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Abstract

Chromatography is a powerful separation method that is used in many differ-
ent industries like chemical, pharmaceutical, and food industry. In the last two
decades, chromatography received an immensely increased attention in biotech-
nology involving the separation of amino acids or even more importantly the
separation of proteins. In general, chromatographic processes contribute crucially
to a high cost of the corresponding overall process chains. Consequently, there is
a high demand on their optimization through efficient process design and control.
Both, design and control require a deep understanding of the process, which can
be model-based or data-driven. In this thesis, model-based analysis is applied in
order to predict qualitative process properties as well as quantitatively the process
behavior through an analytical and a numerical approach, respectively.

The analytical approach used in this work results from the application of the
equilibrium theory, which is based on an idealized model of spatially distributed
packed bed sorption units assuming thermodynamic equilibrium between the fluid
and the solid phase. The model represents a system of first-order quasi-linear par-
tial differential equations and admits the analytical approach using the method
of characteristics if the system is also hyperbolic. Thermodynamic equilibrium is
described by the sorption isotherm, which represents the essential non-linearity
of the system and determines crucial properties like hyperbolicity. Previous ap-
proaches have been limited to explicit sorption isotherms including Langmuir,
Bi-Langmuir, and generalized Langmuir isotherms. In this work, processes with
implicit sorption isotherms are considered. This generalized class of sorption
isotherm is often required for an accurate process description. Consequently, the
numerical approach presented in this thesis aims at an efficient numerical simula-
tion of idealized chromatographic processes with implicit sorption isotherms. For
demonstration purposes, two important classes of implicit sorption isotherms are
considered for both approaches. One is derived from the ideal adsorbed solution
theory, while the other results from the law of mass action.

First, focus is on the applicability of the numerical approach to an idealized
chromatographic model with adsorption described by the ideal adsorbed solution
theory. In particular, a reformulation strategy is introduced, which is combined
with a method of lines approach. As a result, the simultaneous solution of the
resulting differential algebraic equations (DAEs) is possible, thus avoiding explicit
differentiation of the sorption isotherm. Efficiency of this approach and applicabil-
ity of standard DAE software requires a differential index of one. For this purpose,
the relation between the differential index of the DAE system and the spectral
properties of the underlying adsorption equilibrium is established. In particular,
it is shown that real and positive eigenvalues of the Jacobian derived from the
adsorption isotherm represent a sufficient condition. This condition is also shown
to be satisfied necessarily for binary mixtures with any type of single component
adsorption isotherm or for multicomponent mixtures with certain restricted types
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of single component isotherms. The new method is illustrated for different explicit
and even implicit single component adsorption isotherms belonging to this class.
Numerical efficiency is quantitatively demonstrated through comparison with var-
ious solution approaches using the state-of-the-art modified FastIAS method. An
additional validation of numerical solutions is realized through comparison with
semi-analytically obtained solutions from equilibrium theory.

Second, versatility of the numerical approach through application to an ideal-
ized chromatographic model with a significantly different sorption isotherm, the
stoichiometric mass action law with constant solution normality for classical ion
exchange processes, is demonstrated. It is proven that hyperbolicity of the model
equations and non-negativity of the related eigenvalues implies a differential index
of one, which greatly alleviates the numerical solution since it is often satisfied
for thermodynamically consistent sorption isotherms. Classical theoretical results
from equilibrium theory are summarized and further extended to full chromato-
graphic cycles and pulse patterns, which are of major interest in chromatography.
For validation purposes, semi-analytical solutions are compared to the numerical
calculations for different scenarios. Focus is on selectivity reversals and their in-
fluence on process operation in general. Further, specific phenomena are discussed
including the singular character of the origin with respect to a selectivity reversal
as well as additional effects of multiple reversals.

Third, the analytical approach is extended by applying the equilibrium theory
rigorously to advanced ion exchange processes that account for steric effects and
a variable solution normality. This extension allows the equilibrium theory-based
results to become available for applications in the field of bioseparations including
the important separation of proteins. Analytical solutions are obtained for full
chromatographic cycles consisting of the loading of an empty bed equilibrated at
different counter-ion concentrations followed by the complete regeneration of the
target components. Theoretical results regarding selectivity reversals are extended
as well. A variable solution normality is shown to potentially introduce selectivity
reversals and / or increase the number of selectivity reversals that affect the chro-
matographic cycle. For an improved understanding, the effect of steric hindrance
and variable solution normality are investigated both separately as well as jointly
in three suitable case studies. Theoretical findings for all cases were validated by
comparison with results obtained from the numerical approach, which is extended
accordingly. New phenomena such as the unique solution to non-strict hyperbolic
cases or the global properties of the ion exchange sorption are analyzed in detail.

Finally, an extension of the triangle theory, which is based on results of the
equilibrium theory for true moving bed processes involving two components, to
classical ion exchange sorption is presented. Thus, rational design of the related
simulated moving bed processes in conjunction with ion exchange sorption be-
comes available. Results are verified by simulations of the true moving bed pro-
cess. For this purpose, the numerical approach is also extended to this advanced
separation method.
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Zusammenfassung

Eines der wichtigsten Trennverfahren für Mehrkomponentengemische im flüssi-
gen oder gasförmigen Zustand ist die Chromatographie. Sie ist etabliert in einer
Vielzahl von Industrien, wie z.B. der chemischen und der pharmazeutischen Indus-
trie oder auch der Nahrungsmittelindustrie. In den letzten zwei Jahrzehnten hat
sich das Hauptanwendungsgebiet mehr und mehr in den Bereich der Biotechnolo-
gie verschoben, da sich die Chromatographie hier als effektives Trennverfahren
für Grundbausteine biotechnologischer Anwendungen, den Aminosäuren und den
Proteinen, erwiesen hat. Sind chromatographische Prozesse Teil einer indus-
triellen Prozesskette, tragen diese meist zu einem erheblichen Teil an den gesamten
Prozesskosten bei. Aus diesem Grund ist die Optimierung chromatographischer
Prozesse von zentraler Bedeutung. Umsetzung der Optimierung erfolgt durch
entsprechend effizientes Prozessdesign und / oder Regelungsstrategien. Grund-
voraussetzung für beide Optimierungskonzepte ist ein tiefgründiges Prozessver-
ständnis. Dieses Verständnis kann entweder auf der Grundlage von physikalis-
chen Gesetzen oder allein auf Grundlage von messbaren Daten gewonnen werden.
Ersteres erlaubt eine prädiktive mathematische Darstellung des Prozesses durch
klassische Modelle, während letzteres auf eine mathematische Darstellung durch
Ersatzmodelle beschränkt ist die eine Reproduzierbarkeit der Messdaten erlaubt
aber keine Prädiktion darüber hinaus. In dieser Dissertation werden analytische
und numerische Ansätze für die Analyse klassischer Modelle entwickelt, welche
dementsprechend die Vorhersage von qualitativen Prozesseigenschaften und auch
des quantitativen Prozessverhaltens ermöglichen.

Der in dieser Arbeit verwendete analytische Ansatz basiert auf der Anwen-
dung der sogenannten Gleichgewichtstheorie. Diese Theorie resultiert aus der
Annahme eines bestimmten Gleichgewichtsmodells, dem idealen Modell örtlich
verteilter Festbettprozess in der Chromatographie. Gleichgewicht bezieht sich
in diesem Fall auf das thermodynamische Gleichgewicht zwischen fluider und
fester Phase. Die Modellierung führt auf ein System quasi-linearer partieller
Differentialgleichungen erster Ordnung, welches die Möglichkeit analytischer Lö-
sungen basierend auf der Methode der Charakteristiken eröffnet. Die Anwend-
barkeit der Methode setzt jedoch Hyperbolizität des Gleichungssystems voraus.
Die Nicht-linearität in diesem Gleichungssystem wird allein durch die Sorption-
sisotherme definiert, und sie bestimmt damit wichtige Eigenschaften des Gle-
ichungssystems wie z.B. Hyperbolizität. Die Isotherme resultiert aus der Mod-
ellierung des thermodynamischen Gleichgewichts. In der Vergangenheit wurde
die Anwendung der Gleichgewichtstheorie stets auf explizite Sorptionsisothermen
beschränkt. Die wichtigsten Vertreter sind due Langmuir-, die Bi-Langmuir-
und die verallgemeinerte Langmuir-Isotherme. Mit Hinblick auf eine erweiterte
Anwendbarkeit wird in dieser Arbeit die verallgemeinerte Klasse der impliziten
Sorptionsisothermen betrachtet. Dies gilt auch für die Entwicklung effizienter nu-
merischer Lösungsverfahren. Zu Demonstrationszwecken werden zwei der wichtig-
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sten impliziten Sorptionsisothermen basierend auf der Theorie der ideal adsor-
bierten Lösung beziehungsweise auf dem Massenwirkungsgesetz für den analytis-
chen wie auch den numerischen Ansatz betrachtet.

Zuerst wird die Anwendbarkeit des entwickelten numerischen Lösungsansatzes
an Hand des idealen Modells mit Adsorptionsisothermen basierend auf der Theorie
der ideal adsorbierten Lösung demonstriert. Hierbei wird die Kernidee der Um-
formulierung des Systems partieller Differentialgleichungen präsentiert. Dieses
neu formulierte Gleichungssystem wird anschließend mittels der Linienmethode
in ein System bestehend aus Differential-algebraischen Gleichungen überführt,
welche simultan ohne explizites Differenzieren der Adsorptionsisothermen gelöst
werden können. Das effiziente numerische Lösen von Differential-algebraischen
Gleichungssystemen, insbesondere bei der Nutzung von geeigneter Standardsoft-
ware, erfordert einen Differentiationsindex gleich eins. Zu diesem Zweck wurde
ein Zusammenhang zwischen dem Differentiationsindex und der Spektraleigen-
schaften des zu Grunde liegenden Adsorptionsgleichgewichts hergestellt. Sind die
Eigenwerte der Jacobi-Matrix abgeleitet aus der Isothermen reell und positiv,
so ist dies hinreichend für einen Differentiationsindex gleich eins. Es wird zu-
dem gezeigt, dass diese hinreichende Bedingung im Falle von binären Gemischen
für beliebige Reinstoffisothermen erfüllt ist jedoch nicht für Mehrstoffgemischen
mit mehr als zwei Komponenten. Letzter Fall bedarf weiterer Einschränkungen
bezüglich der Reinstoffisothermen. Das entwickelte numerische Lösungsverfahren
wird durch Beispiele mit kompatiblen expliziten und sogar kompatiblen impliziten
Reinstoffisothermen veranschaulicht. Für explizite Reinstoffisothermen gibt es die
numerisch sehr effiziente ’modified FastIAS’ Lösungsmethode, welche durch Ver-
gleich mit dem entwickelten numerischen Lösungsansatz dessen Effizienz quanti-
tativ bestätigt. Zudem werden die numerisch bestimmten Lösungen mit Hilfe der
Gleichgewichtstheorie durch entsprechende semi-analytische Lösungen validiert.

Als zweites wird der numerische Lösungsansatz auf das ideale Modell mit einer
sich zur obigen grundlegend unterscheidenden impliziten Isothermen basierend auf
dem Massenwirkungsgesetz mit konstanter Lösungsnormalität für den klassischen
Ionenaustausch angewendet, wodurch die Flexibilität der Anwendbarkeit des nu-
merischen Ansatzes veranschaulicht wird. In diesem Fall ist ein Differentiation-
sindex von eins garantiert, wenn die Modellgleichungen hyperbolisch sind und die
damit in Verbindung stehenden Eigenwerte nichtnegativ sind. Diese Bedingung ist
für thermodynamisch konsistente Isothermen häufig erfüllt. Zudem werden klas-
sische Ergebnisse der Gleichgewichtstheorie zusammengefasst und durch die Ein-
beziehung von chromatographischen Zyklen sowie von Pulsmustern erweitert. Die
Validierung numerischer Ergebnisse erfolgt durch Vergleich mit semi-analytischen
Ergebnissen der Gleichgewichtstheorie für verschiedene Prozessszenarien. Haup-
taugenmerk liegt bei Simulationen und theoretischer Analyse auf dem Phänomen
der Selektivitätsumkehr und den damit verbundenen allgemeinen Auswirkungen
auf den Trennprozess. Des Weiteren wird zum einen die Rolle des Koordinatenur-
sprungs im Zusammenhang mit der Selektivitätsumkehr diskutiert und zum an-



ix

deren werden die Auswirkungen mehrerer Selektivitätsumkehrungen untersucht.
Als drittes wird der analytische Ansatz durch rigorose Anwendung der Gle-

ichgewichtstheorie auf Ionenaustauschprozesse mit variabler Lösungsnormalität
und sterischen Effekten erweitert. Folglich stehen die mit der Gleichgewichtsthe-
orie verbundenen Ergebnisse auch im Bereich der Bioseparation zur Verfügung.
Dies gilt insbesondere auch für die bedeutende Trennung von Proteinen. Ana-
lytische Lösungen werden für vollständige chromatische Zyklen bestimmt. Dabei
besteht ein Zyklus aus der zusätzlichen Beladung einer ausschließlich mit Gegenio-
nen beladenen und auch im Gleichgewicht stehenden Ionenaustauschsäule mit zu
trennenden Zielkomponenten und weiteren Gegenionen gefolgt von der vollständi-
gen Regeneration der Zielkomponenten. Eine weitere wichtige Erweiterung theo-
retischer Ergebnisse erfolgt in Bezug auf die Selektivitätsumkehr. Die nun vari-
able Lösungsnormalität kann die unmittelbare Ursache einer Selektivitätsumkehr
während eines chromatographischen Zyklus sein und / oder allgemein die Anzahl
an Selektivitätsumkehrungen in einem Zyklus erhöhen. Um die verschiedenen Ef-
fekte der variablen Lösungsnormalität und der sterischen Hinderung zu verdeut-
lichen werden beide Eigenschaften in zwei Fallstudien getrennt voneinander be-
trachtet. Eine dritte Fallstudie untersucht die Effekte unter der Annahme dass
beide Eigenschaften gleichzeitig präsent sind. Die semi-analytischen Ergebnisse
aller drei Fallstudien werden zur Validierung mit Simulationen basierend auf dem
entwickelten numerischen Lösungsansatz abgeglichen. Zu diesem Zweck wurde
der numerische Lösungsansatz entsprechend auf diese Ionenaustauschprozesse er-
weitert. Zudem werden weitere Phänomene wie die Eindeutigkeit der Lösung
eines nicht strikt hyperbolischen Spezialfalles wie auch globale Eigenschaften des
Ionenaustausches im Detail untersucht.

Zuletzt wird eine Erweiterung der Dreieckstheorie auf klassische Ionenaus-
tauschprozesse präsentiert. Diese Theorie basiert auf den Ergebnissen der Gle-
ichgewichtstheorie angewendet auf ’True Moving Bed’-Prozesse für Zweikompo-
nentengemische. Dementsprechend ist die darauf basierende Designprozedur für
’Simulated Moving Bed’-Prozesse auch bei Verwendung von Ionenaustauschsäulen
verfügbar. Die theoretischen Ergebnisse werden durch Simulationen des ’True
Moving Bed’-Prozesses validiert, wofür der numerische Ansatz entsprechend auf
diese weiterentwickelten Trenntechnologie erweitert wurde.
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0 zero vector −−
0N matrix of dimension N ×N with all entries equal to zero −−
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a supplementary variable [.]
a0i hypothetical covered surface area of component i [m2]
atot totally covered surface area [m2]
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m3
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Ac cross-sectional area of the column [m2]
b supplementary variable [.]
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c supplementary variable [.]
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ctot modified (generalized) solution normality [mol
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cj fluid phase concentration vector in column section j −−
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c0 hypothetical fluid phase concentration vector −−
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C1 class of continuously differentiable functions −−
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2

s
]

E matrix with zero main diagonal and all entries equal to one −−
f function symbol −−
f function symbol −−
F phase ratio [−]
F flux vector function −−
Fi,j scalar flux function of component i in column section j −−
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I intersection of CH and RHj −−
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J Jacobian matrix of the sorption isotherm q(c) −−
k index [−]
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K̄ matrix of mass transfer coefficients [−]
k̄i ass transfer coefficient of component i [−]
l index [−]

lk kth left eigenvector of ∂q

∂c
−−

lk,i ith entry of the kth left eigenvector [.]
L length of the column [m]
Lj length column section j [m]
L set of all indices related to absent components CH −−
m index [−]
mj flow-rate ratio in column section j [−]
M number of coinciding reversal hyperplanes [−]
Mi supplementary variable [.]
n index [−]
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NL number of absent components [−]
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m3 ]
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m3 ]
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T supplementary variable [.]
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s
]
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s
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s
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U supplementary variable [.]
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s
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s
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s
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s
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s
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s
]

V̇s volumetric flow rate of the solid phase [m
3

s
]

w adjusted capacity vector −−
W supplementary variable [.]
x normalized fluid phase concentration vector −−
xi normalized fluid phase concentration of component i [−]
X subset of normalized fluid concentration phase space −−
y normalized solid phase concentration vector −−
yi normalized solid phase concentration of component i [−]
Y subset of normalized solid concentration phase space −−
z dimensionless space coordinate [−]
z∗ space coordinate [m]
Z supplementary variable [.]



xxi

Greek letters

α supplementary variable [.]
β supplementary variable [.]
γ supplementary variable [.]
ǫ total porosity [−]
ǫe interparticle voidage [−]
ǫp intraparticle voidage [−]
ε supplementary variable [.]
ζ supplementary variable [.]
η function symbol −−
Θ supplementary variable [.]
ϑ SCI parameter [−]
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λk kth eigenvalue of ∂q

∂c
[−]
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µi reciprocal of the genuinely ionic charge of component i [−]
µq
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Chapter 1

Introduction

1.1 Motivation and Scope

1.1.1 Chromatographic Processes

In many different areas of the industry such as chemical industry, pharmaceutical
industry, or biotechnology exists a natural demand for high purity products. For
this purpose many different separation technologies were developed. Some of the
most applied technologies are distillation, extraction, and chromatography. The
latter is used mostly for difficult separations that have only a small difference
in specific physio-chemical properties regarding the involved target components.
Main focus here is on liquid-solid phase chromatography since it is one of the most
used phase combinations on the preparative scale, particularly in pharmaceutical
and biotechnological processes. However, many results in this thesis can be di-
rectly applied to gas chromatography. Hence, the mobile phase is denoted more
generally as fluid phase in the following.

In the following, the key idea of chromatography [1] is briefly explained using
a single chromatographic column, the most basic but also most important process
configuration, which is shown in Fig. 1.1. A mixture of two target components is
injected into a chromatographic column using a suitable solvent. The fluid flows
with a given velocity through the column, which contains a suitable stationary

Figure 1.1: Pulse injection of a binary mixture into a column depicting a batch
process. Transient pulse pattern at the column outlet indicates a complete sepa-
ration.

1
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Figure 1.2: Step injection of a binary mixture into an SMB depicting a continuous
process. Cyclic steady states of pure components at the two outlets indicate a
continuous complete separation.

solid phase. ’Suitable’ means, the interaction of target components in the fluid
phase with the stationary phase admits a small difference between different target
components. Even a slightly stronger interaction of one component leads in aver-
age to an increased number of binding states of short duration to the solid phase.
This increased average number of binding states occurring during the transition
from the column inlet to the outlet stronger retains in average the corresponding
component in the column. As a result, the stronger sorbing component reaches in
average the outlet of the column later. If in addition the column is long enough,
then complete separation can be achieved as depicted in Fig. 1.1. With the con-
figuration in Fig. 1.1, separation of target components requires pulse injections.
Hence, single column chromatography can be only realized as a batch process.

In contrast to this, a realization of a continuous chromatographic process, the
simulated moving bed (SMB) [2], is shown in Fig. 1.2. In this figure, the SMB
consist of four single columns connected in series and forming a single loop. The
cyclic switching of the input / output ports in the direction of the fluid phase
’simulates’ a counter-current moving solid phase with respect to the flow direc-
tion of the fluid phase. In this configuration, a mixture is continuously injected
resulting in a continuous output of pure stronger sorbing (extract) and weaker
sorbing (raffinate) components.

Focus in this work is on single columns, since they are the most applied pro-
cess configuration and represent the building blocks of more advanced separation
technologies like SMB or two-dimensional chromatography [3], which all share the
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same basic physical principles. A small part is specifically dedicated to the SMB
configuration. This process realization is of interest due to its continuous opera-
tion, which admits the production of large quantities in less time and requires in
addition less energy, less solvent, and also a smaller amount of solid phase media.

1.1.2 Model-based Design and Analysis

Independent of the specific process, chromatography significantly contributes to
the cost of the overall process chain. Therefore, proper design of the process
is economically important. Regarding their thermodynamic design, chromato-
graphic processes generally admit the following degrees of freedom [4]. First, the
choice of a suitable solid phase. For any given mixture this choice is limited to
solid phases that interact with target components in the fluid phase in a desired
way. Similarly, a suitable solvent is required to provide an appropriate fluid phase
environment for the target components without compromising their sorption be-
havior. Column length is another crucial pre-operational degree of freedom that
affects separation efficiency of the chromatographic process. In addition suitable
operating parameters are required. In single column chromatography important
operating parameters are the fluid flow rate and some gradients of additionally
injected components [5]. A typical example are salt gradients in protein separa-
tion [6], where the sorbing behavior of the salt is used to efficiently elute proteins.
Gradients are usually either step-wise or linearly injected. In this context it is im-
portant to find suitable or even optimal step sizes and slopes, respectively. Even so
gradients can be also applied to SMB units, for example gradients of solvent mod-
ifiers [7]. Besides, the most important operating parameters for SMB processes
are the flow rate ratios [8] in each zone of the process. They can be determined
using the the so-called triangle theory [9], which is based on an analytical solution
of an idealized column model assuming a true counter current movement of the
fluid and the solid phase.

Two design methodologies are typically used, either an empirical or model-
based design. In this thesis, only model-based design of chromatographic processes
[1] is considered due to its efficiency, which is briefly described in the following.In
order to account for a process under a large variety of conditions and different
set-ups, an enormous amount of experimental data is required, which leads to
a cost-intensive empirical design. The experimental effort can be reduced using
mathematical models leading to a model-based design. A first, conceptual design
can be based on analytical insight of some reasonably simplified models that ad-
mit such an analytical approach [10]. A typical example is the triangle theory
for SMB processes mentioned above. In a second step, the analytical approach
can be complemented with numerical simulations of some more detailed models
[11]. Hence, simulations, which are obviously more cost efficient than time and
material consuming experiments, can be used to predict the real process behavior
more quantitatively. Further, numerically efficient simulations can be incorpo-
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rated in advanced concepts such as optimization or control [12]. Both advanced
concepts can improve the process performance significantly. If however neither
useful analytical results nor numerically efficient simulations are available due to
an increased complexity of the mathematical models, model-based design cannot
be applied. Instead of going back to cost intensive empirical design methods,
model-based design methods can be developed through advances in model-based
analysis, which is the primary objective of this work. Especially, if the analysis
eventually allows to obtain analytical results and / or numerically efficient simula-
tions for chromatographic processes despite an increased complexity, a crucial step
is taken for future advancement in design methods of these separation processes.

Model-based analysis requires mathematical representations of chromatographic
processes. Mathematical modeling of these spatially distributed processes (see
Figs. 1.1 and 1.2) leads to a system of partial differential equations (PDEs)
[13]. There is a large variety of models with different complexity. In this work,
the important class of equilibrium models [13] is considered since they account,
despite numerous idealizations, for the most important principle, the sorption
equilibrium of the chromatographic process. Main focus is on the ideal model
[14, 15, 13]. It assumes a thermodynamic equilibrium between the fluid and solid
phase, neglects all effects leading to band broadening, like axial dispersion for
example, and therefore leads to a system of first-order quasi linear PDEs that can
be solved semi-analytically using the methods of characteristics (MOC) [15]. In
contrast, obtaining numerical solutions for hyperbolic PDE systems (efficiently)
is in general challenging due to the formation of steep concentration fronts [16].
For equilibrium models, the sorption mechanism is mathematically represented in
form of algebraic equations by so-called sorption isotherms, which result from the
thermodynamic equilibrium of the two phases. Isotherms often represent the non-
linearity of the PDE system of the ideal model. On one hand, finding a suitable
isotherm is important to reflect the non-linear behavior and therefore possibly
key features of the process. On the other hand, any suitable but also complex
isotherm increases significantly the complexity of the mathematical problem for-
mulation. Hence, mostly explicit isotherms [11, 15] are considered. Focus is here
on the extension of model-based analysis to implicit isotherms. Such an exten-
sion allows to incorporate a large variety of more complex and thus possibly also
of more suitable isotherms in model-based design methods. As a result, more
challenging systems of partial differential algebraic equations (PDAEs) have to be
solved analytically and / or numerically.

1.1.3 Implicit Sorption Isotherms

Focus of this thesis is on model-based analysis of chromatographic processes with
implicit isotherms based on the ideal adsorbed solution theory (IAST) [17] and the
law of mass action [18], respectively. The IAST is usually used for weaker sorption
mechanisms, which are then often referred to as adsorption. Adsoprtion is based
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on weaker electrostatic forces including ion-dipole interactions, hydrogen bonds,
or hydrophobic interactions. The IAST is derived from thermodynamic principles.
In contrast to the Langmuir isotherm, which is based on simple sorption kinetics
[19], IAST allows for variable selectivities, and therefore it is able to account
for additional phenomena such as selectivity reversals. In comparison with other
sophisticated and thermodynamic consistent sorption principles like real adsorbed
solution theory [20, 21] or vacancy solution theory [22], the IAST allows the
prediction of multi-component adsorption based on single component isotherm
(SCI) data, which is far easier to obtain [23]. IAST was successfully applied to
gas [24] as well as liquid phase adsorption under dilute conditions [25]. Thus, the
IAST formalism results not only in challenging implicit isotherms but also provides
numerous relevant application examples in gas and liquid chromatography [26].

In contrast to adsorption, stronger physiosorption mechanisms are based on
electrostatic forces of ionic charges. These mechanisms are referred to as ion
exchange, which can be described by the mass action law. In its most elegant form,
the ion exchange isotherm is derived from the concentration-based mass action
law, which admits analytical treatment through application of the MOC. Classical
analytical and numerical results were presented in [27, 28]. These results were
helpful for applications involving small ions and a constant solution normality.
These two aspects define the classical ion exchange (CIE), which is however limited
regarding its real world applications such as sea water purification or separation
of rare earths.

Separations in biotechnology, micro biology, and pharmaceutical industry heav-
ily promoted the application of ion exchange processes since most relevant compo-
nents are either differently charged amino acids or proteins. If separations involve
large molecules like proteins, they incorporate new aspects like steric shielding and
non-integer characteristic charges. In conjunction with a variable solution normal-
ity these aspects define the advanced ion exchange (AIE). In order to account for
all three aspects in AIE, the steric mass action law (SMA) was developed [29],
which is closely related to the mass action law used in CIE, thus motivating the
application of the MOC also to the AIE formalism with SMA isotherm. Param-
eters of the SMA isotherm can be obtained from simple binary experiments [29].
Moreover, the SMA was applied successfully to many different bio separations
[6, 30, 31, 32, 33]. Both, CIE and AIE introduce implicit isotherms. In addition
of using an elegant but also challenging implicit isotherm, AIE allows to explore
model-based analysis for the important class of bioseparations [34, 5, 35].

1.2 State of the Art

1.2.1 Numerical Approaches

Independent of the sorption principle, the PDE systems of equilibrium models
can be solved by standard numerical methods such as full discretization methods
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(FDM) [16] and method of lines (MOL) [36]. All of these methods rely on dis-
cretization techniques. The most important discretization schemes are finite dif-
ferences (FD), finite elements (FE), finite volumes (FV) [13, 11]. Based on these,
more sophisticated concepts including high resolution schemes [16] or adaptive
grids [37] are also frequently used to improve the numerical performance.

In AIE, numerical solutions for equilibrium models are mostly obtained through
FDM with FD [30, 38] or through MOL with FVM [39]. If the thermodynamic
sorption equilibrium in AIE is described by the SMA, the implicit algebraic equa-
tions are either solved separately using iterative methods, such as Newton-type
methods [40] in FDM [38] or simultaneously approximating them by corresponding
ordinary differential equations (ODEs) that are based on a fast but finite mass-
transfer [39] in order to achieve numerical efficiency of an MOL-based solution
strategy. Note, the latter approach does not solve genuine equilibrium models.
Consequently, there is a lack of numerical approaches that solve simultaneously
the differential and algebraic equations (DAEs) efficiently.

In case of equilibrium model with IAST, FDM primarily in conjunction with
FD or FVM [26] or MOL in conjunction with FD or FVM [41] is applied. Focus
was particularly on efficiently solving the adsorption equilibrium provided by the
IAST [17, 42, 43]. As a result, the modified FastIAS was developed [44]. It also
uses Newton-type algorithms to solve the algebraic equations of the IAST formal-
ism separately but improves these algorithms by exploiting the specific structure
of the IAST equations. Despite being available already in 1985, it is the stat-
of-the-art IAST equilibrium solver still up to today and thus presents a useful
benchmark. One of its more significant drawbacks is the limitation to analyt-
ically integrable and therefore explicit SCIs. More recently, other efficient but
very limited approaches based on analytical solutions were proposed [45, 46] as
well as an alternative approach [41]. It is based on a differential reformulation
of the equilibrium conditions and applies numerical integration. This method is
very powerful and avoids iteration at the expense of increased computational ef-
fort. Further computational effort is required to calculate the derivatives of the
equilibrium concentrations of the solid phase, which are needed for packed bed
adsorber simulation using a method of lines approach. Other limitations arise
regarding classes of applicable SCIs. Numerical solution strategies that are com-
parable in efficiency with methods that use the modified FastIAS and also require
only mild conditions on applicable SCIs are not available.

1.2.2 Analytical Approaches

Besides a numerical solution also an analytical solution is possible for hyperbolic
conservation laws with piece-wise constant boundary and initial conditions - so
called-Riemann problems - using the method of characteristics (MOC) [16]. The
ideal model of chromatography together with standard modes of operation, such
as the loading of an empty bed, or the regeneration of a fully loaded bed, or
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the elution of a pulse, represents such a system [13]. In this context, the MOC
is often called equilibrium theory. The requirement of hyperbolicity implies di-
agonalizability of the Jacobian that can be obtained from the sorption isotherm
[15]. Consequently, application of the MOC to the ideal model depends on the
choice of the isotherm. The MOC was applied successfully to Langmuir [15], Bi-
Langmuir [47, 48], generalized Langmuir [49] isotherms. Beyond Langmuir-like
isotherms, only a few other isotherms admit analytical insight into the properties
of the sorption Jacobian.

Multi-component isotherms described by the IAST do admit under certain
conditions for the SCIs analytical insight in form of the spectral properties re-
garding the sorption Jacobian [41]. The conditions are rather strong, but since
the IAST provides a very challenging sorption equilibrium including integral equa-
tions, other analytical results regarding the IAST related Jacobian are not avail-
able.

In contrast, some analytical results regarding the CIE were already obtained by
Tondeur [27]. A more comprehensive summary of classical results can be found in
[28]. Based on these results, the MOC was successfully applied to CIE applications
[50, 51] involving small ions. Since the field of application for ion exchange shifted
to bioseparations involving very complex charged molecules, the AIE formalism is
required to account for additional and some of the most significant properties like
steric shielding and a variable solution normality [52] by using the SMA isotherm
[29]. Some efforts to apply the MOC were made [6, 31, 53, 54, 55, 56] but in each
case limited to specific applications introducing additional simplifying assump-
tions. Neither a rigorous application of the MOC to the AIE nor an extension of
classical analytical results to the SMA isotherm is available.

Further, the MOC was successfully applied to binary SMB processes using
linear or Langmuir isotherms [57] and was extended to isotherms with variable se-
lectivity [58] including the IAST formalism. An extension of this so-called triangle
theory to ion exchange processes was not presented.

1.3 Objectives

Main objective of this thesis is to develop new numerical and analytical methods
for model-based analysis of chromatographic processes with implicit adsorption
isotherms as introduced in the previous section.

The numerical solution strategy applied to equilibrium models with implicit
isotherms aims to meet the following requirements. First, simultaneous solution
of differential and algebraic equations, which allows to use DAE solvers that pro-
vide a number of advantages compared to methods that sequentially solve DAEs.
Second, the methodology of the solution approach is independent of a specific
isotherm, thus can be easily applied to the IAST and mass action-based AIE /
CIE formalisms. Further, versatility of the approach allows also to apply differ-
ent process configurations like single column or SMB with arbitrary initial and



8 CHAPTER 1. INTRODUCTION

boundary conditions. Third, efficiency of the approach can be demonstrated by
using state-of-the art benchmarks. In particular, demonstration of numerical ef-
ficiency by comparison with modified FastIAS in conjunction with a variety of
standard numerical methods for PDE systems. In order to demonstrate a genuine
reduction of limitations, conditions of applicability and efficiency related to the
developed numerical approach are significantly relaxed compared to the conditions
of applicability related to methods using the modified FastIAS.

The analytical results obtained for the ideal model with isotherms based on
the IAST or mass action-based AIE / CIE formalisms aim to meet the following
requirements. First, validation of the simulation results provided by the numer-
ical solution strategy applied to the ideal model in case of Riemann initial and
boundary conditions. Second, properties of the Jacobian derived from the sorp-
tion equilibrium can be related to the differential index of the numerical approach
in closed form, thus allowing to state sufficient conditions for the differential index
to be equal to one apriori.

Further, the analytical results obtained for the ideal model with SMA isotherm
used in the AIE formalism aim to meet the following additional requirements.
First, success of a rigorous application of the MOC is known apriori based on
analytically obtained eigenvalue and eigenvector representations of the sorption
Jacobian. If strict hyperbolicity is concluded, these analytical results facilitate
the MOC application since eigenvalues and eigenvectors are not required to be
calculated numerically. Second, obtaining additional analytical results regarding
topological properties of the concentration phase space with special emphasis on
selectivity reversals that allow for a comparison with classical results. Therefore,
the effect of variable solution normality and steric hindrance can be evaluated
rigorously.

Finally, analytical results of idealized SMB processes using the mass action-
based CIE formalism aim to extend the triangle theory to ion exchange processes.

Major results of this thesis as stated above were published∗ in advance in the
following five articles:

i) M. Fechtner, A. Kienle, Efficient simulation and equilibrium theory for ad-
sorption processes with implicit adsorption isotherms – mass action equilib-
ria, Chem. Eng. Sci. 171 (2017) 471–480.

ii) M. Fechtner, A. Kienle, Efficient simulation and equilibrium theory for ad-
sorption processes with implicit adsorption isotherms – ideal adsorbed solu-
tion theory, Chem. Eng. Sci. 177 (2018) 284–292.

iii) M. Fechtner, M. Kaspereit, A. Kienle, Efficient simulation of ion exchange
chromatography with application to bioseparations, Computer Aided Chem.
Eng. 43 (2018) 295–300.

∗All five articles were published by Elsevier R©. Articles from Elsevier R© are al-
lowed to be included in full or in part in a dissertation for non-commercial purposes.
(https://www.elsevier.com/about/policies/copyright/permissions)

https://www.elsevier.com/about/policies/copyright/permissions
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iv) M. Fechtner, A. Kienle, Equilibrium theory of ion exchange chromatography
with variable solution normality and steric hindrance, Chem. Eng. Sci. 199
(2019) 508–527.

v) M. Fechtner, A. Kienle, Rational design of ion exchange simulated moving
bed processes, Computer Aided Chem. Eng. 48 (2020), 733-738.

