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Abstract

Optimal control problems are among the most important formulations and elements in
control engineering. Many methods for control, estimation, and monitoring are based
on the repeated solution of optimal control problems while the process is running.
This leads to high computational effort, especially on the so-called embedded systems
with reduced computational power. Therefore control in real-time is not always pos-
sible. Despite numerous advances in the field of explicit solutions of optimal control
problems, most existing methods are limited to linear systems with quadratic cost
functions.
In this work, an explicit solution approach based on a power series approach, which
was first shown by E. G. Al’brekht, is extended to non-linear parametric systems and
the output feedback case. In particular, the case of variable system parameters, which
lead to parametric explicit solutions, is considered. In addition, inequality constraints
regarding the control input, system’s states, and output values, as well as the regula-
tion without the full state information is examined. Proofs for the existence of optimal
solutions in the form of a power series are given. The proofs take up the results and
ideas of E. G. Al’brekht and extend them considerably.
A significant advantage of polynomial, parametric solutions is their real-time capa-
bility, as well as the possibility of explicitly verifying the properties of the resulting
control in advance. Furthermore, the parameters can be updated while the process is
running.
The developed methods and results are verified and validated using simulation studies.
In addition to the methodical results, the approaches are implemented in form of a
software toolbox.





Deutsche Kurzfassung

Approximative adaptive explizite parametrische optimale Regelung

Optimalsteuerungsprobleme gehören zu den wichtigsten Formulierungen und Elemen-
ten in der Regelungstechnik. Viele Methoden der Regelung, Schätzung und Überwa-
chung basieren auf der wiederholten Lösung von Optimalsteuerungsproblemen wäh-
rend der Prozess läuft. Dies stellt insbesondere auf Systemen mit reduzierten Rechen-
leistungen, sogenannten eingebetteten Systemen, oftmals einen erheblichen Rechen-
aufwand dar, wodurch Regelung in Echtzeit nicht in jedem Fall möglich ist. Trotz
zahlreicher Fortschritte im Bereich expliziter Lösungen von Optimalsteuerungspro-
blemen, sind diese oftmals auf lineare Systeme mit quadratischen Kostenfunktionen
begrenzt.
In dieser Arbeit wird ein expliziter Lösungsansatz, basierend auf einem Potenzrei-
henansatz, der erstmals durch E. G. Al’brekht aufgezeigt wurde, auf nicht lineare
parametrische Systeme und den Ausgangsrückführungsfall erweitert. Hierzu wird der
optimale Systemeingang mittels einer lokalen Potenzreihe approximiert. Speziell wird
der Fall variabler Systemparameter betrachtet, was zu parametrischen expliziten Lö-
sungen führt. Daneben werden Ungleichungsbeschränkungen bezüglich der Eingänge,
Zustände und Ausgänge, sowie die Regelung ohne Kenntnis aller Zustände untersucht.
Es werden Beweise für die Existenz optimaler Lösungen in Form einer Potenzreihe an-
gegeben, welche die Ergebnisse und Ideen von E. G. Al’brekht aufgreifen, sie aber
erheblich erweitern.
Ein bedeutender Vorteil von polynomialen, parametrischen Lösungen ist ihre Echt-
zeitfähigkeit, sowie die prinzipielle Möglichkeit die Eigenschaften der sich ergebenden
Regelung explizit vorab zu verifizieren. Weiterhin können die Parameter während des
laufenden Prozesses aktualisiert werden.
Die entwickelten Methoden und Ergebnisse werden anhand von Simulationsstudien
verifiziert und validiert. Neben den methodischen Ergebnissen werden die Ansätze in
Form einer Softwaretoolbox implementiert.





1 Introduction and Motivation

The earliest formulations of optimal control problems (OCP) date back to Galileo
Galilei (1564-1641), who presented two problems in 1638 [87]. For a long time, opti-
mal control stayed rather unexplored. Its breakthrough only came with the availability
of computers, which made the solution of optimal control problems possible, even in
the case where analytic solutions are difficult or impossible to derive.
The solution techniques changed from geometric ones to variational calculus resp. an-
alytic techniques. Two fundamental results in optimal control date back to the 1950s
and 1960s [87]. Optimality criteria were stated by Lev Semyonovich Pontryagin (1908-
1988) in his well-known maximum principle [12, 79] and the Hamilton-Jacobi-Bellman
(HJB) equation [8], which roots date back to works of William Rowan Hamilton (1805-
1865), Carl Gustav Jacob Jacobi (1804-1851) and Richard Ernest Bellman (1920-1984).
Throughout this work, the Hamilton-Jacobi-Bellman equation, an approach to analyze
and solve optimal control problems, will be of main interest.
After the establishment of necessary and sufficient conditions for optimal control laws,
the uniqueness and existence results using convergence arguments were of major in-
terest, see [13]. Over the past decades, the theory of optimal control was expanded
to handle constraints, uncertainties, and output regulation, to name just a few expan-
sions. For an overview, the reader is referred to the books of Vinter [94], Kirk [46],
and Berkovitz [10]. Many solution approaches - numerical [80, 84] and analytical -
were proposed.
In 1961 E. G. Al’brekht proposed a power series approach to solve the Hamilton-
Jacobi-Bellman equation for nonlinear systems [3]. The control law and the optimized
cost are stated as local power series around the origin. Both series can be approxi-
mated up to a chosen degree. One big advantage of Al’brekht’s Method is its analytic
character. The solution can be obtained offline, while only the evaluation of the poly-
nomial control law is done online. Having an analytic expression of the value function
also allows determining beforehand whether the closed-loop system is stable or not,
or to validate the achievable region of attraction.
This thesis extends Al’brekht’s Method to output control with parametric uncertain-
ties and constraints. Over time several extensions and improvements have been made.
Lukes [69] applied Al’brekht’s Method to systems with C2 dynamics and Hölder con-
tinuous derivatives instead of analytic dynamics, which then leads to weaker approxi-
mations. Isidori and Byrnes [41] used Al’brekht’s Method to solve output regulation
problems with a fully known external signal and linear input. Krener [51] used a
similar setup but allowed a nonlinear input. Furthermore, Al’brekht’s Method was
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1 Introduction and Motivation

applied to the Francis-Byrnes-Isidor PDE or used in Pontryagins Maximum Principle
as optimality condition [53]. Discrete-time versions of Al’brekht’s Method have also
been developed and different extensions and combinations exist, see e. g. [54–56].
Furthermore, Al’brekht’s Method has been extended to systems with disturbances in
form of white noise effecting the linear part of the dynamics [57, 58]. To overcome the
issue of small convergence areas, C. Aguilar and A. Krener [2] used different control
laws for different regions that are patched together. Regional stability results were de-
rived using sum-of-squares methods on even order approximations of the optimal cost
to obtain a local Lyapunov function [65]. However, extended convergence proofs are
still rare. Furthermore, handling constraints on states and inputs is still challenging.
Apart from Al’brekht’s Method, there are numerous approaches to apply optimal con-
trol. Model Predictive Control (MPC) solves the optimal control problem repeatedly,
predicting the state over a finite time in the future. It provides feedback and reaction
to disturbances by the repeated solution of the optimal control problem using updated
state and parameter information. An introduction can be found in [85] and [26]. MPC
is capable of handling nonlinear dynamics and constraints. Drawbacks are the verifi-
ability and online computation, which can still be challenging on embedded systems
despite significant advancements in the last decades [27]. There are several toolbox
like ACADO [34], ACADOS [93], do-MPC [68] and µAO-MPC [66, 103], which solve
Model Predictive Control problems or generate code to use it efficiently on embedded
systems, see also [78, 88]. Embedded systems with limited computation capability or
which demand strict verification of the resulting application are possible application
areas for Al’brekht’s Method. The offline solution facilitates applicability in real-time.
Further methods for the efficient and real-time application of optimal and predictive
control, for example, exploit the monotonicity properties of the system [67]. While
monotonicity requirements limit the application, they simplify the optimal control
problem. In [35], Houska et. al. propose to use polynomial expansions for online
computations in optimal control. Huh and Sejnowski [37] found analytic solutions for
optimal control problems subject to multiplicative noise in one dimension with invert-
ible dynamics. Krstic [59, 60] provided algorithms to calculate explicit but not optimal
control laws for classes of linearizable systems using a diffeomorphic transformation to
obtain a chain of integrators. For nonlinear systems with linear input, Margaliot and
Langholz [71] utilized Young’s inequality to find control laws. For a similar class of
systems, Mylvaganam and Sassano [74] used an approximation of control laws based
on linear quadratic regulators. Ying’s et. al. [101] approach is also based on an LQR
and solving the corresponding Riccati equation. The design of an LQR is extended by
Rafikov et. al. [82]. He focused on bounded time-varying systems with linear input.
Furthermore, local asymptotic stability results are given. An explicit control law with
discrete decision variables for linear systems is given by Sakizlis et. al. [86]. Another
explicit approach was introduced by Wu et. al. [100]. The approach uses polynomial
chaos expansions and the Chebyshev interval method to solve an optimization prob-

2



lem with nonlinear objective and constraints. There are also results for application
cases using explicit optimal control laws for direct examples, e. g. for hybrid electric
powertrains [4]. All the mentioned solutions to explicit optimal control are challenged
by a series of points. Typically they are restricted to a rather small class of systems,
or the control law is linear, whereas Al’brekht’s Method applies to a broader class of
systems and gives a nonlinear approximation of the real optimal solution with arbi-
trary precision.
Apart from the methods mentioned so far, there is a lot of work done on explicit MPC.
Wen et. al. [97], Kouramas et. al. [49] and Bayat [7] state their control laws as lattice
piecewise-affine functions, which are defined in different regions. Darup and Mön-
nigmann [18] found for nonlinear systems suboptimal control laws as piecewise-affine
functions. The idea of getting an explicit controller in the form of piecewise-affine
functions in different regions, e. g. polytopes, is very common, see [32]. Mönning-
mann and Kastsian [72] further used multiway instead of binary trees to determine
the current region more efficiently. Mönnigmann and Jost [73] developed a method
that only requires the vertices of the polytopes to determine the affine control law for
linear systems. In [20] active sets are enumerated offline, and matrices for the Karush-
Kuhn-Tucker condition are prefactored. Christophersen et. al. [16] and Cychowski et.
al. [17] show how to determine efficiently the active region and how to perform the
partitioning. State-space partitioning for piece-wise linear feedback with a priori guar-
antee of asymptotic stability is done by Johansen [42]. Suboptimal solutions were also
investigated via branch-and-bound methods for parametric mixed-integer quadratic
programs, see [5, 6]. Constraint handling for suboptimal solutions was proposed by
Bemporad and Filippi [9]. Goebel et. al. [28] simplified the online computation of
linear MPC via a tailored subspace clustering algorithm to train data consisting of
states and corresponding solutions. Ding et. al. [19] and later Oberdieck et. al. [77]
considered explicit MPC for linear time-variant systems.
Overall explicit MPC approaches focus on linear systems and do not provide solutions
for the general nonlinear case in a structured way. All the papers mentioned deal
with linear or piece-wise affine control laws with possible modifications. Combining
Al’brekht’s Method with explicit MPC could allow overcoming this challenges, see
[54–56].

This thesis is organized as the following. Chapter 2 introduces Al’brekht’s Method
in continuous and discrete time. The convergence proof from the original paper [3] is
adapted and generalized to allow more dimensional and nonlinear input. Al’brekht’s
Method is extended towards parameter-dependent systems in Chapter 3. The exis-
tence of the solution resp. the convergence is proven, and an inequality to estimate the
region of validity is given. Chapter 4 deals with a rigorous approach to include inequal-
ity constraints. The output-feedback problem is investigated in Chapter 5. Again the
convergence proof and an estimation of the valid region are given. Chapter 6 deals
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1 Introduction and Motivation

with the discrete-time counterpart. A toolbox where all the proposed methods are
implemented is introduced in Chapter 7. It the end, in Chapter 8 a brief summary of
the thesis is provided and future research directions are pointed out.
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2 Al’brekht’s Method

Al’brekht’s Method [3] allows to approximately solving optimal control problems with
nonlinear system dynamics and possibly non-quadratic cost functions. While linear
control and linear quadratic regulators are already well studied, their nonlinear pen-
dants can still be challenging. Especially when the need for offline or analytic solutions
arises. The method requires analytic dynamics and cost function and assumes that
the control law and the optimal cost are also analytic. In general, this can not be
guaranteed, not even locally. In fact, regularity theory [21, 64] for solutions of the
Hamilton-Jacobi-Bellman equation shows that the optimal cost is two times continu-
ously differentiable with Hölder continuous second derivative if the cost and dynamics
are at least C1 and no constraints are present. Nevertheless, under the requirements of
Al’brekht’s Method, it is, in fact, possible to prove for special cases that the solution
is analytic. Furthermore, it is always possible to calculate the corresponding power
series. Section 2.1 reviews the continuous time case of Al’brekht’s Method [3]. The
discrete-time case can be found in the literature, e. g. [56].

2.1 Al’brekht’s Method for continuous-time systems

Throughout this section, Al’brekht’s first version of his power series method will be
outlined in detail for continuous-time systems, whereas the discrete-time equivalent
will be considered in Chapter 6 for a more general class of optimal control problems. It
requires analytic system dynamics and an analytic cost function. Under the assump-
tion that the optimal input and the optimal cost are analytic functions with respect
to the states, the OCP is solved using the Hamilton-Jacobi-Bellman equation and its
derivative with respect to the input. Doing so, all involved functions are developed
as power series. The HJBE leads then to infinitely many conditions resp. equations,
namely, one for each degree. Under further assumptions, the resulting equations can
be solved degree-wise, starting with the lowest. Having this calculation done, the first
findings are summarized in Theorem 1. Afterward, the local stability of the closed-
loop system is proven. The effectiveness of this method is then illustrated via two
examples.

5



2 Al’brekht’s Method

Al’brekht’s Method [3] considers optimal control problems

π
(
x(0)

)
= min

u(.)

∞∫
0
`
(
x(τ), u(τ)

)
dτ

s.t. ẋ = f(x, u),
(OCP)

where it is assumed that the system dynamics f : X×U→ Rnx and the cost function
` : X×U→ R are analytic in an open set X×U ⊆ Rnx×Rnu, which contains the origin.
Thus their power series also exist in a neighborhood around the origin. Furthermore,
it is assumed that the origin is a fixed point for both functions and that the cost
function does not contain a linear part:

f(0, 0) = 0 ∧ `(0, 0) = 0 ∧ ∇( xu )`(0, 0) = 0.

Thus the power series of f and ` can be written as

f(x, u) =
∞∑
k=1

f [k](x, u) = Fx+Gu+ f [2](x, u) + . . . , (f)

`(x, u) =
∞∑
k=2

`[k](x, u) = 1
2x

T`xxx+ xT`xuu+ 1
2u

T`uuu+ `[3](x, u) + . . . , (`)

where the matrices F, `xx ∈ Rnx×nx, G, `xu ∈ Rnx×nu, and `uu ∈ Rnu×nu need to fulfill
further conditions, which will be outlined when needed. The superscript [k] indicates
all terms of the power series, which are homogeneous of degree k in (x, u).
Al’brekht’s Method is based on the assumption that the optimal cost/value function
π : X→ R as well as the minimizing control input, if written in terms of the system’s
states x, umin : X→ Rnu are also analytic. For simplicity we consider in the following
that X = Rnx and U = Rnu. This also avoids the condition umin(X) ⊆ U. Note that
the general case will be considered in the case studies.
The optimal cost function π and the optimal control input umin are also written as
power series.

π(x) =
∞∑
k=0

π[k](x) = π0 + πxx+ 1
2x

Tπxxx+ π[3](x) + . . . , (π)

umin(x) := κ(x) =
∞∑
k=0

κ[k](x) = κ0 +Kx+ κ[2](x) + . . . (κ)

The existence/convergence of those will be shown afterward in Section 2.2. The domain
of convergence must be contained in X but might be very small.
To calculate the power series (π) and (κ), the Hamilton-Jacobi-Bellman equations, see
Remark 18 (d) Formulas (HJBE-1”’) and (HJBE-2”’), are solved. As outlined in the
Appendix A, a similar approach can be used for Pontryagin’s Minimum Principle of

6



2.1 Al’brekht’s Method for continuous-time systems

cause leading to the same results, see Remark 19.

0 = ∇xπ(x) · f
(
x, κ(x)

)
+ `

(
x, κ(x)

)
(HJBE-1)

0 = ∇xπ(x) · ∇uf
(
x, κ(x)

)
+∇u`

(
x, κ(x)

)
(HJBE-2)

Since f [0](x, u) is vanishing and `(., .) does neither contain a constant nor a linear part,
it is clear that κ0 and π0 are also vanishing if the cost function has a local minimum
in (0, 0).
Since polynomials with different degree are linearly independent, every degree of the
Hamilton-Jacobi-Bellman equations will give an independent equation for certain parts
of the power series of π and κ. Since f and ` do not contain a constant, collecting all
terms of degree 0 from equation (HJBE-1) leads to the following equality:

(HJBE-1)[0] : 0 = 0.

Collecting all terms of degree 0 from equation (HJBE-2) results in the first condition
for πx:

(HJBE-2)[0] : 0 = πx ·G. (πx-1)

Taking into account the next higher degree, i. e. degree 1 from (HJBE-1), gives a
second condition for the calculation of πx.

(HJBE-1)[1] : 0 = πx · (F +GK) · x (πx-1)= πx · Fx

This equation has to hold for all state vectors x in a neighborhood of the origin.
Therefore they can be neglected.

⇒ 0 = πx · F (πx-2)

Combining the conditions (πx-1) and (πx-2), the matrix
(
F G

)
has to have full rank

to imply πx equals 0. In the following, this case is assumed to guarantee the solvability
of the following equations.
In the next step, all terms of degree 1 from equation (HJBE-2) are collected.

(HJBE-2)[1] : 0 = xTπxx ·G+ xT`xu + xTKT`uu

Again this has to hold for all x in a neighborhood of the origin, which makes it possible
to find a formula for the matrix K that represents the first degree of the control law
(κ).

⇒ K = −`−1
uu ·

(
GTπxx + `T

xu

)
(K)

This formula still depends on πxx resp. the second degree of the value function (π),

7



2 Al’brekht’s Method

which is fixed by the following equality.

(HJBE-1)[2] : 0 = xTπxx · (F +GK) · x+ 1
2x

T`xxx+ xT`xuKx+ 1
2x

TKT`uuKx

This equality is scalar, but has to hold in a neighborhood of the origin. This leads to a
matrix equation, which is symmetric since, for example, there is no difference between
terms x1 · x2 and x2 · x1. Therefore one needs to look for a solution πxx, which is also
symmetric.

0 = πxx · (F +GK) + (F +GK)T · πxx + `xx + `xuK +KT`T
xu +KT`uuK

After plugging in the formula (K) and simplifying the continuous time algebraic Ric-
cati equation (CARE) is derived.

0 = πxxF + FTπxx + `xx −
(
πxxG+ `xu

)
· `−1
uu ·

(
GTπxx + `T

xu

)
(πxx)

The Riccati equation is uniquely solvable if
(I) the second-order part of the cost function is convex in (x, u) and strictly convex

in u that is `xx `xu
`T
xu `uu

 � 0 and `uu � 0,

(II) the linearized system resp. the pair (F,G) is stabilizable,

(III) and the pair (F, `xx) is detectable,
see for example [62, 83]. If the linearized system is controllable, then condition (II) is
fulfilled and

(
F G

)
has full rank, which implies that the later one does not have to

be checked. If (I)-(III) are fulfilled, then the matrix F + GK only has eigenvalues in
the left half-plane. This is the key to show the solvability of the following equations.
Before the general case is taken care of, the equations that define all second-order
terms κ[2](x) of the control law and all third-order terms π[3](x) of the value function
are presented in more detail. Starting again with (HJBE-2) and collecting all terms
of degree two leads to a formula for κ[2](x) in dependence of π[3](x).

(HJBE-2)[2] : 0 = ∇xπ[3](x) ·G+ xTπxx · ∇uf [2](x,Kx)
+∇u`[3](x,Kx) + κ[2](x)T · `uu

Leaving out the state vector would be more difficult here and is therefore omitted at
this point. But it can be done to obtain the coefficients of the polynomial κ[2](x), see
Chapter 7. Nevertheless, an explicit formula can be given.

κ[2](x) = −`−1
uu ·

(
GT · ∇xπ[3](x)T +∇uf [2](x,Kx)T · πxxx+∇u`[3](x,Kx)T

)
(κ[2])

8



2.1 Al’brekht’s Method for continuous-time systems

The coefficients of π[3](x) do not depend on κ[2](x). This can be seen after applying
(K) to the third degree of (HJBE-1).

(HJBE-1)[3] : 0 = ∇xπ[3](x) · (F +GK) · x+ xTπxx ·
(
f [2](x,Kx) +Gκ[2](x)

)
+ `[3](x,Kx) +

(
xT`xu + xTKT`uu

)
· κ[2](x, p)

Now collecting all terms that contain κ[2](x) and using

(HJBE-2)[1] : 0 = xTπxxG+ xT`xu + xTKT`uu,

the equation above is simplified to

0 = ∇xπ[3](x) · (F +GK) · x+ `[3](x,Kx) + xTπxx · f [2](x,Kx). (π[3])

(π[3]) is a partial differential equation in terms of the states and thus it is in general
not easy to solve but in our case it is linear in the coefficients defining the polynomial
π[3](x). Those coefficients are the actual unknowns. Using Theorem 9 and the fact
that F +GK is stable, one obtains the solvability of the linear equation system. The
proof also shows how to derive the linear equations from the polynomial. Having π[3],
the calculation of κ[2] is straight forward.
The next step is to generalize the calculation that has been done for the second degree
of the control law and the third degree of the value function. Therefore, for a given
arbitrary k ∈ N with k ≥ 2 (HJBE-2)[k] and (HJBE-1)[k+1] will be studied. The first
one can be written as follows.

(HJBE-2)[k] : 0 =
k∑
i=1
∇xπ[i+1](x) ·

[
∇uf

(
x, κ(x)

)][k−i] +
[
∇u`

(
x, κ(x)

)][k]

The only unknowns are κ[k](x) and π[k+1](x). After splitting up the different degrees
of the cost function, κ[k](x) can be derived:

κ[k](x) = −`−1
uu ·

 k∑
i=1

[
∇uf

(
x, κ(x)

)T][k−i]
· ∇xπ[i+1](x)T

+
[
∇u`[3;k+1]

(
x, κ(x)

)T][k]
.

(κ[k])

Next, the (k+1)-th degree of (HJBE-1) is stated. Again the only unknowns are κ[k](x)
and π[k+1](x) since all lower degrees of the control law and the value function have
been calculated before.

(HJBE-1)[k+1] : 0 =
k∑
i=1
∇xπ[i+1](x) ·

[
f
(
x, κ(x)

)][k+1−i] +
[
`
(
x, κ(x)

)][k+1]

To simplify this equation, first, the unknowns have to be written in a more explicit

9



2 Al’brekht’s Method

manner.

0 = ∇xπ[k+1](x) · (F +GK) · x+
k−1∑
i=2
∇xπ[i+1](x) ·

[
f
(
x, κ(x)

)][k+1−i]

+ xTπxx ·Gκ[k](x) + xTπxx ·
[
f [2;k]

(
x, κ(x)

)][k]

+
(
xT`xu + xTKT

)
· `uu · κ[k](x) +

[
`[3;k+1]

(
x, κ(x)

)][k+1]

As in the exemplary case before, all terms which contain κ[k](x) are collected, and (K)
is used to derive 0.

0 = ∇xπ[k+1](x) · (F +GK) · x+
k−1∑
i=2
∇xπ[i+1](x) ·

[
f
(
x, κ(x)

)][k+1−i]

+ xTπxx ·
[
f [2;k]

(
x, κ(x)

)][k] +
[
`[3;k+1]

(
x, κ(x)

)][k+1]
(π[k+1])

The resulting polynomial equality is again linear in the unknown coefficients of π[k+1](x)
and can be found using Theorem 9 and its proof since F + GK is stable. Thus each
degree of the power series (π) and (κ) can be calculated if the conditions (I)-(III) are
fulfilled. But it is unclear if the power series exist resp. converge at all. A proof of
local existence for a less general case is given in Section 2.2.

The calculation shown above is now summarized in Theorem 1.

Theorem 1 (Determinability of π and κ).
Consider an optimal control problem (OCP) where the function that defines the system
dynamics and the cost function are analytic such that they can be written as in (f) and
(`). Furthermore, the conditions (I)-(III) are holding. Then each part of the power
series given in (π) and (κ) is uniquely defined.

Proof. According to the Hautus Lemma 3 [90, 102], (II) implies rank
(
F G

)
= nx.

Therefore all conditions are fulfilled under the given assumptions and the claim follows
from the previous calculation.

Corollary 1 (Local stability).
Under the requirements of Theorem 1, local stability is achieved if the power series (π)
and (κ) converge.

Proof. π(x) is used as Lyapunov function. Using the little-o-notation for the higher-
order terms the value function can be written as

π(x) = 1
2x

Tπxxx+ o(||x||3).

Thus there exists an ε > 0 such that

π(x) ≥ 0

10



2.1 Al’brekht’s Method for continuous-time systems

for all x ∈ Bε(0). Equality only holds for vanishing x since πxx is positive definite as
the solution of a Riccati equation. Therefore π(.) is locally positive definite. Using
the Hamilton-Jacobi-Bellman equation (HJBE-1), it is seen that π̇

(
x(t)

)
is locally

negative definite.

π̇
(
x(t)

)
= d

dtπ
(
x(t)

)
= ∇xπ

(
x(t)

)
· f
(
x(t), κ(x(t))

) (HJBE-1)= −`
(
x(t), κ(x(t))

)
= −1

2x(t)T`xxx(t)− x(t)T`xuKx(t)− 1
2x(t)TKT`uuKx(t) + o

(
||x(t)||3

)
Since `[2](x,Kx) is positive definite, there exists an ε > 0 such that

π̇
(
x(t)

)
≤ 0

for all x(t) ∈ Bε(0). Again equality holds only for x(t) = 0. Thus π(x) is a local
Lyapunov function for

ẋ = f
(
x, κ(x)

)
.

The region where local stability can be guaranteed has been investigated by Rum-
schinski, see [65]. He used the approximations of π and added terms to obtain a
polynomial, which is a sum-of-squares [61]. Thus local Lyapunov function candidates
are constructed. Those candidates are then used to estimate the region of attraction.

Effectiveness of Al’brekht’s Method and application
examples
To show the effectiveness of Al’brekht’s Method, it is applied to two quadcopter ex-
amples. Example 1 considers the optimal control of a quadcopter using a model with
10 states. Example 2 expands the results to a more complex model that contains 12
states and complicated nonlinearities. Both examples will be used as running examples
in the next three chapters, where parameters, constraints, and output variables are
added. The general control scheme is depicted in Figure 2.1 and will also be extended
throughout this thesis.

11



2 Al’brekht’s Method

System
ẋ = f(x, u)

Control
umin(x)

x
x0

umin

Figure 2.1: General control scheme

Example 1 (Quadcopter: 10 states).
Considered is the control of a quadcopter as shown in Figure 2.2. The system dynamics
are given by

ṗx = vx v̇x = g · tan
(
φ

rad

)

ṗy = vy v̇y = g · tan
(
θ

rad

)
ṗz = vz v̇z = −g + kt · uz
φ̇ = −d1 · φ+ vφ v̇φ = −d0 · φ+ n0 · uφ
θ̇ = −d1 · θ + vθ v̇θ = −d0 · θ + n0 · uθ,

where x =
(
px py pz vx vy vz φ θ vφ vθ

)T
is the vector that contains all the

state variables and u =
(
uz uφ uθ

)T
the input. The first three states, namely, px, py,

and pz represent the position of the quadcopter in x resp. y-direction and the altitude
in the world coordinate system. The world and the quadcopter coordinate systems are
visualized in Figure 2.2. vx, vy, and vz are the velocities in x resp. y-direction and

vz

vyvx roll
vθ

pitch
vφ

quadcopter coordinatesworld coordinates

px

py

pz

φ
θ

uz

uθ uφ

Figure 2.2: Coordinate systems for the 10 state quadcopter model

altitude in the quadcopter coordinate system. φ and θ are the roll and pitch angles,
while vφ and vθ represent the rotational velocities. The input uz states the vertical
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2.1 Al’brekht’s Method for continuous-time systems

acceleration while uφ and uθ are the rotational accelerations. Furthermore, there are
several fixed parameters, namely, g = 9.81 m/s2, kt = 0.91, n0 = 10, d0 = 10 /s2,
and d1 = 8 s−1. This model is also used in multiple publications [36, 43, 45, 48] and,
therefore, delivers comparability with other methods.
The reader may realize that one condition, which is needed to apply Al’brekht’s Method,
is not fulfilled. f(0, 0) = 0 is not satisfied for the sixth component. Thus the following
input transformation is introduced.

uz = ũz + g
kt

Using uT =
(
ũz uφ uθ

)T
as new input and the quadratic cost function

`(x, uT) = 1
2x

T`xxx+ 1
2u

T
T`uuuT,

with matrices `xx ∈ R10×10, `uu ∈ R3×3 given by diag(1, 1, 1, 1, 1, 1, 100, 100, 100, 100)
resp. 1

10 · I3 (all units are neglected in the cost), all the conditions (I) to (III) are
also holding. Thus Al’brekht’s Method can be applied, but one should keep in mind
that the calculation of the power series can only be valid as long as φ and θ stay in(
−π

2 rad, π2 rad
)
since the power series of the tangents can not be extended further.

