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ABSTRACT The thyroid is one of the largest endocrine glands in the human body, which is involved
in several body mechanisms like controlling protein synthesis, use of energy sources, and controlling the
body’s sensitivity to other hormones. Thyroid segmentation and volume reconstruction are hence essential
to diagnose thyroid related diseases as most of these diseases involve a change in the shape and size of the
thyroid over time. Classification of thyroid texture is the first step toward the segmentation of the thyroid.
The classification of texture in thyroid Ultrasound (US) images is not an easy task as it suffers from low
image contrast, presence of speckle noise, and non-homogeneous texture distribution inside the thyroid
region. Hence, a robust algorithmic approach is required to accurately classify thyroid texture. In this paper,
we propose three machine learning based approaches: Support Vector Machine; Artificial Neural Network;
and Random Forest Classifier to classify thyroid texture. The computation of features for training these
classifiers is based on a novel approach recently proposed by our team, where autoregressive modeling
was applied on a signal version of the 2D thyroid US images to compute 30 spectral energy-based features
for classifying the thyroid and non-thyroid textures. Our approach differs from the methods proposed in the
literature as they use image-based features to characterize thyroid tissues.We obtained an accuracy of around
90% with all the three methods.

INDEX TERMS Medical imaging, support vector machine, artificial neural network, random forest
classifier, texture classification, thyroid ultrasound.

I. INTRODUCTION
The thyroid is a butterfly shaped gland, one of the largest
endocrine glands in the body, located below Adam’s apple
on the front of the neck. It is involved in several body mech-
anisms such as controlling protein synthesis, use of energy
sources and controlling the body’s sensitivity to other hor-
mones. Due to these important functionalities, the thyroid is
one of the important organs in the human body. However, it is
susceptible to many diseases like Graves’ (excessive produc-
tion of thyroid hormones), subacute thyroiditis (inflammation
of thyroid), thyroid cancer, goiter (thyroid swelling), etc [1].
In all of these cases, the size of the thyroid changes over time.
So, it is essential to keep track of the thyroid size over time.

The associate editor coordinating the review of this manuscript and
approving it for publication was Changsheng Li.

Ultrasound (US) imaging has been widely used for thyroid
staging, as it is much safer and painless to use for the patients
compared to other imaging modalities such as MRI which
uses radio and magnetic waves, Computed Tomography (CT)
which uses X-rays and Positron Emission Tomography (PET)
which uses nuclear imaging technique [2]. Segmentation
and volume computation of the thyroid have high clinical
importance when it comes to the diagnosis and treatment
of thyroid diseases. In this work, we will mainly focus on
characterization of thyroid texture in an US image using
three machine learning (ML) techniques. These approaches
are Support Vector Machine (SVM), Artificial Neural Net-
work (ANN) and Random Forest Classifier (RFC).

The features computed in this work for training the clas-
sifier are based on a novel texture characterization algorithm
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published previously by our team [3]. A signal based para-
metrical approach using Autoregressive (AR) modelling has
been proposed to characterize the thyroid texture using 30
AR spectral energy ratios based features that can distinguish
between thyroid and non-thyroid regions. A simple clustering
algorithm has been used to show the significance of the
proposed AR-based features. In this new proposed work,
we go further and use our robust textural features to train
three different machine learning based approaches (SVM,
ANN and RFC) that have already been used to segment US
images in the literature. We show in this work that using
the AR features together with the proposed classifiers the
obtained results outperform other thyroid segmentation algo-
rithm already presented in the literature.

The rest of the paper is organized as following: Section II
presents the reviews on the related works on thyroid segmen-
tation. Section III discusses about the novel feature extraction
that we have used to extract signal based features from thyroid
US images and the different texture classification methods.
Section IV presents the results and compares our results
with the ones from literature. Finally, Section V presents the
discussion on the future works that we have planned as well
as the conclusions that can be drawn from our work.

