

D I SSERTAT ION

zur Erlangung des akademischen Grades

angenommen durch die Fakultät für Informatik

der Otto-von-Guericke-Universität Magdeburg

von

geb. am in

Gutachterinnen/Gutachter

Magdeburg, den

Towards Efficient and Effective Entity Resolution
for High-Volume and Variable Data

Doktoringenieurin (Dr.-Ing.)

M.Sc. Xiao Chen

01.08.1988 Shandong, China

Prof. Dr. Gunter Saake
Prof. Dr. Andreas Nürnberger
Prof. Dr. Andreas Thor

02.11.2020

Chen, Xiao:
Towards Efficient and Effective Entity Resolution for High-Volume and Variable
Data
Dissertation, University of Magdeburg, 2020.

Abstract

Entity Resolution (ER), as a process to identify records that refer to the same real-
world entity, faces challenges that big data has brought to it. On the one hand,
high-volume data forces ER to use blocking and parallel computation to improve ef-
ficiency and scalability. In this scenario, we identify three limitations: First, facing
abundant research on parallel ER, a thorough survey to overview the current state
and expose research gaps is missing. Second, efficiency impacts by choosing different
implementation options from big data processing frameworks are unknown. Last, an
in-depth analysis and comparison of the state-of-the-art block-splitting-based load
balancing strategies are not provided. Therefore, correspondingly, we first conducted
a systematic literature review on parallel ER and report our findings. Then we ex-
plore three Spark implementations of two scenarios of a conventional ER process and
expose their respective efficiency and speed-up. Last, we theoretically analyze and
compare two state-of-the-art block-splitting-based load balancing strategies, pro-
pose two improved strategies, and then empirically evaluate them to conclude the
important factors for a block-splitting-based load balancing strategy. On the other
hand, facing variable data, we identify two shortcomings. First, confronting variable
data with different types of attributes, word-embedding-based similarity calculation
can provide uniform solutions, but the effectiveness may be lowered for attributes
without semantics. Second, facing variable data from broad domains, training data
required for learning-based classification may not be available leading to expen-
sive human labeling costs. Existing committee-based active learning approaches
for ER to reduce human labeling costs cannot provide balanced and informative
initial training data and compromise the accuracy of their committees to provide
different classification voting results. Therefore, correspondingly, we first propose
a hybrid similarity calculation approach by choosing traditional syntactic-based or
word-embedding-based similarity measures based on the properties of attributes to
achieve higher effectiveness. Then we propose HeALER to overcome the aforemen-
tioned drawbacks of committee-based active learning ER approaches. We empiri-
cally demonstrate the improvements of our proposed approaches on both real and
synthetic datasets.

Zusammenfassung

Die Entitätsauflösung als ein Prozess zur Identifizierung von Datensätzen, die sich
auf dieselbe reale Entität beziehen, steht vor Herausforderungen, die Big Data mit
sich gebracht hat. Einerseits zwingt die großvolumige Data die Entitätsauflösung
dazu, blockbasierte und parallele Berechnung zu verwenden, um die Effizienz und
Skalierbarkeit zu verbessern. In diesem Szenario werden drei Einschränkungen fest-
gestellt: Erstens, angesichts der umfangreichen Forschung zur paralleler Entität-
sauflösung fehlt eine gründliche Umfrage, um den aktuellen Forschungsstand zu
erhalten und Forschungslücken aufzudecken. Zweitens sind Auswirkungen auf die
Effizienz den verschiedenen Implementierungsoptionen aus Big-Data-Verarbeitungs-
Frameworks nicht bekannt. Schließlich wird der eingehende Vergleich der block-
aufteilungsbasierte Lastausgleichsstrategien nicht bereitgestellt. Dementsprechend
führten wir zunächst eine systematische Literaturrecherche zur parallelen Entität-
sauflösung durch. Anschließend untersuchen wir drei Spark Implementierungen von
zwei Szenarien eines herkömmlichen Entitätsauflösungsprozesses, um deren jeweilige
Effizienz zu bewerten. Zuletzt analysieren und vergleichen wir theoretisch zwei
typische blockaufteilungbasierte Lastausgleichsstrategien, schlagen zwei verbesserte
Strategien vor und bewerten sie umfassend, um die wichtigen Faktoren für eine
blockaufteilungbasierte Lastausgleichsstrategie zu ermitteln. Auf der anderen Seite
stellen wir angesichts variabler Daten zwei Mängel fest. Erstens kann die worteinbet-
tungsbasierte Ähnlichkeitsberechnung einheitliche Lösungen liefern, wenn vielfaltige
Daten mit unterschiedlichen Attributtypen konfrontiert werden. Die Effektivität
kann jedoch für Attribute ohne Semantik verringert sein. Zweitens sind angesichts
vielfalitiger Daten aus weiten Bereichen möglicherweise keine Trainingsdaten ver-
fügbar, die für den lernbasierten Klassifizierungsschritt erforderlich sind, was zu
teuren Kennzeichungskosten führt. Bestehende komitee-basierte Aktiveslernensan-
sätze für die Entitätsauflösung zur Reduzierung der Kennzeichungskosten können
keine ausgewogenen und informativen Daten für die erste Trainingsdaten liefern
und die Wirksamkeit ihrer Komitee für unterschiedliche Abstimmungsergebnisse der
Klassifizierung kompromittieren. Dementsprechend schlagen wir daher zunächst
einen hybriden Ähnlichkeitsberechnung vor, indem wir traditionelle syntaktische
oder worteinbettungsbasierte Ähnlichkeitsmaße basierend auf den Eigenschaften von
Attributen auswählen, um eine höhere Effektivität zu erzielen. Dann schlagen wir
auf heterogenen Komitees basierenden Ansatz für aktives Lernen (HeALER) vor, um
die oben genannten Nachteile zu. Wir demonstrieren empirisch die Verbesserungen
unserer vorgeschlagenen Ansätze sowohl für reale als auch für synthetische Daten-
sätze.

Acknowledgements

I guess, pursuing a Ph.D. should be one of the most challenging things in my life. It
would have been impossible without the support of all the lovely people I mentioned
in the following.

It has been years since I started my Ph.D. study. However, I would always be
grateful to Prof. Gunter Saake and Dr. Eike Schallehn for allowing me to start this
journey. Moreover, your expert advice and encouragement guide me to complete the
different stages of my Ph.D. step by step.

I would like to express my gratitude to Prof. Andreas Nürnberger and Prof. An-
dreas Thor for taking the time to evaluate my thesis, and also the other professors
Prof. Sanaz Mostaghim, Prof. Till Mossakowski, and Prof. Myra Spiliopoulou for
constituting my defense committee.

I am not alone on my Ph.D. journey, due to the company of my colleges of the
DBSE group. I would like to thank David Broneske, Gabriel Campero Durand, and
Roman Zoun, you helped me not only in my research but also helped me out of the
darkness and find the beautiful scenery along my Ph.D. journey. Many Thanks to
Yang Li, Juliana Alves Pereira, Yusra Shakeel, and Sabine Wehnert, I will always
remember our relaxing conversations and the support you gave me. I would like to
thank Ziqiang Diao as well for helping me apply for my scholarship and start my
Ph.D. study. Besides, thanks to David, Basti, and Jacob, for allowing me to join
your pizzaflix group, which is the precious memory of my life.

I would like to thank the Chinese Scholarship Council and the Graduiertenförderung
for financial support.

At last, endless thanks to my parents, especially for the hard time during the Corona
period, without your love, encouragement, and delicious meals as well, I cannot
complete my thesis. The biggest thanks to my dear husband for being the doctor
of my Ph.D. life. Of course, I should also thank my two lovely sons, without you, I
should have finished my Ph.D. several years earlier. :)

Contents

List of Figures xiv

List of Tables xvi

List of Code Listings xvii

1 Introduction 1

2 Background 5
2.1 Entity Resolution Preliminaries . 5

2.1.1 Basic Concepts of Entity Resolution 5
2.1.2 Pair-Wise Entity Resolution 6
2.1.3 Parallel Entity Resolution . 13

2.2 Evaluation of Entity Resolution Approaches 14
2.2.1 Effectiveness . 14
2.2.2 Efficiency and Scalability . 15

2.3 Tools Used in the Thesis . 16
2.3.1 Apache Spark . 16
2.3.2 Data Generator: GeCo . 18

3 Overview and Classification of Parallel Entity Resolution Approaches 19
3.1 Overview of State-of-the-art Approaches of Parallel ER 20
3.2 Classification Based on Three Sets of Criteria 23

3.2.1 General Criteria and Their Classification 23
3.2.2 Effectiveness-Related Criteria and Their Classification 27
3.2.3 Efficiency-Related Criteria and Their Classification 32

3.3 Open Challenges . 43
3.4 Related Classifications and Surveys 44
3.5 Summary . 47

4 Exploration on Performance Impacts of Different Implementations
for Spark-Based Entity Resolution 49
4.1 Entity Resolution Scenarios Used for Comparison 50
4.2 Three Spark-Based Implementations for Parallel Entity Resolution . . 54

4.2.1 Step-Wise Introduction of Implementation Details with Three
APIs . 55

4.2.2 Optimizations on Each Implementation 57
4.3 Evaluation . 58

x Contents

4.3.1 Experimental Setting . 58
4.3.2 Scenario 1: with an Evaluation Step 59
4.3.3 Scenario 2: without an Evaluation Step 61

4.4 Related Work . 61
4.5 Summary . 63

5 Analysis and Comparison of Block-Splitting-Based Load Balancing
Strategies for Parallel Entity Resolution 65
5.1 The Common Workflow of a Block-Splitting-Based Load Balancing

Strategy . 67
5.2 Block-Splitting-Based Load Balancing Strategies 68

5.2.1 Block Distribution Collection and Threshold Determination . 68
5.2.2 Overpopulated Block Handling 69

5.3 Evaluation . 72
5.3.1 Experimental Setting . 73
5.3.2 Evaluation of Different Numbers of Reducers 74
5.3.3 Evaluation of Different Numbers of Mappers 77
5.3.4 Robustness Evaluation . 78
5.3.5 Speed-Up Evaluation . 80
5.3.6 Evaluation Conclusion . 81

5.4 Related Work . 82
5.5 Summary . 84

6 Hybrid Similarity Calculation Approach for Entity Resolution 87
6.1 Our Hybrid Approach for Entity Resolution Similarity Calculation . . 88

6.1.1 Attribute Similarity . 90
6.1.2 Learning-Based Classification 91

6.2 Evaluation . 91
6.2.1 Datasets Used . 91
6.2.2 Design of Different Combinations of Similarity Calculation

Methods . 92
6.2.3 Results and Discussion . 93

6.3 Related Work . 95
6.4 Summary . 96

7 Heterogeneous Committee-Based Active Learning for Entity Res-
olution 97
7.1 Our HeALER Method . 99

7.1.1 The Global Workflow . 99
7.1.2 Initial Training Dataset Generation 100
7.1.3 Heterogeneous Committee . 102
7.1.4 Training Data Candidate Selection and Termination Conditions104

7.2 Evaluation . 105
7.2.1 Experimental Setting . 105
7.2.2 Initial Training Dataset Evaluation 106
7.2.3 Heterogeneous-Committee Evaluation 108
7.2.4 Overall Evaluation and Comparison 110

7.3 Related Work . 111

Contents xi

7.4 Summary . 112

8 Conclusion and Future Work 113
8.1 Conclusion . 113
8.2 Future Work . 116

A Appendix 119
A.1 Methodology of Literature Search . 119
A.2 Implementation Details for a Common Entity Resolution Process with

Three Spark APIs . 121
A.3 Imbalance Ratio of Five Load Balancing Strategies 126

Bibliography 129

List of Figures

2.1 The general process of entity resolution, based on [Christen, 2012b]. . 7

2.2 A learning-based classification process. 12

2.3 An active-learning-based classification process. 12

2.4 Phases of query planning in Spark SQL [Armbrust et al., 2015]. . . . 17

4.1 Blocking evaluation for blocking-key 1 and 2. 51

4.2 Precision with different thresholds. 52

4.3 Recall with different thresholds. 53

4.4 F-measure with different thresholds. 53

4.5 Spark-based ER. 54

4.6 Persistence evaluation and runtime comparison of Scenario 1. 60

4.7 Runtime comparison of Scenario 2. 61

5.1 An example of load imbalance with hash partition. 66

5.2 Workflow of a Block-Splitting-Based Load Balancing Strategy for ER 68

5.3 Example of the comparison rearrangement process 72

5.4 Runtime comparison of different numbers of reducers. 75

5.5 Median GC time comparison of different numbers of reducers. 76

5.6 Overhead comparison of different numbers of reducers. 77

5.7 Runtime comparison of different numbers of mappers. 77

5.8 Runtime comparison per million records. 79

5.9 Overhead and GC time comparison of robustness evaluation. 79

5.10 Speed-up comparison of different strategies. 80

6.1 Flowchart of our hybrid method. 89

7.1 The global workflow of HeALER. 99

xiv List of Figures

7.2 Distribution of similarity scores. 102

7.3 F-measure comparison of seven classification algorithms. 103

7.4 Efficiency comparison of seven classification algorithms. 103

7.5 Evaluation of initial training dataset selection approaches. 106

7.6 Comparison of different sampling strategies. 108

7.7 Comparison of different committees. 109

7.8 Overall evaluation of different active learning approaches. 111

List of Tables

3.1 Classification based on the programming model used (1). 20

3.2 Classification based on the programming model used (2). 21

3.3 General classification of parallel DBMS entity resolution. 23

3.4 General classification of MapReduce-based entity resolution (1). . . . 24

3.5 General classification of MapReduce-based entity resolution (2). . . . 26

3.6 General classification of Spark-based entity resolution. 27

3.7 Effectiveness consideration of parallel DBMS entity resolution. 28

3.8 Effectiveness consideration of MapReduce-based entity resolution (1). 29

3.9 Effectiveness consideration of MapReduce-based entity resolution (2). 30

3.10 Effectiveness consideration of MapReduce-based entity resolution (3). 31

3.11 Effectiveness consideration of Spark-based entity resolution. 32

3.12 Efficiency consideration of parallel DBMS entity resolution. 33

3.13 Efficiency consideration of MapReduce-based entity resolution (1). . . 35

3.14 Efficiency consideration of MapReduce-based entity resolution (2). . . 36

3.15 Efficiency consideration of MapReduce-based entity resolution (3). . . 37

3.16 Efficiency consideration of Spark-based entity resolution. 38

3.17 Classification of remedy-based load balancing strategies. 41

4.1 Datasets used in experiments. 58

5.1 Synthetic and real datasets. 73

5.2 Datasets used in the robustness experiments. 73

5.3 Imbalance Ratio of Different Strategies with 56 Reducers 74

5.4 Imbalance Ratio of Different Strategies with 448 Reducers 75

5.5 Imbalance ratio of different strategies of robustness evaluation. 78

xvi List of Tables

6.1 Datasets used in experiments. 91

6.2 Evaluation results with different classifiers (F-measure). 93

6.3 Example of a matching pair. 94

7.1 Datasets used in experiments. 105

A.1 Imbalance ratio of different strategies with 112 reducers. 127

A.2 Imbalance ratio of different strategies with 224 reducers. 127

List of Code Listings

A.1 Initializing Spark . 121
A.2 Loading data into Spark . 121
A.3 Preprocessing . 122
A.4 Blocking . 122
A.5 Join for generating record pairs . 123
A.6 Similarity calculation and classification 123
A.7 Evaluation . 125

xviii List of Code Listings

1. Introduction

Within a single information system or across diverse information systems, there may
exist different descriptions for a given real-world entity. These differences may result
from unexpected errors (such as typos, wrongly placed data), different customs (such
as non-uniform formats, the use of abbreviations), unavoidable alterations (such as
ages, family names for women after marriage) and other possibilities. Such errors
and inconsistencies can limit the applicability of the data for analysis purposes,
and, accordingly, reduce the business value of the data. This kind of problems
is common and exists in diverse areas. To solve such problems, digital records
that refer to the same real-world entity need to be identified. This process is called
Entity Resolution (ER) [Elmagarmid et al., 2007; Fellegi and Sunter, 1969]. Research
on ER in computer science dates back to the middle of the last century and has
thrived so far. Various techniques and algorithms1 have been developed. Despite
their maturity, the development of big data, which is characterized by the four Vs
- volume, variety, velocity, and veracity [Schroeck et al., 2012; Zikopoulos et al.,
2011], has brought new challenges for the research on ER and in turn calls for new
approaches as solutions. This thesis touches on the first two Vs: volume and variety.

ER on High-Volume Data: The first V: Volume means the exponentially in-
creasing data amount. In this context, the common solution - pair-wise ER, as
an intrinsically time-consuming task with a complexity of O(n2) [Christen, 2012b;
Efthymiou et al., 2017], has to tackle the efficiency problem to make its runtime
acceptable. Besides developing specific efficient algorithms for similarity calculation
and classification, there are two directions proposed to improve ER efficiency. On
the one hand, blocking is used to reduce the search space of ER, in which records
are divided into blocks and only records in the same block need to be compared
with each other [Christen, 2012a; Papadakis et al., 2016]. On the other hand, in-
stead of being performed serially, the ER process can be sped up by using parallel
computation [Chen et al., 2018b].

In this scenario, there are the following three limitations identified for ER when fac-
ing the data volume challenge - First, to date, research on parallel ER has already

1For a survey on approaches for ER, we refer to Christen [2012b].

2 1. Introduction

reached a prosperous state. However, no thorough survey of parallel ER has been
published, which leads to the difficulty of overviewing the state-of-the-art and rec-
ognizing research gaps. Therefore, a survey with a focus on parallel ER is required.
Second, to ease the implementation of parallel ER, big data processing frameworks
are commonly employed because of their simple programming model [Pavlo et al.,
2009] and their applicability to the ER problem with blocking [Kolb et al., 2012a].
Although different implementation options provided by big data processing frame-
works are available, most of the existing research chooses one of them randomly
(mainly low-level APIs) without considering their effects on the ER process, which
may not provide the highest efficiency in the context of the same ER scenario.
Therefore, a comparison study is needed to show how different implementation op-
tions affect the performance of ER processes. Last, the generated blocks of ER are
often skewed, because the number of records that have the same blocking key has
high variability. With the default data partitioning strategies of big data process-
ing frameworks, blocks cannot be divided and each block has to be assigned as a
whole to reducers. In this case, the reducer with overpopulated blocks will become
the straggler of the whole cluster and dominate the overall runtime. Therefore,
specific skew handling techniques have been developed to improve the speed-up of
parallel ER [Gomes Mestre and Pires, 2013; Hsueh et al., 2014; Karapiperis and
Verykios, 2015; Kolb et al., 2012b; McNeill et al., 2012; Yan et al., 2013a]. Therein,
block-splitting-based load balancing approaches are simple but effective by splitting
the overpopulated blocks into smaller sub-blocks. For state-of-the-art approaches
BlockSplit and BlockSlicer, they split the overpopulated blocks in different ways.
However, the comparison between two approaches is quite limited, and only speed-
up experiments with fixed settings of map and reduce partitions are represented
in [Gomes Mestre and Pires, 2013]. How well they work under different circum-
stances and whether they have some drawbacks need to be answered to make better
block-splitting-based solutions for parallel ER.

ER on Variable Data: The second V: Variety means that big data covers broader
domains and has various forms. In this circumstance, choosing suitable similarity
measures is more challenging for domain experts. Furthermore, due to the more
complicated data types including semantics, traditional similarity measures cannot
fulfill the need to accurately calculate the similarity between records. Therefore,
approaches using word embedding have been proposed aiming to provide a general
solution for data with different properties [Ebraheem et al., 2018; Kooli et al., 2018;
Mudgal et al., 2018]. However, indiscreetly using word embedding for all types
of data may not provide the optimal accuracy, and adding an extra word embed-
ding step to the similarity calculation phase may have negative effects on efficiency.
Therefore, guidelines on how to choose proper similarity measures are required.

Besides the above challenge, data variety also increases the amount and difficulty of
manually labeling data to provide training data for its learning-based classification
step, as the ground truth needs to be provided for each type of data. To alleviate
this situation, active learning has been employed for ER to reduce the human la-
beling effort, by selecting the most informative data for labeling so that much less
training data is required to provide comparable accuracy [Arasu et al., 2010; Bellare
et al., 2013; de Freitas et al., 2010; Isele and Bizer, 2013; Sarawagi and Bhamidi-

3

paty, 2002; Tejada et al., 2001]. Therein, the committee-based active learning, which
chooses data with the most disagreement of voting results of the committee as the
most informative data, has not been sufficiently explored for ER. With existing so-
lutions [Sarawagi and Bhamidipaty, 2002; Tejada et al., 2001], the selected initial
training data is not balanced and informative enough, and their homogeneous com-
mittees have to comprise their accuracy to achieve diversity of the committee, i.e.,
their homogeneous classifiers are trained with partial training data or sub-optimal
parameter settings. Therefore, improvements on both initial training data selection
and employed committees are still required.

Based on the identified limitations, we envision our research goal of providing the
most suitable ER solutions under different big data scenarios by a specialized and
powerful framework and recognize the following research questions:

For the data volume challenge,

• RQ 1. What are the state-of-the-art and the latent research directions of
parallel ER?

• RQ 2. How do different implementation options provided by big data process-
ing frameworks affect the performance of ER processes?

• RQ 3. How well can the state-of-the-art block-splitting-based load balancing
strategies solve the load imbalance problem for parallel ER and what can be
improved?

For the data variety challenge,

• RQ 4. Based on the availability of both traditional similarity functions and the
word-embedding-based similarity calculation approach, how to choose between
them to provide ER the highest effectiveness?

• RQ 5. How to select a balanced and informative initial dataset and form an
effective committee for committee-based active learning ER?

To answer these RQs, we present five major contributions, which are the stepping
stones towards the envisioned goal, and structure them in this thesis as follows:

• In Chapter 3, we present the Systematic Literature Review (SLR) results
on parallel ER, which answers RQ 1. Our SLR resulted in a corpus of 58
articles, from which existing work relates to parallel ER has been overviewed
and classified based on three sets of extracted criteria. Furthermore, based
on the conclusion and discussion of existing solutions, we found out several
possible directions for future research.

• In Chapter 4, we present the first part of our research to deal with the
data volume challenge. To answer RQ 2, we make a comparison study of
three Spark-based implementations on two ER scenarios, which use RDD,
DataFrame, and Datasets APIs respectively. We compare their performance

4 1. Introduction

using various synthetic datasets in different sizes and with different duplicate
percentages to guide choices to enable the most efficient solution for parallel
ER.

• In Chapter 5, we introduce the other part of our research under the data vol-
ume challenge, which addresses RQ 3. We first theoretically analyze and con-
clude the advantages and disadvantages of the state-of-the-art block-splitting-
based approaches BlockSplit and BlockSlicer, then propose two improved strate-
gies TLS and BOS. At last, we comprehensively evaluate the four strategies
with multiple datasets in different properties and conclude the important fac-
tors that affect the performance of a block-splitting-based load balancing strat-
egy.

• In Chapter 6, we address the first research question RQ 4 under the data va-
riety challenge and propose a hybrid similarity calculation method for ER. We
compare its effectiveness with purely traditional similarity measures or word-
embedding-based approaches on both real and synthetic datasets. Our results
show the necessity to use hybrid similarity calculation to improve accuracy
when the dataset is mixed with semantic and non-semantic attributes.

• in Chapter 7, to answer the other research question RQ 5 related to the data
variety challenge, we propose a heterogeneous-committee-based active learning
approach (HeALER) for ER, which is proved to be more effective than two
other committee-based active learning approaches based on our results on two
benchmark ER datasets.

Related work for each research direction is provided in their corresponding chapters.
Besides, to support the five main chapters, we provide background knowledge in
Chapter 2. We conclude this thesis and discuss future work in Chapter 8.

2. Background

This chapter shares material with the Open Journal of Big Data ar-
ticle “Cloud-Scale Entity Resolution: Current State and Open Chal-
lenges” [Chen et al., 2018b] and the DEXA-BDMICS’18 paper “Perfor-
mance Comparison of Three Spark-Based Implementations of Parallel
Entity Resolution“ [Chen et al., 2018a].

In this chapter, we provide background knowledge to make the thesis self-contained.
Firstly, in Section 2.1 we present the required knowledge in the domain of Entity
Resolution (ER), which includes the basic concepts of ER, the steps of its pair-based
solution, and a brief introduction of its specialized area parallel ER. Afterward,
in Section 2.2, we describe the metrics we use for our research to evaluate ER
approaches’ effectiveness, efficiency, and scalability. At last, we introduce the tools
we use to support our research, which includes the big data processing framework
Apache Spark and the personal data generator GeCo for ER in Section 2.3.

2.1 Entity Resolution Preliminaries

In this section, we introduce the preliminaries to understand ER, which starts with
its definition, application, and research goals in Section 2.1.1, continues with its main
solution pair-wise ER in Section 2.1.2, and ends with an introduction of parallel ER
in Section 2.1.3.

2.1.1 Basic Concepts of Entity Resolution

ER is the process of identifying records that refer to the same real-world entity.
It is also known under several other names. In the general field of computer sci-
ence it is referred to as data matching [Christen, 2012b], record linkage [Fellegi and
Sunter, 1969], de-duplication [Sarawagi and Bhamidipaty, 2002], reference reconcil-
iation [Dong et al., 2005], or object identification [Huang and Russell, 1998]. In the
database domain, ER is tightly related to the techniques of similarity joins [Kolb
et al., 2011a].

6 2. Background

Today, ER plays a vital role in diverse areas, not only in traditional applications of
the census or health care but also for Internet-based applications such as social me-
dia, online shopping, web searches, business mailing lists. In some domains, like the
Web of data, ER is a prerequisite to enable semantic search, interlink descriptions,
and deep reasoning. It is also an indispensable step in data cleaning [Hernández and
Stolfo, 1998; Sarawagi, 2000], data integration [Hernández and Stolfo, 1995], and
data warehousing [Brizan and Tansel, 2006].

The use of computer techniques to perform ER dates back to the middle of the last
century. Since then, researchers have developed various techniques and algorithms
for ER, fueled by its applications in many fields. From its early days, there have
been two general goals: efficiency and effectiveness, which means how fast and how
accurately an ER task can be solved. In recent years, on the one hand, to deal with
the large and often unpredictable scale of the data, the ER solutions are also required
to be scalable. On the other hand, choosing suitable algorithms and providing
training data or ground truth for ER requires human effort, another goal - involving
less human effort should also be pursued. In conclusion, solutions should consider
these four aspects - efficiency, effectiveness, scalability, and less human effort to
better serve the ER problem.

To solve ER problems, pair-wise ER and collective ER are two directions. Pair-wise
ER is the most commonly used, it solves ER problems through local evidence by
comparing each possible record pair without considering the relationships among
records [Christen, 2012a]; collective ER aims to group similar data objects into
the same cluster, and solves ER problems by also using global evidence (relational
information among records). Compared to pair-wise ER, collective ER may improve
the effectiveness of ER results at the expense of increased computation cost when
the relational information is available [Indrajit and Lise, 2006]. To provide solutions
for broad ER scenarios, in this thesis, we focus on issues of pair-wise ER, which will
be introduced in the next section.

2.1.2 Pair-Wise Entity Resolution

A typical pair-wise ER workflow includes five major steps - data preprocessing,
blocking, pair-wise comparison, classification, and evaluation [Christen, 2012b], which
is shown in Figure 2.1. In Figure 2.1, the green boxes correspond to the five steps.
The main existing techniques developed for each step are concluded in the right side.
In the following, the details of these five steps will be introduced.

Data preprocessing: The input data that needs to be resolved is usually noisy,
inconsistent, and with low data quality. Furthermore, some following steps may
require the data to be in a specific format as a precondition to work properly.
Therefore, before the data is processed for ER, data preprocessing is required as
the first step to clean and standardize the input data. In some cases due to specific
blocking or comparison techniques, data tokenization and segmentation are also
included in this step [Churches et al., 2002].

Blocking: Pair-wise ER is a time-consuming and compute-intensive task. For
an input dataset with n records, the number of comparisons for an ER task is
n(n − 1)/2, which means that its computing complexity for n records is O(n2).

2.1. Entity Resolution Preliminaries 7

Set-based Similarity functions:
e.g., Jaccard, Dice, Cosine
Character-based Similarity functions:
e.g., Edit distance
…

Input data

Threshold-based classification
Learning-based classification
Rule-based classification
Cost-based classification

…

Standard Blocking
Sorted neighborhood approach
Q-gram based blocking
Suffix-array based indexing
Canopy clustering
Mapping based indexing

…

Data cleaning
Data standardization
Data tokenization
Data segmentation

…

Effectiveness
Related

Results:

Data preprocessing

Blocking

Pair-wise comparison

Classification

Evaluation

Potential
matches

Matches Non-
Matches

Clerical review

Effectiveness
Related

Efficiency
Related

Effectiveness
Related

Figure 2.1: The general process of entity resolution, based on [Christen, 2012b].

As a result, the computing time for solving an ER task is dramatically extended,
when the number of records increases. Therefore, blocking is often adopted as the
second step to reduce the search space of ER and lower its computing complexity
to O(n) for fixed block size. It splits the whole input dataset into blocks and then
compares only entities within the same block. The splitting criterion is called the
blocking key. However, blocking may harm effectiveness due to the possibility that
matching records are assigned to different blocks. Therefore, it is of great importance
to keep good blocking quality, which relies on the defined blocking key and the
chosen blocking strategy. Most of the blocking strategies require to define blocking
keys, which are often defined by domain experts based on experience or initial data
exploration steps. Both the blocking strategies and the blocking keys are crucial for
a high blocking quality, and their relationship is orthogonal [Christen, 2012a].

There have been many blocking strategies developed and they can be categorized
into the following six types.

• The traditional blocking [Fellegi and Sunter, 1969] is standard blocking, which
is simply assigning all records with the same blocking key to one block.

• Sorted neighborhood approach [Hernández and Stolfo, 1995] firstly sorts all
records based on a sorting key (similar to a blocking key), then uses a fixed-
size or adaptive sliding window to split the records. Records enclosed in one
sliding window belong to the same block.

8 2. Background

Applying the above two blocking strategies can lose a large number of true matches
when the blocking keys for true matches are often not identical due to the dirty
and noisy input dataset. To overcome this shortcoming, the following two blocking
strategies have been proposed.

• Q-gram or n-gram based blocking [Navarro et al., 2000] converts the original
blocking key to a list of sub-strings, and then each sub-string is one indepen-
dent blocking key. In this way, each record is assigned to several blocks to
increase the possibility that true matches can be kept in the same block.

• Suffix-array based indexing [Aizawa and Oyama, 2005] is quite similar to q-
gram or n-gram based blocking, it differs in the way of generating substrings
by using suffixes.

Splitting the whole dataset into blocks can also be considered as a clustering problem.
Canopy clustering [McCallum et al., 2000] and mapping-based blocking [Jin et al.,
2003] are two clustering-based approaches for ER’s blocking step.

• Canopy clustering can efficiently calculate the distances between the blocking
keys and insert records to one or more overlapping clusters.

• Mapping-based blocking first maps the original blocking key into a multi-
dimensional space, and then objects are extracted, lastly similar objects are
inserted into the same block.

To evaluate a blocking strategy, two common metrics are reduction ratio (RR) and
pairs completeness (PC) [Elfeky et al., 2002]. RR means how much percent of
comparison is reduced by blocking and is calculated as follows:

RR = 1− candidate comparisons after blocking

entire comparisons before blocking
(2.1)

PC means how much percent of true matches is remained in the candidate compar-
isons after blocking and is calculated as follows:

PC =
remaining true matches after blocking

entire true matches before blocking
(2.2)

Generally speaking, using a relatively simple strategy (standard blocking or sorted
neighborhood) is efficient and can reach a high RR but loses more true matches (a
low PC), while using more complex strategies (the later-introduced four strategies)
improves the PC, but it leads to a longer blocking process and a lower RR.

Another group of functions is orthogonal to the aforementioned blocking techniques,
called phonetic encoding functions. They are designed to capture common transcrip-
tion mistakes that people might make when recording information based on what
they hear from speakers. With those functions, the letters that share a similar pro-
nunciation are transformed to the same representation. This helps to recognize true
matches and improve PC. Common encoding functions (mainly for name and address

2.1. Entity Resolution Preliminaries 9

attributes) include (fuzzy) Soundex [Holmes and McCabe, 2002; Odell and Russell,
1918; Zobel and Dart, 1996], Phonex [Lait and Randell, 1996], Phonix [Christen,
2006], NYSIIS [Borgman and Siegfried, 1992], Oxford algorithm [Gill, 1997] and
Double-Metaphone [Philips, 2000].

Details of blocking strategies can be found in Christen [2012a,b].

Pair-wise comparison: The third step is the essential one of the ER process,
which makes ER a compute-intensive and time-consuming task. For the pair-wise
comparison, a similarity function is used to estimate how similar a pair of records
is. Traditionally, a record is described with several attributes in various types. The
most common type of attribute is strings. To calculate string similarities, there are
the following groups of string similarity functions that can be used (we explain those
similarity functions that we used in our research with details, while for others we
only describe them briefly).

• One group is distance-based similarity, such as (Damerau -) Levenshtein dis-
tance [Damerau, 1964; Levenshtein, 1966], Affine gap distance [Waterman
et al., 1976], Smith-Waterman distance [Smith et al., 1981]. They are de-
fined based on the number of character operations required to transform one
string to another [Deng et al., 2014].

• Another group is set-based similarity. Its input is a set of tokens of the
two compared records, where a token can be either a word or an n-gram/q-
gram [Navarro et al., 2000] and can be generated from data preprocessing
steps. First, the number of common tokens is counted, then overlap coeffi-
cient, Jaccard coefficient [Dillon, 1983], or Dice efficient [Dice, 1945] can be
used to calculate the similarities of record pairs.

• A special group is the Jaro and Winkler string comparison methods [Jaro,
1980], which is suitable for calculating the similarities for names. Because
we use Jaro-Winkler in our research, we introduce them in the following with
details. The Jaro similarity value is calculated as:

simjaro(s1, s2) =
1

3
(
c

|s1|
+

c

|s2|
+
c− t
c

) (2.3)

Therein, c is the number of common characters within half the length of the
longer string, and t is the number of swapped characters in two strings.

Jaro-Winkler similarity function increases the similarity between two strings
when their initial characters are the same. It is calculated as:

simwinkler(s1, s2) = simjaro(s1, s2) + (1.0− simjaro(s1, s2))
p

10
(2.4)

Therein, p (0 6 p 6 4)i s the number of common characters of the prefixes of
the strings.

• For attributes with several words, Monge-Elkan [Monge et al., 1996], extended
Jaccard [Dillon, 1983], SoftTFIDF [Cohen et al., 2003] approaches have been
proposed. Besides, there are also other similarity measures developed, such
as longest common substring comparison, bag distance, compression distance
and so on. Details can be found in Christen [2012b].

10 2. Background

However, the quality of ER results essentially relies on the correct selection of sim-
ilarity measures, which is determined by domain experts based on an elaborate
analysis of record attributes and their experiences. Except for the human effort,
the above-mentioned traditional methods are unaware of semantics. As a result, the
accuracy may be limited for cases where words with similar semantics are expressed
in different ways. Recently, word embedding is proposed for entity resolution, aim-
ing to overcome the aforementioned limitations of traditional solutions [Ebraheem
et al., 2018; Kooli et al., 2018; Mudgal et al., 2018].

• Given two attribute strings of a record pair, a neural word embedding model
first maps each word of the attribute string from the vocabulary to vectors
of real numbers [Yoshua et al., 2003], then cosine similarity function is used
to get the final result. Word2vec [Mikolov et al., 2013a], GloVe [Pennington
and R. Socher, 2014] and FastText [Bojanowski et al., 2016] are three popular
neural word embedding models.

Except for strings, the numerical value is another common type for attributes. To
calculate the similarity between numerical values, absolute difference, percentage
difference, or euclidean distance can be used.

Classification: After receiving the similarity scores for record pairs as intermediate
results, the classification step will make the decision, whether a pair of records is
considered as a match or non-match, i.e. do they refer to the same real-world entity
or not. There are various classification methods developed, which we will introduce
in the following:

• Simple threshold-based classification first sums up the similarities of all at-
tributes, and then calculates an average similarity score [Christen, 2012b].
If the average similarity score is higher than the preset threshold value, the
record pair is classified as a matching pair, otherwise as a non-matching pair.
It is simple to implement, however, using it by summing up the similarities of
all attributes loses detailed information contained in the separated attribute
similarities.

• Probabilistic classification sets two cutoff threshold values to divide record
pairs into three groups. The higher threshold value is used to get matching
pairs, whose similarity scores are higher than it. Similar to non-matching
pairs, whose similarity scores are lower than the lower threshold value. Those
record pairs, whose similarity scores are between the low and high threshold
values, belong to the potential match group. The record pairs in the potential
match group will be reviewed by human experts for the final decision. Besides,
the calculation of a record pair’s similarity score considers different weights for
different attributes and the weights depend on both attribute characteristics
and actual attribute values. The two cutoff threshold values are determined
by an a priori error bound, which is hard to determine and hinders its usabil-
ity [Newcombe and Kennedy, 1962; Newcombe et al., 1959].

• Cost-based classification analyzes the ER scenarios to determine the costs of
two possible types of errors [Verykios et al., 2003]. The two types of errors are:

2.1. Entity Resolution Preliminaries 11

one true non-match record pair is wrongly resolved as a matching pair, or one
true match record pair is wrongly recognized as a non-matching pair. Based
on the analysis result, the classification would try to avoid the errors that cost
more.

• Rule-based classification sets rules to classify record pairs to matches or non-
matches [Hernández and Stolfo, 1995]. The rules can be set manually or
learned. The learned rules classification can be considered as the learning-
based classification, which will be introduced next.

• Learning-based classification firstly trains a classifier on a training dataset
with available matching or non-matching labels, then the trained classifier is
used to classify pairs with matching or non-matching status [Mitchell et al.,
1997]. So far, there have been various classification techniques developed to
train classifiers, we introduce some popular ones, which are also used in our
research:

– Decision Tree (DT) is a tree-structured and one of the most commonly
used classification model. It recursively partitions the feature space by
choosing the splitting criteria with the biggest information gain. It has the
advantages of reasonable accuracy, inexpensive computation, and good
interpretability, but may face overfitting problems [Segaran, 2008].

– Support Vector Machine (SVM) constructs the maximum-margin hyper-
line, which has the largest distance between the two classes. Those records
that are closest to the hyperline are the support vectors. It can provide ac-
curate and fast results, once the parameters for the datasets are properly
set. However, it is a black-box model and quite hard to interpret [Segaran,
2008].

– Logistic Regression (LR) uses a logistic function to calculate the proba-
bility that the record belongs to one of the classes [Draisbach et al., 2012].
It is widely used because of its efficiency and high interpretability, but it
only works for linear problems.

– Naive Bayes (NB) algorithms assume the independence between attributes
and calculate the conditional probabilities of one category of a classifica-
tion problem based on Bayes theorem. It is computationally efficient, but
may not be accurate due to the feature independence assumption [Rennie
et al., 2003].

– K-Nearest Neighbor classifier (KNN) is a special case in classification
algorithms, because it does not learn any model, but stores and uses the
training data directly. It considers the k closest training examples for
each record to decide on the class membership of the record [Cover and
Hart, 1967].

– One-vs-Rest (OvR) [Bishop, 2006] is a strategy for multi-class classifica-
tion by considering it as multiple binary classifications. A single classifier
is trained using a base classifier considering one class as the positive class
and all other classes as the negative class. All classifiers provide their

12 2. Background

L

Classifiers

U

Results

Labeled Training Data Unlabeled input Data

One-Off process

Trained to get Classify

Figure 2.2: A learning-based clas-
sification process.

L

Classifiers

U

Results

Labeled Training Data
Unlabeled input Data

Iterative Process

Trained to get Classify

Stopping criteria
fulfilled?

U

Unlabeled input Data

Domain Experts

Yes, classify

No

Add labeled
data to

Select data to
be labeled

Figure 2.3: An active-learning-
based classification process.

confidential value that a record belongs to its corresponding class. The
output is determined by the classifier with the highest confidential value.

– Ensemble learning combines multiple classifiers to make decisions for clas-
sification problems. Bagging and boosting are two common methods for
ensemble learning. Bagging trains multiple independent classifiers, each
is trained by sampling with replacement. Random Forest (RF) is a bag-
ging algorithm and is an ensemble of decision trees for achieving higher
accuracy and reducing overfitting risks.

Boosting is an iterative approach to generate a strong classifier by training
an ensemble of weak classifiers and reducing the training error by selecting
a subset of training data for the next iteration, which is misclassified in
the previous iterations [Zhang and Ma, 2012]. Gradient-Boosted Tree
(GBT) is a boosting algorithm, which iteratively trains decision trees by
reducing a loss function. XGBoost is an open-source package, implements
GBT with additive optimizations, such as a sparsity aware algorithm for
handling sparse data and a theoretically justified weighted quantile sketch
for approximate learning [Chen and Guestrinand, 2016].

However, training the classifiers requires a large amount of training data to
achieve satisfactory accuracy, which has to be labeled by humans. As a means
to reduce human effort, active learning (AL), which is a specific branch of
machine learning (ML), is proposed to deal with this problem and will be
introduced next.

• AL based classification: Compared to a normal one-off ML process (see Fig-
ure 2.2), an AL process (see Figure 2.3) is interactive and iterative. It re-
duces the number of required training data to achieve the desired accuracy
by querying experts to label only the most informative data for each itera-
tion and adding these into the training data. Then classifiers are retrained
on updated training data and after each iteration, the stopping criteria are
checked to see whether more iterations are required. So far, there have been
different AL approaches proposed, which differ in the strategies to choose the
most informative data. Generally, they can be divided into single-model-based
and committee-based AL. Single-model-based methods recognize the most in-
formative data, which can reduce uncertainty, expected error rate, or output
variance of the used single model [Settles, 2009]. In contrast, the committee-
based approach gets the most informative data by selecting those data that

2.1. Entity Resolution Preliminaries 13

result in the most disagreement in the votes of a committee of multiple classi-
fiers [Sebastian et al., 1992].

Evaluation: After the classification step, the matching results are obtained and
the actual ER process is completed. However, users that need the ER results or
researchers want to know how reliable the results are. In this scenario, the evaluation
step is taken to assess the ER result quality, i.e., the effectiveness of the ER process.
A detailed introduction of concepts and metrics used for evaluating ER effectiveness
will be given in Section 2.2.

2.1.3 Parallel Entity Resolution

As mentioned in the described blocking step of Section 2.1.2, pair-wise ER is a time-
consuming task due to its quadratic time complexity. For instance, an input dataset
with 1 million records corresponds to 500 billion times of pair-wise comparisons.
Suppose that one comparison takes one microsecond, then we would need 11.6 days
to complete this ER task [Getoor and Machanavajjhala, 2013]. Nowadays, as the
data volume keeps increasing, sequential processing to complete an ER task is no
more feasible, even though blocking can be used to alleviate the problem. Therefore,
the increasing data volume nowadays and the data expansion inherent to the pair-
wise approaches make the use of parallel computing necessary to solve pair-wise ER
tasks. For the sake of simplicity, we refer to ER that uses parallel techniques as
parallel ER, otherwise, we call it serial ER.

The typical workflow of parallel ER approaches also follows the five steps of a serial
ER introduced in Section 2.1.2. What makes parallel ER different from the serial
ER is that in some or all steps of the ER process, parallel techniques are used to
speed-up ER and achieve scalability. There are two kinds of possible parallelisms
for ER:

• Intra-step parallelism refers to a special form of data parallelism (as opposed
to task parallelism) in this context. In parallel data processing, independent
operations of the same type are carried out simultaneously on elements of one
data set. In this way, the large-scale data can be divided into smaller subsets
and the processing problem can be solved in parallel. This form is especially
suitable for problems that can be broken down into many separate, indepen-
dent operations on vast quantities of data. ER is such a problem, because
operations like block assignment, comparisons, etc., are often independent for
records or pairs and can be performed in parallel.

• Inter-step parallelism is a case of task parallelism, where each step in the
process can be considered as a task and can be executed in parallel. Strictly
speaking, relationships between adjacent steps are not independent, the output
of the previous step may be the input of its next step. Therefore, the task
parallelism in ER is limited. However, some approaches support a pipelined
processing pattern: because the input data volume is large after one step
has completed some partial results, the next step can begin to process these
intermediate results without waiting for complete results from the previous
step, so a certain level of task parallelism can be achieved.

14 2. Background

As reported in our survey of Chapter 3, the vast majority of research on parallel ER
focuses only on intra-step parallelism. Therefore, in this thesis, without a specific
statement, parallel ER means the intra-step parallel ER.

After introducing the preliminary knowledge for ER, next we will introduce the
evaluation metrics used in the experiments of our thesis.

2.2 Evaluation of Entity Resolution Approaches

In this section, we introduce the metrics used to evaluate the proposed approaches
for our research. As mentioned in Chapter 1, our research covers different aspects
of ER. Therefore, different parts of our research are oriented to different targets and
are evaluated by different metrics. We first introduce effectiveness related metrics
in Section 2.2.1, because it is the foundation of an ER solution. Then in Section 2.2.2,
efficiency and scalability related metrics are introduced.

2.2.1 Effectiveness

Effectiveness is the intrinsic goal of ER solutions, which assess the result quality. It
is not only used to evaluate our research, but also the object of the evaluation step
of a common ER process. There are two kinds of pair-wise ER results based on the
classification step - matching and non-matching pairs. Based on the reality or the
truth that a pair refers to an identical real-world entity or not, the two kinds of ER
results can be classified into four categories [Hand and Christen, 2018]:

• False Positives (FPs) are record pairs, which are classified as matching pairs
by the ER process but actually refer to different real-world entities.

• False Negatives (FNs) are record pairs, which are classified as non-matching
pairs by the ER process but actually refer to the same real-world entity.

• True Positives (TPs) are record pairs, which are classified as matching pairs
by the ER process that are real duplicates.

• True Negatives (TNs) are record pairs, which are classified as non-matching
pairs by the ER process and also indeed refer to different real-world entities.

The numbers of the former three categories are used to calculate the precision,
recall and F-measure, which are the common metrics to evaluate the ER effective-
ness [Makhoul et al., 1999].

• Precision is used to reflect what percentage are true matching pairs from all
classified matching pairs and is calculated as follows:

Precision =
TP

TP + FP
(2.5)

• Recall is used to indicate how much percent of true matching pairs are correctly
recognized as matching pairs and is calculated as follows:

Recall =
TP

TP + FN
(2.6)

2.2. Evaluation of Entity Resolution Approaches 15

A more effective approach means higher precision and recall. However, it is actually
a trade-off problem between precision and recall, thus

• F-measure is usually defined for effectiveness and is the harmonic mean be-
tween precision and recall :

F -measure =
2 ∗ Precision ∗Recall
Precision+Recall

(2.7)

The research in Chapter 6 und Chapter 7 aims to improve effectiveness and is
evaluated by reporting F-measures obtained in the experiments. Particularly, the
HeALER approach aims to achieve reasonable effectiveness with less labeled train-
ing data. Therefore, achieved F-measures with different number of labeled training
data are shown.

2.2.2 Efficiency and Scalability

Efficiency and scalability are closely related. Efficiency, typically refers to runtime
efficiency. It indicates how good or sufficient is the amount of time for completing an
ER task, in fulfilling application requirements. Hence, in our research, the runtime
for completing an ER process is reported as a metric to evaluate efficiency.