To determine π(x) and κ(x), own software called SAM (Solver for Al’brekht’s Method)
has been used. This software has been developed in the frame of this work. For more
explanations towards SAM and details towards the calculation, the reader is referred
to Chapter 7. The control law has been approximated up to degree four and the value
function up to degree five. In total, 5992 coefficients from which 119 are non-zero are
determined, see Table 7.1. Since the system dynamics are mainly linear, the cost is
quadratic, and the power series of the tangents only contains monomials with an odd
degree, κ[2](x), κ[4](x), π[3](x), and π[5](x) are vanishing. Thus the following equalities
are clear.

κ[1;2](x) = κ[1](x) κ[1;4](x) = κ[1;3](x)
π[2;3](x) = π[2](x) π[2;5](x) = π[2;4](x)

MATLAB has been utilized to simulate the system. The initial values were chosen as
px = 25 m, pz = 5 m, and θ = 0.1745 rad (≈10°), while all the other states are zero.
All controllers resulting from different degrees of approximation are able to control the
system, see Fig. 2.3. There is a small overshoot in px but not in the altitude pz. Both
depicted controls (Fig. 2.4) are nearly the same due to the „weak“ nonlinearity. The
reduction of the cost (Fig. 2.5) using higher-order approximations is not significant.
This fact will change for more complicated examples or when variable parameters or
constraints are present.

13



2 Al’brekht’s Method
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Figure 2.3: Propagation of five out of ten states (10 states model)

14
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Figure 2.4: Control input for the vertical and angular accelerations (10 states model)
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Figure 2.5: Resulting cost (10 states model)
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Example 2 (Quadcopter: 12 states).
In the following, Al’brekht’s Method is applied to another more complex quadcopter
model as presented in [39, 40]. The considered system dynamics are given by

ṗx = cos(θ) cos(ψ) · vx +
(

sin(φ) sin(θ) cos(ψ)− cos(φ) sin(ψ)
)
· vy

+
(

cos(φ) sin(θ) cos(ψ) + sin(φ) sin(ψ)
)
· vz

ṗy = cos(θ) sin(ψ) · vx +
(

sin(φ) sin(θ) sin(ψ) + cos(φ) cos(ψ)
)
· vy

+
(

cos(φ) sin(θ) sin(ψ)− sin(φ) cos(ψ)
)
· vz

ṗz = − sin(θ) · vx + sin(φ) cos(θ) · vy + cos(φ) cos(θ) · vz

v̇x = vψ · vy − vθ · vz
rad − g · sin(θ)

v̇y = vφ · vz − vψ · vx
rad + g · sin(φ) cos(θ)

v̇z = vθ · vx − vφ · vy
rad + g · cos(φ) cos(θ)− uz

mt

φ̇ = vφ + tan(θ) ·
(

sin(φ) · vθ + cos(φ) · vψ
)

θ̇ = cos(φ) · vθ − sin(φ) · vψ

ψ̇ = sin(φ)
cos(θ) · vθ + cos(φ)

cos(θ) · vψ

v̇φ = Jy − Jz
Jx

· vθ · vψrad + uφ
Jx

v̇θ = Jz − Jx
Jy

· vφ · vψrad + uθ
Jy

v̇ψ = Jx − Jy
Jz

· vφ · vθrad + uψ
Jz
.

They contain 12 states x =
(
px py pz vx vy vz φ θ ψ vφ vθ vψ

)T
, where px,

py, and pz represent again the position in x resp. y-direction and the altitude in the
world coordinate system (Fig. 2.6). The velocities in the three directions are stated as
vx, vy, and vz. φ, θ, and ψ are the roll, pitch, and yaw (rad) with velocities vφ, vθ, and
vψ. The sine and cosine functions also have to cancel out the unit rad. For simplicity of
the equations, it is not shown here. The moments of inertia are known parameters with
values Jx = 0.053 kg ·m2, Jy = 0.053 kg ·m2, and Jz = 0.098 kg ·m2. g = 9.81 m/s2 is
the gravity acceleration and mt = 3 kg the total mass of the quadcopter. The control
input u =

(
uz uφ uθ uψ

)T
represents the thrust and the moments about the axis.

As in the 10 state model from Example 1, the control input has to be shifted to meet
all the necessary conditions.

uz = ũz −mt · g
(
uT =

(
ũz uφ uθ uψ

)T)
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vz

vyvx roll
vφ

pitch
vθ

yaw
vψ

quadcopter coordinatesworld coordinates

px

py

pz

θ
φ

ψ
uz

uφ uθ

uψ

Figure 2.6: Coordinate systems for the 12 state quadcopter model

A quadratic cost function

`(x, uT) = 1
2x

T`xxx+ 1
2u

T
T`uuuT,

is used. The diagonal matrices `xx = diag(1, 1, 1, 1, 1, 1, 100, 100, 100, 100, 100, 100)
and `uu = 1

10 · I4 (units are left out) are used this time. The considered initial values
for the simulation are px = 25 m, pz = 5 m, and φ = 0.1745 rad ≈ 10°. Other states
are set to zero. The state pz can be shifted to achieve any altitude as setpoint.
The control law has been approximated up to degree three and thus the value function
up to degree four. In total, 3623 coefficients are calculated, while only 758 of them
are non-zero. The simulation results (Fig. 2.7-2.9) show an increasing performance
using higher-order approximations. The total cost arising from the control error and
the control effort is reduced by nearly 11 % when κ[1;2] is compared with κ[1] and more
then 12 % comparing κ[1;3] and κ[1]. The third-order approximation gives the best result
in the overall cost as well as the control performance. The altitude is reduced to zero
without any overshoot, while the target value in the x-direction is faster than with the
other control laws, and the drift in y- direction is smoothly compensated and reduced.
Higher-order approximations do not always have to lead to better results. Sometimes
odd degrees are better than even ones or the other way around.
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Figure 2.7: Propagation of six out of twelve states (12 states model)

0 2 4 6 8 10
−100

−50

0

50

ũ
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Figure 2.8: Control input for the thrust and the moments about the axis (12 states model)

18



2.2 Convergence proof for continuous-time systems

0 1 2 3 4 5 6 7 8 9 10
0
20
40
60
80
100

Cost to go

κ[1](x)

κ[1;2](x)

κ[1;3](x)

0 1 2 3 4 5 6 7 8 9 10
0

200
400
600
800

1,000

time (s)

Total cost

Figure 2.9: Resulting cost (12 states model)

2.2 Convergence proof for continuous-time systems

As mentioned before, even though every degree of the power series of the optimal input
and the value function can be calculated, the convergence resp. the existence of the
power series is not necessarily given. Therefore in this section, the convergence proof
given by E. G. Al’brekht [3] is recapitulated in detail and also generalized. The proof
only covers a special class of optimal control problems and not the general case, e. g.
Al’brekht does not consider multiple input variables and uses `xx = Inx, `xu = 0nx×1,
and `uu = 1 in the cost function.
The main idea behind the proof is to first upper bound each degree of the value
function, using the system dynamics and the cost function. Doing so a dominating
converging power series is constructed to guarantee the convergence. Since in the
special case, the control law can be stated in terms of the value function and constant
matrices, its convergence is evident.

Throughout this section, an optimal control problem of the following form is consid-
ered.

π
(
x(0)

)
= min

u(.)

∞∫
0
`
(
x(τ), u(τ)

)
dτ

s.t. ẋ = f(x) +Gu

(OCP)

In this case, the system dynamics is linear regarding the input variables u ∈ Rnu, while
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2 Al’brekht’s Method

the cost function is given by the following quadratic form:

`(x, u) = 1
2x

T`xxx+ xT`xuu+ 1
2u

T`uuu. (`)

Thus the cost does not contain terms of order higher than two, while the function
f : Rnx → Rnx is considered to be analytic with f(0) = 0 and

f(x) = Fx+
∞∑
k=2

f [k](x). (f)

Theorem 2 (Local convergence of π(x) and κ(x)).
Let κ be the optimal control input of (OCP) and π the corresponding optimal cost
function. If f and ` respect the conditions (I)-(III) from Section 2.1, then κ and π
can be expressed in terms of the system states x and they are locally analytic.

Proof. The proof follows the lines of [3] with some minor generalizations. Note that
in principle the input does not have to be 1-dimensional and instead of `xx = Inx,
`xu = 0nx×nu, and `uu = Inu arbitrary matrices that fulfill (I)-(III) are allowed.
The optimal input and the value function are denoted by

κ(x) = Kx+
∞∑
k=2

κ[k](x) (κ)

and π(x) = 1
2x

Tπxxx+
∞∑
k=3

π[k](x). (π)

The constants κ0 and π0 as well as the 1-by-nx matrix πx are neglected since they are
zero anyway. The corresponding Hamilton-Jacobi-Bellman equation of the system is
becomes

0 = ∇xπ(x) ·
(
f(x) +Gκ(x)

)
+ 1

2x
T`xxx+ xT`xuκ(x) + 1

2κ(x)T`uuκ(x) (HJBE-1)

and the first-order optimality condition by

0 = ∇xπ(x) ·G+ xT`xu + κT(x) · `uu. (HJBE-2)

At first, simplified defining equations for κ[k](x) and π[k](x) (k ≥ 1) have to be estab-
lished. For K and πxx, one obtains (K) and (πxx) from Section 2.1.

K = −`−1
uu · (`T

xu +GTπxx) (K)
0 = πxxF + FTπxx + `xx − (`xu + πxxG) · `−1

uu · (`T
xu +GTπxx) (πxx)

From (HJBE-2) one can easily derive

κ[k](x) = −`−1
uu ·GT · ∇xπ[k+1](x)T (κ[k])
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for k ≥ 2. Using (HJBE-1), π[k+1](x) is defined by the equation

0 =
k∑
i=1
∇xπ[i+1](x) ·

(
f [k−i+1](x) +Gκ[k−i+1](x)

)

+ xT`xu · κ[k](x) + 1
2

k∑
i=1

κ[i](x)T · `uu · κ[k−i+1](x).

Using (K) to cancel out all terms, which depend on κ[k], and substituting (κ[k]), one
derives the following identity.

∇xπ[k+1](x) · (F +GK) · x = −
k−1∑
i=1
∇xπ[i+1](x) · f [k−i+1](x) (π[k+1])

+ 1
2
k−1∑
i=2
∇xπ[i+1](x) ·G`−1

uuG
T · ∇xπ[k−i+2](x)T

To prove the convergence of the power series (π), it is desired to find a series
(
Cπ
k

)
k≥2

such that
∞∑
k=2

Cπ
k · rk <∞ and

∣∣∣π[k](x)
∣∣∣ ≤ Cπ

k · rk

for sufficiently small r = ||x||.
Since f(.) is analytic at least in a neighborhood of the origin, Remark 16 (c) implies
the existence of a series

(
Cf
k

)
k≥1 with

∞∑
k=1

Cf
k · rk <∞ and

∣∣∣f [k](x)
∣∣∣ ≤ Cf

k · rk

for sufficiently small r. In the following, the inequality (A.5) from Theorem 10 will be
applied to the different degrees of π.∣∣∣∇xπ[k](x)

∣∣∣ ≤ k · Cπ
k · rk−1

The second degree of the value function can be easily upper bounded using the spec-
tral norm of πxx, which is its largest eigenvalue. To keep the notation simple, this
eigenvalue divided by two will be called Cπ

2 .
∣∣∣π[2](x)

∣∣∣ =
∣∣∣∣∣12xTπxxx

∣∣∣∣∣ ≤ Cπ
2 · r2

Going to the next degree, one finds from (π[k+1]) an equation for ∇xπ[3](x).

dπ[3]

dt (x)
∣∣∣∣∣∣
ẋ=Fx+GKx

= ∇xπ[3](x) · (F +GK) · x = −xTπxx · f [2](x)
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2 Al’brekht’s Method

Via integration it follows that

∣∣∣π[3](x)
∣∣∣
ẋ=Fx+GKx =

∣∣∣∣∣∣
∞∫
0
−xTπxx · f [2](x) dt

∣∣∣∣∣∣ ≤
∞∫
0

∣∣∣xTπxx · f [2](x)
∣∣∣ dt ≤ 2Cf

2C
π
2

∞∫
0
r3(t) dt.

Since the linear system is stable, even exponentially stable, it is possible to find an
upper bound for the states and, therefore, also r = ||x||.

r(t) ≤ r0 · e−α·t , r0 = ||x(0)||, α > 0

Thus after solving the integral, Cπ
3 is found.

∣∣∣π[3](x)
∣∣∣
ẋ=Fx+GKx ≤

2Cf
2C

π
2

3α · r3
0 = Cπ

3 · r3
0

Theorem 10 implies

∣∣∣∇xπ[3](x)
∣∣∣ ≤ 3 · Cπ

3 · r2
0 = 2Cf

2C
π
2

α
· r2

0.

Before discussing the general case, Cπ
4 will be calculated to gain more insight how

those constants are found. Thus (π[k+1]) is integrated.

∣∣∣π[4](x)
∣∣∣
ẋ=Fx+GKx =

∣∣∣∣∣∣
∞∫
0
−xTπxx · f [3](x)−∇xπ[3](x) · f [2](x)

+ 1
2∇xπ

[3](x) ·G`−1
uuG

T · ∇xπ[3](x)T dt
∣∣∣∣∣∣

≤
∞∫
0

2Cf
3C

π
2 · r4(t) + 3Cf

2C
π
3 · r4(t) + 9

2C
2
G · Cuu · (Cπ

3 )2 · r4(t) dt

≤ 1
4α ·

(
2Cf

3C
π
2 + 3Cf

2C
π
3 + 9

2C
2
GCuu · (Cπ

3 )2
)
· r4

0 =: Cπ
4 · r4

0

Here Cuu resp. CG denotes the spectral norm of `−1
uu resp. G.
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2.2 Convergence proof for continuous-time systems

The general case k ≥ 2 can be handled in a similar way.∣∣∣π[k+1](x)
∣∣∣
ẋ=Fx+GKx

≤
∞∫
0

k−1∑
i=1

(i+ 1) · Cπ
i+1 · ri(t) · C

f
k−i+1 · rk−i+1(t) dt

+
∞∫
0

k−1∑
i=2

1
2(i+ 1) · Cπ

i+1 · ri(t) · C2
GCuu · (k − i+ 2) · Cπ

k−i+2 · rk−i+1(t) dt

≤

k−1∑
i=1

(i+ 1) · Cπ
i+1C

f
k−i+1 +

k−1∑
i=2

1
2 (i+ 1) · (k − i+ 2) · C2

GCuu · Cπ
i+1C

π
k−i+2

(k + 1) · α · rk+1
0

=: Cπ
k+1 · rk+1

0

Given these coefficients, a converging domination series for
(
Cπ
k

)
k≥2 would also imply

the desired convergence. To do so, another equation is introduced, and it will be
shown that its solution is, in fact, a series with the desired properties.

C2
GCuu ·

(dγ
dr (r)

)2
+
 ∞∑
i=2

Cf
i · qi−1 − a

 · r · dγ
dr (r) + b · r2 = 0 (2.1)

The constant numbers a and b will be determined during the following calculation,
while q ∈ R≥0 can be seen as a vector norm similar to r. Clearly, (2.1) is only well-
defined where f is analytic. One may observe that Cf

1 is not a part of the power series,
so it does not seem to have any influence on the solution. But later calculation shows
that, in fact, a and b depend on F .
Finding (2.1) and a solution of it is the key element of this proof. All the steps that
have been done before are not surprising and also unavoidable. Clearly, (2.1) admits
two solutions. Those solutions are of the form γ(r) = 1

2g(q) ·r2, where g(.) is a solution
of the quadratic equation

C2
GCuu · g2(q) +

 ∞∑
i=2

Cf
i · qi−1 − a

 · g(q) + b = 0. (2.2)

If q is sufficiently small and

0 < b <
a2

4C2
GCuu

, (2.3)

two solutions

g1/2(q) =
a−

∞∑
i=2

Cf
i · qi−1 ±

√√√√(a− ∞∑
i=2

Cf
i · qi−1

)2
− 4b · C2

GCuu

2C2
GCuu

(2.4)
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2 Al’brekht’s Method

are found. From those two solutions, g2(q) is taken and from now on just denoted with
g(q). It will be seen later why g1(q) can not be the desired solution. First note that the
solution g(.) is analytic in the domain containing the origin where

∞∑
i=2

Cf
i · qi−1 < ∞.

Furthermore, it can be locally expanded into a power series

g(q) =
∞∑
i=2

Cg
i · qi−2 <∞. (2.5)

Analog to the calculation in Section 2.1, this series can be found degree-wise. Starting
with the constant part from (2.5) and (2.2) or (2.4), which defines Cg

2 .

0 = C2
GCuu · (C

g
2 )2 − a · Cg

2 + b ⇔ Cg
2 =

a−
√
a2 − 4b · C2

G · Cuu
2C2

GCuu
> 0

Taking the linear part from (2.2) and leaving out q, since it is arbitrary, leads to Cg
3 .

0 = 2C2
GCuu · C

g
2C

g
3 + Cf

2C
g
2 − a · C

g
3

⇒ Cg
3 = Cf

2C
g
2

a− 2C2
GCuu · C

g
2

a and b have to be chosen such that

a− 2C2
GCuu · C

g
2 =

√
a2 − 4b · C2

GCuu

is strictly greater than zero. This is the case if b (still depending on a) is defined as

b = a2 − α2

4C2
G · Cuu

,

which ensures

a2 − 4b · C2
GCuu = α2 > 0.

Obviously, this choice of b also fulfills (2.3), if a > α. Using α here involves also the
linearized system and, therefore, F + GK. Combining all formulas and definitions
gives

Cg
3 =

1
α
· Cf

2 · C
g
2 > 0

and for a ≥ α + 2C2
GCuu · Cπ

2 also Cg
2 =

a− α
2C2

GCuu
≥ Cπ

2 .

If g1(q) would have been used, then Cg
k (k ≥ 3) would be negative, which can not be

an upper bound for Cπ
k .
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2.3 Area of convergence

More general, the Cg
k are obtained by taking the (k − 2)-th degree in equation (2.2).

0 = C2
GCuu ·

k∑
i=2

Cg
i · C

g
k−i+2 +

k−1∑
i=2

Cf
i · C

g
k−i+1 − a · C

g
k .

⇒ α · Cg
k = (a− 2C2

GCuu · C
g
2 ) · Cg

k = C2
GCuu ·

k−1∑
i=3

Cg
i · C

g
k−i+2 +

k−1∑
i=2

Cf
i · C

g
k−i+1

⇒ Cg
k = 1

α
·
C2

GCuu ·
k−1∑
i=3

Cg
i · C

g
k−i+2 +

k−1∑
i=2

Cf
i · C

g
k−i+1

 > 0

Finally, this can be compared to

Cπ
k =

k−1∑
i=2

(k − i+ 1) · Cf
i C

π
k−i+1 + C2

GCuu ·
k−1∑
i=3

1
2 i · (k − i+ 2) · Cπ

i C
π
k−i+2

k · α
and it is clear that

Cπ
k ≤ Cg

k ·
max

i∈{3,...,k−1}
i · (k − i+ 2)

2k ≤ Cg
k ·

(k + 2)2

8k ,

since Cπ
2 ≤ Cg

2 . This makes the convergence of (π) is clear since

lim
k→∞

((k + 2)2

8k

)1/k

↘ 1

and

|π(x)| ≤
∞∑
k=2

Cπ
k · rk ≤

∞∑
k=2

(k + 2)2

8k · Cg
k · rk <∞

Since κ(x) is a product of locally analytic functions it is also locally analytic with the
same area of convergence.

2.3 Area of convergence

In Section 2.2, the local convergence of the power series (κ) and (π) has been estab-
lished. Both series are the solution of an optimal control problem (OCP). A minimal
area of convergence resp. an inner approximation of the domain where the solution of
(OCP) can be found via Al’brekht’s Method is not provided yet. However, the proof
of Theorem 2 offers a possibility to find a criterion that characterizes the domain.
With the same notation as in Section 2.2 it is assumed that f(.) is analytical in a
neighborhood D of the origin. Recapitulating that the dominating series for |π(x)| is
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2 Al’brekht’s Method

given by

g(r) =
a−

∞∑
i=2

Cf
i · ri−1 −

√√√√(a− ∞∑
i=2

Cf
i · ri−1

)2
− 4b · C2

G · Cuu

2C2
G · Cuu

.

g(r) is locally analytic as a combination of analytical functions and exists for all r
such that f(.) is analytic in Dr := {x ∈ D : ||x|| ≤ r} and

0 ≤
a− ∞∑

i=2
Cf
i · qi−1

2

− 4b · C2
G · Cuu.

Since the constants a and b were chosen as

a ≥ α + 2C2
GCuu · Cπ

2 and b = a2 − α2

4C2
G · Cuu

,

this inequality is equivalent to

0 < a2 − α2 ≤
a− ∞∑

i=2
Cf
i · ri−1

2

.

Taking the square root on both sides leads to

0 <
√
a2 − α2 ≤ a−

∞∑
i=2

Cf
i · ri−1

and thus
∞∑
i=2

Cf
i · ri−1 ≤ a−

√
a2 − α2.

The right-hand side of this inequality is decreasing in a. Therefore it reaches its
maximum for a = α + 2C2

GCuu · Cπ
2 .

∞∑
i=2

Cf
i · ri−1 ≤ α + 2C2

GCuu · Cπ
2 −

√
(α + 2C2

GCuu · Cπ
2 )2 − α2

⇔
∞∑
i=2

Cf
i · ri ≤

(
α + 2C2

GCuu · Cπ
2 −

√
(α + 2C2

GCuu · Cπ
2 )2 − α2

)
· r =: β · r (2.6)

Remember, CG,Cuu, and Cπ
2 denote the spectral norm of G, `−1

uu resp. 1
2πxx, and α is

such that r(t) ≤ r0 · e−αt. A good value for α can for example be found by

−max {<(λ) : λ eigenvalue of F +GK}
resp. min {−<(λ) : λ eigenvalue of F +GK} .
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2.3 Area of convergence

Since α depends on F , the area of convergence also depends on the linear part of the
system dynamics f(.), whereas the left-hand side of (2.6) depends on higher degrees.
The constant β depends on α, CG, Cuu, and Cπ

2 . α should be chosen maximal since it
increases β, which can be seen by calculating the following derivative.

∂β

∂α
(α,CG, Cuu, Cπ

2 ) = 1− α + 2C2
GCuu · Cπ

2 − α√
(α + 2C2

GCuu · Cπ
2 )2 − α2

∂β
∂α is positive as α, CG, Cuu, and Cπ

2 are also positive, which implies that

α + 2C2
GCuu · Cπ

2 − α√
(α + 2C2

GCuu · Cπ
2 )2 − α2

< 1.

This is shown by the following calculation.

(α + 2C2
GCuu · Cπ

2 )2 − 2α · (α + 2C2
GCuu · Cπ

2 ) + α2 < (α + 2C2
GCuu · Cπ

2 )2 − α2

⇔ −2α · (α + 2C2
GCuu · Cπ

2 ) + 2α2 < 0
⇔ −(α + 2C2

GCuu · Cπ
2 ) + α < 0

⇔ α + 2C2
GCuu · Cπ

2 > 0

Corollary 2 (Area of convergence of π(x) and κ(x)).
The area of convergence can be bound by inequality (2.6). More precisely, the power
series (π) and (κ) from Section 2.1 converge and exist for all x such that

∞∑
i=2

Cf
i · ||x||i ≤

(
α + 2C2

GCuu · Cπ
2 −

√
(α + 2C2

GCuu · Cπ
2 )2 − α2

)
· ||x||. (2.7)

Remark 1. If the system dynamics is linear and the cost function is quadratic, then
the solution of the optimal control problem (OCP) from Section 2.1 can be expressed
as

π(x) = 1
2x

Tπxxx and κ(x) = Kx.

Both clearly exists everywhere in Rnx. The same result is also provided by (2.7) since
Cf
i = 0 for all i ≥ 2.

Throughout this chapter, Al’brekht’s Method in continuous-time has been discussed.
A convergence proof for the power series of the value function and the control law that
considers more general systems and cost functions than the original proof given in [3]
has been given. In addition, a new possibility to characterize the area of convergence
was investigated. Furthermore, the effectiveness of the power series approach has been
shown using two quadcopter examples.
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3 Approximated Optimal Control with Variable
Parameters

In contrast to the existing method that solves fixed nonlinear optimal control problems,
parameter-dependent dynamics are of interest in this chapter. Instead of solving an
OCP for a particular choice of model parameters, Al’brekht’s Method is extended
to allow systems with parametric right-hand sides. It can be used, for example, if
the specifications of a plant are changed, but the model stays the same, or in case of
unmanned aerial vehicles, if their load changes. More importantly, it might be used for
changing environments (e. g. wind, temperature) or measurable disturbances. Having
a parametric offline calculated control law enables to react fast to such changes. The
parameters have to be known or should be estimated in a reasonable time. The control
scheme is updated and might also include parameter estimation (Fig. 3.1).

System
ẋ = f(x, u, p)

Control
umin(x, pest)

Estimation
pest(x, umin)

x

pest

umin

x0

umin

Figure 3.1: Overall control scheme including parameter estimation and parameter-
dependent controller

Even though the control input umin changes with the estimated parameters pest
when the states x are fixed, the proposed method does not do active probing, as in
the concept of [25, 99]. In contrast to other methods which require an active redesign
of the controller, e. g. [81], the parameters are directly integrated in the explicit
controller.
There are only little explicit control laws that depend and adjust to model parameters.
Axehill et. al. [5, 6] e. g. worked on parametric explicit suboptimal control, where the
constraints are parameter dependent. Aguilar and Krener [1, 51, 55] introduced an
external system with known dynamics to allow for changing parameters. This system
has a direct effect on the states and can be interpreted as time-varying parameters or
an explicit time-dependence. The setup in these three papers looks more general, but
the dynamics of the exosystem need to be known beforehand and affect the design of
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3.1 Parameter-dependent continuous-time systems

the controller. This is not the case for the extension, which is explained in the next
section.

3.1 Parameter-dependent continuous-time systems

In this section, Al’brekht’s Method will be extended to include parameters p in the
dynamical system. Therefore the control law κ and the value function π depend on
the parameters. The basic calculation steps are the same as for the non-parametric
case in Section 2.1. At first, only multiplicative parameters are considered. Hence the
LQR conditions towards the linear part of the system dynamics f and the second-
order part of the cost function ` remain unchanged. Additionally, the origin remains
a fixed point for the system. Later in Remark 3, it will be discussed how to handle
additive parameters as well as parameter-dependent cost functions.
During the whole calculation, it is assumed that the parameters are time-independent
or that the time dependence is comparably slow to the normal system dynamics.
Otherwise, as discussed in (18) (a), the time derivative ṗ has to be known, and the
parameters actually similar to the states, as mentioned before [1, 51, 55].
The optimal cost and input do not contain parts that solely depend on the parameters,
i. e. the control action and the cost at the origin remains zero. Furthermore, if p is
vanishing, the nominal case is obtained.
At the end of this section, local stability is proven and the effectiveness of the pro-
posed method is underlined via two quadcopter examples in the case of multiplicative
parameters and a bioreactor example in the case of additive parameters.

The considered parameter-dependent optimal control problem states as the following.

π
(
x(0), p

)
= min

u(.)

∞∫
0
`
(
x(τ), u(τ)

)
dτ

s.t. ẋ = f(x, u, p)
(OCP)

Here the system dynamics and π depend on the parameters p. To apply Al’brekht’s
Method again, the assumption that f : Rnx ×Rnu ×Rnp → Rnx and ` : Rnx ×Rnu → R
are analytic is made. The condition f(0, 0) = 0 from Section 2.1 has to be generalized,
i. e. it needs to hold for every choice of the parameters:

∀p ∈ Rnp : f(0, 0, p) = 0. (f0)

Since f(0, 0, .) : Rnp → Rnx is analytic, one observes that the complete power series
has to vanish and, therefore, it holds:

∀k ∈ N, p ∈ Rnp : f [k](0, 0, p) = 0
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3 Approximated Optimal Control with Variable Parameters

The right-hand side of the dynamics and the cost function can be written using power
series expansions.

f(x, u, p) =
∞∑
k=1

f [k](x, u, p) = Fx+Gu+ f [2](x, u, p) + . . . (f)

`(x, u) =
∞∑
k=2

`[k](x, u) = 1
2x

T`xxx+ xT`xuu+ 1
2u

T`uuu+ `[3](x, u) + . . . (`)

The matrices F, `xx ∈ Rnx×nx, G, `xu ∈ Rnx×nu, and `uu ∈ Rnu×nu need to fulfill the
same conditions as in Section 2.1.

(I) The second-order part of the cost function is convex in (x, u) and strictly convex
in u, i.e. `xx `xu

`T
xu `uu

 � 0 and `uu � 0.

(II) The linearized system resp. the pair (F,G) is stabilizable.

(III) The pair (F, `xx) is detectable.

