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Abstract

Nowadays, mobile service robots can autonomously navigate in human-centered environments,

e.g. traditional or smart home environments, and provide services to humans, such as vacuum

cleaning, fetching objects or acting as social robots. Although humans appreciate these services of

robots, there are scenarios in which humans want to restrict the workspaces of their mobile robots,

e.g. due to privacy concerns or to avoid robots’ navigation errors. For this purpose, a human has

to specify restriction areas in an interaction process with a robot. This interaction is challenging

due to the transfer of complex spatial information about the restriction areas and the necessity to

provide feedback during the interaction process with only limited mobile robot’s on-board capa-

bilities. Moreover, the interaction process has to fulfill ambitious user requirements concerning

(1) correctness, (2) flexibility, (3) completeness, (4) accuracy, (5) interaction time, (6) user experi-

ence and (7) learnability. Current solutions to this problem, i.e. the interactive restriction of a mo-

bile robot’s workspace, do not optimally address these user requirements. However, an appropriate

solution to this problem is essential to foster the deployment of mobile robots in human-centered

environments.

To address this problem, we propose virtual borders as a data structure to flexibly model restriction

areas. These non-physical borders are incorporated into a human-aware navigation framework to

enable a human the restriction of a mobile robot’s workspace and change of its navigational be-

havior. In order to allow a human to specify the components of a virtual border in a traditional

home environment, we propose two alternative interaction methods based on (1) a laser pointer

and (2) augmented reality (AR). Experimental results show that the laser pointer approach mostly

features an acceptable performance on the user requirements but without a significant improve-

ment with respect to a state-of-the-art solution. This state-of-the-art solution was identified in a

literature review and is based on sketching restriction areas on an occupancy grid map (OGM) of

the environment. In contrast to this, the second proposed interaction method based on AR reveals a

good performance on most of the user requirements outperforming the state-of-the-art solution.

The reasons for the inferiority of the proposed laser pointer approach are two drawbacks identified

in the evaluation: (1) a direct line of sight between human and mobile robot is required, which leads

to an increase of interaction time and negatively affects user experience aspects. (2) In addition, the

limited robot’s on-board feedback capabilities only allow simple feedback, which has a negative ef-

fect on the user experience. To improve the laser pointer approach, we address these drawbacks by

incorporating components of a smart home environment into the interaction process. To this end,

we extend the laser pointer method by leveraging a (1) smart camera network, (2) a smart display

and (3) a smart speaker to enhance the mobile robot’s perceptual and interaction capabilities. A par-

ticular challenge is the cooperative perception of laser spots from multiple stationary and mobile

cameras during the interaction process. Therefore, we propose a multi-stage algorithm to extract a
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single virtual border from multiple camera observations. The results of an experimental evaluation

demonstrate that the interaction method features an improved interaction time and user experi-

ence while not negatively affecting the other user requirements. In terms of user requirements, the

interaction method thus performs better on average than the state-of-the-art solution.

Finally, all interaction methods available so far (state-of-the-art as well as proposed interaction

methods) are based on pure human-robot interaction (HRI), i.e. a human specifies a restriction

area by explicitly defining all components of a virtual border. This is time intensive and leads to a

linear interaction time with respect to the length of a virtual border. We tackle this limitation by

proposing a learning and support system (LSS) on top of the smart home’s camera network, which

aims to reduce the interaction time. This system learns from multiple interaction processes and

supports a human through appropriate recommendations for virtual borders in future interaction

processes. To this end, the LSS employs a combination of semantic segmentation, frequent item-

set mining and AR. An experimental evaluation of the LSS reveals a reduced interaction time to

a constant level without a negative effect on the other user requirements. Hence, these learning

capabilities can further improve the state-of-the-art performance.

In summary, this work provides novel solutions to interactively restrict the workspace of a mobile

robot, which achieve good results on the user requirements in our evaluations and outperform the

current state-of-the-art solution in traditional as well as smart home environments.

Keywords Robot Workspace Restriction · Virtual Borders · Human-Robot Interaction · Smart Home ·
Intelligent Environment · Network Robot System · Laser Pointer · Augmented Reality
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Zusammenfassung

Heutzutage können mobile Serviceroboter autonom in menschenzentrierten Umgebungen navi-

gieren, wie z.B. in herkömmlichen oder intelligenten Wohnumgebungen, und den Menschen Diens-

te anbieten, wie z.B. staubsaugen, Gegenstände holen oder als soziale Roboter agieren. Obwohl

Menschen diese Dienste der Roboter schätzen, gibt es Szenarien, in denen die Menschen den Ar-

beitsbereich der mobilen Roboter einschränken wollen, z.B. aus Gründen der Privatsphäre oder um

Navigationsfehler der Roboter zu vermeiden. Hierzu muss ein Mensch Restriktionsbereiche in ei-

nem Interaktionsprozess mit dem Roboter spezifizieren. Diese Interaktion ist aufgrund des Trans-

fers von komplexen räumlichen Informationen über die Restriktionsbereiche und der Notwendig-

keit für Feedback während des Interaktionsprozesses mit eingeschränkten Fähigkeiten des mobilen

Roboters anspruchsvoll. Zudem muss der Interaktionsprozess ambitionierte Benutzeranforderun-

gen hinsichtlich (1) Korrektheit, (2) Flexibilität, (3) Vollständigkeit, (4) Genauigkeit, (5) Interaktions-

zeit, (6) Nutzererlebnis und (7) Lernfähigkeit erfüllen. Aktuelle Lösungen für dieses Problem, d.h.

die interaktive Beschränkung des Arbeitsbereichs eines mobilen Roboters, gehen nicht optimal auf

diese Anforderungen ein. Eine angemessene Lösung dieses Problems ist jedoch wichtig, um den

Einsatz mobiler Roboter in menschenzentrierten Umgebungen zu fördern.

Um dieses Problem zu adressieren, verwenden wir virtuelle Grenzen als Datenstruktur zur flexiblen

Modellierung von Restriktionsbereichen. Diese nicht-physischen Grenzen werden in ein menschen-

freundliches Navigations-Framework integriert, um Menschen die Beschränkung des Arbeitsbe-

reichs eines mobilen Roboters und die Änderung dessen Navigationsverhaltens zu ermöglichen.

Um einem Menschen die Spezifizierung der Komponenten einer virtuellen Grenze in einer her-

kömmlichen Wohnumgebung zu erlauben, schlagen wir zwei alternative Interaktionsmethoden vor,

die auf einem (1) Laserpointer und (2) Augmented Reality (AR) basieren. Experimentelle Ergebnisse

zeigen, dass der Laserpointer-Ansatz meistens eine akzeptable Leistung bezüglich der Benutzeran-

forderungen aufweist, jedoch ohne signifikante Verbesserung in Bezug auf den aktuellen Stand der

Technik. Diese Methode des aktuellen Stands der Technik wurde in einer Literaturrecherche ermit-

telt und basiert auf dem Zeichnen von Restriktionsbereichen auf einer Belegungskarte der Umge-

bung. Im Gegensatz dazu offenbart der zweite Ansatz basierend auf AR eine gute Leistung in Bezug

auf die meisten Benutzeranforderungen und übertrifft die Leistung des Stands der Technik.

Die Gründe für die Unterlegenheit des Laserpointer-Ansatzes sind zwei Nachteile, die in der Evalua-

tion identifiziert wurden: (1) eine direkte Sichtverbindung zwischen Mensch und mobilem Roboter

ist erforderlich. Dies führt zu einer Erhöhung der Interaktionszeit und wirkt sich negativ auf die

Aspekte des Nutzererlebnisses aus. (2) Zudem erlauben die begrenzten Feedbackmöglichkeiten des

mobilen Roboters nur einfaches Feedback, was sich negativ auf das Nutzererlebnis auswirkt. Um

den Laserpointer-Ansatz zu verbessern, reagieren wir auf diese Nachteile, indem wir Komponenten

einer intelligenten Wohnumgebung in den Interaktionsprozess integrieren. Zu diesem Zweck er-
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weitern wir die Laserpointer-Methode um ein (1) Kameranetzwerk, (2) ein intelligentes Display und

(3) einen intelligenten Lautsprecher, um die Wahrnehmungs- und Interaktionsmöglichkeiten des

mobilen Roboters zu stärken. Eine besondere Herausforderung hierbei ist die kooperative Wahr-

nehmung von Laserpunkten durch mehrere stationäre und mobile Kameras während des Interak-

tionsprozesses. Daher entwickeln wir einen mehrstufigen Algorithmus, um eine einzige virtuelle

Grenze aus mehreren Kamerabildern zu extrahieren. Die Ergebnisse einer experimentellen Auswer-

tung zeigen, dass die Interaktionsmethode eine verbesserte Interaktionszeit und ein verbessertes

Nutzererlebnis bietet, ohne die anderen Benutzeranforderungen negativ zu beeinflussen. In Bezug

auf die Benutzeranforderungen erzielt die Interaktionsmethode somit im Durchschnitt eine bessere

Leistung als der Stand der Technik.

Schließlich basieren alle bisher erwähnten Interaktionsmethoden (sowohl Stand der Technik als

auch in der Arbeit entwickelte Interaktionsmethoden) auf reiner Interaktion zwischen Mensch und

Roboter, d.h. ein Mensch spezifiziert einen Restriktionsbereich durch explizite Definition der Kom-

ponenten einer virtuellen Grenze. Dies ist zeitintensiv und führt zu einer linearen Interaktionszeit in

Bezug auf die Länge einer virtuellen Grenze. Wir gehen auf diese Einschränkung ein, indem wir ein

Lern- und Unterstützungssystem (LSS) entwickeln, das auf dem Kameranetzwerk der intelligenten

Wohnumgebung aufbaut und auf die Reduzierung der Interaktionszeit abzielt. Dieses System lernt

aus mehreren Interaktionsprozessen und unterstützt den Menschen durch geeignete Empfehlun-

gen für virtuelle Grenzen in zukünftigen Interaktionsprozessen. Zu diesem Zweck verwendet das

LSS eine Kombination aus semantischer Segmentierung, Frequent Itemset Mining und AR. Eine ex-

perimentelle Auswertung des LSS zeigt eine reduzierte Interaktionszeit auf ein konstantes Niveau,

ohne die anderen Benutzeranforderungen negativ zu beeinflussen. Daher können diese Lernfähig-

keiten die Leistung des Stands der Technik weiter verbessern.

Zusammenfassend bietet diese Arbeit neue Lösungen zur interaktiven Einschränkung des Arbeits-

bereichs eines mobilen Roboters, die gute Ergebnisse bezüglich der Benutzeranforderungen in den

Evaluationen erzielen und die aktuelle Lösung des Stands der Technik sowohl in herkömmlichen als

auch intelligenten Wohnumgebungen übertreffen.

Schlüsselwörter Roboter-Arbeitsbereichseinschränkung · Virtuelle Grenzen · Mensch-Roboter In-

teraktion · Smart Home · Intelligente Wohnumgebung · Netzwerkrobotersystem · Laserpointer ·
Augmented Reality
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1
Introduction

1.1 Motivation

Starting from the beginning of robots in the middle of the twentieth century, the first robots, that

were deployed in large quantities, were industrial robots in the 1970s. These stemmed from the

development of digital computers and miniaturized components enabling the design of computer-

controlled robots. They were exclusively deployed in factories for automation purposes, e.g. in the

automotive, chemical, food or electronics industry, and they became the backbone of industrial

manufacturing. (SICILIANO and KHATIB, 2016) These industrial robots were typically fixed robotic

arms performing tasks, such as handling, welding, assembly or painting. For this purpose, they

were required to handle high payloads and achieve a high speed and precision. In combination with

missing perceptual capabilities, this resulted in hazardous working conditions for humans in facto-

ries. Thus, their working environment was strictly separated from the industrial robots’ workspaces

to ensure a safe human-robot coexistence/collaboration. (HÄGELE et al., 2016)

In the 1990s, the robotics community triggered a change in the robots’ scope by focusing on new

research areas, such as service robotics. These robots targeted new potential markets to enhance

the quality of human life. This implied the ability to autonomously operate in weakly structured en-

vironments, which was a large contrast compared to industrial robots working in their highly struc-

tured environments. This research culminated in a new generation of robots from the beginning of

the 2000s. These robots left the factories and entered the human world. Thus, they were expected

to safely co-habit with humans and provide services resulting in a benefit for humans. (SICILIANO

and KHATIB, 2016) Since that time, we have witnessed an increase of robot sales and an emergence

of numerous new robot services and applications (HÄGELE, 2016). For example, vacuum cleaning

robots clean the floor (JONES, 2006), companion robots assist elderly people (GROSS et al., 2015),

collaborative robots interact with humans (VELOSO et al., 2012) and service robots fetch and deliver

objects (KUNZE et al., 2012). Other well-known examples are lawnmower robots working in the gar-

den (SCHEPELMANN et al., 2010), tour guiding robots in museums (THRUN et al., 2000) or robotic

butlers (BOHREN et al., 2011).
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CHAPTER 1. INTRODUCTION

All these examples have in common that the robots move and work in the environment using their

locomotion system, i.e. they are mobile robots (CORKE, 2017). Since the environment is a human-

centered environment, i.e. humans live or work there, it arises a new constellation that has not

been occurred before: a direct coexistence of humans and robots in the same environment resulting

in a human-robot shared space. Humans and robots now share the same physical space without

any restrictions, such as active constraints (BOWYER et al., 2014) or protective devices known from

factories (ISO, 2010). Furthermore, the humans are typically non-experts, i.e. they are neither the

programmers of the robots nor do they have deep insights into robots and their functionality.

This constellation, mobile robots in environments with non-expert humans, gives opportunities for

new applications and robot services, but also raises challenges that need to be addressed. These are

especially challenges that focus on the human factor in the robot’s environment, such as physical

human-robot collaboration (CHUY et al., 2006), interaction between human and robot (GOODRICH

and SCHULTZ, 2007) or robot navigation in the presence of humans (CHARALAMPOUS et al., 2017).

A challenge, that is on the intersection of the research fields of human-robot interaction (HRI) and

human-aware robot navigation, is the interactive restriction of a mobile robot’s workspace. A mo-

bile robot’s workspace is the space that can be reached by the robot using its locomotion system.

Since a mobile robot’s workspace is typically only limited by physical borders, e.g. walls or furniture,

the robot can freely operate in the entire environment. Although humans appreciate the services of

mobile robots, there are scenarios in which humans want to restrict the workspaces of their mobile

robots, i.e. they want to specify restriction areas. One reason for this demand is that people want

to specify certain areas for working, e.g. they want a mopping robot to perform a spot cleaning in a

dirty area or they want a lawnmower robot to only cut grass without driving across a flower bed. An-

other reason is that people want their mobile robots, which are often equipped with cameras, to not

enter certain areas due to privacy concerns (APTHORPE et al., 2018). For example, the acceptance of

cameras in intimate rooms, such as bed- or bathrooms, is lower compared to living rooms (ZIEFLE

et al., 2011). Thus, humans need to exclude these rooms from the mobile robots’ workspace. Fur-

thermore, mobile robots should circumvent carpet areas to prevent them from getting stuck and

provoke navigation errors (HAWES et al., 2017). Other examples for restriction areas, that should

be excluded from a mobile robot’s workspace, are kids’ corners to prevent a vacuum cleaning robot

from vacuuming toy blocks or pets’ water dishes to avoid a robot tackling it and spilling water on

the floor.

All these scenarios can be summarized to the problem, that we deal with in this thesis: the restric-

tion of a mobile robot’s workspace and change of its navigational behavior according to the humans’

needs. As illustrated in the different scenarios, each restriction area is defined by spatial information

consisting of a boundary and an occupancy value. The boundary describes the shape of the restric-

tion area and its location in the environment. The occupancy value indicates if the area should

be excluded from or included into the mobile robot’s workspace. These restriction areas cannot

be completely recognized by a mobile robot. While the boundary of a restriction area can be de-

2



1.1. MOTIVATION

tected in some scenarios with simple algorithms, e.g. edge detection, it is not possible in general.