Scalability indicates the capability of a system to process changing data volumes with
the same response time, for instance by flexibly adjusting processing resources [Sun
and Ni, 1993]. To provide scalability, instead of serially performing an ER process,
parallel techniques have been widely used for ER, which use an n-machines-cluster
to parallelize the ER process. Ideally, with an n-machines-cluster the runtime of
ER can be reduced n times, correspondingly, n times speed-up can be achieved
compared to the sequential computation with only one single machine. However, in
reality, it is almost impossible to achieve such an ideal speed-up due to unavoidable
setup and communication overheads, uneven load distribution between machines,
and other factors. Therefore, in our research, we increase the number of used nodes
in a cluster and record the corresponding runtime. Then the speed-up is calculated
with recorded runtime to reflect efficiency and scalability.

The above-mentioned metrics are used in the research of Chapter 4 and Chapter 5.
Specially, for our research relating to load balancing strategies in Chapter 5, we also
employ several other metrics. First, the imbalance ratio IR is used to show how
balance each reduce partition load is adjusted with a strategy, which is calculated
as follows (n is the number of reduce partitions):

IR =
maxni=1#Recordsi∑n

i=1 #Recordsi
n

(2.8)

Second, the overhead to support the strategies to balance the reduce partition work-
load is also recorded. Smaller overhead is more efficient for a load balancing strategy.
Third, to evaluate the memory consumption of a load balancing strategy during the
pair-wise comparison step, we also represent the median gabage collection (GC) time
required. Last, to evaluate the robustness of a load balancing strategy against dif-
ferent skew levels, we use datasets with different skew factors, which are generated

16 2. Background

based on the same base dataset with the same number of records and blocks. It
makes no sense to compare the total runtime recorded for datasets with different
skew factors because although the number of records and blocks is the same, the
number of comparisons differs much due to different skew factors. Therefore, we
calculate the runtime of each strategy for completing one million record pairs as
metrics to evaluate their performance of handling skewness.

2.3 Tools Used in the Thesis

In this section, we introduce the tools we used to support our research. First,
in Section 2.3.1, we focus on the big data processing framework Apache Spark,
which is heavily involved in our research. Then in Section 2.3.2, we introduce the
data generator GeCo, which we used to generate the synthetic datasets for our
experiments.

2.3.1 Apache Spark

Big data processing frameworks are usually open-sourced and provide straightfor-
ward programming models to ease distributed programming. Therein, Hadoop
MapReduce can be counted as the first generation of computation engine for big
data processing frameworks. It is simple and specializes in batch processing, but at
the same time with some drawbacks. Its process has to be abstracted with “map”
and “reduce” phases and before the “reducer” phase, there must be a “map” phase.
Besides, it only supports disk-oriented computation and all its intermediate results
have to be stored on disk, thus I/O costs limit its speed to a great extent. To over-
come those drawbacks, Apache Spark has been developed and is one of the most
popular frameworks nowadays. Compared to MapReduce, its programming model
is more flexible without the need for abstraction to “map” and “reduce” phases and
it could provide high speed by supporting in-memory computation without storing
intermediate results to disk. Also, it integrates with several libraries such as Spark
SQL and MLlibs, making it possible to express ER in terms of relational databases
and machine learning [Zaharia et al., 2016]. Next, Apache Spark will be introduced
in detail.

Spark Core: Apache Spark is designed for processing large-scale data fast for broad
applications. It supports acyclic data flow and in-memory computing, which make
Spark run programs up to 100 times faster than Hadoop MapReduce in memory or
10 times faster on disk [Zaharia et al., 2016]. Its main abstraction is Resilient Dis-
tributed Data (RDD), which is a collection of data partitioned across the nodes of
the cluster and can be operated on in parallel, supports in-memory computing, and
provides fault tolerance. RDD supports two kinds of operations: transformations
and actions. Transformations only create new RDDs from existing RDDs, while
actions run a computation on RDDs and return values. To enable Spark to run
more efficiently, transformations in Spark are all lazy, which means transformations
for datasets are only recorded but not computed right away. Besides, persisting
data in memory is one of the most important capabilities in Spark. There are sev-
eral persistence levels available, such as MEMORY ONLY, MEMORY ONLY SER,
MEMORY AND DISK, which differentiate them from the location to persist data
(memory or disk) and whether to serialize data before persisting.

2.3. Tools Used in the Thesis 17

Figure 2.4: Phases of query planning in Spark SQL [Armbrust et al., 2015].

Spark Libraries: Spark also integrates four libraries: Spark SQL, MLlib for
machine learning, GraphX for graphs and graph-parallel computation, and Spark
streaming for building scalable fault-tolerant streaming applications [Zaharia et al.,
2016]. In our research, Spark SQL and MLlib have been adopted to support our
research, which will be described next.

• Spark SQL is the module of Apache Spark for structured data, which enables
people to query structured data inside Spark programs, using either SQL or
a familiar Datasets API. It does not force users to decide for a relational or a
procedural API but enables users to mix both of them [Armbrust et al., 2015].
It provides the possibility to have logical and physical optimizations before the
real execution. Figure 2.4 shows the four phases using its cost-based optimizer
Catalyst to optimize the application. It first analyzes a logical plan from
references and optimizes it, then it chooses the best physical based on costs,
and last generates code to compile the query to Java code [Armbrust et al.,
2015]. Besides, it also has columnar storage called Tungsten and can use Kryo
serialization to replace traditional Java serialization to minimize storage cost
and improve efficiency [Karau and Warren, 2017]. All the above-introduced
features make Spark SQL a promising option to process structured or semi-
structured data.

• Spark MLlib is the ML library for Spark. It implements the standard learning
algorithms of classification, regression, collaborative filtering, clustering, and
dimensionality reduction and makes them run fast and scalable [Meng et al.,
2015]. Besides, MLlib provides pipeline APIs to combine multiple algorithms
to process and learn from data.

Three Java APIs in Apache Spark: Before Spark 1.6, only RDD API and
DataFrame API exist. Theoretically speaking, compared to RDD API, DataFrame
API is able to run logical and physical optimizations before the real execution,
but it has no type-safety for analysis errors, i.e., analysis errors cannot be caught
during compile time. To overcome this shortcoming and at the same time keep
the advantage of those optimizations, the Dataset API was introduced in Spark 1.6.
Therefore, there are three kinds of APIs after Spark 1.6. In Spark 2.0, two structured
APIs: the DataFrame API and the Dataset API are unified to a single Dataset API,
and the DataFrame API is named Dataset<Row>, and the return type of a SQL
query or SQL-based API is Dataset<Row> [Zaharia et al., 2016].

18 2. Background

2.3.2 Data Generator: GeCo

Our synthetic data used in our research is generated by a data generator called
GeCo [Tran et al., 2013], which is based on real-world data and can follow similar
characteristics to the real data [Christen and Vatsalan, 2013]. It consists of GEn-
erator and COrruptor, which is specifically designed for generating ER datasets.
First, the generator is responsible for generating original data, whose attribute val-
ues are based on frequency look-up files and functions provided by users. Thus, it
also takes into account compounding attributes, because in reality values of some
attributes depend upon values of other attributes. Afterward, the corruptor mod-
ifies some attribute values of already generated original data from the first step to
generate duplicate records. The number of both original and duplicate records can
be set according to evaluation requirements and so can be the maximum number
of duplicates per record and the probability distribution of duplicates. It is also
possible to limit the maximum number of modifications per attribute or record. For
modification itself, the following ways are possible: inserting, deleting, substituting
a character with another character from a specified range, and transposing two ad-
jacent characters [Tran et al., 2013]. In this way, a synthetic dataset with original
records and their duplicate records is generated. For each record, an identifier is as-
signed, which can show the ground truth of the dataset. Then a record generated by
GeCO contains personal information with the following 14 attributes: rec-id, gen-
der, given-name, surname, postcode, city, telephone-number, credit-card-number,
income-normal, age-uniform, income, age, sex, and blood-pressure.

3. Overview and Classification of
Parallel Entity Resolution
Approaches

This chapter is based on the Open Journal of Big Data paper “Cloud-
Scale Entity Resolution: Current State and Open Challenges” [Chen
et al., 2018b]. Since the paper was published in 2018 and we reviewed
only the research approaches for parallel Entity Resolution (ER) till the
end of 2017. In this chapter, we re-conducted the systematic literature
review process for papers published till the end of 2019 and integrated
discussions for the newly-added papers. Furthermore, open challenges
have been updated as well based on the updated state of parallel ER
research.

As described in the previous chapters, ER is a quite time-consuming task. Facing
large-scale data, the runtime of ER is often not acceptable when it is serially per-
formed. Therefore, parallel computation has been exploited to improve efficiency
and scalability. The research on parallel ER has reached a prosperous stage and
many approaches have been proposed. In this chapter, we conducted a Systematic
Literature Review (SLR) on parallel ER and present our results. In Section 3.1,
we first give an overview of state-of-the-art approaches based on the results of our
selected papers in our SLR. The methodology of our SLR to obtain the final pa-
per set is described in Section A.1. Subsequently, in Section 3.2 we classify and
compare a corpus of 58 articles based on three sets of extracted criteria, conclude
solutions for efficiency-related criteria, which are the critical topics for parallel ER.
At last, we expose the latent research directions for parallel ER in Section 3.3.
In Section 3.4, we discuss related classifications and surveys for ER. We conclude
our findings in Section 3.5.

20 3. Overview and Classification of Parallel Entity Resolution Approaches

Table 3.1: Classification based on the programming model used (1).

ID Publication Information Parallel Frame-
work

P-Swoosh Kawai et al., 2006 Parallel DBMS
Parallel linkage Kim and Lee, 2007 Parallel DBMS
D-Swoosh Benjelloun et al., 2007 Parallel DBMS
FERAPARDAF Santos et al., 2007 Parallel DBMS
Febrl Christen, 2008 Parallel DBMS
Iterative DDG Herschel et al., 2012 Parallel DBMS
Partition-based Jiang et al., 2013 Parallel DBMS
Pairwise document Elsayed et al., 2008 Hadoop MapReduce
SSJ-2R Baraglia et al., 2010 Hadoop MapReduce
Dedoop Kirsten et al., 2010; Kolb and

Rahm, 2013; Kolb et al., 2011a,b,
2012a,b,c, 2013

Hadoop MapReduce

VCL Vernica et al., 2010 Hadoop MapReduce
MapDupReducer Wang et al., 2010 Hadoop MapReduce
MD-Approach Dal Bianco et al., 2011 Hadoop MapReduce
V-SMART-Join Metwally and Faloutsos, 2012 Hadoop MapReduce
MRSimJoin Silva and Reed, 2012; Silva et al.,

2012
Hadoop MapReduce

DC2B Kim and Shim, 2012 Hadoop MapReduce
ZkNN Zhang et al., 2012 Hadoop MapReduce
DAA Luo et al., 2012 Hadoop MapReduce
LINDA Böhm et al., 2012 Hadoop MapReduce
KNN Distance filter-
ing

Lu et al., 2012 Hadoop MapReduce

Graph-based Kardes et al., 2013 Hadoop MapReduce
MR-DSJ Seidl et al., 2013 Hadoop MapReduce
MultiKeyBalancing Hsueh et al., 2014 Hadoop MapReduce
PHiDJ Fries et al., 2014 Hadoop MapReduce

3.1 Overview of State-of-the-art Approaches of

Parallel ER

With the procedures described in Section A.1, we had finally 58 papers for the
subsequent classification and analysis in the area of parallel ER. In this section, we
give an overview on the 58 papers.

As explained in Section 2.1.3, what differs between serial ER and parallel ER is
that in each step of parallel ER data processing is tried to be parallelized instead of
sequentially processed and at the same time, a certain level of task parallelism can
be achieved. Regarding the first form of parallelism: data (intra-step) parallelism
introduced in Section 2.1.3, ideally the speedup in run-time is equal to the number
of total processors or nodes. However, ER cannot achieve full data parallelism. On
the one hand, this can be caused by intrinsic reasons of parallel data processing,

3.1. Overview of State-of-the-art Approaches of Parallel ER 21

Table 3.2: Classification based on the programming model used (2).

ID Publication Information Programming
Model

Cluster Join Das Sarma et al., 2014 Hadoop MapReduce
Graph-parallel Malhotra et al., 2014 Hadoop MapReduce
Mass Join Deng et al., 2014 Hadoop MapReduce
DCS++ MR-ER Gomes Mestre and Pires, 2013;

Mestre et al., 2015
Hadoop MapReduce

Sort-Map-Reduce Ma and Yang, 2015; Ma et al.,
2015

Hadoop MapReduce

SAX Ma et al., 2016 Hadoop MapReduce
FACET Yang et al., 2016 Hadoop MapReduce
SJT-based Liu et al., 2016 Hadoop MapReduce
High velocity streams Benny et al., 2016 Hadoop MapReduce
Dis-Dedup Chu et al., 2016 Hadoop MapReduce
Meta-blocking Efthymiou et al., 2015, 2017; Pa-

padakis et al., 2017
Hadoop MapReduce

Sampling-based Chen et al., 2017 Hadoop MapReduce
MSJL Sohrabi and Azgomi, 2017 Hadoop MapReduce
KNN - DP Zhao et al., 2017 Hadoop MapReduce
FS-Join Rong et al., 2012, 2017 Hadoop MapReduce
Grid-based Jang and Chang, 2018 Hadoop MapReduce
ER of healthcare data Pita et al., 2015 Apache Spark
DCS++ Spark-ER Mestre et al., 2017 Apache Spark
RDD-based ER Chen et al., 2015 Hadoop MapReduce

or Apache Spark
DDUB Dou et al., 2019 Hadoop MapReduce

or Apache Spark
SAVD Rong et al., 2019 Hadoop MapReduce

or Apache Spark

such as requiring time for the initialization and the communication between the
processors to exchange intermediate results, or load imbalance between nodes. On
the other hand, not all steps of the ER process can be parallelized perfectly, which
may lower the parallel efficiency. Through our SLR, finally, we get a corpus of 58
papers. To be noted that almost all publications on parallel ER focus on data (intra-
step) parallelism. Only [Santos et al., 2007] presents an approach to parallelize the
processing within as well as across different steps. Therefore, our general discussion
and classification in this survey are mainly data (intra-step) parallelism. Particular
descriptions will be given explicitly if task (inter-step) parallelism is involved.

The 58 papers are listed in Table 3.1 and Table 3.2. We merged research presented
in different papers in one row if they are done by the same researchers or the same
research group, and presented methods are tightly related and can be combined. For
instance, eight papers in the final literature set are regarding the research on Dedoop
and we combined all eight papers into one row and named it Dedoop. This way we

22 3. Overview and Classification of Parallel Entity Resolution Approaches

have in total 45 rows in Table 3.1 and Table 3.2. For simplicity, we assign each publi-
cation a short and meaningful identifying name to simply represent them throughout
this survey. Then we classify them according to the big data processing frameworks
they use to implement the parallel ER: parallel DBMS, i.e., no big data processing
framework used, Hadoop MapReduce-based, and Apache Spark-based. These are
the currently most often used approaches, in real-world-applications as well as in
academic research. Therefore, we focus on them in this overview. Nevertheless, new
parallel frameworks are a topic of ongoing research and their applicability and usage
for ER must be covered by future research, as discussed in Section 3.3. As we can see
from Table 3.1 and Table 3.2, seven of the research do not employ a parallel frame-
work but use Parallel DBMS to execute parallel ER tasks. 32 approaches employ
only Hadoop MapReduce, and the remaining three approaches are only Spark-based.
The approach presented in [Chen et al., 2015; Dou et al., 2019; Rong et al., 2019]
implemented parallel ER with both Hadoop MapReduce and Apache Spark.

As we can see from the result, only 7 out of 45 approaches implemented general par-
allelism, i.e., using parallel DBMS. The majority of them are mostly early works, but
it is certainly more relevant for real-world applications than the proportion of aca-
demic research suggests. After the programming model MapReduce became popular
after the year of 2008 for parallel computing and with the support of its open-source
implementation of Apache Hadoop, the vast majority of research approaches (more
than two-thirds of the approaches in Table 3.1 and Table 3.2) employed it. The
reasons behind are two folds: On the one hand, MapReduce provides users a simple
model to express relatively sophisticated distributed programs [Pavlo et al., 2009].
Users only need to care about the implementation of the map and reduce func-
tions, with no need to consider the partitioning of the input dataset, scheduling the
program across machines, handling failures, and managing inter-machine communi-
cation. On the other hand, using parallel DBMS has some shortcomings for small
and medium-sized enterprises. Parallel DBMSs are expensive [Stonebraker et al.,
2010], cannot operate in a heterogeneous environment, and have very limited fault
tolerance [Abouzeid et al., 2009]. Furthermore, they require high maintenance and
administration effort. In academia, researchers may encounter problems, such as
limited budgets and a heterogeneous environment. This may be another reason,
why open-source frameworks are disproportionately popular there. Furthermore,
their high level of abstraction might help researchers to concentrate on application-
specific – in this case ER – research questions. Besides, 5 out of 45 approaches
employed Apache Spark, which represents the current state of ER in academic re-
search quite well regarding proportion. Spark-based techniques have rarely been
applied before 2015, mainly because Spark has become an open-source Top-Level
Apache Project since February 20141. Three approaches from the five Spark-based
approaches implemented their methods with Hadoop MapReduce as well to evaluate
and compare to Spark-based ER.

As mentioned above, almost all approaches only parallelized the pair-wise-comparison
step, while [Santos et al., 2007] parallelized data processing in each step and also
performed different steps in parallel through its run-time system - Anthill. Besides,
among publications that implement data parallelism, most of them considered only

1https://en.wikipedia.org/wiki/Apache Spark

3.2. Classification Based on Three Sets of Criteria 23

Table 3.3: General classification of parallel DBMS entity resolution.

ID Operation
Type

#Input
Sources

Input
Data Type

P-Swoosh [Kawai et al.] Entity resolution Not described Records
Parallel linkage [Kim and Lee] Entity resolution 2 Records
D-Swoosh [Benjelloun et al.;
Kawai et al.]

Entity resolution Not described Records

FERAPARDAF [Santos et al.] Deduplication 1 Records
Febrl [Christen] Deduplication 1 Records
Iterative DDG [Herschel et al.] Deduplication 1 Graph
Partition-based [Jiang et al.] Similarity join 1 Strings

inter-processor parallelism. Approaches presented in [Böhm et al., 2012; Dal Bianco
et al., 2011; Jiang et al., 2013; Malhotra et al., 2014] considered both intra- and
inter-processor parallelism. The benefit of considering intra-processor parallelism
was mentioned in [Dal Bianco et al., 2011], i.e., the communication overhead is low
without excessive data copying.

3.2 Classification Based on Three Sets of Criteria

To overview and classify existing approaches we extract three sets of criteria for
parallel ER, which are introduced in the following:

• The first set of criteria describes general aspects which are mostly application-
driven including operation type, number of input sources, and input data
structure.

• The second set of criteria is related to effectiveness, which include data pre-
processing, similarity function, match mode, and clustering.

• The last set of criteria pertain to efficiency, which is the most important
part for parallel ER and includes specific aspects of the programming model
used, blocking approaches, data partitioning, load balancing, and redundancy
handling.

On the one hand, these criteria can be used to compare and classify existing ap-
proaches regarding parallel ER. On the other hand, when developers are designing
their own parallel ER, these criteria can help them to discuss and to weigh specific
requirements of their parallel ER application. In the rest of this section, we will
introduce the three sets of criteria in detail and present the classification based on
those directly after each set of criteria. Therein, we also conclude the solutions for
efficiency-based criteria, because they are the most critical ones for parallel ER.

3.2.1 General Criteria and Their Classification

The three general criteria focus mainly on application aspects, i.e., how and for what
purpose the approaches are being used. The criteria are:

24 3. Overview and Classification of Parallel Entity Resolution Approaches

Table 3.4: General classification of MapReduce-based entity resolution (1).

ID Operation
Type

#Input
Sources

Input Data
Type

Dedoop [Kolb et al.] Entity resolution 1 or n Records
LINDA [Böhm et al.] Entity resolution n Graph
Graph-based [Kardes et al.] Entity resolution Not de-

scribed
Records

DCS++ MR-ER [Gomes Mestre
and Pires]

Entity resolution 1 Records

Graph-parallel [Malhotra et al.] Entity resolution Not de-
scribed

Records

High velocity streams [Benny
et al.]

Entity resolution 2 Records

Meta-blocking [Efthymiou et al.] Entity resolution 2 Records
Dis-Dedup [Chu et al.] Deduplication 1 Records
Sort-Map-Reduce [Ma and
Yang]

Deduplication 1 Records

MapDupReducer [Wang et al.] Deduplication 1 Documents
MD-Approach [Dal Bianco
et al.]

Deduplication 1 Records

• Operation Type: As mentioned above, deduplication is a special case of entity
resolution, indicating that a reconciliation of found matches is an intended
part of the process. Similarity joins are tightly related to entity resolution
in the database domain for finding matching pairs. Although they are quite
similar to ER, normally they have their particular focus points. In this survey,
related research approaches, such as similarity joins and deduplication, are
also included. Therefore, this criterion is set to clarify the precise operation
type for each approach.

• Number of Input Sources: Current approaches can also be classified based on
the number of input sources for ER. It is not difficult to extend ER within
one single source to multiple sources. However, the extension may become
complicated, not intuitive, and we may lose the advantage of knowing that
the data is from two sources. Therefore, it is necessary to consider which
algorithms or techniques can be used for ER among multiple sources and which
can only be used within one single source. If the state is the latter one, i.e.,
only within one single source, they should be extended to the situation among
multiple sources as needed in the future work.

• Input Data Type: For existing publications, the type of input data varies. In
most cases, approaches do not limit the types of input data. We use “records”
to represent this case because using flatly structured data units as in relational
databases is the standard case considered. However, in some research, more
or less complex data types are considered, e.g. documents or strings. In
particular, in some research, to improve the effectiveness of ER, they consider

3.2. Classification Based on Three Sets of Criteria 25

not only records and entities themselves but also relationships between records
and entities. In this case, the input data type is an entity graph.

Based on these three criteria, we have the first set of overview tables in Table 3.3, Ta-
ble 3.4, Table 3.5 and Table 3.6, which provide an overview for these criteria, once
again grouped for parallel DBMS ER (Table 3.3), MapReduce-based ER (Table 3.4
and Table 3.5) and Spark-based ER (Table 3.6). To be noticed that, for the three
approaches in [Chen et al., 2015; Dou et al., 2019; Rong et al., 2019], which are im-
plemented with both Hadoop MapReduce and Apache Spark, they are put into the
tables for Spark-based ER, because the implementation with Hadoop MapReduce is
mostly for the purpose of evaluating Spark-based ER. The same case applies to the
later effectiveness and efficiency criteria.

As can be seen in these three overview tables regarding the operation type, half
of the publications considered a general entity resolution problem. Some of them
consider only the situation that there is a single input source, which indicates a de-
duplication problem. The other half of publications are regarding the similarity join,
in which 6 out of 24 approaches belong to the kNN similarity join. For general ER
scenarios, the similarities of all candidate pairs are calculated, then a classification
step is used to distinguish match or non-match pairs, which are the results for ER.
In contrast, in similarity joins records from input sources, whose similarities are
higher than the preset threshold, are joined together. It does not include an explicit
classification step, and the dissimilar records are directly dropped and not a part
of the results. Particularly, a kNN similarity join joins each record with its k most
similar records.

Regarding the number of input sources, about half of the approaches considered
the situation that the input data may be from different sources. However, most
of them handled this problem only by combining multiple sources into one source.
Especially, in parallel linkage [Kim and Lee, 2007], the emphasis is on studying
different algorithms for the sake of better performance of the ER task, rather than
combining multiple sources into one source considering whether there are duplicates
in each input source or not.

At last, most of the publications did not limit the input data type. Jiang et al.
[2013], Rong et al. [2017] and Deng et al. [2014] only consider input data with
strings. Baraglia et al. [2010], Elsayed et al. [2008] and Wang et al. [2010] tried
to resolve document matches. ER of health-care data [Pita et al., 2015] focuses
on health data due to their specific application area. Many (kNN) similarity joins
including [Chen et al., 2015; Fries et al., 2014; Jang and Chang, 2018; Luo et al.,
2012; Ma et al., 2016; Rong et al., 2019; Zhang et al., 2012; Zhao et al., 2017] focus
on multi-dimensional data. Furthermore, Iterative DDG [Herschel et al., 2012] and
LINDA [Böhm et al., 2012] first form an entity graph, whose edges represent known
relationships between records, and then use this entity graph as input data for ER.
Though only these mentioned approaches consider specifics of the given application
domain, this inclusion of knowledge about the data characteristics during blocking,
similarity calculation, etc. can, in general, be very beneficial for overall goals like
effectiveness and efficiency.

26 3. Overview and Classification of Parallel Entity Resolution Approaches

Table 3.5: General classification of MapReduce-based entity resolution (2).

ID Operation
Type

#Input
Sources

Input Data
Type

Pairwise document [Elsayed
et al.]

Similarity join 1 Documents

SSJ-2R [Baraglia et al.] Similarity join 1 Documents
VCL [Vernica et al.] Similarity join 1 or n Records
V-SMART-Join [Metwally and
Faloutsos]

Similarity join 1 Sets, multisets
and vectors

MRSimJoin [Silva and Reed] Similarity join 2 Records
MR-DSJ [Seidl et al.] Similarity join 1 Vectors
PHiDJ [Fries et al.] Similarity join 1 High dimen-

sional vectors
Cluster Join [Das Sarma et al.] Similarity join 1 or n Records
DAA[Luo et al.] Similarity join 1 High dimen-

sional vectors
Mass Join [Deng et al.] Similarity join 1 or 2 Strings
SAX[Ma et al.] Similarity join 2 High dimen-

sional vectors
FACET [Yang et al.] Similarity join 1 or 2 Vectors
SJT-based [Liu et al.] Similarity join 1 Records
Sampling-based [Chen et al.] Similarity join 2 Records
MSJL [Sohrabi and Azgomi] Similarity join 2 Records
FS-Join[Rong et al.] Similarity join 1 Srings
Grid-based[Jang and Chang] (KNN) Similarity

join
2 Multi - dimen-

sional data
KNN - DP[Zhao et al.] KNN Similarity

Join
2 Multi - dimen-

sional data
DC2B[Kim and Shim] KNN similairty

join
1 Records

ZkNN[Zhang et al.] KNN similarity
join

2 Multi - dimen-
sional data

KNN Distance filtering[Lu et al.] KNN similarity
join

1 or 2 Records

3.2. Classification Based on Three Sets of Criteria 27

Table 3.6: General classification of Spark-based entity resolution.

ID Operation Type #Input
Sources

Input Data Type

DDUB [Dou et al.] Entity resolution 1 or 2 Records
ER of healthcare data
[Pita et al.]

Entity resolution n Health data

DCS++ Spark-ER
[Mestre et al.]

Entity resolution 1 or 2 Records

SAVD[Rong et al.] Similarity join 1 or 2 High dimensional
data

RDD-based ER [Chen
et al.]

KNN similarity join 1 Multi - dimensional
data

3.2.2 Effectiveness-Related Criteria and Their Classification

This subsection presents criteria related to effectiveness and the classification of
approaches based on them. The following criteria are considered:

• Data preprocessing: This criterion indicates whether there are any data prepro-
cessing steps in algorithms or techniques of the approaches and which kinds of
procedures are used. With proper data preprocessing steps, noises, which can
negatively affect the effectiveness of the subsequent similarity calculation and
classification steps, can be reduced. Therefore, we consider data preprocessing
as an effectiveness-related criterion.

• Similarity function: The reason for considering this criterion for classifying
parallel ER techniques is that some approaches apply parallel techniques only
suitable when specific similarity functions are used. Thus, publications should
be pointed out where specific similarity functions are part of the core procedure
or whether their algorithms or techniques can be applied independently.

• Match Mode: This criterion addresses another aspect of the pair-wise com-
parison step. It does not concern the specific function used for comparison,
but after a pair of records is identified by a similarity function as a match,
what kinds of further steps will be done to improve the results, e.g. whether
matching records are merged or if matching results are propagated.

• Clustering: Applications can also be classified according to whether they clus-
ter matching records based on pair-wise comparison results and which cluster-
ing methods they use.

Table 3.7, Table 3.8, Table 3.9, Table 3.10 and Table 3.11 present the classification
of publications based on these four effectiveness related criteria.

Regarding data preprocessing, half of the approaches support preprocessing steps
in one way or the other, among which cleaning and standardization are the most
commonly used techniques. The approaches in [Christen, 2008; Santos et al., 2007;

28 3. Overview and Classification of Parallel Entity Resolution Approaches

Table 3.7: Effectiveness consideration of parallel DBMS entity resolution.

ID Data
Preprocessing

Similarity
Function

Match
Mode

Clustering

P-Swoosh
[Kawai et al.]

No
preprocessing

Not described Merge af-
ter match

No cluster-
ing

Parallel linkage
[Kim and Lee]

No
preprocessing

S-cc; s-dcself;
s-dd1; s-dd2;

s-dd3

Merge af-
ter match

No cluster-
ing

D-Swoosh
[Benjelloun
et al.]

No
preprocessing

Not described Merge af-
ter match

No cluster-
ing

FERAPARDAF
[Santos et al.]

Standardization;
cleaning

Not described No merge No cluster-
ing

Febrl [Christen] Hidden-markov-
model for

cleaning and
standardization

Matching
attribute weights

No merge No cluster-
ing

Iterative DDG
[Herschel et al.]

Entity graph as
input

Self-defined
similarities

Iterative
and propa-
gate

No cluster-
ing

Partition-based
[Jiang et al.]

Partition and
substring

comparison

Extension-based
verification

No merge No cluster-
ing

Wang et al., 2010] also supported data cleaning and standardization. Christen [2008]
suggested a three-step data cleaning and standardization based on hidden Markov
models [Christen, 2008]. As a preparation to special blocking methods used in some
publications, the data preprocessing step in [Deng et al., 2014; Rong et al., 2012,
2017, 2019; Vernica et al., 2010; Wang et al., 2010] include transforming input records
to tokens and [Jiang et al., 2013] first partitions the input records (records here
are all strings) and then transforms input strings into substrings. The approaches
presented in [Böhm et al., 2012; Herschel et al., 2012] are graph-based and consider
relationships between input records. Therefore, they build an entity graph during
the data preprocessing step. Besides, in [Kardes et al., 2013], Soundex or a phonetic
algorithm is used to preprocess the input data. For research approaches, whose
focuses are handling reducer skew, sampling, or other procedures are required to
get data distribution statistics. For research approaches, whose input data is multi-
dimensional vectors, dimension reduction procedures are often applied.

Similarity functions used in each publication vary, as all the different approaches
choose suitable functions for their own scenarios. Since in publications on parallel
ER the specific similarity functions used are often not a focus, around half of the
approaches did not discuss the specific similarity function(s) they used. Dou et al.
[2019] focused their research only on blocking algorithms and no related informa-
tion on later steps is provided. Kim and Lee [Kim and Lee, 2007] developed a
series of algorithms for ER among two sources by considering whether sources are

3.2. Classification Based on Three Sets of Criteria 29

T
ab

le
3.

8:
E

ff
ec

ti
ve

n
es

s
co

n
si

d
er

at
io

n
of

M
ap

R
ed

u
ce

-b
as

ed
en

ti
ty

re
so

lu
ti

on
(1

).

ID
D

a
ta

P
re

p
ro

ce
ss

in
g

S
im

il
a
ri

ty
F
u
n
ct

io
n

M
a
tc

h
M

o
d
e

C
lu

st
e
ri

n
g

P
ai

rw
is

e
d
o
cu

m
en

t
[E

ls
ay

ed
et

al
.

S
te

m
m

in
g;

st
op

w
or

d
s

re
m

ov
al

;
D

f-
cu

t
T

h
e

sy
m

m
et

ri
c

va
ri

an
t

of
O

ka
p
iB

M
25

[O
ls

so
n

an
d

O
ar

d
]

N
o

m
er

ge
N

o
cl

u
st

er
in

g

S
S
J
-2

R
[B

ar
ag

li
a

et
al

.]
S
te

m
m

in
g;

st
op

w
or

d
s

re
m

ov
al

;
n
or

m
al

iz
at

io
n
;

le
x
ic

on
ex

tr
ac

-
ti

on
;

so
rt

in
g

fe
at

u
re

s

N
ot

d
es

cr
ib

ed
N

o
m

er
ge

N
o

cl
u
st

er
in

g

D
ed

o
op

[K
ol

b
et

al
.]

N
o

p
re

p
ro

ce
ss

in
g

N
ot

d
es

cr
ib

ed
N

o
m

er
ge

N
o

cl
u
st

er
in

g
V

C
L

[V
er

n
ic

a
et

al
.]

S
tr

in
g

to
p
re

fi
x

to
ke

n
s

C
o
effi

ci
en

ts
;

J
ac

ca
rd

;
T

an
im

ot
o;

co
si

n
e

N
o

m
er

ge
N

o
cl

u
st

er
in

g

M
ap

D
u
p
-R

ed
u
ce

r
[W

an
g

et
al

.]
C

le
an

in
g;

p
ar

si
n
g;

to
ke

n
sa

ti
on

N
ot

d
es

cr
ib

ed
N

o
m

er
ge

N
o

cl
u
st

er
in

g
M

D
-A

p
p
ro

ac
h

[D
al

B
ia

n
co

et
al

.]
N

o
p
re

p
ro

ce
ss

in
g

N
ot

d
es

cr
ib

ed
N

o
m

er
ge

N
o

cl
u
st

er
in

g
V

-S
M

A
R

T
-J

oi
n

[M
et

w
al

ly
an

d
F

al
ou

ts
os

]
S
to

p
w

or
d
s

re
m

ov
al

N
om

in
al

S
im

il
ar

it
y

M
ea

-
su

re
s

N
o

m
er

ge
N

o
cl

u
st

er
in

g

M
R

S
im

J
oi

n
[S

il
va

an
d

R
ee

d
]

N
o

p
re

p
ro

ce
ss

in
g

V
ar

io
u
s

fu
n
ct

io
n
s

p
os

si
b
le

N
o

m
er

ge
N

o
cl

u
st

er
in

g
D

C
2B

[K
im

an
d

S
h
im

]
N

o
p
re

p
ro

ce
ss

in
g

E
u
cl

id
ea

n
;

M
in

ko
w

sk
i

d
is

ta
n
ce

N
o

m
er

ge
K

cl
os

es
t

p
ai

rs

Z
k
N

N
[Z

h
an

g
et

al
.]

U
si

n
g

z-
va

lu
e

to
ge

t
ap

p
ro

x
i-

m
at

e
on

e
d
im

en
si

on
al

d
at

a
N

ot
d
es

cr
ib

ed
N

o
m

er
ge

K
cl

os
es

t
p
ai

rs

D
A

A
[L

u
o

et
al

.]
S
am

p
li
n
g;

D
A

A
E

u
cl

id
ea

n
d
is

ta
n
ce

N
o

m
er

ge
N

o
cl

u
st

er
in

g
L

IN
D

A
[B

öh
m

et
al

.]
E

d
ge

s
ad

d
ed

to
b
u
il
d

gr
ap

h
N

ot
d
es

cr
ib

ed
It

er
at

iv
e

an
d

p
ro

p
ag

at
e

N
o

cl
u
st

er
in

g

30 3. Overview and Classification of Parallel Entity Resolution Approaches

T
ab

le
3.

9:
E

ff
ec

ti
ve

n
es

s
co

n
si

d
er

at
io

n
of

M
ap

R
ed

u
ce

-b
as

ed
en

ti
ty

re
so

lu
ti

on
(2

).

ID
D

a
ta

P
re

p
ro

ce
ss

in
g

S
im

il
a
ri

ty
F
u
n
ct

io
n

M
a
tc

h
M

o
d
e

C
lu

st
e
ri

n
g

K
N

N
D

is
ta

n
ce

fi
lt

er
in

g[
L

u
et

al
.]

P
iv

ot
se

le
ct

io
n

N
ot

d
es

cr
ib

ed
N

o
m

er
ge

K
cl

os
es

t
p
ai

rs
G

ra
p
h
-b

as
ed

[K
ar

d
es

et
al

.]
S
ou

n
d
ex

or
p
h
on

et
ic

al
go

ri
th

m
s

F
ea

tu
re

-b
as

ed
N

o
m

er
ge

T
ra

n
si

ti
ve

cl
o-

su
re

;
S
C

lu
st

M
R

-D
S
J

[S
ei

d
l

et
al

.]
N

o
p
re

p
ro

ce
ss

in
g

D
is

ta
n
ce

-b
as

ed
fu

n
ct

io
n
s

N
o

m
er

ge
N

o
cl

u
st

er
in

g
P

H
iD

J
[F

ri
es

et
al

.]
n
o

p
re

p
ro

ce
ss

in
g

D
is

ta
n
ce

-b
as

ed
fu

n
ct

io
n
s

N
o

m
er

ge
N

o
cl

u
st

er
in

g
C

lu
st

er
J
oi

n
[D

as
S
ar

m
a

et
al

.]
N

o
p
re

p
ro

ce
ss

in
g

N
ot

d
es

cr
ib

ed
N

o
m

er
ge

N
o

cl
u
st

er
in

g
G

ra
p
h
-p

ar
al

le
l

[M
al

h
ot

ra
et

al
.]

N
o

p
re

p
ro

ce
ss

in
g

N
ot

d
es

cr
ib

ed
M

er
ge

or
n
o

m
er

ge
C

on
n
ec

te
d

co
m

-
p

on
en

ts
M

as
s

J
oi

n
[D

en
g

et
al

.]
T

ok
en

-b
as

ed
si

gn
at

u
re

ge
n
er

a-
ti

on
J
ac

ca
rd

;
ed

it
d
is

ta
n
ce

;
se

t-
an

d
ch

ar
ac

te
r-

b
as

ed
N

o
m

er
ge

N
o

cl
u
st

er
in

g

D
C

S
+

+
M

R
-E

R
[G

om
es

M
es

tr
e

an
d

P
ir

es
]

N
o

p
re

p
ro

ce
ss

in
g

J
ar

o-
W

in
k
le

r
N

o
m

er
ge

N
o

cl
u
st

er
in

g

S
or

t-
M

ap
-R

ed
u
ce

[M
a

et
al

.]
N

o
p
re

p
ro

ce
ss

in
g

N
ot

d
es

cr
ib

ed
N

o
m

er
ge

N
o

cl
u
st

er
in

g
S
A

X
[M

a
et

al
.]

C
om

p
u
ti

n
g

P
A

A
re

p
re

se
n
ta

-
ti

on
s;

S
A

X
st

ri
n
gs

of
ea

ch
ve

c-
to

r

E
u
cl

id
ea

n
d
is

ta
n
ce

N
o

M
er

ge
N

o
cl

u
st

er
in

g

F
A

C
E

T
[Y

an
g

et
al

.]
G

et
ti

n
g

ad
d
it

io
n
al

in
fo

rm
at

io
n

to
p
re

p
ar

e
fo

r
b
lo

ck
in

g
C

os
in

e
or

D
ic

e
si

m
il
ar

it
y
(-

b
as

ed
)

N
o

m
er

ge
N

o
cl

u
st

er
in

g

S
J
T

-b
as

ed
[L

iu
et

al
.]

N
o

N
ot

d
es

cr
ib

ed
N

o
m

er
ge

N
o

cl
u
st

er
in

g

3.2. Classification Based on Three Sets of Criteria 31

T
ab

le
3.

10
:

E
ff

ec
ti

ve
n
es

s
co

n
si

d
er

at
io

n
of

M
ap

R
ed

u
ce

-b
as

ed
en

ti
ty

re
so

lu
ti

on
(3

).

ID
D

a
ta

P
re

p
ro

ce
ss

in
g

S
im

il
a
ri

ty
F
u
n
ct

io
n

M
a
tc

h
M

o
d
e

C
lu

st
e
ri

n
g

H
ig

h
ve

lo
ci

ty
st

re
am

s
[B

en
n
y

et
al

.]
2r

d
b

ou
n
d
ar

ie
s;

st
em

m
in

g;
st

op
w

or
d

re
m

ov
al

A
ve

ra
ge

re
su

lt
of

13
fu

n
c-

ti
on

s
N

o
m

er
ge

N
o

cl
u
st

er
in

g

D
is

-D
ed

u
p

[C
h
u

et
al

.]
N

o
p
re

p
ro

ce
ss

in
g

E
d
it

d
is

ta
n
ce

N
o

m
er

ge
N

o
cl

u
st

er
in

g
M

et
a-

b
lo

ck
in

g
[E

ft
h
y
m

io
u

et
al

.]
R

ed
u
n
d
an

cy
p

os
it

iv
e

b
lo

ck
co

l-
le

ct
io

n
s

N
ot

d
es

cr
ib

ed
N

o
m

er
ge

N
o

cl
u
st

er
in

g

S
am

p
li
n
g-

b
as

ed
[C

h
en

et
al

.]
C

en
tr

oi
d

se
le

ct
io

n
b
as

ed
on

sa
m

p
le

d
d
at

a
A

n
y

fu
n
ct

io
n
s

p
os

si
b
le

N
o

m
er

ge
N

o
cl

u
st

er
in

g

M
S
J
L

[S
oh

ra
b
i

an
d

A
zg

om
i]

B
u
il
d
in

g
H

A
R

O
T

m
at

ri
x

fo
r

u
s-

in
g

L
S
H

J
ac

ca
rd

si
m

il
ar

it
y

co
effi

-
ci

en
t

N
o

m
er

ge
N

o
cl

u
st

er
in

g

K
N

N
-

D
P

[Z
h
ao

et
al

.]
S
am

p
li
n
g;

p
ar

ti
ti

on
b

ou
n
d
ar

y
d
et

er
m

in
at

io
n

ap
p
li
ca

ti
on

-b
as

ed
N

o
m

er
ge

K
n
ea

re
st

p
ai

rs

F
S
-J

oi
n
[R

on
g

et
al

.]
S
tr

in
g

to
p
re

fi
x

to
ke

n
s

J
ac

ca
rd

d
ef

au
lt

;
ot

h
er

s
p

os
si

b
le

N
o

m
er

ge
N

o
cl

u
st

er
in

g

G
ri

d
-b

as
ed

[J
an

g
an

d
C

h
an

g]
S
am

p
li
n
g

L
p

d
is

ta
n
ce

N
o

m
er

ge
N

o/
K

cl
os

es
t

p
ai

rs

32 3. Overview and Classification of Parallel Entity Resolution Approaches

Table 3.11: Effectiveness consideration of Spark-based entity resolution.

ID Data
Preprocessing

Similarity
Function

Match
Mode

Clustering

DDUB [Dou et al.] No
preprocessing

None, focus only
on blocking

No
merge

No cluster-
ing

ER of healthcare
data [Pita et al.]

No
preprocessing

Dice or bit
vectors

comparison

No
merge

No cluster-
ing

DCS++ Spark-
ER [Mestre et al.]

No
preprocessing

Jaro-Winkler No
merge

No cluster-
ing

SAVD [Rong et al.
]

Z-normalization;
dimension
reduction

Euclidean
distance

No
merge

No cluster-
ing

RDD-based ER
[Chen et al.]

No
preprocessing

Top-k-DC No
merge

K closest
pairs

clean or dirty in different scenarios. Except for the above-mentioned research, other
approaches have their own similarity functions, where Jaccard, edit distance, and
coefficient functions are used more commonly than others. Particularly, for resolving
multi-dimensional vectors, Lp distance is often used, in which Euclidean distance is
a default similarity function.

Regarding the match mode, most of the approaches terminate ER tasks after they
have matching results for all records. In [Böhm et al., 2012; Herschel et al., 2012],
similarity functions were iteratively used to improve results and all results should
propagate to the whole entity graph.

Regarding clustering and dealing with multiple matches of single records, the ma-
jority of approaches do not cluster records after local comparisons. In [Malhotra
et al., 2014] Malhotra took each connected component as a cluster. Kardes in [Kardes
et al., 2013] proposed a clustering strategy called sClust to better cluster records
based on the results after computing the transitive closure. Implicitly, the clus-
ter approach used in kNN-related approaches ([Chen et al., 2015; Jang and Chang,
2018; Kim and Shim, 2012; Lu et al., 2012; Zhang et al., 2012; Zhao et al., 2017])
are considered to take the top-k closest pairs of records as a cluster.

3.2.3 Efficiency-Related Criteria and Their Classification

In this section, we will introduce the last group of criteria, which are related to
efficiency, i.e., mainly focused on runtime performance aspects such as response time,
throughput, and scalability. As ER is parallelized to improve especially towards
these goals, their consideration is of great importance within this overview. The
following four main criteria are considered for the classification:

• Blocking: It is a vital step to improve the efficiency of ER. Therefore, for large-
scale data, it should be considered and indeed is often discussed in current
parallel ER, with some research only focusing on finding efficient blocking
strategies.

3.2. Classification Based on Three Sets of Criteria 33

T
ab

le
3.

12
:

E
ffi

ci
en

cy
co

n
si

d
er

at
io

n
of

p
ar

al
le

l
D

B
M

S
en

ti
ty

re
so

lu
ti

on
.

ID
B

lo
ck

in
g

D
a
ta

p
a
rt

it
io

n
in

g
&

L
o
a
d

b
a
la

n
ci

n
g

R
e
d

u
n

d
a
n
cy

h
a
n
d

li
n
g

P
-S

w
o
os

h
[K

aw
ai

et
al

.]
N

o
or

st
an

d
ar

d
b
lo

ck
in

g
M

as
te

r
n
o
d
e:

sl
id

in
g

w
in

d
ow

s
an

d
se

n
d

n
on

-m
at

ch
re

co
rd

s
to

sl
av

e
n
o
d
es

;
H

or
i-

zo
n
ta

l
an

d
ve

rt
ic

al
lo

ad
b
al

an
ci

n
g

N
ot

d
es

cr
ib

ed

P
ar

al
le

l
li
n
ka

ge
[K

im
an

d
L

ee
]

N
ot

d
es

cr
ib

ed
R

ep
li
ca

ti
on

of
so

u
rc

e
A

to
al

l
p
ro

ce
ss

or
s

an
d

ev
en

ly
p
ar

ti
ti

on
ed

so
u
rc

e
B

N
ot

d
es

cr
ib

ed

D
-S

w
o
os

h
[B

en
-

je
ll
ou

n
et

al
.]