The optimal cost function π : Rnx × Rnp → R is assumed to be analytic in (x, p) and
can be, similar as in the non-parametric case, written as

π(x, p) =
∞∑
k=1

π[k](x, p)

= πxx+ πpp+ 1
2x

Tπxxx+ xTπxpp+ 1
2p

Tπppp+ π[3](x, p) + . . . ,

(π)

where the constant part is omitted. This procedure has been justified before. For the
same reason it is not necessary to consider the constant in the control law umin :=
κ : Rnx × Rnp → Rnu with

κ(x, p) =
∞∑
k=1

κ[k](x, p) = Kx+ Lp+ κ[2](x, p) + . . . (κ)

The matrices πx ∈ R1×nx, πp ∈ R1×np, πxx ∈ Rnx×nx, πxp ∈ Rnx×np, πpp ∈ Rnp×np,
K ∈ Rnu×nx, and L ∈ Rnu×np remain to be determined, if possible.
Similar to the non-parametric case, the Hamilton-Jacobi-Bellman equation (see Re-
mark 18 (c)) is used as optimality criterion.

0 = ∇xπ(x, p) · f
(
x, κ(x, p), p

)
+ `

(
x, κ(x, p)

)
(HJBE-1)

0 = ∇xπ(x, p) · ∇uf
(
x, κ(x, p), p

)
+∇u`

(
x, κ(x, p)

)
(HJBE-2)
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3.1 Parameter-dependent continuous-time systems

Starting with degree zero in both equations leads to

(HJBE-1)[0] : 0 = 0

and

(HJBE-2)[0] : 0 = πx ·G. (πx-1)

These two equations are the same as in the non-parametric case. The first degree of
(HJBE-1) though gives the first small difference.

(HJBE-1)[1] : 0 = πx ·
(
Fx+G(Kx+ Lp)

)
= πx · Fx

⇒ 0 = πx · F (πx-2)

Combining condition (II) and the Hautus Lemma 3 with (πx-1) and (πx-2) shows πx
has to be 0. πp can not be obtained since it is not contained in any equation. The same
holds for πpp, π[3](0, p), and so forth. Thus π(x, p) can not be calculated completely,
but it makes sense to set the part that can not be found to 0 since no cost should arise
at the origin. In other words, the optimal cost is 0 if the initial value is at the desired
point. Furthermore, the control input κ(0, p) needs to be zero, which implies L = 0,
κ[2](0, p) = 0, and so forth. A more rigorous justification will be done throughout the
calculation. This implication can also only be done under the assumption (f0).
The next higher degree in both equations (HJBE-1) and (HJBE-2) is investigated in
the following.

(HJBE-2)[1] : 0 =
(
xTπxx + pTπT

xp

)
·G+ xT`xu + (Kx+ Lp)T · `uu

Since the states x and the parameters p are independent, this equation can be sepa-
rated into two, and formulas for K and L are obtained.

K = −`−1
uu ·

(
GTπxx + `T

xu

)
(K)

L = −`−1
uu ·GTπxp (L-1)

Of course, K as well as πxx have to be the same as in the non-parametric case.

(HJBE-1)[2] : 0 =
(
xTπxx + pTπT

xp

)
·
(
Fx+G · (Kx+ Lp)

)
+ 1

2x
T`xxx

+ xT`xu · (Kx+ Lp) + 1
2(Kx+ Lp)T · `uu · (Kx+ Lp)

(3.1)

Because of the independence of polynomials that are quadratic in the states, quadratic
in the parameters, and polynomials that contain one state and one parameter, this
equation is separated into three. The first one contains all terms that only contain
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3 Approximated Optimal Control with Variable Parameters

states and are homogeneous of degree two. Again the state vector x is omitted.

0 = πxx · (F +GK) + (F +GK)T · πxx + `xx + `xuK +KT`T
xu +KT`uuK

ReplacingK leads to the continuous algebraic Riccati equation, as in the non-parametric
case.

0 = πxxF + FTπxx + `xx −
(
πxxG+ `xu

)
· `−1
uu ·

(
GTπxx + `T

xu

)
(πxx)

Thus πxx is already fixed and only πxp has to be found. Taking all mixed terms from
(3.1), the first condition towards πxp is derived.

0 = πxx ·GL+ (F +GK)T · πxp + `xuL+KT`uuL

Substituting K and L drastically simplifies this equality and leads to

0 = FTπxp − (πxxG+ `xu) · `−1
uu ·GTπxp. (3.2)

One can already foresee that πxp will be 0 if
(
F G

)
has rank nx, which is the case

due to (II). The third equation, which is obtained from (3.1), when only terms that
are quadratic in the parameters p are taken, provides a further condition towards πxp.

0 = πT
xp ·GL+ LTGT · πxp + LT`uuL

(L-1)= −πT
xpG · `−1

uu ·GTπxp

Since `−1
uu is obviously positive definite, it follows

0 = GTπxp. (πxp-1)
(3.2)⇒ 0 = FTπxp (πxp-2)

(πxp-1), together with (πxp-2), leads to πxp = 0 if
(
F G

)
has full rank as expected.

Going back to the formula (L-1) immediately gives

L = 0. (L-2)

As mentioned before, πpp is not a part of any equation and thus can not be found.
As a next step, the second degree of the control law κ and the third degree of the
value function π will be derived. Afterward, the general case κ[k], π[k+1] for k ≥ 2 is
outlined. At first, the second degree of the first-order condition (HJBE-2) is studied.

(HJBE-2)[2] : 0 = ∇xπ[3](x, p) ·G+ xTπxx · ∇uf [2](x,Kx, p)
+∇u`[3](x,Kx) + κ[2](x, p)T · `uu

Since `uu is positive definite, it is invertible and an explicit formula for κ[2](x, p) can
be given.
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3.1 Parameter-dependent continuous-time systems

κ[2](x, p) = −`−1
uu ·

(
GT · ∇xπ[3](x, p)T +∇uf [2](x,Kx, p)T · πxxx

+∇u`[3](x,Kx)T
) (κ[2])

To keep the formulas shorter, these equations are not split up according to the states,
parameters, and mixed terms anymore. To derive κ[2](x, p), first π[3](x, p) has to be
found.

(HJBE-1)[3] : 0 = ∇xπ[3](x, p) · (F +GK) · x+ xTπxx ·
(
f [2](x,Kx, p) +Gκ[2](x, p)

)
+ `[3](x,Kx) +

(
xT`xu + xTKT`uu

)
· κ[2](x, p)

Collecting all terms that depend on κ[2](x, p) and using (K) implies the following
simplification.

0 = ∇xπ[3](x, p) · (F +GK) · x+ `[3](x,Kx) + xTπxx · f [2](x,Kx, p) (π[3])

(π[3]) is a partial differential equation in terms of the states, but it is linear in terms of
the coefficients that define the polynomial π[3](x, p). Those coefficients are the actual
unknowns. Using Corollary 8 and the fact that F + GK is stable, one obtains the
solvability of the linear equation system. Having π[3], the calculation of κ[2] is straight
forward. Since all the known parts from equation (π[3]) are constant or linear in the
parameters p, Corollary 8 also implies ∇pπ[3](0, p) = 0 and κ[2](0, p) = 0.
Having this knowledge, the general case k ≥ 2 is investigated.

(HJBE-2)[k] : 0 =
k∑
i=1
∇xπ[i+1](x, p) ·

[
∇uf

(
x, κ(x, p), p

)][k−i] +
[
∇u`

(
x, κ(x, p)

)][k]

As before, an explicit formula for κ[k](x, p) can be obtained.

κ[k](x, p) = −`−1
uu ·

 k∑
i=1

[
∇uf

(
x, κ(x, p), p

)T][k−i]
· ∇xπ[i+1](x, p)T

+
[
∇u`[3;k+1]

(
x, κ(x, p)

)T][k]
 (κ[k])

Now taking all terms of (HJBE-1) that are homogeneous with degree k+1 and already
splitting up the sums, one derives the following equality.
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3 Approximated Optimal Control with Variable Parameters

(HJBE-1)[k+1] :

0 =
k∑
i=1
∇xπ[i+1](x, p) ·

[
f
(
x, κ(x, p), p

)][k+1−i] +
[
`
(
x, κ(x, p)

)][k+1]

= ∇xπ[k+1](x, p) · (F +GK) · x+
k−1∑
i=2
∇xπ[i+1](x, p) ·

[
f
(
x, κ(x, p), p

)][k+1−i]

+ xTπxx ·Gκ[k](x, p) + xTπxx ·
[
f [2;k]

(
x, κ(x, p), p

)][k]

+
(
xT`xu + xTKT

)
· `uu · κ[k](x, p) +

[
`[3;k+1]

(
x, κ(x, p)

)][k+1]

Again (K) is used to cancel out the highest order terms of the control law, which are
included.

0 = ∇xπ[k+1](x, p) · (F +GK) · x+
k−1∑
i=2
∇xπ[i+1](x, p) ·

[
f
(
x, κ(x, p), p

)][k+1−i]

+ xTπxx ·
[
f [2;k]

(
x, κ(x, p), p

)][k] +
[
`[3;k+1]

(
x, κ(x, p)

)][k+1] (π[k+1])

Thus κ[k](x, p) is no longer part of this equation. Again Corollary 8 is used to obtain
the coefficients of π[k+1](x, p), which leads to κ[k](x, p). The Corollary also implies
∇pπ[k+1](0, p) = 0 and κ[k](0, p) = 0. If contrariwise, the parameters p are set to zero,
then π(x, 0) and κ(x, 0) are identical with the power series (π) and (κ) from Section
2.1. The equations that had to be solved are the same.
It has been shown that every part of the power series (π) and (κ) can be calculated
under certain conditions, but the existence of those series is not clear at this point.

The detailed calculation that has been outlined in this section is summarized in The-
orem 3.

Theorem 3 (Determinability of π and κ).
Consider an optimal control problem (OCP), where the function that defines the system
dynamics and the cost function are analytic with power series expansions (f) and (`).
Furthermore, let (f0) and the conditions (I)-(III) be fulfilled. Then each part of the
power series given in (π) and (κ) is uniquely defined. Furthermore, for all p in a
neighborhood of the origin, it holds

π(0, p) = 0, ∇xπ(0, p) = 0 and κ(0, p) = 0.

Remark 2 (Parametric cost functions).
It is also possible to allow parameters in the cost function ` : Rnx × Rnu × Rnp → R.
To guarantee the degree-wise solvability of the HJBE, one, however, needs to assume
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3.1 Parameter-dependent continuous-time systems

that

∀p ∈ Rnp : `(0, 0, p) = 0 ∧
(
∇x`(0, 0, p) ∇u`(0, 0, p)

)
=
(
01×nx 01×nu

)
.

The approach presented in [55] also considers parametric costs, but a slightly different
setup. Furthermore, the parameters are part of a coordinate transformation leading to
less restrictive conditions.

∀p ∈ Rnp : `(0, 0, p) = 0 ∧ ∇p`(0, 0, p) = 0

Remark 3 (Additive parameters).
If the parameters do not only appear multiplicative but also additive, then Al’brekht’s
Method can still be applied by introducing an additional state. To do so an optimal con-
trol problem as (OCP) is considered without the condition (f0). The system dynamics
are given by

ẋ = f(x, u, p) = f0 + Fx+Gu+ Jp+ f [2](x, u, p) + . . . , (fp)

while the cost function (`) is unchanged. Here f0 is an nx-dimensional vector and
J ∈ Rnx×np. As previously in this section mentioned, solving this OCP via the power
series approach would lead to equations, which depend on all the unknowns, and no
iterative procedure can be found. Therefore an additional state xf is introduced and
multiplied with f(0, 0, p). Doing so the condition in (f0) is satisfied for the resulting
OCP. The new state vector is

x̄ =
 x
xf

 ,
leading to the dynamics

˙̄x =
 ẋ
ẋf

 =
f(0, 0, p) · xf + Fx+Gu+ f [2](x, u, p) + . . .

−αf · xf

 .
Here αf has to be positive to ensure the stability of xf and, therefore, the solvability
of the continuous-time algebraic Riccati equation later on. Substituting the part of the
right-hand side, which only depends on p via its power series,

f(0, 0, p) = f0 + Jp+ f [2](0, 0, p) + . . . ,

one gains a new representation of the different polynomial degrees of the dynamics.

˙̄x =
F f0

0 −αf


︸ ︷︷ ︸

=: F̄

·
 x
xf

 +
G

0


︸ ︷︷ ︸
=: Ḡ

·u+
f [2](x, u, p)− f [2](0, 0, p) + Jp · xf

0


︸ ︷︷ ︸

=: f̄ [2](x̄, u, p)

+ . . . (f̄)
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3 Approximated Optimal Control with Variable Parameters

Using the additional state, the cost function and its defining matrices are also rewritten,
while the cost stays actually the same.

¯̀(x̄, u) = x̄T
`xx 0

0 0


︸ ︷︷ ︸

=: `x̄x̄

x̄+ x̄T
`xu

0


︸ ︷︷ ︸
=: `x̄u

u+ 1
2u

T`uuu+ `[3](x, u) + . . . = `(x, u) (¯̀)

The value function and the control law are now stated as power series in terms of
(x̄, p). During the application of the control, xf is always set to 1. In this case, the
first nx rows of the system dynamics (f̄) are the same as in (fp).

π̄(x̄, p) = 1
2 x̄

T

 πxx πxxf
πT
xxf

πxfxf


︸ ︷︷ ︸

=: πx̄x̄

x̄+ π̄[3](x̄, p) + . . . (π̄)

κ̄(x̄, p) =
(
K Kf

)
︸ ︷︷ ︸

=: K̄

·x̄+ κ̄[2](x̄, p) + . . . (κ̄)

Doing so, all assumptions of the nominal case are fulfilled and the Hamilton-Jacobi-
Bellman equation and its derivative with respect to the input u are solved degree-wise,
as shown at the beginning of this section. The matrices πxx ∈ Rnx×nx and K ∈ Rnu×nx

are found as in the nominal case, see (πxx) and (K). The other parts πxxf ∈ Rnx and
πxfxf ∈ R of the second order of the value function can be calculated uniquely since a
positive αf implies the stabilizability of (F̄ , Ḡ) and the detectability of (F̄ , `x̄x̄). The
vector Kf ∈ Rnu is given by

Kf = −`−1
uu ·GTπxxf . (Kf )

Higher orders are solved accordingly, which will not be outlined here.
Including a constant part f0 in the dynamics also generalizes the theory shown in
Section 2.1. Allowing additive parameters and not only multiplicative ones leads to a
whole new class of applications, e. g. constant drift and offset terms, encountered in
robotics or biological and chemical systems.

Local stability
It remains to examine the stability of the closed-loop for the parametrized explicit
control law, which can be summarised in the following corollary.

Corollary 3 (Local stability).
Under the requirements of Theorem 3 local stability is achieved for sufficiently small
parameters p, if the power series (π) and (κ) are converging.
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3.1 Parameter-dependent continuous-time systems

Proof. For a fixed parameter vector p ∈ Rnp, a local Lyapunov function candidate is
given by π̃(x) := π(x, p). Analogously to the value function, the control law is defined
as ũmin(x) := κ̃(x) := κ(x, p). Both functions are the solution of

π
(
x(0)

)
= min

u(.)

∞∫
0
`
(
x(τ), u(τ)

)
dτ

s.t. ẋ = f̃(x, u),

where f̃(x, u) := f(x, u, p). If p is sufficiently small, f̃ [1](., .) inherits the properties of
f [1](., ., .). Therefore π̃(.) and κ̃(.) can be written as

π̃(x) = 1
2x

Tπ̃xxx+ o(||x||3),

κ̃(x) = K̃x+ o(||x||2).

Thus there exists an ε > 0 such that

π̃(x) ≥ 0

for all x ∈ Bε(0). Equality only holds for vanishing x due to the positive definiteness
of π̃xx. Therefore, π̃(.) is locally positive definite. Using the Hamilton-Jacobi-Bellman
equation (HJBE-1) from Section 2.1, it is seen that π̇

(
x(t)

)
is locally negative definite.

˙̃π
(
x(t)

)
= d

dtπ̃
(
x(t)

)
= ∇xπ̃

(
x(t)

)
· f̃
(
x(t), κ̃(x(t))

) (HJBE-1)= −`
(
x(t), κ̃(x(t))

)
= −1

2x(t)T`xxx(t)− x(t)T`xuK̃x(t)− 1
2x(t)TK̃T`uuK̃x(t) + o

(
||x(t)||3

)
Since `[2](x, K̃x) is positive definite, there exists an ε > 0 such that

˙̃π
(
x(t)

)
≤ 0

for all x(t) ∈ Bε(0). Again equality holds only for vanishing x(t). Thus π̃(x) = π(x, p)
is a local Lyapunov function for

ẋ = f̃
(
x, κ̃(x)

)
= f

(
x, κ(x, p), p

)
and fixed p ∈ Rnp. If p ∈ Rnp varies but stays in Bδ(0) for a sufficiently small
δ > 0, then x 7→ π(x, p) is used as a local Lyapunov function. In the previous case,
x 7→ π(x, p) was a local Lyapunov function for x ∈ Bε(0). Clearly, ε depends on p.
Since p 7→ π(x, p) is C∞, one can see that p 7→ ε(p) is continuous and thus takes its
minimum value in the compact set Bδ(0). This minimum is denoted with εmin and
must be greater than zero. Else there would be a parameter p that contradicts the
first case. Therefore x 7→ π(x, p) is a Lyapunov function for x ∈ Bεmin(0).
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3 Approximated Optimal Control with Variable Parameters

Remark 4. The local stability result is asymptotic in the sense that is holds for the
exact control law. It does not consider the case that the power series of the control law
is truncated at a certain degree.

Simulation evaluation
The two quadcopter examples from Section 2.1 are revisited. As explained in Re-
mark 3, additive parameters and constants in the power series of the system dynamics
can now also be handled. Thus another example from the field of biochemistry is also
investigated.

Example 3 (Quadcopter: 10 states, 6 parameters).
The system dynamics considered in Example 1 are extended with variable parameters
p =

(
ωxx ωxy ωxz ωyx ωyy ωyz

)T
∈ R6 in the following way.

ṗx = vx v̇x = g · tan
(
φ

rad

)
+ ωxx · vx + ωxy · vy + ωxz · vz

ṗy = vy v̇y = g · tan
(
θ

rad

)
+ ωyx · vx + ωyy · vy + ωyz · vz

ṗz = vz v̇z = −g + kt · uz
φ̇ = −d1 · φ+ vφ v̇φ = −d0 · φ+ n0 · uφ
θ̇ = −d1 · θ + vθ v̇θ = −d0 · θ + n0 · uθ,

The added terms can be seen as state-depended uncertainties, as usually considered.
Those are usually used for aircraft and quadcopter models, see [45, 75, 96]. The
parameters allow, for example, to describe wind disturbing the system in x and y-
direction. The effect on the altitude is usually smaller and neglected here. If the
parameters p can be estimated via perhaps additional sensors or the movement of the
quadcopter, then the control scheme from Example 1 can be updated with another block,
see Fig. 3.1. The estimation is not part of this work and will be treated as a black box.
Using the same notation, cost function, and transformation of the input as before,
Al’brekht’s Method with included parameters is applicable. The power series of the
control law was calculated up to degree three. Thus finding 180 non-zero out of a total
of 2904 coefficients, while the value function is approximated up to degree four with a
total of 4828 coefficients from which 345 are non-zero, see Table 7.1. The initial values
were again px = 25 m, pz = 5 m, and θ = 0.1745 rad (≈10°), while the time-dependent
parameters are chosen as

ωxx = ωyx = 1
5 · sin(t) s−1, ωxy = ωyy = 1

5 · cos(t) s−1 and ωxz = ωyz = 0 s−1.

As seen in Fig. 3.3, higher-order approximations lead to a better compensation of the
wind effects. It can also be seen that the controllers (κ[1](x), κ[1;3](x)) obtained via
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Figure 3.2: Propagation of five out of ten states (10 states model with parameters)

Al’brekht’s original method do not compensate the changing wind at all. The first-
order approximation κ[1](x, p) actually does not depend on the parameters and is equal
to κ[1](x). All controllers lead to the same behavior in the altitude, see Fig. 3.2. This
is due to the linearity of the involved ODE’s. Thus the control input (Fig. 3.4) for the
altitude is the same for all approximations. The other control inputs are less smooth
and show a very strong control action for a short time. The magnitude of the input
depends on the initial values. Such strong control actions are not desired in reality.
Furthermore, the alleviation of the wind effect causes a much higher cost (Fig. 3.5)
due to the large input values for the angular accelerations.
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Figure 3.3: Position of the quadcopter in the x-y-plane (10 states model with parameters)
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ũ
z

( m s
2

) κ[1](x, p)

κ[1;2](x, p)

κ[1;3](x, p)

0 2 4 6 8 10 12 14 16 18 20 22 24
−80

−60

−40

−20

0

u
φ

(
ra
d

s2

)

0 2 4 6 8 10 12 14 16 18 20 22 24
−20

−10

0

time (s)

u
θ

(
ra
d

s2

)

Figure 3.4: Control input for the vertical and angular accelerations (10 states model with
parameters)
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Figure 3.5: Resulting cost (10 states model with parameters)

Example 4 (Quadcopter: 12 states, 6 parameters).
The ODE’s from Example 2 are also extended to contain parameters. This is done in
the same way as in the previous example. The velocities in x and y-direction are given
by

v̇x = vψ · vy − vθ · vz
rad − g · sin(θ) + ωxx · vx + ωxy · vy + ωxz · vz

v̇y = vφ · vz − vψ · vx
rad + g · sin(φ) cos(θ) + ωyx · vx + ωyy · vy + ωyz · vz.

The parameters representing the wind are set to

ωxx = ωyx = 1
5 · sin(t) s−1, ωxy = ωyy = 1

5 · cos(t) s−1 and ωxz = ωyz = 0 s−1.

Notice that this corresponds to rather strong wind. In [39] parameters with values in
[0 s−1, 0.01 s−1] are used. Here bigger values can be used due to the small velocities.
The initial values are taken from Example 2. The control law has been approximated
up to degree 3, and thus the value function up to degree 4. In total, 12 612 coefficients
had to be found, see Table 7.1. 1915 of those are non-zero respectively relevant for
the control. The first-order approximation is worse at handling or rejecting the wind
disturbance (Fig. 3.6 and 3.7). Looking at the position and the angles of the quadcopter
(Fig. 3.6), it can be seen that higher-order approximations achieve the control goal
faster. Furthermore, they do not show an overshoot in the altitude pz like κ[1](x, p).
Comparing the performance of the controllers obtained via the extended method with
the ones from Example AM-conti-example-12-states, it is obvious that the parametric
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Figure 3.6: Propagation of six out of twelve states (12 states model with parameters)

control laws can handle the disturbance more efficiently. The drift in y-direction is
successfully reduced. The cost to reach the origin (Fig. 3.9) is reduced by 5 %, which
is only half compared to the non-parametric case. The control input (Fig. 3.8) shows
very strong actions at the beginning for higher-order approximations as in Example 3.
Again this is mainly caused by the initial values and an adaption to the wind.
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Figure 3.9: Resulting cost (12 states model with parameters)

Example 5 (Bioreactor rhodospirillum rubrum, 3 states, 3 parameters).
Aiming to evaluate Al’brekht’s Method in case of additive parameters an example from
the field of biochemistry is investigated. The model

ẋb =
vb ·

∆CRP5
∗

∆CRP5
∗ + k5 + vb,min

 · ( xs

xs + ks
+ xf

xf + kf

)
· xb −D · xb

ẋs = − 1
Ybs
· xs

xs + ks
· xb +D · (Fs − xs)

ẋf = − 1
Ybf
· xf

xf + kf
· xb +D · (Ff − xf)

corresponds to a bioreactor producing the bacteria rhodospirillum rubrum, see e. g.
[14, 15]. The ∆CRP∗ is calculated via

∆CRP + 330 mV
330 mV .

The state vector x =
(
xb xs xf

)T
consists of the concentrations of the biomass, suc-

cinate, and fructose. The input u = D stands for the dilution rate, see Fig. 3.10.
There are several fixed parameters. Their meaning and values are collected in Ta-
ble 3.1. The parameters p =

(
Ybs Ybf k

)T
are considered to be variable and their

ranges are shown in Table 3.2. It is desired to stabilize the system at the concen-
tration xstat =

(
0.8 g L−1 4 g L−1 2 g L−1

)T
with a dilution rate of Dstat = 1.486 h−1.

Note that this is not a steady state ensuring that f0 = f(0, 0, 0) does not vanish. To
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Figure 3.10: Scheme of a bioreactor producing rhodospirillum rubrum

Affinity constant for succinate consumption ks 0.0011 g L−1

Affinity constant for fructose consumption kf 0.0011 g L−1

Succinate concentration of the feed solution Fs 4.85 g L−1

Fructose concentration of the feed solution Ff 3.04 g L−1

CRP affinity constant of the Hill kinetic k 0.705
Coefficient for biomass growth rate vb 0.5 h−1

Smallest growth rate vb,min 0.5 h−1

Table 3.1: Fixed model parameters

apply Al’brekht’s Method a shift in the coordinates has to be done such that the system
should be steered to the origin in the new coordinates.

xT = x− xstat, uT = DT = D −Dstat, pT = p− pave

Here pave is chosen as
(
0.5 h−1 0.5 h−1 −165 mV

)T
, which are the mean values of

the given intervals. The new system now states as

ẋT,b =
vb ·

∆CRP5
∗

∆CRP5
∗ + k5 + vb,min


·
(

xT,s + 4 g L−1

xT,s + 4 g L−1 + ks
+ xT,f + 2 g L−1

xT,f + 2 g L−1 + kf

)
· xT,b + 0.8 g L−1

− (DT + 1.486 h−1) · (xT,b + 0.8 g L−1)

ẋT,s = − 1
YT,bs + 0.5 h−1 ·

xT,s + 4 g L−1

xT,s + 4 g L−1 + ks
· (xT,b + 0.8 g L−1)

+ (DT + 1.486 h−1) · (Fs − xT,s − 4 g L−1)

ẋT,f = − 1
YT,bf + 0.5 h−1 ·

xT,f + 2 g L−1

xT,f + 2 g L−1 + kf
· (xT,b + 0.8 g L−1)

+ (DT + 1.486 h−1) · (Ff − xT,f − 2 g L−1),
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Biomass-substrate yield coefficient of succinate Ybs [0 h−1,1 h−1]
Biomass-substrate yield coefficient of fructose Yfs [0 h−1,1 h−1]

Step size of culture redox potential (CRP) reduction ∆CRP [−330 mV,0 mV]
Table 3.2: Variable model parameters

where f0 calculates to
(
−0.267 g L−1 h−1 −0.337 g L−1 h−1 −0.0547 g L−1 h−1

)T
.

The used cost function is again quadratic.

`(xT, uT) = 1
2 ||xT||22 + 1

200u
2
T = 1

2 ||x− xstat||22 + 1
200 · (D −Dstat)2

The initial values are to xT,b = −0.1 g L−1, xT,s = −0.5 g L−1, and xT,f = −0.1 g L−1,
while the time-dependent parameters are given via

pT =
(

1
25 sin(t) 1

25 sin(t) 5t
)T
.

Since f0 does not vanish, an additional state, which is always set to 1, is introduced.
As described in Remark 3, an αf needs to be chosen. In the first simulation, four
choices (αf ∈ {0.01, 0.1, 1, 10}) are compared. Figures 3.11 and 3.12 show the results
when the second-order approximation of the control law is used. The general behavior,
when different αf are used, does not change for higher-order approximations. Larger
values for αf lead to worse performance (Fig. 3.12). If αf is set even bigger than
10, instability can occur. The three smaller values (αf ∈ {0.01, 0.1, 1}) are faster and
more efficient at stabilizing the system. As pointed out before, the origin can not be
reached, see Fig. 3.11. Choosing even smaller values may cause numerical problems
during the calculation of the power series. The control law is nearly the same in all
four cases.
The control law has been approximated up to degree 6 in a second simulation. The
second-order control performs best (Fig. 3.14). The changing parameters are again
hard to handle for the linear control law, see e. g. xT,f in Fig. 3.13. All others are
able to stabilize the three states. The control input differs only slightly. Overall, it is
shown that Al’brekht’s Method can also be applied in the field of biochemistry.

3.2 Convergence proof for parametric continuous-time
systems

Next, the convergence proof of Theorem 2 is generalized, to include fixed but arbitrary
model parameters. The basic steps of the proof remain the same and again only a
special class of optimal control problems is considered. The value function is, similar
to before, upper-bounded using the system dynamics and the cost function. The
additional difficulty is that π does not only increase with the norm of the states but
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Figure 3.11: Propagation of the concentrations and dilution rate for different choices of αf

(bioreactor with parameters)

also the parameters, which are arbitrary and do not converge to zero. Therefore one
has to work with ||x|| whenever possible and with ||(x, p)|| otherwise. Only using the
later one does not lead to useful upper bounds. Other changes in the proof are just
notational.

The considered optimal control problem states as the following:

π
(
x(0), p

)
= min

u(.)

∞∫
0
`
(
x(τ), u(τ)

)
dτ

s.t. ẋ = f(x, p) +Gu.

(OCP)
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Figure 3.12: Resulting cost for different choices of αf (bioreactor with parameters)

In this case, the system dynamics is linear in the input variables u ∈ Rnu, and the cost
function

`(x, u) = 1
2x

T`xxx+ xT`xuu+ 1
2u

T`uuu (`)

is quadratic, thus does not contain terms of higher order. The right-hand side function
f : Rnx × Rnp → Rnx is considered to be analytic, and it holds f(0, p) = 0 for all
parameters p. The power series expansion of the system dynamics becomes

f(x, p) = Fx+
∞∑
k=2

f [k](x, p). (f)

Theorem 4 (Local convergence of π(x, p) and κ(x, p)).
Let κ be the optimal control input of (OCP) and π the corresponding optimal cost
function. If F , G, and ` respect the conditions (I)-(III) from Section 3.1, then κ and
π can be expressed in terms of the system states x as well as system parameters p and
are locally analytic.