II. RELATED WORKS
Several approaches have been proposed on how to segment
the thyroid in 2D US images. Zhao et al. [4] proposed several
thyroid US segmentation approaches using edge detection,
thresholding, region splitting and merging, watershed seg-
mentation, active contour, graph theory, US image segmen-
tation based on Ncut and segmentation based on improved
normalized cut. Thyroid segmentation in 2D US and scintig-
raphy images using active contour without edges (ACWE),
localized region based active contour and distance regular-
ized level set were proposed by Kaur and Jindal [5]. China
et al. [6] explored the possibilities of using the apriori infor-
mation based on the US imaging physics and segmented
the thyroid using Iterative Random Walks and Random For-
est (IRWRF). Similarly, segmentation using a polynomial
SVM [7], local region-based active contour [8], a boundary
method and local binary patterns [9] for texture analysis and
level-set active contours models [10] and [11] have been pro-
posed. H. Garg and A. Jindal worked on feed-forward neural
network (FNN) to segment the thyroid in US images [12].
Similarly, Echogenicity based Quantization (EBQ) and Joint
Classification-Regression (JCR) which uses speckle related
pixels and imaging artefacts as a source of information to
perform multi-organ (i.e. thyroid, carotid artery, muscles and
trachea) segmentation in thyroid US images were proposed
by Narayan et al. [13].
Apart from segmentation in 2D images, several research

works have been carried out to segment a fully 3D thyroid.
A semi-automated approach to classify thyroid for volumetric
quantification using geodesic active contour was proposed
by Kollorz et al. [14]. Chang et al. [15] used a radial basis
function (RBF) neural network to segment the blocks of

thyroid gland. Similarly, a complete segmentation and analy-
sis of 3D thyroid images was performed by
Osman [16] by thresholding the voxel intensities and then
connecting similar voxels to predict the thyroid regions.
Poudel et al. [17] have used Active Contours without Edges
(ACWE), Graph Cut (GC) and Pixel Based Classifier (PBC)
to segment 2D thyroid images and later reconstructed them
to compute a 3D thyroid.

Most of the above mentioned approaches involved thy-
roid segmentation using data-driven approaches whichmeans
that, the segmentation of thyroid was carrying out by directly
operating over the pixel values in the US images. Similarly,
several works have been proposed for thyroid nodule classifi-
cation by characterizing the thyroid tissues. These works are
based on computation of Statistical features [7], [18], [19],
Spectral-based features [20], [21] and Higher Order statis-
tics based features [22], [23]. The problem with using these
data-driven approaches for feature computation is that, they
are generally affected by the presence of speckle noise, low
signal to noise ratio (SNR) and resolution in US images and
even the pre-processing steps cannot get rid of these problems
completely.

Similarly, most of the methods in the literature do not
explore texture based features for thyroid segmentation.
We believe this is due to the heterogeneous textural patterns
within the thyroid US images [24] and thus a novel texture
based feature extraction method should be devised to extract
robust features which could be used to train the machine
learning classifiers for thyroid segmentation.

As explained earlier, different machine learning based clas-
sifiers have been trained only using statistical, spectral and
higher order statistical based features in the literature for
thyroid texture classification. However, we have used a set of
novel parametrical based features computed using AR mod-
elling to classify the thyroid textures. To our knowledge, these
features have not been used for training the machine learning
based classifiers for thyroid texture classification. This is the
main contribution of our work. We have used three widely
used methods of texture classification from the literature and
outperformed several other state-of-the art approaches which
use different features compared to ours.

III. METHODS
This section is divided into four sections: database gener-
ation, features computation, texture classification and post-
processing. In the first section, we will mainly discuss how
the 2D US image datasets were acquired and how the tex-
ture patch database for training of the classifiers was pre-
pared. The second section will present how the features
were computed from the texture patches which were used
for training of the classifiers and the third section presents
the thyroid texture classification approach using SVM, ANN
and RFC. Finally, the fourth section will explain a simple
post-processing step that we have used to get rid of the
over classified thyroid texture patches from the three trained
classifiers.
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A. THYROID DATASETS AND TEXTURE
DATABASE GENERATION
A total of two 2D thyroid US datasets were used in this work.
The first dataset (Dataset 1) consisted of six subjects with
each subject containing between 53 and 189 2D thyroid US
images. A total of 675 thyroid images with an image size
of 760 x 500 pixels were used. This dataset was acquired
by a medical expert in SurgicEye GmbH [35] and has been
published and available in [25]. The second dataset (Dataset
2) consisted of sixteen subjects with each subject containing
between 156 and 289 2D thyroid US images. The second
dataset was obtained by a thyroid specialist medical doctor
at University Clinic of Magdeburg, Germany and contains a
total of 3, 370 thyroid US images with an image size of 760×
1020 pixels. It has been presented in [26] and can be down-
loaded from http://opencas.webarchiv.kit.edu/?q=node/29
Along with the US images, we also acquired manually
annotated ground truth images from the respective clinical
experts who acquired the thyroid images. All the images
were acquired using a General Electric (GE) Logiq E9 US
machine equipped with Electromagnetic Tracking system.
The acquired tracking data could be used for 3D reconstruc-
tion of segmented thyroid images and volume assessment
over time.

