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Abstract 

The constant volume Monte Carlo (CVMC) method is a discrete stochastic method 

that can be used to describe the agglomerate growth during spray fluidized bed (SFB) 

agglomeration. The methodology overcomes the difficulties of expressing and solving 

multivariate population balance equations. It enables to account for micro-scale events 

and processes involved in agglomeration, especially for binder addition and drying. 

Previous CVMC models assume that all agglomerates have the same porosity. This 

simplistic assumption is replaced in the present work by given fractal dimension, 

which means that porosity can change with agglomerate size and process conditions.  

Morphological descriptors of the SFB agglomerates are imperative in understanding 

product characteristics that affect their behavior. Morphology plays a crucial role in 

the evaluation of different micro-scale mechanisms that control the agglomeration 

process. In the present work, a tunable aggregation model is developed to reconstruct 

SFB agglomerates consisting of monodisperse spherical primary particles by a 

particle-cluster algorithm using a novel approach of tuning the fractal dimension at 

given prefactor. Various morphological descriptors obtained from this aggregation 

model are validated using experimental data. Furthermore, this aggregation model is 

incorporated into the CVMC framework to evaluate both, the morphological 

descriptors and formation kinetics of SFB agglomerates produced under different 

process conditions (inlet fluidized gas temperature and binder content). 

Previous study focused on agglomerates composed of monodispersed primary 

particles to understand the formation kinetics and morphology of SFB agglomerates. 

Size dispersity of primary particles is, though, an important aspect to fully assess the 

morphological features of an agglomerate. Therefore, a polydisperse tunable 

aggregation model is also developed. It is shown that the radius of gyration, porosity, 

surface area and agglomeration rate increase with primary particle size dispersity.  



Furthermore, the breakage of already formed agglomerates is introduced to improve 

the predictions of the CVMC model. A dynamic breakage model is developed on the 

basis of physical properties of binder and agglomerates. The breakage model is 

incorporated in the CVMC framework to investigate and discuss the influence of 

breakage on the morphology and kinetics of SFB agglomeration under different 

operating conditions.  



Kurzzusammenfassung 

Die Monte Carlo Methode mit konstantem volumen (CVMC) ist eine diskrete 

stochastische Methode zur Beschreibung des Agglomeratwachstums während der 

Sprühwirbelschicht-Agglomeration (SFB). Dieser Ansatz überwindet die 

Schwierigkeiten beim Ausdrücken und Lösen multivariater 

Populationsbilanzgleichungen. Er ermöglicht die Berücksichtigung von Ereignissen 

und Prozessen im Mikromaßstab, die an der Agglomeration beteiligt sind, 

insbesondere bei der Bindemittelzugabe und Trocknung. Frühere CVMC-Modelle 

gehen davon aus, dass alle Agglomerate die gleiche Porosität haben. Diese 

vereinfachte Annahme wird in der vorliegenden Arbeit durch eine gegebene fraktale 

Dimension ersetzt, was bedeutet, dass sich die Porosität mit der Agglomeratgröße 

und den Prozessbedingungen ändern kann.  

Die morphologischen Deskriptoren der SFB-Agglomerate müssen zum Verständnis 

der Produkteigenschaften, die das Verhalten des Produkts beeinflussen, bekannt sein. 

Die Morphologie von SFB-Agglomeraten spielt zudem eine entscheidende Rolle bei 

mikroskaligen Mechanismen, die den Agglomerationsprozess steuern. In der 

vorliegenden Arbeit wird ein einstellbares Aggregationsmodell entwickelt, um die 

aus monodispersen sphärischen Primärpartikeln bestehenden SFB-Agglomerate mit 

Hilfe eines Partikel-Cluster-Algorithmus zu rekonstruieren. Dabei wird ein neuartiger 

Ansatz zur Abstimmung der fraktalen Dimension auf einen gegebenen Präfaktor 

verwendet. Verschiedene morphologische Deskriptoren, die aus dem 

Aggregationsmodell gewonnen wurden, werden anhand experimenteller Daten 

validiert. Darüber hinaus wird das Aggregationsmodell in das CVMC-Modell 

integriert, um sowohl die Morphologie als auch die Bildungskinetik von SFB-

Agglomeraten für verschiedene Prozessbedingungen (Gaseintrittstemperatur, 

Bindemittelgehalt) berechnen zu können. 

Derweil konzentrierte sich die Arbeit auf Agglomerate aus monodispersen 

Primärpartikeln, um deren Bildungskinetik und Morphologie zu verstehen. Die 



Größendispersion der Primärpartikel ist jedoch ein wichtiger Aspekt zur 

vollständigen Erfassung der morphologischen Merkmale eines Agglomerats. Daher 

wird auch ein polydisperses einstellbares Aggregationsmodell entwickelt. Es wird 

gezeigt, dass Kreiselradius, Porosität, Oberfläche und Agglomerationsrate mit der 

Primärpartikeldispersität zunehmen.  

Darüber hinaus wird das Aufbrechen bereits gebildeter Agglomerate eingeführt, um 

die Vorhersagen des CVMC-Modells zu verbessern. Ein dynamisches Bruchmodell 

wird auf Grundlage der physikalischen Eigenschaften von Bindemittel und 

Agglomeraten entwickelt. Dieses wird in den CVMC-Rahmen aufgenommen, um den 

Einfluss des Bruchs auf Morphologie und Kinetik des SFB-Agglomerationsprozesses 

unter verschiedenen Betriebsbedingungen untersuchen und diskutieren zu können. 
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Nomenclature 

a base radius m 

A area m2 

Ar Archimedes number - 

D diameter m 

𝐷𝑓 fractal dimension - 

e restitution coefficient - 

𝑓𝑐𝑜𝑙𝑙 collision frequency 1/s 

𝐹𝑐 cohesive force N 

𝐹𝑐𝑜𝑙𝑙 collision frequency prefactor 1/m 

g gravity m2/s 

h binder layer thickness  m 

ℎ𝑎 height of particle surface asperities m 

k fractal prefactor - 

M mass  kg 

𝑀̇ mass flow rate kg/s 

𝑀̃ molecular weight kg/kmol 

N, n number of entities - 

P pressure Pa 

𝑃𝑣
∗ saturation vapor pressure Pa 

𝑞0 number density size distribution 1/mm 

𝑞3 volume density size distribution 1/mm 

𝑟𝐺 overall growth rate m/s 

𝑅 radius m 

Re Reynolds number - 

𝑅𝑔 radius of gyration m 

𝑅𝑘 killing radius m 

𝑅𝑙 launching radius m 



Sc Schmidt number - 

Sh Sherwood number - 

𝑆𝑡𝑐𝑜𝑎𝑙 Stokes coalescence number  - 

𝑆𝑡𝑐𝑜𝑎𝑙
∗  Stokes coalescence critical number  - 

𝑆𝑡𝑑𝑒𝑓 Stokes deformation number  - 

t time s 

T temperature ℃ 

𝑢𝑐 collision velocity  m/s 

𝑢0 fluidization gas velocity (superficial) m/s 

V volume m3 

x position on x-axis m 

𝑥𝑏 mass fraction of binder - 

𝑦 position on y-axis m 

𝑦̃𝑔 molar fraction in the gas phase - 

Y moisture content  kg/kg 

z position on z-axis m 

 

Greek letters 

𝛼 angle  deg 

β mass transfer coefficient m/s 

𝛾 droplet addition rate 1/s 

𝜀 porosity - 

𝜃 contact angle  deg 

𝜇 viscosity Pa s 

𝜎 standard deviation of primary particle size m 

𝜎𝑇 strength Pa 

ρ density  kg/m3 

∅ solid volume fraction - 

 

 

 



 

Subscripts 

a aggregate (cluster) 

agg(s) agglomerate(s) 

app approaching trajectory 

b binder 

bed fluidized bed 

cap spherical cap, deposited droplet 

coal coalescence 

d droplet 

dry drying 

e equivalent sphere 

exp expanded bed 

fix fixed bed 

g fluidization gas 

i particle index 

in inlet 

j particle index 

l liquid, binder 

lim limited value 

p primary particle 

pos position 

surf surface area 

w water 

0 initial 

* saturation 

 

 

 

  



Abbreviations 

AES area (surface) equivalent sphere 

CC cluster-cluster aggregation 

CFD computational fluid dynamics 

CH convex hull 

CN coordination number 

CVMC constant volume Monte Carlo 

DEM discrete element method 

DLA diffusion limited aggregation 

DLCA diffusion limited cluster aggregation 

HPMC hydroxypropylmethylcellulose 

MC Monte Carlo 

MCN mean coordination number 

PBE population balance equations 

PC particle-cluster aggregation 

PSD particle size distribution 

RLCA reaction limited cluster aggregation 

PTSA polydisperse tunable sequential aggregation 

RG radius of gyration 

SA sequential algorithm 

SFB spray fluidized bed 

TSA tunable sequential aggregation 

VES volume equivalent sphere 



 

Chapter 1 Introduction: Theoretical and 

practical background 

 

This chapter gives an overview of the basic principles of size enlargement processes 

and briefly explains the basics of agglomeration in spray fluidized beds. It is followed 

by a short overview on modeling schemes of spray fluidized bed agglomeration, 

which have been used in the past and are often used to determine the kinetics and 

morphological descriptors. Finally, the scope and objective of present work are 

explained. 

  



2 Introduction: Theoretical and practical background 

 

1.1 Particle growth mechanisms 

Particle growth is a size enlargement process of combining small particles into large 

permanent particles (combining the masses of all the individual constituent particles) 

where the initial primary particles are either visible (agglomeration) or hidden 

(coating). Particle growth processes are widely used in pharmaceutical, chemical and 

food industry to modify the physical properties of powders, such as size, shape, 

porosity, and to generate products with specific desired characteristics, such as 

solubility, mechanical strength or flowability (Boyce, 2018; Mörl et al., 2007; Peglow et 

al., 2014). Two different growth mechanisms, namely coating or agglomeration, as 

shown in Fig. 1.1, can be observed. 

 
(a) 

 
(b) 

Fig. 1.1: Schematic diagram of two growth mechanisms, coating (a) and 
agglomeration (b). 
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1.1.1 Coating 

Coating corresponds to the granulation of particles with either the same (termed as 

layering) or foreign material (Bück et al., 2014). In this process, the coating material is 

dissolved, finely dispersed and uniformly deposited on the carrier particles. After 

drying, evaporation of the solvent, the dissolved solute (coating material), which is 

initially in solution, remains on the surface of the particle and coats it. The thickness 

of the coating increases by continuous deposition and drying of droplets. Coating can 

be used to encapsulate substances (Mörl et al., 2007). 

1.1.2 Agglomeration 

Agglomeration can be defined as the process by which particles are randomly 

connected or bound together and end up with an aggregate of porous structure much 

larger than the original material. During collisions between the particles, liquid 

bridges are formed, which are finally solidified by drying of the dissolved material. 

Weak bridges are broken by further collisions, while the strong bridges survive and 

form the final product. If the primary particles are not soluble, binder must be added 

to the sprayed liquid. 

1.1.3 Criterion for domination 

Depending on the process conditions and the materials used, two mechanisms of 

particle growth can be observed: coating or agglomeration (Bück et al., 2014). The 

border between them, which also makes the boundary of validity of agglomeration 

models, has recently been evaluated and discussed in detail in (Rieck et al., 2020). 

Regime maps have been created based on the likelihood of a successful collision to 

determine the dominant growth mechanism. The present work is focused on size 

enlargement by agglomeration. 
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1.2 Agglomeration processes 

Many techniques to carry out agglomeration processes are available depending on the 

nature of material used and on the end-product applications (Bück et al., 2014). 

Agglomerate properties like growth and structure depend on many parameters, 

linked to the type of equipment, operating conditions, the particle materials, and 

sprayed liquid properties (Peglow et al., 2014). The most common types of 

agglomeration are categorized as pressure, sintering and tumble agglomeration.  

The first two technologies make use of mechanical agitation to set the particles in 

motion and are normally operated in continuous mode. This study is focused on spray 

fluidized bed processes, which are in the category of tumble agglomeration. Spray 

fluidized bed agglomerators produce high porosity particles and are known by their 

very good heat and mass transfer rates which make possible the simultaneous liquid 

dispersion and drying. 

1.3  Spray fluidized bed agglomeration 

Spray fluidized bed (SFB) agglomeration is a size enlargement process used to 

enhance the properties of powders (Mörl et al., 2007). A schematic diagram for SFB 

agglomeration is given in Fig. 1.2. In this process, liquid binder sprayed through a 

nozzle upon the fluidized particles wets the surface of the particles. Due to 

fluidization, the particles collide with each other and form liquid bridges. Water 

present in the binder evaporates into the fluidizing gas used as a drying agent. Solid 

bonds are formed between the primary particles in the agglomerate, resulting in a 

blackberry like structure (Dernedde et al., 2013). The properties of the agglomerates 

formed depend on the materials used, the type of equipment used and the operating 

conditions (Peglow et al., 2007). SFB agglomeration is widely applied in chemical, 

pharmaceutical and food industry to influence product properties such as shelf life, 
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composition, porosity, size and moisture content. The formulation of new products is 

still challenging, as mixing, wetting and drying occur simultaneously in the bed and 

are difficult to control independently. Final products have different microscopic 

structures, resulting in different macroscopic characteristics and end-use properties, 

such as strength, stability, flowability, porosity, re-dispersion and abrasivity (Peglow 

et al., 2014). 

 

Fig. 1.2: Schematic diagram of spray fluidized bed agglomeration. 

 

1.4 Modeling of spray fluidized bed agglomeration 

processes 

Modeling of enlargement in particulate systems is essential to analyze and understand 

the underlying phenomena behind the formation of SFB agglomerates. The focus of 
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the present work is to model spray fluidized bed agglomeration in batch mode of 

operation. This is often done macroscopically using population balance equations 

(PBE) (Kumar, 2006; Peglow et al., 2007) and microscopically using Monte Carlo 

models (Dernedde et al., 2012; Singh & Tsotsas, 2019; Terrazas-Velarde et al., 2009) 

and discrete element methods coupled with computational fluid dynamics (Dosta et 

al., 2013; Jiang et al., 2020).  

1.4.1 Population balance equation 

Population balance equations (PBE) are a common and effective approach to track the 

evolution of the particle size distribution (PSD) in any size enlargement process 

(Hussain et al., 2013). PBE are integro-differential equations which must be discretized 

both spatially and temporally. The occurrence of each event possesses a probability, 

which is related to the operating conditions of SFB agglomeration and can be 

statistically described by kernels. In addition, initial conditions and at least one 

realistic kernel are mandatory for solving the PBE (Hussain et al., 2014; Peglow et al., 

2007b).  

The kernels in PBE have to be obtained from experimental results and empirical 

correlations. Besides, the Monte Carlo (MC) method was also used to model the 

aggregation kernel of PBE in a way that the effect of micro-scale mechanisms on the 

macroscopic kinetics of the process can be analyzed (Hussain et al., 2014). However, 

obtaining the kernels is complicated and increases the difficulty of solving PBE. 

1.4.2 Monte Carlo method  

The Monte Carlo method (Metropolis & Ulam, 1949) is a probabilistic approach to 

investigate a problem by using the statistical properties of a finite sample of entities. 

The advantages of the MC model over the deterministic approach and its various 

applications have been stated in (Yu, 2016; Zhang et al., 2019). With the advancement 
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of computational machines, MC methods have become an important alternative for 

the solution of complex problems. A common classification of different Monte Carlo 

methods is given in Table 1.1.  

Table 1.1. Monte Carlo methods. 

Simulation box size 

regulation 

Constant number (Smith 

& Matsoukas, 1998) 

Constant volume (Zhao et al., 

2007) 

Treatment of time 

step 

Event-driven (Terrazas-

Velarde et al., 2009) 

Time-driven (van Peborgh 

Gooch & Hounslow, 1996) 

Monte Carlo methods are divided into two groups according to the size regulation of 

simulation box: continuous (constant number) and periodic (constant volume). In 

constant volume MC (CVMC) methods, the number of particles is doubled after it has 

reached half of its original value in a simulation dominated by agglomeration. In 

contrast, the number of particles is halved after it has reached twice its original value 

in breakage-dominant simulations. However, in constant number MC methods, the 

regulation of the particle number is performed in each time step. A particle is added 

or deleted from the simulation box as soon as an agglomeration or breakage event has 

occurred. 

Monte Carlo methods are further divided into two groups according to the treatment 

of the time step: event-driven and time-driven methods. In the event-driven approach, 

an event is designed to occur and then time runs by a predetermined amount. In the 

time-triggered approach, a time step is first specified and then all possible events 

within this time step are implemented.  



8 Introduction: Theoretical and practical background 

 

1.4.3 Discrete element method 

In addition to the models that are based on the probabilistic approach of sequential 

addition of primary particles, there are other models of deterministic nature, such as 

the discrete element method. In this method each particle is considered as a separate 

entity and the Newtonian equation of motion is solved for each particle. The formation 

of agglomerates is modeled by considering the cohesive force between the primary 

particles and is represented as a set of primary particles connected with solid bonds 

of the binder (Dosta et al., 2013; Sommerfeld & Stübing, 2017). Discrete element 

methods can be coupled with computational fluid dynamics (CFD-DEM) (Dosta et al., 

2013; Jiang et al., 2020) to simulate granulation processes. CFD-DEM simulations can 

be used for SFB coating (Jiang et al., 2018), but not yet for SFB agglomeration, because 

collision frequencies and velocities that currently popular definitions deliver don’t 

match with MC models. However, CFD-DEM results can help to distinguish between 

different zones (for example, spray and drying zone) in multi-compartment MC 

models (Jiang et al., 2020). 

1.5 Morphology of agglomerates 

Morphological descriptors of agglomerates formed in a SFB process are imperative in 

understanding the characteristics of a product that affect its behavior. They play a vital 

role in determining the breakage and droplet (binder) deposition mechanism of an 

agglomerate. The fractal properties (prefactor and fractal dimension) which are key 

characteristics of an agglomerate, usually represent compactness and arrangement of 

primary particles. It had been seen in the past (Brasil et al., 2001; Sorensen & Roberts, 

1997) that both prefactor and fractal dimension must be properly ascertained in order 

to determine the structure of an agglomerate. Porosity and coordination number (CN) 

are other prominent morphological properties of agglomerates. Porosity is a measure 

of the internal pores and cavities that affects the strength and density of an 
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agglomerate (Baric et al., 2019; Klobes et al., 2006). Coordination number also affects 

the strength of an agglomerate as it defines the connectivity of the primary particles 

with each other. 

1.6 Motivation and goal 

SFB agglomeration occurs by combination of many micro-scale mechanisms like 

binder addition, collision, adhesion, bridge formation, drying and breakage. Terrazas 

(Terrazas-Velarde et al., 2009) developed a MC simulation method that enhanced the 

understanding of the spray fluidized bed agglomeration process by implementing 

most of the underlying micro-scale mechanisms. This model can easily predict the 

kinetics of the process under different operating conditions. However, the 

morphology of the final agglomerates was not captured as the formed particles were 

assumed to be spheres of constant porosity, with a quite arbitrarily chosen value of 

porosity equal to 0.6.  

In recent years, experiments have been conducted to study the morphology of SFB 

agglomerates formed at different operating conditions using either rigid (Dadkhah & 

Tsotsas, 2014) or deformable (Pashminehazar et al., 2016) primary particles. The 

internal structure of the agglomerates produced by SFB agglomeration at different 

operating conditions was investigated by means of X-ray µ-computed tomography 

(Dadkhah et al., 2012). Apart from the agglomerates formed by spherical primary 

particles, some non-spherical primary particle experiments have also been conducted 

to describe the morphology of soft material agglomerates (Pashminehazar et al., 2016).  

In the present work, a cross-correlation between the main morphological descriptors 

is formulated for agglomerates formed from spherical primary particles. The 

agglomerate size is determined by considering spheres with characteristic diameter as 
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a function of number of primary particles (𝑁𝑝) and their fractal properties (𝐷𝑓 , 𝑘). 

Various empirical correlations are obtained from the experimental data to reduce the 

number of parameters necessary in order to predict the agglomerate size.  

Numerically, the interest in structure formation by aggregation of small particles has 

motivated the search for simulation algorithms that might give comparable results to 

experimental observations. For instance, Dernedde (Dernedde et al., 2012) proposed a 

novel approach to simulate the structure of SFB agglomerates using a cluster-cluster 

ballistic aggregation model, which stores and preserves a complete description of the 

spatial arrangement of primary particles. However, the formed agglomerates were 

predicted too porous and the model was computationally very expensive and slow. 

A fast and tunable structure formation model is developed for estimating the 

agglomerate morphology corresponding to its fractal properties. Further, this 

structure model is incorporated into the CVMC simulation to reconstruct emerging 

SFB agglomerates computationally. Various morphological descriptors of 

agglomerates formed under different operating conditions, such as inlet air 

temperature and binder content, are predicted and compared with experimental 

results from (Dadkhah & Tsotsas, 2014).  

In general, however, agglomerates typically consist of polydisperse primary particles. 

There is great interest in understanding the formation dynamics and structure of such 

agglomerates, and especially their agglomeration rate, which strongly influences the 

design of the agglomerator. Several studies have been conducted to analyze the 

influence of polydispersity on the physical or chemical properties of fractal aggregates 

made of very small primary particles, such as sintering, coagulation and radiation 

properties (Dastanpour & Rogak, 2016; Goudeli et al., 2016; Morán et al., 2018). 

However, the influence of polydispersity on the kinetics and morphology of SFB 

agglomerates has not yet been investigated. In the present work, a polydisperse 

tunable aggregation model is developed to generate the SFB agglomerates. This 



1.7 Outline of the thesis 11 

 

 

structural model is combined with the models that describe micro-scale processes and 

events in the comprehensive simulation framework (CVMC). The influence of 

polydisperse primary particles on morphology and overall kinetics of SFB 

agglomeration is investigated using the CVMC model. 

Breakage of already formed agglomerates is introduced in the CVMC model as a 

mechanism that decreases the growth rate and can lead to an equilibrium between 

growth (agglomeration) and rupture (binary breakage), which is typical for fluidized 

bed processes. Finally, the influence of the breakage mechanism on the overall kinetics 

of SFB agglomeration is analyzed and compared with experimental results from 

(Dadkhah, 2014) under different operating conditions. 

1.7 Outline of the thesis 

This thesis consists of several chapters dealing with the stochastic modeling of spray 

fluidized bed agglomeration processes by incorporating the morphological influence 

of the agglomerates on their properties. 

Chapter 2 describes in detail the CVMC model and the sub-models for the different 

micro-scale mechanisms that influence the agglomeration process. This model uses 

random tools, which represent the basis for the stochastic simulation of agglomeration 

processes. 

Chapter 3 describes the morphological descriptors and the properties of an 

agglomerate associated with it. A cross-correlation between the main morphological 

descriptors is formulated for agglomerates formed from spherical primary particles. 

The formulated correlation is used to check the consistency of morphological data 

measured by (Dadkhah, 2014). A characteristic diameter, which is a function of fractal 

dimension and prefactor, is developed and considered to reflect the structure of the 
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agglomerates. Various empirical correlations are obtained from the experimental data 

to reduce the number of parameters necessary in order to predict the agglomerate size. 

Subsequently, the MC model from Chapter 2 is modified by implementing the 

correlations to predict the morphology of the agglomerates formed as well as the 

kinetics of the process at different operating conditions. 

Chapter 4 reviews various structure-based algorithms and their limitations with 

regard to SFB agglomerates. A fast and tunable structure formation model for 

estimating the agglomerate morphology corresponding to its fractal properties is 

developed. Further, a modification to the CVMC model from Chapter 3 is made by 

implementing this structure formation model to reconstruct emerging SFB 

agglomerates computationally. Implementation of the structure formation model in 

the CVMC simulation can be either in-situ or post-processing. Morphological 

descriptors of agglomerates formed under different operating conditions, such as inlet 

air temperature and binder content, are predicted and compared with experimental 

results from (Dadkhah & Tsotsas, 2014). 

In Chapter 5, a polydisperse aggregation model is developed to investigate the 

influence of primary particle size dispersity on the morphology and size distribution 

of SFB agglomerates. This structural model is combined with the CVMC framework 

to study the influence of primary particle size dispersity on the overall growth 

kinetics. 

Chapter 6 describes in detail the formulation of a dynamic breakage model. This 

breakage model is introduced in the CVMC model as a mechanism that decreases the 

growth rate and can lead to an equilibrium between growth (agglomeration) and 

rupture (binary breakage), which is typical for fluidized bed processes. The influence 

of the breakage mechanism on the overall kinetics of SFB agglomeration is analyzed 

and compared with experimental results. 
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Chapter 7 investigates the influence of process parameters on the overall process 

kinetics and the morphology of agglomerates. The CVMC simulation results are 

compared with the experiments of Dadkhah. 

Finally, although each chapter has its own conclusion, the last Chapter 8 provides the 

most relevant conclusions and an outlook to future research.





