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Zusammenfassung

Große Portalkräne werden häufig in Hafenterminals zum Be- und Entladen von Contain-
ern installiert. In den letzten Jahrzehnten war ein gängiger Trend im Kranbau die Ver-
wendung von Leichtbauelementen. Dies führte einerseits zur Schonung von Ressourcen
und erhöhte andererseits die Wirkung von elastischen Strukturschwingungen. Diese
schwach gedämpften Schwingungen führen zu einem schnelleren Verschleiß der Kon-
struktion und verschlechtern die Gesamtleistung eines Kranbetriebs. Darüber hinaus ist
die Vernachlässigung dieser Strukturschwingungen bei dem Entwurf des Regelungssys-
tem ist nicht mehr zulässig, und ihre Dynamik muss berücksichtigt werden. Der Fokus
dieser Arbeit liegt auf der Reduktion der unerwünschten niederfrequenten Schwingun-
gen in Richtung der Katzfahrt durch den Katzantrieb. Dies kann durch eine zusätzliche
Funktionalität des Motion-Control-Systems erreicht werden. Die Anwendung dieses
Konzepts erfordert keine nennenswerten Investitionskosten, und es wird gezeigt, dass
die erzielte Dämpfung mit anderen kosten-intensiveren bestehenden Ansätzen vergle-
ichbar ist. In dieser Arbeit werden drei modellbasierte Regelungsmethoden vorgestellt
und in den entsprechenden Simulations- und Experimentalstudien validiert.

In Kapitel 2 werden die mathematischen und physikalischen Modelle des Portalkrans
mit Strukturdynamik vorgestellt. Zunächst wird die Herleitung des analytischen Mod-
ells des Portalkrans und dessen Vereinfachung gezeigt. Dann werden die physikalischen
und mathematischen Modelle für zwei verschiedene Laborkonfigurationen vorgestellt.
Schließlich werden die entsprechenden mathematischen Modelle experimentell validiert.

In Kapitel 3 wird die lineare robuste Regelung für Portalkrane vorgeschlagen. Dieser
Ansatz erfordert keinen Neuentwurf des Motion-Control-Systems der Katze und kann
daher leicht in die meisten Industriekrane integriert werden. Darüber hinaus erfüllt das
auf der H∞ - Loopshaping-Entwurfsmethode basierende Regelgesetz die robuste Sta-
bilität und geforderten Leistungskriterien auch unter der Annahme, dass die Parameter
des Portalkrans nicht genau bekannt sind. Zur Beschreibung der Unsicherheiten wurde
die normalisierte koprime Faktor-Beschreibung in Kombination mit der Gap-Metrik
verwendet.

In Kapitel 4 wird die lineare Regelung für Portalkrane auf der Basis eines paralle-
len Kompensators (PFC) vorgestellt. Diese Regelung erfordert keine zusätzliche Mes-
sung der Schwingungen und keinen Neuentwurf des Motion-Control-Systems der Katze.
Dieser Ansatz ist jedoch nur für Portalkrankonfigurationen mit den starken Systemkop-
plungen zwischen Katze, Last und Struktur anwendbar, d.h. das betrachtende Ein-
Ausgangssystem muss beobachtbar sein. Das Regelungssystem erreicht eine Position-
ierung der Last und Reduktion der Schwingungen über eine Kombination aus dem
PFC und einem Regler. Der PFC ist für die Kompensation der Systemnulldynamik



entworfen und verleiht der erweiterten Strecke die Almost Strict Positive Real (ASPR)
Eigenschaften. Das vorgeschlagene einfache lineare Entwurfsverfahren sorgt für eine
gewünschte Platzierung der Nullstellen der erweiterten Strecke und reduziert den Bias-
Beitrag der PFC. Das erweiterte System kann durch Anwendung eines ausgangsrück-
gekoppelten Reglers mit hoher Verstärkung stabilisiert werden.

In Kapitel 5 wird die nichtlineare Regelung für Portalkrane vorgeschlagen. Dieser
Ansatz ermöglicht eine Ableitung des Regelgesetzes ohne Modellvereinfachung unter
direkter Verwendung der Bewegungsgleichungen. Um die Dynamik des Portalkransys-
tems zu stabilisieren, wird ein verallgemeinertes Fehlermaß, die sogenannte Diskrepanz,
berücksichtigt. Unter Anwendung der Stabilitätstheorie in Bezug auf zwei Diskrepanzen
wird das nichtlineare Regelgesetz für den unteraktuierten Portalkran basierend auf dem
direkten Lyapunov-Entwurfsansatz abgeleitet.



Abstract

Large gantry cranes are often installed in port terminals for loading and unloading
containers. In recent decades, a common trend in crane design was the use of lightweight
structural elements. On the one hand, this led to a conservation of resources and, on the
other hand, increased the impact of flexible structural vibrations. These weakly damped
vibrations yield faster wear of construction and deteriorate the overall performance
of crane operation. In addition, neglecting these structural vibrations in the design
of control systems has become less valid, and their dynamics has to be taken into
account. The focus of this thesis is to reduce the undesired low-frequency vibrations in
a trolley travel direction using the trolley actuator. This can be accomplished by adding
an additional functionality to the trolley motion control system, which requires its
redesign. The application of this concept does not require significant investment costs,
and it will be shown that the obtained damping is comparable with other higher-cost
existing approaches. In this thesis, three model-based control approaches are presented
and validated in the corresponding simulation and experimental studies.

In Chapter 2 the mathematical and physical models of gantry crane with structural
dynamics are presented. Initially, the derivation of the analytical model of the gantry
crane and its simplification are shown. Then the physical and mathematical models
for two different laboratory configurations are presented. Finally, the corresponding
mathematical models are experimentally validated.

In Chapter 3 the linear robust control for gantry crane is proposed. This approach does
not require a full redesign of the trolley motion control system and, therefore, can be
easily integrated into most industrial cranes. In addition, the controller based on the
H∞ - loop-shaping design procedure satisfies robust stability and required performance
criteria under the assumption that gantry crane parameters are not exactly known. In
order to introduce the parametric uncertainties, the normalized coprime factor descrip-
tion with the associated gap metric has been used and applied for the generation of a
set of the gantry crane models.

In Chapter 4 the linear control for gantry crane based on a parallel feed-forward com-
pensator (PFC) is presented. This control does not require the additional measurement
of the oscillations and a full redesign of the trolley motion control system. However, the
following approach is only applicable for gantry crane configuration with strong system
couplings between the trolley, load, and structure, i.e., the input-output system plant is
observable. The control system provides the positioning of the payload and reduction
of the oscillations via a combination of the PFC and an output feedback controller.
The PFC is designed to compensate the system zero dynamics and render an extended
plant the almost strict positive real (ASPR) properties. The proposed simple linear



design procedure provides a zero placement of the augmented plant and reduces the
bias contribution of the PFC. The augmented system can be stabilized by applying a
high gain output feedback control.

In Chapter 5 the nonlinear control for a gantry crane is proposed. This approach allows
a control law derivation without model simplification using the equations of motion
directly. In order to stabilize the gantry crane system dynamics, a generalized error
measure, called discrepancy, is taken into consideration. Applying the stability theory
with respect to two discrepancies, the nonlinear control law for the underactuated
gantry crane based on the Lyapunov direct design approach is derived.



Nomenclature

Gantry crane modeling

Symbols

T,U,E,W kinetic, potential and total energies, and work

M,P,Q mass, damping and stiffness matrices
R,S normalized damping and stiffness matrices
A,B,C,D system matrices of a state space model

F (t) forces

L length of crane legs
E Young’s modulus
I moment of inertia of a cross-sectional area

t time
x spatial coordinate
s Laplace variable
δ(·) variational operator

q(t), ν(x, t) vectors of generalized coordinates
z(t) trolley position
zp(t) payload position
ϕ(t) sway angle
w(x, t) displacement of crane structure
v(x, t) velocity of crane structure
τ(t) motor torque
i(t) motor current
x(t) state vector
u(t) vector of inputs
y(t) vector of outputs

m mass
% structure density
l rope length



h spatial step
c structural damping
k, a, b specific coefficients
λ eigenvalues
fi, ωi, ξi frequency, angular frequency and damping ratio of i-th mode
α, β mass- and stiffness-proportional damping coefficients

Subscripts

a armature (motor)
b boundary
c crane girder
co Coulomb
d discretized
e end
fr friction
g gear
m motor
o overall
p payload
r reduced
ref reference
s sum
st static
sb Stribeck
t trolley
Σ total

Control design

Symbols

Lfh(x) Lee derivative of h(x) along f(x)

V Lyapunov functional
J Quadratic cost functional

K vector of feedback control gains
L vector of observer gains

P (s) transfer function of open loop system
G(s) transfer function of closed loop system
C(s) transfer function of controller
F (s) transfer function of parallel feed-forward compensator
N(s) transfer function numerator



M(s) transfer function denominator
L(s),W (s) auxiliary transfer function of interest

∆ uncertainty
T time constant
R resistance

δb gap metric
ϑ relative degree
ρ discrepancy

Subscripts

n nominal
s shaped

Abbreviations

DC direct current
DPS distributed parameter system
EC electronically commutated
FDM finite difference method
FEM finite element method
HMI human-machine interface
IMU inertial measurement unit
IPC industrial personal computer
LHP left-half plane
LTI linear time-invariant
ODE ordinary differential equation
P proportional (controller)
PD proportional-derivative (controller)
PI proportional-integral (controller)
PID proportional-integral-derivative (controller)
PDE partial differential equation
PFC parallel feed-forward compensator
PLC programmable logic controller
RHP right-half plane
SISO single-input single-output
STS ship-to-shore
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1. Introduction

1.1. Problem formulation

Nowadays, faster payloads transportation and well-thought-out logistics play an essen-
tial role in developing commerce and manufacturing industry. Time reduction of these
operations requires the utilization of automated machines, including cranes. Gantry
cranes are a broad class of cranes with load-carrying capacity from several to hundreds
of tonnes, which can be found in many industrial places such as factories, building
areas, marine ports, and railways. Large gantry cranes are regularly used for container
handling at port terminals (Fig. 1.1). In order to reduce manufacture and operation
costs, most of the crane structures have a lightweight design, e.g., using trusses. On the
one hand, this reduction results in resource-saving, but, on the other hand, it commonly
increases the sensitivity of the structure towards elastic vibrations.

During the last decades, the construction industry development aims to implement ad-
vanced automated technologies for productivity and safety improvements [106]. Conse-
quentially, there has been strong research in the field of modeling and control of crane
systems, which is summarized in overview works [1, 77]. One of the most important
focal points is a reduction of load swinging during the positioning process. Here, a lot of
feed-forward and feedback control strategies have been applied for solution of the prob-
lem: e.g. input shaping and model-reference command shaping approaches [47, 48, 58]
and their combination with feedback control [60, 78, 82]; output-based input shaping
techniques [2, 79]; error tracking control [120]; robust feedback control [37, 70, 105, 108];
adaptive tracking control [11, 13, 119]; model predictive control [4, 15, 98]; energy-based
control [103, 104, 111, 122, 123]; sliding-mode control [57, 113, 109, 125, 121] etc. In
most works mentioned above, the control law is designed under the assumption that the
crane structure is of infinite stiffness and, therefore, its dynamics is negligible. Designed
control laws are usually verified in simulation studies using the conventional mathemat-
ical models of the cranes or experimental studies using idealized small-scaled laboratory
cranes of infinite stiffness. However, the application of lightweight structures for indus-
trial cranes and their continuously increasing dimensions make this assumption for the
control design less and less valid. Moreover, it is well known that the feedback control
law designed for such an idealized system may suffer from uncertainties resulting in
oscillatory or even unstable system dynamics [76]. Hence, for the control design, an
accurate model including the coupling between the crane trolley, the hanging payload,
and the crane structure has to be derived.

The problem of the structural dynamics has been stated in the literature for a variety
of cranes ranging from slewing cranes [90, 81, 52] to overhead, gantry, and ship-to-
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2 CHAPTER 1. INTRODUCTION

Figure 1.1.: The gantry crane from container port [55]

shore (STS) cranes [25, 112, 115, 116, 101, 59, 127, 126, 74, 100, 80]. During the
operation of large gantry cranes, two critical problems of structural dynamics should be
emphasized: vertical oscillations of the girder due to the travel of the crane trolley and
large oscillations of the gantry frame in the direction of the trolley travel. Both problems
result from a dynamic interaction between the crane structure and the moving trolley
with the hanging payload [126]. Furthermore, there exist structural dynamics problems
that are induced by external disturbances, e.g., higher modes excitation due to gusts
of wind, waves, and seismic activity [19, 5, 114]. The problem of vertical vibrations is
also called the moving load problem and it has been well covered with the modeling,
analysis [69, 25, 115, 116] and solution approaches [54, 87].

In this work, the focus is on the elastic vibrations of the gantry frame structure in
the direction of the trolley movement. In Fig. 1.2 the typical crane structure deflection
of a large gantry crane is depicted. These vibrations have negative effect because of
the high amplitudes of their excited first natural frequency and weakly damped be-
havior. On the one hand, they are responsible for faster construction wear due to the
additional mechanical stresses, and, on the other hand, they deteriorate the operation
performance. For precise payload positioning, e.g., in fully automated cranes, locations
of all components should be known precisely, and such large deflections induced by the
structure with limited stiffness make the task more difficult. In cranes operated via
a human-machine interface (HMI) approximately 30% of time for each trolley travel
is spent on load positioning and reducing the load swaying [127]. Therefore, the fre-
quently observed associated excitation of low-frequency vibrations, being perceptible
by the crane operator, are undesired. Moreover, in [74] it has been mentioned that crane
operators complained about discomfort during the handling.
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Figure 1.2.: Crane structure deflection in the direction of the trolley travel

Figure 1.3.: Measurements of elastic vibrations of the large gantry crane: vibration ac-
celeration (top), its fast Fourier transform (center) and reference velocity
(bottom) [55]

In Fig. 1.3 and Fig. 1.4 the vibration measurements from two industrial gantry cranes
are depicted. Here, in Fig. 1.3 the structure response of the large gantry crane (top) and
its fast Fourier transform (center) on a single trolley travel are shown [55]. The crane
has been manually operated in velocity control mode with the reference trajectory vref
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Figure 1.4.: Measurements of elastic vibrations of the STS gantry crane: vibration ac-
celeration (top, gray), its filtered value (top, blue) and its fast Fourier
transform (bottom, blue)

(bottom). The legs height of the crane is about 28 m and the outreach is about 37 m.
The first natural frequency of the crane is f1 = 0.45 Hz. In Fig. 1.4 the behavior of
the STS container gantry crane on multiple trolley travels (top) and its fast Fourier
transform (bottom) are represented. The legs height of this crane is about 50 m and
the outreach is about 40 m. The first eigenfrequency of the crane is f1 = 0.41 Hz. It
can be seen that by multiple operational cycles, the amplitudes of vibrations may be
boosted. Both figures show that the first natural frequencies have a dominant impact
on the structural dynamics by normal operation. The typical frequency range for large
gantry cranes can be f1 = 0.4− 0.8 Hz [74, 106].

1.2. Motivation

At the present time, only a few approaches for the reduction of the gantry crane struc-
tural vibrations have been proposed in the literature. In [127] the authors propose the
optimization of the gantry structure. This method relies on the stiffening of the crane
structure by increasing supporting leg thickness or by stiffening of the portal frames.
In [83] two solution concepts have been proposed. The first one is a passive damping
approach via an additional counterweight acting in a couple with a classical mechanical
damper. However, achieved system damping, in this case, is relatively small comparing
to material and implementation costs. Typically, applying 30 t counterweight results in
up to 10 % of the system damping. The second concept is an application of an actuated
counterweight, where the mass horizontal movement compensates the vibrations of the
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structure. In this case, the resulting system damping can be up to 60− 70 % using 5 t
counterweight. However, its implementation demands high investment costs, e.g., an
additional linear drive system and sensors.

Several studies have shown that the structural vibrations in different types of cranes
can be taken into consideration as an additional control objective for the motion control
system. In [100] the authors offer a combination of feedback and input shaping control
for overhead cranes. Here, the payload positioning and disturbance rejection can be
provided using classical PID-controllers, and motion-induced oscillatory dynamics can
be reduced by applying the corresponding input shaping approach. In [81, 52] structural
control concepts for active damping of flexible tower cranes are proposed. Here, the
slewing motion feedback control provides the positioning and vibrations damping of the
flexible tower and jib. In [81] the authors have presented a distributed parameter tower
crane model based on the Euler-Bernoulli beam theory and an early-lumping control
method. After spatial discretization with finite difference method and modal order
reduction, a state feedback control law based on linear-quadratic regulation (LQR) or
pole placement designs have been suggested for the active damping control. In [52] the
optimal control problem for a flexible tower crane structural dynamics coupled with a
trolley-payload subsystem has been presented.

In this work, for mitigating the gantry crane structural vibrations in the trolley travel
direction, a concept of active vibration damping as additional functionality for the
trolley motion control system is considered. In general, the main objective of the crane
control system is to transfer the load to the desired position. This objective will be
fulfilled entirely from a theoretical point of view if the following subtasks are fulfilled:

• positioning of the trolley,

• damping of the payload oscillations,

• damping of the crane oscillations.

Application of such a concept does not require additional actuators, materials, i.e., sub-
stantial investment costs. Moreover, it will be shown that the obtained system damping
applying this less-cost concept is comparable to the concept with an additional active
counterweight. In order to put this concept into practice, a redesign of the crane con-
trol system is needed. In the following, several practical and theoretical remarks are
introduced.

Currently, most industrial gantry cranes are equipped with automated electric drive
systems [106]. Manufacturers of those systems commonly provide a complex prod-
uct with an individual software solution, e.g., a power converter with included fully-
parameterizable cascade system providing the motion and additional anti-sway control
as depicted in Fig. 1.5. Although such a design allows users to provide engineering
solutions quickly for specific conventional objectives, adding new control specifications
or implementing non-standard control laws may be technically more complicated, and,
as usual, it requires additional equipment, e.g., programmable logic controllers (PLC)
or industrial personal computers (IPC). From a practical point of view, two general
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Figure 1.5.: Crane motion control scheme in fully automated cranes

Figure 1.6.: Crane motion control scheme in cranes with operator

concepts for the control system redesign have to be emphasized:

• Extension of a given motion control system with the additional objective, i.e., the
structural vibration damping,

• Full redesign of the control system by implementation of a new non-standard
control law.

The payload transfer in cranes can be provided via HMI or by a fully automated control
system. In the first case, the crane operator manually governs the load positioning
producing the corresponding reference commands while the drive is typically operated
in a velocity control mode as depicted in Fig. 1.6. Reduction of motion-induced load
oscillations may be supported additionally by applying feed-forward control techniques,
e.g., pre-filter, input shaping [48, 47]. Such a control scheme does not include any anti-
sway feedback, i.e., no additional sensors are needed. Thus, in the presence of external
disturbances and system parameter variations, the process performance depends mostly
on the experience of the crane operator. In the second case, the crane is fully automated,
and the control system provides the load positioning and anti-sway control (Fig. 1.5).
For this task, additional information on the load oscillations can be provided directly
via optical sensors (cameras), inertial measurement units (IMU) or indirectly via motor
current sensor or encoder [77, 82]. Here, applying the motor measurements for the
control is only valid when the coupling between the trolley connected to the drive
system and the payload is sufficiently high, i.e., the system in this configuration is
observable.
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In general, flexible structures are infinite-dimensional systems or distributed parameter
systems (DPS) described by partial differential equations. From a control theory point
of view, three control design strategies for DPS can be distinguished:

• Early-lumping control design

• Late-lumping control design

• Direct finite-dimensional control design

Here, due to various finite-dimensional control approaches, the early-lumping procedure
is the most commonly used. In this method, the DPS is reduced to a n-th order finite-
dimensional system, and then a control law can be obtained on its basis. The late-
lumping approach involves a derivation of an infinite-dimensional controller on the
basis of the original DPS and its posterior lumping for realization. It can be seen that
both of the procedures comprise approximation of the model or the control law. In
contrast, a direct finite-dimensional control design based on DPS eliminates the need
for any approximation. However, such a design is often applicable only for particular
cases, e.g., problems with simple geometries [76, 14].

Taking into consideration the aforementioned practical and theoretical specificities, in
the present thesis, three model-based control approaches will be proposed and evaluated
in simulation studies as well as on two laboratory gantry cranes with a flexible support
structure:

1. Linear robust control is an early-lumping control approach. It provides the exten-
sion of the conventional crane cascade control with an additional robust feedback
controller. Here, the trolley drive system is considered to be in the position control
mode such that the trolley position is a new control input. In order to attenuate
the flexible structural vibrations, the H∞ - loop-shaping procedure will be applied
for a controller design, and robustness margins will be evaluated in terms of the
gap metric.

2. PFC-based linear control is an early-lumping linear control approach. This ap-
proach is based on a parallel feed-forward compensator (PFC), and it can be
applied in combination with a standard position control system. It provides the
attenuation of crane structural vibrations and payload oscillations without ad-
ditional sensors or estimations applying only a PFC. This approach is restricted
for applications on the gantry cranes with sufficiently high couplings between the
trolley, load, and structure.

3. Discrepancy-based control is a direct nonlinear control approach. This method
requires the motion control system to be in the torque (current) control mode
such that the trolley force can be considered as a control input. Here, to stabilize
the overall system dynamics, a generalized error measure, called discrepancy, will
be introduced. The control law will be derived applying the associated Lyapunov
stability theory.

It has to be noticed, that parts of the results introduced in this thesis have been
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published in advance as listed in the following:

• Ievgen Golovin, Stefan Palis. Design of parallel feed-forward compensator and its
application to electromechanical system with friction load. IFAC-PapersOnLine,
50 (1) (2017), pp. 15524–15529.

