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Zusammenfassung

Familien algebraischer Varietäten, die durch Monome parametrisiert sind, tauchen in
verschiedenen Bereichen der Mathematik, wie zum Beispiel der Statistik, der kom-
mutativen Algebra oder der Kombinatorik auf. Solche Varietäten nennt man torische
Varietäten und ihre Untersuchung bildet das Feld der torischen Geometrie. Die Ideale,
die solche Varietäten definieren, sind sogenannte Binomialideale. Die torische Geome-
trie ist häufig durch ein enges Zusammenspiel zwischen algebraischer und polyedrischer
Geometrie geprägt, da sich strukturelle Aussagen über eine torische Varietät meist
kombinatorisch interpretieren lassen. Ziel dieser Arbeit ist es, Fortschritte in zwei
verschiedenen Bereichen an diesem Schnittpunkt zweier Felder zu machen.

Im ersten Teil dieser Arbeit, in Kapitel 2 und Kapitel 3, untersuchen wir kombi-
natorische Objekte im Bereich der torischen Geometrie modulo Symmetrie. Genauer
gesagt betrachten wir die korrespondierenden Kegel von Familien von Binomialide-
alen, deren Anzahl an Variablen unbeschränkt ist, die sich aber modulo Symmetrie
stabilisieren. Mit Stabilisierung modulo Symmetrie ist gemeint, dass diese Ideale von
den Orbits einer Wirkung der unendlichen symmetrischen Gruppe auf endlich vielen
Polynomen erzeugt sind. In Kapitel 2 berechnen wir explizit die Gleichungen und Un-
gleichungen, die die Facetten der genannten Kegel definieren. Anhand dieser Berech-
nungen zeigen wir die sogenannte kombinatorische Stabilisierung bestimmter Familien
von Kegeln. In Kapitel 3 formulieren wir Kriterien für die Stabilisierung modulo Sym-
metrie für allgemeine Familien polyedrischer Kegel. Hier ist das zentrale Resultat die
Aussage, dass die Stabilisierung einer Familie polyedrischer Kegel modulo Symmetrie
die Stabilisierung der korrespondierenden Familie von Monoiden impliziert.

Der zweite Teil dieser Arbeit, Kapitel 4, beschäftigt sich mit der Ermittlung der
Erzeuger von Idealen, die eine wichtige Rolle bei der Betrachtung spezieller statistischer
Modelle, sogenannter Staged Trees, spielen. Unser Hauptresultat bezieht sich auf den
Fall, in dem diese Ideale von Binomen erzeugt sind und besagt, dass in diesem Falle
die Erzeuger eine quadratische Gröbnerbasis bilden und die Initialideale quadratfrei
sind. Dies impliziert, dass für das Polytop der korrespondierenden torischen Varietät
eine unimodulare Triangulierung existiert.





Abstract

Families of algebraic varieties that are parametrized by monomials appear in various
areas of mathematics, such as statistics, commutative algebra and combinatorics. Such
varieties are referred to as toric varieties and they are the structural objects of toric
geometry. The ideals defining toric varieties are prime binomial ideals. Toric geometry
is a field of rich interaction between algebraic and polyhedral geometry. We can take
statements from algebraic geometry and look for their combinatorial interpretation
and vice versa. The main contributions of this thesis are divided in two parts and aim
at making progress in two special topics in this intersection.

The first part of the thesis, Chapter 2 and Chapter 3, investigates the combinatorial
objects arising in toric geometry up to symmetry. Such objects are cones emerging
from families of binomial ideals in an increasing number of variables that stabilize up
to symmetry, that is, they are generated by the orbit under the action of the infinite
symmetric group on finite sets of polynomials. In Chapter 2, we explicitly compute
the facets of these cones by providing the description of their defining inequalities and
equations. Based on this, we are able to deduce the combinatorial stabilization of the
families of cones of our interest. Afterwards, in Chapter 3, we formulate criteria for
stabilization up to symmetry for any family of polyhedral cones by looking at families
of monoids. The main outcome here is that when a family of cones stabilizes up to
symmetry then also the underlying family of monoids stabilizes.

The second part of this thesis, Chapter 4, addresses the problem of implicitly
computing generating sets of the ideals defining combinatorial objects from statistics
called staged trees. The main result states that when a staged tree is defined by a
toric ideal, then this ideal is generated by a quadratic Gröbner basis and has squarefree
initial ideal. As a consequence, the polytope corresponding to this toric variety has a
unimodular triangulation.





Contents

Introduction 9

1 Commutative Algebra up to Symmetry 13
1.1 Well Quasi Orders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2 Direct Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.3 Equivariant Noetherianity . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.3.1 Invariant Ideals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.3.2 Equivariant Gröbner bases . . . . . . . . . . . . . . . . . . . . . . . 25

2 Cones up to Symmetry 29
2.1 Equivariant Toric Varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.2 Box Pile Cones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3 Symmetrized matrix cones . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 Equivariant Monoids 47
3.1 Affine Monoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.2 Equivariant families of monoids . . . . . . . . . . . . . . . . . . . . . . . . 49
3.3 Normal and Saturated Equivariant Monoids . . . . . . . . . . . . . . . . . 53
3.4 Equivariant Gordan’s Lemma . . . . . . . . . . . . . . . . . . . . . . . . . 56

4 Gröbner Bases for Staged Trees 61
4.1 Basic definitions for Staged Trees . . . . . . . . . . . . . . . . . . . . . . . 61
4.2 Equations for Staged Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.3 Toric Fiber Products for Staged Trees . . . . . . . . . . . . . . . . . . . . 68

4.3.1 Toric Fiber Products Basics . . . . . . . . . . . . . . . . . . . . . . 68
4.3.2 The Tree Gluing construction . . . . . . . . . . . . . . . . . . . . . 69
4.3.3 Inductive Tree Gluing . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.4 Equations via Tree Gluings . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.4.1 Quadratic Equations . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.4.2 Lifted Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

7



8 Contents

4.4.3 Gröbner Bases for Staged Trees . . . . . . . . . . . . . . . . . . . . 83
4.5 Applications to Algebraic Statistics . . . . . . . . . . . . . . . . . . . . . . 85

4.5.1 Discrete Statistical Models . . . . . . . . . . . . . . . . . . . . . . . 85
4.5.2 Conditional Independence . . . . . . . . . . . . . . . . . . . . . . . 87
4.5.3 The Staged Tree Model . . . . . . . . . . . . . . . . . . . . . . . . . 88

Bibliography 95



Introduction

In algebra and particularly in computational mathematics, one often studies systems of
polynomial equations in several variables. The set of solutions to a system of polyno-
mial equations is an algebraic variety which is the building block of algebraic geometry.
Although the algorithmic study of algebraic varieties is a hard and complicated task,
many recent achievements in symbolic algebra provide the framework for experimental
research and conjectures.

An inspiring result that established the development of algebraic geometry is the
Hilbert basis theorem [Eis95, Corollary 1.5]. This result was stated and proven in
1888 by David Hilbert. It roughly states that every algebraic variety defined by an
ideal in finitely many variables is carved out by finitely many polynomial equations.
Here the assumption that the ideal is defined by finitely many variables is necessary,
for if we require infinitely many variables then the ideal generated by these variables
is not finitely generated. Among the different proofs of the basis theorem, a proof
by Paul Gordan [Gor99] in 1899 is of particular interest. In this proof the idea of
Gröbner bases made its first appearance. A Gröbner basis of an ideal is a special
generating set that allows for a unique representation of the ideal and very often it is
convenient for computations. The method for computing Gröbner bases was introduced
in 1965 in the dissertation of Bruno Buchberger [Buc65] and it is named after his
advisor Wolfgang Gröbner. Nowadays, Gröbner bases are practical algorithmic tools
for solving systems of polynomial equations and consequently for efficiently computing
with algebraic varieties.

In contrast to the above beautiful results by Hilbert and Buchberger, the situation
changes dramatically when the number of variables in systems of polynomial equations
increases unboundedly. In such cases ideals generated by these variables are known
to not be finitely generated in general. As a result, the systems of interest cannot
be reduced to simpler ones and the study of infinite dimensional algebraic varieties
becomes very difficult. One approach to this problem is the subject of the newly
established discipline called asymptotic algebra. Here, the main idea for computing
with families of infinite dimensional algebraic varieties is to pass to the limit object
and to examine if this admits a representation as a finite set of polynomials up to the
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10 Introduction

action of some group or monoid. In this case, the finite generation of the limit object is
connected with the stabilization of the family, which, in turn, makes the computation
with such families easier.

The first known result of finite generation in asymptotic algebra was given by
Cohen in 1967 during his study on problems related with group theory and metabelian
varieties [Coh67]. He combined the Hilbert basis theorem with the study of well quasi
ordered sets to show that ideals of polynomial rings with infinitely many variables are
finitely generated up to the action of some monoid. Based on this result, in 1987,
Cohen [Coh87] and his student P. Emmott [Emm87] developed an algorithmic theory
which generalizes the reduction algorithm of Buchberger to systems of polynomials
in infinitely many variables. Their method is known as equivariant Gröbner bases.
At present, there is an implementation of equivariant Gröbner bases in the computer
algebra system Macaulay2. This is due to Hillar, Krone and Leykin [HKL] and it is
based on the work of Draisma and Brouwer [BD09].

The concept of finite generation in infinite dimensional polynomial rings was redis-
covered several decades later by Aschenbrenner and Hillar [AH07, AH08] to approach
problems in algebraic statistics [HS12]. Since in their computations the use of some
natural symmetries among the variables is highlighted, the field of study was named
commutative algebra up to symmetry, which is a subfield of the more general branch of
asymptotic algebra. In the next few paragraphs we review some results in asymptotic
algebra that are of particular interest.

The work of Draisma [Dra10] explores finiteness properties of algebraic varieties
that appear in algebraic statistics and chemistry. The statistical model under consid-
eration is the factor analysis model [DSS07] while the chemistry problem is related to
chirality measurements [RSU67]. In both situations, a family of varieties in infinitely
many variables is studied and the problem of finding an implicit finite description for
all the varieties in the family is addressed. The outcome of this article is that there
exists a finite description up to the action of a monoid. This description is different
for any of the problems.

In their recent work, Nagel and Römer [RN17] follow a methodology similar to the
one in [AH07, HS12] to study bivariate Hilbert series of ideals in infinite dimensional
polynomial rings that are invariant under the action of the group of all permutations
of the natural numbers or under the action of related monoids. Any such ideal is
described as the union of ideals in lower dimensional polynomial rings which form an
invariant chain. As a main result, the authors show the rationality of the Hilbert
series which allows them to estimate the Krull dimension and the multiplicity of ideals
in an invariant chain. The same result is obtained in [KLS16] in terms of formal
languages. In [GN18] the authors specialize the computation of Hilbert series for the
case of monomial ideals that are invariant under the action of the monoid of strictly
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increasing functions and they provide an implicit formula (Theorem 2.4 and Theorem
3.3 of [GN18]). A similar implicitization result is obtained in [MN19] for ideals defining
hierarchical models [Sul18]. The subsequent articles [LNNR19, LNNR18, Mur19] study
the asymptotic behavior of other invariants of chains of invariant ideals.

The use of commutative algebra up to symmetry is a fundamental tool in measuring
the complexity of a homogeneous ideal in a polynomial ring. This is a problem related
to the computation of the minimal free resolution of the ideal. The projective dimension
of the ideal is an important invariant of such a resolution that counts the number
of steps required to compute a minimal resolution. The Hilbert’s Syzygy Theorem
[Eis95, Corollary 19.7] states that every graded ideal over a polynomial ring with n
variables has projective dimension at most n. Stillman’s Conjecture [PS09, Problem
3.14] improves this bound. It asserts that the projective dimension of an ideal in
a polynomial ring with n variables that is generated by finitely many homogeneous
polynomials can be bounded by a number that is independent of n. This conjecture
was first proven by Ananyan and Hochster [AH20] and was later proven by Erman,
Sam and Snowden in [ESS19] and Draisma, Lasoń and Leykin in [DLL19]. The last
two proofs are based on topological Noetherianity techniques introduced by Derksen,
Eggermont and Snowden in [DES17] and Draisma in [Dra19].

Since its introduction, the use of symmetry in commutative algebra has played a
crucial role in the study of algebro-geometric objects that have a rich combinatorial
structure. A special class of these objects is referred to as toric varieties which are
the structural objects of the subfield of algebraic geometry called toric geometry. Very
often we use monomial maps or embeddings of semigroups in a lattice to define toric
varieties. In the first case, a toric variety is determined by the zero set of the kernel
of a monomial map. Such kernels form the defining ideals of toric varieties which are
called toric ideals in the literature. They are defined as those prime ideals that are
generated by monomial differences, called binomials. In the second case, the study of
toric varieties is related with to the study of polyhedral cones, the structural objects
of polyhedral geometry. This correspondence between polyhedral and toric geometry
is fundamental to us because many properties of the semigroups defining the toric
varieties are determined by properties of the convex cones. For instance a result due to
Gordan states that a finitely generated polyhedral cone gives rise to a finitely generated
semigroup.

Toric varieties arise naturally when studying problems originating from algebraic
statistics. Frequently, we want to understand stabilization properties of families of toric
varieties when some of the defining parameters grow to infinity. As mentioned earlier
in this introduction, stabilization is achieved when the limit object of such a family is
described by the action of the infinite symmetric group on a finite set of binomials. It is
known that not every family of toric varieties stabilizes up to symmetry. For instance,
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the no hope theorem of De Loera and Onn identifies large families of objects with no
hope of finite generation in the limit [DLO06]. On the positive side, the independent
set theorem of Hillar and Sullivant [HS12, Theorem 4.7] and the more general result
of Draisma, Eggermont, Krone and Leykin [DEKL13] describe large classes of toric
varieties that stabilize up to symmetry. Related to this is the work of Kahle, Krone and
Leykin [KKL14] that considers the problem of implicitly characterizing the generating
sets of large families of toric varieties that stabilize up to symmetry.

The main objective of this thesis is first the study of the combinatorial objects aris-
ing in toric geometry up to symmetry and then the characterization of the generating
sets of the ideals defining staged trees. The organisation of the thesis is the following.

In Chapter 1 we define well quasi orders, a fundamental notion when studying
finite generation results. We also define direct limits, which are basic constructions
from category theory, in order to introduce important limit objects that are needed
in the development of this thesis. Later we introduce invariant ideals, that is, ideals
which are closed under the action of some monoid (with emphasis on the case where
the monoid is defined by the infinite symmetric group) and we review Noetherianity
results of chains of invariant ideals in infinite dimensional polynomial rings.

In Chapter 2 we summarize the results in [DEKL13] and [KKL14] and we describe
the polyhedral cones that correspond to toric varieties that stabilize up to symmetry.
To be more precise, we provide an explicit computation of the facets of the cones
by providing a description of their defining inequalities and equations (Proposition
2.2.4, Theorem 2.3.12, Theorem 2.3.14). Based on this we are able to deduce the
combinatorial stabilization of the families of cones of our interest.

In Chapter 3 we introduce monoids that are closed under the action of the infinite
symmetric group or related monoids and we examine when their underlying algebras
are finitely generated up to symmetry. We define equivariant families of cones and we
show (Theorem 3.4.6) that the property of stabilization up to symmetry is transferred
from families of cones to families of monoids that arise by intersecting each of the cones
in the family with the ambient space.

Finally, in Chapter 4 we study combinatorial objects, originating from statistics,
called staged trees and we determine the generating sets of their defining ideals. In
case these defining ideals are toric we show (Theorem 4.4.12) that their generators
form a quadratic Gröbner basis whose initial terms are squarefree monomials. As a
consequence, the polytope corresponding to this toric variety has a unimodular trian-
gulation.



1 | Commutative Algebra up to
Symmetry

In this chapter of the thesis we review the basic results related to finite generation
up to symmetry of large families of invariant ideals in infinite dimensional polynomial
rings. We introduce well quasi orders, which are considered as the starting point for
studying finite generation results. Furthermore, we define direct limits, a fundamental
tool required later in this thesis.

1.1 Well Quasi Orders
The lemma of Higman is an important result in infinite combinatorics with various
applications in Logic and Computer Science. It has been proven several times using
different formulations and methods. The structural objects of this result are well quasi
orders which are important tools when one wants to show the finite termination of
algorithms. The notion of a well quasi order is based on the one of a quasi order which
we define in the following.

Definition 1.1.1. A quasi order is a binary relation ≤ over a non-empty set X which
is both reflexive, i.e. x ≤ x for any x ∈ X, and transitive, i.e. whenever x1 ≤ x2 and
x2 ≤ x3 then x1 ≤ x3 for any x1, x2, x3 ∈X.

We use a pair (X,≤) to denote a set X that is quasi-ordered by the relation ≤ .

Remark 1.1.2. Let (X,≤) be a quasi order. If the relation ≤ is also antisymmetric,
that is x1 ≤ x2 and x2 ≤ x1 imply x1 = x2 for any x1, x2 ∈ X, then it is a partial order.
Hence, a partial order is a quasi order. The converse is not always true as the following
example demonstrates.

Example 1.1.3. Consider the divisibility relation ∣ over the set Z of integer numbers
given by a ∣ b if and only if there exists some k ∈ Z such that b = k ⋅ a for any
a, b ∈ Z. The pair (Z, ∣) is then a quasi order. The divisibility relation is reflexive (any
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14 Chapter 1. Commutative Algebra up to Symmetry

integer number divides itself) and transitive : if a ∣ b then there is some k1 ∈ Z with
b = k1 ⋅ a and if further b ∣ c then there is k2 ∈ Z with c = k2 ⋅ b, it then follows that
c = k2 ⋅ b = k2 ⋅ (k1 ⋅ a) = (k2 ⋅ k1) ⋅ a which yields that a ∣ c. However the pair (Z, ∣) is
not a partial order because the divisibility relation is not antisymmetric. For instance
if a = −2 and b = 2, then a ∣ b as 2 = (−1) ⋅ a, similarly b ∣ a as −2 = 1 ⋅ b, but a /= b.

Remark 1.1.4. We can turn a quasi order ≤ on the set X into a partial order on
the set of equivalence classes of X. For this we define an equivalence relation on the
elements of X as follows. For any x, y ∈X we write x ∼ y if and only if x ≤ y and y ≤ x.
Then, the equivalence class of x ∈X is the set [x] = {y ∶ x ∼ y}. This partitions X into
a set of disjoint equivalence classes X/ ∼= {[x] ∶ x ∈ X}. We construct a relation ≤∼
on X/ ∼ by defining [x] ≤∼ [y] if x ≤ y. The relation ≤∼ is a partial order on X/ ∼ .
Reflexivity and transitivity arise from (X,≤) being a quasi order, while antisymmetry
follows from the observation that if [x] ≤∼ [y] and [y] ≤∼ [x], then x ≤ y and y ≤ x
which means that x ∼ y, hence [x] = [y].

Example 1.1.5 (Example 1.1.3 continued). The divisibility order over the set of inte-
ger numbers is a quasi order. According to Remark 1.1.4, this quasi order gives rise to
a partial order on the set of equivalences classes Z/ ∼= {[a] ∶ a ∈ Z}, where [a] = −a for
any a ∈ Z, because the only way that two distinct integers divide each other is when
they are opposite.

Definition 1.1.6. A quasi order (X,≤) is called a well quasi order if

1. it is well founded, that is, every strictly decreasing sequence of elements in X is
finite, and

2. X does not have infinite antichains, that is, any subset A ⊆X of pairwise incom-
parable elements is finite.

Example 1.1.7. The pair (N,≤), the natural numbers under the standard ordering is
a well quasi order.

Example 1.1.8.

� Consider the pair (Z,≤) of integral numbers with the standard ordering. This is
not a well quasi order. For any z ∈ Z, consider the sequence

z > z − 1 > z − 2 > z − 3 > . . . ,

and notice that this is an infinite decreasing sequence. Therefore the set of integer
numbers is not well founded.
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� The pair (N, ∣) of natural numbers with the divisibility order is also not a well
quasi order. To see this, observe first that the set of prime numbers is infi-
nite. Since no prime number divides another, any two primes are incomparable.
Therefore, the set of prime numbers forms an infinite antichain.

Definition 1.1.9. Let (X,≤) be a quasi order. An infinite sequence (xi ∶ i ∈ N) of
elements in X is good, if xi ≤ xj for some indices i < j. Otherwise it is called bad.

Let (X,≤) be a quasi ordered set. A final segment is a subset F of X that is closed
upwards, that is, for any x1, x2 ∈ X, if x1 ∈ F and x1 ≤ x2, then x2 ∈ F. Given an
arbitary subset M of X, we denote the final segment generated by M as follows

fin(M) = {x2 ∈X ∶ ∃x1 ∈M such that x1 ≤ x2}.

The definition of a well quasi order provided so far is in terms of well founded
sequences and antichains. There exist several other conditions which characterize the
concept of a well-quasi-order and that can be considered as equivalent definitions. We
refer to Kruskal’s article [Kru72] for the general theory and to [FT, Theorem 3.2] for
a beautiful proof of the next result.

Proposition 1.1.10. The following statements are equivalent for a quasi order (X,≤).
1. (X,≤) is a well quasi order.

2. Any final segment of X is finitely generated.

3. If F1 ⊆ F2 ⊆ ⋅ ⋅ ⋅ ⊆ Fn ⊆ . . . is an ascending chain of final segments of X, then this
chain is eventually stable, that is, there exists some natural number n ∈ N such
that FN = Fn, for any N ≥ n.

4. Any infinite sequence of elements in X is good.

5. Any infinite sequence of elements in X admits an infinite ascending subsequence.

Remark 1.1.11. The property described in Proposition 1.1.10(3) is known as the
ascending chain condition required for stabilization (Noetherianity) results in commu-
tative algebra, while the property in Proposition 1.1.10(2) is characterized by Higman
in [Hig52] as the finite basis property.

Given n quasi-ordered sets (X1,≤1), (X2,≤2), . . . , (Xn,≤n), we can form the product
quasi-order (X,≤n) on the set X =X1 ×X2 ×⋯ ×Xn in the following way. Let x1, y1 ∈
X1, x2, y2 ∈X2, . . . , xn, yn ∈Xn. Then

(x1, . . . , xn) ≤n (y1, . . . , yn) ⇐⇒ x1 ≤1 y1, . . . , xn ≤n yn.

This order is reflexive and transitive and therefore (X,≤n) is a quasi order.
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Proposition 1.1.12. Consider the well quasi orders (X1,≤1), (X2,≤2), . . . , (Xn,≤n).
Then (X,≤n) is also a well-quasi order.

Proof. We prove that (X,≤n) is a well quasi order showing that a sequence of tuples
of X admits an ascending subsequence. Let

X0 = (x1, y1, . . . , z1), (x2, y2, . . . , z2), . . . , (xn, yn, . . . , zn), . . .

be an infinite sequence of tuples of X. Since (X1,≤1) is a well quasi order, the sequence
X0 admits an infinite subsequence that increases in the first component:

X1 = (xi1 , y1, . . . , z1) ≤1 (xi2 , y2, . . . , z2) ≤1 ⋅ ⋅ ⋅ ≤1 (xin , yn, . . . , zn) ≤1 . . . ,

where 1 ≤ i1 < i2 < ⋅ ⋅ ⋅ < in. Since (X2,≤2) is a well quasi order, the sequence X1 admits
an infinite subsequence that increases both in the first and in the second component:

X2 = (xj1 , yj1 , . . . , z1) ≤2 (xj2 , yj2 , . . . , z2) ≤2 ⋅ ⋅ ⋅ ≤2 (xjn , yjn , . . . , zn) ≤2 . . . ,

where jl ∈ {i1, i2, . . . , in}, l = 1,2, . . . , n and j1 < j2 < ⋅ ⋅ ⋅ < jn.
Using the same argument, that (Xi,≤i) is a well quasi order, we construct a subsequence
Xi of X which increases in the first i components. Thus, Xn is the subsequence of X in
which all the components are increasing. We conclude that every sequence of elements
of X admits an increasing subsequence and therefore (X,≤n) is a well quasi order.

If we specialize Proposition 1.1.12 for the set of n−tuples of natural numbers with
the component-wise ordering we obtain the following result.

Corollary 1.1.13 (Dickson’s Lemma, [Dic13]). The pair (Nn,≤n), of the set of all
n−tuples of natural numbers with the component-wise order introduced above, is a
well quasi order.

Remark 1.1.14. Dickson’s Lemma is very important in computational algebraic ge-
ometry as it ensures that any monomial ideal of the polynomial ring R = K[x1, . . . , xn]
is finitely generated. In order to see this we associate to an n−tuple of natural num-
bers α = (α1, . . . , αn) ∈ Nn a monomial xα = xα1

1 ⋯xαnn in R and we consider the
monomial ideal I = ⟨xα ∶ α ∈ Nn⟩ of R. Since (Nn,≤n) is a well quasi order, it fol-
lows from Proposition 1.1.10 that any final segment of Nn is finitely generated, hence
there is a finite subset {β1, . . . ,βr ∶ βi ∈ Nn} of Nn such that the monomials in the set
{xβ1 , . . . ,xβr} generate I. Therefore, Dickson’s lemma is a special case of Hilbert basis
theorem ([Eis95, Corollary 1.5]) which states that any ideal in R is finitely generated.
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For the rest of this section consider an arbitary set X, and denote by X∗ the set of
all finite words over X. A quasi order ≤ on X yields a quasi order ≤H on X∗ as follows

(x1, . . . , xp) ≤H (x′1, . . . , x′q)

if and only if there exists a strictly increasing map ϕ ∶ [p] → [q] such that xi ≤H xϕ(i)
for any i ∈ [p]. The content of the following Lemma is that for X∗ to be well quasi
ordered, it is sufficient that X is well quasi ordered.

Lemma 1.1.15 (Higman’s Lemma, [Hig52]). If X is a well quasi ordered set, then X∗

is also a well quasi ordered set.

For a nice proof of Lemma 1.1.15 we refer to the work [NW63] of Nash-Williams
and to the lecture notes [Dra14, Chapter 1] of Jan Draisma. Well quasi orders were
extensively used in [AH07, HS12] and [RN19] to show that Gröbner bases of polynomial
rings with infinitely many variables are finitely generated up to symmetry.

