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Kurzfassung

In der vorliegenden Arbeit wird eine ganzheitliche Methodik zur Auslegung und Bewertung
multiaxialer Vibrationstests für Fahrzeugkomponenten entwickelt. Ziel ist es dabei ein Schädi-
gungsvergleich zwischen herkömmlich sequentiell uniaxialen und multiaxialen Tests zu ermög-
lichen.
Die Schädigungen werden durch das Strukturspannungskonzept beschrieben. In der Praxis
wird häufig aus Zeit- und Kostengründen auf detaillierte Simulationen und auch auf die Ver-
wendung von Dehnungsmessstreifen zur Bestimmung lokaler mechanischer Spannungen ver-
zichtet.
Zunächst soll eine sinnvolle Berechnungsgröße gefunden werden, welches die Ermüdung aus-
reichend genau beschreibt. Hierfür wird eine bestehende Vergleichsspannungsformulierung
verwendet, welche in Abhängigkeit von modalen Geschwindigkeiten und Geometriefaktoren
aus vereinfachten Finite Elemente Modellen beschrieben wird. Modale Geschwindigkeiten, bei
denen gezeigt werden kann, dass sie in guter Näherung proportional zu lokalen mechanischen
Spannungen sind, können effizient durch Beschleunigungsaufnehmer und anschließende Inte-
gration ermittelt werden. Die allgemeine Beziehung zwischen Geschwindigkeiten und Schädi-
gung wird durch Ermüdungstests an einfachen Bauteilen bestätigt.
Im Rahmen der Arbeit wird der Prototyp eines elektrodynamischen, tri-axialen Schwingtischs
verwendet, welcher auf die Anforderungen der Automobilindustrie zugeschnitten und somit kein
allgemein verfügbarer Standard ist. Es werden Modifikationen an der Aufspannvorrichtung vor-
genommen, um die Regelgüte zu erhöhen und den hierauf negativen Einfluss der Resonanzen
der Lagereinheit abzuschwächen. Fahrzeugmessdaten sollen dadurch in zufriedenstellendem
Umfang qualitativ abgebildet werden können.
Im weiteren Vorgehen werden Überlegungen zur Ableitung von multiaxialen Prüfprofilen durch-
geführt. Die vorhandenen Methoden für die Definition uniaxialer und multiaxialer Profile werden
untersucht und nach Möglichkeit erweitert. Dabei sollen die in der Automobilindustrie verwen-
deten praktischen Herangehensweisen beibehalten und um die notwendigen, aus Fahrzeug-
messdaten erhaltenen Phaseninformationen erweitert werden.
Die komplette Methodik wird an drei mechanischen Komponenten demonstriert. Als Ergebnis
wird der Unterschied in der Schädigung im Vergleich zur herkömmlichen Erprobung evaluiert.
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Abstract

The present work aims at implementing a full multi-axis vibration testing methodology for au-
tomotive components. A key objective is the fatigue damage comparison between common
sequentially applied uniaxial and multiaxial vibration tests on a given shaker system with real-
istic test profiles.
In practice, time consuming and costly simulations and the application of strain gauges are to
be avoided for the prediction of local stresses causing fatigue damage. Therefore, a reliable
measurement quantity to predict local stresses is to be found. An equivalent stress concept
based on modal velocities and geometric factors obtained from simplified finite element models
is proposed. Velocities, that sufficiently relate to local stresses, are easily to be extracted from
accelerometers, which are widely established in vibration testing, and a subsequent numerical
integration. The general relationship between modal velocities and fatigue damage is further
proven through end of life tests of simple specimens.
All vibration tests are to be conducted on an electrodynamic triaxial shaker prototype which was
developed regarding the requirements of the automotive industry. Respective shaker systems
are not widely available as standard test equipment. Fixture modifications are conducted in or-
der to ensure an effective control and to overcome the resonances of the bearing unit. Thereby,
the goal is to sufficiently replicate field measurements.
In further procedure, considerations are made regarding multiaxial test profile derivation based
on available field data. Several existing approaches for both uniaxial and multiaxial profile def-
inition are investigated and extended. Thereby, the goal is to maintain the current practice in
uniaxial vibration testing of automotive components and to include relevant phase information
obtained from field data.
The entire multi-axis testing methodology is demonstrated on three mechanical structures. Fur-
thermore, an evaluation regarding the difference to common sequential uniaxial tests is per-
formed.
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1 Introduction

1 Introduction

Vibration testing is an indispensable step for the validation of newly developed automotive parts
and structures. Load collectives are usually obtained from different field measurements and
combined into a meaningful test profile to cover all possible load situations. Test profiles are
created out of different load cases and driving scenarios. Especially within the automotive
industry, the service times range from years to decades which makes an accelerated testing
unavoidable in most cases. This is achieved by appropriately scaling-up the vibration profiles.
Within the automotive industry, the approval of structures is usually conducted on uniaxial shak-
ers on which all relevant industrial standards are based.

Figure 1.1: 3D-shaker testing
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1.1 Motivation

Gradually, the need to perform more multi-axis testing has arisen among the respective manu-
facturers. The motivation is to achieve a more realistic testing condition in order to reproduce
the original failure mode. Thereby, the design of products can be accomplished in a more ef-
ficient way due to a precise estimation of the reliability. Furthermore, a reduction of testing
time by 66% is theoretically accomplishable. On contrary to the aerospace industry, multi-axis
testing is not established within the automotive industry which results in a lack of respective
standards and methods.
The difference in fatigue damage and failure modes between multiaxial and commonly per-
formed sequential uniaxial excitation is hardly investigated in literature regarding real products
under realistic test conditions. A respective evaluation is thus a major objective of the thesis.
An apparent disagreement between scientific publications, reference books and standards re-
garding the correct measurement quantity relating to fatigue damage shall be investigated and
clarified in the course of the evaluation.
Multiaxial shaker systems with the respective requirements of automotive testing are not avail-
able as standard test equipment. The test system of the current research is an electrodynamic
3D-shaker prototype (see fig. (1.1)). All investigations are to be performed on this system which
requires a preliminary implementation and modification regarding the desired test conditions.
Current methods for the derivation of vibration test profiles are either for uniaxial purposes or
limited in their processing of phase information. According to the requirements of automotive
testing, existing methods shall be enhanced based on available vehicle measurement data.
The overall motivation of this work is to implement a full multi-axis testing methodology including
the handling of the shaker system, the definition of relevant vibration profiles and its evaluation
with respect to the introduced damage. Fundamental investigations shall be performed in order
to go beyond the state of the art and elaborate proposals for new methods regarding multi-axis
test design and evaluation.

1.2 State of the Art

Difference between uniaxial and multiaxial shaker testing

The general difference in fatigue damage caused between multiaxial and sequential uniaxial
testing has been discussed in literature extensively. Multi-axis testing is widely considered as
being more realistic than performing sequential uniaxial tests. Early investigations of triaxial ex-
citation on aerospace hardware concluded in twice the fatigue damage from sequential uniaxial
excitation, as explained in [31]. In [24], it has been shown experimentally and in simulation, that
differences in maximum stresses and their respective locations occur with multiaxial testing.
The simultaneous excitation of plate structures may result in either higher or lower response
energy than sequential uniaxial tests, depending on the excitation level as described in [60].
Further nonlinear effects occurring with simultaneous excitation have also been investigated in
[17]. Thereby, real electronic components were used which emphasizes the need for multi-axis
testing. Different failure modes have been experimentally proven with End of Life (EOL) tests
using simple specimens, conducted in [20]. Inadequacies in sequential uniaxial testing regard-
ing sequence effects have been investigated in [98] by performing EOL tests.
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Evaluation of vibrational environments

To evaluate the severity of different vibrational environments (for example uniaxial and multi-
axial), an appropriate indicator to obtain a fatigue damage related quantity has to be chosen.
The direct measurement of strains using strain gauges is costly and requires access to the
location of interest. As explained in [42], this is not always possible and thus easily measur-
able vibrational quantities have been considered. Quantities such as relative displacement,
relative velocity or relative acceleration can be obtained from accelerometers which can eas-
ily be applied on most structures. Regarding electronic equipment, relative displacement and
acceleration are directly related to stress for conductor plates, as proposed in [80]. In relevant
standards such as [35], structural failures of electronic equipment, particularly for road vehicles,
are related to acceleration. On the contrary, it is argued in [83] that velocity is most appropriate
for indicating structural fatigue. Acceleration in turn, may only be used for electrical relays and
quasi-static acceleration (low frequency) excitation. Furthermore, displacement shall be used
for structures composed of several subassemblies, position-sensitive equipment or if the ampli-
tude is important when mounted near other structures. A rough relation between normal stress
and translational velocity is found in [21] which was derived using the differential equations for
plane and axial vibrations. The derivations are based on clamped-free configurations for both a
long-thin rod and an Euler-Bernoulli beam. Further qualitative considerations about structures
with variable cross sections are made in [13],[32]. A direct comparison of velocity, acceleration
and strain data obtained from field measurements is accomplished in [97], concluding with a
better fit between strain and velocity. Experimental tests are conducted in [37] to estimate the
factor between stress and velocity, resulting in a narrow bandwidth over frequency. Further pre-
liminary considerations on the factor between stress and velocity are accomplished in [89], [65]
and [19] resulting in approximate estimates of the value range. Simple absolute value calcula-
tions of velocity spectral density responses under three-dimensional excitation are performed
in [31] which further supports the usage of velocities.

Multi-axis shaker systems

On contrary to the aerospace industry, partially higher acceleration levels and frequency ranges
up to 2000 Hz are common within the scope of automotive testing, as can be seen in [35].
For electric vehicles, even higher frequencies are to be expected for future vibration testing.
Multiaxial shaker systems with the respective requirements are no widely available standard
equipment. The systems used in literature are mostly prototypes which serve for a scientific
purpose. Both implementation and handling of the system is thereby usually described sparely.
The main challenge of multi-axis shakers is the construction and handling of the bearing unit
that couples the different shaker axes. For large industrial shakers, such as needed by the au-
tomotive industry, resonances of the bearing unit due to the low stiffness are unavoidable which
may violate testing results, as indicated in [24]. A six-degree-of-freedom shaker is investigated
[77], where both occurring system modes are left unconsidered for testing. As conclusion, for
every shaker model a qualification test has to be undertaken.
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Profile derivation methods

Vibrations from road excitation are mostly described in terms of random vibrations using Power
Spectral Densities (PSD). In the multiaxial case, the input profile can be specified as a fully
populated Spectral Density Matrix (SDM), as described in [86]. A simple approach to merge
different profiles from different scenarios is performing a weighted average of different PSDs or
entire SDMs, as described in [27]. Averaging the cross-diagonal terms results in mean values
for the phases and coherences. Generally, care has to be taken when performing manipulations
of the SDM since the matrix is required to be positive definite in order to remain physically
realizable. Another possibility for profile derivation is the usage of enveloping techniques over
a set of PSDs which describes a worst case excitation. Examples are only available for uniaxial
cases. However, it is mentioned in [33] that envelopes may not be practical for cross spectral
terms.
Another widely used approach for the combination of PSDs is the Fatigue Damage Spectrum
(FDS), described in [30] and [100]. It tries to maintain damage equivalency, considering the
structure as a sequence of single-degree-of-freedom systems for each frequency and using
their respective frequency response functions. The FDS approach is thereby strictly restricted
to the uniaxial case. The FDS may also be used to perform accelerated testing by upscaling
the acceleration levels. A commonly used procedure is the usage of standard profiles. For the
uniaxial case, examples are given in [35] and [90]. Especially in case of using standard profiles,
no field data and thus respective information about the cross-correlation is available. In order
not to choose the cross terms arbitrarily a minimum drives approach is proposed in [74] and
extended by phase relationships in [55]. Further work on determining phases and coherences
properly is described in [50].

1.3 Objectives and Structure

The objectives of this thesis are:

• To evaluate the difference in fatigue damage (apart from other failure mechanisms) be-
tween multiaxial and sequential uniaxial testing using realistic scenarios within the scope
of automotive testing

• To define an appropriate measurement quantity along its respective measurement loca-
tions for the evaluation of multiaxial fatigue damage introduced by a vibrational environ-
ment, avoiding full simulations in order to perform a fast and efficient evaluation

• To develop a methodology for the implementation and modification of a specific 3D-shaker
system with respect to common requirements of automotive vibration testing

• To enhance appropriate profile derivation methods for automotive applications including
a correct processing of phase information

• To develop a new multi-axis testing methodology which may contribute to future standards

The structure of the thesis is described as follows. Chapter 2 initially introduces the theoretical
background on several scientific fields which are forming the base for the entire vibration testing
methodology. The main chapters are 3, 4, 5 and 6 (see fig. (1.2)). The entire fatigue damage
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evaluation methodology is developed in the main chapter 3. All investigations and modifications
on the 3D-shaker system are accomplished in chapter 4. The development of an appropriate
profile derivation method is explained in chapter 5. Being the core objective of the thesis, an
evaluation of fatigue damage due to uniaxial and multiaxial excitation using different realistic
scenarios is performed in chapter 6. It can be seen as the interface of the preceding three
chapters which all contribute to the entire testing methodology. Finally, chapter 7 summarizes
the thesis and gives conclusions and an outlook of future steps.

Figure 1.2: Multi-axis testing methodology
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2 Theoretical Background

The design of vibration tests requires knowledge of a wide scope of scientific fields. Thus,
an initial chapter shall introduce basic theory which is necessary for the understanding of the
subsequently presented work. It is partitioned into three major subjects: Signal processing and
structural dynamics, structural durability calculation including operational strength analysis and
vibration testing methodologies including vibration control and test profile derivation.

2.1 Signal Processing and Linear Systems

This section explains basic theory of signal processing and structural dynamics. Thereby, sig-
nals are considered solely, as well as their input-output relationships involving linear systems.
The fundamental modeling of the dynamic behavior of linear systems is presented. Further in-
formation and more detailed explanation can be found in [2], [51] and [46] for signal processing
and in [51], [82], [58] and [95] for structural dynamics. The following content is based on the
respective references.

2.1.1 Multidimensional Signal Analysis

Dynamic signals are divided into deterministic (periodic, aperiodic/transient) and stochastic,
respectively random signals (stationary, non-stationary). Periodic signals x(t) can be written in
form of a sum of sine and cosine terms, known as Fourier series, to be broken down into its
frequency components. They are given in eq. (2.1) with the respective amplitudes (coefficients)
â, b̂ and the angular frequency ω as

x(t) =
â0

2
+
∞∑
i=1

Ä
âisin(ωit) + b̂icos(ωit)

ä
. (2.1)

During further notation, x(t) is referred to as system input and y(t) as system output. Using the
assumption of infinite periodicity, transient signals of a time period T can be converted into a
frequency spectrum X(f) using a Fourier transformation F as

X(f) = F (x(t)) =

∞∫
−∞

x(t) e−jωtdt . (2.2)

The Fourier transform of a system output is described analogously and referred to as Y (f). A
commonly used discrete version of the Fourier transform is the so-called Fast Fourier Transform
(FFT). The process can be fully reversed through an Inverse Fast Fourier Transform (IFFT).
In Linear Time Invariant (LTI) systems, frequency inputs and outputs are coupled through a
transfer function Hxy(f) as

Y (f) = Hxy(f) X(f) . (2.3)

In the multidimensional case, the input, respectively output vectors x(f),y(f) are coupled
through a transfer matrix H(f) as
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y(f) = H(f) x(f) . (2.4)

In the time domain, the inputs x(t) and outputs y(t) are coupled through a convolution with the
vector of impulse response functions h(t) as

y(t) = h(t) ∗ x(t) . (2.5)

For a three-dimensional linear system which is mainly considered in this thesis, the input-output
relation in the frequency domain is given as

Y1(f)

Y2(f)

Y3(f)

 =

 H11(f) H12(f) H13(f)

H21(f) H22(f) H23(f)

H31(f) H32(f) H33(f)



X1(f)

X2(f)

X3(f)

 . (2.6)

Real life signals are often varying and have to be treated differently than true deterministic sig-
nals. Thus, a holistic description of signals is needed using stochastic properties. Therefore,
the auto-correlation function Rxx(τ̂) is introduced as a measure of how an instantaneous am-
plitude value of a signal depends upon previously occurring values. It can be interpreted as the
area of a signal multiplied with itself shifted by the time τ̂ and is described as

Rxx(τ̂) = lim
T→∞

1

2T

T∫
−T

x(t)x(t+ τ̂)dt . (2.7)

The same calculation can also be performed for two different time signals x(t) and y(t), defined
as the so-called cross-correlation function Rxy(τ̂), given as

Rxy(τ̂) = lim
T→∞

1

2T

T∫
−T

x(t)y(t+ τ̂)dt . (2.8)

Using the Fourier transform, the correlation functions can be described in the frequency domain
as the Power Spectral Density (PSD) Gxx(f) and the Cross Spectral Density (CSD) Gxy(f)

Gxx(f) = F (Rxx(τ̂)) = X∗(f)X(f) = |X(f)|2 (2.9)

and

Gxy(f) = F (Rxy(τ̂)) = X∗(f)Y (f) . (2.10)

In contrary to the Fourier spectrum, the spectral densities describe the power distribution over
all frequency bands. The equivalent harmonic amplitude to a certain spectral density of a
frequency band ∆f with the same signal power can be calculated as

Â =
√

2Gxx∆f . (2.11)

For both inputs and outputs the spectral densities and cross spectral densities can be merged
into a Spectral Density Matrix (SDM) G(f), given for the three-dimensional case according to
[84] as
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G(f) =

 G11(f) G12(f) G13(f)

G21(f) G22(f) G23(f)

G31(f) G32(f) G33(f)

 . (2.12)

The SDM can be generalized to a Cross Spectral Density Matrix (CSDM) when all spectral
densities are calculated between two different locations [88]. In terms of vibration control this
is commonly used between excitation and response spectra.
The diagonal and off-diagonal terms of the SDM are connected through the phase angle θ and
coherence γ, respectively the magnitude squared coherence γ2, as given in eq. (2.13) as

G12(f) =
»
γ2

12(f) G11(f) G22(f) ejθ12(f) . (2.13)

The coherence is a direct measure for the correlation1 of two signals and ranges between 0

(uncorrelated) to 1 (fully correlated). The coherence can also be described in another form
using only absolute values as

γ12(f) =

√
|G12(f)|2

G11(f)G22(f)
(2.14)

which is similar to the correlation coefficient. The SDM is a conjugate symmetric (hermitian),
positive definite matrix. The condition for positive definiteness using an arbitrary vector v and
an arbitrary matrix A is vTAv > 0 for real matrices and vHAv > 0 for hermitian ones. Positive
definite matrices contain real eigenvalues and real diagonal elements resulting in a positive
trace [33], [55].
For a linear system, the input and output spectral densities, respectively cross-spectral densi-
ties, are again coupled through the system transfer functions with

Gyy(f) = |Hxy(f)|2 Gxx(f) (2.15)

and

Gxy(f) = Hxy(f) Gxx(f) (2.16)

and

Gyy(f) = Hxy(f) Gxy(f) . (2.17)

Eq. (2.15) can also be merged into a matrix yielding a CSDM

Gyy(f) = H(f) Gxx(f) H∗(f) . (2.18)

All transformations between frequency and time domain and between system input and output
are summarized in fig. (2.1).

1The correlation describes how much two signals resemble to each other
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Figure 2.1: Chart of signal processing in LTI systems

So far, relevant quantities of signal processing were introduced. Regarding random processes,
its properties can also be expressed in stochastical terms which will be discussed in the next
subsection. The stochastical expressions are helpful to perform fatigue damage calculations
without the direct consideration of entire time signals, as will be seen later.

2.1.2 Stochastic Signal Description

A random vibration signal is considered to be an ergodic2 stationary stochastic process if it is
long enough to create a (Gaussian) probability density function p(x) with stationary stochastic
properties. Those properties are called the statistical moments mi and can be extracted from
the time series x(t) according to [46] as

mi(x(t)) =

∞∫
−∞

xi p(x) dx . (2.19)

For a value of i = 0 eq. (2.19) yields the area of the probability density function that has a
value of 1. For i = 1 the expected value is obtained which is 0 for centered signals. The second
statistical moment (i = 2) is the variance, the third (i = 3) is a measure for the skewness, and
the fourth statistical moment (i = 4) is a measure for the so-called kurtosis. Eq. (2.19) can be
expressed in terms of the spectral density as

mi =

∞∫
−∞

f i Gxx(f) df . (2.20)

Thereby, the 2i’th moment equals the variance of the i’th derivative of the random signal x(t).
The variances of the derivatives contain information about the distribution of extreme values
and turning points. For a value of i = 0 the variance is obtained which yields the standard
deviation σ̃ by extracting its root as shown in eq. 2.21 as

2The measured process is sufficiently long to obtain correct statistical properties
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σ̃ =
√
m0 =

Õ
+∞∫
−∞

Gxx(f) df . (2.21)

In case of an overall zero mean amplitude, the standard deviation equals the Root Mean Square
(RMS). The expression of time signals in stochastic terms can be applied to the load cycle
domain which has a focus on amplitude and mean value distributions. Commonly used in
terms of mechanical stresses, the amplitude is expressed as Sa and the mean value as Sm.
For the cycle distribution, the positive zero-crossing rate (eq. (2.22)) and the rate of positive
extreme values (eq. (2.23)) are used for its calculation [46].

ν0 =

 
m2

m0
(2.22)

νp =

 
m4

m2
(2.23)

For a narrowband process, i.e. a random time signal that contains only one narrow frequency
band, the expression ν0 ≈ νp is valid. The cycle distribution of a narrowband process follows a
Rayleigh distribution, given as

prayleigh(Sa) =
Sa
σ̃2
e−

S2a
2σ̃2 . (2.24)

The moments of a narrowband process are given as

mi,rayleigh(Sa) =

∞∫
0

Sia

Ç
Sa
σ̃2
e−

S2a
2σ̃2

å
dSa =

Ä√
2 σ̃
äi

Γ

Å
1 +

i

2

ã
(2.25)

using the Gamma function Γ(z̃) containing the Gamma function variable x̃ and the complex
variable z̃ with Re(z) > 0, described as

Γ(z̃) =

∞∫
0

x̃z̃−1 e−x̃ dx̃ . (2.26)

For calculating the cycle distribution of a broadband process, i.e. a random time signal con-
taining frequency information of several frequency bands, different approaches can be found in
literature [54], [62].

2.1.3 Modeling in Structural Dynamics

In this subsection, the focus is put on the dynamic behavior of linear systems which is described
by its respective transfer functions. At first, a simple oscillatory system is presented for initial
considerations. Then, an extension to more complex systems is performed, also including the
usage of finite elements.
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2.1.3.1 Single Degree of Freedom systems

An oscillatory system is usually modeled containing a mass m, a spring with the stiffness k, a
damper with the damping factor c and an excitation force f(t) (see fig. (2.2) according to [51]).
The homogeneous differential equation (f(t) = 0) of the Single Degree of Freedom (SDOF)
system is known as

mẍ(t) + cẋ(t) + kx(t) = 0 . (2.27)

Using the exponential approach x̂eλt with the amplitude x̂ and the eigenvalue λ, the solution of
the damped system can be stated as

λ1,2 = − c

2m
± j
 
k

m
−
Å
c

2m

ã2

= −δ ± jωd (2.28)

where δ is the damping constant and ωd the damped circular eigenfrequency. For the undamped
case which is a system without damper and the respective damping factor, the undamped circu-
lar eigenfrequency is defined as ω0 =

»
k
m . The damping ratio ξ is defined as the ratio between

the damping constant and the undamped angular eigenfrequency ξ = δ
ω0

= c
2
√
km

. To describe
the damping of a system, often the Q-factor is used that is defined as Q = 1

2ξ .
Within the scope of vibration testing, forced vibration is commonly modeled with a base excita-
tion xb(t) that applies a spring and damping force component to the mass. The equilibrium of
forces then yields

ẍ(t) + 2ξω0 ẋ(t) + ω2
0 x(t) = 2ξω0 ẋb(t) + ω2

0 xb(t) . (2.29)

In order to show the amplitude ratio of the absolute input and output displacement, the transfer
function is calculated. To obtain the particular (stationary) solution, either the exponential ap-
proach or the Laplace transformation L(x(t)) = X(s) using the complex frequency parameter
s can be applied. Using the latter yields eq. (2.30) which is plotted in fig. (2.2):

H(s) =
X(s)

Xb(s)
=

2ξω0 s+ ω2
0

s2 + 2ξω0 s+ ω2
0

. (2.30)

For the steady state case it applies s = jω and the transfer function becomes the Frequency
Response Function (FRF) with the excitation circular frequency Ω

H(jΩ) =
2ξω0 jΩ + ω2

0

(jΩ)2 + 2ξω0 jΩ + ω2
0

. (2.31)

The ratio between excitation circular frequency and circular eigenfrequency is known as η = Ω
ω0

.