Especially, it is not possible for restriction areas without expressive visual characteristics, e.g. pri-

vacy zones or dirty areas. Furthermore, the occupancy value cannot be inferred by the mobile robot

or derived from the environment’s geometry. For example, the decision whether a certain room is

treated as a privacy zone or whether a carpet should be crossed (or not) depends on the human’s

decision and requires explicit knowledge of a human. Besides, the semantic of a restriction area,

that could give a hint concerning the occupancy value, cannot be determined due to perceptual or

computational limitations of the mobile robot, e.g. a kids’ corner should usually not be intruded

but the semantic cannot be inferred due to the computational complexity of the problem and the

robot’s limited computational power. In addition, if certain objects define a restriction area, e.g.

toy blocks or pets’ water dishes, these are flat and lightweight so that they cannot be recognized as

physical obstacles by the robot’s on-board sensors, e.g. depth sensor or bumper. Thus, a human

has to provide the necessary information about a restriction area. For this purpose, an interaction

process between human and robot allowing the transfer of this information is inevitable.

In this interaction process, a human has to convey spatial information about a restriction area to

the mobile robot. This is challenging because it is difficult to transfer complex spatial information

between a human and robot. Considering an interactive restriction of the workspace involving a hu-

man, it is also necessary to support the human during the interaction process, e.g. current progress

of the spatial information transfer or the state and result of the interaction process. Hence, an inter-

action process also requires a feedback channel from the robot to the human to provide immediate

feedback during the interaction process. This is challenging due to the complexity of the feedback

information, e.g. spatial information indicating the result of the interaction process, and the lim-

ited feedback capabilities of mobile robots. Moreover, the interaction process has to be designed

to be applicable by non-expert users and not exclusively by robot programmers. Therefore, an ade-

quate interaction design considering this aspect is essential for a successful user interaction, i.e. the

execution of an interaction process.

Following the positive trend of autonomous mobile robot deployments in human-centered environ-

ments, this problem has a high relevance because mobile robots respecting human needs will be a

key factor for the acceptance of robots in these environments. If robots do not satisfy these needs,

it will result in a dissatisfaction or even rejection of robots in human-centered environments. Fur-

thermore, there are currently no sufficient solutions to this problem as we will describe in detail

in Chapter 2. A reason for this lack of sufficient solutions is the immaturity of the research field of

HRI, which is relatively young compared to robotics in general. Robots find their ways into human-

centered environments, and humans have to inevitably interact with robots. It is a crucial question

how to allow natural and robust interaction between humans and robots. Especially, transferring

spatial information during interaction is a hard challenge.
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Figure 1.1: Images of exemplary home environments consisting of free space, walls and physical
objects (Images from ADE20K dataset (ZHOU et al., 2019)).

1.2 Scope of the Thesis

The interaction process described in the previous section comprises three different components:

(1) an environment, (2) a human and (3) a mobile robot. Since we cannot deal with all combinations

of these components, we define the components and their characteristics, that we deal with in this

thesis, in the following paragraphs.

The first component is the environment, which serves as setting and an actor of the interaction pro-

cess. In this work, we consider two kinds of environments: (1) a traditional home environment and

(2) a smart home environment. We focus on home environments because humans live there and

mobile service robots start to pervasively find their ways into human home environments (HÄGELE,

2016). Hence, they are optimal examples for human-robot shared spaces. A traditional home en-

vironment is composed of multiple rooms or separated areas, such as corridors or a bed-, bath- or

living room. The areas are either open rooms or separated by doors. Rooms are surrounded by walls

and can contain physical objects on the ground, such as tables, chairs or plants. These physical ob-

jects occupy up to approximately 30% of the environment. While most of the (heavy) furniture, such

as sofas, has a fixed place in the environment, light-weight objects, such as plants or chairs, can be

moved. Images of some exemplary home environments are visualized in Figure 1.1. Additionally,

there can be decorative or functional objects on the ground, e.g. (1) pets’ water dishes, (2) carpets

or (3) kids’ corners characterized by toys or toy blocks as illustrated in Figure 1.2. These are typically

static areas whose physical location changes only minimally over time. Other areas are temporary,

e.g. dirty areas are only present until cleaning. These areas have in common that they can have

arbitrary shapes and sizes. However, the boundary surrounding such an area is typically not longer

than approximately 10 m.
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Figure 1.2: Exemplary scenarios for the problem showing (1) pets’ water dishes, (2) a carpet and
(3) a kids’ corner.

In addition to traditional home environments, we consider smart home environments in this work

because we currently witness a trend towards smart home environments (STATISTA, 2018). A smart

home environment, as a certain smart environment, is a specialized form of a traditional home en-

vironment that incorporates additional embedded devices (AUGUSTO and NUGENT, 2006). These

devices are connected to each other via a network, which allows the mutual exchange of data and

the use of intelligent software for smart services, e.g. sensor-based reactions of the smart environ-

ment. Typical sensors are camera sensors integrated in the environment to capture images of the

scene. However, only parts of the environment are typically covered by the cameras’ fields of view

to account for privacy concerns and due to occlusions. Thus, there is only a partial observation of

the scene. Other examples for sensors are motion, sound, air quality or light sensors. In contrast to

sensors, actuators interact with the environment and can change the state of it, e.g. door openers,

lights or displays. A combination of actuator and sensor is a voice-controlled intelligent personal

assistant that incorporates microphones, loudspeakers and software. For this purpose, the smart

environment can also draw on resources, e.g. processing power or memory, from cloud services.

The second component of the interaction process is the human, which is the intended user of the

system. A human’s characteristics are derived from the specified environment in which the human

lives. Home environments are not restricted to a certain user group, but the residents are typically

non-experts, i.e. they only have a moderate experience with robots, and prefer an easy-to-install

system correctly fulfilling its task instead of a highly complex and experimental system. In the con-

text of this thesis, we assume a non-expert to be in the age group of 18-64 years, and we do not make

restrictions regarding gender. According to STATISTA (2018), this age group covers all smart home

users in major European countries with a proportion of female users ranging from 37.1% in the UK
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to 43.8% in Spain. This statistic shows that we cover a large user group with our selection. Addition-

ally, we assume a non-expert to be able to interact with common consumer devices, such as tablets

or smartphones. Therefore, we restrict the user group to people with no cognitive impairments or

upper limb disorders. These humans are residents of the environment and own a mobile robot to

benefit from the robot’s services, such as fetching objects, vacuum cleaning or social interaction.

The last component of the interaction process is a mobile robot as a central actor because it is

the goal to restrict its workspace. According to CORKE (2017), there are different kinds of mobile

robots depending on their environment, i.e. ground, air and water. In this work, we restrict our

focus on mobile robots working on the ground plane, especially on wheeled robots (CHUNG and

IAGNEMMA, 2016). In particular, we focus on robots that are able to rotate around their own verti-

cal axis, such as differential-drive or omnidirectional mobile robots. We choose this category be-

cause wheeled robots represent the largest group of mobile robots used in applications (SICILIANO

et al., 2009). In addition to their locomotion system, mobile robots should be able to build a map

of their environment and to accurately localize themselves in the environment (STACHNISS et al.,

2016), i.e. their pose consisting of a 2D position and orientation with respect to a map coordi-

nate frame is known. For this reason, mobile robots are often equipped with additional sensors

to perceive the environment, e.g. rotary encoders on their wheels or laser scanners. Furthermore,

robots should have a front-mounted RGB-D camera to acquire color and depth images of their sur-

roundings (HALMETSCHLAGER-FUNEK et al., 2019). This can be used for mapping the environment

or interaction with the human. In order to perform service tasks autonomously, the mobile robots

should also have navigation capabilities including a local obstacle detection, i.e. the computation of

a collision-free trajectory to a target location considering obstacles observed by the robot’s sensors

during motion execution (MINGUEZ et al., 2016). To this end, they need on-board processing power,

and we assume the robots to have computational capabilities comparable to a state-of-the-art em-

bedded computing board or mid-range laptop without a graphics processing unit (GPU). Moreover,

a mobile robot typically provides possibilities for non-speech audio sound, colored light feedback

and physical interaction. These robot characteristics cover a large spectrum of today’s mobile robots

with representatives, such as TurtleBots (ACKERMAN, 2013), the humanoid robot "Pepper" (PANDEY

and GELIN, 2018), the companion robot "Max" (SCHROETER et al., 2013), the mobile manipulator

"TIAGo" (PAGES et al., 2016) or CoBots (VELOSO et al., 2015). The mobile robots’ operational status

can be divided into two general modes: (1) autonomous mode, in which the robot provides services

to humans in the environment, and (2) standby mode, in which the robot is inactive and typically

parked at a certain position, e.g. at the charging station. During both modes, it is possible that res-

idents are present in the environment. For example, a vacuum cleaning robot parks at a charging

station, starts autonomous cleaning at a predefined time (independent of the presence of residents

in the environment) and returns to its initial position for charging after finishing the cleaning ser-

vice. Since a human can restrict a mobile robot’s workspace at any time, a robot has to be aware of

interaction intends of the human.
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Figure 1.3: Components of an interaction process for both environments.

These three components, i.e. environment, human and mobile robot, are actors in the interaction

process as shown Figure 1.3. In case of a traditional home environment, the interaction takes place

between a human and a mobile robot. A human transfers spatial information to the mobile robot,

that in turn provides feedback of the interaction process to the human. This setting comprises the

challenges of the transfer of complex spatial information from human to robot and a feedback chan-

nel to inform the human about the state of the interaction process. In case of a smart home environ-

ment, the environment becomes an additional actor in the interaction process. Thus, the human

does not directly interact with the mobile robot but instead communicates with a network robot

system (NRS). This is an integrated system consisting of a mobile robot and smart home environ-

ment that share mutual data. In addition to the challenges above, this setting also includes the

cooperation of mobile robot and smart environment in the interaction process as a challenge.

1.3 User Requirements and Quality Levels

In addition to the application challenges, there are also ambitious user requirements, that need to

be fulfilled in an interaction process. These are derived from the problem’s scope and deal with

functionality, usability and user experience. Moreover, we define three quality levels for the require-

ments to clearly distinguish between unacceptable and acceptable solutions. A good solution con-

stitutes an optimal or very hard to reach solution. If no good solution is defined for a requirement, it

is the same as the acceptable solution. The requirements and quality levels are described below:
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• Correctness: This requirement is derived from the general problem to restrict a mobile robot’s

workspace. In this context, correct means that the mobile robot considers the user-defined

workspace and changes its navigational behavior after a successful interaction process. Thus,

an acceptable solution should be correct as summarized in Table 1.1.

Table 1.1: Quality level description for the correctness.

Quality level Description

Unacceptable No change of navigational behavior after successful interaction
Acceptable Change of navigational behavior after successful interaction

• Flexibility: Flexible means that arbitrary restriction areas can be defined by a human, i.e. the

workspaces can have arbitrary shapes and sizes. Since different restriction areas with different

shapes and sizes are described in the scope of this thesis, an acceptable solution should be

flexible as summarized in Table 1.2.

Table 1.2: Quality level description for the flexibility.

Quality level Description

Unacceptable Restriction areas with certain shapes and sizes
Acceptable Restriction areas with arbitrary shapes and sizes

• Completeness: The completeness is an aspect of the effectiveness, which is defined as the

"accuracy and completeness with which users achieve specified goals" (ISO, 2018), i.e. how

successful does the user accomplish the interaction process. We consider a solution as ac-

ceptable if an interaction process is performed successfully with a probability of at least 90%

as shown Table 1.3. This is a high value underlining the challenging problem. Moreover, a

solution is considered as good if 95% of the interaction processes are performed successfully.

Table 1.3: Quality level description for the completeness.

Quality level Description

Unacceptable < 90% success
Acceptable ≥ 90% success
Good ≥ 95% success

• Accuracy: The accuracy is another aspect of the effectiveness as indicated by the definition

above. However, we split this requirement to distinguish between both aspects to emphasize
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the importance of the accuracy. Some scenarios introduced in Section 1.1 require an accu-

rately restricted workspace, i.e. the restriction areas should be exactly at the position where

the human wants them to be. For example, a vacuum cleaning robot should move as close

as possible along the boundary to a kids’ corner or a mopping robot should accurately mop

around a carpet. Therefore, it is important that the interaction process allows an accurate re-

striction of the workspace. An acceptable accuracy is defined in Table 1.4 and is achieved if

the user-defined restriction area as the result of the interaction process intersects with the in-

tended restriction area by at least 70%. A typical value is 50% as used in the PASCAL Visual Ob-

ject Classes (PASCAL VOC) challenge to define correct object detections (EVERINGHAM et al.,

2010). However, we increase this threshold by additional 20% to emphasize the importance of

the accuracy and make the problem more challenging. Furthermore, an accuracy of at least

80% is considered as good and indicates an extremely accurate solution.

Table 1.4: Quality level description for the accuracy.

Quality level Description

Unacceptable < 70% intersection
Acceptable ≥ 70% intersection
Good ≥ 80% intersection

• Interaction time: This requirement corresponds to the efficiency of the interaction process

dealing with the "resources used in relation to the results achieved" (ISO, 2018). The interac-

tion time is the time needed to restrict a mobile robot’s workspace. This is an indicator for the

usability of the interaction process, and thus it should be as efficient as possible. In this work,

we consider an interaction time of 60 seconds as acceptable for a human as summarized in

Table 1.5. This is a reasonable threshold for a challenging problem including the transfer of

spatial information from human to robot. Moreover, this is a relatively short interaction time

when considering static restriction areas that only change minimally over time, such as car-

pets or privacy zones. If the interaction time falls below a threshold of 30 seconds, we consider

a good interaction time. This is half of the acceptable threshold and underlines the ambition

of the requirement.

Table 1.5: Quality level description for the interaction time.

Quality level Description

Unacceptable > 60 seconds
Acceptable ≤ 60 seconds
Good ≤ 30 seconds
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• User experience: Since non-expert humans play a major role in the interaction process, it

should be applicable by non-experts and should account for their needs. First of all, we re-

quire the restriction of the workspace to be unobtrusive, i.e. no additional physical borders

are used to restrict the workspace. This is a necessary condition because we consider an in-

door home environment where it is not acceptable to install physical obstacles on the ground.

In case of the user experience, there is no unified definition, but ALBEN (1996) gives a gen-

eral definition of this term that summarizes several "aspects of how people use an interactive

product: the way it feels in their hands, how well they understand how it works, how they feel

about it while they’re using it, how well it serves their purposes, and how well it fits into the

entire context in which they are using it" (ALBEN, 1996). For our interaction process, we derive

some specific aspects, such feedback capabilities, intuitiveness, comfort or satisfaction. We

consider an acceptable user experience if a human’s positive attitude outweighs the negative

attitude concerning the user experience as shown in Table 1.6. Considering a bipolar scale

ranging from negative (0%) to neutral in the middle (50%) to positive attitude (100%), an ac-

ceptable user experience is defined on the right side of the scale (> 50%). Additionally, a good

user experience corresponds to a strong positive attitude (> 75%).

Table 1.6: Quality level description for the user experience.

