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Abstract
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Testing of distributions, minimax optimality and extensions

by Joseph Lam

The subject of this thesis is a minimax optimal study of statistical inference, with
a focus on hypothesis testing. This will give us the opportunity of reviewing tools
and ideas from the literature of estimation and testing of discrete and continuous
distributions. In the course of our analysis, we will explore several extensions of
classical minimax statistical problems. The first one is a local refinement of the
minimax framework and we will contribute by obtaining local minimax optimal rates
for closeness testing. The second is the study of minimax optimal methods while
preserving the privacy of data sets. Our contribution in that area will be minimax
rates for identity testing under local differential privacy. Finally, we extend the scope
of our study to a sequential setting, where we will employ techniques from bandit
theory in order to obtain the first minimax rate for adaptive rejection sampling.

Gegenstand dieser Dissertation ist die Untersuchung inferenzstatistischer Methoden
- insbesondere von Hypothesentests - auf Minimax-Optimalitdt. Wir werden Ideen
und Techniken untersuchen, die bereits in der Literatur zum Schétzen und Testen fiir
diskrete oder auch stetige Verteilungen vorhanden sind. Im Verlauf unserer Analyse
werden wir verschiedene Erweiterungen klassischer statistischer Minimax-Probleme
untersuchen. Die Erste ist eine lokale Verfeinerung des Minimax-Frameworks und
wir zeigen neue lokale Minimax-optimale Raten fiir Closeness Testing. Die Zweite ist
die Untersuchung der optimalen Minimax-Methoden unter Wahrung der Privacy von
Datensétzen. Unser Beitrag in diesem Bereich sind Minimax-Raten fiir Anpassungstests
unter lokaler differenzieller Privatsphére. Anschlieffend erweitern wir unsere Resultate
auf eine sequentielle Umgebung, wobei wir Techniken aus der Banditentheorie anwenden,
um erstmalig eine Minimax-Rate fiir eine solche adaptive Testmethode zu erhalten -
bisher gab es in der Literatur keine Resultate dafiir.
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Chapter 1

Preface

1.1 Notations

Let (22, A) be a measure space and (Pg)pco a family of probability measures on
(Q, A). We assume that X is a random variable in the statistical model (€2, A, (Pg)gco)-
Expectation and variance with respect to the measure Py are denoted as Ey and V.
For any = € RY, we have ||z, = (Z?:l |lz;[“)1/%. For any set S, we define L,(S)
as the set of functions f with support in S such that|f|* is integrable, and for any
f € Ly(S), we write || f||lL, = ([ |f[*)"/*. For any positive integer d, Py = {p € R?:
Vi, p; > 0, Z;l:l pj = 1} denotes the set of d-dimensional probability vectors. For any

countable set S, |S| denotes the number of elements of S.

1.2 Introduction to estimation

Roll a die and you can end up with either one of six possible results. In this experiment,
most mechanisms involved in delivering the final result are out of our grasp. So we end
up considering it as random instead. The field of probability is tasked with modeling
this random experiment with structural assumptions. So in the example of the dice
roll, you would model each possible result with some probability to be determined.
And at the heart of statistics is statistical inference, the process of deducing intrinsic
properties, like the probability of each result, just from the observations. Key questions
are when such a task is possible and how to accomplish this the most efficiently.

An important problem in statistical inference is the estimation of a distribution.
Given a specified class of distributions, the goal of estimation is to identify some
characteristics of the distribution of the observed random variables.

Definition 1. Let X1,..., X, be independent and identically distributed (i.i.d.) random
variables and 6 € © be a parameter associated with the distribution of X;.

o A statistic is a random variable p(X1, ..., Xy,) such that ¢ is a measurable func-
tion.

o An estimator of 0 € © is a statistic ranging in ©.

Now this definition is very unrestrictive and allows for the definition of meaningless
estimators. Historically estimators have been studied according to various performance
criteria that we will develop in the sections to come. This chapter will review basic
ideas from the field of statistics building up to minimax statistical inference.
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1.2.1 Asymptotic evaluation of the quality of an estimator

We begin with the study of asymptotic criteria related to stochastic convergence, for
which a complete survey can be found in Van der Vaart (2000). Those hold when con-
sidering a number n of random variables growing to infinity. Of course, such properties
are not as appealing in practice as non-asymptotic properties. They are nonetheless
interesting initial results and failing to fulfill simple asymptotic properties is often a
red flag for considering an estimator. We now present a few asymptotic properties
associated with the study of estimators: consistency and asymptotic distribution. We
illustrate both using theorems fundamental to the study of statistics and probability:
the law of large numbers and the central limit theorem.

Definition 2. o A sequence of random variables (Y,,) converges in probability to
a constant 0, if for any € > 0,

lim P(||Y, — 0]z > ) = 0.
n—oo

e An estimator is consistent in ©, if for any 0 € O, the estimator converges in
probability to 6.

Remark 1. In the definition of consistency, the condition is enforced to hold for any
0 € ©. Indeed, even a broken clock is correct twice a day. For example, if © = R,
then the constant equal to 0 is a trivial estimator which converges in probability to 0 if
0 =0.

We illustrate this definition with the following theorem justifying the use of the
sample average for estimating the mean of a distribution.

Theorem 1 (The weak law of large numbers.). Let Xi,...,X,, be i.i.d. random
variables with E(X1) = p. Then )" | X;/n converges in probability to p.

In the following definition, we introduce the concept of asymptotic distribution.

Definition 3. A sequence of random variables (Y,) converges in distribution to'Y, if
Elg(Yn)] = Elg(Y)],

for any bounded, uniformly continuous g. And the distribution associated with Y 1s
the asymptotic distribution of Yy,.

When an estimator is consistent, its asymptotic distribution is a Dirac distribution
at 0. However, in an analog way to the study of convergence of deterministic sequences,
there exists finer convergence results describing the behaviour of the estimator as it
converges to 6.

Theorem 2 (The central limit theorem of Lindeberg-Levy.). Let X,..., X, be i.i.d.
random variables with E(X1) = p and V(X1) = 0? < oco. Then /n(> 1y Xi/n — p)
converges in distribution to N'(0,02).

Knowing the asymptotic distribution has applications in building exact asymptotic
confidence intervals and the asymptotic distribution can also serve the purpose of
measuring the performance of an estimator in the following way. Let L be a loss
function, so it is nonnegative. Given the asymptotic distribution Qg of -0, a good
estimator will obtain low values of the following mean loss.

/ L(#)dQo(1).
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Example 1. A fundamental example is the mean squared error, taking L : t — t2,
that we will discuss in more detail in the next section in a nonasymptotic context.

1.2.2 Nonasymptotic evaluation of the quality of an estimator

We now turn to the study of nonasymptotic criteria, which will be the focus of the
results presented in this dissertation. Ideas presented here are very much related to
asymptotic properties. We start with the definition of unbiasedness.

Definition 4. An estimator is unbiased, if for any 0 € O, Eg(p(X1,...,X,)) = 0.

Unbiasedness is a criterion relying on the first moment of the estimator. However,
one might consider the variance as well, that is to say, the second moment. An unbiased
estimator is considered good if it has low variance. The low variance criterion is not
sufficient by itself. Again, a constant estimator has 0 variance, but one would not
consider it a good estimator.

So we might be considering this as an optimization problem, minimizing the
variance under the constraint of having no bias over all estimators of 8 € ©. Now there
are two issues with the formulation of this problem.

1. The class of all estimators might be too large to optimize over.

2. Enforcing absolutely no bias puts a disproportionate emphasis on bias in com-
parison with the variance.

For the first issue, one can reduce the class of all possible estimators. For example, one
can consider linear estimators only and look for the best linear unbiased estimators.
However, this is a very restrictive class of estimators and it turns out that this first
issue can be solved for a lot of problems using information-theoretic bounds, while
keeping a very large class of estimators.

For the second issue, in the case ® C R, one could consider minimizing over all
estimators é,

Vy(6) + cBy (),

where By(0) = Eg(0 — ) is the bias of § and ¢ is some positive constant.

Taking the squared value keeps the term associated with the bias non-negative,
and the definition 'physically’ homogeneous. In fact, we highlight the connection with
the mean squared error, defined as

Eo[l16 — 0113].

But a more practical form of the mean squared error is given by the bias-variance
decomposition in the following proposition.

Proposition 1. If© C Re, where d > 0, then we have for any 6 € © and estimators
0,
Eq[[10 — 0[13] = t{Vo(0)] + | Ba(9)]13,

where tr is the trace function and V is the covariance matriz.

Note that the mean squared error depends heavily on the number of samples and
one can easily generalize the mean squared error to an LL,-estimation risk for any
u € (0, 00] by )

Eo[l|0 = 01l5],
where one simply ignores the power if u = co.

The estimation risk gives an explicit measure of the performance of an estimator 6
for a given . We will now study the question of comparing estimators over ©.
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1.2.3 Comparison of estimators

Comparing the performance of estimators is like comparing real-valued functions. If a
function dominates another, that is, if it is larger than the other everywhere, then its
performance is obviously better. In other cases however, pointwise comparison is not
trivially summarized into a general comparison.

A possibility is the Bayesian perspective, where the comparison is done on average.
Another is the minimax framework, where one compares the performance of estimators
at their worst.

Definition 5. Let n > 0 be some fized integer and &, the set of estimators of 0 € ©
using n observations. Let u € (0,00], and if u = 0o, one simply ignores the power in
the following definitions.

o Let v be a distribution with support in ©. Then the LL,-Bayesian estimation risk

associated with v is R
inf Ego, (E [||9 — 9| 9}) .
oes,

o And the L, -minimazx estimation risk is

inf sup [0 — 6]2).
feE, 0O

Remark 2. The definition of the Bayesian risk relies on a probability distribution v
to be chosen. An example is choosing v such that any 0 € © is given equal weight.
However, leaving the discussion on the choice of v open reduces the comparability of
the performance of estimators.

We will focus throughout this work on the study of minimax results and a good
introduction to this type of analysis can be found in Tsybakov (2008). Now, finding the
exact minimax risk is extremely complicated for most problems. Instead, the interest
will lie on finding a function ¢ such that

cp(n,d) < inf supBy[||f — 0[] < Co(n,d),
0ec&y, 6O

where ¢ and C are constants independent of n, or scale at most polylogarithmically
with n.

Then ¢ characterizes the minimax risk of a problem, making for a quantitative
analysis of a problem in a nonasymptotic way. So the minimax framework allows for
an easy comparison of the efficiency of methods and, in a dual way, the difficulty of
problems.

1.3 Minimax estimation

Having introduced both the estimation problem and the minimax framework, we will
be tackling the problem of estimation of distributions within the minimax framework.
We will first discuss in Section 1.3.1 the discrete case with multinomial and Poisson
distributions. Then the continuous case will be partitioned into the study of Hoélder
densities in Section 1.3.2 and Besov densities in Section 1.3.3.

A lot of sections from this thesis will resonate with one another and we hint at
a few of their connections here. Section 1.4 provides the testing counterparts to the
estimation problems that we will study here. In Section 1.5, we will twist the study of
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minimax estimation with the added constraint of privacy preservation. Finally, Holder
estimation with kernel methods will be useful for the problem of adaptive rejection
sampling presented in Section 1.6.4.

1.3.1 Minimax estimation of discrete distributions

We will present minimax estimation results for Poisson distributions which can be
translated into results for multinomial distributions. Similar considerations of indepen-
dent Poisson samples in order to simplify the proofs are made in Chan et al. (2014)
and Valiant and Valiant (2017).

We define the Poisson distribution as follows.

Definition 6. Let A € (0,00). A random variable X ~ P(\) with respect to probability
measure P, if for any k € N,
DL

We define the multinomial distribution as well.

Definition 7. Let n € N and q € Py4. A random variable §& ~ M(n,q) with respect to
P, if for anyi € {1,...,n}, k€ {1,...,d},

P(& = k) = q-

We provide an important building block in connecting results with Poisson distribu-
tions to results with multinomial distributions. It is an equivalence result between the
samples from a multinomial distribution with a random number of trials and samples
from independent Poisson distributions.

Proposition 2. Let n € R, ¢ € Py. Let i ~ P(n). Let the conditional distribution
of & be M(n,q), conditionally on n. For any i < d, we have X; = Z?Zl I{¢ =i}
Then we have independent

The proof of this proposition is in Section 1.7.1.

Remark 3. Note that for any \y > 0, there exists n € R and q; > 0 such that
A1 =nq1. And for any ¢ > 0, we have A1 = (cn)(q1/c). In particular, there exists c
such that Z?Zl qi/c < 1.

We provide more details on obtaining Poisson samples with large probability
from multinomial samples, as well as bounding the total variation distance between
multinomial distributions from a bound between Poisson distributions in Sections 2.2,
2.6.1 and 2.7.3.

We now provide upper bounds on the #,-minimax estimation risk for 0 < u < 2 of
the probability vector ¢ € P4 from Poisson observations. For any i < d, let X; ~ P(ng;)
be independent random variables. We show that X/n is a minimax optimal estimator
of q. Discussions on such a problem can be found in Berend and Kontorovich (2013)
and Han, Jiao, and Weissman (2015). We provide the following upper bound on the
minimax estimation risk.

Theorem 3. Let &; be the set of estimators of q using X; for all i < d. Let u € (0,2].

We have the following upper bound on the f,-minimaz estimation risk

inf supE(||f — 0]|.) < dI4/Dp—w/2,
0c&y 0O
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We provide the proof of this Theorem in Section 1.7.2 and one can obtain the
following matching lower bound.

Theorem 4. We have the following lower bound on the ¢,, minimax estimation risk

inf supE(]|§ — 0l7,) > cd1 /22,
vesy, €0

The proof relies on reducing the estimation problem to a testing problem and
finding a lower bound for that testing problem. Details on such a method can be found
in Assouad (1996), Yang and Barron (1999), Tsybakov (2008), and Duchi, Jordan, and
Wainwright (2013¢), and a detailed lower bound proof for testing will also be provided
in Section 1.4.2.

We have tackled discrete estimation, and we go on with presenting this problem
in the continuous case as in Tsybakov (2008) and Giné and Nickl (2021). We will be
considering continuous distributions characterized by their probability density functions.
In comparison with discrete distributions, where one considers the individual probability
of each category, there exists an immense diversity of probability distribution functions
associated with continuous distributions to be studied. We will restrict the probability
density functions to classes of regular functions. Now, the regularity of a function
can be characterized globally, as with Besov functions, where there are bounds on the
norm of any number of derivatives of the function. It can also be defined locally, as
with Holder functions, where the bounds are for local variations of f.

1.3.2 Holder functions and kernel density estimation

Holder spaces are traditional smoothness classes defined in the following way.

Definition 8. Let 0 < s <2 and H > 0. Let u € (0,00]. A function f:[0,1]7 — R is
(s, H)-Hélder with respect to the L,-norm, if for any (z,y) € ([0,1]%)2,

[f (@) = f(y) = (VI (@), (x —y)I{s > 1} < Hllz = yllZ,-

Assume Xi,...,X,, are independent random variables with common marginal
(s, H)-Holder density f.
We follow in the steps of Tsybakov (2008) and define a kernel.

Definition 9. A kernel K : R — R of order | is a function such that u — v/ K (u) is
integrable for any 0 < j <1 and satisfying [ K(u)du = 1, and [w K(u)du = 0 for
any 1 <j5<I.

Let K : R? — R be such that K = Hle K, where K is a kernel. Then we define a
kernel density estimator, the Parzen-Rosenblatt estimator as

R 1 < X; —
f(t):nhdZK< ht>7
i=1

where h > 0 is a bandwidth to be chosen. If Xy,..., X, are fixed and K > 0 , then f
is a probability density function.

Remark 4. In particular, taking K : u — T{—1 < u < 1}/2, we have f,(t) =
(B (x+h) — Fo(z —h))/2h, where F,(t) = 13" 1{X; < t}. Now, F, is a consistent

n
estimator of F' by the law of large numbers and limy,_ W = f(t). This

justifies the use of fn as an estimator of f.
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The following propositions are extensions to the multidimensional case of results
from Tsybakov (2008).

Proposition 3. Assume f is a density such that f < Cyp € R. Let K : R — R be
a function such that fK2 )du < co. Then the variance of the est@mator s upper
bounded by Cy/(nh?), for any choice of h > 0, where Cy = Cr [ K2(u)

Proposition 4. Assume f is (s, H)-Holder and let K be a kernel of order |s] such
that

/u|S|K(u)|du < 0.

Then the squared bias is upper bounded by Coh?s for any choice of h > 0, where

Cy = (é/|u|5|K(u)|du>2.

Combining both propositions, we obtain the following theorem.

Theorem 5. If the assumptions from Propositions 3 and /J hold, then the mean squared
error s upper bounded by

Ch

C h2s L
2 + nhd’

for any choice of h > 0.

So for the right choice of bandwidth for the kernel, we deduce the following upper
bound.

) 1/(2s+d)

Corollary 1. Taking h = ( ol n~1/2std) - one obtains the following upper

25Co
bound on the mean squared error

Cn—Zs/(25+d) ’

where C' is a constant large enough.

Remark 5. This rate is known as the nonparametric rate of estimation, in contrast
with n= from the parametric rate.

Holder densities have been tackled in other problems as well. For details on identity
testing in Holder sets, we refer to Ingster (1987) and Arias-Castro, Pelletier, and
Saligrama (2018). We now present regression, a problem related to estimation, tackled
in Tsybakov (2008) and Raskutti, Wainwright, and Yu (2011).

The regression problem. The Parzen-Rosenblatt estimator only relies on the
values of the random variables X;. One can however also consider kernel methods for
the regression problem where one observes (X1,Y7),...,(X,,Y,) such that any i <n

Y = g(Xi) + &, (1.1)

where & are independent random variables with E(&) = 0 and ¢ : [0,1]? — R is an
unknown function. One particular case of interest is when g = f is the density of X;.
A kernel estimator associated with this problem is the Nadaraya-Watson estimator,

ZYWNW
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where
K(&i=t) X —t
Wi () = ——L5—-1 > K(—)#0
> i1 K(= ) j=1 h

It turns out that the minimax estimation rate for such a regression problem coincides
with the minimax estimation rate of density estimation for Holder densities.

Besides, in the particular case where f is the uniform distribution on [0, 1]%, the
Nadaraya-Watson estimator and the Parzen-Rosenblatt estimator coincide.

Finally, the noiseless regression problem, where ¢ = 0 in Equation (1.1), is an
important case that has not been as extensively studied as the classical regression
problem. This corresponds to estimating f from noiseless observations of f, which
can also be seen as an interpolation problem with random design. Such a framework
has been studied in Kohler and Krzyzak (2013), Kohler (2014), Bauer et al. (2017),
and Berthier, Bach, and Gaillard (2020), and a minimax optimal method for noiseless
regression of (H, s)-Holder functions when s < 1, is proved to be the nearest neighbor
estimator, defined as

fult) = 1)1 { = axgamn e - Xl }. (12

whose behavior is also studied in Kpotufe (2011), Shalev-Shwartz and Ben-David
(2014), Chaudhuri and Dasgupta (2014), and Reeve and Brown (2017). For such a
problem, one can reach a minimax mean squared error of n=2%/¢ which converges
faster than the minimax mean squared error n~25/2574 from noisy regression. This
faster convergence will be discussed in Section 1.6.6 and it will motivate our analysis
of adaptive rejection sampling in Chapter 4.

1.3.3 Besov spaces and wavelet density estimation

We will now describe minimax estimation results in Besov spaces, which have been
widely used in statistics since the seminal paper by Donoho et al. (1996). Indeed,
thanks to interesting properties of Besov spaces from approximation theory, a large
variety of signals can be dealt with, especially those built using wavelet bases. As
explained in Giné and Nickl (2021), there exist multiple constructions for Besov spaces,
and we will focus on one revolving around wavelet bases. Similar constructions to
ours can be found in Kerkyacharian and Picard (1992), Kerkyacharian and Picard
(1993), Donoho et al. (1996), Donoho and Johnstone (1998), Meyer (1990), Juditsky
and Lambert-Lacroix (2004), Hérdle et al. (2012), Goldenshluger and Lepski (2014),
and Butucea et al. (2020).

Definition of wavelet bases. We provide the following assumptions in order to
define wavelet bases.

Assumption 1. Let ¢ be a compactly supported scaling function such that

1. {¢(x — k), k € Z} is an orthonormal family of La(R). Let Vi be the subspace
spanned by this basis.

2. For any j € Z, V; C Vjq1, where V; denotes the space spanned by {¢; i, k € Z}.

3. We also assume the same regularity assumptions as in Donoho et al. (1996),
where for some integer k large enough, ¢ is of class C*, ¢ and every derivative
up to order k is rapidly decreasing.
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Let W; be defined such that Vi1 = V; @ W;. Then we define 1, a mother wavelet such
that

1. {Y(x — k), k € Z} is an orthonormal basis of Wy.
2. {jr, k €Z,j € Z} is an orthonormal basis of Lo(R).

3. 1 is of class C*, o and every derivative up to order k is rapidly decreasing.

Remark 6. Note that NjezV; = {0}. Besides, if ¢ € Lo(R) and [¢ = 1, then
LQ(R) = Ujezvj,

We now present a useful proposition from Meyer (1990) for the representation of
any f € Lo(R) with wavelet bases.

Proposition 5. If Assumption 1 holds, then for any J € Z
LoR) =V oW, @ W51 @...,
that is, for any f € Lao(R), there exists a unique family (¢g,0 5, Yy41,...) € Vj X
[1;>, Wj, such that
f=ds+) ;.

j>J

Fix J € Z, we will consider
(b5 = 2720272 — k)i k € Z}, {jp=22¢(2x —k);k € Z,j > J},

and we denote for all j > J, k € Z,

mﬂﬁz/fﬂwfﬁ—m,&Aﬁz/WWMWO—M

Example 2. The Haar basis is defined with ¢ = 1[0,1] and ¢ = 1[1/2,1] — 1[0,1/2].
In particular, for any k € A(j) = {0, 1,...27 — 1}, ¢jr and ;. are supported in the
dyadic interval [k/27,(k+1)/27]. So if f € La(]0,1]), then for any j > J and k ¢ A(j),
ajr = Bjr = 0. So we will only consider in that case,

{ur; ke ()}, {Yjnsk € AG),J > T}

Definition of a Besov space. Now we will define Besov spaces with a condition on
the coefficients of f in the wavelet basis.

Definition 10. Let E; be the associated projection operator onto V; and D; = Ej 1 —
Ej. Let s>0,1<u<00,1<h< o0, we define the Besov space as
1/h
Boun = [ lEs(Dlv, + | D_[27°1D; L) <0

j>J

Then we write the following lemma from Meyer (1990) and Donoho et al. (1996)
connecting the norm of f with the norm of its wavelet coefficients.

Lemma 1. Let g be a function such that {g(z — k),k € Z} is an orthonormal
family of La(R) and also satisfying the third point from Assumption 1. Let f(x) =
ST A29/2g(27x — k). Then there exists constants ¢ and C' such that

ORI, < | fll, < C2O2VI |,
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This lemma, will be useful in order to define the Besov space in terms of coefficients
of f. We consider the projections of f, for any j > J,

Erf =Y ok, Dif =Y Bisthjk-

keZ keZ

Then, by Lemma 1, we obtain the following alternative equivalent definition of a Besov
space.

Definition 11. Let 1 <u <00, 1 < h <o00. A Besov space is defined as
1/h

Filleolle, + | D _[27CT27 )8 0,1 <00,
>0

where for any j >0, |18j.le, = (Cyez |Bial*)™.

And we will focus on f with a bounded support and Besov balls with a fixed radius
in particular. Let R’ > 0. Then we consider

1/h

f e Lu(0, 1) [ Bo(Nll, + | D_R*IDifllL)" | <R ¢,
720

that is, for R > 0

Bsun(R) = {f € Lu([0, 1]); [lao [le, + Q127279 18;. |10, ]") " < R},
j>0

Example 3. We provide a particular example of Besov ball which will be of interest in
Chapter 3. For R > 0 and s > 0, the Besov ball B2 (R) with radius R associated
with the Haar basis is defined as

Bipoo(R) = feLa([0,1));¥) >0, Y B(f) < R*27%°
keA(s)

Now note that, if s < 1, then there is an equivalence between the definition of ES’Q’OO(R)
and the definition of the corresponding Besov space using moduli of smoothness — see
e.g. Theorem 4.3.2 in Giné and Nickl (2021). And for larger s, Besov spaces defined
with Daubechies wavelets satisfy this equivalence property. Further discussion on the
relevance of Besov spaces to density estimation can be found in Donoho et al. (1996).

Density estimation in a Besov ball. We consider probability density functions

F=Y aumbrn+ > Bt

keZ ji>J keZ

So estimating f amounts to estimating « s and Bj; for any k and J < j < jq, where
Jj1 is chosen appropriately as detailed in Donoho et al. (1996). And we end up with
the following estimators.

Gyrp=n"" Z bx(Xi), Bir=mn"" Z Y 1(X5).
=1

i=1
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So one obtains the following minimax result, as detailed in Donoho et al. (1996), Hardle
et al. (2012), Butucea et al. (2020), and Giné and Nickl (2021).

Theorem 6. Let 1 <u<oo,1 <h<oo,s>0. We have the following sharp lower
bound up to a logarithmic factor on the minimax L,-risk over By, p(R),

Ainf sup Ee[”é _ 9”:] > Cn(frs+r/uf1)/(1+2(571/u)) V. (n/ log n)frs/(23+1).
oesn eeés,u,h(R)

Remark 7. Note that Besov sets are function classes parametrized by smoothness
parameters and, as illustrated here, the minimax rates depend exclusively on those
parameters in a lot of problems.

Then in the particular case, where r = u, we have the minimax rate up to a

logarithmic factor,
n—us/(2s+1) ]

1.4 Minimax and local minimax testing of distributions

A problem related to estimation is testing the equality of two densities f and fy,
expressed in the following way in statistics.

Ho: f = fo, versus  Hi: f # fo. (1.3)

Ho is the null hypothesis and H; is the alternative hypothesis. Now such a formulation
of a testing problem is rather imprecise, that is the reason why, we will instead define
the problem using three sets:

e Two sets of densities associated with each hypothesis.
e A set of statistics ranging in {0, 1}.

Remark 8. One can equivalently define a statistic ranging in {0,1} as a test function
evaluated at the observed random variables. The interpretation of the test taking value
1 is the null hypothesis being rejected. If the value is 0, then the null hypothesis is not
rejected. So the set of statistics ranging in {0,1} characterize all possible tests built
from the observations. Thus, assumptions on the observations are encoded in that set.
From now on, the set of test statistics will refer to the set of statistics ranging in {0,1}.

The first testing problem we will consider is the classical problem of identity testing,
also known as goodness-of-fit testing, or one-sample testing, where one would like to
determine whether the observed random variables follow one fixed specified distribution
or not. Let fo be a fixed probability density function. Let C be a set of probability
density functions and dist some distance function. We now give the formulation of
an identity testing problem with the following two sets associated with Hy and H1,
respectively.

Ho =A{(fo, f); [ = fo}, Hi(p,dist) = {(fo, f); f € C,dist(fo, f) = p},

where p > 0.

Remark 9. Since fy is a fived density, it is known and Ho is associated with a set of
densities with a single element. In that case, we say that the hypothesis Ho is simple.
On the other hand, H1 is composite, because it has multiple elements. So in the case
that fo s fized, we are considering a simple-composite testing problem.
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Let independent X1,..., X, ~ f with respect to probability measure Py. Let X
be the range of X;. Let ® = {¢ : X™ — {0,1}}. So we define the set of test statistics
for this hypothesis testing problem as

T ={0;0 = o(X1,...,X,),p € D).

In the same way as in estimation, the quality of a test is measured according to some
criterion. We define the type I and type II error risks.

e Type I error: o(Xy,...,X,) =1, when fy = f.
e Type II error: p(Xi,...,X,) =0, when fy # f.

The significance level of ¢ is defined as a lower bound on 1 — Pf(p(Xy,...,X,) =1)
if f= fo. The power is defined as 1 — Pf(p(X1,...,Xp) =0) if f # fo.

In practical applications, one fixes the significance level of the test, and maximizes
the power then. However, both values are real numbers between 0 and 1, depending
on ¢, f, fo and the number of observations. Instead, we will define a criterion which
is comparable to the mean squared error from estimation. Let Hy be a set of (fo, f)
such that Ho holds. Let Hi(p,dist) be a set (fo, f) such that f and fy are p apart
according to some distance dist. Let the testing error risk be

R(H07 Hl(p7 dlSt)7 SO(Xb s 7Xn))

= sup Prlo(Xi,...,X,)=1)+ sup Ps(o(X1,...,X,) =0).
(fo,f)€Ho (fo,f)€H1(p,dist)

Remark 10. Now in the alternative hypothesis, f and fo are p apart instead of simply
being different from one another. Indeed, if f is allowed to get arbitrarily close to fy,
then the testing error risk will be 1.

We define the separation distance as

py(Ho, Hi, (X1, ..., X,); dist)
= inf{p > 0; R(Ho, H1(p,dist), o(X1,..., X)) <~}.

This definition extends the notion of critical radius introduced in Ingster (1993) to the
non-asymptotic framework. And we consider the minimax separation distance.

p%(Ho, Hy, Tp;dist) = inf py(Ho, Hy, 0; dist).
0eTn

In the sections to come, we will be making comparisons between testing and estimation
results. Note however, that the definition of minimax separation distance that we
just provided and of minimax risk from Definition 5 are not homogeneous. Instead,
the comparison will be made with infy_. supgeg Egl||6 — 6]|“]"/*. Then, showing that
testing is simpler than estimation amounts to showing that the rate associated with
estimation is at least as large as the rate of p2 (Ho, Hi, Tp; dist). This is the expected
result, because testing whether f = fy can be solved by estimation of f. We refer to
Balakrishnan and Wasserman (2018) for a survey on hypothesis testing.

This chapter will focus on minimax testing and a local refinement of the concept
of minimaxity, mostly with discrete distributions. We will first tackle upper and
lower bounds on the minimax separation distance for identity testing in Sections 1.4.1
and 1.4.2. Then we will treat the related problem of minimax closeness testing in
Section 1.4.3. After this, we will take a more local point of view on minimax identity
testing in Section 1.4.4 and consider an upper bound for local minimax closeness



1.4. Minimax and local minimax testing of distributions 13

testing in Section 1.4.5. This will lead us in Section 1.4.6 to discuss the motivation
of working on finding sharp local minimax rates for closeness testing of discrete
distributions in Chapter 2. Finally, we will present results for minimax identity testing
for continuous distributions with Besov densities in Section 1.4.7. This will give us the
chance to discuss adaptivity to the unknown smoothness parameter of a Besov density.
Section 1.4.7 will be useful for the study of identity testing under local differential
privacy in Chapter 3.

1.4.1 An illustrating example: Y2-test for discrete distributions

We start with the study of identity testing for discrete distributions, which has
also been discussed in Valiant and Valiant (2017), Balakrishnan and Wasserman
(2017a), Balakrishnan and Wasserman (2018), and Kim (2020). In this section and
the next one, we will provide matching minimax upper and lower bounds focusing
on uniformity testing, that is, testing whether the observed random variables are
uniformly distributed. Minimax uniform testing is related to minimax identity testing,
because the bounds will coincide with the ¢1-minimax separation distance for identity
testing from Paninski (2008), as explained in Remark 11. So one can conclude that the
uniform distribution is the hardest distribution to test in identity testing with ¢;-norm.
Note however that it might not be the case for other norms, a typical example being
the ¢o-norm. We consider a uniform probability vector p over d classes. Let u € (0, 2].
Let ® = {¢ : N — {0,1}}. We define the following sets for the definition of the
hypothesis testing problem.

Ho = {(p,q);pi = 1/d,i < d, p=q},

Hi(p, || - = lle.) = {(p,@);pi = 1/d,i < d, g € Py, |lp — qlle, > p},
7dd - {éaé — (;O(XlwuaXd)aSO S (I)}a

where X; ~ P(ng;) is an independent random variable with respect to probability
measure Py, for any ¢ < d. Note that we provide results for Poisson distributions, which
are connected to multinomial distributions, as hinted at in Section 1.3.1. We define
the y2-statistic as follows

T = Z[(Xi —npi)? — Xi). (1.4)

The associated threshold is

enllplls = end 172,

where ¢ is a constant depending on . So the test will be defined as T{T > cnd~/?}.
Note that the usual y?-statistic renormalizes each term by dividing by p; and we
neglect this, because here p is uniform. We will discuss this further in Section 1.4.4
tackling a local refinement to the minimax framework in identity testing.

We now present the following theorem providing an upper bound on the minimax
separation distance for testing uniformity for Poisson distributions.

Theorem 7. We have the following upper bound on the minimax £, -separation distance
Py (Ho, Hy, Tas || - = - |le,) < n™ 212 (V2d ™+ V6sn™12) [/ (7 = 3/4).

We provide the proof of this theorem in Section 1.7.3.
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Corollary 2. If n > d'/2, then
pr(Ho, Hy, T || - — - o) < CdV/e=3/=172,
where C' is a constant depending on .

Remark 11. Now we provide results focusing on p being the uniform distribution, but
it coincides with the global {1 -minimaz separation distance d'/*/\/n in the worst case
of p presented in Paninski (2008). So the uniform distribution is indeed the worst case
for identity testing.

We compare the testing rate d(2/%=3/9n=1/2 with the estimation rate d(1/#=1/2)p~1/2
and, as expected, this identity testing problem is simpler than estimating the density.
One concludes that using the test (1.4) is more efficient than estimating ¢ and plugging
this estimate into ||p — ¢l|, in order to make a comparison with p.

1.4.2 Lower bound for identity testing of a uniform probability vector

We will provide a detailed proof on finding a lower bound for the problem of identity
testing, when p is a uniform probability vector. The technique that we will describe is
also discussed in Assouad (1996), Yang and Barron (1999), Baraud (2002a), Tsybakov
(2008), Duchi, Jordan, and Wainwright (2013c), and Arias-Castro, Pelletier, and
Saligrama (2018).

Theorem 8. We have the following lower bound on the minimaz ¢,,-separation distance
0 (Ho, i, Tas |- = <o) > (1= ) /224 /A= V/2q1 /w308y p (4141 /4g1 et
Corollary 3. Ifn > d, we have
P4 (Ho, Hy, T || - = - [le,) > en™ ' /2dM =3/,
where c 1s constant depending on 7.
Presentation of a lower bound technique. We define the following distances.

Definition 12. Let vy, vy be probability measures.

o Then the total variation distance between vy, vy is

drv(vo,v1) = sup lto(A) —vi(4)].

o DBesides, if 11 is absolutely continuous with respect to vy, then the chi-squared
distance between vy and vy is defined as
dV1 — dl/o 2
dl/o .

Our lower bound technique relies on a Bayesian approach and the connection is
made with the following lemma.

X2 (vo, 1) = By,

Lemma 2. Let C be a set of densities. Let p > 0. Let (89,91) € [0,1)? and v € (0,1)
such that  + & + 01 < 1. Let Hy = {(fo,f) € C* f = fo}, Hi(p,|| - = - [lL.) =
{(fo, f) € C?: |If — follL, = p} for any p > 0 and T a set of = p(X) such that
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X ~ f with respect to probability measure Py. Let vg and vy, be probability measures
such that vo(Ho) > 1 — 69 and v1 ,(Hi(p, dist)) > 1 — 61 for any p > 0. If, for some
p>0,

dTv(Pyl’p,Pyo) <1—v—4dp— 61,

then we have
py(Ho, Hy, T dist) > p.

We prove this lemma in Section 1.7.4. Thus, the lower bound that is obtained
heavily relies on the choice of prior distributions vy and v, on (fo, f). We prove this
result now.

Besides, we connect total variation distance and chi-squared distance in the following
lemma that we also prove in Section.

Lemma 3. For two distributions v1,1vy such that vy is absolutely continuous with
respect to vy, we have

drv (vo,v1) < v/ x%(vo,11).

An important property of the chi-squared distance is its tensorization behaviour
depicted in the following lemma.

Lemma 4. For two distributions vy, 1y, we have

\/XQ(V?da ) = \/(1 + x2(vo, 1)) - 1.

Definition of a prior distribution. Let m = nV d. Assume A < 1/m. Let
ne {—1,1}42] For any 1 <i <d, let

1/d+ A, if i/2 ¢ N and i < 2[d/2],
qi = l/d—n“/ﬂA, 1fz/2€Nandz§2Ld/2j,
1/d, it 2|d/2| < i < d,
since p; = 1/d for any i < d. Then g is a probability vector. So P(n/d)®? produces a

sample set corresponding to Hyp, and ®?:1 P(ng;) corresponding to Hj.
So one can define the associated joint distributions Ag and A;. Firstly, let

Qo = P(n/d)**,

and
Q) = P(n(l/d+ A))@P(n(l/d—A))+Pn(l/d—A)) @ P(n(l/d+ A))
1= 5 )
That is, for any (j, k) € N?
» '+ke—2n/d
Qo(j, k) = (n/d)’ BR

and
nj+k€72n/d

QuGR) = [(1/d+ AV (1/d = A+ (1/d = AY(1/d + M)
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Then writing vy = P(n/d), we define

®d/2] .
A el [P itd2 e N,
0= an[d/QJ@VO

and

®d/2] .
A = é@Ld/QJ, if d/2 € N.
Q1 X 1.

Note that Ay and A; correspond to the joint distributions of a d-dimensional sample

associated with the vector ¢ under Hy and Hy, respectively.

Information bound We have by Lemma 3 and 4,

drv (Ao, A1) < VX2 (o, A1) < /(14 x2(Qu. QU2 — 1.

Now,

(1 + XQ(Q(]a Ql))Ld/QJ —-1< eXp(Ld/2JX2(Q07 Ql)) -1< dXQ(QOa Ql):

if x2(v,v1) < 1/d. And

o
E(x,,x0) NQ“[(Zgl (X1, X5) — 1) = Z [Q1(7, go(j,Q/g())(j7k)]

gk

]+k —2np1

_ Z n/p14]'k' [(p1+ A (p1 — A + (p1 — A) (p1 + A — 2p] )2

J+k —2npy

- Z o) G (LA (1= Ap)" + (1= AfprY (1+ Afpr)* =27

npl ]-‘rk’ —2np1 ) . )
<D el = WA )+ ex((k = )A/p) =2
J,k
J+k —2npy

e ) e 2l - A i - 2P

We have
E(xy)~Pmpne2[(X — YV)'] = 2E(X*) + 6E(X?)* — 8E(X*)E(X).
So by Lemma 5,
E(x y)~pnpe2 [(X — )4 = 12(np;)? + 2np;.
So

d
(@0, Q1) = By x5

= AY(12n2d* + 2nd?).

E(X,Y)NP(np1)®2[(X - Y)4]'

(X1, X2) = 1)%] < [A/pi]* (12(npi)? + 2(np;)) (L.5)

(1.6)
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So x2(Qo, Q1) < (1 —v)?/d, if

At < (1 —~)?[(24n%d®) "L A (4nd™) 7Y,

that is
A < (1 - 7)1/2[(24_1/4n_1/2d_3/4) A (4_1/4n_1/4d_1)].
So
dry (Ao, A1) <1 -1,
with

”p - CJHZu > (1 . 7)1/2[(2471/4n71/2d1/u73/4) A (471/4n71/4d1/u71)].

We conclude with Lemma 2.

1.4.3 Closeness testing of discrete distributions

The problem of closeness testing is very much related to identity testing, but this
time, both ¢ and p are unknown probability vectors. It is also known as two-sample
testing, homogeneity testing or equivalence testing. For simpler derivations of the
upper bound, we assume that we observe two sets of samples from each distribution.
Such a consideration is akin to sample splitting, that we detail further in Section 2.2.
Let ® = {p : N* — {0,1}}. We define the following sets for closeness testing of
discrete distributions.

Ho={(p.q) € P)p=q}, Hilp,|-—lle.) = {(p,q) € Pa)*p—qlle. = p}-
Ta=1{6;0 = o(x vV xP v . x vy xP v o e sy,

where for any [ € {1,2}, i < d, we consider independent Xi(l) ~ P(ng;), Yi(l) ~ P(np;)
with respect to some probability measure P, ,.

Remark 12. Closeness testing is a composite-composite testing problem, in contrast
to identity testing which has a stmple null hypothesis.

We provide the minimax rate for this problem proved in Chan et al. (2014).

Theorem 9. The minimaz ¢1-separation distance p%(Ho, H1,Tg; || - — - [[1) has the

following rate,
(dl/Qn—3/4) V. (d1/4n_1/2).

Remark 13. The minimax separation distance for closeness testing is worse than
the one for identity testing of d*/*n=Y2, but still better than the minimaz rate for
estimation dY/?n=1/2. Now, both minimaz rates of testing coincide, if n > d.

We will provide a test inspired by the one presented in Section 1.4.1, but it will
not rely on the knowledge of p and have the same performance if p is a uniform vector.
We consider the following test statistic,

d
=Y (x" - y")x® -v®), (1.7)
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where ¢ is a constant depending on ~. So we build the following test,
0 =1{T > {}.

Note that the threshold is empirical, because p is unknown. Similar considerations
will be made in Chapter 2.

Theorem 10. We have the following £, -separation distance associated with the test
defined above, when p is a uniform probability vector.

py(Ho, Hy, 0: ]| - = - [le,) < Clin™dY "7 2) v (n1/2dM =3/
where C' is a constant depending on 7.
We provide the proof of this theorem in Section 1.7.5.

Remark 14. When p is uniform, the performance of a test built on the statistic from
Equation (1.7) coincides with the minimazx separation distance for identity testing
presented in Theorem 7. So we manage to build a test capable of distinguishing whether
p and q are uniform vectors only from comparing the samples from both distributions
and is as efficient as comparing one sample set with a uniform vector. However, taking
u =1, the separation distance rate (d'/*n=")V (d"/*n=1/2) from Theorem 10 is smaller
than the minimaz separation distance for closeness testing (dY/?n=3/*) v (d"/*n=1/2)
presented in Theorem 9, if d > n. This demonstrates that the uniform probability
vector is not the hardest case for the {1-closeness testing problem, if d > n. More on
the global worst case study can be found in Chan et al. (2014) and an analysis of the
local difficulty corresponding to any probability vector will be made in Chapter 2.

1.4.4 Local minimax identity testing

Up until now, we have been providing minimax separation distances, either for a fixed
vector p or in the worst case of p. However, it might differ greatly for other vectors
p. For instance, if p; = 1 and p; = 0 for any i € {2,...,d}, the problem becomes
much easier and we will give the minimax optimal separation distance for this case in
Example 4.

Now, having a test guaranteed to be minimax optimal only for a uniform p is not
very satisfying when tackling other problems. Instead, one would like minimax optimal
guarantees specific to the problem at hand, that is, specific to p. Hence, the motivation
for local minimax identity testing in Valiant and Valiant (2017) and Balakrishnan and
Wasserman (2017a).

We present the local minimax testing problem, which has been tackled in ¢ distance
in the literature. Let ® = {p : N¢ — {0,1}}. Let 7 € P4. We define the following sets
for the definition of the hypothesis testing problem.

Hor={p,q;p=m=4q}, Hiz(p,|l-—h) ={(p.q);ip =7,9 € P, |lp—dqlle. > p},

Ta=1{0:0 = p(X1,...,X4), ¢ € B},

where X; ~ P(ng;) is an independent random variable with respect to probability
measure [P, , for any ¢ < d.

This time, 7 might not be uniform and the magnitude of the probability of each
class can vary a lot. We will partition the distribution into two distinct parts: the
bulk and the tail.
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Definition 13. Assume without loss of generality that the probability vector w is
ordered: m > mo > ... >my. Let 0 <k <1

o The k-tail of m is

d
Dy(m) = {i;ij < K}.

o The k-bulk of w is
Bi(m) = {i > 1;i & Dy(m)}.

The tests that will be proposed will be focused on either the bulk or the tail of the
distributions.

Tail test. Let us first define a statistic which will be used for a test focused on the

distribution tail.
Thait(k) = Z (X — nm;j).
JEDk()

The tail test is then defined as

Ptail(0,0) = WTiai(k) > /07D, (x)/6}-

Remark 15. o The tail corresponds to very low probabilities. So observing a
negative term in the statistic is what one would expect for such probabilities.
Conversely, a deviation from what one would expect can only correspond to
X; > 1. That is the reason why there is no need for an absolute value in the
statistic.

o Taking the squared value like in a x? test accentuates how small nm; 1s with
respect to observations X; > 1.

We will now present two tests tackling the bulk of the distribution in different but
related ways. Both rely on the squared deviation from the mean, like the tests we
presented in Sections 1.4.1 and 1.4.3.

2/3-test. We now define the 2/3-test originating from Valiant and Valiant (2017).
1/2

@2/3(&5) =1 Z [(X; — nm)2 — Xi]ﬂi_2/3 >n|2 Z 7rl.2/3/6
1€B () i€B ()

It is related to a x2-test with a renormalization tweaked for local minimax optimal
separation distance. Such a renormalization is important when summing the squared
deviation for varied ranges of probabilities. Indeed, the usual x2-test which divides
each deviation term by p places too much weight on deviations corresponding to
probabilities in the lower range of the bulk, as illustrated in Example 5 from Valiant
and Valiant (2017).

