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Abstract

In this thesis we study various numerical interface coupling conditions for diffusion equa-
tions in bio-physics or heat conduction problems. For this we take a one-dimensional
case of a 3D model of Falcke [7] with two coupling conditions. The coupling interface
conditions are given in Thul [37]. Originally they considered a system that models the
intracellular calcium dynamics in a realistic fashion between the cytosolic region and the
endoplasmic reticulum (ER) region of a living cell via channels on the membrane which
separates both regions.

The phenomenon of calcium dynamics is a multi-domain phenomenon. We analyze a
numerical mathematical problem related to the calcium transport, i.e. a bi-domain prob-
lem with coupling conditions. In order to understand fundamental numerical issues better,
we make an analytical and computational study of the one dimensional case derived from
the three dimensional model of Falcke [7]. We compare these with other related coupling
conditions. The coupling conditions that we consider in this thesis include the well-known
Dirichlet-Neumann coupling, the heat flux coupling, a channel pumping, a simplified chan-
nel pumping, a membrane pumping and its special cases simplified membrane pumping
and linearized membrane pumping conditions.

We implemented three coupling algorithms namely, an explicit coupling algorithm
(A1), an implicit monolithic coupling algorithm (A2), an implicit partitioned iterative
coupling algorithm (A3) for the various coupling conditions with bi-domain diffusion equa-
tions. The partitioned iterative approach is a bit more complicated because we have the
two unknowns corresponding to the each sub-domain. Despite this problem we manage to
achieve a numerical solution via sub-iterations. Such algorithms may be useful for parallel
computation.

The main emphasis of this work is to study the numerical properties of coupling condi-
tions. We give a detailed account of the Godunov-Ryabenkii stability theory for coupling
conditions that was introduced by Giles [10] for this purpose. An important point is to
maintain conservativity of the overall scheme. Therefore, we first study this property for
the coupling conditions. Unfortunately, Giles neglected to maintain conservativity of his
scheme and by using an inconsistent scheme produced artificial instabilities. We show
how conservativity is maintained in nodal based as well as finite volume type discretiza-
tions. Nodal based schemes need a central difference approximation with respect to the
node at the coupling boundary. Finite volume schemes have to use one sided difference
with respect to the cell center. It is a central difference with respect to the cell boundary
which is also the interface boundary. An analogous result is shown for the homogeneous
Neumann outer boundary condition.

We then proceed to prove stability for these coupling conditions. For this purpose we
prove a lemma that describes in detail properties of the solutions to the normal mode
equations that are useful to Godunov-Ryabenkii analysis of the coupling conditions. For
comparison we first treat some boundary conditions related to flux coupling conditions.
The simplest coupling, which was the one considered by Giles [10], is Dirichlet-Neumann
coupling. The more complex couplings considered in this thesis lead to additional con-
ditional stability conditions. The theoretical results on conservativity and stability are
confirmed in computations for a variety of test cases.



Zusammenfassung

In dieser Arbeit werden verschiedene Kopplungsbedingungen für die Diffusionsgleichung
aus der Biophysik oder aus Problemen im Bereich der Wärmeleitung numerisch unter-
sucht. Hierfür wird ein eindimensionaler Fall des 3D Modells von Falcke [7] mit zwei
Kopplungsbedingungen verwendet. Die Kopplungsbedingungen an der Grenzfläche sind
Thul [37] entnommen. Ursprünglich betrachteten sie ein System, das die intrazelluläre
Kalziumdynamik in realistischer Weise zwischen der zytosolischen Region und der Re-
gion des Endoplasmatischen Retikulums (ER) einer lebenden Zelle über Kanäle auf der
Membran, welche die beide Regionen trennt, modelliert.

Das Phänomen der Kalziumdynamik ist ein Phänomen mehrerer gekoppelter Ge-
biete. Wir untersuchen ein mathematisches Problem, das mit dem Kalziumtransport
zusammenhängt. Es ist ein Problem mit Kopplungsbedingungen zwischen zwei Teil-
intervallen. Um grundlegende numerische Fragen besser zu verstehen, führen wir an-
alytische und rechnerische Untersuchungen des eindimensionalen Falls durch, der aus
dem dreidimensionalen Modell von Falcke abgeleitet wurde [7]. Wir vergleichen diese
mit anderen verwandten Kopplungsbedingungen. Die Kopplungsbedingungen, die wir
in dieser Arbeit betrachten, umfassen die bekannte Dirichlet-Neumann-Kopplung, die
Wärmeflusskopplung, ein Kanalpumpen, ein vereinfachtes Kanalpumpen, ein Membran-
pumpen und seine Spezialfälle vereinfachtes Membranpumpen sowie linearisiertes Mem-
branpumpen.

Wir implementierten drei Kopplungsalgorithmen, nämlich einen expliziten Kopplungsal-
gorithmus (A1), einen impliziten monolithischen Kopplungsalgorithmus (A2), sowie einen
impliziten partitionierten iterativen Kopplungsalgorithmus (A3) für die verschiedenen
Kopplungensbedingungen. Der partitionierte iterative Ansatz ist dabei etwas komplizierter,
da wir zwei unbekannte Vektoren haben, die den jeweiligen Unterbereichen entsprechen.
Trotz dieser Schwierigkeiten erhalten wir eine numerische Lösung des Problems mithilfe
sogenannter sub-Iterationen. Derartige Vorgehensweisen können für paralleles Rechnen
nützlich sein.

Der Schwerpunkt dieser Arbeit liegt auf der Untersuchung der numerischen Eigen-
schaften von Kopplungsbedingungen. Wir geben eine detaillierte Darstellung der Godunov-
Ryabenkii-Stabilitätstheorie für Kopplungsbedingungen, die von Giles [10] zu diesem
Zweck eingeführt wurde. Ein wichtiger Punkt ist die Aufrechterhaltung der Erhaltung-
seigenschaft des Gesamtsche-mas. Deshalb untersuchen wir zunächst die Kopplungsbe-
dingungen auf diese Eigenschaft. Leider hat Giles es versäumt, eben diese Eigenschaft
seines Schemas beizubehalten, und durch die Verwendung eines inkonsistenten Schemas
künstliche Instabilitäten erzeugt. Wir zeigen, wie die Erhaltungseigenschaft sowohl bei
knotenbasierten als auch bei finite Volumen Diskretisierungen beibehalten wird. Knoten-
basierte Schemata benötigen eine zentrale Differenzenapproximation in Bezug auf den
Knoten an der Kopplungsgrenze. Finite Volumen Verfahren müssen eine einseitige Dif-
ferenz in Bezug auf das Zellzentrum verwenden. Dies kann auch als eine zentrale Differenz
in Bezug auf die Zellgrenze, welche gleichzeitig die Grenzfläche darstellt, aufgefasst wer-
den. Ein analoges Resultat gilt auch für homogene Neumann Randbedingungen

Wir fahren fort mit dem Nachweis der Stabilität für diese Kopplungsbedingungen. Zu
diesem Zweck beweisen wir ein Lemma, welches Eigenschaften der Lösungen der Nor-
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malmodengleichungen, die für die Godunov-Ryabenkii-Analyse der Kopplungsbedingun-
gen nützlich sind, detailliert beschreibt. Zum Vergleich behandeln wir zunächst einige
Randbedingungen, die mit den Kopplungsbedingungen der Wäremleitung zusammenhängen.
Die einfachste Kopplung, die von Giles [10] betrachtet wurde, ist die Dirichlet-Neumann-
Kopplung. Die in dieser Arbeit betrachteten komplexeren Kopplungen führen zu zusätzlichen
Stabilitätsbedingungen. Die theoretischen Ergebnisse zur Erhaltungseigenschaft und Sta-
bilität werden für eine Vielzahl von Testfällen durch numerische Berechnungen bestätigt.
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Chapter 1

Introduction

1.1 The subject of this thesis

The subject of this thesis is to study various numerical interface coupling conditions re-
lated to diffusion systems in bio-physics or problems in heat conduction. For this we
take a one-dimensional case of a 3D model of Falcke [7] with various coupling conditions.
The coupling interface conditions are given in Thul [37]. Originally they considered a
system that models the intracellular calcium dynamics in a realistic fashion between the
cytosolic region and the endoplasmic reticulum (ER) region of a living cell via channels
on the membrane which separates both regions. The phenomenon of calcium dynamics is
a multi-domain phenomenon. We analyze a numerical mathematical problem related to
the calcium transport, i.e. a bi-domain problem with coupling conditions. In order to un-
derstand fundamental numerical issues better, we make an analytical and computational
study of the one dimensional case derived from the three dimensional model of Falcke [7],
Thul [37] and Chamakuri [26].

Many important real world problems in physics, engineering and biology are modeled
via bi-domain or multi-domain partial differential equations (PDEs) with coupling condi-
tions. These have several applications that arise in medical, biological and environmental
sciences, economics as well as many others. These applications include e.g. heat conduc-
tion in composite material, heat conduction through skin, transdermal drug delivery and
green house gas emission.

The coupling conditions that we consider include the well-known Dirichlet-Neumann
coupling, the heat flux coupling, a channel pumping, a simplified channel pumping, a
membrane pumping and its special cases simplified membrane pumping and linearized
membrane pumping conditions. These problems cannot be typically solved directly, but
must be approximated numerically. We use numerical approximations to study our bi-
domain diffusion equations with coupling interface conditions. We consider explicit and
implicit coupling methods. We give their numerical implementations mainly in three
algorithms, namely the explicit, implicit monolithic and implicit partitioned coupling
approaches.

The specific task of this thesis is to study a bi-domain diffusion equation with various
coupling interface conditions via numerical methods and numerical analysis. Moreover we
will also calculate the L1-error and its numerical order of convergence for the Dirichlet-
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CHAPTER 1. INTRODUCTION

Neumann condition with equal diffusion coefficient, since we know an exact solution for
this case. Also we show the essential property for the concentration or heat flow, a
discrete mass conservativity for the various coupling conditions with bi-domain diffusion
equations. Further, we consider the Godunov-Ryabenkii stability based on the normal
mode solutions for the coupling schemes as well as for the boundary conditions.

In the numerical discretization of the outer boundaries as well as for the interface
boundary conditions the ghost values are appearing in the schemes. To find these ghost
values we use the central difference method with respect to the boundary points. For this
alternatively we can use the one sided difference method too, but later we will show that
only the central difference method maintains the conservativity for a nodal based scheme.
The one sided difference is conservative for a finite volume cell based scheme.

1.2 Literature review and state of the art

In this thesis we consider boundary value problems for bi-domain diffusion equations with
various coupling interface conditions between two sub-domains. Our study is motivated
by certain bi-domain diffusion problems from bio-physics with specific coupling conditions
that we go into below. The simplest coupling conditions are the Dirichlet-Neumann (DN)
coupling conditions that have been extensively used in domain decompositioning methods,
see e.g. Quarteroni and Quarteroni [29, Ch. 19]. The same type of problems also arise in
heat flow where heat flux coupling conditions are well established, see e.g. Carslaw and
Jaeger [18].

The coupling conditions in which we are mainly interested in are the channel pump-
ing and membrane pumping conditions modeling calcium transport within cells. These
pumping conditions were previously considered in Thul [37] and first introduced by Falcke
[7], see these conditions in (2.4) and (2.7) below. These are the extension of the heat flux
coupling conditions by addition of a non-linear pumping term.

Further, Carr and March [4] considered various coupling conditions based on the heat
flux coupling conditions. They studied these various coupling interface conditions with
multilayer diffusion problems via a semi-analytic approach. Also they derived the conver-
gence rate for the solution of the various couplings and studied the effect of changing the
interface conditions on the solution behavior. We will discuss these and other coupling
conditions in Section 2.3.

Concerning basic numerical methods and concepts for single domain diffusion equa-
tions we refer to Morton and Mayers [24]. We use concepts such as von Neumann stability
and truncation error analysis. We recall the von Neumann stability analysis for a single
domain diffusion equation with homogeneous Neumann boundary conditions. This will
be explained in Chapter 6.

Also we use the method of Godunov-Ryabenkii (GR) for the stability of boundary
conditions, see Godunov and Ryabenkii [11]. Further details of the general theory for the
normal mode solutions given in Gustafsson et al. [13], see also the Gustafsson [12] for the
GR stability condition ”the beginning of a new stability theory”. We apply the methods
of normal mode analysis to the various coupling interface conditions too. This use for
coupling conditions was pioneered by Giles [10]. The discussion of stability for the single

2



1.2. LITERATURE REVIEW AND STATE OF THE ART

domain as well as for the bi-domain diffusion equations with various coupling conditions
is given in Chapter 6.

For the numerical implementation we follow Giles [10] only up-to a certain degree.
He considered one dimensional bi-domain parabolic thermal diffusion equations with
Dirichlet-Neumann coupling conditions. In his equations he used the heat capacity and
the conductivity while we will at first only consider the simpler diffusion equation. He
implemented explicit and implicit coupling methods for the interior sub-domains as well
as for the coupling interface conditions. Further, for the boundary conditions he used the
Dirichlet conditions in his computations. Also he considered different grid sizes for the
two sub-domains. As we will see, the discretization of the coupling by Giles has a flaw
that leads to loss of conservativity.

Roe et al. [32] discussed other cases of the problem of Giles with a moving interface.
In this article they used two types of discretization methods for the sub-domains, a finite
difference/finite difference (FD/FD) as well as finite volume/finite element method the
(FV/FEM) configuration. In this study it was concluded that FV/FEM discretization
has a larger destabilizing effect than the FD/FD. They also discussed the GR-stability
using the asymptotic approach introduced by Giles.

A second similar study of Roe et al. [33] considered the model equations of Giles
and used the higher order combined interface methods of explicit and implicit methods.
They discuss the GR-stability for their formulations. They also published more on the
various other special cases of such kind coupling schemes and on the GR-stability. Further
references may be found in the above two papers.

Errera and Chemin [6] also considered the equations in Giles [10]. They studied an
optimal solution of the numerical Dirichlet-Robin and Robin-Robin coupling conditions.
They derived the GR-stability for these coupling conditions. Then a similar study of
Errera with Moretti et al. [23] also discussed the stability, convergence and optimization
for various coupling conditions. They introduced a parameter, namely the numerical Biot
number that controls the stability effect, and optimal coupling coefficients that guarantee
unconditional stability. They discussed coupling conditions including Dirichlet-Robin
and Neumann-Robin conditions too. For the stability analysis the Godunov-Ryabenkii
stability method has been used in this article via asymptotic considerations. Also this
group published several other research articles on the same problem, see their references.

Henshaw and Chand [15] considered a heat transfer problem as a multi-domain prob-
lem with Dirichlet-Neumann coupling and mixed Robin interface conditions. They discuss
the applications in fluid-solid systems. The explicit and implicit coupling methods have
been used in this article and the GR-stability was derived. Further, they proposed that
the interface equations are discretized via the central difference to determine the ghost
point values adjacent to the interface node. It was concluded that generally this gives
more accurate and stable approximation as compared to the one sided difference methods.

We will give a more clear insight about this by studying the discrete mass conservation
or energy conservation for the various coupling conditions. We conclude that only to
discretize the coupling conditions via the central differences method maintains the discrete
mass conservativity and the one sided differences method does not maintain it. This will
be explained in Chapter 5 for the various coupling conditions.

3



CHAPTER 1. INTRODUCTION

In an interesting paper ocean-atmosphere coupling conditions were studied by Lemarié
et al. [22]. For the numerical discretization they also used a nodal based implicit method
as well as an explicit cell based method. For the numerical computations and stability
analysis a one dimensional diffusion with DN-coupling has been considered in this paper.
For the GR-stability they follow the method of Giles to derive the asymptotic stability
conditions.

Another recent study of Zhang et al. [40] is also on the ocean-atmosphere coupling.
They considered a multi-domain partial differential equation arising in general circulation
models used in climate simulations. They claim that in recent years these two systems
became increasingly important in climate change assessment. They also used the explicit
and implicit coupling descritization methods in their paper. It was addressed that numer-
ical stability issues arise due to the different time step strategies applied to the coupled
partial differential equation. For the stability analysis they also used a GR-stability anal-
ysis via using the normal mode solutions. Alternatively, to verify their stability results
they also calculated the stability via matrix eigenvalue type methods. Further they point
out that the scheme Giles used is not correct.

1.3 Results of the thesis summarized

In this thesis we study three types of coupling algorithms namely explicit, implicit mono-
lithic and partitioned iterative coupling approach. The first two approaches are straight
forward. While the implicit partitioned is a bit more complicated. In this we separate the
domain into two sub sets on which we want to solve separate linear systems of equations,
that are coupled at the interface boundary. We use e.g. the Neumann condition for the
left sub-domain and the Dirichlet condition for the other domain. We sub-iterate until
the coupled convergence is reached.

Further we calculate the first order L1-error and its numerical order of convergence for
the single domain diffusion as well as for the bi-domain diffusion equations with Dirichlet-
Neumann condition with identical diffusion coefficients. Also we show the essential prop-
erty for the concentration or heat flow, a discrete mass conservativity for the various cou-
pling conditions with bi-domain diffusion equations. Further, we consider the Godunov-
Ryabenkii stability based on the normal mode solutions for the coupling schemes as well
as for the boundary conditions.

In our above review of the literature several authors, e.g. Giles [10], Roe et al. [33],
Errera et al. [6], Henshaw and Chand [15] and many others discussed the Godunov-
Ryabenkii stability (GR) analysis for the coupling conditions with bi-domain equations in
complicated ways using asymptotic considerations. They took some special assumptions
and asymptotic solutions to derive the stability conditions for the complete system of the
normal mode equations of the interiors together with coupling schemes. While we proved
some of their assumptions on the roots of the quadratic equation obtained after applying
the normal mode solutions to the scheme for the interior nodes of the sub-domain. The
choice of the roots q1(λ) and q2(λ) that which one is greater than 1 and smaller than 1 in
absolute value.

We used the concept of normal mode solution from the Godunov-Ryabenkii [11] for
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1.3. RESULTS OF THE THESIS SUMMARIZED

the boundary conditions as well as for the schemes of the various coupling conditions
via explicit and implicit coupling methods. It is very clear that for the schemes of the
interior sub-domains we have the von Neumann stability. We considered the von Neumann
boundary condition as this helped us in the derivation of the stability analysis for the
coupling conditions.

Moreover, we also get the instabilities for the heat flux and linearized coupling condi-
tions for the larger value of spatial mesh size ∆x. We get a stability when ∆x is small
enough. This whole discussion is given in Chapter 6 and also shown the results in Chapter
7.

The main achievements of this thesis are summarized as follows:

1. We modified the 3D model of Falcke [7], Thul [37] to a one dimensional model with
various coupling conditions namely the channel pumping and membrane pumping
coupling conditions from Thul [37] to a bi-domain coupled interface model. This
model the natural behavior of calcium signalling in multi-domain way. This sig-
nalling occurs as a multi-domain problem. But in this thesis we study it as a bi-
domain modeling with various coupling interface conditions. The two sub-domains
are corresponding to the cytosolic and endoplasmic reticulum (ER) regions and the
common interface modeled a membrane from which the calcium moves from higher
to lower concentration via pore through calcium channels.

2. We give three coupling algorithms namely the explicit coupling algorithm A1, im-
plicit monolithic coupling A2 and the implicit partitioned coupling approach A3. We
implemented these algorithms for the various coupling conditions with bi-domain
diffusion equations. We implemented slightly different formulation as described by
Giles [10], Roe et al. [33], Errera et al. [6] and others. To verify and test our algo-
rithms for the various coupling conditions we fixed the diffusion coefficientsD− = D+

in the DN-coupling to get the identical solution as a standard single domain diffusion
equation. These detail are given in Chapter 4.

3. We computed the L1 error and the numerical order of convergence for the single
domain diffusion equation as well as for the bi-domain diffusion equations with
Dirichlet-Neumann coupling for the identical diffusion coefficients.

4. We derived the discrete mass conservation for the discretized schemes of the single
domain diffusion equation as well as for the bi-domain diffusion equations with ho-
mogeneous Neumann boundary conditions as well as the various coupling conditions
considered in this thesis. We used explicit nodal based and cell based methods and
implicit discretization methods.

We emphasize that in such kind of coupling interface conditions with bi-domain dif-
fusion equations it is necessary to maintain the mass conservation for concentration
(calcium concentration) problems. This is the analogue of energy conservation in
case of the same type of equations modeling for heat flow. For the discretization
of coupling conditions we used two approaches namely one the sided differences
method and the central differences with respect to the boundary points. The central
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CHAPTER 1. INTRODUCTION

difference method maintains the conservativity in the case of the nodal based dis-
cretization, while the one sided difference maintains it in the case of the cell based
finite volume discretization.

5. We recall the well known von Neumann stability analysis for the explicit as well
as for the implicit discretization methods. Also we derived the Godunov-Ryabenkii
stability conditions for the single domain diffusion equation with zero flux boundary
conditions.

We obtain more precise stability results as compared to the similar literature de-
scribed above, e.g Giles [10], Roe et al. [33] and others for the coupling conditions.
In all these articles they derive the stability results with combined system of the
normal mode system for the interior of the sub-domains together with the coupling
conditions. This leads a very complicated system. Then there is only one way to
discuss the stability analysis with the help of asymptotic considerations or to take
some special cases.

These all essential concepts such as implementations of the various discretization
methods, error analysis, numerical order of convergence, discrete mass conservation
and stability analysis are necessary to study for the one dimensional case. Then this
can be use in the application of the study of the higher space dimensions, i.e. in 2D
and 3D case. So, this study will be provide a ground for the implementation of these
type complex coupling conditions in two and three space dimensional study.

1.4 Layout of the thesis

This thesis is organized as follows:

In Chapter 2 we give a bi-domain modeling and coupling conditions for the bi-domain
diffusion equations. A three dimensional calcium dynamics model with various coupling
conditions is given in the first section. In the second section we explain a bi-domain mod-
eling. In Section 3 the one dimensional case of the bi-domain 3D calcium model Falcke[7]
and Thul [37] with various coupling interface conditions.

Chapter 3 is devoted to the various discretization methods for the single domain dif-
fusion equation with homogeneous Neumann boundary conditions. The discretization
methods include an explicit (nodal based), an implicit and a finite volume (cell based)
discretization method. In the first section we explain the single domain diffusion equation
with boundary conditions. In the second section we explain the explicit discretization
method. The implicit discretization with Thomas algorithm and iterative methods will
be explained in the third section. The finite volume (cell based) discretization will be
explained in Section 4. The exact solution with truncation error for the single domain
diffusion equation is given in the fifth section. The L1 error analysis with numerical order
of convergence will be explained Section 6.
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1.4. LAYOUT OF THE THESIS

In Chapter 4 we focus on the numerical approximation of the bi-domain diffusion
equations with various coupling interface conditions. We use three coupling approxima-
tion methods. In the first section we give the explicit discretization method and in the
second section we explain the coupling procedures for the implicit monolithic and parti-
tioned iterative coupling approach. In third section we explain the numerical error in L1

norm and the order of convergence for the bi-domain diffusion equation with Dirichlet-
Neumann coupling with identical diffusion coefficients for the nodal as well as for the cell
based discretization method.

In Chapter 5 we derive the discrete mass conservation for the various discretization
methods for the single domain diffusion equation with homogeneous Neumann bound-
ary conditions. The discretization methods includes an explicit, an implicit and finite
volume discretization methods. Also we derive the discrete mass conservation for the
various coupling schemes of the bi-domain diffusion equations derived in Chapter 4 via
an explicit nodal based as well cell based scheme, implicit coupling. In the last section we
give the numerical tables and plots for the all coupling conditions considered in this thesis.

In Chapter 6 we discussed the well-known von Neumann stability for the single domain
diffusion equation with explicit and implicite discretization methods. Also we derived the
Godunov-Ryabenkii stability for the single domain diffusion equation with homogeneous
boundary conditions. Further we derived the GR-stability for the various coupling con-
ditions via explicit and implicit methods.

In Chapter 7 we discuss the numerical results with error analysis of the single domain
diffusion equations with homogeneous boundary conditions. Also we discuss the numerical
results for the bi-domain diffusion equations with various coupling conditions. In the first
section we discuss the numerical results for the single domain diffusion equation. In the
second section we give for the Dirichlet-Neumann (DN) coupling the error in the L1 norm
as well the numerical order of convergence. In the third section we explain the various test
cases for the stable and unstable solutions for the heat flux coupling conditions. In the
fourth section we give a comparison of the results for the heat flux, membrane pumping
as well as for the simplified membrane pumping.

We explain the results for the channel pumping conditions and its special case sim-
plified channel pumping conditions in Section 5. Section 6 contains the results for the
membrane pumping conditions, its special case simplified membrane pumping and the
linearized membrane pumping condition. The details for the solution times and iterations
counts will be presented in Section 7.

In Chapter 8 we give the summary and conclusion of the thesis, while in the last
Chapter 9 we give the open problems or question arises and future work of this thesis.
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Chapter 2

Bi-domain modeling and coupling
conditions for diffusion equations

In this chapter we give some details of a three dimensional calcium dynamics model and
modify the three dimensional model to a one dimensional bi-domain model with coupling
conditions. This is a motivation for the study of coupling conditions.

2.1 Three dimensional bi-domain calcium model with coupled
interface conditions

In this section we describe the mathematical modeling of a calcium model in 3D. A
detailed mathematical description is given in Chamakuri [26] and Thul [37], see also Falcke
[7]. Here, we just want to recall the model as a motivation to study the various analytic
and numerical coupling conditions. In a cell, Ca2+ is transported through channels by
pumps, it diffuses into the cytosol as well as into the endoplasmic reticulum and it reacts
with buffers. A stationary profile can be reached by imposing boundary conditions, which
guarantee that the current entering through the channels is equal to the current leaving
through the volume surface.

The release process is described by the reaction-diffusion equations for the cytosolic
Ca2+ concentration c and the Ca2+ concentration E in the ER as well as the buffer
concentrations bi and bE,j, in the cytosol and ER respectively. We have i = s, d,m and
j = s,m, where s denotes a stationary, d a dye andm a mobile buffers. These equations are
in cartesian coordinates. As a simplification we do not consider the full three-dimensional
cytosolic and ER space in this subsection but instead consider thin sheets below and
above an idealized planar ER membrane of finite extension. In this thesis we study a
one dimensional case of the 3D model. For this we take a one dimensional cut along the
z-axis. The details are given in Section 2.3.

2.1.1 Problem description

Consider an open domain Ω = Ωc ∪ ΩE ∪ Γc ⊂ R3, composed of two mutually exclusive
sets Ωc ∩ ΩE = ∅ , where Ωc is a cytosolic and ΩE is an endoplasmic region. Further, Γc
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CHAPTER 2. BI-DOMAIN MODELING AND COUPLING CONDITIONS FOR DIFFUSION EQUATIONS

Figure 2.1: Bi-domain cubic volume distribution of ER and cytosolic domains, modification of
a figure from [26].

is the coupling interface. The coupling interface Γc has nc and nE as inward and outward
normal respectively. The space and time domains are denoted by Q1 = Ωc × [0, tf ] and
Q2 = ΩE×[0, tf ], tf denotes the final time. The unknown variables in the following models
are c(x, t) : Q1 → R cytosolic Ca2+ concentration, E(x, t) : Q2 → R, Ca2+ concentration
in the ER. The buffer concentrations in the cytosol are bi : Q1 → R and bE,j : Q2 → R are
buffer concentrations in the ER, i = s,m, d, j = s,m, where bs(x, t) denotes stationary,
bm(x, t) mobile and bd(x, t) dye buffers.

The model for the calcium concentration flow is described by a system of coupled time
dependent reaction-diffusion equations in three space dimensions as follows

∂c

∂t
= Dc∆c−

∑
i

Hi(c, bi) on Ωc × R≥0,

∂E

∂t
= DE∆E −

∑
i

Kj(E, be,j) on ΩE × R≥0,

∂bi
∂t

= Dc∆bi +Hi(c, bi) on Ωc × R≥0 for i = s,m, d,

∂bE,j
∂t

= Dc∆bE,j +Kj(E, bE,j) on ΩE × R≥0 for j = s,m.

(2.1)

More details regarding 3D modeling can be found in Chamakuri [26] and Thul [37]. The
equations include diffusion of free Ca2+ described by D∆c, diffusion of dye buffers bd
denoted by Dd∆bd, diffusion of mobile buffers bm described by Dm∆bm and the reactions
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2.1. THREE DIMENSIONAL BI-DOMAIN MODEL WITH COUPLING

of stationary buffer bs, dye buffer bd and mobile buffer bm with free Ca2+ given by k+
i (Bi−

bi)c−k−i bi where i = s, d,m. The total concentration of stationary, dye and mobile buffers
Bi, i = s, d,m is usually homogeneous before the experiments begin. Therefore, the
concentration of free buffer, i.e. buffer with no Ca2+ bound, can be expressed as (Bi− bi)
at any point in space.

The release of Ca2+ is simulated in a cube volume divided by the lumenal membrane
perpendicular to the z-axis shown in Figure 2.1. The smaller part represents the ER and
the larger part, the cytosol. The channel is a pore in the center of the ER membrane
with radius Rs, see Figure 2.1. The initial condition is the stationary Ca2+ - distribution
resulting from the pumps and the leak flux Pl. The buffer binding and unbinding terms
given in the right hand side of the system (2.1) modeled by the usual mass-action kinetic
terms given in

Hi = k+
b,i(Bi − bi)c− k−b,ibi

Kj = k+
E,j(Gi − bE,j)c− k−E,jbE,j.

(2.2)

Further no flux boundary conditions were applied at the outer surface of the domain. For
more details regarding 3D modeling see Thul and Falcke [38] as well as Thul [37].

Pumping coupling interface conditions

Channel pumping conditions

The channel flux Jch through the interface membrane which separates the ER and cytosolic
regions is given as

Jch = ψ
E − αc

β + γE + δc
, r ≤ R. (2.3)

Here ψ, α, β, γ, δ are non-zero constants and R denotes the cluster radius, cp. Thul [37,
(2.2)]. They are given in Table 2.1. Here, the values of E and c have to be taken at
the membrane. The currents are incorporated into the volume dynamics by setting the
coupling condition on the interface Γc at the ER membrane to be

Dc
∂c

∂z
=

1

γ
DE

∂E

∂z
= −Jch (2.4)

Membrane pumping conditions

In the calcium dynamics model the membrane pumping flux Jpump is a gradient parallel
to the z-direction as shown in Figure 2.1. It is given by Thul [37, (2.2)] as

Jpump = (Pl + Pc(r))(E − c)− Pp
c2

K2
d + c2

, r > R. (2.5)

The coefficient of the leak flux density is Pl and Pp the maximal pump strength. Further,
kd is a positive constant and Pc(r) is described below.
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The currents are incorporated into the volume dynamics by setting the coupling con-
dition on the interface Γc at the ER membrane to be

Dc
∂c

∂z
=

1

γ
DE

∂E

∂z
= −Jpump (2.6)

or more generally

Dc∇c · nc =
1

γ
DE∇E · nE = −Jpump. (2.7)

The transport through the ER membrane comprises three contributions. Calcium is
moved from the ER into the cytosol through a leak current Pl(E − c), and the chan-
nels Pc(r)(E − c). The latter term will be discussed in more detail below. Calcium is
re-sequestered into the ER by a pumps modeled by term proportional to Pp . The action
of pumps was found to be cooperative in calcium. The parameter Kd is the dissociation
constant of the pumps.

The term proportional to Pc in equation (2.5) models the current through an open
channel. This current was found to depend on the cross-membrane difference. For differ-
ences found in cell-physiological conditions, the current can be approximated by a linear
dependence on (E − c). The current is modeled as a source with constant density in a
specified channel cluster region. A model to calculate the cluster radius is proposed by
Thul and Falcke [38].

The position of the cluster is given by a fixed position xn. Then the flux term is given
by

Pc(rn) =

{
Pch if ||rn − xn|| < Rn for a channel with radius Rn

0 otherwise.
(2.8)

Note that in practice, we want to spontaneously open and close channels. This is pre-
dominantly a stochastic process. Further detail can be found on this in Putney et al. [28]
and Taylor et al. [36]. Here we do not take this issue into consideration. For a detailed
biophysical analysis of the model, see Falcke and Thul [38]. Note that in a model includ-
ing the dynamics of channel gating the number of open channels is time-dependent. The
corresponding value of Pch can be found in Table 2.1. The opening and closing of the
calcium channels are a stochastic process. The clusters in turn are randomly scattered
across the ER membrane. The average distance of clusters is typically larger than the
Ca2+ diffusion length. Stochastic behavior, i.e. random opening and closing of channels,
manifests itself as spontaneous release events through single channels or several channels
in a cluster, see Putney et al. [28] and Taylor et al. [36].

2.2 Bi-domain modeling and solution methods

A bi-domain problem is a problem in which multiple physical models or phenomena are
handled simultaneously occurring in two different sub-domains interacting via coupling in-
terface conditions. Many of the real world phenomena in engineering, physics and biology
are based on multiple processes which are modeled via mathematical equations mainly by
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coupled PDEs, ODEs or with PDE-ODE systems with necessary initial, boundary and
coupled interface conditions.

These kind of models allow us to analyze certain complex behavior and visualize a
real structure of the phenomena via a single system, which is not possible in single scale
modeling. This type of problem occurs frequently in real-world physics, most notably
in bio-mechanical or biomedical engineering. The bi-domain model that we are studying
is a setting in a similar fluid-structural interactions (FSI) were do not consider a mov-
ing boundary through. Although many researchers addressed this class of problems for
decades, solving FSI problems numerically is still a challenging task.

In this thesis we also dealing with calcium dynamics modeling which is a multi-domain
phenomenon. But we focus on its bi-domain case which is corresponding to the cytosolic
and endoplasmic reticulum domains separated by the ER. The interaction take place on
the porous ER membrane. We define our coupling interface conditions between two diffu-
sion equations. The two equations are coupled via a common interface boundary on the
membrane coupling conditions. The various coupling conditions are given in this chapter
and the detail implementation of these coupling conditions are explained in Chapter 4.
Their discrete mass conservation is studied in Chapter 5 and the stability analysis for the
coupling conditions with bi-domain diffusion equations is given in Chapter 6.

