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1 Introduction 
1 Introduction 
There is no doubt that structural calculations, together with technical 

standards, contribute to safety and reliability of the structures. They also give 

an insight into a structural behaviour under considered circumstances. 

Tensile structures, which are the subject of this work, are very specific and 

therefore require „purpose-based“ design tools, that are usually not 

contained in „general-purpose“ commercial softwares. Even though the 

engineering office own such a software, still, high expectations and 

responsibility are given on the shoulders of engineer. Engineering self-

confidence grows with experience and theoretical knowledge of the problem. 

Therefore a deep insight into how softwares work is an advantegous skill. 

This work offers a brief introduction into numerical design techniques and is 

divided in two parts. 

 

First part of this work (Chapter 2 - Numerical design of tensile structures) is 

focused on numerical techniques, that are hidden behind finite element based 

softwares, specialized on tensile structures. During the history, many 

different numerical approches were developed to design and simulate their 

mechanical behaviour. This work collects necessary algorithms and present 

unified approach, based on nonlinear finite element analysis. Further 

description on how this method can be used in every design stage is provided 

in each particular chapter. 

 

Second part (Chapter 3 - Structural optimization) deals with the possibilities 

of structural optimization at designing and improvement of tensile, as well as 

usual rigid structures. Algorithms for constrained and unconstrained 

optimization are presented, that are suitable also for general use. Application 

of these procedures opens a wide new design space, in which one is able to 

take into account also multidisciplinarity of enviroment. Also further 

improvements of structures designed with other approaches as presented 

here are possible. The main purpose is to achieve better structural behaviour 

or economical efficiency. 

 

Content of this work reflects the author´s professional interests and should 

be used as an introduction for deeper individual studies from relevant 

literature. 
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2 
Numerical design of tensile 

structures 
2 Numerical design of tensile 

structures 
Design of tensile structures can be divided into several phases. These phases 

are tightly interconnected, what results in a fact, that any change in one 

phase will have an influence on others. Therefore the design of tensile 

structures is an iterative process although its phases follow each other in 

linear fashion. Following design stages can be easily identified: 

 

- architectural concept 

- form finding 

- structural analysis 

- detailing 

- cutting pattern generation 

 

One of commonly used iterative design scheme is given on Fig. 1: 

 

 
Fig. 1- General design process 

 

Also other (even inverse) approaches are possible, for example [29], but the 

content of individual stages remain unchanged. 
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Architectural requirements 

The basic definition of the structural shape is a task generally shared by 

clients and their architects. For structural engineer, the outputs of this stage 

represent the inputs for further stages. The architect collects the client´s 

requirements, such as height clearance, area to be covered or material type. 

These requirements are then collected and a sketch of a future structure with 

an emphasis on aesthetics is created. 

 

Form finding 

Form finding is a process to find the equilibrium state of a cable-membrane 

structure at a given stress level and with specified boundary conditions. At 

this stage, the architectural sketch is reformed into technically acceptable 

structure. For example the locations of secondary steel structure or prestress 

levels (ratios) are defined. See section 2.1. 

 

Structural analysis 

At this stage, loads typical for given geographical location are applied to 

a numerical model and the structural behaviour is examined. If stress and 

displacement fields of the structure are in accebtable level, the material 

strengths are chosen and dimensions of individual elements are calculated. If 

the structural response is unaccepltable, some adjustments are necessary. 

More in 3.1. 

 

Detailing 

Detailing can have significant impact on the global behaviour of the whole 

structure and therefore have to be realized precisely according to 

assumptions done in analysis stage. In some cases a situation may arise, that 

dimensions of supporting structure shifts the system lines of material far 

from their original position. When this is true, new form finding and analysis 

is necessary for the cutting pattern to be correct. 

 

Cutting pattern generation 

The production plan of cable-membrane structure is called cutting pattern. 

Usually, the form finding of tensile structures results in non-developable 

surface. Therefore the structure can not be projected onto a plane explicitely, 

but have to be cut into several pieces, flattened and compensated. 

Fabrication according to these plans will ensure, that the final assembled 

structure will have the desired shape and prestress. See section 2.4. 

 

In the following sections of chapter 2, the form finding, structural analysis 

and cutting pattern generation stages will be described from numerical 

standpoint in detail. 
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2.1 Form Finding 
 

The most critical factor in the design of tensile structures is the definition of 

their initial configuration (geometry). This configuration should ensure, that 

the desired stress field (prestress) is in equilibrium and allows optimal 

(smooth) force flow within the structure. Several methods have been 

developed for the initial form finding process, which can be divided into two 

groups: 

- methods based on geometric concept 

- methods based on mechanical concept 

This work deals with both concepts and uses the geometric concept as an 

intial procedure for finding the shape of membrane and cables and after that, 

applies the mechanical concept, which is in classical finite element 

enviroment able to include stiff elements (trusses, beam or shells) and 

smoothens the force flow within the whole structure. 

During the history, many form finding methods have been developed, 

especially Force Density method by Scheck [19], which is always a good 

choice when one wants to find a reliable, clear and predictible method for 

form finding. This method is easy to implement in a custom software tools 

and offers nonlinear extensions as well as natural extension for membrane 

elements named as Natural Force Density method (NFDM) proposed by 

Pauletti and Pimenta [20]. Barnes developed the dynamic relaxation method 

[21], which can be used also for form finding of bending active structures or 

shells. General approach to form finding process using geometrically 

nonlinear analysis was presented by Argyris, Angelopolous and Bichat [9]. 

In this work a method based on finite element model using geometric 

stiffness matrices for both membrane and cable elements is presented.  

2.1.1 Geometric form finding method 

 

This method is based on paper by Haber and Abel [11] and is described also 

in several papers by Baranger [12], [13]. Geometric stiffness method is 

based on a geometrically nonlinear finite element formulation and on the 

fact, that the initial equilibrium problem is independent from material. Haber 

developed the geometric stiffness method in 1982 using a triangular 

membrane finite element, as will be presented in the following text. It is 

important to note here, that Force Density method is a special case of the 

geometric stiffness method and both methods are implemented in much the 

same way. The designer begins by specifying the topology of the structure in 

terms of the element connectivity, location of all supported nodes and the 



 

8 

 

loads acting on the structure. The loads must be shape-independent to 

preserve the linearity of the solution process. In case of membrane structures 

formed by prestress only, the loads acting on the structure are assumed to be 

zero. Solution of the initial equilibrium problem then involves the 

determination of surface geometry and internal stress distribution that 

satisfies equilibrium. 

For three node triangular element used in this work, the element geometry 

can be described by its nodal coordinates in global coordinate system as: 

 

  1 1 1 2 2 2 3 3 3

T
X Y Z X Y Z X Y ZX  (1) 

 

Using the procedure described in section 2.2.1, these nine nodal values in 

global coordinate system can be reduced to six nodal values in local 

coordinate system as follows: 

 

  1 1 2 2 3 3

T
x y x y x yx  (2) 

 

Element shape functions, that are used to interpolate nodal values of any 

physical entity into any point of an element surface can be written as: 

 

 

     

     

     

1 2 3 3 2 2 3 3 2

2 3 1 1 3 3 1 1 3

3 1 2 2 1 1 2 2 1

/ 2

/ 2

/ 2

N x y x y y y x x x y A

N x y x y y y x x x y A

N x y x y y y x x x y A

       

       

       

 (3) 

 

 

where A represents the element surface area, and can be calculated as: 

 

  2 3 3 1 1 2 2 1 1 3 3 2

1

2
A x y x y x y x y x y x y       (4) 

 

The partial derivatives of the shape functions with respect to cartesian 

coordinates are: 

 

 

2 31 / 2
2

y yN
a A

x A


 


 

3 21 / 2
2

x xN
b A

y A


 


 

3 12 / 2
2

y yN
c A

x A


 


 

1 32 / 2
2

x xN
d A

y A


 


 

(5) 
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3 1 2 / 2
2

N y y
e A

x A

 
 


 

3 2 1 / 2
2

N x x
f A

y A

 
 


 

 

 

Where the local coordinate differences a through f are shown on Fig. 2: 

 

 

 
Fig. 2 - Three node constant strain element in local coordinate system 

 

For construction of nodal force vector and element stiffness matrix the 

following strain-displacement matrices are essential, linear one: 

 

 

0 0 0
1

0 0 0
2

L

a c e

b d f
A

b a d c f e

 
 


 
  

B  (6) 
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and nonlinear one : 

 

 

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 01

0 0 0 0 0 02

0 0 0 0 0 0

0 0 0 0 0 0

NL

a c e

b d f

a c e

b d fA

a c e

b d f

 
 
 
 

  
 
 
 
 

B  (7) 

 

The appropriate forms for the vector and matrix of initial prestress at form 

finding stage are as follows: 

 

  0
ˆ

T

x y xy    (8) 

 

and 

 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

x xy

xy y

x xy

xy y

x xy

xy y

 

 

 

 

 

 

 
 
 
 

  
 
 
 
  

  (9) 

 

Using these matrices the designer can built a set of nonlinear equilibrium 

equations resulting from the principle of virutual work. Generally the system 

have the following form: 

 

 G K x F  (10) 

 

where    is a geometric stiffness matrix, which for three node triangular 

element can be written as: 

 

 0

T

G NL NLtAK B B  (11) 
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and for cable element: 

 

 

1 0 0 1 0 0

0 1 0 0 1 0

0 0 1 0 0 1

1 0 0 1 0 0

0 1 0 0 1 0

0 0 1 0 0 1

G

N

L

 
 


 
 

  
 
 
 

 

K  (12) 

 

where t, A, N, L are membrane thickness, membrane element surface area, 

cable force and cable length respecivelly.   in the Eq. (10) represents a set of 

nodal coordinates of structure in equilibrium and not a nodal displacements 

like is usual in standard formulation of finite element method. The 

expresions for geometric stiffness matrices for both membrane and cable 

elements don´t have to be transformed to global coordinate system, since the 

only thing that is neccessary is the element connectivity and stress state. 

Resulting surface in equilibrium is therefore independent of material 

properties and intial configuration of the system. 

For structures composed entirely of pin-jointed bar elements, the resulting 

global equations are dentical to the corresponding equations in the Force 

Density method. This suggests, that presented geometric stiffness method is 

a generalized version of the Force Density method. 

For the case of form finding with prestress only (without external loadings), 

the load vector   in right side of Eq. (10) is assumed to be zero. System of 

equations with zero right side don´t have a unique solution, when one tries to 

solve it by direct method. An iterative conjugate gradient method with 

preconditioning should be used, or the Eq. (10) should have been rewritten 

in the terms of static condensation, where the original equation itself have to 

be splitted into equations belonging to free and fixed nodes: 

 

 
11 12 1 1

21 22 2 2

     
    

     

K K x F

K K x F
 (13) 

 

or in natural form: 

 

 
11 1 12 2 1

21 1 22 2 2

 

 

K x K x F

K x K x F
 (14) 
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solving this system for    : 

 

  1

2 22 2 21 1

 x K F K x  (15) 

 

where    and    collects the nodal coordinates of fixed and free nodes 

respectivelly,    and    are the vectors of external loads that belong to fixed 

and free nodes respectivelly and in the form finding process are assumed to 

be zero. And finally the     (with i, j = 1, 2) is a stiffness matrix partitioned 

into parts belonging to constrained (1) and free (2) degrees of freedom 

respectivelly. 

 

Although the presented system of equations is very similar to classical 

formulation of finite element method, other than fom finding elements (cable 

and membranes) can not be included to it. The reason is that after solution of 

the system, one will obtain the nodal coordinates, rather than displacements 

and rotational degrees of freedom are an incompatibile quantitity. 