The FRF for the strain proportional relative displacement response x(t) − xb(t) caused by an
input displacement is

H(jΩ) =
X(jΩ)−Xb(jΩ)

Xb(jΩ)
=

Ω2

(jΩ)2 + 2ξω0 jΩ + ω2
0

. (2.32)
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|H
(j

)|

Figure 2.2: SDOF system and corresponding FRF of absolute displacement response

In terms of random vibration, the response of a SDOF system can be expressed stochastically.
Eq. (2.15) and (2.21) are combined from zero to infinity and with H(f) being the transfer
function of the SDOF system, it can be stated for the standard deviation that

σ̃ =

∞∫
0

»
|H(f)|2 Gxx(f) df . (2.33)

As mentioned before, the RMS equals the standard deviation for zero mean time signals. Under
the assumption of a relatively flat excitation PSD (almost ideal white noise process), the so-
called Miles equation (see [99]) can be derived as

σ̃aa =

…
π

2
fn Q Gxx(f) (1 +Q−2) ≈

…
π

2
fn Q Gxx(f) (2.34)

with the natural frequency fn = ω0
2π . In case of a non-flat PSD, eq. (2.33) has to be approximated

with a discrete integration. Eq. (2.34) can be transformed into other vibrational quantities such
as velocity, given as

σ̃vv =

√
π

2
fn Q

Gxx(f)

(2πf)2
. (2.35)

2.1.3.2 Multiple Degree of Freedom systems

For Multi Degree of Freedom (MDOF) systems, eq. (2.27) is extended to a matrix formulation
using the mass matrix M , the damping matrix C and the stiffness matrix K as

Mẍ(t) +Cẋ(t) +Kx(t) = f(t) . (2.36)

External forces, such as introduced through base excitation, are given as f(t). In case of a
single set of rigid body motions it holds f(t) = −M ẍb(t) which is called primary base excitation.
The eigenvalue problem of an undamped system isî

K − ω2
0,iM

ó
Φ = 0 (2.37)

with the eigenvector matrix Φ. In order to decouple the differential eq. (2.36) into SDOF
systems expressed with the modal displacement vector u(t), a modal transformation
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x(t) = Φu(t) (2.38)

is applied using the eigenvector matrix. Each system is then described in its modal coordinates
(modal space). The mass, stiffness and damping matrices, as well as the force vector are nor-
malized by Φ resulting in the modal mass matrix m, modal stiffness matrix k, modal damping
matrix c and the modal force vector p(t), described as

mi = ΦT
i MΦi (2.39)

and

ki = ΦT
i KΦi (2.40)

and

ci = ΦT
i CΦi (2.41)

and

pi(t) = ΦT
i f(t) . (2.42)

The modal damping c is independently defined for each mode directly. The decoupled equa-
tions of motion can then be expressed as

miü(t) + ciu̇(t) + kiu(t) = pi(t) . (2.43)

Applying a Fourier transformation on both input and output and performing a back transforma-
tion using eq. (2.38) and (2.42) yields the modal FRF between the n’th and k’th position

Hnk(jΩ) =
Xn(jΩ)

Fk(jΩ)
=

m̃∑
i

Φi,nΦT
i,k

−Ω2mi + jΩci + ki
. (2.44)

The FRF is the superimposition of all m̃ modes.

2.1.3.3 Spatial discretization with finite elements

Real structures which can be simplified by MDOF systems are continuums. Most technical
processes are thereby described by Partial Differential Equations (PDE). Analytically, they have
to be solved using initial and boundary conditions. A numerical approach is the Finite-Element
Method (FEM) using linear dynamics. It performs a discretization of the structure which leads
to a system of Ordinary Differential Equations (ODE) that is in turn easier to solve. For a
continuum, the conservation of momentum and angular momentum has to be valid at each
point. Its local formulation is known as the Cauchy-Euler equation of motion, given as

ρ ẍ = div(σ) + b̃ (2.45)

in its strong formulation with the stress tensor σ and body forces b̃. Both sides of the equation
are time-dependent and describe the connection between local stresses and accelerations.
For FEM calculations a weak formulation of eq. (2.45) is used in order to remain feasible. The
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integral of the differential equation allows a solution in an average sense without forcing the
equation to be fulfilled at every local point. The weak formulation is expressed with a weighting
function ŵ and the volume V as∫

V

ŵ ρ ẍ dV =

∫
V

ŵ div(σ) + ŵ b̃ dV . (2.46)

In FEM linear dynamics the local stresses are calculated with a partial integration of (2.46).
Thereby, the numerical solution of eq. (2.43) is used which is obtained from a previous steady-
state harmonic analysis.

Real MDOF systems are usually irregularly shaped structures. In order to obtain the system
matrices the entire structure is meshed with finite elements. For simple geometries (plane,
axially symmetric), structural elements such as rods and beams are used for 1D-analyses and
plates and shells for 2D-analyses. Full 3D-calculations are accomplished with volume ele-
ments, mostly hexahedral and tetrahedral as shown in fig. (2.3) according to [95]. They allow
the most general simulation in terms of a continuum and require a higher computing time.

Figure 2.3: Hexahedral and tetrahedral element

Each element is described in its own local coordinate system (ξ̂, η̂, ζ̂). To determine the dis-
placement of every point within the respective element, shape functionsNi are defined for each
i’th node. The shape functions can be for example of a linear or quadratic nature and have a
value of 1 at their associated node and a value of 0 at any other node. The shape functions for
a linear hexahedron element are defined as

Ni =
1

8

î
(1 + ξ̂ξ̂i)(1 + η̂η̂i)(1 + ζ̂ ζ̂i)

ó
(2.47)

where ξ̂i, η̂i, ζ̂i are the respective coordinates of the i’th node. Linear elements (tetrahedral:
C3D4, hexahedral: C3D8) can be used for preliminary investigations, while quadratic elements
(tetrahedral: C3D10, hexahedral: C3D20) are to be preferred for precise stress analyses and
linear dynamics [58]. The reason for the latter is computing time efficiency due to good conver-
gency with a limited number of nodes. Generally, the usage of hexahedrals is to be preferred
for structure calculations due to the overestimated stiffness of tetrahedral elements. Using the
matrix of shape functions N and the gradient matrix B̂, the linear differential operator matrix L̂
can be calculated as
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B̂ = L̂N =



∂
∂x 0 0

0 ∂
∂y 0

0 0 ∂
∂z

∂
∂y

∂
∂x 0

0 ∂
∂z

∂
∂y

∂
∂z 0 ∂

∂x



 N1 0 0 ... Nn 0 0

0 N1 0 ... 0 Nn 0

0 0 N1 ... 0 0 Nn

 . (2.48)

The number of columns of N̂ is 3 times the number of nodal points for each element. The
stiffness matrix Ke of each element can be calculated as

Ke =

∫
Ve

B̂T ĈB̂ dV (2.49)

with the material matrix Ĉ which will be introduced in the next section 2.2.1.
The numerical integration of eq. (2.49) is performed at the supporting points, also called inte-
gration points. The mass matrix is calculated as

Me =

∫
Ve

NTρN dV (2.50)

with the material density ρ. Both the global stiffness and global mass matrix are obtained
through summation of all element matrices.

So far, the dynamics of linear systems were introduced. In the next section, a link to the
calculation of fatigue damage due to vibrational loads will be created.

2.2 Structural Durability Calculation

There are many reasons for the structural failure of mechanical components (see fig. (2.4) ac-
cording to [29]). This thesis treats the influence of vibrational loads on the durability of compo-
nents over their life time (fatigue loading). However, depending on the application other failure
mechanisms such as for example abrasion in connectors can be most severe. It is generally
distinguished between fatigue failures, abrasion, creeping and special loads due to buckling or
shock events.

Figure 2.4: Classification of structural durability

In this section, the basic theory which is necessary for fatigue damage calculation is presented.
At first, general stress and strain states are introduced together with linear-elastic theory. Equiv-
alent stress formulations and material properties are then considered as a base for the sub-
sequent fatigue damage calculation. Further information on continuum mechanics and FEM
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can be found in [36] and [58]. As a detailed reference work on operational strength and fatigue
damage [26] and [45] can be consulted.

2.2.1 General Stress and Strain States

In continuums mechanics, the stress tensor σ is a second order tensor of symmetric nature.
It contains normal stresses σ on its diagonal and shear stresses τ on the off-diagonal entries,
described as

σ =

 σx τxy τxz

τyx σy τyz

τzx τzy σz

 . (2.51)

The general stress state described by the tensor is illustrated in fig. (2.5) according to [3].
Normal stresses are a result of tension, compression and bending in structures, shear stresses
are produced by shear forces and torsional loading.

Figure 2.5: General stress state

The eigenvalues of the stress tensor are called principal stresses σ1, σ2 and σ3, the respective
eigenvectors are the principal directions. When the stress tensor is rotated in direction of the
principal directions, all shear components dissolve to zero. Based on the principal stresses, the
invariants of the stress tensor I1, I2, I3 can be defined as

I1 = σ1 + σ2 + σ3 = σx + σy + σz = σξ̂ + ση̂ + σζ̂ (2.52)

and

I2 = σ1 σ2 + σ2 σ3 + σ3 σ1 (2.53)

and

I3 = σ1 σ2 σ3 . (2.54)
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Furthermore, using the constraint σ1 ≥ σ2 ≥ σ3 it can be stated that

τmax =
1

2
(σ1 − σ3) . (2.55)

In case of a bi-axial stress state (plane stress), the expression in eq. (2.51) is reduced to

σ =

[
σx τxy

τyx σy

]
. (2.56)

The plane stress expression will be used in section 3.1 due to the assumption that crack initia-
tions usually start at the (plane) surface of a structure. In order to rotate a plane by the angle α
in ξ̂ and η̂ direction which can be for example the surface of a structure, following transformation
has to be accomplished:[

σξ̂ τξ̂η̂
τξ̂η̂ ση̂

]
=

[
cos α sin α
−sin α cos α

] [
σx τxy

τyx σy

] [
cos α −sin α
sin α cos α

]
. (2.57)

Using the linear elastic theory for continuous isotropic media, the relation between local stresses
and local strains ε, respectively shear γ̃, can be expressed as

εx =
1

E
σx −

ν

E
σy −

ν

E
σz

εy = − ν
E
σx +

1

E
σy −

ν

E
σz

εz = − ν
E
σx −

ν

E
σy +

1

E
σz

(2.58)

and

γ̃xy =
1

G
τxy

γ̃xz =
1

G
τxz

γ̃yz =
1

G
τyz

(2.59)

with the Young’s modulus E, the shear modulus G and the Poisson’s ratio ν. Furthermore, it is
E = 2G(1 + ν) and γ̃ik = 2εik. Eq. (2.58) and (2.59) can be combined into



σx

σy

σz

τxy

τxz

τyz


=

E

(1 + ν)(1− 2ν)



1− ν ν ν 0 0 0

ν 1− ν ν 0 0 0

ν ν 1− ν 0 0 0

0 0 0 1−2ν
2 0 0

0 0 0 0 1−2ν
2 0

0 0 0 0 0 1−2ν
2





εx

εy

εz

γ̃xy

γ̃xz

γ̃yz


(2.60)

where the matrix is called material matrix Ĉ which was already mentioned in eq. (2.49). The
tensor of strains is equivalent to the stress tensor (see eq. (2.51)) including principal strains
and their directions.
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2.2.2 Equivalent Dynamic Stress Formulations

Multiaxial stress loadings which basically include six different stress time series are complicated
to be evaluated regarding their damaging influence. According to [6] there are three major
multiaxial criteria: Stress-component based criteria including the calculation of an equivalent
uniaxial stress, critical plane criteria which often consider the plane of the highest shear stress
during the initial crack growth, and stress invariant based concepts. In this thesis the focus is
put on the concept of equivalent stresses due to its analytic expandability to other vibrational
quantities, as will be seen in section 3.2. Assuming a correct application of an equivalent stress
criterion to the respective case, no worse accuracy is accomplished in comparison to other
multiaxial concepts. The most common equivalent stress is the von Mises criterion σvM which
describes the difference between the elastic and the hydrostatic energy that is responsible for
a deformation. It is used for reasonably ductile materials, mostly metals and plastics. For the
plane static case it is expressed as

σvM =
»
σ2
x + σ2

y − σxσy + 3τ2
xy . (2.61)

For ideally ductile materials the equivalent stress according to Tresca is often proposed, for
ideally brittle materials the equivalent stress according to Rankine can be used (see [48]).
Whatever criterion is used, the original formulations are only valid for the static case and have
to be translated into a meaningful dynamic form. In the following, the most popular equivalent
dynamic stress formulations are presented for both time and frequency domain using the plane
stress case.

2.2.2.1 Time domain

An intuitive approach of translating the von Mises stress into a dynamic equivalent is the so-
called signed von Mises stress, as explained in [63]. In order to obtain an alternating time signal
a signum function is applied determining the sign by the first stress invariant (eq. (2.52)) which
yields

σvM (t) = sgn(I1)
»
σ2
x(t) + σ2

y(t)− σx(t)σy(t) + 3τ2
xy(t) (2.62)

for the plane stress case. A different concept is the Multiaxial Rainflow3 method originally
proposed in [8]. It is not limited to stress time signals only and can be used for all kinds of
loads. Remaining in terms of stresses, the equivalent stress is found by performing a scan on
all possible linear combinations of

σeq(t) = ĉ1σx(t) + ĉ2σy(t) + ĉ3τxy(t) (2.63)

by changing the constants ĉ1, ĉ2, ĉ3 with respect to ĉ2
1 + ĉ2

2 + ĉ2
3 = 1. For each combination

a Rainflow cycle counting is performed and a fatigue damage value calculated. The most
damaging equivalent stress time signal is then chosen. Further details on the general fatigue
damage calculation procedure will be given in section 2.2.4.

3The Rainflow counting is a stress time signal based identification method of stress cycles and will be introduced
in 2.2.4
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2.2.2.2 Frequency domain

The most common approach for translating the von Mises criterion into the frequency domain is
the so-called Equivalent von Mises Stress (EVMS) introduced in [66]. Due to the quadratic na-
ture of the stress components they are assumed to be zero mean Gaussian random processes.
Therefore, the original von Mises equation is reformulated into

σ2
vM = σ2

x + σ2
y − σxσy + 3τ2

xy = σ̂TQσ̂ = trace
Ä
Q
î
σ̂σ̂T

óä
(2.64)

with σ̂ being the stress vector and Q being a matrix of constants defined as

Q =

 1 −0.5 0

−0.5 1 0

0 0 3

 . (2.65)

On both sides of eq. (2.64) the expected value is taken and eq. (2.21) is applied which leads
to a PSD formulation of the signed von Mises stress

GσvM (f) = trace (QGσ(f)) . (2.66)

Taking the trace of eq. (2.66) and considering only the real part of the cross-spectral density
term Gσx,σy , as proposed in [6], yields following expression

GσvM (f) = Gσx(f) +Gσy(f)− Re
Ä
Gσx,σy(f)

ä
+ 3Gτxy(f) . (2.67)

Since the obtained expression does not consider any phase information between the individual
stress components, the approach was extended in [10] using a harmonic oscillation

σ(t) = σ̂ cos (ωt+ θ) (2.68)

for each stress component. Eq. (2.68) is inserted into eq. (2.64) and after some geometric
reformulations the von Mises PSD can be described for each frequency as

GσvM = 0.5
Ä
σ̂2
x + σ̂2

y − σ̂xσ̂ycos(θx − θy) + 3τ̂2
xy

ä
+

0.5 abs
Ä
σ̂2
x + σ̂2

ye
2j(θy−θx) − σ̂xσ̂yej(θy−θx) + 3τ̂2

xye
2j(θxy−θx)

ä
.

(2.69)

Expressed in terms of PSDs, eq. (2.69) becomes

GσvM = 0.5
Ä
Gσx +Gσy −

»
GσxGσy cos(θx − θy) + 3Gτxy

ä
+

0.5 abs
Ä
Gσx +Gσye

2j(θy−θx) −
»
GσxGσy e

j(θy−θx) + 3Gτxye
2j(θxy−θx)

ä
.

(2.70)

Another von Mises based formulation in frequency domain can be found in [70].
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2.2.3 Material Properties

In the previous subsection, the general description of component loads was considered. Com-
plementary to that, considerations on the component strength, respectively the material prop-
erties, have to be made as well.
Basically, it has to be distinguished between static and dynamic material properties. Static
material properties such as the ultimate tensile strength Rm are determined with tensile tests.
To obtain cyclical properties so-called Wöhler fatigue tests are conducted until failure. The
cyclical strain consists of a plastic and an elastic part, given as

ε = εel + εpl =
σ

E
+

Å
σ

K ′

ãn′

(2.71)

with the cyclical strain hardening coefficient K ′ and the cyclical strain hardening exponent n′.
The latter one is defined as n′ = c′/b with the cyclical ductility exponent c′ and the Basquin
exponent b. They are both used following the notation of [45] which is using the inverse values
as in opposite to many other references. Furthermore, the fatigue strength coefficient σ′ and
the cyclical ductility coefficient ε′ can be obtained by the fatigue tests. In terms of the maximum
endurable cycles N and the strain amplitudes εa, the strain-cycle correlation is expressed as

εa = εa,el + εa,pl =
σ′

E
(2N)1/b + ε′ (2N)1/c′ . (2.72)

It is shown in fig. (2.6) together with a stress-strain hysteresis including both elastic and plastic
strain, according to [26]. The left part shows the overall behavior considering all cycles until fail-
ure (S-N curve) while the right part illustrates an individual cycle including an elastic and plastic
contribution. The right part can be seen as a doubled version of the cyclical stress-strain curve.
Generally, each type of loading, as for example bending or torsion, produces a different S-N
curve.

Figure 2.6: Cyclical material behavior: S-N curve and stress-strain hysteresis

According to the load cycles, the S-N curve can be divided into three domains: The Low Cy-
cle Fatigue (LCF) range, typically for a number of cycles lower than around 104, the limited
endurance domain also called High Cycle Fatigue (HCF) range covering load cycles roughly
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between 1× 104 (in some references 5× 104) and 2× 106, and the unlimited endurance domain
called Very High Cycle Fatigue (VHCF) range for a cycle number higher than 107. The LCF
range is dominated by plastic deformation while the HCF and VHCF ranges are dominated by
linear elastic deformation. Fig. (2.7) shows the idealized S-N curve that primarily accounts for
the HCF and VHCF range and is typically represented in terms of stress amplitudes Sa. The
relation between the stress amplitude and the cycle number until failure (endurance strength)
is given as

N = C S−ba (2.73)

with the Basquin constant C that is defined as

C = ND SbD . (2.74)

The values for SD and ND are obtained at the fatigue limit point which defines the transition
point between the HCF and the VHCF range. The Basquin exponent b represents the slope
of the S-N curve. For different materials and structures (including notches and welded joints)
the value typically ranges between 3 − 13, but also higher values are possible. A summary of
different examples is given in [45]. As shown in fig. (2.7), different approaches exist to describe
the S-N curve within the VHCF range. The conservative, elementary Miner rule is a linear
extension of the HCF that assumes that even small cycle amplitudes contribute to the fatigue
damage. On the contrary, the original Miner considers only amplitudes of Sa > SD. Cycle
amplitudes below the fatigue limit do not contribute to the fatigue damage at all. A modified
approach, also known as Haibach extension, considers all cycle amplitudes Sa < SD according
to

N = C S−(2b−1)
a . (2.75)

Figure 2.7: Idealized S-N curve

Within operational strength analysis two major approaches are commonly used: The nomi-
nal stress concept and the local concept, also called notch concept. The first one is giving
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fatigue life estimations based on experimental data of smooth test bars that are applied with
different factors considering following effects: Form (notch) effect, scale effect, surface effects,
temperature effects and further various effects considering for example the stress frequency
and corrosion. The local concept is a mostly FEM based method performing the fatigue life
calculation directly at the failure location (hot spot) using locally obtained stresses and strains.
Furthermore, the structural stress concept is known as an extension of the nominal stress con-
cept focusing on the hot spot stress.
The strong difference between the nominal stress concept and the local concept can be demon-
strated with the respective handling of the mean stress influence. Generally, the mean stress
sensitivity depends on the materials, especially on the material strength. For metals, the mean
stress sensitivity typically increases with its strength. Using the nominal concept, a mean stress
correction can be applied on the stress amplitudes according to the Goodman line, described
in [52] as

S′a =
Sa

1− Sm
Rm

(2.76)

where S′a is the mean stress corrected cycle amplitude. The concept only uses the ultimate
tensile stress of the respective material. For the local concept, a damage equivalent parameter
such as proposed by Smith, Watson and Topper (SWT) has to be applied. Therefore, local
stress and strain information is used to calculate the damage parameter PSWT as

PSWT =
»

(Sa + Sm) εa E . (2.77)

The modification has also to be performed on the respective S-N curve, where both LCF and
HCF domain are taken into account. Generally, the S-N curve is shifted downwards with tensile
mean stress and upwards with compressive mean stress.
Considering the effect of notches, the nominal concept uses experimentally determined notch
factors while the local concept performs further corrections on the stress-strain curve such as
proposed by Neuber [26]. The S-N curve of a notched specimen is usually shifted downwards
while the Basquin exponent decreases.
Another effect to be considered is due to load history: If small stress amplitudes are applied
first and high stress amplitudes subsequent, the fatigue life tends to increase. In the oppo-
site case the fatigue life decreases. While those sequence effects cannot be considered using
the nominal concept, there are existing approaches with the local concept. However, in ran-
dom vibration the influence is found to be much lower than for sinusoidal excitation due to the
unordered sequences [45].

2.2.4 Fatigue Damage Calculation

In this subsection, the considerations on both component loads and strength are combined to
make statements on the fatigue damage.
The first step in the determination of fatigue damage values is the identification of stress cy-
cles. Therefore, usually a Rainflow counting is performed on the stress time signals after the
extraction of turning points according to [4]. It is based on two concepts, masing behavior and
material memory. The masing hypothesis states that a doubling of the cyclical stress-strain
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curve, as shown in fig. (2.6), results in the stress hystereses to be obtained. The stress-strain
hysteresis that is produced during reloading was previously shown in fig. (2.6). The assumption
of the memory effect of a material comprises the influence of the load sequence. Thus, both
stress hysteresis amplitudes and mean values are to be extracted according to an appropriate
counting method.
In a next step, the obtained stress amplitudes have to be transferred into a fatigue damage
value. This is commonly achieved using a linear damage accumulation, also called Palmgren-
Miner damage accumulation according to [26]. It assumes that the total fatigue damage D̂

introduced into a structure can be expressed as a sum of all individual cycles ni divided by their
respective number of maximum endurable cycles Ni, which yields

D̂ =
∑
i

di =
∑
i

ni
Ni
≤ 1 . (2.78)

The virtual fatigue damage value at failure is defined as 1. In principle there are two major states
of life time, the crack initiation and the crack propagation. In the strict sense the linear damage
accumulation is only appropriate to calculate fatigue damage through crack propagation, since
crack initiation is the result of microscopic effects. However, linear damage accumulation is
used widely for the entire fatigue life since it is often not possible to distinct both states ade-
quately.
Combining eq. (2.78) and eq. (2.73) yields an expression including the stress amplitudes

D̂ =
1

C

∑
i

ni S
b
a,i ≤ 1 . (2.79)

It has to be noted that linear damage accumulation does not account for mean stresses if no
prior amplitude correction was performed. Eq. (2.79) is often written in a simplified form ignor-
ing the Basquin constant and without a classification of the stress amplitudes which removes
the specific cycle number ni. Each stress amplitude is then evaluated individually. Eq. (2.80)
then describes an artificial pseudo damage value D as

D =
∑
i

Sba,i . (2.80)

which is mainly used for fatigue damage evaluation due to the lack of need to determine C.
For random vibration environments, the fatigue damage in eq. (2.79) per time unit T can be
expressed generally in a stochastic manner according to [5] as

D̂ =
ν0

C

∞∫
0

p(Sa) S
b
a dSa . (2.81)

Equation (2.81) is the base for various spectral fatigue damage estimators which mainly dif-
fer in the assumed probability density function p(Sa). As discussed in (2.1.2), for narrowband
processes the stress cycles are underlying a Rayleigh distribution. For broadband processes,
common approaches are named after Dirlik, Lalanne, Tovo and Benasciutti, Zhao and Baker,
etc. (see [62] and [54]). All approaches are using different combinations of distributions, such
as Gaussian, Rayleigh, Rice, Weibull and the exponential distribution. A comparison of those
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approaches is performed in [62]. A novel approach for the estimation of the Rainflow distribu-
tion out of a broadband process can be found in [70].

In the following section the focus is put on vibration testing. Thereby, it is distinguished between
vibration control and the definition of vibration test profiles. While the first topic only requires
the introduced theory of signal processing, the latter requires both signal processing as well as
the theory of structural dynamics and fatigue damage calculation.