• Ievgen Golovin, Stefan Palis. Control-based damping of elastic gantry crane vi-

brations. IEEE-Proceedings of the 22nd International Conference on Methods and
Models in Automation and Robotics, MMAR 2017 8046896, pp. 599–604.

• Ievgen Golovin, Stefan Palis. Robust control for active damping of elastic gantry
crane vibrations. Mechanical Systems and Signal Processing, 121 (2019), pp. 264–
278.

• Ievgen Golovin, Stefan Palis. Modeling and discrepancy based control of under-
actuated large gantry cranes. 21st IFAC World Congress (Berlin), (2020).

• Ievgen Golovin, Stefan Palis, Anton Maksakov. Gantry Crane Position Control

via Parallel Feed-forward Compensator. IEEE-Proceedings to 21th Mediterranean
Conference on Control and Automation, MED 2020 9182930, pp. 1045–1050.

• Ievgen Golovin, Anton Maksakov, Myroslav Shysh, Stefan Palis. Discrepancy-
based control for positioning of large gantry crane. Mechanical Systems and Signal
Processing, 163 (2022), 108199.

1.3. Thesis overview

This thesis consists of six Chapters that cover the concepts and ideas presented in the
introduction. Chapter 2 presents mathematical and physical models of large gantry
cranes. It begins with the mathematical modeling of the cranes with the corresponding
structural dynamics in the trolley travel direction. Subsequently, the two configurations
of the laboratory gantry crane with the associated mathematical models are introduced.
Finally, the mathematical models of the corresponding configurations are validated and
compared in the experimental study.

In Chapter 3 the linear robust feedback control for a gantry crane is presented. For
designing a control law that fulfills the performance specifications and guarantees ro-
bust stability with respect to uncertain parameters, the H∞-loop-shaping synthesis is
applied. To account for the parametric uncertainties, the normalized coprime factor
description with the associated gap metric is utilized and applied to generate a set of
the gantry crane models. The Chapter closes with the corresponding simulation and
experimental studies.

Chapter 4 introduces linear control for a gantry crane based on PFC. Here, the PFC
is designed to achieve desired zero dynamics for the augmented input-output plant.
Thereafter, the closed loop system is stabilized, applying high-gain output feedback.
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At the beginning of the Chapter, a theoretical background about the relative degree and
the zero dynamics is provided. After this, several design procedures for PFC are shown,
and one of them is applied for the gantry crane. Finally, corresponding simulation and
experimental results are presented.

In Chapter 5 the direct nonlinear control for a gantry crane is presented. For sta-
bilization of the gantry crane system dynamics, a generalized error measure, called
discrepancy, is introduced. Applying the associated stability theory with respect to
two discrepancies, derivation of the nonlinear control law based on the Lyapunov di-
rect method is shown. To obtain lacking system states, an additional state observer
is presented and validated. The Chapter closes with the corresponding simulation and
experimental studies.

Chapter 6 summarizes the results presented in the thesis and gives an outlook to future
perspectives.



2. Crane modeling

Application of model-based design techniques for a specific control task demands es-
tablishing a relatively accurate plant model, e.g., a mathematical model based on first
principles or a model identified from experimental data. Cranes are a typical example of
electromechanical systems where well-known physical laws and methods can be utilized
to derive an appropriate mathematical model.

An operational cycle of gantry cranes comprises three main phases: the hoisting of
the load, horizontal movement, and lowering. During the horizontal movement phase,
the payload should be delivered as fast as possible to the desired position without
swaying. Thus, from a control point of view, the horizontal movement stage is the
most challenging task. As stated in the previously mentioned publications [74, 83, 55],
for large cranes, such movements typically excite the natural frequencies of the crane
structure in the trolley travel direction. Therefore, these important effects should be
reflected in the dynamic model of the plant.

In this work, it is considered that the mass and stiffness of the flexible crane structure
are distributed continuously along the spatial coordinate. Subsystems of trolley, rope,
and payload contain rigid bodies within their particular parts. The analytical gantry
crane model can be derived applying the extended Hamilton’s principle, resulting in
a system with hybrid coordinates described by a set of partial differential equations
(PDE) and ordinary differential equations (ODE).

In order to apply the early-lumping control approaches, the infinite-dimensional model
subsystem has to be approximated as a finite-dimensional model of n-th order, e.g., us-
ing the finite difference method (FDM) or finite element method (FEM). The resulting
approximated models are usually of high order and application of control approaches
for such systems yields the high-order controllers. To overcome this, an additional ap-
plication of model order reduction approaches for the model or the controller is needed.
Here, the modal truncation approach is applied for the order reduction of the plant
model, resulting in a low-order crane model.

In this thesis, two configurations of laboratory gantry cranes are investigated.

1. Simplified gantry crane configuration (Fig. 2.1, left).

• The trolley is assumed to be in the position control mode, such that the
reference position is a control input for outer damping control loops.

• The trolley motor is equipped with a high-ratio reduction gear resulting
in non-back-drivability of the trolley mechanism [24]. Therefore, the cor-

10
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Figure 2.1.: Interaction schemes of the simplified (left) and the full (right) configura-
tions of laboratory cranes

responding influence of the payload and structure on the trolley can be
neglected.

• As the frequencies range of the payload and structural oscillations are differ-
ent, the couplings between them can also be neglected. Assuming that the
payload dynamics can be stabilized by an optimized reference trajectory or
a competent operator, it is neglected for this configuration, and the focus is
on the crane structural dynamics.

2. Full gantry crane configuration (Fig. 2.1, right).

• The trolley is assumed to be in the current control mode, such that the
trolley linear force can be considered as a control input.

• Internal couplings of the system are sufficiently strong and all system parts
have to be taken into account.

In the following, mathematical and physical models of gantry cranes with structural
dynamics are presented. At first, analytical model derivation and simplifications for a
gantry crane are shown [38]. Then, the simplified and the full configurations of gantry
laboratory crane with corresponding mathematical models are introduced. After this,
the associated mathematical models are validated in the experimental study.

2.1. Mathematical modeling

2.1.1. Hamilton’s principle

Hamilton’s principle is one of the most famous variational principles of analytical me-
chanics that can be utilized to derive the governing equations of motion for finite and
infinite-dimensional systems. This integral principle can be directly derived from the
more general Lagrange-d’Alembert’s variational principle [51, 18]. The advantages of
using this method to derive equations of motion are:

• operation with scalar energy quantities of the system,

• natural boundary conditions for resulting PDEs are obtained automatically.
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Hamilton’s principle states that under the arbitrary variations δ(·) that vanish at points
of time t1 and t2, i.e., δ(t1) = δ(t2) = 0, the actual motion of the system is determined
by the following integral equation∫ t2

t1

(δT− δU + δW) dt = 0 , (2.1)

where T(t) is the kinetic energy, U(t) is the potential energy, W(t) is the virtual work
done by non-conservative forces, δ represents the variational operator, t1 and t2 are
initial and final points of time.

In the following, 1-dimensional flexible problem for a system with hybrid coordinates is
considered. Here, Θ is a spatial domain filling a place of undeformed flexible bodies, the
vector of generalized coordinates q = [q1(t) q2(t) . . . qm(t)]T is related to motion of rigid
bodies and the vector of distributed coordinates ν = [ν1(x, t) ν2(x, t) . . . νn(x, t)]T is
related to the motion of elastic bodies that depend on position x of undeformed bodies.
The kinetic and potential energies in this hybrid coordinates can be written as follows:

T = Tdisc

(
∂q

∂t
,
∂ν(xbc)

∂t

)
+

∫
Θ

Tdist

(
∂ν

∂t

)
dx , (2.2)

U = Udisc

(
q, ν(xbc)

)
+

∫
Θ

Udist

(
ν,
∂ν

∂x
,
∂2ν

∂x2

)
dx , (2.3)

where Udisc and Tdisc are energies terms that are functions of the discrete and bound-
ary coordinates or their derivatives with respect to time, Udist and Tdist are energies
integrands related to distributed coordinates, xbc represents spatial positions on the
domain boundaries.

The virtual work done by non-conservative forces can be expressed as

δW = F Tdiscδq +

∫
Θ
F Tdistδν dx , (2.4)

where Fdisc is the vector of generalized non-conservative forces associated with q, Fdist
is the density vector of generalized non-conservative forces associated with ν, and δq
and δν are the corresponding virtual displacements.

Applying the principle (2.1) for such a system will result in a set of n PDEs of motion,
a set of m ODEs of motion, and a set of the natural boundary conditions.

2.1.2. Model derivation

As discussed previously, the focus of this work is elastic vibrations of a large gantry
crane in the travel direction of the trolley. Hence, for convenience, it is assumed that
the crane frame structure comprises two supported columns that have limited lateral
stiffness and a rigid in flexure upper horizontal beam. Applying the symmetry property
for the frame structure, the problem can be reduced, and only one half of the structure
is taken into consideration.
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Figure 2.2.: Gantry crane motion scheme

In Fig. 2.2 the schematic motion diagram of the gantry crane with flexible structural
dynamics is depicted. Here, z(t) is the trolley displacement, ϕ(t) is the sway angle which
is defined in the range (−π/2, π/2), w(x, t) is the displacement of the crane structure
in horizontal direction depending on both position x and time t, Ft(t) is the external
force applied to the trolley, Ffr is the friction force of the trolley with a drive system,
mt is the mass of the crane trolley, mp is the mass of the payload, mc is the mass
of the crane girder, l is the rope length, L is the length of the crane legs. The mass
density % and bending stiffness EI are homogeneously distributed along the spatial
coordinate of column x, where E is Young’s modulus and I is the moment of inertia
of a cross-sectional area. Buckling effects, shear deformation, and rotary inertia of the
structure can be neglected. The trolley and the payload are assumed to be connected
by a massless rigid rope with constant length, i.e., the hoisting process is neglected.
The moment of inertia of the payload can also be neglected.

The gantry crane is considered as a hybrid coordinate system where the vector of
generalized coordinates expressing motions of rigid bodies can be chosen as follows:

q = [z(t) ϕ(t)]T , (2.5)

while the distributed coordinate expressing the elastic motion of the column is defined
as

ν = w(x, t) . (2.6)

For shorter notation, the partial derivatives with respect to time will be further denoted
as

∂w(x, t)

∂t
= ẇ(x, t) , (2.7)

and the partial derivative with respect to spatial coordinate as

∂w(x, t)

∂x
= w′(x, t) . (2.8)
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The position vectors of discrete rigid bodies of the crane girder rc, trolley rt and payload
rp can be defined as follows:

rc =

[
w(L)

0

]
, (2.9)

rt =

[
w(L) + z

0

]
, (2.10)

rp =

[
w(L) + z + l sinϕ

−l cosϕ

]
, (2.11)

where w(L) is a compact representation for w(L, t).

Then, the velocity vectors can be calculated as

ṙc =

[
ẇ(L)

0

]
, (2.12)

ṙt =

[
ẇ(L) + ż

0

]
, (2.13)

ṙp =

[
ẇ(L) + ż + ϕ̇l cosϕ

ϕ̇l sinϕ

]
. (2.14)

According to (2.2) the kinetic energy of the gantry crane can be represented as follows:

T =
1

2
mcṙ

T
c ṙc +

1

2
mtṙ

T
t ṙt +

1

2
mpṙ

T
p ṙp +

1

2

∫ L

0
%ẇ2 dx ,

=
1

2
mp

[
(ẇ(L) + ż + ϕ̇l cosϕ)2 + (ϕ̇l sinϕ)2

]
+

1

2
mt(ẇ(L) + ż)2 +

1

2
mcẇ

2(L) +
1

2

∫ L

0
%ẇ2 dx , (2.15)

where the last summand represents the kinetic energy of the distributed coordinate.

The potential energy of the gantry crane with accordance to (2.3) can be formulated
as follows:

U = −mpgl cosϕ+
1

2

∫ L

0
EI(w′′)2 dx . (2.16)

The virtual work done by non-conservative forces can be written as

δW = (Ft − Ffr) δz −
∫ L

0
cẇ δw dx , (2.17)

where the last term represents the energy dissipation in the flexible column with c as
the linear structural damping coefficient.

Substituting the system kinetic (2.15), potential (2.16) energies and the virtual work
(2.17) into the extended Hamilton’s principle (2.1), performing corresponding varia-
tions, applying integration by parts with respect to t and x, and taking into considera-
tion the geometrical boundary conditions w(0, t) = w′(0, t) = 0, the following equation
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is obtained

0 = −
∫ t2

t1

∫ L

0

[
%ẅ + EIw′′′′ + cẇ

]
δw dx dt−

∫ t2

t1

[
EIw′′(L)

]
δw′(L) dt

−
∫ t2

t1

[
mΣẅ(L) +msz̈ +mplϕ̈ cosϕ−mplϕ̇

2 sinϕ− EIw′′′(L)
]
δw(L) dt

−
∫ t2

t1

[
msẅ(L) +msz̈ +mplϕ̈ cosϕ−mplϕ̈

2 sinϕ− Ft + Ffr

]
δz dt

−mpl

∫ t2

t1

[
lϕ̈+ ẅ(L) cosϕ+ z̈ cosϕ+ g sinϕ

]
δϕdt , (2.18)

where mΣ = mp + mt + mc, ms = mp + mt, and time dependence has been omitted,
i.e., w(0, t) = w(0). Calculation of variations for gantry crane model derivation is
represented in Appendix A in more details.

From (2.18) can be seen that for arbitrary variations, the equation holds only if the
integrands vanish. Therefore, the governing equations of motion of the gantry crane
with the structural dynamics yield

%ẅ + EIw′′′′ + cẇ = 0 , (2.19)

w(0) = w′(0) = w′′(L) = 0 , (2.20)

mΣẅ(L) +msz̈ +mplϕ̈ cosϕ−mplϕ̇
2 sinϕ− EIw′′′(L) = 0 , (2.21)

msẅ(L) +msz̈ +mplϕ̈ cosϕ−mplϕ̇
2 sinϕ− Ft + Ffr = 0 , (2.22)

lϕ̈+ ẅ(L) cosϕ+ z̈ cosϕ+ g sinϕ = 0 , (2.23)

where PDE (2.19) corresponds to the flexible structural dynamics with energy dissipa-
tion, (2.20) represents two geometrical boundary conditions for w(0) and one natural
boundary condition for w(L), (2.21) corresponds to the motion of girder and loading
condition for the structure in w(L), (2.22) represents the motion of the trolley under
applied external actuator force Ft and friction force Ffr, (2.23) is associated with the
payload motion. It should be mentioned that the resulting model is fully coupled.

From this Section and Appendix A it can be seen that the application of this analytical
approach, even for a simple geometry problem, requires lengthy mathematical devel-
opments and manipulations. Therefore, for more complex problems, the utilization of
numerical-based methods is reasonable as presented in Appendix B.

The above derived gantry crane model will be used for the direct control design. In order
to apply the early-lumping linear control approaches, this model should be simplified,
as will be discussed in the following.

2.1.3. Model linearization

The gantry crane model comprises the linear PDE (2.19) with its boundary conditions
(2.20) and the system of ODEs (2.21), (2.22) and (2.23) that contain trigonometric
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nonlinearities due to payload motion. Furthermore, (2.22) includes the friction force
Ffr as an additional input (Section 2.1.6).

For a gantry crane, the equilibrium state of interest is ϕ = 0. Taking into consideration
that the angles ϕ during the crane operation are small, the model can be linearized as
follows:

%ẅ + EIw′′′′ + cẇ = 0 , (2.24)

w(0) = w′(0) = w′′(L) = 0 , (2.25)

mΣẅ(L) +msz̈ +mplϕ̈− EIw′′′(L) = 0 , (2.26)

msẅ(L) +msz̈ +mplϕ̈− Ft + Ffr = 0 , (2.27)

lϕ̈+ ẅ(L) + z̈ + gϕ = 0 . (2.28)

2.1.4. Model discretization

In this work, to approximate the infinite-dimensional crane model, the method of lines
is applied [89]. It provides a discretization of spatial derivatives only, yielding a set of
high dimensional ODEs.

The spatial coordinate x of the continuous function w(x, t) is discretized with an equidis-
tant grid of n nodes. Here, xi is a grid point, where i ∈ [1, . . . , n]. The spatial derivatives
can be approximated point-wise via finite FDM applying the following central difference
schemes

∂ w(x, t)

∂ x

∣∣∣∣∣
x=xi

≈ −wi−1 + wi+1

2h
, (2.29)

∂2w(x, t)

∂ x2

∣∣∣∣∣
x=xi

≈ wi−1 − 2wi + wi+1

h2
, (2.30)

∂3w(x, t)

∂ x3

∣∣∣∣∣
x=xi

≈ −wi−2 + 2wi−1 − 2wi+1 + wi+2

2h3
, (2.31)

∂4w(x, t)

∂ x4

∣∣∣∣∣
x=xi

≈ wi−2 − 4wi−1 + 6wi − 4wi+1 + wi+2

h4
, (2.32)

where h = xi+1 − xi is the distance between two grid points, wi = w(xi, t) is the value
of w at grid node i. The truncation error of the scheme is of the second order.

Applying the FDM to PDE (2.24) yields

ẅi =
EI
% h4

[
wi−2 − 4wi−1 + 6wi − 4wi+1 + wi+2

]
− c

%
ẇi . (2.33)

In Fig. 2.3 the FDM discretization scheme of the crane flexible structure is depicted.
Here, it can be seen that for approximation of spatial derivative w′′′′i at point xi the
displacements from wi−2 to wi+2 have to be known. Approximation of the derivatives at



CHAPTER 2. CRANE MODELING 17

points close to the boundaries, e.g., x1, xL−1 and xL, is usually derived using so-called
displacements in virtual points (Fig. 2.3, red points), i.e., w−1, wL+1, and wL+2, that
can be obtained from the given boundary conditions.

Figure 2.3.: Disretization scheme via FDM

The geometrical boundary conditions that restrict the displacement at point x0 yield

w0 = 0 , (2.34)

w′0 =
w−1 − w1

2h
= 0 . (2.35)

From (2.35) the displacement in the virtual point x−1 follows

w−1 = w1 . (2.36)

Applying these geometrical boundary conditions results in the following approximation
of PDE at points x1 and x2

ẅ1 =
EI
% h4

[
7w1 − 4w2 + w3

]
− c

%
ẇ1 , (2.37)

ẅ2 =
EI
% h4

[
− 4w1 + 6w2 − 4w3 + w4

]
− c

%
ẇ2 . (2.38)

The boundary condition w′′L = 0 can be discretized as follows:

w′′L =
wL−1 − 2wL + wL+1

h2
= 0 , (2.39)

and, hence, the displacement for the virtual point xL+1 can be derived as

wL+1 = 2wL − wL−1 . (2.40)
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Then, substituting (2.40) in the discretized PDE results in an approximation at the
point xL−1

ẅL−1 =
EI
% h4

[
wL−3 − 4wL−2 + 5wL−1 − 2wL

]
− c

%
ẇL−1 . (2.41)

The crane flexible structure subsystem is coupled with trolley and payload subsystems
via loading condition (2.26) at point xL which can be discretized as follows:

mΣẅL +msz̈ +mplϕ̈− EI
−wL−2 + 2wL−1 − 2wL+1 + wL+2

2h3
= 0 . (2.42)

From this condition the displacement value at the virtual point xL+2 follows

wL+2 =
2h3

EI

[
mΣẅL +msz̈ +mplϕ̈

]
+ wL−2 − 2wL−1 + 2wL+1

=
2h3

EI

[
mΣẅL +msz̈ +mplϕ̈

]
+ wL−2 − 4wL−1 + 4wL . (2.43)

Here, taking into account displacements at the virtual points xL+1 (2.40) and xL+2

(2.43), the crane acceleration at point xL according to PDE (2.33) yields

ẅL =
%h

%h+ 2mΣ

(
− EI
% h4

[
2wL−2 − 4wL−1 + 2wL

]
− 2

%h

[
msz̈ +mplϕ̈

]
− c

%
ẇL

)
. (2.44)

High-dimensional state-space model

Equations (2.27) and (2.28) show that the trolley and payload subsystems are coupled
with the structure subsystem via acceleration of the girder ẅL described by (2.44).
These equations are an implicit system of ODEs. Solving this system with respect to
the highest derivatives, the following system of ODEs is obtained

z̈ = bb
EI
% h4

[
2wL−2 − 4wL−1 + 2wL

]
+ bb

c

%
ẇL +

gmp

mt
ϕ

+
( 1

mt
+

2

2mc + %h

)(
Ft − Ffr

)
, (2.45)

ϕ̈ = − gms

lmt
ϕ− 1

lmt

(
Ft − Ffr

)
, (2.46)

ẅL = − bb
EI
% h4

[
2wL−2 − 4wL−1 + 2wL

]
− bb

c

%
ẇL

−bb
2

%h

(
Ft − Ffr

)
, (2.47)

where

bb =
%h

%h+ 2mc
. (2.48)
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Then, taking into account the approximations (2.33), (2.37), (2.38), (2.41), (2.47), and
introducing the vector of displacements w = [w1, . . . , wL]T ∈ Rn and vector of inputs
u = [Ft, Ffr]

T ∈ R2, the discretized PDE (2.33) can be represented in matrix form as
follows:

ẅ = −Sw −Rẇ −B1u , (2.49)

where stiffness matrix S ∈ Rn×n, damping matrix R ∈ Rn×n, and input matrix B1 ∈
Rn×2 are obtained as

S =
EI
%h4



7 −4 1 0 0 · · · 0 0 0 0 0
−4 6 −4 1 0 · · · 0 0 0 0 0
1 −4 6 −4 1 · · · 0 0 0 0 0
0 1 −4 6 −4 · · · 0 0 0 0 0
0 0 1 −4 6 · · · 0 0 0 0 0
...

...
...

...
...

. . .
...

...
...

...
...