Max test. Another way to tackle varied ranges of probabilities is illustrated in the
max test. Indeed, the usual x?-test is optimal when p is close to uniform. The max
test from Diakonikolas and Kane (2016) and Balakrishnan and Wasserman (2017a)
relies on this idea. We partition the probability vector into nearly uniform groups and
apply the x2-test on each element of the partition.
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For j > 1, let the sets S; form a partition of B,, where
S ={t; 27y < m < 217j7r2}.

Let ks = [{j; S; # 0}| A test statistic is defined for each j > 1 as

Ty = Y [(X¢ —nm)? - Xi).
1eS;

Then one can summarize the max test as

Omax(K,0) = \/ 1475 > \/2k5n2 Z n2/8
J

teS;

The following theorem from Balakrishnan and Wasserman (2017a) gives nearly optimal
bounds on the local minimax separation distance for identity testing of discrete
distributions.

Theorem 11. Let

2/3 3/4 2/3 3/4
ln(Tr) = l \% (ZiEBlMW)(ﬂ-) i ) Un(ﬂ') = 1 (ZieBun(W)/lﬁ(”) i )

-V
n vn ’ n vn

Then the local minimaz ¢1-separation distance for identity testing is bounded as follows,

Cln(ﬂ') < pj;(HO,WyHl,ﬂ'; H T ||1) < Oun(ﬂ')a

where ¢ and C are constants depending on .

This rate is attained with @, V 09/3 as described in Valiant and Valiant (2017),
as well as with gai1 V max from Balakrishnan and Wasserman (2017a).

Example 4. If my =1 and m; =0 for any i € {2,...,d}, the local minimaz separation
distance is =Y, which is clearly faster than the global minimaz rate d*/*n='/2 reached
with © uniform.

1.4.5 An adaptive upper bound on closeness testing

Diakonikolas and Kane (2016) present a test for the closeness testing problem, as
well as an upper bound guarantee which depends on p. However, the problem is
not trivially formalized in order to highlight a dependence on a fixed vector 7, while
keeping a composite null hypothesis. This section will focus on the test presented
in Diakonikolas and Kane (2016) and the associated separation distance. Further
discussion on a formalization of a local minimax optimal closeness testing problem is
postponed to Chapter 2.

The construction from Diakonikolas and Kane (2016) is related to the max test
presented in Section 1.4.4, but the partition of the distribution has to be done without
the knowledge of p. Their test is a combination of a few different tests, based on
either the squared deviation between samples like in Equation (1.7), or the absolute
deviation restricted to each element of the empirical partition. In Diakonikolas and
Kane (2016), the authors take a point of view that is dual to ours, where they fix
the separation distance between p and ¢ in the alternative hypothesis and look for
the smallest number of samples necessary in order to be able to test between both
hypotheses. We discuss in further detail the connection between both points of view
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in Chapter 2. Now, at each step of their algorithm, they make careful considerations
stopping the production of samples from p and ¢ depending on whether they can
conclude on whether p and ¢ are different early on. They provide an upper bound
which reaches the minimax optimal rate, when p is uniform. And it also coincides with
the local minimax identity testing rate for some values of p. However, the question of
whether the upper bound of Diakonikolas and Kane (2016) is local minimax optimal
still remains.

1.4.6 Motivation for Chapter 2

Local minimax optimality results, where the rate depends optimally on the distribution
tested, are a great step forward in comparison with global minimax results. They have
already been presented for identity testing as explained in Section 1.4.4. Now, our
interest will lie in proving similar results for closeness testing, where the goal is to
distinguish whether two samples are drawn from the same unspecified distribution or
not. Efforts have been made in Diakonikolas and Kane (2016) towards obtaining a local
minimax optimal test of closeness, that we describe in Section 1.4.5. However, only an
upper bound that will turn out to be suboptimal is provided. This problem is harder
to grasp than local minimax identity testing, because one would like the separation
distance to optimally depend on an unknown distribution. We describe the idea behind
our formalization of this composite-composite hypothesis testing problem here. We
consider a fixed vector m € P, on which the local minimax separation distance will
depend. In order for the null hypothesis to be composite, p will not simply be taken
equal to w. Instead, we will consider probability vector p’s with similar profiles to .
In particular, this will include permutations of the elements of 7, as well as vectors
with level sets a multiplicative constant away from those of 7. Having 7 fixed means
that there exists test functions ¢ exploiting the information of 7, which might have an
impact on the local minimax separation distance. However, we provide a test which
does not rely on the knowledge of 7 and its associated separation distance matches
the local minimax rate. So the exploitation of the knowledge of m does not make the
problem significantly simpler and this amounts to finding the local minimax rate of a
hypothesis testing problem which relies on the observations without a priori knowledge
on any vector. Hence the connection with closeness testing which, in view of the local
minimax separation distance, turns out to be substantially harder than the related
one-sample testing problem over a wide range of cases. We sum up our contributions
presented in Chapter 2 as

e providing a lower bound on the local minimax separation distance for closeness
testing.

e proposing a test providing an upper bound that nearly matches the obtained
lower bound.

1.4.7 Minimax identity testing in Besov balls

In this section, we will dwell on the classical problem of identity testing of continuous
distributions that has first been studied under the lens of minimax optimality in the
seminal work by Ingster (1987) and Ingster (1993). This section’s analysis will be
a useful reference for Chapter 3 treating identity testing in Besov balls under local
differential privacy. Let fy be the uniform density in [0, 1]. For any s > 0 and R > 0,
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we define the set By, 1 (R) as follows

Bou(R) = {f € Lu([0,1)), f = fo € Boun(R)} . (1.8)

Let ® = {¢ : [0,1]" — {0,1}}. We define the following sets describing the testing
problem.

Hy = {(fo,f)afo = f}a
Hl(ﬂ? H T H]Lu) = {(fO?f)af € Bs,u,h(R)v/f = 17 HfO - fH]Lu > P}a

and

T =100 = o(X1,...,X,),p € D},

where X; ~ f is an independent random variable with respect to probability measure
P; for any i < n.

We now describe the minimax optimal testing method described in Ingster (2000a)
and Fromont and Laurent (2006a). One partitions (0, 1] uniformly and counts the
number of points falling in each interval as follows. Let L = n?/(@st1)  Let I; =
((j—1)/L,j/L]) for any j € {1,...,L}, and n; = >, I{X; € I;}. Then this problem
reduces to identity testing of a discrete distribution, very much related to the one
presented in Section 1.4.1. We then obtain the following result.

Theorem 12. The minimax L, -separation distance is upper bounded by
P4 (Ho, Hy, Toi || - — - [lL,) < Cn=/UsFD),
where C' is a constant depending on .

Remark 16. This upper bound turns out to be sharp. Such a reduction of the problem
of testing in Besov balls to testing discrete distributions will be useful in Chapter 5.

Now, this method relies on the a priori knowledge of s. The question of whether
one can test minimax optimally without the knowledge of s, and otherwise what is
the cost of adaptivity. A similar study of adaptivity will be made in the context of
differential privacy in Chapter 3.

Adaptive identity testing to the smoothness parameter s. The method
presented in Ingster (2000a) and Fromont and Laurent (2006a) relies on the aggregation
of multiple tests over a range of possible values of s. Now, the set of possible smoothness
values is an interval. So instead of considering an uncountable set of possible values,
one uses firstly the fact that the knowledge of s is only used for the number of sets in
the partition of (0, 1]. Besides, one relies on the fact that a partition with a number of
sets a multiplicative constant away from the minimax optimal partition will also be
minimax optimal.

So one defines

J ={J eN;2/ <n?},

and applies the procedure previously described for any L € J. Now, | J| < 2logy(n)+1.
As shown in Ingster (2000a) and Fromont and Laurent (2006a), one can produce an
adaptive test reaching the same performance as a test given the knowledge of s up to
a multiplicative logarithmic factor in the minimax rate. A similar reasoning will be
made for building adaptive tests under local differential privacy in Chapter 3. As for a
continuous version of minimax closeness testing as well as adaptivity in that context
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FIGURE 1.1: Graphical structure of the random variables X;, Z; for any
i €{1,...,n} under global differential privacy, where X; is unobserved
and Z; is observed.

is out of the scope of this dissertation, and we refer to Butucea and Tribouley, 20006;
Fromont, Laurent, and Reynaud-Bouret, 2011 for details on that topic.

1.5 Minimax inference under local differential privacy

The concept of minimax optimality can be extended such that efficiency is not the only
aspect to be considered. In particular, keeping the methods efficient while limiting the
disclosure of the original data set has recently sparked a lot of interest across research
communities. Various methods have been employed in preserving the information
contained in a dataset and we refer to Wasserman and Zhou (2010) for a large list of
methods and references in that regard. We will focus on one framework in particular,
differential privacy formalized in Dwork et al. (2006b) and Dwork et al. (2006a). After
formalizing differential privacy in Section 1.5.1 with a focus on non-interactive privacy,
we will present some classical methods for satisfying this condition in Sections 1.5.2
and 1.5.3. Then we will consider estimation of discrete and continuous distributions
under local differential privacy in Sections 1.5.4 and 1.5.5 leading up in Section 1.5.6
to the motivation for our study of identity testing under non-interactive privacy in
Chapter 3.

1.5.1 Differential privacy

We begin with defining differential privacy summed up as the following condition:
altering a single data point of the training set only affects the probability of an
outcome to a limited degree. One main advantage of such a definition of privacy
is that it can be parametrized by some positive parameter «, where a close to 0
corresponds to a more restrictive privacy condition. Let n be some positive integer
and a > 0. Let djy be the Hamming distance defined for any (z, 2") € (R%)" x (R)™ as
di(z,2") = |{i <n;z; #x}}]. Let Xq,..., X, be iid. random variables with respect
to 2, A and taking value in R%. Let Z1,..., Z, be random variables with respect to
Q, A described by the following by some Markov kernel Q : A®™ x Q" — [0,1]. Q is
an a-global differentially private channel with respect to Xi,...,X,, if

Q((Zl,...,Zn) GS’Xl :a;l,...,Xn:xn)
2., Xp =)

sup

< exp(a).
S€Z (z.0)e(R™)2,dpr (w0)=1 @UZ1, - .-, Zn) € S| X1

Our definition focuses on privacy mechanisms producing n random variables, which
will then be used for statistical inference. And other definitions of global differential
privacy can be found in the literature, for example in Dwork and Roth (2014).
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FIGURE 1.2: Graphical structures of the random variables X;, Z;
for any i € {1,...,n} under local differential privacy, where X; is
unobserved and Z; is observed. Left: non-interactive case. Right:
sequentially interactive case. A similar figure can be found in Duchi,
Jordan, and Wainwright (2013c).
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The graphical structure associated with global differential privacy is depicted in
Figure 1.1. The construction of Z; for any ¢ < n can be made using all the original
observations X1,...,X,,. So this allows the use of a centralized machine handling all
the original observations. This definition treats privacy in a global way with respect
to the original dataset, in contrast with the privacy constraint that follows. We now
define stronger assumptions corresponding to the case where one does not trust a
single machine or person to handle the complete original data set. We provide the
following definitions.

Definition 14. Let a > 0. Then

o () satisfies the a-sequentially interactive local differential privacy condition, if
for any i < n the Markov kernel

Qi Ax Qx Q1 —10,1]

1s defined such that

Qi(ZieS|\Xi=x,Z1=21,...,Zi—1 = %i—1)
sup

< exp(a).
S€Zs o,z (wa)e@ey? Qi(Zi € S| X =o', Z1 = 21, Ziy = zi-1) ()

(1.9)

o () satisfies the a-non-interactive local differential privacy condition, if for any
1 < n the Markov kernel
szz x £ — [0,1]

1s defined such that

Qz‘(Zi S S’)(Z = CL‘)
sup < exp(a). (1.10
Sez,,(wa)e®iy? Qi(Zi € S|Xi =1') ( )

Remark 17. Non-interactive privacy is strictly stronger assumption than sequentially
interactive privacy which is itself strictly stronger than global privacy.

We illustrate the graphical structures associated with both local differential privacy
conditions in Figure 1.2. Depending on the problem, one might find different minimax
results under non-interactive and sequentially interactive local differential privacy, as
seen in Butucea, Rohde, and Steinberger (2020) and Berrett and Butucea (2020).
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Having defined differential privacy, we provide the following proposition from
Wasserman and Zhou (2010), which formally motivates differential privacy through a
concept that one might describe as plausible deniability.

Proposition 6. Suppose that Z is a private view of X. Let X; ~ f be an independent
random variable for any i < n with respect to probability measure Py. Let Z(O‘)(Xi) be
the set of random variables Z; ranging in Z; such that Z; is an o private transformation
of X;. Let ®(Z;) = {p: Z; = {0,1}}. Let (s,t) € [0,1)? and i € {1,...,d}. We define
Ho={X;=s}, Hh = {X; =t} and ") = {6;0 = o(Z1,....2Z,), 0 € ®(Z}), Z; €
2 (X;),i < n}. Letd € (0,1). For anyz € [0, 1], we write the conditional distribution
of Z given X = x as Q(:|z). Then for any test 6 c 7}((1) such that

we have

Our results in Chapter 3 focus on non-interactive local differential privacy and we
give examples of non-interactive privacy mechanisms in a few of the following sections.

1.5.2 Example of privacy mechanism: Laplace perturbation

The first privacy mechanism we present relies on the idea of adding correctly scaled
noise to the original observations. We define the Laplace distribution as follows.

Definition 15. The density of the Laplace distribution with mean p and variance o>

8

f(@) = exp(—V2|z — pl /o) /(V20).
The Laplace perturbation mechanism is described by Z; for any i < n such that
Zi = X; + oW,

where W; is an independent random variable with Laplace distribution with variance
1, and o is a constant chosen appropriately depending on the range of values of X.
Note that the distribution of Z; will be continuous, even if X; is discrete.

Adding independent Laplace noise is a classical privacy mechanism — see Dwork
and Roth (2014). However, applying it to the correct basis with the corresponding
scaling is critical in finding minimax optimal results as we will see in Section 1.5.5.

Remark 18. e Adding Laplace noise to the observations is part of the larger
framework of exponential mechanisms presented in Wasserman and Zhou (2010).
However, one notes that the Laplace perturbation mechanism fits naturally with
the definition of differential privacy. For example, with Gaussian noise one can
only satisfy a weaker constraint, approximate differential privacy, and the choice
of an adequate variance in that case is a wide topic tackled in Dwork and Roth
(2014) and Zhao et al. (2019).

o The definition of differential privacy mechanisms heavily relies on a bound on
| X|, but loosening the constraint to one of approzimate differential privacy, one
can tackle distributions with unbounded support as well.
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1.5.3 Randomized-response-based privacy mechanisms

We will present methods based on randomized response, a classical privacy mechanism
presented in the seminal paper, Warner (1965). For any i € {1,...,n}, assume X;
takes value in X composed of d categories.

d-ary randomized response. We start with a method discussed in Kairouz,
Bonawitz, and Ramage (2016). Denoting 2% as the power set of X, one defines
the d-ary randomized response mechanism as the Markov kernel Q; : 2% x X, such
that for any (z, z) € X2

Qi({z}x) = d—1+ exp(e)

1 exp(a), if z ==,
1, if z # x.

This mechanism keeps the values of the privatized random variables in the original
finite set X and it can also be represented by the following matrix

exp(«) 1 1 ... 1

1 1 exp(a) 1 ... 1
d—14exp(@) [«veveiriiii
1 1 1 exp(«)

It amounts to lying on the value of X; with some fixed probability depending on the
parameter « of the condition privacy.

Remark 19. If d = 2, this reduces to a simple randomized response method from
Warner (1965).

Randomized Aggregatable Privacy-Preserving Ordinal Response (RAP-
POR). An alternative privacy mechanism based on randomized response is RAP-
POR presented in Erlingsson, Pihur, and Korolova (2014). For any i < n and
l e X, write X“ = I{X; = l}. Then one defines RAPPOR as the Markov kernel

Q; : 2101 x {0,1}4, such that for any (z,z) € ({0, 1}%)2

1
[1+exp

Qi({z}|z) = /27 [Tlexp(a/2)1{z; = x5} + T{z; # 2;}).

j<d

That is for any i < n one obtains the privatized random variable Z; such that for
any (k) € X 2, Z;, is independent from Z;j conditionally on X;. Such a privacy
mechanism can be more practically useful when d is large.

Theorem 13. d-ary randomized response and RAPPOR are both a-non-interactive
privacy mechanisms.

The proof of this theorem can be found in Erlingsson, Pihur, and Korolova (2014)
and Kairouz, Bonawitz, and Ramage (2016).

1.5.4 Multinomial estimation under local differential privacy

The mechanisms provided in Sections 1.5.2 and 1.5.3 can be applied in order to obtain
minimax optimal results in various problems. We will illustrate this here with results
from Duchi, Wainwright, and Jordan (2013) for estimating multinomial distributions
under local differential privacy.
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We now formalize the problem of minimax optimal estimation of multinomial
distributions under local differential privacy. Let o € R such that o > 0 and n > 0 be
some fixed integer. Let X; ~ (n,q) be an independent random variable for any i < n
with respect to some measure P,. Let Z (O‘)( ;) be the set of random variables Z; ranging
in Z; such that Z; is an « private transformation of X;. Let ®(Z;) = {¢: Z;, — ©}
and

={0;0 = 0(Z1,...,Zn) 0 € ¥(Z;), Z; € Z19(X;),i < n}.

Then we will consider the a-private minimax mean squared error,

inf supE, 16— ql3],
feel™ qeP

where E, denotes the expectation with respect to IP,.

In Duchi, Jordan, and Wainwright (2013a), the authors find the following bounds
on the minimax mean squared error of estimating multinomial distributions under
a-local differential privacy, for a € [0,1/4],

1 d d
c<1/\ 2/\2>< inf supE,[||f — q||3] < (1/\na2>,

na? No dcel™ qeP

where ¢ and C' are constants. Their upper bound can be obtained using the Laplace
perturbation mechanism presented in Section 1.5.2 or the d-ary randomized response
mechanism presented in Section 1.5.3.

Remark 20. Comparing this rate with the non-private estimation rate presented in
Section 1.3.1, we see a simple multiplicative degradation of the rate by the constant o,

We now present a result of Duchi, Jordan, and Wainwright (2013c¢), which is
key in obtaining the lower bound presented above. The following theorem provides
a quantitative bound between the symmetrized Kullback-Leibler divergence of the
privatized marginals and the total variation distance of the original distributions.

Theorem 14. Let « > 0 and Q an a-differential private channel. Let P; be a
distribution and M;(S) = [, Q(S|x)dP;(x), for j € {1,2}. Then

Drcr(My, Ma) + Drcr, (M, My) < (4 Aexp(2a))(exp(a) — 1)?| Py — Po7y,
where Dk, s the Kullback-Leibler divergence.

The above theorem quantifies how much information is lost when transforming the
data with an a-differential privacy channel, which contracts the space of probability
measures. This strong data processing inequality can be used for providing lower
bounds, combined with the technique provided in Section 1.4.2. For example, in Duchi,
Jordan, and Wainwright (2013c), this technique is used for providing a sharp lower
bound on the minimax risk of estimating a one-dimensional mean. It can also be used
in order to obtain a suboptimal lower bound for the problem of identity testing under
local differential privacy, as explained in Section 3.8.

1.5.5 Density estimation over Besov balls under local differential
privacy

We illustrate the application of the Laplace perturbation mechanism from Section 1.5.2
for minimax estimation of a Besov density under local differential privacy, tackled in
Butucea et al. (2020).
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We now formalize the problem of density estimation in Besov balls under local
differential privacy. Let o € R such that o > 0 and n > 0 be some fixed integer. Let
X; ~ f be an independent random variable for any i < n. Let Z(®(X;) be the set of
random variables Z; ranging in Z; such that Z; is an « private transformation of X;.
Let ®(Z;) = {¢: Z; — ©} and
EN =1{0;0 = p(Z1,..., Zn), ¢ € ®(Zi), Zi € 2'9(X;),i < n}.

n

So we will be considering the following minimax L,-risk

inf - sup Ef([16 — qll7],
fe&n fEBs,u,h(R)

where E¢ denotes the expectation with respect to Py.

Theorem 15. We have the following lower bound,

inf s [0l
feg”a feBs,u,h(R)

9

n(ea - 1)2 )—T’(s—l/u+1/7")/(25—2/u+2)

> ¢ | (n(e — 1))y <1og<<n<ea ~10?)

where ¢ is a constant.

The upper bound from Butucea et al. (2020) nearly matching this lower bound
relies on the construction of Besov spaces using wavelets, as described in Section 1.3.3.
Indeed their privacy mechanism amounts to adding Laplace noise to the coefficients of
X in a wavelet basis. Using non-linear estimators, Butucea et al. (2020) find a sharp
upper bound, but we will restrict our presentation to their linear estimator.

Privacy mechanism associated with linear wavelet estimators. We remind
the following decomposition

F=Yambrr+ > Biktbir

keZ i>J keZ

Let J and j; be integers to be determined later on. For i € {1,...,n}, j € {J —
1,...,71}, we denote by A(j) the set of coefficients j3;;, which are potentially different
from 0, and we define

Z = Grk(Xi) + 051 Wik, if j=J =1,k € A(j)
l’ b - ~ . . . .
’ Vik(Xi) + 05Wijn, if j €{J,.... 01}k € A(j).

where W ;. are independent Laplace distributed random variables with variance 1
and

071 =4cal| 6|02’ /a,

) = 12ea ]2/ (a(V2 - 1)),
where j € {J,..., 71}, ca = 2[A] + 1, assuming that the support of ¢ and ¥ is in

[-A, A]. The proof that one indeed defines an a-private channel can be found in
Butucea et al. (2020), and we detail it as well for the Haar basis in Section 3.4.1.
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The decomposition of f suggests taking in the case of linear estimators, J = 0, and
Y_1,k = ¢o,k, then
Ji
F=>>" Birti,

J=—1keA(j)

where Bjk =" | Ziji. Butucea et al. (2020) obtain the following upper bound

inf s B[ - qli] < O [(na?) 7/ G2y /]
feel® f€Bsun(R)

with the Laplace perturbation mechanism and wavelet estimators, choosing j; such
that 271 is of order (na?)l/(2s+2) A pl/(2s+1),

Remark 21. If o2 > nY/ @t then the estimator using privatized observations is
nonetheless able to reach the non-private minimaz optimal rate. But if o® < pl/2s+1)
we notice a polynomial degradation of the rate in n from the non-private minimax
optimal rate.

1.5.6 Motivation for Chapter 3

Local differential privacy and its consequences have been the topic of a lot of recent
research in statistics and machine learning. Such a quantitative formulation of the
privacy constraint is interesting, because one can then measure the theoretical impact of
differential privacy on the minimax rates depending on some constant o parametrizing
the privacy constraint. Results have been found for the problem of minimax estimation
under local differential privacy already for multinomial distributions in Duchi, Wain-
wright, and Jordan (2013) presented in Section 1.5.4 and for Besov densities in Butucea
et al. (2020) that we describe in 1.5.5. And we will be interested in minimax testing
under local differential privacy, which around the time of the publication of Lam-Weil,
Laurent, and Loubes (2020) was still largely uncharted territory. A few related works
like Berrett and Butucea (2020) have since been released. We will examine in Chapter 3
the impact of non-interactive privacy on identity testing, i.e. the statistical problem
assessing whether sample points are generated from a fixed density fj, or not. But the
observations are kept hidden and replaced by a stochastic transformation satisfying
the local differential privacy constraint. In this setting, we propose a testing procedure
which is based on an estimation of the quadratic distance between the density f of the
unobserved samples and fy. This is related to the test presented in Section 1.4.1. We
will then use the Laplace perturbation mechanism presented in Section 1.5.2, where
noise is added to the projection onto a wavelet basis in a similar way to Butucea et al.
(2020) detailed in Section 1.5.5. Finally, using Theorem 14 from Duchi, Jordan, and
Wainwright (2013c¢) discussed in Section 1.5.4, one can obtain a suboptimal lower
bound for identity testing under local differential privacy. But we will make a new
construction for a lower bound under local differential privacy, and instead rely on the
technique presented in Section 1.4.2 with careful consideration of how much informa-
tion is lost in the best case under non-interactive privacy, specifically in the problem
considered. Such a result is useful in proving that there is a gap in the identity testing
problem between non-interactive and sequentially interactive mechanisms that cannot
be bridged, as explained in Butucea, Rohde, and Steinberger (2020) where the authors
discuss their results in relation to ours in Lam-Weil, Laurent, and Loubes (2020). We
now summarize our contributions.
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e We provide the first minimax lower bound for the problem of identity testing
under non-interactive privacy constraint over Besov balls.

e We present the first minimax optimal test with the associated local differentially
private channel in this continuous setting.

e The test is made adaptive to the Besov smoothness parameter of the unknown
density up to a logarithmic term.

e A minimax optimal test under local privacy can be derived for multinomial
distributions as well.

1.6 Bandit theory and adaptive rejection sampling

We will be studying estimation problems, where the observations Xi,..., X, are
sequentially observed. We first present the framework of stochastic multi-armed
bandits for which a very complete presentation can also be found in Lattimore and
Szepesvari (2020). This section will be organised as follows. After introducing the
bandit framework in Section 1.6.1, we will present some fundamental methods in
Sections 1.6.2 and 1.6.3. Now, techniques from bandit theory can prove useful in
numerous sequential problems. We will direct our attention to the problem of adaptive
rejection sampling that we introduce in Section 1.6.4. The adaptive rejection sampling
method from Erraqabi et al. (2016) will be presented in Section 1.6.5. However, our
discussion in Section 1.6.6 points out the flaws in the existing results motivating our
minimax study of adaptive rejection sampling in Chapter 4.

1.6.1 Stochastic multi-armed bandit

A stochastic multi-armed bandit problem is a collection of real-valued distributions
indexed by a finite set I, each index corresponding to an arm of the bandit problem.
Let T be a positive integer. At each timestep ¢t < T, one chooses an index A; =i € [
and one observes a sample X; from the distribution indexed by . X; is interpreted as
the reward obtained at time step ¢t and one would like to maximize the cumulative
reward at T'. Let u; be the expected value of the distribution associated with the i-th
arm, that is u; = E(X|A; =) for any t <T.

Then bandit algorithms are strategies determining the choice of arm at every time
step, and one measures the quality of one such algorithm by its mean reward put in
perspective with the mean of the best arm. We formalize this idea with the cumulative
regret

Ry = (supp; — E(Xy))
t<T el

that we wish to minimize. So summing all instantaneous regrets, instead of considering
the simple regret at the last step, means that a balance has to be struck between
exploring to find the best arm and exploiting the accumulated knowledge about the
arms.

The following proposition reformulates the cumulative regret and reduces the
problem of bounding the regret to bounding the number of times a suboptimal arm is
picked.

Proposition 7. Let Aj = sup;c; pt; — pj. Then

Ry = A; > E(I{4; = j}).

jeI  t<T
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The proof of this proposition is given in Section 1.7.6.

In the next few sections, we will present some fundamental bandit algorithms. For
each algorithm, we pull all the arms once following the index order. Assume from
now on that I = {1,2}, so this is a bandit problem with 2 arms, with the following
distributions Ber(u1) and Ber(uz2). Let g =1/2 and po =1/2 — A < 1/2.

1.6.2 The e-greedy bandit algorithm

We start with the e-greedy bandit algorithm, for some ¢ € [0, 1]. Its choice of arm
at every time step t is described by the following mixture of distributions. For any
j € {1,2}, we define the probability of picking arm j at time step t > 2,

< 1= Ay
P(Ar=j)=¢/2+ (1 —¢)1 {J’ — arsImax Zzl_lﬁf{ = At}} } |

The intuition is that with probability e, we pick an arm at random, exploring in order
to discover which arm has a higher mean. With probability 1 — e, we pick the arm
with the best mean estimate.

In particular, taking € = 0 corresponds to a fully greedy algorithm, also known as
follow-the-leader. It relies on the fact that a good estimate of the mean is the empirical
average. So one could draw the arm with the best average in order to maximally
exploit the knowledge available. However, one might miss out on other better arms
for which we never gain the information that they are better. Indeed, as explained in
Theorem 16, we end up with a cumulative regret linear in 7', that is, the worst rate
possible.

On the other hand, the best way to know which arm has the largest mean is to
explore the arms as much as possible. This corresponds to € = 1. In fact, this would be
a very viable strategy in a simple regret setting, where one is judged only on outputting
the best arm after T' time steps. So in the simple regret setting, there is no cost for
exploring at time step t < T. But for a cumulative regret setting, one also obtains
a linear regret. And actually, the following theorem will prove that setting € to any
constant in [0, 1] leads to a linear cumulative regret.

Theorem 16. Set 0 < € < 1 constant. Then, for some constant ¢ depending on A
and €,
Ry > cT.

The proof of this theorem is given in Section 1.7.7.

As explained in Auer, Cesa-Bianchi, and Fischer (2002) and Lattimore and
Szepesvari (2020), this algorithm can still reach sublinear regret, if one takes &
decreasing over time, typically with a rate of order t~'. The intuition is that, as
we gain more information on all the arms, we explore less in favor of exploiting the
accumulated knowledge more.

Remark 22. The average budget allocated to complete exploration is €l'. So one could
consider the e-greedy algorithm as a randomized version of the explore-and-commit
strategy, where the complete exploration stage is done for a fixed number of initial
timesteps, before pulling the arm with the best average all the time afterwards. Such a
strategy is connected to the adaptive rejection sampling method from Erraqabi et al.
(2016), that we will present in Section 1.6.5.
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1.6.3 The upper confidence bound algorithm

We now present the upper confidence bound algorithm, also described in Lattimore and
Szepesvari (2020). Let 1/§ = 1+ tlog(t)?. Then at every time step ¢, the algorithm
deterministically chooses

Ay = argmax { 23';11 Xil{A; =i} 202 log(1/4) }
il )

Yo A =i} Yo I{A; =i}

This algorithm picks the arm with the highest upper confidence bound, instead of the
highest average. So it favours arms with high empirical means or only sampled a few
times. One can describe the upper confidence bound algorithm as optimism in the
face of uncertainty. Indeed, the more uncertain a direction, the higher the potential
reward and so the greater the incentive to explore in that direction. This makes for a
very organic exploration-exploitation tradeoff.

And using such a strategy one obtains the following results.

Theorem 17. Following the upper confidence bound strategy, we have the following
upper bound on the expected number of times a suboptimal arm will be pulled,

E(T»(T)) < 8alogT/A? + a/(a — 2),
for any o > 2.

This result is translated to a regret in the following corollary.

Corollary 4. The regret is then upper bounded by
4+/2aT log(T) + aA/(a — 2),

for any a > 2.

Our presentation of the proof of Theorem 17 will rely on the one from Orabona
(2019). The proofs for both the theorem and its corollary can be found in Section 1.7.8.

Remark 23. This upper bound is minimaz optimal, as seen in Lattimore and Szepesvdri

(2020) and Orabona (2019).

This concludes our quick overview of bandit theory, which will help contextualize
its application in minimax adaptive rejection sampling. A lot of variations of the
bandit problem have been studied and we refer to Lattimore and Szepesvari (2020)
for more on that topic. We will now apply the bandit framework to the problem of
adaptive rejection sampling.

1.6.4 Definition of minimax adaptive rejection sampling

We motivate the sampling problem as follows. We consider a target density f we wish
to generate independent samples from. However, f is a density we cannot directly
sample from. We also assume that we can evaluate f everywhere, but it is costly
enough to be the computational bottleneck. So the number of evaluations of f would
have to be minimized while maximizing the number of independent samples produced.

Rejection sampling. A classical method for solving this problem is rejection
sampling. Assume that you know a constant M and a density g easy to sample from
such that f < Mg. Then one can generate independent samples from f repeating
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Algorithm 1 Rejection Sampling Step with (f,g, M) : RSS(f, g, M)

Input: target density f, proposal density g, rejection constant M.
Output: Either a sample X from f, or nothing.
Sample X ~ g and U ~ Uo 1]
if U < 4705 then
output X.
else
output 0.
end if

—— density f
envelope g
1 T + Z=(X,Mg(X)V)
+ o4 +*;+++ R * Z{f(X) > Mg(X)U}

FIGURE 1.3: Geometrical interpretation of Rejection Sampling

the Rejection Sampling Step from Algorithm 1 n times. Then all accepted samples
are independent samples from f. Indeed, consider the variable Z = (X, Mg(X)U),
where X, M, g and U are defined as in Algorithm 1. As shown in Figure 1.3, Z has a
uniform distribution on the region under the graph of Mg, and the sample is accepted
if it falls into the region under the graph of f. Conditional to acceptance, Z is then
drawn uniformly from the area under the graph of f. Thus X is drawn from the
distribution with density f. The acceptance probability is the ratio of the two areas,
1/M. This means that the closer g is to f and M to 1, the more often samples are
accepted. The goal is hence to find a good envelope of f in order to obtain a number
of rejected samples as small as possible. In the absence of prior knowledge on the
target density f, the proposal is typically the uniform density on a set including the
support of f (here assumed to be compact), and the rejection constant M is set as
an upper bound on f. Consequently, this method leads to rejecting many samples in
most cases and f is evaluated many times uselessly. We presented rejection sampling
with the same envelope Mg at every step. However, one could change the envelope
over time. Besides, past evaluations of f can be used to define a better envelope over
time. This motivates the study of adaptive rejection sampling.
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Adaptive Rejection Sampling (ARS). The framework that we consider is se-
quential and adaptive rejection sampling. Set S = () and let n be the budget. An ARS
method sequentially performs n steps At each step ¢t < n, the samples {X1,..., X;—1}
collected until ¢, each in [0,1]%, are known to the learner, as well as their images by
f. The learner A chooses a positive constant M; and a density g; defined on [0, 1]¢
that both depend on the previous samples and on the evaluations of f at these points
{(X1, f(X1)),...,(Xi—1, f(Xi—1))}. Then the learner A performs a rejection sampling
step with the proposal and rejection constant (g, M), as depicted in Algorithm 1.
It generates a point X; from g and a variable U; that is independent from every
other variable and drawn uniformly from [0, 1]. X; is accepted as a sample from f if

U, < MJ: éﬁ;}t) and rejected otherwise. If it is accepted, the output is Xy, otherwise
the output is (). Once the rejection sampling step is complete, the learner adds the
output of this rejection sampling step to S. The learner iterates until the budget n of

evaluations of f has been spent.

Definition 16. (Class of Adaptive Rejection Sampling (ARS) Algorithms)
An algorithm A is an ARS algorithm if, given f and n, at each step t € {1...n}:

o A chooses a density g¢, and a positive constant My, depending on

{0 (X)), (K, S (X))

e A performs a Rejection Sampling Step with (f, gs, My).

The objective of an ARS algorithm is to sample as many i.i.d. points according to f as
possible.

Theorem 18. Given access to a positive, bounded density f defined on [0,1]%, any
Adaptive Rejection Sampling algorithm (as described above) satisfies:

if Yt <n, Vo e[0,1]9, f(x) < Mygi(x), the output S contains i.i.d. samples drawn
according to f.

The proof of this theorem is given in Section 1.7.9. It gives a sufficient condition
under which an adaptive rejection sampling algorithm is a perfect sampler, that is, it
outputs i.i.d. samples. In contrast to this, the popular Markov Chain Monte Carlo
class of methods relies on the construction of a Markov chain in order to produce
samples, which are thus not independent.

Definition of the loss. Let us define the number of samples which are known to
be independent and sampled according to f based on Theorem 18: . = #8 x 1{Vt <
n: f < Myg}. We define the loss of the learner as L, = n — n. This is justified by
considering two complementary events. In the first, the rejection sampling procedure
is correct at all steps, that is to say all proposed envelopes bound f from above; and
in the second, there exists a step where the procedure is not correct. In the first case,
the sampler will output i.i.d. samples drawn from the density f. So the loss of the
learner L,, is the number of samples rejected by the sampler. In the second case, the
sampler is not trusted to produce correct samples. So the loss becomes n,. Finally, we
note that the rejection rate is Ly, /n.

Remark on the loss. Let A be the set of ARS algorithms defined in Definition 16.
Note that for any algorithm A € A, the loss L, (A) is related to the cumulative regret
defined in Section 1.6. Indeed, a learner that can sample directly from f would not
reject a single sample, and would hence achieve L} = 0. So L,(A) is equal to the
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difference between L, (A) and L}. Hence L, (A) is the cost of not knowing how to
sample directly from f.
We now define the minimax expected cumulative regret for adaptive rejection

sampling for 0 < s,

inf Er(L,(A

A2 sup £(Ln(A)),
where the sup is taken over all (s, H)-Holder densities and E¢(Ly(A)) is the expectation
of the loss of A on the problem defined by f. It is taken over the randomness of the
algorithm A.

1.6.5 A suboptimal upper bound for adaptive rejection sampling

We describe the method presented in Erraqabi et al. (2016), pliable rejection sampling
(PRS), as well as their upper bound on the minimax regret. It allows sampling from
multivariate densities satisfying mild regularity assumptions. Assume f is bounded,
(s, H)-Holder for some 0 < s < 2. PRS is a two-step adaptive algorithm, based on
the use of non-parametric kernel methods for estimating the target density. Take
K = H?:l K, where K| is the Gaussian kernel:

2
— 2
Koo SPET/2)

V27
Assume that PRS is given a budget of n evaluations of the function f.

In order to describe the algorithm by Erraqabi et al. (2016), we present the
construction of their envelope at every time step. Set N = n2std)/Bstd) - For every
t < N, g; is a uniform density in [0, 1]¢ and M; = 1 + H. So for a density f defined
on a compact domain, PRS first evaluates f on a number N < n of points uniformly
drawn in the domain of f.

At time step IV, it uses these evaluations to produce an estimate of the density f
using Kernel regression.

k=1

Then it builds a proposal density using a high probability confidence bound on the
estimate of f. So for N <t < n, we define a proposal distribution

_ f—H"N
N A(X)

gt 1[0, 1]%,

where for some constant C”,
rn = C"(log(Nd/5)/N)*/?s+d.
The associated rejection constant is then the renormalization constant,
AN X))+
LN R By

PRS then applies rejection sampling n — N times using such an envelope.
The proposal density multiplied by the rejection constant is proven to be with high
probability a correct envelope, i.e., an upper bound for f. So with high probability,

t
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this method obtains a perfect sampler, i.e., a sampler which outputs i.i.d. samples from
the density f.

Remark 24. o Their algorithm only relies on two different envelopes. It is akin
to an explore-then-commit bandit algorithm described in Section 1.6.2. This hints
at some untapped potential in using such a strategy in this sequential setting.

° f 15 a Kernel estimate related to the one presented for nonparametric regres-
ston in Section 1.3.2. h defines a bandwidth and they end up considering
h = (log(N/8)/N)Y/ @41 which corresponds to the size of a bandwidth in
classical density estimation with noisy observations presented in Corollary 1.
However, in the usual sampling setting, which is the one they consider in Erraqabi
et al. (2016), f is evaluated without noise. This leads to suboptimal results in
the same way as noiseless regression improves on the rate of noisy regression.

Using their algorithm they obtain the following upper bound on the minimax regret
in the class of adaptive rejection sampling algorithms.

Theorem 19. Let § € (0,1), 0 < s <2 and H > 0. Then the minimaz regret is upper
bounded by

inf supEf(L,(A)) < C'log(nd)>/ Gstdp1=s/Bs+d)

AeA feF

where F is the set of (s, H)-Holder densities, and C' is a constant depending on s and
d.

This means that it asymptotically accepts almost all the samples. However, there is
no guarantee that this rate might not be improved using another algorithm. Indeed, no
lower bound on the rejection rate over all algorithms is presented. This is a motivation
for us to complete the analysis of adaptive rejection sampling and improve on the
results from the literature.

1.6.6 Motivation for Chapter 4

With rejection sampling, a fundamental Monte Carlo method, one can sample from
distributions admitting a probability density function that can be evaluated exactly at
any given point. However, if it is not properly tuned, this technique leads to a high
rejection rate, that is, a lot of wasted samples. Based on the principle of adaptively
estimating the density by a simpler function using the information of the previous
samples, we formalized the problem of adaptive rejection sampling in Section 1.6.4.
Now, most results from the literature either rely on strong assumptions or lack proper
theoretical performance guarantees. We will study this problem under the lens of the
minimax framework and as explained in Section 1.6.5, there already exists an upper
bound for minimax adaptive rejection sampling from Erraqabi et al. (2016). But the
authors use tools which might not be the most well adapted to this problem leading
to an upper bound on the minimax rate that can be improved upon. So crossing ideas
from bandit theory and minimax statistical inference, we provide in Chapter 4

e a new adaptive rejection sampling algorithm yielding the best existing upper
bound on the minimax cumulative regret.

e a lower bound on the class of all adaptive rejection sampling algorithms and all
s-Holder densities.
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1.7 Proofs for Chapter 1

1.7.1 Proof of Proposition 2

We first show that X; ~ P(ng;) for any j. Let i be such that i = —1. We write the
characteristic function of X; for any t:
. . . nJ .
E(e"1) = E(E("*|R)) = > (1 + qi(e — 1))]1,6_” = exp(ngi(e” — 1)),
4 J!
J=0

which corresponds to the characteristic function associated with P(ngj).
Then let us prove that (X});<q are independent. We have

P(Xy=m1,...,. Xg=1q) = Y P(Xy =m1,...,Xq = zqlft = )P(R = 1)
>0

d
I - 2y
:Zl:xll...xd!ql RN 1{2@:[}

_ (lez)' qx1 qmd nZZ 1%
z1) .. xg! d (Zgzlxi)!

d
:HPX -
=1

1.7.2 Proof of Theorem 3
We have

e

E(X;) = ng.
and V[X;] = ng;. So the estimator X;/n is unbiased and
V(Xi/n) = q/n.
So
E(|6 - 6113) Z@n/n—n

This result corresponds to an upper bound on the minimax mean squared error and
we build an ¢, minimax estimation risk. Now for any vector A, we have for 0 < u < 2

|Alle, < d® 2] .
So we conclude for 0 < u < 2,
E(|§ - 0]%,) < d"—Pnmur2,
1.7.3 Proof of Theorem 7
This lemma will provide the first four moments of a Poisson distribution.
Lemma 5. Let X ~ P(\). Then we have the following moments.

E(X) =X, E(X?) =X+ E(X?) = 4+3224+\ and E(X?) = A 46A3 47224\
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Let A; = q; — p; for any i < d. The expected value is

V(T) = V(Y [Xi —np]® = Xi) = Y V((X0)? + (npi)* — (2np; + 1) X,).
=1 =1

So
V(T) =) [V(X7) = 2(2np; + 1)Cov(X7, X;) + (2np; + 1)*V(X;)].

Now, by Lemma 5, we have
V(X?) = E(X}) — E(X?)? = ng;(1 + Tng; + 6(ng;)? + (ng:)?) — (ngs + (ng)?)?
= ng;(1 + 6ng; + 4(ng;)?),
and

Cov(Xiz, X;) = E(Xf) — E(Xf)E(XZ) =ng;(1 + 3ng; + (nqi)2) — ng;(ng; + (nqi)Q)
= ngi(1 + 2ng;).

So
V(T) = Z[nqi(l + 6ng; + 4(ngi)?) — 2(2np; + Dngi(1 + 2ng;) + (2np; + 1)*ng;]

= Z[Zan% + 202 A2 + 4n2 Nip; + 4n3 A2 + 4nd A2p;)

=2n°/d+2n> ) A7+ 40y AT+ 4 " AY/d.
Under Hy. We have

E(T)=0, V(T)=2n*)Y p=2n/d, /V(T)=v2n|p|s=v2nd />
So by Chebyshev’s inequality, with probability larger than 1 — 4,
T < V2nd=%/5.

Under H1. We have
E(T) = n? Z A2,
And
V(T) < Z(2n2pz2 + 2n2A? 4 2(n?p? + n?A2) + 2(n*AY/16 + 16n2A?) + 4n3 AZp;)
<36n*> pf+36n° Y A7+ n'Al(2/16 +2/16)
<36n7) pi+36n° Y AZ+1/4) n'A]

VV(T) < 6n|lpll2 + 64/n? ZA? +1/2n? ZA?

< 6npllz + 36 + 3/4n Y~ A7

So
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So by Chebyshev’s inequality, with probability larger than 1 — 6,
T > E(T) — [6n]|pll2 + 36 + 3/4E(T)] /4.
That is, with probability larger than 1 — 6,
T > [1-3/(d)n? S A — (6np]2 + 36)/5.

To sum up, we obtain the following condition

(2nlpll2 + 68)/(6 — 3/4) <n? Y A

That is, the sufficient condition is

(V2n~ 2 plly* + VB8 / /(6 —3/4) < /> A
Now, for 0 < u < 2,
IA[le, < dO/ 12 )AL,

So we have the following condition, for 0 < u < 2,
|Alle, = 02D (V2 plly* + V68 Y) /(6 = 3/4).
So if p is a uniform vector, we have the condition

1Alle, = n~t2d D (V2d 4 V681 2) /(6 - 3/4).