Quality level Description

Unacceptable

– Obtrusive or

– Negative attitude (≤ 50%)
Acceptable

– Unobtrusive and

– Positive attitude (> 50%)
Good

– Unobtrusive and

– Strong positive attitude (> 75%)

• Learnability: The learnability refers to the ability of the interaction process to be accom-

plished by novice users. According to WEISS et al. (2009), this comprises principles like fa-

miliarity, consistency, generalizability, predictability, and simplicity. This is important be-

cause non-expert users generally do not know how to interact with a robot. The learnability is

considered acceptable if the human’s personal attitude concerning the learnability is positive

(> 50% on a bipolar scale ranging from negative (0%) to neutral (50%) to positive (100%)) or if

there is a continuous improvement with respect to the usability requirements (completeness,

accuracy and interaction time) when repeating the interaction process. An exception is the

case if the completeness, accuracy and interaction time reach an acceptable level when inter-
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acting for the first time. In this case, we also consider the learnability as acceptable. A good

learnability is reached if there is a strong positive attitude towards learnability (> 75%) and a

continuous improvement with respect to the completeness, accuracy or interaction time. The

descriptions of the quality levels are summarized in Table 1.7.

Table 1.7: Quality level description for the learnability.

Quality level Description

Unacceptable

– Negative attitude (≤ 50%) and

– No continuous improvement with respect to the completeness, accu-
racy and interaction time

Acceptable

– Positive attitude (> 50%) or

– Continuous improvement with respect to the completeness, accuracy
or interaction time

Good

– Strong positive attitude (> 75%) and

– Continuous improvement with respect to the completeness, accuracy
or interaction time

An acceptable solution to our problem fulfills all requirements with at least an acceptable quality

level. If at least one of the requirements is unacceptable, the solution is also unacceptable. Con-

crete instruments to assess the requirements, e.g. questionnaires or time measurements, will be

introduced in the corresponding evaluation sections of this thesis.

1.4 Objectives

After deriving user requirements for an interaction process and defining quality levels for them,

it is the main objective to allow non-expert users the interactive restriction of a mobile robot’s

workspace and to change its navigational behavior. We subdivide the main objective into three

objectives that build on each other:

Objective 1. This objective deals with the investigation of interaction methods and user interfaces

for the restriction of a mobile robot’s workspace. A user interface gives an opportunity for interac-

tion between a human and robot, while an interaction method describes the way of how to employ

the user interface in an interaction process to achieve the goal, i.e. the restriction of the mobile

robot’s workspace. It is the goal to identify promising user interfaces from other disciplines and

to develop novel interaction methods employing the user interfaces. This interaction focuses on
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the interaction between human and robot in a traditional home environment. Therefore, the in-

teraction method does not rely on devices of a smart home environment. Moreover, there are two

goals concerning the requirements with descending priority: (1) at least one of the proposed inter-

action methods should perform better than the current state-of-the-art solution and (2) should be

an acceptable solution for our problem, i.e. achieving at least acceptable performance on all user

requirements.

Objective 2. This objective deals with the investigation of the role of a smart home environment

in the interaction process. The main idea is to extend at least one of the interaction methods from

the previous objective to incorporate additional smart home components to improve the interac-

tion process compared to the interaction without smart home components. It is the goal to reduce

the interaction time by employing additional sensors of the smart home, which increase the mobile

robot’s perceptual abilities. Moreover, additional sensors and actuators should enable new inter-

action and feedback opportunities with the goal to improve the user experience. This interaction

method should be an acceptable solution.

Objective 3. This objective deals with the investigation of learning capabilities. The goal is to learn

from multiple user interactions and to support the human in future interaction processes through

recommendations for interactions. For this purpose, we build on findings from the previous objec-

tives, i.e. an adequate user interface and algorithms for the incorporation of smart home compo-

nents into the interaction process. This aims to reduce the interaction time to a good quality level

while preserving the quality levels of the other requirements, i.e. at least acceptable quality levels.

Finally, it is the goal to prototypically implement the interaction methods and to empirically evalu-

ate them with non-expert users. The aim of this experimental evaluation is to test the performance

of the interaction methods with regard to the user requirements and in comparison to a state-of-

the-art baseline method.

1.5 Thesis Outline

Chapter 2 introduces necessary background knowledge and gives an overview of related works deal-

ing with autonomous robot capabilities, robot motion restriction, user interfaces for HRI and intel-

ligent environments. The chapter concludes with an assessment and a classification of existing

approaches in relation to the objectives of the thesis. Based on this assessment, we identify a re-

search gap and formulate three open research questions, that need to be answered to achieve the

objectives. These research questions form the basis for the following chapters.

Chapter 3 starts with a definition of the problem setting. This is the basis for the introduction of

the notation of a virtual border as a data structure to flexibly model a restriction area. This is a non-

physical border, that is not directly visible to a human, but that is respected by mobile robots during
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navigation. For this purpose, we develop an algorithm that integrates a virtual border into a given

map of the environment. The resulting map serves as basis for a navigational costmap and enforces

a mobile robot to change its navigational behavior. In order to allow non-expert humans to specify

such a virtual border, we propose two interaction methods based on (1) mediator-based pointing

gestures using a common laser pointer and based on (2) an augmented reality (AR) application run-

ning on a RGB-D tablet. Both interaction methods rely on pure HRI without incorporating devices

from a smart home environment. Finally, our proposed interaction methods are empirically evalu-

ated and compared with a baseline method regarding the requirements.

Based on the results of the previous chapter, Chapter 4 investigates the role of a smart home en-

vironment in the interaction process. To this end, we propose an interaction method based on a

laser pointer that incorporates the smart home environment, especially its heterogeneous sensors

and actuators, as additional actor in the interaction process. It comprises an architecture that in-

tegrates a mobile robot into a smart home with the purpose of supporting the interaction process

in terms of interaction time and user experience. Furthermore, the interaction method involves the

cooperation of stationary and mobile cameras to perceive laser spots and an algorithm allowing the

extraction of virtual borders from multiple camera observations. We experimentally evaluate the

interaction method with regard to the requirements and compare the results with the interaction

method from the previous chapter (without support of a smart home environment).

The developed algorithm from the previous chapter, i.e. the extraction of virtual borders from multi-

ple cameras, is used as a part of a learning and support system (LSS), that is proposed in Chapter 5.

This system learns from previous interaction processes and supports a user in future interaction

processes through recommendations for virtual borders. It is based on semantic scene understand-

ing performed on images acquired from cameras integrated in the smart home environment and a

frequent itemset mining approach. Recommendations for virtual borders are conveyed to a human

through the AR interface developed in Chapter 3. The subsequent experimental evaluation tests the

benefits of the system’s learning capabilities with respect to the requirements.

Finally, we conclude our work and summarize the contributions in Chapter 6. Additionally, we

describe current limitations of our solutions and point out work for the future.

1.6 Contributions

This thesis comprises several contributions, that have been previously published. In all publica-

tions listed below, I did most of the work including conceptualization, realization, evaluation and

paper/article writing. In case of patent applications, I did not write the patent. Due to acknowl-

edgement of co-authors, the first person plural, e.g. we or our, is used in this thesis instead of the

first person singular, e.g. I or my, when talking about the contributions. The relevant publications

and their contributions to the overall objective are listed below:
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• SPRUTE, D., R. RASCH, K. TÖNNIES, and M. KÖNIG (2017). A framework for interactive teach-

ing of virtual borders to mobile robots. In IEEE International Symposium on Robot and Human

Interactive Communication (RO-MAN), pp. 1175–1181:

We introduce the notation of a virtual border as a data structure to model restriction areas.

In order to specify a virtual border and allow humans the restriction of their mobile robots’

workspaces, we propose a framework for interactive teaching of virtual borders based on

robot guidance. A reference implementation using visual markers validates the approach by

showing its correctness.

• SPRUTE, D., K. TÖNNIES, and M. KÖNIG (2019c). This far, no further: Introducing virtual bor-

ders to mobile robots using a laser pointer. In IEEE International Conference on Robotic Com-

puting (IRC), pp. 403–408:

We expand the previously introduced notation of a virtual border by considering different

types of virtual borders to account for the flexibility requirement. Furthermore, we propose

our first interaction method based on a laser pointer and the robot guidance framework to

address the user requirements of an interaction process.

• SPRUTE, D., K. TÖNNIES, and M. KÖNIG (2018). Virtual borders: Accurate definition of a mo-

bile robot’s workspace using augmented reality. In IEEE/RSJ International Conference on In-

telligent Robots and Systems (IROS), pp. 8574–8581:

As an alternative to the mediator-based pointing gesture interaction using a laser pointer, we

propose a second interaction method allowing a human to specify a virtual border using AR

on a RGB-D tablet.

• SPRUTE, D., K. TÖNNIES, and M. KÖNIG (2019b). A study on different user interfaces for teach-

ing virtual borders to mobile robots. International Journal of Social Robotics 11(3), 373–388:

We contribute the results of a comprehensive user study on teaching virtual borders consid-

ering several interaction methods. Both proposed interaction methods are compared with

a state-of-the-art interaction method regarding the requirements. The experimental results

show that the AR-based interaction method outperforms the others and that the laser pointer

interaction method achieves mostly acceptable results, but also has potential for improve-

ments, e.g. in terms of interaction time and user experience.

• SPRUTE, D., K. TÖNNIES, and M. KÖNIG (2019a). Interactive restriction of a mobile robot’s

workspace in a smart home environment. Journal of Ambient Intelligence and Smart Environ-

ments 11(6), 475–494 and

KÖNIG, M. and D. SPRUTE (2019). Verfahren und Robotersystem zur Eingabe eines Arbeits-

bereichs. DPMA Patent DE102018125266B3:

In order to address the shortcomings of the laser pointer approach revealed in the user study,

we propose an interaction method based on a laser pointer in combination with a smart home
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environment. This comprises the integration of a mobile robot into a smart home environ-

ment, the cooperation of stationary and mobile cameras to perceive laser spots and an al-

gorithm for the extraction of virtual borders from multiple camera observations. The results

demonstrate that additional components of a smart home environment can improve the in-

teraction process in terms of interaction time and user experience.

• SPRUTE, D., P. VIERTEL, K. TÖNNIES, and M. KÖNIG (2019). Learning virtual borders through

semantic scene understanding and augmented reality. In IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS), pp. 4607–4614 and

KÖNIG, M., D. SPRUTE, and P. VIERTEL (2020). Verfahren und Robotersystem zur Eingabe

eines Arbeitsbereichs. DPMA Patent DE102019126903B3:

We contribute a learning and support system based on semantic scene understanding and

a frequent itemset mining approach. The system learns from multiple user interactions and

creates recommendations for interactions to support a human in future interaction processes.

To this end, we build on the previous contributions by leveraging the cooperation of multiple

smart home cameras to create recommendations from multiple camera views and by employ-

ing the AR user interface to convey the recommendations to the human. Experimental results

show that learning capabilities can significantly reduce the interaction time while preserving

the results of the other user requirements.
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2
Background and Related Work

The main objective of this thesis is to allow non-expert humans the interactive restriction of their

mobile robots’ workspaces in a (smart) home environment respecting the highlighted requirements

in Section 1.3. In order to clearly understand the objective and solutions to this problem, some

additional background knowledge is necessary. For this reason, we first give an overview of au-

tonomous robot capabilities covering topics from map representations, mapping and localization,

robot navigation and interaction capabilities. This section is intended to explain how maps of phys-

ical environments are structured and created, how mobile robots can localize themselves in a map

of the environment, how robot path planning and obstacle avoidance work and how robots can in-

teract with humans using their on-board components. It is especially important to understand what

state-of-the-art mobile robots are capable of and how to intervene in the navigational framework

to change a mobile robot’s navigational behavior. Subsequently, we present works that restrict a

mobile robot’s motion or workspace. Here we distinguish between implicit approaches known from

the research field of human-aware robot navigation and explicit approaches employing methods

from the field of human-robot interaction (HRI). In order to identify alternative user interfaces for

our first objective, the following section covers user interfaces employed in related HRI applications,

especially visual displays and gestures. The second objective of this thesis deals with the incorpo-

ration of devices from a smart home environment in the interaction process. Therefore, the next

section summarizes related works from the area of intelligent environments, which comprises the

fields of smart environments and ambient intelligence. As a consequence, the integration of robots

into intelligent environments results in the research field of network robot systems, that we intro-

duce subsequently. We show how sensors and actuators of a smart environment can be incorpo-

rated into a system to enhance robot applications and interaction with humans. The last objective

targets to investigate learning capabilities by learning from user interactions. For this purpose, we

dedicate a subsection to works related to learning in intelligent environments. Finally, based on our

objectives stated in Section 1.4 and the contributions of related works to the objectives, we point

out a research gap and derive open research questions as basis for the remainder of this thesis.
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2.1 Autonomous Robot Capabilities

Autonomous robots are robots that perform service tasks with a high degree of autonomy. For

this purpose, robots need certain capabilities, such mapping, localization and navigation capabil-

ities (BEKEY, 2005). This section is intended to give background knowledge in these fields to un-

derstand how a robot internally stores and builds a representation of its environment, how it de-

termines its position and orientation with respect to the environment and how robot motion plan-

ning works. This is important to understand how a mobile robot’s workspace can be modelled and

restricted and how to intervene in the robot’s navigation framework to change its motion behav-

ior. Moreover, important sensors necessary for these capabilities are revealed, and communication

channels for the interaction with humans are discussed.

2.1.1 Map Representations

In order to allow mobile robots to autonomously navigate in an environment and provide services,

they rely on an internal model of the environment. Such a model is a map representation contain-

ing a geometric representation of the physical environment including free and occupied spaces.

There is a wide variety of different map representations due to different areas of application, e.g.

robot pose estimation or navigation. FUENTES-PACHECO et al. (2015) give an overview of different

map representations divided into metric and topological maps. Metric maps preserve the geometric

properties of the environment, while topological maps are more abstract describing the connection

between several positions in the environment.

Metric maps can be further subdivided into occupancy grid maps (OGMs) and landmark-based

maps. OGMs model the environment by means of cells containing a status for the occupancy of the

corresponding area, i.e. a place is modelled as free or occupied. Originally developed by MORAVEC

and ELFES (1985), they are especially popular in 2D mapping and navigation due to their discretized

representation of the environment preserving most of the spatial information. Moreover, the de-

tailed spatial information allows an accurate localization of a mobile robot in the environment. An

extension to this binary representation are coverage maps (STACHNISS and BURGARD, 2003). These

represent an area by an occupancy probability, which makes the representation of the environment

more accurate in case of low-resolution grid maps1. However, both can be memory consuming de-

pending on the size of the environment and the resolution of the map. An alternative to this dense

representation, are feature or landmark-based maps that only consist of coordinates of salient fea-

tures in the environment (CHONG and KLEEMAN, 1999). Thus, they are memory-saving and scale

well with large environments. A drawback is its dependence on adequate landmarks and their den-

sity. Furthermore, they are not optimal for path planning because a missing landmark does not

1Although coverage maps are an extension of OGMs, the terms are typically used as synonyms.
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imply a free space (WALLGRÜN, 2010). Nonetheless, they can be used for path planning in open

environments when there are no obstacles between the landmarks.

As opposed to the representation as metric maps, topological maps represent the environment in a

graph-like format listing unique places as vertices and paths between places as edges (KORTENKAMP

and WEYMOUTH, 1994). For example, a partially enclosed area, such as a room in an indoor envi-

ronment, can be modelled as vertex, while neighboring areas are connected by edges (BLOCHLIGER

et al., 2018). This simple and compact abstraction of the environment yields a lower memory con-

sumption and better scalability compared to metric maps. However, they are not suitable for tasks

requiring a high accuracy due to their simplicity (GARCIA-FIDALGO and ORTIZ, 2015).

Since all these basic map representations have their strengths and weaknesses, they are also com-

bined resulting in hybrid representations gaining advantages from the others and eliminating short-

comings (BUSCHKA and SAFFIOTTI, 2004). For example, THRUN et al. (1998) combine metric and

topological maps to take advantage of the lower complexity of topological maps and the higher res-

olution of metric maps, and CHEN et al. (1997) combine multiple maps of the same type but with

different resolutions. More details on spatial representations, that are not directly relevant for this

thesis, and their organization are described by WALLGRÜN (2010).