0 0 0 0 0 · · · 1 −4 6 −4 1
0 0 0 0 0 · · · 0 1 −4 5 −2
0 0 0 0 0 · · · 0 0 2bb −4bb 2bb


, (2.50)

R =
c

%



1 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 0
0 0 0 · · · 0 bb


, (2.51)

B1 =
2

%h

[
0 0 · · · 0 0 bb
0 0 · · · 0 0 −bb

]T
. (2.52)

Defining the additional velocity vector v = ẇ = [v1, . . . , vL]T ∈ Rn and the state vector
x = [w1, . . . , wL, v1, . . . , vL]T ∈ R2n, the subsystem of crane flexible structure can be
represented in state-space form as:

ẋ = Adx+Bdu (2.53)

=

[
0 I
−S −R

]
x+

[
0
−B1

]
u ,

where Ad ∈ R2n×2n is the system matrix and Bd ∈ R2n×2 is the input matrix of the
flexible structure subsystem.

From (2.45) it can be seen that the acceleration of trolley z̈ comprises the acceleration
of girder ẅL with the opposite sign. Thus, the output equation of the flexible structure
subsystem with the output of interest y = −ẅL that acts on the trolley plant subsystem
can be formulated as follows:

y = Cdx+Ddu (2.54)

=
[
Se Re

]
x+B1,eu ,
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where Cd ∈ R1×2n is the output matrix, Dd ∈ R1×2 is the feedthrough matrix, Se ∈ Rn,
Re ∈ Rn, and B1,e ∈ R2 are last rows of the matrices S, R, and B1 respectively.

Thereafter, taking into account the state-space subsystem of the crane structural dy-
namics (2.53), (2.54), the system of ODEs (2.45), (2.46), (2.47) and introducing the
state vector of the overall system xo = [w1, . . . , wL, v1, . . . , vL, z, ż, ϕ, ϕ̇]T ∈ R(2n+4)

yields

ẋo = Aoxo +Bouo

=


Ad 0 0 0 0
0 0 1 0 0
Cd 0 0 kϕ1 0
0 0 0 0 1
0 0 0 kϕ2 0

xo +


Bd
0

kF1 +Dd

0
kF2

u , (2.55)

where Ao ∈ R(2n+4)×(2n+4) is the corresponding system matrix, Bo ∈ R(2n+4)×2 is
the input matrix, kϕ1 = gmp/mt, kϕ2 = gms/lmt, kF1 = [1/mt, 1/mt], and kF2 =
[1/lmt, 1/lmt].

From (2.55) it can be seen that 2n + 4-th order of the flexible structure subsystem
depends directly on the number of grid elements chosen for the approximation. From a
numerical point of view, the accuracy of such approximation depends on the discretiza-
tion scheme and the number of nodes n. Consequently, for a large number of nodes, this
results in high-dimensional models with higher accuracy. However, for early-lumping
control approaches lower order models are preferable.

Rayleigh damping model

Equation (2.51) shows that material and air induced dissipation is performed only by
the density (mass) proportional component c. Such a dependency typically results in
under-damping effects for high-frequency modes. In order to overcome these issues, the
structural dissipation can be represented by Rayleigh damping model [99]. Here, the
damping matrix is expressed as the following linear combination

R = αI + βS, (2.56)

where α and β are the mass-proportional and stiffness-proportional coefficients respec-
tively, and I is identity matrix. These damping parameters can be calculated using the
following equation [

α
β

]
=

2ωiωj
ω2
j − ω2

i

[
ωj −ωi
− 1
ωj

1
ωi

][
ξi
ξj

]
, (2.57)

where ωi and ωj , ξi and ξj are the frequencies and damping ratios of two system modes
of interest.

In this work, the proposed damping model has been utilized for the structural subsystem
(2.53), (2.54) replacing the damping matrix R (2.51) with (2.56). The corresponding
damping coefficients α and β have been obtained from experimental data.
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2.1.5. Model order reduction

The approximation of infinite-dimensional systems using a numerical discretization pro-
cedure usually leads to very high-order finite-dimensional systems. Most control design
procedures for such systems generate controllers of at least the same order, resulting
in problems during practical implementation. From a control theory point of view, the
plant model or the designed controller should be, thus, reduced to some appropriate
order. There are a number of methods for order reduction that can be applied to finite-
dimensional systems. Many of them are based on a truncation procedure of state-space
models in some specific forms, e.g., modal or balanced [96, 10, 65]. In this work, the
modal truncation approach is applied to approximate a flexible structure subsystem of
the crane.

The modal truncation approach is based on a modal representation form of a state-
space model. Consider a linear time-invariant system of high-order n, which is described
by the model

ẋ = Ax+Bu , (2.58)

y = Cx+Du , (2.59)

where system matrix A has only complex conjugate eigenvalues. Then, using the simi-
larity transformation, this matrix can be represented in a block diagonal form as follows:

Â = T̂−1AT̂ =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 0 λn

 , (2.60)

where

λi =

[
σi −ωd,i
ωd,i σi

]
, |ωd,1| < |ωd,2| < · · · < |ωd,n| . (2.61)

Here, the matrix T̂ comprises the eigenvectors of matrix A and λi = σi ± jωd,i are the
eigenvalues of matrix A.

Transforming the state-space model into its modal form results in

˙̂x = Âx̂+ B̂u , (2.62)

y = Ĉx̂+ D̂u , (2.63)

where
Â = T̂−1AT̂ , B̂ = T̂−1B, Ĉ = CT̂ , D̂ = D .

Here, the state vector x̂ can be divided into two parts [x̂1, x̂2]T such that the vector
x̂1 the eigenmodes that should be retained and x̂2 the modes that can be neglected.
Therefore, model (2.62), (2.63) can be rewritten as follows:[ ˙̂x1

˙̂x2

]
=

[
Â1 0

0 Â2

] [
x̂1

x̂2

]
+

[
B̂1

B̂2

]
u , (2.64)

y =
[
Ĉ1 Ĉ2

] [x̂1

x̂2

]
+ D̂u . (2.65)
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Applying the truncation procedure to the system part corresponding to x̂2 yields an
approximation of (2.58), (2.59) as

˙̂x1 = Â1x̂1 + B̂1u , (2.66)

y = Ĉ1x̂1 + D̂u , (2.67)

with the following equivalent transfer function

P1(s) = Ĉ1(sI − Â1)−1B̂1 + D̂ , (2.68)

and corresponding additive H∞ error norm

‖P (s)− P1(s)‖∞ =
∥∥∥Ĉ2(sI − Â2)−1B̂2

∥∥∥
∞
. (2.69)

It can be seen that the residual in (2.69) depends on the input-output relation of the
neglected modes, i.e., B̂2 and Ĉ2, as well as on their damping. The main advantage
of modal truncation is that the eigenvalues of the low-order model are a subset of the
eigenvalues of the high-order model and, thus, physical interpretation is preserved [96].

An essential difficulty of the application of this method is the choice of dominant and
non-dominant modes. The number of eigenmodes that should be retained in the model
after truncation depends always on the specific case of application. Typically, it can be
motivated analyzing the system in the frequency domain.

Low-order crane model

In order to obtain a low-order gantry crane model, which can be used for the control
design, the discussed modal truncation procedure can be applied. Choosing the number
of retained modes nr the crane structural subsystem (2.53), (2.54) with redesigned
Rayleigh damping matrix R can be represented in block diagonal form and truncated to
order 2nr. Thus, the reduced crane model with the state vector xr = [x̂1, z, ż, ϕ, ϕ̇]T ∈
R(2nr+4) can be represented as follows:

ẋr = Arxr +Brur

=


Â1 0 0 0 0
0 0 1 0 0

Ĉ1 0 0 kϕ1 0
0 0 0 0 1
0 0 0 kϕ2 0

xr +


B̂1

0

kF1 + D̂
0
kF2

ur , (2.70)

where Ar ∈ R(2nr+4)×(2nr+4) is the system matrix and Bo ∈ R(2nr+4)×2 is the input
matrix of reduced order model.

2.1.6. Friction model

Modeling friction forces for a concrete system is generally a non-trivial task because
of the limited understanding of the friction phenomenon. It often results in the high
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uncertainties of a plant model. From a control perspective, the friction may cause some
undesirable effects in closed loop system dynamics, e.g., poor control performance, limit
cycles, and steady-state errors [67]. Many works are dedicated to studying this natu-
ral phenomenon in mechanical systems with a focus on control purposes. Here, many
static models, e.g., Coulomb, Karnopp, Armstrong models, etc., as well as dynamic
models, e.g., Dahl, LuGre, elastoplastic models, etc., have been proposed for modeling,
identification, and control of systems with friction [3, 68, 85, 73, 88, 49]. If a friction
model of some specific system is known, it can be used for a corresponding model-based
friction force compensation. The more accurate the model, the better the friction can
be eliminated from the system dynamics.

For most electromechanical systems the static friction models can be applied. Here,
a number of friction effects may appear, e.g., static, kinetic (Coulomb), viscous, and
Stribeck effects. There exist many different models that combine these friction effects
[3]. A frequently used model [67] is:

Ffr = (Fst − Fco) e−|ż/bsb| sgn(ż) + Fco sgn(ż) + Fviż , (2.71)

where Fst is the static friction force, which should be overcome by the motor in order to
set the trolley in motion, bsb is the empirical parameter characterizing Stribeck effect,
Fco is the Coulomb friction force, and Fvi is the viscous dissipation force.

In order to overcome numerical issues, the discontinuous function sgn(ż) is replaced by
continuous function tanh(kfrż), where kfr is a tuning parameter for slope changing of
the trigonometric function in the region of zero. Then, the friction force of the trolley
with electric drive is:

Ffr = (Fst − Fco) e−|ż/bsb| tanh(kfrż) + Fco tanh(kfrż) + Fviż . (2.72)

2.2. Simplified configuration of laboratory crane model

2.2.1. Experimental setup

In this work, the proposed control systems are validated on a self-built scaled model of a
gantry crane (Fig. 2.4). In order to reflect the flexible system properties of large gantry
cranes, the supporting legs of thin plate material have been selected. This yields a limit
stiffness and, therefore, the oscillating dynamic behavior of the structure in the trolley
direction. As has been mentioned, two experimental configurations of gantry crane
with structural dynamics are considered: simplified and full laboratory gantry crane
configurations. The main difference between them is that in the simplified configuration
the focus is only on the dynamics of the crane structure, while the payload dynamics
is neglected. In order to reflect the loading effects an additional mass has been rigidly
mounted on the top of the trolley.

The structural scheme of the simplified experimental configuration is represented in
Fig. 2.5. The crane model comprises a trolley that travels over a girder and flexible
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Figure 2.4.: CAD Model and photo of the laboratory gantry crane model

supporting legs that are locked from the bottom. The crane trolley is actuated utilizing
a direct current (DC) motor with an epicyclic reduction gear connected with a tooth-
belt drive that is assembled on the girder. In order to perform the angular velocity
and position measurements, an incremental encoder with 64 counts per revolution is
mounted on the opposite side of the shaft. The drive is equipped with a current sensor
INA219. For the girder oscillations measurements, an additional IMU, MinIMU-9, is
installed on the top of the crane girder. It provides the direct measurement of the
girder acceleration ẅL. The DC motor is controlled by the motor driver VNH5019,
which is supplied with 12V DC voltage. All control algorithms with corresponding
signal processing are implemented on Arduino Mega 2560 micro-controller. In order to
avoid bias effects and measurement noise in the measured acceleration ẅL, an additional
Butterworth band-pass filter is used.

2.2.2. Drive mechanism

In Fig. 2.6 a mechanical scheme of the presented crane drive configuration is depicted.
Here, the crane trolley is connected with the motor via the tooth-belt and reduction
gear. The gear ratio can be calculated as follows:

kg =
τg
τm

=
ωm
ωg

, (2.73)

where τm and ωm are torque and velocity on the motor shaft, τg and ωg are torque and
velocity on the gear shaft.

According to Fig. 2.6, the linear forces and the trolley mass augmented by the motor
inertia are obtained as follows:

Ft = kgrr τm , (2.74)

Ffr = kgrr τfr,m + Ffr,t , (2.75)

mt = mt,t +
2

r2
r

k2
g Jm . (2.76)
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Figure 2.5.: Simplified experimental configuration of laboratory gantry crane

Figure 2.6.: Crane drive scheme for the simplified experimental configuration

2.2.3. Drive control

In this configuration, the gear ratio amounts to kg = 19 making it non-back-drivable
from the trolley side. Here, it is assumed that the position-controlled DC drive accom-
plishes the trolley movement along the linear girder axis so that the trolley position
can be considered as a control effort for further damping control. In the following, the
conventional drive control system is presented.

Conventional cascade control of trolley drive system

Cascade control with PI controllers for drive control is a quasi-standard because of its
simplicity and good disturbance rejection [91, 92]. Moreover, due to cascade control it
can be assumed that the electromotive and friction effects are compensated in inner
control loops so that they can be neglected. In Fig. 2.7 a typical cascade control scheme



26 CHAPTER 2. CRANE MODELING

is depicted. It comprises the following control loops: inner current (torque) control loop
Gi(s), velocity control loop Gv(s), and outer position control loop Gr(s). Here, the
transfer function of the electrical subsystem from the voltage input of the rectifier to
the motor current Pi(s) is given as follows:

Pi(s) =
i(s)

ud(s)
=

1

Tµs+ 1
· 1/Ra
Tas+ 1

, (2.77)

where Tµ is the time constant of the rectifier, Ra is the resistance of the electrical part
of the motor, Ta is the time constant of the electrical part of the motor (Ta >> Tµ).

The transfer functions of the mechanical subsystems from the motor current to the
trolley velocity Pv(s) and from the trolley velocity to the trolley position Pr(s) follow

Pv(s) =
v(s)

i(s)
=

km
mt s

, (2.78)

Pr(s) =
r(s)

v(s)
=

1

s
, (2.79)

where km is the coefficient which transfers the motor current to a linear force applied
to the trolley mass mt.

For the current and velocity control loops PI controllers Ci(s) and Cv(s) are used. The
outer position loop is more often controlled by a P controller Cr(s). The controller
parameter tuning is obtained step by step. At first, the parameters of the fastest in-
ner PI controller Ci(s) for the subsystem plant Pi(s) are tuned. Here, to adjust the
parameters the magnitude (modulus) optimum is typically applied [91]. The idea of
this procedure is to compensate the biggest time constant in the loop Ta by choosing
the appropriate integral time constant and to tune the gain for fast reference tracking.
Then, the parameters of the velocity PI controller Cv(s) for the augmented velocity
plant Gi(s)Pv(s) are tuned. For the tuning of this loop the magnitude (modulus) or
symmetric optimum can be used. At last, the gain of the position P controller Cr(s)
for the augmented Gv(s)Pr(s) is optimized.

Figure 2.7.: Gantry crane position control scheme
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Trolley position control

In this work, the coefficients of the current and velocity control loops are adjusted
according to the magnitude optimum. The position controller gain has been tuned in
order to get transients of the position responses without overshoots.

In Fig. 2.8 transients of the crane trolley in the position control mode are presented.
Here, the trolley reaches the reference position zref = 200 mm (red) after about 2
seconds. A small undershoot of about 1 % in position transient can be seen, which is
caused by the Coulomb friction effects. The peak of the current value is 1.5 A, which
is 50 % of the limitation current value imax = 3 A.

Figure 2.8.: Experimental time responses of drive system in the position control mode
(blue) applying a position reference signal (gray)

2.3. Full configuration of laboratory crane model

2.3.1. Experimental setup

The structural scheme of the full experimental configuration is represented in Fig. 2.9.
Here, the gantry crane model consists of the crane construction with a limited stiffness
(Fig. 2.4), the trolley that moves along the linear axis, and a hanging payload.

The crane trolley is driven via a tooth-belt drive by the Maxon 118888 electronically
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Figure 2.9.: Full experimental configuration of laboratory gantry crane

commutated (EC) motor without additional reduction gear. The motor is equipped with
a current sensor, Hall-sensor, and incremental encoder with 2000 counts per revolution
to measure the current, the rotation angle, and the angular velocity. The oscillations
measurements of crane girder and payload are provided by accelerometers from addi-
tional IMUs, i.e., IMU 1 - MinIMU-9 and IMU 2 - MPU-9250/6500 as depicted in
Fig. 2.9. The IMUs are connected via I2C-interface with an Arduino Mega 2560 micro-
controller, where these signals are processed and filtered. The motor is controlled by the
MAXPOS 50/5 control device. This device can be flexibly parametrized via EtherCAT
network using a Beckhoff TwinCAT real-time PC-based controller. Here, all control al-
gorithms can be implemented in MATLAB Simulink environment and can be exported
in TwinCAT via Simulink Coder. MAXPOS controller provides the field-oriented cur-
rent control of the EC motor.

2.3.2. Drive configuration

In Fig. 2.10 the mechanical scheme of the crane drive for the full configuration is
presented. In this case, the crane trolley is connected with the motor directly via the
tooth-belt mechanism. For this configuration, the resulting forces and the trolley mass
augmented by the motor inertia are given as

Ft = rr τm , (2.80)

Ffr = rr τfr,m + Ffr,t , (2.81)

mt = mt,t +
2

r2
r

Jm , (2.82)
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where rr is a pulley radius, τfr,m is a motor friction torque component, Ffr,t is a trolley
friction force component, mt,t is a trolley mass and Jm is a motor inertia.

Figure 2.10.: Crane drive scheme for the full configuration

2.3.3. Drive control

Motor current control

The combination of MAXON EC motor with its native MAXPOS controller provides
an embedded parameterizable drive control system. Depending on the application case,
the drive can be operated in different modes, e.g., field-oriented current control, velocity,
or position control. In this configuration, the motor is assumed to be operated in the
current control mode. Here, as the controlled current is proportional to the motor torque
and, hence, the linear force of the trolley, the latter can be considered as a control effort.

In Fig. 2.11 the reference tracking of the current control loop (blue) using different
reference signals are presented. Here, dynamics of the current control loop is typically
much faster compared to the mechanical processes. Therefore, it can be neglected for
a further active damping control design.

Figure 2.11.: Experimental time responses of motor torque in torque control mode
(blue) applying reference signal (red)
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2.4. Model validation

2.4.1. Structural dynamics of laboratory gantry crane

The essential challenge for the early-lumping linear control design is the choice of the
reduced model order. In order to motivate an appropriate order reduction, the flexible
structural dynamics should be analyzed in the frequency domain. For this reason, an
additional simulation and experimental study are considered. Here, a sinusoidal sweep
signal of small amplitude and frequency range 0.5 Hz−50 Hz (3.14 rad/s−314 rad/s)
has been applied as the input signal on the laboratory crane without a payload. In this
study, the configuration with the EC Motor in current control mode is considered.
From the obtained input-output signals, i.e., motor torque τm and girder acceleration
ẅL respectively, a transfer function of 16-th order has been estimated and compared
with the analytically derived model from Section 2.1.

In Fig. 2.12 the Bode magnitude plots of the identified transfer function and math-
ematical model are presented. In the considered frequency range two pole pairs that
correspond to the eigenfrequencies of the mechanical structure can be observed, i.e.,
the first eigenfrequency f1 = 1.6 Hz (ω1 = 10.24 rad/s) and the second eigenfrequency
f2 = 21 Hz (ω2 = 130.3 rad/s). From the results, a good match between both models
can be seen. The present differences are a result of nonlinearities and measurement
noise. In Fig. 2.13 the corresponding eigenforms for the two frequencies obtained from
additional FEM study are depicted.

This study shows that these two eigenfrequencies have a significant contribution to the
structural dynamics in the frequency range of 0.5 Hz − 50 Hz. However, it should be
mentioned that the second eigenfrequency f2 = 21 Hz is relatively high compared to
the gantry crane dynamics with the payload. In addition, experimental data, e.g., real
gantry crane vibrations presented in Fig. 1.3 and Fig. 1.4 as well as laboratory gantry
crane experiments, shows that during regular crane operation, this frequency is not
excited. Therefore, for the early-lumping linear control design, it is assumed that only
the first system eigenmode with eigenfrequency f1 = 1.6 rad/s can be influenced, and,
thus, a second-order model approximation nr = 2 is reasonable.

It should also be mentioned that during the work, various system parameters for differ-
ent experimental configurations, e.g., L crane legs length, E Young’s modulus, and mp

payload mass, were different, resulting in corresponding variation of the eigenfrequen-
cies. However, the motivation for the model simplification mentioned above remains
the same.

2.4.2. Model of simplified crane configuration

In this Section, the mathematical model of the simplified crane configuration is com-
pared and validated against the experimental data. In the first step, the position control
loop of the trolley with electric drive, which has been described in Section 2.2, is vali-
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Figure 2.12.: The Bode magnitude plots of the identified transfer function from exper-
iment (red) and model (blue)

Figure 2.13.: Eigenforms of the 1-st frequency f1 = 1.6 Hz (left) and 2-nd frequency
f2 = 21 Hz (right)

dated and simplified. Then, the overall crane model of the experimental configuration
is validated. The model parameters are summarized in Tab. C.1 of Appendix C.

Controlled electric drive

In order to validate the mathematical model of the electric drive against the data from
the laboratory crane, tracking of the position in the corresponding control mode has
been studied. For this reason, a step change of the reference position to zref = 200 mm
is considered. Simulation and experimental results are depicted in Fig. 2.14. Here, the
trolley reaches the desired position after about 2 sec without any overshoot. It can
be seen that the linear model of the trolley drive in position control mode reflects
the dynamics of the experimental data, and the position time response resembles the
dynamics of a linear first-order system. The mismatches of the control voltage and the
motor current are caused by neglected friction forces. However, as aforementioned, these
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Figure 2.14.: Simulated (blue) and experimental (red) time responses of the trolley
positioning applying a reference trajectory (gray)

effects are compensated in the inner current loop and have no impact on the position
steady-state. As the peak of the current is around 50 % of the limitation current value
of imax = 3 A, it can be considered that the system is operated in the linear region.
Hence, for convenience, for the further control design, it is assumed that the closed loop
system Gz(s) can be approximated as a simple first-order system

Gz(s) =
z(s)

zref (s)
=

1

Tzs+ 1
, (2.83)

where Tz is the time constant which can be directly identified from the time responses.