1.4 Outline

This thesis consists of seven chapters. The other six chapters cover the following
content.

The second chapter introduces the relevant mathematical models and tools
for their analysis. In particular, dynamical models with focus on equilibrium
models and sorption isotherm models resulting from the IAST, CIE, and AIE
formalism are explained in detail. Subsequently, the framework of the MOC is
presented for hyperbolic systems. Finally, established numerical methods and
standard discretization schemes are described.

In Chapter 3, the IAST in conjunction with equilibrium models is considered.
Focus is on developing a numerical solution strategy for any implicit sorption
isotherm, thus including the IAST. As a result, a numerical approach that allows
for simultaneous solution of the DAE system, which results from discretization of
the corresponding PDAE system, is presented. Particular focus is on the differ-
ential index of the DAE system. This index is shown to be equal to one if the
Jacobian derived from the IAST-based isotherms has non-negative eigenvalues. A
specific application example is used to benchmark the developed strategy against
various numerical methods including the modified FastIAS, thus demonstrating
its efficiency. Another application example shows that the solution strategy is
applicable to any implicit SCI.

Chapter 4 covers the application of the numerical solution strategy to ion ex-
change applications described by the mass action-based CIE formalism and the
ideal model. In addition, a complete picture of the equilibrium theory using the
CIE formalism is presented. Numerous application examples using Riemann con-
ditions are simulated. These results were validated by analytical results of the
MOC. Particular focus was on selectivity reversals and their effect on process
operation by analyzing full chromatographic cycles with boundary conditions in
regions of different selectivity, wave interactions, and separability of target compo-
nents. Additional phenomena resulting from multiple selectivity reversals are also
presented. In case of the CIE formalism, the differential index of the numerical
solution strategy is shown to be always equal to one based on spectral properties
of the Jacobian derived from the mass action law.

Main focus in Chapter 5 is on analytical results regarding the ideal model us-
ing the SMA-based AIE formalism. Similar to the previous chapter, a complete
picture of the equilibrium theory using now the SMA isotherm is presented. In
addition, extended analytical results regarding selectivity reversals are compared
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to classical results. New analytical results of the equilibrium theory and selectiv-
ity reversals are highlighted. These results are shown to predict the qualitative
effects of a variable solution normality, which can affect the number and types of
reversals, and the quantitative effect of steric factors, which shifts and scales the
relevant domain in the concentration phase space. The effects of variable solution
normality and steric factors are also thoroughly discussed and presented in three
suitable case studies considering each AIE key feature separately and finally both
key features jointly. The extension of the numerical solution strategy from CIE
to AIE is straight forward and validated by comparing analytical and numerical
solutions in all three case studies.

In Chapter 6, the extension of the triangle theory to ion exchange SMB pro-
cesses is presented. In particular, the equations required to obtain the region of
complete separation for ion exchange SMB processes are presented in closed form.
The solution normality is shown to affect the region of complete separation signif-
icantly, hence it can be potentially used as additional design parameter. Similar
to the previous chapter, the extension of the numerical solution strategy to SMB
processes is straight forward and validated by using parameters close to semi-
analytically obtained region of complete separation for a large number of related
true moving bed (TMB) simulations and evaluating their separation efficiency.

The final chapter presents a summary of all results related to the analytical and
the numerical approach is presented. An outlook to interesting future challenges
regarding further extensions of ion exchange models is given. Special emphasis
there is on a possible extension for variable pH. For this particular challenge, an
extension of the AIE formalism is outlined.

The Appendix is mostly a collection of technical but essential (and for the
most part new) proofs. For an improved understanding of the key ideas and
messages, these proofs have been separated from the regular chapters. The last
two appendices cover a non-strictly hyperbolic case and global properties of the
AIE formalism with SMA isotherm, respectively. The last two appendices present
entirely unpublished content. The second last appendix is concerned with the
analytical investigation of a non-strictly hyperbolic case, where more than two
selectivities coincide. The last Appendix presents a number of analytical results
regarding global properties of the SMA-based AIE formalism including the bound-
ary of relevant domains, which are here closed subsets in the concentration phase
space.



Chapter 2

Theoretical Background

This chapter is concerned with the presentation of relevant mathematical models
for packed column processes in liquid chromatography. In particular, the dynamic
behavior of fixed-bed column sorption processes is shown to be mathematically
described by partial differential equations (PDEs) that depend crucially on the
sorption isotherm model. For a certain class of models, namely the ideal model, a
well-known semi-analytical solution approach for so-called Riemann problems is
described. It is based on the methods of characteristics (MOC) and is also referred
to as equilibrium theory. Finally, well-established numerical solution methods for
this relevant class of models are presented.

2.1 Model Equations

The required mathematical complexity of a chromatographic model depends on
the number of significant process properties and their physio-chemical complexity.
This leads to a large variety of models that can be used to describe the dynamics of
different sorption-based packed column processes. A comprehensive summary of
models can be found in [13]. In this thesis, main focus is on processes using a single
tubular packed-bed column of length L and with a cross-sectional area Ac as shown
in Fig. 2.1. This particular single-column process model is based on the following
assumptions. The fluid is used as mobile phase by injecting it into the column with
a feed concentration cfeed(t

∗) of target components potentially varying with time
t∗ and a constant volumetric flow rate V̇ . The direction of the fluid flow along the
column defines the direction of the spatial coordinate z∗. In the column, the fluid
contains target components with concentration c. Any effects that lead to radial
gradients of c are neglected, thus a spatially one dimensional process is considered.
Moreover, no chemical reactions take place in the fluid phase. Based on a sorption
mechanism between target components and solid phase, there is a mass transfer
of target components from the fluid to the solid phase, which is assumed to be
small compared to the convective transport in the fluid phase so that a constant
interstitial velocity u = V̇

ǫAc
can be assumed. Effects that cause significant mass

11
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Figure 2.1: Single column chromatographic process that can be mathematically
represented by a linear driving force model.

transfer resistance are assumed to be exclusively present in the solid phase. The
concentration of target components sorbed to the solid phase is denoted by q̄.
The solid phase itself consists of porous particles with total porosity ǫ, which
accounts for the inter- and intraparticle volume. Note, a radial concentration
distribution inside the particles is not considered. Porous particles are rigid,
uniform in size, and uniformly packed. Consequently, the total bed porosity ǫ
is constant. Further, the solid phase is assumed to be inert without chemical
instabilities and degradation. Hence, there are no chemical reactions in the solid
phase. Finally, the process ia assumed to be operated isothermal. Consequently,
energy balances can be omitted. With these assumptions the mathematical model
of chromatographic column shown in Fig. 2.1 follows from the material balances
of the solutes in the fluid and the solid phase according to

ǫ
∂c

∂t∗
+ (1− ǫ)

∂q̄

∂t∗
+ ǫu

∂c

∂z∗
= ǫDa

∂2c

∂(z∗)2
, c, q̄ ∈ RN , (2.1a)

∂q̄

∂t∗
=

K̄

1− ǫ
(q − q̄), q ∈ RN . (2.1b)

In this particular model the finite mass transfer is modeled using a linear driving
force based on the difference of actual solid phase concentration q̄ and its equi-
librium value q, which can be determined from the thermodynamic equilibrium
relation for given fluid phase concentration c. Matrix K̄ contains the finite mass
transfer coefficients that lump together the contributions of pore internal and ex-
ternal mass transfer resistance. Further, matrix Da = diag(Da,1 . . .Da,N) ∈ R

N×N

is a constant diagonal matrix, where all entries Da,i on the diagonal are lumped
parameters accounting for all dispersion effects that cause band broadening.
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Model (2.1) is simplified by assuming infinite large mass transfer coefficients
in K̄, which implies the equality q̄ = q, i.e. fluid and solid phase are immediately
in a state of thermodynamic equilibrium. Due to the isothermal operation of
the column, the equilibrium relation is described by a so-called sorption isotherm
q = q(c). As a result, we obtain the simpler equilibrium dispersive model

∂c

∂t∗
+ F

∂q(c)

∂t∗
+ u

∂c

∂z∗
= Da

∂2c

∂(z∗)2
, c, q ∈ RN . (2.2)

Scalar F = 1−ǫ
ǫ

denotes the phase ratio, which depends on the total porosity ǫ.
The value of parameter F describes the ratio of the volume occupied by the solid
phase with respect to the volume occupied by the fluid phase. Eq. (2.2) is a
PDE system of first order in time coordinate t∗ and of second order in spatial
coordinate z∗. In order to solve Eq. (2.2), N initial and 2N boundary conditions
are required.

If, in addition to the previous model assumptions also dispersion can be ne-
glected, Eq. (2.2) can be further simplified to the ideal model

∂c

∂t∗
+ F

∂q(c)

∂t∗
+ u

∂c

∂z∗
= 0, c, q ∈ RN . (2.3)

Eq. (2.3) is a system of N first-order PDEs in t∗ and z∗ requiring N initial and
N boundary conditions. They are obtained from the initial loading of the column
c(0, z∗) = cinit and the feed values at the column inlet c(t∗, 0) = cfeed.

Main focus in this work is on the ideal model. Considering the numerous as-
sumptions required for this model, its main purpose is the qualitative description
of chromatographic processes, particularly in case of more complex chromato-
graphic processes such as protein separation. In this case, size-related effects of
large proteins, such as steric shielding [52, 29] and increased mass transfer resis-
tance [5], are significant. Steric effects can be included directly in the sorption
isotherm [29], which is included also in the ideal model. Thus, steric effects on
sorption dynamics can be analyzed using Eq. (2.3). Since mass transfer resistance
is neglected, quantitative predictions of the ideal model are likely to deviate from
experimental data more significantly. For a quantitatively more accurate predic-
tion, models that also account for mass transfer resistance, such as Eq. (2.1), are
required. In contrast, if the separation involves only small molecules, the ideal
model can be used for qualitative analysis as well as quantitatively more accurate
predictions.

In this work, exclusively smooth isotherms q(c) are considered. The implied
differentiability allows to rewrite Eq. (2.3) into the equivalent formulation

1

u

(

IN + F
∂q

∂c

)

∂c

∂t∗
+

∂c

∂z∗
= 0, (2.4a)

∂F̃(c)

∂c

∂c

∂t∗
+

∂c

∂z∗
= 0, (2.4b)
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where IN ∈ R
N×N is the identity matrix and F̃(c) denotes the vector-valued

capacity function. This function is explicitly given by

F̃(c) =
1

u
(c+ Fq(c)) . (2.5)

Eq. (2.4) defines a system of N first-order quasi-linear PDEs. Alternatively, Eq.
(2.4) can further be rewritten into

∂c

∂t∗
+ u

(

IN + F
∂q

∂c

)−1
∂c

∂z∗
= 0, (2.6a)

∂c

∂t∗
+
∂F(c)

∂c

∂c

∂z∗
= 0, (2.6b)

where F(c) denotes the vector-valued flux of the PDE (2.6) that is only implicitly
given by

∂F(c)

∂c
= u

(

IN + F
∂q

∂c

)−1

. (2.7)

Eq. (2.6b) represents the standard representation of quasi-linear conservation
laws [16]. Hyperbolicity of the conservation law implies diagonalizability of matrix

u
(

IN + F ∂q

∂c

)

[15]. Hence, existence of the matrix u
(

IN + F ∂q

∂c

)−1
is guaranteed.

For both conservation laws (2.4,2.6) the method of characteristics (MOC) can be
applied to obtain semi-analytical solutions for so-called Riemann problems [14, 15],
which are defined in the subsequent subsection. Application of the MOC to the
ideal model is also referred to as equilibrium theory in context of equilibrium
driven chromatographic processes.

The importance of the sorption isotherm q(c) is evident since it introduces the
essential non-linearity to all models discussed so far. Semi-analytical solutions of
the equilibrium theory allow for a preliminary, qualitative analysis of the chro-
matographic process revealing equilibrium-related key features without requiring
numerous simulations or experiments. Results of this analytical approach enable
a conceptual design, which can serve as an ’educated’ starting point for further
experimental and / or numerical process optimization. Moreover, efficient numer-
ical solution methods that were successfully applied to the ideal model (2.3) can
be usually extended to a larger class of models with additional differential oper-
ators in space, such as Eq. (2.2), in a straight forward manner by approximation
through spatial discretization, which greatly increases the range of application for
these methods.

In order to solve the ideal model (2.3), specific knowledge of the sorption
isotherm q(c) is necessary. In this work, focus is on implicit isotherms. In par-
ticular, results will be obtained for two widely used implicit sorption isotherms,
namely the ideal adsorbed solution theory (IAST) [17, 25, 24] and the stoichio-
metric ion exchange. The latter is described by the mass action law in classical
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ion exchange (CIE) [27, 28] or by the steric mass action law (SMA) in advanced
ion exchange (AIE) [29, 52].

First, essential equations and assumptions of the IAST are presented. Origi-
nally, this theory was developed for gas adsorption [17, 24]. Later, the IAST was
extended to address also dilute liquid solutions [25]. The limitation to dilute solu-
tions is required to predict multi-component behavior based on single component
data, which obviously cannot account for interactions between the components in
the fluid phase. Two phases are said to be in equilibrium if pressure, tempera-
ture, and chemical potential of every component is equal in both phases [59]. The
IAST assumes an isobaric and isothermal operated adsorption process, thus the
equilibrium condition can be formulated in terms of chemical potentials

µc
i = µq

i , i = 1, . . . , N. (2.8)

Here, µc
i and µq

i denote the chemical potentials of component i in the fluid and
solid phase, respectively. For a dilute solution, µc

i is defined by [25]

µc
i = µ∗

i +RT ln

(

ci
c∗i

)

, (2.9)

where µ∗
i and c∗i denote reference state values for the chemical potential and corre-

sponding fluid phase concentration, respectively, R is the universal gas constant,
T is the equilibrium temperature, and ci the fluid phase concentration of compo-
nent i at equilibrium. An ideal adsorption is assumed, which neglects any surface
heterogeneities of the solid phase. In this case µq

i is given by [17]

µq
i = µ∗

i +RT ln

(

c0i (π, T )

c∗i

)

+RT ln (χi) . (2.10)

Scalar χi is the molar fraction of component i in the solid phase at equilibrium,
and c0i is the so-called hypothetical fluid phase concentration of component i at
equilibrium. The latter depends on equilibrium temperature T and spreading
pressure π at equilibrium. The fluid film that is in contact with the solid phase
admits a certain surface tension, which is affected by adsorption. The difference
in surface tension before and after adsorption is called spreading pressure. Eqs.
(2.9) and (2.10) substituted into Eq. (2.8) results in

ci = c0i (π, T )χi, i = 1, . . . , N, (2.11)

which can be interpreted as an analogon to Raoult’s law for adsorption [59]. A
closure condition at equilibrium is defined by the sum of molar fractions in the
solid phase

N
∑

i=1

χi =
N
∑

i=1

ci
c0i

= 1. (2.12)
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It relates actual and hypothetical fluid phase concentrations. In equilibrium, the
multi-component mixture admits a specific surface potential π for given concen-
trations c and temperature T . The value of c0i is defined by the requirement that
the fluid phase hypothetically contains only component i and admits the same
surface potential as the mixture at the same temperature T

πi(c
0
i , T ) = π(c, T ), i = 1, . . . , N. (2.13)

As a result there are additional N − 1 independent equilibrium equations relating
c0i and π at temperature T . In case of a single component and a constant volume of
the solid phase, the Gibbs adsorption isotherm [59] relates the spreading pressure
πi to the chemical potential µq

i in the solid phase as follows

dπi = A−1q0i dµq
i , (2.14)

where A denotes the specific surface area of the solid phase. The value of the
hypothetical solid phase concentration q0i of component i results from thermody-
namic equilibrium of a single component in solid and fluid phase described by a
single component isotherm (SCI). Hence, q0i is obtained for given c0i from

q0i = q0i (c
0
i ), i = 1, . . . , N. (2.15)

A key advantage of the IAST is that experimental data on SCIs can be easily
obtained compared to data on multi-component isotherms [23]. If only a single
component i is present, Eqs. (2.8) and (2.9) admit the following relation

µq
i = µc

i = µ∗
i +RT ln

(

c0i
c∗i

)

. (2.16)

Eq. (2.16) allows to obtain differential dµq
i using the chain rule. The result can

be substituted into Eq. (2.14).

dπi(c
0
i , T ) =

RT
A

q0i (c
0
i )

c0i
dc0i . (2.17)

Integration of Eq. (2.17) relates spreading pressure πi at equilibrium to the equi-
librium value of the hypothetical fluid phase concentration c0i and equilibrium
temperature T

∫ πi(c0i ,T )

πi(0,T )

dπ̃i =

∫ c0i

0

RT
A

q0i (σ)

σ
dσ (2.18a)

πi(c
0
i , T ) =

RT
A

∫ c0i

0

q0i (σ)

σ
dσ. (2.18b)

Substitution of Eq. (2.18b) into Eq. (2.13) and canceling factors RT
A

results in
N − 1 reformulated equilibrium relations

∫ c0i

0

q0i (σ)

σ
dσ =

∫ c0N

0

q0N(σ)

σ
dσ, i = 1, . . . , N − 1, (2.19)
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involving only hypothetical fluid concentrations c0i . Finally, an ideal adsorbed
solution satisfies the Lewis relationship [26]

N
∑

i=1

qi
q0i

= 1. (2.20)

Division by qtot and using the definition of mole fractions in the solid phase

qi = qtotχi (2.21)

leads to

1

qtot
=

N
∑

i=1

qi
qtot

1

q0i
=

N
∑

i=1

χi

q0i
, (2.22)

which can be further rewritten using Eq. (2.11)

qtot =

(

N
∑

i=1

1

q0i

ci
c0i

)−1

. (2.23)

As a result, the solid phase concentrations qi can be explicitly represented as
adsorption isotherm functions of the fluid and hypothetical fluid phase concentra-
tions by substituting Eqs. (2.11) and (2.23) into (2.21)

qi(c, c
0) =

(

N
∑

i=1

1

q0i (c
0
i )

ci
c0i

)−1

ci
c0i
, i = 1, . . . , N. (2.24)

The IAST has 3N unknown variables. The vector c0 with N entries is obtained
implicitly from equilibrium relations (2.12) and (2.19). For allN entries of q0 there
exists usually an explicit SCI (2.15). The remaining N entries of vector q can be
determined from Eq. (2.24) for given c. Consequently, the IAST represents a set
of 3N implicit equations. Note, in case of implicit SCI’s the explicit equations in
(2.15) are replaced by N implicit equations that are solved numerically for q0.

A second important class of chromatographic processes to be considered in this
thesis are ion exchange processes. We distinguish between the classical ion ex-
change (CIE) and advanced ion exchange (AIE). The former is used for processes
involving exclusively smaller ions. Typical examples are sea water purification,
which involves salt ions, and the separation of rare earths [28]. In contrast, AIE
allows to consider large charged molecules like amino acids and especially pro-
teins, which are the most important target components in bioseparations that are
required for applications in biotechnology and microbiology [52, 60].

In CIE, the exchange of N ions can be modeled as a system of N−1 reversible
reactions

µ̃Nci + µ̃iqN ↔ µ̃Nqi + µ̃icN , i = 1, . . . , N − 1 (2.25)



18 CHAPTER 2. THEORETICAL BACKGROUND

in chemical equilibrium also known as stoichiometric ion exchange. There are
N − 1 target components i with fluid phase concentration ci and solid phase
concentration qi. Component N is a suitable reference component, usually the
counter-ions provided the solid phase. Likewise, cN denotes the fluid and qN the
solid phase concentration of the counter-ions. Parameter µ̃i is the charge of ion i.
An alternative formulation of (2.25) can be obtained by multiplying it with 1

µ̃iµ̃N

1

µ̃i

ci +
1

µ̃N

qN ↔ 1

µ̃i

qi +
1

µ̃N

cN , i = 1, . . . , N − 1, (2.26a)

µici + µNqN ↔ µiqi + µNcN , i = 1, . . . , N − 1 (2.26b)

with µi denoting the reciprocal of the charge of component i. Assuming an isobar,
isotherm process involving ideal fluid and solid phases, the mass action law [18]
corresponding to Eq. (2.26b) reads

KiN =

(

qi
ci

)µi
(

cN
qN

)µN

, i = 1, . . . , N − 1. (2.27)

Eq. (2.27) states N − 1 equilibrium relations involving all fluid and solid phase
concentrations. Parameters KiN are binary equilibrium constants. Hence, any ag-
gregation effects and interactions between sorbing components are not accounted
for. Electroneutrality demands

qtot =
N
∑

i=1

qi
µi

(2.28)

for a fixed exchanger capacity qtot. An additional restriction in CIE results from
the assumption of a constant solution normality ctot with

ctot =
N
∑

i=1

ci
µi

. (2.29)

Eq. (2.29) allows in conjunction with Eq. (2.28) to define normalized concentra-
tion variables

xi =
ci

µictot
, i = 1, . . . , N − 1, (2.30a)

yi =
qi

µiqtot
, i = 1, . . . , N − 1, (2.30b)

and therefore to obtain two corresponding closing conditions

N
∑

i=1

xi = 1, (2.31a)

N
∑

i=1

yi = 1, (2.31b)
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and adjusted equilibrium relations

K̃iN =

(

yi
xi

)µi
(

xN
yN

)µN

, i = 1, . . . , N − 1, (2.32a)

K̃iN = KiN

(

qtot
ctot

)µN−µi

, i = 1, . . . , N − 1. (2.32b)

Parameters K̃iN are adjusted equilibrium constants. Both Eqs. (2.31a,2.31b) are
used to explicitly represent some arbitrary reference component, e.g. component
N . Thus the number of independent variables xi and unknown variables yi in Eq.
(2.27) is reduced by one. Consequently, it is sufficient to solve (2.27) implicitly to
obtain a vector yN−1 ∈ R

N−1 for a given vector xN−1 ∈ R
N−1.

The AIE is an extension of the CIE to account for important conditions in
bioseparations [5]. In particular, the N − 1 target components are usually macro-
molecules. Each target component i < N has a characteristic charge (binding
charge, effective charge) ν̃i. Since component N is usually a small ion, the char-
acteristic charge ν̃N coincides with the ionic charge µ̃N . The characteristic charge
of component i < N results from its dissociation into (poly-)ion i and (a) cor-
responding co-ion(s), and it is a constant, empirical parameter that is able to
reflect the multi-pointed nature of the binding of larger molecules like proteins
but without accounting for any variations in pH [52]. Hence, the characteristic
charge allows to describe the equilibrium based on an extended mass action law
similar to Eq. (2.27)

KiN =

(

qi
ci

)νi
(

cN
qN

)νN

, i = 1, . . . , N − 1, (2.33)

where νi denotes the reciprocal of the characteristic charge of component i. Similar
to the CIE, the N − 1 equilibrium relations in Eq. (2.33) are completed by an
Nth equilibrium condition based on a closing condition for the fixed exchanger
capacity qtot, which is derived in the following. Large molecules can cause a steric
hindrance, i.e. upon binding to the solid phase macro-molecules shield some of the
counter-ions on the solid phase from entering the fluid phase. These counter-ions
are no longer available for the sorption process. This shielding is accounted for by
a steric factor pi that allows to determine the total concentration of counter-ions
in the solid phase qN,tot with

qN,tot = qN +
N−1
∑

i=1

piqi = qN +
N
∑

i=1

piqi, (2.34)

where obviously pN = 0 holds since ions related to small molecules do not have any
steric effects. Note, variable qN denotes the concentration of the counter-ions that
are available for the interaction with macro-molecules, which is consistent with
the formulation in Eq.(2.33). Further, if the solid and fluid phase initially satisfy
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electroneutrality and if the feed remains electroneutral, then the electroneutrality
condition of the solid phase

qtot =
1

νN
qN +

N−1
∑

i=1

(
1

νi
+ pi)qi =

N
∑

i=1

ξiqi (2.35)

based on a constant exchanger capacity qtot, guarantees also the electroneutrality
of the fluid phase. In contrast to the CIE restricted by Eq. (2.29), there is no
such restriction for the AIE. Therefore, the solution normality ctot can be variable,
which is very important for many bioseparations that use salt gradients [31]. Eqs.
(2.33) and (2.35) define the isotherm used in this work for AIE processes, and it
is referred to as steric mass action law (SMA) [29]. As a final remark, the effect
of co-ions is neglected [52]. The key aspect of this assumption is based on the
fact that macro-molecules are considered to behave like neutral salts. Initially
neutral, they dissociate into a so-called poly-ion and free co-ions. The poly-ion
consists of the macro-molecule itself without any co-ions, i.e. with a characteristic
charge of maximal absolute value, and co-ions that remain associated with it upon
binding to the solid phase. Hence, the poly-ion has a characteristic charge with an
absolute value smaller or equal to characteristic charge of the macro-molecule, thus
accounting for the co-ions that remain in a certain neighborhood of the macro-
molecule even after interaction with the solid phase. The free co-ions remain
thermodynamically unchanged during the sorption process and therefore cancel
out of the equilibrium relation [61]. It should be noted that the number of co-ions
remaining close to the macro-molecule, which affects the value of the characteristic
charge, depends on the local pH value. Consequently, the assumption of a constant
pH is crucial for the applicability of the SMA. The SMA admits N algebraic
equations (2.33,2.35) for the N unknown entries in q. In general, the vector q can
be obtained from (2.33,2.35) for given c only implicitly.

2.2 Equilibrium Theory

As described in the previous section, conservation laws in chromatography depend
crucially on the thermodynamic equilibrium between the fluid and solid phase,
which led to the expression of equilibrium theory for the analytical approach
based on the method of characteristics (MOC). In particular, equilibrium theory
is the application of the MOC to first-order hyperbolic conservation laws [15].
In this thesis focus is on so-called chromatographic cycles, which are of great
importance in chromatography since they provide insight into the behavior of the
of chromatographic processes [10]. In mathematical terms, these cycles define
Riemann problems, i.e. a system of PDEs is solved in conjunction with piece-
wise constant initial and boundary conditions. Application of the MOC provides
analytical solutions for these type of problems [15]. As a result, first-order PDE
systems (2.4,2.6) with piece-wise constant initial and boundary conditions can be



2.2. EQUILIBRIUM THEORY 21

solved analytically in case of hyperbolicity [16, 62]. Without loss of generality, the
equilibrium theory formalism is explained using representation (2.6) in standard
conservation law formulation. PDE system (2.6) is said to be hyperbolic if matrix

B = u

(

IN + F
∂q

∂c

)−1

∈ R
N×N (2.36)

has N linearly independent eigenvectors rk. If in addition all eigenvalues λ̃k of B
are real and distinct, the MOC can be applied in a straight forward manner for
Riemann problems [16]. Additional difficulties of the application of the MOC may
arise in case of non-strict hyperbolicity, which includes points where eigenvalues λ̃k
have an algebraic multiplicity larger than one and a geometric multiplicity equal
to one. Evaluating the effect of these so-called umbilic points [63] on Riemann
problems and their solutions based on the MOC requires further investigation
of the specific conservation law. PDE system (2.6) is assumed to be strictly
hyperbolic if not stated otherwise. In general, the solution to a Riemann problem
consists of N + 1 states connected by N transitions, where the initial state CN =
cinit and the final state C0 = cfeed are known. The remaining states C i = ci,plateau
have to be determined such that the related N transitions are all admissible.
Note, the states connected by transitions are specific plateau values and therefore
denoted with capital letters. Admissibility of all N transitions can be guaranteed
only for sufficiently close C0 and CN [64]. Hence, general statements regarding
solutions to Riemann problems are only local. However, for specific isotherms in
(2.6) solutions admit global properties. This is shown to be the case for the SMA
in Appendix I. Aside from hyperbolicity, genuine non-linearity defined by

∇λ̃krk 6= 0 (2.37)

is an important property. If Eq. (2.37) is satisfied, the solution to Riemann
problems is composed of shocks and simple waves only [16, 62]. Shocks are dis-
continuous solutions whereas simple waves are continuous solutions, which are
differentiable almost everywhere [16]. Both types of solutions satisfy the integral
formulation of Eqs. (2.6). Hence, they are so-called weak solutions of Eqs. (2.6).
Knowing the image of both types of solutions in the concentration phase space of
fluid concentrations c, Riemann solutions can be constructed analytically.

The image of shocks is defined by the Rankine-Hugoniot jump conditions

F(Ck)−F(Ck−1) = s̃k(C
k − Ck−1), k = 1, . . . , N. (2.38)

For fixed Ck−1, the set of all Ck that can be connected to Ck−1 by a shock
curve with some constant velocity s̃k is determined from Eq. (2.38). Obviously,
one parameter families of solutions are obtained [16, 62] since there are N + 1
unknowns Ck ∈ R

N as well as s̃k and only N equations in (2.38). The flux F(c)
cannot be determined in general, see Eq. (2.7). However, utilizing the equivalence
of formulations (2.4) and (2.6), the known capacity vector function (2.5) can be
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used instead. Note, compared to typically defined conservation laws, the roles
of time and space coordinates in Eq. (2.4) are interchanged. As a result the
corresponding jump conditions are defined by

F̃(Ck)− F̃(Ck−1) = s̃−1
k (Ck − Ck−1), (2.39a)

∆F̃k = s̃−1
k ∆Ck, (2.39b)

1

u

(

∆Ck + F∆Qk
)

= s̃−1
k ∆Ck, (2.39c)

1

u

(

∆Ck,i + F∆Qk,i
)

= s̃−1
k ∆Ck,i,

k = 1, . . . , N, i = 1, . . . , N.
(2.39d)

Using Eqs. (2.39d), the Rankine-Hugoniot jump conditions (2.38) can be readily
rewritten into the equivalent form

s̃k =
u

1 + F
∆qk,i
∆ck,i

=
u

1 + Fsk
, k = 1, . . . , N, i = 1, . . . , N. (2.40)

Eq. (2.40) has the advantage of connecting the Rankine-Hugoniot jump conditions
directly to the known isotherm q(c).

The image of simple waves, also called integral curve c̃, connecting two states
Ck = c̃k(1) and Ck−1 = c̃k(0) is defined by

dc̃k(σ)

dσ
= φ(σ)rk, φ, σ ∈ R, σ ∈ [0, 1], k = 1, . . . , N, (2.41)

where φ(σ) is some scalar factor and σ is used to parameterize the integral curve.
Eq. (2.41) allows to formally obtain a set on N − 1 non-trivial coupled ordinary
differential equations with respect to some arbitrary reference component, here N

dc̃k,i
dσ

dc̃k,N
dσ

=
dc̃k,i
dc̃k,N

=
rk,i
rk,N

, i = 1, . . . , N (2.42)

for each integral curve. There are N families of integral curves based on N linearly
independent eigenvectors, which are implied by the assumption of strict hyper-
bolicity. Integral curves require knowledge of the (right) eigenvectors rk of matrix
B. However, the Jacobian ∂q

∂c
has the same eigenvectors

R = [r1 r2 . . . rN ], (2.43a)

R−1BR = diag(B), (2.43b)

R−1u

(

IN + F
∂q

∂c

)−1

R = u

(

IN + FR−1∂q

∂c
R

)−1

= diag(B), (2.43c)

R−1∂q

∂c
R = diag

(

∂q

∂c

)

. (2.43d)
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Thus, integral curves are directly related to the isotherm q(c). Similarly, the
velocity λ̃k of a k-simple wave is directly related to the isotherm q(c) through the
eigenvalues λk of the Jacobian ∂q

∂c
. In particular, we obtain from the characteristic

polynomial using standard determinant operations

det

(

u

(

IN + F
∂q

∂c

)−1

− λ̃IN

)

= 0, (2.44a)

det

(

u

(

IN + F
∂q

∂c

)−1

− λ̃IN

)

= det

((

IN + F
∂q

∂c

)

− u

λ̃k
IN

)

, (2.44b)

= det

(

∂q

∂c
− 1

F

(

u

λ̃k
− 1

)

IN

)

(2.44c)

= det

(

∂q

∂c
− λkIN

)

(2.44d)

the following relation

λ̃k =
u

1 + Fλk
, (2.45)

which is similar in structure to Eq. (2.40).
If two states Ck and Ck−1 lie on the same integral curve, they can be connected

by a k-simple wave [62]. However, this transition is only admissible if also the
inequality

λ̃k(C
k−1) < λ̃k(C

k) (2.46)

holds. Due to genuine non-linearity (2.37), relation

∇λ̃krk > 0 (2.47)

is satisfied along an integral curve. The relations in Eqs. (2.46) and (2.47) trans-
late due to Eq. (2.45) to the equivalent formulations

λk(C
k−1) > λk(C

k), (2.48a)

∇λkrk < 0. (2.48b)

In contrast, if the two states Ck and Ck−1 lie on the same shock curve, they can
be connected by a k-shock. The transition is only admissible if also

λ̃k(C
k−1) > s̃k > λ̃k(C

k) (2.49)

holds. Eq. (2.49) is also called entropy condition, which was deduced in [64].
Using Eq. (2.40), the relation in Eq. (2.49) translates to

λ(Ck−1) < sk < λk(C
k). (2.50)
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There is another type of transition that is frequently encountered, namely
contact discontinuities [16]. The corresponding curves are characterized by their
linear degeneracy, i.e.

∇λ̃krk = 0, (2.51a)

∇λkrk = 0. (2.51b)

Eq. (2.51b) implies a constant eigenvalue λk along the corresponding integral
curve of family k, and the constant eigenvalue implies a constant velocity of the
contact discontinuity. Consequently, the linear degenerate integral curve can be
also identified as shock curve [62]. As a result the image of a k-contact disconti-
nuity can be obtained from Eq. (2.38) or (2.41). Admissibility of the transition
readily reduces to

λ̃k(C
k−1) = s̃k = λ̃k(C

k), (2.52a)

λk(C
k−1) = sk = λk(C

k). (2.52b)

In addition to these three fundamental types of transitions presented above more
complex transitions are possible. If ∇λkrk = 0 holds for isolated points such as
inflection points in single-component systems [14], combined transition of simple
waves and shocks occur. However, these combined transitions between two plateau
values, where also Eqs. (2.48a) and (2.50) hold on parts of the transition, are not
considered in this work.

A classical isotherm for which Riemann solutions as a sequence of shocks and
simple waves can be constructed easily is the Langmuir isotherm. Shock curves
and integral curves coincide since they are both straight lines that are required
to be tangent in the initial state of each transition [64]. Hence, a single grid of
shock and integral curves exists in the concentration phase space. This linear grid
allows to construct Riemann solutions more easily. It can be orthogonalized by a
change of coordinates further facilitating the construction of Riemann solutions
[28, 15]. However, isotherms generally lead to a system of PDEs (2.4,2.6) where
the shock and integral curves are neither straight lines nor do they coincide. In
this case only the grid composed of integral curves is independent of operating
conditions, i.e. initial and boundary conditions. In contrast, shock curves and
intermediate plateaus depend on the initial and feed plateaus. Hence, the grid of
shock curves is not known apriori, which increases the difficulty of constructing
analytically Riemann solutions. However, the grid of integral curves is not only
helpful to gain insight into simple wave transitions but also into shock transitions.
This is certainly the case if integral curves vary only slightly from straight lines
and almost coincide with shock curves. Even if corresponding integral and shock
curves vary significantly, they have the same tangent in the initial state of the
transition and the same curvature [64]. Therefore, the grid of integral curves can
be used to gain qualitative knowledge of general Riemann problems. In context
of chromatographic cycles, the grid of integral curves allows at least to gain qual-
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itative knowledge regarding key features that are related to the given sorption
isotherm.