FIGURE 1. The figure represents the division of a 2D thyroid US images
into smaller texture patches. In the figure, Green: Thyroid Patches,
Blue: Non-Thyroid Patches, Red:Ground Truth and Yellow: Isthmus Region.

The two datasets were further processed to compute the
features for training of the ML classifiers. Each image from
the two datasets were first divided into non-overlapping tex-
ture patches of size 20 x 20 and following the ground truth,
each patch was labelled either thyroid (=0) or non-thyroid
(=1). The size of the texture patch was set in such a way
that it captured important dynamical changes that allowed to
involve a number ofmain frequency components that can help
to spectrally differentiate thyroid and non-thyroid regions
(see [3]). On top of that, it should also cover all the smaller
regions inside the thyroid (for example the isthmus region as
marked by yellow solid lines in Fig. 1).

For the labelling, a thresholding technique was used. Each
pixel inside the patch was compared against the ground
truth pixels. Hence, if a patch consisted of more than 70%
(i.e. 280 pixels) of the total pixels, the patch was labelled
as thyroid. Similarly, any patch that consisted of only black
pixels (i.e. sum of all the pixel intensities inside a patch = 0)
were not used as these patches could not be used to compute
the features. A total of 90, 816 and 1, 791, 397 texture patches
were computed from Dataset 1 and 2 respectively to prepare
a final texture database. An example of separation of a 2D
thyroid US image into texture patches is shown in Fig. 1.
In the figure, the green patches represent the thyroid and the
blue patches represent the non-thyroid patches. The thyroid
patches are always present inside the thyroid region which is
marked as red using the ground truth images.

B. FEATURES COMPUTATION
In this section, we will mainly discuss on how the features
were computed from the thyroid images which were used for
the training of the classifiers for thyroid texture classification.
A detailed explanation onARmodelling, feature computation
and prominent features selection have been explained in our
recent work [3] but we will only introduce the main steps
here. We used AR modelling to compute the features from
the texture patches. The advantage of AR modelling is that
the features are computed not directly from the image data
(which in general contain speckle noise and have low SNR
and contrast) like in Fast Fourier Transform based techniques,
but using a parametrical version of the image data. This
allows computing robust features in noisy images and less
data compared to the standard data-driven methods.

First of all, the texture patches are converted into four
different types of signals which capture the texture dynamics
within the patch. The transformation from matrix to signal
has been performed using ZigZag (obtained by following the
rows direction) and Spiral transformation and also using their
90 degree rotated patch version (see Fig. 2).

FIGURE 2. Conversion of texture patch to four different signals.
((a)ZigZag, (b)ZigZag 90 degree rotated, (c) Spiral and (d) Spiral 90 degree
rotated respectively. Adopted from [3].

These signals were then decomposed into four narrow-
band signals (i.e. low, middle, high and total band frequency
components - LF, MF, GF and TB respectively) by apply-
ing Continuous Wavelet Transformation (CWT). These sig-
nals represent the dynamic textural characteristics such as
smoothness or roughness in the texture patches. A total of
16 narrowband signals were obtained which were modeled
using a parametrical AR model [27]. A set of 30 different
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FIGURE 3. Flowchart representing the entire feature extraction process.

features were computed from the AR parameters using the
energy ratios between different frequency bands for each
texture patch in the texture database. A detailed explana-
tion on AR modelling, features computation and prominent
features selection have been explained in [3]. A flowchart
representing the entire feature computation process is shown
in Fig. 3.

C. TEXTURE CLASSIFICATION
This section will present all the three algorithms that were
used to classify the thyroid texture in US images.

1) SUPPORT VECTOR MACHINE (SVM)
In this work, SVM with radial basis function (rbf) (aka gaus-
sian) kernel was used to classify the thyroid texture patches in
US images. The features that were obtained from the feature
extraction procedure were used to train the SVM. A total of
30 features were used to train the SVM classifier. The trained
classifier was later used to test the input images by classifying
the texture patches as thyroid or non-thyroid.

