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Abstract

Cone beam computed tomography (CBCT) systems equipped with a flat panel detec-
tor are widely employed for clinical and industrial imaging. Clinical CBCT systems
facilitate increased patient access and broad volume coverage, enabling them to be
utilized for interventional imaging. However, beam hardening, scatter, and image
lag artifacts degrade the low-contrast resolution of CBCT images. The correction
of these artifacts is crucial to enhance the soft tissue imaging capability of clini-
cal CBCT scanners. Beam hardening artifacts are caused by the violation of the
assumed linear forward model of projection generation due to polychromatic X-ray
attenuation. State-of-the-art correction methods mitigate the non-linear projection
error caused by beam hardening utilizing a polynomial expression. In clinical CT, the
polynomial coefficients are pre-computed during the scanner’s calibration using a ho-
mogeneous water phantom. Since the water correction alone is insufficient to correct
the artifacts due to beam hardening by high attenuation bone and metal structures,
additional post-processing algorithms based on higher-order correction models are
necessary.

In this thesis, novel beam hardening correction algorithms are discussed to improve
CBCT image quality. The correction parameters are directly estimated from the pro-
jection data by enforcing data consistency conditions on a set of cone beam projection
pairs. Consistency conditions are the mathematical expressions of the redundancy
exhibited by over-determined projection measurements and need to be strictly satis-
fied by ideal and error-free projections. The optimal polynomial coefficients for beam
hardening corrections are computed by minimizing the projection inconsistency in-
duced by polychromatic X-ray attenuation. The algorithms were validated with the
simulation studies and real datasets from CBCT scanners. The results show the fea-
sibility of material- and energy-specific beam hardening corrections without tedious
and recurrent calibrations and prior knowledge about X-ray and attenuation spectra.
The water and bone corrections significantly improved the quality of clinical C-arm
CBCT images. A comparative evaluation of cone beam consistency conditions was
conducted by analyzing the efficacy of the corrections when the polychromatic pro-
jections are corrupted with errors corresponding to various artifacts. The results from
the robustness studies will be valuable to select the appropriate conditions for beam
hardening correction depending on the system geometry and the presence of projec-
tion errors other than those caused by beam hardening. Likewise, the effectiveness of
higher-order beam hardening correction models was compared, utilizing cone beam
consistency conditions.
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Zusammenfassung

Kegelstrahl-Computertomographiesysteme (KSCT), die mit einem Flachdetektor aus-
gestattet sind, werden häufig für die klinische und industrielle Bildgebung eingesetzt.
Klinische KSCT-Systeme erleichtern den Zugang zu Patienten und decken ein großes
Volumen ab, sodass sie auch für die interventionelle Bildgebung eingesetzt werden
können. Allerdings führen die Strahllaufhärtung, Streuung und Bildverzögerungsarte-
fakt zu einer geringen Kontrastauflösung von KSCT-Bildern. Die Korrektur dieser
Artefakte ist entscheidend für die Verbesserung der Weichteilbildgebung in der klin-
ischen KSCT-Bildgebung. Strahlverhärtungsartefakte werden durch die Verletzung
des angenommenen linearen Vorwärtsmodells der Projekterzeugung aufgrund poly-
chromatischer Röntgenabschwächung verursacht. Die aktuellen Korrekturmethoden
reduzieren den nicht-linearen Projektionsfehler, der durch die Stahllaufhärtung verur-
sacht wird, mithilfe einer Polynomfunktion. In der klinischen CT werden die Poly-
nomkoeffizienten während der Kalibrierung des Scanners mit einem homogenenWasser-
phantom vorberechnet. Da die Wasserkorrektur allein nicht ausreicht, um die Arte-
fakte zu korrigieren, die durch die Strahlaufhärtung von Knochen- und Metallstruk-
turen mit hoher Schwächung entstehen, sind zusätzliche Nachbearbeitungsalgorith-
men erforderlich, die auf Korrekturmodellen höherer Ordnung basieren.

In dieser Arbeit werden neuartige Strahlaufhärtungskorrekturalgorithmen zur Verbesserung
der KSCT-Bildqualität diskutiert. Die Korrekturparameter werden direkt aus den
Projektionsdaten geschätzt, indem Datenkonsistenzbedingungen für einen Satz von
Kegelstrahlprojektionspaaren erzwungen werden. Konsistenzbedingungen sind die
mathematischen Ausdrücke der Redundanz, die überbestimmte Projektionsmessun-
gen aufweisen, und müssen von den idealen und fehlerfreien Projektionen streng erfüllt
werden. Die optimalen Parameter für die Strahlaufhärtungskorrekturen werden durch
Minimierung der durch die polychromatische Röntgenschwächung induzierten Pro-
jektionsinkonsistenz berechnet. Die Algorithmen wurden mit den Simulationsstudien
und echten Datensätzen von KSCT-Scannern verifiziert. Die Ergebnisse zeigen, dass
eine material- und energiespezifische Strahlaufhärtungskorrektur ohne langwierige
und wiederkehrende Kalibrierungen und ohne Vorwissen über Röntgen- und Ab-
schwächungsspektren möglich ist. Die Wasser- und Knochenkorrekturen verbesserten
signifikant die Bildqualität von Kopfbildern im klinischen C-Bogen-KSCT. Eine ver-
gleichende Bewertung der Kegelstrahlkonsistenzbedingungen wurde durchgeführt, in-
dem die Wirksamkeit der Korrekturen analysiert wurde, dabei wurden die poly-
chromatischen Projektionen mit zusätzlichen Fehlern beaufschlagt, die verschiede
typische Bildartefakte hervorrufen. Aus den Ergebnissen der Robustheitsstudien
lassen sich Bedingungen für die Auswahl einer geeigneten Strahlaufhärtungskorrektur
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ableiten, die die Systemgeometrie und das Vorhandensein bestimmter Projektions-
fehler einschließen. Ebenso wurde die Effektivität von Strahlaufhärtungskorrektur-
modellen höherer Ordnung unter Verwendung von Kegelstrahlkonsistenzbedingungen
verglichen.
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1 Introduction

1.1 Motivation

Since their discovery by Wilhelm Conrad Röntgen in 1895 [89], X-rays have been
used for non-invasive and non-destructive imaging in medicine, industry, science, and
archaeology. In the first half of the 20th century, clinical X-ray imaging was con-
strained to 2D projection radiography and fluoroscopy, where the soft tissue contrast
is limited due to overlapping structures. Sir Godfrey Hounsfield and colleagues of
EMI Group Limited developed the first X-ray Computed Tomography (CT) device
and pioneered 2D cross-sectional X-ray imaging [47]. Since then, many generations
of CT systems have been developed and brought into clinical practice. We have wit-
nessed breakthroughs in CT instrumentation and algorithms, including cone-shaped
X-ray beam, slip ring technology, digital multi-row detectors, and Graphics Process-
ing Unit (GPU)-accelerated volumetric reconstruction. The major benefits of these
advances are the reduction of scan time and increased patient safety and comfort.
Third-generation helical Multi-Detector CT (MDCT) scanners (Fig. 1.1a) are widely
employed for diagnostic imaging.

Large area digital Flat Panel Detector (FPD) or Flat Detector (FD) are widely
used for acquiring 2D projection images in fluoroscopy, radiography, and mammogra-
phy. Compared with multi-row detectors of MDCT, the large volume coverage in the
longitudinal direction, ultra-high spatial resolution, and isotropic pixels enable FPDs
to depict fine anatomical details in the projection images and facilitate the steering
of catheters and surgical instruments during interventional procedures. Cone Beam
Computed Tomography (CBCT) systems equipped with a digital FPD are the latest
iteration of third-generation CT scanners [48]. In this thesis, the general term CBCT
is used for any FPD-based CBCT system. In contrast to MDCT, the high resolution
CBCT images can be used for assessing coronary plaques and micro-calcifications
in cardiovascular and breast imaging. C-arm CBCT scanners (Fig. 1.1b), where
the X-ray source and the FPD are mounted on a robotic C-shaped arm, revolution-
ized interventional and intraoperative imaging by facilitating accurate image-guided
procedures and 3D navigation. The increased adoption of C-arm CBCT in interven-
tional and intraoperative settings is mainly due to its portability, increased patient
access, and the feasibility of performing 3D volumetric imaging and 2D real-time
fluoroscopy. Clinical CBCT systems have found applications in radiation therapy,
orthopedic, breast, and extremity imaging. CBCT systems are also utilized for non-
destructive testing in the industry and automated inspection for security.
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(a) MDCT scanner, Siemens Somatom Definition
AS [8].

(b) C-arm CBCT scanner, Siemens Artis Q [7].

Figure 1.1: MDCT and C-arm CBCT scanners. Reprinted with permission from
Siemens Healthineers, Erlangen, Germany.

The investigation and development of novel artifact correction methods to improve
image quality started soon after the development of CT scanners. The physical
phenomena of beam hardening and scattering violate the inherent assumption of the
linear model describing the CT image formation. The polychromatic X-ray spectrum
and the energy-dependent attenuation properties of the imaged object underestimate
the total attenuation values of CT projections. After reconstruction, the projection
error is transferred to the volume and appears as beam hardening artifacts [26]. In
clinical CT, the main manifestations of beam hardening artifacts are [26]:

1. Cupping artifacts are characterized by the in-homogeneity of voxel values where
the CT numbers gradually decrease from the periphery to the interior of the
imaged object.

2. Streak artifacts appear as dark bands between high attenuation of structures,
predominantly visible between bones and metals.

3. Spill-over artifacts are mainly visible in head scans, preventing well-defined
bone-tissue boundaries due to the spill-over of the skull to the brain region.

Beam hardening artifacts reduce the low contrast resolution and thereby dampen
the soft tissue imaging capability. In interventional imaging, the mitigation of beam
hardening artifacts is essential to detect bleeding after a stroke or injury [82]. Beam
hardening artifacts also affect the accuracy of quantitative or radiomics studies based
on CT images. In industrial and security CBCT systems, beam hardening correction
is crucial for reliable automated inspection and accurate material characterization.

Projection linearization is the most widely adopted method for beam hardening
correction, where the non-linear error due to the underestimation of projection values
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is corrected with a polynomial expression [44] [55]. The coefficients of the correction
polynomial are estimated during the calibration of the CT device using homogeneous
phantoms. Due to the abundance of water molecules in the human body, the water
and soft tissues exhibit similar attenuation properties. Homogeneous water phan-
toms are used to calibrate clinical CT scanners, and polynomial-based projection
linearization is commonly known as water correction.

The attenuation properties of high density and calcium-rich cortical bones differ
from those of water and soft tissues. Hence, water correction alone is insufficient to
eliminate the beam hardening artifacts from clinical CT images. Joseph and Spital
proposed reducing bone-induced residual artifacts using the forward projections of
bone structures [52]. The effective correction parameters are estimated by phantom-
based calibrations or using prior knowledge about X-ray and attenuation (water and
bone) spectra. Subsequently, many algorithms have been published for the correction
of bone-induced beam hardening artifacts [49] [58] [73].

Several calibration-free beam hardening corrections have been proposed to elimi-
nate the tedious and recurrent calibrations and the need for prior knowledge about
X-ray and attenuation spectra. The prominent and computationally efficient algo-
rithms involve calculating the correction parameters by minimizing the Total Vari-
ation (TV) of the corrected volume [58] [61]. TV-based methods yield sub-optimal
corrections when the projections are corrupted with inevitable Poisson noise. Tang et
al. initiated the attempt to compute polynomials by enforcing consistency conditions
on uncorrected projections [88]. Consistency conditions are the mathematical expres-
sions of the redundancy exhibited by the over-determined CT projection values (Sec.
2.6). Violation of the assumptions of the linear forward model generates inconsistent
projections. Therefore, the polynomials can be directly estimated from the projection
data by enforcing the necessary conditions which need to be strictly satisfied by the
artifact-free projections. However, Helgason-Ludwig Consistency Conditions (HLCC)
employed by Tang et al. are constrained by the need for CBCT systems with a perfect
circular source trajectory and polychromatic projections without additional artifacts
like scatter. Hence, HLCC-based corrections are not optimal for CBCT systems like
interventional C-arm CT, where a perfect circular source trajectory is not feasible
due to the mechanical constraints on robotic C-arms.

1.2 Contributions

In this thesis, calibration-free and projection data-driven beam hardening correction
algorithms are discussed. The main contributions are the algorithms to estimate the
parameters of the state-of-the-art correction models by enforcing consistency condi-
tions on a set of projection pairs. By utilizing the pair-wise cone beam consistency
conditions, the requirement of a perfect circular source trajectory is eliminated. Be-
sides, our studies have proven the feasibility of the correction when the projections
are corrupted with Poisson noise and other geometrical and measurement errors. The
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algorithm to estimate the polynomial coefficients for water or mono-material correc-
tion using Grangeat Consistency Conditions (GCC) was introduced in the following
conference paper:

• Shiras Abdurahman, Robert Frysch, Richard Bismark, Michael Friebe, and
Georg Rose. Calibration free beam hardening correction using grangeat-based
consistency measure. In 2016 IEEE Nuclear Science Symposium and Medical
Imaging Conference Proceedings (NSS/MIC), pages 1–3. IEEE, 2016

The proposed method was extended to include bone correction, and the algorithm
for the concurrent estimation of water and bone correction polynomials using GCC
was published in the following journal article:

• Shiras Abdurahman, Robert Frysch, Richard Bismark, Steffen Melnik, Oliver
Beuing, and Georg Rose. Beam hardening correction using cone beam consis-
tency conditions. IEEE Transactions on Medical Imaging, 37(10):2266–2277,
2018

The multi-pass formulation of GCC-based algorithms to correct bone and metal-
induced higher-order artifacts was published in two conference papers:

• Shiras Abdurahman, Robert Frysch, Richard Bismark, Oliver Beuing, and Georg
Rose. A complete scheme of empirical beam hardening correction using grangeat
consistency condition. In 2018 IEEE Nuclear Science Symposium and Medical
Imaging Conference Proceedings (NSS/MIC), pages 1–5. IEEE, 2018

• Shiras Abdurahman, Robert Frysch, and Georg Rose. Reduction of beam hard-
ening induced metal artifacts using consistency conditions. In 15th Interna-
tional Meeting on Fully Three-Dimensional Image Reconstruction in Radiology
and Nuclear Medicine, volume 11072, page 110721S. International Society for
Optics and Photonics, 2019

In the following conference paper, we demonstrated that optimizing the polyno-
mial coefficients is feasible by enforcing pair-wise Fan Beam Consistency Conditions
(FBCC):

• Shiras Abdurahman, Robert Frysch, Steffen Melnik, and Georg Rose. Beam
hardening correction using pair-wise fan beam consistency conditions. In 15th
International Meeting on Fully Three-Dimensional Image Reconstruction in Ra-
diology and Nuclear Medicine, volume 11072, page 110721T. International So-
ciety for Optics and Photonics, 2019

The preliminary results of estimating kernel parameters for scatter correction were
published in the following conference paper:
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• Shiras Abdurahman, Robert Frysch, and Georg Rose. Scatter correction us-
ing pair-wise fan beam consistency conditions. In 15th International Meeting
on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear
Medicine, volume 11072, page 110722I. International Society for Optics and
Photonics, 2019

Finally, a comparative evaluation of GCC, FBCC, and Smith Consistency Condi-
tions (SCC) guided beam hardening corrections has been submitted as the following
journal article:

• Shiras Abdurahman, Robert Frysch, Tim Pfeiffer, Oliver Beuing, and Georg
Rose. Comparative evaluation of cone-beam consistency conditions for beam
hardening correction. IEEE Transactions on Radiation and Plasma Medical
Sciences, 2021

All author’s publications are listed in the List of Own Publications.

1.3 Organization of the Thesis

Chapter 2 contains a concise overview of the theoretical background on which the
consistency condition-based beam hardening corrections are formulated. The chapter
begins with the descriptions of X-ray physics and the major CBCT system compo-
nents. After introducing the CBCT geometry and integral transforms, the recon-
struction of 3D volumes is described, along with the derivation of 2D parallel and fan
beam reconstruction formulas. Subsequently, three pair-wise cone beam data consis-
tency conditions are explained. The chapter concludes with an in-depth discussion
of beam hardening artifacts and the state-of-the-art correction methods, as well as a
short overview of other major artifacts mentioned in this thesis. The proofs of the
selected equations are given in Appendices.

Chapter 3 describes the data-driven beam hardening correction for mono-material
objects using cone beam consistency conditions. The constrained optimization algo-
rithms are discussed, along with the implementation details to enable the reader to
reproduce the presented results. The results from the real and simulated datasets are
displayed to demonstrate the efficacy of the correction algorithms. Detailed studies
are performed to stress test the algorithms under different artifacts for a comparative
evaluation of consistency conditions. The comparison studies lead to the ranking of
consistency conditions based on their performance and robustness.

Chapter 4 discusses the reduction of higher-order beam hardening artifacts after
water correction. The CC-based algorithms utilizing the three different correction
models are discussed. We show that the consistency conditions provide a framework
to compare artifact correction models.

The final chapter summarizes the algorithms and results and discusses potential
future works to enhance CBCT image quality using consistency conditions.
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1.4 Mathematical Notation and Units

The N -dimensional vectors
(
e.g., f ∈ RN

)
are denoted by italic and bold letters. The

unit vectors are marked with a hat symbol (ˆ) to distinguish them from regular vec-
tors

(
e.g., û ∈ SN−1

)
. In general, we consider the N -dimensional vector as a column

vector with N rows
(
e.g., f ∈ RN×1

)
. The row vector is distinguished by a super-

script T to denote the transpose operation on a column vector
(
e.g., fT ∈ R1×N).

The matrices with M rows and N columns are represented by upper case, italic and
bold English letters

(
e.g., P ∈ RM×N). Italic and non-bold letters are used to de-

note the scalar functions and values. Zero-based indexing is used to represent the
elements of vectors and matrices. fi denotes the i+ 1-th element of the vector f and
pi,j represents the element of P in the i+ 1-th row and j+ 1-th column. The i+ 1-th
row and j + 1-th column vectors of matrix P are denoted by pTi and pj . 〈, 〉 denotes
the inner product of two vectors or functions and ‖‖ represents the Euclidean norm.
The unit of length is millimeters, and the angles are measured in radians.
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2 Theoretical Background

2.1 CT Physics and System Components

2.1.1 X-ray Generation

X-rays (also known as Röntgen rays) are Electro-Magnetic (EM) radiation serendip-
itously discovered by Wilhelm Conrad Röntgen in 1895. Compared to visible light,
X-rays are higher energy and shorter-wavelength EM waves, which can penetrate
through the human body to form projection (radiography) and cross-sectional (Com-
puted Tomography, CT) images. As per the wave-particle duality concept in quantum
mechanics, X-rays are also considered as packets of particles called photons with no
charge and rest mass. This corpuscular nature of X-rays is utilized to illustrate their
interaction with the matter and the resultant process of attenuation. The quantized
energy of individual photons is denoted by E and typically measured in Kilo Electron
Volt (keV).

X-rays for medical imaging and non-destructive testing are generated with a vac-
uum tube (X-ray tube) consisting of a cathode filament (negative electrode) and
a target anode (positive electrode) encased in a glass or metal housing. Applying
DC voltage across the X-ray tube initiates the thermionic emission of electrons after
heating the filament with the tube current. The negatively charged electrons will be
accelerated towards the anode, and their maximum kinetic energy depends on the
maximum voltage applied, known as Peak Kilovoltage (kVp). A cup-shaped elec-
trode of cathode assembly focuses the electrons on a small area of anode known as
the focal spot [48]. The high-energy and negatively charged electrons collide with the
anode causing mainly two types of interactions. First, the incoming electrons will
be deflected by the atomic Coulomb field of the positively charged nucleus of anode
atoms [48]. Consequently, the loss of kinetic energy of electrons will be converted
into X-ray photons as per the law of conservation of energy. This type of radiation is
known as Bremsstrahlung radiation and covers the entire X-ray spectrum. The sec-
ond type of interaction occurs when the electrons transfer their energy to inner shell
electrons to liberate them from the electromagnetic force exerted by the atomic nuclei
[48]. The resulting positively charged holes of the excited atoms will be filled by the
loosely bound outer shell electrons. The energy loss due to the transition results in
the production of characteristic X-rays at distinct energy levels. An example plot of
the unit area normalized spectrum (number of photons with respect to its energy) of
Bremsstrahlung radiation and the characteristic peaks is displayed in Fig. 2.1a.
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Figure 2.1: X-ray and attenuation spectra.

For a specific anode material, the number of emitted X-ray photons is determined
by the number of electrons from the cathode and the exposure time. The total X-ray
exposure is quantified with the product of X-ray tube current and exposure time and
measured in Milli Ampere Second (mAs).

2.1.2 X-ray Attenuation

After emanating from the focal spot, X-ray photons undergo the process of attenua-
tion during their transmission through the imaged object (patient in clinical imaging).
For the photons of energy less than 1000 keV, the attenuation mainly comprises the
physical phenomena of photoelectric absorption, Compton, and Rayleigh scatterings
[80]. In photoelectric absorption, the incoming photon ceases to exist after transfer-
ring its energy to tightly bound inner shell electron and ionizing the atom [48]. As
a result, high-energy outer shell electrons move to the positively charged holes, and
their transition energy will be emitted as characteristic rays [80]. In clinical imaging,
the low energy characteristic radiation will be eventually absorbed by the patient’s
body and does not play any role in image formation [48]. The probability of photo-
electric absorption (photoelectric cross-section) is proportional to the fourth power
of atomic number [80]. Therefore, the attenuation due to photoelectric absorption is
higher in bone and metals than in soft tissues or water.

The other dominant phenomenon of attenuation in clinical imaging is Compton
scattering (incoherent scattering). After their interaction with the electrons and
ionizing the atoms, the incoming photons lose energy and will be deviated from their
propagation path. The extent of deflection is measured as the scattering angle [48].
The higher energy photons primarily undergo forward scattering, where the scattering
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angle is less than 90◦. The forward scattering acts as a secondary radiation source
and degrades the quality of projection radiographs and CT images. The low-energy
photons are subjected to back-scattering, where the scattering angle is greater than
90◦ [48]. The back-scattered photons will be absorbed by the X-ray tube’s metal
housing and do not contribute to image formation [48].

In Rayleigh scattering, the incoming photons transfer their energy to electrons and
force them into oscillations in their orbits resonant with the photon’s electrical field
[80]. The electrons lose their energy by emitting photons in the forward direction but
with a possible small deflection [66]. The emitted photons will have the same energy
as those of incoming photons. Since the energy of incoming photons is less than the
binding energy of electrons, Rayleigh scattering does not ionize the atom. Hence,
the probability of Rayleigh interaction at higher energies is very low [86]. Rayleigh
scattering cannot be ignored in mammography and Digital Breast Tomosynthesis
(DBT), where the low-energy X-rays are used for better soft tissue contrast [86].