Proof. The strategy of the proof follows along the lines of Theorem 2. However, the
presence of the parameters creates some additional difficulties in the determination of
an upper bound of the power series.
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Figure 3.13: Propagation of the concentrations and dilution rate (bioreactor with parame-
ters)

The optimal input and the value function are denoted by

κ(x, p) = Kx+
∞∑
k=2

κ[k](x, p) (κ)

and π(x, p) = 1
2x

Tπxxx+
∞∑
k=3

π[k](x, p). (π)

The constants κ0 and π0 as well as the 1-by-nx matrix πx are neglected since they
are zero anyway. The calculation done in Section 3.1 resp. Theorem 3 also shows
that p 7→ κ(0, p), p 7→ π(0, p) as well as p 7→ ∇xπ(0, p) are zero everywhere. The
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Figure 3.14: Resulting cost (bioreactor with parameters)

Hamilton-Jacobi-Bellman equation of the system is given by

0 = ∇xπ(x, p) ·
(
f(x, p) +Gκ(x, p)

)
+ 1

2x
T`xxx+ xT`xu · κ(x, p) + 1

2κ(x, p)T · `uu · κ(x, p)
(HJBE-1)

and the first-order optimality condition by

0 = ∇xπ(x, p) ·G+ xT`xu + κT(x, p) · `uu. (HJBE-2)

First the defining equations for κ[k](x, p) and π[k+1](x, p) (k ≥ 1) are simplified. For
K and πxx one can copy (K) and (πxx) from Section 3.1.

K = −`−1
uu · (`T

xu +GTπxx) (K)
0 = πxxF + FTπxx + `xx − (`xu + πxxG) · `−1

uu · (`T
xu +GTπxx) (πxx)

From (HJBE-2),

κ[k](x, p) = −`−1
uu ·GT · ∇xπ[k+1](x, p)T (κ[k])

is easily derived for k ≥ 2, while (HJBE-1) shows that π[k+1](x, p) is fixed by the
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3.2 Convergence proof for parametric continuous-time systems

equation

0 =
k∑
i=1
∇xπ[i+1](x, p) ·

(
f [k−i+1](x, p) +Gκ[k−i+1](x, p)

)

+ xT`xu · κ[k](x, p) + 1
2

k∑
i=1

κ[i](x, p)T · `uu · κ[k−i+1](x, p).

Using (K) to cancel out all terms, which depend on κ[k], and substituting (κ[k]), one
derives the following identity.

∇xπ[k+1](x, p) · (F +GK) · x = −
k−1∑
i=1
∇xπ[i+1](x, p) · f [k−i+1](x, p) (π[k+1])

+ 1
2
k−1∑
i=2
∇xπ[i+1](x, p) ·G`−1

uuG
T · ∇xπ[k−i+2](x, p)T

To prove the convergence of the power series in (π), it is desired to find a series
(
Cπ
k

)
k≥2

such that
∞∑
k=2

Cπ
k · rk <∞ and

∣∣∣π[k](x, p)
∣∣∣ ≤ Cπ

k · rk−2 · r2
x ≤ Cπ

k · rk (3.3)

for sufficiently small r = || ( xp ) ||. rx denotes the vector norm of the states x.
Since f(., .) is analytic at least in a neighborhood of the origin, Remark 16 (c) implies
the existence of a series

(
Cf
k

)
k≥1 with

∞∑
k=1

Cf
k · rk <∞ and

∣∣∣f [k](x, p)
∣∣∣ ≤ Cf

k · rk−1 · rx ≤ Cf
k · rk (3.4)

for sufficiently small r. In the following, inequality (A.5) from Theorem 10 will be
applied to the different degrees of π.∣∣∣∇xπ[k](x, p)

∣∣∣ ≤ k · Cπ
k · rk−2 · rx ≤ k · Cπ

k · rk−1

The second degree of the value function can be easily over approximated using the
spectral norm of πxx, which is its largest eigenvalue. To keep the notation simple, this
eigenvalue divided by two will be called Cπ

2 .
∣∣∣π[2](x)

∣∣∣ =
∣∣∣∣∣12xTπxxx

∣∣∣∣∣ ≤ Cπ
2 · r2

x (3.5)

Going to the next degree, one finds from (π[k+1]) an equation for ∇xπ[3](x, p).

dπ[3]

dt (x, p)
∣∣∣∣∣∣
ẋ=Fx+GKx

= ∇xπ[3](x, p) · (F +GK) · x = −xTπxx · f [2](x, p)
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3 Approximated Optimal Control with Variable Parameters

Via integration it follows that

∣∣∣π[3](x, p)
∣∣∣
ẋ=Fx+GKx =

∣∣∣∣∣∣
∞∫
0
−xTπxx · f [2](x, p) dt

∣∣∣∣∣∣ ≤
∞∫
0

∣∣∣xTπxx · f [2](x, p)
∣∣∣ dt

(3.5),(3.4)
≤ 2Cf

2C
π
2

∞∫
0
r(t) · r2

x(t) dt.
(3.6)

Since the linear system is stable, even exponential stability, it is possible to upper
bound the states and, therefore, also rx = ||x||.

rx(t) ≤ rx0 · e−α·t , rx0 = ||x(0)||, α > 0

Thus r(t) can also be upper bounded using x(0).

r(t) =
∣∣∣∣∣∣
∣∣∣∣∣∣
x(t)
p

∣∣∣∣∣∣
∣∣∣∣∣∣ ≤

∣∣∣∣∣∣
∣∣∣∣∣∣
x(0)

p

∣∣∣∣∣∣
∣∣∣∣∣∣ =: r0

Cπ
3 can be found by solving the integral in (3.6).

∣∣∣π[3](x, p)
∣∣∣
ẋ=Fx+GKx ≤

2Cf
2C

π
2

2α · r0 · r2
x0 ≤

3Cf
2C

π
2

α
· r3

0 =: Cπ
3 · r3

0

Theorem 10 implies

∣∣∣∇xπ[3](x, p)
∣∣∣ ≤ 3 · Cπ

3 · r0 · rx0 ≤ 3 · Cπ
3 · r2

0 = Cf
2C

π
2

α
· r2

0.

Before the general case is shown, Cπ
4 will be calculated to gain more insight how those

constants are obtained. To do so (π[k+1]) is integrated.∣∣∣π[4](x, p)
∣∣∣
ẋ=Fx+GKx

=
∣∣∣∣∣∣
∞∫
0
−xTπxx · f [3](x, p)−∇xπ[3](x, p) · f [2](x, p)

+ 1
2∇xπ

[3](x, p) ·G`−1
uuG

T · ∇xπ[3](x, p)T dt
∣∣∣∣∣∣

≤
∞∫
0

2Cf
3C

π
2 · r2(t) · r2

x(t) + 3Cf
2C

π
3 · r2(t) · r2

x(t) + 9
2C

2
G · Cuu · (Cπ

3 )2 · r2(t) · r2
x(t) dt

≤ 1
2α ·

(
2Cf

3C
π
2 + 3Cf

2C
π
3 + 9

2C
2
GCuu · (Cπ

3 )2
)
· r2

0 · r2
x0

≤ 1
2α ·

(
2Cf

3C
π
2 + 3Cf

2C
π
3 + 9

2C
2
GCuu · (Cπ

3 )2
)
· r4

0 =: Cπ
4 · r4

0

Here Cuu resp. CG denotes the spectral norm of `−1
uu resp. G.
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3.2 Convergence proof for parametric continuous-time systems

The general case k ≥ 2 can be handled in a similar way.∣∣∣π[k+1](x, p)
∣∣∣
ẋ=Fx+GKx

≤
∞∫
0

k−1∑
i=1

(i+ 1) · Cπ
i+1 · ri−1(t)rx(t) · Cf

k−i+1 · rk−i(t)rx(t) dt

+
∞∫
0

k−1∑
i=2

1
2(i+ 1) · Cπ

i+1 · ri−1(t)rx(t) · C2
GCuu · (k − i+ 2) · Cπ

k−i+2 · rk−i(t)rx(t) dt

≤

k−1∑
i=1

(i+ 1) · Cπ
i+1C

f
k−i+1 +

k−1∑
i=2

1
2 (i+ 1) · (k − i+ 2) · C2

GCuu · Cπ
i+1C

π
k−i+2

2α︸ ︷︷ ︸
=: Cπ

k+1

·rk−1
0 r2

x0

≤ Cπ
k+1 · rk+1

0

Having these coefficients, a converging domination series for
(
Cπ
k

)
k≥2 would also show

the desired convergence. Therefore, another equation is introduced. Not surprisingly,
it is the same equation as in the original proof. The goal is to show that its solution
is, in fact, a series with the desired properties.

C2
GCuu ·

(dγ
dr (r)

)2
+
 ∞∑
i=2

Cf
i · qi−1 − a

 · r · dγ
dr (r) + b · r2 = 0 (3.7)

a has to be chosen such that

a ≥ α + 2C2
GCuu · Cπ

2 ,

while b is fixed as

b = a2 − α2

4C2
G · Cuu

.

q ∈ R≥0 can be seen as a vector norm like r. Clearly, (3.7) is only well-defined where
f(., .) is analytic. As shown in the proof of Theorem 2, the solution of (3.7) is given
by

g(q) =
a−

∞∑
k=2

Cf
k · qk−1 −

√√√√(a− ∞∑
k=2

Cf
k · qk−1

)2
− 4b · C2

GCuu

2C2
GCuu

. (3.8)

g(.) is analytic in a domain that contains the origin. Its power series expansion is
written as

g(q) =
∞∑
i=2

Cg
k · qk−2 <∞,
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3 Approximated Optimal Control with Variable Parameters

where the Cg
i are given by

Cg
k = 1

α
·
C2

GCuu ·
k−1∑
i=3

Cg
i · C

g
k−i+2 +

k−1∑
i=2

Cf
i · C

g
k−i+1

 .
To finally show the convergence, the Cg

k are compared with

Cπ
k =

k−1∑
i=2

(k − i+ 1) · Cf
i C

π
k−i+1 +

k−1∑
i=3

1
2 i · (k − i+ 2) · C2

GCuu · Cπ
i C

π
k−i+2

2α .

With a chosen as outlined, Cπ
2 is smaller than or equal to Cg

2 . For k ≥ 3 it is

Cπ
k ≤ Cg

k ·
max

i∈{3,...,k−1}
i · (k − i+ 2)

2 ≤ Cg
k ·

(k + 2)2

8
and, therefore, it holds

|π(x, p)| ≤
∞∑
k=2

Cπ
k · rk ≤

∞∑
k=2

(k + 2)2

8 · Cg
k · rk.

If the power series g(r) exists resp. converges for a fixed r, then π(x, p) exists and
converges for all (x, p) such that

||(x, p)|| < r.

That is the case since

lim
k→∞

(
(k + 2)2

)1/k
↘ 1.

Since κ(x, p) is a product of locally analytic functions, it is also locally analytic with
the same area of convergence.

3.3 Area of convergence
As for the non-parametric case (see Section 2.3), it is of interest to estimate the area
of convergence of the power series (κ) and (π) from section Section 3.2. Taking the
optimal control problem (OCP) from Section 3.2 and the same calculation steps as for
the non-parametric case, it is straightforward to see that convergence and, therefore,
existence is achieved for all points (x, p) in a neighborhood of the origin such that
f(x, p) is analytic and

∞∑
k=2

Cf
k · ||(x, p)||k ≤

(
α + 2C2

GCuu · Cπ
2 −

√
(α + 2C2

GCuu · Cπ
2 )2 − α2

)
· ||(x, p)||.

(3.9)
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3.3 Area of convergence

The constants Cf
k (k ≥ 2) are such that∣∣∣∣∣∣f [k](x, p)

∣∣∣∣∣∣ ≤ Cf
k · ||(x, p)||k

and should be chosen minimal. CG, Cuu, and Cπ
2 denote the spectral norm of G, `−1

uu ,
and 1

2πxx, while α is such that r(t) ≤ r0 · e−αt as described in the proof of Theorem 4.

Example 6. For the quadcopter model with 10 states from Example 3, the constants
(all units are neglected)

CG = 10, Cuu = 1, Cπ
2 = 1.3286 and α = 0.6753

are found. Using (3.9), convergence and correctness of the control law and the value
function is guaranteed for all r = ||(x, p)|| ≤ 0.003 27.
For Example 4, the constants are

CG = 18.8679, Cuu = 10, Cπ
2 = 1.1457 and α = 0.726.

Thus convergence is proven for r = ||(x, p)|| ≤ 0.3056 · 10−10.
The results are not satisfying since they have no use in practice. Sum of squares
methods, as used in [65], are likely to lead to better inner approximations but are still
for away from values that are needed in reality. Definitely, there is more research
needed in this field.

In this chapter, Al’brekht’s Method has been extended to allow slowly varying param-
eters in the system dynamics. As a result, a parametric explicit control law and value
function were obtained. The proposed method has been validated using the same
examples as in Chapter 2 and a bioreactor example for the case where the origin is
not a steady-state. The convergence proof, local stability results, and the estimation
of the domain of convergence were generalized to include the parametric case.
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4 Including Constraints

Every good method for optimal control has to be capable of involving constraints.
Including those directly in the power series approximation approach is not possible.
As a possible solution, a barrier function approach is proposed. Barrier functions are
often used in optimization problems since only the cost function is changed, and they
can be combined with many optimal control methods, see [76]. There are several types
of barrier functions. The most common are reciprocal and logarithmic barriers, see
[31, 89]. Throughout this chapter, logarithmic barrier functions, compare to works of
Feller and Ebenbauer [22–24] as well as Wills and Heath [98], are used. Other types
could also be utilized. The only needed property is the existence of a local power
series. Hunt and Krener proposed norms of even degree as penalty terms in the cost
function, see [38]. However they put up restrictions since e. g. symmetry is contained.
The idea is to extend the functions defining the constraints into power series. Specific
logarithmic barrier functions, which tend to infinity if the boundary of the feasible
region is approached, are used. The logarithm can also be expanded into a local
power series, thus coinciding with Al’brekht’s Method. The barrier is designed in a
way that there is no change of the cost at the origin and, additionally, it will also be
shown that the LQR conditions remain valid. In the end, the quadcopter examples
from the previous chapter are expanded with constraints and the results are compared
with the non-constraint case.

Setup and constraints

Suppose a number m ∈ N of inequality constraints gi(x, u) ≤ 0 (i ∈ [m]), where
gi : Rnx × Rnu → R. Note that if the gi are analytic in (x, u), they can be expanded
into power series

gi(x, u) = gi0 +
∞∑
k=1

g
[k]
i (x, u).

Additionally, if (0, 0) lies in the interior of the feasible region, the constant gi0 ∈ R
has to be negative. Simplifying the notation, the index i will be neglected in the
following since all constraints will be handled equally. Straightforward solving the
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optimal control problem

π
(
x(0), p

)
= min

u(.)

∞∫
0
`
(
x(τ), u(τ)

)
dτ

ẋ = f(x, u, p)
g(x, u) ≤ 0

(OCP)

with the same strategy as shown in Chapter 3 is not applicable, as the constraints
define conditions for the states x and input values u instead of the value function π
and the optimal control law κ, which depend on x and u. Therefore another strategy
based on logarithmic barrier functions is proposed, which „hides“ the constraints in
the cost function. Defining

g̃(x, u) :=
∞∑
k=1

g
[k]
i (x, u) = g(x, u)− g0 (g̃)

shows g̃(x, u) ≤ −g0 if g(x, u) ≤ 0. Using g̃, it is desired to design a logarithmic
barrier function LB : Rnx ×Rnu → R, which will be added to the cost function `, such
that

lim
g̃↗−g0

LB =∞.

If the constraints are fulfilled, then g̃(x,u)
g0

must be greater or equal to −1. A suitable
logarithmic barrier function is

LB(x, u) := − log
(

1 + g̃(x, u)
g0

)
.

Utilizing the power series expansion of the logarithm log(1 + s),

log(1 + s) =
∞∑
k=1

(−1)k+1 · s
k

k
= s− s2

2 + s3

3 −
s4

4 + . . . ,

which converges for s ∈ R with |s| < 1, LB is expanded into its power series for all
(x, u) such that

∣∣∣ g̃(x,u)
g0

∣∣∣ < 1.

LB(x, u) = − log
(

1 + g̃(x, u)
g0

)
=
∞∑
k=1

L
[k]
B (x, u)

= − g̃(x, u)
g0

+ 1
2 ·

(
g̃(x, u)
g0

)2
− 1

3 ·
(
g̃(x, u)
g0

)3
+ 1

4 ·
(
g̃(x, u)
g0

)4
+ . . .

(LB)

The barrier function should be added to the cost function ` without changing its
properties, i. e. no terms of degree 1 in (x, u). Since the power series in (g̃) starts
with linear terms, it is sufficient to remove the first term of (LB). Removing the
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4 Including Constraints

first degree also ensures local positivity of the additional cost. Multiplying LB with
a penalty factor c ∈ R>0 to regulate the influence of the barrier function, a modified
cost function is given via (˜̀).

˜̀(x, u) = `(x, u) + c · LB(x, u) + c · g̃(x, u)
g0

(˜̀)

The optimal control problem (OCP) is therefore changed and now states as the fol-
lowing.

π
(
x(0), p

)
= min

u(.)

∞∫
0

˜̀(x(τ), u(τ)
)

dτ

ẋ = f(x, u, p)
( ˜OCP)

Since for the calculation of the approximative solution π and κ approximations of f
and ˜̀ are used, the constraints are soft for the approximations, but the penalty cost
grows to infinity while increasing the degree of approximation and approaching the
boundary of the feasible region.

lim
k→∞

lim
g̃(x,u)↗−g0

˜̀[2;k](x, u) =∞

Lemma 1 (Convexity). The changed cost function ˜̀ fulfills conditions (I) and (III)
from Section 3.1 if the original cost function ` does.

Proof. All second-order terms of ˜̀ are given by

`[2](x, u) + 1
2 ·

 g̃[1](x, u)
g0

2

.

If g̃[1](x, u) is written as gx · x + gu · u for matrices gx ∈ R1×nx and gu ∈ R1×nu, the
following identities are obtained.

˜̀
xx = `xx + gT

x · gx
g0

, ˜̀
xu = `xu + gT

x · gu
g0

, ˜̀
uu = `uu + gT

u · gu
g0

Clearly, ˜̀
uu is positive definite. Using

1
g0
·
gT

x · gx gT
x · gu

gT
u · gx gT

u · gu

 = 1
g0
·
gT

x

gT
u

 · (gx gu
)
� 0

one also has ˜̀
xx

˜̀
xu

˜̀T
xu

˜̀
uu

 � 0
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and, therefore, condition (I) stays valid. Since `xx and gT
x · gx are positive semidefinite

the image of `xx is contained in the image of ˜̀
xx, which shows that the pair (F, ˜̀

xx)
must be detectable if (F, `xx) is detectable. Thus (III) also stays valid.

Remark 5.

(a) With the method described throughout this chapter, even non-convex constraints
can be handled. For example in [45] an obstacle that has to be avoided by a
quadcopter is implemented as a non-convex constraint.

(b) The proposed strategy can also be used for discrete-time systems in a similar way.
Lemma 1 still stays valid.

(c) If Al’brekht’s Method is used for output feedback systems, which are investigated
in Chapter 5, constraints regarding the output values y ∈ Rny and the input values
u ∈ Rnu can be handled in the same way.

Remark 6 (Equality constraints). Handling equality constraints via barrier functions,
in the same way, is not possible. Additionally, if one takes constraints

h(x, u) = 0

with h : Rnx ×Rnu → Rm (m ∈ N) directly into account and assumes h to be analytic,
the resulting optimal control problem states conditions for the functions π and κ as
well as the variables (x, u). As mentioned before, using Al’brekht’s Method in this
setup does not lead to solvable equations.

The running examples are now revisited to show possible advantages and disadvan-
tages of the inclusion of inequality constraints.

Example 7 (Quadcopter: 10 states, 6 parameters, 11 constraints).
Taking Example 3 from Section 3.1 with the additional the state and input constraints

px ≤ 4 m, |φ| ≤ π

4 rad, |θ| ≤ π

4 rad, |uφ| ≤
π

9 rad/s2, |uθ| ≤
π

9 rad/s2,

− g
kt
≤ ũz ≤ 2g− g

kt
, (⇔ uz ∈ [0, 2g]),

which can also be found in [48], shows a 90 % reduction of the input uφ and uθ, see
Fig. 4.3. Thus fulfilling the constraints, which is not the case when the constraints are
not taken into account. The input ũz is the same for all shown control laws since the
corresponding subsystem is linear and there is no danger of violating its constraints
for the given initial value. The initial values that were used are px = 1 and pz = 1,
while the other states are set to zero. Since the optimal control law is approximated up
to a certain degree, the constraints are „soft“ and do not necessarily need to be obeyed
for other initial values. In fact, if the quadcopter is initialized with a large tilt, the
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4 Including Constraints
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Figure 4.1: Propagation of five out of ten states (10 states model with parameters and
constraints)

controller has to react with a large control action to achieve stability. The behavior of
the states nearly does not change in the considered scenario, see Fig. 4.1. The state
constraint px ≤ 4 m only has a minor effect. The much smaller control action of the
controllers considering the constraints leads to less alleviation of the wind disturbance,
see Fig. 4.2. The drift in the y-direction is therefore slightly increased. Overall higher-
order approximations remain to perform better at controlling the system.
In [45] non-convex constraints have been used for the same model. It could be shown

that the quadcopter can avoid obstacles using the outlined method. Higher-order ap-
proximations also increased the safety.
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Figure 4.2: Position of the quadcopter in the x-y-plane (10 states model with parameters
and constraints)
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Figure 4.3: Control input for the vertical and angular accelerations (10 states model with
parameters and constraints)
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4 Including Constraints

Example 8 (Quadcopter: 12 states, 6 parameters, 8 constraints).
The dynamics and parameters from Example 4 are revisited. Furthermore, the follow-
ing input constraints are taken into account.

|uφ| ≤
π

9 rad/s2, |uθ| ≤
π

9 rad/s2, |uψ| ≤
π

9 rad/s2,

−10.8 kg ·m/s2 ≤ ũz ≤ 18.5 kg ·m/s2

The boundaries for the moments are the same as in Example 7. For the thrust, some
virtual constraints, which were found in previous works [40], are used. The initial
values are px = 1 and pz = 1 (other states are zero), and the choice of the parameters
stays the same as in Example 4. Similar to the previous example in this section, the
control input uφ, uθ, and uψ is reduced by around 90 %, see Fig. 4.6. Note that only
the constraints which are violated by the controllers from Chapter 3 are shown in the
picture. The controllers that take the constraints into account fulfill all of them given
the mentioned initial values. The states are nearly unchanged (Fig. 4.4), while the
drift caused by the parameters representing the wind is slightly increased (Fig. 4.5).
The overall cost also increases but not significantly due to the smaller control action
and therefore slower convergence to the target point, see Fig. 4.7.

Throughout this chapter, it was shown how the power series approach can take in-
equality constraint into account without reducing its applicability. The effectiveness
was investigated using the running examples. Furthermore, the results were compared
to the unconstrained case. Unfortunately, convergence can not be guaranteed so far
since Theorem 4 from Chapter 3 only allows quadratic cost functions.
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Figure 4.4: Propagation of six out of twelve states (12 states model with parameters and
constraints)
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4 Including Constraints
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Figure 4.6: Control input for the thrust and the moments about the axis (12 states model

with parameters and constraints)
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5 Output-Feedback

In this chapter, the output-feedback case, sometimes also called output control, is
considered. For a general introduction to this topic see e. g. [47, 92]. The states are
now not directly accessible for control, see Fig. 5.1. While in principle, one could use
a state estimator to recover the states, sometimes it is not desirable or challenging.
Examples are systems with large state dimensions, where not all states are needed for
the feedback, which might lead to ill-conditioned inverse problems. Throughout this
chapter, it is the desire to find controllers that directly map from the output y to the
controls umin including the known or estimated parameters p, see Fig. 5.1.

System
ẋ = f(x, u, p)

Output
y = h(x, p)

Control
umin(y, pest)

Estimation
pest(y, umin)

x y

pest

umin

x0

umin

Figure 5.1: Control scheme for output control with parameter estimation

Thus it is the task to find an optimal control law in terms of only the measurement
information y and the known or estimated parameters pest, which stabilizes the output
at the origin, see [43, 44]. The existing works of other authors [1, 41, 55] consider
output regulation, using Al’brekht’s power series approach, but use a slightly different
setup. They aim to steer the output to a submanifold of the state space and keep
it on the manifold defined by the output function h. However, they assume that all
states are accessible resp. measurable. Often, not the full state can be measured, and
estimating it, might involve knowing exact equations for all states, which sometimes
is challenging, e. g. in biotechnology applications (Example 11).

5.1 Output-feedback in continuous time

The construction of the output-feedback is first investigated in continuous time and
thereafter in Chapter 6 in discrete time. Additionally to the parametric case, which
has been investigated in Chapter 3, an analytic output function is mapping the states
to the output y. At first, multiplicative parameters in the output are considered.
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5 Output-Feedback

Remark 8 then generalizes the result to additive (and multiplicative) parameters.
Additionally to the pure parametric case, it is assumed that on a submanifold of
the state space, the linearisation of the output function h has a local inverse. Thus
linear output dynamics can be found. This dynamical system is not unique since it
depends on the choice of the submanifold. Furthermore, the linear output system
and the second-order of the cost function need to fulfill LQR conditions. Under these
conditions, a similar but involved procedure as used in Sections 2.1 and 3.1 is derived.
The calculation is only valid within the corresponding submanifold. Thus the control
law and the optimal cost function also depend on the particular choice of the mapping
between output and state space and are therefore not unique.
The approach allows to establish local stability, see Corollary 4, and its performance is
underlined using extended examples from the previous chapters. The effect of different
choices of the submanifold is discussed in Example 9.

Setup and power series solution

The optimal control problem that is considered throughout this section is stated in
(OCP).

π
(
y(0), p

)
= min

u(.)

∞∫
0
`
(
y(τ), u(τ)

)
dτ

s.t. ẋ = f(x, u, p)
y = h(x, p)

(OCP)

Note that the cost function is stated in terms of y and u. The objective is to control
the system via the input u ∈ Rnu only using the measurements y ∈ Rny as well as
the parameters p ∈ Rnp. It is assumed that the dimension of the states should be at
least the one of the output. The system dynamics f : Rnx ×Rnu ×Rnp → Rnx and the
output function h : Rnx ×Rnp → Rny are required to be analytic functions with power
series expansions

f(x, u, p) =
∞∑
k=1

f [k](x, u, p) = Fx+Gu+ f [2](x, u, p) + . . . (f)

and h(x, p) =
∞∑
k=1

h[k](x, p) = Hx+ h[2](x, p) + . . . , (h)

where the parameters only appear multiplicative to ensure unique solvability.

∀p ∈ Rnp : f(0, 0, p) = 0 (f0)
h(0, p) = 0 (h0)
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5.1 Output-feedback in continuous time

Since p 7→ f(0, 0, p) and p 7→ h(0, p) are also analytic but remain constant at 0, the
complete power series need to vanish.

∀k ∈ N, p ∈ Rnp : f [k](0, 0, p) = 0
h[k](0, p) = 0

The cost function ` : Rny × Rnu → R depends solely on the input values u and the
output vector y instead of the states x. `(., .) is also required to be analytic in (y, u).
Its power series representation is given by

`(y, u) =
∞∑
k=2

`[k](y, p) = 1
2y

T`yyy + yT`yuu+ 1
2u

T`uuu+ `[3](y, u) + . . . (`)

There is no linear part in the cost function and no constants in the system dynamics
as well as the output function. Further restrictions towards the matrices F ∈ Rnx×nx,
G ∈ Rnx×nu, H ∈ Rny×nx, `yy ∈ Rny×ny , `yu ∈ Rny×nu, and `uu ∈ Rnu×nu are needed,
as outlined in the following derivations.
Similar to the derivations in Chapter 2 and 3, the value function π : Rny × Rnp → R
and the control law umin := κ : Rny × Rnp → Rnu are assumed to be analytic. Both
functions depend on the output vector y and the parameters p.

π(y, p) =
∞∑
k=1

π[k](y, p)

= πyy + πpp+ 1
2y

Tπyyy + yTπypp+ 1
2p

Tπppp+ π[3](y, p) + . . .

(π)

κ(y, p) =
∞∑
k=1

κ[k](y, p) = Ky + Lp+ κ[2](y, p) + . . . (κ)

Note that π(0, 0) and κ(0, 0) need to vanish since there is no control needed at the
origin (y, p) = (0, 0), and no cost arises.
To obtain the power series solution, the Hamilton-Jacobi-Bellman equation is used.
Its derivation in case of output control can be found in the Appendix A Remark 18
and leads to:

0 = ∇yπ(y, p) · ∇xh(x, p) · f
(
x, κ(y, p), p

)
+ `

(
y, κ(y, p)

)
, (HJBE-1)

0 = ∇yπ(y, p) · ∇xh(x, p) · ∇uf
(
x, κ(y, p), p

)
+∇u`

(
y, κ(y, p)

)
. (HJBE-2)

Similar to the derivations in Chapter 2 and 3, the two equations are separated degree-
wise after substituting all functions by their power series. The constant part of (HJBE-
1) does not contain any information, but (HJBE-2) leads to the first condition for
πy ∈ R1×ny .