Let x ∈ Rn be a vector of all the features extracted from
the texture patches to be classified and let a scalar y denote its
class label (i.e. whether the texture patch belongs to thyroid
or not, y ∈ {0, 1}). Also, let {(xi, yi), i = 1, 2, 3, . . . l} be a
set of l training data. For the simplest case, when the training
patterns are linearly separable, there exist a linear function:

f (x) = W T x + C (1)

which separates the two different classes by a hyperplane:

f (x) = W T x + C = 0 (2)

where, C is the regularization parameter which controls the
cost of misclassification on the training data.

However, there might exist many hyperplanes that max-
imize the separating margin between the two classes. The
hyperplane that causes the largest separation between the
different classes is computed by the SVM using minimizing
the cost function [28]:

f (W ) =
1
2
W TW =

1
2
||W T
||
2 (3)

However, when the data are not linearly separable, a hyper-
plane cannot separate the data correctly. Thus, kernel func-
tions are analysed to achieve this separation. In this work,
a radial basis function (rbf) kernel is used which is given by:

k(x, z) = exp(−
||x − z||2

2σ 2 ) (4)

where, (γ = 1
2σ 2

) is the kernel parameter that defines how far
the influence of a single training example reaches. In other
words, if the value of γ is low, then the far away points from
the hyperplane carry more weights and if it is low, the nearer
points carry more weights.

Using this kernel, all the features are sent as the input to
the SVM classifier to train it. The features are represented in
the vector form as:

xi = [fi,1, fi,2, . . . ., fi,n] (5)

where fi,n is the nth feature of the ith texture patch.
These features are used as the training vector to train the

SVM which is later used for testing the input images.The
three parameters that could be optimized while using SVM
are the kernel, C and the gamma γ . A grid search method
with a 10-fold cross validation technique on the training data
was employed to find the optimum parameters. We found that
the SVM performed the best with ‘rbf’ kernel, C = 0.7 and
γ = 1.0. A total of 75% training and 25% testing data were
used to train and test the SVM classifier. The training and
testing of SVM were carried out in Matlab 2017a using the
Image Processing Toolbox.

2) ARTIFICIAL NEURAL NETWORK (ANN)
The classification of thyroid texture patches in US images
was also done using ANN that is primarily an interconnected
web of input nodes, hidden nodes and output nodes called
artificial neurons.

The first step was to pre-process the data. The dataset
was first split into dependent and independent variables.
The independent variables consisted of the 30 features that
were computed in the feature extraction section. The depen-
dent variables consisted of data (represented as 1 or 0) that
indicated whether the features belonged to thyroid or non-
thyroid patches. Following this, the dataset was split into
the training and testing sets by employing the train test split
(75% and 25%) from scikit-learn model selection. Feature
scaling was employed on the training and test sets to ensure
that all the values were in the same range.

The ANN (Multi-layer Perceptron) was built with the
Keras library using TensorFlow on the backend based on
the Stochastic Gradient Descent Algorithm (SGD). SGD was
used as an iterative method to adjust the weights and obtain a
minimum cost function and hence an optimal neural network.
The SGD is represented by the following equation:

Q(w) =
1
n

n∑
i=1

Qi(w)i (6)
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where, Qi(w) is a loss function based on the training data
indexed by i [29].

The optimization of the parameters of ANN involved some
empirical analysis. After few experiments, we found that the
ANN outperformed SVM and RFC. Hence, the following
parameters were chosen as the optimum ones: 100 epochs,
learning rate of 0.1, momentum of 0.9 and 4 layers. The
4 layers consisted of an input layer, two hidden layers (each of
them containing 15 nodes) and an output layer. The Sequen-
tial module was used for the initialization of the network
as a sequence of layers and the Dense module was used to
build the layers.A Rectified Linear Unit (ReLU) activation
function was used for the activation of the hidden layers.
A sigmoid activation function was used for the output layers
and is represented by:

f (x) =
1

1+ e−x
(7)

where, x = value of the weighted sums and e = Euler’s
number (= 2.71828) [30].
The classifier was saved after training the network with a

batch size of 32 and 100 epochs. The trained ANN was used
for testing the input images. The classification using ANN
was carried out using Python 3.6 with the help of libraries
such as Scikit-learn, Keras and TensorFlow.