Thus, the process of attenuation refers to the demise or the deflection of photons
from their original linear propagation path. Consider the X-ray photons of energy
E pass through a homogeneous medium where the length of the medium along the
photon transport direction is denoted by l. The instantaneous X-ray intensity (a
measure of the number of photons) along the propagation path is denoted by I (E).
The attenuation of X-ray intensity is governed by the law of exponential decay where
the decrease in intensity is proportional to its current value [1]:

dI (E)

dl
= −µ (E) I (E) (2.1)

µ (E) ≥ 0 denotes the energy-dependent linear attenuation coefficient of the medium
(exponential decay constant). The transmitted (non-attenuated) X-ray intensity
It (E) can be mathematically expressed by solving the above first-order ordinary
differential equation, and its closed-form solution is widely known as Beer-Lambert
law:

It (E) = I0 (E) e−µ(E)l (2.2)

where I0 (E) represents the incident X-ray intensity prior to the attenuation by the
medium. The derivation of the equation is given in Appendix .1.

For a heterogeneous medium where the spatial (linear) distribution of attenuation
coefficients is denoted by µ (x,E) , x ∈ [0, l], the above equation can be reformulated
as:

It (E) = I0 (E) e
−

l∫
0

µ(x,E) dx
(2.3)

By considering the medium or imaged object is situated in attenuation-free vacuum
or air, the limits of integration of the above equation can be modified:

It (E) = I0 (E) e
−
∞∫
0

µ(x,E) dx
(2.4)

9



2 Theoretical Background

If an ideal source generates monochromatic X-rays of energy Em, the total attenu-
ation along the photon propagation direction (extinction or ray sum) is given by:

gm =

∞∫
0

µ (x,Em) dx

= −ln
(
It (Em)

I0 (Em)

) (2.5)

We refer to the total attenuation measured using monochromatic X-radiation as
monochromatic attenuation or projection value.
Apart from photon energy, the attenuation properties of a material depend on

its effective atomic number. The contrast of the clinical X-ray images is mainly
determined by the difference in attenuation coefficients of soft tissues, bones, implants
(fabricated using titanium or stainless steel), and radio-contrast agents (e.g., iodine).
Fig. 2.1b shows the attenuation spectrum of water (density = 1.0 g/cm3) [6], soft
tissue (density = 1.06 g/cm3) [2], calcium-rich cortical bone (density = 1.85 g/cm3)
[3], titanium (density = 4.54 g/cm3) [5] and iodine (density = 4.93 g/cm3) [4]. We can
infer from the figure that the degree of attenuation decreases non-linearly with the
increase in photon energy. Due to the difference in attenuation, bone-tissue contrast
is significant even at higher energies. The attenuation spectra of soft tissues can be
approximated with that of water due to the abundance of water molecules in soft
tissues.
In practice, X-ray sources of clinical imaging systems are polychromatic with a

wide photon energy range. The maximum energy of the source is denoted by Emax.
As Fig. 2.1b demonstrates, the low-energy photons are strongly attenuated during
their propagation through the human body. Due to their low transmittance, low-
energy photons are unable to contribute to the final image contrast. The excess
ionization due to the increased photoelectric absorption is harmful to the patient and
can damage the DNA of cells. To reduce the absorbed dose by the patient, the X-
ray spectrum is modulated by applying filters to strongly attenuate the low-energy
photons before reaching the patient. The most widely used filter materials are thin
sheets of aluminium and copper. Emin denotes the minimum energy of X-ray photons
after filtration.

2.1.3 X-ray Detection

In radiography and CT, the transmitted radiation is detected with an X-ray detector.
Though many analog and digital detectors have been developed over the years, we
limit our discussion to energy integrating digital Flat Panel Detector (FPD). The
majority of the FPDs comprise X-ray scintillator crystals (e.g., cesium iodide, CsI)
and photodiode arrays (e.g., amorphous silicon, a-Si) to perform a two-level conversion
process [85]. Scintillator crystal converts the incoming X-ray radiation to visible light,
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and the photodiode converts light photons to electric charge. An Analog to Digital
Converter (ADC) of detector electronics amplifies the electrical charge and converts
it to a digital signal for processing. FPDs are relatively lightweight and can be easily
mounted on C-arms for interventional imaging [66].

An energy integrating detector accumulates X-ray intensities during the exposure
time. The efficiency of the detector to convert incoming X-ray radiation of various
energies to electric signal is characterized by the detector spectral response D (E) , 0 ≤
D (E) ≤ 1 ∀E. For a polychromatic source where the X-ray energy E ∈ [Emin, Emax],
the measured (detected) intensity of incident X-rays can be estimated as follows:

Im0 =

Emax∫
Emin

I0 (E)D (E) dE (2.6)

If Np is the total number of emitted photons of all energies and Ω (E) is the poly-
chromatic X-ray spectrum normalized to a unit area (Fig. 2.1a), I0 (E) is given by:

I0 (E) = NpΩ (E) (2.7)

By substituting Eq. 2.7 in Eq. 2.6,

Im0 = Np
Emax∫
Emin

Ω (E)D (E) dE (2.8)

The measured X-ray intensity after attenuation is given as:

Imt =

Emax∫
Emin

It (E)D (E) dE

=

Emax∫
Emin

I0 (E) e
−
∞∫
0

µ(x,E) dx
D (E) dE, after substituting Eq. 2.4

= Np
Emax∫
Emin

Ω (E)D (E) e
−
∞∫
0

µ(x,E) dx
dE

(2.9)

Similar to Eq. 2.5, the measured polychromatic total attenuation or projection
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value can be computed as:

gp = −ln
(
Imt
Im0

)

= −ln


Emax∫
Emin

Ω (E)D (E) e
−
∞∫
0

µ(x,E) dx
dE

Emax∫
Emin

Ω (E ′)D (E ′) dE ′



= −ln


Emax∫
Emin

Ω (E)D (E)
Emax∫
Emin

Ω (E ′)D (E ′) dE ′
e
−
∞∫
0

µ(x,E) dx
dE


= −ln

 Emax∫
Emin

η (E) e
−
∞∫
0

µ(x,E) dx
dE



(2.10)

where η (E) (also known as system weighting function) is the unit area normalized
detected spectrum comprising the emitted X-ray spectrum, filtration, and detector
response [53] [43]:

η (E) =
Ω (E)D (E)

Emax∫
Emin

Ω (E ′)D (E ′) dE ′
(2.11)

2.2 X-Ray Projection Imaging and CBCT

Flat Panel Detector (FPD)-equipped cone beam X-ray systems are used for 2D radio-
graphic imaging. The large area detector, ultra-high spatial resolution, and isotropic
pixels enable the visualization of anatomical details necessary for diagnosis and intra-
operative interventions. Compared to conventional film radiography, the high frame
rate of FPD facilitates the real-time acquisition of fluoroscopic projection images.
Digital Subtraction Angiography (DSA) is a fluoroscopy technique to visualize blood
vessels and is widely utilized for angiographic interventions.

By rotating the cone beam X-ray source and FPD pair around the patient, 2D
cross-sectional images can be reconstructed from 2D projection views, making volu-
metric reconstruction feasible with a single rotation. The reconstructed volumes of
CBCT enable 3D characterization of complex anatomical structures, including 3D
visualization of contrast-enhanced vessels (3D rotational DSA) [71]. C-arm CBCT,
where the X-ray source and FPD are mounted on a C-shaped arm, facilitates 2D pro-
jection radiography, fluoroscopy, DSA, and 3D CBCT in a single unit and is widely
employed in interventional suites.
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Figure 2.2: Perspective view of CBCT geometry and World Coordinate System
(WCS).

2.3 CBCT Geometry

This section introduces CBCT geometry parameters and their notations to describe
the 3D reconstruction algorithm and consistency conditions.

2.3.1 World Coordinate System

World Coordinate System (WCS) is used to represent points in 3D world space where
the CT system and the imaged object are located, and the CT image is sampled. WCS
is a Cartesian coordinate system and is fixed during the scan. We utilize the Left
Posterior Superior (LPS) orientation of the DICOM patient coordinate system to
define WCS coordinate axes, as shown in Fig. 2.2. The positive x̂, ŷ, and ẑ axes
are oriented from right to left, anterior to posterior, and from inferior to superior of
the patient, respectively. The origin of WCS is considered as the isocenter (o ∈ R3)
of the CT system. The basis vectors of WCS are the standard basis of 3D Euclidean
space:

x̂ =

1
0
0

 , ŷ =

0
1
0

 , ẑ =

0
0
1

 (2.12)
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Figure 2.3: Rotation plane of source-detector assembly and the gantry rotation angle.

As shown in Fig. 2.2, f ∈ R3 denotes the 3D position vector of the X-ray source.
We assume a punctiform X-ray source, which is termed as the focal spot, a point on
the X-ray anode from where X-ray photons are emitted. In practice, this assumption
is often not valid and can cause spatially varying resolution properties of the recon-
structed image. Rf denotes the distance from the isocenter (center of rotation) to the
focal spot (source-isocenter distance). D is the perpendicular distance from the focal
spot to the detector plane, and the orthogonal ray is referred to as the principal ray.
d ∈ R3 denotes the point where the principal ray intersects the detector plane.

2.3.2 Source Detector Coordinate System

In the axial scans of clinical CBCT systems, the source-detector pair rotates around
the patient and acquires a series of 2D projections/views while the patient remains
stationary lying on a table. As shown in Fig. 2.2, the ẑ axis of WCS is chosen as
the rotation axis. For a stable CBCT system, the focal spot trajectory (source orbit)
is a full (full scan) or partial (short scan) circle, and Rf is its radius. The circular
focal spot trajectory is parameterized by rotation angle α ∈ R : α ∈ [0, 2π) and an
arbitrary point on the trajectory is denoted by f (α). α is the angle between the
principal ray and the positive x̂ axis, as depicted in Fig. 2.3. α = 0, when the focal
spot is positioned on the positive x̂ axis, and the angle increases during the clockwise
rotation of the source-detector assembly. The matrix Rz (α) ∈ R3×3 describes the
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rotation around the ẑ axis.

Rz (α) =

cosα − sinα 0
sinα cosα 0

0 0 1

 (2.13)

By assuming the ẑ-coordinate of the points in the rotation plane is 0, the 3D position
vector of the focal spot is given by:

f (α) = Rz (α)

Rf

0
0

 (2.14)

CBCT systems acquire projections at regular intervals under ideal conditions dur-
ing their rotation, and the angular sampling width is represented by ∆α. The total
number of projections acquired during a single scan is denoted by Nα. Each projec-
tion/view is indexed by i ∈ N : i ∈ [0, Nα − 1] and the corresponding rotation angle
is denoted by αi ∈ R. α0, and αNα−1 represent the angles that correspond to the
initial and final projections and characterize the circular source trajectory. The angle
associated with each projection index can be computed with the following equation:

αi = (α0 + i ∆α)mod 2π, i = 0, ..., Nα − 1 (2.15)
Source Detector Coordinate System (SDCS) is the rotated coordinate system of the

source-detector assembly. The orthonormal basis vectors of SDCS are parameterized
by rotation angle α and denoted by û (α) , v̂ (α), and ŵ (α). û (α), and v̂ (α) orient
in the direction of detector columns and rows while ŵ (α) is the direction of the
orthogonal ray towards the detector plane from the focal spot, the origin of SDCS.
If the detector plane is perfectly aligned and not tilted around the x̂ or ŷ axis, it is
assumed that, û (0) ‖ ŷ, v̂ (0) ‖ −ẑ and ŵ (0) ‖ −x̂. The implicit rotation matrix
R0 ∈ R3×3 can be formed by stacking the basis vectors of SDCS at α = 0 row by
row:

R0 =

û (0)T

v̂ (0)T

ŵ (0)T

 =

 ŷT−ẑT
−x̂T

 (2.16)

The SDCS basis vectors at arbitrary angle α are the rows of the rotation matrix
R (α), the product of R0 and Rz (α):

R (α) =

û (α)T

v̂ (α)T

ŵ (α)T

 = R0Rz (α) (2.17)

Detector Coordinate System (DCS) is a subspace of SDCS with the origin at d
(the orthogonal projection of focal spot onto the detector plane) and basis vectors
û (α) and v̂ (α). The position vector of an arbitrary point on the detector plane
can be mathematically expressed as u û (α) + v v̂ (α) + D (α) ŵ (α) in SDCS and
u û (α) + v v̂ (α) in DCS.

15



2 Theoretical Background

2.3.3 Pixel Coordinate System

From the geometric viewpoint, a Flat Panel Detector (FPD) is considered a rectan-
gular grid (2D matrix) of pixels. The number of columns and rows of the matrix are
represented by Nu and Nv. The centroid of each detector element (pixel) is identified
with the column index ui ∈ N : ui ∈ [0, Nu − 1] and row index vi ∈ N : vi ∈ [0, Nv − 1].
It is assumed that the detector is equidistant sampled along column and row directions
and the sampling intervals are the pixel width ∆u and height ∆v.
Pixel Coordinate System (PCS) is used to represent any point on the detector

with the coordinates upcs ∈ R : upcs ∈ [−0.5, Nu − 0.5] and vpcs ∈ R : vpcs ∈
[−0.5, Nv − 0.5]. The origin of the PCS is the centroid of the pixel located at the
top left corner when α = 3π

2
and viewing direction is from the source to the detector

(top view). At each pixel centroid, upcs = ui and vpcs = vi. PCS is utilized to access
the pixel value of the corresponding point in DCS, and the coordinate transformation
from DCS to PCS can be performed with an affine transform (scaling + translation):[

upcs

vpcs

]
=

[
1

∆u
0

0 1
∆v

] [
u
v

]
+

[
upcs0

vpcs0

]
(2.18)

[
upcs0 , vpcs0

]T is the origin of DCS (principal point) in PCS. DCS is used to define any
point on the infinite detector plane where the values of coordinates are measured
in millimeters. We use DCS in the derivation of analytical reconstruction formulas.
The coordinate values of PCS are measured in number of detector pixels, and the
fractional value indicates the point between adjacent pixel centroids.

2.3.4 Volume Geometry

In CT imaging, reconstructed volume is the spatial distribution of linear attenuation
coefficients µ (x), where x ∈ R3 denotes an arbitrary 3D point in WCS. µ (x) is
assumed to be a sufficiently regular (differentiable at least twice) and has a compact
support of radius RFOV (µ (x) = 0 ∀ ‖x‖ > RFOV ) [31]. RFOV is the radius of the
cylindrical Field of View (FOV). For numerical reconstruction, the volume is dis-
cretized on a grid of Nx × Ny × Nz voxels in x, y and, z directions as the number
of columns, rows, and slices of the volume. ∆x,∆y, and ∆z represent voxel width,
height, and depth. The volume is also specified by the reconstruction center (vol-
ume mid-point) xrc, a 3D point in WCS. The centroid of each voxel is identified
by the column xi, row yi, and slice zi indices. The 3D position vector of first voxel
(xi = yi = zi = 0) in WCS is given by:

x0 = xrc −

 (Nx−1)∆x
2

(Ny−1)∆y

2
(Nz−1)∆z

2

 (2.19)
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Figure 2.4: Projection geometry of voxel to pixel mapping in the ûŵ plane.

The coordinates of each voxel centroid in WCS can be computed with the following
affine transform:

x = x0 +

∆x 0 0
0 ∆y 0
0 0 ∆z

xiyi
zi

 (2.20)

2.3.5 Projection Geometry

Consider a 3D point x is projected by an X-ray emanating from the focal spot f (α)
onto the detector plane. The coordinates of the projected point in DCS are given by
(Fig. 2.4):

ux (α) = D
〈x− f (α) , û (α)〉
〈x− f (α) , ŵ (α)〉

vx (α) = D
〈x− f (α) , v̂ (α)〉
〈x− f (α) , ŵ (α)〉

(2.21)

The corresponding point in PCS
[
upcsx (α) , vpcsx (α)

]T can be computed with the Eq.
2.18.
For a mechanically stable CT system with a perfect circular source trajectory (e.g.,

clinical MDCT, high precision industrial CBCT), the projection geometry at rotation
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angle α is determined by the vectors f (α) , û (α) , v̂ (α), and ŵ (α). The values
of rotation-invariant parameters D,Rf , u

pcs
0 and vpcs0 are fixed during the scan. By

knowing the system geometry parameters and the rotation angle of each projection,
the projection geometry of the axial scan can be estimated. The perfect circular
trajectory is not practical for C-arm CBCT due to mechanical constraints. Hence,
the scalars and the vectors of the geometry parameters are rotationally variant. Apart
from Rz (α), additional rotations around x̂ and ŷ axes are necessary to estimate the
final rotation matrix R (α) if the detector plane is tilted. In this scenario, CBCT
systems make use of projection matrices P (α) ∈ R3×4 to describe the geometry of
cone beam projection. The mapping of a 3D point x to its corresponding projected
location in PCS can be performed as a matrix-vector multiplication [33]:

λ

upcsxvpcsx
1

 = P (α) x̃ = P (α)


x
y
z
1

 , x̃ ∈ P3 := R4\ [0, 0, 0, 0]T (2.22)

x̃ is the homogeneous representation of x in 3D projective space (P3), where the last
element of the homogeneous vector is unity. The pixel coordinates are computed by
eliminating the non-zero scaling factor λ as per the following normalization [33]:

upcsx =
〈pT0 (α) , x̃〉
〈pT2 (α) , x̃〉

vpcsx =
〈pT1 (α) , x̃〉
〈pT2 (α) , x̃〉

(2.23)

where pTi is the i+1-th row of the projection matrix. The matrices are computed
during the geometrical calibration of the scanner using phantoms consisting of marker
balls. Utilizing the known point correspondences

(
x→

[
upcsx , vpcsx

]T) of metal balls,
the matrix elements are estimated by solving a system of linear equations with the
Singular Value Decomposition (SVD) algorithm [63].
The composition of the projection matrix can be expressed as [41]:

P (α) = K (α)
[
R (α) −R (α)f (α)

]
(2.24)

where the intrinsic matrix K (α) ∈ R3×3 is given by:

K (α) =

D(α)
∆u

0 upcs0 (α)

0 D(α)
∆v

vpcs0 (α)
0 0 1

 (2.25)

The individual projection geometry parameters necessary for reconstruction can be
extracted from the projection matrix using QR decomposition [41].
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Figure 2.5: Line in 2D.

2.4 Integral Transforms

2.4.1 Radon Transforms

By introducing Radon transform and formulating its inverse, Johann Radon laid the
mathematical foundations of analytical CT reconstruction in his paper published in
1917 [79]. In 2D, Radon transform R2 of a function µ is defined as the set of line
integrals where the lines are denoted by L (θ, s) or L

(
θ̂, s
)
.

L (θ, s) = L
(
θ̂, s
)

=
{
x ∈ R2 : 〈x, θ̂〉 = s, θ̂ ∈ S, s ∈ R

}
(2.26)

As shown in Fig. 2.5, θ is the angle between the x̂-axis and the normal vector
to the line. θ̂ =

[
cos θ sin θ

]T denotes the normal vector and s is the orthogonal
distance from the origin to the line along θ̂. The line direction is represented by
θ̂⊥ =

[
− sin θ cos θ

]T , unit vector orthogonal to θ̂. The 2D Radon transform of the
function µ (x) ,x ∈ R2 is formulated as [32] [59]:

R2µ (θ, s) = R2µ
(
θ̂, s
)

=

∫
x∈L(θ̂,s)

µ (x) dx

=

∫
x∈R2

µ (x) δ
(
〈x, θ̂〉 − s

)
dx

=

∫
l∈R

µ
(
sθ̂ + lθ̂⊥

)
dl

(2.27)
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where δ is the Dirac delta function. The important properties of 2D Radon transform,
which are relevant to the reconstruction algorithms mentioned in this thesis, are given
below [32]:

1. Linearity: Radon transform inherit this property from the linear integral oper-
ator [32].

R2

N∑
i=1

ciµi

(
θ̂, s
)

=
N∑
i=1

ciR2µi

(
θ̂, s
)
, ci,∈ R (2.28)

2. Periodicity:
R2µ (θ + 2π, s) = R2µ (θ, s) (2.29)

3. Redundancy/consistency:

R2µ (θ + π,−s) = R2µ (θ, s) , see Appendix .2 for proof (2.30)

4. Fourier slice theorem: For a fixed angle θ, 2D Radon transform in Fourier
domain is defined as:

F1R2µ
(
σ; θ̂

)
=

∫
s∈R

R2µ
(
s; θ̂
)
e−i2πsσ ds

where R2µ
(
s; θ̂
)
∈ L1 (R) :

∫
s∈R

∣∣∣R2µ
(
s; θ̂
) ∣∣∣ ds <∞ (2.31)

σ ∈ R is the one dimensional Fourier transform variable representing the spatial
frequency in cycles per mm. With the corresponding frequency variable ν ∈ R2,
2D Fourier transform of the function µ (x) is defined as follows:

F2µ (ν) =

∫
x∈R2

µ (x) e−i2π〈x,ν〉 dx

where µ (x) ∈ L1
(
R2
)

:

∫
x∈R2

∣∣∣µ (x)
∣∣∣ dx <∞ (2.32)

According to Fourier slice theorem in 2D, 1D Fourier transform of Radon trans-
form of the function µ (x) along the line L

(
θ̂, s
)
is the 1D "slice" of the func-

tion’s 2D Fourier transform along the direction θ̂ [56]:

F1R2µ
(
σ; θ̂

)
= F2µ (ν)

∣∣∣∣
ν=σθ̂

= F2µ
(
σθ̂
)
, see Appendix .3 for proof

(2.33)
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3D Radon transform R3 of function µ (x) ,x ∈ R3 is defined as a set of plane
integrals. 2D plane in R3 is parameterized by the normal vector Θ̂ and the orthogonal
distance t from the origin:

Π
(
Θ̂, t

)
=
{
x ∈ R3 : 〈x, Θ̂〉 = t, Θ̂ ∈ S2, t ∈ R

}
(2.34)

3D Radon transform of the function µ (x) ,x ∈ R3 is defined as [32] [95]:

R3µ
(
Θ̂, t

)
=

∫
x∈Π(Θ̂,t)

µ (x) dx

=

∫
x∈R3

µ (x) δ
(
〈x, Θ̂〉 − t

)
dx

(2.35)

Likewise, the generalized Radon transform RN in RN can be defined as the integral
over N − 1-dimensional hyperplanes [95].

2.4.2 X-ray Transforms

N -dimensional X-ray transform of a function µ (x) ,x ∈ RN is defined as the set of
integrals along the lines diverging from a focal point f . If the direction of the line is
denoted by β̂ ∈ SN−1, X-ray transform can be expressed as:

XN
(
f , β̂

)
=

∫
l∈R

µ
(
f + lβ̂

)
dl (2.36)

Counter to the definition of Radon transform as the integral over hyperplanes, X-ray
transform of a function is defined as a set of line integrals even for higher dimensions.
In 2D, Radon and X-ray transforms are defined as line integrals and can be equated
with a change of variables known as rebinning. X-ray transforms are also known as
fan (2D), and cone beam transforms (3D).