2.2.1 Coupled problems and solution method

Processes in which physically or computationally heterogeneous components interact dy-
namically are known as coupled problem. The interaction between the components of the
problem is multiple in the sense that the solution has to be obtained by a simultaneous
analysis of all coupled equations which model the problem.

The increasing necessity to solve complex problems in numerical mathematics, engi-
neering and physics accounting for all the coupling occurring on the different scales of
the problem requires the ongoing development of new ideas and methods which can ef-
fectively provide accurate numerical solutions with affordable computing times. At this,
challenges are given by coupled problems for which the computation of coupling phenom-
ena are difficult to accomplish or with vastly different time constants, e.g. stiff problems,
and long-time duration of transient responses.

Solution methods

The theoretical models of the coupled problems usually take mathematical expressions of
some conservation principle in the form of coupled partial differential equations (PDEs) in
space and time. The partial differential equations by their very nature deal with contin-
uous functions and hence, have to be discretized in space and time for the computational
solution. In particular for the numerical solution, the spatial semi-discretization is com-
monly achieved by finite difference method (FDM), finite element method (FEM) or finite
volume methods (FVM).

Further, after applying the spatial discretization scheme, the model is transformed into
a system of algebraic, non-linear algebraic or ordinary differential equations (ODEs) in
the time dependent case. For real scale problems these may comprise millions of evolution
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equations that have to be deal with numerically. In principle, four approaches to the time
integration of such coupled systems are feasible. The details can be found in Felippa et
al. [8], Spencer et al. [35], Zienkiewicz et al. [41].

Numerical methods for the discretized coupled interface systems

The following four approaches are commonly used for the solution of the discretized
coupled problems. Details can be found in Felippa et al. [8].

1. Monolithic or direct approach: In this approach the whole problem is treated as a
monolithic entity. All components are advanced simultaneously in time by the same
time stepping method. For some problems this approach may be computationally
too expensive.

2. Partitioned iterative approach: In this approach the system components are treated
as isolated entities that are separately advanced in time. In this approach we use the
available information from the initial data and achieve the advance of time levels via
sub-iteration. We will explain this for the implicit case of the coupling conditions in
Chapter 4.

3. Fractional-step approach: In this approach the coupled systems are decomposed into
simpler sub-problems via advancing each time step in multiple steps. Then the split
parts are handled via special composition algorithms such, e.g. predictor-corrector
or projection schemes.

4. Field variable elimination approach: In this approach one or more variables are
eliminated with integral transformation or reduction. But this method destroys
the sparseness of matrix. So, this approach is the less important in the sense of
computational perspective.

We are considering the first and second approach. To achieve the result via partitioned
iterative procedure is a bit more complicated because we have the two unknowns corre-
sponding to the each sub-domain. Despite this problem we manage to achieve a numerical
solution via sub-iteration.

These kind of approaches has been used for different well known models in Steffen [25],
Hairer et al. [39], Khul et al. [20], Brenan et al. [3], Blom and Frederic [2].

Further, Okiro [19] proved global existence for 4×4 system of calcium dynamics model.
The development of the theory of ordinary differential equations with discontinuous right
hand sides has been to a great extent stimulated by its many applications. A large number
of problems from mechanics, the theory of automatic control, electrical engineering are
described by these equations, see Heikkila et al [14] . More results in this direction can
be found in Hu [17], Lang [21], Heikkila [34], Lakshmikantham [14] and the references
therein.
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2.3 The one dimensional bi-domain diffusion equation and the
coupling conditions

In this section we describe various coupling interface conditions for bi-domain diffusion
equations. The coupling conditions includes the Dirichlet-Neumann coupling, perfect con-
tact coupling, heat flux coupling, partition coupling, channel pumping coupling, simplified
channel pumping, membrane pumping coupling and simplified membrane pumping cou-
pling conditions.

Here, we consider a bi-domain one-dimensional diffusion model which is a one dimen-
sional reduction of the three dimensional model of Falcke [7] described in Section 2.1. We
assume that the concentration only varies in the vertical z-direction and use x as our one
dimensional variable. We restrict ourselves to one diffusion equation in order to study the
coupling conditions.

We consider as domain the interval Ω = [a, b] in one space dimension. We divide
the domain into two sub-domains by the mid point c = (a + b)/2, which is the common
interface boundary. The two sub-domains are Ω1 = [a, c] and Ω2 = [c, b]. We are interested
in interface coupling conditions. The bi-domain diffusion equations for w : Ω×R≥0 → R
are defined as

∂w

∂t
= Di

∂2w

∂x2
on Ωi × R≥0, for i = 1, 2. (2.9)

Here Di > 0 for i = 1, 2 are the diffusion coefficients which may differ. For x ∈ Ω,
t > 0, we consider w to be the solution which describes a concentration or temperature
at position x and time t in the sub domains. It satisfies the initial condition

w(x, 0) = w0(x)

for given initial data w0 : Ω → R. We take the outer boundary conditions to be the
homogeneous no flux Neumann conditions

∂

∂x
w(a, t) =

∂

∂x
w(b, t) = 0.

For the consideration of the coupling conditions we set u = w|Ω1 , v = w|Ω2 . A sketch is
shown in Figure 4.1. The bi-domain model for the respective sub-domains becomes

∂u

∂t
= D−

∂2u

∂x2
for all u ∈ Ω1×R≥0,

∂v

∂t
= D+

∂2v

∂x2
for all v ∈ Ω2×R≥0. (2.10)

We aim to solve a well posed problem by coupling u and v across the interface x = c. The
problem defined in (2.9) additionally needs to be coupled with two appropriate internal
coupling conditions at the interface between the sub-domains. There are a number of
well known coupling conditions in the literature, see e.g. Carslaw and Jaeger [18], Giles
[10], Roe et al. [33], or Carr and March [4]. Some of these we want to consider here for
comparison. In addition we consider pumping conditions given by Thul [37] as well as
Falcke and Thul [7].
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2.3.1 Basic coupling conditions

In this subsection we will explain some well known coupling conditions namely the
Dirichlet-Neumann coupling, partitioned coupling and the heat flux coupling conditions.

Dirichlet-Neumann coupling

The simplest case is to assume continuity of the solution and the flux at the interface

0 = u(c, t)− v(c, t), D−
∂u(c, t)

∂x
= D+

∂v(c, t)

∂x
. (2.11)

Note that in case D− = D+ = D this coupling will give a solution w to the original single
domain problem (3.1), (3.2) to be considerd below. The common factor D then drops
out of (2.11). This type of coupling is used in domain decomposition methods, see e.g.
Quarteroni and Valli in [31].

Partition coupling condition

For completeness we mention a more general case than the previous two coupling condi-
tions. The partition condition given by Carslaw and Jaeger [18] on an interface is

0 = u(c, t)− θv(c, t), D−
∂u(c, t)

∂x
= D+

∂v(c, t)

∂x
. (2.12)

for t > 0. If θ = 1 the first interface condition is (2.11). It is called the perfect contact
condition in Carr and March [4]. Here θ > 0 is the partition coefficient at x = c.
The interface condition defined in case θ 6= 1 maintains a constant ratio between the
discontinuous solutions at the interface which is applicable in analyte transport in porous
media or drug release from multi-layer capsules, see Carslaw and Jaeger [18] as well as
Miguel et al. [9].

Heat flux coupling conditions

Carslaw and Jaeger [18, p. 23,(20)] give the following interface conditions known as heat
flux conditions which are defined as

−D−
∂u(c, t)

∂x
= H(u(c, t)− v(c, t)), D−

∂u(c, t)

∂x
= D+

∂v(c, t)

∂x
(2.13)

for t > 0. Here H > 0 is the contact transfer coefficient at x = c.

Note that the Dirichlet-Neumann coupling (2.11) is a limiting case of the heat flux
coupling (2.13) where we take H →∞.

As in Fourier’s law the heat flux Jheat is always in the direction of the negative gradient
of the temperature. Therefore, a positive slope of the solution must correspond to a
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2.3. BI-DOMAIN DIFFUSION EQUATION

negative flux. In the coupling conditions this means that the derivatives of the solution
equal to minus the flux. Thereby (2.13) can be written equivalently as

D−
∂u(c, t)

∂x
= H(v(c, t)−u(c, t)) = −Jheat, D+

∂v(c, t)

∂x
= H(v(c, t)−u(c, t)) = −Jheat.

(2.14)
Analogously, this will also be the case for the pumping conditions.

2.3.2 Bi-domain calcium dynamics model with pumping interface conditions

As mentioned, we reduce the single domain 3D model of Thul [37] discussed in Section 2.1
to a bi-domain coupled interface model on the interval Ω = [a, b] representing a part of
the vertical axis in 3D space. Thul [37] considered the flux through the membrane which
separates the endoplasmic reticulum and the cytosolic domains along the z-axis. Here
we consider z = x. When we are dealing with a calcium dynamics model, we take as a
special case that u = E and v = c, where E is the calcium concentration in endoplasmic
reticulum (ER) domain and c is the calcium concentration in the cytosolic domain and
in (2.10). The general combined coupled interface conditions for the above model are
defined as

D−
∂u(c, t)

∂x
= D+

∂v(c, t)

∂x
= −J(u(c, t), v(c, t)), (2.15)

with a given flux function J . Six different examples are introduced below.

Channel pumping conditions

The channel pumping conditions were defined in (2.6) or (2.7). The channel flux Jch was
defined in (2.3) as follows

D−
∂u

∂x
= D+

∂v

∂x
= −Jch = ψ

αv − u
β + γu+ δv

. (2.16)

Specific values of the parameters ψ, α, β, γ, δ are given in Table 2.1.

Simplified channel pumping conditions

For β + γu + δv = 1 the channel pumping flux Jch gives us the simplified channel flux
Jsch = ψ(u− αv) and the conditions are defined as

D−
∂u

∂x
= D+

∂v

∂x
= −Jsch = ψ(αv − u). (2.17)

We can write these coupling conditions separately as

D−
∂u

∂x
= ψ(αv − u) or D+

∂v

∂x
= ψ(αv − u). (2.18)

For ψ →∞ we obtain the partition coupling conditions (2.12) as limiting case. For α = 1,
ψ = H We have the heat flux coupling.
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Membrane pumping conditions

We consider the calcium dynamics pumping case with the flux Jpump defined in (2.5). It
is a membrane and non-linear pumping flux condition for the modified calcium dynamics
model taken from the 3D model discussed in Section 2.1 and Thul [37]. We take the flux
Jpump with a minus sign, see Thul [37]. Then the membrane pumping coupling conditions
will take the following form

D−
∂u

∂x
= D+

∂v

∂x
= −Jpump. (2.19)

Also we can write these coupling conditions separately as

D−
∂u

∂x
= (Pl+Pc(t))(v−u)+Pp

v2

k2
d + v2

and D+
∂v

∂x
= (Pl+Pc(t))(v−u)+Pp

v2

k2
d + v2

.

(2.20)
Here, Pl > 0 is the coefficient of the leak flux density, Pc(t) ∈ [0, Pc] is a flux depending
on the opening of a channel Pc > 0, Pp > 0 is the maximal pump strength and kd > 0
is the dissociation constant of the pumps. These coupling conditions contain a nonlinear
function of u. For the comparison of coupling conditions we introduce two additional
simplified cases.

Simplified membrane pumping conditions

This a special case of the membrane pumping conditions (2.19) obtained by setting Pl +
Pc(t) = H and Pp = P and kd = 1 to give

D−
∂u

∂x
= H(v − u) + P

v2

1 + v2
, D−

∂u

∂x
= D+

∂v

∂x
= −Jpump. (2.21)

Heat flux conditions

This is also a special case of the membrane pumping conditions (2.19) obtained by setting
Pl + Pc(t) = H, Pp = 0 to give the following

D−
∂u

∂x
= D+

∂v

∂x
= −Jpump = H(v − u). (2.22)

This is also a special case of the heat flux coupling conditions (2.13) for H = 1.

Linearized membrane pumping coupling conditions

Here we linearize the non-linear simplified membrane pumping conditions. For this we
take the right hand side of (2.21) to be f(v) = Hch(v − u) + Pp

v2

1+v2
. To linearized it we

use a Taylor series for g(v) = v2

1+v2
, this implies g(v) = g(1) + g

′
(1)(v − 1) + h.o.t which

gives g(v) = 1
2

+ 1
2
(v−1)+h.o.t = 1

2
v+h.o.t. The expansion about v = 1 gives g(v) ≈ 1

2
v.

18



2.3. BI-DOMAIN DIFFUSION EQUATION

The new form of f(v) = Hch(v − u) + Pp
2
v. We obtain the linearized pumping membrane

conditions as

D−
∂u

∂x
= Hch

((
1 +

Pp
2Hch

)
v − u

)
, D+

∂v

∂x
= Hch

((
1 +

Pp
2Hch

)
v − u

)
. (2.23)

This is a special case of the simplified channel pumping (2.17) for ψ = H and α = 1+ Pp
2Hch

.

Table 2.1: Dimensions of system (2.1) and values of all the parameters. The units are: s second,
µM = 10−6 M molar, µm = 10−6 m meters.

Quantity Value Unit

concentrations u, v 0.06, 700 µMol

leak flux coefficient Pl 3.3613 nms−1

channel flux coefficient Pc 6.32E6 nms−1

pump flux coefficient Pp 40000 µMs−1

pump dissociation coefficient Kd 0.2 µM

diffusion coefficient D− 200 µm2s−1

diffusion coefficient D+ 199 µm2s−1

channel flux constant ψ 9.3954 µms−1

channel flux constant α 1.497

channel flux constant β 1.1949E − 04

channel flux constant γ 1.1444E − 07 µM−1

channel flux constant δ 1.1556E − 07 µM−1
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Chapter 3

Discretization of single domain
diffusion models with boundary
conditions

In this chapter we discuss numerical methods for the discretization of the single do-
main diffusion equation with homogeneous Neumann boundary conditions in one space
dimension. We discretize the diffusion equation with Dirichlet and Neumann boundary
conditions for an explicit, an implicit finite difference and finite volume discretization
method.

The single domain diffusion equation with initial and boundary conditions are ex-
plained in the first section. The explicit time discretization method with boundary con-
ditions are discussed in the second section. In the third section we give the implicit time
discretization with boundary conditions. In fourth section we derive the finite volume
discretization, in fifth section we recall the exact solution and in section six we calculate
the L1 error analysis and the order of convergence. In the last section seven we show the
results via these methods and the error analysis for the single domain diffusion equation
with homogeneous Neumann boundary conditions.

3.1 Single domain diffusion equation

We consider a single domain diffusion equation on the domain or interval Ω = [a, b], with
a, b ∈ R and a < b. It is given as

∂w

∂t
= D

∂2w

∂x2
on Ω× R≥0. (3.1)

Here D > 0 is the diffusion coefficient. The unknown function w : R≥0 → R describes
the physical state w(x, t) at each point (x, t) ∈ Ω × R≥0. The physical state may be a
concentration or a temperature. In order to have meaningful solutions we must specify
initial and boundary data. The initial data are taken to be

w(x, 0) = w0(x) for x ∈ Ω. (3.2)
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Boundary conditions

As boundary conditions we could impose the Dirichlet conditions

w(a, t) = wL(t), w(b, t) = wR(t). (3.3)

for all t > 0. Here wL,R : R≥0 → R are given functions prescribing a concentration or
temperature at the boundary. This means that we could prescribe a varying concentration
or temperature at the boundary.

Alternatively we could consider Neumann or flux boundary conditions

D
∂w(a, t)

∂x
= J1(t), D

∂w(b, t)

∂x
= J2(t). (3.4)

Here J1, J2 : R≥0 → R are given fluxes. We could also mix the two types of boundary
conditions.

As another alternative, we can consider the radiation boundary condition. We assume
that the flux across the boundary is proportional to the difference between the value w
at boundary and the value w in the surrounding medium. We have to consider the outer
normal derivative ∂w

∂n
which equal to ∂w

∂x
at the right hand boundary and −∂w

∂x
at a left

hand boundary. So the boundary condition is given by

∂

∂n
w(x, t) = H(w(x, t)− w) (3.5)

where H > 0 is a constant. Some background on determining H for problems of heat con-
duction may be found in the first chapter of Carslaw and Jaeger [18]. The flux boundary
conditions for the outer boundaries a and b become

− ∂w(a, t)

∂x
+Ha(w(a, t)− wa) = 0,

∂w(b, t)

∂x
+Hb(w(b, t)− wb) = 0 (3.6)

with appropriate Ha, Hb, wa, wb > 0. As H → 0 (3.5) tends to the no flux boundary
condition, i.e. ∂w/∂x = 0. As H →∞ we obtain the Dirichlet boundary condition.

In the further studies we will concentrate on the homogeneous Neumann conditions
with J1(t) = J2(t) = 0.

3.2 An explicit time discretization method for the single domain
diffusion equation

As a first step we are using an explicit finite difference scheme which is a forward difference
in time and a central second order difference in space for the discretization of a single
domain diffusion equation. The model is defined on the interval Ω = [a, b] × [0, T ] for
some final time T > 0 given as

∂w

∂t
= D

∂2w

∂x2
(3.7)
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3.2. EXPLICIT TIME DISCRETIZATION

with homogeneous Neumann boundary condition. Since the problem is known to be stiff
we will be also consider implicit schemes later.

We choose N ∈ N≥2 and define grid points for Ω = [a, b] by

xj = j∆x, for j = 0, 1, ..., N, with ∆x = (b− a)/N.

Figure 3.1: One dimensional grid points for the single domain finite difference.

The grid points xj are related to cells σj. At the boundary we have σ0 = [a, ∆x
2

],

σN = [b − ∆x
2
, b] and in the interior σj = [xj − ∆x

2
, xj + ∆x

2
] for j = 1, · · · , N − 1. We

want to reach the time T in M ∈ N time steps. We define the time step ∆t = T/M . For
n = 0, ...,M we set tn = n∆t. We have to choose M large enough to guarantee the CFL
condition D∆t/(∆x)2 ≤ 1/2, i.e. ∆t ≤ (∆x)2/2D, in the explicit computations we will
consider.

We assume continuous initial data with well defined values of w0 at the node xj for
j = 0, . . . , N . We set w0

j = w0(xj).
The numerical approximation at time t = tn is denoted by wn. The approximation is

defined on the grid points as
wnj ≈ w(xj, tn).

The forward difference to evaluate the time derivative at t = tn is given by

∂w

∂t

∣∣
(tn,xj)

≈
wn+1
j − wnj

∆t
+O(∆t). (3.8)

We take the approximation of the second spatial derivative with the second order central
difference

∂2w

∂x2

∣∣
(tn,xj)

≈
wnj−1 − 2wnj + wnj+1

(∆x)2
+O((∆x)2). (3.9)

Substituting (3.8) and (3.9) in (3.7) we obtain

wn+1
j − wnj

∆t
= D

wnj−1 − 2wnj + wnj+1

h2
+O(∆t) +O((∆x)2). (3.10)

By dropping the truncation error terms. We prove the above order of the scheme first
order in time and second order in space in the sub-subsection 3.5.1 for the local truncation
error. We get the following scheme

wn+1
j − wnj

∆t
= D

wnj−1 − 2wnj + wnj+1

(∆x)2
. (3.11)
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t=0,  n=1

n-1

n

n+1

t

j=0

x=0

j-1 j j+1 N

x=1

FTCS stencil

In this region

the solution

is known

j,n+1

j-1,n j,n j+1,n

Figure 3.2: The figure in the left panel the spatio-temporal frame for forward in time and central
in space (FTCS) scheme, while in the right panel the FTCS stencil is given.

We solve for wn+1
j and set ν = D ∆t

(∆x)2
to get

wn+1
j = νwnj+1 + (1− 2ν)wnj + νwnj−1

= wnj + ν(wnj+1 − wnj )− ν(wnj − wnj−1).
(3.12)

Both forms of the scheme have different advantages depending on the context in which
they are used. We refer to the terms containing ν in the second form as numerical fluxes.

The FTCS scheme is explicit because it provides a formula to update wn+1
j indepen-

dently of the other nodal values at time tn+1. A sketch for the FTCS scheme and stencil
can be seen in Figure 3.2. We also apply this procedure for the bi-domain model with
initial, boundary and coupling interface conditions will be explain in the next chapter.

Note that we obtain the same scheme (3.12) by using the finite element method with
piecewise linear element on this equidistant mesh.

Discretization of non-homogeneous Dirichlet boundary conditions

When applying the Dirichlet boundary conditions

w(a, t) = wL(t), w(b, t) = wR(t)

for t > 0 we would take for j = 0
wn0 = wL(tn). (3.13)

On the right boundary we would have

wnN = wR(tn). (3.14)

To implement the homogeneous Dirichlet boundary conditions we set wL(t) = wR(t) = 0
in (3.13) and in (3.14), with the values for w0

n = 0, wN
n = 0 known due to the boundary

condition we use (3.12) to compute w1
n+1, ..., wn+1

N−1 only.
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3.2. EXPLICIT TIME DISCRETIZATION

Discretization of non-homogeneous Neumann boundary condition

More commonly used are the Neumann boundary conditions with time dependent flux as

JL, JR for the left boundary ∂w(a,t)
∂x

= JL(t) and the right boundary ∂w(b,t)
∂x

= JR(t). We
introduce the ghost points x−1 = −∆x, xN+1 = (N + 1)∆x and the ghost point values at
these points are wn−1 and wnN+1. Now we apply a central differences with respect to the
left boundary point x0 as follows

wn1 − wn−1

2∆x
= JL(tn). (3.15)

This gives the ghost value wn−1 = wn1−2∆xJL(tn). With this the discretized scheme (3.12)
at j = 0 will take the form

wn+1
0 = νwn1 + (1− 2ν)wn0 + ν(wn1 − 2∆xJL(tn))

= 2νwn1 + (1− 2ν)wn0 − 2ν∆xJL(tn).
(3.16)

For j = N , the analogous central differences with respect to the right boundary point xN
is used to obtained wnN+1 which is wnN+1 = wnN−1 + 2∆xJR(tn). In this case the scheme
(3.12) will take the form

wn+1
N = νwnN−1 + (1− 2ν)wnN + ν(wnN−1 + 2∆xJR(tn))

= 2νwnN−1 + (1− 2ν)wnN + 2ν∆xJR(tn).
(3.17)

For j = 1, ..., N − 1 the scheme (3.12) will be used.
To implement the homogeneous Neumann boundary conditions we set the fluxes

JL(tn) = JR(tn) = 0 in (3.16) and in (3.17). In this case we write together the explicit
discretization scheme with homogeneous Neumann boundary conditions in simplified form
as follows

wn+1
0 = wn0 + 2ν(wn1 − wn0 ) for j = 0

wn+1
j = wnj + ν(wnj+1 − wj)− ν(wnj − wnj−1) for 0 < j < N

wn+1
N = wnN − 2ν(wnN − wnN−1) for j = N.

(3.18)

We can write the above system (3.18) in a matrix equation

wn+1 = Awn. (3.19)

Here wn=(wn0 · · · , wnN)T and the (N+1)×(N+1) matrix A has the following tri-diagonal
structure

A =



1− 2ν 2ν . . . 0

ν 1− 2ν ν
...

...
. . . . . . . . .

ν 1− 2ν ν

0 . . . 2ν 1− 2ν


.
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Alternatively, we can derive other schemes for the outer boundaries when we discretize
the Neumann boundary conditions via one sided differences. The discretization of the

left Neumann boundary condition is
wn0−wn−1

∆x
= JL(tn). This implies that wn−1 = wn0 −

∆xJL(tn). We substitute this in (3.12) for j = 0 to obtain

wn+1
0 = νwn1 + (1− ν)wn0 − ν(wn0 + ∆xJL(tn). (3.20)

For the zero flux JL(tn) = 0 we will get the scheme wn+1
0 = νwn1 + (1− ν)wn0 .

Analogously, we discretize the Neumann boundary condition on the right hand side
wnN+1−w

n
N

∆x
= JR(tn). This implies that wnN+1 = wnN + ∆xJR(tn). We substitute this in

(3.12) and obtain the following scheme

wn+1
N = νwnN−1 + (1− ν)wnN + ∆xJR(tn). (3.21)

For the zero flux JR(tn) = 0 we will get the scheme wn+1
N = νwnN−1 + (1 − ν)wnN . We

will later see that this alternative is not so good because it violates conservativity of the
scheme.

3.3 Implicit time discretization method

Again we consider the diffusion equation defined in (3.7) with Neumann boundary condi-
tions. When we derived the explicit scheme we used the forward difference approximation
for the time derivative. Here we use the backward Euler difference approximation method
because the problem is stiff and the implicit method allows us to take larger time steps.
It is unconditionally stable. But each time step is more costly, since a linear system of
equations has to be solved.

3.3.1 Backward in time and central in space

We apply the implicit time discretization method as the backward in time and central in
space (BTCS) scheme to the diffusion equation (3.7) given by

wn+1
j − wnj

∆t
= D

wn+1
j−1 − 2wn+1

j + wn+1
j+1

(∆x)2
.

We solve for wnj on the right hand side and set ν = D ∆t
(∆x)2

to get the following scheme

− νwn+1
j+1 + (1 + 2ν)wn+1

j − νwn+1
j−1 = wnj . (3.22)

Discretization of the homogeneous Neumann boundary conditions

Now we apply the Neumann boundary conditions. For sake of simplicity we consider the
homogeneous case wx(a, t) = 0 and wx(b, t) = 0. To discretize these conditions we use
the central differences with respect to the left hand boundary point a. We approximate
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3.3. IMPLICIT TIME DISCRETIZATION METHOD

wn+1
1 −wn+1

−1

∆x2
= 0, which implies that wn+1

1 = wn+1
−1 . Inserting this into the scheme (3.22) we

obtain the following scheme for the left hand boundary

(1 + 2ν)wn+1
0 − 2νwn+1

1 = wn0 . (3.23)

Analogously, for j = N we discretize the right hand boundary condition with respect to
the boundary point b. We obtain wn+1

N−1 = wn+1
N+1. Inserting this into the scheme (3.22) for

j = N we obtain the following scheme

− 2νwn+1
N−1 + (1 + 2ν)wn+1

N = wnN . (3.24)

We write together the fully implicit scheme derived above with the homogeneous outer
Neumann boundary conditions as follows

(1 + 2ν)wn+1
0 − 2νwn+1

1 = wn0 for j = 0

−νwn+1
j+1 + (1 + 2ν)wn+1

j − νwn+1
j−1 = wnj for 0 < j < N

(1 + 2ν)wn+1
N − 2νwn+1

N−1 = wnN for j = N.

(3.25)

The implicit discretized scheme derived in (3.25) can be written in a matrix equation for
j = 0, 1, ..., N as

Awn+1 = wn (3.26)

Here wn=(wn0 · · · , wnN)T and the (N+1)×(N+1) matrix A has the following tri-diagonal
structure

A =



1 + 2ν −2ν . . . 0

−ν 1 + 2ν −ν ...

...
. . . . . . . . .

−ν 1 + 2ν −ν

0 . . . −2ν 1 + 2ν


.

By using an implicit scheme we have to solve the linear system for the matrix A. This is
computationally more expensive than the explicit case.

This method is stable for ν > 0 so larger time steps can be used for implicit meth-
ods than explicit methods. Solving the above matrix system for time level n + 1, i.e.
wn+1 is then just the solution of the above linear system. We used two linear solvers,
the direct solver which uses the Thomas algorithm and the Gauss-Seidel iterative method.

Alternatively, we may discretize the homogeneous Neumann boundary conditions via
one sided differences. We will get the scheme for the left hand Neumann boundary
conditions as

wn0 = (1 + ν)wn+1
0 − νwn+1

1 (3.27)
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Figure 3.3: The figure in the left panel the spatio-temporal frame for (BTCS) scheme, while in
the right panel the BTCS stencil is given.

and for the right hand Neumann boundary condition as

wnN = (1 + ν)wn+1
N − νwnN−1. (3.28)

Again we will see that conservativity is violated in this case.

3.3.2 The Thomas algorithm

The Thomas algorithm, also known as tridiagonal matrix algorithm (TDMA), is used
to solve a tridiagonal system of equations. This is a simplified form of the Gaussian
elimination. Let the matrix form of the tridiagonal system be Aw = d. The general form
of the equations may given as

aiwi−1 + biwi + ciwi+1 = di for i = 0, · · · , N. (3.29)

Here a0 = 0 and cN = 0. Then tridiagonal matrix A is given by

A =



b0 c0 0

a1 b1 c1

a2 b2 c2

. . . . . . . . .

aN−1 bN−1 cN−1

0 aN bN


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3.3. IMPLICIT TIME DISCRETIZATION METHOD

and the unknown column matrix is w=(w0, w1, · · · , wN)T and the vector of the known
values is d=(d0, d1, · · · , dN). This algorithm achieves the required solution in O(N) oper-
ations, while the Gaussian elimination in general needs O(N3). A first sweep eliminates
the ai, and then a backward substitution is used to get the solution. The new variables are
denoted with primes. This algorithm uses two sweeps. One is the forward sweep given
by eliminating a1, · · · aN and normalizing the b′i = bi − c′i−1 to 1. This gives an upper
triangular matrix with all diagonal entries equal to 1. This leads the new coefficients

c′i =


c0

b0

for i = 0

ci

bi − c′i−1ai
for i = 1, 2, , . . . , N − 1

and modified right hand side coefficients

d′i =


d0

b0

for i = 0

di − d′i−1ai

bi − c′i−1ai
for i = 1, 2, . . . , N.

Then the second sweep one is the backward substitution, via this we obtain the required
solution

wN = d′N
wi = d′i − c′iwi+1, i = N − 1, N − 2, · · · , 0.

For further detail regarding stability, proof and other requirements see the books of
Higham [16] or Datta [5]. In case of explicit and implicit methods we have such a tridiago-
nal matrix system of linear equations. We use the above algorithm to obtain the required
solution. In this thesis we also consider an iterative approach for comparison. It is given
below.

3.3.3 Iterative methods

Consider the linear system (3.26) with A ∈ R(N+1)×(N+1) and wn ∈ RN+1. An iterative
method for the solution of matrix form Awn+1 = wn consists of a sequence of vectors
(w(k))k≥0 of RN which converges to the exact solution wn+1, that is w(k) → wn+1 for
k →∞.

In the literature the commonly used iterative methods for solving the linear system of
equation include the Jacobi method, Gauss-Seidel, and other relaxation methods. Some of
the basic explanations, propositions for the convergence analysis and some basic definition
are given in Quarteroni et al. [30, Ch. 5]. Here we are using the Gauss-Seidel iterative
method which is a commonly used iterative method.

First we give some necessary idea that how iterative methods work: The iterative
methods begins with an initial guess for the solution w0 to the matrix equation Awn+1 =
wn that we are trying to solve. Each iteration updates the new kth estimate w(k) which
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converges to the exact solution described above. The different methods have different
convergence times and for big inverse matrix problems are much faster than direct matrix
inverse methods, see Olsen-Kettle [27].

Gauss-Seidel iterative method

To start the scheme it is necessary to use an initial guess w(0). We choose a tolerance
TOL, e.g. TOL = 10−6. We take w(0) = wn. The iteration process will be repeated until
the residual satisfies |wn − Aw(k+1)| < TOL. In the Gauss-Seidel method we have the
update

w
(k+1)
i =

1

aii

(
w

(k)
i −

i−1∑
j=1

aijw
(k+1)
j −

N∑
j=i+1

aijw
(k)
j

)
(3.30)

for i = 1, . . . , N + 1. Let A = L + D + U with D containing the diagonal terms, U
containing the terms above the diagonal and L those below the diagonal of the matrix A.
Then the above equation can be written in matrix form as w(k+1) = D−1(b− Lw(k+1) −
Uw(k)) or (D + L)w(k+1) = b −Uw(k). The solution converges w(k) → w as k → ∞ if
||(D + L)−1U|| < 1 for some matrix norm [30].

Implicit versus explicit methods

In the explicit methods we obtain an explicit formula for the values of the unknown
function at the new time level for every spatial mesh points. While in the implicit methods
we obtain a coupled system of equations for the unknown function at a new time level.

The implicit methods are more elaborate to code since they require the solution of
coupled equations, i.e. a matrix system, at each time level. Further, in the explicit methods
we have a closed-form formula for the value of the unknown at each mesh point which is
comparatively easy in terms of coding and computation. Further, the implicit methods
may be unconditionally stable, while the explicit schemes have a restriction on the size of
the time step.

3.4 Finite volume discretization of the diffusion equation

Now we consider the finite volume method to discretize the one-dimensional diffusion
equation (3.1), with homogenous Neumann boundary conditions.

Spatio-temporal discretization

Now discretize the space interval [a, b] into N equal size grid cells τ of size ∆x = (b−a)/N .
Let xj = a + (j − 1/2)∆x be the center of cell τj = [xj + ∆

2
, xj + ∆

2
] for j = 1, 2, . . . , N .

The edges of cell τj are then xj±1/2 = a + (j − 1/2)∆x± ∆x
2

. In a finite volume method
the unknown is approximated by the average of the solution over a grid cell. We seek an
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approximation by cell averages at each time tn, i.e.

wnj ≈
1

∆x

∫ x
j+1

2

x
j− 1

2

w(x, tn) dx for j = 1, 2, . . . , N. (3.31)

We can use the integral averages also to discretize the initial data. The integral may be
replaced by a quadrature rule.

Figure 3.4: Sketch of the finite volume flux.

Figure 3.5: Finite volume flux representation for the interior and outer boundaries.

