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Abstract: The dire need to solve orientation and localization tasks is directly related to the development of autonomous 

robotics systems as autonomous modules. In this article, we have reviewed and analyzed possible areas and 

peculiarities when implementing existing localization approaches in autonomous robotics systems operating 

under various weather conditions with possible obstacles on their way without preliminarily generated maps. 

In the paper, we especially pay attention to existing SLAM algorithms and a multitude of hardware concerned 

with this problem. Every considered and addressed algorithm in this paper comes with its main principles and 

generated, as a result of its performance, map type. The comparison of the algorithms was mainly based on 

the data of several articles and projects, in which almost perfect indoor experiments without any weather 

impact in order to examine the efficiency of the algorithms were conducted. Using the results acquired by the 

authors, a comparative table with main statistics for every considered algorithm was created. Apart from that, 

similar statistics for trajectory selection algorithms that meant to help researchers solve scenario/scripted tasks 

were covered. As a result of our review piece, we presented a ranging technique for the pair algorithms/sensors 

that uses the renowned TOPSIS outranking methodology. The proposed approach may become of significant 

help while selecting the pair for every case study. 

1 INTRODUCTION 

The rise of robotics dates back to the production 
systems efficiency problems – as a tool for 
assembling vehicles (cars in particular) and other 
complex units at factories. Today, similar robotics 
systems are frequently used in every aspect of human 
life. For example, there is a wide variety of both 
industrial and private cleaning robots that are also 
capable of scrubbing swimming pools and other 
surfaces, service or assistant robots and plenty of 
consulting robots at malls and airports. Besides, they 
are particularly good at helping handle with the 
aftermaths of technological accidents and 
meteorological disasters by getting to the hard-to-
reach sites and seeking for casualties. Moreover, now 
they have become extremely popular amongst 
military services. For example, they can be used to 
collect intelligence and disarm bombs. Another 
fascinating use case for such robots is space in general 
and space exploration in particular. Not only are they 
used for repairing and fixing satellites, aero crafts and 
so on, but they also have the Moon and Mars 
exploration objective. Today they found their place in 

healthcare. Virtually they even help in agriculture and 
forestry. However, in order for them to be fully 
automotive and standalone, they need to have inside 
recognition, navigation and mapping algorithms. This 
set of algorithms and problems is commonly referred 
to as SLAM (Simultaneous Localization and 
Mapping). 

These days there are too many approaches and 
methods for solving SLAM problems, however, only 
recently we have been able to notice a distinct 
transition to modern (hybrid) techniques and 
approaches, that are capable of processing data with 
outliers without any pre-processing, from the 
conventional ones (i.e. filter-based algorithms). 

Additionally, in mobile robotics there is a 
substantial problem with processing every 
localization and mapping task simultaneously 
(S letter in SLAM) and concurrently. 

Even more complex problem is when we are 
supposed to solve the outlined tasks in an unknown 
or/and unstructured and dynamically changing 
environment with many obstacles whether there are 
bump/altitude variations or sudden climate changes 
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affecting the precision and accuracy of the sensor 
data. 

Furthermore, depending on the algorithm, an 
operating robot may consider using pairs of sensors 
of different types: acoustic, lidars, cameras, sonars, 
altimeters. Likewise, it is crucial to consider possible 
precision and accuracy requirement when opting for 
one or the other algorithm or sensor, since, for 
example, lidars are fairly efficient yet exceedingly 
expensive. 

The type of the environment encompassing our 
robotics system should be considered as well, as in 
self-resembling and similar scenes (i.e in office 
rooms) the precision and accuracy requirements are 
likely to become stricter due to lots of outliers 
concerning false-positive loop closures (making the 
robot think that it has already visited this place). 

Thus, a particular algorithm that one wants to use 
will be affected by the collection of sensors we have 
at our disposal or can use, which may constitute 
another worth considering and requiring a 
comprehensive analysis problem. And given the fact 
that most modern approaches are hybrid-based (it is 
possible to use different combinations of sensors and 
algorithms at run time), the mentioned selection task 
becomes crucial since under distinct conditions 
(weather, traffic, obstacles related) the efficiency of 
the algorithms/sensors pair may vary drastically, 
which is likely to lead to unpredictable results. For 
instance, in [1] the influence of changing weather 
conditions on the SLAM results of automated 
vehicles was shown, and in [2] authors showed how 
illumination and sensors positioning affect the quality 
of the results (i.e. the target may be behind 
vegetation). In [3]⁠ an autonomous adaptive 
multisensor SLAM was demonstrated. 