1.7.4 Proofs of Lemmas 2 and 3

Proof of Lemma 2. Finding a lower bound on pf;(Ho, Hy, T;dist) amounts to finding
a real number p such that R(Ho, Hy(p, dist), 6,) > ~ for any 6,, € 7. We will denote
Py, (respectively, P,, ,) the probability measure according to which f has distribution
v (respectively, vy ,) and X' ~ f.

Then

~ ~

R(Hy, Hy(p,dist),0,) = sup Py (0, =1)+ sup P, £(0n =0)
(fo,.f)EHo (fo.f)€H1(p,dist)
l/o(gn = ]-7 (f07f) € HO) + ]P)VLP(HTL = 07 (anf) € Hl(p7 dlSt))

l/()(én = 1) - 50 +]P)1/1,p(én = O) - 51’

>

since v9(Ho) > 1 — 69 and vy ,(Hi(p,dist)) > 1 — 0.
So by definition of the total variation distance, we have for any 0, €T,

R(Hy, Hy(p, dist), 6,) > 1 — By, (én - 0) +P,, (én - 0) — 8 — &
Z 1— dTV(]P)Vovplll) - 50 - 61~
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dn

Proof. Proof of Lemma 3.
dV1
— -1
dl/() H

drv (v, 1) / dvy = [ o

d 1/2
(@) o

1.7.5 Proof of Theorem 10

The following lemma that we prove at the end of this subsection will give bounds on
the empirical threshold.

Lemma 6. With probability larger than 1 — ¢,

nllpll2 /1 = 1/(26) < & < nllpll2v/T +1/(26) + 21/50/6.

We have

= Z[(V(Xi) + V() + (g — pi)*)* = n*(gi — pi)’]

=1
d
= [n*(4p] + A7 + 4Aipi) + n® (247 + 4p; A7)
i=1

So under H,

E(T) =0, =4n?Y pl, VV(T) =20y/> 2.

By Chebyshev’s inequality, with probability larger than 1 — 4,

T< 2n\/2p?/5
T) =) nAf,

Now, under H1,
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and
d
V(T) <) [n?(6p7 + 3A7) + 2n°(A? + piAf)]
=1
d
< Z[6n2p? + 3n2A% 4 (16n2A? + n?A}/16) + (16n°p? + n*A}/16)]
=1
d
<> [22n%p} + 19n”A7 + 20" A /16].
=1
So
d
VV(T) <5nllplly + 51/> n?A2 4+ v2/4) " n’A7
=1
d
<nllplla+25+ > n*AZ/4+V2/4> nPAL
i=1
So

V(T) < 5nlpllz + 25+ Y _n*AF(1+V2)/4.
By Chebyshev’s inequality, with probability larger than 1 — §,
T > " n*A?— (5n|plla+25+ Y n?AZ(1+V2)/4)/0.

Summing up the results from both hypotheses together with Lemma 6, we end up
with the condition

Y n*AF > O(lpllz+1)

Vo AZ> O+ Y2 plly?)

So we have the following condition, for 0 < u < 2,

That is,

N u— - u— 1/2
1Al > C(n~tdM /112 = 22 12,
That is, if p is a uniform vector,
1Ale, > C(nildl/ufl/Q 4 n*1/2d1/u73/4)‘

Proof of Lemma 6. We first consider

Z Y(I)Y(Q) ’

7

and we have

EQO VY ) =3 ()2,

(2
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Besides,
v YY) = STEI)Y? - B )Y
= Z[(npz' +n?py)? — n'pf] == Z(nQp? +2n°p}).
So

\/V(Z y Dy @) < \/Z w22 2> nip?

< Z n2p? + \/2(167121912 + npl/16)
<50 + Z n?p? /2

So by Chebyshev’s inequality, with probability larger than 1 — 4,

rZY v - Z<npz>|< (50 + Y n?p?/2)/s.

That is
> n?p} 25)}—50/5<ZY <Zn [141/(26)] +50/0.
Now, taking
i = (/> VY 4+ \/50/6)/v/T=1/(20).
So

nllpllz < 1 < (llpllav/T+ 1/(20) + 20/50/8)/ /T — 1/(26).

1.7.6 Proof of Proposition 7

We have
Ry = Z(Supﬂi - E(Z Xi{ Ay = j}))
t<T 1€l jeJ
= Z su?uz (Z XeI{A; = j} A = JE(I{A; = j}))
t<T '€ jeJ
=Y (suppi — Y E(I{A; = j}))
t<T €l jeJ
=> sumeE A =j}) =D wE(I{A; = j})).
t<T '€ jeJ jeJ
So

Ry = ZAj ZE(]I{At =7}

jeI  t<T
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1.7.7 Proof of Theorem 16

Proof. For determining the regret, we will look at the expected number of times that
arm 2, the suboptimal arm, is picked: >, E(I{A; = 2}). If ¢ = 0, we have

SCE(I{4, = 2}) > (1/2 - A)(T - 1)/2.

t<T

Indeed, with probability (1/2—A)/2, A; =1 and X; =0, and A2 =2 and X3 = 1. So
the estimate of p71 is 0 and the estimate of uo is 1. So the algorithm will keep pulling
arm 2 and the estimate of o will stay positive at every step. So by Proposition 7

Ry > (1/2—-A)(T —-1)A/2.
If0<e<1 >, E(I{A =2}) > >, .r¢/2. So by Proposition 7

RT > ETA/Q.

1.7.8 Proofs of Theorem 17 and Corollary 4

We start with the definition of subgaussian distributions.

Definition 17. A random variable X is o-subgaussian if for all A € R, it holds that
Elexp(AX)] < exp(A\?0?/2).

This definition is accompanied with the following concentration results which can
be found in Lattimore and Szepesvari (2020) and Orabona (2019).

Theorem 20. If X is o-subgaussian, then for any € > 0,
P(X > ¢) < exp(—%/(20?)).

Corollary 5. Let X; — u be independent, o-subgaussian random variables. Then for
any € > 0,

P (Z % >+ s) < exp(—ne?/(207)),
=1

and

P (Z . 6) < exp(—ne’/(20%)).

- n
=1

Proof of Theorem 17. Let o > 2.

Let t* be the largest index such that Th(t* — 1) < 8alogT/A?. If t* = T, then
To(T) < 8alogT/A? 4 1. Assume from now on, t* < T. Let ¢; s = v/2alog(t)/s. We
define the following events

t—1
By(t) = {ZXiI[{Ai =1} < — Ct,T1(t—1)} )

i=1
and

t—1
By(t) = {Z Xil{A; =2} > po + Ct7T2(t—1)} :

=1
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Let t > t* such that A; = 2. Assume Bj(t) do not hold for [ € {1,2}. Then

-1
ZXi]I{Ai =1} ey >m=p+A
i—1

-1

> ZXi]I{Ai =2} — -1 A
i=1

t—1
> ZXz‘]I{Ai =2} — ¢y t—1) + 20715 (0—1)
i—1
-1
> Z Xil{A; = 2} + ¢, 1y (4-1)>
i—1

by definition of t*. So A; = 1, which is a contradiction. So for any t > t*, if A; = 2,
then Bj(t) U Ba(t) holds.

We have
T
E(Tx(T)) = E(T2(t*) + Y E(I{A; =i})
t=t*+1
T
<8alogT/A?+1+ > E(I{Bi(t) UBa(t)}).
t=t*+1
We have
t—1 t—1

Bi(t) ={)_Xil{Ai =1} <y — ey -1y} = JIXY < pr — er s}
i=1 s=1

Now, by Hoeffding’s lemma, X" — i; is 1-subgaussian, so we have by Corollary 5,

P(XS) < —cs) < exp(—alog(t)) =t

So
P(By(t)) < (t — 1)t~
So
T o]
E(T3(T)) < 8alog T/A* +1+2 Y (t—1)t7* < 8alogT/A” + 142> '
t=t*+1 t=2
Now -
> o< / 2% =1/(a —2).
=2 1
So

E(T»(T)) < 8alogT/A? + a/(a — 2).
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Proof of Corollary 4. By application of Proposition 7 on the result obtained in Theo-
rem 17, we have the regret, for some fixed h > 0,

Ry = AE(T(T))(I{A < h} + T{A > h})
<TAT{A < h} + [8alogT/A + aA/(a — 2)]T{A > h}
<Th+8alogT/h+ aA/(a—2).

We take h = 2,/2alog(T)/T. So
Rr < 4+/2aT1og(T) + aA/(a — 2).

1.7.9 Proof of Theorem 18

Let us assume that V¢ < n,Vz € [0,1]9, f(z) < M;gi(z). If X; has been drawn at time
t, and E; denotes the event in which X; is accepted, and x; denotes the set of the
proposal samples drawn at time j < n and of their images by f, then VQ C [0, 1]¢ such
that €2 is Lebesgue measurable, it holds:

]]EDXt’\‘ghUNM[O,l] <{Xt € Q} N Et ‘ U Xj)

j<t
X
= Pxyngr,U~th 1 (Xt € ]\Zg(he(;()t) =l ) Uth>
1<
@
_/QMtgt(fL‘)gt( )d
(@),

because Uy is independent from X; conditionally to | J i<t Xj-
Hence, since Px;~g; U~4 1 (Et) = I/ My, we have:

) (M
P ~ge Ut (Xt € ‘ Ey; U Xj) = ]\(4) Tt dx
j<t @ !
= @daz.
Q If

Thus X;|FE; is distributed according to f/I; and is independent from the samples
accepted before step t, since X¢|F; is independent from | i<t Xj-

We have proved that the algorithm provides independent samples drawn according
to the density f/Iy.
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Chapter 2

Local minimax closeness testing of
discrete distributions

2.1 Introduction

This chapter focuses on closeness testing that we already introduced in Section 1.4.3.
In the statistical testing problem we will consider, the null hypothesis is true when
both distributions are the same, and in the alternative hypothesis, they are different
and separated in £1-norm. For a fixed number of samples, the goal is to find out how
close both distributions can get to one another and still be distinguishable, depending
on the shape of one of the distributions. In the following, we provide a formal setting
for this problem.

2.1.1 Setting

Let d € N*. We define the set of vectors of size d that correspond to multinomial
distributions over d categories as

P=qme@®)L) m=1
1<d
Let m € P. Define for any i € Z

Se())={je{l,...,d} :m; € 27", 27}

Define
. Sﬂ-’L 1+1 . 3 1+2 »
Pﬂz{qepzvzez,’ S SECAGIEES SECAT IS
j=i—1 j=i—2

which represents a class of probability vectors very similar to 7. Indeed, for any q € P,
the discrete level sets S; and Sy are close in size.

Let p € P, ¢ € P, and n € N*. The independent sample sets (X,)) are obtained
from the following two multinomial distributions.

X~ M(nap)v Y~ M(”a q)? (21)

where M is the multinomial distribution. That is, for ¢ < n, we have independent X;
taking value j € {1,...,d} with probability p; — respectively, ); = j with probability
¢;j. In what follows, we write P, , for the probability associated to (X,)Y).
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For any vector x € R?, let ||z, = (Z?:l |2;|))™/* denote the £;-norm of x for any
0<t<oo. Let ® ={p:N?" — {0,1}}. For a fixed p > 0, we formalize the closeness
testing problem as the following hypothesis sets

HO = {(p.g) € Pr)%ip=4a}, HGYp) ={(p.q) € PxPr:llp—qlli = p}. (2.2)

with the following set of tests using the observations of (X', ))
TA9) = {0;0 = (X,Y),p € ®}.

Here p represents a separation distance between p and ¢ which amounts to assuming
that the null and alternative hypotheses are different enough.

Remark 25. To the best of our knowledge, closeness testing has never known any
formal definition as a hypothesis testing problem allowing for its local minimax analysis.
Our formalization satisfies a few important criteria for the purpose of instance-optimal
closeness testing. Firstly, the null hypothesis is composite as well as the alternative
hypothesis, in contrast to identity testing whose null hypothesis is simple. That is,
under any one of both hypotheses from Equation (2.2), q is allowed to be quite different
from T, since there is no relation in the ordering of their entries. So there does not
exist any test exploiting the full knowledge of p or q, and our problem is inherently
harder than identity testing, where ¢ = w, presented in Valiant and Valiant (2017)
and Balakrishnan and Wasserman (2017a). Secondly, q € Py is still related to 7 in
the sense discussed above, so that our results can be instance-optimal and depend on
w. The results can vary greatly depending on m and a worst-case study from Chan
et al. (2014) does not guarantee an optimal test in all cases. Intuitively, if w is the
uniform distribution for example, the testing problem is more difficult than if T just
has a few entries with non-zero probability. We want to capture this dependence on the
distribution, as Valiant and Valiant (2017) and Balakrishnan and Wasserman (2017a)
do for one-sample testing. Finally, we provide in Section 2.4 a discussion on how this
formalization could be generalized to other set-ups.

It is clear from Equation (2.2) that the vectors that are too close to ¢ are removed
from the alternative hypothesis. With 7 fixed, we want to find the smallest p such
that both hypotheses are still distinguishable. The notion of distinguishability of both
hypotheses is formalized by the definition of error risk and separation distance. The
error risk is the sum of type I and type II error probabilities. For any separation
distance p > 0 and probability vector w, we can define some testing problem from a

set couple (Ho r, Hix(p)) — e.g., Hésrlo) and Hicﬂlo) (p) for Equation (2.2). Then the

separation distance given a test p(X,Y) = 6, is

R(Ho , H1 x(p), én) = sup Pp,q(én =1)+ sup IP’pg(én =0),
(p,g)€Ho(m) (p,9)€H1(m,p)

where we remind that P, , is the probability measure associated with (X,)). Then,
fixing some v € (0, 1), we say that a testing problem can be solved with error smaller
than -, if we can construct a uniformly ~-consistent test, that is, if there exists ¢ such
that:

R(Ho,x, Hix(p),0n) <.

Clearly, p — R(Ho , H1 (p), 9n) is non-increasing, and greater or equal to one when
p = 0. Define the separation distance for some fixed v € (0, 1) as

~ A~

P’y(HO,m Hl,m en) = inf{p >0: R(HOJT) Hlﬂl’(p)a en) < ’Y}-
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A good test ¢ such that (X)) = 0, is characterized by a small separation distance.
So we define the local minimax separation distance, also known as local critical radius,
as

pj’;(HUﬂTa Hl,ﬂa ﬁl) = élng’ p’Y(HO,ﬂ') Hl,ﬂ'? 9”)
'VLe n

Besides, it is possible to consider the global minimax separation distance defined as

sup p5(Hox, H170, Tn)-
TeP

A worst-case analysis is sufficient for finding the global minimax separation distance,
so it is a weaker result than finding the local minimax separation distance.

A lot of relevant results from the literature that we present in Section 2.1.2 come
from the field of property testing in computer science. So although this thesis focuses on
rates in separation distance, we will link this concept with that of sample complexity,
favoured in computer science. Sample complexity corresponds to the number of
samples that are necessary and sufficient in order to achieve a certain testing error for
a fixed separation distance. Formally, for a fixed p, since n +— R(Ho », H1 (p), 9n) is
non-increasing, the sample complexity for some fixed v € (0, 1) is defined as

n"/<H0,7T7 Hl,ﬂ'(p)a én'y) = lnf{n eN: R(HOJU Hlﬂ(ﬂ)? én) < 7}

Then the minimax sample complexity is

n:(HO,mHl,n(P),%;) = . inf n’Y(HO,ﬂaHl,ﬂ7énfy;7T7p)'
Qn* 6721*
¥ ¥

So the local minimax sample complexity is written as n%(Hox, Hi,x(p), Tnz). And
the global minimax sample complexity is sup, an(HgmHlm(p),ﬁl;). If py or n
are invertible, then it is possible to obtain one from the other. Let us define the

inverses p — (pfy)*l(Ho,ﬂ,HLﬂ(p),’ﬁlfy) and n — (n%)"'(Hox, Hix(p), Tn). Then

(5) = (Hom, Hix(p), Tasz) = 1 (Ho ., Hix(p), Toz) and reciprocally.

Additional notations. We introduce the following notations. For a vector u € R,
let s be a permutation of {1,...,d} such that uyq) > ugy2) > ... > uyq). We write
u() = Ug(y. Set also Jy, = minj<g {j tugy) < l}

= nlJ"

2.1.2 Literature review

Hypothesis testing is a classical statistical problem and we refer the reader to Neyman
and Pearson (1933) and Lehmann and Romano (2006) for a more global perspective
on the problem. In parallel to the study of hypothesis testing, there exists a broad
literature on the related problem of property testing tackled by the theoretical computer
science community, with seminal papers like Rubinfeld and Sudan (1996), Goldreich,
Goldwasser, and Ron (1998).

In earlier studies, tests were built based on good asymptotic properties like having
asymptotically normal limits, but this criterion often fails to produce tests which are
efficient in high-dimensional cases notably, as stated in Balakrishnan and Wasserman
(2017b).  An alternative and popular take on the study of hypothesis testing is
minimax optimality, with the seminal work of Ingster and Suslina (2012) on identity
testing. The problem of identity testing consists in distinguishing whether a sample
set X ~ M(n,p) is drawn from a specified distribution 7 € P, versus a composite
alternative separated from the null in ¢;-distance. We recall the formalization from
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Section 1.4.4, and emphasize that this chapter will focus on separation distances in £.
Let ® = {p :N*" — {0,1}}. Let m € P. We define the following sets for the definition
of the hypothesis testing problem.

B = {p,q)ip=m=q}, HD)={paspePg=mllp—ali > p}, (2.3)

T = {00 = o(Xa,..., Xn), 0 € @},

where X ~ M(n,p) is an independent random variable with respect to probability
measure [P, , for any ¢ < d. We will consider local and global minimax rates for both
the separation distance and sample complexity. Indeed, if either the number of sample
points or the ¢i-separation between the distributions is reduced, then the problem
becomes more difficult. Thus, it is possible to parametrize the difficulty of the problem
using either the number of sample points n or the £;-separation distance p. Tables 2.1
and 2.2 capture the existing results in the literature on the global and local minimax
separation distance and sample complexity for identity testing.

TABLE 2.1: Global minimax separation distance and sample com-
plexity obtained for identity testing defined in Equation (2.3):

1d d d d d d
sup, 5 (HLy, H{'® TV and sup, 2 (HS'S, H{'Y (p), TAY). The
rates are only worst-case considerations, presented up to some constant

depending only on 7.

Separation distance | Sample complexity

Paninski (2008) d'4/n Vd/p?

TABLE 2.2: Local minimax separation distance and sample com-
plexity obtained for identity testing defined in Equation (2.3):

I8 (Hé{i), Hl(ﬁ), Tn(Id)) and n:(Héfjx H{Ti) (p), 7;(%(1)). The rates depend
on the distribution in the null hypothesis and are up to some constant
depending only on v. Here (x)+ = max(0,x), and 1{A;} equals 1 if A;

is true and 0 otherwise. So H7r(2i/)31{2 <i<mili = 0ciom 7r(22./)3 and

[(m@y1{i > m})illh = X is 700)-

Valiant and Valiant (2017)
(g P 1{2<i<m}))))*
NG

Separation distance | min,, V % V[ i > m})ills

I(rg/ 1 {2<i<m})illy? ]

V oItz mh i

Sample complexity min,,

1
p

Similarly for two-sample testing, Tables 2.3 and 2.4 capture the existing results in the
literature on the global and local minimax separation distance and sample complexity.

First, let us consider the results obtained for the classical problem of identity
testing presented in Equation (2.3). An upper bound on the global minimax sample
complexity is given in Paninski (2008) and tightened in Valiant and Valiant (2017) for
the class of multinomial distributions over a support of size d. The meaning of the
global minimax sample complexity listed in Table 2.1 is that an optimal algorithm
will be able to test with fixed non-trivial probability, using \/&/ p? samples, up to
some explicit constant. This sample complexity can be translated into the separation
distance presented in the same table, as justified in Section 2.1.1. The global minimax
sample complexity is a worst-case analysis, that is, it corresponds to the rate obtained



2.1. Introduction 51

TABLE 2.3: Bounds on the global minimax separation distance and sam-

ple complexity obtained for closeness testing defined in Equation (2.2):

sup,, pf/(HéSTlo),Hl(Srlo), 15010)) and sup,, nj(HéSTIO),H(CIO) (p), (Clo)),

1,7 n*
up to some constant depending only on . The result in Batu et al.
(2000) is only an upper bound (UB). The result in Chan et al. (2014)
provides matching upper and lower bounds, and is hence global minimax

optimal.

Separation distance | Sample complexity
Batu et al. (2000) (UB only) | d'/®log(d)!/*/n'/* d*/3log(d)/p*

Chan et al. (2014) (minimax) % v % Cpli/i v d;TZ

TABLE 2.4: Upper bounds (UB) on the local minimax sep-
aration distance and sample complexity obtained for closeness

testing defined in Equation (2.2): pi';(HéSrlo),H(Clo), ,L(CIO)) and

1,7
nfy(H((]Srlo), Hl(Srlo)(p), 7;(510)). The rates are problem-dependent, even
though both distributions are unknown. It is presented up to some
polylog(dn) for the separation distance and up to a polylog(d/p) for
the sample complexity. We present here a corollary from their Propo-
sition 2.14, applied to our closeness testing problem — which is not
defined in Diakonikolas and Kane (2016).

Diakonikolas and Kane (2016)

[ <t /m} |y P <t /n} ;7 22
Vi /n

min,, <m v Im<t/mp w2 Lr<t/m}l} | ||7r2/3?/2>

Separation distance (UB)

Sample complexity (UB) P 2

for the hardest problem overall. In the case of identity testing, the uniform distribution
is the hardest distribution to test against.

From the observation that the sample complexity might take values substantially
different from that of the worst case, the concept of minimaxity has been refined in
recent lines of research. One such refinement corresponds to local minimaxity, also
known as instance-optimality, where the local minimax sample complexity depends
on 7. Local minimax sample complexity and separation distance for identity testing
are presented in Table 2.2. Valiant and Valiant (2017) obtains the local minimax
sample complexity for Problem (2.3). Balakrishnan and Wasserman (2017a) makes
their test more practical and expresses the rate in terms of local minimax separation
distance. The reformulation of their bounds, presented in Table 2.2, comes from our
Proposition 12. Note that the dependences in d in the local minimax sample complexity
and separation distance are contained in the vector norms. Finally, Balakrishnan and
Wasserman (2017a) also obtains the local minimax sample complexity and separation
distance for identity testing in the continuous case with Lipschitz densities, but we
focus on the discrete case here.

Let us now consider the literature involving closeness testing, for which we provide a
formalization in Equation (2.2). The global minimax sample complexity and separation
distance are summarized in Table 2.3, and upper bounds on the local minimax sample
complexity and separation distance are given in Table 2.4. In the case of closeness
testing, Batu et al. (2000) proposes a test and obtains a loose upper bound on the global
minimax sample complexity. The actual global minimax sample complexity has been
identified in Chan et al. (2014), using the tools developed in Valiant (2011). A very
interesting message from Chan et al. (2014) is that there exists a substantial difference
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between identity testing and closeness testing, and that the latter is harder. It is
interesting to note that while the uniform distribution is the most difficult distribution
to test in identity testing, m can be chosen in a different appropriate way in order to
worsen the sample complexity and separation distance in closeness testing.

Again, distribution-dependent minimax sample complexity and separation distance
might differ greatly from global minimax sample complexity and separation distance,
respectively. Attempts at obtaining finer results have been made for closeness testing
of continuous distributions. Indeed, a large variety of classes of distributions can be
defined in the continuous case and it makes sense to obtain minimax rates over rather
small classes of distributions. In Diakonikolas, Kane, and Nikishkin (2017), the authors
focus on closeness testing over the class of piecewise constant probability distributions
(referred to as h-histograms) and obtain minimax near-optimal testers. In the same
way, in Diakonikolas, Kane, and Nikishkin (2015), the authors display optimal closeness
testers for various families of structured distributions, with an emphasis on continuous
distributions.

Now, as explained in the review of Balakrishnan and Wasserman (2017b), the
definition of local minimaxity in closeness testing is more involved than in identity
testing, and it is in fact an interesting open problem that we focus on in this chapter.
The difficulty arises from the fact that both distributions are unknown, although we
would like the minimax sample complexity and separation distance to depend on them.
Indeed, in contrast to Problem (2.3) whose null hypothesis is simple, Problem (2.2) is
composite-composite. So there is the additional difficulty of having to adapt to the
unknown vector g. Now, the existence and the size of a difference in the local minimax
rates between both problems depending on 7 are open questions. We remind that
Chan et al. (2014) sheds light on such a gap, but only in the worst case of m, whereas
we look for instance-based minimax optimality.

Diakonikolas and Kane (2016) constructs a test for closeness testing with sample
complexity adaptive to one of the distributions (p, ¢), when either p = q or ||[p—ql|1 > p.
Their Proposition 2.14 states that their test achieves a sample complexity of

2 1/2 2/313/2
min <m+ 11{q < 1/m})II1Hq2 1{q < 1/m}|; . It; 2||1 ) |

As explained at the end of Section 2.1.1, their sample complexity can be translated
into a separation distance, which is useful as a comparison with our own results. So in
Table 2.4, we present a corollary of their Proposition 2.14 in order to obtain a separation
distance corresponding to an upper bound on pi;(HéSrlo), H {Srlo), 7}(010) ) in our setting.
Our corollary relies on the definition of P,. Indeed, ¢ € P, has level sets with similar
sizes to those of 7, and therefore ¢ has similar (partial) norms to 7 up to a multiplicative

constant. The sample complexity from Diakonikolas and Kane (2016) matches the
global minimax sample complexity sup,. ni(HéCWlO), H (Clo)(p), 7 10)) obtained in Chan
) ¥

1,7 n
et al. (2014) for some choice of 7 and m. However they do not introduce any lower
bound dependent on 7, so the only known local lower bound comes from Valiant and
Valiant (2017), which is found for the problem of identity testing in Equation (2.3).
But the lower bound from Valiant and Valiant (2017) does not match the upper bound
in Diakonikolas and Kane (2016) .

We now mention recent alternative viewpoints on the study of identity and closeness
testing. In Acharya et al. (2012), the authors compare their closeness tester against an
oracle tester which is given the knowledge of the underlying distribution g. When an
oracle tester needs n samples, their closeness tester needs n®/? samples. Otherwise,
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some studies have been made in closeness testing when the number of sample points for
both distributions is not constrained to be the same in Bhattacharya and Valiant (2015),
Diakonikolas and Kane (2016) and Kim, Balakrishnan, and Wasserman (2018). What
is more, Diakonikolas et al. (2017) works on identity testing in the high probability case,
instead of a fixed probability as it is done usually. That is to say, the authors introduce
a global minimax optimal identity tester which discriminates both hypotheses with
probability converging to 1.

2.1.3 Contributions

The following are the major contributions of this work:

e We provide a lower bound on the local minimax separation distance for closeness
testing presented in Equation (2.2) — see Equation (2.4) for u = 2.001.

e We propose a test providing an upper bound that nearly matches the obtained
lower bound for v = 1/2. So it is local minimax near-optimal for closeness
testing, but the test is also practical, since it does not take 7 as a parameter
even though the upper bound optimally depends on 7.

e We point out the similarities and differences in regimes with local minimax
identity testing.

More precisely we prove in Theorems 21 and 22 that the local minimax separation

distance pv(H(Clo) HfS’TlO), 7}(010)) up to some polylog(dn) is

I1>Jx

min [ v fuw exp(—unm)[{*) v I 1i = Tl
(2.4)
|1t < il
Vi TV
where Jr and 7() are defined in Section 2.1.1, u = 2.001 for the lower bound and

u = 1/2 for the upper bound. The exponential and the powers are applied element-wise.
Let I* denote an I where the minimum in Equation (2.4) is reached.

The local minimax separation distance pf‘Y(H(()ff ), 117;1 ), %Id ) obtained in Valiant

and Valiant (2017) and Balakrishnan and Wasserman (2017@)

Iy’ 12 < i <mpil? 1
min —V V| L = mil

vn

(1) (1) 7-(1d)

We compare it with Equation (2.4). Indeed, p3(H n ) also represents

0,m » 17r )
a lower bound on p} (Héglo) Clo 7}010 ), as explained in Proposition 12. Let m*
denote an m where the minlmum is reached.

Table 2.5 references the local minimax optimal separation distance we obtain for
the closeness testing problem defined in Equation (2.2) and compares it with the upper
bound from Diakonikolas and Kane (2016) and the local minimax optimal separation
distance for identity testing found in Valiant and Valiant (2017) and Balakrishnan
and Wasserman (2017a). In order to build Table 2.5, we classify the coefficients of m
depending on their size and the corresponding contribution to the separation distance.
As illustrated by the table, our local minimax separation distance fleshes out three
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main regimes. Looking at the coeflicients of 7, for the indices smaller than J;, the
part of the separation distance corresponding to them is

|tiati < e
Jn

As for the indices greater than I*, the part of the separation distance corresponding
to them is ||(7(;1{i > I})][1. And so regarding the contribution of the indices smaller
than J or greater than m™* to the separation distance, the regimes are the same as
in the local minimax separation distance pi(HéyI: ), H f{: ), n(ld)) for identity testing
from Valiant and Valiant (2017). However regarding the coefficients corresponding
to the indices between J; and I* the local minimax separation distance for closeness
testing is not of same order as for identity testing. The difference concerning local
minimax separation distances between identity testing (Valiant and Valiant (2017) and
Balakrishnan and Wasserman (2017a)) and closeness testing then lies in the indices
between J, and m*. Chan et al. (2014) also notes a difference in the global minimax
rates between both problems and we have refined this intuition to make it depend on
.

3/4
1

We now detail the comparison with the paper by Diakonikolas and Kane (2016)
that also studies the problem of local closeness testing. Diakonikolas and Kane (2016)
also obtains an upper bound on the local minimax separation distance for closeness
testing. Although it is adaptive to 7 and matching the one from Chan et al. (2014)
in the worst case, their upper bound is not local minimax optimal. In fact, they
capture two of the three different phases we describe in Table 2.5. But their regime
corresponding to the very small coefficients, with indices greater than I*, can be made
tighter, matching the local minimax separation distance in identity testing.

We further illustrate the difference between the local minimax separation distance
that we present and the upper bound from Diakonikolas and Kane (2016) with the
following example. Take d =n*+2 and 0 < h < 1/2. Let m; = 1/2, mg = 1/2 — h, for
any 3 <14 < d, m; = h/n*. Then, up to multiplicative constants depending on -, results
proved in this chapter lead to the minimax separation distance 1/y/n + h, whereas
Diakonikolas and Kane (2016) obtains n'/? which leads to the trivial upper bound of
1. This highlights a gap in their upper bound with respect to the local minimax rate
in some specific regimes. However, our main contribution with respect to Diakonikolas
and Kane (2016) and to the rest of the literature is our lower bound. It is the evidence
from a local perspective that two sample testing is more difficult than identity testing.

This chapter is organized as follows. In Section 2.2, an upper bound on the local
minimax separation distance for Problem (2.2) is presented. This will entail the
construction of a test based on multiple subtests. In Section 2.3, a lower bound that
matches the upper bound up to logarithmic factors is proposed. Finally, the proofs of
all the results presented in this chapter are left for the later sections.

2.2 Upper bound

In this section, we build a test composed of several tests for Problem (2.2). One of
them is related to the test introduced in the context of identity testing in Valiant and
Valiant (2017) and Balakrishnan and Wasserman (2017a). The others complement
this test, in particular regarding what happens for smaller masses. Here, as explained
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TABLE 2.5: Comparison of the upper bounds on the local minimax
separation distances depending on which term dominates. Note that
Jr < I < m*, by definition of these quantities. Each index i belongs to
some index range U and ;) contributes to the separation distance rate
differently depending on the index range U. The notation |U| refers
to the number of elements in U. Current paper corresponds to the
local minimax separation distance that we prove for closeness testing as
defined in Equation (2.2) with 4 = 2.001 for the lower bound and u =
1/2 for the upper bound. Valiant and Valiant (2017) and Balakrishnan
and Wasserman (2017a) ([VV17,BW17]) present the local minimax
separation distance found for identity testing defined in Equation (2.3),
which corresponds to a lower bound for Problem (2.2). Diakonikolas and
Kane (2016) (|[DK16]) presents a rate which corresponds to an upper
bound for Problem (2.2). All the separation distances are presented up
to log-factors. 1y is the indicator function of U applied elementwise.

Index range U=A{1,...,J:} ‘ U={Jx,...,I*}
Contribution of the terms
3/4
Current paper W(Z‘/)SIU L ALl [HWQ exp(fumr)Hl/4 Vv Lw
n n 1 n
f 3/4 i 3/4 \/7
Lower bound [VV17,BW17] —1 —
z/f 374 /n
T\ 1y
Upper bound from [DK16] U\/ﬁ L %Hﬂ'él(}”i”
Index range U={I*,...,m"} ‘U:{m*,...,d}
Contribution of the terms
Current paper m)lu . Tylu .
[0
Lower bound from [VV17,BW17] 7# 7yl .
Upper bound from |[DK16] %Hw%)lUH}M \/@Hﬂg)lUH}M

in the setting, we observe the following independent sample sets.
X ~ M(n,p), Y~ M(n,q).

Assume from now on that n > 3. These two sample sets can each be split into 3
independent sample sets. That is, for any j < 3 and ¢ < d, we consider the independent
sample sets

XV~ Mn,p), YV~ M(a,q),
where . = |n/3].

We will then apply a Poissonization trick in order to consider independent Poisson
random variables instead of independent multinomial random variables — see Sec-
tion 2.6.1 in the Appendix for the precise derivations. Firstly, for j € {1,2,3} and
m € {1,2}, let n$) follow P(2n/3) independently. Note that by concentration of
Poisson random variables, we have with probability larger than 1 — 6 exp(—n/12), that
ﬁ%) < nforall j € {1,2,3} and m € {1,2} at the same time. With this in mind, we
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define the following 6d counts. For any ¢ < d and j € {1,2,3}, let

X = S aW =4, vy9= 3 109 =i

r<al Am r<a$) AR

By definition of Poisson random variables, on the large probability event such that
ad) < @ for all j € {1,2,3} and m € {1,2} at the same time, we have that the
Xi(j ) coincide with independent P(2p;n/3) and that Yi(j ) coincide with independent
P(2¢;1/3)), for i < d and j < 3. Sample splitting and Poissonization allow for simpler
derivations of guarantees for tests and they can be done without loss of generality
in our setting. That is why we will construct our tests based on (X, Y(j))jgg. All

the probability statements in this section will be with respect to (ﬁ%))mgzdgg and
(X(j)’ Y(j))jg?),

Sections 2.2.1-2.2.4 introduce the individual tests as well as their guarantees.
Section 2.2.5 combines all the tests into one and produces a problem-dependent upper
bound for our setting. The proofs for the upper bound are compiled in Appendix 2.6.

The general strategy behind our construction is to readjust the test presented in
Valiant and Valiant (2017) to make it fit to our setting. Indeed, both distributions
are unknown in our case, making instance-based minimax optimality all the more
complicated. Instead of knowing 7 directly, it is estimated up to some multiplicative
constant when possible. This will induce a gap with the local minimax separation
distances for identity testing presented in Valiant and Valiant (2017) and Balakrishnan
and Wasserman (2017a). Using other tests, we offset this gap partially. However, as
shown in the lower bound, the upper bound is local minimax optimal and the difference
in separation distances highlighted in the upper bound is actually fundamental to the
problem of closeness testing, making it harder than identity testing in some regimes.

2.2.1 Pre-test: Detection of divergences coordinate-wise

We first define a pre-test. It is an initial test designed to detect cases where some
coordinates of p and ¢ are very different from one another. It relies on the /,.-distance
between the observations.

Let ¢ >0, ¢= (Y® v1)/a and p = (X® v 1)/A, where the maximum is taken
element-wise. The pre-test is defined as

o~ ~—1
1, if there exists i : [p; — §i| > ¢ & log(?f An) + clogn(")-

oo (XB) Y ¢ d) =
0, otherwise.

In order to simplify the notations, we will just write poo(c) in the future.

Proposition 8. Let § € (0,1). Then there exist c500 > 0,C500 > 0 large enough
depending only on § such that the following holds.

e Ifp = q, then with probability larger than 1 — 26 — Tn~! — 6 exp(—n/100),
Poo(Cs,00) = 0.

o [f there exists i < d such that

- | log(g:t An . log(n
|pl - Qz| > C6,00 C_h(ln) + 05,007,5)7
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then with probability larger than 1 — 25 — Tn~! — 6 exp(—n/100),
Poo(C5.00) = 1.

2.2.2 Definition of the 2/3-test on large coefficients

We now consider a test that is related to the one in Valiant and Valiant (2017) and
Balakrishnan and Wasserman (2017a) based on a weighted ¢3-norm. But here, the
weights are constructed empirically. Such an empirical twist on an existing test in
order to obtain adaptive results was also explored in Diakonikolas and Kane (2016).
The objective is to detect differences in the coefficients that are larger than 1/n in an
efficient way.

Let ¢ > 0. Set

Ty =>4 P(xV -y )x® - v®). (2.5)
i<d

We also define #y/3 = /n=2/3||(Y())2/3]|; 4+ 1, and

(102/3(6) = (102/3(X(1)3Y(l)aX(z)vy(Q)aX(g)ana ¢ n, d) = 1{T2/3 > C£2/3}‘

3
Proposition 9. Let § > 0. Let ¢5 o defined as in Proposition (8) andn > 4 (8064/\/5/2) .

Then there exist csa/3 > 0,Cs2/3 > 0 large enough depending only on § such that the
following holds.

e Ifp = q, then with probability larger than 1 — 36 — Tn~! — 6 exp(—n/100),
pa/3(cs2/3) =0  and  poo(Cs o) = 0.

o If

o= oo = =2 (s o )

then with probability larger than 1 — 35 — Tn~! — 6 exp(—n/100),
©a/3(cs2/3) =1 o Poo(Cso0) = 1.

This proposition provides an upper bound on the local minimax separation distance.
It is related to the upper bound on the local minimax sample complexity obtained
in Proposition 2.14 in Diakonikolas and Kane (2016), and Table 2.5 makes a detailed
comparison between the results obtained in Diakonikolas and Kane (2016) and ours.
In Diakonikolas and Kane (2016), the authors partition the distribution into different
empirical level sets. Then for each level set, they apply a standard fo-test to the
pseudo-distributions restricted to that level set. In contrast, we apply only one test
with appropriate weights. This is analog with comparing the max test to the 2/3
test both depicted in Balakrishnan and Wasserman (2017a). In the test statistic
from Diakonikolas and Kane (2016), the partitioning of the distributions is empirical.
Comparatively, we modified the 2/3-test statistic in order to make the weights empirical.
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Remark 26. e Let us compare Ty 3 defined in Equation (2.5) with the test statistic
presented in Valiant and Valiant (2017):

2
3y (X "Qq/‘g Xi (2.6)
(2 7

We start by explaining their construction. Equation (2.6) is a modified chi-squared
statistic producing a local minimax optimal test for identity testing. Now, in
closeness testing, q is unknown. That is the reason why we estimate q using
q and ensure its value cannot be 0 in the denominator. This constraint leads
to rates in separation distance which are different from those obtained with the
statistic from Equation (2.6) for identity testing. Our other tests tackle the case
corresponding to Y®) = 0 as well as possible, but the rates will remain worse
than those in identity testing. Such a gap will prove to be intrinsic to closeness
testing as we find a lower bound our upper bound.

e The threshold fg/g associated with the definition of g3 is stochastic. But if T is
known, then the problem can be reduced to identity testing and the threshold can
be made deterministic as in Valiant and Valiant (2017) and Balakrishnan and

Wasserman (2017a), with value \/ZT?/?’—{— 1.

2.2.3 Definition of the /,-test for intermediate coefficients

We now construct a test for intermediate coefficients, i.e., those that are too small to
have weights computed in a meaningful way using the method in Section 2.2.2. For
these coefficients, we simply suggest an £s-test that is related to the one carried out
in Chan et al. (2014) and Diakonikolas and Kane (2016). And we apply this test only
on coordinates that we empirically find as being small.
Set
1= (XY - v )X - vy = o, (2.7)
i<d

and

i = \/IYOY@1{Y® = 0} + log(n)?.
Write ¢a(c) := QOQ(X(D,Y(I),X(Q),Y(2),Y(3),c,n,d) = 1{Ty > cto}.

Proposition 10. Let 6 € (0,1). Let 5 defined as in Proposition (8) and assume
Poo(Cs00) = 0. We write s(.) such that g4y = q(y. There exist cs2 > 0,852 > 0 large
enough depending only on § such that the following holds.

o If p = q, then with probability larger than 1 — 35 — Tn~! — 6 exp(—n/100),
pa(cs2) =0 and  @Yoo(Cse0) = 0.

o [f there exists I > J, such that

2

i IPsii) — s | = C&,zI_nJ [log (\/Hq exp(—nq) |1 )}

i=J

then with probability larger than 1 — 35 — Tn~! — 6 exp(—n,/100),

wa(cso) =1 or Yoo(C500) = 1.
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This test based on the £3-statistic tackles a particular regime where the coefficients
of the distribution ¢ are neither too small nor too large. Such an application of an
lo-statistic to an ¢;-closeness testing problem is reminiscent of Chan et al. (2014) and
Diakonikolas and Kane (2016). In particular, like in Diakonikolas and Kane (2016), we
restrict the application of this test to a section of the distribution that is constructed
empirically.

Remark 27. e Note that Ty defined in Equation (2.7) is based on the ly-separation
between both samples in the same way as Ty )3 defined in Equation (2.5). However,

Ts is not reweighted since it focuses on the case when Y®) = 0. This is comparable
to the test statistic presented in Diakonikolas and Kane (2016). Indeed, their
statistic is mot rescaled using the values of q, but they partition it regrouping
coefficients of q of the same order instead. Qur statistic amounts to doing
just that, except that we focus on smaller coefficients only and we partition q
empirically.

e Once again, we define an empirical threshold to. With the knowledge of m, we

would obtain the following deterministic threshold instead: /> . (nm;)? +
log?(n).

2.2.4 Definition of the /;-test for small coeflicients

Finally we define another test to exclude situations where the ¢1-norm of the small
coefficients in p and ¢ are very different.
Set
=Y (x -y = o).
i<d

Write @1 (c) == (XD, YD VO ¢ n d) = 1{T1 > c\/n}.

Proposition 11. Let § € (0,1). Let ¢500,C5,00 defined as in Proposition (8). Assume
n > 13671 (1 + 96500 log(n/3)/2)?. We write s such that sy = q(y. Then there exist
cs,1 > 0,651 > 0 large enough depending only on & such that the following holds.

e Ifp = q, then with probability larger than 1 — 36 — Tn~! — 6.exp(—n/100),
p1(c51) =0 and  @oo(cse0) = 0.

o [If

o= o=l = S (ol o )

then with probability larger than 1 — 35 — Tn~! — 6 exp(—n/100),
@1(66,1) =1 or 9000(05,00) =1.

As stated in Proposition 11, this test captures the case of large ¢1-deviation at places
where p and ¢ have small coefficients. This is mainly interesting for cases where there
are extremely many small coefficients, making a very crude test the most meaningful
tool to use. The pathological cases addressed here contribute to the differences in
separation distances with Diakonikolas and Kane (2016).
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2.2.5 Combination of the four tests

To conclude, we combine all four tests by taking the maximum value that they output,
effectively rejecting the null hypothesis whenever one of the tests is rejected.

Let ¢(Coos €23, €2, C1) = Poo(Coo) Vpas3(cas3) Vipa(c2) Vipi(cr), where coo, co/3, c2, 1
are positive constants.

Theorem 21. Let 6 < 1. There exist 5,005 C8,2/35 €6,25 €515 Co,00, C5 > 0 that depend
only on & such that the following holds. Let n > [13671(1 + 9¢5 0 log(n/3)/2)?] v

[3 (80e! /\/572)3] ,
e Ifp = q, then with probability larger than 1 — 56 — Tn~! — 6 exp(—n/100),
©(Cs,001 C5,2/35 C5,25 C5,1) = 0.
. If
> Ipi — ail
> 55{ min [(ﬁlog(”)) v (\/@w exp(-na)|ly'") V (g1 i 2 I}Mh] }

I1>Jr n
3/4

] [y

n

2 1
vV [Hq (qVn—1)373

n

then with probability larger than 1 — 55 — Tn~! — 6 exp(—n,/100),

80(06,00, C5,2/35 C5,25 65,1) =1

Then the theorem can be formulated as the following upper bound.