We discretize the time derivative via the forward difference. Then we write the scheme
for (3.1) in the flux form as follows

wn+1
j − wnj

∆t
= D

Fj+ 1
2
− Fj− 1

2

∆x
(3.32)

where the numerical fluxes are given as

Fj− 1
2

=
wnj − wnj−1

∆x
, Fj+ 1

2
=
wnj+1 − wnj

∆x
.

Using these fluxes in (3.32) we obtain the scheme

wn+1
j = wnj +

D∆t

∆x

(wnj+1 − wnj
∆x

−
wnj − wnj−1

∆x

)
= wnj + ν(wnj+1 − wnj )− ν(wnj − wnj−1).

(3.33)

The formula is the same as in (3.12) for the interior nodes. But the interpretation is
different, since the nodal points at the cell centers are at different locations.

Implementation of the Neumann boundary conditions on the outer boundaries

Here we derive the update for the boundary cells τ1 and τN . We use the central difference
with respect to the boundary points a and b. We introduce the ghost cells τ0 and τN+1

of length ∆x which are adjacent to the domain. The boundary conditions are used to
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Figure 3.6: Sketch for the finite volume flux representation on the outer boundaries.

determine the value of w0 and wN+1 based on the values wj in the interior cells. We
take the update formula (3.33) for j = 1 and j = N . First we consider the homogeneous
Neumann boundary condition wx = 0 at x1/2 = a. We take as discretization

wn1 − wn0
∆x

= 0, for j = 1. (3.34)

This implies that wn1 = wn0 . We substitute this for j = 1 into (3.33) and obtain the
following update for the left boundary cell

wn+1
1 = wn1 + ν(wn2 − wn1 ) = (1− ν)wn1 + νwn2 .

This is equivalent to taking F1/2 = 0 at x = 0. Analogously, we implement wx = 0 at
xN+1/2 = b. We use

wnN+1 − wnN
∆x

= 0, for j = N.

This gives wnN = wnN+1 and FN+1/2 = 0 at x = 1. We substitute this for j = N into (3.33)
and obtain the following update for the right boundary cell

wn+1
N = wnN − ν(wnN − wnN−1) = (1− ν)wnN + νwnN−1.

We write the discretized system with together the homogeneous Neumann boundary con-
ditions as follows

wn+1
1 = wn1 + ν(wn2 − wn1 ) for j = 1

wn+1
j = wnj + ν(wnj+1 − wnj )− ν(wnj − wnj−1) for 1 < j < N

wn+1
N = wnN − ν(wnN − wnN−1) for j = N.

(3.35)

Here, we derived the same formula as we obtained for the finite difference method in
(3.18) for the interior nodes. We can obtain the same scheme as (3.35) for the nodal based
approach if we use one sided differences for the outer boundary conditions as mentioned
in Section 3.2. Analogously, if we use here the central difference

wn2−wn0
2∆x

= 0 for the outer
boundary cells then we can derive the analogous formulation as we derived in (3.18). For
the finite difference scheme we used a central difference w.r.t. the nodes. Here we are
using a central difference w.r.t. domain boundary.

A discussion why (3.18) and (3.35) have the respective correct numerical boundary
conditions will be given in Chapter 5. There we show that switching the numerical
boundary conditions leads to a violation of conservativity.
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3.5 An exact solution for the single domain diffusion equation

Here we recall an exact solution of the one dimensional single domain diffusion equation.
This can be found in any standard text book on the solution of PDEs. This is needed in
order to test the accuracy of our numerical solutions obtained for the single domain dif-
fusion equation as well as later for bi-domain diffusion equations with Dirichlet-Neumann
coupling for identical diffusion coefficients. With it we may compute the L1 error for these
solutions.

The diffusion equation (3.1) has the following exact solutions

wn(x, t) = e−D(nπ
L

)2t cos
(nπ
L
x
)

+ 1

for n ∈ N on the interval [0, L]. We will use L = 1 and n = 1 as a test case. This solution
satisfies the homogeneous Neumann boundary conditions at 0 and L. Clearly it satisfies
the diffusion equation (3.1). The initial values are w0(x) = cos(πx) + 1.

3.5.1 Truncation error for the single domain diffusion equation

For any numerical method it is necessary to derive the truncation error (TE) for the
descritized numerical. Here we derive for the FTCS scheme which is an explicit method
of getting the unknown numerical solution. For this we consider the discretized scheme
(3.11) as

wn+1
j − wnj

∆t
−D

wnj−1 − 2wnj + wnj+1

(∆x)2
= 0.

Using an exact solution w we replace wnj by w(tn, xj) and use a Taylor’s series to expand
around (tn, xj). We obtain

TE =
w(tn + ∆t, xj)− w(tn, xj)

∆t
−Dw(tn, xj −∆x)− 2w(tn, xj) + w(tn, xj + ∆x)

(∆x)2

=
1

∆t

(
w + ∆twt +

1

2
(∆)2wtt + . . .− w

)∣∣∣
(tn,xj)

− D

(∆x)2

(
w −∆xwx +

1

2
(∆x)2wxx −

1

6
(∆x)3wxxx +

1

24
(∆x)4wxxxx . . .

− 2w + w + ∆xwx +
1

2
(∆x)2wxx +

1

6
(∆x)3wxxx +

1

24
(∆x)4wxxxx + . . .

)∣∣∣
(tn,xj)

= wt +
1

2
∆twtt −Dwxx −

D

12
(∆x)2wxxxx + . . . .

(3.36)

As we described that w and its derivatives are evaluated at (tj, xj). So, clearly w satisfy
the diffusion equation (3.1). Now after cancellation of the identical terms we obtain

TE =
1

2
wtt∆t−

1

12
wxxxx(∆x)2 +O((∆t)2, (∆x)4). (3.37)

This shows that the truncation error of FTCS scheme is first order in time and second
order in space. In our numerical computations we used a fixed CFL-number ν = 1

3
. Using

D∆t
(∆x)2

= ν = 1
3
, we obtain ∆t = 1

3D
(∆x)2.
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Note that from the diffusion equation (3.1) we have ut = Duxx, then utt = D2uxxxx.
In this case the equation (3.37) will become

TE =
(D2∆t

2
− D(∆x)2

12

)
wxxxx +O((∆t)2, (∆x)4). (3.38)

Inserting the CFL-number ν that we are using to obtain

TE =
D

12
wxxxx(∆x)2 +O((∆t)2, (∆x)4). (3.39)

This is a second order convergence. This we also observed in the numerical results, see
Table 7.5. Analogously we can derive such a result for the BTCS scheme.

3.6 L1-error analysis

It is useful, in order to assess the quality of our numerical solutions, to compute the
error for a test case with an explicit solution. We consider the L1-norm of the error. Let
w ∈ L1(a, b) then the L1-norm is given as

‖w‖1,(a,b) =

∫ b

a

|w(x)| dx. (3.40)

Our numerical solution may be interpreted as a step function. For any set A let χA be the
indicator function of A, i.e. χ(x) = 1 for x ∈ A and χ(x) = 0 for x /∈ A. Then the step
functions for the finite difference and for the finite volume method at time t ∈ [tn, tn+1[
are given by

wh(t, ·) =
N∑
i=0

wni χσi

and

wh(t, ·) =
N∑
i=1

wni χτi

respectively. Let us consider the error ‖wh(tn, ·)−w(tn, ·)‖ at time tn, where w(tn, ·) is the
exact solution at time tn and wh(tn, ·) is the numerical solution defined as a step function
above.

The L1 error for the finite difference solution is given by

‖wh(tn, ·)− w(tn, ·)‖1,(a,b) =

∫ b

a

|wh(tn, x)− w(tn, x)| dx

=
n∑
i=0

∫
σi

|wni − w(tn, x)| dx.
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On σ0 we use left hand rectangle rule, on σN the right hand rectangle rule and the mid
point rule for i = 1, · · · , N − 1. Using the notation wnj = w(tn, xj) this leads to

‖wh(tn, ·)−w(tn, ·)‖1,(a,b) ≈ En(h) :=
∆x

2
|wn0 −wn0 |+ ∆x

N−1∑
i=1

|wni −wni |+
∆x

2
|wnN −wnN |.

(3.41)
The L1 error for the finite volume method is given by

‖wh(tn, ·)− w(tn, ·)‖1,(a,b) =
n∑
i=1

∫
τi

|wni − w(tn, x)| dx.

In this case we use the mid point rule on all cells. This implies that

‖wh(tn, ·)− w(tn, ·)‖1,(a,b) ≈ En(h) := ∆x
N∑
i=1

|wni − wni |. (3.42)

3.6.1 Numerical order of convergence

A numerical method is said to be of order α if there is a constant C independent of mesh
size h = ∆x such that at any time t > 0

‖wh(t, ·)− w(t, ·)‖ ≤ Chα

in some given norm norm, e.g. the L1-norm. This estimate should be satisfied for h small
enough.

In order to determine the order of converge α of a numerical method we choose a
time T and calculate a sequence of approximations giving errors ‖wh0(T, ·) − w(T, ·)‖,
‖wh1(T, ·)−w(T, ·)‖,. . . , ‖whN (T, ·)−w(T, ·)‖ where hk < · · · < h1 < h0 are increasingly
small step sizes. Then a formula for the numerical order of convergence is given by

αj =
log
( ‖whj (t,·)−w(t,·)‖
‖whj−1

(t,·)−w(t,·)‖

)
log

hj
hj−1

. (3.43)

for j ∈ {1, · · · , k}. Note that the corresponding time steps ∆t0, · · · ,∆tk should be chosen
such that T/∆t0, · · · , T/∆tk ∈ N. When we are working with a fixed CFL number
between h and ∆t this means that the hj have to be chosen accordingly.
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Chapter 4

Discretization of coupling conditions
for the bi-domain diffusion equations

In this chapter we explain the various discretization methods for the coupling conditions
given in Chapter 2. The discretization methods we use include the explicit and implicit
finite difference method (nodal based), i.e. finite element type, finite volume (cell based)
only for Dirichlet-Neumann coupling. The implicit methods further include the mono-
lithic and the partitioned coupling iterative approaches. The explicit discretizations are
explained in the first section, while the implicit discretizations are explained in the second
section.

4.1 Explicit discretizations

In this section we discretize the bi-domain diffusion equations and various coupling con-
ditions given in Chapter 2 for the bi-domain diffusion equation in one space dimension
using explicit discretizations.

4.1.1 Explicit discretization by using ghost point methods

In this subsection we are considering internal coupling conditions using ghost points. As a
first step the numerical implementations of the coupling conditions for Dirichlet-Neumann
coupling are explained in the following two algorithms which we then will extend to the
other coupling conditions.

Spatio-temporal discretization of the bi-domain equation

For simplicity we take Ω = [a, b] = [0, 1]. We introduce grid points for the spatio-temporal
discretization of the bi-domain diffusion system on the interval [0, 1] with coupling bound-
ary at c = 1

2
via a finite difference scheme. We consider N = 2m even for some m ∈ N

and set ∆x = 1/N . Grid points for the two sub-domains Ω1 = [0, 1/2] and Ω2 = [1/2, 1]
are defined as

xj = j∆x, for j = 0, 1, ...,m− 1, j = m+ 1, ..., N = 2m.
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At the interface c = 1
2

we introduce the double node xm− = xm+ = m∆x, see Figure 4.1
below. The node xm− is used in conjunction with Ω1 and xm+ with Ω2. Later we will
make use of cell boundary points xj± 1

2
= xj ± ∆x

2
. We then consider the nodal values

to represent the value of the solution on a cell [xj− 1
2
, xj+ 1

2
]. For the functions u and v

0 w=u w=v1/2

x
0

x
1

x
m+1

1

x
2m

=1x
m-1

x
m-

=x
m+

Figure 4.1: Geometry of one dimensional grid points for bi-domain equations

introduced in Section 2.3 we set

unj ≈ u(xj, tn), for j = 0, 1, ...,m− 1,

vnj ≈ v(xj, tn), for j = m+ 1, 1, ..., N,

as well as unm ≈ u(xm− , tn) and vnm ≈ v(xm+ , tn). The discretization of the first equation
of the system (2.10) via the forward in time and central in space explicit scheme (3.12)
using ν− = D−

∆t
(∆x)2

and ν+ = D+
∆t

(∆x)2
is given by

un+1
j = ν−u

n
j+1 + (1− 2ν−)unj + ν−u

n
j−1 (4.1)

The above scheme can be written as

un+1
j = unj + ν−(unj+1 − unj )− ν−(unj − unj−1) (4.2)

for the interior points xj with j = 1, ...,m−1. Analogously, for xj with j = m+1, ..., N−1,
we get the following scheme

vn+1
j = ν+v

n
j+1 + (1− 2ν+)vnj + ν+v

n
j−1. (4.3)

Due to the homogeneous outer Neumann boundary conditions we use the numerical
boundary conditions (3.16), (3.17) with JL = JR = 0. They are as follows

un+1
0 = 2ν−u

n
1 + (1− 2ν−)un0 (4.4)

for the left out boundary and

vn+1
N = 2ν+v

n
N−1 + (1− 2ν+)vnN (4.5)

for the right outer boundary. It remains to determine un+1
m and vn+1

m via various numerical
coupling conditions below.

4.1.2 Dirichlet-Neumann coupling conditions

As a first step we consider the Dirichlet-Neumann conditions for the bi-domain diffusion
model. The algorithm for this is explained as follows.
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Explicit coupled discretization scheme

We begin with an explicit discretization scheme. Its computational steps are given in
Algorithm A1 and are represented graphically in Figure 4.2

We follow Giles [10] only to a certain degree. He considered explicit and implicit
coupled scheme to solve the coupled bi-domains interface models numerically. A slightly
more general version is given in Roe et al. [33]. In partitioned procedure schemes the
coupled discretization scheme is considered as one of the useful schemes to solve coupled
bi-domain models numerically. As we will point out later in Chapter 5, their schemes are
not conservative and therefore not very useful.

In order to introduce this numerical coupling we consider the bi-domain diffusion
equations as a first order system by introducing the fluxes q1 = ∂u

∂x
, q2 = ∂v

∂x
as new

variables. This gives the systems

∂u

∂t
=
∂q1

∂x
, q1 = D−

∂u

∂x
for t > 0, x ∈ Ω1 (4.6)

and
∂v

∂t
=
∂q2

∂x
, q2 = D+

∂v

∂x
for t > 0, x ∈ Ω2. (4.7)

Let us consider the Dirichlet-Neumann coupling on the interface in the form

u(c, t) = v(c, t), D−
∂u(c, t)

∂x
= D+

∂v(c, t)

∂x
. (4.8)

The discretization of q1 = ∂u
∂x

with a backward difference method and q2 = ∂v
∂x

with a
forward difference in space. For the the interface these will defined as

qnm− := D−
unm − unm−1

∆x
, qnm+

:= D+

vnm+1 − vnm
∆x

. (4.9)

Now the discretization of ut = qx at the interface, i.e. for j = m, is given by

un+1
m − unm

∆t
=
qnm+ − qnm−

∆x
.

Inserting qnm− and qnm+
from (4.9) to the above equation. This gives the following update

un+1
m = unm + ν+(vnm+1 − vnm)− ν−(unm − unm−1). (4.10)

Our time step has to satisfy the CFL condition ∆t ≤ (∆x)2

2 max{D−,D+} . The main steps are

given in the following algorithm:

Algorithm A1, the explicit coupled scheme

The generic cycle of this algorithm for M ∈ N time steps is described below.

(1) Start from initial conditions u0 and v0 on the respective sub-domains to determine
u0
j for j = 0, ...,m and v0

j for j = m + 1, ..., 2m. We assume that v0
m = u0

m due to
the Dirichlet condition in (4.8).
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(2) We iterate for n = 0, ...,M − 1 the following three steps:

(a) Compute un+1
0 from (4.4) at node j = 0, i.e. on the left outer boundary. Then

determine un+1
j on the interior nodes j = 1, ...,m − 1 of the left sub-domain

Ω1 given (4.1). For j = m we consider the Neumann condition at the interface
corresponding to the left sub-domain un+1

m using (4.10).

(b) Impose the Dirichlet condition for v on the interface c, by setting vn+1
m = un+1

m .

(c) Compute vn+1
j on the interior nodes j = m+1, ..., N−1 of the right sub-domain

Ω2 from time tn to tn+1 using (4.3) as well for the right outer boundary taking
(4.5), i.e. for j = N .

(3) The iteration stops when computations under step (2) have been obtained for n =
M − 1. In order to determine vMm we set vMm = uMm .

u
n

j

u
n+1

m
=v

n+1

m

u
n+1

j

u
n

m
=v

n

m

v
n+1

j

v
n

j

Figure 4.2: Graphical representation for the explicit coupled procedure for the Dirichlet-
Neumann coupling
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Now we write the fully discretized explicit form of the bi-domain diffusion model with
Dirichlet-Neumann coupling conditions together in the following complete system

un+1
0 = 2ν−u

n
1 + (1− 2ν−)un0 for j = 0

un+1
j = ν−u

n
j−1 + (1− 2ν−)unj + ν−u

n
j+1 for 0 < j < m

un+1
m = unm + ν+(vnm+1 − vnm)− ν−(unm − unm−1) for j = m

vn+1
m = un+1

m for j = m

vn+1
j = ν+v

n
j−1 + (1− 2ν+)vnj + ν+v

n
j+1 for m < j < N

vn+1
N = 2ν+v

n
N−1 + (1− 2ν+)vnN for j = N.

(4.11)

Alternatively, we can also write the explicit coupling system (4.11) in a matrix form
Un+1 = AUn. Here Un+1 is the column matrix of the unknowns values, while Un is the
column matrix of the known values get from initial data. The coefficient matrix A is the
following tri-diagonal block structure matrix

A =



1− 2ν− 2ν− . . . 0

ν− 1− 2ν− ν−
...

...
. . . . . . . . .

0 · · · ν− 1− 2ν− ν−−−− −−− −−− −−− −− −− −−−− −−− −−−
ν− 1− ν− −ν+ +ν+

1 −1 0−−− −−− −−− −−− −− −−− −−− −−− −−−
ν+ 1− 2ν+ ν+ . . . 0
...

. . . . . . . . .
ν+ 1− 2ν+ ν+

0 . . . 2ν+ 1− 2ν+


.

So for the numerical calculations either we can use directly the explicit formulas of the
system (4.11) or the above matrix equation.

For the purpose of testing the coupling on known solutions we consider the special
case D− = D+ = D. Then the coupling should give the single domain solutions. In this
case using ν = ν− = ν+ (4.10) becomes

un+1
m = unm + ν((vnm+1 − vnm)− (unm − unm−1)). (4.12)

The coupling scheme of Giles

Giles [10] considered heat diffusion with a heat capacity c and conductivity k, i.e. in our
notation an equation of the form cwt − kwxx = 0. He further considered different mesh
sizes ∆x± in the two sub-domains.

Note that Giles [10, (26)] did not distinguish u and v in the bi-domain case. Therefore
vn+1
m = un+1

m is automatically implied in his scheme. But he used for un+1
m the update

un+1
m = unm + 2rν+(vnm+1 − vnm)− 2ν−(unm − unm−1) (4.13)

41



CHAPTER 4. DISCRETIZATION OF THE COUPLING CONDITIONS

where r = c−∆x−
c+∆x+

and ν± = k±∆t
c±(∆x±)2

for his stability analysis. We will consider r 6= 1 in

Chapter 6. This discretization was obtained by an inconsistency in the time discretization
which leads to the loss of conservativity, see Chapter 5.

For comparison to the single domain scheme we would choose c = 1, k = D = D− =
D+ and r = 1. We do not get a scheme equivalent to the single domain diffusion equation
as in our scheme (4.12). This is due to the factor of 2 in two terms.

Actually, before making his supposed simplification Giles [10, (26)] had derived a
correct scheme [10, (16)]. It is given in our notation as

un+1
m = unm +

2rν+

1 + r
(vnm+1 − vnm)− 2ν−

1 + r
(unm − unm−1). (4.14)

We will later choose c± = 1, k± = D± and r = 1 in (4.14). This gives the correct scheme
in the single domain case. Further it equals exactly to our formula for the DN-coupling
(4.10).

Coupling with ghost points

Now we discuss the use of ghost point values in the schemes for interface coupling. The
two mesh points xm+1 = (m+1)∆x and xm−1 = (m−1)∆x are used for the corresponding
ghost point values unm+1 and vnm−1. To determine and eliminate these ghost values we use
the various coupling conditions. We proceed in a manner analogous to the treatment of
the outer boundary fluxes. We need to use a difference approximation for the coupling
conditions in order to march forward in time. We use a one sided difference method, i.e.
forward or backward difference, and the central difference approximation to discretize the
coupling interface conditions such as (2.19), (2.21) and (2.22) to obtain the ghost point
values unm+1 and vnm−1.

These coupling interface conditions to obtain the ghost point values are explained
below for explicit and implicit discretization methods. We found that to use the central
difference method for the coupling conditions does not maintain the conservation of mass
property. The explanation is given in Chapter 5. Also we will discuss the case of coupling
conditions without ghost point values.

Dirichlet-Neumann coupling condition via one sided differences

The explicit discretization for the left sub-domain was derived in (4.1). For the interface
node at j = m this can be written as

un+1
m = unm + ν−(unm+1 − unm)− ν−(unm − unm−1). (4.15)

In the above equation we have the ghost point value unm+1 which will be not appear in
the actual computations. To find this value we discretize the Neumann coupling defined
in (2.11) via the forward difference method as follows

D−
unm+1 − unm

∆x
= D+

vnm+1 − vnm
∆x

. (4.16)
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Solving the above equation for unm+1, we obtain

unm+1 = unm +
D+

D−
(vnm+1 − vnm) (4.17)

Substituting this in (4.15) we obtain

un+1
m = unm + ν−

(
unm +

D+

D−
(vnm+1 − vnm)− unm

)
− ν−(unm − unm−1).

Using ν+ = D+

D−
ν− and vnm = unm. We obtain

un+1
m = unm + ν+(vnm+1 − unm)− ν−(unm − unm−1). (4.18)

This is the same formula that we obtained in (4.11). We will use the latter approach to
derive other numerical coupling conditions. We find it to be more convenient.

4.1.3 Dirichlet-Neumann coupling condition in the finite volume discretiza-
tion

Here we seek the approximations of u and v by a finite volume discretization as in Section
3.4. We use the cells and nodal values as defined there. The number of cells and nodes is
always even in the coupling problems. We approximate u and v as follows

unj ≈
1

∆x

∫ x
j+1

2

x
j− 1

2

u(x, tn) dx, for j = 1, ...,m,

vnj ≈
1

∆x

∫ x
j+1

2

x
j− 1

2

v(x, tn) dx, for j = m+ 1, ..., N = 2m.

For the discretization of the initial data we can use the integral averages. The integrals
may be replaced by a quadrature rule.

Analogously, for the interior points of the left sub-domain as (3.33) we obtain

un+1
j = unj + ν−(unj+1 − unj )− ν−(unj − unj−1), j = 2, . . . ,m− 1 (4.19)

and for the interior of the right sub-domain

vn+1
j = vnj + ν+(vnj+1 − vnj )− ν+(vnj − vnj−1), j = m+ 1, . . . , 2m− 1. (4.20)

For the bi-domain case we will use again the formulas for the outer boundaries, i.e. j = 1
and j = 2m given in system (3.35) with w = u and w = v respectively.

Now we derive the discretization scheme for the Dirichlet-Neumann coupling (2.11) for
a finite volume scheme of type (3.35) using ghost cell values vnm and unm+1. We take the
Dirichlet condition unm = vnm discretize the Neumann coupling condition via the central
difference with respect to the boundary for the right hand domain follows. For the left
hand domain

Fm+1/2 = D+

vnm+1 − vnm
∆x

= D−
unm+1 − unm

∆x
. (4.21)
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F
m+1/2

u
m v

m+1

Figure 4.3: Graphical cell representation for Dirichlet-Neumann coupling conditions

This implies that D+(vnm+1 − vnm) = D−(unm+1 − unm). Now we derive the scheme for the
cell τm to the left of the interface. The discretization of the diffusion equation (4.19) for
j = m is as follows

un+1
m = unm +

D−∆t

∆x2
(unm+1 − unm)− D−∆t

∆x2
(unm − unm−1). (4.22)

Using both coupling conditions we can replace D−(unm+1 − unm) by D+(vnm+1 − unm). We
obtain the following scheme

un+1
m = unm +

D+∆t

∆x2
(vnm+1 − unm)− D−∆t

∆x2
(unm − unm−1)

= unm + ν+(vnm+1 − unm)− ν−(unm − unm−1).
(4.23)

Note that in the finite volume case the formulas for the interior nodes and the coupling
are the same as in the nodal based case. A difference is seen only in the outer boundary
conditions and the interpretation of the discrete values.

4.1.4 Heat flux coupling conditions via explicit discretization

Discretization of the heat flux coupling with ghost point values via one sided dif-
ferences

We discretize the heat flux coupling conditions defined in (2.22) via an explicit discretiza-
tion method with one sided differences. The heat flux coupling conditions are

D−
∂u

∂x
= H(v − u), D+

∂v

∂x
= H(v − u). (4.24)

For the nodes j 6= m we use the formulas in (4.11). Only the coupling conditions for
j = m will be replaced. Now for the interface node, i.e. j = m the discretized scheme
(4.1) will take the form

un+1
m = unm + ν−(unm+1 − unm)− ν−(unm − unm−1) (4.25)
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and the discretized scheme (4.3) will take the form

vn+1
m = vnm + ν+(vnm+1 − vnm)− ν+(vnm − vnm−1). (4.26)

In these two formulas we have two ghost point values unm+1 and vnm−1. We calculate these
values via using the coupling conditions (4.24).

We discretize the first equation of (4.24) via the forward difference approximation and
the second equation of (4.24) via the backward difference approximation to obtain these
ghost point values

D−
unm+1 − unm

∆x
= H(vnm − unm), D+

vnm − vnm−1

∆x
= H(vnm − unm). (4.27)

Solving the first equation for unm+1 we obtain unm+1 = unm + H∆x
D−

(vnm − unm).

We substitute this value of unm+1 into (4.25). We obtain the following formula to
determine un+1

m as follows

un+1
m = unm + ν−

(
unm +

H∆x

D−
(vnm − unm)− unm

)
− ν−(unm − unm−1)

= unm +
D−∆t

H(∆x)2

∆x

D−
(vnm − unm)− ν−(unm − unm−1)

= unm − ν−(unm − unm−1) +
H∆t

∆x
(vnm − unm).

(4.28)

Solving the second equation of (4.27) for vnm−1 we get vnm−1 = vnm − H∆x
D+

(vnm − unm).

Substituting this into (4.26) to obtain the following formula to determine vn+1
m as

vn+1
m = vnm + ν+(vnm+1 − vnm)− ν+(vnm − (vnm −

H∆x

D−
(vnm − unm))

= vnm + ν+(vnm+1 − vnm)− H∆t

∆x
(vnm − unm).

(4.29)

For the coupled scheme we proceed analogously as in algorithm A1. Only we are replacing
the scheme for the Dirichlet-Neumann coupling conditions (4.11) by the new formulas
(4.28) and (4.29) for the heat flux coupling conditions.

Heat flux coupling conditions with ghost point values via central differences

Now we discretize the heat flux coupling condition defined in (2.22) via central difference
approximations are given as

D−
unm+1 − unm−1

2∆x
= H(vnm − unm), D+

vnm+1 − vnm−1

2∆x
= H(vnm − unm). (4.30)
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Solving the first equation for the ghost value unm+1 = unm−1+ 2H∆x
D−

(vnm−unm). We substitute

this into (4.25) to obtain the following formula to determine un+1
m as

un+1
m = unm + ν−(unm−1 +

2H∆x

D−
(vnm − unm)− unm)− ν−(unm − unm−1)

= unm + ν−u
n
m−1 +

2H∆x

D−

D−∆t

(∆x)2
(vnm − unm)− ν−unm − ν−(unm − unm−1)

= unm + ν−u
n
m−1 +

2H∆t

∆x
(vnm − unm)− ν−unm − ν−unm + ν−u

n
m−1

= unm − 2ν−(unm − unm−1) +
2H∆t

∆x

(
vnm − unm

)
.

(4.31)

Analogously we solve the second equation of (4.30) for the second ghost value vnm−1 =
vnm+1 − 2H∆x

D−
(vnm − unm). We substitute this into (4.26) to get the following formula to

determine vn+1
m as

vn+1
m = vnm + 2ν+(vnm+1 − vnm)− 2H∆t

∆x

(
vnm − unm

)
. (4.32)

For all coupled schemes we proceed analogously as in algorithm A1 replacing the Dirichlet-
Neumann coupling conditions (4.11) by the new formulas (4.31) and (4.32) for the heat
flux coupling condition. Note that the discretizations (4.31) and (4.32) are equal to the
numerical homogeneous Neumann conditions, see (3.18), plus the heat flux term.

4.1.5 Channel pumping conditions

One-sided differences

The channel pumping conditions were defined in (2.16). We obtain the explicit discretiza-
tion for these coupling conditions in the same way as derived for the heat flux coupling
above. So, there is no need to repeat the whole derivation again. We just replace the
right hand side of the heat flux coupling −J = H(vnm−unm) into −J = ψ αvnm−unm

β+γunm+δvnm
in the

discretized schemes for the heat flux coupling via one sided difference method (4.28) and
(4.29) to obtain the following formula for updates

un+1
m = unm − ν−(unm − unm−1) +

∆t

∆x

(
ψ

αvnm − unm
β + γunm + δvnm

)
(4.33)

and

vn+1
m = vnm + ν+(vnm+1 − vnm)− ∆t

∆x

(
ψ

αvnm − unm
β + γunm + δvnm

)
. (4.34)

Central difference

Analogously we can derive the updates for the coupling conditions via central difference
method to make the setting again in the heat flux coupling −J = H(vnm−unm) into −J =
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ψ αvnm−unm
β+γunm+δvnm

in the discretized schemes for the heat flux coupling via central difference

method (4.31) and (4.32) to get the updates

un+1
m = unm − 2ν−(unm − unm−1) +

2∆t

∆x

(
ψ

αvnm − unm
β + γunm + δvnm

)
(4.35)

and

vn+1
m = vnm + 2ν+(vnm+1 − vnm)− 2∆t

∆x

(
ψ

αvnm − unm
β + γunm + δvnm

)
. (4.36)

4.1.6 Simplified channel pumping

One-sided differences

The simplified channel pumping conditions were defined (2.17). The explicit discretized
form for these coupling conditions can be obtained in the same way as we derived above
to set β + γunm + δvnm = 1 in the channel pumping conditions via one sided difference in
(4.33) and (4.34). We will obtain the following updates

un+1
m = unm − ν−(unm − unm−1) +

∆t

∆x

(
ψ(αvnm − unm)

)
(4.37)

and

vn+1
m = vnm + ν+(vnm+1 − vnm)− ∆t

∆x

(
ψ(αvnm − unm)

)
. (4.38)

Central difference

Analogously we can derive the updates for the coupling conditions via central difference
method to make the setting β+γunm + δvnm = 1 in (4.35) and (4.36) to obtain the updates

un+1
m = unm − 2ν−(unm − unm−1) +

2∆t

∆x

(
ψ(αvnm − unm)

)
(4.39)

and

vn+1
m = vnm + 2ν+(vnm+1 − vnm)− 2∆t

∆x

(
ψ(αvnm − unm)

)
. (4.40)

4.1.7 Membrane pumping coupling conditions via explicit discretization

One sided differences

The membrane pumping coupling conditions were defined in (2.19). Here, we derive their
discretization via one sided differences. We will replace H = Pl +Pch(t) and add an extra

term Pp
(vnm)n

k2d+(vnm)n
in the discretized schemes of the heat flux conditions (4.28) and (4.29)

to obtain the following updates

un+1
m = unm − ν−(unm − unm−1) +

∆t

∆x

(
(Pl + Pc(t))(v

n
m − unm) + Pp

(vnm)2

k2
d + (vnm)2

)
. (4.41)
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and for vn+1
m as

vn+1
m = vnm + ν+(vnm+1 − vnm)− ∆t

∆x

(
(Pl + Pc(t))(v

n
m − unm) + Pp

(vnm)2

k2
d + (vnm)2

)
. (4.42)

Central differences

Analogously, we are doing the same modification for the central difference discretization
in the schemes for the heat flux coupling through the central difference method in (4.31)
and (4.32) to get the following updates

un+1
m = unm − 2ν−(unm − unm−1) +

2∆t

∆x

(
(Pl + Pc(t))(v

n
m − unm) + Pp

(vnm)2

k2
d + (vnm)2

)
. (4.43)

and for vn+1
m as

vn+1
m = vnm + 2ν+(vnm+1 − vnm)− 2∆t

∆x

(
(Pl + Pc(t))(v

n
m − unm) + Pp

(vnm)2

k2
d + (vnm)2

)
. (4.44)

4.1.8 Simplified membrane pumping coupling conditions via one sided dif-
ference method with ghost point values

One sided differences

The simplified pumping coupling conditions were defined in (2.21). We know that by
setting Pl + Pc(t) = H and Pp = P and kd = 1 in (2.19) to obtain the simplified mem-
brane pumping conditions. We substitute these in the discrete schemes for the membrane
pumping conditions via one sided difference (4.41) and (4.42) to obtain the updat un+1

m

as

un+1
m = unm − ν−(unm − unm−1) +

∆t

∆x

(
H(vnm − unm) + P

(vnm)2

1 + (vnm)2

)
. (4.45)

and for vn+1
m as

vn+1
m = vnm + ν+(vnm+1 − vnm)− ∆t

∆x

(
H(vnm − unm) + P

(vnm)2

1 + (vnm)2

)
. (4.46)

Central differences

Analogously, to do the above setting in the schemes for the membrane pumping conditions
via central difference method (4.43) and (4.44) to get the updates

un+1
m = unm − 2ν−(unm − unm−1) +

2∆t

∆x

(
H(vnm − unm) + P

(vnm)2

1 + (vnm)2

)
. (4.47)

and for vn+1
m as

vn+1
m = vnm + 2ν+(vnm+1 − vnm)− 2∆t

∆x

(
H(vnm − unm) + P

(vnm)2

1 + (vnm)2

)
. (4.48)
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4.1.9 Linearized membrane pumping coupling conditions

One sided differences

We know that the linearized membrane pumping coupling is the special case of the sim-
plified channel pumping conditions for ψ = 1 and α = 3/2. We substitute these into
the discrete formulas for the simplified channel pumping (4.37) and (4.38) to obtain the
updates

un+1
m = unm − ν−(unm − unm−1) +

∆t

∆x

(3

2
vnm − unm

)
. (4.49)

and for vn+1
m as

vn+1
m = vnm + ν+(vnm+1 − vnm)− ∆t

∆x

(3

2
vnm − unm

)
. (4.50)

Central differences

Analogously we substitute ψ = 1 and α = 3/2 into (4.39) and (4.40) to obtain the schemes
for the updates

un+1
m = unm − 2ν−(unm − unm−1) +

2∆t

∆x

(3

2
vnm − unm

)
. (4.51)

and for vn+1
m as

vn+1
m = vnm + 2ν+(vnm+1 − vnm)− 2∆t

∆x

(3

2
vnm − unm

)
. (4.52)

We remind that for all explicit coupled schemes we proceed analogously as in algorithm A1
for explicit discretization replacing the Dirichlet-Neumann coupling conditions in (4.11)
by the new formulas (4.51) and (4.52) for the linearized membrane pumping coupling
conditions.