2.3 Vibration Testing

Vibration testing is essential for the release of newly developed machines and structures.
Thereby, a sufficient resistance to expected loads over the entire service life has to be en-
sured. Usually, measured field data is used to obtain meaningful load collectives which are
then reproduced on a shaker table. In most cases accelerated testing is unavoidable if the
original service time ranges from years to decades, as it is within the automotive as well as the
aerospace industry. Therefore, the vibrational loads of each driving, respectively flight scenario
are scaled up appropriately.
For commercial vehicles, typical environmental conditions regarding vibration are road excita-
tions which are modeled as random and shock, and run-ups especially of combustion engines
and electric motors that can be described as a harmonic excitation. To obtain respective ran-
dom load collectives, rides are performed on different tracks such as for example on rough road
or cobblestone tracks, but also on highways and country roads, depending on the expected uti-
lization. Engine run-ups are usually performed on roller dynamometer test benches in order to
obtain completely decoupled information of the internal excitations.
The load collectives of fixed wing aircrafts are primarily obtained from engine noise, (turbulent)
aerodynamic flow and maneuvers such as landing and taxi. Rotary wing aircrafts are domi-
nated by sinusoids from the rotating components. For military applications a focus is put on
specific shock scenarios such as gunfire, but also on road specific aspects of transport protec-
tion.
Typical vibration test types that are performed by controlled shaker excitation can be divided
into three main groups: Random, sine and shock (see fig. (2.8)). Further test types are combi-
nations as for example Sine on Random (SoR) or the exact replication of measured time signals
which is called Time Waveform Replication (TWR).
Within the automotive industry vibration tests are mainly conducted on uniaxial shaker tables,
while within military and aerospace multi-axis testing is already state of the art. This is in par-
ticular due to the limitation of facilities regarding the frequency range which tends to be lower
in aerospace applications.
Further information on the load collectives and testing procedures of transportation vehicles,
as well as aircraft and military applications can be found in [90] and [59], for passenger and
commercial vehicles in [35].
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Figure 2.8: Illustrations of different vibration test types (random, sine, shock)

In this section vibration testing methodologies are introduced. The first part aims at explain-
ing necessary vibration control theory for all relevant test types. Thereby, it is distinguished
between the control of random and deterministic time signals. The second part is focused on
the definition of meaningful test profiles as a reference for the control loop. Both existing uni-
axial and multiaxial test profile derivation methods are presented, as well as standard profiles
proposed by the aforementioned literature references.

2.3.1 Multi-Input-Multi-Output Control

Linear vibration control is usually designed with a feedback control loop for each frequency
independently. Thereby, the control process is realized with a P-control element speaking in
terms of automation control. Within the scope of this thesis only Multi Input Multi Output (MIMO)
control is treated as an extended version of the uniaxial Single Input Single Output (SISO)
control. In case of an equal number of drives and control transducers the configuration is
referred to as square control, in any other cases as rectangular control which is described in
[88] and [87]. Starting point for all control methods is an initial measurement of the systems
transfer matrix H(f), usually on a low excitation level.

2.3.1.1 Random vibration control

In the following, the random vibration control process for a square configuration is explained in
detail, according to [64], [14] and [76] amongst others. A flow chart of the feedback control loop
for random vibration is given in fig. (2.9) according to [64].
The control reference for the random time signals is a positive definite SDM R(f). The aim of
the entire process is to match the output spectrum G(f) with the reference as

G(f) = R(f) . (2.82)

As an initial step, a spectral decomposition is performed on R(f) as

R(f) = U0(f) S0(f) U∗0 (f) . (2.83)

resulting in the initial eigenvector matrix U0(f) and the initial diagonal matrix S0(f). According
to [78] any spectral decomposition can be used as long as it can be expressed in the form of eq.
(2.83). An eigenvalue decomposition can be used, as well as the singular value decomposition
which is equivalent in case of a symmetric matrixR(f). All relationships are described detailed
in [81]. Commonly, a Cholesky decomposition is used, as explained in [73], which yields
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R(f) = L0(f)L∗0(f) . (2.84)

The lower triangular matrix L(f) is also referred to as Cholesky factor. Eq. (2.83) can be
transformed into eq. (2.84) if S(f) = I. All decompositions are possible as long as the matrix
is positive definite. During the control process the decomposition is performed on G(f).
As a next step, the predicted output Fourier spectrum ŷ(f) is calculated based on a random
part and a reference part which can be characterized as decoupled inputs [103]. The random
part w(f) is a vector of independent noise sources that are realized with a uniformly distributed
random phase ejφ(f) for each entry. The noise source is also known as pseudo random, as
described in [64] and [78]. Using a Cholesky decomposition to obtain the reference part L(f)

yields

ŷ(f) = L(f) w(f) (2.85)

which can also be derived with an eigenvalue decomposition and its resulting reference part
U(f)

»
S(f) as

ŷ(f) = U(f)
»
S(f) w(f) . (2.86)

Being the third decoupled input, the inverse of the transfer matrix Ĥ(f) is then multiplied to eq.
(2.86) which yields the input spectrum x(f), expressed as

x(f) = Ĥ(f) ŷ(f) = Ĥ(f) L(f) w(f) (2.87)

in case of a Cholesky decomposition and

x(f) = Ĥ(f) ŷ(f) = Ĥ(f) U(f)
»
S(f) w(f) (2.88)

using an eigenvalue decomposition. To obtain the drive time signals x(t), an IFFT is applied:

x(t) = ifft (x(f)) . (2.89)

Depending on the SDM, they can be fully, partly or not correlated. In practice, a time domain
randomization is then performed on the drive time signals. Therefore, several data blocks are
generated and manipulated through windowing, overlapping and coupling in order to achieve
different signals each loop, as described in [25]. If time domain randomization is applied, the
random part w(f) has to be the same for all signals in order to maintain the coherences. Oth-
erwise, the random part can change in every control loop.
The core of the control action is the algorithm that updates the decoupled inputs L(f), respec-
tively U(f)

»
S(f). Two basic approaches exist: The update of the reference part L(f) →

L(f) + ∆L(f) as described in [64] and updating the transfer matrix Ĥ(f) → Ĥ(f) + ∆Ĥ(f)

as described in [79] and [72]. Both approaches can also be used together as performed in
[76]. The first approach numerically finds an update for both amplitude and phase based on
the error R(f)−G(f). The second one continuously recalculates the transfer matrix based on
eq. (2.16) and (2.17).
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Figure 2.9: Flow chart of random vibration control algorithm

For rectangular control applications some further considerations have to be made. The funda-
mental control problem is solved by an error minimization using the matrix error norm

|E(f)|2 = |R(f)−H(f) G(f) H∗(f)|2 (2.90)

with the error matrix E(f). Since the transfer matrix not being symmetric anymore, its inversion
has to be accomplished using for example the Moore-Penrose pseudo inverse4 yielding H†.
Furthermore, an ordinary coherence calculation as performed with eq. (2.13) is not possible
anymore. For responses caused by several drives, partial coherences need to be considered
as explained in [88].

2.3.1.2 Deterministic vibration control

The square control of deterministic signals requires a control process based on the acceleration
levels. A flow chart of the feedback control loop for deterministic vibration is given in fig. (2.10).
The reference spectrum is a vector of Fourier transforms r(f), that has to match the output
spectrum y(f) according to

y(f) = r(f) . (2.91)

Based on the error r(f)−y(f) the drives of the i’th loop xi(f) are updated iteratively according
to

xi(f) = xi−1(f) + ∆xi(f) . (2.92)

The control process uses the error to recalculate the diagonal matrix Q̂(f) which contains the
so-called iteration gains q̂(f) (with 0 ≤ q̂ ≤ 1) on its entries, described as

∆xi(f) = Q̂(f) Ĥ(f) (r(f)− yi−1(f)) . (2.93)

4The pseudo inverse is a least squares solution for the inversion of a non-symmetric or singular matrix
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Initially, it is Q̂0(f) = I. In opposite to random vibration control where a (permanently changing)
noise source is given, the drives can be updated directly based on each other. Furthermore,
the transfer matrix can also be updated according to Ĥ(f)→ Ĥ(f) + ∆Ĥ(f).

Figure 2.10: Flow chart of sine vibration control algorithm

The first application for deterministic control is the sine sweep. It is commonly used for prelimi-
nary resonance investigations, as well as for the simulation of engine run-ups. A linear sweep
(or chirp) between the frequencies f0 and f1 over a duration of T with an amplitude Â(t) and a
phase θ(t) is defined as

x(t) = Â(t) sin
ï
θ(t) + 2π

Å
f0t+

1

2

f1 − f0

T
t2
ãò

(2.94)

according to [11], rearranged including a phase term. To accelerate at higher frequencies,
usually an exponential (or logarithmic) sweep is used which is defined as

x(t) = Â(t) sin

θ(t) + 2πf0

Ü Ä
f1
f0

ät/T − 1

ln
ïÄ

f1
f0

ä1/T òê . (2.95)

The application of MIMO sine control is further explained in [68].

Apart from sine, another application in deterministic vibration control is the Time Waveform
Replication (TWR). As the name indicates, the TWR performs an exact replication of a mea-
sured or generated time signal. It is commonly used for special load cases and for shock tests.
Thereby, the iteration process shown in fig. (2.10) is calculated offline before the test. All cal-
culations are usually performed in the frequency domain despite the suggestion of the time
domain. However, for specific cases such as shocks also a direct error calculation in time do-
main is feasible. In its basic version, once the initial transfer matrix is estimated and the drive
signals are computed, the test runs through without any further control actions. After a single
test, the transfer matrix can be updated optionally to achieve improvements for the next run.
This procedure is referred to as adaptive modeling, as explained in [12]. To account for non-
linear effects, also a real time (online) update of the transfer matrix is possible which is referred
to as adaptive control, as described in [85]. The main limitation of the method is its requirement
of a large data storage space, especially for time signals with high sampling rates.
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2.3.2 Test Profile Derivation Methods

Several approaches exist to obtain load collectives and thus vibration profiles from field mea-
surements. They are introduced in the following subsections. Prior to the combination of dif-
ferent scenarios or maneuvers to a single profile, the underlying signal processing of each one
has to be determined. Within the automotive industry, a common procedure is the division of
the time signals into windows of 2048 samples using a sampling rate of 12500 Hz, as described
in [35]. Thereby, the Nyquist criterion is considered which states that the sampling frequency
should be 2.5 times5 the maximum observed frequency. For stationary signals a Hanning win-
dow function can be applied on each window in order to reduce spectral leakage. For random
profiles, an average PSD is then usually calculated over all windows. Depending on the aim of
the profile (average or worst case), a certain percentage of windows containing extremely large
or low values can be omitted. Differences in steady state and transient field data are analyzed
and evaluated in [92]. For sine profiles, usually peak hold FFT values Xmax(f) are obtained
which always use the maximum values of all windows for each frequency. For highly instation-
ary signals, [90] proposes the maximum expected environment where additional confidence
limits are added to the profile.
After the determination of all n̂ scenario profiles, they are combined into a test profile as illus-
trated in fig. (2.11). The underlying methods will be explained in the following.

Figure 2.11: Profile derivation

2.3.2.1 Techniques using field data directly (averaging and enveloping)

In terms of random vibration the most intuitive approach is the averaging method, where all
individual scenario PSDs are combined in an average sense. According to the respective ex-
pected service times this can also be accomplished in a weighted average form. For multiaxial
profiles the averaging can also be performed on the entire SDM, according to [27]. Thereby,
the obtained mean SDM Ḡ(f), described as

Ḡ(f) =
1

n̂

n̂∑
i=1

Gi(f) (2.96)

remains positive definite. Exemplary given in eq. (2.97), the mean PSD and CSD terms can be
used to obtain mean phases θ̄(f) and mean coherences γ̄(f) according to

Ḡ12(f) =
»
γ̄2

12(f) Ḡ11(f) Ḡ22(f) ejθ̄12(f) . (2.97)

5The original Nyquist theorem requires a factor of 2 but commonly 2.5 is used including a safety factor
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For the calculation of a sine profile, the amplitudes can be obtained analogously from the aver-
age of all individual peak hold FFTs

x̄(f) =
1

n̂

n̂∑
i=1

xmax,i(f) . (2.98)

During the peak hold calculation the phase information in each time window gets lost for each
scenario. For multiaxial tests, the phase can be of higher importance to qualitatively maintain
the vibrational environment. Therefore, the phase information is obtained from the particular
mean FFTs which can then be combined respectively as

x̄(f) =
1

n̂

n̂∑
i=1

xi(f) . (2.99)

Another approach are enveloping techniques in order to directly construct the worst case for all
frequencies. Envelopes are also often applied to overcome resonance frequency shifts or an
unknown mounting orientation [90]. Frequency shifts of both the product itself as well as the
substructure can occur due to variable material and boundary conditions. Differences in the
boundary stiffness between shaker and vehicle is a common issue in practice. Furthermore,
straight-line specifications support an easier handling. The enveloping can be performed on
both PSD and FFT profile sets. For a set of PSD profiles N̂ , the enveloping technique is
defined as

Genv(f) = envelope

⋃
i∈N̂

Gi(f)

 . (2.100)

It can be used analogue for FFT profiles. According to [27] no enveloping should be performed
on SDM terms to avoid violations of the positive definiteness.

The final step of profile derivation is a scaling in case of accelerated testing is needed. The
exposure time, and thus the damage, is related to the stress amplitudes through the S-N slope
b, as given in eq. (2.80). Using the relation between amplitude and RMS value from eq. (2.11)
yields also an expression for random vibration

Tservice
Ttest

=

Ç
Sa,test
Sa,service

åb
=

Å
ŝtest
ŝservice

ãb/2
(2.101)

with the severity ŝ that is equivalent to the RMS level of the PSD (see [27]). It doesn’t matter
which vibrational quantity is expressed as PSD since only an amplification factor is described.
Mostly, the acceleration PSD of the profile is used. Eq. (2.101) is based on several assump-
tions, such as a constant slope value, the validity of the linear damage accumulation and a
constant cycle number over time.
Considering an entire SDM, a scaling on an individual DOF-basis is proposed in [27]. For deter-
ministic time signals, eq. (2.101) is called load amplification method according to [28]. Thereby,
frequency, phase and cycle sequence remain the same and only the amplitude changes.
Another approach for the acceleration is the so-called compressed time testing where non-
damaging cycles are removed from the original time signal.
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2.3.2.2 Techniques using a substituted mechanical system - Fatigue Damage Spectrum

Instead of creating a vibration profile directly from field data, a substituted mechanical system
can be used for a better consideration of a system’s behavior. The most common approach is
the Fatigue Damage Spectrum (FDS) which considers any mechanical system as sequence of
SDOF systems as shown in fig. (2.12). Each frequency is thereby assumed to be a potential
eigenfrequency with its own SDOF system.

Figure 2.12: Concept of FDS using spring-mass-damper systems

Any vibration profile is first translated into an FDS representing the damage domain. For ran-
dom vibrations, a narrowband process is assumed for each SDOF system and eq. (2.25),
(2.81) and (2.34) are combined yielding

D(f, T ) =
fnk

b
dT

C

ñ
πfnQ

Gxx(f)

(2πfn)4

ôb/2
Γ

Å
1 +

b

2

ã
(2.102)

according to [100] with kd being an artificial factor between stress and displacement. Further-
more, it is ν0 = fn considering the narrowband assumption and f = fn since each frequency
is considered as potential eigenfrequency. Another formulation uses the relationship between
stress and velocity expressed with the factor kv according to

D(f, T ) =
fnk

b
vT

C

ñ
QGxx(f)

4πfn

ôb/2
Γ

Å
1 +

b

2

ã
. (2.103)

Thereby, eq. (2.35) is used for the derivation. The relationship between stress and velocity will
be investigated in detail in the next chapter.
As indicated in [91], it doesn’t matter which quantity is used since always narrowband re-
sponses are calculated for the translation into a damage spectrum. A simplified formulation
of eq. (2.103) is given in [30] neglecting all constants which yields the so-called Damage Po-
tential (DP), described as

DP (f, T ) = fnT

ñ
2QGxx(f)

fn

ôb/2
. (2.104)

Commonly, values of Q = 10 and b = 8 are used in practice, as proposed in [100].
The actual profile derivation happens in the fatigue domain, where all profiles can be summed
up to a single one. Thereby, each profile is already weighted with its respective exposure time.
As a next step, a backwards calculation of eq. (2.104) is accomplished as illustrated in fig.
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(2.13) using a desired test time Ttest. The FDS relates to the weighted averaging method when
considering low values for b. Considering higher values for b, the FDS calculation gets more
influenced by the highest PSD level at each frequency.

Figure 2.13: Profile derivation using FDS approach

The FDS of a single sine excitation at eigenfrequency is introduced in [47] as

D(f, T ) =
fnk

b
dT

C

ñ
QSa(f)

(2πfn)2

ôb
(2.105)

where QSa(f) can be expressed by the amplitude of the excitation acceleration Â(f). The FDS
expressions for linear and logarithmic sine sweeps are given in [47]. The sine FDS can also be
added to a random FDS if a damage equivalent random profile shall be created based on both
sine and random. A formulation for the sine based DP can be consequently stated as

DP (f, T ) = fnT

ñ
QSa(f)

f2
n

ôb
(2.106)

with all constants being neglected.

2.3.3 International Standards

The methods introduced in the previous subsection are partly included in different international
standards. The US Military Standard (MIL-STD) 810 [90] proposes an FDS for the combination
of different spectra and further includes the averaging method for multiaxial profiles from eq.
(2.96). In cases where no field data is available, standard profiles are given for different military
and aerospace applications. Fig. (2.14) shows direction specific standard profiles for common
carriers driving on US highways. Thereby, only a lower frequency range up to 500 Hz is excited.
The test time is given as 60 minutes per axis. If the mounting orientation is unclear, an envelope
should be used to cover the worst case. However, no extension to multi-axis shaker testing is
mentioned. Further standard profiles are considering two wheelers, composite wheeled vehi-
cles and helicopters amongst others.
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Figure 2.14: Standard profile for common carriers on US highways

The International Organization for Standardization (ISO) 16750-3 [35] provides standards for
passenger and commercial vehicles. Standard profiles are given for sprung and unsprung
masses, engine components, the gearbox, etc. The standard profile for sprung masses is
shown in fig. (2.15). The associated testing time is 8 hours per axis. No proposals for multi-
axis testing are given. To evaluate the fatigue damage of both field and shaker test, a cycle
counting on the acceleration responses is proposed. Thereby, the field data is extrapolated
to the complete service time. It is stated that this procedure is only valid for structures with a
single dominant mode (where the narrowband assumption holds). A peak counting, which is
a simplified form of the Rainflow counting, is then applied to determine the cycle amplitudes.
For the fatigue damage calculation 12 different S-N curve models are used together with the
Haibach extension. All combinations for an exponent b out of [3, 5, 7, 10] and number of cycles at
the fatigue point limit ND out of [2×106, 10×106, 50×106] have to be considered. If the damage
based on the shaker test is always higher than based on the field data, the test succeeded.
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Figure 2.15: Standard profile for sprung masses on passenger cars
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3 Multiaxial Fatigue Damage Calculation

The core of this thesis is the comparison of fatigue damage between sequential uniaxial and
multiaxial (simultaneous) vibration tests. Therefore, relevant considerations are made in this
chapter resulting in a new evaluation concept. Existing fatigue damage calculation procedures
and models are reviewed and basic effects of sequential and simultaneous excitation are dis-
cussed. An easily measurable damage equivalent quantity is determined and applied to the
previously specified calculation procedure. The geometric influence on the methodology is
then investigated extensively.

3.1 Preliminary Considerations

The first step is to define a general approach for the quantification of fatigue damage. Thereby,
both sides, loading and material strength, are to be considered. An equivalent stress concept,
an appropriate handling of the respective cycle amplitudes and mean values, as well as rea-
sonable S-N curve models are chosen. Different effects resulting from both sequential and si-
multaneous excitation are considered: The influence of narrowband and broadband response,
the excitation phase and resulting failure locations, and the influence of coherence.

3.1.1 Fatigue Damage Evaluation Methodology

An initial assumption is the crack initiation at the surface of a structure which justifies the usage
of plane stress simplifications. As equivalent stress criterion, the von Mises PSD in eq. (2.70),
also referred to as Bonte PSD, is used due to its consequent consistency with the static von
Mises criterion. The PSD is then used as a base for the generation of a white noise signal (see
eq. (2.85) and (2.86)), that in turn can be used for a subsequent fatigue damage calculation.
As indicated in [71], the time signal has to be sufficiently long in order to neglect fluctuations.
Therefore, a minimum of 106 cycles should be used which results in a time signal of 200 min-
utes to cover components with a first eigenfrequency at around 100 Hz. Thereby, a sampling
rate of 12500 Hz is used. Since accurate results shall be obtained, none of the spectral fatigue
damage estimators that were mentioned in 2.2.4 are used. Instead, a Rainflow counting is per-
formed on the generated signals to obtain the stress cycles. A flow chart of the entire method
is given in fig. (3.1). For an underlying stationary random process, the obtained cycles from
the Bonte PSD can be directly used as absolute values for a fatigue damage calculation. For
underlying deterministic signals, such as for example sine sweeps which are transformed into
a Bonte PSD, only a relative damage comparison between two profiles can be performed using
the obtained cycles. The high amplitudes that occur are usually lowered through the averaging
process which is violating the contribution to the actual fatigue damage, however in the same
manner for both profiles.
Apart from the Bonte PSD, existing time domain methods (see subsection 2.2.2.1) are found to
be not appropriate: The multiaxial Rainflow approach is an artificial concept which requires a
high computing time. The signed von Mises is a simple method that applies its sign according
to the first invariant. In case of higher out-of-phase components, such as shear stresses, the
results can get highly violated due to the respective components being forced to the sign of the
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normal stresses.

The fatigue damage calculation is based on linear damage accumulation ignoring the mean
stress values. According to investigations performed in [44], mean stresses obtained from
symmetric random time signals with an expected value of zero have hardly influence on fatigue
life. Due to the dominance of resonant vibration, the time signals used in this thesis are all of
symmetric nature. Furthermore, the mean stress sensitivity strongly depends on the material.
Structural effects such as counter effects on the loss of fatigue strength introduced by notches
may occur with higher mean stress sensitivities. Thus, a general fatigue damage evaluation
method cannot include mean stresses.
To evaluate all kinds of materials and structures, all calculations are performed using different
S-N models with exponents of b = 3 − 13. For the pseudo fatigue damage calculation the
conservative elementary Miner rule of eq. (2.80) is used. Due to the exponential consideration,
the influence of low amplitudes is neglectable. In [44], the lower 50 percent of the amplitudes
are left out. Furthermore it is stated in [45] that other approaches than the elementary Miner
rule are too specific and bring complexity into the method that is not justified by the results.
The small difference between the three approaches of the Miner rule shall be demonstrated
using an arbitrary white noise time signal. It is Rainflow counted and the cycle amplitudes
are applied with the different exponents b according to the different Miner rules. Thereby, the
percentiles of stress amplitudes lower than the fatigue limit SD are increased from 90% to 99%.
As number of cycles at the fatigue limit point ND = 2 × 106 is chosen arbitrarily, since it is
canceled out during further procedure. The maximum fatigue damage values which are those
from the elementary approach are divided by the minimum values which come from the original
approach to find the largest discrepancy. The results using the Haibach extension are logically
lying between both approaches. All results for Delementary/Doriginal are given in table (3.1) and
show a maximum discrepancy of a factor of 3.78 for an absolute worst case scenario which is
still acceptable within the scope of fatigue damage calculation where uncertainties of up to 10

are common (see [7] and [43]).

Table 3.1: Ratio of maximum and minimum fatigue damage values for different percentiles of
stress amplitudes less than the fatigue limit

b 3 4 5 6 7 8 9 10 11 12 13

90% < SD 1.34 1.14 1.05 1.02 1.01 1.00 1.00 1.00 1.00 1.00 1.00

95% < SD 1.72 1.33 1.16 1.07 1.03 1.01 1.01 1.00 1.00 1.00 1.00

97% < SD 2.14 1.55 1.28 1.14 1.07 1.03 1.02 1.01 1.00 1.00 1.00

98% < SD 2.60 1.79 1.41 1.22 1.12 1.06 1.03 1.02 1.01 1.00 1.00

99% < SD 3.78 2.39 1.75 1.43 1.25 1.14 1.09 1.05 1.03 1.02 1.01

The entire methodology is illustrated in fig. (3.1) using results obtained from simulation. The
stress FRFs are multiplied with the FFT of a generated white noise random input in order to
get stress response FFTs which can be processed further according to the figure. The stress
time signal of the Bonte PSD is generated according to subsection 2.3.1.1 including an IFFT.
Thereby, a random phase is introduced to the Bonte PSD.
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Figure 3.1: Flow chart of fatigue damage calculation using simulation

3.1.2 Effects of Sequential and Simultaneous Excitation

3.1.2.1 Frequency bandwidth

Simultaneous excitation goes basically hand in hand with the superimposition of several modes
and thus interaction of the resulting stress cycles. In order to separate the effect of different
cycle formation from multiaxial loading, an example using two independent SDOF systems is
considered, as given in fig. (3.2).
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Figure 3.2: Exemplary narrowband and broadband relative displacement responses of two
SDOF systems

Based on the relative displacement response time signals (200 min) caused by a random ex-
citation with a flat displacement PSD (1 [mm²/Hz], 10 − 2000 Hz), the uniaxial fatigue damage
is then calculated for each SDOF system independently and for both SDOF systems super-
imposed, i.e. their response time signals are superimposed. The Rainflow counting is per-
formed directly on the uniaxial relative displacement responses due to its equivalency to strain.
Fig. (3.3) shows the typical difference between the cycles of a narrowband and broadband
response. Due to the interactions between two frequencies resulting in amplitude and mean
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values, broadband cycles contain more higher and less lower amplitudes than narrowband
cycles.
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Figure 3.3: Hysteresis cycles for different excitation of the SDOF systems

The fatigue damage is given in fig. (3.4) for different slope values b. The broadband response
yields the largest fatigue damage by nearly two orders of magnitude for b = 13. Summing up
the fatigue damage values of each SDOF system is almost equal to the greater value of the
two.
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Figure 3.4: Fatigue damage values for different excitation of the SDOF systems
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3.1.2.2 Excitation phase and different failure locations

To show the influence of the excitation phase on the fatigue damage, as well as on the respec-
tive failure locations, an example cantilever beam is introduced, given in fig. (3.5). It has a
circular cross section with a radius of r = 10 mm and a length of L = 500 mm. An FEM steady
state harmonic analysis is performed in order to obtain the stress FRFs from the respective
locations 1, 2 and 3 at the clamped end. The beam is modelled with C3D20 volume elements
to maintain generality through the subsequent analysis.