 

Chapter 2 Stochastic and discrete modeling of 

agglomeration processes 

Spray fluidized bed agglomeration involves many micro-scale mechanisms. This 

chapter provides a detailed description of the CVMC algorithm used in the present 

study. This model enhanced the understanding of the spray fluidized bed 

agglomeration process by implementing some of the underlying micro-scale 

mechanisms. It uses probabilistic tools to simulate the evolution of a finite sample of 

the particle population during the process. The individual role of the micro-scale 

mechanisms on the agglomeration behavior can be analyzed due to the discrete nature 

of the approach.  
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2.1 Introduction 

Spray fluidized bed (SFB) agglomeration processes take place by combination of many 

micro-scale mechanisms like binder addition, collision, adhesion, bridge formation, 

drying and breakage (Dernedde et al., 2013), given in Fig. 2.1. 

 

 

Fig. 2.1: Micro-scale mechanisms of spray fluidized bed agglomeration.  

In SFB agglomeration, the particles are fluidized by inlet gas from the bottom of the 

granulator. In addition, liquid binder in the form of small droplets is sprayed onto the 

fluidized particles to make them wet and sticky. As soon as a droplet enters the 

system, it is deposited on the particles. In a state of equilibrium, a droplet takes the 

form of a spherical cap and gradually loses height, mainly due to two mechanisms: 
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drying and imbibition. Imbibition is the process of droplets penetrating into the 

particles and occurs only in porous particles. The deposited droplets can disappear 

from the surface of the particles by drying and/or imbibition. It is therefore important 

for agglomeration that particle collisions take place before the deposited droplets have 

disappeared. The following scenarios are observed for random collisions between 

particles:  

I. rebound of the particles, because the liquid layer does not dissipate the kinetic 

energy of the collision; 

II. agglomeration, because the liquid layer can successfully dissipate the kinetic 

energy of the collision; 

III. breakage, because the kinetic energy of the collision can be so high that it not 

only overcomes the resistance of the liquid layer but also forces already formed 

solid and/or liquid bridges of colliding particles to break.  

In order to simulate the overall SFB agglomeration process, a MC method is 

considered in this work for describing random events and processes (micro-scale 

mechanisms), creating a scaled-down virtual spray fluidized bed granulator, similar 

to the work of Terrazas (Terrazas-Velarde et al., 2009) and Dernedde (Dernedde et al., 

2012).  

2.2 General algorithm of CVMC model 

A comprehensive CVMC model, introduced by Terrazas (Terrazas-Velarde et al., 

2009), is used by incorporating most of the micro-scale mechanisms to simulate the 

SFB agglomeration by treating the CVMC simulation box as a scaled-down virtual 

granulator, as shown in Fig. 2.2. The framework of the CVMC simulation has been set 

and the simulations have been conducted in MATLAB using self-programmed codes. 
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The event-driven nature of the method, with  collision events between particles in the 

fluidized bed being the pacemakers, establishes the connection between the CVMC 

model and the real particulate system. Under this methodology, an event occurs first 

and then time is advanced by an appropriate amount. 

 

Fig. 2.2: CVMC modeling scheme for spray fluidized bed agglomeration. 

The simulation box is considered as a representative sample of the particle population, 

consisting of an initial number of primary particles. The number of particles in the 

simulation box changes depending on the process, namely agglomeration or 

breakage, which dominates during the simulation. The periodic regulation of the 

particles takes place when the number of particles in the simulation box has been 

halved by doubling the particle population. An exact copy of the particle population 

is then introduced to the simulation box, restoring the number of entities to the initial 

value.  

Collisions between primary particles and droplet deposition start taking place 

simultaneously with the begin of the simulation. Droplets randomly deposit on the 

primary particles (later on, on agglomerates) and eventually dry off. After a successful 
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collision of primary particles on wet areas, an agglomerate may form. The flowchart 

of the CVMC model is given in Fig. 2.3. 

 

Fig. 2.3: Flowchart representation of CVMC modeling for spray fluidized bed agglomeration. 

2.3 Fluidized bed parameters 

The simulation corresponds to a batch process in which the mass flow rate of the 

fluidizing gas is kept constant during the entire agglomeration process. The fixed bed 

void fraction  𝑓𝑖𝑥 is assumed equal to 0.39, which corresponds to a random packing 

of monodispersed spheres. As soon as fluidization has been started, the bed reaches 

its maximum void fraction 𝑒𝑥𝑝  which depends on the gas velocity 𝑢0 and particle 

properties, as described by (Mörl et al., 2007)  
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𝜀𝑒𝑥𝑝 = (
18𝑅𝑒𝑝+0.36𝑅𝑒𝑝

2

𝐴𝑟
)

0.21

. 
(2.1) 

Here, 𝑅𝑒𝑝 and Ar are the particle Reynolds and Archimedes dimensionless numbers 

defined by  

𝑅𝑒𝑝 =
𝑢𝑜𝜌𝑔𝐷𝑎𝑔𝑔,32,𝑡

𝜇𝑔
, (2.2) 

Ar =
𝐷𝑎𝑔𝑔,32,𝑡

3𝜌𝑔(𝜌𝑝−𝜌𝑔)𝑔

𝜇𝑔
2 . (2.3) 

Here, 𝜌𝑔 and 𝜌𝑝 are densities of dry gas (i.e. air) and primary particle, respectively, g 

is the acceleration due to gravity taken to be 9.8 𝑚/𝑠2, 𝐷𝑎𝑔𝑔,32,𝑡 is Sauter mean 

diameter of the particle population in the simulation box at time 𝑡 (at 𝑡 = 0; 𝐷𝑎𝑔𝑔,32,𝑡 =

𝐷𝑝) and 𝜇𝑔 is the dynamic viscosity of the dry gas. The density and dynamic viscosity 

of the dry gas are calculated in 𝑘𝑔/𝑚3 and Pa s, respectively, by empirical correlations 

given in (Terrazas-Velarde, 2012) as 

𝜌𝑔 = 9.04 × 10−9𝑇𝑔
3 + 9.45 × 10−6𝑇𝑔

2 − 4.25 × 10−3𝑇𝑔 + 1.29, (2.4) 

𝜇𝑔 = 3.89 × 10−8𝑇𝑔 + 1.779 × 10−5, (2.5) 

where 𝑇𝑔 is the inlet gas temperature in ℃. 

As agglomeration progresses, the particles become larger and the expanded bed void 

fraction decreases. This is accompanied by a contraction of the bed from its maximum 

height to the fixed bed height. The height of the expanded bed is calculated by 
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𝐻𝑒𝑥𝑝 =
1−𝜀𝑓𝑖𝑥

1−𝜀𝑒𝑥𝑝
𝐻𝑓𝑖𝑥, (2.4) 

where 𝐻𝑓𝑖𝑥 is the height of the packed bed which is a function of the bed mass 𝑀𝑏𝑒𝑑, 

particle density 𝜌𝑝 and equipment cross-section A as follows 

𝐻𝑓𝑖𝑥 =
𝑀𝑏𝑒𝑑

(1−𝜀𝑒𝑥𝑝) 𝐴 𝜌𝑝
. (2.5) 

The simulation is stopped when the void fraction of the expanded bed has become 

equal to that of the fixed bed (𝜀𝑒𝑥𝑝 = 𝜀𝑓𝑖𝑥 = 0.39). It is then assumed that the bed has 

collapsed. 

2.4 Particle collisions 

Interparticle collisions play a crucial role in the numerical computation performed in 

this study. Their discrete nature allows us to calculate the length of the time step 

during the simulation and thus to correlate real with the computational time. In this 

study, the experimental correlation proposed by (Buffière & Moletta, 2000), is used to 

estimate the frequency of collisions within the fluidized bed 

𝑓𝑐𝑜𝑙𝑙 = 𝐹𝑐𝑜𝑙𝑙 (1 −
∅𝑒𝑥𝑝

∅𝑓𝑖𝑥
) (

∅𝑒𝑥𝑝

∅𝑓𝑖𝑥
)

2

𝑢0, (2.6) 

where 𝑢𝑜 is the fluidization velocity, ∅𝑒𝑥𝑝 and ∅𝑓𝑖𝑥 are the solid volume fractions of 

the expanded bed and the fixed bed, respectively, and 𝐹𝑐𝑜𝑙𝑙 is the collision frequency 

prefactor. This correlation describes the number of collisions that a single particle 

experiences per unit of time. It can be inferred that the number of collisions strongly 
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influences the agglomeration rate of the process. The more collisions a particle 

experiences, the higher is the probability of successful coalescence, assuming that all 

other parameters are kept constant.  

Collision frequency is a crucial model parameter and has been adapted by the 

prefactor (𝐹𝑐𝑜𝑙𝑙) of Eq. (2.6) to experimental data. It has been shown in lengths how the 

value of 𝐹𝑐𝑜𝑙𝑙 influences the aggregation rate and that moderate values of this 

parameter must be selected (Terrazas-Velarde et al., 2011b). Otherwise, there is 

practically not any inactivation of sterically accessible deposited droplets by drying, 

gas temperature does not play any role and agglomeration rate is very high. All this 

would severely contradict many experimental findings, so that it has unequivocally 

been demonstrated that collision frequency in the CVMC model for SFB 

agglomeration must be much smaller than the kinetic theory of granular media, 

particle tracking velocimetry or other experimental techniques behind correlations 

like that of Eq. (2.6), or CFD-DEM simulations indicate (Jiang et al., 2018).  

In SFB agglomeration, however, the overall growth kinetics depend strongly on the 

drying process of droplets. Collision events with partially dried droplets are achieved 

at lower 𝐹𝑐𝑜𝑙𝑙 values. In the present study, 𝐹𝑐𝑜𝑙𝑙 is taken as 10 1 𝑚⁄ , which has been 

experimentally validated for spray fluidized bed agglomeration by (Terrazas-Velarde, 

2012). 

Nevertheless, the correlation according to Eq. (2.6) can describe the behavior of the 

number of collisions that a particle experiences per unit time as the fluidized bed 

moves from the packed bed limit (∅𝑒𝑥𝑝 ≈ 0.6; 𝜀𝑒𝑥𝑝 ≈ 0.4) to the elutriation limit 

(∅𝑒𝑥𝑝 ≈ 0; 𝜀𝑒𝑥𝑝 ≈ 1). Solid volume fraction of the fixed bed is assumed ∅𝑓𝑖𝑥 = 0.61, 

corresponding to a packing of spheres with porosity equal to 0.39 (Terrazas-Velarde 

et al., 2009). The solid volume fraction of the expanded bed is by definition 
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∅𝑒𝑥𝑝 = 1 − 𝜀𝑒𝑥𝑝. (2.7) 

Here, 𝜀𝑒𝑥𝑝 is the voidage of the expanded bead and is computed by Eq. (2.1). 

In order to advance the simulation in real-time, a number of collision events (i.e. 2000) 

are set at the beginning of the simulation. As the events occur one after the other, the 

collision frequency for each event is calculated using Eq. (2.6), and from the collision 

frequency the length of the time step for between subsequent collision events is set to  

𝑡𝑠𝑡𝑒𝑝 =
1

𝑓𝑐𝑜𝑙𝑙
. (2.8) 

2.5 Droplet deposition 

In the CVMC model, hydroxypropylmethylcellulose (HPMC) binder dissolved in 

water is continuously added to the particles. The relationship between the real process 

and the model is established by the concentration of droplets per unit time and particle 

inside the simulation box. The number of droplets added per unit time and particle in 

the real process, which depends on the liquid flow rate and the droplet diameter, is  

𝛾 =
𝑀𝑙̇

𝑀𝑏𝑒𝑑
(

𝜌𝑝

𝜌𝑙
) (

𝐷𝑝

𝐷𝑑
)

3

  (2.9) 

where 𝑀𝑙
̇  is spray mass flow rate, 𝑀𝑏𝑒𝑑 is bed mass, 𝜌𝑝 is particle density, 𝜌𝑙 is liquid 

density, 𝐷𝑝 is mean particle diameter (twice the mean radius, 𝑅𝑝) and 𝐷𝑑 is droplet 

diameter. Depending on surface energy, a liquid droplet deposited on a particle will 

either spread completely forming a film coating (contact angle  = 0°) or, in the case 
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of partial wetting ( > 0°), it will take the shape of a spherical cap with a base radius 

𝑎0 and height ℎ0 (Clarke et al., 2002). A schematic representation of droplet deposition 

is shown in Fig. 2.4.  

 

Fig. 2.4: Droplet deposition and geometrical nomenclature. 

A value of 𝜃 = 40° applies here for binder deposited on the non-porous glass beads 

used as primary particles. If the droplet size is assumed relatively small compared to 

the particle size, so the particle curvature can be neglected, any droplet of volume 𝑉𝑑 

captured on the surface of a particle is characterized by 

𝑎0 = (
3𝑉𝑑

𝜋

sin3 𝜃

2−3 cos 𝜃+cos3 𝜃
)

1
3⁄

, (2.10) 

ℎ0 = 𝑎0 (
sin 𝜃

1+cos 𝜃
). (2.11) 

In order to model deposition of binder droplet and wetting of particles (primary 

particles and agglomerates) a “concept of positions” similar to (Terrazas-Velarde et 

al., 2011a) is used, cf. (Singh & Tsotsas, 2019, 2020). 
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2.5.1 Concept of positions 

The particles are divided into sectors. A sector of a particle is the part of the surface of 

the particle facing at and covered by an adjoining particle. With the notion of six 

neighbors in a simple cubic packing, each particle is assumed to have six sectors. The 

specific number of six sectors per particle belongs to the parametric setting of the 

model, which has been taken over from (Terrazas-Velarde et al., 2009), see also (Singh 

& Tsotsas, 2019). A schematic diagram of this concept is shown in Fig. 2.5.  

 

Fig. 2.5: Schematic diagram of the “concept of positions”. 

Moreover, for droplet deposition, the area of each sector is further subdivided into 

smaller areas called positions. The area of each position is approximately set equal to 

the footprint of a droplet (spherical cap base area). This implies that the total number 

of positions available for a droplet of certain base radius (𝑎0) on a particle is given by 

the reciprocal of the single droplet fractional covered area (s), 

𝑁𝑝𝑜𝑠 =
1

𝜓𝑠
=  

𝐴𝑠𝑢𝑟𝑓

𝜋𝑎0
2 . (2.12) 

The value of 𝑁𝑝𝑜𝑠 is rounded to the nearest integer. Taking into account the diameter 

of the primary particle as 520 𝜇𝑚 and droplet diameter of 80 𝜇𝑚, the number of 

positions available on the primary particle is calculated as 47 from Eq. (2.12). 
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However, for even number of positions on each sector (i.e. 8), the number of positions 

available on the primary particle is taken as 48. 

If one such position has been wetted and resulted in successful agglomeration, all 

remaining seven positions of the respective sector are inactivated, because they can 

no more be reached by droplets or other particles. This steric hindrance caused by 

neighboring particles in the deposition of droplets decreases the agglomeration rate 

(in addition to the decrease caused by droplet drying) and must be accounted for.  

Dry and wet zones on the particles are distinguished by a binary code of zeros and 

ones, where zero denotes an empty region and one a wet point. Successful coalescence 

can only occur if the colliding particles touch each other through at least one wetted 

zone and if the coalescence criterion given by the Stokes number (described in Section 

2.7) is fulfilled. Furthermore, overlapping and penetration of the droplets deposited 

on the particles are not considered in this work. 

2.6 Droplet drying 

Droplet drying sets on immediately after droplet deposition in spray fluidized bed 

agglomeration. Two main mechanisms are, in general, responsible for the aging of 

deposited droplets during fluidized bed agglomeration, namely drying and 

imbibition into porous substrates. The type of solid substrate is critical and determines 

which mechanism dominates in height reduction. In non-porous systems, the 

reduction of deposited droplet height and finally the slowing down of agglomeration 

due to droplet losses is exclusively due to the drying of the liquid binder. In porous 

systems, however, both mechanisms are present. In the present work, primary 

particles are non-porous and therefore, imbibition is not considered. 
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2.6.1 Deposited droplet drying 

Once the droplet has been deposited on the particle, it evaporates and eventually 

solidifies. For the description of this phenomenon, the particles are considered to be 

non-porous. Additionally, binder droplet height and radius are assumed to diminish 

simultaneously, maintaining the contact angle constant (Erbil et al., 2002). Under these 

conditions, the number of moles of water contained in the deposited droplet is 

𝑁𝑤 =
𝜌𝑤

𝑀̃𝑤
𝑉𝑐𝑎𝑝. (2.13) 

The spherical cap volume is given by (Clarke et al., 2002)   

𝑉𝑐𝑎𝑝 = 𝜋ℎ3 [
1

1−𝑐𝑜𝑠 𝜃
−

1

3
]. (2.14) 

Combining Eq. (2.13) with Eq. (2.14) and taking the first derivative one can obtain 

𝑑𝑁𝑤

𝑑𝑡
= 3

𝜌𝑤

𝑀̃𝑤
𝜋  [

1

1−𝑐𝑜𝑠 𝜃
−

1

3
] ℎ2  

𝑑ℎ

𝑑𝑡
. (2.15) 

Additionally, from the mass balance one gets  

𝑑𝑁𝑤

𝑑𝑡
= −𝐴𝑐𝑎𝑝 𝛽 

𝜌𝑔

𝑀̃𝑔
(𝑦̃∗ − 𝑦̃𝑔), (2.16) 

where   is the mass transfer coefficient, 𝑦̃∗ is the vapor molar fraction for saturation 

conditions at the droplet-air interface and 𝑦̃𝑔 is the vapor mole fraction in the gas. The 

spherical cap surface area is given by (Clarke et al., 2002) to 
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𝐴𝑐𝑎𝑝 =
2𝜋ℎ2

1−𝑐𝑜𝑠 𝜃
. (2.17) 

Substituting Eq. (2.17) in Eq. (2.16), the following expression is obtained 

𝑑𝑁𝑤

𝑑𝑡
= −

2 𝜋 ℎ2

1−𝑐𝑜𝑠 𝜃
 

𝜌𝑔

𝑀̃𝑔
 𝛽 (𝑦̃∗ − 𝑦̃𝑔). (2.18) 

Combining Eq. (2.18) with Eq. (2.15), the transformed mass balance is then 

 [
1

1−𝑐𝑜𝑠 𝜃
−

1

3
] 

𝑑ℎ

𝑑𝑡
= −

2

3

𝜌𝑔

𝜌𝑤

𝑀̃𝑤

𝑀̃𝑔
 

𝛽

1−𝑐𝑜𝑠 𝜃
 (𝑦̃∗ − 𝑦̃𝑔). 

(2.19) 

Integrating Eq. (2.19) under the assumption of a constant mass transfer coefficient, 

droplet drying is described by reduction of droplet height with time as 

ℎ = ℎ0 −
2

3

𝜌𝑔

𝜌𝑤

𝑀̃𝑤

𝑀̃𝑔

𝛽

1−cos 𝜃
(𝑦̃∗ − 𝑦̃𝑔) [

1

1−cos 𝜃
−

1

3
]

−1

𝑡. (2.20) 

Equation (2.20) describes the reduction of the initial binder layer height ℎ0 of a droplet 

deposited on a non-porous solid particle by drying as a function of time, temperature 

(implicit in 𝑦̃∗), fluidization velocity (implicit in the mass transfer coefficient), contact 

angle, as well as particle, binder and fluidization gas properties. Figure 2.6 shows a 

graphical representation of deposited droplet drying assuming a simultaneous 

decrease in height and radius of the drop at a constant contact angle.  

The vapor molar fraction at saturation conditions is 

𝑦̃∗ =
𝑃𝑣

∗

𝑃⁄ . (2.21) 
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Here, 𝑃𝑣
∗ and 𝑃 are the saturation vapor pressure and the system pressure, 

respectively. 

 

Fig. 2.6: Schematic representation of the reduction in the height of the deposited droplet by drying. 

The saturation pressure of water in Pa is calculated by the Antoine equation to 

𝑃𝑣
∗ = [108.0713−

1730.63

𝑇∗+233.426]
101325

760
, (2.22) 

where T* is the adiabatic saturation temperature in °C. The molar fraction of water in 

the gas phase 

𝑦̃𝑔 =
𝑌𝑔

𝑌𝑔−(𝑀̃𝑤 𝑀̃𝑔⁄ )
  (2.23) 
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is obtained from gas moisture content 𝑌𝑔. By assuming that the fluidized bed is 

perfectly mixed and the amount of evaporating water is at any time equal to the 

amount of water sprayed, the latter can be calculated from 

𝑌𝑔 = 𝑌𝑔,𝑖𝑛 +
𝑀̇𝑤

𝑀̇𝑔
, (2.24) 

where 𝑀̇𝑔 and 𝑀̇𝑤 are the mass flow rates of dry gas and sprayed water, respectively.  

The mass transfer coefficient  is assumed to be constant and calculated for the initial 

conditions from correlations for the dimensionless Sherwood number given by 

(Schlünder & Tsotsas, 1988) as follows: 

𝑆ℎ =
𝛽 𝑙

𝛿
, (2.25) 

𝑆ℎ = 2 + √Sh1 + Sh2, (2.26) 

Sh1 = 0.664 𝑅𝑒𝑐𝑎𝑝
1

2⁄  Sc
1

3⁄ , (2.27) 

𝑆ℎ2 =
0.037𝑅𝑒𝑐𝑎𝑝

0.8𝑆𝑐

1 + 2.443𝑅𝑒𝑐𝑎𝑝
−1 (𝑆𝑐

2
3⁄ − 1)

. (2.28) 

Sc is the dimensionless Schmidt number given by 

Sc =
𝜇𝑔

𝛿𝜌𝑔
, (2.29) 

and Re𝑐𝑎𝑝 is the deposited spherical cap Reynolds number defined by  
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𝑅𝑒𝑐𝑎𝑝 =
𝑢0𝜌𝑔𝑙

𝜇𝑔
. (2.30) 

The diffusion coefficient of water in air  is calculated as  

𝛿 =
2.252

𝑃
(

𝑇𝑔

273
)

1.81

, (2.31) 

where 𝑇𝑔 is the fluidization gas inlet temperature in K and P is the system pressure in 

Pa.  

The characteristic length l in Eq. (2.30) is assumed to be the initial diameter of the 

droplet, i.e. 

𝑙 = 𝐷𝑑. (2.32) 

2.6.2 Variation of viscosity during drying 

The deposited droplet has an initial binder mass fraction 

𝑥𝑏,0 =
𝑀𝑏

𝑀𝑏+𝑀𝑤,0
. (2.33) 

Here, 𝑀𝑏 and 𝑀𝑤,0 are the mass of solute and the initial mass of liquid solvent (water) 

in the solution, respectively. The mass of solute in the binder solution is constant for 

each deposited droplet as 

𝑀𝑏 = 𝑥𝑏,0𝑉𝑐𝑎𝑝,0𝜌𝑏, (2.34) 
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where 𝜌𝑏 is the density of the binder solution. As the droplet dries, the mass of solute 

𝑀𝑏 remains constant and the amount of water 𝑀𝑤 is reduced, this leads to an increase 

in binder mass fraction 𝑥𝑏 and therefore, increase in viscosity 𝜇𝑙 of binder solution. 

The mass of water in the droplet 𝑀𝑤 is calculated at each time step based on the 

remaining cap volume 𝑉𝑐𝑎𝑝 as 

𝑀𝑤 = 𝜌𝑤  𝑉𝑐𝑎𝑝   = 𝜌𝑤 𝜋ℎ3 [
1

1−𝑐𝑜𝑠 𝜃
−

1

3
]. (2.35) 

Accordingly, the instantaneous average binder mass fraction is given by  

𝑥𝑏 =
𝑀𝑏

𝑀𝑏+𝑀𝑤
. (2.36) 

In order to introduce the change of viscosity due to drying into the model, a 

relationship between the binder mass fraction 𝑥𝑏 (in wt. %) and binder viscosity (in 

Pas) is used, as proposed by (Terrazas-Velarde, 2012):  

𝜇𝑙 = 𝑎𝑥𝑏
3 + 𝑏𝑥𝑏

2 + 𝑐𝑥𝑏 + 𝑑 (2.37) 

where 𝑎 =  7.23 × 10−4; 𝑏 =  −6.42 × 10−3; 𝑐 =  0.0265 and 𝑑 =  −0.0246 in 

appropriate units. 