Overall plant model

The structural dynamics of this simplified crane configuration can be obtained accord-
ing to the system of equations (2.19), (2.20), (2.21), (2.22) and (2.23) as follows:

%ẅ + EIw′′′′ + cẇ = 0 , (2.84)

w(0) = w′(0) = w′′(L) = 0 , (2.85)

mΣẅ(L) + Ft − EIw′′′(L) = 0 . (2.86)
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The low order transfer function from the trolley force to the girder acceleration P1(s)
can be obtained according to Section 2.1.

Then, the overall plant model Po(s), which represents the gantry crane motion with
structural dynamics for the simplified system configuration, is represented in Fig. 2.15.
Here, the trolley drive system is in position control mode, and the trolley acceleration
force Ft excite the elastic crane vibrations. This force is derived using the approximated
second derivative with the low pass filter, where Td1 is the associated filter constant.
The output of interest for the control design is the acceleration of girder point ẅL and
the control input is the reference position zref .

Figure 2.15.: Crane plant augmented by the trolley position control

Simulation and experimental results of trolley positioning and flexible crane dynamics
are presented in Fig. 2.16. As can be seen, the crane model reflects the dynamics of
the laboratory model with small mismatches due to nonlinearities of real flexible legs.
The trolley motion during this experiment excites the first system eigenmode with
eigenfrequency f1 = 0.93Hz (ω1 = 5.87 rad/s).

2.4.3. Model of full crane configuration

In this Section, the mathematical model of the full crane configuration is compared and
validated against the experimental data. For this experimental configuration, the system
couplings between the trolley, payload, and structure have to be taken into account.
The fully coupled gantry model is presented in Section 2.1. There, it has been assumed
that the payload is coupled with the trolley via a massless rigid rope. However, in the
laboratory crane configuration, a soft rope has been utilized. Due to the fact that the
crane structural vibrations are damped in the rope and are not transmitted to the load,
this results in weak coupling of payload and crane structure. Therefore, this coupling
can be neglected, i.e., the acceleration angle of the payload ϕ̈ in (2.23) does not directly
depend on the acceleration of structure girder ẅL.

Considering this additional assumption, equations of motion of this full experimental
configuration can be obtained according to (2.19), (2.20), (2.21), (2.22) and (2.23) as
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Figure 2.16.: Simulated (blue) and experimental (red) time responses of the elastic
gantry crane with the trolley position control

follows:

%ẅ + EIw′′′′ + cẇ = 0 , (2.87)

w(0) = w′(0) = w′′(L) = 0 , (2.88)

mΣẅ(L) +msz̈ +mplϕ̈ cosϕ−mplϕ̇
2 sinϕ− EIw′′′(L) = 0 , (2.89)

msẅ(L) +msz̈ +mplϕ̈ cosϕ−mplϕ̇
2 sinϕ− Ft + Ffr = 0 , (2.90)

lϕ̈+ z̈ cosϕ+ g sinϕ = 0 . (2.91)

The simulation model for this configuration can be obtained applying the same model
simplification procedures according to Section 2.1, whereas the model parameters are
summarized in Tab. C.2 of Appendix C.

In this case, the trolley drive is considered to be in the current control mode. As
mentioned in Section 2.3.3, the resulting control loop is relatively fast compared to the
mechanical subsystems, such that it can be neglected, and the trolley force Ft can be
considered as the plant input. Depending on the control system, the following outputs
of interest of the plant model can be considered as measured:

• trolley position z,

• trolley velocity ż,

• acceleration of crane girder ẅ(L),

• acceleration of payload z̈p.

Here, it should be mentioned that the horizontal acceleration of the payload is measured,
i.e.,

z̈p = z̈ + lϕ̈ cosϕ− lϕ̇ sinϕ . (2.92)

Linearizing the horizontal payload acceleration z̈p in the equilibrium point ϕ = 0 yields

z̈p = z̈ + lϕ̈ . (2.93)
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Simulation and experimental results of the open-loop crane operation are presented in
Fig. 2.17. Here, the plant output measurements are compared to the model outputs,
whereas the system dynamics is excited by the trolley force impulse input Ft with
peak value 1.72 N and width 0.15 s. From the experimental data, a relatively good
matching between the model and measured signals can be seen. Small differences are
caused mostly by the model uncertainties due to the friction effects. It can be seen that
the trolley motion excites the load oscillations with eigenfrequency fp = 0.6 Hz (ω1 =
3.82 rad/s) and the first structure eigenfrequency f1 = 1.6 Hz (ω1 = 10.24 rad/s).

Figure 2.17.: Simulated (blue) and experimental (red) time responses of the elastic
gantry crane applying a trolley force impulse input (bottom, left)



3. Linear robust control

In this Chapter, linear robust control design for the simplified configuration of labo-
ratory gantry crane is proposed [35, 37]. This control design does not require a drive
control system redesign and, therefore, can be easily implemented in most industrial
cranes. The idea here is to design a robust control law applying H∞ - loop-shaping
design procedure. This control law has to satisfy robust stability and specific perfor-
mance criteria under the assumption that gantry crane parameters are not exactly
known. In the following, the uncertainty models and the control design procedure will
be presented. After that, the proposed method will be verified in the simulation and
experimental study.

3.1. Uncertainty models

The application of control is inherently concerned with the presence of uncertainties.
There exist different ways how uncertainties can be described and included in a control
system. In this Chapter, dynamic perturbation uncertainties based on the coprime
factor description are introduced. It is considered that the parameters of the gantry
crane for different loading are not constant, and the stiffness of the flexible part is not
accurately known. Besides, uncertainties related to model order reduction can also be
considered.

3.1.1. Coprime factor uncertainty

From a control design perspective, a set of models for various parameters can be embed-
ded into a plant with nominal parameters Pn(s) and a family of bounded uncertainties
that, in general, should be stable and have a finite H∞-norm [96, 124]. In plants with
weakly damped or undamped dynamics, utilization of the coprime factor description is
well suited for including the model uncertainties. The normalized coprime factorization
for the nominal system can be represented as follows:

Pn(s) =
Nn(s)

Mn(s)
, (3.1)

where Mn(s), Nn(s) are coprime transfer functions that fulfill the following Bezout
identity

Mn(s)Mn(−s) +Nn(s)Nn(−s) = 1 . (3.2)

36
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Figure 3.1.: Coprime factor uncertainty

In Fig. 3.1 the coprime factor uncertainty scheme is presented. Here, a plant model
with uncertain parameters P∆(s) can be expressed by the nominal system Pn(s) and
coprime factor uncertainties ∆M (s) and ∆N (s) as follows:

P∆(s) =
Nn(s) + ∆N (s)

Mn(s) + ∆M (s)
. (3.3)

This representation does not provide a unique realization of the uncertainty transfer
functions ∆M (s) and ∆N (s), resulting in a supplementary degree of freedom for their
selection. A common choice is a coprime factor description with a minimal H∞-norm
for [∆M (s), ∆N (s)] resulting in the gap metric.

3.1.2. Gap metric

According to [27, 107], the gap metric δg between the system with nominal parameters
Pn(s) and the system with uncertainty P∆(s) can be obtained as the maximum of the
directed gaps

δg(Pn, P∆) = max{
−→
δg (Pn, P∆),

−→
δg (P∆, Pn)} , (3.4)

where −→
δg (Pn, P∆) := inf

[∆M∆N ]
{‖[∆M∆N ]‖∞ : P∆} . (3.5)

It should be mentioned that the gap metric values may be in the range from zero to
one. Here, the systems Pn(s) and P∆(s) are considered close in sense of the gap metric,
i.e., can be stabilized by the same controller, if δg(Pn, P∆) is close to zero and vice-
versa. From a robust control design perspective, the corresponding value of the gap
metric between the model with nominal parameters and set of models with uncertain
parameters can be utilized to measure the necessary robustness margin.

In order to estimate several error sources, the triangular inequality property can be
applied

δ(P1, P3) ≤ δ(P1, P2) + δ(P2, P3) . (3.6)

For example, the triangular inequality can be used to obtain the distance between the
low-order model with uncertain parameters P∆ and the original model with nominal
parameters P in terms of the gap metric δ(P∆, P ). For this reason, according to the
triangular inequality (3.6): P1 = P∆ is considered as a low-order approximation of the
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system with uncertain parameters, P2 = Pn as a low-order approximation of the original
system with nominal parameter and P3 = P as a high-order realization of the original
system with nominal parameters. Hence, the numerical discretization errors and model
order reduction errors can be taken into consideration in a unified manner.

3.2. H∞ - loop-shaping control design

The main idea of the H∞ - loop-shaping design is to combine the classical loop shaping
method with the H∞ - based robust stabilization for the fulfillment of both - per-
formance and robustness criteria [96, 124, 33]. Here, the design of the corresponding
controller comprises two stages. A compensator is applied for an adjustment of the
open-loop system eigenvalues such that the desired performance specifications for the
closed loop system are satisfied. After that, a robust stabilizing controller can be ob-
tained with regard to the normalized coprime factor uncertainty.

The desired closed loop performance specifications can be derived by shaping the open-
loop system using a compensator Ws(s) as illustrated in Fig. 3.2,

Ps(s) = Pn(s)Ws(s) . (3.7)

Figure 3.2.: Shaped plant of closed loop system

Taking into consideration the weighted open-loop plant in its normalized coprime factor
representation Ps(s) = Nn(s)/Mn(s) and the following H∞ - control problem∥∥∥∥[K∞1

]
1

(1 + PsK∞)Mn

∥∥∥∥
∞
≤ ε−1 , (3.8)

the controller K∞, which guarantees a robustness margin ε with regard to the normal-
ized coprime factor uncertainties, can be derived.

The maximum robustness margin εmax, which can be achieved is given as follows:

εmax = (1 + ρr(XZ))−1/2 . (3.9)

Here, ρr(·) is the spectral norm (maximum eigenvalue), X and Z are the associated
positive definite solutions of the algebraic Riccati equations

(A−BR−1DC)TX +X(A−BR−1DC)−XBTR−1BX + CR−1CT = 0 , (3.10)
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Figure 3.3.: Stabilizing controller

(A−BR−1DC)Z + Z(A−BR−1DC)T − ZCTR−1CZ +BR−1BT = 0 , (3.11)

where R = 1 + D2 and A,B,C,D are the state-space matrices of the shaped nominal
plant Ps(s).

The controller K∞ that satisfies (3.8) can be calculated for predefined ε < εmax as
follows:

K∞ =

[
A+BF + ε−2(LT )−1ZCT (C +DF ) ε−2(LT )−1ZCT

BTX −DT

]
, (3.12)

with

F = −R−1(DTC +BTX) , (3.13)

L = (1− ε−2)I +XZ . (3.14)

Application of the presented control design for the shaped nominal plant Ps(s) results
in the controller K∞ with the stability margin ε. Then, if δg(Ps, P∆) < ε, the controller
guarantees stability for the shaped uncertain plant P∆(s).

The overall controller Ks can be derived as depicted in Fig. 3.3 as follows:

Ks(s) = K∞(s)Ws(s) . (3.15)

3.3. Simulation study

3.3.1. Robust controller design

In this Section, the described robust control design procedure is applied for the nominal
gantry crane of the simplified configuration. Here, from the Fig. 3.4 it can be seen
that the nominal plant transfer function Pn(s) (blue line) possesses a peak at the
first eigenfrequency ω1 = 5.87 rad/s with magnitude |Gs(jω1)| = 47 dB, slopes nl =
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+80 dB/decade at the low frequency range and nh = −80 dB/decade at the high
frequency range, and the gain crossover frequency ωc = 191 rad/s. It can also be
mentioned that the model has an unbiased output state and a relatively high gain
crossover frequency ωc, which can increase the influence of the measurement noise or
high-frequency modes dynamics that has been neglected. The second eigenfrequency
of the structural dynamics is ω2 ≈ 130 rad/s. As this dynamics has been neglected
for the controller design, shaping the open-loop singular values should primarily reduce
this frequencies range. In addition, the trade-off between given robustness requirements
and fast transients has been taken into account. Thus, the compensator Ws(s), which
weights the open-loop nominal plant Pn(s), is chosen as follows:

Ws(s) =
0.1

0.05s+ 1
. (3.16)

In Fig. 3.4 the Bode magnitude plots of the nominal and shaped plant are presented.
Solution of the problem (3.8) for the given precompensator Ws(s) yields the robust
controller K∞ with the stability margin

ε = 0.48 . (3.17)

The Bode plot of the overall controller Ks is depicted in Fig. 3.5.

Figure 3.4.: Bode diagrams for the nominal system plant (blue) and the shaped system
plant (red)
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Figure 3.5.: The Bode diagram of controller Ks(s)

3.3.2. Gantry crane model uncertainties

In the following, the numerical uncertain crane models are presented, and the required
robustness margin is evaluated. During the operation of gantry cranes, parameter varia-
tions and uncertainties are unavoidable, e.g., different masses of payload, different rope
lengths, neglected high-frequency dynamics, etc. In this work, the system structural dy-
namics for unloaded and loaded cases and stiffness of the crane legs are assumed to be
coarsely known. Thus, a set of crane models can be achieved applying the methodology,
which has been presented in Section 2.1. Here, the set of models ΠC which includes 169
models, is generated from the nominal model by variations of the following parameters:

• additional mass on the girder ms = mt,t+mp, where mass of the trolley is constant
and mass of the payload mp varies,

• elastic modulus E of the material of the gantry legs.

It is considered that these parameters for model variations are within certain intervals

ms = m̄s(1 + km∆m) , (3.18)

E = Ē(1 + kE∆E) , (3.19)

where m̄s and Ē are the values of the nominal model, km, kE and ∆m, ∆E define
possible variations.
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Here, the following values for parameter variations are chosen:

• km = 0.5, −1 ≤ ∆m ≤ 1 yielding up to 50% variation in the crane loading,

• kE = 0.3, −1 ≤ ∆E ≤ 1 representing up to 30% in crane legs stiffness.

Therefore, the nominal model Pn(s) ∈ ΠC can be obtained by substituting ∆m = ∆E =
0 which corresponds to a half of the crane loading capacity. Here, the transfer function
of the nominal crane model is obtained as:

Pn(s) = −3 · 107 · s4

(s+ 10)(s+ 50)4(s2 + 0.16s+ 34.62)
. (3.20)

The domain of the considered parameters is visualized in Fig. 3.6.

Figure 3.6.: Domain of parameter variations

In Fig. 3.7, Fig. 3.8 and Fig. 3.9 the obtained simulation results are depicted. Fig.
3.7 and Fig. 3.8 represent the Bode diagrams ans step responses of the model with
nominal parameter (blue) and models with uncertain parameters (gray). From the
results can be seen how the system eigenfrequency for different uncertain parameters
varies. Here, the first eigenfrequency of the mechanical structure for nominal parameters
is approximately f1 = 0.93Hz (ω1 = 5.87 rad/s) and the frequency variation for the
uncertain parameter systems is in a range 0.72− 1.16 Hz (4.57− 7.27 rad/s).

In Fig. 3.9 the calculated gap metrics for a set of shaped crane models are depicted.
Here, the maximum of the gap metric which corresponds to the case of maximum
loading and minimal value of Young’s modulus E (Fig. 3.6, red point) follows

δg(P∆, Ps) = 0.29 (3.21)

and the order reduction error in sense of the gap metric can be calculated as

δg(Ps, P ) = 0.02 . (3.22)

Thus, according to [107], applying the triangular inequality (3.6) the required robust-
ness margin for the stabilizing controller can be obtained as

δ(P∆, P ) ≤ δ(P∆, Ps) + δ(Ps, P ) = 0.31 . (3.23)
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Figure 3.7.: The Bode diagram of the nominal system (blue) and the uncertain crane
systems (gray)

Figure 3.8.: Step responses for the uncertain crane systems
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Figure 3.9.: Gap metric sequence

3.3.3. Robust control of gantry crane

In this Section, the resulting controllerKs validated in the simulation study. From (3.17)
and (3.23) follows that the stability margin ε = 0.48 is greater than the maximum of
the gap metric δg,max = 0.31, i.e., the obtained controller guarantees robust stability
for the given set of uncertain gantry crane models.

In Fig. 3.10, Fig. 3.11 and Fig. 3.5 the obtained simulation results of the closed loop sys-
tems are represented. Fig. 3.7 and Fig. 3.8 show the Bode diagrams and step responses
of the model with nominal parameter (blue) and models with uncertain parameters
(gray). From the results a notable damping of the crane vibrations for different uncer-
tain parameters can be seen.
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Figure 3.10.: The Bode diagrams of the closed loop nominal system (blue) and the
closed loop uncertain crane systems (gray)

Figure 3.11.: Step responses of the closed loop nominal system (blue) and the closed
loop uncertain crane systems (gray)
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3.4. Experimental evaluation

In the following, the proposed control approach for active damping of structural vibra-
tions is validated on a laboratory gantry crane of the simplified configuration. For this
reason, tracking of the trolley position with a step change of the reference signal to
zr = 200 mm is studied.

The designed linear robust controller has been implemented on the simplified configu-
ration of the laboratory crane setup. The obtained results are presented in Fig. 3.12,
Fig. 3.13, Fig. 3.14, Fig. 3.15, and Fig. 3.16. Here, Fig. 3.12 shows the comparison of
the simulation and experimental results. From simulation results of the nominal model
can be seen that the trolley rises to the desired position (95 % of the zref is consid-
ered) after approximately 0.78 s and settles after 2.37 s with an overshoot 9 %. The
vibrations of the structure are notably damped after 2.3 s. The experimental results
show that the trolley position rises after 0.84 s and settled after 4 s with an overshoot
14 %. The structural vibrations are notably damped after 2.3 s with relatively small
residual oscillations, i.e., the maximal magnitude of acceleration in the steady state
ẅ(L) ≈ 40 mm/s2. The mismatches between the simulation and experimental results
are caused mostly by friction effects in the gear.

For comparison, the experimental results for the trolley positioning with and with-
out the proposed robust control approach are depicted in Fig. 3.13. The results show
the importance of taking the structural dynamics of large gantry cranes into account
for control purposes. The application of the proposed linear control leads to notable
damping of the crane structural dynamics.

In Fig. 3.14 experimental results of disturbance rejection are shown. Here, an impulse
disturbance is applied to the mechanical structure at time 15 s. It can be seen that the
vibrations are notably damped after approximately 2.4 s with relatively small residual
oscillations, i.e., the maximal magnitude of acceleration in the steady-state ẅ(L) ≈
100 mm/s2.

For experimental evaluation of the robustness properties of the obtained control system,
additional experimental responses for a varying mass ms are presented in Fig. 3.15 and
Fig. 3.16. Here, two cases are considered:

• overall mass ms = 0.3 kg contains only the mass of the trolley (left blue point in
Fig. 3.6),

• overall mass ms = 0.9 kg relates to the maximum loading condition (right blue
point in Fig. 3.6)

In both figures a notable vibrations damping for the described conditions of crane
loading can be seen.
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Figure 3.12.: Simulated (blue) and experimental (red) time responses of the elastic
gantry crane by reference tracking applying linear robust control

Figure 3.13.: Experimental time responses of the elastic gantry crane applying linear
robust control (blue) and position control without damping (green)
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Figure 3.14.: Experimental time responses of the elastic gantry crane applying linear
robust control with a disturbance on the mechanical structure at time
15 s

Figure 3.15.: Experimental time responses of the elastic gantry crane in the unloaded
case applying linear robust control (blue) and position control without
damping (green)
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Figure 3.16.: Experimental time responses of the elastic gantry crane in the fully-loaded
case applying linear robust control (blue) and position control without
damping (green)



4. PFC-based linear control

In this Chapter, the PFC-based linear control design for the full configuration of the
laboratory gantry crane is presented [36, 34]. This control provides the positioning of
the payload and damping of the oscillating dynamics via a combination of a parallel
feed-forward compensator (PFC) and an output feedback controller. Here, the PFC
is designed for a compensation of the system zero dynamics and for rendering the
extended plant almost strict positive real (ASPR). The proposed design provides a
zero placement of the extended plant and reduces the bias contribution of the PFC.
Thereafter, the augmented system can be stabilized by applying a high-gain output
feedback control. The main advantages of the proposed control can be summarized as
follows:

• no additional sensors for oscillations measurements are needed;

• simple linear design procedure for the considered single-input single-output (SISO)
plant of the gantry crane;

• no redesign of the motion control system is needed, i.e., simple integration into a
classical cascade control scheme.

The following approach is only applicable for gantry crane configurations with strong
couplings between the trolley, load, and structure, i.e., the system plant is observable in
this configuration. The presented approach is verified in the corresponding simulation
study and on the full experimental crane configuration.

4.1. Relative degree and zero dynamics of the system

The relative degree of a system and its zero dynamics are essential properties for feed-
back control design. In the following, definitions of the relative degree and zero dynamics
of a system are presented according to [43, 32, 61, 84].

Consider the following nonlinear SISO system with an affine input

ẋ = f(x) + g(x)u , (4.1)

y = h(x) , (4.2)

where the functions f(·), g(·) and h(·) are infinitely differentiable, x ∈ Rn and consider
the local behavior of the system in the neighborhood of x = x0. The relative degree of
the system can be obtained by sequential differentiation of the output equation (4.2)
with respect to time.

50
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For instance, if by taking the first derivative

ẏ =
∂h

∂x
ẋ

=
∂h

∂x
f(x) +

∂h

∂x
g(x)u , (4.3)

the term

∂h

∂x
g(x) 6= 0 , (4.4)

then an explicit dependency of ẏ on the input u at the point x0 and its neighborhood
exists, and the relative degree is ϑ = 1. Otherwise, assuming that

ẏ = h2 =
∂h

∂x
f(x) , (4.5)

the second derivative of (4.2) is obtained and can be represented as follows:

ÿ =
∂h2

∂x
f(x) +

∂h2

∂x
g(x)u . (4.6)

Here, the same procedure is applied. If the term

∂h2

∂x
g(x) 6= 0 , (4.7)

the system possesses the relative degree ϑ = 2. Otherwise, ÿ does not depend on u
directly and the procedure continues until an explicit dependency appears.