Figure 3.5: Simulated example beam

The results of a fatigue damage calculation according to the methodology previously shown in
fig. (3.1) are given in fig. (3.6). Therefore, three different coherent excitation phase angles
θxy = 0 (in-phase excitation in positive x- and y-direction), π/2 (90◦ phase shift), π (in-phase
excitation in negative x- and positive y-direction) between the x- and y-axis are applied for the
simultaneous excitation. In addition, a sequential excitation in x- and y-direction is performed
for a comparison.
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Figure 3.6: Fatigue damage values of example beam for simultaneous excitation with different
phases and sequential excitation
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It can be seen that the fatigue damage at position 2 has its largest value for an in-phase bending
motion in its respective direction (θxy = 0) and the lowest value for a perpendicular in-phase
bending motion (θxy = π). For a tumbling motion through an out-of-phase excitation (θxy =

π/2), the fatigue damage appears to be the same at every location due to the evenly distributed
loading caused by the tumbling. Thus, it is half as much the summed value of a sequential
excitation evaluated at positions 1 and 3, which are the respective hot spots of the uniaxial
excitations. Thereby, its summation provides an artificial pseudo damage since two different
locations are considered. The phase influence is distinct especially when two damaging modes
are close to each other.

3.1.2.3 Coherence of excitation phase

The influence of the excitation coherence, which gives information about the stability of the
phase, is investigated using the same beam. For all three phase values, coherences of γxy =

[0.01, 0.5, 0.99] are applied. Absolute values of 0 and 1 are not used to avoid numerical issues.
Fig. (3.8) shows the result for the respective fatigue damage calculations at position 2. It can
be seen that with lower coherence the phase information gets lost and the damage appears
to be the same for each phase. Thereby, it ranges in the same dimension as the damage ob-
tained from a coherent excitation with a phase shift of π/2 as previously shown in fig. (3.6). An
example time signal (10 minutes divided in 3515 time windows) is used to show the distribution
of the phase angles over the time windows used for calculation. Fig. (3.7) shows the actual
phase angle occurrences when a phase angle of θ = 0 rad with a coherence of γ = 0.5 is set.
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Figure 3.7: Phase distribution of white noise signals with a phase of θ = 0 rad and a coherence
of γ = 0.5 (time signal of 10 minutes, evaluated with 3515 time windows)
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So far, a multiaxial fatigue damage calculation methodology was introduced along different
effects that occur with multiaxial loadings. As a next step, an appropriate measurement quantity
apart from local stresses shall be elaborated.

3.2 Relationship Between Stresses and Different Vibrational Quantities

As stated in the introduction, strain gauge measurements should be avoided due to their com-
plexity in application and the possible lack of accessibility which may occur for example at bolted
mounting locations. In this section, an indicator is found that relates to fatigue damage which
is in turn caused by local stresses. Thereby, it is sufficient to identify a scaled quantity carrying
all necessary information about frequency, amplitude and phase. An analytic relationship be-
tween stress and velocity is the starting point of the theoretical investigation. Mechanical loads
consist of both normal and shear stresses. For each stress component a particular relationship
is formulated using simple structures such as rods and Euler-Bernoulli (EB) beams. Effects of
transverse shear strain are thus neglected. Parts of this section, especially 3.2.1, 3.2.2 and
3.2.3.1, have been published previously in [38].

3.2.1 Translational Motion

The EB beam differential equation for a uniform beam with the deflection curve w(x), the bend-
ing stiffness EI and the cross-sectional area A is known as

∂4w(x, t)

∂x4
= −ρA

EI

∂2w(x, t)

∂t2
(3.1)

according to [53]. For the static case the deflection curve is expressed depending on the
distributed load q(x) with

w(x)EI =

∫ ∫ ∫ ∫
q(x)dx4 (3.2)

which is illustrated in fig. (3.9).

Figure 3.9: Euler-Bernoulli beam [38]

Deriving eq. (3.2) two times leads to the bending moment and thus to the normal stress with
the area moment of inertia I and the distance to the neutral fiber ẑ, described as

d2w(x)

dx2
EI =

∫ ∫
q(x)dx2 =

I

ẑ
σ(x) . (3.3)

For a constant q(x), the solution of the deflection curve is stated in eq. (3.4) with the constants
of integration Ĉ1, Ĉ2, Ĉ3 and Ĉ4 which depend on the boundary conditions of the beam.
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w(x)EI =
qx4

24
+ Ĉ1

x3

6
+ Ĉ2

x2

2
+ Ĉ3x+ Ĉ4 (3.4)

The distributed load q is eliminated in order to obtain an equation for the maximum normal
stress as a function of maximum deflection. Thereby, eq. (3.3) and (3.4) are solved for q,
resulting in

σmax = ke wmax
ẑE

L2
(3.5)

with the beam length L and the static factor ke that depends on the distributed load and the
boundary conditions. As an example, a constant q(x) on a clamped-free configuration yields
ke = 4. In general, the position of the maximum deflection is not the same as of the maximum
normal stress.
In a next step, the static description is extended to dynamic analyses. Equalizing the kinetic
and the strain energy of the beam yields

1

2EI

L∫
0

Ç
EI

d2w(x)

dx2

å2

dx =
1

2
ρA

L∫
0

ẇ2(x)dx . (3.6)

The time derivative of the deflection curve ẇ can be described as

ẇ(x) = v(x) =
m̃∑
i

ωi wi(x) (3.7)

using the assumption of a harmonic oscillation, where ωi is the i-th circular eigenfrequency out
of m̃ modes and wi(x) its corresponding eigenform. The superposition of all eigenforms yields
the total deflection curve. Solving eq. (3.6) for a single ω then yields

ω = kω
1

L2

 
EI

ρA
(3.8)

with the dynamic factor kω defined as

kω = L2

Œ∫ L

0

(
d2w(x)

dx2

)2
dx∫ L

0 w2(x) dx
. (3.9)

Eq. (3.8) and (3.9) can only be formulated for each eigenfrequency independently. The final
relationship between maximum stress and maximum velocity is obtained by combining eq.
(3.5), (3.7) and (3.8), yielding

σmax =
ke
kω

ẑ

 
ρAE

I
vmax = kσ vmax . (3.10)

The factor of proportionality is thereby labelled as kσ. The equation describes a relation to
the maximum occurring stress which may serve as a base for fatigue damage calculation. Eq.
(3.10) is valid for each eigenfrequency. The location of wmax is logically equal to the location of
vmax. Evaluating the EB beam differential eq. (3.1) shows that ke/ω and thus ke/kω are nearly
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constant for each eigenfrequency. For a hinged-hinged configuration the assumption of the
modeshape w(x) being a sine wave can be made which leads to the obviously valid statement

(
d2w(x)

dx2

)
max

(w(x))max
=

 ∫ (
d2w(x)

dx2

)2
dx»∫

w2(x) dx
. (3.11)

In principle, the relation between ke and kω is comparable. Eq. (3.11) shows the special
case of a sinusoidal shape and is therefore not valid in general, nonetheless the deviation
for other boundary conditions is still constant for each eigenfrequency. Table (3.2) shows the
approximate values of ke/kω for different boundary conditions which are similar to the ones
obtained in [89]. For the hinged-hinged configuration, the waveform has exactly the shape of a
sinusoid and thus an expected factor of ke/kω = 1.

Table 3.2: Factors for different boundary conditions

Boundary condition ke/kω

Clamped-free 1.00

Hinged-free 0.76

Clamped-clamped 1/0.76

Hinged-hinged 1.00

Clamped-hinged 1/0.76

The other two vibrational quantities acceleration and displacement can now be derived from
eq. (3.10). The maximum acceleration is obtained by amax = vmax ω and the maximum dis-
placement by wmax = vmax/ω using the same assumption of a harmonic oscillation.
Apart from transversal motion, the derivation for longitudinal motion was accomplished in [21]
based on the differential equation of a longitudinal vibrating rod. The relationship between
maximum longitudinal velocity and maximum normal stress is given as

σmax =
√
ρE vmax = kσ,lon vmax . (3.12)

3.2.2 Rotational Motion

A similar relationship is derived for the rotational motion using a torsional element as illustrated
in fig. (3.10). The torsional eigenforms have the same characteristics as the longitudinal ones.
The differential equation is given in [53] as

∂2φ(x, t)

∂x2
=
ρIp
GIt

∂2φ(x, t)

∂t2
(3.13)

with the torsion angle φ(x), the torsional stiffness GIt and the polar area moment of inertia Ip.
For circular cross sections the polar area moment of inertia is equal to the torsional constant
It. As indicated above, the differential equation is similar for the longitudinal vibrating rod.
Analogue to eq. (3.2) and (3.3), the deflection curve for the static case can be expressed as

φ(x)GIt =

∫ ∫
−mt(x)dx2 . (3.14)
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The equation for the torsional resistance moment Wt and the torsional shear stress τt can be
derived as

dφ(x)

dx
GIt =

∫
−mt(x)dx = Wt τt(x) (3.15)

with the distributed moment mt(x).

Figure 3.10: Torsion rod [38]

Eliminating the distributed moment yields the maximum torsional shear stress expressed with
the maximum angle of twist

τt,max = ke,φ φmax
GIt
WtL

(3.16)

including the static factor for torsion ke,φ, analogue to the static factor obtained for bending.
Again, kinetic and strain energy are equalized as

1

2GIt

L∫
0

Ç
GIt

dφ(x)

dx

å2

dx =
1

2
ω2

L∫
0

Jφ2(x)dx (3.17)

with the moment of inertia J that is constant over the entire rod. The resulting equation for ω is
given as

ω = kω,φ

 
GIt
JL

(3.18)

and for the dynamic factor for torsion kω,φ as

kω,φ = L

Œ∫ L

0

(
dφ(x)

dx

)2
dx∫ L

0 φ2(x) dx
(3.19)

The final relationship between maximum torsional shear stress and maximum angular velocity
can be obtained using eq. (3.16), (3.17) and the assumption of a harmonic oscillation φ̇max =

ω φmax, described as

τt,max =
ke,φ
kω,φ

 
JGIt

Wt
2L

φ̇max . (3.20)

The angular velocity can be expressed as φ̇max = vrot,max/r and the entire factor of proportion-
ality can be labelled as kτ which yields
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τt,max =
ke,φ
kω,φ

 
JGIt

Wt
2Lr2

vrot,max = kτ vrot,max . (3.21)

Evaluating the differential equation of a constant rod formulated in eq. (3.13) yields ke,φ/kω,φ =

1 for all configurations which simplifies eq. (3.20) to

τt,max =

 
JGIt

Wt
2Lr2

vrot,max . (3.22)

The relation to angular acceleration and displacement can be found by applying a factor of ω,
as previously described in 3.2.1.

3.2.3 Evaluation of Different Vibrational Quantities

3.2.3.1 Maximum positions

In order to verify the analytic expressions found for the different vibrational quantities, the can-
tilever beam of the previous section (see fig. (3.5)) is used for an FEM simulation. Its clamped-
free configuration ensures the same position of maximum velocity for each frequency. Acceler-
ation, velocity and displacement are measured at the tip while the stress is obtained near the
clamped end, as shown in fig. (3.11).

Figure 3.11: Maximum positions on the cantilever beam [38]

Fig. (3.12) shows the normalized absolute values of the respective FRFs of a uniform accel-
eration excitation for translational motion. The corresponding FRFs for rotational motion are
given in fig. (A1) within the appendix. The best match is detected between stress and velocity
which verifies the analytically derived relationships in the subsections 3.2.1 and 3.2.2. How-
ever, the relationship is only valid for the absolute values and only at the eigenfrequencies. As
shown in fig. (3.13), the phase values do not match at the eigenfrequencies and are shifted by
±π/2. However, the first bending modes in each direction and the first torsional mode which
are usually most severe are of the same phase shift. The same consideration can be made for
configurations other than clamped-free, where the velocity measurement should be performed
at the estimated position of the first eigenfrequency’s antinode. The theoretical case of higher
eigenmodes of a complex structure where the predicted hot spot is facing more motion than
the actual measurement position can also not be covered sufficiently. However, this is only
a theoretical consideration and usually not the case for real technical systems, as well as of
little damage contribution. Within the scope of this thesis, fatigue damage caused by resonant
vibration is considered which serves as legitimation to further process with the investigation on
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the stress-velocity relationship. Furthermore, acceleration and displacement differ by a factor
of frequency which inevitably leads to an over- or underestimation of the fatigue damage.
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Figure 3.12: Frequency responses of normalized stress and different vibrational quantities at
maximum positions
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Figure 3.13: Stress and velocity response phases

3.2.3.2 Same positions

Beyond the maximum value positions, the relationship between stress and velocity also holds
at the so-called farfield regions, as described in [37]. On these regions, the normal stress can
be directly obtained from the velocity at the same position, as illustrated in fig. (3.14). The
phase shift has the same value of π/2 for each eigenfrequency as shown in fig. (3.16).
A similar relationship can be detected between normal stress in direction of motion and ac-
celeration near the free end, and between stress and displacement near the clamped end, as
shown in fig. (3.15). The first relationship can be explained by a high influence of the inertia
at the free end where the normal stress is nearly zero and only caused by acceleration. The
second one is due to the high influence of stiffness and the similarity between displacement
and strain at the clamped end. This quantity can only be measured with strain gauges and
access to the respective location.

Figure 3.14: Evaluation positions on the cantilever beam
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Figure 3.15: Frequency responses of normalized stress and different vibrational quantities ob-
tained at the same locations
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Figure 3.16: Stress and velocity response phases in farfield region
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The constant phase shift can be removed in order to replicate the stress time signals accurately.
In order to provide phase information to a real-valued time signal, a Hilbert transformation as
described in [18] is applied. It is defined as

H(x(t)) =
1

π

∞∫
−∞

x(τ̂)

t− τ̂
dτ̂ . (3.23)

Then, an analytic signal representation of the original time signal ĥ(t) is used where its imagi-
nary part is the Hilbert transformed of the real part. It is described as

ĥ(t) = x(t) + jH(x(t)) . (3.24)

The analytic signal can be brought in an amplitude-phase form, where the phase ∠ĥ(t) is
manipulable. Then, a constant phase shift of π/2 is applied which yields h̃(t), described as

h̃(t) = |ĥ(t)| cos
Å
∠ĥ(t) +

π

2

ã
. (3.25)

Eq. (3.25) is applied on a velocity signal generated from the FRF shown in fig. (3.15). The
normalized stress and the Hilbert transformed and phase shifted velocity signal v∗ are shown
in fig. (3.17). Depending on the accuracy of the farfield localization, the normal stress signal
can be sufficiently replicated from the velocity signal.
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Figure 3.17: Stress and phase shifted velocity time signal v∗

However, the normal stress obtained at the farfield location is not equal to the maximum stress
in the beam and the amplitude proportions of the eigenfrequencies are generally different.
Therefore, this approach is not useful for a general fatigue damage evaluation methodology.
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3.3 Fatigue Damage Evaluation Using Velocities

To perform a fatigue damage evaluation based on velocities, the respective components first
have to be combined in a meaningful way through reasonable geometric factors. After the
relative weighting they can be incorporated into an equivalent stress formulation to obtain a
fatigue damage related quantity. Parts of this section have been published previously in [38].

3.3.1 Combination of Velocity Components

For the application of geometric factors only transversal and rotational velocities are considered.
The damaging effect of longitudinal motion can usually be neglected for most real applications.
The geometric term within the factor of proportionality kσ for transversal motion is referred to
as geometric factor K =

»
Aẑ2

I . For each bending direction another factor of proportionality
can be calculated. In case of uniform cross sections, like rectangular or circular beams, the
values for ẑ and the square root of the reciprocal radius of gyration I/A compensate each other
and the factor K always remains constant. For a rectangular shape it is K =

√
3 and for a

round shape K = 2. For complex equipment a geometrical factor of 4 to 8 is proposed in [65],
probably justified by the largest possible geometric factor which is obtained from a constant
triangular cross section with K = 2

√
2 times a factor of three. The factor of three might be

derived assuming a three-sigma limit of a normal distribution.
According to the proposed values, a maximum deviation by a factor of 2 is considered. The
possible influence on the resulting fatigue damage is investigated using an H-section cantilever
beam, shown in fig. (3.18). The H-section is designed respectively, resulting in a proportion of
kσ,x/kσ,y = 3.05/1.45 ≈ 2 which is equivalent to a structure with K = 4 and K = 8 for different
directions. It has a height and width of 20 mm and a length of 500 mm. A FEM simulation yields
the FRF for normal stresses and transversal velocities with the eigenmodes alternating between
both bending directions x and y. Thereby, kσ,x = kσ,y is used to obtain the maximum error as
can be seen in fig. (3.18). Every second peak amplitude has a deviation of roughly 50%. A
uniaxial fatigue damage calculation is performed according to the methodology explained in
subsection 3.1.1 using only normal stress and the sum of both translational velocities kσ,xvx +

kσ,yvy. Both generated stress and velocity white noise response time signals are normalized
with respect to the RMS value of their PSD to be comparable. Table (3.3) shows the ratio
Dv/Dσ for different slope values of the S-N curve. The phase difference between some higher
eigenfrequencies have a neglectable influence on the results. The deviations are of a maximum
value of 1.12 which is absolutely acceptable within the scope of fatigue calculation. However,
this investigation only addressed beams with a constant cross section.
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Figure 3.18: Normalized frequency responses of normal stress and translational velocities of
an exemplary H-section beam, assuming kσ,x = kσ,y

b 3 4 5 6 7 8 9 10 11 12 13

Dv/Dσ 0.95 0.97 0.99 1.00 1.02 1.03 1.05 1.07 1.09 1.10 1.12

Table 3.3: Deviation of the fatigue damage values for an H-section

In order to determine a rough proportion between the factors for normal stress and torsional
shear stress, equal transversal factors of proportionality kσ = kσ,x = kσ,y = kσ,z are assumed.
For beams with a constant circular cross section it is

kσ
kτ

=
ke
kω

Ã
ρAEẑ2

I
JGIt
Wt

2Lr2

. (3.26)

Thereby, the values for ẑ and the radius r are equal. In case of ideal elastic, isotropic and metal-
lic material, a Poisson’s ratio1 of ν = 0.3 can be used. Then, a value of kσ/kτ = 3.225 is ob-
tained for a clamped-free configuration and kσ/kτ = 4.2 for a clamped-clamped configuration.
These results show similarities with investigations on pipe structures in [19]. In case of rectan-
gular cross sections, IT and WT are calculated numerically yielding values of kσ/kτ = 1.9− 2.7

for ratios of height to width of 1 to 10. However, circular cross sections are emphasized since
the severity of their torsional modes is much larger than for rectangular ones. As a conservative
approach, both maximum normal and torsional shear stress are assumed to have the same lo-
cation. The proposed value of kσ/kτ = 3.225 is verified with the FE beam model given in fig.
(3.5) resulting in the FRFs shown in fig. (3.19). For both transversal and torsional modes the
FRFs are in a close match. Absolute values are used due to the phase shift of the different
components.

1Used for the relation E = 2G(1 + ν) introduced in section 2.2.1
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Figure 3.19: Normalized frequency response of sum of normal and torsional shear stress, re-
spectively velocity and rotational velocity

The same considerations can also be made for the ratio of transversal and longitudinal veloc-
ities resulting in kσ/kσ,lon = 2 for a circular beam in a clamped-free configuration which is not
relevant for further engineering. If no information about the geometry is available, an overall
standard value of kσ/kτ = 3 is proposed for clamped-free configurations and kσ/kτ = 4 for
clamped-clamped configurations. Further investigations on geometric factors for non-uniform
structures are performed in the next subsection 3.3.2.

3.3.2 Composition of an Equivalent Stress out of Velocities

As equivalent stress, again the Bonte PSD from eq. (2.70) is considered as discussed in
subsection 3.1.1. Its main advantage is the correct processing of out-of-phase components,
such as transversal and rotational velocities. For the subsequent formulation, the x-axis is
defined as the longitudinal direction of the beam and the y-, respectively z-axis as the cross
axis directions. The coupling through lateral contraction leads to the assumption of a rough
proportionality between the normal stresses σx ∼ σy ∼ σz which can be confirmed by simple
beam simulations. Thus, eq. (2.70) becomes

GσvM = 0.5

(
Gσx

[
1 +

Gσy
Gσx

−
√
Gσy
Gσx

cos(θx − θy)
]

+ 3Gτxy

)
+ 0.5 abs(

Gσx

[
1 +

Gσy
Gσx

e2j(θy−θx) −
√
Gσy
Gσx

ej(θy−θx)

]
+ 3Gτxye

2j(θxy−θx)

)
.

(3.27)

Based on the assumption of slender beams, a dominating normal stress σx � σy, respectively
σx � σz is settled. Then, the term in squared brackets in eq. (3.27) becomes 1 which yields

GσvM = 0.5
Ä
Gσx + 3Gτxy

ä
+ 0.5 abs

Ä
Gσx + 3Gτxye

2j(θxy−θx)
ä
. (3.28)
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All three transversal velocities contribute to the same axial normal stress σx as derived in the
previous section. Thus, it is σx ≈ kσ,xvx + kσ,yvy + kσ,zvz to cover for all possibilities which is
a valid statement considering the assumed proportionality of the stress components. Further-
more, during vibration all kinetic energy stored in velocity is transformed into potential energy
stored as stress. It can be argued that stress caused by contraction is also included in the
velocity. Considering shear stress, a relationship between torsional shear stress and rotational
velocities was derived. Shear stress induced by shear force cannot be reasonably represented
by an oscillation. Based on the slender beam theory its contribution is neglected. Thus it is
τxy = τt which is incorporated into eq. (3.28) together with the assumptions above, yielding

GσvM = 0.5 (Gkv + 3Gkvrot) + 0.5 abs
Ä
Gkv + 3Gkvrote

2j(θv−θvrot )
ä
. (3.29)

Thereby, the normal stress proportional PSD Gkv is calculated from kσ,xvx(t) + kσ,yvy(t) +

kσ,zvz(t) and the torsional shear stress proportional PSD Gkvrot from kτvrot(t). Considering the
standard factor of kσ/kτ = 3 proposed in section 3.3.1, eq. (3.29) is simplified to

GσvM = 0.5 k2
σ

Å
Gv +

1

3
Gvrot

ã
+

0.5 k2
σ abs

Å
Gv +

1

3
Gvrote

2j(θv−θvrot )
ã (3.30)

where the transversal velocity PSD Gv is calculated from vx(t) + vy(t) + vz(t) and the rotational
velocity PSD Gvrot from vrot(t). Based on a few assumptions and basically the summation of
velocities, the derived equivalent stress formulation eq. (3.30) yields good estimations for real
structures, as evaluated in [38]. The new fatigue damage calculation procedure is illustrated in
fig. (3.20). The velocities can also be applied to any other equivalent stress formulations in the
same manner.

Figure 3.20: Flow chart of fatigue damage calculation using velocities from a simulation model

For a relative damage comparison of two different environments, the factor of k2
σ in eq. (3.30)

can be removed. The fatigue damage calculation then results in an artificial pseudo damage.
The linear damage accumulation according to the original Miner rule is the only meaningful
approach using velocities directly, since the contribution of velocity amplitudes to either the
HCF or the UHCF range is usually unknown. In cases where a mean stress contribution is
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to be considered, it is questionable to perform reasonable mean stress corrections directly on
velocity signals.

3.4 Geometry Influence on the Stress-Velocity Relationship

In this section, the investigation on the geometric factors of the stress-velocity relationship is
extended to non-constant cross sections. Thereby, the analytical derivation in the subsections
3.2.1 and 3.2.2 is repeated accordingly. A procedure for obtaining factors from FE models is
presented. Furthermore, a FE model simplification is proposed for the estimation of the respec-
tive factors using different examples. Parts of this section have been published previously in
[40].