N
o

or
st

an
d
ar

d
b
lo

ck
in

g
S
co

p
e

fu
n
ct

io
n
s

V
al

u
e

eq
u
al

it
y
;

h
ie

ra
rc

h
ie

s;
li
n
ea

r
or

d
er

in
g;

R
ep

s
fu

n
ct

io
n
s

F
E

R
A

P
A

-R
D

A
F

[S
an

to
s

et
al

.]
S
ta

n
d
ar

d
b
lo

ck
in

g
A

la
b

el
ed

st
re

am
in

A
n
th

il
l

N
ot

d
es

cr
ib

ed

F
eb

rl
[C

h
ri

st
en

]
S
ta

n
d
ar

d
b
lo

ck
in

g;
so

rt
ed

n
ei

gh
b

or
h
o
o
d
;

q
-g

ra
m

N
ot

d
es

cr
ib

ed
N

ot
d
es

cr
ib

ed

It
er

at
iv

e
D

D
G

[H
er

sc
h
el

et
al

.]
E

n
ti

ty
gr

ap
h

as
in

p
u
t

E
ve

n
ly

p
ar

ti
ti

on
in

p
u
t

en
ti

ty
gr

ap
h

N
ot

d
es

cr
ib

ed

P
ar

ti
ti

on
-b

as
ed

[J
ia

n
g

et
al

.]
In

ve
rt

ed
in

d
ex

E
ve

n
ly

p
ar

ti
ti

on
in

g
S
u
b
st

ri
n
g

se
le

ct
io

n
;

co
n
te

n
t

fi
lt

er
;

eff
ec

ti
ve

in
d
ex

in
g

34 3. Overview and Classification of Parallel Entity Resolution Approaches

• Data partitioning and load balancing: For parallel ER, when parallelizing the
ER process with an n-machines-cluster, an n times speed-up can be achieved
compared to the sequential computation with only one single machine. How-
ever, in reality, it is almost impossible to achieve such an ideal speed-up due
to unavoidable setup and communication overheads, especially due to uneven
load distribution between machines. In this case, the machine with an over-
populated task will become the straggler of the whole cluster and dominate the
overall runtime. Therefore, how to partition the input data, or data after defin-
ing blocking keys, allocate the partitions to available processing units (such
as cores, processors, reducers) and maintain balanced load is an important
research question in parallel ER. Different reasons can lead to an unbalanced
load. One main type of load imbalance is due to the blocking strategy used
in parallel ER. As analyzed above, it is popular to use big data processing
frameworks, such as Hadoop MapReduce or Apache Spark, to implement a
parallel ER process because of their simple programming model [Pavlo et al.,
2009] and their applicability to the ER problem with blocking [Kolb et al.,
2012a]. The default partitioning strategies used in them are range or hash
partitioning, which aim to achieve a balanced load by partitioning the equal
range of data to each machine (range partitioning) or spreading data based
on the key (hash partitioning) [Zaharia et al., 2012]. These strategies only
balance the load when the keys are evenly distributed. For parallel ER with
blocking, the sizes of each block usually vary much due to the different num-
ber of records with different blocking keys. Then all records with the same
blocking key are assigned as one partition to a reducer, which leads to an un-
even distribution of the whole workload to available reducers. Furthermore,
the pair-wise similarity comparison and processing performed on the reducers
amplifies the impact of the skew. To achieve the best speed-up and scale up
the ER process by combining the use of blocking and parallel computation,
it is of great importance to detect possible uneven workload distributions and
develop skew handling strategies to improve efficiency and scalability. Another
possible load imbalance for parallel ER is due to the processing skew. Even
though the number of record pairs processed by each processing unit is similar,
the time required to process one pair may differ much due to the different sizes
of records. This kind of load imbalance should also be considered.

• Redundancy handling: This criterion signifies some detailed measures to reduce
the total run time, which includes reducing the number of record pairs to be
compared and reducing the communication effort between different processors.

Table 3.12, Table 3.13, Table 3.14, Table 3.15 and Table 3.16 provide an overview and
classification of the 35 considered approaches based on the above-explained efficiency
criteria. Since data partitioning and load balancing are tightly related, they are in
the tables as one column. Because the efficiency-related criteria, as a motivation of
parallel ER, is the most important set of criteria, we discuss each criterion in detail
and describe solutions developed for each of the involved problems in the following.

3.2. Classification Based on Three Sets of Criteria 35

T
ab

le
3.

13
:

E
ffi

ci
en

cy
co

n
si

d
er

at
io

n
of

M
ap

R
ed

u
ce

-b
as

ed
en

ti
ty

re
so

lu
ti

on
(1

).

ID
B

lo
ck

in
g

D
a
ta

p
a
rt

it
io

n
in

g
&

L
o
a
d

b
a
la

n
c-

in
g

R
e
d

u
n

d
a
n
cy

h
a
n
-

d
li
n
g

P
ai

rw
is

e
d
o
cu

m
en

t
[E

ls
ay

ed
et

al
.]

In
ve

rt
ed

in
d
ex

B
lo

ck
-b

as
ed

N
ot

d
es

cr
ib

ed

S
S
J
-2

R
[B

ar
ag

li
a

et
al

.]
P

re
fi
x

fi
lt

er
in

g
w

it
h

in
ve

rt
ed

in
-

d
ex

B
lo

ck
-b

as
ed

;
B

u
ck

et
in

g
te

ch
n
iq

u
e

B
ro

ad
ca

st
th

e
re

m
ai

n
-

d
er

fi
le

D
ed

o
op

[K
ol

b
et

al
.]

S
ta

n
d
ar

d
b
lo

ck
in

g;
(m

u
lt

i-
p
as

s)
so

rt
ed

n
ei

gh
b

or
h
o
o
d

B
lo

ck
S
p
li
t;

P
ai

rR
an

ge
(B

D
M

)
C

h
ec

k
ov

er
la

p
p
in

g
b
lo

ck
in

g
ke

y
s

V
C

L
[V

er
n
ic

a
et

al
.]

P
re

fi
x

to
ke

n
s

or
P

P
-j

oi
n
+

[X
ia

o
et

al
.,

20
11

]
3

st
ag

es
(B

T
O

/O
P

T
O

;
B

K
/P

K
;

B
R

-
J
/O

P
R

J
);

A
R

ou
n
d
-R

ob
in

or
d
er

N
ot

d
es

cr
ib

ed

M
ap

D
u
p
-R

ed
u
ce

r
[W

an
g

et
al

.]
P

P
-j

oi
n
+

[X
ia

o
et

al
.,

20
11

]
B

lo
ck

-b
as

ed
N

ot
d
es

cr
ib

ed

M
D

-A
p
p
ro

ac
h

[D
al

B
ia

n
co

et
al

.]
T

w
o-

st
ep

b
lo

ck
in

g
w

it
h

sl
id

in
g

w
in

d
ow

s
fu

n
ct

io
n
s

B
lo

ck
-b

as
ed

N
ot

d
es

cr
ib

ed

V
-S

M
A

R
T

-J
oi

n
[M

et
w

al
ly

an
d

F
al

ou
ts

os
]

V
ir

tu
al

in
ve

rt
ed

in
d
ex

S
to

p
w

or
d

re
m

ov
al

;
d
iv

id
in

g
ov

er
lo

ad
ed

re
d
u
ce

r
(s

h
ar

d
in

g
al

go
ri

th
m

);
M

ap
R

e-
d
u
ce

co
m

b
in

er

N
ot

d
es

cr
ib

ed

M
R

S
im

J
oi

n
[S

il
va

an
d

R
ee

d
]

B
al

l
p
ar

ti
ti

on
in

g
in

Q
u
ic

k
-

J
oi

n
[J

ac
ox

an
d

S
am

et
,

20
08

]]
B

as
e

an
d

w
in

d
ow

-p
ai

r
p
ar

it
io

n
N

ot
d
es

cr
ib

ed

D
C

2B
[K

im
an

d
S
h
im

]
S
af

e
b
u
ck

et
as

si
gn

m
en

t
T

op
K

-P
-M

R
/T

op
K

-F
-M

R
N

ot
d
es

cr
ib

ed

Z
k
N

N
[Z

h
an

g
et

al
.]

N
o/

R
-t

re
e

S
iz

e-
b
as

ed
p
ar

it
io

n
in

g
u
si

n
g

sp
ac

e
fi
ll
-

in
g

cu
rv

e
N

ot
d
es

cr
ib

ed

D
A

A
[L

u
o

et
al

.]
N

o
H

as
h

p
ar

ti
ti

on
in

g
I-

D
A

A
;

O
S
F

R
;

T
S
F

R

36 3. Overview and Classification of Parallel Entity Resolution Approaches

T
ab

le
3.

14
:

E
ffi

ci
en

cy
co

n
si

d
er

at
io

n
of

M
ap

R
ed

u
ce

-b
as

ed
en

ti
ty

re
so

lu
ti

on
(2

).

ID
B

lo
ck

in
g

D
a
ta

p
a
rt

it
io

n
in

g
&

L
o
a
d

b
a
la

n
c-

in
g

R
e
d
u

n
d

a
n
cy

h
a
n
d

li
n
g

L
IN

D
A

[B
öh

m
et

al
.]

F
ir

st
ra

n
k

p
ai

rs
to

as
-

si
gn

si
m

il
ar

p
ai

rs
to

a
sa

m
e

w
or

k
p
ac

ka
ge

W
or

k
p
ac

ka
ge

-b
as

ed
;

S
er

ve
r-

co
n
tr

ol
le

d
N

ot
d
es

cr
ib

ed

K
N

N
D

is
ta

n
ce

fi
lt

er
-

in
g[

L
u

et
al

.]
P

iv
ot

-b
as

ed
V

or
on

oi
d
ia

gr
am

b
as

ed
gr

ou
p
in

g
st

ra
te

gi
es

G
ra

p
h
-b

as
ed

[K
ar

d
es

et
al

.]
T

w
o-

st
ep

b
lo

ck
in

g
w

it
h

b
in

om
ia

l
tr

ee
st

ru
ct

u
re

B
lo

ck
-b

as
ed

N
ot

d
es

cr
ib

ed

M
R

-D
S
J

[S
ei

d
l

et
al

.]
G

ri
d
-b

as
ed

b
lo

ck
in

g
B

lo
ck

-b
as

ed
S
m

al
le

r
or

eq
u
al

ce
ll

ID
;
B

it
co

d
e;

M
in

d
is

tC
el

l;
M

in
d
is

tP
ai

r
P

H
iD

J
[F

ri
es

et
al

.]
G

ri
d
-b

as
ed

b
lo

ck
in

g
B

lo
ck

-b
as

ed
;

V
ar

ia
b
le

gr
id

w
id

th
A

ll
m

ea
su

re
s

in
M

R
-D

S
J
;

D
im

en
-

si
on

gr
ou

p
ID

C
lu

st
er

J
oi

n
[D

as
S
ar

m
a

et
al

.]
E

ac
h

p
ar

ti
ti

on
as

on
e

b
lo

ck
H

om
e

an
d

ou
te

r
p
ar

ti
ti

on
in

g;
D

y
n
am

ic
,

2d
-h

as
h
in

g
to

sp
li
t

ov
er

si
ze

d
p
ar

ti
ti

on
s

C
an

d
id

at
e

fi
lt

er
s;

re
m

ov
e

m
ap

p
in

g-
p
h
as

e-
re

d
u
n
d
an

cy
G

ra
p
h
-p

ar
al

le
l
[M

al
h
ot

ra
et

al
.]

L
o
ca

li
ty

se
n
si

ti
ve

h
as

h
in

g
v
ia

M
in

-h
as

h
F

ir
st

lo
ad

in
g

a
gr

ap
h

to
sh

ow
th

e
b
lo

ck
in

g
re

su
lt

,
th

en
se

n
d
in

g
re

co
rd

s
to

b
u
ck

et
s

w
it

h
ve

rt
ex

es
;

R
C

P

F
ir

st
tr

an
sf

er
ri

n
g

re
co

rd
ID

th
en

re
al

re
co

rd
s

M
as

s
J
oi

n
[D

en
g

et
al

.]
S
ta

n
d
ar

d
b
lo

ck
in

g
G

re
ed

y
/r

an
d
om

st
ra

te
gy

;
M

u
lt

it
ok

en
s

in
st

ea
d

of
si

n
gl

e
to

ke
n
s

2-
p
h
as

e
ve

ri
fi
ca

ti
on

;
m

er
ge

ke
y
-

va
lu

e
p
ai

rs
;

li
gh

t-
w

ei
gh

t
fi
lt

er
u
n
it

;
st

ri
n
g

id
s

to
re

p
la

ce
st

ri
n
gs

D
C

S
+

+
M

R
-E

R
[G

om
es

M
es

tr
e

an
d

P
ir

es
]

D
C

S
+

+
[D

ra
is

b
ac

h
et

al
.

B
lo

ck
S
li
ce

r
T

ra
n
si

ti
ve

cl
os

u
re

3.2. Classification Based on Three Sets of Criteria 37

T
ab

le
3.

15
:

E
ffi

ci
en

cy
co

n
si

d
er

at
io

n
of

M
ap

R
ed

u
ce

-b
as

ed
en

ti
ty

re
so

lu
ti

on
(3

).

ID
B

lo
ck

in
g

D
a
ta

p
a
rt

it
io

n
in

g
&

L
o
a
d

b
a
la

n
ci

n
g

R
e
d
u

n
d

a
n
cy

h
a
n
d

li
n
g

S
or

t-
M

ap
-R

ed
u
ce

[M
a

et
al

.]
(M

u
lt

i-
p
as

s)
so

rt
ed

n
ei

gh
b

or
h
o
o
d

P
ar

ti
ti

on
u
si

n
g

p
re

se
t

fu
n
ct

io
n
s

N
ot

d
es

cr
ib

ed

S
A

X
[M

a
et

al
.]

S
A

X
re

p
re

se
n
ta

ti
on

s
as

b
lo

ck
in

g
ke

y
s

S
iz

e-
b
as

ed
p
ar

ti
ti

on
in

g
F

il
te

ri
n
g

u
si

n
g

P
A

A
an

d
S
A

X
F
A

C
E

T
[Y

an
g

et
al

.]
P

re
fi
x

an
d

le
n
gt

h
fi
l-

te
ri

n
g

N
ot

d
es

cr
ib

ed
R

em
ov

in
g

d
u
p
li
ca

te
p
ai

rs
u
si

n
g

ke
y

S
J
T

-b
as

ed
[L

iu
et

al
.]

S
J
T

in
d
ex

in
g

E
x
te

n
d
ed

E
F

M
gr

ap
h

p
ar

ti
ti

on
in

g
In

te
r-

n
o
d
e

co
m

p
ar

is
on

p
ru

n
in

g
H

ig
h

ve
lo

ci
ty

st
re

am
s

[B
en

n
y

et
al

.]
W

ei
gh

te
d
-g

ra
p
h
-

b
as

ed
b
lo

ck
in

g
P

ai
r-

b
as

ed
P

ru
n
in

g
gr

ap
h

of
b
lo

ck
in

g

D
is

-D
ed

u
p

[C
h
u

et
al

.]
M

in
-h

as
h

T
ri

an
gl

e
d
is

tr
ib

u
ti

on
A

vo
id

co
m

p
ar

in
g

re
d
u
n
d
an

t
p
ai

rs
M

et
a-

b
lo

ck
in

g
[E

ft
h
y
m

io
u

et
al

.]
T

h
re

e-
st

ag
e

M
et

a-
b
lo

ck
in

g
E

x
p
lo

it
in

g
th

e
p

ow
er

la
w

d
is

tr
ib

u
ti

on
of

b
lo

ck
ca

rd
in

al
it

y
th

en
ev

en
ly

p
ar

ti
ti

on
in

g
N

ot
d
es

cr
ib

ed

S
am

p
li
n
g-

b
as

ed
[C

h
en

et
al

.]
E

ac
h

p
ar

ti
ti

on
is

a
b
lo

ck
C

P
M

an
d

K
P

M
p
ar

ti
ti

on
m

et
h
o
d
s

to
ac

h
ie

ve
lo

ad
b
al

an
ci

n
g

R
an

ge
-o

b
je

ct
;

d
ou

b
le

-p
iv

ot
;

p
iv

ot
fi
lt

er
in

g;
p
la

n
e

sw
ee

p
-

in
g

M
S
J
L

[S
oh

ra
b
i

an
d

A
z-

go
m

i]
L

S
H

B
an

d
-b

as
ed

p
ar

ti
ti

on
in

g
N

ot
d
es

cr
ib

ed

K
N

N
-

D
P

[Z
h
ao

et
al

.]
L

S
H

/z
-v

al
u
e-

b
as

ed
D

y
n
am

ic
al

ad
ju

st
in

g
p
ar

ti
ti

on
in

g
N

ot
d
es

cr
ib

ed
F

S
-J

oi
n
[R

on
g

et
al

.]
In

ve
rt

ed
in

d
ex

;
p
iv

ot
-

T
oS

eg
m

en
ts

V
er

ti
ca

l
an

d
h
or

iz
on

ta
l

p
ar

ti
ti

on
in

g
S
tr

L
-;

S
eg

L
-;

S
eg

1-
;

S
eg

D
-

fi
lt

er
;

re
ve

rs
e

or
d
er

in
g;

re
co

rd
ca

n
on

ic
al

iz
e

G
ri

d
-b

as
ed

[J
an

g
an

d
C

h
an

g]
N

o
(V

ar
ia

b
le

-s
iz

ed
)

gr
id

p
ar

ti
ti

on
in

g;
d
en

si
ty

b
as

ed
lo

ad
b
al

an
ci

n
g

B
it

co
d
e

38 3. Overview and Classification of Parallel Entity Resolution Approaches

Table 3.16: Efficiency consideration of Spark-based entity resolution.

ID Blocking Data partitioning
& Load balancing

Redundancy
handling

DDUB[Dou et al.] Density-based
unsupervised

blocking

Randomly split the
dataset

Not described

ER of healthcare
data [Pita et al.]

Standard
blocking

Block-based Not described

DCS++ Spark-
ER [Mestre et al.]

DCS++
[Draisbach et al.]

Fixed input partition
size

Transitive clo-
sure

SAVD [Rong
et al.]

SAX aggregation Vertical partitioning Filtering to
prune FPs; tri-
angle inequality

RDD-based ER
[Chen et al.]

LSH; BKDRhash
function

Block-based Spark filter

Blocking

Blocking as an efficient technique to reduce the search space is considered by most
publications. Standard blocking, i.e., using a single attribute or combined/con-
catenated attributes as the blocking key, is most often considered because of its
simplicity and efficiency. Nevertheless, because of data quality issues, this ap-
proach may decrease effectiveness, and unevenly distributed key values may lead
to data skew. Therefore, other blocking methods, such as the sorted neighborhood
method [Hernández and Stolfo, 1995], q-grams [Navarro et al., 2000], inverted in-
dexes [Bell et al., 1999] and locality sensitive hashing [Indyk and Motwani, 1998],
are also used in the approaches. Particularly, PP-joins are used twice in the listed
approaches, which is a new blocking technique that exploits the ordering informa-
tion and can drastically reduce the candidate set sizes and, hence, improve the
efficiency [Xiao et al., 2011].

Except for the mentioned traditional blocking techniques applied as a single step,
to solve the data skew problem, two-step blocking is considered in some approaches.
Two-step blocking will be discussed as a method to solve the load balancing problem
in the following.

In this overview of parallel ER, we only present an overview on choices made in
existing publications for the blocking step in parallel ER, and we do not discuss the
details and the performance issues for different blocking techniques, as mentioned
above, [Papadakis et al., 2016] and Christen [2012a] provided more detailed discus-
sions and evaluations for existing blocking techniques [Christen, 2012a; Papadakis
et al., 2016].

Data partitioning

Most of the approaches presented did not discuss data partitioning in detail. They
partition and allocate the input data randomly or they first define blocking keys,

3.2. Classification Based on Three Sets of Criteria 39

then just assign each block to each processing unit without considering the load
balancing problem, which belongs to horizontal partitioning. According to [Kirsten
et al., 2010] the following three general types of horizontal partitioning strategies
can be distinguished:

• Size-based partitioning: evenly partitioning the input data to several subsets,
where the number of partitions should be smaller than the number of available
nodes.

• Pair-based partitioning: first, all pairs that need to be compared for the next
step are generated, then evenly dividing the record pairs into several subsets.

• Block-based partitioning: this method is designed especially for ER with block-
ing techniques. It distributes each block to one separate node. The method
is straightforward, but it suffers from a potential load unbalancing problem,
as blocks may differ in their sizes. A node with a big block will dominate the
runtime and drag down the entire parallel processing.

Except for the aforementioned three general methods to partition the data to each
node, Silva and Reed [2012] provided a partitioning method from a special perspec-
tive in [Silva and Reed, 2012; Silva et al., 2012]. They extended the QuickJoin ball
partitioning [Jacox and Samet, 2008] to partition the input dataset iteratively until
the sizes of all partitions of data fit a single node, then similarity comparison is only
needed to be done within a single node. This makes the QuickJoin ball partition-
ing become a blocking technique at the same time. Accordingly, their partitioning
method also belongs to the aforementioned block-based partitioning.

Another type of partitioning is vertical partitioning. As we can see from the ta-
bles concerning efficiency aspects of approaches, Rong et al. [2017, 2019] applies
vertical partitioning, which can get rid of workload imbalance problems and data
replications.

Load Balancing

As can be seen in the relevant tables, only a few of the presented approaches proposed
a specific load balancing strategy, but rather focus on other implementation aspects.
However, as explained above, load balancing is very important and is a factor that
can significantly influence the efficiency of parallel ER.

Among the approaches aiming to provide a balanced load, the majority of them con-
sider only the case due to the block size skew. Based on the publications referenced
in the tables, as well as other load-balancing-focused publications, we point out two
typical solutions for this type of imbalanced load.

• Prevention-based methods: This means generating blocks less than a pre-set
size. Oversized temporary blocks have to be divided into several sub-blocks
until all blocks have less than the pre-set size. Besides, in the presented ap-
proaches two minor techniques are used to optimize this method. One suggests
using a binomial tree structure to build (sub-)blocks [McNeill et al., 2012], the
other one is using a sliding window to lower the false-negative rate [Dal Bianco
et al., 2011].

40 3. Overview and Classification of Parallel Entity Resolution Approaches

• Remedying-based methods: When the input data and applied blocking strat-
egy lead to oversized blocks, some approaches suggest remedying this load
balancing problem by two kinds of solutions. The first solution is to divide
existing over-sized blocks into several sub-blocks to keep the number of com-
parisons of all blocks under the average reduce workload and then redivide
blocks to each reducer [Kolb et al., 2012b]. This solution appears to be sim-
ilar to prevention-based methods. However, since blocks have already been
generated, two steps are needed for this method. First, all block sizes should
be known. Then, the oversized blocks should be eliminated and very small
blocks may be combined. For the first step, an accurate or approximate data
structure is used to store the block distribution information. For the second
step, oversized block elimination can be done in a block-based or a pair-based
approach. In the block-based approach, the oversized blocks are directly di-
vided into smaller ones. In the pair-based approach, all the needed compared
pairs are calculated and evenly distributed across nodes.

Different approaches have been developed and a short overview is provided
in Table 3.17. To store the block distribution information, Kolb et al. proposed
to use a so-called Blocking Distribution Matrix (BDM). However, Yan et al.
pointed out that the scalability of the accurate data structure, such as BDM,
is limited. Therefore, they proposed to adopt a Sketch data structure called
FastAGMS sketch to approximately estimate the block size, which is scalable
because of the fixed size of sketch [Yan et al., 2013a].

To remove the bottleneck blocks, both BlockSplit [Kolb et al., 2012b] and
BlockSlicer [Gomes Mestre and Pires, 2013] are block-based. However, their
way to split the overpopulated blocks differs. BlockSplit considers each block
as m sub-blocks based on the m map input partitions. Because the record
in each sub-block needs to be compared to any other record in the same
or other sub-blocks, the comparisons of the original block is then split into
1
2
· m · (m − 1) + m parts (called match tasks in [Kolb et al., 2012b]). The

1
2
·m · (m− 1) part corresponds to those match tasks, whose records are from

two different sub-blocks. m comparisons are those match tasks, whose records
are in the same sub-block. While BlockSlicer designs the splitting differently.
It does not depend on the m input partitions. It first collects all records of
an overpopulated block together, then calculates the stop record, by adding
whose comparisons to the current comparisons the number of comparisons ex-
ceeds the average reduce workload. In this way, the splitting performance will
not be affected by the input partitions and the number of replicated records
is much smaller. After the bottleneck blocks have been removed with the
above-introduced splitting approaches, both of them use a greedy load balanc-
ing strategy to assign the re-organized blocks to reducers. With the greedy
strategy, BlockSplit and BlockSlicer can provide a balanced reduce load for
most cases. The cell-block division approach is also block-based [Yan et al.,
2013a], which is specially designed based on the cells of their sketch structure.

The authors of BlockSplit also proposed a pair-based approach called Pair-
Range. Compared to their BlockSplit approach, PairRange can generate a
more balanced workload but its additional overhead will deteriorate the over-

3.2. Classification Based on Three Sets of Criteria 41

Table 3.17: Classification of remedy-based load balancing strategies.

Statistic
Structure

Bottleneck
Blocks Removal

Proposed approaches

Accurate
Block-based

BlockSplit [Kolb et al., 2012b]
BlockSlicer [Gomes Mestre and Pires, 2013]

Pair-based
PairRange [Kolb et al., 2012b]
Multiple keys [Hsueh et al., 2014]

Approximate
Block-based Cell-block devision [Yan et al., 2013a]
Pair-based Cell-range devision [Yan et al., 2013a]

all execution time when the data set is relatively small [Kolb et al., 2012b].
Similarly, the authors of the cell-block division also proposed cell-range divi-
sion approach, which is pair-based and also specially designed based on the
cells of their sketch structure. However, due to the approximate estimation
block sizes and their splitting strategies, the reduce workload imbalance can-
not be ignored. Another approach considers the blocking case with multiple
keys, whose bottleneck block removal strategy is pair-based. It first generates
all pairs based on the result of blocking, then assigns record pairs numbers
to count and mark them, last sends them to reducers in a round-robin fash-
ion [Hsueh et al., 2014].

For the latter type of load imbalance due to processing skew, Rong et al. [2012]
propose a simple approach for record attributes that are strings by considering the
lengths of strings, because their similarity calculation is directly related to strings
lengths. The records in each processing unit should contain similar distribution in
terms of string lengths. Compared to the load imbalance caused by block skew,
much less attention has been paid for the processing skew in ER, which should be
more considered in future research.

Redundancy handling

In the five tables on efficiency (Table 3.12, Table 3.13, Table 3.14, Table 3.15, and Ta-
ble 3.16), measures for redundancy handling are listed in the last column. When
developers design a new workflow for ER, possible optimizations can be inspired by
those measures, and we will classify them into four categories. Specific approaches
mentioned in the tables may be useful and can be directly applied to other applica-
tions to improve the performance. We categorized those measures into the following
types:

1. Measures to remove redundant comparison pairs caused by overlapping be-
tween blocks: These measures deal with redundant or unneeded comparisons
due to the overlapping of blocks that are generated, where common pairs
should be detected and compared only once. Existing methods to handle this
redundancy can be found in the following publications: [Benjelloun et al., 2007;
Das Sarma et al., 2014; Deng et al., 2014; Fries et al., 2014; Jang and Chang,
2018; Kolb et al., 2012a,c; Rong et al., 2012; Seidl et al., 2013; Yang et al.,

42 3. Overview and Classification of Parallel Entity Resolution Approaches

2016]. The shared idea to solve this problem is first identifying all candidate
blocks of a record pair, then choosing the block with the smallest block ID to
be responsible for comparing the pair.

2. Transitive closure: With transitive closure, a record pair can be directly iden-
tified as match or non-match without a comparison between them, if they
can be deduced with two rules we explain next. The first one is the deduced
match case: If we know record pairs (a,b) and (b,c) are both matching pairs,
then we deduce that the pair (a,c) is also a matching pair. The second one is
the deduced non-match case: If we know the record pair (a,b) is a matching
pair and the other record pair (b,c) is a non-matching pair, then we deduce
that the pair (a,c) is a non-matching pair. Mestre et al. [2017] have applied
the transitive closure during the step of pair-wise comparison to reduce the
number of record pairs that need to be compared [Gomes Mestre and Pires,
2013; Mestre et al., 2015, 2017]. To be noticed, for the similarity calculation
in the vector space, the triangle inequality can be similarly employed to avoid
unnecessary computations [Rong et al., 2019].

3. Further pruning techniques: There is a variety of other pruning technologies
used to reduce the number of record pairs that address different aspects of the
input data, processing frameworks, etc., for which the details can be found
in [Benny et al., 2016; Chen et al., 2017; Das Sarma et al., 2014; Deng et al.,
2014; Efthymiou et al., 2017; Fries et al., 2014; Jiang et al., 2013; Liu et al.,
2016; Ma et al., 2016; Rong et al., 2012, 2019; Seidl et al., 2013].

4. Avoiding the transfer of unnecessary data: All of the above three categories
are used to reduce the number of required comparisons. But redundancy
may also refer to the communication effort between different processors or
nodes for transferring unnecessary data. Malhotra et al. [2014] and Deng et al.
[2014] introduced their measures to avoid unnecessary communication cost,
which transfers record IDs instead of records themselves to reduce the over-
head. Baraglia et al. [2010] used the broadcast to reduce the communication
overhead.

5. Reducing shuffling cost: In parallel computation, shuffling is a very expensive
operation. In some research, there are also some approaches to reduce the
shuffling cost. [Rong et al., 2012] propose record canonicalization to generate
a new record instead of appending all prefix tokens to the original record
to reduce the shuffling cost. Lu et al. [2012] propose geometric and greedy
grouping strategies to reduce the number of replicas, which can lower both
shuffling and computation cost.

This list of types does indicate further optimization potential for existing approaches,
through adding and studying the impact of redundancy elimination techniques. Our
categorization of types may serve as a guideline to consider for adopting redundancy
elimination or developing new approaches.

3.3. Open Challenges 43

3.3 Open Challenges

From the descriptions in the previous sections, it is obvious that currently there are
many ongoing research activities in the field of parallel ER. Partly building on estab-
lished solutions, like using Parallel DBMS, partly being inspired by the availability
of new parallel programming frameworks developed to support Big Data and Cloud-
scale data processing. Many interesting specific solutions were developed, which
often complement each other, but sometimes address contradicting requirements of
divergent applications.

Even considering the presented scale of available solutions, from our point of view,
several questions remain open for future solutions in parallel ER:

• Choosing a suitable big data processing framework: As outlined before, there
was no systematic analysis of the required properties of a framework. Hadoop
MapReduce was mostly used because it was popular and allowed some im-
provement. So far, based on our SLR results, there was only five research
using Apache Spark. It is said to be able to run programs up to 100 times
faster than Hadoop MapReduce in memory, or 10 times faster on disk2. This
and other criteria indicate possible room for improvement in terms of effi-
ciency. It also integrates SQL library, MLlib, Graph library to its core, which
provides more implementation options with available low-level and high-level
APIs and more convenience to do learning or graph-based research for ER.
Except for Hadoop MapReduce and Apache Spark, there have been other new
frameworks as well, e.g., Apache Flink [Carbone et al., 2015; Friedman and
Tzoumas, 2016]. Facing these available implementation options, it needs to
be studied which one is the best option needs to be studied. Although the
corresponding choice may depend on the specific application scenarios, com-
parisons between different implementations in terms of efficiency can provide
guidance to make the decision.

• Load balancing strategies for block-skewed ER: As briefly introduced in Sec-
tion 3.2.3, the existing load balancing strategies have certain drawbacks. New
load balancing strategies are required to provide stable and robust solutions.

• Blocking techniques for large-scale data Some familiar blocking techniques such
as canopy clustering [McCallum et al., 2000], iterative blocking [Whang et al.,
2009], are not deeply studied in parallel ER and new blocking techniques may
be developed for large-scale data.

• Classification: For the classification step, learning-based approaches have been
widely used. On the one hand, because the vast majority of research in parallel
ER only considers threshold-based classification, learning-based classification
should be more explored along with the development of machine learning li-
braries in distributed environments. On the other hand, learning-based clas-
sification requires sufficient training data to provide reasonable effectiveness,
which is labeled by humans. The human cost is often expensive. Therefore,

2http://spark.apache.org/

44 3. Overview and Classification of Parallel Entity Resolution Approaches

techniques such as active learning should be more studied for ER to reduce
human effort.

• Graph-based parallel ER: Based on our results, there is only little research on
this area [Herschel et al., 2012; Kardes et al., 2013; Malhotra et al., 2014]. How-
ever, when relationships between records are available, by considering these re-
lationships with graph-based approaches, parallel ER can benefit from it and
improve the effectiveness while improving the performance by parallelism. The
research on graph-based parallel ER can turn to some graph processing sys-
tems, such as GPS [Salihoglu and Widom, 2013] and Pregel [Malewicz et al.,
2010]. It can benefit domains like the management of scholarly publications.

• Learn from each other: As we can see from the research between general ER
and similarity joins, although they are quite similar, they have different fo-
cuses. ER pays much attention to the blocking step, while the research on
similarity joins proposes many filtering strategies to further improve efficiency.
Particularly, in kNN related research, dimension reduction has been well stud-
ied. The general ER research should consider how to handle multi-dimensional
data as well, since it is more challenging than low-dimensional data.

• Factors affecting the efficiency of parallel ER: For serial ER, the majority of
the time used for an ER process is the similarity calculation part, which is
also applied to parallel ER. However, for parallel ER, to reduce the runtime
for calculating similarities given a candidate pair set, a more balanced load
between different nodes is the key point. Along with ever-increasing data
volume, load balancing strategies are always an important topic. Besides, in a
distributed environment, the shuffling cost is another important factor, which
can influence the efficiency much. Existing research only slightly tackled this
part by reducing the data size of shuffling. Reducer assignments by considering
locality can be studied to reduce the shuffling cost.

• Task parallelism: No research except [Santos et al., 2007] discusses task par-
allelism. However, since each step needs time to process large-scale data, task
parallelism is suitable for ER to reduce its entire processing time and through-
put. Therefore, more research should be expected on task parallelism of ER.

3.4 Related Classifications and Surveys

In this section, we discuss related classifications surveys in terms of ER. As men-
tioned before, the research on ER in computer science has already a long history
since the 1960s. There have been many surveys published, which address different
aspects of the traditional ER and will be presented first. Afterward, the related
work focuses on ER solutions to solve the challenges big data has brought.

Classifications and Surveys on Traditional ER:

The following surveys come down to broad aspects of the ER problem. Gu et al.
[2003] described a record linkage system design and summarized common techniques
used in each key system component, such as blocking, comparison, decision model,

3.4. Related Classifications and Surveys 45

etc. Besides, they provided new alternatives to implement these components and
compared them to previous algorithms. Elmagarmid et al. [2007] gave a thorough
analysis of approaches on duplicate record detection, which specifically includes
techniques used to match records with a single attribute or multiple attributes,
techniques for improving the efficiency and scalability of approximate duplicate de-
tection algorithms, and a few commercial tools used in the industry. They also briefly
discussed some open problems. Winkler [2006] touched on data preprocessing, pair-
wise comparison, and classification steps of ER and concluded existing research for
each step. Besides, he also discussed approaches for automatic estimation of error
rates, utilizing auxiliary information or creating functions and metrics to assist and
improve matching, etc. Getoor and Machanavajjhala [2012, 2013] gave tutorials
on ER, discussed existing solutions, current challenges, and open research problems
for ER from various fields, including databases, machine learning, natural language
processing, and information retrieval.

The following two articles focus on approaches to calculate similarities, although
other aspects are also briefly covered. Brizan and Tansel [2006] first summarized
distance matching techniques, then analyzed time complexity and the coverage of the
constituent tuples for different applications including brute force, canopy, bucketing,
hierarchical, data ming and mutual decision applications, and ways to apply them
for different scenarios. Koudas et al. [2006] reviewed existing approximate matching
predicates, which calculate the similarities between two data records. Besides, they
concluded the pruning mechanisms to reduce the number of records pairs that need
to be calculated and discussed possible ways to cluster data.

Christen [2012a] focused on indexing techniques used in ER and gave a detailed
discussion of six techniques with a total of twelve variations of them. This in-
cluded a theoretical analysis of their complexity and empirical evaluation of these
techniques. Papadakis et al. [2016] focused also on blocking (also called indexing)
techniques used in ER, which has the same focus as [Christen, 2012a]. They first
classified 17 state-of-the-art blocking methods into lazy blocking, block-refinement,
comparison-refinement, proactive blocking categories, and then empirically evalu-
ated them on six popular real datasets and six established synthetic datasets.

Köpcke and Rahm [2010] compared and evaluated 11 proposed frameworks for ER.
The comparison criteria adopted in this work can also be used to assess other frame-
works. After the theoretical comparison of 11 frameworks, experimental evaluations
were also provided to measure the effectiveness and efficiency of frameworks.

For ER’s tightly related topic similarity join, there are also empirical comparisons
and evaluations available. Jiang et al. [2014] gave a comprehensive survey on 14
string similarity joins. They first classified all algorithms into different categories
based on the used filtering and verification techniques by different algorithms, then
they provided experimental comparison results to compare the performance of dif-
ferent algorithms in different scenarios (including various input datasets with dif-
ferent properties, different similarity functions, etc). They ordered the compared
algorithms in terms of efficiency under the aforementioned scenarios. Mann et al.
[2016] conducted extensive experiments on seven set similarity join algorithms, which
adopt a filter-verification approach. They pointed out that most of the approaches

46 3. Overview and Classification of Parallel Entity Resolution Approaches

put more effort into the filtering techniques to improve efficiency than the verifica-
tion part, which cannot bring much efficiency improvement as expected. And more
attention to the verification part should be paid.

Classifications and Surveys on ER for Big Data:

In recent years, along with the era of big data, there have been a large number
of papers and articles that study ER for big data. Correspondingly several survey
papers and tutorials exist in this area.

Christophides et al. [2019] provide an in-depth survey on ER techniques dealing
with the challenges big data brings to it, especially focusing on blocking, filtering,
matching, and clustering aspects of the batch, budget-agnostic ER. For blocking and
filtering, they considered the non-learning and learning-based approaches for struc-
tured and semistructured data respectively. For the matching part, they discussed
different matching methods based on schema-awareness, nature of comparisons, and
algorithmic foundations. Besides, they also covered several special topics of ER in-
cluding budget-aware ER, incremental ER, crowdsourcing ER, rule-based ER, and
temporal ER. At last, open-source ER tools are also examined in their survey. El-
Ghafar et al. [2017] provides a short overview of the approaches proposed to solve
the volume challenge that big data brings to ER. They briefly discussed several
important approaches, concluded the basic solutions to solve the volume challenge
(partitioning data for parallel computation and applying MapReduce programming
model), and proposed that research on load balancing strategies is required.

Vatsalan et al. [2018] gave an overview of big data issues in the special area of
privacy-preserving ER. They proposed an analysis tool for analyzing, reviewing, and
comparing existing approaches for PPRL and used their tool to conclude existing
algorithms, focusing on the computational aspects, which are crucial for big data.

Gal [2014] gave a tutorial on ER, and he presented models and algorithms used for
uncertainty in ER and exposed current challenges and future research directions.
Another tutorial given by Papadakis and Palpanas [2016] focused on blocking-based
ER, which includes not only some traditional blocking strategies but also the block-
ing techniques that have been developed for large-scale, heterogeneous data and web
data.

For similarity join, Al-Badarneh [2019] concludes different types of join operations,
which are implemented with the programming model MapReduce. Several important
elements in the join operations including preprocessing, prefiltering, partitioning,
replication, and load balancing, have been overviewed and discussed. Fier et al.
[2018] experimentally compared ten MapReduce-based set similarity joins on 12
datasets with different characteristics. Surprisingly, their results show that all ten
approaches failed to scale for at least one dataset, some of them even cannot work
for small datasets. They analyzed the reasons to explain the poor performance of
compared approaches and conducted more experiments to confirm their analysis.
Based on those observations, they suggested some future research directions.

Based on the introduction of existing overviews and surveys on ER, we can see that,
despite the importance of the research on parallel ER facing the big data volume

3.5. Summary 47

challenge and its prosperous stage, no survey focusing on parallel ER exist. To
supply this gap, we conducted an SLR on parallel ER and reported our results.
We hope this comprehensive overview and classification can reflect state-of-the-art
research on parallel ER and also provide guidance on its future research.

3.5 Summary

In this chapter, we presented an overview and classification of publications on parallel
ER based on three sets of criteria: general-aspect, effectiveness-based and efficiency-
based criteria. General-aspect criteria include the specific operation types, number
of input sources, and the input data type, which do not relate to any specific algo-
rithms and indicate some fundamental considerations. Effectiveness-based criteria
involve those criteria, whose purpose is to make ER more accurate, including data
preprocessing, similarity function, match mode, and clustering. Efficiency-based cri-
teria are the most important ones for parallel ER, which pursues reduced runtime,
which include technologies used in blocking, data partitioning, load balancing, and
redundancy handling. For those, we illustrated the most critical research questions:
Which possible ways exist to efficiently partition data? As distributions of block-
ing keys may be uneven, which leads to data skew problems in parallel ER, how
to balance the workload after the blocking step? Which specific measures can be
taken into consideration to improve efficiency further? At last, we also discussed
important open issues in the area of parallel ER.

48 3. Overview and Classification of Parallel Entity Resolution Approaches

4. Exploration on Performance
Impacts of Different
Implementations for
Spark-Based Entity Resolution

This chapter shares material with the BDAS’18 paper “Exploring Spark-
SQL-Based Entity Resolution Using the Persistence Capability” [Chen
et al., 2018c] and the DEXA-BDMICS’18 paper “Performance Compar-
ison of Three Spark-Based Implementations of Parallel Entity Resolu-
tion“ [Chen et al., 2018a].

Among 4Vs of big data, data volume is the most intuitional character. The expo-
nential growth of data raises the need for faster data analysis and processing speed.
As introduced in the previous chapters, Entity Resolution (ER) as an intrinsic time-
consuming task conforms to this requirement and parallel processing has been widely
used to improve its efficiency and scalability. To implement parallel ER, there have
been two main research directions so far: the first one is with parallel DBMSs,
such as D-Swoosh [Benjelloun et al., 2007] and P-Swoosh [Kawai et al., 2006], while
the other way is to employ a distributed computation framework to help with the
implementation. The solution of using a parallel DBMS proposed more than two
decades ago has some shortcomings for individuals or small and medium-sized enter-
prises with ER tasks. Parallel DBMSs are expensive [Stonebraker et al., 2010] and
cannot operate in a heterogeneous environment and have very limited fault toler-
ance [Abouzeid et al., 2009]. As a result, users with limited budgets and strong fault
tolerance requirements find it difficult to solve their ER tasks in parallel with a par-
allel DBMS. The second solution: employing a distributed computation framework
has become very popular in recent years, since most frameworks are open-source,
free to use, and also provide straightforward programming models to ease distributed
programming. Based on our analysis of existing parallel ER approaches, the major-
ity of approaches use the low-level APIs of Hadoop MapReduce or Apache Spark to

50
4. Exploration on Performance Impacts of Different Implementations for

Spark-Based Entity Resolution

implement their parallel ER. They choose one implementation option randomly or
based on their own preferences without considering the performance effects different
implementation options may bring. Moreover, there has not been existing research
to show the efficiency of different options, which can guide their choices. Under this
situation, the chosen option may not provide the best efficiency for parallel ER.

To expose the performance impacts that different implementations with the big data
processing frameworks may bring, in this chapter, we make a comparison study by
exploring different implementation options withApache Spark as representatives of
big data processing frameworks for implementing two common ER scenarios. Our
main contributions are concluded as follows:

• We considered two scenarios of a common ER process and implemented them
using three Spark APIs1, respectively.

• We analyzed the ER process and designed different persistence options for
Scenario 1, which may get benefits from persistence.

• We conducted experiments on both synthetic and real datasets and discuss the
corresponding results.

The rest of this chapter is structured as follows: In Section 4.1, we introduce the
two common ER scenarios we considered for evaluating the efficiency of different im-
plementations and the corresponding Spark-based ER workflow. In Section 4.2, we
present the details of different implementation options with Apache Spark. In Sec-
tion 4.3, we introduce the experiments we conducted and discuss the corresponding
results. In Section 4.4, we describe related work. At last, a summary of the whole
chapter is provided in Section 4.5.

4.1 Entity Resolution Scenarios Used for Com-

parison

For our comparison study, we consider two ER scenarios: one is the common pair-
wise ER process introduced in Chapter 2 with the evaluation step (Scenario 1)
and one is the common pair-wise ER process introduced in Chapter 2 without the
evaluation step (Scenario 2). The reason why we consider both scenarios is two-fold.
On the one hand, two processes stand for two kinds of use cases. In some cases,
people are concerned about only an approximate result of which records refer to the
same entity without the need for knowing the exact precision and recall. Another
case is without available ground truth, it is not possible to have the evaluation step.
These two cases lead to an ER process without an evaluation step. For other cases,
in which people need to know the result quality of ER and the ground truth is
available, they lead to the ER process with an evaluation step. From a technical
perspective, an ER process with an evaluation step involves the case of data reuse,
while the process without an evaluation step does not involve data reuse. We want
to know how data reuse affects the performance of different implementations.

1The source code and the datasets can be found at https://git.iti.cs.ovgu.de/Chen/
entity-resolution-for-big-data.

https://git.iti.cs.ovgu.de/Chen/entity-resolution-for-big-data
https://git.iti.cs.ovgu.de/Chen/entity-resolution-for-big-data

4.1. Entity Resolution Scenarios Used for Comparison 51

(a) Reduction ratio. (b) Pairs completeness.

Figure 4.1: Blocking evaluation for blocking-key 1 and 2.

As mentioned above, for both scenarios, their first four steps are the same and
follow a common ER process introduced in Chapter 2. Since the purpose of our
research is to explore the efficiency of using different implementation options of big
data processing frameworks to complete ER tasks, in general, we choose algorithms,
strategies and corresponding parameters to conform to the tenet of high efficiency,
but on the premise of satisfactory effectiveness. In the following, we introduce the
first four steps of both scenarios in detail:

• Data Preprocessing: In this step, we reduce the distracting information by two
common data cleaning methods: First, we remove characters or tokens that
are useless or negative for the subsequent steps. Then, we fill those null values
with “0”.

• Blocking: Our blocking step applies standard blocking, which is straightfor-
ward and efficient, but able to achieve reasonable Reduction Ratio (RR) and
Pairs Completeness (PC) by choosing a suitable blocking key. It is a trade-off
to choose a more general or more specific blocking key based on the require-
ment for RR and PC. In our implementation for datasets with personal infor-
mation, we experimentally tested two blocking keys. Because we define our
blocking keys relating to names, we first apply a phonetic encoding function:
Double-Metaphone on attributes“surname”and“given name”, which performs
well not only on English names but also on European or Asian names. With
this algorithm, letters that share a similar pronunciation are transformed to
the same representation to handle common transcription mistakes that peo-
ple might make when recording information based on what they hear from
speakers. After “surname” and “given name” are encoded, the first blocking
key option is to concatenate the first two letters of the encodings followed by
the first two numbers of attribute “postcode”, while the second blocking key is
only the concatenation of the first two letters of the encodings. As we can see
from Figure 4.1, with the first more specific blocking key, the search space for
pair-wise comparison was reduced by a factor of more than 5000 but around a
quarter of true record pairs have been lost before the real comparison (PCs are
around 75%). With the second more general blocking-key, the search space for
pair-wise comparison is able to be reduced by a factor of 3000, which is almost
two times more than the search space with the first blocking-key. However, in
this case, a much higher PC can be achieved (for different datasets, PCs are

52
4. Exploration on Performance Impacts of Different Implementations for

Spark-Based Entity Resolution

0.00

0.20

0.40

0.60

0.80

1.00

5% 10% 20% 50%

P
re

ci
si

o
n

Duplicate Percentage

Precision with Threshold 0.7

10_4 10_5 10_6

(a) Threshold 0.7.

0

0.2

0.4

0.6

0.8

1

5% 10% 20% 50%

P
re

ci
si

o
n

Duplicate Percentage

Precision with Threshold 0.75

10_4 10_5 10_6

(b) Threshold 0.75.

0

0.2

0.4

0.6

0.8

1

5% 10% 20% 50%

P
re

ci
si

o
n

Duplicate Percentage

Precision with Threshold 0.8

10_4 10_5 10_6

(c) Threshold 0.8.

