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Zusammenfassung

Das Hauptziel der fötalen Überwachung während der Wehen ist die rechtzeitige Identifizierung potenziell
azidotischer Föten. Ein gutes Verständnis des fötalen Zustands hilft den Ärzten, negative fötale Ergebnisse
aufgrund von Sauerstoffmangel zu verhindern und gleichzeitig unnötige Eingriffe zu vermeiden. Dieses
Verfahren zur Beurteilung des fötalen Wohlbefindens wird üblicherweise mit Hilfe eines Kardiotokographen
(CTG) durchgeführt, der die gemeinsame Aufzeichnung der fötalen Herzfrequenz (FHR) und der Uteruskon-
traktion (UC) ermöglicht. Gegenwärtig umfasst die Analyse der CTG-Daten die visuelle Interpretation
verschiedener morphologischer Signalmuster auf der Grundlage vorgeschlagener medizinischer Richtlinien.
Die CTG-Interpretation durch diese Methodik hat jedoch große Uneinigkeit zwischen den Beobachtern
und eine geringe Spezifizität gezeigt, was zu einer schlechten Reproduzierbarkeit der Interpretation führt.
Jüngste Fortschritte in der klinischen Forschung weisen darauf hin, dass jeder Fötus sein eigenes Kontrol-
lverhalten hat, das auch von seinem Zustand abhängt. Demzufolge erfordert die korrekte Identifizierung
einer Hypoxämie ein gutes Verständnis der fötalen Kompensationsmechanismen, die durch das autonome
Nervensystem (ANS) moduliert werden. Die Haupthypothese dieser Arbeit ist, dass die durch das ANS
modulierte FHR-Reaktion wichtige zeitvariante Merkmale beschreibt, deren Verhalten im Laufe der Zeit
bei der Bewertung der fötalen Notlage helfen kann. Mit anderen Worten postulieren wir, dass die aus der
ANS-Modulation resultierenden Schlag-zu-Schlag-FHR-Variationen signifikante Informationen über den
Zustand des Fötus beinhalten können. In Anbetracht dieses Phänomens könnten konventionelle Methoden,
die diese Merkmale nicht integrieren, nicht für eine korrekte CTG-Analyse geeignet sein, da sie nur eine
Momentaufnahme des gesamten zeitvarianten Prozesses betrachten. In diesem Zusammenhang sind für
die CTG-Analyse mehrere Ansätze vorgeschlagen worden, die auf zeitvariablen Signalverarbeitungsmeth-
oden basieren. Sie konzentrieren sich jedoch hauptsächlich auf die fötale Reaktivität als Antwort auf ein
UC-Ereignis, ohne die Untersuchung der dynamischen Veränderungen des FHR-Signals, die sich aus der
ANS-Modulation im Laufe der Zeit ergeben, zu berücksichtigen. Der Hauptbeitrag dieser Arbeit beruht auf
der Charakterisierung solcher Dynamiken durch die Verfolgung ihrer zeitvariablen Merkmale. Für diese
Operation setzen wir im Wesentlichen zwei Signalverarbeitungsmethoden ein: Verbesserte Vollständige
Ensemble-Empirische-Bandzerlegung mit adaptivem Rauschen (ICEEMDAN) und zeitvariable autoregres-
sive (TV-AR) Modellierung. Die zentrale Idee ist, die Dynamik des FHR-Signals durch Zerlegung in intrinsis-
che modale Funktionen (IMFs) zu untersuchen und dann ihre Merkmale sowohl im Zeitbereich als auch im
Spektralbereich zu analysieren. Zuerst wird das FHR-Signal in eine endliche Anzahl von IMFs zerlegt. Dann
wird für jede IMF das TV-AR-Spektrum berechnet, um die beteiligten Frequenzkomponenten zu verfolgen
und einen möglichen Zusammenhang zwischen ihrem dynamischen Verhalten und der fötalen Notlage zu
untersuchen. Der vorgeschlagene Ansatz ist auf der Grundlage realer CTG-Daten aus der frei zugänglichen
CTU-UHB-Datenbank bewertet worden. Die erhaltenen Ergebnisse zeigen, dass es möglich ist, zeitvari-
ant modulierte Dynamiken im FHR-Signal zu identifizieren und zu verfolgen, deren Verhalten signifikant
(p-Wert < .05) vom Gesundheitszustand des Fötus abhängen kann. Ebenfalls könnten diese untersuchten
Dynamiken mit den durch das ANS modulierten fötalen Kompensationsmechanismen in Verbindung ge-
bracht werden. Zusammenfassend hat sich unsere vorgeschlagene Methodik, die auf der ICEEMDAN-
und TV-AR-Spektralanalyse basiert, als vielversprechender Ansatz für die Abschätzung der fötalen Notlage
während der Wehen erwiesen. Außerdem hat sie eine Leistungsverbesserung der CTG-Klassifikation im
Vergleich zur konventionellen Analyse ermöglicht.

Schlüsselwörter— Kardiotokograph, Fötale Herzfrequenz, Bewertung des fötalen Wohlbefindens, Biomedi-
zinische Signalverarbeitung, Spektralanalyse, Empirische Bandzerlegung, Zeitvariable autoregressive Model-
lierung, Klassifizierung von kardiotokographischen Aufzeichnungen, Automatisches Lernen
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Abstract

The main aim of fetal surveillance during labor is to timely identify potential acidotic fetuses. A good under-
standing of the fetal condition helps clinicians to prevent adverse fetal outcomes due to oxygen insufficiency,
and at the same time to avoid unnecessary interventions. The fetal welfare assessment procedure is com-
monly performed by using a cardiotocograph (CTG), which provides the joint recording of fetal heart rate
(FHR) and uterine contraction (UC) data. Currently, CTG data analysis involves the visual interpretation of
several morphological signal patterns based on proposed medical guidelines. However, CTG interpretation
by this methodology has shown a wide intra- and inter-observer disagreement and low specificity, leading to
a poor interpretation reproducibility. Recent advances in clinical research indicate that each fetus has its own
control behavior, which also depends on its condition. Therefore, the correct identification of hypoxemia
requires a good understanding of the fetal compensatory mechanisms modulated by the autonomic nervous
system (ANS). The main hypothesis of this thesis work is that the FHR response modulated by the ANS
describes important time-variant characteristics, whose behavior can help to assess fetal distress. In other
words, we postulate that the beat-to-beat FHR variations resulting from the ANS modulation can involve
significant information about the fetal condition. Considering this phenomenon, conventional methods
that do not integrate these characteristics could not be appropriated for a correct CTG analysis, because they
consider only a snapshot of the complete time-variant process. In this context, several approaches based on
time-varying signal processing methods have been proposed for CTG analysis. However, they are mainly
focused on fetal reactivity as a response to a UC event, without considering the study of the dynamical
changes involved in the FHR signal resulting from the ANS modulation over time. The main contribution
of this work consists of characterizing such dynamics by tracking their time-variant characteristics. For
this operation, we employ, essentially, two signal processing methods: the Improved Complete Ensemble
Empirical Mode Decomposition with Adaptive Noise (ICEEMDAN) and time-varying autoregressive (TV-AR)
modeling. The core idea is to investigate the dynamics involved in the FHR signal by decomposing it into
intrinsic mode functions (IMFs), and then analyze their characteristics in both the time-domain and the
spectral-domain. First, the FHR signal is decomposed into a finite number of IMFs. Then, for each IMF,
the TV-AR spectrum is computed in order to track the involved frequency components and investigate a
potential connection between their dynamical behavior and fetal distress. The proposed approach has been
evaluated on real CTG data extracted from the open-access CTU-UHB database. Obtained results show that
it is possible to identify and track time-variant modulated dynamics in the FHR signal, whose behavior can
depend significantly (p-value < .05) on the fetal health condition. Likewise, the studied dynamics might be
linked to the fetal compensatory mechanisms modulated by the ANS. Conclusively, the proposed method-
ology based on ICEEMDAN and TV-AR modeling has shown to be a promising approach for fetal distress
estimation during labor. Besides, it has allowed improving the CTG classification performance compared
with the conventional analysis.

Keywords— Cardiotocograph, Fetal heart rate, Fetal welfare assessment, Biomedical signal processing,
Spectral analysis, Empirical mode decomposition, Time-varying autoregressive modeling, Cardiotocographic
recording classification, Machine learning
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Resumen

El objetivo principal de la vigilancia fetal durante el trabajo de parto es identificar oportunamente fetos
potencialmente acidóticos. Una buena comprensión de la condición del feto ayuda a los médicos a prevenir
resultados fetales adversos debido a insuficiencia de oxígeno, y al mismo tiempo a evitar intervenciones
innecesarias. El procedimiento de evaluación del bienestar fetal se realiza comúnmente mediante el uso
de un cardiotocógrafo (CTG), que proporciona el registro conjunto de los datos de la frecuencia cardíaca
fetal (FHR) y la contracción uterina (UC). Actualmente, el análisis de datos CTG implica la interpretación
visual de diferentes patrones morfológicos presentes en la señal basados en guías médicas propuestas.
Sin embargo, la interpretación del CTG por esta metodología ha mostrado un amplio desacuerdo intra- e
inter-observador y baja especificidad, lo que lleva a una mala reproducibilidad de la interpretación. Avances
recientes en la investigación clínica indican que cada feto tiene su propio comportamiento de control, el cual
también depende de su condición. Por lo tanto, la identificación correcta de hipoxemia requiere una buena
comprensión de los mecanismos compensatorios del feto modulados por el sistema nervioso autónomo
(ANS). La hipótesis principal de este trabajo de tesis es que la respuesta de la FHR modulada por el ANS
describe características importantes variantes en el tiempo, cuyo comportamiento puede ayudar a evaluar
el sufrimiento fetal. En otras palabras, postulamos que las variaciones de la FHR latido a latido que resultan
de la modulación de ANS pueden involucrar información significativa acerca la condición fetal. Teniendo
en cuenta este fenómeno, los métodos convencionales que no integran estas características podrían no
ser apropiados para un correcto análisis del CTG, ya que consideran solo una instantánea del proceso
completo variante en el tiempo. En este contexto, se han propuesto varios trabajos basados en métodos
de procesamiento de señales variantes en el tiempo para el análisis del CTG. Sin embargo, éstos se centran
principalmente en la reactividad fetal como respuesta a un evento de UC, sin considerar el estudio de los
cambios dinámicos involucrados en la señal de la FHR como resultado de la modulación del ANS a lo largo
del tiempo. La principal contribución de este trabajo consiste en caracterizar tales dinámicas a través del
seguimiento de sus características variantes en el tiempo. Para esta operación, empleamos, esencialmente,
dos métodos de procesamiento de señales: Descomposición Empírica en Modos por Conjuntos Completa
con Ruido Adaptativo Mejorada (ICEEMDAN) y modelamiento autorregresivo variante en el tiempo (TV-AR).
La idea central es investigar las dinámicas involucradas en la señal FHR descomponiéndola en funciones
modales intrínsecas (IMFs), y luego analizar sus características tanto en el dominio del tiempo como
en el dominio espectral. Primero, la señal FHR se descompone en un número finito de IMFs. Luego,
para cada IMF, se calcula el espectro TV-AR para rastrear los componentes frecuenciales involucrados e
investigar una posible conexión entre su comportamiento dinámico y el sufrimiento fetal. El enfoque
propuesto se ha evaluado en datos CTG reales extraídos de la base de datos CTU-UHB de acceso abierto.
Los resultados obtenidos muestran que es posible identificar y rastrear dinámicas moduladas variantes
en el tiempo en la señal FHR, cuyo comportamiento puede depender significativamente (valor p < .05) de
la condición de salud del feto. Del mismo modo, las dinámicas estudiadas podrían estar vinculadas a los
mecanismos compensatorios del feto modulados por el ANS. En conclusión, la metodología propuesta
basada en ICEEMDAN y modelamiento TV-AR ha mostrado ser un enfoque prometedor para la estimación
del sufrimiento fetal durante el trabajo de parto. Además, esta ha permitido mejorar el rendimiento de la
clasificación del CTG en comparación con el análisis convencional.

Palabras clave— Cardiotocografía, Frecuencia cardiaca fetal, Evaluación del bienestar fetal, Procesamiento
de señales biomédicas, Análisis espectral, Descomposición modal empírica, Modelamiento autorregresivo
variante en el tiempo, Clasificación de registros cardiotocográficos, Aprendizaje automático





Learning which features to select is a skill
developed by data scientists that usually only comes from months and

years of experience and can be more of an art than a science.

Alberto Artasanchez and Prateek Joshi, 2020, p. 67.
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1
Introduction and Motivation

1.1 Motivation

Labor and delivery corresponds to the ending period of the pregnancy, which concludes

with the expulsion of the neonate. It is a stressful procedure for the fetus as well as for

the mother. During this step, a fetus can repeatedly suffer from decreased oxygen supply,

which is normal, but fetuses with weakened defense mechanisms could develop metabolic

acidosis. As a consequence, it can lead to neuro-development disability, cerebral palsy, or

in some cases, even death resulting from a prolonged oxygen insufficiency. During labor,

in order to prevent potential fetal adverse outcomes, and at the same time avoid excessive

obstetric intervention, it is necessary a good understanding of the fetal status (Nageotte,

2015). In this context, there are different methodologies for fetal welfare assessment, such

as cardiotocography (CTG), fetal blood sampling, pulse oximetry, fetal electrocardiogram,

fetal phonocardiography, and fetal magnetocardiography.

In current clinical practice, the most used method for fetal monitoring is the non-invasive

CTG, which provides continuous information of the fetal heart rate (FHR) synchronized

with the maternal uterine contraction (UC) activity over time (Nageotte, 2015). In gen-

eral, clinicians base the decision by observing and assessing patterns in the FHR signal,

such as baseline rate, variability, decelerations, accelerations as well as the UC stimuli.

Nowadays, these morphological patterns and their properties are defined in CTG guide-

lines proposed for fetal monitoring (American College of Obstetricians and Gynecologists

and others, 2010; Artal and O’toole, 2003; Ayres-de Campos and Bernardes, 2010; Ayres-de

Campos et al., 2015; Macones et al., 2008; Parer and Ikeda, 2007; Rooth et al., 1987; Royal

College of Obstetricians and Gynaecologists (Great Britain). Clinical Effectiveness Support

Unit, 2001; Spilka et al., 2014b), which systematically assist practitioners in assessing the

fetal status based on morphological CTG patterns and the manner that these patterns are

related to the fetal health condition.

However, the proposed CTG guidelines have been surrounded by great controversies, since

they lack consensus in many key aspects. The absence of an objective definition of some

FHR patterns and the disparity between different guidelines are often pointed out in the

literature. Likewise, concerning CTG standardization, definitions, and recommendations

for the intrapartum management can differ from one country to another or even from one

1



2 CHAPTER 1. INTRODUCTION AND MOTIVATION

Figure 1.1: Fetal heart rate (FHR) signal patterns assessed by clinicians compared to the outcome
evaluation based on artery pH (pH) (Beard et al., 1971).

clinical center to another (Parer and Ikeda, 2007; Santo et al., 2017; Ugwumadu, 2014).

In consequence, the interpretation of CTG has shown to suffer from wide intra- and

inter-observer disagreement, leading to a poor interpretation reproducibility (Ayres-de

Campos and Bernardes, 2010; Devoe, 2016; Nageotte, 2015; Santo and Ayres-de Campos,

2012; Sartwelle et al., 2019). According to the literature, most of the CTG abnormalities do

not cause acidosis, i.e., during labor, most of the CTG patterns considered as abnormal are

related to a healthy fetus. This phenomenon is represented by the percentage of specificity

of each FHR pattern, as presented in Fig. 1.1 (Beard et al., 1971). Here, we can observe

that less than 50% of late decelerations or complicated loss of baseline variability (consid-

ered as abnormal patterns) lead to a pathological fetus. Likewise, recent works (Ayres-de

Campos and Bernardes, 1999; Ayres-de Campos et al., 2004; Bernardes et al., 1997; Hruban

et al., 2015; Spilka et al., 2014b) have demonstrated that observer disagreements are mainly

related to the interpretation of FHR decelerations and variability.

Besides, an often debated concern is that the CTG interpretation problems can be partly

one of the leading causes of the significant increase of cesarean section (CS) in the last

twenty years (Alfirevic et al., 2017; Gibbons et al., 2010; Visser et al., 2018). In particular, a

pathological CTG and auscultation are the second main documented indicator for CS in

Germany (20.8%) after CS due to previous cesarean (23.6%) (Kolip et al., 2012). Hypotheti-

cally, CTG interpretation problems can lead to making decisions that are the less risky for

the fetus, so in cases of doubts in interpretation, CS is decided as an option. This bias in the

decision increases with the lack of experience of obstetricians in dealing with complicated

and spontaneous deliveries. In consequence, in developed countries, even if cerebral palsy

prevalence has remained nearly constant, the CS has dramatically increased, as shown in

Fig. 1.2 (Clark and Hankins, 2003).
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Figure 1.2: Prevalence of cerebral palsy (black bars) versus cesarean section rate (dark gray bars).
This information is based on data gathered from Sweden, Australia, Canada, Scotland, Denmark,
England, United States, Norway, and Ireland, as presented in Clark and Hankins (2003).

1.2 Research questions, hypothesis, and goals

On the one hand, all of the above leads us to consider whether the CTG data involve

sufficient information for a correct fetal welfare assessment. Likewise, whether the con-

ventional analysis, based on morphological signal patterns, makes that this technology

has significant intra- and inter-observer disagreements and very low specificity. On the

other hand, as will be explained in detail in Chapter 3, the published literature related to

CTG analysis reveals that, despite the fact that a considerable number of approaches have

been proposed, the results are not sufficient to be applied in clinical practice so far (Al-

firevic et al., 2017; Haran and Everett, 2017). This phenomenon can be attributed to a low

level of reliability in fetal assessment represented by the metrics of specificity and sensi-

tivity achieved by the proposed approaches. Consequently, it brings up to the question of

whether the research in fetal surveillance based on CTG analysis, as performed nowadays,

takes into account all the essential fetal physiological characteristics involved in the labor

process.

In this context, recent advances in clinical research suggest that a correct assessment of

fetal hypoxemia demands a good understanding of the compensatory mechanisms mod-

ulated by the fetal autonomic nervous system (ANS). Each fetus has a particular behavior

and control, and its condition depends on how the fetus is compensating and defending

itself over time after a perceived oxygen insufficiency (Garabedian et al., 2017; Ugwumadu,

2014). At the same time, experienced clinicians attempt to consider the temporal evolu-

tion when interpreting CTGs by considering the variation of a specific FHR characteristic

throughout a particular temporal window (e.g., 30 minutes) in order to assess the CTG pat-

terns as described in guidelines (Ayres-de Campos et al., 2015). On the one hand, the FHR

decelerations are one of the main patterns represented in the FHR signal that result from

the fetal compensatory mechanism activity. These patterns correspond to FHR variations
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produced as a consequence of the ANS modulation after a perceived oxygen insufficiency

episode (Freeman et al., 2012). However, they are considered as one of the most significant

and challenging patterns to interpret by the clinical staff (Hruban et al., 2015; Spilka et al.,

2014b). On the other hand, the risk of fetal condition to evolve from one health state to an-

other, frequently change in the course of labor (Coletta et al., 2012; Devoe, 2016; Parer and

Ikeda, 2007). In the sequel, as a global concept, we denote these time-varying physiologi-

cal characteristics involved in the fetal behavior during labor as the short-term progressive

fetal response. In other words, we can define the progressive fetal response as progressive

dynamical changes involved in the behavior of the ANS modulation.

With this concept in mind, the CTG classification into categories by using conventional

clinical guidelines, as usually performed nowadays, could be not helpful to assess the

fetal condition, because the interpretation is based only on a snapshot of the complete

non-stationary process. Besides, methods that do not integrate the concept of progressive

fetal response could not be appropriate for a correct CTG analysis.

In summary, considering all the information explained above, and based on preliminary re-

sults that we have published in peer-reviewed scientific journals and presented in interna-

tional conferences (see Section 1.4), we firmly believe that the time-variant fetal response

as a result of the fetal ANS modulation is an important phenomenon to be considered for

fetal distress assessment during labor.

Interestingly, although clinical research in fetal monitoring has suggested assessing this

physiological phenomenon during labor, it has not been considered in CTG guidelines or

within a computer-based CTG signal analysis so far. Indeed, the main idea of this thesis

work is to investigate these time-variant characteristics in the CTG recording, and thereby

integrate them into a computer-based analysis.

As a result, the main research questions that naturally arise are the following:

• Is it possible to identify and track modulated time-variant dynamics involved in

the FHR signal that are related to the fetal health condition?

• Could the dynamics involved in FHR decelerations, analyzed independently from

the complete signal, improve the automatic CTG signal analysis?

• Are these studied FHR signal dynamics linked to the fetal compensatory mecha-

nisms modulated by the ANS?

• Could this approach based on a time-variant analysis of the fetal response improve

the automatic computer-based CTG classification compared with the conventional

CTG analysis?

The main hypothesis of this thesis work is that the FHR response modulated by the ANS

describes important time-variant characteristics, whose behavior over time can help to

assess fetal distress. In other words, we postulate that FHR variations resulting from the
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complex modulation of the ANS vary progressively in time and describe different dynamics

associated with the fetal response, whose changes and their progression over time can be

related to the fetal condition. Therefore, this approach could improve the interpretation

and subsequent classification of CTG recordings during labor. The objectives of this thesis

work are summarized as follows:

General objective

• Estimate the fetal condition during labor based on the characterization of the pro-

gressive fetal response described by the time-varying FHR dynamics as a result of the

compensatory mechanism activity modulated by the ANS.

Specific objectives

• Identify and investigate the FHR signal dynamics involved in the fetal response as a

result of the ANS modulation.

• Based on those dynamics, define and extract time- and spectral-based features that

integrate the concept of time-variant fetal response.

• Establish the evaluation methodology to investigate the physiological connection of

the extracted information with the fetal health condition.

• Evaluate the approach based on the performance of the proposed features in CTG

classification.

1.3 Main contribution of the thesis

Recent clinical research indicates that the progressive fetal response is a fundamental char-

acteristic to be considered in CTG assessment. However, most of the approaches for CTG

analysis proposed in the area of signal processing focus on extracting information in dif-

ferent domains based only on a snapshot of the complete non-stationary process, without

taking into account the concept of progressive fetal response. Considering that the ANS

activity is an important phenomenon related to the fetal compensatory mechanism, this

work focuses on studying this phenomenon based on the progressive dynamical changes

reflected in the FHR signal as a result of this modulation. Therefore, the originality of this

work lies in the fact that we propose a new methodology for CTG analysis based on the

characterization of the time-variant FHR dynamics resulting from the ANS modulation.

Indeed, the analysis of CTG from a progressive perspective becomes to be an innovative

method to assess fetal distress during labor and delivery, whose concept has not been pre-

viously investigated by a computer-based approach. For more detailed information con-

cerning the fetal compensatory mechanism and proposed solutions for the CTG analysis,

see Chapter 2 and 3, respectively.
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The main difference of this work with the time-varying CTG analysis already proposed in

the literature is the generation of modal-spectral features, which aim to characterize the

progressive fetal response over time. These features allow a better understanding of the

fetal physiological characteristics involved in the ANS modulation and integrate them into

a computer-based CTG analysis.

This proposed methodology opens perspectives for its implementation in real scenarios in

order to improve the reliability of CTG analysis and make its interpretation a more straight-

forward task for clinicians. In consequence, the most important benefit is to get a better

performance in clinical practice concerning the assistance and management of the patient

during labor by a reliable and timely fetal evaluation. Thereby, it would be possible to stan-

dardize the fetal welfare assessment procedure and its protocol in clinical practice, which

is the ultimate goal (currently no achieved) of most of the proposed research approaches

related to fetal monitoring.
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2
Fetal welfare assessment

This chapter first provides an insight into the fetal control mechanisms activity as a re-

sponse to oxygen insufficiency during labor (Section 2.1). Then, Section 2.2 presents the

main diagnostic tools used for fetal monitoring, which can be classified into two main

groups: invasive (Fetal Blood Sampling, Pulse Oximetry, and Invasive Fetal Electrocardio-

gram) and non-invasive (Fetal Phonocardiography, Non-invasive Fetal Electrocardiogram,

Fetal Magnetocardiography, and CTG) methods. Likewise, this section presents the proce-

dure and management performed as the outcome evaluation. Finally, in Section 2.3, we

discuss about fetal welfare assessment by using cardiotocographic data, which is the main

issue of analysis in this thesis work.