2.3 Numerical Solution Methods

In this section, focus is again on the ideal model Eq. (2.3). Three numerical solu-
tion methods are relevant for this work, namely full discretization method (FDM),
method of lines (MOL), and Method of Rothe (MOR) [36]. The first method re-
quires discretization of both, time and space coordinate. The resulting system of
algebraic equations can be rewritten more compactly into a matrix-vector repre-
sentation. However, implementation, particularly of initial and boundary condi-
tions can be more challenging compared to the other two methods. In contrast,
the MOL and MOR require only one of the two coordinates to be discretized. For
chromatographic models, only MOL is frequently used due to the straight forward
application independent of spatial operators present in the PDEs, which is not the
case for the MOR. If only one coordinate is discretized in Eq. (2.3), the resulting
system of ordinary differential equations (ODEs) can then be solved using stan-
dard ODE solvers. For many applications, in particular in liquid chromatography,
the implementation is very simple [65]. The solver uses some internal numerical
discretization scheme for the other coordinate, thus providing variable order, vari-
able step size, and error control of the internal scheme. Also the ODE systems
allows for a compact matrix-vector representation. Furthermore, both methods
allow for an efficient incorporation of additional algebraic equations. All three
numerical solution methods can utilize a large variety of different discretization
schemes. In chromatography widely used schemes are the finite differences (FD),
finite elements (FE), and finite volumes (FV) [13, 11]. The choice of the specific
discretization scheme depends on the properties that should be retained by the
approximated solution, e.g. mass conservation, energy conservation, or character-
istic curves [16]. For a proof of principle, first-order FD schemes are used in this
thesis. Application of more elaborate schemes such as higher order schemes [16],
orthogonal collocation [66, 67], or FV-schemes in conjunction with adaptive grids
[37] is straight forward.

We distinguish between two cases. First, the sorption isotherm is assumed to
be explicitly available q = f (c). Typical examples of explicit isotherms are the
linear and Langmuir isotherm [11]. In these cases, the Jacobian J(c) = ∂q

∂c
can be

easily obtained and representation (2.4a) of the ideal model is immediately avail-
able. In chromatography, forward differences in time and backward differences in
space are usually applied in FDM [68, 13]. Denoting the number of grid points in
space by Nz and the number of grid points in time by Nt, overall NNzNt algebraic
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equations

(IN + FJ(c))
cn+1
j − cnj

∆t∗
+ u

cnj − cnj−1

∆z∗
= 0,

n = 1, . . . , Nt, j = 1, . . . , Nz

(2.53)

have to be solved. A necessary condition for the stability of the FD scheme in Eq.
(2.53) is the so-called CFL-condition u∆t∗

∆z∗
< 1 [13]. Applying the MOL or MOR

to Eq. (2.4a) requires to solve NNz or NNt ODEs

(IN + FJ(c))
dc

dt∗
+ u

cnj − cnj−1

∆z∗
= 0, j = 1, . . . , Nz, (2.54a)

(IN + FJ(c))
cnj − cn−1

j

∆t∗
+ u

dc

dz∗
= 0, n = 1, . . . , Nt, (2.54b)

respectively. Regarding the discretized coordinate, both methods use backward
differences, and stability of the methods depends on the applied ODE solvers. The
quantity ∆t∗ denotes a fixed time step, and ∆z∗ denotes a fixed space step. Eqs.
(2.53) and (2.54) can be solved using standard software like MatlabR© [69], which
provides standard ODE solvers for Eqs. (2.54), such as ODE45 and ODE15s.

Second, the sorption isotherm is assumed to be implicitly available

0 = f (q, c). (2.55)

Typical examples are IAST-based isotherms and the SMA isotherm (see Section
2.1). In principle, the Jacobian can be obtained for any implicit isotherm using
implicit differentiation

J(q, c) =
∂q

∂c
= −

(

∂f

∂q

)−1

c

(

∂f

∂c

)

q

. (2.56)

Eq. (2.56) allows to use again the formulation (2.4a) of the ideal model. However,
the Jacobian depends now also on q. Hence, Eq. (2.55) has to be solved anyway
and (2.4a) provides no advantage compared to (2.3). In addition, analytical im-
plicit differentiation may prove difficult, whereas numerical implicit differentiation
may impair efficiency or even stability of the numerical solution method. As a
result, the FDM can be applied to (2.3) avoiding the explicit calculation of the
Jacobian. In this case NNzNt algebraic equations are solved

cnj − cn−1
j

∆t∗
+ F

qn
j − qn−1

j

∆t∗
+ u

cnj+1 − cnj

∆z∗
= 0,

n = 1, . . . , Nt, j = 1, . . . , Nz,

(2.57)

in conjunction with N algebraic equations from Eq. (2.55). Since the value of qn
j

can be obtained only by solving implicit Eq. (2.55) for cnj , the numerically most
efficient forward-backward differences scheme for conservation laws with implicit
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isotherm [13] is applied in this work. Compared to finite differences used in Eq.
(2.53), the discretization schemes of time and space coordinates are interchanged,
and the corresponding CFL-condition reads u∆t∗

∆z∗
> 1. This is possible in case of

conservation laws since the ’roles’ of time and space can be interchanged, which
is indicated by the equivalence of Eqs. (2.4a) and (2.6a). Eq. (2.55) is solved for
all pairs (n, j) in (2.57) separately by some iteration method, like Newton-type
methods [40]. In case of the MOL (2.54a) and the MOR (2.54b), it possible to
formulate the ODEs in conjunction with Eq. (2.55) as a single system consist-
ing of NNz or NNt differential and N algebraic equations (DAEs). The DAE
formulation allows for the simultaneous solution of (2.54a,2.55) for every j and
(2.54b,2.55) for every n by using DAE solvers. In addition to the differential equa-
tions in (2.54), the algebraic equations in (2.55) also benefit from the numerical
features provided by standard DAE solvers like ODE15s in MatlabR©, DASSL [70],
LIMEX [71], or IDAS in SUNDIALS [72]. Note, the application of standard DAE
software requires the differential index to be equal to one [73]. This property guar-
antees the existence of solutions as well as numerical efficiency of standard DAE
solvers. Numerical efficiency also requires consistent initial values of dynamic and
algebraic variables. This consistency is important for the initialization of the DAE
solver [73, 69]. Initialization of the DAE is required only once and consistent ini-
tial values can be obtained in advance by solving Eq. (2.55) for c = cinit using an
arbitrary iterative method.

The IAST (2.12,2.15,2.19,2.24) in conjunction with Eq. (2.3) is typically solved
by applying the FDM, thus approximating (2.3) with Eqs.(2.57). The remaining
algebraic equations (2.12,2.15,2.19,2.24) are solved separately via some Newton-
type algorithm [26, 43]. This general IAS method was further improved by solving
only implicit Eqs. (2.12,2.19) through some Newton method [26, 44]. Compared
to the general IAST method, the Jacobian related to the Newton method is sparse,
which improves numerical efficiency. The improved IAS method is known as Fas-
tIAS. Later on, this particular method was further refined [26, 42] by rearranging
the implicit Eqs. (2.12,2.19) such that the Jacobian of the Newton method is a
sparse upper triangular matrix. This approach is also known as modified FastIAS.
The efficient methods FastIAS and modified FastIAS require the SCIs (2.15) to be
explicit and analytically integrable and also require very good initial guesses for
the initialization of the Newton-type algorithms. Good estimates of initial guesses
are available for applications in gas chromatography and liquid chromatography
under dilute conditions [26]. An IAST-approach that avoids the usage of Newton-
type methods, or any iterative method for that matter, was presented in [41].
Instead, a numerical integration is used based on a differential reformulation of
the equilibrium conditions. It avoids iteration at the expense of increased com-
putational effort, which is required to calculate the derivatives of the equilibrium
concentrations of the solid phase. These derivatives are needed for packed bed
adsorber simulation (2.4a) using the MOL approximation (2.54a). This IAST-
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approach is restricted to explicit SCI with the particular structure

q0i = fi(c
0
i ) =

c0i
df̃i
dc0i

f̃i(c0i )
, i = 1, . . . , N. (2.58)

Either the SMA isotherm of the AIE (2.33,2.35) or the mass action isotherm
of the CIE (2.31,2.32) is solved in conjunction with Eq. (2.3) usually by applying
the FDM [38, 6, 30, 31, 74]. The PDE system (2.3) is then approximated by a
corresponding system of algebraic equations (2.57), where similar to the IAST, the
implicit algebraic equations (2.33,2.35) or (2.31,2.32) are solved separately using
iterative methods, such as the Newton-Raphson method [40]. Hence, the avail-
ability of good initial guesses is indispensable. It should be noted that compared
to the IAST, neither the AIE nor the CIE assume generally dilute conditions, and
good estimates on initial guesses for iterative methods might not be available.



Chapter 3

Ideal Adsorbed Solution Theory

This chapter including Appendix A was in parts published in Chemical Engineering
Science, 177, M. Fechtner and A. Kienle, Efficient simulation and equilibrium
theory for adsorption processes with implicit adsorption isotherms – Ideal adsorbed
solution theory, 284–292 (2018).

3.1 Introduction

In this chapter, a solution strategy for the efficient simulation of equilibrium mod-
els (2.2,2.3) of packed bed adsorbers with an implicit sorption isotherm described
by the IAST (2.12,2.15,2.19,2.24) is developed. It is based on a reformulation of
the underlying partial differential equations, uses an MOL approach [36], avoids
explicit differentiation of the adsorption isotherm and applies standard numerics
for the simultaneous solution of the resulting differential and implicit algebraic
equations.

The IAST was developed by Myers and Prausnitz [17] to predict the ad-
sorption of multi-component mixtures from SCIs. The equations of the IAST
(2.12,2.15,2.19,2.24) are implicit and include integral expressions (2.19) for the
calculation of the spreading pressures (2.18b). Only in special cases an analyti-
cal calculation of the equilibrium composition of the adsorbed phase is possible
[45, 46]. As stated in Section 2.3, a number of numerical approaches were pro-
posed including the general IAS [17], the FastIAS [42] and the modified FastIAS
[42, 26]. All of these methods are based on iterative solution of the IAST equations,
therefore require good initial guesses and almost entirely apply to analytically in-
tegrable explicit single component isotherms. Therefore, an alternative approach
was proposed recently by Landa et al. [41], which is very powerful and avoids
iteration but at the expense of significantly increased computational effort. In
addition this approach is limited to SCIs defined by Eq. (2.58)

The challenges and restrictions of those previous approaches are overcome by
the solution strategy presented in the following. For this purpose, application of
the strategy is demonstrated for two different benchmark problems with explicit

29
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and implicit SCIs. Results for explicit SCIs are compared to previous numerical
solution approaches based on the most efficient modified FastIAS. In contrast to
this, results for implicit SCIs are new and cannot be obtained with any of the
previous approaches. In addition, numerical results for explicit and implicit SCIs
are validated with semi-analytical solution approaches from equilibrium theory.

3.2 Reformulation and Solution Strategy

Recalling Eq. (2.2), its solution requires the adsorption isotherms q(c) and, as
describes in Section 2.3, usually also the Jacobian matrix of the derivatives of
the adsorption isotherms ∂q

∂c
according to the chain rule of differentiation. These

derivatives however are difficult to obtain for complex adsorption isotherms. As
already stated in Section 2.3, a method for the IAST based on some analytical
formulas has been proposed in [41]. However, the method is tailored to the spe-
cific solution strategy in [41], which delivers a priori the hypothetical fluid phase
concentrations c0i as functions of the true fluid phase concentration ci and is not
directly applicable to other solutions strategies. This motivates the following re-
formulation. A new set of variables v ∈ R

N is introduced according to

v = Fq(c) + c. (3.1)

It represents the joint capacity of the fluid and the adsorbed phase in Eq. (2.2)
and is related to the capacity function in Eq. (2.5) by v = uF̃ . In terms of the
new variables, the model (2.2) reads

∂v

∂t∗
+ u

∂c

∂z∗
= Da

∂2c

∂ (z∗)2
. (3.2)

This equation is solved for v. In addition, the following set of 2N implicit algebraic
equations for c0 and c is derived from Eqs. (2.12,2.15,2.19,2.24) and the definition
of v (3.1)

0 = fi :=

∫ c0i

0

q0i (σ)

σ
dσ −

∫ c0
N

0

q0N(σ)

σ
dσ, i = 1, ..., N − 1, (3.3a)

0 = fN :=
N
∑

j=1

cj
c0j

− 1, (3.3b)

0 = gi := Fqi(c) + ci − vi

= F

(

N
∑

j=1

1

q0j (c
0
j)

cj
c0j

)−1

ci
c0i

+ ci − vi i = 1, ..., N.
(3.3c)

In Eq. (3.3c), (2.24) was used to eliminate the qi variables.
For the numerical solution, the partial differential equation (3.2) is discretized

using a MOL approach [36]. For demonstration purposes the limiting case of
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vanishing axial dispersion is considered in the remainder, and a simple scheme with
first-order backward differences on an equidistant grid is used for the convection
term. However, application of more efficient discretization methods using adaptive
grids [37] and/or high resolution methods [16] is straight forward. The resulting
system of ordinary differential equations (corresponding to (3.2)) for v is solved
simultaneously with algebraic equations (3.3a)-(3.3c) for c and c0 using standard
DAE numerics, in this work ODE15s in Matlab[69], provided that the differential
index is equal to one [73]. The numerical solution of higher index systems is much
more challenging [75] and not required here as will be shown subsequently. With
the DAE approach, explicit differentiation of the adsorption isotherm is avoided.

In the following, it is shown that the differential index of the PDAE system
(3.2, 3.3a-3.3c), or equivalently the DAE system resulting from its discretization,
is always equal to one if the Jacobian ∂q

∂c
has N real, positive eigenvalues. For

thermodynamic reasons this should always be the case as shown by Kvaalen et
al. [76] using displacement theory. Explicit proofs for Langmuir isotherms were
given in [76], for Bi-Langmuir isotherms in [47] and for the IAS theory for a
large class of pure component isotherms in [41]. In Appendix A these results are
extended in two directions. First, it is shown that this spectral property holds
for any thermodynamically consistent adsorption isotherm for mixtures of two
adsorbable components. Second, it is shown that it may fail for multi-component
mixtures that are not in the class defined by [41].

The PDAE system (3.2, 3.3a-3.3c), or equivalently the DAE system resulting
from its discretization, has differential index one if the matrix of the derivatives
of the algebraic equations (3.3a-3.3c) with respect to the algebraic variables c0, c
is nonsingular. From differentiation of Eqs. (3.3a-3.3c) and some elementary
calculations we find

det(J) = det

(

(

∂f

∂c0

)

c

(

∂f

∂c

)

c0
(

∂g

∂c0

)

c,v

(

∂g

∂c

)

c0,v

)

= det

(
(

∂f

∂c0

)

c

(

∂f

∂c

)

c0

0
(

∂g

∂c

)

c0,v
−
(

∂g

∂c0

)

c,v

(

∂f

∂c0

)−1

c

(

∂f

∂c

)

c0

)

= det

(

∂f

∂c0

)

c

det

(

(

∂g

∂c

)

c0,v

−
(

∂g

∂c0

)

c,v

(

∂f

∂c0

)−1

c

(

∂f

∂c

)

c0

)

.

(3.4)

The indices at the brackets indicate which variable is constant during differen-
tiation. From this equation, we find that regularity of matrix J requires both
determinants in the last row of this equation to be nonzero. The first determinant
can be calculated explicitly using Gaussian elimination without row switching (see



32 CHAPTER 3. IDEAL ADSORBED SOLUTION THEORY

also [26])

det

((

∂f

∂c0

)

c

)

=

N−1
∏

j=1

q0j
c0j






− cN
(c0N)

2
−

N−1
∑

j=1

− cj
(c0j )

2

q0j
c0j

(

−q
0
N

c0N

)







= −q−1
tot

N−1
∏

j=1

q0j
c0j
.

(3.5)

It is nonzero for nonzero concentrations.

The matrix in the second determinant is equal to
(

∂g

∂c

)

v
, which is obtained by

differentiation of (3.3c), when c0 is interpreted as a function of c according to
Eqs. (3.3a,3.3b)

(

∂g

∂c

)

v

=

(

∂g

∂c

)

c0,v

+

(

∂g

∂c0

)

c,v

∂c0

∂c
. (3.6)

The derivative of c0 with respect to c is obtained by implicit differentiation of
Eqs. (3.3a,3.3b) according to

∂c0

∂c
= −

(

∂f

∂c0

)−1

c

(

∂f

∂c

)

c0

. (3.7)

Alternatively,
(

∂g

∂c

)

v
can be calculated by differentiation of the first line of Eq.

(3.3c)

(

∂g

∂c

)

v

= F
∂q

∂c
+ IN . (3.8)

Hence, the second determinant in Eq. (3.4) yields

det

(

∂g

∂c

)

v

=

N
∏

i=1

(Fλi + 1) , (3.9)

where the λi’s are the eigenvalues of the matrix ∂q

∂c
. Consequently, the second

determinant is also nonzero if these eigenvalues are positive, which completes the
proof.

Remarks:

1. A crucial aspect of the DAE formulations are consistent initial values vinit(z),
c0init(z). They can be easily calculated by solving (3.3a-3.3c) offline for given
initial conditions cinit(z).
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2. So far, explicit SCIs have been assumed according to equation (2.15). How-
ever, it is worth noting that also implicit SCIs according to

0 = hi(c
0
i , q

0
i ), i = 1, ..., N, (3.10)

can be handled using the new method. For implicit SCI, equations (3.10)
have to be solved for every σ ∈ [0, c0i ], in order evaluate the integral expres-
sions in (2.19). Since the hypothetical fluid phase concentrations c0i depend
on z∗ and t∗, this can be done in two different ways. Either the SCIs are
re-evaluated at every point in space and time according to the present values
of c0i , or they are calculated a priori only once for estimated upper bounds
on c0i , which is of course much more efficient. Using these function values,
the integral expressions in (2.19) are then evaluated using some numerical
quadrature.
The iterative calculation of the implicit SCIs requires good starting values,
which are often not available. Therefore, the following approach based on
integration according to Davidenko’s method [77] with trivial initial condi-
tions is used in this chapter

dq0i
dσi

= −
(

∂hi
∂q0i

)−1
∂hi
∂σi

, q0i (0) = 0, i = 1, . . . , N. (3.11)

3. In the limit of vanishing axial dispersion, an alternative reformulation of
the partial differential equation (2.2) can be found. For this purpose Eqs.
(2.15) and (2.24) are inserted into the partial differential equation (2.2) with
Da = 0N leading to

∂c

∂z
+ u−1 ∂

∂t

(

c + F

(

N
∑

j=1

1

q0j (c
0
j)

cj
c0j

)

c ∗ c̃0
)

= 0,

c(0, z) = c0(z), c(t, 0) = cfeed(t).

(3.12)

Note, 0N is a N ×N matrix where all entries are equal to zero.
In this equation the ’∗’ symbol denotes the element-wise multiplication of

c and c̃0 =
[

1
c01
, . . . , 1

c0
N

]T

. System (3.12) together with (3.3a) and (3.3b)

forms a PDAE system that is equivalent to the previous system (3.2), and
(3.3a-3.3c). It can be solved efficiently using the MOR [78] instead of a MOL
approach. In the MOR, first the temporal instead of the spatial coordinate
is discretized leading to a system of ordinary differential equations in space,
which are then integrated together with the algebraic equations using a
DAE method. In this case, c is the dynamic variable and c0 is the only
algebraic variable. This reformulation seems attractive because it requires
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only N additional algebraic variables per grid point. In view of Eq. (3.5) the
differential index of this alternative reformulation is also always equal to one
for arbitrary N . Hence, the MOR-based DAE formulation is applicable to
any SCIs, especially also to those resulting in non-hyperbolic systems. This
allows to retain the advantages of a DAE formulation (numerical stability,
usage of flow-sheet simulation) also for cases where the MOL-based DAE
formulation is not applicable.

4. If the single component isotherms are implicit, parallelization of the solution
to these algebraic equations within the present DAE approach seems appeal-
ing. Formally, the corresponding vector of algebraic variables extended by
q0 becomes

cext = [c, q0, c0]T ,

qext(c, q
0, c0) = [g(c, c0, q0),h(c, c0, q0), f (c, c0, q0)].

(3.13)

In order for the differential index to be equal to one, the matrix

∂qext

∂cext
=







∂g

∂c

∂g

∂q0
∂g

∂c0

∂h
∂c

∂h
∂q0

∂h
∂c0

∂f

∂c

∂f

∂q0
∂f

∂c0






∈ R

3N×3N , (3.14)

similar to the one in (3.4), has to be regular. However, some partial deriva-
tives with respect to q0 do not exist since the integral

(

∂fi
∂q0i

)

c,c0,q0\{q0i }

= ±
∫ c0i

0

1

σ
dσ, i = 1, . . . , N (3.15)

does not converge. Hence, defining q0 as algebraic variable is not feasible.

3.3 Applications

In this section, the methods introduced in the previous section are evaluated and
compared to established solution approaches for two different benchmark problems
with explicit and implicit SCIs, respectively. For a simple and efficient validation
with the equilibrium theory, binary examples are considered. However, based on
the formulation and results in the previous chapter, application of the developed
numerical solution approaches to multi-component systems is straight forward.

The numerical results in this section were obtained using a standard desktop
computer with intelR© coreTMi7-4790 3.6 GHz and 16 GB RAM. Matlab R© [69] was
used to perform the numerical simulations. In particular, ODE15s was used to
solve the DAEs resulting from the discretization of the partial differential equa-
tions using first-order backward differences, ODE45 to solve the ODEs resulting
from Davidenko’s method in Eq. (3.11) and the Matlab function ’trapz’ for nu-
merical evaluation of the integrals in Eq. (2.19). In addition to ODE15s the
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parameter value description
L [cm] 5 column length
Nz [−] 100 number of grid points
u [ cm

min
] 7.9556 interstitial velocity

ǫ [−] 0.745 void fraction
qsat11 [mmol

l
] 147.2 isotherm parameter

qsat12 [mmol
l

] 6.0 isotherm parameter
b11 [ l

mmol
] 0.087 isotherm parameter

b12 [ l2

mmol2
] 0.01 isotherm parameter

b13 [ l
mmol

] 1.69 isotherm parameter
qsat21 [mmol

l
] 122.4 isotherm parameter

qsat22 [mmol
l

] 17.0 isotherm parameter
b21 [ l

mmol
] 0.103 isotherm parameter

b22 [ l2

mmol2
] 0.032 isotherm parameter

b23 [ l
mmol

] 1.78 isotherm parameter

Table 3.1: Parameters of the first IAST example with explicit combined quadratic
plus Langmuir SCIs.

open source solver IDAS was tested as an alternative. This solver was incorpo-
rated into the MatlabR© environment using SUNDIALS, a suite of nonlinear and
differential/algebraic equation solvers [72].

3.3.1 Example with Explicit SCIs

The first example was taken from [41]. It is concerned with the adsorption of
phenyl-n-decane (abbreviation ’C10’) and phenyl-n-undecane (abbreviation ’C11’)
in acetonitrile on graphitized carbon. Adsorption of individual components is
described by explicit SCIs using a combined quadratic plus Langmuir model

q0i = qsati1

c0i (bi1 + 2bi2c
0
i )

1 + bi1c0i + bi2(c0i )
2
+ qsati2

c0i bi3
1 + bi3c0i

, i = 1, ..., N. (3.16)

Parameter values were taken from [41] and can be found in Tab. 3.1. The SCIs
are shown in Fig. 3.1. Since this is a system with two adsorbable components,
requirements for a differential index of 1 as discussed in the previous section and
Appendix A are satisfied.

For a rigorous evaluation, the new MOL-based and MOR-based DAE ap-
proaches are compared to two different implementations of the modified FastIAS
by Do [26], which was originally developed by [42]. The modified FastIAS solves
efficiently the equilibrium equations (3.3a,3.3b) using the Newton method. The
first implementation is a mixed DAE-FastIAS approach that uses the reformula-
tion (3.2), (3.3c) in combination with a MOL approach and the modified FastIAS
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Figure 3.1: SCIs of phenyl-n-decane (C10) and phenyl-n-undecane (C11) com-
puted with the combined quadratic plus Langmuir model.

for the calculation of the hypothetical fluid phase concentrations c0i . Thus, solving
simultaneously equations (3.2),(3.3c) for v, c, while the equations (3.3a,3.3b) are
solved separately for each spatial grid point at any given time for c0. Again, in
light of Eq. (3.9) the differential index of this DAE approach is also equal to one.
It is worth pointing out that in the new DAE approaches, all algebraic equations
are solved simultaneously with the differential equations using DAE numerics,
whereas in the modified FastIAS approaches Eqs. (3.3c) are solved separately by
iteration. Therefore the new MOL- and MOR-based approaches are expected to
be more efficient and stable.

For the second implementation of the modified FastIAS method, total dis-
cretization of the model (2.2) is applied using simple backward differences for the
spatial derivatives and forward differences for the time derivatives. Again the
modified FastIAS method is used at any point in time and space. In all cases
axial dispersion is neglected with Da = 0N .

In the remainder, focus is on the following scenario. An empty column is
injected with a pulse feed of 5.4 [mmol

l
] phenyl-n-decane and 5.0 [mmol

l
] phenyl-n-

undecane starting at 0 min and ending at 10 min. The resulting breakthrough
curves at the end of the column obtained with the different approaches over a
time interval of [0, 20] min are shown in Fig. 3.2. Results are in good agreement
with Fig. 8.4 in [41]. Corresponding computation times are given in Tab. 3.2.

Numerical parameters of the different approaches were selected in such a way
that the accuracy of all approaches is similar and therefore allows a fair com-
parison of computation times. For the MOL-based DAE approach backward dif-
ferences with Nz = 100 equidistant space grid points were used. It was found
that a four times higher number of equidistant time grid points was required
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Figure 3.2: Calculated breakthrough curves for the first example. Solid lines -
MOL-based (ODE15s and IDAS) and MOR-Based DAE approach (ODE15s), cir-
cles - mixed DAE-FastIAS approach(Ode15s with Newton), dashed lines - modified
FastIAS with total discretization (Newton).

formulation solver average execution time
MOL-based DAE IDAS 5.2 s

ODE15s 11.0 s
full discretization Newton-Raphson [26] 12.0 s

&modified FastIAS
mixed DAE-FastIAS ODE15s & 36.0 s

Newton-Raphson [26]
MOR-based DAE ODE15s 92.1 s

Table 3.2: Comparison of the execution times of the different numerical approaches
for the first IAST application example.
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for the MOR-based DAE approach to achieve similar accuracy. Although the
MOR-based PDAE formulation (3.12,3.3a,3.3b) has only 2N variables compared
to 3N variables for the MOL-based PDAE formulation (3.2,3.3a-3.3c), the com-
putation time reported in Tab. 3.2 is higher due to the increased number of grid
points. Further differences may be attributed to different structural properties of
the different formulations. It is concluded that the MOR-based approach is less
attractive compared to the MOL approach and therefore not further considered
in this chapter.

From Tab. 3.2 it is also confirmed that the MOL-based DAE approach is much
faster than the mixed DAE-FastIAS approach. The reasons have been discussed
above.

Despite minor differences in accuracy, the total discretization in combination
with the modified FastIAS is almost as efficient as the MOL-based DAE approach.
For the total discretization, 400 time steps and 1250 space steps were used. The
high number of space steps was required to satisfy the CFL condition for numerical
stability [16], which is a crucial issue for the type of total discretization applied
here. Main advantage of the MOL-based DAE approach compared to the total
discretization approach are seen in two facts: (i) In the DAE approach, more
sophisticated methods for time integration including variable order, variable step
size in combination with error control can be applied without extra effort by using
corresponding standard software. This may lead to improved numerical accuracy
and stability. In case of the used IDAS solver, an improved efficiency is clearly
visible, see Tab. 3.2. (ii) As stated above, the MOL-based DAE approach is
particular well suited for the simulation of multi-column processes using standard
software for equation oriented dynamic flow-sheet simulation. Such tools support
flexible configuration of complex plants from elementary modeling and/or process
units and therefore reduce the implementation effort.

For validation purposes, the numerical solution of the MOL-based method is
finally compared to the predictions of equilibrium theory in Fig. 3.3 [15]. Fig.
3.3a represents the solution of the scenario in Fig. 3.2 in the concentration phase
space of the eigenvectors of the Jacobian ∂q

∂c
. Eigenvalues and eigenvectors have

been calculated with the formulas in Appendix A. The lower diagram represents
an improved simulation with an increased number of Nz = 1000 grid points to
reduce the numerical dispersion. Agreement between theoretical and numerical
results in Fig. 3.3a is excellent. The plateau values in Fig. 3.3b also coincide
visibly with the corners of the trajectory in Fig. 3.3a.
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Figure 3.3: Validation of numerical results for the first example: (a) Trajectories
in the concentration phase space calculated with equilibrium theory (bold lines)
overlaid with the numerical solution (dashed line). (b) Elution profiles of the
numerical solution for Nz = 1000 grid points.
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parameter value description
L [m] 0.1 column length
Nz [−] 100 number of grid points
u [m

s
] 0.0012 interstitial velocity

ǫ [−] 0.8 void fraction
qsat1 [mg

ml
] 75.0 isotherm parameter

qsat2 [mg

ml
] 316.0 isotherm parameter

b1 [ml
mg

] 0.03047 isotherm parameter

b2 [ml
mg

] 0.0153 isotherm parameter

ϑ1 [−] 0.6434 isotherm parameter
ϑ2 [−] −2.037 isotherm parameter

Table 3.3: Parameters of the second IAST example with implicit Fowler-
Guggenheim SCIs.

3.3.2 Example with Implicit SCIs

Next, application of the MOL-based DAE formulation is demonstrated for a sec-
ond benchmark problem with implicit SCIs. Since the modified FastIAS needs
integrable and explicit SCIs, it cannot be applied to this second example.

The example system was taken from [66]. It is concerned with the adsorp-
tion of 2-phenylethanol (component ’1’) and 3-phenylpropanol (component ’2’) in
methanol-water on octadecyl-silica, where an implicit multi-component Fowler-
Guggenheim isotherm is used. In this section, IAST based on the implicit SCIs
obtained as limiting cases from the multi-component Fowler-Guggenheim isotherm
is used

0 = hi(c
0
i , q

0
i ) = bic

0
i exp

(

−ϑi
q0i
qsati

)

+
q0i

q0i − qsati

, i = 1, 2. (3.17)

Therefore, only a qualitative comparison with [66] is possible. Using the Davi-
denko procedure [77], equations (3.17) are replaced by the equivalent initial value
problem

dq0i
dσ

=

(

ϑibi
σ

qsati

exp

(

−ϑi
q0i
qsati

)

+
qsati

(q0i − qsati )2

)−1

bi exp

(

−ϑi
q0i
qsati

)

,

qi(0) = 0, i = 1, 2,

(3.18)

to calculate the SCIs. The parameters for this example can be found in Tab. 3.3
and are taken from [66]. Results are shown in Fig. 3.4. Since the calculation of
the SCIs can be separated from the simulation, the same arguments for the differ-
ential index can be applied as in the previous section and Appendix A. Again, the
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Figure 3.4: SCIs of 2-phenylethanol (C1) and 3-phenylpropanol (C2) computed
with the Fowler-Guggenheim model.

differential index is equal to one for the present system with two adsorbable com-
ponents and the MOL-based DAE approach can be applied. For demonstration
purposes axial dispersion is again neglected corresponding to Da = 0N .

A similar set-up like the previous example is considered, where an empty
column is injected with a feed pulse of 6.0 mg

ml
2-phenylethanol and 6.0 mg

ml
3-

phenylpropanol starting at t∗ = 0.0 s and ending at t∗ = 10.0 s. Corresponding
breakthrough curves are shown in Fig. 3.5 for the time interval [0, 300] s. Due
to the different multi-component isotherms, the results in Fig. 3.5 are only in
qualitative agreement with Fig. 3.4 in [66]. Main difference is a shift of profiles
by 25 s. Nevertheless, the example in Fig. 3.5 demonstrates the applicability
of the new MOL-based DAE approach also for non-integrable and implicit single
component adsorption isotherms.

In a second step, the numerical solution is also validated with the semi-
analytical solution obtained from equilibrium theory. For this purpose a chro-
matographic cycle consisting of the loading of an empty bed followed by the
regeneration is considered. The solution trajectory in the concentration phase
space obtained from equilibrium theory is shown in Fig. 3.6a. Corresponding
concentration profiles calculated numerically with the MOL-based DAE approach
using an increased number of Nz = 1000 grid points is shown in Fig. 3.6b. Addi-
tionally, the injection interval is increased to [0, 100] s for an improved visibility of
the plateau values. Again, agreement between theoretical and numerical results
in Fig. 3.6a is excellent. In the concentration range considered in this figure,
the system is almost linear decoupled. This is reflected by the almost orthogonal
patch grid of the eigenvectors in Fig. 3.6a and by the decoupled transitions as
well as the ’symmetry’ between adsorption and desorption fronts in Fig. 3.6b.
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Figure 3.5: Calculated eluted peaks for the second example.
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overlaid with the numerical solution (dashed line). (b) Elution profiles of the
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3.4 Summary

Two different DAE-based methods were developed for the numerical solution of
equilibrium models of fixed bed adsorbers using IAST for an arbitrary number of
components, namely an MOL- and a MOR-based approach. It was shown that
the first is clearly superior to the second. Further, the efficiency of the MOL-
based approach was verified by comparison with different implementations of the
popular modified FastIAS method. Restrictions of (modified) FastIAS concerning
the single component isotherms could be relaxed. It was shown that the DAE
methods can be applied to a large class of SCIs including non-integrable and even
implicit equations. Applicability of the DAE approaches was justified by proving
a differential index of one for all types of isotherms leading to a Jacobian of the
derivatives of the adsorption isotherms with only real and positive eigenvalues.
This applies to all binary and a large class of multi-component mixtures. However,
for multi-component mixtures also cases with complex eigenvalues can be found,
which are not suitable from the thermodynamic as well as the numerical point of
view and need revision.



Chapter 4

Classical Ion Exchange (CIE)

This chapter including (Appendix B) was in parts published in Chemical Engineer-
ing Science, 171, M. Fechtner and A. Kienle, Efficient simulation and equilibrium
theory for adsorption processes with implicit adsorption isotherms – Mass action
equilibria, 471–480 (2017).

4.1 Introduction

In this chapter, a solution strategy for the efficient simulation of equilibrium mod-
els (2.2,2.3) of packed bed sorbers with an implicit sorption isotherm described by
the CIE (2.31,2.32) is developed. The resulting PDAE system is computationally
much more difficult to treat due to the implicit phase equilibrium. Usually some
challenging implicit analytical or numerical differentiation of the equilibrium re-

lations is required to calculate the capacity matrix ∂F̃(c)
∂c

(see Eq. (2.4b)) of the
model equations [66, 41].

A much easier alternative approach is proposed here. It uses MOL and a
reformulation of the underlying sorber model equations in the form of a DAE
system with differential index 1. It can be solved with available standard software
for DAEs and thereby avoids explicit differentiation of the sorption isotherm.