2.5 Image Reconstruction in CT

Image reconstruction in CT is an inverse problem where the 3D spatial distribution
of linear attenuation coefficients µ (x) ,x ∈ R3 is estimated from its line integrals.
CT reconstruction algorithms can be classified into four major categories [93]:

1. Analytical or transform-based reconstruction

2. Iterative reconstruction

3. Deep learning-based reconstruction
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4. Hybrid reconstruction

Analytical reconstruction algorithms are the numerical methods for the exact or
approximate inversion of Radon or X-ray transforms. In iterative reconstruction al-
gorithms, the reconstructed image is optimized after a series of projection and back
projection operations. The optimal image is computed by minimizing the difference
between the measured projections and the forward projections of the current esti-
mated image. Model-Based Iterative Reconstruction (MBIR) algorithms facilitate
the incorporation of the models of X-ray generation, interaction with matter, de-
tection, and acquisition geometry. Deep learning-based reconstruction is an ongoing
research area where image reconstruction is performed using trained neural networks
[91]. Analytical, iterative, and deep learning-based algorithms can be combined to
formulate a hybrid reconstruction algorithm to exploit each of their advantages.

In this thesis, image reconstruction is performed using an analytical reconstruction
algorithm known as Filtered Back Projection (FBP). It is the state-of-the-art recon-
struction algorithm of major medical and industrial CT scanners. The prevalence of
its adoption is mainly due to the computational efficiency and the linearity of the
FBP operator. The emergence of the Fast Fourier Transform (FFT) algorithm and
hardware like Digital Signal Processing (DSP) and Graphics Processing Unit (GPU)s
enable FBP to perform ultra-fast volumetric reconstruction without requiring a large
amount of memory. This is hugely beneficial when fast CT image acquisition is critical
for patient safety. This section describes the FBP algorithm for 3D CBCT scanners
that employ full or partial circular X-ray source trajectories (axial scans). Feldkamp,
Davis, and Kress proposed the original reconstruction formula and is widely known
as the FDK algorithm [36]. Since the algorithm is a heuristic extension of 2D fan
beam FBP reconstruction, its description is preceded by the derivation of 2D parallel
and fan beam reconstruction formulas.

The following assumptions are held for the description and the derivation of the
algorithms:

1. The image to be reconstructed is assumed as continuous in their respective
domains for the derivation of reconstruction formulas. Likewise, the projections
(line integrals) are also continuous and are acquired with an infinite number of
detector elements where the X-ray beam width is infinitesimally small.

2. The X-ray source is assumed to be punctiform by ignoring the fixed focal spot
size.

3. The projections cover the entire FOV without any truncation.

4. The source-detector pair rotates around the object in a perfect full or partial
circle.

5. The X-ray source is monochromatic, and the energy dependence of attenuation
coefficient is omitted for brevity, µ (x, Em) = µ (x) ,∀Em.
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6. X-ray photons travel along straight lines without object or detector scatterings.

7. The imaged object is stationary during the scan.

The violation of these assumptions during the projection acquisition leads to various
artifacts in the CT reconstructed images, and the artifacts need to be corrected before
or after the FBP algorithm.

2.5.1 2D Parallel Beam Reconstruction

In 2D parallel beam projection geometry, X-ray photons are assumed to travel as
parallel rays. It is analogous to the first-generation CT scanner’s data collection,
where the source-detector pair is translated to cover the FOV at each projection angle
before rotation. Consider an arbitrary ray hits the detector element (bin) located s
distance from the origin of WCS along the ray normal θ̂. The total monochromatic
attenuation values (Eq. 2.5) recorded by the detector elements can be considered
the 2D Radon transform of the spatial distribution of linear attenuation coefficient
µ (x) ,x ∈ R2.

gm

(
s, θ̂
)

= −ln

 It

(
s, θ̂
)

I0

(
s, θ̂
)


=

∫
l∈R

µ
(
sθ̂ + lθ̂⊥

)
dl

= R2µ
(
s, θ̂
)

(2.37)

The mathematical equation for 2D parallel beam reconstruction is derived using
the Fourier slice theorem (Eq. 2.33) [56] [48]. 2D inverse Fourier transform of µ (x)
is given by:

µ (x) =

∫
ν∈R2

F2µ (ν) ei2π〈x,ν〉 dν (2.38)

Using the Cartesian to polar coordinate transformation ν = σθ̂ where the Jacobian
determinant det J = |σ|:

µ (x) =
1

2

∫
θ̂∈S

∫
σ∈R

|σ|F2µ
(
σθ̂
)
ei2π〈x,σθ̂〉 dσ dθ̂ (2.39)

By applying the Fourier slice theorem (Eq. 2.33), we can replace the 2D Fourier
transform of µ by the 1D Fourier transform of its 2D Radon transform:

µ (x) =
1

2

∫
θ̂∈S

∫
σ∈R

|σ|F1R2µ
(
σ; θ̂

)
ei2πσ〈x,θ̂〉 dσ dθ̂¸ (2.40)
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where
∫
σ∈R
|σ|F1R2 (σ; θ) ei2πσ〈x,θ̂〉 dσ can be interpreted as the inverse Fourier trans-

form after filtering in the frequency domain. The filter kernel in the continuous spatial
domain is the 1D inverse Fourier transform of ramp function:

hr (s) =

∫
σ∈R

|σ| ei2πσs dσ (2.41)

The following scaling property of ramp function is utilized for the derivation of re-
construction algorithms and the definition of consistency conditions:

hr (cs) =
1

c2
hr (s) , ∀c 6= 0 see Appendix .4 for proof (2.42)

Since multiplication in the frequency domain is equivalent to the convolution op-
eration ∗ in the spatial domain, Eq. 2.40 can be modified as:

µ (x) =
1

2

∫
θ̂∈S

hr (s) ∗ R2µ
(
s, θ̂
) ∣∣∣∣∣

s=〈x,θ̂〉
dθ̂

=
1

2

2π∫
0

hr (s) ∗ R2µ (s, θ)

∣∣∣∣∣
s=〈x,θ̂〉

dθ

=
1

2

2π∫
0

∫
s∈R

hr

(
〈x, θ̂〉 − s

)
R2µ (s, θ) ds dθ

(2.43)

By exploiting the redundancy of 2D Radon transform (Eq. 2.30), the image can be
reconstructed from the projections acquired over half scan where θ ∈ [0, π) :

µ (x) =

π∫
0

∫
s∈R

hr

(
〈x, θ̂〉 − s

)
R2µ (s, θ) ds dθ (2.44)

The individual steps of the 2D parallel beam reconstruction algorithm are summa-
rized below:

1. Filtering: At first, the projections are filtered with a 1D ramp filter.

gfm

(
s; θ̂
)

= hr (s) ∗ gm
(
s; θ̂
)

(2.45)

Using the FFT algorithm, filtering operation can be efficiently implemented in
the frequency domain by reducing the computational complexity from O(n2) to
O(n log n).
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2. Back projection: Filtered projections are back projected to object/image space
where each point along the ray is assigned with the projection value recorded
at the corresponding detector bin. Finally, all the back projected values are
integrated to compute the reconstructed value at 3D point x.

µ (x) =

π∫
θ

gfm

(
〈x, θ̂〉, θ

)
dθ (2.46)

Hence, the above-mentioned algorithm is aptly known as Filtered Back Projection
(FBP). R−1

2 denotes the FBP operator for 2D parallel beam reconstruction and is
considered as the numerical method for the inversion of 2D Radon transform. The
reconstruction of 2D image from the parallel projections using the FBP algorithm
can be symbolically represented as µ (x) = R−1

2 gm (x).

2.5.2 2D Fan Beam Reconstruction

In third-generation CT scanners, the projection data is acquired with a wide fan beam
where the X-ray photons originating from the focal spot travel in different directions
simultaneously to cover the FOV. As a result, the translation of source-detector pair
employed in first (parallel beam) and second (narrow fan beam) generation CT scan-
ners is eliminated to accelerate the projection acquisition. We assume that the X-ray
photons are detected with a line detector. By limiting 3D cone beam geometry in the
2D rotation plane, we can use the same notations and the conventions as explained in
the Sec. 2.3 to illustrate the geometry of 2D fan beam reconstruction as displayed in
Fig. 2.6. f (α) ∈ R2 denotes the source position parameterized by the rotation angle
α. The direction of the X-ray emanating from the source is denoted by β̂ ∈ S. Each
ray in the 2D plane can also be identified with the fan angle β, the angle between
the ray and the orthogonal vector from the source to the line detector (principal ray).
The orthogonal ray meets the detector at point d (α), the origin of the 1D Detector
Coordinate System (DCS). Each ray intersects the detector at u, the signed distance
from d (α). D and Rf are the source-detector and source-isocenter distances. Similar
to Eq. 2.37, the forward model of 2D fan beam reconstruction can be expressed as:

gm (u, α) = gm

(
β̂,f (α)

)
= −ln

 It

(
β̂,f (α)

)
I0

(
β̂,f (α)

)


=

∫
l∈R

µ
(
f (α) + lβ̂

)
dl

= X2µ
(
β̂,f (α)

)
(2.47)
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Figure 2.6: 2D fan beam projection geometry.

Thus, the total monochromatic attenuation values measured at each detector element
can be considered as the 2D X-ray (fan beam) transform of the spatial distribution of
linear attenuation coefficient. The vector from the source to any point on the detector
can be represented by u û (α)+D ŵ (α) in WCS where û (α) and ŵ (α) are the basis
vectors of Source Detector Coordinate System (SDCS) as explained in Sec. 2.3. x is
an arbitrary point in 2D and is projected onto the detector at coordinate ux in DCS.
The direction of the X-ray passing through x (the direction vector from the source
to the detector element located at ux) is denoted by β̂x:

β̂x =
x− f (α)

‖x− f (α)‖

=
ux û (α) +D ŵ (α)√

u2
x +D2

(2.48)

2D Radon and X-ray transforms are defined as a set of line integrals, and the rela-
tion between them can be established with a change of variables known as rebinning.

R2 (s, θ) = X2 (u, α) (2.49)

As per Fig. 2.6, the rebinning equations are given by:

θ = α +
π

2
− β

= α +
π

2
− tan−1

( u
D

) (2.50)
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s = Rf sin β

= Rf
u√

u2 +D2

(2.51)

The Jacobian determinant associated with the coordinate transformation is:

det J =
RfD

2

(u2 +D2)
3
2

(2.52)

The normal vector θ̂ to any source-detector line can be obtained after 90-degree
anti-clockwise rotation (Fig. 2.5):

θ̂ =
D û (α)− u ŵ (α)√

u2 +D2
(2.53)

2D fan beam reconstruction formula can be derived from its counterpart in 2D
parallel beam geometry by substituting the rebinning equations [56]. The term
hr

(
〈x, θ̂〉 − s

)
of Eq. 2.43 can be modified as:

hr

(
〈x, θ̂〉 − s

)
= hr

(
〈x, θ̂〉 − 〈f (α) , θ̂〉

)
where s = 〈f (α) , θ̂〉 as per Fig. 2.6

= hr

(
〈x− f (α) , θ̂〉

)
= hr

(
〈‖x− f (α)‖ x− f (α)

‖x− f (α)‖ , θ̂〉
)

= hr

(
〈‖x− f (α)‖ β̂x, θ̂〉

)
by substituting Eq. 2.48

=
1

‖x− f (α)‖2hr

(
〈β̂x, θ̂〉

)
as per Eq. 2.42

=
1

‖x− f (α)‖2hr

(
D (ux − u)√

u2
x +D2

√
u2 +D2

)

=
(u2
x +D2) (u2 +D2)

‖x− f (α)‖2D2
hr (ux − u)

(2.54)

As per Fig. 2.6,

cos βx =
D√

u2
x +D2

=
〈x− f (α) , ŵ (α)〉
‖x− f (α)‖ (2.55)

By utilizing the above relation,

hr

(
〈x, θ̂〉 − s

)
=

D2 (u2 +D2)

〈x− f (α) , ŵ (α)〉2D2
hr (ux − u)

=
(u2 +D2)

〈x− f (α) , ŵ (α)〉2hr (ux − u)

(2.56)
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By substituting Eq. 2.56 along with the change of variables (Eq. 2.50, Eq. 2.51
and Eq. 2.52), Eq. 2.43 can be transformed to 2D fan beam reconstruction formula:

µ (x) =
1

2

2π∫
0

∫
u∈R

(u2 +D2)

〈x− f (α) , ŵ (α)〉2hr (ux − u)X2µ (u, α)
RfD

2

(u2 +D2)
3
2

du dα

=
1

2

2π∫
0

∫
u∈R

DRf

〈x− f (α) , ŵ (α)〉2 hr (ux − u)
D√

u2 +D2
X2µ (u, α) du dα

(2.57)

Short Scan Reconstruction

If the focal spot trajectory is a full circle (full scan), the lines passing through the
imaged object intersect the source trajectory at two different points, and thereby
each line integral is measured twice. Similar to Eq. 2.30, redundancy in 2D fan beam
geometry is given by:

X2µ (β, α) = X2µ (−β, α + π − 2β) (2.58)

where
β = tan−1

( u
D

)
(2.59)

By utilizing the redundancy property of 2D Radon transform, Eq. 2.44 showed that
the half-circle source trajectory is sufficient for exact 2D parallel beam reconstruction.
As per Tuy’s sufficiency condition in 2D, any ray passing through the imaged object
should be measured at least once [98]. The projections of half-circle trajectory are
not adequate for the accurate 2D fan beam reconstruction due to the unmeasured
line integrals. All the line integrals are measured at least once if the rotation angular
range is π + βdet where βdet is the total detector fan angle. Such CT projection data
acquisition is named as short scan and is widely used in interventional CBCT imaging
to reduce dose and acquisition time.

In short scans, the majority of the integrals are once, and some are measured twice.
To avoid redundancy artifacts, the contribution of line integral measured twice should
be equal to that of measured once during back projection. Hence, the line integrals
need to be weighted before back projection. As per Eq. 2.58, the important property
of redundancy weighting function is given by:

wr (β, α) + wr (−β, α + π − 2β) = 1 (2.60)

The trivial function based on binary weights of 1 and 0.5 introduces artifacts in
the reconstructed image after high pass ramp filtering. Therefore, Parker introduced
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a smooth weighting function for the short scan [74] [45]:

wr (β, α) =


sin2

(
π(α−α0)

4
(
βdet
2
−β
)
)
, for 0 ≤ (α− α0) ≤ βdet − 2β

1, for βdet − 2β ≤ (α− α0) ≤ π − 2β

sin2

(
π(π+βdet−(α−α0))

4
(
βdet
2

+β
)

)
, for π − 2β ≤ (α− α0) ≤ π + βdet

(2.61)

where α0 is the initial rotation angle. For a full scan where all the line integrals are
measured twice, the weighting function is a constant scaling factor.

wr (β, α) = 0.5 (2.62)

By modifying Eq. 2.57, the generalized full and short scan reconstruction formula
for 2D fan beam geometry can be formulated:

µ (x) =

αNα−1∫
α0

∫
u∈R

DRf

〈x− f (α) , ŵ (α)〉2hr (ux − u)wr (u, α)
D√

u2 +D2
X2µ (u, α) du dα

(2.63)

where αNα−1 is the rotation angle of the final projection.

2.5.3 3D CBCT Reconstruction

In CBCT axial scans, 3D volume µ (x) ,x ∈ R3 is reconstructed from cone beam
projections where the focal spot trajectory is a full or partial circle. The acquired
projections are the line integrals (3D X-ray transform, X3) measured on a 2D detector
plane. Since each cone beam projection contains the line integrals through the whole
volume or the desired Region of Interest (ROI), real-time multi-slice reconstruction
can be performed without translating the patient or source-detector assembly. As per
the CBCT geometry described in Sec. 2.3, the cone beam projection generation is
modeled as:

gm (u, v, α) = gm

(
β̂,f (α)

)
, β̂ ∈ S2,f (α) ∈ R3

= −ln

 It

(
β̂,f (α)

)
I0

(
β̂,f (α)

)


=

∫
l∈R

µ
(
f (α) + lβ̂

)
dl

= X3µ
(
β̂,f (α)

)
(2.64)
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[
u, v
]T is the point on the detector where the X-ray of direction β̂ hits:

u = D
〈β̂, û (α)〉
〈β̂, ŵ (α)〉

v = D
〈β̂, v̂ (α)〉
〈β̂, ŵ (α)〉

(2.65)

2D Radon and X-ray transforms are defined as line integrals, and the FBP algorithm
in 2D is the inversion of Radon transform. In 3D, Radon and X-ray transforms are
defined as plane and line integrals. Without an explicit formula to relate 3D Radon
and X-ray transforms, Feldkamp, Davis, and Kress proposed the FDK reconstruction
algorithm for the approximate inversion of 3D X-ray transform [36]. The algorithm is
formulated by the heuristic extension of the 2D fan beam reconstruction formula. 3D
FDK and 2D fan beam reconstructions are identical in the rotation plane. Therefore,
an exact 3D reconstruction of the central slice is feasible with the FDK algorithm.
According to Tuy’s data sufficiency condition in 3D, an exact reconstruction is only
possible if 3D Radon transform is available for all the planes intersecting the imaged
object. It can be easily visualized that any plane parallel to the rotation plane does
not intersect the CBCT axial scan’s source trajectory. As a result, the approximate
FDK reconstruction introduces artifacts in the slices distant from the rotation plane,
and the artifacts are known as cone beam or Feldkamp artifacts.

The individual steps of FBP reconstruction using the FDK algorithm are [45]:

1. Cosine weighting: Each integral is weighted with the cosine of the angle between
the X-ray and the principal ray.

gcm (u, v, α) =
D√

u2 + v2 +D2
gm (u, v, α) (2.66)

2. Redundancy weighting: Row-wise redundancy weighting of the cosine weighted
projections can be expressed as:

gcrm (u, v, α) = wr (u, α) gcm (u, v, α) (2.67)

The redundancy weighting functions wr (u, α) for full and short scans are given
by Eq. 2.62 and Eq. 2.61

3. Filtering: Row-wise ramp filtering of the weighted projections in the spatial or
frequency domain.

gcrfm (u, v, α) = hr (u) ∗ gcrm (u, v, α) (2.68)

4. Cone beam back projection: The linear attenuation coefficient at 3D point x
is computed by the cone beam back projection of filtered projection value at
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[
ux, vx

]T , the point where the X-ray coming from the source located at f (α)
and passes through x hits the detector.

µ (x) =

αNα−1∫
α0

DRf

〈x− f (α) , ŵ (α)〉2 g
crf
m (ux, vx, α) dα (2.69)

ux and vx can be computed using Eq. 2.21.

3D CBCT axial reconstruction using FDK operator X−1
3 is symbolically repre-

sented as:
µ (x) = X−1

3 gm (x) (2.70)

By contrast, the computation of total attenuation values from the reconstructed
volume using cone beam transform X3 is known as forward projection.

gm (u, v, α) = X3µ (u, v, α) (2.71)

2.6 Cone Beam Data Consistency Conditions

In CT, the redundancy of over-determined and error-free projection measurements
(Radon or X-ray transforms) can be mathematically expressed as a set of equivalence
relations, known as Data Consistency Conditions (DCC). As explained in the previous
section, the full scan projection dataset is over-determined in 2D parallel and fan beam
geometries. Hence, Eq. 2.29 and Eq. 2.58 can be considered as the DCC caused by
the redundant measurements. The exploration of symmetry in integral geometry
has led to the discovery of several consistency conditions. For 2D and 3D parallel
beam projections, Helgason-Ludwig Consistency Conditions (HLCC) are necessary
and sufficient to characterize the projection data (2D or 3D Radon transforms) [64].
According to zeroth-order HLCC in 2D, the integral of 2D Radon transform over s
gives 2D plane integral (3D Radon transform) independent of the rotation angle θ:

∫
s∈R

R2µ (s, θ) ds = R3µ
(
Θ̂, t

)
, see Appendix .5 for proof (2.72)

HLCC can be reformulated for 2D fan beam projections after rebinning using Eq.
2.50, Eq. 2.51 and Eq. 2.52.

∫
u∈R

X2µ
(
u, α +

π

2
− tan−1

( u
D

)) D2Rf

(u2 +D2)
3
2

du = R3µ
(
Θ̂, t

)
(2.73)

For a 3D CBCT system with a perfect circular trajectory, HLCC is valid for 2D fan
beam projection associated with the rotation or source trajectory plane.
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In this thesis, we focus on data consistency conditions applicable to cone beam pro-
jection pairs. The consistency conditions are derived from the works of Bruce Smith
and Pierre Grangeat to develop the exact 3D cone beam reconstruction algorithms
based on the inversion of 3D Radon transforms [39] [83]. Accurate 3D reconstruction
is possible if 3D Radon transform data is available for all the planes intersecting the
imaged object, µ (x) ,x ∈ R3. By employing the Fourier slice theorem in 3D, the
inversion of 3D Radon transform (3D FBP) can be expressed as [32]:

µ (x) =
1

2

∫
S2

∫
R

|σ||σ|F1R3µ
(
Θ̂, σ

)
ei2πσ〈x,Θ̂〉 dσ dΘ̂ (2.74)

Hence, the image can be reconstructed by 3D back projection of Radon transforms
after filtering twice with the ramp filter along the radial direction. The second deriva-
tive of 3D Radon transform in the Fourier domain is given by [59]:

F1

∂2R3µ
(
Θ̂, t

)
∂t2

= − (2πσ)2F1R3µ
(
Θ̂, σ

)
(2.75)

By substituting Eq. 2.75 in Eq. 2.74, the inversion of 3D Radon transform can be
reformulated as [32]:

µ (x) =
−1

8π2

∫
Θ̂∈S2

∂2

∂t2
R3µ

(
Θ̂, t

) ∣∣∣∣∣
〈x,Θ̂〉=t

dΘ̂ (2.76)

Hence, the exact reconstruction is possible if 3D Radon transform data is available
for all the planes intersecting the small spherical neighborhood of point x. As a result,
the requirement for 3D Radon transform for all the planes intersecting the imaged
object is eliminated by replacing the global ramp filtering with the local derivative
operation.