3) RANDOM FOREST CLASSIFIER (RFC)
In our approach, we trained a random forest classifier for a
binary classification problem, which classifies each of the
patches extracted from the US images as thyroid and non-
thyroid. RFC is basically a type of ensemble learning method
which usually constructs a final classifier by using a set ofM
individual weak classifiers. In this case, these weak classifiers
are the binary decision trees. A train-test split of 75% to 25%
was used.

The input from the training data for each of the trees,
x ∈ {1, . . . ..,M} in the ensemble was created using boot-
strapping of the samples (bagging) from the training dataset
and randomly sampling the subset of the features supplied to
each tree. Introducing this level of randomness helped this
classifier in reducing to an extent, the dependency between
training and testing data. Each tree is a collection of nodes N
and features F , which aid to the final classification result.
A decision tree is made up of a single parent node Np,x and
multiple splitting nodes Ns,x,i∀i ∈ {1, . . . , k} and leaf nodes
Nl,x,j∀j ∈ 1, . . . , p. During the splitting of the nodes, the best
split was not chosen based on all the features but a random
subset of features from the training dataset.

All the leaf nodes inside a decision tree have a final prob-
abilistic model φx,j ∈ [0, 1] associated with it. The final
decision of a forest for each of the patches extracted from the
US images were made by averaging the individual decisions
(φx,j(p)) from all the individual trees in the forest.

PRF (y(p) = 1) =
1
M

M∑
x=1

φx(p) (8)

We have used the most common and recognized method
to train the classifiers [29], [31]. Just like ANN, the clas-
sification using RFC was carried out in Python 3.6 using
Scikit-learn, Keras and TensorFlow libraries.

There are many parameters that can be optimized in RFC.
However, we optimized only the 5 important parameters
which were the depth of the trees, minimum number of
samples required to split a node, minimum number of sam-
ples required at each leaf node, number of trees in the
random forest and whether to use bootstrap or not. The opti-
mum parameters that were obtained after using Randomized
Search method were depth of 10, minimum samples at each
leaf node of 2, minimum samples to split a node 4, 200 trees
and using the bootstrap method for sampling the training data
points.

D. POST-PROCESSING
The texture classification step produced some over-classified
thyroid texture patches. Hence, to get rid of these over-
classifications, a post-processing step was employed.
A largest connected component analysis was performed on
the classified texture patches. For that, the total number of
texture patches were obtained by counting the patches that
were classified as thyroid (i.e. the output label = 1). Then a
threshold value was chosen empirically to identify the thyroid
patches from the over-classified thyroid patches. The blocks
of texture patches that contained more than the threshold
amount of thyroid patches were considered to be thyroid and
the rest were disregarded. Section IV C presents the results
from before and after post-processing steps in details.

IV. RESULTS
A. EXPERIMENTAL SETUP
For the evaluation and quantitative and qualitative analysis
of the proposed feature extraction and texture classifica-
tion technique, we performed two-steps experiments. The
two datasets were trained and tested separately. A total of
90, 816 and 1, 791, 397 texture patches corresponding to
Dataset 1 and 2 respectively were used for this evalua-
tion. Out of these patches, only 68, 112 patches were used
for training and 22, 704 patches were used for testing in
Dataset 1. Similarly, 1, 343, 548 patches were used for train-
ing and 447, 849 patches were used for testing in Dataset 2.
In both datasets, to ensure there was no over-fitting while
training of the classifiers, it was made sure that the train-
ing and testing processes did not involve images or texture
patches from the same subjects. The training and testing
processes involved the 75% and 25% of all the texture patches
respectively.

The feature extraction part was performed usingMATLAB
2017a and the training and testing of the classifiers was
performed in Python 3.6. All the experiments were carried
out using a Lenovo T430 ThinkPad Notebook with Intel Core
i5-3320MCPU, NVIDIANVS 5400 graphics card, 2.60 GHz
processor and 8.00 GB RAM.
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B. QUANTITATIVE ANALYSIS
For the quantitative analysis, we have compared our results
with the approaches in state of art that used the same datasets.
Similarly, we have also compared our approaches with other
approaches but which do not use the same datasets. For the
performance metric, we have used Dice’s Coefficient (DC),
Sensitivity (SE) and Specificity (SP).