(HJBE-2)[0] : 0 = πy ·H ·G (πy-1)
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5 Output-Feedback

A second and final condition is gained from the linear part of (HJBE-1).

(HJBE-1)[1] : 0 = πy ·H ·
(
Fx+G · (Ky + Lp)

) (πy-1)= πy ·H · Fx
⇒ 0 = πy ·H · F (πy-2)

Combining (HJBE-1) and (HJBE-2) leads to πy = 0 if

(I) rank(HF HG) = ny.

As before, πp ∈ R1×np is needed. With p = 0 one must obtain the solution of the
non-parametric case. This implies that p 7→ π(0, p) and p 7→ κ(0, p) must vanish and,
therefore,

∀k ∈ N, p ∈ Rnp : π[k](0, p) = 0 and κ[k](0, p) = 0.

Taking all terms that are linear with respect to the states x, output values y, and
parameters p from (HJBE-2) representations of K ∈ Rnu×ny and L ∈ Rnu×np are
obtained.

(HJBE-2)[1] : 0 =
(
yTπyy + pTπT

yp

)
·HG+ yT`yu +

(
yTKT + pTLT

)
· `uu

The vectors y and p can be chosen arbitrarily in a domain that contains the origin.
Therefore, (HJBE-2)[1] contains two equations and K and L can be stated indepen-
dently.

K = −`−1
uu ·

(
`T
yu +GTHTπyy

)
(K)

L = −`−1
uu ·GTHTπyp (L-1)

To find those matrices the quadratic part of (HJBE-1) is investigated.

(HJBE-1)[2] : 0 =
(
yTπyy + pTπT

yp

)
·H ·

(
Fx+G · (Ky + Lp)

)
+ 1

2y
T`yyy

+ yT`yu · (Ky + Lp) + 1
2
(
yTKT + pTLT

)
· `uu · (Ky + Lp)

(5.1)

(5.1) does not only depend on y and p but also on x. But the output does indeed
depend on the states and those two can not be separated. One could replace y with
Hx but π and κ are expressed in terms of the output vector y. So it makes more sense
to substitute x in terms of y. Therefore H ∈ Rny×nx is required to have full rank,
which limits the class of systems that the method can be applied to. Thus a right
inverse H̃ ∈ Rnx×ny of H exists resp.

(II) H · H̃ = Iny .
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5.1 Output-feedback in continuous time

To keep the homogeneity of degree two in all terms of (5.1), only the linear part of
the output y, i. e. y = Hx, is taken. Using condition (I) it is

x = H̃y (5.2)

in an ny-dimensional subspace of Rnx. Since x 7→ HFx maps to Rny it contains the
same information as y 7→ HFH̃y. Now (5.1) is separated in three equations, starting
with the part that is quadratic in terms of y.

0 = πyy ·H ·
(
FH̃ +GK

)
+ (FH̃ +GK)T ·HT · πyy

+ `yy + `yuK +KT`yu +KT`uuK

(K)= πyyHFH̃ + H̃TFTHTπyy + `yy −
(
`yu + πyyHG

)
· `−1
uu ·

(
`T
yu +GTHTπyy

)
Defining

F̃ := HFH̃ and G̃ := HG (F̃ |G̃)

a continuous time algebraic Riccati equation is obtained.

0 = πyyF̃ + F̃Tπyy + `yy − (`yu + πyyG̃) · `−1
uu · (`T

yu + G̃Tπyy) (πyy)

This equation emits a positive definite solution πyy ∈ Rny×ny if the following conditions
hold.

(III) The second order of the cost function is convex with respect to (y, u) and strictly
convex with respect to u. `yy `yu

`T
yu `uu

 � 0, `uu � 0

(IV) The pair
(
F̃ , G̃

)
is stabilizable.

(V) The pair (F̃ , `yy) is detectable.

Since πyy is the solution of the Riccati equation, it is clear that all eigenvalues of
F̃ + G̃K have a negative real part. As F̃ + G̃K describes the linear part of the output
dynamics, it is stable.

ẏ = Hẋ = H · (Fx+GKy) (5.2)= (F̃ + G̃K) · y (LinOut)

Going back to (5.1), the parts that are linear in terms of y and linear in terms of p
are collected.

0 = πyyG̃L+
(
F̃T +KTG̃T

)
· πyp + `yuL+KT`uuL
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5 Output-Feedback

Applying (L-1) leads to the first condition towards πyp ∈ Rny×np.

0 = F̃Tπyp −
(
πyyG̃+ `yu

)
· `−1
uu · G̃Tπxp (5.3)

A second condition is obtained by taking all terms that are quadratic with respect to
the parameters p.

0 = πT
ypG̃L+ LTG̃Tπyp + LT`uuL

Using the formula for L leads to

0 = −πT
xpG̃ · `−1

uu · G̃Tπyp.

Since `−1
uu has full rank, this equation can only be true for

0 = G̃Tπyp. (πyp-1)

This information can be used to simplify (5.3) further.

0 = F̃Tπyp (πyp-2)

Taking (πyp-1) and (πyp-2), together with (I), the vanishing of the mixed term becomes
clear.

πyp = 0 (πyp)

As outlined before, πpp is also vanishing.
To find κ[2](y, p) and π[3](y, p), (HJBE-2)[2] and (HJBE-1)[3] are investigated.

(HJBE-2)[2] : 0 = yTπyy · ∇xh[2](x, p) ·G+ yTπyyH · ∇uf [2](x,Ky, p)
+∇yπ[3](y, p) · G̃+∇u`[3](y,Ky)

+
(
κ[2](y, p) +K · h[2](x, p)

)T
· `uu

Here y is first replaced by h(x, p) to cover the complete dynamics, and afterward, x is
substituted by H̃y. Thus a formula for κ[2](y, p) is given as follows.

κ[2](y, p) = −`−1
uu ·

(
GT · ∇xh[2](H̃y, p)T · πyyy +∇uf [2](H̃y,Ky, p)T ·HTπyyy

+ G̃T · ∇yπ[3](y, p)T +∇u`[3](y,Ky)T
)
−K · h[2](H̃y, p)

(κ[2])
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5.1 Output-feedback in continuous time

κ[2] depends on π[3], which is defined by (HJBE-1)[3].

(HJBE-1)[3] : 0 = yTπyy ·
(
∇xh[2](H̃y, p) · (FH̃y +GKy) +H · f [2](H̃y,Ky, p)

)
+ yTπyy · G̃κ[2](y, p) +∇yπ[3](y, p) ·H · (FH̃y +GKy)
+ `[3](y,Ky) + yT`yuκ

[2](y, p) + yTKT`uuκ
[2](y, p)

Using (K) for simplification leads to a partial differential equation for π[3](y, p).

0 =
(
∇yπ[3](y, p) + h[2](H̃y, p)T · πyy

)
· (F̃ + G̃K) · y + `[3](y,Ky)

+ yTπyy ·
(
∇xh[2](H̃y, p) · (FH̃y +GKy) +H · f [2](H̃y,Ky, p)

) (π[3])

(π[3]) has the structure as the equality in (7.5) from Corollary 8 in the next chapter.
Furthermore, F̃ + G̃K is stable. Thus Corollary 8 guarantees a unique solution for
the coefficients of π[3].
Based on the previous derivations the general case κ[k](y, p) and π[k+1](y, p) for k ≥ 2
is considered.

(HJBE-2)[k] : 0 = ∇yπ
(
h(H̃y, p), p

)
· ∇xh(H̃y, p) · ∇uf

(
H̃y, κ

(
h(H̃y, p), p

)
, p
)[k]

+
[
∇u`

(
h(H̃y, p), κ

(
h(H̃y, p), p

))][k]

= ∇yπ
(
h(H̃y, p), p

)
· ∇xh(H̃y, p) · ∇uf

(
H̃y, κ

(
h(H̃y, p), p

)
, p
)[k]

+
[
∇u`[3;k+1]

(
h(H̃y, p), κ

(
h(H̃y, p), p

))][k]
+ κ[k](y, p)T · `uu

+
([
κ[1;k−1]

(
h(H̃y, p), p

)][k])T
· `uu

κ[k](y, p) can be isolated, and a formula is given by (κ[k]).

κ[k](y, p) = −`−1
uu ·

[(
∇yπ

(
h(H̃y, p), p

)
· ∇xh(H̃y, p) · ∇uf

(
H̃y, κ

(
h(H̃y, p), p

)
, p
))T][k]

− `−1
uu ·

[
∇u`[3;k+1]

(
h(H̃y, p), κ

(
h(H̃y, p), p

))T][k]
(κ[k])

−
([
κ[1;k−1]

(
h(H̃y, p), p

)][k])
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5 Output-Feedback

The only unknown is π[k+1](y, p). It is given via (HJBE-1)[k+1].

0 =
[
∇yπ

(
h(H̃y, p), p

)
· ∇xh(H̃y, p) · f

(
H̃y, κ

(
h(H̃y, p), p

)
, p
)][k+1]

+
[
`
(
h(H̃y, p), κ

(
h(H̃y, p), p

))][k+1]

=
[
∇yπ

(
h(H̃y, p), p

)
· ∇xh(H̃y, p) · f

(
H̃y, κ

(
h(H̃y, p), p

)
, p
)][k+1]

+ yTπyyG̃ · κ[k](y, p)

+
[
`[3;k+1]

(
h(H̃y, p), κ

(
h(H̃y, p), p

))][k+1]
+ yT`yu · κ[k](y, p)

+
k∑
i=2

h[i](H̃y, p)T · `yu ·
[
κ
(
h(H̃y, p), p

)][k+1−i]

+ yTKT · `uu · κ[k](y, p)

+ 1
2
k−1∑
i=2

([
κ
(
h(H̃y, p), p

)][i])T
· `uu ·

[
κ
(
h(H̃y, p), p

)][k+1−i]

(K) is used for simplification, and ∇yπ[k+1](y, p) is separated.

0 = ∇yπ[k+1](y, p) · (F̃ + G̃K) · y

+
[
∇yπ[2;k]

(
h(H̃y, p), p

)
· ∇xh(H̃y, p) · f

(
H̃y, κ

(
h(H̃y, p), p

)
, p
)][k+1]

+
[
`[3;k+1]

(
h(H̃y, p), κ

(
h(H̃y, p), p

))][k+1]

+
k∑
i=2

h[i](H̃y, p)T · `yu ·
[
κ
(
h(H̃y, p), p

)][k+1−i]

+ 1
2
k−1∑
i=2

([
κ
(
h(H̃y, p), p

)][i])T
· `uu ·

[
κ
(
h(H̃y, p), p

)][k+1−i]

(π[k+1])

Corollary 8 from Section 7.2 ensures the unique solvability of (π[k+1]) since all eigen-
values of F̃ + G̃K must have a negative real part. Thus κ[k] and π[k+1] can be found
under the made assumptions.

Remark 7. The conditions (II), (IV), and (V) do not define the right inverse matrix
H̃ ∈ Rnx×ny uniquely. Furthermore, the substitution x = H̃y can only be done for x in
an ny-dimensional subspace of Rnx, which is defined by H̃. Thus the optimal feedback
κ(y, p) and value function π(y, p) also depend on H̃ and are therefore not unique. The
existence of H̃ will be addressed in Lemma 2 and Corollary 6. How one finds a suitable
H̃ will be discussed in Chapter 7.

Theorem 5 (Determinability of π and κ).
Consider the optimal control problem (OCP), where all functions are analytic with
power series expansions (f), (h), and (`). Furthermore, let (f0), (h0), and the condi-

72



5.1 Output-feedback in continuous time

tions (II)-(V) be fulfilled. Then each part of the power series given in (π) and (κ) is
uniquely defined. In addition, for all p in a neighborhood of the origin, it holds

π(0, p) = 0, ∇yπ(0, p) = 0 and κ(0, p) = 0.

Proof. It is sufficient to gain condition (I) out of (IV). In this case, the claim follows
from the derivations itself. (IV) and the Hautus Lemma 3 imply

rank
(
F̃ G̃

)
=
(
HFH̃ HG

)
= ny.

The columns ofHFH̃ are linear combinations of the columns ofHF . Thus
(
HF HG

)
must have had already the full rank, which is stated in (I).

Remark 8 (Additive parameters).
Similar to the state-feedback case, see Remark 3, additive parameters and constants
in the dynamics and the output function can be handled using additional states and
outputs. Considered is an optimal control problem as in (OCP) without the conditions
(f0) and (h0). Therefore the system dynamics and the output function state as

ẋ = f(x, u, p) = f0 + Fx+Gu+ Jp+ f [2](x, u, p) + . . . , (fp)
y = h(x, p) = h0 +Hx+Mp+ h[2](x, p) + . . . , (hp)

while the cost function in (`) stays unchanged. f0 and h0 are vectors in Rnx resp. Rny ,
whereas J ∈ Rnx×np and M ∈ Rny×np. As already known, with this setup, the OCP
can not be solved iterative using Al’brekht’s Method. Thus additional state and output
variables are introduced to rewrite (fp) and (hp) such that (f0) and (h0) are fulfilled.
As in Remark 3, a state xf is introduced, which will be multiplied with f(0, 0, p).
Similar to that, another state xh is multiplied with h(0, p). Since both variables need
to be part of the control law and the value function, they need to appear in the output.
Thus yf = xf and yh = xh are introduced. The new state and output vector are

x̄ =


x

xf
xh

 resp. ȳ =


y

yf
yh

 ,
while the dynamics is given by

˙̄x =


ẋ

ẋf
x̄h

 =


f(0, 0, p) · xf + Fx+Gu+ f [2](x, u, p)− f [2](0, 0, p) + . . .

−αf · xf
−αh · xh

 .
As in the state-feedback case in Section 3.1, αf and αh have to be positive to ensure
the stability of xf resp. xh and, therefore, the solvability of the CARE later on. The
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5 Output-Feedback

extended output function is shown in the following equation.

ȳ =


y

yf
yh

 =


h(0, p) · xh +Hx+ h[2](x, p)− h[2](0, p) + . . .

xf
xh


Replacing f(0, 0, p) and h(0, p) with their power series,

f(0, 0, p) = f0 + Jp+ f [2](0, 0, p) + . . . ,

h(0, p) = h0 +Mp+ h[2](0, p) + . . .

leads to a new representation of the different polynomial degrees of the dynamics and
the output function.

˙̄x =


F f0 0
0 −αf 0
0 0 −αh


︸ ︷︷ ︸

=: F̄

·


x

xf
xh

 +


G

0
0


︸ ︷︷ ︸
=: Ḡ

·u

+


f [2](x, u, p)− f [2](0, 0, p) + Jp · xf

0
0


︸ ︷︷ ︸

=: f̄ [2](x̄, u, p)

+ . . . ,

(f̄)

ȳ =


H 0 h0
0 1 0
0 0 1


︸ ︷︷ ︸

=: H̄

·x̄+


h[2](x, p)− h[2](0, p) +Mp · xh

0
0


︸ ︷︷ ︸

=: h[2](x̄, p)

+ . . . (h̄)

Having two additional output variables, yf and yh, the cost function is rewritten as the
following.

¯̀(ȳ, u) = ȳT


`yy 0 0
0 0 0
0 0 0


︸ ︷︷ ︸

=: `ȳȳ

ȳ + ȳT


`yu
0
0


︸ ︷︷ ︸
=: `ȳu

u+ 1
2u

T`uuu+ `[3](ȳ, u) + . . . = `(y, u) (¯̀)

It remains to find/define a matrix ˜̄H ∈ R(nx+2)×(ny+2) with the properties (II), (IV),
and (V). One may choose

˜̄H =


H̃ 0 −H̃ · h0
0 1 0
0 0 1

 , ( ˜̄H)
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5.1 Output-feedback in continuous time

where H̃ is such that (II), (IV), and (V) are fulfilled using F and G. With this
particular choice, one has

H̄ · ˜̄H = Iny+2

and, therefore, condition (II) is satisfied. Furthermore, it is

˜̄F = H̄ · F̄ · ˜̄H =


F̃ H · f0 −(αh + F̃ ) · h0
0 −αf 0
0 0 −αh

 and ˜̄G = H̄ · Ḡ =


G̃

0
0

 ,
where F̃ = H ·F ·H̃ and G̃ = H ·G. Choosing αf and αh positive ensures the properties
(IV) and (V) using ˜̄H as in ( ˜̄H).
The value function and the control law can now be stated as power series in terms of
the new output vector ȳ and the parameters p. As done for the state-feedback case, the
new variables yf and yh are always set to 1, when the control law is applied. In this
case, the first nx rows of the system dynamics (f̄) are the same as in (fp), while the
first ny rows of the output function (h̄) are the same as in (hp).

π̄(ȳ, p) = 1
2 ȳ

T


πyy πyyf πyyh
πT
yyf

πyfyf πyfyh
πT
yyh

πT
yfyh

πyhyh


︸ ︷︷ ︸

=: πȳȳ

ȳ + π̄[3](ȳ, p) + . . . (π̄)

κ̄(ȳ, p) =
(
K Kf Kh

)
︸ ︷︷ ︸

=: K̄

· ȳ + κ̄[2](ȳ, p) + . . . (κ̄)

With these definitions, all assumptions are fulfilled, and the Hamilton-Jacobi-Bellman
equation and its derivative with respect to the input u are solved degree-wise, as shown
at the beginning of this section. The matrices πyy ∈ Rny×ny and K ∈ Rnu×ny are found
as in the nominal case, see (πyy) and (K). The other parts of the second order of
the value function can be calculated uniquely because all conditions are holding. The
vectors Kf ∈ Rnu and Kh ∈ Rnu are given by

Kf = −`−1
uu · G̃Tπyyf . (Kf )

and Kh = −`−1
uu · G̃Tπyyh. (Kh)

Higher orders are solved accordingly. Their additional dependencies are not further
investigated here.
Corollary 4 (Local stability).
Under the requirements of Theorem 5, local stability of the output is achieved for
sufficiently small parameters p, if the power series (π) and (κ) are converging.
Proof. For a fixed parameter vector p ∈ Rnp, a local Lyapunov function candidate is
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5 Output-Feedback

given by π̃(y) := π(y, p). Analogously to the value function, the control law is defined
as ũmin(y) := κ̃(y) := κ(y, p). Both functions are the solution of

π̃
(
y(0)

)
= min

u(.)

∞∫
0
`
(
y(τ), u(τ)

)
dτ

s.t. ẋ = f̃(x, u),
y = h̃(x),

where f̃(x, u) := f(x, u, p) and h̃(x) = h(x, p). If p is sufficiently small, f̃ [1](., .) resp.
h̃(.) inherits the properties of f [1](., ., .) resp. h(., .). Therefore, π̃(.) and κ̃(.) can be
written as

π̃(y) = 1
2y

Tπ̃yyy + o(||y||3),

κ̃(y) = K̃y + o(||y||2).

Thus there exists an ε > 0 such that

π̃(y) ≥ 0

for all y ∈ Bε(0). Equality only holds for vanishing y since π̃yy must be positive def-
inite. Therefore, π̃(.) is locally positive definite. Using the Hamilton-Jacobi-Bellman
equation,

0 = ∇yπ̃(y) · ∇xh̃(x) · f
(
x, κ̃(y)

)
+ `

(
y, κ̃(y)

)
, (HJBE)

it is seen that π̇
(
y(t)

)
is locally negative definite.

˙̃π
(
y(t)

)
= d

dtπ̃
(
y(t)

)
= ∇yπ̃

(
y(t)

)
· ∇xh̃

(
x(t)

)
· f̃
(
x(t), κ̃(y(t))

) (HJBE)= −`
(
y(t), κ̃(y(t))

)
= −1

2y(t)T`yyy(t)− y(t)T`yuK̃y(t)− 1
2y(t)TK̃T`uuK̃y(t) + o

(
||y(t)||3

)
Since `[2](y, K̃y) is positive definite, there exists an ε > 0 such that

˙̃π
(
y(t)

)
≤ 0

for all y(t) ∈ Bε(0). Again equality holds only for y(t) = 0. Thus π̃(y) = π(y, p) is a
local Lyapunov function for

ẏ = ∇xh̃(x) · f̃
(
x, κ̃(y)

)
= ∇xh(x, p) · f

(
x, κ(y, p), p

)
and fixed p ∈ Rnp. If p ∈ Rnp varies but stays in Bδ(0) for a sufficiently small
δ > 0, then y 7→ π(y, p) is used as local Lyapunov function. In the previous case,
y 7→ π(y, p) was a local Lyapunov function for y ∈ Bε(0). Clearly, ε depends on p.
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5.1 Output-feedback in continuous time

Since p 7→ π(y, p) is C∞, one can see that p 7→ ε(p) is continuous and thus takes its
minimum value in the compact set Bδ(0). This minimum is denoted with εmin and
must be greater than zero. Else there would be a parameter p that contradicts the
first case. Therefore, y 7→ π(y, p) is a Lyapunov function for y ∈ Bεmin(0).

Remark 9. If in the optimal output-feedback problem (OCP) the dimension ny of the
output is larger than the state dimension nx, then the maximal rank that the matrix
H ∈ Rny×nx could have is nx and (5.1) is not solvable, since H does not have a
right inverse. πyy can not be obtained. Calculating HTπyyH is possible if the rank
of H is nx. But in this case, all states would be observable, and there is no need for
output-feedback.

Simulations and evaluation

The quadcopter and the bioreactor examples from Chapter 3 are used again to show
the capabilities of the extension of Al’brekht’s Method. In the first example, different
choices of H̃ are considered. In the last example, the behavior of a nonlinear output
function with additive parameters is investigated.

Example 9 (Quadcopter: 10 states, 6 parameters, 6 output variables).
The system dynamics that have been used in Example 3 are extended by an output
function. There are no inequalities included. It is assumed that

y =
(
pz vx vy vz vφ vθ

)T

can be measured. In other words, all velocities and the altitude can be obtained. In
reality, this model relates to a quadcopter, which lost GPS and sensors signals to
reconstruct the roll and pitch angles. In this case, the output-feedback solution can be
used as a fallback controller as done in [43]. Figure 5.2 shows the control scheme. If
the full state information is available, a nominal controller is used. As soon as a fault
is detected, the quadcopter switches to the fallback, i. e. the output-feedback, controller
which e. g. reduces the drift due to the wind and lands safely.
The cost function

`(y, uT) = 1
2y

T`yyy + 1
2u

T
T`uuuT,

where `yy = diag(1, 1, 1, 1, 100, 100) and `uu = 1
10 · I3 is used. It remains to choose a
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Primary Controller
umin(y1, pest)

Safety Controller
umin(y2, pest)

System
ẋ = f(x, u, p)

Primary Sensor
y1 = h1(x, p)

Standby Sensor
y2 = h2(x, p)

Parameter
Estimation
pest(y, umin)

Control Measurements

x y
umin

pest
yref

ysafety

δs δs

Faults

Figure 5.2: Fallback control scheme

suitable matrix H̃. To this end, two different choices of H̃ are investigated.

H̃1 =



0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 0 0 1



, H̃2 =



0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
1 0 1 0 1 0
0 1 0 1 0 1
0 0 0 0 1 0
0 0 0 0 0 1


The not underlined entries are forced by the condition H · H̃ = I6. The other entries
are chosen to satisfy the remaining conditions. Clearly, H̃1 is a simpler choice and
thus also leads to a simpler polynomial representation of the control law.
Fig. 5.3 to 5.6 show the closed-loop simulation starting from initial condition x0 =(
0 0 25 5 0 0 0 0.1745 0 0

)T
. While the same time-dependent parameters

ωxx = 1
5 , ωxy = ωxz = 0

ωyx = −1
5 · t, ωyy = ωyz = 0

are used, completely different behaviours are obtained. The control law has been ap-
proximated up to degree four, and the value function up to degree five. Therefore, in
principle 11 632 coefficients had to be determined. Due to the weak nonlinearities of
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Figure 5.3: Propagation of five out of six output variables (10 states model with parameters,
output-feedback)

the system only 697 coefficients are non-zero. As one can see in Figure 5.4, the drift
of the quadcopter is reduced when the approximation degree is increased. The perfor-
mance of the controllers based on H̃2 is worse than all controllers based on H̃1. Not
only is the drifting distance is twice as much but they also fail to efficiently stabilize the
altitude pz, see Fig. 5.3. For the control laws based on H̃1, one can see an increasing
magnitude of the control input (Fig. 5.5), especially for uθ. This behavior is a reaction
to the increasing wind. Since the drift is reduced the overall cost is also decreased using
better approximations (Fig. 5.6).
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Figure 5.4: Position of the quadcopter in the x-y-plane (10 states model with parameters,
output-feedback)
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Figure 5.5: Control input for the vertical and angular accelerations (10 states model with
parameters, output-feedback)
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Figure 5.6: Resulting cost (10 states model with parameters, output-feedback)

Example 10 (Quadcopter: 12 states, 6 parameters, 7 output variables).
For the quadcopter model with 12 states, the output is assumed to contain the seven
measurements

y =
(
pz vx vy vz vφ vθ vψ

)T
.

The needed right inverse matrix is chosen as

H̃ =



0 0 1 0 1 0 0
0 0 0 1 0 1 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
1 0 0 0 1 0 0
0 1 0 0 0 1 0
0 0 1 0 0 0 1
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1



,

where the not underlined entries are given via the condition H ·H̃ = I7. The remaining
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entries guarantee the conditions (IV) and (V). The parameters are chosen as

ωxx = 1
5 , ωxy = ωxz = 0

ωyx = − 1
50 · t, ωyy = ωyz = 0,

while the cost function is given by

`(y, uT) = 1
2y

T`yyy + 1
2u

T
T`uuuT,

where `yy = diag(1, 1, 1, 1, 100, 100, 100) and `uu = 1
10 · I4 are used. The initial values

are pz = 1 m and vx = 0.2 m s−1, while the other states are set to zero. In the considered
scenario, the wind becomes stronger over time, which then leads to higher velocities
in x- and y-direction (Fig. 5.7) and less stable behavior. The velocities can not be
stabilized at zero. When the wind becomes very strong after 6 s the altitude is also
affected. If one is only interested in the drift of the quadcopter then κ[1;2] would be
the best choice for our scenario, see Fig. 5.8. The other two control laws result in
a bigger distance to the origin. The results can differ with different initial values or
parameters. The applied control action at the start of the simulation shows the same
disadvantage of the power series approach as in the previous examples. The values
can be unreasonably large, see Fig. 5.9. According to the total cost (Fig. 5.10), the
third-order approximation leads to the worst performance due to the cost induced by
the velocity in x-direction.
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5.1 Output-feedback in continuous time
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Figure 5.7: Propagation of six out of seven output variables (12 states model with parame-
ters, output-feedback)

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
−4

−3

−2

−1

0

1

2

3

px (m)

p y
(m

)

κ[1](y, p)

κ[1;2](y, p)

κ[1;3](y, p)

Figure 5.8: Position of the quadcopter in the x-y-plane (12 states model with parameters,
output-feedback)

83



5 Output-Feedback

0 2 4 6 8 10

−20

−10

0

10

ũ
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5.2 Convergence proof for continuous-time output-feedback control

Example 11 (Bioreactor rhodospirillum rubrum, 3 states, 2 parameters, 1 output
variable).
Example 5 from Section 3.1 is revisited. The parameters p are set to pave and are now
fixed. Instead of having the full state information, it is assumed that only the biomass
can be measured. The measurement information is given via

yT,b = h(xT, pout) = pconst + (1 + plin) · xT,b.

The output function contains two parameters pout =
(
pconst plin

)T
indicating measure-

ment noise. The matrix H̃ ∈ R3×1 is chosen as
(
1 0 0

)T
. αf and αh are set to 0.01.

The cost function is

`(yT,b, uT) = 1
2y

2
T,b + 1

200u
2
T

and the initial values xT,b = −0.1 g L−1, xT,s = −0.5 g L−1, and xT,f = −0.1 g L−1.
The parameters are set to pconst = 1 + 1

50 sin(t) g L−1 and plin = 1
50 sin(t), representing

a permanent offset and minor noise. The measurement noise is not estimated in
this scenario. Therefore, pout is set to zero inside the controller, and higher-order
approximations lose one of their advantages. Not surprisingly, all control laws are
able to keep the system output (Fig. 5.11) stable. All three states are also stabilized
but can not reach the desired points. The cost shows a phenomenon that is often
observed using Al’brekht’s Method. In this case, the approximations up to odd degrees
show a better performance than the even ones. Applying κ[1;5] produces the least cost
(Fig. 5.12) and is, therefore, throughout this scenario, slightly cheaper than κ[1;3] and
κ[1]. Nevertheless, this may change when different parameters or initial values are
used.

5.2 Convergence proof for continuous-time
output-feedback control

During this section, the convergence proofs, which have been done in Section 2.2 for
the nominal case and in Section 3.2 for the parametric case, will be generalized for
the output-feedback case with fixed but arbitrary model parameters. To prove the
convergence, the optimal cost function is upper bounded via the system dynamics,
the cost function, and the linear part of the output function. The main obstacle
one has to overcome is to work in the output space and only allowing states in the
submanifold of the state space, which is defined by H̃. Once the upper bounds are
found, a dominating converging series is constructed using the same idea as in the
proofs of Theorems 2.2 and 3.2. At several instances, there appears an additional
factor representing the spectral norm of the matrix defining the linear part of the
output function. Thus the result looks more complex, but the idea remains the same.
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5.2 Convergence proof for continuous-time output-feedback control

The considered optimal control problem states as the following.

π
(
y(0), p

)
= min

u(.)