Surface resulting from presented form finding methodology is ready for 

further design steps such as structural analysis or patterning or can be used 

as an initial equilibrium surface for mechanical form finding, which has the 

capability for further smoothening the force flow and taking into account 

secondary rigid structure (trusses, beams, plates, shells). 

2.1.2 Mechanical form finding method 

 

From the mechanical point of view, the form finding process can be seen as 

a large displacement finite element analysis with form-driving loads. In case 

of prestressed tensile fabric structures form-driving loads are calculated from 

prestress only, in case of pneumatic structures the form-driving load is 

internal pressure and in case of shell structures, the form-driving loads are 

arbitrary, but mostly the self weight and predominant static loads (dead 

loads). The resulting displaced configuration of structure represents the 

structure in force equilibrium. On such a displaced structure, the internal 

forces are in equilibrium with external loads. When no external loads are 

present (as in the case of membrane structures), then the internal forces are 

in equilibrium with each other. During the iterative large displacement finite 

element analysis the internal forces are calculated from elastic strains and 

elastic strains are calculated from nodal displacements (see the following 

section). Since the geometrically nonlinear behaviour of tensile structures 

indicates, that at least some of the nodes will undergo significant 

displacements, large strains are possible. Large internal forces resulting from 

large strains can crash the engineering model (unbalanced forces are 
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unacceptabilly large) or can give an unrealistic picture of stress state in the 

membrane or forces in cables. Therefore internal forces resulting from large 

displacements have to be eliminated and this can be done by setting the 

Young´s modulus of form-finding elements (membranes and cables) to 

a fraction of their actual value (for example E = 10
-4

 – 10
-5

, which is 10
6 

– 

10
7
 times smaller than the actual value for the membrane [17]). It should be 

noted, that the Young´s modulus of form finding elements is not zero. If 

a zero modulus is used, the resulting mesh may become highly distorted and 

will not be usable in load analysis. Furthermore if the inplane stiffness of 

membrane vanishes, the governing equations may not be solveable.  

Providing an appropriate intial mesh (generated by procedure described in 

the previous section) we can start a finte element simulation. After 

convergence within prescribed precision, the resulting nodal displacements 

are added to coordinates of initial mesh and the resulting mesh is used in 

load analysis. In this finite element enviroment trusses, beams and shells can 

be included in the form finding process in the usual manner, what at the end 

results in a displaced geometry, which respects the natural force flow. 
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2.2 Analysis 
 

From mechanical point of view, all loads applied to tensile membrane 

structures have to be transfered to the secondary (steel structures) or to 

foundations by pure tensile forces. Since membranes have no physical out-

of-plane stiffness, this is possible only by combination of initial prestress, 

curvature and large displacements reforming the structure under given loads. 

The mechanical behaviour of the fabric and cables have a nonlinear nature, 

which can be classified into two categories: 

- nonlinear due to large displacements (rotation and translation 

resulting in geometric nonlinearity) 

- nonlinear due to the fact, that neither fabric, nor the cables can 

withstand compressive forces (stresses) 

To solve the mechanical behaviour of such a structure a Total Lagrangian 

formulation was adopted. This formulation is characterized by the definition 

of strain and stress fields relative to the initial configuration of the structure 

at the start of calculation process. The use of fixed reference configuration 

has the advantage of constant integration domain. At each iteration, the 

displacement, strain and stress fields are actualized although their definition 

remains the same. This configuration uses the Green-Lagrange strain tensor 

for strains and 2nd Piola Kirchhoff tensor for stresses. These tensors are 

defined with respect to initial configutration before deformation. At the end 

of the iteration process, the 2nd Piola Kirchhoff stresses have to be 

transformed to true Cauchy stresses, that can be used for dimensioning. 

2.2.1 Membrane element 

 

Simple three node triangular membrane finite element with constat strain 

property (constant strain triangle) is adopted. This element is the most 

simple surface finite element and its stiffness matrices can be calculated 

using one point Gauss integration, or directly, using the simplified 

procedure, as presented in this work. 
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Fig. 3 - Triangular membrane element in 3D space 

 

Fig. 3 shows a typical triangular element in the global coordinate frame (X, 

Y, Z). An element Cartesian coordinate system (x, y, z) is used to derive the 

element matrices. Since the element is planar, the z-coordinate is not used in 

the evaluation of stiffness matrix. It is important to note here, that local 

coordinate frame is not given only by setting z = 0. Such a simplification 

would lead to improper descritption of element geometry and at the end 

would lead to wrong analysis. Local coordinate frame can be obtained using 

the following procedure: 

 

 
3

2 2 3

D

D D DA T A  (16) 

 

where global coordinate matrix 3DA : 

 

 

1 2 3

3 1 2 3

1 2 3

D

X X X

Y Y Y

Z Z Z

 
 


 
  

A  (17) 

 

coordinate transformation matrix 
3

2

D

DT : 

 

 
3

2

cos( , ) cos( , ) cos( , )

cos( , ) cos( , ) cos( , )

D

D

x X x Y x Z

y X y Y y Z

 
  
 

T  (18) 

 

It is essential to incorporate all three coordinate directions into 

transformation matrix, because such a matrix will be used quiet frequently in 

the further analysis to convert the physical entities between the coordinate 
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frames. Full transformation matrix for an element with three nodes and three 

degrees of freedom per node is: 

 

 

0 0

0 0

0 0

=

 
 
 
  

T







 (19) 

 

where: 

 

 

cos( , ) cos( , ) cos( , )

cos( , ) cos( , ) cos( , )

cos( , ) cos( , ) cos( , )

x X x Y x Z

y X y Y y Z

z X z Y z Z

 
 


 
  

  (20) 

 

With           beeing a direction cosine between local y and global 

Z coordinate axes. Detailed description about seting local coordinate frame 

can be found in [5] or derived from Fig. 3. Finally the nodal coordinates in 

local coordinate system are: 

 

 
1 2 3

2

1 2 3

D

x x x

y y y

 
  
 

A  (21) 

 

Displacement field of a typical element in local coordinate system is 

described by nine nodal values: 

 

  1 1 1 2 2 2 3 3 3

T
u v w u v w u v wu  (22) 

 

Membrane structures derive their stiffness from the curvature and stress 

state. These are the only two ways, how the membrane surface with 

negligeble thickness and thus negligleble flexural (out-of-plane) stiffness can 

withstand loads, that are acting perpendicular to their surface. Displacements 

of membrane surface are significant and therefore the small deflection theory 

of linear elasticity is unaplicable to describe the state of strain and stress 

correctly. Nonlinear elasticity with quadratic strain-displacement relations 

must be taken into account.  
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They can be expressed as: 

 

 

2 2 2
1

2
x

u u v w

x x x x


         
         
          

 

2 2 2

1

2
y

v u v w

y y y y


         
         
          

 

1

2
xy

u v u u v v w w

y x x y x y x y


        
     
        

 

(23) 

 

Collected to an element strain vector: 

 

 

x

y

xy







 
 

  
 
 

  (24) 

 

These strains can be separated into linear and quadratic terms in the 

following way: 

 

 0

1

2
 B u A   (25) 

 

where the linear terms are described by: 

 

 

1 2 3

0 1 2 3

1 1 2 2 3 3

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0

b b b

c c c

c b c b c b

 
 


 
  

B  (26) 

 

With bi and ci (i = 1, 2, 3) beeing global derivatives of shape functions with 

following meaning: 

 

 

 

 

 

1 2 3

2 3 1

3 1 2

/ 2

/ 2

/ 2

b y y

b y y

b y y

  

  

  

 

 

 

 

1 3 2

2 1 3

3 2 1

/ 2

/ 2

/ 2

c x x

c x x

c x x

  

  

  

 

1 1

2 2

3 3

1

2 det 1

1

x y

x y

x y

   

 

(27) 
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and finally the nonlinear terms: 

 

 

0 0 0

0 0 0

u v w

x x x

u v w

y y y

u v w u v w

y y y x x x

   
 
   
   

  
  

 
      
 
      

A  (28) 

and 

 

T

u v w u v w

x x x y y y

      
  

      
  (29) 

 

thus 

  0  B AG u  (30) 

where 

 

 

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

b b b

b b b

b b b
=

c c c

c c c

c c c

 
 
 
 
 
 
 
 
  

G  (31) 

 

Because we are considering large displacements, but small strains, the 

constitutive relations for linear elastic orthotropic material can be used. Thus 

we write: 

 

 0 D    (32) 
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Where    denotes initial stress vector and   is the constitutive matrix: 

 

 

 

1 1 2

1 2 1 2

2 1 2

1 2 1 2

12

0
1 1

0
1 1

0 0

E E

E E

G



   



   

 
  
 
 

   
 
 
 
 

D  (33) 

 

Constitutive stress-strain matrix as given by Eq. (32) is connected to the 

material coordinates. Since the element stiffness matrix is written in local 

coordinate frame, we have to transform the constitutive equations from 

material coordinates (w,f) to local coordinates (x,y). This can be done using 

following procedure: 

 

 
T

 D T DT  (34) 

 

Where    is the matrix transforming the principal coordinate system of 

material to the local coordinate system: 

 

 
Fig. 4 - Local coordinates (x, y) and material coordinates (w, f) 

 

 

2 2

2 2

2 2

cos sin 2sin cos

sin cos 2sin cos

sin cos sin cos cos sin



   

   

     

 
 

  
   

T  (35) 

 

where θ is the angle between the principal axis of the material (w) and the 

local coordinate (x), as shown in Fig. 4 (with clockwise direction being 

positive). E1 and E2 are the elastic modulus in the warp (w) and weft (f) 
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directions; G12 is the shear modulus; v1 and v2 are the Poisson’s ratios for the 

orthotropic materials. 

The equilibrium equations for a single element in local coordinate system 

may now be obtained via the principle of virtual work, as follows: 

 

 
e

T T

V

dV  u p = 0   (36) 

 

Where    denotes the element volume and   is the external nodal force 

vector in the local coordinate system. Substituting Eqs. (25), (30) and (32) 

into (36) and eliminating    , we have: 

 

  0 0 0

1

2e

T

V

dV
  

    
  

 B AG D B u+ A p = 0   (37) 

 

The above equation is a system of an equilibrium equations for single 

element in local coordinate system. These equations have to be transformed 

to global coordinate system and assebmled to global system of equilibrium 

equations. The assembly process is a typical finite element procedure and 

can be studied in one of the many finite element lecture notes [36]. Since the 

global equations will be solved iteratively by the Newton-Raphson method, 

we will linearize them and assume 

 

  0 0 0

1

2e

Ti

V

dV
  

     
  

 B AG D B u+ A p    (38) 

 

as the residual term after the i-th iteration. For the next step we will use the 

Newton-Raphson procedure 

 1
i

i i i 
   


0u

u


   (39) 

 

From this equation the incremental displacement     can be computed, but 

first, the partial derivative          have to be computed, which is nothing 

else, but element tangent stiffness matrix. When rewriting the partial 

derivative         , one will obtain: 
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 

 

0 0

0 0 0

1

2

1

2

e

e

i
i

T

T
i i i i

V

T
i i i i

V

i i

e g

dV

dV


 


   
       

               

 





k
u

B A G D B u + A
u

B A G D B u + A
u

k k





 

 (40) 

 

Where   
  and   

  are the elastic stiffness matrix and the geometric stiffness 

matrix in iteration i, respectively 

 

    0 0
e

Ti

e

V

dV  k B AG D B AG  (41) 

 

and 

 

 
e e

i T T

g

V V

dV dV


 
 
A

k G G MG
u
  (42) 

 

where  

 