DSC is a measure of how similar two objects are, which in
our case is the computation of the overlap area between the
ground truth images and classified thyroid texture patches.
Similarly, SE is the measure of the proportion of actual posi-
tives that are correctly identified as such. SP is the measure of
the proportion of actual negatives that are correctly identified
as such. They can be computed using the following equations:

DSC =
2TP

2TP+ FP+ FN
(9)

SE =
TP

TP+ FN
(10)

SP =
TN

TN + FP
(11)

where, TP = True Positive (Thyroid Patches identified
as Thyroid), FP = False Positive (Non-Thyroid Patches
identified as Thyroid), TN = True Negative (Non-Thyroid
Patches identified as Non-Thyroid) and FN = False Negative
(Thyroid Patches identified as Non-Thyroid).

Using these performance metrics, we have presented the
results of SVM, ANN and RFC and compared themwith state
of arts in the tables below. These comparisons are carried out
in a 2-step procedure. The first step involved the comparison
between all the approaches that use either Dataset 1 or 2 and
in the second step, all the approaches were used for thyroid
segmentation but using different datasets. The comparison
of performance between SVM, ANN and RFC and state of
arts are presented in Table 1 and 2 and Table 3 shows the
comparison between different approaches that use different
datasets. Table 4 summarizes all the parameters we used after
the optimization process in SVM, RFC and ANN classifiers
for texture classification.

TABLE 1. Performance comparison of SVM, ANN and RFC with state of art
methods on Dataset 1.

Table 1 represents the comparison between the approaches
we have used in our work with the works in [3] and [17]
using Dataset 1. Active Contours without Edges (ACWE),
Graph Cut (GC), Pixel based classifier (PBC), Random

TABLE 2. Performance comparison of SVM, ANN and RFC with state of art
methods on Dataset 2.

TABLE 3. Performance analysis of different state of arts for thyroid
segmentation using different Datasets.

TABLE 4. Summary of all the optimized parameters used in SVM, RFC and
ANN.

Forest Classifier (RFC) and Convolutional Neural Net-
work (CNN) were used in [17] for thyroid segmentation.
Out of these 5 approaches, the first three were non-machine
learning (NML) based methods and the last two meth-
ods used machine learning (ML). However, these last two
approaches were operated directly on 3D thyroid images.
Similarly, kmeans (a simple clustering algorithm) was used
in [3] to cluster and segment thyroid region in 2D thyroid
US images.

Similarly, Table 2 presents the comparison between our
three approaches and Iterative Random Walks and Ran-
dom Forest (IRWRF) from [6], a ML based and kmeans
from [3], a NML based approaches using Dataset 2.
We also present the results of thyroid segmentation
using four other algorithms in Table 3. It presents the
results using Echogenicity-based Quantization [13], Joint
Classification-Regression (JCR) [13], RBF Neural Network
(RBF) [15] and Feedforward Neural Network (FNN) [12] in
terms of DSC, SE and SP using different thyroid US datasets.
Despite the fact that these approaches use different datasets
than we use, we present these results just to see how these
algorithms perform in the domain of texture classification in
thyroid US images.

All these metrics were computed using confusion
matrix (CM) for each of the approaches used in our work.
We present the CM for all the three algorithms when used
on both the datasets below. In terms of TP, FN, FP and
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TN, the CM can be represented as below. The CM were
computed during the tests we carried out in the test sets
which consisted of 22, 704 and 447, 849 texture patches in
Dataset 1 and 2 respectively.

CM =
[
TP FN
FP TN

]
(12)

Dataset 1:

SVM =
[
20317 2368
16 3

]
ANN =

[
20311 1576
22 795

]
RFC =

[
20290 1654
43 717

]
Dataset 2:

SVM =
[
397213 50600
34 2

]
ANN =

[
375914 26060
21333 24542

]
RFC =

[
374365 26133
22882 24469

]
From Table 1 and 2, we can see that all the three classifiers

can classify the thyroid texture patches with better if not
comparable accuracies. SVM has the lowest accuracy out
of the three classifiers with a DC of 0.895 and 0.887 in
Datasets 1 and 2 respectively. Similarly, ANN has the highest
accuracy out of the three classifiers with a DC of 0.930
and 0.894 in Datasets 1 and 2 respectively. RFC produces
almost the same accuracy as ANN with a DC of 0.925 and
0.891 in Datasets 1 and 2 respectively. These results can
be visually accessed in the section below (see Section IV
C). Similarly, all the three approaches outperformed ACWE,
GC, PBC, RFC - Volume Based, CNN - Volume Based
and KMEANS on Dataset 1 and KMEANS and IRWRF
on Dataset 2 (except for KMEANS outperforming SVM on
dataset 1). Apart from other methods, the tests with RFC
and CNN - volume based were tested on the 3D thyroid
volumes corresponding to Dataset 1 instead of individual
2D images.