In general, consider the following set of functions that is defined as

hi =
∂hi−1

∂x
f(x) , i = 2, . . . , ϑ , and h1 = h(x) . (4.8)

Then, if for the ϑ-th output derivative

y(ϑ) =
∂hϑ
∂x

f(x) +
∂hϑ
∂x

g(x)u (4.9)

the following conditions are fulfilled

∂h1

∂x
g(x) =

∂h2

∂x
g(x) = · · · = ∂hϑ−1

∂x
g(x) = 0 , (4.10)

∂hϑ
∂x

g(x) 6= 0 , (4.11)

the system has the relative degree ϑ at the point x0 and it’s neighborhood. If the relative
degree is equal to the system order, i.e., ϑ = n, the system has a full relative degree.

In order to represent sequential differentiation, the notion of Lie derivative is commonly
used. Here, (4.8) can be rewritten as

hi(x) = Li−1
f h(x) = Lfhi−1(x) , i = 2, . . . , ϑ (4.12)
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and

∂hi
∂x

g(x) = LgLi−1
f h(x) . (4.13)

Thus, in this notation, the system is said to have the relative degree ϑ if for the ϑ-th
derivative

y(ϑ) = Lϑff(x) + LfLϑ−1
f h(x)u (4.14)

the following conditions hold

Lgh(x) = LgLfh(x) = · · · = LfLϑ−2
f h(x) = 0 , (4.15)

LfLϑ−1
f h(x) 6= 0 . (4.16)

In order to present the model described by (4.14) in matrix form consider the new state
vector ξ ∈ Rn defined as follows:

ξ =


ξ1

ξ2
...
ξϑ

 =


y
ẏ
...

y(ϑ−1)

 =


h(x)
Lfh(x)

...

Lϑ−1
f h(x)

 . (4.17)

Then, 

ξ̇1

ξ̇2
...

ξ̇ϑ
ξ̇ϑ+1

...

ξ̇n


=



ξ2

ξ3
...

Lϑff(x) + LgLϑ−1
f h(x)u

κ1(ξ, u)
...

κn−ϑ(ξ, u)


, (4.18)

y = ξ1 . (4.19)

where κ(ξ, u) are nonlinear functions.

Separating the vector ξ into two parts ξd = [ξ1, ξ2, · · · , ξϑ]T and ξz = [ξϑ+1, ξϑ+2, · · · , ξn]T

the following model is obtained

ξ̇d = Anξd +Bn

(
Lϑff(x) + LgLϑ−1

f h(x)u
)
, (4.20)

ξ̇z = κ(ξd, ξz, u) , (4.21)

y = Cnξd , (4.22)

where

An =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · 0

 , Bn =


0
0
...
0
1

 , CTn =


1
0
...
0
0

 . (4.23)
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Then, applying a linearizing control law with desired choice of dynamics d(ξd) as

u = − 1

LgLϑ−1
f h(x)

(
Lϑff(x) + d(ξd)

)
, (4.24)

yields

ξ̇d = Anξd +Bnd(ξd) , (4.25)

ξ̇z = κ(ξd, ξz, u) , (4.26)

y = Cnξd . (4.27)

Here, it can be seen that the control law (4.24) stabilizes the output variable y. However,
for the input-output configuration when ϑ < n, not the whole system dynamics is
stabilized. In this case, the state variables ξz are influenced by the nonlinear internal
dynamics κ(ξd, ξz, u), which is unobservable from the output y applying the proposed
linearizing control law. This internal dynamics associated with the state variables ξz is
also called zero dynamics.

In general, it should be stated that the system described by (4.25), (4.26) and (4.27)
with control law (4.24) is internally asymptotically stable at the point x0 and its neigh-
borhood if the zero dynamics is asymptotically stable, i.e.,

ξ̇z = κ(ξd, ξz, u) , (4.28)

is asymptotically stable.

For the SISO linear time-invariant (LTI) system

ẋ = Ax+Bu , (4.29)

y = Cx , (4.30)

the relative degree can be calculated as the difference between the orders of the denom-
inator and numerator polynomials ϑ = n−m of the associated transfer function

P (s) = C(sI −A)−1B =
ams

m + am−1s
m−1 + · · ·+ a0

sn + bn−1sn−1 + · · ·+ b0
(4.31)

or as the smallest positive number which satisfies

CAϑ−1B 6= 0 . (4.32)

In the linear case, the zero dynamics notion is equivalent to the zeros of the associate
transfer function P (s). The location of the system zeros determines the stability of the
zero dynamics. The system is called (strictly) minimum-phase if the zeros zi of P (s)
are in the left-half plane (LHP) Re [zi] ≤ 0 (Re [zi] < 0).

Example 4.1 Consider a velocity control that should be provided to a oil-well drill
string plant [75]. The system dynamics is reflected by an electromechanical second order
system with an elastic coupling and a friction load on the second mass, as presented
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in Fig. 4.1. Here, the first inertia Ja is driven by the DC motor operating in torque
control mode (control input - τm), whereas the friction torque τf produces an effect on
the second inertia Jb. The equations of motion of this system can be written as

Jaϕ̈a + ks tanh kg(ϕa − ϕb) = τm , (4.33)

Jbϕ̈b − ks tanh kg(ϕa − ϕb) = −τf (ϕ̇b) , (4.34)

where ϕa and ϕb are the angles of the first and second masses respectively, ks and kg
are parameters of the nonlinear spring.

Figure 4.1.: Scheme of electromechanical
system

Figure 4.2.: Friction curve

Introducing the vector of states x = [ϕa, ϕ̇a, ϕb, ϕ̇b]
T and control input u = τm, the

state-space representation follows

ẋ1 = x2 , (4.35)

ẋ2 = −ks
Ja

tanh kg(x1 − x3) +
1

Ja
u , (4.36)

ẋ3 = x4 , (4.37)

ẋ4 =
ks
Jb

tanh kg(x1 − x3)− 1

Jb
τf (x4) . (4.38)

The velocity measurements are only provided by an incremental encoder on the shaft
of the motor resulting in the output equation

y = x2 . (4.39)

Here, the nonlinearities are represented by the nonlinear spring and the friction effects
that depend on the velocity of the second mass, as depicted in Fig. 4.2. In order to
show the significance of the zero dynamics, two operating cases are considered. In the
first case, the system is assumed to be operated in the region of the positive slope of
the friction curve, e.g., the velocity ϕ̇b = 10 rad/s (Fig. 4.2). In the second case, an
operating point of velocity ϕ̇b = 1.5 rad/s is assumed, i.e., in the negative slope region
of the friction curve.



CHAPTER 4. PFC-BASED LINEAR CONTROL 55

Applying the aforementioned idea of the input-output linearization the output deriva-
tive can be simply represented as

ẏ = −ks
Ja

tanh kg(x1 − x3) +
1

Ja
u . (4.40)

The direct dependency of ẏ on the input u can be seen, which states that the system has
the relative degree ϑ = 1. The feedback control law, which compensates the nonlinearity
of the spring and provides the desired first-order dynamics for the output velocity, can
be designed as follows:

u = Ja

(ks
Ja

tanh kg(x1 − x3) + d0(ϕ̇ref − x2)
)
, (4.41)

where d0 is a design parameter.

Substituting the control law (4.41) in (4.40) results in the linear input-output relation

ẏ = ẋ2 = d0(ϕ̇ref − x2) . (4.42)

However, it can be seen that not the whole system is linearized, and the system states
x3 and x4 associated with the second mass dynamics are still affected by the nonlinear
dynamics. The time responses of the controlled system for the described cases are
presented in Fig. 4.3 and Fig. 4.4. Here, the velocity reference signal ϕ̇ref is applied
step-wise. In Fig. 4.3 the controlled system is asymptotically stable as the associated
zero dynamics in the region of the positive slope of the friction curve is stable (Fig.
4.2). From a physical point of view, a positive slope of the curve provides the system
energy dissipation, and, therefore, oscillating dynamics induced by the nonlinear spring
is damped. From Fig. 4.4 the occurrence of a limit cycle due to operation in the negative
slope region of the friction curve can be seen. Although the velocity of the first mass
is stabilized by the control law, the corresponding zero dynamics leads to nonlinear
stick-slip oscillations of the second mass.

Figure 4.3.: Time responses of controlled system with friction load at operating point
with positive slope: control input u (left), velocity of the first mass ϕ̇a
(blue, right) and the second ϕ̇b (red, right)
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Figure 4.4.: Time responses of controlled system with friction load at operating point
with negative slope: control input u (left), velocity of the first mass ϕ̇a
(blue, right) and the second ϕ̇b (red, right)

Figure 4.5.: Poles and zeros location: P (s) at operating point with positive slope of the
friction curve (blue) and with negative slope of the friction curve (red)

The system model (4.35), (4.36), (4.37), (4.38), and (4.39) can be linearized and rep-
resented as a transfer function with the motor torque as input and the velocity of the
second mass as output

P (s) =
Jbs

2 + kfs+ kab
JaJbs3 + Jakfs2 + (Ja + Jb)kabs+ kfkab

, (4.43)

where kab represents the linear spring coefficient between masses and kf represents the
slope of the friction curve for some operating point of interest.

The poles and zeros of two transfer functions are depicted in Fig. 4.5. Here, in the case
of a positive slope of the friction curve, i.e., kf > 0, the resulting transfer function is
asymptotically stable and strictly minimum-phase. In the second case, i.e., kf < 0, the
transfer function is unstable and non-minimum-phase.
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4.2. Condition of almost strictly positive realness

The concept of passivity in control theory appeared from the theory of electrical circuits.
From a control point of view, passive systems with possible stable and strictly passive
uncertainties are well known to be internally stable, applying negative feedback. For
LTI systems, the passivity notion is equivalent to the positive realness [41]. In the
following, the conditions for positive real (PR), strictly positive real (SPR), and almost
strictly positive real (ASPR) systems are presented [9, 6, 118, 102, 46].

Consider the following n-th order linear system transfer function

P (s) = C(sI −A)−1B . (4.44)

The rational transfer function P (s) is known to be PR (SPR) if the following conditions
hold [9]:

• P (s) is (asymptotically) stable: Re [λi{A}] ≤ 0 (Re [λi{A}] < 0) for i = 1, 2, . . . , n,

• the Nyquist plot is in the (closed) right half of the complex plane: Re [P (iω)] ≥ 0
(Re [P (iω)] > 0) for all ω ≥ 0,

• the relative degree of the system is 0 or 1,

• P (s) is (strictly) minimum-phase, i.e., zeros zi of P (s) are in the LHP Re [zi] ≤ 0
(Re [zi] < 0).

The notion of SPR plant is very helpful for adaptive and robust control design methods
[102, 22, 8]. From a theoretical point of view, applying a static output feedback with an
arbitrarily large coefficient to SPR plant always yields an asymptotically stable closed
loop system. However, it should be mentioned that this property is very strong and not
fulfilled for most real plants. In [6, 86] this property has been relaxed, and the notion
of almost SPR plant has been introduced.

The system is known to be ASPR if there exists an output feedback gain such that the
closed loop system is SPR. Here, the following conditions for the transfer function P (s)
should hold [6, 46]:

• the relative degree of the system is 0 or 1,

• P (s) is strictly minimum-phase, i.e., zeros zi of P (s) are in the LHP Re [zi] < 0.

It can be seen that ASPR property imposes less restrictions on the system plant P (s).
It may not be necessarily stable, but applying a static output feedback with a suffi-
ciently large gain, the system dynamics will be stabilized. This concept is useful for
guaranteeing asymptotic stability for different control applications, e.g., simple adap-
tive control, sliding-mode control, self-tuning PID-control, discrepancy-based control,
etc. It should be mentioned that the ASPR property is also not fulfilled for most real
plants. However, due to fewer restrictions, the plant may be rendered ASPR for control
purpose, which will be discussed in the next Section.
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4.3. Parallel feed-forward compensation

4.3.1. Control based on the parallel feed-forward compensation

One of the possibilities to introduce a correction into the open-loop plant transfer
function for a feedback control design is applying a parallel feed-forward compensator
(PFC), as depicted in Fig. 4.6. Here, the idea is to extend the plant with a PFC and
to render the new plant P + F desired properties, e.g., passivity, ASPR, full relative
degree, etc. It yields a redefined output ỹ = y+ yF , which is considered for the further
feedback control design. Since the controller C is obtained for the new plant P + F ,
the overall control scheme can be alternatively represented as depicted in Fig. 4.7. In
contrast to the classical cascade interconnected compensator, the PFC has not been
widely utilized. However, in a number of works, it has been shown that parallel feed-
forward interconnected dynamic elements can be effectively applied for certain control
purposes, e.g.:

• shaping the augmented open-loop system transfer function in the frequency do-
main for a robust feedback control [45, 16, 20, 21];

• control of plants with delay [30, 97];

• internal model control [23, 63, 117];

• compensation of system dynamics of the augmented plant [20];

• compensation and stabilization of system zeros of the augmented plant [6, 7, 46,
93, 28, 42, 50].

The design of feedback control for non-minimum phase plants or plants that contain
the undesired zero dynamics is always a challenging task. It is well known that the
zero dynamics is invariant with respect to any feedback control and can be changed
only by redefining the input-output plant configuration. Consequently, many of the
contributions are dedicated to applying PFC for different control approaches that suffer
from undesired zero dynamics, e.g., simple adaptive control, sliding-mode control, exact
feedback linearization, discrepancy-based control, etc. In [6, 7] the author pioneered
the application of PFC for simple adaptive control [8]. In order to apply this control
approach, the plant should fulfill at least ASPR conditions. As this condition is not valid
for most real plants, it has been considered that it can be fulfilled for a virtual plant
P +F (Fig. 4.6). Following this idea in [44, 46, 16] the authors presented a constructive
design procedure of PFC for stable plants with stable zero dynamics and known leading
coefficient. On the one hand, the design requires only little information about the plant,
but, on the other hand, according to the restrictions, this approach is not applicable
for non-minimum phase systems, and adjustment of the specific PFC parameters is not
evident, which makes its practical implementation without an additional simulation
study difficult.
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Figure 4.6.: PFC with feedback control scheme

Figure 4.7.: Equivalent feedback control scheme

In [93, 28, 29, 56, 26, 50] model-based PFC were applied for stable non-minimum phase
plants in order to compensate unstable zeros. In [62] PFC-based output adaptive predic-
tive control was proposed. Another interesting PFC application can be found in sliding-
mode control [31, 66]. A constructive design approach for unstable non-minimum phase
plants was introduced and applied for the corresponding discrepancy-based control in
[72].

4.3.2. Design of parallel feed-forward compensator for unstable systems

In the following, a general linear approach for zero dynamics stabilization of the aug-
mented system P̃ = P + F is presented. Consider the following SISO LTI plant, which
may be non-minimum phase and unstable, i.e., may contain poles and zeros in the
left-half plane (LHP) as well as in the right-half plane (RHP)

P (s) =
N+(s)N−(s)

M+(s)M−(s)
, (4.45)

where N+(s) and M+(s) are the corresponding fractions of the polynomial with roots
in the LHP that are associated with the stable poles and zeros of P (s), N−(s) and
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M−(s) fractions with roots in the RHP that are associated with unstable poles and
zeros of P (s).

For changing the stability properties of the zero dynamics for the augmented system
with the new output ỹ, an appropriate PFC F (s), as illustrated in Fig. 4.8, has to be
designed.

Figure 4.8.: Parallel feed-forward interconnection

According to the design procedure, which is proposed in [72], consider the PFC, which
comprises the polynomial fractions with roots in LHP, i.e., N+(s) and M+(s), and two
additional elements Nc(s) and Mc(s) that can be chosen,

F (s) =
N+(s)Nc(s)

M+(s)Mc(s)
. (4.46)

Thus, a parallel feed-forward interconnection of the plant and PFC yields

P̃ (s) = P (s) + F (s)

=
N+(s) [N−(s)Mc(s) +M−(s)Nc(s)]

M+(s)M−(s)Mc(s)
. (4.47)

Here, the stability condition of the zero dynamics for the extended system P̃ (s) is
obtained if and only if the numerator polynomial N−(s)Mc(s) +M−(s)Nc(s) has roots
only in LHP. It can be shown that the problem of PFC design for zero dynamics is
equivalent to designing a controller, which stabilizes the system plant consisting of the
unstable poles and zeros [72]. Also, this problem can be directly solved by placing the
roots of the polynomial

Ld(s) = N−(s)Mc(s) +M−(s)Nc(s) , (4.48)

where Ld(s) is an arbitrary polynomial of suitable degree, and finding the corresponding
Nc(s) and Mc(s). In order to solve the linear Diophantine equation (4.48), a method
based on Sylvester’s matrix can be utilized [39].

Consider that the plant polynomials M−(s) and N−(s) of same degree m, PFC poly-
nomials Nc(s) and Mc(s) of degree n = m − 1, and the desired polynomial Ld(s) of
degree k = m+ n are represented as follows:

N−(s) = ams
m + am−1s

m−1 + · · ·+ a0 , (4.49)

M−(s) = bms
m + bm−1s

m−1 + · · ·+ b0 , (4.50)

Nc(s) = cns
n + cn−1s

n−1 + · · ·+ c0 , (4.51)

Mc(s) = dns
n + dn−1s

n−1 + · · ·+ d0 , (4.52)

Ld(s) = lks
k + lk−1s

k−1 + · · ·+ l0 . (4.53)
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Thus, the placement problem (4.48) is leading to the solution of the respective matrix
equation

R v = x , (4.54)

where

R =



am 0 · · · 0 bm 0 · · · 0
am−1 am · · · 0 bm−1 bm · · · 0

...
...

. . .
...

...
...

. . .
...

a0 a1 · · · am b0 b1 · · · bm
0 a0 · · · am−1 0 b0 · · · bm−1
...

...
. . .

...
...

...
. . .

...
0 0 · · · a0 0 0 · · · b0


,

v =



dn
...
d0

cn
...
c0


, x =


lk
lk−1

...
l0

 .

Here, the vector v comprises the sought parameters ofNc(s) andMc(s) that are included
in the PFC. According to Sylvester’s theorem, the parameter matrix R is non-singular
if and only if N−(s) and M−(s) are coprime [39]. It should be also mentioned that
the determinant of the matrix R is the resultant of two polynomials N−(s) and M−(s)
[12].

Example 4.2 Consider the oil-well drill string system in Example 4.1 operated in
the negative slope region of the friction curve Fig. 4.2 with velocity ϕ̇b = 1.5 rad/s.
Linearizing the system at this point results in an unstable linear system. For the mo-
tor reference torque τm,ref as input and the motor velocity ϕ̇a as output the transfer
function is obtained

P (s) =
200 (s2 − 5s+ 26.67)

(s+ 100)(s− 2.19)(s2 − 2.81s+ 36.51)
. (4.55)

Here, according to (4.45), the unstable non-minimum phase plant can be separated into
the following fractions

N−(s) = (s2 − 5s+ 26.67) , (4.56)

M−(s) = (s− 2.19)(s2 − 2.81s+ 36.51) , (4.57)

N+(s) = 200 , (4.58)

M+(s) = (s+ 100) . (4.59)

Then, the PFC elements Nc(s) and Mc(s) are chosen as follows:

Nc(s) = c2s
2 + c1s+ c0 , (4.60)

Mc(s) = d2s
2 + d1s+ d0 . (4.61)
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In order to obtain stable zero dynamics for the augmented system (4.47), the above-
presented placement approach is applied. It implies choosing the polynomial with de-
sired roots location. Here, e.g., the desired roots location are assigned according to the
reverse Bessel polynomial [40] as follows:

Ld(s) = s5 + 15.24s4 + 108.4s3 + 440.7s2 + 1008s+ 1024 . (4.62)

Finding the vector of controller coefficients v from the matrix equation (4.54) results
in PFC

F (s) =
9.5566 (s+ 40.19)(s+ 0.99)

(s+ 100)(s− 7.14)(s+ 1.05)
. (4.63)

Applying the designed compensator F (s) in parallel feed-forward connection with the
plant P (s) results in the extended system P̃ (s) with locally asymptotically stable zero
dynamics. It should be noticed that this design approach does not provide the relative
degree assignment for the augmented system. However, in this specific example, the
extended plant is ASPR.

It should be also noticed that the designed PFC introduces a static error to the physical
output. In addition, since the extended plant P̃ (s) is ASPR, high gain adjustment of
the feedback controller can be used, which results in fast convergence of the output ỹ
to the reference value. However, since the transfer function with respect to the physical
output P (s) contains zeros in RHP, transients with large overshoots may occur for
this controller adjustment. In order to compensate the static error and to reduce the
overshoot of the physical output, an additional pre-filter Wp as depicted in Fig. 4.11 is
used. Here, a simple first order system Wp is chosen as follows:

Wp(s) =
lims→0 P̃ (s)

lims→0 P (s)
· 1

TW s+ 1
= kW ·

1

TW s+ 1
, (4.64)

where the gain kW = 0.25 is calculated directly from the static error introduced by the
PFC and the time constant TW = 0.8 is tuned iteratively to reduce the overshoot of
the velocity ϕ̇a.

In order to analyze the stability properties of P̃ (s) under output feedback, the root
locus for varying gain kP is illustrated in Fig. 4.9. Here, two closed loop systems with
controller gain kP = 16 (green) and kP = 1000 (red) are shown. It can be seen that
the augmented output is stabilized for gains kP ≥ 16. In Fig. 4.10 the step responses of
both masses applying the designed PFC F (s), controller gain kP = 1000 and pre-filter
Wp(s) are depicted.