4.2 Fully implicit formulation for the bi-domain diffusion equa-
tions with various coupling conditions

In this section we discretize the various coupling conditions using an implicit scheme.
First we consider the Dirichlet-Neumann coupling and then the others. For these kinds of
coupling schemes we are using two solution strategies, the monolithic and the partitioned
iterative approach. In the monolithic approach we keep the whole system in one monolithic
matrix and then solve via the direct method based on the Thomas algorithm, for this see
the Subsection 3.3.2, because this system gives us a tridiagonal type matrix.

The second approach is the partitioned coupled iterative approach which is a bit more
complicated as compared to the monolithic, because we solve for the two unknowns u
and v separately in each time step. It is achieved via sub-iterations. We will explain this
below. We use the monolithic solution as a reference solution for the partitioned coupling
iterative approach. These two approaches are explained as follows.
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4.2.1 Dirichlet-Neumann coupling via monolithic approach

Here, we derive the fully implicit discretization of the bi-domain diffusion equations with
Dirichlet-Neumann coupling conditions. The implicit formulation for the single domain
diffusion model was derived in (3.22). Now for the bi-domain diffusion model we replace
wnj = unj for j = 0, 1, ...,m− 1 and wnj = vnj for j = m+ 1, ..., 2m.

Also, we derived the schemes for the left and right hand homogeneous Neumann bound-
ary conditions in (3.23) and (3.24) respectively replace by wn+1

0 = un+1
0 and wn+1

N = vn+1
2m .

Further, we derived the explicit scheme for the Dirichlet-Neumann coupling on the inter-
face boundary in (4.10). Here for the implicit scheme we replace n by n+ 1 in the spatial
discretization part. So, we write all these implicit formulations together in the following
system

(1 + 2ν−)un+1
0 − 2ν−u

n+1
1 = un0 for j = 0

−ν−un+1
j−1 + (1 + 2ν−)un+1

j − ν−un+1
j+1 = unj for j < m

−ν−un+1
m−1 + (1 + ν−)un+1

m − ν+(vn+1
m+1 − vn+1

m ) = unm for j = m

un+1
m − vn+1

m = 0 for j = m

−ν+v
n+1
j−1 + (1 + 2ν+)vn+1

j − ν+v
n+1
j+1 = vnj for j > m

−2ν+v
n+1
2m−1 + (1 + 2ν+)vn+1

2m = vn2m for j = 2m

(4.53)

Now we give the detail for the monolithic approach. We can write the system (4.53)
in a monolithic matrix equation

Aun+1 = un. (4.54)

Here un+1 = (un+1
0 , ..., un+1

m , vn+1
m , , ..., vn+1

2m )T is the unknown column matrix and the
known vector un = (un0 , ..., u

n
m, 0, v

n
m+1, ..., v

n
2m)T from the right hand side of the system

(4.53). The monolithic matrix A has the following block structure

A =



1 + 2ν− −2ν− . . . 0

−ν− 1 + 2ν− −ν−
...

...
. . . . . . . . .

0 · · · −ν− 1 + 2ν− −ν−−−− −−− −−− −−− −− −− −−−− −−− −−−
−ν− 1 + ν− ν+ −ν+

1 −1 0−−− −−− −−− −−− −− −−− −−− −−− −−−
−ν+ 1 + 2ν+ −ν+ . . . 0

...
. . . . . . . . .
−ν+ 1 + 2ν+ − ν+

0 . . . −2ν+ 1 + 2ν+


.

In this matrix the block in the left upper side is the matrix from the interior of the
left sub-domain with left hand boundary. The block in the middle two doted lines is for
the Dirichlet-Neumann coupling, while the block in the lower right hand is the matrix for
the interior of the right sub-domain with right hand boundary.

This will be a reference solution for the implicit partitioned iterative coupling ap-
proach. Now we can solve this linear algebraic system of equations via any linear algebraic
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solvers. Here we are using the direct method based on the Thomas algorithm explained
in Subsection 3.3.2.

Algorithm A2, for the Dirichlet-Neumann coupling via monolithic

The main steps of this algorithm are similar to the algorithm A1. We just have to insert
the step for the solution of the implicit system (4.53) in each time step. Otherwise both
are similar in practice.

4.2.2 Partitioned iterative coupling approach

In this approach we separate the domain into two sub-sets on which the equations have
different diffusion constants, as represented in (4.53). We want to solve the separate ma-
trix equations systems, that are coupled at the interface boundary. We use the Neumann
condition for the left sub-domain and the Dirichlet condition for the other domain. We
sub-iterate until the coupled convergence is reached.

The discretization for the left sub-domain together with homogeneous Neumann bound-
ary condition and with Neumann coupling condition is given in the following sub-system

(1 + 2ν−)un+1
0 − 2ν−u

n+1
1 = un0 for j = 0

−ν−un+1
j−1 + (1 + 2ν−)un+1

j − ν−un+1
j+1 = unj for j < m

−ν−un+1
m−1 + (1 + ν−)un+1

m = unm + ν+(vn+1
m+1 − un+1

m ) for j = m.

(4.55)

For the right sub-domain analogously we have the following sub-system

vn+1
m = un+1

m for j = m

−ν+v
n+1
j−1 + (1 + 2ν+)vn+1

j − ν+v
n+1
j+1 = vnj for j > m

−2ν+v
n+1
2m−1 + (1 + 2ν+)vn+1

2m = vn2m for j = 2m.

(4.56)

The systems (4.55) and (4.56) cannot be solved separately as long as the solution appears
on the right hand side. There we replace the unknowns by the previous solution and al-
ternate the solution of the sub-systems in order to approximate the solution to (4.53). For
the convergence of the coupling interface condition we may check the residual equations
at the interface

Rn+1
1 = −ν−un+1

m−1 + (1 + ν−)un+1
m − unm − ν+(vn+1

m+1 − un+1
m ) and

Rn+1
2 = vn+1

m+1 − un+1
m .

They should become approximately zero. To achieve this we introduce the following sub-
iterations. We set un,0m := unm, vn,0m := vnm and vn,0m+1 := vnm+1. Further we introduce the
sub-iteration index k = 0, 1, 2, .... With this we modify (4.55) and (4.56) to

(1 + 2ν−)un,k+1
0 − 2ν−u

n,k+1
1 = un0 for j = 0

−ν−un,k+1
j−1 + (1 + 2ν−)un,k+1

j − ν−un,k+1
j+1 = unj for j < m

−ν−un,k+1
m−1 + (1 + ν−)un,k+1

m = unm + ν+(vn,km+1 − un,km ) for j = m

(4.57)
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and

vn,k+1
m = un,km for j = m+ 1

−ν+v
n,k+1
j−1 + (1 + 2ν+)vn,k+1

j − ν+v
n,k+1
j+1 = vnj for j > m

−2ν+v
n,k+1
2m−1 + (1 + 2ν+)vn,k+1

2m = vn2m for j = 2m.

(4.58)

For the convergence of the coupling interface condition we check the residual equations
at the interface

Rn,k+1
1 = −ν−un,k+1

m−1 + (1 + ν−)un,k+1
m − ν+(vn,k+1

m+1 − un,k+1
m )− unm and

Rn,k+1
2 = un,k+1

m − vn,k+1
m .

(4.59)

The above iteration process can be repeated. For k → ∞ we expect Rn,k
1 → 0 and

Rn,k
2 → 0 as well as un,kj → un+1

j and vn,kj → vn+1
j , where un+1

j and vn+1
j are the solutions

of the system (4.53).

We prescribe some small tolerance TOL > 0 such that when we have achieved |Rn,k+1
1 | <

TOL and |Rn,k+1
2 | < TOL we stop the sub iterations and start the next time step.
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Figure 4.4: Graphical representation for the implicit partitioned iterative coupling.

Matrix representation of the two sub systems

We can write the first sub-system (4.55) in the matrix form A1u
n+1 = un, where A1 is a

coefficient matrix and will take the following tridiagonal structure

52



4.2. FULLY IMPLICIT FORMULATION FOR BI-DOMAIN MODELS

A1 =



1 + 2ν− −2ν− . . . 0

−ν− 1 + 2ν− −ν−
...

...
. . . . . . . . .

−ν− 1 + 2ν− −ν−

0 . . . −ν− 1 + ν−


.

The above matrix is a tri-diagonal matrix with the homogeneous Neumann boundary
condition on the left hand boundary and the Neumann coupling at the interface. The
matrix of unknown variables un+1 = un,(k+1) = (un,k+1

0 , ..., un,k+1
m )T and un is the known

vector of the initial data given as follows un,k = (un,k0 , ..., un,km + ν+(vn,km+1 − vn,km ))T .

Analogously, the second sub-system (4.56) can be expressed as A2v
n+1 = vn, where

A2 is the coefficient matrix and will take the following structure

A2 =



1 0 . . . 0

−ν+ 1 + 2ν+ −ν+
...

...
. . . . . . . . .

−ν+ 1 + 2ν+ −ν+

0 . . . −2ν+ 1 + 2ν+


.

Again the above matrix is a tri-diagonal matrix. The first row is for the Dirichlet
coupling condition and the last row is modified for the homogeneous Neumann boundary
condition on the right hand boundary. The column matrix for the unknown variables
vn+1 = vn,(k+1) = (vn,k+1

m , ..., vn,k+1
2m )T and vn is the known vector from the initial data

vn = (un,km , vn,km+1, ..., v
n,k
2m−1, v

n,k
2m)T .

Now we want to achieve |Rn,k+1
1 | < TOL and |Rn,k+1

2 | < TOL for these two system

respectively and for large k we expect un,kj → un+1
j and vn,kj → vn+1

j .

Algorithm A3, for the Dirichlet-Neumann coupling via implicit partitioned iterative
approach

This algorithm is basically overall the same as the algorithms A1 and A2. Only the
solution procedure for the linear system to be solve in each time step is more complicated.
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The generic cycles of the sub-iteration in this algorithm are given as follows:

(1) Start from the initial conditions un,0j = unj for j = 0, ...,m and vn,0j = vnj for j =
m+ 1, ..., 2m on the respective sub-domain.

(2) Set up the two sub-systems (4.55) and (4.56).

(3) We achieve our required solution via sub-iterations using the following steps:

(a) Using data un,kj , vn,kj solve to obtain un,k+1
j , vn,k+1

j and terminate the sub-iterate.

(b) Check the residual conditions |Rn,k+1
1 | < TOL and |Rn,k+1

2 | < TOL.

(i) If satisfied, set un+1
j = un,k+1

j , vn+1
j = vn,k+1

j and terminate the sub-iteration
step.

(ii) If not satisfied, then continue with next sub-iteration step.

(c) Set the right hand sides in the last equation of the system (4.57) to be unm +

ν+(vn,k+1
m+1 − un,k+1

m ) and in the first equation of the system (4.58) to be un,k+1
m .

Now carry out (a) with index k increased by one.

We also tested this coupling algorithm for a known solution. We consider the special case
of the identical diffusion coefficients D− = D+ = D. Then the coupling should give the
known single domain solution. We will show this test case in Chapter 7 for the result and
discussion. The scheme for j = m, i.e. the Dirichlet-Neumann coupling scheme in the
system (4.53) will become

un+1
m + ν((un+1

m − un+1
m−1)− (vn+1

m+1 − vn+1
m )) = unm.

Clearly this is equivalent to the scheme of the single domain diffusion equation via implicit
method.

4.2.3 Heat flux coupling conditions via implicit method

Here we give the implicit discretizations of the heat flux coupling conditions via monolithic
as well as for the partitioned iterative approach.

Monolithic approach

First we derive the scheme for the implicit monolithic approach. Here we also show the
schemes via one sided as well as for the central difference method.

One sided finite volume method

For the nodes j 6= m we use the formulas in (4.53). Only the coupling conditions for
j = m will be replaced. For the implicit scheme we replace the time level n by n + 1
in the spatial discretization derived for the heat flux coupling via explicit method via
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one sided difference method in (4.28) and (4.29). The implicit formulas for the heat flux
coupling conditions will take the following form

un+1
m = unm − ν−(un+1

m − un+1
m−1) +H

∆t

∆x

(
vn+1
m − un+1

m

)
and

vn+1
m = vnm + ν+(vn+1

m+1 − vn+1
m )−H ∆t

∆x

(
vn+1
m − un+1

m

)
. (4.60)

We re-arrange the formulas to obtain

− ν−un+1
m−1 +

(
1 + ν− +H

∆t

∆x

)
un+1
m −H ∆t

∆x
vn+1
m = unm (4.61)

and

−H ∆t

∆x
un+1
m +

(
1 + ν+ +H

∆t

∆x

)
vn+1
m − ν+v

n+1
m+1 = vnm. (4.62)

Central difference

Analogously we obtain the schemes via the central difference method are

− 2ν−u
n+1
m−1 +

(
1 + 2ν− + 2H

∆t

∆x

)
un+1
m − 2H

∆t

∆x
vn+1
m = unm (4.63)

and

− 2H
∆t

∆x
un+1
m +

(
1 + 2ν+ + 2H

∆t

∆x

)
vn+1
m − 2ν+v

n+1
m+1 = vnm. (4.64)

For the coupled scheme we proceed analogously as the implicit scheme for the Dirichlet-
Neumann coupling (4.53). We replace the schemes of the Dirichlet-Neumann coupling
conditions by the new formulas (4.61) and (4.62) for the the one sided and for the central
difference (4.63) and (4.64). Note that we will show later in Chapter 5 that only the
central difference maintains the conservativity for the nodal based method, while the one
sided for the finite volume cell based scheme. But the one sided nodal based does not.

Partitioned iterative approach

Here we also follow the same procedure as we used in the implicit case of the Dirichlet-
Neumann coupling. Now in the scheme (4.61) we need vn+1

m which is not available for
computing un+1

m so we set vn+1
m = vn,km and we expect to achieve vn,km → vn+1

m via sub-
iterations for k → ∞. We set vn,0m = vnm. So the equation (4.63) will take the following
form

− 2ν−u
n,k+1
m−1 +

(
1 + 2ν− + 2H

∆t

∆x

)
un,k+1
m = unm + 2H

∆t

∆x
vn,km (4.65)

and we set un,0m = unm. We are expecting to achieve un,km → un+1
m for k →∞. The scheme

(4.64) will become(
1 + 2ν+ + 2H

∆t

∆x

)
vn,k+1
m − 2ν+v

n,k+1
m+1 = vnm + 2H

∆t

∆x
un,k+1
m . (4.66)
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For the numerical computation of the heat flux coupling the scheme for j = m in the
subsystem (4.55) will be replaced on (4.65) and in the second sub-system, i.e. for the
right sub-domain in (4.56) for j = m will be replaced in the scheme (4.66).

Further for the convergence of the heat flux coupling conditions we check the residual
equations at the interface

Rn,k+1
1 = −2ν−u

n,k+1
m−1 +

(
1 + 2ν− + 2H

∆t

∆x

)
un,k+1
m − unm − 2H

∆t

∆x
vn,k+1
m and

Rn,k+1
2 =

(
1 + 2ν+ + 2H

∆t

∆x

)
vn,k+1
m − 2ν+v

n,k+1
m+1 − vnm − 2H

∆t

∆x
un,k+1
m .

The above iteration process can be repeated. For k → ∞ we expect Rn,k
1 → 0 and

Rn,k
2 → 0 as well as un,kj → un+1

j and vn,kj → vn+1
j .

We prescribe some small tolerance TOL > 0 such that when we have achieved |Rn,k+1
1 | <

TOL and |Rn,k+1
2 | < TOL we stop the sub iterations and start the next time step.

4.2.4 Simplified channel pumping coupling condition

Here we give the formulas for the simplified channel pumping conditions via one sided as
well as for the central difference.

One sided finite volume method

The one sided finite volume formula for the simplified channel pumping conditions was
derived for the explicit one sided difference in (4.37) and (4.38). We just replace the time
level n in the spatial discretization which is given by

un+1
m + ν−(un+1

m − un+1
m−1)− ∆t

∆x

(
ψ(αvn+1

m − un+1
m )

)
= unm (4.67)

and

vn+1
m − ν+(vn+1

m+1 − vn+1
m ) +

∆t

∆x

(
ψ(αvn+1

m − un+1
m )

)
= vnm. (4.68)

The central difference method

The central difference formula for the simplified channel pumping conditions via explicit
central difference method was derived in (4.39) and (4.40). We just replace the time level
n by n+ 1 in the spatial discretization as

un+1
m + 2ν−(un+1

m − un+1
m−1)− 2

∆t

∆x

(
ψ(αvn+1

m − un+1
m )

)
= unm (4.69)

and

vn+1
m − 2ν+(vn+1

m+1 − vn+1
m ) + 2

∆t

∆x

(
ψ(αvn+1

m − un+1
m )

)
= vnm. (4.70)
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4.2.5 Linearized membrane pumping coupling conditions via implicit method

Here, we give the implicit discretization for the linearized membrane pumping conditions
via monolithic as well as for partitioned coupling iterative approach. We know that only
the discretization of the coupling via central difference method only maintains the discrete
mass conservativity. So we show the schemes only for the central difference method.

Monolithic approach

We derived the explicit formulas for the linearized membrane pumping conditions in (4.51)
and (4.52) via the central difference method. So, we replace n by n + 1 in the spatial
discretization to obtained the following schemes

− 2ν−u
n+1
m−1 +

(
1 + 2ν− +

2∆t

∆x

)
un+1
m − 3∆t

∆x
vn+1
m = unm (4.71)

and

− 2
∆t

∆x
un+1
m +

(
1 + 2ν+ +

3∆t

∆x

)
vn+1
m − 2ν+v

n+1
m+1 = vnm. (4.72)

For the coupled scheme we proceed analogously as we did in the implicit system (4.53)
with Dirichlet-Neumann coupling. We replace the schemes of Dirichlet-Neumann coupling
by the new formulas (4.71) and (4.72) for the linearized membrane pumping conditions.

Partitioned iterative approach

In the partitioned iterative approach for the implicit case we proceed analogously to
achieve un,k+1

m → un+1
m and vn,k+1

m → vn+1
m via sub-iterations. We set vn,0m = vnm in equations

(4.71) and un,0m = unm in (4.72) we obtain the following two schemes

− 2ν−u
n,k+1
m−1 +

(
1 + 2ν− +

2∆t

∆x

)
un,k+1
m = unm +

3∆t

∆x
vn,km (4.73)

and (
1 + 2ν+ +

3∆t

∆x

)
vn,k+1
m − 2ν+v

n,k+1
m+1 = vnm +

2∆t

∆x
un,km . (4.74)

For the numerical computation of the linearized membrane pumping conditions the scheme
for j = m in the subsystem (4.55) will be replaced on (4.73) and in the second sub-system,
i.e. for the right sub-domain in (4.56) for j = m will be replaced on scheme (4.74).

Further for the convergence of the linearized coupling conditions we check the residual
equations at the interface

Rn,k+1
1 = −2ν−u

n,k+1
m−1 +

(
1 + 2ν− +

2∆t

∆x

)
un,k+1
m − unm −

3∆t

∆x
vn,k+1
m and

Rn,k+1
2 =

(
1 + 2ν+ +

3∆t

∆x

)
vn,k+1
m − 2ν+v

n,k+1
m+1 − vnm −

2∆t

∆x
un,km .

The above iteration process can be repeated. For k → ∞ we expect Rn,k
1 → 0 and

Rn,k
2 → 0 as well as un,kj → un+1

j and vn,kj → vn+1
j .

We prescribe some small tolerance TOL > 0 such that when we have achieved |Rn,k+1
1 | <

TOL and |Rn,k+1
2 | < TOL we stop the sub iterations and start the next time step.
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4.2.6 Membrane pumping conditions via implicit discretization

Monolithic approach

For the monolithic approach we have a monolithic matrix setting. Therefore the non-
linear coupling are not possible to implement in this case. While we use the partitioned
iterative approach as follow.

Partitioned iterative approach

Here we give the discretized formulas for the membrane pumping conditions.

The central difference method (FD)

We derived the explicit discretization of the membrane pumping conditions via the central
difference method in (4.43) and (4.44). Analogously, we replace there the time level n
by n + 1 in the spatial discretization part. Again we have un+1

n and vn+1
m , so we proceed

analogously to achieve un,k+1
m → un+1

m and vn,k+1
m → vn+1

m via sub-iterations. We set
vn,0m = vnm and un,0m = unm. The discretized scheme will become

−2ν−u
n,k+1
m−1 +

(
1+2ν−+2(Pl+Pc(t))

∆t

∆x

)
un,k+1
m = unm+2(Pl+Pc(t))

∆t

2∆x
vn,km +Pp

2∆t

∆x

(vn,km )2

k2
d + (vn,km )2

(4.75)
and(

1+2ν++2(Pl+Pc(t))
∆t

∆x

)
vn,k+1
m −2ν+v

n,k+1
m+1 = vnm+2(Pl+Pc(t))

∆t

2∆x
un,km −Pp

2∆t

∆x

(vn,km )2

k2
d + (vn,km )2

.

(4.76)
For the numerical computation of the membrane pumping conditions the scheme for j = m
in the subsystem (4.55) will be replaced on (4.75) and in the second sub-system, i.e. for
the right sub-domain in (4.56) for j = m will be replaced on scheme (4.76).

Further for the convergence of the membrane pumping conditions we check the residual
equations at the interface

Rn,k+1
1 = −2ν−u

n,k+1
m−1 +

(
1 + 2ν− + 2(Pl + Pc(t))

∆t

∆x

)
un,k+1
m − unm − 2(Pl + Pc(t))

∆t

∆x
vn,k+1
m

− Pp
2∆t

∆x

(vn,km )2

k2
d + (vn,km )2

Rn,k+1
2 =

(
1 + 2ν+ + 2(Pl + Pc(t))

∆t

∆x

)
vn,k+1
m − 2ν+v

n,k+1
m+1 − vnm − 2(Pl + Pc(t))

∆t

∆x
un,km

+ Pp
2∆t

∆x

(vn,km )2

k2
d + (vn,km )2

.

The above iteration process can be repeated. For k → ∞ we expect Rn,k
1 → 0 and

Rn,k
2 → 0 as well as un,kj → un+1

j and vn,kj → vn+1
j .
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We prescribe some small tolerance TOL > 0 such that when we have achieved |Rn,k+1
1 | <

TOL and |Rn,k+1
2 | < TOL we stop the sub iterations and start the next time step.

Note that the simplified membrane pumping conditions is the special case of the mem-
brane pumping conditions with Pl + Pc(t) = H and Pp = P . There is no need to derive
the complete derivation again.

Also note that the formulas for the coupling conditions in the case of one sided and
the central difference is only differ by a factor of 2 with the term ν±. So, in the above two
coupling conditions the one sided formulas can be easily obtained by dropping the factor
of 2.

4.3 L1 error and order of convergence for the bi-domain diffusion
equations

We derived the L1 error and order of convergence for the single domain diffusion equation
in Chapter 3. Now here we will give formulas for the bi-domain diffusion equations with
explicit, implicit and finite volume methods with coupling Dirichlet-Neumann coupling
conditions with identical diffusion coefficients D− = D+.

Explicit (nodal based) and implicit method

For the explicit (nodal based) and implicit method the formula to calculate the L1 error
is given by

En(h) : = ‖uh(tn, ·)− u(tn, ·)‖1,(a,c) + ‖vh(tn, ·)− v(tn, ·)‖1,(c,b)

=
∆x

2
|un0 − un0 |+ ∆x

m∑
i=1

|uni − uni |+ ∆x
2m−1∑
i=m+1

|vni − vni |+
∆x

2
|vn2m − vn2m|.

Here, unj = 1
∆x

∫ x
i+1

2
x
i− 1

2

u(tn, x) dx and vnj = 1
∆x

∫ x
i+1

2
x
i− 1

2

v(tn, x) dx. These error estimates tells

us the order of convergence for our numerical schemes based of finite difference which is
a finite element type method.

Finite volume method

Now we give the formula for the finite volume which is a cell based discretizations methods.

En(h) : = ‖uh(tn, ·)− u(tn, ·)‖1,(a,c) + ‖vh(tn, ·)− v(tn, ·)‖1,(c,b)

= ∆x
m∑
i=0

|uni − uni |+ ∆x
2m∑

i=m+1

|vni − vni |.

These estimates will give the L1 error for the DN-coupling conditions with bi-domain
diffusion equations. These results will show that how fast the error will decrease as we
decrease the mesh size. The results for the L1 error and for the order of convergence will
show in Chapter 7 in Table 7.10 and the graphical interpretation will show in Figure 7.13.
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Chapter 5

The discrete mass conservation
property for single and bi-domain
diffusion equations

Under homogeneous Neumann boundary conditions the diffusion equations conserve total
mass for concentrations or total energy in the case of the heat equation. Since we assume
there are no fluxes across the outer boundaries, the total change of discrete mass or energy
in the domain should approximate zero up-to machine accuracy. This important property
must be maintained by the scheme. In order to check whether the mass is conserved
throughout the time interval, we compute the total mass Ctotal in the domain at each
time step tn = n∆t.

In this chapter we derive the discrete mass conservation property for the single do-
main diffusion equation with various discretization methods. These methods include the
explicit, implicit and a finite volume discretization methods. Also, we derive this prop-
erty for the various coupling interface conditions with bi-domain diffusion equations via
explicit and implicit methods. These were implemented in the previous Chapter 4.

5.1 Conservation of discrete mass for the single domain diffusion
equation

5.1.1 Explicit discretization (nodal based formulation)

It is necessary for the concentration problem that the total concentration diffused in the
region must be conserved according to the law of mass conservation.

In the discretization of the initial data we are making a small error in the initial total
concentration by approximating∫ x

j+1
2

x
j− 1

2

w0(x) dx ≈ w0(xj)∆x = w0
j∆x for j = 1, 2, . . . , N.
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We are using quadrature by the midpoint rule for simplicity. One could also use a
higher order quadrature for higher accuracy. Further we approximate

∫ x0
x
0− 1

2

w(x) dx ≈

w(x0)∆x
2

= w0
0

∆x
2

on the cell [x0, x0+ 1
2
] and

∫ xN
x
N− 1

2

w(x) dx ≈ w(xN)∆x
2

= w0
N

∆x
2

on the

cell [xN , xN+ 1
2
], i.e. we use simple rectangle rules. Therefore we assume that our discrete

initial total concentration is C0
total = C0

total∆x with

C0
total =

1

2
w0

0 + w0
1 + . . .+ w0

N−1 +
1

2
w0
N (5.1)

The initial error in this term becomes smaller for ∆x→ 0. Analogously, the total concen-
tration for the later times tn in the single domain diffusion equation is given by Cn

total∆x
with

Cn
total =

1

2
wn0 + wn1 + . . .+ wnN−1 +

1

2
wnN . (5.2)

First we consider the single domain diffusion equation (3.1) with the explicit discretiza-
tion. We derived the discretization for the boundary conditions in (3.16) and (3.17). For
homogeneous Neumann boundary conditions we took JL(tn) = 0 and JR(tn) = 0 and the
discretizations are given as follows

wn+1
0 = 2νwn1 + (1− 2ν)wn0 , wn+1

N = 2νwnN−1 + (1− 2ν)wnN . (5.3)

We have from (5.3)

1

2
wn+1

0 =
1

2
(2νwn1 + (1− 2ν)wn0 ) =

1

2
wn0 + ν(wn1 − wn0 ) (5.4)

and analogously for the right hand boundary

1

2
wn+1
N =

1

2
wnN − ν(wnN − wnN−1). (5.5)

For the interior points of the domain, i.e. for j = 1, 2, ..., N − 1 the scheme (3.12) can be
written as

wn+1
j = wnj + ν(wnj+1 − wnj )− ν(wnj − wj−1).

Now the total concentration at the new time level n+ 1 is given by

Cn+1
total =

1

2
wn0 + ν(wn1 − wn0 ) + wn1 − ν(wn1 − wn0 ) + ν(wn2 − wn1 ) + . . .+ wnN−1

− ν(wnN−1 − wnN−2) + ν(wnN − wnN−1) +
1

2
wnN − ν(wnN − wnN−1)

= Cn
total.

(5.6)

Due to conservativity of the scheme Cn
total = C0

total remains constant and deviations are
due to rounding errors only.

We derived the boundary iteration (5.3) using a central difference method with ghost
cells in order to obtain boundary conditions which are conservative. We could use one
sided differences for the discretization of the outer boundary conditions as derived in
(3.20) and (3.21). Then we obtain a non-conservative sum, i.e. Cn

total 6= C0
total.
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5.1.2 Implicit discretization (nodal based formulation)

Next, we consider the single domain diffusion equation (3.1) with the implicit discretiza-
tion method. We derived the implicit discretization for the homogeneous Neumann bound-
ary conditions in (3.23) and (3.24) and the discretizations are given as follows

wn0 = wn+1
0 + 2ν(wn+1

0 − wn+1
1 ), wnN = wn+1

N + 2ν(wn+1
N − wn+1

N−1). (5.7)

From equation (5.7) we have

1

2
wn0 =

1

2
wn+1

0 + ν(wn+1
0 − wn+1

1 ) (5.8)

and analogously for the right hand boundary we have the following discretize scheme

1

2
wnN =

1

2
wn+1
N − ν(wn+1

N−1 − w
n+1
N ). (5.9)

For j = 1, 2, ..., N − 1 the scheme (3.12) gives

wnj = wn+1
j − ν(wn+1

j−1 − wn+1
j ) + ν(wn+1

j − wn+1
j+1 ). (5.10)

Using (5.2) the total concentrations Cn
total∆x at the time levels n and n+ 1 satisfy

Cn
total =

1

2
wn+1

0 + ν(wn+1
0 − wn+1

1 ) + wn+1
1 − ν(wn+1

0 − wn+1
1 ) + ν(wn+1

1 − wn+1
2 ) + . . .

+ wn+1
N−1 − ν(wn+1

N−2 − w
n+1
N−1) + ν(wn+1

N−1 − w
n+1
N ) +

1

2
wn+1
N − ν(wn+1

N−1 − w
n+1
N )

= Cn+1
total.

(5.11)

We obtain that the quantity Cn
total = C0

total remains constant and deviations are due to
rounding errors only. Therefore the discretized scheme for the diffusion equation with
homogeneous Neumann boundary conditions via the central difference method is conser-
vative. While one sided differences as derived in (3.27) and (3.28) will lead to a non-
conservative scheme.

5.1.3 Finite volume discretization (cell based formulation)

We derived the discretization of the single domain diffusion equation with the homoge-
neous Neumann boundary conditions via the finite volume discretization in Section 3.4.
There we used the difference with a neighboring ghost cell value which is the central dif-
ference w.r.t. the boundary points a and b.

In this case the discrete initial total concentration is C0
total∆x with

C0
total = w0

1 + . . .+ w0
N . (5.12)

Analogously, the total concentration for the later times tn in the single domain diffusion
model is given by Cn

total∆x with

Cn
total = wn1 + . . .+ wnN . (5.13)
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Now we substitute the discrete values of wn1 , . . ., wnN from (3.35) into (5.13) for time level
n+ 1. Now the total concentration at the new time level n+ 1 is given by

Cn+1
total = wn1 + ν(wn2 − wn1 ) + wn2 + ν(wn3 − wn2 )− ν(wn2 − wn1 ) + . . .+ wnN−1

+ ν(wnN − wnN−1)− ν(wnN−1 − wnN−2) + wnN − ν(wnN − wnN−1)

= Cn
total.

(5.14)

Again we obtain Cn
total = C0

total. This implies that the discretized scheme of the diffusion
equation with homogeneous boundary conditions is conservative. Any deviations are due
to rounding errors.

5.2 Conservation of the discrete mass for the coupling con-
ditions with bi-domain diffusion equation via explicit dis-
cretization method

In this section we derive the discrete mass conservation for the various coupling conditions
via explicit discretization methods. First we derive them for the Dirichlet-Neumann
coupling and then for the other coupling conditions.

Dirichlet-Neumann coupling

Now we consider the bi-domain diffusion equations with the Dirichlet-Neumann coupling
conditions at the interface of the two sub-domains.