1.2 Direct Limits
In this section we briefly introduce direct limits. In category theory, the direct limit
is a fundamental way to construct a large object by putting together many smaller
objects. These objects may be monoids, groups, rings or vector spaces. The way that
these objects are put together is specified via a set of homomorphisms between the
smaller objects. Before defining direct limits, we review basic notions from category
theory. The main reference here is the book of Steve Awodey [Awo10].

Definition 1.2.1. A category C consists of a class Ob(C) of objects and a class of
maps between these objects such that the following conditions hold.

C1 For all A,B ∈ Ob(C) there is a (possibly empty) set MorC(A,B), called the set
of morphisms f ∶ A→ B from A to B, such that

MorC(A,B) ∩MorC(A′,B′) = ∅, if (A,B) /= (A′,B′)

C2 If A,B,C ∈ Ob, then there is a rule of composition

MorC(A,B) ×MorC(B,C)→MorC(A,C),

defined by (f, g)↦ g ○ f, so that the following rules hold

(a) Associativity: If f ∶ A → B,g ∶ B → C and h ∶ C → D are morphisms in C,
then (h ○ g) ○ f = h ○ (g ○ f).
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(b) Existence of Identity: For any A ∈ Ob, there is an identity morphism IdA ∶
A → A such that f ○ IdA = f and IdA ○ g = g, for any morphisms f ∶ A → B
and g ∶ C → A of C.

Example 1.2.2.

� The category Sets of sets has as its objects arbitary sets and as morphisms the
maps between sets. The rule of composition is the usual composition of maps.

� The category Rng of rings has objects all rings not necessarily having an identity
element, and the set of morphisms consists of all ring homomorphisms. The rule
of composition in this case is the composition of ring homomorphisms.

� Similarly to the categories Sets,Rng, we form the categories Grp of groups and
Mon of monoids.

� Let (X,≤) be a quasi order. We can interpret (X,≤) as a category with objects
the elements of X. For any x, y ∈ X, the set Mor(x, y) of morphisms in this
category, is defined by a unique map f ∶ x → y whenever x, y are comparable,
that is whenever x ≤ y, otherwise it is the empty set. The rule of composition is
given by the property of the quasi order to be transitive, that is, if x, y, z ∈ X,
then x ≤ y and y ≤ z implies x ≤ z. In terms of the setup above, this means that
if there exist maps f ∶ x → y and g ∶ y → z, then g ○ f ∶ x → z. The associativity
and existence of identity is then implied by the usual composition of maps.

The starting point for the direct limit construction is a family of objects {Xi ∶ i ∈ I}
in some category C, indexed by a non-empty quasi-ordered set I that has an additional
property which is described in the following definition.

Definition 1.2.3. Let (I,≤) be a quasi order. We say that I is a directed set, if for
any i1, i2 ∈ I there exists i3 ∈ I such that i1 ≤ i3 and i2 ≤ i3.

Example 1.2.4. The pair (N,≤), of natural numbers together with the standard or-
dering ≤ defines a directed set.

Definition 1.2.5. Let I be a directed set. An inductive system in a category C over
I, is a pair (X,ϕ), consisting of a family of objects X = {Xi ∶ i ∈ I}, together with a
collection of maps

ϕ = {ϕi,j ∶Xi →Xj, for any i, j ∈ N with i < j}

that satisfy the following properties

� ϕi,i = IdXi , for any i ∈ I, where IdXi ∶Xi →Xi is the identity map, and,
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� ϕj,k ○ ϕi,j = ϕi,k, for any i, j, k ∈ I with i < j < k.

Example 1.2.6. In the following examples the families of objects are indexed over the
directed set (N,≤).

1. Let X be a non-empty set, and let X = {Xi ∶ i ∈ N} be a family of subsets of X.
Assume that these subsets form a chain

∅ =∶X0 ⊆X1 ⊆X2 ⊆ ⋅ ⋅ ⋅ ⊆Xi−1 ⊆Xi ⊆Xi+1 ⊆ . . . .

Thus, there are natural inclusion maps ϕi,j ∶ Xi → Xj for any pair i, j of natural
numbers with i ≤ j. These maps are such that ϕi,i = IdXi for any i ∈ N and
ϕj,k ○ ϕi,j = ϕi,k for any i, j, k ∈ N with i ≤ j ≤ k. Hence, the pair (X,ϕ), where
ϕ = {ϕi,j ∶ i, j ∈ N, i ≤ j}, is an inductive system over N.

2. Given some fixed natural number k ∈ N and any n ∈ N, consider the finite set of
indeterminates Xn = {xi,j ∶ i ∈ [k], j ∈ [n]}. For any n ∈ N denote by Rn = K[Xn]
the commutative ring with variables in Xn and coefficients in some field K. Let
R = {Rn ∶ n ∈ N} be a family of such rings, and assume that there is a chain

R1 ⊆ R2 ⊆ ⋅ ⋅ ⋅ ⊆ Rn ⊆ Rn+1 ⊆ . . . .

Define ϕm,n ∶ Rm → Rn to be the natural inclusion map of Rm into Rn for any
m,n ∈ N with m ≤ n. Those maps are such that ϕm,m = IdRm for any m ∈ N, and
ϕn,r ○ϕm,n = ϕm,r for any m,n, r ∈ N with m ≤ n ≤ r. Hence the pair (R,ϕ), where
ϕ = {ϕm,n ∶m,n ∈ N,m ≤ n}, is an inductive system over N.

3. Let S = {Sym(n) ∶ n ∈ N} be a collection of finite symmetric groups. For any
m,n ∈ N with m ≤ n there are natural inclusion maps

ϕm,n ∶ Sym(m)Ð→ Sym(n),

σ ↦ ϕm,n(σ)(i) ∶=
⎧⎪⎪⎨⎪⎪⎩

σ(i), if i ∈ [m],
i, else.

These maps are such that ϕm,m = IdSym(m) for any m ∈ N, and ϕn,r ○ ϕm,n = ϕm,r
for any m,n, r ∈ N with m ≤ n ≤ r. Hence the pair (S,ϕ), where ϕ = {ϕm,n ∶
m,n ∈ N,m ≤ n}, is an inductive system over N.

Definition 1.2.7. The direct limit of the inductive system (X,ϕ) in the category
C over the directed set I, is an object in C that is denoted by limÐ→Xi, together with a
collection of morphisms

{ϕi,∞ ∶Xi Ð→ limÐ→Xi ∶ i ∈ I}
such that the following properties hold
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� ϕi,∞ = ϕj,∞ ○ ϕi,j for all indices i, j ∈ I with i ≤ j.

� For any object Y in C and morphisms fi ∶ Xi → Y that satisfy the relation
fj ○ ϕi,j = fi for any i ≤ j, there exists a unique morphism Φ ∶ limÐ→Xi → Y such
that fi = Φ ○ ϕi,∞ for any i ∈ I. (universal property for direct limits)

For simplicity the direct limit of an inductive system (X,ϕ) is, from now on,
denoted by X∞ ∶= limÐ→Xi.

Remark 1.2.8. The direct limit of an inductive system does not always exists as
Example 1.2.13 shows. Nevertheless if it exists, it is unique up to isomorphism as
indicated in the following proposition. The dual of the direct limit, when it exists, is
the projective limit.

Proposition 1.2.9. The direct limit (when it exists) is unique up to isomorphism.

Proof. Assume that X∞,X ′
∞ are two different direct limits of an inductive system

(X,ϕ) in a category C. Let f ∶ X∞ → X ′
∞ be a morphism from X∞ to X ′

∞ and
g ∶X ′

∞ →X∞ be a morphism from X ′
∞ to X∞. Then the following diagram

X∞ X ′
∞

X∞ X ′
∞

f

IdX∞ g
IdX′∞

f

commutes. Note that f ○ g is a morphism from X∞ to itself and g ○ f is a morphism
from X ′

∞ to itself. In other words, f ○ g, g ○ f are the identity maps

f ○ g = IdX∞ , g ○ f = IdX′
∞ ,

and therefore, the maps f and g are mutual inverses. Hence the maps f and g are
isomorphisms in C and the uniqueness of X∞ follows.

Proposition 1.2.10. Direct limits exist in the category Sets.

Proof. Let ({Xi ∶ i ∈ I},{ϕi,j ∶ Xi → Xj ∶ i, j ∈ I, i ≤ j}) be an inductive system in the
category Sets indexed by a directed set I. Let X ′ = ⋃i∈IXi and define an equivalence
relation on the elements of X ′ as follows. If xi ∈ Xi, xj ∈ Xj for any i, j ∈ I with i ≤ j,
we say that xi is equivalent to xj and we write xi ∼ xj whenever ϕi,k(xi) = ϕj,k(xj) for
some index k ∈ I with i ≤ k, j ≤ k. If xi ∈ Xi then we denote the equivalence class of
xi by [xi]. Let X = X ′/ ∼ be the set of all equivalence classes and consider the natural
embedding ϕi,∞ ∶ Xi → X defined by xi ↦ ϕi,∞(xi) = [xi] for any i ∈ I. Notice that
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ϕj,∞(ϕi,j(xi)) = ϕi,∞(xj) = [xj]
xi∼xj= [xi] = ϕi,∞(xi) and therefore ϕi,∞ = ϕj,∞ ○ ϕi,j for

any i, j ∈ I, i ≤ j. We claim that limÐ→Xi ≅ X . In order to prove the claim we need to
show that X satisfies the universal property of direct limits. To this end, let Y be
some set and consider the maps fi ∶ Xi → Y with fi = fj ○ ϕi,j for any i, j ∈ I, i ≤ j.
If [xi] ∈ X = ⋃i∈IXi/ ∼, then there is an index i ∈ I such that [xi] ∈ Xi/ ∼ or xi ∈ Xi.
Hence it makes sense to define the map Φ ∶ X → Y as Φ([xi]) = fi(xi) for any i ∈ I. We
can check that Φ is well-defined. If [xi] = [xj] then there is k ∈ I with i ≤ k, j ≤ k such
that ϕi,k(xi) = ϕj,k(xj), moreover we have fi(xi) = fk(ϕi,k(xi)) = fk(ϕj,k(xj)) = fj(xj).
Furthermore, the map Φ satisfies fi = Φ ○ ϕi,∞. To see this we note that Φ([xi]) =
fi(xi) = (fj ○ ϕi,j)(xi) holds for any indices i, j with i ≤ j. This if we choose the
index i ∈ I to be large enough, then the latest holds for any index j ∈ I that is large
enough and approaches the limit. Hence Φ([xi]) = (f∞ ○ϕi,∞)(xi) where f∞ = Φ. Thus
fi(xi) = (Φ ○ ϕi,∞)(xi) for any i ∈ I. It remains to show the uniqueness of Φ. On the
contrary assume that there exists Φ′ ∶ X → Y such that fi = Φ′ ○ ϕi,∞ for any i ∈ I.
Then, Φ([xi]) = fi(xi) = Φ′(ϕi,∞(xi)) = Φ′([xi]), and so Φ = Φ′. This proves our claim
that X ≅ limÐ→Xi.

Remark 1.2.11. The direct limits of inductive systems in concrete categories exist
and admit a characterization similar to the one of the direct limits in Sets ([Awo10,
Proposition 5.31]). Here by a concrete category ([Awo10, Paragraph 1.4, item 4]) we
mean a category whose objects are sets with some additional structure. Morphisms
in such categories are functions preserving this structure. For instance, the category
Rng of rings is concrete, because the objects are rings, i.e. sets together with two
binary operations (usually addition and multiplication), and morphisms are just ring
homomorphisms (that is functions preserving the ring structure). Other examples of
set-based categories are the categories Grp of groups and Mon of monoids.

Example 1.2.12.

� The direct limit of the inductive system (R,ϕ) introduced in Example 1.2.6(2) is
defined in terms of the direct limit of the family of indeterminates {Xn ∶ n ∈ N}.
We have that X∞ = {xi,j ∶ i ∈ [k], j ∈ N}, and therefore R∞ = K[X∞] is the
polynomial ring in infinitely many variables over a field K.

� Suppose that we want to define the direct limit of the inductive system (S,ϕ) of
Example 1.2.6(3). If S∞ = limÐ→Sym(n), then we can implicitly characterize this
direct limit making the following observation. Since S∞ exists, there are maps

ϕn,∞ ∶ Sym(n)→S∞

σ ↦ ϕn,∞(σ) = {σ ∈ Sym(n) ∶ σ(i) = i ∀i ∈ N/[n]}, ∀n ∈ N.
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Hence we may define S∞ as the set of all permutations of the natural numbers
that fix all but finitely many numbers. Notice thatS∞ together with composition
of permutations operation is a group which is often referred in the literature as the
infinite symmetric group. This group has a crucial role in the following sections
and chapters of the thesis.

Example 1.2.13. Consider the category FinSets of finite sets and morphisms the
maps between them. Although there exists an inductive system in this category, the
direct limit does not exist, for if it existed it would had been an infinite set.

1.3 Equivariant Noetherianity
In the last section of this chapter, we review Noetherianity results for infinite dimen-
sional polynomial rings. We study ideals in infinitely many variables that are invariant
under the action of the infinite symmetric group and we provide instances for finite gen-
eration up to symmetry. Finally, we introduce a Gröbner basis theory for the ideals of
interest. The main references for Subsection 1.3.1 are the articles [Coh67, AH07, HS12].
In Subsection 1.3.2 we summarize the results in [Coh87, AH08, HS12, HKL18]. The
article [Dra10] and the lecture notes [Dra14] are excellent sources for an introduction
to equivariant Noetherianity.

1.3.1 Invariant Ideals
Throughout this paragraph, let K be a field, R a K−algebra and Π a monoid. We
assume that Π acts on R in terms of K−algebra homomorphisms, that is through a
map

ρ ∶ Π ×R Ð→ R,

(π, f)↦ ρ((π, f)) =∶ π(f), ∀π ∈ Π,∀f ∈ R.

Associated to R and Π is the skew monoid ring S = R ⋆ Π whose elements are finite
sums ∑π∈Π fππ, where fπ ∈ R for each π ∈ Π and fπ = 0 for all but finitely many π ∈ Π.
The binary operation of addition is given coefficient-wise by

(∑
π∈Π

fππ) + (∑
π∈Π

gππ) = ∑
π∈Π

(fπ + gπ)π,

while multiplication is defined distributively via the formula

(∑
π∈Π

fππ) ⋅ (∑
τ∈Π

gττ) = ∑
π,τ∈Π

fππ(gτ)πτ = ∑
ν∈Π

⎛
⎜
⎝
∑
π,τ∈Π
πτ=ν

fππ(gτ)
⎞
⎟
⎠
ν,
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where π(gτ) denotes the element of R obtained by π acting on gτ . The left action of S
on R, gives R the structure of an S−module.

Definition 1.3.1. An ideal I ⊆ R is called Π−invariant if it is closed under the action
of Π, that is,

ΠI ∶= {π(f) ∶ π ∈ Π, f ∈ I} ⊆ I, ∀π ∈ Π.

Let P be a K−algebra. The homomorphism φ ∶ R → P is called Π−equivariant if
π(φ(f)) = φ(π(f)) for any π ∈ Π and any f ∈ R.

Following the discussion before Definition 1.3.1 we conclude that Π−inariant ideals
are exactly the S−submodules of R. Therefore, the study of finiteness properties of
Π−invariant ideals is connected with the study of Noetherianity properties of the skew
monoid ring S. Such results are known in the literature of non-commutative algebra,
like for example [TYL01, JM01].

Definition 1.3.2. A Π−invariant ideal I of R is Π−finitely generated if there exists
a finite set F such that I is generated by the Π−orbits of the elements in F. In this
case, we write I = ⟨F ⟩Π.

In this thesis we are mainly interested in the case where Π is the infinite symmetric
group S∞ of Example 1.2.12, or certain related monoids. We also consider the case
where the K−algebra R has the structure of a polynomial ring, R = K[X] with X being
a (not necessarily finite) set of indeterminates. The following examples are instances
of S∞−invariant ideals, some of them being S∞−finitely generated, but the last one
which is not.

Example 1.3.3. Let X = {x1, x2, . . .},R = K[X], and let Π = (S∞, ○). Then Π acts
on R by permuting the variables on X, so that σ(xi) ∶= xσ(i) for any σ ∈ S∞, i ∈ N.
The ideal I = ⟨x1, x2, . . . ⟩ of R is S∞−invariant but is not finitely generated over R.
Nevertheless, we observe that the S∞−orbit of {x1} generates I.

Example 1.3.4. For some n ∈ N consider the matrix X = (xi,j ∶ i, j ∈ [n]) ∈ Matn×n(R).
Let Rn = K[xi,j ∶ i, j ∈ [n]] be the polynomial ring with variables the entries of the
matrix X over a field K, and consider the ideal In of Rn that is generated by the 2× 2
minors of X, i.e.

In = ⟨xi1,j1xi2,j2 − xi1,j2xi2,j1 ∶ i1, i2, j1, j2 ∈ [n]⟩, ∀n ≥ 2.

Assume that the monoid (Sym(n), ○) acts on X by simultaneously permuting its rows
and columns. In terms of the variables of Rn, this means that σ(xi,j) ∶= xσ(i),σ(j) for any
σ ∈ Sym(n) and any i, j ∈ [n]. The ideals In are Sym(n)−invariant for any n ∈ N, n ≥ 2.
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For increasing n the number of generators of the ideal In increases as well. However,
for n ≥ 4, the generators of In lie in the Sym(n)−orbit of the set

G = {x1,1x2,2 − x1,2x2,1, x1,1x2,3 − x1,3x2,1, x1,2x3,4 − x1,4x3,2}.
This is based on the observation that for any n ≥ 4 the Sym(n)−orbit of the minor
x1,1x2,2−x1,2x2,1 are those minors of X involving elements in the diagonal of the matrix,
the Sym(n)−orbit of the minor x1,1x2,3−x1,3x2,1 are minors ofX involving an element in
the diagonal and another non-diagonal element, finally the Sym(n)−orbit of the minor
x1,2x3,4 − x1,4x3,2 produce all other minors of X. For any m,n ∈ N there are natural
inclusion relations Im ⊆ In whenever m ≤ n. Hence, we can define the ideal I = ⋃n∈N In
of the ring R = K[xi,j ∶ i, j ∈ N]. From its definition, the ideal I is S∞−invariant and is
generated by the S∞−orbits of G, that is

I = ⟨x1,1x2,2 − x1,2x2,1, x1,1x2,3 − x1,3x2,1, x1,2x3,4 − x1,4x3,2⟩S∞
.

Example 1.3.5 ([HS12], Example 3.8). LetX = {xi,j ∶ i, j ∈ N} and R = K[X]. Assume
that S∞ acts on the variables of X through σ(xi,j) = xσ(i),σ(j) for any σ ∈S∞ and any
i, j ∈ N. The ideal

I = ⟨x1,1, x1,2x2,1, x1,2x2,3x3,1, . . . ⟩ ⊆ R
is S∞−invariant but is not S∞−finitely generated.

Whenever a Π−invariant ideal is Π−finitely generated, it makes sense to look for
Noetherianity type results, where by Noetherianity here we mean the following.

Definition 1.3.6. A polynomial ring in infinitely many variables is Π−Noetherian
if every Π−invariant ideal is Π−finitely generated.

We conclude this section with the following definition which implies S∞−finite
generation of families of S∞−invariant ideals. This is according to [KKL14, HKL18].

Definition 1.3.7. Let R = K[X] and consider the element f ∈ R. The width of f is
the minimal n ∈ N such that all the permutations σ ∈ S∞ that fix the set [n] also fix
f. In case such n does not exist we say that f has infinite width.

In the next definition we use the width of an element f in the ring R = K[X] to
define the width of an ideal.

Definition 1.3.8. Let I be an S∞−invariant ideal of R. The n−th truncation of I
is the set

In ∶= {f ∈ I ∶ the width of f is at most equal to n}.
The set In is naturally an S∞−invariant ideal of R. We define the width of I as the
minimal n ∈ N such that the n−th truncation determines it up to the action of S∞,
that is I = ⟨In⟩S∞

. In case such natural number exists, we say that I has finite width,
otherwise it has infinite width.
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Example 1.3.9. The S∞−invariant ideal I of Example 1.3.4, defined as the limit of
a family of ideals that correspond to the minors of a square matrix, has width equal
to four.

An important consequence of Definition 1.3.8 is that in order for I to beS∞−finitely
generated there must exist sufficiently large n ∈ N such that the ideal In is generated
by the Sym(n)−orbit of a finite set. By Definition 1.3.7, this is the case when In is
generated by elements in R that have finite width. If we consider the chain of ideals

I1 ⊆ I2 ⊆ ⋅ ⋅ ⋅ ⊆ In ⊆ In+1 ⊆ ⋅ ⋅ ⋅ ⊆ I = ⋃
n∈N

In, (1.1)

where each of the ideals In is a Sym(n)−invariant ideal of a finite dimensional poly-
nomial ring, then the S∞−finite generation of I implies the stabilization of the chain
(1.1) at width n. This stabilization implies the Noetherianity of the infinite dimen-
sional polynomial ring R up to the action of the infinite symmetric group. In the next
paragraph we connect the study of Noetherianity of infinite dimensional polynomial
rings with the theory of Gröbner bases.

1.3.2 Equivariant Gröbner bases
Assume that R = K[X] is a polynomial ring in infinitely many variables over a field K
and that Π is a monoid acting on R in terms of monoid homomorphisms. If X∗ is the
free commutative monoid generated by X, that is the monoid of all finite sequences of
elements from X with sequence concatenation as operation, then the monomials of R
are exactly the elements of X∗.

Definition 1.3.10. A monomial order on the set X∗ is a well order ≤ with the
additional property that u ≤ v implies uw ≤ vw for any u, v,w ∈X∗.

As mentioned in Remark 1.1.14, Dickson’s lemma implies the finite generation
of monomial ideals in polynomial rings with finitely many variables. This can be
extended to any ideal I in a finite dimensional polynomial ring as follows. Consider a
monomial order ≤ on the monomials of the ring and let M = {m1, . . . ,mr} be the set
of all monomials in {in≤(f) ∶ f ∈ I} that are minimal with respect to ≤ . If f1, . . . , fr
are polynomials in I with in≤(fi) = mi for any i ∈ {1, . . . , r}, then the ideal in≤(I) =
⟨in≤(f1), . . . , in≤(fr)⟩ is a finitely generated monomial ideal and the set {f1, . . . , fr} is
a finite Gröbner basis for I. Moreover, the ideal I is finitely generated. This relation
between well orders and finite generation of ideals is significant for Noetherianity results
of high dimensional polynomials rings. In order to establish a Gröbner basis theory
for ideals in polynomial rings with infinitely many variables we need to make sure that
the action of the monoid Π on the elements of R does not violate the property of the
monomial order being a well-order. We require the following definition.
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Definition 1.3.11. A Π−compatible order on the set X∗ is a monomial order,
denoted ≤Π, with the following property

u ≤Π v⇒ π(u) ≤ π(v), ∀u, v ∈X∗,∀π ∈ Π.

It is noted in [BD09, Remark 2.1] that the infinite symmetric group S∞ does not
respect monomial orders. Additionally, [LNNR19, Example 2.2] shows that initial
ideals of S∞−invariant ideals are not S∞−invariant in general. To overcome this
difficulty one introduces the monoid of strictly increasing functions

Inc(N) = {π ∶ N→ N ∶ π(i) < π(i + 1), ∀i ∈ N}. (1.2)

Although the elements of Inc(N) are not permutations, the Inc(N)−orbit of a polyno-
mial are naturally contained in the S∞−orbits. Hence an S∞−invariant ideal I ⊆ R is
also Inc(N)−invariant. Furthermore, the S∞−orbit of a polynomial is expressed as the
union of finitely many Inc(N)−orbits. Precisely, if f ∈ R has width equal to k, then

S∞ ⋅ f = ⋃
σ∈Sym(k)

Inc(N)(σ ⋅ f).

This is because the Sym(k)−orbit of f produces polynomials in R that arise after
permuting the indices of the variables in f. Between these elements, there is a permu-
tation which gives the minimum possible values to the indices of f which together with
the action of Inc(N) produces all the elements in the S∞−orbit of f. Based on these
observations the following holds.

Lemma 1.3.12 ([HKL18]). An S∞−invariant ideal is S∞−finitely generated if and
only if it is Inc(N)−finitely generated. If the ring R is Inc(N)−Noetheriant, then it is
also S∞−Noetherian.

The following definition generalizes Gröbner bases in the case of monoid actions.

Definition 1.3.13. Let I be a Π−invariant ideal and ≤Π be a Π−compatible monomial
order. A Π−Gröbner basis (or equivariant Gröbner basis) of I with respect to
≤Π, is a set G ⊆ I, such that the Π−orbits of the initial terms in G generates the initial
ideal of I, i.e.

in≤Π
(I) = ⟨in≤Π

(π(g)) ∶ π ∈ Π, g ∈ G⟩.
Remark 1.3.14. The requirement in Definition 1.3.13 that ≤Π is a Π−compatible
monomial order is necessary to make sure that the ideal in≤Π

(I) is Π−invariant. Then,
we have that in≤Π

(π(g)) = π(in≤Π
(g)) for any π ∈ Π and any polynomial g in R.

Moreover, we also have that

in≤Π
(I) = ⟨in≤Π

(π(g)) ∶ π ∈ Π, g ∈ G⟩ = ⟨π(in≤Π
(g)) ∶ π ∈ Π, g ∈ G⟩

= ⟨in≤Π
(g) ∶ g ∈ G⟩Π = ⟨in≤Π

G⟩Π,

and therefore in≤Π
(I) is Π−finitely generated by the initial terms of polynomials in G.
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A Π−invariant ideal does not always admit a finitely generated Gröbner basis.
Consider for instance the ideal of Example 1.3.5. It is neither S∞−finitely generated
nor Inc(N)−finitely generated. Moreover, there does not exist a finite subset of its
generating set that suffices to generate it up to symmetry. Therefore the ideal in this
example does not posses a finitely generated equivariant Gröbner basis.

The authors of [HS12] formulated a criterion assuring the existence of a finitely
generated equivariant Gröbner basis. They did that using a Π−divisibility order that
we now define.

Definition 1.3.15. The Π−divisibility order on X∗ is the relation ∣Π such that

u ∣Π v ⇐⇒ ∃π ∈ Π ∶ π(u) ∣ v ∀u, v ∈X∗.

Here π(u) ∣ v for some π ∈ Π means that there exists w ∈X∗ such that v = π(u)w.