4.3.3. Design of parallel feed-forward compensator for stable systems

In the following, a simplified design of PFC, which is limited to the application for stable
systems, is presented. This design procedure provides an assignment of the desired zero
dynamics of the augmented plant and desired relative degree. In addition, the bias
effects appearing in the corresponding augmented output ỹ can be reduced.
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Figure 4.9.: Root locus of P̃ (s): poles of the open-loop system (black), poles of the
closed loop system with kP = 16 (green), poles of the closed loop system
with kP = 1000 (red)

Figure 4.10.: Step responses (right) and control input (left) of the closed loop system
with PFC and kP = 1000: time responses of the first mass (blue), time
responses of the second mass (red)

Consider the following SISO LTI plant

P (s) =
yp(s)

u(s)
= kn

N(s)

M(s)
, (4.65)

where M(s) is a polynomial of degree m, which may contain roots in LHP as well as on
the imaginary axis, N(s) is a normalized polynomial of degree n, which may contain
roots in LHP as well as in RHP, the relative degree of the plant ϑ = m−n ≥ 2, and kn
is the normalization coefficient. The numerator polynomial N(s) is normalized using
kn in such a manner that the coefficient of the constant term is one.

Consider the PFC consists of the plant poles and normalization coefficient, i.e., M(s)
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Figure 4.11.: PFC with feedback control scheme and pre-filter

and kn, and a supplementary polynomial A(s) of degree η

F (s) =
yf (s)

u(s)
= kn

A(s)

M(s)
. (4.66)

The parallel interconnection P (s) +F (s) yields an augmented plant with a new virtual
output ỹ

P̃ (s) =
ỹ(s)

u(s)
= kn

N(s) +A(s)

M(s)
. (4.67)

In order to fulfill the ASPR conditions for the augmented plant P̃ (s), the polynomial
A(s) should posses the degree η = m− 1 or η = m. For providing a desired location of
zeros, the polynomial A(s) can be chosen as follows:

A(s) = Ld(s)−N(s) , (4.68)

where Ld(s) is a normalized polynomial of degree η with desired zeros

Ld(s) = T ηd s
η + λη−1T

η−1
d sη−1 + · · ·+ λ2T

2
d s

2 + λ1Tds+ 1 . (4.69)

Here, Td is the time constant and λj are polynomial coefficients that determine the
roots location.

Generally, the polynomial Ld(s) can be chosen arbitrarily. However, for guaranteeing
internal closed loop stability, the selected Ld(s) should give a polynomial A(s) without
roots in RHP. Besides, applying the polynomial Ld(s) in the normalized form, as men-
tioned above, will result in the PFC numerator A(s), which includes a derivative and
hence reduces the bias effects of the parallel feed-forward correction.

4.4. Control design based on parallel feed-forward
compensator

In this work, the PFC design for stable systems is applied for control of the gantry
crane. From a practical point of view, this approach does not require additional load
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measurements nor states estimation. Moreover, it is an output feedback control ap-
proach that does not require a redesign of the drive control system. The stability and
performance of the closed loop system are achieved by defining a new augmented out-
put as a combination of the actual measured output, in this case, the trolley position,
and the output of an appropriate PFC. The PFC provides the ASPR condition for the
augmented plant, i.e., relative degree one and desired zeros location in LHP. After that,
high gain output feedback control becomes applicable for such an augmented plant.

In Fig. 4.12 the overall control system for gantry crane positioning is presented. To
provide operation of the system in the linear region, an additional friction compen-
sator is applied [3]. For stabilization of the ASPR augmented plant P̃ (s) the following
proportional output feedback control can be utilized

u(t) = kp (r(t)− ỹ(t)) , (4.70)

where kp is a proportional controller gain.

Figure 4.12.: Overall control scheme

4.5. Simulation study

In the following, the problem of undesired zeros for the gantry crane is presented.
After that, the proposed PFC is applied to the gantry crane, and simulation results are
presented.

4.5.1. Gantry crane plant with undesired zeros

The transfer function of the full crane configuration with the motor force as input Ft
and the trolley position as output z is

P (s) =
36.571 (s2 + 13.8) (s2 + 0.017s+ 98.97)

s2 (s2 + 32.94) (s2 + 0.02s+ 113.5)
. (4.71)
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Here, the system has the relative degree ϑ = 2. Dynamics of the crane system is
characterized by two poles at the origin, two pairs of complex conjugated poles

p1,2 = 0 , (4.72)

p5,6 = 0± 5.74 i , (4.73)

p3,4 = −9.8 · 10−3 ± 10.66 i , (4.74)

and two pairs of complex conjugated zeros

z1,2 = 0± 3.72 i , (4.75)

z3,4 = −8.6 · 10−3 ± 9.95 i . (4.76)

It can be seen that the transfer function contains one complex pair of poles and zeros on
the imaginary axis, which is related to the undamped load swinging dynamics, and one
complex pair of poles and zeros near the imaginary axis, which is related to the lightly
damped structural dynamics. From a theoretical point of view, it means that applying
high-gain or fast switching relay output feedback control the system poles converge to
the system zeros, which cancels out part of the system dynamics and makes this part
unobservable from the output. For problems with lightly damped system dynamics,
this yields oscillatory internal dynamics of the closed loop system [36, 31].

Example 4.5 Consider the conventional position control of the gantry crane system
with a PD controller. The open-loop plant with cascade interconnected PD controller
can be represented as follows:

Po(s) = kP ·
(

1 +
TD s

Tf s+ 1

)
· 36.571 (s2 + 13.8) (s2 + 0.017s+ 98.97)

s2 (s2 + 32.94) (s2 + 0.02s+ 113.5)
, (4.77)

where kP , TD, and Tf are the PD controller parameters.

The open-loop transfer function Po(s) has the relative degree ϑ = 2. In Fig. 4.13 the
root locus of the gantry crane system for the fixed derivative time constant TD = 1 s,
the filter time constant Tf = 1 ms, and varying gain kP is depicted. Here, it can be seen
that the position output and internal system dynamics can be asymptotically stabilized,
e.g., applying low gain kP = 0.25 (green poles). However, this gain adjustment typically
results in poor closed loop dynamics, as depicted in Fig. 4.14 (green lines). For higher
gains, e.g., kP = 2, the system poles are more attracted to the system zeros (Fig.
4.13, red poles) resulting in weakly damped oscillating dynamics of position output
(Fig. 4.14, red lines). Application of much higher gains kP will result in a stabilized
position output, on the one hand, and large undamped oscillations of load and structural
dynamics, on the other. In order to overcome this problem without additional sensors,
control system redesign is needed.

4.5.2. PFC-based feedback control

In this Chapter, to solve zero dynamics problem without a motion control system
redesign, the extension of the plant with PFC is utilized. The transfer function of
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Figure 4.13.: Root locus for the crane plant Po(s): poles of the open-loop system (black),
poles of the closed loop system with kP = 0.25 (green), poles of the closed
loop system with kP = 2 (red)

Figure 4.14.: Step responses (right) and control input (left) of the closed loop crane
plant Po(s): time responses of the closed loop system with kP = 0.25
(green), time responses of the closed loop system with kP = 2 (red)

interest is computed according to (4.66) as follows:

P (s) = kn ·
7.32 · 10−4 s4 + 1.26 · 10−5 s3 + 8.26 · 10−2 s2 + 1.73 · 10−4 s+ 1

s6 + 1.97 · 10−2 s5 + 146.5 s4 + 0.6481 s3 + 3741 s2
, (4.78)

with normalization factor kn = 4.99 · 104.

In order to design an appropriate PFC, the polynomial Ld(s) with the desired roots
location should be defined according to (4.69). To achieve transients without large
overshoots in the trolley position a Bessel polynomial of order 5 with time constant
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Figure 4.15.: Root locus for the augmented gantry crane plant P̃ (s): poles of the open-
loop system (black), poles of the closed loop system with position con-
troller gain kP = 20 (red)

guaranteeing internal stability Td = 0.16 is utilized [40]. The chosen polynomial can be
computed as follows:

Ld(s) = 10−4 s5 + 2.5 · 10−3 s4 + 2.78 · 10−2 s3 + 0.18 s2 + 0.63 s+ 1. (4.79)

Therefore, according to (4.66) and (4.68) the PFC is obtained as follows:

F (s) = kn ·
10−4 s5 + 1.8 · 10−3 s4 + 2.77 · 10−2 s3 + 0.1 s2 + 0.63 s

s6 + 1.97 · 10−2 s5 + 146.5 s4 + 0.6481 s3 + 3741 s2
. (4.80)

The extended ASPR plant P̃ (s) = P (s) + F (s) with the desired zeros location is

P̃ (s) = kn ·
10−4 s5 + 2.5 · 10−3 s4 + 2.78 · 10−2 s3 + 0.18 s2 + 0.63 s+ 1

s6 + 1.97 · 10−2 s5 + 146.5 s4 + 0.6481 s3 + 3741 s2
. (4.81)

In order to analyze the linear system properties P̃ (s), the root locus procedure for
varying gains kP is applied as depicted in Fig. 4.15. It can be seen that, e.g., applying
the gain kP = 20, yields the closed loop poles that are near the desired zeros location.
Hence, the performance of the closed loop augmented system under high gain feedback
control or switching relay output feedback control is predefined by the PFC design.

In Fig. 4.16 the closed loop nonlinear system responses with the designed PFC and the
gain kP = 20 are presented. Here, it can be seen that the trolley position, as well as the
internal structural and payload dynamics, settle in tset = 1.5 sec without oscillations.
The output of the PFC (Fig. 4.16, red line) is unbiased according to the design and
therefore does not contribute a steady-state error to the output of interest, i.e., the
trolley position.
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Figure 4.16.: Step responses of the closed loop system with PFC
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4.6. Experimental evaluation

In this Section, the proposed PFC-based approach for gantry crane control without
additional sensors is validated on the full configuration of the laboratory gantry crane.
This approach is compared with two conventional methods. In the first case, a cascade
control scheme providing position control without additional damping purposes is uti-
lized. In the second case, an observer-based LQR controller is applied. Both methods
are presented in detail in Appendix D. In order to validate the above-mentioned ap-
proaches, tracking of the trolley position with a step change of the reference signal to
zr = 350 mm is studied.

Simulation and experimental results of the closed loop system dynamics are presented
in Fig. 4.17. As can be seen the trolley reaches the desired position in tset = 1.35 s
with an overshoot 2.8 %, a steady-state error 2.7 %, and a small residual oscillating
dynamics of crane structure and payload. These mismatches are a result of the model
uncertainties and, hence, non-ideal compensation of the friction forces.

In Fig. 4.18 the PFC-based control approach is compared with the above-mentioned
methods in the same experimental study. For evaluation of the transients, the following
properties are taking into consideration: rise time (95 % of the reference value), settling
time and overshoot of the trolley position z, residual oscillations of the crane acceler-
ation ẅL and the load acceleration z̈p. The obtained values are summarized in Tab.
4.1. Here, conventional cascade position control does not provide additional damping
purposes and shows fast rise time due to the corresponding gains adjustment. It should
be mentioned that the oscillatory behavior of the closed loop system is a result of the
undesired system zero dynamics. The closed loop behavior of the system with LQR
has slower transients with overshoot, notable damping of the payload dynamics and
a reduction of the crane structural vibrations. The application of the proposed PFC
approach results in a faster settling time, larger payload damping, and reduction of the
structural vibrations.

Table 4.1.: Properties of the time responses

Control Approach PFC Cascade LQR

Rise time [s] 1.35 0.65 1.1

Settling time [s] 1.35 - 2.08

Overshoot [%] 2.8 11.2 -

Residual oscillations ẅL [mm/s2] 145 239.33 228

Residual oscillations z̈p [mm/s2] 105 4028 637
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Figure 4.17.: Simulated (blue) and experimental (red) time responses of elastic gantry
crane with PFC-based feedback control
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Figure 4.18.: Experimental time responses of elastic gantry crane: high gain with PFC
(blue), cascade PID-control (green) and LQR control (red)



5. Discrepancy-based control

In this Chapter, the nonlinear control design for the full configuration of laboratory
crane is presented [38]. This approach allows deriving a control law directly, i.e., with-
out model simplifications. Here, for stabilization of the gantry crane, a generalized error
measure, called discrepancy, is taken into consideration. Applying the associated sta-
bility theory, i.e., stability with respect to two discrepancies, a nonlinear control law
for the underactuated gantry crane based on Lyapunov direct design approach can be
derived. The presented approach is validated in the corresponding simulation study and
on the full configuration of the laboratory gantry crane.

5.1. Direct control of underactuated gantry cranes

In previous Chapters, linear control approaches have been proposed that are essentially
based on approximated models. The approximation of an infinite-dimensional model is
always an additional step in the control design, which introduces uncertainties due to
the assumption that an infinite number of system modes can be neglected by corre-
sponding discretization and order reduction. Direct control design methods eliminate
this step and are, hence, preferable. However, applicability is in general limited due to
a number of restrictions, e.g., simple geometries [14, 76].

One of the most common direct control approaches for electromechanical systems, that
provides dissipation, is based on the total system energy [17, 53, 103, 111]. The deriva-
tion of the energy-based control law for the underactuated gantry crane is presented in
detail in Appendix E. Here, since the system energy E = T + U is a positive definite
function, it is suitable as a Lyapunov functional candidate. Taking its time derivative
along the system trajectory and substituting the equations of motion yields

Ė = −
∫ L

0
cẇ2 dx+

(
Ft − Ffr

)
ż . (5.1)

Here, the first term characterizes the natural damping of the mechanical structure,
which is always negative. It can be seen that choosing Ft = −kż + Ffr as the system
input and the trolley velocity ż as the output yields the well-known energy dissipation.
However, being a result of the underactuated nature of the system, the control law does
not comprise terms related to payload or crane structural dynamics. One way to solve
this problem is to increase the coupling in the control law. It can be done by introducing
an additional term that depends on the velocity of interest, e.g., the payload velocity
in (5.1), and to find reversely an appropriately shaped energy functional [103, 123].

73
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Another way to solve the problem is to combine the energy-based control with another
damping control [111]. In this work, another approach based on a generalized error
measure, called discrepancy, is proposed.

5.2. Stability with respect to two discrepancies

In this Section, the most important definitions, properties, and remarks about stability
with respect to two discrepancies are introduced according to the contributions [64, 94,
95, 71, 72]. Consider the process φ(·, t) is a solution of a DPS and φ0 = 0 its equilibrium.

Definition 1. Discrepancy [71, 72]
A discrepancy is a real valued functional ρ = ρ[φ(., t), t] with the following properties

• ρ(φ, t) ≥ 0

• ρ(0, t) = 0

• for an arbitrary process φ(., t) the real valued functional ρ[φ(., t), t] is continuous
with respect to t

• presenting the second discrepancy ρ0(φ) with ρ0(φ) ≥ 0 and ρ0(0) = 0. Than the
discrepancy ρ[φ(., t), t] is continuous at time t = t0 with respect to ρ0 at ρ0 = 0, if
for every ε > 0 and t0 > 0 there exists a β(ε, t0) > 0, such that from ρ0 ≤ β(ε, t0)
follows ρ < ε

It should be mentioned that the discrepancy ρ does not satisfy all properties of a metric,
e.g., triangular inequality d(x, y) = d(y, z) +d(z, y) or symmetry d(x, y) = d(y, x). And
more importantly, it has not to satisfy the definiteness property, i.e., if the discrepancy
vanishes ρ(φ, t) = 0 it does not naturally mean that φ = 0. Therefore, the discrepancy
is an extension of the distance measures normally used in stability theory of DPS like
Lp and L∞-norms [71, 72].

Definition 2. Stability with respect to two discrepancies ρ and ρ0 [71, 72]
The equilibrium φ0 = 0 is stable in terms of Lyapunov with respect to the two discrep-
ancies ρ and ρ0 for all t ≥ t0 if for every ε > 0 and t0 ≥ 0 there exists a β = β(ε, t0)
such that for every process φ(., t) with ρ0 < β(ε, t0) it follows that ρ < ε for all t ≥ t0.
If in addition limt→∞ ρ = 0, than the equilibrium φ0 is called asymptotically stable in
terms of Lyapunov with respect to the two discrepancies ρ and ρ0.

Lyapunov stability theory is a base for many nonlinear control methods. In order to
determine a relationship between stability with respect to two discrepancies and the ex-
istence of a Lyapunov functional V, the definitions of positivity and positive definiteness
of a functional with respect to a discrepancy can be presented.

Definition 3. Positivity with respect to a discrepancy ρ [71, 72]
The functional V = V[φ, t] is called positive with respect to the discrepancy ρ, if V ≥ 0
and V[0, t] = 0 for all φ with ρ(φ, t) <∞.
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Definition 4. Positive definiteness with respect to a discrepancy ρ [71, 72]
The functional V = V[φ, t] is positive definite with respect to the discrepancy ρ, if V ≥ 0
and V[0, t] = 0 for all φ with ρ(φ, t) < ∞, and for every ε > 0 exists a β = β(ε) > 0,
such that V ≥ β(ε) for all φ with ρ[φ, t] ≥ ε.

Thereafter, two theorems that determine the conditions for a function V to guarantee
(asymptotic) stability with respect to two discrepancies [95, 71, 72].

Theorem 1. The process φ with equilibrium φ0 = 0 is stable with respect to the two
discrepancies ρ and ρ0 if and only if there exists a functional V = V[φ, t] positive
definite with respect to the discrepancy ρ, continuous at time t = t0 with respect to ρ0

at ρ0 = 0 and not increasing along the process φ, i.e., V̇ ≤ 0.

Theorem 2. The process φ with equilibrium φ0 = 0 is asymptotically stable with respect
to the two discrepancies ρ and ρ0 if and only if there exists a functional V = V[φ, t]
positive definite with respect to the discrepancy ρ, continuous at time t = t0 with respect
to ρ0 at ρ0 = 0 and not increasing along the process φ, i.e., V̇ ≤ 0, with limt→∞V = 0.

In general, it should be also stated that stability with respect to two discrepancies is
necessary but in general not sufficient for stability with respect to a Lp or L∞ norms.

5.3. Design of discrepancy-based control for gantry crane

In the following, the discrepancy-based control design for the underactuated gantry
crane is presented. As mentioned above, the idea of the approach is a stabilization of
the generalized error e in the sense of two discrepancies. Here, in the first step, the
error should be defined to fulfill the control objectives. This error should be chosen
such that the relative degree of the input-output system of interest is equal to one, and
the corresponding zero dynamics is stable. The stability of zero dynamics for DPS is
complicated to analyze. One possible approximate solution is to examine the location
of the zeros of the linear discretized system. It should also be noted that this error
may not have a distinct physical meaning. Moreover, to provide an additional degree
of freedom for the control law, each particular component of the generalized error may
be weighted.

The aim of the gantry crane control system is to locate the trolley in the desired position
and to reduce the unwanted oscillations of the payload and the crane structure. Here,
the generalized error e is chosen such that it comprises the deviation of the trolley
position from its reference value ε(t) = z(t)− zref (t), the trolley velocity ż, velocity of
the crane girder ẇ(L, t), angular velocity of the payload ϕ̇, and can be represented as
follows:

e = k1ε+ k2ż + k3ẇ(L) + k4ϕ̇ , (5.2)

where k1 to k4 are shaping weights that increase the coupling of the associated states.
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Thereafter, the established error e yields the following discrepancy ρ

ρ =
1

2
(k1ε+ k2ż + k3ẇ(L) + k4ϕ̇)2 . (5.3)

The second discrepancy ρ0 is selected to be equal to ρ at time t = t0 = 0. Assuming
that at time t0 the gantry crane is in its equilibrium state, the second discrepancy is

ρ0 = ρ(t0) = 0 . (5.4)

As was stated in Theorem 2 existence of a suitable positive definite functional V is
sufficient to guarantee asymptotic stability with respect to the two discrepancies ρ and
ρ0. Then, the corresponding Lyapunov functional can be represented as follows:

V =
1

2
(k1ε+ k2ż + k3ẇ(L) + k4ϕ̇)2 . (5.5)

In accordance with stability in terms of two discrepancies, the control input has to be
chosen such that the time derivative of the functional V̇ along the state trajectories is
always negative definite and vanishes only for V = 0. Calculating the time derivative
of the corresponding Lyapunov functional results in

V̇ = eė = e
[
k1ε̇+ k2z̈ + k3ẅ(L) + k4ϕ̈

]
. (5.6)

Here, it can be seen that by substituting the equation of motion (2.22), a direct de-
pendency on the control input kmu(t) appears and that the relative degree of the
associated input-output system is one. Assuming that ẅ(L) can be directly measured
and eliminating the angular acceleration ϕ̈, (5.6) can be rewritten as follows:

V̇ = e

(
k1ε̇+

k3lf1(ϕ)−msf2(ϕ)

lf1(ϕ)
ẅ(L)− f2(ϕ)

lf1(ϕ)
Ffr

−k4gms − k2gmp cosϕl +mplϕ̇
2f2(ϕ)

lf1(ϕ)
sinϕ+

kmf2(ϕ)

lf1(ϕ)
u

)
, (5.7)

where

f1(ϕ) = ms −mp cosϕ2 , (5.8)

f2(ϕ) = k2l − k4 cosϕ . (5.9)

In order to achieve the required negative definiteness of the time derivative along the
state trajectory of the Lyapunov functional V̇ and exponential convergence of V, the
control law has to be chosen as follows:

u =
lf1(ϕ)

kmf2(ϕ)

(
−k3lf1(ϕ)−msf2(ϕ)

lf1(ϕ)
ẅ(L)− f2(ϕ)

lf1(ϕ)
Ffr − k1ε̇

+
k4gms − k2gmp cosϕl +mplϕ̇

2f2(ϕ)

lf1(ϕ)
sinϕ− ae

)
(5.10)

where a > 0 is a design parameter influencing the control performance.