A characteristic feature of the CIE are potential selectivity reversals predicted
by the ideal model. It also admits an analytical approach using the equilibrium
theory. Classical equilibrium theory is for Langmuir isotherms [15] or ion exchange
with constant separation factors [28]. More recently, extensions were given to
Bi-Langmuir [79, 47], generalized Langmuir [49], generalized Bi-Langmuir [48],
and also to reactive systems with simultaneous phase and reaction equilibrium
[80, 81, 82]. In the present chapter, results regarding the CIE in [27, 50, 28] are
further extended to provide a full picture of possible transitions.

First the numerical approach is introduced. Afterwards, a rigorous analysis is
given based on equilibrium theory. Focus is on selectivity reversals and their im-
pact on operability and uniqueness of solutions. Theoretical findings are validated
with numerical simulations.

45
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4.2 Reformulation and Solution Strategy

The following is based on the well known equilibrium dispersive model Eq. (2.2)
of a packed bed sorber. In dimensionless form the model reads

∂

∂t
(c+ Fq(c)) +

∂c

∂z
= Da

∂2c

∂z2
, c, q ∈ RN (4.1)

with dimensionless time and space coordinates

z = z∗/L, t = t∗u/L. (4.2)

Again, the ideal equilibrium model is included for negligible axial dispersion cor-
responding to Da = 0. Focus in the present chapter is on stoichiometric ion
exchange with mass action equilibrium and constant solution normality (in short
CIE), see e.g.[28]. However, the solution strategy can also be applied to any other
implicit sorption equilibria that can be represented by Eq. (2.55). In CIE, as men-
tioned in Section 2.1, a constant solution normality (2.29) and a fixed exchanger
capacity (2.28) are assumed, which reduces the degrees of freedom of Eq. (4.1)
by one and normalized concentrations (2.30) can be introduced. In normalized
concentrations the model equations without physical dispersion read

∂

∂t
(x+ κy(x)) +

∂x

∂z
= 0, x,y ∈ R

N−1 (4.3)

with κ = Fqtot/ctot. For the sake of readability, the dimensional reference N − 1
of xN−1 and yN−1 is dropped. Recalling the summation conditions (2.31) for the
x and y variables, only N − 1 equations of (4.3) are required. The equilibrium
relations have to be reformulated accordingly. For CIE, we find N − 1 algebraic
equations for N − 1 independent variables in x and y, respectively

K̃iN =

(

yi
xi

)µi
(

xN
yN

)µN

= const, i = 1, . . . , N − 1. (4.4)

for any reference component ’N ’.
For equal µi = µN = µ for all i = 1, . . . , N − 1 we obtain constant separation

factors κiN according to

κiN =

(

yi
xi

)(

xN
yN

)

= K̃
1
µ

iN = const, (4.5)

and Eq. (4.4) can be solved explicitly for

yi =
κiNxi

1 +
∑N−1

k=1 (κkN − 1)xk
. (4.6)

If the genuine ionic charges of the different species are not equal, the separation
factors are no longer constant and Eqs. (4.4) represents a set of N − 1 implicit
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algebraic equations to calculate the yi’s from the xi’s. These equations can be put
to the form

0 = fi(y,x) = 1− 1

K̃iN

.

(

yi
xi

)µi
(

xN
yN

)µN

, i = 1, . . . , N − 1. (4.7)

Alternatively, we may reformulate Eqs. (2.27,2.28) as a single implicit equation
and a set of N − 1 explicit equations [83]. However, in view of applicability to
other implicit sorption equilibria, formulation (4.7) is used in the remainder.

For an efficient numerical solution of the model equations (4.3) for the packed
bed sorber, the dimensionless quantity

w = x+ κy(x), (4.8)

which reflects the joint capacity of the fluid and the sorbed phase in Eq. (4.3)
(similar to Eq. (3.1)), is introduced. Note, that w could be normalized by di-
vision with 1 + κ, which however has no effect on the general procedure and is
therefore not considered here. In terms of w and x the model equations can now
be reformulated as

∂w

∂t
+
∂x

∂z
= 0, (4.9a)

0 = f

(

x,y =
w − x

κ

)

, (4.9b)

which are solved simultaneously for w and x using MOL, which leads to a system
of differential equations and implicit algebraic equations with differential index one
allowing application of ODE15s in Matlab[69]. For a discussion of the differential
index, the reader is referred to Appendix B.

Since focus is on Riemann problems with piece-wise constant initial and bound-
ary conditions, consistent initial conditions are easily calculated with an offline
evaluation of the sorption equilibrium (4.7) for given fluid phase composition x.

Similar to the solution strategy in Section 3.2, main advantage of the present
solution strategy is that we avoid explicit differentiation of the sorption isotherm
in formulation (4.9a), (4.9b) compared to the standard formulations (4.1), (2.55).

4.3 Equilibrium Theory

As well as Eq. (2.3), Eq. (4.3) represents a system of first-order quasilinear partial
differential equations, which is shown to be strictly hyperbolic. Therefore, it can
also be solved (semi-) analytically for piece-wise constant initial and boundary
conditions using the MOC. For this purpose Eq. (4.3) is rewritten as

∂x

∂t
+

(

IN−1 + κ
∂y

∂x

)−1
∂x

∂z
= 0, (4.10)
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similar to Eq. (2.6). Here, IN−1 is the (N − 1) × (N − 1) identity matrix. In
contrast to previous work [83, 27, 50, 28] so called ’adjusted’ times and velocities
are omitted in this model formulation for the clarity of presentation.

In the remainder it will be shown that the solution of system (4.3) and (4.10)
in conjunction with Riemann boundary and initial conditions consist of simple
waves, shocks, or contact discontinuities.

Recalling Eq. (2.45), any concentration of a smooth transition is traveling
with characteristic velocity λ̃k corresponding to the eigenvalues of matrix (IN−1+
κ∂y

∂x
)−1 in Eq. (4.10)

λ̃k =
1

1 + κλk
, (4.11)

where the λ’s are the eigenvalues of ∂y

∂x
.

From implicit differentiation of Eq. (4.7) we obtain similar to Eq. (2.56)

∂y

∂x
= −

(

∂f

∂y

)−1
∂f

∂x
, (4.12)

with

−∂f
∂y

= diagN−1

(

µi

yi

)

+ 1N−1
µN

yN
, (4.13a)

∂f

∂x
= diagN−1

(

µi

xi

)

+ 1N−1
µN

xN
, (4.13b)

where diagN−1(zi) stands for the (N−1)× (N −1) diagonal matrix with elements
zi, ∀i = 1, . . . , N − 1 and 1N−1 is a (N − 1)× (N − 1) matrix where all entries
are equal to one. With this, the characteristic equation for the calculation of the
eigenvalues λk can be written as

0 = det

(

∂y

∂x
− λkIN−1

)

(4.14a)

= det

(

−∂f
∂x

− λk
∂f

∂y

)

(4.14b)

= det

(

diagN−1

(

µi

xi
− λk

µi

yi

)

+ 1N−1

(

µN

xN
− λk

µN

yN

))

(4.14c)

For λk 6= yi
xi

the characteristic equation can be expanded into

0 =

N
∑

i=1

1
µi

xi
− λk

µi

yi

, (4.15)

which has N − 1 real and distinct roots in the intervals

y1
x1

> λ1 >
y2
x2

> ... >
yk
xk

> λk >
yk+1

xk+1
> ... >

yN−1

xN−1
> λN−1 >

yN
xN

(4.16)
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if the components are ordered in decreasing selectivity for the solid phase.
For λk = yi

xi
we find from Eq. (4.14c) λk =

yi
xi

= yN
xN

for any reference component
’N’. If the above ordering of components is applied, this is only possible between
neighboring components undergoing a selectivity reversal with indices i, N being
equal to k, k + 1. In view of Eq. (4.7) we find that the characteristic velocity is
constant along the selectivity reversal according to

λk =
yk
xk

=
yk+1

xk+1
= K̃

1
µk−µk+1

k,k+1 (4.17)

giving rise to a contact discontinuity, see Eq. (2.51b).
The image of the smooth transitions in the concentration phase space is given

by the corresponding (right) eigenvectors rk. For λk 6= yk
xk

the eigenvectors follow
from

0 =

(

µi

xi
− λk

µi

yi

)

rk,i +

(

µN

xN
− λk

µN

yN

)N−1
∑

m=1

rk,m, ∀i = 1, . . . , N − 1. (4.18)

In view of the characteristic equation (4.15) an obvious choice to satisfy this
equation is

rk =

[

1
µ1

x1
− λk

µ1

y1

, ...,
1

µN−1

xN−1
− λk

µN−1

yN−1

]T

. (4.19)

For the selectivity reversal with λk =
yk
xk

we find

rk = [0, ...0, rk,k = 1, rk,k+1 = −1, 0, ...0]T , k = 1, . . . , N − 1 (4.20)

corresponding to a straight line along which all concentrations are constant except
for components ’k’ and ’k+1’. In case of a ternary system, the two possible
selectivity reversal lines defined by [1,−1] and [0, 1] are parallel to the x3 =
1− x1 − x2 = 0-line and the x2-axis, respectively.

Using the above expressions for λk and rk, it can be proven that the character-
istic velocity along the k-th characteristic is changing monotonically for λk 6= yk

xk

according to

∇λkrk 6= 0. (4.21)

Note, the proof of Eq. (4.21) is merely a special case of the proof presented in
Appendix C. Similar results were reported by [84] for stoichiometric ion exchange
without selectivity reversals.

Related to the spatial coordinate z, for simple waves the characteristic velocity
λ̃k is monotonically increasing in the direction of increasing z (see Eq. (2.46,2.47)),
whereas for shock waves the velocity s̃k is monotonically decreasing in the direction
of increasing z (see Eq. (2.49)). The shock velocity s̃k follows from the integral
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Figure 4.1: Concentration phase space of the first example system with one selec-
tivity reversal.

material balances across the shock also known as the Rankine Hugoniot conditions
(2.39), which is in similar form to Eq. (4.11)

s̃k =
1

1 + κ∆yi
∆xi

, ∀i = 1, . . . , N − 1. (4.22)

These equations also define the image of the shock waves in the concentration
phase space, similar to the eigenvectors introduced above. In general, eigenvectors
and shock curves are tangent to each other. For µi = µN for all i = 1, . . . , N − 1,
corresponding to the case of constant separation factors, both types of curves are
straight lines and coincide. For µi 6= µN they are curved and therefore different,
but still close in the cases to be discussed subsequently, so that the following
qualitative discussion will be based on the path grid of the eigenvectors only.
However, existence of the different wave solutions was also checked on a rigorous
basis using entropy conditions (2.50).

4.4 Results

A ternary example, with one selectivity reversal indicated by the dashed line is
shown in Fig. 4.1. Corresponding parameters are given in Tab. 4.1. In Region
I component 1 is stronger sorbed, whereas in Region II component 2 is stronger
sorbed. The red curves were calculated from the eigenvector r1 corresponding to
the eigenvalue λ1, which satisfies λ1 > λ2. Since the characteristic speed in Eq.
(4.11) depends on the reciprocal of the λ’s, the eigenvector r1 represents the family
of slow waves. The arrows are pointing in the direction of increasing characteristic
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parameter value description
L 15.0 column length
Nz 750 number of grid points
u 1.0 interstitial velocity
ǫ 0.5 void fraction
ctot 1.0 solution normality
qtot 2.0 exchanger capacity
K13 4.0 equilibrium constant
K23 2.67 equilibrium constant
µ1 2 stoichiometric factor
µ2 1 stoichiometric factor
µ3 1 stoichiometric factor

Table 4.1: Parameters of the first example system with one selectivity reversal.

velocity. The orientation of the red curves is reverted from Region I to Region
II, whereas the orientation of the blue curves is uniform in the whole composition
space. The characteristic velocity along the selectivity reversal is constant as
discussed in the previous section. Point W represents a watershed point where
the eigenvalues coincide. According to Appendix I this can only happen on the
boundary of the concentration triangle.

In the remainder different characteristic scenarios are discussed. For all loading
and regeneration scenarios, the numerical plateau values in the profiles are iden-
tical with equilibrium theory solutions in the concentration phase. Wave profiles
depend on the number of grid points but show very similar behavior as predicted
by the equilibrium theory. First focus is on the loading of an empty bed with a
feed in Region I as shown in Fig. 4.2. Feed and initial composition are represented
by points CF and C i in Fig. 4.2a. The solution consists of a shock wave S1 corre-
sponding to the path CF-CP1 in Fig. 4.2a and a shock wave S2 corresponding to
the path CP1-C i in Fig. 4.2a. Corresponding simulation results using backward
differences with 750 equidistant grid points are shown in Fig. 4.2b. The behavior
shown in Fig. 4.2 is similar to a system with constant separation factors or a
Langmuirian system with component 1 being the stronger sorbed component. It
shows the characteristic intermediate plateau for the weaker sorbed component
with increased composition compared to the adjacent plateaus of the feed and the
initial conditions.

The situation is reverted for a loading of an empty bed with feed in Region II
as illustrated in Fig. 4.3. Here, the behavior is similar to a system with constant
separation factors or a Langmuirian system with component 2 being the stronger
sorbed component and is therefore some sort of mirror image of the situation in
Fig. 4.2.

The limiting case with a feed composition on the selectivity reversal is shown
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Figure 4.2: (a) Solution in the concentration phase space for the loading of an
empty bed with point CF defined by cfeed = [0.1437, 0.8046]T in I. (b) Correspond-
ing spatial profiles xi(z) at different time points with.
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Figure 4.3: (a) Solution in the concentration phase space for the loading of an
empty bed with point CF defined by cfeed = [0.3, 0.1]T in II. (b) Corresponding
spatial profiles xi(z) at different time points.
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Figure 4.4: Two possible solutions in the concentration phase space for the loading
of an empty bed with point CF defined by cfeed = [7/30, 7/30]T on the selectivity
reversal.

in Fig. 4.4. Here, the shock velocities for the shocks CP1-C i and CP2-C i along
the x1 and the x2 axis coincide with the constant characteristic velocity along the
selectivity reversal. Hence, both solutions CF-CP1-C i and CF-CP2-C i are feasible
in the sense of Eq. (2.52). It can be further shown, that any other point on
the selectivity reversal is connected to the origin by a shock wave with the same
velocity like the shocks CP1-C i, and CP2-C i leading to a whole spectrum of possible
solutions. For this singular case, uniqueness cannot be obtained through entropy
conditions alone. Similar phenomena were reported in [85, 51] for distillation
processes. Which one of these solutions is obtained in simulation depends on
the intrinsic stability of the different wave solutions and on numerical dispersion,
which is introduced by discretization. A simulation example with 200 and 2000
grid points is shown in Fig. 4.5. A rigorous mathematical stability analysis of the
underlying partial differential equations with dispersion is challenging and clearly
beyond the scope of this work.

From the practical point of view, Fig. 4.4 represents a singular situation which
nicely explains the transition between the two different patterns in Figs. 4.2 and
4.3 but can not be observed as such in practice due to fluctuations.

Next focus is on chromatographic cycles, which were also not addressed in the
classical literature [27, 50, 28]. The chromatographic cycle corresponds to a pulse
disturbance, consisting of the loading of an empty bed in the front followed by
the regeneration of the loaded bed in the rear.

A first scenario with a feed in Region I is shown in Figure 4.6a. The loading
in the front corresponds to Fig. 4.2. It consists of two shocks, with a band of
pure component 2 in the front, which is the weaker sorbed component in Region
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Figure 4.5: Numerical simulation with (a) 200 and (b) 2000 grid points for a feed
on the selectivity reversal at CF defined by cfeed = [7/30, 7/30]T corresponding to
Fig. 4.4
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Figure 4.6: (a) Chromatographic cycle in the concentration phase space for CF

defined by cfeed = [0.1437, 0.8046]T in I. (b) Corresponding spatial regeneration
profiles xi(z) at different time points.
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Figure 4.7: Spatial profiles at different time points for a pulse injection with
plateau at CF defined by cfeed = [0.1437, 0.8046]T in I (see also Fig. 4.6a).

I. The regeneration consists two simple waves R1 and R2 illustrated in yellow in
Fig. 4.6a. Due to the special topology of the path grid R1 coincides with the
x2 axis generating also a band of pure component 2 in the rear. Corresponding
simulation results for the regeneration are shown in Fig. 4.6b. Together with the
corresponding loading profiles in Fig 4.2b, the complete cycle can be reconstructed.
After interaction of the different fronts the pattern will be resolved in two pure
component pulses with pure component 1 in the front and pure component 2 in
the rear as shown in Fig. 4.7. This is due to the fact that during wave interactions
the selectivity reversal is crossed and the final resolution is taking place in Region
II, where component 1 is the weaker sorbed component.

This is also confirmed with a second scenario with feed in Region II, which
is illustrated in Figure 4.8. Loading in the front corresponds to the previous
Fig. 4.3 consisting of two shock waves with a band of pure component 1 in the
front which is the weaker sorbing component in Region II. Regeneration in the
rear consists of two simple waves R1 and R2 illustrated in yellow in Fig. 4.8a.
Again, simulation results for the regeneration that are shown in Fig. 4.8b can
be used to obtain the complete cycle with the loading profiles of Fig. 4.3b. The
topology of the concentration phase in II is simpler than in I and more similar to
a Langmuirian system, leading to a band of pure component 2 in the rear. After
elementary interaction of the different fronts the pattern will be resolved in two
pure component pulses, as shown in Fig. 4.9, with pure component 1 in the front
and pure component 2 in the rear like in the previous case. This clearly shows that
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Figure 4.9: Spatial profiles at different time points for a pulse injection with
plateau at CF defined by cfeed = [0.3, 0.1]T in II (see also Fig. 4.8a).

the influence of the selectivity reversal strongly depends on the mode of operation.
For the step inputs in Figs. 4.2 and 4.3 qualitatively different final patterns were
obtained, whereas for the pulse inputs only the transients were different but those
were then resolved in similar final patterns.

Like in Fig. 4.4 multiple solutions with respect to Eq. (2.52) are also possible
for the chromatographic cycle if the feed composition is located on the selectivity
reversal as shown in Fig. 4.10. Following the argumentation above any solution
will be resolved in the same final pattern.

Additional features can occur in systems with multiple selectivity reversals as
illustrated with an example in Fig. 4.11. Parameters are given in Tab. 4.2. Like in
the previous case, a selectivity reversal between components 1 and 2 is observed
at the boundary between Regions I and II. In addition, a selectivity reversal
between components 2 and 3 occurs at the boundary between Regions I and III.
An interesting feature which was also reported by [27, 50] is the occurrence of
wave patterns with more than N −1 wave fronts as illustrated in Fig. 4.11, which
is not the case if CF and C i are interchanged. This theoretical prediction could
also be validated with the new numerical approach presented in this chapter as
illustrated in Fig. 4.11b. For better resolution 1000 equidistant grid points were
used in Fig. 4.11b.

Finally, it should be mentioned that generally the existence theorem for simple
wave, shock, or contact discontinuity solutions is confined to local situations [62],
where points CF and C i would be required to be sufficiently close. However in
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parameter value description
L 20.0 column length
Nz 1000 number of grid points
u 1.0 interstitial velocity
ǫ 0.5 void fraction
ctot 0.01 solution normality
qtot 2.0 exchanger capacity
K13 100.0 equilibrium constant
K23 14.88 equilibrium constant
µ1 4 stoichiometric factor
µ2 1 stoichiometric factor
µ3 4 stoichiometric factor

Table 4.2: Parameters of the second example system with two selectivity reversals.

this case, limitations due to the local restriction of the implicit function theorem
are not present. For details, the reader is referred to Appendix I.
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4.5 Summary

An efficient method for the numerical solution of equilibrium models of fixed bed
sorbers with implicit sorption isotherms was presented. Application was demon-
strated using the CIE with possible selectivity reversals. The effect of selectivity
reversals on process operation was studied systematically using a combined numer-
ical, analytical approach. Besides the validation of the new numerical approach
also interesting patterns of behavior were found complementing previous studies
for this particular kind of system.
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Chapter 5

Advanced Ion Exchange (AIE)

This chapter including Appendix C-Appendix G was in parts published in Chemical
Engineering Science, 199, M. Fechtner and A. Kienle, Equilibrium theory of ion
exchange chromatography with variable solution normality and steric hindrance,
508–527 (2019).

5.1 Introduction

In this chapter, the equilibrium theory to the ideal model (2.4 or 2.6) of packed
bed sorbers is extended to a more general class of advanced ion exchange (AIE)
processes with an implicit sorption isotherm described by the SMA (2.33,2.35). As
stated in the preceding chapter, CIE [27, 50, 28] assumes constant ionic strength
and neglects steric effects. However, variable ionic strength plays an important
role in gradient and displacement chromatography, which are frequently applied
to enhance the separation of molecules with similar properties [6, 38, 32]. Further,
steric effects play an important role for larger molecules such as proteins encoun-
tered in many bio separations [5, 60]. Therefore, the objective of the present
chapter is to extend equilibrium theory for CIE to processes with variable ionic
strength and to account for steric effects by using the well known SMA. Conse-
quently, the extension in this chapter inherits also the limiting assumptions of
the SMA, most notably the lack of accounting for a variation in pH or a variable
exchanger capacity based on the dissociation of weak acid functional groups in
the solid phase. Contributions that provide a local equilibrium model for these
cases, which are not considered here, are for example [56] and [55], respectively.

Past attempts to apply the method of characteristics in ion exchange chro-
matography using the SMA were performed in [6] for binary mixtures and isocratic
elution as well as in [31] for binary mixtures and linear salt gradients. Further
extensions of the equilibrium theory to ternary systems for monovalent species
[53] or related to step gradient conditions [54] for binary mixtures were also pre-
sented. However, past contributions do not provide the rigorous application of
the equilibrium theory to arbitrary N component systems using the SMA with

65
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variable solution normality.
In the following, the theory is developed step by step, and the relation to

the previous findings for the CIE is established. For illustration purposes of the
different effects, three different application examples are considered afterwards.
Analytical results are validated through comparison with numerical simulation.
For this purpose, the solution strategy introduced in Section 4.2 is extended to the
SMA, which is briefly discussed in the subsequent section. In order to demonstrate
further the flexibility of the numerical solution approach, it is also shown to be
applicable to arbitrary boundary conditions.

5.2 Extension of the Solution Strategy

The following is based on the ideal model (2.3) of chromatography

∂

∂t
(c+ Fq(c)) +

∂c

∂z
= 0, c, q ∈ RN , (5.1)

again with dimensionless time t = t∗u/L and space z = z∗/L coordinate.
The sorption isotherm of stoichiometric ion exchange follows from the mass

action law according to Eq. (2.33). In general component ’N ’ is usually a simple
ionic component. However it can be any kind of reference ion. In order to empha-
size its special role in the present chapter, component ’N ’ is denoted as the salt,
which is used to change the sorption behavior of all other components. For con-
stant solution normality c̃tot, the salt concentration is not independent anymore
but follows from cN = c̃tot−

∑N−1
i=1

ci
νi

, which is not the case in this chapter. Thus,
the solution normality can change. Typically, νN is equal to one. However, for
generality the following development is not restricted to this case. Accordingly,
qN is the salt load of the solid phase or the free accessible salt load of the solid
phase in case of steric hindrance by the other molecules. For fixed ion exchanger
capacity qtot, the salt load qN follows from Eq. (2.35). For negligible steric effects
pi = 0, the corresponding generalized factor ξi defined in Eq. (2.35) reduces to
ξi = 1/νi. This applies in particular to the salt, i.e. pN = 0, also in the presence
of steric hindrance by the other molecules.

In the general case of unequal characteristic charges of the different ions, Eqs.
(2.33), (2.35) represent a system of implicit algebraic equations, which will be
denoted

0 = fi(q, c) =
1

KiN

·
(

qi
ci

)νi
(

cN
qN

)νN

− 1, ∀i = 1, . . . , N − 1, (5.2a)

0 = fN (q) =

N
∑

i=1

ξiqi − qtot (5.2b)

in the following.
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For an efficient numerical solution of the model equations, Eqs. (5.1) and (5.2)
are used in combination with the solution strategy introduced in Section 4.2.
The extension of the solution strategy to the SMA is straight forward. Again,
this strategy comprises a reformulation of the model equations by introducing
variable v = c + Fq(c), a discretization of the resulting equations using MOL
with finite differences and a subsequent simultaneous solution of the resulting
DAE system applying standard DAE numerics. Note, vector v ∈ R

N includes
the joint capacities of all components. For demonstration purposes, simple first-
order backward differences based on an equidistant grid with Nz = 1000 spatial
grid points are used here as well. The corresponding DAE system is solved with
ODE15s in MATLABR© [69].

Utilizing the same line of arguments as introduced in Section 4.2 and the
spectral properties to be discussed in the next section, it can be shown that the
differential index of the resulting DAE system is always equal to one, which, as we
already know, alleviates the numerical solution considerably. The proof is almost
identical to the one presented in Appendix B and therefore omitted.

One of the additional advantages of the numerical solution strategy from Sec-
tion 4.2 is its flexibility and simplicity of implementation. In particular, it is
straight forward to implement any type of boundary conditions. This is impor-
tant since many applications use (linear) gradient elution. For a proof of principle,
the results reported in [6] Fig. 5.1b with parameters in Tab. 2 are reproduced.
The objective of this example is the separation of three proteins. For this pur-
pose, a column is equilibrated with 30 mM of the salt (NaCl). A feed is injected
containing 30 mM sodium and 0.2 mM of each protein (chymotrypsinogen A, cy-
tochrome c, lysozyme) for 254.47 s. The feed is then changed to contain sodium
only. In addition to the 30 mM NaCl, a linear gradient of 0.19649 mM

s
further

increases its feed concentration over time. The separation result, which is in very
good agreement with the results in [6], is shown in Fig. 5.1.

Finally, it is important to note that instead of the N component material
balances of Eq. (5.1) we may also use only N − 1 component material balances
together with some sort of total material balance that is obtained through multi-
plication of the component material balances with factors ξi and summation over
all components. Introducing

ctot =
N
∑

i=1

ξici, (5.3)

we find in view of Eq. (2.35)

∂ctot
∂t

+
∂ctot
∂z

= 0. (5.4)

It should be noted that ctot is generally not the total solution normality, which
would be

∑N

i=1 ci/νi, but some formal equivalent to qtot in Eq. (2.35). In the
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Figure 5.1: Protein separation with linear salt gradient 0.19649 mM
s

.

remainder of this chapter, ctot is called the modified solution normality. Modi-
fication is due to factors pi as in (2.35) accounting for steric hindrance. If this
steric hindrance is absent, the modified solution normality coincides with the total
solution normality, i.e. the latter is simply a special case included in the modified
solution normality.

Eq. (5.4) represents a linear transport equation. Since Eq. (5.4) is decou-
pled from the component material balances (5.1), ctot depends only on the given
boundary and initial conditions but not the component material balances, which
proofs to be numerically slightly more efficient. In contrast to this, the component
material balances depend on the value of ctot through the equilibrium relations
(5.2), because of

cN =
ctot −

∑N−1
i=1 ξici

ξN
. (5.5)

The alternative model formulation (5.4) provides useful insight into the solution
structures to be discussed in the next section. In view of Eqs. (5.1) and (5.4), any
step change of the concentrations at the inlet are shown to be resolved into N − 1
transitions with ctot = const and a single transition ’N ’ with variable ctot. In other
words the kth transitions with k < N takes place on a specific ctot hyperplane
defined by (5.3). Further details will be discussed in the next section.

5.3 Equilibrium Theory

In the remainder we will develop the analytical solution of Eqs. (5.1,5.2) with
Riemann conditions. In particular, we show that the system (5.1,5.2) is strictly
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hyperbolic and either genuinely or linear degenerate except a special case of non-
strict hyperbolicity, which is analyzed in Appendix H. Eq. (5.1) is rewritten in
the following form

∂c

∂t
+

(

IN + F
∂q

∂c

)−1
∂c

∂z
= 0, c, q ∈ RN , (5.6)

similar to Eq. (2.6a).
In the following, it will also be shown that contact discontinuities are either

related to a selectivity reversal or a change of the solution normality. In contrast,
simple waves and shocks will be shown to occur elsewhere on ctot hyperplanes
defined by Eq. (5.3) in the concentration phase space.

Similar to Eq. (2.45), the characteristic velocity λ̃k of a smooth transition
follows from the eigenvalues of matrix (IN + F ∂q

∂c
)−1 in (5.6) according to

λ̃k =
1

1 + Fλk
. (5.7)

Therein, the λk’s are the eigenvalues of the Jacobian matrix ∂q

∂c
. By implicit

differentiation of Eq. (5.2) we find Eq. (2.56) with

−∂f
∂q

=











diagN−1

(

−νi
qi

) νN
qN
...
νN
qN

−ξ1 −ξ2 . . . −ξN−1 −ξN











, (5.8a)

−∂f
∂c

=











diagN−1

(

νi
ci

) −νN
cN
...

−νN
cN

0 . . . . . . . . . 0











, (5.8b)

where diagN−1 denotes a (N − 1) × (N − 1) dimensional diagonal matrix with
index i = 1, . . . , N − 1. Hence, the eigenvalues λk follow from the characteristic
equation

0 = det

(

∂q

∂c
− λkIN

)

(5.9a)

= det

(

−∂f
∂c

− λk
∂f

∂q

)

(5.9b)

= det





















diagN−1

(

νi
ci
− λk

νi
qi

) −νN
cN

+ λk
νN
qN

...
−νN

cN
+ λk

νN
qN

−λkξ1 −λkξ2 . . . −λkξN−1 −λkξN





















(5.9c)
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For λk 6= qi
ci

, the characteristic equation yields

0 =

(

N−1
∏

j=1

νj
cj

− λk
νj
qj

)(

−λkξN −
N−1
∑

i=1

− λkξi
νi
ci
− λk

νi
qi

(

−νN
cN

+ λk
νN
qN

)

)

(5.10)

or equivalently

0 = λk

N
∑

i=1

ξi
νi
ci
− λk

νi
qi

, (5.11)

which has N non-negative and distinct roots

q1
c1
> λ1 >

q2
c2
> ... >

qk
ck
> λk >

qk+1

ck+1

> ... >
qN−1

cN−1

> λN−1 >
qN
cN

> λN = 0

(5.12)

implying hyperbolicity. In (5.12), the components are again ordered in decreasing
affinity to the solid phase. Note, the selectivity order in (5.12) is valid only until
the occurrence of a so-called reversal, which is discussed next.

For λk = qk
ck

, we find from Eq. (5.9c) in view of the ordering introduced in Eq.

(5.12) that λk also has to be equal to
qk+1

ck+1
corresponding to a selectivity reversal

qk
ck

=
qk+1

ck+1
for any i = 1, ...N−1. Even so two selectivities are equal, the eigenvalues

in Eq. (5.12) remain obviously distinct, thus preserving the hyperbolicity also on
the reversal. The existence and topology of such selectivity reversals in CIE
was studied intensively in Section 4.3. In this section, results will be extended
to variable solution normality and/or ion exchange with steric hindrance. In
particular it is shown that changes in the modified solution normality may also
introduce selectivity reversals.

Along the selectivity reversal, the characteristic velocity is constant according
to

λk =
qk
ck

=
qk+1

ck+1
= K

1
νk−νk+1

k,k+1 , (5.13)

corresponding to a contact discontinuity. From (5.13) it is clear that νk 6= νk+1 is
a necessary condition for the existence of a selectivity reversal.

Another contact discontinuity occurs along the Nth characteristic field corre-
sponding to λN = 0, i.e. λ̃N = 1. According to the discussion in the previous
section regarding (5.4), we find that the modified solution normality will only
change along the Nth characteristic field but stays constant along the others.
Changes of the modified solution normality propagate with the normalized inter-
stitial velocity of one prior to all other transitions. In contrast, concentrations
c1, . . . , cN can change along each characteristic field.
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The image of simple waves in the concentration phase space for fluid phase
concentrations ci is given by the corresponding (right) eigenvectors rk. Based on
Eq. (5.9c), the eigenvectors follow from

0 =

(

νi
ci

− λk
νi
qi

)

rk,i +

(

−νN
cN

+ λk
νN
qN

)

rk,N , (5.14a)

0 = −λk
N
∑

i=1

ξirk,i. (5.14b)

Recalling the characteristic equations (5.9b), Eq. (5.14) are readily satisfied for

rk =

[

1
ν1
c1

− λk
ν1
q1

, . . . . . . ,
1

νN
cN

− λk
νN
qN

]T

(5.15)

if λk 6= qk
ck

. Using the characteristic equation (5.11) for λk, equilibrium formulation

(5.2) and (5.15) for rk, it can be proven that the characteristic velocity λ̃k along the
kth characteristic is monotonically increasing for λk 6= qk

ck
and k < N because of

the genuine non-linearity (2.47) and (2.48b). Details can be found in Appendix C.
The shock velocity s̃k follows from the principles that lead to Eq. (2.40), which

are in similar form to Eq. (5.7)

s̃k =
1

1 + F ∆qi
∆ci

, i = 1, . . . , N. (5.16)

These equations also define the image of the shock waves in the concentration
phase space. If νi 6= νj for some i 6= j the image of the shock waves in the
concentration phase space is curved and tangent at the beginning to the integral
curves, which are defined by the eigenvectors rk , otherwise they coincide (see
Section 4.2 and [15]). For λk =

qk
ck

= const, k < N or k = N we find

∇λkrk = 0 (5.17)

corresponding to a contact discontinuity. According to (5.13) λk = qk
ck

corresponds

to a selectivity reversal. Based on Eq. (5.14), the related eigenvector is

rk =
[

0, ..., 0, rk,k = ξ−1
k , rk,k+1 = −ξ−1

k+1, 0, ..., 0
]T
, k < N. (5.18)

This represents a straight line in the concentration phase space. Due to the
tangency mentioned above, the jump conditions of the corresponding contact dis-
continuity are also satisfied along this line and therefore it coincides with the
corresponding shock curve. Remember, all previously investigated types of tran-
sitions (k < N) take place on some ctot hyperplane (5.3).