2.1 Fetal control mechanisms during labor

Labor and delivery is a very stressful period for both the mother and the fetus, who is af-

fected by the behavior of the mother and internal environment conditions. The way that

the fetus responds to different stimuli could provide valuable information about its con-

dition. During this process, a fetus can suffer from intermittent events of decreased oxy-

gen insufficiency, which is a natural phenomenon well tolerated by healthy fetuses. How-

ever, fetuses with weakened defense mechanisms could develop a hypoxemia, hypoxia, or

asphyxia, which can lead to severe consequences such as cell dysfunction, organ failure,

neuro-development disability, cerebral palsy, or in some cases, even death (Freeman et al.,

2012).

Hypoxemia corresponds to an initial step of oxygen deficiency in arterial blood. In this

step, the peripheral tissues and central organs are intact, and enough oxygen is provided

to maintain aerobic metabolism. However, a fetus presenting hypoxemia during labor has

less ability to react adequately because of the restriction of energetic reserves.

Hypoxia represents a second step of oxygen deficiency when the peripheral body tissues

are affected. This phenomenon describes a reduction in oxygen supply in relation to the

oxygen demand of the tissues. In order to ensure the aerobic metabolism in central organs,

the blood flows mainly to such organs. This situation may last for hours without causing

any severe damage to the fetus.

9
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Asphyxia is the most critical step because the oxygen is depleted, and the main fetus’s

organs such as the heart, lungs, liver, gut, and kidneys make use of anaerobic metabolism.

During this step, hypoxic damage may occur in these organs, but brain damage is the most

significant consequence that affects the fetus. The final step of asphyxia involves the brain

and heart failure, and it may produce irreversible damage.

A reliable assessment and diagnosis in fetuses during labor is of significant importance

since it allows obtaining information about the fetal condition in order to prevent all the

consequences explained above (Romano et al., 2016b).

According to the literature (Ugwumadu, 2014), a fetus presents particular FHR dynamics

over time that can involve an essential relation with its condition. Indeed, as well ev-

idenced in medical research for adults, heart rate dynamics are modulated by the ANS

by the cardioregulatory centers located in the brain stem, which regulate the sympathetic

and parasympathetic stimuli to the heart (see Fig. 2.1) (Ferreira Jr and Zanesco, 2016). As

represented in Fig. 2.2, both systems have opposite effects on heart activity. The sympa-

thetic system prepares the body for intense activity after a perceived threat. In contrast,

the parasympathetic relaxes the body and inhibits many energy functions and control the

heart response while at rest. Sympathetic and parasympathetic impulses, originated in the

brain stem, are carried to the heart via the cervical sympathetic fibers and over the vagus

nerves, respectively (Freeman et al., 2012). The cardiovascular centers receive informa-

tion from a set of physiological sensors, which correspond to afferent nerve endings called

chemoreceptors and baroreceptors.

On the one hand, chemoreceptors, subdivided into central and peripheral, sense the con-

centration of blood oxygen. Central chemoreceptors locate in the brain stem, whereas

peripheral chemoreceptors locate at the aortic arch and the carotid. On the other hand,

the baroreceptors, located mainly in the carotid sinuses and aortic arch, sense the arterial

stretch proportional to changes in arterial pressure (Garabedian et al., 2017; Wehrwein and

Joyner, 2013). When receptors detect a change of blood artery pH (pH) or artery pressure,

the cardiovascular centers modulate the FHR by sending a nerve impulse. For example,

when the chemoreceptors detect a reduced blood oxygen concentration, the cardiovascu-

lar centers decrease the parasympathetic and increase the sympathetic stimulation and

vice versa (Freeman et al., 2012).

2.2 Fetal monitoring

As explained above, the sympathetic and parasympathetic ANS modulation can reflect spe-

cific characteristics in the fetal cardiovascular activity that may help to identify fetal oxygen

insufficiency or cerebral dysfunction. This modulation produces small variations in the

FHR signal, which could have a close relationship with fetal oxygenation as an indicator of

the fetal condition (Bursa and Lhotska, 2017; Garabedian et al., 2017). According to that

information, ideally, fetal monitoring during labor should be based on the analysis of such
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Figure 2.1: Neural communication pathways between baroreceptors and heart rate control modu-
lated by the autonomic nervous system (ANS) (Ferreira Jr and Zanesco, 2016).
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Figure 2.2: Representation of fetal regulation mechanisms modulated by the ANS; CNS: central
nervous system; SN: sympathetic nervous (modified from Schönauer et al. (2008)).
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Figure 2.3: Representation of invasive (a) and non-invasive (b) techniques for fetal monitoring
(modified from Martinek and Žídek (2012)).

characteristics resulting from the continuous, simultaneous, and antagonistic action of the

mentioned physiological regulation mechanisms. However, considering the complexity

involved in the labor and delivery process, the described physiological phenomenon can

not be easily understood. In this context, different methods have been proposed for fetal

monitoring, which can be roughly classified into invasive and non-invasive techniques. In-

vasive techniques involve the use of an internal sensor to extract information directly from

the fetus, usually attached to its head (see Fig. 2.3(a)). In contrast, non-invasive techniques

allow monitoring by using an external sensor(s) (see Fig. 2.3(b)). Most of these techniques

are based on extracting information related to the fetal heart activity, whereas other alter-

natives or complementary techniques estimate the concentration of blood oxygen.

Table 2.1 provides an overview of methods proposed for intrapartum evaluation, where the

first three correspond to invasive, and the last four correspond to non-invasive techniques.

This table includes the minimal gestational age for their application and comments related

to their main characteristics. In Section 2.2.1 and 2.2.2, we provide a brief explanation

of the invasive and non-invasive techniques for fetal monitoring, respectively. Besides,

Section 2.2.3 explains the analysis commonly performed as fetal outcome evaluation. The

concept of intrapartum corresponds to the period spanning childbirth, whereas outcome

evaluation corresponds to an examination of the baby performed just after delivery.

2.2.1 Invasive methods for intrapartum evaluation

Fetal blood sampling

Fetal blood sampling (FBS) involves the task of obtaining a small blood sample from the

fetal scalp capillary. The pH level decreases when the acidity of the body fluids increases as

a consequence of the accumulation of lactic acid due to metabolic acidosis (Parer, 1980).



2.2. FETAL MONITORING 13

Table 2.1: Overview of the main methods proposed for fetal monitoring during labor. Information
extracted mainly from Behar et al. (2016), Clifford et al. (2014), and Peters et al. (2001).

Method System
Gestational

age
Comments

FBS
Fetal blood
sampling

At delivery

- Invasive; blood sample from the fetal scalp
- A good estimation of pH value (although
not as precise as umbilical blood sample)
- Uncommonly in an everyday clinical setting
- Time-consuming; used only as complemen-
tary information to non-invasive methods

PO Pulse Oximetry At delivery

- Estimation of oxygen saturation based on
light reflection
- Invasive, not routinely recommended
- Low specificity for fetal acidosis
- External PO is under research

I-FECG
Invasive fetal
electrocardiogram

At delivery

- Acquisition of ECG and FHR of the fetus
- Single-channel only
- Invasive, carrying a small additional risk,
not routinely recommended
- High signal-to-noise ratio (SNR)

PCG

Fetal phonocardiog-
raphy; acoustic
recording from
abdomen

≥ 28−30
weeks

- Manual auscultation is usually employed,
but electronic devices are sometimes used
- Requires expert to locate the fetal heart
- Low SNR; prone to acoustic noise (e.g., gas-
trointestinal activity and external noise)
- Not routinely employed for continuous fetal
monitoring

NI-FECG
Non-invasive fetal
electrocardiogram

≥ 20 weeks

- Cheap and easy to handle
- Continuous monitoring possible
- FHR and possibly morphological analysis
- Low SNR, improvements for this technology
is under research

FMCG
Fetal magnetocar-
diography

≥ 20 weeks

- Requires skilled personnel
- Morphological analysis of the FMCG easier
than NI-FECG because of higher SNR
- No long term monitoring possible to date
because of the device size, cost, and com-
plexity of the required instrumentation

CTG

Cardiotocography;
ultrasound and
pressure-sensitive
transducers

≥ 20 weeks

- Contraction through pressure transducer
- Non-invasive acquisition of FHR signal
- No beat-to-beat data, cardiac function de-
scriptor limited to FHR
- Prone to artifacts and signal noise
- Not passive; ultrasound irradiation
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Since the metabolic acidosis is a key indicator of asphyxia, a low level of pH indicates fetal

distress and a risk of permanent perinatal brain damage.

In general, it is used together with other methods to obtain complementary information

about the fetal status, because the pH value is considered as an accurate indicator for

the diagnosis of metabolic acidosis. For example, in the case of a non-reassuring pre-

diction obtained by an external method (see Section 2.2.2), FBS might be performed in

order to acquire a value of pH from the fetal blood. Unfortunately, FBS is considered as

a time-consuming procedure and uncommonly performed in an everyday clinical setting

(Bhide et al., 2016). Besides, the pH value obtained by the fetal scalp blood can differ from

the value obtained by the umbilical artery (as a gold standard outcome measure). There-

fore, the assessment performed by FBS is not always reliable (Kuehnle et al., 2016).

Pulse oximetry

Pulse Oximetry (PO) is a method developed to estimate the measure of oxygen saturation

(F SpO2) of a fetus in-utero, using the principle of light reflection. Emitted photons travel

through fetal tissue layers, then the light is dispersed, absorbed, and reflected, whose inten-

sity depends on the oxygen saturation in the blood. However, as indicated by Steer (2008),

low oxygen saturation has poor specificity for fetal acidosis. Also, there is no evidence that

monitoring based on PO has improved the overall cesarean section rate compared with the

conventional analysis (East et al., 2014). Therefore, the application of PO has not shown a

significant contribution to fetal welfare assessment.

Although in clinical practice, this method is usually performed invasively, there is scien-

tific research focused on trans-abdominal fetal PO (Böttrich et al., 2015; Zourabian et al.,

2000). It consists of a technique performed externally through the abdomen of the mother.

However, these works have concluded that the distance between the source and detector

significantly affects the signal composition, and several factors related to the interference

in fetal PO are not yet characterized. Therefore, more realistic models are needed to use

the results for implementation purposes in real scenarios.

Invasive fetal electrocardiogram

Fetal Electrocardiogram (FECG) signal can be obtained either invasively (I-FECG) or

non-invasively (NI-FECG). For a description of the NI-FECG, please refer to Section 2.2.2.

The I-FECG technique consists of acquiring the electrocardiogram signal of the fetus by

introducing and attaching an electrode to its head. Then, the complete ECG curve is ob-

tained to examine and evaluate its morphological characteristics. For that operation, it is

necessary the rupture of membranes, which usually occurs at the second stage of labor.

This technique is commonly referred to as ST Analysis (STAN), which is suitably estab-

lished in detecting and monitoring myocardial insufficiency in adults. Thus, the devel-

opment of STAN of FECG has based on such experience and knowledge. The fetal brain
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and heart are equally sensitive to changes in oxygen content; therefore, myocardial func-

tion serves as an indirect measurement of brain condition. During the signal acquisition, it

displays the continuous ECG and allows the automatic computation of important markers

of ECG.

The STAN, as an invasive technique, is not intended to be used autonomously but rather

as an additional tool for standard external methods (see Section 2.2.2). It serves as a source

of complementary information validating or invalidating the hypothesis of fetal condition

and behavior assessed by other methods. However, recent studies show that the use of

STAN during labor, as a complement to standard technologies such as CTG, does not im-

prove perinatal outcomes or decrease the cesarean delivery rate (Saccone et al., 2016).

2.2.2 Non-invasive methods for intrapartum evaluation

Fetal phonocardiography

Auscultation is a concept that generally refers to listening for particular sounds produced

within the body. Using this method, the FHR can be monitored either intermittently (at

regular intervals during labor) or continuously. For this purpose, FHR auscultation guide-

lines have been proposed in the literature (Lewis et al., 2015), which help to assess the fetal

condition through intermittent monitoring.

The main advantage of this methodology is that it allows the monitoring of the fetal heart in

different positions and favors the mother mobility during labor. However, it takes time to

develop clinical expertise, and even for the most experienced clinicians, it is impossible to

recognize some subtle features involved in the cardiac activity, such as the FHR variability

(Lewis et al., 2015).

The most basic tool for auscultation is the Pinard stethoscope, which allows the clinicians

to monitor the fetal heart tones. However, it only provides a short term discrete evalua-

tion of the cardiac function. As a consequence, the use of the stethoscope only focuses

on assessing the extreme limits of the normal FHR baseline. In order to deal with this dis-

advantage, recent approaches have proposed automated microphone-based auscultation

techniques, which introduce the concept of continuous auscultation-based monitoring

(Jiménez-González and James, 2009; Jimenez-Gonzalez and James, 2010; Khokhlova et al.,

2016; Zhdanov et al., 2015), whose technique is commonly referred to as the phonocardio-

graphy (PCG).

Although electronic fetal PCG has been investigated and proposed in the literature, the

acquisition of PCG involves a very low signal-to-noise ratio (SNR). A higher signal quality

can be obtained when the back of the fetus is in contact with the abdomen of the mother,

but unfortunately, this position is not always possible and it can significantly change dur-

ing labor. Therefore, this technology is almost unemployed in the current clinical practice

(Kovács et al., 2011).



16 CHAPTER 2. FETAL WELFARE ASSESSMENT

Non-invasive fetal electrocardiogram

The non-invasive fetal electrocardiogram (NI-FECG) is an alternative monitoring method

to standard Doppler ultrasound (US) techniques. As explained in Section 2.2.1, the inva-

sive FECG requires the rupture of membranes to attach the scalp in the fetal head and

record the ECG signal. In the case of NI-FECG, the operation is performed externally based

on US through the maternal abdomen. However, the acquisition of ECG signal by using

this technique is still challenging, because it involves several artifacts and noise generated

mainly by the heart of the mother, and abdominal and uterine muscles (Kahankova et al.,

2019; Li et al., 2016). For a better signal acquisition, the US electrodes should be located

as close as possible to the fetal head, but considering the complexity of the process, this

condition is not always possible.

Fetal magnetocardiography

The fetal magnetocardiography (FMCG) is a non-invasive technique for studying fetal

cardiac activity. This method employs a superconducting quantum interference device

(SQUID) to facilitate a 3-dimensional analysis of the micromagnetic field (commonly

10−12 tesla) generated by phenomenal electric activities of the heart (Fukushima et al.,

2011). The FMCG measures the magnetic field produced by the electrical activity of the

heart.

Recent applications of FMCG have provided information about different physiological phe-

nomena such as fetal behavioral states (Vairavan et al., 2016), acquired QT prolongation

syndrome (Cuneo et al., 2013), supraventricular tachycardia (Campbell et al., 2006), assess-

ment of fetal neurodevelopment (Wakai, 2004), and fetal arrhythmias (Stingl et al., 2013).

The main advantage of using the FMCG for the FHR analysis is that it is possible to obtain

accurate beat-to-beat data non-invasively. However, the main disadvantage of the FMCG

is the size, cost, and complexity of the required instrumentation, nevertheless smaller and

portable devices may become available (Li and Farajidavar, 2015). Likewise, the FMCG

signals may often involve maternal cardiac components and background noise. Conse-

quently, FMCG observations need to be preprocessed in order to reconstruct uncontami-

nated fetal signals that may be more suitable for clinical application.

Cardiotocography

Fetal monitoring based on CTG involves the joint recording of FHR and UC signals during

intrapartum as well as peripartum. In current clinical practice, these data are the primary

source of information used for fetal welfare assessment, obtained through a non-invasive

instrument known as cardiotocograph. This tool provides continuous information about

changes in the FHR and their temporal relationship to UC stimuli, which may be examined

during labor or subsequently if required.
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This technique, as a non-invasive method, is usually used before the rupture of mem-

branes, based on an external ultrasound probe and a transducer to acquire FHR and UC

pressure, respectively. It is important to note that after the rupture of membranes, the ac-

quisition of FHR data (extracted until this point externally by CTG) might be performed

directly by an electrode attached to the fetal head. Then, the FHR can be computed from

ECG R-R intervals acquired by an invasive method such as the I-FECG (explained in Sec-

tion 2.2.1). Also, the UC might be obtained using either an external strain gauge or an

invasive intrauterine pressure catheter.

Nowadays, although CTG is the most used technology for fetal monitoring in clinical

practice, CTG analysis has been surrounded by significant controversies. Likewise, the

interpretation of CTG has shown to suffer from very low specificity and wide intra- and

inter-observer disagreement. Indeed, this thesis work focuses on extracting more signif-

icant information form the CTG signal that allows a better fetal assessment during labor.

Considering that the CTG analysis is the subject of study in this thesis work, in Section 2.3,

we provide a more in-depth explanation about its clinical operation and signal interpreta-

tion procedures.

2.2.3 Outcome evaluation

Acid-base analysis

The neonatal outcome assessment commonly relies on the analysis of blood gases in the

umbilical cord of the baby immediately after delivery. This analysis provides information

about the neonate condition in order to guide the requirements for its care.

The procedure to obtain the blood sample starts just after delivery by doubly clamping the

cord, and taking a sample of both vein’s blood and artery’s blood. These samples allow

calculating the values of blood gases. The main biochemical markers are the umbilical

artery pH, the base excess, and the base deficit of extracellular fluid.

The pH measurement is the most common outcome parameter used to determine the pres-

ence of respiratory and metabolic acids in neonates. According to the literature (Kumar

et al., 2016), the normal range of umbilical cord pH is 7.40± 0.20. As explained in Georgieva

et al. (2013) and Yeh et al. (2012), pH is the most robust indicator to assess potential adverse

outcomes. Although the relationship between the pH value and adverse outcomes may be

relatively weak, it is considered as a gold standard outcome measure (Spilka et al., 2013).

Therefore, pH values is the most used parameter for outcome evaluation in the current

clinical practice.

Another biochemical marker is the base excess (BE), which is often used in clinical practice

as a sign of metabolic hypoxia. The BE is defined as the amount of strong acid that must be

added to each liter of fully oxygenated blood to return the pH to 7.40 at a temperature of

37◦C and a partial pressure of carbon dioxide (pCO2) of 40 mmHg. The main disadvantage

of this measurement is that its values are often false positive (Rosén et al., 2007).
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The last main biochemical marker is the base deficit of extracellular fluid (BDecf), which

is an opposite measure than BE and obtained from the pH and pCO2 level (Garibaldi et al.,

1999). This measurement may estimate the cause of a low pH between the distinct physi-

ological conditions of respiratory acidosis, due to a short-term accumulation of CO2, and

metabolic acidosis as a result of the lactic acid from a longer-term oxygen deficiency. Ac-

cording to Rosén et al. (2007), this parameter is a better measure of metabolic hypoxia

than BE. However, pH remains the most robust measure, and according to Georgieva et al.

(2013), it remains as the most informative.

Metabolic acidosis (phenomenon related to significant increase of possibility of cerebral

palsy) in umbilical cord arterial blood at birth is commonly defined by pH < 7.00 (GOLD-

ABER et al., 1991) (or < 7.05) and a Base deficit of extracellular fluid (BDecf) ≥ 12.0 mmol/L

(Kumar et al., 2016; MacLennan, 1999). Likewise, several authors have pointed out differ-

ent pH levels that can indicate pathological fetal acidemia such as 7.10 (Cahill et al., 2012;

Georgoulas et al., 2006; Yeh et al., 2012), 7.15 (Di Tommaso et al., 2013), and 7.17 (Victory

et al., 2004).

Apgar score

Virginia Apgar proposed this method in 1953, initially developed in order to ascertain the

effects of obstetric anesthesia on neonates. Nevertheless, nowadays, this method is widely

used in the outcome assessment.

The Apgar scale is determined by evaluating five parameters of the neonate examined at 1,

5, and 10 minutes after delivery. Each parameter is evaluated on a scale from 0 to 2, and

then all values are summed up, giving the score at the particular instants. Therefore, the

maximum score corresponds to 10 points. It has been reported that 5-min Apgar score had

a higher concordance with asphyxia during labor compared with the other instances (Man-

ganaro et al., 1994). Likewise, Eun et al. (2016) have concluded that low Apgar scores are sig-

nificant perinatal risk factors for infantile seizures, especially in full-term and normal-birth

weight infants. In general, the level of Apgar score ≤ 7 at 5 minutes is considered as an

indicator of metabolic acidosis (Doria et al., 2007; Svenvik et al., 2015; Westerhuis et al.,

2007) and cerebral palsy (MacLennan, 1999). However, the assessment of child is subjec-

tive and a significant variability among health care providers has been reported by Gupta

et al. (2016).

2.3 Fetal monitoring by using CTG

2.3.1 CTG operation

As explained in Section 2.2.2, in current clinical practice, fetal monitoring during labor is

commonly based on the assessment of FHR and UC signals, which are acquired electroni-
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Figure 2.4: Example of an external cardiotocographic (CTG) setup; extracted from Abdulhay et al.
(2014).

cally by CTG. The signal recording may be externally or internally acquired, depending on

the process stage and conditions of the clinical procedure during labor.

On the one hand, the external CTG involves the use of a Doppler ultrasound transducer

and a pressure transducer, for the acquisition of the FHR and a UC signal, respectively.

The external CTG requires the mother to wear a belt across her abdomen while monitoring

is being conducted (see Fig. 2.4). The ultrasound signals contain the information repre-

senting the fetal heart movements, so in order to obtain the fetal pulsations, an algorithm

calculates the time interval between the loudest points in the cardiac cycle and displays

the heart rate. This device uses frequencies around 1.5 MHz, and based on the reflected

ultrasound signal, the fetal heart movement is detected within the same transducer. The

signals are usually acquired continuously, although occasionally, they are captured inter-

mittently, depending on the clinician’s criteria.

On the other hand, an alternative to external CTG monitoring is internal CTG, which con-

sists of attaching an electrode directly to the head of the fetus. This form of monitoring

requires a ruptured amniotic sac (either spontaneously or artificially). The main disadvan-

tage of the internal CTG is that it is an invasive method, and it also restricts the woman’s

mobility considerably. Therefore, external CTG remains as the most used technique in the

current clinical practice, whose main advantage is its non-invasibility for working. How-

ever, CTG monitoring suffers from a significant disadvantage, which is related to the com-

plexity of the FHR interpretation, whose procedure is explained in the following.

2.3.2 CTG interpretation by guidelines

As explained in Section 2.2, the sympathetic and parasympathetic ANS modulation can re-

flect particular characteristics in the fetal cardiac activity, whose variations could have a

close relationship with fetal oxygenation as an indicator of the fetal condition (Bursa and

Lhotska, 2017; Garabedian et al., 2017). In the current clinical practice, the fetal welfare
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Figure 2.5: Conventional CTG patterns defined in guidelines.

assessment based on CTG involves a visual interpretation that attempts to assess those

characteristics. This operation depends on the analysis of several morphological signal

patterns from the FHR and UC signals, such as the FHR baseline, FHR variability, accelera-

tions, decelerations, and UC events. Fig. 2.5 shows a graphic representation of these signal

patterns recognized from real CTG data.

Nowadays, these morphological patterns and their physiological connection are defined

in guidelines proposed for CTG fetal monitoring (American College of Obstetricians and

Gynecologists and others, 2010; Artal and O’toole, 2003; Ayres-de Campos and Bernardes,

2010; Ayres-de Campos et al., 2015; Macones et al., 2008; Parer and Ikeda, 2007; Rooth et al.,

1987; Royal College of Obstetricians and Gynaecologists (Great Britain). Clinical Effective-

ness Support Unit, 2001; Spilka et al., 2014b), where the FIGO (International Federation

of Gynecology and Obstetrics) guidelines proposed by Rooth et al. (1987) were the first

guidelines for CTG interpretation. According to CTG guidelines, these signal patterns can

provide representative information to clinicians about the fetal response that can help to

assess the fetal health condition. As shown in Table 2.2, these patterns involve particular

characteristics that can be associated with normal, suspicious, and pathological fetuses.

For example, a FHR baseline lower than 100 bpm, or reduced variability (< 5 bpm) are

patterns that indicate a fetus with a high probability of hypoxia. On the contrary, a FHR

baseline between 110-160 bpm, or variability in the range of 5-25 bpm, indicates a normal

fetal condition (see more details in Table 2.2). This information helps clinicians to inter-

pret how the fetus reacts to stress and thus indicate timely intervention before the risk of

consequences increases (Ayres-de Campos and Bernardes, 2010; Hruban et al., 2015).