2.1.2 Mapping and Localization

A map representation is the underlying data structure for higher-level robotic algorithms, such as

mapping and localization. STACHNISS (2009) gives a concise description of both terms and how

they mutually depend each other: mapping is the process of creating a map representation of the

environment by integrating information from the robot’s sensors, while localization is about deter-

mining the position and orientation of a robot, i.e. the pose, relative to a map coordinate frame. The

author also points out the overlap of both areas which is known as simultaneous localization and

mapping (SLAM), i.e. the creation of a map and the simultaneous localization of a robot inside the

map given continuous sensor measurements.

STACHNISS et al. (2016) describe three paradigms to solve the SLAM problem: extended kalman fil-

ters (EKFs), particle filters and graph-based optimization techniques. The earliest solution to the

SLAM problem was the EKF formulation by SMITH et al. (1990), which uses a multivariate Gaus-

sian to represent an estimate of the robot’s pose. However, its computational costs and incon-

sistent maps lowered the popularity of this paradigm. A more popular alternative is the use of

non-parametric statistical filtering techniques known as particle filters. MONTEMERLO et al. (2002)

proposed the FastSLAM algorithm that models a robot’s pose as a set of particles where each par-

ticle represents a hypothesis for the current pose of the robot. The algorithm, especially its im-

proved form FastSLAM 2.0 (MONTEMERLO et al., 2003), allows computational efficient pose updates,

which makes it the basis for several state-of-the-art SLAM algorithms in mobile robotics. The third

19



CHAPTER 2. BACKGROUND AND RELATED WORK

paradigm makes use of a graphical representation and non-linear sparse optimization techniques.

LU and MILIOS (1997) developed a first working solution to the SLAM problem by building a graph

of landmarks and robot poses as nodes. While the first two paradigms are online solutions, the

graph-based approach is an offline solution that solves the full SLAM problem calculating the pos-

terior probability over the entire robot’s path. In contrast to this, online SLAM calculates a posterior

probability for the map and the current robot’s pose given the measurements and relations between

the robot’s pose up to a certain time. For an in-depth tutorial covering details of SLAM, that are out

of this thesis’ scope, we refer to the two-part tutorial (DURRANT-WHYTE and BAILEY, 2006) and (BAI-

LEY and DURRANT-WHYTE, 2006). Moreover, the textbook by THRUN et al. (2005) dedicates several

chapters to the problem, and CADENA et al. (2016) give a view into the future of SLAM.

In order to get sensor measurement updates for a SLAM algorithm, there are different kinds of sen-

sors available which are classified by FUENTES-PACHECO et al. (2015) as exteroceptive and proprio-

ceptive sensors. Exteroceptive sensors like sonars, range lasers, GPS and cameras can measure up

to a certain distance and are noisy, while proprioceptive sensors comprise accelerometers, gyro-

scopes and wheel encoders that are used in dead reckoning to incrementally estimate the robot’s

pose. Since laser range sensors are expensive and proprioceptive sensors suffer from cumulative

errors due to noise, there is a trend towards cameras as standalone sensors for solving the SLAM

problem (YOUSIF et al., 2015), which is then referred to visual simultaneous localization and map-

ping (VSLAM). Cameras can retrieve depth information while providing information about the en-

vironment’s color and texture. Besides, cameras are more energy-efficient and less cost-intensive,

which makes their deployment popular. One of the first works on VSLAM was conducted by DAVI-

SON (2003) using a single monocular camera and extracting visual features from the images. Since

then, several works have been proposed using vision as only exteroceptive sensor (TAKETOMI et al.,

2017). In particular, RGB-D sensors play a major role in recent developments because of the possi-

bility to obtain direct range measurements and dense images simultaneously.

Another reason for the advent of VSLAM approaches is that cameras can provide odometry infor-

mation without the use of proprioceptive sensors, which is referred to visual odometry (VO) (NISTER

et al., 2006). It is the process of estimating the egomotion of a robot moving through an environ-

ment and using an attached camera as the only input sensor for the estimation. The name was in-

troduced by NISTER et al. (2004) following the naming of wheel odometry, that integrates the wheel

turns over time to estimate the egomotion. VO tries to estimate the 3D motion of the camera in two

consecutive camera frames and to calculate the new camera pose using the previously calculated

transformation between the camera frames. This is a sequential process that updates the robot’s

pose as soon as a new camera frame arrives. Since VO only cares about a locally consistent path

with respect to an initial pose, it is an essential component in a VSLAM system to obtain the robot’s

(camera) path. Main steps of a VO’s processing pipeline comprise feature detection and matching

in two consecutive camera frames, motion estimation in the presence of outliers and camera pose

optimization (SCARAMUZZA and FRAUNDORFER, 2011) (FRAUNDORFER and SCARAMUZZA, 2012).
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These works show that today’s mobile robots can robustly build maps of their environment and

localize themselves when considering structured indoor environments and accurate sensor mea-

surements. In order to acquire accurate sensor measurements, laser range scanners and recently

also cameras are employed as basis for mapping and localization. This supports our assumption

concerning the equipment of a mobile robot with a camera.

2.1.3 Robot Navigation

Mobile robot navigation is a robot’s capability to autonomously reach a certain goal position given

knowledge about its environment and sensor measurements. The set of reachable positions is de-

fined as the mobile robot’s workspace. Navigation depends on other robot capabilities we intro-

duced in the previous subsection, such as creating a map representation of the environment and

determining the robot’s pose inside the environment. The robot’s trajectory to the goal position,

which is the result of a navigation algorithm, should be efficient and reliable, i.e. it should be the

shortest path from the current to the goal position while avoiding obstacles in the environment.

Thus, navigation is an essential capability for autonomous mobile robots to provide services and

enable a long-term autonomy. SIEGWART et al. (2011) describe two key components of a robot nav-

igation system that complement each other: (1) path planning and (2) obstacle avoidance.

Path planning calculates a trajectory from the robot’s current to a goal position given a map of the

environment. Hence, it is a strategic problem-solving competence allowing the robot to decide how

to achieve its goal. To this end, the first step in a path planning system is to create a discrete map rep-

resentation of the environment, that may be transformed from a continuous representation. There

are basically two kinds of planners that differ in how they use the discrete decomposition of the en-

vironment: (1) graph search and (2) potential field planners. Graph search planners first construct a

connectivity graph that serves as basis for a subsequent graph search. A popular graph construction

technique is the approximate cell decomposition due to the popularity of grid representations, such

as OGMs. Other approaches are visibility graphs and Voronoi diagrams. (SIEGWART et al., 2011) After

constructing a connectivity graph employing a decomposition technique, the best path can be de-

termined by a graph search algorithm, e.g. depth-/breadth-first search, Dijkstra’s or A* algorithm.

In contrast to graph search, potential field planners impose a mathematical function on the free

space with a gradient indicating the direction to the goal. (KLANCAR et al., 2017) This kind of path

planning is often performed offline, i.e. a path is calculated based on the current state of the envi-

ronment and not adapted to state changes during execution of the plan (BUNIYAMIN et al., 2011).

Such a planning algorithm is also known as global planner.

However, during the execution of the plan resulting from the global path planner, a mobile robot

has to react to unforeseen obstacles in its local environment, such as moving people or objects not

modelled in the map of the environment. Since a global planner only considers obstacles that are
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known in advance, state-of-the-art navigation systems also incorporate an additional component,

i.e. a local planner for obstacle detection. According to SIEGWART et al. (2011), it focuses on the

changing of the robot’s trajectory based on recent sensor measurements of the robot’s environment.

Among others, the authors describe some popular local planners, such as Bug algorithms (LUMEL-

SKY and SKEWIS, 1990), vector field histograms (BORENSTEIN and KOREN, 1991) or dynamic window

approaches (FOX et al., 1997). Furthermore, they provide a comprehensive comparison of the most

popular obstacle avoidance algorithms considering evaluation criteria, such as the robot’s charac-

teristics, sensors and performance metrics. These works demonstrate the maturity of this research

field, which enables an efficient and reliable robot navigation in well-structured environments.

2.1.4 Interaction Capabilities

Another capability of an autonomous robot is its capability to perceive and interact with the envi-

ronment. The previous subsections already revealed cameras as important sensors to perceive the

state of the environment. However, mobile robots can also employ simple on-board actuators to

interact with the environment or humans. Considering mobile robot’s in the scope of this thesis,

there is a limited set of communication channels allowing a robot to convey information to a hu-

man. As stated in Section 1.2, our considered mobile robots have only opportunities for colored

light feedback and non-speech audio sound. Thus, there are basically two opportunities to convey

non-verbal feedback to the user.

The first opportunity deals with the use of colored light. This is a quite simple but expressive feed-

back mechanism to transfer simple information, such as status information in various electronic

devices (HARRISON et al., 2012). For this purpose, several periodic and non-periodic light behaviors

can be realized on a single light source with fixed color, such as blinking or bright flashes. More-

over, this idea can be extended to multiple light sources and multiple colors, e.g. a light signaling

pattern (CHA et al., 2017) or a colored light strip (BARAKA et al., 2016). The main idea behind these

approaches is that colored light and light behaviors can convey internal status information of a

robot to a human. Therefore, PÖRTNER et al. (2018) conducted an online survey exploring how the

light color, that is emitted using an attached colored LED strip on a mobile robot, affects the in-

telligibility of robot status information. The results show that colored light signals are suitable to

provide simple status feedback in different HRI scenarios. Similarly, BARAKA and VELOSO (2018) in-

troduce the use of colored lights as a non-verbal communication channel to express the dynamic

robot state. Their mapping from a robot’s internal state to a light animation space helps humans to

better understand the robot’s state and actions. This color-semantic mapping is the foundation for

several deployments in HRI scenarios, e.g. SZAFIR et al. (2015) use an LED ring on an aerial drone to

communicate the motion direction to a human, MONAJJEMI et al. (2016) provide feedback about the

intent of an unmanned aerial vehicle (UAV) through an LED strip mounted on the front side of the
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drone and COLLINS et al. (2015) employ pulsating patterns of colored light to express a companion

robot’s affective state.

The second opportunity for interaction employs non-speech audio sound, which is another simple

and low-cost solution. For this purpose, speakers are used to generate sounds with varying intensity

and period. These sounds are in general used as warning signals, e.g. HO et al. (2007) use auditory

in-car warning signals to inform a driver of potential collisions, or to indicate internal states of a

robot, e.g. KIM et al. (2009) employ simple beep tones to indicate different types of malfunctions

with a focus on vacuum cleaning robots. However, due to its simplicity, non-speech audio sound

is rarely used as single communication channel. Instead it is quite popular in combination with

colored light, e.g. for alerting humans (CHAN and NG, 2009). Another application area is addressed

by CHA and MATARIĆ (2016), who use sound in combination with color to enable a robot to request

help in a human-robot collaborative task. To this end, they employ a simple beep sound and flash-

ing colored light. Moreover, SONG and YAMADA (2017) also combine sound with color and vibration

feedback to express the affective state of a social robot. Their results suggest that sound can be

used as single communication channel to convey certain emotions, e.g. a falling beep sound for a

sad emotion, and that combinations of these three communication channels can effectively provide

feedback to a human.

These works show that colored lights and non-speech audio sound can be used to convey simple in-

formation to humans, such as a robot’s internal state or emotion. The signal behaviors are designed

to be understood by non-expert users, e.g. green and red colored lights are associated with a suc-

cessful and an erroneous status. However, in order to give feedback of more complex information,

such spatial information, these communication channels are not sufficient.

2.2 Robot Motion Restriction

The previous section showed the maturity of today’s autonomous robots, e.g. the SLAM problem is

solved for structured indoor environments given adequate range sensors (CADENA et al., 2016) and

mobile robots are able to efficiently and reliably navigate in environments for a long time (BISWAS

and VELOSO, 2016). However, mobile robots are nowadays not only expected to safely and robustly

navigate in the environment, but also in a human-aware way considering the presence of humans

and their needs (SISBOT et al., 2010). This affects the mobile robot’s position, velocity and acceler-

ation. Thus, robot navigation is restricted by further constraints, in addition to physical obstacles,

which limit the workspace of a robot. For this purpose, CHIK et al. (2016) give an overview of com-

mon navigation frameworks and explain how to integrate social costs into a navigation framework.

Additional to a global and local planner as introduced in the previous section, they suggest feeding

the global planner not only with a map of the environment but also with social costs. These social

costs are manifold and can include abstract concepts, such as object paddings (SVENSTRUP et al.,
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Figure 2.1: Taxonomy of robot motion restriction approaches.

2010), occlusions of objects (CHUNG et al., 2009) or social conventions of how to pass a person (PAC-

CHIEROTTI et al., 2005) or approach a person (AHN et al., 2018). In order to define these social costs

and change the robot’s navigational behavior, we distinguish between two different categories as

shown in Figure 2.1: (1) the implicit adaption of the mobile robot’s navigational behavior based on

prior knowledge and learning from observations known from the field of human-aware robot nav-

igation and (2) explicit methods from the field of HRI allowing a human to interactively restrict the

mobile robot’s motion. Implicit and explicit refers to the way how a human can affect the mobile

robot’s navigational behavior. While a human can only influence the navigational behavior implic-

itly in the former category, a human can explicitly define how the mobile robot should change its

navigational behavior in the latter category. This section aims to introduce both categories and to

point out relevant works that pursue the same objective, i.e. the restriction of a mobile robot’s mo-

tion and change of its navigational behavior.

2.2.1 Implicit: Human-Aware Robot Navigation

The first category of works comprises approaches from the research fields of socially-aware and

human-aware robot navigation. Both terms are interchangeable and focus on the same topic, i.e.

the development of mobile robots that act according to identified social conventions to enable a

comfortable interaction between humans and robots (RIOS-MARTINEZ et al., 2015). This research is

on the intersection between HRI and robot motion planning. According to an exhaustive literature

search by KRUSE et al. (2013), human-aware robot navigation has its origins in the years around 2005

as a consequence of a change of robots’ scope from industrial robots in factories to autonomous

robots in human-centered environments. The authors identified three categories of properties to

enable a human-aware robot navigation, i.e. comfort, naturalness and sociability.

Comfort is the ability to move in the environment without annoying or stressing surrounding hu-

mans. This does not only include to navigate safely, as known from traditional robot navigation,

but also in a way that a human feels save (KRUSE et al., 2013). The research in this field aims to
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reduce human’s discomfort, that is caused by several aspects, e.g. if a mobile robot passes a human

too fast or to close. A popular concept, that addresses the issue of comfort distance, is the virtual

personal space around a person introduced by HALL (1966). The author proposes proxemic inter-

personal distances for different levels of comfort, e.g. intimate, personal, social or public distance.

This prior knowledge can be incorporated into a robot’s motion behavior to respect these distances,

e.g. SISBOT et al. (2007) developed a human-aware motion planner incorporating the distance to

a human as a criterion, LINDNER (2015) models personal space as affordance spaces attached to

humans and MEAD and MATARIĆ (2017) present a computational framework of proxemics. Another

technique, that goes beyond simple comfort distances, is to minimize the probability to encounter

humans and avoid disturbing them (TIPALDI and ARRAS, 2011). This is accomplished by learning

and modelling human activity events in a probabilistic spatio-temporal map. Others works in this

category encompass an effective human comfortable safety framework (TRUONG and NGO, 2016)

or the adaption of the robot’s motion according to human trajectories (ALEMPIJEVIC et al., 2013).