3.4.1 Non-Constant Cross Sections

3.4.1.1 Translational motion

According to [69], the EB beam differential equation for a non-uniform beam is known as

∂2

∂x2

Ç
EI(x)

∂2w(x, t)

∂x2

å
= −ρA(x)

∂2w(x, t)

∂t2
(3.31)

with the deflection curve w(x). The left hand side of eq. (3.31) represents the potential energy
while the right hand side represents the kinetic energy. The deflection curve is expressed as

w(x) = x−ñ/2
Ä
Ĉ1Ĵñ(λ

√
x) + Ĉ2Ŷñ(λ

√
x) + Ĉ3Îñ(λ

√
x) + Ĉ4K̂ñ(λ

√
x)
ä

(3.32)

using the Bessel function of the first kind Jñ, the modified Bessel function of the first kind Iñ, the
Bessel function of the second kind Yñ, the modified Bessel function of the second kind Kñ, the
constants of integration C1, C2, C3 and C4, the eigenvalue λ and the index of the beam section
variation ñ. A circular cone is expressed with ñ = 2 due to the quadratic variation of the cross
section. The relationship of the eigenvalue λ to the circular eigenfrequency ω is given as

λ4 =
16ρALω

2L2

EIL
(3.33)

where AL and IL are obtained at the position x = L, according to [69]. As performed in
subsection 3.2.1, a static consideration is done at first. The static relationship for the maximum
normal stress is similar to eq. (3.5) except a varying distance to the neutral fiber ẑσmax which
depends on the location of maximum normal stress. It is

σmax = ke wmax
ẑσmaxE

L2
. (3.34)

Again, the kinetic and strain energy are equalized using eq. (3.31) and the assumption of a
harmonic oscillation which yields

E

2

L∫
0

I(x)

Ç
d2w(x)

dx2

å2

dx =
1

2
ρω2

L∫
0

A(x)w2(x)dx . (3.35)

Solving eq. (3.35) for ω yields
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ω = kω
1

L

 
E

ρ
(3.36)

expressed with the dimensionless dynamic factor kω which is described as

kω = L

Õ∫ L
0 I(x)

(
d2w(x)

dx2

)2
dx∫ L

0 A(x)w2(x) dx
(3.37)

including the terms I(x) and A(x). The final relationship between maximum stress and velocity
from eq. (3.10) extended for non-constant cross sections can then be stated as

σmax =
ke
kω

√
ρE

1

L
ẑσmax vmax . (3.38)

The information of A(x) and I(x) is now included in the term ke
kω

.
The same derivation can be made for longitudinal motion using the solutions of [1] and [49].
However, due to its neglectable influence on fatigue damage it is not considered further. Parts
of this subsection have been investigated in [96].

3.4.1.2 Rotational motion

Using a non-constant torsional rod for the rotational motion, its differential equation can be
described according to [67] as

∂

∂x

Ç
GIt(x)

∂φ(x, t)

∂x

å
= ρIp(x)

∂2φ(x, t)

∂t2
(3.39)

with the polar area moment of inertia Ip and the torsional constant It. The left hand side of eq.
(3.39) represents the potential energy while the right hand side represents the kinetic energy.
Again, Bessel functions are used to describe the torsion angle line φ(x) which yields

φ(x) =
Ä
Ê + x/L

ä−ν̂
Ẑν̂(X̂) (3.40)

with a geometric constant Ê, a linear combination of Bessel functions Ẑν̂ , the equation order
ν̂ and an eigenfrequency-dependent function X. Further explanations of the respective terms
can be found in [67].
The static relationship for τt,max is similar to eq. (3.16) except a varying torsional resistance mo-
ment Wt,τmax and torsional constant It,τmax which depend on the location of maximum torsional
shear stress. Then, it is

τt,max = ke,φ φmax
GIt,τmax
LWt,τmax

(3.41)

with the dimensionless static factor for torsion ke,φ. Again, an energy equalization is performed
using eq. (3.39) and the assumption of a harmonic oscillation analogue to the translational
motion which yields

G

2

L∫
0

It(x)

Ç
dφ(x)

dx

å2

dx =
1

2
ω2

L∫
0

J(x)φ2(x)dx (3.42)
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with the integral of the non-constant moment of inertia
∫
J =

∫
1
2ρr

2(x)A(x). Solving for ω gives

ω = kω,φ
1

L

 
2G

ρ
(3.43)

including the dimensionless dynamic factor for torsion kω,φ given as

kω,φ = L

Õ ∫ L
0 It(x)

(
dφ(x)

dx

)2
dx∫ L

0 r2(x)A(x)φ2(x) dx
. (3.44)

The final relationship of eq. (3.21) for non-constant cross sections is then stated as

τt,max =
ke,φ
kω,φ

 
ρG

2

It,τmax
Wt,τmax

vrot,max
rvrot,max

. (3.45)

The information about the geometry is now included in the term ke,φ
kω,φ

.

3.4.1.3 Exemplary truncated circular cone

To evaluate the influence of the non-constant cross section, an example cone with structural
steel material parameters is considered, as shown in fig. (3.21). Thereby, the large radius is
defined as r2 = 3 m, the small radius as r1 = 1 m and the cone length as L = 4 m. Both a
clamped-free configuration with the small radius at the clamped end, and a clamped-clamped
configuration are considered.

Figure 3.21: Clamped-free truncated circular cone [40]

The results for ke
kω

and ke,φ
kω,φ

are shown in tables (3.4) and (3.5) for the first three bending modes
and the first three torsional modes. Due to the inclusion of geometric properties both factors
are not constant over frequency anymore.

Table 3.4: Factors for a clamped-free configuration

Bending mode ke/kω Torsional mode ke,φ/kω,φ

55 Hz 52.67 422 Hz 17.43

772 Hz 39.14 3759 Hz 3.25

2737 Hz 25.49 6292 Hz 2.52
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Table 3.5: Factors for a clamped-clamped configuration

Bending mode ke/kω Torsional mode ke,φ/kω,φ

1103 Hz 30.90 443 Hz 3.88

2999 Hz 25.14 827 Hz 2.75

5846 Hz 22.40 1220 Hz 2.32

For the clamped-free configuration the ratio between the first two bending modes is determined
as ke,1/kω,1

ke,2/kω,2
= 1.35 and for the clamped-clamped configuration as 1.23. For non-constant cross

sections, the formulation of the ratio between the factors of proportionality from eq. (3.26) is
extended to

kσ
kτ

=
ke
kω

kω,φ
ke,φ

 
2E

G

Wt,τmax ẑσmaxrvrot,max
LIt,τmax

. (3.46)

Considering the first bending and torsional modes of the cone yields kσ,1
kτ,1

= 3.45 for the clamped-
free and 4.85 for the clamped-clamped configuration. The inconstant behavior of the factors
introduces uncertainty in the relationship between stress and velocity. This effect has to be
considered for every system depending on the geometry and the frequency range of interest.
However, the previously obtained results for the H-section in table (3.3) indicate a moderate
influence on the fatigue damage accuracy.

3.4.2 Geometric Factors Obtained from FE-models

In the last subsections beams with constant and non-constant cross sections were considered
within the scope of a preliminary investigation. Geometric factors of real, three-dimensional
structures which are usually less symmetric in nature shall be obtained from FE models. There-
fore, three example structures are considered: A multi-axis test specimen, a simple automotive
component and a complex one. The latter is not shown in detail due to the security of corporate
know-how and thus not introduced before subsection 3.4.3.3.

3.4.2.1 Fixed-free multi-axis test specimen

The multi-axis test specimen shown in fig. (3.22) is a typical dummy for hydraulic units of
chassis control systems, as described in [61]. The development of its FE model was performed
in [70]. The velocities are obtained from positions 1 and 2, the plane stresses from position 3.
Position 2 is evaluated in order to calculate the angular velocity. The stress and velocity FRFs
from the simulated model are used directly to calculate the geometric factors.
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Figure 3.22: Multi-axis test specimen [38], [40]

The sum of the absolute values of all terms that contribute to an equivalent stress are illustrated
in fig. (3.23) for a relative comparison. Thereby, a harmonic excitation is applied to all axes
simultaneously (superimposition). Due to the similarity of the component to a cantilever beam
the factors of proportionality can be obtained separately from the respective directions. The
phases of the largest normal stress and the velocity components are shown in fig. (3.24). As
mentioned in subsection 3.2.3.1, the phases of the first bending and torsional modes are of the
same phase shift.
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Figure 3.23: Sum of normalized stresses and velocities for the multi-axis test specimen
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Figure 3.24: Phase of normal stress component and sum of translational velocities for the multi-
axis test specimen

Since only a relative estimation of the factors is required, they are normalized to kσ,z = 1 of the
first bending direction. For bending in x-direction a factor of kσ,x = 0.98 is obtained. The factor
for the axial direction is defined as kσ,y = 1 according to the proposed standard values. The
reason is its contributing phase information which will be clarified in the next subsection 3.4.2.2.
However, there are no longitudinal modes in the considered frequency range that is typical for
automotive applications. The torsional factor is obtained as kτ = 0.43. The estimated factors
provide the best relative match between velocities and the stress components.
However, a perfect fit is impossible due to non-constant geometric factors. As shown in fig.
(3.25), the second mode is related to a first bending mode while the third mode represents a
coupling of a second bending mode and a first torsional mode. If only the bending part is con-
sidered for the first two bending modes in the particular z-direction, a ratio of ke,1/kω,1ke,2/kω,2

= 1.39 is
obtained which has similarity to the ratio from the example cone given in the previous subsec-
tion 3.4.1.3.
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Figure 3.25: Second and third modeshape of the multi-axis test specimen [40]

A fatigue damage calculation according to fig. (3.20) is performed with the normalized stresses
and normalized velocities for different S-N curves. The damage ratios Dv/Dσ are given in table
(3.6) showing small differences due to the minor deviation at the third mode. Thus, a usage of
velocities to perform a fatigue damage evaluation is reasonable.

Table 3.6: Deviation of the fatigue damage values for the multi-axis test specimen

b 3 4 5 6 7 8 9 10 11 12 13

Dv/Dσ 0.96 0.98 1.04 1.11 1.18 1.26 1.33 1.40 1.48 1.57 1.66

For the previous investigations only a single, multiaxial hot spot was considered. As indicated in
subsection 3.1.2.2, depending on the excitation different hot spots may occur. If the fatigue cal-
culation shall be based on several locations, different geometric factors have to be obtained for
the respective locations (see position 3, 1 and 3, 2 in fig. (3.26)). Again, the uniaxial factors are
normalized to kσ,z,1D = 1 which yields kσ,x,1D = 1.08 for the uniaxial excitation of the x-direction
and kτ,x,1D = 0.03, respectively kτ,z,1D = 0.32. The first value for the shear stress is much lower
since the torsional mode is mostly excited in z-direction. The summation of the obtained FRFs
of both uniaxial hot spots is given in fig. (3.27) to show the relative match between them.

Figure 3.26: Uniaxial hot spots of multi-axis test specimen
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Figure 3.27: Sum of normalized stresses and velocities for the multi-axis test specimen of both
uniaxial hot spots together

An experimental verification of fig. (3.27) using strain gauge and laser vibrometry measure-
ments is given in fig. (A2) and (A3) within the appendix. The measurements are obtained from
uniaxial shaker tests performed in [70] and evaluated respectively. They confirm the similarity
between velocity and stress time signals.

3.4.2.2 Quasi-fixed-free simple automotive component

The second model is a simple automotive component with two boundary constraints realized
by two screw connections shown in fig. (3.28). Since the connections are located on the same
side, the boundary condition is referred to as quasi-fixed-free. Besides the electronic parts, the
component consists of a predominant plastic housing. Due to the from the outside unknowable
internal setup it is treated as a black box. The velocities are obtained from the positions 1 and
2, the plane stresses from the maximum stress position 3 in the vicinity of the clamped end.
For both uniaxial and simultaneous excitation only one hot spot is considered based on the
simulation results. Generally, a simulation model is needed to determine the hot spot positions.
To avoid high computing times also coarse models can be used for an approximate detection.
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Figure 3.28: Simple automotive component [40]

In opposite to the cantilever beam, the geometric factors cannot be obtained independently
of each other anymore due to the superimposition of several velocity components at some
modes. Thus, their phase relation has to be considered. Coupling effects between velocity
components can also occur when the location of maximum stress which can be treated as the
reference point is moving itself. According to the considerations made in subsection 3.3.2, the
largest normal stress σ(t) is given in the time domain as

σ(t) ≈ kσ,xvx(t) + kσ,yvy(t) + kσ,zvz(t) . (3.47)

Considering a single frequency ω0, eq. (3.47) can be expressed with its respective phase
angles as

σ(t) ≈ kσ,xv̂xsin (ω0t+ θvx) + kσ,yv̂ysin
Ä
ω0t+ θvy

ä
+ kσ,z v̂zsin (ω0t+ θvz)

(3.48)

To consider occurring phase shifts of ±π between the velocity components, the complex sum
of velocities has to be used at a particular frequency. The geometric factors are then assigned
with respect to the largest occurrence of each velocity component over all eigenfrequencies.
Thereby, only a relative consideration of the factors is accomplished with a normalization to
kσ,y = 1 of the first bending direction (y-axis). For bending in x-direction a factor of kσ,x = 0.43

is obtained. The factor for the axial direction is defined as kσ,z = 1 according to the proposed
standard values. No longitudinal modes are located within the considered frequency range.
The torsional factor is obtained as kτ = 0.05. Applying the relative factors yields the best
relative match between the stress and velocity FRFs, as shown in fig. (3.29). The phases of
the largest normal stress and the sum of the velocity components are given in fig. (A4) within
the appendix, showing a phase shift of ±π/2 at each frequency.
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Figure 3.29: Sum of normalized stresses and velocities for the simple automotive component

The results of a respective fatigue damage calculation with normalized stresses and veloci-
ties are shown in table (3.7). Within the scope of fatigue damage calculation, the expected
deviations are acceptable and reasonable fatigue damage values can be obtained.

Table 3.7: Deviation of the fatigue damage values for the simple automotive component

b 3 4 5 6 7 8 9 10 11 12 13

Dv/Dσ 1.64 1.84 2.08 2.35 2.61 2.87 3.13 3.40 3.72 4.09 4.53

The deviation for larger slope values b is mainly caused by the deviations of the two higher
modes above 1000 Hz. However, in real application those modes are usually not excited
strongly. For the first two bending modes, a ratio of ke,1/kω,1

ke,2/kω,2
= 1.30 is calculated which is

also close to the value of the example cone in subsection 3.4.1.3. If the relative geometric
factors are obtained independently instead of using the complex sum of velocities, large errors
may occur which is indicated by the resulting FRFs in fig. (3.30). As can be seen, a large
deviation at the first eigenfrequency is produced. As mentioned previously, the longitudinal ve-
locity term shall be kept to kσ,lon = 1. Neglecting the term completely results in errors due to
too much considered motion of the flexural tip at the second bending mode around 1850 Hz.
The resulting FRF is shown in fig. (3.31). Including all terms as proposed leads to a correct
cancellation of the out-of-phase velocity components.
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Figure 3.30: Sum of normalized stresses and velocities for the simple automotive component
with separately obtained factors
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Figure 3.31: Sum of normalized stresses and velocities for the simple automotive component
without longitudinal term

3.4.3 Usage of Simplified FE-models

To ensure a fast fatigue damage evaluation process, full simulations are to be avoided. There-
fore, geometry information shall be obtained from a strongly simplified model. Apart from ob-
taining the geometric factors, appropriate velocity measurement position can be determined
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using the simplified model. Only simple geometries are used for the manual FE model setup,
targeting a strong reduction analogous to a 99% simplification for machined products, as de-
scribed in [101]. Stress estimation using simple FE models based on an already assumed
range for the geometric factors is also mentioned in [83]. The material parameters of the sim-
plified model are to be chosen the same as for the full component. Thereby, the main structural
components are considered. Internal structures are unknown and thus still neglected. In order
to match the measurable total mass, density values can be adjusted. Concerning the geomet-
rical precision some reasonable limitations are defined: The Center of Gravity (CoG) should
not deviate by more than 5% of the respective spatial dimension. The deviation of the prin-
cipal moments of inertia should be a maximum of 20 − 30% while the products of inertia can
be neglected. Furthermore, it is important to maintain the same boundary conditions of the
real component. Obviously, the eigenfrequencies of the simplified model usually do not match
the real ones. However, to obtain meaningful geometric factors and to propose appropriate
measurement locations, a simplified model is qualitatively sufficient.

3.4.3.1 Fixed-free multi-axis test specimen

A simplified model that matches the criteria is built for the multi-axis test specimen, shown in
fig. (3.32). As for the full model, the velocities are obtained from positions 1 and 2 and the
plane stresses from position 3. The FRFs of the simple model are given in fig. (A5) within the
appendix.

Figure 3.32: Simplified models for the multi-axis test specimen [40]

The model parameters for both the full and the simplified model are given in table (3.8). The
volume is estimated considering the models as a block using the largest width, length and
height. The obtained relative geometric factors are given in table (3.9) and are in a good
agreement. Comparable deviations of the geometric factors can be obtained (see table (3.10))
when relating to the uniaxial hot spots previously shown in fig. (3.26).
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Table 3.8: Model parameters for full and simplified example multi-axis test specimen

Parameter Full model Simplified model
m [kg] 1.18 1.17

rCoG [mm] [0, 6, 30] [0, 4, 30]

V [mm] 80× 95× 50 80× 95× 50

Jx [t mm2] 1.74 1.32

Jy [t mm2] 1.26 1.02

Jz [t mm2] 1.06 0.736

Table 3.9: Geometric factors for full and simplified multi-axis test specimen

Full model Simplified model
kσ,x (bending) 0.98 0.80

kσ,y (axial) 1.0 1.0

kσ,z (bending) 1.0 1.0

kτ (torsion) 0.43 0.50

Table 3.10: Geometric factors for full and simplified multi-axis test specimen, uniaxial hot spots

Full model Simplified model
kσ,x,1D (bending), pos. 3,2 1.08 1.09

kσ,y,1D (axial), pos. 3,1 and 3,2 1.0 1.0

kσ,z,1D (bending), pos. 3,1 1.0 1.0

kτ,x (torsion), pos. 3,2 0.03 0.00

kτ,z (torsion), pos. 3,1 0.32 0.39

Applying the factors from the simplified model on the full simulation model yields a good match
between the FRFs, shown in fig. (3.33). The deviation between the calculated fatigue damage
values in table (3.11) are acceptable within the scope of fatigue damage calculation. The slight
deviation at b = 4 can be explained by the stronger counteractive effect of the exponent b on
the largest amplitude values of both stress and velocity.
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Figure 3.33: Sum of normalized stresses and velocities for the multi-axis test specimen with
factors from the simplified model

Table 3.11: Deviation of the fatigue damage values for the multi-axis test specimen with factors
from the simplified model

b 3 4 5 6 7 8 9 10 11 12 13

Dv/Dσ 0.97 0.96 0.98 1.03 1.13 1.24 1.35 1.45 1.55 1.65 1.75

3.4.3.2 Quasi-fixed-free simple automotive component

The simplified model of the simple automotive component is shown in fig. (3.34). Again, the
velocities are obtained from positions 1 and 2 and the plane stresses from position 3. The FRFs
of the simple model are given in fig. (A6) within the appendix.

Figure 3.34: Simplified models for the simple automotive component [40]
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The model parameters for both the full and the simplified model are given in table (3.12). The
obtained relative geometric factors are given in table (3.13) and are also in a good agreement.

Table 3.12: Model parameters for full and simplified model of simple automotive component

Parameter Full model Simplified model
m [kg] 3.19× 10−2 3.21× 10−2

rCoG [mm] [16.55, 4.5, 17.9] [17.5, 4.75, 22.2]

V [mm] 45× 45× 87.5 45× 40× 70

Jx [t mm2] 0.0173 0.0176

Jy [t mm2] 0.020 0.020

Jz [t mm2] 0.004 0.005

Table 3.13: Geometric factors for full and simplified model of the simple automotive component

Full model Simplified model
kσ,x (bending) 0.43 0.34

kσ,y (bending) 1.0 1.0

kσ,z (axial) 1.0 1.0

kτ (torsion) 0.05 0.04

Applying the factors from the simplified model on the full simulation model yields a good match
between the FRFs, shown in fig. (3.35). The deviation between the calculated fatigue damage
values are given in table (3.14). As mentioned previously, the deviation especially for larger
slope values b is due to the two higher modes above 1000 Hz. They are usually not excited
strongly and thus the simplified model is still acceptable within the scope of fatigue damage
calculation.
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Figure 3.35: Sum of normalized stresses and velocities for the simple automotive component
with factors from the simplified model

Table 3.14: Deviation of the fatigue damage values for the simple automotive component with
factors from the simplified model

b 3 4 5 6 7 8 9 10 11 12 13

Dv/Dσ 2.01 2.42 2.94 3.56 4.27 5.08 6.01 7.13 8.51 10.27 12.52

3.4.3.3 Complex automotive component

The third model is now introduced as a complex automotive component. Since details cannot
be published, only the simplified model is shown in fig. (3.36). For most real products as the
complex automotive component, the internal structure is not accessible and thus not measur-
able. It consists of stringers, circuit boards and further electronics. The focus is put on the
exterior locations and the component is treated as black box. The structure is mounted at three
locations on its outer edge and is to be considered in a fixed-fixed configuration.
Since the top of the structure being considered as a cap, potentially responding with several
plate modes, a measurement location on the edge is to be found more appropriate. Trans-
lational velocities are then obtained from position 1. For the given structure no meaningful
rotational velocity can be obtained. The plane stresses are measured at position 2 which is
considered as the hot spot for both uniaxial and simultaneous excitation regarding the full sim-
ulation model. The FRFs of the simple model are given in fig. (A7) within the appendix.
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Figure 3.36: Generalized model of a complex automotive component [40]

Since the velocity components of the original FE model being strongly coupled, no meaningful
geometric values can be obtained from the full FE model. Therefore, the standard values for a
clamped-clamped configuration provided in subsection 3.3.1 are used. The model parameters
for the simplified model are given in table (3.15). Hence, the simplified model is mainly used for
the determination of an appropriate velocity measurement position.

Table 3.15: Model parameters for full and simplified complex automotive component

Parameter Full model Simplified model
m [kg] 6.99× 10−2 6.96× 10−2

rCoG [mm] [2.1, 0.36, 2.1] [0, 0, 1.5]

V [mm] 87× 80× 17 70× 80× 17

Jx [t mm2] 0.0251 0.0241

Jy [t mm2] 0.0366 0.0303

Jz [t mm2] 0.0574 0.0512

Applying the factors on the full simulation model yields a good match between the FRFs, shown
in fig. (3.37). The deviation between the calculated fatigue damage values in table (3.16) are
still acceptable within the scope of fatigue damage calculation.
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Figure 3.37: Sum of normalized stresses and velocities for the complex automotive component
using standard factors

Table 3.16: Deviation of the fatigue damage values for the complex automotive component with
standard factors

b 3 4 5 6 7 8 9 10 11 12 13

Dv/Dσ 1.84 2.26 2.74 3.27 3.82 4.34 4.80 5.18 5.49 5.76 6.01

The applicability of the entire method was shown on three example structures. Useful geometric
factors that relate velocity measurements to stresses can be obtained efficiently. They can
directly be used for an equivalent stress based fatigue damage calculation which will be applied
on real test cases in section 6.2 to evaluate the fatigue damage difference between uniaxial and
multiaxial excitation.

3.5 Conclusions on Velocity based Fatigue Damage Evaluation

The previous sections introduced a new method to evaluate fatigue damage using relative ve-
locity responses. Geometric factors were obtained from simplified models yielding a good
match between stresses and velocities. Within the scope of vibration testing the combined
quantity can be used to perform a relative comparison between the severity of different vibra-
tion profiles Dprofile 1/Dprofile 2. Fig. (3.38) shows the classification of the new method with
respect to already existing approaches. The most complex and accurate approach is naturally
the full stress simulation of the component to be tested. Often, the availability of fully developed
FE models or the time for its building is limited. On the other hand, the fastest approach is to
use standards. A common procedure is explained in subsection 2.3.3 which uses standard vi-
bration profiles and performs a cycle counting directly on the measured acceleration responses.
A more complex approach is the FDS which relates the fatigue damage directly to the acceler-
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ation excitation profile coupled through the FRF of a SDOF system. The new method combines
both the correct measurement quantity and rough geometric information obtained from a fast
FE simulation. It is independent of the excitation profiles on contrary to the FDS.

Figure 3.38: Classification of different methods concerning model complexity [40]

Field measurements are widely performed using accelerometers at both the mounting and re-
sponse locations of a structure. To obtain velocities an integration of the acceleration time
signal has to be performed. To avoid errors due to sensor drift, an appropriate integration
method according to [102] is used. The method removes drifts by considering the upper and
lower envelope of the integrated signal.
Consequently, the flow chart from fig. 3.20 is extended to fig. (3.39) with measured acceler-
ations and geometric factors from simplified FE models as the starting point of the developed
method.