The main purpose of the CTG guidelines is to standardize the interpretation and classifica-

tion of the CTG recordings into different categories, trying to avoid subjective interpreta-

tion. Basically, clinicians observe by naked eye morphological time-domain CTG patterns

and associate them with a particular situation defined in guidelines. Then, according to

the guidelines recommendations for this particular situation, they commonly classify the
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Normal Suspicious Pathological

Baseline 110-160 bpm Lacking at least one
characteristic of nor-
mality, but with no
pathological features

< 100 bpm

Decelerations No repetitivea de-
celerations

Lacking at least one
characteristic of nor-
mality, but with no
pathological features

Repetitivea late or prolonged decel-
erations during > 30 min or 20 min
if reduced variability, or one pro-
longed deceleration with > 5 min

Variability 5-25 bpm Lacking at least one
characteristic of nor-
mality, but with no
pathological features

Reduced variability, increased vari-
ability, or sinusoidal pattern

Interpretation Fetus with no hy-
poxia/acidosis

Fetus with a low prob-
ability of having hy-
poxia/acidosis

Fetus with a high probability of hav-
ing hypoxia/acidosis

Clinical manage-
ment

No interven-
tion necessary
to improve fetal
oxygenation state

Action to correct re-
versible causes if
identified, close mon-
itoring or additional
methods to evaluate
fetal oxygenation

Immediate action to correct re-
versible causes, additional meth-
ods to evaluate fetal oxygenation,
or if this is not possible expedite
delivery. In acute situations (cord
prolapse, uterine rupture, or pla-
cental abruption) immediate deliv-
ery should be accomplished

a Decelerations are repetitive in nature when they are associated with more than 50% of uterine contrac-
tions.

Table 2.2: Summary of FIGO (International Federation of Gynecology and Obstetrics) guidelines for
cardiotocographic (CTG) classification, extracted from Ayres-de Campos et al. (2015).
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fetal condition as normal, suspicious, or pathological in order to decide about the next step

of the management (Sweha et al., 1999).

However, guidelines have been surrounded by great controversies, because they still lack

consensus in many key aspects. The absence of objective criteria to define some of the FHR

patterns, together with the disparity of definitions between different guidelines, make the

diagnosis a difficult task. Moreover, guidelines are considered too complex, making them

prone to rapid memory decline (Santo and Ayres-de Campos, 2012). Using guidelines leads

to good consensus in extreme fetal cases (normal and severe fetal asphyxia) but no clear

recommendation for cases between these two extremes, which represent at least 50% of

all the intrapartum cases (Parer and Ikeda, 2007; Ugwumadu, 2014). As a consequence,

CTG interpretation has demonstrated a wide intra- and inter-observer disagreement, lack

of objectivity, and poor interpretation reproducibility (Ayres-de Campos and Bernardes,

2010; Freeman et al., 2012; Ghi et al., 2016; Haritopoulos et al., 2016; Santo and Ayres-de

Campos, 2012; Santo et al., 2017).

In this context, clinical research has focused mainly on improving conventional CTG guide-

lines (Clark et al., 2017; Evans et al., 2018; Pinas and Chandraharan, 2016; Thellesen et al.,

2015). Likewise, more advanced guidelines have been proposed, such as the 5-tier classifi-

cation system proposed by Parer et al. (2006) and Parer and Ikeda (2007), which empirically

defines different patterns of fetal health state and risk of evolution to another more severe

pattern with a higher risk of acidemia. The 5-tier system had been examined in several pub-

lications (Coletta et al., 2012; Elliott et al., 2010; Parer, 2014; Parer and Hamilton, 2010), and

they have found that achieved levels of agreement and sensitivity are much higher com-

pared with the previously reported guidelines. However, this system is not commonly used

in the current clinical practice, which can be explained by the fact that their analysis, based

on human interpretation, is considered more complex than other proposed guidelines. Be-

sides, the mentioned literature emphasizes that a correct interpretation and a significant

intra- and inter-observer agreement probably will never be achieved by using guidelines

because this methodology still requires the clinician to visually measure several factors,

grade them, and then consider many possible combinations of them. In consequence, the

lack of consensus of CTG guidelines and interpretation problems are still unsolved so far.

2.3.3 Computer-based systems support

In order to improve the CTG interpretation, several CTG training simulators and expert

systems have been proposed and implemented.

On the one hand, training simulators (3B Scientific®; iSimulate CTGi; K2 Medical SystemsTM

PTP; PHC NORDIC) can be used to assist clinical staff to get expertise in the interpretation

of CTG in a risk-free and controllable environment, since training can contribute to an

increased quality of care, and improve CTG competence and clinical management (Fritz

et al., 2017; Pehrson et al., 2011). However, regular education is very resource demanding,
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and it usually sustained only for a limited period, after which the additional interpretive

skills deteriorate (Hruban et al., 2015; Pehrson et al., 2011).

On the other hand, expert systems (Central Station Monitor MF-7400 (Maeda et al., 2012),

HUNTLEIGH - Arjo (Pardey et al., 2002), INFANT® (Keith and Greene, 1994), IntelliSpace

Perinatal® (Devoe et al., 2000), K2 INFANT-Guardian® (K2 Medical SystemsTM, 2020),

Omniview-SisPorto® (Ayres-de Campos et al., 2008), PeriCALMTM (Hamilton and Ki-

manani, 1994), Trium CTG Online (Schiermeier et al., 2008)) can assist clinicians with

the interpretation of CTG. Most of them are based on conventional patterns defined in

CTG guidelines, which are employed used as a knowledge database in order to emit infor-

mation and visual alerts to the observer related to changes in the CTG recording. However,

recent literature shows that there is little or no evidence that expert systems have an effect

on the incidence of fetal acidemia, cesarean delivery, or perinatal mortality, compared to

normal CTG analysis (Lutomski et al., 2013; Nunes and Ayres-de Campos, 2016).

Although training simulators and expert systems are under development and evaluation,

they have not shown superior effectiveness in reducing newborn acidemia without exces-

sive obstetric intervention (Ugwumadu et al., 2016).

In summary, in the last thirty years, many efforts have been made in order to reduce the

problems of CTG intra- and inter-observer disagreement and interpretation. Concerning

the solutions related to clinical support, visual analysis by using CTG guidelines makes the

diagnosis a difficult task. As a possible solution, intensive and continuous clinicians train-

ing in CTG may, in some way, improve the competence and clinical performance, however,

the interpretive skills seem to decrease faster than theoretical knowledge. At the same time,

regular education is very resource-demanding (Hruban et al., 2015; Pehrson et al., 2011),

which is an important disadvantage considering the time that doctors need to invest on

training activities. Concerning the proposed computer-based support, there is almost no

evidence that it can improve the fetal welfare assessment compared with the conventional

CTG analysis. This phenomenon can be explained by the fact that most of these systems

still depend on human factors and emulate what clinicians visually do with the CTG signal,

i.e., these systems assume that currently used time-domain patterns fulfill the essential re-

quirements for a correct interpretation. Conclusively, the methods proposed in the clinical

research area have not shown satisfactory results on improving the CTG analysis so far, and

a reliable CTG interpretation is still challenging.





3
State of the art

This chapter presents the state of the art in CTG analysis focused on the field of biomed-

ical signal processing and classification. In order to identify better the scope of related

works presented in this chapter, in Fig. 3.1, we show a block diagram that provides an

overview about the main proposed solution in both clinical and engineering research ar-

eas. In Chapter 2, we have already explained the main context, problematic behind the

CTG interpretation, and clinical solutions focused on improving the interpretation and

use of CTG guidelines. Likewise, we have explained the proposed computer-based solu-

tions such as training simulators and expert systems. In this chapter, we present a review

of recent scientific works proposed in biomedical engineering for CTG signal analysis (see

right block of Fig. 3.1), which are focused on extracting more representative information

from the FHR signal in order to improve the automatic CTG assessment and classification.

These works can be roughly divided into three main groups: signal feature extraction, CTG

classification, and CTG signal modeling approaches, which are explained in detail in the

following sections.

3.1 Signal feature extraction

In recent years, several approaches have been proposed for FHR signal feature extraction,

which can be subdivided into two main categories: stationary and time-variant techniques

(Haritopoulos et al., 2016).

3.1.1 Stationary techniques

CTG analysis based on stationary techniques commonly involves the extraction of signal

features in different domains such as time-domain, frequency-domain and nonlinear fea-

tures.

Time-domain features

Features in the time-domain are usually based on statistical indicators computed from

short- and long-term analyses, which mainly aim to describe the standard morphological

patterns described in CTG guidelines (Agostinelli et al., 2017; Cesarelli et al., 2009, 2011;

25
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Figure 3.1: Overview of main proposed solutions for CTG analysis in clinical and engineering
research areas.

Das et al., 2011; Fuentealba et al., 2017a; Wei et al., 2012). Besides, these type of features has

been employed to develop statistical models in order to reproduce the CTG interpretation

by clinicians (Cao et al., 2006).

Frequency-domain features

As established in the literature (Gonçalves et al., 2018, 2006; Kwon et al., 2012; Signorini

et al., 2003; Van Laar et al., 2010), different frequency bands have been investigated in the

FHR signal because it is assumed that variations in particular spectral bands can be related

to the fetal health condition (Siira et al., 2013). The studied bands in the FHR signal include

a zero-frequency component (DC), a very low frequency (VLF) band (0− 0.03 Hz), a low

frequency (LF) band (0.03−0.15 Hz), a medium frequency (MF) band (0.15−0.5 Hz), and a

high frequency (HF) band (0.5−1.0 Hz). These FHR frequency bands and their associated

physiological phenomenon can be summarized as presented in Table 3.1.

The DC component corresponds to a long-term average of the FHR signal values. The VLF

band is associated with thermoregulatory processes and slow control regulating mecha-

nisms of peripheral vessels, which can present nonlinear characteristics. The LF involves

information mainly associated with the fetal sympathetic and parasympathetic ANS mod-

ulation. The MF depends on maternal breathing and fetal movements. The HF is related

to the parasympathetic ANS modulation and fetal breathing. It is important to note that

the sympathetic branch develops earlier than parasympathetic one, which can achieve a
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Table 3.1: FHR frequency bands commonly investigated in the literature.

Frequency band Abbrev. Associated phenomenon

Zero-frequency DC Component describing the average of the FHR.
0−0.03 Hz VLF Slow control mechanisms; presents nonlinear contributions.

0.03−0.15 Hz LF Stimuli of the fetal autonomic nervous system (ANS).
0.15−0.5 Hz MF Maternal breathing and fetal movements.

0.5−1.0 Hz HF Parasympathetic ANS and fetal breathing.

complete development after birth (Signorini and Magenes, 2016). For this reason, the as-

sociation between the LF and HF bands with the parasympathetic ANS activity can not be

assured, and therefore usually omitted in the literature.

The description concerning the FHR frequency bands presented above provides important

information, which is employed for the analysis of results, as will be explained in Chapter 7.

In order to analyze the information described above, different approaches based on

frequency analysis have been proposed. Most of these stationary frequency-based ap-

proaches depend on operations computed by the Fast Fourier Transform (Cesarelli et al.,

2007; Kwon et al., 2012; Schneider et al., 2009; Siira et al., 2005; Takatani et al., 2018;

Van Laar et al., 2011, 2010, 2009, 2008), and AR spectral-based analysis (Cazares et al., 2001;

Illanes and Haritopoulos, 2015; Sankhe and Desai, 2016; Signorini and Magenes, 2016;

Signorini et al., 2020; Warrick and Hamilton, 2012). The AR modeling offers a quantitative

spectral description of the signal based on a small number of model parameters, which

requires only a fraction of samples compared to the classical Fourier analysis (Salamalekis

et al., 2006).

Nonlinear features

In order to study the nonlinear characteristics involved in the FHR signal, several ap-

proaches have investigated the connection between nonlinear features and the fetal

health condition. In this perspective, approximate and sample entropy have been em-

ployed to characterize and analyze the complexity of the FHR and UC signals (Marques

et al., 2020). Mutual information has been employed to study nonlinear temporal FHR

dynamics (Granero-Belinchon et al., 2017), and assess the UC and FHR signals coupling

(Warrick and Hamilton, 2015). Multiscale entropy has been used to investigate the com-

plexity (Costa et al., 2014; Ferrario et al., 2009) and regularity (Ferrario et al., 2006) of the

FHR signal. Multivariate analysis based on linear and nonlinear features has been applied

to distinguish between healthy and intrauterine growth-restricted fetuses (Magenes et al.,

2014; Signorini et al., 2020). Linear and nonlinear parameters have been used to assess

their evolution of throughout pregnancy (Gonçalves et al., 2018), and study the impact of

fetal age and gender on FHR signals (Spyridou et al., 2018). Nonlinear parameters (namely

entropy and compression) have been also evaluated as labor predictors based on traces
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corresponding to one or two weeks before labor (Monteiro-Santos et al., 2020). Fractal

dimension, entropy, and complexity based features have been extracted and evaluated in

CTG intrapartum classification by using Naive Bayes, Support Vector Machine (SVM), and

Decision Tree (Spilka et al., 2012). Besides, as explained in Section 4.2, recent approaches

have used empirical mode decomposition (EMD) to characterize and extract information

from the FHR signal dynamics.

3.1.2 Time-variant techniques

Considering that the FHR dynamics modulated by the ANS describe characteristics highly

variant in time, some works have focused on studying these non-stationary characteris-

tics. These works are based mainly on time-varying frequency methods such as short-time

Fourier transform (Romano et al., 2006b), quadratic time-frequency distributions (Dong

et al., 2014), and time-varying AR modeling (Fuentealba et al., 2018a; Romano et al., 2006a;

Signorini et al., 2003). Besides, discrete (Cattani et al., 2006; Spilka et al., 2014a; Zhang

et al., 2019) and continuous wavelet transform (Bursa and Lhotska, 2017) has been applied

for spectral-based characterization of the of FHR and UC signals.

3.2 Signal classification approaches

In CTG classification, several approaches have been proposed. Most of them, as per-

formed by approaches explained above, also employ computerized FHR features extracted

from different domains such as time-domain, frequency-domain, and nonlinear features.

Nevertheless, they mainly focus on tuning computer-based algorithms to optimize their

model, thereby improving their performance in CTG classification. In this context, SVM

have been used to identify normal fetuses or at risk of developing metabolic acidosis (Geor-

goulas et al., 2006; Krupa et al., 2011). Hidden Markov Models (HMM) (Georgoulas et al.,

2004), Sparse SVM (Spilka et al., 2017), Least Squares SVM (Cömert et al., 2018; Georgoulas

et al., 2017), non-parametric Bayesian models (Yu et al., 2017), fuzzy inference systems

(Signorini et al., 2000), and convolutional neural networks (Bursa and Lhotska, 2017; Mar-

ques et al., 2019; Petrozziello et al., 2018) have been proposed for automatic classification

of FHR recordings.

Some classification methods attempt to consider the phenomenon involved in the fetal re-

sponse by studying the relationship between the UC and FHR as an input/output system.

In this context, Warrick et al. (2010) have proposed a system identification approach based

on power spectral density computed from an AR-based model. Likewise, statistical meth-

ods based on a Wilcoxon rank-sum test (Warmerdam et al., 2016a) and SVM classifiers

(Warmerdam et al., 2016b, 2018) have been employed to examine whether FHR features

during UC and rest periods, analyzed separately, improve the CTG classification.

Also, many approaches focusing on performance evaluation and comparison of different

machine learning methods for CTG classification have been published in the literature



3.3. CTG SIGNAL MODELING 29

(Bhatnagar and Maheshwari, 2016; Cömert et al., 2016; Czabanski et al., 2008; Huang and

Hsu, 2012; Jezewski et al., 2007; Nagendra et al., 2017; Ocak, 2013; Sahin and Subasi, 2015;

Sundar et al., 2012; Yılmaz and Kılıkçıer, 2013).

3.3 CTG signal modeling

Since the CTG interpretation is still a challenging issue, in the last years, it has emerged

an increasing interest in developing more advanced and complex computerized meth-

ods created for better understanding the fetal response during labor. In this perspective,

more sophisticated analyzing algorithms and modeling approaches have been proposed,

which mainly focus on generating synthetic CTG signal patterns. These approaches can be

roughly divided into two main categories: physiological- and qualitative-based models.

On the one hand, physiological-based models consist of closed-loop control systems,

which consider the fetal response and ANS modulation. This type of model aims to re-

produce mathematically synthetic CTG signal data and offer quantitative information of

certain emulated patterns such as late (Jongen et al., 2016a; van der Hout-van et al., 2013b),

variable (Jongen et al., 2016b; van der Hout-van et al., 2013a), and early FHR decelerations

(van der Hout-van et al., 2012), and FHR variability (Jongen et al., 2017). Likewise, some

approaches have proposed simulated models to describe the spontaneous evolution of

UC events (Bastos et al., 2012), and the relationship between UC and FHR signals by us-

ing a non-parametric approach to describe the involved dynamics in terms of an impulse

response function (Warrick et al., 2009).

On the other hand, qualitative-based models have been designed to consider the charac-

teristics of the CTG signal as observation of the process but without considering the fetal

physiological phenomena. These simpler mathematical models aim to simulate particu-

lar temporal events present in the CTG recording (Illanes et al., 2015; Improta et al., 2014;

Martinek et al., 2016). Likewise, synthetics CTG signals have been used for a comparison

of baseline estimation algorithms (Kupka et al., 2006).

3.4 Summary of the state of the art

In the last thirty years, many efforts have been made in order to reduce the problems of

CTG intra- and inter-observer disagreements and interpretation.

As explained in Section 2.3.2, clinical research has focused mainly on improving the con-

ventional CTG guidelines. However, although more advanced guidelines have been pro-

posed, their dependency on visual analysis still makes the diagnosis a difficult task, and the

CTG interpretation problems are still unsolved so far. In this context, computer-based sup-

port has been proposed, such as training simulators and expert systems (see Section 2.3.3).

On the one hand, concerning training simulators, intensive and continuous clinicians

training in CTG could, in some way, improve the competence and clinical practice. How-
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ever, the interpretive skills seem to decrease faster than theoretical knowledge, and at the

same time, regular education is very resource demanding. On the other hand, concern-

ing the computer-based support by expert systems, there is practically no evidence that

it has improved the fetal welfare assessment compared to the conventional CTG analysis.

This phenomenon can be explained by the fact that most of these systems still depend on

human factors and emulate what clinicians visually assess by using CTG guidelines.

In the biomedical engineering area, several approaches have been proposed for CTG fea-

ture extraction and classification. In general, they reveal that, by using an optimal set of

signal features and tuning a particular computer-based classifier properly, the CTG classifi-

cation performance can improve compared with the conventional CTG analysis. However,

although several efforts have been made, the results are not satisfactory enough for their

use in clinical practice (Haritopoulos et al., 2016; Lutomski et al., 2015; Nunes and Ayres-

de Campos, 2016; Ugwumadu et al., 2016). This phenomenon can be explained by the fact

that most of the automatic classification techniques proposed in the literature base the

operation only on a snapshot of the complete process without considering the the nonlin-

ear and non-stationary phenomenon involved in the ANS activity (Garabedian et al., 2017;

Romano et al., 2016b). Certainly, the fetal compensation system modulated by the ANS

triggers variations in the beat-to-beat FHR, whose time-varying dynamics can involve sig-

nificant information related to the fetal health status (Cesarelli et al., 2010; Romano et al.,

2006a). Consequently, conventional processing techniques that do not integrate these

physiological characteristics may not be appropriate for a correct CTG assessment.

In that context, time-variant based approaches have been proposed in order to study

these implicit characteristics. However, they have certain limitations because they are

mainly focused only on studying the fetal reactivity based on the analysis of the FHR as

a response to the UC stimulus. Besides, as presented in Section 3.3, physiological- and

qualitative-based models have been proposed to describe the implicit phenomenon re-

lated to the time-variant fetal behavior. These approaches are based on mathematical

CTG models focused on generating synthetic CTG signal, which have been designed as

a training tool for the educational purpose of gynecologists. Therefore, as they are de-

signed nowadays, they can help to understand the physiological process, but they are not

designed to characterize the fetal physiological phenomena from real CTG data.

Conclusively, the described solutions proposed in biomedical engineering in the area of

signal processing, are practically not used in real scenarios. Several algorithms have been

proposed for signal feature extraction and classification, but the clinical staff can not di-

rectly assess them. This perspective brings up to the question of whether approaches

based only on the extraction of signal feature and machine learning classification are ap-

propriate for a correct CTG signal interpretation.

In our opinion, a computer-based CTG analysis must integrate the described fetal phys-

iological phenomenon, and provide significant and understandable information to clini-

cians (in Section 7.3 we address in-depth this important matter).
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Although the CTG interpretation problems are still unsolved so far, all the advances in

biomedical engineering research presented above have paved the way towards an auto-

matic CTG analysis based on the progressive fetal response over time. In this context, the

study of the time-variant FHR dynamics involved in the fetal compensatory mechanism is

essential, which is the main direction of this thesis work.





4
Signal processing techniques: Theoretical

background

This chapter provides a comprehensive review of the principles behind the signal process-

ing methods employed in this work, such as the Improved Complete Ensemble Empirical

Mode Decomposition with Adaptive Noise (ICEEMDAN) and time-varying autoregressive

(TV-AR) modeling. First, we present an introductory section (Section 4.1), which explains

the main concepts behind the proposed time-variant spectral analysis by comparing the

employed techniques with standard signal processing methods. Then, in Section 4.2 and

4.3, we present the theoretical background and main concepts related to ICEEMDAN and

TV-AR modeling, respectively.

4.1 Basic concepts in frequency analysis

This section explains the essential concepts that are commonly involved in a stationary

and a time-variant spectral analysis, and how the properties of the signal data (e.g., sam-

pling frequency, SNR, and length of available data) can affect the spectral estimation.

These concepts are essential for selecting an appropriate method for the analysis of the

CTG signal.

For a better understanding of these concepts, we generate three examples, which are pre-

sented in Section. 4.1.1, 4.1.2, and 4.1.3, respectively. The first example corresponds to sta-

tionary frequency analysis, whereas the second and third examples consist of time-variant

frequency analysis, and signal decomposition, respectively.

4.1.1 Example 1: Stationary frequency analysis

For the first example, we make use of a simulated signal (Sim1) resulting from the sum of

four sinusoidal components of 60 s length and a sampling frequency f s = 10 Hz, with con-

stant amplitude (A) and frequency ( f ) (see Fig. 4.1). As can be observed in Fig. 4.1(a-d), the

four components correspond to sine curves of [A, f ] = [1.0,0.15 Hz], [A, f ] = [0.8,0.5 Hz],

[A, f ] = [0.6,1.0 Hz], and [A, f ] = [0.4,1.5 Hz], respectively. The resulting signal Sim1, used

for this example, is plotted in Fig. 4.1(e). The frequencies involved in the simulated signal

33



34 CHAPTER 4. SIGNAL PROCESSING TECHNIQUES: THEORETICAL BACKGROUND

0 10 20 30 40 50 60
-1

-0.5

0

0.5

1

am
pl

itu
de

time [s](a) A = 1.0; f = 0.15 Hz
0 10 20 30 40 50 60

-1

-0.5

0

0.5

1

am
pl

itu
de

time [s](b) A = 0.8; f = 0.5 Hz

0 10 20 30 40 50 60
-1

-0.5

0

0.5

1

am
pl

itu
de

time [s](c) A = 0.6; f = 1.0 Hz
0 10 20 30 40 50 60

-1

-0.5

0

0.5

1

am
pl

itu
de

time [s](d) A = 0.4; f = 1.5 Hz

0 10 20 30 40 50 60

-2

-1

0

1

2

am
pl

itu
de

time [s](e) Simulated signal (Sim1)

Figure 4.1: (a-d) Sinusoidal components of amplitude (A) and frequency ( f ), sampled at 10 Hz; (e)
Simulated signal 1 (Sim1) resulting from the sum the sinusoidal components (a-d).

were selected arbitrarily from the frequency range usually studied for FHR signal analysis

(see Section 3.1.1).

Considering that Sim1 involves the known frequency components described above, this

example aims to show how the estimation of the power spectral density (PSD) depends

on the properties of the signal data. For this purpose, we compute the PSD based on two

methods, AR modeling and discrete Fourier transform (DFT). In this example, for the AR

spectrum estimation, we employ a model order p = 10, whose coefficients are computed

by using the Yule-Walker method. For the DFT spectrum computation, we use a Hamming

window of length equal to signal length. The idea is to compare the performance of these

two methods when considering different sampling frequencies ( f s), signal lengths (L), and

the addition of white zero-mean noise of amplitude e.

The proposed example of frequency analysis is displayed in Fig. 4.2, where the data in

time-domain are plotted in black, and under each time-domain data, the corresponding

PSD, estimated by AR modeling and DFT, are plotted in blue and red color, respectively.

In Fig. 4.2(a-c), as a first experiment, we vary L from 60 to 20 s, maintaining the value of

f s, and without adding noise. Here, we can observe that the PSD computed from Sim1

(L = 60 s; f s = 10 Hz) is well defined, and both the AR and DFT spectrum show a very

similar frequency resolution. However, by considering a shorter L (Fig. 4.2(c)), the PSD

computed by AR modeling (blue) shows a better frequency resolution than DFT, which is

represented by thinner frequency peaks, mainly for higher frequency components.