The second property of a human-aware navigation is the naturalness that deals with human-like

motions, which can be achieved by adequate dynamics and velocities (KRUSE et al., 2013). This

research tries to reduce the difference in motion between human and robot to make the robot’s mo-

tion more predictable and understandable. A typical example for this category is following a person

in a natural way, i.e. following the direction instead of the path of a person (GOCKLEY et al., 2007)

or considering different situations during following (ZENDER et al., 2007). Another branch of works

in this category focuses on how to approach people, e.g. ALTHAUS et al. (2004) developed methods

to approach a group of people without disturbing them, YAMAOKA et al. (2010) established a posi-

tioning model to enable robots to appropriately present objects to people and RAMÍREZ et al. (2016)

implemented a navigation planner incorporating social costs to allow a robot to approach a person

from the front. Other works in this category comprise walking side-by-side with people (FERRER

et al., 2017) or navigating in crowded environments (STEIN et al., 2013).

Sociability is the last property mentioned by KRUSE et al. (2013), that adapts the robot’s motion ac-

cording to high-level cultural conventions. This distinction is important because a mobile robot

can navigate in a natural way and can respect a person’s comfort zone, but it can still violate so-

cial conventions. An example is standing in line that requires the robot to join the line at the right

position, i.e. the end of the line, and adapting its position keeping the personal space to the front

person (NAKAUCHI and SIMMONS, 2002). Another example for a social convention is switching to

a certain side when two persons approach in the opposite direction in a narrow hallway. For this

purpose, KIRBY et al. (2009) model one side of a person with higher social costs allowing the mobile

robot to prefer a certain side when encountering a person, e.g. they implemented the social costs

to pass a person on the right side. A similar example is to wait until the encountering person passed

the narrow passage (TRINH et al., 2015) or to pass a person on the left side when overtaking it, which

is implemented as a social rule by PANDEY and ALAMI (2010). Furthermore, VEGA et al. (2019) model
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groups of people as spatial density functions. This allows a robot to circumvent a group of people

instead of crossing and disturbing the group.

These examples show that it is possible to change a mobile robot’s navigational behavior with the

goal to make it aware of humans. For this purpose, the costmap used for navigation, which is tra-

ditionally based on an OGM of the environment, is manipulated. In human-aware robot naviga-

tion, additional costs are integrated into this costmap to achieve the desired navigational behavior.

These social costs can be either handcrafted employing prior knowledge, e.g. a human’s personal

space (MEAD and MATARIĆ, 2016), or can be learned from observations, e.g. human motion pat-

terns (O’CALLAGHAN et al., 2011). Although this effectively restricts a mobile robot’s workspace and

changes its navigational behavior, it is not possible to incorporate knowledge from a human in an

interactive way, which is a challenge of the problem we address. Therefore, we can leverage the

knowledge of how to integrate additional social costs into a robot’s navigation framework, but we

have to additionally focus on methods from HRI to allow humans the interactive restriction of mo-

bile robots’ workspaces.

2.2.2 Explicit: Human-Robot Interaction

In contrast to works in the previous category, this category focuses on approaches allowing a hu-

man to restrict a mobile robot’s workspace in an explicit way. The most popular example is prob-

ably the workspace restriction of a robotic lawnmower to indicate the boundaries of the garden

or to adjacent flowerbeds. For this purpose, the human places a wire around the area to be re-

stricted (PRASSLER et al., 2016). This is connected to a power source and can be sensed by the

lawnmower robot’s inductivity sensor if it is in the proximity of the wire. Thus, the robot turns

around and does not cross the wire, which effectively restricts its workspace. A similar solution is

available for vacuum cleaning robots where users place magnetic strips in the indoor environment

to indicated areas to be avoided by the robot (NEATO, 2017). Beacon devices are an alternative to

these wired solutions (CHIU, 2011). These devices are battery-powered and can be placed in the

robot’s workspace. They emit an infrared light beam, that is sensed by a mobile robot and that is

treated as an obstacle. Thus, the typical obstacle avoidance behavior is evoked by these "virtual

walls", and the robot does not cross the light beam. Since beacon devices emit light beams, either

as a line or as a circle around the device, their flexibility is unacceptable. Moreover, wired solutions

and beacon devices feature an unacceptable user experience since the physical placement of addi-

tional components in the environment is obtrusive. The state-of-the-art solution for today’s home

robots is to allow humans to sketch restriction areas on an OGM of the environment on a mobile

device, e.g. a smartphone or tablet (ACKERMAN, 2017). Similarly, WILDE et al. (2018) restrict a mo-

bile robot’s workspace in an industrial environment by specifying additional spatial and temporal

constraints on the robot’s motion, such as avoidance areas. Although these solutions are flexible
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and unobtrusive, as opposed to the previous ones in this section, we hypothesize that these solu-

tions have drawbacks concerning accuracy and user experience. The reason for this is that it is hard

for a (non-expert) user to establish correspondences between points in the environment and on the

OGM shown on a display. This problem is also observed by GROMOV et al. (2019), who describe the

transformation linking between the map’s and human’s reference frame as a mental rotation prob-

lem. An alternative, that addresses this problem, is proposed by SAKAMOTO et al. (2009) who use

top-view cameras integrated into the environment to show a live video stream on a tablet. The hu-

man can then directly sketch the workspace of a robotic vacuum cleaning task on the tablet’s screen.

A similar work for the control of a vacuum cleaning robot’s workspace is proposed by SEIFRIED et al.

(2009). However, these solutions only work when the whole environment is covered by the cameras’

fields of view and if there are no occlusions. Thus, it is not applicable for our problem.

In contrast to the implicit approaches from the previous subsection, there is only limited work on

the explicit interaction to allow humans the restriction of mobile robots’ workspaces. Moreover, the

presented solutions have not been systematically evaluated regarding any of our identified require-

ments as introduced in Section 1.3. However, we conclude that the sketch interface on a graphical

user interface (GUI) (ACKERMAN, 2017) is the most promising solution because the other ones are

intrusive, power-consuming and/or inflexible. For these reasons, the sketch interface has prevailed

in domestic robot applications over the others. Nonetheless, we argue that there are more suitable

user interfaces for our problem that can outperform the current state-of-the-art solution with re-

spect to the requirements.

2.3 User Interfaces for Human-Robot Interaction

In order to identify alternative user interfaces for our first objective, a user interface has to has two

basic properties. These properties are derived from the interaction process between human and

robot as described in Section 1.1:

1. Transfer 2D: The interaction from human to robot can be generally reduced to a transfer of

spatial information, i.e. a restriction of a mobile robot’s workspace operating on the ground

plane. Since a restriction area is defined by 2D positions, the user interface should allow a

human to convey 2D coordinates to the robot.

2. Feedback: Since a mobile robot only provides limited feedback capabilities as stated in Sub-

section 2.1.4, it is desirable that the user interface incorporates an opportunity to give infor-

mation about the interaction process to the human. This could be information about the

status of the interaction process, the current 2D position specified by the human, the robot’s

workspace or instructions for the human regarding the interaction process.
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This information exchange between human and robot can be accomplished using different com-

munication channels. GOODRICH and SCHULTZ (2007) distinguish between five media for commu-

nication, that address three of the five senses, i.e. seeing, hearing and touch:

• Visual displays convey visual information to a human on displays. These displays can have

several forms, such as a traditional GUI shown on a monitor. More recent advances in mixed-

reality technology also allow interaction through augmented reality (AR) or immersive virtual

reality interfaces. A typical application is teleoperating a robotic arm using a GUI (DESAI et al.,

2012) or a virtual reality headset (LIPTON et al., 2018).

• Gestures include finger, hand, arm, head, face or body movements to convey information

or interact with the environment (MITRA and ACHARYA, 2007). Specific gestures can also be

performed with auxiliary devices, such as wearables, laser pointers or controllers. For exam-

ple, ASSAD et al. (2013) use an arm sleeve comprising several sensors to control robots, and

GROMOV et al. (2018) identify human pointing gestures with a wearable inertial measurement

unit (IMU) to localize a robot with respect to the human operator.

• Speech and natural language refers to the interaction comprising auditory speech and text-

based responses, e.g. controlling a mobile robot using basic speech commands (LV et al.,

2008) or conducting a dialogue with a robot to support a human in acquiring data for learn-

ing (KAPADIA et al., 2017).

• Non-speech audio is the interaction using simple audio signals instead of natural language,

e.g. KIM et al. (2009) investigate beep tones to indicate different types of robotic malfunctions.

• Physical interaction and haptics can be used in remote interaction to evoke a feeling of

presence in remote tasks, such as vibration in teleoperation or telemanipulation (CASQUEIRO

et al., 2016), or in proximate interaction to physically interact with a robot, e.g. in a nursing

assistant task (CHEN and KEMP, 2010) or in kinesthetic teaching where a human physically

guides a robot to teach a new skill (AKGUN et al., 2012).

Considering the two basic properties of a user interface for our problem and the scope of this thesis,

we assess the basic communication channels regarding their appropriateness for our problem. For

this purpose, we rate their appropriateness on a 3-point scale (high - medium - low) and summarize

the results in Table 2.1. In terms of the ability to transfer 2D coordinates from human to robot, we

rate visual displays and gestures best because they have been successfully used to transfer spatial

information in various applications. Furthermore, Subsection 2.2.2 has shown that GUIs are the

state-of-the-art solution for our problem. Speech commands can also be used for this task, but it is

not as natural as the previous ones. The other two communication channels, i.e. non-speech audio

and physical interaction, cannot be used to efficiently transfer spatial information, especially with

a focus on non-experts, which results in a low appropriateness. Regarding the feedback property,

visual displays are also assessed best because they can provide powerful visual feedback. The other

28



2.3. USER INTERFACES FOR HUMAN-ROBOT INTERACTION

communication channels are rated with a medium or low appropriateness because their feedback

is not as expressive as the feedback of visual displays or even not available. For example, gestures

performed with auxiliary devices could provide simple visual feedback concerning the current 2D

position specified by the human or audio feedback could be used for simple feedback concerning

the status of the interaction process.

Table 2.1: Assessment of the communication channels’ appropriateness regarding basic properties
of a user interface for our problem.

Visual displays Gestures Speech Non-speech audio Haptics

Transfer 2D High High Medium Low Low
Feedback High Medium Medium Medium Low

Based on the assessment of the communication media, we focus on the first two, i.e. visual displays

and gestures, because they achieve the best results, especially when transferring spatial informa-

tion, which is the fundamental property needed to solve our problem. Thus, in the following we

give an overview of how these user interfaces have been employed to solve related HRI problems.

2.3.1 Visual Displays

Visual displays can be optimally used to transfer spatial information and to provide visual feedback

to the human. We further differentiate this communication channel considering traditional GUIs

and more recent mixed-reality interfaces.

Graphical User Interfaces

Traditional GUIs are used to visualize information using graphical elements on displays, and inter-

action with the display can be performed by either using touch gestures, e.g. on smartphones and

tablets, or using external control devices, such as a computer mouse. Among the examples men-

tioned in Subsection 2.2.2 for the restriction of a mobile robot’s workspace, GUIs are often used

to provide an interface on a mobile robot to assist elderly people (GROSS et al., 2011). Similarly,

GRANATA et al. (2010) designed a GUI to allow elderly people to select robot tasks by visualizing

corresponding icons on the robot’s display. As opposed to this social interaction, SAKAMOTO et al.

(2016) use a GUI to instruct home robots for a human-robot collaboration task, cooking meals and

folding garments. A field of application, that is closely related to our problem, is to teleoperate and

navigate a robot. For example, SCHULZ et al. (2000) implemented a web-based interface to allow

humans to enter navigation goals on a map of the environment shown on a screen, HEBERT et al.
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(2015) use a live video stream of a robot’s on-board camera shown on a tablet to control the mobile

robot, and VAUGHAN et al. (2016) developed a GUI to specify 2D waypoints for a mobile robot.

These examples show that GUIs are exhaustively used in robotics applications ranging from social

HRI, human-robot collaboration to teleoperation and navigation. Especially, the latter ones are

interesting for our problem because they show a way of how to provide spatial information, i.e.

2D positions for navigation purposes. For this purpose, the displays either show video streams

of the robot’s on-board camera and/or a map representation of the environment (NIELSEN and

GOODRICH, 2006). The advantages of GUIs are that they can provide visual information and that

most of the people are familiar with GUIs due to their widespread use, e.g. computer monitors,

smartphones or tablets.

Mixed-Reality Interfaces

In contrast to traditional GUIs, mixed-reality interfaces merge real with virtual information of the

environment (MILGRAM and KISHINO, 1994). Virtual reality interfaces immerse humans into a fully

artificial environment, that can be a model of the real environment. Thus, humans are equipped

with special devices, such as virtual reality headsets, that visualize the virtual environment to the

human and allow the tracking of the human’s motion. Another form of mixed reality is augmented

reality (AR), that extends the real environment with additional information. As opposed to virtual

reality, the human stays in the real world that is augmented with virtual elements. To create such a

reality, a human is supposed to wear a special device, such as a head-mounted display, or to carry

a mobile screen, such as a tablet or smartphone. An alternative to these mobile devices are pro-

jectors integrated into the environment that use a flat surface, e.g. the floor, to project information

onto (GANESAN et al., 2018). While mixed-reality interfaces are the primary channel for communi-

cation in this section, it is noted that these approaches often combine visual information with other

communication channels, such as gestures or speech.

Due to their powerful capabilities and decreasing costs, we currently witness a trend towards mobile

AR in robotics applications. For example, ROSEN et al. (2019) employ a mixed-reality head-mounted

display to communicate motion intents of a robotic arm to a human. They furthermore compared

it to a traditional 2D visualization on a monitor, and their results demonstrate the overall benefit of

an AR interface compared to traditional monitor visualizations. Instead of visualizing motion in-

tends, HORIKAWA et al. (2017) developed a near-future perception system that uses virtual reality

connected to the real world to show potential hazardous situations to the human in advance. Simi-

larly, ZOLOTAS et al. (2018) integrate an AR headset into a wheelchair navigation to highlight poten-

tial sources for collisions. Among applications to visualize robot motion intends, mixed-reality is

also used to control robots, e.g. FRANK et al. (2016) developed an AR application running on a tablet

for object manipulation tasks and QUINTERO et al. (2018) use AR in combination with gestures and
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speech to program robot trajectories. A property, that makes mixed-reality interfaces popular, is

the capability to provide expressive feedback. For example, an AR headset is used for feedback in

controlling a drone (HEDAYATI et al., 2018), in a shared control tasks (ELSDON and DEMIRIS, 2018)

or in gaining insights about internal robot knowledge (LIU et al., 2018). These examples show that

mixed-reality interfaces are popular in recent HRI applications. The main reasons for this trend are

(1) decreasing costs for mobile AR devices allowing a pervasive deployment, (2) the ability to pro-

vide rich visual feedback and (3) the seamless combination with other communication media to

enhance the interaction.

2.3.2 Gestures

In addition to visual displays, we rated the appropriateness of gestures for our problem as second-

best communication channel. Since we focus on transferring spatial information, we especially

report on approaches dealing with pointing gestures. This is a natural and intuitive method of non-

verbal communication because gestures mimic the interaction between humans (WACHS et al.,

2011). Typical robot application areas include pick-and-place scenarios, pointing to navigation

goals or selecting a certain robot in a group. We further subdivide this category into human pointing

gestures and gestures performed using mediator devices.

Human Pointing Gestures

This category comprises works where pointing gestures are performed by a human without any

additional device and perceived by a mobile robot. The human pointing vector can be composed of

several joint combinations evaluated by JEVTIC et al. (2015), i.e. wrist-hand, elbow-hand, shoulder-

hand and head-hand. These 3D joint coordinates are localized using vision, and a pointing vector

is extracted from the joint coordinates, e.g. (NICKEL and STIEFELHAGEN, 2007) and (SPRUTE et al.,

2018). Projecting this pointing vector onto a surface in the environment allows the realization of

various applications.