The Π−divisibility order on X∗ is reflexive, we have u ∣Π u if we set π to be the
identity element eΠ of the monoid Π, and transitive, for any u, v,w in X∗ the relations
u ∣Π v and v ∣Π w imply u ∣Π w. Indeed, the relation u ∣Π v implies that π(u) ∣ v for
some π ∈ Π, which means that there exists v′ ∈X∗ such that π(u)v′ = v. Similarly, the
relation v ∣Π w, implies that σ(v) ∣ w for some σ ∈ Π, which means that there is some
w′ ∈ X∗ such that σ(v)w′ = w. Combining the above information yields σ(π(u)) ∣ w
and therefore u ∣Π w. Hence, Π−divisibility is a quasi order. The following proposition
shows when Π−divisibility is a well quasi order.

Proposition 1.3.16 (Theorem 2.12, [HS12]). Every Π−invariant ideal I of R has a
finite Π−Gröbner Basis if and only if (X∗, ∣Π) is a well quasi order.

Remark 1.3.17. The concept of finite equivariant Gröbner bases is used by the au-
thors of [HS12] and [RN17] to show that chains of Π−invariant ideals are finally stable.
This in turn shows the Noetherianity of polynomial rings in infinitely many variables.

We conclude this subsection with the following result, which is the main theorem
in [HS12]. In order to formulate it, let X = {xi,j ∶ i ∈ [c], j ∈ N} and consider the
polynomial ring R = K[X]. We assume that the monoid Inc(N) acts on the variables
of R through π(xi,j) = xi,π(j) for any π ∈ Inc(N) and any i ∈ [c], j ∈ N.

Proposition 1.3.18 (Theorem 3.1, [HS12]). The ring R with the Inc(N)−action on
its variables introduced above is Inc(N)−Noetherian.

One of the motivations for studying Noetherianity results of high dimensional poly-
nomial rings comes from algebraic statistics and particularly from statistical models
that are parametrized by monomial maps [DS95]. The kernels of such maps are toric
ideals. In many cases toric ideals that are invariant under the action of the infinite
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symmetric group have been studied and are proven to be S∞−finitely generated. Ex-
amples of S∞−finite generation are the independent set theorem of Hillar and Sullivant
[HS12, Theorem 4.7] as well as the following results.

Proposition 1.3.19 (Theorem 2.1, [DLST95]).
Consider the following S∞−equivariant monomial map

K[y{i,j} ∶ i ≠ j ∈ N]→ K[ti ∶ i ∈ N]
y{i,j} ↦ titj,

where S∞ acts on the variables of K[y{i,j} ∶ i ≠ j ∈ N] permuting both indices i, j. Then
the ideal ker(φ) = ⟨y{1,2}y{3,4} − y{1,4}y{2,3}⟩S∞

.

Proposition 1.3.20 (Proposition 4.1, [KKL14]). Consider the followingS∞−equivariant
monomial map

φ ∶ K[y(α1,...,αk) ∶ α1, . . . , αk ∈ N distinct]→ K[zi,j ∶ i ∈ [k], j ∈ N]
y(α1,...,αk) ↦ z1,α1⋯zk,αk ,

where S∞ acts on the variables y(α1,...,αk) by permuting the indices αi for any i ∈ [k].
Then ker(φ) = ⟨y1,2y2,3y3,1 − y2,1y3,2y1,3, y1,2y3,4 − y1,4y3,2⟩S∞

.

A negative result formulated in [DLO06] demonstrates monomial maps whose ker-
nels are not S∞−finitely generated. Nevertheless, the main result in [DEKL13] shows
the S∞−finite generation of kernels of monomial maps where the target polynomial
ring has variables with at most one index increasing to infinity. The subsequent article
[KKL14] provide explicit formulas for the generators of these kernels. These results
motivate the study of the polyhedral objects in the next two chapters.
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Noetherianity results of high dimensional polynomial rings are influenced from the
study of families of toric varieties many of which emerge from algebraic statistics.
The articles [DEKL13, KKL14, HdC16] have established fundamental results for un-
derstanding the behavior of these families in the limit. In this chapter we study the
polyhedral objects that correspond to infinite dimensional toric varieties and we deduce
characterizations of them in the limit.

2.1 Equivariant Toric Varieties

Throughout this section let K be a field, or any Noetherian ring, and let Y be a set of
indeterminates indexed by the set of natural numbers. Consider the polynomial ring
K[Y ] with variables the elements in Y and coefficients in K and assume that S∞ acts
on this ring in terms of ring automorphisms, by permuting the variables in Y. For some
natural number k consider a second set of indeterminates Z = {zi,j ∶ i ∈ [k], j ∈ N} and
let K[Z] be the polynomial ring with variables the elements in Z and coefficients in
K. Suppose that an S∞ action on K[Z] is given by σ ○ zi,j = zi,σ(j) for any i ∈ [k], j ∈ N
and any σ ∈S∞.

According to the Noetherianity result of Hillar and Sullivant (Proposition 1.3.18)
the polynomial ring K[Z] is always S∞−Noetherian. On the contrary the polynomial
ring K[Y ] need not beS∞−Noetherian. Consider for instance the case where Y = {yi,j ∶
i /= j ∈ N} and assume an S∞ action on the elements of Y via σ ○ yi,j = yσ(i),σ(j) for any
i /= j ∈ N and any σ ∈S∞. Then Example 1.3.5 and [AH07, Proposition 5.2] verify that
K[Y ] is not S∞−Noetherian. The next result shows that infinite dimensional toric
ideals are finitely generated up to symmetry.

Proposition 2.1.1. [DEKL13, Theorem 1.1] Suppose thatS∞ has finitely many orbits
on Y. Let φ ∶ K[Y ] → K[Z] be an S∞−equivariant homomorphism that maps any
variable in Y to a monomial in K[Z]. Then the ideal ker(φ) is S∞−finitely generated
and im(φ) ≅ K[Y ]/ker(φ) is S∞−Noetherian.

29
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In the following let X = {xi ∶ i ∈ N} be a set of indeterminates and assume that
S∞ acts on X by permuting its variables. Denote by K[X] the polynomial ring with
variables the elements in X and coefficients in K. As a consequence of Proposition
2.1.1 we have the following result.

Proposition 2.1.2. For any natural number k, the sequence of kernels of monomial
maps

πk ∶ K[Y ]→ K[X], πk(yi1⋯ik) = xa1
i1
⋯xakik (2.1)

where i1, . . . ik ∈ N are distinct indices and a1, . . . , ak ∈ N stabilizes up to symmetry.

Remark 2.1.3. Proposition 2.1.2 was first stated and proven in [AH07] for the square-
free case, that is, when a1 = ⋅ ⋅ ⋅ = ak = 1, while the more general statement was formu-
lated as a conjecture.

A key result in algebraic statistics due to Diaconis and Sturmfels states that Markov
bases are the exponent vectors of the generators of toric ideals (see [DS95, Theorem
3.1] for more details). Since the kernels of monomial maps are toric ideals, the last
two propositions can be reformulated to that Markov bases corresponding to infinite
dimensional S∞−equivariant monomial maps have a finite number of generators up to
symmetry. The authors of [KKL14] showed that finite equivariant Markov bases and
finite equivariant lattice generating sets exist for monomial maps of the form

π2 ∶ K[Y ]→ K[X], yi1i2 ↦ xa1
i1
xa2
i2

for any distinct i1, i2 ∈ N and any a1, a2 ∈ N with a1 > a2 and gcd(a1, a2) = 1. A useful
tool for their computations was the representation of the monomials in the right hand-
side of the map πk in (2.1) in terms of box piles. Every monomial in K[X] can be
specified by the exponents of the variables it contains. For instance the monomial xai
is represented by a column of height a in position i of some diagram.

Example 2.1.4. The box pile representation of the monomial x3
1x

2
2x3 is the following

.

It consists of three boxes, one of height three, one of height two and one of height one.

When a finite or infinite symmetric group acts on the monomials in K[X] by
permuting the variables then the order of the columns in the box pile representation
is irrelevant. Therefore we may assume that the exponents on the right hand-side of
(2.1) are ordered as a1 > a2 > ⋅ ⋅ ⋅ > ak for some k ∈ N.
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Definition 2.1.5. For k,n ∈ N with n ≥ k let a = (a1, . . . , ak,0, . . . ,0) ∈ Zn≥0 be the
exponent vector of a monomial xa ∈ K[X]. Assume that the non-zero entries of a are
coprime and are ordered as a1 > ⋅ ⋅ ⋅ > ak. A (k,n)−box pile generator is any vector
arising from a by permuting its coordinates.

In the following section we study cones generated by the set of all (k,n)−box pile
generators arising from a vector a. We are interested in understanding the behavior of
these cones in the limit.

2.2 Box Pile Cones

For n, k ∈ N, n ≤ k, let a = (a1, . . . , ak,0, . . . ,0) ∈ Zn≥0 and denote by aσ the (k,n)−box
pile generators obtained by applying the permutation σ ∈ Sym(n) on a.

Definition 2.2.1. The (k,n)−box pile cone is the conic hull of the set of all
(k,n)−box pile generators. If we denote by C(k,n) the (k,n)−box pile cone, then

C(k,n) ∶ = cone(aσ ∶ σ ∈ Sym(n))

=
⎧⎪⎪⎨⎪⎪⎩

∑
σ∈Sym(n)

s

∑
i=1

λia
σ ∶ λi ∈ R≥0, i = 1, . . . , s

⎫⎪⎪⎬⎪⎪⎭
⊆ Rn

where s is the multinomial coefficient n!
(n−k)! .

Example 2.2.2. For k = 2 and n = 3, the (2,3)−box pile generator consists of the vec-
tors (a1, a2,0), (a1,0, a2), (a2, a1,0), (a2,0, a1), (0, a1, a2), (0, a2, a1) and the (2,3)−box
pile cone C(2,3) ⊂ R3 is the convex cone that is generated by these six vectors.

Remark 2.2.3. Suppose that we start with a pile of k boxes any pair of them having
distinct heights. Then the box pile cone C(k,k+1) ⊆ Rk+1 is a cone over a k−dimensional
permutahedron. In the more general case where some of the box heights coincide or
when n > k + 1 then the box pile cone is affinely isomorphic to a cone over the convex
hull of the Sym(n)−orbits of a vector in Rn with some repeated entries.

For k = 1 and any natural number n, the (1, n)−box pile cone is the cone generated
by the standard unit vectors in Zn. Such a cone is trivially determined by inequalities
of the form xi ≥ 0 for any i ∈ [n]. The first non-trivial case of box pile cones appears
when k = 2 and n is any natural number. In this case the inequality description of the
(2, n)−box pile cone is due to the following result.
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x1

x2

x3

Figure 2.1: The cone C(2,3) ⊆ R3 generated by the set of (2,3)−box pile generators for
the vector (2,1,0).

Proposition 2.2.4. The following hyperplanes cut out the (2, n)−box pile cone C(2,n)

xi ≥ 0, for any i ∈ [n],
a1(x1 +⋯ + x̂i +⋯ + xn) ≥ a2xi, for any i ∈ [n], (2.2)

where x̂i means that xi is omitted from the summation.

Proof. Let C̃ be the cone generated by the hyperplanes of the statement. Equivalently,
C̃ = cone(Sym(n)○{w1,w2}) where w1 = (1,0, . . . ,0) and w2 = (a1, . . . , a1,−a2).We will
show that C̃ = C∗

(2,n)
, where C∗

(2,n)
is the dual of C(2,n). We first observe that C̃ ⊂ C∗

(2,n)

since for any x ∈ C̃ the inequalities in (2.2) are valid on C(2,n). For the other direction,
assume x ∈ C∗

(2,n)
. Then, by the definition of the dual cone we have that ⟨x, y⟩ ≥ 0 for

any y ∈ C(2,n). If y is an extreme ray of C(2,n), then since the extreme rays of C(2,n) are
permutations of the vector (a1, a2,0, . . . ,0) the last yields

a1xi + a2xj ≥ 0, for any i, j ∈ [n], i /= j.

Since a1, a2 are strictly positive numbers the last inequality is equivalent to
a1

a2

xi + xj ≥ 0, for any i, j ∈ [n], i /= j. (2.3)

Without loss of generality we may assume that the coordinates of x can be ordered as
follows

x1 ≥ x2 ≥ ⋅ ⋅ ⋅ ≥ xn.
Equation (2.3) is valid when x ≥ 0. If all the entries of the vector x are positive, i.e.
if xi ≥ 0 for any i ∈ [n], then x ∈ cone(Sym(n) ○ w1). Therefore we may assume that
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x < 0. In that case equation (2.3) is valid if the vector x has at most one negative entry.
Suppose that xn < 0. To prove that x ∈ C̃ we need to show that x can be written as
a linear combination of w1,w2 and their permutations with non-negative scalars. We
have that

x = (x1 +
a1

a2

xn)w(1)
1 +⋯ + (xn−1 +

a1

a2

xn)w(n−1)
1 + (− 1

a2

xn)w2, (2.4)

where w(i)
1 denotes the vector permutation of w1 that has a 1 in the i−th coordinate

and zeros elsewhere. According to equation (2.3) the coefficients xi +
a1

a2

xn are non-

negative for any i ∈ [n − 1]. Moreover from the assumption that xn < 0 we have that
−a1

a2

xn > 0. The proposition follows by expanding the right hand-side of equation (2.4)

and verifying that this linear combination gives the vector x.

Proposition 2.2.4 shows that when we embed the cone C(2,n) ⊆ Rn into higher
dimensions then, while new inequalities appear, the combinatorial types (2.2) remain
fixed. In this thesis, we refer to this phenomenon as the combinatorial stabilization
of the family {C(2,n) ∶ n ≥ 2} of (2, n)−box pile cones. The same phenomenon is
observed for the family of (k,n)−box pile cones when k > 2. From computations using
the mathematical software Sage we conjecture the following.

Conjecture 2.2.5. The following hyperplanes cut out the (k,n)−box pile cone C(k,n)

xi ≥ 0, ∀i ∈ [n],

(
l

∑
i=1

ai)(
n

∑
j=1

xj/
l

∑
m=1

xm) ≥ (
k

∑
i=l+1

ai)(
l

∑
m=1

xm), ∀l ∈ [k − 1]
(2.5)

where ∑n
j=1 xj/∑l

m=1 xm means that exactly l summands are omitted from ∑n
j=1 xj, for

any l ∈ [k − 1].
In the special case k = 1, the hyperplane xi ≥ 0 for any i ∈ [n] cuts out the cone C(k,n),

while if k = n, then the hyperplanes (∑l
i=1 ai) (∑n

j=1 xj/∑l
m=1 xm) ≥ (∑n

i=l+1 ai) (∑l
m=1 xm)

for any l ∈ [n − 1] cut out C(n,n).

We close this section with the following remark.

Remark 2.2.6. The stabilization results described in Section 1.3 require that the
elements of an infinite dimensional polynomial ring have finite width. This is very
different from the combinatorial stabilization described before, to that the width of
vectors required for the inequality description is infinite, however stabilization follows
from the combinatorics of the cones.
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2.3 Symmetrized matrix cones

So far we have studied cones generated by box pile generators, that is cones generated
by the S∞−orbit of a vector that has a finite number of non-zero entries and infinitely
many zero entries. Suppose now that we replace the non-zero integer entries in the box
pile generators with finite dimensional integer column vectors and similarly with the
zero entries. That way we obtain matrices with a finite number of non-zero columns
and infinitely many zero columns. In this section we study cones generated by the
vectorization of those matrices and we present implicit characterizations of them.

For k,n ∈ N, k ≤ n, consider the matrix

Ak,n =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

α1,1 α1,2 ⋯ α1,k 0 ⋯ 0
α2,1 α2,2 ⋯ α2,k 0 ⋯ 0
⋮ ⋮ ⋱ ⋮ ⋮ ⋮

αm,1 αm,2 ⋯ αm,k 0 ⋯ 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

∈ Matm,n(R), m ∈ N,m ≤ k.

Assume that the symmetric group Sym(n) acts on Ak,n by permuting its columns, i.e.

Aσk,n = (αi,σ(j))i∈[m],j∈[n] ∈ Matm,n(R), ∀σ ∈ Sym(n).

As a result of this action we obtain n!
(n−k)! matrices. We would like to study the

cone generated by the vectorization of those matrices. Recall from linear algebra
that the vectorization of a matrix is a linear transformation that converts the matrix
X ∈ Matm,n(R) into a vector vect(X) ∈ Rmn.

Example 2.3.1. For m = k = 2, n = 3 we consider the matrix

A2,3 = [α1,1 α1,2 0
α2,1 α2,2 0

] ∈ Mat2,3(R).

The group Sym(3) acts on A2,3 by permuting its columns and producing the following
six matrices

[α1,1 α1,2 0
α2,1 α2,2 0

] , [α1,1 0 α1,2

α2,1 0 α2,2
] , [α1,2 α1,1 0

α2,2 α2,1 0
] , [α1,2 0 α1,1

α2,2 0 α2,1
] , [0 α1,1 α1,2

0 α2,1 α2,2
] , [0 α1,2 α1,1

0 α2,2 α2,1
] .

The vectorization of the above matrices consists of the following six dimensional vectors

(α1,1, α1,2,0, α2,1, α2,2,0), (α1,1,0, α1,2, α2,1,0, α2,2), (α1,2, α1,1,0, α2,2, α2,1,0)
(α1,2,0, α1,1, α2,2,0, α2,1), (0, α1,1, α1,2,0, α2,1, α2,2), (0, α1,2, α1,1,0, α2,2, α2,1). (2.6)
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Definition 2.3.2. The (k,n)−symmetrized matrix cone of Ak,n ∈ Matm,n(R),
denoted CAk,n , is the convex cone generated by the vectorization of the Sym(n)−orbit
of Ak,n, that is,

CAk,n = cone(vect(Aσk,n) ∶ σ ∈ Sym(n))

=
⎧⎪⎪⎨⎪⎪⎩

∑
σ∈Sym(n)

s

∑
i=1

λivect(Aσk,n) ∶ λ1, . . . , λs ∈ R≥0, s =
n!

(n − k)!

⎫⎪⎪⎬⎪⎪⎭
⊆ Rmn.

Example 2.3.3. The (2,3)−symmetrized matrix cone CA2,3 of the matrix A2,3 in
Example 2.3.1 is the convex cone generated by the six vectors in (2.6).

Remark 2.3.4. In case m = 1, then Ak,n is a matrix with just one row and is therefore
a vector. In this case, the cone CAk,n coincides with the (k,n)−box pile cone C(k,n)

and it therefore admits the characterization in Proposition 2.2.4 and Conjecture 2.2.5.

In the following set m = k. In order to characterize the cone CAk,n we distin-
guish between different cases regarding the rank of the matrix Ak,n. Assume first that
rank(Ak,n) = 1. Then the rows of Ak,n are linearly dependent and we can write Ak,n in
the form

Ak,n =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

α1,1 ⋯ α1,k 0 ⋯ 0
λ1α1,1 ⋯ λ1α1,k 0 ⋯ 0
⋮ ⋱ ⋮ ⋮ ⋱ ⋮

λk−1α1,1 ⋯ λk−1α1,k 0 ⋯ 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

∈ Matk,n(R). (2.7)

where λ1, . . . , λk−1 ∈ N. We have the following result.

Lemma 2.3.5. Let C = cone(v1, . . . , vs) ⊆ Rn be a convex cone defined by the inequal-
ities a1, . . . , ak ∈ (Rn)∗ for some n ∈ N. If

C̃ = cone((v1, λ1v1, . . . , λk−1v1), . . . , (vs, λ1vs, . . . , λk−1vs) ∶ λi ∈ N ∀i ∈ [k − 1]) ⊆ Rkn,

then C̃ is defined by lifted inequalities a1, . . . , ak ∈ (Rkn)∗ and equations λk−1xi =
x(k−1)n+i, λk−1xln+i = λl+1x(k−1)n+i for any i ∈ [n] and any l ∈ [k − 2].

By lifted inequalities in Lemma 2.3.5 we mean that the variables xi in the inequal-
ities defining the cone C ⊆ Rn are substituted by variables x(k−1)n+i for any i ∈ [n].

Proof. For k = 2, we show that C̃ = cone((v1, λv1), . . . , (vs, λvs) ∶ λ ∈ N) ⊆ R2n is defined
by lifted inequalities a1, . . . , ak ∈ (R2n)∗ and equations λxi = xn+i for any i ∈ [n]. For
any j ∈ [s] and some λ ∈ N, the vector (vj, λvj) ∈ R2n is obtained by vectorizing the

product (1
λ
) vj = ( vj

λvj
) . In order to describe the space of linear conditions valid on
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the cone C̃ it is enough to compute the kernel of the matrix (1
λ
) which consists of the

vector z = (λ,−1). It follows that for x ∈ (R2n)∗ we have that

(λ,−1) ⋅ ( x1 ⋯ xn
xn+1 ⋯ x2n

) = 0 ⇐⇒ λxi = xn+i ∀i ∈ [n].

Regarding the inequality description of C̃, this follows from the description of the dual
cone (C̃)∗, that is from the set

(C̃)∗ = {x ∈ (R2n)∗ ∶ ⟨x, y⟩ ≥ 0, ∀y ∈ C̃}.

Any y ∈ C̃ is written as a sum y = ∑s
i=1 ki(vi, λvi), where ki ∈ R+ for any i ∈ [s]. If we

set vi = (αi1, . . . , αin) ∈ Rn, then (vi, λvi) = (αi1, . . . , αin, λαi1, . . . , λαin) ∈ R2n for any
i ∈ [s]. It follows that for x ∈ (R2n)∗ we have

⟨x, y⟩ ≥ 0 ⇐⇒
s

∑
i=1

ki(x1αi,1 +⋯ + xnαi,n + λαi,1xn+1 +⋯ + λαi,nx2n) ≥ 0

⇐⇒
s

∑
i=1

ki (
αi,1
λ
xn+1 + ⋅ ⋅ ⋅ +

αi,n
λ
x2n + λαi,1xn+1 + λαi,nx2n) ≥ 0

⇐⇒
s

∑
i=1

ki (αi,1 (
1 + λ2

λ
)xn+1 +⋯ + αi,n (

1 + λ2

λ
)x2n) ≥ 0

⇐⇒
s

∑
i=1

ki(αi,1xn+1 +⋯ + αi,nx2n) ≥ 0

for any i ∈ [n]. Notice here that the set of points x ∈ (R2n)∗ satisfying the inequality
∑s
i=1 ki(αi,1xn+1 +⋯+αi,nx2n) ≥ 0, is exactly the set of points in the dual of the cone C.

We conclude that the cone C̃ is defined by the lifted inequalities defining C and the
equations λxi = xn+i for any i ∈ [n].
Following exactly the same lines in the proof for the case k = 2, one can show the more
general case. For the space of linear conditions on the cone

C̃ = cone((v1, λ1v1, . . . , λk−1v1), . . . , (vs, λ1vs, . . . , λk−1vs) ∶ λi ∈ N ∀i ∈ [k − 1]) ⊆ Rkn

one needs to solve the system z ⋅ X = 0, where z is any vector in the kernel of
(1, λ1, . . . , λk−1)T and X ∈ Matk,n(R). We note that an element in the i−th row and
j−th column of X is of the form x(i−1)n+j for any i ∈ [k], k ≥ 2, and any j ∈ [n]. The
inequality description for C̃ follows from the description of the dual cone (C̃)∗ and by
appropriately substituting the values x(i−1)n+j for any i ∈ [k − 1], j ∈ [n] in the inner
product ⟨x, y⟩ ≥ 0, where x ∈ (Rkn)∗ and y is any point in C̃, using the equations
defining C̃.
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Substituting k = 2 in (2.7) yields

A2,n = [ α1,1 α1,2 0 . . . 0
λα1,1 λα1,2 0 . . . 0

] , (2.8)

where λ ∈ N, and we have the following description for the cone CA2,n .

Proposition 2.3.6. The following hyperplanes and halfspaces define the cone CA2,n

where A2,n is the rank one matrix in (2.8)

xn+j ≥ 0, for any j ∈ [n],
α1,1(xn+1 +⋯ + x̂n+j +⋯ + x2n) ≥ α1,2xn+j, for any j ∈ [n],

λxj − xn+j = 0, for any j ∈ [n],
(2.9)

where x̂n+j means that xn+j is omitted from the summation.

Proof. The proposition follows if we specialize C = C(2,n) ⊆ Rn and C̃ = CA2,n ⊆ R2n, in
Lemma 2.3.5, where C is the (2, n)−box pile cone of Proposition 2.2.4.

Now we use Lemma 2.3.5 with the setup that C is the (k,n)−box pile cone C(k,n)

whose description was conjectured in Conjecture 2.2.5, and C̃ is the (k,n)−symmetrized
matrix cone CAk,n for the rank one matrix (2.7) to obtain the following characterization.

Conjecture 2.3.7. The following hyperplanes and halfspaces define the cone CAk,n ,
where Ak,n is the rank one matrix in (2.7)

xn+j ≥ 0, for all j ∈ [n],

(
s

∑
i=1

α1,i)(
n

∑
j=1

x(k−1)n+j/
s

∑
m=1

x(k−1)n+m) ≥ (
k

∑
i=s+1

α1,i)(
s

∑
m=1

x(k−1)n+m) , for all s ∈ [k − 1],

where ∑n
j=1 x(k−1)n+j/∑s

m=1 x(k−1)n+m means that exactly s summands are omitted from
∑n
j=1 x(k−1)n+j for any s ∈ [k − 1], and λk−1xj = x(k−1)n+j, λk−1xln+j = λl+1x(k−1)n+j for any

j ∈ [n] and any l ∈ [k − 2].

Remark 2.3.8. The combinatorial stabilization of box pile cones observed in Section
2.2 and the descriptions of the (k,n)−symmetrized matrix cones of Proposition 2.3.6
and Conjecture 2.3.7 imply the combinatorial stabilization of the cones CAk,n , where
rank(Ak,n) = 1 and n→∞.

We now provide a way of obtaining Proposition 2.3.6 and Conjecture 2.3.7 as tensor
products of convex cones. When the matrix A2,n has rank one, then it can be expressed
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as the tensor product of two vectors, one having length two and another one having
length n. Suppose that u = (u1, u2) ∈ R2 and w = (w1,w2, . . . ,wn) ∈ Rn, are such that

A2,n = u⊗w.