4.1. BASIC CONCEPTS IN FREQUENCY ANALYSIS 35

L = 60 s; f s = 10 Hz ; e = 0.0 L = 40 s; f s = 10 Hz; e = 0.0 L = 20 s; f s = 10 Hz; e = 0.0

0 6 12 18 24 30 36 42 48 54 60

-2

0

2

am
pl

itu
de

time [s]

0.15 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

en
er

gy
 (

no
rm

al
iz

ed
)

frequency [Hz](a)

0 4 8 12 16 20 24 28 32 36 40

-2

0

2

am
pl

itu
de

time [s]

0.15 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

en
er

gy
 (

no
rm

al
iz

ed
)

frequency [Hz](b)

0 2 4 6 8 10 12 14 16 18 20

-2

0

2

am
pl

itu
de

time [s]

0.15 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

en
er

gy
 (

no
rm

al
iz

ed
)

frequency [Hz](c)

L = 40 s; f s = 8 Hz; e = 0.2 L = 40 s; f s = 6 Hz; e = 0.2 L = 40 s; f s = 4 Hz; e = 0.2

0 4 8 12 16 20 24 28 32 36 40

-2

0

2

am
pl

itu
de

time [s]

0.15 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

en
er

gy
 (

no
rm

al
iz

ed
)

frequency [Hz](d)

0 4 8 12 16 20 24 28 32 36 40

-2

0

2

am
pl

itu
de

time [s]

0.15 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

en
er

gy
 (

no
rm

al
iz

ed
)

frequency [Hz](e)

0 4 8 12 16 20 24 28 32 36 40

-2

0

2

am
pl

itu
de

time [s]

0.15 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

en
er

gy
 (

no
rm

al
iz

ed
)

frequency [Hz](f)

L = 40 s; f s = 4 Hz; e = 0.1 L = 40 s; f s = 4 Hz; e = 0.3 L = 40 s; f s = 4 Hz; e = 0.6

0 4 8 12 16 20 24 28 32 36 40

-2

0

2

am
pl

itu
de

time [s]

0.15 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

en
er

gy
 (

no
rm

al
iz

ed
)

frequency [Hz](g)

0 4 8 12 16 20 24 28 32 36 40

-2

0

2

am
pl

itu
de

time [s]

0.15 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

en
er

gy
 (

no
rm

al
iz

ed
)

frequency [Hz](h)

0 4 8 12 16 20 24 28 32 36 40

-2

0

2

am
pl

itu
de

time [s]

0.15 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

en
er

gy
 (

no
rm

al
iz

ed
)

frequency [Hz](i)

Figure 4.2: Example 1: Frequency analysis based on fast Fourier transform (FFT) (red) and autore-
gressive (AR) modeling (blue) applied to the simulated signal Sim1 presented in Fig. 4.2.
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As a second experiment, in Fig. 4.2(d-f), we add white noise of amplitude e = 0.2, consider-

ing a signal length L = 40 s, and we decrease f s from 8 to 4 Hz. As a result, we can observe

that the spectral estimation also depends on the f s parameter. A lower value of f s leads to

less frequency resolution in the DFT spectrum (red). Nevertheless, the AR spectrum (blue)

shows a more robust estimation while decreasing f s.

The last experiment (see Fig. 4.2(g-i)) aims to show how white noise added to the signal

can affect the spectral estimation. For this operation, we consider a signal length L = 20 s

and f s = 4 Hz, while e is increased from 0.1 to 0.6 in amplitude. As can be observed, the

added noise strongly affects the spectral estimation performed by the DFT, represented by

false frequency peaks that appear along the frequency axis. Particularly, when adding white

noise of amplitude 0.6 (see Fig. 4.2(i)), we can observe that, for the DFT spectrum (red), the

component of f = 1.5 Hz has practically disappeared. In contrast, the AR spectrum keeps

its shape and still estimate correctly all the frequency components involved in Sim1.

In summary, the example presented in Fig. 4.2 indicates that the characteristics of the sig-

nal can considerably affect the spectral estimation, and thus the performed frequency anal-

ysis. Nevertheless, when varying L, f s, and SNR, the spectral representation based on AR

modeling is more robust than the DFT.

4.1.2 Example 2: Time-variant frequency analysis

The example presented in Fig. 4.3 shows a frequency analysis performed on a signal involv-

ing time-variant characteristics. For this purpose, we generate a simulated signal (Sim2)

from four sinusoidal components of 20 s length, sampled at 4 Hz, concatenated in series.

Similarly to the previous example, these four components correspond to sine curves of

[A, f ] = [1.0,0.15 Hz], [A, f ] = [0.8,0.5 Hz], [A, f ] = [0.6,1.0 Hz], and [A, f ] = [0.4,1.5 Hz],

respectively. In order to evaluate the performance of the methods used for spectral estima-

tion, we add white zero-mean noise of amplitude e = 0.1 and 0.2.

Fig. 4.3(a), (b), and (c) show the signal Sim2 with the white noise of amplitude 0 (without

noise), 0.1, and 0.2, respectively. The second row shows the stationary spectrum based

on AR modeling (blue) and DFT (red) (explained in Section 4.1.1), computed for each sig-

nal. The third and fourth rows display the time-variant spectrum computed by short-time

Fourier transform (STFT) and TV-AR modeling, respectively. The STFT spectrum is com-

puted with a Hamming window of 8 s, overlapping of 7 s, and nfft points set to 256. In

this example, the TV-AR spectrum is estimated by using the same window length (8 s) and

overlapping (7 s), and a model order p = 10, whose coefficients are computed by using the

Yule-Walker method. It is important to note that for the spectral analysis applied to the

FHR signal, we use different AR model parameters set according to the requirements for

the FHR signal analysis, as will be explained in see Section 5.5.

As shown in Fig. 4.3(d), (e), and (f), AR modeling allows better spectral estimation com-

pared with DFT. In the AR spectrum (blue), even for the case with the noise of amplitude
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0.2, all the frequency components involved in Sim2 are correctly estimated, whereas, in the

spectrum computed by DFT (red), only the components of f = 0.5 and f = 1.0 Hz can be

recognized.

A stationary spectrum can illustrate the frequency components involved in the signal,

but it does not provide information concerning the instant that these components occur.

Therefore, in the presence of non-stationary signal characteristics, a stationary frequency

analysis is no longer applicable. In order to analyze these characteristics, a time-variant

spectral estimation is required. A time-variant spectral representation of the studied sig-

nals is displayed in the third and fourth rows of Fig. 4.3, for the STFT and TV-AR spectra,

respectively. In each figure, the spectral information vs. time is represented on the axis of

the ordinates and abscissa, respectively.

In this display, we can observe the behavior of the frequency components over time, where

their time and duration can be easily recognized. Here, the advantages of TV-AR modeling

compared with STFT, are clearly visualized. TV-AR offers a considerably higher spectral

resolution, represented by a thinner yellow band describing the frequency components

involved in the signal Sim2. Besides, as can be observed in Fig. 4.3(k) and (l), this method is

more robust to noise compared with the STFT spectrum. Particularly, Fig. 4.3(i) shows that

in the presence of noise of amplitude e = 0.2, the component of f = 1.5 Hz has practically

disappeared in the STFT spectrum; nevertheless, in the TV-AR spectrum, it can be clearly

identified.

4.1.3 Example 3: Signal decomposition

As explained in Chapter 3, the FHR signal can involve nonlinear and non-stationary charac-

teristics associated with the physiological regulation mechanisms modulated by the ANS

contributing to the FHR activity (Garabedian et al., 2017; Romano et al., 2016b). Therefore,

the proposed spectral analysis applied to the FHR signal must consider these important

characteristics, whose behavior can involve significant information of interest.

For a better understanding of this phenomenon, we present a basic example of time-variant

frequency analysis and decomposition applied to a signal that involves components of

non-stationary frequencies. For this purpose, we generate a signal (Sim3) of 80 min-

utes length sampled at 8 Hz, resulting from the sum of two components correspond-

ing to cosine signals that increase their instantaneous frequency quadratically and white

zero-mean noise of 0.1 of amplitude. The first component is generated with frequencies

from 0.1 to 1.2 Hz, whereas the second one is generated with frequencies from 0.7 to 1.9 Hz,

in the course of 80 s. Fig. 4.4(a), (b), and (c) show the first component, the second compo-

nent, and resulting signal Sim3, respectively. In order to visualize the spectral information

of the signal Sim3, we compute the TV-AR spectrum (explained in Section 4.1.2), which

is displayed in Fig. 4.4(d). Here, we can observe the non-linear behavior of the frequency

components involved in Sim3.
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Figure 4.3: Example 2: Time-variant frequency analysis applied to a simulated signal (Sim2) re-
sulting from four concatenated sinusoidal components of 20 s length; (a) Signal Sim2; (0−20 s):
[A, f ] = [1.0,0.15 Hz], (20−40 s): [A, f ] = [0.8,0.5 Hz], (40−60 s): [A, f ] = [0.6,1.0 Hz], and (60−80 s):
[A, f ] = [0.4,1.5 Hz]; (b) Sim2 + noise e = 0.1; (c) Sim2 + noise e = 0.2. (d-f) Stationary spectrum
computed by DFT and AR modeling from (a-c), respectively; (g-i) Time-variant spectrum com-
puted by short-time Fourier transform (STFT) from (a-c), respectively; (j-l) Time-variant spectrum
computed by TV-AR modeling from (a-c), respectively.
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Table 4.1: Comparison between empirical mode decomposition (EMD), wavelet, and Fourier
transform. Information extracted from Huang (2014b).

Fourier Wavelet EMD

Basis a priori a priori adaptive

Frequency convolution: convolution: differentiation:
global regional local
uncertainty uncertainty certainty

Nonlinear no no yes

Non-stationary no yes yes

Theoretical base theory complete theory complete empirical

For tracking and analysis of this type of nonlinear components, conventional signal pro-

cessing methods no longer can be used. For example, a linear frequency filter can be suit-

able for separating the components involved in the signal of example 2 (see Fig. 4.3), be-

cause each component involves only one frequency invariant in time. However, this type

of filter is not applicable to the signal Sim3, because, as can be observed in Fig. 4.4(d), both

components involve frequencies in common (in the range between 0.7 and 1.2 Hz). For

this reason, as a solution, before the time-variant spectral analysis, we perform a signal de-

composition, which allows separating these signal components. For the signal decompo-

sition, three techniques are commonly used, such as Fourier, wavelet, and EMD. The main

characteristics of these decomposition techniques are presented in Table 4.1 (extracted

from Huang (2014b)). As can be observed in this table, a suitable technique for the de-

composition of nonlinear and non-stationary signals is the EMD. Besides, EMD does not

require a priori known basis as the case of other traditional methods such as wavelet and

Fourier transform-based decomposition (Huang, 2014b; Huang et al., 1998; Krupa et al.,

2009, 2011; Wu and Huang, 2004).

Therefore, in this work, we decided to use EMD, particularly, a more advanced version

called as ICEEMDAN. It is an adaptive method that allows decomposing time series into

a finite number of intrinsic mode functions (IMFs). It provides information on the signal

dynamics in the time-domain based on local properties of the signal data itself by the di-

rect extraction of the energy associated with signal oscillations (Colominas et al., 2014). In

this work, and following previous contributions (Fuentealba et al., 2019b,c,e), the IMFs are

obtained by using a noise standard deviation Nstd= 0.03, and both the maximum number

of sifting iterations (NI) and number realizations (NR) are set to 50.

An example of the performed decomposition operation is presented in Fig. 4.4(e) and (f),

which show the IMFs decomposed from the signal Sim3, whose TV-AR spectra are shown

in Fig. 4.4(g) and (h), respectively. Here, we can observe that the components involved in

Sim3, can be separated into two IMFs, one corresponding to each component. Then, as
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represented by their spectral information, these nonlinear frequency components can be

easily tracked, represented by only one main frequency peak over time.

Conclusively, according to the information presented in examples 1, 2, and 3, as appropri-

ate methods for the proposed time-variant analysis applied to the FHR signal, we select

ICEEMDAN in combination with TV-AR modeling. A more in-depth explanation of the

mathematical background and parameters involved in these methods is presented in Sec-

tion 4.2 and 4.3, respectively. Besides, their application on real FHR data is performed in

Section 5.5.

4.2 ICEEMDAN

The first version of this technique (EMD) have been initially proposed by Huang et al.

(1998). It is an adaptive method that allows decomposing nonlinear and non-stationary

time series. This method decompose the signal into a finite number of non-overlapping

monotonic components termed as intrinsic mode functions (IMF) of different time scales.

The main advantage of this method is that it depends on the local properties of the signal

data itself by the direct extraction of the energy associated with signal oscillations. In con-

sequence, EMD does not require a priori information as in the case of traditional methods

such as wavelet and Fourier transform-based decomposition (Huang et al., 1998; Krupa

et al., 2011; Wu and Huang, 2004).

The EMD has been used to analyze data in different fields of biomedical engineering

(Krupa et al., 2011). Particularly, in CTG data preparation, EMD has been utilized for FHR

estimation from Doppler Ultrasound signals by using EMD-kurtosis method (Al-Angari

et al., 2017), and enhancement of the CTG signal by reducing signal artifacts (Krupa et al.,

2009). For CTG analysis, EMD has been employed in several approaches such as assess-

ment of the high-frequency information of FHR in different conditions of fetal activity

(Ortiz et al., 2005); estimation of FHR baseline with analysis of fetal movements by using

EMD and Kohonen neural network (Lu et al., 2014); investigation of temporal dynam-

ics and complex interaction between FHR and UC signals (Saleem et al., 2019); study of

the FHR signal components in order test the reliability of the EMD performance by us-

ing simulated FHR signals (Romano et al., 2016a); and FHR signal feature extraction and

classification by using EMD and SVM (Krupa et al., 2011).

Since EMD was proposed by Huang et al. (1998), more sophisticated EMD methods has

been developed in order to overcome different problems associated with the signal de-

composition. The main drawback of the original EMD is the mode mixing, i.e., more than

one mode of oscillation may contribute in one IMF, or one mode can spread across dif-

ferent IMFs. This phenomenon can occur when a mode has a very disparate amplitude,

or more than one mode has very similar oscillations. In order to solve this problem, the

Ensemble Empirical Mode Decomposition (EEMD) (Wu and Huang, 2009) was proposed.

This method performs the EMD over an ensemble of the original signal plus white Gaus-
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Figure 4.4: Example of time-variant spectral analysis and signal decomposition applied to
a simulated signal (Sim3) involving two components of variable frequency; (a-b) Quadratic
swept-frequency cosine signals (chirp signals) of 80 s length with frequencies in the range of
[0.1− 1.2] and [0.7− 1.9] Hz, respectively; (c) Simulated signal Sim3 resulting from the sum of
the components presented in (a) and (b); (d) TV-AR spectrum computed from Sim3; (e-f) Intrin-
sic mode functions (IMFs) decomposed by ICEEMDAN from signal Sim3. (g-h) TV-AR spectra
computed from the IMFs plotted in (e) and (f), respectively.
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sian noise, adding a different white noise series for each decomposition. Finally, the corre-

sponding IMFs are averaged to obtain the final decomposition. The addition of this noise

solves the mode mixing problems; however it generates other drawbacks. The final recon-

structed signal contains residual noise, and also different realizations of signal plus noise

may produce a different number of modes (Torres et al., 2011).

As an improved version of EEMD, the Complete Ensemble Empirical Mode Decomposi-

tion with Adaptive Noise (CEEMDAN) method has been proposed by Torres et al. (2011).

This method considers a unique residue for each mode independently from the noise real-

izations. The first CEEMDAN mode is computed exactly as in EEMD, so the first residue is

obtained by the detrending operation between the original signal and this mode. Then, the

first EMD mode is computed from an ensemble of the first residue plus different realiza-

tions of a particular noise. The second CEEMDAN mode is computed by averaging these

EMD modes. Then, the second residue is obtained by the detrending operation between

the first residue and the second CEEMDAN mode. This procedure repeats for each mode

computation until the stopping criterion is reached.

The CEEMDAN method allows a negligible signal reconstruction error and solves the prob-

lem of the different number of modes, however it still has problems to be improved: (a)

the CEEMDAN modes contain some residual noise, and (b) some spurious modes in the

first stages of the decomposition, which makes that the signal information appear later

than in EEMD (Colominas et al., 2014). In order to deal with these drawbacks, the ICEEM-

DAN method has been proposed by Colominas et al. (2014). This method allows a reduced

amount of mode residual noise by computing the mode as the difference between the cur-

rent residue and the average of the local means of each realization of signal plus noise.

Likewise, it allows reducing the problem of the spurious mode by not considering the di-

rect use of white noise for the extraction of the first IMF. Therefore, in this work, the ICEEM-

DAN method is used for the FHR signal decomposition.

For a more in-depth explanation of the ICEEMDAN method, please refer to Colominas et al.

(2014).

4.3 Time-varying AR spectrum computation

In order to explain the concepts involved in the TV-AR spectrum computation, we first

introduce the stationary version of AR modeling, and then the TV-AR modeling version.

4.3.1 Stationary AR modeling

As presented in Kay and Marple (1981) and Pardey et al. (1996), an AR model assumes that

the current signal value y[n] at sample number n in a data sequence, y[1], y[2], . . . , y[N ],

can be modeled as a linear combination of the p most recent sample values, y[n−1], y[n−
2], . . . , y[n − p] and a white zero-mean noise e[n] of variance σ2, as described in Eq. (4.1).
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In this equation, p is the model’s order, whose value is generally much smaller than the

sequence length N , ak {k = 1,2, . . . , p} are the AR parameters, and n is the discrete-time

index.

y[n] =−
p∑

k=1
ak y[n −k]+e[n] (4.1)

Considering that the AR model is computed for each IMF, Eq. (4.1) can be expressed as

presented in Eq. (4.2), where i represents the index number of the IMFs.

IMFi [n] =−
p∑

k=1
ai ,k IMFi [n −k]+e[n] (4.2)

The z-transform can be applied to Eq. (4.2) and the AR model transfer function can be

represented by:

Hi [z] = I MFi [z]

E [z]
= 1

1+∑p
k=1 ai ,k z−k

(4.3)

In Eq. (4.3), I MFi [z] and E [z] are the z-transforms of the IMFi [n] and the noise e[n], re-

spectively. Then, the AR spectrum can be computed by evaluating Hi [z] around the unit

circle in the complex plane, i.e., z = e j 2π f . Finally, the stationary AR spectrum representa-

tion is described by Eq. (4.4).

S ARi ( f ) = σ2∣∣1+∑p
k=1 ai ,k e− j 2π f k

∣∣2 (4.4)

4.3.2 Time-varying AR modeling

As explained above, the FHR signal dynamics of interest involve highly complex character-

istics mainly associated with nonlinearities as a result of the physiological regulation mech-

anisms modulated by the ANS, which is highly variant in time. As explained in the example

presented in Section 4.1.2, in the presence of such signal dynamics, the classical stationary

version of AR modeling is no longer suited for their analysis. Therefore, in our proposed

approach, we use the time-varying version of AR modeling, which can be appropriate for

the FHR signal analysis since its parameters are now time-dependent. The TV-AR paramet-

ric model can be represented by Eq. (4.5), where the AR parameters ai ,k (n){k = 1,2, ..., p}

are now the time-dependent coefficients, which correspond to a set of values ai ,k that is

updated sample-by-sample n.

IMFi [n] =−
p∑

k=1
ai ,k (n)IMFi [n −k]+e[n] (4.5)

From Eq. (4.5), analogously to Eq. (4.3), the TV-AR model transfer function represented by:
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Hi [z,n] = I MFi [z,n]

E [z,n]
= 1

1+∑p
k=1 ai ,k (n)z−k

(4.6)

Then, the TV-AR spectrum can be expressed as:

S ARi ( f ,n) = σ2∣∣1+∑p
k=1 ai ,k (n)e− j 2π f k

∣∣2 (4.7)

This last equation (Eq. (4.7)) allows performing a spectral time-variant analysis since

the computed spectrum not only depends on the frequency-domain but also on the

time-domain.

For a more in-depth explanation of the AR modeling method, please refer to Abramovich

et al. (2007), Kay and Marple (1981) and Pardey et al. (1996).

All the signal processing techniques presented above will be employed for the analysis of

the modulated dynamics involved in the FHR signal, as explained in the next chapters.



5
Studying the FHR dynamics by ICEEMDAN and

TV-AR: Concepts

In order to answer the proposed research questions and reach the objectives of this thesis

work (see Section 1.2), we propose to investigate the FHR signal dynamics resulting from

the ANS modulation (signal dynamics of interest) and analyze their connection with the

fetal health condition. The main idea is to track these dynamics of interest as observation

of the process involved in the activity of the physiological behavior of the fetal compen-

satory mechanisms (physiological phenomenon explained in detail in Section 2.1). For

this purpose, we propose the signal feature extraction strategy presented in Fig. 5.1. As

can be observed in this diagram, firstly, a preprocessing step is applied to the FHR and UC

signals. This step involves both signal outliers removal and signal interpolation in order to

deal with artifacts and sensor contact interruption involved in the CTG signal acquisition.

Secondly, we identify the FHR deceleration episodes based on a progressive baseline and

UC events. As explained in Section 1.1, the FHR decelerations are considered as one of

the main patterns that can involve significant information about fetal distress. However, at

the same time, they are the most difficult patterns to interpret by the clinical staff (Hruban

et al., 2015; Spilka et al., 2014b). Therefore, we propose to identify and study the decelera-

tion episodes together as well as independent from the complete FHR signal to investigate

their contribution to CTG assessment. Thirdly, the FHR signal is detrended and decom-

posed by ICEEMDAN, whose extracted IMFs are the input of the last signal processing step

corresponding to the TV-AR spectral estimation. Finally, as shown in Fig. 5.1, the feature

extraction operation is performed based on information in the time-domain as well as in

the frequency-domain. All of these steps are described in this chapter, which explains the

foundations behind the proposed strategy and its significance for our proposed approach.

For a better explanation of the concepts involved in the proposed strategy, we explain it

step-by-step making use of the CTG recording shown in in Fig. 5.2, which corresponds to

the recording no. 1179 extracted from the CTU-UHB database (Chudáček et al., 2014).

5.1 CTG signal preprocessing

In signal processing, mainly in the area of biomedical signal processing, a preprocessing

step is essential because an appropriate signal analysis depends significantly on the quality

45



46 CHAPTER 5. STUDYING THE FHR DYNAMICS BY ICEEMDAN AND TV-AR: CONCEPTS

Signal processing 

Signal 

detrending 

Deceleration 

detection
ICEEMDAN

TV-AR 

spectrum

Feature 

extraction

FHR

Progressive 

Baseline

UC

CTG 

database

Signal

preprocessing

Figure 5.1: Block diagram of the strategy proposed for the CTG signal feature extraction.
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Figure 5.2: CTG recording no. 1179 extracted from the CTU-UHB database. (a) Raw FHR signal; (b)
Raw UC signal.
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of the input data. Particularly, the CTG signal acquisition usually involves different types

of artifacts such as loss of data and signal outliers, mainly produced by the mother’s move-

ments and loss of sensor’s contact that can temporarily interrupt the signal acquisition. In

order to deal with these acquisition problems, we apply a preprocessing step for both the

FHR and UC signals to prepare them for the subsequent analysis.

On the one hand, for the FHR signal, the artifact rejection method proposed by Spilka et al.

(2013) is applied, which consists of two main steps: outliers removal and signal interpola-

tion. In the outliers removal step, FHR signal values considered physiologically inconsis-

tent in amplitude, i.e., values outside the range between 50 bpm and 210 bpm, are removed

from the signal. Then, in the FHR signal interpolation step, loss of signal data correspond-

ing to segments of length equal or less than 75 s are interpolated by using a Hermite spline

method.

On the other hand, for the UC signal, loss of data less than 25 s are interpolated, and then

the UC signal is filtered by a moving average filter of 15 s windows length. Note that this

filtered UC signal is used for the decelerations characterization, as explained in Section 5.2.

Fig. 5.3 shows an example of the resulting preprocessed FHR and UC signals computed

from the CTG signals presented in Fig. 5.2.
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Figure 5.3: Preprocessed FHR and UC signals computed from the CTG recording no. 1179 presented
in Fig. 5.2(a) and (b), respectively.

It is important to note that the obtained preprocessed FHR signal is used only for the

FHR baseline estimation and identification of FHR deceleration episodes (explained be-

low). The signal detrending and subsequent signal processing operations are performed

by using the raw FHR signal only after the outliers removal step.
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5.2 Progressive FHR baseline estimation

According to CTG guidelines (Ayres-de Campos et al., 2015), the FHR baseline is consid-

ered as the mean level of the most horizontal and less oscillatory FHR segments. In other

words, the baseline is an imaginary trace representing a basal FHR value in the absence

of accelerations or decelerations. In traditional CTG analysis, this pattern is particularly

important because the assessment of other time-domain patterns, such as decelerations,

rely on it (Agostinelli et al., 2017). Several algorithms have been proposed for the baseline

estimation (Das et al., 2011; Kupka et al., 2006); however, considering that there is no pre-

cise definition of how to identify this pattern, none of them is optimal or can guarantee a

correct FHR baseline assessment.