A popular example for human pointing gestures in HRI is to control a mobile robot, e.g. DEN BERGH

et al. (2011) developed a real-time hand pointing gesture recognition system to specify navigation

goals for a mobile robot. For this purpose, they use a RGB-D sensor mounted on the mobile robot

for hand posture recognition. Similarly, TÖLGYESSY et al. (2017) use human pointing gestures recog-

nized by a RGB-D sensor to navigate a mobile robot by providing 2D positions. They also evaluated

different pointing vectors revealing the elbow-wrist line as most accurate with an average position

error of 0.33 m (-0.2252 m and 0.2402 m error in x and y direction). These inaccuracies are also ob-

served in the work of DROESCHEL et al. (2011) who present an approach for pointing gesture recog-

nition using a time-of-flight camera mounted on a domestic service robot. They evaluated their
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system in an experiment and report an average position error of 0.43 m and 0.53 m considering the

eye-hand and elbow-hand pointing vectors, respectively.

Other examples in this category comprise the selection of objects by pointing (QUINTERO et al.,

2013), the selection of a robot for interaction from a group of robots (POURMEHR et al., 2013) or the

designation of objects for interactive semantic mapping (COSGUN and CHRISTENSEN, 2018). These

examples demonstrate that human pointing gestures are popular in transferring 2D spatial infor-

mation because of a natural interaction. However, works have shown that they lack a high accuracy

which is due to intrinsic inaccuracies in visual gesture recognition and the 3D reconstruction of the

pointing vector. Moreover, there is no possibility allowing a human to get feedback of the current

interaction process.

Mediator-Based Gestures

In contrast to the previous category, approaches in this category comprise works that deal with

pointing gestures performed by a human with an additional device. For example, NAGI et al. (2014)

require a human operator to wear two differently colored gloves. These are used to select an individ-

ual from a group of UAVs by pointing towards a certain UAV. The gloves are used to benefit from the

naturalness and intuitiveness of human gestures while allowing the robust detection of the human’s

hands using color-based segmentation. WOLF et al. (2013) use a BioSleeve, i.e. a natural interface

based on electromyography (EMG) and an IMU worn at the forearm, to point towards robotic navi-

gation or manipulation goals. Another auxiliary device is used by GROMOV et al. (2019), who employ

a wrist-mounted wearable incorporating an IMU to point to locations, e.g. to indicate an area for

vacuum cleaning or a landing zone for a UAV. The authors also evaluated the pointing accuracy

which reached an average of 0.5 m distance from the actual target position. However, the authors

also report that the pointing accuracy can be significantly improved if an additional laser pointer

mounted on the mobile robot gives visual feedback about the pointing position. Similarly, MIKAWA

et al. (2010) use a laser pointer on a librarian robot to guide a human and indicate 3D positions. This

inherent feedback capability makes laser pointers a popular mediator device in HRI research. For

example, laser pointers are used to navigate a mobile robot to a target position (PAROMTCHIK and

ASAMA, 2001)(SUZUKI et al., 2005) or to designate objects in the environment and request a mobile

robot to pick them up (KEMP et al., 2008). Moreover, NGUYEN et al. (2008) generalize this idea to a

clickable world where a user points at different objects and a robot perceives the laser spot with its

on-board camera and derives a certain behavior. Besides, TROUVAIN et al. (2001) combine a laser

pointer with speech into an integrated multi-robot control station.

In order to compare laser pointers to other user interfaces, CHOI et al. (2008) conducted a user

study with amyotrophic lateral sclerosis (ALS) patients, that were asked to provide 3D locations to

a mobile robot. Their results show that the use of laser pointers is faster compared to the use of a
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GUI on a touch screen. Another user study is conducted by ROUANET et al. (2013) who investigated

the impact of four user interfaces (GUI on a smartphone, Wiimote controller, laser pointer and hu-

man gestures) in teaching visual objects to a robot. This includes guiding the robot and drawing

attention to a specific object in the environment. The results reveal that mediator devices, such as

laser pointers, are more efficient for robot learning while being equally good in terms of usability

and user experience compared to human gestures. This shows that interactions performed with a

laser pointer benefit from the naturalness of human pointing gestures but provide additional visual

feedback. Moreover, this feedback can be used to improve the pointing accuracy.

2.4 Intelligent Environments

While HRI user interfaces based on visual displays can be directly employed to transfer spatial infor-

mation, gesture interfaces often require a direct line of sight between human and robot. Although

this is a typical case in HRI, this can influence the performance of the interaction process. In order

to circumvent this drawback and preserve the advantages of gesture interfaces, there are basically

two possibilities: (1) the mobile robot tracks the interacting person and consequently adapts its field

of view, or (2) additional sensors allow the extension of the interaction space. These additional sen-

sors can be pervasively deployed in the environment and connected via a network to cover a larger

space for potential interaction, i.e. a smart environment (COOK and DAS, 2005). When intelligently

integrating these sensors into the interaction process to support humans, this leads to the research

field of ambient intelligence. This deals with the intelligent software and is a "digital environment

that supports people in their daily lives by assisting them in a sensible way" (AUGUSTO, 2007). The

combination of a smart environment with an ambient intelligence is referred to an intelligent en-

vironment (AUGUSTO et al., 2013). Such an environment can be a home, hospital, school, factory

or even a city. This is an interdisciplinary research field covering topics from networks, sensors, ac-

tuators, human-computer interaction, pervasive computing and artificial intelligence. Related to

our second and third objective, i.e. the investigation of the role of a smart home environment in

the interaction process and learning capabilities, this section gives an overview of the current state

of the art in the field of intelligent environments. For this purpose, we first present works related

to ambient intelligence and smart environments, especially smart homes. Subsequently, we report

on works that integrate robots into smart environments as additional mobile sensors and actua-

tors. Finally, the last subsection covers works that deal with learning capabilities of an intelligent

environment.

2.4.1 Ambient Intelligence and Smart Environments

AUGUSTO et al. (2010) describe a typical smart environment as a composition of several hetero-

geneous devices unobtrusively integrated into the physical environment. These are sensors and
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actuators to perceive and change the state of the environment. Moreover, they are connected via a

network allowing a data exchange between the devices. The overall goal of an intelligent environ-

ment is to provide services to the user addressing the comfort, economy, safety and miscellaneous

human daily living factors (AUGUSTO et al., 2013). An example for a certain smart environment is

a smart home equipped with computing and information technology providing services to the res-

idents (ALDRICH, 2003). For example, predicting human movement patterns to maximize comfort

by managing household appliances and temperature (DAS et al., 2002), displaying reminders on a

smart mirror when a person stands in front of it (HELAL et al., 2005) or automatically adapting the

color of lights depending on the human’s current activity (SPRUTE and KÖNIG, 2016).

These are examples where an ambient intelligence acts depending on observed human activities or

behavior patterns. For this purpose, the smart environment perceives the state of the environment

employing a sensor network. These sensors can be generally divided into two groups: (1) wearable

devices worn by humans and (2) devices integrated into the smart environment. Regarding our sec-

ond objective, we focus on the latter category which comprises sensors, such as microphone arrays,

pressure pads integrated into furniture or movement detectors and cameras mounted at the ceiling.

Especially, vision-based sensors are highly relevant for our objective because of the rich information

that can be extracted from camera streams (PRATI et al., 2019). For example, BRDICZKA et al. (2009)

use multiple cameras in the smart environment to detect and track people, ZHANG et al. (2015) de-

scribe vision-based fall detection approaches, FLECK and STRASSER (2008) perform human activity

recognition using a smart camera network and CHAVEZ et al. (2012) use a laser pointer whose spot is

perceived by the environment’s cameras for an environment control system. These examples show

that camera sensors integrated into smart environments can be employed for a comprehensive per-

ception of the environment, which is the basis for various high-level applications.

While sensors perceive the state of the environment, actuators are used to change the environment’s

state. This also includes devices for visualization, e.g. projections on a wall (KIM et al., 2011), projec-

tions augmenting the environment with additional information (GANESAN et al., 2018) or visual dis-

plays integrated into the environment (BUTZ, 2010)(KANG et al., 2018). These approaches demon-

strate the powerful visual feedback capabilities of a smart environment.

2.4.2 Network Robot Systems

After giving an overview of ambient intelligence and smart environment characteristics and appli-

cations, this subsection focuses on works that integrate (mobile) robots into smart environments.

This integration intends to overcome inherent limitations of mobile robots and to extend smart en-

vironments with a mobility component (MASTROGIOVANNI et al., 2010). There is no unified term

for this integration of robots into smart environments, but several terms describe the same idea.

KIM et al. (2007) coined the term ubiquitous robots, that deals with the embedding of robots into a
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ubiquitous space. This space features a high degree of connectivity between several heterogeneous

components classified as software components, embedded components and mobile components

like mobile robots. At the same time, SAFFIOTTI et al. (2008) introduced the term physically embed-

ded intelligent systems (PEIS) ecology, which describes the vision of integrating different devices, e.g.

smart cameras and mobile robots, into a joint space opening the opportunity for more advanced

robot applications. More generally, SANFELIU et al. (2008) points out five elements of a network robot

system (NRS): (1) physical embodiment, (2) autonomous robot capabilities, (3) network-based co-

operation, (4) environment sensors and actuators and (5) human-robot interaction. Another term

is used by NOR and MIZUKAWA (2014), who propose an intelligent space for home-based robotic

services called Kukanchi. Finally, PYO et al. (2015) use the term informationally structured environ-

ment to describe an environment with embedded sensors monitoring and providing information

to other agents in the environment. Due to the similarity of these terms, we use the term network

robot system as a representative for the integration of robots into smart environments.

This integration can benefit robot applications in terms of the realization of more complex or more

efficient services. For example, RUSU et al. (2008) exploit ubiquitous sensing and actuation in a

smart kitchen environment to develop a service robot autonomously operating in a kitchen. They

follow the ubiquitous robotics paradigm in which devices of the smart environment are used to ac-

complish complex tasks without significantly increasing the complexity of the robot itself. Another

example is the work by SPRUTE et al. (2017), who propose a hierarchical search system that uses

smart cameras integrated into the environment to increase the efficiency of a robot object search.

Moreover, they employ a visual feedback system using colored lights of the smart environment to

provide feedback about the state of the search process to the user. LI et al. (2013) introduce a NRS

for ambient assisted living to deliver sophisticated healthcare services to residents, and SAKAMOTO

et al. (2018) use their informationally structured environment to realize robot fetch-and-deliver ser-

vices. Another example, that emphasizes the benefits of a NRS, is the work by GOMEZ-DONOSO et al.

(2019) who aim to enhance ambient assisted living capabilities with a mobile robot focusing on dis-

abled and elderly people. Cameras integrated into the environment are used to detect dangerous

zones, e.g. electric panels or tripping hazards. However, due to the small size of the objects, occlu-

sions or dynamic objects, the cameras in the environment can fail to detect the dangerous zones.

Therefore, the authors integrate a mobile robot equipped with a camera into the smart environment

to overcome these limitations.

In addition to the realization of more complex and efficient services, a smart environment can also

be employed to allow a human a natural interaction with the NRS and its components. PARK et al.

(2007) developed a robotic smart house to assist people with movement disabilities. In order to in-

teract with a mobile robot and home appliances, they use simple voice commands to specify actions

and cameras integrated into the environment to recognize human pointing gestures. These point-

ing gestures can be used to control the position of the mobile robot. RASCH et al. (2019) also use

cameras of a smart home environment to recognize pointing gestures, that are used to select ob-
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jects in the environment. These objects are then tidied up by a mobile robot. SHIBATA et al. (2011)

propose a laser pointer approach to allow humans to control a mobile robot. To this end, they use

ceiling-mounted cameras to track laser spots on the ground and instruct the mobile robot, which is

connected via a network. Similarly, ISHII et al. (2009) use cameras integrated into the environment

for laser spot tracking allowing a human to define stroke gestures with a laser pointer to control a

network-connected mobile robot. Moreover, a projector on the ceiling visualizes the path of the

laser spot. Compared to the works presented in Section 2.3.2, the recognition of human gestures is

no more limited to the mobile robot’s field of view. Instead the gestures are exclusively recognized

by camera sensors integrated in the smart environment increasing the interaction space. Although

this is typically larger than the interaction space of a mobile robot’s on-board camera, it strongly

depends on the number of cameras in the environment and their fields of view.

All these approaches show that the cooperation between robots and smart environments enables

novel and more efficient robot applications. A major reason for this are enhanced perception abil-

ities allowing a robot to overcome its on-board perceptual limitations in terms of time, space and

type of information (SIMOENS et al., 2018). Moreover, mobile robots can use actuators of the smart

environment to enhance their feedback capabilities, e.g. displays or projectors.

2.4.3 Learning Capabilities

In addition to a smart environment, that provides sensors and actuators to perceive and change the

state of the environment, a major component of an intelligent environment is the ambient intelli-

gence. This aims to learn habits, preferences and needs of humans resulting in a context-aware en-

vironment. This knowledge can be further used to adapt the behavior of the smart environment to

the context and increase human daily living factors. A system is considered learning "if it improves

its performance on future tasks after making observations about the world" (RUSSELL and NORVIG,

2009). Regarding our third objective, i.e. the investigation of learning capabilities to support an

interaction process, we first give a brief overview of machine learning techniques and present how

they are used in intelligent environments.

Machine Learning Forms and Techniques

The input to a machine learning algorithm in general is a set of instances, i.e. a (training) dataset,

and each instance is characterized by a set of features or attributes. According to DUDA et al. (2000),

learning can be generally divided into three categories that differ in the human’s feedback:

• Supervised learning: In this form of learning, training instances are labelled with a certain

category or numeric cost, i.e. a labelled dataset. The name is derived from the fact that a

(human) supervisor has to give explicit feedback to the system in form of labels.
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• Unsupervised learning: In contrast to supervised learning, there is no supervisor providing

feedback about the system’s observations. Thus, this form of learning extracts knowledge

without external feedback and seeks for natural groupings, hidden structures or associations

in the training set.

• Reinforcement learning: In reinforcement learning, the system is provided by a series of (bi-

nary) feedback by a supervisor. The supervisor does not tell the actual wanted output, and

therefore it is up to the system to decide why an instance causes a negative feedback.

Additionally, RUSSELL and NORVIG (2009) introduce semi-supervised learning as a fourth form of

learning. It is a combination of supervised and unsupervised learning where only parts of a train-

ing dataset are provided with feedback from a supervisor. Besides, it is not sure if every feedback

provided by the supervisor is correct.

In addition to these forms of learning, WITTEN et al. (2011) describe four different machine learning

techniques that purchase different goals. (1) Classification is a typical form of supervised learn-

ing that deals with learning from a labelled dataset. The learned model is then expected to classify

unseen instances according to the provided category labels. (2) Similarly, numeric prediction or

regression tries to predict a numeric quantity instead of a category. (3) A popular technique of un-

supervised learning is clustering where naturally formed groups of instances are sought. (4) Finally,

association learning seeks associations between different features, which is independent of a super-

visor’s feedback. Thus, it is another form of unsupervised learning.

Applications

These machine learning forms and techniques are employed in intelligent environments to learn

from humans’ habits and routines with the goal to provide context-aware services to residents. An

early work in this field is the work of MOZER (1998), who use feedforward neural networks to predict

occupancy patterns and expected hot water usage in the house. Another classification approach is

chosen by TAPIA et al. (2004), who use data from simple state-change sensors ubiquitously installed

in the environment to train a naive Bayes classifier for activity recognition. Moreover, BRDICZKA

et al. (2009) learn situation models in a smart home to provide context-aware services. For this pur-

pose, they propose a multi-layer framework consisting of supervised learning of human activities

and unsupervised extraction of situations. COOK (2012) learns human activity models from differ-

ent smart home datasets employing supervised and semi-supervised learning techniques.