We can compute the values of the entries of u and w from A2,n. To be more precise,
for any i ∈ [2] and any j ∈ [n], the values of ui and wj are the solutions of the following
system of linear equations

u1w1 = α1,1, u1w2 = α1,2, u1w3 = 0, . . . , u1wn = 0

u2w1 = λα1,1, u2w2 = λα1,2, u2w3 = 0, . . . , u2wn = 0.

Solving this system, we find that

u = (r, λr), w = (α1,1

r
,
α1,2

r
,0, . . . ,0) ∀r ∈ R, r /= 0.

Without loss of generality set r = 1 so that u = (1, λ), and w = (α1,1, α1,2,0, . . . ,0). We
show in Theorem 2.3.12 that the cone CA2,n is the tensor product of the cone generated
by the vector u and the box pile cone for the vector w. The following definition is
according to [Sch74, MN91, Mul97].

Definition 2.3.9. Let C1 ⊆ Rn,C2 ⊆ Rm be two convex cones. The projective tensor
product cone Cp(C1,C2) of C1 and C2 is

Cp(C1,C2) = cone(e⊗ f ∶ e ∈ C1, f ∈ C2) ⊆ Rn ⊗Rm ≅ Rnm.

The injective tensor product cone Ci(C1,C2) of C1 and C2 is

Ci(C1,C2) = {X ∈ Matn×m(R) ∶ (λ⊗ µ)X ≥ 0, λ ∈ C∗
1 , µ ∈ C∗

2 } ⊆ (Rnm)∗.

It follows from the definition of the injective and projective tensor product cone
that Ci(C1,C2) is the dual of Cp(C1,C2).

Remark 2.3.10. Tensor products of convex cones were introduced in [Mul97] during
the study of problems related to shape preserving interpolation and approximation.

Lemma 2.3.11. Let Cu be the polyhedral cone generated by the vector u = (u1, u2) ∈
R2
+. Then, the hyperplane x2 ≥ 0 and the halfspace u2x1 = u1x2 cut out the cone Cu.

Proof. The kernel of (u1

u2
) consists of the vector z = (u2,−u1). Therefore for any vector

x = (x1, x2) ∈ R2 we have that

⟨x, z⟩ = 0 ⇐⇒ u2x1 − u1x2 = 0
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which proves the validity of the linear conditions on the cone Cu. Denote by C∗
u the

dual of the cone Cu. Then, any point x ∈ C∗
u satisfies the inequality constraint ⟨y, x⟩ ≥ 0

for any y ∈ Cu, hence
u1x1 + u2x2 ≥ 0. (2.10)

Since the equation u2x1 − u1x2 = 0 is valid, then x1 = u1

u2
x2. Substituting this to the

equation (2.10) yields

u1x1 + u2x2 ≥ 0⇒ u1 (
u1

u2

x2) + u2x2 ≥ 0⇒ u2
1

u2

x2 + u2x2 ≥ 0

u2>0⇒ u2
1x2 + u2

2x2 ≥ 0⇒ (u2
1 + u2

2)x2 ≥ 0
u2

1+u
2
2>0
⇒ x2 ≥ 0

which is the desired hyperplane description.

Theorem 2.3.12. Let A2,n ∈ Mat2,n(R) with rank(A2,n) = 1. Then

CA2,n = Cp(Cu,C(2,n)),

where Cu is the cone of Lemma 2.3.11 for u = (1, λ), and C(2,n) is the (2, n)−box pile
cone of Proposition 2.2.4 for the vector w = (α1,1, α1,2,0, . . . ,0). Moreover the descrip-
tion of the equations and inequalities that define the cone CA2,n arises by tensoring the
respective descriptions of the cones Cu and C(2,n).

Proof. For the first part of the theorem observe that the generators of the cone CA2,n

are exactly those vectors obtained by vectorizing the matrices that arise as the tensor
product of the vector u that generates the cone Cu with any vector obtained by the
action of Sym(n) on the vector w = (α1,1, α1,2,0, . . . ,0). The latest are the generators
of the (2, n)−box pile cone C(2,n) (see Definition 2.1.5 and Definition 2.2.1). For the
second part we need to take a closer look at the equations and inequalities defining the
cones Cu and C(2,n). For the inequalities defining CA2,n we have

((0,1)⊗ (0, . . . ,0,1,0, . . . ,0)) ⋅X ≥ 0⇒ [0 ⋯ 0 ⋯ 0
0 ⋯ 1 ⋯ 0

] ⋅X ≥ 0⇒ xn+j ≥ 0 ∀j ∈ [n],

and

((0,1)⊗ (α1,1, . . . ,−α1,2, . . . , α1,1)) ⋅X ≥ 0⇒ [ 0 ⋯ 0 ⋯ 0
α1,1 ⋯ −α1,2 ⋯ α1,1

] ⋅X ≥ 0

⇒ α1,1(xn+1 +⋯ + x̂n+j +⋯ + x2n) − α1,2x2,j ≥ 0

⇒ α1,1(xn+1 +⋯ + x̂n+j +⋯ + x2n) ≥ α1,2x2,j,

for any j ∈ [n]. For the equations defining CA2,n notice the following. From the equation
λx1 = x2 in the description of the cone Cu, we get two inequalities, namely λx1 ≥ x2
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and λx1 ≤ x2. The first inequality λx1 ≥ x2 implies that (λ,−1) ⋅x ≥ 0, while the second
inequality λx1 ≤ x2, implies that −(λ,−1) ⋅ x ≥ 0. Hence

((λ,−1)⊗ (0, . . . ,1, . . . ,0)) ⋅X ≥ 0⇒ [0 ⋯ λ ⋯ 0
0 ⋯ −1 ⋯ 0

] ⋅X ≥ 0

⇒ λxj − xn+j ≥ 0

⇒ λxj ≥ xn+j ∀j ∈ [n]

and

(−(λ,−1)⊗ (0, . . . ,1, . . . ,0)) ⋅X ≥ 0⇒ −((λ,−1)⊗ (0, . . . ,1, . . . ,0)) ⋅X ≥ 0

⇒ − [0 ⋯ λ ⋯ 0
0 ⋯ −1 ⋯ 0

] ⋅X ≥ 0

⇒ λxj − xn+j ≤ 0

⇒ λxj ≤ xn+j ∀j ∈ [n].

It therefore follows that λxj = xn+j for any j ∈ [n].

Theorem 2.3.12 can be generalized for any (k,n)−symmetrized matrix cone of a
rank one matrix.

Conjecture 2.3.13. LetAk,n be the rank one matrix in (2.7). The (k,n)−symmetrized
matrix cone CAk,n is obtained as the projective tensor product cone of the (k,n)−box
pile cone C(k,n) and the cone generated by the vector u = (1, λ1, . . . , λk−1) ∈ Rk.Moreover
the combinatorial data defining CAk,n arise by tensoring the respective data of these
two cones.

For the rest of the section we step away from the assumption that rank(A2,n) = 1
and we aim at implicitly characterizing (2, n)−symmetrized matrix cones for matrices

A2,n = [α1,1 α1,2 0 ⋯ 0
α2,1 α2,2 0 ⋯ 0

] ∈ Mat2,n(R)

with rank(A2,n) = 2. We assume that the submatrix

A2 = [α1,1 α1,2

α2,1 α2,2
] ∈ Mat2,2(R)

of A2,n is invertible. In this case we can rewrite A2,n as the product

A2,n = A2 ⋅ I2,n, (2.11)
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where I2,n ∈ Mat2,n(Z) is the zero extended identity matrix

I2,n = [1 0 0 ⋯ 0
0 1 0 ⋯ 0

] ∈ Mat2,n.

When the symmetric group Sym(n) acts on A2,n by permuting its columns, the result-
ing matrices are the same with those obtained by the product of A2 with any of the
matrices in the Sym(n)−orbit on I2,n.

Let vect(A2) ⋅ vect(I2,n) be the vector in R2n whose first n coordinates arise from
the sum

a1(value of ith coordinate of vect(I2,n))+a2(value of (n + i)th coordinate of vect(I2,n))

and the rest n coordinates arise from the sum

a3(value of ith coordinate of vect(I2,n))+a4(value of (n + i)th coordinate of vect(I2,n)),

for any i ∈ {1, . . . , n}. The operation defined above is well-defined as it follows from
the matrix multiplication. That way, vect(A2,n) = vect(A2) ⋅ vect(I2,n), and for any
σ ∈ Sym(n) we have

vect(Aσ2,n) = vect(A2) ⋅ vect(Iσ2,n).
Taking into account this observation we have for the cone CA2,n the following

CA2,n = cone(vect(A2) ⋅ vect(Iσ2,n) ∶ σ ∈ Sym(n))
= vect(A2) ⋅ cone(vect(Iσ2,n) ∶ σ ∈ Sym(n))
= vect(A2) ⋅CI2,n .

For the second equation notice that any x ∈ CA2,n is expressed as

x = ∑
σ∈Sym(n)

λσ(vect(A2) ⋅ yσ) = vect(A2) ⋅ ∑
σ∈Sym(n)

λσy
σ, ∀y ∈ vect(I2,n),

hence x ∈ vect(A2) ⋅CI2,n , and vice versa. We claim that in order to explicitly describe
the cone CA2,n it is enough to know the explicit description of the cone CI2,n . In
particular we claim that the following holds.

Theorem 2.3.14. Let C∗
A2,n

,C∗
I2,n

, be the dual cones of the (2, n)−symmetrized matrix
cones CA2,n , and CI2,n respectively. Then,

C∗
A2,n

= (vect((AT
2 )−1)) ⋅C∗

I2,n
.

The proof of Theorem 2.3.14 follows from the more general Lemma 2.3.16 while the
implicit inequalities and equations for the cone CA2,n are given by combining Lemma
2.3.16 with the following proposition.
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Proposition 2.3.15. The following inequalities and equations define the cone CI2,n .

x1,j ≥ 0, ∀j ∈ [n],
x2,j ≥ 0, ∀j ∈ [n],

(x2,1 +⋯ + x̂2,j +⋯ + x2,n) ≥ x1,j, ∀j ∈ [n],

and,
n

∑
j=1

(x1,j − x2,j) = 0.

(2.12)

Proof. Let Y ∈ Mat2,n(R) and for any generator α ∈ R2n of the cone CI2,n consider the
equations ⟨α,vect(Y )⟩ = 0. Solving the system of these equations yields

y1,1 = y1,2 = ⋅ ⋅ ⋅ = y1,n, y2,1 = y2,2 = ⋅ ⋅ ⋅ = y2,n, and y1,i = −y2,i ∀i ∈ {1, . . . , n}.

and therefore

Y = [y1,1 y1,2 ⋯ y1,n

y2,1 y2,2 ⋯ y2,n
] = y1,1 ⋅ [

1 1 ⋯ 1
−1 −1 ⋯ −1

] ,

which shows validity of linear conditions on the cone. Let C̃ be the cone generated by
the inequalities and equations of the statement. Equivalently,

C̃ = cone(vect(Kσ, Lσ,Mσ,±Nσ) ∶ σ ∈ Sym(n)),

where K = [1 0 ⋯ 0
0 0 ⋯ 0

] , L = [0 0 ⋯ 0
1 0 ⋯ 0

] ,M = [−1 0 ⋯ 0
0 1 ⋯ 1

] ,N = [ 1 ⋯ 1
−1 ⋯ −1

] .

We will show that C̃ = CI2,n . The inclusion C̃ ⊆ C∗
I2,n

follows from the observation that
each of the generators of C̃ satisfies the inequality constraint imposed by the dual cone
C∗
I2,n

, and therefore, any point in C̃, which is by definition a linear combination of the
generators with non-negative scalars, also satisfies this inequality constraint. We must
therefore show that C∗

I2,n
⊆ C̃. If X ∈ Mat2,n(R) then vect(X) ∈ C∗

I2,n
if and only if

⟨α,vect(X)⟩ ≥ 0 holds for any α ∈ CI2,n . This implies

x1,j1 + x2,j2 ≥ 0, ∀j1 /= j2 ∈ [n]. (2.13)

If all the entries of X are non-negative, then

vect(X) =
n

∑
j=1

(x1,jvect(K(j)) + x2,jvect(L(j)))

hence vect(X) ∈ cone(vect(Kσ, Lσ) ∶ σ ∈ Sym(n)). Assume therefore that at most one
of the entries of X is negative. If all the entries in the first row of X are positive,
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then at most one of the x2,j’s must be negative. Without loss of generality assume the
following ordering on the entries of X

x2,1 ≥ x2,2 ≥ ⋅ ⋅ ⋅ ≥ x2,n (2.14)

and let x2,n < 0. Because of the linear equation, we can set

X ′ =X −XminN,

where Xmin ∶= min1≤j≤nx1,j is the minimum value of the entries in the first row of X
and is therefore equal to the value of the entry x1,n. Then,

X ′ =X −XminN = [x1,1 ⋯ x1,n−1 x1,n

x2,1 ⋯ x2,n−1 x2,n
] − x1,n [

1 ⋯ 1 1
−1 ⋯ −1 −1

]

= [x1,1 − x1,n ⋯ x1,n−1 − x1,n 0
x2,1 + x1,n ⋯ x2,n−1 + x1,n x2,n + x1,n

] .

Since x1,n is the element in the first row of X with minimum value, it follows that the
entries x1,1, x1,2, . . . , x1,n−1 have values greater or equal than k, and therefore, x′1,j =
x1,j − k ≥ 0 for any 1 ≤ j ≤ n − 1. Suppose that the entry x′2,n = x2,n + x1,n is negative.
Then we have the following expression for the vectorization vect(X ′),

vect(X ′) = (x′2,1 − x′2,n−1)vect(L(1)) +⋯ + (x′2,n−2 − x′2,n−1)vect(L(n−2))
+ (x′1,1 + x′2,n)vect(K(1)) +⋯ + (x′1,n−1 + x′2,n)vect(K(n−1))
+ (x′1,n + x′2,n−1)vect(K(n)) + (x′2,n−1 − x′2,n)vect(M (n))
+ (−x′2,n)vect(N), (2.15)

and therefore

vect(X) = (x2,1 − x2,n−1)vect(L(1)) +⋯ + (x2,n−2 − x2,n−1)vect(L(n−2))
+ (x1,1 + x2,n)vect(K(1)) +⋯ + (x1,n−1 + x2,n)vect(K(n−1))
+ (x1,n + x2,n−1)vect(K(n)) + (x2,n−1 − x2,n)vect(M (n))
+ (x1,n − x2,n)vect(N).

From inequality (2.13), it follows that x1,j + x2,n ≥ 0 for any j ∈ [n − 1], and also
x1,n + x2,n−1 ≥ 0. The ordering (2.14) implies the non-negativity of the coefficients
x2,j − x2,n−1 for any j ∈ [n − 2], and x2,n−1 − x2,n. Finally, since x2,n < 0, it follows that
x1,n − x2,n > 0. Hence vect(X) ∈ cone(K,L,M,N).
The proof is very similar in the case where the entry x′2,n is positive. The only difference
is in the sign of the last summand in equation (2.15).
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Lemma 2.3.16. Let C ⊆ Rn be a convex cone with dual C∗. If A ∈ Matn×n(R) is any
invertible matrix, then

(AC)∗ = (AT)−1C∗,

where (AC)∗ is the dual cone of the image of C under A.

Proof. Let C ⊆ Rn be a cone with dual

C∗ = {x ∈ (Rn)∗ ∶ ⟨x, y⟩ ≥ 0 ∀y ∈ C}.

For any invertible matrix A ∈ Matn×n(R), we would like to characterize the dual cone

(AC)∗ = {z ∈ (Rn)∗ ∶ ⟨z,w⟩ ≥ 0 ∀w ∈ AC}.

The condition ∀w ∈ AC can be equivalently written as w = Ay for any y ∈ C, thus,

(AC)∗ = {z ∈ (Rn)∗ ∶ ⟨z,Ay⟩ ≥ 0 ∀y ∈ C}.

Notice that
⟨z,Ay⟩ = zTAy = zT(AT)Ty = (ATz)Ty = ⟨ATz, y⟩

hence

(AC)∗ = {z ∈ (Rn)∗ ∶ ⟨ATz, y⟩ ≥ 0 ∀y ∈ C}
= {z ∈ (Rn)∗ ∶ ATz ∈ C∗}.

Setting ATz = x, it follows that z = (AT)−1x and therefore

(AC)∗ = {(AT)−1x ∈ (Rn)∗ ∶ x ∈ C∗} = (AT)−1C∗.







3 | Equivariant Monoids

In this chapter we introduce equivariant monoids, that is commutative monoids modulo
a symmetric group action. Our main goal is to study finiteness properties of their
underlying algebras and to investigate the behavior of families of equivariant cones
in the limit. We start our study by briefly recalling affine monoids and the lemma of
Gordan which establishes the connection between affine monoids and finitely generated
cones. The main reference here is the book of Bruns and Gubeladze [BG09]. After
that we introduce the objects of interest and we extend Gordan’s lemma to our setup.

3.1 Affine Monoids
A monoid is a non-empty set M together with a binary operation + ∶ M ×M → M
which is associative and has an identity element. As mentioned in the introductory
part of this chapter, we are mainly interested in monoids that are commutative and
are in some sense finitely generated.

Definition 3.1.1. An affine monoidM is a finitely generated submonoid of a lattice
Zn for some n ∈ N, that is,

� M ⊂ Zn, M +M ⊂M, 0 ∈M, and,

� there exist m1, . . . ,mr ∈M such that

M = {α1m1 +⋯ + αrmr ∶ αi ∈ Z≥0, for all i = 1, . . . , r}.

From now on we use the notation M = ⟨m1, . . . ,mr⟩ for the commutative monoid
M ⊆ Zn that is generated by the elements m1, . . . ,mr.

Example 3.1.2. The monoid M = Z2
+ is an affine monoid. It is generated by the two

standard unit vectors e1 = (1,0), e2 = (0,1) in Z2.

Another not so trivial example of an affine monoid is the following.

47
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x1

x2

Figure 3.1: The monoid M = ⟨x ∈ Z2 ∶ x2 ≥ 0,2x1 ≥ x2⟩. The minimal generators are
highlighted with green color.

Example 3.1.3. The monoid M = ⟨x ∈ Z2 ∶ x2 ≥ 0,2x1 ≥ x2⟩ is an affine monoid. It is
generated by the points (1,0), (1,1), (2,1). This monoid is illustrated in Figure 3.1.

In contrast to the above examples, there are submonoids of Zn that are not finitely
generated and consequently they are not affine.

Example 3.1.4. Consider the monoid M = ⟨e1 + ke2 ∶ k ∈ N⟩. Then M is a monoid in
Z2. The generating set of M consists of infinitely many elements and it does not have
any proper finite subset that generates it. Therefore M is not finitely generated and
hence it is not an affine monoid.

Let M be a monoid in Zn for some n ∈ N. Assume that M is generated by
m1, . . . ,mn ∈ Zn. Then the cone associated with M is the cone

C(M) = R≥0M = {
n

∑
i=1

λimi ∶ λi ∈ R≥0, for any i = 1, . . . , n}

generated by M in Rn. This cone is always a rational polyhedral cone and it is finitely
generated whenever the monoid M is so.

Lemma 3.1.5 (Gordan’s Lemma). Let C ⊆ Rn be a finitely generated rational cone.
Then C ∩Zn is an affine monoid.

We conclude this section with a short reference to monoid algebras and an obser-
vation regarding the property of a monoid algebra to be finitely generated. Let K be
a field and M ⊆ Zn be a monoid. The monoid algebra corresponding to M is denoted
K[M] and is defined as the K−vector space with basis consisting of elements Xm for
any m ∈ M. These elements are called the monomials of K[M]. A general element of
K[M] has the form

a1X
m1 +⋯ + anXmn
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where ai ∈ K and mi ∈ M for any i = 1, . . . , n. The additive structure of K[M] is
clear while the multiplicative structure arises from the multiplication of monomials
Xm ⋅Xm′ =Xm+m′ for any m,m′ ∈M.

Example 3.1.6. The monoid algebra corresponding to the monoid M = Zn is the
Laurent polynomial ring K[X±1

1 , . . . ,X±1
n ], while the monoid algebra for the monoid

M = Nn in the usual polynomial ring in n variables K[X1, . . . ,Xn].

Let M = ⟨m1, . . . ,mr⟩ be an affine monoid in Zn. Then the monoid algebra corre-
sponding to M is the set

K[M] = {
s

∑
i=1

aiX
bi ∶ s ∈ N, ai ∈ K, bi ∈M for any i = 1, . . . , s} .

We claim that K[M] is a finitely generated monoid algebra, and particularly that
K[M] = K[Xm1 , . . . ,Xmr]. The inclusion K[Xm1 , . . . ,Xmr] ⊆ K[M] is clear because
any f ∈ K[Xm1 , . . . ,Xmr] is represented as f = ∑r

i=1 aiX
mi for any ai ∈ N and any

mi ∈ M where i = 1, . . . , r and therefore f ∈ K[M]. For the converse, let m ∈ M
and consider the monomial f = aXm ∈ K[M] for any a ∈ K. Since M is minimally
generated by the m1, . . . ,mr, we can express m as a non-negative linear combination
of those minimal generators, i.e. m = c1m1 + ⋯ + crmr for any c1, . . . , cr ∈ N. That
way, f = aXm = a(Xm1)c1⋯(Xmr)cr , hence f ∈ K[Xm1 , . . . ,Xmr]. This shows that
K[M] = K[Xm1 , . . . ,Xmr] hence that the monoid algebra K[M] is finitely generated.

Suppose now that K[M] is finitely generated as a K−algebra and let f1, . . . , fr be
a system of generators of K[M]. Then there exists a finite subset G = {g1, . . . , gr}
of M such that fi = ∑g∈G rgX

g, where rg ∈ K. We claim that M = NG, hence M is
finitely generated. The inclusion NG ⊆ M is clear, therefore we need to show that
M ⊆ NG. Let m ∈ M, then there exists a polynomial f ∈ K[X1, . . . ,Xn] such that
Xm = f(Xg1 , . . . ,Xgr). Otherwise stated, Xm is a K−linear combination of monomials
(Xg1)n1 , . . . , (Xgr)nr for n1, . . . , nr ∈ N. Since any K−linear combination of the mono-
mials (Xgi)ni can be written as a K−linear combination of monomials Xa with a ∈ NG,
it follows that Xm ∈ K[NG]. Then from the definition of K[NG] we have that m ∈ NG,
hence M ⊆ NG. This proves the following result.

Proposition 3.1.7. ([BG09, Proposition 2.4]) A monoid M ⊆ Zn is finitely generated
if and only if the underlying monoid algebra K[M] is finitely g enerated as a K−algebra.

3.2 Equivariant families of monoids
Let {Mn ∶ n ∈ N} be a family of monoids, where for each n ∈ N, Mn is a commutative
(not necessarily affine) monoid in Zn. For any m,n ∈ N,m ≤ n, consider the natural
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inclusion maps
ιm,n ∶ Zm Ð→ Zn, g ↦ (g,0).

Since Mm is a monoid in Zm, we can use the map ιm,n to embed the generators of Mm

into Zn and we write ιm,n(Mm) ⊆ Zn for the monoid obtained that way. If Mm is an
affine monoid in Zm, then the image ιm,n(Mm) is an affine monoid in Zn.

The symmetric group Sym(n) acts on Zn by permuting its coordinates. Hence, if
X ⊆ Zm is a set, then we denote by

Monm,n(X) ∶= ⟨Sym(n) ○ ιm,n(X)⟩, ∀m ≤ n, (3.1)

the monoid in Zn that is generated by the Sym(n)−orbit of the image ιm,n(X).

Remark 3.2.1. If Mm is a commutative monoid in Zm, then ιm,n(Mm) is a commu-
tative monoid in Zn and we define the monoid Monm,n(Mm) as in (3.1). Note that
the result of acting on ιm,n(Mm) with the symmetric group Sym(n) is almost never a
monoid. We should therefore consider the monoid closure of the set Sym(n) ○ ιm,n(X)
when defining the monoid Monm,n(Mm).

The same construction can be carried out using the monoid Inc(N) of strictly
increasing functions (see equation (1.2)) and its submonoid

Inc(N)m,n ∶= {π ∈ Inc(N) ∶ π(m) ≤ n}, ∀m,n ∈ N,m ≤ n.

Every element π ∈ Inc(N)m,n can be viewed as a strictly increasing map π ∶ [m] → [n]
such that π(i) = j for any i ∈ [m], j ∈ [n], where i ≤ j. Now we consider the embedding

ιπ ∶ Zm → Zn, x↦ x′

where the j−th coordinate of x′ takes value xπ−1(j) whenever π−1(j) ≠ ∅, otherwise it
is zero.

Example 3.2.2. If x = (x1, x2) ∈ Z2, then the coordinates of the vector x′ = ιπ(x) ∈ Z3

are specified by the values of the elements π ∈ Inc(N)2,3. If π(1) = 1 then π(2) = 2 or
π(2) = 3 and if π(1) = 2 then π(2) = 3. To each of these elements corresponds a vector
(x1, x2,0), (x1,0, x2) and (0, x1, x2).

If X ⊂ Zm is a set, then we write

MonInc
m,n(X) = ⟨ιπ(X) ∶ π ∈ Inc(N)m,n⟩, ∀m ≤ n, (3.2)

for the monoid in Zn generated by the set of all the embeddings imposed from the
action of Inc(N)m,n on the elements of X.
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Definition 3.2.3. An S∞−equivariant family of monoids, is a family {Mn ∶ n ∈ N}
of monoids Mn ⊆ Zn such that

Monm,n(Mm) ⊆Mn, for any m,n ∈ N, m ≤ n. (3.3)

An S∞−equivariant family of monoids {Mn ∶ n ∈ N} stabilizes up to symmetry, if
there exists m ∈ N such that for any n ≥ m the inclusion relation in (3.3) becomes an
equality.

The smallest natural number m for which stabilization of an equivariant family of
monoids occurs, is called the stability index of the family. In this case, we say that the
family {Mn ∶ n ∈ N} stabilizes at m.

Remark 3.2.4. As for S∞−equivariant families of monoids, we define analogously
Inc(N)−equivariant families of monoids by considering the monoids MonInc

m,n(Mm) in-
stead of the monoids Monm,n(Mm) for any m,n ∈ N,m ≤ n in Definition 3.2.3.

Example 3.2.5. Any finite set X ⊂ Zn defines a S∞−invariant family via Mm = 0,
whenever m ≤ n andMr = Monn,r(X), whenever r ≥ n. The family {Mn ∶ n ∈ N} defined
that way, stabilizes immediately.