In contrast, ctot changes along the remaining Nth transition. The image of
the contact discontinuity of the Nth characteristic field follows from the jump
conditions (5.16) for s̃N = 1, which results in

∆qi/∆ci = 0, (5.19)
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and is equivalent to

qi = qi(c) = qi(c
∗) = q∗i . (5.20)

Therein, c∗ represent the states before the contact discontinuity occurs, and c

represents the states after the contact discontinuity occurs. Since the contact
discontinuity corresponding to λN is always traveling first in time, the state before
as well as ctot before and after the occurrence of the contact discontinuity follow
from the given boundary and initial conditions. Depending on these quantities
the state after the occurrence of the contact discontinuity can be calculated from
the jump conditions (5.20) and the equilibrium relations (2.33) according to

qi = ciK
1
νi

iN

(

qN
cN

)

νN
νi

= c∗iK
1
νi

iN

(

q∗N
c∗N

)

νN
νi

= q∗i , (5.21a)

ci

(

qN
cN

)

νN
νi

= c∗i

(

qN
c∗N

)

νN
νi

, (5.21b)

ci = c∗i

(

cN
c∗N

)

νN
νi

. (5.21c)

The unknown variable cN in the curves (5.21c) for ci depend on ctot. For any given
ctot value, (5.21c) reduces to a point due to the intersection with the corresponding
ctot hyperplane (5.3), which results in

0 = Φ(cN ) =

N
∑

i=1

ξic
∗
i

(

cN
c∗N

)

νN
νi − ctot. (5.22)

Thus, the remaining components ci can be obtained from (5.21c).
It is worth noting that the representation of the jump conditions of the contact

discontinuity (5.20) in the concentration phase space are curved but coincide with
the integral curves of the corresponding simple wave solution, which is shown
in the following. Recalling Eq. (2.42), the relation between integral curves and
eigenvectors corresponding to λN is

dci
dcN

=
rN,i

rN,N

=
νN
νi

ci
cN
. (5.23)

Eq. (5.23) can be easily integrated between two states c∗, c reversing the chain
rule of differentiation, thus separating the variables ci and cN

νi

∫ ci

c∗i

dc̃i
c̃i

= νN

∫ ci

c∗i

dc̃N
c̃N

, (5.24a)

νi ln

(

ci
c∗i

)

= νN ln

(

cN
c∗N

)

, (5.24b)

→֒ ci = c∗i

(

cN
c∗N

)

νN
νi

, (5.24c)

which is identical to the curves in (5.21c).
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5.4 Selectivity Reversals

One of the most significant features of the sorption based on the stoichiometric
mass action law is the possible existence of selectivity reversals, which were first
investigated in detail by Tondeur [27] and Helfferich & Klein [28] for the CIE
(constant solution normality and no steric hindrance). Focus in [28, 27] was on
loading behavior. The role of selectivity reversals for chromatographic cycles and
pulse development was discussed in Section 4.4. Since the SMA is an extension of
CIE, the question arises how this extension affects the properties of the selectivity
reversals. Based on the results for the equilibrium theory in Section 5.3, the
spectral results of the SMA related to a selectivity reversal

λj =
qj
cj

=
qk
ck
, (5.25)

are similar to the ones for the stoichiometric mass action law in Section 4.3. In
particular, the related contact discontinuity is described by a straight line parallel
to the eigenvector rj of the form (5.18), where only the two reversal participating
components ’j’ and ’k’ change. However if steric factors pi are non-zero, they
readily affect (5.18) through (2.35). Note, the components ’j’ and ’k’ do not
necessarily need to satisfy |j− k| = 1 since the possibility that another selectivity
reversal has already occurred changes the initial order in (5.12) accordingly.

In the following, a topological representation of the selectivity reversals ac-
counting for steric effects and the variable solution normality is derived. For this
purpose, Eq. (5.25) is assumed to be satisfied in conjunction with Eqs. (5.2). To-
gether they form a set of N equations allowing for the elimination of N variables
qi in (2.35). Hence, the corresponding region in the concentration phase space is
represented by the ’jk’ reversal hyperplane

0 =
∑

i 6=j,k

ξici

(

KijK

νj
νj−νk

jk

)

1
νi

+ (ξjcj + ξkck)K
1

νj−νk

jk − qtot, (5.26)

or equivalently

0 =
N
∑

i=1

ξici

(

KijK

νj
νj−νk

jk

)

1
νi

− qtot, (5.27)

using Kjj = 1 and Kkj = K−1
jk . Compared to the selectivity reversal described in

Chapter 4, the dimension of the reversal hyperplane is increased by one to N − 1,
which is a direct consequence of the missing closing condition for the fluid phase
concentrations due to the variability of the solution normality. Furthermore, the
reversal hyperplane (5.26,5.27) depends not only on the parameters qtot, Kij , Kjk

and νi but also on ξi, which can contain non-vanishing steric factors pi.
Physically meaningful results are obtained from equation (5.27) if the ’jk’

hyperplane intersects exclusively the edges of the positive orthant, i.e. ci > 0
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for all i = 1, . . . , N . In other words, these intersections define the condition of
the existence of the ’jk’ reversal hyperplane, and they are characterized by the
fact that only a single component ci in (5.27) is non-zero. This gives rise to the
following criteria for the existence of a ’jk’ reversal hyperplane

0 = ξici

(

KijK

νj
νj−νk

jk

)

1
νi

− qtot, ∀i = 1, . . . , N. (5.28)

Since all concentrations and parameters are greater than zero, both conditions
are satisfied for some ci > 0 independently of all qtot, Kij, Kjk and ξi parameter
values if and only if

νj 6= νk. (5.29)

Eq. (5.29) represents the only necessary and sufficient condition for the existence
of a reversal hyperplane.

It can be shown that reversal hyperplanes have no proper intersection but can
be identical. Details regarding both properties can be found in Appendix D and
Appendix H.

The selectivity reversal in CIE assumes a constant value for ctot as well as no
steric hindrance. Therefore, a classical ’jk’ selectivity reversal is the intersection of
the corresponding ctot hyperplane (5.3) and the ’jk’ reversal hyperplane (5.26,5.27)
with ξi =

1
νi

. The requirement of a constant solution normality is an additional
restriction, which explains the relaxed condition (5.29) compared to the conditions
in [28].

The generalized intersection of a ’jk’ reversal hyperplane with a ctot hyperplane
of constant modified solution normality is best represented rewriting (5.3) into

ξjcj + ξkck = ctot −
∑

i 6=k,j

ξici, (5.30)

and applying (5.30) to (5.26)

0 =
∑

i 6=j,k

ξici

[

(

KijK

νj
νj−νk

jk

)

1
νi

−K
1

νj−νk

jk

]

+K
1

νj−νk

jk ctot − qtot. (5.31)

Eq. (5.31) describes a N − 2 dimensional reversal hyperplane with variables
ci, i 6= {j, k} and ctot. Moving along trajectories with ctot = const and ci =
const for all i 6= j, k, the right-hand side of Eq. (5.30) is constant, which is
equivalent to the result (5.18). Representation (5.31) describes the selectivity
reversal in CIE if additionally ξi =

1
νi

holds. Another crucial difference of (5.31)
and its representation in [28] is the absence of the normalization factor ctot

qtot
in the

equilibrium constants, which are independent of ctot and qtot in the present case.
In the next section, focus is on chromatographic cycles. They were also dis-

cussed in Section 4.4 for CIE. A chromatographic cycle consists of two phases,
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the loading and the regeneration. In case of Riemann conditions and a variable
(modified) solution normality, both phases allow for two different ctot hyperplanes
(5.3). Only one of these two ctot hyperplanes need to intersect an arbitrary ’jk’
reversal hyperplane in order to admit a classical ’jk’ selectivity reversal. Thus,
the likelihood of the chromatographic cycle to be affected by a selectivity reversal
is increased compared to cycles in Section 4.4. Moreover, one of these two ctot
hyperplanes does not require to assume a specific ctot value but to be only in a
certain interval, which further relaxes the conditions of the chromatographic cycle
to be affected by a selectivity reversal. For more details, the reader is referred to
Appendix E.

In case of a variable (modified) solution normality, there is an additional pos-
sibility for the intersection of a reversal hyperplane realized through the contact
discontinuity of the Nth characteristic field corresponding to λN = 0. Such an
intersection with an arbitrary ’jk’ reversal hyperplane exists if the following equa-
tion

0 =Ψ(cN)

=

N
∑

i=1

ξic
∗
i

((

cN
c∗N

)νN

KijK

νj
νj−νk

jk

)

1
νi

− qtot,
(5.32)

admits a physically meaningful solution cN > 0. In (5.32), the state c∗ denotes
the state before the occurrence of the contact discontinuity as in (5.20). Again, all
other components can be determined from Eq. (5.21c). Further details can also
be found in Appendix E. Eq. (5.32) includes the special case of CIE with ξi =

1
νi

referring to a genuine ionic charge. Hence, a change in the solution normality itself
increases the potential of a chromatographic cycle to be affected by a selectivity
reversal even further.

5.5 Application Examples

In this section, the additional features of the SMA compared to the CIE are
studied through simulations of a single chromatographic column to verify the the-
oretical results of previous sections. In particular, the effects of a variable solution
normality and the steric factors are considered separately in the first two subsec-
tions, respectively, whereas joint effects and their relation to the first two cases are
studied in a third subsection. In all cases Riemann experiments are performed for
three component systems with constant initial conditions and piece-wise constant
boundary conditions, where two components c1, c2 are target components. The
third component c3 (the ’salt’) can be used to affect the sorption behavior of the
other two components, thus allowing for an additional degree of freedom in process
design. For a complete picture containing effects on the loading and regeneration
behavior, so called chromatographic cycles are considered. They are realized via
injection of pulses with a sufficient pulse width that guarantees no overlap of the
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parameter value description
L [m] 5.0 column length
Nz [−] 1000 number of grid points
u [m

s
] 1.0 interstitial velocity

ǫ [−] 0.5 void fraction
qtot [

mol
m3 ] 2.0 exchanger capacity

K13 [−] 8.0 equilibrium constant
K23 [−] 2.67 equilibrium constant

Table 5.1: Basic parameters used in all application example studies of Section 5.5.

parameter value description
ν1 [−] 2 stoichiometric coefficient
ν2 [−] 1 stoichiometric coefficient
ν3 [−] 1 stoichiometric coefficient
p1 [−] 0 steric factor
p2 [−] 0 steric factor
p3 [−] 0 steric factor

Table 5.2: Specific parameters of the CIE-based sorption model.

two involved Riemann problems. The basic simulations parameters applied to any
application example independently of the specific set-up can be found in Tab.5.1.
Simulation results are obtained through the approach described in Section 4.2.
Note, the set-up specific parameters in the following subsections are chosen such
that all significant features can be illustrated step-by-step in a compact manner.
However, for a proof of principle, an example based on experimentally derived
parameters is briefly presented in Appendix G.

5.5.1 Effect of the Variable Solution Normality

Specific parameters are listed in Tab.5.2. First, we consider a classical stoichiomet-
ric set-up without steric hindrance pi = 0 and with constant solution normality
ctot = 2 mol

m3 . The column is equilibrated with cinit = [0, 0, 2]T mol
m3 , the third

component only. At time unit 0 starts the injection also of the two other compo-
nents with cfeed = [0.4, 0.6, 1.2] mol

m3 . After 10 time units the feed changes back to
cfeed = [0, 0, 2]T mol

m3 for regeneration purposes of the first two components. The
values of third component is specifically chosen to guarantee a constant solution
normality ctot. The results consisting of two shocks S1, S2 and two simple waves
R1, R2 are presented in Fig. 5.2. Note, no selectivity reversal occurs.

In order to investigate the effect of the variable solution normality, a similar set-
up to the previous one is considered. In this case, a variable solution normality is
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Figure 5.2: (a) Chromatographic cycle in the concentration phase space realized
by a pulse experiment of the classical stoichiometric ion exchange with constant
solution normality ctot. Numerical results (black dashed line) overlap solution
predicted by the equilibrium theory (green and orange lines). (b) Corresponding
elution profiles ci(z) indicate two shocks S1, S2 and two simple waves R1, R2.
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realized through different initial conditions. In particular, a column equilibrated
with c3 only, i.e. cinit = [0, 0, 0.1]T mol

m3 is injected with the same feed pulse of
cfeed = [0.4, 0.6, 1.2] mol

m3 starting at t = 0 and ending at t = 10 as in the previous
set-up, which again introduces components c1 and c2 into the column. After 10
time units the feed is changed to cfeed = [0, 0, 0.5] mol

m3 in order to regenerate the
bed. The relevant topology is shown in Fig. 5.3a. There are two ctot planes of
interest corresponding to the values ctot = 0.5 mol

m3 and ctot = 2 mol
m3 , respectively.

Note, that the latter ctot value is identical to the one in Fig. 5.2a. There are also
two reversal planes (grey), but only the intermediate one between ctot = 0.5 mol

m3

and ctot = 2 mol
m3 is relevant. Corresponding numerical results are shown in Fig.

5.3b but are also plotted into Fig. 5.3a (black dashed line) showing that only the
two ctot planes and the two eigenvectors corresponding to λ3 = 0 are relevant.

Considering the two contact discontinuities CD1, CD2 regarding λN = 0, their
prediction based on the equilibrium theory (green) in Fig. 5.3a obviously match
the numerical results very well. These two transitions are also highlighted in
Fig. 5.3b. As mentioned in Section 5.3, ctot changes only along those contact
discontinuities allowing for a second relevant ctot plane with ctot = 0.5 mol

m3 besides
the one with ctot = 2 mol

m3 . This is clearly visible in Fig. 5.3. For the same
reason they are not present in Fig.5.2 with ctot = const = 2 mol

m3 . Note, the
initial loading of the column corresponds to a ctot = 0.1 mol

m3 plane. As already
explained in Section 5.3, only c3 changes along the first contact discontinuity
CD1 with the trivial intersection [0, 0, 2] mol

m3 , which coincides with the initial
condition in Fig. 5.2. Hence, the ctot = 0.1 mol

m3 plane does not provide more
insight and is neglected here. The intersection of the second contact discontinuity
CD2, however, has to be determined from (5.22) and (5.21c) with c∗ = cfeed and
yields c = [0.1898, 0.1350, 0.2701]T mol

m3 .

Investigating the remaining transitions it is sufficient to consider the projec-
tions of the two ctot planes in the (c1, c2) space. The loading behavior on the
ctot = 2 mol

m3 plane with two shocks S1, S2 in Fig. 5.4 for the two target components
c1, c2 is identical to the one in Fig. 5.2 since the ctot planes and initial conditions
on this plane are identical. The regeneration behavior on the ctot = 0.5 mol

m3 plane
in Fig. 5.5a consists also of two simple waves R1, R2 but it is obviously different
from the regeneration in Fig. 5.2a. Neither of the two ctot planes Fig. 5.4a, Fig.
5.5a shows the existence of a selectivity reversal. However, in Fig. 5.5b component
c1 is obviously stronger sorbing in the regeneration phase, whereas in Fig. 5.2b
the second component c2 is stronger sorbing during the regeneration of c1 and c2.
This selectivity reversal can be easily explained by means of Fig. 5.3a. It shows
that the contact discontinuity CD2 crosses the ’1, 2’ reversal plane, which explains
the reversed regeneration behavior on the ctot = 2 mol

m3 plane in Fig. 5.2 compared
to the ctot = 0.5 mol

m3 plane in Fig. 5.5. The intersection can be calculated from
(5.32), (5.21c) and yields cR = [0.2829, 0.3001, 0.6002]T mol

m3 . Since this contact
discontinuity admits a change in ctot, this variability in ctot based on different ini-
tial conditions is directly connected to the presence of the ’1, 2’ selectivity reversal
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Figure 5.3: (a) Chromatographic cycle in the concentration phase space realized
by a pulse experiment of the classical stoichiometric ion exchange with variable
solution normality ctot. Grey planes indicate reversal planes ’1, 2’ and ’1, 3’. Nu-
merical results (black dashed line) overlap two contact discontinuities CD1, CD2

(solid green lines) while the remaining transitions are located in two different
planes ctot = 0.5 mol

m3 , ctot = 2 mol
m3 , which are all predicted by the equilibrium

theory. (b) Corresponding elution profiles ci(z) indicate two additional contact
discontinuities CD1, CD2 compared to Fig. 5.2.
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Figure 5.4: (a) Projection of the loading phase of the chromatographic cycle on
the ctot = 2 mol

m3 plane into the (c1, c2) space. Numerical results (black dashed
line) overlap the two shocks predicted by the equilibrium theory (green lines) and
are identical to the corresponding ones in Fig. 5.2a. (b) Corresponding elution
profiles ci(t) indicate the two occurring shocks S1, S2 during the loading phase,
which are identical to Fig. 5.2b.
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Figure 5.5: (a) Projection of the regeneration phase of the chromatographic cycle
on the ctot = 0.5 mol

m3 plane into the (c1, c2) space. Numerical results (black dashed
line) overlap the two simple waves predicted by the equilibrium theory (orange
lines). (b) Corresponding elution profiles ci(t) during regeneration indicate two
occurring simple waves R1, R2 that show reversed selectivity compared to Fig.
5.2b.
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parameter value description
ν1 [−] 2 stoichiometric coefficient
ν2 [−] 1 stoichiometric coefficient
ν3 [−] 1 stoichiometric coefficient
p1 [−] 2 steric factor
p2 [−] 1 steric factor
p3 [−] 0 steric factor

Table 5.3: Specific parameters of the SMA-based sorption model.

in the chromatographic cycle. Again, the two shocks highlighted in Fig. 5.4b and
two simple waves highlighted in Fig. 5.5b are also plotted (black dashed lines)
into the respective (c1, c2) space Fig. 5.4a, 5.5a, and they are readily predicted by
the equilibrium theory (green lines).

A comparison of Fig. 5.4a and Fig. 5.5a shows that the monotonicity of the
eigenvalues on the red integral curves reversed but the watershed changed also its
position significantly from the c1-axis to the c2-axis. Hence, a variable solution
normality allows in general for significant topological changes of the path grid on
the ctot hyperplanes.

The reversal zones introduced in Appendix E yield for this specific example
[clowtot , c

upp
tot ]1,2 = 1

9
[6, 16] mol

m3 and [clowtot , c
upp
tot ]1,3 = 1

32
[3, 8] mol

m3 . For the relevant ’1, 2’
reversal plane and the two cycle participating ctot planes holds c̄tot = 1

9
[4.5, 18]

and therefore [clowtot , c
upp
tot ]1,2 ⊂ c̄tot, which by itself guarantees the ’1, 2’ selectivity

reversal to occur during the chromatographic cycle. Note, this prediction can be
purely based on theoretical results and requires neither simulation nor experimen-
tal data.

5.5.2 Effect of the Steric Factors

Parameters required for the examples in this section are listed in Tab.5.2 and 5.3.
In order to avoid any confusion with the effect of the variable solution normality,
the following set-ups are designed such that cItot = cIItot = ctot = const = 0.5 mol

m3

hold for a CIE model ’I’ and a SMA model ’II’, respectively. Thus, only the
effect of the steric factors is considered, and it also allows to consider the relevant
projections into the (c1,c2) space for a simpler presentation.

Fig. 5.6 allows for an efficient comparison. Their quantitative difference is ap-
parent, but also their qualitative similarity can be conjectured, which is consistent
with the results in Appendix F. Therein, a bijective coordinate transformation is
shown to exist between sorption models differing only in their steric factors if they
are subject to an identical (modified) solution normality as in the present case
with ctot = const = 0.5 mol

m3 .
In order to quantify this similarity, a chromatographic cycle on the ctot plane of

the CIE (Fig. 5.7) is compared with a chromatographic cycle having corresponding
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Figure 5.6: (a) Projection of the CIE-based cItot plane into the (c1, c2) space,
which is identical to Fig. 5.5a. (b) Projection of the SMA-based cIItot plane into
the (c1, c2) space using the same domain as in (a).
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scaled initial and boundary conditions (Fig. 5.8) subject to (F.1). In the CIE
case, the column is equilibrated with cinit = [0, 0, 0.5]T mol

m3 . A pulse feed is
injected at time unit 0 with cIfeed = [0.3, 0.3, 0.05]T mol

m3 and changed back to
cfeed = [0, 0, 0.5]T mol

m3 at 10 time units. In the SMA case, the column is also
equilibrated with cinit = [0, 0, 0.5]T mol

m3 . Similarly, a pulse feed is injected at t = 0
with cIIfeed = [0.06, 0.15, 0.05]T mol

m3 and changed back to cfeed = [0, 0, 0.5]T mol
m3 at

t = 10. Comparing the profiles in Fig. 5.7b and Fig. 5.8b, the quantitative
difference is again evident as is their qualitative similarity. Both showing two
shocks S1, S2 and two simple waves R1, R2 in the same order at identical time
units. Moreover, the selectivity of the components is identical. Applying the
transformation (F.1) to the SMA-based solution in 5.8b results in concentration
profiles identical to the CIE-based ones in 5.7b. Hence, the information of the
stoichiometric and steric ctot plane are redundant. As shown in Appendix F, the
complete concentration phase space are redundant for both cases.

The demonstrated example is representative for the general effect of steric fac-
tors on all results derived in previous sections. Steric factors can have a significant
quantitative impact but do not affect any result qualitatively.

5.5.3 Joint Effects of Steric Factors and Variable Solution

Normality

The additionally required parameters related to this subsection are listed in Tabs.
5.2 and 5.3. The following set-up considers again two ctot planes but now with
different values cItot 6= cIItot. Similar to the previous subsection, a CIE-based case
is considered (ξIi = 1

νi
) as well as a SMA-based case (ξIIi = 1

νi
+ pi) with the

same change of steric factors from pI = [0, 0, 0]T to pII = [2, 1, 0]T , while all
other parameters are again identical. However, instead of scaling the boundary
and initial condition to keep the solution normality cItot and modified solution
normality cIItot on both planes identical, the feed is kept constant cIfeed = cIIfeed =
cfeed. This set-up reflects the situation of changing one or more components with
different steric factors while keeping all other experimental conditions identical.

A CIE-based case with cItot = 0.5 mol
m3 and a SMA-based case with cIItot = 1.2 mol

m3

are considered. Due to the definition of the set-up with an identical feed cfeed,
their intersection includes the point cfeed = [0.2, 0.3, 0.1]T mol

m3 itself. As before
steric factors affect positioning and orientation in the concentration phase space.
Since their ctot values are different, the transformation (F.1) does not exist for
this case. However, both ctot are constant realized through an specific choice of
c3 values, which again allows for a simplified and effective comparison involving
only the (c1, c2) space in the remainder.

In the CIE-based case, the column is equilibrated initially with cIinit = [0, 0, 0.5]T
mol
m3 . A pulse that introduces components c1 and c2 starts with cfeed = [0.2, 0.3, 0.1]T
mol
m3 at t = 0 and changes back to cIfeed = [0, 0, 0.5]T mol

m3 at t = 10 for the regen-
eration of the first two components. The third component is changed such that
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Figure 5.7: (a) Projection of the chromatographic cycle on the cItot plane into
the (c1, c2) space realized by a pulse experiment of the CIE with cItot. Numerical
results (black dashed line) overlap solution predicted by the equilibrium theory
(green and orange lines). (b) Corresponding elution profiles ci(z) indicate two
shocks S1, S2 and two simple waves R1, R2.
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Figure 5.8: (a) Projection of the chromatographic cycle on the cIItot plane into the
(c1, c2) space realized by a pulse experiment of the ion exchange based on the SMA
with a constant modified solution normality cIItot. Numerical results (black dashed
line) overlap solution predicted by the equilibrium theory (green and orange lines).
(b) Corresponding elution profiles ci(z) indicate two shocks S1, S2 and two simple
waves R1, R2 qualitatively identical to Fig. 5.7b.



5.5. APPLICATION EXAMPLES 87

cItot = 0.5 mol
m3 is kept constant. The cItot plane including the validation of numerical

results (black dashed line) with equilibrium theory prediction (green and orange)
as well as the numerically obtained profiles are shown in Fig. 5.9.

These results can be compared with the corresponding ones on the cIItot plane in
Fig. 5.10. A similar pulse set-up was performed here starting with an equilibrated
column cIIinit = [0, 0, 1.2]T mol

m3 and a pulse at time unit 0 with the same cfeed =
[0.2, 0.3, 0.1]T mol

m3 that is changed back at 10 time units to cIIfeed = [0, 0, 1.2]T mol
m3 .

The different ξIIi values in this case lead to the different cIItot = 1.2 mol
m3 and the

corresponding adjustment of the third component to keep it constant, i.e. differ-
ent initial and regeneration conditions. Again, numerical results and equilibrium
theory prediction are in excellent agreement.

Comparing Fig. 5.9a and Fig. 5.10a, apart from the fact that both show two
shocks S1, S2 during the loading and two simple waves R1, R2 during the regener-
ation, two apparent distinction can be readily identified. First, only in Fig. 5.10a
a selectivity reversal (grey) can be observed. Second, the chromatographic cycles
are reversed in the sense that in Fig. 5.9, component c1 is stronger adasorbing dur-
ing the loading phase of the pulse, whereas in Fig. 5.10 component c2 is stronger
sorbing in the same phase. A similar situation occurs if we operated on the cIItot
plane in Fig. 5.10a with a cfeed on different sites of the selectivity reversal, which
has been presented in Section 4.4.

For both sorption models ’I’ and ’II’, the fixed cfeed introduces a difference
in ctot values due to different steric factors. This results in significant topological
differences between the two ctot planes in Fig. 5.9a and Fig. 5.10a that can be
predicted by the equilibrium theory only if applied to case ’I’ and ’II’ separately.

In the present case, two chromatographic cycles are considered separately.
However, using the results from the preceding subsection, the concentration phase
space corresponding to ’II’ contains a c̃tot plane that is similar to the cItot plane
in Fig. 5.9a in the sense of (F.1). If also cIIfeed = cIfeed holds, the chromatographic
cycle for ’II’ will consist of the two relevant c̃tot and cIItot planes, which are con-
nected by a contact discontinuity corresponding to λ3 = 0. Thus, two significantly
different ctot planes are present in a single chromatic cycle, which is then similar
to the result in Subsection 5.5.1 with constant steric factors. In particular, if the
inverse mapping of (F.1) is applied to the solution in Fig. 5.3, a similar result
with the same qualitative behavior in the concentrations phase space of ’II’ is
obtained. Consequently, also in case of a variable solution normality, the effect
of steric factors is quantitative only, which is again consistent with the results in
Appendix F.

Since the joint effect is a straight forward extension of the results in the pre-
vious subsections and does not yield any additional insight, the corresponding
simulations in a three dimensional concentration state space are omitted.



88 CHAPTER 5. ADVANCED ION EXCHANGE (AIE)

0 0.2 0.4 0.6 0.8 1

c1 [
mol
m3 ]

0

0.1

0.2

0.3

0.4

0.5

0.6

c 2
[m

o
l

m
3
]

(a)

S1
S2
R1

R2

0 5 10 15 20 25

t

0

0.2

0.4

0.6

0.8

1

1.2

c i
[m

o
l

m
3
]

(b)

c1
c2
c3

S S

R R

Figure 5.9: (a) Projection of the chromatographic cycle on the cItot = 0.5 mol
m3

plane into the (c1, c2) space realized by a pulse experiment of the CIE with cItot.
Numerical results (black dashed line) overlap solution predicted by the equilibrium
theory (green and orange lines). (b) Corresponding elution profiles ci(z) indicate
two shocks S1, S2 and two simple waves R1, R2 similar to Fig. 5.7b.
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Figure 5.10: (a) Projection of the chromatographic cycle on the cIItot = 1.2 mol
m3

plane into the (c1, c2) space realized by a pulse experiment of the SMA-based ion
exchange with constant modified solution normality cIItot. The grey line indicates
a 1, 2 selectivity reversal. Numerical results (black dashed line) overlap solution
predicted by the equilibrium theory (green and orange lines). (b) Corresponding
elution profiles ci(z) indicate two shocks S1, S2 and two simple waves R1, R2 with
reversed selectivity of the two components compared to Fig. 5.9b.
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5.6 Summary

The numerical solution strategy introduced in Section 4.2 was extended to the
SMA for arbitrary boundary conditions. These results were used to validate the
extension of the equilibrium theory to AIE accounting for variable solution normal-
ity and steric hindrance. Possible fields of application are separation of proteins
[29] where often salt gradients are applied [30] and also amino acids [86, 87]. Im-
portant findings are: that variable solution normality may introduce selectivity
reversals and may thereby change the solution qualitatively (order of elution, types
of transitions etc.). It was proven that in contrast to this, steric hindrance affects
the solution only quantitatively (plateau values, propagation velocities etc.). This
chapter provides methods and tools for the prediction of column dynamics and
therefore builds an important basis for future work on conceptional design and
control of single- and multi-column systems. Limitations for protein separations
are due to the limitations of the SMA isotherm used in this work. In particular,
the assumption of a constant pH. For Systems with variable pH additional effects
may arise, which are not covered by the present theory. For such systems, at the
moment only a numerical approach is possible [56].



Chapter 6

Continuous Separation Processes

This chapter was in parts published in Computer Aided Chemical Engineering, 48,
M. Fechtner and A. Kienle, Rational design of ion exchange simulated moving bed
processes, 733-738 (2020).

6.1 Introduction

Simulated moving bed (SMB) processes represent a powerful technology for con-
tinuous chromatographic separations. Triangle theory as introduced by [88] can be
used for the rational design of SMB processes. The theory is based on an idealized
mathematical model that allows an analytical solution using the MOC for certain
types of explicit sorption isotherms including linear and Langmuir isotherms [9].

In a first step, the theory is extended to the CIE, and sorption is described
by implicit isotherms. Therefore, an analytical approach is not possible anymore.
Using the theoretical results for a single column from Sections 4.3 as well as 5.3 and
following the ideas presented by [58], a corresponding semi-analytical approach is
proposed. The approach allows to determine the region of complete separation in
the space of the design parameters. Results are validated by rigorous numerical
solution of the full blown model realized through the extension of the numerical
solution strategy (4.2). Further, the present approach is shown to be superior to a
simplified approach, where the ion-exchange equilibrium is fitted with a Langmuir
isotherm, a frequently applied concept in practice. Finally, use of the solution
normality as additional design parameter is discussed.

6.2 Triangle Theory

Triangle theory was developed for the ideal true moving bed (TMB) [9] as depicted
in Fig. 6.1. Aside from the fluid phase, the solid phase is also moving allowing
for continuous separation at steady state operation. In addition, two inlets - feed
and desorbent - and two outlets - extract and raffinat - are used in order to realize

91
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Figure 6.1: TMB process unit consisting of four CS resulting from two inlet and
two outlet streams.

a complete separation of mixtures with two target components i = 1, 2. As a
result, the process is divided into four section j = 1, . . . , 4. Note, a third sorbing
component i = 3 - the counter ions - is added to keep the solution normality ctot
constant, thus realizing application of the CIE formalism. In contrast, the solvent
is also injected with V̇des as non-sorbable desorbent. This flow rate is used to
adjust the flow in Column section (CS) 1. For this particular configuration, the
corresponding model reads [89]

∂

∂t
(ci,j + Fqi,j) + Fus

∂

∂z
(mjci,j − qi,j) = 0,

cj, qj ∈ R
N , j = 1, . . . , 4

(6.1)

The practical realization of the process in Fig. 6.1 - the SMB - is shown in Fig.
1.2. The design procedure for the SMB first introduced by [88] is based on the
analytical solution of the ideal TMB model Eq. (6.1) using the MOC. A solution
of Eq. (6.1) requires initial conditions cj(0, z) = cj,init and boundary conditions
cj(t, 0) = cj,feed as well as qj(t, 1) = qfeed for each column section. Note, the
process is initially equilibrated and the thermodynamic equilibrium between the
fluid phase with c and the solid phase with q represented by some isotherm q(c)
holds, i.e. qj(0, z) = qj(cj,init). The fluid phase velocity for each CS is denoted by

uj =
V̇j

ǫAc
, while the counter-current velocity of the solid phase, which is constant

everywhere, is denoted by us = V̇s

(1−ǫ)Ac
. Variable t = t∗us/L and z = z∗/Lj

denote dimensionless time and space coordinates, respectively, for each CS. The
parameters mj =

uj

Fus
denotes the dimensionless flow-rate ratio in CS j. The

spatial distribution of the components is determined by their net fluxes in fluid
and solid phase. The flux of component i in CS j is readily obtained from Eq.
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Figure 6.2: TMB with required fluxes of the target components i = 1, 2 to achieve
their complete separation.

(6.1) as

Fi,j = Fus(mjci,j − qi,j). (6.2)

The objective of the process in Fig. 6.1 is the complete separation of target
components i = 1, 2. The key idea depicted in Fig. 6.2 is based on the exploita-
tion of the different sorption strengths such that in relation to the feed location
the flux of the stronger sorbing component 1 is counter-current to the fluid flow
(F1,2 ≤ 0,F1,3 ≤ 0) while the flux of the weaker component 2 is in fluid flow direc-
tion (F2,2 ≥ 0,F2,3 ≥ 0)e. In order to allow eventually for a continuous separation
process, a closed-loop configuration is used in addition. It allows for regions of
regeneration in addition to regions of loading, thus realizing the presence of front
and rear waves for each component without discontinuing the feed of target com-
ponents. Due to te closed loop configuration the flux orientations of each target
component i = 1, 2 have to be reversed in two locations. In particular, compo-
nent 1 and component 2 fluxes are reversed at the extract (F1,1 ≥ 0) and raffinat
outlet (F2,4 ≤ 0), respectively. Hence, each target component flux ’converges’ at
the respective outlet. In contrast, both target components ’diverge’ at the desor-
bent inlet due to the second reversal of the flux orientation (F1,4 ≤ 0,F2,1 ≥ 0).
Thus, CS 2 and the extract stream contain all components but component 2
(cextract = [c1, 0, c3]

T ), CS 3 and the raffinat stream contain all components but
component 1 (craffinat = [0, c2, c3]

T ), and CS 1 and 4 contain only component 3
such that the fluid and solid phase are completely regenerated regarding the tar-
get components i = 1, 2. Based on Eq. (6.2), the previous considerations and
assuming the absence of a selectivity reversal, the direction of the flux determined
by the sign of (mjci,j − qi,j) results in the following conditions for the flow-rate
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Figure 6.3: Transient concentration profile of two components approaching steady
state solution of the TMB.

ratios mj to realize a complete separation of the target components

CS 1: m1 ≥
q1,1
c1,1

≥ q2,1
c2,1

, (6.3a)

CS 2:
q2,2
c2,2

≤ m2 ≤
q1,2
c1,2

, (6.3b)

CS 3:
q2,3
c2,3

≤ m3 ≤
q1,3
c1,3

, (6.3c)

CS 4: m4 ≤
q2,4
c2,4

≤ q1,4
c1,4

. (6.3d)

The MOC-based steady state solution of the quasi-linear PDE system in Eq. (6.1)
resulting from a single Riemann problem is assumed to be composed of simple
waves and shock waves for both components, which is the case for Langmuir-
like isotherms [15]. In general, this assumption has to be verified. Specifically,
all transitions related to CS 1 and 3 are assumed to be simple waves, whereas
transitions related to CS 3 and 4 are assumed to be shock waves as depicted
in Fig. 6.3. These assumptions are required for the application of the triangle
theory [89]. The constant steady state velocities of these waves are related to the
mj values by [58]

λ̃k,j =
Fus(mj − λk)

1 + Fλk
, k = 1, 2, j = 1, . . . , 4, (6.4a)

s̃k,j =
Fus(mj − sk)

1 + Fsk
, k = 1, 2, j = 1, . . . , 4. (6.4b)
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In Eq. (6.4), the sign of the wave velocities depends on mj − λk and mj − sk,
respectively. In agreement with Eq. (6.3) and Fig. 6.3, the following bounds on
the flow-rate ratios mj are obtained [58]

CS 1: m1 ≥ λ1|c1=0,c2=0, (6.5a)

CS 2: λ2|c+1 ,c2=0 ≤ m2 ≤ λ1|c+1 ,c2=0, (6.5b)

CS 3: s2|c1=0,c⋆1=0,c⋆2→0 ≤ m3 ≤ s1|c∗1→c⋆1=0,c∗2→c⋆2
, (6.5c)

CS 4: m4 ≤ s2|c1=0,cr2→0. (6.5d)

In this chapter, the CIE is used to define the thermodynamic equilibrium, thus
using Eqs. (2.27), (2.28) and (2.29) the following equations for two independent
variables c1, c2 are obtained

Ki3 =

(

qi
ci

)µi
(

c3
q3

)µ3

= const, i = 1, 2, (6.6a)

c3 = µ3

(

ctot −
c1
µ1

− c2
µ2

)

, q3 = µ3

(

qtot −
q1
µ1

− q2
µ2

)

. (6.6b)

Here, component 3, which is used to keep the solution normality constant, is used
as dependent variable. Using the general approach of [89] described in [58], Eq.
(6.6) can be used to obtain constraints on every mj such that complete separation
of components 1 and 2 can be achieved.