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

x xy

x xy

x xy

xy y

xy y

xy y

 

 

 

 

 

 

 
 
 
 

  
 
 
 
  

M  (43) 

 

For the purpose of computing the constant straint triangle stiffness matrices 

in local coordinate system numericaly, the following equations can be used: 

 

    0 0

Ti

e t   k B AG D B AG  (44) 

 

and 

 
i T

g t k G MG  (45) 

 

where t and Δ represent the membrane thickness and triangle surface area 

respectively. Having derived the neccessary terms for stiffness matrix, the 
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calculation of element nodal forces corresponding to the element 

displacement vector   can be computed easily: 

 

  0

Ti

e t  f B AG   (46) 

 

Matrices computed using described procedure are still in local coordinate 

system and before assembling to global system of equations they must be 

transformed to global coordinate frame using the transformation matrix  , 

Eq. (19): 

 

 
i T i

T eT k T  (47) 

 
i T i

e eF T f  (48) 

 
i T i

e eU T u  (49) 

 

After the convergence of Newton-Raphson iterative technique, one will 

obtain final deformation field in global coordinate system. Since the 

derivation of structural matrices used herein correspond to the Total 

Lagrangian framework, strains used are Green-Lagrange strains and stresses 

are 2nd Piola Kirchhoff stresses. Such stresses are corresponding to the 

initial undeformed configuration and have only small physical meaning. For 

dimensioning and other relevant operations with membrane stress field, the 

designer is interested in true or so called Cauchy stresses, which are 

connected with deformed configuration of the structure. To obtain true 

stresses it is important to define deformation gradient first: 

 

 

1

1

1

x x x u u u

X Y Z X Y Z

y y y v v v

X Y Z X Y Z

z z z w w w

X Y Z X Y Z

        
        

   
            

         
   
        

           

x
F

X
 (50) 

 

where    represents the geometry of the structure before deformation and 

   respresents the structure after deformation, what can be symbolically 

written as: 

 

    x X u  (51) 

 

Since membrane element, with thickness negligeble comparing to other 

dimensions, is a 2D solid element in 3D space, all partial derivatives with 
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respect to Z coordinate      are equal to zero and also transformation of 

     to local coordinate frame can be performed. Finally, the deformation 

gradient for membrane element can be written as: 

 

 

1

1

u v

X X

u v

Y Y

  
  

  
  

   

F  (52) 

 

True Cauchy stresses can be obtained from 2nd Piola Kirchoff stresses by 

using the conversion formula: 

 
1

det

TC F F
F

  (53) 

 

or backwards, 2nd Piola Kirchoff stresses from true Cauchy stresses by an 

inverse formula: 

   1det T  F F CF  (54) 

2.2.2 Cable element 

 

Lets have a cable element connectiong nodes               and             in 

the undeformed configuration as shown in Fig. 5. 

 
 

Fig. 5 - A cable element in the global coordinate frame 

 

If nodes i and j have displacements vectors           
  and           

 
 

respectively, then we can define the strain along the cable as: 

 

 
1 0

0

l l

l



  (55) 
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where  

      
2 2 2

0 j i j i j il X X Y Y Z Z      
  

 (56) 

 

and 

 

     
2 2 2

1 j i j i j i j i j i j il X X U U Y Y V V Z Z W W            
  

 

(57) 

 

Represent the lengths of cable element before and after deformation. Taking 

variation of the strain, we have: 

 

 

 

 

 

1

0

1

1

/

j i j i

j i

j i j i

j i

j i j i

j i

X X U U
U U

l

Y Y V V
V V l

l

Z Z W W
W W

l



 



   
  

 
   

   
 
   
 
  

 (58) 

 

What can be written in matrix form as: 

 

 
0

1

l
  B U  (59) 

in which 

 
T

i i i j j jU V W U V W   U  (60) 

 

and 

  X Y Z X Y ZC C C C C C   B  (61) 

 

The direction cosines of the deformed cable            are given by 

 

 
1

j i j i

X

X X U U
C

l

  
  (62) 

 
1

j i j i

Y

Y Y V V
C

l

  
  (63) 
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1

j i j i

Z

Z Z W W
C

l

  
  (64) 

 

As for the membrane element, the linear elastic constitutive relation is used 

for the cable element as: 

 0E     (65) 

 

where    is the initial stress in the cable. The constribution of a cable 

element to the global equilibrium equations can be obtained via the principle 

of virtual work, as follows: 

 
0

1

e

T T

c

L

AdL A
l

   B B  (66) 

 

Where A is the cross-sectional area of the cable element and L
e
 denotes the 

length of the cable element. After linearizing the element equations in 

preparation for the Newthon-Raphson iteration method we have: 

 

 
0 1

T Tc
c

EA A
A A

l l

 


  
   
  

B
K B B B + C

U U U


 (67) 

where 

 

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

Y Z Y Z

X Z X Z

X Y X Y

Y Z Y Z

X Z X Z

X Y X Y

C C C C

C C C C

C C C C

C C C C

C C C C

C C C C

   
 

   
   

  
   
   
 

    

C

 

 

(68) 
 

and    is an expression for cable tangent stiffness matrix in global 

coordinate system. 

2.2.3 Wrinkling analysis 

 

Because the membrane cannont resist any compressive stresses, wrinkling 

will occur and stresses in the elements will be redistributed when the 

external loads give rise to compressive stresses larger then initial tensile 
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stresses (prestress). In the following lines the principal stress-strain criterion 

for wrinkling consideration will be described. 

 

First the principal stress and strains at checked node have to be calculated. 

Principal stresses are: 

 

 

2

2

1 max
2 2

x y x y

xy

   
  

  
    

 
 (69) 

 

2

2

2 min
2 2

x y x y

xy

   
  

  
    

 
 (70) 

 

and principal strains: 

 

  
2

2

1

1

2 2

x y

x y xy

 
   


     (71) 

  
2

2

2

1

2 2

x y

x y xy

 
   


     (72) 

 

Using these values, we are able to make a following check: 

 

1 0   biaxial wrinkling occurs 

2 0   and  1 0   
uniaxial wrinkling occurs in second principal 

direction 

2 0   wrinkling does not occur (fully stressed state) 

 

Denoting the angle between local coordinates (x, y) and principal stress 

coordinates (σ1, σ2) as φ and the angle between the material coordinates (w, f) 

and (σ1, σ2) as α, we have the following relationship: 

 

 
2 1

tan
xy xy

x y

 


   
   

 
 (73) 

 

and 

      (74) 

graphically: 
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Fig. 6 - Element coordinates systems 

 

According to Eq. (34), the constitutive matrix in the (σ1, σ2) coordinate 

system is formulated as: 

 

 

11 12 13

21 22 23

31 32 33

T

D D D

= D D D

D D D

 

 
 

  
 
 

D T DT  (75) 

 

 

Principal stress vector can be expressed as the product of the constitutive 

matrix and the strain vector               , where        (due to 

tension-shear coupling effect) in the (σ1, σ2) coordinate system: 

 

 

1 11 12 13 1

2 21 22 23 2

31 32 33 120

D D D

D D D

D D D

 

 



    
    

    
        

 (76) 

 

 

This matrix equation can be expanded into 3 simultaneous equations as 

follows: 

 

 1 11 1 12 2 13 12D D D       (77) 

 2 21 1 22 2 23 12D D D       (78) 

 31 1 32 2 33 120 D D D      (79) 

 

In case of uniaxial wrinkling, when 2 0  and  1 0  , the principal stress 

vector have to be rewritten in the following way: 

 

  1 0 0
T

  (80) 
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Note that    in Eq. (80) is different from that in Eq. (69). The modified 

principal stress    and the constitutive matrix can be obtained in the way, 

described in the next lines. 

 

From Eq. (79)     can be written as 

 

 
31 1 32 2

12

33

D D

D

 



   (81) 

 

Substituting Eq. (81) into Eq. (78) yields 

 

 
23 31 23 32

2 21 1 22 2

33 33

D D D D
D D

D D
  

   
      
   

 (82) 

 

considering     , we have 

 

 
21 33 23 31

2 1

23 32 22 33

D D D D

D D D D
 





 (83) 

 

According to Eqs. (77), (81) and (83), the modified first principal stress    is 

derived as: 

 1 1   (84) 

with 

 

 

 

 

11 23 32 22 33

12 21 33 23 31

23 32 22 33

13 31 22 21 32

1

D D D D D

D D D D D
D D D D

D D D D D



  
 
   
 
 
 

 (85) 

and 

 
2 2

1 cos sin cos sinx y xy           (86) 

 

finally, the modified stress vector can be used as described in Eq. (80) and 

modified constitutive matrix in (σ1, σ2) coordinate system can be taken as: 

 

 

0 0

0 0

0 0









 
 


 
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D  (87) 
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where   is a very small value, and    is usually of order of      in 

magnitude. A value less than this threshold value would lead to the 

convergence problem. If the value is greater in magnitude, erroneous 

solutions may be obtained. 

 

In case of biaxial wrinkling ( 1 0  ), the principal stress vector is modified 

to 

 

  0 0 0
T

  (88) 

 

and since the slack membrane has no stiffness, the constitutive matrix in (σ1, 

σ2) coordinate system is modified to: 

 

 

0 0

0 0

0 0









 
 


 
  

D  (89) 

 

where    is also set to       in magnitude to meet the requirement of 

convergence. 

 

The principal stress vector in Eq. (80) or Eq. (88), and constitutive matrix in 

Eq. (87) or Eq. (89) in the in (σ1, σ2) coordinate system should be 

transformed to local coordinate system as follows: 

 

 T   (90) 

 = T

   D T D T  (91) 

 

and later on, used in the stiffness matrix and interal force vector 

construction. 

 

Cable elements are treated in very similar fashion. Axial force in any cable 

element during any iteration can be computed using well known formula: 

 
1 0

0

0

l l
N EA N

l


   (92) 

 

where N, E, A, l1, l0 and N0 are the axial cable force, Young´s modulus, 

cross-sectional area, deformed length, undeformed (initial) length and initial 

pretension respectivelly. When the resulting force is smaller or equal to zero 
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(   ) then the cable force and Young´s modulus are modified in 

following way: 

 

 0N   (93) 

and 

 610E   (94) 

 

and used for constructing the stiffness matrix and internal force vector for 

next iteration. 
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2.3 General solution procedure 
 

General solution procedure for geometrically nonlinear finite element 

analysis using Total Lagrangian formulation is shown on Fig. 7. This 

pseudocode can be used for form finding, analysis and, as shown in sections 

2.4.1 and 2.4.2, also for geodesic line calculation, flattening and 

compensating of membrane strips. 

 
Fig. 7 - General solution procedure 

 

As a convergence test a L
2
 norm of displacements increment du can be 

taken. 
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2.4 Patterning 
 

In general, generating the cutting pattern (which is main production plan) 

consists of two steps. First, global 3D surface have to be divided into several 

cloths of a certain width, which respects available fabric roll widths. 

Secondary, each individual 3D cloth have to be converted plane. This second 

step requires flattening of 3D doubly curved surface into its 2D image and 

compensating. Compensating is a process of shrinking planar cloth in a way, 

that after stretching in construction phase the final 3D surface will be in 

stress state defined by designer. 

 

This design steps have to be done because most of the membrane structures 

have larger dimensions then the basic material from which they are made of. 

They are also doubly curved and prestressed. Curvature of 2D surfaces in 3D 

space can be described by a single value called Gaussian curvature  . Let´s 

have an arbitrary surface and assume a single point on it (red dot on Fig. 8). 