If the projections are acquired with a flat detector and 3D parallel beam X-rays,
any plane integral can be directly computed from the projections itself by integrat-
ing the attenuation values along the line formed by the intersection of the plane
and the detector (HLCC in 3D). This is not possible for cone beam projections due
to the divergence of X-rays where the rays are condensed near the source, and the
ray density decreases as the distance from the source increases. This will introduce
a distance-dependent weighting factor while computing the integral. Instead of es-
timating 3D Radon transform directly, Smith and Grangeat’s works focus on the
computation of intermediate functions from the cone beam projection data. Smith
and Grangeat intermediate functions are the ramp and first derivative filtered 3D
Radon transforms along the radial directions. The necessary data for 3D reconstruc-
tion can be obtained from the intermediate functions by the subsequent ramp filtering
and derivative operations. In this thesis, the consistency conditions derived from the
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Figure 2.7: The geometry of pair-wise cone beam consistency conditions. The cone
beam projections gm

(
β̂, f (αi)

)
and gm

(
β̂, f (αj)

)
are generated by the

X-ray sources situated at f (αi) and f (αj). The plane Π
(
Θ̂k, t

)
con-

tains the line f (αi) − f (αj) and slices the 3D volume µ (x). L (θik, s
i
k)

and L
(
θjk, s

j
k

)
represent the lines formed by the intersection of Π

(
Θ̂k, t

)
and the detector planes. Reprinted from Abdurahman et al. [13] with
permission from IEEE. ©IEEE 2018.

respective intermediate functions are aptly named Grangeat (GCC) and Smith Con-
sistency Conditions (SCC). We also discuss the pair-wise formulation of Fan Beam
Consistency Condition (FBCC), an extension of fan beam consistency condition for
cone beam projections.
The pair-wise conditions are free from the limitations of having a perfect circular

source trajectory and applicable for 3D CBCT systems with irregular or wobbling
source trajectories found in interventional or mobile C-arm CT. As in all the formu-
lations of DCC, we assume that cone beam projections are not truncated. Unlike
HLCC for parallel beam projections, all the pair-wise consistency conditions men-
tioned in this thesis are necessary but not sufficient to fully characterize cone beam
projection data.
Fig. 2.7 displays the geometry of pair-wise consistency conditions. gm (β,f (αi))

and gm (β,f (αj)) are cone beam projections where the X-ray sources are located at
f (αi) and f (αj). αi and αj are the rotation angles corresponding to the projection
indices i and j where i, j ∈ {0, 1, ..Nα − 1} (Eq. 2.15). The line connecting two
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source positions is given by f (αi) − f (αj) and is termed as the baseline. We can
find a set of planes Π

(
Θ̂k, t

)
(Eq. 2.34) containing the baseline. The planes slice the

volume µ(x),x ∈ R3 and intersect the detectors. L (θik, s
i
k) and L

(
θjk, s

j
k

)
denote the

intersection lines. θik and sik are the 2D Radon coordinates in Detector Coordinate
System (DCS) spanned by the basis vectors û (αi) and v̂ (αi). θik is the angle between
the line normal vector and û (αi). sik is the orthogonal distance from the origin of DCS
to the line (Fig. 2.5). Di and Dj denote the source-detector distances, considering
the irregular source trajectory. −ŵ (αi) and −ŵ (αj) are the normal vectors to the
detector planes.

2.6.1 Grangeat Consistency Conditions

Consider the 2D X-ray fan beam marked by the transparent blue triangle in Fig. 2.7.
β ∈ R and r ∈ R represent the polar angle and the radial distance from the point
f (αi), the origin of the 2D polar coordinate system. 2D plane integral or 3D Radon
transform can be expressed in polar coordinates:

R3µ
(
Θ̂k, t

)
=

π∫
0

∫
r∈R

µ (r, β) rdr dβ (2.77)

The integral of total attenuation values along the line L (θik, s
i
k) gives the 2D plane

integral of the function µ (r, β) after weighting with the inverse of radial distance [98]
[46].

∫
β̂∈S2

δ
(
〈Θ̂k, β̂〉

)
gm

(
β̂,f (αi)

)
dβ̂ =

π∫
0

∫
r∈R

1

r
µ (r, β) rdr dβ (2.78)

If κ is the angle between Θ̂k and the normal vector of the plane orthogonal to the
detector (slice angle), the angular and tangential (radial) derivative of the planes are
related by [98] [46]:

∂

∂κ
= r

∂

∂t
(2.79)

Using "Grangeat’s trick", the radial and first derivative of the 3D Radon transform
can be computed by the angular derivative of the weighted plane integral [98] [46].

π∫
0

∫
r∈R

∂

∂κ

1

r
µ (r, β) rdr dβ =

π∫
0

∫
r∈R

∂

∂t
µ (r, β) rdr dβ

=
∂

∂t
R3µ

(
Θ̂k, t

) (2.80)
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Therefore, a relation can be established between 3D Radon transform and artifact-
free cone beam projection via an intermediate function G, the first derivative of 3D
Radon transform. The relation was proposed by Pierre Grangeat and is known as
Grangeat’s fundamental relation [39] [31] [37]:

Gi
(
Θ̂k

)
= −

∫
β̂∈S2

δ
′
(
〈Θ̂k, β̂〉

)
gm

(
β̂,f (αi)

)
dβ̂

=
∂

∂t
R3µ

(
Θ̂k, t

) ∣∣∣∣∣
t=〈f(αi),Θ̂k〉

(2.81)

where δ′ is the distributional derivative of Dirac delta function:

−
∫
δ
′
(x) f (x) dx =

∫
δ (x) f

′
(x) dx (2.82)

The proof of Grangeat’s fundamental relation is given in Appendix .6.
As described in [31], the intermediate function can be computed from the cosine

weighted projection gcm (Eq. 2.66) by calculating the 2D Radon transform and the
derivative orthogonal to the line:

Gi
(
Θ̂k

)
= G

(
θik, s

i
k

)
=

(sik)
2

+ (Di)
2

(Di)2

∂

∂sik
R2g

c
m

(
θik, s

i
k

)
see Appendix .7 for proof

(2.83)

Since both source points lie in the same plane, the same value of the intermediate
function can be computed from the projection pair, and the consistency condition as-
sociated with the plane is given by Gi

(
Θ̂k

)
= Gj

(
Θ̂k

)
. By consideringK number of

sampled planes around the baseline f (αi)−f (αj), Grangeat Consistency Conditions
(GCC) can be mathematically expressed as:

Gi
(
Θ̂k

)
= Gj

(
Θ̂k

)
, ∀k ∈ {0, .., K − 1} (2.84)

2.6.2 Smith Consistency Conditions

The relation between 3D Radon transform and cone beam projection can also be
established using Smith intermediate function, the ramp filtered 3D Radon transform
[83].

Si
(
Θ̂k

)
=

∫
β̂∈S2

hr

(
〈Θ̂k, β̂〉

)
gm

(
β̂,f (αi)

)
dβ̂

= hr (t) ∗ R3µ
(
Θ̂k, t

) ∣∣∣∣∣
t=〈f(αi),Θ̂k〉

see Appendix .8 for proof

(2.85)
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As like Eq. 2.83, Smith intermediate function can be computed from the flat panel
detector projections:

Si
(
Θ̂k

)
= S

(
θik, s

i
k

)
=

(sik)
2

+ (Di)
2

(Di)2 hr
(
sik
)
∗ R2g

c
m

(
θik, s

i
k

) (2.86)

By following the same reasoning employed to define GCC, Smith Consistency Con-
ditions (SCC) are given by:

Si
(
Θ̂k

)
= Sj

(
Θ̂k

)
, ∀k ∈ {0, .., K − 1} (2.87)

2.6.3 Fan Beam Consistency Conditions

Consider the source-detector assembly travels along a straight line and acquires 2D fan
beam projections gm

(
β̂,f

(
αd
))
, β̂ ∈ S. The source position is denoted by f

(
αd
)

where αd is the distance parameter along the linear source trajectory. φ is the angle
between the normal to the source trajectory and the ray β̂. Clackdoyle developed
a necessary and sufficient nth-order condition for 2D fan beam projections (FBCC)
acquired over the line trajectory [28]. As per the zeroth-order formulation of FBCC,
the weighted sum of projections is invariant irrespective of the source position.

F (d) =

π
2∫

−π
2

g
(
β̂,f

(
αd
))

cosφ
dφ = F (2.88)

We refer to F as the fan beam "intermediate" function for uniformity. The proof of
the above equation can be found in [28].

FBCC can also be applied for a pair of cone beam projections as described in
[60]. The projection values along the intersected lines L (θik, s

i
k) and L

(
θjk, s

j
k

)
can be

mapped onto a 1D virtual linear detector with the resampling equations given in [60].
The baseline between two source positions lies parallel to the 1D virtual detector.
Hence, Eq. 2.88 is valid for a pair of resampled fan beam projections acquired with
a linear source trajectory. In addition, many 1D virtual detectors parallel to the
baseline and the associated fan beam projection pairs can be found by considering
the planes containing baseline and intersecting the detectors as in GCC and SCC.
Thus, pair-wise FBCC applicable to cone beam projections can be expressed as:

F i
(
Θ̂k

)
= F j

(
Θ̂k

)
, ∀k ∈ {0, .., K − 1} (2.89)

Without resampling, the fan beam intermediate function can be directly estimated
from the cone beam projections by computing the line integral over the intersected
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line after cosine and distance weighting [20] [59]:

F i
(
Θ̂k

)
= F

(
θik, s

i
k

)
=

−1

〈ŵ (αi) ,
f(αi)−f(αj)

‖f(αi)−f(αj)‖2
〉
R2g

c,d
m

(
θik, s

i
k

) (2.90)

F j
(
Θ̂k

)
= F

(
θjk, s

j
k

)
=

−1

〈ŵ (αj) ,
f(αj)−f(αi)

‖f(αi)−f(αj)‖2
〉
R2g

c,d
m

(
θjk, s

j
k

) (2.91)

where the distance weighting of projections is given by:

gc,dm (u, v, αi) =
gcm (u, v, αi)√

(u− ueij)2 + (v − veij)2
(2.92)

The distance is measured between the detector element location and the meeting
point of all the intersected lines on the detector, known as the epipole.

[
ueij , veij

]T
denotes the coordinates of the epipole in DCS and its counterpart in PCS

[
upcs
eij
, vpcs
eij

]T
is the projected pixel location of the source position f (αj):

upcs
eij

=
〈pT0 (αi) , f̃ (αj)〉
〈pT2 (αi) , f̃ (αj)〉

vpcs
eij

=
〈pT1 (αi) , f̃ (αj)〉
〈pT3 (αi) , f̃ (αj)〉

(2.93)

f̃ (αj) is the source position in homogeneous coordinates. pTm (αi) is the m+1-th
row of the projection matrix P (αi). Similarly, the location of epipole

[
upcs
eji
, vpcs
eji

]T is
calculated by projecting the source position f (αi) onto the detector plane with the
projection matrix P (αj).

2.7 CT Artifacts

2.7.1 Beam Hardening

In CT reconstruction using FBP algorithms, it is assumed that the projections are ac-
quired with a monochromatic X-ray source. For a homogeneous and mono-material
object, the reconstructed image can be considered the uniform distribution of lin-
ear attenuation coefficient µ (Em). There exists a linear relationship between the
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(a) Reconstructed image
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Figure 2.8: Cupping artifacts: (a) image reconstructed from the simulated polychro-
matic projections of the water phantom; (b) plot of attenuation values of
the linear ROI segmented from the reconstructed image (marked by the
yellow line).

monochromatic total attenuation gm and the X-ray path length through the object l
(length of the medium in Eq. 2.5) as displayed in Fig. 2.9a.

gm = µ (Em) l (2.94)

In practice, CT projections data is acquired with a polychromatic X-ray source
violating the linear forward model due to the energy-dependent attenuation properties
of the materials. During the transmission of polychromatic X-rays, the low-energy
photons are preferentially attenuated (Fig. 2.1b). As a result, the mean energy of
the X-ray spectrum increases, and it is referred to as the "hardening" of the X-ray
beam [26]. The degree of attenuation decreases as the X-ray beam hardens. The
relationship between the polychromatic total attenuation gp and the path length
through the volume is not linear (Eq. 2.10), as shown in Fig. 2.9a. The error due
to the underestimation of total attenuation values is proportional to the path length.
After reconstruction using linear FBP operation, the projection error is propagated to
the volume as cupping artifacts (first-order beam hardening artifacts) where the linear
attenuation coefficient values gradually decrease from the periphery to the interior of
the object, as shown in Fig. 2.8a [55].

In clinical CBCT imaging, beam hardening artifacts hamper accurate clinical di-
agnosis and interventional procedures. Cupping artifacts degrade the low contrast
detectability significantly in soft tissue imaging, where the artifacts are predominant
due to low kVp. Selecting an optimal window level will be a tedious task to visualize
low contrast structures if the cupping artifacts are present. Beam hardening artifacts
also affect reliable quantitative evaluations and analysis based on CT images (e.g.,
attenuation correction in PET/CT) [53].

38



2 Theoretical Background

0 50 100 150 200

Path length in mm l

0

1

2

3

4

5

T
o

ta
l

a
tt

en
u

a
ti

o
n

gp = fbhc (l)

gm = µ (Em) l

(a) The relation between the X-ray path length
and the total attenuation, beam hardening
curve (red)

0 1 2 3 4

gp

0

1

2

3

4

5

g
m

(b) Beam hardening correction polynomial

Figure 2.9: Beam hardening curve and polynomial.

One of the hardware methods to reduce beam hardening artifacts is to pre-harden
the X-ray beam by strongly attenuating low-energy photons with the metal filters. In
the past, water bags were also used to surround the patient body to achieve this goal
[26]. Apart from their inability to remove the artifacts effectively, the pre-filtration of
X-ray beams requires additional hardware. The reduced photon output after filtration
degrades Signal-to-Noise Ratio (SNR) and necessitates a high dosage CT imaging.
By incorporating the polychromatic forward projection models, the artifacts can be
corrected by MBIR algorithms [34] [25]. The polychromatic iterative reconstructions
are computationally expensive and require prior knowledge of X-ray and attenuation
spectra.

Water Correction

The artifacts can be corrected by transforming the total attenuation values from
polychromatic to monochromatic using a polynomial-based non-linear mapping [44].
Polynomial correction compensates the non-linear error due to the underestimation
of total attenuation values, and the correction is known as projection linearization.
In clinical imaging, the polynomials are pre-computed during the calibration of a CT
scanner using water-filled cylindrical phantoms. The coverings of the phantom are
made up of water-equivalent material like Plexiglas. Since the attenuation properties
of water and the soft tissues are similar, beam hardening artifacts of clinical images
can be mitigated using the polynomials computed during calibration. Hence, the
projection linearization in clinical CT is referred to as water correction.

During calibration, the polychromatic projections of water phantoms are acquired,
and the path lengths through the cylindrical volume are computed. The relationship
between the path length and the polychromatic total attenuation value is modeled
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with a higher-order polynomial function, as shown in Fig. 2.9a.

gp = fbhc (l) (2.95)

The analytical expression of fbhc is termed as beam hardening curve/function [90][68].
We can assume that the beam hardening effect is significantly low at the periphery
of the cylinder. The linear attenuation coefficient of water when the path length is
infinitesimally small is given by [40]:

µwater =
d

dl
fbhc (l)

∣∣∣∣∣
l=0

(2.96)

Considering µwater = µ (Em), the values of virtual monochromatic projections can
be calculated using Eq. 2.94. Finally, the mapping between polychromatic and
monochromatic attenuation values (Fig. 2.9b) is found by polynomial regression.

The transformation of the total attenuation values from polychromatic gp to virtual
monochromatic gw using a polynomial expression of degree Nw is considered as water
correction. The volume free from the first-order beam hardening artifacts µw (x) can
be reconstructed from gw using the FDK algorithm.

Bone Correction

The attenuation properties of high-density and calcium-rich cortical bone differ from
that of soft tissues (Fig. 2.1b). The beam hardening-induced projection error is
contributed by the polychromatic X-ray transmission through soft tissues and bones.
Therefore, water correction alone does not remove beam hardening artifacts from the
clinical CT images. The residual error after water correction retains streak artifacts in
the volume, which appear as dark bands between high attenuation bony structures.
Due to the spill-over of bright pixels of bone to soft tissue regions, bone-induced
artifacts also prevent sharp bone-tissue boundaries.

Joseph and Spital proposed a bi-pass correction algorithm for bone-induced arti-
facts [52]. First, a prior volume µw (x) is reconstructed from the water corrected
projections. Subsequently, the bone structures µb (x) are segmented using a thresh-
olding operation. Joseph and Spital theorized that the projection error after water
correction −∆gbw is proportional to the forward (or path length) projection values of
segmented bone volume X3µb as per the quadratic model given below:

−∆gbw (u, v, α) = A X3µb (u, v, α) +B [X3µb (u, v, α)]2 (2.97)

where A and B are free parameters. The streak artifacts are caused by the non-linear
term of the projection error. The Joseph-Spital algorithm corrects bone-induced
artifacts utilizing the forward projections of segmented bone and soft tissue volumes,
mass attenuation spectra of bone and soft tissues, and a calibration-based estimation
of scaling factors [88] [52].
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Based on the works of Joseph-Spital, Hsieh et al. proposed an Iterative Beam
Hardening Correction (IBHC) algorithm to reduce bone-induced artifacts [49]. The
residual projection error (Eq. 2.97) is modeled with the water w and bone correction
polynomials bι of the same degree Nw. Since I0 and It represent the incident and
transmitted intensities, water correction can be expressed as:

gw =
Nw∑
c=1

wc

[
ln

(
I0

It

)]c
(2.98)

In a sequential X-ray transmission through a volume containing water and bone,
we can consider Iw as the intensity transmitted by the water volume and the incident
intensity of the bone volume. The water and bone corrected projections can be
expressed using w and bι [49]:

gb
ι

w =
Nw∑
c=1

wc

[
ln

(
I0

Iw

)]c
+

Nw∑
c=1

bιc

[
ln

(
Iw
It

)]c
(2.99)

The residual projection error after water correction caused by bone-induced beam
hardening is quantified by:

−∆gb
ι

w = gw − gb
ι

w

=
Nw∑
c=1

wc

[
ln

(
I0

It

)]c
−

Nw∑
c=1

wc

[
ln

(
I0

Iw

)]c
−

Nw∑
c=1

bιc

[
ln

(
Iw
It

)]c
=

Nw∑
c=1

(wc − bιc)
[
ln

(
Iw
It

)]c
+ ε

(2.100)

bι denotes the vector containing IBHC correction coefficients. By approximating
ln
(
Iw
It

)
with X3µb and ignoring higher-order terms, the above equation can be equated

with Eq. 2.97 when Nw = 2. The water + bone corrected projections are computed
by subtracting the residual error from the water corrected projections:

gb
ι

w (u, v, α) = gw (u, v, α) + ∆gb
ι

w (u, v, α) (2.101)

∆gb
ι

w can also be considered as the additive correction values to compensate for
the underestimation errors due to bone beam hardening (Fig. 2.10a). The necessary
IBHC coefficients can be estimated theoretically using prior knowledge or empirically
by phantom experiments [49].

Kyriakou et al. proposed an Empirical Beam Hardening Correction (EBHC) al-
gorithm where the bone corrected projections are modeled as a bivariate polynomial
expression of water corrected and bone forward projections (Fig. 2.10b) [58]:

gb
e

w = gw + ∆gb
e

w

= gw + be0 [X3µb] + be1 [X3µb]
2 + be2 [gwX3µb] + ...

(2.102)
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Figure 2.10: The values for bone-induced beam hardening correction in (a) IBHC; (b)
EBHC.

The derivation of the above equation is described in [58]. Compared to the second-
order IBHC where the uni-variate correction polynomial acts on bone forward pro-
jections, the EBHC model contains an additional coefficient to weight the product
of water corrected and bone forward projections. Since FBP reconstruction using
FDK algorithm is a linear operator

(
X−1

3

)
, the bone corrected volume µbew (x) param-

eterized by polynomial coefficients can be expressed as a linear combination of basis
volumes µw (x), µb (x), µbb (x) and µwb (x) [58]:

µb
e

w (x) = µw (x) + be0 µb (x) + be1 µbb (x) + be2 µwb (x) (2.103)

µw (x) = X−1
3 [gw] (x)

µbb (x) = X−1
3 [X3µb]

2 (x)

µwb (x) = X−1
3 [gw X3µb] (x)

(2.104)

By minimizing the Total Variation (TV) of bone corrected volume, Kyriakou et al.
estimated the optimal correction coefficients as given below [58]:

min
be

∫
x∈R3

∥∥∇µbew (x)
∥∥

1
dx (2.105)

Park et al. proposed Beam Hardening Factor (BHF) to quantify the projection
error due to beam hardening by high attenuation structures like metals or bones
[72] [73]. BHF uses shape information of bones X3fb, the path length through the
segmented bone volume. The volume of bone fraction fb is given by:

fb (x) =

{
1 µb (x) > 0
0 µb (x) ≤ 0

(2.106)
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Figure 2.11: Beam hardening factor (Eq. 4.15) when (a) bf = 0.02575; (b) X3fb =
47.2446.

BHF for bone correction can be expressed as (Fig.2.11):

∆gb
f

w (u, v, α) =

 0 bf X3fb (u, v, α) = 0

ln
(

sinh(bf X3fb(u,v,α))
bf X3fb(u,v,α)

)
bf X3fb (u, v, α) 6= 0

(2.107)

The bone corrected projections are computed by adding BHF to the water corrected
projections.

gb
f

w (u, v, α) = gw (u, v, α) + ∆gb
f

w (u, v, α) (2.108)

Park et al. estimated the free parameter of BHF by solving the following optimiza-
tion problem [72].

min
bf

∫
x∈R3

[
W (x)∇

(
µw (x) + X−1

3 ∆gb
f

w (x)
)]2

dx (2.109)

The weighting functionW (x) was chosen to add more penalties on the high-frequency
streak artifacts [72]. We refer to the above correction as Beam Hardening Factor-based
Correction (BHFC).
All the correction methods mentioned in this section can also be used for the

correction of artifacts caused by the beam hardening in metals or iodine. After
water and bone corrections, metal/iodine volume is segmented, and the artifact-
free projections/volume can be generated by employing IBHC, EBHC, or BHFC
algorithms.

2.7.2 Scatter

Due to Rayleigh or Compton scatterings, X-rays deviate from their original linear
propagation path, and the secondary scatter radiation is generated (Sec. 2.1.2). In
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the forward model of cone beam reconstruction (Eq. 2.64), the secondary radiation
is neglected, and the transmitted X-ray intensity It is considered as a measure of the
number of photons of non-scattered primary radiation. The presence of secondary
scatter radiation of intensity Is increases the overall detected X-ray intensity to It+Is.
As a result, the total attenuation values are underestimated after I0 normalization
and log transformation. The total attenuation values of scatter-free gm and scatter-
corrupted gsm projections are related by the following equation:

gsm (u, v, α) = gm (u, v, α)− ln (1 + SPR (u, v, α)) , see Appendix .9 for proof
(2.110)

where SPR is the scatter to primary ratio image.

SPR (u, v, α) =
Is (u, v, α)

It (u, v, α)
(2.111)

The non-linear projection error will be transferred to the volume after reconstruction.
As in beam hardening, scatter artifacts appear as cupping and streak artifacts and
degrade the low contrast resolution.

The state-of-the-art methods to reduce the scatter artifacts can be classified into
two categories [81]:

1. Scatter rejection techniques.

2. Scatter correction techniques.

Scatter rejection techniques are hardware methods that prevent secondary scatter
radiations from contributing to the final detected X-ray intensity. Scatter rejection
can be achieved with additional hardware like anti-scatter grids and collimators. In
clinical Multi-Detector CT (MDCT), one-dimensional scatter grids are employed to
minimize the artifacts by absorbing scattered radiation. In clinical CBCT systems
where large flat panel detectors are used, 2D anti-scatter grids are not practical due
to the decreased SNR and the resultant need for a higher radiation dose. Scatter
rejection can also be achieved with techniques like Volume of Interest (VOI) imaging
and air-gap [81]. In VOI imaging, the collimators limit the FOV to clinically relevant
volume and reduce the scatter in the projection images. VOI imaging requires an
additional low dose scan covering the full FOV for the truncation artifact reduction.
Like in projection radiography and mammography, most clinical CBCT systems use
the air-gap method to eliminate the secondary scatter radiation by keeping the largest
feasible distance between the patient and the detector [81].
Software-based scatter correction methods are used in combination with scatter

rejection methods like air gap to reduce the residual scatter artifacts. They are also
used to replace 2D anti-scatter grids for dose reduction. A posteriori scatter correction
methods rely on the computation of scatter contribution to the measured projections
[70]. Estimated scatter images can be subtracted from the detected X-ray intensity,
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and the artifact corrected volume can be reconstructed. Beam stop arrays can mea-
sure scatter images directly but with the disadvantages of excess patient dose and
increased acquisition time due to additional scans [81]. The realistic scatter (single
and multiple) estimates can be generated by Monte-Carlo (MC) probabilistic simula-
tion of photon transport through the imaged object (scattering medium). In addition
to the computationally intensive operations like ray tracing and MC computations, it
also requires initial reconstruction and prior knowledge about material compositions
and their atomic properties, X-ray spectrum, and detector efficiency [54].