2.7 Agglomeration criterion 

Particles (primary particles or agglomerates) will coalesce if their initial kinetic energy 

is small enough to overcome the viscous lubrication resistance in the liquid layer. The 

critical conditions for the dissipation of kinetic energy by a viscous layer of a given 

thickness were first derived by (Davis et al., 1986) in the form of a Stokes number  
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𝑆𝑡𝑐𝑜𝑎𝑙 =
2𝑀𝑎𝑔𝑔𝑠𝑢𝑐

3𝜋𝜇𝑙𝐷𝑎𝑔𝑔𝑠
2 . (2.38) 

Coalescence between two colliding particles (agglomerates) happens when the Stokes 

number is smaller than the critical Stokes number (Barnocky & Davis, 1988)  

𝑆𝑡𝑐𝑜𝑎𝑙
∗ = (1 +

1

𝑒
) ln (

ℎ

ℎ𝑎
). (2.39) 

In the case of collision between particles of unequal size, a combined mass and 

diameter are used: 

𝑀𝑎𝑔𝑔𝑠 =
2𝑀𝑎𝑔𝑔1𝑀𝑎𝑔𝑔2

𝑀𝑎𝑔𝑔1+𝑀𝑎𝑔𝑔2
, (2.40) 

𝐷𝑎𝑔𝑔𝑠 =
2𝐷𝑎𝑔𝑔1𝐷𝑎𝑔𝑔2

𝐷𝑎𝑔𝑔1+𝐷𝑎𝑔𝑔2
 . (2.41) 

The Stokes model depends strongly on the particle collision velocity. In this study, the 

collision velocity of the pair of particles is randomly chosen by assuming a normally 

distributed function around a mean value equal to 0.5𝑢0 and a standard deviation of 

0.1 m/s. This is a coarse assumption in comparison to the velocity distributions in 

some aerosol aggregation models (Morán et al., 2020), but it belongs to the parametric 

setting of the MC model for SFB agglomeration that has been adopted from the 

previous work (Terrazas-Velarde et al., 2009), where it was quite successful in 

describing experimental results.   
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2.8 Equivalent agglomerate diameter 

For simplification, in the CVMC model, every formed agglomerate is considered as a 

sphere with a characteristic diameter (𝐷𝑎𝑔𝑔). There are many ways of calculating this 

characteristic diameter. It can, for example, be calculated by using the radius of 

gyration of the considered agglomerate, 

𝐷𝑎𝑔𝑔 = 2𝑅𝑔.  (2.42) 

Dadkhah provided a correlation to calculate the equivalent radius of agglomerates 

consisting of monodisperse primary particles using the radius of gyration of the 

formed agglomerates (Dadkhah et al., 2012), 

𝑅𝑒 = √
5

3
𝑅𝑔. (2.43) 

From it, the characteristic diameter can be calculated as 

𝐷𝑎𝑔𝑔 = 2𝑅𝑒 .  (2.44) 

Knowing the porosity of an agglomerate, the diameter of a volume equivalent sphere 

can also be used as a characteristic diameter 

𝐷𝑎𝑔𝑔 = [
∑ 𝐷𝑝,𝑖

3𝑁𝑝
𝑖=1

1−𝜀𝑎𝑔𝑔
]

1
3⁄

 . (2.45) 

Porosity of an agglomerate consisting of monodisperse primary particles can be 

calculated by inserting the fractal properties (Singh & Tsotsas, 2019), or by 
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reconstructing the agglomerates using an aggregation model (Singh & Tsotsas, 2020). 

Porosity of an agglomerate consisting of polydisperse primary particles can only be 

determined by reconstructing the agglomerates using a polydisperse aggregation 

model. 

The diameter of agglomerates composed of polydisperse primary particles can also be 

determined by generating the agglomerates computationally and evaluating their 

surface area. The surface area of reconstructed agglomerates can be calculated by 

using the alphaShape or convex hull functions of MATLAB and it can then be used to 

determine the diameter by 

𝐷𝑎𝑔𝑔 = [
𝐴𝑠𝑢𝑟𝑓

𝜋
]

1
2⁄

.  (2.46) 

Similarly, the volume occupied by the surface laid around the agglomerates by 

application of the alphaShape or convex hull functions of MATLAB can also be used 

to determine the diameter of the agglomerates to 

𝐷𝑎𝑔𝑔 = [
6𝑉𝑠𝑢𝑟𝑓

𝜋
]

1
3⁄

.  (2.47) 

Few of these methods of determining the diameter of the agglomerates will be 

discussed and compared in the further chapters.





 

Chapter 3 Morphological approach to simulate 

agglomeration processes 

This chapter is a modified version of the paper “Stochastic model to simulate spray 

fluidized bed agglomeration: A morphological approach, Powder Technology (2019)”. 

It discusses the morphological descriptors of SFB agglomerates and their importance 

for understanding the properties of the final product that influence its behavior.   
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3.1 Introduction 

Morphology of the agglomerates is required to analyze the temporal evolution of 

agglomeration and to compare agglomerates formed at different operating conditions. 

The fractal properties (prefactor and fractal dimension), which are key characteristics 

of an agglomerate, usually represent compactness and arrangement of primary 

particles. It had been seen in the past (Brasil et al., 2001; Sorensen & Roberts, 1997) that 

both prefactor and fractal dimension must be properly ascertained in order to 

determine the structure of an agglomerate. Porosity and coordination number (CN) 

are other prominent morphological properties of agglomerates. Porosity is a measure 

of the internal pores and cavities that affects the strength and density of an 

agglomerate (Klobes et al., 2006). Coordination number also affects the strength of an 

agglomerate as it defines the connectivity of the primary particles with each other.  

The morphological aspects considered in this work are mainly characterized by means 

of the following scalar descriptors: 

• Number of primary particles in an agglomerate  

• Radius of gyration 

• Porosity 

• Fractal dimension  

• Prefactor 

• Coordination number  

3.2 Number of primary particles in an agglomerate 

The most important way to describe an agglomerate is to denote the number of 

primary particles that form this agglomerate. It is also the primary step in the 

evaluation of other morphological descriptors of the agglomerate. For example, when 
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calculating the radius of gyration, knowing the number of primary particles simplifies 

the assessment. Traditionally, the number of primary particles in an agglomerate has 

been evaluated by scaling the projected area of the agglomerate (Medalia, 1967), its 

mobility radius (Meakin, 1987) or radius of gyration (Mandelbrot, 1992). Processing 

techniques of µCT and Camsizer images helped to precisely count spherical 

(Dadkhah, 2014) or irregular (Pashminehazar et al., 2016) primary particles in an 

agglomerate. 

3.3 Center of gravity 

Center of gravity is the mean location of gravitational force acting on a body. For a 

body of distributed mass, center of gravity is the mean location of all mass in the body. 

The center of gravity of an agglomerate that is built of primary particles of equal 

density is calculated by treating the discrete masses of the primary particles as 

separate objects. The position vector of the center of gravity is  

𝑅𝐶𝐺 =
∑ 𝑀𝑖𝑅𝑖

𝑁𝑝

𝑖=1

∑ 𝑀𝑖
𝑁𝑝

𝑖=1

, (3.1) 

where 𝑀𝑖 and 𝑅𝑖 are the mass and position vector of the primary particle 𝑖 as seen in 

Fig. 3.1. Center of gravity is required in further calculation of radius of gyration. 
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Fig. 3.1: Position vectors to calculate the radius of gyration. 

3.4 Radius of gyration  

Radius of gyration (𝑅𝑔) is one of the principal properties to characterize an 

agglomerate. It is the radius at which the entire mass of the body would have the same 

moment of inertia as the original object (Dadkhah et al., 2012). Consequently, the 

radius of gyration describes the size of an object as it shows how the mass is 

distributed around the center of gravity. The radius of gyration of an assembly of 

monodisperse spheres with respect to a point is calculated as 

𝑅𝑔 = √
𝐼𝑚

𝑀
= √

1

𝑁𝑝
∑ 𝑅𝑖

2𝑁𝑝

𝑖=1
= √

1

2𝑁𝑝
2 ∑ ∑ (𝑅𝑖 − 𝑅𝑗)

2𝑁𝑝

𝑗=1

𝑁𝑝

𝑖=1
, (3.2) 

where 

𝐼𝑚 = ∫ 𝑅2𝑑𝑀
 𝑅𝑒

0
= ∫ 𝑅2𝜌𝑑𝑉

 𝑅𝑒

0
= ∫ 4𝜋𝑅4𝜌𝑑𝑅

 𝑅𝑒

0
=

4𝜋𝑅𝑒
5𝜌

5
, (3.3) 
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and 

𝑀 =
4𝜋𝑅𝑒

3𝜌

3
, (3.4) 

Here, 𝐼𝑚 is the moment of inertia, 𝑅𝑖 and 𝑅𝑗 are the position vectors of the ith and jth 

primary particles from the center of gravity as seen in Fig. 3.1 and 𝑁𝑝 is the number of 

primary particles in the agglomerate. 

3.5 Porosity 

Porosity is defined as the ratio of volume of voids to the total volume occupied by an 

assembly of packed particles. It measures the volume fraction of internal pores as 

cavities or channels connected with body’s surface. It is an important parameter to 

characterize the packing of particles. Porosity affects the effective density (Baric et al., 

2019) and can influence the mechanical strength of agglomerates (Rumpf & Schubert, 

1974). It is also widely used as an index of flowability of dry cohesive powders (Deng 

et al., 2016). Porosity of an agglomerate is expressed as 

𝜀𝑎𝑔𝑔 = 1 −
1

𝑉
∑ 𝑉𝑖 

𝑁𝑝

𝑖=1
, (3.5) 

where 𝑉 is the total volume of the agglomerate and 𝑉𝑖 is the volume of individual 

primary particles in it. 

3.5.1 Porosity from the radius of gyration 

In this method the radius of gyration of an agglomerate is calculated and the volume 

of the agglomerate is set equal to the volume of an equivalent sphere with the 
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radius 𝑅𝑒, which is calculated by inserting the value of 𝐼𝑚 from Eq. (3.3) and M  from 

Eq. (3.4) in Eq. (3.2),  

𝑅𝑒 = √
5

3
𝑅𝑔. (3.6) 

3.5.2 Porosity from convex hull 

The convex hull of a certain structure is by definition the smallest convex region 

containing the structure. After the convex hull has been computed, the volume within 

it is set equal to the total volume of the agglomerate to calculate porosity using Eq. 

(3.5). 

3.5.3 Comparison of different porosity evaluation methods 

The estimation of the volume of the agglomerate from the different routes results in 

different porosity of the agglomerate. The variation of porosity assessed by the two 

different methods for an agglomerate with 100 primary particles generated by the TSA 

model (described in detail in Chapter 4) is shown in Fig. 3.2. 
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𝜀𝑎𝑔𝑔 = 0.75 𝜀𝑎𝑔𝑔 = 0.77 

Fig. 3.2: Porosity calculated for a computer-generated agglomerate using the gyration method (left) 

and the convex hull method (right). 

3.6 Fractal properties 

Fractal properties of aggregates are defined by fractal dimension (𝐷𝑓) and 

prefactor (𝑘). Fractal dimension and prefactor of a large number of agglomerates are 

usually determined by least squares regression fitting to a power law relationship 

which correlates the number of primary particles of the agglomerates, 𝑁𝑝, with their 

radii of gyration, 𝑅𝑔, as 

𝑁𝑝 = 𝑘 (
𝑅𝑔

𝑅𝑝
)

𝐷𝑓

. (3.7) 

Here, 𝑅𝑝 is the radius of primary particles. An illustration is provided in Fig. 3.3. 

Agglomerates in this chapter have been generated using the tunable sequential 

aggregation (TSA) model, which is explained in detail in Chapter 4. The slope of the 

plot in Fig. 3.3 is the fractal dimension of the agglomerates. 
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Fig. 3.3:  Fractal dimension and prefactor calculation for computer-generated agglomerates by 

plotting the number of primary particles and the ratio of radius of gyration and primary particle 

radius on a double logarithmic scale. 

3.6.1 Fractal dimension 

Fractal dimension (𝐷𝑓) provides an insight into the arrangement of particles within 

the agglomerate as well as the degree of compactness of agglomerates (Salman & 

Hounslow, 2004). It provides a quantitative measure of the degree to which a structure 

fills physical space beyond its topological dimension (Crowe et al., 2011). It is an 

important measure to determine the strength of an agglomerate. Higher 𝐷𝑓 indicates 

that the structure is compact and has more inter-particle bonding which implies that 

the agglomerate is strong. Whereas, lower 𝐷𝑓 indicates that the agglomerate is open 

and more tenuous in structure. The value of fractal dimension can vary from one 

(chain-like structure like in (Rong et al., 2006)) to three (spherical agglomerate).  
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This can be perceived from Fig. 3.4 where the morphology of synthetic agglomerates 

(with 200 primary particles and prefactor equal to 1) is changed at different fractal 

dimensions. With fixed prefactor, the mean coordination number (MCN) of the 

agglomerates increases and porosity decreases with an increase in fractal dimension. 

Porosity is measured using the gyration method. 

  
    

𝐷𝑓(𝑘 = 1) 2.0 2.2 2.4 2.6 2.8 3.0 

MCN 2.26 2.49 2.76 3.17 3.54 4.52 

𝜀𝑎𝑔𝑔 0.96 0.93 0.87 0.78 0.67 0.53 

 

Fig. 3.4: Morphological change of agglomerates (𝑁𝑝 = 200) with the same prefactor (𝑘 = 1) and 

varying fractal dimension. 

3.6.2 Prefactor 

Prefactor (𝑘) is related to the packing fraction in 𝐷𝑓 dimensional space. It is also 

referred to as lacunarity (Lapuerta et al., 2009) or structure factor (Gmachowski, 1995). 

It is a parameter whose importance is increasingly being appreciated as a descriptor 

of packing of the primary particles, which indicates the local structure of an 

agglomerate (Wu & Friedlander, 1993). It is an essential ingredient for a complete 

description of a power-law agglomerate, as suggested by the scaling power law (Eq. 

(3.7)). 
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As indicated in Fig. 3.5, the fractal prefactor has an influence on the degree of 

compactness of agglomerates. With a fixed fractal dimension (of  

𝐷𝑓 = 3), if the prefactor is increased, the mean coordination number (MCN) of the 

agglomerate (with 200 primary particles) increases and the porosity decreases, making 

the agglomerates compact and strong. 

      

𝑘(𝐷𝑓 = 3) 0.5 0.6 0.7 0.8 0.9 1.0 

MCN 3.36 3.51 3.73 3.83 4.31 4.52 

𝜀𝑎𝑔𝑔 0.76 0.72 0.66 0.62 0.58 0.53 

 

Fig. 3.5: Morphological change of agglomerates (𝑁𝑝 = 200) with varying prefactor and same fractal 

dimension (𝐷𝑓 = 3). 

3.7 Coordination number  

Coordination number (CN) of a primary particle in an agglomerate is defined by the 

sum of all contact points that the primary particle has with surrounding primary 

particles. For two primary particles (i, j) with center coordinates (x, y, z) and radius 

(R), if the condition 

√(𝑥𝑖 − 𝑥𝑗)
2

+ (𝑦𝑖 − 𝑦𝑗)
2

+ (𝑧𝑖 − 𝑧𝑗)
2

≤ |𝑅𝑖 − 𝑅𝑗| (3.8) 

is satisfied, then they are in contact. CN is a very popular microscopic parameter 

associated with packing structure (Li et al., 2018). It influences the elasticity (Gaume 
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et al., 2017), plastic strength (Vo et al., 2017) and densification rate (Kamyabi et al., 

2019).  

The coordination number is somehow correlated with the packing fraction. For 

monodisperse spherical particles, the densest packing is that with a packing ratio 

(relative packing density) of 𝜋
√18⁄ ≈  0.74 (Hales, 1994). This maximum packing ratio 

of 0.74 for monodisperse spheres corresponds to the hexagonal closest packing (hcp) 

or the face-centered cubic (fcc) packing and its stacking variants, all with a 

coordination number of 12 (i.e. any selected particle has 12 closest neighbors in direct 

point contact). The simple cubic packing, on the other hand, has a packing ratio of 0.52 

and a coordination number of 6. It is not known whether stable packings of 

monodisperse spheres with a lower packing ratio and coordination number exist in 

3D space (diamond packing with a packing ratio of 0.34 and a coordination number 

of 4 is unstable). Table 3.1 lists several regular packings of monodisperse spheres. 

Table 3.1. Packing fraction and coordination number of regular packings of monodispersed spheres 

in 3D space. 

Packing type Packing fraction Coordination number 

Closest packing (fcc/hcp) 0.741 12 

Tetragonal-sphenoidal 0.708 10 

Body-centered cubic 0.680 8 

Orthorhombic 0.605 8 

Simple cubic 0.524 6 

Diamond 0.340 4 
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All the morphological descriptors, which have been explained in Sections 3.2 − 3.7, are 

scalar descriptors. A vector descriptor, namely coordination angle, is explained in 

Appendix A. 

3.8 Interrelation and predictability of morphological 

descriptors 

Different correlations have been developed to simplify the parameters in quantifying 

the morphology of the agglomerates. The various correlations between the 

morphological descriptors developed are discussed here. 

3.8.1 Correlation of porosity as a function of fractal properties 

Assuming the primary particles as monodisperse, Eq. (3.5) can be reduced to 

𝜀𝑎𝑔𝑔 = 1 −
𝑁𝑝𝑉𝑝

𝑉
, (3.9) 

where the volume of any primary particle is defined as 

𝑉𝑝 =
4𝜋𝑅𝑝

3

3
. (3.10) 

The volume of the agglomerate can be set equal to the volume of the equivalent sphere 

with radius 𝑅𝑒  

𝑉 =
4𝜋𝑅𝑒

3

3
. (3.11) 
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Substituting the radius of equivalent sphere, 𝑅𝑒, from Eq. (3.6) in Eq. (3.11), Eq. (3.9) 

becomes 

𝜀𝑎𝑔𝑔 = 1 − 𝑁𝑝 (
𝑅𝑝

𝑅𝑒
)

3

. (3.12) 

Using the power law relationship from Eq. (3.7) in Eq. (3.12), the porosity is articulated 

as a function of 𝐷𝑓, 𝑘 and 𝑁𝑝,  

𝜀𝑎𝑔𝑔 = 1 − 0.465𝑁𝑝 (
𝑘

𝑁𝑝
)

3
Df

⁄

. (3.13) 

The underlying assumptions for the above correlation are as follows: 

• Primary particles are monodispersed. 

• Radius of gyration is used to predict the equivalent radius of an agglomerate. 

Agglomerate diameter (𝐷𝑎𝑔𝑔 = 2𝑅𝑒) can be correlated to porosity by rearranging Eq. 

(3.12). With 𝐷𝑝 = 2𝑅𝑝 it is obtained:  

𝐷𝑎𝑔𝑔 = [
𝑁𝑝𝐷𝑝

3

1−𝜀𝑎𝑔𝑔
]

1
3⁄

. (3.14) 

Inserting the porosity expression from Eq. (3.13) in the above equation, agglomerate 

diameter is finally 

𝐷𝑎𝑔𝑔 = 1.291 × 𝐷𝑃 (
𝑁𝑝

𝑘
)

1
Df

⁄
 . (3.15) 
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In order to validate the underlying assumptions for the above correlations of porosity 

and agglomerate diameter, the experimental findings from (Dadkhah & Tsotsas, 2014) 

are used. These experiments were performed in batch mode with glass beads as 

primary particles and HPMC in aqueous solution as a binder. A brief description of 

the experiments, as well as of the examined and experimentally obtained 

morphological descriptors is given in Appendix B. 

On the one hand, agglomerate diameter is calculated using Eq. (3.14), where porosity 

is assumed to be the averaged porosity of the batch (Table B.2) whereas 𝑁𝑝 and 𝐷𝑝 (=

2𝑅𝑝) are taken for each individual agglomerate (i.e. from data like those of Tables B.3-

B.8 in Appendix B for respective experiments A to F). On the other hand, agglomerate 

diameter is calculated using Eq. (3.15), with 𝐷𝑓 and k from Table B.2 and 𝐷𝑝, again, for 

each individual agglomerate. From the plots for different trials from (Dadkhah & 

Tsotsas, 2014) at varying process parameters in Fig. 3.6 it is clear that the agreement 

between experimental results and the new formulation of agglomerate diameter 

according to Eq. (3.15) is closest when the standard deviation of primary particle 

radius (last row of Table B.2) is smallest. This is the case for Exp. B and Exp. F. 
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Fig. 3.6: Different ways to obtain agglomerate diameter from the number and size of primary 

particles (Eq. (3.14): via agglomerate porosity, Eq. (3.15): via fractal properties) in comparison to 

experimental results. 

Agglomerate diameters obtained from Eq. (3.15) are compared to experimental results 

for all six experiments conducted by Dadkhah (Dadkhah & Tsotsas, 2014) in the parity 

plot of Fig. 3.7. Slopes and degrees of regression are close to unity for all the trials, 

which validates the new correlation for agglomerate size according to Eq. (3.15). Best 

fit is obtained for Exp. B and Exp. F. As already pointed out, it is believed that this is 
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due to best fulfillment of the underlying assumption about monodispersed primary 

particles in those two trials. 

 

Fig. 3.7: Parity plot of agglomerate diameter obtained from Eq. (3.15) resp. measured for all six 

experiments. 

Porosity of an agglomerate is formulated in Eq. (3.13) as a function of fractal 

dimension, prefactor, and the number of primary particles in the agglomerate. This 

formulation was also used to study the mechanical properties and morphological 

features of nanoparticle agglomerates (Deng et al., 2016). A decrease in porosity is 

observed with increasing prefactor keeping a fixed fractal dimension and number of 

primary particles in Fig. 3.8. Since the prefactor is usually less than the number of 

primary particles, the expression (
𝑘

𝑁𝑝
) is less than one in Eq. (3.13) and the exponent is 

greater than one as the value of 𝐷𝑓 is always less than three. So, increasing the fractal 
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dimension leads to a decrease in the porosity for a fixed prefactor and number of 

primary particles, as exemplarily shown for 𝑘 = 1 in Fig. 3.8. 

 

Fig. 3.8: Porosity of agglomerates along the number of primary particles present in the 

agglomerates with varying fractal dimension and prefactor. 

The overall conclusion is that the porosity of an agglomerate decreases with an 

increase in its fractal dimension and prefactor, depending on those two quantities and 

on the number of primary particles in the agglomerate, 

𝜀𝑎𝑔𝑔 = 𝑓(𝑁𝑝, 𝐷𝑓 , 𝑘).                                                                                                                (3.16) 
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3.8.2 Correlation between fractal properties 

The porosity of an agglomerate is a function of its fractal dimension and prefactor, 

and the number of primary particles in the agglomerate. Any equation of this type 

(Eq. 3.16) would be reduced to just two influencing parameters (𝑁𝑝, 𝐷𝑓) and simplified 

if the prefactor could be correlated with the fractal dimension. Therefore, various 

empirical correlations of this kind have been proposed for aggregates formed by 

experimental aggregation processes or simulated by aggregation models (Table 3.2).  

Gmachowski (Gmachowski, 2002) used the ratio of the hydrodynamic to the 

geometric radius of aggregates to deduce the relation of fractal dimension and 

prefactor. A generalized curve was provided for values from different aggregation 

models (detailed descriptions in Chapter 4) and experimental values of various 

researchers. Lapuerta (Lapuerta et al., 2006) gave in a study of diesel soot 

agglomerates a relation between fractal dimension and the prefactor by considering 

the boundary conditions as the packing fraction of particles in different lattice 

Table 3.2. Prefactor correlations from various researchers. 

𝑘 =  0.414 × 𝐷𝑓 − 0.211  (Vanni, 2000) 

𝑘 = (√ 1.56 − (1.728 −
𝐷𝑓

2
)

2

− 0.228)

𝐷𝑓

(
𝐷𝑓+2

𝐷𝑓
)

𝐷𝑓
2

⁄

  (Gmachowski, 2002) 

𝑘 =  0.7321 + 0.8612
(

𝐷𝑓−1

2
)

1.95

  
(Lapuerta et al., 2006) 

𝑘 =  4.46 × 𝐷𝑓
−2.08  (Ehrl et al., 2009) 

𝑘 = 5.323 − 1.4802𝐷𝑓 
(Present work, Singh & 

Tsotsas, 2019) 
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arrangements. Ehrl (Ehrl et al., 2009) generated and analyzed geometrically dense 

clusters with variable fractal dimension, composed of rigid monodisperse primary 

particles, to present a power law relation between fractal dimension and prefactor. In 

the present work, an empirical correlation has been generated from the set of 

experimental values of fractal dimension and prefactor in Table B.2. This is  

𝑘 = 𝑓(𝐷𝑓) = 5.323 − 1.4802𝐷𝑓. (3.17) 

 

Fig. 3.9: Correlation between prefactor and fractal dimension, compared with spray fluidized bed 

data from (Dadkhah & Tsotsas, 2014) and with Eq. (3.17). 

Figure 3.9 shows that the correlations of  Gmachowski (Gmachowski, 2002) and Vanni 

(Vanni, 2000) are similar in that they predict the prefactor to increase with increasing 

fractal dimension. This in turn contradicts the pattern followed by spray fluidized bed 

agglomerates in (Dadkhah & Tsotsas, 2014) (Table B.2). The correlations of Lapuerta 
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(Lapuerta et al., 2006) and Ehrl (Ehrl et al., 2009) follow the same trend of spray 

fluidized bed agglomerates but don’t meet the values. Trend and values can only be 

described by the newly developed correlation (Eq. (3.17)).  

 

Fig. 3.10: Agglomerate porosity according to different correlations of prefactor, k, for Exp. B. 

Porosity calculated from Eq. (3.13) by using different prefactor correlations from Table 

3.2 while keeping fractal dimension at the value measured for experiment B (𝐷𝑓 =

2.31, see Table B.2) is plotted in Fig. 3.10. The porosity calculated by the prefactor 

correlations of Vanni and Ehrl is very high, leading to very porous agglomerates. 