Figure 4.2: Precision with different thresholds.

between 94.4% and 98.8%) and only a few true pairs have been lost before the
pair-wise comparison step. Since PC of the first blocking key is not satisfac-
tory, we choose the second one, which is a balanced solution for both RR and
PC.

• Pair-wise Comparison: Almost all datasets have more than one attribute.
Therefore, similarity functions need to be performed on each attribute to get a
total comparison score afterward. Similarity functions should be chosen based
on the attributes properties. In our case, we applied Jaro-Winkler distance
for such attributes that are strings (including number strings), because Jaro-
Winkler is proved to be a good and efficient edit-distance metric for short
strings, such as for name matching [Cohen et al., 2003]. While for attributes
that are numerical values, absolute difference functions are chosen because of
their simplicity and understandability.

• Classification: In the classification phase, we classified each record pair to
match or non-match based on the similarity scores of their attributes using a
threshold-based method, which sums up all similarity scores to a total score
and judges whether the score is higher than the threshold or not. If the score of
a pair is higher than the threshold, this pair would be recognized as a match-
ing pair. The difficulty in this step is how to choose a suitable threshold.
Similar to the method of defining the blocking key, for our comparison study,
the threshold is also determined by evaluating different thresholds. We have
tested three different thresholds (0.7, 0.75, and 0.8) with different datasets
and according to the ground-truth, we judged whether a threshold is good or
not. As we can see from the results in Figure 4.2, for all datasets, with a
higher threshold, precision is also improved. On the contrary, recall is reduced
with a higher threshold (see Figure 4.32). The reason behind is that a higher
threshold leads to fewer matches and more non-matches. F-measure, as ex-
plained in Chapter 2, is a trade-off between precision and recall, and we take
it as our standard to make the final decision. Figure 4.4 shows the F-measure
results. For Datasets with 104 and 105, 0.75 is determined as the threshold.
For Datasets with 106, 0.8 is determined as the threshold.

For Scenario 1, we evaluate the common metrics of effectiveness - precision, recall,
and F-measure in its evaluation step. Next, we present how data is processed for a
parallel ER process in Spark.

2The y-axes used in different sub-figures vary to clearly show the results.

4.1. Entity Resolution Scenarios Used for Comparison 53

0.99

0.992

0.994

0.996

0.998

1

5% 10% 20% 50%

R
ec

al
l

Duplicate Percentage

Recall with Threshold 0.7

10_4 10_5 10_6

(a) Threshold 0.7.

0.96

0.97

0.98

0.99

1

5% 10% 20% 50%

R
ec

al
l

Duplicate Percentage

Recall with Threshold 0.75

10_4 10_5 10_6

(b) Threshold 0.75.

0.75

0.8

0.85

0.9

0.95

1

5% 10% 20% 50%

R
ec

al
l

Duplicate Percentage

Recall with Threshold 0.8

10_4 10_5 10_6

(c) Threshold 0.8.

Figure 4.3: Recall with different thresholds.

0.00

0.20

0.40

0.60

0.80

1.00

5% 10% 20% 50%

F-
M

ea
su

re

Duplicate Percentage

F-Measure with Threshold 0.7

10_4 10_5 10_6

(a) Threshold 0.7.

0.00

0.20

0.40

0.60

0.80

1.00

5% 10% 20% 50%

F-
M

ea
su

re

Duplicate Percentage

F-Measure with Threshold 0.75

10_4 10_5 10_6

(b) Threshold 0.75.

0.00

0.20

0.40

0.60

0.80

1.00

5% 10% 20% 50%

F-
M

ea
su

re

Duplicate Percentage

F-Measure with Threshold 0.8

10_4 10_5 10_6

(c) Threshold 0.8.

Figure 4.4: F-measure with different thresholds.

Parallel Data Processing of ER with Spark Figure 4.5 shows the steps for a
Spark-based parallel ER and how the input data is transformed and processed to
get the final ER results. The input datasets are located in HDFS or a connected
database. As the starting step, the datasets are loaded into Spark and divided into
a number of partitions. Data in the same partition will be processed by the same
executor of Spark, and data in different partitions can be parallelly processed. Then
with the preprocessing step, input data is transformed to preprocessedData by re-
moving stop words and null values. Afterward, preprocessedData is transformed to
withKeyData, because in the blocking step, the blocking key is generated and ap-
pended to preprocessedData. Subsequently, candidate pairs named recordPairData
are generated through a join operation with the blocking key as the join attribute.
For this step, data with the same blocking key from different partitions is placed to-
gether and relocated to a new partition, which causes shuffling. Next, similarities are
calculated between attributes of all candidate pairs using preset similarity functions.
Since the used classification is threshold-based, similarity scores of all attributes are
summed up and stored as totalScoreData. With the classification step, each record
pair is classified into a matching or non-matching pair by adding this information
to totalScoreData, and resultData is obtained and saved back to the HDFS or the
connected database.

For Scenario 1, extra steps for the evaluation step need to be done. For research
purposes, synthetic datasets are often used due to the convenience to control their
sizes and properties, and the ground truth used for synthetic may be contained by
their IDs. For example, the ID of the synthetic dataset we used in our experi-
ments is named rec-ID number-org for an original record and rec-ID number-dup-
duplicates number for a duplicate based on the original record. For the first group of
records, the original record is called “rec-0000-org” and its duplicate records are “rec-
0001-dup-0”, “rec-0001-dup-1”, etc. Therefore, for the evaluation step, we transform
the resultData to evaluationData by removing the extra information and remaining

54
4. Exploration on Performance Impacts of Different Implementations for

Spark-Based Entity Resolution

Figure 4.5: Spark-based ER.

the ID number for all records. If the left two ID numbers of a record pair are equal
and their matching result is match or non-match, this record pair is a True Positive
(TP) or a False Negative (FN) respectively. Otherwise, if the left two “ID numbers”
of a record pair differ from each other, this record pair is a True Negative (TN) for
a non-matching pair result or a False Positive (FP) for a matching pair result. In
this way, the number of TPs, FPs, and FNs are counted and used for the calculation
of the evaluation results of precision, recall, and F-measure values. For the other
common case, the ground truth is usually stored in an extra file with both IDs of a
record pair and their true match or non-match fact. In this case, the ground truth file
should be joined with the obtained resultData, and then according to the obtained
match or non-match results and true match or non-match facts, all record pairs are
classified into TPs, FPs, TNs, and FNs. Subsequently, similar to the former case,
the number of TPs, FPs, and FNs are counted and used for evaluation.

4.2 Three Spark-Based Implementations for Par-

allel Entity Resolution

In this section, we introduce our three Spark-based implementations for the above-
introduced ER process. The three implementations differ from each other due to
the Java API they employ. As introduced in Chapter 2, there are three Java APIs
in Apache Spark: the low-level RDD API in Spark core and two structured high-
level APIs: the DataFrame API and the Dataset API. Therein, DataFrame and
Dataset APIs have been unified to Dataset API in version 2.0 for ease of learn-
ing, in which DataFrame was considered as a special Dataset with a row type and
renamed to Dataset<Row>. Nonetheless, for ease of expression in this thesis, we
still use DataFrame API to stand for API of Dataset<Row>, while Dataset API
means Dataset<T> API not including the special Dataset<Row> API. The differ-
ence between Dataset API (Dataset<T>) and DataFrame API (Dataset<Row>)
is explained in the following. The return type of all SQL queries or SQL-like op-
erations is Dataset<Row>, i.e., DataFrame, our DataFrame-based implementation
is actually an SQL-based implementation. For our Dataset-based implementation,
after we loaded the data as Dataset<T>, we do not use any API of Dataset<Row>,
but other possible APIs for the general Dataset<T>.

4.2. Three Spark-Based Implementations for Parallel Entity Resolution 55

4.2.1 Step-Wise Introduction of Implementation Details with
Three APIs

Based on the data transformation steps described in Figure 4.5, we will introduce
in the following how the steps are implemented with three Spark APIs.

Initializing Spark and Loading data into Spark (see Listing A.1 and List-
ing A.2): For the RDD-based implementation, SparkContext is first generated to
allow the access to the Spark cluster with the help of the resource manager. Then
the input dataset is loaded into Spark through SparkContext ’s textfile method as an
RDD abstract in the String type. For Dataset and DataFrame, instead of gener-
ating SparkContext, SparkSession is used for initializing Spark. Dataset loads data
into Spark by the textfile method under SparkSession’s read method. DataFrame
can directly load data through its general load method or specific methods designed
such as for loading CSV, JSON, Parquet files.

Preprocessing (see Listing A.3): To implement the preprocessing step includ-
ing the explained two common data cleaning steps, a map operation is used for
RDD-based implementation. In this map operation, the RDD in the String type is
transformed to our self-defined record type (JavaRDD<Record> input), which has
all attributes and blockingKey fields and corresponding methods to enable the use
of the required operations in the later steps. Unwanted characters or tokens are
removed and null values are replaced using common methods for editing strings.
As introduced in Section 2.3.1, to keep the advantages of RDD’s type-safety and
DataFrame’s automatic optimizations, Dataset API is proposed. From the perspec-
tive of programming, for type-safety, the implementation with Dataset API is similar
to the RDD implementation. Self-defined types are used to enable the use of the
required operations. Due to the necessity of using Encoder to convert a JVM ob-
ject of type T to the internal Spark SQL representation, corresponding types need
to be defined for each object with different fields. In this way, more types need
to be defined than using RDD API. For our ER process, specialized types for the
original input record, record with a blocking key, the record pair data after join,
data with separated scores, and calculated total score, result data, and evaluation
data are defined. Similar to the RDD implementation, the transformation from a
step to the next is implemented using map operations and procedures included in
transformations are implemented using self-defined functions as well. These imple-
mentation methods are also the same for the following steps, and we will omit the
same explanation for them. For DataFrame, the preprocessing step can be easily
implemented with a replace method to remove useless characters or tokens, and a
fill method from Class DataFrameNaFunctions of Spark SQL package to fill those
null values with “0”.

Blocking key generation (see Listing A.4): To generate the blocking key for
records, a map operation is also used for RDD-based implementation, the block-
ing key is generated using self-defined functions and then is set to the record RDD
(JavaRDD <Record> withKeyData). Regarding the blocking process in Spark SQL,
we first created a temporary view based on the pre-processed data and then ap-
pended a new column named “blocking key” to the view using an SQL query.

56
4. Exploration on Performance Impacts of Different Implementations for

Spark-Based Entity Resolution

Join for generating record pairs (see Listing A.5): For RDD-based implemen-
tation, to get candidate record pairs using the join method from PairRDDFunctions,
a mapToPair operation transforms withKeyData from the type JavaRDD<Record>
to JavaPairRDD<String, Record> by making the blocking key as the key and the
record value as the value for the (key,value) pair. Then the join method performed
as a self-join is applied to JavaPairRDD<String, Record> withKeyPairData and a
filter operation is used to remove duplicate record pairs by only keeping the pairs,
whose first record ID is smaller than the second ones. Because the blocking key as
the key of the (key, value) pair is no more useful, a map operation transforms record-
PairData from the type JavaPairRDD<String, Tuple2<Record, Record>> record-
PairData back to JavaRDD(Tuple2<Record, Record>). To perform the similarity
calculations for the record pairs, a TupleRecord class is defined to contain two records
attributes of all record pairs. For Dataset-based implementation, the join operation
in the Dataset API is implemented with its method called joinWith and it does not
allow self-join. For DataFrame, we performed a self-join on the current view using
an SQL query as well, in which “blocking key” is used as the join attribute and
record tuples join other tuples only if their attribute “id” value is bigger than those
of other tuples as a join condition. This avoids generating record pairs repeatedly.
In the meanwhile, we renamed all attribute names of the right record and deleted
attribute “blocking key”, which is no longer needed for our application. In this way,
we can get all record pairs that need to be compared and each pair is represented
as a tuple.

Similarity calculation and classification (see Listing A.6): For RDD-based
implementation, totalScoreData with the type of JavaRDD<TupleRecord > is ob-
tained continuing through a map operation with user-defined similarity calculation
functions. At last, resultData is collected by transforming totalScoreData with a
map operation to perform the threshold-based classification and saved to HDFS or
a connected database with the saveAsTextFile method. For Dataset-based imple-
mentation, it is similar to RDD-based implementation. For saving the result, the
function to save CSV files can be used. Regarding the DataFrame-based implemen-
tation, we can define required similarity functions through user-defined functions in
Spark SQL to get their similarity scores on each attribute and get the total score
by summing them up. To avoid transferring unnecessary information, the selection
method is used to only keep the necessary data columns. Similar to this step, the
classification step is also implemented by defining a classification function through
user-defined functions. After matching or non-matching status is obtained, we ap-
pended this result as a new column in Spark SQL with the withColumn method and
write back to HDFS or the connected database.

Evaluation (see Listing A.7): For RDD-based implementation, to evaluate the
matching results, recordsID attributes of resultData is cleaned by removing extra
characters and showing the ground truth and transformed to evaluationData within
a map operation. Then TPs, FPs, FNs are counted with RDD’s count method
to calculate percison, recall, and F-measure results. Then the results are saved to
HDFS or other connected databases with their corresponding methods, for example,
to save results in HDFS, a file is first created and evaluation results are written to it
with available methods of HDFS. The Dataset-based implementation is quite similar

4.2. Three Spark-Based Implementations for Parallel Entity Resolution 57

to the RDD-based implementation. For the evaluation step with DataFrame, we first
got the evaluationData by performing the user-defined function on resultData, and
then TPs, FPs, and FNs are calculated with SQL count queries, and then, based
on them we could calculate precision, recall and F-measure metrics and saved them
also as a DataFrame named evaluation to HDFS by the built-in write method.

Comparing the three implementations, the DataFrame implementation is the most
convenient one, which can use familiar SQL queries and many available built-in
functions. In contrast, the Dataset implementation is the most complicated one due
to the necessity of defining more types to use Encoder for type-safety.

4.2.2 Optimizations on Each Implementation

We optimize each implementation by tuning the following parameters: the level of
parallelism and possible persistence options.

Parallelism Level

Choosing a suitable level of parallelism for RDD is crucial to reach good perfor-
mance. The default level of parallelism for RDD is based on the input data size. For
an ER task, for the case that the input data size is small, the data size for pair-wise
comparison can be very large. Therefore, if the level of parallelism is determined by
the input size, it cannot fulfill the parallelism requirement for steps after blocking.
As a result, we have to tune the level of parallelism parameter to reach a good per-
formance (After test experiments on different levels of parallelism are conducted, 320
is finally chosen for the RDD-based implementation). For DataFrame and Dataset
APIs, the default level of parallelism is 200, which is proved to be a sufficient number
in our experience and needs no specific tuning considerations.

Persistence

As described in Section 2.3.1, laziness is an important strategy in Spark to optimize
performance and achieve fault tolerance. However, because of this property, the
related data is re-evaluated through a repetitive transformation procedure, each
time an action is triggered. This may lower the performance when no suitable
persistence option is used. Therefore, persistence needs to be seriously considered
for a process with data reuse. As introduced above, only Scenario 1 involves data
reuse, therefore, persistence options are only necessarily considered for Scenario 1.

There are two aspects that need to be considered to find the best persistence option.
The first one is which persistence level is used for persisting the data, the other one
is which data to persist can improve efficiency the most. For the first aspect, the
persistence level taken is MEMORY ONLY for all experiments to achieve the best
performance in Spark. For the other aspect, we analyze the ER process of Scenario
1 to find candidate data to persist, which are then tested experimentally to find
the best persistence option. Next, we will introduce the process to find candidate
data for persistence. Straightforwardly, the data that is involved in multiple actions
should be persisted so that the runtime can be reduced by avoiding the repetitive
transformation procedure. Figure 4.5 shows transformations and actions in our ER
process. As we can see from it, resultData and resultCleanedData are directly reused
data by multiple actions including saving match results, and several calculations for

58
4. Exploration on Performance Impacts of Different Implementations for

Spark-Based Entity Resolution

Table 4.1: Datasets used in experiments.

Datasets
property

ID Name Input Size

Synthetic
Datasets

1.1 5 ∗ 105 + 5% 57.3M
1.2 5 ∗ 105 + 50% 79.9M
1.3 106 + 5% 114M
1.4 106 + 50% 160M

Real Datasets 2 Facebook 82.7M

evaluation. Therefore, they are considered first as candidate data for persistence.
Thus, how much benefits can be achieved through persistence options depends upon
two factors: one is how much we can save by avoiding repetitive transformation, and
second, how much persistence overhead it costs. If we want to get the most benefit,
we need to avoid as long as possible the repetitive transformation procedure, which
means persisting direct reused data by actions, and meanwhile, reducing persistence
overhead as much as possible, which means persisting data which is the smallest.
However, data that fulfills both conditions may not exist and it is also not possible
to analyze which one is more important for deciding the final benefit. In our case,
resultData is the directly reused data, but it is much larger than totalScoreData and
the transformation from totalScoreData to resultData is only dropping one column
without any other complicated calculation. Therefore, we take totalScoreData to-
gether with resultData and resultCleanedData into account as candidate data for
persistence. In conclusion, we have three candidate data: totalScoreData, result-
Data, resultCleanedData. Based on them we can have different persistence options,
which will be evaluated in our experiments to figure out the best persistence option.

4.3 Evaluation

In this section, we present the experiments we conducted for the comparison study.
In Section 4.3.1, we introduce our experimental setting including datasets and the
Spark cluster we used. In Section 4.3.2, we show and discuss our experiment re-
sults for Scenario 1, which includes the experiment results of evaluating different
persistence options, runtime, and speed-up comparison of different Spark implemen-
tations. In Section 4.3.3, we show and discuss our experiment results for Scenario
2, which compares the runtime of different Spark implementations.

4.3.1 Experimental Setting

In this subsection, we introduce our experimental setting. It relates to two aspects.
On the one hand, we describe the datasets that we used to evaluate our applica-
tion; on the other hand, we demonstrate our Spark YARN cluster based on the
Hortonworks Data Platform (HDP).

Datasets for Experiments. The datasets used are shown in Table 4.1, which
include synthetic and real datasets. By using synthetic data, their ground truth is
easy to get and their properties, such as sizes or duplicate percentages of datasets,
can be controlled. The synthetic datasets are generated using GeCo introduced

4.3. Evaluation 59

in Section 2.3.2 and are stored in CSV files. The datasets are named based on
their sizes and duplicate percentages. For example, Dataset 106 + 5%: the first part
before the plus sign means the number of original records that a dataset contains,
i.e., 106 means there are 1 million original records. The second part represents the
duplicate percentage based on the original records, i.e., 5% means the number of
duplicates is 5% of the number of original records and is inserted into the dataset.
Because of privacy reasons, it is very hard to find real datasets that contain personal
information. The real data we have for the experiments are parsed public data from
Facebook [Bowes, 2010], which are people’s names including duplicates. There is
no ground truth for this dataset, so we conducted experiments with real datasets
to evaluate the efficiency and speed-up of Scenario 1 without the evaluation step.
Our real dataset, which is shown in the last row of Table 4.1, includes one million
records used for evaluating efficiency.

Spark YARN Cluster. We have implemented our Spark-SQL-based ER in Java
and conducted all experiments in our Spark YARN cluster with the version Spark
2.0. We use HDP to deploy our Spark YARN cluster, which is an open-source
Apache Hadoop distribution based on a centralized architecture (YARN) [Horton-
works, 2020]. The cluster has ten Spark clients, which includes one node to access
the cluster, two nodes as HDFS NameNodes (one active and one standby), and
seven executor nodes as HDFS DataNodes, which can also be used to run Spark
applications. Each of them runs on virtual machines, whose hyper-visor is VMWare
ESXi. In the following, we introduce hosts’ hardware for seven executor nodes. Each
of them has four CPU cores, 16GB RAM (6GB is available for executor nodes to
run Spark applications), and 150GB hard disk. However, our cluster is heteroge-
neous, since four of nodes are with four Intel Xeon E5-2650 @2.00GHz cores, two
nodes are with four Intel Xeon E5-2650v2 @2.60GHz cores, the last nodes are with
four Intel Xeon E5520 @2.27GHz cores. All hosts are connected through a 10GBit
Ethernet with a star topology. We submitted our application with jar files to our
Spark Yarn cluster and conducted a series of experiments to evaluate the runtime,
speedup of our baseline implementation, and our implementation with persistence.
We run each experiment five times and after dropping the highest and lowest result,
our final result was obtained by averaging the remaining three results.

4.3.2 Scenario 1: with an Evaluation Step

This section shows the comparison results for Scenario 1. The first group of ex-
periments tests different persistence options for all three implementations to find
their corresponding best persistence option. Then the second group of experiments
compares the runtime of three implementations on different datasets. At last, the
speed-up of all three implementations is compared.

Evaluation: Persistence

Experiment Design. According to the analysis in Section 4.2.2, we have the follow-
ing persistence options: noPersistence, resultDataPersistence, resultCleanedData-
Persistence and totalScoreDataPersistence. For the “noPersistence” option, we do
not persist data. The other three options are persisting these three candidate data
respectively. We ran these implementations with different persistence options on dif-
ferent datasets with our 7-executors-cluster and recorded their runtime respectively.

60
4. Exploration on Performance Impacts of Different Implementations for

Spark-Based Entity Resolution

(a) Evaluation of four different persistence
options.

(b) Runtime comparison.

Figure 4.6: Persistence evaluation and runtime comparison of Scenario 1.

Persistence level “memory only” is chosen to provide the most efficient persistence,
because our cluster has sufficient memory to store candidate data.

Results and Discussion. Figure 4.6a shows an overview of runtime on three imple-
mentations with four different persistence options on dataset 3 for Scenario 1. The
results on other datasets show a similar trend. Surprisingly, there is no obvious
performance difference with those four persistence options for the RDD-based im-
plementation. Even with persisting the relevant data, Spark runs the RDD-based
implementation in the same way, which leads to similar runtime. Because persisting
data for the RDD-based implementation cannot avoid overhead, for the RDD-based
implementation, we did not use any persistence for it. In contrast, DataFrame-
and Dataset-based implementations can benefit from persistence. As we can see
from Figure 4.6a, by persisting result data, an improvement of a factor up to 1.5
and 2.3 for DataFrame-based and Dataset-based implementation can be achieved,
respectively. By persisting totalScoreData instead of the straightforward choice: re-
sultData, efficiency improvement can reach a factor up to 2x and 2.7x for them.
We conclude that the straightforward choice to persist is not always the best, when
the data that is used for multiple actions is quite large. Instead of directly persist-
ing it, we can judge whether it is possible to persist its former data that is much
smaller than it and when the computation between them is not time-consuming
and their data sizes differ much, it is normally beneficial to persist the former one
instead. Therefore, we take persisting totalScoreData as the best persistence option
for DataFrame- and Dataset-based implementations. Since the RDD-based imple-
mentation cannot benefit from persistence options, for runtime comparison we also
took DataFrame- and Dataset-based implementations without any persistence into
consideration.

Runtime comparison

Experiment Design: Based on the above discussion on persistence options, for Sce-
nario 1, we have five different cases to compare their runtime: RDD-based without
persistence, DataFrame-based without persistence, DataFrame-based with the best
persistence, Dataset-based without persistence, Dataset-based with the best persis-
tence. Each case is submitted to our Spark cluster with seven available nodes on
different datasets and their corresponding runtime is recorded.

4.4. Related Work 61

Figure 4.7: Runtime comparison of Scenario 2.

Results and Discussion. Figure 4.6b shows the comparison result. As we can see from
it, the DataFrame-based implementation with the best persistence is the most effi-
cient one, which is up to 2.5x and 1.6x faster than the RDD-based implementation
and the Dataset-based implementation, respectively. However, if without persis-
tence, the RDD-based implementation has similar speed as the DataFrame-based
implementation, and sometimes is even slightly faster than the DataFrame-based
implementation, but both of them are much faster than the Dataset-based implemen-
tation. In conclusion, by using a proper persistence option, the DataFrame-based
and the Dataset-based implementation are able to outperform the RDD-based im-
plementation due to the obtained benefits from persistence. The RDD-based imple-
mentation did not change its running plan with the persistence options and cannot
get benefits from persistence in Scenario 1.

4.3.3 Scenario 2: without an Evaluation Step

For the second scenario, our ER process does not include the evaluation step and
we removed this step from Scenario 1 and kept the rest of the steps as Scenario 2.
Since there is no data reuse in Scenario 2, it is not necessary to have any persis-
tence options. We submitted three implementations to our 7-nodes-cluster on the
four datasets introduced in Table 4.1. Figure 4.7 shows the results. For all datasets,
it shows a consistent result: among three implementations, the RDD-based imple-
mentation is the fastest, up to 2.6x and 2.1x faster than the DataFrame-based and
the Dataset-based implementation, respectively. The DataFrame-based implemen-
tation is the slowest, even slower than the Dataset-based implementation, which is
the opposite side to Scenario 1 when we consider the best persistence case for all
of them. In conclusion, expected physical and logical optimizations do not help the
DataFrame-based and the Dataset-based implementations much. The RDD-based
implementation shows the best efficiency for running a general ER process without
the evaluation step (without data reuse).

4.4 Related Work

In this section, we present the related work of our comparison study. Along with
the growing popularity of Apache Spark in recent years, there have been several
implementations based on Apache Spark for parallel ER.

Pita et al. [2015] implemented a Spark-RDD-based approach for probabilistic ER
of healthcare data. Particularly, in their evaluation part, they compare the Spark-
based implementation with an OpenMP-based implementation. Their results show

62
4. Exploration on Performance Impacts of Different Implementations for

Spark-Based Entity Resolution

that an OpenMP-based implementation is much faster than Spark-based ER. How-
ever, Spark-based ER has the scalability and fault tolerance advantages compared
to OpenMP-based ER. Mestre et al. [2017] propose S-DCS++, a Spark-RDD-based
ER with an adaptive-window Sorted Neighborhood blocking method and a load bal-
ancing strategy. In their evaluation, they also compared a Spark-based implemen-
tation to a MapReduce-based implementation. Their results show better efficiency
of Spark-based implementation as well.

Dou et al. [2019] extended a density-based blocking strategy DUB to the distributed
environment. Because the naive distributed solution NDUB suffers from frequent
communications between nodes, which leads to low efficiency, they proposed DDUB,
which randomly splits the input dataset into several nodes and approximately esti-
mates the global density based on local densities instead of getting accurate global
density through communications between nodes. They implemented NDUB and
DDUB with both Hadoop MapReduce and Spark and evaluated them. The re-
sults show that MapReduce-based NDUB works much worse than the other three
implementations and their proposed DDUB approach performs well for both Hadoop
MapReduce and Spark, although Spark-based implementation achieves slightly higher
efficiency.

There are also several similarity join approaches implemented with Spark. Chen
et al. [2015] focused on the Top-k similarity join problem, which is akin to ER,
and implement a Spark-RDD-based algorithm for massive multidimensional data,
focusing on a more efficient distance function using locality sensitive hashing (LSH)
and determining the top-k closest pairs. For their evaluation, they also explored
using persistence to improve the efficiency of Spark-based ER, and compared the
runtime of their Spark-based implementation with and without persistence with the
Hadoop Reduce based implementation. Their results show that Spark-based ER
can benefit from persistence and provides better results than MapReduce-based ER
even without persistence acceleration. Wang and Karimi [2016] focus on using a k
nearest neighbors (kNN) algorithm for the classification step with Spark and pro-
pose a method to minimize the cross-cluster kNN search. Some pruning approaches
have been proposed to improve efficiency. Rong et al. [2019] proposed their dimen-
sion reduction and vertical partitioning algorithm for Spark-based similarity join,
which can provide balanced loads for different nodes. They also implemented their
algorithm with both Hadoop MapReduce and Spark and got a similar conclusion
to the aforementioned approaches that Spark-based implementation provides better
efficiency.

Compared to the above-introduced Spark-based ER or similarity join approaches,
which focus on proposing approaches for ER and compare efficiency between Hadoop
MapReduce based and Spark-based implementations, our comparison study consid-
ers two general ER scenarios and implemented them with three Spark APIs. The
purpose of our study is to compare the different implementations of parallel ER
with both low-level and high-level APIs available in big data processing frameworks
and particularly conclude their performance in terms of efficiency under different
scenarios. As three APIs including both low-level and high-level APIs are available
in Spark, we take them as an example for the comparison study and its persistence
option is also discussed to achieve the best performance for Spark-based ER.

4.5. Summary 63

4.5 Summary

In this chapter, we compare the performance of using three APIs: RDD-based API,
DataFrame-based API, and Dataset-based API in Spark for two scenarios of a gen-
eral ER process. For Scenario 1, RDD-based implementation runs faster than the
other two implementations without consideration of any persistence option for them.
However, the DataFrame- and Dataset-based implementations benefit from persis-
tence, but the RDD-based implementation does not. Therefore, with the best per-
sistence option for DataFrame- and Dataset-based implementations, they are able
to outperform the RDD-based implementation. For Scenario 2, the RDD-based
implementation is the fastest, which conforms to the case in Scenario 1 without
consideration of any persistence option. In conclusion, our work shows that imple-
mentations based on different APIs differ in their efficiency and there is no best
solution for both scenarios. In the adoption of Spark Dataset or DataFrame API for
ER tasks, developers are susceptible to impact their runtime by using incorrectly
the persistence options of Spark. We believe that there is a need either to propose
a “best practices” approach for nudging developers into using the best solution or to
add these carefully adopted persistence optimizations into the Catalyst optimizer,
by using statistics and cost estimations similar to relational databases. Except for
the above-mentioned observations, we also realized that with the default load bal-
ancing strategy of a big data processing framework the reducer workload could not
be balanced facing skewed block, which heavily increased the runtime of a parallel
ER process and lowered its speed-up. To solve this problem, in the next section,
we will propose a scalable and robust skew handling strategy to balance the reducer
workload.

64
4. Exploration on Performance Impacts of Different Implementations for

Spark-Based Entity Resolution

5. Analysis and Comparison of
Block-Splitting-Based Load
Balancing Strategies for Parallel
Entity Resolution

This chapter shares material with the iiWAS’20 paper “Analysis and
Comparison of Block-Splitting-Based Load Balancing Strategies for Par-
allel Entity Resolution“ [Chen et al., 2020].

As introduced in the previous chapters, in the area of parallel Entity Resolution
(ER), big data processing frameworks, such as Hadoop MapReduce or Apache Spark,
are often used to implement parallel ER [Chen et al., 2018b]. Those frameworks
conform to the “map” and “reduce” programming model. During the map phase, the
input data is transformed by generally adding the blocking key to each record, then
the intermediate map output data is repartitioned using their default strategies hash
or range partitioning to the reducers, in which the real record comparisons happen.
By range partition, given n blocks and m reducers, blocks are first sorted based on
their keys, then they are divided into m ranges based on the sampling method and
each range of blocks is assigned to one reducer [Xin et al., 2014]. By hash partition,
given n blocks and r reducers, a hash function is applied to all blocking keys to
assign them to r reducers [Zaharia et al., 2012].

One major drawback from these strategies for parallel ER, is that they only balance
the load when the keys are evenly distributed. For parallel ER with blocking, the
sizes of each block usually show a great variation due to the different number of
records with different blocking keys. Then all records with the same blocking key
are assigned as one partition to a reducer, which leads to an uneven distribution
of the whole workload to available reducers. Furthermore, the pair-wise similarity
comparison, which is performed on the reducers, amplifies the impact of the skew.
Consequently, the reducer with overpopulated blocks will dominate the runtime
of the whole ER process, which will seriously degrade the performance of parallel

66
5. Analysis and Comparison of Block-Splitting-Based Load Balancing Strategies

for Parallel Entity Resolution

Figure 5.1: An example of load imbalance with hash partition.

computation. Figure 5.1 shows an example of this problem. The input are 12 records,
labeled A to L, and four of them (A, C, F, H) are with the blocking key k1, records
B and E, K and D, G and L are with the blocking key k2, k4 and k5 respectively,
the remaining two records I and J are with the blocking key k3 and k6 respectively.
All of them are sorted by their blocking keys after the map phase and grouped to
tasks. One task containing records with the same blocking key cannot be divided
and should be assigned as a whole to one reducer. As an example of hash partition,
tasks 1, 3, 5 are hashed to reducer 0, and tasks 2, 4, 6 are assigned to reducer 1.
In this way, reducer 0 holds 7 records, which leads to 7 comparisons, and reducer 1
holds 5 records, which leads to only 2 comparisons. With the pair-wise comparison
step, the skew on blocking keys is further amplified. During our comparison study
in Chapter 4, we employed the default load balancing strategy and we observed
an overlarge distance between our implemented speed-up and the ideal speed-up
exists, which is mainly caused by the unbalanced load among different reducers.
Therefore, to achieve the best speed-up for the ER process by combining the use of
blocking and parallel computation, it is of great importance to detect possible uneven
workload distributions and develop skew handling strategies to improve efficiency
and scalability.

So far, there have been different approaches proposed to solve this load imbal-
ance problem, which can be divided into two research directions: block-splitting-
based and pair-based. Block-splitting-based solutions are straightforward and ef-
fective [Chen et al., 2018b]; they remove bottleneck blocks by splitting them into
several sub-blocks. The other direction: the pair-based load balancing stategy per-
mutes all record pairs and then evenly assign them to reducers. However, one typical
pair-based strategy PairRange [Kolb et al., 2012b] increases its map output size lin-
early with increasing reduce tasks, and often has longer runtime than BlockSplit.
Therefore, in this chapter, we focused on the first direction and study the problem of
providing a balanced reducer load for parallel ER using block-splitting-based meth-
ods. We conclude our contributions as follows:

• We first analyse the state-of-the-art of block-splitting-based load balancing
strategies and point out their advantages and disadvantages.

5.1. The Common Workflow of a Block-Splitting-Based Load Balancing Strategy67

• Afterward, based on the observations, we propose two strategies Two-Level
Split (TLP) and Block-Oriented Slicer (BOS), which overcome the identified
drawbacks.

• We implement1 and evaluate our proposed strategies, and compare them with
the state-of-the-art approaches: BlockSplit and BlockSlicer, and the default
load balancing strategy in Apache Spark. Based on our evaluation results, we
report the winners under different circumstances and conclude the important
factors that affect the performance of a block-splitting-based load balancing
approach.

The remainder of this chapter is organized as follows: In Section 5.1, we describe the
common workflow of a block-splitting-based load balancing strategy. Then in Sec-
tion 5.2, we first analyze two state-of-the-art strategies BlockSplit and BlockSlicer by
extracting their advantages and disadvantages. Subsequently, we propose two new
strategies Two-Level Split (TLS) and Block-Oriented Slicer (BOS) to overcome the
identified drawbacks. Afterward, we evaluate the four strategies comprehensively,
along with the default strategy of Apache Spark in Section 5.3. In Section 5.4, we
describe related work and we conclude our work in Section 5.5.

5.1 The Common Workflow of a Block-Splitting-

Based Load Balancing Strategy
As explained above, skewed blocks are the primary cause for load imbalance in
parallel ER. Our research studies the strategies that split the overpopulated blocks
into multiple sub-blocks to eliminate the bottleneck, whose fundamental research
goal is to provide a balanced reducer workload. Despite the overhead to split the
blocks, it is optimal if all blocks have the same size, which means no skew between
blocks. Under this assumption, an average block size should be calculated. Based
on the average size, all overpopulated blocks are first split to sub-blocks. The sizes
of all sub-blocks are equal to the average block size except the last sub-block. Then
the blocks smaller than the average block size should be combined. However, the
overhead to complete the above steps will be large and severely reduce efficiency.
Therefore, a feasible method is to solve the reduce imbalance problem caused by
skewed blocks within two steps. First, the splitting algorithm is only used to reduce
the skew degree. Afterward, a proper reducer assignment strategy can help to reach
the final goal - a balanced reducer workload.

Figure 5.2 shows the workflow of a block-splitting-based load balancing strategy.
Besides these two main steps mentioned above, before splitting the overpopulated
blocks, the block distribution information should be gathered and a threshold to
distinguish regular and overpopulated blocks is calculated. Then the overpopulated
blocks are split. The details of four strategies will be shown in the next section.
Afterwards, the record pairs need to be compared are generated based on their
composite keys. At last, the similarities between each record pair are calculated,
which are used to classify the pairs into matches and non-matches, and the ER
results are saved.

1The source code and the datasets can be found at https://git.iti.cs.ovgu.de/Chen/
entity-resolution-for-big-data.

https://git.iti.cs.ovgu.de/Chen/entity-resolution-for-big-data
https://git.iti.cs.ovgu.de/Chen/entity-resolution-for-big-data

68
5. Analysis and Comparison of Block-Splitting-Based Load Balancing Strategies

for Parallel Entity Resolution

Block Distribution &
Threshold

Determination Block Splitting

Start

Input

BlockingKey
Generation

HashMap with
Block Distributions

Threshold
Calculation

#comparisons
> threshold

yes
Applying Splitting

Algorithm

Rearranged blocks

no

Re-Partitioning

Partition Index
Assignment

Repartitioning

Save Results

Comparison Pair
Generation

Similarities per
Pair Calculation

Classification

Figure 5.2: Workflow of a Block-Splitting-Based Load Balancing Strategy for ER

5.2 Block-Splitting-Based Load Balancing Strate-

gies

So far, there have been the following strategies proposed for the block-splitting-based
load balancing strategy [Gomes Mestre and Pires, 2013; Kolb et al., 2012b; Yan et al.,
2013a]. The research in [Yan et al., 2013a] is mainly to improve scalability by using
an approximate sketch data structure for gathing block distributions, which is at
the expense of larger imbalanced reducer load. This research goal does not conform
to the main research goal of a load balancing strategy, which concern much about a
balanced reducer. For the worst case, when the memory is not sufficient to hold the
block distribution information, it is possible to store them in a distributed storage
as proposed in [Kolb et al., 2012b]. Therefore, in this section, we focus on the left
two state-of-the-art approaches BlockSplit and BlockSlicer. The existing comparison
between them is quite limited, and only speed-up experiments with a fixed setting
of map and reducers are represented in [Gomes Mestre and Pires, 2013]. To fill
the gaps, in this section, after an introduction to the approach to get the block
distribution statistics and determine a threshold to identify overpopulated blocks,
we analyze the advantages and disadvantages of these two methods.

5.2.1 Block Distribution Collection and Threshold Deter-
mination

Block Distribution Collection: To distinguish regular and overpopulated blocks,
the block distribution statistics need to be first collected. For strategies BlockSplit
and BlockSlicer, they use a Block Distribution Matrix (BDM) to collect required
information, which contains the number of comparisons of a blocking key on each
mapper. For our comparison analysis for block-splitting-based load balancing strate-
gies, we also uniformly use the BDM. It should be noticed that, with a greedy reducer
assignment strategy, only BlockSplit requires a seperate information for the number
of comparisons of a blocking key on each mapper. Other strategies only need to
know the total number of comparisons of each blocking key. For implementation,
a HashMap can be used, which contains triples of the form (blockingKey, mapper
index, #records) [Kolb et al., 2012b]. The number of comparisons in one block can
be calculated with the following equation based on the number of records:

#comparisons =
#records ∗ (#records− 1)

2
(5.1)

5.2. Block-Splitting-Based Load Balancing Strategies 69

Thresholds Determination: After the block distribution statistics have been col-
lected, a threshold needs to be determinated as the input for the splitting algorithms.
With a larger threshold value, fewer blocks are considered as overpopulated blocks
and need to be split. In order to keep the overhead for splitting blocks small, the
average reducer load should be used as the threshold. To calculate it, the total
number of comparisons needs to be calculated. Then the average reducer load can
be calculated by dividing the total number of comparisons by r reducers (given n
blocks in total):

θ1 =

⌈∑nth block
1st block #comparisons

r

⌉
(5.2)

Because the splitting of blocks are realized by assigning new composite keys to
each sub-block, for those blocks, whose number of comparisons is smaller than the
threshold value, i.e., regular blocks, their keys remain the same and no extra handling
is required. The compositeKey “blockingKey” or “blockingKey, markForRegular” is
assigned to them, which is used to indicate that they are regular blocks, in which
each record is compared to any other records of the same block. The generation of
the composite keys for large and huge blocks will be introduced next.

5.2.2 Overpopulated Block Handling

In this section, we focus on the steps to handle overpopulated blocks with the two
aforementioned state-of-the-art methods BlockSplit and BlockSlicer. We provide
first a concluded idea on how they work, and then expose their advantages and
disadvantages. For detailed introductions we refer to the original papers by Kolb
et al. [2012b] and Gomes Mestre and Pires [2013].

In order to remove the bottleneck blocks, i.e., overpopulated blocks, a block-splitting-
based approach rearranges the contained comparisons to several sub-blocks. The
sub-blocks are defined by designing composite keys based on the original blocking
key for each record or each block.

BlockSplit: BlockSplit is the pioneer of the block-splitting-based load balancing
strategy for parallel ER. Based on the map partitions, the blocks are first natrually
split into m sub-blocks (m is the number of mappers). Subsequently, in order to
maintain all candidate pairs for comparisons, records in one mapper need to be
compared to all records in its own mapper or all other mappers. To realize and
follow this principle, each record in an overpopulated block is replicated m times.
Therein, the original record is assigned a composite key “blockingKey, 0 ”, which is
resonsible for the comparisons between records from the same partition. The other
replicates are assigned composite Keys “blockingKey, i, j ” (i and j are their mapper
indexes), which are responsible for the comparisons between records from the ith
and j th mapper. Then it is simple to get the candidate pairs based on the composite
key. If a pair of records is from the same mapper, i.e., i is equal to j, then all records
with the same composite key need to compare with all other records. Otherwise,
records only need to compare with records from the same input partition.

As we can see from the BlockSplit strategy, the performance of BlockSplitthe heav-
ily depends on the input map partitions. The calculated hreshold is only used to

70
5. Analysis and Comparison of Block-Splitting-Based Load Balancing Strategies

for Parallel Entity Resolution

distinguish regular and overpopulated blocks, not used to provide an upper bound
for blocks. It is still possible to generate larger blocks than the threshold if too
many records are partitioned into one mapper. The obtained sub-blocks, which are
from the overpopulated blocks, are of different sizes based on the mappers as well.
Besides, along with the increasing number of mappers, the records that need to
be replicated are also significantly increased. Correspondingly, its efficiency can be
expected to be reduced due to the increasing overhead.

BlockSlicer: In order to reduce the number of required replications for records
in BlockSplit, BlockSlicer splits the overpopulated blocks in a different manner. It
groups all records belonging to one block together, ignoring their mappers. Then the
threshold is not only used to distinguish regular and overpopulated blocks, but also
a standard to split the overpopulated blocks (the comparisons of the obtained sub-
blocks may exceed the upper bound a bit, because its algorithm returns the number
of records, with whose comparison the total comparisons of the sub-block is closest
to the threshold). The basic idea is to consider each block as a list containing all
its records, the number of comparisons in one block is calculated by summing up all
necessary comparisons of all records (necessary comparisons mean the comparison
between the current record and all its latter records). Then the sub-blocks, except
the last one, should have similar number of comparisons as the threshold shows. Af-
ter one iteration round, only the records that have not completed their comparisons
are replicated to the next sub-block and the records that are replicated are marked
with a star. To get the candidate pairs, for all records in a blocks, as long as the
record does not have a star mark, it needs to compare with all its following records.
If a record has a star mark, then it will not compare to its following records. In this
way, the comparisons between two records both with star marks are not allowed to
avoid redundant comparisons.

As we can see from the BlockSlicer strategy, it leaves many blocks after the split-
ting, whose number of comparisons is nearly equal to the threshold. This maybe not
memory-efficient. In contrast, the default hash or range partitioning, which calcu-
lates the similarities between a record pair independently and does not need to put
all record pairs together, will seldom encounter memory problems. However, with
block-splitting-based load balancing approaches, the records from a same sub-block
need to be grouped together to generate a list for candidate pairs to get the final
ER matching result. With more blocks that have a similar size to the threshold for
BlockSlicer, the returned list is more likely to occupy too much memory, and the GC
time will become longer than BlockSplit, it may even fail to complete the matching
process. While an overpopulated block is splitted often more times in BlockSplit,
which suffers less from this problem.

For both BlockSplit and BlockSlicer, the composite key is assigned to each record.
For the reducer assignment step, all records with the same composite key need
to be grouped together, which may raise an overhead and increase the time for
repartitioning.

Based on the above in-depth analysis of BlockSplit and BlockSlicer, we propose
two other block-splitting-based strategies in this section. They are designed to
overcome the two identified drawbacks of BlockSplit and BlockSlicer: performance

5.2. Block-Splitting-Based Load Balancing Strategies 71

dependency on input mappers and record-wise composite-key assignment. Next, we
will introduce these two strategies in detail.

Two-Level Split: To make the solution independent of the mapper, all records be-
longing to a same original block should be put together into one list and the number
of sub-blocks that it is split into should not be related to the number of mappers.
Although there is no relationship between our splitting algorithm and the mappers,
the process to split the overpopulated blocks can be considered as two levels. This
is similar to the idea in BlockSplit, which first partitions the overpopulated blocks
into several sub-blocks, and then each sub-block is split to several parts to maintain
a correct number of comparisons by considering both intra-sub-block and inter-sub-
block comparisons. In our strategy, each overpopulated block is firstly divided into
n first-level sub-blocks (n is calculated by dividing its number of comparisons by the
average reducer load). This conforms to the straightforward ideas that the bigger the
block is, the more pieces it should be split into, which is also similar to the splitting
idea in BlockSlicer. The threshold is the upper bound for the re-arranged blocks as
well to guarantee the balanced reducer load. For each first-level sub-block, we assign
a mark that is equal to their block index to its record. To keep a same matching
result, each record in one first-level sub-block needs to compare to all other records
from the overpopulated block, no matter whether they belong to a same sub-block
or not. Therefore, the composite key, which is composed of the blocking key, its own
first-level sub-block index, and another first-level sub-block index, is used to gener-
ate the second-level sub-blocks. In this way, the composite key can be considered
to be assigned to each second-level sub-block. Given a second-level sub-block with
the new assigned composite key, if the second part is equal to the third part of the
composite key, which means it is for comparisons within one first-level sub-block,
its records compare to each other. Otherwise, the second-level sub-block is for com-
parisons between different first-level sub-block, a record only compares to another
record from different first-level sub-block.

Block-Oriented Slicer: As explained in the above, the BlockSlicer strategy assigns
the composite key to each record. In order to further reduce the overhead, based
on the BlockSlicer’s idea: considering each block as a list containing all its records,
the number of comparisons in one block is calculated by summing up all necessary
comparisons of all record. In order to be able to assign the composite key directly
to each sub-block, in our strategy, we do not mark the replicated block with a star.
Instead, for each sub-block, we add the information of the number of records that
compare themsevles to all its latter records to the composite key for each sub-block.
Therefore, the composite key for each sub-block is composed of the blocking key, the
number of records with comparisons, and the iteration index. The first n records (n
is second element of the composite key) are compared to all its following records.

Splitting Example: For ease of understanding, we give an example to describe how
the comparison rearrangement proceeds for the four aforementioned strategies to
show their differences (see Figure 5.3). Given a block with 8 records and a threshold
10, the number of comparisons of the original block is 28, which is much more than
10. Therefore, we need to rearrange all 28 comparisons to several sub-blocks.

