48 ⊕ 〈g3, 8p, 4q, 2m, 1j〉 and the function h104 is normal on the flat
5 ⊕ 〈i5, 8h, 6n, 1g, f〉. Here we describe each binary vector of a flat by 32-base representa-
tion, using the following alphabet

0 �→ 0, . . . , f �→ 15, g �→ 16, . . . , v �→ 31. (5.1)

In this way, since one still has no examples of non-weakly normal cubic bent functions, it is
reasonable to ask the following question.

Open Problem 5.2 Do non-weakly normal cubic bent functions exist?

Finally we list all the homogeneous cubic bent functions used in the paper.
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Appendix. Known inequivalent homogeneous cubic bent functions

We represent each homogeneous cubic bent function hni in n variables by its binary char-
acteristic vector v2(hni ) in the following way. We denote by Hn,3(x) the list, containing
all the monomials of degree 3 in n variables, ordered lexicographically, i.e. Hn,3(x) :=
(x1x2x3, x1x2x4, . . . , xn−2xn−1xn). The binary characteristic vector v2(hni ) of a function h

n
i

is a vector of length
(n
3

)
, containing 1 at the position k, if the monomial Hn,3

k (x) is in the
ANF of hni , and 0 otherwise. Thus the ANF of hni can be recovered from the v2(hni ) by:

hni (x) = v2(h
n
i ) · Hn,3(x) =

⊕

1≤i< j<k≤n

ai jk xi x j xk . (5.2)

Due to the space limitations, we list in Table 4 the 32-base representations v32(hni ) of binary
characteristic vectors v2(hni ), using the alphabet (5.1).

Example 5.3 The ANF of the homogeneous cubic bent function h61 can be reconstructed from
its 32-base characteristic vector v32(h61) in the following way. First, one converts 32-base
characteristic vector v32(h61) to the binary v2(h61)

v32(h
6
1) = tffu ←→ v2(h

6
1) = (1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0)
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Table 4 The known homogeneous cubic bent functions in a small number of variables and their invariants

hni v32(h
n
i ) ind(hni ) r-ind(hni ) dim(FPhni

)

h61 tffu 3 4 3

h81 an3pi8adifs 4 4 1

h82 1mgao45k3fd2 4 5 2

h101 2uehlgo3c005e9umaor7bi0s 5 5 1

h102 vvh79pr9r377dvjjmjjmg594 5 5 1

h103 iljgkiijc005e9umaor7bi0s 4 4 1

h104 3nbrkdcktp5euatcfbbrevhk 2 4 0

h121 9722929gkh0ic8ih93e010goi70002as005e01e0c4 6 6 2

h122 dfajbadksl8qtaqldb2qkp0u51eli3g5lo62lh3e2i 6 6 2

h123 rkiesir9j97na9n9qmql3g0oet93027l8g4q91qkpt 6 7 1

h124 noaluan595bfhbf5mcql3g0oet93027l8g4q91qkpt 6 7 2

h125 d42j82d0o18q8aq1c2oulp067seli1jhlo2olgpeqv 6 6 0

h126 1e6pqufj5jt3tfrt002ca4jon34b8qbtg2saq1nk01 6 ≥7 1

h127 1e6pqufj5jt3tfrt002ca4jon369cq8si2t6qbn002 6 ≥7 1

To identify the examples, used in the Proof of the Theorem 4.9, values are given in bold
Functions h61 and h81, h

8
2 describe up to equivalence all homogeneous functions in 6 and 8 variables, respec-

tively. Functions h103 and h101 are the first and the second 10-variable functions from [27, p. 15]. Functions

h102 and h104 are representatives of equivalence classes of functions, constructed in [8, p. 149]. Functions h12i
for 1 ≤ i ≤ 5 are representatives of equivalence classes of functions, constructed in [8, p. 149]. Functions h126
and h127 were constructed in Sect. 3.3

and according to (5.2) the ANF of h61 is given by:

h61(x) := x1x2x3 ⊕ x1x2x4 ⊕ x1x3x4 ⊕ x1x2x5 ⊕ x2x3x5 ⊕ x1x4x5

⊕ x2x4x5 ⊕ x3x4x5 ⊕ x1x3x6 ⊕ x2x3x6 ⊕ x1x4x6 ⊕ x2x4x6

⊕ x3x4x6 ⊕ x1x5x6 ⊕ x2x5x6 ⊕ x3x5x6.

For each homogeneous cubic bent function hni ∈ M# on F
n
2 we list the collection

Mn/2(hni ) as a |Mn/2(hni )| × n/2 matrix in the following way. Each row of Mn/2(hni )
describes the Gauss-Jordan basis of an M-subspace of hni . Each element of a basis is given
by 32-base number, which can be converted to the binary vector of length n in the same way
as in Example 5.3. For instance, the first row of the matrixMS6(h123 ) describes the GJB(U )

of the M-subspace U , given in (3.4).

– MS5(h101 ) = (
o2 4l 2m 1j f

)
, MS5(h102 ) = (

o0 60 12 o 5
)
;

– MS6(h121 ) =

⎛

⎜⎜⎜⎜⎝

22r 10m it 8e 66 17
20q 12o in af 4s 1p
21c 10d gs 9n 5r 2e
20b 11u gj 9t 47 33
20v 11k hh 9o 5f 3i

⎞

⎟⎟⎟⎟⎠
,MS6(h123 ) =

⎛

⎝
300 gg 88 44 22 11
21u 10v hh 99 55 33
20v 11u hh 99 55 33

⎞

⎠,

MS6(h125 ) = (
300 gg 88 44 22 11

)
,MS6(h121 ) = MS6(h122 ),MS6(h123 ) =

MS6(h124 ) = MS6(h126 ) = MS6(h127 ).
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