Porosity from the correlations by Lapuerta and Gmachowski is better comparable to 

the experimental results from (Dadkhah & Tsotsas, 2014), though still too high. Use of 

Eq. (3.17) in Eq. (3.13) meets the measured data almost equally well as the use of 

prefactor obtained directly from the measurement (𝑘 = 2.01 for Exp. B, see Table B.2).  
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In general, use of Eq. (3.17) reduces the number of parameters that need to be known 

in order to predict agglomerate size from the number of primary particles to just one 

(namely the fractal dimension). 

3.9 Modified Monte Carlo model (CVMC-1) 

In the CVMC models to be discussed and compared in this section, the process 

conditions and material properties are taken same as in the experiments from 

(Dadkhah & Tsotsas, 2014) (Table B.1). Glass beads have been used as the primary 

particles in trials A to E of this experimental investigation, and HPMC has been the 

binder for the agglomeration process. The simulation box, containing monodispersed 

primary particles, is considered as representative for the overall agglomeration 

process. A scheme of the CVMC approach is given in Fig. 3.11. 

 

Fig. 3.11: Simplified diagram of the CVMC algorithm used in the present work. 

Particles are added periodically to the simulation box, when the total number of 

particles becomes half of its initial value. The time step is computed according to the 

Droplet deposition

Droplet drying

Particle collision

Simulation cell

𝐷𝑎𝑔𝑔

Kinetics
CVMC
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collision event from the collision frequency, 𝑓𝑐𝑜𝑙𝑙 (Buffière & Moletta, 2000). More 

details on the CVMC model are given in Chapter 2.  

During each time step of the CVMC, collisions between randomly chosen pairs of 

particles take place and a decision about successful or unsuccessful agglomeration is 

made for each collision based on whether the following conditions are fulfilled, or not: 

i. the collision is a wet collision; 

ii. particles strike at wet position/s; 

iii. the so-called Stokes criterion for coalescence is fulfilled (Adetayo & Ennis, 

1997).  

If the above-mentioned conditions are satisfied, then the colliding particles form a new 

agglomerate. For simplicity, each formed agglomerate is represented by a sphere 

having porosity equal to the porosity of the agglomerate. Where this agglomerate 

porosity is taken from, distinguishes the models to be compared from each other.  

In the old model, developed by Terrazas (Terrazas-Velarde et al., 2009), Eq. (3.14) is 

used to get the agglomerate diameter with a constant porosity value of  𝜀𝑎𝑔𝑔 = 0.6. 

This means that the agglomerates formed are assumed to have the same porosity 

irrespective of their size and the change in the process parameters. To implement the 

structural change, the old model is modified to the CVMC-1 model by calculating 

variable values of porosity from Eq. (3.13). 

Correspondingly, agglomerate diameter is obtained as a function of fractal dimension 

and prefactor from Eq. (3.15). This means that fractal dimension and prefactor are 

replacing porosity in the new model in determining the agglomerate diameter. 

Concerning the data of Dadkhah (Dadkhah et al., 2012) fractal dimension from Table 

B.2 can be correlated empirically with external parameters (namely inlet temperature 

of the fluidizing gas, 𝑇𝑔 in ℃, and the mass fraction of the liquid binder, 𝑥𝑏) to obtain  
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𝐷𝑓 = (0.0105 × 𝑇𝑔) − (0.067 × 𝑥𝑏) + 2.13. (3.18) 

Accordingly, the new MC model (CVMC-1) incorporates the change in agglomerate 

diameter with the change in operating parameters of the agglomeration process, 

whereas the old model did not. The value of prefactor is obtained from the empirical 

correlation derived from the experimental results, i.e. from Eq. (3.17). This decreases 

the number of parameters necessary in order to determine the agglomerate diameter 

from the number of primary particles to just one, namely the fractal dimension.  

3.10 Model sensitivity to variation of the initial number of 

primary particles 

The simulation box, which is considered as a representative sample of the particle 

population, consists of an initial number of primary particles (𝑁𝑝,0,𝑏𝑜𝑥). It has no 

geometric dimension. In order to investigate the effect of the initial number of primary 

particles in the simulation box on the accuracy of the CVMC model, a series of 

simulations has been performed. The simulations were performed for 5 minutes by 

means of the CVMC-1 model. The simulations use same experimental, from Table B.1 

(Dadkhah, 2014), and model parameters given in Table 3.4, corresponding to Exp. A, 

under exactly the same conditions, with the initial number of primary particles 

varying between 100 and 10000. 
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Table 3.4. Simulation parameters. 

Bed mass 𝑀𝑏𝑒𝑑 500 g 

Primary particle diameter 𝐷𝑝 0.52 mm 

Primary particle density 
𝑝
 2500 kg/m3 

Particle surface asperities height ℎ𝑎 10 μm 

Particle restitution coefficient e 0.8 - 

Droplet diameter 𝐷𝑑 80 μm 

Droplet addition rate  0.08 1/s 

Particle-droplet contact angle  40 ° 

Positions on the primary particle surface 𝑁𝑝𝑜𝑠 48 - 

Fluidization velocity 𝑢0 1.912 m/s 

Gas (dry) mass flow rate 𝑀̇𝑔 130 kg/h 

Moisture content in the gas 𝑌𝑔 3.4 g/kg 

The accuracy (measured as standard deviation of particle size distribution at the end 

of simulation) of the CVMC model, 95 % confidence spread of final agglomerate 

diameter and computation time (on a usual personal computer with 4 cores; 3.4 GHz 

processor and 4 GB RAM) required in each case for one realization of the CVMC 

simulation at different initial number of primary particles are noted in Table 3.5. To 

quantify the standard deviation and computation time for each case, the case with 

1000 primary particles was taken as a reference, where 𝜎(𝑁𝑝,0,𝑏𝑜𝑥 = 1000) = 183 μm 

and 𝑡𝐶𝑃𝑈(𝑁𝑝,0,𝑏𝑜𝑥 = 1000) = 180 min to reach the real-time of 5 min, in Table 3.5. In 

general, it is expected that the accuracy of the CVMC model is improved by increasing 

the initial number of primary particles in the simulation box. However, this 

improvement always takes place at the expense of simulation speed. 
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Table 3.5. Effect of the number of simulated particles on the model accuracy 

and on the simulation speed. 

𝑁𝑝,0,𝑏𝑜𝑥  

[-] 

95 % confidence 

spread [mm] 

𝜎(𝑁𝑝,0,𝑏𝑜𝑥)

𝜎(𝑁𝑝,0,𝑏𝑜𝑥=1000)
  

[-] 

𝑡𝐶𝑃𝑈(𝑁𝑝,0,𝑏𝑜𝑥)

𝑡𝐶𝑃𝑈(𝑁𝑝,0,𝑏𝑜𝑥=1000)
  

[-] 

100 [0.717 0.831] 1.434 0.045 

200 [0.648 0.723] 1.115 0.096 

500 [0.643 0.686] 1.062 0.313 

1000 [0.642 0.671] 1.000 1.000 

2000 [0.648 0.668] 0.997 4.113 

5000 [0.648 0.662] 0.976 32.40 

10000 [0.649 0.658] 0.957 125.4 

The results of the CVMC simulations are shown in Fig. 3.12. As expected, all 

simulation results fluctuate to a certain degree, with the largest standard deviation of 

agglomerate diameter being observed for 100 primary particles. As far as the 

simulation time is concerned, it increases with increasing number of primary particles, 

especially for 10000 primary particles being most. On the other hand, no significant 

change in the accuracy is observed for the cases after the reference case with 1000 

primary particles. This shows that a simulation box with 1000 to 2000 initial primary 

particles can be regarded as optimal for the CVMC model. The same was concluded 

by Terrazas (Terrazas-Velarde et al., 2009). Compromising between accuracy and 

computation time, 1000 initial primary particles have been used in the present work, 

cf. (Singh & Tsotsas, 2019, 2020). 
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Fig. 3.12: Effect of the initial number of primary particles in the simulation box. 

All further simulations have been performed with an initial number of primary 

particles of 𝑁𝑝,0 = 1000. 

3.11 Comparison of the old model and the modified MC 

(CVMC-1) model 

Simulations have been carried out for all the experiments from Table B.2, especially 

for Exp. A to Exp. E with glass beads as the primary particles, by means of the old and 

the CVMC-1 model for 5 mins. Contrary to (Terrazas-Velarde et al., 2009), the 

breakage mechanism is not considered in the present simulations with either model. 

The purpose of this is to first concentrate on the influence of the morphology on 

growth. Breakage will be the subject of a separate chapter (Chapter 6). Simulation 

parameters corresponding to the experimental parameters have been presented in 

Table B.1; additional parameters are summarized in Table 3.4. 
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Fig. 3.13: Parity plot with average primary particle diameter of 0.52 mm, otherwise same as that 

of Fig. 3.7. 

One important aspect of Table B.2 is that the diameter of the primary particles is taken 

as 0.52 mm. This is the average size of primary particles used by (Dadkhah et al., 2012), 

as separately measured by particle projection images (Camsizer). The corresponding 

radius of 𝑅𝑝 = 0.26 mm differs from the primary particle radii for individual 

agglomerates; being smaller than them especially for Exp. B and Exp. E (cf. ranges of 

𝑅𝑝 in Table B.2). This means that the consistency of the morphological features 

reflected in the parity plot of Fig. 3.7 cannot be preserved with the same quality when 

evaluating with 𝑅𝑝 = 0.26 mm throughout. Indeed, agglomerate diameter is 

underpredicted for most trials in Fig. 3.13, by up to around 15% (slopes less than 

unity). 
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Fig. 3.14: MC simulation results with constant porosity (old model) and porosity correlation 

(CVMC-1) for 𝐷𝑝 = 0.62 mm (average over individual experiment) and 𝐷𝑝 = 0.52 mm (average 

over all experiments) in comparison with experimental results. 

Results from Exp. B are not captured very well in Fig. 3.13, because 𝑅𝑝 = 0.26 mm is 

below the range of primary particles sizes observed in the agglomerates analyzed 

from the specific trial (Table B.2). Agglomerate sizes from Exp. B for different numbers 

of primary particles, 𝑁𝑝, and different primary particle diameters, 𝐷𝑝, are compared 

in Fig. 3.14 with predictions of the old model (from Eq. (3.14) with 𝜀𝑎𝑔𝑔 = 0.6 ) and of 

the new model (from Eq. (3.15) with 𝐷𝑓 from Eq. (3.18) and 𝑘 from Eq. (3.17)). It can 

be seen that predictions of the CVMC-1 model differ significantly from those of old 

model. Specifically, the old model overestimates in comparison to the CVMC-1 model 

agglomerate size for small agglomerates (𝑁𝑝 less than around 50), whereas it 

increasingly underestimates the size of large agglomerates (𝑁𝑝 > 50). 
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3.11.1  Agglomerate kinetics 

Time does not appear in Fig. 3.13 or Fig. 3.14, but it is an important factor in Fig. 3.15 

and in Table 3.6. In Fig. 3.15, the time evolution of the relative agglomerate diameter 

at different inlet temperatures and binder concentrations is compared using the old 

model (with porosity equal to 0.6) and the modified (CVMC-1) model (with variable 

porosity).  

 

Fig. 3.15: Agglomerate relative diameter with respect to the time using different MC models for 

different experiments. 

The relative diameter of the agglomerates is the ratio of Sauter mean diameter of the 

population and the initial diameter (equal to 𝐷𝑝 = 0.52 mm) at a given instant of time. 

In Table 3.6, the overall growth rate is defined as the ratio of the difference between 

Sauter mean diameter of the final agglomerates at the end of the process and the 

diameter of primary particles to the duration of the trial (i.e. 300 s),  
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𝑟𝐺 =
𝐷𝑎𝑔𝑔,32,𝑡−𝐷𝑝

𝑡
. (3.19) 

With its help, kinetics of the process at different temperatures (Exp. B, A and C with 

increasing temperature) and binder concentrations (Exp. A, D and E with increasing 

concentration) is expressed. 

Table 3.6. The overall growth rate for different experiments 

and respective simulations by both models after 300 s. 

  Overall growth rate (µm/s) 

Trial A B C D E 

CVMC-1 1.79 2.92 1.23 4.47 6.82 

Old model 1.96 3.72 1.69 5.52 6.12 

Experiment 1.07 1.15 0.63 3.79 8.20 

Table 3.6 shows that the estimated kinetics (overall agglomerate growth rate) of the 

agglomeration process is overestimated for most of the experiments (except for the 

case of Exp. E) by both models. This is due to the fact that the breakage of agglomerates 

has not been considered in the models. Consideration of breakage in further work 

might be accompanied by the reconsideration of the model parameters (Table 3.4), 

which have just been taken over without any tuning from (Terrazas-Velarde et al., 

2009) for the present discussion. In the frame of this discussion it is important to note 

that the old model is overestimating the growth rate for all the experiments, except 

Exp. E, in Table 3.6. This overestimation is notable, though not dramatic. It is due to 

the fact that relatively small agglomerates (𝑁𝑝 < 50) are considered in Table 3.6, which 

are predicted to be larger with the old model than with the CVMC-1 model (Fig. 3.14). 

Since it depends on agglomerate size and agglomeration progress, this result cannot 

be generalized and may turn to the exactly opposite behavior. 
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3.11.2  Agglomerate morphology  

The diameters of agglomerates with respect to their numbers of primary particles for 

different models are plotted in Fig. 3.16. Due to constant porosity of 𝜀𝑎𝑔𝑔 = 0.6 in Eq. 

(3.14), agglomerates formed with the same number of primary particles have the same 

diameter if simulated using the old model, irrespectively of different process 

parameters. However, morphological change is captured in the CVMC-1 model by 

predicting different diameter of formed agglomerates with the same number of 

primary particles at different experimental conditions. With an increase of inlet gas 

temperature, corresponding to experiments B, A and C at 30℃, 60℃ and 90℃ 

respectively, the agglomerates become compact because the fractal dimension 

increases and the size (diameter) decreases.  

 

Fig. 3.16: Agglomerate diameter with respect to the number of primary particles using different MC 

models for different experiments. 
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Contrarily, as the mass fraction of the binder increases, corresponding to experiments 

A, D and E, fractal dimension of the agglomerates decreases. Consequently, the 

agglomerates become branched and porous and their size (diameter) increases. Such 

effects can be captured when using the CVMC-1 model (Fig. 3.16) by just correlating 

the fractal dimension to operating conditions of the agglomeration process (Eq. (3.18)). 

3.12 Conclusion  

This chapter discussed morphological descriptors of spray fluidized bed agglomerates 

and formulated a cross-correlation between them. Dadkhah (Dadkhah et al., 2012) did 

not check the consistency of the morphological descriptors that she measured, i.e. of 

average porosity and agglomerate size on one, and fractal dimension and prefactor on 

the other side. This has been done in the present chapter to show that the 

morphological data from (Dadkhah et al., 2012) are consistent. It has been shown that 

agglomerate size can be more accurately predicted from the number of primary 

particles by known fractal dimension and prefactor of an agglomerate sample, than 

by known average porosity of the agglomerates of the same sample. The clarity in the 

consistency of the morphological data and in the superiority of the approach that is 

based on the fractal properties seems to be reduced for morphological data evaluated 

by assuming monodispersed primary particles with increasing deviation from this 

assumption. Increased attention should be given in the future to the size distribution 

of primary particles, as recently also indicated by (Pashminehazar et al., 2016). 

It has moreover been shown that the fractal dimension can be clearly correlated with 

the prefactor for the agglomerates produced by (Dadkhah et al., 2012). This reduces 

the number of parameters that need to be known in order to predict agglomerate size 

from the number of primary particles to just one (namely the fractal dimension). The 

correlation developed for fractal dimension and prefactor lies in the region of other 

correlations presented in the literature to this purpose, but there are also differences 
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in values and trends among literature correlations as well as in their comparison to 

the new correlation. This issue is still not well understood. 

The cross-correlation between the morphological descriptors to predict agglomerate 

size is used in the MC model to incorporate the morphological change with respect to 

different experimental parameters. The new MC model (denoted by CVMC-1) 

predicts reasonably the kinetics and the temporal change in the morphology of the 

agglomerates. The size (diameter) of the agglomerates with the same number of 

primary particles changes with the change in the operating parameters of the 

agglomeration process rather than being constant (old model).  





 

Chapter 4 Aggregation model 

This chapter is a modified version of the paper “A tunable aggregation model 

incorporated in Monte Carlo simulations of spray fluidized bed agglomeration, 

Powder Technology (2020)”. It gives an overview of various aggregation models and 

their limitations with respect to spray fluidized bed agglomerates.  
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4.1 Introduction 

Particle aggregation is the process by which individual particles or small clusters 

combine with each other to form big clusters. The aggregates are generally constituted 

of identical spherical particles. Computer models for the growth of these clusters are 

useful tools for the understanding of aggregation phenomena. The main contribution 

of such models is to provide pathways to investigate the underlying physical 

ingredients ruling the properties observed in growth phenomena (Alves et al., 2008).  

In general, every aggregate formation starts with a single seed particle. Aggregate 

growth is then accomplished by adding other spherical primary particles to the seed 

particle (Ball & Witten, 1984). Such a scheme may also be easily realized in a computer 

simulation using Monte Carlo methods. They are important tools to understand the 

growth of clusters (Meakin, 1999).  

4.2 General classification 

Basically, parameters that can be varied to achieve different types of aggregation 

models can be assigned to four groups (Kätzel et al., 2008), as they refer to aggregate 

formation, particle trajectories, the simulation lattice or algorithm tuning. 

Aggregate formation occurs, as illustrated in Fig. 4.1, either through particle-cluster 

aggregation, where only one primary particle is added each time to an existing 

aggregate, or through cluster-cluster aggregation, which means that even two clusters 

may be added to a new cluster. 
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Fig. 4.1: Particle-cluster aggregation (left) and cluster-cluster aggregation (right). 

Particle trajectories are composed by the movements that entities (primary particles 

or small clusters) undergo in the working lattice until they can stick to the main cluster 

and form an aggregate (Dirkse & Cawley, 1995). The entities may take a path that 

consists of many linear pieces or is linear over the whole distance. Erratic, multi-step 

trajectories are usually obtained by a random walk in all six directions, while the 

considered entity gets closer to the main cluster in order to form an aggregate. 

Aggregates are formed by such trajectories in the diffusion-limited aggregation (DLA) 

model (Witten & Sander, 1981), which is described in detail in (Meakin, 1983). 

Alternatively, entities may follow an uninterrupted linear trajectory over the entire 

distance to the main cluster in order to form an aggregate. This type of model is termed 

as ballistic aggregation model and is described in detail in (Vold, 1963). 

  

Fig. 4.2: On-lattice aggregation (left) and off-lattice aggregation (right). 

Simulation lattice is the network (grid) of usually equally spaced horizontal and 

vertical lines that cover the simulated space. Simulation may be on-lattice, when 
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entities may take only specific positions in the simulated space (Fig. 4.2, left) or off-

lattice, when entities may take every position, as seen in Fig. 4.2 (right). 

Tuning parameters that can have a governing influence on the aggregation algorithm 

are sticking probability and fractal properties. Sticking probability is the probability 

of entities to stick to the main cluster to form an aggregate (Turkevich & Scher, 1986). 

If an entity sticks to the main cluster after every single collision, then the sticking 

probability is one (Meakin, 1999). The formed aggregates are tenuous and fractal in 

structure. The fractal dimension is close to 2.2 and the porosity is high, leading to the 

DLA model (Meakin, 1999). Sticking probability decreases with increasing number of 

collisions needed for successful aggregation between the entities and the main cluster. 

The value of sticking probability can become as low as almost zero. The formed 

aggregates are then closely packed like a sphere with a fractal dimension close to 

three. The process of formation is termed as reaction-limited aggregation (RLA) model 

and is described in detail in (Wang et al., 1995). Figure 4.3 illustrates exemplarily on-

lattice PC aggregates generated using DLA and RLA models. 

  

Fig. 4.3: Particle-cluster (PC) aggregates of 100 primary particles generated on-lattice using DLA 

(left) and RLA at sticking probability 0.0001 (right) models. 

Fractal properties of any aggregate are defined by its fractal dimension (𝐷𝑓) and 

prefactor (𝑘). Provided a sufficiently large set of agglomerates of different sizes, the 

power-law relationship (which correlates the number of primary particles of the 
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agglomerates, 𝑁𝑝, with their radii of gyration, 𝑅𝑔 in Eq. (3.7)), is supposed to be 

fulfilled. Assuming validity of the scaling law according to Eq. (3.7), addition of 

primary particles to a cluster can be performed with the goal of establishing specific 

fractal properties. This method of aggregation is termed as a tunable aggregation 

model and is described in detail in Section 4.7. 

4.3 Diffusion limited aggregation model 

Diffusion-limited aggregation (DLA) is the non-equilibrium growth model 

introduced by (Witten & Sander, 1981). The rules of the DLA model are based on an 

iterative stochastic process in which the particles successively follow Brownian 

trajectories until they touch and join together to form an aggregate. According to 

(Witten & Sander, 1981) a cluster is represented by the filled locations in a regular 2D 

grid, and each particle follows a random path consisting of jumps between 

neighboring positions until it reaches an unoccupied location at the periphery of the 

cluster. Meakin (Meakin, 1983) proposed the same model with a computationally 

more efficient method, where the new particles are launched from a circle with a 

radius slightly larger than the distance of the farthest particle of the cluster from the 

origin as seen in Fig. 4.4.  

First, a seed particle of unitary diameter is placed at the center. Particles of unitary 

diameter are released individually from a launching radius 𝑅𝑙, which is larger than 

the cluster radius 𝑅𝑎. Particles on random walks of unitary steps either touch the 

aggregate or cross a killing radius 𝑅𝑘  as illustrated in Fig. 4.4 (right). When a particle 

exceeds the killing radius, it is removed and a new particle is freshly launched from 

the launching radius. When a particle reaches the cluster, it sticks and forms an 

aggregate as shown in the flowchart (Fig. 4.4 (left)). This procedure is repeated until a 

given number of primary particles in the aggregate has been achieved. 
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Figure 4.5 shows the morphological descriptors generated by the above algorithm 

through plots of porosity and fractal dimension. 𝐷𝑓 and 𝑘 of the series of agglomerates 

(10:10:250) generated by means of the DLA model are calculated using the power-law 

relationship (which correlates the number of primary particles of the 

agglomerates, 𝑁𝑝, with their radii of gyration, 𝑅𝑔 in Eq. (3.7)) on a double logarithmic 

scale for the entire sample, similar to the evaluation method in (Dadkhah et al., 2012). 

Applying linear regression to the logarithms of 𝑁𝑝 and 𝑅𝑔/𝑅𝑝 the calculated fractal 

dimension is 𝐷𝑓 = 2.20 and prefactor is 𝑘 = 0.98.  

 

 

Fig. 4.4: Flowchart and pictorial representation of diffusion-limited aggregation model. 
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(a)        (b) 

Fig. 4.5: Porosity (a) and fractal properties (b) of agglomerates generated using the DLA model. 

4.4 Ballistic aggregation model 

The ballistic aggregation (BA) model proposed by (Vold, 1963) is an aggregation 

model in which the random walks of the DLA model are replaced by ballistic 

trajectories at random directions. Sutherland (Sutherland, 1966) found later out that 

the model proposed by (Vold, 1963) had biased distribution of trajectories and 

improved the model for unbiased trajectories. Unlike DLA, the BA model produces 

asymptotically non-fractal clusters (fractal dimension equal to the space dimension). 

The agglomerates at the asymptotic regime are characterized by the power-law 

relationship (Alves et al., 2008; Bensimon et al., 1984).  
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Fig. 4.6: Illustrative representation of ballistic aggregation. 