In the discretization of the initial data we are again making a small error in the initial
total concentration by approximating∫ x

j+1
2

x
j− 1

2

u(x) dx ≈ u(xj)∆x for j = 1, 2, . . . ,m− 1

and analogously for v at j = m+ 1, . . . , N .
For the outer boundary cells, i.e. for the left hand boundary we have

∫ x0
x
0− 1

2

u(x) dx ≈

u(x0)∆x
2

= u0
0

∆x
2

on the cell [x0, x0+ 1
2
] and on the right hand boundary we approximate∫ x0

x
0− 1

2

v(x) dx ≈ v(xN)∆x
2

= v0
N

∆x
2

on the cell [xN , xN+ 1
2
] and for the interface boundary we

approximate
∫ xm
x
m− 1

2

u(x) dx ≈ u(xm)∆x
2

= u0
m

∆x
2

and
∫ xm+ 1

2

xm
v(x) dx ≈ v(xm)∆x

2
= v0

m
∆x
2

,

on the cell [xm− 1
2
, xm+ 1

2
]. Now our initial total concentration is C0

total = C0
total∆x with

C0
total =

1

2
u0

0 + u0
1 + . . .+ u0

m−1 +
1

2
u0
m +

1

2
v0
m + v0

m+1 + . . .+ v0
N−1 +

1

2
v0
N . (5.15)

We will use this form of discretization with the splitting of the cell [xm− 1
2
, xm+ 1

2
] into

two sub-cells in the later coupling conditions that do not involve the Dirichlet condition.
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Figure 5.1: Sketch for the bi-domain with coupling interface conditions and with double nodes.

For the Dirichlet condition we modify the definitions of u0
m and v0

m. We set u0
m = v0

m =∫ xm
x
m− 1

2

u0(x) dx+
∫ xm+ 1

2

xm
v0(x) dx. In this special case we do not split the cell [xm− 1

2
, xm+ 1

2
].

Therefore, we define for n ∈ N0 the total concentration Cn
total∆x

Cn
total =

1

2
un0 + un1 + ...unm−1 + unm + vnm+1 + vnm+2...+

1

2
vN . (5.16)

We derived the updates un+1
m for the Dirichlet-Neumann coupling in (4.11) to be due to

the Dirichlet condition in (2.11) we have

vn+1
m = un+1

m

and due to the Neumann coupling (4.10) we have

un+1
m = unm + ν+(vnm+1 − vnm)− ν−(unm − unm−1).

For the interior of the left sub-domain we have

un+1
j = unj + ν−(unj+1 − unj )− ν−(unj − unj−1) (5.17)

and for the interior of the right sub-domain we have

vn+1
j = vnj + ν+(vnj+1 − vnj )− ν+(vnj − vnj−1). (5.18)

So, the total concentration at time tn+1 is given by

C
n+1

total =
1

2
un+1

0 + un+1
1 + ...+ un+1

m−1 + un+1
m + vn+1

m+1 + ...+
1

2
vn+1
N

=
1

2
un0 + ν−(un1 − un0 ) + un1 + ν−(un2 − un1 )− ν−(un1 − un0 ) + . . .+ unm−1

+ ν−(unm − unm−1)− ν−(unm−1 − unm−2) + unm + ν+(vnm+1 − vnm)− ν−(unm − unm−1)

+ vnm+1 + ν+(vnm+2 − vnm+1)− ν+(vnm+1 − vnm) + . . .

+ vnN−1 + ν+(vnN − vnN−1)− ν+(vnN−1 − vnN−2) +
1

2
vnN + ν+(vnN−1 − vnN).

After the cancellation of the identical terms in the above expression we obtain C
n+1

total =
C
n

total. Due to conservativity of the scheme Cn
total remains constant and deviations are due

to the rounding errors.
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The Dirichlet-Neumann coupling considered by Giles

For comparison we choose c± = 1, k± = D± and r = 1 for the coupling scheme of Giles
given in (4.13). Note for comparison that the correct scheme (4.14) with r = 1 gives our
formula (4.10). This we have just shown to be conservative above.

In our notation his scheme (4.13) for the interface node j = m and with c± = 1 and
r = 1 is given by

un+1
m = unm + 2ν+(vnm+1 − unm)− 2ν−(unm − unm−1). (5.19)

Further the schemes for the interior nodes of two sub-domains are identical. In our
notation these are given in (5.17) and (5.18). So in this case the total concentration
Cn+1
total∆x is given by

Cn+1
total =

1

2
un+1

0 + un+1
1 + ...+ un+1

m−1 + un+1
m + vn+1

m+1 + ...+
1

2
vn+1
N

=
1

2
un0 + ν−(un1 − un0 ) + un1 + ν−(un2 − un1 )− ν−(un1 − un0 ) + . . .+ unm−1

+ ν−(unm − unm−1)− ν−(unm−1 − unm−2) + unm + 2ν+(vnm+1 − vnm)− 2ν−(unm − unm−1)

+ vnm+1 + ν+(vnm+2 − vnm+1)− ν+(vnm+1 − vnm) + . . .

+ vnN−1 + ν−(vnN − vnN−1)− ν−(vnN−1 − vnN−2) +
1

2
vnN + ν+(vnN−1 − vnN).

This will lead a non-conservative scheme since we have using the Dirichlet condition
unm = vnm

Cn+1
total = Cn

total − ν−(unm − unm−1) + ν+(vnm+1 − unm). (5.20)

The schemes for the un-equal mesh sizes

Instead of (5.15) we have to consider the total concentration as

C
0

total = c−∆x−(
1

2
u0

0 + u0
1 + . . .+ u0

m−1 +
1

2
u0
m) + c+∆x+(

1

2
v0
m + v0

m+1 + . . .+ v0
N−1 +

1

2
v0
N).

(5.21)
The scheme for the left hand boundary will be

1

2
un+1

0 =
1

2
un0 +

D−∆t

c−(∆x−)2
(un1 − un0 )

and the scheme for the interior of the left sub-domain is given by

un+1
j = unj +

D−∆t

c−(∆x−)2
(unj+1 − unj )− D−∆t

c−(∆x−)2
(unj − unj−1).

Now the corrected Giles coupling scheme (4.14) has the form

un+1
m = unm +

2rν+

1 + r
(vnm+1 − vnm)− 2ν−

1 + r
(unm − unm−1). (5.22)
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Further the scheme for the interior of the right sub-domain is

vn+1
j = vnj +

D+∆t

c+(∆x+)2
(vnj+1 − vnj )− D+∆t

c+(∆x+)2
(vnj − vnj−1)

and for the right hand boundary condition we have

1

2
vn+1
N =

1

2
vnN +

D+∆t

c+(∆x+)2
(vnN−1 − unN).

Now we have to rewrite the scheme in the form that can be used in (5.21). We first
consider the coupling condition (5.22)

un+1
m = unm +

2D+∆t

∆x+(c−∆x− + c+∆x+)
(vnm+1 − vnm)− 2D−∆t

∆x−(c−∆x− + c+∆x+)
(unm − unm−1).

(5.23)
This we rewrite in the following form

c−∆x− + c+∆x+

2
un+1
m =

c−∆x− + c+∆x+

2
unm +

D+∆t

∆x+

(vnm+1 − vnm)− D−∆t

∆x−
(unm − unm−1).

From the Dirichlet condition we have un+1
m = un+1

m as well as unm = vnm. Using these we
can write

c−∆x− + c+∆x+

2
un+1
m =

c−∆x−
2

un+1
m +

c+∆x+

2
vn+1
m (5.24)

and the same for time level n. Then we obtain

c−∆x−
2

un+1
m +

c+∆x+

2
vn+1
m =

c−∆x−
2

unm+
c+∆x+

2
vnm+

D+∆t

∆x+

(vnm+1−vnm)−D−∆t

∆x−
(unm−unm−1).

(5.25)
We will use this form of the scheme for the proof of the conservativity property.

Now we write the whole scheme in this form together in a system

c−∆x−
2

un+1
0 =

c−∆x−
2

un0 +
D−∆t

c−∆x−
(un1 − un0 )

c−∆x−u
n+1
j = c−∆x−u

n
j +

D−∆t

∆x−
(unj+1 − unj )− D−∆t

∆x−
(unj − unj−1)

c−∆x−
2

un+1
m +

c+∆x+

2
vn+1
m =

c−∆x−
2

unm +
c+∆x+

2
vnm +

D+∆t

∆x+

(vnm+1 − vnm)

− D−∆t

∆x−
(unm − unm−1)

c+∆x+v
n+1
j = c+∆x+v

n
j +

D+∆t

∆x+

(vnj+1 − vnj )− D+∆t

∆x+

(vnj − vnj−1)

c+∆x+

2
vn+1
N =

c+∆x+

2
vnN +

D+∆t

∆x+

(vnN−1 − unN).

(5.26)

Clearly after the summation of the above equations the identical terms will cancel out

and again we obtain a conservative system C
n+1

total = C
n

total.
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Heat flux coupling conditions via one sided difference method (nodal based)

Now we derive the conservativity for the heat flux coupling interface conditions via the
one sided difference method by explicit nodal based discretization. The schemes for
the coupling interface conditions are different for the interface node at j = m, we now
consider the possibility un+1

m 6= vn+1
m . For the other nodes the schemes are the same as in

the Dirichlet-Neumann coupling.
The total concentration at time tn+1 for the bi-domain diffusion equation with zero

flux boundary conditions on the outer boundaries and with heat flux coupling conditions
is given by

C
n+1

total =
1

2
un+1

0 + un+1
1 + ...+ un+1

m−1 +
1

2
un+1
m +

1

2
vn+1
m + vn+1

m+1 + ...+
1

2
vn+1
N

=
1

2
un0 + ν−(un1 − un0 ) + un1 + ν−(un2 − un1 )− ν−(un1 − un0 ) + . . .+ unm−1

+ ν−(unm − unm−1)− ν−(unm−1 − unm−2) +
1

2
unm −

ν−
2

(unm − unm−1) +
∆t

2∆x

(
vnm − unm

)
+

1

2
vnm −

ν+

2
(vnm+1 − vnm−1)− ∆t

2∆x

(
vnm − unm

)
+ vnm+1 + ν+(vnm+2 − vnm+1)

− ν+(vm+1 − vnm) + . . .+
1

2
vnN + ν+(vnN−1 − vnN).

After the cancellation of identical terms in the above expression we obtain

C
n+1

total = C
n

total +
ν−
2

(
unm − unm−1

)
− ν+

2

(
vnm+1 − vnm

)
.

This implies that the total concentrations C
n+1

total does remain constant. This shows that
the one sided difference approximating for the discretization of the coupling interface
conditions is not conserved.

Heat flux coupling conditions via the central difference method

Analogously, here we derive the conservativity for the heat flux coupling interface condi-
tions via the central difference method by explicit discretization. Only the schemes for
the interface node are differnt, i.e. un+1

m and vn+1
m and the rest of schemes are equal as we

derived in the Dirichlet-Neumann coupling.
We derived the schemes for the heat flux conditions via central difference method un+1

m

in (4.31) and vn+1
m in (4.32). In this case the total concentration Cn+1

total∆x is given by

C
n+1

total =
1

2
un0 + ν−(un1 − un0 ) + un1 + ν−(un2 − un1 )− ν−(un1 − un0 ) + . . .+ unm−1

+ ν−(unm − unm−1)− ν−(unm−1 − unm−2) +
1

2
unm − ν−(unm − unm−1) +

∆t

∆x

(
vnm − unm

)
+

1

2
vnm − ν+(vnm+1 − vnm)− ∆t

∆x

(
vnm − unm

)
+ vnm+1 + ν+(vnm+2 − vnm+1)

− ν+(vnm+1 − vnm) + . . .+
1

2
vnN + ν+(vnN−1 − vnN).
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After the cancellation of identical terms in the above expression we obtain C
n+1

total = C
n

total.
This implies that the quantities Cn

total remains constant. This shows that the use of the
central difference approximation for the discretization of the coupling conditions maintains
the conservativity.

Heat flux coupling conditions via one sided difference method (cell based)

Now we derive the conservativity for the heat flux coupling interface conditions via the
one sided difference method by explicit cell based discretization.

The total concentration at time tn+1 for the bi-domain diffusion equation with zero
flux boundary conditions on the outer boundaries and with heat flux coupling conditions
is given by

C
n+1

total =
1

2
un+1

0 + un+1
1 + ...+ un+1

m−1 + un+1
m + vn+1

m+1 + ...+
1

2
vn+1
N

=
1

2
un0 + ν−(un1 − un0 ) + un1 + ν−(un2 − un1 )− ν−(un1 − un0 ) + . . .+ unm−1

+ ν−(unm − unm−1)− ν−(unm−1 − unm−2) + unm − ν−(unm − unm−1) +
∆t

∆x

(
vnm − unm

)
+ vnm+1 + ν+(vnm+2 − vnm+1)− ν+(vm+1 − vnm) + . . .+

1

2
vnN + ν+(vnN−1 − vnN).

After the cancellation of identical terms in the above expression we get the total con-

centrations remain constant, i.e. C
n+1

total = C
n

total. This shows that the one sided difference
which is the central difference w.r.t. the boundary point in the cell based scheme maintain
the conservativity.

So, we concluded that the central difference with nodal based scheme and the one
sided finite volume cell based scheme maintain the conservativity, while the one sided
differences with nodal based scheme does not.

5.3 Implicit discretization method

In this section we derive the mass conservation for the various coupling conditions. First
we derive for the Dirichlet-Neumann coupling and then for the others.

Dirichlet-Neumann coupling

Here we derive the conservativity for the bi-domain diffusion equations and with Dirichlet-
Neumann coupling via implicit discretization.

For the Dirichlet condition we again assume that u0
m = v0

m =
∫ xm
x
m− 1

2

u0(x) dx +∫ xm+ 1
2

xm
v0(x) dx. Now for conservativity in the implicit case we prove that Cn

total = Cn+1
total.

For this we need to calculate Cn
total. For the interior of the left sub-domain we derived the

following scheme

unj = un+1
j − ν−(un+1

j−1 − un+1
j ) + ν−(un+1

j − un+1
j+1 ).
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and for the interior of the right sub-domain

vnj = vn+1
j − ν+(vn+1

j−1 − vn+1
j ) + ν+(vn+1

j − vn+1
j+1 ).

Further, the scheme for the Dirichlet-Neumann coupling via the implicit method was
derived in the system (4.53) for j = m represented as

unm = un+1
m + ν−(un+1

m − un+1
m−1)− ν+(vn+1

m+1 − vn+1
m ) and un+1

m = vn+1
m .

Substituting all these values of un0 , u
n
1 . . . , u

n
m, . . . v

n
N in (5.16) we obtain

C
n

total =
1

2
un+1

0 + ν−(un+1
0 − un+1

1 ) + un+1
1 − ν−(un+1

0 − un+1
1 ) + ν−(un+1

1 − un+1
2 )

+ . . .+ un+1
m−1 − ν−(un+1

m−2 − un+1
m−1) + ν−(un+1

m−1 − un+1
m ) + un+1

m − ν−(un+1
m − un+1

m−1)

+ ν+(vn+1
m+1 − vn+1

m ) + vn+1
m+1 − ν+(vn+1

m − vn+1
m+1) + ν+(vn+1

m+1 − vn+1
m+2) + . . .

+ vn+1
N−1 − ν+(vn+1

N−2 − v
n+1
N−1)− ν+(vn+1

N − vn+1
N−1) +

1

2
vn+1
N + ν+(vn+1

N − vn+1
N−1).

After the cancellation of the identical terms in the above expression we obtain C
n

total =

C
n+1

total. Due to conservativity of the scheme C
n+1

total remains constant. So, we concluded
that the Dirichlet-Neumann coupling via implicit method is also conservation.

Heat flux coupling conditions via one sided difference method (nodal based)

Here, we derive the discrete conservation of mass for the heat flux coupling conditions via
implicit discretization method. So, we replace only the schemes for the coupling interface
nodes by new schemes of unm and vnm were derived in (4.61) and in (4.62). In this case the
total concentration Cn

total∆x is give by

C
n

total =
1

2
un+1

0 + ν−(un+1
0 − un+1

1 ) + un+1
1 − ν−(un+1

2 − un+1
1 )− ν−(un+1

0 − un+1
1 )

+ . . .+ un+1
m−1 − ν−(un+1

m − un+1
m−1)− ν−(un+1

m−2 − un+1
m−1) +

1

2
un+1
m +

ν−
2

(un+1
m − un+1

m−1)

− ∆t

2∆x

(
vn+1
m − un+1

m

)
+

1

2
vn+1
m − ν+

2
(vn+1
m+1 − vn+1

m ) +
∆t

2∆x

(
vn+1
m − un+1

m

)
+ vn+1

m+1 + ν+(vn+1
m+1 − vn+1

m ) + ν+(vn+1
m − vn+1

m+2) + . . .+ vn+1
N−1 − ν+(vn+1

N − vn+1
N−1)

− ν+(vn+1
N−2 − v

n+1
N−1) +

1

2
vn+1
N + ν+(vn+1

N − vn+1
N−1).

After the cancellation of the identical terms in the above expression we obtain

C
n

total = C
n+1

total −
ν−
2

(
un+1
m − un+1

m−1

)
+
ν+

2

(
vn+1
m+1 − vn+1

m

)
This implies that the scheme C

n

total does not remains constant, which shows that the one
sided difference approximation for the discretization of the coupling interface conditions
is not conserved.
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Heat flux coupling conditions via central difference method

Here, we dont want to repeat the whole derivation again. Therefore the discretization
of the heat flux coupling via central difference method for the implicit discretization we
obtain C

n

total = C
n

total. This implies that the quantities C
n

total is remains constant. This
shows that the central difference approximation for the discretization of the coupling
interface conditions is conserved.

5.3.1 Dirichlet-Neumann coupling via finite volume method (cell based for-
mulation)

Here we derive the discrete mass conservation for the Dirichlet-Neumann coupling with
bi-domain diffusion equation via cell based finite volume method. So, in this case the
total concentration C

n

total = Cn+1
total∆x is given by

C
n+1

total = un+1
1 + ...+ un+1

m−1 + un+1
m + vn+1

m+1 + ...+ vn+1
N

= un1 + ν−(un2 − un1 ) + un2 + ν−(un3 − un2 )− ν−(un2 − un1 ) + . . .+ unm−1

+ ν−(unm − unm−1)− ν−(unm−1 − unm−2) + unm + ν+(vnm+1 − unm)− ν−(unm − unm−1)

+ vnm+1 + ν+(vnm+2 − vnm+1)− ν+(vnm+1 − unm) + . . .

+ vnN−1 + ν−(vnN − vnN−1)− ν−(vnN−1 − vnN−2) + vnN − ν+(vnN − vnN−1).

After the cancellation of the identical terms in the above expression we obtain C
n+1

total =
C
n

total. Therefore, the coupled scheme is conservative.

5.4 Mass conservation of channel pumping, simplified channel
pumping, linearized membrane pumping, membrane pump-
ing coupling conditions (explicit and implicit discretization)

The discrete mass conservation for the channel pumping, simplified channel pumping,
simplified membrane pumping, linearized membrane pumping and membrane pumping
coupling interface conditions can be derived in the same way as for the heat flux coupling
interface conditions via explicit as well with implicit discretization methods described
above.

In the discretization of all these coupling conditions we see that in the two coupling
schemes for un+1

m and vn+1
m we have identical terms with opposite signs. Due to this in the

conservation sum the extra terms cancel each other and give us conservativity via central
difference method. They give non-conservativity with one sided differences.

5.5 Numerical tests for the discrete mass conservation

Here we give computational results for the discrete mass conservation for the single domain
diffusion equation as well as for the bi-domain diffusion equations with various coupling
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conditions. In the single domain case we give results for the explicit FTCS method and
the finite volume method for comparison. For the bi-domain diffusion equations with
various coupling conditions we give them only for the explicit FTCS method. In the
implicit method the results were analogous to the explicit case, slightly worse. So there
is no need to show them.

Note that for the numerical computations in this thesis we used two types of initial
conditions the continuous cosine data and the constant data. In the case of cosine initial
data the exact initial mass will be

∫ 1

0
[cos(πx) + 1] dx = 1. The initial numerical mass

for ∆x = 1/2000 was C0
total∆x = 9.999999999999990e − 01. We used a constant data

u0(x) = 0.06. For this the initial numerical mass was C0
total∆x = 6.000000000000152e−02

for ∆x = 1/2000.
First we will show the results for the single domain diffusion equations with the above

initial data. Then we present them for the bi-domain with the cosine initial data as well
as piecewise constant initial data. For the piecewise constant data we took u0(x) = 0.06
for x ∈ [0, 1/2] and v0(x) = 700 for x ∈ [1/2, 1]. The exact initial mass is 1

2
(700 + 0.06) =

350.03 and the initial numerical was C0
total∆x = 3.500300000000000e+02 for ∆x = 1/2000.

5.5.1 Single domain diffusion equation

Here we give the numerical results for the single domain diffusion equation with homoge-
neous Neumann boundary conditions. We obtained the results for the initial data given
above with the diffusion coefficient D = 0.001 and fixed spatial step size ∆x = 1/2000,
time step ∆t = (∆x)2/3D = 8.3333e − 05. For times tn with n = 0, 200, . . . , 1200 and
M = 1200 the numerical total mass obtained via the FTCS scheme is given in the table
in Figure 5.2. The results are plotted in Figure 5.3. For the same data we also calculated
the result via the explicit finite volume cell based method. The result can be seen in table
form in Figure 5.4 and plotted in Figure 5.5. Note that solution plots for the explicit
FTCS and for the finite volume cell based in case are given in Figure 7.3.

We see that the conservation of mass is achieved up to some rounding error. This is
also seen in the oscillatory behavior of the plots in Figures 5.3 and 5.5.

5.5.2 Discrete mass conservation for the bi-domain diffusion equations with
various coupling conditions

Here we give the numerical results for the bi-domain diffusion equations with various
coupling conditions.

DN-coupling

Here we give various possible test cases for the identical and distinct diffusion coefficients
as well as with various initial conditions. As we explained in Chapter 4, for identical
diffusion coefficients on the sub-domains the explicit, implicit monolithic and the finite
volume methods give us the identical scheme to the single domain. The same observation
we obtain here in the numerical computations of the discrete mass conservation. We get
exactly the same values for the identical diffusion coefficients D− = D+ = 0.001 in the
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Figure 5.2: Single domain: Table for the total concentration via explicit finite difference
method (FTCS) with initial data w0(x) = cos(πx) + 1 and a constant data w0(x) = 0.06, with
diffusion coefficient D = 0.001 and with ∆x = 1/2000.

Number of time steps nS-Domain FD (cosine data)S-Domain FD (constant data)

0 9.999999999999990e-01 6.000000000000152e-02

200 1.000000000000002e+00 6.000000000000152e-02

400 1.000000000000002e+00 6.000000000000152e-02

600 1.000000000000003e+00 6.000000000000152e-02

800 1.000000000000003e+00 6.000000000000152e-02

1000 1.000000000000003e+00 6.000000000000152e-02

1200 1.000000000000006e+00 6.000000000000152e-02
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Figure 5.3: Single domain: The figure in the left panel is the result for the the single domain
diffusion equation via explicit nodal based method for the first 30 time steps and the figure
in the right panel is for the number of time steps M = 1200, ∆x = 1/2000, with initial data
w0(x) = cos(πx) + 1 and the diffusion coefficient D = 0.001.
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Figure 5.4: Single domain: Table for the total concentration via the finite volume method
with initial data w0(x) = cos(πx)+1 and a constant data w0(x) = 0.06, with diffusion coefficient
D = 0.001 and ∆x = 1/2000.

Number of time steps nS-Domain FV(cosine data)S-Domain FV(constant data)

0 9.999999999999976e-01 6.000000000000152e-02

200 1.000000000000001e+00 6.000000000000152e-02

400 1.000000000000000e+00 6.000000000000152e-02

600 1.000000000000001e+00 6.000000000000152e-02

800 9.999999999999993e-01 6.000000000000152e-02

1000 9.999999999999993e-01 6.000000000000152e-02

1200 1.000000000000000e+00 6.000000000000152e-02
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Figure 5.5: Single domain: The figure in the left panel is the result for the the single domain
diffusion equation via finite volume cell based method for the first 30 time steps and the figure
in the right panel is for the number of time steps M = 1200, ∆x = 1/2000, with initial data
w0(x) = cos(πx) + 1 and the diffusion coefficient D = 0.001.
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Figure 5.6: Bi-domain with DN-coupling D− 6= D+: Table for the total concentration for
the DN-coupling of our scheme via explicit coupling method with initial data u0(x) = cos(πx)+1
and a constant data u0(x) = 0.06, v0(x) = 700 with distinct diffusion coefficients D− = 0.001,
D+ = 0.003 and ∆x = 1/2000.

Number of time steps n Bi-domain(cosine data) Bi-domain(constant data)

0 9.999999999999990e-01 3.500300000000000e+02

200 9.999999999999999e-01 3.500300000000001e+02

400 1.000000000000000e+00 3.500300000000001e+02

600 1.000000000000001e+00 3.500300000000003e+02

800 1.000000000000002e+00 3.500300000000004e+02

1000 9.999999999999992e-01 3.500300000000004e+02

1200 9.999999999999988e-01 3.500300000000007e+02

DN-coupling scheme via explicit finite difference coupled method which are given in table
form shown in Figure 5.2. So there is no need to show again the identical table.

Now we give the results for un-equal diffusion coefficients D− = 0.001, D+ = 0.003.
We will compare our results of the DN-coupling with the Giles scheme. These are given
as follows.

DN-coupling of our scheme

First we give the results of our DN-coupling scheme for the initial data u0(x) = cos(πx)+1
and then for a piecewise continuous initial data u0(x) = 0.06, v0(x) = 700 with distinct
diffusion coefficients D− = 0.001, D+ = 0.003 and with spatial step size ∆x = 1/2000.
The results are given in table form in Figure 5.6. The plot for the cosine initial data can
be seen in Figure 5.7 and for the piecewise constant data in Figure 5.8. Note that solution
plots for this case are given in Figure 7.8.

DN-coupling of the Giles scheme

We noticed in the derivation of conservativity for the DN-coupling in this chapter that
the DN-coupling of the Giles scheme is not-conservative. Now analogously we calculated
the total mass for the Giles scheme with cosine initial data u0(x) = cos(πx) + 1. We
observed that for the equal diffusion coefficients we did not observe any difference to our
scheme. The effect seems to small and there may be cancellation.
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Figure 5.7: Bi-domain with DN-coupling D− 6= D+: The figure in the left panel is the result
for the DN-coupling of our scheme with initial data u0(x) = cos(πx) + 1 for the first 30 time
steps and the figure in the right panel is for the number of time steps M = 1200, ∆x = 1/2000
and with un-equal diffusion coefficients D− = 0.001 and D+ = 0.003.
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Figure 5.8: Bi-domain with DN-coupling D− 6= D+: The figure in the left panel is the
result for the DN-coupling of our scheme with initial datau0(x) = 0.06 MOl for x ∈ [0, 1/2]
and v0(x) = 700 for x ∈ [1/2, 1] for the first 30 time steps and the figure in the right panel is
for the number of time steps M = 1200, ∆x = 1/2000 and with un-equal diffusion coefficients
D− = 0.001 and D+ = 0.003.
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Figure 5.9: Bi-domain Giles scheme: Table for the total concentration for the DN-coupling
of the Giles scheme via explicit coupling method with initial data u0(x) = cos(πx) + 1 and
a constant data u0(x) = 0.06, v0(x) = 700 with distinct diffusion coefficients D− = 0.001,
D+ = 0.003 and with fixed ∆x = 1/2000.

Number of time steps nBi-domain (cosine data)Bi-domain (constant data)

0 9.999999999999990e-01 3.500300000000000e+02

200 9.999984188476869e-01 3.500539581974912e+02

400 9.999977857641400e-01 3.500538070485182e+02

600 9.999973002356525e-01 3.500537402329856e+02

800 9.999968911104437e-01 3.500537004361507e+02

1000 9.999965308296236e-01 3.500536732895834e+02

1200 9.999962052584714e-01 3.500536532564224e+02

With distinct diffusion coefficients D− = 0.001, D+ = 0.003 we get completely different
results. They are given for the different number of time steps in the table in Figure 5.9.
The plot of these results can be seen for the cosine initial data in Figure 5.10 and for the
piecewise constant data in Figure 5.11. They show the non-conservativity of the scheme.
Note that the solution plots for this case with comparison of our DN-coupling scheme are
given in Figure 7.16.

In Figure 5.11 we observe that after initial strong deviation of the total concentration
the non-conservativity become smaller. This becomes clear when looking at both the error
in conservation in (5.20) together with the solution plot in Figure 7.16. We have ν− < ν+.
But the slops of the solution concentration this difference since unm − unm−1 > vnm+1 − vnm.
This makes the difference between ν−(unm − unm−1) and ν+(vnm+1 − vnm) and thereby the
error in conservativity much smaller.

Discrete mass conservation for the heat flux coupling

Here we give the results for the heat flux coupling conditions. We used both the one sided
and the central difference method as numerical coupling conditions. As we explained in
the derivation of the discrete mass conservation that the discretizations of the boundary
conditions as well as the interface conditions via one sided methods does not maintain
the conservativity, while the central difference method maintains the conservativity.

First we calculate the total mass for the heat flux conditions via one sided and central
difference method for the initial data u0(x) = cos(πx) + 1. We took un-equal diffusion
coefficients D− = 0.001 and D+ = 0.003, with ∆x = 1/2000. The values for different
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Figure 5.10: Bi-domain Giles scheme: The figure in the left panel is the result of the DN-
coupling of Giles scheme with initial data u0(x) = cos(πx) + 1 for the first 30 time steps and the
figure in the right panel is for the number of time steps M = 1200 and ∆x = 1/2000 with initial
data u0(x) = cos(πx) + 1 and with un-equal diffusion coefficients D− = 0.001 and D+ = 0.003.
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Figure 5.11: Bi-domain Giles scheme: The figure in the left panel is the result for the DN-
coupling of the Giles scheme for the first 30 time steps and the figure in the right panel is for
the number of time steps M = 1200 with initial data u0(x) = 0.06 MOl for x ∈ [0, 1/2] and
v0(x) = 700 for x ∈ [1/2, 1]. These are for un-equal diffusion coefficients D− = 0.001 and
D+ = 0.003.
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Figure 5.12: Bi-domain with heat flux conditions: Table for the total concentration for the
heat flux conditions via one sided and central difference methods with explicit coupling method
with initial data u0(x) = cos(πx)+1, with distinct diffusion coefficients D− = 0.001, D+ = 0.003
and with ∆x = 1/2000.

Number of time steps nBi-domain (cosine data one sided)Bi-domain (cosine data with central)

0 9.999999999999990e-01 9.999999999999990e-01

200 1.000002556825716e+00 9.999999999999991e-01

400 1.000003801641210e+00 1.000000000000001e+00

600 1.000004763164191e+00 1.000000000000000e+00

800 1.000005575743941e+00 1.000000000000001e+00

1000 1.000006292459160e+00 1.000000000000001e+00

1200 1.000006940785814e+00 9.999999999999997e-01

time steps are given in table in Figure 5.12. The plots for the one sided method can be
seen in Figure 5.14 and the plots for the central difference is given in Figure 5.15.

Also we used the piecewise continuous initial data u0(x) = 0.06 and v0(x) = 700
both methods. The numerical values for the different time steps are given in the table in
Figure 5.13. The plots for the one sided difference are given in Figure 5.16 and for central
difference method in Figure 5.17. Note that solution plots for this case via the central
difference method are given in Figure 7.19 for the cosine initial data and for the discrete
data in Figure 7.29. From these tables and graphical representations again we conclude
that the one sided difference nodal based clearly does not maintain the conservativity,
while the one sided finite volume cell based scheme maintains. Further central difference
maintains discrete mass conservativity.

5.5.3 Discrete mass conservation of channel pumping, simplified channel
pumping, linearized membrane pumping, membrane pumping coupling
conditions (explicit and implicit discretization

Here, only we give a result for the membrane pumping conditions via one sided and central
difference methods. The other coupling conditions are analogous to this for calculation
of the discrete mass conservation. Also for this coupling conditions we use two kinds of
initial data.

First we calculate the total mass via one sided and central difference method for the
initial data u0(x) = cos(πx) + 1. We took un-equal diffusion coefficients D− = 0.001 and
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Figure 5.13: Bi-domain with heat flux conditions: Table for the total concentration for the
heat flux conditions via one sided and central difference methods with explicit coupling method
with constant data u0(x) = 0.06, v0(x) = 700 with distinct diffusion coefficients D− = 0.001,
D+ = 0.003 and with ∆x = 1/2000.

Number of time steps nBi-domain (constant data one sided)Bi-domain(constant data with central)

0 3.500300000000000e+02 3.500300000000000e+02

200 3.499921275178879e+02 3.500300000000001e+02

400 3.499895408254793e+02 3.500300000000001e+02

600 3.499883762386270e+02 3.500300000000002e+02

800 3.499876776247660e+02 3.500300000000004e+02

1000 3.499871992418964e+02 3.500300000000004e+02

1200 3.499868453569094e+02 3.500300000000005e+02
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Figure 5.14: Bi-domain with heat flux conditions: The figure in the left panel is for the
heat flux conditions via one sided difference with u(0) = cos(πx) + 1 for the first 30 time steps
and the figure in the right panel is for the number of time steps M = 1200 and ∆x = 1/2000.
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Figure 5.15: Bi-domain with heat flux conditions: The figure in the left panel is for the
heat flux conditions via central difference with piecewise constant u0(x) = cos(πx) + 1 for the
first 30 time steps and the figure in the right panel is for the number of time steps M = 1200
and ∆x = 1/2000.
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Figure 5.16: Bi-domain with heat flux conditions: The figure in the left panel is for the
heat flux conditions via one sided difference with piecewise constant initial data u0(x) = 0.06
and v0(x) = 700 for first 30 time steps and the figure in the right panel is for the number of
time steps M = 1200 and ∆x = 1/2000.
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Figure 5.17: Bi-domain with heat flux conditions: The figure in the left panel is for the
heat flux conditions via central difference for the initial data u0(x) = 0.06 and v0(x) = 700 for
first 30 time steps and the figure in the right panel is for the number of time steps M = 1200
and ∆x = 1/2000.