In contrast to supervised learning, unsupervised learning does not need feedback from a human

teacher and automatically learns from observations, e.g. sensor data acquired from a smart home

are clustered to recognize and predict activities of daily living (LAPALU et al., 2013) (BOUCHARD et al.,

2015) or users’ behaviors are learned and modelled using unsupervised fuzzy technique to adapt

the behavior of the smart environment (DOCTOR et al., 2005). Another example of an unsupervised
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learning technique is the work of JAKKULA et al. (2009), who discover temporal patterns in smart

home time series data for anomaly detection. For this purpose, they mine a dataset of sensor mea-

surements for frequent sequential patterns, that describe normal behaviors, and identify deviations

form these normal behaviors. Similarly, RASHIDI and COOK (2009) automatically adapt their smart

home behavior by discovering patterns in humans’ daily activities and generate automation rules

according to the patterns. To this end, they employ a variant of the Apriori algorithm (AGRAWAL and

SRIKANT, 1994) to find frequent patterns in the sensor data of the smart home. A combination of

frequent pattern mining and clustering is applied by RASHIDI et al. (2011) to recognize activities in

a smart environment. An extension to frequent sequential pattern mining is proposed by TAX et al.

(2018), who use local process models to gain insights to smart home data. This is a frequent pat-

tern mining technique that models patterns not only in sequential order but also allows concurrent

executions, choices and loops.

These works show that especially supervised and unsupervised learning techniques are employed in

intelligent environment applications with the goal to learn from observations and provide context-

sensitive services. In particular, unsupervised learning gained attention in recent years due to the

ability to learn automatically without manual annotation of a training dataset by a human super-

visor. A major subtask in this field is the discovery of frequent patterns in different forms, such as

frequent itemsets, sequential patterns or structural patterns (HAN et al., 2007). These can be used

subsequently for clustering, e.g. to recognize frequent activities.

2.5 Summary and Open Research Questions

Section 2.1 gave an introduction to autonomous robot capabilities and the current state of the art in

related research fields. A major capability is the modelling and mapping of the robot’s environment

as basis for robot navigation. For this purpose, several map representations with their advantages,

limitations and application areas were presented. In case of robot navigation and robot guidance,

2D OGMs modelling the environment in terms of fixed-size cells indicating the occupancy of the

corresponding area revealed to be a popular representation. Building a map of the environment

and simultaneously localizing a robot with respect to the map coordinate frame is referred to the

SLAM problem. This problem is solved for structured indoor environments using range scanners.

Based on these capabilities, robot navigation was introduced that deals with the efficient and reli-

able robot motion in the environment. Works in this field already reached maturity allowing a safe

and robust path planning and obstacle avoidance. Furthermore, camera sensors proved to be im-

portant components in all these robot capabilities. To convey information from robot to human,

colored light and non-speech audio revealed to be the only opportunities for this task considering

robots in the scope of this thesis. However, these communication channels can only convey simple

information, e.g. the robot’s status, and no complex information, e.g. 2D areas on the ground.
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After introducing background knowledge about autonomous robot capabilities, Section 2.2 distin-

guished between two categories of how to change a mobile robot’s navigational behavior. This di-

rectly relates to our first objective, i.e. the investigation of interaction methods and user interfaces

for the restriction of a mobile robot’s workspace. The first possibility is the restriction based on im-

plicit methods from the field of human-aware robot navigation. These methods effectively change

the robot’s navigational behavior, but they do not allow the incorporation of knowledge from a hu-

man in an interactive way. Since this is necessary to solve our problem, the second possibility relies

on explicit methods from the field of HRI. While a lot of research has been conducted in the former

category, there is only limited research in the latter one. The state-of-the-art solution for current do-

mestic robots is the workspace restriction by sketching on a 2D OGM shown on a GUI. However, this

interaction method has not been evaluated with respect to the requirements of an interaction pro-

cess, and there are indications that this solution does not optimally address these requirements.

Therefore, we surveyed alternative user interfaces in Section 2.3. After a preselection concerning

properties of a user interface for our problem, we further investigated user interfaces based on vi-

sual displays and gestures. As a result, we identified mediator-based pointing gestures and mixed-

reality interfaces as promising alternative user interfaces due to their capability to transfer spatial

information and to provide feedback to the human. Hence, we hypothesize that at least one of the

alternative user interfaces performs better than the state-of-the-art solution and with an acceptable

quality level regarding the identified requirements in Section 1.3. Both categories of user interfaces

have not yet been used to restrict a mobile robot’s workspace considering the scope of this thesis,

which leads us to our first research question:

Research Question 1. How to employ alternative user interfaces to restrict a mobile robot’s workspace

in a traditional home environment respecting the mentioned requirements?

This comprises questions of (1.1) how to model and integrate user-defined restriction areas into the

mobile robot’s navigation framework and (1.2) how to design interaction methods allowing a human

to interact with the robot employing alternative user interfaces.

Related to the second objective, i.e. the investigation of the role of a smart home environment in

the interaction process, Subsections 2.4.1 and 2.4.2 introduced works in the fields of ambient intelli-

gence, smart environments and network robot systems (NRS). The reviewed works show that smart

environments can enhance robot applications in terms of complexity and efficiency. The main rea-

son for this is the extension of a robot’s perceptual capabilities through sensors of the smart environ-

ment. Especially, camera networks integrated into the smart environment revealed an important

possibility to perceive the state of the environment and overcome limitations of robots’ on-board

cameras due to a restricted field of view. A NRS can also be used to improve the interaction between

human and robot. For example, a human can control a mobile robot using gestures perceived by

the smart home’s camera network instead of the robot’s on-board camera with limited field of view.
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Thus, the interaction space is enlarged enabling a more efficient interaction. However, most of the

approaches exclusively used the camera network of the smart environment for perception without

employing the robot’s on-board camera. Hence, the visual perception was restricted by the smart

environment’s camera view coverage and occlusions. While NRS were used to recognize gestures,

with and without mediator devices, they were not used for the restriction of robots’ workspaces. Es-

pecially, a cooperative perception employing cameras from the smart environment and the mobile

robot has not yet been investigated. This would be an opportunity to overcome issues concerning

camera view coverage and occlusions. Moreover, smart environments provide additional visualiza-

tion capabilities that could be used to provide feedback to the human. These findings lead us to a

second research question:

Research Question 2. How can a smart home environment improve the interaction process of re-

stricting a mobile robot’s workspace with respect to the requirements?

This research question deals with questions of (2.1) which sensors and actuators of a smart home

environment can be used to benefit the interaction process, (2.2) how to realize a cooperation of

human, robot and smart environment in the interaction process and (2.3) how to cooperatively per-

ceive and combine multiple sensor observations to restrict the mobile robot’s workspace. According

to our second objective, the improvement of the interaction process deals with a reduction of the

interaction time and an increase of the user experience.

After introducing applications using a NRS, Subsection 2.4.3 summarized relevant works that al-

low the ambient intelligence to learn from users’ behaviors, habits and routines to provide context-

aware services. For this purpose, several machine learning forms were employed ranging from su-

pervised to unsupervised learning. In case of learning from observations in a smart home, unsuper-

vised learning methods became popular because they automatically learn without supervision of a

human teacher. This shows that there are already works that allow the learning from observations

in smart environments. However, none of the works addressed our third objective, which aims to

learn from multiple interaction processes and support the human in future interaction processes.

Therefore, we formulate our third research question as follows:

Research Question 3. How can a network robot system learn from user interactions and apply the

knowledge in future interaction processes?

This research question comprises questions of (3.1) how to encode an interaction process for ma-

chine learning, (3.2) how to learn from user interactions and (3.3) how to apply the knowledge ex-

tracted during learning to support a human in subsequent interaction processes. With regard to

our third objective, this support of a human should result in a reduction of the interaction time to a

good quality level while preserving the quality levels of the other requirements.

These research questions are the basis for the remainder of this thesis. They will be answered by pro-

totypically implementing solutions and an empirical evaluation with respect to the requirements.
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3
Virtual Borders and Interaction Methods

After identifying open research questions, this chapter deals with the first research question of how

to employ alternative user interfaces to restrict a mobile robot’s workspace in a traditional home

environment respecting the mentioned requirements. For this purpose, we first formally define the

problem setting and introduce the notations we use throughout this thesis. Afterwards, we pro-

pose the concept of a virtual border to flexibly model restriction areas and an algorithm to integrate

virtual borders into the mobile robot’s navigation framework. Subsequently, we present two novel

interaction methods based on mediator-based pointing gestures and a mixed-reality interface to

allow a human the definition of virtual borders. The goal is that at least one of the proposed in-

teraction methods performs better than the state of the art and with an acceptable quality level.

Therefore, the performance of the proposed interaction methods is finally evaluated with respect to

the user requirements identified in Section 1.3.

This chapter’s content (in similar or identical form) is mainly based on the publications below:

• SPRUTE, D., R. RASCH, K. TÖNNIES, and M. KÖNIG (2017). A framework for interactive teach-

ing of virtual borders to mobile robots. In IEEE International Symposium on Robot and Human

Interactive Communication (RO-MAN), pp. 1175–1181

• SPRUTE, D., K. TÖNNIES, and M. KÖNIG (2019c). This far, no further: Introducing virtual bor-

ders to mobile robots using a laser pointer. In IEEE International Conference on Robotic Com-

puting (IRC), pp. 403–408

• SPRUTE, D., K. TÖNNIES, and M. KÖNIG (2018). Virtual borders: Accurate definition of a mo-

bile robot’s workspace using augmented reality. In IEEE/RSJ International Conference on In-

telligent Robots and Systems (IROS), pp. 8574–8581

• SPRUTE, D., K. TÖNNIES, and M. KÖNIG (2019b). A study on different user interfaces for teach-

ing virtual borders to mobile robots. International Journal of Social Robotics 11(3), 373–388
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3.1 Problem Setting

A major component of the interaction process is the environment, in which the interaction between

human and robot takes place. In order to model this environment for the robot’s internal represen-

tation, we choose a 2D occupancy grid map (OGM) representation. This is preferred to other map

representations, such as landmark-based or topological maps, for several reasons:

1. The main reason is the requirement concerning an accurate interaction process, i.e. allowing

a human to accurately restrict the mobile robot’s workspace as defined in Section 1.3. There-

fore, a dense representation containing metric information is essential, which inevitably leads

to OGMs.

2. The drawback concerning bad scalability of OGMs can be neglected due to the considered

environments in the scope of this thesis, i.e. indoor home environments. These have a fixed

size and cannot be extended excessively as opposed to outdoor environments.

3. OGMs are also used in state-of-the-art solutions to this problem when allowing interaction

between a human and a mobile robot’s map.

In this work, we denote an OGM of the environment as M . It models the environment in terms of

m×n discrete cells containing free and occupied areas, such as walls or furniture. Each cell (x, y) of

a map M contains an occupancy probability M(x, y) ∈ [0,1] for a corresponding area in the environ-

ment1. The set of all cells in the map M is denoted as the domainΩ(M).

Another component of the interaction process is the mobile robot, whose reference coordinate

frame is denoted as R. Since our problem and subsequent solutions involve different reference

coordinate frames, we denote the pose (or transformation) of a coordinate frame B with respect

to a coordinate frame A as ATB . The leading superscript indicates the reference coordinate frame,

while the trailing subscript indicates the coordinate frame being described. Due to the assumption

that the mobile robot operates on the 2D ground plane, its pose can be described as a triple (x, y,θ)

with the robot’s current location (x, y) and orientation θ. Since we assume the mobile robot to be

localized with respect to the map coordinate frame, the pose M TR is known2. Moreover, due to the

locomotion capabilities of the mobile robot, this pose is dynamic and automatically adjusted dur-

ing locomotion by a localization algorithm. Therefore, we denote a pose between two coordinate

frames A and B at a certain time k as AT k
B . A set of consecutive robot poses with respect to the map

coordinate frame {T 0
R ,T 1

R , ...,T k
R }, i.e. a trajectory in the environment, is summarized as the robot’s

pose history T 0:k
R up to time k. Each position, that can be reached by the mobile robot on a path

consisting of free cells, is part of its workspace W , i.e. W ⊆Ω(M).

1Due to simplicity, most OGMs only contain free (0), occupied (1) and unknown cells (-1).
2For reasons of readability, we omit the leading superscript in the following if the reference coordinate frame is the map

coordinate frame M . This also applies for points being described.
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Figure 3.1: Illustration of the problem setting with occupancy grid map and relevant coordinate
frames.

In addition to the mobile robot’s pose, a robot in the scope of this thesis is also equipped with a front-

mounted RGB-D camera C , e.g. to acquire sensor measurements for localization or interaction.

This camera is attached to the mobile robot’s coordinate frame R, and the transformation R TC from

the camera’s to the robot’s coordinate frame is known and static. All introduced transformations

(dynamic or static) belong to the special Euclidean group SE(3), which contains rigid motions in

three dimensions.

Time-synchronized image streams of a color image C IRGB and depth image C IZ are acquired using

the RGB-D camera C . The leading superscript indicates the acquiring camera, while the trailing

subscript specifies the type of the image. Transformations between the different camera sensors

(color and depth) are handled internally resulting in the same coordinate frame C for both camera

sensors3. The value at a certain pixel in the color image is denoted as IRGB (x, y) ∈ R3+. Access to a

pixel of the depth image of the camera is defined analogously IZ (x, y) ∈ R+. A domain Ω(I ) of an

image I contains all pixels.

An illustration of the problem setting is depicted in Figure 3.1. A 2D OGM with its coordinate

frame M is shown on the ground plane. White, black and gray cells indicate free, occupied and

unknown areas. R indicates the mobile robot’s coordinate frame and C the RGB-D camera attached

to the robot. Solid and dotted black lines indicate static and dynamic transformations between co-

ordinate frames.

3For reasons of readability, we omit the leading superscript in the following if the image acquiring camera is clearly
determined from the context.
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Figure 3.2: Human-aware navigation framework consisting of global and local planner. Our modi-
fications and extensions are highlighted in red.

3.2 Workspace Restriction

After formalizing the problem setting, the goal is to restrict the mobile robot’s workspace W and

change its navigational behavior. Focusing on Research Question 1.1, i.e. how to model and in-

tegrate user-defined restriction areas into the mobile robot’s navigation framework, we adapt and

extend the state-of-the-art human-aware navigation framework shown in Figure 3.2. As already

mentioned in Subsection 2.1.3, such a robot navigation framework consists of a global and local

path planning module. The former one calculates a path from the mobile robot’s current pose to

the given navigation goal by considering the map of the environment and additional social costs.

To this end, a costmap is created based on the given map, e.g. occupied and free cells correspond to

high and low costs, and a path with minimal costs is determined. In contrast to the global planner,

the local planner adapts the given path according to local obstacles perceived by on-board sensor

measurements. The result is a collision-free and human-aware robot motion to the navigation goal.

In order to incorporate user-defined restriction areas into the navigation framework, there are two

possibilities to change the mobile robot’s navigational behavior. (1) The sensor measurements as

input to the local planner could be employed to detect restriction areas and modify the robot mo-

tion accordingly. However, these cannot be detected using the mobile robot’s on-board sensors

as described in Section 1.1. Moreover, this possibility does not allow the explicit incorporation of

knowledge from a human, which is essential for our problem. Thus, this possibility is not a solution

for our problem. (2) The other possibility is the manipulation of the map, which is the input for the

global planner. This could be modified to explicitly incorporate user-defined restriction areas as a

result of an interaction process. Therefore, we prefer the second possibility in this work.

To this end, we first propose virtual borders as a data structure to model social costs, i.e. restriction

areas in the case of our problem. Since these can have arbitrary shapes and sizes, a virtual border

is designed to be flexible to account for this requirement. Afterwards, we present an algorithm that

integrates a virtual border into a given OGM of the environment. The resulting map can be used
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subsequently by the global path planner, which then generates paths respecting the user-defined

restriction areas. This addresses the requirement concerning the correctness of the interaction pro-

cess. Finally, the local planner is used to circumvent humans or other physical objects during the

interaction process by treating them as obstacles. Both novel aspects, virtual borders and map inte-

gration algorithm (colored in red in Figure 3.2), are described in the following subsections.