Computationally efficient model-based scatter images can be approximated from
the measured projections by Scatter Kernel Superposition (SKS) [70][87][23]. SKS
methods are formulated with the assumption that scatter images are the blurred ver-
sion of the primary images [24]. Hence, the scatter images for all views are computed
by the 2D convolution of weighted projections with a scatter kernel. The kernel pa-
rameters for a specific imaged object and system geometry need to be pre-computed
by MC-based pencil beam experiments [87]. Baer et al. proposed object/patient-
specific scatter correction by calibrating the kernel parameters with an initial estimate
of scatter images, computed from a coarse MC simulation [23]. Zhao et al. estimated
the prior scatter images by subtracting the polychromatic forward projections of ini-
tial reconstructed volume from the measured projections and subsequently optimized
patient-specific kernel parameters [99].

2.7.3 Metal Artifacts

Due to the prevalence of prosthetics and implants in the aging population, metal
streak artifacts are common in CT images. The artifacts are caused by beam harden-
ing, scatter, photon starvation, noise, partial volume, and exponential edge gradient
effects [29]. Higher-order beam hardening and scatter correction methods reduce the
metal artifacts. However, they cannot effectively remove the artifacts caused by the
large metal implants. The state-of-the-art Metal Artifact Reduction (MAR) meth-
ods rely on identifying and removing the metal trace from the projections before
reconstruction. The missing projection values are restored using the projection com-
pletion methods like linear interpolation [38]. Meyer et al. proposed the Normalized
Metal Artifact Reduction (NMAR) method to avoid the loss of information around
the metals and the introduction of artifacts due to interpolation [67]. In NMAR, the
projection data is normalized with the forward projection of the initial reconstructed
volume before interpolation. A survey of MAR algorithms can be found in [38].
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3 First-order Beam Hardening
Correction using Consistency
Conditions

3.1 Introduction

As explained in the last chapter (Sec. 2.7.1), beam hardening artifacts due to poly-
chromatic X-ray attenuation by soft tissues can be compensated by projection lin-
earization using correction polynomials. The polynomials are pre-computed during
the calibration of the scanner using homogeneous and mono-material phantoms. In
clinical CBCT, the water phantoms are used for calibration, assuming the primary
constituent material of the human body is water. As shown in Fig. 2.1b and explained
in Sec. 2.1, the soft tissues and water exhibit comparable attenuation properties. The
mapping of the total attenuation values of the projections from polychromatic gp to
virtual monochromatic gw using a polynomial expression of degree Nw is referred to
as water correction:

gw (u, v, α) = pw (gp (u, v, α))

=
Nw∑
c=0

wc [gp (u, v, α)]c

w ∈ RNw+1 =
[
w0, w1, w2, ..., wNw

]T
(3.1)

We use vector notation of w to represent all water correction polynomial coefficients.
The constant term w0 is zero due to the lack of attenuation during mono and poly-
chromatic X-ray transmission through the air. Therefore, Nw can also be considered
as the number of coefficients of water correction polynomial.

It is very demanding to pre-compute the polynomials for diverse X-ray spectra
during calibrations. As a result, the operators of clinical CT scanners are restricted
to use pre-selected combinations of kVp, filter material, and thickness. Since effec-
tive artifact reduction is only possible for the objects composed of water-equivalent
materials, clinical CBCT scanners cannot image the objects of different material com-
positions. In most scanners, beam hardening correction is a part of the pre-processing
steps of the reconstruction pipeline. It is preceded by the algorithms of gain, offset,
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overexposure, lag, and scatter corrections [85] [84]. Any modification in the preced-
ing steps will change the projections’ total attenuation values, and the calibrations
need to be repeated. Similarly, the replacement of the X-ray tube, filters, or detector
also requires re-calibrations. When CBCT is used for industrial, scientific, and se-
curity applications, the material composition and the geometry of the imaged object
and the optimal imaging parameters cannot be determined in advance. Therefore, a
calibration-free, energy, geometry, and material-specific and computationally efficient
beam hardening correction is a prerequisite to generate artifact-free images for the
material characterization and real-time automated inspection. Since our primary fo-
cus is artifact reduction in clinical CBCT, we consider water correction as a synonym
for beam hardening correction for the mono-material objects with a non-homogeneous
density distribution.

Instead of pre-computing the correction polynomial, Li et al. proposed a calibration-
free algorithm to calculate the polynomial for mono-material correction [62]. First,
a binary volume is segmented from the prior image, reconstructed from the uncor-
rected projections. The path length through the volume along each projection ray is
computed by the forward projection of binary volume. The geometry and material-
specific correction polynomial is estimated by curve fitting, as described in Sec. 2.7.1.
Thus, a calibration-free beam hardening correction can be performed with the ad-
ditional costs of reconstruction and forward projection. Empirical Beam Hardening
Correction (EBHC) proposed by Kyriakou et al. (Sec. 2.7.1) can be modified to
perform water correction in volume space as a post-processing method [58]. The wa-
ter corrected volume can be expressed as a linear combination of the following basis
volumes:

µw (x) = X−1
3 {gw}

=
Nw∑
c=1

wc X−1
3 {[gp]c}

= w1 µ
b
1 (x) + w2 µ

b
2 (x) + ..+ wNw µ

b
Nw

(3.2)

The key idea behind EBHC is to estimate the polynomial coefficients by increasing
the flatness of the water corrected image. Hence, the polynomials are calculated by
minimizing Total Variation (TV):

min
w

∫
x∈R3

‖∇µw (x)‖1 dx (3.3)

TV-based water correction does not require uncorrected projections gp since they
can be generated by the forward projection of the artifact corrupted volume µb1 (x).
The main disadvantage of TV-based water correction is the need for Nw − 1 addi-
tional reconstructions and forward projections (when uncorrected projections are not
available). Therefore, the integration of TV-based correction to the reconstruction
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Figure 3.1: Grangeat (a, b), Smith (c, d), and fan beam (e, f) intermediate functions
computed from the monochromatic projections of the elliptical cylinder
and head phantoms.
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pipeline demands significant changes in the software architecture due to the necessary
additional operations.

All the consistency conditions mentioned in Sec. 2.6 assume that the projections are
measured under ideal conditions. The geometrical (e.g., miscalibration, motion) and
physical measurement (e.g., beam hardening, scatter) errors introduce inconsistency
and invalidate the equivalence relations of consistency conditions. The error-free pro-
jections can be estimated from the uncorrected projections using the parameterized
models of artifact correction. The key idea behind any artifact reduction algorithms
using consistency conditions is to optimize the model parameters by minimizing a cost
function quantifying the projection dataset’s inconsistency. In this way, consistency
conditions have been successfully utilized to reduce the artifacts due to miscalibration
[30] [60], motion [37] [96] and scatter [57]. Mou et al. and Tang et al. initiated the
attempts to reduce the artifacts due to beam hardening using consistency conditions
[69] [88]. They employed zeroth-order HLCC for fan beam CT with a line detector to
optimize the polynomials for water correction. For a CBCT system with a flat detec-
tor, HLCC can be enforced on the projection values of the 1D line detector formed
by the intersection of the source trajectory plane and the 2D flat detector. Using Eq.
2.73 for all rotation angles and detector bins, a system of linear equations was gener-
ated. Finally, the polynomial was estimated by solving the equations using the least
square method. However, the algorithm cannot be applied to clinical CBCT systems
like interventional or mobile C-arm CBCT, where the trajectory of source-detector
assembly is not a perfect circle due to mechanical constraints. By relying on a single
fan of cone beam projection, the polynomial optimization may not be robust if the
projections are corrupted with the additional error due to Poisson noise, scatter, and
miscalibration. The number of acquired cone beam projections is very limited in To-
mosynthesis and interventional C-arm CBCT using fast scan protocols. As a result,
the accuracy and efficiency of the polynomial estimation will be compromised due to
the reduced number of equations.

In this chapter, a novel calibration-free beam hardening correction algorithm is
discussed to overcome the limitations of the previous methods. All the pair-wise con-
sistency conditions mentioned in Sec. 2.6 involve an inherent assumption that the
projections are free from beam hardening artifacts and acquired with a monochro-
matic X-ray source. Grangeat, Smith, and fan beam intermediate functions computed
from the monochromatic projection pairs exhibit a high degree of similarity, as dis-
played in Fig. 3.1. The polychromatic X-ray spectrum and the energy dependency of
attenuation coefficients introduce significant inconsistencies. For the mono-material
objects, water correction yields virtual monochromatic projections (gw u gm) and
thereby reduces the inconsistency. The optimal correction polynomial can be es-
timated by enforcing the pair-wise consistency conditions on the uncorrected cone
beam projections. Since the equivalence relation of the condition is between the in-
termediate functions computed from a pair of cone beam projections, the need for a
perfect circular trajectory is eliminated. By considering the planes around the base-
line connecting two source positions, numerous redundant values can be computed
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from a single projection pair. Thus, by utilizing many projection pairs of a cone beam
dataset, a robust estimation of the correction polynomial is feasible. Since the poly-
nomials are directly estimated from the projections, no additional reconstructions and
forward projections are required, as in TV-based corrections. Hence, the algorithm
can be integrated with the reconstruction software without significant changes.

The beam hardening correction using Grangeat Consistency Conditions was intro-
duced in [12] and described in detail in [13]. Würfl et al. demonstrated the feasibility
of computationally efficient estimation of the polynomial for first-order correction us-
ing GCC [94]. In this chapter, the efficacy and efficiency of polynomial estimations
using three pair-wise cone beam consistency conditions are analyzed and compared.

3.2 Method

The inconsistency of water corrected projections parameterized by the polynomial
w can be quantified using a dissimilarity measure like Sum of Squared Differences
(SSD). The quantified inconsistency between a pair of water corrected projections
corresponding to the projection indices i and j (i, j ∈ {0, 1, ..., Nα − 1}, i 6= j) using
GCC (Eq. 2.84) is given below:

E ijGCC (w) =
K−1∑
k=0

[
Gi
(
Θ̂k;w

)
−Gj

(
Θ̂k;w

)]2

(3.4)

where

Gi
(
Θ̂k;w

)
= Gi

(
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i
k;w

)
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(sik)
2

+ (Di)
2

(Di)2

∂

∂sik
R2g

c
w

(
θik, s

i
k

) (3.5)

Similarly, inconsistency can also be quantified using SCC (Eq. 2.87) and FBCC
(Eq. 2.89).

E ijSCC (w) =
K−1∑
k=0

[
Si
(
Θ̂k;w

)
− Sj

(
Θ̂k;w

)]2

(3.6)

Si
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w
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θik, s
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) (3.7)

E ijFBCC (w) =
K−1∑
k=0

[
F i
(
Θ̂k;w

)
− F j

(
Θ̂k;w

)]2

(3.8)
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We refer E ij (w) as a generalized inconsistency measure independent of the cone
beam consistency conditions. As Fig. 2.9a demonstrates, the error due to polychro-
matic attenuation is proportional to the path length through the volume (along each
X-ray). The forward projections of the binary volume can be considered as the path
length projections. If the imaged object exhibits a high degree of rotational asym-
metry, the beam hardening-induced inconsistency is correlated to the corresponding
path length projection pair’s dissimilarity. The path length differential will be very
low if |〈f (αi) ,f (αj)〉| → 1. The quantified inconsistency between nearly orthogonal
projection pairs (〈f (αi) ,f (αj)〉 → 0) is relatively high, and they are selected for the
minimization. For clinical C-arm CBCT, the selection of perfect orthogonal projec-
tions pairs (〈f (αi) ,f (αj)〉 = 0) may not be possible due to the irregular or wobbling
source trajectory caused by the instability of robotic C-arms. Ideally, the projection
pairs of a high degree of inconsistency can be estimated by ranking the projection
pairs after computing the inconsistency measures. However, the selection of nearly
orthogonal projection pairs is very computationally efficient for full and short scans.
As the correction is achieved using a unique polynomial expression for all projections,
the optimal polynomial coefficients can be estimated from a limited number of pairs.
In clinical C-arm CBCT, the first few projections exhibit a drastic difference in at-
tenuation values due to the tube voltage and current adjustment. We selected every
10th orthogonal projection pair of the final half-circle source trajectory to accelerate
the optimization. The mean of inconsistency values E ij computed from the selected
projection pairs is the objective function (inconsistency measure) of the optimization.
Due to the absence of high frequency emphasizing derivative or ramp filter, FBCC-
based inconsistency measure is significantly low (Fig. 3.1). For a valid comparison of
the objective function’s convergence using different consistency conditions, identical
optimization parameters (e.g., stopping criteria) need to be used. Hence, the objec-
tive function’s value is normalized by the inconsistency measure computed from the
uncorrected projections during each iteration.

Identity function pw0 (x) = x,w0 =
[
0, 1, ..., 0, 0, 0

]T is chosen as the initial param-
eter for the optimization. If the projections are free from beam hardening artifacts
(e.g., monochromatic or water corrected projections), the algorithm cannot mini-
mize the inconsistency measure, and the correction will be performed with the initial
parameter. Thus, any degradation of image quality is prevented due to inaccurate
polynomial expression.

The computation of intermediate function constitutes linear sub-operations of weight-
ing, integration, differentiation, and ramp filtering. Since SSD is an amplitude-variant
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dissimilarity metric, inconsistency measure can be minimized with the trivial solution
of zero polynomial (w = 0) or any linear function of slope < 1. Hence, the optimiza-
tion of arbitrary degree polynomial is performed by keeping a minimum area under
the polynomial curve. The area under the identity function is set as the minimum
area and is computed with the robust maximum (99 percentile) of attenuation values
of the selected projection pairs gmaxp (Fig. 3.2).

gmaxp∫
0

pw0 (x) dx =

(
gmaxp

)2

2
(3.10)

The constraint ensures the optimization of nonlinear polynomial, and its nonlinear-
ity is proportional to the magnitude of projection error induced by beam hardening.

The optimization of Nw degree polynomial can be mathematically expressed as:

min
w

∑
i

∑
j E ij (w)∑

i

∑
j E ij (w0)

where 〈f (αi) ,f (αj)〉 ≈ 0

s.t.

gmaxp∫
0

pw (x) dx ≥
(
gmaxp

)2

2

(3.11)

x gmaxp

Pw0 (x) = x

Pw (x)

Figure 3.2: The correction polynomial and identity function (initial parameter). Dur-
ing the optimization, the polynomial curves are constrained to keep a
minimum area (the area of right-angled triangle).

In clinical CT imaging, CT number or Hounsfield Unit (HU) consistency is essen-
tial to maintain after any correction algorithms [48]. The reconstructed images of
homogeneous phantoms of unique material composition but with different geometries
should have similar HU values under ideal conditions. For the optimization of lower
degree polynomials (Nw = 2, 3), the inequality constraint can be replaced with an
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equality constraint to ensure CT number consistency.

gmaxp∫
0

pw (x) dx =

gmaxp∫
0

pw0 (x) dx

=

(
gmaxp

)2

2

(3.12)

As per many clinical studies, the second-degree polynomial is sufficient to reduce
the cupping artifacts due to the spectral attenuation properties of water and soft
tissues [48]. In industrial CT, the artifacts can be corrected with the second-degree
polynomial for the objects made up of polymers and thin metals [27]. In the beam
hardening correction using second-degree polynomial, the magnitude of artifact re-
duction is exclusively determined by the leading coefficient or the non-linear term w2.
By evaluating the above equation using the second-degree polynomial:

gmaxp∫
0

[
w2x

2 + w1x
]
dx =

(
gmaxp

)2

2

w2

(
gmaxp

)3

3
+ w1

(
gmaxp

)2

2
=

(
gmaxp

)2

2

(3.13)

By rearranging the terms, the linear coefficient of the polynomial can be expressed
as a function of the nonlinear term.

w1 = 1− 2

3
w2g

max
p (3.14)

If there is no photon starvation, the mapping between the path length through the
volume and the polychromatic total attenuation is one-to-one, as shown in Fig. 2.9a.
Besides, the non-linear error due to the underestimation of attenuation values in-
creases proportionally with the path length. Hence, we can safely assume that the
second-degree beam hardening correction polynomial is convex and monotonically in-
creasing in the interval

[
0, gmaxp

]
. Consequently, w2 ≥ 0 and the abscissa of parabola’s

vertex is ≤ 0.

−w1

2w2

≤ 0

2
3
w2g

max
p − 1

2w2

≤ 0

gmaxp

3
− 1

2w2

≤ 0

w2 ≤
3

2gmaxp

(3.15)
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Table 3.1: NLOPT optimization parameters (water correction). The default values
were used for all the parameters which are not listed here.

Parameter value
Algorithm COBYLA

Number of optimization variables 1
Lower bound 0
Upper bound 3

2gmaxp

Absolute tolerance on the function value 1e-6
Absolute tolerance on the optimization parameter 1e-6

By incorporating the inequalities, a computationally efficient constrained optimiza-
tion of the second-degree polynomial can be formulated:

min
w2

∑
i

∑
j E ij (w2)∑

i

∑
j E ij (w2 = 0)

where 〈f (αi) ,f (αj)〉 → 0

s.t. 0 ≤ w2 ≤
3

2gmaxp

(3.16)

The lower and upper bound constraints accelerate the minimization by limiting the
search space. Most implementations of the optimization algorithms allow bound con-
straints on the optimization variable compared to the nonlinear equality or inequality
constraints. In all experiments, the optimization is performed with the derivative-
free COBYLA algorithm of NLOPT software [51] [76]. The important optimization
parameters are listed in Table. 3.1. After optimizing w from the selected projection
pairs, all water corrected projections can be computed using Eq. 3.1. The complete
workflow of the reconstruction of water corrected volume is shown in Fig. 3.3.

When mono-material metal objects are imaged in industrial CT, the projections’
non-linear error is significantly high due to strong beam hardening. Hence, higher
degree polynomials are needed (Nw ≥ 4) for effective artifact reduction. The equality
constraint (Eq. 3.12) may be difficult to maintain during the optimization of higher
degree polynomials. Therefore, it may be necessary to perform the optimization using
Eq. 3.11. If w2 u 3

2gmaxp
after the minimization using Eq. 4.10, we can infer that the

second-degree polynomial may not be sufficient for adequate correction.
Instead of quadratic error function-based distance metrics (e.g., SSD, MSE), the

inconsistency measure can also be computed using robust dissimilarity measures.
Preuhs et al. utilized the Sum of Geman-Mcclure Differences (SGMD) to quantify
the inconsistency for GCC-based estimation of symmetry planes [77]:

E ijGCC =
K−1∑
k=0

[
Gi
(
Θ̂k;w

)
−Gj

(
Θ̂k;w

)]2

1 + 1
σ

[
Gi
(
Θ̂k;w

)
−Gj

(
Θ̂k;w

)]2 (3.17)
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Polychromatic projection im-
ages gp (u, v, α), projection
matrices P (α) ∈ R3×4

Select Npp orthogonal
projection pairs (i, j)

Initialize w2 = 0

Compute w1 and form the correction
polynomial w =

[
0, w1, w2

]T
Perform water correction

on selected projection pairs
{gw (u, v, αi) , gw (u, v, αj)}

Compute intermediate function
pairs {Gi, Si or F i

(
Θ̂k,w

)
},

{Gj, Sj or F j
(
Θ̂k,w

)
}

Compute normalized in-
consistency measure

Is inconsis-
tency measure
converged?

Perform water correction using the
optimized polynomial, pw (u, v, α)

Reconstruct water cor-
rected volume µw

Update w2,
s.t. 0 ≤ w2 ≤ 3

2gmax
p

Yes

No

Figure 3.3: The workflow of consistency condition-based first-order (water) correction
using second-degree polynomials.
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Figure 3.4: Quadratic and Geman-Mcclure error functions.

The value of σ = 0.25 was empirically determined. As shown in Fig. 3.4, the
Geman-Mcclure error function penalizes the large differences preventing over-correction
in GCC-based artifact reductions if the volume contains small metal structures or the
projections are truncated.

3.3 Experiments

3.3.1 Simulation Studies

To study the efficacy of the proposed beam hardening correction algorithms, poly-
chromatic raw It and flat field I0 images were simulated using GATE Fixed Forced
Detection Actor (FFDA) [50]. Ideal energy integrating flat detector with the spectral
response D (E) = 1,∀E was used for simulation. Before log transformation to com-
pute the total attenuation values gp, raw and flat field images were corrupted with
Poisson noise where the number of photons per detector element was set to 50000.
The projections were simulated according to a full scan circular source trajectory.
The important geometry parameters are listed in Table. 3.2. Two distinct X-ray
spectra correspond to low (LE) and high energies (HE) were utilized for simulations
to validate the effectiveness of energy-specific beam hardening corrections. The spec-
tra were generated with Spekcalc program as per the simulation parameters listed
in Table. 3.3 [75]. Fig. 3.5 depicts low and high energy spectra after unit area
normalization.

The polychromatic projections were generated from the mono-material and homo-
geneous brain [21] and elliptical cylinder phantoms consisting of water (density =
1 g/cm3). The density and the linear attenuation coefficient of cortical bones are
significantly higher than soft tissues or water. To assess the mono-material correc-
tion’s efficacy for the objects composed of more than one material, the polychromatic
projections were also generated from the head phantom containing water and bone
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Table 3.2: CBCT system geometry parameters.
Parameter value

Source to isocenter distance 1000 mm
Source to detector distance 1536 mm
Number of detector columns 512
Number of detector rows 512

Pixel width 0.8 mm
Pixel height 0.8 mm
Detector size 409.6x409.6 mm2

Number of projections 360
Rotation angular range 0-359 degree

Table 3.3: X-ray spectra simulation parameters.
Parameter Low energy (LE) High energy (HE)

Peak energy (kVp) 80 keV 120 keV
Minimum energy 8 keV 12 keV
Energy bin width 1.0 keV 1.0 keV
Anode material Tungsten Tungsten
Anode angle 12 degree 12 degree
Filter material Aluminium Aluminium
Filter thickness 2 mm 4 mm
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Figure 3.5: X-ray spectra used for the simulation study.
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(density = 1.85 g/cm3) [21]. The images were reconstructed using the FDK algorithm
of reconstruction software developed as a part of the Ph.D. project. Before voxel-
driven cone-beam back-projection, the projections were filtered using a Hann win-
dowed ramp filter, where the cut-off frequency was set to 50% of Nyquist frequency.
The images were reconstructed without additional artifact reductions. 3D spatial dis-
tribution of linear attenuation coefficients in mm−1 is converted to Hounsfield Unit
with the linear attenuation coefficients of water 0.0248 mm−1 and 0.0209 mm−1 for
low and high energy spectra. The images were reconstructed from the uncorrected
projections (NC) and after CC-based beam hardening corrections (GCC, SCC, and
FBCC). The images were also reconstructed after calibration-based water correction
(WC) for comparison. The polynomials were calibrated using a cylindrical water
phantom of diameter 20 cm.