As we can see from Figure 5.3, for BlockSplit and TLS, their splitting process can be
divided into two levels. The first-level sub-blocks are obtained by simply splitting the

72
5. Analysis and Comparison of Block-Splitting-Based Load Balancing Strategies

for Parallel Entity Resolution

A B C D E F GThe original overpopulated block: #totalComparisons: 8*(8-1)/2 = 28
threshold = 10

BlockSplit
CompositeKey: (blockingKey, first map partition index, second map partition index) CompositeKey: (blockingKey, first sub-block index, second sub-block index)

Two-Level Split (TLS)

DA B C

Mapper 0 Mapper 1

Ak.0.0 Bk.0.0 Ck.0.0

Mapper 0

A0k.0.1B0k.0.1C0
k.0.1 E1k.0.1F1k.0.1G1

k.0.1

Ek.1.1 Fk.1.1 Gk.1.1

Mapper 1

Dk.1.1

D1
k.0.1

A0 B0 C0

A B C D E F G

D1 E1 F1 G2

Second-Level Sub-blocks:
(k.0.0, {A0,B0,C0}): 3 comparisons
(k.1.1,{D1,E1,F1}): 3 comparisons

(k.2.2, {G2,H2}): 1 comparison
(k.0.1, {A0,B0,C0,D1,E1,F1}): 9 comparisons

(k.0.2, {A0,B0,C0,G2,H2}): 6 comparisons
(k.1.2, {D1,E1,F1,G2,H2}): 6 comparisons

H

H2

E F G H

H

Hk.1.1

H1
k.0.1

#comparisons: 7

The first iteration:

B C D E F G

D E F G

A B C D E F G
#comparisons: 7
CompositeKey
for the first
sub-block: (key, 1, 1)

The first iteration:

BlockSlicer
CompositeKey: (blockingKey, block iteration index) CompositeKey: (blockingKey, #records with comparisons, block iteration index)

Block-Oriented Slicer (BOS)

The second iteration:

The last iteration:

#comparisons: 11
CompositeKey
for the first sub-block:
(key, 2, 2)

A B* C* D* E* F* G* H*

#comparisons: 11

The second iteration:

B C D* E* F* G* H*

The last iteration:

D E F G#comparisons:10 #comparisons: 10
CompositeKey
for the first sub-block:
(key, 5, 0)

H

H

H

H

(key, 1) (key, 1) (key, 1) (key, 1) (key, 1) (key, 1) (key, 1) (key, 1)

(key, 2) (key, 2) (key, 2) (key, 2) (key, 2) (key, 2) (key, 2)

(key, 0) (key, 0) (key, 0) (key, 0) (key, 0)

First-Level Sub-blocks:

k.0.1: 15 comparisons

k.0.0: 3 comparisons

k.1.1: 10 comparisons

Figure 5.3: Example of the comparison rearrangement process

records in the overpopulated blocks into several sub-blocks. The second-level of sub-
blocks is generated to keep a correct number of candidate pairs. For BlockSlicer and
BOS, their splitting processes are iterated until the sub-block contains reasonable
comparisons than the threshold. All four strategies are able to reduce the skewness.
Theoretically speaking, BlockSplit, BlockSlicer, and BOS may still contain blocks
whose number of comparisons exceeds the threshold value. With the help of proper
reducer assignment strategies, a balanced reducer workload can be expected.

5.3 Evaluation

To evaluate the four strategies, we implemented them in Apache Spark. Next, we
present our designed experiments and the corresponding results. In addition to the
four introduced strategies, we consider the default load balancing strategy in Spark
as well. In the first and second series of experiments, we evaluate how the runtime
of different strategies is affected by the number of mappers and reducers. In the
third series of experiments, we evaluate the robustness of different strategies when
facing data with varied skew factors from 0 to 1. The last series of experiments
evaluate and compare the speed-up of different strategies with increasing numbers
of executors.

5.3. Evaluation 73

Table 5.1: Synthetic and real datasets.

Datasets Name #Records
(mill.)

#Blocks #Total
Pairs
(mill.)

#Max
Block

Pairs in %

Synthetic
Datasets

106 + 50% 1.5 21589 719 4.5%
2 ∗ 106 + 05% 2.1 19263 1484 4.1%

Real
Datasets

DBLP 0.5 0.5 8876 672 17%
DBLP 1 1 11882 2570 16.4%

Table 5.2: Datasets used in the robustness experiments.

Skew0 Skew0.2 Skew0.4 Skew0.6 Skew0.8 Skew1

#Blocks 1000 1000 1000 1000 1000 1000
#total Comps (mill.) 125 132 178 381 1180 3667
#Comps of Max Block
Pairs (mill.)

0.12 1.27 11.52 87.95 521.66 2230.82

#Max Block Pairs in % 0.1% 0.9% 6.5% 23.1% 44.3% 60.8%

5.3.1 Experimental Setting

In this section, we introduce mainly the datasets that we used in different series of
experiments. Our Spark YARN cluster used is the same one that was introduced
in Section 4.3.1. For the pair-wise comparison step, Jaro-Winkler and absolute
difference similarity functions are used to calculate similarities of strings and num-
bers separately. For the classification step, a threshold of 0.75 judges the match or
non-match state of a pair, which is reasonable for both precision and recall. Each
experiment was run three times, and the average result is reported.

Datasets for Experiments. We use both synthetic and real datasets for our
evaluation, which are shown in Table 5.1. The synthetic datasets 106 + 50% and
2 ∗ 106 + 5% are generated by GeCo, which has been introduced in Section 2.3.2.
The naming scheme is the same as in Section 4.3.1. The real datasets are DBLP
citation data, which is commonly used in related work. We first downloaded data
in the XML format2, and then choose two subsets of data forming two CSV files,
with 0.5 million and 1 million records named DBLP 0.5 and DBLP 1, respectively.
Records have four attributes, including title, authors, venue, and publication year.
The blocking key for each dataset used in the first and second series of experiments is
the first three letters of the attribute “title”. For synthetic datasets, the blocking key
is defined by concatenating the first two or three letters of Double Metaphone codes
of attributes “given-name” and “surname”. The corresponding number of blocks and
comparisons, and the percentage that the largest block’s comparison from the total
comparisons can also be found in Table 5.1.

However, in all datasets shown in Section 4.3.1, the highest percentage of the largest
block comparisons in the total comparisons is 17%, which is not a quite high level

2Download from https://dblp.uni-trier.de/xml/

74
5. Analysis and Comparison of Block-Splitting-Based Load Balancing Strategies

for Parallel Entity Resolution

Table 5.3: Imbalance Ratio of Different Strategies with 56 Reducers

106 + 50% 2 ∗ 106 + 05% DBLP 0.5 DBLP 1
Default 25.049 25.108 29.137 26.747

BlockSplit 1.000 1.000 1.000 1.000
BlockSlicer 1.000 1.000 1.000 1.000

TLS 1.000 1.000 1.000 1.000
BOS 1.000 1.000 1.000 1.000

of skewness. To quantify the skewness and evaluate the robustness of each strategy
under different levels of skewness, we modified the dataset DBLP 0.5 by appending
directly a blocking key attribute, keep a constant number of blocks (1000 blocks for
our experiments). The block sizes follow a Zipf distribution with skew parameter
z (varied from 0 to 1 with a 0.2 interval), which means that the kth largest block
has the number of records that is proportional to k−z. The corresponding number
of comparisons and the percentages of the largest block comparisons are shown
in Table 5.2. It should be noticed that, the real skew factors for record pairs are
even squared on the given skew parameter of records.

5.3.2 Evaluation of Different Numbers of Reducers

In this section, we evaluate how the four strategies along with the default load
balancing strategy perform with the varied number of reducers. We first introduce
the experimental design, then discuss the obtained results.

Experiments Design. For this series of experiments, we use all datasets shown in Ta-
ble 5.1 to compare the five strategies. We recorded their total runtime, their overhead
excluding the block distribution part3 and their median GC time when performing
the pair-wise comparison. We also calculated the imbalance ratio (IR) for the five
strategies. Our full cluster resource (7 executors, each with 4 cores and 6G memory)
is used, and we have 28 cores in total. What needs to be noted is that to achieve
better parallelism, the number of mappers and reducers in all experiments are al-
ways the multiples of the number of total cores 28. For this series of experiments,
the number of mappers is fixed with 28, and the number of reducers is varied from
56 to 224 (even multiples of 28) to see how they affect the runtime of each strategy
as well.

Results and Discussion: Table 5.3 and Table 5.4 show the IRs of five strategies
when there are 56 and 448 reducers. For other reducer numbers, the IRs of different
strategies are similar to 56 reducers (see Section A.3).

As we can see from it, with the default load balancing strategy, which does not
concern about the imbalance between block sizes, their IRs are high, especially for
the real datasets. This indicates a higher skew level for real datasets, which conforms
to their percentages of the largest block comparisons from the total comparisons.

3Because the overhead for collecting the block distribution for different strategies is the same,
we show here only the overhead excluding the pre-statistic part. It is calculated by subtracting
the overhead of the pre-statistic part from the total overhead.

5.3. Evaluation 75

Table 5.4: Imbalance Ratio of Different Strategies with 448 Reducers

106 + 50% 2 ∗ 106 + 05% DBLP 0.5 DBLP 1
Default 3.764 3.739 10.053 7.539

BlockSplit 1.000 1.000 1.000 1.000
BlockSlicer 1.000 1.000 1.000 1.000

TLS 1.000 1.000 1.004 1.003
BOS 1.000 1.000 1.000 1.000

400

500

600

700

800

900

1000

56 112 224 448

R
u

n
ti

m
e

 (
se

co
n

d
s)

#Reduce Partitions

Runtime Comparison for Dataset 106+50%
BlockSplit BlockSlicer TLS BOS Default

(a) Dataset 106 + 50%.

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

56 112 224 448
R

u
n

ti
m

e
 (

se
co

n
d

s)
#Reduce Partitions

Runtime Comparison for Dataset 2*106+05%
BlockSplit BlockSlicer TLS BOS Default

(b) Dataset 2 ∗ 106 + 5%.

500

750

1000

1250

1500

1750

2000

2250

2500

56 112 224 448

R
u

n
ti

m
e

 (
se

co
n

d
s)

#Reduce Partitions

Runtime Comparison for Dataset DBLP_0.5

BlockSplit BlockSlicer TLS BOS Default

(c) Dataset DBLP 0.5.

20
40
60
80

100
120
140
160
180
200
220
240
260

56 112 224 448

R
u

n
ti

m
e

(m
in

s)

#Reduce Partitions

Runtime Comparison for Dataset DBLP_1

BlockSplit BlockSlicer TLS BOS Default

(d) Dataset DBLP 1.

Figure 5.4: Runtime comparison of different numbers of reducers.

With a higher number of reducers, the IRs can be reduced, because with more
reducers, the extra workload of the reducer that contains the largest block is assigned
to other reducers.

For the tailored strategies, with 56 partition reducers, all four strategies function
quite good for all datasets and achieve almost optimal reducer workload balance,
which should lead to same runtime for the computation time of the pair-wise com-
parison step. With 448 reducers, Blocksplit, BockSlicer and BOS function also
almost optimal with IRs 1.000. TLS has higher IRs for datasets DBLP 0.5 and
DBLP 1, but still lower than 0.5%, which did not obviously affect the runtime in
our experiments.

Figure 5.4 shows the runtime comparison for the five strategies. Four tailored load
balancing strategies reduce the runtime significantly compared to the default load
balancing strategy. For datasets 106 + 50% and DBLP 0.5, the runtime of four
strategies is stable for all number of reducers. For the other two datasets with a
larger number of comparisons, BlockSlicer and BOS have longer runtime with 56
reducers. Conjoining the results in Figure 5.5, for the recorded median GC time,
which varies much for the different number of reducers on datasets 2∗106 +05% and

76
5. Analysis and Comparison of Block-Splitting-Based Load Balancing Strategies

for Parallel Entity Resolution

0

5

10

15

20

25

30

56 112 224 448

G
C

 t
im

e
(s

ec
o

n
d

s)

#Reduce Partitions

Mean GC Time Comparison for Dataset 106+50%

BlockSplit BlockSlicer TLS BOS

(a) Dataset 106 + 50%.

0

10

20

30

40

50

60

56 112 224 448

G
C

 t
im

e
 (

se
co

n
d

s)

#Reduce Partitions

Mean GC Time Comparison for Dataset 2*106+05%

BlockSplit BlockSlicer TLS BOS

(b) Dataset 2 ∗ 106 + 5%.

0

5

10

15

20

25

30

56 112 224 448

G
C

 t
im

e
(s

e
co

n
d

s)

#Reduce Partitions

Mean GC Time Comparison for Dataset DBLP_0.5

BlockSplit BlockSlicer TLS BOS

(c) Dataset DBLP 0.5.

0
10
20
30
40
50
60
70
80
90

100
110

56 112 224 448
G

C
 T

im
e

 (
se

co
n

d
s)

#Reduce Partitions

Mean GC Time Comparison for Dataset DBLP_1
BlockSplit BlockSlicer TLS BOS

(d) Dataset DBLP 1.

Figure 5.5: Median GC time comparison of different numbers of reducers.

DBLP 1, we can know the reason for the longer runtime for lower number of reducers
is due to the required GC time. When the number of reducers is low, the threshold
for identifying overpopulated blocks is higher, which still leaves many larger blocks
after the splitting process and requires longer GC time for the comparisons of those
large blocks. It should be noted that, the GC time only increases significantly when
the memory is limited as our cluster. Among the four strategies, BlockSplit has
the shortest GC time, because the overpopulated blocks are split first to 28 sub-
blocks, leading to averagely smaller blocks, but more number of blocks. Our TLS
has a longer GC time than BlockSplit, the reason is as follows. The overpopulated
blocks are split into n sub-blocks based on their sizes, i.e., bigger blocks are split
more. Because the percentages of the comparisons in the biggest blocks in the
four datasets compared to the total number of comparisons are not quite high, n
is smaller than the used number of mapper in BlockSplit. Thus, the average block
sizes are larger than BlockSplit. However, BlockSlicer and BOS have a significantly
longer GC time, even fail to run when the number of reducers is equal to 56 because
they have more large blocks, whose number of comparisons is close to the threshold.

By excluding the GC time factor, from the results of the total runtime with a high
number of reducers, our proposed two strategies TLS and BOS run fastest due to
the low overhead excluding the block distribution part. Figure 5.6 shows clearly the
overhead for each strategy. Our TLS and BOS reduce the overhead significantly.
For the majority cases, BlockSplit has the biggest overhead, because it first splits
any overpopulated block into a fixed number of sub-blocks (equal to the mapper),
ignoring their sizes. Similar situation for TLS, compared to BOS, the final number
of sub-blocks that an overpopulated block is split into is higher than BOS, which
leads to higher overhead.

5.3. Evaluation 77

0

10

20

30

40

50

60

56 112 224 448

O
ve

rh
ea

d
 (

se
co

n
d

s)

#Reduce Partitions

Overhead Comparison for Dataset 106+50%

BlockSplit BlockSlicer TLS BOS

(a) Dataset 106 + 50%.

0

10

20

30

40

50

60

70

80

56 112 224 448

O
ve

rh
e

ad
 (

se
co

n
d

s)

#Reduce Partitions

Overhead Comparison for Dataset 2*106+05%

BlockSplit BlockSlicer TLS BOS

(b) Dataset 2 ∗ 106 + 5%.

0

5

10

15

20

25

30

35

40

56 112 224 448

O
ve

rh
e

ad
 (

se
co

n
d

s)

#Reduce Partitions

Overhead Comparison for Dataset DBLP_0.5
BlockSplit BlockSlicer TLS BOS

(c) Dataset DBLP 0.5.

0

10

20

30

40

50

56 112 224 448
O

ve
rh

ea
d

 (
se

co
n

d
s)

#Reduce Partitions

Overhead Comparison for Dataset DBLP_1
BlockSplit BlockSlicer
TLS BOS

(d) Dataset DBLP 1.

Figure 5.6: Overhead comparison of different numbers of reducers.

200

300

400

500

600

700

800

28 56 112 224

R
u

n
ti

m
e

(s
ec

o
n

d
s)

#Map Partitions

Runtime Comparison for Dataset 106+50%

BlockSplit BlockSlicer TLS BOS

(a) Datasets 106 + 50%.

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

28 56 112 224

R
u

n
ti

m
e

(s
ec

o
n

d
s)

#Map Partitions

Runtime Comparison for Dataset 2*106+05%
BlockSplit BlockSlicer TLS BOS

(b) Datasets 2 ∗ 106 + 5%.

500

600

700

800

900

28 56 112 224

R
u

n
ti

m
e

(s
ec

o
n

d
s)

#Map Partitions

Runtime Comparison for Dataset DBLP_0.5
BlockSplit BlockSlicer TLS BOS

(c) Datasets DBLP 0.5.

1800

1900

2000

2100

2200

2300

2400

28 56 112 224

R
u

n
ti

m
e

(s
ec

o
n

d
s)

#Map Partitions

Runtime Comparison for Dataset DBLP_1
BlockSplit BlockSlicer TLS BOS

(d) Datasets DBLP 1.

Figure 5.7: Runtime comparison of different numbers of mappers.

5.3.3 Evaluation of Different Numbers of Mappers

Experiments Design. For this series of experiments, we use still the four datsets
shown in Table 5.1). We recorded all the total runtime of four strategies by using
our full cluster resource (7 executors, each with 4 cores and 6G memory). Based on
the results on the first serie of experiments, for datasets 106 + 50% and DBLP 0.5,
the number of reducers is 224. For the other two larger datasets, 448 reducers are

78
5. Analysis and Comparison of Block-Splitting-Based Load Balancing Strategies

for Parallel Entity Resolution

Table 5.5: Imbalance ratio of different strategies of robustness evaluation.

Skew0 Skew0.2 Skew0.4 Skew0.6 Skew0.8 Skew1
Default 2.464 3.843 15.689 52.171 99.272 -
BlockSplit
(Gathered)

1.120 2.159 14.480 51.686 47.566 22.525

BlockSplit
(Shuffled)

1.120 1.005 1.0001 1.000 1.001 1.000

BlockSlicer 1.120 1.058 1.042 1.009 1.001 1.000
TLS 1.120 1.052 1.035 1.010 1.001 1.001
BOS 1.120 1.058 1.042 1.009 1.001 1.000

used. Then we varied the number of map partitions from 28 to 112 (even multiples
of 28) to see how they affect the runtime of each strategy as well.

Results and Discussion: Figure 5.7 shows the runtime of different strategies with
the increasing number of mappers. As we can see from it, the runtime of BlockSplit
increases significantly, because each overpopulated block is replicated m times and m
is equal to the number of mappers. This leads to a much higher number of sub-blocks
from splitting the overpopulated blocks. The runtime of the other three strategies
keeps stable because the records in one block are collected to a list, ignoring the
mapper they come from. With 28 mappers, BlockSplit can provide competitive
performance compared to the other three strategies, especially runs fast due to its
lower GC time when the cluster resources are limited and the skew level is not quite
high. With a higher number of map partitions, the other three strategies are more
efficient.

5.3.4 Robustness Evaluation

Experiments Design. For this series of experiments, we use the second group of
datasets (see Table 5.2). It includes six datasets with different skew factors of
the same base dataset DBLP 0.5. The skewness of the second group datasets is
explicitly given to evaluate the robustness of strategies facing different skew levels.
As we assign blocking keys following the Zipf distribution from beginning to end,
records of one block are located together in the original skew datasets. Therefore, in
addition to the original skew datasets, we shuffle all datasets randomly to make the
records of one block dispersive. We recorded all the total runtime of five strategies on
the six datasets by using our full cluster resource (7 executors, each with 4 cores and
6G memory) for both situations. For this series of experiments, we fixed 28 mappers
and 224 reducers. As mentioned in, Chapter 2, for this series of experiments, since
the number of record pairs varied notably much with different skew factors, we
compare and report the average runtime of each strategy for completing one million
record pairs for different datasets.

Results and Discussion: In Table 5.5, we show the imbalance ratio for five strategies
in our robustness evaluation. As we can see from it, although blocks in dataset
Skew0 are in the same size, the imbalance ratio of the four tailored strategies for
the reducer load is the highest 1.12. This happens because the greedy strategy

5.3. Evaluation 79

0.5

1

2

4

8

Skew0 Skew0.2 Skew0.4 Skew0.6 Skew0.8 Skew1R
u

n
ti

m
e

 (
se

co
n

d
s)

 /
 1

 m
il

li
o

n
 p

ai
rs

Datasets with different skew factors

Runtime Comparison on Gathered Skew Datasets

BlockSplit
BlockSlicer
TLS
BOS
Default

(a) Gathered skew datasets.

0.5

1

2

4

8

Skew0 Skew0.2 Skew0.4 Skew0.6 Skew0.8 Skew1R
u

n
ti

m
e

(s
ec

o
n

d
s)

 /
 1

 m
ill

io
n

 p
ai

rs

Datasets with different skew factors

Runtime Comparison on Shuffled Skew Datasets

BlockSplit
BlockSlicer
TLS
BOS
Default

(b) Shuffled skew datasets.

Figure 5.8: Runtime comparison per million records.

0

10

20

30

40

50

60

70

80

90

100

Skew0 Skew0.2 Skew0.4 Skew0.6 Skew0.8 Skew1

O
V

e
rh

e
ad

 (
se

co
n

d
s)

Datasets

Overhead Comparison
BlockSplit BlockSlicer TLS BOS

(a) Overhead comparison.

0

5

10

15

20

25

30

35

40

45

50

Skew0 Skew0.2 Skew0.4 Skew0.6 Skew0.8 Skew1

G
C

 T
im

e
 (

se
co

n
d

s)

Datasets

Mean GC Time Comparison
BlockSplit BlockSlicer TLS BOS

(b) Median GC time comparison.

Figure 5.9: Overhead and GC time comparison of robustness evaluation.

to assign blocks to reducers. In total we have 224 reducer, after four rounds that
896 blocks are evenly assigned to reducers, the left 104 blocks are assigned to 104
reducers from the total 224 reducers, which leads to the imbalance. This reminds a
possible factor that the correlation between the number and the size of the blocks,
and the number of reducers for affecting the imbalance between reducers. Although
for higher skew datasets, the imbalance ratio is lower than Dataset “Skew0”, still
much higher than the imbalance ratios we shown in Table 5.3 and Table 5.4 of
the first series of experiments. This indicates that with fewer blocks, the complete
balanced reducer load is more difficult to be achieved. Particularly, for the original
skew datasets’ group, in which the records of a block are next to each other and
many of them are partitioned into the same map partition. This limits BlockSplit’s
ability to split large blocks. Other three strategies are not vulnerable to the input
distribution and work still stably for this group. By removing this factor, BlockSplit
is able to balance the reducer load with different level of skew, and even better than
other strategies because the high number of sub-blocks it generates.

Figure 5.8 shows the average runtime of five strategies for completing one million
record pairs on two groups of skew datasets. The difference is for BlockSplit, it can-
not provide a balanced reducer load with the aforementioned reason. By excluding
this factor, we discuss the evaluation results on the shuffled group in Figure 5.8b.
For dataset Skew0 and Skew0.2, the default strategy is still competitive to the other
four strategies, because the skew is quite low and it has no overhead except run-
ning the real ER tasks. The default load balancing strategy can provide a relatively
balanced reducer load under this situation. The skew-handling strategies start to
improve efficiency from the dataset Skew0.4. Although the default strategy can be

80
5. Analysis and Comparison of Block-Splitting-Based Load Balancing Strategies

for Parallel Entity Resolution

0

1

2

3

4

5

6

7

0

1000

2000

3000

4000

5000

1 2 3 4 5 6 7

R
u

n
ti

m
e

(s
e

co
n

d
s)

#Excecutors

SpeedUp Comparisons of Five Strategies on DBLP_0.5

BlockSplit BlockSlicer TLS
BOS Default BlockSplit SpeedUp
BlockSlicer SpeedUp TLS SpeedUp BOS SpeedUp
Default SpeedUp Ideal SpeedUp

(a) Dataset DBLP 0.5.

0

1

2

3

4

5

6

7

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7

R
u

n
ti

m
e(

se
co

n
d

s)

#Excecutors

SpeedUp Comparisons of Five Strategies on Shuffled Skew0.6

BlockSplit BlockSlicer TLS
BOS Default BlockSplit SpeedUp
BlockSlicer SpeedUp TLS SpeedUp BOS SpeedUp
Default SpeedUp Ideal SpeedUp

(b) Dataset Skew0.6.

Figure 5.10: Speed-up comparison of different strategies.

run successfully except Skew1.0, due to the high skew, the average runtime is in-
creased significantly. By contrast, all four strategies show their robustness facing
different skew factors, the average runtime remains stable and is even reduced, be-
cause the negative effect that the overhead brings becomes insignificant with higher
skew.

Figure 5.9a shows how the overhead time of different strategies excluding the block
distribution part changes. As we can see from it, BlockSplit significantly increases
its overhead time from dataset Skew0 to dataset Skew0,6, because the number of
sub-blocks significantly increases (from 1000 to 12340), and then remains relatively
stable for the left datasets. The overhead excluding the block distribution part for
BlockSlicer, TLS, and BOS becomes much longer for datasets Skew0.8 and Skew1,
because when a block is larger, and it is split to more pieces for these three strategies.
With Zipf-distribution datasets, the time for splitting the largest block will dominate
the splitting time, partitions with smaller blocks have to wait for the largest block
to finish its split. This is unavoidable for these three strategies because we collect
all records of a block together and the larger blocks are split into more sub-blocks
for the sake of a balanced reducer load. This problem is the most typical for TLS
because BlockSlicer and BOS generate the number of records, which is equal to the
number of the first-level sub-block of TLS, while TLS generates much more sub-
blocks in the second level of splitting. BlockSplit does not suffer from this problem,
because all overpopulated blocks are considered non-distinctively. Records of each
block are kept in each input map partition and are not collected together. As long
as the records are well distributed in input map partitions, the skew problem does
not exist for BlockSplit. According to the result, for a quite high skew factor, with
the biggest block occupying more than 60% of comparisons, BlockSplit may have
the highest efficiency when the cluster resource is not a bottleneck. However, if the
cluster resources are limited as our case, as we can see from the result of dataset
Skew1 in Figure 5.8b, BlockSplit and TLS have close runtime. This is because the
biggest block is not split into sufficient pieces, the longer GC time will devour the
advantage the low overhead brings (see Figure 5.9b).

5.3.5 Speed-Up Evaluation

Experiments Design. For the last series of experiments, we use the dataset DBLP 0.5
and Skew0.6. We varied the number of available executors from 1 to 7 to record the

5.3. Evaluation 81

corresponding runtime and calculate the speed-up. If the number of used executors
is n, then we set 4n mappers and 32n reducers. As introduced in Section 4.3.1,
in our Spark cluster, four executors out of seven have the slowest CPUs with a
frequency of 2.00GHz, only one executor has a moderate CPU with a frequency of
2.27GHz, and the remaining two executors have the fastest CPUs with a frequency
of 2.60GHz. When we only need a low number of executors, such as 1 or 2 executors,
the runtime difference becomes nontrivial between using the slowest executors (with
a frequency of 2.00GHz) and the faster executors (with a frequency of 2.27GHz or
2.60GHz). Since we cannot control which executor to use and our cluster has more
than half slow executors, we drop the results for the situations with only 1, 2, or
3 executors to minimize the impacts caused by our heterogeneous cluster on the
speed-up results. In this way, we collect the runtime and calculate the speed-up for
different strategies.

Results and Discussion: Figure 5.10 shows the runtime and speed-up of five load
balancing strategies on two datasets. The results of both datasets show a similar
trend. As we can see from it, the default strategy can only be obviously accelerated
from 1 to 3 executors, afterward, the runtime remains similar and is even increased
from 3 to 4 executors. The speed-up from 1 to 3 executors is its ability to assign
the extra workload of the reducer that contains the largest block to other reducers.
However, afterward, the total runtime is dominated by the reducer with the largest
block and cannot be reduced even when the executors are further increased. The
increase from 3 to 4 executors should be caused by our heterogeneous cluster. For
the other four tailored load balancing strategies, because all of them can balance the
reducer load, as we can see from Figure 5.10, the speed-up is significantly improved
compared to the default load balancing strategy, especially for the cases till 5 ex-
ecutors. For both datasets, a bigger difference between their speed-up and the ideal
speed-up emerges for experiments with 6 and 7 executors, because of our hetero-
geneous cluster. The speed-up difference between the four tailored load balancing
strategies is not obvious, which indicates a similar performance.

5.3.6 Evaluation Conclusion

As we can see from the above-introduced results, different factors can affect the
performance of a block-splitting-based load balancing strategy, and it is often a
trade-off between different factors. Therefore, there is no eternal winner under
different circumstances. In the following, we conclude the our evaluation results.

First of all, because the splitting algorithm of BlockSplit heavily depends on the
input map partitions, two obvious drawbacks have been observed. First, in the ex-
periments of ”different number of mappers” (see Figure 5.7), BlockSplit increases its
runtime significantly, when the number of mappers increases, because each overpop-
ulated block is splitted more times. With the best number of mappers, it can provide
competitive performance compared to other three strategies. However, with higher
number of mappers, other strategies are more efficient. Second, in the experiments
of ”robustness”, BlockSplit loses its ability to balance the reducer load for the gather
dataset, because a large amount of records from a same overpopulated block are
assigned to a same mapper, which leads to the situation that still overlarged blocks
are left.

82
5. Analysis and Comparison of Block-Splitting-Based Load Balancing Strategies

for Parallel Entity Resolution

Because the similarity calculation step occupies the majority of the total runtime, the
most fundamental requirement for a block-splitting-based load balancing strategy
is the ability to balance the reducer workload. To conclude results for IRs, all
tailored strategies are sufficient to provide balanced workload (always better than
99.5% in Table 5.3, Table 5.4 and always higher than 95% in Table 5.5), the slight
differences between their imbalance ratios cannot affect their runtime much in our
experiments and is negligible. Among four strategies, except the bad case explained
above for BlockSplit with gathered dataset, BlockSplit can provide the best or the
same result for the vast majority cases. TLS has the highest possiblity to have a
higher imbalanced load.

Another factor that might affect the runtime of the similarity calculation step is the
required GC time, when the cluster resource is not sufficient for the current dataset.
Based on the results in Figure 5.5 and Figure 5.9b, for the majority of datasets ex-
cept Skew0.8 and Skew1, BlockSplit requires the shortest median GC time, because
in those cases, BlockSplit splits overpopulated blocks into more pieces and also repli-
cates each record of a overpopulated block more times than other strategies, leading
to smaller sizes of rearranged blocks. For datasets Skew0.8 and Skew1 with 224
reducers, TLS requires less GC time than others, because the overpopulated blocks
are split the most time with TLS, the newly-obtained blocks after splitting are the
smallest, leading to the lowest GC time.

The remaining factor that can affect the total runtime of ER is the overhead required
due to the tailored load balancing strategies. Because in our implementation, for
all four strategies, we commonly use the BDM, in the evaluation, we consider the
required excluding the block distribution part. It should be noticed, for collecting
block distribution, actually, only BlockSplit require the information of contained
records in mappers, the other three strategies do not. From this point of view,
BlockSlicer, BOS and TLS should be more scalable than BlockSplit. For the re-
quired overhead excluding the block distribution part, BOS and TLS require less
for datasets except dataset Skew1 than BlockSplit and BlockSlicer (see Figure 5.6
and Figure 5.9a). The reason behind is our proposed block-wise key assignment in-
stead of record-wise assignment of BlockSplit and BlockSlicer. For the special case
with dataset Skew1, TLS requires particularly long overhead due to the assumed
zipf distribution of the dataset. The splitting of the largest block consumes quite
high time for TLS, and this process cannot be parallelized. For a common dataset,
there should be multiple overpopulated blocks in similar sizes instead of only one
extremly large block in dataset Skew1, TLS’s overhead should still have a lower
overhead.

5.4 Related Work

In this section, we discuss the related work regarding load balancing strategies. We
start with several general load balancing strategies for various applications, then
narrow the discussion to load balancing strategies for joins and ER problems.

Load balancing strategies with general purposes in MapReduce: The load
imbalance problem has been exposed in a good deal of research. It can be caused by
different types of reasons, which are overviewed and classified by Kwon et al. [2011].

5.4. Related Work 83

Therein, partitioning skew is the most common case, which means the reducers
are allocated biased loads due to the different complexities of map outputs. The
following research handles this problem in different directions. Several studies first
collect the key frequencies and then propose their own strategies to assign map
output tasks to reducers as balanced as possible [Gavagsaz et al., 2018; Ibrahim
et al., 2010, 2013; Sherif and Ngomo, 2015; Tang et al., 2016]. Ibrahim et al. designed
their strategies not only depending on the key sizes as the most research considered
but also the localities of map output tasks [Ibrahim et al., 2010, 2013]. Focusing
only on getting a global key distribution, Gufler et al. [2012] proposed algorithms
to get a global histogram in the distributed environment. To make the data profile
more scalable, Yan et al. [2013b] proposed to use an approximate data structure,
i.e., sketches, to gather the statistics of keys.

In addition to the above-mentioned research, which only develops strategies for
distributing map output tasks to reducers based on the key frequencies, several
researchers [Chen et al., 2014; Gufler et al., 2011; Qi et al., 2015; Ramakrishnan et al.,
2012; Tang et al., 2018; Xu et al., 2012] also proposed to split the overpopulated
map output tasks to subtasks so that even facing quite a heavy skew, the loads for
reducers can still be relatively balanced. However, all strategies are quite general
by simply chopping a map output task into several pieces and assigning them to
multiple reducers. However, for some complex operations, in which the records need
to operate with all other records from one original map output task, the simply
chopping does not work and it cannot provide a consistent result as before. Because
the operations between the records, which are originally placed in the same map
output task and after chopping are placed in different map output subtasks, are
missing (operations are not performed cross different subtasks).

Load balancing strategies for joins: To solve the partitioning skew for reducers
of joins, Atta et al. [2011] implemented two types of range partition algorithms
originally proposed in [DeWitt et al., 1992]. Based on sampling results, if there
are too many tuples for one join attribute value, those tuples are redistributed to
multiple reducers. To keep consistent join results, replication is required. However,
in this paper, the strategies only simply replicate those tuples from the first relation
n (the number of reducers the tuples should be redistributed to) times and make
each reducer hold all tuples from the first relation and a subset of tuples from the
second relation, which generate too many replicas.

Okcan and Riedewald [2011] propose an algorithm called 1-bucket-theta for theta
joins by using a join matrix to explore the best matrix-to-reducer mapping, which
aims to minimize the replicates of tuples and meanwhile balance input and output
costs of reducers. However, this algorithm works near-optimal for the Cartesian
product but not for theta joins. To make up the deficiency m-bucket is proposed to
improve the efficiency of 1-bucket-theta for theta joins. Hassan et al. [2014] proposed
the MRFA-join algorithm, which is based on distributed histograms and a random-
ized key redistribution approach. However, they also replicated all tuples from one
of the two relations.

For another perspective of solutions, Li et al. [2017] and Kwon et al. [2012] do
not predict the key frequencies in advance but proposed to monitor the states of

84
5. Analysis and Comparison of Block-Splitting-Based Load Balancing Strategies

for Parallel Entity Resolution

reducers and dynamically transfer a part of loads from busy reducers to idle ones if
both states of reducers exist at the same time.

Load balancing strategies for ER: Similar to join operations, ER is also a task,
for which simply splitting overpopulated blocks is not possible because any record
needs to compare to all other records in the same block. Particularly, ER involves
more complex calculations for reducers than a normal join operation, the complexity
or the imbalance degree is not determined by the size of the key, but by the number
of comparisons. Therefore, it needs an elaborate design of the splitting algorithm.

To provide a more balanced solution for block-skewed MapReduce-based ER, there
have been many strategies proposed. In addition to the strategy BlockSplit, Kolb
et al. [2012b] proposed another strategy called PairRange. It enumerates all com-
parisons, then all comparisons are divided into ranges of the same size and assigned
to reducers. This can provide more balanced loads but the overhead is larger. Block-
Slicer Gomes Mestre and Pires [2013] has already been discussed and compared in
our research.

To make the load balancing algorithms more scalable, Yan et al. [2013a] replace
BDM with a sketch-based approximate data profiling method for the sake of better
scalability. However, it is at the cost of the balance of reducers.

Hsueh et al. [2014] focused on blocking-based ER with multiple keys, the load im-
balance is solved in a way similar to PairRange. McNeill et al. [2012] solve the load
imbalance caused by skewed blocks from another perspective. When oversized blocks
are detected, more concrete blocking keys are generated on the oversized blocking
key, which prevents from oversized blocks. Karapiperis and Verykios [2015] permute
all comparisons and then assign them to reducers in a round-robin way.

5.5 Summary

In this chapter, we discuss and compare four block-splitting-based load balancing
strategies for parallel ER. They eliminate the overpopulated bottleneck blocks by
splitting them into sub-blocks. For two state-of-the-art strategies BlockSplit and
BlockSlicer, we analyze them in-depth and point out their advantages and disad-
vantages theoretically. Based on the analysis, we propose two other strategies TLS
and BOS. We implemented and evaluated them with our Spark cluster. The results
show that all four strategies can solve the reducer imbalance problem, at the cost
of extra overhead for collecting block distributions and splitting the overpopulated
blocks. Under limited cluster resource, their runtime may be increased due to the
required long GC time, if a low number of reducer is set. However, our two strate-
gies TLS and BOS reduce the required overhead by directly assigning the composite
key to each block instead of each record and improves efficiency for parallel ER in
the majority of experiments. For a block-splitting-based load balancing strategy,
the fundamental goal is a balance reducer load. Because compared to the time of
performing the similarity calculation step, the overhead required for collecting block
distributions and splitting the blocks is relatively small. In the premise of balanced
loads, a splitting strategy that supporting assigning the composite key to each block
can reduce the overhead and improve efficiency. For a cluster with limited mem-
ory resource, for datasets, whose records of the same block are not close to each

5.5. Summary 85

other, BlockSplit is a good option, as the blocks after splitting are averagely smaller
than those in other strategies. In the second place, TLS requires less memory than
BlockSlicer and BOS, meanwhile it does not rely on a good distribution of input
records.

86
5. Analysis and Comparison of Block-Splitting-Based Load Balancing Strategies

for Parallel Entity Resolution

6. Hybrid Similarity Calculation
Approach for Entity Resolution

This chapter shares material with the BTW’19 paper “The Best of Both
Worlds: Combining Hand-Tuned and Word-Embedding-Based Similarity
Measures for Entity Resolution” [Chen et al., 2019a].

As introduced in Chapter 2, under the challenges big data brings, four research
goals have been identified for Entity Resolution (ER), they are efficiency, scalability,
effectiveness, and less human effort involved. In Chapter 4 and Chapter 5, we
presented our research for parallel ER when ER faces the data volume challenge,
whose main goals are to improve its efficiency and scalability. However, big data
does not only mean data is “big”, but it also signifies variety. In this chapter, we
switch our focus to the other big data character that we concern in this thesis: data
variety, which leads our research to approach the other two goals - effectiveness and
less human effort involved.

Data variety means that data comes from diverse domains, and is with various forms
and properties. Facing data variety, we observe that two research challenges are
raised for ER. One challenge is that it is more difficult to select suitable traditional
similarity measures when we are unfamiliar with the input data. When ill-suited
similarity measures are adopted, the effectiveness of ER will be reduced. Recently,
word embedding has been proposed to assist in calculating similarities for ER. Dif-
ferent from the non-commonality of traditional similarity measures for various data,
it uniformly maps words of different types of data into vectors using a neural word
embedding model and is also able to grasp the semantics of words to identify pos-
sible duplicates that do not look similar. Research [Ebraheem et al., 2018; Kooli
et al., 2018; Mudgal et al., 2018] has shown the effectiveness benefits, when word
embedding based approaches are used to calculate similarities between records, es-
pecially for cases that values of input data contain semantics. However, adding an
extra word embedding step to the similarity calculation phase will probably have
negative effects on efficiency. For instance for attributes without semantic mean-
ings, especially attributes with numerical values, it makes little sense to map them

88 6. Hybrid Similarity Calculation Approach for Entity Resolution

to a vector space using word embedding because distances between them cannot be
correctly managed due to the missing semantics. Still, numeric data play an impor-
tant role in expressing records in financial business data. Therefore, in this section,
we propose to combine traditional hand-tuned and popular word-embedding-based
similarity calculations for ER, always choosing the most suitable similarity measures
for each attribute to achieve the best accuracy for a given input dataset. Specifically
speaking, concerning attributes with high appropriateness of word embedding tech-
niques, word embedding is firstly applied to map the data to vectors using FastText
pre-trained model, then cosine similarity is used to calculate similarities between
record pairs. For other attributes, for which word embedding is not suitable, par-
ticularly numerical values, a tailored similarity function is used. We summarize our
contributions as follows:

• We propose a hybrid similarity calculation method for ER: the attribute-
based selection between traditional hand-tuned similarity functions and word-
embedding cosine similarity function to achieve higher effectiveness;

• We identify attributes that suit word embedding more than traditional sim-
ilarity measures, which guides choosing the most suitable similarity measure
for ER;

• We design different combinations of adopted similarity functions and evalu-
ate them on both real and synthetic datasets1. Our results show that the
hybrid solution can outperform other solutions that purely use traditional or
word-embedding-based similarity calculations when the attributes of a dataset
contain both semantic and non-semantic attributes. Based on the results, we
conclude the way for the combination and the confusing attributes that need
careful considerations.

The rest of this chapter is organized as follows: We firstly introduce our hybrid
method in Section 6.1 and show the evaluation result in Section 6.2. Then we
present related work in Section 6.3. At last, we conclude our work in Section 6.4.

6.1 Our Hybrid Approach for Entity Resolution

Similarity Calculation

In this section, we introduce our ER process using hybrid similarity calculation
methods. To be noticed, the goal of our research is to explore the impact of using
different combinations of traditional or word embedding based similarity measures
on effectiveness. Hence, we do not take blocking (indexing) techniques into consid-
eration to our process to improve efficiency. With this, we get the most exact results
since by blocking, we might block away matches in the worst case.

Figure 6.1 shows the entire process. The process first asks the user whether there is
an available property file, which means the user knows the data quite well and knows

1The source code and the datasets can be found at https://git.iti.cs.ovgu.de/Chen/
entity-resolution-for-big-data.

https://git.iti.cs.ovgu.de/Chen/entity-resolution-for-big-data
https://git.iti.cs.ovgu.de/Chen/entity-resolution-for-big-data

6.1. Our Hybrid Approach for Entity Resolution Similarity Calculation 89

Yes Embedding Process for ER

No Available
Property File?

Input
Data

Loading
Property File
and grouping

attributes

Analyzing
input data

schema

Generating
property
file based
on preset

rules

SRA
Group

NA
Group

NRA
Group

Mapping each
word to a

vector using
FastText

Euclidean
Distance

Getting a
vector for

each
attribute

Cosine
Similarity

Jaro-
Winkler

Learning-based
classification

Results of match
and non match

record pairs

Similarity
Functions

*NA: Numerical Attributes
 SRA: Semantically Related Attributes
 NRA: Non-Semantically Related Attributes

Figure 6.1: Flowchart of our hybrid method.

the best choices of similarity functions to compare each attribute (excluding identi-
fiers). If this is the case, we directly load the property file and divide all attributes
into different groups based on the similarity measures defined in the property file.
Otherwise, a property file will be generated based on the input data schema and our
preset rules. To achieve satisfying accuracy and provide guidance to choose suitable
similarity measures, we classify common attributes into three groups, propose suit-
able similarity measures for each group and then the corresponding property file can
be generated:

Numerical Attributes (NA): Numerical attributes refer to those attributes, whose
values can be compared, for example, the age. In this work, we use Euclidean dis-
tance as an example to provide reasonable accuracy for numerical attributes. How-
ever, not all numbers belong to this group. In contrast to numerical attributes, the
other type of numbers are named as numerical strings, which act like strings and
their values cannot be compared to be bigger or smaller. For example, telephone
numbers or postcodes are considered as numerical strings. All numerical strings
belong to the next group: non-semantically related attributes.

Non-semantically Related Attributes (NRA): These kinds of attributes are
those whose values are without semantic meaning (e.g., people names or numerical
strings) and their lengths are usually short. In ER tasks, the different values of this
type of attributes of a matching pair are usually caused by typos and formats. Using
word embedding for this case may consider those values with a big distance, which
can lead to lower accuracy. Therefore, for this group, we propose to use Jaro-Winkler
similarity functions instead of word embedding. Moreover, Jaro-Winkler has a higher
speed than the other traditional functions, such as Levenshtein similarity.

Semantically Related Attributes (SRA): The last group is semantically related
attributes, whose values are strings with various meanings (often long), multiple
strings, or even whole sentences. For this group, the word-embedding plus cosine
similarity approach is chosen to calculate the similarity. Traditional syntactical-
based similarity measures are not used for semantically related attributes, because
they only check the edit distances between values of attributes, and are not able

90 6. Hybrid Similarity Calculation Approach for Entity Resolution

to realize the meaning or the distributional semantic behind so that they would
probably provide unacceptable results.

In terms of the predefined rules, we can calculate the similarity of each corresponding
attribute pairs (cf. Section 6.1.1). Afterward, the classification step is performed to
divide all pairs into matching and non-matching groups (cf. Section 6.1.2).

6.1.1 Attribute Similarity

In this subsection, we specify how the similarity of each pair of attributes is calcu-
lated by the preset rules.

NA and NRA Similarity. According to the two rules regarding NA and NRA,
the similarity between two attribute values of records calculated straightforwardly
with Jaro-Winkler similarity and Euclidean metric, because the granularity for them
is the entire attribute, which is calculated with the following formula:

attrSim(r1.attr, r2.attr) =

{
Euclidean(r1.attr, r2.attr), attr ∈ NA;

Jaro Winkler(r1.attr, r2.attr), attr ∈ NRA. (6.1)

SRA Similarity. Inspired by the work of [Bojanowski et al., 2016], we use Fast-
Text, an extension of the continuous skip-gram model [Mikolov et al., 2013b] that
is used to produce word embeddings (i.e., vectors), to obtain the similarity of se-
mantically related attributes. The FastText model is chosen instead of word2vec
and GloVe because use cases will range across diverse domains. Hence, we cannot
guarantee coverage with only models on word-level. Given an SRA, the following
three steps are performed to get the final similarity value between two attribute
values:

• Vector representation of words. The first step is to get the vector represen-
tation of each word in the attribute. The input of the used model FastText
is a text corpus. Given enough text data and contexts, FastText can achieve
highly accurate meanings of the words appearing in the corpus and establishes
a word’s association with other words. The output is a set of vectors, that
is, words in the corpus are transformed to a vector representation in a se-
mantic vector space. Moreover, FastText is capable of predicting the vector
representation for words not occurring in the corpus, since it decomposes each
word into a set of characters of n-grams. Hence, every word appearing in the
attribute value can be converted into a vector representation ~w.

• Vector representation of attributes. Afterwards, considering that there may be
two or more words in one attribute, we achieve the vector representations of
attributes by computing the mean value of all the word vectors in the attribute:

~attr =

n∑
i=1

~wi

n
,

(6.2)

where n is the number of words in attributes.

6.2. Evaluation 91

Table 6.1: Datasets used in experiments.