The Inc(N)−orbits are naturally contained in the S∞−orbits and this is true for
the Inc(N)m,n−orbits and Sym(n)−orbits as well (see [RN17, Lemma 7.5]). Hence the
following holds.

Proposition 3.2.6. A S∞−equivariant family of monoids is also Inc(N)−equivariant.

The main goal of this section is to understand stabilization criteria of equivariant
families of monoids. We note here that stabilization is equivalent to finite generation in
the limit. In order to write this limit, we use the standard embeddings ιm,n considered
at the beginning of the section to construct the ascending chain of monoids

M1 ⊆M2 ⊆ ⋅ ⋅ ⋅ ⊆Mn ⊆Mn+1 ⊆ . . . ,

where for each n ∈ N, Mn is a commutative monoid in Zn. Consider the set M∞ =
⋃n∈NMn. Then the set M∞ equipped with addition operation is a monoid. Indeed, we
have that 0 ∈ M∞ because 0 ∈ M1. Moreover, for any x, y ∈ M∞, we have x + y ∈ M∞.
To see the latest, notice that since x, y ∈M∞, there exist n1, n2 ∈ N such that x ∈Mn1

and y ∈ Mn2 . Since Mn1 ,Mn2 are monoids in the ascending chain above, then either
Mn1 ⊆Mn2 orMn2 ⊆Mn1 and there exist an n ∈ N, n = max{n1, n2} such that x, y ∈Mn.
As Mn is a monoid, it follows that x + y ∈Mn, hence x + y ∈M∞. Associativity follows
from the associativity of the operation of addition.
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Definition 3.2.7. Let {Mn ∶ n ∈ N} be a family of commutative monoids Mn ⊆ Zn
such that ιm,n(Mm) ⊆Mn for any m,n ∈ N,m ≤ n. The limit monoid of this family is
the monoid M∞ = ⋃n∈NMn. This is a monoid in ⋃n∈NZn.

For any n ∈ N, the symmetric group Sym(n) acts on Zn by permuting its coordinates
and the infinite symmetric group S∞ acts on the set ⋃n∈NZn by fixing all but a finite
number of permutations. Hence, we assume an action of S∞ on the generators of M∞

according to the latter.

Definition 3.2.8. The limit monoid M∞ of an equivariant family of monoids is
S∞−finitely generated, respectively Inc(N)−finitely generated, if it is generated
by the S∞ orbits, respectively Inc(N) orbits, on a finite set of generators. In both
cases we say that M∞ is finitely generated up to symmetry.

A naive hope would be that every equivariant family of monoids stabilizes up to
symmetry. If this is the case the limit monoidM∞ is finitely generated up to symmetry.
One can show the following lemma which states that under the hypothesis that a
S∞−equivariant family of monoids is affine, then stabilization is possible.

Lemma 3.2.9. An S∞−equivariant family of affine monoids {Mn ∶ n ∈ N} stabilizes,
if and only if the limit monoid M∞ is S∞−finitely generated.

Now assume that {Mn ∶ n ∈ N} is a family of commutative monoids that are not
necessarily affine. The following examples show that without the affineness hypothesis,
it is not possible to have finite generation in the limit. However, stabilization might
follow from the way the family is defined.

Example 3.2.10. Let M1 = 0,M2 = ⟨e1 + ke2 ∶ k ∈ N⟩, and define Mn ∶= Mon2,n(M2)
whenever n ≥ 3. We can write equivalently Mn = ⟨ei + kej ∶ i /= j ∈ [n], k ∈ N⟩, for any
n ≥ 3. For any n ≥ 3, the family {Mn ∶ n ≥ 3} is a S∞−equivariant family of monoids.
We have seen in Example 3.1.4 that the monoid M2 is not affine, hence for each n ≥ 3,
none of the monoids Mn is affine. Therefore, the limit monoid M∞ cannot be finitely
generated up to symmetry. Nevertheless, the family {Mn ∶ n ≥ 3} stabilizes from the
very beginning.

Example 3.2.11. Let M1 = 0,M2 = ⟨e1 + 2e2⟩, and define

Mn ∶= ⟨⋃
k<n

MonInc
k,n(Mk), e1 + nen⟩, ∀n > 2.

This defines an Inc(N)−equivariant family of monoids {Mn ∶ n ∈ N}, where for any n ∈ N
each of the monoids Mn is finitely generated. However this family does not stabilize
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because the elements e1 + nen are new, irredundant generators. As a consequence M∞

is not finitely generated up to symmetry. For instance for n = 3 we have

M3 = ⟨MonInc
2,3(M2), e1 + 3e3⟩ = ⟨e1 + 2e2, e1 + 2e3, e2 + 2e3, e1 + 3e3⟩.

Here, the underlined generators are obtained from Inc(N)2,3 acting on M2 according
to (3.2), while the last generator is new. Similarly for n = 4, we have the monoid

M4 = ⟨MonInc
2,4(M2),MonInc

3,4(M3), e1 + 4e4⟩
= ⟨e1 + 2e2, e1 + 2e3, e1 + 2e4, e2 + 2e3, e2 + 2e4, e3 + 2e4, e1 + 3e3,e1 + 3e4,

e2 + 3e4, e1 + 4e4⟩.

Like before, the underlined generators in M4 are elements obtained from the action of
Inc(N)2,4 on M2 and the action of Inc(N)3,4 on M3, while the generator e1+4e4 is new.
In both cases we have containment relations MonInc

2,3(M2) ⊆M3 and MonInc
3,4(M3) ⊆M4

that make the family {Mn ∶ n ∈ N} into an Inc(N)−equivariant family of monoids.

Remark 3.2.12. Even if the limit monoid M∞ of the Inc(N)−equivariant family of
monoids given in Example 3.2.11 is not finitely generated up to symmetry, it could still
be S∞−finitely generated. However this is not the case. As a consequence we have that
while a polynomial ring in infinitely many variables K[x1, x2, . . . ] is finitely generated
up to symmetry as shown in [HS12, Theorem 3.1], this argument is not true in general
for monoid algebras. To be more precise, the monoid algebra K[M∞] generated by the
limit monoid M∞ is not always finitely generated up to symmetry.

3.3 Normal and Saturated Equivariant Monoids
In this section we try to formulate sufficient conditions for invariant families of monoids
to stabilize, or equivalently such that the limit monoid M∞ is finitely generated up to
symmetry. The following definition is a generalization of [BG09, Definition 2.21].

Definition 3.3.1. The normalization of Monm,n(Mm) inside Zn is the set

Monm,n(Mm) ∶= {x ∈ Zn ∶ kx ∈ Monm,n(Mm), k ∈ N}.

We say that a family of monoids {Mn ∶ n ∈ N} is normal S∞−equivariant if

Monm,n(Mm) ⊆Mn ∀m,n ∈ N,m ≤ n. (3.4)

A normal S∞−equivariant family of monoids stabilizes if there exists m ∈ N such that
for any n ≥m the inclusion relation (3.4) becomes an equality.
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The normalization of a monoid is also called the integral closure of the monoid.

Example 3.3.2. LetM1 = 0 and setMn = Mon2,n(e1+2e2) = ⟨ei+2ej ∶ i /= j ∈ [n]⟩ when-
ever n ≥ 2. The family of monoids {Mn ∶ n ∈ N} defined that way is S∞−equivariant
but is not normal. For instance, for n = 3 we have

M3 = Mon2,3(e1 + 2e2) = ⟨e1 + 2e2,2e1 + e2, e1 + 2e3,2e1 + e3, e2 + 2e3,2e2 + e3⟩

and the normalization Mon2,3(e1 + 2e2) is given by

Mon2,3(e1 + 2e2) = ⟨e1 + e2 + e3, e1 + 2e2, e1 + 2e3, e2 + 2e1, e3 + 2e1, e2 + 2e3, e3 + 2e2⟩.

The element e1 + e2 + e3 is a generator of the normalization of M3 since 2(e1 + e2 + e3) =
(e1 + 2e2) + (e1 + 2e3). Hence Mon2,3(e1 + 2e2) /⊆M3.

Example 3.3.3. Consider the normal S∞−equivariant family of monoids defined by
setting M1 = 0 and Mn = Mon2,n(e1 + ke2 ∶ k ∈ [n]) for any n ≥ 2. For any n ∈ N each of
the monoids Mn is finitely generated. By computations, we have

M2 = ⟨e1 + e2, e1 + 2e2, 2e1 + e2⟩,
M3 = ⟨Mon2,3(M2, e1 + 3e2), e1 + e2 + e3⟩,
Mn = Mon3,n(M3, e1 + ne2)

= Mon3,n(Mon2,3(M2, e1 + 3e2), e1 + e2 + e3, e1 + ne2)
= ⟨Mon2,n(M2, e1 + 3e2), e1 + e2 + e3, e1 + ne2⟩, ∀n ≥ 4.

We observe that Mon2,n(M2) ⊆ Mn for any n ≥ 2. Hence the family {Mn ∶ n ∈ N} is
an S∞−equivariant family of monoids. This family does not stabilize up to symmetry
because for any n ∈ N, n ≥ 2, the elements e1 + ne2 are irredundant generators. As a
consequence, the limit monoid M∞ is not finitely generated up to symmetry.

The last example motivates for the following result.

Proposition 3.3.4. Any normalS∞−equivariant family of monoids isS∞−equivariant.

Proof. Let {Mn ∶ n ∈ N} be a normal S∞−equivariant family of monoids. Then by
definition Monm,n(Mm) ⊆ Mn for any m,n ∈ N with m ≤ n. We need to show that
Monm,n(Mm) ⊆ Monm,n(Mm) ⊆ Mn for any m,n ∈ N with m ≤ n. This follows by
observing that any element x ∈ Monm,n(Mm) is an element in Zn which belongs to
Monm,n(Mm) if we choose k = 1 in the definition of the normalization.

Definition 3.3.5. An S∞−equivariant family of monoids {Mn ∶ n ∈ N} is saturated
if Mn =M∞⋂Zn for any n ∈ N. If this equality holds for all but finitely many n, then
we call this family eventually saturated.
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Before showing how saturation and stabilization of an equivariant family of monoids
are related to each other, we make the following observations. For any n ∈ N the
inclusion Mn ⊆ M∞⋂Zn is true for any S∞−equivariant family of monoids. This is
because if x ∈ Mn, then x ∈ Zn since Mn is a commutative monoid in Zn. From the
definition of the limit monoid we also have that x ∈M∞. However, the inverse inclusion
M∞⋂Zn ⊆Mn, does not hold in general as the following example demonstrates.

Example 3.3.6. The normal S∞−equivariant family introduced in Example 3.3.3 is
not saturated. For instance, for n = 2, the monoid M∞ ∩ Z2 is generated by elements
of the form e1 + ke2, ke1 + e2 for any k ∈ N, while the monoid M2 is generated by the
elements e1 + e2, e1 + 2e2,2e1 + e2.

The following example shows that when an S∞−equivariant family of monoids
stabilizes, then the family is eventually saturated.

Example 3.3.7. Consider the family of monoids defined by setting M1 = 0,M2 =
⟨e1 + 2e2,2e1 + e2⟩ and Mn = Mon2,n(M2) for any n ≥ 2. This is an S∞−equivariant
family of monoids which stabilizes at index k = 2. For any n ∈ N the monoid Mn is
generated by the Sym(n)−orbit of e1 + 2e2. Those are elements of the form ei + 2ej for
any i ≠ j ∈ {1, . . . , n}. The limit monoid M∞ is, by definition, the monoid generated by
the union of all generators of the monoids Mn, for each n ∈ N. Thus, the intersection
M∞∩Zn yields all n−dimensional points among the generators ofM∞ which are exactly
the generators of Mn. For instance, if n = 3, then

M∞ ∩Z3 = ⟨e1 + 2e2,2e1 + e2, e1 + 2e3,2e1 + e3, e2 + 2e3,2e2 + e3⟩ =M3.

We have the following result.

Lemma 3.3.8. Any S∞−equivariant family of affine monoids that stabilizes is even-
tually saturated.

Proof. Let {Mn ∶ n ∈ N} be a normal S∞−equivariant family of affine monoids. If
this family stabilizes, then according to Lemma 3.2.9, the limit monoid M∞ is finitely
generated up to symmetry. In particular, if the stability index of the family is r ∈ N,
then

M∞ =M1 ∪ ⋅ ⋅ ⋅ ∪Mr ∪ ⋅ ⋅ ⋅ ∪Monr,n(Mr) ∪ . . . , ∀r ≤ n.
Since the family of monoids is normal S∞−equivariant, the only r−dimensional ele-
ments among the generators of M∞ are exactly the generators of Mr. Because of the
stabilization of the family, it holds that Monr,n(Mr) = Mn = M∞ ∩ Zn for any n ≥ r.
Therefore, the family {Mn ∶ n ∈ N} is eventually saturated.

Remark 3.3.9. The opposite direction of Lemma 3.3.8 does not hold in general and
further assumptions are required.
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3.4 Equivariant Gordan’s Lemma
Suppose that we are given a family of rational polyhedral cones {Cn ∶ n ∈ N}. If we
intersect each of the local cones Cn with Zn, then we obtain a family of monoids
{Mn ∶ n ∈ N}, where Mn is a monoid in Zn for any n ∈ N. In the particular case where
the cones in the family are finitely generated, then by Gordan’s lemma (Lemma 3.1.5)
we know that the family of monoids consists of affine monoids. We would like to study
the behavior of families of cones up to symmetry and to further examine whether
similar results with the finite case hold.

Let {Cn ∶ n ∈ N} be a family of convex polyhedral cones, where Cn ⊆ Rn for any
n ∈ N. If Cm ⊆ Rm is a cone, then we embed Cm into Rn by applying the standard
embeddings ιm,n of Section 3.2 to the generators of Cm. We write ιm,n(Cm) for the
embedded cone in Rn. The symmetric group Sym(n) acts on Rn by permuting coordi-
nates. If X ⊆ Rm, then we denote by

conem,n(X) = cone(ιm,n(X)σ ∶ σ ∈ Sym(n)), ∀m ≤ n

the cone generated by the set of all permutations σ ∈ Sym(n) of the image ιm,n(X).

Definition 3.4.1. An S∞−equivariant family of cones, is a family {Cn ∶ n ∈ N} of
convex cones Cn ⊆ Rn such that

conem,n(Cm) ⊆ Cn, for any m,n ∈ N, m ≤ n. (3.5)

An S∞−equivariant family of cones stabilizes if there exists m ∈ N such that for any
n ≥ m the inclusion relation in equation (3.5) becomes an equality. In this case the
family of cones stabilizes at index m.

Example 3.4.2. Let C1 = 0 and Cn = cone2,n((e1 + ne2)σ ∶ σ ∈ Sym(n)) for any n ≥ 2
so that C2 = cone((e1 + 2e2)σ ∶ σ ∈ Sym(2)), C3 = cone((e1 + 3e2)σ ∶ σ ∈ Sym(3)), etc.
The family of cones {Cn ∶ n ∈ N} defined that way is S∞−equivariant. Indeed, we have
conen−1,n(Cn−1) ⊆ Cn. If x ∈ conen−1,n(Cn−1) then

x = ∑
σ∈Sym(n)

s

∑
i=1

λi(e1 + (n − 1)e2)σ, ∀λ1, . . . , λs ∈ R≥0, s =
n!

(n − 2)! .

We can express x as a linear combination of the extreme rays of Cn as follows,

x =(n
2 − n − 1)λ1 + λ2

n2 − 1
(ne1 + e2) +

λ1 + (n2 − n − 1)λ2

n2 − 1
(e1 + ne2) +⋯+

(n2 − n − 1)λs−1 + λs
n2 − 1

(nen−1 + en) +
λs−1 + (n2 − n − 1)λs

n2 − 1
(en−1 + nen)



3.4. Equivariant Gordan’s Lemma 57

where (n2−n−1)λi+λj
n2−1 = (n(n−1)−1)λi+λj

n2−1 ≥ λi+λj
3 > 0 for any pair of consecutive integers

i, j ∈ [s], hence x ∈ Cn. Since the converse inclusion does not hold, the family of cones
does not stabilize.

Example 3.4.3. Consider the family {C(k,n) ∶ k ≤ n} of (k,n)−box pile cones C(k,n) ⊆
Rn introduced in Section 2.2 of Chapter 2. This family is by definition S∞−equivariant
and it stabilizes at index k ∈ N. To see this, note that

conek,n(C(k,k)) = conek,n((a1, . . . , ak)σ ∶ σ ∈ Sym(k))
= cone((a1, . . . .ak,0, . . . ,0)σ ∶ σ ∈ Sym(n)) = C(k,n).

When a family of cones stabilizes it is natural to ask what are the properties of the
underlying family of monoids. From Gordan’s Lemma (Lemma 3.1.5) we know that
the property of being finitely generated is transferred from cones to monoids. Hence a
family of finitely generated cones gives rise to a family of affine monoids. The following
conjecture states that the stabilization property of a family of cones is adopted by the
family of monoids. We refer to this result as the equivariant Gordan’s Lemma, as it
generalizes Gordan’s Lemma for equivariant families of cones and monoids.

Conjecture 3.4.4 (Equivariant Gordan). Let {Cn ∶ n ∈ N} be an S∞−equivariant
family of cones that stabilizes. Let Mn = Cn ∩ Zn for any n ∈ N. Then the family
{Mn ∶ n ∈ N} is a normal S∞−equivariant family of monoids and it stabilizes.

Definition 3.4.5. The equivariant Hilbert basis of an S∞−equivariant family of
cones that stabilizes is the up to symmetry minimal generating set of the underlying
normal S∞−equivariant family of monoids described in Conjecture 3.4.4.

As an evidence for Conjecture 3.4.4 we provide the following result.

Theorem 3.4.6. The family C = {C(2,n) ∶ n ≥ 2} of (2, n)−box pile cones C(2,n) ⊆ Rn is
S∞−equivariant and stabilizes up to symmetry. Moreover if Mn = C(2,n) ∩ Zn for any
n ≥ 2, then the family M = {Mn ∶ n ≥ 2} is a normal S∞−equivariant family of monoids
and it stabilizes up to symmetry. The stabilization index of the family depends on the
values of the non-zero entries of the (2, n)−box pile generators.

Remark 3.4.7. As stated in Theorem 3.4.6 the stabilization index of the family M
depends on the values of the entries in the box pile generators. From computations
using the computer algebra software Macaulay2, we noticed that when C(2,n) is gen-
erated by the Sym(n)−orbit of the vector (α,1,0, . . . ,0), then the family of monoids
stabilizes at index three, while when C(2,n) is generated by the Sym(n)−orbit of the
vector (a1, a2,0, . . . ,0) with a2 > 1, then the family stabilizes at index a2 + 1. These
cases are studied in detail in the following proof.
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proof of Theorem 3.4.6. The S∞−equivariance and the stabilization of the family C
follows from the definition of box pile cones (see Definition 3.4.1). We show the stabi-
lization of the family M by distinguishing between two cases regarding the values of
the entries in the (2, n)−box pile generators of the cones C(2,n).

Assume first that the cone C(2,n) is generated by the Sym(n)−orbit of the vector
(α,1,0, . . . ,0) for some α ∈ Z with α > 1. We claim that the monoid Mn is generated
by the vectors

(1,1,0, . . . ,0)σ, (1,1,1,0, . . . ,0)σ, (α − l,1,0, . . . ,0)σ, ∀σ ∈ Sym(n), (3.6)

for any l = 0, . . . , α − 1. If not, then there exists a point x ∈ C(2,n) ∩ Zn such that
x −m /∈ C(2,n), where m is any vector in (3.6). We show by contradiction that this
is not the case. We distinguish between different cases regarding the number s of
non-zero entries in x.

If s = 2, then x = (x1, x2,0, . . . ,0) and without loss of generality assume that x1 ≥ x2.
Since x ∈ C(2,n)∩Zn, it satisfies the inequality description of C(2,n) given in Proposition
2.2.4, hence αx2 ≥ x1. If x2 = 1 then α ≥ x1 ≥ 1 and if we subtract (α − l,1,0, . . . ,0)
from x for any l ∈ {0, . . . , α − 1} we obtain the zero vector which belongs in C(2,n). If
x2 /= 1 then x − (1,1,0, . . . ,0) ∈ C(2,n) because

α(x1 − 1) = αx1 − α
x1≥x2≥ αx2 − α = α(x2 − 1) > x2 − 1.

If s ≥ 3, then x = (x1, . . . , xs,0, . . . ,0) and without loss of generality assume that
x1 ≥ ⋅ ⋅ ⋅ ≥ xs. We show that if we subtract a permutation of the vector (1,1,1,0, . . . ,0)
from x, then the resulting vector is in C(2,n). We note that

α(x1 +⋯ + xs−2 − 1 + xs−1 − 1) = α(x1 +⋯ + xs−1) − 2α

≥ α(s − 1)xs − 2α, s ≥ 3, hence s − 1 ≥ 2,

≥ 2α(xs − 1)
> xs − 1.

This shows that the point x′ = (x1, . . . , xs−2 − 1, xs−1 − 1, xs − 1,0, . . . ,0) is an element
in C(2,n) as it satisfies the inequality description given in Proposition 2.2.4. The above
proof contradicts the hypothesis that an element in C(2,n) ∩Zn cannot be written as a
linear combination of the vectors in (3.6) and the initial claim is true. The stabilization
of the family M follows from the observation that for any n ≥ 3,

Mn = ⟨(1,1,0, . . . ,0)σ, (α − l,1,0, . . . ,0)σ, (1,1,1,0, . . . ,0)σ ∶ σ ∈ Sym(n), l = 0, . . . , α − 1⟩
= ⟨ι3,n((1,1,0), (α − l,1,0), (1,1,1))σ ∶ σ ∈ Sym(n), l = 0, . . . , α − 1⟩
= Mon3,n(M3),
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where M3 = ⟨(1,1,0)σ, (α − l,1,0)σ, (1,1,1)σ ∶ σ ∈ Sym(3), l = 0, . . . , α − 1⟩ ⊆ Z3. Hence
the family stabilizes at index 3.

For the rest of the proof we consider the more general case, where C(2,n) is generated
by the Sym(n)−orbits on the vector (α,α − 1,0, . . . ,0) for any α ≥ 3. We claim that
the monoid Mn is generated by the vectors

(α,α − 1,0, . . . ,0)σ, (1,1,0, . . . ,0)σ, (1,1,1,0, . . . ,0)σ, (α,α − l − 1, l,0, . . . ,0)σ, (3.7)

for any l = 1, . . . , ⌊α2 ⌋ and

(α,α − k − r, k − 1,1, . . . ,1,0, . . . ,0)σ, ∀σ ∈ Sym(n), (3.8)

for any k = 2, . . . , ⌊α2 ⌋, where r = q − 3 indicates the number of entries that are equal to
one, for any q = 4, . . . , α. Here ⌊α2 ⌋ = max{ω ∈ Z ∶ ω ≤ α

2 } is the floor of α
2 .

Suppose that the claim is false. Then there exists a vector x ∈ Mn such that
x − m /∈ C(2,n), where m is any vector in the above claim. We prove the claim by
contradiction following the same strategy as before. Let x = (x1, . . . , xs,0, . . . ,0) ∈Mn

and without loss of generality assume that x1 ≥ ⋅ ⋅ ⋅ ≥ xs.
If s = 2, then by Proposition 2.2.4 the inequality αx2 ≥ (α−1)x1 is valid in C(2,n). If

x2 = 1, then x1 = 1 and if we subtract the vector (1,1,0, . . . ,0) from x then we obtain
the zero vector which is an element of C(2,n). If x2 = α − 1 then α ≥ x1 ≥ α − 1. If
x1 = α then we subtract the vector (α,α− 1,0, . . . ,0) from x to obtain the zero vector.
Otherwise x1 = α − 1 and we subtract the vector (α − 1)(1,1,0, . . . ) from x to obtain
again the zero vector. In case x2 /= 1, x2 /= α− 1, then x− (1,1,0, . . . ,0) ∈ C(2,n) because

α(x1 − 1) ≥ α(x2 − 1) > (α − 1)(x2 − 1).

If s = 3 then x = (x1, x2, x3,0, . . . ,0) ∈Mn. We distinguish between the following cases
regarding the entries of the vector x. If x1 = x2 = x3, then x − (1,1,1,0, . . . ,0) ∈ C(2,n)

since
α(x1 − 1 + x2 − 1) = 2α(x3 − 1) > (α − 1)(x3 − 1).

Otherwise, x − (α − l − 1, l, α,0, . . . ,0) ∈ C(2,n) for any l = 1, . . . , ⌊α2 ⌋ because

α(x1 − α + l + 1 + x2 − l) = α(x1 + x2) − α(α − 1) ≥ (α − 1)(x3 − α),

where the last inequality follows from the fact that x ∈ C(2,n) and therefore its coordi-
nates satisfy the inequality α(x1 + x2) ≥ (α − 1)x3.
For s ≥ 4 the point x−(α−k−r, k−1,1, . . . ,1, α,0, . . . ,0) ∈ C(2,n), for any k = 2, . . . , ⌊α2 ⌋,
where r = q − 3 for q = 4, . . . , α, because

α(x1 − α + k + r + x2 − k + 1 + x3 − 1 +⋯ + xs−1 − 1) = α(x1 + x2 +⋯ + xs−1) − α(α − 1)
≥ (α − 1)xs − α(α − 1)
= (α − 1)(xs − α).
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The above contradicts the hypothesis that an element in Mn cannot be written as a
linear combination of the vectors (3.7), (3.8). Hence, the initial claim is true. The
stabilization index of the family M in this case is equal to the maximum number of
non-zero entries among the generators of Mn, hence the number of non-zero entries of
the vector (3.8). This number is equal to 3+ r = 3+ (q − 3) = 3+ (α − 3) = α, where the
second equality is obtained by giving q the maximum possible value it can take.

One can show that the result obtained in the second part of the proof holds for
any family of (2, n)−box pile cones C(2,n) = cone2,n((a, b,0, . . . )σ ∶ σ ∈ Sym(n)) for any
entries a, b with a > b > 1 and for any n ≥ 2. Exhibiting the explicit description of the
minimal generators of the monoid Mn in this case is complicated, however following
exactly the same arguments as above one can prove that the stabilization index of the
family M of underlying monoids equals b + 1.