Corollary 6. Let v > 0. There exists a constant cy, > 0 that depends only on v such
that

* Clo Clo 0
P4 (HG G T

- C’y{ }TZHJE [(ﬁlogn(n)> Y (\\;%Hw? eXp(—nﬂ‘/Q)H}M) V[ (7 1{i > I})ZH1] }

3/4
1

o lari < 2,

I ] [y

n

Thus, once we have aggregated all four tests, we end up with an upper bound on
the local minimax separation distance for closeness testing defined in Equation (2.2).
Most importantly, the knowledge of 7 is not exploited by the test. So our method
reaches the displayed rate adaptively to w. That is, the separation distance does
not just consider the worst 7. Instead, it depends on 7 although it is not an input
parameter in the test. In Table 2.5, the contributions of the different coefficients from
7 are summarized into different regimes, along with the regimes obtained in Valiant
and Valiant (2017) and Diakonikolas and Kane (2016). Our upper bound improves
upon that of Diakonikolas and Kane (2016) as emphasized in Section 2.1.3. We manage
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to obtain separation distances comparable to those found in identity testing defined in
3/4
2/3

T 1{i<Jx})i

Equation (2.3). In particular, the terms ||(7(;)1{i > I});||1 and NG can
also be found in identity testing. However, the differences that we point out in the
upper bound turn out to be fundamental to closeness testing. Indeed, we present a

matching lower bound in the following section, which represents our main contribution.

2.3 Lower bound

This section will focus on the presentation of a lower bound on the local minimax
separation distance for closeness testing defined in Equation (2.2). Since the lower
bound will match the upper bound previously presented, our test will turn out to be
local minimax optimal.

Theorem 22. Let 1 € P and v,v > 0. Assume n > 28. There exists a constant
Cyv > 0 that depends only on «y,v such that the following holds.

o (Ho B TE) > e {mm [v \f | * exp(~ 2+v>m>u”4)

I>J. n

(meh* 14 < il
V(7 1{i = f})z‘!h] } v H ves

Vn n

The details of the proof can be found in Section 2.7 of the Appendix. But we
provide the intuition through the following sketch of the proof.

Sketch of the proof of Theorem 22. The construction of the lower bound can
be decomposed into three propositions. We first state Proposition 12, which is a
corollary from Valiant and Valiant (2017) and Balakrishnan and Wasserman (2017a)
and it will provide an initial lower bound on the local minimax separation distance.
We will refine this lower bound using Propositions 13 and 14, which constitute our
main contributions. The general strategy is the same for both propositions. At first,
we reduce the testing problem to a smaller one that is difficult enough and which is
not yet covered by Proposition 12. Afterwards, the idea is to hide the discrepancies
between distributions in the smaller coefficients, which is justified by the thresholding
effect already witnessed in the upper bound. Indeed coefficients corresponding to
low probabilities have a great chance of generating 0’s. So the information on the
coefficients being small to different degrees is lost.

Proposition 12 relies on the fact that two-sample testing is at least as hard as its
one-sample counterpart. It is also the most convenient formulation of the local minimax
separation distance from Valiant and Valiant (2017) and Balakrishnan and Wasserman
(2017a) in order to compare it with our results.

Proposition 12. Let 7 € P and v > 0. There exists a constant cy, > 0 that depends
only on 7 such that

* Clo Clo 0
(H{, H{S, 7))
NIEPz<i<mp it |
> ¢, min VoVl = mpill

vn
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The next proposition is a novel construction, which settles the case for small coefficients.

Proposition 13. Consider some m € P and v > 0. Set for v > 0 and with the
convention minj<q( = d,

Jr<j<d >
NG:) mm< Y Wm}}’
i>7 Jr<i<j

where C, = \/Z 72 exp(—2(1+v)nm;)

m . There exist constants cy, ¢, ,, c5 , > 0 that depend

only on y,v such that the following holds. Assume that |72 exp(—2(1 +v)n7)||3 > 02’2”
and n > 28, Then

o (Hé?rlo) H 010 ,7;1(010 )

. Iv,Tr - J7r 1/4
> ey [[H(m)l{z > L Pl v = 2 exp(—2(1 + v)m)l |}

/

c v
Ay = e il | — \}ﬁ

where Jp is defined at the end of Section 2.1.1.

The proof of this proposition and the following one is based on a classical Bayesian
approach for minimax lower bounds. It heavily relies on explicit choices of prior
distributions over the couples (p, q) either corresponding to hypothesis set Hégo) or

H(Clo)

1,7

(p). The goal is then to show that the chosen priors are so close that the risk
R(Hésrlo), ) (p),0y) is at least as large as 7 for a fixed n. Details on the general

1,7
approach are provided in Appendix 2.7.2.

The brunt of our contribution relies on the definition of appropriate priors. The
priors are enforced to have support in P2, as detailed in the proof with ideas related to
the Poissonization trick. But this is only a technical difficulty which is not fundamental
from an information theoretic perspective. A more crucial step regards constructing
prior distributions on "non-normalised" versions of the vectors (p,q). We use the
notation (p, ¢) for the "non-normalised" vectors associated with the prior distributions.

Let us now present the prior distributions on the parameters (p, ¢) defined for the
proof of Proposition 13. 7 and n are fixed, and the priors critically revolve around 7
and perturbations thereof in order to obtain a local minimax optimal lower bound. We
start by defining an index set A corresponding to a subset of elements of 7 containing
a fixed proportion of each significant level set S;. Then A is a set of indices such that
(7;)ieA is a vector with a similar shape to 7 and the elements from A€ can be used in
order to define normalised (p, q).

Under both the null and the alternative hypotheses, the prior distributions are
defined such that for any i € A%, p; = §; = m;. We now consider the definition of (j, §)
on A. Under any of both hypotheses, the elements of § restricted to A are taken at
random uniformly from the elements of 7 restricted to A.

e Under the null hypothesis, p is set equal to q.

e Under the alternative hypothesis, p is a stochastic vector that differs from ¢ in
the following way:
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— All coordinates larger than 1/n are set equal to those of §.

— For the other coordinates, set p; = ¢;(1 + &), where & is uniform on
{—¢f, e}, and € is defined in an implicit way in Lemma 15.

The quantities €]’s are defined to satisfy the conditions in Lemma 15. The intuition
associated with those conditions are the following.

e There is no deviation for the larger coefficients, i.e., p = ¢ for coefficients larger
than 1/n.

e The /y-separation and the /,.-distance between p and ¢ are upper bounded with
high probability, making the discrepancy hard to detect.

e The /;-distance between p and ¢ is lower bounded with high probability by the
local minimax separation distance to be proven.

e The way ¢ deviates from 7 creates some uncertainty. This makes it difficult to
leverage any knowledge on ¢ for constructing the test besides the fact that (the
normalised version of) § is in P.

Finally, the following proposition complements Proposition 13 in the case where
the tail coefficients are very small.

Proposition 14. Let m € P and y,v > 0. There exist constants ¢y, C ., c’%v > 0 that
depend only on v, v such that the following holds. Assume that |72 exp(—2(1+v)7)||1 <
yw/n?. Then

* Clo Clo) o
Py (Ho” LS T 2 e ll(m2{i = Tt = ¢ /w2 10 = Jeh il

where Jp is defined in Section 2.1.1.

This proposition refines Proposition 13 in the specific case where |72 exp(—2(1 +
v)m)|l1 is small, and the construction of the priors is related, but simpler. Combining
Propositions 12, 13 and 14 lead to the lower bound in Theorem 22.

Thus a lower bound is constructed for the local minimax separation distance, which
characterizes the difficulty of closeness testing defined in Equation (2.2). In fact, the
lower bound matches the upper bound up to log terms. Thus, we have a good envelope
of the local minimax rate. We firstly conclude explicitly that there exist some 7 such
that pV(H(CIO) H(Clo) n(ClO)) (H(()Iﬁ), HS;D, n(Id)), that is, two-sample testing is
strictly harder than one—sample testlng for some distributions 7. Secondly, the result
highlights the location of the gap in further detail than the worst-case study of Chan
et al. (2014). We provide a detailed comparison between results in Section 2.1.3 using
Table 2.5.

2.4 Conclusion & Discussion

In this chapter, we have established the local minimax near-optimal separation distance
for the closeness testing problem defined in Equation (2.2). It represents the first
near-tight lower bound for local minimax closeness testing, and the first test that
matches it up to log terms. The minimax rate is adaptive to 7 in the following sense.
The test we construct only takes samples from p and ¢, but its testing rate optimally
depends on 7, as evidenced by the lower bound. The construction of the lower bound
heavily relies on our formalization of closeness testing from Equation (2.2). Such
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a formalization is critically different from its identity testing counterpart, because
of ¢ remaining unfixed. So we end up considering a testing problem, where both
hypotheses are composite. Comparing our local minimax separation distance with the
one achievable in local minimax identity testing, a gap can be noted. Indeed, closeness
testing turns out to be more difficult, especially when there are terms which are rather
small without being negligible (corresponding to the indices between J; and m*). But
it is also noteworthy that both rates match otherwise.

On the horizon, the corresponding local minimax sample complexity for closeness
testing has yet to be found. Besides, the upper bound could be made tighter in order
to bridge the gap caused by the log factors. Finally, our analysis focuses on discrete
distributions but the formalization of the problem of closeness testing presented in this
chapter generalizes well to other settings. Indeed, our formalization relies on ¢ being
restrained to the set P;. Now, an analog set to P, can be defined with an additional
regularity condition in a continuous setting. So the extension of our study to densities
still remains a major direction to be explored and it would be interesting to extend
the framework from this chapter as Balakrishnan and Wasserman (2017a) does for
Valiant and Valiant (2017) in the context of identity testing.

2.5 Preliminary results on the Poisson distribution

The proofs to our theorems will be provided for Poisson distributions which can
be translated into results for multinomial distributions. Similar considerations of
independent Poisson samples in order to simplify the proofs are made in Chan et al.
(2014) and Valiant and Valiant (2017).

We first provide an equivalence result between the samples from a multinomial
distribution and samples from independent Poisson distributions.

We remind Theorem 2 presented in Section 1.3.1.

Theorem 23. Letn € RY, p € P. Let i ~ P(n). Let the conditional distribution of &
be M(#,p), conditionally on fu. For any i <d, we have X; = > 1{{; = i}. Then
we have independent

X; ~ P(np;).

Now, the following lemma states that Poisson samples concentrate around their
mean.

Lemma 7. If Z ~ P(X), where A > 0,

P(|Z — A| > A/2) < 2exp <—1A2> .

Proof. If Z ~ P(X\), where A > 0, we have, by concentration of the Poisson random
variables, that for any ¢ > 0,
2

P(|Z — A >1t) < 2exp <_2()\+t)) .

In particular,

P(|Z — A| > A/2) < 2exp <—1A2> .
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2.6 Proofs of the upper bounds: Propositions 8, 9, 10, 11
and Theorem 21

For any i € {1,2,3}, we write E@, V® for the expectation and variance with respect
to (X (@), Y(i)) and ﬁ,(qi). E and V denote the expectation and variance with respect to
all sample sets and all 7). We write for all i <d, A; = p; — q;. Assume without loss
of generality that ¢ is ordered such that q; > g2 > ... > g4. We remind the reader
about the following notation: w1y > mo) > ... > m(g). Throughout Section 2.6, let
I > J, and we write J := J,.

2.6.1 From multinomial samples to independent Poisson samples

Let 7 ~ P(n). We define the following independent random variables Zi,..., 2
each taking value in {1,...,d} according to the probability vector p, and we set
m = [3n/2| An.

We define Z; = 377" 1{Z; = i} and Z; = Z?Zl 1{Z; = i} for any ¢ < d. By
Theorem 2, we have independent

Z; ~ P(npi),

for any ¢ < d. Note that (Z;); coincides with (Z;); on the event where n < [3n/2].
Also, we have by Lemma (7)

P(n <3n/2) > 1—exp (—%) .

And so on an event of probability larger than 1 — exp (—%), the (Z;); coincides with
the (Z;);, i.e. with independent P(np;) samples.

Applying this to each of our sample sets X (@), yU) respectively associated with
ﬁ%) for j € {1,2,3} and m € {1, 2}, we finally obtain that on an event of probability
larger than 1 —6exp(—n/18), (Xi(j))i coincides with independent P(np;/6), and (Yi(j))i
coincides with independent P(27g;/3).

From this point on, we will therefore assume that

XU ~P@2ap/3), YU ~ P(2ng/3),

and that they are independent accross j. In what follows we will only consider events
intersected with that event of probability larger than 1 — 6 exp(—n/18) where ad) <.
In what follows, since we always reason up to multiplicative constants, we will write n

instead of 2n/3 to simplify notations.

2.6.2 Proof of Proposition 8

In order to derive the guarantees on the pre-test stated in Proposition 8, we first
provide the following lemma. The deviation from a Poisson random variable to its
expected value will be bounded depending on the outcome of the random variable,
and then depending on its expected value.

Lemma 8. Let A € (R1)? such that Y, \; = n. Let independent Z; ~ P(\;) for any
i<d. Letz=Z/n. Let § € (0,1) and a := 16%. With probability larger than
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1—06—n"1 and for all i < d we have

5 = Mo/l < QV 12(5 V a) log (96 log (2n/8) (5 A a=1)/4)

n 2log(96log(2n/6)(a_1)/5)

n

)

and

2\/12(% V a)log(961log(2n/8)(z; 1 Aa=1) /) n 2log(96 log(2n/8)(a=1/9)

(\i/n) V @) log (384 log(2n/6)((Ai/n)~1 A a~1) /5)

n

2log (384 log(2n/5)a_1/5> |

n

<12

_l’_

So an immediate corollary to this lemma is the following:

Corollary 7. With probability larger than 1 —26 —2n~! —6exp(—n/18), Yoo(cso0) = 1
if there exists © < d such that

o if g > 1682/,

n

gi log (384 10g(2n/5)q._1/5) log (384 log(2n/5)a_1/5)
— 4300 .

n n

1A;] > 50

° Zf g < 1610g(in/6) .

alog <384 10g(2n/5)a—1/5> . 30Olog (384 log(2n/5)a*1/5)

n n

IA;] > 50

If A =0, then @oo(cs.00) = 0 with probability larger than 1 —25 —2n~' — 6 exp(—n/18).

This corollary implies that there exists a universal constant ¢ > 0 such that the
preliminary test rejects the null hypothesis on an event of probability larger than
1—25—2n"! — 6exp(—n/18), when A; is such that

1 “LAn)/s 1 )
N \/q og((ar" Am)/d) | log(n/s)
n n
This leads to the result stated in Proposition 8.

Proof of Lemma 8. Analysis of the small )\;’s. We consider every ¢ such that
Xi <n~2. Then for any such 1,

Pz >1/n) =1— (14 X\)e ™ <1— (14 X)(1—=X\)=\.

So
1
_ 2
P(Uj5,<n2{zj > 1/n}) < E NS Z)‘j =1/n.
J J
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So with probability larger than 1 — 1/n, we have for all \; < 1/n? at the same time
that
Zi < 1/77,.

Let a = IGW. Then with probability larger than 1 — 1/n, for every \; < 1/n? at
the same time,

|2 — Xi/n| < 2\/ 12(2; V a) log(96log(2n/0) (2" Aa~1)/5)

n 2log(96 log(2n/8) (2, Aa™1)/d)

9

and

2\/12(7;1' V a)log(96 10g(2n/5)(2;1 Aa~1)/8) N 2log(96 10g(2n/(5)(2i_1 ANa—1)/6)

n n

36((\i/n) V a) log (384 log(2n/6)((Ai/n)~1 Aa~1) /5)
log (384 log(2n/6)((Ai/n)~ Aa~1) /5)

+2 :
n

<2

Analysis of the large )\;’s. We consider every i such that \; > n=2.
If Z; ~ P(\;), where \; > 0, we have, by concentration of the Poisson random
variables, that for any ¢ > 0,

2
N>t < - ).
P(1Z; )\Z]_t)_2exp< 2()\i+t)>

We set &; as 2exp (72(%2_’_”), the inequality implies that with probability larger than

1— 95,

% — A\i/n| < 2\/(Ai/”) 12g(2/(§i) | plos(2/6) (2.8)

n

So we write &; = \;é /n. Then, since >, \; = n, we have with probability larger than
1 — 8, for every i such that \; > n~2 at the same time

% - Ai/n| <2 \/ Ou/n) 082/ O3], log(2n/ (4:9)

n

< 5, O BCA BN T logton 0V )

(2.9)

By considering two subcases, let us prove the following inequality on an event of
probability larger than 1 — ¢, for all ¢

(\i/n) Va)/4 <2 Va<3((hi/n)Va). (2.10)
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Subcase \;/n > a. By Equation (2.9), we have on an event of probability larger than
1 — ¢, that for all 7 such that A\;/n > 16% =a,

1% — Ai/n| < 2\/ (Qi/n) lj’f@”/ o) 4 21°g(i”/ O < 5ai/(8n).

So

That is,
((Ni/n)Va)/d <z Va<3((A\/n)Va).

Subcase n™3 < \;/n < a. By Equation (2.9), we have on the same event of probability
larger than 1 — &, that for all 7 such that n=3 < \;/n < 16% = a,

log(2n/4) N 6log(2n/5) < 2010g(2n/5)

< 2a.

|Zi — )\Z/TL| <14
So z; < 3a, and then,
((Ai/n)Va)/d=a/4 <% Va<3a=3((\i/n)Va)

Conclusion for the large \;’s.
Let us first reformulate Equation (2.9) using the definition of a. We have with
probability larger than 1 — ¢ that for all 4,

51yl < 2 PO OBC2 0B L () Vi)
(3210g(2n/6)/[((/n) v @)3])

n

1
1628

So by application of Equation (2.10), we get that with probability larger than 1 — ¢
and for all ¢ we have

1% — \i/n| < 2\/12(% V a)log(96log(2n/8)(z; 1 A a=1)/8)

n 210g(96 log(2n/8)(z; 1 Aa1)/0)

I

and

2\/12(,23 V a)log(961log(2n/8)(z; 1 Aa=1)/6) . 2log(96 log(2n/8)(z; ' Aa1)/d)

n

J 36((\i/n) V a) log (384 log(2n/) ((A\i/n)~1 A a~1) /5)
<2

log (384 log(2n/8) ((Ai/n) = A a_l)/6>

n

+2
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2.6.3 Proof of Proposition 9

Proposition 9 provides guarantees on the test ¢y/3. In order to prove it, let us first
consider the associated statistic Ty /3.
Expression of the test statistic.

We have ) 3 ) ) )
T2/3 - Zq_ / 7, - z( ))(X’L( ) - }/;( ))
i<d

So taking the expectation highlights different terms associated with different indepen-
dent sub-samples.

ETy/3 = ZE j 2/3)E(1)(X(1) Y;(l))E(Q)(X»(Q) B Y(z))’
i<d

and
Vs = Vi) - v - v ®)
i<d
<> EOGENGY - vEOIG - v,
i<d

Terms that depend on the first and second sub-samples. We have

ED (xY — Y;(I))E(?) (x? —y®y = n2a2,

K3 3

and

2

EO[XY - ) ES (X - EO[x - vy

= [E”
= [=

= [n(pi + qi) +n2A%2.

2
EX Y(l) —nd\;)? |+ ngAl2

Terms that depend on the third sub-sample. Now, the following lemma will
help us control the terms associated with g.

Lemma 9. Assume that Z ~ P(\). Then forr € {2/3,4/3}

2

"<E[(Zv1)7T) < 6(5 B

(1)
2\(e2\) V1
The proof of the lemma is at the end of the section. By direct application of Lemma 9,

we have with probability larger than 1 — 6 exp(—n/18) with respect to (ﬁg—,ﬂl))mggd‘gg,

E®) [@[2/3} . 1’;26/;(%1)“)2/37

0 i) < st (L)

and
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Bound on the expectation and variance for T5/3. We obtain with probability

larger than 1 — 6 exp(—n/18) with respect to (ﬁ%))mgg,jgg

ETys 2 ; Z?(WW 28] = ;\‘AQ(Q ) e

and

4/3
V(Tys3) <) 6e'n 4/3( ) v1) [n(p;i + @) + n?AZ)?

i<d

<o () s, ol ) )
<ot | (ko) ) 2,

|2

This implies with probability larger than 1—6 exp(—n/18) with respect to (n%))mQ <39

\/ V(Ty3) < 1062n[\/H(q vln 4/3 \/H q\/n 4/3 Hl

o u<qv2_1>4%4ul]-

Analysis of T3 under H(()Srlo and Hl(frlo) (p). Let us inspect the behaviour of
statistic T5/3 under the null and the alternative hypotheses. We aim at showing that

a test based on 75,3 will have different outcomes under Hégrlo) and H {Srlo)

probability.
Under H (Clo) We have with probability larger than 1 — 6 exp(—n/18) with respect to

(2.12)

with large

(nv(fz))mgzjg:'w

ETy3 =0, and /V(Tys) < 2062n\/H (q v1n—1>4/3q2H1’

and so by Chebyshev’s inequality with probability larger than 1 — o — 6 exp(—n/18)

4/3
Ty < om0t [ (G5 ) e
92/3 S o Oe n\/ PV q .

Under H(Clo)( ). We assume that for a large C' > 0

HA 1{i < J});

- HAl{nq > 1}”

N R AT

n n
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which implies by Cauchy-Schwarz inequality,

>C \/“(q\/rlfl)4/3q2“1 1
n

VvV — 9

|z, ;

and in particular that

A2

H(qvn—l)?/3 2 ¢/ (2.13)

Moreover if the pre-test does not reject the null, we have with probability larger than
1—26 —2n~! — 6exp(—n/18), that there exists 0 < & < +o0 universal constant and
0 < és < 400 that depends only on § such that for any 4

A2 @ (g v (log(n/0)/n) log(n/0) _ &

(Ql v n71)2/3 - n (Qz v n71)2/3 - n’

So with probability larger than 1 — 2§ — 2n~! — 6exp(—n/18),

AQ
(¢V1/n)23 |

’
1.(5.7 l)y Equa‘l()ll (213),

\/H qv1/n Al | \/~2

We have from Equation (2.11):

~2
%
)

~9
Cs

C

AQ
(¢V1/n)23 |,

A2

v, (2.14)

1 2/3
22ET 5 /n2 > HN( ) H .
¢ Bly3/n” = gVn1 1

And from Equation (2.12),

e s e 1ei) el )"
n® <

+m<qu_1>‘*%u1]-

Let us compare the terms involved in the upper bound on , /V(T5/3)/ n? with the lower

bound on ET;)3/n?.
For the first term, we have by Equation (2.13):

\/H 4/3
avn—1 q H 20e4
1062 o~ L S ; ]ET2/3/n2.

We have for the second term:
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10¢? e L < 20etn=2/3 H(#)M)’AQH '
n - gVnl

1

Since a? + b* > 2ab for any a, b,

173
10e? \/H (QV%) A2H1 < 10e*(1/n + n~3ETy 3/n).

n

which, from Equation (2.13), yields

i3
10e? \/H <q\/n%> AQHI < 10e*(1/C + nfl/S)ETQ/?)/nQ.

n

Then for the third term, we have shown in Equation (2.14) that with probability larger
than 1 — 26 — 2n~! — 6exp(—n/18),

1 \4/3 3
1062\/“(an—1) A4 < 206t [ EETy 5 /n?

And so we have by Chebyshev’s inequality, with probability larger than 1 —2§ —2n~! —
a — 6exp(—n/18):

20¢* _ N
Toy3 — ETy3| < o (1/(20) + =3 /24, /& /C + 1/C)ETy 3.
- 80et)? 40¢* (20e1 :
Now, if n > <\/&) and C > Ja ( \/55 \/1).

Toy3 — BTy 3] < ETy3/2.

42
20e*c5

Ja

Finally, if n > (8%)3 and C > 4% (

1-25—2n"1 —a—6exp(—n/18):

\% 1), with probability greater than

Tyy3 > ETy)3/2

= % (\/H (q \/1?1_1)4/3(12

where the last inequality comes from Equations (2.11) and (2.13).
Analysis of t, 3+ Test ¢g/3 compares statistic Tp/3 with threshold ty /3, Which is

+ 1), (2.15)
1

empirical. So let us study the variations of , /3- Applying Corollary 8 below gives
guarantees on the empirical threshold , /3- These can be used in conjunction with the
guarantees on the statistic 75,3 in order to conclude the proof of Proposition 9.

Theorem 24. Let Cy/3 = V26-1e3/3 + 14+ /(213 +¢).
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With probability greater than 1 — 3

(32 + 1)H (q v1n—1)4/3q2H1

<n 2Py WP + Cops/ /B

< H (q vlnl)4/3q2H1 +2Cy3/+/B +207L.

The proof of this theorem is in Section 2.6.7.1. And the following corollary is obtained
immediately from the theorem.

Corollary 8. We define

T/ = 0 Y/220en 023 (Y 0)2/3]y + Cyya/ Ve

Then if C > (8¢5/20e™1/a) v (82¢'%c2a /100) V (= 1/240€7 20~1(Cyy3 + 1)), we have
with probability greater than 1 — a — 6 exp(—n/18):

a—1/2206n\/H (q\/1nl>4/3q2H1 < 52/3 Se_ﬁgn (\/H (q \/1711)4/3612“1 + 1) ’

Let us now sum up the results leading to Proposition 9. Under H(gsrlo), with

probability larger than 1 — §/2 — 2§ — 2n~! — 6exp(—n/18),

T2/3§(5/2)_1/2206n\/H( ! )4/3612“1.

qVnl

And soif C > [% (2054;? v 1)} v (a*1/240e7\/202/3(5*1/2 n a*1/2)>, we have with

probability greater than 1 — /2 — 6 exp(—n/18):

(5/2)1/2206n\/H< ! )4/3(12)‘1 < £2/3.

qVnl

So, under Hégrlo), with probability larger than 1 — 36 — 2n~! — 6exp(—n/18),

T3 < ty3.

Clo . et [ 20e*E2 _ _
Under Hl(77r )(p), if C > [\4/0572 (\/(725 v 1>] v ((5/2) 1/280)e7 20} /30 1/2) and
3

n > < 80¢” ) , we have with probability larger than 1—6/2—26 —2n~! —6 exp(—n/18),

NG
Cn 1 4/3
< <\/H<q\/n_1> 1

+ 1) S T2/3.
1
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3
. 404 20645(% -1/2 7/ —1/2 80e*

we have with probability larger than 1 — /2 — 6 exp(—n/18),

. Cn 1 4/3
o < e 622 H 2 +1].
2/3 2 <\/ (q\/n—l) 4 2/3 )

So, under H(Clo)( ), with probability larger than 1 — 35 — 2n~! — 6 exp(—n/18),

to3 < Ty
Proof of Lemma 9. We have by definition of the Poisson distribution that

AZ

le

E[(ZV1)7"] = exp(—A) +exp(=A) > =i
i>1

b\ N
= exp(—A) + exp(—2A) Z Z,—'i*’” + exp(—A) Z —i "

1<i<A/e2 1V(\/e2)<i

And so we have

—r )\Z o 62 T
E[(ZV1)7] <exp(=A) +exp(=A) Y i+ (— A 1)
1<i<A/e2

Nigi 2 ,
< exp(—A) +exp(—A) Z Z.Z.e + (% A 1) ,
1<i<)/e?

since i! > i’ /e’ and i > 1. Then

E[(ZV1)™"] <exp(—A) + exp(—A) Z exp(ilog(A) + i —ilog(i))

1<i<)/e?
(1\/ (A/e?) >
< exp(— +)\exp< A+ —log )+€);—e);log<€>;>>
(1\/ (A/e?)
1 T
< 2
exp(-3) + 2exp(-3/2) + (1057237 )

< Sexp(—A/4) + <1v&/62)) <6 (&)

since r € {2/3,4/3}. Now let us prove the other inequality.

> exp(—A) 4 (€2X) 7" exp(—\) Z %

i<eZ\
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So, since i! > i"/e,

E[(ZV1)™"] > exp(—A) + ((62;)\/1>T [1 —exp(—A) Y /\Zﬂ

i>e2)
= exp(—A)
+ <(€2)\1)\/1)T [1 —exp(—A) 'XQ:A exp(ilog(A) +1i — ilog(i)}
> exp(—A) _
+ ((62;)“) [1—exp(-3) -Z;A exp(ilog(\) +i — i log(c*))]
=exp(—A) + ((62)\1)\/1>T [1 —exp(—2A) Z exp(—i)}
i>e2)
> exp(—A) + <(62)\1)\/1>r [1 —2exp(—A — 62)\)]

If A > 269 then

E[(Z V1)) > <(62)\1)\/1> [1 — 2exp(=A — 62)\)} > ;((62)\1)\/1)

If A< lfi(;), then

E[(ZV1)™] > exp(—}) > exp <—1°g(4>> >1/2> 1((1v1)

So in any case,

2.6.4 Proof of Proposition 10

Proposition 10 provides guarantees on the test ws. The structure of its proof will be
identical to that of Proposition 9. We first study 75.
Expression of the test statistic.
We have
T =3 () =) vy = oy,
i<d
And so
BT = Y EO(XY - vEA(x - v O 1y, =0},
i<d



76 Chapter 2. Local minimax closeness testing of discrete distributions

and

VI < ZV[(XZ(D _ K(l))(XZ@) _ }/1(2))1{YZ(3) _ O}
i<d

< 2BV - YO ER (P - VP PEO LY = o).

i<d

We will bound every term separately.
Terms that depend on the first and second sub-sample. We have with
probability larger than 1 — 6 exp(—n/18) with respect to (ﬁ%))mgg,jg,

EO (X - vED (X - V) = a2,

EO[(XY v OPEO(xP - v @) = BV -y 0]
2
= W1 v —na) + n2al]
= [n(pi + @) + n*A7)%.
Terms that depend on the third sub-sample. We define
R; :=EB 1{Y =0}, and so R; = exp(—ng;).

Bound on the expectation and variance for 7T5. We have with probability larger
than 1 — 6 exp(—n/18) with respect to (ﬁ%))mgzjggg,

ET, = Z [nQA?RZ} = n?||A%R|); = n?||A% exp(—ng)|1. (2.16)

i<d
And
V<Y [ n(pi + a) +n2A2} R,
i<d

< 42 [anf +n2A? + n4A?] R;
i<d

< 4[n?|q*Rlly + n| AR ] + 0| RAL |,

and so with probability larger than 1 — 6 exp(—n/18) with respect to (ﬁ%))mgzﬂ‘gg,

VYT < 20| V/[@RIL + VIAR] +ny/[[RAT]

<2 [\/nzHCP exp(—ng)|li + v/n?|A%exp(—ng) |1 + n*/[| AT exp(—ng)|s
(2.17)

(Clo)

Analysis of 75 under H and H (Clo)( ). Let us inspect the behaviour of statistic

T5 under both hypotheses
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Under H, églo), We have then with probability larger than 1 —6 exp(—n/18) with respect

t0 (1)) m<a,j<3,

ET, = 0,

V VT, < 2nv/||¢2 exp(—ng) 1.

And so by Chebyshev’s inequality, with probability larger than 1 — o — 6 exp(—n/18)

Ty < 2a72/]|(nq)2 exp(—ng)|1.

Under H 1(7?0) (p). Assume that for C' > 0 large we have

AT > 1> Tpt = e L [PE 0 (i) .

By Cauchy-Schwarz inequality and since for any I > ¢ > J, ng; < 1, this implies

n?|A%exp(—ng) |1 = C[1og?(m) v (n/[@exp(—na) )| (2.18)

If the pre-test accepts the null, then with probability larger than 1 — 2§ — 2n~' —
6 exp(—n/18) on the third sub-sample only, there exists ¢; that depends only on §

such that for all i < d we have |A;| < 55[ %g(") Y M} and so

n

n*\/||A%exp(—ng) |

21og(n)?
)[q ngz()

| exp(—nq 1{ng > 2log(n)}

n M;Lg()l{nq < 2log(n )}} Il

IN
o}
(=%
3

< 5m \/Hexp ) T8 g > 210g(m)

\/Hexp nq g( ) 1{nq < 2log(n )}Hl}

IN

- log(

én \/nexp ) T8 g > 210(m) s + ) Texp(ng)a7
2 =1 2012 log 2

n? [/~ Tlog(n)?[q?1{ng = 2log(n)} | + =" ¢||exp —nq) A7

¢ log(n) + nlog(n) /[ exp(~ng) A7

< éslog(n) [1 +ny/|| exp(—nq)A2H1} , (2.19)

IN
oH

IN

since ), ¢; = 1.
We have from Equation (2.16):

]ETg/n2 = HA2 exp(—ng)||1.
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And from Equation (2.17),

VVIy/n® < 2[\/Ilq2 exp(—ng)lli/n + V/IIA2 exp(—ng)|[1/n + /| At exp(—ng) |y

Let us compare the terms of /VT/n? with ETy/n?.
For the first term, we use Equation (2.18), and we get:

1
Vi@ exp(—ng)ll1/n < | A% exp(—nq)|l1/C = gETz/HQ-

For the second term, we have:

VIIA2 exp(—ng)ll1/n < /|| A2 exp(—ng)[|1 log(n) /n.

So using Equation (2.18), we have:

VIAZexp(ng)li/n < BT/

For the third term, using Equation (2.19), we have with probability larger than
1—28 —2n~1 — 6exp(—n/18):

log

VIATesp(=ng)ll < és[n~210g(m) + 2 Texp(-ng)A7T1].

So by Equation (2.18), we have with probability larger than 1—26—2n"!—6 exp(—n/18):

VA% exp(—ng)||1 < & [n‘Q log?(n) + \;CETg/nQ}
< &(1/C + 1/VC)ETy /n.

And so we have by Chebyshev’s inequality, with probability larger than 1 — a — 26 —
2n~! — 6exp(—n/18):

Ty — ETy| < 2/v/a(1/C +1/VC + é5(1/C + 1/ C))ET.

So if C' > 1, with probability larger than 1 — a — 26 — 2n~! — 6exp(—n/18):

4
‘T2 - ETQ‘ < \/7(1 + 5(5)ET2.
Q

Soif C' > [804_1/2(1 + 65)] 2, we have with probability larger than 1 —a — 2§ — 2n~! —
6 exp(—n/18):

T> — ET»| < ET5/2.

Finally, if C' > [8071/2(1 + 65)] 2, we have with probability larger than 1 — o — 26 —
2n~! — 6exp(—n/18):

T, > ET5/2 > g[log ( \/Hq exp( nq)||1)}

Analysis of t.
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Test 9 compares statistic T5 with empirical threshold 5. So let us study the
variations of f3. Applying Corollary 9 below gives guarantees on the empirical threshold
ty. These can be used in conjunction with the guarantees on the statistic 75 in order
to conclude the proof of Proposition 10.

Theorem 25. We have with probability larger than 1 — 6 — 6 exp(—n/18):

Y OY 1D = 03, — || (ng)2e 1| < —= (|| (ng)%e |1 /2 + 1005 log(n)").

\[

The proof of this theorem is in Section 2.6.7.2.

Corollary 9. We define

1005

Vo

fy = 227121 - 1/(2\/5))1/2\/”1/(1)1/(2)1{1/(3) =0}l + log(n)*.

IfC > [8a—1/2( + ¢sV26~ )] Vv %5?7/_21)/12/2, we have with probability greater than
1—9—6exp(—n/18):

207%/[(nq)? exp(—nq)[ly <tz < g[log ( Vla2 exp(—nq)|x )}

Proof of Corollary 9. By application of Theorem 25, we have with probability greater
than 1 — 0 — 6exp(—n/18):

A 2V0+ 1 ()%l
207 2/|[(nq)2 exp(—ngq)[[1 < 2 <2272 | 2v/5 — 1
- 2010(\f —1/2) ' log(n)*.

So,

“ 2 1
fy < 207112 \/2§+ | (ng)2e=ally + 1/2010(v/3 — 1/2)~L log(n)?
Finally,

. 4-45q~1/2
P L
(V6 —1/2)1/2

[(ng)2e—m4[|; v 1og(n)2) .

O]

(Clo)

Let us now sum up the results leadlng to Proposition 10. Under H;_~, with

probability larger than 1 — §/2 — 2§ — 2n™" — 6exp(—n/18),

Ty < 2(6/2)"2\/||(nq)? exp(—nq)]:.-

And if C > [8(5/2) 12(1 + &5v/26~ )] Y 3»45‘5/21)/1/2, we have with probability greater
than 1 — /2 — 6exp(—n/18):

2(5/2)72/[[(nq)? exp(—ng) [ < 2
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So, under H, (Clo)

, with probability larger than 1 — 36 — 2n~! — 6 exp(—n/18),
Ty < .

2
Under H(Clo)( ), if C > [8(5/2)*1/2(1 + 5V 2(5—1)} , we have with probability larger
than 1 —6/2 — 25 — 2n~! — 6exp(—n/18):

Ty > C/2|log?(n) v (n/le? exp(—na)l11) |

IfC > [8(5/2)—1/2( + ¢sV26~ )] %, we have with probability greater
than 1 — /2 — 6exp(—n/18):

iy < %[log ( Vla® exp(—ng)|x )}

So, under H(Clo)( ), with probability larger than 1 — 35 — 2n~! — 6exp(—n/18),

to <5,

2.6.5 Proof of Proposition 11

Proposition 11 gives guarantees on test ¢1. This time, the proof will only focus on the
variations of T3 since the threshold is not empirical.
Analysis of the moments of T3.

We have

7=y (xW -y W)y = o},

i

So with probability larger than 1 — 6 exp(—n/18) with respect to (fl%))mgzjgg

ET) =n Z A; exp(—ng;). (2.20)

And

VI < ZE(I)(X(U — Y(l))QE(3)1{Y'i(3) =0}
< Z[n(pz + @) + n2A?) exp(—ng;)

< 2nlgexp(—ng) i + [n Y Aj exp(—ng;)| + n®|| exp(—ng) A%,
i

which implies

+nv/|[AZexp(—ng) |1

(2.21)

VT, < V21|l exp(—ng)||1 + i exp(—ng;)

(Clo)

Analysis of 71 under H and H 1(210)(/)). Let us inspect the behaviour of statistic

T7 under both hypothebeb
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Under H(()Srlo). We have with probability larger than 1 — 6 exp(—n/18) with respect to

(T_L»g;]q;))mgzjgg, ET; = 0and VT3 < \/Qan exp(—ngq)|l1. So by Chebyshev’s inequality
with probability larger than 1 — a — 6 exp(—n/18)

2 —
<2l

(07

Note that the result of Proposition 11 is based on the reunion of two conditions. That

is the reason why we will divide the study of H (Clo)( ) into two.
Under H Lﬂlo)( ), analysis 1. Assume first that
, . log(n)
1A > il > Oflaale = Dl v 22, (222
and
A > 1})illy = 2| A < T})il1 (2.23)
We have

> (Ai+2¢) = (pi+a) = A0 = T}l

i>1 i>1

So by Equation (2.22),

YA (C-2)) g (2.24)
1>1 i>1
and
D> AC/(C —2) = |AQ{E = T}l (2.25)

i>1

Then since for any ¢ > I, ¢; < 1/n, Equation (2.24) yields:

ZAe "QZ>ZA6 "QZ>ZA6 > —2)6_12%.

i1 i>1 i>1
And again Equation (2.22) gives:
log(n)
A; ;> —_— .
YAy gz oy
i>1 i>1

So
log(n)
—

Y AC/(C-2)=C

i>1

So for C' large enough, we end up with:

C ‘ log(n
> Avesp(-ng) >  [la(1{i = il v 2],
- n
We then have by Equation (2.20):

BT; =3 Aresp(-na) > ot = i) v va]. (226)
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Now considering Equations (2.23) and (2.25), we have for C' large enough,

3ZAi > QZ’AJ-

i>1 i<l
So
9> A >2 Z 1A,
i>1
that is, by Equation (2.26),
9
§ET1/n > || exp(—ng)A|;. (2.27)

And if the pre-test did not reject the null, then with probability larger than 1 — 26 —
2n~! — 6 exp(—n/18), there exists +00 > c5 > 0 that only depends on § and such that

log(n) ,, 1og<n>> |

n

Al <cs ( @i
If ¢; > log(n)/n, then |A;| < ¢54/¢ilog(n)/n. So

n\/Hexp —nq)A?||; < cs/log(n)lqlli = cs/log(n

If ¢; <log(n)/n, then |A;| < ¢slog(n)/n. So

ny/|| exp(—ng)A2[|1 < v/esnlog(n)l| exp(—ng) Al

Using Equation (2.21), we end up with probability larger than 1 — 26 — 2n~! —
6 exp(—n/18):

VT < (V/2n]lqgexp(—nq)||1 + cs1/logn) + \/n] ZAi exp(—ng;)|

+ca\/nlog \/||exp (—ng)A|ly.

Now let us compare the terms from the standard deviation /V1; with ET7.
For the first term, we have

2(2+ cs)

ET;.
C 1

(v/2n]|gexp(—nq)||1 + csy/logn) < (2 + c5)v/n <

For the second term,

\/n| Z A;jexp(—ng;)| = VETin™Y*n!/4,

i

So, since 2ab < a? 4 b? for any a, b, we have:

\/ny > Ajexp(—ng)| < (nVPETy + v/n)/2 < (n7/? 4+ 2/C)ETy /2.
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For the third term, in the same way,

cs/nlog(n) /|| exp(—ng)Ally < cs(v/nll exp(—ng)Al1log(n) + v/n)/2.

So we have by Equation (2.27):

es/mlog(n) /[ exp(—ng)Al < cs(9/210g(n)/v/7 +2/C)ET /2.

And so by Chebyshev’s inequality, with probability larger than 1 — o — 26 — 2n~!
6 exp(—n/18), we have

Ty —ETh| < ETia" Y2(2(2 4 ¢5)V25-1/C + (n V2 +-2/C) /2 + 5(210;5}) 2/0)/2).

Soif C' > 4a=2(14+4v26~1+¢5(14+2v26-1)), and 2n~/2a~1/2(1 4+ 9¢;5log(n)/2) < 1
(which is satisfied for n large enough), we have with probability larger than 1 — o —
26 —2n~! — 6exp(—n/18):

7> B2 > S [(nlla(ti = )il v Vi

So we have

T > %\/ﬁ

Under H; (Clo )( ), analysis 2. The analysis remains the same as analysis 1, with I
replaced by J.
So the assumptions become:

1A= Il > OlaCti = Thih v 2],
and
1A 2 Thill 2 21806 < Tyl

We then obtain, if C' > 404*1/2(1 +4v26~t 4+ ¢5(1 +2v26~1)), and 2n 1207 12(1 +
9cslog(n)/2) < 1, we have with probability larger than 1—a—25—2n"1 —6 exp(—n/18):

7> S (la(tti = )il v va.
So we have o
Ty > Z\/ﬁ

Finally, the guarantees on the statistic 77 allow us to conclude the proof.

2.6.6 Proofs of Theorem 21 and Corollary 6

Let us prove Theorem 21 by combining all the guarantees on the ensemble of tests.
From Propositions 9, 10, 11, we know that whenever A = 0, all tests accept the null
with probability larger than 1 —55 —2n~! — 6 exp(—n/18). Besides, for ¢s large enough
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depending only on ¢, whenever there exists I > J, such that

I8
> 55{ [(\/f ) v (Y exp(-2ug 1) v a1 > f}mh]
| sl g
Arrq<1{z'2Jq}>i|rl}v[ e ] [y,

at least one test (and so the final test) rejects the null with probability larger than
1—55—2n"! — 6exp(—n/18).

2.6.7 Proofs for the thresholds: Theorems 24 and 25

2.6.7.1 Proof of Theorem 24 for threshold fg/g

Lemma 10. Let Z ~ P(\), where A > 0. It holds that if A > 1,
e~2/3\2/3 19 < E(Z2/3) < 223,

and if A <1,
e ™ <E(Z23) <\

Proof of Lemma 10.
Upper bound on the expectation. The function ¢t — t%/3 is concave. So by
application of Jensen’s inequality, we have:

E(ZQ/?)) < A2/3'

Also we have by definition of the Poisson distribution

B2 =Y P e i

P (1 —1)!
LN ~1/3
= e Z —(j+1) <A
A

We conclude that if A > 1,
E(ZQ/S) < A2/3,

and if A <1,
E(Z%/%) < A

Lower bound on the expectation in the case A > e~2. We have by definition of
the Poisson distribution

N
E(Z2/3):Z (Z_l)'e )\’L 1/3
=1 :

e A Z

0<j<e2r—1 7"

S o=2/3)2/3,-A Z N

f,a

0<j<e2a—1 7"

e}

=

AV

Moo s
—U+1)



2.6. Proofs of the upper bounds: Propositions 8, 9, 10, 11 and Theorem 21 85

because €2\ — 1 > 0 here. Then since j! > /27rjie ™7,

E(Z%/3) > =233 [ 1 - € Z "
v 2”j2Le2AJ ¥
Med
= Vor PN
T j>le 2>\J e AV
J>Le2>\J

where 1/2 < ¢|; <1 such that ¢||e?X = [e2A] because e?A > 1. Finally,

A
—LeQAJ1> '
\/ﬂ(cue) 1-— (Cue)_l

E(ZQ/S) > 6_2/3)\2/3 <1 _

In particular, if A > 1,
E(22/3) Z 672/3)\2/3/2.

Lower bound in all cases. Without any assumption on X it holds that E(Z%/3) >
e,
Conclusion on the lower bound.