D+ = 0.003, with ∆x = 1/2000. The values for the different time steps are given in the
table in Figure 5.18. The plot for the one sided method can be seen in Figure 5.14 and
the plots for the central difference gives us the similar oscillatory behavior plotted for the
heat flux conditions in Figure 5.15.

Then we calculate for the piecewise constants data u0(x) = 0.06 MOl for x ∈ [0, 1/2]
and v0(x) = 700 for x ∈ [1/2, 1] with diffusion coefficients D− = 0.001, D+ = 0.003 and
the spatial step size ∆x = 1/2000. The results for the various time steps are given in
table in Figure 5.19. For the one sided difference method the plot is given in Figure 5.21.
Again with central difference method we get an oscillatory behavior similar to the heat
flux conditions given in Figure 5.17. So there is no need to give a repetitive figure. Note
that solution plots for this case via central difference method are given in Figure 7.34.

Again we conclude that the one sided difference clearly does not maintain conserva-
tivity for the nodal based explicit method. But for the cell based finite volume maintain
the conservativity. Further the central difference method maintains the conservativity for
the discretization of the coupling interface conditions with nodal based discretization.
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Figure 5.18: Bi-domain with membrane pumping conditions: Table for the total con-
centration for the membrane pumping conditions via one sided difference and central difference
method via explicit coupling method with initial data u0(x) = cos(πx)+1 with distinct diffusion
coefficients D− = 0.001, D+ = 0.003 and with spatial step size ∆x = 1/2000.

Number of time steps nBi-domain (cosine data one sided)Bi-domain (cosine data with central)

0 9.999999999999990e-01 9.999999999999990e-01

200 9.999918858054577e-01 9.999999999999994e-01

400 9.999878828223312e-01 1.000000000000000e+00

600 9.999848044040148e-01 1.000000000000001e+00

800 9.999822067332306e-01 1.000000000000001e+00

1000 9.999799168706344e-01 9.999999999999997e-01

1200 9.999778458817771e-01 9.999999999999999e-01

Figure 5.19: Bi-domain with membrane pumping conditions: Table for the total concen-
tration of the membrane pumping conditions via one sided and central difference with explicit
coupling method with piecewise constant initial data u0(x) = 0.06, v0(x) = 700 with distinct
diffusion coefficients D− = 0.001, D+ = 0.003 and with and with spatial step size ∆x = 1/2000.

Number of time steps nBi-domain (constant data one sided)Bi-domain (constant data central)

0 3.500300000000000e+02 3.500300000000000e+02

200 3.500255961726344e+02 3.500300000000001e+02

400 3.500268669222047e+02 3.500300000000001e+02

600 3.500274322830616e+02 3.500300000000002e+02

800 3.500277692893970e+02 3.500300000000003e+02

1000 3.500279989790556e+02 3.500300000000004e+02

1200 3.500281682206184e+02 3.500300000000005e+02
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Figure 5.20: Bi-domain with membrane pumping conditions: The figure in the left panel
is for the membrane pumping condition via one sided difference method with cosine initial data
u0(x) = cos(πx) + 1 for first 30 time steps and the figure in the right panel is for the number of
time steps M = 1200 and with spatial step size ∆x = 1/2000.
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Figure 5.21: Bi-domain with membrane pumping conditions: The figure in the left panel
is for the membrane pumping conditions via one sided difference method for the initial piecewise
constant data u0(x) = 0.06 and v0(x) = 700 for first 30 time steps and the figure in the right
panel is for the number of time steps M = 1200 and with spatial step size ∆x = 1/2000.
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Chapter 6

Stability analysis

In this chapter we recall the von Neumann stability for the single domain diffusion equa-
tion and apply the Godunov-Ryabenkii stability analysis to boundary conditions as well
as to various coupling conditions for the bi-domain diffusion equation as discussed in
Chapter 3.

In the first section we discuss the well-known von Neumann stability analysis and
the Godunov-Ryabenkii stability for the single domain diffusion equation with boundary
conditions. In the second section we show the GR-stability for the Dirichlet-Neumann
coupling conditions and in the third section for the heat flux coupling conditions. In
fourth section we explain the GR-stability for the linearized membrane pumping coupling
interface conditions. In Section 5 we discuss the GR-stability analysis for the implicit
case.

6.1 The single domain case

The stability of numerical schemes is closely associated with the boundedness of numer-
ical solutions, a necessary condition for convergence. For the time-dependent problems,
stability guarantees that the numerical method produces a bounded solution whenever
the solution of the exact differential equation is bounded. Numerical solutions to unstable
schemes tend to blow up quite rapidly. Stability, in general, can be difficult to investigate.
This is especially true when the equation under consideration is nonlinear.

6.1.1 Von Neumann interior stability (explicit case)

In order to determine the Courant-Friedrichs-Levy condition for the stability of an explicit
solution of a time dependent PDE one uses the von Neumann stability analysis. To do
this we assume that the solution is of the form wnj = λneiαj where λ represents the time
dependence of the solution and the exponential represents the spatial dependence, α is a
real parameter, see the book of Godunov and Ryabenkii [11, Ch. 8]. We substitute this
into the finite difference formula (3.11). Using ν = D ∆t

∆x2
we obtain the following form

λ− 1 = ν(e−iα − 2 + eiα). (6.1)
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CHAPTER 6. STABILITY ANALYSIS

Noting that
e−iα − 2 + eiα

4
= −

(
ei
α
2 − e−iα2

2i

)2

= − sin2 α

2
(6.2)

we get

λ(α) = 1− 4ν sin2 α

2
. (6.3)

As α varies the quantity λ(α) traverses the interval 1− 4ν ≤ λ ≤ 1 of the real axis. For
stability |λ| ≤ 1 it is necessary that the left end of the interval lies in the unit circle so
that we have 1− 4ν ≥ −1 or

0 < ν ≤ 1

2
. (6.4)

If ν > 1
2
, the point λ(α) = 1 − 4ν sin2(α

2
) corresponding to α = π lies to the left of the

point −1 on the real axis. The harmonic exp(iπj) = (−1)j gives rise to the unstable
solution

wnj = (1− 4ν)n(−1)j

which does not satisfy the standard condition for the stability analysis |λ| ≤ 1 for the
interior domain, see Godunov and Ryabenkii [11] or Morton and Mayers [24].

6.1.2 Godunov-Ryabenkii (GR)-stability for the interior domain

The problem considered in our main study is not periodic, so we cannot apply the usual
von Neumann stability analysis to boundary or coupling conditions. The stability analysis
that we use for our boundary condition and the coupled interface equation is the so-called
Godunov-Ryabenkii (GR)-stability. The GR-stability, see e.g. Godunov and Rybenkii
[11], relies on a normal mode representation which generalizes the von Neumann stability
by replacing Fourier modes with local modes as powers giving quasi-eigen vectors as
explained in Godunov and Ryabenkii [11]. Also Gustafsson [12] gave details for the
Godunov-Ryabenkii condition ”The beginning of a new stability theory”.

The same stability analysis has been used by Giles [10], Roe et al. [33] and Errera et
al. [6] for coupling problems. We will give a more precise way of doing the analysis. We
include for comparison the treatment of the outer boundary conditions which we handle
first.

First, we recall the GR-stability for the single domain difference equation defined in

(3.11) with the homogeneous Neumann boundary conditions ∂w(0,t)
∂x

= 0 and ∂w(1,t)
∂x

= 0,
i.e. (3.16) and (3.17). We write the discretization of this boundary value problem together
as the following system

wn+1
0 = 2νwn1 + (1− 2ν)wn0 for j = 0

wn+1
j = νwnj−1 + (1− 2ν)wnj + νwnj+1 for 0 < j < m

wn+1
N = 2νwnN−1 + (1− 2ν)wnN for j = N.

(6.5)

We substitute as a preliminary step wnj = cλnwj with c 6= 0 into (6.5) for 0 < j < m to
get the following second order difference equation
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6.1. THE SINGLE DOMAIN CASE

wj+1 +

(
1− (2ν + λ)

ν

)
wj + wj−1 = 0. (6.6)

Note that here the constant c drops out of the equation. In the analysis for some boundary
and coupling conditions this will not be the case. To get the characteristic equation we
substitute the normal solution wnj = cλnqj into the difference equation (6.5) for 0 < j < m.
After simplification we get the following characteristic equation

p(q) = q2 +

(
1− λ
ν
− 2

)
q + 1 = 0. (6.7)

Now we have to consider two cases.

If |q| = 1, then we may set q = exp(iα) for α ∈ [0, 2π]. This is the case of von
Neumann stability. Inserting the mesh function wnj = λneiαj into (6.5) for 0 < j < m
gives (6.1). This mesh function is bounded as j → ±∞. The analysis leads to (6.3)

λ = 1− 4ν sin2(
α

2
) for 0 ≤ α ≤ 2π.

Thus again we obtain the bounds 1 − 4ν ≤ λ ≤ 1 on the real axis and (6.4) as stability
condition.

The normal mode equation for the discretized diffusion equation and its roots

We will have to discuss the case with |q1,2| 6= 1 in order to carry out the stability analysis
for the boundary conditions and later the coupling conditions. For this we need to prove
some results about the selection of the root that has modulus less than or equal to 1.
This selection plays an important role in this whole analysis of the Godunov-Ryabenkii
stability. We apply the stability theory to determine the existence of separable normal
modes of the form cλnqj at nodal points j and time steps n.

We consider the scheme under the stability condition 0 < ν ≤ 1
2
. The quadratic

equation (6.7) has the solutions

q̃1,2(ν, λ) = 1− 1− λ
2ν
∓ 1

2

√
(
1− λ
ν
− 2)2 − 4

= 1− 1− λ
2ν
∓ 1

2

√
(1− λ)2

ν2
− 4

1− λ
ν

= 1 +
λ− 1

2ν
∓ 1

2

√
λ− 1

ν
· λ+ 4ν − 1

ν
.

(6.8)

For the complex roots we take their principle value with angle ]− π, π], see Abramowitz
and Stegun [1]. We reformulate (6.8) to

q1,2(ν, λ) = 1 +
λ− 1

2ν
∓
√
λ− 1

2ν

√
λ+ 4ν − 1 (6.9)
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where q1 is the solution with the minus sign. Another useful reformulation of the roots
was given by Giles [10]. We write it as

q1,2(ν, λ) = 1 +
λ− 1

2ν

[
1∓

√
1 +

4ν

λ− 1

]
. (6.10)

Due to the properties of the principal complex roots we have q1(ν, λ) = q̃1(v, λ) from
(6.8) only for Reλ ≥ 0 and λ 6= iy for y < 0. On the complementary set Reλ ≤ 0 and
λ 6= iy for y > 0 we have q1(ν, λ) = q̃2(ν, λ).

Since p(q) = (q− q1)(q− q2) = q2− (q1 + q2)q+ q1q2 we have q1q2 = 1 or q2 = q−1 from
(6.7). We prove the following lemma.

Lemma 1. The solutions q1, q2 given by (6.9) satisfy |q1| ≤ 1 and |q2| ≥ 1 for all λ ∈ C
and all ν > 0. We have |q1| = |q2| = 1 iff λ ∈ [1− 4ν, 1] ⊂ R. Further q1, q2 ∈ C\R holds
if λ ∈]1− 4ν, 1[ and q1, q2 ∈ R if λ ∈ R\]1− 4ν, 1[.

Proof. First let us consider ν = 1
2
. Then we have

q1,2 = λ∓
√
λ− 1

√
λ+ 1.

Since q2 = q−1
1 is suffices to prove the statements for q2. We have for λ ∈ C\]−∞, 1[

|q2|2 =

∣∣∣∣λ+
√
λ− 1

√
λ+ 1

∣∣∣∣2
= |λ|2 + |λ− 1||λ+ 1|+ 2Re(λ

√
λ− 1

√
λ+ 1).

The restriction is due to the fact that
√
z =
√
z holds only for z ∈ C\] −∞, 0[. Let us

set λ = x+ iy. Then we first want to show that

|λ|2 + |λ− 1||λ+ 1| = x2 + y2 +
√

(x− 1)2 + y2
√

(x+ 1)2 + y2 ≥ 1.

For |λ| > 1, i.e. x2 + y2 > 1, we have |λ|2 + |λ− 1||λ+ 1| > 1. For |λ| ≤ 1 or x2 + y2 ≤ 1
the above inequality is equivalent to

((x− 1)2 + y2)((x+ 1)2 + y2) ≥ (1− (x2 + y2))2 = 1 + (x2 + y2)2 − 2(x2 + y2).

Let us first consider the left hand side and multiply it out

(x2 − 1)2 + y2((x+ 1)2 + (x− 1)2) + y4 = x4 + 1− 2x2 + y2(x2 + 1 + 2x) + y2(x2 + 1− 2x) + y4

= 1 + x4 + y4 − 2x2 + 2y2 + 2x2y2.

Adding 2(x2 + y2) to the inequality leads to

1 + x4 + y4 + 4y2 + 2x2y2 ≥ 1 + x4 + y4 + 2x2y2

or equivalently
4y2 ≥ 0.
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6.1. THE SINGLE DOMAIN CASE

So |λ|2 + |λ − 1||λ + 1| ≥ 1 for all λ ∈ C\] −∞, 1[. Note that 1 < |λ|2 + |λ − 1||λ + 1|
holds for λ ∈ C\]−∞, 1].

Now we want to show that the remaining term satisfies

Re(λ
√
λ− 1

√
λ+ 1) ≥ 0

for λ ∈ C\]−∞, 1[. We introduce the function

sign+(y) =

{
1 for y ≥ 0

−1 for y < 0.

Then we have the following formula, see e.g. Abramowitz and Stegun [1, 3.7.27] for the
principal value of the square square root of any complex number z = x+ iy

√
z =

√
|z|+ x

2
+ i sign+(y)

√
|z| − x

2

where all roots are real and positive. This gives for λ = x+ iy√
λ− 1 =

√
|λ− 1|+ x− 1

2
+ i sign+(−y)

√
|λ− 1| − (x− 1)

2
,√

λ+ 1 =

√
|λ+ 1|+ x+ 1

2
+ i sign+(−y)

√
|λ+ 1| − (x+ 1)

2
.

The real part of the product λ
√
λ− 1

√
λ+ 1 is the sum of four terms. The first is the

product of the real parts. The other three are products of two imaginary parts with the
respective other real part. This gives

Re(λ
√
λ− 1

√
λ+ 1) = x

√
|λ− 1|+ x− 1

2

√
|λ+ 1|+ x+ 1

2

− y sign+(−y)

(√
|λ− 1|+ x− 1

2

√
|λ+ 1| − (x+ 1)

2

+

√
|λ− 1| − (x− 1)

2

√
|λ+ 1|+ x+ 1

2

)
− x
√
|λ− 1| − (x− 1)

2

√
|λ+ 1| − (x+ 1)

2
.

The second and third term are obviously non-negative. Also the first and last term
together are always non-negative. For x > 0 the roots with the plus sign are larger than
those multiplying −x. For x < 0 the situation is reversed. Therefore, we have shown that
|q2| ≥ 1 and thereby |q1| ≤ 1, for λ ∈ C\] −∞, 1[. For λ ∈ C\[−∞, 1] we have also just
shown that |q2| > 1 and |q1| < 1.

For λ ∈ [−1, 1] we have |q1| = |q2| = 1. This we can easily check since

q2 = λ+
√
λ− 1

√
λ+ 1 = λ+

√
λ2 − 1 = λ+ i

√
1− λ2.
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This gives |q2|2 = λ2+1−λ2 = 1 and thereby |q1| = 1. For λ ∈]−1, 1[ we have q1, q2 ∈ C\R.
For λ > 1 we obtain q2 = λ +

√
λ2 − 1 ∈ R giving |q2| = |λ +

√
λ2 − 1| > λ > 1 and

thereby |q1| < 1, this we have already shown above. Analogously, for λ < −1 not included
above we have q2 = λ−

√
λ2 − 1 ∈ R giving |q2| = |λ−

√
λ2 − 1| > |λ| > 1 and |q1| < 1.

Now let us consider the general case ν > 0. We set w = λ−1
2ν

+ 1. Then q2(ν, λ) =

w +
√
w − 1

√
w + 1. This is equivalent to the case discussed, only that λ is replaced by

w. Since our transformation is a linear bijection from C to C the lemma is proven for all
λ ∈ C. We have e.g. |q1| = |q2| = 1 for w ∈ [−1, 1] which is equivalent to λ ∈ [1−4ν, 1].

On the unit circle with |λ| = 1 we have q1(1
2
, 1) = 1, q1(1

2
,−1) = −1 and |q1(1

2
, λ)| < 1

for λ 6= −1, 1. For ν ∈]0, 1/2[ we have q1(ν, 1) = 1 and |q1(ν, λ)| < 1 for |λ| = 1 and
λ 6= 1.

For von Neumann stability one studies the case that |q1(ν, λ)| = |q2(ν, λ)| = 1. Such
solutions exist only for λ ∈ [1 − 4ν, 1] due to Lemma 1. For 0 < ν ≤ 1

2
we have

λ ∈ [1− 4ν, 1] ⊂ [−1, 1] and stability. Instability for ν > 1
2

arises due to λ ∈ [1− 4ν,−1[.

6.1.3 GR-stability for boundary conditions

We have to rule out that there are bounded solutions in space that grow in time. In
this case we have to consider the case of two roots q1 and q2 of (6.7) with |q1,2| 6= 1.
The product of the roots is equal to the constant term of (6.7) which is equal to 1, i.e.
q1q2 = 1. Since our calculations are real valued only λ ∈ R can appear in a computational
instability. Since we assume that 0 < ν ≤ 1

2
holds, the values |λ| > 1 correspond to

q1,2 ∈ R by Lemma 1. One of the roots of (6.7) then has modulus less than 1 and the
second greater than 1. We had chosen |q1| < 1 and |q2| > 1. Then the general solution of
(6.6) that is decreasing in modulus as j → +∞ has the form

wj = c1[q1(λ)]j (6.11)

with c1 6= 0. The general solution of (6.6) tending to zero as j → −∞ has the form

wj = c2[q2(λ)]j (6.12)

with c2 6= 0. In the GR-stability analysis for the boundary conditions these solutions are
each used in a semi-infinite boundary value problem. They will also later both be used
in coupling problems. Now we study outer boundary conditions. In these cases we are
looking for such solutions with |q1,2| 6= 1 for which |λ| > 1. If such solutions do not exist
the scheme is stable

The outer boundary conditions with central differences for the homogeneous bound-
ary conditions

First, we consider the difference scheme (3.12) for j = 1, 2, ..., i.e. the semi-infinite domain

with only the left boundary. For j = 0 we have the left boundary condition ∂w(0,t)
∂x

= 0
given numerically by (3.15) with qL = 0. The right boundary is moved to +∞. See
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the book of Godunov and Ryabenkii [11, Ch. 8] for further detail. To find a possible
eigenvalue λ we substitute wj = c1q

j
1(λ) into the left hand boundary condition (3.15). We

seek all the values of λ for which it is satisfied. Applying the left homogeneous Neumann
boundary condition from (3.15) gives

c1q
−1
1 = c1q

1
1

or q2
1 = 1. This implies that q1 = ±1 which is clearly a contradiction to our assumption

|q1| 6= 1.
Analogously, we could also use q−1

1 = q2 leading to q2 = q1 as contradiction to |q1| < 1,
|q2| > 1.

Analogously, we consider the right homogeneous Neumann boundary condition ∂w(1,t)
∂x

=
0 with (3.12) for j = N − 1, N − 2, ... on the semi-infinite domain to the left of xN . Using
(6.12) this gives q2 = ±1. This is again a contradiction to our consideration |q2| 6= 1. So
we obtain no further unstable solution due to the boundary conditions.

The scheme (6.5) with the discrete form of the homogeneous Neumann boundary
conditions is stable under the CFL condition (6.4), which is a well known fact.

Alternatively for comparison we apply the normal mode solution to the scheme for the
boundary conditions. For the left hand boundary scheme of the system (6.5) we obtain

λ = 2νq1(ν, λ) + 1− 2ν.

Taking the absolute value of the above equation leads to

|λ| ≤ |1− 2ν|+ 2ν|q1(ν, λ)|
≤ 1− 2ν + 2ν = 1

This gives us the stability condition under the CFL condition 0 < ν ≤ 1
2
. The same

stability condition is obtained for the scheme of the right hand boundary condition in the
system (6.5).

The outer boundary conditions of the finite volume scheme

Analogously we derive the GR-stability for the schemes at the outer boundaries that were
derived via finite volume method in system (3.35). To find a possible eigenvalue λ we
substitute wj = c1q

j
1(λ) into the left hand boundary condition (3.34). We seek all the

values of λ for which it is satisfied. This gives q1 − 1 = 0 which implies that q1 = 1. This
is again a contradiction to our assumption that |q1| 6= 1.

Again alternatively we apply the normal mode solutions to the first scheme of the
system to obtain the following normal mode equation

λ = 1− ν + νq1(ν, λ).

Taking the absolute value of the above equation we obtain

|λ| ≤ |1− ν|+ ν|q1(ν, λ)|
≤ 1− ν + ν = 1.

Also this gives us the stability condition under the CFL condition. The same stability
condition can be obtained for the scheme of the right hand boundary in the system (3.35).
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The outer boundary conditions with one sided differences

Now we discuss for the discretization of the homogeneous outer Neumann boundary con-
ditions wx(0, t) = 0 and wx(1, t) = 0 via one sided differences derived in (3.20) and (3.21)
as

wn0 − wn−1

∆x
= 0,

wnN+1 − wnN
∆x

= 0.

This implies that the first condition is wn0 = wn−1 and the second conditions is wnN+1 = wnN .

To find a possible eigenvalue λ we substitute wj = c1q
j
1(λ) into the left hand boundary

condition and wj = c2q
j
2(λ) into the right hand boundary. We obtain 1 = q−1

1 which im-
plies that q1 = 1. This is again a contradiction of our consideration |q1| 6= 1. Analogously,
we obtain c2q

N+1
2 = c2q

N
2 , this implies that q2 = 1. This is again the contradiction of our

consideration |q2| 6= 1. So we conclude that the discrete form of homogeneous Neumann
boundary condition via one sided differences is also stable under the CFL condition (6.4).
Alternatively for the schemes of the outer boundaries we also get a stable solution un-
der the CFL condition. But there is no need to repeat again because the procedure is
analogous to the one derived above.

Note that later use of these stable boundary conditions depends on the interpretation
of the difference scheme in connection with conservativity. The central difference is con-
servative for a finite element type scheme. The one sided difference is a central difference
for the flux at the boundary in a finite volume type scheme.

The outer boundary conditions with central differences for the non-homogeneous
boundary conditions

Now we consider a non-homogeneous Neumann boundary conditions ∂w
∂x

(0, t) = JL = H ∈
R\0 via the central difference method which implies that

wn1−wn−1

2∆x
= JL = H. This gives

wn−1 = wn1 − 2H∆x.

Then the normal mode solution for this scheme will give c1q
−1
1 = c1q1 − 2H∆x. This

implies that c1q2 = c1q1 − 2H∆x. By taking the absolute value of this normal mode
equation and dividing by the non-zero constant c1 we obtain

|q2| =
∣∣∣q1 −

2H

c1

∆x
∣∣∣.

For ∆x small enough this is a contradiction to the far-field assumption |q2| > 1. Note
that here and in the next case the constant c1 does not cancel anymore.

Alternatively, we now apply the normal mode solution to the scheme for the left hand
non-homogeneous Neumann boundary condition (3.16) for JL = H. It gives

λ = 2νq1(ν, λ) + (1− 2ν)− 2νH∆x

c1

= 2ν
(
q1(ν, λ)− H∆x

c1

)
+ 1− 2ν.
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Taking the absolute of the above normal mode equation we obtain

|λ| ≤ 2ν
∣∣∣q1(ν, λ)− H∆x

c1

∣∣∣+ 1− 2ν. (6.13)

Now
∣∣∣q1(ν, λ)− H∆x

c1

∣∣∣ ≤ |q1(ν, λ)|+ |H
c1
|∆x ≤ 1 for ∆x small enough since |q1| < 1. So we

get an eigenvalue |λ| ≤ 1, which is the required condition for the GR-stability. Note that
such an inhomogeneous Neumann condition at the right boundary leads to an analogous
result.

The outer boundary conditions with central differences for the heat flux boundary
conditions

Here we consider the heat flux boundary conditions
wn1−wn−1

2∆x
= H(w−w0) for a given value

w ∈ R. This implies that
wn−1 = wn1 − 2H∆x(w − w0).

Then the normal mode equation for this scheme will give us c1q2 = c1q1−2H∆x(w−w0).
Now we divide this equation by the non-zero constant c1. This leads to

q2(ν, λ) = q1(ν, λ)− 2H

c1

w∆x+ 2∆x.

By taking the absolute value of above normal mode equation we obtain

|q2(ν, λ)| =
∣∣∣q1(ν, λ) + 2(1− H

c1

w)∆x
∣∣∣.

For ∆x small enough this is again a contradiction to the far-field assumption |q2| > 1.

Alternatively, we consider the scheme for the heat flux boundary condition at the left
boundary in (3.16). It will take the form for JL = H(w − w0) and obtain

wn+1
0 = 2νwn1 + (1− 2ν)wn0 + 2ν∆xH(wn0 − w). (6.14)

Now we apply the normal mode solutions to the above equation to obtain

λ = 2νq1(ν, λ) + 1− 2ν + 2νH∆x− 2ν
H

c1

w∆x

= 2νq1(ν, λ) + 1− 2ν + 2νH(1− w

c1

)∆x

= 2ν
(
q1 +H(1− w

c1

)∆x
)

+ 1− 2ν.

Taking the absolute of the above normal mode equation we get an eigenvalue |λ| ≤ 1

with
∣∣∣q1 +H

(
1− w

c1

)
∆x
∣∣∣ < 1 for ∆x small enough. This is the required condition for the

GR-stability.
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6.1.4 Von Neumann stability for the implicit method

We derived the implicit scheme with homogenous outer boundaries conditions in (3.25).
Here we derive the von Neumann stability for the implicit scheme of single domain diffu-
sion equation. We re-write the system as follows

wn0 = (1 + 2ν)wn+1
0 − 2νwn+1

1 for j = 0

wnj = −νwn+1
j+1 + (1 + 2ν)wn+1

j − νwn+1
j−1 for 0 < j < N

wnN = (1 + 2ν)wn+1
N − 2νwn+1

N−1 for j = N.

(6.15)

We recall the derivation given in the book of Godunov and Ryabenkii [134]. Analogously
we substitute wnj = λn expiαj in the scheme for the interior nodes, i.e. the second equation
in the above system

1 = λ(1 + 2ν − ν(e−iα + eiα)) or λ =
1

1− ν(e−iα + eiα − 2)
.

Using the formula (6.2) lead to the following expression

λ(α) =
1

1 + 4ν sin2(α
2
)
.

The spectrum for this problem gives us the following stability bound

(1 + 4ν sin2(
α

2
))−1 ≤ λ ≤ 1 (6.16)

of the real axis and the condition |λ| ≤ 1 is satisfied for all positive value of ν. So, this
method is unconditionally stable.

The outer boundary conditions with central differences

For the implicit case we get the same stability conditions for the outer boundaries as we
obtained in case of explicit discretization. This implies that for the left hand boundary
we obtain q1 = ±1 and for the right hand boundary q2 = ±1.

The outer boundary conditions with one sided differences

Also in this case we get the same stability condition as we obtained in case of explicit
discretization method. For the left hand boundary we obtain q1 = 1 and for the right
hand boundary q2 = 1.

6.2 GR-stability for the Dirichlet-Neumann coupling conditions
(explicit case)

For the stability analysis of the coupling interface condition we apply the method intro-
duced by Godunov and Ryabenkii for boundary conditions, see e.g. [11]. It seems that
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such an application was first made by Giles [10]. We have to determine whether the
coupling conditions give rise to unstable modes even though the CFL condition (6.4) is
satisfied.

Further, first we derive the GR-stability for the Dirichlet-Neumann coupling and then
for the other coupling conditions with and without ghost point values.

The procedure we use is simpler than the one in Giles [10], Roe et al. [33] and Errera
et al. [6]. Therefore, we obtain more precise GR-stability results in direct way. The
complete coupling system with homogeneous Neumann outer boundary conditions with
the bi-domain diffusion equation can be re-written as follows

un+1
0 = 2ν−u

n
1 + (1− 2ν−)un0 for j = 0

un+1
j = ν−u

n
j−1 + (1− 2ν−)unj + ν−u

n
j+1 for 0 < j < m

the coupling conditions for j = m

vn+1
j = ν+v

n
j−1 + (1− 2ν+)vnj + ν+v

n
j+1 for m < j < N

vn+1
N = 2ν+v

n
N−1 + (1− 2ν+)vnN for j = N.

(6.17)

We consider the following separable normal mode solution for the GR-stability in the case
of coupled case

unj = c2λ
nqj−m2 (ν−, λ) if j ≤ m

vnj = c1λ
nqj−m1 (ν+, λ) if j ≥ m.

(6.18)

Here λ is the temporal amplification factor and q1(ν+, λ) as well as q2(ν−, λ) are the
spatial amplification factors. For the left and right hand boundaries we discussed the GR-
stability in the previous subsection. In the right sub-domain, i.e. for j > m the amplitude
of the mode qj−m1 (ν+) remains bounded as j →∞ due to |q1(ν−, λ)| < 1. Analogously for
the left sub-domain we use |q2(ν−, λ)| > 1. The discretization is unstable if the difference
equation admits such a solutions which gives exponential growth in time, i.e. |λ| > 1.

For the stability analysis we take the unit open ball B = {z ∈ C : |z| < 1}, where
q1(ν−, λ) = q−1

2 (ν−, λ) ∈ B, q1(ν+, λ) = q−1
2 (ν+, λ) ∈ B.

In system (6.17) we have six types of equations. We derived the GR-stability for the
outer boundary conditions as well for the interior points via von Neuman stability in the
preceding section. So, now we only need to derive the GR-stability for the Dirichlet-
Neumann coupling conditions and other coupling conditions.

6.2.1 Dirichlet-Neumann coupling with ghost point value

The Dirichlet-Neumann coupling condition was defined in (4.8). We use the ghost point
values unm+1. We discretize the Dirichlet-Neumann coupling via unm = vnm and one sided
differences given as

D−
unm+1 − unm

∆x
= D+

vnm+1 − vnm
∆x

= D+

vnm+1 − unm
∆x

.
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or

unm+1 = unm +
D+

D−
(vnm+1 − unm). (6.19)

Applying the separable normal mode solutions defined in (6.18) to the Dirichlet condition
unm = vnm we obtain unm = c2λ

n = vnm = c1λ
n. So, the constants c1 and c2 have to be equal,

i.e. c1 = c2 = c.
For simplicity at first we take the identical diffusion coefficients D− = D+ = D. Now

we apply the separable normal mode solutions to (6.19) to obtain the following normal
mode equation

q2(ν, λ) = 1 + q1(ν, λ)− 1 = q1(ν, λ).

This is a contradiction to the far-field assumptions |q2(ν, λ)| > 1 and |q1(ν, λ)| < 1. So,
there is no such solution and the coupling condition gives us a stable solution under the
CFL condition 0 < ν ≤ 1

2
.

Case with un-equal diffusion coefficients D− 6= D+

Now for the case D− 6= D+ we can write (6.19) as

ν−(unm+1 − unm) = ν+(vnm+1 − um).

We apply the normal mode solutions to the above scheme to obtain

ν−(q2(ν−, λ)− 1) = ν+(q1(ν+, λ)− 1).

Into this equation we insert the formula (6.10) for the roots. This gives

λ− 1

2

[
1 +

√
1 +

4ν−
λ− 1

]
=
λ− 1

2

[
1−

√
1 +

4ν+

λ− 1

]
or equivalently √

1 +
4ν−
λ− 1

= −
√

1 +
4ν+

λ− 1
.

Since the square roots are positive this implies that

0 = 1 +
4ν±
λ− 1

which gives λ = 1 − 4ν+ = 1 − 4ν−. This is a contradiction to the assumption that
ν+ 6= ν−. Therefore we have stability.

Alternatively, we proceed as follows using the discretized scheme of the DN-coupling
that was derived in (4.18). It is given by

un+1
m = unm + ν+(vnm+1 − unm)− ν−(unm − unm−1). (6.20)

Substituting the separable normal mode solution (6.18) into the above equation leads to
the following normal mode equation

λ = 1 + ν+(q1(ν+, λ)− 1)− ν−(1− q−1
2 (ν−, λ)). (6.21)
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We take the modulus of the above equation and use the CFL condition 0 ≤ ν± ≤ 1
2
.

This implies that 0 ≤ ν− + ν+ ≤ 1 which gives us 1 − (ν+ + ν−) ≥ 0. Further we have
q−1

2 (ν−, λ) = q1(ν−, λ). Then we obtain

|λ| = |1− (ν+ + ν−) + ν+q1(ν+, λ) + ν−q1(ν−, λ)|
≤ |1− (ν+ + ν−)|+ ν+|q1(ν+, λ)|+ ν−|q1(ν−, λ)|
≤ 1− (ν+ + ν−) + ν+ + ν−

≤ 1.

Therefore, this coupling condition does not introduce instabilities when the CFL condition
is satisfied.

Note that in all cases we could alternatively do the stability analysis for the discrete
coupling condition itself as well as for its use in a modification of the scheme. Here we
are not able to prove the stability for the coupling itself using only the properties |q1| < 1
and |q2| > 1. We have to use the more specific formula (6.10) for the roots.