We can draw two perpendicular curves on the surface intersecting in our 

point. When those curves are drawn in the principal curvature directions 

(defining directions of principal surface curvature is out of scope of this 

work and generally it is not needed for the design process), we can measure 

their radius    and    and calculate their curvatures: 
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Gaussian curvature   can be calculated from principal curvatures using 

following formula: 

 1 2K R R  (96) 

 

According to the magnitude of Gaussian curvature we can find out how 

curved the surface is and according to sign, we can divide surfaces into three 

basic types: 

 

0K   negative curvature anticlastic surfaces 

0K   zero curvature zeroclastic surfaces 

0K   positive curvature synclastic surfaces 
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Fig. 8 - Types of surfaces according to their curvature 

 

From the Fig. 8 and Eq.(96) can be easily seen that, if one of the principal 

curvature is negative (curvatures have oposite sign), resulting surface is 

anticlastic and therefore have suitable shape for mechanically prestressed 

membranes. On the other side, if principal curvatures have the same sign, 

resulting surface is synclastic and can be used for pneumatics and structures 

prestressed by internal pressure. These surfaces with nonzero curvatures are 

so called „non-developable“. The term non-developable means, that they can 

not be simply unfolded to plane, because its internal topology does not allow 

to do so. Special techniques have to be adopted to flatten these surface to 

plane (see following sections), but some error will allways be introduced. 

Finally, if at least one of the principal curvatures is zero (straight line), the 

resulting surface will be developable (can be unfolded to plane without any 

error). These surfaces do not fit the requirements that are given to membrane 

structures. 

2.4.1 Cutting lines 

 

To overcome the problem of flattening non-developable surfaces as well as 

fitting into production limitations (fabric roll widths), the membrane surface 

have to be divided (cutted) into individual cloths. Generally, cutting can be 

done in an arbitrary way. Most popular ways of surface cutting are: 

 

- cutting along the intersection of vertical plane-membrane surface 

- cutting along the geodesic lines on membrane surface 

- arbitrary cutting with respect to architectural requirements 

 

The main disadvantage of cutting along the intersection of vertical plane-

membrane surface and arbitrary cutting with respect to architectural 

requirements is that the flattened cloths have curved edges (or are „banana 

shaped“), what leads to significant material wastage and the number of seam 

lines increases. 
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Fig. 9 - Comparison of non-geodesic (orange) and geodesic (blue) cloth generation 

 

Correctly cut cloths should fulfil several requirements and the cutting lines 

should be placed with respect to: material properties (copying the warp 

fabric direction as much as possible, respecting shear stiffness), available 

material widths and lengths, curvature of the surface (one of the principal 

curvatures on each cloth should be minimized, so cloth can become nearly 

developable), main load carrying paths, aesthetical reasons, etc. 

 

This work focuses on cutting the surface along the geodesic lines. Geodesic 

line between two points on curved 2D surface in 3D space represents their 

shortest connection and is equivalent to straight line on a plane. There exist 

more than one geodesic line that connects two same points. 

 

There are many techniques how to generate a geodesic line on a curved 

surface discretized by flat triangular elements. For example by solving 

eikonal equation, using floating curve that minimizes its geodesic curvature 

(GCF principle) or computer aided geometric design (CAGD) principles, 

that uses 2 stages. At first stage, the initial curve is generated by Dijskstra´s 

shortest path algorithm or Fast forward marching algorithm. This line is 

polygonal and respects the edges of finite element mesh. Second stage 

iterativelly improves the initial curve until there is no shorter curve possible. 

This technique is described in [41].  

 

Technique described in this work is based on mechanical analogy [36].  

Prestressed cables are included in finite element mesh along an initial guess 

for the desired geodesic lines and mechanical method of form finding 

(described in section 2.1.2) is performed. The spatial movement of 

prestressed cables during form finding is constrained in a way, that only 

tangential displacements are allowed and displacements normal 

(perpendicular) to the surface are ignored. During the mechanical form 

finding process the geometry proceeds to a configuration with a minimum 

potential energy. Two main strategies can be adopted: 
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- geodesic line calculation during form finding 

- geodesic line calculation on found form 

 

If the designer wants to find the geodesic line during the form finding 

process, the initial guess of its final position have to be made. For the 

computational purposes, it is neccessary that geodesic lines have to be 

created from egdes of finite element mesh. 

 
 

Fig. 10 - Initial guess of geodesic lines 

 

The difference between finite element mesh topology on surface form found 

with and without geodesic lines can be seen from the following Fig. 11 a)-d). 

 

  

a) b) 
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c) d) 
 

Fig. 11 - Form found surface with /a) and b)/  and without /c) and d)/ geodesic lines 

 

The in-plane movement of geodesic line nodes was achieved by neglecting 

the force acting perpendicular to surface. Geodesic lines are represented by 

high tensioned cables with zero mass and stiffness. The pretension in this 

case was set to ratio 1:100 (membrane : geodesic line). It is important to note 

here, that the nodal forces from geodesic pretension are set to zero at its 

starting and end point. In case this is not done, the pretension will change the 

form in an unacceptable way. 

 
 

 

a) b) 
 

Fig. 12 - Mesh deformation due to tensioning of endpoints of geodesic lines 

 

When the geodesic line have to calculated on a found form and designer 

would like to use the mechanical approach, two possible strategies are 

available. First technique is based on a contact formulation between 

prestressed cable and membrane mesh. This technique is quiet sophisicated 

and is out of scope of this work. Second strategy is very similar to technique, 

when geodesic line is calculated during form finding. At this second 

approach we consider all the nodes belonging to stiff elements (tie cables, 

trusses, beams, shells) as fixed, also all nodes that belong to edge, or ridge 

and valley cables are restrained. Only the nodes belonging to membrane 
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surface are allowed to move. The nonlinear finite element analysis with high 

tensioned geodesic lines is performed. As well as in the previous technique, 

nodes on geodesic lines are allowed to move only in direction tangential to 

the surface (normal movements are ignored). 

 

When the initial position of cutting lines are not known in advance, and 

therefore final geodesic line can´t be calculated during form finding, 

designer can use following approach:  

 

1. surface is form found in usual way 

2. designer will chose start and end point of the final cutting 

line 

3. shortest path respecitng the edges of the mesh is calculated 

4. calculated shortest path is assumed as an inital position of 

geodesic line and nonlinear finite element analysis is 

performed, where only the nodes belonging to membrane are 

allowed to move 

 

 
 

a) b) 

 
 

c) d) 
 

Fig. 13 - Initial shortest path /a) and b)/ and final geodesic line /c) and d)/ - hypar 

geometry 



 

38 

 

Shortest path between starting and end point of cutting line consisting of 

mesh egdes can be calculated in a following way: 

 

 1.  starting point A and end point B are selected 

 2. find all the nodes N connected to node A with the mesh edge 

3. for every node N calculate the euclidean distance to node B 

4. node P with shortest distance to node B is added to the initial 

shortest path 

5. set P = A and continue until A = B 

 

  
a) b) 

  
c) d) 

 

Fig. 14 - Initial shortest path /a) and b)/ and final geodesic line /c) and d)/ - general 

geometry 

 

As can be seen from Fig. 13 and  Fig. 14, this technique works sufficiently 

good even for initial shortest paths that are far from geodesic lines. 

 

Nodal displacements, that are tangential to the surface can achieved by 

setting all the nodal forces belonging to prestressed geodesic lines  

perpendicular to the surface to zero. Nodal forces belonging to prestressed 

geodesic lines in global coordinate system can be calculated from Eq. (97): 

 

 
T

i NF B  (97) 
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where    is 6x1 vector of nodal forces from actual geodesic line force  . 

This force is equal to the initial prestress of geodesic line. First three rows of 

   represent the X, Y and Z components of force   in global coordinate 

system belonging to the first node. Last three rows represent the same, but 

for the second node. These three components of force   have to be 

transformed to the local coordinate system of the surface at respective node. 

This local coordinate system can be calculated as an average of the local 

coordinate systems of the adjacent triagles: 
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T =   (98) 

 

where    is local coordinate system at a surface node,   is a number of 

adjacent triangles,    is the matrix of direction cosines for triangle   (Eq. 

(20)). Nodal forces in local surface coordinate system are then calculated as: 
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where    ,     and     are the geodesic line nodal forces in local surface 

coordinate system.     is set equal to zero, and the resulting vector is then 

transformed back to global coordinate system: 
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Resulting force components    ,     and     are then assembled to the global 

force vector   in the usuall manner and next iteration of finite element 

analysis is performed. After the solution of finite element system, the 

designer will obtain a new increment of displacements   . Very high 

prestress of geodesic lines and its initial path, which is far from equilibrium 

can cause high values of   . These high values can cause overlapping of 

finite elemnt mesh and can „run out of the surface“ even if only tangential 

displacements are allowed. Therefore an introduction of damping is 

essential. Good results were obtained when the maximum value of 

displacement increment was set to       . Where      is length of the 
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shortest mesh edge and   is a user defined constant from interval      . The 

value of   depends on mesh quality and initial path topology. 

 

Sufficiently good results were obtained when the technique of tangential-

movement-only was applied only to nodes belonging to geodesic lines. If the 

designer wants to perform precise analysis, this procedure can be applied for 

every node of the mesh. In such a case a computational time increases very 

rapidly. 

 

Techniques presented in this chapter are based on mechanical analogy and 

they work with edges of finite element mesh. This is an advantage when 

compared to the geodesic line calculation using the CAGD approchaes, 

which uses the edge intersections or set of nodes independent of finite 

element mesh. After finding a geodesic line over the surface with CAGD 

techniques, the remeshing is neccessary, what finally results in an iterative 

approach or losing the computational data connected to the finite element 

mesh. When using the mechanical approach, no remeshing is neccessary and 

designer can use the same mesh for further design stages. 

2.4.2 Flattening 

 

As already mentioned, doubly curved anticlastic surfaces are non-

developable. This means, that they can´t be unfolded into plane without an 

error in surface area. Therefore, the procedure called flattening have to be 

used. Flattening generally means the minimization of difference between 2D 

planar cloth and its 3D pattern. The amount of potential difference between 

2D and 3D surface area during flattening increases with increasing double 

curvature. Proper cutting of the surface can, among the others, minimize one 

of the surface curvatures, what can minimize potential error. 

 

During the history, many techniques have been used to flatten 3D cloths to 

2D plane. These techniques were based on physical models, models that are 

minimizing least squares differences between 2D and 3D geometry, mass-

spring models, or geometrical models which preserve intrinsic characteristics 

of triangulation. In the present day following three procedures are used in the 

most of the cases: 

 

- simple triangulization 

- optimization techniques 

- mechanical approach 
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Simple triangulization method is based on an idea, that a general non-

developable surface can become developable after remeshing each 

membrane strip with linear triangles. 

 

    
a) b) c) d) 

 

Fig. 15 - Simple triangulization flattening procedure 

 

The basic procedure of simple triangulization flattening (unfolding) can be 

seen from Fig. 15. Initial 3D surface shown on Fig. 15 a) is cut out of the 

structure. When the strip is cut from the structure by the procedures 

described in previous chapter, the finite element mesh (shown on Fig.13 b)) 

describing the surface is the same, as was used in form finding and analysis. 

The strip is then remeshed with simple triangles (Fig. 15 c)) which are 

creating developable surface, which can be simply unfolded (Fig. 15 d)), or 

redrawn in a plane without an error in surface area. This technique is purely 

geometric and therefore fast. The main disadvantage lies in remeshing step. 

After remeshing of intially curved surface with flat triangular elements, all 

the informations about curvature between cutting lines is lost. Also the edges 

have to be treated separatelly, since they can carry the information about the 

curvature of edge cables or cut-offs neccessary for detailing. Hence, this 

technique have to be used carefully. 