Datasets #Pairs
(#DS1&#DS2)

#Matches #SRA #NRA #NA

Real Datasets
DBLP-
ACM

6001104
(2616&2294)

2224 2 1 1

Amazon-
Google

4400264
(1364&3226)

1300 3 0 1

Generated
Dataset

Persons 551250
(1050&1050)

96 2 6 5

• Cosine similarity to compute the similarity value. After we get the two vector
representations of two attribute values, the last step is to use cosine similarity
measure to get the final similarity value between two attribute vectors. More
formally, the similarity of SRA is represented by:

attrSim(r1.attr, r2.attr) = cosine(~r1.attr, ~r2.attr), attr ∈ SRA. (6.3)

6.1.2 Learning-Based Classification

After the similarity for each attribute pair is calculated with their respective meth-
ods, a classification step is used to classify pairs to matches or non-matches. As
mentioned above, the simplest approach is a threshold-based method, which com-
pares the average similarity score with the preset threshold value. Those pairs whose
average score is higher than the threshold are considered as matches, and vice versa.
However, to get the average score, similarity scores for each attribute are firstly
summed up, which loses detailed information contained in the separated attribute
similarities. Therefore, in our ER process, we adopt a learning-based classifica-
tion step to overcome this drawback. A learning-based classification method firstly
trains a classifier on a training dataset with available matching or non-matching
labels, then the trained classifier is used to classify pairs with match or non-match
status. So far, there have been different classifiers proposed. For the experiments
described in Section 6.2, we employ the following three classifiers to compare the ER
effectiveness results by using different combinations of traditional or word embed-
ding based similarity measures: Tree Boosting (XGBoost), Random Forest (RF),
and K-Nearest Neighbor (KNN). These three classifiers are employed as examples,
which are intended to represent general solutions for classification in an ER context.

6.2 Evaluation

In this section, we show our designed similarity calculation methods and the evalua-
tion of their F-measure on different real-world datasets and synthetic datasets. Next,
we show the datasets used for our experiments and represent designed combinations
of similarity calculation methods.

6.2.1 Datasets Used

Table 6.1 shows the three datasets we used for our experiments.

92 6. Hybrid Similarity Calculation Approach for Entity Resolution

The first dataset “DBLP-ACM Citation” includes two parts, which are from the
DBLP citation database and the ACM citation database, respectively. All of them
have four attributes, including title, authors, venue, and publication year. Therein,
“title” and “venue” are considered as SRAs, while “authors” is NRA and “publication
year” is NA.

The second dataset “Amazon-Google Products” includes two parts as well, which are
from Amazon and Google. Both of them have four attributes, including id, name, de-
scription, manufacturer, and price. Based on their properties, “name”,“description”,
and “manufacturer” are considered as SRAs, while “price” is NA. All above datasets
are downloaded from [Rahm, 2017], which are benchmark datasets often used for
ER.

The last dataset is synthetic and generated by the data generator GeCo introduced
in Section 2.3.2. As introduced there, the generated dataset contains personal in-
formation with the following 13 attributes: gender, given-name, surname, postcode,
city, sex, telephone-number, credit-card-number, income-normal, age-uniform, in-
come, age, and blood-pressure. Therein, the last five attributes are considered as
NAs, while “sex” and “gender” are SRAs and the other attributes are NRAs.

The first two real datasets are commonly-used benchmark datasets for ER. How-
ever, both of them only contain one numerical value, which we think the most useful
attribute type to show differences in using different combinations of similarity cal-
culations. Therefore, we involve the generated dataset as well, which contains five
attributes with numerical values. Due to privacy issues, we are not able to have real
personal or business data, which contains several attributes with numerical values.

6.2.2 Design of Different Combinations of Similarity Calcu-
lation Methods

To evaluate our proposed hybrid similarity calculation approach and compare the
effectiveness between approaches using different similarity measures, we design the
following three combinations of similarity measures for different types of attributes:

• Traditional hand-crafted similarity functions only. For this scenario, we use
the Jaro Winkler similarity function to calculate the similarity of all string
attributes, i.e., NRAs plus SRAs, and use Euclidean distance to calculate the
similarity of all NAs.

• Word embedding and cosine similarity based method only. For this scenario,
we use word-embedding-based method for all attributes.

• Our proposed hybrid method. We propose to use word embedding for SRAs,
Jaro Winkler for NRAs, and the Euclidean distance function for NAs.

We implemented the aforementioned three classifiers with the scikit-learn library.
Results are reported for a random split of 66/34% training/test data, each including
respectively 66/34% of the existing match and non-matches.

6.2. Evaluation 93

Table 6.2: Evaluation results with different classifiers (F-measure).

Combinations XGBoost RF KNN
Traditional 100 100 88.46
WordEmbedding 100 100 100Generated Dataset
Hybrid 100 100 46.15
Traditional 97.04 97.70 95.17
WordEmbedding 92.56 94.82 93.94DBLP-ACM
Hybrid 93.69 94.28 89.31
Traditional 20.19 25.35 21.11
WordEmbedding 19.10 31.09 24.10Amazon-Google
Hybrid 29.72 38.32 19.78

6.2.3 Results and Discussion

Table 6.2 shows the results of our evaluation. Next, we will discuss the result of
each dataset in detail.

Generated dataset: As can be seen, the F-measure reaches its optimal for the gen-
erated dataset, with word embedding solutions performing consistently well across
classifiers. This is a slightly surprising finding, as most attributes can be labeled
as non-semantic. We deem the goodness of embeddings to be partly dependent on
the coverage of the FastText learned representations. The purpose of using the gen-
erated dataset is it contains several NAs, which is promising to show the accuracy
difference between different approaches. However, the generated dataset still lacks
unpredictability and complexity compared to a real dataset, so that all F-measures
are very high and we cannot get valuable conclusions from it. We also observe that
the results of KNN are affected by the existence of irrelevant features, whereby the
similarity of items on one dimension leads to misclassifications for close neighbors.
For its less effective configurations, the model outputs 6 and 21 false positives out
of 30, reducing the F-measure on this dataset.

DBLP-ACM dataset: For the relatively clean and easy citation dataset, the F-
measure is observed to be consistently higher than 95% with traditional approaches
outperforming others. The word-embedding-based and the hybrid approach show
lower results. By careful consideration of its attributes properties, we found that
the “title” attribute is, although having long strings, actually not semantic related.
A paper title normally only has one version and its name usually only differs due
to possible typos. Under this situation, word-embedding-based methods may fail.
Therefore, for those attributes with long strings, careful consideration is needed
about whether an edit-distance-based or semantic-based similarity measure is more
suitable for them. The inadequate use of embeddings for the year attribute might
have hindered the quality of the learning process.

Amazon-Google dataset: For the more complex product dataset (various de-
scriptions may express the same semantic meaning) we observe that hybrid solutions
outperform the other two pure solutions, and achieve the best results with XGBoost
and RF. For KNN we also observe some problems with the existence of irrelevant
dimensions, which increase the number of false negatives. Overall, embedding-based

94 6. Hybrid Similarity Calculation Approach for Entity Resolution

Table 6.3: Example of a matching pair.

(a) Original data.

Id Name Description Manufacturer Price

Amazon
b00005rd70

train sim mod-
eler design stu-
dio

with train sim
modeler you can
create 3d...

abacus 39.99

Google
1769133250
3246508957

abacus train sim
modeler

microsoft train
simulator brings
the most...

29.84

(b) Similarity scores.

Id Name Description Manufacturer Price

Traditional 0.661 0.721 0.0 0.999
Word Embed-
ding

0.857 0.872 0.0 -0.036

Hybrid 0.857 0.872 0.0 0.999

approaches outperform traditional solutions (for classifiers RF and KNN) or provide
a comparable result with XGBoost, which indicates the necessity to use word em-
bedding for datasets with real semantic attributes. The hybrid approach performs
the best with XGBoost and RF, which indicates that by carefully choosing word-
embedding-based or traditional similarity measure according to attribute properties
(mainly basing on non-semantic and semantic) a better accuracy can be achieved
than using only one of them. Table 6.3 shows an example of the similarity scores
of a matched pair. For the numerical attribute “price”, the similarity score between
“39.99” and “29.84” is even a negative value, which indicates an opposite meaning
of two values and is not true. Therefore, we can observe that embeddings create
a strong signal for attributes with common semantics, but provide little help, even
negatively affect the similarity calculation of attributes lacking such properties, es-
pecially for numberical attributes.

We should also note that the F-measure values we report for this challenging dataset
are much lower than many published results. We attribute this to the fact that
almost all previous research adopts either blocking or thresholding techniques to
reduce the amount of non-matching pairs, so that the training data set is much
more balanced, helping to achieve a higher F-measure. For this paper, our purpose
is solely to test the benefit of our proposed hybrid similarity calculation approach.
Therefore, we avoided blocking and thresholding, to highlight the specific impact of
the approaches.

To conclude our discussion, a word-embedding-based approach works predominately
better for semantic attributes. For non-semantic attributes, it may also be possible
to achieve an F-measure which is comparable (i.e., as seen for the generated dataset)
or worse (i.e., as seen for the DBLP-ACM dataset) than traditional similarity mea-
sures. However, for numerical values, word embedding is not recommended since a
hybrid approach shows obviously better F-measure than only using word embedding

6.3. Related Work 95

(based on the result of Amazon-Google dataset with XGBoost and RF classifiers).
Therefore, the safest way for similarity calculations of ER problems is to use word
embedding for semantic attributes and to use traditional similarity measures for
non-semantic attributes. Besides, interestingly, in our findings, we note that the
choice of classifier seems to be secondary to the choice of similarity measures, with
simple classifiers being able to outperform more complex ones, provided they are
given adequate (i.e., descriptive, distinctive) similarity measures as input. We ex-
pect this to be partly explainable from the simplicity of the datasets (for the first
two cases) and the improvements brought by semantics (in the third case).

6.3 Related Work
In this section, we discuss the related work on calculating similarities for record
attributes in an ER process. At first, we introduce several surveys, which conclude
mainly traditional similarity measures for strings. Then we present the approaches
using word embedding to solve ER tasks. At last, we show the research approaches,
which, similarly as ours, propose hybrid similarity calculation approaches for ER.

Traditional similarity calculation for ER: As introduced in Chapter 2, there
have been numerous similarity measures for strings developed so far. Related sur-
veys can be found in [Brizan and Tansel, 2006; Koudas et al., 2006; Newcombe and
Kennedy, 1962]. The involved similarity measures are mainly traditional, syntactic-
based approaches. Cohen et al. [2003] compared different string similarity metrics for
name-matching tasks, including Jaccard, Jaro, Jaro-Winkler, Levenstein, SmithWa-
terman, Jensen-Shannon, TFIDF, Monge-Elkan, and softTFIDF. Monge-Elkan and
softTFIDF are grouped into hybrid distance functions, since they provide strategies
to combine similarities of subsets to get a final result and the similarities of subsets
are calculated with secondary distance functions.

Word embedding for ER: As aforementioned, recent research has considered ap-
plying word embedding for ER. There are two main research questions of employing
word embedding for ER. One is which embedding granularity to use for ER; the
other one is how to get the vector of each attribute of a tuple after each word or
sub-word has been embedded.

Ebraheem et al. adopt word-level embedding using the GloVe pre-trained dictio-
nary [Pennington and R. Socher, 2014] and propose two methods to get the vector
representation of an attribute: an averaging method and an RNN-based method
with LSTMs. Then a representation of a tuple is obtained by concatenating the
vectors of all its attributes [Ebraheem et al., 2018].

Kooli et al. employ N-gram-level embedding using the Fasttext library and then
concatenate all vectors of all subwords [Kooli et al., 2018]. N-gram-level embedding
should provide a more accurate result when there is a large proportion of infrequent
words in the input dataset [Mudgal et al., 2018]. For ER tasks, data is often dirty
and contains many infrequent words, therefore, in our work, we also use N-gram-level
embedding.

Mudgal et al. study several possible embedding choices from both the granularity
of the embedding and adopted model, and sketch a design space for deep learning
solutions [Mudgal et al., 2018].

96 6. Hybrid Similarity Calculation Approach for Entity Resolution

Hybrid similarity calculation for ER: There have been research approaches,
which use more than one similarity measure to calculate the similarities between
records. Köpcke et al. [2010] combined different similarity functions for non-learning
and learning based ER. They found that for non-learning based ER, using a single
similarity function on only one attribute provides the best effectiveness in most cases.
While for learning-based ER, using several similarity functions for each attribute and
combining similarity results from two attributes can provide better results, because
the classifiers are able to find the underlying effective features by providing differ-
ent options with multiple similarity functions. The above-mentioned comparison
study [Cohen et al., 2003] also combines different similarity functions to provide
abundant features for classifiers. Their result also shows that combined measures
outperform the individual metrics.

The existing hybrid similarity calculation approaches are mainly using multiple sim-
ilarity functions for one attribute and considering similarities of different attributes
to provide broader perspectives for classifiers and further improve effectiveness. Our
hybrid similarity calculation method is different from the above hybrid approaches.
Our focus is to recognize the limitation of using word embedding based approaches
for numerical and non-semantic attributes and choose suitable similarity measures
based on the characteristics of different attributes.

6.4 Summary

In this chapter, we propose to use a hybrid similarity calculation solution for ER
tasks and provide a practical evaluation of three different combinations of similarity
measures with general machine learning classifiers. We find that embeddings are
generally useful, though they are not a silver bullet, and both hybrid and traditional
approaches can achieve superior results. We find that similarity measures can have
a greater impact than the choice of classifiers in the resulting goodness of an ER
process, with simple classifiers being able to outperform more complex ones, pro-
vided they are given adequate (i.e., descriptive, distinctive) similarity measures as
input. Our observations concur with other results in the literature (e.g. [Mudgal
et al., 2018]) in the conclusion that to build general ER systems it is necessary to
provide room for adaptive configurations impacting all steps of the ER process. In
summary, in our research, we apply a prototypical workflow for ER, which does not
involve blocking or thresholding and performs a learning-based classification step
with general classifiers. Based on the evaluation results, we show that the current
use of word embeddings alongside traditional measures for ER opens-up a bundle of
promising choices for practitioners, without lending itself easily to a one-size-fits-all
solution.

7. Heterogeneous
Committee-Based Active
Learning for Entity Resolution

This chapter shares material with the ADBIS’19 paper “Heterogeneous
Committee-Based Active Learning for Entity Resolution (HeALER)“ [Chen
et al., 2019b].

In Chapter 6, we focused on the pair-wise comparison step of Entity Resolution
(ER) and discussed the effectiveness of using different combinations of similarity
calculation approaches, which is the first part of research under the data variety
challenge. Therein, we mentioned that although a threshold-based classification
method is efficient and easy to apply, detailed information contained in the separated
attribute similarities may be lost in the process of summing up similarity scores to
calculate the average score. Therefore, in many cases, learning-based classification
is required to improve the classification result and the effectiveness of ER.

Facing various data, the absence of training data becomes another challenge. A
large amount of data needs to be labeled by domain experts to ensure satisfactory
effectiveness. This kind of human effort is quite expensive and may limit the adop-
tion of Machine Learning (ML) approaches for ER classification. To overcome this
limitation, AL has been proposed to select the most valuable data to be labeled to
achieve reasonable effectiveness with less labeled data [Melville and Mooney, 2004].
As introduced in Chapter 2, state-of-the-art AL approaches can be divided into
single-model-based and committee-based AL. Our research is related to the later
one, also called Query By Committee (QBC). Based on our observation, applying
QBC approaches for ER faces two challenges:

Diversified Committee: The key challenge to make QBC work in common is to
generate a diversified committee, which can lead to insightful voting disagreements
so that the informativeness of data can be represented and distinguished [Lu et al.,
2009; Melville and Mooney, 2004]. To achieve diversity, i.e., generating various

98 7. Heterogeneous Committee-Based Active Learning for Entity Resolution

voting results from the committee, for the vast majority of proposed AL approaches,
they consider how to get multiple models with only one single type of classification
algorithm. So far, several methods have been proposed for the diversity purpose,
such as query by bagging, query by boosting [Mamitsuka et al., 1998]. However, for
all those ensemble-based approaches, the accuracy of each model is compromised to
get this diversity. For instance, in the bagging approach, the initial training dataset
is divided into several smaller subsets, then different models are built based on
different subsets [Mamitsuka et al., 1998]. Those trained models cannot be expected
to achieve such accuracy as the model trained on the whole training dataset. Besides,
nowadays, data is also quite variable in their types and there is no universally best
model for all types of data. If a system completely relies on a single type of model,
accuracy could not be acceptable for the worst cases.

Imbalanced ER Classification: The second challenge specialized for an AL-ER
solution is the generation of the initial training dataset. The binary classification
task for ER is a special task because of the imbalance of its two groups. In our
real world, there are much fewer matching pairs than non-matching pairs, e.g., for
the well-known DBLP-ACM dataset, the imbalance ratio is 1 match but 1785 non-
matches [Wang et al., 2015]. If the initial training dataset is randomly selected
from all candidate pairs, the possibility to contain matching pairs would be quite
low, which may lead to a very low starting accuracy of trained models or even fail
in training a model. Facing imbalanced data, oversampling and undersampling are
commonly-used. However, except for their intrinsic shortcomings (overfitting for
oversampling and discarding potentially useful data for undersampling [Kotsiantis
et al., 2006]), they also contradict the goal of AL: saving labeling effort as much as
possible.

Facing both challenges, in this chapter we propose a novel Heterogeneous Active
Learning Entity Resolution (HeALER) solution. We specifically detail our contri-
butions as follow:

• We design a specialized technique to generate the initial training dataset, which
is suitable for the inherent class imbalance in ER;

• We propose to construct the AL committee with different types of classification
algorithms, through which we can achieve diversity, accuracy and robustness
requirements of a committee;

• We prototype our solution and evaluate it with two well-known ER benchmark-
ing datasets, and compare it to passive ML and two state-of-the-art AL-ER
approaches (ATLAS [Tejada et al., 2001] and ALIAS [Sarawagi and Bhamidi-
paty, 2002])1. The evaluation results show that HeALER is faster to converge
and can reach a higher final F-measure, which also indicates that with fewer
labels a satisfactory F-measure can be achieved.

The remainder of this chapter is organized as follows: In Section 7.1, we introduce
our HeALER approach. Subsequently, we evaluate our approach and discuss the

1The source code and the datasets can be found at https://git.iti.cs.ovgu.de/Chen/
entity-resolution-for-big-data.

https://git.iti.cs.ovgu.de/Chen/entity-resolution-for-big-data
https://git.iti.cs.ovgu.de/Chen/entity-resolution-for-big-data

7.1. Our HeALER Method 99

Dataset 1 Dataset n

Data Preprocessing

Blocking

Paired
Data

Similarity
Functions

Calculation

Paired data with
 similarity scores

 as features

...

Pairing

Initial Training Data Selection
Sum up Similarity Scores

Extract Matches and Non-
Matches From Matching and

Mixed Zones Separately

Descending Sort

Sample
Selector Votes

Labeler

Labeled
Training Data

...

Heterogeneous Committee

...

Committee Generator

Stopping Criteria?

Selected
Classifier(s) Result

No

Yes

Data Preparation Iterative Active Learning Process Main Contributions

Figure 7.1: The global workflow of HeALER.

experiment results in Section 7.2. Before we summarize this section in Section 7.4,
we also compare our method to other related work in Section 7.3.

7.1 Our HeALER Method

In this section, we introduce our designed QBC AL method for ER, which is char-
acterized by its initial training data selection approach and its heterogeneous com-
mittee. We start with a global picture of our approach in Section 7.1.1, then we
represent our initial training data selection method and the heterogeneous commit-
tee in the following sections.

7.1.1 The Global Workflow

Figure 7.1 represents the global workflow of our method HeALER. It is separated
into two parts, the left green area describing the preparation steps, and to the side
the light red area corresponds to the AL stage.

Preparation for Active Learning As we can see from the left green area of Fig-
ure 7.1, several standard preparation steps are required to start the ER process.
At first, input data is preprocessed if necessary, which may include data clean-
ing, formatting, standardization. Afterward, blocking is performed to omit unnec-
essary comparisons, which are obvious non-matches based on predefined blocking
keys [Chen et al., 2018b]. Then candidate pairs are generated based on the block-
ing result. Subsequently, for each attribute pair, one or more similarity functions
are chosen to best calculate similarities between each attribute pair to get similar-
ity scores as features for the following learning-based classification step [Chen et al.,
2019a]. For the above-introduced steps, proper techniques should be employed based
on ER task requirements, our contributions are reflected in the AL part, which will
be briefly introduced next.

Iterative Active Learning Process The first step of HeALER is to select pairs
from the candidate pairs to be labeled by domain experts for an initial training

100 7. Heterogeneous Committee-Based Active Learning for Entity Resolution

dataset. As mentioned in Chapter 1, the classification step of ER is an imbalanced
binary classification problem, i.e., there are much fewer matching pairs than non-
matching pairs [Elmagarmid et al., 2007]. To reach a relatively high starting point
with the initial training dataset, the training data is required to be balanced and
informative. Balanced means the initial training dataset should contain sufficient
percentages of matching and non-matching pairs, which is hard to achieve when one
randomly picks pairs from the entire input data, since a too high percentage of non-
matches would be selected. Informative means the initial training data could involve
useful information, which can benefit classifiers. The details of how we achieve both
goals will be introduced in Section 7.1.2.

Based on the initial training dataset, different classifiers are trained on them and
then all classifiers together form the required committee. Notably, our classifiers
are trained by different classification algorithms, which means our committee is het-
erogeneous. Compared to the majority of state-of-the-art QBC-AL approaches, our
heterogeneous committee has the following advantages: First, the fundamental re-
quirement - diversity of the committee - is achieved in a natural way without any
other efforts. Second, each member of the committee is trained with the best or
full ability without any compromise, which is more promising to provide a more
accurate vote. Last, the committee analyzes training data and provides the result
from multiple perspectives, no matter which kind of data the committee is facing, it
can provide relatively stable and acceptable results. The methods to form our com-
mittee, including how to define the number of required classifiers and how to select
classification algorithms as committee members, will be explained in Section 7.1.3.

After the committee is formed, they are employed to vote each pair from the unla-
beled pool into match or non-match. The calculation of the disagreement of voting
results for pairs will be firstly represented in Section 7.1.4. Then this process is
iterated until the stopping criteria are reached.

7.1.2 Initial Training Dataset Generation

As explained in the last section, a good initial training dataset should be balanced
and informative. To achieve both criteria, we analyzed a learning-based ER process.
The resources that we have for the classification step are the candidate pairs and
already calculated similarity scores for each attribute pair as features. Figure 7.2 is
a histogram formed for the benchmarking bibliography dataset ACM-DBLP [Rahm,
2017], which describes how the percentages of matching and non-matching pairs vary
along with different similarity score levels. There are four attributes in this dataset.
From these, a total of 16 similarity scores are calculated as features (five similarity
scores for attributes title, author, venue, each with five string similarity calculation
functions; and one similarity score calculated for the attribute: publication year).
Each separate similarity score is normalized between zero and one, and then the
total similarity scores of all pairs should be between zero and sixteen by summing
up all similarity scores. Based on this, we divided all candidate pairs into 15 groups
and each group is an interval between n and n+1 (n is from 0 to 15). As we can
see from it, globally the whole pairs are located in three zones. For areas with the
lowest similarity scores, the vast majority of pairs are non-matching pairs (the non-
matching zone). Then the percentage of matching pairs increases in relatively middle

7.1. Our HeALER Method 101

levels (the mixed zone), and for the last levels with the highest similarity scores, the
vast majority of pairs become matching pairs (the matching zone). Dealing with
variable datasets, the concrete ranges of the three zones may vary, however, globally
speaking, those three zones and their trends should be valid for almost all datasets.

From the perspective of balance, the difficulty for the imbalanced classification step
of ER is to find a sufficient number of matching pairs, while non-matching pairs are
quite easy to get because there are much more non-matching pairs than matching
pairs in our real world. The percentages shown in the figure can indicate the dif-
ficulty to get matching and non-matching pairs. To get sufficient matching pairs,
the matching zone has to be focused. To get sufficient non-matching pairs, both the
non-matching zone and the mixed zone can be the candidates.

From the other perspective of being informative, those pairs that are intrinsically
difficult to classify based on available features can be considered as informative data
since the classifier would be significantly improved if informative pairs are labeled
and added to help the classifier training. Hence, those error-prone pairs should
be true matching pairs with relatively low similarity scores and true non-matching
pairs with relatively high similarity scores. True matching pairs with relatively low
similarity scores should be located in the mixed zone, but it is not possible to get
them, since the matching pairs account for very small percentages in the mixed zone.
Therefore, for achieving both balance and informativeness, we have to pick matching
pairs from the matching zone. On the other hand, for non-matching pairs, those
that have relatively high similarity scores are more informative and locate in the
mixed zone, by combining the conclusion from above, i.e., non-matching pairs can
be obtained from the non-matching zone and the mixed zone from the perspective
of balance, the mixed zone is the aiming zone for high-quality non-matching pairs.

Based on the above considerations, we conclude our method to generate the initial
training dataset for learning-based ER in the following way:

1. First, there can be many similarity scores calculated and for different at-
tributes, values of similarity scores may vary much. Hence, it is difficult to
look into each separate similarity score and judge the possibility based on them
separately. Therefore, we calculate a total score of each pair by summing up
all similarity scores of attributes.

2. Next, we sort all candidate pairs based on their total scores in descending
order.

3. Last, we divide all sorted pairs into k groups, then we can get the initial
training dataset by randomly picking n/2 pairs from the top k1 groups (the
matching zone) for getting sufficient matching pairs and n/2 pairs from the
next k2 groups (the mixed zone) for getting sufficient and informative non-
matching pairs (n is the preset number of initial training data). There is no
accurate method to determine which k, k1, k2 are the best. The following
hypotheses can be used. If the ER problem is between two data sources and
the linkage is one-to-one linkage, the highest number of matches is the number
of records in the smaller dataset. This number can be used as the size of the

102 7. Heterogeneous Committee-Based Active Learning for Entity Resolution

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Similarity Score Levels

non-match percentage match percentage

mixed zone matching
zone

non-matching
zone

Figure 7.2: Distribution of similarity scores.

matching and mixed zones. If the linkage is one to many, even many to many
linkages, the information that can be used is the approximate percentage of
matching pairs, then this can be the basis to locate the matching zone and the
same percentage of pairs can be counted for the mixed zone. If the percentage
of matching pairs is unknown, as a rule of thumb, 10 groups should be a good
number to averagely divide all pairs with a proper blocking step. Then the
matching zone is the top group with the highest similarity scores and the mixed
zone corresponds to the second group for getting non-matching pairs.

With the above-introduced strategy, the interesting areas analyzed above are estab-
lished. With the first top groups, we are able to get sufficient matching pairs, and
with the next groups, sufficient and informative non-matching pairs can be obtained.

7.1.3 Heterogeneous Committee

As introduced above, our committee is heterogeneous, which means that the clas-
sifiers of the committee are trained with different classification algorithms. The
method designation focuses on two aspects: how many classifiers and which classi-
fiers to choose.

Generally speaking, our heterogeneous committee is allowed to contain any number
of classifiers. Based on the result in [Sarawagi and Bhamidipaty, 2002], the perfor-
mance of the classifier is not too sensitive to how many members a committee has
and with four classifiers the aggregated accuracy is already satisfactory enough. On
the one hand, each additional member in the committee means one more training
process per iteration, which can heavily increase the time needed for generating one
round committee and has a negative impact on efficiency. On the other hand, having
more than four members for the committee achieves even lower accuracy [Sarawagi
and Bhamidipaty, 2002]. Therefore, in our evaluation, four classifiers are generated
to form the committee. Next, we present which candidate algorithms are suitable
to be committee members. In general, we considered the following factors:

Accuracy with little training data: The selected classifiers should have relatively
high accuracy. Particularly, because the purpose of using AL is to reduce required
human labeling efforts, we assume that for the training dataset, not so much training
data is required to achieve high accuracy, which means that the selected classifiers

7.1. Our HeALER Method 103

Figure 7.3: F-measure comparison of
seven classification algorithms.

Figure 7.4: Efficiency comparison of
seven classification algorithms.

should still work when only little training data is available. This is the main factor
we use to choose classification algorithms.

Efficiency: Efficiency also requires consideration, since a learning-based classifica-
tion is much more time-consuming than a simple threshold-based classification and
such factor can be expected to have a large impact on the performance, as data
grows.

Interpretability: Interpretability is also of great importance for choosing the learn-
ing algorithms because we can use machine learning responsibly to ensure that our
values are aligned and our knowledge is reflected [Doshi-Velez and Kim, 2017].

We considered the following seven common binary classification algorithms: logis-
tic regression (LR), decision tree (DT), random forest (RF), gradient-boosted tree
(GBT), support vector machine (SVM), one-vs-rest logistic regression (OvR), and
naive Bayes (NB). To select classifiers for our committee, we evaluated their F-
measures also on the same benchmarking bibliography dataset ACM-DBLP [Rahm,
2017] used in Figure 7.2 by using different sizes of initial training data. Figure 7.3
shows the results. SVM, OvR, and LR have a satisfactory F-measure value even with
only two training data pairs. NB and RF provide still a very low F-measure value
even with 40 training data instances. NB classifiers are generative models that need
prior probabilities. The probabilities are inaccurate for our case because our initial
training data is chosen by our proposed method in the last section, which normally
generates relatively balanced training data. This state of training data does not
conform to the test data [Nguyen and Smeulders, 2004]. Besides, it assumes that all
features are independent [Rennie et al., 2003]. However, our features are actually
not independent, which may lead to the low F-measure for NB classifiers. The RF
classifier cannot perform well, because it trains an ensemble of decision tree clas-
sifiers by splitting the training dataset into multiple subsets, then chooses subsets
of features for each decision tree classifier [Meng et al., 2015]. This leads to a low
F-measure especially when there is not enough training data. DT overall performs
well except for the case with two training data pairs, in which the DT classifier is not
possible to be trained. GBT is in a similar situation as DT. However, its F-measure
values are always lower than DT. We also evaluate the efficiency of all seven classi-
fication algorithms. All candidate pairs are divided into roughly two equal groups.
Training data is generated by randomly picking four matching and non-matching
pairs from the first group and then test data is the other entire group. The results
are shown in Figure 7.4. As we can see from it, results show that DT, GBT, and

104 7. Heterogeneous Committee-Based Active Learning for Entity Resolution

RF need obviously more time than the other algorithms. NB runs the fastest, OvR,
SVM and LR follows. However, all three tree-based classification algorithms DT,
RF, and GBT are quite slow. By combining the perspectives of interpretability and
efficiency with the accuracy result, SVM, OvR, LR, and DT are selected to form
our heterogeneous committee.

Above we provided guidelines on how to choose classification algorithms to form
the heterogeneous committee. Facing different implementations of algorithms with
different adopted libraries, the best choices of classification algorithms may change
case by case.

7.1.4 Training Data Candidate Selection and Termination
Conditions

After our heterogeneous committee is formed based on the above-introduced ap-
proach, it is used to vote unlabeled pairs as matches or non-matches. Then those
pairs with the most disagreement are those interesting pairs that we may select to
be labeled by domain experts and added to the training dataset. The disagreement
value of the voting results for pairs is calculated with the following equation:

Disagreement(pair) =
∑

(am,an)∈committee)

Difference(result(am), result(an)) (7.1)

where (am,an) are the combinations of results from any two classification algorithms
from the committee and the Difference(x, y) function returns zero or one, depending
on whether x equals to y or not. With this equation, we sum up all the differences
between any two combinations of classification algorithms as the final disagreement
value of the votes. However, the pair with a high disagreement value has also a
high possibility that it is an outlier. If an outlier is selected and added to the
training dataset, it will negatively impact the performance of classifiers. To reduce
the possibility that outliers are selected, the random sampling proposed in [Sarawagi
and Bhamidipaty, 2002] randomly picks the pair from the top-n pairs to alleviate
the probability that an outlier is selected to be labeled, n can be set manually, such
as 10, 20, 30.

Then the training data is updated in the above-introduced way iteratively till a
preset termination rule is reached. The termination rules can be considered from
the following possibilities:

• Iteration rounds: As an iteration process, the most straightforward way is to
stop after a preset number of iteration rounds. It can be set by experience
when the rough round of its converge can be estimated.

• Running time: In reality, the iteration process can also be ended manually,
when the acceptable processing time runs out.

• Training data size: The domain experts can also stop labeling when they are
not able to label more data. Then the capability of how much data they can
label is also another possibility to terminate the process.

7.2. Evaluation 105

Table 7.1: Datasets used in experiments.

Datasets #In
put

#Records
in

DBLP

#Records
in ACM/
Scholar

#Pairs
(#matching

pairs)

#For
training

data
selection

#For
test-
ing

ACM-DBLP2 2 2616 2294 21095 (2189) 10547 10548
Scholar-DBLP1 2 2616 64263 44999 (4351) 22500 22499

• Predicted accuracy: It is often common that the users of the active learning
ER system have a requirement for precision, recall, or F-measure values. In
this case, more extra data needs to be labeled as testing data to evaluate the
current classifiers after each iteration. However, with this stopping condition,
human efforts have to be increased, since a ground-truth for the test data has
to be provided.

After the iteration process is completed according to preset termination conditions,
the committee or a specific classifier can be used to identify duplicates for any
unlabeled data.

7.2 Evaluation

In this section, we evaluate HeALER from three aspects: first, we solely conduct
experiments to evaluate the balance and accuracy of our initial training data selec-
tion method (Section 7.2.2). Second, we evaluate our heterogeneous committee and
compare it to passive learning and committees formed by ALIAS and ATLAS (Sec-
tion 7.2.3). Last, we evaluate our entire HeALER approach against an ML process
and two state-of-the-art QBC-AL approaches: ALIAS and ATLAS (Section 7.2.4).
For all results, the accuracy is measured using F-measure.

7.2.1 Experimental Setting

Datasets: We evaluate HeALER on two commonly-used real-world datasets: ACM-
DBLP and Scholar-DBLP citation datasets [Rahm, 2017]. Both datasets include two
parts, one part is from the DBLP citation database and the other one is from ACM
or google scholar citation databases, respectively. All of them have four attributes,
including title, authors, venue, and publication year. To prepare data for HeALER,
we have done the following steps based on the two original citation databases: We
first preprocess both databases by removing stop words and null values. Then we
generate blocking keys (the first five letters of the title) for each record. Subse-
quently, we join two database tables with the blocking key as the join attribute,
so that we get all candidate pairs. Afterward, similarity functions are performed
on each attribute to get corresponding features. For attributes “title”, “author”, we
apply cosine, Jaccard, Jaro-Winkler, metric longest common subsequence, N-Gram,
normalized Levenshtein, and Sorensen-Dice similarity functions 2. For attribute

2Implemented by the Debatty library (version 1.1.0).

106 7. Heterogeneous Committee-Based Active Learning for Entity Resolution

(a) Balance of matching and non-matching pairs.

(b) F-measure comparison.

Figure 7.5: Evaluation of initial training dataset selection approaches.

“venue”, the Jaccard similarity function is used. For the last attribute “year”, the
similarity between two values is one or zero based on whether they equal or not. In
this way, we obtained 16 features. For the preparation of our initial training dataset
selection method, total similarity scores are calculated and appended to data as well.
With the above-introduced steps, for the ACM-DBLP dataset, we got 21095 pairs
after blocking (including 2189 true matching pairs). We randomly divide all pairs
into two parts: the first half 10547 pairs as the first part form the dataset to select
training data and the remaining pairs for testing. For the Scholar-DBLP dataset,
we got 44999 pairs after blocking (including 4351 true matching pairs). We also
randomly separate it into two parts in the same way as the ACM-DBLP dataset.
The details of the datasets are summarized in Table 7.1.

Implementation Related: Since learning-based classification is much more time-
consuming than threshold-based classification, we implemented HeALER with Apache
Spark (version 2.4), as preparation for big data processing. However, in this thesis,
we focus only on the quality side of ER results. The classification algorithms used
are implemented with Spark MLlib. The programming language is Scala with the
version 2.11.12.

7.2.2 Initial Training Dataset Evaluation

Experimental Design. This experiment is to evaluate different strategies to select
the initial training dataset by getting the average results over five runs. We use both
datasets in Table 7.1. The tested initial dataset sizes are four and ten, which are
proved to be the least to function selected classifiers (see Figure 7.3). The following
strategies are evaluated:

Random Selection: It means we randomly select the required number of pairs.

Optimal selection: The optimal selection means that training data is optimally
balanced, i.e., because we have the ground truth for our datasets, we pick half

7.2. Evaluation 107

matches and half non-matches from the unlabeled data. However, this is not practi-
cal, since, before labeling, we have no idea which pairs are matches or non-matches.
In [Sarawagi and Bhamidipaty, 2002], they selected initial training data in this un-
practical way.

Initial training data selection of ATLAS [Tejada et al., 2001] : ATLAS ranks all
pairs on their total similarity scores, then divides the whole pool to n groups (4
or 10 groups for two tested dataset sizes respectively), at last, the initial training
dataset is obtained by randomly selecting one data pair from each group.

Initial training data selection of AGP [de Freitas et al., 2010] : To get both matching
pairs and non-matching pairs, the initial training dataset of AGP is obtained by
selecting half number of pairs with highest total similarity scores (2 or 5 pairs for
two tested dataset sizes respectively) and the other half number of pairs with lowest
total similarity scores (2 or 5 pairs for two tested dataset sizes respectively).

Initial training data selection of HeALER: Our own method HeALER selects the
initial training dataset in the way of the hypotheses described in Section 7.1.2. Since
the linkage for the ACM-DBLP dataset is one-to-one linkage, the highest number of
matches is the number of records in the smaller dataset, i.e., 2294 records from the
ACM library. As the whole dataset is almost equally split into two datasets. Then
the matches contained in the first dataset to select training data should be 1147. This
number can be used to get the matching and mixed zones, i.e., two pairs randomly
picked from the first 1147 pairs with the highest similarity scores, and two pairs
randomly picked from the next 1147 pairs. Regarding the other dataset Scholar-
ACM, it is not one-to-one linkage, but we know that the approximate percentage of
its matching pairs is 10, therefore, we divide all pairs into 10 groups, and the first
top group with the highest total similarity scores is the matching zone, where we
randomly get 5 pairs, and the second group is the mixed zone, where we randomly
get the rest 5 pairs.

We evaluate those above-introduced selection methods with balance and F-measure
metrics. For the balance metric, we show how many matching and non-matching
pairs in the training dataset. For the F-measure metric, F-measures values are
calculated by testing the classifiers trained on different training datasets with LG,
DT, SVM classification algorithms respectively on the test dataset.

Results and Discussion. As can be seen from Figure 7.5a, with random and AT-
LAS approaches, the training data selected is quite skewed, no sufficient matching
pairs are picked, especially the random selection for the ACM-DBLP dataset selects
no matching pairs, which may make the training data unusable since some classifier
algorithms cannot work with only one class of data for a binary classification prob-
lem. HeALER can achieve relatively balanced training data, but not as completely
balanced as AGP and Optimal selection. The F-measures using LR, DT, and SVM
calculated on the training data selected with different approaches are shown in Fig-
ure 7.5b. Therein, the training data selected using ATLAS and the random approach
works only for DT and SVM on the Scholar-DBLP dataset. For all other cases, no
classifiers are successfully trained and used for the later test classification because
of exceedingly skewed training data. The other three approaches work apparently
better. With the training data they selected, it is always possible to complete the

108 7. Heterogeneous Committee-Based Active Learning for Entity Resolution

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

10
1

1
0

6

1
1

1

1
1

6

1
2

1

12
6

1
3

1

1
3

6

1
4

1

1
4

6

15
1

1
5

6

1
6

1

1
6

6

1
7

1

1
7

6

1
8

1

18
6

1
9

1

1
9

6

F-
m

e
as

u
re

Rounds

ACM-DBLP Dataset

Samping10 Sampling20 Sampling30

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

10
1

10
6

11
1

11
6

12
1

12
6

13
1

13
6

14
1

14
6

15
1

15
6

16
1

16
6

17
1

17
6

18
1

18
6

19
1

19
6

F-
m

ea
su

re

Rounds

Scholar-DBLP Dataset

Sampling10 Sampling20 Sampling30

Figure 7.6: Comparison of different sampling strategies.

classification tasks using the trained classifiers. Particularly, HeALER outperforms
AGP and the optimal case with DT due to the more informative training data, which
makes the splitting closer to the truth. However, it achieves a bit lower F-measure
for LR and SVM. By concluding the results, we can say that the quality of HeALER
training data is high when the number of divided groups can be correctly defined.
Otherwise, the AGP strategy can be applied to achieve acceptable F-measure.

7.2.3 Heterogeneous-Committee Evaluation

Experimental Design. This experiment is designed to specially evaluate our
heterogeneous committee and compare it to other approaches (committees formed
in [Tejada et al., 2001] and [Sarawagi and Bhamidipaty, 2002] and passive learning
to randomly pick pairs without basing on committees’ decisions). Both datasets
in Table 7.1 are used. We fix the initial training data selected by our own strategy
for all approaches, which provides them fair and good starting points. To determine
how many top pairs are used for random sampling, we ran experiments to compare
sampling strategies with 10, 20, and 30 top pairs with our HeALER method on
both datasets. Figure 7.6 shows the comparison results. As we can see from them,
for both datasets, the Sampling20 approach performs the best, achieves higher F-
measure also at a faster speed. Therefore, the Sampling20 strategy is used as the
countermeasure to reducer the selection of outliers. After each iteration of the AL
process, the F-measure is calculated on the classification results of the test data
in Table 7.1 obtained by using the DT classifier trained on the updated training
datasets by each approach. The AL process terminates after 199 rounds. Each
experiment is repeated three times to get the final average result. The details how
different approaches perform are introduced as follows:

7.2. Evaluation 109

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 6

11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

1
0

1

1
0

6

1
1

1

1
1

6

1
2

1

1
2

6

1
3

1

1
3

6

1
4

1

1
4

6

1
5

1

1
5

6

1
6

1

1
6

6

1
7

1

1
7

6

1
8

1

1
8

6

1
9

1

1
9

6

F-
m

e
as

u
re

Rounds

ACM-DBLP Dataset

ALIAS ATLAS HeALER Passive

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 6

11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

10
1

10
6

11
1

11
6

12
1

12
6

13
1

13
6

14
1

14
6

15
1

15
6

16
1

16
6

17
1

17
6

18
1

18
6

19
1

19
6

F-
m

e
as

u
re

Rounds

Scholar-DBLP Dataset

ALIAS ATLAS HeALER Passive

Figure 7.7: Comparison of different committees.

Passive Learning: This approach randomly picks pairs to be labeled by humans and
added to the training dataset without relying on any committee votings.

ALIAS Committee [Sarawagi and Bhamidipaty, 2002]: ALIAS forms its committee
by randomizing parameters while training classifiers with the selected algorithm. In
our experiments for both datasets, the SVM algorithm is used. We vary the value of
its parameter for the maximum number of iterations with 4, 6, 8, and 10. Then four
classifiers are trained respectively and form its committee. In the ALIAS paper, for
their experiments, they applied the DT algorithm and varied the parameter where
to split. However, as our implementation depends on the Spark MLlib, it is not
possible to adjust this parameter. Therefore, we apply the SVM algorithm for our
experiments.

ATLAS Committee [Tejada et al., 2001]: ATLAS partitions the training dataset to
four subsets, then each subset of the training data is used to train its classifier to
form its committee. The classification algorithm used here is the same as ALIAS:
SVM for the purpose of comparison. For both datasets, each time 80 percent of pairs
are randomly chosen to constitute the training dataset. Four subsets are required
to get four classifiers of the committee.

HeALER Committee: As explained in Section 7.1.3, our heterogenous committee
includes four classifiers, which are trained with SVM, OvR, LR, and DT algorithms,
using the complete training dataset.

Results and Discussion. Figure 7.7 shows the comparison results of different
committees and passive learning. As we can see from the results of ACM-DBLP
dataset, the F-measures of all approaches fluctuate much in the first 50 rounds, then
becomes more stable later on. After about 140 rounds, our heterogeneous committee

110 7. Heterogeneous Committee-Based Active Learning for Entity Resolution

keeps F-measures higher than 0.92 and reaches its rough convergence. In contrast,
ALIAS and ATLAS committees still cannot achieve their convergences till 199 runs.
They show even less stable and lower results than passive learning. However, the
highest F-measures they are able to reach during the experiments are much higher
than passive learning, which proves the effectiveness of the committee to explore
which are more informative pairs. Since passive learning randomly chooses more
pairs to be labeled, the informative pairs are hard to be selected to really cover the
shortages of the classifiers. From the result of the other Scholar-DBLP dataset, we
can get similar conclusions. Our heterogeneous committee converges already after
about 110 rounds and keeps the F-measure 0.95 afterward. ALIAS and ATLAS
committees are far from their convergence even with 199 rounds. Passive learning
works quite well for this dataset due to the high initial F-measure. However, it
requires much labeling effort to improves its F-measure. To summarize the results,
our heterogeneous committee shows its advantage in picking informative data to
improve the F-measure of the classifier and reach convergence with much less labeling
efforts than passive learning, ALIAS, and ATLAS committees.

7.2.4 Overall Evaluation and Comparison

Experimental Design. After we evaluate our initial training data selection ap-
proach and our heterogenous committee separately, in this section, we evaluate our
entire HeALER approach by comparing the F-measures using a one-off ML approach,
ALIAS and ATLAS approaches based on the same number of training data. For this
overall evaluation, the same datasets are used as in the last two sections. The F-
measures are all calculated on the classification results of the test data in Table 7.1
obtained by using the DT classifier. All approaches except the normal machine learn-
ing approach follow the iteration process of AL, and terminate after 199 rounds. For
the normal one-off ML approach, we randomly picked the corresponding number of
training data of each iteration and calculate the F-measure of the test data using
the DT classifier. ATLAS has no strategy to reduce the possibility to get outliers
but it chooses the pair with the highest similarity value among all pairs with the
highest disagreement value. Therefore, in the overall evaluation, for ATLAS, this
approach choosing the pair with the highest similarity value is used. For HeALER
and ALIAS, the sampling20 strategy is used as in the committee comparison exper-
iment. The final result is averaged by three times’ repetition.
Results and Discussion. Figure 7.8 shows the comparison results of different AL
approaches and a normal ML process. As we can see from the results of the ACM-
DBLP dataset, HeALER has the highest initial F-measure and keeps an F-measure
around 0.9 with 20 or more training data. ALIAS and ML perform the worst and
fluctuate their F-measures from the beginning to the end. ML starts to function
stably with at least 33 labeled data and cannot significantly improve its F-measure
when labeling more data. ATLAS starts to work with 10 labeled data and hardly
varies its F-measure. The reason can be because its strategy always selects data with
the highest total similarity score, weakens the effects of the disagreement values of
data, and often chooses the same data for different iterative rounds, which leads to
changeless F-measure for several or even dozens of iterative rounds. Although it
seems that ATLAS performs quite well, the results of the Scholar-DBLP dataset, in
which ATLAS performs the worst, shows that ATLAS is not reliable, more research

7.3. Related Work 111

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

4 9

14 19 24 29 34 39 44 49 54 59 64 69 74 79 84 89 94 99

1
0

4

1
0

9

1
1

4

1
1

9

1
2

4

12
9

1
3

4

1
3

9

1
4

4

1
4

9

1
5

4

1
5

9

16
4

1
6

9

1
7

4

1
7

9

1
8

4

1
8

9

1
9

4

19
9

F-
m

ea
su

re

#Labeled Training Data

Overall Evaluation on ACM-DBLP Dataset

ALIAS ATLAS HeALER Machine Learning

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

5
5

6
0

6
5

7
0

7
5

8
0

8
5

9
0

9
5

10
0

10
5

11
0

11
5

12
0

12
5

13
0

13
5

14
0

14
5

15
0

15
5

16
0

16
5

17
0

17
5

18
0

18
5

19
0

19
5

F-
m

e
as

u
re

#Labeled Training Data

Overall Evaluation on Scholar-DBLP Dataset

ALIAS HeALER Machine Learning ATLAS

Figure 7.8: Overall evaluation of different active learning approaches.

on the strategy of selecting the highest similarity score from the data with the high-
est disagreement values is required. For the results of ALIAS, HeALER, and ML on
the Scholar-DBLP dataset, similar conclusions can be made. The results show that
HeALER works better than the other compared approaches.