By Definition 3.4.5 and using the proof of Theorem 3.4.6 we conclude that the equiv-
ariant Hilbert basis for the family of (2, n)−box pile cones is equal to the S∞−orbits
on the vectors in (3.6) whenever C(2,n) = cone((α,1,0, . . . ,0)σ ∶ σ ∈ Sym(n), α > 1). In
case C2,n = cone((α,α − 1,0, . . . ,0)σ ∶ σ ∈ Sym(n), α > 2), then the equivariant Hilbert
basis is equal to the S∞−orbits on the vectors in (3.7) and (3.8).



4 | Gröbner Bases for Staged Trees

In this chapter of the thesis we are concerned with the problem of determining gen-
erators of the toric ideal associated with a combinatorial object called a Staged Tree.
We show that in the case of a balanced and stratified staged tree, the generating set
of the underlying toric ideal forms a quadratic Gröbner basis with squarefree initial
terms. The proofs of the main results presented here are based on a toric fiber product
construction due to Sullivant [Sul07]. This chapter consists of results obtained in a
joint paper with Eliana Duarte [DA19].

4.1 Basic definitions for Staged Trees

Let T = (V,E) be a directed rooted tree graph with vertex set V and set E of directed
edges. We only consider trees T = (V,E) where no two directed edges point to the
same vertex, and all elements in E are oriented away from the root. For any v,w ∈ V
the directed edge from v to w in E is denoted by (v,w). The set of children of v
is ch(v) ∶= {u ∈ V ∶ (v, u) ∈ E} and the set of outgoing edges from the vertex v is
E(v) ∶= {(v, u) ∶ u ∈ ch(v)}. If E(v) = ∅, then we refer to the vertex v as a leaf of T .
We denote by v → w the directed path with head the vertex v and tail the vertex w
and by E(v → w) the set of all edges in this path. If L is a set of labels, then consider
the map θ ∶ E → L which assigns to each e ∈ E a unique label from L. Given a vertex
v ∈ V, we write θv ∶= {θ(e) ∶ e ∈ E(v)} for the set of edge labels attached to v. The
following definition introduces the main objects of this chapter.

Definition 4.1.1. Let L be a set of labels. A tree T = (V,E) together with a labeling
θ ∶ E → L is a staged tree, if

� for any v ∈ V, ∣θv ∣ = ∣E(v)∣, and

� for any v,w ∈ V, the sets θv, θw are either equal or disjoint.

Using Definition 4.1.1 we define an equivalence relation on the set of vertices of T .
Namely, two vertices v,w are equivalent if and only if θv = θw.We refer to the partition
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Figure 4.1: Examples of a staged trees.

induced by this equivalence relation on the set V as the set of stages of V and to a
single element in this partition as a stage. We use the pair (T , θ) to denote a staged
tree T together with a labeling rule θ. For simplicity we often drop the use of θ and
we write T for a staged tree.

Let (T , θ) be a staged tree. In order to define the toric ideal associated to this
staged tree, we define two polynomial rings. The first ring is R[p]T ∶= R[pλ ∶ λ ∈ Λ],
where Λ is the set of all root-to-leaf paths in T . The second ring is R[Θ]T ∶= R[z,L],
with variables the labels in L together with a homogenizing variable z. Consider the
ring homomorphism

ϕT ∶ R[p]T → R[Θ]T
pλ ↦ z ⋅ ∏

e∈E(λ)

θ(e) (4.1)

Definition 4.1.2. The toric staged tree ideal associated to (T , θ) is the kernel
ker(ϕT ) of the homomorphism ϕT .

The toric staged tree ideal defines the toric variety specified as the closure of the
image of the monomial parameterization ΦT ∶ (C∗)∣L∣ → P∣Λ∣−1 given by (θ(e) ∈ L) ↦
z ⋅ (∏e∈E(λ) θ(e))λ∈Λ. We use the homogenizing variable z in the map (4.1) to consider
the projective toric variety in P∣Λ∣−1.
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Example 4.1.3. The staged tree T1 in Figure 4.1 has label set L = {s0, . . . , s13}. Each
vertex in T1 is identified by a sequence of 0’s and 1’s and each edge has a label associated
to it. The root-to-leaf paths in T1 are denoted by pijkl for any i, j, k, l ∈ {0,1}. A vertex
in T1 represented by a blank cycle indicates a stage consisting of a single vertex. The
vertices in T1 that have the same color correspond to vertices having the same stage.
For instance, the purple vertices, that is the vertices in the set {000,010,100,110},
are in the same stage and therefore they have the same set {s10, s11} of attached edge
labels. The map ΦT1 maps the vector (s0, . . . , s13) to the vector

(s0s2s6s10, s0s2s6s11, s0s2s7s12, s0s2s7s13, s0s3s8s10, s0s3s8s11, s0s3s9s12, s0s3s9s13,

s1s4s6s10, s1s4s6s11, s1s4s7s12, s1s4s7s13, s1s5s8s10, s1s5s8s11, s1s5s9s12, s1s5s9s13).

The toric ideal ker(ϕT1) is generated by a quadratic Gröbner basis with squarefree
initial ideal.

We are interested in relating the combinatorial properties of the staged tree (T , θ)
with the properties of the toric ideal ker(ϕT ). The two definitions that are relevant
for the statement of the main theorem, Theorem 4.4.12, are the definition of balanced
staged tree and of stratified staged tree. In the following we look into the definitions
and consequences of these two notions.

Definition 4.1.4. Let T be a tree. For v ∈ V, the level of v, denoted l(v), is the
number of edges in the unique path from the root of T to v. If all the leaves in T have
the same level, then the level of T is equal to the level of any of its leaves. A staged
tree (T , θ) is stratified if all its leaves have the same level and if every two vertices
in the same stage have the same level.

The staged trees T1,T2 in Figure 4.1 are stratified. Particularly, all the leaves of T1

have level equal to 4, similarly all the leaves of T2 have level equal to 3, and every two
vertices with the same color appear in the same level. Notice that the combinatorial
condition of (T , θ) being stratified implies the algebraic condition that the map ϕT is
squarefree.

In the rest of this section we focus on defining balanced staged trees. This definition
is formulated in terms of polynomials associated to each vertex. Those are called
interpolating polynomials in the following and their properties are very useful for the
proof of important statements in the following sections.

Definition 4.1.5. Let (T , θ) be a staged tree, v ∈ V and Tv be the subtree of T rooted
at v. The tree Tv is a staged tree with the induced labeling from T . Let Λv be the set
of all v−to-leaf paths in T and define

t(v) ∶= ∑
λ∈Λv

∏
e∈E(λ)

θ(e).
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The polynomial t(v) is called the interpolating polynomial of Tv. Two staged trees
are polynomially equivalent if they have the same set of edge labels and their
interpolating polynomials coincide.

Remark 4.1.6. When v is the root of T , the polynomial t(v) is the interpolating
polynomial of T .

The interpolating polynomial of a staged tree is an important tool in the study of
the statistical properties of staged tree models. It was first introduced in [GS18] to
enumerate all possible staged trees that define the same staged tree model and was
further studied in [GBRS18]. Although these two articles are written for a statistical
audience, their symbolic algebra approach to the study of statistical models proves to
be very important for the use of these models in practice. A useful property of the
interpolating polynomials is stated in the following lemma.

Lemma 4.1.7 (Theorem 1, [GBRS18]). Let (T , θ) be a staged tree, v ∈ V and assume
that ch(v) = {v0, v1, . . . , vk}. Then the polynomial t(v) admits the recursive represen-
tation t(v) = ∑k

i=0 θ(v, vi)t(vi).

Definition 4.1.8. Let (T , θ) be a staged tree and v,w be two vertices in the same
stage with ch(v) = {v0, . . . , vk}, ch(w) = {w0, . . . ,wk}. After a possible permutation of
the elements in ch(w) assume that θ(v, vi) = θ(w,wi) for all i ∈ {0, . . . , k}. Suppose
that the vertices v,w satisfy the balanced condition

t(vi)t(wj) = t(wi)t(vj), ∀i /= j ∈ {0, . . . , k} (⋆)

in R[Θ]T . We call the staged tree (T , θ) balanced if every pair of vertices in the same
stage satisfy the balanced condition (⋆).

Example 4.1.9. The staged tree T2 in Figure 4.1 is stratified but is not balanced
since the two orange vertices, that is the vertices 0 and 1, do not satisfy the balanced
condition (⋆). Precisely we have that

t(00)t(11) = (s8 + s9)(s12 + s13) /= t(10)t(01) = (s8 + s9)2.

Although the balanced condition in Definition 4.1.8 seems to be algebraic and hard
to check, in many cases it is very combinatorial. To formulate a precise instance where
this is true we need the following definition.

Definition 4.1.10. Let (T , θ) be a staged tree. The vertices v,w are in the same
position if they are in the same stage and t(v) = t(w).
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Remark 4.1.11. The notion of position was formulated in [SA08]. Intuitively it means
that if we regard the subtrees Tv and Tw as representing the unfolding of a sequence of
events, then the future of v and w is essentially the same.

Lemma 4.1.12. Let (T , θ) be a stratified staged tree. Suppose that two vertices in
T that are in the same stage are also in the same position. Then (T , θ) is balanced.

Proof. In order to show that (T , θ) is a balanced staged tree we need to prove that
every pair of vertices in the same stage in T satisfies equation (⋆) of Definition 4.1.8.

Let v,w be two vertices in T with ch(v) = {v0, . . . , vk}, ch(w) = {w0, . . . ,wk}. If v,w
are in the same stage, then by the discussion following Definition 4.1.1 we have that
θv = θw or equivalently that θ(v, vi) = θ(w,wi) for any i ∈ {0, . . . , k} and after possibly
permuting the vertices in ch(w). Since v,w are in the same position by Definition 4.1.10
we have t(v) = t(w). Using Lemma 4.1.7 we rewrite this relation as follows

t(v) = t(w)⇒
k

∑
i=0

θ(v, vi)t(vi) =
k

∑
i=0

θ(w,wi)t(wi)⇒
k

∑
i=0

θ(v, vi)(t(vi) − t(wi)) = 0.

Since (T , θ) is a stratified staged tree, the variables in the polynomials t(vi), t(wi)
are disjoint from the variables in {θ(v, v0), . . . , θ(v, vk)}. Hence, t(vi) = t(wi) for any
i ∈ {0, . . . , k}. It follows that t(vi)t(wj) = t(wi)t(vj) for any i /= j ∈ {0, . . . , k}. Therefore
(T , θ) is balanced.

Example 4.1.13. The staged tree T1 in Figure 4.1 is balanced. This can be seen
by noting that the orange vertices are in the same position and similarly for the blue
vertices. In contast to this, the staged tree T2 is not balanced because the orange
vertices, as well as the pink vertices, are not in the same position.

4.2 Equations for Staged Trees
In this section we follow the treament in [DG18] to define equations of a given staged
tree. These equations are given as generators of two ideals corresponding to paths
and maximal path extensions of T . In order to describe these ideals we first need to
introduce some special notation.

Let (T , θ) be a staged tree. Given a vertex v ∈ V denote by [v] the set of all
root-to-leaf-paths in T passing through v. Set

p[v] ∶= ∑
j∈[v]

pj. (4.2)

Let v,w ∈ V be two vertices in the same stage in T . Then by the discussion fol-
lowing Definition 4.1.1 we have θv = θw. Assuming that ch(v) = {v0, . . . , vk}, ch(w) =
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{w0, . . . ,wk}, the last condition implies that θ(v, vi) = θ(w,wi) for any i ∈ {0, . . . , k},
and after a possible permutation of the vertices in ch(w).

Example 4.2.1. Consider the staged tree T1 in Figure 4.1. There are three root-to-leaf
path in T1 passing through the vertex 10, namely p1000, p1001, p1010, p1011. Hence

p[10] = p1000 + p1001 + p1010 + p1011.

Definition 4.2.2. Let (T , θ) be a staged tree. For any pair of vertices v,w in the
same stage in T the ideal of paths is an ideal in R[p]T defined by

Ipaths ∶= ∑
v∼w in T

Iv∼w,

where
Iv∼w = ⟨p[vi]p[wj] − p[wi]p[vj] ∶ i /= j ∈ {0, . . . k}⟩.

The ideal Ipaths in Definition 4.2.2 is called the ideal of paths because each generator
p[vi]p[wj]−p[wi]p[vj] of Iv∼w corresponds to a pair of undirected paths (vi → wj,wi → vj)
in T . To be more precise, to the unique path starting at vertex vi and ending at vertex
wj, denoted vi → wj, corresponds the product p[vi]p[wj]. Similarly, to the unique path
wi → vj corresponds the product p[wi]p[vj]. From these two products, we form the
difference p[vi]p[wj] − p[wi]p[vj] and we refer to it as the path difference associated to
(vi → wj,wi → vj). It follows from [DG18, Lemma 9] that Ipaths ⊆ ker(ϕT ). However in
many cases this inclusion is strict and ker(ϕT ) contains more elements. One way to
find more generators of ker(ϕT ) is to consider extensions of path differences.

Example 4.2.3. The path differences defining the tree T1 in Figure 4.1 are the fol-
lowing. The binomials

p0000p0101 − p0100p0001, p0000p1001 − p0001p1000, p0000p1101 − p0001p1100,

p0100p1001 − p0101p1000, p0100p1101 − p0101p1100, p1000p1101 − p1001p1100

define the stage that corresponds to the purple vertices. The binomials

p0010p0111 − p0011p0110, p0010p1011 − p0011p1010, p0010p1111 − p0011p1110,

p0110p1011 − p0111p1010, p0110p1111 − p0111p1110, p1010p1111 − p1011p1110

define the stage that corresponds to the green vertices. Finally, the differences

(p0000 + p0001)(p1010 + p1011) − (p1000 + p1001)(p0010 + p0011),
(p0100 + p0101)(p1110 + p1111) − (p1100 + p1101)(p0110 + p0111)

define the stages that are associated with the orange and blue vertices.
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Definition 4.2.4. A pair of paths (u1 → u2, u3 → u4) is an extension of the path
(v1 → v2, v3 → v4) if the following hold:

� The path u1 → u2 is obtained by adding l edges at the head or tail of v1 → v2.

� The path u3 → u4 is obtained by adding l edges at the head or tail of v3 → v4.

� The edges ei ∈ E(u1 → u2)/E(v1 → v2) and e′i ∈ E(u3 → u4)/E(v3 → v4) satisfy

l

∏
i=1

θ(ei) =
l

∏
i=1

θ(e′i). (4.3)

A path extension (u1 → u2, u3 → u4) is a maximal extension, if it is not possible to
add edges to the pair (u1 → u2, u3 → u4) in such a way that equation (4.3) is satisfied.

Remark 4.2.5. The last condition in Definition 4.2.4 implies that if p[v1]p[v2]−p[v3]p[v4] ∈
ker(ϕT ), then the difference p[u1]p[u2] − p[u3]p[u4] is also an element in ker(ϕT ).

Definition 4.2.6. The ideal of maximal path extensions, is an ideal in R[p]T
defined by

Impaths ∶= ∑
v∼w in T

Imax(v∼w),

where Imax(v∼w) is the ideal generated by path differences associated to all maximal
extensions of (vi → wj,wi → vj) for all i /= j ∈ {0, . . . , k}.

Example 4.2.7. Let us consider the staged tree T1 in Figure 4.1. The pair of paths
(000→ 101,100→ 001) has the path difference

p[000]p[101] − p[100]p[001] = (p0000 + p0001)(p1010 + p1011) − (p1000 + p1001)(p0010 + p0011)

associated to it. A possible extension of the path (000 → 101,100 → 001) by one edge
is given by (0000 → 101,1000 → 001) because θ(0000,000) = θ(1000,001) = s10. The
path difference associated to this extension is

p0000p[101] − p1000p[001] = p0000(p1010 + p1011) − p1000(p0010 + p0011).

We can further extend this path using an edge with label s12 or s13. If we consider the
extension (0000→ 1011,1000→ 0011), then this yields the binomial path difference

p0000p1011 − p1000p0011.
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Example 4.2.8. Here we give an example of a path equation that cannot be extended
to a binomial equation. To this end we consider the staged tree T2 in Figure 4.1 and
the pair of paths (20→ 31,30→ 21) with associated path difference

p[20]p[31] − p[30]p[21] = (p200 + p201)(p310 + p311) − (p300 + p301)(p210 + p211).

We can extend this path using an edge with label s10 or s11. In each of these cases we
get the polynomials

p200(p310 + p311) − p300(p210 + p211), p201(p310 + p311) − p301(p210 + p211).

However, we cannot extend the paths (200 → 31,300 → 21) and (201 → 31,301 → 21)
further to get binomial differences because θ(21s,21) /= θ(31s,31) for any s = 0,1.

4.3 Toric Fiber Products for Staged Trees
The toric fiber product of two homogeneous ideals is an operation that produces a new
homogeneous ideal. This construction was first introduced in [Sul07] and has since
then been studied in [KR14, EKS14]. Toric fiber products have been used in algebraic
statistics to obtain implicit equations of statistical models. For instance in [DBM10]
the authors use the toric fiber product to construct model invariants for phylogenetic
trees. In this section we establish the framework to obtain toric staged trees via a toric
fiber product construction. The main idea behind this construction is that following
a set of gluing rules we can build a staged tree that is balanced and stratified from
simpler pieces.

4.3.1 Toric Fiber Products Basics
In this subsection we recall basic facts of toric fiber products. The main reference here
is the paper of Seth Sullivant, [Sul07].

In the following, let r be a positive integer and let s, t be two vectors of positive
integers in Zr+. Given a positive integer m, we denote by [m] the set of the first m
nonzero integers, i.e. [m] ∶= {1,2, . . . ,m}. Consider the homogeneous, multigraded
polynomial rings

K[x] ∶= K[xij ∣ i ∈ [r], j ∈ [si]] and K[y] ∶= K[yik ∣ i ∈ [r], k ∈ [ti]]

having the same multigrading

deg(xij) = deg(yik) = ai ∈ Zd.
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Denote by A = {a1, . . . ,ar} the set of all multidegrees of these variables and assume
that there exists a vector w ∈ Qd such that ⟨w,ai⟩ = 1 for any ai ∈ A. If I ⊆ K[x] and
J ⊆ K[y] are homogeneous ideals, then the quotient rings R = K[x]/I and S = K[y]/J
are also multigraded rings. Let

K[z] ∶= K[zijk ∣ i ∈ [r], j ∈ [si], k ∈ [ti]]

and consider the ring homomorphism

φI,J ∶ K[z]→ R⊗K S

zijk ↦ xij ⊗ yik,

where xij and yik are the equivalence classes of xij and yik respectively.

Definition 4.3.1. The toric fiber product of I and J with respect to the multide-
grees in A, is I ×A J ∶= kerφI,J .

It is shown in [Sul07, Theorem 12] that under the condition that A is a linearly
independent set, then it is possible to explicitly compute a Gröbner bases of I ×A J
from individual Gröbner bases of I and J . We will use this result to show that the
equations defining staged trees can be obtained via a toric fiber product technique.
Furthermore, we will show that these equations form a Gröbner basis.

4.3.2 The Tree Gluing construction
Let (T , θ) be a staged tree. For the purposes of this paragraph, we recursively define
an indexing on the interior vertices of T , i.e. the vertices that are different from the
root of T , as follows. The children of the root are indexed by a number in {0,1, . . . , k}.
If a is the index of the vertex v and ∣E(v)∣ = j + 1, then we index the children of v by
a0,a1, . . . ,aj. This way every interior vertex in V is indexed by a finite sequence of
non-negative integers

a = a1a2⋯al,
where l is the level of the vertex indexed by a. We denote by iT the set of indices of
the leaves in T . From now on we refer to any interior vertex in V using its index a.

Example 4.3.2. The vertices in both trees T1 and T2 in Figure 4.1 are labeled according
to the rule introduced in the above paragraph.

Definition 4.3.3. If a staged tree only has one level we call it a one-level tree. We
reserve for it the special notation (B, ε) where B = (V,E) is the tree and ε its labeling
rule. By Definition 4.1.1, the size of the label set of B is equal to ∣E∣. Thus we use εk
to denote the the image of the k−th element in E under ε. We also use the notation
(B,{ε0, . . . , εm}) when we wish to emphasize the label set of the one-level tree.
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Definition 4.3.4. Let (T , θ) be a staged tree and G = {G1, . . . ,Gr} be a partition on
the set of leaves iT . For any i ∈ [r], let {(Bi, ε(i)) ∶ i ∈ [r]} be a collection of one-level
trees such that their label sets are pairwise disjoint and disjoint from the label set of
(T , θ). The gluing component associated to T and G is denoted by TG and is defined
as the disjoint union of the (Bi, ε(i))’s, that is,

TG ∶= ⊔
i∈[r]

(Bi, ε(i)).

The gluing component TG is a forest of one-level trees, its label set is the union of the
label sets of each (Bi, ε(i)). We denote by [T ,TG] the tree obtained by gluing Bi to the
leaf a for all a ∈ Gi and all i ∈ [r].

Remark 4.3.5. The tree [T ,TG] is a staged tree. Its label set is the union of the
labels sets of (T , θ) and TG. The labeling rule is inherited from the labelings of T and
TG and it satisfies the conditions in Definition 4.1.1. Moreover, i[T ,TG] = {ak ∶ a ∈
Gi, k ∈ iBi , i ∈ [r]}. The stages in [T ,TG] are the ones inherited from T union the new
stages determined by G. This means that two vertices a,b ∈ iT are in the same stage
in [T ,TG] provided a,b ∈ Gi.

In the following, let T ,G,TG and [T ,TG] be as in Definition 4.3.4. We explain how
ker(ϕ[T ,TG]) is obtained as the toric fiber product of the ideals ker(ϕT ) and the zero
ideal ⟨0⟩. First, we associate to TG the polynomial rings R[p]TG ∶= R[pik ∶ k ∈ iBi , i ∈ [r]]
and R[Θ]TG ∶= R[ε(i)k ∶ i ∈ [r], k ∈ iBi] and define

ϕTG ∶ R[p]TG → R[Θ]TG
pik ↦ ε

(i)
k , ∀k ∈ iBi ,∀i ∈ [r].

Since there is a one-to-one correspondence between the variables pik and ε(i)k , the map
ϕTG is an isomorphism. In particular, ker(ϕTG) = ⟨0⟩. Second, using the partition G on
iT we write

R[p]T = R[pj ∶ j ∈ iT ] = R[pij ∶ j ∈ Gi, i ∈ [r]].
Then, ker(ϕT ) is the kernel of the map

ϕT ∶ R[p]T → R[Θ]T
pij ↦ z ⋅ ∏

e∈E(λj)

θ(e), ∀j ∈ Gi,∀i ∈ [r].

We define a multigrading on the variables of R[p]T and R[p]TG as follows:

deg(pij) = deg(pik) = ei, ∀j ∈ Gi,∀k ∈ iBi ,∀i ∈ [r],



4.3. Toric Fiber Products for Staged Trees 71

where ei is the i−th standard unit vector in Zr, with a 1 in coordinate i and zeros
elsewhere. If A is the set of all these multidegrees, then A is linearly independent, as
it is the collection of standard unit vectors in Zr.
Set R ∶= R[p]T /ker(ϕT ), S ∶= R[p]TG/ker(ϕTG), and let

R[p][T ,TG] = R[pijk ∶ j ∈ Gi, k ∈ iBi , i ∈ [r]].

Consider the ring homomorphism

ψ ∶ R[p][T ,TG] → R[p]T ⊗R R[p]TG
pijk ↦ pij ⊗ pik, ∀j ∈ Gi,∀k ∈ iBi ,∀i ∈ [r].

The ideal ker(ψ) is the toric fiber product of ker(ϕT ) and ⟨0⟩.

Proposition 4.3.6. Let T ,G,TG and [T ,TG] be as in Definition 4.3.4. Suppose that
ker(ϕT ) is homogeneous with respect to the multigrading given by A. Then

ker(ϕ[T ,TG]) = ker(ϕT ) ×A ⟨0⟩.

Proof. We need to show that the map ϕ[T ,TG] factorizes according to ψ. We have that

ϕ[T ,TG] ∶ R[p][T ,TG] → R[Θ][T ,TG]

pijk ↦ z ⋅ ∏
e∈E(λjk)

θ(e), ∀j ∈ Gi,∀k ∈ iBi ,∀i ∈ [r]. (4.4)

From the construction of [T ,TG] we can rewrite equation (4.4) as

pijk ↦ z ⋅ ∏
e∈E(λjk)

θ(e) = z ⋅
⎛
⎝ ∏
e∈E(λj)

θ(e)
⎞
⎠
θ(j, jk)

= z ⋅
⎛
⎝ ∏
e∈E(λj)

θ(e)
⎞
⎠
ε
(i)
k , ∀j ∈ Gi,∀k ∈ iBi ,∀i ∈ [r].

Therefore, ϕ[T ,TG] factors through ψ. Since ker(ϕT ) is homogeneous with respect to
the multigrading given by A, we conclude that ker(ϕ[T ,TG]) = ker(ϕT ) ×A ⟨0⟩, that is
ker(ϕ[T ,TG]) is the toric fiber product of ker(ϕT ) and ker(ϕTG) = ⟨0⟩.

Definition 4.3.7. Let (T , θ) be a staged tree of level m. For 1 ≤ q ≤ m we define
V≤q ∶= ⋃qi=1 Vi, where Vq ∶= {v ∈ V ∶ l(v) = q} and E≤q ∶= {(v,w) ∈ E ∶ l(v) ≤ q, l(w) ≤ q}.
The staged subtree (T (q), θ) is defined as the subtree T (q) of T with vertex set V≤q
and edge set E≤q. The labeling of T (q) is induced by T .
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Example 4.3.8. Consider the staged tree T1 in Figure 4.1 and set T = T (3)
1 . Then

T is a staged tree with label set {s0, . . . , s9}. The set iT of indices of the leaves in T
consists of sequences ijk where i, j, k ∈ {0,1}. Consider the partition of iT given by
G = {G1 = {000,010,100,110},G2 = {001,011,101,111}} and let TG = (B1,{s10, s11}) ⊔
(B2,{s12, s13}). Using this setup in the discussion following Definition 4.3.4, we see that
T1 = [T ,TG]. The two polynomial rings required for the gluing construction are

R[p]T = R[pij ∶ j ∈ Gi, i ∈ [2]], R[Θ]TG = R[pik ∶ k ∈ iBi , i ∈ [2]].