Figure 4.6 shows an illustrative representation of the ballistic aggregation model. The 

process begins by placing a sphere (seed, marked as red in Fig. 4.6) of unit diameter 

at the origin and setting 𝑅𝑎 =  0, where 𝑅𝑎 is the maximum distance from the origin 

of any particle in the aggregate. Subsequent addition of new particles (spheres, 

marked as green in Fig. 4.6) is made according to the following procedure: 

1. The coordinate axes (x, y, z) of the sphere are rotated by a positive angle 𝛼1 around 

the x-axis to (x', y', z'), where 𝛼1 is uniformly distributed over the range 0 to 2π and 

then by a positive angle 𝛼2 around the y-axis to (𝑥𝑛𝑒𝑤, 𝑦𝑛𝑒𝑤, 𝑧𝑛𝑒𝑤), where 𝑠𝑖𝑛𝛼2  is 

uniformly distributed between -1 and +1. The transformation equations for the 

coordinates of the center of the sphere are: 

𝑥𝑛𝑒𝑤  =  𝑥 𝑐𝑜𝑠𝛼2 +  𝑦 𝑠𝑖𝑛𝛼1 𝑠𝑖𝑛𝛼2 −  𝑧 𝑐𝑜𝑠𝛼1 𝑠𝑖𝑛𝛼2,                                                           (4.1)  

𝑦𝑛𝑒𝑤  =  𝑦 𝑐𝑜𝑠𝛼1  +  𝑧 𝑠𝑖𝑛𝛼1,                                                                                                          (4.2) 

𝑧𝑛𝑒𝑤  =  𝑥 𝑠𝑖𝑛𝛼2 − 𝑦 𝑠𝑖𝑛𝛼1 𝑐𝑜𝑠𝛼2 +  𝑧 𝑐𝑜𝑠𝛼1 𝑐𝑜𝑠𝛼2.                                                            (4.3) 
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2. The location of the line of approach (parallel to the z-axis) is selected randomly 

from the surface of the enclosing sphere (of radius 𝑅𝑎 + 2 units) centered at the 

origin,  

      x𝑎𝑝𝑝 =  (𝑅𝑎 + 2) + 𝑟𝑎𝑛𝑑1(2𝑅𝑎 + 4),                                                                                            (4.4) 

      y𝑎𝑝𝑝  =  − (𝑅𝑎 +  2) +  𝑟𝑎𝑛𝑑2 (2𝑅𝑎  +  4),                                                                            (4.5) 

where 𝑟𝑎𝑛𝑑1and 𝑟𝑎𝑛𝑑2 are uniformly distributed on the range 0 to 1 and   

      x𝑎𝑝𝑝 2 +  y𝑎𝑝𝑝
2  ≤ (𝑅𝑎 + 2)2.                                                                                               (4.6) 

3. The collision of the particle with the main cluster is checked. If no collision has 

been achieved, the axes are turned again and the entire process is repeated. If a 

collision has occurred, the new particle is added to the aggregate at the point of 

first contact. 

Ballistic PC aggregation model generates aggregates with high fractal dimension 

(close to 3) and high porosity. However, the porosity of aggregates can be reduced by 

reconstruction or/and compaction (Baric et al., 2019). 

4.5 Reaction limited aggregation model 

Finally, a third standard aggregation process was proposed by (Eden, 1961) as an on-

lattice model for biological pattern formation as, for instance, tumor growth and 

bacterial colonies. In this model, new particles are sequentially added to the empty 

neighborhood of the cluster without overlap with previously aggregated particles. 

Aggregates generated using this model are compact with self-affine fractal surface 

(Meakin, 1983). Later, (Wang et al., 1995) proposed an off-lattice Eden-model and 

concluded that the aggregates are porous and uniform.  
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Meakin (Meakin, 1999) gave an overview of six commonly used combinations of the 

discussed parameters (aggregate formation, particle trajectories, simulation lattice 

and sticking probability). The fractal dimensions of clusters generated by simple 

particle-cluster and cluster-cluster aggregation models are given in Table 4.1. 

Table 4.1. Fractal dimension of aggregates generated by different models according to Meakin 

(Meakin, 1999). 

Model Particle-cluster (PC) Cluster-cluster (CC) 

Diffusion-limited (off-lattice) 2.50 1.80 

Ballistic (off-lattice) 3.00 1.95 

Reaction-limited (on-lattice) 3.00 2.09 

From Table 4.1 it is evident that the fractal dimension of cluster-cluster (CC) 

aggregation models is lower than that of particle-cluster (PC) aggregation models. 

Consequently, the porosity of CC aggregates is always higher than the porosity of PC 

aggregates. According to the existing experimental findings, the fractal dimension of 

spray fluidized bed agglomerates is between 2 and 3, whereas porosity ranges 

(depending on agglomerate size) from 0.4 to 0.75 (Dadkhah, 2014; Dadkhah & Tsotsas, 

2014). Hence, CC algorithms can be excluded due to too low 𝐷𝑓 (Table 4.1). Ballistic 

PC aggregation has been reported to asymptotically (for large particles) result in a 

constant porosity of about 0.83 by Sutherland (Sutherland, 1967). This means that the 

aggregates formed using the ballistic model are too porous in comparison to real SFB 

agglomerates. Similar behavior has been observed in (Dernedde et al., 2012). 

Therefore, CC and ballistic algorithms are excluded from further consideration, which 

will focus on tuning by the sticking probability and on the tunable aggregation model. 
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4.6 Sticking probability model 

The sticking probability aggregation model of this work is an on-lattice PC 

aggregation model where the primary particles take a random walk like in DLA 

(Witten & Sander, 1981) to stick to the main cluster. The input parameters are the 

number of identical spherical primary particles (𝑁𝑝) and the sticking probability (𝑃𝑠). 

The algorithm of this model (given in Fig. 4.7) is as following: 

1. A seed particle (the first one from the cluster) is placed at the center of a 3D lattice.  

2. The next primary particle of unitary diameter is released from a launching radius 

centered at the seed, 𝑅𝑙, larger than the cluster radius 𝑅𝑎. (𝑅𝑙 = 𝑅𝑎 + ∆𝑅, where 𝑅𝑎 

is the distance from the center of mass of the cluster at the origin to the farthest 

particle of the growing cluster and ∆R is a small distance). 

3. The released particle performs a random walk on the 3D lattice until it reaches the 

seed/cluster. 

4. If a random number drawn between 0 and 1 (rand) is lower than 𝑃𝑠  (sticking 

probability), then the particle is attached to the seed/cluster. Otherwise, the 

random walk process continues until the seed/cluster is reached again. 

5. When the current particle has been attached to the cluster, the next primary particle 

is generated and released. 

6. If the particle reaches a position that is further away from the center of mass 

than 𝑅𝑘 (killing radius), then it is eliminated and launched again. 

7. Steps 2-6 are repeated until the desired number of primary particles in the 

aggregate is achieved.  
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Fig. 4.7: Flowchart and pictorial representation of the sticking probability model. 

Several series of agglomerates made of monodisperse spherical primary particles 

ranging in number from 5 to 100 have been generated at an increment of 5 using this 

model at various values of the sticking probability, and the fractal dimension of each 

series has been evaluated. Then, 10 realizations of this procedure have been conducted 

for each sticking probability and the results are plotted in Fig. 4.8. Each box, in Fig. 

4.8,  represents the respective interquartile range (difference between the 75th and 25th 

percentile). The horizontal bar (marked as red) inside the box is the median. Regarding 

the horizontal bars (marked as black), the one on the top of the box is the largest data 

point, while the other at the bottom is the lowest data point excluding the outliers 

(denoted by red plus sign). It can be seen that the fractal dimension increases with a 

decrease in sticking probability.  
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Fig. 4.8: The fractal dimension of agglomerates obtained at different sticking probabilities (𝑃𝑠) using 

the sticking probability model. 

Morphology of the biggest agglomerates (with 100 primary particles) generated 

synthetically at different sticking probabilities and computation time on the 

mentioned personal computer (described in  Section 3.10) required for one realization 

in each case are noted in Table 4.2. The porosity of the agglomerates in Table 4.2 has 

been measured using the radius of gyration method. 

As the sticking probability decreases, porosity decreases and reaches an asymptotic 

value. The lowest porosity achieved using this model for 𝑁𝑝 = 100 is comparable to 

the highest porosities measured for the largest agglomerates in (Dadkhah & Tsotsas, 

2014), but still higher than the average porosity of SFB agglomerates of around 0.6. At 

lower sticking probability, the computation time increases for only marginal change 

in the structure of an agglomerate, as can be expected. 
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Table 4.2. Agglomerates (𝑁𝑝 = 100) generated using the sticking probability model at different 

sticking probabilities. 

The agglomerate generation here is more efficient as the agglomerates are generated 

by an on-lattice model. However, the agglomerates would be more realistic (on short 

scale) if they were generated by an off-lattice model (Meakin, 1983).  

4.7 Tunable aggregation model 

The trend of the sticking probability model to produce too high agglomerate porosities 

motivated the use of a model that can better tune morphological and fractal properties. 

A review of the developments in the tunable aggregation model over the years is 

presented in Table 4.3. The first tunable CC aggregation algorithm was introduced by 

(Thouy & Jullien, 1994). Subsequently, several other studies have been conducted to 

propose different tunable algorithms, however, in most of these studies only the 

fractal dimension was retained. A notable exception is the algorithm proposed by 

Sticking 

probability (𝑷𝒔) 
1 0.1 0.01 0.001 

 

 

 
  

Porosity (𝜺𝒂𝒈𝒈) 0.922 0.813 0.765 0.745 

Computation 

time (s) 
6 14 60 523 
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(Filippov et al., 2000), which was capable of preserving both the fractal dimension and 

the prefactor.  

Table 4.3. Tunable methods used by different researchers in the past for monodispersed primary 

particles. 

Year Researcher Method Comments 

1994 Thouy & Jullien, 

1994 

CC tuned with 𝐷𝑓 𝐷𝑓 > 2.5 not possible 

No comment on 𝑘 

1995 Mackowski, 1995 Tuned with the power law 

and 𝑅𝑔 

First to use 𝑅𝑔 as a 

tuning factor 

2000 Filippov et al., 2000 Tuned with the power law 

and 𝑅𝑔; made new 

correlation for particle 

position (sequential 

algorithm) 

𝑘 > 1.66 not possible 

for PC; using CC, 𝐷𝑓 >

2.3 not possible 

2009 Chakrabarty et al., 

2009 

FracMAP: PC tuned with 

the power law 

𝐷𝑓 > 2 not possible 

𝑘 < 1 not possible 

2014 Skorupski et al., 

2014 

FLAGE: Using Filippov 

model 

𝑘 > 1.66 not possible 

for PC; using CC, 𝐷𝑓 >

2.3 not possible 

In the present work, the sequential algorithm (SA) proposed by Filippov (Filippov et 

al., 2000) for the PC aggregation model is used. This model is off-lattice and the input 

parameters are the number and radius of primary particles (𝑁𝑝 and 𝑅𝑝) and the fractal 

properties (𝐷𝑓 and 𝑘) of the agglomerates. In this algorithm monodisperse spherical 

primary particles are added one by one using the following steps: 
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1. Insert a particle (seed) at the center of a 3D simulation lattice. 

2. Place the second particle close to it, by selecting a contact point on the spherical 

surface of the seed. 

3. For the third and next particles, the correlation of (Filippov et al., 2000) is used. The 

center of the next particle is on the sphere of radius 𝑅, 

𝑅2 =
𝑁2𝑅𝑝

2

𝑁−1
(

𝑁

𝑘
)

2

𝐷𝑓 −
𝑁𝑅𝑝

2

𝑁−1
− 𝑁𝑅𝑝

2 (
𝑁−1

𝑘
)

2

𝐷𝑓 , (4.7) 

such that there is no overlapping, as shown in Fig. 4.9. Here, N is from 3 to 𝑁𝑝. 

4. Randomly a point is selected on the sphere (of radius 𝑅) and contact and 

overlapping conditions are checked. 

5. If there is a contact without overlapping then the new particle is attached to the 

growing cluster (initially a dimer). 

6. Steps 3-5 are repeated until the targeted number of primary particles is achieved.  

 

Seed particle (step 1) Binary addition (step 2)  Aggregation (steps 3-6) 

Fig. 4.9: A representation of aggregation of monodisperse primary particles using the sequential 

algorithm. 

The morphology of an agglomerate (𝑁𝑝 = 100) formed using SA with 𝐷𝑓 = 3 and 𝑘 =

0.9 is shown in Fig. 4.10. Using this model, the limitation of the sticking probability 

model is overcome and agglomerates with porosity less than 0.7 can easily be created.  

R 
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𝜀𝑎𝑔𝑔 (CH) = 0.59 

(a) 

𝜀𝑎𝑔𝑔 (𝑅𝑔) = 0.55 

(b) 

 

(c) 

Fig. 4.10: Porosity using the convex hull (CH) method (a) and the radius of gyration method (b) and 

coordination number distribution (c) of an agglomerate (𝑁𝑝 = 100) generated using SA at 𝐷𝑓 = 3 

and 𝑘 = 0.9. 
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The range of morphological descriptors reported by Dadkhah and Tsotsas in their 

experiments (Dadkhah & Tsotsas, 2014) (Table B.2) is achieved using this model. 

However, the limitation in the prefactor (greater than 1.66 not possible) still remains, 

whereas prefactors greater than 1.66 are common in practice (Dadkhah & Tsotsas, 

2014; Lapuerta et al., 2006; Pashminehazar et al., 2019; Sorensen, 2011) and it would 

be desirable to use the model without restriction. 

4.8 Tunable sequential aggregation model and its limitation 

As stated in Table 4.3, the only limitation of SA is that prefactor values of 𝑘 > 1.66 are 

not possible. This limitation can be overcome by tuning 𝐷𝑓 with respect to the porosity 

correlation of Eq. (3.13) (Singh & Tsotsas, 2019), 

𝜀𝑎𝑔𝑔 = 1 − 0.465𝑁𝑝 (
𝑘

𝑁𝑝
)

3

𝐷𝑓. (4.8) 

Keeping the porosity (𝜀𝑎𝑔𝑔) and the number of primary particles (𝑁𝑝) same, the fractal 

dimension is changed by setting the prefactor to 𝑘 = 1:  

𝜀𝑎𝑔𝑔 = 1 − 0.465𝑁𝑝 (
1

𝑁𝑝
)

3

𝐷𝑓,𝑡𝑢𝑛𝑒𝑑. (4.9) 

Equating Eqs. (4.8) and (4.9), the correlation for tuned fractal dimension at specific 

prefactor (𝑘 = 1) is obtained 

𝐷𝑓,𝑡𝑢𝑛𝑒𝑑 = 𝐷𝑓 (
ln

𝑁𝑝

1

ln
𝑁𝑝

𝑘

). (4.10) 
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Fig. 4.11: Logarithmic plots of power law from the origin (dashed lines) with same prefactor 

(𝑘 = 1) and different slopes (𝐷𝑓 = 3.00, 2.81, 2.66) corresponding to the desired plot (solid 

line) with prefactor (𝑘 = 2.01) and fractal dimension (𝐷𝑓 = 2.31) for certain numbers of 

primary particles. 

Using the power-law relationship (Eq. (3.7)) to compute the change in the fractal 

properties with the same radius of gyration, the same relationship as in Eq. (4.10) is 

obtained. The logarithmic version of the power law,  

ln 𝑁𝑝 = 𝐷𝑓 ln (
𝑅𝑔

𝑅𝑝
) + ln 𝑘, (4.11) 

is illustrated in Fig. 4.11 with straight lines that represent original and tuned 

combinations of 𝐷𝑓 and 𝑘. Tuned combinations fulfill Eq. (4.10) (preservation of 
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agglomerate porosity) only for a specific number of primary particles, which is also 

given in the insert of Fig. 4.11. 

Table 4.4 shows the comparison in terms of porosity and mean coordination number 

of an agglomerate (𝑁𝑝 = 50) from Exp. B of Dadkhah (Dadkhah, 2014) and 

agglomerates with the same number of primary particles synthesized using the SA 

model. The latter have been obtained with the genuine fractal properties, as well as 

with modified 𝑘 (both at 𝑘 = 1 and on some neighbor values, for comparison) and 

tuned 𝐷𝑓.  

Table 4.4. Agglomerates (𝑁𝑝 = 50) generated using SA with tuned 𝐷𝑓  model and compared with an 

agglomerate (𝑁𝑝 = 50) from Exp. B (Dadkhah, 2014). 

 𝑫𝒇 𝒌 𝜺𝒂𝒈𝒈 (𝑬𝒒.  (𝟒.𝟖)) 𝜺𝒂𝒈𝒈 (𝑹𝒈) 𝜺𝒂𝒈𝒈 (𝑪𝑯) MCN 

Experiment B 2.31 2.01 0.64 0.66 0.64 3.06 

SA 

2.68 1.2 0.64 0.61 0.63 3.10 

2.81 1.0 0.64 0.61 0.62 3.08 

2.97 0.8 0.64 0.61 0.63 3.02 

Experiment B has been chosen for comparison because the size of the primary particles 

measured by Dadkhah for Exp. B is close to monodisperse. Consequently, this 

experiment replicates in the best way the assumptions behind the monodisperse 

tunable aggregation model used in this chapter and can act as a reference to validate 

the tunable 𝐷𝑓 model, as seen in Fig. 4.12. 
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SA (2.68, 1.2) SA (2.81, 1.0) SA (2.97, 0.8) 

Fig. 4.12: Agglomerates (𝑁𝑝 = 50) generated using SA with tuned 𝐷𝑓  and 𝑘 according to Table 4.4. 

By tuning the fractal dimension with different prefactors in a way that keeps the 

porosity that can be obtained from Eq. (4.8) constant, the formed agglomerates are 

almost the same. This can be visually observed in Fig. 4.12, but it can also be seen in 

nearly constant porosities obtained by the gyration and convex hull methods as well 

as nearly constant average coordination number (Table 4.4). Therefore, the limitation 

of SA regarding the value of 𝑘 is overcome and all the agglomerates can be constructed 

with this model.  

However, there is another limitation depicted in Fig. 4.11. As the slope increases the 

fractal dimension also increases, but 𝐷𝑓 > 3 is physically not feasible, which means 

that slopes of the dashed lines can only be increased until 71.5°. This limits the 

formation of aggregates with primary particles less than 

𝑁𝑝,𝑙𝑖𝑚 = 𝑘
(

3

3−𝐷𝑓
)
. 

(4.12) 

This restriction is overcome by constructing the aggregates until 𝑁𝑝,𝑙𝑖𝑚 (for Exp. B until 

the value of 𝑁𝑝,𝑙𝑖𝑚 = 21) at 𝐷𝑓 = 3 and 𝑘 = 1. The reason for using these particular 

values of 𝐷𝑓 and k is the compactness of small SFB agglomerates.  
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Combining the SA with this novel approach of tuned fractal dimension enables to 

construct any SFB agglomerate. The algorithm, referred to in the following as tunable 

sequential aggregation (TSA) model, is computationally fast. It takes less than 2 

seconds to generate an agglomerate with 100 monodisperse spherical primary 

particles on the mentioned personal computer (described in  Section 3.10). 

4.9 Validation of the TSA model 

Agglomerates with the same number of primary particles as examined by Dadkhah 

(Dadkhah, 2014) are generated using the TSA model. For each trial, the TSA model 

takes the values of 𝐷𝑓 and 𝑘 from the empirical correlations obtained by Singh and 

Tsotsas (Singh & Tsotsas, 2019), i.e. from Eqs. (3.18) and (3.17). These values of 𝐷𝑓 and 

𝑘 are used as the input parameters for the TSA model to generate the agglomerates at 

tuned 𝐷𝑓 (calculated using Eq. (4.10)) and 𝑘 = 1. Monodisperse primary particles with 

diameter of 520 µm are combined with each other in the TSA model.  

The morphological descriptors of the generated agglomerates from the TSA model are 

obtained and averaged over five realizations. In each realization a series of 

agglomerates are produced with exactly the same number of primary particles as in 

the experimental morphological evaluation. 𝐷𝑓 and 𝑘 of the agglomerates generated 

by means of the TSA model (Table 4.5) are calculated using the power-law relationship 

on a log scale (Eq. (3.7)) for the entire sample, similar to Dadkhah’s evaluation method 

(Dadkhah et al., 2012). Values of εagg by the radius of gyration method and of MCN 

are computed for each agglomerate of a series, then averaged arithmetically for the 

series, then averaged among five realization and, finally, given in Table 4.5. This is 

also reproducing the procedure that Dadkhah has used in her evaluation of 

tomography data. 
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Morphological descriptors obtained from the TSA model agree very well with the 

experimental values (Dadkhah & Tsotsas, 2014). A slight deviation in the results of the 

TSA model is due to the size dispersity of primary particles used in the experiments, 

while in simulations the primary particles are fully monodisperse with diameter of 

520 µm. However, all trends of changes in morphology by changing operating 

conditions are similar between reconstructed and real agglomerates from (Dadkhah 

& Tsotsas, 2014). 

Table 4.5. Experimental and simulation results for each trial. 

Experiment set A B C D E 

Temperature [℃] 60 30 90 60 60 

Binder [wt. %] 2 2 2 6 10 

Experimental results for each trial (Dadkhah & Tsotsas, 2014) 

𝐷𝑓 [-] 2.45 2.31 2.94 2.24 2.09 

k [-] 1.76 2.01 0.98 1.96 2.24 

Average εagg [-] 0.57 0.62 0.53 0.58 0.63 

Average MCN [-] 3.32 3.10 4.02 2.92 2.87 

TSA model results for each trial (averaged over 5 realizations) 

𝐷𝑓 [-] 2.37 2.24 2.72 2.17 2.05 

k [-] 2.12 2.37 1.48 2.32 2.53 

Average εagg [-] 0.54 0.59 0.53 0.55 0.64 

Average MCN[-] 3.61 3.52 3.90 3.31 3.09 

Furthermore, the porosity obtained by the gyration method using the TSA model is 

compared with Exp. B (in which the primary particles have been close to 

monodisperse) for specific agglomerates as well as theoretically, by the porosity 

correlation (Eq. (4.8)) with fractal properties (𝐷𝑓, 𝑘) obtained from experiment and 

simulation (Table 4.5) in Fig. 4.13. Agglomerates simulated using the TSA model are 

lying close to the curve of Eq. (4.8) with fractal properties (𝐷𝑓, 𝑘) obtained from 
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simulation (Table 4.5). There is a difference to the curve with fractal properties (𝐷𝑓, 𝑘) 

obtained from Exp. B (Table 4.5), but this difference is small.  

Figure 4.13 validates the porosity correlation (Eq. (4.8)) for the simulated agglomerates 

in similar way as it was validated previously in Section 3.8.1 (Singh & Tsotsas, 2019) 

for real agglomerates obtained from experiments (Dadkhah, 2014). One important 

aspect of Fig. 4.13 is that the agglomerates formed using the TSA model, regardless of 

tuned fractal properties (𝐷𝑓, 𝑘) at different 𝑁𝑝, are in close affinity to the agglomerates 

examined by Dadkhah in her experiments (Dadkhah, 2014). 

 

Fig. 4.13: Comparison of porosity obtained from Eq. (4.8) with 𝐷𝑓, 𝑘 from Table 4.5 (from experiments 

or simulations) with the porosity of real agglomerates from (Dadkhah, 2014) and agglomerates 

reconstructed by the means of the TSA model (both evaluated using the gyration method). 

The mean coordination numbers for all the agglomerates simulated using the TSA 

model are compared to the experimental values in Fig. 4.14. MCN using the TSA 

model for the small agglomerates (𝑁𝑝 < 𝑁𝑝,𝑙𝑖𝑚) are nearly similar for all the 
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experiments. The reason behind this is the limitation of the TSA model that the small 

agglomerates are reconstructed at 𝐷𝑓 = 3.  

(a) (b) 

Fig. 4.14: Mean coordination number (MCN) of agglomerates for a set of experiments (Dadkhah & 

Tsotsas, 2014) (a) compared with synthetic agglomerates using the TSA model (b). 

The spread of the experimental data (Fig. 4.14a) is higher because of at least 

moderately polydisperse primary particles having been used in the experiments 

(Dadkhah & Tsotsas, 2014). The trends of the results from the TSA model are similar 

to the experiments (Dadkhah & Tsotsas, 2014). With a high fractal dimension, the 

porosity is low and MCN is high, leading to a compact structure. On contrary at low 

fractal dimension, the porosity is high and MCN is low, leading to tenuous structure. 

The coordination number of compact agglomerates (Exp. C) is the highest and that of 

the tenuous agglomerates (Exp. E) is the lowest.  

Consequently, the strength of agglomerates (reconstructed using the TSA model) is 

calculated using the Rumpf model (Rumpf, 1958) to 
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𝜎𝑇 =
MCN(1−𝜀𝑎𝑔𝑔)𝐹𝑐

𝜋𝐷𝑝
2 , 

(4.13) 

for the five experiments and compared in Fig. 4.15. Here, MCN and 𝜀𝑎𝑔𝑔 are mean 

coordination number and porosity of an agglomerate, 𝐹𝑐 is the mean cohesive force 

between the primary particles of diameter 𝐷𝑝. On the one hand, the strength is 

calculated from Eq. (4.13) with MCN and 𝜀𝑎𝑔𝑔 from the TSA model with 𝐷𝑝 = 520 𝜇𝑚 

and 𝐹𝑐 assumed as 20 N. On the other hand, the strength is calculated using a 

simplification in determining the MCN (= 𝜋 𝜀𝑎𝑔𝑔⁄ ) (Peglow et al., 2014; Rumpf, 1958), 

𝜀𝑎𝑔𝑔 from the TSA model, and same 𝐷𝑝 and 𝐹𝑐.  

(a) (b) 

Fig. 4.15: Strength calculated using Eq. (4.13) for the agglomerates generated by means of the TSA 

model with MCN from TSA model (a) and with MCN = 𝜋 𝜀𝑎𝑔𝑔⁄  (b) for a set of experiments 

(Dadkhah & Tsotsas, 2014). 

From the plots of strength calculated using different ways of obtaining MCN in Fig. 

4.15 it is clear that agglomerate morphology should be considered as comprehensively 

as possible (i.e. with MCN and 𝜀𝑎𝑔𝑔 considered separately) during the process of 

breakage. It is also evident from Fig. 4.15 that the strength of the most compact 

agglomerates (Exp. C) is highest, while it is lowest for the most tenuous agglomerates 

(Exp. E). 