Figure 3.39: Flow chart of fatigue damage calculation using measured accelerations
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4 Implementation of the 3D-Shaker System

Subject of this chapter is an electrodynamic 3D-shaker system prototype which is shown in fig.
(4.1). The implementation of the system for its proper usage is indispensable for the experi-
mental verification of the difference in fatigue damage between uniaxial and multiaxial excita-
tion. This will be part of chapter 6, where tests are conducted using the introduced structures
from the previous subsections 3.4.2 and 3.4.3. Thereby, the tests are designed using realistic
scenarios to achieve an overall more realistic testing.
The shaker and its controller are initially treated as black boxes due to the lack of knowledge on
both hardware and software. After a preliminary investigation, fixture modifications are accom-
plished for an effective control of field data based profiles. Different vibration controllers and
configurations are then investigated. Parts of this chapter, especially in section 4.1, have been
published previously in [39].

Figure 4.1: 3D-shaker system [39]

4.1 Shaker Characterization

4.1.1 System Description

The system to be investigated is labeled as IMV TS-3000-3.2H-CE. It consists of five inde-
pendent shakers which are coupled through a bearing unit, as illustrated in fig. (4.2). Both
horizontal axes (X and Y) are excited with two 15 kN shakers each, arranged in a push-pull
configuration. The vertical Z-axis is realized with a single 30 kN shaker. Due to its quadratic de-
sign with an edge length of 320 mm and a number of 25 threaded holes, the usage of the shaker
table is limited to smaller Devices Under Test (DUT). Both the IMV K2 and the Dataphysics Sig-
nal Star Matrix MIMO controller are used for the subsequent investigations. Measurements are
performed with triaxial Dytran 3133 series accelerometers and the control is performed with a
triaxial PCB 356A61 accelerometer.
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Figure 4.2: Illustration of the 3D-shaker setup

In order to balance the systems bearing unit, a counterweight is mounted at its bottom as shown
in fig. (4.2). Especially rotational modes around the horizontal axes, usually occurring at the
vicinity of 110 Hz, produce displacements that may cause damage to the bearings. A respec-
tive specification for the balancing is provided in [34]. It contains upper and lower limits for the
pairing of mass and height of the CoG, as indicated in fig. (4.3) which have to be maintained
for extensive testing.
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Figure 4.3: Specification for shaker setup
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4.1.2 Preliminary Investigation

Initially, the bare table is considered. Five measurement points are determined according to fig.
(4.4) with the control sensor being located in the center M1.

Figure 4.4: Shaker plate [39]

The bearing unit of the 3D-shaker is the main difference to uniaxial shakers, including its dy-
namic behavior. While most uniaxial shakers only have a low suspension resonance below 10

Hz and an armature resonance around 5000 Hz, a preliminary sine sweep of the 3D-shaker with
a bare setup shows roughly 14 resonances in total within a frequency range of 10 Hz to 2000

Hz. Peak hold FFTs for each direction and for uniaxial excitations are given in fig. (4.5). An
example phase plot of an Y-excitation and Z-response is shown in fig. (B1) within the appendix.
Table (4.1) shows 7 modes that can be described clearly by their distinct peaks and 180◦ phase
shifts. Further 7 peaks are detected which do not show a distinct phase shift or which do only
develop with a simultaneous XYZ-excitation indicating a nonlinear behavior.

Table 4.1: Detected critical 3D-shaker modes

Mode number Frequency Modeshape
1 110 Hz Rotation around X-axis (Y-excitation),

rotation around Y-axis (X-excitation)
2 550 Hz Rotation around X-axis (Y-excitation),

rotation around Y-axis (X-excitation)
3 1120 Hz Rotation around Z-axis
4 1360 Hz Rotation around X-axis
5 1500 Hz Rotation around X-axis and translation in Y-direction,

first buckling mode
6 1730 Hz Rotation around Y-axis and Z-axis
7 1850 Hz Second buckling mode
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Figure 4.5: Response peak hold FFT of sine sweep

The lower modes below 1000 Hz can be mainly described by a rigid body motion. Modes above
1000 Hz do mostly occur with an additional in-plane bending component. The mode at 1500 Hz
is likely to be related to a first buckling mode which is hardly controllable along the Y-edge near
to the rotational axis. The second buckling mode occurs in the vicinity of 1850 Hz when exciting
in Y-direction. Due to its vibrational node in the center, the second buckling mode is also the
most critical modeshape in case of performing the vibration control at this location. An Oper-
ational Deflection Shape (ODS) analysis using a Polytech PSV-400 3D-laser scanning system
is performed for a better understanding. The result in fig. (4.6) shows clearly a motion that
can be described as the second bending mode of the plate in combination with a translation in
Y-direction. For its detection an operational analysis has to be accomplished since the mode
is not excitable with an impact hammer. A shaker characterization in terms of Experimental
Modal Analysis (EMA) or system identification is therefore not meaningful.
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Figure 4.6: Laser vibrometry of second bending mode at around 1850 Hz [39]

As mentioned previously, the 3D-shaker has a nonlinear behavior which can be emphasized by
fig. (4.7) showing the responses of a simultaneous 3D-excitation and the sum of the sequen-
tially applied uniaxial excitations. The test is conducted with a random profile from 10 Hz to
2000 Hz with an overall RMS value of 15 m/s². The control of the table is realized at the center
using the IMV K2 vibration controller.
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Figure 4.7: Simultaneous and sequential responses [39]
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The Z-axis shows minor disturbances which are caused by current noise and is probably ex-
plained by insufficient grounding of its amplifier. Furthermore, the system changes its behavior
slightly over time which will also be discussed in the next subsection. The shaker axes are not
perfectly decoupled due to the nature of the bearing unit and thus excitation always results in
cross acceleration. Thereby, the strongest correlation is detected between the Y- and Z-axis.
The accuracy of a XYZ-excitation is similar to a YZ-excitation unlike other combinations which
show higher accuracies.

4.1.3 Modifications of the Fixture

As a next step, the shaker setup is to be modified in order to decrease the influence of the
shaker modes and to perform optimum measurements up to 2000 Hz. For the modification
process, different geometries are used and evaluated sequentially to find an improved setup.
Thereby, the specimen is supposed to be mounted in the center since asymmetrically mounted
masses cause disturbances in the system and may damage the bearings due to the larger
displacements. Furthermore, a single-point control in the center near the potential mounting
locations of the specimen is to be preferred since the response power at any arbitrary point on
the structure usually deviates from the responses at the control location. For the final fixture
design, the setup requirements from fig. (4.3) have to be met. Besides mass and both hori-
zontal and vertical positions of the CoG, every setup changes the stiffness and inertia of the
bearing unit.
Different setups shall be investigated and evaluated subsequently with respect to their accu-
racy in running a simultaneous (XYZ) RMS 15 m/s² random profile. Therefore, the mean and
maximum deviation of the response PSD value of the most imprecise axis at each frequency
is determined. For the sake of reproducibility all screw joints of each setup are always applied
with a 20 Nm torque. All tests are then repeated after a total shaker service time of 100 oper-
ating hours. The initial measurements were performed with the IMV K2 vibration controller and
are slightly corrupted by current noise. The most severe noise peaks usually seem to occur
at 850 Hz and 950 Hz. The measurements after 100 operating hours are performed with the
Dataphysics Signal Star Matrix. The results are not corrupted by the noise anymore due to the
controller’s ability of noise compensation.
As a reference, the first evaluation is performed on the bare table controlled in the center. The
results are given in table (4.2) below and in table (B1) within the appendix.

Table 4.2: Deviation from reference profile for bare table setup

Frequency range 10− 1000 Hz 1000− 1500 Hz 1500− 2000 Hz
Mean deviation 9.0 % (noisy) 11.4 % 299.3 %

Max deviation 21.1 % (noisy) 44.4 % 2319.3 %

The next structure to be tested is a homogeneous plate of 16.8 kg with a height of 24 mm,
shown in fig. (4.8). The resulting accuracies are given in table (4.3) and table (B2) within the
appendix. Especially the mode around 1500 Hz causes a higher deviation in Z-direction which
lowers the accuracy for the medium frequency range. The response amplitude at the center
which is the node location of the particular mode is lowered by the plate and the screws. Thus,
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the controllability is reduced. The decrease of the response amplitude is verified with a test
controlled on the edge for both bare table and plate. For the second bending mode around
1850 Hz an opposite effect occurs: The response amplitude is higher than on the bare table.
This can be explained by an increased stiffness of the plate which leads to an increased rigid
body motion in Y-direction at the center and thus a better controllability. The effect is also veri-
fied with a test controlled on the edge for both bare table and plate.

Figure 4.8: Setup with plate [39]

Table 4.3: Deviation from reference profile for plate setup

Frequency range 10− 1000 Hz 1000− 1500 Hz 1500− 2000 Hz
Mean deviation 9.4 % (noisy) 32.8 % 206.3 %

Max deviation 63.7 % (noisy) 310.6 % 794.0 %

Since a plane setup seems not to give accurate results and is furthermore not within the re-
quired boundaries of fig. (4.3), a block setup shown in fig. (4.9) is considered. The block
consists of two caulked pieces with a total weight of 8.3 kg and a height of 120 mm. It is
mounted on the table with 9 screws of a nominal length of 90 mm and a thread length of 30 mm.
The accuracies are given in table (4.4) and table (B3) within the appendix. First, the raised
position of the control sensor produces an increased response signal for the modes that have
a node located around the center. As an example serves the mode around 1500 Hz which is
now better controllable. Second, the mode is shifted down below 1500 Hz and contributes to
the medium frequency range. Due to the strongly increased modal stiffness of the plate, the
second bending mode is shifted to the vicinity of 2000 Hz while its modal participation on the
table is lowered. The response PSDs of the block setup are shown in fig. (4.10). The measure-
ment points are arranged similar to the bare table setup except M1 which is now located on top
of the block.
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Figure 4.9: Setup with block [39]
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Figure 4.10: Response PSD of random profile for block setup
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Table 4.4: Deviation from reference profile for block setup

Frequency range 10− 1000 Hz 1000− 1500 Hz 1500− 2000 Hz
Mean deviation 10.3 % (noisy) 16.4 % 24.0 %

Max deviation 35.2 % (noisy) 30.7 % 37.9 %

Considering table (B3) within the appendix, a slight improvement of the accuracy in the higher
frequency range over time can be detected. This can be explained by a minor relaxation of the
bearing unit which leads to a higher response in the particular frequency range and therefore a
better controllability. The response PSDs of the block setup after 100 hours operating time are
given in fig. (B2) within the appendix.

Since the block setup is still not within the required boundaries of fig. (4.3), further mass is
added to the table by using two frames around the block as shown in fig. (4.11). Thereby,
the setup is enhanced by further stiffness. The response amplitudes along the edge can be
reduced for several modes which leads to slightly better accuracies as can be seen in table
(4.5) and table (B4) within the appendix. Each frame has a mass of 2.5 kg and a height of 25

mm. The entire setup then has a total mass of 13.3 kg and a CoG height of 46 mm which lies
inside the required boundaries. It can be used as an adapter for smaller components as will be
seen in the next subsection. The mounting of the frames is realized with 16 screws of a nominal
length of 60 mm and a thread length of 30 mm.

Figure 4.11: Setup with block and frame [39]

Table 4.5: Deviation from reference profile for block with frame setup

Frequency range 10− 1000 Hz 1000− 1500 Hz 1500− 2000 Hz
Mean deviation 10.5 % (noisy) 14.1 % 19.0 %

Max deviation 134.2 % (noisy) 29.2 % 29.8 %
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To provide a feasible adapter for larger or broader components, a plane structure is manufac-
tured from a solid block shown in fig. (4.12) and referred to as adapter plate. Cavities are
inserted at the bottom to meet the required mass (13.5 kg) and CoG height (45 mm). It is
shown in fig. (B3) within the appendix. At the mode around 1850 Hz hardly no response can
be measured in the center of the adapter plate which is therefore not appropriate as control
location. The effect is verified with a test controlled on the edge. Another peripheral location is
then used as a control position which can be seen in fig. (4.12). The accuracies of the test are
given in table (4.6) and still leave room for improvement. No measurements after 100 operating
hours are available for the adapter plate.

Figure 4.12: Adapter plate

Table 4.6: Deviation from reference profile for adapter plate

Frequency range 10− 1000 Hz 1000− 1500 Hz 1500− 2000 Hz
Mean deviation 4.6 % 10.3 % 46.8 %

Max deviation 13.9 % 20.3 % 191.1 %
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4.1.4 Verification with a Simple Automotive Component

The test of both the original and modified fixture is demonstrated with an example DUT. There-
fore, the simple automotive component which was introduced in subsection 3.4.2.2 is consid-
ered. Its mounting fixture is shown in fig. (4.13) and has a total weight of 1.7 kg. Thereby, the
main fixture has a weight of 0.7 kg and the small adapter plate a weight of 1.0 kg. The position
of the control sensor generally depends on the mounting location of the DUT and its accessi-
bility provided by the fixture. Within the scope of the verification two scenarios are considered:
A control position on the bottom of the fixture as shown in fig. (4.13) and a control position
on top as shown in fig. (4.14). For the vibration control the Dataphysics Signal Star Matrix is
used. The accuracies are given in tables (4.7) and (4.8). They show an absolutely imprecise
accuracy for the control at the bottom as expected1, and a sufficient accuracy for the control on
top due to the raised position which intensifies the measured response amplitude of the second
buckling mode.

Figure 4.13: Component mounted directly on shaker plate, control at bottom [39]

Table 4.7: Deviation from reference profile for specimen mounted directly on shaker plate, con-
trol on bottom

Frequency range 10− 1000 Hz 1000− 1500 Hz 1500− 2000 Hz
Mean deviation 4.2 % 10.0 % 665.3 %

Max deviation 13.4 % 20.7 % 3698.6 %

1Position near the vibrational node
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Figure 4.14: Component mounted directly on shaker plate, control at top [39]

Table 4.8: Deviation from reference profile for specimen mounted directly on shaker plate, con-
trol on top

Frequency range 10− 1000 Hz 1000− 1500 Hz 1500− 2000 Hz
Mean deviation 4.2 % 7.2 % 16.4 %

Max deviation 16.6 % 15.2 % 35.5 %

To meet the required specifications, the fixture proposed in fig. (4.11) is considered. Fur-
thermore, it is necessary for the case where the control shall be accomplished at the bottom.
Threaded holes are brought into the block for the assembly. The configurations are shown in
fig. (4.15) and (4.16) for both control scenarios. The resulting accuracies given in tables (4.9)
and (4.10) are sufficient. Slightly better results are achieved with the raised position where
higher responses occur.
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Figure 4.15: Component mounted on block with frame setup, control at bottom [39]

Table 4.9: Deviation from reference profile for specimen mounted on block with frame setup,
control at bottom

Frequency range 10− 1000 Hz 1000− 1500 Hz 1500− 2000 Hz
Mean deviation 5.7 % 16.3 % 15.3 %

Max deviation 18.1 % 23.6 % 27.7 %

Figure 4.16: Component mounted on block with frame setup, control at top [39]
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Table 4.10: Deviation from reference profile for specimen mounted on block with frame setup,
control on top

Frequency range 10− 1000 Hz 1000− 1500 Hz 1500− 2000 Hz
Mean deviation 5.3 % 9.5 % 7.6 %

Max deviation 15.4 % 19.4 % 14.6 %

4.1.5 Considerations on Phase Control

So far, only PSD levels were used for the evaluation due to their major influence on the potential
fatigue damage of the DUT. However, a full SDM is generally used in order to replicate field data
qualitatively, as described in [86]. Further techniques like the control of PSD and coherence
only, as mentioned in [33], are not considered. In this subsection the effects and limitations in
controlling phases and coherences are discussed.
As already explained in subsection 2.1.1, the reference SDM has to be positive definite. The
Silvester’s criterion provides an inequality expressed with all three phases and coherences
derived by the determinants of the upper left 1× 1, 2× 2 and 3× 3 corner. It is given in [55] and
can be expressed as

1− γ2
12 − γ2

13 − γ2
23 + 2 cos(θ12 − θ13 + θ23)

»
γ2

12γ
2
13γ

2
23 ≥ 0 . (4.1)

If all phases are consistent (θ12 − θ13 + θ23 = 0), the SDM is positive definite for any coherence
values. In case of an inconsistent phase relation the coherences have to be reduced in order to
obtain a positive definite SDM. The strongest violation can be produced with θ12− θ13 + θ23 = π

which leads to the cosine term of eq. (4.1) being cos (θ12 − θ13 + θ23) ≥ −1. In this case the
Silvester’s criterion in eq. (4.1) holds exactly for coherence values of γ12 = γ13 = γ23 = 0.5

or below. A higher coherence value for one axis can be applied if the other coherences are
decreased at the same time. The described case with coherence values of 0.5 is tested with
the setup of fig. (4.16). As input phases, θxy = −120◦, θxz = 0◦ and θyz = −120◦ are applied
which represents a highly inconsistent phase relation. The controlled spectra are given in fig.
(4.17) and show a sufficient phase and coherence control without disturbances by the modes.
Since the SDM gets nearly negative definite, the controller is assumed to be pushed on its
limits which can be detected by the deviation of the respective phases from −120◦.
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Figure 4.17: PSD, phase and coherence output for input PSD levels 0.1 (m/s²)²/Hz, phases
−120◦, −120◦, 0◦ and input coherences of 0.5

A forced phase response may also lead to distortions of the PSD responses at particular
modes, especially if the test setup is affected by mass inertia. If this issue is to be removed for
testing, a reduction of coherences has to be performed until all modes can be controlled suffi-
ciently. Thereby, it is proposed to scale all coherences simultaneously for the entire frequency
range to maintain their desired proportions to each other but in a weak form.
Furthermore, care has to be taken of choosing appropriate measurement positions in order
to obtain the same phases as controlled due to the influence of the shaker modes (refer to a
rotational mode around a particular axes where a phase difference of π occurs between the
two sides).

4.2 Vibration Controller Investigation

Apart from the 3D-shaker system itself, the vibration controller is of crucial importance, espe-
cially regarding its software component. In this section, different controllers and their particular
configuration are compared qualitatively with measurable criteria that are to be defined be-
forehand. Since no insight into the controller programming is possible, it is treated as a black
box. The underlying basics of all MIMO vibration control systems were given previously in sub-
section 2.3.1. Vibration control actions are especially needed around resonances. The drive
signals are decreased respectively to avoid overshoots or increased when being located at a
vibrational node. Difficulties may occur if the resulting cross accelerations due to mass inertia
counter the target profile, as can be seen exemplary in [24]. Furthermore, nonlinear behavior
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such as amplitude sensitive FRFs or unsteady vibrational nodes may lead to overshoots of the
defined profile. In a complex system several issues may also occur at the same time.

4.2.1 Definition of Measurable Evaluation Criteria

At first, measurable criteria are to be defined for the comparison since no differences in the
front-ends of the considered controllers are observable. Therefore, the control chart for ran-
dom vibration control of fig. (2.9) is referred and marked respectively in fig. (4.18).
The first defined criterion is the system identification process which gives evidence about the
processing of the initial transfer matrix and thus the starting point of the control actions. The
accuracy of the system identification can be influenced by the type of random signal generation
that is used. Apart from the already introduced pseudo random, the so-called pure random is
oftenly used which is basically a random number generator based signal, as described in [22].
The different effects on the system identification are explained in [12], where it is stated that
better FRF results can be achieved using pseudo random. Since the drive spectra being usually
described in voltage, the transfer matrix H(f) is given in terms of

[
m/s2

V

]
. The second criterion

is the stability of the control loop in presence of disturbances as for example hum noise that oc-
curs on the amplifiers as mentioned in subsection 4.1.2. The third detected criterion concerns
the configuration of the control process algorithm. Two basic methods are available: Updating
the inputs through an error correction and updating the full transfer matrix.

Figure 4.18: Flow-chart of random vibration control algorithm with measurable criteria for con-
troller comparison
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4.2.2 Comparison of Different Systems

A qualitative comparison of the respective profile conformity is used to evaluate the differences.
Both controllers introduced in subsection 4.1.1 (IMV K2 and Dataphysics Signal Star Matrix)
are considered. For all tests the same adjustable parameters are used for signal processing
(PSD calculation), control (frequency lines and bandwidth) and initial input voltage (system
identification).
The transfer functions of the initial system identifications for both controllers are shown in fig.
(4.19) for a bare table setup. It has moderate deviations on the main axes and larger deviations
on its cross-axes, especially in the higher frequency range. The most obvious reason appears
to be the difference in the excitation. While controller 1 performs a continuous excitation, the
excitation of controller 2 is controlled batch-wise. Thereby, the excited resonances are likely
to fade while in the other case modes are able to develop. Furthermore, a difference might be
caused by the strongly nonlinear behavior of the shaker.
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Figure 4.19: Initial transfer functions of controller 1 (red) and controller 2 (black)

The influence of disturbances on the control loop stability is evaluated with the setup from fig.
(4.11). The resulting PSD responses in fig. (4.20) show that controller 2 is able to remove
the hum noise that is especially present at 850 Hz and 950 Hz. The reason might be a band
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stop filter, respectively a notch filter that removes hum noise at every 50 Hz in European power
networks2. A notch filter is a strongly narrow version of a band pass filter which allows to
reduce noise without influencing the desired transfer functions. The results of the initial system
identification in fig. (4.19) also show hardly any noise using controller 2.
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Figure 4.20: Influence of current noise at 850 Hz and 950 Hz on controller 1 and 2

The configuration of the control process is evaluated with the same test setup. While no differ-
ence can be detected for a normal random vibration test, major advantages of using a transfer
matrix update are detected for deterministic vibration control. Fig. (4.21) shows the PSD re-
sponses of different TWR tests using an example signal. As explained in subsection 2.3.1.2,
the transfer matrix update during testing is referred to as adaptive control. Besides a peak at
1450 Hz due to hum noise, no difference in accuracy is detected between controller 1 and 2
when omitting the transfer function update3.

260 Hz in US and parts of Asia
3Controller 1 doesn’t provide adaptive control for TWR at all
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Figure 4.21: Time Waveform Replication of an example signal with different controller configu-
rations

The investigation concludes in the utility of notch filters and adaptive control for an accurate
vibration testing. Furthermore, the precision of the initial system identification may influence
the vibration control positively with providing reasonable start values.

In this chapter, an entire 3D-shaker system together with its vibration controller was investi-
gated. Thereby, a focus was put on calibration to ensure an effective control for different pos-
sible test setups. The work enables accurate multi-axis vibration testing of complex structures
which is the base for the evaluation performed in chapter 6.
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5 Multi-Axis Vibration Test Definition

The scope of this chapter is the derivation of multi-axis vibration test profiles from available
field data. To ensure a realistic multi-axis vibration test, it is important to define a reference that
covers all driving scenarios to be considered.
Existing uniaxial and multiaxial methods are reviewed and extended appropriately. Thereby,
it is distinguished between methods using field data directly (section 5.1), the FDS approach
(section 5.2) and standard profiles (section 5.3). A focus is put on random vibration due to its
extensive usage.

5.1 Direct Random Vibration Profile Derivation from Field Data

The averaging method introduced in subsection 2.3.2.1 is applied on an example dataset for
random vibration. An enveloping method considering amplitudes, phases and coherences is
proposed subsequently. It contains the enveloping process itself, as well as a following manip-
ulation of the resulting profile SDM to maintain positive definiteness. Regarding the latter part,
existing methods are discussed and compared with the proposed one.

5.1.1 Composition of the Spectral Density Matrix

Starting point is a set of SDMs obtained from four typical road vibration scenarios, differing in
pavement and speed. The raw data is left unprocessed and without the omission of certain
time windows. In a first step, mean values of the SDM are calculated according to eq. (2.96)
without applying weighting factors. Thereby, mean PSDs, mean phases and mean magnitude
squared coherences are obtained, as shown in fig. (5.1). The PSDs are shown on the diag-
onals (longitudinal, transverse, vertical), the phases in the upper triangle and the magnitude
squared coherences in the lower triangle, as illustrated in table (5.1). Within the scope of test
profile derivation, usually the magnitude squared form of the coherences are used as simplifi-
cation. The mean calculation for amplitudes and phases can be performed analogue for sine
profiles, as explained in subsection 2.3.2.1.

Table 5.1: SDM profile configuration

G11 (longitudinal) θ12 θ13

γ2
12 G22 (transverse) θ23

γ2
13 γ2

23 G33 (vertical)
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Figure 5.1: Exemplary profile SDMs together with mean values in red, phases on the upper
triangle, magnitude squared coherences on the lower triangle

5.1.2 Usage of Straight-line Specifications

As a next step, envelopes are applied to the PSDs, phases and magnitude squared coherences.
The PSD terms are still to be covered with respect to their maximum values. The envelope
G11,env(f) over a set of PSDs [G] is defined according to eq. (2.100) as

G11,env(f) = envelope

 ⋃
i∈[G]

G11,i(f)

 (5.1)

with an analogue expression for G22,env(f) and G33,env(f). While the PSDs are enveloped in
a usual manner, the phase and magnitude squared coherence envelopes θ12,env(f), θ13,env(f),
θ23,env(f), γ2

12,env(f), γ2
13,env(f) and γ2

23,env(f) are oriented on the mean values. They are de-
scribed as

θ12,env(f) = envelope
[
θ̄12(f)

]
(5.2)

and

γ2
12,env(f) = envelope

î
γ̄2

12(f)
ó
. (5.3)

For the sake of perceptibility only mean phases and mean magnitude squared coherences are
given on the triangles of fig. (5.2). Again, the phases are shown in the upper triangle, the
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magnitude squared coherences in the lower triangle. The nature of the envelopes depends on
its aim, on the complexity of the profile to be defined and its desired precision.
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Figure 5.2: Exemplary profile SDMs with envelopes, phases on the upper triangle, magnitude
squared coherences on the lower triangle

The corresponding CSD terms have to be recalculated using all envelope values as

G12,env(f) =
√
γ2

12,env(f) G11,env(f) G22,env(f) ejθ12,env(f) (5.4)

with an analogue expression for G13,env(f) and G23,env(f). The final profile SDM can then be
stated as

Genv(f) =

 G11,env(f) G12,env(f) G13,env(f)

G21,env(f) G22,env(f) G23,env(f)

G31,env(f) G32,env(f) G33,env(f)

 . (5.5)

Once again, the enveloping of amplitudes and phases can be used analogue for sine profiles.
In case of a required scaling, eq. (2.101) can be used for the entire SDM instead of scaling
each axis individually as it is proposed by [27]. The scaling ratio is valid for all axes at the same
time in order to maintain their relative proportions.