Using the set G we define a multigrading on the variables of R[p]T ,R[p]TG as follows

deg(p1
000, p

1
010, p

1
100, p

1
110) = deg(p1

0, p
1
1) = e1,

deg(p2
001, p

2
011, p

2
101, p

2
111) = deg(p2

0, p
2
1) = e2,

so that A = {e1, e2} ⊆ Z2 is linearly independent. That way, the ideal

ker(ϕT ) = ⟨p1
000p

2
101 − p1

100p
2
001, p

1
010p

2
111 − p1

110p
2
011⟩

is homogeneous with respect to the multigrading in A. Hence Proposition 4.3.6 yields
ker(ϕT1) = ker(ϕT ) ×A ⟨0⟩.

Example 4.3.9. Consider the staged tree T2 of Figure 4.1 and let T = T (2)
2 be as in

Definition 4.3.7. Then T is a staged tree with label set L = {s0, . . . , s7}. The set iT
of indices of the leaves in T consists of all strings ij with i = 0, . . . ,3 and j = 0,1.
Consider the partition of iT given by G = {G1 = {00,01,10},G2 = {20,21,30},G3 =
{11,31}} and let TG = (B1,{s8, s9})⊔(B2,{s10, s11})⊔(B3,{s12, s13}). Under this setup,
T2 = [T ,TG]. The set G defines a multigrading on R[p]T with A = {e1, e2.e3} ⊆ Z3. The
ideal ker(ϕT ) = ⟨p1

00p
3
11 − p1

10p
1
01, p

2
20p

3
31 − p2

30p
2
21⟩ is not homogeneous with respect to the

multigrading in A. Thus in this case ker(ϕT2) ≠ ker(ϕT ) ×A ⟨0⟩.

4.3.3 Inductive Tree Gluing
The information provided in Subsection 4.3.2 and particularly in Proposition 4.3.6
provides a way to construct a staged tree from smaller components. However, the new
tree obtained that way is not always guaranteed to be balanced. In this paragraph we
give a sufficient condition to have a balanced tree gluing. Based on this we formulate
an inductive process that allows us to construct a balanced staged tree inductively in
a finite number of steps.

Definition 4.3.10. Let T be a balanced and stratified staged tree. The partition G
of the set iT is called balanced if the tree [T ,TG] is balanced.
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Example 4.3.11. The partition G in Example 4.3.8 is a balanced partition while the
partition G given in Example 4.3.9 is not balanced.

Suppose now that we start with a balanced and stratified staged tree. The following
result tells us how exactly we should partition the leaves of this tree to continue having
a balanced and stratified staged tree.

Proposition 4.3.12. Let T ,G,TG be like in Definition 4.3.4 and denote by S the set
of stages in T that involve vertices that are parents of leaves. If every pair of vertices
v,w in S that are in the same stage satisfy at least one of the conditions

1. ch(v) ⊂ Gi, ch(w) ⊂ Gj for any i, j ∈ [r] not necessarily distinct,

2. {vs,ws} ⊂ Gis for any s ∈ {0, . . . , k} and any is ∈ [r],
where ch(v) = {v0, . . . ,vk}, ch(w) = {w0, . . . ,wk}, then G is a balanced partition.

Proof. Suppose first that ch(v) ⊂ Gi, ch(w) ⊂ Gj for any i, j ∈ [r] not necessarily
distinct. Then t(vs) = tBi , t(ws) = tBj for any s ∈ {0, . . . , k} and some one-level trees
Bi,Bj in TG. It follows that

t(vs1)t(ws2) = tBitBj = t(vs2)t(ws1), ∀s1 /= s2 ∈ {0, . . . , k}

holds in R[p][T ,TG]. Now assume that {vs,ws} ⊂ Gis for any s ∈ {0, . . . , k} and any
is ∈ [r]. Then t(vs) = t(ws) = tBis for any s ∈ {0, . . . , k} and some one-level tree Bis in
TG. It follows that

t(vs1)t(ws2) = tBis1 tBis2 = t(ws1)t(vs2), ∀s1 /= s2 ∈ {0, . . . , k}

holds in R[p][T ,TG].

For the rest of this paragraph, suppose that Tn is a balanced an stratified staged
tree of level n, for some n ∈ N. We will explain how Tn is obtained inductively from
other components in a finite number of steps.

We always start this inductive construction with a one-level tree, say T1. If G1

is a partition of the set iT1 of leaves of T1, and TG1 is a gluing component, then we
can form the balanced and stratified staged tree T2 = [T1,TG1] following the discussion
in Subsection 4.3.2. If G2 is a balanced partition of the set iT2 , then ker(ϕT2) is
homogeneous with respect to the set A2 of multidegrees in R[p]T2 . Therefore, we can
form the balanced and stratified staged tree T3 = [T2,TG2] using Proposition 4.3.6.
Continuing that way we form a staged tree Tn = [Tn−1,TGn−1] from a balanced and
stratified staged tree Tn−1 and a gluing component TGn−1 , where Gn−1 is a balanced
partition of iTn−1 . The set of stages of Tn is exactly equal to ⋃n−1

j=1 G
j. Whenever a

staged tree T is constructed in a way such that T = Tn for some n, we say that T is
an inductively constructed staged tree.
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Example 4.3.13. The staged tree T1 of Figure 4.1 is an inductively constructed staged
tree in four steps. Precisely we have T1 = [[[T (1)

1 ,T1G1 ],T1G2 ],T1G3 ], where T
(1)

1 is like
in Definition 4.3.7. The sets Gi and the components T1Gi

for i = 1,2,3 are as follows

G1 = {{0},{1}}, T1G1 = (B1
1,{s2, s3}) ⊔ (B1

2,{s4, s5}),
G2 = {{00,10},{01,11}}, T1G2 = (B2

1,{s6, s7}) ⊔ (B2
2,{s8, s9}),

G3 = {{000,010,100,110},{001,011,101,111}}, T1G3 = (B3
1,{s10, s11}) ⊔ (B3

2,{s12, s13}).

4.4 Equations via Tree Gluings

In this section we construct generators of a Gröbner basis for the toric ideal of a
balanced and stratified staged tree. The main ingredient for our study is the following
result from [Sul07].

Theorem 4.4.1 (Theorem 2.9, [Sul07]). Suppose that A is a linearly independent set.
Let F ⊂ I be a homogeneous Gröbner basis for I with respect to the weight vector ω1

and let H ⊂ J be a homogeneous Gröbner basis for J with respect to the weight vector
ω2. Let w be a weight vector such that QuadB is a Gröbner basis for IB. Then

Lift(F ) ∪ Lift(H) ∪QuadB

is a Gröbner basis for I ×A J with respect to the weight order φ∗B(ω1, ω2) + εω, for
sufficiently small ε > 0.

This theorem has two important ingredients. The first is the set of equations
denoted by QuadB, these are equations that emerge from the construction of the toric
fiber product. We focus on the description of these equations for the case of balanced
and stratified staged trees in Subsection 4.4.1 and we connect them to the ideal Ipaths

from Definition 4.2.2. The second ingredient is the set Lift(F )∪Lift(H), these are the
lifts of generators of the ideals I and J respectively. We consider the lifts of equations
for inductively constructed staged trees in Subsection 4.4.2 and connect these elements
to generators of the ideal Impaths.

4.4.1 Quadratic Equations
Throughout this section, let Tj be an inductively constructed balanced and stratified
staged tree with Tm = [Tm−1,TGm−1] for any m ∈ {2, . . . , j}. Set rm−1 ∶= ∣Gm−1∣. We
denote by Am−1 the set of multidegrees in R[p]Tm . The set Am−1 is determined by the
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Figure 4.2: Inductive tree gluing to obtain the staged tree T1 of Figure 4.1.
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partition Gm−1 on the set iTm−1 which justifies the index m−1. Consider the monomial
parametrization

φBj−1
∶ R[p]Tj → R[piv, pik ∶ v ∈ Gj−1

i , k ∈ i
B
j−1
i
, i ∈ [rj−1]]

pivk ↦ pivp
i
k,

where Bj−1 denotes the exponent matrix associated to φBj−1
. Set IBj−1

∶= ker(φBj−1
)

and

QuadBj−1
∶= {pivk1

piwk2
− piwk1

pivk2
∶ v,w ∈ Gj−1

i , k1 /= k2 ∈ iBj−1
i
, i ∈ [rj−1]}.

The elements in QuadBj−1
are homogeneous with respect to the multidegrees in Aj−1.

Additionally, by [Sul07, Proposition 10], QuadBj−1
is a Gröbner basis of IBj−1

with
respect to any term order that selects the underlined terms as leading terms. In the
following proposition, we show that the elements in QuadBj−1

are exactly the path
equations of the stages in the leaves of Tj−1.

Proposition 4.4.2. The polynomials in QuadBj−1
are path differences coming from

the stages in Gj−1. Moreover,

IBj−1
= ∑
i∈[rj−1]

∑
v,w∈Gj−1

i

Iv∼w.

Proof. The stages on the leaves of Tj = [Tj−1,TGj−1] are determined by the partitionGj−1

on iTj−1
. Let v,w be two leaves in Tj−1. If v,w ∈ Gj−1

i for some i ∈ [rj−1], then v,w are
in the same stage. The ideal Iv∼w is generated by polynomials pi

[vk1]
pi
[wk2]

−pi
[wk1]

pi
[vk2]

for any k1 /= k2 ∈ i
B
j−1
i
, where Bj−1

i is some one-level tree in TGj−1 . Since the vertices
vk1,vk2,wk1,wk2 are leaves in Tj, then

Iv∼w = ⟨pivk1
piwk2

− piwk1
pivk2

∶ k1 /= k2 ∈ iBj−1
i

⟩.

We have that

QuadBj−1
= ⋃
i∈[rj−1]

⋃
v,w∈Gj−1

i

{pivk1
piwk2

− piwk1
pivk2

∶ k1 /= k2 ∈ iBj−1
i

},

and therefore

IBj−1
= ∑
i∈[rj−1]

∑
v,w∈Gj−1

i

⟨pivk1
piwk2

− piwk1
pivk2

∶ k1 /= k2 ∈ iBj−1
i

⟩ = ∑
i∈[rj]

∑
v,w∈Gj−1

i

Iv∼w.
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Since Tj is an inductively constructed staged tree, the set of stages in Tj is exactly
the union of all stages produced in each iteration, i.e. ⋃j−1

m=1G
m. Set

Quad[Bm] =
rm

⋃
i=1

{p[vk1]p[wk2] − p[wk1]p[vk2] ∶ v,w ∈ Gm
i , k1 /= k2 ∈ iBmi }, (4.5)

for any m ∈ {1, . . . , j − 1}. For m = j − 1 we specialize Quad[Bj−1]
∶= QuadBj−1

.

Corollary 4.4.3. If Ipaths is the ideal of all path differences in Tj, then

Ipaths =
j−1

∑
m=1

I[Bm].

Proof. From Proposition 4.4.2 the polynomials in QuadBm are path differences defining
the stages from Gm in Tm+1 for any m = 1, . . . , j − 1. The statement in the corollary
follows from the observation that the stages in Tj is the union of the Gm for any
m = 1, . . . , j − 1 and the fact that any staged tree Tm is a subtree of Tj.

Example 4.4.4. Consider the balanced and stratified staged tree T1 of Figure 4.1 that
is iteratively constructed as described in Example 4.3.13. The equations defining T1

consist of the quadrics

QuadB3
= {pij1k1

pij2k2
− pij1k2

pij2k1
∶ i ∈ [2], j1, j2 ∈ G3

i , k1 /= k2 ∈ iB3
i
}

= {p1
0000p

1
0101 − p1

0001p
1
0100, p

1
0000p

1
1001 − p1

0001p
1
1000, p

1
0000p

1
1101 − p1

0001p
1
1100,

p1
0100p

1
1001 − p1

0101p1000, p
1
0100p

1
1101 − p1

0101p
1
1100, p

1
1000p

1
1101 − p1

1001p
1
1100,

p2
0010p

2
0111 − p2

0011p
2
0110, p

2
0010p

2
1011 − p2

0011p
2
1010, p

2
0010p

2
1111 − p2

0011p
2
1110,

p2
0110p

2
1011 − p2

0111p
2
1010, p

2
0110p

2
1111 − p2

0111p
2
1110, p

2
1010p

2
1111 − p2

1011p
2
1110}

that correspond to the path differences for the stages in the leaves of T4, and the
equations Quad[Bm] in (4.5) that define the other stages in T4. These are given as
follows. For m = 1 the set Quad[B1]

is the empty set because there are no relations
between the vertices and the edge labels in T2 that define stages, while for m = 2,

Quad[B2]
= {p[000]p[101] − p[001]p[100], p[010]p[111] − p[011]p[110]}.

The next lemma is useful when proving the main theorem of the chapter.

Lemma 4.4.5. Let Tj be an inductively constructed balanced and stratified staged
tree and suppose that Tj+1 = [Tj,TGj] is also balanced and stratified. Then the elements
in QuadBj−1

are homogeneous with respect to the multigrading in Aj.



78 Chapter 4. Gröbner Bases for Staged Trees

Proof. Since Tj is inductively constructed, there exists a sequence

(T1,TG1), . . . , (Tj−1,TGj−1)

of trees and gluing components from which Tj is obtained. Set i ∶= j − 1. From Propo-
sition 4.4.2, the quadrics in

QuadBi =
ri

⋃
l=1

{pvk1pwk2 − pwk1pvk2 ∶ v,w ∈ Gi
l, k1 /= k2 ∈ iBi

l
}

are the path equations of the stages in Gi = {Gi
1, . . . ,G

i
ri
} in Ti+1 and they are homo-

geneous with respect to the multigrading in Ai. In order to show that those equations
are Ai+1−homogeneous we need to jump to the construction of Ti+2 = [Ti+1,TGi+1]. This
is because from the tree gluing construction, the multidegrees Ai+1 are determined by
the partition Gi+1 of the set iTi+1

which allows for the construction of Ti+2. An useful ar-
gument for the proof is that if a,b ∈ iTi+1

are two leaves in Ti+1 that belong to the same
set Gi+1

α of the partition Gi+1, then they have the same degree, i.e. deg(pa) = deg(pb)
in R[p]Ti+1

.
The staged tree Ti+2 is balanced and stratified from the assumption. Since Ti+1 is a
balanced and stratified staged subtree of Ti+2, all stages in Gi satisfy the balanced
condition (⋆) in R[Θ]Ti+2

. In other words, for any α ∈ [ri], and any vertices v,w ∈ Gi
α

with ch(v) = {vk ∶ k ∈ iBiα} and ch(w) = {wk ∶ k ∈ iBiα} the equation

t(i+2)(vk1)t(i+2)(wk2) = t(i+2)(wk1)t(i+2)(vk2), ∀k1 /= k2 ∈ iBiα , (4.6)

is valid in R[Θ]Ti+2
. Any u ∈ iTi+1

= i[Ti,TGi ] is described as u ∈ {vk,wk ∶ k ∈ iBiα}, hence
when constructing the staged tree Ti+2 = [Ti+1,TGi+1], the interpolating polynomial
t(i+2)(u) in Ti+2 is exactly equal to the sum of edge labels of some one level probability
tree Bi+1

β in TGi+1 . From the validity of equation (4.6) we distinguish between two cases
for the values of the interpolating polynomials t(i+2)(vk1), t(i+2)(wk2), t(i+2)(wk1) and
t(i+2)(vk2).

If t(i+2)(vk1) = t(i+2)(wk1) is equal to the sum of edge labels of some one level
probability tree Bi+1

γ and t(i+2)(vk2) = t(i+2)(wk2) is equal to the sum of edge labels
of some one level probability tree Bi+1

δ , where Bi+1
γ ,Bi+1

δ are components in TGi+1 , then
{vk1,wk1} belong in the same partition Gi+1

γ of iTi+1
and {vk2,wk2} belong in the same

partition Gi+1
δ of iTi+1

. If we associate to the sets Gi+1
γ ,Gi+1

δ multidegrees eγ and eδ in
Ai+1 respectively, then the quadrics pvk1pwk2−pwk1pvk2 ∈ QuadBi are Ai+1−homogeneous
polynomials of degree eγ + eδ. This proves the Lemma.

If t(i+2)(vk1) = t(i+2)(vk2) and t(i+2)(wk1) = t(i+2)(wk2), then following exactly the
same arguments as in the above paragraph we prove the Ai+1−homogeneity of the
quadrics in QuadBi .
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4.4.2 Lifted Equations
In the previous subsection we studied the equations that emerge from the toric fiber
product construction. We further noticed that the ideal Ipaths is described by simply
collecting the quadrics in Quad[Bm] at each step of the inductive toric fiber product.
We now look at lifts of equations in Quad[Bm].

Let T ,G,TG and [T ,TG] be as in Definition 4.3.4 and denote by A the multigrading
on the rings R[p]T ,R[p][T ,TG] imposed by G. Recall the definition of the lifting of a
homogeneous polynomial in R[p]T to the polynomial ring R[p][T ,TG] of the toric fiber
product. Since we only consider pure quadratic binomials, we restrict the definition of
lifts provided in [Sul07] to this particular case. Let

f = pi1j1
pi2j2

− pi1j3
pi2j4

∈ R[p]T

be a homogeneous polynomial with respect to the multigrading given by A, where
j1, j3 ∈ Gi1 , j2, j4 ∈ Gi2 for some i1, i2 ∈ [r]. Let Bi1 ,Bi2 be one-level probability trees in
TG and set k = (k1, k2) with k1 ∈ iBi1 , k2 ∈ iBi2 . Consider the polynomial fk ∈ R[p][T ,TG]

defined by
fk ∶= pi1j1k1

pi2j2k2
− pi1j3k1

pi2j4k2
.

Then from [Sul07] fk is an element in ker(ϕT ) ×A ker(ϕTG). Hence, fk ∈ ker(ϕ[T ,TG]).

Definition 4.4.6. Let A be the multigrading of the rings R[p]T ,R[p][T ,TG] determined
by G, and let F ∈ ker(ϕT ) be a collection of pure homogeneous binomials with respect
to the multigrading in A. We associate to each f ∈ F the set Tf = iB1 × iB2 of indices
and define

Lift(F ) ∶= {fk ∶ f ∈ F, k ∈ Tf}.
The set Lift(F ) is the lifting of F to ker(ϕT ) ×A ker(ϕTG).

The information provided in Lemma 4.4.5 allows us to talk about liftings of the
pure homogeneous binomials in QuadBm .

Definition 4.4.7. Let Tj be an inductively constructed staged tree with Tm = [Tm−1,TGm−1]
for any m = 2, . . . , j. If q is a non-negative integer with 0 ≤m + q ≤ j − 1, define by

Liftq(QuadBm) ∶= LiftAm+q(. . . (LiftAm+2(LiftAm+1(QuadBm))) . . . ),

the degree q lifting of QuadBm. Here the subscript A indicates that the argument
in LiftA(⋅) must be homogeneous with respect to the multigrading A.

We formulate a lemma that says that level q subtrees of balanced and stratified
staged trees are also balanced. This leads us to consider interpolating polynomials of
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a vertex in two different rings. For a staged tree T = (V,E), θ and a vertex v ∈ V
of level q, we write t(j)(v) for the interpolating polynomial of v in the level j subtree
(T (j), θ ∣E≤j), where q ≤ j ≤ m and m is the level of T. Thus t(j)(v) is an element of
R[Θ]T (j) .

Lemma 4.4.8. Let (T , θ) be a staged tree of level m and let q be a positive integer,
1 ≤ q ≤m − 1. If (T , θ) is balanced and stratified, then the level q subtree T (q) of T is
also balanced and stratified.

Proof. Let v,w be two vertices in T (q) that are in the same stage and assume that
ch(v) = {v0, . . . ,vk}, ch(w) = {w0, . . . ,wk}. Since (T , θ) is a balanced staged tree, by
Definition 4.1.8, the equation

t(vi)t(wj) = t(wi)t(vj) ∀i /= j ∈ {0, . . . , k} (4.7)

is valid in R[Θ]T . In order to show that T (q) is balanced, we need to prove that latest
equation holds in R[Θ]T (q) . To this end, if a ∈ V≤q we consider the set

[a] = {b ∈ iT (q) ∶ the root-to-b paths in T (q) pass through a}.

If c ∈ {vi,vj,wi,wj ∶ i /= j ∈ {0, . . . , k}} then

tm(c) = ∑
b∈[c]

∏
e∈E(λb)

θ(e)t(m)(b),

where λb is the c−to-b path in T (q), is a polynomial in R[Θ]T . Denote by t(m)(c) ∣T (q)
the polynomial obtained from tm(c) when we specialize tm(b) = 1 for any vertex b ∈ [c].
From the assumption that T is stratified, it follows that t(m)(c) ∣T (q) is a polynomial in
R[Θ]T (q) . Precisely, t(m)(c) ∣T (q) is the interpolating polynomial t(q)(c) of c as a vertex
in T (q). Applying this specialization to (4.7) yields the balanced condition for the pair
v,w in R[Θ]T (q) .

Lemma 4.4.9. Let Tj be an inductively constructed balanced and stratified staged
tree and suppose Tj+1 = [Tj,TGj] is also balanced and stratified. Then, the elements

Liftj−2(QuadB1
),Liftj−3(QuadB2

), . . . ,Lift(QuadBj−2
),QuadBj−1

are homogeneous with respect to the multigrading in Aj.

Proof. Since Tj is an inductively constructed balanced and stratified staged tree, there
exists a sequence

(T1,TG1), (T2,TG2), . . . , (Tj−1,TGj−1)
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of staged trees and gluing components, from which Tj is obtained. Moreover by Lemma
4.4.8 each of the trees T1, . . . ,Tj−1 is balanced. Fix q ∈ {0, . . . , j−2} and i = j−1−q. We
will show that the elements Liftq(QuadBi) are homogeneous with respect to the multi-
grading in Aj. To this end we show that for m ∈ {0, . . . , q} the elements Liftm(QuadBi)
are homogeneous with respect to the multigrading in Ai+m+1. We proceed by induction
on m.

Form = 0, the elements Lift0(QuadBi) = QuadBi are, by Lemma 4.4.5, homogeneous
with respect to the multigrading in Ai+1. Consequently, all the polynomials in QuadBi
can be lifted to polynomials in ker(ϕTi+2

).
Suppose that Liftm−1(QuadBi) is formed inductively by lifting the equations in

QuadBi and at each step all the equations lift. An element in Liftm−1(QuadBi) is a
binomial of the form

f = pvk1lpwk2u′ − pwk1upvk2l′ ,

for any α ∈ [ri],v,w ∈ Gi
α, k1 /= k2 ∈ iBiα , where u,u′, l, l′ are sequences of non-negative

integer numbers of length m− 1. These sequences arise as subindices after m− 1 times
of lifting the binomial f. The equations in Liftm−1(QuadBi) define the tree Ti+m. We
claim that f ∈ Liftm−1(QuadBi) is homogeneous with respect to the multigrading in
Ai+m.

In order to prove the claim, we follow the same treatment as for m = 0. We know
that two elements in the same set of the partition Gi+m have the same degree with
respect to Ai+m. This condition can be verified for f checking that the condition

t(i+m+1)(vk1l)t(i+m+1)(wk2u
′) = t(i+m+1)(wk1u)t(i+m+1)(vk2l

′)

is valid in R[Θ]Ti+m+1
. If c ∈ {vk1,vk2,wk1,wk2}, then c ∈ iTi+m . Denote by [c] ∶= {β ∈

iTi+m ∶ the root-to-β path in Ti+m goes through c}. Since Ti+m is a balanced and strati-
fied staged subtree of Ti+m+1, the stages in Gi must satisfy condition (⋆) in R[Θ]Ti+m+1

.
In terms of interpolating polynomials, the equation

t(i+m+1)(vk1)t(i+m+1)(wk2) = t(i+m+1)(wk1)t(i+m+1)(vk2) (4.8)

must be valid in R[Θ]Ti+m+1
. Equation (4.8) can be rewritten as follows

⎛
⎝ ∑
vk1l∈[vk1]

⎛
⎝ ∏
e∈E(vk1→vk1l)

θ(e)
⎞
⎠
t(i+m+1)(vk1l)

⎞
⎠
⋅
⎛
⎝ ∑
wk2u′∈[wk2]

⎛
⎝ ∏
e∈E(wk2→wk2u′)

θ(e)
⎞
⎠
t(i+m+1)(wk2u

′)
⎞
⎠
=

⎛
⎝ ∑
wk1u∈[wk1]

⎛
⎝ ∏
e∈E(wk1→wk1u)

θ(e)
⎞
⎠
t(i+m+1)(wk1u)

⎞
⎠
⋅
⎛
⎝ ∑
vk2l′∈[vk2]

⎛
⎝ ∏
e∈E(vk2→vk2l′)

θ(e)
⎞
⎠
t(i+m+1)(vk2l

′)
⎞
⎠
.

If we specialize t(i+m+1)(vk1l) = ti+m+1(vk2l′) = ti+m+1(wk1u) = ti+m+1(wk2u′) = 1, then
we recover the interpolating polynomials t(i+m)(vk1), t(i+m)(vk2), t(i+m)(wk1), t(i+m)(wk2)
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in R[Θ]Ti+m . In this case we have

⎛
⎝ ∑
vk1l∈[vk1]

⎛
⎝ ∏
e∈E(vk1→vk1l)

θ(e)
⎞
⎠
⎞
⎠
⋅
⎛
⎝ ∑
wk2u′∈[wk2]

⎛
⎝ ∏
e∈E(wk2→wk2u′)

θ(e)
⎞
⎠
⎞
⎠
=

⎛
⎝ ∑
wk1u∈[wk1]

⎛
⎝ ∏
e∈E(wk1→wk1u)

θ(e)
⎞
⎠
⎞
⎠
⋅
⎛
⎝ ∑
vk2l′∈[vk2]

⎛
⎝ ∏
e∈E(vk2→vk2l′)

θ(e)
⎞
⎠
⎞
⎠
. (4.9)

The factors in the above equality are sums of monomials all with coefficients equal
to one. Hence, for every pair vk1l ∈ [vk1],wk2u′ ∈ [wk2] in the product of the left
hand-side of (4.9), there is a pair wk1u ∈ [wk1],vk2l′ ∈ [vk2] in the product of the
right hand-side, such that

⎛
⎝ ∏
e∈E(vk1→vk1l)

θ(e)
⎞
⎠
⋅
⎛
⎝ ∏
e∈E(wk2→wk2u′)

θ(e)
⎞
⎠
=
⎛
⎝ ∏
e∈E(wk1→wk1u)

θ(e)
⎞
⎠
⋅
⎛
⎝ ∏
e∈E(vk2→vk2l′)

θ(e)
⎞
⎠
.