 

Optimization techniques offer many strategies, how to flatten doubly curved 

spatial membrane strips. They are based on minimization of the square 

difference between 2D and 3D pattern. Nodal coordinates of flattened 

pattern are taken as optimization variables in all cases. Objective function, 

that have to be minimized, can be chosen by the designer freely. Most 

popular objective functions are: 
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- minimization of the difference between mesh edge lengths 
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- minimization of difference in surface area 
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- minimization of stress diference 
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And many others can be used. For sufficiently precise flattening, the 

unconstrained optimization techniques (described in section 3.5) can be 

used. If the designer wants to have more control over the flattening proces, 

the constrained minimization (described in section 3.6) is an essential 

choice. In case of constrained minimization, all potential objective functions 

can be used as constraints and hence the flattening process can be driven in 

a way, that fits the structural needs. When minimization of difference in 

lengths or surface area is performed, the optimization task is purely 

geometrical. In case of minimization of the stress difference between 2D and 

3D surfaces, the material properties and their orientation can be taken into 

account. This is the most suitable way of optimization for anisotropic fabric 

structures, since it is possible to describe the change in geometry with 

respect to warp and weft directions. This requires the evaluation of stresses 

and strains, what makes the definition of objective function more 

complicated and costly. 

 

After the membrane strips are flattend preciselly enough and their prestress 

wasn´t considered in the process of flattening, the compensation of flattened 

patterns have to be performed. Compensation is the process of making the 

flattened strips smaller in a way, that after their extension (elongation) 

during the construction phase, they will be in final position and correctly 

prestressed. Simple geometrical way of compensation can be performed in 

the following way: 
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where   and   are compensation factors in warp and weft directions 

respectivelly and x and y are the nodal coordinates before and after 

compensation (according to their subscript). Their value depends on the 

material properties and the level of prestress and should be taken from 

biaxial tests. It is important to notice here, that the x and y cartesian 

coordiante system have to be oriented in warp and weft directions. 

 

Mechanical approach of surface flattening is based on nonlinear finite 

element method [36]. Generally, using this approach it is possible to 

generate flattened patterns only, or flattened and already compensated 

patterns. The basic idea consist of two stages: press and release. The first 

phase is based on generating a planar image of a spatial strip. This initial 

planarization can be done in any way, just the triangulation have to have the 

same topology (connectivity) and overlapping of element have to be 

prevented. From the coordinate difference between initially flattened pattern 

and its 3D parent, the strains, stresses and nodal forces can be calculated 

(Eqs. (25), (32), (46)). These forces are taken as an external loads, which 

will drive the relaxation process during the second phase. During this second 

phase the nonlinear finite element analysis is performed and the final 

displaced configuration represent the flattened pattern. A clear advantage of 

this method is that the same mesh as for form finding and analysis is used 

and therefore no simplifications in geometry is introduced. Patterns 

generated with mechanical approach are flattened with respect to material 

properties and their orientation (in case of anisotropic material). This method 

(like all finite element calculations) requires, that statically determinate 

supports have to be introduced. If designer sets less or improper supports, 

the finite element calculation could not converge or even not run. On the 

other hand, if there are too much supports (more than 3 degrees of freedom 

in plane are constrained), statical determinity is lost and pattern will be 

flattened incorrectly (since some nodes, which should change their position, 

are fixed). 
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Fig. 16 - Initial flattening of spatial strips 

 

Initial displacements needed for mechanically motivated flattening can be 

for every single triangle element mathematically written as: 
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Note that these displacements are calculated in global coordinate system and 

have to be transformed to local coordinate system of element to perform 

further calculations. Internal forces (integrated on planar configuration) are 

calculated using these displacements and Eqs. (25), (32), (46). After their 

assembly to global force vector, is this vector taken as vector of external 

loads and second phase is performed. 

 

Hypar shown on Fig. 11 c) can be divided with respect to cutting lines to 

five independent pieces and these pieces are initially flattened according to 

previous description. 
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Fig. 17 - Spatial strips and thier planar mapping (initially flattened) 

 

Original 3D hypar had total surface area 292,4656 m
2
, intially flattened 

patterns 281,1460 m
2
 (obtained by setting all z-coordinates to zero) and 

flattened pattern relaxed by nonlinear finite element analysis 292,0648 m
2
. 

The error between 2D and 3D strips is therefore (292,4656 - 292,0648) / 

292,4656 * 100 % = 0,137 %. These results were obtained with finite 

element analysis converegence criteria (based on residual forces) equal to  

10
-5

, which is very precise. When designer wants to obtain even higher 

precision, the iterative approach can be adopted. After convergence of finite 

element method, the difference in 2D and 3D geometry is measured again 

and new load vector for new nonlinear analysis is assembled. This process is 

repeated until there is only negligible change between these loops. In this 

particular example, 20 loops were used and the final flattened area was 

292,4674 m
2
, which means an error (292,4656 - 292,4674) / 292,4656 * 100 

% = 0,00061 %. 

Until now, only flattening without compensation have been presented. 

Compensation can be simply performed during this flattening process by 

setting an initial stresses to planar patterns equal to prestress of 3D strips. 

Every triangle can have different initial stresses. Therefore triangles will be 

differently compensated and this compensation will respect the orientation of 

material directions. 

To demonstrate the differences between constant geometric compensation 

defined by Eq. (104) and stress based compensation described in previous 

text, the following example have been chosen. Lets have a conical 
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membrane strip, which is prestressed by 2 kN/m in x direction and linearily 

varying prestress in y direction (Fig. 18).  

 
 

  

  
a) prestress 

σx 

a) prestress 

σy 

 

Fig. 18 - Arbitrary conical strip with uneven prestress state 

 

    

   

 

a) strains εx b) strains εy c) strains γxy d) displacements 

 

Fig. 19 - Strains resulting from constant compensation 

 



 

47 

 

 

    

   

 

a) strains εx b) strains εy c) strains γxy d) displacements 

 

Fig. 20 - Strains resulting from stress based compensation 

 

Fig. 19 presents the strains of a typical membrane strip after the constant 

geometric compensation. In this particular case the compensation factors 1 

% and 2,5 % were used for x and y directions respectivelly. The final strains 

in warp and weft (x and y directions respectivelly) are constant (note that 

chaotic color fields in case of εy are the result of a numerical noise). The 

shear strains are zero all over the surface, what means that the varying stress 

state over the membrane strip is not considered and shear stiffness of fabric 

is not taken into account. 

 

On the other hand, Fig. 20 shows the strain field of fabric after stress based 

compensation. These results show, that the fabric is compensated more in the 

areas of higher stress. The difference is about 5 % in warp (constantly 

stressed) direction and 1142 % in weft (variably stressed) direction. The 

variation of stress state in weft direction is 1042 %, what means, that also the 

prestress in x direction is taken into account by Poisson constants. Finally, 

nonzero shear strains results in a different geometry of compensated strips. 
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3 Structural optimization 
3 Structural optimization 
Mathematical optimization is a general tool, which is focused on finding the 

best possible solution of a problem within given design space and under 

given constraints. Its generality is based on fact, that the solution process is 

independend of optimization problem. Therefore it is often used in the field 

of physics, economics and all types of engineering applications like 

aerospace, automotive, naval or civil engineering. For the proper use of 

optimization techniques, it is importnat to distinguish the basic terminology: 

 

Design variables: parameters to be changed in order to improve to design 

(for example nodal coordinates, surface prestress) 

Objective function: function of design variables to be optimized (for 

example minimization of nodal displacements, maximization of structural 

stiffness) 

Inequality constraints: one sided conditions that must be satisfied for the 

design to be acceptable (for example maximum stress have to be smaller 

than material strength) 

Equality constraints: precise conditions that must be satisfied for the 

design to be acceptable (very rare in structural optimization problems, for 

example structural thickness) 

Side constraints: bounds on design variables that limit the region of search 

for the optimum (maximum and minimum values for the design variables) 

Feasible design: design that satisfies all constraints 

Infeasible design: design that violates one or more constraints 

Optimum design: the set of design variables corresponding to minimum 

(maximum) of the objective function and satisfying all constraints 

 

Structural optimization can be divided into different groups according to 

different criteria. Based on computational strategy, optimization algorithms 

can be divided to: 

 

- gradient based optimization 

- heuristic optimization 

 

Gradient based optimization algorithms are based on iterative improvement 

of intial (user defined) design. A search direction is computed as a result of 

sensitivity analysis and new set of design variables is obtained by changing 

current design in this direction. On the other hand, heuristic optimization 
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algorithms require several intial designs. Objective function is evaluated for 

every design and new set of design variables is obtained as a combination of 

several best performing designs. 

Whether the optimization task is constrained or not, the algorithms can be 

divided into: 

 

- unconstrained optimization 

- constrianed optimization 

 

Last, but not least, depending on the geometric feature, the structural 

optimization problems can be divided into three classes: 

 

- sizing optimization 

- shape optimization 

- topology optimization 

 

 
a) b) c) 

 

Fig. 21 - Types of structural optimization problems - a) sizing, b) shape, c) topology 

optimization 

 

Sizing optimization is a class of optimization problems, where the structural 

thickness or cross-sectional areas are taken as design variables. This type of 

optimization doesn´t change the shape or topology of a structure, its main 

goal is to change cross sections in a way, that their utilization is as high as 

desired. Shape optimization, on the other hand, keeps the cross sections and 

topology unchanged and changes the geometry to achieve optimization 

goals. Topology optimization introduces a „density like“ variable, which can 

have arbitrary value (usually 0 or 1) and controls the topology of the 

structure. The result of topology optimization is an optimal distribution of 

material over the given domain. Several other classifications based on 

different criteria can be found in [28]. 

 

This work is focused on gradient based shape optimization, both constrained 

and unconstrained. Nevertheless, all presented procedures and strategies can 

be used generally, not only for civil engineering problems. 
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The capabilities of shape optimization techniques in engineering design can 

be clearly described by following Fig. 22: 

 

 
Fig. 22 - General mechanical system 

 

Assume that we have a general structure, which behaviour can be described 

by computational mechanics. The structural response can be evaluated by 

finite element method and both primary (displacements, buckling factor) and 

secondary (stresses, internal forces) unknowns are calculated. According to 

results, neccessary improvements (for example the displacements have to be 

smaller) and constraints (maximum stress have to be lower then material 

strength) can be defined. For shape optimization, nodal coordinates of 

structure, control points of shape paramterization or shape creating elements 

(forces, stresses) are taken as design variables. 

 

Typical objective functions used in structural optimization: 

- weight or volume 

- compliance (structural stiffness) 

- stress leveling 

- frequency 

 

Typical constraint functions: 

- weight or volume 

- displacement 

- stresses 

- frequency 

 

Generally, more then one objective function can be optimized at once. When 

this is true, the process is then called multi-objective optimization. 
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3.1 Introduction to optimization of tensile structures 
 

When a tensile fabric structure is designed, the designer first defines an 

initial shape (form finding step) according to architectural demands. As 

a second step, mechanical analysis under given load cases is performed and 

the response of the structure is studied. If the results of mechanical analysis 

are unacceptable due to aesthetics or safety reasons, the designer should then 

carry out neccessary design modifications. Since the response of tensile 

fabric structure is nonlinear and therefore unpredictable, making a correct 

design modifications is not straightforward. The most typical unacceptable 

effects of loads are: 

 

- over-stressed areas damaging the fabric 

- under-stressed areas causing wrinkling and slack cables (low 

stiffness) 

- large displacements 

 

To avoid these problems some modifications to initial design have to be 

made. These modifications can be classified in two categories: 

 

- fundamental modifications leading to different architecture or 

structural behaviour 

- correction of design parameters 

 

First category of possible modifications requires a direct intervention of 

designer and calls for a new creative process. These modifications are very 

difficult to automate. Second category represents slight modifications of 

design parameters, such as nodal coordiantes of supports, geometry of 

secondary structure, material fibres orientation or prestress. These 

parameters can be taken as a design variables in optimization process and 

their values, leading to optimal structural behaviour, can be obtained. 