∞∫
0
`
(
y(τ), u(τ)

)
dτ

s.t. ẋ = f(x, p) +Gu

y = Hx

(OCP)

In this case, the system dynamics is linear with respect to the input variables u ∈ Rnu,
the output y ∈ Rny is linear with respect to the states x ∈ Rnx, and the cost function

`(y, u) = 1
2y

T`yyy + yT`yuu+ 1
2u

T`uuu (`)

is quadratic, thus does not contain terms of higher order. The function f : Rnx×Rnp →
Rnx is considered to be analytic, and it holds f(0, p) = 0 for all parameters p ∈ Rnp.
The power series expansion of the system dynamics is shown in (f), and the output
dimension ny is considered to be smaller or equal to the state space dimension nx.

f(x, p) = Fx+
∞∑
k=2

f [k](x, p) (f)

Theorem 6 (Local convergence of π(y, p) and κ(y, p)).
Let κ be the optimal control input of (OCP) and π the corresponding optimal cost
function. If F , G, H, and ` respect the conditions (II)-(V) from Section 5.1, then κ

and π can be expressed in terms of the output variables y, as well as system parameters
p and are locally analytic.

Proof. The proof follows along the lines of Theorem 4 and Theorem 2. Nevertheless,
some adjustments have to be made since the calculation is done in the output space
instead of state space. The optimal input and the value function are denoted by

κ(y, p) = Ky +
∞∑
k=2

κ[k](y, p) (κ)

and π(y, p) = 1
2y

Tπyyy +
∞∑
k=3

π[k](y, p). (π)

The constants κ0 = κ(0, 0) and π0 = π(0, 0), as well as the 1-by-ny matrix πy, are
neglected since they are zero anyway. The derivations in Section 5.1 resp. Theorem 5
show that p 7→ κ(0, p), p 7→ π(0, p) as well as p 7→ ∇yπ(0, p) are zero everywhere. The
Hamilton-Jacobi-Bellman equation, which corresponds to the optimal control problem
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5 Output-Feedback

(OCP), states as

0 = ∇yπ(y, p) ·H ·
(
f(x, p) +Gκ(y, p)

)
+ 1

2y
T`yyy + yT`yu · κ(y, p) + 1

2κ(y, p)T · `uu · κ(y, p),
(HJBE-1)

and the first-order optimality condition is given as

0 = ∇yπ(y, p) ·HG+ yT`yu + κT(y, p) · `uu. (HJBE-2)

First simplified defining equations for κ[k](y, p) and π[k+1](y, p) (k ≥ 1) need to be
obtained. For K and πyy one can copy (K) and (πyy) from Section 5.1.

K = −`−1
uu · (`T

yu + G̃Tπyy) (K)
0 = πyyF̃ + F̃Tπyy + `yy − (`yu + πyyG̃) · `−1

uu · (`T
yu + G̃Tπyy) (πyy)

Here F̃ ∈ Rny×ny is, like in (F̃ |G̃) from Section 5.1, defined as HFH̃, while G̃ is given
by HG, and H̃ is a right inverse of H such that H · H̃ = Iny as required in condition
(II) in Section 5.1. From (HJBE-2),

κ[k](y, p) = −`−1
uu · G̃T · ∇yπ[k+1](y, p)T (κ[k])

is easily derived for k ≥ 2, while (HJBE-1) shows that π[k+1](y, p) is fixed via the
equation

0 =
k∑
i=1
∇yπ[i+1](y, p) ·H ·

(
f [k−i+1](H̃y, p) +Gκ[k−i+1](y, p)

)

+ yT`yu · κ[k](y, p) + 1
2

k∑
i=1

κ[i](y, p)T · `uu · κ[k−i+1](y, p),

where x has been replaced by H̃y. This is possible in an ny-dimensional subspace of
Rnx. Using (K) to cancel out all terms depending on κ[k] and substituting (κ[k]), one
derives the following identity.

∇yπ[k+1](y, p) · (F̃ + G̃K) · y = −
k−1∑
i=1
∇yπ[i+1](y, p) ·H · f [k−i+1](H̃y, p) (π[k+1])

+ 1
2
k−1∑
i=2
∇yπ[i+1](y, p) · G̃`−1

uu G̃
T · ∇yπ[k−i+2](y, p)T

To prove the convergence of the power series in (π), it is desired to find a series
(
Cπ
k

)
k≥2

such that
∞∑
k=2

Cπ
k · rk <∞ and

∣∣∣π[k](y, p)
∣∣∣ ≤ Cπ

k · rk−2 · r2
y ≤ Cπ

k · rk (5.4)
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5.2 Convergence proof for continuous-time output-feedback control

for sufficiently small r = || ( yp ) ||. ry denotes the norm or the output vector y.
Since f(., .) is analytic at least in a neighborhood of the origin, Remark 16 (c) implies
the existence of a series

(
Cf
k

)
k≥1 with

∞∑
k=1

Cf
k · rk <∞ and

∣∣∣f [k](H̃y, p)
∣∣∣ ≤ Cf

k · rk−1 · ry ≤ Cf
k · rk (5.5)

for sufficiently small r. In the following, the inequality (A.5) from Theorem 10 is
applied to the different degrees of π.∣∣∣∇yπ[k](y, p)

∣∣∣ ≤ k · Cπ
k · rk−2 · ry ≤ k · Cπ

k · rk−1

The second degree of the value function can be easily over approximated using the
spectral norm of πyy, which is its largest eigenvalue. This eigenvalue divided by two
will be called Cπ

2 .
∣∣∣π[2](y)

∣∣∣ =
∣∣∣∣∣12yTπyyy

∣∣∣∣∣ ≤ Cπ
2 · r2

y (5.6)

Shifting to the next degree, one finds from (π[k+1]) an equation for ∇yπ[3](y, p).

dπ[3]

dt (y, p)
∣∣∣∣∣∣
ẏ=F̃ y+G̃Ky

= ∇yπ[3](y, p) · (F̃ + G̃K) · y = −yTπyy ·H · f [2](H̃y, p)

Via integration it follows

∣∣∣π[3](y, p)
∣∣∣
ẏ=F̃ y+G̃Ky =

∣∣∣∣∣∣
∞∫
0
−yTπyy ·H · f [2](H̃y, p) dt

∣∣∣∣∣∣ ≤
∞∫
0

∣∣∣yTπyy ·H · f [2](y, p)
∣∣∣ dt

(5.6),(5.5)
≤ 2Cf

2CHC
π
2

∞∫
0
r(t) · r2

y(t) dt, (5.7)

where CH is the spectral norm of H. Since the linear part of the output system
is stable, even exponential stability, it is possible to upper bound the output and,
therefore, also ry = ||y||.

ry(t) ≤ ry0 · e−α·t , ry0 = ||y(0)||, α > 0

Thus r(t) can also be upper bounded using y(0).

r(t) =
∣∣∣∣∣∣
∣∣∣∣∣∣
y(t)
p

∣∣∣∣∣∣
∣∣∣∣∣∣ ≤

∣∣∣∣∣∣
∣∣∣∣∣∣
y(0)

p

∣∣∣∣∣∣
∣∣∣∣∣∣ =: r0
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5 Output-Feedback

Solving the integral in (5.7), Cπ
3 can be found.

∣∣∣π[3](y, p)
∣∣∣
ẏ=F̃ y+G̃Ky ≤

2Cf
2CHC

π
2

2α · r0 · r2
y0 ≤

3Cf
2CHC

π
2

α
· r3

0 =: Cπ
3 · r3

0

Theorem 10 implies

∣∣∣∇yπ[3](y, p)
∣∣∣ ≤ 3 · Cπ

3 · r0 · ry0 ≤ 3 · Cπ
3 · r2

0 = Cf
2CHC

π
2

α
· r2

0.

Before the general case is shown, Cπ
4 will be calculated to gain more inside how those

constants are found. Thus (π[k+1]) is integrated again.∣∣∣π[4](y, p)
∣∣∣
ẏ=F̃ y+G̃Ky

=
∣∣∣∣∣∣
∞∫
0
−yTπyy ·H · f [3](y, p)−∇yπ[3](y, p) ·H · f [2](y, p)

+ 1
2∇yπ

[3](y, p) · G̃`−1
uu G̃

T · ∇yπ[3](y, p)T dt
∣∣∣∣∣∣

≤
∞∫
0

2Cf
3CHC

π
2 · r2(t)r2

y(t) + 3Cf
2CHC

π
3 · r2(t)r2

y(t) + 9
2C

2
GC

2
HCuu · (Cπ

3 )2 · r2(t)r2
y(t) dt

≤ 1
2α ·

(
2Cf

3CHC
π
2 + 3Cf

2CHC
π
3 + 9

2C
2
GC

2
HCuu · (Cπ

3 )2
)
· r2

0 · r2
y0

≤ 1
2α ·

(
2Cf

3CHC
π
2 + 3Cf

2CHC
π
3 + 9

2C
2
GC

2
HCuu · (Cπ

3 )2
)
· r4

0 =: Cπ
4 · r4

0

Cuu resp. CG denotes the spectral norm of `−1
uu resp. G.

The general case k ≥ 2 can now be handled in the same way.∣∣∣π[k+1](y, p)
∣∣∣
ẏ=F̃ y+G̃Ky

≤
∞∫
0

k−1∑
i=1

(i+ 1) · Cπ
i+1 · ri−1(t)ry(t) · CH · Cf

k−i+1 · rk−i(t)ry(t) dt

+
∞∫
0

k−1∑
i=2

1
2(i+ 1) · Cπ

i+1r
i−1(t)ry(t) · C2

GC
2
HCuu · (k − i+ 2) · Cπ

k−i+2r
k−i(t)ry(t) dt

≤

k−1∑
i=1

(i+ 1) · Cπ
i+1CHC

f
k−i+1 +

k−1∑
i=2

1
2 (i+ 1)(k − i+ 2) · C2

GC
2
HCuuC

π
i+1C

π
k−i+2

2α︸ ︷︷ ︸
=: Cπ

k+1

·rk−1
0 r2

y0

≤ Cπ
k+1 · rk+1

0

Knowing these coefficients, a converging domination series for
(
Cπ
k

)
k≥2 would show
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5.2 Convergence proof for continuous-time output-feedback control

the desired convergence. Therefore, another equation is introduced, and it will be
shown that its solution is, in fact, a series with the desired properties.

C2
GC

2
HCuu ·

(dγ
dr (r)

)2
+
 ∞∑
i=2

Cf
i · qi−1 − a

 · CH · r · dγ
dr (r) + b · r2 = 0 (5.8)

The constant numbers a and b will be determined during the following calculation,
while q ∈ R≥0 can also be seen as a norm of a vector like r. Clearly, (5.8) is only
well-defined where f(., .) is analytic. The constant Cf

1 influences the solution of (5.8)
via a and b, which will depend on F .
Clearly, (5.8) admits two solutions, which are given in the form γ(r) = 1

2g(q) · r2,
where g(.) is a solution of the quadratic equation

C2
GC

2
HCuu · g2(q) +

 ∞∑
i=2

Cf
i · qi−1 − a

 · CH · g(q) + b = 0. (5.9)

If q is sufficiently small and

0 < b <
a2

4C2
GCuu

(5.10)

two solutions

g1/2(q) =
a−

∞∑
i=2

Cf
i · qi−1 ±

√√√√(a− ∞∑
i=2

Cf
i · qi−1

)2
− 4b · C2

GCuu

2C2
GCHCuu

(5.11)

are found. From those two solutions, g2(q) is taken and from now on just denoted
with g(q). It will be seen later why g1(q) can not be the correct one. The solution
g(.) is analytic in the domain where

∞∑
i=2

Cf
i · qi−1 < ∞ and q are sufficiently small.

Furthermore, it can be locally expanded into a power series

g(q) =
∞∑
i=2

Cg
i · qi−2 <∞. (5.12)

This series can also be found degree-wise. Starting with the constant part from (5.12)
and (5.9) or (5.11), which defines Cg

2 .

0 = C2
GC

2
HCuu · (C

g
2 )2 − a · CH · Cg

2 + b ⇔ Cg
2 =

a−
√
a2 − 4b · C2

G · Cuu
2C2

GCHCuu
> 0
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5 Output-Feedback

Taking the linear part from (5.9) and leaving out q, since it is arbitrary, leads to Cg
3 .

0 = 2C2
GC

2
HCuu · C

g
2CHC

g
3 + Cf

2CHC
g
2 − a · CH · C

g
3

⇒ Cg
3 = Cf

2C
g
2

a− 2C2
GCHCuu · C

g
2

a and b have to be chosen such that

a− 2C2
GCHCuu · C

g
2 =

√
a2 − 4b · C2

GCuu

is strictly greater than zero. This is the case if b (still depending on a) is defined as

b = a2 − α2

4C2
G · Cuu

,

which ensures

a2 − 4b · C2
GCuu = α2 > 0.

Obviously, this choice of b also fulfills (2.3), if a > α. Using α here involves also
the linearized system and, therefore, F + GK. Putting all formulas and definitions
together gives

Cg
3 =

1
α
· Cf

2 · C
g
2 > 0

and for a ≥ α + 2C2
GCuu · Cπ

2 also Cg
2 =

a− α
2C2

GCuu
≥ Cπ

2 .

If g1(q) would have been used, then Cg
k (k ≥ 3) would be negative, which can not be

an upper bound for Cπ
k .

More general, the Cg
k are derived by taking the (k − 2)-th degree in equation (5.9).

0 = C2
GC

2
HCuu ·

k∑
i=2

Cg
i · C

g
k−i+2 + CH ·

k−1∑
i=2

Cf
i · C

g
k−i+1 − a · CH · C

g
k .

⇒ α · Cg
k = (a− 2C2

GCHCuu · C
g
2 ) · Cg

k = C2
GCHCuu ·

k−1∑
i=3

Cg
i · C

g
k−i+2 +

k−1∑
i=2

Cf
i · C

g
k−i+1

⇒ Cg
k = 1

α
·
C2

GCHCuu ·
k−1∑
i=3

Cg
i · C

g
k−i+2 +

k−1∑
i=2

Cf
i · C

g
k−i+1

 > 0

Finally, this result can be compared to

Cπ
k =

CH ·
k−1∑
i=2

(k − i+ 1) · Cf
i C

π
k−i+1 + C2

GC
2
HCuu ·

k−1∑
i=3

1
2 i · (k − i+ 2) · Cπ

i C
π
k−i+2

2α ,
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5.3 Area of convergence

and it is seen that for k ≥ 3

Cπ
k ≤ Cg

k · CH ·
max

i∈{3,...,k−1}
i · (k − i+ 2)

2 ≤ Cg
k · CH ·

(k + 2)2

8
and, therefore, it holds

|π(y, p)| ≤
∞∑
k=2

Cπ
k · rk ≤ CH ·

∞∑
k=2

(k + 2)2

8 · Cg
k · rk.

If the power series g(r) exists resp. converges for a fixed r, then π(y, p) exists and
converges for all (y, p) such that

||(y, p)|| < r.

That is the case because of

lim
k→∞

(
(k + 2)2

)1/k
↘ 1.

κ(y, p) can be seen as a product of locally analytic functions. Thus it is also locally
analytic with the same area of convergence.

5.3 Area of convergence

Similar to the results of Section 2.3 and 3.3, the convergence area and thus the area
of existence of the solution

π(y, p) = 1
2y

Tπyyy +
∞∑
k=3

π[k](y, p), κ(y, p) = Ky +
∞∑
k=2

κ[k](y, p)

of the continuous-time optimal output-feedback problem

π
(
y(0), p

)
= min

u(.)

∞∫
0

1
2y

T(τ) · `yy · y(τ) + yT(τ) · `yu · u(τ) + 1
2u

T(τ) · `uu · u(τ) dτ

s.t. ẋ = f(x, p) +Gu

y = Hx,

as given in Section 5.2, can be estimated. If CG, CH , Cuu, and Cπ
2 are the spectral

norms of G, H, `−1
uu , and 1

2πyy, and α the maximal value such that for the solution of
the initial value problem

ẏ = (F̃ + G̃K) · y, y(0) = y0 ∈ Rny
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5 Output-Feedback

||y(t)|| ≤ ||y0|| · e−αt holds for F̃ and G̃ as in (F̃ |G̃) in Section 5.1 and Cf
k (k ≥ 2) such

that ∣∣∣∣∣∣f [k](H̃y, p)
∣∣∣∣∣∣ ≤ Cf

k · ||(y, p)||.

Then convergence and existence of π and κ are given for all (y, p) in a neighborhood
of the origin such that f is analytic and (5.13) holds.
∞∑
k=2

Cf
k · ||(y, p)||k ≤

(
α + 2C2

GCuuC
π
2 −

√
(α + 2C2

GCuuC
π
2 )2 − α2

)
· ||(y, p)|| (5.13)

Remark 10. If the system dynamics f is linear with respect to the states, it is clear
that the value function and the optimal control law can be expressed as

π(y) = 1
2y

Tπyyy and κ(y) = Ky.

Both exist everywhere in Rny . The same result is also found via (5.13), since Cf
k = 0

for all k ≥ 2.

Example 12. For the quadcopter model (10 states, 6 output variables) from Exam-
ple 9, the constants (all units are again neglected)

CG = 10, Cuu = 1, Cπ
2 = 1.4896 and α = 0.8136

are found for H̃1. For H̃2, one obtains Cπ
2 = 2.116 56 and α = 0.9312. Using 5.13,

both choices lead to convergence for all r = ||(y, p)|| ≤ 0.007 55, which is more than
twice the radius of the state-feedback case. The reason are fewer variables in the power
series and less conservative estimations.
For Example 10, the constants are

CG = 18.8679, Cuu = 10, Cπ
2 = 1.8477 and α = 1.0101.

Thus convergence is given for r = ||(y, p)|| ≤ 0.43 · 10−10, which is slightly bigger
compared to the state feedback case.
As mentioned in Example 6, these results are of no use in practice, and other methods
should be investigated.
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6 The Discrete-Time Case

Analogous to the continuous-time output-feedback, which has been worked on in Sec-
tion 5.1, results for the discrete-time case can be derived. The solution procedure
is the same as in continuous-time. As optimality criteria, Bellmans equation and its
derivative with respect to the inputs are used. To guarantee a solution, again LQR
conditions and a matrix H̃ as in Section 5.1 are required. An existence resp. conver-
gence proof for the control law and the value function is, however, not provided. The
main challenge in deriving such results is the more complicated dependence of both
power series on each other. This dependence is also not simplified if a linear output
function, quadratic cost, and a linear input regarding the system dynamics are consid-
ered. To the best knowledge of the author, a convergence proof in discrete-time does
not exist so far. This issue will be tackled in future research. Nevertheless, the local
stability of the closed-loop system using approximated control laws can be guaranteed.

For the discrete-time case the following optimal control problem is considered.

π
(
y(0), p

)
= min

u(.)

∞∑
n=0

`
(
y(n), u(n)

)
s.t. x+(n) = x(n+ 1) = f

(
x(n), u(n), p

)
,

y(n) = h
(
x(n), p

)
n ∈ N0

(OCP)

Therein x ∈ Rnx are the states, u ∈ Rnu are input variables, p ∈ Rnp are the parame-
ters, and y ∈ Rny the output variables. The system dynamics f : Rnx×Rnu×Rnp → Rnx

and the output function h : Rnx × Rnp → Rny are assumed to be analytic with power
series expansions

f(x, u, p) =
∞∑
k=1

f [k](x, u, p) = Fx+Gu+ f [2](x, u, p) + . . . (f)

and h(x, p) =
∞∑
k=1

h[k](x, p) = Hx+ h[2](x, p) + . . . , (h)

where F ∈ Rnx×nx and H ∈ Rny×nx. The parameters appear multiplicative to ensure
unique solvability.

∀p ∈ Rnp : f(0, 0, p) = 0 (f0)
h(0, p) = 0 (h0)
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6 The Discrete-Time Case

Since the maps p 7→ f(0, 0, p) and p 7→ h(0, p) are also analytic but constant at 0, the
power series need to vanish completely.

∀k ∈ N, p ∈ Rnp : f [k](0, 0, p) = 0
h[k](0, p) = 0

The cost function ` : Rny × Rnu → R is stated in terms of the input variables and the
output variables instead of the system states. ` also needs to be analytic.

`(y, u) =
∞∑
k=2

`[k](y, u) = 1
2y

T`yyy + yT`yuu+ 1
2u

T`uuu+ `[3](y, u) + . . . (`)

The matrices `yy ∈ Rny×ny , `yu ∈ Rny×nu, and `uu ∈ Rnu×nu must together with F and
H fulfill further conditions, which are similar to the continuous case and will be shown
later throughout the calculation.
The optimal cost function π : Rny × Rnp → R is assumed to be analytic with a power
series expansion of the form

π(y, p) =
∞∑
k=1

π[k](y, p)

= πyy + πpp+ 1
2y

Tπyyy + yTπyp + 1
2p

Tπppp+ π[3](y, p) + . . . ,

(π)

while the cost-minimizing control law κ : Rny × Rnp → Rnu can be written as follows.

κ(y, p) =
∞∑
k=1

κ[k](y, p) = Ky + Lp+ κ[2](y, p) + . . . (κ)

Both series depend on parameters and output variables since the full state information
may not be available and can not be used. From (f0) and (h0), it is clear that the maps
p 7→ π(0, p) and p 7→ κ(0, p) are zero everywhere. Thus πp ∈ R1×np, πpp ∈ Rnp×np,
π[3](0, p), . . . and L ∈ Rnu×np, κ[2](0, p), . . . are zero. Furthermore, πyp ∈ Rny×np,
∇yπ[3](0, p), . . . must also vanish.
Bellman’s principle of optimality is given in terms of (y, p),

π(y, p) = π(y+, p) + `
(
y, κ(y, p)

)
,

where y+(n) = y(n+ 1) for n ∈ N0. y+ can be replaced via

y+ = h(x+, p) = h
(
f
(
x, κ(y, p), p

)
, p
)
.

Thus the Bellman equation states as

π(y, p) = π
(
h
(
f(x, κ(y, p), p), p

)
, p
)

+ `
(
y, κ(y, p)

)
(BDP-1)
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and the first-order optimality criterion becomes

0 = ∇yπ
(
h
(
f
(
x, κ(y, p), p

)
, p
)
, p
)
· ∇xh

(
f
(
x, κ(y, p), p

)
, p
)
· ∇uf

(
x, κ(y, p), p

)
+∇u`

(
y, κ(y, p)

)
. (BDP-2)

Substituting all power series into (BDP-1) and (BDP-2) leads to a separate equation
for each degree. Degree zero of (BDP-1) does not contain any useful information,
while the constant part of (BDP-2) leads to

0 = πy ·H ·G. (πy-1)

πy is not completely fixed in equation (πy-1). Thus (BDP-1)[1] is investigated next.

πyy + πpp = πy ·H ·
(
Fx+G(Ky + Lp)

)
+ πpp

(πy-1)= πy ·H · Fx+ πpp

⇒ 0 = πy ·H · (F − Inx) (πy-2)

Combining (πy-1) and (πy-2) shows that πy has to vanish if

(I)
(
H · (F − Inx) HG

)
has full rank.

πp can not be obtained here but as outlined before it has to vanish. (BDP-2)[1] contains
information about K ∈ Rnu×ny and L ∈ Rnu×np.

0 =
((
Fx+G(Ky + Lp)

)T
·HTπyy + pTπT

yp

)
·HG

+ yT · `yu + (Ky + Lp)T · `uu
(6.1)

As for the continuous case, x is replaced in terms of y. Thus H has to have full rank:

(II) ∃ H̃ ∈ Rnx×ny : H · H̃ = Iny .

Keeping only quadratic terms, x is replaced by H̃y. This substitution can be done in
an ny-dimensional subspace of Rnx and makes it possible to calculate κ and π. Thus
(6.1) leads to

0 =
((
FH̃y +G(Ky + Lp)

)T
·HTπyy + pTπT

yp

)
·HG

+ yT · `yu + (Ky + Lp)T · `uu
(6.2)

Similar to the continuous-time case, this equation can be separated in two since y and
p are independent. Starting with the equation that is defined by the output variables
to find K one has

0 = (FH̃ +GK)T ·HTπyyHG+ `yu +KT`uu
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6 The Discrete-Time Case

resp.

K = −
(
GTHTπyyHG+ `uu

)−1
·
(
`T
yu +GTHTπyyHFH̃

)
.

Defining

F̃ := HFH̃ and G̃ := HG (F̃ |G̃)

the matrix K is simply given by

K = −
(
G̃TπyyG̃+ `uu

)−1
·
(
`T
yu + G̃TπyyF̃

)
. (K)

Going back to (6.2) and only take terms that are linear with respect to the parameters
p shows

0 = LTG̃TπyyG̃+ πT
ypG̃+ LT`uu

and, therefore, leads to a formula for L, which is actually 0 as mentioned above. But
it is outlined in more detail in the following.

L = −
(
G̃TπyyG̃+ `uu

)−1
· G̃Tπyp (L-1)

The next step is to collect all terms of degree two from (BDP-1).

1
2y

Tπyyy + yTπypp+ 1
2p

Tπppp

= 1
2
(
Fx+G(Ky + Lp)

)T
·HTπyyH ·

(
Fx+G(Ky + Lp)

)
+
(
Fx+G(Ky + Lp)

)T
·HTπypp+ 1

2p
Tπppp+ 1

2y
T`yyy

+ yT`yu · (Ky + Lp) + 1
2(Ky + Lp)T · `uu · (Ky + Lp)

x is again replaced by H̃y. The term that contains πpp ∈ Rnp×np is canceled out of the
equation and can not be obtained here. As outlined before it has to vanish.

1
2y

Tπyyy + yTπypp = 1
2
(
F̃ y + G̃(Ky + Lp)

)T
· πyy ·

(
F̃ y + G̃(Ky + Lp)

)
+
(
F̃ y + G̃(Ky + Lp)

)T
· πypp+ 1

2y
T`yyy

+ yT`yu · (Ky + Lp) + 1
2(Ky + Lp)T · `uu · (Ky + Lp)

(6.3)

Setting p to zero and removing y, since it can be chosen arbitrary and independent
from p, leads to the following matrix equation.

πyy = (F̃ + G̃K)T · πyy · (F̃ + G̃K) + `yy + `yuK +KT`T
yu +KT`uuK
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Substitution of (K) gives the well known discrete time algebraic Riccati equation.

πyy = F̃TπyyF̃ + `yy −
(
`T
yu + F̃TπyyG̃

)
·
(
G̃TπyyG̃+ `uu

)−1
·
(
`yu + G̃TπyyF̃

)
(πyy)

(πyy) has a solution πyy � 0 if

(III) the second order of the cost function is convex in (y, u) and strictly convex in u
resp. `yy `yu

`T
yu `uu

 � 0 and `uu � 0,

(IV) the pair (F̃ , G̃) is stabilizable and

(V) the pair (F̃ , `yy) is detectable.

Having this solved, one investigates all terms of (6.3) that contain y and p.

πyp = (F̃ + G̃K)T · πyy · G̃L+ (F̃ + G̃K)T · πyp + `yuL+KT`uuL

= F̃TπyyG̃L+KTG̃TπyyG̃L+ F̃Tπyp +KTG̃Tπyp + `yuL+KT`uuL (6.4)

Considering (6.3) and replacing y with 0 leads to another condition for πyp.

0 = LTG̃TπyyG̃L+ LTG̃Tπyp + πT
ypG̃L+ LT`uuL

Substituting L via (L-1) simplifies this condition to

0 = −πT
ypG̃ ·

(
G̃TπyyG̃+ `uu

)−1
· G̃Tπyp,

where one can see that

0 = G̃Tπyp, (πyp-1)

since G̃TπyyG̃+ `uu is positive definite. Therefore, L must vanish.

L = 0 (L-2)

Using (πyp-1) in (6.4) yields

0 = (F̃T − Iny) · πyp, (πyp-2)

which together with (πyp-1) shows

πyp = 0. (πyp)
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6 The Discrete-Time Case

To obtain κ[2](y, p) the second order of (BDP-2) must be investigated.

0 = ∇yπ[3]
(
H(Fx+GKy), p

)
· G̃+ h[2](Fx+GKy, p)T · πyyG̃

+ f [2](x,Ky, p)T ·HTπyyG̃+
(
κ[2](y, p) +K · h[2](x, p)

)T
· G̃TπyyG̃

+ (Fx+GKy)T ·HTπyy · ∇xh[2](Fx+GKy, p) ·G
+ (Fx+GKy)T ·HTπyy ·H · ∇uf(x,Ky, p)

+∇u`[3](y,Ky) + h[2](x, p)T · `yu +
(
κ[2](y, p) +K · h[2](x, p)

)T
· `uu

Again x is replaced by H̃y to remove one dependent variable. Thus a formula for the
second degree of the control law can be given.

κ[2](y, p) = −
(
G̃TπyyG̃+ `uu

)−1
·
(
G̃T∇yπ[3](F̃ y + G̃Ky, p)T

+ G̃Tπyy ·
(
h[2](FH̃y +GKy, p) +H · f [2](H̃y,Ky, p) + G̃K · h[2](H̃y, p)

)
+GT · ∇xh[2](FH̃y +GKy, p)T · πyy · (F̃ y + G̃Ky) (κ[2])
+∇uf(H̃y,Ky, p)T ·HT · πyy · (F̃ y + G̃Ky) +∇u`[3](y,Ky)T

+ `T
yu · h[2](H̃y, p)

)
−K · h[2](H̃y, p)

Except for ∇yπ[3], everything is known in this formula. π[3] is found if the third degree
of (BDP-1) is solved.