Hence,

∑
vk1l∈[vk1],
wk2u

′∈[wk2]

⎛
⎜⎜⎜
⎝

∏
e∈E(vk1→vk1l),
e′∈E(wk2→wk2u

′

θ(e)θ(e′)
⎞
⎟⎟⎟
⎠
(t(i+m+1)(vk1l)t(i+m+1)(wk2u

′)−

− t(i+m+1)(wk1u)t(i+m+1)(vk2l
′)) = 0.

Since Ti+m+1 is stratified, the variables involved in the factored monomials above
are disjoint from the variables involved in the factors t(i+m+1)(vk1l)t(i+m+1)(wk2u′) −
t(i+m+1)(wk1u)t(i+m+1)(vk2l′). Therefore, the last equation holds whenever

t(i+m+1)(vk1l)t(i+m+1)(wk2u
′) − t(i+m+1)(wk1u)t(i+m+1)(vk2l

′) = 0

for any summand. This proves that Liftm−1(QuadBi) is homogeneous with respect to
Ai+m.

Proposition 4.4.10. Let Tj be an inductively constructed balanced and stratified
staged tree. If Impaths is the ideal of maximal path extensions in Tj, then the generating
set of Impaths is exactly the union

Liftj−2(QuadB1
) ∪ Liftj−3(QuadB2

) ∪ ⋅ ⋅ ⋅ ∪ Lift(QuadBj−2
) ∪QuadBj−1

.

Proof. From Proposition 4.4.2, the equations in QuadBj−1
correspond to path differ-

ences for the stages in Gj−1. Those path differences are by construction associated to
maximal path extensions in Tj. Fix two non-negative integers q ∈ {0, . . . , j − 2} and
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i = j − 1 − q and consider the lifts Liftq(QuadBi). From Lemma 4.4.9 the equations in
Liftq(QuadBi) are homogeneous with respect to the multigrading in Aj. As a result,
the binomials in QuadBi can be lifted to binomials in ker(ϕTj+1

). For any α ∈ [ri] and
any v,w ∈ Gi

α, consider the binomial

f = pvk1pwk2 − pwk1pvk2 ∈ QuadBi ,

where k1 /= k2 ∈ iBiα . The lifting of f to ker(ϕTj+1
) is a binomial

fβ = pvk1β1pwk2β2 − pwk1β1pvk2β2 ,

where β1,β2 are sequences of non-negative integers of length m. These sequences
arise as subindices after m times of lifting the binomial f. Since fβ ∈ ker(ϕTj+1

), then
ϕTj+1

(fβ) = 0. Using Definition 4.2.4 of extensions of paths, the pair of paths (vk1β1 →
wk2β2,wk1β1 → vk2β2) is an extension of the pair (vk1 →wk2,wk1 → vk2). In other
words, fβ is an extension of the path equation f for any choice of the sequences β1,β2.
Since fβ is a binomial for any choice of β1,β2, we conclude that Liftq(QuadBi) is a set
of path differences corresponding to maximal path extensions in Tj.

Example 4.4.11. The polynomials in Quad[B2]
of Example 4.4.4 are lifted to the

binomials

Lift(Quad[B2]
) = {p000sp101t − p001tp100s, p010sp111t − p011tp110s ∶ s ∈ iB3

1
, t ∈ iB3

2
}

{p0000p1010 − p0010p1000, p0100p1110 − p0110p1100, p0000p1011 − p0011p1000,

p0100p1111 − p0111p1100, p0001p1010 − p0010p1001, p0101p1110 − p0110p1101,

p0001p1011 − p0011p1001, p0101p1111 − p0111p1101}.

4.4.3 Gröbner Bases for Staged Trees
Theorem 4.4.12. Let (T , θ) be a balanced and stratified staged tree. Then the ideal
ker(ϕT ) is generated by a quadratic Gröbner basis with squarefree initial ideal.

Proof. Let T be an inductively constructed balanced and stratified staged tree. Then
T = Tn for some n ∈ N. By Proposition 4.4.10 T is defined by elements of the form

Fn = Liftn−2(QuadB1
) ∪ Liftn−3(QuadB2

) ∪ ⋅ ⋅ ⋅ ∪ Lift(QuadBn−2
) ∪QuadBn−1

.

We claim that Fn is a quadratic Gröbner basis for the ideal ker(ϕTn) with squarefree
initial ideal. We prove the claim using induction on n.
Starting with n = 2, the set F2 = QuadB1

is by [Sul07, Proposition 10] a quadratic
Gröbner basis for the ideal ker(ϕT2) = ker(ϕT1) ×A1 ⟨0⟩ with squarefree initial ideal.
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Suppose that the claim is true for n − 1 so that the elements in Fn−1 form a quadratic
Gröbner basis for the ideal ker(ϕTn−1) with a squarefree initial ideal.
We will show that the claim holds for n. Since Tn is a balanced and stratified staged
tree and Tn−1 is a staged subtree of Tn, it follows from Lemma 4.4.8 that Tn−1 is also
balanced and stratified. By Lemma 4.4.9 we know that the equations in Fn−1 are
homogeneous with respect to the multigrading in An. As a result they can be lifted to
equations in ker(ϕTn). The ideal ker(ϕTn) is generated by the set Fn. The equations in
the set Fn consist of the lifts of Fn−1 to ker(ϕTn) and the equations in QuadBn−1

. Hence
from the induction hypothesis and [Sul07, Proposition 10] the set Fn is a Gröbner
basis for ker(ϕTn). Since the elements in Fn are lifts of the binomials in QuadBj for any
j = 1, . . . , n − 1, and since those binomials have squarefree leading terms, we conclude
that the initial ideal of ⟨Fn⟩ is squarefree and the Theorem follows.

Theorem 4.4.12 is of great importance in convex geometry as shown in the preceding
result.

Corollary 4.4.13. Let (T , θ) be a balanced and stratified staged tree. If ∆ is the
polytope obtained as the convex hull of the lattice points in the exponent matrix of
the map ϕT , then ∆ admits a regular unimodular triangulation. Moreover, the toric
variety defined by ker(ϕT ) is Cohen-Macaulay.

Proof. As shown in Theorem 4.4.12, under the assumption that (T , θ) is a balanced
and stratified staged tree the generating set of the ideal ker(ϕT ) forms a quadratic
Gröbner basis with a squarefree initial ideal. From [Stu96, Corollary 8.9], the latest
induces a regular unimodular triangulation of ∆.

Example 4.4.14. Consider the staged tree T1 of Figure 4.1. This is an example of
a balanced and stratified staged tree. The map ϕT1 is given in Example ?? and the
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exponent matrix of ϕT1 is the following

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

p
0
0
0
0

p
0
0
0
1

p
0
0
1
0

p
0
0
1
1

p
0
1
0
0

p
0
1
0
1

p
0
1
1
0

p
0
1
1
1

p
1
0
0
0

p
1
0
0
1

p
1
0
1
0

p
1
0
1
1

p
1
1
0
0

p
1
1
0
1

p
1
1
1
0

p
1
1
1
1

s0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
s1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
s2 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
s3 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
s4 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
s5 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
s6 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0
s7 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0
s8 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0
s9 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1
s10 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
s11 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0
s12 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0
s13 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (4.10)

The polytope ∆ of Corollary 4.4.13 for this example is the convex hull of the vectors
m1, . . . ,m16 that are columns of the matrix (4.10), i.e. ∆ = conv(m1, . . . ,m16) ⊆ R16.
Since the rank of the matrix (4.10) is equal to eight, ∆ is a 0/1 polytope of dimension
equal to eight.

4.5 Applications to Algebraic Statistics
Staged tree models are a class of graphical discrete statistical models introduced by
Anderson and Smith in [SA08]. While Bayesian networks and decomposable models are
defined via conditional independence statements on random variables corresponding to
the vertices of a graph, staged tree models encode independence relations on the events
of an outcome space represented by a tree. In the statistical literature these models are
also referred to as chain event graphs. We refer the reader to the book [SGC17] and to
[TSR10] to find out more about their statistical properties, practical implementation
and causal interpretation. In this section we give a formal definition of these models
and recall results from [DG18] and [Gör17] about their defining equations.

4.5.1 Discrete Statistical Models
The basic setting for a statistical model is the random experiment. The set of all
possible outcomes of this random experiment is the sample space. We usually denote
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the sample space by Ω. Depending on the experiment Ω may be finite, countably
infinite or uncountably infinite. We refer to the elements of Ω as atoms.

A random variable is a random number which is determined by the outcome of a
random experiment. It is usually denoted by a capital letter X. Mathematically, X is
a real-valued map on the sample space Ω ∶

X ∶ Ω→ R, ω ↦X(ω).

For the purposes of this section we consider only discrete random variables, meaning
that the set X(Ω) of possible values for X is either finite or countably finite. We
denote by {X = x} the set of outcomes in Ω for which the value x is assigned to X ∶

{X = x} = {ω ∈ Ω ∶X(ω) = x} =X−1({x}).

LetX be a discrete random variable with values in a finite set Ω. If Ω has n elements,
then we assume that Ω = {1, . . . , n} and we identify the probability distribution of X
with a vector p = (p1, . . . , pn) ∈ Rn, where each coordinate pi is the probability that
P(X = i) for any i ∈ Ω as well as pi ≥ 0 for any i ∈ Ω and ∑i∈Ω pi = 1. Note that the non-
negativity and the sum-to-one condition of the coordinates pi implies that 0 ≤ pi ≤ 1
for any i ∈ Ω. The probability simplex is then defined as the following set

∆n−1 ∶= {p ∈ Rn ∶
n

∑
i=1

pi = 1, pi ≥ 0 ∀i = 1, . . . , n} .

Following [Sul18, Chapter 5], we define a statistical model as a family of probability
distributions over a given space. Hence, when the space is discrete, a discrete sta-
tistical model is determined by a set of points lying inside the probability simplex.
We often study parametric statistical models, meaning that they are defined as fami-
lies of distributions over a parameter space together with certain constraints on these
parameters.

Definition 4.5.1. Let Θ ⊆ Rd, d ∈ N be a finite dimensional parameter space. A
discrete and parametric statistical model on a discrete space Ω is a set of vectors

MΨ ∶= {pθ ∶ θ ∈ Θ} ⊂ ∆o
n−1

which lie in the (n − 1)−dimensional probability simplex, for n = ∣Ω∣. The index Ψ in
MΨ is a bijective map

Ψ ∶ Θ→MΨ, θ ↦ pθ

which identifies a choice of parameters in Θ with a distribution in the model. Note
thatMΨ = Ψ(Θ). The map Ψ is the parametrization of the model.

Statistical models are often parametrized by polynomial maps. When this is the
case, these models form semialgebraic sets.
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4.5.2 Conditional Independence
Let X = (X1,X2, . . . ,Xn) be a vector of discrete random variables. If the random
variable Xi has sample space [di] for any i = 1, . . . , n then the vector X takes its values
on a cartesian product space Σ =∏n

i=1[di]. We write px1⋯xn for the probability P(X1 =
x1, . . . ,Xn = xn). If A is any subset of [n], then we denote by XA = (Xa ∶ a ∈ A) the
subvector of A indexed by the elements of A. The sample space of XA is ΣA =∏a∈A[da].

Definition 4.5.2. Let A,B,C be pairwise disjoint subsets of [n]. The random vector
XA is conditionally independent of XB given XC if and only if

P(XA = a,XB = b ∣XC = c) = P(XA = a ∣XC = c) ⋅ P(XB = b ∣XC = c)

for any a ∈XA, b ∈XB and c ∈XC . The notation XA ⊥⊥XB ∣XC is used to denote that
the random vector X satisfies the conditional independence statement that XA

is conditionally independent on XB given XC . When C is the empty set this reduces
to the marginal independence between XA and XB.

Remark 4.5.3. For simplicity, the conditional independence statement XA ⊥⊥XB ∣XC

is often further abbreviated as A ⊥⊥ B ∣ C.

Definition 4.5.4. Let C be a list of conditional independence statements among the
variables in a vector X. The conditional independence model, denoted byMC, is
the set of all probability distributions on Σ that satisfy the conditional independence
statements in C.

A conditional independence statement XA ⊥⊥XB ∣XC translates into the condition
that the joint probability distribution of the variables in X satisfies a set of quadratic
equations. For elements a ∈ XA, b ∈ XB and c ∈ XC we set pa,b,c,+ = P(XA = a,XB =
b,XC = c).

Proposition 4.5.5 (Proposition 4.1.6, [Sul18]). If X is a discrete random variable,
then the conditional independence statement XA ⊥⊥XB ∣XC holds if and only if

pa1,b1,c,+ ⋅ pa2,b2,c,+ − pa1,b2,c,+ ⋅ pa2,b1,c,+ = 0

for any a1, a2 ∈ ΣA, b1, b2 ∈ ΣB, c ∈ ΣC .

The conditional independence ideal IA⊥⊥B∣C is the ideal generated by all the quadratic
polynomials of Proposition 4.5.5. If C is a list of conditional independence statements,
then the conditional independence ideal IC is the sum of all conditional independence
ideals associated to statements in C.
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4.5.3 The Staged Tree Model
Let T = (V,E) be a tree graph as in Section 4.1. In Probability theory and Statistics,
tree graphs are used to represent all the possible outcomes of experiments in an efficient
way. The setup for the statistical study of tree graphs is the following. Any vertex
v ∈ V denotes a different state of the experiment and any edge e = (v,w) ∈ E denotes
the possibility of passing from the state v to the next state w. For any j ∈ iT , every
root-to-leaf path λj ∈ Λ corresponds to an atom in an induced sample space and depicts
the history of a possible single outcome of the experiment.

In Section 4.1 we assigned labels to each of the edges in T using a set of labels L
and a surjective a map θ ∶ E → L, and we denoted by θv the set of edge labels attached
to a given vertex v.

Definition 4.5.6. The staged tree (T , θ) is a staged probability tree if θv ∈ ∆o
∣E(v)∣−1

for any v ∈ V.
If we denote by θ = (θ(e) ∶ θ(e) ∈ im(θ)) the vector of parameters where each entry

is a label in L, then θ is an element of the parameter space which is a product of
probability simplices,

ΘT =
⎧⎪⎪⎨⎪⎪⎩
θ ∶ 0 < θ(e) < 1, ∑

e∈E(v)

θ(e) = 1 ∀v ∈ V
⎫⎪⎪⎬⎪⎪⎭
= ∏
v∈V

∆o
∣E(v)∣−1.

The product of edge labels along a root-to-leaf path λj ∈ Λ, for some j ∈ iT ,

pθ(λj) = ∏
e∈E(λj)

θ(e), j ∈ iT

is an atomic monomial. It is shown in [Gör17, Proposition 1.6] that under the ad-
ditional assumption that T is a probability tree the atomic monomials are atomic
probabilities. Consequently the vector (pθ(λj) ∶ j ∈ iT ) defines a probability distribu-
tion on (T , θ). Therefore, we have the following definition for a staged tree probability
model.

Definition 4.5.7. Let (T , θ) be a staged tree and let θ be the vector of parameters
associated to the tree. A staged tree modelM(T ,θ) is the image of the map

ΨT ∶ ΘT →M(T ,θ)

θ ↦ pθ = (pθ(λj) ∶ j ∈ iT ).

From the discussion preceding Definition 4.5.7 it follows thatM(T ,θ) ⊆ ∆o
∣iT ∣−1

. Two
staged trees (T , θ) and (T ′, θ′) are statistically equivalent if there exists a bijection
between the sets ΛT and ΛT ′ in such a way that the image of ΨT is equal to the image
of ΨT ′ under this bijection.
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Remark 4.5.8. Given an edge e = (v,w) in T , the label θ(e) is known in the statistical
literature as the transition probability of passing from the state v to the state w given
arrival at v.

A staged tree modelM(T ,θ) is a discrete statistical model that can be parametrized
by a map

ΨT ∶∏
v∈V

∆o
∣E(v)∣−1 →∆o

∣iT ∣−1

(θv ∶ v ∈ V )↦
⎛
⎝ ∏
e∈E(λj)

θ(e) ∶ j ∈ iT
⎞
⎠

so that ΨT (∏v∈V ∆o
∣E(v)∣−1

) =M(T ,θ). The domain of ΨT is a semialgebraic set given by
a product of probability simplices. As a consequence, M(T ,θ) is also a semialgebraic
set. An important property of the staged tree models, as noted in [Gör17], is that the
only inequality constraints of the image of ΨT are those imposed by the probability
simplex, that is 0 ≤ pj ≤ 1 for any j ∈ iT and ∑j∈iT pj = 1.

Let (T , θ) be a staged tree. In Definition 4.1.2 we defined the toric ideal associated
to (T , θ) as the kernel of a ring homomorphim from the polynomial ring R[p]T to the
polynomial ring R[Θ]T . Now we define the toric ideal associated to the staged tree
modelM(T ,θ). To this end let

m ∶= ⟨1 − ∑
e∈E(v)

θ(e) ∶ v ∈ V ⟩

be the ideal of R[Θ]T generated by all the sum-to-one conditions in the probability sim-
plex, and consider the quotient ring R[Θ]MT ∶= R[Θ]T /m. Denote by π the canonical
projection from R[Θ]T to R[Θ]MT .

Definition 4.5.9. LetM(T ,θ) be a staged tree model and set ϕT ∶= π ○ ϕT . The ideal
ker(ϕT ) is the staged tree model ideal associated toM(T ,θ).

It follows from the above definition that for every staged tree (T , θ) the toric staged
tree ideal is contained in the staged tree model ideal, i.e. ker(ϕT ) ⊆ ker(ϕT ). Note that
it is not true in general that these two ideals are equal. However, the result in [DG18,
Theorem 10] ensures that if (T , θ) is a balanced staged tree, then ker(ϕT ) = ker(ϕT ).
As a consequence we have the following corollary of Theorem 4.4.12.

Corollary 4.5.10. If (T , θ) is a balanced and stratified staged tree, then the ideal
ker(ϕT ) admits a quadratic Gröbner basis with squarefree initial ideal.

Corollary 4.5.10 is relevant in statistics because of the importance of Gröbner bases
in sampling. For more details on this topic we refer the interested reader to [AHT12].
In the following we provide examples of statistical models that can be represented by
staged trees and to which Corollary 4.5.10 can be applied.
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T ∶
X3 X2 X1

0

d3

⋮

⋮

00

0d2

d30

d3d2

⋮

⋮

⋮

⋮

⋮

⋮

p000

p0d2d1

pd3d20

pd3d2d1

T ′∶
X3 X1 X2

0

d3

⋮

⋮

00

0d1

d30

d3d1

⋮

⋮

⋮

⋮

⋮

⋮

Figure 4.3: The staged trees T and T ′ are statistically equivalent, they represent the
contraction axiom for three discrete random variables X1,X2 and X3.

Example 4.5.11. Following the discussion in Subsections 1.2.2, 1.2.3 of [Gör17], the
staged tree T1 in Figure 4.1 is the staged tree representation for the decomposable
model associated to the graph G = [12][23][34] on four vertices. Since the staged tree
model M(T1,θT1

) coincides with the decomposable model given by G, we know from
[GMS+06] that ker(ϕT1

) has a quadratic Gröbner basis. The same result is recovered
using Corollary 4.5.10.

Example 4.5.12. We consider the contraction axiom for positive distributions using
staged tree models. Fix three discrete random variables X1,X2,X3 with state spaces
[d1 +1], [d2 +1], [d3 +1] respectively. The contraction axiom states that the set of con-
ditional independence statements C = {X1 ⊥⊥X2 ∣X3,X2 ⊥⊥X3} implies the statement
X2 ⊥⊥ (X1,X3). A primary decomposition of the ideal IC was obtained in [GSS05,
Theorem 1]. Here we provide a proof using staged trees, that one of the primary
components of IC is the prime binomial ideal IX2⊥⊥(X1,X3). As mentioned in [GSS05]
this is a well known fact. First we explain how to represent the two statements in
C with a staged tree. Consider the tree T in Figure 4.3. This tree represents the
state space of the vector (X3,X2,X1) as a sequence of events where X3 takes place
first, X2 second and X1 third. The vertices of T are indexed recursively as defined
at the beginning of Subsection 4.3.2. The statement X2 ⊥⊥X3 is represented by the
stage consisting of the vertices {0, . . . , d3}, these are colored gray in T . The statement
X1 ⊥⊥X2 ∣X3 is represented by the stages S0, . . . , Sd3 where Si = {ij ∣ j ∈ {0, . . . , d2}} and
i ∈ {0, . . . , d3}. These stages mean that for a given outcome of X3 the unfolding of the
event X2 followed by X1 behaves as an independence model on two random variables.
In Figure 4.3 the stage S0 is colored in pink and the stage Sd3 is colored in purple.
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Figure 4.4: The staged trees T and T ′ are statistically equivalent.

Although the gray vertices are not in the same position, we can easily check that T is
balanced and stratified. Therefore ker(ϕT ) has a quadratic Gröbner basis. Following
the proof of Theorem 2.3.14 we can construct this basis explicitly. It consists of a
set of quadratic equations given by the elements in QuadB2

coming from the stages
in S0, . . . , Sd3 and the lifts of the equations QuadB1

coming from the stage {0, . . . , d3}.
If we swap the order of X1 and X2 in T , we obtain the staged tree T ′ in Figure 4.3.
This tree represents the same statistical model as T now with the unfolding of events
X3,X2,X1. The gray stages in T ′ represent the statement X2 ⊥⊥ (X1,X3). Hence,
after establishing the evident bijection between the leaves of T and T ′ we see that
IX2⊥⊥(X1,X3) = ker(ϕT ′) = ker(ϕT ).

The definition of staged tree in [Gör17] requires that each vertex in T has either no
or at least two outgoing edges from v. We stepped away from making this requirement
for the staged trees we consider in Section 4.1. In the next lemmas we explain how this
mild extension of the definition behaves with respect to condition (⋆) and how trees
defined according to [Gör17] are recovered from the more general trees we consider.
Throughout the next lemmas, we fix a staged tree (T , θ) with edge set E and define
E1 = {e ∈ E ∣ E(v) = {e} for some v ∈ V }. For the trees in Figure 4.4, T has ∣E1∣ = 6
while for T ′, ∣E1∣ = 0.

Lemma 4.5.13. Suppose (T , θ) is a staged tree. Let T ′ be the staged tree obtained
from T by contracting the edges in E1. ThenM(T ,θ) =M(T ′,θ) and ker(ϕT ) = ker(ϕT ′).

Proof. First, note that the number of root-to-leaf paths in T ′ is the same as in T .
Moreover, each root-to-leaf path λ′ in T ′ is obtained from a unique root-to-leaf path
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λ in T by contracting the edges in E1. Now let λ be a root-to-leaf path in T . The
λ-coordinate of the map ΨT applied to an element θ ∈ ΘT is

[ΨT (θ)]λ = ∏
e∈E(λ)

θ(e) = ∏
e∈E(λ′)

θ(e) = [ΨT ′(θ ∣T ′)]λ′

The second equality in the previous equation follows from taking a closer look at ΘT .
Indeed for all e ∈ E1 we have θ(e) = 1 because of the sum-to-one conditions imposed on
ΘT in Definition 4.5.7. For the third equality, θ ∣T ′ denotes the restriction of the vector
θ to the edge labels of T ′. It follows from the equalities above that the coordinates
of ΨT and ΨT ′ are equal. ThereforeM(T ,θ) =M(T ′,θ). A similar argument applied to
the maps ϕT and ϕT ′ shows that ker(ϕT ) = ker(ϕT ′). To carry out this argument we
need to reindex the leaves of the trees, this can be done by dropping the index of the
elements in E1.

We illustrate Lemma 4.5.13 in Figure 4.4 where T ′ is obtained from T by contracting
the six edges in E1. The two staged trees in this figure define the same statistical model.

Lemma 4.5.14. Suppose (T , θ) is a balanced and stratified staged tree. Let T ′ be the
tree obtained from T by contracting the edges in E1. Then (T ′, θ) is also balanced.

Proof. Suppose T is balanced and v,w are in the same stage. Following the nota-
tion from Definition 4.1.8, we have t(vi)t(wj) = t(wi)t(wj) in R[Θ]T , for all i ≠ j ∈
{0,1, . . . , k}. If we specialize θ(e) = 1 in this equation for all e ∈ E1 and since T ′ is
stratified, then t(vi)t(wj) ∣θ(e)=1,e∈E1

= t(wi)t(vj) ∣θ(e)=1,e∈E1
in R[Θ]T ′ . Therefore T ′

is also balanced.

Corollary 4.5.15. Suppose T is a balanced and stratified staged tree with ∣E1∣ > 1.
Let T ′ be the staged tree obtained from T by contracting the edges in E1. Then
ker(ϕT ′) is a toric ideal with a quadratic Gröbner basis whose intial ideal is squarefree.

Proof. From Corollary 4.5.10 it follows that ker(ϕT ) is a toric ideal with a quadratic
Gröbner basis and squarefree initial ideal. Using Lemma 4.5.13, ker(ϕT ) = ker(ϕT ′)
and the corollary follows.

We illustrate the result in Corollary 4.5.15 with an example.

Example 4.5.16. Fix T and T ′ to be the staged trees in Figure 4.4. The staged
tree T ′ is considered in [DG18, Section 6] as an example of the possible unfolding of
events in a cell culture. A thorough discussion of this example and its difference with
other graphical models is also contained in [DG18, Section 6]. Here we explain how to
obtain a Gröbner basis for ker(ϕT ′) using Corollary 4.5.10. The tree T ′ is balanced
and statistically equivalent to T . By Corollary 4.5.10, T has a quadratic Gröbner
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basis with square free initial ideal. Using the lemmas preceding this example, there
is a bijection between the root-to-leaf paths in T and T ′ thus R[p]T and R[p]T ′ are
isomorphic. Under this isomorphism, the Gröbner basis for ker(ϕT ) is a Gröbner basis
for ker(ϕT ′) its generators are

p0111p10 − p0011p110, p0011p0110 − p0010p0111, p0110p10 − p0010p110,

p0010p010 − p000p0110, p0011p010 − p000p0111, p010p10 − p000p110.
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