5.1.3 Manipulation of the Spectral Density Matrix

Manipulations on the CSD terms of a SDM are likely to produce a negative definite matrix.
Thus, the matrix has to be corrected at the respective frequencies to be physically realizable.
Two already existing approaches are described in [33]. The first is the replacement of negative
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eigenvalues of the SDM with small positive ones which also may affect the PSD terms. The
second approach is the reduction of all coherences until the resulting SDM gets positive definite
which may strongly decrease the coherence values. Another possible approach is using the
phase relationship θ23 = θ13−θ12, described in subsection 4.1.5. For each frequency the phase
value with the lowest corresponding coherence can be chosen. It is then adjusted according to
the given relationship. Thereby, the least important phase information is manipulated strongly.
Besides the methods using all relations, also one coherence or phase-coherence pairing can
be changed solely. Latter one is described in [50] using the constraint defined by the Silvester’s
criterion and is not considered further.
The introduced methods (see table (5.2) including the proposed optimization method) have
either strong influence on individual phases and coherences or violate the PSD terms which
has to be avoided in any case.

Table 5.2: Changed parameters of different manipulation methods

Manipulation method Changed parameters
Coherence reduction γ12, γ13, γ23

Eigenvalue replacement G11, G22, G33, θ12, θ13, θ23, γ12, γ13, γ23

Phase change θ12, θ13, θ23

Optimization θ12, θ13, θ23, γ12, γ13, γ23

A method is needed which changes all phases and coherences at the same time and in an
optimum way. Therefore, an optimization of the envelope SDM Genv(f) is performed using
so-called Semidefinite Programming (SDP). As described in [93], the SDP is the generalized
form of the Linear Programming (LP). The minimization problem on the SDM can be expressed
using the Frobenius norm as

minimize ‖Genv(f)−B(f)‖F
subject to B(f) � 0

(5.6)

with the optimized matrixB(f), that is to be positive definite. The constraint � denotes the pos-
itive definiteness of the matrix. Optimization problems can only be formulated on real values by
nature. Since the SDM being a complex valued matrix, a modified optimization formulation has
to be used which can be achieved by so-called Complex Semidefinite Programming (CSDP).
The n-dimensional matrix has to be mapped from Cn to R2n in a way that yields a symmetric
matrix, as described in [23]. A transformation J is therefore used which is stated as

J (B(f)) =

[
Re (B(f)) −Im (B(f))

Im (B(f)) Re (B(f))

]
. (5.7)

The SDP minimization problem in eq. (5.6) is then performed with symmetric 6×6 matrices. For
the optimization, a software package provided by CVX Research is used. It includes interior-
point methods as numerical solver.
The optimization has to be accomplished on the phases and coherences only. Therefore,
additional constraints for the PSD terms have to be applied according to
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subject to B11(f) = G11,env(f)

subject to B22(f) = G22,env(f)

subject to B33(f) = G33,env(f) .

(5.8)

The results of the optimization algorithm on the example envelopes are given in fig. (5.3).
The changes on the coherences appear qualitatively larger than on the phases, however their
effects are generally not comparable. While the optimized phase profiles deviate by an angle
of up to 0.76 rad, the magnitude squared coherences show deviations of at most 0.34 (in terms
of coherence the maximum deviation is 0.58).
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Figure 5.3: Exemplary SDM profile with optimized envelopes marked in red, phases on the
upper triangle, magnitude squared coherences on the lower triangle

The difference of the optimization approach to other methods shall be demonstrated with an
example. Therefore, the multi-axis test specimen previously given in fig. (3.22) (position 3) is
used for a fatigue damage calculation according to the stress based method given in fig. (3.1).
The specimen is excited with each of the modified multiaxial profiles derived from the four dif-
ferent manipulation methods given in table (5.2). In order to perform a qualitative comparison,
the resulting fatigue damage values are normalized with respect to the results of the coherence
reduction approach and are given in table (5.3). The optimization appears to be close to the
coherence reduction method, slightly higher deviations are calculated for the phase changing
method. The eigenvalue replacement results in higher deviations, partly due to the violation of
the PSD terms. The calculated values are only a demonstration using the example structure
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and the results may change strongly with other structures and their respective eigenfrequen-
cies. Rotating the mounting orientation of the multi-axis test specimen already causes a larger
deviation between the different methods, however it is not a realistic case anymore.

Table 5.3: Fatigue damage values resulting from the different modification approaches for the
multi-axis test specimen, normalized to the results of the coherence reduction

b 3 4 5 6 7 8

Coherence reduction 1.00 1.00 1.00 1.00 1.00 1.00

Eigenvalue replacement 1.04 1.05 1.06 1.07 1.08 1.09

Phase change 1.02 1.03 1.04 1.05 1.05 1.05

Optimization 0.99 0.99 0.98 0.98 0.98 0.98

b 9 10 11 12 13

Coherence reduction 1.00 1.00 1.00 1.00 1.00

Eigenvalue replacement 1.11 1.13 1.16 1.19 1.22

Phase change 1.06 1.07 1.08 1.09 1.11

Optimization 0.99 0.99 1.00 1.02 1.04

The biggest advantage of the optimization approach is the manipulation of all phases and co-
herences at the same time. Even small deviations of the phase may avoid strong manipulations
on the coherences and thus maintain its physical meaning. The method provides the geometric
optimum without violating the PSD terms. The method will be used in the next chapter.

5.2 Applicability of the Fatigue Damage Spectrum

In this section, the FDS is examined regarding its applicability to multiaxial problems. Parts of
this subsection have been investigated in [94]. The FDS is an explicit uniaxial profile derivation
method. For a three-dimensional case, one would thus obtain three independent FDS.
An attempt to include the cross coupling of the entire SDM can be made using a SDOF system
with a variable orientation r. Thereby, the vector length is maintained as |r| = 1. The Miles eq.
(2.34) can then be rewritten as

σ̃aa(r) =

…
π

2
fn Q rTG(f)r . (5.9)

The term rTG(f)r is known as quadratic form and can be geometrically described as an ellip-
soid. Eq. (2.104) for the DP can then be rewritten as

DP (f, T, r) = fnT

ñ
2Q rTG(f)r

fn

ôb/2
(5.10)

which yields the DP for every direction including all coupling phase relations. The extreme case
is a fully coherent in-phase excitation of all three directions. In the two-dimensional case this
leads to a maximum damaging direction of 45◦ as shown in fig. (5.4).

Page 98



5 Multi-Axis Vibration Test Definition

Figure 5.4: SDOF rotated by 45◦

The profile derivation methodology of fig. (2.13) can then be extended accordingly, as shown
in fig. (5.5). After merging together the individual fatigue spectra, again a single PSD profile is
obtained which includes all potential damaging effects of the coupling. An entire profile SDM
cannot be obtained due to the inherent uniaxiality of the FDS.

Figure 5.5: Profile derivation using a modified FDS approach

The four profile SDMs from subsection 5.1.1 are used as an example. They are merged to-
gether by summing up their fatigue damage spectra using the assumption of equal exposure
times. The test profile is accelerated by a factor of 200. As proposed in [100], exemplary values
of b = 8 and Q = 10 are used for the FDS calculation. The PSD profile following the original
FDS approach is obtained by taking the maximum value out of all three directions at each fre-
quency Gtest(f) = max [Gx,test(f), Gy,test(f), Gz,test(f)], yielding an uniaxial worst case profile.
For the modified FDS, fatigue damage calculations are performed for all possible directions
using the fully populated SDM as given in eq. (5.10). The damages of the different profiles are
then summed up for each direction. The resulting PSD profile is obtained using the maximum
damaging direction for every frequency. The modified FDS yields always higher values for the
PSD profile than the original approach, shown in fig. (5.6). This can be explained by the partly
coherent in-phase excitation at particular frequencies.
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Figure 5.6: PSD profiles obtained from modified and original FDS (Q = 10, b = 8)

The difference between the original FDS approach and the modified one regarding its influence
on fatigue damage is demonstrated with an example. Again, the multi-axis test specimen from
fig. (3.22) (position 3) is used for a fatigue damage calculation according to the stress based
method given in fig. (3.1). Thereby, the x-axis points in the transverse, the y-axis in the longitu-
dinal (driving) and the z-axis in the vertical direction. As inputs, the profiles from fig. (5.6) are
used. The deviations between the fatigue damage results for different slope values b are given
in table (5.4).

Table 5.4: Deviation factors of the fatigue damage values resulting from the modified and origi-
nal FDS for the multi-axis test specimen (modified divided by original)

b 3 4 5 6 7 8 9 10 11 12 13

dev. 1.19 1.28 1.40 1.54 1.69 1.87 2.05 2.23 2.41 2.60 2.82

The expression in eq. (5.10) can also be formulated for sine excitation. Therefore, the amplitude
of the sine Â(f) = QSa(f) from the original eq. (2.106) is extended to the complex sine form
X(f). Then, the spatial direction r is included using the scalar product rTX(f). To obtain a
real value, the norm of a complex vector has to be used. For any complex vector v its norm
can be stated as ‖v‖ =

√∑
viv∗i . The final expression for the coupled sine based DP then

becomes

DP (f, T, r) = fnT

»(rT X(f)) (rT X(f))∗

f2
n

b . (5.11)
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5.3 Development of a Standard Random Vibration Profile

As indicated in subsection 2.3.3, the current state of the art does barely provide standards for
multiaxial testing. Especially within the automotive industry standard profiles are usually not
available. An example standard profile shall be derived for random vibration, based on a com-
paratively large dataset. Thereby, a focus is put on the assembly group named sprung masses,
as considered in [35]. Parts of this section have been investigated in [16].
A total of 65 datasets from 5 different vehicles are considered. At first, a verification of the
dataset using the respective uniaxial norm given in [35] is accomplished. The underlying ac-
celerometer orientations of the measurements are unordered and not rotated in a common
coordinate system, as it is assumed for the reference standard. The first step is a preprocess-
ing of the available data. All time windows with an RMS value lower than 25% of the maximum
RMS value are neglected. This process eliminates the influence of the time intervals with weak
excitation. The resulting PSD curves of all individual measurements are shown in fig. (5.7)
together with the respective standard profile. Thereby, all axes are plot together.

Figure 5.7: Database with all directions and ISO standard profile for sprung masses

Apart from certain outliers, the database is appropriate for further considerations. In the next
step, each measurement is split direction specifically. Coordinate transformations of the raw
acceleration signals are performed into a common global coordinate system using the longi-
tudinal (driving), transverse and vertical direction of a vehicle. The resulting PSDs are given
in fig. (5.8) together with proposed envelopes. The envelopes are chosen arbitrarily following
the nature of the original standard. Thereby, the attempt is made not to overshoot the original
profile. In higher frequency ranges larger values occur for the transverse direction which is due
to the coordinate system rotation of the respective time signals.
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Figure 5.8: Proposed standard profiles

Phase and coherence profiles are not obtained due to the lack of any tendencies. The rea-
son is combining data from different measurement positions of different vehicles. The resulting
profiles for the longitudinal, transverse and vertical direction are given in fig. (5.9) and in table
(5.5). The standard profile will be used in the next chapter.

Table 5.5: Values for standard profiles obtained from database

Longitudinal Transverse Vertical
Freq. [Hz] PSD [(m/s²)²/Hz] Freq. [Hz] PSD [(m/s²)²/Hz] Freq. [Hz] PSD [(m/s²)²/Hz]
10 30 10 5 10 30

400 0.05 37 5 400 0.2

1000 0.05 200 0.5 1000 0.2

500 0.5

1000 0.05
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Figure 5.9: Standard profiles obtained from database

In case of a known mounting orientation in the vehicle, the test time of 8 hours can be main-
tained. Otherwise, a case dependent fatigue life estimation has to be accomplished before-
hand.
Since no general phase information can be obtained from the given dataset, an uncorrelated
excitation of the standard profiles is proposed. Another option is to use a minimum drives ap-
proach which determines the phases to reduce the shaker voltage and the stresses on the
shaker system. The approach is explained and applied to an example shaker setup within the
appendix (see fig. (C1)). A main drawback is the application of unrealistic phase information
on the DUT. Furthermore, the shaker transfer functions have to be well determined and are not
supposed to shift over time or being affected somehow else through nonlinearities.

In this chapter, different approaches for a multiaxial vibration test profile derivation were devel-
oped. A field data based method using envelopes and a subsequent optimization, as well as
a concrete random vibration standard profile are the primary outcome that will be used in the
next chapter. Furthermore, the FDS approach was investigated and found to be very limited
and thus not appropriate for the definition of multiaxial profiles. However, an advanced FDS
approach for uniaxial test profiles was proposed.
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6 Verification of the Multi-Axis Testing Methodology

The verification chapter serves two major goals. The first is to experimentally prove the direct
relation between velocities and fatigue damage. So far, conclusions have only been drawn on
the preceding relationship between velocities and stresses. EOL tests are performed using
simple specimens and evaluated with velocity measurements to emphasize their validity. The
second goal is to confirm and determine the existing difference in fatigue damage between
uniaxial and multiaxial vibration tests based on realistic scenarios. Thereby, the developed
methods for velocity measurement evaluation (chapter 3), shaker fixture design (chapter 4)
and profile derivation (chapter 5) are applied. Three automotive components with different
complexity levels are used for the fatigue damage evaluation.

6.1 Fatigue Failure Test using a Simple Specimen

The preceding relationship between velocities and fatigue damage is based on single numerical
models and a continuum mechanics approach. Fracture mechanics based calculations were
not included to maintain generality. Considerations on natural imperfections varying with ma-
terial behavior, which is mostly due to fabrication inconsistencies, are not included. Therefore,
EOL tests are performed to determine the fatigue life for both uniaxial and multiaxial excitation.
Fatigue damage calculations are then accomplished using velocities and accelerations for a
qualitative and quantitative comparison. Parts of this section have been published previously in
[41].

6.1.1 Design of a Test Setup

The design of the test specimens is inspired by the work on multiaxial fatigue testing published
in [20]. The geometry of the specimens introduced in [20] are changed to obtain two different
eigenfrequencies to highlight the frequency independence of the velocities and their relation
to fatigue damage. A rectangular cross section of 5 × 10 mm² is chosen which introduces two
damaging first bending modes at different frequencies. While the first eigenfrequency is located
around 29 Hz and can be excited in the X-direction of the shaker, the second eigenfrequency
is located around 58 Hz and responds to an excitation in the Y-direction. The length of the
specimen is 390 mm, cut from AlMgSi0.5 stocks. As shown in fig. (6.1), a round notch is placed
on the long edge with a depth of 1.65 mm and a tolerance of ±0.05 mm.
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Figure 6.1: Technical drawing of specimen [41]

A fixture is designed to mount a maximum of eight specimens at the same time. However, only
four specimens are placed in a staggered fashion due to the large response amplitudes. Ac-
celerometers are placed on top of each specimen. The full test setup is shown in fig. (6.2). The
tests are performed with a Dataphysics Signal Star Matrix controller, a tri-axial PCB 356A61
accelerometer for the control and tri-axial Dytran 3133 series accelerometers for the response
measurements.
To measure the transfer functions for acceleration and velocity, given in fig. (6.3), an initial sine
sweep is performed. The velocity FRF shows a relative difference between the peak values
at the eigenfrequencies, as it is also expected for the normal stresses. A random excitation of
20 − 80 Hz with a PSD level of 5 (m/s²)²/Hz is then applied as test profile. For the multiaxial
test, the horizontal axes (X and Y) are excited in an uncorrelated manner. A Time Waveform
Replication (TWR) is used to ensure an equal test environment for all specimens.
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Figure 6.2: Test setup with fixture and four specimens [41]
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Figure 6.3: Transfer functions for relative acceleration response (left) and relative velocity re-
sponse (right) [41]

6.1.2 Fatigue Damage Evaluation

A pool of 24 specimens is tested for both the uniaxial (only X-direction) and the multiaxial case
to ensure a robust estimation of the fatigue life. Thereby, the fatigue life is determined if the first
eigenfrequency decays by 10% which is below 26 Hz. The amplitudes decrease at the same
time and thus a limitation of the structural functionality is assumed. The uniaxial test results are
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shown in fig. (6.4) and (6.5), the multiaxial test results in fig. (6.6), (6.7) and (6.8). As expected,
a faster fatigue failure can be detected under multiaxial loading. The mean fatigue lives are
562.8 s for the uniaxial and 496.7 s for the multiaxial case. The uniaxial fatigue lives roughly
range between 500 s and 700 s, while the multiaxial fatigue lives roughly range between 400 s
and 600 s. Both results are assumed to follow an approximate normal distribution.
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Figure 6.4: Frequency decay of 24 specimens under uniaxial loading, first eigenfrequency, fail-
ure criterion at 26 Hz [41]
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Figure 6.5: Fatigue life of 24 specimens under uniaxial loading [41]
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Figure 6.6: Frequency decay of 24 specimens under multiaxial loading, first eigenfrequency,
failure criterion at 26 Hz [41]
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Figure 6.7: Frequency decay of 24 specimens under multiaxial loading, second eigenfrequency
[41]
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Figure 6.8: Fatigue life of 24 specimens under multiaxial loading [41]

According to [9], the HCF range for unnotched round AlMgSi0.5 specimens begins with 104 cy-
cles. A failure within the HCF range is also assumed to be ensured for the notched specimens,
since the lowest fatigue failure is detected at around a total of 1.5 × 104 cycles (29 Hz times
500 s). A typical crack due to fatigue is shown in fig. (6.9). It propagates along the entire notch
root of the specimen where the highest stresses occur.

Figure 6.9: Crack formed in the notch [41]
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Fatigue damage values are calculated for each test. The relative acceleration signals are ob-
tained from accelerometer measurements with a subsequent integration according to [102].
Both relevant velocity components are summed up as v(t) = vx(t) + vy(t) in order to obtain
a time signal proportional to the normal stress. Thereby, the geometric factors are the same
for both directions and thus can be neglected. A Rainflow counting is then performed on the
combined velocity signal and the resulting cycle amplitudes are exponentiated with the slope
b of the S-N curve and summed up, as explained in subsection (2.2.4). For unnotched round
AlMgSi0.5 specimens a slope value of 16 is commonly used (according to [9]). However, a
notch usually lowers the slope value to b = 5 for metallic specimens, as stated in [26]. In further
procedure all evaluations are thus performed for values of b = 5 and b = 8. The values are also
proposed as standards in [35].
All calculated fatigue damage values should be in the same order of magnitude regardless of
whether a uniaxial or multiaxial excitation was applied. To perform a qualitative comparison,
also relative accelerations are used for the fatigue damage calculation. They are processed
analogously to the relative velocity components. The combined signal is thereby calculated as
a(t) = ax(t) + ay(t). As a comparable quantity, also relative displacements can be used. In
the case of the given specimen, the displacements at the second mode are neglectable and do
not influence the overall fatigue calculation. Hence, they are not suitable as a counterexample.
The results are shown in fig. (6.10) and (6.11) for both slope values respectively.
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Figure 6.10: Uniaxial and multiaxial fatigue damage evaluation of 24 specimens using b = 5,
velocity based (left) and acceleration based (right) [41]
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Figure 6.11: Uniaxial and multiaxial fatigue damage evaluation of 24 specimens using b = 8,
velocity based (left) and acceleration based (right) [41]

The velocity calculation results in similar values for uniaxial and multiaxial (pseudo) fatigue
damage around 2 × 106 for b = 5 and 1 × 108 for b = 8. Due to the limitation in the number of
specimens, the slight deviation by a factor of 1.2 for b = 5 and of 1.3 for b = 8 is assumed to be
statistical in nature. On the contrary, calculations based on acceleration result in a large devia-
tion between uniaxial and multiaxial fatigue damage values at fatigue failure, as can be seen in
fig. (6.10) and (6.11). The deviation factors are 5.6 for b = 5 and 19.4 for b = 8. Furthermore,
the uniaxial fatigue damage values appear to deviate more than the multiaxial ones. This can
be explained by the slightly varying anisotropic nature of the extruded specimens which were
probably cut from different stocks.
The experimental results confirm the relationship between velocities and fatigue damage suf-
ficiently and conclude in the exclusive consideration of velocities for the purpose of fatigue
damage calculation in further procedure.

6.2 Application of Method to Automotive Components

The introduced methods for 3D-shaker testing and the calculation of multiaxial fatigue damage
are used to evaluate the difference between conventional uniaxial shaker testing and three-
dimensional multi-axis shaker testing. Thereby, three realistic case scenarios are considered
which are summarized in table (6.1). The first is a standard random vibration test on a multi-axis
test specimen (see subsection 3.4.2.1). The structure serves as dummy model for hydraulic
units of chassis control systems. To maintain generality, no application-specific vehicle mea-
surements are used to create a profile. Instead, the developed standard profile from section
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5.3 is considered. Geometric factors are obtained from both the simplified model introduced in
subsection 3.4.3.1 and from the original one. Thereby, three potential hot spots are considered,
depending on uniaxial and multiaxial excitation. The second scenario is a random vibration test
of a complex automotive component. An application-specific test profile is derived from vehicle
measurements according to the method explained in section 5.1. Standard values as proposed
in subsection 3.3.1 are used as geometric factors. The third case scenario is a sine sweep test
of a simple automotive component which is mounted near the engine. An application-specific
test profile is derived from vehicle engine run-up measurements. Geometric factors are ob-
tained from the simplified model given in subsection 3.4.3.2 and compared with the original
ones.
All fatigue damage evaluations are performed according to fig. (3.39). All tests are performed
with a Dataphysics Signal Star Matrix controller, a tri-axial PCB 356A61 accelerometer for the
control and tri-axial Dytran 3133 series accelerometers for the response measurements.

Table 6.1: Test scenarios for application of the multi-axis testing methodology

Scenario Multi-axis
test specimen

Complex automotive
component

Simple automotive
component

Test type Standard
random profile

Derived
random profile

Derived
sine sweep profile

Geometric
factors

Full / simplified
model

Standard Full / simplified
model

Evaluation 2 uniaxial hot spots,
1 multiaxial hot spot

1 hot spot 1 hot spot

Test fixture Setup with
block and frame

Adapter plate Setup with
block and frame

6.2.1 Standard Random Vibration Test

The setup in fig. (4.11) serves as fixture for the multi-axis test specimen that has a weight of
1.18 kg. A small adapter (0.73 kg) is used to connect the specimen with the fixture block, as
shown in fig. (6.12). Thereby, the entire setup complies with the specification in fig. (4.3).
Two accelerometers are placed on the specimen to determine both translational and rotational
velocities. All tests are controlled on the small adapter near the fixation. The standard profiles
are run 200 minutes for each uniaxial test, as well as for the simultaneous test. Referring to
the coordinate system in fig. (3.22), the vertical profile from fig. (5.9) is applied on the z-axis,
the longitudinal on the y-axis and the transverse on the x-axis. The reason is the respective
assumed mounting orientation, as indicated in [61]. Fig. (6.13) shows the controlled profiles
together with their respective targets for a simultaneous test. The controlled profiles of the uni-
axial tests are shown in fig. (D1) within the appendix. Apart from the axis to be excited, both
cross-axis excitations are kept as low as possible by the vibration controller.
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Figure 6.12: Setup for multi-axis test specimen
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Figure 6.13: Measured 3D-test excitation on multi-axis test specimen (3D-shaker coordinate
system)
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The deviations are a result of the cross accelerations due to mass inertia which counter the
target profile, as described in section 4.2. Thus, the control accuracy may also influence the
final results of the fatigue damage evaluation. However, due to the relatively long testing time
and the linear system behavior of the multi-axis test specimen (and also of the subsequent
examples to be tested), the influence is neglected if an accurate test execution can be ensured.
Fig. (6.14) shows the stress related velocity response PSDs of the simultaneous test with high-
est values occurring on the Y-axis of the shaker due to the relatively high excitation level of the
transverse profile. No geometric factors are applied in this figure.
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Figure 6.14: Response velocity PSDs from 3D excitation of the multi-axis test specimen (3D-
shaker coordinate system)

6.2.1.1 Evaluation of the multiaxial hot spot

At first, the multiaxial hot spot (position 3 in fig. (3.22)) is considered. Therefore, the respective
geometric factors from the full and the simplified model in table (3.9) are applied. The results
using the full model are given in table (6.2), the results using the simplified model in (6.3). Both
show a higher fatigue damage with a multiaxial excitation. The simplified model overestimates
the fatigue damage ratio by a factor of around 2. However, the tendency is correct and the
deviation within an acceptable range.