We have also presented the performance matrices in terms
of DSC, SE and SP from four different approaches in the
literature such as EBQ, JCR, RBF and FNN despite the
fact that they were tested on different datasets compared
to what we are using in this work. These results are dis-
played in Table 3. Compared to these approaches too, SVM,
ANN and RFC achieve better DSC and similar SE and
SP in both the datasets. These results prove the robust-
ness of the feature extraction process for thyroid texture
classification.

Apart from the accuracy of classification, the feature
extraction and training and testing of the approaches are
fully automatic compared to ACWE, GC and PBC which use
some level of human interaction. ACWE requires the user

to draw an initial contour, GC requires the user to scribble
the thyroid and non-thyroid region as a initialization process
and PBC requires the users to click inside and outside of the
thyroid regions to extract features from these regions. Also,
the initializations are very important in these approaches as a
wrong initialization could result in a misclassification of the
different regions.

The computation time for feature extraction in our work
is higher compared to the state of art techniques. This is
mainly because we compute the wavelet spectrum for all the
scales (or frequencies) in the LF, MF, HF and TB bands.
An optimization step can be carried out to compute the
spectrum at a scale that best represents these bands. Simi-
larly, during AR modelling, instead of computing the power
spectral densities (PSD) at all the frequency components in
the complex plane, a set of non-repetitive frequency compo-
nents could be chosen. On top of that, we have computed
all the features using MATLAB which makes the process
a lot slower. The optimization processes and the computa-
tion of these features in C++ could increase the frequency
computation speed by a factor of 100. However, it is worth
to mention that these features need to be computed only
once and can be stored in a .csv file for training the net-
works in future. The time taken for classifying a new thyroid
US image is however faster compared to the state of art
methods. This makes it applicable for clinical use as the
doctors and radiologist can just take a set of individual US
images and segment the thyroid regions using the trained
classifiers.

C. VISUAL ANALYSIS
The training of the three classifiers were followed by testing
of individual images which were not part of the training set.
An example of texture classification (first row) and segmen-
tation (second row) on a total of 8 (4 from each dataset) dif-
ferent thyroid US images using SVM on Dataset 1 and 2 are
shown in Fig. 4 and 5 respectively. Similarly, the results using
ANN on Dataset 1 and 2 on the same images as in SVM
are shown in Fig. 6 and 7 respectively. Fig. 8 and 9 show
the results using RFC on Datasets 1 and 2 respectively. The
images in the first row in all the figures from 4-9 show the
results of texture classification using the trained classifiers
and the images in the second row present the segmented
thyroid regions after the post-processing step. In the figures,
the green squares represent the 20 x 20 pixel texture patches
classified as thyroid and the solid red line represents the
ground truth region manually annotated by the expert clini-
cians. For testing purposes, we took the thyroid images from
different locations with respect to the thyroid volume and
from different patients.

The images from the first row in all the figures
(i.e. Fig. 4, 5, 6, 7, 8 and 9) show the texture classification
results from the trained classifiers and the images from
the second row show the post-processed segmented thyroid
region (marked with solid green lines). As evident in the
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FIGURE 4. Examples of thyroid texture classification and segmentation using SVM and comparison with ground truth on Dataset 1.

FIGURE 5. Examples of thyroid texture classification and segmentation using SVM and comparison with ground truth on Dataset 2.

FIGURE 6. Examples of thyroid texture classification and segmentation using ANN and comparison with ground truth on Dataset 1.

figures, there are some over-classifications of texture patches
as thyroid. Hence, a post-processing step was carried out to
get rid of these over-classified texture patches.

The sample test images along with their ground truth have
been shown above. From these test images, we can see that
this way of texture classification obtains the larger thyroid
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FIGURE 7. Examples of thyroid texture classification and segmentation using ANN and comparison with ground truth on Dataset 2.