So, if A > 1, E(Z%/3) > e=2/3X%/3/2, and if A < 1, B(Z%/3) > \e™?

Lemma 11. Let Z ~ P()), where A > 0. It holds if A > e~?2 that

1

4/3 4/3 8/3 -

and if X < e~? that
E(ZY3) < e \(2Y2 +e).

Proof of Lemma 11. Assume that A > e~2. We have by definition of the Poisson
distribution

B(ZzY%) =Y %e—xizx/s

i>1
Xy A
= D e Y] G
(A 1.
1<i<e?\ i>e2)

< )\4/368/3+6_>\ Z &Z4/3
= ’LZ 9

i>e2 )\
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using the inequality: 4! > i’/e’. Then,

et
R(Z4/3) < \4/3.8/3 Y A3
( ) < e’ +e ';/\ (62)\)21

— MN/3,8/3 4 N Z 413 =i

i>e2 )\

< N/BGE/3 4 oA Z il
i>e2 )\
1

4/3 8/3 | -\
<AV 4e Ve

Now assume that €2\ < 1. Then

Bz =% %e‘%"*/?’

i>1

<e M1+ LT JH

7>0

1
Y 1/3
<e*A|[14+2 —i—g n
j=>1

1/3 1
J!

= e A@2Y3 +e)
O

Proof of Theorem 2. By application of Lemma 10, we have the following bounds on
the expectation of the empirical threshold with probability larger than 1—6 exp(—n/18)

with respect to (ﬁ%))mgg,jgg,
o—2/3
2

2/3

T 1{¢>1/n}

+ [ 2ge a1 q <11/”}Hl < n 2R (Y2 < [ P1{q 2 1/n)|,

+ lg1{g < 1/n}|; .

Now let us consider the standard deviation of the empirical threshold. We have by
application of Lemma 11, with probability larger than 1 — 6 exp(—n/18) with respect
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t0 (1)) m<a.j<3

2PV )23y

< \lasesis ¢ oL semaig 2 1 il
1—e1/2

< \/Hq4/3es/31{q >1/n}1+1+ \/Hn‘l/3(21/3 T ege—r{g < 1/n} s
< \Jla B g > nhlh + 1+ /@17 + o

< Ved3 +144/(21/3 +e) = (.

Then by application of Chebyshev’s inequality, we have with probability greater than
1—p —6exp(—n/18),

—2/3.2/3
1 1fg>1/n}

1

C
+ Hnl/?’qe_"ql{q < l/n}H1 -1

VB
< 02| (Y )Ry

< Hq2/31{q > 1/71}H1

C
+lg1{g < 1/n}, + 715.

Now, on the one hand, we have that
n*??1{q < 1/n} < n'Pq1{qg <1/n},

SO

1 4/3
|(omr) e tta < Umd|| < In¥261{a < 1/n < In 01 {a < 1/

And on the other hand,

| (q vln—l)4/3q21{q > 1/n}| < lle*1{q = 1/n}s.

So with probability larger than 1 — § — 6 exp(—n/18) we have

(=232 + 1)H (q vln_l )4/3qu1
<n 23| (Y23 4 02/3/\/3
< ||e¥* 140 = 1/n}| +1+2Co/V/B.

O
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2.6.7.2 Proof of Theorem 25 for threshold #;

Lemma 12. Consider three independent random vectors YV, Y@ and Y4 distributed
according to P(nq). We obtain the following expectation:

E(lY WY @1{y® = 0}]1) = [[(ng)*e |1
Proof. Firstly,
E([y WY@ 1{y® = o0}1) = [E(vPYP1{y® = o})||,.
Now
E(YDY@1{y® = 0}) = EYDEY@)PY® = 0) = (ng)%e ™.

So
E([Y DY @1{y® = 0}[1) = [|(ng)’e "1

Lemma 13. Consider three independent random vectors ZUN, Z2) and Z®) distributed
according to P(nq) and whose elements are independent, too. We obtain the following
variance:

V(12M2P1{2®) = 0}|1) = [[((ng)® + ng)®e ™" — (ng)*e™?"|)1.
Proof. Each sample Z(®) consists in a vector of independent elements. So
V(|20 221z = 0}|1) = V(2 2P 1{2®) = 0}
Now

V(ZNZ@1{Z0) = 0}) = [E(2D))E((Z®)) - B(Z20)*E(22)7] B2 = 0)

by independence between Z W, Zz@ and ZG).
And
E((ZM)%) = BE((Z®)?) = (nq)* + nq.

So
V{12V Z221{2® = 0}[|1) = [|(ng)* + ng)®e ™ — (ng)*e™ |1
O

Proof of Theorem 25. By application of lemma 12, we have for the expectation of the
empirical threshold with probability larger than 1 — 6 exp(—n/18) with respect to

() ) mea,j<s:
E(YDY@1{Yy ) = 0}[|y) = [|(ng)2e™"||;.

Then by application of lemma 13, we have for the standard deviation of the empirical
threshold with probability larger than 1 — 6 exp(—n/18) with respect to (’fl%))mgzjgg,:

\/V(HY“)Y(Q)l{Y(?’) = 0}[lh) < V2(Vl[(ng)*e4][1 + /]| (ng)%e=4J1).

In particular,
E([YWYy@1{y® = 0}1/n*) = [lg% |1,
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and

\/V(IIY(l)Y(2)1{Y(3) = 0}[l1/n?) < V2(V/llg'e ]l + Vlla2e4]l1/n).

Let us compare both terms of the standard deviation with the expectation.
Firstly,

VI@e 1 /n < 1/2(llq%e V6 /4 + 4/ (Vén?))
< 1/2(/lq%e " |1V3 /4 + 4log(n)/ (Von?).

Secondly, for an upper bound on +/|g*e="9|;, we consider two regimes.
Study of the large g¢;’s.

We consider ¢; > 5log(n)/n. Then we have the following upper bound on the
number of such ¢;’s,

#{ilgi = 5log(n)/n} < 1/(51og(n)/n).

So

Vllgtem11{g > 5log(n)/n}|y < n”*/\/5logn < 3log(n)"/n”.

Study of the small g;’s.
We consider ¢; < 5log(n)/n.

Vllgte1{g < 51og(n)/n}l1 < 5log(n)/nv/[l¢e="4ls

< 1/2(|l¢*e ™1 V5 /4 + 1001og(n)?/ (Vén?))
< 1/2(||¢%e |1 V8 /4 + 2000 log(n)* /(V'6n?)).

Finally,

VV(IYOYO1{Y® = 0} /n?)

< ;E(HYU)Y(?M{Y@ = 0}]l1/n?) + 1005 log(n)*/(v/on?).

So by application of Chebyshev’s inequality, we have with probability greater than
1—9—6exp(—n/18):

Y . 1005
Y OY @Y = 0}ls — [[(ng)*e™l1| < 1/2]|(ng)*e ™ + = log(n)".

O

2.7 Proofs of the lower bounds: Propositions 12, 13, 14
and Theorem 22

2.7.1 Proof of Propositions 12

The lower bound obtained in Valiant and Valiant (2017) and Balakrishnan and Wasser-
man (2017a) for identity testing will also be useful to us as a lower bound for closeness
testing.

Proof of Proposition 12 and adaptation to Theorem 22. As a corollary from Theorem 1
in Balakrishnan and Wasserman (2017a), there exists a constant ¢, > 0 that depends
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only on ~ such that for any ¢ € P,

% Clo Clo *
p’y(H(gﬂr )’ H{,ﬂ' )(p7)77;1(010))
Clfa i<t 4 |
zc’vmlm[ NG VE‘FHQ(.)(l{’LZI})iHl :

In particular, taking ¢ = m, there exists a constant ciy > ( that depends only on v and
such that

* Cl Cl *
p’y(H(ngO)’ Hl(,ﬂ'O) (p'y)v 7;L(Id))

ImtP g2 <i < 1l
[ ) { NG Dilh \/%—}—H?T(_)(l{izl})inl]'

/ .
> Cy mlm

O

We then adapt Proposition 12 to the purpose of obtaining Theorem 22.

Proposition 15. Let m € P and v > 0. There ewists a constant c, > 0 that depends
3/4
only on ~y such that p*(HéSrlo), H{S}O) (pf;),’ﬁl(ao)) > % [ /3 L , v 1} :

y (mvn-1)4/3
Proof of Proposition 15. From Proposition 12, there exists a constant c'7 > 0 that
depends only on v and such that

* Clo Clo % o
pE(HSSO, HO (p2), T,C))

Y
CePa <<t |
> ¢, min — VoV (L = 1)

Let I* denote one of the I’s where the minimum from the right-hand side of the
previous inequality is attained.
Case 1: || y(1{i > I*})i|l1 > 1/2. The result follows immediately.

Case 2: ||m(y(1{i > I*})illi < 1/2. So w2 (1{i < I*})]1 > 1/2 since ||x]1 = 1,

¢)
implying that p% > 0’7(1/2)3/4/\/5.
Subcase 1: I* > Jp. We have ||m(y(1{i > I*})i|l1 > |[#*(1{i > I*})i|l1v/n.
Subcase 2: I* < J.. Having for all J, >1i > I*, ) = 1/n implies that we have

2/3 s .
|72 (T > i > Pl <03 my (1T >0 > TPl

And so ) 4
Im (s = i > P <0l (1T 2 0> )il

since ||m()(1{Jr > i > I"});i|h < 1.
Finally

2/3 : * 3/4 ) .
which implies that I* must be larger than J;. This concludes the proof in any case. [

This concludes the proof of Proposition 12 .
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2.7.2 Classical method for proving lower bounds: the Bayesian ap-
proach

Clo)

Let us fix some v € (0,1). Finding a lower bound on pi‘y(H(()Jr 7 f T(Clo)))

1w »/n
amounts to finding a real number p such that R(Hésrlo), H{S:O) (p),0,) > ~ for any test
. We now apply a Bayesian approach. Let («, 3) € [0,1) such that o+ < 1. Let 1y
and 11, be distributions such that for any p > 0,
CI CI
w(HGL) = 1= a, v (H{S () 21 - 5.

1,7

Clo)

So for any én € ’771( , we in the same way as in Lemma 2 from Section 1.4.2.

A~

RHSZ HG (0),00) = 1 — dpy (Poy, Buy) — a — B, (2.28)

where dpy denotes the total variation distance. Thus, the lower bound that is obtained
heavily relies on the choice of 1y and vy.

2.7.3 Proof of Proposition 13

Let us prove the lower bound stated in Proposition 13. It heavily relies on the Bayesian
approach presented in Section 2.7.2. Let us recall the definition of I, . Set for v > 0,
with the convention minj<4 0 = d,

I,» = min {{j ) < NN E Zexp(—2mr(¢))7r(2i) < Cr}

Jr<j<d >
- (2.29)
NG:Y m< Y. W(i)}},
i>] Jr<i<j
where
Vi exp(=2(1 + v)nm;)
Cr = . (2.30)

n

In what follows, we also consider for any i < d, the quantity ¢} € [0,1/2] that we will
specify later.

Definition of some measures. We assume that 7 € P is fixed such that for any
i <j <d, we have m; > m;. Let 0 < & < 1/8 and 4[1 V (32log(1/§))?] < M < /n.
We define A C {1,...,d} such that for any i € Z where [S;(|logy(n)] + i)| >
a/log((]7| +1)/7), we have that ANSz(|logs(n)]| +14) are the ||Sr(|logy(n)|+1)|/M |
largest elements of Sr(|logy(n)] + 7). Note that Y ,m < 2/M < 1/2. Let A" =
ANn{Jz,...,d}.

Let Ur 4 be the discrete distribution that is uniform over {m;,7 € A}, and we
will write for any i € A, Ur a({m}) = 1/|A|. We will now work on the definition of
appropriate measures corresponding to (¢,p). Conditional to two vectors ¢, p € RT9,
we define

Agp= H (P(ngi) ® P(np;)) -
7
Definition of Ag: First, for any i € A we will consider independent ¢; ~ Uy 4, and
otherwise set ¢; = m; for any 7 ¢ A. We write Ag for the distribution A, 4, when ¢ is
defined as before:

Ao = Eq(Aqvq%
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where [, is the expectation according to the distribution of g¢.

Definition of Ay: We consider ¢ defined as above. For any i € A, we know that there
exists j; such that ¢; = m;,. Let us write §; for independent random variables that
are uniform in {e7,, —¢}.} if i € A’, and 0 otherwise. Then set for any i € A: define
pi = ¢i(1+¢&;) and for any i ¢ A: define p; = m;. We write Ay for the distribution Ay,
averaged over ¢, p. So

A =Eqp(Agp),
where [E, ,, is the expectation according to the distribution of ¢, p —i.e. according to ¢, &.

Definition of Ag: Now, for any ¢ € A we will consider independent ¢; = ¢; ~ Uxr 4.

Then for any ¢ € A: set ¢; = m; (1 - %). We write Ay for the distribution
j J

Ag g when ¢ is defined as before:
Ao = E4(Agq),
where Ej is the expectation according to the distribution of ¢ — i.e. according to g.

Definition of A;: We consider ¢, ¢, § defined as above. Then for any i € A, set p; =

pi = q(1+¢&). Forany i € A, set p; = m; <1 — %). We write A; for the
j j

distribution A ; averaged over ¢, p. So
A1 =Egp(Agp),

where [Eg 5 is the expectation according to the distribution of ¢,p — i.e. according to
¢,§. Note that >, ¢ =1=>",p;.

Properties of Ay and A;, and bound on their total variation distance. We
first prove the following lemma, which implies that Ag and A; take values in P, with
high probability.

Lemma 14. Assume that M > 4(161og2/8)?, and that a > 2. There exists a universal
constant ¢ > 0 such that we have with probability larger than 1 — § — ¢y with respect to
G that ¢ € Py, and with probability larger than 1 — § — ¢y with respect to p that p € P;.

We now turn to dpy (Ao, A1) and state the following lemmas which will help us
conclude on a bound on dry (Ag, Aq).

Lemma 15. Let 7 € (RT)? such that ;7 < 1 and such that it is ordered in
decreasing order, i.e. Vi < j < d, m; > mj. We remind the reader that J := Jr. Let
1>u>0,v>0. Then there exists e* € R? such that for any i < d

e ¢ c[0,1/2] and €f =0 for any i such that m; > 1/n.

o Y. m2ei?exp(—2nm;) < u\/Zi ™ exP(n_2(1+v)mri) = uCy.
o we have et < \/ﬁ[(l/n) A /CrJ T, n) A /2].

o and we have

Zi:m&;k > [[ Z \/jgl] V. UCW(;;:;_ J)] /\[ %Zm}

i>Ty i>J




2.7. Proofs of the lower bounds: Propositions 12, 13, 14 and Theorem 22 93

We show the following lemma which will help us conclude on a bound on dry (A, A1).

Lemma 16. Let w satisfying the hypotheses of Lemma 15. We take €* associated with
m as in Lemma 15 for some u > 0,v > 0. Write A\ = nw. There exists a constant
¢y > 0 that depends only on v such that the following holds. Let & = £y be a random
variable that depends on 0 and takes a random wvalue uniformly in {5;-, —8;7} when
0 = \j = nmj. Write Uy for the uniform distribution over {\; = nm;,i < d}. We set
for e* € [0,1]¢, conditionally on 0:

Yl = P(9)®2’ vo = Eg~u, (VO\G)v

and

P(O(1 +€)) + P(6(1 - €))|
Ve = P(0) ® 5 v =By e(Vipe)-

We have

dry (v§?, vP?) < Ve,
foru < &1, i.e. for u smaller than a constant that depends only on v.

Let w > 0 and v > 0. We first apply Lemma 15 to w sorted in decreasing order,
which leads to the definition of a vector denoted as &*. Then we apply Lemma 15 to m
restricted to A and sorted in decreasing order, which defines a vector denoted as £*.

Since

Z Z 7rj2- exp(—2(1 + v)nm;) < 4GM7

n
i:| S ([logo (n) | +i)|<ar/log((|i]+1) /) F€Sx ([loga (n) | +1)

we have by definition of £* in Lemma 15 that if |72 exp(—2(1+v)n7||3 > 8aM7'bigl/7)
then &*/(8M) < &F, where we assume that M > 4(16log2/6)?, and that a > 2.

From now on we take * = £*/(8M). Since £*/(8M) < £, we can apply Lemma 16
to the restriction of 7 and £* to A, so we have that there exists ¢, > 0 such that for

u < &t
drv (Ao, A1) < v/ Epu.

Total variation distance between Poisson distributions, and Multinomial dis-
tributions. We define the following distribution: Mg s, n, = M(n1,q) ® M(ng, p).
Let D=P(n),q)and D' =P(ny . p).

By definition of the total variation distance, we have

drv [Eg (ay 0)~D22 (Mg gl n)s B p, (1 i2) ~ DD (Mg ol )]

drv |Eg (a1 fin)~D22| (71 72) el /2,3n/212 (M gl 72)

B 5.(11,72)~D&D!|(71,72)€[n/2,3n/2)2 (M s 72)

IN

minD//E{D®2’D®D/} Pq,ﬁ,(ﬁlﬁz)’vp” (’fL € [TL/2, 31’L/2])

e B i e (. i2) /2,302,
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This implies for M > 4(321log(1/5))?
drvy [Eq,(ﬁl,ﬁ2)~D®2 (M3 g1a1,70)5 B p, (71 o)~ D@D (Mq,pml,ﬁg)]

drv |Eg (a1,7in)~D%2| (1 02)eln/2,3n/212 (M gl 7z )

B 5,(11,712)~D&D!|(71,72) €[n/2,3n/2)2 (M plin 75)

<
- 1 —2exp(—n/48) — ¢

+2exp(—n/48) + 6

< d1v | Bg (g o) ~D52| (1 2) €l /2,30/2)2 (M glian 22 )

Eg 5,11 ,7v2) ~ DD (71 ,702) €[/ 2,30/ 212 (MG plin 42) | + 8 exp(—n/48) + 46,

for n > 2% and 6 < 1/8. Now we have by Theorem 2,
dry [Bg o, 20)~0o2 (Mg glin i) B, i)~ DD (Mgl ng)] = drv (Ao, Ar).
And so when combined with the previously displayed equation

dry (Ao, A1) > —8exp(—n/48) — 46

+ drv | Eg (4 )~ D22 (22 €ln/2,3n/212 (Mg gl 2z

B 5,(41,72)~D@D!| (71 72)€[n/2,3n/2)2 (M i 7s) | -
(2.31)

Conclusion. Consider an event of probability larger than 1 — § with respect to ¢, &
such that for some p > 0 we have

Z @i — pil = Zqz'|§i| = Z qil&| > p.

i ieA ie A’
So we have by Equation (2.31) and Lemma 14 that under the condition that n > 28V M?,
5 <1/8, M > 4[1V (3210g(1/8))?], and |72 exp(—2(1 + v)nr||3 > 8aM Y ELD then
for any test 0, € 771(010)

o o)/ —\ A n —
R(‘HO(,CT: )7H1(ST1 )(P)aem/ﬂ) >1—8exp (—4—8> — 70 — ¢y — \/éyu.

We now present the following lemma.
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Lemma 17. It holds with probability larger than 1 — ¢ that

> léila

i€ A

>

s j > w2 exp(—2(1 + v)nm;) U
[ 5 5 stz VB AR,

121y,

_ gall +log(1/7))
) n

1
8M?

1
nM
This implies that we can take p as in the lemma, which concludes the proof.

Proof of Lemma 14. Study of |S4(|logy(n)] + i) N Al and |Sp(|logy(n) ]| + i) N Al.
For any ¢ such that Sy ([logy(n)| +4)| > av/log((|i| +1)/7v), we have |S;(|logy(n)| +
i) N A| ~ Bin(|A|, [ |Sx([loga(n)] 4+ i)|/2]/|A]), by definition of the distribution of ¢
on A. By Hoeffding’s inequality, we have for any € > 0, that with probability larger
than 1 — 2 exp(—2¢2n) with respect to the distribution of §

Sg([loga(n)] + i) N Al — [|Sx([loga(n)] 4 i) N A[/2]| < en.

So with probability larger than 1 — 2 exp(—2|S,(|logy(n)| +i)|>/16) according to the
distribution of ¢

[153([loga (1) | +4) N A[ = [[Sx([loga(n) | +17) N Al/2]| < [Sx([loga(n)] + i) NAl/4.

So for any ¢ such that |Sy(|logy(n)]|+14)| > a+/log((|7| + 1)/7), we have with probability
larger than 1 — 2 exp(—a?log((|i| + 1)/7)) with respect to the distribution of ¢ that

[153(lloga(n)] +7) N A[ = [[Sx([loga(n) | +4) N A[/2]] < |Sx([loga(n) ] +4) N Al /4.

So whenever a > 1, there exists a constant ¢, > 0 that depends only on a and such that
we have with probability larger than 1 — 23", exp(—a®log(([i| +1)/7)) > 1 — oy
with respect to the distribution of p that for all ¢ such that |S,(|logy(n)]| + 7)| >

a/log((]i| + 1)/v) at the same time,

215w (Lloga(m)] +1) NLA| < [Sq(lloga(m)] +1)NAJ < *|Sx(lloga(m)] +i) AL (2.52)

Now since €} € [0,1/2] we know that for any i € A we have

qgi <p; <

| W

Gi-

[N R

And so we also know that with probability larger than 1 — ¢,y with respect to the
distribution of p for all ¢ € Z such that |S;(|logy(n)| +14)| > ay/log((]i| +1)/~) at the

same time,

Jj+1 Jj+2

1S ([loga(m) | +)NAl < 3 [S3(lloga(m)] +7)0A1 < © 3 S+([logy(n)] +i) 1Al
=1 =2

(2.33)
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Study of the rescaled coefficients outside .A. We define the following events

Hy={]> (m—m)| < 16M 'log(2/8)},  Hy={> (a—m)| < 16M 'log(2/5)}.
IeA leA
(2.34)

We remind that for ¢ € A we have p; = p; and ¢; = ¢;. So the events H,, and H, are very
informative with respect to p,§. Now, max;jc 4 7; < 1 and since |S5(i) N A|/|S5(2)| <
1/M for any i € Z and \/n > M. So by Bernstein’s inequality, we have with probability
larger than 1 — ¢ with respect to p and p that H, holds and with probability larger
than 1 — ¢ with respect to ¢ and ¢ that H, holds.
So if v/n > M > 4(161log(2/6))?, we have with probability larger than 1 — § with

respect to ¢ that for any j € A,

1 -

§7Tj < q; < 575,
and also with probability larger than 1 — § with respect to p that for any j & A,

1 _ 3
5T SPj S 57
And so finally we have with probability larger than 1 — § with respect to ¢ that for
any 1,
it1 42
1S-(1) N A < Y 1S5 N ACT < Y 1SR(i) N A%
j=i—1 j=i—2

Similarly we have with probability larger than 1 — ¢ with respect to p that for any 4,

i+l i+2
[Sx(1) N A < D 1S() N A< Y ISR N A
j=i-1 j=i—2

Conclusion. Combining both studies on A and AY, we get that if M > 4(161og2/0)?,
we have with probability larger than 1 — § — ¢,y with respect to ¢ that § € P, and
with probability larger than 1 — § — ¢,y with respect to p that p € P.

O

Proof of Lemma 16. Define the discrete uniform distribution ¢ such that U\({\;i}) =
1/d. We will now work on the definition of appropriate measures for (p, q). Let 6 ~ U
and ¢ taking value € when 60 takes value )\;. We reparametrize { by A, and we set

H=r—— > <

{Z sy = 0} {inm; =0}

with the convention 0/0 = 0. Note that by definition of €*, we have from Lemma 15

e & €10,1] and & = 0 for any 6 > 1.

o 640 < \/ﬁ[n C/Tym A 1]
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e By definition of /) and Lemma 15

2: 7T2 —2 1+v n7r1
2402 —26 — 2 *2 —2nm; < \/
/ 026G du(0) = — § n2e] Tu -

02e—2(1+0)0 414, (0
:u\/f ¢ - ©0). (2.35)

Bound on the total variation. Let us dominate the total variation distance with
the chi-squared distance 2.

For two distributions 74, 7y such that 77 is absolutely continuous with respect to
Iy, then

din

. dv
drv (Do, 1) = / - 1H

< (Ego [(ZZ;)Q] — 1) " = VX*(%0,71)-

By the tensorization property of the chi-squared distance and by application of the

inequality above to I/®d, l/?d we have

dry (v&, 12 < \/X (4, vPd) = \/(1 + x2(vo,v1))¢ — 1. (2.36)

Now, we have by the law of total probability for any m,m’ > 0

, e—299m+m’
Vo(m, m ) = WWA(G),
and
/ Le209m+m o m' €0 m'
nmm) = [ 55 O )™ L )™ ) 0).
So
X" (vo, 1)
- Z (f o e [—efof (1 — &)™ /2 — e %0 (1 + &)™ /2 + 1]dUx (6))?
mlm/! [ gm+m"e=20414, (9)
-y [ (807" =200 Dy o) Dy (o)l () (6 .
mlm/! [ m+me=2014, (0) ’ .
where

fol(1 = &)™ e+ &)
2 2

We will analyse the terms of this sum depending on the value of m + m/.

Dy(m) = — + 1.

Analysis of the terms in Equation (2.37). Term for m +m’ = 0. We have

Dy(0) = — cosh(&0) + 1 and Dy(0)Dy/(0) < (00'&96)?,
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since &g < 1.
And so

[ J 200 Dy Dyt @) ) _ (S 0% Pl )
J e7duy (0) - J e 2dUx(0)

f 92672(1+v)9du/\ (0) Co

Y N

)

where we obtained the second inequality by Equation (2.35) and for ¢, < +oo that
depends only on v > 0 and such that

¢y =sup [e 29 (1 v 92)] (2.38)
0>0

Term for m + m’ = 1. We have then
Dy(1) = — cosh(&p0) + 1 + &g sinh(0&p)
and so since & € [0,1] and 0&p € [0, &y, we have
Dy(1) Dy (1) < 06" (Egpr)*.
So the term for m +m’ = 1 can be bounded as

[ [ 06'e=20+9)(Dy(0) Dy (0) 4 Dyg(1) Dyr (1)) dly (6)dly (6")
[ 0e=20dL4\(6)

1 2
< [ 0e=20du4y(6) (/6_292(959)2617/{/\(00
f 926_2(1+U)6d2/[)\((9) U

[0 a6 =

< 4u

where we obtained the second inequality by Equation (2.35) and the last by Definition
of ¢, in Equation (2.38).

Term for m +m' = 2. We have then
Dy(2) = — cosh(&6) + 1 + 2&y sinh(6¢y) — &5 cosh(6Ep)
and again since &y € [0,1] and 0&p € [0, &y|, we have

Dy(2)Dy/(2) = 4(&pler)%
So the term for m + m’ = 2 can be bounded as

J [ (60')2e=29 (Dy(0) Dy (0) /2 + Dy(1) Dy (1) + Dy(2) Dy (2) /2)dlx (8) dtn (6)
f92€_20dU)\(9)
1

16w
< 7%7

where we obtain the second inequality by Equation (2.35).
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Term for m + m’ > 3. We have
Dy(m) < 2m2¢2. (2.39)
Subcase 1: m +m’ = 3. We have by Equation (2.39)
—260 93 (gm+2¢2 2
J [ (60')%e* Do(m) Dy (m)ddy (0)dUA(8") _ (f e 70°(2 £9>dUA(9))
m!m/! [ 63e=20dUy(9) —  m!m!! [ 63e20dUy(9)
2
(e 20(00) % (0) )
T 63— 2dLiy(0)
3 2]?
n [ZigJ mi(miE;) }
dy; 77136_27”” .

< 22m+4

Finally, by definition of & and ¢} and since in any case efm; < /uCr/I,  (see
Lemma 15), we have

2
3 uCr
[ [(00")2e=2 Dy(m) Dy (m)dUy(0)dUx(6") - 22m+4” [Zig]m 217],7,}
m!m/! [ §3e=20dU () = 4y, mde—2mn

This implies, since Y ;; ;™ > > ; ;m in the definition of I, » (see Lemma 15),

2
m!m/! [ §3e=20dU, (0) I2 ny., 7T3e—27”

2

2,2 M . T

< 22m+2u C?r |:ZJ§2<I“’“ Z}
- Iz nd iﬂfe—%i”

by Cauchy-Schwarz inequality. Then

J J(86")%e=>0 Dyg(m) Dy (m)ddy (8) didx(¢")
m!m/! [ 03e=20dU\(0)

2 2
< 22m+ZU2n[ m exp(—2(1 + U)m")} [EJS’KIM i

3,—2mn ’
Iv,7r nzz m; € g

by Definition of C; in Equation (2.30). In particular,

Zﬂ'? exp(—2(1 + v)nm;) Z 72 exp(—2(1 + v)nm;) Z 72 exp(—2(1 + v)nm;)
] Z<Iv Ed I <t

< 2¢%(14v) Z 72 exp(—2(1 + v)nm;),
i<lyn
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since ) 3, ;M < jcicp ™ and for all i > J we have nm; < 1. So, once we plug
the last inequality in, we obtain:

[ [(00")2e=2 Dy(m) Dyr (m)dUy (0)dUx(6")
m!m/! [ §3e=20dU\(6)

a2 7| Ticr,,, mresp(=2(1+ 0)nm)| [ Zcier, , 7]

Iy d>, mde2min

u? n[ZKIM 7Tl-2 exp(—2(1+ U)nm)} [ZJSKIM W?]

3 _o-r
Iy dzz‘gfm moe2mn

n[Sicr,, whexp(=2(1 + vjnm)|
dy_, Wf’e*%m ’

< 22m+3€2(1+v)

< 22m+362(1+v)

< 92m+32(14v),,2

because for any a; > ... > ay,, >0, by > ... > by, > 0, we have ) a; ) b; <
Iy Y aib;. Then nme” 2" < ¢, by Equation (2.38) and for any 4, this implies

[ J(60'2¢=% Dy(m) Do (m)didy (0)dUs(6') _ 22m+362(1+U)CUU2 2962(””)0”&2

m!m’! [ §3e=20dU(0) d d’

IN

Subcase 2: m +m’ > 4. We have by Equation (2.39)

J S (86" 200 Dy(m) Dy (m) dUy (6)dUy (6)
mlm/! [ gm+me=20414, ()
(f6—209m+m’(2m+2£g)du)\(9)>2
m!m/! [ gm+m'e=20414, (0)
ot ([ =200 Bty (0))
mlm/l [ gmtm e=20414, (6)

22m+4 09 ‘4
/ e20gm+ chugy (9),

- m!Im/!
where the last inequality comes by application of Cauchy-Schwarz inequality. And so
since g = 0 for any 6 > 1, we have

J S (06" =200 Dy (m) Dyr (m)dy (0)dly (6")

m!m/! [ g+ e=20414, (6)
22m+4

/ e~ 209m+m =4 (9¢)41{6 < 1}dUy(6).

- mlm/!
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Then, since m +m’ > 4,

[ [(00")™+m e=20+) Dy (m) Dgr (m)dUy (0)dUx (6"
m!m!l [ g+ e=20414, (6)
22m+4
<

— /(059)41{9 < 1}dUy(0)

22m+4 TL4

T e

m!m/! d

7
22m+462 n4 u2 CT2I'

mm/l d I,.’

since, by definition of &} in Lemma 15, mef < \/uCr/L,r and Y, (mie})? < uCre?
using the fact that e = 0 for m; > 1/n. By Equation (2.40), this 1mphes

ff(&ﬁ’)m+m'e*2(9+9/)D9(m)D9/(m)dL{,\(H)dLlA(G’) < 22m+4€227u2
mlm!l [ gm+m'e=20414, (6) — mlm/! 4’

Conclusion on the distance between the two distributions. Now, we plug the
bounds we found for each term back in Equation (2.37) and we obtain

[ [(06")ym+m e=20+0") D (m) D (m)dUy (6)dU (6")
I/O 7/1 Z m!m/!f0m+m e—QGdM)\(Q)

Coll o 16w 92m+4,2 992

Cu 10U 9 _2(14v) ¥
d+4d+du+2e S0+ >

IN

m!m/l d
m,m’:m+m'>4

22m+4€2 2’LL
9 2 1+v
< (5+16+2% U+Z —

25 7
— (5+16+ 2962(1+”))gcv + Z “

< (5ey + 16¢, + 29e2(1+0) e 4 2567)E < Ev%,

=9

for u < 1 and where ¢, is a constant that depends only on v and é, is bounded away
from 0 for v > 0. And so by Equation (2.36) we have

d
dry (v, 18 < \/<1 + Ev%) 1< exp(@u) —1 < /e,

for u < &', i.e. for u smaller than a constant that depends only on v. O

Proof of Lemma 17. Note that

7192‘17@ gil = q&[Z‘M%}:ZEIWu

€A €A

Vo Y leila] = - Voo, a(lgila) < Y (efm)?

€A €A €A

and
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Let a > 0. By Chebyshev’s inequality, we know that with probability larger than 1 — «

with respect to (q,&),
; 8*271'.2
Z &ilgi > Ze;wi — W'
icA icA

Now, by definition of A and (¢}); we have

* 1 —
€A i iEN:| S (|logy (n) | +1)| <ay/log(i/~) JESx (|loga (n) | +i)
First note that

> .7

1€N:| Sy (|logy (n) |+i)|<ay/log(i/~) €5 ([loga (n) | +4)

SZGWQ i §8a(1+l(;g(1/’y)).

. n
€N

Also by application of Lemma 15, where we associate &; to the ordered version of T,
we have

e [ 3 Y] il | JEFRC T )

S V2 21, n

So we conclude that

z : *
67,'7Ti

€A

S 1
— 8M?

(5 ) Vil ) Ertonl 20+ “)’”")] \ \/ﬂ

o V2 21y« n

_ gall +log(1/7))

So we have with probability larger than 1 — 9,

> lilas

€A

[ 5 ) it SR

— 2
8M e~ V2 21, 1 n
1 ga(l+log(1/y))
nMod n '

Proof of Lemma 15. We prove this lemma by defining suitable £}’s.
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Step 1: Proof that /Cr/I,» < ? We have
C2n? < Z 72 exp(—2(1 + v)nm;)

= Z 72 exp(—2(1 + v)nm;) Z 72 exp(—2(1 + v)nm;)
ig[v,ﬂ— 7/21117\'

T

\ 211) S\
as 72 exp(—2nm;) < 4. So we have that C < 212‘7 or Cp < , and so in any case
1 n

which implies

VO _2f VI _ V3

A= n1/4—n’

v, 1 K

(2.40)

since 0 < u < 1.
Step 2: Definition of ¢} for i > I, » or i < J. Take for all i < J that €] = 0. Take

for all other ¢ > I, »
= Va2

We have for any ¢ > I, »

e ¢ €0,1], and gfm; < \/ﬁ[(l/n) A CW/(QIWF)}, since by definition of I, » we
know that m; < (1/n) A\/Cr/Iyr if i > I«

e by definition of I, » we have

uClhr

Z m2er? exp(—2nm;) < 5

21y,

e and also
. U
' E E; Ty = 5 E 5. (2.41)

Step 3: Definition of ¢} for 7 < I, ; in three different cases. If I, ; < J, the &7
are already defined for all ¢ > J, and by definition of €],

ng Z\fﬂz_{z\fﬂz} [UW_J)M}

i>J 2IU,TF

This concludes the proof in that case. We assume from now on that I, » > J, then by
definition of I, », at least one of the constraints in Equation (2.29) must be saturated.

Case 1: third constraint saturated but not the first one: > .., | m >
ZJSKIU _ymiand 7y, 1 < Cr/Iyx N (1/n). We set €], 1= \/g and for any
i <Iyr—1, weset ef =0. Note that €7 | <landej w1 < \/E[(l/n) A
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\/C'W/Iwr] We also have by definition of ¢} for i > I,, » and by Equation (2.29)

C
Z m2el? exp(—2nm;) < u27r7

121y,

and so

Zﬂ'2 2 exp(—2nm;) = Z n2ei? exp(—2nm;) < uCy.
121y n—1

Moreover by saturation of the third constraint
* J—
E TiE; = \/7 E 7Tl \/g E 71'7;,
i>Tyn—1 i>1pm— J<i<ly n—
and so
E m = E me > \/7 E .
i 5 J<i

This concludes the proof in this case.

Case 2: second constraint saturated but not the first one:

Zizlv,w_l 771'2 exp(—2nm;) > Cr and 77,1 < \/Cr /Iy x. We have

Z 72 > Z 72 exp(—2nm;) > Cy. (2.42)

>y -1 i>1y -1
Moreover by definition of €} for ¢ > I, » and by Equation (2.29) we have
uCy

Z 272 exp(—2nm;) <

121y,

Set EZ = vu/2 and for all i < I, r — 1, we set €7 = 0. Note that ajm_l <1 and

L1 Tlom=1 < \/E[ Cr/ (2L,x) A (1/?1)} . So from the last displayed equation and
the definition of &

E er2n? exp(—2nm;) < uCly,
>y n—1

and by Equation (2.42)

25*2 2 _ Z Z 7_[_

i>Iy 1 z>I,, o

Since for all © > I, » — 1 we have m; <7y, 1 < VCr /1y and €f <1, we have thus

Z % \/E > UCWIUJI— > UCﬂ— I’U,T(' —J
g, = 5 T > >4/ > a3
i I 2 2 Vivr

7,>U7r

This concludes the proof in this case with Equation (2.41).



2.7. Proofs of the lower bounds: Propositions 12, 13, 14 and Theorem 22 105

Case 3: first constraint saturated, i.e. 77, 1 > VCr/lyx. We set for any
1< J,ef =0and for any J <1 < I, 5,

N vuCr

g = ———

’ v 21v,7r7ri .

Note that for any %

VuC
e; €10,1], and, eim < ket
21y~

< \/a[ Cr/(2Ly ) A (1/n)},

by Equation (2.40). Moreover we have

C
Z %712 exp(—2nm;) < u27r7
J<i<lyx

and so by definition of I, » in Equation (2.29) and of the ] we have

i

Z er?n? exp(—2nm;) < uCy.
7

Moreover
Z eim; > ug’” M
I<ihn Vi
This concludes the proof in this case with Equation (2.41). O

2.7.4 Proof of Proposition 14

The proof of this proposition is similar to the proof of Proposition 13, except that the
measures A; and A; change, and that we need to adapt Lemma 16. We therefore take
the same notations as in the proof of Proposition 13, but redefine &, p, p, A1, A;.

Definition of A1: We consider ¢, A, A" defined as in the proof of Proposition 13.
Write

m=n [ pL{p < 1/n)dra(p) < 1.

For any i € A, let & be a random variable that is uniform in {0,2m} if i € A’, and
equal to g; otherwise. For any i ¢ A: define p; = ¢; = m;. We write A; for the
distribution A, averaged over ¢,p as

A = Eq,p(Aq,p)a

where E, ), is the expectation according to the distribution of (g, p), i.e. with respect
to q,&.
A1 and p are then redefined as in Proposition 13 as a renormalised version of Aj,p
using A such that >, p; = 1.

We prove the following lemma in order to conclude on a bound on dpy (Ag, A1).

Lemma 18. Let 7 € R*? be such that > < 1 be a vector ordered in decreasing
order, and let v > 0. There exists a universal constant h > 0 such that if |72 exp(—2(1+
v)nm)||1 < h/n?, then the following holds.
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Write A = nm. Let Uy, be the uniform distribution over the values of the vector
A =nm. Define the probability distribution

1
V — 5[52”@ +50],

i.e. 2m times the outcome of a Bernoulli distribution of parameter 1/2. We now
consider

vy =vg = /P(9)®2dlxl>\(9),

and
v = / / P(0)  P(0')dV (0')dlx (0).
Then we have
dry (v24, %) < 69¢21H0)p,

We use this lemma instead of Lemma 16 in the proof of Proposition 13. By
application of Lemma 18 on 7 restricted to A, we have dry (Ao, A1) < 69¢2(1+v) b, We
can then proceed as in the proof of Proposition 13 to prove the proposition, together
with the use of the following lemma instead of Lemma 17, to conclude the proof.

Lemma 19. It holds with probability larger than 1 — « that

L 1 , /1 (1+1log(1/v)) .

Proof of Lemma 19. We remind that ¢ ~ Z/{;?d, and np ~ V(fj) and are independent.
Note that as in the proof of Lemma 17

L 1 _ 1 (1+41og(1/7v))
E(gp > G —pil = > 5 [m+ \m—2m|} > mllﬂl{w <1/n}lh —8at—— ",
7 ic A/

and
V(q,p) Z |Qi - pi‘ =d- V(q1,p1)‘q1 - p1| < 4”71-21{77 < 1/71}”1 < 4/”'

1<d

We set for a« > 0

© = { X la—p > g7lmiis < 1/n}lh - 2\/’”21“5 iy,

i<d

So by Chebyshev’s inequality, we know that with probability larger than 1 — «,

1 , /1 (1+1log(1/7) _ -

; n
i<d

Proof of Lemma 18. By assumption, we have that

|721{mn < 1}|; < 29 /n2.
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We also define

= / 62140 < 1}dUx(9) < 20+ 1/, (2.43)

Definition of two measures for (p,q). Now, we have by definition for any m,m’ > 0

, , 67299m+m
vy(m,m') :/m!m’! Uy (),

and for any € in the support of Uy, we have § < 1. So

70 m €f2m m
') = [ 140 < 130 0) ;{ﬁ)mm —0}].

Bound on the total variation. We have

’ !
dry (1*%, v*?) < d - drv (v, 1))
290m+m

< dZ‘[/l{G < 1}7,!611,5(9)]

79 m e Y,
- [/ 0 {0 < 1}dUx(0) - %(T+1{m/:0})]‘

—20 9m+m

_d Z ‘/1{9 <17 g0

—9 m e m
_/ 0 1{0 < 1}dUy () - 2(7m,1 +1{m’=0}))~

And so
drv (v, /®d7yi®d,)
< d[] /1{9 < 1}y (0) — /6—91{9 < s (0) - 5 (" +1)|
+] /1{9 < 1}e 29Uy (0) — /6991{3 < 1}dU(6) -

+ ’ / 1{0 < L}e=0dux(0) — / e ’1{0 < 1}du(6) %e‘%(%)\

—290m+m

+ > /1{9 g ) p—— N (')

m,m’:m+m'>2

e_zm(Qm)m/

6_9 m
—/ m‘? 1{0 < 1}dUy(0) - %(T +1{m’ = 0})‘].
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Since for any 0 < z < 2 we have |[e™® — 1 + x| < 2?/2 and |e™® — 1| < , we have
dry ( V(’]®d7 Vi@d)
< d[‘ / 1{0 < 1}(1 — 20)did(6) — /(1 — 0)1{0 < 1}dU»(6) %((1 — 2m) + 1)‘
+ 2m%¢ + 3k
+ ’ / 1{0 < 1}0dU(6) — /91{9 < 1}dUy(6) - %((1 —2m) + 1)‘ + 3k + m*¢

+ ) /1{9 < 1}0dU(0) — /(1 — 0)1{0 < 1}dU\(9) m\ +2m*¢ +4rk

1
+ Z m!m/!

m,m’:m+m’>2

/1{9 < 130 dLy (0)

N | =

+ /0’”1{9 < 1}dU(9) - < ((2m)™ + 1{m’ = 0})’].

Since by Cauchy-Schwarz inequality we have
2
(m) = | / 01{0 < 1}dr(0)|
<| / 021{0 < 1}aur(0)] | / 1{0 < 1} (6)| = ¢r,
then we have

! !
dTV (V0®d7 I/1®d)

IR ! (/1{9 < 130™H™ dudy (6)

<
sd mim/!

m,m’:m+m'>2
+/9m1{9 < 1}dUy(9) - %((277@)7”’ +1{m = 0}))].