Table 6.2: Ratio between 3D- and 1D-fatigue damage results for multi-axis test specimen ex-
cited with standard profile (velocity measurement, geometric factors from full model),
multiaxial hot spot

b 3 4 5 6 7 8 9 10 11 12 13

Dv,3D/Dv,1D 1.13 1.32 1.49 1.64 1.79 1.94 2.09 2.26 2.43 2.61 2.80
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Table 6.3: Ratio between 3D- and 1D-fatigue damage results for multi-axis test specimen ex-
cited with standard profile (velocity measurement, geometric factors from simplified
model), multiaxial hot spot

b 3 4 5 6 7 8 9 10 11 12 13

Dv,3D/Dv,1D 1.21 1.52 1.84 2.18 2.55 2.93 3.35 3.81 4.31 4.87 5.49

6.2.1.2 Evaluation of the uniaxial hot spots

As a next step, the uniaxial hot spots (positions 3,1 and 3,2 in fig. (3.26)) are considered. The
respective geometric factors from the full and simplified model are used which were given in
table (3.10). The uniaxial damageDv,1D is calculated as the sum of damages from both uniaxial
hotspots, as performed in subsection 3.1.2.2 or fig. (3.27) to obtain a comparable quantity. It is
set in ratio to the multiaxial damage obtained from the respective hotspot (position 3). Thereby,
the damage caused by excitation in Y-direction strongly dominates. The results using the full
model are given in table (6.4), the results using the simplified model in table (6.5). While the full
model leads to nearly equal fatigue damage values for both uniaxial and multiaxial excitation,
the simplified model results in lower fatigue damage values with a multiaxial excitation. The
simplified model underestimates the fatigue damage ratio by a factor of around 5 which is not
reliable since a clear tendency is obtained in contrary to the results based on the full model. It
appears that the simplified model is rather not appropriate for the evaluation of several locations.
To make predictions on the fatigue damage, a more detailed model is thus required.

Table 6.4: Ratio between 3D- and 1D-fatigue damage results for multi-axis test specimen ex-
cited with standard profile (velocity measurement, geometric factors from full model),
sum of damages from uniaxial hot spots

b 3 4 5 6 7 8 9 10 11 12 13

Dv,3D/Dv,1D 0.93 0.98 1.01 1.02 1.02 1.01 1.00 0.99 0.98 0.98 0.97

Table 6.5: Ratio between 3D- and 1D-fatigue damage results for multi-axis test specimen ex-
cited with standard profile (velocity measurement, geometric factors from simplified
model), sum of damages from uniaxial hot spots

b 3 4 5 6 7 8 9 10 11 12 13

Dv,3D/Dv,1D 0.64 0.60 0.55 0.49 0.43 0.38 0.33 0.29 0.25 0.22 0.19
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6.2.2 Random Vibration Test based on Field Data

The second case scenario to be evaluated is the random test of a complex automotive com-
ponent with the test setup being shown in fig. (6.15)1. It consists of the adapter plate from fig.
(4.12) and a typical fixture for the complex automotive component which enables the mount-
ing of two units at the same time. However, only one DUT is used for the evaluation. The test
setup has a total weight of 18.3 kg and a total CoG height of around 50 mm and is thus compliant
with the specifications in fig. (4.3). All tests are controlled near the single mounting location M1.

Figure 6.15: Setup for complex automotive component (not shown in picture, two units can be
mounted)

The profile is derived from two vehicle measurements according to the method described in
section 5.1, resulting in an optimized profile given in fig. (6.16). The preceding mean SDM and
its envelopes are given in fig. (D3) and (D4) within the appendix. As usual, the arrangements of
the SDM profiles are accomplished according to table (5.1). While the optimized phase profiles
deviate by an angle of up to 0.31 rad, the magnitude squared coherences show deviations of at
most 0.45 (in terms of coherence the maximum deviation is 0.67).

1The DUT cannot be shown due to security of corporate know-how
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Figure 6.16: Exemplary optimized values of SDM for the complex automotive component,
phases on the upper triangle, magnitude squared coherences on the lower tri-
angle

For the DUT, a critical frequency range of 10−1700 Hz is specified which defines the frequency
range of the tests. Since the shaker and DUT modes occur in the vicinity of each other, care
has to be taken to ensure a sufficient control. As also stated before, the different control actions
between uniaxial and multiaxial tests may also have an influence on the final results which is
neglected due to the assumed linearity and the long testing time. The derived profiles are run
200 minutes for each uniaxial test, as well as for the simultaneous test. Referring to the co-
ordinate system in fig. (3.36), the vertical profile is applied on the y-axis, the longitudinal on
the z-axis and the transverse on the x-axis. Fig. (6.17) shows the controlled profiles together
with their respective targets for a simultaneous test. The controlled profiles of the uniaxial tests
are shown in fig. (D2) within the appendix. Apart from the axis to be excited, both cross-axis
excitations are kept as low as possible by the vibration controller.
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Figure 6.17: Measured test values of SDM for the complex automotive component, phases on
the upper triangle, magnitude squared coherences on the lower triangle

Fig. (6.18) shows the stress related velocity response PSDs. No geometric factors are applied
in this figure. The overlap of several modes in the higher frequency range indicates a stronger
potential influence of the phase control on the resulting fatigue damage.
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Figure 6.18: Response velocity PSDs from 3D excitation of the complex automotive component
(3D-shaker coordinate system)

Fatigue damage calculations are performed for the uniaxial and multiaxial tests. Standard
values are used for the geometric factors according to subsection 3.4.3.3. The velocities refer to
a single determined hot spot which is used for the quantitative comparison. The results in table
(6.6) show a higher multiaxial fatigue damage which increases with increasing slope values.
The deviation can be explained by the large number of eigenfrequencies that are differently
excited by the derived profile and likely to be influenced by the excitation phase.

Table 6.6: Ratio between 3D- and 1D-fatigue damage results for complex automotive compo-
nent excited with derived profile (velocity measurement, geometric factors from sim-
plified model)

b 3 4 5 6 7 8 9 10 11 12 13

Dv,3D/Dv,1D 1.28 1.81 2.47 3.25 4.16 5.21 6.44 7.89 9.63 11.76 14.43
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6 Verification of the Multi-Axis Testing Methodology

6.2.3 Sine Sweep Test based on Field Data

For the test of the simple automotive component, the setup was already given in fig. (4.16).
Thereby, a control at the top is chosen because of its location near the mounting. Two ac-
celerometers are placed on the specimen to determine both translational and rotational veloci-
ties.

Figure 6.19: Setup for example automotive component

The profile is derived from three vehicle engine run-up measurements. Therefore, envelopes
are drawn according to subsection 2.3.2.1 resulting in three sine sweep profiles given in fig.
(6.20). Sine sweep profiles that cover engine run-ups typically range from 100 Hz to around 450

Hz, as can be seen in [35]. Thus, a single, logarithmic sweep with 1 octave per minute from 100

Hz to 450 Hz is chosen. The phases are selected randomly since no trends can be obtained
from the vehicle measurements and constant phases may lead to highly unrealistic excitations.
To overcome the shaker resonances accurately, a TWR is used as sine sweep control. Refer-
ring to the coordinate system in fig. (3.28), the vertical profile (orientation in vehicle) is applied
on the x-axis, the longitudinal on the y-axis and the transverse on the z-axis. The measured
excitations for the uniaxial and simultaneous test are shown in fig. (6.21).
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Figure 6.20: Derived sine sweep profile for example automotive component
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Figure 6.21: Measured test excitation on example automotive component (3D-shaker coordi-
nate system)

Fig. (6.22) shows the stress related velocity response amplitudes. No geometric factors are
applied in this figure. The responses are clearly dominated by the first mode at around 390 Hz
which appears to be the only excited one.
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Figure 6.22: Response velocity from 3D excitation of the example automotive component (3D-
shaker coordinate system, position 1 according to fig. 3.28)

Fatigue damage calculations are performed for the uniaxial and multiaxial tests. Therefore, the
proposed geometric factors of the simplified model are applied. The velocities refer to a single
determined hot spot which is used for the quantitative comparison. The results in table (6.7)
show slightly larger fatigue damage values for a multiaxial excitation. The reason is a small
difference in the vibration control which performs a slightly higher Z-excitation during the multi-
axis testing, as indicated in fig. (6.21). Thus, an equal fatigue damage Dv,3D/Dv,1D = 1 is
stated since only one mode is excited which responds in the same manner.

Table 6.7: Ratio between 3D- and 1D-fatigue damage results for example automotive compo-
nent excited with derived profile (velocity measurement, geometric factors from sim-
plified model)

b 3 4 5 6 7 8 9 10 11 12 13

Dv,3D/Dv,1D 1.06 1.16 1.20 1.23 1.24 1.26 1.28 1.32 1.36 1.42 1.48
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6.2.4 Conclusions out of Test Results

The results of the testing scenarios are briefly compared in table (6.8). The information of the
occurring hot spots is predefined by the FE simulations using either a full or simplified model.
Thereby, the locations are chosen reasonable since the selection depends on the refinement
of the mesh. Regarding the fatigue damage, the results obtained from the tests are used for a
final evaluation.
For realistic example profiles, an equal or higher fatigue damage is expected with multiaxial
excitation which could be shown definitely for both the multi-axis test specimen and the complex
automotive component. Due to the limited frequency range of interest no difference could be
detected for the simple automotive component at all. However, considering a wider frequency
range a much higher sensitivity is assumed as indicated in subsection 3.4.2.2.
Generally, all results highly depend on the chosen excitation profile. Changes in amplitudes,
mounting orientation, frequency range, as well as excitation phase may influence the results
more or less strongly. Furthermore, slight differences in control actions may also take influence.

Table 6.8: Comparison of automotive component tests regarding the difference of sequential
uniaxial and multiaxial excitation

Scenario Result

Multi-axis test specimen Different hot spot, same fatigue damage
Complex automotive component Same hot spot, different fatigue damage
Simple automotive component Same hot spot, same fatigue damage

As already stated in the literature review (see subsection 1.2), differences between uniaxial and
multiaxial excitation may occur on both the hot spot location and the fatigue damage. However,
this is always case dependent as confirmed by three different realistic scenarios.
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7 Summary, Conclusion and Outlook

In this thesis, a methodology for multi-axis testing was developed that aims at comparing the
severity of sequential uniaxial and multiaxial vibration tests. Thereby, the work focused on the
application within the automotive industry. At the beginning, an initial chapter addressed the-
oretical aspects of signal processing, structural dynamics, structural durability calculation and
vibration testing which all contribute to the multi-axis testing methodology.

A major goal of the thesis was the definition of a measurement quantity that sufficiently re-
lates to fatigue damage which was extensively discussed in chapter 3. Thereby, the usage
of strain gauges was to be avoided due to its complexity and the lack of accessibility to po-
tential hot spots. As a first step, a general methodology for fatigue damage evaluation was
proposed which had to be extendable to the quantity sought-after. Furthermore, general ef-
fects that may occur with multiaxial excitation were discussed. Different vibrational quantities
were investigated with regard to their relation to local stresses. The relevant quantity was found
to be modal velocity and an expression of an established equivalent stress using velocities
multiplied with geometric factors was derived. The general influence of the geometry was at
first analytically described using an Euler Bernoulli beam with a non-constant cross section.
Then, geometric factors were obtained from example FE-models. To avoid time-consuming
simulations, the usage of strongly simplified FE-models was proposed. Thereby, the geometric
information can be preserved and appropriate measurement positions can be found, while the
simulation effort is reduced down to a minimum. For three example structures, the results indi-
cated a good qualitative match between stresses obtained from the full simulation and velocity
measurements multiplied by geometric factors obtained from the simplified models. The new
fatigue damage methodology based on modal velocities is less time consuming since neither
full simulations nor strain gauges are necessary for the proposed relative evaluation of vibra-
tional environments. For complex equipment, the method may be limited to the determination
of appropriate measurement locations. A major drawback is obviously the lack of knowledge
about the internal structures. Only linear parts were considered in order to maintain generality.
Any non-linear effects can be investigated individually in future work. Since the slender beam
theory was used for the derivation of the equivalent stress, the method is rather not appropriate
for structures with a dominating shear stress induced by shear force. In chapter 6, EOL tests
were performed on simple rods in order to experimentally prove the general relationship be-
tween velocities and fatigue damage due to local stresses. The EOL tests might be extended
by different excitation phases.

In chapter 4, a focus was put on the investigation and fixture modification of the given electro-
dynamic triaxial shaker prototype. Since all tests were performed on this system, detailed work
on this subject was mandatory. Preliminary investigations of the system showed a complex and
changing behavior. Bearing unit resonances, especially between 1000 Hz and 2000 Hz, lead to
worse controllability and can be severe to the system. Thus, the efforts done in this chapter
aimed at the modification of the test setup in order to ensure an effective control. Different se-
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tups and control positions were examined sequentially which led to a test setup that meets all
given requirements and enables more accurate testing conditions than on the bare shaker ta-
ble. Especially for large shakers which are used within the automotive industry, a standardized
modification of the test setup might be necessary. Apart from the mechanical shaker system,
investigations were performed on different vibration controllers in order to define an optimum
control strategy. Thereby, a focus was put on noise suppression and real time control. Further
investigations can be conducted on multipoint control strategies, especially for tests with sev-
eral specimens that are distributed on the table.

Apart from the fatigue damage evaluation and the shaker setup design, the derivation of mean-
ingful vibration test profiles is an essential part of the multi-axis testing methodology which was
treated in chapter 5. Generally, there are three different approaches which were all examined
and extended for its proper usage in automotive testing. The first method uses field data di-
rectly to obtain a single test profile. An application of envelopes, which is often used to create
worst case profiles, was considered also including the phase and coherence terms. Since a
manipulation of the phases and coherences often results in a negative definite SDM, which is
not physically meaningful, a further processing is needed. Therefore, an optimization on the
drawn phase and coherence envelopes was proposed which finds the closest geometrical pos-
itive definite SDM. The second method, which is the FDS approach, uses an SDOF system for
each frequency to simulate a simplified structural response which directly relates the individual
road profiles to fatigue damage. Since all phase information is neglected within the FDS, an
attempt was made to extend the original approach. Thereby, a new formulation was found for
the inclusion of the damaging effects due to a specific excitation phase. However, the improve-
ment only addresses uniaxial profile derivation due to its inherent uniaxiality. The third method
is the usage of standard profiles which is only available for uniaxial tests within the current au-
tomotive industrial standards. Based on a comparatively large dataset, a multi-axis standard
random profile was derived for a specific assembly group. Thereby, no standard phase infor-
mation could be obtained from the available dataset.

The previous results and methods were used for the specification of three individual test se-
tups in chapter 6: A standard random vibration test of a multi-axis test specimen which serves
as a dummy for certain automotive components, a field data based random test of a complex
automotive component and a field data based sine sweep test of a simple engine mounted au-
tomotive component. In order to quantitatively compare the fatigue damage between multiaxial
and sequential uniaxial excitation, vibration tests were conducted on the respective examples
under a realistic test condition. A fatigue damage evaluation was performed for all components
using velocity measurements and geometric factors obtained from both a full and a simplified
FE model. The respective hot spots were defined by a preceding simulation. The tests com-
bined with the simulation showed different results in fatigue damage and hot spot location for
each test. Thus, it can be concluded that a multi-axis test is in general of a different nature
than sequential uniaxial tests and a general trend may not be stated. It is assumed that com-
plex components with a lot of eigenfrequencies show stronger differences between the fatigue
damage of uniaxial and multiaxial tests than simple components. This is mainly due to the su-
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perimposition of the stress cycles and the excitation phase. The usage of simplified FE models
yields a good estimate for geometric factors but is rather limited to models with a single hotspot
and may not be appropriate to evaluate several locations at the same time.

The thesis provides an overall methodology for the evaluation of multi-axis vibration testing with
a focus on automotive components. Thereby, fatigue damage is considered as the major failure
mechanism. In future work, similar investigations can be accomplished for components where
primarily abrasion occurs, such as for example in connectors.

The objectives defined in section 1.3 are accomplished as follows:

• The difference in fatigue damage between multiaxial and sequential uniaxial testing using
realistic scenarios were evaluated on three automotive examples resulting in differences
in both the hot spot location and the fatigue damage

• As appropriate measurement quantity, an equivalent stress based on relative velocities
multiplied with geometric factors from both full and simplified FE models was chosen

• The specific 3D-shaker system was characterized and modified by different fixtures to
enable accurate testing up to a frequency of 2000 Hz

• Established profile derivation methods for random vibration testing were investigated and
a new method was presented which includes the usage of envelopes and a subsequent
optimization towards a feasible, complete 3D-test profile

• All three outcomes (velocity based fatigue damage evaluation, fixture modification of the
3D-shaker system, 3D-test profile derivation) basically describe new aspects and im-
provements of multi-axis shaker testing. Thereby, a balance between effort and accuracy
was found which is valuable for a possible future standardization
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Appendix

A Chapter 3: Multiaxial Fatigue Damage Calculation

3.2 Relationship between Stresses and Different Vibrational Quantities
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Figure A1: Frequency responses of normalized shear stress and different vibrational quantities
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3.4 Geometry Influence on the Stress-Velocity Relationship

Figure A2: Experimental setup of multi-axis test specimen [38]
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Figure A3: Normalized sum of absolute strains and velocities [38]
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Figure A4: Phase of normal stress component and sum of translational velocities for the simple
automotive component
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Figure A5: Sum of normalized stresses and velocities for the simplified multi-axis test specimen
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Figure A6: Sum of normalized stresses and velocities for the simplified model of the simple
automotive component

2000 2500 3000 3500 4000
Frequency [Hz]

10-2

10-1

100

N
or

m
al

iz
ed

 H
(f

)

|
x
|+|

y
|+|

xy
|

|k
,x

v
x
 + k

,y
v

y
 + k

,z
v

z
|

Figure A7: Sum of normalized stresses and velocities for the simplified complex automotive
component
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B Chapter 4: Implementation of the 3D-Shaker System

4.1 Shaker Characterization
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Figure B1: Phases of transfer function ∠H23(f) (Y-excitation, Z-response)

Table B1: Deviation from reference profile for bare table setup after approx. 100 operating hours

Frequency range 10− 1000 Hz 1000− 1500 Hz 1500− 2000 Hz
Mean deviation 6.0 % 8.9 % 348.9 %

Max deviation 14.0 % 22.6 % 2126.4 %

Table B2: Deviation from reference profile for plate setup after approx. 100 operating hours

Frequency range 10− 1000 Hz 1000− 1500 Hz 1500− 2000 Hz
Mean deviation 6.3 % 33.6 % 249.4 %

Max deviation 26.4 % 152.3 % 991.5 %

Table B3: Deviation from reference profile for block setup after approx. 100 operating hours

Frequency range 10− 1000 Hz 1000− 1500 Hz 1500− 2000 Hz
Mean deviation 8.1 % 21.7 % 14.8 %

Max deviation 21.7 % 33.2 % 32.2 %
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Figure B2: Response PSD of random profile for block setup after approx. 100 operating hours
(Z-response at M4 not available)

Table B4: Deviation from reference profile for block with frame setup after approx. 100 operating
hours

Frequency range 10− 1000 Hz 1000− 1500 Hz 1500− 2000 Hz
Mean deviation 6.6 % 16.2 % 11.9 %

Max deviation 18.1 % 31.7 % 37.0 %

Page VI



Appendix

Figure B3: Bottom of adapterplate

C Chapter 5: Multi-Axis Vibration Test Definition

Application of a minimum drives approach

The minimum drives approach was originally introduced in [75] and [74]. Further amendments
are proposed in [55], [57], [56] and [15]. The basic principle is a selection of phases and
coherences in way that reduces the drive voltages. As input, only the PSD profiles and the
shaker transfer matrix have to be known. Starting point is the drives SDM D(f) which can be
described using the system relationship of eq. (2.18) as

D(f) = Z(f) R(f) Z∗(f) (A.1)

where Z(f) is the inverse transfer matrix of voltage to acceleration. The aim is to define the
entire reference matrix R(f) appropriately. Therefore, the trace of the drives matrix P (f) is
defined. In case of a square controlled n× n SDM the trace can be written as

P (f) =
n∑
i=1

Dii(f)F̂ii(f)+2
n−1∑
i=1

n∑
k=i+1

»
γ2
ik(f)

»
Di(f)Dk(f) |F̂ik(f)|cos (θik(f)− ϕik(f)) (A.2)

with the hermitian matrix out of transfer functions F̂ (f) and its related angles ϕ. It is defined as

F̂ (f) = Z∗(f)Z(f) (A.3)

with the valid relationship F̂ (f) = |F̂jk(f)| ejϕik(f). The trace in equation (A.2) has to be min-
imized. Therefore, the two largest terms from

»
Di(f)Dk(f) |F̂ik(f)| are obtained for each

frequency. The related frequency terms are minimized as cos (θik(f)− ϕik(f)) = −1 which
is equal to θ = ϕ + π. The third phase is then determined according to the phase relation
θ23 = θ13 − θ12. All coherences are determined as γ12 = γ13 = γ23 = 1 in order to fulfill the
Silvester’s criterion. In the same manner, the maximum drives can be obtained by selecting the
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first two phases using θ = ϕ.
The transfer functions from fig. (4.11) are considered for an example application. Both the min-
imum and maximum drives are calculated and the resulting traces P (f) are given in fig. (C1) in
terms of voltage PSDs. Furthermore, a compromise is calculated defining all coherence values
as 0.5. Since the reference SDM always being positive definite for this case, all three phase
terms are minimized as cos (θik(f)− ϕik(f)) = −1.
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Figure C1: Different feasible drives spectral densities for setup with block and frame
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D Chapter 6: Verification of the Multi-Axis Testing Methodology

6.2 Application of Method to Automotive Components
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Figure D1: Measured uniaxial test excitations on multi-axis test specimen (3D-shaker coordi-
nate system)
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Figure D2: Measured uniaxial test excitations on complex automotive component (3D-shaker
coordinate system)
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Figure D3: Exemplary mean values of SDM for the complex automotive component, phases on
the upper triangle, magnitude squared coherences on the lower triangle
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Figure D4: Exemplary enveloped values of SDM for the complex automotive component,
phases on the upper triangle, magnitude squared coherences on the lower trian-
gle

Page XII


	Titlepage
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Table of Acronyms
	Table of Symbols
	Introduction
	Motivation
	State of the Art
	Objectives and Structure

	Theoretical Background
	Signal Processing and Linear Systems
	Multidimensional Signal Analysis
	Stochastic Signal Description
	Modeling in Structural Dynamics

	Structural Durability Calculation
	General Stress and Strain States
	Equivalent Dynamic Stress Formulations
	Material Properties
	Fatigue Damage Calculation

	Vibration Testing
	Multi-Input-Multi-Output Control
	Test Profile Derivation Methods
	International Standards


	Multiaxial Fatigue Damage Calculation
	Preliminary Considerations
	Fatigue Damage Evaluation Methodology
	Effects of Sequential and Simultaneous Excitation

	Relationship Between Stresses and Different Vibrational Quantities
	Translational Motion
	Rotational Motion
	Evaluation of Different Vibrational Quantities

	Fatigue Damage Evaluation Using Velocities
	Combination of Velocity Components
	Composition of an Equivalent Stress out of Velocities

	Geometry Influence on the Stress-Velocity Relationship
	Non-Constant Cross Sections
	Geometric Factors Obtained from FE-models
	Usage of Simplified FE-models

	Conclusions on Velocity based Fatigue Damage Evaluation

	Implementation of the 3D-Shaker System
	Shaker Characterization
	System Description
	Preliminary Investigation
	Modifications of the Fixture
	Verification with a Simple Automotive Component
	Considerations on Phase Control

	Vibration Controller Investigation
	Definition of Measurable Evaluation Criteria
	Comparison of Different Systems


	Multi-Axis Vibration Test Definition
	Direct Random Vibration Profile Derivation from Field Data
	Composition of the Spectral Density Matrix
	Usage of Straight-line Specifications
	Manipulation of the Spectral Density Matrix

	Applicability of the Fatigue Damage Spectrum
	Development of a Standard Random Vibration Profile

	Verification of the Multi-Axis Testing Methodology
	Fatigue Failure Test using a Simple Specimen
	Design of a Test Setup
	Fatigue Damage Evaluation

	Application of Method to Automotive Components
	Standard Random Vibration Test
	Random Vibration Test based on Field Data
	Sine Sweep Test based on Field Data
	Conclusions out of Test Results


	Summary, Conclusion and Outlook
	References
	Appendix
	A   Chapter 3: Multiaxial Fatigue Damage Calculation
	B   Chapter 4: Implementation of the 3D-Shaker System
	C   Chapter 5: Multi-Axis Vibration Test Definition
	D   Chapter 6: Verification of the Multi-Axis Testing Methodology