2  A REVIEW OF SLAM 

ALGORITHMS 

When comparing SLAM algorithms, the most 
fundamental aspect is the resulting trajectory of these 
algorithms. In this context let us consider trajectory 
as a set of points in space that are dependent on their 
coordinates, ambient influence on it associated with 
the noise of sensor data, obstacles and the positional 
changes of dynamic objects and obstacles. Thereby, 
trajectory and its possible changes are reliant on the 
dimensions of a robotics system. In general, a 
trajectory may be illustrated as a chain of 
interconnected coordinates, which can be seen in 
Figure 1. 

Figure 1: A trajectory example. 

Accordingly, a trajectory step will be represented 
as follows: (𝑥𝑖, 𝑦𝑖 , 𝑡𝑖), where 𝑥𝑖- a robot's x position 
on the map, 𝑦𝑖- a robot’s y position on the map, 𝑡𝑖- 
coordinates registration time. When there are 
errors/environmental influence present, the same 
trajectory will take the following form: 
((𝑥𝑖 ± 𝑐𝑖), (𝑦𝑖 ± 𝑑𝑖), (𝑡𝑖 ± ∆)), where c - external 
influence on the x position, d - external influence on 
the y position, ∆ - registration deviations. 

Apart from that, every SLAM algorithm generates 
a map of a robot’s environment. This way let us 
represent a map as a manifold of points on the space 
grid containing their coordinates and probabilities of 
obstacles located in these areas (including the 
dynamic ones). But for 3D cases - a cube of grids 
populated with points in space. The scheme of the 
map is represented in Figure 2. 

Figure 2: A schematic representation of an environmental 

map. 

In this case P – the probability indicating a present 
obstacle in a particular cell of the grid. The cells that 
have been visited by the robot are coloured light-grey, 
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dark-grey – for uncharted cells and black - for walls 
or static obstacles. 

2.1 SLAM Algorithms 

Hector SLAM – is a SLAM method that operates by 
means of extracting data from a 2D lidar. At the 
moment, it is one of the most popular approaches that 
is, on top of that, widely used in a variety of mobile 
robotics projects. The algorithm builds a 2D map and 
provides localization possibilities at the scan rate of 
the lidar. In order to build a correct map, a conversion 
from the local lidar‘s coordinate system to the 
surface, that the robot is moving through, coordinate 
system should be performed [4] ⁠. 

Hector SLAM builds an occupancy grid (the map 
that corresponds to the one described in our 
definition), in which every cell is coloured: black – 
the cell is occupied, light-grey – the cell is empty, 
dark-grey – the cell has not been checked yet. An 
example of the resulting map can be seen in Figure 3. 

Figure 3: A Hector SLAM resulting map [5]⁠. 

ORB-SLAM – is a versatile and accurate SLAM 
algorithm, based on features recognition and real-
time trajectory calculation utilizing monocular 
cameras, which builds an environment sparse 3D 
scene map. It can close large loops and perform 
global relocalisation in real-time and from wide 
baselines. Apart from that, ORB-SLAM makes it 
possible to automatically initialize scenes of different 
types [6]⁠. The resulting map of this algorithm is a 
sparse 3D map, an example of which is illustrated in 
Figure 4. 

Figure 4: An ORB-SLAM resulting map [7]. ⁠ 

DPPTAM – is one of the newest visual SLAM 
algorithms, which adjusted and implemented the most 
successful ideas of the previous algorithms. It is a 
direct monocular odometry algorithm that estimates a 
dense reconstruction of a scene in real-time on CPU 
and saves the trajectory as a sequence of points in the 
particles cloud. To build high-resolution images the 
algorithm makes use of standard techniques for 
minimizing the points errors [8] ⁠⁠.  An example of this 
map is shown in Figure 5. 

Figure 5: A DPPTAM resulting map [9]⁠.⁠ 

ZEDfu – tracks positioning and orientation based 
on a ZED camera mounted on a tracking device. A 
ZED camera builds a real-time 3D world and 
recognizes rooms and objects. As a resulting map, the 
algorithm builds a 3D lattice from particles clouds of 
any environment (either indoors or outdoors) [10] ⁠.  
An example of this map can be seen in Figure 6. 
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Figure 6: A ZEDfu resulting map [10]⁠.⁠ 

RTAB-Map – is a RGB-D, Stereo and Lidar 
Graph-Based SLAM approach based on an 
incremental appearance-based loop closure detector. 
The loop closure detector uses a bag-of-words 
approach to determinate how likely it is that a new 
image comes from a previous location or a new 
location. When a loop closure hypothesis is accepted, 
a new constraint is added to the map’s graph, then a 
graph optimizer minimizes the errors in the map. 
RTAB-Map can be used either with a Kinect or with 
a stereo camera/lidar [11]⁠. An example of this map is 
shown in Figure 7. 