6.3 Results

First, the conditions on the flow-rate ratios are specified for CIE applications with
two target components i = 1, 2

CS 1: m1 ≥
q1
c1

∣

∣

∣

∣

c1=0,c2=0

, (6.7a)

CS 2: min

{

q2
c2
,
α q3

c3
+ β q1

c1

α+ β

}∣

∣

∣

∣

c2=0

≤ m2 ≤ max

{

q2
c2
,
α q3

c3
+ β q1

c1

α + β

}∣

∣

∣

∣

c2=0

,

α =
µ3

µ1

q1, β =
µ1

µ3

q3,

(6.7b)

CS 3:
q⋆2 − q2
c⋆2 − c2

∣

∣

∣

∣

c1=0,c2=0,c⋆1=0

≤ m3 ≤
q∗1 − q⋆1
c∗1 − c⋆1

∣

∣

∣

∣

c⋆1=0

=
q∗2 − q⋆2
c∗2 − c⋆2

∣

∣

∣

∣

c⋆1=0

, (6.7c)

CS 4: m4 ≤
qr2 − q2
cr2 − c2

∣

∣

∣

∣

c1=0,c2=0

. (6.7d)

In Eq. (6.5a) concentrations of both components are zero. According to the results
in Appendix I (I.18,I.19) the eigenvalues satisfy λ1 =

q1
c1

and λ2 =
q2
c2

resulting in
Eq. (6.7a). Similarly, c2 = 0 holds in Eq. (6.5b). Therefore, at least on of the two
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eigenvalues can be identified with q2
c2

(see Eq. (I.41)). The other eigenvalue follows
from the characteristic equation (5.11) with c2 = q2 = 0. Hence, inequality (6.7b)
is obtained for arbitrary CIE applications with two target components. The shock
velocities in Eqs. (6.5c) and (6.5d) are obtained through application of the jump
conditions (2.40). Eventually, we obtain for the flow-rate ratio m1 the following
constant lower bound

m1 ≥
q1
c1

∣

∣

∣

∣

c1=0,c2=0

= K
1
µ1
13

(

qtot
ctot

)

µ3
µ1

= const, (6.8)

which guarantees complete regeneration of the solid phase in CS 1. The following
bounds on m4 guarantee the complete regeneration of the fluid phase in CS 4

− 1

F
≤ m4 ≤

q2(c
r
2)

cr2
= K

1
µ2
23

(

qtot − q2(cr2)

µ2

ctot − cr2
µ2

)

µ3
µ2

, (6.9a)

(m3 −m2)c2,feed =

(

m3 −
q2(c

r
2)

cr2

)

cr2. (6.9b)

The left-hand side in Eq. (6.9a) is obtained for the minimal desorbent inlet
V̇desorbent = 0 [90]. Scalar cr2 denotes the raffinate concentration of component
2, and the value of cr2 is obtained from Eq. (6.9b) - the overall mass balance of
component 2 in process unit 6.1 under the assumption of total regeneration in CS
4 - for given values of m2 and m3. The maximal value of m4 in Eq. (6.9a) allows
the shock front of component 2 to be standing in CS 4 [14]. The value of q2(c

r
2) is

obtained by solving Eq. (6.6) for c = [0, cr2, ctot − cr2
µ2
]. Assuming the variables m1

and m4 to satisfy Eqs. (6.8) and (6.9), complete separation depends only on the
choice ofm2 andm3 [58]. Therefore, a corresponding region of complete separation
can be projected into the (m2, m3) plane, see the triangular shaped set in Fig. 6.4.
The bounds of the triangular-like set defined by the minimal and maximal values
of m2 and m3, respectively, are obtained by following the procedure in [58]. The
black curve in Fig. 6.4 results from the overall mass balance of component 2 in
CS 2 and 3 under the assumption of complete separation

(m3 −m2)c2,feed = m3c2 − q2 (6.10)

and the minimal value of m3 in Eq. (6.7c). In this case, the right-hand side in
Eq. (6.10) is zero and implies m3 = m2, which is the black curve in Fig. 6.4. For
the minimal and maximal value of m2 in Eq. (6.7b), we obtain the following two
functions m2(c1)

m2(c1) =
q2
c2

∣

∣

∣

∣

c2=0

= K
1
µ2
23

(

qtot − q1(c1)
µ1

ctot − c1
µ1

)

µ3
µ2

, (6.11a)

m2(c1) =

µ3

µ1
q1(c1)

qtot−
q1(c1)

µ1

ctot−
c1
µ1

+ µ1

µ3

(

qtot − q1(c1)
µ1

)

q1(c1)
c1

µ3

µ1
q1(c1) +

µ1

µ3

(

qtot − q1(c1)
c1

) , (6.11b)
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Figure 6.4: TMB triangle showing predicted region of complete separation. Circles
indicate complete separation and crosses incomplete separation. Corresponding
steady states obtained from dynamical simulation.

Using the overall mass balance of component 1 in CS 2 and 3 under the assumption
of complete separation

(m3 −m2)c1,feed = q1 −m2c1 (6.12)

the value of m3 can be obtained as a function of m2. Using a sufficiently large
interval for c1, two curves m3(m2(c1)) are obtained; the red curve in Fig. 6.4 by
combining Eqs. (6.11a,6.12) and the blue curve in Fig. 6.4 by combining Eqs.
(6.11b,6.12). Note, depending on the specific parameters (for details see Tab.
6.1) in Eq. (6.6), the functions in Eq. (6.11), which define the red and blue
curve, can be interchanged. Finally, calculation of the green curve in Fig. 6.4 is
demonstrated. The parameters in Tab. 6.1 are chosen such that the CIE example
admits for the maximal value of m3 in Eq. (6.7c) a steady state solution to the
Riemann problem composed of the four plateau states C0 = (0, 0), C1 = (c+1 , 0),
C2 = (c∗1, c

∗
2), and C3 = (0, c⋆2) that are connected by two shocks and two simple

waves similar to Fig. 6.3 but without discontinuity at the feed inlet. In particular,
C1 and C2 are connected by a 2-simple wave, therefore they lie on the same integral
curve c̃2 corresponding to eigenvalue λ2. Variable c⋆2 is used for parametrization
of the green curve. Thus, the remaining variables c+1 , c∗1, c

∗
2, m2, and m3 have to
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parameter value description
L [m] 0.5 column length
Lj [m] 0.125 jth CS length
Ac [m

2] 0.2 column cross sectional area
Nz [−] 800 number of spatial grid points
us [

m
s
] 0.1 solid phase velocity

ǫ [−] 0.5 void fraction
qtot [

mol
l
] 2.0 exchanger capacity

ctot [
mol
l
] 1.0 solution normality

K13 [−] 8.0 equilibrium constant
K23 [−] 1.143 equilibrium constant
µ1 [−] 2 stoichiometric factor
µ2 [−] 1 stoichiometric factor
µ3 [−] 1 stoichiometric factor
c1,feed [mol

l
] 0.3 feed of component 1

c2,feed [mol
l
] 0.4 feed of component 2

Table 6.1: TMB process and simulation parameters.

be determined. For this purpose, the following set of equations is solved

m2 =

q+1
c1,feed

(c2,feed − c⋆2) + q⋆2
c+1

c1,feed
(c2,feed − c⋆2) + c⋆2

, (6.13a)

m3 =
q+1 −m2c

+
1

c1,feed
+m2, (6.13b)

0 = K
1
µ1
13

(

qtot − q∗1
µ1

− q∗2
µ2

ctot − c∗1
µ1

− c∗2
µ2

)

µ3
µ1

−m3, (6.13c)

0 = q∗2 − q⋆2 −m3(c
∗
2 − c⋆2), (6.13d)

c̃+1 =

∫ c⋆2

c∗2

q1
q2

µ2

µ1

q2
c2
− λ2

q1
c1
− λ2

dc2 + c∗1, (6.13e)

where q+1 and q⋆2 are obtained by solving Eq. (6.6) for c2 = 0 and c1 = 0,
respectively. Similarly, q∗ is obtained by solving Eq. (6.6) for c∗. Note, equations
(6.13a,6.13b), which result from reformulating the mass balances (6.10) and (6.12),
are easily solved for m2 and m3. However, they require some initial guess for c+1 .
Subsequently, equations (6.13c,6.13d), which result from rewriting the right-hand
side in Eq. (6.7c) and using Eq. (6.6), are solved for c∗1, c

∗
2. Finally, Eq. (6.13e) is

used to obtain a c̃+1 that lies on the same integral curve c̃1 as c∗1 does. Thus, the
set of equations in Eq. (6.13) has to be solved iteratively until |c̃+1 − c+1 | < ε for
a sufficiently small ε << 1. Note, the integrand in Eq. (6.13) is obtained from
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Figure 6.5: Steady state concentration profile for m2 = 2.5 and m3 = 3.0 (indi-
cated by black circle in Fig. 6.4) obtained through dynamical simulation of the
TMB.

substitution of Eq. (5.15) into Eq. (2.42).
The triangle-like set in Fig. 6.4 is verified by performing numerical simulations

of the TMB (6.1) for different combinations (m2, m3). For this purpose, the
numerical approach for a single column presented in Section 4.3 was extended to
solve also the continuous true counter-current model (6.1). Since the same sorption
isotherm is applied as in Section 4.3, the differential index is one. Hence, standard
solvers to efficiently solve the DAE system, which results again from application
of the MOL to the corresponding PDAE system, can be used providing known
advantages. Additionally, the Riemann set-up is used for initializing the dynamic
problem to the steady state solution. It easily allows to obtain consistent initial
conditions by solving Eq. (6.6) for piece-wise constant initial values just once.
A particular simulation with (m2 = 2.5, m3 = 3.0) is shown in Fig. 6.5. It
clearly shows the complete separation of the target components as predicted by
the triangle theory.

The Langmuir isotherm

qi =
̺ici

1 +
∑

j θjcj
(6.14)

is one of the most popular sorption isotherms. Beside the flexibility to reproduce
many sorption mechanisms [11], it provides also many mathematical features that
simplify an analysis, in particular related to equilibrium theory [15] and therefore
also for the triangle theory [9]. If Eq. (6.14) is fitted to Eq. (6.6), the corre-
sponding sets of complete separation predicted by the two different models can
be compared. Fig. 6.6 shows that the Langmuir-related triangular set is a subset
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Figure 6.6: Comparison of predicted TMB triangles using CIE (solid lines) and
Langmuir isotherm (dashed lines), respectively. Fitted Langmuir parameters:
̺1 = 4.0, θ1 = 0.413, ̺2 = 2.286, θ2 = 0.095

of the one related to the CIE. There is a distinct difference particularly close to
the optimal operating point [89], i.e. the intersection of the red and green lines.
Hence, a design based on Langmuir isotherm can lead to suboptimal operating
conditions.

The results presented so far, allow also an investigation of the effect of the
solution normality ctot, which can be used as a process design parameter. For this
purpose, three scenarios with different but fixed solution normalities are consid-
ered. Further, the values of ctot do not lie within a reversal zone (Appendix E),
i.e. ctot 6∈ [0.286, 0.327]mol

l
. The corresponding triangular-shaped sets can be seen

in Fig. 6.7. From this figure it is clear that, at least in the range of these cases,
differences in ctot have only a minor effect on the shape of the three sets. However,
there is a significant change of their position in the (m2, m3) plane. Thus, signif-
icantly different regions for the sets of complete separation are available through
variation of ctot.
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Figure 6.7: Effect of different but constant solution normalities on the predicted
TMB triangle. All three cases ctot = 1 (solid lines), ctot = 4 (dashed lines), and
ctot = 0.5 (dash-dot lines) without selectivity reversal.
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6.4 Summary

In this chapter, the triangle theory was applied to the CIE, which allows the
rational design of ion exchange simulated moving bed processes. This can also
be done by using the Langmuir isotherm, which however is shown to lead to
regions of suboptimal process conditions. In a first step, the potential of the
solution normality as additional design parameter was investigated. It provides
a greater flexibility for the choice of (m2, m3) values, which then can be used to
accommodate other process aspects in order to increase the performance. Further,
the efficient numerical approach for implicit adsorption isotherms presented in
Section 4.2 was successfully extended to TMB processes. Thus, simulations of the
TMB were used to validate theoretical results.



Chapter 7

Concluding Remarks

The model-based analysis of chromatographic processes with implicit sorption
isotherms was demonstrated for the AIE, including the CIE as special case, and the
IAST. Our model-based analysis can be categorized in an analytic and numerical
approach. The analytical approach is based on the analysis of an ideal column
model, which assumes thermodynamic equilibrium between fluid and solid phase
and neglects actual dispersion, among others. The non-linearity is introduced
by the sorption isotherm. Characteristic patterns of behavior are analyzed and
discussed step by step for different implicit sorption isotherms and compared to
numerical solutions, which were obtained efficiently with a new DAE approach.
Main results are summarized in the following.

7.1 Analytical Approach

First, focus is on ion exchange. If not stated otherwise, results are related to AIE.
Obtaining the boundaries on the eigenvalues of the Jacobian, which is based on
an analytical representation of the corresponding characteristic equation, allowed
to deduce hyperbolicity. In addition, it was possible to obtain analytical repre-
sentations of the corresponding eigenvectors. This alloweds to easily apply the
MOC for system with an arbitrary number of components. In case of the IAST it
was at least possible to derive generalized spectral properties for binary systems.
The MOC allowed to semi-analytically obtain results for so-called Riemann prob-
lems. In particular, the type of transitions that connect states related to different
plateaus could be identified. Moreover, the topology for all simple wave solutions
became available through the grid composed of integral curves. This grid is also
closely related to the shock curves, and it can be used at least qualitatively to
predict the behavior in case of shock wave solutions. Knowledge on the eigenval-
ues also allowed to use entropy conditions that help to predict which sequence of
transitions connecting initial, boundary, and intermediate states is admissible. It
was possible to include this information also as a topological property into the
path grid through the proof of genuine non-linearity everywhere except for some
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linear degenerate paths. These linear degenerate paths were also analyzed and
can be categorized in two types. Regarding the first type, these are contact dis-
continuities that are the only path along which the solution normality changes.
In fact, the related left eigenvector is shown to be the normal vector to hyper-
planes with constant solution normality. Hence, they are shown to be a so-called
Riemann invariant. In other words, every transition not related to this type of
linear degenerate field is shown to exist only on a hyperplane of constant solution
normality. This is a key property of the concentration phase space. It was also
possible to show that steric factors have only a quantitative but not qualitative
effect on such hyper planes since there exists a linear transformation between
isotherms that differ only in their steric factors. The second type of linear degen-
erate paths defines so-called reversal hyperplanes. Since these paths are invariant
to the hyper planes of constant solution normality, they exist in the intersection
of the two hyperplane types. The existence of reversal hyperplanes was shown to
be more relaxed compared to classical selectivity reversals in [28]. The reversal
planes can be intersected by either a hyperplane of constant solution normality or
the linear degenerate paths on which the solution normality changes. Hence, the
reversal hyperplanes are another key property of the concentration phase space
allowing to predict reversals. In particular, it was possible to define reversal zones,
which allows to distinguish between guaranteed occurrence of reversals, guaran-
teed absence of reversals, or potential occurrence of reversals during a sequence
of transitions. In addition, different reversal hyperplanes are shown to be usually
separated from each other since there is no proper intersection between them.
However, the case of coinciding reversal hyperplanes was investigated. This case
is an interesting example for a loss of strict hyperbolicity but remains hyperbolic
and is proven to admit also a unique solution with a reduced number of required
transitions. Generally, all analytical results are local requiring sufficiently close
initial and boundary states. However, it was also possible to prove that hyper-
planes of constant solution normality are

i) hyperbolic everywhere with the exception uncritical of water shed points
ii) genuinely nonlinear everywhere with the exception of contact discontinuities,

which however do not affect uniqueness of solutions
iii) domains for which the SMA sorption isotherm admits a global inverse.

These three properties ensure the global character for the existence of unique
Riemann solutions on these hyperplanes since none of these three properties is
valid only locally as assumed by general theorems. Note, in Section 5.3 the first
type of linear degenerate paths that connects these domains admits also a unique
solution for any two points on different hyperplanes and is therefore extending the
global character to the complete positive orthant. Consequently, any sequence in
the complete concentration phase space R

N based on Riemann problems remains
global in character. The existence of a global inverse is shown in two different ways.
One of them, the ’global inverse function theorem’ requires detailed knowledge
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of the Jacobian including the boundary of the domain, which can be particularly
difficult. In obtaining the required results even more properties were revealed, e.g.
an analytic representation of water shed curves or the existence of the continuation
of the eigenvector representations on the boundary.

All the mathematical properties mentioned above allow clearly for a deeper
understanding without requiring any simulation or experimental results. Hence,
they allow for a qualitatively efficient first process design reducing the required
amount of time, resources, and therefore money. This first design can then be
used iteratively to design the real world behavior of the process. In case the
real world set-up uses step gradients, the quantitative results based on Riemann
problem solutions further improve the predictability of the real world behavior.
However, even in different set-ups like gradient elution, analytical results can
be used either as initial guess or to define favorable conditions improving the
subsequent experimental design and/or numerical optimization of the sorption
process.

7.2 Numerical Approach

For both, AIE (including CIE) and IAST, analytical results are used to validate
the numerical solution strategy. The solution strategy itself however, is not lim-
ited to conservation laws. It is applicable to any equilibrium model since all of
these models allow for the presented reformulation. In addition, any sorption
isotherm that can be represented by 0 = f (c, q) (e.g. AIE) or 0 = f (c, c0, q)
(e.g. IAST) is admissible. The main purpose of the PDAE formulation is to
provide numerical efficiency by avoiding explicit (numerical) differentiation of the
Jacobian. The efficiency depends on the differential index. In the best case, it is
equal to one. It was possible to guarantee this property for any sorption admitting
a Jacobian with only non-negative eigenvalues. If the MOL is applied, the result-
ing DAE system also has a differential index of one and can be efficiently solved
by choosing one of the many available advanced DAE solvers with many features
like variable step size or error control among others. The solution strategy is also
independent of any manual discretization scheme, which is required for the MOL.
The efficiency of the approach was shown for the more complex IAST. In this case,
there exists even a numerical solution approach that is specifically tailored to the
structure of algebraic equations admitted by the IAST [42]. Despite its age, the
modified FastIAS approach is still a state of the art solution approach. However,
the example presented in Subsection 3.3.1 clearly demonstrates that the presented
numerical approach can outperform the FastIAS. There are in addition numerous
other advantages: Consistent initial guesses need to be calculated only once sepa-
rately before the simulation, accessibility to flow-sheet simulation, admissibility of
any time dependent boundary conditions, or simplicity of implementation that al-
lows for straight forward extension (e.g. to counter-current continuous separation
processes).



106 CHAPTER 7. CONCLUDING REMARKS

Considering the advantages above, the numerical solution strategy is applica-
ble to a large variety of complex sorption processes providing numerical efficiency.
This allows for an efficient simulation-based process design, complex numerical
optimization, and potentially simulation during online monitoring, e.g. fault di-
agnosis, model predictive control.

7.3 Future Research

Certainly, there are many interesting challenges for future research like further
development of theoretical and numerical results related to multi-column SMB
processes with varying solution normality [91, 92]. However, this last section is
dedicated to one particular challenge of great interest in ion exchange chromatog-
raphy. Considering the results summarized in the two preceding subsections, pro-
found insight through analytical results was gained supported also by simulations.
The model-based analysis seems to be quite ’successful’. However, the analysis is
also bounded by the limitations of model assumptions. The AIE, though using
the mechanistic SMA, does not cover one very important aspect; pH dependency.
In ion exchange chromatography, very important applications are bioseparations.
These bioseparations primarily involve proteins. Even though the SMA was specif-
ically developed for protein separation by allowing for steric effects and variable
solution normality, it does not account for pH variations. ’Unfortunately’ in many
protein separations, a variation in pH cannot always be prevented through the use
of specific buffers if the range of process conditions is large [5, 93]. Hence, pH
effects cannot be neglected anymore [94]. In fact, variations of pH in form of
internally induced [56, 95] or externally controlled pH gradients [96, 97] are even
desired since they can often improve the separation performance. Accounting for
the pH dependence has been one of the most discussed topics in recent years [5].

There are basically three approaches that have been used to account for pH de-
pendencies. First, there existes an extension of the SMA that tries to account for
pH dependence indirectly through variable charges of the proteins [98, 99, 100].
However, the connection to the pH could not be established based on rigorous
physical principles. In addition, the model is enormously complex. As a conse-
quence this approach admits no analytical insight. Even numerical solutions are
difficult to obtain, and its predictability considering the pH dependency is limited
to the case studies and not applicable more generally. It is of no surprise that
this SMA extension was almost not pursued any further. The second approach
is motivated by the use of easy or at least well-established isotherms, e.g. linear,
Langmuir, SMA among others [101, 102, 103, 104]. These isotherms are simply
extended to an empirical version by incorporating the pH dependency directly
to previously constant parameters such that they can at least reproduce the ex-
perimental data used for modeling. In the limit of no pH variation these models
admit their well-known behavior. This approach can already be regarded as sur-
rogate modeling, which in this particular realization is limited to the specific case
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studies at hand. Such an approach does also not admit any analytical insight,
in particular related to pH variations. In addition, limiting the structure of the
isotherm model to a specific well-known isotherm also restricts its applicability.
Compared to the first approach, it at least allows for efficient numerical solutions.
This approach is usually used, when focus is more on the specific process and the
data is already restricted to a specific set-up so that it might be sufficient to use
a simple chromatographic surrogate isotherm model. A more rigorous application
of the approach is clearly out of question. The third approach is genuine surrogate
modeling in ion exchange chromatography [105, 34, 106, 35, 107]. This principle
is applied for a large variety of applications [108]. Developed in the 1950s, it be-
came more popular with the advances in computer technology, especially during
the last two decades when artificial intelligence and big data became a popular
topic throughout engineering and natural sciences as well as mathematics and
informatics. As the name implies, surrogate models also do not provide analytical
insight, but are rigorously applicable to very large variety of different processes.
The methods and tools developed for surrogate model enable often efficient nu-
merical solutions. Therefore, the third option seems to be superior to the other
two. At least numerically, especially regarding numerical optimization, it is the
most efficient and universally applicable approach. Accordingly, surrogate mod-
eling is applied most frequently. All three approaches mentioned above do not
admit any analytical insight. This work however, is an example that it is worth
investigating the possibility of a mechanistic model accounting for the pH depen-
dence while retaining analytical accessibility at least to some degree. For this
purpose, the following idea is briefly presented. Based on the results obtained for
the AIE in this work, it is well worth investigating a suitable extension to account
for pH variations. The key idea is the introduction of modes for each component
defined by different but constant SMA parameters. In particular, each component
is assumed to affect the pH through chemical reaction with water thus changing
the concentration of H3O

+ (or OH−). Each reaction results in a new mode of a
component. The concentration of these modes are identified as additional states
in the concentration phase space. This extended state (or phase) space needs
to be limited only to relevant modes in order to limit its dimension. Therefore,
identifying the relevant modes with their respective SMA parameters (character-
istic charge, equilibrium constant, and steric factor) and modeling their chemical
reaction is the main challenge of this approach. If the approach is indeed realiz-
able, concentration of the components do not only depend on sorption but also on
the reactions in the fluid phase. In a next step, generalized concentrations states
are used as in [80, 81, 82] in order to obtain again a conservation law that can
be subjected to a profound mathematical analysis. Hopefully, this will amount
to some theoretical insight into the (original) concentration phase space and its
topological key features, which would be a very important tool in the efficient
design for protein separation processes.
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Appendix

Appendix A IAST: Spectral properties

The results for the differential index in Chapter 3 depend on the eigenvalues λi
of the Jacobian matrix ∂q

∂c
. It has been shown in [41] that these eigenvalues are

always real and positive for IAST isotherms provided the SCIs q0i (c
0
i ) are strictly

monotonically increasing and have the structure defined by Eq. (2.58). This
structural requirement is met by many but not all SCIs. A counter example using
the Tóth isotherm is considered at the end of this appendix.

The monotonicity requirement

dq0i (c
0
i )

dc0i
> 0, c0i 6= 0 i = 1, . . . , N, (A.1)

is a direct consequence of phase stability. Any non-monotonic SCI will give rise
to two different fluid concentrations in equilibrium with the same adsorbed phase
concentration indicating a phase split of the fluid phase.

It is worth noting that the above eigenvalue result implies hyperbolicity of the
ideal equilibrium model without axial dispersion if the corresponding eigenvectors
are linearly independent. Remember, hyperbolicity is the basic requirement for
the equilibrium theory [10].

In this appendix the results from [41] will be extended in two directions. First,
the result will be generalized to mixtures with two adsorbable components with
any strictly monotonically increasing SCIs, no matter whether explicit or implicit.
Therefore the structural requirement (2.58) is relaxed. Afterwards, it is shown
that such general statement is not possible in the multicomponent case with more
than two adsorbable components.

First focus is on binary mixtures. The Jacobian of the IAST takes with c being
the only independent variable, i.e. q = q(c, c0(c, q0(c0(c))), the generalized form
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∂q

∂c
=

(

∂q

∂c

)

c0

+

(

∂q

∂c0

)

c

∂c0

∂c
, (A.2a)

(

∂q

∂c0

)

c

=

(

∂q

∂c0

)

c,q0

+

(

∂q

∂q0

)

c,c0

∂q0

∂c0
, (A.2b)

∂c0

∂c
= −

(

∂f

∂c0

)−1

c

(

∂f

∂c

)

c0

. (A.2c)

Note, in (A.2) we require the values of q0i to be explicitly available for each c0i ,
but no further information on the functional structure of the q0i is required, i.e. it
does not matter if q0i = q0i (c

0
i ) or 0 = h(q0i , c

0
i ) is solved intermediately. A unique

solution of the latter is guaranteed due to the strict monotonicity of the SCIs.
For N = 2, the analytical formula of the Jacobian reads accordingly

J =
∂q

∂c
= q2tot

[

χ2

c01q
0
2
+M1 − χ1

c02q
0
2
+

c01
c02
M1

− χ2

c01q
0
1
+

c02
c01
M2

χ1

c02q
0
1
+M2

]

, (A.3a)

M1 = χ1
qtot
c01q

0
1

(

χ1

q01

c01
q01

dq01
dc01

+
q01
q02

χ2

q02

c02
q02

dq02
dc02

+
q01
q02

χ2

q02
− χ2

q02

)

, (A.3b)

M2 = χ2
qtot
c02q

0
2

(

χ2

q02

c02
q02

dq02
dc02

+
q02
q01

χ1

q01

c01
q01

dq01
dc01

+
q02
q01

χ1

q01
− χ1

q01

)

, (A.3c)

with molar fractions χi =
ci
c0i

as defined in Eq. (2.12). The eigenvalues of Jacobian

in (A.3a) can be derived from the characteristic equation det(J −λI) resulting in
the following quadratic equation

aλ2 − bλ + c = 0, (A.4a)

a = q−4
tot , (A.4b)

b = q−2
tot

(

1

c01

1

q02
χ2 +

1

c02

1

q01
χ1 +M1 +M2

)

, (A.4c)

c =
1

c02

1

q01
M1 +

1

c01

1

q02
M2, (A.4d)

where the two possible eigenvalues can be readily derived

λi =
b±

√
b2 − 4ac

2a
. (A.5)

In order to obtain spectral properties that guarantee a differential index of one for
any pair of monotonic increasing SCIs, both eigenvalues have to be real and posi-
tive. In (A.4b), the inequality a > 0 is obviously satisfied since all concentrations
are positive. Based on (A.5), the inequalities

b > 0, (A.6a)

c > 0, (A.6b)

b2 − 4ac ≥ 0, (A.6c)
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have to be additionally verified to realize the required spectral properties.
Using relation (A.1), one can derive for both coefficients a, b lower limits

al, blow from their definition in (A.4b,A.4c) by applying
dq0i
dc0i

= 0 to M1 and M2

resulting in

blow = q−1
tot

(

1

c01q
0
2

χ2

q02
+

1

c02q
0
1

χ1

q01

)

> 0, (A.7a)

b > blow > 0, (A.7b)

clow =
qtot
c01c

0
2

(

χ1χ2

q01q
0
2

− χ1χ2

(q01)
2q02

+
χ1χ2

(q01)
2q02

− χ1χ2

q01q
0
2

)

= 0, (A.7c)

c > clow = 0. (A.7d)

The term b2 − 4ac can be reformulated such that it readily satisfies the in-
equality in (A.6c)

b2 − 4ac = q−2
tot((γ − α− β)2 + 4(ρ− τ)2ζ) ≥ 0, (A.8a)

α =
1

c01

χ1

q01

(

χ1

q01

c01
q01

dq01
dc01

+
q01
q02

χ2

q02

c02
q02

dq02
dc02

)

> 0, (A.8b)

β =
1

c02

χ2

q02

(

χ2

q02

c02
q02

dq02
dc02

+
q02
q01

χ1

q01

c01
q01

dq01
dc01

)

> 0, (A.8c)

γ =
1

c01q
0
2

χ2

q02
+

1

c02q
0
1

χ1

q01
> 0, (A.8d)

ρ =
1

c02q
0
1

> 0, (A.8e)

τ =
1

c01q
0
2

> 0, (A.8f)

ζ =
χ1

q01

χ2

q02

(

χ1
c01
q01

q02
q01

dq01
dc01

+ χ2
c02
q02

q01
q02

dq02
dc02

)

> 0, (A.8g)

thus concluding the proof of λi ∈ R>0 with i ∈ {1, 2} for binary mixtures. If
additionally the following is satisfied

∫ c01

0

q01(σ)

σ
dσ =

∫ c02

0

q02(σ)

σ
dσ → q01

c01
6= q02
c02
, (A.9)

which is a negligible restriction for the choice of the SCIs, the relation in (A.6c) be-
comes a strict inequality since (ρ−τ)2 > 0 holds. Hence, both eigenvalues are also
distinct and the Jacobian is strictly hyperbolic for non-vanishing concentrations.

The previous result of real and positive eigenvalues using only the assumption
(A.1) cannot be extended to systems with more than two components, which is
similar to the spectral results in [47]. For this purpose, a simple three component
counter example using the Tóth isotherm

q0i = qsati bic
0
i (1 + (bic

0
i )

ϑi)
− 1

ϑi , i ∈ {1, 2, 3}, (A.10)
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Figure Appendix A.1: (a) SCIs of toluene (component 1), dichloromethane (com-
ponent 2) and trichloroethylene (component 3) computed with the Tóth model.
(b) Complex right half-plane of all three eigenvalues for 1003 concentration com-
binations ci ∈ [0, 10] mmol

g
.
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parameter i = 1 i = 2 i = 3

qsati [mmol
g

] 82.135 51.683 307.89

bi [−] 22.476 6.894 307.89
ϑi [−] 0.98 0.509 0.675

Table Appendix A.1: Parameters of the Tóth isotherm in Appendix A.

which satisfies (A.1) for all physically relevant concentrations, as shown in Fig.
Appendix A.1a, is considered. Parameter values in Tab. Appendix A.1 are taken
from [109]. A reasonable range of [0.1 : 0.1 : 10] mmol

g
for the concentrations

ci of all three components allows for 1003 different vector valued concentrations
c = [c1, c2, c3]

T . Exploiting the general definition (A.2) of the Jacobian, every
eigenvalue that corresponds to a particular value of c can be calculated numerically
using standard software, e.g. MATLABR© [69]. The results are shown in Fig.
Appendix A.1b, where the location of the eigenvalues λi(c) in the complex right
half-plane is shown. Since the existence of complex eigenvalues can be easily
concluded from Fig. Appendix A.1b, the Jacobian of this counter example is
indeed not hyperbolic. As a consequence, the Jacobian does admit neither strict
hyperbolicity nor exclusively real, positive eigenvalues.
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Appendix B CIE: Differential Index

In the remainder of this appendix, it is shown that the PDAE system (4.9), or the
corresponding DAE system resulting from the discretization of (4.9), using the
MOL approach, respectively, is of differential index 1, whenever the Jacobian ∂y

∂x

hasN−1 real, positive eigenvalues λi. As stated in Section 3.2, for thermodynamic
reasons this should always be the case [76]. Hence, the result of this appendix does
not only apply to mass action equilibria but is valid for any thermodynamically
reasonable sorption equilibrium.

The PDAE system (4.9) is of differential index 1 when the matrix of the
derivatives of the algebraic equations (4.9b) with respect to the algebraic variable
x is nonsingular. From differentiation of Eq. (4.9b) we find

(

∂f

∂x

)

w

=

(

∂f

∂x

)

y

− 1

κ

(

∂f

∂y

)

x

. (B.1)

Therein, the indices at the brackets indicate which variable is constant during
differentiation.

For the calculation of the Jacobian ∂y

∂x
, the equilibrium composition of the

solid phase y is interpreted as a function of the fluid phase composition x. From
implicit differentiation of the equilibrium relation

0 = f (x,y(x)) (B.2)

we find

∂y

∂x
= −

(

∂f

∂y

)−1

x

(

∂f

∂x

)

y

(B.3)

Since ∂y

∂x
has N − 1 positive eigenvalues λi, it is regular, i.e. its determinant is

nonzero. Further, due to the product rule for determinants both matrices on the
right hand side of the above equation also have to be regular. Substitution of Eq.
(B.3) into Eq. (B.1) yields

(

∂f

∂x

)

w

= −
(

∂f

∂y

)

x

(

∂y

∂x
+

1

κ
IN−1

)

. (B.4)

The eigenvalues of
(

∂y

∂x
+

1

κ
IN−1

)

(B.5)

are equal to λi+1/κ and are therefore also positive and the corresponding matrix
is regular. Hence, the matrix on the left hand side of Eq. (B.4) is a product of
two regular matrices and therefore also regular, which completes the proof.

Finally, the DAE system resulting from the discretization of (4.9) using a MOL
approach is also of differential index 1, if the above is satisfied at any spatial
position in the reactor. This however, is trivial since the above results are valid
for any concentrations.
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Appendix C AIE: Genuine Non-linearity

The following considerations in this appendix exclude λk = 0 and λk =
qk
ck

for any
k. Both cases are shown to be linear degenerate in Section 5.3. In the remainder
the kth field is shown to be genuinely non-linear for a certain subset C of RN

≥0

according to

∇λk(c)rk(c) 6= 0, ∀c ∈ C. (C.1)

The gradient of λk can be obtained through implicit differentiation of the charac-
teristic equation (5.11)

ϕ(c, q, λk) = 0 = λk

N
∑

i=1

ξi
νi

1
ci
− λk

1
qi

, (C.2)

which results in

∂λk
∂cj

= −
(

∂ϕ

∂λk

)−1

c,q

(

(

∂ϕ

∂cj

)

c\cj ,q,λk

+
N
∑

l=1

(

∂ϕ

∂ql

)

c,q\ql,λk

∂ql
∂cj

)

. (C.3)

Hereafter, constant held variables will be omitted for clarity of presentation. Re-
sults for the derivatives in (C.3) are summarized in the following

∂ϕ

∂λk
= λk

N
∑

i=1

ξi
νi

1
qi

(

1
ci
− λk

1
qi

)2 , (C.4a)

∂ϕ

∂cj
=
λk
c2j

ξj
νj

(

1
cj
− λk

1
qj

)2 , (C.4b)

∂ϕ

∂ql
= −λ

2
k

q2l

ξl
νl

(

1
cl
− λk

1
ql

)2 , (C.4c)

∂ql
∂cj

=
νN
νl

ql
qN

(

∂qN
∂cj

− qN
cN
δjN

)

+
qj
cj
δjl,

∀k, j, l.
(C.4d)

Here, δ denotes the Kronecker delta. Eq. (C.4d) contains ∂qN
∂cj

, which can also be

obtained through implicit differentiation of (5.2b) when substituting all compo-
nents qm with m 6= N by (5.2a)

ψ(c, qN) = 0 = qtot −
N
∑

m=1

ξmcmK
1

νm

mN

(

qN
cN

)

νN
νm

, (C.5)
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resulting in

∂qN
∂cj

= −
(

∂ψ

∂qN

)−1

c

(

∂ψ

∂cj

)

c\cj ,qN

,

= −qN
νN

(

N
∑

m=1

ξm
νm
qm

)−1

ξj
qj
cj

+
qN
cN
δjN ,

(C.6)

which allows us to write

∂ql
∂cj

= −ql
νl

(

N
∑

m=1

ξm
νm
qm

)−1

ξj
qj
cj

+
qj
cj
δjl. (C.7)

Therefore, an element of the gradient of any λk can be written as follows

∂λk
∂cj

= −G(Hj +Wj), (C.8a)

G =







N
∑

i=1

ξi
νi

1
qi

(

1
ci
− λk

1
qi

)2







−1

> 0, (C.8b)

Hj =

ξj
νj

1
cj

(

1
cj
− λk

1
qj

) , (C.8c)

Wj = λk

N
∑

l=1

ξl
ν2
l

1
ql

(

1
cl
− λk

1
ql

)2

(

N
∑

m=1

ξm
νm
qm

)−1

ξj
qj
cj

= W ξj
qj
cj
> 0,

∀k, j.