4.10 CVMC simulation incorporated with aggregation model (CVMC-2) 97 

 

 

4.10 CVMC simulation incorporated with aggregation model 

(CVMC-2) 

The structural change has already been implemented into the CVMC model in the 

way that has been described in Chapter 3 to determine the kinetics of the 

agglomeration process at different operating conditions. However, other 

morphological features like MCN of the agglomerates were not accessible by that 

approach, though they are very important for the characterization of the product. In 

this section the CVMC model that has been described in Chapter 3 is modified by 

introducing the TSA model. Figure 4.16 shows a schematic representation of 

simulating the SFB agglomeration by incorporating the aggregation model. Using the 

TSA model as the aggregation model, various morphological descriptors are 

determined. 

 

Fig. 4.16: Simplified diagram of the present CVMC (CVMC-2) algorithm. 

Figure 4.17 shows two ways of implementing the TSA model into the CVMC model: 

postprocessing and in-situ. In postprocessing, the TSA model is called at the end of 
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the CVMC simulation. The simulation scheme is same as in Chapter 3 (Singh & 

Tsotsas, 2019) and after the simulation ends the formed agglomerates are 

reconstructed using the TSA model with input parameters (𝑁𝑝, 𝐷𝑓, 𝑘) from the CVMC 

model. Whereas in the in-situ version the TSA model is called at every time step of 

the CVMC simulation. Unlike in Chapter 3 (Singh & Tsotsas, 2019), where the porosity 

is calculated using Eq. (4.8), here the porosity is calculated using the radius of gyration 

method by reconstructing the formed agglomerates with the TSA model. Then, this 

porosity is inserted in Eq. (3.14) to obtain agglomerate diameter, 𝐷𝑎𝑔𝑔. 

 

(a) 

(b) 

Fig. 4.17: Two ways of implementing the TSA model in the CVMC simulation: postprocessing (a) 

and in-situ (b). 
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Morphological descriptors (𝐷𝑓, 𝑘, average 𝜀𝑎𝑔𝑔, average MCN) obtained for different 

experiments in (Dadkhah & Tsotsas, 2014), namely for Exp. A to Exp. E with glass 

beads as the primary particles, have been presented in Table 4.5. Experiments B, A 

and C represent the increasing of inlet fluidized gas temperature from 30℃ to 60℃ 

and 90℃. Similarly, experiments A, D, and E represent increasing binder 

(Hydroxypropylmethylcellulose, HPMC) mass fraction of 2 wt. %, 6 wt. % and 10 wt. 

%. Glass beads with a relatively narrow range of diameters between 450 µm and 631 

µm with an average diameter of 520 µm were used for the experiments (Dadkhah & 

Tsotsas, 2014). A brief description of the experiments with morphological descriptors 

examined is given in Appendix B. 

In postprocessing, the CVMC modeling scheme is same as the CVMC model of 

Chapter 3 (Singh & Tsotsas, 2019) (CVMC-1) with the TSA model called at the end of 

the CVMC simulation. SFB agglomerates with different numbers of primary particles 

for the different experiments, as reconstructed using the TSA model, are tabulated in 

Fig. 4.18. Using the in-situ way of implementing the TSA model in the CVMC model 

(denoted by CVMC-2),  the formed agglomerates are reconstructed by means of the 

TSA model to calculate the porosity at every time step of the CVMC simulation. 

However, the breakage of solid agglomerates is still not considered and wetting is 

similar to Chapter 3 (Singh & Tsotsas, 2019; Terrazas-Velarde et al., 2009) in the 

CVMC-2 model. Simulations for the different experiments (Table 4.5) have been 

carried out for 300 s, using the same simulation parameters as in Chapter 3 (Singh & 

Tsotsas, 2019). 

Both ways of implementation of the TSA model in the CVMC model provide the same 

morphological results as in Fig. 4.18. This means that for the same number of primary 

particles, the agglomerates formed are identical. Increasing the inlet fluidization gas 

temperature (Exp. B, A and C), the fractal dimension of the formed agglomerates 
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increases and the prefactor decreases, which in turn decreases the porosity and 

increases the mean coordination number. On contrary, increasing the binder 

concentration (Exp. A, D and E) leads to a decrease in the fractal dimension at 

increasing prefactor, resulting in an increase in porosity and a decrease in the mean 

coordination number.  

 

Fig. 4.18: SFB agglomerates of different sizes reconstructed using the TSA model for different 

experimental trials. 

In Fig. 4.19 diameters of agglomerates (using Eq. (3.14)) are calculated by taking the 

porosity from the TSA model and plotted against the number of primary particles to 

depict the morphological change for different experiments. The diameter of 

agglomerates with a similar number of primary particles is lowest for Exp. C and 

highest for Exp. E. The reason behind this is that at higher inlet gas temperature (Exp. 

C) the formed agglomerates are compact with high fractal dimension and 

coordination number and low porosity (Fig. 4.18). Contrary, for high binder content 
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(Exp. E) the agglomerates are tenuous with low fractal dimension and coordination 

number and high porosity (Fig. 4.18). Therefore, the diameter of a volume equivalent 

sphere is highest for Exp. E and lowest for Exp. C. Similar conclusions were made by 

Dadkhah for the experimentally produced agglomerates (Dadkhah & Tsotsas, 2014).  

 

 

Fig. 4.19: Agglomerate diameter with respect to the number of primary particles, along with 

agglomerates for 𝑁𝑝 = 50  for the different experiments at 300 s. 

Moreover, in Fig. 4.20 the temporal change of the diameter for the different 

experiments is used to depict the kinetics of the process. As already mentioned, in 

contrast to the CVMC-1 model, the agglomerate diameter in the CVMC-2 model is 

calculated using Eq. (3.14) with porosity evaluated from the TSA model. This has 

though only little influence on the kinetics of the process (Fig. 4.20). The relative 

diameter of the agglomerates is the ratio of Sauter mean diameter of the population 
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and the initial diameter (𝐷𝑝 = 520 μm) at a given instant of time (Singh & Tsotsas, 

2019). As the temperature of the inlet fluidization gas increases (Exp. B, A and C) the 

size of deposited droplets decreases and the probability of successful collision 

becomes smaller (Singh & Tsotsas, 2019; Terrazas-Velarde et al., 2011a). Consequently, 

the growth rate decreases.  

 

 

Fig. 4.20: Agglomerate relative average diameter with respect to time, using different model 

versions (CVMC-1 and CVMC-2) for the different experiments. 

On the contrary, as the binder concentration increases (Exp. A, D, and E) the growth 

rate increases. Binder droplets become more viscous when the binder concentration 

increases and the fulfillment of the Stokes criterion (Adetayo & Ennis, 1997) upon wet 

collision becomes easier. A more viscous liquid can rather dissipate the kinetic energy 

of colliding particles, leading to a higher growth rate (Singh & Tsotsas, 2019; Terrazas-

Velarde et al., 2011a). Very similar behavior was seen in (Singh & Tsotsas, 2019; 

Terrazas-Velarde et al., 2009). However, as can be expected, the CVMC-2 model is 
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computationally slower than the CVMC-1 model from Chapter 3 (Singh & Tsotsas, 

2019). 

Using the CVMC-2 model (in-situ) the morphology of the agglomerates formed at 

every time step can provide the foundation for incorporating breakage in the 

simulation by calculating the strength of agglomerates by means of Eq. (4.13). Both 

porosity and coordination number of an agglomerate, that can be predicted using the 

CVMC-2 model, are required to fully assess its strength. Further upon calculation of 

the surface area of the formed agglomerates, the description of the droplet (binder) 

deposition mechanism in the model could be enhanced.  

4.11 Conclusion  

Morphological descriptors are important in order to capture the structure of spray 

fluidized bed agglomerates and macroscopic properties, like strength, associated with 

them. From the plethora of aggregation models in literature, the PC aggregation 

model offers a good prognosis for SFB agglomerates. Tuning of the aggregation model 

by means of the sticking probability was not favorable for spray fluidized bed 

agglomeration. Fractal dimensions obtained in this way were in a reasonable range of 

2 to 3, and porosity reached an asymptotic minimum with decreasing sticking 

probability, but this minimum was still too high compared to the porosity of real SFB 

agglomerates determined by (Dadkhah & Tsotsas, 2014). The tunable PC aggregation 

model developed by (Filippov et al., 2000) was therefore used for reconstructing the 

SFB agglomerates. The fractal dimension and porosity obtained with this model were 

comparable to those of real SFB agglomerates, but the algorithm was limited to 

prefactors less than 1.66 according to (Filippov et al., 2000).  
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A novel approach of tuning the fractal dimension with a given prefactor (equal to one) 

has been introduced to overcome the limitation of the prefactor. This approach was 

validated by the experimental data, as the structural features (porosity and 

coordination number) remained essentially the same when tuning at different 

prefactor. Irrespectively of the variable fractal dimension for each agglomerate in the 

TSA model, reconstructed agglomerates were in close affinity to the experimental 

agglomerates (Dadkhah, 2014). The structural properties of agglomerates evaluated 

by Dadkhah  have been studied in detail using the TSA model. The results of the TSA 

model strongly agreed with the experiments (Dadkhah & Tsotsas, 2014). Knowing the 

coordination number and porosity of the agglomerates, the strength of the 

agglomerates was calculated, which could be used further to model breakage. The 

TSA model generated the agglomerates with monodisperse primary particles, so the 

further goal is to enhance the model by introducing size dispersity. 

Earlier only the experimental agglomerates validated the porosity correlation (Eq. 

(4.8)) developed in (Singh & Tsotsas, 2019). Now, it was found to strongly coincide 

with the porosity of synthetic agglomerates generated using the TSA model. This 

validates the porosity correlation and the TSA model conjointly. Further, a new 

CVMC model has been developed by incorporating the TSA model to mimic the 

morphology of agglomerates formed. Two ways of implementing the TSA model in 

CVMC simulations were presented, and the in-situ implementation (denoted by 

CVMC-2) was very promising. Though this way of implementation is 

computationally slower, it has the advantage of breaking path for the goal of 

implementing real structural parameters to compute micro-scale mechanisms like 

droplet deposition and breakage. 

  



 

Chapter 5 Polydispersity in agglomeration 

processes 

This chapter is a modified version of the paper “Influence of polydispersity and 

breakage on stochastic simulations of spray fluidized bed agglomeration [in 

preparation]” with focus on size dispersity of primary particles. 
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5.1 Introduction 

Size dispersity of primary particles is an important aspect to fully assess the 

morphological features of an agglomerate. In general, agglomerates typically consist 

of polydisperse primary particles. There is, thus, great interest in understanding the 

formation dynamics and structure of such agglomerates, and especially also their 

agglomeration rate, which strongly influences the design of the agglomerator. Several 

studies have been conducted to analyze the influence of polydispersity on the physical 

or chemical properties of fractal aggregates made of very small primary particles, such 

as on sintering, coagulation and radiation properties (Dastanpour & Rogak, 2016; 

Goudeli et al., 2016; Morán et al., 2018). However, the influence of polydispersity on 

the kinetics and morphology of SFB agglomerates has not yet been investigated. In the 

present chapter, a polydisperse TSA model is developed to generate the SFB 

agglomerates. This structural model is combined with the models that describe micro-

scale processes and events in the comprehensive simulation framework. 

5.2 Polydisperse aggregation model 

An off-lattice particle-cluster polydisperse tunable sequential aggregation (PTSA) 

algorithm is developed. The input parameters are the number of primary particles 

(𝑁𝑝) in the agglomerate to be constructed, the mean and standard deviation (𝜎) for the 

Gaussian (normal) distribution of radii of primary particles, and the fractal properties 

(𝐷𝑓 & 𝑘) of agglomerates. In this algorithm polydisperse spherical primary particles 

are added one by one using the following steps: 

1. Normal distribution of radii of primary particles is generated with a given mean 

value and standard deviation for a given number of primary particles (𝑁𝑝).   

2. The first primary particle (seed) with a radius taken from the distribution is 

inserted at the center of a 3D simulation space. 
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3. The second primary particle is placed in contact with it, by selecting a point on the 

spherical surface of the seed. 

4. The input fractal properties (𝐷𝑓 & 𝑘) are tuned, due to the limitation of the TSA 

model that has been described in detail in Chapter 4 (Singh & Tsotsas, 2020). The 

fractal dimension is tuned at fixed prefactor (𝑘 = 1) using the formulation 

developed by (Singh & Tsotsas, 2020), 

𝐷𝑓,𝑡𝑢𝑛𝑒𝑑 = 𝐷𝑓 (
ln

𝑁𝑝

1

ln
𝑁𝑝

𝑘

). (5.1) 

5. For the third and next particles, the correlation of (Filippov et al., 2000) with 

𝐷𝑓,𝑡𝑢𝑛𝑒𝑑 and 𝑘 = 1 is used. The center of each primary particle to be added is on a 

sphere of radius 𝑅, 

𝑅2 =
𝑛2𝑅𝑝,𝑛

2

𝑛−1
(𝑛)

2

𝐷𝑓,𝑡𝑢𝑛𝑒𝑑 −
𝑛𝑅𝑝,𝑛

2

𝑛−1
− 𝑛𝑅𝑝,𝑛

2(𝑛 − 1)
2

𝐷𝑓,𝑡𝑢𝑛𝑒𝑑 . (5.2) 

Here, n is from 3 to 𝑁𝑝 and 𝑅𝑝,𝑛 is selected sequentially from the primary particle 

radius distribution. 

6. Randomly a point is selected on the sphere (of radius 𝑅) and contact and 

overlapping conditions are checked. 

7. If there is a contact without overlapping then the new particle is attached to the 

growing cluster (initially a dimer). 

8. Steps 5-7 are perpetuated until the targeted number of primary particles has been 

achieved.  

An assumption has been made regarding the mass distribution of the individual 

particles in the agglomerate while calculating the distance of the new particle (𝑅 from 

Eq. (5.2)). The masses of primary particles are, namely, considered same. This 

approach is similar to (Skorupski et al., 2014). However, this algorithm is different 
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from the modifications proposed by FLAGE (Skorupski et al., 2014) while generating 

polydisperse agglomerates in the aspects of Table 5.1. 

Table 5.1. Differences in algorithm of present PTSA model from FLAGE (Skorupski et al., 2014). 

PTSA FLAGE 

Actual primary particle radius is used in Eq. 

(5.2). 

Averaged primary particle radius is 

used. 

Geometrical center of aggregate is 

calculated at each step (𝑛) of the aggregation 

process. 

Geometrical center is calculated once 

and kept constant. 

 

It should be noted that relatively compact SFB agglomerates with the experimentally 

observed pairs of fractal property values (i.e., large fractal dimension 𝐷𝑓 and large 

prefactor 𝑘, cf. Table B.2) cannot be generated with the original versions of the models 

proposed by (Filippov et al., 2000) and (Skorupski et al., 2014) because of the limitation 

of the prefactor (Singh & Tsotsas, 2020). (Morán et al., 2019) had proposed an 

algorithm by considering the masses of individual primary particles. When testing the 

algorithm from (Morán et al., 2019), it was though not possible to generate 

agglomerates resembling real SFB agglomerates (Dadkhah, 2014). This may be caused 

by combinations of large 𝐷𝑓 with small 𝑘 in (Morán et al., 2019), or by the hierarchical 

nature of this algorithm. 

Figure 5.1 illustrates results of the generation of agglomerates by the PTSA model 

using 100 polydisperse primary particles with a mean radius of 260 µm and standard 

deviation varying from 0 to 30 % of the mean radius with an increment of 10. The 

fractal properties 𝐷𝑓 = 2.5 and 𝑘 = 1.5 have been taken to generate these exemplary 

agglomerates. These values are mid-range values of fractal properties determined 

from the experiments (cf. Table B.2). Radius of gyration of the agglomerate is 

calculated using the expression proposed by (Dastanpour & Rogak, 2016), 
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𝑅𝑔 = √
1

∑ 𝑅𝑝,𝑖
3 ∑ 𝑅𝑝,𝑖

3 (𝑅𝑖
2 +

3

5
𝑅𝑝,𝑖

2
)

𝑁𝑝

𝑖=1
. (5.3) 

Here, 𝑅𝑖 is the position vector of the ith primary particle with radius, 𝑅𝑝,𝑖 from the 

center of gravity (Section 3.3, Fig. 3.1) and 𝑁𝑝 is the number of primary particles in the 

agglomerate. The values of 𝑅𝑔 stated in Fig. 5.1 have been averaged over five 

realizations of each agglomerate. 

    

𝑅𝑔 = 1.3 𝑚𝑚  𝑅𝑔 = 1.4 𝑚𝑚 𝑅𝑔 = 1.5 𝑚𝑚 𝑅𝑔 = 1.6 𝑚𝑚 

Fig. 5.1: Exemplary agglomerates (with 𝑁𝑝 = 100) generated using the PTSA model with a mean radius 

of 260 µm and standard deviation varying from 0 to 30 % of the mean radius (from left to right, in steps 

of 10) with respective radius of gyration (averaged over five realizations). 

5.3 Validation of PTSA model  

The PTSA model is validated with the SFB agglomerates examined by Dadkhah in her 

experiments. For a more precise look, experiments A and D from (Dadkhah, 2014), see 

Appendix B, are considered. In both Exp. A and Exp. D the size diversity of the 

primary particles measured from individual agglomerates by Dadkhah was close to 

10 % of its mean radius. Correspondingly, a standard deviation of 26 µm has been 

combined with the mean radius of 260 µm. Based on the respective Gaussian 

distribution, a series of agglomerates made of different number of primary particles 

ranging from 5 to 250 at an increment of 5 have been generated using the PTSA model 
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at exactly those input values of the fractal dimension and prefactor which are given in 

Table B.2 for experiments A and D. For each agglomerate generated with the PTSA 

model the radius of gyration has been evaluated and averaged over five realizations 

before being plotted in double logarithmic scale against the number of primary 

particles in Fig. 5.2. 

(a) 

 

(b) 

Fig. 5.2: Fractal properties comparison for experimental agglomerates and agglomerates generated 

by the PTSA model using the power-law relationship given in Eq. (3.7); Exp. A (a) and Exp. D (b) 

from Appendix B, Table B.2. 

Output fractal properties extracted by means of the power-law from agglomerates 

generated with the PTSA model do not differ significantly from the respective input 

fractal properties, as it is shown in the Fig. 5.2. The power law is followed almost 

perfectly in both cases, with 𝑅² = 0.999 for the reconstructed and 𝑅² = 0.993 

respectively 𝑅² = 0.994 for the input fractal property values of Exp. A and Exp. D, 

respectively. This level of agreement with the power law and of preservation of the 

fractal properties is sufficient for validation of the model. Even for 20 % standard 

deviation from the average primary particle size for the case Exp. A (not shown 

pictorially), 𝑅2 = 0.999 is obtained with evaluated fractal properties and 𝑅2 = 0.951 

with input fractal properties, i.e. agreement with the power law remains excellent. 
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5.4 Effect of polydispersity on morphology using the PTSA 

model 

Agglomerates with number of primary particles from 5 to 250 are aggregated at an 

increment of 5 using the PTSA model with a mean radius of 260 µm and standard 

deviation varying from 0 to 30 % of the mean radius of primary particles at an 

increment of 5. 𝐷𝑓 and 𝑘 are required to generate the agglomerates and are taken as 

𝐷𝑓 = 2.5 and 𝑘 = 1.5. These values are the mid-range values (values of 𝐷𝑓 and 𝑘 of 

individual experiments are given in Table B.2) of SFB agglomerates examined by 

Dadkhah (Dadkhah & Tsotsas, 2014). The fractal properties and the mean radius of 

primary particles remain constant and only the standard deviation of the radius of the 

primary particles changes.  

The morphological descriptors of each constructed agglomerate are obtained and 

averaged over five realizations. 𝐷𝑓 and 𝑘 of the series of agglomerates (with number 

of primary particles varying from 5 to 250 at an increment of 5) generated using the 

PTSA model are calculated using the power-law relationship (Eq. (3.7), which 

correlates the number of primary particles of the agglomerates, 𝑁𝑝, with their radii of 

gyration, 𝑅𝑔), on a double logarithmic scale for the entire sample, similarly to the 

Dadkhah’s evaluation method (Dadkhah et al., 2012). Throughout this chapter 𝑅𝑝 is 

the mean radius of the primary particles in the individual agglomerate.  
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(a) (b) 

Fig. 5.3: Influence of the size dispersity of the primary particles on the radius of gyration of 

agglomerates (a) and fractal properties calculated using the power-law relationship given in Eq. 

(3.7) on a double logarithmic scale (b). 

Values of 𝑅𝑔 are computed (using Eq. (5.3)) for each agglomerate of a series, then 

averaged among five realizations and, finally, plotted in Fig. 5.3a. The average 

gyration radius (over 5 realizations) of the agglomerates at each 𝑁𝑝 increases with 

increasing size dispersity (σ) of the primary particles. These averaged values of 𝑅𝑔 for 

each agglomerate of the series are used to evaluate the fractal properties of the 

agglomerates on the logarithmic scale using the power-law relationship (Eq. (3.7)), 

and finally plotted in Fig. 5.3b. 

Applying linear regression to the logarithms of 𝑁𝑝 and 𝑅𝑔/𝑅𝑝 showed that the 

calculated fractal dimension is 2.46 ± 0.01, independent of the dispersity of primary 

particle size. Similar behavior was reported in (Bushell & Amal, 1998; Tence et al., 

1986). On the contrary, the fractal dimension was found to decrease monotonically 

with increasing dispersity of primary particles in (Eggersdorfer & Pratsinis, 2012), 

especially at high levels of dispersity. In the present work, the fractal dimension 𝐷𝑓 

does not change significantly. The prefactor (𝑘) is also preserved quite accurately for 

standard deviation (𝜎) up to 10 % of the mean particle size. However, it decreases to 
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1.01 as the standard deviation of primary particle size increases to 78 µm (30 % of 

mean 𝑅𝑝), indicating that in such cases still more precise agglomerate reconstruction 

algorithms might be reasonable.  

Values of 𝜀𝑎𝑔𝑔 by the radius of gyration method and by the convex hull method are 

computed for each agglomerate of the series, then averaged among five realizations 

and, finally, plotted in Fig. 5.4.  

(a) (b) 

Fig. 5.4: Influence of polydispersity on the porosity of agglomerates by the radius of gyration 

method (a) and by the convex hull (b). 

The trend from the plots in Fig. 5.4 shows that with increasing size dispersity of 

primary particles (𝜎), the agglomerates generated become more porous. The porosity 

of the agglomerates from the radius of gyration method and from the convex hull 

method increases as the dispersity of the primary particles increases. 

Similarly, the surface area of volume equivalent sphere (VES, with porosity by the 

radius of gyration method) and the surface area of the agglomerates from the convex 

hull method are computed for each agglomerate of the series, then averaged among 

five realizations and, finally, plotted in Fig. 5.5. The trend from the plots in Fig. 5.5 
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shows that with increasing size dispersity of primary particles (𝜎), the surface area of 

VES (with porosity by the radius of gyration method) and the surface area of the 

agglomerates from convex hull method increase.  

(a) (b) 

Fig. 5.5: Influence of polydispersity on the surface area of VES with porosity by the radius of 

gyration method (a) and on the surface area of agglomerates by the convex hull (b) method. 

(Dastanpour & Rogak, 2016) also found the radius of gyration and the surface area of 

aggregates to increase with increasing size dispersity of primary particles (at constant 

geometric mean primary particle size). In contrast, the porosity of packed beds 

decreases with increasing dispersity (Schulze et al., 2015). This is due to the methods 

used to create the packings, such as sedimentation or settling of particles with rolling 

and vibration, which lead to a higher solid volume fraction (de Klerk, 2003).  

5.5 Effect of polydispersity on kinetics using the CVMC 

model 

In order to estimate the kinetics, the CVMC-2 simulation framework is used and the 

monodisperse aggregation model (TSA model) is replaced with the PTSA model. The 

experimental data reported by Dadkhah (Dadkhah, 2014) are taken to construct the 
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agglomerates using the PTSA model. These experiments were performed in batch 

mode with glass beads as primary particles and HPMC in aqueous solution as a 

binder. A brief description of the experiments with morphological descriptors 

examined is given in Appendix B.  

Overall simulations have been performed according to the scheme described in 

Chapter 2 using the same experimental (Dadkhah, 2014) and simulation parameters 

(given in Table 5.2) as in (Singh & Tsotsas, 2019). Specifically, two sets of simulations 

for the experiment A (Dadkhah, 2014) with inlet fluidization gas temperature of 60℃ 

and binder (HPMC) mass fraction of 2 wt. % have been carried out for 10 min. In the 

first set the diameter of the formed agglomerates is the diameter of VES and in the 

second set surface area equivalent sphere (AES) is used to calculate the diameter, 

where the surface area is obtained with the convex hull method by constructing the 

agglomerates using the PTSA model. 

Table 5.2. Experimental and simulation parameters. 