Figure 7: An RTAB-Map resulting map [11]⁠.⁠ 

Using such SLAM methods, we can build an 
environmental map and localize the considered object 
in space, however, in order to solve possible scenario 
tasks, perform various operations (i.e. holding or 
raising objects, approaching them in the most 
efficient way and performing manipulations with 
them) we may need to use proper trajectory selection 
algorithms. 

An overall comparison of the algorithms’ 
characteristics can be seen in Table 1. 

2.2 Trajectory Multi-Objective 
Optimization Algorithms 

MOACO is a multi-group trajectory optimization 
algorithm. MOCAO uses multiple pheromone 
matrices and more heuristic matrices. Each of these 
matrices is responsible for only one task. All the 
agents are divided into several groups. Each group 
has multiple weights and each agent in the group has 
its weight vector. If the number of weights in the 
group is less than the number of agents, then the other 
agents are set weights from the beginning. Thus, two 
or more agents in a group may use the same weight 
vector. But every agent uses its vector to aggregate 
the pheromone and heuristic information. 
Afterwards, it calculates its probability to move to an 
unvisited spot and chooses the next spot to visit via 
wheel roulette selection [13]⁠. Finally, it uses non-
dominated solution generated by current iteration to 
update the pheromone information. 

MACS uses one pheromone matrix and multiple 
heuristic matrices. Each heuristic matrix is 
responsible for only one task. Each agent has a weight 
vector and all the heuristic matrices are aggregated by 
weighted product. The weight vectors between two 
distinct agents are different and non-dominant 
solution is used to update the pheromone information. 
MACS considered to be a similar to MOAQ approach 
with only one difference in the number of the weight 
vectors used to aggregate heuristic information: in 
MOAQ two such vectors are used {0,1} and {1,0}, 
whereas MACS uses more vectors owing to its 
influence on the algorithm [13] ⁠. 
PACO algorithm uses multiple pheromone matrices 
and only one heuristic matrix. All the agents share 
this single matrix. Each pheromone matrix is 
responsible for only one task. As in MACS algorithm, 
each agent has its weight vector and all the 
pheromone matrices are aggregated by the weighted 
sum. This algorithm uses the best option and the 
second to the best solution of each objective to update 
pheromone information. The non-dominated 
solutions mainly approximate to the central part of the 
Pareto front [13]⁠. 

MOEA is one of the most efficient agent 
algorithms. The algorithm performs multi-object 
decompositions and simultaneously optimizes its 
parts. Each subtask is optimized by using the nearby 
subtasks information [13] ⁠.  

The algorithms comparison is presented in 
Table 2. 

Proc. of the 9th International Conference on Applied Innovations in IT, (ICAIIT), April 2021 

88



Table 1: SLAM Algorithms comparison (based on [12] data ⁠). 
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Hector High Occupancy grid Good 2D lidar – 0.18 Excellent 0.088 0.025 0.024 

ORB High 
Feature based 

map 
Low Monocular camera 

Good 

(0.43м) 
0.43 Good 0.166 0.159 0.047 

DPPTAM Average 

Cloud of 

particles based 

map 

Average 
Monocular 

camera 
Bad (4.26м) 4.26 Good 0.338 0.268 0.206 

ZEDfu Very high 

Cloud of 

particles based 

map 

Good 
Stereo ZED 

camera/Kinect 

Good 

(0.32м) 
0.32 Good 0.726 0.631 0.358 

RTAB 
Above 

average 

Cloud of 

particles based 

map 

Good Kinect 
Good 

(0.67м) 
0.67 Average 0.163 0.138 0.085 

Table 2: Trajectory multi-objective optimization algorithms 

comparison (based on [13] data) ⁠. 