π[3](y, p) + yTπyy · h[2](x, p)
= π[3]

(
H(Fx+GKy), p

)
+ (Fx+GKy)T ·HTπyy · h[2](Fx+GKy, p)

+ (Fx+GKy)T ·HTπyyH · f [2](x,Ky, p)
+ (Fx+GKy)T ·HTπyyHG ·

(
κ[2](y, p) +K · h[2](x, p)

)
+ `[3](y,Ky) + xTHT`yu ·

(
κ[2](y, p) +K · h[2](x, p)

)
+ h[2](x, p)T · `yu ·Ky + yTKT · `uu ·

(
κ[2](y, p) +K · h[2](x, p)

)
For simplification, (K) is applied to remove all terms that contain κ[2]. Furthermore,
x = H̃y is used.

π[3](y, p) + yTπyy · h[2](H̃y, p)
= π[3]

(
(F̃ + G̃K)y, p

)
+ yT(F̃ + G̃K)T · πyy · h[2](FH̃y + G̃Ky, p)

+ yT(F̃ + G̃K)T · πyyH ·
(
f [2](H̃y,Ky, p) +GK · h[2](H̃y, p)

)
(π[3])

+ yT(F̃ + G̃K)T · πyyG̃K · h[2](H̃y, p) + `[3](y,Ky)
+ yT`yuK · h[2](H̃y, p) + h[2](H̃y, p)T · `yu ·Ky + yTKT · `uuK · h[2](H̃y, p)
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Since F̃ + G̃K must be stable as K is the solution of an LQR, (π[3]) has the shape
of equation (7.3) from Corollary 7. Thus the coefficients of π[3] can be found and are
unique. Having this κ[2](y, p) is also found.
Next, the general case π[k+1] and κ[k] for k ≥ 2 is tackled. The steps are exactly the
same as for the calculation of π[3] and κ[2] but the formulas are more complicated.
First, all k-th order terms of (BDP-2) will be collected. y is replaced with the power
series of the output function, while x, afterward, is written using H̃y.

0 =
[
∇yπ

(
h
(
f
(
x, κ(h(H̃y, p), p), p

)
, p
)
, p
)
· ∇xh

(
f
(
H̃y, κ(h(H̃y, p), p), p

)
, p
)

· ∇uf
(
H̃y, κ

(
h(H̃y, p), p

)
, p
)][k]

+
[
∇u`

(
h(H̃y, p), κ

(
h(H̃y, p), p

))][k]

=
[
∇yπ[3;k+1]

(
h
(
f
(
H̃y, κ(h(H̃y, p), p), p

)
, p
)
, p
)
· ∇xh

(
f
(
H̃y, κ(h(H̃y, p), p), p

)
, p
)

· ∇uf
(
H̃y, κ

(
h(H̃y, p), p

)
, p
)][k]

+
[(
h
(
f
(
H̃y, κ[1;k−1](h(H̃y, p), p), p

)
, p
)
, p
)
· πyy · ∇xh

(
f
(
H̃y, κ(h(H̃y, p), p), p

)
, p
)

· ∇uf
(
H̃y, κ

(
h(H̃y, p), p

)
, p
)][k]

+
[
∇u`[3;k+1]

(
h(H̃y, p), κ

(
h(H̃y, p), p

))][k]
+ h[k](H̃y, p)T · `yu

+
([
κ[1;k−1]

(
h(H̃y, p), p

)][k])T
· `uu + κ[k](y, p)T ·

(
`uu + G̃TπyyG̃

)
κ[k](y, p) can be separated and only depends on one unknown, which is ∇yπ[k+1].
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6 The Discrete-Time Case

κ[k](y, p) = −
(
`uu + G̃TπyyG̃

)−1
·
[∇uf(H̃y, κ(h(H̃y, p), p

)
, p
)T

· ∇xh
(
f
(
H̃y, κ(h(H̃y, p), p), p

)
, p
)T

· ∇yπ[3;k+1]
(
h
(
f
(
H̃y, κ(h(H̃y, p), p), p

)
, p
)
, p
)T][k]

+
[
∇uf

(
H̃y, κ

(
h(H̃y, p), p

)
, p
)T

(κ[k])

· ∇xh
(
f
(
H̃y, κ(h(H̃y, p), p), p

)
, p
)T
· πyy

·
(
h
(
f
(
H̃y, κ[1;k−1](h(H̃y, p), p), p

)
, p
)
, p
)T][k]

+
[
∇u`[3;k+1]

(
h(H̃y, p), κ

(
h(H̃y, p), p

))T][k]

+ `yu · h[k](H̃y, p)


−
[
κ[1;k−1]

(
h(H̃y, p), p

)][k]

π[k+1](y, p) is uniquely defined via the equation that is obtained by collecting all terms
from (BDP-1) that are homogeneous with degree k + 1.

[
π
(
h(H̃y, p), p

)][k+1] =
[
π
(
h
(
f(H̃y, κ(h(H̃y, p), p), p), p

)
, p
)][k+1]

+
[
`
(
h(H̃y, p), κ(h(H̃y, p), p)

)][k+1]

=
[
π[3;k+1]

(
h
(
f(H̃y, κ(h(H̃y, p), p), p), p

)
, p
)][k+1]

+
[
`[3;k+1]

(
h(H̃y, p), κ(h(H̃y, p), p)

)][k+1]

+
[
π[2]

(
h
(
f(H̃y, κ[1;k−1](h(H̃y, p), p), p), p

)
, p
)][k+1]

+ yT(F̃ + G̃K)T · πyyG̃ · κ[k](y, p)

+
[
`[2]
(
h(H̃y, p), κ[1;k−1](h(H̃y, p), p)

)][k+1]

+ yT · `yu · κ[k](y, p) + yTKT · `uu · κ[k](y, p)

(K) is again used for simplification and removes all terms that contain κ[k] from the
equation.

102



Thus the only unknown is π[k+1].

π[k+1](y, p) = π[k+1]
(
(F̃ + G̃K)y, p

)
−
[
π[2;k]

(
h(H̃y, p), p

)][k+1]

+
[
π[3;k]

(
h
(
f(H̃y, κ(h(H̃y, p), p), p), p

)
, p
)][k+1]

+
[
`[3;k+1]

(
h(H̃y, p), κ(h(H̃y, p), p)

)][k+1] (π[k+1])

+
[
π[2]

(
h
(
f(H̃y, κ[1;k−1](h(H̃y, p), p), p), p

)
, p
)][k+1]

+
[
`[2]
(
h(H̃y, p), κ[1;k−1](h(H̃y, p), p)

)][k+1]

Applying Corollary 7 ensures the unique solvability of this equation. Thus κ[k] is also
known and all parts of the power series (π) and (κ) can be found. One should keep
in mind that the existence resp. the convergence of both series is not guaranteed and
needs to be evaluated separately.

Remark 11. As for the continuous case, the matrix H̃ is not unique, and thus the
optimal feedback κ(y, p) and value function π(y, p) also depend on H̃. How a suitable
H̃ can be found will be shown in Lemma 2 in the following chapter.

Theorem 7 (Determinability of π and κ).
Consider a discrete-time optimal control problem (OCP), where f(x, u, p) and `(y, u)
are analytic functions with power series expansions (f) and (`). If additionally, the
conditions (II)-(V), as well as (f0), and (h0) are fulfilled, then each part of the power
series (π) and (κ) is uniquely defined. Furthermore, for all p in a neighborhood of the
origin, it holds

π(0, p) = 0, ∇yπ(0, p) = 0 and κ(0, p) = 0.

Proof. Similar to the proof of Theorem 7, it suffices to show condition (I).
(IV) and Lemma 3 give

rank
(
F̃ − Iny G̃

)
=
(
H · (F − Inx) · H̃ HG

)
= ny.

The columns of H ·(F−Inx) ·H̃ are linear combinations of the columns of H ·(F−Inx).
Thus

(
H · (F − Inx) HG

)
must have full rank and (I) is shown.

Remark 12 (Additive parameters).
Using the procedure of Remark 8, additive parameters resp. not vanishing functions
p 7→ f(0, 0, p) and p 7→ h(0, p) are also handled in this setup. One can copy the
procedure, but use the linear dynamics

x+
f = (1− αf ) · xf

and x+
h = (1− αh) · xh.
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6 The Discrete-Time Case

Only the matrices F̄ and ˜̄F have to be stated/calculated again. All other matrices and
functions follow the same definitions.

F̄ =


F f0 0
0 1− αf 0
0 1− αh 0

 , ˜̄F =


F̃ H · f0 (1− αh − F̃ ) · h0
0 1− αf 0
0 0 1− αh


Corollary 5 (Local stability).
If the power series (π) and (κ) are converging and under the requirements of Theo-
rem 7, local stability of the output is achieved for sufficiently small parameters p.

Proof. Fix a parameter vector p ∈ Rnp. Then π̃(y) := π(y, p) is used as a local
Lyapunov function candidate. The control law is defined as ũmin(y) := κ̃(y) := κ(y, p).
Both functions are the solution of

π̃
(
y(0)

)
= min

u(.)

∞∑
n=0

`
(
y(n), u(n)

)
s.t. x+ = f̃(x, u),

y = h̃(x),

where f̃(x, u) := f(x, u, p) and h̃(x) := h(x, p). If p is sufficiently small, then f̃ [1](., .)
resp. h̃[1](., .) inherits the properties of f [1](., ., .) resp. h[1](., ., .). Therefore, π̃(.) and
κ̃(.) can be written as

π̃(y) = 1
2y

Tπ̃yyy + o(||y||3),

κ̃(y) = K̃y + o(||y||2).

Thus there exists an ε > 0 such that

π̃(y) ≥ 0

for all y ∈ Bε(0). Due to the positive definiteness of π̃yy, equality only holds for
vanishing y. Therefore π̃(.) is locally positive definite. Using Bellman’s equation,

π̃(y) = π̃
(
h̃(f̃(x, κ(y))

))
+ `

(
y, κ(y)

)
,

it is seen that π̃
(
h̃
(
f̃(x, κ̃(y)

))
− π̃(y) is locally negative definite since (III) is holding.

Thus π̃(y) = π(y, p) is a local Lyapunov function for

y+ = h̃
(
f̃(x, κ̃(y))

)
= h

(
f(x, κ(y, p), p), p

)
,

fixed p ∈ Rnp and y ∈ Bε(0). If p ∈ Rnp varies but stays in Bδ(0) for a sufficiently
small δ > 0, then y 7→ π(y, p) is used as local Lyapunov function. In the previous
case, y 7→ π(y, p) was a local Lyapunov function for y ∈ Bε(0). Obviously, ε depends
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on p, but p 7→ π(y, p) is C∞ and, therefore, p 7→ ε(p) is at least continuous and takes
its minimum value in the compact set Bδ(0). Denote this minimum with εmin. εmin
must be greater than zero else there would be a parameter p that contradicts the first
case. Therefore, y 7→ π(y, p) is a Lyapunov function for y ∈ Bεmin(0).

Remark 13. If, in the discrete-time optimal control problem (OCP), the output di-
mension ny is larger than the state dimension nx, then the same problem as addressed
in Remark 9 arises. The maximal rank that the matrix H ∈ Rny×nx could have is nx,
and (6.3) is not solvable since H does not have a right inverse, and πyy can not be
obtained. Calculating HTπyyH is possible if the rank of H is nx. But in this case, all
states would be observable, and there is no need for output-feedback.

Remark 14. Throughout this section, Al’brekht’s Method has been shown for para-
metric output-feedback control, which is the most general case considered in this work.
Setting y = h(x, p) = x leads to the discrete-time pendant of Section 3.1. If addition-
ally the parameters p are set to zero, the discrete-time version of the original method is
obtained. Both cases were not discussed separately since the procedure is the same as
shown here. Nevertheless, the continuous-time method was shown in all three variants
to make it easier for the reader to understand all the details.

In this chapter, it has been outlined how Al’brekht’s power series approach can be used
for parametric output-feedback. The additional requirements make it less applicable.
However, the convergence proof has been extended, and local stability was also proven.
In the next chapter, the discrete-time counterpart of Al’brekht’s Method is investigated
considering the output-feedback case and thus also the nominal and the parametric
case.
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7 Toolbox for Obtaining Approximated Solutions

All presented results and methods, namely, the classical non-parametric case (Chap-
ter 2), the parametric case (Chapter 3), the constraint case (Chapter 4), the output-
feedback case (Chapter 5), the discrete-time version (Chapter 6), and the case where
additive parameters are present in the system dynamics (Remark 3) resp. the out-
put function (Remarks 8 and 12) have been implemented. The implementation of
the „Solver for Al’brekht’s Method“ or short SAM has been done in C++ using two
special toolboxes, namely, GiNaC [95] and CLN [30]. GiNaC is an abbreviation for
GiNaC is Not a CAS, where CAS stands for Computer Algebra System. It is used
for symbolic calculation and especially for symbolic differentiation. It allows to per-
form the calculations much faster than, e. g. MATLAB. GiNaC also utilizes the
CLN library for efficient numeric calculation with arbitrarily high precision. Both
toolboxes can be downloaded from (https://www.ginac.de/Download.html) resp.
(https://www.ginac.de/CLN/).
SAM reads the optimal control problems with infinite horizon from a text file. It then
checks for consistency of the input and decides which version of Al’brekht’s Method
has to be used. The output is then written into three files. The first one, a -.txt-file,
only contains the different parts of the power series of the control law κ[k](x/y, p) and
the optimal cost function π[k+1](x/y, p) for k ∈ [d], where d ∈ N is the user-chosen
degree of approximation. The matrices K and πxx resp. πyy are also given explicitly.
The next file is an .m-file, which states the complete OCP in MATLAB syntax. The
different approximations of the control law are applied to the system dynamics and
the cost function. The results are saved in separated variables. After running this
file, all created variables are saved for further purposes in a .mat-file. Using the last
file, which is used with MATLAB, the user can automatically simulate all the con-
trollers. The initial values, the time horizon, and time-dependent parameters can be
adjusted. Plots of the state and output (if present) propagation as well as the change
of the parameters, the controls, the cost to go, and the total cost are provided. All
files are tested in MATLAB 2017a and higher. Older versions might require minor
adjustments.
A similar MATLAB toolbox, containing the cases of Al’brekht’s Method that can be
found in the literature, the so-called Nonlinear Systems Toolbox [52] exists. This tool-
box is accessibly via MATLAB but is also based on C++ code. It can also consider
other partial differential equations such as e. g. the Francis-Byrnes-Isidori PDE, the
Kazantzis-Kravaris PDE and is not only focusing on the Hamilton-Jacobi-Bellman
and the Bellman equation. Nevertheless, for this thesis, an own solver was needed,
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7.1 Calculation of H̃

since the considered setups for Al’brekht’s Method in the parametric case and the
output feedback, as well as some solution approaches (e. g. handling constraints) are
different.
The remainder of this chapter is organized as follows. In Section 7.1, the existence of
the matrix H̃ ∈ Rny×nx is investigated as this is central for the output-feedback case.
The proofs also show how its calculation is implemented in SAM. Section 7.2 deals
with the calculation of the coefficients of the different degrees of the power series of
π and κ. The proofs therein show how linear equation systems are derived from the
partial derivative (continuous time) resp. recursive (discrete time) equations. Tables
stating the calculation time for the examples shown in the Chapters 2 to 5 and the
number of coefficients, that had to be calculated, are provided.

7.1 Calculation of H̃

The matrix H̃ ∈ Rny×nx, which was first mentioned in Section 5.1, can be calculated
via SAM. Due to the non-uniqueness of H̃, SAM only selects one possible solution
out of in general infinitely many. If SAM does not find a suitable H̃, then it does
not necessarily mean that there exists non, since at the current state of the art the
calculation contains some trial and error. This will become clear in the following
derivation, in which conditions for the existence of H̃ are derived.
The matrix H̃ needs to fulfill the following conditions:

(I) First, it has to be a right inverse of a matrix H ∈ Rny×nx, which has full rank,

H · H̃ = Iny ,

(II) the pair
(
F̃ , G̃

)
=
(
HFH̃,HG

)
has to be controllable for (F,G) controllable,

and

(III) the pair
(
F̃ , `yy

)
has to be observable.

These conditions now may raise the question, whether such a matrix exists at all
and under which conditions can the existence be guaranteed. The following lemma
provides a first step towards the existence and calculation of H̃.

Lemma 2 (Existence of H̃).
If

(I’) H ∈ Rny×nx has full rank,

(II’) (HG HFG . . . HF nx−1G) has rank ny, and

(III’) the pair (F,HT`yyH) is observable,

then there exists H̃ ∈ Rnx×ny such that
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7 Toolbox for Obtaining Approximated Solutions

(I”) H · H̃ = Iny ,

(II”) (F̃ , G̃) = (HFH̃,HG) is controllable, and

(III”) (F̃ , `yy) is observable.
Proof. H has rank ny and it is ny ≤ nx. So it is clear that there exists a right inverse
H̃. Thus (I”) is obvious. To show (II”), one needs to find H̃ such that

rank
(
HG HFH̃HG . . . (HFH̃)nx−1HG

)
= ny.

Adding unit vectors as rows to H, a quadratic and invertible matrix can be obtained.
Thus there exist nx − ny vectors v1, . . . , vnx−ny ∈ Rnx such that


H

eT
i1...

eT
inx−ny



−1

=
(
H̃ v1 . . . vnx−ny

)

for some i1, . . . , inx−ny ∈ [nx]. Since H · vk = 0 for all k ∈ [nx− ny], the vectors vk can
be added to the columns of H̃ without violating (I”). Having this, H̃ can be chosen
such that

rank(HF ) = rank(HFH̃) = rank(F̃ )

and

rank(HG HFH̃ ·HG . . . (HFH̃)ny−1 ·HG) = ny

as well as

rank


`yy

`yy ·HFH̃
...

`yy · (HFH̃)ny−1

 = ny,

which shows (II”) and (III”).
Remark 15. Condition (II’) in Lemma 2 states that the outputs y but not all the
states x have to be controllable. Condition (III’) basically states the observability of
the states x.
Motivated by the proof, SAM uses linear combinations of the vectors v1, . . . , vnx−ny

and adds it to the columns of an H̃ gained via condition (I’). At the current state of
the art, this procedure is still based on trial and error and may not find a suitable
matrix even though the existence is clear.
In the subsequent corollary, the result from Lemma 2 is generalized.
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7.1 Calculation of H̃

Corollary 6 (Existence of H̃).
The assumptions of Lemma 2 can be weakened to the following.

(I*) H ∈ Rny×nx has full rank,
(II*) the non-controllable outputs are stable and
(III*) the pair (F,HT`yyH) is detectable.

Having this the existence of H̃ ∈ Rnx×ny such that

(I**) H · H̃ = Iny ,
(II**) (F̃ , G̃) = (HFH̃,HG) is stabilizable and
(III**) (F̃ , `yy) is detectable.

is still guaranteed.

Proof. Again condition (I*) directly implies the existence of H̃ ∈ Rnx×ny fulfilling
(I**). For the other conditions, the system states are first split up into four groups
using the Kalman decomposition [70]. To do so a coordinate transformation z := Tx

with T ∈ GL(nx;R) is applied.

ż = TFT−1 · z + TG · u =: F̄ z + Ḡu

y = HT−1 · z =: H̄z

Now z is written as
(
zc,o zc,no znc,o znc,no

)T, where „c“, „nc“, „o“, and „no“ stand for
controllable, non-controllable, observable, and non-observable. W.l.o.g. y is assumed
to be split up into its controllable and non-controllable resp. observable and non-
observable parts and is written as

(
yc,o yc,no ync,o ync,no

)T. This can be achieved
using another coordinate transformation, which just switches the rows of H. Therefore
the output matrix H is written in a similar way, H =

(
Hc,o Hc,no Hnc,o Hnc,no

)T

and condition (II*) implies

rank
(
HcG HcFG . . . HcF

nx−1G
)

= rank(Hc).

So one obtains condition (II’) from Lemma 2 for the controllable outputs. Because of
(II*) the non-controllable outputs are stable, which then leads to (II**).
Furthermore, the matrix HT`yyH can be split into rows belonging to observable and
non-observable outputs. The first part and F̄ are then used for condition (III’) in
Lemma 2, while the others have to be stable due to (III*). Thus Lemma 2 can be
applied to achieve (II**) and (III**) at the same time.
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7 Toolbox for Obtaining Approximated Solutions

7.2 Coefficients of polynomials
Efficient calculation of the coefficients of the power series is of core importance to
obtain the explicit control law. Using the results and methods shown in the previous
chapters, a procedure to calculate the coefficients of the power series expansions of the
value function and the control law has been implemented. Before going into detail,
the number of coefficients of a polynomial, which is homogeneous with degree d ∈ N
and depends on n ∈ N variables, has to be found. This number can be calculated
recursively. Therefore let N(n, d) denote the number of those coefficients. If n ≥ 2
and d ≥ 2, then N(n, d) is given via

(n+ d− 1)!
d! · (n− 1)! = N(n− 1, d) +N(n, d− 1) resp.

n+ d− 1
d

,
while N(1, d) = 1 and N(n, 1) = n. The following table shows the results for N(., .).
Numbers greater than 100 000 are neglected to compress the table. The numbers,
which are relevant for the examples that are discussed throughout this work, are
underlined.

n\d 1 2 3 4 5 6 7 8 9 10
1 1 1 1 1 1 1 1 1 1 1
2 2 3 4 5 6 7 8 9 10 11
3 3 6 10 15 21 28 36 45 55 66
4 4 10 20 35 56 84 120 165 220 286
5 5 15 35 70 126 210 330 495 715 1001
6 6 21 56 126 252 462 792 1287 2002 3003
7 7 28 84 210 462 924 1716 3003 5005 8008
8 8 36 120 330 792 1716 3432 6435 11 440 19 448
9 9 45 165 495 1287 3003 6335 12 870 34 310 43 758
10 10 55 220 715 2002 5005 11 440 24 310 48 620 92 378
11 11 66 286 1001 3003 8008 19 448 43 758 92 378 ×
12 12 78 364 1365 4368 12 376 31 824 75 582 × ×
13 13 91 455 1820 6188 18 564 50 388 × × ×
14 14 105 560 2380 8568 27 132 77 520 × × ×
15 15 120 680 3060 11 628 38 760 × × × ×
16 16 136 816 3876 15 504 54 264 × × × ×
17 17 153 969 4845 20 349 74 613 × × × ×
18 18 171 1140 5985 26 334 × × × × ×

Table 7.1: Number of coefficients of polynomials with degree d in n variables
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7.2 Coefficients of polynomials

One can see that the complexity increases with the degree d but even more with
the number of variables n. The calculation time increases accordingly and is shown in
Table 7.2 for the examples of the previous chapters. The calculation has been carried
out on a Dell Optiplex 780 SFF Desktop-PC (Core 2 Quad Q8400, 2,66 GHz) with 4038
MB RAM. It is not visible from the table, but definitely worth mentioning that the
calculation time also depends on the „difficulty“ of the nonlinearities. Thus including
constraints increases the calculation time even though the number of variables and
the degree stay the same, see Table 7.2.

Model specification\Degree 2 3 4 5 6
Quadcopter np = 0 11.0 s 349 s 127 min - -
nx = 10 np = 6 309 s 662 min - - -

np = 6, nc = 11 312 s 646 min - - -
np = 6, nc = 6 313 s 646 min - - -

H̃1 ny = 6 0.5 s 5.1 s 40 s 251 s 22 min
H̃2 ny = 6 0.6 s 6.7 s 53 s 340 s 29 min
H̃1 ny = 6, np = 6 21.6 s 22 min 13.5 h - -
H̃2 ny = 6, np = 6 29.7 s 31 min 19.7 h - -
H̃1 ny = 6, np = 6, nc = 6 22.1 s 25 min - - -
H̃2 ny = 6, np = 6, nc = 6 30.4 s 34 min - - -

Quadcopter np = 0 44 s 37 min - - -
nx = 12 np = 6 15 min 39.0 h - - -

np = 6, nc = 8 15 min 41 h - - -
np = 6, nc = 15 15 min 41 h - - -

ny = 7 1.4 s 20 s 198 s 26 min -
H̃ given ny = 7, np = 6 51 s 61 min - - -

H̃ not given ny = 7, np = 6 73 s 87 min - - -
H̃ given ny = 7, np = 6, nc = 8 53 s 69 min - - -

Bioreactor np = 3 0.79 s 12.3 s 133 s 18 min 8.3 h
nx = 3 ny = 1, np = 2 0.45 s 1.5 s 12 s 80 s 436 s

Table 7.2: Calculation time for two quadcopter models and a bioreactor example with dif-
ferent settings regarding the parameters, measurements and constraints

The next two theorems and corollaries state the existence and calculability of
π[k+1](x/y, p) and κ[k](x/y, p) (k ≥ 2) first in discrete and then in continuous time. It
can be seen via comparing formula (π[k+1]) from Chapter 6 with (7.3) resp. formula
(π[k+1]) from Section 2.1 with (7.4) and so forth. From the proofs, one can also see
how the linear equations for the coefficients are derived within SAM.
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7 Toolbox for Obtaining Approximated Solutions

Theorem 8.
Let x ∈ Rn and A ∈ Rn×n with all eigenvalues inside the unit disc. Furthermore, let
q(x) be a polynomial with degree of homogeneity d ∈ N, i. e. for all λ ∈ R it holds

q(λx) = λd · q(x).

Then there exists a polynomial p(x) with degree of homogeneity d ∈ N such that

p(x)− p(Ax) = q(x). (7.1)

A similar result and proof can be found in [29].

Proof. The polynomials p(x) and q(x) can be written in the form

∑
(i1,...,id)∈[n]d

ij≤ij+1, j∈[n−1]

ci1,...,id · xi1 · . . . · xid =
(
c1,...,1 . . . cn,...,n

)
·


xd1

xd−1
1 · x2

...
xdn

 , (7.2)

where ci ∈ R is replaced by cpi1,...,id resp. c
q
i1,...,id.

To show the existence of p(.), the coefficients cpi1,...,id will be calculated. To do so, two
cases are distinguished.
Case 1: A is a diagonal matrix with eigenvalues λ1, . . . , λd ∈ R.

A =


λ1 0 . . . 0
0 λ2

. . . ...
... . . . . . . 0
0 . . . 0 λd

 ⇒ Ax =


λ1x1
...

λdxd



Thus, in this case, p(Ax) is simply given by

p(Ax) =
∑

(i1,...,id)∈[n]d
ij≤ij+1, j∈[n−1]

cpi1,...,id · λi1xi1 · . . . · λidxid

=
(
cp1,...,1 . . . cpn,...,n

)
·


λd1 0 . . . 0
0 λd−1

1 · λ2
. . . ...

... . . . . . . 0
0 . . . 0 λdn

 ·


xd1
xd−1

1 · x2
...
xdn

 ,

and it is easy to calculate the left-hand side of (7.1).
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7.2 Coefficients of polynomials

p(x)− p(Ax) =
(
cp1,...,1 . . . cpn,...,n

)
·


1− λd1 0 . . . 0

0 1− λd−1
1 · λ2

. . . ...
... . . . . . . 0
0 . . . 0 1− λdn


︸ ︷︷ ︸

=:B

·


xd1

xd−1
1 · x2

...
xdn



=
(
cq1,...,1 . . . cqn,...,n

)
·


xd1

xd−1
1 · x2

...
xdn


Since λi ∈ (−1, 1) for all i ∈ [n], it is clear that 1−λi1 · . . . ·λid ∈ (0, 2). Leaving out the
variables x, since they are arbitrary and the equation has to hold in a neighborhood
of the origin, leads to

(
cp1,...,1 . . . cpn,...,n

)
=
(
cq1,...,1 . . . cqn,...,n

)
·



1
1− λd1

0 . . . 0

0
1

1− λd−1
1 · λ2

. . . ...
... . . . . . . 0

0 . . . 0
1

1− λdn


,

and, therefore, p(.) is determined and unique.
Case 2: A is not a diagonal matrix.
Let AJNF ∈ Cn×n be the Jordan normal form of A and S ∈ GL(n;C) the associated
transformation matrix.

A = S−1 · AJNF · S

Define z := Sx and p̃(z) := p(S−1z) as well as q̃(z) := q(S−1z).

p(x)− p(Ax) = p̃(z)− p̃(AJNFz) = q̃(z)

If c̃pi1,...,id ∈ C and c̃qi1,...,id ∈ R
(
(i1, . . . , id) ∈ [n]d

)
are the coefficients of p̃(.) resp. q̃(.),

then with a similar calculation as in case 1 one obtains
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(
c̃p1,...,1 . . . c̃pn,...,n

)
=
(
c̃q1,...,1 . . . c̃qn,...,n

)
·



1
1− λd1

∗ ∗ ∗

0
1

1− λd−1
1 · λ2

∗ ∗
... . . . . . . ∗

0 . . . 0
1

1− λdn


.

The later matrix is well defined since all eigenvalues lie inside the complex unit disc,
hence 1− λi1 · λid 6= 0. Thus p̃(.) resp. p(.) is also well defined in this case.

This result can be generalized to also include polynomials depending on parameters,
which was needed in formula (π[k+1]) in Chapter 6. Here the parameters are denoted
with y since p is used as a polynomial.

Corollary 7.
Let x ∈ Rnx, y ∈ Rny , and A ∈ Rnx×nx with all eigenvalues inside the unit disc.
Furthermore, let q(x, y) be a polynomial with degree of homogeneity d ∈ N in the
variables (x, y) such that q(0, y) equals zero. Then there exists a polynomial p(x, y)
with degree of homogeneity d ∈ N such that

p(x, y)− p(Ax, y) = q(x, y). (7.3)

Proof. (7.3) can be rewritten as

p

x
y

− p
 A 0nx×ny

0ny×nx Iny


︸ ︷︷ ︸

=: Ã

·
x
y

 = q

x
y

 .