 

Most common objective functions (goals of optimization) regarding to 

tensile structures are: 

 

- minimize the displacements of certain nodes (high / low points, 

tripod, too big movement of flat surface) 
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where   ,    and    are the displacements of node i in X, Y and 

Z directions respectivelly 

 

- minimize the stress difference in fabric 
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where    is stress in i-th finite element and      is an average stress 

in fabric in measured direction 

 

- minimize the strain energy (maximize stiffness) 

 

 
1

( )
2

T

extf x f u  (108) 

 

where      is a vector of external forces and   is a vector of 

corresponding nodal displacements 

 

To obtain acceptable results, the structure have to be constrained. 

Constraints are imposed mostly on stresses, cable forces or nodal 

displacements: 

 

- stress constraints 

 

maxi   

or 

max

1 0i


   (109) 

min i   
min 1 0

i




   (110) 

0 i    0isign    (111) 

 

- cable force constraints 

 

maxiN N  

or 

max

1 0iN

N
   (112) 

min iN N  
min 1 0

i

N

N
   (113) 

0 iN    0isign N   (114) 
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- nodal displacement constraints 

 

maxid d  or 
max

1 0
id

d
   (115) 

 

In case of more then one objective function      have to be optimized 

(multi-objective optimization), the following formula for weighting sum 

should be used: 

 

    
1

n

i i

i

f w f


x x  (116) 

 

where    is a weighting factor and   is a number of distinct objective 

functions. 

 

All necessary informations about the structural optimization task are now 

ready and such defined system is prepared to perform neccessary 

calculations. Engineering practice in the beggining of 21st century is able to 

solve optimization problems with hundreeds-thousands of design variables 

and milions of constrains. These possibilities greatly exceeds the needs of 

usual tensile structures. 
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3.2 Basic concepts of optimization 
 

General mathematical formulation of the optimization problem is most often 

written as: 

  min f x  (117) 

subject to 

 

  0jg x  1j m  
inequality 

constraints 
(118) 

  0kh x  1k l  
equality 

constraints 
(119) 

min max

i i i x x x  1i n  side constraints (120) 

 

where      is a scalar representation of objective function,      ,       are 

the vectors of inequality and equality constraints respectivelly and   
   , 

  
    are the lower and upper bounds on design variable   .   itself is 

a vector of design variables in form: 

 

1

2

3

n

x

x

x

x

 
 
  

  
 
 
  

x  (121) 

 

The objective function       as well as the constraint functions       and 

      may be linear or nonlinear functions of design variables  . These 

functions may be explicit or implicit in   and may be evaluated by any 

analytical or numerical techniques available or can be measured 

experimentally. A convenient form of constraining functions is that of Eqs. 

(109)-(115). Except for special classes of optimization problems, it is 

important that these functions be continuous and have continuous first 

derivatives in  . 

The above formulation of the optimization problem is not unique and various 

other formulations are presented in the literature. For example, if we wish to 

maximize an objective function (in case of buckling factor or 

eigenfrequencies optimization), we simply minimize the negative of original 

objective, minimize      . Similary, in case of inequality constraints, the 

designer may wish to have some value of       greater then zero, realisation 

is then the same as in case of objective function. 
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As already mentioned in previous chapters, scope of this work is on gradient 

based optimization procedures. This type of algorithms is often called a local 

methods. This menas that finding of global optimum (best of all) is not 

guaranteed. This will be demonstrated on a following Fig. 23: 

 
Fig. 23 - Representation of optimum points 

 

Assume, that we have a general function      and its lower and upper 

bounds –   and   respectivelly. Points A and C are so called local maxima, 

points B and D are local minima, point F is a constrained global maximum 

and point E is constrained global minimum. The term „constrained“ is 

importnat, because it tells us, that the function can have a lower (or higer) 

value, but at least one constraint will be violated and the solution will be 

therefore infeasible and unacceptable. The term local minimum/maximum 

means, that there are no feasible points in a close neighborhood with better 

(lower/higher) objective function values. 

 

Gradient based optimization is an iterative procedure and most of its 

algorithms require an initial set of design variables   (initial design) to be 

specified. Beginning from this starting point, the design is updated 

iteratilvely. The most common updating procedure is given by equation: 

 

 1q q q x x S  (122) 

 

where q is the iteration number and   is a vector of search direction in the 

design space. The scalar quantity   defines the distance that we wish to 

move in direction   and is also known as step length (see section 3.4). Eq. 

(122) is very similar to the usual engineering approach, where designer 

change an existing design a little, to achieve some improvement. The 

determination of   and   plays a fundamental role in the optimization 

process. Determination of the search direction   differs according to 
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algorithm used, or whether the constrained or unconstrained optimization is 

performed. 

 
Fig. 24 - General minimization strategy 

 

Fig. 24 provides a general flowchart for multivariable optimization. As seen 

from the figure, an actual optimization program consists of three major 

components: 

 

1) determine search direction in which to search (section 3.5 and 3.6) 

2) find optimal step length – one dimensional search (section 3.4) 

3) convergence check (section 3.5.1) 

 

The reason why gradient based methods converge only to a local minimum 

(which can, but also don´t have to, be a global minimum) is hidden in Eq. 

(122) and Fig. 23. When the designer starts the optimization process with 

initial design corresponding to point A on Fig. 23, two possible directions 

for decreasing the      are possible. In case the movement will be in +x 

direction, the function will decrease and optimization algorithm will 

converge to local minimum point B. In case of movement in -x direction, the 

optimization algorithm will converge to constrained global minimum point 

E. Both directions can decrease the objective function (which is the goal of 

optimization), but only one converges to global minimum. Which direction 

the optimization algorithm decides to go, depends on the sensitivity of the 

problem to the change of design variables. 
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3.3 Sensitivity analysis 
 

Procedure to identify the sensitivity of the problem to change of design 

parameters is called sensitivity analysis. Sensitivities can be understood as 

a first derivatives of the problem with respect to design variables. When one 

wants to calculate the derivatives of a function with respect to more then one 

variable, the results can be organized to a vector, which is called gradient. 

Mathematically, the gradient is written as: 
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Each component of the gradient vector (vector of first derivatives) can be 

differentiated again with respect to each variable, to obtain second partial 

derivatives for the function     . 
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with         . Matrix of second derivatives      of a function      is 

known as Hessian matrix and if      is twice continously differentiable, 

then      is symmetric. 

 

On several occasions we must diferentiate a vector function of m variables 

with respect to n design variables. In constrained optimization problems we 

often have to diferentiate the vector of constraints      with respect to all 

design variables  . Differentiation of vector      with respect to one 

component of vector   results in gradient vector, such as       . After 
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diferentiation with respect to all design variables, resulting gradients can be 

arranged to a matrix as its columns. This matrix is of size    , and is 

refered to as gradient matrix of     , or in constrained optimization 

problems, as a Jacobian matrix of constraints        . 
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 (125) 

 

In mathematics, derivatives of general function      with respect to design 

variable x is most often numerically approximated by finite difference 

method. Forwad difference approximation of            at design   is: 

 

 
     i j ii

j

f e x ff

x x

  
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 

x xx
 (126) 

 

where              is an identifier of design variable 

with respect to which is the differentiation performed and    is 

a perturbation. Forward difference approximation of second order 

derivatives based on function calls can be computed from: 

 

         2
i i i j j i i i i j j ii

i j i j

f e x e x f e x f e x ff

x x x x

          


  

x x x xx

(127) 
 

More accurate, but on the other hand, more expensive for calculation time 

are the central difference approximations. Central difference approximation 

of            at design   is: 
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and for second order derivatives: 

 

 
 2

4

i

i j i j

f A B C D

x x x x

   


  

x
 (129) 

 

with 

 

  i i i j jA f e x e x    x  (130) 

  i i i j jB f e x e x    x  (131) 

  i i i j jC f e x e x    x  (132) 

  i i i j jD f e x e x    x  (133) 

 

Numerical approximation of second order derivatives is very expensive and 

therefore is not recommended for structural optimization problems. For the 

optimization methods requiring second order information about the problem, 

the BFGS approximation of Hessian matrix is much more practical. 

Although finite difference method of derivative approximations and 

sensitivity analysis may be very inaccurate and expensive, they at least have 

one advantage – they are very easy to implement and when finite element 

analysis code is used as a „black box“, they are the only possible choice. 

Generally, there are three groups of methods for sensitivity analysis: 

 

- numerical methods (approximate, for example finite differences) 

- analytical methods (exact, but complex) 

- hybrid (combination of previous two, for example semi-analytical 

methods) 

 

Theoretical background of the analytical and hybrid methods is out of scope 

of this work, but in serious practical applications it is recommended to use 

them, wherever possible. Interested reader is addressed to [23], [26] and 

[40]. 
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3.4 Step length search 
 

After the search direction     is calculated (see sections 3.5 and 3.6), the 

length of the movement in this direction have to be determined. This is an 

unconstrained optimization problem with one design variable, mostly termed 

as  . Mathematically,  this task can be written as: 

 

   *

0,
argmin q

s
f


 


 x S  (134) 

 

where    is an optimal length of the step and   is an upper bound given to 

this length. Maximum value of   depends on the type of the problem, but 

    is often used. Length of the step have to provide a sufficient decrease 

of objective function      and its calculation have to be as cheap as 

possible. 

 

Eq. (134) can be solved using zero-order methods, i.e. methods, that don´t 

require derivatives. Famous zero-order methods are bisection (interval-

reducing method) and golden section method, which algorithms are provided 

on Fig. 25 and Fig. 26 respectivelly. These methods are quite expensive, 

because they require many function evaluations and therefore are suitable for 

smaller problems, or problems with low-cost objective function evaluation. 

They also can be used to set initial function values for more effective step 

length search methods, such as polynomial approximations. 

 

There are also different kind of algorithms to determine step length known 

as inexact line search methods. These methods don´t guarantee the 

maximum decrease of objective function, but offer sufficient decrease in 

computationally effective manner. Several inexact line search procedures 

have been developed, from which the most famous are: 

 

- Armijo´s rule 

- Wolfe conditions 

- Goldstein test 

 

Exact line searches (as given in Fig. 25 and Fig. 26) can be time consuming, 

and therefore inexact procedures are recomended. The underlying theory can 

be studied at [38] or [39]. 
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Fig. 25 - Bisection algorithm for unconstrained minimum 
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Fig. 26 - Golden section algorithm for unconstrained minimum 

 

With a0, b0 the lower and upper bound on step length and ε being the 

precision. 
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3.5 Unconstrained optimization methods 
 

Many engineering problems require, that we find the minimum of some 

function     , where no restrictions are imposed on the variables  . For 

example nonlinear structural analysis, whereby the displacement field of the 

structure under given loads is found by minimizing the total potential 

energy. From the field of tension structures, the form finding or flattening 

processes may be done using unconstrained optimization methods. Important 

reason for studying these techniques is that they provide a logical building 

block toward the solution of nonlinear constrained problems encountered in 

the design. Especially when sequential unconstrained minimization 

techniques (SUMT) are used for constrained optimization. This chapter 

provides several most famous algorithms for unconstrained optimization. 