(C.8d)

Using the derived representation of ∇λk and the definition of the corresponding
non-trivial eigenvector rk in (5.15), the following arithmetic expression is obtained

∇λk(c)rk(c) = −G(H +WZ) < 0, (C.9a)

H =

N
∑

j=1

H2
j

ξj
cj

> 0, (C.9b)

Z =

N
∑

j=1

qj
cj

ξj
νj

1
cj
− λk

1
qj

> 0. (C.9c)

Since all parameters, present concentrations and all eigenvalues (λN = 0 already
excluded) are greater than zero, the inequalities for G, H, W in (C.8b,C.9b,C.8d)
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are obviously satisfied. The inequality for Z in (C.9c) is deduced from a lower
bound that is derived in the following

Z = T + U, (C.10a)

T =

k
∑

j=1

qj
cj

ξj
νj

1
cj
− λk

1
qj

,
qj
cj

≥ qk
ck
> λk, (C.10b)

U =

N
∑

j=k+1

qj
cj

ξj
νj

1
cj
− λk

1
qj

,
qj
cj
< λk <

qk
ck
, (C.10c)

T ≥ qk
ck

k
∑

j=1

ξj
νj

1
cj
− λk

1
qj

, (C.10d)

U >
qk
ck

N
∑

j=k+1

ξj
νj

1
cj
− λk

1
qj

, (C.10e)

Z >
qk
ck

N
∑

j=1

ξj
νj

1
cj
− λk

1
qj

= 0, (C.10f)

where the equality in (C.10f) can be easily deduced from (5.11) for positive eigen-
values. Hence, all characteristic fields of a family k < N and with λk 6= qk

ck
are

genuinely non-linear for all c ∈ C = R
N
≥0, i.e. no negative concentrations. The fact

that the results in this appendix are also valid on the boundary, i.e. an arbitrary
number (but not all) of arbitrary components is not present, is demonstrated in
Appendix I.

Note, the entries of the Jacobian ∂q

∂c
are defined by (C.7). Therefore, it is

possible to determine the left eigenvectors lk that correspond to some eigenvalue
λk by solving the following equations

lk

(

∂q

∂c
− λkIN

)

= 0, (C.11a)

N
∑

i=1

lk,i
∂qi
∂cj

− λklk,j = 0 (C.11b)

lk,j =

ξj
cj

1
cj
− λk

1
qj

(

N
∑

m=1

ξm
νm
qm

)−1 N
∑

i=1

lk,i
qi
νi
,

∀k, j = 1, . . . , N.

(C.11c)

The Eqs. in (C.11) are satisfied by choosing

lk =

[

ξ1
c1

1
c1
− λk

1
q1

, . . . ,

ξN
cN

1
cN

− λk
1
qN

]

, (C.12)
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which can be validated using (5.11) to obtain the identity

N
∑

i=1

ξi
νi
ql =

N
∑

i=1

ξi
νi
qi +

N
∑

i=1

λk
ξi
νi

1
ci
− λk

1
qi

,

=
∑

i=1

ξi
νi
qi

(

1
ci
− λk

1
qi

)

+ λk
ξi
νi

1
ci
− λk

1
qi

,

=
N
∑

i=1

ξi
νi

qi
ci

1
ci
− λk

1
qi

=
N
∑

i=1

lk,i
qi
νi

(C.13)

in conjunction with the results in (C.11). In contrast to the right eigenvectors in
(5.15), the left eigenvectors depend on the ξ but not directly on the ν parameters
(only indirectly through ξ). The left eigenvector corresponding to λN = 0 becomes

lN = [ξ1, . . . , ξN ] . (C.14)

Due to the special structure of Eq. (C.14)

lNrk = 0 ∀k < N (C.15)

holds, which is also implied by (5.14). Further, the following relations can be
formulated

lNrN =

N
∑

i=1

ξi
νi
ci > 0, (C.16a)

lN = ∇ctot. (C.16b)

Consequently ctot hyperplanes defined by (5.3) are Riemann invariants [63] corre-
sponding to λN since

∇ctotrk =
{

0 k = 1, . . . , N
∑N

i=1
ξi
νi
ci k = N

. (C.17)
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Appendix D AIE: Reversal Intersections

In the following it is shown that different reversal hyperplanes do not intersect
each other. More precisely, the intersection of two arbitrary reversal hyperplanes
are either the hyperplanes itself or empty but no proper intersection exists. For
this purpose, two arbitrary reversal hyperplanes ’jk’ and ’mn’ that differ in at
least one of their indices are considered. From the respective representation based
on (5.27), their intersection is defined by

0 =
N
∑

i=1

ξiciωi, (D.1a)

ωi =

(

KijK

νj
νj−νk

jk

)

1
νi

−
(

KimK
νm

νm−νn
mn

)
1
νi
. (D.1b)

The trivial case, where all components are absent yields no relevance and is there-
fore not considered. It can be deduced that the ωi’s have the same sign. In
particular the following relations hold

K

νj
νj−νk

jk > KjmK
νm

νm−νn
mn → ωi > 0, i = 1, . . . , N, (D.2a)

K

νj
νj−νk

jk < KjmK
νm

νm−νn
mn → ωi < 0, i = 1, . . . , N. (D.2b)

In case of any given ’jk’ and ’mn’ reversal hyperplane, the parameters in (D.2)
are fixed for all ωi. Hence, either ωi > 0 or ωi < 0 holds. In addition, all ξi are
positive, consequently Eq. (D.1a) requires that the ci do not all have the same
sign. In other words, it is necessary that there exists at least a single component
’l’ with cl < 0. Therefore, a proper intersection does not exist in the positive
orthant, where ci ≥ 0 for all i.

For conditions (D.2), the intersection of two arbitrary reversal hyperplanes for
physically meaningful ci is always empty. However, if

K

νj
νj−νk

jk = KjmK
νm

νm−νn
mn → ωi = 0,

i = 1, . . . , N,
(D.3)

we can easily conclude that both reversal hyperplanes are identical. A detailed
discussion of this case can be found in Appendix H.
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Appendix E AIE: Reversal Zones

In this appendix, an interval for ctot, the so-called reversal zone, is defined. A
corresponding ctot hyperplane with a value of ctot in this interval is guaranteed
to intersect some ’jk’ reversal hyperplane for physically meaningful ci. For this
purpose we consider the equation for the intersection (5.31) of these two types of
hyperplanes and apply the same reasoning used prior to Eq. (5.28). Eq. (5.31)
can be reformulated into

ctot − qtotK
− 1

νj−νk

jk =
∑

i 6=j,k

ξici

(

K
1

νj−νk

jk −
(

KijK

νj
νj−νk

jk

)

1
νi

)

K
− 1

νj−νk

jk . (E.1)

Therefore, the conditions for solutions that satisfy ci > 0 yield

ctot − qtotK
− 1

νj−νk

jk = ξici

(

K
1

νj−νk

jk −
(

KijK

νj
νj−νk

jk

)

1
νi

)

K
− 1

νj−νk

jk , (E.2a)

sign

(

ctot − qtotK
− 1

νj−νk

jk

)

= sign

(

K
1

νj−νk

jk −
(

KijK

νj
νj−νk

jk

)

1
νi

)

,

∀i 6= j, k.

(E.2b)

There are two possible cases. First,

K
1

νj−νk

jk ≥
(

KijK

νj
νj−νk

jk

)

1
νi

, ∀i 6= j, k, (E.3a)

K
− 1

νj−νk

jk ≤
(

KijK

νj
νj−νk

jk

)− 1
νi

, ∀i 6= j, k. (E.3b)

Based on (E.2)

ctot ≥ qtotK
− 1

νj−νk

jk , (E.4)

has to be satisfied in this case, which defines a minimum value for ctot. If further

ctot ≤ qtot min
i 6=j,k

[

(

KijK

νj
νj−νk

jk

)− 1
νi

]

, (E.5)

holds, (E.3) is guaranteed to be satisfied due to (E.4). Thus, (E.5) defines a
maximum value for ctot. In this case the reversal zone in which all ctot planes are
guaranteed to intersect some ’jk’ reversal hyperplane is given by

ctot ∈
[

clowtot , c
upp
tot

]

= qtot

[

K
− 1

νj−νk

jk ,min
i 6=j,k

[

(

KijK

νj
νj−νk

jk

)− 1
νi

]]

. (E.6)
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In contrast to the first case, the second one assumes

K
1

νj−νk

jk ≤
(

KijK

νj
νj−νk

jk

)

1
νi

, ∀i 6= j, k, (E.7a)

K
− 1

νj−νk

jk ≥
(

KijK

νj
νj−νk

jk

)

−1
νi

, ∀i 6= j, k. (E.7b)

By the same line of argument as in the first case, we readily obtain an analog
reversal zone with

ctot ∈
[

clowtot , c
upp
tot

]

= qtot

[

max
i 6=j,k

[

(

KijK

νj
νj−νk

jk

)− 1
νi

]

, K
− 1

νj−νk

jk

]

. (E.8)

All ctot hyperplanes with ctot ∈ [clowtot , c
upp
tot ] yield an intersection with the ’jk’

reversal hyperplane, i.e. they admit a classical selectivity reversal (5.31).
Compared to [28] where a process requires to be operated on the same ctot

hyperplane within the reversal zone described by (E.6) or (E.8), the chromato-
graphic cycle with variable ctot is operated on two ctot hyperplanes requiring only
one of them to be within the reversal zone in order to admit a classical ’jk’ se-
lectivity reversal. However, if ctot 6∈ [clowtot , c

upp
tot ] for all relevant ctot, no classical

selectivity reversal will be present on corresponding ctot hyperplanes.
The second type of interaction with any ’jk’ reversal hyperplane can be realized

through its intersection with a contact discontinuity corresponding to λN . This
transition connects ctot hyperplanes over a certain range c̄tot = [c∗tot, ctot], see
notation in (5.20). There are three possible scenarios. First, if [clowtot , c

upp
tot ]∩c̄tot = ∅,

the Nth transition does not intersect the ’jk’ reversal hyperplane for physically
meaningful ci and (5.32) admits definitely a solution cN < 0. Second, if [clowtot , c

upp
tot ]∩

c̄tot 6= ∅, the contact discontinuity might intersect the ’jk’ reversal hyperplane
and (5.32) has to be checked whether it admits cN > 0 or cN < 0. Finally, they
guaranteed to intersect each other in the third case if [clowtot , c

upp
tot ] ⊆ c̄tot holds, and

(5.32) admits a solution cN > 0 accordingly.
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Appendix F AIE: Steric Factors

In order to understand the effect that is related exclusively to steric hindrance,
two models are considered that differ only in their respective steric factors. With-
out loss of generality, two cases are considered where the sorption equilibrium is
described by either the CIE without steric effects (’I’) or by the AIE with steric
effects (’II’). In case of model ’I’ pi = 0 holds for all i, i.e. ξIi = 1

νi
. In contrast,

model ’II’ satisfies pi > 0 for at least one i. Thus, the second model accounts for
the setric hindrance of at least one component with ξIIi = 1

νi
+ pi. Note, that all

other parameters (KiN , νi and qtot) of the two models are identical. These two
models are investigated using two different sorption set-ups on a single column.

In the first set-up, the feed and initial loading of the column are specifically
chosen to equate the solution normality of model ’I’ with the modified solution
normality of model ’II’, i.e. cItot = cIItot = ctot. In this case, there exists a simple
linear and bijective transformation from concentration phase space II into the
concentration phase space I

cI = diagN(νiξi)c
II = diagN(1 + νipi)c

II , (F.1a)

qI = diagN(νiξi)q
II = diagN (1 + νipi)q

II . (F.1b)

Equation (F.1) can be derived from the corresponding equilibrium relation and
the electro-neutrality condition of each model

fi(q
I , cI) =

1

KiN

(

qIi
cIi

)νi (cIN
qIN

)νN

− 1 = 0, (F.2a)

qtot =
N
∑

i=1

qIi
νi
, cItot =

N
∑

i=1

cIi
νi
, (F.2b)

as well as

fi(q
II , cII) =

1

KiN

(

qIIi
cIIi

)νi ( cIIN
qIIN

)νN

− 1 = 0, (F.3a)

qtot =
N
∑

i=1

ξiq
II
i , c

II
tot =

N
∑

i=1

ξcIIi . (F.3b)

Eqs. (F.2) can be readily transferred to Eqs. (F.3) using (F.1) if and only if cItot =
cIItot = ctot holds, thus resulting in the same algebraic equations. Consequently, the
Jacobian of model ’I’ is identical to the one of model ’II’ after transformation.
Therefore, it is only necessary to obtain the concentration phase topology based
on integral curves for all ctot > 0 of only one model since the other one can be
directly derived using (F.1).

The second set-up uses the same Riemann conditions, i.e. the same feed cIfeed =
cIIfeed = cfeed and initial loading cIinit = cIIinit = cinit for both models. Normalities
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cItot and cIItot in (F.2,F.3) have obviously different weighting factors, while the
components cIi , c

II
i are subject to the same initial and boundary conditions. In

particular, at least at the beginning of the process and once the feed conditions
are established cIi = cIIi is satisfied for all i everywhere in the column. Due to the
different weighting factors

1

νi
<

1

νi
+ pi = ξi, (F.4)

the corresponding solution normality and modified solution normality do not co-
incide in general. If cItot = cIItot does not hold for the complete process, the above
simple coordinate transformation cannot be applied.

Note that in both set-ups the orientation and positioning of the cItot and cIItot
hyperplanes are different due to the different wighting factors already mentioned.
In both set-ups, for every cItot hyperplane in the complete concentration phase
space of ’I’ there exists a similar cIItot hyperplane with cIItot = cItot somewhere in the
concentration phase space of ’II’ based on the similarity in (F.2,F.3). However,
only in the in the first set-up, the boundary and initial conditions are specifically
scaled for both models so that all process participating cItot and cIItot hyperplanes
are also similar in the sense of (F.1). In case of the second set-up, the process
participating cItot and cIItot hyperplanes can differ arbitrarily. Note, this difference in
solution normalities is introduced due different steric factors, hence representing
the case where a change in solution normality between two set-ups is related
exclusively to different steric factors. The most significant differences can be
the intersection with different reversal hyperplanes and different locations and/or
number of watershed points.

All results presented here demonstrate the quantitative effect for steric hin-
drance. Consequently, the results in Section 5.3 as well as the results for selectiv-
ity reversals in Section 5.4 and the ones in appendices Appendix C, Appendix D,
Appendix E, Appendix H, and Appendix I are affected by steric factors quantita-
tively but not qualitatively.
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Appendix G AIE: Experimental Test System

In this appendix, application of the theory developed in Section 5.5 and illustrated
there with an academic benchmark problem is demonstrated for an experimental
test system. The specific values of the considered Riemann set-up as well as
parameter values taken from [30], are listed in Tab. Appendix G.1.

parameter value description
L [mm] 54.0 column length
Nz [−] 1000 number of grid points
u [mm

s
] 0.4244 interstitial velocity

ǫ [−] 0.73 void fraction
qtot [mM ] 525.0 exchanger capacity
K31 [−] 0.0135 equilibrium constant
K32 [−] 0.045 equilibrium constant
ν−1
1 [−] 5.03 characteristic charge
ν−1
2 [−] 5.67 characteristic charge
ν−1
3 [−] 1.0 characteristic charge
p1 [−] 7.43 steric factor
p2 [−] 27.4 steric factor
p3 [−] 0.0 steric factor

Table Appendix G.1: Experimental parameters.

Note, the numerical strategy was already verified by reproducing partially the
results from [30] in Section 5.2.

In this particular case only two proteins α-Chymotrypsinogen A and Cy-
tochrome c are considered. The strong cation-exchanger column is initially equi-
librated with 30 mM sodium phosphate and the solution pH is assumed to be 6.0
at all times. At time unit 0, a buffer with 0.2 mM of both proteins and 213 mM
sodium phosphate is injected for 3.114 dimensionless time units, which allows for
the development of the intermediate feed plateaus. Thereafter, the feed is changed
to contain again only sodium phosphate, but in addition it still contains a high
concentration of 183 mM sodium phosphate for an efficient elution of the two
proteins, which especially compresses simple wave R1.

As a result of this Riemann experiment, a chromatographic cycle in Fig.
Appendix G.1 is obtained similar to the one in Fig. 5.3. For clarity of pre-
sentation, Fig. Appendix G.1a shows only the relevant integral curves in the
concentration phase space that predict the numerical solution to illustrate the va-
lidity of the applied equilibrium theory. The basic principles discussed in Section
5.5 can be immediately seen in Fig. Appendix G.1b. The first contact discon-
tinuity CD1 only affects the sodium ion concentration. Reaching then the value
of ctot = 215.1 mM , two shocks S1 and S2 follow affecting the two proteins and
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Figure Appendix G.1: (a) Chromatographic cycle in the concentration phase
space realized by a pulse experiment for two proteins (α-Chymotrypsinogen A,
Cytochrome c) and sodium phosphate. Gray plane indicates reversal plane ’1, 2’.
Numerical results (grey dashed line) overlap two contact discontinuities, two shock
curves and two integral curves, which are all predicted by the equilibrium theory
(colored). (b) Corresponding elution profiles ci(z) indicate that shocks and simple
waves occur for different but constant ctot values. The values for c3 and ctot are
scaled by a factor of 1

950
.
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sodium ions but not ctot. Subsequently, another contact discontinuity CD2 follows
affecting not only all components but again changing the value of ctot to 183 mM .
The elution of the two proteins proceeds by admitting two simple waves. Again,
these two transitions do not affect the value of ctot. Consequently, the chromato-
graphic cycle of this example operates on two relevant ctot planes connected by
CD2, and the analogy of the present real world example to the one discussed in
Section 5.5 can be easily established. The same analysis can be applied here. The
arrows in Fig. Appendix G.1a point in the direction of increasing characteristic
velocity λ̃k, therefore predicting the type of transition correctly. In case of the
shocks, the integral curves are almost straight, thus nearly coinciding with the cor-
responding shock curves. For all other cases, the integral curves match the exact
solution path in the concentration phase space. In this particular case, no selectiv-
ity reversal is present since the order of elution in Fig. Appendix G.1b is preserved
during the complete cycle. This can also be seen in from Fig. Appendix G.1a,
where the corresponding ’1, 2’ reversal plane is below all transitions that follow af-
ter CD1. Based on this topological property it can be easily predicted that there
is indeed no ’1, 2’ reversal involved between the two relevant ctot values. This
concludes the proof of principle.
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Appendix H AIE: Non-strict Hyperbolicity

Appendix H.1 The j, j + 1 selectivity reversal

In this appendix the singular case of coinciding reversal hyperplanes, which was
already mentioned in Appendix D, is discussed. First, recall Eq. (5.11), which
implies that the eigenvalues are located between the poles of the characteristic
equation with the exception of λN = 0. As we already know, in the presence of
a j(j + 1) reversal hyperplane two corresponding poles coincide, i.e.

qj
cj

=
qj+1

cj+1
.

However, the system remains strictly hyperbolic, in particular also on the reversal
hyperplane itself, with

q1
c1
> λ1 >

q2
c2
> ... >

qj
cj

= λj =
qj+1

cj+1

> ... >
qN−1

cN−1

> λN−1 >
qN
cN

> λN = 0.

(H.1)

In general, the eigenvectors follow from Eq. (5.14). In case of λj =
qj
cj

=

K
1

νj−νj+1

j,j+1 = const, the eigenvector is constant and coincided with the reversal
hyperplane according to

rj =
[

0, ..., 0, rj,j = ξ−1
j , rj,j+1 = −ξ−1

j+1, 0, ..., 0
]T
, j < N, (H.2)

which is consistent with Eq. (5.18). Remember, any transition on a reversal
hyperplane is a contact discontinuity for which the integral and shock curves co-
incide. Further, Eq. (H.2) shows that only the reversal participating components
j and j + 1 change on a reversal hyperplane, while all other components are con-
stant. As shown in Section 5.4, such a reversal hyperplane always exists in the
positive orthant of the concentration phase space if not all components have the
same characteristic charges 1

νi
. Note, due to Eq. (H.1) the contact discontinuity

corresponding to λN = 0 is obviously not related to any reversal condition of
identical selectivities and is therefore excluded from (H.2). Finally, the j(j + 1)
hyperplane itself is defined by the following two equivalent representations

RHj(j+1) :

0 =
∑

i 6=j,j+1

ξici

(

KijK

νj
νj−νj+1

j(j+1)

)

1
νi

+ (ξjcj + ξj+1cj+1)K
1

νj−νj+1

j(j+1) − qtot
(H.3)

and

RHj(j+1) :

0 =
N
∑

i=1

ξici

(

KijK

νj
νj−νj+1

j(j+1)

)

1
νi

− qtot, Kjj = 1, K(j+1)j = K−1
j(j+1),

(H.4)

consistent with Eqs. (5.26,5.27).
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Appendix H.2 Two Coinciding Reversal Hyperplanes

Main focus is on two coinciding reversal hyperplanes. The ordering of selectivities
in (H.1) holds at least for some non-empty subset in the positive orthant of the
concentration phase space. If two reversal planes exist and both coincide, then
it is obvious from (H.1) that three neighboring selectivities are involved. In the
following, the corresponding neighboring indices are denoted by j, j+1 and j+2.
For these three indices it is possible to define also three different reversal hyper-
planes that could possibly coincide. Due to the fact that these indices can be
arbitrarily interchanged, we consider without loss of generality the two reversal
hyperplanes related to j(j+1) and j(j+2) and define the common reversal hyper-
plane accordingly by RHj = RHj(j+1) = RHj(j+2). On RHj the corresponding
two reversal equations

qj
cj

=
qj+1

cj+1
,

qj
cj

=
qj+2

cj+2
(H.5)

hold. They define the sole feature of RHj on which the proof in this section is
based.

Using Eq. (H.4), the intersection of the reversal hyperplanes j(j + 1) as well
as j(j + 2) has to satisfy

0 =

N
∑

i=1

ξiciωi, (H.6a)

ωi =

(

KijK

νj
νj−νj+1

j(j+1)

)

1
νi

−
(

KijK

νj
νj−νj+2

j(j+2)

)

1
νi

. (H.6b)

As shown in Appendix D, the intersection is nonempty if and only if

K
1

νj−νj+1

j(j+1) = K
1

νj−νj+2

j(j+2) (H.7)

holds. In this case ωi = 0 for all i = 1, . . . , N , therefore (H.6) is satisfied for all
c ∈ R

N
≥0, i.e. the reversal hyperplanes j(j + 1) and j(j + 2) coincide classifying

(H.7) as corresponding necessary and sufficient condition. From a practical point
of view, condition (H.7) seems rather restrictive. However, since the parameters
p̃ = [Kj(j+1), Kj(j+2)νj , νj+1, νj+2]

T rely on experimental data they are subjected

to parameter uncertainty. In particular, there potentially exist parameter sets P̃
including on the one hand parameter values that satisfy

p̃ ∈ P̃ : K
1

νj−νj+1

j(j+1) > K
1

νj−νj+2

j(j+2) , (H.8)

and on the other hand also parameter values that satisfy

p̃ ∈ P̃ : K
1

νj−νj+1

j(j+1) < K
1

νj−νj+2

j(j+2) . (H.9)
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Hence, case (H.7) is satisfied for some p̃∗ ∈ P̃ and cannot be disregarded. As
a result, the Riemann solution based on (H.7) may further proof to admit a
reasonable approximation in practice assuming that maxp̃∈P̃ ||p̃−p̃∗|| is sufficiently
small.

The theoretical analysis of the Riemann solution related to (H.7) is presented
in the following starting with a summary of the main results in

Theorem Appendix H.1. Assume (H.7) to be satisfied for the given parameters
of system Θ (5.2,5.6). Then Θ is non-strictly hyperbolic on RHj with exactly one
eigenvalue equal to (H.5) that has an algebraic and geometrical multiplicity of
two. All other eigenvalues have an algebraic multiplicity of one. Assume further
Θ to be subjected to the following Riemann experiment. Let the constant boundary
condition Cj = cfeed satisfy Cj ∈ RHj. If the constant initial condition CN = cinit
is chosen such that Cj does not lie on an integral or shock curve corresponding to a
eigenvalue λi or shock speed si with N ≥ i ≥ j + 2 and therefore the intermediate
state Cj+2 ∈ RHj satisfies Cj+2 6= Cj, then the two points Cj+2 and Cj are
connected by a single contact discontinuity that can be uniquely identified.

Note, the origin of the concentration phase space is excluded to be a viable
initial condition in Theorem Appendix H.1 since it is connected to any point on
any reversal hyperplane, in fact to any point in the positive orthant by an integral
curve related to λN , which is described in Section 5.3. Further, points on the cN
axis is excluded as well. Each point on the cN is related to a different solution
normality. Further, there might exist reversal hyperplanes that admit points of
the same solution normality. As a result, these points can be connected to the
one point on the cN axis with the same solution normality by a single shock
curve, which is discussed in Section 4.4. Knowing that strict hyperbolicity is
maintained everywhere except on RHj based on (H.1), all transitions related to
λi with N ≥ i ≥ j + 2, which are required to reach some intermediate state
Cj+2 ∈ RHj from any admissible initial condition CN , are unique. Further due
to the specific choice of Cj ∈ RHj, all transitions corresponding to λk > λj with
1 ≤ k < j are obviously not required. Hence, it remains to proof that λj = λj+1

has the algebraic multiplicity of two and in addition that both corresponding
transitions admit a unique solution connecting Cj with any distinct Cj+2 by means
of a single contact discontinuity.

Proof of Theorem Appendix H.1. In a first step, it is shown that the algebraic
multiplicity of multiple eigenvalues is equal to two if two hyperplanes coincide.
For this purpose Eq. (5.11) is rewritten into the equivalent form

0 = λj

N
∑

i=1

ξi
∏

k 6=i

(

νk
ck

− λj
νk
qk

)

. (H.10)

In light of condition (H.5) on RHj , the equation
qj
cj

= λj =
qj+1

cj+1
= λj+1 =

qj+2

cj+2
(H.11)
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holds. Indeed Eq. (H.11) does satisfy (H.10), and it becomes evident that in this
case the smallest number of factors equal to zero in each summand in (H.10) is
equal to two. Hence, the algebraic multiplicity has to be equal to two excluding
the following cases on RHj

· · · > λj−1 =
qj
cj

= λj =
qj+1

cj+1
= λj+1 =

qj+2

cj+2
, (H.12a)

qj
cj

= λj =
qj+1

cj+1
= λj+1 =

qj+2

cj+2
= λj+2 > . . . (H.12b)

that are also consistent with (H.5) but imply an algebraic multiplicity of three,
which is obviously a contradiction. As a result, the complete order of selectivities
and eigenvalues on RHj satisfies

q1
c1
>λ1 >

q2
c2
> λ2 > ...

· · · >λj−1 >
qj
cj

= λj =
qj+1

cj+1
= λj+1 =

qj+2

cj+2
> λj+2 > ...

· · · >λN−1 >
qN
cN

> λN = 0. (H.13)

Based on (H.13), the system Θ is non-strictly hyperbolic on RHj. Further, tran-
sitions related to (H.11) can only be located on RHj , where they are admitting
the connection of the plateau states Cj+2 and Cj .

In order to proof that there always exists a unique solution that connects
Cj+2 and Cj, Eq. (5.14) is solved for (H.11). It is readily possible to obtain two
linearly independent eigenvectors with respect to λj and λj+1, e.g. rj and rj+1 as
formulated in (H.2)

rj =
[

0, ..., 0, rj,j = ξ−1
j , rj,j+1 = −ξ−1

j+1, 0, ..., 0
]T
, (H.14a)

rj+1 =
[

0, ..., 0, rj+1,j+1 = ξ−1
j+1, rj+1,j+2 = −ξ−1

j+2, 0, ..., 0
]T
. (H.14b)

As a result, system Θ is still hyperbolic on RHj. Further, both eigenvalues are
constant, which can be obtained by using (5.2) in conjunction with (H.5) resulting
in

qi = ci

(

KijK

νj
νj−νj+1

j(j+1)

)

1
νi

, i 6= j, j + 1, j + 2, (H.15a)

qm = cmK
1

νj−νj+1

j(j+1) , m = j, j + 1, j + 2 (H.15b)

allowing to identify the eigenvalues using (H.11) with

qj
cj

= λj =
qj+1

cj+1
= λj+1 =

qj+2

cj+2
= K

1
νj−νj+1

j(j+1) = K
1

νj−νj+2

j(j+2) = const. (H.16)
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Eq. (H.15) also allows to define a representation for RHj similar to (H.3)

RHj : 0 =
∑

i 6=j,j+1,j+2

ξici

(

KijK

νj
νj−νj+1

j(j+1)

)

1
νi

+K
1

νj−νj+1

j(j+1)

j+2
∑

m=j

ξmcm − qtot (H.17)

The connection of Cj+2 and Cj is realized on the linear degenerate hyperplane
RHj . Therefore, it involves only transitions related to the constant eigenvalues
λj and λj+1. As demonstrated in [16] for linear hyperbolic regions, the difference
of Cj+2 and Cj can be formulated as sum of weighted eigenvectors

Cj − Cj+2 = αjrj + αj+1rj+1. (H.18)

For the specific case investigated here, the unknown weights are defined by

Cj
j − Cj+2

j = αjξ
−1
j , Cj

j+2 − Cj+2
j+2 = αj+1ξ

−1
j+2. (H.19)

Note, there are indeed only two equations in (H.19) for the two unknowns αj and
αj+1. All Cj

i with i 6= j, j + 1, j + 2 remain constant, i.e. Cj
i = Cj+2

i and provide
no additional constraint. Moreover, the eigenvectors in (H.14) are invariant with
respect to hyperplanes

CH : 0 =
N
∑

i=1

ξici − ctot (H.20)

of constant solution normality ctot, which is shown in Section 5.3. In this particular
case along any linear combination of rj and rj+1, we have

∆ctot = 0 =

j+2
∑

i=j

ξi(C
j
i − Cj+2

i )

= ξjαjξ
−1
j + ξj+1(−αj + αj+1)ξ

−1
j+1 + ξj+2(−αj+1)ξ

−1
j+2 = 0.

(H.21)

Therefore

Cj
j+1 − Cj+2

j+1 = (−αj + αj+1)ξ
−1
j+1 (H.22)

is guaranteed to satisfy (H.20) for any αj as well as αj+1, and therefore (H.22)
does not provide an additional constraint on those two coefficients. The invariance
of the transitions related to λj and λj+1 also means that they are limited to
the intersection of the reversal hyperplane defined by (H.17) with hyperplane of
constant solution normality defined by (H.20)

I :

0 =
∑

i 6=j,j+1,j+2

ξici

(

(

KijK

νj
νj−νj+1

j(j+1)

)

1
νi

−K
1

νj−νj+1

j(j+1)

)

+K
1

νj−νj+1

j(j+1) cjtot − qtot,
(H.23)
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where the value of cjtot is fixed and given by the boundary condition Cj. The
intersection I is nonempty if (H.20) is within a reversal zone, i.e. the solution
normality satisfies

cjtot ∈ [cj,lowtot , cj,upptot ] =















qtot

[

γ, min
i 6=j,(j+1)

βi

]

, γ ≤ βi i 6= j, j + 1

qtot

[

max
i 6=j,(j+1)

βi, γ

]

, γ ≥ βi i 6= j, j + 1
, (H.24a)

βi =

(

KijK

νj
νj−νj+1

j(j+1)

)− 1
νi

, γ = K
− 1

νj−νj+1

j(j+1) . (H.24b)

Details regarding reversal zones can be found in Appendix E.
Since λj = λj+1, the difference or transition (H.18,H.19) is not described by

a sequence of two linear transitions where we need to find an intermediate state.
Instead (H.18,H.19) directly defines the transition, which is a superposition of
two linear transitions resulting in a single linear transition, i.e. a single straight
line connecting Cj and Cj+2. This straight line is uniquely defined by these
two points in the concentration state phase, which also means that Cj can be
connected by a corresponding straight line to any Cj+2 ∈ RHj for any fixed
cjtot. Consequently, the straight line directly depends on the choice of boundary
conditions Cj, which defines the relevant cjtot, and initial conditions CN , which
is obviously related to Cj+2. This is an interesting distinction from the linear
degenerate transition in unique reversal hyperplanes since they are fixed for certain
parameters independently of boundary and initial conditions, see (H.2).

In other words, a single contact discontinuity is obtained that results from the
superposition of two contact discontinuities on the linearly degenerate hyperplane
RHj . It is uniquely defined by (H.18,H.19) and satisfies the jump conditions
(5.16) with s̃j = λ̃j between any two distinct points in I. The previous statement
holds for any two distinct points on RHj since Eq. (H.24) is satisfied for any cjtot
resulting from Cj ∈ RHj by definition.