Bed mass Mbed 500 g 

Primary particle density 𝜌𝑝 2500 kg/m3 

Binder density 𝜌𝑙 998.5 − 1024.0 kg/m3 

Binder addition rate 𝑀̇𝑙 200 g/h 

Gas mass flow rate 𝑀̇𝑔 130 kg/h 

Mean primary particle radius 𝑅𝑝 260 µm 

Droplet diameter 𝐷𝑑 80 µm 

Collision frequency prefactor 𝐹𝑐𝑜𝑙𝑙 10 1/m 

Fluidization velocity 𝑢𝑜 1.912 m/s 

Particle surface asperities height ℎ𝑎 10 µm 

Particle restitution coefficient e 0.8 - 

Binder contact angle 𝜃 40 ° 
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The formed agglomerates are reconstructed using the PTSA model with a mean radius 

of primary particles as 260 µm and a standard deviation varying from 0 to 30 % of the 

mean radius. In order to generate the agglomerates using the PTSA model, fractal 

properties are taken from the empirical correlation of (Singh & Tsotsas, 2019) (given 

in Eq. (3.18) and Eq. (3.17)) by inserting the key operating parameters of spray 

fluidized bed (SFB) agglomeration, namely inlet fluidization gas temperature in ℃ 

and binder mas fraction in wt. %. 

The kinetics of the agglomeration process is expressed in terms of the relative diameter 

of the agglomerates over time. The relative diameter of the agglomerates is the ratio 

of Sauter mean diameter of the population and the initial diameter (twice the 𝑅𝑝) at a 

given instant of time.  

Figure 5.6 shows that the growth rate of the agglomeration process increases with an 

increase in the standard deviation (𝜎) of primary particle size from 0 to 30 % of its 

mean radius, regardless of the choice of the method used to obtain the diameter of 

formed agglomerates. In addition, the AES method is very sensitive over the spread 

of primary particle size. The surface area obtained with the convex hull method (as 

indicated in Section 5.4) provides quantitatively usable information about the 

morphology of agglomerates with different size dispersity of the primary particles. 

Therefore, the AES method is preferable for determining the diameter of SFB 

agglomerates. Hereafter, the CVMC model with AES method of determining 

agglomerate diameter is referred to as CVMC-3. 
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(a) (b) 

Fig. 5.6: Influence of polydispersity on the kinetics of SFB agglomeration process simulated using 

the CVMC model by considering the formed agglomerates as VES (left) and AES (right). 

The size dispersity of the primary particles influences the morphology of the 

agglomerates, which in turn affects the Stokes criterion for coalescence. The first effect 

of primary particle dispersity on the growth rate is simply that the physical size of the 

agglomerate increases with increasing dispersity. Second, it is easier to meet the 

Stokes coalescence criterion for collisions on wet positions. Similar behavior was 

reported in (Goudeli et al., 2016) while investigating the influence of polydisperse 

primary particles on the coagulation of agglomerates. 

5.6 Conclusion 

In this study, a tunable aggregation model has been developed to numerically 

generate SFB agglomerates with polydisperse primary particles. Fractal properties (𝐷𝑓 

and 𝑘) were precisely preserved for agglomerates with a standard deviation of 10 % 

of mean primary particle size, which coarsely corresponds to the available 

experimental results. Fractal dimension 𝐷𝑓 is preserved also for much higher standard 
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deviations of primary particle size, but a shift of the fractal prefactor 𝑘 is then 

observed. Hence, it might be reasonable to improve the model for high levels of size 

dispersity of the primary particles and/or very large agglomerates according to 

(Morán et al., 2019; Morán et al., 2020). 

The influence of primary particle size dispersity on the morphology, growth and size 

distribution of SFB agglomerates has been investigated (by constructing in total 

around 3000 agglomerates using the PTSA model). It was found that the radius of 

gyration, the porosity (by the radius of gyration and the convex hull methods) and the 

surface area (area of VES and from the convex hull) increase with increasing size 

dispersity of the primary particles. Regardless of the tuned fractal properties when 

creating the agglomerates with the PTSA model, the fractal dimension remained 

almost constant, but the prefactor was reduced with increasing dispersity of the 

primary particles. Thus, it is concluded that the assumption of an average primary 

particle size (considered monodisperse), as often applied in particle characterization, 

hardly influences the fractal dimension, but clearly overestimates the prefactor in case 

of polydisperse primary particles for all SFB agglomerates. The agglomeration rate 

was increased with increasing size dispersity of the primary particles (from 𝜎 =  0 to 

30 % of the mean radius of primary particles).  



 

Chapter 6 Breakage of SFB agglomerates 

This chapter is a modified version of the paper “Influence of polydispersity and 

breakage on stochastic simulations of spray fluidized bed agglomeration [in 

preparation]” with focus on breakage of already formed agglomerates. 
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6.1 Introduction 

Breakage of already formed agglomerates is an important mechanism that decreases 

the growth rate and can lead to an equilibrium between growth (agglomeration) and 

rupture (binary breakage), which is typical for fluidized bed processes. A large 

number of parameters influence the agglomerate breakage, e.g. bed hydrodynamics, 

morphology and bonding material. However, most simulations use average 

mechanical and structural parameters that eliminate the complexity of real 

agglomerates from the beginning. Therefore, the simulation results cannot accurately 

predict the properties of individual agglomerates, particularly those bound by binders 

(Iveson et al., 2001). Agglomerates can break due to collisions with equipment walls 

or other particles (primary particles or agglomerates). Here, only the second 

mechanism has been considered. 

6.2 Breakage model 

Strength of agglomerates provides the foundation for the development of a dynamic 

breakage model by incorporating realistic morphology of SFB agglomerates (Singh & 

Tsotsas, 2020). Agglomerate strength (𝜎𝑇) depends on the cohesive force between 

primary particles and agglomerate morphology and is calculated using the Rumpf 

model (Rumpf, 1958) to 

𝜎𝑇 =
MCN(1−𝜀𝑎𝑔𝑔)𝐹𝑐

𝜋𝐷𝑝
2  . (6.1) 

Here, MCN and 𝜀𝑎𝑔𝑔 are mean coordination number and porosity of an agglomerate, 

𝐹𝑐 is the mean cohesive force between the primary particles of mean diameter 𝐷𝑝. MCN 

and 𝜀𝑎𝑔𝑔 are necessary to calculate the strength of agglomerate and are evaluated from 

the PTSA model by constructing the agglomerate.  
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In SFB agglomeration, pendular liquid bridges are formed when two primary particles 

are in contact. Liquid bridge forces are the most important forces and can occur both 

statically through capillary action and dynamically through viscous forces. Under 

dynamic conditions, however, the viscous forces exceed the capillary forces in the 

liquid bridge (van den Dries & Vromans, 2002). Due to the continuous collision of 

agglomerates with walls and other particles (agglomerates and primary particles), the 

associated primary particles are in relative motion. The viscous force of a liquid bridge 

due to the binder is given by Reynolds’ lubrication equation (Seville et al., 2000) to 

𝐹𝑐 =
3𝜋𝜇𝑙𝐷𝑝

2𝑢𝑐

2ℎ𝑔𝑎𝑝
.  (6.2) 

Here,  𝜇𝑙 is the viscosity of the binder, 𝑢𝑐 the collision velocity of the particles with a 

mean diameter 𝐷𝑝 and ℎ𝑔𝑎𝑝 the interparticle gap. The viscosity of the binder is a 

function of binder concentration in the droplet (Terrazas-Velarde, 2012) according to 

Eq. (2.37). 

The binder concentration depends on the amount of water present in the droplet. The 

water contained in the droplet is evaporated due to drying by inlet fluidized gas used 

as a drying agent. As the droplet dries, the mass of solute (binder) remains constant 

and the amount of water 𝑀𝑤 decreases. This leads to an increase in binder mass 

fraction 𝑥𝑏 and, therefore, increase in viscosity 𝜇𝑙 of binder solution. Eventually, the 

binder content and viscosity increase due to the drying process. 

The interparticle gap in an agglomerate is estimated by considering the pore space 

between primary particles in an agglomerate as a bundle of cylindrical capillaries 

having the same surface area as the primary particles assembly (van den Dries & 

Vromans, 2002) and expressed as 
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ℎ𝑔𝑎𝑝 =
2𝜀𝑎𝑔𝑔𝐷𝑝

3(1−𝜀𝑎𝑔𝑔)
 ,  (6.3) 

where 𝜀𝑎𝑔𝑔 is the porosity calculated using gyration method by constructing the 

agglomerate using the PTSA model with a mean primary particle diameter 𝐷𝑝.  

Substituting the cohesive force, 𝐹𝑐, from Eq. (6.2) with interparticle gap, ℎ𝑔𝑎𝑝, from Eq. 

(6.3), agglomerate strength from Eq. (6.1) becomes  

𝜎𝑇 =
9𝜇𝑙𝑢𝑐MCN(1−𝜀𝑎𝑔𝑔)

2

4𝐷𝑝𝜀𝑎𝑔𝑔
. (6.4) 

The breakage model in the present work is based on the ratio of the externally applied 

kinetic energy to the energy required for deformation represented by the Stokes 

deformation number (Liu et al., 2009) 

𝑆𝑡𝑑𝑒𝑓 =
𝜌𝑎𝑔𝑔𝑢𝑐

2

2𝜎𝑇
 , (6.5) 

where 𝜎𝑇 is calculated from Eq. (6.4), 𝜌𝑎𝑔𝑔 is agglomerate density and the collision 

velocity, 𝑢𝑐, as stated previously is chosen randomly by assuming a normally 

distributed function around a mean value equal to 0.5𝑢0 and a standard deviation of 

0.1 m/s. Agglomerate density is calculated as  

 𝜌𝑎𝑔𝑔=(1 − 𝜀𝑎𝑔𝑔)𝜌𝑝 (6.6) 

where 𝜀𝑎𝑔𝑔 is the porosity of an agglomerate calculated using gyration method by 

constructing the agglomerate using the PTSA model and 𝜌𝑝 is primary particle 

density. 
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Fig. 6.1: Simplified diagram of the breakage algorithm used in the present work. 

A flowchart of the breakage model is given in Fig. 6.1. Immediately after the 

unsuccessful collision between a pair of particles (with at least one agglomerate), in 

the case of two colliding agglomerates, one agglomerate is randomly selected from the 

pair of colliding particles or, in the case of a primary particle and an agglomerate 

collision, the (only) agglomerate is selected. It should be noted that the breaking of 

primary particles is not considered in this work. Therefore, if the colliding particles 

are primary particles, they are excluded from the breakage selection. A droplet is 
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randomly selected from the wet droplets (completely dried droplets are ignored) 

deposited on the selected agglomerate. The properties of the selected droplet are used 

to mimic the properties of all bridges in the agglomerate, assumed to be uniform, 

when calculating the cohesive force. The strength of the agglomerate is calculated 

using the cohesive force and morphological descriptors. Morphological descriptors 

like porosity and mean coordination number are evaluated by constructing the 

agglomerate using the PTSA model (with a mean primary particle radius 𝑅𝑝 and a 

standard deviation). The agglomerate is broken when the Stokes deformation number 

is greater than the critical Stokes deformation number.  

Many researchers have assumed the critical Stokes deformation number equal to 

critical Stokes coalescence number (Tardos et al., 1997; Terrazas-Velarde et al., 2011a). 

However, in the case of SFB agglomeration, the critical Stokes deformation number is 

expected to be far from the critical Stokes coalescence number because of the rapid 

solidification rates of the binder, which lead to a stronger bond (Terrazas-Velarde et 

al., 2009). For the sake of simplicity, the critical Stokes deformation number is assumed 

to be equal to twice the critical Stokes coalescence number (given by Eq. (2.39)).  

In this study, random binary breakage occurs where an agglomerate is divided into 

two smaller agglomerates, each with a random number of primary particles while 

retaining the original number of primary particles present in the parent agglomerates. 

It should be noted that the CVMC simulation invokes the PTSA model after each 

agglomeration or breakage event. The PTSA model performs five realizations for each 

agglomerate at each call. The morphological descriptors (like radius of gyration, 

porosity and MCN) are averaged over those five realizations. 
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6.3 CVMC simulation incorporated  with breakage model  

The comprehensive CVMC simulation discussed in Chapter 5 (denoted by CVMC-3) 

has been incorporated with the breakage model and then called CVMC-4. CVMC-4 is 

then used to simulate the SFB agglomeration by treating the simulation box as a 

virtual granulator. The modeling scheme is shown in Fig. 6.2.  

 

Fig. 6.2: CVMC modeling scheme for spray fluidized bed agglomeration. 

Initially, the simulation box, which is considered as a representative sample of the 

particle population, consists of 1000 primary particles. The number of particles in the 

simulation box changes depending on the process, such as agglomeration or breakage, 

which dominates during the simulation. Aggregation model is called after each 

agglomeration/breakage event to replicate the structure and calculate the 

morphological descriptors. For each call, the PTSA model performs five realizations 

for each agglomerate and the evaluated morphological descriptors, namely porosity 

and MCN, are averaged over those five realizations to be used further in the micro-

scale modeling of breakage. 
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6.4 Effect of breakage on kinetics using the CVMC model  

In order to investigate the influence of the breakage mechanism on the kinetics of SFB 

agglomeration, two CVMC simulations for experiment A (reference experiment) were 

performed. In the first simulation, the breakage model as described in Section 6.2 was 

activated (CVMC-4) and for the second (CVMC-3) it was deactivated. The formed 

agglomerates for both simulations are constructed using the PTSA model (described 

in Chapter 5) with a mean radius of primary particles as 260 µm and a standard 

deviation of 26 µm (10 % of the mean radius). It should be noted from Table B.2 and 

Fig. B.1 that the standard deviation of the radius of primary particles evaluated from 

tomographic data by Dadkhah is around 10 % of the mean radius. Moreover, the glass 

beads (primary particles) used for the experiments in (Dadkhah, 2014) were also found 

to be normally distributed (Gaussian distribution) with standard deviation of around 

10 % of the mean radius by Camsizer measurements (Fig. B.1). 

Fractal properties (𝐷𝑓 and 𝑘) for the PTSA model are taken from Eqs. (3.18) and (3.17) 

by inserting the inlet fluidized gas temperature and the binder concentration. The 

kinetics of the agglomeration process is expressed in terms of the relative growth of 

the agglomerates over time. The diameter of the formed agglomerates is the diameter 

of AES, where the surface area is obtained by the convex hull method by constructing 

the agglomerates using the PTSA model. 

Figure 6.3 shows the agglomerate growth (in the left hand-side plot) and the particle 

size distribution after 23 minutes (in right hand-side plot) according to the CVMC 

simulations with and without activating the breakage model. A gradual reduction in 

the rate of agglomeration is achieved in case of breakage, as shown in Fig. 6.3a, leading 

to an equilibrium where growth is almost constant over time. The CVMC simulation 

with breakage mechanism (CVMC-4) ends after 33 minutes, whereas without 

breakage mechanism (CVMC-3), the simulation is stopped at 23 minutes because the 
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agglomerates become too large to simulate. Breakage decreases the overall growth 

rate of the agglomerate process. If agglomeration and breakage occur simultaneously, 

it is possible that the two processes balance each other out and lead to a uniform size 

distribution (Tan et al., 2004). It accomplishes the equilibrium between growth 

(agglomeration) and rupture, which is typical for fluidized bed processes. 

(a) (b) 

Fig. 6.3: Influence of breakage on the kinetics (a) and particle size distribution (b) of SFB 

agglomeration process simulated using the CVMC models for Exp. A. 

In order to validate the breakage model, overall growth rate is calculated. It is defined 

as the ratio of the difference between Sauter mean diameter of the final agglomerates 

at the end of the process and the diameter of primary particles to the duration of the 

trial,  

𝑟𝐺 =
𝐷𝑎𝑔𝑔,32,𝑡−𝐷𝑝

𝑡
 . 

(6.7) 

Upon implementing the breakage model, the overall growth rate (𝑟𝐺 =  1.06 µm/s) 

after 33 minutes is almost equal to the growth rate (𝑟𝐺 =  1.07 µm/s, given in Table B.2 

for Exp. A) examined by Dadkhah in her experiments after 37 minutes (Dadkhah & 



128 Breakage of SFB agglomerates 

 

Tsotsas, 2014). Thus, the current breakage model can be considered as validated and 

will be further used in CVMC simulations for other experiments in the next chapter. 

Figure 6.3b shows the particle size distribution at time 𝑡 = 23 min. The arithmetic 

mean diameter of the particle size distribution is 1.82 mm with breakage and 2.05 mm 

without breakage. In addition, the interquartile range (difference between the 75th and 

25th percentile) also decreases from 1.16 mm (without breakage) to 0.98 mm (with 

breakage).  

6.5 Conclusion 

It has been postulated that agglomerate breakage is closely related to agglomerate 

strength, which can be calculated from the Rumpf correlation (Rumpf & Schubert, 

1974), by including the viscous force of the liquid bridges and the morphological 

descriptors of the agglomerate. The Stokes deformation number calculated from the 

impact velocity and the dynamic strength of the agglomerate gave a good indication 

of whether or not the agglomerate of a particular formulation will break.  

A dynamic breakage model has been developed based entirely on the physical 

properties of the formulations such as binder viscosity, agglomerate porosity, mean 

coordination number and primary particle size. Further, an enhanced CVMC model 

(CVMC-4) has been developed by implementing the breakage model in the CVMC 

framework.  It was found that the agglomeration rate decreases when breakage is 

considered, and an equilibrium between growth and rupture can be established.



 

Chapter 7 Influence of process parameters on 

agglomeration behavior 

This chapter describes the overall kinetics and morphological features of SFB 

agglomerates formed under different operating conditions using a CVMC model. 

Focus of this chapter is to discuss the proposed CVMC model (CVMC-4) by 

comparing its results with the findings of experiments. 
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7.1 Introduction  

After having incorporated the polydisperse structure model and dynamic breakage 

model in the CVMC framework to obtain model version CVMC-4, the influence of key 

operating conditions, namely inlet fluidization gas temperature and binder mass 

fraction, are analyzed. Further, the results from the enhanced CVMC model (CVMC-

4) are compared with the experimental results from (Dadkhah, 2014). Experimental 

parameters are the same as given in Table B.1. Simulation parameters used for 

individual simulations in relation to the respective experimental trials are given in 

Appendix D.  

The formed agglomerates are reconstructed using the PTSA model with a mean radius 

of primary particles as 260 µm and a standard deviation of 26 µm (10 % of the mean 

radius). It should be noted from Table B.2 and Fig. B.1 that the standard deviation of 

the radius of primary particles evaluated by Dadkhah is indeed around 10 % of the 

mean radius. Fractal properties for the PTSA model are taken from Eqs. (3.18) and 

(3.17) by inserting inlet fluidization gas temperature and binder mass fraction for the 

respective experiment according to Table B.2. 

7.2 Influence of inlet fluidization gas temperature  

In order to investigate the influence of inlet fluidizing gas temperature on 

agglomeration behavior, simulations with the CVMC-4 model are carried out for 10 

min and compared with the corresponding experiments B, A and C at 30℃, 60℃ and 

90℃, respectively.  

The overall growth rate in Table 7.1 expresses the kinetics of the process at different 

temperatures (Exp. B, A and C with increasing temperature) and binder concentration 

(Exp. A, D and E with increasing concentration). The growth rate evaluated from the 



7.2 Influence of inlet fluidization gas temperature 131 

 

 

present model is compared with the CVMC-2 model from Chapter 4 (Singh & Tsotsas, 

2020) and experiments (Dadkhah, 2014). The CVMC-2 model from Chapter 4 (Singh 

& Tsotsas, 2020) constructed the agglomerates using monodispersed primary particles 

and the breakage of already formed agglomerates was not implemented.  

Table 7.1. The overall growth rate for different experiments and respective 

simulations with and without breakage. 

 Overall growth rate (µm/s) 

Trial A B C D E 

CVMC-4 model 1.18 1.85 0.79 3.84 5.89 

CVMC-2 model 1.78 2.91 1.21 4.48 6.81 

Dadkhah’s experiments 1.07 1.15 0.63 3.79 8.20 

In addition, the diameter of the agglomerates formed in the current CVMC-4 model is 

the diameter of AES, where the surface area is obtained by the convex hull method by 

constructing the agglomerates using the PTSA model, whereas for the CVMC-2 model 

from Chapter 4 (Singh & Tsotsas, 2020) the diameter of VES was used with the 

porosity by the radius of gyration method to evaluate the growth kinetics. The 

comparison of the agglomerate diameter evaluated by AES and VES methods for all 

the experiments is given in Appendix C. 

It can be assessed from Table 7.1 that, as the temperature of the inlet gas increases the 

growth rate decreases, due to faster drying of the binder droplets by the fluidizing gas 

used as a drying agent. As the temperature increases the droplet size decreases and 

the probability of particle colliding at a wet spot decreases. Consequently, the 

agglomeration growth rate decreases as shown in Fig. 7.1a.  

The inlet gas temperature also influences the morphology of the agglomerates. With 

increasing temperature, the binder droplets become smaller so that the liquid bridges 
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created after successful particle-particle collisions are also smaller and thus weaker 

and easier to break. Consequently, more bridges are necessary to stabilize the formed 

agglomerates leading to structures that are more compact. Thus, high temperature 

results in higher fractal dimension and lower agglomerate porosity, decreasing the 

diameter of the final agglomerates formed, therefore making them compact. The 

particle size distributions for different inlet temperatures at 10 min are shown in Fig. 

7.1b. PSD is always broader at low fractal dimension because the porosity is high and 

the formed agglomerates are large.  

(a) (b) 

Fig. 7.1: Effect of gas inlet temperature on the relative average diameter of the agglomerates (a) and 

on the PSD at 600 s (b). 

7.3 Influence of initial binder mass fraction  

To study the effect of binder mass fraction on the process, simulations with different 

binder mass fractions, 𝑥𝑏 = 2, 6 and 10 % were performed with CVMC-4 model for 10 

min corresponding to experiments A, D and E respectively. As the binder 

concentration increases, binder droplets become more viscous and the fulfillment of 

the Stokes criterion upon collision on wet spots becomes easier. A more viscous liquid 
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dissipates a high fraction of collision energy. Therefore, the agglomeration growth rate 

increases as shown in Fig. 7.2a.  

(a) (b) 

Fig. 7.2: Effect of binder concentration on the relative average diameter of the agglomerates (a) and 

on the PSD at 600 s (b). 

The morphological changes that occur as the binder mass fraction increases can also 

be explained. The particle size distributions for different binder concentrations at 10  

min are shown in Fig. 7.2b. Bridges formed out of high binder concentration are 

stronger than with less binder, as they are more viscous. Agglomerates formed at high 

binder concentration are loosely arranged in space and have a large probability to 

survive in a fluidized bed. Consequently, the agglomerates formed are large and so 

the fractal dimension of agglomerates decreases and their porosity increases. As a 

result, the formed agglomerates are porous and tenuous and particle size distribution 

is shifted to the right from Exp. A to Exp. D and, finally, to Exp. E.  
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7.4 Comparison of enhanced CVMC model (CVMC-4) with 

experiments 

Simulations have been carried out for all the experiments from Table B.2 (Appendix 

B) by means of present enhanced CVMC model with the breakage mechanism 

(CVMC-4 model, as described in Section 6) for 10 minutes. Simulation parameters and 

corresponding experimental parameters are the same as given in Table 3.4 and Table 

B.1, respectively. The formed agglomerates are reconstructed using the PTSA model 

with a mean radius of primary particles as 260 µm and a standard deviation of 26 µm. 

Fractal properties for the PTSA model are taken from Eqs. (3.18) and (3.17) by inserting 

inlet fluidized gas temperature and binder concentration for respective trials from 

Table B.2.  

 

Fig. 7.3: Relative average diameter with respect to time simulated using the CVMC-4 model for the 

different experiments. 
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Figure 7.3 shows that the growth rate decreases with increasing temperature of the 

inlet gas (corresponding to experiments B, A and C at 30 °C, 60 °C and 90 °C, 

respectively) and increases with increasing binder concentration (𝑥𝑏 = 2, 6 and 10 %, 

corresponding to the experiments A, D and E, respectively). This can be explained by 

the two underlying mechanisms, namely aggregation and breakage. 

Aggregation is a dominant mechanism in determining the growth rate. It is described 

by the probability of successful collisions. As the temperature increases (for Exps. B, 

A and C, respectively), the droplet size decreases and the probability of particle 

collision at a wet location decreases. This is due to the faster drying of the binder 

droplets; at higher temperatures fewer droplets are available. This means that the total 

number of available (wet) droplets decreases, which in turn reduces the probability of 

a successful collision. Consequently, the agglomeration growth rate is reduced, as 

shown in Fig. 7.3. On the contrary, in simulations with increasing binder concentration 

(𝑥𝑏 = 2, 6 and 10 %, corresponding to the experiments A, D and E, respectively), the 

viscous force of the binder increases and the fulfillment of the Stokes criterion for wet 

impact becomes easier. Therefore, the agglomeration growth rate increases as shown 

in Fig. 7.3. The trends are similar to Chapter 4 (Singh & Tsotsas, 2020), however, the 

measured overall growth rates (given in Table 7.1) are lower than predicted in (Singh 

& Tsotsas, 2020). This is the consequence of the breakage mechanism having been 

incorporated in the present CVMC model. 