In this work, we propose to estimate a progressive baseline (PBL). For this purpose, first,

a virtual baseline (VBL) is extracted by filtering the FHR signal using a nonlinear me-

dian filter for baseline wander extraction (Sameni et al., 2008). Based on a previous work

(Fuentealba et al., 2017a), this filter is computed over a sliding window of 400 s length.

Then, this VBL is used to define the low (TL) and high (TH ) traces, which are represented

by Eq. (5.1) and (5.1), respectively, where n is the sample number, and 4FHR is set to

10 bpm following Agostinelli et al. (2017). Fig. 5.4 shows the TL and TH traces plotted

in dotted lines, which delimit the range of interest that will be considered for the PBL

computation.

TL(n) = VBL(n)−4FHR (5.1)

TH (n) = VBL(n)+4FHR (5.2)

Then, the FHR data used for PBL estimation (FHRLH ) is described by Eq. (5.3), whose

graphic representation is presented in Fig. 5.4 in black.

FHRLH (n) =


TH (n) FHR(n) > TH (n)

FHR(n) TL(n) ≤ FHR(n) ≤ TH (n)

TL(n) FHR(n) < TL(n)

(5.3)

Finally, the PBL is computed by using the same nonlinear median filter used for the VBL

extraction, but considering only data from the FHRLH signal. The PBL is plotted in Fig. 5.4

in red.

5.3 Identification of FHR deceleration episodes

As explained in Section 1.1, the FHR signal decelerations are considered one of the most

significant and challenging patterns to interpret by the clinical staff (Hruban et al., 2015;
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Figure 5.4: Preprocessed FHR signal (gray), FHRLH (black), TL and TH traces (dotted lines), and
Progressive baseline (PBL) (red).

Spilka et al., 2014b). Indeed, these patterns correspond to FHR variations produced as a

consequence of the ANS modulation after a perceived oxygen insufficiency episode (Free-

man et al., 2012). Therefore, we propose to identify and study the deceleration episodes

together and independent from the complete FHR signal to investigate their contribution

in CTG assessment.

In order to explain the strategy proposed for characterizing the FHR decelerations, we

make use of the CTG recording of Fig. 5.5, which corresponds to a segment of 1500 s length

arbitrary extracted from the preprocessed CTG signals presented in Fig. 5.3.
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Figure 5.5: CTG segment of 1500 s length extracted from the preprocessed FHR and UC signals
presented in Fig. 5.3.

In this work, following the analysis proposed in Fuentealba et al. (2017b), the deceleration

identification is performed into two steps.

The first step allows the detection of evident deceleration episodes making use of the com-

puted PBL and a floating-line. This floating-line corresponds to a signal trend that allows

the tracking of the morphological shape of decelerations (see Fig. 5.6(a) in blue color),

whose behavior involves nonlinear characteristics (Haritopoulos et al., 2016; Krupa et al.,

2009). The floating-line is extracted by using the same nonlinear median filter applied

for the PBL computation (see Section 5.2), but with a length of sliding window set to 10 s,

whose value was determined as follows:
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1. From the CTU-UHB database, we randomly selected ten CTG recordings.

2. For each recording, the FHR signal was filtered by the employed nonlinear filter using

different sizes of the sliding window between 6 and 12 s length.

3. The computed preliminary floating-lines (seven for each recording) were superim-

posed on the corresponding FHR signal in order to examine which one tracks better

the morphological characteristics of decelerations.

4. After a visual comparison, we concluded that a sliding window of 10 s length allows

better tracking of the examined patterns.

The PBL is used as a threshold over the floating-line in such a way that floating-line seg-

ments of more than 15 bpm in amplitude and more than 15 s length (Ayres-de Campos

et al., 2015) are identified as evident decelerations. Fig. 5.6(b) shows the PBL and the evi-

dent deceleration episodes, in red and black color, respectively.

The second step considers the UC events as stimuli in order to detect the episodes that

were not recognized as evident decelerations but are certainly a response to a UC event.

Those episodes (called as UC-segments) are identified according to the criteria proposed

by Romano et al. (2006a), where the UC-segments start 7 s before the UC apex and end 50 s

after it. For this purpose, first, UC apexes of significant intensity (≥ 30 mmH g ) are detected

(see Fig. 5.6(c)). Then, when a UC event is detected, but an evident deceleration episode

has not been identified in the first step, its corresponding UC-segment is considered, as

can be observed in Fig. 5.6(d) (D01, D02, D05, and D06).

5.4 FHR signal detrending

According to the FIGO guidelines (Ayres-de Campos et al., 2015), the FHR variability cor-

responds to the average of the amplitude of fast FHR signal oscillations evaluated in sta-

ble signal segments. The FHR signal variability, together with the FHR decelerations,

can involve relevant information related to the ANS activity as a result of potential hy-

poxia/acidosis. Therefore, they are considered as significant patterns to estimate the fetal

condition. However, they are also considered the most difficult to assess by clinicians.

In this work, the estimation of such signal oscillations is based on the computation of a

detrended FHR signal. This detrended signal is obtained by the subtraction operation be-

tween the preprocessed FHR signal and floating-line, which are plotted in Fig. 5.7(a) in

black and blue color, respectively. Fig. 5.7(b) shows the detrended FHR signal, which rep-

resents the signal oscillations in relation to the floating-line.
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Figure 5.6: Characterization of deceleration episodes. (a) Preprocessed FHR signal (gray) and
floating-line (blue); (b) PBL (red) and evident deceleration episodes (black); (c) Preprocessed UC
signal and UC signal apexes (black dots); (d) Identified deceleration episodes (D01...D10) (black).

5.5 ICEEMDAN and TV-AR modeling implementation

As explained in Chapter 3, the FHR signal involves highly complex characteristics mainly

associated with nonlinearities as a result of the physiological regulation mechanisms con-

tributing to the fetal cardiac activity modulated by the ANS (Garabedian et al., 2017; Ro-

mano et al., 2016b). Under this concept, we postulate that if such characteristics are not

previously decomposed or demodulated, the FHR signal can still involve high complex-

ity dynamics, which are difficult to analyze. In order to study these characteristics, con-

ventional signal processing methods no longer can be used because they cannot describe

many processing conditions involved in this non-stationary physiological phenomenon.

In this perspective, we propose a new approach for processing the FHR signal by com-

bining two methods: ICEEMDAN (Colominas et al., 2014) and TV-AR modeling (Kay and

Marple, 1981), which are described in Section 4.2 and 4.3.1, respectively.
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Figure 5.7: Signal detrending operation. (a) Preprocessed FHR signal presented in Fig. 5.3(a) and its
computed floating-line, in black and blue colors, respectively; (b) Detrended FHR signal obtained
by the subtraction operation of signals presented (a).

On the one hand, ICEEMDAN is an adaptive method that allows decomposing nonlinear

and non-stationary time series into a finite number of IMFs. This method provides infor-

mation on the signal dynamics in the time-domain based on local properties of the signal

data itself by the direct extraction of the energy associated with signal oscillations. Consid-

ering that this decomposition operation has similar principles of signal demodulation, this

method can be appropriate for extracting information about the FHR dynamics modulated

by the ANS activity. In consequence, the main advantage of ICEEMDAN is its dependency

on the data-driven mechanism, and it does not require a priori known basis as the case

of other traditional methods such as wavelet and Fourier transform-based decomposition

(Huang et al., 1998; Krupa et al., 2009, 2011; Wu and Huang, 2004).

On the other hand, we postulate that the dynamics described by each IMF can involve sig-

nificant information not only in time-domain but also in the spectral-domain. For this

reason, in order to study such information, we use TV-AR spectral-based analysis. In the

spectral-domain, this information of interest is represented by the spectral density peaks,

whose dynamical behavior describes the contribution of the frequency components vari-

ation over time. With this in mind and considering that the sampling frequency of the

studied FHR signals is the only 4 Hz, the AR modeling can be appropriate for the spectral

analysis of the extracted IMFs.

The classical stationary AR modeling (Kay and Marple, 1981) can effectively describe the

peaks of a narrow-band power spectrum (Huang, 2014a) and requires only a fraction of the

signal samples that are required by standard methods, such as the FFT, in order to obtain

the same spectral resolution. It is a technique for time series analysis in which a mathe-

matical model is fitted to a sampled signal. Therefore, it has several advantages for the

FHR signal analysis since this parametric modeling provides a signal description simpler

to analyze by a few model parameters. Also, it allows the extraction of quantitative spectral
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parameters versus time, which are better suited for quantitative spectral analysis (Illanes

and Haritopoulos, 2015).

Consequently, ICEEMDAN allows obtaining a less complex signal by decomposing its dy-

namics into the IMFs, which are better suited for parametrical modeling such as TV-AR

modeling. Therefore, the time-variant frequency characteristics are easier to track because

the spectral analysis is now based on tracking only one main frequency component of in-

terest for each IMF over time.

In this work, and following Romano et al. (2006a), the model coefficients ak (n) are esti-

mated by using a recursive least squares algorithm with a forgetting factor (λ). This forget-

ting factor corresponds to a model parameter related to the memory time considered in

the studied phenomenon. Therefore, considering that our approach involves the analysis

of the same physiological phenomenon performed by Romano et al. (2006a) (analysis of

fetal ANS activity over time), we decided to employ the same forgetting factor set to .99.

This value of λ is considered appropriate to describe not only the faster but also the slower

signal dynamics of the frequency band of interest.

In order to choose an optimal AR model order p, we considered the characteristics of

the IMFs and their expected spectral behavior. By definition, each IMF consists of a

non-overlapping function, which is modulated in both amplitude and frequency (Colom-

inas et al., 2014). Thus, we assume that in the spectral-domain, only one main frequency

component, represented by one absolute maximum peak, contains the information of

interest, which needs to be represented in the AR spectrum updated at each sample n.

With this in mind, for the selection of the model order p, we analyzed a set of 30 IMFs (se-

lected randomly from different FHR signals). For each IMF, the AR spectrum was computed

by using different AR model orders p in the range of 4 and 10. Then, we examined which

model order offers a better spectral representation of the frequency component of interest,

taking into account that only one and marked component should be distinguished. After

this visual analysis, and following Fuentealba et al. (2018b), we decided to use a 6th AR

model order p.

Fig. 5.8 shows an example of the decomposition operation of the detrended FHR signal

plotted in Fig. 5.7(b) by using ICEEMDAN method. Each row depicts one IMF together with

its corresponding TV-AR spectrum at the left and right sides, respectively. In this figure, we

can observe the dynamics of the IMFs not only in the time-domain but also their behavior

in the frequency-domain. This frequency information is represented by the TV-AR spec-

trum, where the x-axis is the time axis in seconds, and the y-axis is the frequency axis in Hz.

The spectral energy is represented by a color map, where the blue and yellow colors corre-

spond to the lowest and highest energy level, respectively. In the graph, the energy values

are normalized between 0 and 1 for each sample n for better visualization of the frequency

dynamics. It is important to note that the proposed features (presented in Section 5.6) are

based on this spectral representation. For more example of the decomposition and TV-AR

spectrum computation see Appendix A.1.
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Figure 5.8: ICEEMDAN decomposition and TV-AR spectrum of FHR recording no. 1179; (left
column) IMFs computed from the detrended FHR signal presented in Fig. 5.7(b); (right column)
TV-AR spectrum of each IMF.
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5.6 Definition of proposed features

This section presents a qualitative analysis related to the foundations on which the feature

extraction operation is based. For a comprehensive explanation of the feature extraction

operation, we make use of two representative cases extracted arbitrarily from the selected

CTG dataset described in Section 6.2.1 (four more representative cases are presented in Ap-

pendix A.2). These cases are shown in Fig. 5.9, where the left and right columns correspond

to examples of normal and acidotic fetal conditions, respectively. The first row shows the

raw FHR signals for each case, which belong to the recordings no. 1427 and 2009 from the

CTU-UHB database, respectively. The second row plots the preprocessed FHR signal, PBL,

floating-line, and decelerations episodes, which are plotted in gray, red, blue, and black,

respectively. The third and fourth rows show the detrended FHR signal and IMF6, respec-

tively. For this example, the IMF6 was arbitrarily selected from those IMFs that involve

spectral information in the frequency band between 0.03 and 0.15 Hz (frequency analysis

of IMFs explained in Section 6.2.2 and represented by Fig. 6.2), which is mainly related to

the fetal sympathetic ANS activity (as explained in Section 3.1.1). The fifth row exhibits

the TV-AR spectrum computed from the IMF6, whose spectral energy values were normal-

ized between 0 and 1 for each sample n for better visualization of the frequency dynamics

(instead of components energies). Finally, the sixth row shows an energy indicator (E) com-

puted from the TV-AR spectrum, which allows examining the spectral energy changes in-

volved in the studied signal dynamics over time. This indicator is calculated from the total

frequency band (0−2 Hz) of the AR spectrum for each sample n as described in Eq. (5.4).

In Fig. 5.9(e-h,k-l), the signal segments corresponding to deceleration episodes are high-

lighted in gray color, in order to differentiate them from resting periods.

It is important to note that for this qualitative analysis, only one IMF was considered. Nev-

ertheless, for the subsequent feature extraction evaluation explained in Section 6, the first

ten IMFs are analyzed, thereby considering the entire frequency band of interest (see Sec-

tion 3.1.1).

E [n] =
2 H z∑
f =0

(S AR [ f ,n]) (5.4)

Results presented in Fig. 5.9 show that the representative cases exhibit spectral dynamics

strongly variant in time (see the TV-AR spectrum in the fifth row). The spectral energy

behavior associated with these dynamics differs between the normal and the acidotic case.

As can be observed in Fig. 5.9(k-l), for the acidotic case, the spectral energy is generally

lower than the normal case. Besides, the normal case exhibits important energy variations,

whose amplitude is considerably higher than the acidotic case. This phenomenon can be

related to the capacity of the fetal response modulated by the sympathetic ANS, which may

decrease for acidotic fetuses (Romano et al., 2006a). In other words, the sympathetic path

corresponding to a normal fetus might reflect higher activity in the FHR than the activity

of an acidotic fetus.
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Figure 5.9: Representative cases; (a) raw FHR signal of recording no. 1427, pH = 7.37, BDecf = 1.34;
(b) raw FHR signal of recording no. 2009, pH = 6.96, BDecf = 20.34; (c-d) preprocessed FHR signal
(gray), PBL (red), floating-line (blue), and deceleration episodes (black); (e-f) detrended FHR signal;
(g-h) IMF6; (i-j) TV-AR spectrum computed from IMF6; (k-l) E from (i-j).
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Table 5.1: Significance (p-value) of the spectral features ES , ED , and ER , obtained by the Wilcoxon
rank-sum test. Values presented in second and third columns correspond to the 50th[25th−75th]
percentiles of the data, and the fourth column shows the computed p-value for each feature.

Feature
Normal

cases
Acidotic

cases
Significance

(p-value)

ESµ 5.09[3.14−7.66] 3.50[2.14−4.56] .0213
ESσ 2.06[1.18−3.78] 1.03[0.74−2.42] .0079

EDµ 4.87[2.85−8.35] 2.67[1.52−4.22] .0016
EDσ 1.69[0.95−3.03] 0.72[0.39−1.64] .0015

ERµ 4.76[2.98−7.31] 3.63[1.90−5.31] .0708
ERσ 1.77[1.01−3.42] 1.08[0.82−2.11] .0277

In order to study whether the observed characteristics in these two examples are related

to the fetal health condition, we examine their significance in the complete dataset. For

this purpose, we calculate the features Eµ and Eσ, which correspond to the average and

standard deviation computed from the indicator E .

According to the literature (Hruban et al., 2015; Spilka et al., 2014b), the CTG interpreta-

tion problems are mainly associated with the assessment of FHR decelerations, which cer-

tainly correspond to a cardiac response of the fetus modulated by the ANS (Freeman et al.,

2012). Besides, recent research in biomedical engineering indicates that the UC activity

has a graded effect on the FHR response (Feng et al., 2019; Sletten et al., 2016).

Therefore, we postulate that the spectral energy E computed in the complete signal (ES),

during decelerations (ED ), and during resting periods (ER ), describes different dynamics,

whose behavior differs between a normal and an acidotic fetal condition. Therefore, the

previous operation was performed independently for these three terms, i.e., we calculate

the average and standard deviation for these three indicators. It is important to note that

in this qualitative analysis, only those two features were computed. Nevertheless, as ex-

plained in Chapter 6, the evaluation of our approach, based on quantitative analysis, in-

volves a larger set of features.

Once the features are extracted, a Wilcoxon rank-sum test (Gibbons and Chakraborti, 2011)

is applied (for more information about the Wilcoxon rank-sum test, please refer to Sec-

tion 6.2.3). This stochastic test allows us to examine the discriminant capability of the

studied features under the hypothesis that in the feature dimension, the median value of

the normal class data significantly (p-value < .05) differs from the median value of the aci-

dotic class data. It is applied independently for ES , ED , and ER . Table 5.1 and Fig. 5.10 show

the statistical results and corresponding boxplots, respectively.

As can be observed in Table 5.1, most of the tested features are statistically significant

(p-value < .05), i.e., in the feature dimension, the median value of the normal class data

is significantly higher than the median value of the acidotic class data. These results open
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Figure 5.10: Boxplots of features presented in Table 5.1. The box borders correspond to the 25th
and 75th percentiles of the feature data. The red line represents the median value of the data, and
red crosses are the outliers.

perspectives for the extraction of a larger set of features considering all the IMFs involved

in the complete frequency band of interest, and employing more statistical coefficients.

This analysis is presented in Chapter 6, where the features are evaluated based on their

performance in CTG classification.



6
CTG feature selection: Evaluation strategy design

After the feature extraction step, in this chapter, we proceed to evaluate the proposed fea-

tures based on their performance in CTG classification. First, Section 6.1 presents the selec-

tion criteria and demographic information of the CTU-UHB database, which corresponds

to the CTG data used in this work. Then, Section 6.2 explains in-depth the steps involved

in the proposed evaluation strategy, such as the class formation criteria, feature computa-

tion, feature elimination, and feature classification performance. In summary, this chapter

provides a detailed explanation of the concept and computer-based techniques behind the

proposed feature evaluation strategy, whose results are presented in Chapter 7.

6.1 CTG database

For the CTG signal analysis and evaluation proposed in this work, the CTU-UHB Intra-

partum Cardiotocography Database (Chudáček et al., 2014) is used. This database, from

the Czech Technical University (CTU) in Prague and the University Hospital in Brno (UHB),

is the first open-access database for research purposes on CTG signal analysis. It consists

of 552 CTG recordings, which provide FHR and UC signals, both sampled at 4 Hz. These

552 recordings were selected from 9164 recordings collected between 2010 and 2012 at the

UHB. The selection criteria used for this database were based mainly on the following pa-

rameters:

• Singleton pregnancy.

• No a priori known developmental defects.

• Gestational age > 36 weeks.

• Duration of stage 2 of labor ≤ 30 minutes.

• FHR signal quality: > 50% of FHR data were available in each segment of 30 minutes

length.

• Available information on the pH biochemical parameter obtained from the umbilical

arterial blood sample.

• Majority of vaginal deliveries (only 46 cesarean section deliveries included).

59
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CTG evaluation, 30 min

Step 1
CTG evaluation, 30 min

Step 2
CTG evaluation, 30 min

Step 3
Labor outcome prediction

Step 4

2nd stage

end of 1st stage delivery

1st stage

Figure 6.1: Workflow of the annotation procedure performed by steps, as presented by Hruban et al.
(2015).

For all recordings, the CTU-UHB database includes physiological information concerning

to the maternal data as well as fetal data, which are listed in the following:

• Maternal data: age; parity; gravidity.

• Delivery data: type of delivery (vaginal; operative vaginal; cesarean section); duration

of delivery; meconium-stained fluid; type of measurement (i.e., ultrasound or direct

scalp electrode).

• Fetal data: sex; birth weight.

• Fetal outcome data: analysis of umbilical artery blood sample (pH; pCO2, partial

pressure of oxygen (pO2); BE and BDecf); Apgar score; neonatology evaluation (i.e.,

need for O2 and seizures).

In addition to the information described above, the CTU-UHB database provides the eval-

uation of nine experienced obstetricians, four annotations for each CTG recording. As can

be observed in Fig. 6.1, the first and second annotations correspond to the evaluation of

two windows of 30 minutes length in the first stage of labor. The third annotation corre-

sponds to a window in the second stage of labor. After that, in the fourth annotation, clin-

icians predict the labor outcome classifying their prediction into three possible ranges of

pH values. For all the steps, they classify the recording as normal, suspicious, pathological,

or uninterpretable.

Table 6.1 provides the main demographic information and statistics of the CTU-UHB

database, which include physiological data of the mother as well as the outcome parame-

ters of the newborn. For further information about the CTU-UHB database, please refer to

Chudáček et al. (2014). It is available at https://physionet.org/physiobank/database/ctu-

uhb-ctgdb/.

https://physionet.org/physiobank/database/ctu-uhb-ctgdb/
https://physionet.org/physiobank/database/ctu-uhb-ctgdb/
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Table 6.1: Demographic information and statistics of the CTU-UHB database.

Parameter mean min max 50th[25th−75th] percentiles

pH 7.23 6.85 7.47 7.25[7.17−7.30]

BDecf (mmol/l) 4.60 -3.40 26.11 4.13[2.49−6.15]

BE -6.38 -26.8 -0.20 -5.60[-8.03−-4.00]

Apgar 1 8.26 1 10 8[8−9]

Apgar 5 9.06 4 10 10[9−10]

Maternal age (years) 29.8 18 46 30[27−33]

Parity 0.43 0 7 0[0−1]

Gravidity 1.43 1 11 1[1−1]

Gestational age (weeks) 40 37 43 40[39−41]

Neonate’s weight (g) 3408 1970 4750 3410[3100−3700]

Neonate’s sex (F/M) 259/293

6.2 Feature evaluation strategy

6.2.1 Class formation criteria for dataset selection

The evaluation of our proposed features is based on their performance in CTG classifica-

tion making use of data extracted from the CTU-UHB database presented above. From

this database, we select a data subset based on a formation criteria involving two classes:

normal and acidotic conditions, which allows obtaining comparable results with related

studies (as will be explained in Section 7.3). According to the literature (Kuehnle et al.,

2016; Maso et al., 2015; Spilka et al., 2013; Zhao et al., 2018; Zourabian et al., 2000), arterial

blood gas sampling is considered as a gold standard measure for outcome evaluation. In

umbilical cord test sampling, at birth, values of pH < 7.05 and BDecf ≥ 12 commonly in-

dicate a fetal metabolic acidosis, whereas values of pH > 7.20 and BDecf < 12 indicate a

normal fetal health condition (Kumar et al., 2016). In this work, those outcome parameters

are used to assign the fetal condition into one of the two classes. Under these class for-

mation criteria, 372 recordings were selected from the database, 354 labeled as examples

of normal fetuses, and 18 labeled as examples of acidotic fetuses. Hence, the features are

evaluated based on the CTG classification performance computed according to this class

formation criteria. As shown in Table 6.1 for the complete database, Table 6.2 shows the

main demographic information and statistics of the CTG dataset selected according to the

mentioned class formation criteria.

6.2.2 Feature computation

The feature computation performed in this section is based on the concepts explained in

Section 5. There, we had explained the foundation of the proposed features by an example

based on the IMF6. In this section, the feature extraction operation involves the study of

a larger set of features. The idea is to include not only the IMF6 but all the IMFs involving
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Table 6.2: Demographic information and statistics of the selected CTG data used in this work.

Parameter mean min max 50th[25th−75th] percentiles

pH 7.28 6.85 7.47 7.28[7.24−7.32]

BDecf (mmol/l) 3.77 -3.40 26.11 3.32[1.88−4.83]

BE -5.27 -26.8 -0.20 -4.60[-6.00−-3.40]

Apgar 1 8.62 2 10 9[8−9]

Apgar 5 9.30 4 10 10[9−10]

Maternal age (years) 29.7 18 43 30[27−33]

Parity 0.48 0 5 0[0−1]

Gravidity 1.46 1 11 1[1−1]

Gestational age (weeks) 39.96 37 43 40[39−41]

Neonate’s weight (g) 3396 1970 4750 3450[3100−3700]

Neonate’s sex (F/M) 181/191

dynamics in the FHR frequency band of interest (see Section 3.1.1). In order to determine

these IMFs of interest, we first compute the TV-AR spectrum for each FHR signal of the

database (operation explained in Section 5.5). Second, for all IMFs, we compute the fre-

quency of the main component ( f c ), which corresponds to the frequency value at which

the spectrum presents the maximal energy (energy of the main component) level for each

sample n. This indicator is computed as described in Eq. (6.1), where S AR is the TV-AR

spectrum, and E c is the energy of the main component.