FIGURE 8. Examples of thyroid texture classification and segmentation using RFC and comparison with ground truth on Dataset 1.

FIGURE 9. Examples of thyroid texture classification and segmentation using RFC and comparison with ground truth on Dataset 2.

region compared to the thyroid segmentation using ACWE,
GC and PBC as they fail to segment the isthmus region
inside the thyroid [17]. Despite classifying the regions in the
isthmus, our approach achieves few under-classified results

inside the thyroid. This problem could be solved by calcu-
lating more features (energy based, entropy based, statistical
features, etc.) and using some extensive pre-processing
techniques to choose the most prominent features like

79362 VOLUME 7, 2019



P. Poudel et al.: Thyroid US Texture Classification Using Autoregressive Features in Conjunction

FIGURE 10. A 3D reconstructed thyroid after texture classification and
segmentation using Imfusion.

Principal Component analysis [32] and Information Gain
Techniques [33].

V. DISCUSSION AND CONCLUSION
In this paper, we have compared the three different machine
learning techniques (SVM, ANN and RFC) for thyroid
texture classification and segmentation. We computed the
features for training of these classifiers using a very novel
feature extraction technique. A signal based version of the US
image was used and parametrically modelled to compute AR
features. This transformation of the image to signal possesses
many advantages compared to the image based analysis.With
this way of treating the images, the extracted features are not
affected by the presence of speckle noise, low contrast issues
and low SNR in thyroid US images. This allows the classifiers
to classify the thyroid region even in the smaller areas (for
example in the isthmus of the thyroid) which was difficult
using some of the state of art methods (ACWE,GC and PBC).

We also performed a comparison analysis between our
approaches and various approaches in the literature. Two
different comparison analysis were performed, first by com-
paring the performance on the same datasets and second on
different datasets. In all of the tests, our approach outper-
formed the approaches in the literature in terms of DSC and
had similar SE and SP. The results that we have obtained show
a close correlation to the ground truth data. While the accu-
racy of training of the classifiers are similar, ANN slightly
outperformed SVM and RFC. Our approaches were fully
automated, so the user did not have to invest time in tracking
the progress of the segmentation like in ACWEwhere the user
had to stop the process and run it again, if the initialization
of the contour was outside of the thyroid region. Similarly,
in graph cut the user had to remove the over-classified regions
after the segmentation and in PBC, the user had to make
more clicks inside and outside the thyroid regions to get a
better estimate of the features in order to train their decision
trees.

One of the main drawbacks of the proposed approach is
that it has only been evaluated with thyroid images from
healthy subjects. In the future, we will explore how nodules
can change the spectral behaviour in the US image. Similarly,
we have used the images from a high-end machine (i.e. Logiq
E9) for our task and the images from low-end machine
might not have the same segmentation accuracy as we have
shown in this work. Additionally, the classification of the
texture patches always produces a non-smooth boarder in the
segmented images. However, the clinical relevance could be
established by training the classifiers on pathological images
and the problem of the rough boarder in the segmented images
could be solved by taking overlapping patches or by using
a multi-resolution patch size and using the best size that
produces a smooth appearance in the boarder region.

As future works, more features can be computed by not
modelling the US images using AR model but by other meth-
ods as well like Bispectral model [34] and these features can
be pre-processed by other pre-processing techniques such as
Principal Component Analysis and InformationGain to select
the prominent features. We could also combine the features
from different modelling techniques and use them for the
classification task. Similarly, the feature computation time
can be reduced by optimizing the wavelet computation and
AR modelling steps.

As mentioned above, the classified thyroid images can be
reconstructed to a 3D volume as we also acquired the tracking
data during the image acquisition phase. An example of the
3D reconstructed thyroid using Imfusion [36] after texture
classification and segmentation is shown in Fig. 10.The Imfu-
sion software allows the user to input all the binary images
obtained from the segmentation as a video file along with
the tracking matrices associated with each image frames. The
reconstruction is then carried by using a technique called
volumetric compounding where an interpolation is carried
out between the corresponding image frames to fill the empty
spaces. The 3D volume information can be used clinically by
the medical experts to monitor the state of thyroid over time.
Sincemost of the thyroid diseases involve change in the shape
and volume of thyroid over time, the 3D reconstruction and
volume computation has a clinical relevance.
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