The mechanism of breakage is described by the strength of the agglomerate, calculated 

using Eq. (6.1). The higher the strength, the less likely it is that the agglomerate will 

break. An illustration of strength with collision velocity equal to 0.5𝑢0 of different 

agglomerates that have formed under different operating conditions, measured by 

Dadkhah (Dadkhah et al., 2012), is given in Fig. 7.4. Agglomerates are constructed 

using the PTSA model with a mean primary particle radius as 260 µm and a standard 



136 Influence of process parameters on agglomeration behavior 

 

deviation of 26 µm. The effect of drying on binder droplets is not taken into account 

in this illustration, rather initial binder content is used to evaluate the viscosity of 

binder. However, if drying is activated the trends shown in Fig. 7.4 remain the same.  

 

Fig. 7.4: Comparison of strength with collision velocity equal to 0.5𝑢0 for different agglomerates 

that have formed under different operating conditions, measured by (Dadkhah et al., 2012) and 

constructed using the PTSA model for different experimental trials. 

The strength of an agglomerate depends on the viscosity of the binder and the 

morphology (porosity and mean coordination number) of the agglomerate. The 

strength of a wet agglomerate increases with increasing binder content (for Exps. A, 

D and E),  and decreases with increasing number of primary particles (for all 

experiments). The argument is that the binder droplets are more viscous at a higher 

binder content (highest for Exp. E with a binder content of 10 wt. %). A more viscous 

liquid dissipates a higher proportion of the collision energy and the resulting liquid 

bridge is less likely to break. Moreover, if the binder content is kept constant (for Exps. 

B, A and C), the morphology of the agglomerates plays an important role, with the 
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compact agglomerates (high 𝐷𝑓 and low porosity) of Exp. C being stronger than the 

tenuous agglomerates (low 𝐷𝑓 and high porosity) of Exp. B. 

It should be noted that the mean radius of the primary particles is assumed to be 260 

µm. This is the average size of the primary particles used by (Dadkhah, 2014), as 

measured separately by particle image projections (Camsizer). The mean radius of 260 

µm and the standard deviation of 26 µm used here differ from the radius of the 

primary particles for individual agglomerates evaluated from tomography data. This 

is especially important for Exp. B and Exp. E in particular (cf. mean and standard 

deviation of 𝑅𝑝 in Table B.2). It means that the agglomerate diameter, which is 

reflected in the calculation of the growth rate in Table 7.1 and kinetics in Fig. 7.3, 

cannot be consistently obtained with the same quality when setting the mean radius 

of primary particles at 260 µm and the standard deviation at 26 µm. This could be the 

reason for the deviation of the calculated growth rate for Exp. E from  the experimental 

value in Table 7.1. 

 

(a) (b) 

Fig. 7.5: Particle size distribution for different experiments as simulated with the CVMC-4 model 

after 10 minutes (a) and from experiments conducted by (Dadkhah & Tsotsas, 2014) (b). 
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The particle size distributions for different operating conditions as simulated by 

means of the CVMC-4 model after 10 min are shown in Fig. 7.5a. The operating 

conditions like inlet fluidization gas temperature corresponds to experiments B, A and 

C at 30 °C, 60 °C and 90 °C, respectively and binder mass fraction 𝑥𝑏 = 2, 6 and 10 % 

corresponding to the experiments A, D and E, respectively. The distributions are in 

agreement with the experimental findings of (Dadkhah & Tsotsas, 2014), as shown in 

Fig. 7.5b.



 

Chapter 8 Conclusions and outlook 

This chapter contains the main conclusions with possible improvements of the 

proposed models and an outlook on future research.  
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8.1 Conclusions 

Spray fluidized bed agglomeration is considered as a complex network of discrete 

micro-scale events and processes between particles (primary particles and 

agglomerates) and binder droplets. Such micro-scale events and processes are 

collisions between particles, droplet deposition, deposited droplet drying, liquid 

bridge formation and agglomerate breakage that occur in series and in parallel. A 

comprehensive stochastic simulation, with micro-scale mechanisms happening within 

the fluidized bed has been presented in this study. The simulation was solved by the 

constant volume Monte Carlo method, a stochastic and discrete event-driven method 

based on the use of randomly generated numbers with periodical particle regulation.  

Morphological descriptors of the agglomerates are imperative in understanding 

product characteristics that affect their behavior. A cross-correlation between the main 

morphological descriptors has been developed to predict the size of agglomerates 

consisting of monodispersed spherical primary particles. The formulated correlation 

confirms that the morphological data from (Dadkhah, 2014) are consistent. It has been 

shown that agglomerate size can be more accurately predicted from the number of 

primary particles by known fractal dimension and prefactor of an agglomerate 

sample, than by known average porosity of the agglomerates of the same sample.  

Numerically, the interest in structure formation by aggregation of small particles has 

motivated the search for simulation algorithms that could provide comparable results 

to experimental observations. The morphology of agglomerates provides a 

quantitative link between microstructural features and their macroscopic properties. 

From the plethora of aggregation models in literature, the PC aggregation model 

offers a good prognosis for SFB agglomerates. The tunable PC aggregation model 

developed by (Filippov et al., 2000) was therefore used for reconstructing the SFB 

agglomerates consisting of monodisperse primary particles. The fractal dimension 

and porosity obtained with this model were comparable to those of real SFB 
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agglomerates, but the algorithm was limited to prefactors less than 1.66 according to 

(Filippov et al., 2000; Skorupski et al., 2014). A novel approach of tuning the fractal 

dimension with a given prefactor (equal to one) has been introduced to overcome the 

limitation of the prefactor. This approach was validated by the experimental data, as 

the structural features (porosity and coordination number) remained essentially the 

same when tuned at different prefactor. 

In general, however, agglomerates typically consist of polydisperse primary particles. 

With this respect, a polydisperse TSA model has been developed to generate the SFB 

agglomerates. Fractal properties (𝐷𝑓 and 𝑘) were precisely preserved for agglomerates 

with a standard deviation of 10 % of mean primary particle size, which coarsely 

corresponds to the available experimental results. This structural model has been 

combined in the comprehensive simulation framework (CVMC) to investigate the 

kinetics of the process. It is shown that the radius of gyration, porosity, surface area 

and agglomeration rate increase with primary particle dispersity. 

A dynamic breakage model has, finally, been developed based entirely on the physical 

properties of the formulations, such as binder viscosity, agglomerate porosity, mean 

coordination number and primary particle size. The influence of binder viscosity and 

agglomerate morphology on strength has been investigated using the PTSA model. It 

was found that the strength of the agglomerates decreases with decreasing binder 

viscosity and with an increasing number of primary particles. Further, an enhanced 

CVMC model has been developed by implementing the breakage model in the CVMC 

framework. The influence of breakage decreases the arithmetic mean diameter of the 

particle size distribution by around 11 %. It was also found that the agglomeration 

growth rate decreases when breakage is considered, and an equilibrium between 

growth and rupture can be established. 
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The present comprehensive CVMC simulation, with the polydisperse tunable 

sequential aggregation and the dynamic breakage models, predicts satisfactorily the 

overall kinetics of SFB agglomeration and the morphological descriptors of SFB 

agglomerates under different operating conditions.   

8.2 Outlook 

In general, morphology-based Monte Carlo approach has demonstrated its great 

potential as an alternative for the simulation of the spray fluidized bed agglomeration 

processes. Therefore, it should be further enhanced by incorporating additional micro-

mechanisms and by improving the modeling of the already considered mechanisms. 

One of the most important areas of improvement may be the droplet deposition 

mechanism.  

In order to model the deposition of binder droplets and the wetting of particles 

(primary particles and agglomerates), the “concept of positions” (CoP) has been used. 

The initial number of positions on the primary particles (i.e. 𝑁𝑝𝑜𝑠 =  48) is calculated 

using Eq. (2.12). The particles were divided into sectors with respect to the assumed 

maximum coordination number as 6. This means that, for an agglomerate of two 

primary particles, the number of positions on the agglomerate is calculated as 𝑁𝑝𝑜𝑠 =

 2 ∗ (48 − 8) = 80. Regardless of the operating conditions, the morphology remains 

the same to imitate the droplet deposition on the particles. The morphology of the 

agglomerates could be implemented by introducing the surface area of the formed 

agglomerates in Eq. (2.12) after each agglomeration/breakage event by means of the 

aggregation model.  

Further, the polydisperse aggregation model (PTSA model) could be improved to 

reconstruct agglomerates with higher levels of size dispersity of the primary particles. 

Fractal dimension 𝐷𝑓 was precisely preserved for agglomerates with relatively high 
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standard deviations of primary particle size, but a shift of the fractal prefactor 𝑘 was 

then observed. Hence, it might be reasonable to improve the model for high levels of 

size dispersity of the primary particles and/or very large agglomerates according to 

(Morán et al., 2019; Morán et al., 2020). Furthermore, the PTSA model deserves to be 

appraised by real agglomerates with higher standard deviations of primary particle 

size.  

This study could also serve as a basis for further investigations by modeling the 

morphology and growth of soft and/or porous agglomerates. Present work could, 

finally, enable to investigate the morphological aspects of heteroagglomerates by 

reconstructing the agglomerates using more than one type of primary particles. 
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Appendix A Coordination angle 

The coordination angle, θc, is defined as the angle between the vectors connecting the 

center of each primary particle to the centers of two of its recognized contact 

neighbors. For example, if a particle has three touching neighbors, then that particle 

also has three coordination angles, as shown in Fig. A.1. In order to calculate the 

coordination angle, all vectors connecting the contacting primary particles were 

identified and the angles (less than 180°) between them were evaluated using the dot 

(scalar) product of the vectors.  

 

Fig. A.1: Representation of coordination angle (θC) of a primary particle with its three contacting 

neighbors in an aggregate. 

The coordination angles of all the primary particles of an agglomerate result in the 

distribution of coordination angle. An illustration of coordination angle distribution 

of an agglomerate consisting of 200 monodisperse primary particles generated using 

the TSA model (detailed description is given in Section 4.7) is shown in Fig. A.2. The 
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coordination angle distribution is a property that is useful in determining the stability 

of spray fluidized bed agglomerates (Dadkhah, 2014; Pashminehazar et al., 2018). 

 

Fig. A.2: Coordination angle (θC) distribution of an agglomerate with 200 monodisperse primary 

particles. 

 

 



 

Appendix B Experiments of Dadkhah  

In the experiments of Dadkhah (Dadkhah, 2014), a laboratory-scale fluidized bed 

agglomerator with an inner diameter of 152 mm and a height of 450 mm was used. 

The binder consisted of hydroxypropylmethylcellulose (HPMC) in water, injected in 

top spray configuration through a two-fluid nozzle located 150 mm above the air 

distributor plate. The main experimental parameters are shown in Table B.1.  

Table B.1. Experimental parameters. 

Bed mass 𝑀𝑏𝑒𝑑 500 g 

Primary particle density 
𝑝

 2500 kg/m3 

Binder density 
𝑙
 998.5-1024.0 kg/m3 

Binder addition rate 𝑀̇𝑙 200 g/h 

Dry gas mass flow rate 𝑀̇𝑔 130 kg/h 

Five experiments were carried out with glass beads to investigate the influence of 

process parameters (inlet air temperature and initial binder mass fraction) listed in 

Table B.2, with Exp. A as the reference experiment. The transition from experiment B 

to A and then to C represents the conditions of increasing inlet temperature of the 

fluidization gas. The transition from experiment A to experiments D and E 

corresponds to an increasing binder mass fraction.  

Glass beads (non-porous), as primary particles, were found to have very high 

sphericity (0.98). Measured by Camsizer, the size of glass beads was normally 

distributed with an average radius of 260 µm and standard deviation of around 10 % 
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from the mean radius. The size distributions of glass beads are plotted in Fig. B.1. The 

findings of Dadkhah’s experiments measured by X-ray tomography for each 

experiment are given in Appendix B.1. The mean and standard deviation of radii of 

the glass beads (primary particles) evaluated from individual agglomerate X-ray 

tomography data are given in Table B.2 (and in Fig. B.1; for experiment A). In 

accordance with the Camsizer data the standard deviation of the primary particle 

radius is around 10 % of the arithmetic mean value for all the experiments except Exps. 

B and E with 1 % and 3 %, respectively. 

 

Fig. B.1: Particle size distribution of glass beads from Camsizer and primary particles evaluated 

from X-ray tomography data of individual agglomerates of Exp. A. 

Experiment F was conducted with porous primary particles made of 𝛾-𝐴𝑙2𝑂3 under 

otherwise the same conditions as experiment A. 𝛾-𝐴𝑙2𝑂3 primary particles have a 

sphericity of 0.97 and diameters between 580 and 650 μm, with an average diameter 

of 616 μm (measured from Camsizer). 
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The morphological descriptors (𝐷𝑓, 𝑘, average 𝜀𝑎𝑔𝑔, average MCN) obtained for the 

different experiments are also shown in Table B.2. In order to derive these descriptors, 

around 24 agglomerates were investigated for each experiment (exact number of 

evaluated agglomerates for each experiment is given in Table B.2).  

Table B.2. Experimental results for each trial.  

 A B C D E F 

Primary particles Glass Glass Glass Glass Glass 𝛾-𝐴𝑙2𝑂3 

Temperature [℃] 60 30 90 60 60 60 

Binder [wt. %] 2 2 2 6 10 2 

Growth rate [µm/s] 1.068 1.146 0.630 3.789 8.204 0.599 

𝐷𝑓 [-] 2.45 2.31 2.94 2.24 2.09 2.45 

k [-] 1.76 2.01 0.98 1.96 2.24 1.60 

Average 𝜀𝑎𝑔𝑔 [-] 0.57 0.62 0.53 0.58 0.63 0.62 

Average MCN 3.32 3.10 4.02 2.92 2.87 3.16 

Evaluated agglomerates 25 28 22 24 24 25 

𝑅𝑝 [µm] [321.2 

236.8] 

[317.3 

303.3] 

[298.6 

210.4] 

[342.9 

229.5] 

[332.0 

300.3] 

[311.4 

301.7] 

Mean 𝑅𝑝 [µm] 288.2 309.3 257.3 285.3 312.4 308.6 

Standard deviation of 𝑅𝑝 [µm] 30 3 33 32 9 2 
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B.1 Detailed results of experiments A to F 

Table B.3. Detailed morphological data for experiment A. 

𝑵𝒑 

[-] 

𝐑𝐩 

[µm] 

𝐑𝐠 

[µm] 

𝛆𝐚𝐠𝐠(𝐑𝐠) 

[-] 

4 316.5 432.6 0.169 

8 255.4 526.2 0.268 

12 252.2 596.7 0.569 

15 303.5 701.7 0.635 

19 306.7 819.0 0.425 

20 321.2 901.1 0.533 

21 304.5 827.2 0.573 

22 307.4 837.7 0.531 

23 311.7 890.1 0.492 

25 311.9 930.9 0.535 

34 311.7 1073.9 0.555 

32 257.2 863.3 0.607 

40 241.5 1008.2 0.615 

41 253.9 926.2 0.763 

42 249.4 1001.8 0.618 

43 246.1 916.9 0.732 

52 255.3 1117.7 0.633 

57 304.9 1174.9 0.731 

95 313.6 1483.3 0.530 

96 312.9 1451.5 0.577 

104 309.3 1479.0 0.546 

132 312.1 1892.4 0.552 

173 310.4 1761.2 0.721 

198 236.8 1649.8 0.554 
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Table B.4. Detailed morphological data for experiment B. 

𝑵𝒑 

[-] 

𝐑𝐩 

[µm] 

𝐑𝐠 

[µm] 

𝛆𝐚𝐠𝐠(𝐑𝐠) 

[-] 

10 312.1 593.3 0.320 

11 308.6 704.6 0.570 

14 317.3 701.4 0.395 

15 305.3 700.8 0.414 

19 310.7 840.6 0.576 

26 304.1 894.1 0.519 

27 306.3 951.2 0.595 

28 312.9 1024.9 0.625 

28 310.6 1003.2 0.605 

31 307.8 1011.0 0.575 

32 306.4 1037.2 0.610 

36 306.7 1100.7 0.647 

37 311.4 1103.1 0.649 

40 312.2 1082.3 0.547 

45 309.6 1284.7 0.734 

46 311.2 1231.6 0.679 

47 312.1 1225.8 0.636 

48 309.8 1347.1 0.743 

50 311.4 1212.9 0.662 

60 308.1 1317.2 0.682 

61 303.3 1258.5 0.597 

103 308.5 1625.0 0.705 

127 309.8 1790.2 0.718 

131 307.7 1870.0 0.761 

141 308.9 1946.8 0.734 

182 312.1 2174.3 0.746 

205 307.5 2277.8 0.789 

215 306.8 2338.8 0.771 
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Table B.5. Detailed morphological data for experiment C. 

𝑵𝒑 

[-] 

𝐑𝐩 

[µm] 

𝐑𝐠 

[µm] 

𝛆𝐚𝐠𝐠(𝐑𝐠) 

[-] 

9 267.0 549.6 0.311 

10 295.6 595.7 0.359 

20 219.6 664.5 0.580 

23 210.4 705.9 0.635 

28 298.5 875.0 0.470 

30 229.5 693.6 0.394 

31 232.5 764.2 0.543 

34 224.1 743.2 0.486 

42 296.2 1002.0 0.487 

47 298.6 1105.1 0.561 

52 294.8 1176.2 0.611 

65 262.9 1089.8 0.604 

97 292.5 1342.3 0.526 

101 226.4 1063.2 0.511 

110 293.6 1432.5 0.551 

115 220.5 1124.6 0.531 

122 227.5 1250.9 0.606 

145 296.5 1622.9 0.581 

148 262.7 1361.6 0.541 

187 252.9 1470.1 0.592 

226 220.8 1371.6 0.510 

289 238.3 1646.4 0.531 
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Table B.6. Detailed morphological data for experiment D. 

𝑵𝒑 

[-] 

𝐑𝐩 

[µm] 

𝐑𝐠 

[µm] 

𝛆𝐚𝐠𝐠(𝐑𝐠) 

[-] 

6 342.9 610.5 0.503 

7 296.1 559.3 0.511 

8 318.8 606.9 0.455 

9 256.8 476.6 0.406 

9 229.5 421.1 0.285 

12 290.4 434.8 0.455 

13 297.9 450.8 0.541 

16 304.7 790.3 0.547 

17 315.7 875.6 0.626 

18 318.7 887.2 0.605 

19 310.6 816.5 0.510 

20 299.5 845.9 0.577 

25 291.4 1062.4 0.747 

27 246.0 820.8 0.661 

28 300.9 1097.9 0.726 

29 299.5 1047.6 0.680 

30 252.2 882.7 0.716 

34 245.1 931.6 0.728 

60 308.1 1167.5 0.481 

65 300.2 1391.8 0.689 

112 238.5 1283.4 0.682 

127 245.3 1565.7 0.777 

129 236.7 1603.6 0.811 

214 301.7 2158.0 0.722 
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Table B.7. Detailed morphological data for experiment E. 

𝑵𝒑 

[-] 

𝐑𝐩 

[µm] 

𝐑𝐠 

[µm] 

𝛆𝐚𝐠𝐠(𝐑𝐠) 

[-] 

6 308.8 474.9 0.227 

8 316.3 584.1 0.404 

9 314.3 646.5 0.508 

14 313.5 827.9 0.641 

21 306.2 935.0 0.652 

23 309.2 956.3 0.635 

24 307.1 1044.1 0.712 

26 301.9 889.0 0.518 

27 310.1 924.9 0.518 

30 326.1 1507.2 0.853 

36 309.5 1028.2 0.537 

37 328.5 1538.5 0.824 

38 306.1 1272.5 0.749 

42 318.5 1294.2 0.704 

45 316.2 1211.9 0.623 

52 303.7 1288.9 0.677 

62 301.4 1300.6 0.630 

72 302.4 1427.1 0.675 

83 302.5 1673.3 0.767 

92 300.3 1547.7 0.682 

102 323.9 2148.3 0.830 

150 323.2 2311.4 0.801 

170 317.0 2330.0 0.794 

212 332.0 3000.1 0.860 
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Table B.8. Detailed morphological data for experiment F. 

𝑵𝒑 

[-] 

𝐑𝐩 

[µm] 

𝐑𝐠 

[µm] 

𝛆𝐚𝐠𝐠(𝐑𝐠) 

[-] 

8 310.6 587.8 0.451 

9 309.3 622.1 0.586 

10 304.9 686.9 0.592 

11 308.6 704.6 0.569 

13 309.6 710.7 0.533 

14 310.1 763.5 0.564 

19 310.7 840.6 0.576 

22 306.3 821.6 0.490 

23 308.0 959.9 0.676 

27 306.3 951.2 0.595 

30 307.9 978.9 0.594 

36 306.7 1100.7 0.647 

37 311.4 1103.1 0.649 

45 309.6 1284.7 0.734 

46 311.2 1231.6 0.679 

48 309.8 1347.1 0.742 

49 311.5 1206.7 0.657 

50 310.7 1267.1 0.664 

60 308.1 1317.2 0.579 

80 306.7 1400.7 0.662 

103 308.5 1625.0 0.705 

127 309.9 1790.2 0.718 

129 308.9 1878.9 0.768 

186 301.7 2107.6 0.765 

205 307.5 2277.8 0.789 





 

Appendix C Estimation of agglomerate 

diameter 

Agglomerates with number of primary particles from 5 to 250 are aggregated at an 

increment of 5 for different experimental trials (given in Appendix B). Those 

agglomerates are generated using the PTSA model with a mean radius of primary 

particles as 260 µm and a standard deviation of 26 µm. Fractal properties for the PTSA 

model are taken from Eqs. (3.18) and (3.17) by inserting inlet fluidization gas 

temperature and binder mass fraction for the respective experiment according to 

Table B.2.  

Figure C.1 shows the ratio between AES and VES diameter for agglomerates 

generated using the PTSA model, plotted over the number of primary particles 

present in the agglomerate. The ratio decreases with increasing number of primary 

particles in the agglomerates. It is almost the same for compact agglomerates (as in 

the case of Exps. A and C) with high 𝐷𝑓. However, the ratio increases for tenuous 

agglomerates (especially for Exp. E) with low 𝐷𝑓. 
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Fig. C.1: Ratio of AES and VES diameters of agglomerates generated using the PTSA model for the 

different experiments. 



 

Appendix D Simulation parameters for 

different experiment trials  

This appendix summarizes the simulation parameters used to investigate the 

influence of the main operating parameters on the agglomeration behavior in Chapter 

7. Experiments B, A and C represent the increase of inlet fluidized gas temperature 

from 30℃ to 60℃ and 90℃. Similarly, experiments A, D, and E represent increasing 

binder (hydroxypropylmethylcellulose, HPMC) mass fraction of 2 wt. %, 6 wt. % and 

10 wt. %.  

Table D.1 contains the parameters used for the respective simulations. It relates the 

simulations to parameter variations corresponding to the respective experiment.  
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Table D.1. Simulation parameters. 

 A B C D E  

Bed mass 𝑀𝑏𝑒𝑑 500 500 500 500 500 g 

Primary particle diameter 𝐷𝑝 0.52 0.52 0.52 0.52 0.52 mm 

Primary particle density 𝑝 2500 2500 2500 2500 2500 kg/m3 

Particle surface asperities height ℎ𝑎 10 10 10 10 10 μm 

Particle restitution coefficient e 0.8 0.8 0.8 0.8 0.8 - 

Droplet diameter 𝐷𝑑 80 80 80 80 80 μm 

Droplet addition rate  0.08 0.08 0.08 0.08 0.08 1/s 

Particle-droplet contact angle  40 40 40 40 40 ° 

Positions on the primary 
particle surface 

𝑁𝑝𝑜𝑠 48 48 48 48 48 - 

Binder mass fraction 𝑥𝑏 2 2 2 6 10 wt. % 

Binder density 𝑙  998.5 998.5 998.5 1014 1024 kg/m3 

Binder addition rate 𝑀̇𝑙 200 200 200 200 200 g/h 

Binder viscosity 
𝑙
 0.0086 0.0086 0.0086 0.0597 0.3222 Pas 

Fluidization velocity 𝑢0 1.912 1.912 1.912 1.912 1.912 m/s 

Collision velocity, mean value 𝑢𝑐 0.956 0.956 0.956 0.956 0.956 m/s 

Collision velocity, standard 
deviation 

𝑢 0.1 0.1 0.1 0.1 0.1 m/s 

Gas mass flow rate 𝑀̇𝑔 130 130 130 130 130 kg/h 

Gas inlet temperature 𝑇𝑔 60 30 90 60 60 °C 

Saturation temperature T* 20 14 30 20 20 °C 

Moisture content in the gas 𝑌𝑔 3.4 3.4 3.4 3.4 3.4 g/kg 

Molar fraction of vapor in the 
gas 

𝑦̃𝑔 0.0031 0.0031 0.0031 0.0031 0.0031 - 

 