3.5.1 Optimality conditions – unconstrained minimization 

 

For unconstrained optimization problems, local (and global) minima are 

located at stationary points    (asteriks * means the optimal set of  ). 

Stationary points are those, for which the gradient of      is zero: 

 

  
 f

f
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 (135) 

 

Here, convergence is indicated if each component of       is less then in 

magnitude than a specified constant   . The designer have to be aware, that 

the stationary point can also be a local maximum and therefore the decrease 

of objective function during the optimization process have to be carefully 

monitored. Other most often used convergence criteria are: 

- absolute change in objective 

function 
   1

2

q qf f  x x  (136) 

- relative change in objective 

function 
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 (137) 

- change in the design 4

T   x x  (138) 

- number of iterations   

 

where              and    being the convergence criteria with values 

recommended by [27]:                 and           or    

            . 
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3.5.2 Steepest descent method 

 

The steepest descent method is probably the best known and most easy to 

understand of all first order methods. The principal importance of the 

method is that it usually forms the starting point for more sophisticated 

methods. At each iteration, the search direction   is taken as negative of the 

gradient of the objective function. That is, at iteration  : 

 

  1q qf  S x  (139) 

 

This search direction is used to perform one dimensional search for optimal 

step length. When the optimal step length is obtained, the design variables 

     are updated with          and the process is iterativelly repeated, 

until the convergence criteria from section 3.5.1 are satisfied. 

 

 
 

Fig. 27 – Algorithm for the steepest descent method 

 

Since the convergence rate of this algoritm is poor (as will be shown in 

section 3.5.6), this method is not recommended for general application, 

although can be used as an initial search direction for more powerfull 

methods. 
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3.5.3 Conjugate gradient method 

 

The conjugate gradient method requires only a simple modification to the 

steepest descent algorithm and yet dramatically improves the convergence 

rate of the optimization process. The idea is based on constructing the search 

direction   from more then one gradients, as follows: 

 

  1 1q q q

qf    S x S  (140) 

 

and the value   depends on the strategy used. For example:  

 

- Fletcher-Reeves 

strategy 
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- Polak-Ribiere 

strategy 

      
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T
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f f f

f f
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 

  
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x x x

x x
 (142) 

 

The conjugate gradient method will theoretically minimize the quadratic 

function in n or fewer iterations. In practice, the optimization problems are 

not always quadratic and therefore a conjugate search direction, which don´t 

reduce the value of objective function can be calculated. This can be 

algorhitmically treated by computing the slope of search direction using dot 

product of         . If its value is positive, the search direction increases 

the objective function and therefore the search direction is set to the negative 

of gradient of original function        (steepest descent). If a steepest 

descent move still fails to improve the objective, this indicates that the 

minimum has been found. 

 

While this method is not considered to be as powerful as the second order 

methods (methods that require second order derivatives of the problem), it 

has a principal advantage that it is easy to implement and greatly reduces the 

deficiences of steepest descent method. Basic algorithm for conjugate 

gradient method is shown on Fig. 28. 
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Fig. 28 - Algorithm for conjugate gradient method 
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3.5.4 Newton´s method 

 

Newton´s method is based on quadratic approximation of an original 

objective function. The original function      is extended by Taylor´s 

expansion to form: 

 

          21

2

T Tf m f f f       x x x x x x x x  (143) 

 

minimum is obtained when        , where 

     2m f f   x x x x , from which: 

    
12 f f


   x x x  (144) 

 

and finally  x x x . This process is repeated until the convergence 

criteria are met. 

 
 

Fig. 29 - Algorithm for full Newton´s method 
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3.5.5 BFGS Quasi-Newton method 

 

BFGS Quasi-Newton method is one of the best performing variable metric 

methods. It is based on the same idea as full Newton´s method, with an 

exception that full Hessian matrix is replaced by its positive definite 

approximation. This is done mainly because the calculation of full Hessian 

matrix is very expensive. 

 

At first iteration the identity matrix is used as a Hessian and therefore this 

iteration is the same as in steepest descent method. Hessian matrix is then 

iterativelly updated with emphasis on its positive definiteness. From the 

finite difference formula for derivative approximations we can write: 

 

  
   f f

f
   
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

x x x
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or 

      f f f     x x x x x  (146) 

 

what can be rewritten into usual optimization notation as: 

 

   cH y x x  (147) 

 

where      is the matrix of second derivatives (Hessian),          

     and                    . Using these variables, the formula for 

updating Hessian matrix is given as: 
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Check of the positive definiteness of Hessian matrix is done at the end of 

each iteration. The dot product   
     can be rewritten as   

       
       

   
      . And if the final product   

       , then the Hessian matrix is 

positive definite and ensures reduction of objective function. If   
       , 

then no update to Hessian is performed and the last known positive definite 

approximation is used for the next iteration. Full algorithm of BFGS method 

is shown on Fig. 30. 
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Fig. 30 - Algorithm for BFGS method of unconstrained minimization 
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3.5.6 Comparison of methods for unconstrained minimization 

 

To provide a comparison, an example function is taken, and all presented 

methods are tested to show their performance. The objective function is: 

 

  
2 2

min sin sin
3 3

x y
f x, y

   
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   
 (149) 

 

with starting point     , and    . On the following figures, the results 

from iterations are shown graphically: 

 

  
 

 

Fig. 31 -  Performance of the unconstrained optimization algorithms 

 

The results of individual algorithms are presented in the following table: 

 

Algorithm Color Number of iterations 

Full Newton´s method  
 

4 

BFGS method  
 

6 

Conjugated gradient method  
 

4 

Steepest descent method  
 

12 

 

Local minimum is at point (0,0) and all methods succeeded in finding it. On 

this simple function, the superiority of second order methods can be 

presented as well as very good convergence rate of conjugate gradient 

method. 
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3.6 Constrained optimization methods 
 

Most of the real world applications, especially when dealing with shape 

optimal design, can not be formulated as unconstrained minimization 

problems. Some limits on sizes, stresses, displacements, etc. have to be 

prescribed. These limits are called constraints and they divide the design 

space into feasible domain, where all constraints are satisfied and infeasible 

domain, where at least one constraint is violated. In most practical problems, 

the minimum is found on the boundary between these domains. On the 

boundary is at least one constraint        . Other constraints with 

       can be removed without altering the solution. 

 

The methods which are used to solve constrained optimization problems can 

be divided into direct and indirect methods. Direct methods deal with the 

optimization problem as it is formulated by Eqs. (117)-(120). Most typical 

representatives of direct methods are: 

 

- Linear programming 

- Method of feasible directions 

- Generalized reduced gradient 

- Sequential quadratic programming 

 

Theory behind these algorithms is very well defined, but is beyond the scope 

of this work. Interested reader is encouraged to study [23], [24], [26], [28], 

[38] or [39]. 

 

On the other hand, the indirect methods convert the original objective 

function to a sequence of equivalent unconstrained minimization problems. 

These methods are then called sequential unconstrained minimization 

techniques (SUMT) and this work is focused on them. 

 

The classical approach to using SUMT is to create pseudo-objective function 

of the form: 

      , p pr f r P  x x x  (150) 

 

where      is the original objective function,      is an imposed penalty 

function and    is a multiplier, which determines the magnitude of the 

penalty. Depending on construction of penalty function      we differ the 

type of SUMT algorithm used (see sections 3.6.2, 3.6.3 and 3.6.4). This 

pseudo-objective is then sequentialy minimized by unconstrained 

optimization techniques described in chapter 3.5. 
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3.6.1 Optimality conditions – constrained minimization 

 

In order to check whether the constrained optimization algorithm converged 

to at least local minimum, the optimality conditions presented is section 

3.5.1 are necessary, but not sufficient. Optimal solution have to meet also 

other requirements, which are collected into so called Karush-Kuhn-Tucker 

conditions (KKT). Before the KKT conditions are descibed, the Lagrangian 

function of constrained problem is introduced: 

        
1 1

,
m l

j j m k k

j k

L f g h  

 

   x x x x  (151) 

 

Lagrangian function extends the objective function with the vectors of 

constraints      ,       and their corresponding Lagrange multipliers    

and      respectivelly. Lagrange multipliers are often reffered to as „slack 

variables“  which define the sensitivity of optimum with respect  to relative 

change in the constraint bounds. KKT conditions define a stationary point of 

the Lagrangian and state simply that if vector    defines the optimum 

design, the following conditions must be satisfied: 

 

1. Stationarity 

      * * *

1 1

m l

j j m k k

j k

f g h  

 

       0x x x  (152) 

 

2.  Primal feasibility 

 

 
 * 0jg x  for  1j m  

 * 0kh x  for  1k l  

(153) 

(154) 

 

3. Dual feasibility 

 
0j   

m k   - unrestricted in sign 

(155) 

(156) 

 

4.  Complementary slackness 

 

  * 0j jg  x  for  1j m  (157) 
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Fig. 32 - Graphical representation of KKT conditions 

 

Stationarity condition requires, that at the optimum   , the gradient of 

Lagrangian must vanish. When no constraints are present, then the gradient 

of Lagrangian is equal to gradient of original objective function and 

therefore the stationarity condition is equal to condition given in section 

3.5.1. Primal feasibility conditions require that, the design at the optimum 

must be feasible, e.g. all constraints and bounds on variables must be 

satisfied. Dual feasibility and complementery slackness  impose the 

requirement, that if the inequality constraint     
   is not precisely satisfied 

/that is,     
    /, then the corresponding Lagrange multiplier    must be 

zero. For preciselly satisfied inequality conditions and all equality conditions 

the corresponding Lagrange mulipliers can have any value (or any positive 

value in case of inequality conditions). 

 

If the design space is convex, the KKT conditions define global optimum, 

otherwise only a relative (local) optimum is found. For a convex design 

space, the Hessian matrix of objective function and all constraints must be 

positive definite for all possible combinations of the design variables. This 

can seldom be demonstrated in practical applications and hence we must 

usually be satisfied with starting the design from various initial points to see, 

if we can obtain a consistent optimum. 
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3.6.2 Penalty function method 

 

Penalty method, or often stated as the exterior penalty function method is the 

easiest method to implement into optimization process. Penalty function 

     is typically given by: 

       
2 2

1 1

max 0,
m l

j k

j k

P g h
 

       x x x  (158) 

 

From Eq. (158) can be seen, that if no constraints are violated /all         

and        /, then penalty term is equal to zero and optimization process 

procceds like unconstrained. Penalty resulting from constraint violation is 

added to original objective to form pseudo-objective function: 

 

      , p pr f r P  x x x  (159) 

 

and this is then minimized using first-order unconstrained optimization 

methods (steepest descent or conjugate gradient methods). Second-order 

methods are generally not recommended because second derivatives of 

penalty function are not continuous and the numerical ill-conditioning  may 

appear. 

 

Penalty multiplier    is used to control the behaviour of the method. If we 

choose smal value for   , the resulting function         is easily minimized, 

but may yieald in large constraint violation. On the other hand, a large value 

of    will ensure near satisfaction of all constraints, but can cause numerical 

difficulties. Therefore, usually small value for    is chosen at the beginning 

of the optimization process and in subsequent iterations is increased by 

factor   (    and   is recommended in literature [23] and [27]  

respectivelly). The general algorithm for penalty method is shown on Fig. 