Algorithm
Max 

(м) 

Min 

(м) 

Mean 

(м) 

Std 

(м) 
MOACO 

(kroAB100)
0.3412 0.3037 0.3236 0.0105447

MACS 

(kroAB100)
0.1924 0.1675 0.1823 0.0054743

PACO 

(kroAB100)
0.4076 0.3695 0.3912 0.011176

MOEA 

(kroAB100)
0.1062 0.0505 0.0767 0.0144815

MOACO 

(kroAC100)
0.3475 0.3211 0.3352 0.0063372

MACS 

(kroAC100)
0.1995 0.1723 0.1885 0.0051235

PACO 

(kroAC100)
0.2612 0.2285 0.2413 0.0086281

3 HARDWARE USED BY THE 

ALGORITHMS 

As it has been mentioned before, the selection of a 
sensor for a particular algorithm is an essential task. 
It is mainly due to the technical characteristics of the 
sensors and their use case limitations. Thus in this 
section, an excerpt from a paper on sensors efficiency 
when a variety of obstacles is present will be 
presented. 

First of all, the most conventional robotics sensor 
types should be enumerated and described here: 
 Proximity sensors – detect objects that are

located in close proximity to the robot. These

sensors can detect objects’ presence by using 
light, sound or electromagnetic fields (for 
example, infrared, ultrasound sensors and 
LDRs). 

 Rangefinders – determine the distance between
two distinct objects in an environment (for 
example, cameras, lasers, lidars). 

 Tactile sensors – provide information about
physical contacts with objects. 

 Light sensors – detect light density that
consequently can be converted into current or
voltage.

 Sound sensors – detect sound and return
proportional to the sound level voltage. 

 V/I Converters.

Let us consider the most common sensors for 
detecting objects and obstacles. 

RADAR/LIDAR. To detect obstacles the 
RADAR (radio detection and ranging) /LIDAR (light 
detection and ranging) combination is frequently 
used. 

Detection and distance measurements are one of 
the main LIDAR functions. The distance is 
represented as the time required for a light impulse to 
travel from a sender to a photodetector after its 
reflection from an object/obstacle surface. The 
distance is defined as: , where  – represents the 
distance,  – the speed of light, – the impulse time. 
Therefore, LIDAR can obtain objects’ 3D geometry 
[12] and [14]⁠.

Cameras are probably the most popular sensors
used to detect objects and environmental changes. 

Their main peculiarity is in the ability to recreate 
a 3D cloud of particles of a particular environment.  
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Table 3: Sensors’ characteristics comparison (based on [14] data ⁠⁠). 
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Acoustic 
Very 

compact 

0.01 -

1 
2-5 10-500

1-3% of max 

depth

Range/acousti

c based 

SLAM 

From -20 

Up to +80 
- - Bad 

Weather resistant 

but operate 

poorly in noisy 

environments 

Monocular 

cameras 

Very 

compact 

0.01 -

10 
- 100-5k 25–135 mm Visual SLAM 

Depends on a 

camera, 

however in 

general these 

cameras have a 

pretty decent 

temperature 

resistance 

+ + Good 

Weather resistant 

provided the 

lenses are clean 

Lidar Bulky 
50 -

200 

50-

300 

5k-

100k 
Up to ± 3 cm 

Range/distanc

e based 

SLAM 

From -50 

Up to +80 
- - Bad 

Efficiency drops 

in rainy, snowy 

and foggy 

conditions 

Stereo 

cameras 
Compact 2 - 15 5-20 500-5k 1mm - 5см Visual SLAM - + + Good 

Weather resistant 

provided the 

lenses are clean 

Apart from that, cameras are able to detect 
obstacles by creating depth maps from consecutive 
images fetched by monocular cameras. However, this 
approach works perfectly with only static obstacles 
[12], [14]⁠. 

SONAR (Sound navigation and ranging) – creates 
a sound impulse and measures the impulse’s echo 
return time. Therefore, the sensor’s results cannot be 
affected by light or illumination. However, sonars are 
mainly used for nearby detections, meaning that they 
are futile when it comes to measuring distant objects. 
But, an even worse drawback of the type is in its 
inability to operate in noisy environments (engine 
vibrations, highways, toots) as was shown in [12] and 
[14]⁠. 

Laser rangefinder. The measurement principle is 
based on the angle between the laser ray pointing at 
an object and the laser’s lens. Having this laser-lens 
distance (h) and the angle, we can calculate the 
distance to the object – the less the angle, the farther 
the object [12] and [14]⁠. 

The comparison of the sensors’ characteristics is 
represented in Table 3. 

The sensors that can operate under well-
illuminated conditions may easily avoid smoke 
conditions or even mist. However, when it comes to 
cameras, it is important to make them able to use 

infrared or thermal vision in order to increase their 
performance under such conditions. 