Then, considering the cases (m = 0,m’ > 2), (m =1,m’ > 2) and (m > 2,m' =0),
we have

! I
dTV (1/0®d 7 I/1®d)

om’
18+ Y. T (/1{9 < 1}6%du(0) +/921{9 < 1}6%(9))
m,m’:m-+m'>2

<d

+e2(m? +elk

< d[18k + 2€’k + €’k + €'k < 69dk.
And so finally
dTV(V(,]®d7 I/1®d) S 6962(1+U)h,

by Equation (2.43). O
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2.7.5 Proof of Theorem 22

Combining Propositions 15, 13, and 14, we obtain that no test exists for the testing
problem (2.2) with type I plus type II error smaller than 1 — a — 4¢,u — 34e2(1+v)¢
whenever

Lor —J (H7r2 exp(—2(1 + v)nm)|1 V 7172) 1/4)]

p< { [uwu{i > L)l v (25 NG

3/4
\|W2m|h/ 1

N Y

where ¢”” > 0 is some small enough constant that depends only on u, a, v, €.
And so there exists constants ¢, > 0 that depend only on v, v such that there is
no test ¢ which is uniformly ~-consistent, for the problem (2.2) with

p< { min [‘ﬁ v (L2 expl2mm ) v 14 > ml]

Aw(1{i = J})Ih} v

1>Jx n

. 3/4
T 1473 || 1

Aoy (i > JTr)z‘Hl} Vv 7n V=,

n

since for any I > J, we have
ﬁl <12

Vin =~ ’

and
3/4

NT e A
The final result follows if we take I* as an I where the minimum is attained as in the
theorem, since

[(\/f* =B o (LT exp( ) ) v (14 2 I*}mrl]

|2 exp(~2nm)lly/* < |

< mey(M{i = Jxpillas

and since
2 1

2/3,1 (.
(7'r\/nl)4/3H1 > ||7T(_) ({i > J=})ill1-
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Chapter 3

Minimax identity testing under
local differential privacy

3.1 Introduction

Ensuring user privacy is at the core of the development of Artificial Intelligence.
Indeed datasets can contain extremely sensitive information, and someone with access
to a privatized training set or the outcome of an algorithm should not be able to
retrieve the original dataset. However, classical anonymization and cryptographic
approaches fail to prevent the disclosure of sensitive information in the context of
learning. Indeed, with the example of a hospital’s database, removing names and social
security numbers from databases does not prevent the identification of patients using a
combination of other attributes like gender, age or illnesses. Dinur and Nissim (2003)
cites Cystic Fibrosis as an example which exist with a frequency of around 1/3000.
Hence differential privacy mechanisms were developed to cope with such issues. Such
considerations can be traced back to Warner (1965), Duncan and Lambert (1986),
Duncan and Lambert (1989), and Fienberg and Steele (1998). As early as in 1965,
Warner (1965) presented the first privacy mechanism which is now a baseline method
for binary data: Randomized response. Another important result is presented in the
works of Duncan and Lambert (1986), Duncan and Lambert (1989), and Fienberg
and Steele (1998), where they expose a trade-off between statistical utility, or in other
terms performance, and privacy in a limited-disclosure setting.

We will tackle differential privacy discussed in Section 1.5, and in particular the
stronger local differential privacy condition. Let Xi,..., X, unobserved random
variables taking values in [0, 1], which are i.i.d. with density f with respect to the
Lebesgue measure. We observe Z1,...,Z, which are a-local differentially private
views of X1,...,X,,. This notion has been extensively studied through the concept of
local algorithms, especially in the context of privacy-preserving data mining Warner
(1965), Agrawal and Srikant (2000), Agrawal and Aggarwal (2001), van den Hout
and van der Heijden (2002), Evfimievski, Gehrke, and Srikant (2003), Agrawal and
Haritsa (2005), Mishra and Sandler (2006), Jank, Shmueli, and Wang (2008), and
Kasiviswanathan et al. (2011). Now note that local differential privacy can account
for possible dependencies between Z;’s, corresponding to the interactive case. The role
of interactivity has been further studied in Joseph et al. (2019), Butucea, Rohde, and
Steinberger (2020), and Berrett and Butucea (2020). Recent results detailed in Duchi,
Jordan, and Wainwright (2013b), Duchi, Wainwright, and Jordan (2013), and Duchi,
Jordan, and Wainwright (2013c) give information processing inequalities depending on
the local privacy constraint via the parameter a. Those can be used to obtain Fano or
Le Cam-type inequalities in order to obtain a minimax lower bound for estimation
or testing problems. Our proof also relies on Le Cam’s inequality, albeit in a more
refined way in order to obtain minimax optimal results.
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In continuity with the first two chapters, we will consider a testing problem, where
we want to design our tests so that they reject the null hypothesis Hg : f = fo if the data
is not actually generated from the given model with a given confidence level. Assuming

that f and fo belong to La([0,1]) = {f: 0,1] = R, (|2 = [ f2(z)de < oo}, it is

natural to propose a test based on an estimation of the squared Lo-distance ||f — fol|3
between f and fy. In order to test whether f = fy from the observation of an
i.i.d sample set (X1,...,X,) with common density f, Neyman (1937) introduces an
orthonormal basis { fo, ¢;,1 > 0} of La([0, 1]). The identity hypothesis is rejected if the
estimator P N | ¢y(X;)/n)? exceeds some threshold, where D is a given integer
depending on n. Data-driven versions of this test, where the parameter D is chosen to
minimize some penalized criterion, have been introduced by Bickel and Ritov (1992),
Ledwina (1994), Kallenberg W. (1995), and Inglot T. (1996).

Additionally, we want to find the limitations of a test by determining how close
both hypotheses can get while remaining separated by the testing procedure. We will
do this in a minimax testing framework, in a similar way to Section 1.4.

We will restrict our study to two cases, firstly with multinomial distributions
covering the discrete case. We will also work in the continuous case with Besov balls
for which non-private results already exist, making them meaningful for comparisons.
Other motivations for the use of Besov balls are discussed in Section 1.3.3.

We recall a few non-private results from the literature. For Holder classes with
smoothness parameter s > 0, Ingster (1993) establishes the asymptotic minimax rate
of testing n=25/(4s+t1) The test proposed in their paper is not adaptive since it makes
use of a known smoothness parameter s. Minimax optimal adaptive identity tests over
Hélder or Besov classes of alternatives are provided in Ingster (2000b) and Fromont and
Laurent (2006b). These tests achieve the separation rate (n/y/loglog(n)) =2/ (4s+1) gver
a wide range of regularity classes (Holder or Besov balls) with smoothness parameter
s> 0. The loglog(n) term is the optimal price to pay for adaptation to the unknown
parameter s > 0.

In the discrete case, the goal is to distinguish between d-dimensional probability
vectors p and ¢ using samples from the multinomial distribution with parameters p
and n. In Section 1.4, we review a few results that we recall here. Paninski (2008)
obtain that the minimax optimal rate with respect to the ¢;-distance, Zgzl lgi — pil, is
d'/*/\/n. An extension is the study of local minimax rates as in Valiant and Valiant
(2017), where the rate is made minimax optimal for any p instead of just in the worst
choice of p. Finally, Balakrishnan and Wasserman (2017a) presents local minimax
rates of testing both in the discrete and continuous cases.

A few problems have already been tackled in order to obtain minimax rates under
local privacy constraint. The main question is whether the minimax rates are affected
by the local privacy constraint and to quantify the degradation of the rate in that case.
We define a sample degradation of C'(«) in the following way. If n is the necessary and
sufficient sample size in order to solve the classical non-private version of a problem,
the a-local differential private problem is solved with nC(«) samples. For a few
problems, a degradation of the effective sample size by a multiplicative constant is
found. In Duchi, Wainwright, and Jordan (2013), they obtain minimax estimation
rates for multinomial distributions in dimension d and find a sample degradation of
o?/d. In Duchi, Jordan, and Wainwright (2018), they also find a multiplicative sample
degradation of a?/d for generalized linear models, and a? for median estimation.
However, in other problems, a polynomial degradation is noted. For one-dimensional
mean estimation, the usual minimax rate is n~(2-2/k) whereas the private rate from
Duchi, Jordan, and Wainwright (2018) is (na?)~(©A(1=1/k) for original observations
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X satisfying E(X) € [~1,1] and E(]X|¥) < co. As for the problem of nonparametric
density estimation presented in Duchi, Jordan, and Wainwright (2018), the rate goes
from n=25/(2s+1) to (na?)=25/(25+2) over an elliptical Sobolev space with smoothness s.
This result was extended in Butucea et al. (2020) over Besov ellipsoids. The classical
minimax mean squared errors were presented in Yu (1997), Yang and Barron (1999),
and Tsybakov (2004).

Goodness-of-fit testing has been studied extensively under a global differential
privacy constraint in Gaboardi et al. (2016), Cai, Daskalakis, and Kamath (2017),
Aliakbarpour, Diakonikolas, and Rubinfeld (2018), Acharya, Sun, and Zhang (2018)
and Canonne et al. (2019). Further steps into covering other testing problems under
global differential privacy have been taken already with works like Aliakbarpour et al.
(2019).

Our contributions can be summarized in the following way. Under non-interactive
local differential privacy, we provide optimal separation rates for identity testing over
Besov balls in the continuous case. To the best of our knowledge, we are the first
to provide quantitative guarantees in such a continuous setting. We also provide
minimax separation rates for multinomial distributions. In particular, we establish
a lower bound that is completely novel in the definition of the prior distributions
leading to optimal rates, and in the way we tackle privacy. Indeed, naive applications
of previous information processing inequalities under local privacy lead to suboptimal
lower bounds. Finally, we provide an adaptive version of our test, which is independent
of the smoothness parameter s and rate-optimal up to a logarithmic factor. So in
shorter terms:

e We provide the first minimax lower bound for the problem of identity testing
under local privacy constraint over Besov balls.

e We present the first minimax optimal test with the associated local differentially
private channel in this continuous setting.

e The test is made adaptive to the smoothness parameter of the unknown density
up to a logarithmic term.

e A minimax optimal test under local privacy can be derived for multinomial
distributions as well.

We start with citing results pertaining to the study of identity testing in the discrete
case under local privacy. Gaboardi and Rogers (2017) take another point of view from
ours and provide asymptotic distributions for a chi-squared statistic applied to noisy
observations satisfying the local differential privacy condition. Sheffet (2018) takes
a closer approach to ours and determines a sufficient number of samples for testing
between p = ¢ and fixed > |¢; — p;|, which has been improved upon by Acharya et al.
(2018). Finally, in parallel with the writing of Lam-Weil, Laurent, and Loubes (2020),
Berrett and Butucea (2020) have provided minimax optimal rates of testing for discrete
distributions under local privacy, in both ¢; and ¢ norms. In particular, they tackle
both interactive and non-interactive privacy channels and point out a discrepancy in
the rates between both cases.

Now, the following papers tackle the continuous case. Butucea et al. (2020)
provides minimax optimal rates for density estimation over Besov ellipsoids under local
differential privacy. Following this paper, we apply Laplace noise to the projection
of the observations onto a wavelet basis, although we tackle the different problem of
density testing. The difference between density estimation and testing is fundamental
and leads in our case to faster rates. A problem closer to density testing is the
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estimation of the quadratic functional presented in Butucea, Rohde, and Steinberger
(2020), where they find minimax rates over Besov ellipsoids under local differential
privacy. They rely on the proof of the lower bound in the non-interactive case given
in a preliminary version of Lam-Weil, Laurent, and Loubes (2020). It was refined in
order to improve on the rate in «, reaching an optimal rate for low values of «.

The results presented in this chapter iterates on the first version of Lam-Weil,
Laurent, and Loubes (2020), which only focused on the continuous case. We extend
its scope and construct a unified setting to tackle both Besov classes and multinomial
distributions, leading to minimax optimal results in both settings.

The rest of the chapter is articulated as follows. In Section 3.2, we detail our
setting and sum up our results. A lower bound on the minimax separation distance for
identity testing is introduced in Section 3.3. Then we introduce a test and a privacy
mechanism in Section 3.4. This leads to an upper bound which matches the lower
bound. However, in the continuous case, the proposed test depends on a smoothness
parameter which is unknown in general. That is the reason why we present a version
of the test in Section 3.5 that is adaptive to s. Afterwards, we conclude the chapter
with a final discussion in Section 3.6. Finally, the proofs of all the results presented in
this chapter are contained in Section 3.7 and discussions on possible alternatives for
the proof of the lower bound in Section 3.8.

All along the chapter, C' will denote some absolute constant, c¢(a,b, ...),C(a,b,...)
will be constants depending only on their arguments. The constants may vary from
line to line.

3.2 Setting

3.2.1 Non-interactive differential privacy

We now recall the definition of non-interactive differential privacy. Let n be some
positive integer and o > 0. Let fo, f be densities in Lo ([0, 1]) with respect to the
Lebesgue measure. Let Xi,..., X, be i.i.d. random variables with density f. We
define 71, ..., Z, satisfying for all 1 <i <n

SeZ;,(z,2")e(RE)?2 QZ(ZZ € S|Xi = m/)

< exp(a). (3.1)

Let Q, be the set of joint distributions @ = [[ @; such that @; satisfies the condition
in Equation (3.1) for all 1 <1i <mn.

3.2.2 A unified setting for discrete and continuous distributions

We present a unified setting and end up dealing with densities in Ly(]0,1]) in both
the continuous and discrete cases. In the discrete case, )71, . ,)/(vn are i.i.d. random
variables taking their values in d classes denoted by {1,2...,d} according to the prob-
ability vector ¢ = (q1,q2, . ..,qq). For a given probability vector p = (p1,p2,...,pd),
we want to test the null hypothesis Hg : p = ¢ against the alternative Hi : p # ¢. In
order to have a unified setting, we transform these discrete observations into contin-
uous observations Xj ..., X, with values in [0, 1] by the following process. For all
ke {1,...,d}, if we observe 3(7 = k, we generate X; by a uniform distribution on the
interval [(k — 1)/d,k/d). Note that the variables X ..., X, are i.i.d. with common
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density f defined for all z € [0,1] by

d
fla) =D dgpTjps g().
k=1

Similarly, for the probability vector p, we define the corresponding density fo for
z € [0,1] by

d
folz) = dpTjx-r iy(2).
k=1

So we have the equivalence p = ¢ <= f = fo. The following equation highlights the
connection between the separation rates for densities and for probability vectors. We
have

d
If = foll3 =Y (ax — pi)°- (3.2)
k=1

3.2.3 Minimax identity testing under local differential privacy

We now define a privacy mechanism and a testing procedure based on the private
views Z1,...,Z,. We want to test

Ho: f=fo, versus Hi:f# fo, (3.3)

from a-local differentially private views of Xy,..., X,,.

The twist on classical identity testing is in the fact that the samples (X7,..., X},)
from f are unobserved, we only observe their private views. We now aim at formalizing
this hypothesis testing problem for multinomials and Besov densities. Let X; ~ f be an
independent random variable for any ¢ < n with respect to probability measure Py. Let
Z (a)(Xi) be the set of random variables Z; ranging in Z; such that Z; is an a-private
transformation of X; with respect to Markov kernel @;. Let ®(Z;) = {¢ : Z; — {0,1}}.
We then define in both cases,

Ho(fo) = {(fo, f); fo= [}

and
7;1((1) = {éaé = SO(Zlv .- '7Zn)a(p S @(Zz)vzz € Z(a)(XZ)7Z < n}

There remains to define the alternative hypothesis set.

1. In the discrete case, we define
d
D=1 fely([0,1));3g=(q1,....,qq) ER f = ZQj][[(j—l)/d,j/d) , (34)
j=1

which is associated with the class of densities for multinomial distributions over
d classes. Let fy be a fixed density in D. Then we define for any p > 0,

Hy(fo,p) = {(Jo, f): f €D, f > o,/f — 1, lfo— fll2 > o}

2. In the continuous case, we take a density f € La([0, 1]) and we will be considering
Besov balls. To define these classes, we consider a pair of compactly supported
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and bounded wavelets (¢, 1) such that for all J in N,
{2726(27() = k). k € AW U {27220 () = k), = J k€ AG) }

is an orthonormal basis of Ly ([0, 1]). For the sake of simplicity, we consider the
Haar basis where ¢ = Tjg 1) and ¢ = 19 1/9) — Ij1/21). In this case, for all j € N,
A(j) ={0,1,...27 —1}.

We denote for all j > 0,k € A(j), ajx(f) = [27/2f6(2/(-) — k) and B;x(f) =

[29/2f1p(27(-) — k). For R > 0 and s > 0, the Besov ball Esygm(R) with radius
R associated with the Haar basis is defined as

Biooo(R) = f€Lao([0,1]),¥5 >0, Y Bj(f) < R?27%°
keA(d)

Now note that, if s < 1, then there is an equivalence between the definition of
ES,Q,OO(R) and the definition of the corresponding Besov space using moduli of
smoothness — see e.g. Theorem 4.3.2 in Giné and Nickl (2016). And for larger s,
Besov spaces defined with Daubechies wavelets satisfy this equivalence property.

We introduce the following class of alternatives : for any s > 0 and R > 0, we
define the set B2 o (R) as follows

Buzoo(R) = {f € La((0.1)).f = fo € Buo(R) (35)

Note that the class Bs2,00(R) depends on fg since only the regularity for the
difference f — fy is required to establish the separation rates. Nevertheless, for
the sake of simplicity we omit fy in the notation of this set. Then we end up
considering for any p > 0,

Hya(foup) = {(for £): f € Banoo(R), f > o,/f — 1, 0lfo— fll2 > o

For a > 0 and v € (0,1), let 7:,(7%)(]”0) = {0, € ﬂa);PfO(én =1) < 4} and

AQqm € ﬁ,ﬁ)(fo). The index @ in the notation of Ag ., is a reminder that the test
relies on observations transformed by some a-private Markov kernel ). That is, there

exists an a-local differentially private channel @ € Q, and a test function ¢ such that
AQv’YJL = SO<Z17 s ey Zn) Then

IPQ:’LO ((P(Zly . ,Zn) = 1) S Y,

where

)

PQ}L()((Zl, ceey Zn) € HSZ) = /HQZ(ZZ S SZ‘Xl = xz)fo(x,)dxz,
=1 i

and @); is the i-th marginal channel of Q.

Then the uniform separation rate pg (fo, Hi, AQ,y,n) of the test Ag  , with respect

to Hy, is defined for all 8 in (0,1) as

pa(fo, Hi,AQqyn) =inf{p >0; sup Py (Ag,n=0)< 8} (3.6)
feH1(fo.p)
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where (X71,...,X,) are i.i.d. samples with common density f according to P;.

The uniform separation rate is then the smallest value in the sense of the Lo-norm
of (f — fo) for which the second kind error of the test is uniformly controlled by 3
over Hi. The combination of a privacy channel and a test with level v having optimal
performances should then have the smallest possible uniform separation rate (up to a
multiplicative constant) over C. To quantify this, we introduce the minimax separation
distance of testing defined by

p5(fo, H1, 7;(,?1)) = inf p3(Hi,Agyn)- (3.7)
AQ,'y,n 67;’(:3:1) (fo)

3.2.4 Overview of the results

For any o > 0, we define z, = €2* — e72* = 2sinh(20).

Continuous case. The results presented in Theorems 27 and 30 can be condensed
into the following conclusion that holds if nz2 > (logn)Hg/ ) s >0, R > 0,
a>1/yn, (v,8) € (0,1) such that 2y + 8 < 1,

c(s, Ry, B) [(nzg) 2/ v p =2/ (11)]
< pz;(]l[o,lel,S),]jy(,%)) (38)
< C(s, R, B) [(na2)*25/(45+3) U p-2s/(st1)]

Remark 28. e Having nz2 > (logn)'+3/4) and o > 1/\/n reduces to wanting a
sample set large enough, which is a classical non-restrictive assumption.

o The upper bound holds for any density fo € L2([0,1]) and matches the lower
bound when fo = Ijg 1), as shown in Equation (3.8). So we can deduce the
minimazx separation rate for identity testing under a local privacy constraint. It
can be decomposed into two different regimes, where the rates of our upper and
lower bounds match in n as well as in o, when a tends to 0. When « s larger
than nY4stY  then the minimaz rate is of order n=28/4s+1) " which coincides
with the rate obtained in the non-private case in Ingster (1987). The other regime
corresponds to a being smaller than nY/ stV The minimaz rate is then of order
(naQ)_QS/(4S+3) and so we show a polynomial degradation in the rate due to the
privacy constraints. Such a degradation has also been discovered in the problem
of second moment estimation and mean estimation, as well as for the density
estimation in Butucea et al. (2020). Very similar results have been found for the
estimation of the quadratic functional under non-interactive privacy in Butucea,
Rohde, and Steinberger (2020). Now, Butucea, Rohde, and Steinberger (2020)
tackle local differential privacy with dependencies between the Z;’s as well, hinting
at the possibility of obtaining better rates when the channels are allowed to be
interactive.

e Due to having z, instead of o, our upper and lower bounds do mot match in «
when o is larger than a constant but smaller than n'/*stY) " This is not an issue
i practice, since o will be taken small in order to guarantee privacy.

Discrete case. The results presented in Theorems 26 and 29 can be condensed into
the following conclusion that holds if n > (z;2d%?logd) vV ((a?d=Y?) Ad'/?), a > 0,
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(7,B) € (0,1)? such that 2y + 8 < 1,

c(v.B) [((nzi)—lﬂdl/él) Y (n—l/Qd—1/4)]
< oh(Toa H, Ty} /0 (3.9)
<C(,8) {((na2)—1/2d1/4) v (n_1/2d_1/4)] .

Remark 29. e Assuming that nz2 > d3/%log d means that the problem gets harder
with the dimension, which aligns with the interpretation of the private rate.

o We present matching bounds on pZ}(]I[O,l], Hy, ﬂ,%))/dl/z since it 1s the usual rate
of interest as justified by the combination of Definition 3.6 and Equation (3.2).
Here again, we find two regimes corresponding to the classical rate taking over
if o is larger than v/d. So we can see that the local privacy condition leaves
the rate in n unchanged, but the rate in d changes drastically for the testing
problem with respect to the La-norm. Indeed, the classical testing problem with
Lo-separation becomes easier as the number of dimensions grows, whereas the
private rate exhibits the opposite behaviour.

e Simultaneously and independently of our work, Berrett and Butucea (2020) find
stmilar results in the non-interactive case and they also show that the minimax
rates are improved when considering interactive privacy channels.

3.3 Lower bound

This section will focus on the presentation of a lower bound on the minimax separation
rate defined in Equation (3.7) for the problem of identity testing under a non-interactive
privacy constraint. The result is presented both in the discrete and the continuous
cases, when fy is the uniform density over [0,1]. Butucea, Rohde, and Steinberger
(2020) and Berrett and Butucea (2020) provide results also accounting for sequentially
interactive private channels, defined in Equation 1.9. Combined with their upper
bounds, our lower bound is critical in proving that, for identity testing and the related
problem of estimation of the squared functional, there is an intrinsic gap between
minimax optimality considering only non-interactive privacy channels and minimax
optimality with sequentially interactive channels.

The outline of our lower bound proof relies on a classical scheme, which is recalled
below. Nevertheless, the implementation of this scheme in the context of local differen-
tial privacy is far from being classical, and we do it in a novel way which leads to a
tight lower bound. At the end of the section, a more naive approach will be presented
and shown to lead to suboptimal results.

We apply a Bayesian approach related to the one presented in Section 1.4.2, where
we will define a prior distribution which corresponds to a mixture of densities such
that ||f — fol|2 is large enough. Such a starting point has been largely employed for
lower bounds in minimax testing, as described in Baraud (2002b). Its application
is mainly due to Ingster (1993) and inequalities on the total variation distance from
Le Cam (1986). The result of this approach is summarized in Lemma 2.

The idea is to establish the connection between the second kind error and the total
variation distance between arbitrary distributions with respective supports in Hy( fo)
and Hi(fo,p). It turns out that the closer the distributions from Hy and Hi(fo, p)
are allowed to be, the higher the potential second kind error. So if we are able to
provide distributions from Hy and Hi(fq, p) which are close from one another, we can
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guarantee that the second kind error of any test will be high. The main difficulty lies
in finding the right prior distribution vy , over Hi(fy, p) appearing in Lemma 2.
In the discrete case, we obtain the following lower bound.

Theorem 26. Let (v, 3) € (0,1)? such that 2y + 3 < 1. Let a > 0.
We obtain the following lower bound for the a-private minimax separation rate de-

fined by Equation (3.7) for non-interactive channels in Q, over the class of alternatives
D in Equation (3.4)

pz’(]l[(],l]a H17 7;(,?1))
dl/2

> c(v,5) ([(mi)*md”4 Ad~2(logd)" V2] v (n*1/2d*1/4)) ,

Remark 30. In parallel to our work, Berrett and Butucea (2020) focus on the case
when a < 1 and find similar results displayed in their Theorem 6.

In the continuous case, we obtain the following theorem for Besov balls.

Theorem 27. Let (v,3) € (0,1)? such that 2y + < 1. Let a > 0,R > 0,5 > 0.
We obtain the following lower bound for the a-private minimax separation rate de-
fined by Equation (3.7) for non-interactive channels in Q, over the class of alternatives

Bs2.00(R) defined in Equation (3.5)
(Mo, His, T9)) = e (7, B, R) [[(n22) 7>+ A (log ) ~1/2] v =2/ s+ 1],

Remark 31. These theorems represent a major part of our contributions and lead to the
construction of the inequalities presented in Section 3.2.4. Note that (nz2)=2s/(4s+3) A
(logn)~Y? reduces to (nz2)=23/(4+3) for n large enough and we can reduce the formu-
lation of Theorem 26 in the same way with a condition on n being large enough.

Sketch of proof. We want to find the largest Lo-distance between the initial density
fo under the null hypothesis and the density in the alternative hypothesis such that
their transformed counterparts by an a-private channel ) cannot be discriminated by
a test. We will rely on the singular vectors of @) in order to define densities and their
private counterparts with ease. Employing bounds on the singular values of @, we
define a mixture of densities such that they have a bounded Lg-distance to fo = Tjg ).
We obtain a sufficient condition for the total variation distance between the densities
in the private space to be small enough for both hypotheses to be indistinguishable.
Then we ensure that the functions that we have defined are indeed densities, and in the
continuous case belong to the regularity class B2 o0 (R). Collecting all these elements,
the conclusion relies on Lemma 2.

Remark 32. The total variation distance is a good criterion in order to determine
whether two distributions are distinguishable. Another natural idea to prove Theorem 27
is to bound the total variation distance between two private densities by the total
variation distance between the densities of the original samples, up to some constants
depending on the privacy constraints. Following this intuitive approach, we can provide
a lower bound using Theorem 1 in Duchi, Jordan, and Wainwright (2015¢) combined
with Pinsker’s inequality. This approach has been used with success in density estimation
in Butucea et al. (2020). However, the resulting lower bound does not match the upper
bound for the separation rates of identity testing presented in our Section 3./. Details
on the application of this approach to our setting are provided in Section 5.8.
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3.4 Definition of a test and privacy mechanism

We will firstly define a testing procedure coupled with a privacy mechanism. Their
application provides an upper bound on the minimax separation rate for any density fy.
The bounds obtained are presented in the right-hand side of Equations (3.8) and (3.9)
for the continuous and the discrete cases respectively. The test and privacy mechanism
will turn out to be minimax optimal since the upper bounds will match the lower
bounds obtained in Section 3.3.

Let us first propose a transformation of the data, satisfying the differential privacy
constraints.

3.4.1 Privacy mechanism

We consider the privacy mechanism introduced in Butucea et al. (2020). It relies on
Laplace noise, which is classical as a privacy mechanism. However, applying it to
the correct basis with the corresponding scaling is critical in finding optimal results.
We will be focusing on the Haar basis presented in Example 2. We denote by ¢ the
indicator function on [0,1)

Vl‘,gb(fﬂ) = ]I[O,l)($)7
and for all integer L > 1, we set, for all k € {0,...,L — 1}, for all z € [0, 1),

orx(z) = VLo(Lx — k).

The integer L will be taken as L = 27 for some J > 0 in the continuous case, and
we choose L = d in the discrete case. We define, for all ¢ € {1,...,n}, the vector

Zir, = (Zi L k) kefo,...—1}> DY
Vk e {0,...,L — 1}, ZiLk = ¢L,k(Xi) +oLWi Lk, (3.10)

where (W; 1 k)i<i<nke{o,.,0—1} are i.i.d. Laplace distributed random variables with
variance 1 and

L
oy, = 2\/5\(/):.

So the privacy mechanism relies on adding Laplace noise to the coefficients of the
original observations in the Haar basis.

We now provide the following result, showing that we have indeed defined an o-
private channel. The following result connects the definition of privacy with probability
measures to privacy with probability density functions.

Lemma 20. For any i, denote q; (-|x) the density of the random vector Z; 1, with
respect to the probability measure u; conditionally to X; = x. Then

QilZiL €S| Xi=x) _
sup — - <e
Sez; r,(z,2')€[0,1]2 Qz’(Zz‘,L € S|X; =1')
if and only if there exists Q € Z; 1, with p;(Z; 1, € Q) =1 such that

4L (2])

< e“
ai,L(z|z') ~

for any z € Q and any (z,2") € [0,1]%.
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Proof. Assume there exists Q with 1;(Z; 1 € Q) = 1 such that L L((Z” )) < e® for any
z € Q. LetSEZZ-,L and S =S NQ.

Qi(Zi,L S S|Xz = :E) Qi(Zi,L c S’Xl = l’)

Qi(Zip € S|Xi=2") Qi(Zir € S8|X;=2a')

Then

Qi(Zir € SIXi =) _ [saiL(zlz)dp()
Qi(Zip € SIXs=1a")  [gaqir(z|z')dpi(2)
- Js@io(zl2)e¥dui(2)  Qi(Zir € S|X; =) 20

= Jsar(zlw)edpi(z)  Qi(Zip € S|X; = x) ¢

So _
Qi(ZiL € S|1X; =x)

Qi(Zip € S|X; = ')
Assume that Q € Q,. Then for any S € Z; 1, we have Q;(Z; € S|X; = z) <
e®Qi(Z; 1, € S|X; = a'). That is, for any S € Z; 1,

<e”

/s(eaqi’L(z|xl) = ¢i,0(2]2))dpi(2) = 0.

So there exists 2 with p;(Z; 1, € Q) =1 such that %, L(( ‘lx,)) < e? for any z € Q.
O

The lemma here justifies the use of the privacy mechanism presented in this section.

Lemma 21. To each random variable X; of the sample set (X1,...,X,), we associate
the vector Z; 1, = (Zi L k)ke{o,..,.—1}- The random vectors (Z1r,...,Zn,1) are non-
interactive a-local differentially private views of the samples (X1,...,X,). Namely,

they satisfy the condition in Equation (3.1).

The proof can also be found in Butucea et al. (2020) (see Proposition 3.1). We
recall here the main arguments for the sake of completeness.

Proof. The random vectors (Z; 1,)1<i<n are i.i.d. by definition. For any z;, 2} in [0, 1],
for any z; € R,

qi,L Zz‘x gL,

¢, (2i2i) H [\/5|Zi,k —or k@) = |z — %,k(ﬂﬂi)l]
L—1

< exp [Z \U/f (‘@Lk ‘ + ler, k(%)’)] :

k=0

Since ¢, k(x;) # 0 for a single value of k € {0,...,L — 1}, we get

G (ile) _ [mnm,kuoo] o

¢,1.(%i| 7)) oL

by definition of oy, which concludes the proof by application of Lemma 20. O
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3.4.2 Definition of the test

Let fo be some fixed density in La([0, 1]). Our aim is now to define a testing procedure
for identity testing from the observation of the vectors (Z1, ..., Z,). Our test statistic
Ty, is defined as

. 1 n L-—1
TL = m iggl kzzo (Zi,L,k — O‘OL,k) (Zl,L,k — a%’k) , (3.11)

where af | = fol oLk () fo(z)dz.

We consider the test function
Lm0 (21, Zn) = T > 191 — )}, (3.12)

where 9 (1 — ) denotes the (1 — 7)-quantile of Ty, under Ho. Note that this quantile
can be estimated by simulations, under the hypothesis f = fy. We can indeed simulate
the vector (Z1,...,Z,) if the density of (X1,...,X,) is assumed to be fy. Hence the
test rejects the null hypothesis H if

Ty, > t9(1—~).
The test is of level v by definition of the threshold.

Remark 33. o In a similar way as in Fromont and Laurent (20000), the test
is based on an estimation of the quantity ||f — foll3. Note indeed that Ty, is an
unbiased estimator of |Is, (f—fo)||3, where I, denotes the orthogonal projection
in Lo ([0, 1]) onto the space generated by the functions (¢r i,k € {0,...,L —1}).
In the discrete case, f and fo belong to Sy, and Ilg, (f — fo) = f — fo. In this
case,

d
s, (f = fo)ll5 =11 = foll3=d> _(ax — pr)*.
k=1

e Note that, in the discrete case, we obtain the following expression for the test
statistic

NI ol (HX =k —pe) (HX =k =) (3.13)

n(n 1) k=1 i#l=1

It is interesting to compare this expression with the x? statistics, which can be
written as

“ - (10X =k} = r) (M=} - r)

npg

k=114,=1

Hence, besides the normalization of each term in the sum by py in the x? test, the
main difference lies in the fact that we remove the diagonal terms (corresponding
to i =1) in our test statistics.

In the next section, we provide non-asymptotic theoretical results for the power of
this test.
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3.4.3 Upper bound for the second kind error of the test

We first provide an upper bound for the second kind error of our test and privacy
channel in a general setting.

Theorem 28. Let (Xi,...,X,) be i.i.d. with common density f on [0,1]. Let fo be
some gwen density on [0,1]. We assume that f and fo belong to La([0,1]). From the
observation of the random vectors (Z1,...,Zy) defined by Equation (3.10), for a given
a > 0, we test the hypotheses

Ho : [ = fo, versus Hi: f # fo.

We consider the test @1~ defined by Equation (3.12) with 11 defined in FEqua-
tion (3.11). The test is obviously of level v by definition of the threshold t3 (1 — ),
namely we have

Paor (TL > 17(1 - ’Y)) <.

Under the assumption that

s, ~ 5013 2\, (F)r + Ve (72) /5 314

the second kind error of the test is controlled by 5, namely we have
Poj (T <1h(1-7)) < 8. (3.15)

Moreover, we have

Vo (1) <€

We give here a sketch of proof of Theorem 28. The complete proof of this result is
given in Section 3.7.2. Note that it is not fundamentally different from non-private
proofs given in Fromont and Laurent (2006b).

(VLI fll2 +oF) (Hf||2+ffL)L
n n?

ITLs,, (f = fo)ll3 + (3.16)

Sketch of proof. We want to establish a condition on f — fy, under which the
second kind error of the test is controlled by 8. Denoting by t7(5) the S-quantile of
T, under Pqn, the condition in Equation (3.15) holds as soon as t9 (1 —~) < t1(B).

Hence, we provide an upper bound for t? (1 — v) and a lower bound for t;(8). By
Chebyshev’s inequality, we obtain that on the one hand,

tr(1—7) <y/Vay (Tr)/7, (3.17)

and on the other hand,

IWLs, (F = )3 = 1/ Vay (1) /8 < t.(8). (3.18)

We deduce from the inequalities in Equations (3.17) and (3.18) that Equation (3.15)
holds as soon as

s, (7 — )3 > \/Vay, (Te)/y + Vg (T1)
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The main ingredient to control the variance terms is a control of the variance for
U-statistics of order two which relies on Hoeffding’s decomposition — see e.g. Serfling
(2009) Lemma A p. 183. The proof is given in Section 3.7.2.

We obtain the following corollary of Theorem 28. It states a result that will be
used in order to obtain an upper bound on the minimax rate both in the discrete and
the continuous cases.

Corollary 10. Under the same assumptions as in Theorem 28, we obtain that Equa-
tion (3.15) holds, that is, the second kind error of the test is controlled by 3 provided
that

0.2
ITLs, ( — )l > €y, ) ULl Ioll2 + oE)VE (3.19)

n

In the next sections, we derive from this result upper bounds for the minimax
separation rate over Besov balls in the continuous case, and conditions on the /-
distance between p and ¢ to obtain a prescribed power for the test in the discrete
case.

3.4.4 Upper bound for the separation distance in the discrete case

The following theorem provides a sufficient condition on the separation distance between
the probability vectors p and ¢ for both error kinds of the test to be controlled by v
and f, respectively. This sufficient condition corresponds to an upper bound on the
minimax rate pj(fo, H1, Tas%))/dl/Q in the discrete case.

Theorem 29. Let p = (p1,p2,...,pq) be some given probability vector. We also set
(X1,...,X,) as i.i.d. random variables with values in the finite set {1,2...,d} and
with common distribution defined by the probability vector ¢ = (q1,q2, - - - ,q4)-

From the observation of the random vectors (Z1, ..., Zy) defined by Equation (3.10)
for a given a > 0 with L = d, we want to test the hypotheses

Ho:p=q, versus  Hi:p#q.

We consider the test pq~.q defined by Equation (3.12), which has a first kind error of
~v. The second kind error of the test is controlled by 3, provided that

(3.20)

Remark 34. Equation (3.20) displays a rate that is optimal in d,n, when « is smaller
than d*/*. Besides, the rate in o matches the lower bound asymptotically when o
converges to 0. The upper bound presented in Theorem 1 from Berrett and Butucea
(2020) tackles the case when o is smaller than 1 and they find the same rate as ours
in their Corollary 2. They present an additional test statistic in order to refine their
rates when p is not a uniform vector.
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Corollary 11. We assume that there exists an absolute constant x such that

d
dei < K. (3.21)
k=1
Then the second kind error of the test is controlled by 3, provided that

Y (6 —pi)? = C(v, B, k) [(d”/”‘n*l”) Vv (dl/‘*n*l/?ofl) v n*l} . (3.22)

i

Remark 35. If we also assume the bound on dZﬁzl p? as expressed in Equation (3.21),
we find optimal rates in d,n if n > (a>d~Y2)AdY?. The assumption in Equation (3.21)
i Lemma 11 is equivalent to assuming that the function fo defined in Section 3.2.2
belongs to 1L2([0,1]). It restricts p to vectors that are close to being uniform. This
coincides with the lower bound on the rate found when fy is a uniform density.

3.4.5 Upper bound for the minimax separation rate over Besov balls

We provide an upper bound on the uniform separation rate for our test and privacy
channel over Besov balls in Theorem 30.

Theorem 30. Let (Xi,...,X,,) be i.i.d. with common density f on [0,1]. Let fo be
some given density on [0,1]. We assume that f and fo belong to La([0, 1]).

We observe the random vectors (Z1, ..., Zy) defined by Equation (3.10) for a given
a > 0 with the following value for L : we assume that L = L*, where L* = 27", and
J* is the smallest integer J such that 27 > (na?)?/(4s+3) A p2/(4s+1)

We want to test the hypotheses

Ho : f = fo, Versus Hi: f# fo.

We consider the test ¢+~ defined by Equation (3.12). The uniform separa-
tion rate, defined by Equation (3.6), of the test pr+~.q over Bsao(R) defined by
Equation (3.5) satisfies for allm € N*, R >0, a > 1/y/n, (v,8) € (0,1)? such that
v+ 5 <1

pﬁ(f[)aHl,SvgoL*,’y,Q(Zl,...7Zn))
< C(s, R, [|foll2, 7, B) | (na®) =2/ et3) vy =2/ st 1)

The proof of this result is in Section 3.7.2.

Remark 36. e When the sample set (X1,...,X,) is directly observed, Fromont
and Laurent (2006b) propose a testing procedure with uniform separation rate
over the set Bs 2 oo(R) controlled by

C(s, R, Byn=2s/Ust1),

which is an optimal result, as proved in Ingster (1993). Hence we obtain here
a loss in the uniform separation rate, due to the fact that we only observe
a-differentially private views of the original sample. This loss occurs when
a < nt/@stD) - Otherwise, we get the same rate as when the original sample
1s observed. Comparing this result with the lower bound from Section 3.3, we
conclude that the rate is optimal.
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e Finally, having o < 1/y/n represents an extreme case, where the sample size is
really low in conjunction with a very strict privacy condition. In such a range of
a, J* is taken equal to 0, but this does not lead to optimal rates.

The test proposed in Theorem 30 depends on the smoothness parameter s of the
Besov ball Bs 2 o (R) via the parameter J*. In a second step, we will propose a test
which is adaptive to the smoothness parameter s. Namely, in Section 3.5, we construct
an aggregated testing procedure, which is independent of the smoothness parameter
and achieves the minimax separation rates established in Equation (3.8) over a wide
range of Besov balls simultaneously, up to a logarithmic term.

3.5 Adaptive tests

In Section 3.4, we have defined in the continuous case a testing procedure which
depends on the parameter J. The performances of the test depend on this parameter.
We have optimized the choice of J to obtain the smallest possible upper bound for the
separation rate over the set B, 2 o (R). Nevertheless, the test is not adaptive since this
optimal choice of J depends on the smoothness parameter s.

In order to obtain adaptive procedure, we propose, as in Fromont and Laurent
(2006b) to aggregate a collection of tests. For this, we introduce the set

jZ{JEN,Q‘]SnZ}

and the aggregated procedure will be based on the collection of test statistics (TQJ, J e
J) defined by (3.11).

In Theorem 30, the testing procedure is based on the observation of the random
vectors (Z1, . .., Zy) defined by Equation (3.10) with L = 27" for the optimized value of
J*. Hence, the private views of the original sample depend on the unknown parameter
s. In order to build the aggregated procedure, we can no more use the optimized value
J* of J and we need to observe the random vectors (Z1,...,Z,) for all J € J. In order
to guarantee the a-local differential privacy, we have to increase slightly the variance of
the Laplace perturbation. The privacy mechanism is specified in the following lemma.

Lemma 22. We consider the set J = {J eN,2/ < n2}. We define, for all i €
{1,...,n}, forall J € J, the vector Zi’zJ = (Zi’QJ,k)kG{O’.“’QJ_I}; by

Ve {0,...,27 =1}, Z; 004 = boo 1(Xy) + 500 Wi 00 1, (3.23)

where (Wi72J7k)1SiSn7k€{07m72J71} are i.i.d. Laplace distributed random variables with

variance 1 and
9J/2

Gor = 2V2|T|—.
!

For all 1 < i < n, we define the random vector Z; = (ZLQJ,J € J). The random

vectors (ZZ-, 1 < i < n) are non-interactive a-local differentially private views of the

samples (X1, ...,X,). Namely, they satisfy the condition in Equation (3.1).

Proof. The random vectors (Z;)1<i<n are i.i.d. by definition. Let us denote by g;(:|;)
the density of the vector Z;, conditionally to X; = z;. For any x;, 2/ in [0, 1], for any
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2]
2 € RZues?”

Gi(zilzs) 21 N |2k — o0 g (2})] —
Gizlo)) I] 1] e [\/ﬁ g

|zi % — ¢21,k($i)|]

JeJ k=0 927
27— 1
< exp Z Z ‘¢2Jk ’+|¢2Jk %)l)
JeJ k=0

Since ¢217k(xi) # 0 for a single value of k € {0, 20— 1}, we get

Glale) [2 \@Zuaszj,knoo] <,

GiCaila) 2
by definition of &3, which concludes the proof by application of Lemma 20. O

Note that |J| < 1+ 2logy(n), hence we will have a logarithmic loss for the
separation rates due to the privacy condition for the aggregated procedure.
Let us now define the adaptive test. We set, for all J € 7,

n 27-1
TJ = n — 1 Z Z ( 1,27k T O[2J k’) (Zl72J7k. - agJ7k> . (324)
z;él 1 k=0

For a given level v € (0, 1), the aggregated testing procedure rejects the hypothesis
Ho: f=foif )
3Ted, Ty > 151 —uy),

where u. is defined by

Uy = sup {u € (0, 1),}P’Q}z0 <§u2 (TJ o u7)> > 0) < 7} (3.25)
€

and #9(1 — u,) denotes the 1 — u, quantile of Ty under Ho. Hence U, is the least
conservative choice leading to a 7-level test. We easily notice that u, > /| J|. Indeed,

Poy

0

(sup (s~ 0= 2/19D) > 0) < X Fay, (T > B0~ /17)
S JeJg
<<

JeJ

Let us now consider the second kind error for the aggregated test, which is the
probability to accept the null hypothesis Hg, although the alternative hypothesis H;
holds. This quantity is upper bounded by the smallest second kind error of the tests
of the collection, at the price that v has been replaced by u,. Indeed,

Pay <§1612 <TJ —15(1 - uw)) < 0) = Poy (ﬁJeJ (TJ <&~ uw)))
}ngPQn (TJ <51 - uw)) . (3.26)
€

We obtain the following theorem for the aggregated procedure.
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Theorem 31. Let (Xi,...,X,) be i.i.d. with common density f in L2([0,1]). Let
fo be some given density in Ly([0,1]). From the observation of the random vectors
(Ziy,1 <i <n) defined in Lemma 22 for a given o > 0, we want to test the hypotheses

Ho: f = fo, VETsus Hi: f # fo.

We assume that na?/log®?(n) > 1. We consider the set J = {J eN,27 <n?} and
the aggregated test

0o (21, Zn) I{sup (TJ -0 —uv)) > 0}

where Ty is defined by Equation (3.24) and u, by Equation (3.25).

The uniform separation rate, defined by Equation (3.6), of the test @{Q over the
set Bs2.00(R) defined by Equation (3.5) satisfies for alln € N*, s >0, R >0, a > 0,
(v,B) € (0,1)2 such that v+ 8 < 1,

ps(fo, Hus, 02 o(Z1, -, Zn))
< C(llfoll2; R, v, B) [(na2/log5/2(n))*28/(48+3) V (n/m)72s/(43+1)}

The proof of this result is in Section 3.7.3. We compare this result with the rates
obtained in Theorem 30, which has been proved to be optimal. Here, we incur a
logarithmic loss due to the adaptation. We recall that in the non-private setting, the

separation rates obtained by Ingster (2000b) and Fromont and Laurent (2006b) for
—2s/(4s+1)
adaptive procedures over Besov balls was (n/ /log log(n)) . This result was

proved to be optimal for adaptive tests in Ingster (2000b). In their paper, the log-log
term is obtained from exponential inequalities for U-statistics involved in the testing
procedure under the null hypothesis. In our setting, obtaining exponential inequalities
is not trivial due to the Laplace noise. That is why our logarithmic loss originates
from a simple upper bound on the variance of our test statistic under the null. The
optimality of the adaptive rates presented in Theorem 31 remains an open question.