Now Theorem 8 is applied although ny eigenvalues of Ã are 1 and not inside the unit
disc. The result stays nearly the same. One only needs to take care of the part of
B, that is not invertible. But this part defines the coefficients that belong to p(0, y)
resp. q(0, y), hence those are set to zero. The same is true for the second part of the
proof.

The continuous versions of the last theorem and corollary are given next. In Corol-
lary 8, y again plays the role of the parameters.

Theorem 9.
Let x ∈ Rn and A ∈ Rn×n such that all its eigenvalues have a negative real part.
Furthermore, let q(x) be a polynomial with degree of homogeneity d ∈ N. Then there
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7.2 Coefficients of polynomials

exists a polynomial p(x) with degree of homogeneity d ∈ N such that

∇xp(x) · Ax = q(x). (7.4)

Proof. The polynomials p(x) and q(x) can be written in the form of (7.2), where ci ∈ R
is replaced by cpi1,...,id resp. c

q
i1,...,id.

To show the existence of p(.), the coefficients cpi1,...,id will be calculated. To do so, two
cases are distinguished.
Case 1: A is a diagonal matrix with only negative eigenvalues λ1, . . . , λd.

A =


λ1 0 . . . 0
0 λ2

. . . ...
... . . . . . . 0
0 . . . 0 λd

 ⇒ Ax =


λ1x1
...

λdxd



Therefore, the left-hand side of (7.4) is given by

(
cp1,...,1 . . . cpn,...,n

)
· ∇x


xd1

xd−1
1 · x2

...
xdn

 ·

λ1x1
...

λdxd



=
(
cp1,...,1 . . . cpn,...,n

)
·


d 0 . . . 0

d− 1 1 0 0
... ... ... ...
0 . . . 0 d

 ·


xd−1
1 0 . . . 0

xd−1
1 · x2 xd1 0 0

... ... ... ...
0 . . . 0 xd−1

n

 ·

λ1x1
...

λdxd



=
(
cp1,...,1 . . . cpn,...,n

)
·


d · λ1 0 . . . 0

(d− 1) · λ1 λ2 0 0
... ... ... ...
0 . . . 0 d · λn

 ·


xd1
xd−1

1 · x2
...
xdn

 .

Re substituting this result into (7.4) and leaving out the variables x leads to

(
cp1,...,1 . . . cpn,...,n

)
·


d · λ1 0 . . . 0

(d− 1) · λ1 λ2 0 0
... ... ... ...
0 . . . 0 d · λn


︸ ︷︷ ︸

=:B

=
(
cq1,...,1 . . . cqn,...,n

)
.

Since the eigenvalues λ1, . . . , λn are negative, the matrix B is invertible, and the
coefficients of p(.) can be obtained and are unique.
Case 2: A is not a diagonal matrix.
Let AJNF ∈ Cn×n be the Jordan normal form of A and S ∈ GL(n;C) the associated
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7 Toolbox for Obtaining Approximated Solutions

transformation matrix.

A = S−1 · AJNF · S

Here a Jordan normal form with ones below the main diagonal is chosen, wherein the
proof of Theorem 8 the ones are above the main diagonal.
Define z := Sx and p̃(z) := p(S−1z) as well as q̃(z) := q(S−1z).

∇xp(x) · Ax = ∇zp̃(z) · SAS−1z = ∇zp̃(z) · AJNFz = q̃(z)

If c̃pi1,...,id ∈ C and c̃qi1,...,id ∈ R
(
(i1, . . . , id) ∈ [n]d

)
are the coefficients of p̃(.) resp. q̃(.),

then with a similar calculation as in case 1 leads to

(
c̃p1,...,1 . . . c̃pn,...,n

)
·


d · λ1 0 . . . 0
∗ λ2 0 0
... . . . ... ...
0 . . . ∗ d · λn


︸ ︷︷ ︸

=:C

=
(
c̃q1,...,1 . . . c̃qn,...,n

)

and again the matrix C is invertible and the coefficients of p̃(.) resp. p(.) can be
obtained and are unique.
Corollary 8.
Let x ∈ Rny , y ∈ Rny , and A ∈ Rnx×nx such that all its eigenvalues have a negative
real part. Furthermore, let q(x, y) be a polynomial with degree of homogeneity d ∈ N
in the variables (x, y) such that q(0, y) equals zero. Then there exists a polynomial
p(x, y) with degree of homogeneity d ∈ N such that

∇xp(x, y) · Ax = q(x, y). (7.5)

Proof. Equation (7.5) can be rewritten as

(
∇xp(x, y) ∇yp(x, y)

)
·
 A 0nx×ny

0ny×nx 0ny×ny


︸ ︷︷ ︸

=: Ã

·
x
y

 =
q(x, y)

0

 .

Now Theorem 9 is used even though ny eigenvalues of Ã are zero. The part of the
matrices B or C that are not invertible belongs to the part that contains only the
y variables. The corresponding coefficients can be set to zeros since they belong to
p(0, y) resp. q(0, y).

The calculations performed in SAM are based on the proofs and derivations that has
been outlined in this chapter. This allows to efficiently obtain the feedback laws for
the regular, parametric and output-feedback case in continuous and discrete time.
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8 Conclusion and Outlook

This work considers the explicit solution of continuous and discrete-time optimal con-
trol problems via power series expansion. Several specific extensions of Al’brekht’s
Method have been developed, including parameters dependent solutions and the struc-
tured inclusion of constraints via barrier functions. Furthermore, a novel extension to
the output-feedback case has been proposed. Detailed convergence proofs, as well as
stability proofs, have been developed. Additionally, a new approach for the derivation
of an inner approximation of the area of convergence has been investigated. One of
the open problems is the expansion of the proofs to a more general class of nonlinear
systems and non-quadratic cost functions. The estimation of the region of convergence
also leaves room for further investigation.
The parametric explicit solution enables to broaden the application area significantly.
Parametric uncertainties or disturbances can be handled effectively, thus opening the
door for a wide field of applications. The proposed procedure of dealing with the con-
straints allows non-convex and non-symmetric constraints without the need of finding
a suitable penalty function.
Extending the power series approach to do optimal control, using only the measure-
ment information, has not been done before. It, therefore, leads to a new field of
applications and is an advancement in the theory of explicit nonlinear optimal con-
trol. The non-uniqueness of the right inverse matrix H̃ is a drawback, which needs
to be investigated further. A „simpler“ choice leads to simpler representations of the
power series of the control law but not necessarily to a better control performance.
The effectiveness of the proposed methods was shown, using realistic examples from
the fields of unmanned aerial vehicles as well as the control of bioreactors. This was
enabled by the toolbox SAM, which is capable of calculating the power series expan-
sions.
Future research will focus on generalizing the convergence proofs to a broader class
of optimal control problems. Furthermore, the power series approach can be easily
combined with, for example, path following. Estimating the region where stability
can be guaranteed should be pursued further. Parametric constraints, e. g. in case of
moving obstacles, are also worthy of being investigated. The software SAM is under
further development and constantly improved and expanded as the repertoire of the
different versions of Al’brekht’s approach grows.
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Definition 1 (Lyapunov function).

(a) Let

ẋ = f(x)

with f : Rn → Rn be an n-dimensional (n ∈ N) autonomous continuous-time
system. A function V ∈ C1(Rn;R) is called a Lyapunov function if
(I) V (x) is positive definite and
(II) ∇xV (x) · f(x) is negative definite.
V is called a local Lyapunov function, if both conditions hold locally, [63].

(b) Let

x+ = f(x)

with f : Rn → Rn be an n-dimensional (n ∈ N) autonomous discrete-time system.
A function V ∈ C1(Rn;R) is called a Lyapunov function if
(III) V (x) is positive definite and
(IV) V

(
f(x)

)
− V (x) is negative definite.

V is called a local Lyapunov function, if both conditions hold locally, [11, 29].

Lemma 3 (Hautus Lemma).
Consider a linear continuous or discrete-time system with matrices F ∈ Rnx×nx and
G ∈ Rnx×nu. Furthermore, let the system be stabilizable. Then for each λ ∈ C, it holds

rank
(
F − λ · Inx G

)
= nx.

In particular, one has rank
(
F G

)
= nx and rank

(
F − Inx G

)
= nx.

Proof. The proof can be found, for example, in [91] and [102].

Analytic functions
Definition 2 (Analytic functions).
Let f : D → R with D ⊆ Rn and n ∈ N. f is called analytic or locally analytic in
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the domain D if the power series

f(x) =
∑
|α|≥0

Dαf(x0)
α! · (x− x0)α = f(x0) +∇xf(x0) · (x− x0) + . . . (A.1)

is convergent for every x0 ∈ D and x in a neighborhood of x0.
Hereby α ∈ Nn

0 = N0 × . . .× N0 is a multi-index and

|α| =
n∑
i=1

αi, α! =
n∏
i=1

αi.

Therefore, the derivative Dα is defined by

Dαf(x0) := ∂|α|f

∂xα1
1 . . . ∂xαnn

(x0),

and (x− x0)k is given via

(x− x0)α =
n∏
i=1

(xi − x0,i)αi.

f is called globally analytic if D = Rn.

Remark 16. (a) For an analytic function f , the power series (A.1) is equivalent to
its Taylor series.

(b) If the function f is multidimensional, i. e. f : D → Rm (m ∈ N), then Defini-
tion 2 can be used component-wise.

(c) Equivalent to the definition, a function f : D → R is analytic if f ∈ C∞(D;R)
and it is

f(x) =
∞∑
k=0

f [k](x) =
∞∑
k=0

∑
|α|=k

Dαf(x0)
α! · (x− x0)α

such that for every compact set K ⊆ D with x0 ∈ K there exists a constant
C ∈ R>0 with

|f [k](x)| =
∑
|α|=k

Dαf(x0)
α! · (x− x0)α ≤ Ck · ||x− x0||k (A.2)

for each x ∈ K. This result can be gleaned in [50].

Matrix norms and appraisal of derivatives of polynomials
Definition 3 (Spectral norm).
Let A be an n×m-dimensional matrix with real entries. Then the spectral norm of
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A is defined as

||A|| = ||A||2 :=
√
λmax(AT · A),

where λmax(AT · A) is the largest eigenvalue of AT · A.

Remark 17 (Spectral and Frobenius norm inequality).
The spectral norm is upper bounded by the Frobenius norm, see [33].

||A||2 ≤
√√√√ n∑
i=1

n∑
j=1
|Ai,j|2 =: ||A||F (A.3)

Theorem 10 (Appraisal of derivatives of polynomials).
Let f : Rnx × Rnp → Rn (nx, np, n ∈ N) be an analytic function with power series

f(x, p) =
∞∑
k=1

f [k](x, p), (A.4)

where ( xp ) ∈ Rnx+np. If for k ∈ N,

∣∣∣∣∣∣f [k](x, p)
∣∣∣∣∣∣ ≤ Ck ·

∣∣∣∣∣∣
∣∣∣∣∣∣
x
p

∣∣∣∣∣∣
∣∣∣∣∣∣
k

holds one also has

∣∣∣∣∣∣∇xf [k](x, p)
∣∣∣∣∣∣ ≤ k · Ck ·

∣∣∣∣∣∣
∣∣∣∣∣∣
x
p

∣∣∣∣∣∣
∣∣∣∣∣∣
k−1

(A.5)

with the same constant Ck ∈ R>0.

Proof. Each component j ∈ [n] of the k-th degree of the power series (A.4) can be
written as

f
[k]
j (x, p) =

∑
|m|=|(mx

mp )|=k
cj,m · xmx · pmp, (A.6)

where m = (mx
mp ) ∈ Nnx+np

0 is a multi-index such that

|m| =
nx+np∑
i=1

mi.

The scalar polynomials xmx respectively pmp are given by

xmx =
nx∏
i=1

x
mx,i

i and pmp =
np∏
i=1

p
mp,i

i .

Now set (mx
mp ) = r · ξ with r ∈ R>0 and ξ ∈ Snx+np−1. For arbitrary j ∈ [n] and k ∈ N,
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the expression in (A.6) can be bounded as follows.∣∣∣∣f [k]
j (x, p)

∣∣∣∣ ≤ rk ·
∑
|m|=k

|cj,m|
︸ ︷︷ ︸

=:Cj,k

· |ξ|k︸︷︷︸
=1

= Cj,k · rk

Thus, for the vector that contains the k-th degree of f one has

∣∣∣∣∣∣f [k](x, p)
∣∣∣∣∣∣ ≤

√√√√ n∑
j=1

C2
j,k︸ ︷︷ ︸

=:Ck

· rk = Ck · rk.

Now taking the derivative with respect to xi for i ∈ [nx] gives

∇xif
[k]
j (x, p) =

∑
|m|=k

cj,m ·mx,i · xmx−ei, (A.7)

where ei is the i-th unit vector in Rnx and mx,i is the i-th component of mx.
The derivative in (A.7) can be bounded in the same way as (A.6).∣∣∣∣∣∣∣∣∇xif [k]

j (x, p)
∣∣∣∣∣∣∣∣ ≤ rk−1 ·mx,i ·

∑
|m|=k

|cj,m|
︸ ︷︷ ︸

=Cj,k

· |ξ|k−1︸ ︷︷ ︸
=1

≤ k · Cj,k · rk−1 (A.8)

This finally leads to an upper bound of the norm of the matrix

∇xf [k](x, p) =


∇x1f

[k]
1 (x, p) . . . ∇xnxf

[k]
1 (x, p)

... . . . ...
∇x1f

[k]
n (x, p) . . . ∇xnxf [k]

n (x, p)

 .

∣∣∣∣∣∣∇xf [k](x, p)
∣∣∣∣∣∣ (A.3)
≤

√√√√ n∑
j=1

nx∑
i=1

∣∣∣∣∇xif [k]
j (x, p)

∣∣∣∣2 (A.8)
≤ rk−1 ·

√√√√ n∑
j=1

nx∑
i=1

m2
x,i · C2

j,k

= rk−1 ·
√√√√ n∑
j=1

C2
j,k︸ ︷︷ ︸

=Ck

·
√√√√ nx∑
i=1

m2
x,i ≤

nx∑
i=1

mx,i · Ck · rk−1

≤ k · Ck · rk−1
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Derivation of the Hamilton-Jacobi-Bellman equation

To derive the Hamilton-Jacobi-Bellman equation, the following optimal control
problem is considered.

π
(
y(0), p(0)

)
= min

u(.)

∞∫
0
`
(
y(τ), u(τ)

)
dτ

s.t. ẋ = f(x, u, p)
y = h(x, p)

(OCP)

Hereby x : R≥0 → Rnx, y : R≥0 → Rny , u : R≥0 → Rnu, and p : R≥0 → Rnp represent the
system states, output variables, input variables, and system parameters/uncertainties.
f : Rnx × Rnu × Rnp → Rnx represents the system dynamics, h : Rnx × Rnp → Rny the
output function, and ` : Rny × Rnu → R the cost function. π : Rny × Rnp → R is the
optimal cost function resp. value function. Using Bellman’s principle of optimality,
the optimal cost function can be for any t ≥ 0 and ∆t ≥ 0 recursively written as

π
(
y(t), p(t)

)
= π

(
y(t+ ∆t), p(t+ ∆t)

)
+ min

u(.)

t+∆t∫
t

`
(
y((τ), u(τ)

)
dτ. (A.9)

If the parameter function is known at any time and also differentiable, then a first-
order approximation of π can be given.

π
(
y(t+ ∆t), p(t+ ∆t)

)
= π

(
y(t), p(t)

)
+∇yπ

(
y(t), p(t)

)
· ∇xh

(
x(t), p(t)

)
· ẋ(t) ·∆t

+∇yπ
(
y(t), p(t)

)
· ∇ph

(
x(t), p(t)

)
· ṗ(t) ·∆t (A.10)

+∇pπ
(
y(t), p(t)

)
· ṗ(t) ·∆t+ o(∆t)

Here o(∆t) is the set of all functions g : R→ R such that

lim
∆t→0

∣∣∣∣∣g(∆t)
∆t

∣∣∣∣∣ = 0,

which is known as the little-o notation, which is part of the Bachmann-Landau
notation. Combining (A.9) and (A.10) yields:

0 = min
u(.)

∇yπ(y(t), p(t)
)
· ∇xh

(
x(t), p(t)

)
· f
(
x(t), u(t), p(t)

)
·∆t

+∇yπ
(
y(t), p(t)

)
· ∇ph

(
x(t), p(t)

)
· ṗ(t) ·∆t

+∇pπ
(
y(t), p(t)

)
· ṗ(t) ·∆t+

t+∆t∫
t

`
(
y(τ), u(τ)

)
dτ + o(∆t)


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Dividing by ∆t and taking lim
∆t→0

leads to the following minimization problem.

0 = min
u(.)

∇yπ(y, p) · ∇xh(x, p) · f(x, u, p) +∇yπ(y, p) · ∇ph(x, p) · ṗ

+∇pπ(y, p) · ṗ+ `(y, u)


(A.11)

To see that one may use the following identity.

lim
∆t→0

 1
∆t

t+∆t∫
t

`
(
y(τ), u(τ)

)
dτ + o(∆t)

∆t

 = `
(
y(t), u(t)

)

The minimizing argument of (A.11) will be called umin or κ, and, similarly to π, it
depends on the output variables y and the parameters p. Therefore, equation (A.11)
can be written as

0 = ∇yπ(y, p) ·
(
∇xh(x, p) · f

(
x, κ(y, p), p

)
+∇ph(x, p) · ṗ

)
+∇pπ(y, p) · ṗ+ `

(
y, κ(y, p)

)
.

(HJBE-1)

The second equation is now given by the first-order optimality condition.

0 = ∇yπ(y, p) · ∇xh(x, p) · ∇uf
(
x, κ(y, p), p

)
+∇u`

(
y, κ(y, p)

)
(HJBE-2)

Remark 18. (a) In the previous calculation, it is observed that the parameters p
actually behave like the states x. Which means the time-derivative ṗ has to be
known. Since this is usually not realistic, one may assume time-independent
parameters, which simplifies the Hamilton-Jacobi-Bellman equation (HJBE-1)
and its derivative with respect to the input (HJBE-2).

0 = ∇yπ(y, p) · ∇xh(x, p) · f
(
x, κ(y, p), p

)
+ `

(
y, κ(y, p)

)
(HJBE-1’)

0 = ∇yπ(y, p) · ∇xh(x, p) · ∇uf
(
x, κ(y, p), p

)
+∇u`

(
y, κ(y, p)

)
(HJBE-2’)

(b) In this setup, the output function h does not depend on the control input u, else
the time derivative u̇ = d

dtκ would be a part of the HJBE. The solvability of the
resulting equations is still unclear if Al’brekht’s Method is used.

d
dtκ

(
x(t), p(t)

)
= ∇xκ

(
x(t), p(t)

)
· f
(
x(t), κ

(
x(t), p(t)

)
, p(t)

)
+∇pκ

(
x(t), p(t)

)
· ṗ(t)

(c) If h(x, p) = x, i. e. the output variables are identical with the states (y = x),
then the HJBE (HJBE-1’) and its input-derivative (HJBE-2’) can be simplified
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further.

0 = ∇xπ(x, p) · f
(
x, κ(x, p), p

)
+ `

(
x, κ(x, p)

)
(HJBE-1”)

0 = ∇xπ(x, p) · ∇uf
(
x, κ(x, p), p

)
+∇u`

(
x, κ(x, p)

)
(HJBE-2”)

(d) If additionally to (c) the parameters p are set to 0 or are just removed, then
(HJBE-1”) and (HJBE-2”) result in the well known nominal HJBE and its
derivative.

0 = ∇xπ(x) · f
(
x, κ(x)

)
+ `

(
x, κ(x)

)
(HJBE-1”’)

0 = ∇xπ(x) · ∇uf
(
x, κ(x)

)
+∇u`

(
x, κ(x)

)
(HJBE-2”’)

Pontryagin’s Minimum Principle for parametric
output-feedback

In this section, a comparison between the minimum principle introduced by Lev Se-
myonovich Pontryagin (1908-1988) (see [12, 79]) and the Hamilton-Jacobi-Bellman
equations (William Rowan Hamilton (1805-1865), Carl Gustav Jacob Jacobi (1804-
1851), Richard Ernest Bellman (1920-1984)) will be done. To do so, an optimal control
problem

min
u(.)

∞∫
0
`
(
y(τ), u(τ)

)
dτ (OCP)

ẋ = f(x, u, p), (f)
y = h(x, p), (h)

where the system dynamics f : Rnx ×Rnu ×Rnp → Rnx, the output function h : Rnx ×
Rnp → Rny , and the cost function ` : Rny × Rnu → R are at least once continuously
differentiable and the parameters p ∈ Rnp are fixed. The control target is y = 0 resp.
x = 0, if all states are observable. Following the steps of Pontryagin, at first, the
Hamiltonian function H : Rnx × Rny × Rnu × Rnp × Rnλ × Rnµ → R is defined via

H(x, y, u, p, λ, µ) = `(y, u) + λT · f(x, u, p) + µT · y (H)

and a total cost function J : Rnx ×Rny ×Rnu ×Rnp ×Rnλ ×Rnµ → R as integral over
the cost `.

J(x, y, u, p, λ, µ) =
∞∫
0
`
(
y(τ), u(τ)

)
dτ (J)

λ : R≥0 → Rnx is called the co-state, whereas µ : R≥0 → Rny can be seen as a co-
output. Both could also be called Lagrange multipliers.
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Using the Hamiltonian, the total cost can be reformulated and, therefore, its explicit
dependence on (x, p, λ, µ) becomes clear.

J(x, y, u, p, λ, µ) =
∞∫
0
`(y, u) dτ (H)=

(f),(h)

∞∫
0
H(x, y, u, p, λ, µ)− λT · ẋ− µT · h(x, p) dτ

Now let x : R≥0 → Rnx, y : R≥0 → Rny , u : R≥0 → Rnu, λ : R≥0 → Rnx, and
µ : R≥0 → Rny be an optimal solution of (OCP) for a fixed p ∈ Rnp under the conditions
(f) and (h).
Take another point close to the optimal solution above:
x+ ∆x : R≥0 → Rnx, y + ∆y : R≥0 → Rny , u+ ∆u : R≥0 → Rnu, λ+ ∆λ : R≥0 → Rnx,
µ+ ∆µ : R≥0 → Rny

Therefore, one also has functions ∆x : R≥0 → Rnx, ∆y : R≥0 → Rny , ∆u : R≥0 → Rnu,
∆λ : R≥0 → Rnx, and ∆µ : R≥0 → Rny . Furthermore, the initial point for the states
should be the same for all trajectories (∆x(0) = 0). The resulting total cost is given
by

J(x+ ∆x, y + ∆y, u+ ∆u, p, λ+ ∆λ, µ+ ∆µ)

=
∞∫
0
H(x+ ∆x, y + ∆y, u+ ∆u, p, λ+ ∆λ, µ+ ∆µ)

− (λ+ ∆λ)T · ˙(x+ ∆x)− (µ+ ∆µ)T · h(x+ ∆x, p) dτ.

To find criteria for an optimal solution, the first variation of J is needed.

J(x+ ∆x, y + ∆y, u+ ∆u, p, λ+ ∆λ, µ+ ∆µ)− J(x, y, u, p, λ, µ)

=
∞∫
0
∇xH(x, y, u, p, λ, µ) ·∆x+∇yH(x, y, u, p, λ, µ) ·∆y +∇uH(x, y, u, p, λ, µ) ·∆u

+∇λH(x, y, u, p, λ, µ) ·∆λ+∇µH(x, y, u, p, λ, µ) ·∆µ− (λ+ ∆λ)T · ( ˙x+ ∆x)
+ λT · ẋ− h(x, p)T ·∆µ− µT · ∇xh(x, p) ·∆x dτ + o(∆x,∆y,∆u,∆λ,∆µ)

The sum under the integral can be simplified using the following identities:

−(λ+ ∆λ)T · ( ˙x+ ∆x) + λT · ẋ = −λT · ∆̇x−∆λT · ∆̇x−∆λT · ẋ

Since it is hard to evaluate λT · ∆̇x, it is replaced using partial integration.

−
∞∫
0
λT · ∆̇x dτ = −

[
λT ·∆x

]∞
τ=0 +

∞∫
0
λ̇T ·∆x dτ =

∞∫
0
λ̇T ·∆x dτ
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Remember, the control objective is to steer the system output to the origin (resp.
x = 0, if all states are observable), and the initial states are fixed. Thus

lim
t→∞

∆x(t) = 0 and ∆x(0) = 0

are holding. ∆λT·∆̇x can be neglected since it belongs to the class o(∆x,∆y,∆u,∆λ,∆µ).
Now let ∆x, ∆y, ∆u, ∆λ, and ∆µ go to 0 but independently. Then the following iden-
tities are obtained:

−λ̇T = ∇xH(x, y, u, p, λ, µ)− µT · ∇xh(x, p)
0 = ∇yH(x, y, u, p, λ, µ)
0 = ∇uH(x, y, u, p, λ, µ)
ẋT = ∇λH(x, y, u, p, λ, µ)

h(x, p)T = ∇µH(x, y, u, p, λ, µ)

Re-substituting the Hamiltonian function (H) and setting λ, µ, and κ := u dependent
on y and p gives

−λ̇T(y, p) = λT(y, p) · ∇xf
(
x, κ(y, p), p

)
− µT(y, p) · ∇xh(x, p), (PMP-1)

0 = ∇y`
(
y, κ(y, p)

)
+ µT(y, p), (PMP-2)

0 = ∇u`
(
y, κ(y, p)

)
+ λT(y, p) · ∇uf

(
x, κ(y, p), p

)
, (PMP-3)

ẋ = f
(
x, κ(y, p), p

)
, (PMP-4)

h(x, p) = y, (PMP-5)

where (PMP-1) and (PMP-2) together lead to

−λ̇T(y, p) = λT(y, p) · ∇xf
(
x, κ(y, p), p

)
+∇y`

(
y, κ(y, p)

)
· ∇xh(x, p). (PMP-1*)

Remark 19. (a) In the setup above, the parameters p do not depend on the time
and the output function h does not depend on the control input u to be consistent
with the setup used for the Hamilton-Jacobi-Bellman equations, see (OCP) in the
previous section and Remark 18 (a) and (b).

(b) If input to state control is considered (y = h(x, p) = x), then the equations
(PMP-1)-(PMP-5) are reduced.

−λ̇T(x, p) = λT(x, p) · ∇xf
(
x, κ(x, p), p

)
+∇x`

(
x, κ(x, p)

)
(PMP-1’)

0 = ∇u`
(
x, κ(x, p)

)
+ λT(x, p) · ∇uf

(
x, κ(x, p), p

)
(PMP-2’)

ẋ = f
(
x, κ(x, p), p

)
(PMP-3’)

(c) If, in addition to part (b), there are no parameters present, the (PMP-1’)-(PMP-
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3’) result in the well-known equations obtained via the classic version of Pon-
tryagin’s Minimum Principle.

−λ̇T(x) = λT(x) · ∇xf
(
x, κ(x)

)
+∇x`

(
x, κ(x)

)
(PMP-1”)

0 = ∇u`
(
x, κ(x)

)
+ λT(x) · ∇uf

(
x, κ(x)

)
(PMP-2”)

ẋ = f
(
x, κ(x)

)
(PMP-3”)

(d) The left-hand sides of (PMP-1*), (PMP-1’,) and (PMP-1”) can be replaced uti-
lizing

λ̇(y, p) = dλ
dt (y, p) = ∇yλ(y, p) · ∇xh(x, p) · f

(
x, κ(y, p), p

)
,

λ̇(x, p) = dλ
dt (x, p) = ∇xλ(x, p) · f

(
x, κ(x, p), p

)
,

λ̇(x) = dλ
dt (x) = ∇xλ(x) · f

(
x, κ(x)

)
and, therefore, the equations gained via PMP do not contain any explicit time-
derivatives.

The equality of the optimality conditions gained from PMP and HJB are seen if the
PMP equations are rewritten and integrated. For example, (PMP-1*) can be seen as
a Jacobian.

0 = λT(y, p) · ∇xf(x, u, p) +∇y`(y, u) · ∇xh(x, p)
+ f(x, u, p)T · ∇xh(x, p)T · ∇yλ(y, p)T

=
[
∇x

(
λT(y, p) · f(x, u, p) + `(y, u)

)]
u=κ(y,p)

After integration, one obtains that

λT(y, p) · f
(
x, κ(y, p), p

)
+ `

(
y, κ(y, p)

)
must be constant. Now using the setup from Section 5.1, 0 = y = h(x, p) implies
x = 0 and κ(y, p) = 0. Hence it is

λT(y, p) · f
(
x, κ(y, p), p

)
+ `

(
y, κ(y, p)

)
= 0.

Furthermore, replacing λT(y, p) with

∇yπ(y, p) · ∇xh(x, p)

results in the Hamilton-Jacobi-Bellman equation (HJBE-1). The same substitution
shows the equality of (PMP-3) and (HJBE-2).
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Remark 20. In case of state-feedback (y = x), λT(x, p) is replaced by ∇xπ(x, p). Thus
the equations (PMP-1’) (after integration with respect to x) and (PMP-2’) become the
Hamilton-Jacobi-Bellman equations (HJBE-2”), (HJBE-2”)
from Remark 18. The same holds for the non-parametric case.
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