7.3 Related Work

We now discuss the existing AL approaches to reduce the labeling efforts for learning-
based ER. The AL related approaches for ER include similar approaches as the com-
mon AL with a goal of selecting the most informative data for classifiers to be labeled
by humans (single-model-based [Ngomo et al., 2011], committee-based [de Freitas
et al., 2010; Isele and Bizer, 2013; Ngomo and Lyko, 2012; Ngomo et al., 2013;
Sarawagi and Bhamidipaty, 2002; Tejada et al., 2001]), and special AL approaches
as well for the purpose of getting the best rules (like classifiers) that are able to
provide high precision without considering the quality of training data [Arasu et al.,
2010; Bellare et al., 2012, 2013; Fisher et al., 2016; Qian et al., 2017]. Therein,
Ngomo et al. [Ngomo et al., 2011] identify the most informative data to be labeled
and added into the training dataset with the maximized convergence of the used
classifier. The proposed committee-based AL approaches differ from each other
globally with different committee forming approaches. The approaches [de Freitas
et al., 2010; Isele and Bizer, 2013; Ngomo and Lyko, 2012; Ngomo et al., 2013] use
genetic programming algorithms to learn multi-attribute functions. However, the
quality of those functions cannot be guaranteed.

The research approaches [Sarawagi and Bhamidipaty, 2002; Tejada et al., 2001] are
the most similar to ours. They form their committees with several classifiers, which

112 7. Heterogeneous Committee-Based Active Learning for Entity Resolution

are trained on a single type of classification algorithm. However, to achieve diversity
of classifiers in the committee to make AL work with the most disagreement strategy,
their classifier qualities are compromised, which restricts the ability of the commit-
tee to identify the most informative data. Moreover, the initial training dataset
selection problem is not correctly handled. Sarawagi and Bhamidipaty [Sarawagi
and Bhamidipaty, 2002] directly assume that the AL process starts with an initial
training dataset including five matching and non-matching pairs, which is not real-
istic since it cannot be known whether a pair is matching or non-matching before
labeling. Although in the other paper [Tejada et al., 2001], this reality is considered,
however, the initial training dataset they selected is quite biased with the number of
matching and non-matching pairs, which leads to very low quality of classifiers for
the beginning iterations. In contrast to them, our proposed HeALER can provide
a high-qualified initial training dataset and the heterogeneous committee can select
more informative data to improve the classifiers faster.

7.4 Summary

In this section, we propose our AL approach HeALER for ER, which could select a
relatively balanced and informative initial training dataset and use its heterogeneous
committee to select informative pairs to be labeled by the human to improve the
classifier. We evaluated and compared it with the passive (machine) learning and
two state-of-the-art AL-ER approaches ATLAS and ALIAS. The evaluation results
show that HeALER is faster to converge and can reach a higher final F-measure
than other approaches. In addition, the results also indicate that it requires less
training data to reach a satisfactory F-measure, which conforms to the purpose of
using AL approaches: reducing human labeling effort. However, we also observed
the fluctuations during the early rounds, which are caused by choosing outliers to
the training dataset.

8. Conclusion and Future Work

Although the research on Entity Resolution (ER) has already a long history, nowa-
days it still keeps active and attractive. Facing the challenges big data brings to it,
the research potentials are further extended and corresponding solutions are called.
This thesis responds to this need and makes contributions to make ER more efficient
and effective for high-volume and variable data. In the following, we conclude our
contributions in each challenge and briefly discuss potential future work.

8.1 Conclusion

To deal with high-volume data, ER solutions need to be more efficient and scal-
able. In our thesis, Chapter 3, Chapter 4, and Chapter 5 presented our contributions
in this aspect and focus on solutions using parallel computation for ER, which are
concluded in the following based on the research questions raised in Chapter 1:

• To answer RQ1: “What is the state-of-the-art and the latent research directions
of parallel ER?”, in Chapter 3, we conducted a Systematic Literature Review
(SLR) on the area of parallel ER and overviewed a corpus of 58 articles. Ac-
cording to three groups of extracted criteria: general, effectiveness-based, and
efficiency-based, we represented the state-of-the-art research and summarized
them in multiple tables, which can be used for a quick look-up for existing
research approaches of parallel ER. Furthermore, we discussed the reviewing
results in each table and concluded possible solutions for each group of criteria,
which can provide guidance for the designation of future parallel ER processes.
At last, based on the observations and conclusions from our SLR, we suggested
several research directions, where future research should pay more attention.

• To answer RQ2: “How do different implementation options provided by big data
processing frameworks affect the performance of ER processes?”, in Chapter 4,
we took three available APIs in Apache Spark: RDD, DataFrame, and Dataset
as examples to explore their performance to implement parallel ER. A typical
pair-wise ER process including two scenarios: with (Scenario 1) or without

114 8. Conclusion and Future Work

(Scenario 2) evaluation is considered and implemented by these three APIs.
Moreover, different persistence options have been designed and evaluated for
three APIs to find their optimal persistence option. From the perspective of
implementation procedures, the high-level APIs DataFrame API and Dataset
API, especially the possibility of integrating SQL queries into the DataFrame
implementation, provides more convenience for programmers. In contrast, the
RDD-based API provides more flexibility for programmers to define their own
classes and functions case by case. Then we compared their runtime by sub-
mitting them to our Spark cluster. Based on our results, we get the following
conclusions: For parallel ER with evaluation (Scenario 1), DataFrame imple-
mentation is the most efficient one. However, its superiority is not due to the
automatic optimization provided by Spark, but the advantages from its best
persistence option. Without considering persistence for the ER process, the
RDD-based implementation runs faster than the other two implementations
but cannot get benefit from persistence with our Spark cluster. For parallel ER
without evaluation (Scenario 2), the RDD-based implementation is superior
to the other two implementations, which conforms to the result of Scenario
1 without consideration of any persistence option. For many cases in reality,
the evaluation step is not required. Hence, an RDD-based implementation is
preferred to reduce the required time to get ER results.

• To answer RQ3: “How well can the state-of-the-art block-splitting-based load
balancing strategies solve the load imbalance problem for parallel ER and what
can be improved?”, in Chapter 5, we in-depth analyzed the state-of-the-art
approaches BlockSplit and BlockSlicer and pointed out their advantages and
disadvantages theoretically. Then we proposed two other strategies TLS and
BOS, which aim to overcome the limitations. Afterward, we implemented
and evaluated them with our Spark cluster. We found that all four strategies
could fulfill the fundamental requirement: balancing the reducer load with
the help of a greedy strategy for assigning blocks to reducers on the majority
of datasets. Besides, we exposed that the total runtime of a block-splitting-
based load balancing approach can be affected by the other two factors: the
required overhead and the GC time when facing limited cluster resources.
Under different situations, no strategy can always outperform other strategies
and we concluded their corresponding performance case by case. However, our
proposed strategies TLS and BOS can provide similar and in the vast majority
of cases more efficient performance than BlockSplit and BlockSlicer due to the
fact that they reduce the overhead by block-wise assigning composite keys.

To deal with current more variable data, in our thesis, we considered two folds of
problems for ER.

• The first problem is, under the circumstance of using word embedding for
calculating similarities for all types of record attributes of ER, the effective-
ness may be negatively affected by the inaccurate similarities of non-semantic
attributes. Therefore, we have our RQ4: “Based on the availability of both
traditional similarity functions and the word-embedding-based similarity calcu-

8.1. Conclusion 115

lation approach, how to choose between them to provide ER the highest effec-
tiveness?”.

To answer it, in Chapter 6, we classified record attributes into three groups:
numerical attributes, non-semantically related attributes, and semantically re-
lated attributes. We designed different combinations of similarity measures
based on the three groups of attributes and evaluated them on real and syn-
thetic datasets. According to our experiment results, we have the following
observations: first, a word-embedding-based approach works predominately
better for semantic attributes. For non-semantic attributes, it may also be
possible to achieve an F-measure which is comparable or worse than tradi-
tional similarity measures. However, for numerical values, word embedding is
not recommended since a hybrid approach shows obviously better F-measure
than only using word embedding for the Amazon-Google dataset with XG-
Boost and RF classifiers. Therefore, in conclusion, the safest way for similarity
calculations of ER problems is to use word embedding for semantic attributes
and to use traditional similarity measures for non-semantic attributes.

• The second problem we concern is, due to the absence of training data, much
human effort is required to label records to achieve satisfactory effectiveness
of ER results. To alleviate this, active learning (AL) can be used. However,
committee-based AL has not been sufficiently studied for ER. Based on the
shortages of existing approaches, we have our RQ5: “How to select a balanced
and informative initial dataset and form an effective committee for committee-
based active learning ER?”.

To address this, in Chapter 7, we proposed our own committee-based AL
approach named HeALER, which is powered by its initial training data selec-
tion approach and heterogeneous committee. We implemented our HeALER
approach, a normal machine learning-based ER, and two existing committee-
based AL approaches: ALIAS and ATLAS, and evaluated them. Our experi-
ment results showed that HeALER is superior to ALIAS and ATLAS in higher
F-measure values and faster coverage speed and is able to reach satisfactory
effectiveness with less labeled data than machine learning based ER and the
other two AL approaches.

To summarize, our thesis concerns the challenges big data brings to ER and pro-
poses solutions from different perspectives. The research in Chapter 3 and Chap-
ter 4, and Chapter 5 contributes to efficiency and scalability by surveying the main
parallel ER research, suggesting the suitable implementation API, and improving
block-splitting-based load balancing strategies for parallel ER. The research in Chap-
ter 6 and Chapter 7 comes down to the effectiveness issues by improving effectiveness
through hybrid similarity measures for the pair-wise comparison and achieving re-
quired effectiveness with less labeled data for a learning-based classification. All
above-summarized solutions contribute towards our vision introduced in Chapter 1:
providing the most suitable ER solutions under different big data scenarios by a
specialized and powerful framework, into which our contributions can be integrated.
To approach this vision, future work introduced in the next section should be con-
sidered.

116 8. Conclusion and Future Work

8.2 Future Work

In this section, we present future work, which can further improve ER approaches
to solve the challenges big data brings to it.

The first group of future work extends our current research.

• Extending the comparison study of different implementation options
in big data processing frameworks: There are different directions to ex-
tend our comparison study part. First, our current comparison study special-
ized on three APIs within the Apache Spark framework, which can be extended
to cross-framework comparisons and explore the beneficial features from exist-
ing frameworks for our envisioned specialized framework for ER. Second, the
current ER process adopts some typical techniques for its included steps. More
commonly-used techniques can be added to assess the robustness of different
implementation options. Last, the datasets we used for our finished compari-
son study are only regarding personal information. More types of datasets can
be considered to see whether the same observations can be collected.

• Extending the research on load balancing strategies: During our eval-
uation for four block-splitting-based strategies, we found that with limited
cluster resources, the required GC time may significantly increase and lower
the efficiency. Because the threshold is determined based on the number of re-
ducers, the performance of the strategies deeply relies on a suitable number of
reducers. It is difficult to find the best number of reducers, which can balance
the overhead time and GC time for optimal efficiency. Under this situation, a
resource-bounded and reduce-partition-independent threshold determination
approach can be explored to improve the usability of the strategies. Further-
more, in our evaluation, we found that the performance of different strategies
may vary facing datasets with different properties. More broad evaluation can
be conducted for future work. At last, the pair-based load balancing strat-
egy is the other solution proposed. Whether the state-of-the-art pair-based
approaches can be improved remains for future work.

• Extending the hybrid similarity calculation approach: We envision two
core challenges: On the one hand, previous work [Köpcke and Rahm, 2008] has
shown that thresholding, with a given blocking solution, improves the learn-
ing process; similarly, work in ER with embeddings [Ebraheem et al., 2018]
shows good results without quantifying the precise impact of blocking and
thresholding. Therefore, future work should consider this factor for our hybrid
solutions. On the other hand, the search for the optimal balance between the
similarity measures used becomes essential, as we show in our current study.
Though some guidelines can be adopted in this task for specific cases, as we
propose, future work is required to achieve a general method for combining the
approaches. This may be achieved through the following ways. First, in our
research, for the same dataset results are not completely agreed with different
classifiers. This can be especially observed for the KNN classifier, in several
cases, its results are opposite to the results obtained using the other two clas-
sifiers. Therefore, more classifiers should be explored to figure out the hidden

8.2. Future Work 117

rules. Next, experiments on datasets, whose attributes can be relatively even
divided into the three groups we presented, should be made to draw more
definite general conclusions for combining the approaches.

• Extending the HeALER approach: There are also different directions to
extend our HeALER approach. First, in the current research, we analyzed
that in order to get sufficient match pairs and high-quality non-match pairs,
the initial training data should be selected for match and non-match pairs sep-
arately. We suggested different hypotheses on the possible ways to determine
the specific intervals for selecting match and non-match pairs. However, this
cannot provide a guarantee for absolute balance and informativeness. Methods
to approach more absolute balance and informativeness are expected. Second,
the sampling strategy has been used to lower the possibility of selecting out-
liers for the AL processes. However, this cannot avoid the selection of outliers.
For future work, techniques to exploit the local density to handle imbalanced
data and recognize outliers [Nanopoulos et al., 2002] should be studied in or-
der to improve HeALER and make it reach the convergence faster. Third, we
have evaluated HeALER on two benchmarking publication datasets, which is
not as challenging as another benchmarking dataset: Amazon-Google product
datasets. Evaluations are required on this dataset to see whether HeALER
can also work well for the more challenging dataset. At last, although our
HeALER approach can reduce the required training data to achieve satisfac-
tory effectiveness, human experts still need to spend time waiting for the end
of each iteration to label the data. Approaches such as semi-supervised ap-
proaches can be combined with HeALER so that only the initial training data
is required to be labeled by human experts at the beginning and afterward
human experts are free from labeling for each round of iteration.

In our thesis, we touched only on the first two Vs of big data and considered the
two Vs separately. The other group of future work is related to the combination of
different Vs and the remaining two Vs: velocity and veracity.

• ER for both data volume and data variety: In this thesis, we contribute
separately to the data volume and data variety parts. For the data volume
challenge, we have the research goal to make approaches more efficient. For the
data variety challenge, we aim to implement ER more effective and with less
human labeling efforts. For future work, the research to study the interaction
between efficiency and effectiveness under different big data scenarios can be
carried on.

• ER on data velocity: Data velocity means the fast speed of generating
new data. Facing this challenge, real-time techniques should be adopted to
implement real-time ER. Compared to the traditional off-line ER, real-time
ER has its own characteristics and even higher demand for efficiency. For
new-coming records, to accelerate their integration into the resolved data,
except for the similar steps of an off-line ER process, maintaining indexes
for the resolved data and the way to store the resolved data should also be
considered.

118 8. Conclusion and Future Work

• ER on data veracity: Data veracity means the truthfulness and reliability
of the data. With the development of the web, data veracity becomes more
typical for the so-called web data. The ER process relying solely on the value of
the data may not provide satisfactory results, evidence from additional sources
should be utilized in the future work to counter the data veracity challenge.

A. Appendix

The appendix is organized as follows. In Section A.1, we introduce our method
to select state-of-the-art approaches for our SLR in the parallel entity resolution
(ER) area. In Section A.2, we represent some example codes for implementing the
entity resolution process with three Spark APIs in Chapter 4. In Section A.3, we
show the calculated imbalance ratio of the five introduce load balancing strategies
in Section 5.3.2 with 112 and 224 reducers.

A.1 Methodology of Literature Search

In this section, we describe the process of finding and selecting the 58 papers on
parallel ER. The process includes the following steps:

Identification of a starter set of articles: The first task in the literature search
is to identify a starter set of articles (i.e., primary studies) having a strong focus
on the considered field. If this set is too large, the effort to identify related papers
will be unacceptable, while in the opposite case, if the starter set contains too few
articles, some important articles may be missed. As ER has many synonyms, the
most commonly used aliases were also considered as keywords in our searches, to
achieve a starter set covering diverse entry points to sub-fields of research. On the
other hand, ER-related research in computer science has been going on for almost
six decades, so the number of articles is large. Therefore, it was mandatory to use
keywords distinguishing serial and parallel ER to limit the size of the starter set. To
make the search string more restrictive we added the term ’partition’ to it because
it is used in all papers that address parallel processing as a focus. Based on these
considerations, we defined the following search string:

(”entity resolution” OR ”record linkage” OR ”data matching” OR ”dedupli-
cation” OR ”duplication detection” OR ”similarity join”) AND (”parallel”
OR ”distributed”) AND ”partition”.

120 A. Appendix

This search string was used on four popular literature databases: ACM Digital
Library, IEEE Xplore, SpringerLink, and Scopus. The retrieved articles from work-
shops, conferences, and journals of computer science formed the starter set of 2582
articles, consisting of 873 articles from ACM Digital Library, 285 articles from IEEE
Xplore, 992 articles from SpringerLink, and 432 articles from Scopus.

Applying inclusion and exclusion criteria on the starter set: The second
step is to define inclusion and exclusion criteria and then apply them on papers in
the starter set. Our inclusion and exclusion criteria are introduced in the following:

Inclusion Criteria:

IC01: Including articles, which are published between 2005 and December 2019.
2005 is chosen, because the vast majority of the research regarding parallel ER is
published after this year and we intended to focus on the current state of research.
December 2019 is the time we did the literature search.

IC02: Including articles, which are written in English.

IC03: Including research papers, in which the research ideas and solutions are orig-
inally from authors themselves.

IC04: Including articles, whose topics are generic ER (similarity join included) and
using parallel computation techniques to solve ER problems.

Exclusion Criteria:

EC01: Removing overlapping articles between different literature databases.

EC02: Removing articles, which are summaries of workshops and conferences,
posters, editorials, etc.

EC03: Removing articles, which are secondary studies and usually contain no tech-
nical contribution, such as literature reviews, surveys, comparative papers, tutorials,
etc. However, the related secondary studies are considered for presenting the related
work in the latter part of this chapter.

EC04: Removing articles, whose focus is on general data mining, data integration,
data cleaning, data storage, data classification, similarity search, etc.

EC05: Removing articles, that only address specifics of ER in application domains,
such as geospatial, forensic, networking, multimedia domains.

EC06: Removing articles, whose focus is not on using parallel DBs or big data
processing frameworks to support parallelizing the ER process, but either to improve
efficiency by using non-parallel algorithms, parallelism offered by GPUs for local
tasks, focusing on solving privacy problems, or query-time/streaming ER.

EC07: Removing articles, which do not give evidence, such as references, proofs,
experimental results, to support their claims.

EC08: Removing articles based on the number of citations indicating low impact or
importance. Because the number of citations increases over time after publishing, it
is not reasonable to have a single lower-bound value. Therefore, we removed articles

A.2. Implementation Details for a Common Entity Resolution Process with Three
Spark APIs 121

with a citation number less than two times the publication age in years before the
current year of 2020, i.e., 2 ∗ (2020− publicationyear).

Using the above-defined criteria, we applied them on the start set with the following
sub-steps:

sub-step 1: Apply criteria, which are independent of article contents, i.e., IC01,
IC02, and IC03, with the help of the filter functions of each search engine of the
literature databases. After this sub-step, 1840 articles remained.

sub-step 2: Apply the criteria (IC03-IC04 and EC02-EC06) on article titles to in-
clude or remove articles. After this substep, 268 articles remained for consideration.

sub-step 3: Apply the criteria (IC03-IC04 and EC02-EC06) on article abstract to
include or remove articles. After applying the criteria, 102 articles are left. And
lastly by applying the impact criteria EC07 and EC08, 49 articles are left. By
removing overlapping articles, 43 articles are left.

sub-step 4: Apply the criteria (IC03-IC04 and EC01-EC07) to include or remove
articles from the literature set by reading the entire paper. After applying these
criteria on the whole paper, three articles are removed and 30 articles are left.

Supplementing the literature set by checking the references of articles:
After we had the list of identified 30 articles from the second step, we checked
references from or to those articles, and then decided whether to add the retrieved
articles to our literature set or not based on all criteria described above. After this
step, we found 28 more articles and had 58 articles in total.

A.2 Implementation Details for a Common En-

tity Resolution Process with Three Spark APIs

In this section, we show our three Spark-based implementations for each step of
the used ER process. The implementations are represented in the order of RDD-
based, Dataset-based, and DataFrame-based for each step. We omit the details of
implementing specific functions and aim to emphasize the implementation differences
between different APIs1.

1 //RDD Implementation

2 SparkConf conf = new SparkConf ().setAppName("EntityResolution");

3 JavaSparkContext sc = new JavaSparkContext(conf);

4

5 // Dataset and DataFrame Implementation

6 SparkSession sparkSQL = SparkSession.builder ()

7 .appName("EntityResolution")

Listing A.1: Initializing Spark

1 //RDD Implementation

2 JavaRDD <String > input = sc.textFile(args[0], #partitions);

3

4 // Dataset Implementation

1The full code can be found at https://git.iti.cs.ovgu.de/Chen/entity-resolution-for-big-data.

https://git.iti.cs.ovgu.de/Chen/entity-resolution-for-big-data

122 A. Appendix

5 Dataset <String > input = sparkSQL.read().textFile(args[0], #

partitions);

6

7 // DataFrame Implementation

8 Dataset <Row > input = sparkSQL.read()

9 .option("header", "true")

10 .option("treatEmptyValuesAsNulls","true")

11 .csv(args [0]);

Listing A.2: Loading data into Spark

1 //RDD Implementation

2 JavaRDD <Record > preprocessedData = input.map(new Function <String ,

Record >() {

3 public Record call(String line) throws Exception {

4 Record sd = null;

5 // cleaning step implementation omitted

6 sd = new Record(fields);

7 return sd;

8 }

9 });

10

11 // Dataset Implementation

12 Dataset <CsvRecord > preprocessedData = input.map((MapFunction <String

, CsvRecord >) rec ->{

13 //Omitted , the same as RDD -based implementation

14 }, Encoders.bean(CsvRecord.class));

15

16 // DataFrame Implementation

17 Dataset <Row > preprocessedDataTem = data.na().fill("0");

18 Dataset <Row > preprocessedData = preprocessedDataTem.na().replace(

cols , ImmutableMap.of(unwanted ,""));

Listing A.3: Preprocessing

1 //RDD Implementation

2 JavaRDD <Record > withKeyData = preprocessedData.map(new Function <

Record , Record >() {

3 public Record call(Record rec) throws Exception {

4 DoubleMetaphone doublemetaphone = new DoubleMetaphone ();

5 String key = "",

6 // blocking key definition omitted

7 rec.setBlockingKey(key);

8 return rec;

9 });

10

11 // Dataset Implementation

12 Dataset <CsvExtendedRecord > withKeyData = preprocessedData.map((

MapFunction <CsvRecord ,CsvExtendedRecord >) rec -> {

13 //Omitted , the same as RDD -based implementation

14 }, Encoders.bean(CsvExtendedRecord.class));

15

16 // DataFrame Implementation

17 preprocessedData.createOrReplaceTempView("preprocessedData");

18 Dataset <Row > withKeyData = sparkSQL.sql("SELECT columns CONCAT(

blocking key definition) as blockingKey FROM preprocessedData");

19

20 sparkSQL.udf().register(name , new UDF1 <String , String >() {

A.2. Implementation Details for a Common Entity Resolution Process with Three
Spark APIs 123

21 // function implementation omitted

22 }, DataTypes.StringType);

Listing A.4: Blocking

1 //RDD Implementation

2 JavaPairRDD <String , Record > firstOne = withKeyData

3 .mapToPair(new PairFunction <Record , String , Record >() {

4 public Tuple2 <String , Record > call(Record t) throws Exception {

5 return new Tuple2 <String , Record >(t.getBlockingKey (), new

Record(t));

6 }

7 });

8

9 JavaRDD <TupleRecord > recordPairData = firstOne.join(firstOne)

10 .filter(new Function <Tuple2 <String ,Tuple2 <Record ,Record >>,

Boolean >() {

11 // specific implementation omitted

12 return result;

13 }

14 }).map(f->f._2)

15 .map(new Function <Tuple2 <Record ,Record >, TupleRecord >() {

16 public TupleRecord call(Tuple2 <Record , Record > tup) throws

Exception {

17 return new TupleRecord(tup._1, tup._2);

18 }

19 });

20

21 // Dataset Implementation

22 Dataset <JoinedTuple > recordPairData = withKeyData.joinWith(

withKeyData1 ,withKeyData.col("blockingKey").equalTo(withKeyData1

.col("blockingKey")))

23 .filter(

24 // specific implementation omitted

25).map((MapFunction <Tuple2 <CsvExtendedRecord ,CsvExtendedRecord >,

JoinedTuple >) rec ->{

26 JoinedTuple tup = null;

27 return new JoinedTuple(rec._1, rec._2);

28 }, Encoders.bean(JoinedTuple.class));

29

30 // DataFrame Implementation

31 withKeyData.createOrReplaceTempView("blocking");

32 Dataset <Row > recordPairData = sparkSQL.sql("SELECT columns ,

renaming columns to name2 FROM blocking r JOIN blocking s on (s.

blockingKey=r.blockingKey) where r.rec_id > s.rec_id");

Listing A.5: Join for generating record pairs

1 //RDD Implementation

2 JavaRDD <TupleRecord > totalScoreData = recordPairData.map(new

Function <TupleRecord , TupleRecord >() {

3 public TupleRecord call(TupleRecord tup) throws Exception {

4 // calculate scores for each attribute using the selected

similarity function

5 tup.setTotalScore(

6 // summing up all scores

7);

8 return tup;

124 A. Appendix

9 }

10 }

11

12 JavaRDD <TupleRecord > resultData = totalScoreData.map(new Function <

TupleRecord , TupleRecord >() {

13 public TupleRecord call(TupleRecord rec) throws Exception {

14 // classification

15 return rec;

16 }

17 });

18

19 resultData.saveAsTextFile("path");

20

21 // Dataset Implementation

22 Dataset <CsvExtendedTuple > totalScoreData = recordPairData.map((

MapFunction <JoinedTuple ,CsvExtendedTuple >) rec -> {

23 public CsvExtendedTuple call(CsvExtendedTuple tup) throws

Exception {

24 // calculate scores for each attribute using the selected

similarity function

25 tup.setTtotalScore(

26 // summing up all scores

27);

28 return tup;

29 }, Encoders.bean(CsvExtendedTuple.class));

30

31 Dataset <CsvExtendedTuple > resultData = totalScoreData.map(new

Function <TupleRecord , TupleRecord >() {

32 public TupleRecord call(TupleRecord rec) throws Exception {

33 // classification

34 return rec;

35 }, Encoders.bean(TotalScore.class));

36

37 resultData.write().csv("path");

38

39 // DataFrame Implementation

40 sparkSQL.udf().register("similarityFunction", new UDF1 <String ,

String >() {

41 // function implementation omitted

42 }, DataTypes.StringType);

43

44 sparkSQL.udf().register("matchNonmatch", new UDF1 <String , String >()

{

45 // function implementation omitted

46 }, DataTypes.StringType);

47

48 Dataset <Row > totalScoreData = recordPairData

49 .withColumn("Score", callUDF("similarityFunction", block.col("

name"), block.col("name2"))

50 .withColumn("totalScore", org.apache.spark.sql.functions.expr(

51 // summing up all scores

52).select("rec_id","rec_id2","totalScore");

53

54 Dataset <Row > resultData= totalScoreData.withColumn("matchNonmatch",

callUDF("MatchNonmatch", totalScore.col("totalScore")));

55

A.2. Implementation Details for a Common Entity Resolution Process with Three
Spark APIs 125

56 resultData.write().csv("path");

Listing A.6: Similarity calculation and classification

1 //RDD Implementation

2 JavaRDD <TupleRecord > resultCleanedData = resultData.map(new

Function <TupleRecord , TupleRecord >() {

3 public TupleRecord call(TupleRecord tup) throws Exception {

4 tup.getFirstOrigianl ().setCleanI_rec_id(cleanID(tup.

getFirstOrigianl ().getRec_id ()));

5 tup.getSecondDuplicate ().setCleanI_rec_id(cleanID(tup.

getSecondDuplicate ().getRec_id ()));

6 return tup;

7 }

8 });

9

10 long truePositiveCount = resultCleanedData.filter(tup -> tup.

getMatchNonmatch ().equalsIgnoreCase("match") && tup.

getFirstOrigianl ().getCleanI_rec_id ().equalsIgnoreCase(tup.

getSecondDuplicate ().getCleanI_rec_id ())).count ();

11 long falsePositiveCount = resultCleanedData

12 .filter(tup -> tup.getMatchNonmatch ().equalsIgnoreCase("match") &&

!tup.getFirstOrigianl ().getCleanI_rec_id ().equalsIgnoreCase(tup.

getSecondDuplicate ().getCleanI_rec_id ())).count ();

13 long falseNegativeCount = resultCleanedData

14 .filter(tup -> tup.getMatchNonmatch ().equalsIgnoreCase("nonmatch")

&& tup.getFirstOrigianl ().getCleanI_rec_id ().equalsIgnoreCase(

tup.getSecondDuplicate ().getCleanI_rec_id ())).count();

15

16 double precision = ((double)truePositiveCount /(truePositiveCount+

falsePositiveCount);

17 double recall = ((double)truePositiveCount /(truePositiveCount+

falseNegativeCount);

18 double fMeasure = 2* precision*recall /(precision+recall);

19

20 String output = precision +"," + recall +"," + fMeasure;

21

22 FSDataOutputStream recOutputWriter = null;

23 FileSystem fs = null;

24 try {

25 Configuration configuration = new Configuration ();

26 fs = FileSystem.get(new URI(""),configuration);

27 recOutputWriter = fs.create(path , true);

28 } catch (IOException e) {

29 e.printStackTrace ();

30 }

31 recOutputWriter.writeChars(output);

32 if (recOutputWriter != null) {

33 recOutputWriter.close();

34 }

35 fs.close();

36 sc.stop();

37

38 // Dataset Implementation omitted , similar to RDD -based

implementation

39

40 // DataFrame Implementation

41 sparkSQL.udf().register("cleanRecID", new UDF1 <String , String >(){

126 A. Appendix

42 public String call(String str) throws Exception {

43 // specific implementation omitted

44 }

45 },DataTypes.StringType);

46

47 Dataset <Row > resultCleanedData= resultData

48 .withColumn("rec_id", callUDF("cleanRecID", totalScore.col("

rec_id")))

49 .withColumn("rec_id2", callUDF("cleanRecID", totalScore.col("

rec_id2")));

50

51 resultCleanedData.createOrReplaceTempView("result");

52

53 Dataset <Row > truePositive = sparkSQL.sql("select count(

matchNonmatch) as truePositive from result where (matchNonmatch

= ’match’ and rec_id = rec_id2)");

54 Dataset <Row > falsePositive = sparkSQL.sql("select count(

matchNonmatch) as falsePositive from result where (matchNonmatch

= ’match’ and rec_id != rec_id2)");

55 Dataset <Row > falseNegative = sparkSQL.sql("select count(

matchNonmatch) as falseNegative from result where (matchNonmatch

= ’nonmatch ’ and rec_id = rec_id2)");

56

57 Dataset <Row > posNegs = truePositive.crossJoin(falsePositive).

crossJoin(falseNegative);

58 Dataset <Row > evaluation= posNegs

59 .withColumn("precision",org.apache.spark.sql.functions.expr("

truePositive /(truepositive +falsePositive)"))

60 .withColumn("recall", org.apache.spark.sql.functions.expr("

truePositive /(truepositive + falseNegative)"))

61 .withColumn("F-Measure", org.apache.spark.sql.functions.expr("2*

precision*recall /(precision+recall)"))

62 .select("precision","recall","F-Measure");

63

64 evaluation.write().csv("path");

65 sparkSQL.stop();

Listing A.7: Evaluation

A.3 Imbalance Ratio of Five Load Balancing Strate-

gies

Table A.1 and Table A.2 are the calculated imbalance ratio of the default, BlockSplit,
BlockSlicer, Two-Level Split (TLS) and Block-Oriented Slicer (BOS) load balancing
strategies with 112 and 224 reducers, respectively. As we can see from both tables,
all four tailored load balancing strategies have the same imbalance ratio, which is
quite close to the optimal case. The imbalance ratio of the default load balancing
strategy is lowered by 112 reducers but is raised by 224 reducers.

A.3. Imbalance Ratio of Five Load Balancing Strategies 127

Table A.1: Imbalance ratio of different strategies with 112 reducers.

106 + 50% 2 ∗ 106 + 05% DBLP 0.5 DBLP 1
Default 6.409 6.423 19.376 18.582
BlockSplit 1.000 1.000 1.000 1.000
BlockSlicer 1.000 1.000 1.000 1.000
TLS 1.000 1.000 1.000 1.000
BOS 1.000 1.000 1.000 1.000

Table A.2: Imbalance ratio of different strategies with 224 reducers.

106 + 50% 2 ∗ 106 + 05% DBLP 0.5 DBLP 1
Default 12.557 12.589 38.686 37.092
BlockSplit 1.000 1.000 1.000 1.000
BlockSlicer 1.000 1.000 1.000 1.000
TLS 1.000 1.000 1.000 1.000
BOS 1.000 1.000 1.000 1.000

128 A. Appendix

Bibliography

Azza Abouzeid, Kamil Bajda-Pawlikowski, Daniel Abadi, Avi Silberschatz, and
Alexander Rasin. HadoopDB: An Architectural Hybrid of Mapreduce and Dbms
Technologies for Analytical Workloads. Proceedings of the VLDB Endowment, 2
(1):922–933, 2009. (cited on Page 22 and 49)

Akiko Aizawa and Keizo Oyama. A Fast Linkage Detection Scheme for Multi-
source Information Integration. In Proceedings of the International Workshop on
Challenges in Web Information Retrieval and Integration (WIRI), pages 30–39.
IEEE, 2005. (cited on Page 8)

Amer Al-Badarneh. Join Algorithms under Apache Spark: Revisited. In Proceed-
ings of the International Conference on Computer and Technology Applications
(ICCTA), pages 56–62, 2019. (cited on Page 46)

Arvind Arasu, Michaela Götz, and Raghav Kaushik. On Active Learning of Record
Matching Packages. In Proceedings of the International Conference on Manage-
ment of Data (SIGMOD), pages 783–794, 2010. (cited on Page 2 and 111)

Michael Armbrust, Reynold S Xin, Cheng Lian, Yin Huai, Davies Liu, Joseph K
Bradley, Xiangrui Meng, Tomer Kaftan, Michael J Franklin, Ali Ghodsi, et al.
Spark Sql: Relational Data Processing in Spark. In Proceedings of the Interna-
tional Conference on Management of Data (SIGMOD), pages 1383–1394. ACM,
2015. (cited on Page xiii and 17)

Fariha Atta, Stratis D Viglas, and Salman Niazi. Sand Join—a Skew Handling Join
Algorithm for Google’s Mapreduce Framework. In Proceedings of the International
Multitopic conference (INMIC), pages 170–175. IEEE, 2011. (cited on Page 83)

Ranieri Baraglia, Gianmarco De Francisci Morales, and Claudio Lucchese. Doc-
ument Similarity Self-join with Mapreduce. In Proceedings of the International
Conference on Data Mining (ICDM), pages 731–736. IEEE, 2010. (cited on Page 20,

25, 26, 29, 35, and 42)

C Bell, Ian H Witten, and A Moffat. Managing Gigabytes: Compressing and In-
dexing Documents and Images. IEEE Transactions on Information Theory, 1999.
(cited on Page 38)

Kedar Bellare, Suresh Iyengar, Aditya G. Parameswaran, and Vibhor Rastogi. Ac-
tive Sampling for Entity Matching. In Proceedings of the International Conference
on Knowledge Discovery and Data Mining (KDD), pages 1131–1139, 2012. (cited

on Page 111)

130 Bibliography

Kedar Bellare, Suresh Iyengar, Aditya G. Parameswaran, and Vibhor Rastogi.
Active Sampling for Entity Matching with Guarantees. ACM Transactions on
Knowledge Discovery from Data (TKDD), pages 12:1–12:24, 2013. (cited on

Page 2 and 111)

Omar Benjelloun, Hector Garcia-Molina, Heng Gong, Hideki Kawai, Tait E Lar-
son, David Menestrina, and Sutthipong Thavisomboon. D-swoosh: A Family of
Algorithms for Generic, Distributed Entity Resolution. In Proceedings of the In-
ternational Conference on Distributed Computing Systems (ICDCS), pages 37–37.
IEEE, 2007. (cited on Page 20, 23, 28, 33, 41, and 49)

S Prabhakar Benny, S Vasavi, and P Anupriya. Hadoop Framework for Entity
Resolution within High Velocity Streams. Procedia Computer Science, 85:550–
557, 2016. (cited on Page 21, 24, 31, 37, and 42)

Christopher M Bishop. Pattern Recognition and Machine Learning. Springer, 2006.
(cited on Page 11)

Christoph Böhm, Gerard de Melo, Felix Naumann, and Gerhard Weikum. Linda:
Distributed Web-of-data-scale Entity Matching. In Proceedings of the Interna-
tional Conference on Information and Knowledge Management (CIKM), pages
2104–2108. ACM, 2012. (cited on Page 20, 23, 24, 25, 28, 29, 32, and 36)

P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov. Enriching Word Vectors with
Subword Information. arXiv preprint arXiv:1607.04606, 2016. (cited on Page 10

and 90)

Christine L Borgman and Susan L Siegfried. Getty’s SynonameTM and Its Cousins:
A Survey of Applications of Personal Name-matching Algorithms. Journal of the
American Society for Information Science, 43(7):459–476, 1992. (cited on Page 9)

Ron Bowes. Facebook Names Dataset. Available at: https://blog.skullsecurity.org/
2010/return-of-the-facebook-snatchers, 2010. (cited on Page 59)

David Guy Brizan and Abdullah Uz Tansel. A Survey of Entity Resolution and
Record Linkage Methodologies. Communications of the IIMA (CIIMA), 6(3):5,
2006. (cited on Page 6, 45, and 95)

Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi,
and Kostas Tzoumas. Apache Flink: Stream and Batch Processing in a Single
Engine. Bulletin of the IEEE Computer Society Technical Committee on Data
Engineering (IEEE-CS), 36(4), 2015. (cited on Page 43)

Dehua Chen, Changgan Shen, Jieying Feng, and Jiajin Le. An Efficient Parallel Top-
k Similarity Join for Massive Multidimensional Data Using Spark. International
Journal of Database Theory and Application, 8(3):57–68, 2015. (cited on Page 21,

22, 25, 27, 32, 38, and 62)

Gang Chen, Keyu Yang, Lu Chen, Yunjun Gao, Baihua Zheng, and Chun Chen.
Metric Similarity Joins Using Mapreduce. IEEE Transactions on Knowledge and

https://blog.skullsecurity.org/2010/return-of-the-facebook-snatchers
https://blog.skullsecurity.org/2010/return-of-the-facebook-snatchers

Bibliography 131

Data Engineering (TKDE), 29(3):656–669, 2017. (cited on Page 21, 26, 31, 37, and 42)

Qi Chen, Jinyu Yao, and Zhen Xiao. Libra: Lightweight Data Skew Mitigation in
Mapreduce. IEEE Transactions on Parallel and Distributed Systems (TPDS), 26
(9):2520–2533, 2014. (cited on Page 83)

Tianqi Chen and Carlos Guestrinand. Xgboost: A Scalable Tree Boosting System.
In Proceedings of the International Conference on Knowledge Discovery and Data
Mining (KDD), pages 785–794. ACM, 2016. (cited on Page 12)

Xiao Chen, Kirity Rapuru, Gabriel Durand, Eike Schallehn, and Gunter Saake. Per-
formance Comparison of Three Spark-based Implementations of Parallel Entity
Resolution. In Proceedings of the International Workshop on Big Data Manage-
ment in Cloud Systems (DEXA-BDMICS), pages 76–87. Springer, 2018a. (cited

on Page 5 and 49)

Xiao Chen, Eike Schallehn, and Gunter Saake. Cloud-scale Entity Resolution: Cur-
rent State and Open Challenges. Open Journal of Big Data (OJBD), 4(1):30–51,
2018b. (cited on Page 1, 5, 19, 65, 66, and 99)

Xiao Chen, Roman Zoun, Eike Schallehn, Saravani Mantha, Kirity Rapuru, and
Gunter Saake. Exploring Spark-sql-based Entity Resolution Using the Persistence
Capability. In Proceedings of the International Conference: Beyond Databases,
Architectures and Structures (BDAS), pages 3–17. Springer, 2018c. (cited on

Page 49)

Xiao Chen, Gabriel Campero Durand, Roman Zoun, David Broneske, Yang Li, and
Gunter Saake. The Best of Both Worlds: Combining Hand-tuned and Word-
embedding-based Similarity Measures for Entity Resolution. In In Fachtagung
Datenbanksysteme für Business, Technologie und Web (BTW), 2019a. (cited on

Page 87 and 99)

Xiao Chen, Yinlong Xu, David Broneske, Gabriel Campero Durand, Roman Zoun,
and Gunter Saake. Heterogeneous Committee-based Active Learning for Entity
Resolution (HeALER). In Proceedings of the European Conference on Advances
in Databases and Information Systems (ADBIS), pages 69–85. Springer, 2019b.
(cited on Page 97)

Xiao Chen, Nishanth Entoor Venkatarathnam, Rapuru Kirity, David Broneske,
Gabriel Campero Durand, Roman Zoun, and Gunter Saake. Analysis and com-
parison of block-splitting-based load balancing strategies for parallel entity reso-
lution. In Proceedings of the International Conference on Information Integration
and Web-based Applications & Services(iiWAS). ACM, 2020. (cited on Page 65)

Peter Christen. A Comparison of Personal Name Matching: Techniques and Practi-
cal Issues. In Proceedings of the International Conference on Data Mining Work-
shops (ICDMW), pages 290–294. IEEE, 2006. (cited on Page 9)

132 Bibliography

Peter Christen. Febrl – an Open Source Data Cleaning, Deduplication and Record
Linkage System with a Graphical User Interface. In Proceedings of the Inter-
national Conference on Knowledge Discovery and Data Mining (KDD), pages
1065–1068. ACM, 2008. (cited on Page 20, 23, 27, 28, and 33)

Peter Christen. A Survey of Indexing Techniques for Scalable Record Linkage and
Deduplication. IEEE Transactions on Knowledge and Data Engineering (TKDE),
24(9):1537–1555, 2012a. (cited on Page 1, 6, 7, 9, 38, and 45)

Peter Christen. Data Matching: Concepts and Techniques for Record Linkage, Entity
Resolution, and Duplicate Detection. Springer Science & Business Media, 2012b.
(cited on Page xiii, 1, 5, 6, 7, 9, and 10)

Peter Christen and Dinusha Vatsalan. Flexible and Extensible Generation and Cor-
ruption of Personal Data. In Proceedings of the International Conference on In-
formation and Knowledge Management (CIKM), pages 1165–1168. ACM, 2013.
(cited on Page 18)

Vassilis Christophides, Vasilis Efthymiou, Themis Palpanas, George Papadakis, and
Kostas Stefanidis. End-to-end Entity Resolution for Big Data: A Survey. arXiv
preprint arXiv:1905.06397, 2019. (cited on Page 46)

Xu Chu, Ihab F Ilyas, and Paraschos Koutris. Distributed Data Deduplication.
Proceedings of the VLDB Endowment, 9(11):864–875, 2016. (cited on Page 21, 24,

31, and 37)

Tim Churches, Peter Christen, Kim Lim, and Justin Xi Zhu. Preparation of Name
and Address Data for Record Linkage Using Hidden Markov Models. BMC Medical
Informatics and Decision Making, 2(1):9, 2002. (cited on Page 6)

William W Cohen, Pradeep Ravikumar, Stephen E Fienberg, et al. A Comparison
of String Distance Metrics for Name-matching Tasks. In Proceedings of the Inter-
national Workshop on Information Integration on the Web (IIWeb), volume 2003,
pages 73–78, 2003. (cited on Page 9, 52, 95, and 96)

Thomas Cover and Peter Hart. Nearest Neighbor Pattern Classification. IEEE
Transactions on Information Theory, 13(1):21–27, 1967. (cited on Page 11)

Guilherme Dal Bianco, Renata Galante, and Carlos A Heuser. A Fast Approach
for Parallel Deduplication on Multicore Processors. In Proceedings of the ACM
Symposium on Applied Computing (SAC), pages 1027–1032. ACM, 2011. (cited

on Page 20, 23, 24, 29, 35, and 39)

Fred J Damerau. A Technique for Computer Detection and Correction of Spelling
Errors. Communications of the ACM, 7(3):171–176, 1964. (cited on Page 9)

Akash Das Sarma, Yeye He, and Surajit Chaudhuri. Clusterjoin: A Similarity Joins
Framework Using Map-Reduce. Proceedings of the VLDB Endowment, 7(12):
1059–1070, 2014. (cited on Page 21, 26, 30, 36, 41, and 42)

Bibliography 133

Junio de Freitas, Gisele L. Pappa, Altigran Soares da Silva, et al. Active Learn-
ing Genetic Programming for Record Deduplication. In Proceedings of the IEEE
Congress on Evolutionary Computation (CEC), pages 1–8, 2010. (cited on Page 2,

107, and 111)

Dong Deng, Guoliang Li, Shuang Hao, Jiannan Wang, and Jianhua Feng. Massjoin:
A Mapreduce-based Method for Scalable String Similarity Joins. In Proceedings of
the International Conference on Data Engineering (ICDE), pages 340–351. IEEE,
2014. (cited on Page 9, 21, 25, 26, 28, 30, 36, 41, and 42)

David J DeWitt, Jeffrey F Naughton, Donovan A Schneider, and Srinivasan Se-
shadri. Practical Skew Handling in Parallel Joins. Technical report, University of
Wisconsin-Madison, Department of Computer Sciences, 1992. (cited on Page 83)

Lee R Dice. Measures of the Amount of Ecologic Association between Species.
Ecology, 26(3):297–302, 1945. (cited on Page 9)

Martin Dillon. Introduction to modern information retrieval: G. salton and m.
mcgill. mcgraw-hill, new york (1983). xv + 448 pp., $32.95 isbn 0-07-054484-0.
Information Processing and Management, 19:402–403, 1983. (cited on Page 9)

Xin Dong, Alon Halevy, and Jayant Madhavan. Reference Reconciliation in Complex
Information Spaces. In Proceedings of the International Conference on Manage-
ment of Data (SIGMOD), pages 85–96, 2005. (cited on Page 5)

Finale Doshi-Velez and Been Kim. Towards a Rigorous Science of Interpretable
Machine Learning. arXiv preprint arXiv:1702.08608, 2017. (cited on Page 103)

Chenxiao Dou, Yi Cui, Daniel Sun, Raymond Wong, Muhammad Atif, Guoqiang
Li, and Rajiv Ranjan. Unsupervised Blocking and Probabilistic Parallelisation for
Record Matching of Distributed Big Data. The Journal of Supercomputing, 75(2):
623–645, 2019. (cited on Page 21, 22, 25, 27, 28, 32, 38, and 62)

Uwe Draisbach, Felix Naumann, Sascha Szott, and Oliver Wonneberg. Adaptive
Windows for Duplicate Detection. In Proceedings of the International Conference
on Data Engineering (ICDE), pages 1073–1083. IEEE, 2012. (cited on Page 11, 36,

and 38)