3.6 Discussion

Our study of minimax testing rates is in line with Ingster’s work and we focus on
separation rates in Ly-norm for identity testing under local differential privacy. We
construct a unified setting in order to tackle both discrete and continuous distributions.
In the continuous case, we provide the first minimax optimal test and local differentially
private channel for the problem of identity testing over Besov balls. This result also
holds for multinomial distributions. Besides, in the continuous case, the test and
channel remain optimal up to a log factor even if the smoothness parameter is unknown.
Among our technical contributions, it is to note that we use a proof technique in the
lower bound that does not involve Theorem 1 from Duchi, Jordan, and Wainwright
(2013c¢). The minimax separation rate turns out to suffer from a polynomial degradation
in the private case. However, we point out an elbow effect, where the rate is the same
as the usual case up to some constant factor if « is large enough. Simultaneously and
independently, Berrett and Butucea (2020) present minimax testing rates for the ¢;
and ¢s norms in the discrete case. We define Besov balls using Haar wavelets, which
are equivalent to Besov balls defined using moduli of smoothness when s < 1. In
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order for the equivalence to hold for any s, it is possible to define Besov balls using
Daubechies wavelets instead. In the proof of our lower bound, we use the disjoint
support property of the Haar wavelets, but this can be circumvented by taking fewer
wavelets in the definition of the prior distributions. A more critical assumption is that
¢% = VLo k- Future possible works could extend our results to larger Besov classes
and study the optimality of the adaptive procedure. Finally, our bounds match when
fo is a uniform density, and matching bounds for any fy remain to be proved under
local differential privacy.

3.7 Proof of the results

3.7.1 Lower bound: proof of Theorem 27

An initial version of this proof has been presented in a preprint of Lam-Weil, Laurent,
and Loubes (2020), which was then improved upon by Butucea, Rohde, and Steinberger
(2020) in order to find the matching rate in « and to account for different channels Q;
for each initial observation X;. The proof remains fundamentally the same, however.
In line with the rest of the chapter, both the discrete and the continuous cases are
treated in one unified setting.

In this section, fo = Tjg ).

3.7.1.1 Preliminary results

The following lemma sheds light on the equivalence between the local differential
privacy condition and a similar condition on the density of the channel.

Lemma 23. Let Q € Q, be an a-private channel and i < n. Let X; be a random
variable with density f € La(]0,1]) with respect to the Lebesque measure. Then there
exists a probability measure with respect to which Q;(-|x) is absolutely continuous for
any x € [0, 1].

Proof. Let p; = f[o,l] Qi(-|z) f(z)dz. Let S € Z; such that u;(S) = 0. Then since
Qi(S|x) > 0 for any x, there exists = such that Q;(S|z) = 0. Now by a-local differential
privacy, Q;(S|z) = 0 for any x. O

For the sake of completeness, we prove the following classical inequality between
the total variation distance and the chi-squared distance. It will be used in order
to reduce the study of the distance between the distributions to that of an expected
squared likelihood ratio.

Lemma 24.

dry (Pon Pon ) < = (Bgn [12, (Z1,....22) —1])""
rv(Pay, Pay,) < 5 (Bay, |Lhy, (20,20~ 1] )
where LQgp (Z1,...,2Zy) is the likelihood ratio between Qﬁp and Q?O.

Proof. We have

1 1
drv(Pa, Pay,) = 5 / Loy, — 1| dPay, = SEay [|Las, (21, Zn) 1]

1

) 1/2
<3 (E% [LQLLP(Zh...,Zn) _ 1}) ,

by Cauchy-Schwarz inequality and since Egn (LQ;LP (Z1,... ,Zn)) =1 O
0



130 Chapter 3. Minimax identity testing under local differential privacy

The following two lemmas can be interpreted as data processing inequalities.
Lemma 25 describes the contraction of the total variation distance by a stochastic
channel.

Lemma 25. Let Py, P, be probability measures over the sample space [0,1] with
respective densities f and g with respect to the Lebesgue measure. Let () be a stochastic
channel. Then

dry (Py,Py) > drv (Pg,, Pg,)-

Proof. For any measurable set S,

Q(S|2)(f(x) — g(x))dx = Q(S|x)(f(x) — g(@))I{f — g = O} (x)da

[0,1] [0,1]

+ Q(S)z)(f(x) — g(x)I{f — g < 0}(z)dz.

[0,1]

Now, since 0 < Q(S|x) < 1 for any measurable set S and x € [0, 1],

0% [ @Sl ()~ o) —9 2 0} (21
< [ (@)~ @)1 - g > Ha)de
[0,1]
and
0> / Q(S|z) (f(x) — g(@)I{f — g < 0}(x)da
[0,1]
> / (f(x) — g(@)I{f — g < 0}(x)da.
[0,1]
So for any measurable set S,
/ (f(z) — g(@)I{f — g < 0}(x)dx
[0,1]
<[ Q) (f@) - g(x))de
[0,1]

< / ((x) — g(@)I{f — g > 0} (x)d.
[0,1]

That is, for any measurable set S

Q(S|2)(f(x) — g(2))de| < / (f(2) — g@)I{f — g > O}(a)de
[0,1] [0,1]
v / (f(@) — ga)I{f — g < 0}(a)de
[0,1]
— sup / (f(z) — g(z))de| = drv (P}, B,).
A A
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3.7.1.2 Definition of prior distributions

By Lemma 23, let @ € Q, be a non-interactive a-private channel with marginal
conditional densities ¢;(z;|x;) with respect to probability measure p; over the respective
sample space €; for any 1 <14 <n. In the discrete case, we assume that p is a uniform
probability vector. By Equation (3.2), we can consider the associated uniform density
on [0,1]. So in both the continuous and the discrete cases, we end up considering a
uniform density fo over [0,1]. Let foi(zi) = fol qi(zilx) fo(x)dx = fol qgi(zi|x)dx with
the convention 0/0 = 0. Let p; = f[o,l} Qi(|z) fo(z)dz and K; : La([0,1]) — Lo (€, dp;)

such that
dx

foi()
Let K denote the adjoint of K;. Then K] K; is a symmetric integral operator with

kernel
Fa) = | W@() (3.27)

And by Fubini’s theorem, for any f € La([0, 1]):

Kif = /0 ai(-|) £ ()

1
KiK. () = /0 Ei( ) f(y)dy.

Note that fy is an eigenfunction of K K; associated to the eigenvalue \g; = 1 for all
1 <i<n. Let

n
K=Y K/Ki/n,
i=1
which is symmetric and positive semidefinite, and A\g = 1 is an eigenvalue associated
with fo. It is an integral operator with kernel

We denote by 1 the difference of indicator functions: ¢ = Tjg 1/9) — Ij1/2,1) and for all
integer L > 1, we set, for all £ € {0,...,L — 1}, for all z € [0,1),

Yp(x) = VLy(Lx — k).

The integer L will be taken as L = 27 for some J > 0 in the continuous case, and we
choose L = d/2 in the discrete case (we assume that d is even). We denote by V the
linear subspace of L2(]0, 1]) generated by the functions (fo, %%,k € {0,1,...L —1}).
Then we complete (fp) into an orthogonal basis (fo, u;)1<i<z, of V with eigenfunctions
of K such that [u;(z)dx = 0 by orthogonality with fy and ||u;||2 = 1. We write the
corresponding eigenvalues A;.

Let 2o = €2* — e72* < 2 for any a € (0,1]. Let A, = (\r/22) V L™! > L', Let

L
Fol@) = folz) +e S mAs Pus(2),
j=1
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where n € {—1,1}. Foralli € {1,...,L}, u; € Span(ys, k € {0,1,...,L —1}), hence

we write

L—1
u; = Z a; Pk
k=0
Then
L L-1
1
fn(fU) = fo(x) + EZ nja],k)\] Yr(x)
7j=1 k=0

We define v, as the uniform probability measure over {f,, : n € {—1,1}£}. Now, we can
identify the distance between f,, and fy. Let [ = Zle 1{z;2)\; > L~'}. By definition
and orthonormality of (u;)1<i<r, for any n € {—1,1}*

Ifn— follz=¢ ZA Huwill3 = &
=1

=1
= e\/z 2Nz N > L+ LY Mz P < L1}
e\/zgﬁ(z Nl{za2N\ > L)~ + L(L — 1), (3.28)

i

by Cauchy-Schwarz inequality.
So let us provide guarantees on the singular values in order to determine sufficient
conditions for ¢ to lead to a lower bound on p}, (¢.0,C, 5, fo), depending on C.

3.7.1.3 Obtaining the inequalities on the eigenvalues

Lemma 26. Let K be defined as in Section 5.7.1.2 and (A\?)o<i<r, its eigenvalues
associated with the orthonormal basis (fo, ui)1<i<r- Then the following inequality holds.

L
Z )\k: S Zgé.
k=1

Proof. We have

L Vb g (@)u "

L[ atai) g
Z( 0 Fos(z) uk(x)dl“> foi(zi)dpi(zi)

I
S 0=
™
S~

i=1 "% k=1
N B L ) NS U S
o i=1 /g:)Z kg </ (fOz( 1) k( )d fO,z( Z)dul( 1)7

since [uy(z)dz = 0. Now we define f, ;(z) = 'jj(zizm)) ~2@ and by Lemma 20,
0,i(%4

Lo -1
0< e~ _6—204 < fz,i(-x) _ </ Q’L(Z’L‘S) dS) _e—2a < e _e—2a < e?a _6—204_
o (%)
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So || fzill2 < €2* — 722, Then, by orthonormality of the uy’s, we apply Parseval’s

inequality:

I 2
; ( (fol 2 —e ) uk(aﬁ)dw>

—_

Finally, [ f07i(zi)dui(z,-) =1 leads to > A\ < 22.

Then from Equation (3.28) and by application of Lemma 26,

1y = foll2 > Len/(L71)2 + 1 — (L711) > Ley/3/4.

So for the discrete case, by Equation (3.2),

3.7.1.4 Information bound

Let € > 0, for all n € {—1, 1}L, we define

L 1
Fuse) = fost) +e 3om3 M [ aefoyu o)
j=1
We consider the expected squared likelihood ratio:

2
Eqp [Lyy (21, Z0)|
n L 3
A i(Zi|x)uj(z)dz
g B (Hezyu by Jy i) () )

- fo(Z:)
<1+€Zf Ay il () )
fo(Zy)
eX TN oy fy ai(Zilw)uy(w)da
=Eqp Eyy ZHI<1+ 7z
LSS i ()
fo(Z:)

1—=1/237-1/2 1
2 b NN P [ ai(Zilwyug(x)da [ ai( Zily)w(y)dy

L
fZZ?uk Z f227uk Uk”Q < Hfz ”LH2 < za'
k=1

" fo(Z;)?

Now, for any j,

(3.29)

(3.30)

Y i (Zi| ) (@) da 1 1
Eq,, [fo %(Zj’ Ju;(z)d ] :/0 /qu(z|m)dul-(z)uj(x)d:r:/o uj(x)dr =0,

fo(Zi)
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by orthogonality with uniform vector fy.
And, by Equation (3.27),

\qi(Zi )d i(Zi )d
Jo 4(Zi|a)u;(x foéff()) a(Zily)uy y] / / (2, y)uj(@)u (y)dzdy.

So since 1+ u < expu for any wu,

Eq fo

Eqp [Léﬁp (Zi,..., Zn)}

< K, exp Z )\ /23 ll/QnJmn/ / (x, y)uj(x)w(y)drdy
7,l=1

Now

1,1 1
/ / F(z,y)u;(z)w(y)dedy = Aj/ wj(z)w(z)de = \1{j = 1},
0o Jo 0

since u; is an eigenfunction of K and by orthonormality. So

2
EQ}IO |:LQ,7}p (Zla S >Zn):|

L L
<K, exp | ne Z 377] <K, exp ne? Z njn}zi
j=1 j=1
Then
L
2 24,1y 4
EQ}LO [LQLLP (Z1,..., 2y ] Hcosh ne?z2 Hexp ne1zd) < exp(n’eziL).

Then, in order to apply Lemma 2 combined with 24, let us find a sufficient condition
for

EQ?O [Léﬁp(zh"wzn)} < 1+4(1 —7—5_7)2_

So let us choose € and J in order to ensure that
exp(n?e*2AL) < 14+4(1 — 2y — B)?,

i.e.
Le* < (n22)2log [1+4(1 — 2y — B)?],

e < (7’LZ ) 1/2 <log [1 +4(1 — 2y - ﬁ)Q])l/4 ) (331)

1.e.

L

3.7.1.5 Sufficient condition for f, to be non-negative

Lemma 27. If
L—l
S
2log(2L/7)
then there exists Ay C {—1,1} such that P,,(n € Ay) > 11— and for anyn € A,
fn is a density.
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Proof. Let

Ay ={n: 1Y mjaje; /| < /2Llog(2L/7)}.
J

Since w; is orthogonal to fy, uniform density on [0, 1] for all 7, we have fol fn(z)de =1
and we just have to prove that f, is nonnegative. We remind the reader that

L1
u; = § a; kY.
k=0

The bases (u1,...,ur) and (¢Yx, k € {0,1,...,L —1}) are orthonormal. This implies
that the matrix A = (a;k)1<i<r kef0,1,...—1} is orthogonal. So

L-1 L
Vi, aly =1, Vk, > aly=1.
k=0 i=1

Hence we have for all z € [0,1],

L-1 L

(fg = fo)(@) =D mieh; 2 (). (3.32)
k=0 i=1
The functions (¢, k € {0,1,..., L—1}) have disjoint supports and sup,co 1] [¥x(z)| =
LY/2. Hence [fn is nonnegative if and only if for any k£ € A(J)

L
/2 Z 771'55‘;1/2ai,k

=1

<1 (3.33)

By definition of v,, we have that f, is a density with probability larger than 1 —~
under the prior v, as soon as Equation (3.33) holds with probability larger than 1 —~.

That is,
< 1) >1- s

where (11, ...,nr) are i.i.d. Rademacher random variables. Using Hoeffding’s inequality,
we get for all x > 0, for all k € {0,1,...,L — 1},

>ax | <2exp —2
> X = .
S (26X Y Pag)?

>x>

L
1—1/2
> miEk; Pa

1/2
P, (Vke{(),l,...,L—l},L/
i=1

L
T-1/2

E meEN; T aik

=1

o |

P,, <3k€{0,1,...,L—1},

Hence

L
T-1/2

E meN; ' Taig

i1

2
< 2Lexp — .
250 (X Pa)?
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So the probability of having the existence of some k € {0,1,..., L — 1} such that

L

> 1257 (X a2 1og(2L /)
=1

L
<-1/2

E meN; ' Taig

=1

is smaller than ~. Hence, f;, is a density with probability larger than 1 — v under the
prior v, as soon as for any k € A(J),

L
2L 2(55\;1/2(%'1@)2 log(2L/~) < 1.

=1

1—1/2

Now by definition, A; '~ < L'/2. So we have the sufficient condition

L
2Le*L1og(2L/7) Za?k <1
i=1

And ZiL:1 a?k = 1 leads to the following sufficient condition,
Lfl
€S ——.
V/2log(2L/7)
O
3.7.1.6 Sufficient conditions for f, € F,(Bs2,(R)), only in the continuous
case

We first prove the following points.
Lemma 28. If

_ LM1ARL™)
V2log(2L/7) '

then there exists A, C {—1,1}% such that P,,(n€Ay) > 11—~ and for anyn € A,,
a) fy is a density.

b) fn E 65727OO(R)'
Proof. We consider the same event as in the proof of Lemma 27:

Ay = {13 mjaph; | < /2LTog(2L/7)}.
J

a) In the same way as in Lemma 27, f, is a density.

b) For all k € {0,1,...,L — 1},

L
(fn — fo,n) = 52771‘5\1-_1/2%,1@.

i=1

Hence f, € Bs2,00(R) if and only if

L1 L 2
Z £2 (Z niAi_l/zai’k) < R’L7%,

k=0 i=1
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But we also have that for any n € A,

L—1 L 2
> e < nix 2ai,k> < e2L2210g(2L /7).
k=0 =1

S0 f € Bsgoo(R) if

e < RL=CHY /. /210g(2L /7).

3.7.1.7 Conclusion

1. Discrete case.

So combining Equation (3.31) and Lemma 27, we obtain the following sufficient
condition in order to apply Lemma 2:

/
. < (nzi)*l/Q <1og [1+4(12’76)2]>1 4 . -1
L 2log(2L /)

So, by Equation (3.30), if

d
S (@ — i) < M( [(n22)71/2d1/% (log [1+4(1 — 2y — 5)%]) "]

k=1
d—1/2
N |,
v/ 2log(2d/7)
then we can define densities f, such that the errors are larger than v and 3. So

ply(fo, Hy, TLS)) /d?
> c(7,8) [((n2)~/2d" ) A (dlog d) %),

Now, we also have
p;(anH177jy(,?L)) Z pE(fO)Hla’]'dy(j;OO)%

where p}}(f 0, H1, T§,t°°)) corresponds to the case where there is no local differ-
ential privacy condition on (). In particular, taking () such that Z = X with
probability 1 reduces the private problem to the classical testing problem. Now,
the data processing inequality in Lemma 25 justifies that such a @ is optimal
by contraction of the total variation distance. And the classical result leads to

having g% (fo, Hi, Tan™) = ¢ (v, 8) n~/2d /4,

So, we have

pifo, Hi, T{O) /A2 = e (7, 8) [((nz2) 72 ) A (dlog d) ™3] v (n=12a 71 4).

2. Continuous case.



138 Chapter 3. Minimax identity testing under local differential privacy

So combining Equation (3.31) and Lemma 28, we obtain the following sufficient
condition in order to apply Lemma 2:

e < |(na2)172 <log [1+4(1 - 27_5)2]>1/4 X Lfl(l/\RL*S)‘
L 2log(2L/7)

So, by Equation (3.29), if
1f = foll2
< \/7< |: 1/2L3/4 10g1/4 (1 + 4(1 . 2,)/ 5) )] (1 VAN RL_S) )7

2log(2L /)

then, taking J as the largest integer such that 27 < ¢ (v, 8, R) (nz2)?(45+3) we
obtain:

PZ’(fO» HLS’ 7;(,?1)) >c (7a 67 R) (nzi)—Qs/(4s+3) (10g n)_l/Q'
Now, we also have

(f07H1 877-( )) Z (anHlsaT(+OO))7

¥,n

where pE( fo, His, 7;(;()0)) corresponds to the case where there is no local differ-
ential privacy condition on (). In particular, taking @ such that Z = X with
probability 1 reduces the private problem to the classical testing problem. Now,
the data processing inequality in Lemma 25 justifies that such a @ is optimal
by contraction of the total variation distance. And the classical result leads to

havjng p;g(fo’ Hle’ 7;(200)) =cC (77 /67 R) n—QS/(4s+1)‘

So, we have

Ph(fo, His, T3)) = ¢ (7, B, R) [(nzd) 2/ U5+ (log n) /2 v =20/ (4551,

3.7.2 Proof of the upper bound
In this section, fj is some fixed density in La([0, 1]).

3.7.2.1 Proof of Theorem 28

We prove the bound on the variance term VQ? (TL) given in Equation (3.16). Let us
define

n

ffL— ZZ Zitk — ork) (Zioke — oLk)

z;él 1 k=0

n

L—1 1

—9 _ 0 _

= apk— oy ) ZiLk— OLk)
k=0

3

z:l
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where ayp j = fol érk(z) f(z)dr and oY | = fol érk(x) fo(x)dr. Then we obtain the
Hoeffding’s decomposition of the U-statistic 77, namely

Ty = UL+ Vi + s, (f — fo)lI3

We first control the variance of the degenerate U-statistic U, which can be written as

n
> hi(Zin. Zip),
iAl=1

A 1
Ur= n(n —1)

where

~

-1

hi(Zir,Z11) = Z (Zitg —ornk) (Zine — oLk -
k=0

In order to provide an upper bound for the variance VQ?(UL), let us first state a
lemma controlling the variance of a U-statistic of order 2. This result is a particular
case of Lemma 8 in Meynaoui et al. (2019).

Lemma 29. Let h be a symmetric function with 2 inputs, Z1, ..., Zy, be i.i.d. random
vectors and U, be the U-statistic of order 2 defined by

1 n
Up=—— h(Z;, Z;).
n(n—1) i;1 ( !

The following inequality gives an upper bound on the variance of Uy,

V(Un)§C<02+ 52>,

n ' n?
where 0? =V (E[W(Z1, Z3) | Z1]) and s*> =V (h(Z1, Z3)).

We have that Eqn [h(Z1,Z2) | Z1] = 0, hence the first term in the upper bound of

the variance vanishes. In order to bound the term s?, we write
L—-1 L-1
hi(Z1,Z2) = > ($rk(X1) = ap) (brx(X2) — ark) + 07 Y Wi LsWa Lk
k=0 k=0
L—-1 L—-1
+or, Z Wi Lk (6rx(Xe) —arpk)+or Z Wa .k (ore(X1) —oarg) .
k=0 k=0

So, since EQ? (o k(Xs) —ar k) =0 and E(W; 1) = 0 for any i. Using independence
properties, we therefore have

Vanu (he(Z1, Z2))

L—1 L-1
=Vau | D ($rr(X1) —arg) (dru(Xe) —ark) | +Var o1 Y Wl,L,kW2,L,k]
k=0 k=0
L-1
+2Vgn (oL > Wik (bre(Xa) - aL,k)] :
k=0




140 Chapter 3. Minimax identity testing under local differential privacy

Now, by independence of X; and Xo,

-1
Varn Z (Prx(X1) —apk) (orp(X2) — OéL,k)]
o
= E [(¢r5(X1) — apk) (drp(X1) — app)]
ke k=0

E [(¢rp(X2) — arg) (orp(X2) — ap )]

-1 )
= Z [/ dL L f — aL,kOéL,k/] .
~0

So

-1
Z (P p(X1) —arpk) (Prr(X2) — aL,k)]
k=0

2

o, 2 L—1
://(Z ¢>L,k(m)¢L,k(y)> f(a:)f(y)dxdy—Q/(ZaL,kgbL’k(x)) f(x)dz
k=0 prd

-1 2
k=0

In order to control the first term of the variance, note that by definition of the
functions ¢r, i, we have that, for all « € [0,1], ¢ (x)drw(x) = 0if k # k', and that
(;5% = \EQbL,k:- Hence,

L-1 2 L-1
// (Z ¢L,k($)¢L,k(ZJ)> f(@)f(y)dzdy = L Z af
k=0 k=0
< LI|f13-

Since the second term of the variance is nonpositive, and the third term is controlled
by || f]|3,we obtain

Z PrLk(X1) —apk) (Prr(X2) — aL,k)] < LIfI3 + I1f112 < 2L f113.

k=

VQ?

By independence of the variables (W; 1, 1),

-1
(UszlLkWQLk>—O'LZVWILkW2Lk) Lot
k=0
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Finally, using again the independence of the variables (W1 1 k)keqo,..., -1}, and their
independence with Xo,

L1
Var |oL kzg) Wi Lk (¢re(X2) — OéL,k)]
L1
=07 Eqy > WiaWisw (6rr(Xa) — apk) (rw(Xa) — o)
e k' =0

=0} Y E(WPp0)Eq; [(6rs(X2) — ar)’]
k=0
L-1 L1 r(k+1)/L
<oty [ohur<otty [ r<diL
k=0 k=0 K/ L
since fol f = 1. This leads to the following upper bound for Var (hp(Z1, Z2)),

Vay (hi(Z1, Z)) < QIIfII3 + of +07)L,

from which, by application of Lemma 29, we deduce that

2 4
N +o03)L
VQ? (UL) < 2(||f||2n213).

Let us now compute VQrfz( 7). Since V7, is centered,

Note that, if i # [,
Eqp [(Zing — aLp)(ZiLw — arw)] = 0.
Moreover,

Eqn (Zipo — anp)(Zipyw — anp)]
=E[(orx(Xs) — app)(drm(Xi) — app) + U%EQ}‘(Wi,L,kWi,L,k/)]

= /¢L,k¢L,k'f —aprapp + 203 1k =K'}
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Hence,
v%(mj
4 Ll
= (app —af &) (ap e — OéL k! (/ GLibri f — appory + 207 1{k =k })
k,k'=0
4 L—1 2 = 2
= / ( (ap gk — aoL,k)¢L,k> f—= ( ap k(oL — a%,k))
" k=0 ™ \k=o

_l’_

3o

U E Osz—Och
k

4 L1 g L1
0 y2 [ ;2 2 0 2
<= Z(aL,k —arg) /¢L,kf +ooL Z(aL,k — o)
k=0 k=0
L1

(VTS + 802) Y- (o= o )°

k=0

IN

since by Cauchy Schwarz inequality,

= VL| fll2-

0<

We finally obtain,

(VLI fll2 +0F)

Vo (1) <€ s, (f = fo)l3-

Collecting the upper bounds for VQ? <(7 L) and for VQ? (VL), we obtain the inequality

from Equation (3.16), that we remind here:

VQ? (TL> <C

3.7.2.2 Proof of Corollary 10

2 4
s, (f = fo)ll5 + WHQTL—ZUL)L

(VLIfll2 +oF)

From Equation (3.16) and taking f = fy, we obtain

(1foll2 + G)VE

n

vy, (Ti) /v < C()

Moreover, we deduce from (3.16) that

1/2
(LU o)y gy 5 Ot oDVE

Using the inequality between geometric and harmonic means, we get

(£l + o)VE

Var (TL) /B < C(B)

Vay (T1) /8 < 5T, (f — fo) B+ C(5)

We conclude the proof by using the condition in Equation (3.14).
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3.7.2.3 Proof of Theorem 29
We recall that we have defined

d d

f= dz WLk d,(k+1)/d), fo= dzpk]l[k/d,(k+1)/d)~
k=1 k=1

We obtain from Corollary 10 that the second kind error of the test is controlled by g if

(Ifll2 + Il foll2 + o2)VE

n

s, (7~ Fo)I = O, )

In the discrete case, by definition, f and fy belong to Sr, hence |[ILg, (f — fo)ll2 =
Ilf — foll2 and || fll2 < || foll2+ ||f — foll2. So we have the following sufficient condition.

(Ilfollz + 0% + VL/n)VL

n

If = foll3 > C (v, 8)
Moreover, we have

d
1 = foll3 = 4 (ak — p)?
k=1

We recall that L = d and o7, = 2v/2d/a. That is, the sufficient condition turns out to
be

d1/2
quk—pk > 0, 8)%— (Ifolla +da~? + d/2n71).

By definition of fy, we have that

d
I£13=d> .
k=1

Finally, we obtain the following condition

1/4

d-1/4
L 20y g /Ay L)

[d > i

3.7.2.4 Proof of Theorem 30
We obtain from Corollary 10 that the second kind error of the test is controlled by 3 if

0_2
1f = foll3 = I = fo = Ts, (f = fo)lIz + C(ll follz, | fll2. v, 5)(L+nl)\/f-

Since f — fo € Bs2,00(R), setting L = 27 we have, on one hand
If = fo— s, (f = fo)ll} < R*27>",
and on the other hand, || f|l2 < C(s, R, || foll2). This leads to the sufficient condition

o O'2+1 2J/2
1 = folls = B22727% 4 C(s, R, | follas . ) LT D2
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We recall that o7, = 2v/2L/a. That is, the sufficient condition turns out to be:

, ol 93J/2  9J/2
17 = folls > Cls, B, lfollos, ) (27275 4+ S+ = ).

- (3.34)

J* being set as the smallest integer J such that 27 > (na2)2/(43+3) A n2/ (A5t e
consider two cases.

o If 1/\/n < a < nt/45HD) then (na?)?/(4s+3) < n2/(45+1) and the right-hand side
of the inequality in Equation (3.34) for J = J* is upper bounded by

C(s. R, || foll2: 7, B)(na®) =4/ (+9),

o If @ > n!/(4s+D) then (na?)?/(4s+3) > n2/(45+1) and the right-hand side of the
inequality in Equation (3.34) for J = J* is upper bounded by

C(s, R, || foll2, . B)yn~*/U4s+1).
Hence, the separation rate of our test over the set Bs 2 o0 (R) is controlled by
C(s, R, | foll2,7, B) [(na2)f2s/(4s+3) v n-2s/s+0)]
which concludes the proof of Theorem 30.

3.7.3 Adaptivity: proof of Theorem 31

In this section, fp is some fixed density in Ly ([0, 1]).
Using the inequality from Equation (3.26), and the fact that w, > v/|J|, we obtain
that

Poy (#7g=0) <8 (3.35)
as soon as

3J € J, Py (TJ <(1- u,y)) < 8.

We use the result of Corollary 10, for L = 27 for some J € J, where o, is replaced by
g9 and 7 is replaced by v/|J|.

Using the fact that | J| < C'log(n), we get that Equation (3.35) holds as soon as
there exists J € J such that

PNT (62, +1)27/2
ILs,, (f = fo)lI* = C(ll foll2, [ fll2, B) (n\/’W :

or equivalently

If = foll?

)(&3 + 1)2J/2\/10g(n)] .

n

= inf [llf — fo = s, (f = fo)lI* + C(ll follz, I fll2, 7. 8

Assuming that f € Bs 2 00 (R), for some s > 0 and R > 0, we get that Equation (3.35)
holds if

2 .
_ > f
”f fOH - }Ielj « n

23712 10g?(n) log(n)
J/2
27/2 4 . :

R*27%7 1+ C(| follz, R, 7, B) (
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Choosing J € J as the smallest integer in J such that 27 > (n%a*/log®(n))"/(4s+3) A
(n?/log(n))"/“#s+1) we obtain the sufficient condition

1f = foll? = Cllfolla, By, 8) [ (na?/ Tog™2(m) =15/ 453 v (1 /log )~/ 1)

Hence, for all s > 0, R > 0, the separation rate of the aggregated test over the set
B 2.00(R) is controlled by

C(HfOH?a R,~, B) [(’I”LO;/ 10g5/2(n))_25/(45+3) \Vi (n/\/logW)_Zs/(‘lSﬂ)} ’

which concludes the proof of Theorem 31.

3.8 Naive lower bound

As promised in Remark 32, we provide a lower bound using the main result of Duchi,
Jordan, and Wainwright (2013c), but the resulting rate turns out to be suboptimal.

Theorem 32. Let (v,5) € (0,1) such that v+ <1, letaw>0,R > 0,5 > 0.
We obtain the following lower bound for the a-private minimax separation rate defined
by Equation (3.7) for non-interactive channels in Q. over the class of alternatives Hi g

" _ 1
Pﬁ(]l[o,l}?Hl,s,ﬁ(Z)) >c(v,8,R) (2 T5N W) .
The proof will remain concise since some arguments are also presented in the proofs
of our main results.

Proof. Let fo = Tjp1j. Let us first define the setup similarly to Section 3.7.1.2. Let
Q € 9, be a non-interactive a-private channel. We assume that fy is the uniform
density on [0, 1]. We define the function ¢ € L.2([0,1]) by ¥ (z) = ][[07%) - ][[%,1), and
for some given J € N, that will be specified later, we define, for all &k € A(J) =
{O, 1,...,27 — 1}, Yik(x) = 2J/2w(2‘]$ — k). We denote by V' the linear subspace of
L%([0,1]) generated by the functions (fo, ¥k, k € A(J)).

Let

2J
Fo=Jo+ 027> nipi,
i=1

where 17, for every ¢ have disjoint supports, [; =0, fl/)?h =1 and [0l = 2772
It is possible to show that f, is a density if p < 1 and it is in the Besov set
Bs2.00(R,2) if p < R2775.
Note that by orthonormality,

£y = foll3 = p*.

Denote D the Kullback-Leibler divergence. Consider Theorem 1 in Duchi, Jordan,
and Wainwright (2013c), for any densities f, g and Q € Qy:

DkL(Pq,,Pg,) + Drr(Pg,,Pq,) < 4(e* —1)%dry (P, Py)*. (3.36)
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We have

1
Drr(Pgy Pay,) < 5r {;}K 1DKL(IPQ70,IP%). (3.37)
ne{—1, -

And by application of the Kullback-Leibler divergence over products of distributions,
DKL(PQ:}O y ]P)Q?n) = nDKL(]P)QfO s Pan )

So by application of Pinsker’s inequality on one side of the inequality in Equation (3.37)
and using Equation (3.36) on the other side, this implies
4(e* —1)?
2 2
2dTV(]P)Q?O’IP)Q3p) < T Z ndTv(]P)fo — an) .
ne{flvl}L

So
drv(Pay \Pqy,) < V2(e® —1)v/ndry (Py, — Py, ).

And by application of Lemma 24,

dry (Pg,, Py,) < % (Efo [Lfcn(xl) - 1})1/2.

Now
27 27/
Ef, [Lffn (Xl)} = 14202772 “nip, (s0) + p°277 Y 0By (43,),
i=1 i=1

since 17, have disjoint supports.
So
E, [L?n (Xl)} =1+ 102-

Finally,
drv (Poy ,Poy,) < V2/2(e” = 1)/np.

O

Remark 37. Focusing on the following term from the naive lower bound on the

minimax rate
1/v/n,

we notice a gap with what we obtain using our proof:

23]/4/\/77“

The source of the gap is in the inequality presented in Equation (3.37). Indeed, on
the left-hand side, there is a distance describing testing with an alternative hypothesis
composed of 27 elements. Whereas on the right-hand side, we have the average distance
corresponding to testing with only a simple alternative hypothesis. This inequality is
nonetheless applied in order to obtain univariate distributions over which Theorem 1
from Duchi, Jordan, and Wainwright (2013c¢) is applicable.
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Chapter 4

Minimax adaptive rejection
sampling

4.1 Introduction

The breadth of applications requiring independent sampling from a probability distri-
bution is sizable. Numerous classical statistical results, and in particular those involved
in machine learning, rely on the independence assumption. For some densities, direct
sampling may not be tractable, and the evaluation of the density at a given point may
be costly. Rejection sampling (RS) is a well-known Monte-Carlo method for sampling
from a density f on R? when direct sampling is not tractable (see Von Neumann, 1951,
Devroye, 1986). It assumes access to a density g, called the proposal density, and
a positive constant M, called the rejection constant, such that f is upper-bounded
by Mg, which is called the envelope. Sampling from g is assumed to be easy. At
every step, the algorithm draws a proposal sample X from the density g and a point
U from the uniform distribution on [0, 1], and accepts X if U is smaller than the
ratio of f(X) and Mg(X), otherwise it rejects X. The algorithm outputs all accepted
samples, which can be proven to be i.i.d. samples from the density f. This is to
be contrasted with Markov Chain Monte Carlo (MCMC) methods which produce a
sequence of non dependent samples and therefore fulfill a different objective. Besides,
the application of rejection sampling includes variational inference: Naesseth et al.
(2016) and Naesseth et al. (2017) generalize the reparametrization trick to distributions
which can be generated by rejection sampling.

Adaptive rejection sampling is a variant of rejection sampling motivated by the high
number of rejected samples with standard rejection sampling. Given n, a budget of
evaluations of f, the goal is to maximize 7, the number of output samples which have
to be drawn independently from f. In other words, the ratio %ﬁ, also called rejection
rate, is to be made as small as possible, like in standard rejection sampling. To achieve
this maximal number of output samples, adaptive rejection sampling methods gradually
improve the proposal function and the rejection constant by using the information
given by the evaluations of f at the previous proposal samples. These samples are
used to estimate and tightly bound f from above.

4.1.1 Literature review

Closely related works. Erraqabi et al. (2016) provides an adaptive rejection
sampling algorithm together with theoretical guarantees, making this work very
relevant in comparison with ours. We detail their approach in Section 1.6.5 and we
will prove in this chapter that their results are suboptimal. Another related sampling
method is A* sampling (Maddison, Tarlow, and Minka, 2014). It is close to the OS*
algorithm from Dymetman, Bouchard, and Carter (2012) and relies on an extension of
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the Gumbel-max trick. The trick enables the sampling from a categorical distribution
over classes i € [1,...,n] with probability proportional to exp(¢(i)), where ¢ is an
unnormalized mass. It uses the following property of the Gumbel distribution. Adding
Gumbel noise to each of the ¢(i)’s and taking the argmax of the resulting variables
returns ¢ with a probability proportional to exp(¢(i)). Then, the authors generalize
the notion of Gumbel-max trick to a continuous distribution. This method shows
good empirical efficiency in the number of evaluations of the target density. However,
the assumption that the density can be decomposed into a bounded function and a
function that is easy to integrate and sample from, is rarely true in practice.

Other related works. Gilks and Wild (1992) introduced ARS: a technique of
adaptive rejection sampling for one-dimensional log-concave and differentiable densities
whose derivative can be evaluated. ARS sequentially builds a tight envelope of the
density by exploiting the concavity of log(f) in order to bound it from above. At each
step, it samples a point from a proposal density. It evaluates f at this point, and
updates the current envelope to a new one which is closer to f. The proposal density
and the envelope thus converge towards f, while the rejection constant converges
towards 1. The rejection rate is thereby improved. Gilks (1992) also developed an
alternative to this ARS algorithm for the case where the density is not differentiable
or the derivative can not be evaluated. The main difference with the former method
is that the computation of the new proposal does not require any evaluation of the
derivative. For this algorithm, as for the one presented in Gilks, Best, and Tan (1995),
the assumption that the density is log-concave represents a substantial constraint in
practice. In particular, it restrains the use of ARS to unimodal densities.

An extension from Hoérmann (1995) of ARS adapts it to T-concave densities, with T’
being a monotonically increasing transformation. However, this method still cannot
be used with multimodal densities. In 1998, Evans and Swarz proposed a method
applicable to multimodal densities presented in Evans and Swartz (1998) which extends
the former one. It deals with T-transformed densities and spots the intervals where
the transformed density is concave or convex. Then it applies an ARS-like method
separately on each of these intervals. However it needs access to the inflection points,
which is a strong requirement. A more general method in Goriir and Teh (2011)
consists of decomposing the log of the target density into a sum of a concave and
convex functions. It deals with these two components separately. An obvious drawback
of this technique is the necessity of the decomposition itself, which may be a difficult
task. Similarly, Martino and Miguez (2011) deal with cases where the log-density can
be expressed as a sum of composition of convex functions and of functions that are
either convex or concave. This represents a relatively broad class of functions; other
variants focusing on the computational cost of ARS have been explored in Martino
(2017) and Martino and Louzada (2017).

For all the methods previously introduced, no theoretical efficiency guarantees are
available.

A further attempt at improving simple rejection sampling resulted in Adaptive
Rejection Metropolis Sampling (ARMS) (Gilks, Best, and Tan, 1995). ARMS extends
ARS to cases where densities are no longer assumed to be log-concave. It builds a
proposal function whose formula is close to the one in Gilks (1992). This time however,
the proposal might not be an envelope, which would normally lead to oversampling
in the regions where the proposal is smaller than the density. In ARMS, this is
compensated with a Metropolis-Hastings control-step. One drawback of this method
is that it outputs a Markov Chain, in which the samples are correlated. Moreover,
the chain may be trapped in a single mode. Improved adaptive rejection Metropolis
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(Martino, Read, and Luengo, 2012) modifies ARMS in order to ensure that the proposal
density tends to the target density. In Meyer, Cai, and Perron (2008) an alternative is
presented that uses polynomial interpolations as proposal functions. However, this
method still yields correlated samples.

Markov Chain Monte Carlo (MCMC) methods (Metropolis and Ulam, 1949; An-
drieu et al., 2003) represent a very popular set of generic approaches in order to
sample from a distribution. Although they scale with dimension better than rejection
sampling, they are not perfect samplers, as they do not produce i.i.d. samples, and
can therefore not be applied to achieve our goals. Variants producing independent
samples were proposed in Fill (1997) and Propp and Wilson (1998). However, to the
best of our knowledge, no theoretical studies on the rejection rate of these variants is
available in the literature.

Importance sampling is a problem close to rejection sampling, and adaptive impor-
tance sampling algorithms are also available (see e.g., Oh and Berger, 1992; Cappé
et al., 2008; Ryu and Boyd, 2014). Among them, the algorithm in Zhang (1996)
sequentially estimates the target function, whose integral has to be computed using
kernel regression, similarly to the approach of Erraqabi et al. (2016). A recent notable
method regarding discrete importance sampling was introduced in Canévet, Jose, and
Fleuret (2016). In Delyon and Portier (2018), adaptive importance sampling is shown
to be efficient in terms of asymptotic variance.

4.1.2 Our contributions

The above mentioned sampling methods either do not provide i.i.d samples, or do not
come with theoretical efficiency guarantees, apart from Erraqabi et al. (2016) or Zhang
(1996) and Delyon and Portier (2018) in importance sampling. In the present work,
we propose the Nearest Neighbour Adaptive Rejection Sampling algorithm (NNARS),
an adaptive rejection sampling technique which requires f to have s-Hdélder regularity
(see Assumption 2). Our contributions are threefold, since NNARS:

e is a perfect sampler for sampling from the density f.

o offers an average rejection rate of order log(n)Qns/d, if s < 1. This significantly
improves the state of the art average rejection rate from Erraqabi et al. (2016)
over s-Holder densities, which is of order (log(nd)/n)3s+d.

e matches a lower bound for the rejection rate on the class of all adaptive rejection
sampling algorithms and all s-Holder densities. It gives an answer to the theo-
retical problem of quantifying the difficulty of adaptive rejection sampling in the
minimax sense. So NNARS offers a near-optimal average rejection rate, in the
minimax sense over the class of Holder densities.

NNARS follows a common approach to that of most adaptive rejection sampling
methods. It relies on non-parametric estimation of f. It improves this estimation
iteratively, and as the latter gets closer to f, the envelope also approaches f. Our
improvements consist of designing an optimal envelope, and updating the envelope as
we get more information at carefully chosen times. This leads to an average rejection
rate for NNARS which is minimax near-optimal (up to a logarithmic term) over the
class of Holder densities. No adaptive rejection algorithm can perform significantly
better in this class. The proof of the minimax lower bound is also new to the best of
our knowledge.

The optimal envelope we construct is a very simple one. For every known point of
the target density f, we use the regularity assumptions on f in order to construct an
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envelope which is piecewise constant. It stays constant in the neighborhood of every
known point of f. Figure 4.1 depicts NNARS’ first steps on a mixture of Gaussians in
dimension 1.

In the second section of this chapter, we set the problem formally and discuss the
assumptions that we make. In the third section, we introduce the NNARS algorithm
and provide a theoretical upper bound on its rejection rate. In the fourth section,
we present a minimax lower bound for the problem of adaptive rejection sampling.
In the fifth section, we discuss our method and detail the open questions regarding
NNARS. In the sixth section, we present experimental results on both simulated and
real data that compare our strategy with state of the art algorithms for adaptive
rejection sampling. The implementation of the code of NNARS can be found on the
following webpage: https://github.com/jlamweil/NNARS. Finally, the proofs of all
the results presented in this chapter are left for the later sections.

4.2 Setting

Let f be a bounded density defined on [0, 1]%. The objective is to provide an algorithm
which outputs as many i.i.d. samples drawn according to f as possible, with a fixed
number n of evaluations of f. We call n the budget.

4.2.1 Description of the problem

The framework that we consider is sequential and adaptive rejection sampling for which
we already give a very detailed description in Section 1.6.4. So we will simply recall a
few notions here.

The rejection sampling step is defined in Algorithm 2.

Algorithm 2 Rejection Sampling Step with (f, g, M) : RSS(f, g, M)

Input: target density f, proposal density g, rejection constant M.
Output: Either a sample X from f, or nothing.
Sample X ~ g and U ~ Ujg 1]
if U < 47X then
output X.
else
output 0.
end if

Then one defines the class of adaptive rejection sampling algorithms.

Definition 18. (Class of Adaptive Rejection Sampling (ARS) Algorithms)
An algorithm A is an ARS algorithm if, given f and n, at each step t € {1...n}:

o A chooses a density g:, and a positive constant My, depending on

{0, (X)), (K, S (X))

e A performs a Rejection Sampling Step with (f, gi, My).

The objective of an ARS algorithm is to sample as many i.i.d. points according to f as
possible.

We also recall the following result from Section 1.6.4, giving a sufficient condition
under which an adaptive rejection sampling algorithm outputs i.i.d. samples from f.


https://github.com/jlamweil/NNARS
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Theorem 33. Given access to a positive, bounded density f defined on [0,1]%, any
Adaptive Rejection Sampling algorithm (as described above) satisfies:

if Yt <mn, Vze[0,1]¢, f(x) < Mg(x), the output S contains i.i.d. samples drawn
according to f.

Definition of the loss. If the learner is a perfect sampler at every step, we define the
loss as L, = n — #S, which corresponds to the number of rejected samples. Otherwise,
we just set L, = n. Finally, we note that the rejection rate is L, /n.