To compare calibration-free algorithms, the uncorrected reconstructed images were
post-processed with the Total Variation (TV)-based water correction as explained in
the introduction section (Eq. 3.3 and Eq. 3.2). The polynomials were optimized after
minimizing the TV of water corrected volume subjected to bound constraints:

min
w2

∫
x∈R3

‖∇µw (x)‖1 dx

s.t. 0 ≤ w2 ≤
3

2gmaxp

(3.18)

Quantitative accuracy

Apart from evaluating mere artifact reductions, supplementary experiments were con-
ducted to assess the quantitative accuracy after corrections. CT number or HU ac-
curacy in clinical imaging has two essential characteristics:

1. CT number uniformity: Reconstructed images of homogeneous and mono-
material phantoms should have similar CT numbers (in HU) after beam harden-
ing corrections. The ideal reconstructed image with a unique voxel value is not
feasible due to the addition of Poisson noise and the reconstruction errors (e.g.,
aliasing and interpolation errors). The uniformity of CT numbers was visual-
ized with the plots of attenuation profiles. In addition, the in-homogeneity of
voxel values of cone beam artifact-free central slice (z = 0) was quantified with
a robust coefficient of variation Cr

v , the ratio of Median Absolute Deviation
(MAD) and median [22]:

Cr
v =

MAD{µ (x)}
median{µ (x)} × 100 where µ (x) > 0.0, z = 0 (3.19)

While computing the coefficient of variation, the background voxels were avoided
using a threshold segmentation. Due to the presence of bone voxels and bone-
induced beam hardening artifacts, Cr

v was not computed from the head phantom
images.
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2. CT number consistency: After reconstruction with beam hardening corrections,
the phantoms of unique material composition but different geometries should
have identical CT numbers under ideal conditions. The median of voxel values
(in HU) of the central slice was computed to assess CT number consistency.

3.3.2 Robustness of Algorithms

As explained in Sec. 2.6, none of the cone beam consistency conditions mentioned
in this thesis fully characterize the projection data since the conditions are necessary
but not sufficient. Beam hardening correction algorithms are formulated assuming
that the projections are free from other geometrical and physical measurement er-
rors. However, the polychromatic projections are often perturbed by the error due
to various physical phenomena like Poisson noise and scatter. The errors can also
be contributed by the inaccurate or sub-optimal pre-processing algorithms and the
constraints on system geometry (e.g., truncation due to small detector size or FOV).
Therefore, the correction algorithm’s effectiveness was studied after simulating the
projections with various errors. The estimated polynomials from the Poisson noise
(corresponding to 50000 photons per detector pixel) corrupted polychromatic pro-
jections were considered ground truth wgt. The polynomials were optimized after
corrupting the polychromatic projections with the different magnitudes of errors, and
the relative L2 error norms were computed for the comparative evaluation of consis-
tency conditions.

‖w −wgt‖2

‖wgt‖2

(3.20)

Poisson noise

To evaluate the algorithms’ robustness towards noise, the polychromatic raw It and
flat field I0 images were corrupted with an increasing degree of Poisson noise by
decreasing the photons per detector pixel, from 50000 to 3000.

Truncation

Lateral and axial truncated projection images were generated by cropping the columns
(left and right) and the rows (top and bottom) of all projection images (Fig. 3.6).
The maximum number of cropped pixels was 200 reducing the size of each projection
image to 112x112. The projection matrices were modified to reflect the changes in
projection geometry by shifting the principal points.

Detector shift

To simulate the geometrical errors due to detector shift, the projection images were
translated along û (column) and v̂ (row) directions of the Detector Coordinate System
(DCS). The projection matrices were not modified to generate miscalibration artifacts
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(a) (b) (c)

Figure 3.6: Projection image of (a) brain phantom; (b) elliptical cylinder phantom;
(c) head phantom.

in the reconstructed images. The detector shift was measured in pixels and the
maximum shift applied was 20 pixels.

Scatter

To study the effect of scatter radiation on beam hardening corrections, the scatter
images Is were generated along with the primary intensity (polychromatic) It and flat
field I0 images using GATE FFDA. The amount of scatter radiation in the projection
images is quantified by the maximum of Scatter Primary Ratios (SPR) SPRmax (Eq.
2.111). The scatter contaminated projections gps were generated from the scatter-free
polychromatic projections gp as per the following equation:

gps (u, v, α) = gp (u, v, α)− ln (1 +m SPR (u, v, α)) , m ∈ [0, 1.0] (3.21)

By varying the additional factor m, the projections of different SPRmax were gen-
erated.

Projection Offset

The inaccurate or sub-optimal pre-processing of the projections (e.g., detector cali-
brations, I0, and lag corrections) can affect the accuracy of total attenuation values
and the efficacy of beam hardening corrections. Since it is difficult to simulate all
the processes that contribute to the error, simplified experiments were conducted to
assess the robustness of corrections after adding offset images to the polychromatic
projections. First, the projections were corrupted by adding a constant offset value
(a fraction of maximum attenuation, gmaxp ):

gep (u, v, α) = gp (u, v, α) +m gmaxp , m ∈ [0, 0.3] (3.22)

The robustness studies were also performed by corrupting the projections with the
projection-specific offset values:

gep (u, v, α) = gp (u, v, α) +OS (α) (3.23)
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By computing the maximum attenuation value of each projection and subsequent
sinusoidal curve fitting, the distribution of offsets (frequency and phase of the sine
wave) was estimated as shown in Fig. 3.7a. Finally, the projection-specific offsets
were computed by setting the minimum offset value to zero and the peak-to-peak
amplitude difference to mgmaxp ,m ∈ [0, 0.3] (Fig. 3.7b). Thus, by varying m from 0
to 0.3, the projection error was magnified in constant and projection-specific offset
experiments.
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Figure 3.7: Projection-specific offsets.

3.3.3 Real and Clinical Data

The proposed algorithms were validated using the projection data from the indus-
trial and clinical CBCT scanners. The micro-CT projection data of the lower jaw
specimen was acquired from the Carl Zeiss Metrotom industrial CT scanner. The
projection data acquired at 100 keV comprises 1440 high-resolution images, where
each image contains 1456 × 1840 isotropic pixels of size 0.127 mm. The projections
were acquired as per the scanner’s circular source trajectory (full scan). The pro-
jections were down-sampled by factor 2, and every second projection was selected
to accelerate the reconstruction and limit the memory footprint. The volumes were
reconstructed on a grid of 512x512x512 isotropic voxels of size 0.25 mm.

The head scan projections (108 keV) were acquired from the interventional C-
arm CBCT scanner (Artis-Q, Siemens Healthineers, Forchheim, Germany). Each
projection dataset contains 496 images of dimension 1240× 960 and 0.308 mm pixel
resolution. The images after CC-based corrections were compared with the scanner’s
calibration-based water corrected images. All the projection images were processed
with the scanner’s proprietary scatter correction algorithm before beam hardening
correction.

The images were reconstructed using the FDK algorithm. The projections were
filtered with a Hann apodized ramp filter where the cut-off frequency was set to 70%
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of Nyquist frequency. Since the clinical datasets contain a high degree of noise, the
projections were smoothed by 5 × 5 Gaussian filtering to highlight the soft-tissue
contrast improvement.

3.4 Results and Discussion

3.4.1 Simulation

Fig. 3.8, Fig. 3.9, and Fig. 3.10 depict the reduction of cupping artifacts after GCC,
FBCC, and SCC-based beam hardening corrections for the brain, elliptical cylinder
and head phantoms. Low (LE) and high (HE) energy images are displayed with the
same window level and center. It is evident from the figures that the cupping artifacts
are significantly high in low-energy images due to a high degree of projection error.
By optimizing the energy-specific polynomials, the corrections ensure the reduction of
artifacts regardless of the strength of beam hardening. As Fig. 3.11 demonstrates, the
optimized polynomials are roughly similar in the interval

[
0, gmaxp

]
irrespective of the

consistency conditions. The low energy correction polynomials exhibit a high degree
of nonlinearity compared to their high-energy counterparts. The attenuation profiles
(Fig. 3.12) corresponding to linear ROIs segmented from the images (yellow line in
NC images) show the effectiveness of correction algorithms to "flatten" the curves by
decreasing the in-homogeneity of voxel values. Fig. 3.13 shows the polynomials can be
optimized in a limited number of iterations. Besides, all three consistency conditions
show similar convergences of inconsistency measures. The computation of fan beam
intermediate functions is very efficient due to the lack of additional operations after
2D Radon transform. Smith intermediate functions are computationally expensive
and involve a higher memory footprint due to ramp filtering.

Table 3.4: Robust coefficient of variation Cr
v after water corrections.

Image NC WC FBCC GCC SCC
Brain phantom (LE) 2.4445 1.7040 1.6224 1.6094 1.5870
Brain phantom (HE) 1.7636 1.7582 1.5951 1.5872 1.5675

Elliptical cylinder (LE) 2.6047 1.7477 1.5770 1.5704 1.5450
Elliptical cylinder (HE) 1.8461 1.7969 1.5317 1.5523 1.5269

The coefficients of variation Cr
v computed from the volumes are listed in Table.

3.4. Cr
v is significantly high for LE images due to the increased in-homogeneity of

attenuation values caused by strong beam hardening. The dispersion of voxel values
is reduced considerably after corrections. Moreover, Cr

vs computed from LE and HE
corrected images are similar due to the energy-specific beam hardening corrections
by optimizing apposite polynomials.

Table. 3.5 lists the median attenuation values of water pixels located at the cen-
tral slice. HU variability is very low after corrections, and thereby, HU consistency
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NC WC GCC FBCC SCC

Figure 3.8: Beam hardening correction for the homogeneous brain phantom: NC,
reconstructed image without beam hardening correction; WC, after
calibration-based water correction; GCC, after GCC-based water correc-
tion; FBCC, after FBCC-based water correction; SCC, after SCC-based
water correction. Top and bottom row images were reconstructed from
the low (LE) and high (HE) energy projections, respectively.

Table 3.5: Median of attenuation values (HU).
Image NC WC GCC FBCC SCC

Brain phantom (LE) -34.7327 -0.2118 -1.5768 -2.7183 -5.4898
Brain phantom (HE) -21.9835 0.8415 -5.7041 -6.3314 -9.8584

Elliptical cylinder (LE) -29.4474 3.3436 -12.7171 -12.9393 -13.9193
Elliptical cylinder (HE) -18.5617 3.9258 -10.6966 -10.1720 -10.8358

is maintained for the volumes of different geometries and sizes. Calibration-based
corrections yield volumes of high HU consistency compared to CC-based corrections
since the brain and elliptical cylinder phantom projections are corrected with an iden-
tical polynomial. We can also find that Cr

v values computed from WC images (Tab.
3.4) are roughly similar.

Fig. 3.14 displays the images after TV-based water correction. For low energy
spectra, brain, and elliptical cylinder phantom images indicate under- and over-
compensations compared to CC-based corrections. The optimal correction polyno-
mial could not be estimated from the projections of the head phantom. At higher
energies where the low-frequency cupping artifacts are not predominant, the mini-
mization of TV-based cost function was only possible for large volume cylinder phan-
tom. Beam hardening corrections were performed with the identity function for low
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NC WC GCC FBCC SCC

Figure 3.9: Beam hardening correction for the homogeneous elliptical cylinder phan-
tom: NC, reconstructed image without beam hardening correction; WC,
after calibration-based water correction; GCC, after GCC-based water
correction; FBCC, after FBCC-based water correction; SCC, after SCC-
based water correction. Top and bottom row images were reconstructed
from the low (LE) and high (HE) energy projections, respectively.

and high energy head phantoms and high energy brain phantom (Fig. 3.14d and
Fig. 3.14h). Our studies show the feasibility of TV-based corrections depends on the
object’s geometry and the strength of beam hardening artifacts in the uncorrected
images. In addition, the computation of gradient images is sensitive to Poisson noise.

CC-based correction algorithms could not minimize the projection inconsistency
of objects exhibiting symmetry with respect to the isocenter and around the axis
of rotation (e.g., homogeneous and mono-material cylinder). The intermediate func-
tions computed from the projections of rotationally symmetric objects are highly
similar. Hence, the inconsistency measure quantified by calculating the dissimilarity
of intermediate functions is very low and cannot be minimized with the polynomial
corrections. Kim et al. also reported the inability to optimize the scatter kernel for
symmetric objects using HLCC [57]. In practice, most of the imaged volumes are of
complex geometry, and their rotational asymmetry can be exploited for reliable correc-
tions. The 2-fold rotational symmetry of the elliptical cylinder was circumvented by
selecting orthogonal projection pairs, and thereby the correction polynomials could be
optimized. If the CBCT systems employ M-Line algorithm for reconstruction where
the source-detector pair rotates both in axial and orbital directions (circle + arc
trajectory), the correction is feasible for rotational symmetric objects like cylinders
[45].
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NC WC GCC FBCC SCC

Figure 3.10: Beam hardening correction for the heterogeneous head phantom: NC,
reconstructed image without beam hardening correction; WC, after
calibration-based water correction; GCC, after GCC-based water correc-
tion; FBCC, after FBCC-based water correction; SCC, after SCC-based
water correction. Top and bottom row images were reconstructed from
the low (LE) and high (HE) energy projections, respectively.
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Figure 3.11: Beam hardening correction polynomials (simulation studies).
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Figure 3.12: The attenuation profiles of linear ROI segmented from the reconstructed
images.
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Figure 3.13: The minimization of inconsistency measure (simulation studies).
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Figure 3.14: TV-based water correction results.

3.4.2 Robustness of Algorithms

Poisson noise

Fig. 3.15 shows the relative polynomial error (Eq. 3.20) for an increasing number
of photons per detector pixel. Due to the smoothness of the fan beam intermediate
function, FBCC-based polynomial optimization is very robust to noise. SCC and
GCC-based algorithms are sensitive to a high degree of Poisson noise due to the pres-
ence of high frequency-enhancing ramp and derivative filters. As Fig. 3.16 displays,
the fan beam intermediate functions computed from high (50000 photons per pixel)
and low (3000 photons per pixel) dose projections exhibit a high degree of similar-
ity compared to Smith intermediate functions. Hence, the same polynomial can be
optimized from both projections by the FBCC-based method. The robustness of the
GCC-based algorithm can be enhanced by using the outlier resistant SGMD dissim-
ilarity measure (Eq. 3.17). Due to the limited detector gain and high attenuation
bones, a large number of photons are necessary for clinical datasets to avoid pho-
ton starvation. Hence, all CC-based beam hardening corrections are robust towards
Poisson noise for most anthropomorphic phantoms and clinical datasets. It is also
to be noted that the derivative and ramp filtering operations of Grangeat and Smith
intermediate functions can be modified to enhance the robustness of GCC and SCC-
based algorithms (e.g., by employing Savitzky–Golay derivative and Hann apodized
ramp filters). In ultra low dose CT imaging and breast CT, FBCC is the preferred
consistency condition for beam hardening correction.
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Figure 3.15: Robustness of algorithms (Poisson noise).
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(a) Fan beam intermediate functions computed
from the high dose projections.
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(b) Fan beam intermediate functions computed
from the low dose projections.
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(c) Smith intermediate functions computed from
the high dose projections.
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(d) Smith intermediate functions computed from
the low dose projections.

Figure 3.16: Fan beam and Smith intermediate functions computed from the ground
truth (high dose) and low dose projections of the brain phantom (LE).

Truncation

Fig. 3.17 shows the robustness of polynomial optimizations under axial truncations.
The number of sampled Radon planes around the baseline K (the number of inter-
mediate function vector’s elements, Eq. 3.4) decreases after cropping the projection
images top and bottom. Since the computation of fan beam intermediate functions
(Eq. 4.8) does not consider the adjacent planes, the FBCC-based algorithm is robust
towards axial truncation. As Fig. 3.18 shows, intermediate function values computed
from the truncated projections can be considered as the segmented values of ground
truth intermediate functions. The tolerance towards Poisson noise and the slow vary-
ing nature of intermediate function can also make the FBCC-based algorithm robust
when the intermediate functions are undersampled. As a result, FBCC-based poly-
nomial optimization is suitable for beam hardening correction in the small cone angle
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CBCT systems (e.g., axial scans of MDCT) and VOI imaging. Ramp filtering is a
global operation and acts on all the radon planes intersecting the detector (Eq. 4.7).
Due to the missing planes, intermediate function values are drastically different after
axial truncation (Fig. 3.18), making the SCC-based algorithm very susceptible. The
local derivative filter of the Grangeat intermediate function is implemented with the
central difference method by considering two adjacent planes making the GCC-based
algorithm more robust.

Fig. 3.19 displays the algorithm’s robustness under lateral truncations where the
projection images are cropped from left and right. All three consistency conditions
are sensitive to lateral truncation in equal measures. By penalizing the large errors
caused by truncation at the detector edges, the GCC-based algorithm’s robustness
can be improved by employing the SGMD dissimilarity measure (Eq. 3.17) to quantify
the inconsistency. After a certain degree of truncation, the relative polynomial error
remains constant, indicating the optimization algorithm’s inability to minimize the
objective function. Consequently, beam hardening corrections are performed with the
initial parameter (identity function).

Fig. 3.20 displays the relative polynomial error when both axial and lateral trunca-
tions are applied simultaneously. The resultant plots can be considered as the super-
position of axial and lateral truncation polynomial errors. Fig. 3.21 demonstrates the
feasibility of artifact reduction when a small degree of truncation is present. Though
the algorithms reduced the cupping artifacts after beam hardening corrections, the
truncation-induced cupping persists, especially at the top.

Detector shift

Fig. 3.22 and Fig. 3.23 display the robustness of algorithms when the projections are
shifted along detector columns û and rows v̂ to simulate the miscalibration error. The
figures show that FBCC-based corrections are very robust to detector shifts compared
to other consistency conditions. Shifting along û-direction yield shifted intermediate
functions and the robustness of the FBCC-based method can be attributed to the
slowly varying nature of the fan beam intermediate function (Fig. 3.24). When the
projections are shifted along rows (v̂), the FBCC-based method is very robust since
the computation of intermediate function does not need the adjacent planes, as ev-
ident from the unchanged intermediate functions before and after the detector shift
(Fig. 3.25). Fig. 3.26 confirms the robustness of the FBCC-based algorithm when
the projections are shifted along both directions simultaneously. Fig. 3.27 displays
the images reconstructed from the shifted projections before and after beam harden-
ing corrections. The figures show the feasibility of corrections when the projections
contain a small degree of miscalibration errors. The figures and attenuation profiles
confirm the superiority of the FBCC-based algorithm to optimize the polynomials
from the shifted projections. The artifacts due to inaccurate projection geometry are
visible in the images where the bone regions are enlarged compared to the artifact-free
images of Fig. 3.10.
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(b) Brain phantom (HE)
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(c) Elliptical cylinder phantom (LE)
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(d) Elliptical cylinder phantom (HE)
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(e) Head phantom (LE)

0 50 100 150 200

Number of truncated pixels (top and bottom)

0.000

0.025

0.050

0.075

0.100

0.125

0.150

||w
−
w
g
t
|| 2

||w
g
t
|| 2

GCC SSD

GCC SGMD

FBCC SSD

SCC SSD
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Figure 3.17: Robustness of algorithm (axial truncation).
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(a) Fan beam intermediate functions computed
from the ground-truth projections.
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(b) Fan beam intermediate functions computed
from the axial truncated projections.

0 500 1000 1500 2000

Radon plane index k

−4

−2

0

2

4

Si
(
Θ̂k

)

Sj
(
Θ̂k

)

(c) Smith intermediate functions computed from
the ground-truth projections.
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(d) Smith intermediate functions computed from
the axial truncated projections.

Figure 3.18: Fan beam and Smith intermediate functions computed from the ground
truth and truncated projections of the elliptical cylinder phantom (LE).

Projection offsets

CC-based methods are very robust, and the relative polynomial errors are very low
when the projections are corrupted with a constant offset, as shown in Fig. 3.28.
Fig. 3.29 demonstrates that the algorithms are sensitive to projections-specific off-
sets. The derivative and ramp filters enhance the robustness of GCC and SCC-based
algorithms. FBCC-based correction is very sensitive to projection-specific offsets due
to the lack of offset-canceling additional operations. We can also observe that the
FBCC-based correction is less robust compared to others when constant offsets cor-
rupt the projections. The robustness of SCC-based algorithms can be compromised
by the addition of offsets to the background and the resultant truncation errors.
Hence, GCC-based beam hardening correction is the clear choice for beam harden-
ing correction if the projections are corrupted with the low-frequency offsets due to
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(b) Brain phantom (HE)
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(c) Elliptical cylinder phantom (LE)
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(d) Elliptical cylinder phantom (HE)
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(e) Head phantom (LE)
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Figure 3.19: Robustness of algorithms (lateral truncation).
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(c) Elliptical cylinder phantom (LE)
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(d) Elliptical cylinder phantom (HE)
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(e) Head phantom (LE)
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Figure 3.20: Robustness of algorithms under axial and lateral truncations.
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Figure 3.21: Beam hardening correction for the truncated projections where 85 pixels
were cropped from all four sides of the projections: NC, reconstructed
image without beam hardening correction; GCC, after GCC-based water
correction; FBCC, after FBCC-based water correction; SCC, after SCC-
based water correction.

sub-optimal projection pre-processing.

Scatter

Fig. 3.30 displays the plots of relative polynomial error for an increasing degree of
scatter radiation in the projections. The experiments with the brain and head phan-
toms indicate the relative robustness of the FBCC-based algorithm towards scat-
tering. However, the sensitivity of GCC and SCC demonstrate their effectiveness
of reducing the cupping artifacts due to beam hardening and scatter. Since both
phenomena underestimate the projection’s attenuation values, the polynomial ex-
pressions reduce the artifacts by additive corrections irrespective of their origin. This
over-correction is achieved by increasing the non-linearity of the second-degree poly-
nomial. Fig. 3.31 shows the overcompensation by GCC and SCC-based algorithms
yield stronger cupping reduction compared to the robust FBCC correction. There
is no further image processing in most reconstruction pipelines to mitigate the cup-
ping artifacts after projection linearization, and it often follows the software-based
scatter correction algorithm [97] [84]. Hence, a strong correction by the GCC-based
algorithm ensures the mitigation of residual scatter artifacts.

Compared to the brain and head phantoms, the increase of non-linearity of the
polynomials for the correction of elliptical cylinder phantom images is modest for
GCC and SCC-based algorithms. Besides, the decrease of w2 results in inadequate
cupping reduction after FBCC-based correction. SPR images of the homogeneous
elliptical cylinder are analogous to projection-specific offsets making FBCC-based
algorithms sensitive to scatter radiation if the imaged objects are homogeneous and
symmetric.