E c [n] = S AR[ f ,n], f = f c (6.1)

Then, making use of the f c indicator, we calculate the average of the main frequency in-

volved in each IMF, performed on the complete database. The results of this operation are

presented in Fig. 6.2, where each point corresponds to the average of f c for each IMFs and

each FHR recording. As can be observed in the abscissa axis, the number of studied IMFs

is 12, which corresponds to the minimum number of IMFs computed from the employed

CTG database, thereby ensuring that all the recordings are considered for this analysis. For

better visualization of the frequency information, we employ a semi-log chart, where the

ordinate axis is in a logarithmic scale of base ten. Considering that the complete FHR fre-

quency bands involve values between 0 and 1.0 Hz, and according to the information pre-

sented in the figure, we arbitrarily selected the first 10 IMFs.

Once the number of the studied IMFs has been determined, we compute the TV-AR spec-

trum for each IMF. For the feature computation performed in this section, in addition to

the indicator of total spectral energy (E) (Eq. (5.4)) explained in Section 5.6, we compute

the energy of the main component (E c ) and frequency of the main component ( f c ) (see

Eq. (6.1)). Then, for each indicator, we calculate seven statistical coefficients that have

been commonly used in FHR signal feature extraction. This set of coefficients corresponds

to the arithmetic mean (µ), median (M), standard deviation (σ), mean absolute deviation

(mad), root mean square (RMS), sample entropy (SampEn) (Richman and Moorman, 2000),
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Figure 6.2: Average of frequencies involved in the IMFs computed on the entire CTG database.
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and approximate entropy (ApEn) (Pincus, 1995). These last two coefficients allow quanti-

fying the signal data complexity, which, according to Pincus and Viscarello (1992), might

be related to the interaction of the sympathetic and parasympathetic ANS activity of the

fetus. Besides, features of entropy have shown better performance in classification com-

pared with the conventional CTG feature extraction (Fergus et al., 2018; Ferrario et al.,

2006; Spilka et al., 2012). For the computation of the features of entropy, following the

approaches proposed by Pincus (1995), Spilka et al. (2009) and Spilka et al. (2014c), we

employ an embedding dimension m = 2 and a tolerance r = 0.2×σ (σ corresponds to the

standard deviation).

In addition to the features described above (in the sequel denoted as the modal-spectral

features), we propose to include another set of features in the time-domain (denoted as

the conventional features), which have shown relatively satisfactory results in CTG classi-

fication (Fuentealba et al., 2019b; Krupa et al., 2011). For the extraction of these conven-

tional features, we employ the same seven statistical coefficients described above but now

computed from the IMFs in the time-domain, raw FHR signal, PBL, and detrended FHR

signal.

It is important to note that the detrended FHR signal and the IMFs in the time-domain are

indicators whose data are centered in zero (see Section 5.4 and 5.5, respectively). There-

fore, central tendency measures are not informative for their analysis; in consequence, the

arithmetic mean, and median coefficients are not considered for such indicators. Besides,

as explained in Section 5.6, the main idea is to extract features from the complete FHR

signal (S-features), during decelerations (D-features), and resting periods (R-features), in-

dependently. However, considering that the deceleration episodes can range from 15 s

(60 samples) length, the SampEn and ApEn coefficients are not appropriate for the analy-

sis during decelerations because their computation is applicable only for segments longer

than 100 samples (Pincus, 1995), or 200 samples (Yentes et al., 2013). Therefore, the en-

tropy coefficients are not considered for D-features.

In complete, S-features and R-features consist of 210 modal-spectral and 69 conventional

features, independently, whereas S-features include 150 modal-spectral and 63 conven-

tional features. After the feature extraction operation, the data in the feature dimension

are standardized using z-score based normalization. Consequently, before the subsequent

steps, the data of each feature have a mean value and a standard deviation equal to zero

and one, respectively.

6.2.3 Feature elimination

The feature elimination step consists of removing the weakest features from the complete

set of extracted features. As a result of this operation, only features presenting a significant

discriminant capability are considered for the analysis.
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In this work, following several approaches proposed for CTG analysis (Georgoulas et al.,

2017; Rivolta et al., 2019; Spilka et al., 2016a; Yu et al., 2017), we apply a Wilcoxon rank-sum

test (Gibbons and Chakraborti, 2011) as an appropriate method for feature elimination. Its

main advantage is that it does not require a priori assumption of data normality as required

in the case of a t-test (Kwak and Park, 2019). This stochastic test allows us to examine the

discriminant capability of the extracted features and determine the statistically significant

features (p-value < .05). It is applied independently for each feature under the hypothesis

that in the feature dimension, the median of the acidotic data distribution significantly

differs from the median of the normal data distribution. Therefore, all the features that

present a statistically significant difference (p-value < .05) are selected, and the others are

excluded from the analysis.

6.2.4 Feature classification performance

For the evaluation of the proposed features, following Georgoulas et al. (2006), they are

first grouped by their category, denoted in the sequel as the feature sets. Each feature set

consists of the statistical coefficients computed for each indicator (e.g., FHR signal, PBL,

and IMF1 . . .IMF10), and separately for S-features, D-features, and R-features.

Then, the feature sets performance is evaluated by using the proposed strategy presented

in the diagram of Fig. 6.3 (Fuentealba et al., 2019c). It consists of two main loops (loop A

and loop B). Loop A is based on 5-folds stratified cross-validation using a computer-based

classifier. Loop B calculates the classification performance based on the average across

across 300 iterations of the complete process involved in Loop A. First, the data in the fea-

ture dimension are randomly split into five non-overlapping folds and keeping the original

distribution of normal and acidotic classes. Then, for each iteration of Loop A, one differ-

ent fold is used as a testing data subset, while the other remaining four folds are used as

a training data subset. In order to deal with the redundant information that the studied

features may convey, for the training subset, we apply a feature preprocessing step based

on principal component analysis (PCA). This statistically based technique allows obtain-

ing attributes that are considerably less correlated to each other and preserving as much

of the significant information as possible (Georgoulas et al., 2006). In order to attenuate

the potential bias generated by the imbalanced input data to the computer-based clas-

sifier, we employ the adaptive synthetic sampling (ADASYN) technique computed using

5 k-neighbors. In view that the selected CTG dataset consists of 354 and 18 observations

for the normal and acidotic classes, respectively (see Section 6.2.1), we apply an oversam-

pling of the minority class by using a factor of 19. The main advantage of ADASYN com-

pared with conventional methods is that it can generate synthetic data in the feature di-

mension for oversampling the imbalanced class by considering not only the data minority

class but also the nearest data of the majority class. For more in-depth information about

the ADASYN technique, please refer to He et al. (2008).
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Figure 6.3: Proposed strategy for the features performance evaluation.

Note that the PCA is computed only from the training data subset, and then the testing

data subset is transformed accordingly (see Fig. 6.3). Likewise, for a correct evaluation of

the features, ADASYN is computed only in the training data subset, i.e., the testing subset

does not include synthetic data, only real data.

Machine learning classifiers

For the evaluation of our proposed features, we selected three machine learning classi-

fiers: SVM, Linear Discriminant Analysis (LDA), and k-Nearest Neighbors (k-NN), which

have been commonly used in CTG classification (Georgoulas et al., 2017, 2006; Huang and

Hsu, 2012; Krupa et al., 2011; Spilka et al., 2009, 2012). It is important to note that the

main objective of this approach is not the selection of the best classifier, but rather the per-

formance evaluation of our proposed features based on the combination of ICEEMDAN

and TV-AR modeling. Therefore, these three classification methods, usually employed in

CTG classification for discriminating two classes, can provide representative results that

are comparable with related works that involve a similar type of classifiers.
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The employed machine learning classifiers were implemented in Matlab® environment

version 2018b. A brief explanation of their characteristics is presented below:

• A SVM classifier consists of a supervised learning model based on hyperplanes in the

feature space, whose dimension depends on the number of features. It is based on

dividing the space into two half subspaces, minimizing the empirical error and max-

imizing the margin between the nearest instances and the hyperplanes (Cristianini

et al., 2000). The employed SVM classifier was implemented by using a linear kernel

function and a penalty factor for classification C = 1. For more detailed information

about SVM, please refer to Cristianini et al. (2000).

• LDA is a simple but powerful technique based on the difference between classes

compared to a linear combination of the most significant features. This combination

depends on the observations of predefined groups, which is used to predict the new

observations. This widely used statistical method is based on a linear projection of

the feature vector onto an optimal vector, whose classification is performed in this

feature space. This operation allows minimizing the variance of each class while

maximizing the class separation represented by the mean of each class. A more de-

tailed explanation of the statistical operation involved in this technique can be found

in Mika et al. (1999).

• k-NN is a nonparametrical method, whose classification technique is based on the k

closest points or set of points in the feature space. The k-NN uses distance metrics,

usually Euclidean distance, to find the optimal neighborhood of attributes in relation

to the class labels of the training data. In this work, in order to determine an appro-

priate number of k nearest neighbors, we experiment with different values of k such

as 1, 3, 5, 7, 9, and 11. Then, the k number achieving the highest classification perfor-

mance is selected. As a result, we found that the highest classification performance

was achieved by using 7-nearest neighbors (the classification results are explained in

Chapter 7). For a detailed explanation of the k-NN classifier, please refer to Cover

et al. (1967).

Performance evaluation

As explained in Section 6.2.1, the selected dataset consists of imbalanced data, i.e., the

number of acidotic cases is considerably lower than than the normal cases. As explained

above, in order to deal with the class imbalance, we employ ADASYN to create synthetic

data for the minority class of the training data subset. However, the testing subset in-

cludes only real data, which is necessary for a correct feature evaluation; therefore, the

testing subset still involves imbalance data. In this context, as a measure of classification

performance, we employ the geometric mean Eq. (6.2). This statistical metric has been
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commonly used as an indicator of performance in CTG classification because it is consid-

ered as an appropriate quality metric (QI ) for imbalanced data (Georgoulas et al., 2006;

Warmerdam et al., 2016b).

QI =√
Se ·Sp (6.2)

This quality metric is based on the statistical metrics of sensitivity (Se) and specificity (Sp),

obtained as a result of the classification step. The metrics of Se and Sp are defined in

Eq. (6.3) and (6.4), respectively. In these equations, T P and F P correspond to the num-

ber of true and false predicted as acidotic cases, respectively. Analogously, T N , and F N

correspond to the number of true and false predicted as normal cases, respectively.

Se = T P

T P +F N
(6.3)

Sp = T N

T N +F P
(6.4)

The main idea behind the feature classification performance is to, firstly, select the feature

set or a combination of them (denoted as the combined set) that achieves the highest QI as

an indicator of classification performance. Then, based on that information, examine the

selected feature sets in order to study their contribution according to their category. For

this operation, we propose the selection strategy described in Fig. 6.4.

In the diagram of Fig. 6.4, N is the number of features sets to be tested, and the perfor-

mance evaluation block represents a function that returns the set from the input sets that

achieves the best classification performance. This function corresponds to the perfor-

mance evaluation strategy described in Fig. 6.3. The proposed feature selection strategy

first computes the classification performance of the N feature sets independently. Second,

the feature set achieving the best performance is selected as the combined set 1 (comb set1).

Then, in the main loop, the comb set1 is tested in combination with each remaining feature

set independently, whose operation is described by the inner loop of N-k iterations, i.e., as

a first iteration we have N-1 sets (curr_sets) to be tested. Now, the curr_set achieving the

best performance is selected as the comb set2. The comb set2 is tested together with each

remaining feature set independently (N-2 curr_sets to be tested), and the curr_set achiev-

ing the best performance is selected as the comb set3. The described process repeats until

all the combined sets have been tested.
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𝑠𝑒𝑡𝑖 … 𝑠𝑒𝑡N−𝑘
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𝑖 = 𝑖 + 1

Performance evaluation 

𝑐𝑜𝑚𝑏 𝑠𝑒𝑡𝑘 = best 𝑐𝑢𝑟𝑟_𝑠𝑒𝑡
𝑠𝑒𝑡 = 𝑠𝑒𝑡 ⊄ 𝑐𝑜𝑚𝑏 𝑠𝑒𝑡𝑘

𝑐𝑢𝑟𝑟_𝑠𝑒𝑡 = 𝑐𝑜𝑚𝑏 𝑠𝑒𝑡𝑘 ⋃ 𝑠𝑒𝑡𝑖

Performance evaluation

𝑘 = 𝑘 + 1
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Performance of 𝑐𝑜𝑚𝑏 𝑠𝑒𝑡

𝑐𝑜𝑚𝑏 𝑠𝑒𝑡1 = best set
𝑠𝑒𝑡 = set ⊄ 𝑐𝑜𝑚𝑏 𝑠𝑒𝑡1

Figure 6.4: Proposed strategy for the feature sets selection based on their classification performance.





7
Results and discussion

This chapter explains in detail the main results obtained in this thesis work, based on the

proposed methodology explained in Chapter 6. It is divided into three main sections. Sec-

tion 7.1 focuses on evaluating the contribution of modal-spectral features compared with

conventional features. Section 7.2 involves an independent analysis of FHR decelerations

and resting periods in order to investigate their contribution in CTG classification com-

pared with the analysis of the complete FHR signal segment. Finally, Section 7.3 concludes

this chapter by providing a discussion concerning the significance of the obtained results,

their contribution to CTG signal assessment, and their application in real scenarios.

7.1 Contribution of the modal-spectral vs. conventional features

This section focuses on studying the contribution of the modal-spectral features based on

the performance evaluation strategy presented in Section 6.2. For this purpose, we make

use of the selected CTG dataset defined in Section 6.2.1, and the features are extracted

from the complete FHR segment (S-features) (feature extraction operation explained in

Section 6.2.2). First, we define an optimal informative FHR signal segment, where the

features can be extracted. Second, based on the strategy explained in Section 6.2.2 and

Section 6.2.3, we perform the feature computation and feature elimination in order to ob-

tain significant features, which are grouped into feature sets. Then, we evaluate the per-

formance of the feature sets based on the strategy proposed in Section 6.2.4 by using the

three machine learning classifiers presented in Section 6.2.4. It is important to note that

the study performed in this section is based only on S-features. Nevertheless, in Section 7.2,

we also include the features extracted during decelerations (D-features) and during resting

periods (R-features) in order to evaluate their contribution in CTG classification.

7.1.1 Selection of an informative FHR signal segment

The feature evaluation usually involves the study of a particular CTG segment extracted

from the recordings. Considering that the UC activity increases towards delivery, in the last

minutes of labor, major changes in fetal condition can occur (Spilka et al., 2012). Therefore,

it is commonly proposed in the literature the extraction of an informative segment, as close

as possible to the delivery, where features can be computed (also called epoch). However,

71
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there is no precise definition concerning an optimal epoch for the FHR signal analysis,

whose selection depends mainly on the type of analysis (e.g., time-invariant, time-variant,

short term, or long term analysis) (Haritopoulos et al., 2016).

For the evaluation of the studied modal-spectral features, we propose to estimate an op-

timal epoch length by exploring different FHR signal segments in the range of 20 and 60

minutes in steps of 5 minutes before delivery. The lower limit of the studied range (20

minutes) was selected according to the literature (Spilka et al., 2016b; Warrick and Hamil-

ton, 2015) as the shortest FHR signal length to be considered for the analysis. The higher

limit range was set to 60 minutes because it corresponds to the length of the shortest CTG

recording included in the selected dataset.

For the selection of an optimal epoch, we calculate the number of statistically significant

features (p-value < .05) for each epoch based on the feature elimination step presented in

Section 6.2.3. Then, we select the epoch that allows obtaining the highest number of sta-

tistically significant features. In summary, the length of an optimal epoch for this analysis

was determined as follows:

1. We compute the proposed features from different FHR segment lengths such as 20,

25, 30, 35, 40, 45, 50, 55, and 60 minutes just before delivery.

2. For each extracted feature, we apply a Wilcoxon rank-sum test (Gibbons and Chakraborti,

2011) under the hypothesis that in the feature dimension, the median value of the

data significantly differs from one class to the other.

3. For each set of features (nine sets in total), we calculate the amount of statistically

significant features (p-value < .05) that can be extracted.

4. The segment length that provides the highest number of statistically significant fea-

tures is chosen as an optimal epoch to be used in this analysis.

Results obtained from the previous operation are presented in Fig. 7.1. On the abscissa

axis, we have the studied epoch length, and on the ordinate axis, we have the number of

significant features for each epoch. As can be observed in the graph, for epochs in the range

between 20 and 35 minutes length, the number of significant features is increasing from

21 to 30. Then, for longer epochs (≥ 40 min), the number of significant features decreases.

According to this information, a FHR segment of 35 minutes length before delivery can be

selected as an informative epoch to perform the proposed analysis.

7.1.2 Performance evaluation of the modal-spectral features

As explained in Section 6.2.2, for the evaluation of our proposed features, we propose to

include another set of conventional features, which have shown relatively satisfactory re-

sults in CTG classification (Fuentealba et al., 2019b; Krupa et al., 2011). The evaluation
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Figure 7.1: Number of significant features (p-value < .05) extracted from different FHR epochs.

performed in this section focuses on studying the contribution of the modal-spectral fea-

tures in comparison to the conventional features.

From the feature extraction operation explained in Section 6.2.2, the complete set of

modal-spectral and conventional features includes 210 and 69 features, respectively. Once

the features are extracted, we apply an elimination step performed, as described in Sec-

tion 6.2.3. This operation allows us to identify the significant features and exclude the

non-significant ones for the analysis. As a result, from the complete set of extracted fea-

tures, we obtain 38 significant features: 30 modal-spectral features and 8 conventional

features, which are presented in Table 7.1. Here, we can observe the significant features

divided by their category into 14 feature sets (procedure explained in Section 6.2.4). The

first ten feature sets correspond to modal-spectral features, while the last four correspond

to conventional features.

Once the significant features are obtained, and the feature sets are defined, we evaluate

them following the strategy presented in Section 6.2.4. For this operation, we employ three

machine learning classifiers (SVM, LDA, and k-NN), whose classification performance is

evaluated based on the geometric mean Eq. (6.2) because it is considered an appropriate

quality metric (QI ) for imbalanced data (Georgoulas et al., 2006; Warmerdam et al., 2016b).

Note that this study does not attempt selecting the best classifier, but rather it focuses

on evaluating the proposed features extracted based on the combination of ICEEMDAN

and TV-AR modeling. Therefore, these three computed-based classifiers, usually employed
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Table 7.1: Feature sets and corresponding significant features.

Feature set Significant features Type

S1 IMF1-E µ, M, RMS

modal-spectral

S2 IMF1-E c µ, M, RMS
S3 IMF2-E c ApEn, SampEn
S4 IMF4-E c ApEn, SampEn
S5 IMF6-E µ, σ, mad, RMS
S6 IMF6-E c µ, σ, mad, RMS
S7 IMF8-E µ, σ, mad, RMS
S8 IMF8-E c µ, σ, mad, RMS
S9 IMF10-E ApEn, SampEn
S10 IMF10-E c ApEn, SampEn

S11 FHR signal σ, mad, ApEn, SampEn

conventional
S12 PBL σ, mad
S13 IMF6 ApEn
S14 IMF7 ApEn

classifiers in CTG analysis, are used in this work to provide representative results that are

comparable to related works in FHR feature extraction (See Section 7.3).

Based on the previous operation, the results corresponding to the feature sets evaluation

are presented in Fig. 7.2, 7.3, and 7.4 for the SVM, LDA, and k-NN classifiers, respectively.

Likewise, Tables 7.2, 7.3, and 7.4 show the features automatically included in each com-

bined set to achieve the highest quality (QI ) (see Section 6.2.4). In both figures and tables

corresponding to this display of results, for better visualization of the contribution of the

modal-spectral and conventional features, they are illustrated in gray and white colors, re-

spectively.

Table 7.2: Features automatically selected by using the Support Vector Machine (SVM) classifier,
corresponding to the first four combined sets presented in Fig. 7.2.

Combined set k Features QI

raw FHR σ

76.4%
raw FHR mad
raw FHR ApEn

1

raw FHR SampEn

IMF4 E c ApEn
78.6%

2

IMF4 E c SampEn

PBL σ
80.7%

3

PBL mad

IMF10 E c ApEn
81.7%

4

IMF10 E c SampEn
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Figure 7.2: Performance of combined sets including both modal-spectral and conventional features
based on the strategy presented in Fig. 6.4 and using the Support Vector Machine (SVM) classifier.

Table 7.3: Features automatically selected by using the Linear Discriminant Analysis (LDA) classifier,
corresponding to the first four combined sets presented in Fig. 7.3.

Combined set k Features QI

raw FHR σ

76.7%
raw FHR mad
raw FHR ApEn

1

raw FHR SampEn

IMF4 E c ApEn
79.1%

2

IMF4 E c SampEn

PBL σ
80.8%

3

PBL mad

IMF10 E c ApEn
81.5%

4

IMF10 E c SampEn



76 CHAPTER 7. RESULTS AND DISCUSSION

1 2 3 4 5 6 7 8 9 10 11 12 13 14

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

Combined set

Q
u

al
it

y

modal-spectral

conventional

Figure 7.3: Performance of combined sets including both modal-spectral and conventional features
based on the strategy presented in Fig. 6.4 by using the Linear Discriminant Analysis (LDA) classifier.



7.1. CONTRIBUTION OF THE MODAL-SPECTRAL VS. CONVENTIONAL FEATURES 77

1 2 3 4 5 6 7 8 9 10 11 12 13 14

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

Combined set

Q
u

al
it

y

modal-spectral

conventional

Figure 7.4: Performance of combined sets including both modal-spectral and conventional features
based on the strategy presented in Fig. 6.4 by using the k-Nearest Neighbors (k-NN) classifier.
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Table 7.4: Features automatically selected by using the k-Nearest Neighbors (k-NN) classifier,
corresponding to the first nine combined sets presented in Fig. 7.4.

Combined set k Features QI

raw FHR σ

68.5%
raw FHR mad
raw FHR ApEn

1

raw FHR SampEn

IMF1 E c µ

73.0%IMF1 E c M

2

IMF1 E c RMS

3

IMF6 ApEn 75.3%

IMF10 E c ApEn
75.4%

4

IMF10 E c SampEn

IMF4 E c ApEn
75.2%

5

IMF4 E c SampEn

PBL σ
77.2%

6

PBL mad

IMF2 E c ApEn
77.5%

7

IMF2 E c SampEn

IMF1 E µ

79.9%IMF1 E M

8

IMF1 E RMS

IMF10 E ApEn
80.9%

9

IMF10 E SampEn
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Table 7.5: Performance comparison between conventional features and then including the
modal-spectral features, as well as for each employed classifier.

Classifier Conventional Including modal-spectral

SVM 78.0% 81.7%

LDA 77.9% 81.5%

k-NN 71.4% 80.9%

As shown in Fig. 7.2, 7.3, and 7.4, the highest classification performance achieved by the

SVM, LDA, and k-NN classifiers were 81.7%, 81.5% and 80.9% of QI , respectively. Like-

wise, in order to achieve such performance, the three classifiers require the contribution

of both modal-spectral and conventional features. As presented in Tables 7.2, 7.3, and 7.4,

for the SVM and LDA classifiers, four feature sets are required to obtain that the highest

performance, whereas for the k-NN classifier, nine feature sets are needed.

For studying the significance of the previous results, we calculate the classification per-

formance obtained by the conventional features. The idea is to compare the classifica-

tion performance obtained by including the modal-spectral with the highest performance

achieved by only the conventional features. For this operation, we employ the same strat-

egy described in Fig. 6.4, but now considering the feature sets that include only the con-

ventional features. As performed above, it is also performed for the three classifiers: SVM,

LDA, and k-NN. The results of this study are presented in Table 7.5, which shows the clas-

sification performance by using only the conventional features and then by including the

modal-spectral features for each column, respectively. Here, we can observe that the best

performance achieved by using only conventional features is 78.0%, and by including the

modal-spectral, it has improved to 81.7%, obtained by using the SVM classifier.

Since the highest performance is achieved by using the SVM classifier, the subsequent anal-

ysis concerning the feature contribution performed in this section is focused on the results

obtained by this classifier. Particularly, Table 7.2 shows that the highest performance is

achieved by the contribution of four feature sets (two modal-spectral and two conventional

feature sets). Concerning the feature sets presented in this table, we can observe that by

considering one set of conventional features and then including one set of modal-spectral

features, the quality improves from 76.4% to 78.6%. Then, the combined set 3 achieved

80.7% of quality by including one more set of conventional features. Finally, the best clas-

sification performance (QI = 81.7%) is obtained by the combined set 4, including two sets

of modal-spectral and two sets of conventional features.