Note on the maximum principle

The stability analysis is closely related to the maximum principle for our diffusion equa-
tions as long as the coupling conditions allow for the maximum principle. For the interior
nodes we have under the CFL condition 0 ≤ v− ≤ 1

2

max
j=1,...,m−1

|un+1
j | = max

j=1,...,m−1
|(1− 2ν−)unj + ν−uj+1 + ν−uj+1|

≤ (1− 2ν−) max
j=1,...,m−1

|unj |+ ν− max
j=1,...,m−1

|unj+1|+ ν− max
j=1,...,m−1

|unj−1|

≤ max
j=0,...,m

|unj |,
(6.22)

for the left boundary we have

|un+1
0 | ≤ 2ν−|un1 |+ (1− 2ν−)|un0 | (6.23)

as well as for the coupling condition (6.20)

|un+1
m | ≤ (1− (ν+ + ν−))|unm|+ ν+|vnm+1|+ ν−|unm−1|. (6.24)

Proceeding analogously for vn+1
j we obtain

max
j=0,...,m

|un+1
j |+ max

j=m+1,...,2m
|vn+1
j | ≤ max

j=0,...,m
|unm|+ max

j=m+1,...,2m
|vnm|. (6.25)

So, the discrete maximum principle holds under the CFL condition 0 ≤ ν± ≤ 1
2
.

6.2.2 GR-stability for the cell based scheme of the Dirichlet-Neumann cou-
pling

In the cell based formulation we derived the schemes for the left interior nodes in (4.19),
for the Dirichlet-Neumann coupling in (4.23) and for the interior of the right sub-domain
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in (4.20). The formulas for these schemes are the same as in the nodal based case treated
above. So, there is no need to repeat the stability analysis again. The schemes for the
outer boundary conditions are different. But, for them we already discussed the normal
mode analysis in Subsection 6.1.3.

6.2.3 Comparison and discussion with the coupling of Giles

We used a slightly different procedure than Giles [10] in our formulation. In deriving his
coupling term Giles [10, p. 426] omitted a term in the time difference making his scheme
inconsistent with the time derivative and non conservative, as will be shown further on.
His coupling term is given as

un+1
m = unm + 2rν+(vnm+1 − unm)− 2ν−(unm − unm−1). (6.26)

This coupling scheme is missing factors of 1
1+r

that appear in (4.14). Note that Roe et
al. [33] also used this incorrect scheme. Repeating the above stability analysis leads to a
much sharper CFL restriction, namely 0 ≤ 2rν+ + 2ν− ≤ 1 or 0 ≤ rν+ + ν− ≤ 1

2
. So, the

instabilities that Giles [10] observed are due to his modification that makes his scheme
inconsistent as we remarked in Chapter 4 and non-conservative as shown in Chapter 5.

Taking r = 1 and comparing to our coupling formula (6.20) we see that Giles produced
a factor of two in the flux terms.

6.2.4 Corrected Giles coupling condition

We recall the corrected Giles coupling scheme in (4.14)

un+1
m = unm +

2rν+

1 + r
(vnm+1 − vnm)− 2ν−

1 + r
(unm − unm−1).

In Chapter 5 we have shown that it is conservative. We apply the normal mode solutions
to the above scheme

λ = 1 +
2r

1 + r
ν+(q1(ν+, λ)− 1)− 2

1 + r
ν−(1− q1(ν−, λ)).

After re-arranging we obtain

λ = 1−
( 2r

1 + r
ν+ +

2

1 + r
ν−

)
+

2r

1 + r
ν+q1(ν+, λ) +

2

1 + r
ν−q1(ν−, λ). (6.27)

Now for the stability we need to 2r
1+r

ν+ + 2
1+r

ν− ≤ 1. Under the CFL condition 0 < ν± ≤ 1
2

we have
2r

1 + r
ν+ +

2

1 + r
ν− ≤

r

1 + r
+

1

1 + r
= 1.

So we do not have a further restriction. Now we take the absolute value of the normal
mode equation (6.27)

|λ| ≤
∣∣∣1− ( 2r

1 + r
ν+ +

2

1 + r
ν−

)∣∣∣+
2r

1 + r
ν+

∣∣∣q1(ν+, λ)
∣∣+

2

1 + r
ν−

∣∣∣q1(ν−, λ)
∣∣∣

≤ 1−
( 2r

1 + r
ν+ +

2

1 + r
ν−

)
+

2r

1 + r
ν+ +

2

1 + r
ν− = 1.

We obtain the GR-stability condition |λ| ≤ 1 under the CFL condition.

98



6.3. GR-STABILITY FOR THE HEAT FLUX COUPLING

6.3 GR-stability for the heat flux coupling

We discretized the heat flux coupling condition in Chapter 4 via one sided differences
and with central differences. Here, we derive the GR-stability for the heat flux coupling
conditions and for scheme of the heat flux coupling conditions as follows.

Heat flux coupling conditions via one sided differences for the finite volume scheme

First we derive the GR-stability for the one sided finite volume schemes. The discretized
coupling scheme for the heat flux coupling conditions was derived in (4.28)

un+1
m = unm − ν−(unm − unm−1) +

H∆t

∆x
(vnm − unm). (6.28)

In order to continue the result just obtained we applying the separable normal mode
solutions defined in (6.18) to the above scheme. Using ν− = D−∆t

(∆x)2
gives

λ = 1− ν−
(

1− q−1
2 (ν−, λ)

)
+
H∆t

∆x

(c1 − c2)

c2

= 1− ν− + ν−

(
q1(ν−, λ) +

H∆x

D−

(c1 − c2)

c2

) (6.29)

We take the modulus of the above normal mode equation under the CFL condition. Using
q−1

2 (ν−, λ) = q1(ν−, λ) we obtain

|λ| ≤ |1− ν−|+ ν−

∣∣∣q1(ν−, λ) +
H∆x

D−

(c1 − c2)

c2

∣∣∣
≤ 1− ν− + ν−

∣∣∣q1(ν−, λ) +
H∆x

D−

(c1 − c2)

c2

∣∣∣. (6.30)

Now
∣∣∣q1(ν−, λ) + H∆x

D−

(c1−c2)
c2

∣∣∣ ≤ |q1(ν−, λ)|+ |H(c1−c2)
c2

∣∣∣∆x
D−
≤ 1 for ∆x small enough. So we

get the required condition |λ| ≤ 1 for the GR-stability under the CFL condition.
Analogously, now we find the GR-stability for the second scheme of the heat flux

coupling condition given as

vn+1
m = vnm + ν+(vnm+1 − vnm)−H ∆t

∆x
(vnm − unm). (6.31)

Now apply the normal mode solution to the above scheme and using ν+ = D+∆t
(∆x)2

we obtain

λ = 1 + ν+(q1(ν+, λ)− 1) +
H∆t

∆x

(c2 − c1)

c1

= 1− ν+ + ν+

(
q1(ν+, λ) +

H∆x

D+

(c2 − c1)

c1

)
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Taking the absolute value of the above equation

|λ| ≤ |1− ν+|+ ν+

∣∣∣q1(ν+, λ) +
H∆x

D+

(c2 − c1)

c1

∣∣∣
≤ 1− ν+ + ν+

∣∣∣q1(ν+, λ) +
H∆x

D+

(c2 − c1)

c1

∣∣∣. (6.32)

Now
∣∣∣q1(ν+, λ) + H∆x

D+

(c2−c1)
c1

∣∣∣ ≤ |q1(ν+, λ)|+ |H(c2−c1)
c1

∣∣∣∆x
D+
≤ 1 for ∆x small enough. So we

get the required condition |λ| ≤ 1 for the GR-stability under the CFL condition.

Heat flux coupling conditions via central differences

Now we use the heat flux coupling condition for un+1
m that was derived in (4.31)

un+1
m = unm − 2ν−(unm − unm−1) +

2H∆t

∆x

(
vnm − unm

)
.

After applying the normal mode solutions to the above scheme we obtain the following
normal mode equation

|λ| ≤ |1− 2ν−|+ 2ν−

∣∣∣q1(ν−, λ) +
H∆x

D−

(c1 − c2)

c2

∣∣∣
≤ 1− 2ν− + 2ν−

∣∣∣q1(ν−, λ) +
H∆x

D−

(c1 − c2)

c2

∣∣∣. (6.33)

To follow the same argument which is used just above here too. Then we obtain the
GR-stability condition |λ| ≤ 1.

Analogously, we derive the GR-stability for the second scheme of the heat flux coupling
conditions which was derived in (4.32) via central difference method

vn+1
m = vnm + 2ν+(vnm+1 − vnm)− 2H∆t

∆x
(vnm − unm). (6.34)

Now apply the normal mode solution to the above scheme we obtain the following normal
mode equation

|λ| ≤ |1− 2ν+|+ 2ν+

∣∣∣q1(ν+, λ) +
H∆x

D+

(c2 − c1)

c1

∣∣∣
≤ 1− 2ν+ + 2ν+

∣∣∣q1(ν+, λ) +
H∆x

D+

(c2 − c1)

c1

∣∣∣.
Similarly again we used the argument just used above we obtain the stability condition
|λ| ≤ 1 under the CFL condition here too with the same argument given above. Therefore,
this coupling condition does not introduce instabilities with further restrictions when the
CFL condition is satisfied.
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6.3.1 Channel pumping condition

The channel pumping conditions (2.16) have the constant term β in the denominator
which introduce a term λn in the denominator of β. Then we can not easily find the
GR-stability.

6.3.2 Simplified channel pumping conditions and linearized membrane pump-
ing

Here we derive the GR-stability for the simplified channel pumping conditions and its
special case linearized membrane pumping conditions. In implementations we use the one
sided and central difference methods. So, we derive for both as follows.

One sided difference method for the finite volume scheme

First we derive the GR-stability for the one sided differences for the finite volume scheme.
Then for the central differences. The schemes of the simplified channel pumping conditions
via the one sided difference method. The schemes were derived in (4.37) and (4.38). First,
we consider (4.37)

un+1
m = unm − ν−(unm − unm−1) +

∆tψ

∆x

(
αvnm − unm

)
.

We apply the separable normal mode solutions defined in (6.18) to the above scheme. We
obtain

λ = 1− ν−(1− q−1
2 (ν−, λ)) +

ψ∆t

∆x

(αc1 − c2)

c2

= 1− ν−(1− q1(ν−, λ)) +
ψ∆t

∆x

(αc1 − c2)

c2

.

We know that ν− = ∆tD−
(∆t)2

, α ≥ 1 and ψ > 0. This gives

λ = 1− ν−(1− q1(ν−, λ)) + ν−
ψ∆x

D+

(αc1 − c2)

c2

= 1− ν− + ν−

(
q1(ν−, λ) +

ψ∆x

D−

(αc1 − c2)

c2

)
.

(6.35)

Now
∣∣∣q1(ν−, λ)+ ψ∆x

D−

(αc1−c2)
c2

∣∣ ≤ |q1(ν−, λ)|+ ψ∆x
D−

∣∣∣αc1−c2c2

∣∣∣ ≤ 1. Now by taking the absolute

value of the (6.35) we get the stability condition |λ| ≤ 1 under the CFL condition.
Analogously, we follow the same procedure for the second formula of the simplified

channel pumping conditions (4.38) that was derived via one sided difference

vn+1
m = vnm + ν+(vnm+1 − vnm)− ∆t

∆x

(
ψ(αvnm − unm)

)
. (6.36)
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Now we apply the separable normal mode solutions to the above scheme. We obtain

λ = 1 + ν+(q1(ν+, λ)− 1)− ∆t

∆x
(ψ(α− 1))

= 1− ν+ + ν+

(
q1(ν+, λ) +

ψ∆x

D+

(c2 − αc1)

c1

)
.

(6.37)

Now
∣∣∣q1(ν+, λ)+ ψ∆x

D−

(c2−αc1)
c1

∣∣ ≤ |q1(ν+, λ)|+ ψ∆x
D+

∣∣∣ c2−αc1c1

∣∣∣ ≤ 1. Now by taking the absolute

value of the (6.37) we get the stability condition |λ| ≤ 1 under the CFL condition.

Central difference method

Here, we derive the GR-stability for the simplified coupling conditions via the central
difference method.

The schemes of the simplified channel pumping conditions via the central difference
method in (4.35) and (4.36). First, we consider (4.35)

un+1
m = unm − 2ν−(unm − unm−1) +

2∆t

∆x

(
ψ(αvnm − unm)

)
.

We apply the separable normal mode solutions defined in (6.18) to the above scheme. We
obtain

λ = 1− 2ν−(1− q−1
2 (ν−, λ)) +

2∆x

D+

(ψ(α− 1))

= 1− 2ν−(1− q1(ν−, λ)) +
2∆x

D+

(ψ(α− 1))

We know that ν− = ∆tD−
(∆t)2

, α ≥ 1 and ψ > 0. This gives

λ = 1− 2ν−(1− q1(ν−, λ)) + 2ν−
ψ∆x

D+

(αc1 − c2)

c2

= 1− 2ν− + 2ν−

(
q1(ν−, λ) +

ψ∆x

D−

(αc1 − c2)

c2

)
.

(6.38)

Now
∣∣∣q1(ν−, λ)+ ψ∆x

D−

(αc1−c2)
c2

∣∣ ≤ |q1(ν−, λ)|+ ψ∆x
D−

∣∣∣αc1−c2c2

∣∣∣ ≤ 1. Now by taking the absolute

value of the (6.38) we get the stability condition |λ| ≤ 1 under the CFL condition.
Analogously, using the same procedure for the second formula of the simplified channel

pumping conditions via central difference method in (4.36) as

vn+1
m = vnm + 2ν+(vnm+1 − vnm)− 2∆t

∆x

(
ψ(αvnm − unm)

)
.

We apply the separable normal mode solutions to the above scheme. We obtain the
following normal mode equation

λ = 1 + 2ν+(q1(ν+, λ)− 1)− 2
∆t

∆x
(ψ(α− 1))

= 1− 2ν+ + 2ν+

(
q1(ν+, λ) +

ψ∆x

D+

(c2 − αc1)

c1

)
.

(6.39)
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Now
∣∣∣q1(ν+, λ)+ ψ∆x

D−

(c2−αc1)
c1

∣∣ ≤ |q1(ν+, λ)|+ ψ∆x
D+

∣∣∣ c2−αc1c1

∣∣∣ ≤ 1. Now by taking the absolute

value of the (6.39) we get the stability condition |λ| ≤ 1 under the CFL condition.

Linearized pumping coupling condition (special case)

The linearized membrane pumping conditions is the special case of the simplified channel
pumping conditions. Note that for ψ = 1 and α = 3/2 we get the linearized pumping
condition. By substitution of these values we can get the conditions for stability derived
above.

6.3.3 GR-stability for the simplified membrane pumping conditions

The simplified membrane pumping as a perturbation of the stable heat flux coupling. The
perturbation smaller as ∆x becomes smaller.

One sided difference method

We derived the scheme for the simplified pumping membrane conditions via one sided
difference for the finite volume scheme in (4.45) as given

un+1
m = unm − ν−(unm − unm−1) +

∆t

∆x

(
H(vnm − unm) + P

(vnm)2

1 + (vnm)2

)
.

Now we apply the normal mode solutions (6.18) to the above scheme. We obtain

λ = 1− ν−(1− q−1
2 (ν−, λ)) + ν−

∆x

D−

(H(c1 − c2)

c2

+
P

c2

c2
1(q1(ν+, λ))2

1 + c2
1(q1(ν+, λ))2

)
.

This implies that

λ = 1− ν− + ν−q1(ν−, λ) + ν−
∆x

D−

(H(c1 − c2)

c2

+
P

c2

c2
1(q1(ν+, λ))2

1 + c2
1(q1(ν+, λ))2

)
.

Now we take the absolute value of the above equation

|λ| ≤ 1− ν− + ν−

[
|q1(ν−, λ)|+ ∆x

D−

(∣∣∣H(c1 − c2)

c2

∣∣∣+
P

|c2|
c2

1(q1(ν+, λ))2

1 + c2
1(q1(ν+, λ))2

)]
. (6.40)

In a real valued computation an instability could only produce a λ ∈ R. From Lemma 1
we know that q1(ν+, λ) ∈ R for λ ∈ R\]1− 4ν+, 1[. Clearly the non-linear function in the
above equation is bounded as

c2
1(q1(ν+, λ))2

1 + c2
1(q1(ν+, λ))2

≤ 1.

This implies that

|λ| ≤ 1− ν− + ν−

[
|q1(ν−, λ)|+ ∆x

D−

(
H
∣∣∣(c1 − c2)

c2

∣∣∣+
P

|c2|

)]
.
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Now suppose that we had λ ∈ R with |λ| > 1. Then for ∆x small enough we obtain
the contradiction |λ| ≤ 1 due to |q1(ν−, λ)| < 1. This implies stability for this coupling
condition.

Analogously, we derive the stability condition for the second formula of the simplified
coupling condition derived in (4.46) as

vn+1
m = vnm + ν+(vnm+1 − vnm)− ∆t

∆x

(
H(vnm − unm) + P

(vnm)2

1 + (vnm)2

)
.

Now we apply the normal mode solutions to the above scheme we get the following normal
mode equation

λ = 1− ν+(1− q1(ν+, λ))− ν+
∆x

D+

(H(c1 − c2)

c1

− P

c1

c2
1(q1(ν+, λ))2

1 + c2
1(q1(ν+, λ))2

)
.

This gives the condition for stability as above

|λ| ≤ 1− ν+ + ν+

[
|q1(ν+, λ)|+ ∆x

D+

(
H
∣∣∣(c2 − c1)

c1

∣∣∣− P

|c1|

)]
.

This implies that |λ| ≤ 1 for ∆x sufficiently small as above, which is the required condition
for the GR-stability.

Central difference method

Analogously we obtain the following normal mode equation for the scheme un+1
m via central

difference method. Because we know that the scheme of the central difference is only differ
with a factor of 2

λ = 1− 2ν− + 2ν−q1(ν−, λ) + 2∆x
ν−
D−

(H(c1 − c2)

c2

+
P

c2

c2
1(q1(ν+, λ))2

1 + c2
1(q1(ν+, λ))2

)
(6.41)

and for the second scheme vn+1
m as

λ = 1− 2ν+ + 2ν+q1(ν+, λ) + 2∆x
ν−
D+

(H(c2 − c1)

c1

− P

c1

c2
1(q1(ν+, λ))2

1 + c2
1(q1(ν+, λ))2

)
. (6.42)

The argument given above for the stability of the one sided normal mode equations will
be followed here too because the formulas only differ by a factor of 2 with ν±.

6.3.4 GR-stability for the membrane pumping conditions

Here we derive the GR-stability for the membrane pumping condition via the one sided
finite volume cell based and the nodal based central difference method.

104



6.3. GR-STABILITY FOR THE HEAT FLUX COUPLING

One sided difference finite volume cell based method

First we consider the one sided finite volume cell based method which was derived in
(4.41) and (4.42). We derive the GR-stability for the formula derived for the coupling
conditions corresponding to the left sub-domain (4.41)

un+1
m = unm − ν−(unm − unm−1) +

∆t

∆x

(
(Pl + Pc(t))(v

n
m − unm) + Pp

(vnm)2

k2
d + (vnm)2

)
.

The simplified membrane pumping is a special case of the membrane pumping containing
the essential features. So, we can follow the same steps taken above to obtain the following
normal mode equation

|λ| ≤ 1− ν− + ν−|q1(ν−, λ)|+ ∆x
ν−
D−

(
(Pl + Pc(t))

∣∣∣(c1 − c2)

c2

∣∣∣+
Pp
|c2|

c2
1(q1(ν+, λ))2

k2
d + c2

1(q1(ν+, λ))2

)
.

Again the nonlinear function is bounded as

c2
1(q1(ν+, λ))2

k2
d + c2

1(q1(ν+, λ))2
≤ 1.

With this condition we obtain

|λ| ≤ 1− ν− + ν−

[
|q1(ν−, λ)|+ ∆x

D−

(
(Pl + Pc(t))

∣∣∣(c1 − c2)

c2

∣∣∣+
Pp
|c2|

)]
.

If we assume Pc(t) to be a bounded function, this implies stability for this coupling con-
dition with ∆x sufficiently small as above.

The second formula (4.42) of the membrane pumping conditions via one sided differ-
ence is given by

vn+1
m = vnm + ν+(vnm+1 − vnm)− ∆t

∆x

(
(Pl + Pc(t))(v

n
m − unm) + Pp

(vnm)2

k2
d + (vnm)2

)
.

The stability follows analogously as above.

Central difference method

Analogously, we obtain the normal mode solution for un+1
m via the central difference

method

λ = 1− 2ν− + 2ν−q1(ν−, λ) + 2ν−
∆x

D−

((Pl + Pc(t))(c1 − c2)

c2

+
Pp
c2

c2
1(q1(ν+, λ))2

k2
d + c1(q1(ν+, λ))2

)
.

(6.43)
and the normal mode equation for the second formula, i.e. for vn+1

m

λ = 1− 2ν+ + 2ν+q1(ν−, λ) + 2ν+
∆x

D+

((Pl + Pc(t)(c2 − c1)

c1

− Pp
c1

c2
1(q1(ν+, λ))2

k2
d + c1(q1(ν+, λ))2

)
.

(6.44)
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The argument given above for the stability of the one sided normal mode equations of the
membrane pumping conditions will be followed here too because the formulas only differ
by a factor of 2 with the ν±.

6.4 GR-stability for the fully implicit discretization

Here we derive the GR-stability for the coupling conditions via an implicit discretization
method. We derived the unconditional von Neumann stability for the interior points as
well the GR-stability for the boundary conditions in Subsection 6.1.4 for the implicit
discretization method. The fully implicit discretization system together with boundary
conditions and the coupling conditions is given by

(1 + 2ν−)un+1
0 − 2ν−u

n+1
1 = un0 for j = 0

−ν−un+1
j−1 + (1 + 2ν−)un+1

j − ν−un+1
j+1 = unj for j < m

the coupling conditions for j = m

−ν+v
n+1
j−1 + (1 + 2ν+)vn+1

j − ν+v
n+1
j+1 = vnj for j > m

−2ν+v
n+1
2m−1 + (1 + 2ν+)vn+1

2m = vn2m for j = 2m.

(6.45)

Normal mode equation for the interior nodes

Here we consider the second equation of the above system, which is for the interior nodes
of the left sub-domain

unj = −ν−un+1
j+1 + (1 + 2ν−)un+1

j − ν−un+1
j−1 . (6.46)

Now we apply the normal mode solution un+1
j = cλn+1qj to the above formula. We obtain

λ−1 = −ν−q−1 + (1 + 2ν−)− q.

After re-arranging terms we get the following quadratic equation

q2 +
(1− λ
ν−λ

− 2
)
q + 1 = 0.

The two roots of the above equation are given by

q̃1,2 =
2− (1−λ

ν−λ
)∓

√
(1−λ
ν−λ
− 2)2 − 4

2
.

A more convenient but not identical reformulation is

q1,2 = 1 +
λ− 1

2ν−λ

[
1∓

√
1 +

4ν−λ

λ− 1

]
. (6.47)

This formula for the two roots is equivalent to the one derived in Giles [10, (30)] for
the implicit discretization. The same formula for the roots can be derived for the right
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sub-domain which will only differ by replacing ν− by ν+. Note that the roots q1,2 in the
implicit case are not equal to ones derived for the explicit case, but we use the same
notation q1,2 for the remaining part of this chapter.

In this case we follow Giles that for the roots with the minus sign is less 1 in absolute
the solution exist so we will use |q1(ν±, λ)| ≤ 1 and the roots with the plus sign, i.e.
|q2(ν±, λ)| ≥ 1.

6.4.1 Dirichlet-Neumann coupling

Let us consider the scheme of the implicit formula with Dirichlet-Neumann coupling con-
ditions. We derived it in (4.53). For j = m we have

unm = −ν−un+1
m−1 + (1 + ν−)un+1

m − ν+(vn+1
m+1 − vn+1

m ). (6.48)

Again we have the Dirichlet condition un+1
m = vn+1

m . To apply the normal modes to this
we get un+1

m = c2λ
n+1 = vn+1

m = c1λ
n+1. So, the constants c1 and c2 have to be equal, i.e.

c1 = c2 = c. These cancel as before in the calculation for the Dirichlet-Neumann coupling.
Inserting the separable normal mode solutions (6.18) into the above scheme we obtain

the following normal mode equation

1 = −ν−λq−1
2 (ν−, λ) + (1 + ν−)λ− ν+λ(q1(ν+, λ)− 1)

= λ
(

1 + ν−(1− q1(ν−, λ)) + ν+(1− q1(ν+, λ))
)
.

For an instability we would need to find a |λ| > 1 and λ ∈ R. By Lemma 1 this implies

q1(ν±, λ) ∈ R and |q1(ν±,λ)| ≤ 1. We define ξ =:
(

1+ν−(1−q1(ν−, λ))+ν+(1−q1(ν+, λ))
)

.

Clearly we have 1 − q1(ν±) ≥ 0. This implies that ξ ≥ 1. This gives us |λ| = 1
|ξ| ≤ 1.

This is a contradiction to |λ| > 1. We obtain a stable solution for the implicit case of
Dirichlet-Neumann coupling scheme under the CFL condition (6.4).
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Chapter 7

Numerical results and discussion

In this chapter we discuss the numerical results for the single domain diffusion equation as
well as for the various coupling conditions with bi-domain diffusion equations considered
in this thesis. We used an explicit as well an implicit discretization methods for the
single as well as for the bi-domain diffusion equations. In the first section we discuss the
numerical results for the single domain diffusion equation. In the second section we give
for the Dirichlet-Neumann (DN) coupling with error in the L1 norm as well the order
of convergence. In the third section we explain the various test cases for the stable and
unstable solutions for the heat flux coupling conditions. In the fourth section we give a
comparison of the results for the heat flux, membrane pumping as well as for the simplified
membrane pumping.

We explain the results for the channel pumping conditions and its special case sim-
plified channel pumping conditions in section five. Section 6 contains the results for the
membrane pumping conditions, its special case simplified membrane pumping and the
linearized membrane pumping condition. The details for the solution times and iterations
counts will present in Section 7.

We will consider single and bi-domain diffusion problems on the interval [0, 1]. The
basic details of the discretization were discussed in Sections 3.2 and 4.1. The spatial mesh
size is given as ∆x = 1/N . We choose the CFL-number 1/3, this leads to the time step

size ∆t = (∆x)2

3 max(D1,D2)
. For a given time T the number of time steps is M = T/∆t. In

our calculations we choose T = 6.666666666666667e− 01. The table for all the necessary
parameters w.r.t. the different mesh sizes and with corresponding number of time steps
are given in Figure 7.1.

7.1 Results of the single domain computations

Here we give the numerical results for the various discretization methods used for the
single domain diffusion equation with homogeneous Neumann boundary conditions that
were derived in Chapter 3. The numerical scheme for the explicit FTCS was given in
(3.18), for the implicit BTCS in (3.25) and for the explicit finite volume scheme in (3.35).

As our test case we consider the non-negative exact solution w(t, x) = e−Dπ
2t cos(πx)+

1 on the spatio-temporal domain [0, T ] × [0, 1] for the diffusion equation. It satisfies the
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Figure 7.1: Table for number of nodal values N , number of time steps M , time step size

∆t = (∆x)2

3 max(D1,D2) , spatial mesh size ∆x and for T = M∆t.

Nodes N time steps M = T/∆t ∆t ∆x = 1/N

200 80 0.0083 0.005

400 320 0.0021 0.0025

600 720 9.25e-04 0.0017

800 1280 5.20e-04 0.0013

1000 2000 3.33e-04 1.0000e-03

1200 2880 2.314e-04 8.3333e-04

1400 3920 1.700e-04 7.1429e-04
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Figure 7.2: Initial data: Plot of the initial data w0(x) = cos(πx) + 1.
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Figure 7.3: Single domain: Comparison of the exact, explicit, implicit and finite volume
solution for the single domain diffusion equation, while the right figure is the zoom at the mid
point of the internal, i.e. on 0.5.

initial data w0(x) = cos(πx) + 1 plotted in Figure 7.2 and the homogeneous Neumann
boundary conditions, i.e. wx(0) = wx(1) = 0. We will present the comparisons of this
solution with the numerical solutions obtained via the explicit, implicit and finite volume
discretization methods. The diffusion coefficient D = 0.001 m2s−1, mesh size ∆x =
1/N = 1/200 and with corresponding number of time steps M = 80 are used. The choice
is somewhat arbitrary since e.g. Thul and Falcke [38] used much smaller values and Zhang
et al. [40] much larger ones. The results for all methods together with the exact solution
are shown in Figure 7.3 with the zoom at the mid point 0.5. These results are close to
each other. So we give zooms at the left and on the right boundary which are given in
Figure 7.4.

We observed that the finite volume scheme gives a less exact solution than the explicit
FTCS and implicit BTCS. Clearly this can be seen in the graphs of Figure 7.3. Also this
difference is seen in the L1 error in Figure 7.6.

7.1.1 L1 error computations

We know an exact solution of the diffusion equation (3.1). So, we can compute the L1

error, see the formulations in Section 3.6. Here we compute this error for the single
domain diffusion equation for various discretization methods namely the explicit FTCS,
implicit BTCS and explicit cell based finite volume method. The parameters, for which
we compute the error, are given in Figure 7.1.

All these error computations for the FTCS and BTCS using the exact solver in each
time step are arranged in table form in Figure 7.5. For the explicit finite volume method
they are given in Figure 7.6. The errors were computed at the final time T = 6.66666e−01
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Figure 7.4: Zoom of the Figure 7.3: The left panel is the zoom of left end of the boundary
of Figure 7.3 and the right panel is the zoom of the right end boundary

and the diffusion coefficient used above. The implicit scheme has a larger error than the
explicit scheme. The finite volume scheme gives slightly worse results than the finite
difference explicit scheme. A comparison for the log of the L1 error, i.e. log(EM(h)) for
these three methods, is plotted in the left panel of the Figure 7.7, while the order of
convergence can be seen in the right panel.

7.2 Dirichlet-Neumann coupling computations

In Chapter 4 we derived the schemes for the Dirichlet-Neumann (DN) coupling for the
bi-domain diffusion equations with various coupling discretization methods including the
explicit nodal based coupling, the explicit finite volume cell based coupling and the implicit
coupling methods. The explicit nodal based scheme was derived in (4.11), for the explicit
finite volume cell based in (4.23) and for the implicit coupling method in (4.53).

The numerical procedures of these various coupling methods are given in algorithms
A1, A2 and A3. These can be found in the Subsections 4.1.2, 4.2.1 and 4.2.2 respec-
tively. We give numerical results for these algorithms. All results for these methods are
obtained for the spatial domain [0, 1] with the interface at x = 0.5. We have the zero
flux Neumann outer boundary conditions, i.e. ux(0) = 0. We use again the initial data
u0(x) = cos(πx/L) + 1 for x ∈ [0, 1/2] and v0(x) = cos(πx/L) + 1 for x ∈ [1/2, 1] which
are plotted in Figure 7.2. We consider identical as well as un-equal diffusion coefficients
for these three methods. Results are given in the following three subsections.
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Figure 7.5: Single domain: Table of L1-error and numerical order of convergence (NOC) for
single domain diffusion equation computed via explicit FTCS, implicit FTCS methods.

N EM (h)-FTCS (explicit) NOC EM (h)-BTCS (implicit) NOC

200 8.556498810833192e-08 2.566687725217643e-07

400 2.139100654452614e-08 2.000016 6.417142470268746e-08 1.99990

600 9.507094722562578e-09 2.00000 2.852105819638663e-08 1.99996

800 5.347737733092669e-09 2.00000 1.604328622745763e-08 1.99995

1000 3.422545358139610e-09 2.00000 1.026772952039765e-08 1.99998

1200 2.376773246719804e-09 1.99998 7.130697937340753e-09 1.99974

1400 1.746202345499005e-09 1.99999 5.239139725389993e-09 1.99967

Figure 7.6: Single domain: Table of L1-error and numerical order of convergence (NOC) for
the single domain diffusion equation computed via the finite volume cell based method.

N EM (h)-FV-scheme (explicit) NOC

200 8.556762708040664e-08

400 2.139117129657063e-08 2.0000496

600 9.507127133935071e-09 2.0000155

800 5.347747843576079e-09 2.0000077

1000 3.422549401822966e-09 2.0000072

1200 2.376775105666832e-09 1.9999891

1400 1.746202929372229e-09 1.999996
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Figure 7.7: Single domain: The left panel shows log(EM (h)) for the single domain diffusion
equation over the number of nodes via the explicit, the implicit method and the finite volume
scheme, while the right panel gives the numerical order of convergence.

7.2.1 DN-coupling with bi-domain diffusion equation for the identical diffu-
sion coefficients

Here we calculate the numerical solution for the DN-coupling scheme with the identical
diffusion coefficients D− = D+ = 0.001 via the explicit, implicit monolithic, implicit
partitioned iterative approach and for the scheme of Giles. We know from Chapter 4
that in the case of our explicit DN-coupling scheme for the same diffusion coefficients
we obtain a scheme identical to the one for the single domain diffusion equation. In our
implementation of both schemes we observed identical results. Also we have an exact
solution for comparison.

We use the initial data given above, with mesh size ∆x = 1/N = 1/200. The solutions
are given in Figure 7.8 with a zoom at the left boundary in the right panel. We compare
with the exact solution. From now on we only show a zoom at the left boundary. The
solutions at the right boundary are symmetric in reverse order as was seen in Figure 7.4.

In these computations we observed that the exact solution lies between the explicit
and implicit solutions. Both implicit solutions, monolithic and partitioned iterative, are
also not distinguishable with a stronger zoom. We know that the formulas for the left
and right hand boundaries of our explicit scheme and the Giles scheme are same. They
differ only at the interface. So they are also on the top of each other at the boundaries.
As we observed in the single domain computations the finite volume is a bit worse here
too.

Further we calculated the numerical values of the L1 error for clear insight. For the
explicit methods the numerical values for the L1 error are given in a table given in Figure
7.10. For the implicit methods it is given in Figure 7.11 and for the Giles scheme in Figure
7.12.
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Figure 7.8: Single and bi-domain diffusion equations: with DN-coupling via explicit,
implicit monolithic, implicit partitioned and Giles coupling scheme with the identical diffusion
coefficients D− = D+, while the figure in the right panel is the zoom on the left boundary.