Under rainy conditions, the most efficient sensors 
are LIDARs, Laser rangefinders and some types of 
cameras. 

When operating in a blizzard, the most efficient 
sensors are cameras, since LIDAR/RADAR systems 
may be covered with snow, which prevents them from 
delivering any acceptable result. 

Working in a highly reflective environment, 
neither of the sensors without supportive filtering 
algorithms demonstrated their efficiency. 

When there are physical obstacles present (slopes, 
hills, slides etc.) the most efficient systems are 
LIDAR and multi-camera systems [1] ⁠. 

Owing to combinations of monocular cameras, it 
becomes possible to detect a wide range of obstacles 
around our object. However, in comparison with the 
cameras, LIDARs provide much better precision and 
FOV. 

However, sometimes LIDAR data becomes 
incorrect due-to its distance to an object/obstacle. As 
in the cameras’ case, some of the LIDAR sensors may 
be exceedingly noise sensitive. 

Therefore, in a wide variety of modern robotics 
systems, researches use hybrid approaches. For 
example, some of them propose a combination of 
6 SONARs with 3 Visual cameras for obstacles 
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detection under any condition. Besides, it is a good 
practice to use LIDARs and RADARs together to 
reduce the resulting errors. In order to boost the 
performance even further, it is helpful to add visual 
cameras to the aforementioned combination to be able 
to obtain information about roads, road signs, signals, 
etc [1]⁠. 

So, we can conclude that these hybrid systems, 
which use a set of SLAM algorithms, are becoming 
more and more popular and relevant due to the 
importance of changing of adapting SLAM 
algorithms at runtime. 

4 RESULTS 

As a result of the review, we can formulate a 
trajectory/SLAM selection algorithm that will make 
it easier for researches to opt for a particular set of 
sensors/algorithms and take into account existing 
restrictions and constraints (see Figure 8). 

Step 1: Define the robotics systems restrictions 
and constraints (financial, technical) and the 
system requirements (ability to operate under 
different weather conditions, avoid obstacles, 
operate in noisy environments etc.). 
Step 2: Formulate a list of 
parameters/measurements from the restrictions 
and requirements. 
Step 3: Perform the ranking operation of the 
solutions (individually for algorithms and 
hardware) by pairwise considerations of the 
parameters/measurements as shown in Figure 9. 
Step 4: Based on the ranging results the expert 
should choose a pair(s) of the 
algorithm(s)/sensor(s) depending on their 
priorities and preferences. The initial selection of 
several pairs will sift the range of available 
options making it easier for them to expertly select 
the most suitable option. 

Figure 8: The selection algorithm for choosing the most 

suitable methods and sensors for robotics systems 

operating in any environment.⁠ 

To perform the third step one may make use 
of some of the following outranking methods: 
TOPSIS [15], ELECTRE, VIKOR, 
PROMETHE⁠. For example, in Figure 9 the 
ranking criteria are represented as x and y 
axes, points represent the selected algorithms 
from the previous steps. To include a 
researcher’s subjective point of view, a particular 
sign  is  plotted  on  this   chart  (in  this  case,  it  is a 

diamond). Then, the same ranking approach 
should be performed for the remaining 
parameters/measurements. Based on the distance 
from the best and the worst option the researcher will 
be able to select the most suitable algorithms. 

Figure 9: A ranking example (A1 - Hector SLAM, 

A2 - DPPTAM SLAM, A3 - ORB SLAM, A4 - RTAB 

SLAM, prices were set as approximate based on the 

previous tables). ⁠ 

5 CONCLUSIONS 

There are no comprehensive robotics systems that are 
able to operate under any potential condition. 
Therefore, based on a detailed analysis (like this one), 
we can select the most appropriate set of 
algorithms/sensors for our particular case to operate 
under required conditions (weather, obstacles 
related). However, it is crucially important to 
understand that apart from the covered conditions, 
there might be some additional ones (for example, 
related to financing the project, difficulty of the 
project, personal preferences, the experience of the 
team and so on) and, in this case, the eventual choices 
may vary. Therefore, this paper cannot solve or cover 
all the problems regarding that selection, but this 
review may still be considered as a useful handbook. 

According to this article we may conclude that at 
the moment there are two approaches to solving 
SLAM problems regarding the algorithmic part: 1) 
Based on our requirements, we can create new 
algorithms and systems by combining the existing 
ones and 2) Develop brand new algorithms that would 
entirely solve our problems based on the requirements 
and limitations. 
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