Thereafter, substituting the designed control law (5.10) in V̇ (5.7) yields the aforemen-
tioned exponential convergence

V̇ = −ae2 = −2aV . (5.11)

The control scheme of the designed control system is depicted in Fig. 5.1.
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Figure 5.1.: Discrepancy-based control scheme

5.3.1. Extension of the control system

The installed crane sensors of the laboratory gantry crane provide measurements of
the motor states τ, ż, z and accelerations of the crane girder ẅ(L) and payload z̈p. For
practical implementation of the control law (5.10) additional system states are required,
in particular, the velocity of the crane girder ẇ(L), angular velocity and angle of the
payload ϕ̇, ϕ, and the friction force Ffr(ż). As these can not be measured directly, the
control system should be extended, as depicted in Fig. 5.2.

Figure 5.2.: Extended control scheme of discrepancy-based control

In this work, for the estimation of the lacking states an additional observer is used.
In order to design the observer, the reduced order gantry crane plant model with
linearized trigonometrical dynamics in the operating point x = x0 and a nonlinear
frictional model is utilized. Consider the fully observable linear reduced order crane
model in its physical coordinates with the state vector x = [z, ż, w(L), ẇ(L), ϕ, ϕ̇]T , the
measured output vector y = [z, ẅ(L), z̈p]

T , and two inputs - the control input u and the
additional nonlinear friction force input Ffr(x2), which depends on the trolley velocity
the crane. This model can be written as follows:

ẋ = Ax+B1u+B2Ffr(x2) , (5.12)

y = Cx+D1u+D2Ffr(x2) , (5.13)

where A ∈ R6×6, B1 ∈ R6×1, B2 ∈ R6×1, C ∈ R3×6, D1 ∈ R3×1, and D2 ∈ R3×1 are the
associated system matrices.
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The observer consisting of the plant model and the correction term based on the gained
measurements error can be represented as follows:

˙̂x = Ax̂+B1u+B2Ffr(x̂2) + L(y − ŷ) , (5.14)

ŷ = Cx̂+D1u+D2Ffr(x̂2) , (5.15)

where L ∈ R6×3 is the gain matrix of the observer.

Thus, taking into consideration the error between the system trajectories and observer
states χ = x− x̂, the equation of the error dynamics can be derived as follows:

χ̇ = ẋ− ˙̂x

= Ax+B1u+B2Ffr(x2)−Ax̂−B1u−B2Ffr(x̂2)− L(y − ŷ)

= (A− LC)χ+ (B2 − LD2)∆fr (5.16)

where ∆fr = Ffr(x2)− Ffr(x̂2) is the residual of the friction force.

Here, according to the dual principle in control systems, the gain matrix L can be
found from the solution of the pole placement problem or LQ optimal control problem.
From (5.16) it can be seen that the nonlinear term ∆fr vanishes for x2 = x̂2. However,
from a practical point of view, the effects of friction are difficult to model accurately,
and, therefore, nonlinear residuals ∆fr may remain. In general, the convergence of the
error χ in the presence of Lipschitz continuous nonlinearities can be guaranteed if the
gains of the observer matrix L are sufficiently high such that the linear term A − LC
in (5.16) dominates the system dynamics [84]. However, this condition is difficult to
fulfill in the presence of nonlinear discontinuous functions. It should also be mentioned
that as the motion of the payload is linearized in the operating point x = x0, only local
convergence can be guaranteed for the real plant.

5.4. Simulation study

In the following, evaluation of the designed discrepancy-based control is presented. As
the designed control system requires more information about the system states, an
additional observer has been designed and verified. For contrast, this approach has
been compared to another direct approach, which is based on the total system energy.

5.4.1. Evaluation of the state observer

In the following, the designed observer is presented and verified in a simulation study.
The numerical system matrices of the associated gantry crane model (5.12) and (5.13)
with the state vector x = [z, ż, w(L), ẇ(L), ϕ, ϕ̇]T , the measured output vector y =
[z, ẅ(L), z̈p]

T , and two inputs - the control input u and the additional nonlinear friction
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force input Ffr(x2) can be computed as follows:

A =



0 1 0 0 0 0
0 0 251.5 4.16 · 10−2 1.15 · 104 0
0 0 0 1 0 0
0 0 −115.9 −1.92 · 10−2 0 0
0 0 0 0 0 1
0 0 −0.38 −6.21 · 10−5 −31.74 0

 , C =



1 0 0
0 0 0
0 −115.9 0
0 −1.92 · 10−2 0
0 0 −9.8 · 103

0 0 0



T

,

B1 =



0
40.13

0
−1.97

0
−5.99 · 10−2

 , B2 =



0
−13.99

0
0.69

0
2.09 · 10−2

 , D1 =

 0
−1.97

0

 , D2 =

 0
0.69

0

 .

In this work, the deterministic Kalman filter has been used as the observer [110]. Here,
as the system is in the physical coordinates, the assignment of the weighting matrices
Q and R is a trade-off between the model and the measured output contribution in the
observed physical states. Choosing the weights as follows: qi,i = [1, 1, 0.5, 0.5, 0.5, 0.5],
ri,i = [10−3, 5, 25], and qi,j = ri,j = 0, the observer gain matrix L can be calculated
as follows:

L =



38.37 −9.3 · 10−3 −6.87 · 10−4

236.2 −1.4 −1.17
0.41 −0.31 3.49 · 10−5

−30.31 4.28 · 10−2 −6.9 · 10−5

1.75 · 10−3 2.06 · 10−6 −0.14
−0.48 2.92 · 10−3 −0.14

 .

In order to verify the designed observer, the following open-loop simulation scenario
is studied on the high-order nonlinear gantry crane model. Here, the initial value of
the payload angle is chosen as ϕ0 = 0.05 rad. After 4 s a uniform random input with
sample time 0.5 s appears. The obtained simulation results are depicted in the Fig. 5.3
and Fig. 5.4. Fig. 5.3 shows the time responses of the input force of the trolley Ft as
well as the plant and observer outputs. In Fig. 5.4 the system states x (blue curves)
and observed states (red curves) are presented. From the results, a relatively accurate
matching between the estimated and plant states can be seen.

5.4.2. Evaluation of the discrepancy-based control

In order to perform the evaluations based on simulation, a plant model and the above-
presented control law have been implemented in MATLAB. For this reason, the non-
linear lumped high-order model of the full gantry crane has been utilized. Here, the
method of lines has been applied. The spatial coordinate of PDE (2.19) was discretized
applying the FDM with N = 20 points. The resulting system of ODEs has been solved
using the Dormand-Prince algorithm with a variable time step.
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Figure 5.3.: Time responses of output measurements (blue) and observer output (red)
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Figure 5.4.: Time responses of the plant (blue) and observed states (red)
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As aforementioned, the generalized error (5.2) as well as the derived control law (5.10)
contain additional tuning parameters k1 - k4 to influence the coupling. These parameters
have a strong impact on the system zero dynamics. The assigning of their values is an
ad hoc problem that requires an iterative tuning procedure. Here, trade-offs between
the contribution of the different components according to appropriate design objectives
should be taken into account. An optimal parameter adjustment has not been part of
the work and should be investigated in future contributions.

Here, to provide a relatively fast reference tracking and reasonable damping of both
oscillatory components, the parameters values k1 - k4 and the control performance
parameter a have been chosen as follows:

k1 = 11 , k2 = 2.5 , k3 = 11.8 , k4 = 980 , a = 3 . (5.17)

As has been aforementioned, the stability of zero dynamics associated with the discrep-
ancy can be examined for a linear discretized system. The zeros of the linear system of
a reduced order 6 with the input u and output (5.2) are

z1,2 = −2.65± 10.6 i , (5.18)

z3,4 = −1.13± 4.15 i , (5.19)

z5 = −16.46 . (5.20)

Here, it can be seen that the zeros are in the LHP and, therefore, the zero dynamics is
locally stable.

For comparison the energy-based control derived in Appendix E has been applied to
the same gantry crane model. This simple control law can be rewritten as follows:

u =
1

km

(
− dcż + Ffr − kpε

)
(5.21)

where dc and kp are corresponding positive tuning parameters of the controller. Param-
eters of the energy-based control law are adjusted to reach a relatively fast reference
performance and acceptable damping as follows: kp = 11 and dc = 2.5.

In order to verify the proposed control law (5.10) and compare it with energy-based
control law (5.21), the time responses of the positioning process have been studied.
The obtained simulation results are depicted in Fig. 5.5, 5.6, and 5.7. From Fig. 5.5
it can be seen that applying the presented energy-based control, the trolley rises to
the desired position after approximately 0.9 s. However, the application of this control
law yields oscillatory behavior of the internal dynamics with relatively small energy
dissipation. Moreover, after rising to the desired position, the magnitudes of the payload
oscillations and crane vibrations are still relatively large, which does not meet the
practical specifications. Applying the proposed discrepancy-based control results in
notable damping of payload and structural motion. Here, the trolley rises to the desired
position after 1.3 s and settles after approximately 1.8 s. It can also be seen that the
corresponding Lyapunov functional V converges exponentially to zero after 3.5 s.

From Fig. 5.6 and 5.7 it can be seen that not only the oscillations of the girder point
w(L, t) but also the distributed state w(x, t) itself and its L2-and L∞-norms are stabi-
lized. This is remarkable, as this has not been part of the design. However, it can be
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Figure 5.5.: Time responses of gantry crane applying discrepancy-based control (blue)
and energy-based control (green), reference position (gray)

shown that stability in the sense of Lyapunov with respect to two discrepancies yields
stability with respect to the Lp- or the L∞-norm if the zero dynamics associated with
the discrepancy ρ is stable in the sense of the Lp- or L∞-norm [71, 72].
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Figure 5.6.: Time responses of the distributed state applying energy-based control
(right) and discrepancy-based control (left)

Figure 5.7.: L2-norm (top) and L∞-norm (bottom) with respect to x of the displace-
ment w(x, t) applying energy-based control (green) and discrepancy-based
control (blue)

5.5. Experimental evaluation

In this Section, the proposed discrepancy-based control approach is evaluated on the
full configuration of the laboratory gantry crane. As this approach requires more infor-
mation about the system states, the designed observer has been validated in the first
instance. This approach is compared with the energy-based control presented in Ap-
pendix E. In order to validate the above-mentioned approaches, tracking of the trolley
position with a step change of the reference signal to zr = 350 mm is studied.

The obtained results are presented in Fig. 5.8, 5.9, 5.10, and 5.11. Here, Fig. 5.8 shows
the comparison of the simulation and experimental results. From the simulated curves
it can be seen that the trolley rises to the desired position after 1.3 s and settles after
approximately 1.8 s with an overshoot 6 %. The vibrations of the structure are notably
damped after 1.5 s, and the payload swaying after approximately 3 s. The experimental
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results show that the trolley position settles at the set-point after 1.3 s without large
overshoots. The structural vibrations are notably damped after 2.5 s with small residual
oscillations of the acceleration ẅ(L) ≈ 50 mm/s2. The payload swaying is damped after
approximately 3 s with residual oscillations of the acceleration z̈p ≈ 110 mm/s2. These
mismatches are a result of the model uncertainties and non-ideal compensation of the
friction forces.

In Fig. 5.9 the discrepancy-based control approach is compared with the mentioned
energy-based control in the same experimental study. It can be seen that application
of the discrepancy-based control leads to better closed loop performance.

In Fig. 5.10 and 5.11 experimental results of disturbance rejection for the discrepancy-
based control are shown. In the first case, an impulse disturbance is applied to the
mechanical structure at time 12.5 s, as depicted in Fig. 5.10. It can be seen that the
vibrations are notably damped after approximately 1 s with relatively small residual
oscillations of acceleration ẅ(L) ≈ 60 mm/s2. In the second case, an impulse distur-
bance is applied to the payload at time 19.7 s, as presented in Fig. 5.11. The control
system rejected the disturbance after 2 s with residual oscillations of the acceleration
z̈p ≈ 300 mm/s2.

Fig. 5.12 and 5.13 show a robust performance evaluation of the discrepancy-based
control. In this study the following cases from Tab. 5.1 are taken into consideration.
The payload mass mp and the rope length l are assumed to be variable parameters,
while the the control law parameters remain the same as in the nominal case Tab. 5.1.
From Fig. 5.12 and 5.13 it can be seen that for all cases the gantry crane is stable and
the oscillations are notably suppressed.

Table 5.1.: Cases for robust performance evaluation

Cases Payload mass mp Rope length l

Case 1 (nominal) 0.1 [kg] 670 [mm]

Case 2 0.03 [kg] 670 [mm]

Case 3 0.16 [kg] 670 [mm]

Case 4 0.1 [kg] 860 [mm]

Case 5 0.03 [kg] 860 [mm]

Case 6 0.16 [kg] 860 [mm]
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Figure 5.8.: Simulated (blue) and experimental (red) time responses of elastic gantry
crane with discrepancy-based control by reference tracking
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Figure 5.9.: Experimental time responses of elastic gantry crane with discrepancy-based
control (red) and energy-based control (green)
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Figure 5.10.: Experimental time responses of elastic gantry crane with discrepancy-
based control after applying a disturbance on the mechanical structure at
time 12.5 s
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Figure 5.11.: Experimental time responses of elastic gantry crane with discrepancy-
based control applying a disturbance on payload at time 19.7 s
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Figure 5.12.: Experimental time responses of elastic gantry crane with discrepancy-
based control. Cases of robust performance evaluation: case 1 (solid blue),
case 2 (dashed green), case 3 (dash dotted red)
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Figure 5.13.: Experimental time responses of elastic gantry crane with discrepancy-
based control. Cases of robust performance evaluation: case 4 (solid blue),
case 5 (dashed green), case 6 (dash dotted red)



6. Summary

6.1. Conclusion

Gantry cranes are a broad class of cranes that can be found in different industrial
locations. Large gantry cranes are often utilized for handling containers at port termi-
nals. During the last decades, a common trend in crane construction design was the
application of lightweight structure elements. On the one hand, this led to resource
conservation, but, on the other hand, this increased the influence of flexible structural
vibrations. These weakly damped vibrations yield faster wear of construction and dete-
riorate the overall performance of crane operation. Furthermore, neglecting the struc-
tural dynamics for feedback control may result in excitation of the natural frequencies
and even in unstable closed loop dynamics. The focus of this thesis was to reduce the
undesired low-frequency vibrations in trolley travel direction using the trolley actuator.
For this reason, three model-based control approaches for different crane configurations
and control assumptions have been proposed.

In Chapter 1 introduction and general motivation on this topic have been discussed.
Chapter 2 starts with the mathematical modeling of the gantry crane with flexible struc-
tural dynamics. Here, the distributed parameter model applying Hamilton’s principle
has been derived. It has also been shown that for more complex models, the FEM-
approach is well suited. After this, the laboratory gantry crane has been introduced. In
this thesis, two different practical configurations are considered:

• simplified crane configuration without the payload;

• full crane configuration.

Each configuration has its own drive and corresponding motion control system. Fi-
nally, the mathematical models of these configurations have been validated with the
laboratory setups.

In Chapter 3 linear robust feedback control design for gantry cranes has been proposed.
Here, the trolley drive system is considered to be in the position control mode such
that the trolley position is the new control input. In order to design a control law that
fulfills the performance specifications and guarantees the robust stability for a crane
with not exactly known parameters, the H∞-loop-shaping synthesis has been applied.
To introduce parametric uncertainties, the normalized coprime factor description with
the associated gap metric has been used and applied for the generation of a set of the
gantry crane models. The designed robust controller has been successfully evaluated in
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simulations and on the simplified configuration of the laboratory gantry crane.

In Chapter 4 linear control design that does not require measurement of oscillations has
been presented. This PFC-based output feedback approach has been applied to the full
configuration of the gantry crane. It has been shown that this approach can be applied as
an extension to the standard cascade motion control. Here, the PFC has been designed
to compensate the system zero dynamics and to render the resulting plant ASPR.
Thereafter, the closed loop system is stabilized applying high-gain output feedback. At
the beginning of the chapter, a theoretical background on the relative degree and the
zero dynamics is given. After this, several design procedures for PFC have been shown,
and one of them has been applied for the gantry crane. The proposed feedback control
approach has been successfully validated in simulations and experiments.

In Chapter 5 direct nonlinear control design for gantry cranes has been proposed.
Here, the trolley drive system is in torque control mode, and a full redesign of the
motion control system is considered. For stabilization, a generalized error measure,
called discrepancy, has been taken into consideration. Applying the associated stability
theory, i.e., stability with respect to two discrepancies, the nonlinear control law for the
gantry crane based on Lyapunov direct design approach has been derived. As the control
law requires unmeasured system states, an additional observer has been designed. The
designed discrepancy-based control has been successfully tested in simulations and on
the full configuration of the laboratory gantry crane.

In the present thesis, it has been shown and experimentally verified that the flexible
structural vibrations in the trolley travel direction can be suppressed using only one
actuator, i.e., the trolley drive system. It has been also demonstrated that all of the
proposed approaches can be easily implemented in practice, e.g., as an extension to a
conventional motion control system (methods from Chapter 3, Chapter 4) or as a full
redesign (method from Chapter 5).

6.2. Future perspectives

For future practical applications of the PFC-based control presented in Chapter 4,
a detailed robustness analysis has to be performed. It should be mentioned that the
proposed design procedure of the PFC for the gantry crane is, on the one hand, simple
in application and provides ASPR properties as well as zero placement for the extended
plant but, on the other hand, this design can be sensitive to uncertainties, in particular,
for weakly damped systems. In the presence of uncertainties, an additional weakly
damped complex conjugate pair of poles and zeros appear in the extended plant P̃
resulting in weakly damped residual oscillations. The amplitude of such oscillations
depends on how considerable the uncertainty is and is often insignificant for small
uncertainties. However, for more complex systems, where the dynamics can change and
be unstable, this method is not suitable, and the design approach from Section 4.3.2
should be preferred.



94 CHAPTER 6. SUMMARY

In addition, robustness analysis with respect to the friction effects has to be performed
for PFC-based control from Chapter 4 and discrepancy-based control from Chapter 5.
In both cases, the friction compensation has been part of the control system design.
In this work, a standard friction model with static parameters has been used. Since
the mass of payload varies during the real crane operation affecting the friction, the
corresponding parameter variations should be taken into account in the friction model.
Here, it should be noted that an overcompensation of the friction force leads to the
system energy increase and may result in unstable closed loop dynamics. In order to
solve this problem, a friction compensator with parameter adaptation can be used.

The concept of active damping and the methods proposed in this work can be further
used to generalize and solve other structural dynamics problems in different types of
cranes. For example, an actuator of a load-lifting mechanism can be used for active
damping of vertical vibrations, which are often found in STS-cranes. Furthermore, to
control such a system, the methods presented in this work can be applied.

Furthermore, the presented approaches have to be evaluated on a full-scale real crane. In
human-operated gantry cranes, weakly damped structural vibrations of high amplitudes
disturb the crane operator. However, a massive actuation on the trolley motion due
to the additional damping strategy can also be unpleasant for the crane operator.
Therefore, for such cases, this fact has to be also taken into consideration as a control
objective.