Note that, as presented in Fig. 7.2, the combined sets 5 to 14 show that by including a larger

set of features as input to the classifier, the classification performance may decrease. This

phenomenon can be explained by the fact that although those features are considered as

significant (p-value < .05; criterion explained in Section 6.2.3), they can involve less infor-

mative attributes about the studied biological process compared to the features included

in the combined set 4.
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In summary, as shown in Table 7.2, the selected modal-spectral features are extracted from

IMF4 and IMF10, and the selected conventional features are extracted from the raw FHR

signal and PBL. Besides, from the complete set of features studied in this work, the optimal

set consists of four modal-spectral and six conventional features. As a result, considering

only conventional features (see Table 7.5), the performance achieved 78.0%. Then, by in-

cluding the modal-spectral features, it improved to 81.7%.

7.2 Contribution of FHR decelerations and resting periods

As explained n Section 1.1, FHR decelerations are one of the most evident patterns repre-

sented in the FHR signal resulting from the fetal compensatory mechanism activity. Cer-

tainly, these patterns correspond to FHR variations generated by the ANS modulation after

a perceived oxygen insufficiency episode such as a UC event (Freeman et al., 2012). Despite

they are considered as one of the most significant patterns to interpret the CTG signal, they

are one of the most challenging patterns to assess by the clinical staff (Hruban et al., 2015;

Spilka et al., 2014b). For this reason, we proposed to study their characteristics in order

to investigate whether these patterns, analyzed independently, can involve modulated dy-

namics that can provide significant information about fetal distress.

The feature evaluation performed in the previous section (Section 7.1) focused on the

contribution of the modal-spectral features extracted from the complete signal segment

(S-features). In this section, we consider the analysis of S-features as well as features ex-

tracted during decelerations (D-features) and during resting periods (R-features) in or-

der to evaluate their contribution in CTG classification. The main idea is to determine

whether by considering D-features and R-features, the classification performance can im-

prove compared with the analysis based only on S-features.

As explained in Section 6.2.2, S-features and R-features consist of 210 modal-spectral

and 69 conventional features, each one individually. Besides, D-features includes 150

modal-spectral and 63 conventional features.

The studied features are extracted from a FHR epoch corresponding to the last 35 minutes

of the recording, which is considered as an informative FHR segment according to the cri-

teria explained in Section 7.1.1. Then, in order to identify the significant features, we apply

a feature elimination step (see Section 6.2.3). This operation was already performed above

for S-features (see Section 7.1.2), whose resulting significant features (38 features in total)

were presented in Table 7.1. In this section, we present that information in Table 7.6. Like-

wise, we apply the elimination step for D-features and R-features. As a result, we obtained

23 and 27 significant D-features and R-features, which are shown in Table 7.7 and Table 7.8,

respectively. These tables show the significant features grouped in feature sets, formed as

explained in Section 6.2.4.

For the feature sets evaluation, we make use of the strategy explained in Section 6.2.4,

which uses the geometric mean as a metric of classification performance. Considering the
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Table 7.6: Feature sets and corresponding significant S-features.

Feature set Significant features Type

S1 IMF1-E µ, M, RMS

modal-spectral

S2 IMF1-E c µ, M, RMS
S3 IMF2-E c ApEn, SampEn
S4 IMF4-E c ApEn, SampEn
S5 IMF6-E µ, σ, mad, RMS
S6 IMF6-E c µ, σ, mad, RMS
S7 IMF8-E µ, σ, mad, RMS
S8 IMF8-E c µ, σ, mad, RMS
S9 IMF10-E ApEn, SampEn
S10 IMF10-E c ApEn, SampEn

S11 FHR signal σ, mad, ApEn, SampEn

conventional
S12 PBL σ, mad
S13 IMF6 ApEn
S14 IMF7 ApEn

Table 7.7: Feature sets and corresponding significant D-features.

Feature set Significant features Type

D1 IMF1-E µ, σ, mad, RMS

modal-spectral

D2 IMF4-E σ

D3 IMF4-E c σ, RMS
D4 IMF5-E c M
D5 IMF6-E µ, M, σ, mad, RMS
D6 IMF6-E c µ, M, σ, mad, RMS
D7 IMF6- f c M

D8 FHR signal µ, M, RMS
conventional

D9 PBL µ

Table 7.8: Feature sets and corresponding significant R-features.

Feature set Significant features Type

R1 IMF1-E µ, M, RMS

modal-spectral

R2 IMF1-E c µ, M, RMS
R3 IMF2-E µ, mad
R4 IMF2-E c ApEn
R5 IMF6-E σ, ApEn, SampEn, RMS
R6 IMF8-E ApEn, SampEn
R7 IMF10-E c SampEn
R8 IMF7- f c µ, σ, mad

R9 FHR signal σ, mad, ApEn, SampEn
conventionalR10 PBL σ, mad

R11 detrended FHR ApEn, SampEn
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Table 7.9: Classification performance considering S-features, D-features and R-features, based on
the SVM classifier.

Features Optimal feature sets QI (%)

S S11, S4, S12, S10 81.7
D D8, D3, D1 66.8
R R10, R8, R9 76.3

D_R R10, R8, R9 76.3
S_D S11, S4, S12, D4, D8 82.5
S_R S11, S4, S12, R5 83.2

S_D_R S11, S4, S12, R5 83.2

Table 7.10: Classification performance considering S-features, D-features and R-features, based
on the LDA classifier.

Features Optimal feature sets QI (%)

S S11, S4, S12, S10 81.5
D D7, D9, D2, D1 68.4
R R10, R8, R9 75.1

D_R R10, R8, R9, D9, D6 76.4
S_D S11, S4, S12, S10, D6 84.1
S_R S11, S4, S12, R5, S13 84.1

S_D_R S11, S4, S12, R5, D7, D4, S13 84.8

results obtained in Section 7.1.2, for this evaluation, we employ the SVM and LDA classi-

fiers, because they have achieved the highest performance by using the conventional and

modal-spectral features (see Table 7.5). It is important to note that in Fuentealba et al.

(2019e), we have published the results obtained by the SVM classifier. Nevertheless, in or-

der to evaluate the contribution of our proposed features further, in this work, we employ

both the SVM and the LDA classifier. The obtained results are presented in Tables 7.9 and

7.10 for the SVM and LDA classifiers, respectively. In these tables, the first, second, and

third columns show the studied features, optimal feature sets, and the obtained classifica-

tion performance, respectively. The optimal feature sets are ordered in the same way that

they were selected by the feature selection strategy presented in Fig. 6.4. The first three

rows show the classification performance achieved by using S-features, D-features, and

R-features, independently. Then, the last four rows present the results considering a com-

bination of the studied features in order to examine whether the contribution of D-features

and R-features, compared with the traditional analysis based only on S-features, can im-

prove the CTG classification performance.

On the one hand, concerning the results obtained by the SVM classifier (see Table 7.9),

S-features achieve 81.7% of quality, whose value is higher than the performance achieved

by D-features, R-features, and the combination of them (D_R). By considering S-features in
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combination with D-features (S_D), the classification performance increases from 81.7%

to 82.5% of quality. Then, by using S-features in combination with R-features (S_R), the

classification performance improves to 83.2%, whose value corresponds to the best clas-

sification performance achieved by using the SVM classifier. Particularly, as shown in the

last row of Table 7.9 (S_D_R), by including D-features, the classification quality did not im-

prove compared to the results obtained by S_R. Besides, the optimal feature sets were the

same for both S_R and S_D_R. Therefore, by using the SVM classifier, D-features do not

contribute to improving the CTG classification compared to S_R.

On the other hand, according to the LDA classifier, as presented in Table 7.10, S-features

achieve 81.5% of quality, whose value is higher than the performance achieved by D, R,

and D_R features. Continuing, for both S_D features and S_R features, the performance in-

creases to 84.2% of quality. Finally, as can be observed in the last row of Table 7.10, by con-

sidering S_D_R features, the classification quality improves to 84.8%, which corresponds

to the higher classification performance achieved by the LDA classifier. Differently to the

previous case based on SVM, by using the LDA classifier, D-features contribute to CTG clas-

sification compared with S_R. Therefore, both D-features and R-features allow improving

the CTG classification compared with the analysis based on only S-features.

In summary, for the two employed classifiers, the combination of S-features, D-features,

and R-features allows a higher classification performance compared with the performance

obtained by the contribution of only S-features.

It is important to note that for both classifiers, the classification performance obtained

by D-features in combination with R-features (D_R), is still lower compared to the perfor-

mance achieved by S-features. Therefore, the contribution of S-features is still required

to achieve the highest classification performance. In other words, the analysis based on

decelerations and resting periods should not replace the analysis based on the complete

signal, but rather include them for the assessment.

The obtained results coincide with a recent approach (Warmerdam et al., 2018), where au-

thors employ a different CTG database, but similar class formation criteria and evaluation

strategy. That approach shows that a combination of features extracted from the entire

FHR segment and contraction-dependent features might improve the detection of fetal

distress, whose classification performance improved from 70% to 79% of quality (based on

the geometric mean metric). Our approach, based on ICEEMDAN and TV-AR modeling,

shows that considering only the complete segment, and then including features extracted

from decelerations and resting periods, the performance improved from 81.5% to 84.8% of

quality.

The LDA classifier achieved the best classification performance by including the features

sets S11, S4, S12, R5, D7, D4, and S13. As can be observed in Tables 7.6, 7.7, and 7.8, four

of these sets correspond to modal-spectral features, whereas the other three sets corre-

spond to conventional features. The selected modal-spectral features are extracted from
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the IMF4-E c , IMF5-E c , IMF6-E , and IMF6- f c . The selected conventional features are ex-

tracted from the FHR signal, PBL, and IMF6 in the time-domain.

In order to analyze the obtained results from a physiological perspective, we focus on

examining the potential physiological information involved in the selected features. In

this context, features extracted from the FHR signal and PBL describe information in the

time-domain that is usually assessed by the clinical staff during labor. Therefore, the po-

tential physiological information associated with those indicators is well defined in CTG

guidelines (Ayres-de Campos et al., 2015). Concerning the selected features extracted from

the IMFs, we propose to examine the spectral information involved in the IMF4, IMF5, and

IMF6 (selected IMFs). The main idea is to identify the frequency information involved in

each IMF in relation to the FHR frequency bands established in the literature. For this

purpose, making use of the indicator of the frequency of the main component ( f c ), we

perform a frequency analysis for each IMF as performed in Section 6.2.2. The results of

this operation are presented in Fig. 7.5, where each point corresponds to the average of f c

for each IMF and each FHR recording. Note that we employ a semi-log chart, where the

ordinate axis is in a logarithmic scale of base ten.

As can be observed in Fig. 7.5, the IMF4, IMF5, and IMF6 can involve spectral informa-

tion in the range of the LF band (0.03−0.15 Hz, demarcated by the dotted lines). From a

physiological point of view, these results are highly interesting, because according to the

literature (see Section 3.1.1), this LF band is associated with the sympathetic ANS activ-

ity of the fetus. Therefore, these results reveal that S-features, D-features, and R-features

based on the ICEEMDAN and TV-AR spectral analysis involve significant information that

can be directly related to the fetal sympathetic ANS activity. Besides, an independent anal-

ysis of S-features, D-features, and R-features can help to assess the fetal condition, and

thereby improve the CTG classification performance. Note that the band mentioned above

(LF band) is used only as a referential frequency range in order to associate the automati-

cally selected features with a potential fetal physiological phenomenon. It is an important

characteristic of our approach because the analysis is not performed only on a limited fre-

quency range established in the literature; rather, it is based on tracking FHR dynamics in

the complete band and then examine the significant dynamics that can involve informa-

tion in the established FHR frequency bands.

7.3 Discussion of results

In the previous sections, we have presented the results obtained by an automatic selec-

tion of features extracted from the CTG signal. This feature selection was based on the

classification performance estimated by using three machine learning classifiers such as

SVM, LDA, and k-NN. As a result, the best performance was 84.8% of quality, including the

proposed features computed from the complete signal segment, during decelerations, and

during resting periods, using the LDA classifier.
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Figure 7.5: Average of frequencies involved in each IMF computed on the entire CTG database.
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Table 7.11: Display of recent related works in CTG classification and using pH for class formation.

Reference Database
# of recordings

CTG selection criteria
Se Sp QI

(abnormal/normal) (%) (%) (%)

Spilka et al. (2012) Private 217 (94/123) pH< 7.15 73.4 76.3 74.8

Georgieva et al. (2013) Private 252 (126/126)
pH< 7.10

60.3 67.5 63.8
7.27 <pH< 7.33

Xu et al. (2014) Private 510 (255/255)
pH< 7.05

83 66 74
7.27 <pH< 7.33

Spilka et al. (2016a) Private 1288 (37/1251) pH≤ 7.05 73 75 74

Warmerdam et al. (2018) Private 100 (20/80) pH< 7.05 81 77 79

Rotariu et al. (2014b) CTU-UHB 289 (25/264) pH< 7.20; BDecf> 8 96.0 87.6 91.7

Rotariu et al. (2014a) CTU-UHB 552 (168/384) pH< 7.20; apgar< 6 73.2 88.2 80.4

Georgoulas et al. (2017) CTU-UHB 552 (44/508) pH≤ 7.05 68.5 77.7 72.9

Yu et al. (2017) CTU-UHB
88 (44/44) pH≤ 7.05; pH> 7.20 75.3 84.4 79.7

122 (61/61) pH≤ 7.10; pH> 7.20 65.4 75.4 70.2

Cömert et al. (2018) CTU-UHB 552 (113/439) pH≤ 7.15 63.5 65.9 64.7

Zarmehri et al. (2019) CTU-UHB 552 (44/508) pH≤ 7.05 63.6 80.1 71.4

This approach CTU-UHB 372 (18/354)
pH<7.05; BDecf≥12

84.9 86.0 84.8
pH>7.20; BDecf<12

In order to determine the significance of the obtained classification performance, we com-

pare it to related works published in the literature, as presented in Table 7.11. This table

exhibits a list of recent related approaches that involve comparable class formation criteria

based on the pH outcome parameter for CTG classification.

In Table 7.11, the columns from left to right, display the related work (first author and year),

employed database, number of recordings (total, abnormal, and normal) considered for

the analysis, class formation criteria for the recording selection, sensitivity (Se), specificity

(Sp), and quality (QI ), respectively. Note that some of these works do not provide the QI

explicitly; thus, considering that the QI metric is employed as a reference for the result

comparison, it was computed based on the provided metric of Se and Sp by using Eq. (6.2).

Regarding the results of Se, Sp, and QI obtained in this work (see the last row of the table),

they do not satisfy the relation presented in Eq. (6.2). It is because QI was not computed

directly from the average of Se and Sp, but rather, as explained in Section 6.2.4, it was

calculated for each iteration and then averaged.

As can be observed in Table 7.11, the pH outcome value used for the class formation criteria

can significantly differ from one approach to another. This phenomenon can be explained

by the fact that whilst the pH outcome is considered as a gold standard measure for out-

come assessment, the connection of the neonatal outcome with a precise value of pH at

birth is still inconclusive (Perveen et al., 2015). It is important to note that pH is a loga-

rithmic measure; hence slight differences in pH values used for class formation can lead to

significant variations in the selected CTG dataset. In consequence, the recordings selected

and labeled as abnormal and normal conditions can also differ from one work to another,

which can also affect the results of classification performance. Therefore, the comparison

of results is complex, or in some cases, even impossible.
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Table 7.12: Selected conventional and modal-spectral features, as explained in Section 7.2.

Selected features Type

S11 FHR signal σ, mad, ApEn, SampEn
conventionalS12 PBL σ, mad

S13 IMF6 ApEn

S4 IMF4-E c ApEn, SampEn

modal-spectral
D4 IMF5-E c M
D7 IMF6- f c M
R5 IMF6-E σ, ApEn, SampEn, RMS

Nevertheless, according to the information presented in Table 7.11, the results obtained

in our approach overcome most of the results presented in related works, with a classifi-

cation performance of 84.8%. Particularly, compared with the results achieved by Rotariu

et al. (2014b), based on data extracted from the same database (CTU-UHB), our classifica-

tion performance might seem considerably lower. The higher classification performance

achieved by Rotariu et al. (2014b) (91.7%) can be attributed to the criteria used for the

dataset selection. Despite they consider a threshold based on pH value (pH< 7.20), after

the class formation, they excluded 263 recordings from the CTG database, considering only

the recordings with a SNR of over 20%. As a result, they used only 289 recordings for the

analysis, whose smaller proportion of the original database and better quality of the signals

involved for the analysis make these results not comparable to our approach.

Although our obtained results show an improvement in CTG classification, we consider

that the contribution of this thesis work can not be directly evaluated by comparing the

percentage of classification performance with related works. In order to evaluate the con-

tribution of our work, we address the central hypothesis (see Section 1.2), which postu-

lates that the fetal response modulated by the ANS can describe different dynamics, whose

changes and their progression over time can be related to the fetal condition.

In this context, results obtained from the feature selection procedure show that the highest

classification performance is obtained by including the features sets S4, S11, S12, S13, D7, D4,

and R5, and using the LDA classifier (see Section 7.2). As shown in Table 7.12, these selected

feature sets include both conventional and modal-spectral features. The selected con-

ventional features are extracted from the FHR signal, PBL, and IMF6 in the time-domain,

whereas, the selected modal-spectral features are extracted from TV-AR spectral informa-

tion computed from the IMF4, IMF5, and IMF6.

A pairwise correlation matrix of the selected features is presented in Fig. 7.6. Here, we

can observe that most of the features have low correlations with each other (close to 0).

However, some features show high correlations, which correspond to statistical values of

high proximity in nature, and computed in the same feature set. For example, for S11 and

S12, features computed by σ have high correlation with mad. Likewise, for S11, S4 and

R5, features computed by SampEn and have high correlation with ApEn. Besides, for R5,
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Figure 7.6: Pairwise correlation matrix of the selected features presented in Table 7.12.

σ and RMS show high correlation. It is important to note that, in order to deal with po-

tential redundancy that the studies features may convey, as explained in Section 6.2.4, the

feature selection strategy involved a feature preprocessing step based on principal compo-

nent analysis. Therefore, redundant information involved in the studied features does not

affect the feature evaluation and selection. Nevertheless, from features of high proximity

in nature and considered as redundant, one can be selected and the others can be removed

for further analysis.

In order to determine whether the selected features have a potential physiological connec-

tion with the fetal ANS activity, we analyze them based on biomedical research reported

in the literature. In this context, the first two traces, corresponding to the FHR signal and

PBL, describe information that is usually assessed by the clinical staff during labor. On

the one hand, as can be observed in Table 7.12, all the selected features extracted from the

FHR signal correspond to statistics of dispersion such as standard deviation, mean abso-

lute deviation, approximate entropy, and sample entropy. These last two coefficients allow

quantifying the signal data complexity, which, according to Pincus and Viscarello (1992),

might be related to the interaction of the sympathetic and parasympathetic ANS activity

of the fetus. On the other hand, as described in CTG guidelines (Ayres-de Campos et al.,

2015), a normal FHR baseline involves values between 110 and 160 bpm, whereas lower

and higher values lasting more than 10 min are related to fetal bradycardia and tachycar-

dia, respectively. Therefore, the selected features computed from the FHR baseline, de-

scribed by statistics of dispersion, might represent a certain interaction related to the fetal

condition.

Concerning the selected features extracted from the IMF4, IMF5, and IMF6, we proposed

to examine their spectral information. The main idea is to identify the frequency informa-

tion involved in each IMF in relation to the standard FHR frequency bands established in
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the literature. As explained in Section 7.2, the IMF4, IMF5, and IMF6 can involve spectral

information in the range of the low frequency (LF) band (0.03−0.15 Hz). Physiologically,

these results are highly interesting, because as explained in Section 3.1.1, this LF band is

associated with the ANS activity of the fetus. Therefore, these results represent one of the

main contributions of this thesis work. Note that the frequency band mentioned above (LF

band) is used only as a reference in order to associate the automatically selected features

with a potential fetal physiological phenomenon. Indeed, it is an important characteristic

of our approach, because, compared with most of related works, the analysis is not per-

formed only on a limited frequency range. On the contrary, it is based on tracking FHR

dynamics in the complete FHR band (0−2 Hz), and then the significant dynamics are auto-

matically selected. Besides, considering that the proposed method based on ICEEMDAN

and TV-AR modeling can provide significant information extracted from the LF band, it

can be an important approach for future research that involves the study of the fetal ANS

activity.

Regarding the results obtained in feature selection and classification performance, the pro-

posed features have shown a significant (p-value < .05) discriminant capability for CTG

analysis, which can contribute to estimate the fetal condition based on automatic classi-

fication. From a physiological point of view, significant features and their examination in

classification can help to guide the direction of the research in CTG analysis. However, CTG

classification is not the object of intrapartum FHR monitoring (Ugwumadu, 2017). There-

fore, as mentioned above, a certain percentage of performance in CTG classification, can

not be directly applicable nor explain the studied physiological phenomenon in real sce-

narios. In other words, only metrics related to classification performance are not of clinical

interest and not meaningful when assessing the fetal status during labor. In this context, it

is essential to explore for a transition towards more significant and representative informa-

tion, i.e., a connection between the obtained results in classification with more significant

information that can be clinically applicable and better understood by the clinical staff.

Considering the central hypothesis of this thesis work (explained above), a FHR segment

closer to the delivery can involve information more related to the fetal outcome parameters

such as the pH value. On the contrary, FHR segments that are farther to the delivery time

could be less connected to the fetal condition at the delivery point.

In order to explore this phenomenon, we propose to examine not only the last 35 minutes

but also FHR information farther from the delivery time. For this purpose, we first employ

the last 35 minutes to train a model based on the LDA classifier and features selected in

Section 7.2. Then, we observe the model prediction over FHR epochs of 35 minutes length

by windowing in steps of 2 minutes. For each studied epoch, we compute the selected

features, which are the input to the classifier model. Then, as the model output, for each

epoch, we obtain a predicted status, which can be normal or acidotic (defined according

to the class formation criteria explained in Section 6.2.1).
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Although the proposed model has been designed to classify CTG recordings between nor-

mal and acidotic classes, we are in an early step to ensure that the proposed model is able

to characterize the real fetal status. Indeed, the amount of CTG data studied in this work

(from the employed database, only 18 cases labeled as acidotic) is not enough to validate

our results. For the moment, we can only associate the predicted status by the model with a

particular fetal response that can potentially characterize such predicted fetal status. Nev-

ertheless, the main idea of this discussion is only to observe how the fetal response, rep-

resented by the model prediction, changes over time, as well as compare its behavior be-

tween the two classes. Therefore, for this proposed analysis, we will consider that a predic-

tion of the trained model classified as acidotic can be associated with a high probability of

fetal distress, whereas, a prediction of normal status means a high probability of a normal

condition.

For a graphic observation of the proposed analysis, we employ the 18 cases labeled as aci-

dotic (see Section 6.2.1), and we select a similar number of normal cases. For the selection

of the normal cases to be used for this analysis, we employ a selection criterion based on

values of pH > 7.37 and BDecf < 12. As a result, 20 normal cases were selected. The results

of this operation are shown in Fig. 7.7 and 7.8 for the studied normal and acidotic cases,

respectively.

In this display of results, the information is presented in such a way that we are able to

observe the model prediction for each epoch over time. Considering that the length of the

CTG signals available in the database is not uniform, we decided to locate the data on the

abscissa axis from 90 to 0 minutes, where 0 corresponds to the delivery time. Each box

corresponds to one epoch of 35 minutes, and its color indicates the status predicted by

the model. Green and red colors represent normal and acidotic predictions, respectively,

whereas an empty box represents epochs involving time instants outside of the range of

the available FHR signal data, i.e., outside of the range between the first and the last FHR

signal sample available in the recording.

As explained in Section 6.1, the CTU-UHB database also provides the evaluation per-

formed by nine experienced obstetricians, whose annotations are divided into four steps.

The first three annotations correspond to the evaluation of the CTG recording divided into

three segments (two segments corresponding to the first stage of labor and one segment

to the second stage of labor). The fourth annotation step is performed with the objec-

tive of predicting the labor outcome (probable range of pH value after delivery), taking

into account the information of previous steps. As presented by Hruban et al. (2015),

the described evaluation was performed by the nine experts to the complete CTU-UHB

database, where they provided a decision about the fetal status classified as normal, suspi-

cious, pathological, or uninterpretable.

In this proposed analysis, we make use of the first three annotations in order to have an

overview concerning the evaluation of expert clinicians throughout the CTG recording.