These L1 errors are too small which are not distinguishable so we take a log of the
errors. These are plotted in the left panel of the Figure 7.13, while the corresponding
numerical order of convergence are given in the right panel.

7.2.2 DN-coupling with un-equal diffusion coefficients

Now we give the numerical results for the DN-coupling via explicit, implicit methods
with bi-domain diffusion equations for un-equal diffusion coefficients D− = 0.001 and
D+ = 0.003.

Test case 1, for the cosine initial data

Here we compute the solution of DN-coupling for un-equal diffusion coefficients via explicit
and implicit discretization methods. The results are computed for the parameters given
in Figure 7.1. The results are given for the cosine initial data with explicit method are
given in Figure 7.14.

For the comparison we also compute the solution via implicit monolithic as well as
for the implicit partitioned coupling iterative coupling approach and for the Giles scheme
(4.13). These results are plotted in Figure 7.15 with the same data given above with mesh
size ∆x = 1/1400.

Again the results are not clearly distinguishable. So, we zoom in at the interface of
the figure given in the left panel. It is given in the right panel of the Figure 7.15. The
three solutions of our DN-coupling schemes are near to each other while the the Giles one
is a bit away. This can be seen in Figure 7.15. Therefore we show another zoom of the
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Figure 7.9: Further zoom of Figure 7.8 without finite volume solution.

Figure 7.10: Bi-domain with DN-coupling via explicit methods for D− = D+: Table for
the L1 error and numerical order of convergence (NOC) for the bi-domain diffusion equations
with Dirichlet-Neumann coupling via explicit nodal based and explicit finite volume (cell based)
schemes with D− = D+ = 0.001 m2s−1 and initial data u0(x) = cos(πx) + 1 for x ∈ [0, 1/2] and
v0(x) = cos(πx) + 1 for x ∈ [1/2, 1].

N Explicit (nodal based) NOC Explicit finite volume(cell based) NOC

200 8.556498810562790e-08 8.489560814769387e-08

400 2.139100637520629e-08 2.00001 2.130716922972956e-08 1.99435

600 9.507094796064251e-09 2.00000 9.482237650850574e-09 1.99677

800 5.347737808639870e-09 2.000001 5.337247600968709e-09 1.99772

1000 3.422545398932502e-09 2.00000 3.417173263687602e-09 1.99824

1200 2.376773342011054e-09 1.99998 2.373663919416076e-09 1.99856

1400 1.746202354509961e-09 1.99999 1.744243691333185e-09 1.99878
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Figure 7.11: Bi-domain diffusion equations with DN-coupling via implicit methods
for D− = D+: Table for the L1 error and numerical order of convergence (NOC) for the bi-
domain diffusion equations with Dirichlet-Neumann coupling via implicit monolithic and implicit
partitioned with D− = D+ = 0.001 m2s−1 and initial data u0(x) = cos(πx) + 1 for x ∈ [0, 1/2]
and v0(x) = cos(πx) + 1 for x ∈ [1/2, 1].

N Implicit monolithic approach NOC Implicit partitioned approach NOC

200 2.566687726083617e-07 4.392006789042615e-07

400 6.417142485006956e-08 1.999904 1.073150103537145e-07 2.033028

600 2.852105841991153e-08 1.99996 4.733602945757239e-08 2.018661

800 1.604328660326812e-08 1.99995 2.652673643867433e-08 2.013050

1000 1.026772963264120e-08 1.999988 1.693892546605989e-08 2.010091

1200 7.130698464696688e-09 1.999745 1.174585371987267e-08 2.008067

1400 5.239140283911478e-09 1.99967 8.620629839927151e-09 2.006751

Figure 7.12: Bi-domain: Table of L1-error and numerical order of convergence (NOC) for bi-
domain diffusion equation with DN-coupling of Giles scheme computed via the explicit coupling
method.

N EM (h)-Giles-scheme(explicit) NOC

200 8.556498810562790e-08

400 2.139100636826739e-08 2.00001

600 9.507094791253282e-09 2.000004

800 5.347737828207554e-09 2.000001

1000 3.422545399154546e-09 2.000008

1200 2.376773350337728e-09 1.999986

1400 1.746202359585267e-09 1.99999
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Figure 7.13: Bi-domain with DN-coupling via explicit and implicit methods for D− =
D+: The figure in the left panel is the log of the L1 error, i.e. log(Em(h)), while the right panel
is given for the numerical order of convergence (NOC) with D− = D+ = 0.001.

three solutions in Figure 7.16.
This difference of the solutions were explained for the discrete mass conservation pre-

viously in the subsection 5.5.2.

Test case 2, for the piecewise constant initial data

Also we plot the solution of the DN-coupling via explicit, implicit coupling methods
and the Giles coupling scheme for the piecewise constant initial data u0(x) = 0.06 for
x ∈ [0, 1/2] and v0(x) = 700 for x ∈ [1/2, 1]. The remaining data for these computations
are the same as used above. The results are given in Figure 7.17. We observed that the
results of the Giles scheme is away from the results of our three coupling schemes. So we
zoom in at the interface of the solutions obtained via three coupling methods. It is given
in Figure 7.18.

7.3 Results of the heat flux coupling conditions

We concluded in Chapter 5 that the discretization of the heat flux coupling conditions via
one sided difference method does not maintain the discrete mass conservation while the
central difference maintains it. So, here we show only the numerical results for the conser-
vative central difference method. The explicit formulas for the heat flux coupling condi-
tions via the central difference method were derived in (4.31) and (4.32). The schemes for
the the implicit monolithic method were derived in (4.63) and (4.64) and for the implicit
partitioned iterative approach in (4.65) and (4.66). Unless mentioned otherwise the com-
putations use the value H = 1. Here we present some test cases to discuss the solution
of the heat flux coupling conditions. We used different initial data namely cosine initial
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Figure 7.14: Bi-domain diffusion equation: with DN-coupling via explicit method with
diffusion coefficients D− 6= D+ and cosine initial data, while the figure in the right is the zoom
at the interface of the figure given in the left.
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Figure 7.15: Comparison of the bi-domain diffusion equations: with DN-coupling condi-
tions via the explicit, implicit monolithic, implicit partitioned iterative coupling approach and
for the DN-coupling of Giles with un-equal diffusion coefficients D− 6= D+ for the cosine initial
data.
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Figure 7.16: Further zoom: zoom into the upper numerical solutions in Figure 7.15 (b).
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Figure 7.17: Comparison of the bi-domain diffusion equations: with DN-coupling condi-
tions via the explicit, implicit monolithic, implicit partitioned iterative coupling approach and
for the DN-coupling of Giles with un-equal diffusion coefficients D− 6= D+ for the cosine initial
data, while the figure in the right panel is zoom into the numerical solutions near x = 0.5.
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Figure 7.18: Further zoom: into the lower numerical solutions in Figure 7.17 (b) at x = 0.5.

data and piecewise constant data. Also we show a stable and unstable solutions for this
coupling conditions with different diffusion coefficients.

Test case 1, cosine data

In this case we choose the initial data u0(x) = cos(πx/L) + 1 for x ∈ [0, 1/2] and v0(x) =
cos(πx/L) + 1 for x ∈ [1/2, 1], the diffusion coefficients, D− = 0.001 and D+ = 0.003.
Here, we calculate the results for the heat flux coupling conditions by using the parameters
given 7.1 via the explicit method.

Note that for the mesh size ∆x = 1/200 we obtain an unstable solution, which is
shown in the left panel of the Figure 7.19. While stable solutions for ∆x other than 1/200
which are shown in the right panel of Figure 7.19. These results in the right panel are
not clearly distinguishable so we take a zoom in at the interface. The zoom near to the
interface can be seen in the Figure 7.20.

For the same data given above we also use an implicit monolithic coupling approach.
For this the schemes were derived in (4.63) and (4.64). Here we get a stable solution even
in a larger ∆x = 1/200. The obtained results are plotted in Figure 7.21 with zoom at the
interface.

Computations with smaller diffusion coefficients and with different values of H

In these computations we fixed the mesh size ∆x = 1/1400. Here we use un-equal smaller
diffusion coefficients D− = 200×10−06 and D+ = 200×10−05 taken from Chamakuri [26].

We show the results for different values of H. We consider H = 1 to H = 3 and H =
Pl+Pc(t) = 6.3613E−12 to see the behavior of the solution. The second value for H comes
from taking only the linear part of the membrane condition (2.20) with the values given in
Table 2.1. For these computations we used the explicit coupling method. For these values
of H we made a time evolution study by taking M = 80, 320, 720, 1280, 2000, 2820, 3920.
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Figure 7.19: Unstable and stable solution: the bi-domain diffusion equations with heat flux
conditions via the explicit method.
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Figure 7.20: Zoom of the right panel of Figure 7.19: The left panel is the zoom of the
upper part of the kink and the right panel is the lower part of the kink at the interface. The
arrows in the figure points in the direction of increasing value of N .
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Figure 7.21: Bi-domain diffusion equations: with heat flux conditions via implicit monolithic
approach with cosine initial data, while the figure in the right panel is the zoom at the interface.

First we show the numerical results for H = 1 which are given in Figure 7.22. The
results of a second computation for H = 3 are shown in the Figure 7.23. We observed
a similar behavior for H = 1 to H = 3 while we obtain an unstable solution for values
of H larger than 3. Note that in this case an increasing jump discontinuity arises at the
interface.

Then we calculate the results for H = 6.3613E − 12 which is a small positive real
number. The results are shown in the Figure 7.24.

Computations with different diffusion coefficients and H

The conditional stability of the heat flux coupling depends on the term H∆x
D±

. We observed

instability when these terms become too large. For this purpose we made numerical studies
in which we varied only one of three parameters.

We computed the various solutions for the heat flux coupling condition via the explicit
discretization method with various diffusion coefficients used in the literature for the
similar problems and some values we have chosen. For the diffusion coefficients D− =
0.001, D+ = 0.003 and D− = 200E − 05 and D+ = 200E − 06 as in Thul [37] and H = 1
we get an unstable solution for larger mesh sizes ∆x, i.e. ∆x = 1/200 and 1/400. A stable
solution is obtained for smaller values than these.

Then for larger diffusion coefficient as D− = 0.01, D+ = 0.03 or D− = 0.1, D+ = 0.2
or D− = 1, D+ = 2 or D− = 222, D+ = 223 as in Zhang et al. [40] and H = 1 we get a
stable solution even for larger ∆x = 1/200 and 1/400.

Further for smaller H = 0.06 with D− = 0.001, D+ = 0.003 and D− = 200E − 05,
D+ = 200E − 06 we get a stable solution for the mesh sizes ∆x = 1/200 and 1/400 as
well as for ones smaller than these.

So we conclude that the stability for heat flux coupling conditions with the explicit dis-
cretization depends on mesh size ∆x, diffusion coefficients D± and on heat flux coefficients
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Figure 7.22: Bi-domain diffusion: with heat flux conditions via explicit method with H = 1,
while the right figure is the zoom at the interface.
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Figure 7.23: Bi-domain diffusion equations: with heat flux conditions via explicit method
with H = 3, while the right figure is the zoom at the interface.
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Figure 7.24: Bi-domain diffusion equations: The figure in the left panel is for H = Pl +
Pc(t) = 6.3613E− 12 with heat flux conditions via explicit method, while the figure in the right
panel is the zoom at the interface of the left figure.

H are in a manner consistent with the stability analysis in Section 6.3.
In this computations we fixed the mesh size ∆x = 1/1400, the number of time steps

M = 3920 and varies the value of H from H = 1 to H = 4.4. So, we obtained the stable
solutions from 1 to 4.3 and unstable solution for H = 4.4. These solutions are plotted in
Figure 7.25.

Test case 2, double cosine data

Here we used the initial data u0(x) = 1
4

cos(2πx) + 3
4

for x ∈ [0, 1/2] and v0(x) =
1
4

cos(2πx − π) + 1
4

for x ∈ [1/2, 1] in order to reduce to zero the slope of the initial
data at the coupling interface x = 1/2. The plot of the initial data is given in Figure 7.26.
We use the parameters as in test case 1 and the explicit discretization method. Again
we obtained an unstable solution for the mesh size ∆x = 1/200 and a stable solution for
the ∆x smaller than this. The unstable solution is shown in the left panel of Figure 7.27
while the stable solutions are plotted in the right panel. The different stable solutions are
not distinguishable, the zoom is given at the interface in Figure 7.28.

Test case 3, piecewise constant data

In this test we show the results of the heat flux coupling conditions for the piecewise
constants initial data via explicit coupling method. We use the diffusion coefficients
D− = 0.001 and D+ = 0.003 with constant initial data u0(x) = 0.06 for x ∈ [0, 1/2] and
v0(x) = 700 for x ∈ [1/2, 1].

We calculate the results with parameters given in Figure 7.1. Again we obtain an
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Figure 7.25: Stable and unstable solutions for the heat flux coupling conditions with variation
of H.
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Figure 7.26: Plot of the double cosine initial data.
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Figure 7.27: Unstable and stable solution: the bi-domain diffusion equations with heat flux
conditions via the explicit method.
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Figure 7.28: Zoom of the Figure given in the right panel of 7.27: at the interface on the
left and right hand side.
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Figure 7.29: Unstable and stable solution: of the bi-domain diffusion equations with heat
flux conditions via explicit method with piecewise constants data.

unstable solution for the mesh size ∆x = 1/N = 1/200 which is shown in the left of Figure
7.29 and for the others in the right panel. These results are not clearly distinguishable.
So, we give the zooms at the interface shown in Figure 7.30.

Comparison of the explicit, implicit monolithic and implicit partitioned approach
using test case 1

Here we give the comparison of the solution for heat flux coupling conditions via the
explicit, implicit monolithic and implicit partitioned coupling iterative approach via using
the data given in test case 1. The results are plotted for the mesh size ∆x = 1/N = 1/1400
with corresponding number of time steps M = 3920.

The results are shown in the left panel of Figure 7.31, while the zoom at the interface
is shown in the right panel. The explicit and monolithic solution are near to each other
shown in the dashed and dotted lines while the partitioned solution is represented by the
solid line.

7.4 Channel pumping conditions and its special case simplified
channel conditions

The discretizations schemes for the channel pumping conditions via the central difference
method were derived in (4.35) and (4.36) and for the simplified channel pumping condi-
tions in (4.39) and (4.40). We compute the numerical results for the cosine and constant
initial data.
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Figure 7.30: Zoom of the Figure 7.29 given in the right panel: Figure in left panel is the
zoom near to the interface in the left sub-domain and the right panel is the zoom near to the
interface of the right sub-domain.
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Figure 7.31: Comparison: of the bi-domain diffusion equations with heat flux conditions via
the explicit, the implicit monolithic and implicit partitioned approach with cosine initial data.
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For these test cases we take the values of the diffusion coefficients from Thul and Falcke
[38], D− = 222, D+ = 223, ψ = 9.3954, α = 1.497, β = 1.1949×10−04, γ = 1.1444×10−07

and δ = 1.1556× 10−07.

Test case 1, cosine Initial data

Here we give the numerical results for the channel pumping conditions. This test is
perform for the initial data u0(x) = cos(πx/L)+1 for x ∈ [0, 1/2] and v0(x) = cos(πx/L)+
1 for x ∈ [1/2, 1]. Further, we used the necessary parameters for the channel pumping
conditions given above and the parameters for the computations given in Figure 7.1. The
results are given in Figure 7.32. Again these results are not clearly distinguishable, so
we make a zoom in at the interface given in the right panel of Figure 7.32. Again we
observed the same behavior with changing ∆x = 1/N as above.

Note that the simplified channel pumping conditions give us unstable solutions for
ψ = 9.3954 and α = 1.497. Then we fixed the value of α = 1.497 and changing the
values of ψ from 1 to 4. So, for ψ = 1 we get the unstable solution for ∆x = 1/200 and
∆x = 1/400, while the stable solutions for ∆x smaller than these. The graphical results
are similar to the channel pumping conditions. So, there is no need to repeat again.

Further for ψ = 2 we get more unstable solutions, i.e. for ∆x = 1/200, 1/400, 1/600
and 1/800, while the stable solutions for ∆x = 1/1000, 1/1200 and 1/1400. For ψ = 3
we get only a stable solutions ∆x = 1/1400 and smaller than this. It is observed that the
parameter ψ in this case play a role like the heat flux coefficient H in the case of heat flux
coupling conditions. Finally for ψ = 4 and greater than this we get unstable solutions for
the mesh sizes given in the table in Figure 7.1 with the fixed α used above. We conclude
that, as we increase the value of ψ we will get more unstable solutions.

So the stability for the simplified channel coupling conditions with the explicit dis-
cretization depends on mesh size ∆x and ψ are in a manner consistent with the stability
analysis given in Subsection 6.3.2.

Test case 2, piecewise constant data

This test is performed for the piecewise constant initial data u0(x) = 0.06 for x ∈ [0, 1/2]
and v0(x) = 700 for x ∈ [1/2, 1]. The necessary parameters for the coupling conditions
are given above and for the numerical calculation given in Figure 7.1.

The results is shown in the left of Figure 7.33. Again the results are not distinguishable
so we make a zoom at the the interface given in the right panel of Figure 7.33. It is observed
for the simplified channel pumping conditions we get the same stability as given above
for the cosine initial data.

7.5 Membrane pumping coupling computations

The discretized schemes for membrane pumping conditions via the central difference
method were derived in (4.43) and (4.44). Here, we only show the comparison of the
explicit and implicit partitioned iterative coupling approach for the cosine initial data and
for the piecewise constant data. The parameters for these coupling conditions are, the leak
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Figure 7.32: Bi-domain diffusion equations: with simplified channel pumping conditions via
the explicit method with cosine initial data, while the figure in the right panel is the zoom near
to the interface.
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Figure 7.33: Bi-domain diffusion equations: with simplified channel pumping conditions via
explicit method with piecewise constant initial data, while the figure in the right panel is the
zoom at the interface.
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Figure 7.34: Comparison: of the results for the membrane pumping conditions with bi-domain
diffusion equations via explicit and implicit partitioned coupling iterative approach, while the
right panel is the zoom at the interface.

and other pumping parameters are Pp = 40000×10−6, kd = 0.2×10−6, Pl = 3.3613×10−9

and Pc(t) = 3× 10−3. These are taken from Chamakuri [26].

Test case 1, cosine initial data

In this test case we show the comparison of the membrane pumping conditions via explicit
coupling and implicit implementation with inital data u0(x) = cos(πx/L) + 1 for x ∈
[0, 1/2] and v0(x) = cos(πx/L) + 1 for x ∈ [1/2, 1]. We use the diffusion coefficients
D− = 0.001, D+ = 0.003, with mesh size ∆x = 1/N = 1/1400 and corresponding number
of time steps M = 3920. The comparison is given in Figure 7.34.

Test case 2, piecewise constant data

Here, we show the result for the piecewise constant data given above with mesh size
∆x = 1/N = 1/1400 and the corresponding number of time steps M = 2880. We make
the comparison of the membrane pumping conditions via explicit coupling and implicit
partitioned iterative coupling approach. The diffusion coefficients in the ER domain
D− = 200 × 10−05 and in cytosolic sub-domain D+ = 200 × 10−06. The comparison is
given in Figure 7.35.
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Figure 7.35: Comparison: of the results for the membrane pumping conditions with bi-domain
diffusion equations via explicit and implicit partitioned coupling iterative approach, while the
figure in the right panel is the zoom at the interface of the left panel.

7.5.1 Results of the simplified membrane pumping coupling condition

The schemes for the membrane conditions were derived in (4.47) and (4.48) via the central
difference method. Here show the numerical results for the cosine and constant initial data
in the following two tests.

Test case 1, cosine initial data

First, we calculate the solution for the cosine initial data given above. In this case we used
the diffusion coefficients, D− = 0.001, D+ = 0.003, with mesh sizes and other parameters
given in Figure 7.1. For mesh sizes ∆x = 1/200 and 1/400 we obtained unstable solutions,
while for the mesh sizes smaller than this we obtained the stable solutions. These solutions
are plotted in Figure 7.36. The solutions in the right panel are not distinguishable, so we
give the zoom in Figure 7.37.

Test case 2, piecewise constant data

This test case is performed for the piecewise constant initial data u0(x) = 0.06 for x ∈
[0, 1/2] and v0(x) = 700 for x ∈ [1/2, 1] and the diffusion coefficients D− = 200×10−05 and
D+ = 200× 10−06 are used. The results are calculated for the different mesh sizes given
in Figure 7.1. Again for the mesh sizes ∆x = 1/200 and 1/400 we obtained unstable
solutions, while for the mesh sizes smaller than this we obtained the stable solutions.
These solutions are plotted in Figure 7.38. The solutions in the right panel are not clearly
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Figure 7.36: Bi-domain diffusion equations: Unstable and stable solution of the simplified
membrane pumping conditions via explicit discretization for the cosine initial data.
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Figure 7.37: Zoom of the right panel (b) of Figure 7.36.
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Figure 7.38: Bi-domain diffusion equations: Unstable and stable solution of the simplified
membrane pumping conditions via explicit discretization for the piecewise constant initial data.

distinguishable, so we give the zoom in Figure 7.39.

7.6 Combined results for the heat flux, simplified membrane
pumping and membrane pumping coupling conditions

The discretized schemes for the heat flux coupling conditions via the central difference
method were derived in (4.31) and (4.32). For the membrane pumping conditions in (4.43)
and (4.44) and for the simplified membrane pumping conditions in (4.47) and (4.48). We
give the numerical results for the cosine and piecewise constant initial data in the following
two test cases.

Test case 1, cosine initial data

This test case is performed for the cosine initial data u0(x) = cos(πx/L)+1 for x ∈ [0, 1/2]
and v0(x) = cos(πx/L) + 1 for x ∈ [1/2, 1]. We used the diffusion coefficients D− = 0.001
and D+ = 0.003 with mesh size ∆x = 1/N = 1400 and with corresponding number of
time steps M = 3920.

The comparison is given in the left panel of Figure 7.40, while the figure in the right
panel is the zoom of the solution at the interface of the figure in the left panel. We observed
in these coupling conditions the membrane pumping conditions gives more oscillatory
behavior as compare to the other two.
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Figure 7.39: Zoom of the panel (b) in Figure 7.38.
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Figure 7.40: Comparison: of the heat flux, simplified membrane pumping and membrane
pumping conditions with cosine initial data.
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Figure 7.41: Comparison: of the heat flux coupling, simplified membrane pumping and mem-
brane pumping coupling conditions with piecewise constant initial data.

Test case 2, piecewise constant data

The second test case is performed for the piecewise constants values u0(x) = 0.6 and
v0(x) = 700 with diffusion coefficients D− = 200 × 10−06 and D+ = 200 × 10−05. We
plotted the results for the mesh size ∆x = 1/N = 1/1400 and the corresponding number
of time steps M = 3920.

The comparison is given in Figure 7.41 with zoom at the interface in the right panel.
Again we observed that the solution of the membrane pumping conditions is approaches
to the solution faster as compare to the other two. The result for the membrane pumping
conditions is clearly seen in the figure, while the other two are on the top of each other.
Note that in a very higher zoom these two can be also distinguishable.

7.6.1 Results of the linearized membrane pumping coupling

The schemes for the linearized membrane conditions via the central difference method
with explicit discretization were derived in (4.51) and (4.52) for the implicit monolithic
approach in (4.71) and (4.72) and for the implicit partitioned iterative approach in (4.73)
and (4.74). Here show the numerical results for the cosine and piecewise constant initial
data and with various diffusion coefficients.

Test case 1, cosine initial data

This test is performed for the cosine initial data u0(x) = cos(πx/L) + 1 for x ∈ [0, 1/2]
and v0(x) = cos(πx/L) + 1 for x ∈ [1/2, 1] and the diffusion coefficients D− = 0.001 and
D+ = 0.003 are used.
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Figure 7.42: Unstable and stable solutions: of the linearized membrane conditions via
explicit method.

Note that for the mesh size ∆x = 1/N = 200 and 1/400 we get unstable solutions.
This is shown in the Figure 7.42. While we get the stable solutions for the remaining
values of ∆x given in Figure7.1, i.e. ∆x = 1/N = 600 to 1/1400. These stable solutions
are given in the Figure 7.43 with the zoom at the interface. The detail for this were
explained in the stability Chapter 6 in the in Section 6.3.2.

Also we calculate the results via implicit monolithic and partitioned coupling itera-
tive approach for the same data used above. The results are plotted for the necessary
parameters given in Figure 7.1. We observed that the implicit solution is always stable
and have no restriction on the the spatial mesh size ∆x. While the explicit method have
a restriction on the size of ∆x for the stability.

The stable solutions are plotted for the implicit monolithic approach in Figure 7.44.
Analogously we get the same observation for the implicit partitioned coupling iterative
approach. But there is no need to show the repetitive results again. But we show a
comparison for the solutions obtained via the three methods, namely explicit, implicit
monolithic and implicit partitioned iterative method.

Comparison via explicit, implicit monolithic and implicit partitioned approach

Here we give the comparison via an explicit, an implicit monolithic approach and an
implicit partitioned coupling approaches. The comparison is plotted for the diffusion
coefficients D− = 0.001, D+ = 0.003 and with cosine initial data used above and with
mesh size ∆x = 1/N = 1/1400. The results are shown in the Figure 7.45 with zoom at
the interface. Also we found a very good agreement between these three methods.
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Figure 7.43: Zoom of the Figure 7.42 (b)
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Figure 7.44: Bi-domain diffusion equation: results of the linearized membrane pumping
coupling conditions via implicit monolithic coupling approach, while the figure in the right is
the zoom at the interface.
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Figure 7.45: Comparison: the left panel represents the result of the linearized membrane
pumping coupling conditions with bi-domain diffusion equations via explicit, implicit mono-
lithic and implicit partitioned coupling iterative approaches, while the panel is the zoom at the
interface of the left.

Test case 2, piecewise constants initial data and smaller diffusion coefficients

In this case we give the results for the piecewise constant initial data u0(x) = 0.06 for
x ∈ [0, 1/2] and v0(x) = 700 for x ∈ [1/2, 1]. In this computation we used the diffusion
coefficients D− = 200× 10−05 and D+ = 200× 10−06.

Analogously, here we also get an unstable solution for the large value of ∆x, i.e.
∆x = 1/N = 200 and N = 1/400. While we get the stable solutions for the mesh size
∆x = 1/N = 1/600 to 1/1400, i.e. for smaller enough . The results of the stable solutions
are shown in Figure 7.46 with the zoom at the interface. The comparison shows the result
is converging with increasing the value of N means to decrease the value of mesh size ∆x.

In this case we also obtained a stable solution even for a large value of ∆x = 1/200 via
implicit monolithic approach and implicit partitioned iterative coupling approach. While
there is no need to give repetitive results again.

Comparison

In this test case we show the comparison of the results for linearized membrane pumping
coupling conditions via explicit, implicit monolithic and implicit partitioned coupling
iterative approaches for the piecewise constant data used above with mesh size ∆x =
1/1400. We used the diffusion coefficients D− = 200 × 10−06 and D+ = 200 × 10−05.
Again, we found a good agreement between these three methods shown in Figure 7.48
with the zoom near to the interface.
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Figure 7.46: Unstable and stable solutions: of the linearized membrane pumping coupling
interface conditions via explicit discretization method with piecewise constant data, while the
right panel is the zoom at the interface.
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Figure 7.47: Zoom of the Figure 7.46 of panel (b).
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Figure 7.48: Comparison: of the linearized membrane pumping coupling conditions via the
explicit, the implicit monolithic and the implicit partitioned coupling iterative approaches with
constant data, while the right panel is the zoom near to the interface.

7.7 Solution times and iteration counts

Here we calculate the solution times and for the explicit, implicit monolithic and im-
plicit partitioned iterative approaches for the various coupling conditions. These coupling
conditions include the Dirichlet-Neumann coupling, heat flux, linearized pumping and
membrane pumping conditions with bi-domain diffusion equations. The solution time
comprises the total time of computation. Also we obtain the iteration number for the
partitioned iterative approach to achieve the the residual for the prescribe tolerance TOL.
We used a tolerance TOL = 0.00001 for the partitioned iterative coupling approach. Also,
we calculate the number of iteration for the partitioned iterative method. We calculate
the computation for the mesh size ∆x = 1/N = 1/2000 with corresponding time steps
M = 8000 and for the cosine initial data. As we know that the explicit solution take less
time as compare to the implicit but this have a restriction on time steps. Because there
is no such iteration required to obtained the required solution in the explicit method.

Further, we concluded in Table 7.1 that the implicit partitioned iterative coupling
approach take less time as compare to the implicit monolithic approach. This depends
on the size of a matrix because in the monolithic approach we keep all the data in a
one big matrix which take more time in the terms of storage and computational work.
The counterpart is the partitioned iterative approach. That solves two different matrix
sub-systems which calculate the solutions faster than the monolithic approach. Also we
concluded that when we decrease the tolerance TOL then we need more iterations to
achieve the required solution. These results are shown in the Table 7.1 for the computa-
tional time and the iteration counts. Moreover for the nonlinear membrane pumping we
did not calculate the implicit monolithic solution because we put the entries correspond-
ing to the each unknown in a matrix. Here this not possible. But surely we calculated the
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solution of its special case a linearized membrane pumping case via monolithic approach.
In Table 7.1 DN-coupling is for the Dirichlet-Neumann coupling, (s) represents the

computational time in seconds, Lin: pum: for the linearized pumping, Mem: pum: is for
the membrane pumping , Implicit (M) is the implicit monolithic and Implicit (P) is for
the implicit partitioned coupling iterative approach.

For these numerical computations and all others in this thesis we used a CPU systems,
Intel xeon(R) CPU E5640.

Table 7.1: Solution times and iteration counts of the explicit, implicit monolithic and implicit
partitioned coupling iterative solvers for the Dirichlet-Neumann coupling, heat flux, linearized
pumping and membrane pumping conditions with the bi-domain diffusion equation. The solution
time comprises the total time of computation.

Solver DN-coupling (s) Heat flux (s) Linearized mem: pum (s) Membrane pum:(s) Iterations

Explicit 52.12 52.45 52.21 53.51 –

Implicit(M) 347.30 332.78 331.78 – –

Implicit(P) 147.78 153.87 153.36 311.31 10
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Chapter 8

Summary and conclusion

The aim of this thesis was to study various coupling conditions with bi-domain diffusion
equations. We modified a 3D model of Falcke [7] to one dimensional bi-domain equations
with various coupling interface conditions. The coupling conditions are linear and non-
linear coupling conditions. The major achievements of this thesis are given as follows.

• Three algorithms are discussed: namely explicit coupling algorithm (A1), implicit
monolithic coupling algorithm (A2) and the implicit partitioned iterative coupling
algorithm (A3). These algorithms are implemented for the various coupling condi-
tions that were considered in Chapter 4.

• The discrete mass conservation for the single as well as for the bi-domain diffusion
equations with various numerical coupling conditions has been derived for various
discretization methods. It was found that in case of finite volume discretizations the
one sided difference maintains the discrete mass conservativity. While the central
difference approach maintains discrete mass conservativity in the nodal based case.

• The well known Godunov-Ryabenkii stability conditions have been studied for the
various coupling conditions in this thesis. We obtained stable and unstable cases
for these coupling conditions. We also studied the stability conditions for the single
domain diffusion equation via von Neumann analysis and the GR-stability for the
explicit, implicit as well as for the finite volume discretization methods.

• For the stability analysis of the coupling conditions we extended an approach from
previous studies of Giles [10], Roe et al. [33], Errera and Chemin [6] and Zhang et
al. [40]. We implement the procedure used by Godunov-Ryabenkii [11] to derive the
stability analysis. Also many previous studies are based on the procedure of Giles
[10]. In the study of Giles the selection of the roots of the quadratic equation of the
normal mode equation was unclear. We proved the selection of the roots q1 and q2

such that |q1| ≤ 1 and |q2| ≥ 1 in Chapter 7. One can follow our procedure or the
procedure of Giles [10] for further investigation. The Giles one gives the stability
asymptotically. While our procedure gives an exact condition for stability.

• The truncation error, L1 error and the numerical order of convergence have been dis-
cussed for the single as well as for the bi-domain diffusion equations with Dirichlet-
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Neumann coupling with the identical diffusion coefficients D1 = D2 have been com-
puted in order to check the coupling.

• The computational time for the above three proposed algorithms has been calculated.
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Chapter 9

Open problems

In this chapter we summarize various questions or problems that arise in this work. Some
of them might be easily solvable, whereas others may need thorough investigations.

Problem 1

So far we included the explicit and implicit discretization methods for the bi-domain dif-
fusion equations together with the boundary and coupling interface conditions. Other
discretization methods can be used, such as semi-implicit coupling, for further investiga-
tion.

Problem 2

Three algorithms were used in this thesis, namely explicit coupling, implicit monolithic
coupling and implicit partitioned coupling approach for the one dimensional case of the
3D model of Falcke [7]. This work can be extended to the two and three dimensional
cases together with the coupling conditions. Also we discuss the implementation and
other necessary properties of the numerical analysis such as discrete mass conservativity,
stability and error analysis. These properties can be used and extended to the two and
three dimensional cases.

Problem 3

We obtain the discrete mass conservativity for all the coupling conditions that we consid-
ered. In this work we concluded that to discretize the Dirichlet-Neumann coupling condi-
tions via one sided differences maintains conservativity in finite volume schemes . While
in the case of nodal based schemes central differences maintain conservativity. Maybe
some other strategies such as FEM-FVM etc. can be considered for further investigation.

Problem 4

In this thesis we considered a calcium dynamics model taking realistic values of parameters
from Chamakuri [26], and Thul [37]. This can be further studied with the reaction and
kinetic terms and compared with the experimental results.
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