4.2.2 Assumptions

We make the following assumptions on f. They will be used by the algorithm and for
the theoretical results.

Assumption 2.

e The function f is (s, H)-Holder with respect to Lo for some 0 < s < 1 and
H >0,
pce., Yo,y € 0,10, [f(z) = f)] < Hlz — ylli, where [ulleo = max; [us];

o There ezists 0 < ¢y < 1 such that Yz € [0,1]%, ¢f < f(z).

Let Fo := Fo(s, H,cy,d) denote the set of functions satisfying Assumption 2 for
given0<s<1, H>0and 0 <cy <1

Remarks. Here the domain of f is assumed to be [0, 1]%, but it could without loss of
generality be relaxed to any hyperrectangle of R?. Besides, for any distribution with
sub-Gaussian tails, this assumption is almost true. In practice, the diameter of the
support is bounded by O(y/logn), where n is the number of evaluations, because of
the vanishing tail property. The assumption of Holder regularity is a usual regularity
assumption in order to control for rates of convergence. It is also a mild one, considering
that s can be chosen arbitrarily close to 0. Note however that we assume the knowledge
of s and H for the NNARS algorithm. Since f is a Holder regular density defined on
the unit cube, we can obtain the following upper bound: f(z) <1+ H Vx € [0, 1]¢.
As for the assumption involving the constant cy, it is widespread in non-parametric
density estimation. Besides, the algorithm will still produce exact independent samples
from the target distribution without the latter assumption. It is important to note
that f is chosen as a probability density for clarity, but it is not a required hypothesis.
In the proofs, we study the general case when f is not assumed to be a probability
density.

4.3 The NNARS Algorithm

The NNARS algorithm proceeds by constructing successive proposal functions g; and
rejection constants M; that gradually approach f and 1, respectively. In turn, an
increased number of evaluations of f should result in a more accurate estimate and
thus in a better upper bound.
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4.3.1 Description of the algorithm

The algorithm outlined in Algorithm 3 takes as inputs the budget n, and ¢y, H, s as
defined in Assumption 2. Let S denote its output. At each round k, the algorithm
performs a number of RSS steps with specifically chosen g and M. We call xj the
set of points generated at round k and of their images by f, whether they get accepted
or rejected.

Initialization. The sets S and xg, k¥ € N are initialized to (). g is a uniform proposal
on [0,1]%. My =1+ H is an upper bound on f. N = Ny = [2(10H)%* log(n)cgl_d/sl
For any function h defined on [0,1]%, we set I}, = f[o 1) h(z)dz.

Loop. The algorithm proceeds in K = ﬂogQ(%ﬂ rounds, where | ] is the ceiling
function, and log, is the logarithm in base 2.
Each round k € {1,..., K} consists of the following steps.

1. Perform a Rejection Sampling Step RSS(f, gk, My) N times. Add the accepted
samples to S. All proposal samples as well as their images by f produced in the
Rejection Sampling Step are stored in xj, whether they are rejected or not.

2. Build an estimate fui <wx: Of J based on the evaluations of f at all points stored
in Uj<gXi, thanks to the Approximate Nearest Neighbor Estimator, referred to
in Definition 19, applied to the set yg.

3. Compute the proposal with the formula:

fUi<kXi (z) + TUickxi
9k+1 (x) = = ~ = ) (41)
I + TUi<kXi

f Ui<kXi
and the rejection constant with the formula:

M1 =1

Yi<kXi

+ fUigkXi’ (4'2)

where 7y,_, , is defined in Equation (4.3) below, in Definition 19. Note that
gk+1 and My, are indexed here by the number of the round, unlike in the last
section where the index was the current time.

4. If k < K — 1, set Npyq as 2N = 28N. Otherwise N =n — (2K-1 - 1)N.
Finally, the algorithm outputs S, the set of accepted samples that have been collected.

Definition 19 (Approximate Nearest Neighbor Estimator applied to x).

Let f be a positive density satisfying Assumption 2. We consider a set of N points
and their images by f, x = {(X1, f(X1)), ..., (Xz, f(X5)))}. Let us define a set of
centers of cells constituting a uniform grid of [0,1]%, namely

C = {2—1(LN%J + 1) e {1, 2(| V) 1) - 1}d} :

The cells are of side-length 1/(LN§J +1). For z €[0,1]%, write

Cr(x) = arg min ||z — ul/c.
’LLECN



4.3. The NNARS Algorithm 153

We define the approzimate nearest neighbour estimator, related to the estimator pre-
sented in Equation (1.2) in Section 1.3.2, as the piecewise-constant estimator fy of f by

Yo € 0.11% fy(@) = ACx@) = f (Xioy(wy)  where i(a) = argmin(z - Xi]).

We also define a confidence term as

7y = H | max min || — X|looc + ———F—— 11 (4.3)
ueCy i<N 2(|Nd] +1)

Remarks on the proposal densities and rejection constants. At each step,
the envelope is made up of evaluations of f summed with a positive constant which
stands for a confidence term of the estimation. It provides an upper bound for f.
Furthermore, the use of nearest neighbour estimation in a noiseless setting implies
that this bound is optimal. Besides, the approximate construction of the estimator
builds proposal densities which are simple to sample from.

As explained in Lemma 30, an important remark is that the proposal density g
from Equation (4.1) multiplied by the rejection constant My from Equation (4.2) is
an envelope of f. This means Mg, > f for all K < K. So by Theorem 33, NNARS is
a perfect sampler.

The algorithm is illustrated in Figure 4.1.

First step of NNARS: uniform sampling First step of NNARS: building the proposal
20.0
104 / f
cr 17.5 —_— €
A Samples x; A S
8 15.0 —_
125
6
10.0
44 5
50
24
25
0 T T T T T 0.0
0.0 0.2 0.4 0.6 0.8 10 00 0.2 0.4 0.6 08 Lo
Second step of NNARS: sampling according to the proposal Second step of NNARS: Rejection Step
20.0 20.0
— f — f
17.5 === cf 17.5 === cf
A Samples x1 A Samples x1
15.0 === 1lst estimation of f 15.0 === 1st estimation of f
—— 1st envelope Mgy —— 1st envelope Mig1
1254 © Samples x2 125 @ Samples x:

Samples accepted at step 2

Sccond step of NNARS: building the proposal

—f
175 -y
A Samples y;

- == lst envelope My

e Samples 2
b = 2nd estimation of f

2ud envelope Maga

0.0 0.2 0.4 0.6 0.8 ]

FIGURE 4.1: NNARS’ first steps on a mixture of Gaussians (ordered
in the natural reading direction)
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Algorithm 3 Nearest Neighbor Adaptive Rejection Sampling

Input: the budget n; the constants H, s and cy; the dimension d.
Output: the set S of i.i.d. samples from f.
Initialize S = 0, xx = 0 Vk.
Set Ny =N, g1 :u[(]’l]d, My =1+H.
for k=1 to K do
for i =1 to N do
Perform a Rejection Sampling Step RSS(f, gk, My).
Add the output of RSS to S.
Add to xj both the sample from gi collected in the RSS, and its image by f.
end for
Estimate fui <wxx according to Definition 19.
Compute gpy1 and My as in Equations (4.1) and (4.2).
if k < K —1 then
set Nk+1 = 2Nk.
else
Set N =n — (2K-1 —1)N.
end if
end for

Remark on sampling from the proposal densities g in NNARS. The number
of rounds is of order |log(n)|. The construction of the proposal in NNARS involves at
each round k the storage of | U<y xi| o< p**1[log(n)| values. So the total number of
values stored is upper bounded by the budget. At each round, each value corresponds
to a hypercube of side-length 1/| U;<y xi|"/? splitting [0,1]? equally. Partitioning the
space in this way allows us to efficiently assign a value to every = € [0, 1]¢, depending
on which cell of the grid x belongs to. Besides, sampling from the proposal amounts
to sampling from a multinomial convolved with a uniform distribution on a hypercube.
In other words, a cell is chosen multinomially, then a point is sampled uniformly inside
that cell, because the proposal is piecewise constant.
The process to sample according to gi is the following: given U;<px;,

1. Each center of the cells from the grid u € C|,_, ,| is mapped to a value gi(u).

2. One of the centers C' € ClUs<ixs| 1s sampled with probability ar(C).

3. The sample point is drawn according to the uniform distribution on the hypercube
of center C' and side-length 1/| U;<y, x:|"/%.

4.3.2 Upper bound on the loss of NNARS

In this section, we present an upper bound for the expectation of the loss of the
NNARS sampler. This bound holds under Assumption 2, that only requires n to be
large enough in comparison with constants depending on d, s, ¢y and H. Related
conditions about the sample size are in most theoretical works on Rejection Sampling
(Gilks and Wild, 1992, Meyer, Cai, and Perron, 2008, Goriir and Teh, 2011, Erraqabi
et al., 2016).

Assumption 3 (Assumption on n).
Assume that n > 8 and N/n < 1/(2K?), i.e.,

717d/s—‘ 4 IOg(n)2 _

n > {2(10}1)(1/8 log(n)c; s (27 " O(log(n)?).
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Theorem 34. Let 0 < s <1, H >0 and ¢y > 0. If f satisfies Assumption 2 with
(s,H,cy) such that f € Fo(s,H,cy,d), then NNARS is a perfect sampler according to
f.

Besides if n satisfies Assumption 3, then

20 _ o1 o s —s

+  (25+40+ 2(10Hc;1)d/5)c]71 log?(n) = O(log?(n)n'=%/4),

where E¢L,(NNARS) is the expected loss of NNARS on the problem defined by f. The
expectation is taken over the randomness of the algorithm. This result is uniform over
Fo(s,H,cy,d).

The proof of this theorem is in Section 4.8. The loss presented here divided by n is
to be interpreted as an upper bound for the expected rejection rate obtained by the
NNARS algorithm.

Sketch of the proof. The average number of rejected samples is >, Ny(1 —1/My),
since a sample is accepted at round k with probability 1 — 1/Mj. In order to bound
the average number of rejected samples, we bound M} at each round k with high
probability.

By Holder regularity and the definition of f,_,y, in Equation (4.3) (in Defini-
tion 19), we always have |fUz‘<kXi — f| £ 74,4 xs» as shown in the proof of Proposition 16.
So My, = 1; + PUjer 1 < If + 2FU,c 1y With Iy = 1. Then, we consider

Yi<k—1Xi
the event Ay s = {Vj < k, 7y, < CoH (log(N;/5)/N;)*/?}, where Cj is a constant.
Now, for each k, on Aj_1 5, M}, is bounded from above, with a bound of the order of
(1og(Nk_1/6)/Nk_1)5/d. So, on Ag 5, the average number of rejected samples has an
upper bound of the order of log(n)?n'~%/? as presented in Theorem 34.

Now, we prove by induction that the event Ay s has high probability, as in the
proof of Lemma 31. More precisely, A, s has probability larger than 1 — 2kd. At every
step k, we verify that g is positively lower bounded conditionally on Aj;_1 5. Hence,
the probability of having drawn at least one point in each hypercube of the grid with
centers C|u,_, y,| 18 high, as shown in the proof of Proposition 17. So the distance from
any center to its closest drawn point is upper bounded with high probability. And this
implies that A s has high probability if Aj_; s has high probability, which gets the
induction going. On the other hand, the number of rejected samples is always bounded
by n on the small probability event where Ag s does not hold. This concludes the
proof.

4.4 Minimax Lower Bound on the Rejection Rate

It is now essential to get an idea of how much it is possible to reduce the loss obtained
in Theorem 34. That is why we apply the framework of minimax optimality and
complement the upper bound with a lower bound. The minimax lower bound on this
problem is the infimum of the supremum of the loss of algorithm A on the problem
defined by f; the infimum is taken over all adaptive rejection sampling algorithms A
and the supremum over all functions f satisfying Assumption 2. It characterizes the
difficulty of the rejection sampling problem. And it provides the best rejection rate
that can possibly be achieved by such an algorithm in a worst-case sense over the class
Fo(s,H,cy,d).



156 Chapter 4. Minimax adaptive rejection sampling

Theorem 35. For 0 < s <1, there exists a constant N(s,d) that depends only on s,d
and such that for any n > N(s,d):

inf sup Ef(Ln(A)) > 3_12—1—38—2d5—8/dn1—5/d _ O(nl_s/d),
ACA fer(s,1,1/2,d)N{f:1;=1}

where E¢(Ly,(A)) is the expectation of the loss of A on the problem defined by f. It is
taken over the randomness of the algorithm A.

The proof of this theorem is in Section 4.9, but the following discussion outlines its
main arguments.

Sketch of the proof in dimension 1. Consider the setup where firstly n points
from f are chosen and evaluated. Secondly, n other points are sampled using rejection
sampling with a proposal based only on the n first points. This is related to Definition 1.
This setting is easier than that of adaptive rejection sampling, as proven in Lemma
32. Consequently a lower bound for this simpler problem also constitutes a lower
bound for adaptive rejection sampling. Now, Fy(1,1,1/2,1) corresponds to one-
dimensional (1, 1)-Holder functions which are bounded from below by 1/2. We consider
a subset of Fy(1,1,1/2,1) satisfying Assumption 2. Set V,, = {v = (14)o<i<an—1 | Vi €
{_17 1}7 ) Z?z(;l Vi = O}‘

Let us define the bump function b : [0,1/(4n)] — R such that for any v € V,:

b(z) = {.CC, for x <1/(8n).

1/(4n) — x, otherwise.

We will consider the following functions f, : [0,1] — R* such that for any v € Vj;:
fo(x) =1+ vib(z —i/(4n)), if i/(4n) <z < (i +1)/(4n),

We note that f, € Fo(1,1,1/2,1), for n large enough ensuring that f, > 1/2.

An upward bump at position i corresponds to v; = 1 and a downward bump
to v; = —1. The construction presented here is analog to the one in the proof of
Lemma 34. The function f, is entirely determined by the knowledge of v. It is only
possible to determine a v; by evaluating f at some z € (i/(4n), (i + 1)/(4n)). So with
a budget of n, we observe at most n of the 4n signs in v. Among the unobserved v;, at
1vi = 0. Now, we compute the
loss. In the case when Mg is not an envelope, the loss simply is n. Now let us consider
the case where Mg is an envelope. The loss is n(1 — 1/Ip4). Mg has to account
for at least n upward bumps at unknown positions; and the available information is
insufficient to distinguish between upward and downward bumps. This results in an
envelope that is not tight for the negative v; with unknown positions. So a necessary
loss is incurred at the downward bumps corresponding to those negative v;. This
translates as Injg — 1 > nesn~49) | where ¢, is a constant only dependent on s, with
s =1 in our case. Finally, we obtain a risk n(1 — 1/I,) which is of order n!=*, as
seen in Lemma 33.

In a nutshell, we first made a setup with more available information than in the
problem of adaptive rejection sampling, from Definition 18. Then we restricted the
setting to some subspace of Fy(1,1,1/2,1). This led to our obtaining of a lower bound
on the risk for an easier setting. This implies we have displayed a lower bound for the
problem of adaptive rejection sampling over Fy(1,1,1/2,1), too.

" . 4n—
least n are positive and n are negative, because ) .,
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This theorem gives a lower bound on the minimax risk of all possible adaptive rejection
sampling algorithms. Up to a log(n) factor, NNARS is minimax-optimal and the rate
in the lower bound is then the minimax rate of the problem. It is remarkable that
this problem admits such a fast minimax rate; the same rate as a standard rejection
sampling scheme with an envelope built using the knowledge of n evaluations of the
target density (see Setting 1).

4.5 Discussion

Theorem 35 asserts that NNARS provides a minimax near-optimal solution in expec-
tation, up to a multiplicative factor of the order of log(n)s/ 4 This result holds for all
adaptive rejection sampling algorithms and densities in Fo(s, H, cf,d). To the best
of our knowledge, this is the first time a lower bound is proved on adaptive rejection
samplers; or that an adaptive rejection sampling algorithm that achieves near-optimal
performance is presented. In order to ensure the theoretical rates mentioned in this
work, the algorithm requires to know ¢y, a positive lower bound for f, and the regu-
larity constants of f: s, and H. Note that to achieve a near-optimal rejection rate,
the precise knowledge of s is required. Indeed, replacing the exponent s by a smaller
number will result in adding a confidence term 7, _, ,, to the estimator which is too
large. Finally, it will result in a higher rejection rate than if one had set s to the exact
Holder exponent of f. The assumption on c¢; implies in particular that f does not
vanish. However, as long as it remains positive, ¢; can be chosen arbitrarily small, and
n has to be taken large enough to ensure that cy is approximately larger than m.
When c¢; is not available, asymptotically taking c; of this order will offer a valid
algorithm, which outputs independent samples drawn according to f. Moreover taking
cy of this order will still result in a minimax near-optimal rejection rate. Indeed it will
approximately boil down to multiplying the rejection rate by a loglogn. Similarly H
can be taken of order log n without hindering the minimax near-optimality. Extending
NNARS to non lower-bounded densities is still an open question.

The algorithm NNARS is a perfect sampler. Since our objective is to maximize the

number of i.i.d. samples generated according to f, we cannot compare the algorithm
with MCMC methods, which provide non-i.i.d. samples. In our setting, they have
a loss of n. The same argument is valid for other adaptive rejection samplers that
produce correlated samples, like e.g., Gilks, Best, and Tan (1995), Martino, Read, and
Luengo (2012), and Meyer, Cai, and Perron (2008).
Considering other perfect adaptive rejection samplers, like the ones in e.g., Gilks
(1992), Martino and Miguez (2011), Héormann (1995), and Goriir and Teh (2011),
their assumptions differ in nature from ours. Instead of shape constraint assumptions,
like log-concavity, which are often assumed in the quoted literature, we only assume
Holder regularity. Note that log-concavity implies Holder regularity of order two almost
everywhere. Moreover no theoretical results on the proportion of rejected samples are
available for most samplers, except possibly asymptotic convergence to 0, which is
induced by our result.

Pliable rejection sampling (PRS) from Erraqabi et al. (2016) is the only algorithm
with a theoretical guarantee on the rate with the proportion of rejected samples
decreasing to 0. But it is not optimal, as explained in Section 4.1. So the near-
optimal rejection rate is a major asset of the NNARS algorithm compared to the PRS
algorithm. Besides, PRS only provides an envelope with high probability, whereas
NNARS provides it with probability 1 at any time. The improved performance of
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NNARS compared to PRS may be attributed to the use of an estimator more adapted
to noiseless evaluations of f, and to the multiple updates of the proposal.

4.6 Experiments

Let us compare NNARS numerically with Simple Rejection Sampling (SRS), PRS
(Erragabi et al., 2016), OS* (Dymetman, Bouchard, and Carter, 2012) and A* sampling
(Maddison, Tarlow, and Minka, 2014). The value of interest is the sampling rate
corresponding to the proportion of samples produced with respect to the number of
evaluations of f. This is equivalent to the acceptance rate in rejection sampling. Every
result is an average over 10 runs with its standard deviation. The implementation of
the code of NNARS can be found on the following webpage: https://github.com/
jlamweil/NNARS.

4.6.1 Presentation of the experiments

EXP1. We first consider the following target density from Maddison, Tarlow, and
Minka (2014): f(z) o< e7®/(1 4+ x)®, where a is the peakiness parameter. Increasing
a also increases the sampling difficulty. In Figure 4.2a, PRS and NNARS both give
good results for low peakiness values, but their sampling rates fall drastically as the
peakiness increases. So their results are similar to SRS after a peakiness of 5.0. On
the other hand, the rates of A* and OS* sampling decrease more smoothly.

EXP2. For the next experiment, we are interested in how the method scale when the
dimension increases and consider a distribution that is related to the one in Erraqabi et
al. (2016): f(z1,...,za) < [Ligqo,1) (2 +sin (47x; — §)), where (21,...,2q) € [0,1]%
In Figure 4.2b, we present the results for d between 1 and 7. NNARS scales the best
in dimension. A* and OS* have the same behaviour, while PRS and SRS share very
similar results. A* and OS* start with good sampling rates, which however decrease
radically when the dimension increases.

EXP3. Then, we focus on how the efficiency scales with respect to the budget. The
distribution tested is: f(x) o exp(sin(x)), with = in [0,1]. In Figure 4.3a, NNARS,
A* and OS* give the best performance, reaching the asymptotic regime after 20,000
function evaluations. So NNARS is applicable in a reasonable number of evaluations.
Coupled with the study of the evolution of the standard deviations in Figure 4.3b,
we conclude that the results in the transition regime may vary, but the time to the
asymptotic region is not initialization-sensitive.

EXP4. Finally, we show the efficiency of NNARS on non-synthetic data from the
set in Cortez and Morais (2007). It consists of 517 observations of meteorological
data used in order to predict forest fires in the north-eastern part of Portugal. The
goal is to enlarge the data set. So we would like to sample artificial data points from
a distribution which is close to the one which generated the data set. This target
distribution is obtained in a non-parametric way, using the Epanechnikov kernel which
creates a non-smooth f. We then apply samplers which do not use the decomposition
of f described in Maddison, Tarlow, and Minka (2014). That is why A* and OS*
sampling will not be applied. From the 13 dimensions of the dataset we work with
those corresponding to Duff Moisture Code (DMC) and Drought Code (DC) and we
get the sampling rates in Table 4.1. NNARS clearly offers the best performance.
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n—10°, 2D ‘ sampling rate
NNARS | 45.7% £+ 0.1%
PRS 16.0% £ 0.1%
SRS 15.5% + 0.1%

TABLE 4.1: Sampling rates for forest fires data [Exp4|

4.6.2 Synthesis on the numerical experiments

The essential features of NNARS have been brought to light in the experiments
presented in Figures 4.2, 4.3 and using the non-synthetic data from Cortez and Morais
(2007). In particular, Figure 4.3a gives the evidence that the algorithm reaches good
sampling rates in a relatively small number of evaluations of the target distribution.
Furthermore, Figure 4.2b illustrates the possibility of applying the algorithm in a
multidimensional setting. In Figure 4.2a, we observe that A* and OS* sampling benefit
from the knowledge of the specific decomposition of f needed in Maddison, Tarlow,
and Minka (2014). We highlight the fact that this assumption is not true in general.
Besides, A* sampling requires relevant bounding and splitting strategies. We note that
tuning NNARS only requires the choice of a few numerical hyperparameters. They
might be chosen thanks to generic strategies like grid search. Finally, the application
to forest fire data generation illustrates the great potential of NNARS for applications
reaching beyond the scope of synthetic experiments.

4.7 Conclusion

In this work, we introduced an adaptive rejection sampling algorithm, which is a
perfect sampler according to f. It offers a rejection rate of order (log(n)/n)%/?, if s < 1.
This rejection rate is near-optimal, in the minimax sense over the class of s-Holder
smooth densities. Indeed, we provide the first lower bound for the adaptive rejection
sampling problem, which provides a measure of the difficulty of the problem. Our
algorithm matches this bound up to logarithmic terms.

In the experiments, we test our algorithm in the context of synthetic target densities
and of a non-synthetic dataset. A first set of experiments shows that the behavior
of the sampling rate of our algorithm is similar to that of state of the art methods,
as the dimension and the budget increase. Two of the methods used in this set of
experiments require the target density to allow a specific decomposition. Therefore,
these methods are neglected for the experiment which aims at generating forest fire
data. In this experiment, NNARS clearly performs better than its competitors.

The extension of the NNARS algorithm to non lower-bounded densities is still an
open question, as well as the development of an optimal adaptive rejection sampler,
when the density’s derivative is Holder regular instead. We leave these interesting
open questions for future work.

4.8 Proof of Theorem 34

In the following sections, we do not assume that f is a density. In fact ARS
samplers could be given evaluations of the density multiplied by a positive constant.
We prove in the sequel that as long as the resulting function satisfies Assumption 2,
the upper bound presented in Theorem 34 holds in this case as well as in the case
when f is a density. The lower bound is also proved without the assumption that f
is a density.
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4.8.1 Approximate Nearest Neighbor Estimator

In this subsection, we study the characteristics of the Approximate Nearest Neighbor
Estimator. First, we prove a bound on the distance between the image of x by the
Approximate Nearest Neighbor Estimator of f and f(x), under the condition that
f satisfies Assumption 2. More precisely, we prove that f (z) lies within a radius of
7y away from f(z). Then we prove a high probability bound on the radius 7, under
the same assumptions. This bound only depends on the probability, the number of
samples, and constants of the problem. These propositions will be of use in the proof

of Theorem 34.

Let N > 0, we write C' := Cy (as in Definition 19) for simplicity.

Proposition 16. Let f be a positive function satisfying Assumption 2. Consider N
pOithS X = {(Xh f(Xl))7 SO (Xﬂp f(X]V))}

If fy is the Approximate Nearest Neighbor Estimate of f, as defined in Definition 19,
then

Vo e [07 1]d7 ‘fx(x) - f(l’)’ < 72)(7
where 7y is defined in Equation (4.3) (in Definition 19).

Proof of Proposition 16.  We have that Vz € [0, 1]¢,

|7 = Xic@)llo < l2 = C(2)]loo + [|C(2) = Xi(c(a)) oo

where the set C & and the function 7 are defined in Definition 19.
Now, |lz — C(z)[lc < 2;]5 and [|C(z) — Xyc@)lloo < maxuecy [[u — X lloo, Vo €

[0,1]¢ and where Cjy is defined in Definition 19.
Thus Vz € [0,1]4,

1
|z = Xic@)lloo < Y + max [lu — Xiqloo, (4.4)

d N
and from Assumption 2
Ve € [0,1)9, |f(z) — f(x)] < 7y

Proposition 17. Consider the same notations and assumptions as in Proposition 16.
Let g be a density on [0,1]% such that:

31> ¢> 0 such that Yz € [0,1]%, ¢ < g(x),

and assume that the points X; in x are sampled in an i.i.d. fashion according to g.
Defining 6 = % exp(f]\Nf), it holds for any § > &g, that with probability larger than
1-46:

Ty <215 o

N,b,c
log(N/5)) *
where we write TR 6= H (M) .
b 70
cN

Proof of Proposition 17. Let € be a positive number smaller than 1 such that e~ is
an integer. We split [0, 1]¢ in 6% hypercubes of side-length e and of centers in C.-a. Let

I be one of these hypercubes, we have P(X1... X5 ¢ 1) < (1 - ce:d)]\7 < exp (—celN).
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So with probability larger than 1 — exp (—cedﬁ ), at least one point has been drawn in
I.
Thus Va € [0,1]¢, with probability larger than 1 — exp (—ced]v ), it holds:

|2 — Xi@)lloo <€

where i(z) = argmin;e gy vy ([|lz — Xilloo) -
Thus Vz € [0,1]%, with probability larger than 1 — ¢,

oa(1/5))"

x_Xix ooS
[ @l < N

where ¢ = exp (—ce?N) (observe & > exp(—N)).
Thus with probability larger than 1 — 6%6’ , it holds

osll/5)) ¢

vz € 0,17, ||z — X;( C>o<<
[0,1]%, ] @l N

With probability larger than 1 — ¢cN§ >1— ﬂé’, it holds

log (1/¢")

UL

vz € 0,14, ||z — X;( Oo§<
[0,1]%, ] @l ~

Hence, by letting 6 = (¢N)&, with probability larger than 1 — 4,

cN
cN

Thus V8 > ¢N exp(f]v), with probability larger than 1 — §,

1
log(eN /6) \
¥z € 0,1]% [l2 = Xilloo < <Og(‘l/))

[

1
log(N/6) \ ¢
Ve € (0,11, fla — Xyl < ((/)> ,
cN
and in particular, with probability larger than 1 — 9,
<o\ &
log(N/6)
- X; < | == .
max [ = Xiwlloo < < ~

Furthermore we have since |y 5| = N

1
— < max ||z — X;(2)]/co-

ONd ~ x€[0,1]?
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So we also have (since ¢ <1 and log(1/6) > 1)

. 1
1 _ [log(N/d) ¢
ONd — eN

Finally, from Equation (4.4), with probability larger than 1 — §, Va € [0, 1]¢,

|7 = Xic@ylloo < —=71 Kf maXHu_Xi(u)HOO

<log N/§) )

1 S
= H( s e o —XMHOO)

and with probability larger than 1 —

2N* ueC
log(N /6§ i
<H 2(g</>> o
CN 'Yy

4.8.2 Proof of Theorem 34

In this subsection, we prove Theorem 34 by first proving a high probability bound on
n — n. We prove this high probability bound thanks to Proposition 18, and Lemma
31. Proposition 18 claims that the algorithm provides independent samples drawn
according to f/Iy, under Assumption 2. The proof of Proposition 18 uses Lemma 30
which states that Vz € [0,1]¢, f(x) < Mygx(x), under the relevant assumptions. We
define two events: one on which every proposal envelope until time k£ + 1 is bounded
from below by l%c ¢ Wi41, and the other one on which every confidence radius 7y, <kXk
until time k is upper bounded by a quantity r N.56es/10 ° . Ap,s, where 0 is a confidence
term (designed to be used in the high probability bound on n —n). Lemma 31 states
that the probability of the event W11 conditional to the event A; 5 is equal to 1, and
that that the probability of the event Ay s is larger than 1 — 2ké when § = N/nK.
The proof of Theorem 34 uses the fact that the number of rejected samples at step k
on Ay, s is a sum of Bernoulli variables of parameter smaller than a known quantity
that depends on 3\, and by applying the Bernstein inequality on this sum. The proof is
then concluded by summing on k.

In this subsection, we write
fk = fUiSkX“ and Tk = TUigkXi’

to ensure the simplicity of notations. We also write

10log(N/8) \ *
rs o= = —_—
N,§ N,3,6¢5/10 6c, N
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Let us also define the events

Wi = {Vj <k, Vo € [0,1]%, gj(z) > $5¢r},
Aps ={Vj <k, 75 < 2°rpn; 5}

Proposition 18. If Assumption 2 holds, the algorithm provides independent samples
drawn according to the density f/If.

Lemma 30. Consider any k < K. Under the assumptions made in Proposition 18,

Vo € [0,1]%, f(z) < Mygr(z).

Proof of Lemma 30. g; is the uniform density and M is taken as an upper bound
on f. So Vx € [0, 1]
Migi(z) = f(z).
Let k € {2,...,K}. From Proposition 16:
Va € [0,1)%, | fro1(@) — f(2)] < Frr.

Thus, Vz € [0, 1]%:

_ Feo1(@) + e S f(z) S f(z)

I

k(X — > - > .
g ( ) Foa + re_q Ifkfl + 1 M,

Hence
Vo, Migk(r) > f(z).

Proof of Proposition 18. We have that Vj < k, Vz € [0,1]¢, f(z) < Mygi(x).
Theorem 33 proves that the algorithm provides independent samples drawn according
to the density f/I¢.

Lemma 31. Let 6 = N/(nK). If Assumption 2 and 3 hold for n, then

POM) =1, PWinlA5) =1,
P(A,5) > 1 — 2kd.

Proof of Lemma 31. Since gi(z) =1, s < 1,¢5 < 1, the event W) = {Vz €
[0,1]%, g1(x) > 1%Cf} has probability 1. Also by Proposition 16 and Proposition 17,
the event "41,3 has probability larger than 1 — 5.
Consider now that the event Ak’g holds for a given k < K. Then by Proposition 16
and Proposition 17, it holds that for all j < k and for all z € [0,1]¢

|fi(x) = f(@)] < 2°ry 5.

7

This implies that
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o) . f@
My = Iy +25%ry 5

O ) ()
- 1+25+17“N]_’g/1f - If If

.
> ¢ (1 - 28““) .
Iy

gj+1(z) >

Hence,

2S+1TN,Z§> 6
— | = —=c¢y,
cr 10

gjv1(z) > cy (1 -

where we have used TN 5 S TNG S cf/10 (see Assumption 3). So P(Wit1|A, 5) =1
and we have proved the first part of the lemma.

Moreover, conditional to Ak,S we have that gpyq1(x) > %Cf. ~Then we apply
Proposition 16 and Proposition 17. With probability larger than 1 — § on xj only, and

conditional to A, =, it holds that for all z € [0,1]%:

[firi(@) = f(2)] < 2ry, 5,

where we use that 71 < 7y, ,,. This implies that P(A, 54, 5) >1- 4, and so for
any k < K
Nk
P(A5) > (1- )

This concludes the proof since (1 — )% > 1 — 2kd for § < 1/(2K).
Proof of Theorem 34. Let 0 = N/(nK) and 6 = K§ and let 7, denote the
number of accepted samples at round k.
From Lemma 30, we know that Vk < K,
Vo, Migr(z) = f(z).

Hence, the samples accepted at step k + 1 are independently sampled according to
f/1If, and Nji1 — 7y, the number of rejected samples, is a sum of Bernoulli variables
of parameter 1 — I/ M.

On .AkgﬂWk,
i ;
My — If+28+17‘ i
s+1 _
o1 2574 k75.
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s+1 _
2 TN

If 6
— < k> .
Thus, 1 Y T

On A, N Wk, according to the Bernstein inequality, Vk < K the event

Vi = {Nk+1 — g — (1 — ]\411:;1)]\71@“ < \/QNk—i-l(l - ]\4ka+1> log (%) + log (%)}

has probability larger than 1 — 5. B
Hence on AK,S N Wk, ﬂke{l’m’K} V) has probability 1 — K. -
Consequently, since A, MWk has probability larger than 1 — K4 according to Lemma

30, nke{l,...,K} Vi N A 5N Wi has probability larger than 1 — 2K3.
On Vi, N fikfgWW Wk,

s+1

i 251 % 1 1
Nk+1 — ﬁk - IiNMNk+1 < \/2Nk+1 _[NIW& log <~> -+ log <~>
f f o J

(and we know from Proposition 18, that on Vi N A, =N Wk, we also have that the
drawn samples are independently drawn according to f/Iy).
Hence on (), Vi N A, 5N Wk, which has probability larger than 1 — 2K¢ := 1 — 24:

ie:
n—mn
gs+1 K1 log(+) K1 1
< T2 (rwatenn) + 4 7 3 (N 5) + Ko () 4
f f 1 N 0/
(‘f) (2)
Hence,

(2) = Klog (?)

n log,(n/N
logy <N)10g< g2(5/ ))’
9s+1 log($)

and if 8 = 27— + 44/ 2=, and C = H(10/(6¢5))*/?,

K-1
B Z (rNijk:-i-l) +K}
1

K-1

3 21: (5 log (2]} )S/d(2k1\r)1—s/d) + K.

(1)

IN

IN
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Now, assume s/d < 1, then

~ s/d 1—s/d 2(1—s/d)K -1
=50 (105 (£)) " v (B )

56’ n s/ 1—s/d

And if s =d =1, then

>3

(1) < KBC <log (gﬁ)) + KB.

We have proved that if the assumptions of Theorem 34 are satisfied, with probability
1— 294,

9s+1 log(i) s/d
n—n < +4 0| Csa <log (T)) nl=s/d

1
n log,(n/N) 2s5+1 log(%) n
+ logy ( — ) log < + N + +4 logy | =,
() e (75 e (F)

where C; 4 is a constant dependent on s and d. Finally, the proof is finished following
a few strings of inequalities and taking the expected value. The following reminders
may help,

d>1;s<1;¢; <1,C = H(10/(6¢4))*% § = N/n = Ko; K = [logy(n/N)] and

—1-d/s . < 2
N = [2(10H)%/* log(n)c; |. In particular, we have Iy > ¢ and 1/6 < 5n”.

4.9 Proof of Theorem 35.

4.9.1 Setting

Let us introduce two different settings:

Setting 1. (Class of Rejection Samplers with Access to Multiple Evaluations
of the density (RSAME))
A sampler belongs to the RSAME class if it follows the following steps:

e For each stept € {1...n}:
Choose a distribution Dy on R, depending on (Y, f(Y1))...(Yie1, f(Yi=1))).
Draw Yy according to Dy.

e Choose a density g and a positive constant M depending on
((Yl, f(Y1) ... (Yo, f(Yn))), and sample Z by performing one Rejection Sampling
Step(f, M, g).

Objective : The objective of a RSAME sampler is to sample one point according to a
normalized version of f.
Loss : The loss of a RSAME sampler is defined as follows :

L, =n(1 —1{Z is accepted }1{f < Mg}).
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Strategy : A strategy s’ consists of the choice of Dy depending on
((Yl,f(Yl)) (Y, f(Yt,l))), and of the choice of M, g depending on
(Y1, f(V1)) ... (Ya, f(Yn))). Denote & the set of strategies for this setting.

Setting 2. (Class of Adaptive Rejection Samplers (ARS))
A sampler belongs to the ARS class if, at each step t € {1...n}: it

e Chooses a density g¢, and a positive constant My, depending only on

{(X1 (X)), (X, (X))

o Samples X; by performing rejection sampling on the target function f using M;
and g; as the rejection constant and the proposal. Store X; in S if it is accepted.

Objective : The objective of an ARS sampler is to sample i.i.d. points according to a
normalized version of f

Loss : The loss of an ARS sampler is defined as follows : Ly, =n —#S1{Vt < n, f <
Mg}

Strategy : A strategy s consists of the choice of My, g, depending on

(X1, f(X1)) ... (X¢—1, f(X¢=1))). Denote & the set of strategies for this setting.

For the class of samplers defined in Setting 2 (and similarly for Setting 1) we
call value of the class the quantity infsee supse g, E(f) (Ly,), where the symbol E(f)
denotes the expectation with respect to all relevant random variables, when those are
generated by a sampler of the relevant class, using function f and strategy s; and Fy
denotes the set of functions satisfying Assumption 2.

4.9.2 Setting Comparison

Lemma 32. The value of the class defined in Setting 1 is smaller than the value of
the class defined in Setting 2:

inf sup EC)(L') < inf sup E®)(L,,).
§'€®’ fer, s€6 fery

In other terms, Setting 1 is easier than Setting 2

Proof of Lemma 32. For any given strategy s designed for Setting 2 that chooses
(9i, M;) to generate X;, consider the associated strategies s,...,s), for Setting 1
consisting of:

1. Generating Y7, ...,Y,_1 from the same probability distributions as Xi,..., X1
generated for Setting 2 using strategy s; this is a valid choice since the distribution
D; of X; only depends on ((Xl, f(X1),..., (X1, f(Xt,l))).

2. Using (g;, M;), where it is obtained at step ¢ by application of strategy s to the
known values of ((Y1, f(Y1),. .., (Yi—1, f(Yi—1))), in order to sample Z by rejec-
tion sampling. It is still a valid choice, which actually discards the information

of (Yi, f(Ys), ., (Yn—1, fF(Yn-1))).
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Then, we have for any f € Fo:

ED(Ly) =n — ECD(#S1{vt <n, f < Migi})
=n— }E(ﬁ’f)(z 1{X; is accepted }1{Vt < n, f < Mg })
=1

>n— E(svf)(z 1{X; is accepted }1{f < M;g;})
i=1

_ ZE(%J) (1 — 1{X; is accepted }1{f < Mzgl})
=1

R
= > EE(L).
=1

Hence, there exists at least one strategy amongst s, ..., s, that reaches an expected
loss in Setting 1 lower than that of strategy s in Setting 2.

4.9.3 Lower Bound for Setting 1

Lemma 33.

inf sup E;(L},(s")) > 3_12—1—38—2d5—s/dn1_s/d,
s'e®’ fej:O

for n large enough.

The Theorem is a direct consequence of Lemmas 32 and 33. We use Lemma 34 to
prove Lemma 33.

Lemma 34. Let
Fi :{f s.t. Yu= (ki,...kg) € {0,1,...,anq — 1}d,

either Vo € Hy, :

_ [al:d7 k;:dl] [ kq k‘d+1}

f@)=o¢*(z = =),

Qn.d

an,d ’ an,d ’ (4 5)

orVx € Hy, f(x) = d)*(x— u)},

Qn,d

where:

anq = min{2p € N; 2p > (4n)d},

S

1

- I
20,4

¢t (x) =1+ (2apq4)"° — ||x

)
o0

(with I denoting the unit vector),
¢~ (x) =2—¢"(x).

Then any function in Fj is s-Holder-smooth.
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Remark 38. Ifd =1,

]—“{:{f st Vie{0,1,...,4n — 1},

v o1+1

th H; = [— —
either Vo € H; 1 an

| r@ =6 (o- 1), (16)

orVx € H;, f(x) :<Z>_(x— z)}’

with Yz € [0,1/(4n)]

6t (a) =1+ (8)0 = o — |
and .
o (x)=1—8n) 4 |z — 8in

Proof of Lemma 34. Let us first prove that ¢* is s-smooth. |[¢T(x) — ¢ (y)| =
lly = 32T — lle — 2= T% ] < Jlz — gl

It is straightforward to see that ¢~ is also s-smooth and that all f € F| are also
s-smooth.

Proof of Lemma 33. Let us consider Setting 1 on a subset of functions of Fy. Let
F1 = Fint N F1,

where F is defined in Equation (4.5) and

]-',;m:{f,/olle}.

And F; is not empty since a,, 4 defined in equation (4.5) is even. Since F; C Fy by
application of Lemma 34,

inf sup Ef(L},(s")) > inf sup Ef(L](s")).
s'e@’ feFo s'e®’ feF

We first note that:

inf E(L' (s") > inf Ef. L (s
Jut, sup B(Ln(s) 2 ol By, (Ln(s),

where Dx, is the distribution such that for any F, Propy, (f=F) = % A
hypercube will refer to a H, as defined in Equation (4.5).

We also note that the choice of M, g where M is a multiplicative constant and g
is a density is equivalent to the choice of a positive function G, where G = Mg, or
M =1g and g = %
Furthermore a strategy s’ for this setting is the combination of three strategies:

1. s7: The strategy to choose Y7 ...Y,,
2. sb: The strategy to choose G.

For the first step, let us fix a strategy s}. Let fi be a realization of Dx,. Then by appli-
cation of strategy s/, Y1,...,Y, are drawn. Then the evaluations f1(Y1),..., fi(Yy) are
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obtained. Now let uy,...u, be the indices such that H,, ... H,, are the hypercubes
where Y7 € Hy,,..., Y, € Hy,,.

Let us define the restricted set Fyp,, = {f € F1 and f(Y1) = fi(Y1),..., f(Ya) =

fi(Yn)}. And we consider the distribution D, , such that wapfl‘fl (f=F) =

1{FE.7:1}
#F1
In a second step, let us fix a strategy s5. This defines a distribution D¢ corresponding

to the choice of G. By the law of total expectation, we have:

Egs, (Ln(e)) = Epys, Bonpg [Erons, , (L4 (5)100, i(V)), - (Y, fi(Ya)), G)
V2, A1), (Yn,ﬁ(Yn))}
= Efypr, Earg [Bpeps, , (Ln(8)10V2 £0)), . (Y, F(¥2)), G)

(Y1, A1), (Yn,fa(Yn))}

We can write:

EfNDfllfl (Lim (5/) (Y1, f(Y1)), ... (anf(Yn))’G)
= EfNDFufl [1 {Fué {ui...up}, Iz € H, : G(x) < f(x)}n
+1{Vu ¢ {u...un}, Ve € H,: G(z) > f(x)}n <1 — 1+||f1GH1>

(Y1 () - (Y f(Y2), G

1
> Ko 1-— .
= Dflfl( 1+Hf—GH1)G)n

Now, since for any z > 0,

we have

]Ef’\/D]:llfl (L;L (5/) |(}/la f(i/l)% tee (Yna f(Yn))’ G)

1

> 5Brns, (If = Clhin1|@)n

SEpnn, (17—t je)n
%HEfw% (If —GIA 1‘G>H n

> 2 [Brnn, (15 - GIA 10 - 10, HD|G) | 7

>

Y

For any u # wy ...u,, Yo € H,, since any realization from D]-‘l‘fl is in F;p almost
surely,
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Ejpy,, (/@)= G@)| A1) 2 ;’[<¢+($—Cl:id>—G(m)/\1>

() -]
And, for any u ¢ {uy,...,un}, and for any o € Hy:
<¢+<a:—a3d)—G(x)/\l>+<‘¢<x—a:id>—G(a:)/\1>
()l (4 T2 -l
) R G K (G Cobee) RUED) |
(o (e ) v o (=2 1)

And since |¢pT — 1] = |¢~ — 1|, we end up with:

< ) o fi)-oo

)

> ¢+ (g;—) _1‘/\1_¢+ <x_> 1
On,d Qn.d
So
Efopy,, (Ln () 1(V1, f(), .. (Ya, f(Ya)), G)
1 u
= 6u¢§un/u <¢+ (-T_ and> - 1> dx
And
+ u a . B
7&2/ : <¢ (‘” d) 1) dr > (ay — ) /{MWW (6% (2) — 1) do

ot (z) — 1) dx.
/[\1/(4an,d)73/(4an,d)}d ( ( ) )

Now, for any z € [1/(4a,.q), 3/ (4a, )%, we have ¢t (z) — 1 > (day.q) .
Then

utun,.. Qn,d
> 2—33—2d5—s/dn—s/d7

where the second inequality used the fact that a, 4 < 2(5n)%/<.

Hence, there exists N(s,d), such that for n larger than N (s, d),

Ejpy, (Ly(s)) > 37 1o 13- 2d5=s/dpl=s/d
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