From these annotations, we consider the decision when more than 50% of the experts
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Figure 7.7: Model prediction represented by epochs over time for selected normal cases.
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Figure 7.8: Model prediction represented by epochs over time for selected abnormal cases.
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are in agreement about the fetal status; otherwise, we label the step as in disagreement.

This information is represented in the result display by number labels such as 1 (normal),

2 (suspicious), 3 (pathological), -1 (uninterpretable), and -2 (in disagreement). As can be

observed in Fig. 7.7 and 7.8, the evaluated steps are demarcated by three vertical dotted

lines, where each line indicates the starting point of each step, and the delivery point is the

ending point of the third step. The information is displayed for each step, represented by

the number located in the upper part of the figures. It is important to note that this display

and analysis does not aim to determine the performance in the expert evaluation nor com-

pare them with our model prediction. The idea is to examine whether, in the studied CTG

recordings, the evaluation of the fetal status can change from one step to another.

As can be observed in the figures, both classes show different behavior with each other. For

the cases of the normal class, in general, the last epochs indicate a normal status. Likewise,

for most of the cases of the acidotic class, the last epochs indicate a high probability of fetal

distress. Unfortunately, several of the studies CTG recordings available in the database

(such as no. 1218, 1436, 2033, 2001, 2003, 2007, 2008, 2009, 2013, 2023, 2025, and 2030)

have limited information of the FHR by the end of labor, whose signal loss is represented

by empty boxes by the end of the process. Nevertheless, as shown in most of the cases, we

can still observe that the characteristics involved in the fetal response, represented by the

model prediction, might change over time. This phenomenon also has been reported in

previous research (Coletta et al., 2012; Devoe, 2016; Parer and Ikeda, 2007), which indicates

that the risk of the fetal condition, to evolve from one health state to another, frequently

change in the course of labor. .

In Fig. 7.7, corresponding to normal condition, the cases n1, n3, n4, n6, n8, n10, n11, n13,

n14, n18, and n19, show that, according to the model prediction, the fetal response is as-

sociated with a normal status, whose response remains constant during the complete pro-

cess. Cases n2, n7, n9, n12, and n15 show that several minutes before delivery, there are

episodes (represented by red blocks) when the fetal response could be associated with dis-

tress but after a specific time by the end of the process, it presents a response that indicates

a normal condition. For the case n20, it indicates distress in the first and second steps of

labor; nevertheless, we do not have available FHR information in the last 14 minutes to

continue tracking the process. Considering that for the case n17, the model predicts dis-

tress by the end of the process, it can be considered as an outlier for the model.

In Fig. 7.8, corresponding to the acidotic group, we can observe that the cases a3, a4, a5, a6,

a7, and a8 show a prediction of fetal distress by the end of the process. Although some of

these cases do not have FHR information in the last epoch (signal loss in the last 2 minutes),

the distress status is predicted by the model 16, 12, 12, 4, 20, and 16 minutes before delivery,

respectively. Unfortunately, for cases a9, a10, a11, a12, a13, a15, a16, a17 and, a18, we can

not track the model prediction during the complete process because of the considerable

signal loss in the last step of labor. Nevertheless, in most of the cases, it is possible to

observe that the model prediction can change from normal to distress in the course of

labor. The cases a1, a2, and a14 show a prediction of normal status for all the studied
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epochs, considering that the signal loss before delivery involves only 4 minutes, it might

be considered as an outlier for the model.

The analysis presented above, based on normal and acidotic cases, coincide with some

approaches proposed in the medical research area (Garabedian et al., 2017; Ugwumadu,

2014), which emphasize that each fetus has a particular behavior and control, and during

labor, its condition depends on how it is compensating and defending itself over time.

Concerning the evaluation performed by the expert obstetricians, if we observe the anno-

tations of normal (1), suspicious (2) and pathological (3) conditions (excluding the anno-

tations -1 and -2), in cases n1, n3, n4, n5, n9, n10, n14, n17, n18, n19, n20, a2, a6, a7, a9,

a13, and a18, the evaluation remains stable from one step to the next one. Nevertheless, in

cases n2, n7, n8, n16, a1, a8, a14, and a16, we can observe that the evaluation can change

from one step to another, either from normal (1) to suspicious (2), or from suspicious (2)

to pathological (3). Unfortunately, for the remaining cases (n6, n11, n12, n13, n15, a3, a4,

a5, a10, a11, a12, a15, and a17), in more than one step the annotations are uninterpretable

or in disagreement. Therefore, in these cases, it is not possible to determine if there are

changes in the evaluation from one step to the next one.

In summary, considering the previous analysis, we can observe that the prediction of fetal

status might change in the course of labor, which is shown not only by our model predic-

tion but also evidenced by recent approaches in medical research, and the expert evalua-

tion explained above.

It is important to note that this performed analysis showed only preliminary results that

can be further investigated. Nevertheless, as a future perspective, we consider that the

proposed way of visualization presented in Fig. 7.7 and 7.8, can be significant to assist

clinicians in real scenarios.

On the one hand, considering that the fetal response can change over time, we can not esti-

mate the condition based only on a snapshot of the process. On the other hand, given that

the CTG analysis requires a certain FHR epoch length to be assessed, the prediction can

not be displayed by each signal sample, because the analysis does not provide such infor-

mation. For example, we can not identify whether the predicted status corresponds at the

beginning, at the middle, or at the end of the studied epoch. In this context, our proposed

display of results deals with these characteristics, offering a visualization that can help to

track the fetal status over time based on binary classification. Besides, it can provide infor-

mation concerning the evaluation of past epochs as a memory of the process, and thereby

clinicians can have access to revise past episodes to perform a long-term assessment.

Additional future work and perspectives concerning this analysis are addressed in Sec-

tion 8.2.



8
Conclusions and Future Work

8.1 Conclusions

This section aims to address the research questions proposed in Section 1.2, which are

listed in the following: (1) Is it possible to identify and track modulated time-variant dy-

namics involved in the FHR signal that are related to the fetal health condition? (2) Could

the dynamics involved in FHR decelerations, analyzed independently from the complete

signal, improve the automatic CTG signal analysis? (3) Are these studied FHR signal dy-

namics linked to the fetal compensatory mechanisms modulated by the ANS? (4) Could

this approach based on a time-variant analysis of the fetal response improve the automatic

computer-based CTG classification compared with the conventional CTG analysis?

Regarding the first research question, as explained in Chapter 3, the FHR signal involves

highly complex time-variant characteristics, which are mainly associated with nonlinear-

ities resulting from the physiological regulation mechanisms modulated by the ANS con-

tributing to the FHR activity. In this context, we have postulated that if such character-

istics are not previously decomposed or demodulated, the FHR signal can still involve

modulated dynamics of high complexity that are difficult to analyze. As explained in Sec-

tion 5.5, in order to investigate these FHR dynamics, we have proposed a new approach

by combining two signal processing methods: ICEEMDAN and TV-AR spectral estima-

tion. On the one hand, ICEEMDAN allows decomposing signals involving nonlinear and

non-stationary characteristics into IMFs. Considering that this decomposition operation

has similar principles of signal demodulation, this method can be appropriate for study-

ing the FHR dynamics modulated by the ANS activity. On the other hand, in order to study

their time-variant characteristics in the spectral-domain, we employed TV-AR modeling.

In the spectral-domain, the information of interest is represented by the spectral density

peaks, whose dynamical behavior describes the contribution of the frequency dynamics

over time. As explained in detail in Section 4.1, TV-AR modeling can effectively describe

the peaks of a narrow-band power spectrum, is more robust to noise, and requires less

sampling frequency than standard methods to obtain the same spectral resolution. There-

fore, it results appropriate for the spectral analysis of the extracted IMFs. Consequently,

ICEEMDAN allows obtaining a less complex signal by decomposing its dynamics into the

IMFs, which are better suited for the spectral analysis performed by TV-AR modeling. The

95
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time-variant frequency characteristics are easier to track because the dynamics are already

decomposed, and the spectral analysis focused on tracking only one main frequency com-

ponent of interest for each IMF over time.

Based on the proposed methodology explained above, we track and investigate whether

certain FHR signal dynamics are potentially related to fetal distress. For this purpose,

we have analyzed CTG recordings corresponding to normal and acidotic fetuses extracted

from the CTU-UHB database. As presented in Chapter 5, the performed time-variant spec-

tral analysis revealed that it is possible to decompose and track different spectral dynamics

involved in the FHR signal, which are strongly variant in time. In order to examine the con-

nection of these dynamics with the fetal health condition, we compute a set of features

based on their spectral characteristics. Then, we studied their discriminant capability by

using a Wilcoxon rank-sum test, applied under the hypothesis that the median value of the

normal class data significantly (p-value < .05) differs from the median value of the acidotic

class data. As a result, the behavior of the spectral dynamics significantly differs between

normal and acidotic cases. It is important to note that the described information also co-

incides with results presented in Section 7.1, where these FHR signal characteristics are

evaluated further based on their performance in CTG classification. In conclusion, accord-

ing to the obtained results, it is possible to identify and track modulated time-variant FHR

signal dynamics, whose behavior over time can depend significantly (p-value < .05) on the

fetal health condition.

Regarding the second research question, as described in Chapter 1, FHR decelerations are

one of the most evident patterns represented in the FHR signal that result from the fe-

tal compensatory mechanism activity. Certainly, these patterns correspond to FHR vari-

ations generated by the ANS modulation after a perceived oxygen insufficiency episode.

Although they are considered as one of the patterns that involve more significant about

the fetal health condition, they are one of the most challenging patterns to interpret by

the clinical staff. For this reason, we proposed to study their characteristics in both the

time-domain and the spectral-domain in order to investigate whether these patterns can

involve modulated dynamics that can provide significant information about the fetal con-

dition. The main idea is to study the FHR decelerations, and resting periods, together and

independently from the complete FHR signal in order to investigate their contribution in

CTG assessment.

As presented in Section 5.6, we found that the FHR deceleration episodes and resting peri-

ods can involve significant (p-value < .05) information about the fetal health condition. In

order to examine their contribution to CTG assessment, in Section 7.2, we have evaluated

their performance in CTG classification. For this purpose, we first computed the proposed

signal features from the complete segment (S-features), during decelerations (D-features),

and during resting periods (R-features), independently. Then, we evaluated the extracted

features in order to examine whether the contribution of D-features and R-features, can

improve the CTG classification performance compared with the analysis based only on

S-features. It is important to note that the features extracted from the complete FHR signal
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segment are still required to achieve the highest classification performance. In other words,

the analysis performed during decelerations and resting periods should not replace the

analysis based only on the complete signal, but rather include them separately for the anal-

ysis. As a result, the CTG classification performance by including S-features, D-features,

and R-features has improved compared with the performance achieved by only S-features.

Therefore, according to the obtained results, both the FHR decelerations and resting peri-

ods can contribute to improving the CTG signal analysis compared with the analysis based

only on the complete FHR signal segment.

These obtained results coincide with a recent approach (Warmerdam et al., 2018) based on

the analysis of contraction-dependent features. In this approach, the authors employed a

different CTG database, but a similar strategy for evaluation and class formation criteria.

As a result, they revealed that features extracted from the entire FHR segment in combi-

nation with contraction-dependent features might improve the detection of fetal distress,

whose classification performance, improved from 70% to 79% of quality. Our approach,

based on ICEEMDAN and TV-AR modeling, has shown that considering the complete FHR

segment. Then including features extracted from decelerations and resting periods, the

performance improved from 81.5% to 84.8% of quality.

Regarding the third research question, in Section 7.2, we have presented the evaluation of

the proposed features, which involved two main steps, feature elimination and feature se-

lection based on their classification performance. As a result of this operation, we provided

a detailed explanation concerning the feature selection, where the LDA classifier provided

the highest classification performance. This classification performance was achieved by

the contribution of features sets from S-features, D-features, and R-features. These se-

lected features sets include both conventional and modal-spectral features, extracted from

the FHR signal, PBL, IMF4, IMF5, and IMF6.

As explained in Section 7.3, in order to determine a potential physiological connection be-

tween the selected features and the fetal ANS activity, we analyzed them based on results

reported in the literature in the field of biomedical research. On the one hand, the first

two traces (FHR and PBL) describe information that is usually assessed by the clinical staff

during labor, which according to the CTG guidelines, involves patterns that can be related

to the fetal health condition. Besides, according to the literature (Pincus and Viscarello,

1992), the FHR signal complexity might be related to the interaction of the sympathetic

and parasympathetic ANS activity of the fetus. On the other hand, the last three traces

(IMF4, IMF5, and IMF6) can involve spectral information in the range of the FHR LF band

(0.03−0.15 Hz). From a physiological perspective, these results are highly interesting, be-

cause as explained in Section 3.1.1, this LF band is mainly associated with the ANS activity

of the fetus. Therefore, these results represent one of the main contributions of this the-

sis work. It is important to note that the LF frequency band mentioned above was used

only as a reference to associate the automatically selected features with a potential fetal

physiological phenomenon. In other words, the analysis was not performed only on a lim-

ited frequency range; on the contrary, the proposed approach was based on tracking FHR
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dynamics in the entire FHR band (0−2 Hz), and then the significant dynamics were auto-

matically selected. For a detailed explanation about the features selection strategy and a

discussion on their significance, please refer to Section 6.2 and 7.3, respectively.

In summary, those results indicate that the features extracted and automatically selected

can involve significant information related to the fetal health condition. The studied FHR

dynamics, described by these selected features, can be linked to the fetal compensatory

mechanisms modulated by the ANS. However, in order to validate these results, more in-

vestigation is required.

Regarding the fourth research question, in Section 7.1, we have studied the contribution of

the proposed modal-spectral features in comparison with conventional features. For this

purpose, we have selected an optimal FHR epoch corresponding to the last 35 minutes be-

fore delivery, where the features are computed. The complete set of features consisted of

210 modal-spectral and 69 conventional features, which after a feature elimination step,

resulted in 30 and 8 features, respectively. Their classification performance was evaluated

based on three machine learning classifiers (SVM, LDA, and k-NN). First, only the con-

ventional features were considered, and then the modal-spectral were included in order

to evaluate their contribution. On the one hand, the classification performance achieved

by the conventional features was 78.0%, 77.9%, and 71.4% of quality, for SVM, LDA, and

k-NN, respectively. On the other hand, the classification performance achieved by the

modal-spectral features was 81.7%, 81.5%, and 80.9% of quality, for SVM, LDA, and k-NN,

respectively. As a result, based on the contribution of the proposed modal-spectral fea-

tures, the proposed approach involving a time-variant analysis of the fetal response has

improved the CTG classification performance compared with the conventional features.

Besides, as presented in Section 7.2, this classification performance has even increased to

84.8% of quality by including the independent analysis of deceleration and resting periods

based on the LDA classifier.

In order to analyze the significance of our proposed approach and obtained classification

results, we have compared them with related works reported in the literature. As presented

in Section 7.3, Table 7.11, recent related approaches, which involve the pH value as class

formation criteria, have been considered for their comparison with our approach. Consid-

ering the diversity of class formation criteria used in the literature, which can significantly

differ from one approach to another, a direct comparison of results is difficult. Neverthe-

less, the results obtained in our approach overcome most of the results presented in re-

lated works, with a classification performance of 84.8%. Particularly, only one compared

approach (Rotariu et al., 2014b) might show better results than our approach. The higher

classification performance reported by Rotariu et al. (2014b) (91.7%) can be attributed to

the criteria used for the dataset selection. Despite they consider a threshold based on

pH value (pH< 7.20), after the class formation, they cleared 263 recordings from the CTG

database, considering only recordings with a higher signal-to-noise ratio. Therefore, they

consider a smaller proportion of the original database (289 recordings) with better signal

quality for the analysis. In consequence, these results are not comparable to our approach.
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In summary, our proposed methodology based on ICEEMDAN and TV-AR modeling has

shown to be a promising approach for fetal distress estimation during labor. It has over-

come most of the results presented in related works. However, considering the diversity of

class formation criteria and the number of recordings used in recent related works, further

investigation is needed. In order to validate and prove our classification results, together

with the proposed analysis and evaluation, it would be necessary the study different class

formation criteria, other techniques for automatic classification, and a higher number of

CTG recordings extracted from different databases.

8.2 Future Work

As explained in Section 7.3, from a physiological point of view, significant features, and a

high performance in classification can help to guide the direction of the research in CTG

analysis. However, CTG classification, applied only over a particular FHR segment length,

is not the object of intrapartum FHR monitoring (Ugwumadu, 2017). Therefore, the numer-

ical results explained above, based on a certain percentage of performance in CTG classifi-

cation, can not be directly applicable in real scenarios nor describe completely the studied

fetal physiological phenomenon. In other words, only classification performance metrics

are not of clinical interest and not meaningful when assessing the fetal status during labor.

As future work, it would be essential to explore for a transition towards more significant

and representative information, i.e., a connection between the obtained results in feature

classification and more significant information that can be clinically applicable and better

understood by the clinical staff.

In this context, as explained in Section 1.2, we defined the important concept of progressive

fetal response. For example, under this concept, FHR segments closer to the delivery can

involve more representative information connected to the fetal outcome than segments

that are farther to the delivery time.

In order to explore this phenomenon, we propose to examine not only the last 35 minutes

but also FHR information farther from the delivery time. In Section 7.3, we have presented

preliminary results and discussion concerning this analysis, based on 18 and 20 acidotic

and normal cases, respectively. For this purpose, we made use of the prediction of a model

trained in the last 35 minutes, and then we observe the model prediction in FHR segments

farther from the delivery time. Results showed that normal and acidotic cases could exhibit

different behavior to each other.

On the one hand, most of the cases corresponding to a normal condition showed that the

model prediction does not change over time. However, some of them showed that sev-

eral minutes before delivery, the prediction could be associated with distress, but after a

certain time instant, by the end of the process, it can change to a normal condition. On

the other hand, most of the acidotic cases showed that the model prediction could change

over time. First, several minutes before delivery, these cases can involve episodes where
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the model can predict a normal condition. Then, after a particular time instant, the predic-

tion changes from normal to distress. This phenomenon is also shown by the evaluation

performed by expert clinicians, which revealed that the fetal condition could change in the

course of labor.

Considering these preliminary results, we firmly recommend further investigation of this

phenomenon. For a future step, we propose the following main research questions:

• Is it possible to characterize and track episodes of fetal distress over time?

• How can these episodes of distress affect the fetal outcome or lead to an acidotic

condition?

• Is there a relationship between the duration and frequency of these episodes with

the fetal health condition?

• Under which conditions a fetus can tolerate a distressed status, defense itself, and

recover to a normal condition?

All of the previous inquiries open perspectives for an automatic analysis, which considers

the evolution of fetal distress and during labor. Therefore, it can help to integrate the evo-

lution concept in the analysis in order to improve the reliability of the CTG assessment.

Besides, considering that the proposed method based on ICEEMDAN and TV-AR model-

ing could provide significant information that can be related to the fetal ANS activity, it

can be aplied in future research that involves the study of the interaction of the fetal com-

pensatory mechanisms during labor.
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A.1 Examples of ICEEMDAN and TV-AR spectrum computation
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A.1. EXAMPLES OF ICEEMDAN AND TV-AR SPECTRUM COMPUTATION 103

1000 1500 2000 2500 3000 3500

-10

0

10
IM

F
 1

 [b
pm

]

time [s]
1000 1500 2000 2500 3000 3500

time [s]

0

0.5

1

1.5

2

[H
z]

1000 1500 2000 2500 3000 3500

-10

0

10

IM
F

 2
 [b

pm
]

time [s]
1000 1500 2000 2500 3000 3500

time [s]

0

0.25

0.5

0.75

1

[H
z]

1000 1500 2000 2500 3000 3500

-10

0

10

IM
F

 3
 [b

pm
]

time [s]
1000 1500 2000 2500 3000 3500

time [s]

0

0.15

0.3

0.45

0.6

[H
z]

1000 1500 2000 2500 3000 3500

-10

0

10

IM
F

 4
 [b

pm
]

time [s]
1000 1500 2000 2500 3000 3500

time [s]

0

0.06

0.12

0.18

0.24

[H
z]

1000 1500 2000 2500 3000 3500

-5

0

5

IM
F

 5
 [b

pm
]

time [s]
1000 1500 2000 2500 3000 3500

time [s]

0

0.05

0.1

0.15

0.2

[H
z]

1000 1500 2000 2500 3000 3500
-5

0

5

IM
F

 6
 [b

pm
]

time [s]
1000 1500 2000 2500 3000 3500

time [s]

0

0.04

0.08

0.12

0.16

[H
z]

1000 1500 2000 2500 3000 3500
-4

-2

0

2

4

IM
F

 7
 [b

pm
]

time [s]
1000 1500 2000 2500 3000 3500

time [s]

0

0.04

0.08

0.12

[H
z]

1000 1500 2000 2500 3000 3500

-2

0

2

IM
F

 8
 [b

pm
]

time [s]
1000 1500 2000 2500 3000 3500

time [s]

0

0.03

0.06

0.09

0.12

[H
z]

1000 1500 2000 2500 3000 3500

-2

0

2

IM
F

 9
 [b

pm
]

time [s]
1000 1500 2000 2500 3000 3500

time [s]

0

0.03

0.06

0.09

[H
z]

1000 1500 2000 2500 3000 3500

-2

0

2

IM
F

 1
0 

[b
pm

]

time [s]
1000 1500 2000 2500 3000 3500

time [s]

0

0.03

0.06

0.09

[H
z]

1000 1500 2000 2500 3000 3500
-2

0

2

IM
F

 1
1 

[b
pm

]

time [s]
1000 1500 2000 2500 3000 3500

time [s]

0

0.02

0.04

0.06

0.08

[H
z]

1000 1500 2000 2500 3000 3500
-1

0

1

IM
F

 1
2 

[b
pm

]

time [s]
1000 1500 2000 2500 3000 3500

time [s]

0

0.02

0.04

0.06

0.08

[H
z]
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A.2 Representative cases of proposed features
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Representative cases; (a) raw FHR signal of recording no. 1167, pH = 7.36, BDecf = 5.03; (b) raw
FHR signal of recording no. 2011, pH = 7.01, BDecf = 12.1; (c-d) preprocessed FHR signal (gray),
PBL (red), floating-line (blue), and deceleration episodes (black); (e-f) detrended FHR signal; (g-h)
IMF6; (i-j) TV-AR spectrum computed from IMF6; (k-l) E from (i-j).
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Representative cases; (a) raw FHR signal of recording no. 1189, pH = 7.36, BDecf = 0.43; (b) raw
FHR signal of recording no. 1104, pH = 6.92, BDecf = 23.75; (c-d) preprocessed FHR signal (gray),
PBL (red), floating-line (blue), and deceleration episodes (black); (e-f) detrended FHR signal; (g-h)
IMF6; (i-j) TV-AR spectrum computed from IMF6; (k-l) E from (i-j).
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Abbreviations and Notations

Dataset and clustering acronyms

Acronym Meaning

ADASYN Adaptive synthetic sampling

ANS Autonomic nervous system

ApEn Approximate entropy

AR Autoregressive

BE Base excess

BDecf Base deficit of extracellular fluid

CEEMDAN Complete ensemble empirical mode decomposition with adaptive noise

CO2 Carbon dioxide

CTG Cardiotocograph

CS Cesarean section

DC Zero-frequency component

DFT Discrete Fourier transform

ECG Electrocardiogram

EEMD Ensemble empirical mode decomposition

EMD Empirical mode decomposition

FBS Fetal blood sampling

FECG Fetal electrocardiogram

FIGO International Federation of Gynecology and Obstetrics

FFT Fast Fourier transform

FHR Fetal heart rate

FMCG Fetal magnetocardiography

FN False negative

FP False positive

HF High frequency

HMM Hidden Markov Model

ICEEMDAN Improved complete ensemble empirical mode decomposition with

adaptive noise

IMF Intrinsic mode function
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I−FECG Invasive fetal electrocardiogram

k−NN k-Nearest Neighbors

LDA Linear discriminant analysis

LF Low frequency

MF Medium frequency

NI Number of sifting iterations

NI−FECG Non-invasive fetal electrocardiogram

NR Number of realizations

Nstd Noise standard deviation

PBL Progressive baseline

PCA Principal component analysis

PCG Phonocardiography

pCO2 Partial pressure of carbon dioxide

pH Artery pH

pO2 Partial pressure of oxygen

PO Pulse oximetry

PSD Power spectral density

QI Quality metric

RMS Root mean square

SampEn Sample entropy

Se Sensitivity

Sp Specificity

SQUID Superconducting quantum interference device

STAN ST analysis

STFT Short-time Fourier transform

SVM Support vector machine

TN True negative

TP True positive

TV−AR Time-varying autoregressive

UC Uterine contraction

US Ultrasound

VBL Virtual baseline

VLF Very low frequency
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