The results of the comparative evaluations of consistency conditions are summa-
rized in Table. 3.6. The robustness of the GCC-based algorithm can be improved by
employing the SGMD dissimilarity measure if the projections are corrupted by noise,
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(d) Elliptical cylinder phantom (HE)
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(e) Head phantom (LE)
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(f) Head phantom (HE)

Figure 3.22: Robustness of algorithms under shifted detector along the û (column)
direction.
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(c) Elliptical cylinder phantom (LE)
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Figure 3.23: Robustness of algorithms under shifted detector along the v̂ (row) direc-
tion.
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(a) Fan beam intermediate functions computed
from the ground-truth projections.
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(b) Fan beam intermediate functions computed
from the shifted (û) projections.
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(c) Smith intermediate functions computed from
the ground-truth projections.
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(d) Smith intermediate functions computed from
the shifted (û) projections.

Figure 3.24: Fan beam and Smith intermediate functions computed from the ground
truth and and shifted (along column) projections of elliptical cylinder
phantom (LE).

truncation and offsets. Besides, the free parameter of SGMD error metric σ (Eq.
3.17) can be heuristically determined to enhance the robustness towards a specific
projection error. Similarly, SGMD can also be employed to improve the robustness of
FBCC and SCC-based algorithms. We decided to refrain from calibrating the free pa-
rameter for a calibration-free beam hardening correction algorithm since the optimal
parameter can vary according to the system geometry and the projection errors.

3.4.3 Real and Clinical Data

Fig. 3.32 displays the beam hardening corrections for the jaw specimen, where the
projection data was acquired from a high precision micro-CT scanner. After minimiz-
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(a) Fan beam intermediate functions computed
from the ground truth projections.
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(b) Fan beam intermediate functions computed
from the shifted (v) projections.
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(c) Fan beam intermediate functions computed
from the ground truth projections.
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(d) Fan beam intermediate functions computed
from the shifted (v) projections.

Figure 3.25: Fan beam and smith intermediate functions computed from the ground
truth and shifted (along row) projections of the elliptical cylinder phan-
tom (LE).

ing the inconsistency measure (Fig. 3.33a), similar second-degree polynomials were
estimated by the correction algorithms (Fig. 3.33b). The streak artifacts between
teeth and bones are greatly reduced after CC-based corrections. We can observe
the introduction of a small degree of bright streak artifacts due to over-corrections.
However, the reduction of dark streak artifacts homogenizes the voxel values and
significantly outweighs any introduction of artifacts.

Fig. 3.35 depicts beam hardening corrections for different clinical datasets. The
cupping artifacts are significantly reduced after GCC-based corrections. The figures
demonstrate the feasibility of GCC-based corrections when the projection data is cor-
rupted with geometrical errors due to patient motion or miscalibration. We also ob-
serve that the over-correction by GCC-based algorithm reduces the cupping artifacts
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(b) Brain phantom (HE)
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(c) Elliptical cylinder phantom (LE)
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(d) Elliptical cylinder phantom (HE)
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(e) Head phantom (LE)
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(f) Head phantom (HE)

Figure 3.26: Robustness of algorithms under detector shift along the û (column) and
v̂ (row) directions.
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Figure 3.27: Beam hardening correction for the shifted projections (5 pixels along
rows and columns): NC, reconstructed image without beam hardening
correction; GCC, after GCC-based water correction; FBCC, after FBCC-
based water correction; SCC, after SCC-based water correction.

Table 3.6: Summary of comparative evaluations of consistency conditions.
Criteria GCC SCC FBCC

Computational efficiency XX X XXX
Number of iterations for polynomial optimization XXX XXX XXX

Robustness (Poisson noise) XX X XXX
Robustness (axial truncation) XX X XXX
Robustness (lateral truncation) X X X

Robustness (axial + lateral truncation) X X X
Robustness (constant offset) XXX XX X

Robustness (projection specific offset) XXX XX X
Robustness (scatter) X X XX

Robustness (detector shift) XX X XXX

significantly compared to the scanner built-in water correction. Since the optimiza-
tion algorithms could not minimize FBCC and SCC-based inconsistency measures
(Fig. 3.34), the projection linearizations were performed with the identity function,
and the corrected images are equivalent to NC images. It is difficult to find the exact
reason for the poor performance of both corrections due to the lack of knowledge
of many proprietary pre-processing algorithms prior to water correction. Based on
the robustness studies, the inability to minimize FBCC and SCC-based inconsistency
measures could be attributed to the presence of projection-specific offsets and trunca-
tion artifacts. We can find that the decrease of inconsistency measure is significantly
low for clinical data compared to the projections from the industrial CT scanner. This
is mainly due to the geometrical errors and detector imperfections (ring artifacts),
and the artifacts caused by them are visible in the clinical images.
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(a) Brain phantom (LE)
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(b) Brain phantom (HE)
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(c) Elliptical cylinder phantom (LE)
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(d) Elliptical cylinder phantom (HE)
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(e) Head phantom (LE)
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Figure 3.28: Robustness of algorithms when the projections are corrupted with a con-
stant offset.
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(a) Brain phantom (LE)
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(b) Brain phantom (HE)
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(c) Elliptical cylinder phantom (LE)
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(d) Elliptical cylinder phantom (HE)
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(e) Head phantom (LE)

0.00 0.05 0.10 0.15 0.20 0.25 0.30

Offset fraction m

0.00

0.02

0.04

0.06

0.08

||w
−
w
g
t
|| 2

||w
g
t
|| 2

GCC SSD

GCC SGMD

FBCC SSD

SCC SSD

(f) Head phantom (HE)

Figure 3.29: Robustness of algorithm when the projections are corrupted with
projection-specific offset.
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(b) Brain phantom (HE)

0.00 0.05 0.10 0.15 0.20

Maximum scatter to primary ratio

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

||w
−
w
g
t
|| 2

||w
g
t
|| 2

GCC SSD

GCC SGMD

FBCC SSD

SCC SSD

(c) Elliptical cylinder phantom (LE)
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(d) Elliptical cylinder phantom (HE)
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Figure 3.30: Robustness of algorithm when the projections are corrupted by scatter
radiation.
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Figure 3.31: Beam hardening correction for the head phantom. The polychromatic
(HE) projections were corrupted with scatter radiation where maximum
SPR = 2.5: NC, reconstructed image without beam hardening correc-
tion; GCC, GCC-based water correction; FBCC, FBCC-based water cor-
rection; SCC, SCC-based water correction.
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Figure 3.32: Beam hardening correction for micro-CT data. Images courtesy of
Fraunhofer IPK, Berlin, Germany.
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Figure 3.33: The optimization of correction polynomials (micro-CT).
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Figure 3.34: The minimization of normalized inconsistency measure (clinical data).
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Figure 3.35: Beam hardening correction for C-arm CBCT head scans: NC, recon-
structed image without beam hardening correction; WC, after scanner
built-in water correction; GCC, after GCC-based water correction. Im-
ages courtesy of University Hospital, Magdeburg, Germany.
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4 Beam Hardening Correction for
Multi-material Objects

4.1 Introduction

The higher-order beam hardening artifacts due to polychromatic attenuation by
strongly attenuating structures like bones or metals can be corrected using IBHC,
EBHC, and BHFC algorithms (Sec. 2.7.1). The methods rely on the forward projec-
tions of segmented bone volume to estimate the residual error caused by polychro-
matic X-ray attenuation by bones which cannot be corrected by sole water correction.
The algorithms differ on the parameterized models employed to compute artifact-free
projections. Hsieh et al. proposed to estimate the bone correction polynomial bι for
IBHC using the prior knowledge about X-ray and material attenuation spectra or
by the calibration experiments [49]. Calibration-free IBHC, EBHC, and BHFC in-
volve the determination of model parameters in volume/object space by minimizing
the high-frequency streak artifacts of the corrected volume iteratively [61] [58] [73].
BHFC is computationally very expensive due to the requirement of back projection
operation during each iteration. By contrast, EBHC volume can be expressed as the
linear combination of three monomial volumes, and they can be pre-computed before
the optimization of polynomial coefficients. Hence, back projection operations are
not necessary during EBHC iterations.

As in CC-based water correction, the coefficients for higher-order corrections can
be estimated by enforcing consistency conditions on cone beam projection pairs. Con-
sistency conditions enable us to determine the IBHC correction polynomial without
calibration or prior knowledge. By estimating the BHFC coefficient directly from the
projections using CC, the requirement of back projection operations during each iter-
ation is eliminated. Instead of TV, CC-based EBHC reduces the number of required
reconstructions from 3 to 2. Moreover, all TV-based higher-order beam hardening
corrections are sensitive to image noise due to their reliance on gradient images to
quantify high-frequency streak artifacts. By employing CC, a noise-tolerant beam
hardening correction algorithm can be formulated.

4.2 Method

The workflow of a multi-pass algorithm to correct both water- and bone-induced beam
hardening artifacts is depicted in Fig. 4.2. In the first pass of the algorithm, water
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correction is performed after optimizing the polynomial using consistency conditions.
During the second pass, the prior volume µw is reconstructed from the water corrected
projections. 3-level Otsu’s method is used to compute threshold values HUa, HUw
and HUb (in Hounsfield scale) to segment air, water, and bone from µw. Instead
of a simple thresholding operation, the segmentation is performed according to the
Elbakri-Fessler displacement model to eliminate the sharp transition [35] [42]. By
assuming the volume consists of voxels representing water, bone, and water-bone
mixture, the bone fraction volume fb (Fig. 4.1) is computed as:

fb (x) =


0.0, if HU (x) < HUw
1+sin[W (HU(x)−HUw)−π

2 ]
2

, if HUw ≤ HU (x) ≤ HUb

1.00 if HU (x) > HUb

W =
π

HUb −HUw
HU (x) =

µw (x)− µwater
µwater

(4.1)

The volume containing only high attenuation bone structures is computed by:

µb (x) = fb (x)µw (x) (4.2)

HU

0.0

0.2

0.4

0.6

0.8

1.0

fb

HUw HUb

Figure 4.1: Bone fraction when HUw = 200 HU and HUb = 800 HU.

The rest of the steps vary according to the parametric model employed to estimate
bone corrected projections.

4.2.1 CC-based IBHC

In the second-order IBHC, bone corrected projections gbιw are estimated using the
water corrected projections gw, forward projections of bone volume X3µb and the
polynomials for water w and bone corrections bι =

[
bι0 = 0, bι1, b

ι
2

]T (Eq. 2.101).

gb
ι

w = gw + (bι1 − w1)X3µb + (bι2 − w2) [X3µb]
2 (4.3)

90



4 Beam Hardening Correction for Multi-material Objects

Since the projections are already water corrected and the bone correction polyno-
mial coefficients are unknown, we can use the identity function as water correction
polynomial w =

[
w0 = 0, w1 = 1, w2 = 0

]T .
gbι = gb

ι

w = gw + (bι1 − 1)X3µb + bι2 [X3µb]
2 (4.4)

The quantified inconsistency computed from a pair of bone corrected projections
is given by:

E ij (bι) =
K−1∑
k=0

[
Gi, Si or F i

(
Θ̂k; b

ι
)
−Gj, Sj or F j

(
Θ̂k; b

ι
)]2

(4.5)

Gi
(
Θ̂k; b

ι
)

= G
(
sik, θ

i
k; b

ι
)

=
(sik)

2
+ (Di)

2

(Di)2

∂

∂sik
R2g

c
bι

(
θik, s

i
k

) (4.6)

Si
(
Θ̂k; b

ι
)

= S
(
sik, θ

i
k; b

ι
)

=
(sik)

2
+ (Di)

2

(Di)2 hr
(
sik
)
∗ R2g

c
bι

(
θik, s

i
k

) (4.7)

F i
(
Θ̂k; b

ι
)

= F
(
sik, θ

i
k; b

ι
)

=
−1

〈ŵ (αi) ,
f(αi)−f(αi)
‖f(αi)−f(αj)‖2

〉
R2g

c,d
bι

(
θik, s

i
k

) (4.8)

Similar to CC-based water correction, the bone correction polynomial is estimated
by minimizing the quantified inconsistency:

min
bι

∑
i

∑
j E ij (bι)∑

i

∑
j E ij (bι0)

where 〈f (αi) ,f (αj)〉 → 0

s.t.

max{X3µb}∫
0

pbι (x) dx =
(max{X3µb})2

2

(4.9)

The rationale behind the choice of orthogonal projection pairs and the need for
the normalization of inconsistency measure are explained in Sec. 3.2. Initial param-
eter bι0 =

[
bι0 = 0, bι1 = 1, bι2 = 0

]T is set to identity function. Hence, the normalized
inconsistency measure is 1 during the first iteration.
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The constraint ensures constant area under the polynomial, determined by the ro-
bust maximum value of forward projections max{X3µb}. It is to be noted that the
constraint is not necessary for the optimization of bone correction polynomial. In CC-
based water correction, the polynomial transforms all the pixel values of uncorrected
projections. Therefore, the global minimum can be reached with the trivial solution
of zero polynomial. By contrast, bι acts only on the bone forward projections, and
only the bone overlapped ROIs of the water corrected projections are modified during
the minimization of inconsistency measure. However, the constraint accelerates the
polynomial optimization and makes the algorithm robust when the projections are
corrupted with other artifacts. Since the second-order polynomial is used for correc-
tions, the efficient implementation of the above minimization can be formulated by
following the equations described in Sec. 3.2:

min
bι2

∑
i

∑
j E ij (bι2)∑

i

∑
j E ij (bι2 = 0)

where 〈f (αi) ,f (αj)〉 → 0

s.t. 0 ≤ bι2 ≤
3

2max{X3µb}
where bι1 = 1− 2

3
bι2max{X3µb}

(4.10)

4.2.2 CC-based EBHC

As per EBHC, the bone corrected projections gbew are formulated as the bi-variate
polynomial expression of gw,X3µb and the coefficients be =

[
be1, b

e
2, b

e
3

]T (Eq. 2.102).

gb
e

w = gw + (be1 − 1)X3µb + be2 [X3µb]
2 + be3 X3µb gw (4.11)

Compared to IBHC, EBHC polynomial expression has an additional coefficient be3 to
weight the product of water corrected and bone forward projections. The quantified
inconsistency parameterized by EBHC polynomial be is given as:

E ij (be) =
K−1∑
k=0

[
Gi, Si or F i

(
Θ̂k; b

e
)
−Gj, Sj or F j

(
Θ̂k; b

e
)]2

(4.12)

The three polynomial coefficients can be estimated by solving the following optimiza-
tion problem [11]:

min
be

∑
i

∑
j E ij (be)∑

i

∑
j E ij (be0)

where 〈f (αi) ,f (αj)〉 → 0 (4.13)

The initial parameter be0 is set to
[
be1 = 1, be2 = 0, be3 = 0

]T .
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Table 4.1: NLOPT optimization parameters (bone corrections). The default values
were used for all the parameters which are not listed here.

Parameter value
Algorithm COBYLA

Number of optimization variables 1(BHFC), 1(IBHC), 3(EBHC)
Lower bound 0 (IBHC, BHFC)
Upper bound 3

2max{X3µb} (IBHC)
Absolute tolerance on the function value 1e-4

Absolute tolerances on optimization parameters 1e-4

4.2.3 CC-based BHFC

The bone corrected projections can also be computed by the addition of Beam Hard-
ening Factor (BHF):

gb
f

w = gw + ∆gb
f

w (4.14)

where BHF parameterized by the coefficient bf is estimated with the path length
through the bone volume X3fb.

∆gb
f

w =

 0 bf X3fb = 0

ln
(

sinh(bf X3fb)
bf X3fb

)
bf X3fb 6= 0

(4.15)

Similarly, BHFC projection’s inconsistency is quantified by:

E ij
(
bf
)

=
K−1∑
k=0

[
Gi, Si or F i

(
Θ̂k; b

f
)
−Gj, Sj or F j

(
Θ̂k; b

f
)]2

(4.16)

The free parameter of BHF is estimated as [15]:

min
bf

∑
i

∑
j E ij

(
bf
)∑

i

∑
j E ij (bf = 0)

where 〈f (αi) ,f (αj)〉 → 0

s.t. 0 ≤ bf
(4.17)

Since BHF is an even function (Fig. 2.11b), the non-negative constraint limits the
feasible region and thereby accelerates the minimization.
The optimization parameters for bone corrections are listed in Table. 4.1.
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Polychromatic projection im-
ages gp (u, v, α), projection
matrices P (α) ∈ R3×4

Optimization of water correc-
tion polynomial w using CC

Computation of water cor-
rected projections gw (u, v, α)

Initial reconstruction,
µw (x) = X−13 gw

Segmentation of bone volume µb (x)
Computation of binary mask
from bone volume fb (x)

Forward projection of binary
mask volume X3fb (u, v, α)

Optimization of BHFC
coefficient bf using CC

Computation of water + bone
corrected projections gbfw (u, v, α)

Forward projection of
bone volume X3µb (u, v, α)

Optimization of IBHC bι or
EBHC be coefficients using CC

Computation of water + bone
corrected projections gbιw , gb

e

w (u, v, α)

Reconstruction of artifact
corrected volume µbw (x)

BHFC

Figure 4.2: The workflow of the multi-pass algorithm for the first and higher-order
corrections.

4.3 Experiments

To assess the efficacy of bone beam hardening corrections, the polychromatic projec-
tions were generated from the bi-material head and jaw phantoms [92] [65] consisting
of water and bones. The same system geometry and spectrum simulation parameters
described in Sec. 3.3.1 were used for projection generation. The robust coefficients
of variation Cr

v (Eq. 3.19) of the voxels of selected ROIs (Fig. 4.3) were computed
for quantitative evaluation. The Cr

vs corresponding to the elliptical and rectangu-
lar ROIs quantify the spill-over and streak artifacts, respectively. The algorithms
were also validated with the clinical data from an interventional C-arm CBCT scan-
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ner. The images were reconstructed after IBHC, EBHC, and BHFC corrections using
GCC, FBCC, and SCC.

To demonstrate the effectiveness of algorithms to reduce higher-order artifacts due
to beam hardening by metal implants, CC-based corrections were performed on a
clinical dataset acquired by a mobile C-arm CBCT scanner. Four hundred projections
at 110 keV were acquired over a short scan angular range of 199 degrees, where
each projection contains 976x976 isotropic pixels of size 0.305 mm. The volumes
were reconstructed on a 512x512x200 grid of isotropic voxels of 0.3 mm using FDK
algorithm.

(a) (b)

Figure 4.3: ROIs to compute the robust coefficient of variation.

4.4 Results and Discussion

4.4.1 Simulation

Fig. 4.4 and Fig. 4.5 display the results after beam hardening corrections for the head
phantom. Compared to only water correction (WC), the additional bone corrections
reduce the spill-over artifacts and recover the sharp bone-water boundaries. The dark
streak artifacts (marked by the yellow arrow in Fig. 4.4b) between bone structures are
also reduced after bone corrections. Tab. 4.2 confirms the improvement of uniformity
of voxel values as evidenced by the decrease in Cr

v .
Fig. 4.4 and Fig. 4.5 show the artifacts reduction for the jaw phantom images.

The streak artifacts between bone structures are greatly reduced after higher-order
corrections. Due to the partial volume effect and inaccurate segmentation of bone
structures, the forward projections of the bone volume can be overestimated near the
edges of bone structures. As a result, the algorithms may perform over-corrections
and generate bright streak artifacts. However, the reduction of dark streaks outweighs
the introduction of artifacts, and the higher-order corrections improve overall image
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(a) NC (b) WC GCC (c) IBHC GCC (d) EBHC GCC (e) BHFC GCC

(f) WC FBCC (g) IBHC FBCC (h) EBHC FBCC (i) BHFC FBCC

(j) WC SCC (k) IBHC SCC (l) EBHC SCC (m) BHFC SCC

Figure 4.4: Beam hardening correction for the head phantom (LE): (a) NC, recon-
structed image without beam hardening correction; (b) WC GCC, after
GCC-based water correction; (c) IBHC GCC, after GCC-based water +
bone (IBHC) corrections; (d) EBHC GCC, after GCC-based water + bone
(EBHC) corrections; (e) BHFC GCC, after GCC-based water + bone
(BHFC) corrections; (f) WC FBCC, after FBCC-based water correction;
(g) IBHC FBCC, after FBCC-based water + bone (IBHC) corrections; (h)
EBHC FBCC, after FBCC-based water + bone (EBHC) corrections; (i)
BHFC FBCC, after FBCC-based water + bone (BHFC) corrections; (j)
WC SCC, after SCC-based water correction; (k) IBHC SCC, after SCC-
based water + bone (IBHC) corrections; (l) EBHC SCC, after SCC-based
water + bone (EBHC) corrections; (m) BHFC SCC, after SCC-based wa-
ter + bone (BHFC) corrections.
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(a) NC (b) WC GCC (c) IBHC GCC (d) EBHC GCC (e) BHFC GCC

(f) WC FBCC (g) IBHC FBCC (h) EBHC FBCC (i) BHFC FBCC

(j) WC SCC (k) IBHC SCC (l) EBHC SCC (m) BHFC SCC

Figure 4.5: Beam hardening correction for the head phantom (HE): (a) NC, recon-
structed image without beam hardening correction; (b) WC GCC, after
GCC-based water correction; (c) IBHC GCC, after GCC-based water +
bone (IBHC) corrections; (d) EBHC GCC, after GCC-based water + bone
(EBHC) corrections; (e) BHFC GCC, after GCC-based water + bone
(BHFC) corrections; (f) WC FBCC, after FBCC-based water correction;
(g) IBHC FBCC, after FBCC-based water + bone (IBHC) corrections; (h)
EBHC FBCC, after FBCC-based water + bone (EBHC) corrections; (i)
BHFC FBCC, after FBCC-based water + bone (BHFC) corrections; (j)
WC SCC, after SCC-based water correction; (k) IBHC SCC, after SCC-
based water + bone (IBHC) corrections; (l) EBHC SCC, after SCC-based
water + bone (EBHC) corrections; (m) BHFC SCC, after SCC-based wa-
ter + bone (BHFC) corrections.
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(a) NC (b) WC GCC (c) IBHC GCC (d) EBHC GCC (e) BHFC GCC

(f) WC FBCC (g) IBHC FBCC (h) EBHC FBCC (i) BHFC FBCC

(j) WC SCC (k) IBHC SCC (l) EBHC SCC (m) BHFC SCC

Figure 4.6: Beam hardening correction for the jaw phantom (LE): (a) NC, recon-
structed image without beam hardening correction; (b) WC GCC, after
GCC-based water correction; (c) IBHC GCC, after GCC-based water +
bone (IBHC) corrections; (d) EBHC GCC, after GCC-based water + bone
(EBHC) corrections; (e) BHFC GCC, after GCC-based water + bone
(BHFC) corrections; (f) WC FBCC, after FBCC-based water correction;
(g) IBHC FBCC, after FBCC-based water + bone (IBHC) corrections; (h)
EBHC FBCC, after FBCC-based water + bone (EBHC) corrections; (i)
BHFC FBCC, after FBCC-based water + bone (BHFC) corrections; (j)
WC SCC, after SCC-based water correction; (k) IBHC SCC, after SCC-
based water + bone (IBHC) corrections; (l) EBHC SCC, after SCC-based
water + bone (EBHC) corrections; (m) BHFC SCC, after SCC-based wa-
ter + bone (BHFC) corrections.
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(a) NC (b) WC GCC (c) IBHC GCC (d) EBHC GCC (e) BHFC GCC

(f) WC FBCC (g) IBHC FBCC (h) EBHC FBCC (i) BHFC FBCC

(j) WC SCC (k) IBHC SCC (l) EBHC SCC (m) BHFC SCC

Figure 4.7: Beam hardening correction for the jaw phantom (HE): (a) NC, recon-
structed image without beam hardening correction; (b) WC GCC, after
GCC-based water correction; (c) IBHC GCC, after GCC-based water +
bone (IBHC) corrections; (d) EBHC GCC, after GCC-based water + bone
(EBHC) corrections; (e) BHFC GCC, after GCC-based water + bone
(BHFC) corrections; (f) WC FBCC, after FBCC-based water correction;
(g) IBHC FBCC, after FBCC-based water + bone (IBHC) corrections; (h)
EBHC FBCC, after FBCC-based water + bone (EBHC) corrections; (i)
BHFC FBCC, after FBCC-based water + bone (BHFC) corrections; (j)
WC SCC, after SCC-based water correction; (k) IBHC SCC, after SCC-
based water + bone (IBHC) corrections; (l) EBHC SCC, after SCC-based
water + bone (EBHC) corrections; (m) BHFC SCC, after SCC-based wa-
ter + bone (BHFC) corrections.
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Figure 4.8: The minimization of normalized inconsistency measure during higher-
order corrections.
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Table 4.2: Robust coefficient of variation Cr
v after water and bone corrections.