Muhammad Ebraheem, Saravanan Thirumuruganathan, Shafi Joty, Mourad Ouz-
zani, and Nan Tang. Distributed Representations of Tuples for Entity Resolution.
Proceedings of the VLDB Endowment, pages 1454–1467, 2018. (cited on Page 2,

10, 87, 95, and 116)

Vasilis Efthymiou, George Papadakis, George Papastefanatos, Kostas Stefanidis, and
Themis Palpanas. Parallel Meta-blocking: Realizing Scalable Entity Resolution
Over Large, Heterogeneous Data. In Proceedings of the International Conference
on Big Data (Big Data), pages 411–420. IEEE, 2015. (cited on Page 21)

Vasilis Efthymiou, George Papadakis, George Papastefanatos, Kostas Stefanidis,
and Themis Palpanas. Parallel Meta-blocking for Scaling Entity Resolution Over
Big Heterogeneous Data. Information Systems, 65:137–157, 2017. (cited on Page 1,

21, 24, 31, 37, and 42)

134 Bibliography

Randa M Abd El-Ghafar, Mervat H Gheith, Ali H El-Bastawissy, and Eman S Nasr.
Record Linkage Approaches in Big Data: A State of Art Study. In International
Computer Engineering Conference (ICENCO), pages 224–230. IEEE, 2017. (cited

on Page 46)

Mohamed G Elfeky, Vassilios S Verykios, and Ahmed K Elmagarmid. Tailor: A
Record Linkage Toolbox. In Proceedings of the International Conference on Data
Engineering (ICDE), pages 17–28. IEEE, 2002. (cited on Page 8)

Ahmed K Elmagarmid, Panagiotis G Ipeirotis, and Vassilios S Verykios. Dupli-
cate Record Detection: A Survey. IEEE Transactions on Knowledge and Data
Engineering (TKDE), 19(1):1–16, 2007. (cited on Page 1, 45, and 100)

Tamer Elsayed, Jimmy Lin, and Douglas W Oard. Pairwise Document Similarity
in Large Collections with Mapreduce. In Proceedings of the Annual Meeting of
the Association for Computational Linguistics on Human Language Technologies
(HLT), pages 265–268, 2008. (cited on Page 20, 25, 26, 29, and 35)

Ivan P Fellegi and Alan B Sunter. A Theory for Record Linkage. Journal of the
American Statistical Association, 64(328):1183–1210, 1969. (cited on Page 1, 5,

and 7)

Fabian Fier, Nikolaus Augsten, Panagiotis Bouros, Ulf Leser, and Johann-Christoph
Freytag. Set Similarity Joins on Mapreduce: An Experimental Survey. Proceedings
of the VLDB Endowment, 11(10):1110–1122, 2018. (cited on Page 46)

Jeffrey Fisher, Peter Christen, and Qing Wang. Active Learning Based Entity Res-
olution Using Markov Logic. In Proceedings of the Pacific-Asia Conference on
Knowledge Discovery and Data Mining (PAKDD), pages 338–349, 2016. (cited

on Page 111)

Ellen Friedman and Kostas Tzoumas. Introduction to Apache Flink: Stream Pro-
cessing for Real Time and Beyond. O’Reilly Media, Inc., 2016. (cited on Page 43)

Sergej Fries, Brigitte Boden, Grzegorz Stepien, and Thomas Seidl. Phidj: Par-
allel Similarity Self-join for High-dimensional Vector Data with Mapreduce. In
Proceedings of the International Conference on Data Engineering (ICDE), pages
796–807. IEEE, 2014. (cited on Page 20, 25, 26, 30, 36, 41, and 42)

Avigdor Gal. Uncertain Entity Resolution: Re-evaluating Entity Resolution in the
Big Data Era: Tutorial. Proceedings of the VLDB Endowment, 7(13):1711–1712,
2014. (cited on Page 46)

Elaheh Gavagsaz, Ali Rezaee, and Hamid Haj Seyyed Javadi. Load Balancing in
Reducers for Skewed Data in Mapreduce Systems by Using Scalable Simple Ran-
dom Sampling. The Journal of Supercomputing, 74:3415–3440, 2018. (cited on

Page 83)

Lise Getoor and Ashwin Machanavajjhala. Entity Resolution: Theory, Practice &
Open Challenges. Proceedings of the VLDB Endowment, 5(12):2018–2019, 2012.
(cited on Page 45)

Bibliography 135

Lise Getoor and Ashwin Machanavajjhala. Entity Resolution for Big Data. In
Proceedings of the International Conference on Knowledge Discovery and Data
Mining (KDD), pages 1527–1527. ACM, 2013. (cited on Page 13 and 45)

Leicester E Gill. Ox-link: The Oxford Medical Record Linkage System. In Proceed-
ings of the International Workshop and Exposition: Record Linkage Techniques,
pages 15–33. Citeseer, 1997. (cited on Page 9)

Demetrio Gomes Mestre and Carlos Eduardo Santos Pires. Improving Load Bal-
ancing for Mapreduce-based Entity Matching. In Proceedings of the Symposium
on Computers and Communications (ISCC), pages 000618–000624. IEEE, 2013.
(cited on Page 2, 21, 24, 30, 36, 40, 41, 42, 68, 69, and 84)

Lifang Gu, Rohan Baxter, Deanne Vickers, and Chris Rainsford. Record Linkage:
Current Practice and Future Directions. Technical report, Department of Math-
ematical and Information Sciences, CSIRO, 2003. (cited on Page 44)

Benjamin Gufler, Nikolaus Augsten, Angelika Reiser, and Alfons Kemper. Handling
Data Skew in Mapreduce. In Proceedings of the International Conference on
Cloud Computing and Services Science (CLOSER), volume 11, pages 574–583,
2011. (cited on Page 83)

Benjamin Gufler, Nikolaus Augsten, Angelika Reiser, and Alfons Kemper. Load
Balancing in Mapreduce Based on Scalable Cardinality Estimates. In Proceedings
of the International Conference on Data Engineering (ICDE), pages 522–533.
IEEE, 2012. (cited on Page 83)

David Hand and Peter Christen. A Note on Using the F-measure for Evaluating
Record Linkage Algorithms. Statistics and Computing, 28(3):539–547, 2018. (cited

on Page 14)

M Al Hajj Hassan, Mostafa Bamha, and Frédéric Loulergue. Handling Data-skew
Effects in Join Operations Using Mapreduce. Procedia Computer Science, 29:
145–158, 2014. (cited on Page 83)

Mauricio A Hernández and Salvatore J Stolfo. The Merge/purge Problem for Large
Databases. In ACM Sigmod Record, pages 127–138. ACM, 1995. (cited on Page 6,

7, 11, and 38)

Mauricio A Hernández and Salvatore J Stolfo. Real-world Data Is Dirty: Data
Cleansing and the Merge/purge Problem. Data Mining and Knowledge Discovery,
2(1):9–37, 1998. (cited on Page 6)

Melanie Herschel, Felix Naumann, Sascha Szott, and Maik Taubert. Scalable It-
erative Graph Duplicate Detection. IEEE Transactions on Knowledge and Data
Engineering (TKDE), 24(11):2094–2108, 2012. (cited on Page 20, 23, 25, 28, 32, 33,

and 44)

David Holmes and M Catherine McCabe. Improving Precision and Recall for
Soundex Retrieval. In Proceedings of the International Conference on Information
Technology: Coding and Computing (ITCC), pages 22–26. IEEE, 2002. (cited on

Page 9)

136 Bibliography

Hortonworks. Hortonworks Data Platform. Available at: https://www.cloudera.
com/products/hdp.html, 2020. (cited on Page 59)

Sue-Chen Hsueh, Ming-Yen Lin, and Yi-Chun Chiu. A Load-balanced Mapreduce
Algorithm for Blocking-based Entity-resolution with Multiple Keys. In Proceed-
ings of the Australasian Symposium on Parallel and Distributed Computing (Aus-
PDC), pages 3–9, 2014. (cited on Page 2, 20, 41, and 84)

Timothy Huang and Stuart Russell. Object Identification: A Bayesian Analysis with
Application to Traffic Surveillance. Artificial Intelligence, 103(1-2):77–93, 1998.
(cited on Page 5)

Shadi Ibrahim, Hai Jin, Lu Lu, Song Wu, Bingsheng He, and Li Qi. Leen:
Locality/fairness-aware Key Partitioning for Mapreduce in the Cloud. In Pro-
ceedings of the International Conference on Cloud Computing Technology and
Science (CloudCom), pages 17–24. IEEE, 2010. (cited on Page 83)

Shadi Ibrahim, Hai Jin, Lu Lu, Bingsheng He, Gabriel Antoniu, and Song Wu.
Handling Partitioning Skew in Mapreduce Using Leen. Peer-to-Peer Networking
and Applications, 6(4):409–424, 2013. (cited on Page 83)

Bhattacharya Indrajit and Getoor Lise. Collective Entity Resolution in Relational
Data. ACM Transactions on Knowledge Discovery from Data (TKDD), 1(1):5,
2006. (cited on Page 6)

Piotr Indyk and Rajeev Motwani. Approximate Nearest Neighbors: Towards Re-
moving the Curse of Dimensionality. In Proceedings of the ACM Symposium on
Theory of Computing (STOC), pages 604–613. ACM, 1998. (cited on Page 38)

Robert Isele and Christian Bizer. Active Learning of Expressive Linkage Rules Using
Genetic Programming. Journal of Web Semantics, pages 2–15, 2013. (cited on

Page 2 and 111)

Edwin H Jacox and Hanan Samet. Metric Space Similarity Joins. ACM Transactions
on Database Systems (TODS), 33(2):7, 2008. (cited on Page 35 and 39)

Miyoung Jang and Jae-Woo Chang. Grid-based Parallel Algorithms of Join Queries
for Analyzing Multi-dimensional Data on Mapreduce. IEICE Transactions on
Information and Systems, 101(4):964–976, 2018. (cited on Page 21, 25, 26, 31, 32, 37,

and 41)

Matthew A Jaro. Unimatch, a Record Linkage System: Users Manual. Bureau of
the Census, 1980. (cited on Page 9)

Yu Jiang, Dong Deng, Jiannan Wang, Guoliang Li, and Jianhua Feng. Efficient Par-
allel Partition-based Algorithms for Similarity Search and Join with Edit Distance
Constraints. In EDBT/ICDT Workshops, pages 341–348. ACM, 2013. (cited on

Page 20, 23, 25, 28, 33, and 42)

Yu Jiang, Guoliang Li, Jianhua Feng, and Wen-Syan Li. String Similarity Joins: An
Experimental Evaluation. Proceedings of the VLDB Endowment, 7(8):625–636,
2014. (cited on Page 45)

https://www.cloudera.com/products/hdp.html
https://www.cloudera.com/products/hdp.html

Bibliography 137

Liang Jin, Chen Li, and Sharad Mehrotra. Efficient Record Linkage in Large Data
Sets. In Proceedings of the International Conference on Database Systems for
Advanced Applications (DASFAA), pages 137–146. IEEE, 2003. (cited on Page 8)

Dimitrios Karapiperis and Vassilios S Verykios. Load-balancing the Distance Com-
putations in Record Linkage. ACM SIGKDD Explorations Newsletter, 17(1):1–7,
2015. (cited on Page 2 and 84)

Holden Karau and Rachel Warren. High Performance Spark. O’Reilly Media, 2017.
(cited on Page 17)

Hakan Kardes, Deepak Konidena, Siddharth Agrawal, Micah Huff, and Ang Sun.
Graph-based Approaches for Organization Entity Resolution in Mapreduce. In
Proceedings of the Workshop on Graph-Based Methods for Natural Language Pro-
cessing (TextGraphs), page 70, 2013. (cited on Page 20, 24, 28, 30, 32, 36, and 44)

Hideki Kawai, Hector Garcia-Molina, Omar Benjelloun, David Menestrina, Euijong
Whang, and Heng Gong. P-Swoosh: Parallel Algorithm for Generic Entity Res-
olution. Technical report, Stanford InfoLab, 2006. (cited on Page 20, 23, 28, 33,

and 49)

Hung-sik Kim and Dongwon Lee. Parallel Linkage. In Proceedings of the Inter-
national Conference on Information and Knowledge Management (cikm), pages
283–292. ACM, 2007. (cited on Page 20, 23, 25, 28, and 33)

Younghoon Kim and Kyuseok Shim. Parallel Top-k Similarity Join Algorithms Using
Mapreduce. In Proceedings of the International Conference on Data Engineering
(ICDE), pages 510–521. IEEE, 2012. (cited on Page 20, 26, 29, 32, and 35)

Toralf Kirsten, Lars Kolb, Michael Hartung, Anika Groß, Hanna Köpcke, and Erhard
Rahm. Data Partitioning for Parallel Entity Matching. Proceedings of the VLDB
Endowment, 2010. (cited on Page 20 and 39)

Lars Kolb and Erhard Rahm. Parallel Entity Resolution with Dedoop. Datenbank-
Spektrum, 13(1):23–32, 2013. (cited on Page 20)

Lars Kolb, Hanna Köpcke, Andreas Thor, and Erhard Rahm. Learning-based Entity
Resolution with Mapreduce. In Proceedings of the International Workshop on
Cloud Data Management (CloudDB), pages 1–6. ACM, 2011a. (cited on Page 5

and 20)

Lars Kolb, Andreas Thor, and Erhard Rahm. Block-based Load Balancing for
Entity Resolution with Mapreduce. In Proceedings of the International Conference
on Information and Knowledge Management (CIKM), pages 2397–2400. ACM,
2011b. (cited on Page 20)

Lars Kolb, Andreas Thor, and Erhard Rahm. Dedoop: Efficient Deduplication with
Hadoop. Proceedings of the VLDB Endowment, 5(12):1878–1881, 2012a. (cited

on Page 2, 20, 24, 29, 34, 35, and 41)

138 Bibliography

Lars Kolb, Andreas Thor, and Erhard Rahm. Load Balancing for Mapreduce-based
Entity Resolution. In Proceedings of the International Conference on Data Engi-
neering (ICDE), pages 618–629. IEEE, 2012b. (cited on Page 2, 20, 40, 41, 66, 68, 69,

and 84)

Lars Kolb, Andreas Thor, and Erhard Rahm. Multi-pass Sorted Neighborhood
Blocking with Mapreduce. Computer Science-Research and Development (CSRD),
27(1):45–63, 2012c. (cited on Page 20 and 41)

Lars Kolb, Andreas Thor, and Erhard Rahm. Don’t Match Twice: Redundancy-free
Similarity Computation with Mapreduce. In Proceedings of the Workshop on Data
Analytics in the Cloud (DanaC), pages 1–5. ACM, 2013. (cited on Page 20)

N. Kooli, R. Allesiardo, and E. Pigneul. Deep Learning Based Approach for Entity
Resolution in Databases. In Proceedings of the Asian Conference on Intelligent
Information and Database Systems (ACIIDS), pages 3–12. Springer, 2018. (cited

on Page 2, 10, 87, and 95)

H. Köpcke and E. Rahm. Training Selection for Tuning Entity Matching. In Pro-
ceedings of the International Workshop on Quality in Databases and Management
of Uncertain Data (QDB/MUD), pages 3–12, 2008. (cited on Page 116)

Hanna Köpcke and Erhard Rahm. Frameworks for Entity Matching: A Comparison.
Data & Knowledge Engineering (DKE), 69(2):197–210, 2010. (cited on Page 45)

Hanna Köpcke, Andreas Thor, and Erhard Rahm. Evaluation of Entity Resolution
Approaches on Real-world Match Problems. Proceedings of the VLDB Endow-
ment, 3(1-2):484–493, 2010. (cited on Page 96)

Sotiris Kotsiantis, Dimitris Kanellopoulos, Panayiotis Pintelas, et al. Handling Im-
balanced Datasets: A Review. GESTS International Transaction on Computer
Science and Engineering, 30(1):25–36, 2006. (cited on Page 98)

Nick Koudas, Sunita Sarawagi, and Divesh Srivastava. Record Linkage: Similarity
Measures and Algorithms. In Proceedings of the International Conference on
Management of Data (SIGMOD), pages 802–803, 2006. (cited on Page 45 and 95)

YongChul Kwon, Magdalena Balazinska, Bill Howe, and Jerome Rolia. A Study
of Skew in Mapreduce Applications. Open Cirrus Summit, 11, 2011. (cited on

Page 82)

YongChul Kwon, Magdalena Balazinska, Bill Howe, and Jerome Rolia. Skewtune:
Mitigating Skew in Mapreduce Applications. In Proceedings of the International
Conference on Management of Data (SIGMOD), pages 25–36. ACM, 2012. (cited

on Page 83)

Andrew J Lait and Brian Randell. An Assessment of Name Matching Algorithms.
Technical Report, Department of Computing Science, Series-University of New-
castle Upon Tyne, 1996. (cited on Page 9)

Bibliography 139

Vladimir I Levenshtein. Binary Codes Capable of Correcting Deletions, Insertions,
and Reversals. In Soviet Physics Doklady, volume 10, pages 707–710, 1966. (cited

on Page 9)

Jianjiang Li, Yajun Liu, Jian Pan, Peng Zhang, Wei Chen, and Lizhe Wang. Map-
balance-reduce: An Improved Parallel Programming Model for Load Balancing
of Mapreduce. Future Generation Computer Systems (FGCS), 2017. (cited on

Page 83)

Wen Liu, Yanming Shen, and Peng Wang. An Efficient Mapreduce Algorithm for
Similarity Join in Metric Spaces. The Journal of Supercomputing, 72(3):1179–
1200, 2016. (cited on Page 21, 26, 30, 37, and 42)

Wei Lu, Yanyan Shen, Su Chen, and Beng Chin Ooi. Efficient Processing of K
Nearest Neighbor Joins Using Mapreduce. Proceedings of the VLDB Endowment,
5(10):1016–1027, 2012. (cited on Page 20, 26, 30, 32, 36, and 42)

Z. Lu, X. Wu, and J. Bongard. Active Learning with Adaptive Heterogeneous En-
sembles. In Proceedings of the International Conference on Data Mining (ICDM),
pages 327–336, 2009. (cited on Page 97)

Wuman Luo, Haoyu Tan, Huajian Mao, and Lionel M Ni. Efficient Similarity Joins
on Massive High-dimensional Datasets Using Mapreduce. In Proceedings of the In-
ternational Conference on Mobile Data Management (MDM), pages 1–10. IEEE,
2012. (cited on Page 20, 25, 26, 29, and 35)

Kun Ma and Bo Yang. Parallel Nosql Entity Resolution Approach with Mapreduce.
In Proceedings of the International Conference on Intelligent Networking and Col-
laborative Systems (INCOS), pages 384–389. IEEE, 2015. (cited on Page 21 and 24)

Kun Ma, Fusen Dong, and Bo Yang. Large-scale Schema-free Data Deduplication
Approach with Adaptive Sliding Window Using Mapreduce. The Computer Jour-
nal, 58(11):3187–3201, 2015. (cited on Page 21, 30, and 37)

Youzhong Ma, Xiaofeng Meng, and Shaoya Wang. Parallel Similarity Joins on Mas-
sive High-dimensional Data Using Mapreduce. Concurrency and Computation:
Practice and Experience, 28(1):166–183, 2016. (cited on Page 21, 25, 26, 30, 37,

and 42)

John Makhoul, Francis Kubala, Richard Schwartz, Ralph Weischedel, et al. Perfor-
mance Measures for Information Extraction. In Proceedings of Broadcast News
Workshop (DARPA), pages 249–252, 1999. (cited on Page 14)

Grzegorz Malewicz, Matthew H Austern, Aart JC Bik, James C Dehnert, Ilan Horn,
Naty Leiser, and Grzegorz Czajkowski. Pregel: A System for Large-scale Graph
Processing. In Proceedings of the International Conference on Management of
Data (SIGMOD), pages 135–146. ACM, 2010. (cited on Page 44)

Pankaj Malhotra, Puneet Agarwal, and Gautam Shroff. Graph-parallel Entity Res-
olution Using Lsh & Imm. In EDBT/ICDT Workshops, pages 41–49, 2014. (cited

on Page 21, 23, 24, 30, 32, 36, 42, and 44)

140 Bibliography

Naoki Abe Hiroshi Mamitsuka et al. Query Learning Strategies Using Boosting and
Bagging. In Proceedings of the International Conference on Machine Learning
(ICML), 1998. (cited on Page 98)

Willi Mann, Nikolaus Augsten, and Panagiotis Bouros. An Empirical Evaluation
of Set Similarity Join Techniques. Proceedings of the VLDB Endowment, 9(9):
636–647, 2016. (cited on Page 45)

Andrew McCallum, Kamal Nigam, and Lyle H Ungar. Efficient Clustering of High-
dimensional Data Sets with Application to Reference Matching. In Proceedings of
the International Conference on Knowledge Discovery and Data Mining (KDD),
pages 169–178. ACM, 2000. (cited on Page 8 and 43)

N McNeill, Hakan Kardes, and Andrew Borthwick. Dynamic Record Blocking: Ef-
ficient Linking of Massive Databases in Mapreduce. In Proceedings of the Inter-
national Workshop on Quality in Databases (QDB), 2012. (cited on Page 2, 39,

and 84)

Prem Melville and Raymond J. Mooney. Diverse Ensembles for Active Learning. In
Proceedings of the International Conference on Machine Learning (ICML), 2004.
(cited on Page 97)

Xiangrui Meng, Joseph Bradley, Burak Yavuz, Evan Sparks, Shivaram Venkatara-
man, Davies Liu, Jeremy Freeman, Db Tsai, Manish Amde, and Sean Owen. ML-
lib: Machine Learning in Apache Spark. Journal of Machine Learning Research,
17(1):1235–1241, 2015. (cited on Page 17 and 103)

Demetrio Gomes Mestre, Carlos Eduardo Pires, and Dimas C. Nascimento. Adaptive
Sorted Neighborhood Blocking for Entity Matching with Mapreduce. In Proceed-
ings of the Symposium on Applied Computing (SAC), pages 981–987, New York,
NY, USA, 2015. ACM. (cited on Page 21 and 42)

Demetrio Gomes Mestre, Carlos Eduardo Santos Pires, Dimas Cassimiro Nasci-
mento, Andreza Raquel Monteiro de Queiroz, Veruska Borges Santos, and
Tiago Brasileiro Araujo. An Efficient Spark-based Adaptive Windowing for Entity
Matching. Journal of Systems and Software, 128:1–10, 2017. (cited on Page 21, 27,

32, 38, 42, and 62)

Ahmed Metwally and Christos Faloutsos. V-smart-join: A Scalable Mapreduce
Framework for All-pair Similarity Joins of Multisets and Vectors. Proceedings of
the VLDB Endowment, 5(8):704–715, 2012. (cited on Page 20, 26, 29, and 35)

T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient Estimation of Word Rep-
resentations in Vector Space. In Proceedings of the International Conference on
Learning Representations (ICLR), 2013a. (cited on Page 10)

T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean. Distributed Repre-
sentations of Words and Phrases and Their Compositionality. In Proceedings of
the International Conference on Neural Information Processing Systems (NIPS).
Curran Associates, 2013b. (cited on Page 90)

Bibliography 141

Thomas M Mitchell et al. Machine Learning. McGraw-Hill, Inc., New York, NY,
USA, 1997. (cited on Page 11)

Alvaro E Monge, Charles Elkan, et al. The Field Matching Problem: Algorithms
and Applications. In Proceedings of the International Conference on Knowledge
Discovery and Data Mining (KDD), volume 2, pages 267–270, 1996. (cited on

Page 9)

S. Mudgal, H. Li, T. Rekatsinas, A. Doan, Y. Park, G. Krishnan, R. Deep, E. Ar-
caute, and V. Raghavendra. Deep Learning for Entity Matching: A Design Space
Exploration. In Proceedings of the International Conference on Management of
Data (SIGMOD), pages 19–34. ACM, 2018. (cited on Page 2, 10, 87, 95, and 96)

Alexandros Nanopoulos, Yannis Manolopoulos, and Yannis Theodoridis. An Effi-
cient and Effective Algorithm for Density Biased Sampling. In Proceedings of the
International Conference on Information and Knowledge Management (CIKM),
pages 398–404. ACM, 2002. (cited on Page 117)

Gonzalo Navarro, Erkki Sutinen, Jani Tanninen, and Jorma Tarhio. Indexing Text
with Approximate Q-grams. In Proceedings of the Annual Symposium on Com-
binatorial Pattern Matching (CPM), pages 350–363. Springer, 2000. (cited on

Page 8, 9, and 38)

Howard B Newcombe and James M Kennedy. Record Linkage: Making Maximum
Use of the Discriminating Power of Identifying Information. Communications of
the ACM, 5(11):563–566, 1962. (cited on Page 10 and 95)

Howard B Newcombe, James M Kennedy, SJ Axford, and Allison P James. Au-
tomatic Linkage of Vital Records. Science, 130(3381):954–959, 1959. (cited on

Page 10)

Axel-Cyrille Ngonga Ngomo and Klaus Lyko. EAGLE: Efficient Active Learning of
Link Specifications Using Genetic Programming. In Proceedings of the European
Semantic Web Conference (ESWC), pages 149–163, 2012. (cited on Page 111)

Axel-Cyrille Ngonga Ngomo, Jens Lehmann, Sören Auer, and Konrad Höffner.
RAVEN - Active Learning of Link Specifications. In Proceedings of the Inter-
national Workshop on Ontology Matching (OM), 2011. (cited on Page 111)

Axel-Cyrille Ngonga Ngomo, Klaus Lyko, and Victor Christen. COALA -
Correlation-aware Active Learning of Link Specifications. In Proceedings of the
European Semantic Web Conference (ESWC), pages 442–456, 2013. (cited on

Page 111)

Hieu T Nguyen and Arnold Smeulders. Active Learning Using Pre-clustering. In Pro-
ceedings of the International Conference on Machine Learning (ICML), page 79,
2004. (cited on Page 103)

M Odell and R Russell. The Soundex Coding System. US Patents, 1261167, 1918.
(cited on Page 9)

142 Bibliography

Alper Okcan and Mirek Riedewald. Processing Theta-joins Using Mapreduce. In
Proceedings of the International Conference on Management of Data (SIGMOD),
pages 949–960. ACM, 2011. (cited on Page 83)

J Scott Olsson and Douglas W Oard. Improving Text Classification for Oral His-
tory Archives with Temporal Domain Knowledge. In Proceedings of the Inter-
national Conference on Research and Development in Information Retrieval (SI-
GIR), pages 623–630. ACM, 2007. (cited on Page 29)

George Papadakis and Themis Palpanas. Blocking for Large-scale Entity Resolution:
Challenges, Algorithms, and Practical Examples. In International Conference on
Data Engineering (ICDE), pages 1436–1439. IEEE, 2016. (cited on Page 46)

George Papadakis, Jonathan Svirsky, Avigdor Gal, and Themis Palpanas. Compar-
ative Analysis of Approximate Blocking Techniques for Entity Resolution. Pro-
ceedings of the VLDB Endowment, 9(9):684–695, 2016. (cited on Page 1, 38, and 45)

George Papadakis, Konstantina Bereta, Themis Palpanas, and Manolis Koubarakis.
Multi-core Meta-blocking for Big Linked Data. In Proceedings of the International
Conference on Semantic Systems (I-SEMANTICS), pages 33–40, 2017. (cited on

Page 21)

Andrew Pavlo, Erik Paulson, Alexander Rasin, Daniel J Abadi, David J DeWitt,
Samuel Madden, and Michael Stonebraker. A Comparison of Approaches to Large-
scale Data Analysis. In Proceedings of the International Conference on Manage-
ment of Data (SIGMOD), pages 165–178. ACM, 2009. (cited on Page 2, 22, and 34)

J. Pennington and Christopher R. Socher, Riand Manning. Glove: Global Vectors
for Word Representation. In Proceedings of the Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages 1532–1543, 2014. (cited on

Page 10 and 95)

Lawrence Philips. The Double Metaphone Search Algorithm. C/C++ Users Journal,
18(6):38–43, 2000. (cited on Page 9)

Robespierre Pita, Clicia Pinto, Pedro Melo, Malu Silva, Marcos Barreto, and Davide
Rasella. A Spark-based Workflow for Probabilistic Record Linkage of Healthcare
Data. In Proceedings of the Workshop on Algorithms and Systems for MapReduce
and Beyond (BeyondMR), pages 17–26, 2015. (cited on Page 21, 25, 27, 32, 38, and 61)

Ling Qi, Zhuo Tang, Yunchuan Qin, and Yu Ye. CSRA: An Efficient Resource Allo-
cation Algorithm in Mapreduce Considering Data Skewness. In Proceedings of the
International Conference on Knowledge Science, Engineering and Management
(KSEM), pages 651–662. Springer, 2015. (cited on Page 83)

Kun Qian, Lucian Popa, and Prithviraj Sen. Active Learning for Large-scale Entity
Resolution. In Proceedings of the International Conference on Information and
Knowledge Management (CIKM), pages 1379–1388, 2017. (cited on Page 111)

Bibliography 143

Database Group of Prof. Erhard Rahm. Benchmark Datasets for Entity Resolu-
tion. Available at: https://dbs.uni-leipzig.de/research/projects/object matching/
benchmark datasets for entity resolution, 2017. (cited on Page 92, 100, 103, and 105)

Smriti R Ramakrishnan, Garret Swart, and Aleksey Urmanov. Balancing Reducer
Skew in Mapreduce Workloads Using Progressive Sampling. In Proceedings of the
ACM Symposium on Cloud Computing (SoCC), page 16. ACM, 2012. (cited on

Page 83)

Jason D Rennie, Lawrence Shih, Jaime Teevan, and David R Karger. Tackling
the Poor Assumptions of Naive Bayes Text Classifiers. In Proceedings of the
International Conference on Machine Learning (ICML), pages 616–623, 2003.
(cited on Page 11 and 103)

Chuitian Rong, Wei Lu, Xiaoli Wang, Xiaoyong Du, Yueguo Chen, and Anthony KH
Tung. Efficient and Scalable Processing of String Similarity Join. IEEE Trans-
actions on Knowledge and Data Engineering (TKDE), 25(10):2217–2230, 2012.
(cited on Page 21, 28, 41, and 42)

Chuitian Rong, Chunbin Lin, Yasin N Silva, Jianguo Wang, Wei Lu, and Xiaoyong
Du. Fast and Scalable Distributed Set Similarity Joins for Big Data Analytics. In
Proceedings of the International Conference on Data Engineering (ICDE), pages
1059–1070. IEEE, 2017. (cited on Page 21, 25, 26, 28, 31, 37, and 39)

Chuitian Rong, Xiaohai Cheng, Ziliang Chen, and Na Huo. Similarity Joins for
High-dimensional Data Using Spark. Concurrency and Computation: Practice
and Experience, 31(20):e5339, 2019. (cited on Page 21, 22, 25, 27, 28, 32, 38, 39, 42,

and 62)

Semih Salihoglu and Jennifer Widom. GPS: A Graph Processing System. In Pro-
ceedings of the International Conference on Scientific and Statistical Database
Management (SSDBM), page 22. ACM, 2013. (cited on Page 44)

Walter Santos, Thiago Teixeira, Carla Machado, W Meira, Altigran S Da Silva,
DR Ferreira, and Dorgival Guedes. A Scalable Parallel Deduplication Algorithm.
In Proceedings of the Symposium on Computer Architecture and High Performance
Computing (SBAC-PAD), pages 79–86. IEEE, 2007. (cited on Page 20, 21, 22, 23,

27, 28, 33, and 44)

Sunita Sarawagi. Special Issue on Data Cleaning. Bulletin of the IEEE Computer
Society Technical Committee on Data Engineering (IEEE-CS), 23(4):2–3, 2000.
(cited on Page 6)

Sunita Sarawagi and Anuradha Bhamidipaty. Interactive Deduplication Using Ac-
tive Learning. In Proceedings of the International Conference on Knowledge Dis-
covery and Data Mining (KDD), pages 269–278. ACM, 2002. (cited on Page 2, 3,

5, 98, 102, 104, 107, 108, 109, 111, and 112)

https://dbs.uni-leipzig.de/research/projects/object_matching/benchmark_datasets_for_entity_resolution
https://dbs.uni-leipzig.de/research/projects/object_matching/benchmark_datasets_for_entity_resolution

144 Bibliography

Michael Schroeck, Rebecca Shockley, Janet Smart, Dolores Romero-Morales, and
Peter Tufano. Analytics: The Real-world Use of Big Data. IBM Global Business
Services, 12(2012):1–20, 2012. (cited on Page 1)

Seung H. Sebastian, Manfred Opper, and Haim Sompolinsky. Query by Committee.
In Proceedings of the Workshop on Computational Learning Theory (COLT), 1992.
(cited on Page 13)

Toby Segaran. Programming Collective Intelligence. O’Reilly Media, 2008. (cited

on Page 11)

Thomas Seidl, Sergej Fries, and Brigitte Boden. Mr-dsj: Distance-based Self-join
for Large-scale Vector Data Analysis with Mapreduce. In In Fachtagung Daten-
banksysteme für Business, Technologie und Web (BTW), volume 214, pages 37–56,
2013. (cited on Page 20, 26, 30, 36, 41, and 42)

Burr Settles. Active Learning Literature Survey. Technical report, University of
Wisconsin-Madison, Department of Computer Sciences, 2009. (cited on Page 12)

Mohamed Ahmed Sherif and Axel-Cyrille Ngonga Ngomo. An Optimization Ap-
proach for Load Balancing in Parallel Link Discovery. In Proceedings of the Inter-
national Conference on Semantic Systems (SEMANTiCS), pages 161–168. ACM,
2015. (cited on Page 83)

Yasin N Silva and Jason M Reed. Exploiting Mapreduce-based Similarity Joins. In
Proceedings of the International Conference on Management of Data (SIGMOD),
pages 693–696. ACM, 2012. (cited on Page 20, 26, 29, 35, and 39)

Yasin N Silva, Jason M Reed, and Lisa M Tsosie. Mapreduce-based Similarity
Join for Metric Spaces. In Proceedings of the International Workshop on Cloud
Intelligence (Cloud-I), page 3. ACM, 2012. (cited on Page 20 and 39)

Temple F Smith, Michael S Waterman, et al. Identification of Common Molecular
Subsequences. Journal of Molecular Biology, 147(1):195–197, 1981. (cited on

Page 9)

Mohammad Karim Sohrabi and Hosseion Azgomi. Parallel Set Similarity Join on
Big Data Based on Locality-sensitive Hashing. Science of Computer Programming,
145:1–12, 2017. (cited on Page 21, 26, 31, and 37)

Michael Stonebraker, Daniel Abadi, David J DeWitt, Sam Madden, Erik Paulson,
Andrew Pavlo, and Alexander Rasin. Mapreduce and Parallel Dbmss: Friends or
Foes? Communications of the ACM, 53(1):64–71, 2010. (cited on Page 22 and 49)

Xian-He Sun and Lionel M Ni. Scalable Problems and Memory-bounded Speedup.
Journal of Parallel and Distributed Computing, 19(1):27–37, 1993. (cited on

Page 15)

Zhuo Tang, Wen Ma, Kenli Li, and Keqin Li. A Data Skew Oriented Reduce Place-
ment Algorithm Based on Sampling. IEEE Transactions on Cloud Computing
(TCC), 2016. (cited on Page 83)

Bibliography 145

Zhuo Tang, Xiangshen Zhang, Kenli Li, and Keqin Li. An Intermediate Data Place-
ment Algorithm for Load Balancing in Spark Computing Environment. Future
Generation Computer Systems (FGCS), 78:287–301, 2018. (cited on Page 83)

Sheila Tejada, Craig A. Knoblock, and Steven Minton. Learning Object Identifi-
cation Rules for Information Integration. Information Systems, pages 607–633,
2001. (cited on Page 3, 98, 107, 108, 109, 111, and 112)

Khoi-Nguyen Tran, Dinusha Vatsalan, and Peter Christen. Geco: An Online Per-
sonal Data Generator and Corruptor. In Proceedings of the International Con-
ference on Information and Knowledge Management (CIKM), pages 2473–2476,
New York, NY, USA, 2013. ACM. (cited on Page 18)

Dinusha Vatsalan, Dimitrios Karapiperis, and Aris Gkoulalas-Divanis. An Overview
of Big Data Issues in Privacy-preserving Record Linkage. In International Sym-
posium on Algorithmic Aspects of Cloud Computing (ALGOCLOUD), pages 118–
136. Springer, 2018. (cited on Page 46)

Rares Vernica, Michael J Carey, and Chen Li. Efficient Parallel Set-similarity Joins
Using Mapreduce. In Proceedings of the International Conference on Management
of Data (SIGMOD), pages 495–506. ACM, 2010. (cited on Page 20, 26, 28, 29, and 35)

Vassilios S Verykios, George V Moustakides, and Mohamed G Elfeky. A Bayesian
Decision Model for Cost Optimal Record Matching. The VLDB Journal, 12(1):
28–40, 2003. (cited on Page 10)

Chaokun Wang, Jianmin Wang, Xuemin Lin, Wei Wang, Haixun Wang, Hongsong
Li, Wanpeng Tian, Jun Xu, and Rui Li. Mapdupreducer: Detecting near Dupli-
cates Over Massive Datasets. In Proceedings of the International Conference on
Management of Data (SIGMOD), pages 1119–1122. ACM, 2010. (cited on Page 20,

24, 25, 28, 29, and 35)

Chen Wang and Sarvnaz Karimi. Parallel Duplicate Detection in Adverse Drug
Reaction Databases with Spark. In Proceedings of the International Conference
on Extending Database Technology (EDBT), pages 551–562, 2016. (cited on

Page 62)

Qing Wang, Dinusha Vatsalan, and Peter Christen. Efficient Interactive Training
Selection for Large-scale Entity Resolution. In Proceedings of the Pacific-Asia
Conference on Knowledge Discovery and Data Mining (PAKDD), pages 562–573,
2015. (cited on Page 98)

Michael S Waterman, Temple F Smith, and William A Beyer. Some Biological
Sequence Metrics. Advances in Mathematics, 20(3):367–387, 1976. (cited on

Page 9)

Steven Euijong Whang, David Menestrina, Georgia Koutrika, Martin Theobald, and
Hector Garcia-Molina. Entity Resolution with Iterative Blocking. In Proceedings
of the International Conference on Management of Data (SIGMOD), pages 219–
232. ACM, 2009. (cited on Page 43)

146 Bibliography

William E Winkler. Overview of Record Linkage and Current Research Directions.
In Bureau of the Census. Citeseer, 2006. (cited on Page 45)

Chuan Xiao, Wei Wang, Xuemin Lin, Jeffrey Xu Yu, and Guoren Wang. Efficient
Similarity Joins for Near-duplicate Detection. ACM Transactions on Database
Systems (TODS), 36(3):15, 2011. (cited on Page 35 and 38)

Reynold Xin, Parviz Deyhim, Ali Ghodsi, Xiangrui Meng, and Matei Zaharia.
Graysort on Apache Spark by Databricks. GraySort Competition, 2014. (cited on

Page 65)

Yujie Xu, Peng Zou, Wenyu Qu, Zhiyang Li, Keqiu Li, and Xiaoli Cui. Sampling-
based Partitioning in Mapreduce for Skewed Data. In Proceedings of the Chi-
naGrid Annual Conference (CHINAGRID), pages 1–8. IEEE, 2012. (cited on

Page 83)

Wei Yan, Yuan Xue, and Bradley Malin. Scalable Load Balancing for Mapreduce-
based Record Linkage. In Proceedings of the International Conference on Perfor-
mance Computing and Communications Conference (IPCCC), pages 1–10. IEEE,
2013a. (cited on Page 2, 40, 41, 68, and 84)

Wei Yan, Yuan Xue, and Bradley Malin. Scalable and Robust Key Group Size
Estimation for Reducer Load Balancing in Mapreduce. In Proceedings of the
International Conference on Big Data (Big Data), pages 156–162. IEEE, 2013b.
(cited on Page 83)

Byoungju Yang, Hyun Joon Kim, Junho Shim, Dongjoo Lee, and Sang-goo Lee.
Fast and Scalable Vector Similarity Joins with Mapreduce. Journal of Intelligent
Information Systems (JIIS), 46(3):473–497, 2016. (cited on Page 21, 26, 30, 37,

and 41)

Bengio Yoshua, Ducharme Réjean, Vincent Pascal, and Jauvin Christian. A Neural
Probabilistic Language Model. Journal of Machine Learning Research, 3:1137–
1155, 2003. (cited on Page 10)

Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Mur-
phy McCauley, Michael J Franklin, Scott Shenker, and Ion Stoica. Resilient Dis-
tributed Datasets: A Fault-tolerant Abstraction for In-memory Cluster Comput-
ing. In Proceedings of the USENIX Symposium on Networked Systems Design and
Implementation (NSDI), pages 2–2. USENIX Association, 2012. (cited on Page 34

and 65)

Matei Zaharia, Reynold S Xin, Patrick Wendell, Tathagata Das, Michael Armbrust,
Ankur Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkataraman, Michael J
Franklin, et al. Apache Spark: A Unified Engine for Big Data Processing. Com-
munications of the ACM, 59(11):56–65, 2016. (cited on Page 16 and 17)

Cha Zhang and Yunqian Ma. Ensemble Machine Learning: Methods and Applica-
tions. Springer, 2012. (cited on Page 12)

Bibliography 147

Chi Zhang, Feifei Li, and Jeffrey Jestes. Efficient Parallel Knn Joins for Large
Data in Mapreduce. In Proceedings of the International Conference on Extending
Database Technology (EDBT), pages 38–49, 2012. (cited on Page 20, 25, 26, 29, 32,

and 35)

Xujun Zhao, Jifu Zhang, and Xiao Qin. K NN-DP: Handling Data Skewness in Knn
Joins Using Mapreduce. IEEE Transactions on Parallel and Distributed Systems
(TPDS), 29(3):600–613, 2017. (cited on Page 21, 25, 26, 31, 32, and 37)

Paul Zikopoulos, Chris Eaton, et al. Understanding Big Data: Analytics for En-
terprise Class Hadoop and Streaming Data. McGraw-Hill Osborne Media, 2011.
(cited on Page 1)

Justin Zobel and Philip Dart. Phonetic String Matching: Lessons from Information
Retrieval. In Proceedings of the International Conference on Research and Devel-
opment in Information Retrieval (SIGIR), pages 166–172. ACM, 1996. (cited on

Page 9)

148 Bibliography

1

E h r e n e r k l ä r u n g

Ich versichere hiermit, dass ich die vorliegende Arbeit ohne unzulässige Hilfe Dritter und

ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe; verwendete

fremde und eigene Quellen sind als solche kenntlich gemacht. Insbesondere habe ich

nicht die Hilfe eines kommerziellen Promotionsberaters in Anspruch genommen. Dritte

haben von mir weder unmittelbar noch mittelbar geldwerte Leistungen für Arbeiten

erhalten, die im Zusammenhang mit dem Inhalt der vorgelegten Dissertation stehen.

Ich habe insbesondere nicht wissentlich:

- Ergebnisse erfunden oder widersprüchliche Ergebnisse verschwiegen,

- statistische Verfahren absichtlich missbraucht, um Daten in ungerechtfertigter

 Weise zu interpretieren,

- fremde Ergebnisse oder Veröffentlichungen plagiiert,

- fremde Forschungsergebnisse verzerrt wiedergegeben.

Mir ist bekannt, dass Verstöße gegen das Urheberrecht Unterlassungs- und

Schadensersatzansprüche des Urhebers sowie eine strafrechtliche Ahndung durch die

Strafverfolgungsbehörden begründen kann. Die Arbeit wurde bisher weder im Inland

noch im Ausland in gleicher oder ähnlicher Form als Dissertation eingereicht und ist als

Ganzes auch noch nicht veröffentlicht.

Magdeburg, den

02.11.2020

Xiao Chen

	Contents
	List of Figures
	List of Tables
	List of Code Listings
	1 Introduction
	2 Background
	2.1 Entity Resolution Preliminaries
	2.1.1 Basic Concepts of Entity Resolution
	2.1.2 Pair-Wise Entity Resolution
	2.1.3 Parallel Entity Resolution

	2.2 Evaluation of Entity Resolution Approaches
	2.2.1 Effectiveness
	2.2.2 Efficiency and Scalability

	2.3 Tools Used in the Thesis
	2.3.1 Apache Spark
	2.3.2 Data Generator: GeCo

	3 Overview and Classification of Parallel Entity Resolution Approaches
	3.1 Overview of State-of-the-art Approaches of Parallel ER
	3.2 Classification Based on Three Sets of Criteria
	3.2.1 General Criteria and Their Classification
	3.2.2 Effectiveness-Related Criteria and Their Classification
	3.2.3 Efficiency-Related Criteria and Their Classification

	3.3 Open Challenges
	3.4 Related Classifications and Surveys
	3.5 Summary

	4 Exploration on Performance Impacts of Different Implementations for Spark-Based Entity Resolution
	4.1 Entity Resolution Scenarios Used for Comparison
	4.2 Three Spark-Based Implementations for Parallel Entity Resolution
	4.2.1 Step-Wise Introduction of Implementation Details with Three APIs
	4.2.2 Optimizations on Each Implementation

	4.3 Evaluation
	4.3.1 Experimental Setting
	4.3.2 Scenario 1: with an Evaluation Step
	4.3.3 Scenario 2: without an Evaluation Step

	4.4 Related Work
	4.5 Summary

	5 Analysis and Comparison of Block-Splitting-Based Load Balancing Strategies for Parallel Entity Resolution
	5.1 The Common Workflow of a Block-Splitting-Based Load Balancing Strategy
	5.2 Block-Splitting-Based Load Balancing Strategies
	5.2.1 Block Distribution Collection and Threshold Determination
	5.2.2 Overpopulated Block Handling

	5.3 Evaluation
	5.3.1 Experimental Setting
	5.3.2 Evaluation of Different Numbers of Reducers
	5.3.3 Evaluation of Different Numbers of Mappers
	5.3.4 Robustness Evaluation
	5.3.5 Speed-Up Evaluation
	5.3.6 Evaluation Conclusion

	5.4 Related Work
	5.5 Summary

	6 Hybrid Similarity Calculation Approach for Entity Resolution
	6.1 Our Hybrid Approach for Entity Resolution Similarity Calculation
	6.1.1 Attribute Similarity
	6.1.2 Learning-Based Classification

	6.2 Evaluation
	6.2.1 Datasets Used
	6.2.2 Design of Different Combinations of Similarity Calculation Methods
	6.2.3 Results and Discussion

	6.3 Related Work
	6.4 Summary

	7 Heterogeneous Committee-Based Active Learning for Entity Resolution
	7.1 Our HeALER Method
	7.1.1 The Global Workflow
	7.1.2 Initial Training Dataset Generation
	7.1.3 Heterogeneous Committee
	7.1.4 Training Data Candidate Selection and Termination Conditions

	7.2 Evaluation
	7.2.1 Experimental Setting
	7.2.2 Initial Training Dataset Evaluation
	7.2.3 Heterogeneous-Committee Evaluation
	7.2.4 Overall Evaluation and Comparison

	7.3 Related Work
	7.4 Summary

	8 Conclusion and Future Work
	8.1 Conclusion
	8.2 Future Work

	A Appendix
	A.1 Methodology of Literature Search
	A.2 Implementation Details for a Common Entity Resolution Process with Three Spark APIs
	A.3 Imbalance Ratio of Five Load Balancing Strategies

	Bibliography