33. 
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Fig. 33 - Algorithm for (exterior) penalty function method 

 

3.6.3 Barrier method 

 

The main disadvantage of the exterior penalty function is that, it is defined 

only in the infeasible domain [23]. When only inequality constraints are 

present, it is possible to define an interior penalty function that keeps the 

design in the feasible domain. The most common forms of the interior 

penalty function are: 

 

  
 1

1m

j j

P
g

 x
x

 (160) 

 

or an alternative form, slightly better numerically conditioned: 

 

    
1

log
m

j

j

P g


    x x  (161) 

 

When       approaches zero, the penalty term      in both presented cases 

becomes infinitelly large and therefore creating a barrier between feasible 

and infeasible domain of design space (thus the name of the method). The 

penalty paramater     used in barrier (or interior penalty function) method, 

unlike in penalty function method, begins as a relatively large positive 
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number and decreases in subsequent iterations by factor    (       is 

recommended in literature [27]). This ensures that in situation, when the 

inequality constraints are precisely satisfied /       /, the penalty 

multiplier     approaches zero and therefore cancels the impact of infinitelly 

large penaly function     . 

 

When the designer needs to include also equality constriants, the pseudo-

objective function of barrier method (for inequality constraints) is extended 

with the penalty term from penalty method. The final pseudo-objective is 

then: 

 

    
 

 
2

1 1

1
, ,

m l

p p p p k

j kj

r r f r r h
g


 

        x x x
x

 (162) 

 

It is important to distinguish the difference between    and    . While the    

from penalty function method starts as initially small value and increases, 

the penalty multiplier     from barrier method starts as initially large number 

an decreases. The full algorithm is shown on Fig. 34. 

 

 
 

Fig. 34 - Algorithm for barrier (interior penalty function) method 
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3.6.4 Augmented Lagrange Multiplier method 

 

This method is based on unconstrained minimization of pseudo-objective, 

which is created as a combination of exterior penalty method and Lagrange 

function. Resulting pseudo-objective function takes the form: 

 

       
22

1 1

, ,
m l

p j j p j m k k p k

j k

L r f r h r h    

 

             x x x x

 

  

(163) 
where 

  max ,
2

j

j j

p

g
r




 
  

  

x  (164) 

 

After the convergence of unconstrained minimization, the Lagrange and 

penalty multipliers and have to be updated. The update formula of 

multipliers for inequality constraints is: 

  1 2 max ,
2

p

jp p

j j p j

p

r g
r


 

   
    

    

x  (165) 

 

for equality constraints: 

 

  1 2p p

k m k m p kr h 

   x  (166) 

 

and for penalty multipliers: 

 
1p p

p pr r   (167) 

 

In the previous formulas,   in superscript means the iteration number and    

in subscript stands for „penalty“. Augmented Lagrangian Multiplier method 

(ALM) is numerically well conditioned and therefore penalty multipliers    

need not to be increased to theoretical infinity. In practical applications we 

usually set a maximum value   
   , which is not exceeded during the 

optimization procedure. Since we can not specify a suitable value of   
    in 

advance, we usually set the maximum relativelly large, for example    . 

The method is commonly reccomended to begin with     and an arbitrary 

(but small) value for   . The algorithm for this method is given on Fig. 35. 
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Fig. 35 - Algorithm for general case of Augmented Lagrangian Multiplier method 

 

Augmented Lagrangian multiplier method is superior over other SUMT 

methods, it is robust and suitable for large scale problems. In summary, the 

method has several attractive features: 

 

- the method is relatively insensitive to the value of   . It is not 

neccessary to inrease    to infinity 

- precise         and         is possible 

- the starting point may be either feasible or infeasible 

- at the optimum, the value of   
    will automatically identify the 

active constraints 
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3.6.5 Comparison of methods for constrained minimization 

 

As in section 3.5.6, also here an example is given to compare the 

performence of presented algorithms. Consider a following constrained 

optimization problem: 

      
22 2min , 1 100f x y x y x     (168) 

subject to 

    
2 2, 2 5g x y x y       (169) 

 

with starting point      , and       . On the following figures, the 

results from iterations are shown graphically: 

 
 

 

Fig. 36 - Performance of algorithms for constrained optimization 

 

Colored isosurfaces represent the contours of objective function and light-

blue circle represent the feasible domain satisfying the constraint. The results 

of individual algorithms are presented in the following table: 

 

Algorithm Color Number of iterations 

Penalty method  
 

7 

Barrier method  
 

6 

Augmented Lagrangian Multiplier 

method 
 

 

3 

 

Local minimum (and also constrained global minimum) was found at point 

(3.6;-0.2) and all algorithms succeeded. The convergence rate of ALM 

method has proven to be the best. 
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3.7 Example 
 

The task is to design a simple hypar membrane structure with geometry 

given on Fig. 37 and analyze it under loads given on Fig. 44. After the usual 

design process (geometric form finding, mechanical form finding, static 

analysis), the optimization procedures are applied with aim of reducing 

fabric stresses. This can be achieved by modifying the membrane and edge 

cable prestress within given bounds. For the example to be more illustrative, 

the edge cables are divided into two independent design variables and will 

be treated separately to demonstrate the basic background of optimization 

technology. The obtained results are discussed at the end of the example. 

 

Structural design problem 

 

E1 = 0,9e
6
 GPa 

E2 = 0,648e
6
 GPa 

G12 = 0,031e
6
 GPa 

ν1 = 0,018 

ν2 = 0,025 

thickness = 0,001 m 

warp = X direction 

weft = Y direction 
 

 

 
 

 

 

 

Fig. 37 - Structural problem description 

 

 

5 m 

5 m 

2,5 m 
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Optimization problem 

 

minimize maximum 

stress 
min(max(σx, σy, τxy)) 

  

design variables warp prestress A 

 weft prestress B 

 yellow cables pretension C 

 red cable pretension D 

  

limit values 2 ≤ A ≤ 6 kN/m 

 2 ≤ B ≤ 6 kN/m 

 15 ≤ C ≤ 60 kN 

 15 ≤ D ≤ 60 kN 

  

initial values A = 5 kN/m 

 B = 5 kN/m 

 C = 50 kN 

 D = 50 kN 

 

Fig. 38 - Optimization problem description 

 

To solve this optimization problem a medium-scale SQP algorithm 

(Sequential Quadratic Programming) with BFGS quasi-Newton Hessian 

approximation and linesearch steplength is used. This algorithm is not 

presented in this work due to the wide theoretical background, but 

Augmented Lagrangian Multiplier method presented in section 3.6.4 can be 

very effectively used [13]. As a termination criterion the absolute change in 

objective function was used (Eq.(136)), with        . Finite element 

analysis is limited to 25 full Newton-Raphson iterations and is considered as 

converged, when Euclidean norm of residual forces R is smaller than 0,01. 

A 

B 

C 

C 

C 

D C 
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Fig. 39 - Membrane stresses after geometric form finding 

 

  

  
 

Fig. 40 - Shear stresses and total displacements after geometric form finding 
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Fig. 41 - Membrane stresses after mechanical form finding 

 

  

  
 

Fig. 42 - Shear stresses and geometrical differences between geometric and mechanical 

form finding 
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a) top view b) front view 

 
c) side view 

 

Fig. 43 - Geometrical differences between geometric and mechanical form finding (red - 

geometric, black - mechanical) 

 

  
│Dead load│ (kN/m

2
) 

 

│Wind load│ (kN/m
2
) 

 
 

Fig. 44 - Membrane loads 
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Fig. 45 - Membrane stresses from static analysis 

 

  

  
 

Fig. 46 - Shear stress and displacements from static analysis 
 



 

87 

 

  

  
 

Fig. 47 - Membrane stress sensitivities to increase of pretension of cable D 

 

  

  
 

Fig. 48 - Shear stress and total displacement sensitivities to increase of pretension of 

cable D 
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Fig. 49 - Membrane stresses with optimized prestress 

 

  

  

 

Fig. 50 - Shear stresses and total displacements with optimized prestress 
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3.7.1 Results and discussion 

 

The aim of previous example was to demostrate the practical application of 

procedures described in this work. Among the most interesting phenomena 

belongs the difference between geometric and mechanical form finding 

results. While the geometrical form finding results in a shape on which the 

direction cosines of surface tangents are in equilibrium, the mechanical form 

finding takes into account also the magnitude of these surface tangents. 

Therefore there can be a large differences between both form finding 

methods. Although the mechanical form finding is not neccessary design 

step, it is recommended to do it. If it is not done, the out-of-balance nodal 

forces resulting from prestress will have an influence on nodal displacements 

in the analysis stage. Although it has no influence on final stress state, the 

designer can be confused when interpreting the results, because final 

displacement field will consist of displacements caused by external loads 

and displacements caused by prestress. As shown on Fig. 47 - Sy, the 

application of different prestress then used during formfinding, can lead to 

undesirable reduction of stress, what often results in wrinkled edges. 

Fig. 47 and Fig. 48 shows the sensitivity of the structure with respect to 

change in cable D pretension. Fig. 47 presents the change in the membrane 

stress state, when the cable D pretension is increased by 1 kN. It can be seen, 

that the stress in X direction generally increases, but in the close 

neighborhood of this cable the membrane stresses in Y direction shows 

decrease. Also the influence on shear stress and total nodal displacements 

are shown on Fig. 48. These results are intuitive when one understand 

the concept of introducing pretension. Once the designer is informed about 

the influence of the unit change of all design variables, the magnitude of this 

change can be chosen.  

In our example, the optimizer found a localy optimal values of design 

variables (prestress) as follows: A = 2,81; B = 3,04; C = 49,77; D = 50. The 

initial maximum stresses were σx = 7,51 kN/m; σy = 7,61 kN/m; τxy = 1,34 

kN/m (Fig. 45, Fig. 46). Stresses with optimized prestress σx = 6,47 kN/m; 

σy = 6,69 kN/m; τxy = 1,41 kN/m (Fig. 49, Fig. 50) shows a decrease of 13,8 

% in X direction, 12,1 % in Y direction and increase of 5,2 % in shear stress. 

The fabric prestress was reduced by 43,6 % in warp direction and 39,1 % in 

weft direction. Cable pretension remained unchanged, since its influence on 

final stress state is negligible comparing to influence of fabric prestress. The 

optimizer also revealed, that the edge cables have equivalent infulence on 

final prestress (i.e. C = D) and therefore don´t have to be dealt separately. 

Different final prestress of fabric in warp and weft directions is the result of 

different material properties in those directions, which was also recognized 

by optimizer. Since warp direction is stiffer, it requires less prestress. 
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4 Summary 
4 Summary 
This work aims to provide on overview and brief insight to numerical 

background of design and optimization of tensile structures. Deeper 

knowledge of these techniques gives to designer the possibilities for doing 

„free experiments“, which would otherwise require skilled handwork or 

would cost much time and money. Numerical techniques also enlarges the 

design space. Hybrid structures are such an example. Inclusion of bending 

active elements (beams or shells) to tensile structures opens a new space of 

possible shapes and forms. When one looks on form found shape as on shape 

in equilibrium under given loads, numerical incorporation of other then 

tensile active elements is clear, straightforward and requests no more energy 

or wisdom then usual approach. This can be only seldom achieved by 

physical models, since for the deformation of elements active in bending, the 

effort of work and consumed energy grows rapidly. Numerical techniques 

used these days, such as computational mechanics, are very well defined and 

their idealization of structures offers reliable description of real structural 

behaviour. Additionally, mechanical approach, described in chapter 2 can be 

used in every part of the design process of tensile structures. Last, but not 

least, application of optimization techniques described in chapter 3, if used 

effectivelly, can greatly reduce engineering design time and yield improved, 

efficient and economical design. 

 

With the procedures described in this work, the reader will be able to 

perform necessary calculations required by every stage of the tensile 

structures design. It should be kept in mind, that the field of computational 

mechanics and structural optimization is much wider, than described here. 

Interested reader is encouraged to study the references for deeper 

understanding of presented procedures.  
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