For illustration purposes, simulation of a four component example is shown
in Fig. Appendix H.1. Corresponding simulation parameters can be found in
Tab. Appendix H.1. The parameters satisfy Eq. (H.7) such that the ’1, 2’ and
’1, 3’ reversal hyperplanes coincide. From Eq. (H.23) a suitable c4,feed is de-
termined for given values of the other three reversal participating components
resulting in cfeed = 1

60
[36, 12, 20, 55] mol

m3 . In addition, initial conditions are cinit =
10−3[1, 1, 1, 100] mol

m3 . Since the boundary condition lies on the coinciding reversal
hyperplanes and the initial condition does not lie on the c4-axis, the regeneration
should consist of four transitions compared to the three transitions during the
loading, where the transition connected to the feed plateau has to be a contact
discontinuity. These predictions are verified by simulation results shown in Fig.
Appendix H.1.
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Figure Appendix H.1: (a) Concentration profiles of all four components ci and
ctot show four transitions during regeneration but only three transitions during
loading. (b) Section of the concentration profile (a) that shows particularly well
the four transitions (1R, 2R, 3R, 4R) after the feed value and three transitions before
the feed value (1L, 2L, 3L), where 1L denotes the contact discontinuity of interest.
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parameter value description
L [m] 5.0 column length
Nz [−] 1500 number of grid points
u [m

s
] 1.0 interstitial velocity

ǫ [−] 0.5 void fraction
qtot [

mol
m3 ] 2.0 exchanger capacity

K14 [−] 297.0 equilibrium constant
K24 [−] 33.0 equilibrium constant
K24 [−] 11.0 equilibrium constant
ν1 [−] 4 equilibrium constant
ν2 [−] 2 equilibrium constant
ν3 [−] 1 equilibrium constant
ν4 [−] 1 equilibrium constant

Table Appendix H.1: Parameters used in simulation example for a non-strictly
hyperbolic case.
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Appendix H.3 Multiple Coinciding Reversal Hyperplanes

Using the reasoning above, the case of two coinciding reversal hyperplanes can
be extended to M > 2 coinciding reversal hyperplanes. This extension is straight
forward, therefore only the most important results are summarized in the follow-
ing. The maximal number of coinciding reversal hyperplanes is (N−1)N

2
. However,

in this appendix the results are limited to 2 ≤M < N . This is reasonable due to
the fact that the maximal number of reversal equations is N − 1 since there are
only N selectivities qi

ci
that can be equal. Consequently if M ≥ N no additional

reversal equations will be present, which means that the all results based on this
key feature do not change further. As in the previous section, the case of the
component j to participate in all occurring reversals is considered. Any other
case follows the same reasoning requiring only the corresponding indices to be
considered.

First it is obvious that now M − 1 equations

K
1

νj−νj+1

j(j+1) = · · · = K
1

νj−νj+M

j(j+M) (H.25)

have to be satisfied on a reversal hyperplane RHj , which becomes decreasingly
probable with increasing M . Note, Eq. (H.25) is the only condition with an
increasing number of equations even for M ≥ N . However, the degree of freedom
defined by 2M +1− (M − 1) has a maximum value of N +1 since every equation
that is introduced when M ≥ N adds only one new parameter. As a result the
degree of freedom is N + 1 for all M ≥ N − 1. Finally, the following order is
satisfied on RHj

q1
c1
>λ1 >

q2
c2
> λ2 > ...

· · · >λj−1 >
qj
cj

= λj = · · · = λj+M−1 =
qj+M

cj+M

> λj+M > ...

· · · >λN−1 >
qN
cN

> λN = 0. (H.26)

In (H.26), the eigenvalue with algebraic multiplicity of M is constant and equal
to the value defined by (H.25). The system Θ is therefore non-strictly hyperbolic
on RHj but remains linear hyperbolic with

rj+i =
[

0, ..., 0, rj+i,j+i = ξ−1
j+i, 0, . . . , 0, rj+i,j+M = −ξ−1

j+M , 0, ..., 0
]T
. (H.27)

Similar to (H.18,H.19), the transition between any two points Cj and Cj+M on
RHj is uniquely defined by

Cj − Cj+M =
M−1
∑

i=0

αj+irj+i, (H.28a)

Cj
j+i − Cj+M

j+i = αj+iξ
−1
j+i, i = 0, . . . ,M − 1. (H.28b)
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Note, as before, the point Cj+M is reached through the transitions related to λi
with N ≥ i ≥ j +M , while Cj is connected by an unique contact discontinuity
to Cj+M resulting from a superposition of M simultaneously occurring contact
discontinuities. Similar to (H.17), RHj is represented by

RHj :

0 =
∑

i 6=j,...,j+M

ξici

(

KijK

νj
νj−νj+1

j(j+1)

)

1
νi

+K
1

νj−νj+1

j(j+1)

j+M
∑

m=j

ξmcm − qtot,
(H.29a)

I :

0 =
∑

i 6=j,...,j+M

ξici

(

(

KijK

νj
νj−νj+1

j(j+1)

)

1
νi

−K
1

νj−νj+1

j(j+1)

)

+K
1

νj−νj+1

j(j+1) cjtot − qtot.
(H.29b)

Eq. (H.29) admits the following special case if all N components participate on
RHj , i.e. if at least M = N − 1 reversal hyperplanes coincide

RHj : 0 = K
1

νj−νj+1

j(j+1)

N
∑

m=1

ξmcm − qtot, (H.30a)

I : 0 = K
1

νj−νj+1

j(j+1) cjtot − qtot. (H.30b)

Since RHj has the same normal vector as all hyperplanes CH as defined in (H.20),
I is non-empty only for one particular hyperplane CHj with (H.24) reducing to a
single point cjtot that satisfies (H.30).
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Appendix I AIE: Global Properties on CH hyper-

planes

This appendix demonstrates that the isotherm of the AIE is invertible on any ctot
hyperplane CH (Eq. (H.20)). In a first step, the isotherm of the CIE is shown
to be bijective in a convex subset XN−1 of the positive orthant. Subsequently, an
equivalence of this result with the existence of a bijective AIE isotherm function
on any CH is established. In addition, a stronger version of global invertibility is
shown by application of the global inverse theorem by Hadamard [110]. For this
purpose, eigenvalue and eigenvector results are obtained for the entire domain
XN−1. Particular focus is on the boundary of ∂XN−1. In addition, strict hyper-
bolicity and genuine non-linearity are shown to be satisfied almost everywhere on
XN−1 with the exception of isolated points and selectivity reversals, respectively.
Based on the equivalence of the AIE isotherm with CH and the CIE isotherm with
XN−1, it is conjectured that in case of the AIE an uniqueness theorem regarding
Riemann solutions (including shocks, simple waves, and contact discontinuities)
can be derived more globally for any CH. In contrast, general theorems, e.g.
Theorem 17.18 in [62] hold only locally, specifically due to the application of the
implicit function theorem.

Appendix I.1 Existence of a Bijective Function

For a constant solution normality, the equilibrium relations (5.2,5.3) can be formu-
lated in normalized coordinates xN , yN ∈ R

N with an additional closing condition
as follows

0 = fi(xN ,yN) =
1

K̃iN

(

yi
xi

)νi
(

xN
yN

)νN

− 1, i = 1, . . . , N − 1, (I.1a)

0 = fN(yN) =
N
∑

i=1

yi − 1, (I.1b)

0 = fN+1(xN) =

N
∑

i=1

xi − 1, (I.1c)

xi = ξi
ci
ctot

, yi = ξi
qi
qtot

, K̃iN = KiN

(

qtot
ctot

)νN−νi

, i = 1, . . . , N. (I.1d)

Due to the two closing conditions (I.1b,I.1c), the degree of freedom of the implicit
function Ω(xN ,yN) = 0 defined by Eqs. (I.1a-I.1c) is equal to N−1 and does not
depend on the choice of independent variables, either the normalized fluid phase
concentrations xi or the normalized solid phase concentrations yi. Therefore we
can identify the equivalence of Ω(xN ,yN) = 0 with a special case of Ω(c, q) = 0
denoted by ΩCH(c, q) = Ω(xN ,yN) = 0 in order to account for the constant
solution normality that defines the hyperplane CH.
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First, N − 1 of the fluid phase concentrations xi are chosen to be the inde-
pendent variables. Here xN is the dependent reference variable, but it could be
interchanged with any other independent variable. Eqs. (I.1a) and (I.1b) can be
equivalently formulated as

yi = xiK̃
1
νi

iN

(

yN
xN

)

νN
νi

, i = 1, . . . , N − 1, (I.2a)

0 =

N
∑

i=1

xiK̃
1
νi

iN

(

yN
xN

)

νN
νi

− 1. (I.2b)

Obviously, Eq. (I.2a) substituted into Eq. (I.1b) results in Eq. (I.2b). Hence, Eq.
(I.2b) alone can be used to equivalently replace Eqs. (I.1a) and (I.1b). Introducing
the variable ỹ = yN

xN
> 0, Eq. (I.2b) can be rewritten into

0 =
N
∑

i=1

xiK̃
1
νi

iN

(

yN
xN

)

νN
νi − 1 =

N
∑

i=1

αiỹ
νN
νi − 1 = η(ỹ). (I.3)

Note that due to Eq. (I.2b) there exists at least one non-vanishing component
m ∈ {1, . . . , N}. As a results from Eq. (I.2a), the ratio yN

xN
> 0 remains well-

defined. Eq. (I.3) can be interpreted as a function of ỹ with constant factors αi

for arbitrary but fixed xi’s. Note, at least αm = 1 is non-zero. Further, if any
factor αi is non-zero, then it is also greater than zero due to its definition in Eq.
(I.3). Since ỹ = yN

xN
> 0, we are only interested in solutions ỹ ∈ (0,∞). The

following properties of η(ỹ) guarantee a unique solution ỹ in the interval (0,∞)

η(0) = −1, (I.4a)

lim
ỹ→∞

η(ỹ) =
N
∑

i=1

αiỹ
νN
νi − 1 >

N
∑

i=1

xi − 1 = 0. (I.4b)

Considering the derivative

dη(ỹ)

dỹ
=

N
∑

i=1

αi

νN
νi
ỹ

νN
νi > 0, (I.5)

it clearly shows that η(ỹ) is strictly monotonically increasing in (0,∞) allowing
only for single solution ỹ in this interval, thus indicating its uniqueness. The
dependent variable xN results uniquely from Eq. (I.1c) for any given composition,
i.e. xN = 1 −∑N−1

i=1 xi. Recalling the explicit relations for all other components
in I.2a, one obtains

yi = xiK̃
1
νi

iN ỹ
νN
νi , i ∈ {1, . . . , N − 1}. (I.6)

The uniqueness of ỹ carries readily over to all remaining components yi for any
given composition defined by the xi’s. Moreover, the remaining dependent solid
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phase concentration of component N can be also calculated uniquely from yN =
1−∑N−1

i=1 yi. Consequently, we find for every xN ∈ XN a unique point yN ∈ YN .
Hence, Ω(xN ,yN) implies the existence of a function

yN(xN) : XN → YN ,

XN ⊂ R
N , YN ⊂ R

N .
(I.7)

Note, in case of the fluid phase concentrations, the dimension can be decreased
by using fN+1 to obtain for example explicitly xN beforehand. Further, in case
of the solid phase concentrations, the dimension can be decreased by using fN
to calculate for example explicitly yN independently of the xi’s. Considering the
reduced system Ω(xN−1,yN−1)

0 = fi(xN−1,yN−1) =
1

K̃iN

(

yi
xi

)νi
(

xN
yN

)νN

− 1, (I.8a)

yN = 1−
N−1
∑

i=1

yi, xN = 1−
N−1
∑

i=1

xi, (I.8b)

it is obvious that Ω(xN−1,yN−1) is equivalent to Ω(xN ,yN). Therefore, the func-
tion yN(xN) is also implied by Ω(xN−1,yN−1). However, the variables xN and
yN can be replaced directly by the corresponding closing condition as shown in
Eq. (I.8b), such that we find for any xN−1 ∈ XN−1 a unique yN−1 ∈ YN−1. As
a result both systems Ω(xN−1,yN−1) and Ω(xN ,yN) also imply the existence of
the function

yN−1(xN−1) : XN−1 → YN−1,

XN−1 ⊂ R
N−1, YN−1 ⊂ R

N−1.
(I.9)

Deduction of Eq. (I.9) is straight forward. For this particular case however, a
simple verification is provided. Assume function yN−1(xN−1) does not exist, i.e.
there exists a x∗

N−1 with y(x∗
N−1) = {y∗

N−1,y
∗∗
N−1}, where y∗

N−1 6= y∗∗
N−1. Due

to fN it also follows that y∗N 6= y∗∗N . However, due to fN+1 one obtains only a
unique x∗N . Therefore, we can find for the corresponding x∗

N ∈ XN at least two
possible elements in YN , namely y∗

N and y∗∗
N . This is clearly a contradiction to

the existence of a function yN(xN).
Uniqueness can be derived also directly from Eq. (I.8). Since Eq. (I.8) ad-

mits for any given xN−1 unique solutions to xN , yN−1, and yN , the variables
xN and yN are also unique. The uniqueness can be obviously further deduced
for c with ci = xi

ctot
ξi

and for q with qi = yi
qtot
ξi

for all i = 1, . . . , N . Since

Ω(xN−1,yN−1) is equivalent to Ω(xN ,yN), which is in addition equivalent to
ΩCH(c, q), Ω(xN−1,yN−1) is also equivalent to ΩCH(c, q). Consequently also
ΩCH(c, q) implies the existence of yN−1(xN−1) as well as yN(xN) and clearly
also of a corresponding function without normalization q(c) since it is possible to
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find for every c ∈ CH a unique q ∈ QH, thus defining the function

q(c) : CH → QH,
CH ⊂ R

N , QH ⊂ R
N .

(I.10)

In other words, the existence of yN−1(xN−1) for Ω(xN−1,yN−1) implies q(c) for
ΩCH(c, q), the original equilibrium relations (5.2) complemented by a constant
solution normality ctot (5.3), thus restricting the domain in the space of fluid
phase concentrations to a corresponding hyperplane CH.

In a very similar way, one can show the existence of a function c(q) related
to a function xN−1(yN−1). Again, Eq. (I.1) is partially rewritten similar to Eq.
(I.2). In this case however, the xi variables are considered to be the dependent
ones resulting in

xi = yiK̃
− 1

νi

iN

(

xN
yN

)

νN
νi

, i = 1, . . . , N − 1, (I.11a)

0 =

N
∑

i=1

yiK̃
− 1

νi

iN

(

xN
yN

)

νN
νi − 1. (I.11b)

Similarly, we introduce a new variable x̃ = ỹ−1, thus obtaining a function η(x̃)

0 =

N
∑

i=1

yiK̃
− 1

νi

iN

(

xN
yN

)

νN
νi − 1 =

N
∑

i=1

βix̃
νN
νi − 1 = η(x̃) (I.12)

for arbitrary but fixed yN . Since at least one βm with m ∈ {1, . . . , N} is non-zero
and all other variables being equal or greater than zero, it is obvious that η(x̃) has
the same properties as η(ỹ) in (I.4) and (I.5) but now related to x̃. Consequently,
there is a unique positive solution for x̃. In this case, yN is uniquely obtained
from yN = 1−∑N−1

i=1 yi, while the remaining xi are obtained uniquely from

xi = yiK̃
− 1

νi

iN x̃
νN
νi , i ∈ {1, . . . , N − 1},

xN = 1−
N
∑

i=1

xi.
(I.13)

Therefore, we find for every yN ∈ YN a unique xN ∈ XN , and Ω(xN ,yN) implies
also the existence of a function

xN(yN) : YN → XN , (I.14a)

XN ⊂ R
N , YN ⊂ R

N . (I.14b)

Since the deduction of xN(yN) is based on the same system Ω(xN ,yN) as
the deduction of yN(xN), the same equivalences hold. Consequently, Ω(xN ,yN),
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Ω(xN−1,yN−1), and ΩCH(c, q) as well as xN(yN) imply the existence of

xN−1(yN−1) : YN−1 → XN−1,

XN−1 ⊂ R
N−1, YN−1 ⊂ R

N−1,
(I.15a)

c(q) : QH → CH,
CH ⊂ R

N , QH ⊂ R
N .

(I.15b)

Note, any of the functions in (I.14) and (I.15) implies the other two due to the
equivalence of (I.1), (I.8), and ΩCH(c, q). In other words the existence of all three
functions in their respective domains is also equivalent, which is consistent with
the equivalences that were already deduced for (I.7), (I.9), and (I.10).

It remains to verify that xN(yN) is the inverse of yN(xN). Clearly, the exis-
tence of both functions guarantees the uniqueness of any pair (x∗

N ,y
∗
N) ∈ XN×YN

that satisfies Ω(x∗
N ,y

∗
N) = 0. As a result y∗

N = yN(x
∗
N) and x∗

N = yN(y
∗
N) holds,

and we can write

Ω(x∗
N ,y

∗
N) = Ω(x∗

N ,yN(x
∗
N)) = Ω(x∗

N ,yN(xN(y
∗
N))) = 0

yN(xN(y
∗
N)) = y∗

N ,
(I.16a)

Ω(x∗
N ,y

∗
N) = Ω(xN(y

∗
N),y

∗
N) = Ω(xN(yN(x

∗
N)),y

∗
N) = 0

xN(yN(x
∗
N)) = x∗

N

(I.16b)

for every (x∗
N ,y

∗
N) ∈ XN × YN . Hence, the function yN (xN) is the inverse of

xN(yN) and vice versa. Both functions exist globally with respect to their domain.
Using the equivalence of the existence of functions (I.14) and (I.15) as well as (I.7),
(I.9), and (I.10), we can further deduce that the global existence of a function and
its inverse is equivalent for all three cases. In other words, yN−1(xN−1) has the
inverse xN−1(yN−1), and q(c) has the inverse c(q). In both cases the functions
exist globally in their respective domains.

As a remark, the sets XN and YN as well as XN−1 and YN−1 are identical
due to identical structure of the two closing conditions in (I.1b,I.1c) and (I.8b),
respectively. Consequently, the sets CH and QH differ only in their linear scaling
of the coordinates with scalars νictot and νiqtot, respectively for each coordinate
ci and qi. In particular one can find for every c∗ ∈ CH a q⋆ ∈ QH with

c∗i
ctot

=
q⋆i
qtot

for all i = 1, . . . , N .

Appendix I.2 Application of the Global Inverse Theorem

Focus in this section is on representation ΩN−1(xN−1,yN−1) defined by Eq. (I.8),
which is no restriction due to the equivalences presented in the previous section.
The global inverse theorem by Hadamard states the following [110]

"Let f : M1 → M2 be a C1 map between two connected N-dimensional manifolds
whose Jacobian never vanishes, and which is "proper" in the sense that f−1(K)
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is compact whenever K is a compact subset of M2. Suppose further that M2 is
simply-connected. Then f is a homeomorphism.".

In the present case, the function yN−1(xN−1) is considered, which maps from
XN−1 ⊂ R

N−1 to YN−1 ⊂ R
N−1. Its existence is shown in the previous section.

It remains to show that all conditions of Hadamard’s global inverse theorem
are satisfied. Since both sets are subsets of RN−1, which is a simply connected
space itself, they are both not only connected but also simply connected [111].
Further, yN−1(xN−1) ∈ C1 means that the function is continuously differentiable.
It is well known by the differentiability theorem for multi-variable functions that
yN−1(xN−1) ∈ C1 is satisfied if and only if all entries of the Jacobian JN−1 of
yN−1(xN−1) exist and are continuous themselves. This will be shown in the re-
mainder, but first the remaining conditions are considered. Since the function
yN−1(xN−1) will turn out to be differentiable, it is also continuous. Further,
since XN−1 is a bounded by N linear equations of the form (including the closing
condition fN+1)

Ex ≤ 1,

E = 1N − IN
(I.17)

containing also the boundary due to the equality constrained included in Eq.
(I.17), the set XN−1 is compact. In addition, YN−1 ⊂ R

N−1 "is Hausdorff", i.e.
the Hausdorff-property is induced on YN−1 by R

N−1, which is a Hausdorff-space
[112]. As a result the function yN−1(xN−1) is proper [113].

Finally, it remains to show that the Jacobian JN−1 = ∂yN−1

∂xN−1
exists, is con-

tinuous, and does not vanish everywhere in XN−1. It is clear that if JN−1 is
non-existent or discontinuous for some xN−1 ∈ XN−1, it is a necessity that the
same holds for the eigenvalues λk(xN−1) for all k = 1, . . . , N − 1 since the related
characteristic equation is not continuous in this case. Thus, it suffices to consider
these eigenvalue functions. A particular form of the characteristic equation defin-
ing the eigenvalues for Ω(xN−1,yN−1) was already derived in Sections 4.3 and 5.3,
here shown in a slightly different but equivalent representation

0 = f(xN−1, λk) =

N
∑

i=1

1

νi
yi
∏

j 6=i

(

yj
xj

− λk

)

, k = 1, . . . , N − 1. (I.18)

From Eq. (I.18) it is clear that on the boundary, where at least one component
l vanishes, i.e. xl = 0 and therefore yl = 0 (see equations fi in (I.1)), exists an
eigenvalue λk =

yl
xl

. The ratio yl
xl

exists since for xN 6= 0

yl
xl

= K̃
1
νi

iN

(

yN
xN

)

νN
νi

, l 6= N (I.19)



APPENDIX I. AIE: GLOBAL PROPERTIES 143

is satisfied. If however xN = 0, then we require that at least one other component
m is non-zero for non-zero ctot with

yN
xN

= K̃
1

νm

mN

(

ym
xm

)
νm
νN

, m 6= N. (I.20)

The existence of yN
xN

together with fi and i 6= {m,N} guarantees the existence of
all remaining ratios independently of the fact that component i has vanished or
not. The only singularity occurs when ctot = 0. This case, however, is of little
interest since CH reduces to a single point; the origin. In this case, obviously,
normalized coordinates do not exist in the first place, and it is reasonable that

only cases with ctot > 0 are considered. Division of Eq. (I.18) by
∏N

j=1

(

yj
xj

− λk

)

results in

0 =
N
∑

i=1

1
νi
yi

yi
xi
− λk

, k = 1, . . . , N − 1 (I.21)

similar to Eq. (4.15) and also Eq. (5.11) excluding λN = 0. The previous
operation is valid only if λk 6= yl

xl
for every component l and every k, i.e. there

exists no component l with xl = 0, thus excluding the boundary ∂XN−1 and
reversals. Based on the structure in Eq. (I.21) of the characteristic polynomial,
the genuine non-linearity was shown in Appendix C, specifically in the interior of
the positive orthant including the interior C̊H for ΩC̊H(c, q) and therefore also for

the reduced system Ω(xN−1,yN−1) in X̊N−1, i.e.

∇λkrk ≤ 0, (I.22)

where rk ∈ R
N−1 are the eigenvectors of the reduced system as defined in Eq.

(4.19). As a consequence, the gradient of every λk is known to exist in the interior
X̊N−1 of XN−1 including also reversals. This existence implies the continuity and
existence of every λk itself, which in turn guarantees the existence and continuity
of JN−1 in X̊N−1. Based on Eq. (I.21), hyperbolicity can be easily concluded from
the locations of the poles yi

xi
for all i = 1, . . . , N that create N − 1 intervals. Each

interval contains a solution λk. Since the smallest value yN
xN

> 0, the N −1 unique
solutions λk are all positive, which is also satisfied for reversals (Sections 4.3 and
5.3). Hence, the Jacobian JN−1 is non-vanishing everywhere in X̊N−1. Note, the
result is valid independently of the existence of reversals in X̊N−1.

It remains to analyze the behavior of the eigenvalues on the boundary ∂XN−1.
If NL components vanish, ie. xl = 0 for all l ∈ L, where L with dim(L) = NL has a

maximum number of N−1 elements, the division of Eq. (I.18) by
∏

j 6∈L

(

yj
xj

− λk

)

is valid, and the following equivalent formulation of the characteristic equation is
obtained

0 =
∏

l∈L

(

yl
xl

− λk

)

∑

i 6∈L

1
νi
yi

yi
xi
− λk

, k = 1, . . . , N − 1. (I.23)
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It is evident that for all l ∈ L with xl = 0 the eigenvalues λk = yl
xl

are solutions,
while all other eigenvalues have to satisfy

0 =
∑

i 6∈L

1
νi
yi

yi
xi
− λk

. (I.24)

From Eq. (I.24) we can deduce that again an order is induced through N − NL

poles defining N − NL − 1 intervals containing the eigenvalues λk 6= yl
xl

for all

l ∈ L. The order of affinities as in Eq. (4.16) requires for λk = yl
xl

either k = l
or k = l − 1. Further there exists for every l ∈ L a corresponding eigenvalue
λm 6= yl

xl
with

yl+1

xl+1
> λm >

yl−1

xl−1
and m + 1 ∈ L or m ∈ L. Hence, it is possible

that two eigenvalues λk and λm with k ∈ {l − 1, l} as well as m ∈ L \ {k} or
m + 1 ∈ L \ {k} coincide on the boundary ∂XN−1. The maximal number of
possibly coinciding pairs is NL. The eigenvalue functions λk 6= yl

xl
defined by Eq.

(I.24) do not depend on the xl anymore, which is also an obvious consequence of
xl = 0 for all l ∈ L. Therefore, ∂λk

∂xl
= 0 holds for every λk 6= yl

xl
. The remaining

N − NL − 1 entries of ∇λk also exist due to Eq. (I.24). This equation has the
same structure as Eq. (I.21). Hence, it will imply the same properties only for a
N−NL−1-dimensional system with components l ∈ L being absent. In particular,
all partial derivatives ∂λk

∂xi
for λk 6= yl

xl
and i ∈ {1, . . . , N} \ L exist, therefore ∇λk

with λk 6= yl
xl

exists on ∂XN−1. It remains to show that for any l ∈ L and λk =
yl
xl

the gradient ∇λk exists on ∂XN−1. On the boundary we have at least one non-
vanishing component. In other words, there always exists an component n 6∈ L
with xn 6= 0. This component is used as reference component and we can write

yj = xjK̃
1
νj

jn

(

yn
xn

)
νn
νj

, j 6= n, (I.25a)

yn = 1−
∑

j 6∈L

yj, j 6= n, (I.25b)

xn = 1−
∑

j 6∈L

xj , j 6= n. (I.25c)

Additionally, for any eigenvalue λk =
yl
xl

holds

∂λk
∂xj

=
∂
(

yl
xl

)

∂xj
, j 6= n, (I.26a)

yl
xl

= K̃
1
νl

ln

(

yn
xn

)
νn
νl

= f(xn, yn). (I.26b)

Eqs. (I.25) and (I.26) define eigenvalues that do not depend on any l ∈ L, hence

∂λk
∂xl

= 0 (I.27)
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holds. These entries are trivial and do exist obviously. All remaining entries
i 6∈ L, i 6= n follow from Eq. (I.26)

∂λk
∂xi

=
∂
(

yl
xl

)

∂xi
=

(

∂f

∂xn

)

yn

∂xn
∂xi

+

(

∂f

∂yn

)

∂yn
∂xi

. (I.28)

Using Eqs. (I.25) and (I.26) one obtains

∂λk
∂xi

=
∂
(

yl
xl

)

∂xi
=
yl
xl

1

yn

νn
νl

(

yn
xn

+
∂yn
∂xi

)

. (I.29)

The term ∂yn
∂xi

can be obtained from implicit differentiation of combination of
(I.25a) and (I.25b)

0 = g(xN−NL−1, xn, yn) = 1−
∑

j 6∈L

xjK̃
1
νj

jN

(

yn
xn

)
νn
νj

, (I.30a)

∂yn
∂xi

= −
(

∂g

∂yn

)−1

xN−NL−1,xn

(

(

∂g

∂xi

)

xN−NL−1\{xi},xn,yn

+

(

∂g

∂xn

)

xN−NL−1,yn

xn
xi

)

.

(I.30b)

Note, the vector xN−NL−1 ∈ R
N−NL−1 contains all components that have not

vanished excluding the nth component. Finally, we obtain for the remaining
entries of the gradient

∂λk
∂xi

=
∂
(

yl
xl

)

∂xi
=
yl
xl

1

νl

(

∑

j 6∈L

yj
νj

)−1
(

yn
xn

− yi
xi

)

. (I.31)

Clearly, all terms in Eq. (I.31) are defined. Hence, gradient ∇λk exists for all
λk = yl

xl
on ∂XN−1. Consequently, all gradients of any eigenvalue ∇λk exist on

∂XN−1. As for the interior X̊N−1, it follows that all eigenvalues are existent and
continuous, which again leads to the conclusion of an existing and continuous
Jacobian JN−1 on ∂XN−1. All eigenvalues have yN

xN
> 0 as lower bound, which

makes the Jacobian JN−1 non-vanishing everywhere on ∂XN−1.
It remains to show the continuity of f(xN−1, λk) with respect to xN−1 when

approaching the boundary from the interior, thus showing the continuity of λk for
every k = 1, . . . , N − 1. Again, we have some arbitrary non-vanishing reference
component n everywhere on the boundary, which is also present for every possible
path that can approach the boundary from the interior. This is a consequence
from the fact that at most N − 1 components can vanish when transitioning from
X̊N−1 to ∂XN−1. Using Eq. (I.30b), the yn is differentiable with respect to all
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xi with i 6∈ L and trivially also with respect to all xl with l ∈ L. Clearly yn
is continuous. Using in addition Eq. (I.25a), all remaining yj with j 6= n are
differentiable due to the differentiability of yn, which can be readily derived from

∂yj
∂xi

=

(

∂yj
∂xi

)

xn,yn

+

(

∂yj
∂xn

)

xi,yn
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)
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∂yn
∂xi

= δij
yj
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+
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νn
yn

(

yn
xn

+
∂yn
∂xi

)

.

(I.32)

The differentiability of every yi with i = 1, . . . , N for any path from the interior
xN−1 ∈ X̊N−1 to the boundary x∗

N−1 ∈ ∂XN−1 implies their continuity

lim
xN−1→x∗

N−1

yi(xN−1) = yi(x
∗
N−1). (I.33)

Considering the corresponding limit behavior of f(xN−1, λk) and using standard
limit operator properties, we get

lim
xN−1→x∗

N−1

f(xN−1, λk) = lim
xN−1→x∗
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1
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(

yj(x
∗
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x∗j
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)

= f(x∗
N−1, λk).

(I.34)

The resulting continuity of Eq. (I.18) in XN−1 implies the continuity of all eigen-
value functions in XN−1 = X̊N−1 ∪ ∂XN−1 also when approaching the boundary
from the interior. Hence, the Jacobian exists everywhere in XN−1, and it is also
continuous everywhere as well as non-vanishing. The last property follows readily
from the preceding analysis of the eigenvalues in the interior and on the bound-
ary using λk >

yN
xN

> 0. Ultimately, we can conclude from Hadamard’s global
inverse theorem that yN(xN) is a homeomorphism. In other words the func-
tion yN−1(xN−1) is a continuous bijection for which a continuous inverse function
xN−1(yN−1) exists globally in XN−1. The equivalence arguments of the previous
section lead to the conclusion that in turn a continuous function q(c) is a bijection
with a continuous inverse c(q) everywhere on CH.

Appendix I.3 Remarks

First, the equation describing the watershed region is an N −NL − 2 dimensional
set. Assuming, as deduced in the previous section, that some non-trivial λk coin-
cides with λl =

yl
xl

(i.e. xl = 0) on the part of boundary where xn 6= 0 and using
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Figure Appendix I.1: The two existing watershed curves are shown for the example
presented in Subsection 5.5.1. The green line is the watershed curve in the (c1, c3)
plane, whereas the black line is the watershed curve in the (c2, c3) plane.

Eq. (I.24), this set is represented by

0 =
∑

i 6∈L

1
νi
xi

1− λk
xi

yi

=
∑

i 6∈L

1
νi
xi

1− yl
xl

xi

yi
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i 6∈L

1
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(

K̃liK̃
νi−νl

νi

in

)
1
νl
(

yn
xn

)νn
νi−νl
νiνl

= f(xN−NL−1)
(I.35)

since also

xn = 1−
∑

j 6∈L,j 6=n

xj , (I.36a)

yj = yj(xN−NL−1), j 6∈ L, j 6= n (I.36b)

yn = 1−
∑

j 6∈L,j 6=n

yj = yn(xN−NL−1) (I.36c)

holds. For illustration purposes, the watershed curves of the example from Section
5.5.1 (Tabs. 5.1,5.2) are shown in Fig. Appendix I.1. Eq. (I.35) is used for their
calculation in standard concentration variables. Since the solution normality is
not fixed, the closing condition (I.36a) does not apply. Consequently, the water
shed curve is of dimension N−NL−1, in particular the dimension is 3−1−1 = 1.
In this case, two watershed curves exist; one in the (c1, c3) plane, the other one in
the (c2, c3) plane.
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Second, the genuine non-linearity in Appendix C seems to be presented only
for the interior of the concentration phase space. However, in this appendix, we
have shown the existence of all entries in ∇λk for all possible k in X , which is
equivalent to their existence on CH after simple scalar coordinate transformation.
In addition, it is easy to show that only the entries of non-vanishing components
are relevant. This can be easily deduced by rewriting Eq. (5.15)

rk =

[

q1
ν1

q1
c1
− λk

, . . . . . . ,

qN
νN

qN
cN

− λk

]T

. (I.37)

From Eq. (I.37) it is evident, that for all λk 6= ql
cl

and vanishing components l ∈ L,
the corresponding entry rk,l is zero and the proof in Appendix C reduces for these
eigenvalues simply to all non-vanishing components i 6∈ L that satisfy Eq. (I.24),
which admits the identical structure as Eq. (5.11). Together with Eq. (I.37), Eq.
(I.24) admits the same proof as Eqs. (5.11) and (5.15) in Appendix C for genuine
non-linearity. If λk = ql

cl
, the trivial solution rk = 0 is available (see Eq. (5.14))

on the intersection of the corresponding integral curves with the boundary ∂CH,
which is a single (end)point where ∇λkrk|cl=0 = 0 would hold. Hence each of
those points is a singular point on the corresponding integral curve of family k.
However, this discontinuity can be avoided by a continuation of the non-trivial
solution in Eq. (I.37). This continuation is justified due to the continuity of λl
everywhere and the fact that we require only a one-sided continuous limit at the
boundary. There is only a single critical entry in rl considering Eq. (I.37)

ql
νl

ql
cl
− λl

, (I.38)

all other entries in Eq. (I.37) are readily defined also on the boundary. A contin-
uation can be found by using

0 =
N
∑

i=1

ξi

qi
νi

qi
ci
− λl

, (I.39a)

ξl

ql
νl

ql
cl
− λl

= −
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i 6∈L
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qi
νi

qi
ci
− ql

cl

(I.39b)

Eq. (I.39b) provides clearly a finite value that is the one-sided limit of Eq. (I.38)

due to λl →
(

ql
cl

)−

(or λl−1 →
(

ql
cl

)+

instead). Hence, the continuation of Eq.

(I.38) on the boundary can be added

ql
νl

ql
cl
− λl

=











ql
νl

ql
cl
−λl

, c ∈ C̊H

− 1
ξl

∑

i 6∈L ξi
qi
νi

qi
ci
−

ql
cl

, c ∈ ∂CH, cl = 0
(I.40)
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Consequently,the results in Appendix C readily include the eigenvalues with λk =
ql
cl

on the boundary as well since identically structured equations (I.24) and (I.37)

can be applied resulting in ∇λkrk|cl=0 < 0 for the non-trivial eigenvector solution
(I.37) with (I.40).

Third, hyperbolicity prevails not only everywhere in C̊H (see Eq. (5.12))
but also almost everywhere on the boundary of ∂CH. Due to the results of the
previous section, we know that the eigenvalue eigenvalues either satisfy λk = ql

cl

for any l ∈ L or else satisfy Eq. (I.24). Without loss of generality, we assume
λl =

ql
cl

. Hence, the following holds

q1
c1
> λ1 >

q2
c2
> · · · > ql−1

cl−1
> λl−1 >

ql+1

cl+1
> · · · > qN

cN
> λN = 0, (I.41a)

ql−1

cl−1
>
ql
cl

= λl >
ql+1

cl+1
. (I.41b)

From Eq. (I.41) it is clear that the two eigenvalues λl−1 and λl can assume identical
values. However, this is possible only in water sheds, which are N − NL − 1
dimensional subsets in boundary of dimension N − 1 if the solution normality
is not fixed. Hence, strict hyperbolicity is admitted almost everywhere on the
boundary ∂CH and therefore almost everywhere in CH.
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