A. Detailed derivation of gantry crane
model

In this Appendix, the general crane model derivation based on Hamilton’s variational
principle is presented. For clarity, let the kinetic energy of the system (2.15) and the
potential energy of the system (2.16) be divided into the following terms

T =
1

2
mcṙ

T
c ṙc +

1

2
mtṙ

T
t ṙt +

1

2
mpṙ

T
p ṙp +

1

2

∫ L

0
%ẇ2 dx ,

=
1

2
mp

[
(ẇ(L) + ż + ϕ̇l cosϕ)2 + (ϕ̇lsin(ϕ))2

]
︸ ︷︷ ︸

T1

+
1

2
mt(ẇ(L) + ż)2 +

1

2
mcẇ

2(L)︸ ︷︷ ︸
T2

+
1

2

∫ L

0
%ẇ2 dx︸ ︷︷ ︸

T3

. (A.1)

U = mpgl(1− cosϕ)︸ ︷︷ ︸
U1

+
1

2

∫ L

0
EI(w′′)2 dx︸ ︷︷ ︸

U2

. (A.2)

Taking into account the energy (A.1), (A.2) and the work (2.17), extended Hamilton’s
principle (2.1) can be written as∫ t2

t1

(δT1 + δT2 + δT3 − (δU1 + δU2) + δW) dt = 0 . (A.3)

In following calculation of the variations for each energy term is presented. For the
term T1 it follows∫ t2

t1

δT1 dt =

∫ t2

t1

δ

{
1

2
mp

[
(ẇ(L) + ż + ϕ̇l cosϕ)2 + (ϕ̇l sinϕ)2

]}
dt

=

∫ t2

t1

δ

{
1

2
mpl

2ϕ̇2
(

(sinϕ)2 + (cosϕ)2
)

+
1

2
mpẇ(L)2 +

1

2
mpż

2

+mpẇ(L)ż +mplẇ(L)ϕ̇ cosϕ+mplżϕ̇ cosϕ

}
dt

=

∫ t2

t1

{
mpl

2ϕ̇δϕ̇+mp

(
ẇ(L) + ż

)
δẇ(L) +mp

(
ẇ(L) + ż

)
δż

−mplẇ(L)ϕ̇ sinϕδϕ+mplẇ(L) cosϕδϕ̇+mplϕ̇ cosϕδẇ(L)

−mplżϕ̇ sinϕδϕ+mplż cosϕδϕ̇+mplϕ̇ cosϕδż

}
dt . (A.4)
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In order to avoid time derivatives of variations δϕ, δz and δw(L) in (A.4) integration
by parts can be applied

∫ t2

t1

δT1 dt
P.I.
=

[
mpl

2ϕ̇ δϕ
]∣∣∣∣t2
t1

−
∫ t2

t1

{
mpl

2ϕ̈

}
δϕdt

+
[
mp

(
ẇ(L) + ż

)
δw(L)

]∣∣∣∣t2
t1

−
∫ t2

t1

{
mp

(
ẅ(L) + z̈

)}
δw(L) dt

+
[
mp

(
ẇ(L) + ż

)
δz
]∣∣∣∣t2
t1

−
∫ t2

t1

{
mp

(
ẅ(L) + z̈

)}
δz dt

+
[
mplẇ(L) cosϕ δϕ

]∣∣∣∣t2
t1

−
∫ t2

t1

{
mpl

(
ẅ(L) cosϕ− ẇ(L) sinϕϕ̇

)}
δϕdt

+
[
mplϕ̇ cosϕ δw(L)

]∣∣∣∣t2
t1

−
∫ t2

t1

{
mpl

(
ϕ̈ cosϕ− ϕ̇2 sinϕ

)}
δw(L) dt

+
[
mplż cosϕ δϕ

]∣∣∣∣t2
t1

−
∫ t2

t1

{
mpl

(
z̈ cosϕ− ż sinϕϕ̇

)}
δϕdt

+
[
mplϕ̇ cosϕ δz

]∣∣∣∣t2
t1

−
∫ t2

t1

{
mpl

(
ϕ̈ cosϕ− ϕ̇2 sinϕ

)}
δz dt

−
∫ t2

t1

{
mpl

(
ẇ(L)ϕ̇ sinϕ+ żϕ̇ sinϕ

)}
δϕdt . (A.5)

Taking into account that variations vanish at time moments t1 and t2, collecting integral
terms with same variations δϕ, δz and δw(L) and making corresponding simplifications
(A.5) can be rewritten

∫ t2

t1

δT1 dt = −
∫ t2

t1

{
mpl

2ϕ̈+mplẅ(L) cosϕ+mplz̈ cosϕ

}
δϕdt

−
∫ t2

t1

{
mp

(
ẇ(L) + ż

)
+mplϕ̈ cosϕ−mplϕ̇

2 sinϕ

}
δw(L) dt

−
∫ t2

t1

{
mp

(
ẇ(L) + ż

)
+mplϕ̈ cosϕ−mplϕ̇

2 sinϕ

}
δz dt . (A.6)

Taking variations for the term T2 yields

∫ t2

t1

δT2 dt =

∫ t2

t1

δ

{
1

2
mcẇ(L)2 +

1

2
mt

(
ẇ(L) + ż

)2}
dt

=

∫ t2

t1

{(
(mc +mt)ẇ(L) +mtż

)
δẇ(L) +mt

(
ż + ẇ(L)

)
δż

}
dt(A.7)
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To eliminate time derivatives of variations δz and δw(L) in (A.7) integration by parts
can be applied∫ t2

t1

δT2 dt
P.I.
=

[(
(mc +mt)ẇ(L) +mtż

)
δw(L)

]∣∣∣∣t2
t1

−
∫ t2

t1

{(
(mc +mt)ẅ(L) +mtz̈

)}
δw(L) dt

+
[(
mt

(
ż + ẇ(L)

)
δz
]∣∣∣∣t2
t1

−
∫ t2

t1

{
mt

(
z̈ + ẅ(L)

)}
δz dt . (A.8)

Taking into account that variations vanish at time moments t1 and t2 (A.8) can be
rewritten ∫ t2

t1

δT2 dt = −
∫ t2

t1

{(
(mc +mt)ẅ(L) +mtz̈

)}
δw(L) dt

−
∫ t2

t1

{
mt

(
z̈ + ẅ(L)

)}
δz dt . (A.9)

Applying the same procedure for the distributed term T3 results in∫ t2

t1

δT3 dt =

∫ t2

t1

∫ L

0
%ẇ δẇ dx dt

P.I.
=

[
%ẇ δw

]∣∣∣∣t2
t1

−
∫ t2

t1

∫ L

0
%ẇ δw dx dt

= −
∫ t2

t1

∫ L

0
%ẇ δw dx dt . (A.10)

For the term of potential energy U1 it follows∫ t2

t1

δU1 dt =

∫ t2

t1

δ

{
mpgl(1− cosϕ)

}
dt

= −
∫ t2

t1

{
mpgl sinϕ)

}
δϕdt . (A.11)

Applying variation to the distributed elasticity term U2 and eliminating spatial deriva-
tives in variation δw using integration by parts the second term of the potential energy
can be obtained as∫ t2

t1

δU2 dt =

∫ t2

t1

∫ L

0
EIw′′ δw′′ dx dt

P.I.
=

∫ t2

t1

{[
EIw′′ δw′

]∣∣∣∣L
0

−
∫ L

0
EIw′′′ δw′ dx

}
dt

P.I.
=

∫ t2

t1

{[
EIw′′ δw′

]∣∣∣∣L
0

−
[
EIw′′′ δw

]∣∣∣∣L
0

+

∫ L

0
EIw′′′′ δw dx

}
dt . (A.12)
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Substituting (A.6), (A.9), (A.10), (A.11), (A.12), and the virtual work (2.17) into
Hamilton’s principle (A.3), collecting terms with the same variations, and taking into
consideration the geometrical boundary conditions w(0) = w′(0) = 0, the following sum
is obtained

0 = −
∫ t2

t1

∫ L

0

[
%ẅ + EIw′′′′ + cẇ

]
δw dx dt−

∫ t2

t1

[
EIw′′(L)

]
δw′(L) dt

−
∫ t2

t1

[
mΣẅ(L) +msz̈ +mplϕ̈ cosϕ−mplϕ̇

2 sinϕ− EIw′′′(L)
]
δw(L) dt

−
∫ t2

t1

[
msẅ(L) +msz̈ +mplϕ̈ cosϕ−mplϕ̈

2 sinϕ− Ft + Ffr

]
δz dt

−mpl

∫ t2

t1

[
lϕ̈+ ẅ(L) cosϕ+ z̈ cosϕ+ g sinϕ

]
δϕdt , (A.13)

where mΣ = mp +mt +mc and ms = mp +mt.

From (A.13) it can be seen that for any arbitrary variations the equation holds only
if integrands vanish independently. Hence, the equations of motion of the gantry crane
follow

%ẅ + EIw′′′′ + cẇ = 0 , (A.14)

w(0) = w′(0) = w′′(L) = 0 , (A.15)

mΣẅ(L) +msz̈ +mplϕ̈ cosϕ−mplϕ̇
2 sinϕ− EIw′′′(L) = 0 , (A.16)

msẅ(L) +msz̈ +mplϕ̈ cosϕ−mplϕ̇
2 sinϕ− Ft + Ffr = 0 , (A.17)

lϕ̈+ ẅ(L) cosϕ+ z̈ cosϕ+ g sinϕ = 0 . (A.18)

The above equations of motion describe the flexible gantry crane dynamics under the
made assumptions. As can be seen, the application of Hamilton’s principle for such
an one-dimensional problems is straightforward. However, the corresponding algebraic
operations are often bulky, making applications of this method unreasonable for more
complicated problems.



B. Numerical-based model

Modeling of flexible structures is a complex task because of their infinite-dimensional
nature. The utilization of analytical methods is restricted to problems with simple ge-
ometries and boundary conditions. For more complex problems, e.g., 3D geometry of
real gantry crane, application of numerical modeling methods is preferred [126, 81, 54].
For modeling and analysis of various infinite-dimensional physical problems, the FEM
can be used. Nowadays, there are many commercial FEM packages that provide pos-
sibilities for importing CAD model geometries and exporting dynamic models. Having
reliable models at the stage of crane production enables early analysis, control system
design, and virtual commissioning.

For a derivation of the dynamic model of flexible crane structure, including the dis-
placements and its derivatives, the Solid Mechanics interface of the commercial software
COMSOL Multiphysics is well suited. Here, the geometry of the gantry crane can be
imported from a CAD model. After defining material properties, boundary and load-
ing conditions, outputs, and meshes, a linear lumped model of n DOF can be derived
automatically as

MŸ + PẎ +QY = F, (B.1)

where Q, P , and M are derived global stiffness, damping, and mass matrices, Y , Ẏ ,
and Ÿ are displacement, velocity, and acceleration vectors at all domain nodes of the
structure as well as F is the nodal forces vector.

Taking into consideration the input and output of interest, the structural model can be
represented as a linear state-space model of 2n−th order and coupled with the other
model subsystems, e.g., as depicted in Fig. B.1.

Figure B.1.: Possible model interaction scheme
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C. Model parameters

In this Appendix the parameters of the gantry cranes configurations are presented.

Simplified crane configuration

Table C.1.: System parameters

% 6124 [kg/m3] EI 4.34 · 103 [Nm2]
L 0.548 [m]
α 0.116 [−] β 0.002 [−]
mt 5.37 [kg] mp 0.3− 0.6 [kg]
mc 1.46 [kg] Tz 0.4 [s]
Td1 0.005 [s]

Full crane configuration

Table C.2.: System parameters

% 6124 [kg/m3] EI 4.34 · 103 [Nm2]
L 0.5 [m]
α 0.116 [−] β 0.002 [−]
mt 0.1 [kg] mp 0.1 [kg]
mc 1.46 [kg] l 0.67 [m]

Fvi 0.5 [Ns/m] Fst 310 [N ]
Fco 145 [N ] bsb 1.67 [−]
kfr 0.5 [−]

100



D. Linear control approaches

In this Appendix, two classical linear control approaches for evaluating and comparing
the gantry crane control from Chapter 4 are presented. Here, it is assumed that the
crane configuration is back-drivable, i.e., the coupling between trolley with the drive,
flexible structure, and payload subsystems exist, and no additional sensors for the
oscillations measurements are needed.

The first approach is a classical cascade control for drive position control (Fig. 2.7)
where no additional damping goals are considered. Such simple control law can be
written as follows:

τ = [kr(zref − z)− sz] (kv +
1

Tvs
) , (D.1)

where kr is the coefficient of position controller, kv and Tv are parameters of the velocity
PI controller.

Parameters of the controller can be adjusted for reaching a fast reference performance
as follows kv = 2, Tv = 0.14, and kr = 10. In Fig. D.1 simulation and experimental
results applying the control law (D.1) for the full crane configuration from Section 2.4.3
are depicted. As has been discussed in Section 4.5.1, applying high gain output feedback
control to plants with zeros near the imaginary axis results in oscillatory closed loop
dynamics.

The second approach is an observer-based state feedback control, as depicted in Fig.
D.2. Here, the state feedback control law with additional integral part

u(t) = −K [x̂T , x̂Ti ]T (D.2)

acts on all internal system states providing positioning and damping for the oscillatory
plant subsystems. The controller vectorK can be calculated by minimizing the following
linear quadratic value function

J =

∞∫
0

(
xT (t)Qx(t) + uT (t)Ru(t)

)
dt , (D.3)

where Q and R are corresponding weighting matrices.

Recalling the linear reduced order model of gantry crane from Section 2.4.3 with the
state vector x = [xs1, xs2, z, ż, ϕ, ϕ̇], the trolley position as output y = z, and nonlinear
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Figure D.1.: Simulated (blue) and experimental (red) time responses of elastic gantry
crane with cascade feedback control

friction force as additional input Ff (ż), the model matrices can be computed as

Ac =



−8.56 · 10−3 10.45 0 0 0 0
−10.45 −8.56 · 10−3 0 0 0 0

0 0 0 1 0 0
8.94 · 10−2 1.97 0 0 1.36 · 104 0

0 0 0 0 0 1
0 0 0 0 −32.94 0

 ,
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Bc =



3.66 3.66
−0.17 −0.17

0 0
11.8 11.8

0 0
−1.57 · 10−2 −1.57 · 10−2

 , Cc =



0
0
1
0
0
0



T

, Dc =

[
0
0

]T
.

In order to design an appropriate feedback control the weighting matrices Q and R that
represent states and input penalties have been chosen such that a reasonable trade-off
between the oscillations damping and positioning for this setup has been found. Here,
the elements of diagonal matrix Q are chosen as follows: qi,i = [1 ·104, 1 ·104, 50, 80, 6 ·
108, 6 · 108, 1 · 106] and R = 1. The observer gain Lc can be calculated by solving the
pole placement problem

Lc =
[
42.72 646.45 26.59 −292.08 −0.05 −1.2

]T
. (D.4)

Figure D.2.: LQR control scheme

In Fig. D.3 simulation and experimental results by applying the observer-based state
feedback control law (D.2) to the full crane configuration are depicted. Here, a fast
reference tracking with notable damping of the load oscillations and reduction of crane
vibrations can be seen.
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Figure D.3.: Simulated (blue) and experimental (red) time responses of elastic gantry
crane with LQR



E. Energy-based control

One of the most common control approaches for mechanical systems that provide dis-
sipation is based on the total system energy [17, 103, 111]. Since the system energy is a
positive definite function, it is well suited for as a Lyapunov functional candidate. The
control objective of the gantry crane is the positioning of the trolley and simultaneous
damping of the payload swinging and structural vibrations. Therefore, the Lyapunov
functional candidate can be chosen as follows:

V = E +
1

2
kpε

2 , (E.1)

where E = T + U is the total system energy, ε = z − zref is the trolley position error,
and kp is a positive constant. Here, according to (2.15) and (2.16) the total system
energy can be divided into three terms

E =
1

2
mp

[
(ẇ(L) + ż + ϕ̇l cosϕ)2 + (ϕ̇lsin(ϕ))2

]
+

1

2
mt(ẇ(L) + ż)2

+
1

2
mcẇ

2(L) +
1

2

∫ L

0
%ẇ2 dx+mpgl(1− cosϕ) +

1

2

∫ L

0
EI(w′′)2 dx

=
1

2
mp

(
l2ϕ̇2 +

(
ẇ(L) + ż

)2
+ 2lϕ̇ cosϕ

(
ẇ(L) + ż

))
︸ ︷︷ ︸

E1

+
1

2
mt

(
ẇ(L) + ż

)2
+

1

2
mcẇ

2(L) +mpgl(1− cosϕ)︸ ︷︷ ︸
E2

+
1

2

∫ L

0

(
%ẇ2 + EI(w′′)2

)
dx︸ ︷︷ ︸

E3

≥ 0 . (E.2)

In the following, a calculation of the time derivatives along the state trajectory for each
energy term is presented

Ė1 = mpl
2ϕ̇ϕ̈+mp

(
ẇ(L) + ż

)
ẅ(L) +mp

(
ẇ(L) + ż

)
z̈

−mplϕ̇
2 sinϕ

(
ẇ(L) + ż

)
+mplϕ̈ cosϕ

(
ẇ(L) + ż

)
+mplϕ̇ cosϕ

(
ẅ(L) + z̈

)
, (E.3)

Ė2 = mt

(
ẇ(L) + ż

)
ẅ(L) +mt

(
ẇ(L) + ż

)
z̈

+mcẇ(L)ẅ(L) +mpglϕ̇ sinϕ , (E.4)

Ė3 =

∫ L

0

(
%ẇẅ + EIw′′ẇ′′

)
dx . (E.5)
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Substituting PDE (2.19) in (E.5) and eliminating mixed derivatives via integration by
parts, the Ė3 can be rewritten as follows:

Ė3 =

∫ L

0

(
ẇ
(
− EIw′′′′ − cẇ

)
+ EIw′′ẇ′′

)
dx

P.I.
=

∫ L

0

(
− EIw′′′′ẇ − cẇ2

)
dx+

[
EIw′′ẇ′

]∣∣∣∣L
0︸ ︷︷ ︸

=0

−
∫ L

0
EIw′′′ẇ′ dx

P.I.
=

∫ L

0

(
− EIw′′′′ẇ − cẇ2

)
dx−

[
EIw′′′ẇ

]∣∣∣∣L
0

+

∫ L

0
EIw′′′′ẇ dx

= −EIw(L)′′′ẇ(L)−
∫ L

0
cẇ2 dx . (E.6)

Adding the terms (E.3), (E.4), (E.6) and collecting them with the corresponding veloc-
ities, the time derivative along the state trajectory of the total energy can be derived
as follows:

Ė = −
∫ L

0
cẇ2 dx+mpl

[
lϕ̈+ ẅ(L) cosϕ+ z̈ cosϕ+ g sinϕ

]
ϕ̇

+
[
mΣẅ(L) +msz̈ +mplϕ̈ cosϕ−mplϕ̇

2 sinϕ− EIw′′′(L)
]
ẇ(L)

+
[
msẅ(L) +msz̈ +mplϕ̈ cosϕ−mplϕ̈

2 sinϕ
]
ż . (E.7)

Substituting (2.21), (2.22), and (2.23) in (E.7), the time derivative along the state
trajectory of the total energy can be simplified and represented as follows:

Ė = −
∫ L

0
cẇ2 dx+

(
Ft − Ffr

)
ż . (E.8)

Thereafter, taking into account the trolley force Ft(t) = kmu(t), the time derivative of
the Lyapunov functional along the state trajectory can be rewritten as follows:

V̇ = −
∫ L

0
cẇ2 dx+

(
kmu− Ffr

)
ż + kpεż . (E.9)

Thus, choosing the energy-based feedback control law as

u =
1

km

(
− dcż + Ffr − kpε

)
(E.10)

yields in

V̇ = −
∫ L

0
cẇ2 dx− dcż2 ≤ 0 . (E.11)

The parameters of the energy-based control law are adjusted to achieve a relatively fast
reference performance and acceptable damping: kp = 11 and dc = 2.5. From (E.10) it
can be seen that for the control system, only measurements of the trolley position and
velocity are needed. In Fig. E.1 simulation and experimental results applying the control
law (E.10) to the full crane configuration are depicted. Here, it can be seen that the
closed loop system dynamics is stable, and the crane trolley reaches the desired position
relatively fast.
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Figure E.1.: Simulated (blue) and experimental (red) time responses of elastic gantry
crane with energy-based feedback control
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[84] Röbenack, K. Nichtlineare Regelungssysteme: Theorie und Anwendung der ex-
akten Linearisierung. Springer-Verlag, 2017.

[85] Ruderman, M., and Bertram, T. Two-state dynamic friction model with
elasto-plasticity. Mechanical Systems and Signal Processing 39, 1-2 (2013), 316–
332.

[86] Rusnak, I., and Barkana, I. Spr and aspr untangled. IFAC Proceedings
Volumes 42, 6 (2009), 126–131.

[87] Ryu, B.-J., and Kong, Y.-S. Dynamic Responses and Active Vibration Con-
trol of Beam Structures Under a Travelling Mass. In Advances on Analysis and
Control of Vibrations – Theory and Applications. 2012, pp. 231 – 252.

[88] Saldivar Márquez, M. B., Boussaada, I., Mounier, H., and Niculescu,
S.-I. Analysis and Control of Oilwell Drilling Vibrations. Springer Link, 2015.

[89] Schiesser, W. E., and Griffiths, G. W. A compendium of partial differential
equation models: Method of lines analysis with matlab. Cambridge University
Press, 2009.

[90] Schlott, P., Rauscher, F., and Sawodny, O. Modelling the structural
dynamics of a tower crane. IEEE/ASME International Conference on Advanced
Intelligent Mechatronics, AIM (2016), 763–768.
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[127] Zrnić, N., Petković, Z., and Bošnjak, S. Automation of ship-to-shore con-
tainer cranes: A review of state-of-the-art. FME Transactions 33 (2005), 111–121.



Declaration of honor

I hereby declare that I produced this thesis without prohibited external assistance and
that none other than the listed references and tools have been used. I did not make
use of any commercial consultant concerning graduation. A third party did not receive
any nonmonetary perquisites neither directly nor indirectly for activities which are
connected with the contents of the presented thesis.

All sources of information are clearly marked, including my own publications.

In particular I have not consciously:

• Fabricated data or rejected undesired results

• Misused statistical methods with the aim of drawing other conclusions than those
warranted by the available data

• Plagiarized data or publications

• Presented the results of other researchers in a distorted way

I do know that violations of copyright may lead to injunction and damage claims of the
author and also to prosecution by the law enforcement authorities. I hereby agree that
the thesis may need to be reviewed with an electronic data processing for plagiarism.

This work has not yet been submitted as a doctoral thesis in the same or a similar form
in Germany or in any other country. It has not yet been published as a whole.

Magdeburg, 01.04.2021

117





List of contributions

• I. Golovin, S. Palis, F. Palis. Design of oscillations damping for elastic construc-
tion of container cranes. Internationale Konferenz “Electronics, electrical engi-
neering and power engineering” (Moscow, Russia), 2013.

• I. Golovin, S. Palis, V. Shamardina. Damping of elastic crane vibrations. Inter-
national conference on “Problems of Energy and Resource Saving in Electrical
Systems. Science, Education and Practice” (Kremenchuk, Ukraine), 2015.

• I. Golovin, S. Palis. Aktive Regelung von Lastpendelungen für elastische Kran-
systeme. 12. Magdeburger Maschinenbau-Tage, 2015.

• I. Golovin, S. Palis, A. Timoschenko, V. Klepikov. Damping of friction-induced vi-
brations applying parallel compensator. International Summer School-Conference
“Advanced Problems in Mechanics” (Saint Petersburg, Russia), 2016.

• I. Golovin, S. Palis. Design of parallel feedforward compensator and its applica-
tion to electromechanical system with friction load. IFAC Papers OnLine, 50-1
(2017), pp. 15524 – 15529.

• I. Golovin, S. Palis. A parallel feedforward compensation approach in control of
gantry cranes. International Conference “Electromechanical and power systems,
modelling and optimization approaches” (Kremenchuk, Ukraine), 2017.

• I. Golovin, S. Palis, A. Timoschenko, A. Tkachenko. Physical modelling and ro-
bust control of gantry crane. International Conference “Problems of automated
electric drive systems” (Kharkov, Ukraine), 2017.

• I. Golovin, S. Palis. Control-based damping of elastic gantry crane vibrations.
IEEE-Proceedings of the 22nd International Conference on Methods and Models
in Automation and Robotics, MMAR 2017 8046896, pp. 599 – 604.

• R. Hermann, I. Golovin, S. Palis. Robuste Regelung von Drehkranen mit Hak-
endrehwerken. 26. Kranfachtagung (Dresden), 2018.
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