Phantom CC NC WC WC + BHFC WC + IBHC WC + EBHC
Jaw (LE) GCC 3.7142 1.6677 1.6143 1.5867 1.5641
Jaw (LE) FBCC 3.7142 1.6169 1.3692 1.3819 1.5075
Jaw (LE) SCC 3.7142 1.7245 1.5415 1.4668 1.4667
Jaw (HE) GCC 2.3654 1.2610 1.1574 1.1297 1.1554
Jaw (HE) FBCC 2.3654 1.2113 0.9964 0.9987 1.0937
Jaw (HE) SCC 2.3654 1.3325 1.0922 1.0721 1.0859
Head (LE) GCC 2.1030 1.8583 1.8095 1.8053 1.7750
Head (LE) FBCC 2.1030 1.8555 1.8401 1.8364 1.8250
Head (LE) SCC 2.1030 1.8703 1.7959 1.7928 1.7546
Head (HE) GCC 1.5714 1.4061 1.3899 1.3864 1.3786
Head (HE) FBCC 1.5714 1.4061 1.3935 1.3904 1.3839
Head (HE) SCC 1.5714 1.4108 1.3784 1.3750 1.3663

quality. The coefficient of variation is decreased after all bone correction algorithms
irrespective of cone beam consistency conditions.

The reconstructed images of the head and jaw phantoms and the coefficient of vari-
ation demonstrate the propensity of EBHC correction for over-compensation. Com-
pared to IBHC, the additional coefficient of EBHC be3 is negative in most cases which
leads to strong corrections for bone pixels if the prior first-order correction is weak.
As the reconstructed images of jaw phantom show, FBCC-based IBHC and BHFC
do not generate bright streak artifacts, and the Cr

v is significantly low compared to
other correction methods. Since only the bone overlapped projection pixel values are
transformed by the higher-order correction algorithms, the slow varying nature of the
fan beam intermediate function plays a role in preventing over-correction. In head
phantom, SCC-EBHC outperforms other methods to reduce the spill-over artifacts
and homogenize the attenuation values. Due to the object’s geometry and the selected
ROI to compute the Cr

v , the artifacts due to over-corrections did not take account.
By contrast, the introduction of bright streak artifacts after SCC and GCC-based
EBHC causes the deterioration of Cr

v of the attenuation values of the jaw phantom
images.

Fig. 4.8 displays the minimization of normalized inconsistency measures. Com-
pared to the three-parameter optimization of EBHC, the sole parameter of IBHC
and BHFC can be estimated with very few iterations.

4.4.2 Clinical Data

Fig. 4.9 shows GCC-based beam hardening corrections for clinical datasets from a C-
arm CBCT scanner. The additional bone corrections reduced the spill-over artifacts
and preserved the sharp brain-skull boundaries, as displayed in Fig. 4.10. By reducing
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NC WC WC + BHFC WC + IBHC WC + EBHC

Figure 4.9: GCC-based water and bone corrections for clinical data. Images courtesy
of Magdeburg University Hospital, Germany.

the artifacts, low contrast detectability is significantly improved near the boundaries,
helping to assess biomarkers. Compared to IBHC and BHFC, the images after EBHC
exhibit slightly improved corrections.
Fig. 4.11 and Fig. 4.12 display FBCC and SCC-based corrections. As explained

in the last chapter (Sec. 3.4.3), water correction polynomial could not be optimized
using both consistency conditions due to truncation and offset-induced projection
errors. Since water corrections were performed with the identity function, NC and
WC images are the same. By contrast, FBCC and SCC-based bone corrections can
deteriorate the image quality due to the forward projection errors and the resultant
over-corrections. This effect is predominant in EBHC corrections due to their sus-
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Figure 4.10: Attenuation profiles from the reconstructed images (Fig. 4.9) after GCC-
based water and bone corrections.

NC WC WC + BHFC WC + IBHC WC + EBHC

Figure 4.11: FBCC-based water and bone corrections for clinical data. Images cour-
tesy of Magdeburg University Hospital, Germany.
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ceptibility to overcompensation. Instead of bone forward projections, BHFC relies on
the path length through the bone volume to compute the correction values. Hence,
the over-correction due to the forward projection error and the image quality deteri-
oration were avoided in BHFC. The algorithms of IBHC and EBHC can be modified
by employing the path length projections to quantify the beam hardening-induced er-
ror and projection inconsistency. However, the two-parameter optimization of IBHC
needs to be performed without the constraint to maintain the constant area under
the IBHC polynomial curve.

NC WC WC + BHFC WC + IBHC WC + EBHC

Figure 4.12: SCC-based water and bone corrections for clinical data. Images courtesy
of Magdeburg University Hospital, Germany.

(a) NC (b) IBHC (c) EBHC (d) BHFC

Figure 4.13: GCC-based corrections for metal artifact reduction. Images courtesy of
Siemens Healthineers, Forchheim, Germany.

Fig. 4.13 demonstrates the reduction of metal artifacts due to beam hardening
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by a tibia implant. The dark streak artifacts around and between the implants are
reduced after GCC-based corrections. It is to be noted that the proposed algorithms
only correct the metal artifacts due to beam hardening. The complete reduction of
metal artifacts induced by various phenomena (e.g., scattering, photon starvation)
can only be achieved using the projection completion algorithms like NMAR. How-
ever, the interpolation-based projection in-painting may cause the degradation of
crucial anatomical details around the large metal implants. In this scenario, CC-
based higher-order corrections can be an alternative for MAR algorithms. Artifacts
could not be reduced by either FBCC or SCC-based algorithms, similar to clinical
head scans.
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In this thesis, the algorithms for data-driven beam hardening correction using consis-
tency conditions have been discussed and evaluated. The coefficients for corrections
are directly estimated from CBCT projection data without calibration experiments
and prior knowledge about X-ray and attenuation spectra. As the corrected images
and quantitative evaluations demonstrate, all three manifestations of beam hardening
artifacts are reduced, and the CT number uniformity is restored after the proposed
corrections. As per comparison studies, the projection inconsistency is more reli-
able than the TV of uncorrected volume to quantify beam hardening-induced error.
The low contrast resolution of the clinical head scans is significantly improved af-
ter water and bone corrections. The efficacy and efficiency of various correction
models and cone beam consistency conditions were compared through elaborate ex-
periments. The artifact correction results can be replicated using any cone beam
consistency condition if the polychromatic projections are free from additional errors.
The slow varying nature of the intermediate function and the lack of high-frequency
enhancing filtering operations using adjacent plane integrals make FBCC-based al-
gorithms robust towards Poisson noise, axial truncation, detector shifts, and scatter.
However, FBCC-based algorithms are susceptible to the low-frequency distribution of
projection offsets making GCC-based algorithms applicable for clinical C-arm CBCT
datasets due to the offset canceling derivative filter. SCC-based corrections involve
computationally expensive ramp filtering and are very sensitive to truncation. In ad-
dition, no significant advantage has been found for SCC over GCC. The comparative
studies are valuable to select the appropriate condition for artifact correction based
on the prior knowledge about CBCT system geometry and the presence of projection
errors other than those caused by beam hardening. The robust artifact correction al-
gorithms can be formulated by combining different consistency conditions to exploit
each of their advantages and minimize their risks.

Similarly, consistency condition-based higher-order beam hardening corrections uti-
lizing three prominent models were analyzed and compared. IBHC, EBHC and BHFC
are very effective in reducing the artifacts due to polychromatic attenuation by bones
and metals, which could not be mitigated by sole water correction. EBHC yields su-
perior artifact reduction with the costs of increased computing time and susceptibility
for overcompensation. Clinical head scan images demonstrate the reduction of spill-
over artifacts by GCC-based algorithms to retain well-defined brain-skull boundaries.
Compared to water correction, higher-order correction algorithms are more sensi-
tive to projection errors due to their reliance on forward projections of the prior
reconstructed volume. Clinical images show FBCC and SCC-based higher-order cor-
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rections may cause the deterioration of image quality by introducing artifacts. This
over-correction can be minimized by replacing the forward projections with the path
lengths for EBHC and IBHC.

The major limitation of the proposed algorithms is their susceptibility to geometri-
cal and physical measurement errors. It is found that the algorithms are susceptible to
a high degree of lateral truncations. As a result, the polynomial for water correction
could not be optimized for thorax and abdominal scans of interventional and mobile
C-arm CBCT scanners. The impact of different truncation correction algorithms on
polynomial optimization is a potential area of future work. The extrapolation of
projections using consistency conditions to correct lateral truncation artifacts is an
ongoing research area. In the future, it may be possible to optimize the correction
polynomial from the truncated projections after consistency conditions-based pro-
jection extrapolation. Similarly, the susceptibility to miscalibration artifacts can be
reduced by estimating the accurate projection geometry parameters using consistency
conditions. Algorithms for data-driven geometric calibration have been published and
successfully applied in industrial and clinical CBCT scanners.

In consistency condition-based beam hardening correction, the projection lineariza-
tion is performed using a global polynomial or correction coefficients irrespective of
projection view and detector pixel location. This approach may not be optimal if the
projection acquisition involves a strong heel effect, tube voltage modulation, bow tie
filter, and detector in-homogeneities. In such scenarios, projection or pixel-specific
corrections may be advantageous for effective artifact reduction. It will be very com-
putationally expensive to estimate numerous coefficients using consistency conditions
alone. By incorporating prior knowledge (e.g., voltage distribution, detector effi-
ciency), the parameter estimations can be simplified.

The projection error due to the underestimation of total attenuation values caused
by beam hardening, scattering, and detector in-homogeneities is compensated by ad-
ditive correction. The experiments have demonstrated that the cupping artifacts due
to scatter were also reduced after polynomial-based projection linearization. If the
scatter to primary ratio is very high, the scatter artifacts can be corrected by estimat-
ing the additive correction images using convolution-based analytical models. Like
the polynomials for beam hardening corrections, the scatter kernel parameters can
be optimized without calibration by enforcing consistency conditions. The prelimi-
nary results have shown promising results by reducing the scatter-induced cupping
and streak artifacts. However, the estimation of projection-specific kernel parame-
ters using pair-wise consistency conditions is a challenging task. An effective scatter
correction algorithm can be developed by incorporating prior knowledge about the
distribution of kernel parameter values.

The results have also shown that the artifacts due to beam hardening by metal
implants could be reduced by higher-order methods using consistency conditions.
However, a significant reduction of metal artifacts is only possible with sophisticated
MAR algorithms like NMAR. Here, the consistency conditions can be explored to
improve interpolation accuracy or estimate the optimal parameters for TV-based
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inpainting.
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Proofs

.1 Beer-Lambert Law

It (E) = I0 (E) e−µ(E)l (.1)

Proof.
dI (E)

I (E)
= −µ (E) dl∫

dI (E)

I (E)
= −µ (E)

∫
dl

ln (It (E)) = −µ (E) l + C where C = ln (I0 (E))

It (E) = I0 (E) e−µ(E)l

(.2)

.2 Redundancy of 2D Radon Transform

R2µ (θ + π,−s) = R2µ (θ, s) (.3)

Proof.

R2µ (θ + π,−s) =

∫
x∈R2

µ (x) δ
(
〈x,−θ̂〉+ s

)
dx where

[
cos(θ + π)
sin(θ + π)

]
= −θ̂

=

∫
x∈R2

µ (x) δ
(
−
(
〈x, θ̂〉 − s

))
dx since 〈x,−θ̂〉 = −〈x, θ̂〉

=

∫
x∈R2

µ (x) δ
(
〈x, θ̂〉 − s

)
dx since δ (−x) = δ (x)

= R2µ (θ, s)

.3 Fourier Slice Theorem in 2D

F1R2µ
(
σ; θ̂

)
= F2µ (ν)

∣∣∣∣
ν=σθ̂

= F2µ
(
σθ̂
) (.4)
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Proof.

F1R2µ
(
σ; θ̂

)
=

∫
s∈R

R2µ
(
s; θ̂
)
e−i2πsσ ds

=

∫
s∈R

∫
l∈R

µ
(
sθ̂ + lθ̂⊥

)
dl

 e−i2πsσ ds

=

∫
s∈R

∫
l∈R

µ
(
sθ̂ + lθ̂⊥

)
e−i2πsσ dl ds

(.5)

By using the change of variables x = sθ̂ + lθ̂⊥ where s = 〈x, θ̂〉 and the Jacobian
determinant det J = 1:

F1R2µ
(
σ; θ̂

)
=

∫
x∈R2

µ (x) e−i2πσ〈x,θ̂〉 dx

=

∫
x∈R2

µ (x) e−i2π〈x,σθ̂〉 dx

= F2µ (ν)

∣∣∣∣
ν=σθ̂

= F2µ
(
σθ̂
)

.4 Scaling Property of Ramp Filter

hr (cs) =
1

c2
hr (s) , ∀c 6= 0 (.6)

Proof.

hr (cs) =

∫
σ∈R

|σ| ei2πσcs dσ

=
1

c2

∫
σ∈R

|σ′| ei2πσ′s dσ′ after substituting σ′ = cσ

=
1

c2
hr (s)

(.7)
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.5 Zeroth-order HLCC

C (θ) =

∫
s∈R

R2 (s, θ) ds

= R3

(
Θ̂, t

) (.8)

Proof. By substituting Eq. 2.27 in the above equation:

C (θ) =

∫
s∈R

ds
∫
l∈R

µ
(
sθ̂ + lθ̂⊥

)
dl (.9)

And using the change of variables x = sθ̂ + lθ̂⊥ where the Jacobian determinant
det J = 1:

C (θ) =

∫
x∈R2

µ (x) dx

= R3

(
Θ̂, t

)
.6 Grangeat’s Fundamental Relation

Gi
(
Θ̂k

)
= −

∫
β̂∈S2

δ
′
(
〈Θ̂k, β̂〉

)
gm

(
β̂,f (αi)

)
dβ̂

=
∂

∂t
R3µ

(
Θ̂k, t

) ∣∣∣∣∣
t=〈f(αi),Θ̂k〉

(.10)

Proof. By substituting Eq. 2.64,

Gi
(
Θ̂k

)
= −

∫
β̂∈S2

∫
l∈R

δ
′
(
〈Θ̂k, β̂〉

)
µ
(
f (αi) + lβ̂

)
dl dβ̂ (.11)

By using the change of variables x = f (αi)+lβ̂ where det J = l2, the above equation
can be expressed as:

Gi
(
Θ̂k

)
= −

∫
x∈R3

δ
′
(
〈Θ̂k, β̂〉

)
µ (x)

1

l2
dx

= −
∫

x∈R3

δ
′
(
〈Θ̂k,

x− f (αi)

l
〉
)
µ (x)

1

l2
dx

= −
∫

x∈R3

δ
′
(

1

l
〈Θ̂k,x− f (αi)〉

)
µ (x)

1

l2
dx

(.12)
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Proofs

Similar to ramp filter (Eq. 2.42), the derivative of Dirac distribution also exhibits
scaling property:

δ
′
(cx) =

1

c2
δ
′
(x) (.13)

Therefore,

Gi
(
Θ̂k

)
= −

∫
x∈R3

δ
′
(
〈Θ̂k,x− f (αi)〉

)
µ (x) dx

= −
∫

x∈R3

δ
′
(
〈Θ̂k,x〉 − 〈Θ̂k,f (αi)〉

)
µ (x) dx

=

∫
x∈R3

δ
(
〈Θ̂k,x〉 − 〈Θ̂k,f (αi)〉

)
µ
′
(x) dx, as per Eq. 2.82

=

∫
x∈R3

µ
′
(x) dx

∫
t∈R

δ
(
〈Θ̂k,x〉 − t

)
δ
(
t− 〈Θ̂k,f (αi)〉

)
dt

= −
∫
t∈R

δ
′
(
t− 〈Θ̂k,f (αi)〉

) ∫
x∈R3

µ (x) δ
(
〈Θ̂k,x〉 − t

)
dx

= −
∫
t∈R

δ
′
(
t− 〈Θ̂k,f (αi)〉

)
R3µ

(
Θ̂k, t

)
=

∫
t∈R

δ
(
t− 〈Θ̂k,f (αi)〉

) ∂

∂t
R3µ

(
Θ̂k, t

)

=
∂

∂t
R3µ

(
Θ̂k, t

) ∣∣∣∣∣
t=〈Θ̂k,f(αi)〉

.7 Grangeat Intermediate Function from FDCT
Projections

Gi
(
Θ̂k

)
= G

(
θik, s

i
k

)
=

(sik)
2

+ (Di)
2

(Di)2

∂

∂sik
R2g

c
m

(
θik, s

i
k

)
(.14)

Proof. The unit direction vector β̂ ∈ S2 in Source Detector Coordinate System
(SDCS) is given by:

β̂ =
u û (αi) + v v̂ (αi) +Di ŵ (αi)√

u2 + v2 + (Di)2
(.15)
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Proofs

θ̂ik and θ̂i⊥k denote the normal vector to the line L (θik, s
i
k) and the line direction in

DCS:
θ̂ik = cos θik û (αi) + sin θik v̂ (αi) (.16)

θ̂i⊥k = − sin θik û (αi) + cos θik v̂ (αi) (.17)

sik θ̂
i
k +Di ŵ (αi) represents the line from the X-ray source to the detector which lies

in the plane Π
(
Θ̂k, t

)
and perpendicular to the line L (θik, s

i
k). The plane normal

vector can be computed by the cross product of two in-plane vectors:

Θ̂k =
sik θ̂

i
k +Di ŵ (αi)∥∥∥sik θ̂ik +Di ŵ (αi)

∥∥∥ × θ̂i⊥k
=
sik cos θik û (αi) + sik sin θik v̂ (αi) +Di ŵ (αi)√

(sik)
2

+ (Di)2
×− sin θik û (αi) + cos θik v̂ (αi)

=
−Di cos θik û (αi)−Di sin θik v̂ (αi) + sik ŵ (αi)√

(sik)
2

+ (Di)2

(.18)

The dot product of Θ̂k and β̂ (Eq. .15) is given by:

〈Θ̂k, β̂〉 =
−Di√

(sik)
2

+ (Di)2

u cos θik + v sin θik − sik√
u2 + v2 + (Di)2

(.19)

By utilizing the spherical to Cartesian coordinate transformation for surface integral(
β̂ → (u, v)

)
and substituting Eq. .19 in Eq. 2.81 [59]:

Gi
(
Θ̂k

)
= −

∫∫
δ
′

 −Di√
(sik)

2
+ (Di)2

u cos θik + v sin θjk − sik√
u2 + v2 + (Di)2

 gm (u, v, αi)

∥∥∥∥∥∂β̂∂u × ∂β̂

∂v

∥∥∥∥∥ dudv

(.20)

Using Eq. .13 and Eq. 2.66 [31],

Gi
(
Θ̂k

)
= −(sik)

2
+ (Di)

2

(Di)2

∫∫
δ
′ (
u cos θik + v sin θjk − sik

)
gcm (u, v, αi) dudv

=
(sik)

2
+ (Di)

2

(Di)2

∂

∂sik
R2g

c
m

(
θik, s

i
k

)
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Proofs

.8 Smith Intermediate Function

Si
(
Θ̂k

)
=

∫
β̂∈S2

hr

(
〈Θ̂k, β̂〉

)
gm

(
β̂,f (αi)

)
dβ̂

= hr (t) ∗ R3µ
(
Θ̂k, t

) ∣∣∣∣∣
t=〈f(αi),Θ̂k〉

(.21)

Proof. By employing the same change of variables used to prove Grangeat fundamen-
tal relation (.6) and the scaling property of ramp function (Eq. 2.42) :

Si
(
Θ̂k

)
=

∫
x∈R3

hr

(
〈Θ̂k,x− f (αi)〉

)
µ (x) dx

=

∫
x∈R3

hr

(
〈Θ̂k,x〉 − 〈Θ̂k,f (αi)〉

)
µ (x) dx

=

∫
x∈R3

µ (x) dx
∫
t∈R

hr

(
t− 〈Θ̂k,f (αi)〉

)
δ
(
〈Θ̂k,x〉 − t

)
dt

=

∫
t∈R

hr

(
t− 〈Θ̂k,f (αi)〉

)
dt
∫

x∈R3

µ (x) δ
(
〈Θ̂k,x〉 − t

)
=

∫
t∈R

hr

(
t− 〈Θ̂k,f (αi)〉

)
R3µ

(
Θ̂k, t

)
dt

=

∫
t∈R

hr

(
〈Θ̂k,f (αi)〉 − t

)
R3µ

(
Θ̂k, t

)
dt, since hr is an even function

= hr (t) ∗ R3µ
(
Θ̂k, t

) ∣∣∣∣∣
t=〈Θ̂k,f(αi)〉

.9 Scatter Projections

The total attenuation values of scatter-free gm and scatter-corrupted gsm projection
are related by the following equation:

gsm (u, v, α) = gm (u, v, α)− ln (1 + SPR (u, v, α)) (.22)

Proof.

gm (u, v, α) = ln
(
I0 (u, v, α)

It (u, v, α)

)
(.23)
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Proofs

gsm (u, v, α) = ln
(

I0 (u, v, α)

It (u, v, α) + Is (u, v, α)

)
(.24)

The scatter-induced projection error due to the underestimation of total attenuation
values is given by:

gm (u, v, α)− gsm (u, v, α) = ln
(
It (u, v, α) + Is (u, v, α)

It (u, v, α)

)
= ln (1 + SPR (u, v, α))

(.25)

Hence,
gsm (u, v, α) = gm (u, v, α)− ln (1 + SPR (u, v, α)) (.26)
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