3.2.1 Virtual Borders

In this work, we employ virtual borders as data structure to flexibly model restriction areas. These

are non-physical borders, that are not directly visible to the human, but that are respected by the

mobile robot during navigation if integrated into the environment’s map. Thus, a virtual border can

be used to interactively specify restriction areas and change the mobile robot’s navigational behav-

ior. To this end, a virtual border comprises spatial information necessary to specify a restriction area

in an interaction process. As already described in Section 1.1, a restriction area’s spatial information

consists of a boundary and an occupancy value. To model this information, we compose a virtual

border of the following three components:

• The virtual border points P specify the boundary of a restriction area and are structured as

a polygonal chain, which should not be self-intersecting. The polygonal chain consists of

n > 1 points pi ∈ R2 corresponding to coordinates on the ground plane of the environment.

We distinguish between (1) closed and (2) simple polygonal chains to address the requirement

concerning flexibility. In case of a simple polygonal chain, that does not partition the map into

two areas, we apply a linear extension to the first and last line segment. Thus, the beginning

and ending of the polygonal chain are automatically extended to the borders of the map. This

allows a human to specify restriction areas with arbitrary shapes and sizes.

• A seed point s ∈ R2 is the user-defined component of a virtual border that indicates the area

to be modified during the interaction process. This is necessary because only one area, that

is separated from the rest of the environment by the virtual border points P , is modified in an

interaction process.

• δ ∈ [0,1] is the user-defined component which indicates the occupancy probability of the

area to be modified (as indicated by s). Since we focus on restriction areas in this work, i.e.

areas that should not be entered, we mainly focus on the occupancy values free (0) and occu-

pied (1).

3.2.2 Map Integration

In order to enforce a mobile robot to change its navigational behavior according to a user-defined

virtual border, this needs to be integrated into the map of the environment. Thus, we propose a map
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integration algorithm that combines a map of the environment and a virtual border. This algorithm

requires a 2D OGM of the physical environment Mpr i or and a virtual border V = (P ,s,δ) as input

and outputs a 2D OGM Mposter i or containing physical as well as virtual borders.

The virtual border points P specify the boundary of a virtual border on the ground plane and are

structured as a polygonal chain:

P =
n−1⋃
i=1

[pipi+1] (3.1)

Since an OGM is a discrete map representation, we denote the corresponding cells of the polygonal

chain in the map as P∗ ⊂Ω(Mpr i or ). This polygonal chain, which is typically a single cell thick to

address the requirement concerning accuracy, is first integrated into the posterior map:

Mposter i or (x, y) =
δ i f (x, y) ∈P∗

Mpr i or (x, y) i f (x, y) ∉P∗
(3.2)

δ ∈ [0,1] is the user-defined component which indicates the occupancy probability of the area to

be modified. If the virtual border points P constitute a closed polygonal chain, this partitions the

map into two areas. In case of a simple polygonal chain, that does not partition the map, we apply a

linear extension to the first [p1p2] and last [pn−1pn] line segment. Thus, the beginning and ending

of the polygonal chain are automatically extended to the borders of the prior map Mpr i or leading to

a partitioning of the map. The posterior map now consists of two disjunct areas:

Ac = {c ∈Ω(Mposter i or ) | connected(c,s∗, Mposter i or )} (3.3)

and

Anc =Ω(Mposter i or ) \ Ac (3.4)

The former one is the area directly connected to the cell corresponding to the seed point s∗, while

the latter one is the complementary area. We consider two cells a ∈Ω(M) and b ∈Ω(M) in a map M

as connected(a,b, M) if:

∃ f : [0..1] →Ω(M) : f (0) =a, f (1) = b,

∀i , j ∈ [0..1] : M( f (i )) = M( f ( j ))
(3.5)

where f is a continuous mapping. Finally, the area to be modified, i.e. the cells contained in Ac , is

filled with the occupancy probability δ:

Mposter i or (x, y) =
δ i f (x, y) ∈ Ac

Mpr i or (x, y) i f (x, y) ∈ Anc

(3.6)

46



3.3. INTERACTION METHODS

In order to allow a human the definition of multiple virtual borders to address the flexibility re-

quirement, this algorithm can be performed N times resulting in a sequence of virtual borders V =
{V1,V2, ...,VN }. Hence, the posterior map of the i -th interaction process becomes the prior map of

the i + 1-th interaction process. This posterior map can be then used by a global path planner to

change the mobile robot’s navigational behavior according to the user-defined restriction areas.

3.3 Interaction Methods

After answering the question of how to model and integrate user-defined restriction areas into the

mobile robot’s navigation framework, the three components of a virtual border need to be defined

by a human in an interaction process. This leads to Research Question 1.2, that deals with the design

of interaction methods allowing a human to interact with the robot. For this purpose, a user inter-

face offers the possibility for interaction between human and robot, while an interaction method

describes how to interact with the robot employing the user interface in an interaction process to

achieve the goal, i.e. the definition of virtual borders. We distinguish between two types of interac-

tion methods:

1. Robot-dependent: The mobile robot is directly involved in the perception and interaction

with the human. Thus, it is essential for the information transfer in the interaction process.

These interaction methods are typically based on simple user interfaces that are not able to

transfer spatial information or feedback without active participation of the mobile robot, e.g.

human gestures or remote controllers.

2. Robot-independent: The mobile robot is not directly involved in the perception and inter-

action with the human, but instead the primary focus of the interaction is set on the user

interface. However, the information transferred in the interaction process are accessible to

the mobile robot. These interaction methods typically employ powerful user interfaces that

can transfer spatial information and feedback with their own capabilities, e.g. tablets, smart-

phones or augmented reality (AR) devices.

In this section, we propose an interaction method for each of these types. To this end, we em-

ploy two alternative user interfaces identified in the literature review in Section 2.3. Especially,

mediator-based pointing gestures and mixed-reality interfaces were identified as promising alter-

natives due to their ability to transfer spatial information and provide feedback to the human. In

case of mediator-based pointing gestures, we decide to investigate the use of a laser pointer as user

interface because it benefits from the naturalness of pointing gestures while providing inherent vi-

sual feedback. It is reported that this feedback helps to significantly increase the accuracy, which is

an important requirement of an interaction process. Another reason is that laser pointers are every-

day devices that non-expert humans are familiar with. Since the spot generated by the laser pointer

has to be perceived by sensors, this inevitably leads to a robot-dependent interaction method.
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In case of mixed-reality interfaces, we focus on AR because it can be used to enhance the real en-

vironment with additional information allowing a powerful feedback capability. Furthermore, an

AR device can be used to directly interact with the real environment as opposed to virtual reality.

Since the user interface, i.e. the AR device, is responsible for the perception of human interactions

and the feedback, this is a robot-independent interaction method. We give details on how both user

interfaces are employed in interaction methods in the following subsections.

3.3.1 Laser Pointer

Our first interaction method depends on the mobile robot and is based on a laser pointer as user

interface. The idea of our robot-dependent interaction method is to leverage the accurate localiza-

tion of the mobile robot in the environment to address the requirement concerning accuracy. There

are two possibilities to exploit this characteristic: (1) the mobile robot’s pose or (2) an accurately lo-

calized position detected by the mobile robot’s on-board camera can be used to specify the spatial

information of a virtual border. However, since the mobile robot has a limited field of view and a re-

striction area can have arbitrary shapes and sizes, the mobile robot has to move in the environment

to acquire the necessary spatial information.

Robot Guidance Framework

Therefore, we propose a robot guidance framework intended to specify virtual borders. The main

idea is that a human employs a user interface, e.g. a laser pointer, to guide the mobile robot. To

this end, a human employs the user interface to indicate a following point on the ground. While

following, the robot simultaneously keeps track of its pose history T 0:k
R , that can be used to de-

fine components of a virtual border. As introduced in Subsection 3.2.1, a virtual border consists

of a triple V = (P ,s,δ). Thus, each component has to be represented in this framework. For this

purpose, the framework comprises the following three states that we will refer to throughout this

work:

1. Guide: The human employs the user interface to guide the mobile robot to the desired re-

striction area. This is necessary because the mobile robot is typically not within visible range

of the restriction area when it is autonomous mode. For the purpose of robot guidance, the

user interface indicates a following point on the ground, that is either detected and localized

by the robot’s on-board camera or internally provided to the robot. The mobile robot follows

this position until the following point is no more visible or available.

2. Border: The human guides the mobile robot with the user interface as in the Guide state,

but in addition the mobile robot simultaneously records its pose history T a:b
R from the time a

entering the state until leaving the state b. This history is used to specify the virtual border
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Figure 3.3: States and transitions of the robot’s internal behavior including the proposed robot guid-
ance framework.

points P . Alternatively, instead of recording the mobile robot’s pose history, the positions of

the following point are stored and used as virtual border points P .

3. Seed: The mobile robot stops changing its position. The human has the possibility to rotate

the robot around its vertical axis employing the user interface to indicate the restriction area.

After a timeout, the last following point is used to indicate the seed point s, which defines the

restriction area, i.e.δ= 1. This should not be intruded by the mobile robot in future navigation

tasks.

Figure 3.3 gives an overview of the mobile robot’s internal states. The state Autonomous describes

the default behavior of the mobile robot when providing services to humans. The new super state

Virtual Border Teaching comprises the framework’s different states and transitions, that are trig-

gered by user interactions or timeouts. The action Save, that is triggered after a timeout when

changing from Seed to Guide state, performs the map integration algorithm presented in Subsec-

tion 3.2.2 and thus saves the result of the interaction process.

In order to use this framework, a concrete implementation only (1) has to provide an appropriate

user interface to indicate a following point for robot guidance, (2) has to implement an algorithm

to recognize and localize a following point and (3) has to define the two events Next and Previous,

which are used to switch between different states of the framework4. Thus, the implementation of

the states can remain the same between different user interfaces. This makes it easy to adapt to

other user interfaces, such as human gestures or remote controllers, and facilitates the portability

and distribution of the interaction methods.

4The other events, i.e. Timeout 1, Timeout 2 and Following point detected, are internally generated and do not need to
be adapted.
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Figure 3.4: Image processing pipeline for laser point detection. The input is a color image, and the
result is the 2D position of the laser point in the image plane if present.

Laser Point Detection and Localization

As already mentioned, we propose a laser pointer as user interface because we assume that a laser

pointer meets the requirements of an interaction process best. To employ the robot guidance frame-

work, the laser pointer interface has to provide a following point, which is localized by the robot’s

camera, and has to define both events of the framework. Therefore, a laser spot first needs to be

visually detected and localized by the mobile robot’s on-board camera C , which captures images of

the scene. A laser spot on the ground, that is generated by a human, has several properties that will

be addressed in the detection process:

1. The spot has a single color (typically green or red).

2. The spot is significantly brighter than its surrounding environment.

3. The spot has a size of approximately 5 × 5 mm depending on the material of the ground.

4. The spot is approximately circular.

We apply a multi-stage image processing approach to detect the laser point in the input image IRGB .

The processing pipeline is tailored to the characteristics of a laser point and is shown in Figure 3.4.

The first steps of the image processing pipeline are processed in parallel to identify locally bright

areas and areas with certain color characteristics to address Properties 1 and 2 of a laser spot. The

bit-wise conjunction of both processed images results in a mask that contains pixels with both char-

acteristics. In order to extract laser point candidates C ∈ Ω(IRGB ), blob detection is performed on

the combined image to find connected pixels. Afterwards, blobs are discarded that do not match

the morphological characteristics of a laser point, i.e. the size (Property 3) and the circularity (Prop-

erty 4) of the blob. Finally, the brightness of a blob center (xc , yc ) represented by the V -value
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of IHSV (xc , yc ) has to exceed a certain threshold to remain a laser point candidate5. If more than

one blob fulfills all the criteria, the brightest candidate point l is chosen:

l= argmax
(xc ,yc )∈C

V (IHSV (xc , yc )) (3.7)

The V (·)-operator extracts the V -value of IHSV (xc , yc ).

In order to follow the laser point detected in the input image, its 2D image coordinate is transformed

into 3D space. A 3D point CP = (X ,Y , Z )T in space acquired from the camera C is projected onto

a point p = (x, y)T on the image plane by applying the central projection π of the pinhole camera

model (HARTLEY and ZISSERMAN, 2003):

p=π(CP ) =
(

X fx

Z
+ cx ,

Y fy

Z
+ cy

)T

(3.8)

fx and fy are the focal lengths in pixels, and (cx ,cy ) is the principal point in image coordinates.

These intrinsic camera parameters are obtained during a calibration process. The inverse projection

of an image point p into space additionally depends on its distance to the camera Z = IZ (p).

CP =π−1(p, Z ) =
(

x − cx

fx
Z ,

y − cy

fy
Z , Z

)T

(3.9)

After transforming the image coordinates of the laser point l into space CL, the mobile robot can

follow the laser point by applying visual servoing technique (CHAUMETTE et al., 2016)6. Thus, L is

the following point used in the robot guidance framework. The distance information IZ (l) is used

to adjust the mobile robot’s velocity to ensure a smooth motion. Some exemplary images of an

interaction process with a laser pointer are depicted in Figure 3.5.

State Change Interaction

In addition to providing a following point to guide the mobile robot, it is necessary to switch be-

tween the different states of the framework. For this purpose, the two events Next and Previous need

to be implemented. Since the human already employs a laser pointer to provide a following point,

it is reasonable to also use the same user interface for this task. Therefore, we use two simple visual

codes generated by the laser pointer and recognized by the mobile robot’s on-board camera7. As an

alternative, a human can also push two different buttons on the mobile robot’s platform to switch

5IHSV is the color image of camera C transformed from RGB to HSV color space.
6Applying the rigid transformations introduced in Section 3.1, the position of the laser point can be easily transformed

between the different coordinate frames.
7Currently, the visual codes are manually generated by a human by pressing the laser pointer’s button, but an automatic

generation could be easily realized in the future.
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Figure 3.5: Row-wise from top left to bottom right (a-f): (a)-(d) show consecutive images of an in-
teraction process using a laser pointer to specify a carpet as restriction area, whereas (e) and (f)
illustrate the interaction process from the mobile robot’s and human’s perspective.

between the states. The former method is the more comfortable one, while the latter method is the

more robust one. We choose this multimodal interaction because the interaction using visual codes

can be error-prone under certain light conditions, e.g. certain camera angles and reflections on the

ground sometimes lead to an extreme overexposure of the images making the recognition of the

visual codes impossible. In this case, a human can easily use the robot’s on-board push buttons to

ensure the functionality of the system.

Feedback

Until now, we described our interaction method in terms of the transfer of the 2D spatial informa-

tion used to specify a restriction area. But, as already identified in Section 1.1, it is also necessary to

provide immediate feedback about the interaction process to the human. For this purpose, only the

user interface and the mobile robot’s on-board feedback capabilities are available. This additionally

underlines why we choose a laser pointer as user interface to perform human pointing gestures: as

opposed to other possibilities to perform pointing gestures, e.g. with a wrist-mounted inertial mea-

surement unit (IMU) or without an additional device, a laser pointer provides an inherent visual

feedback to the human. We hypothesize that this leads to a more accurate transfer of the spatial in-

formation and a better user experience. Moreover, colored LEDs on the mobile robot signalize the

internal state of the interaction method, i.e. the state of the guidance framework. Each color (red,

green and orange) corresponds to one of the three system’s teaching states. Additional to a color

change of the LED in case of a state change, the mobile robot also employs a sound feedback (beep
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tones) to signalize state changes. Both communication channels are typical solutions for mobile

robots with restricted feedback capabilities as revealed in Subsection 2.1.4.

3.3.2 Augmented Reality

As an alternative to this robot-dependent interaction method based on a laser pointer, we also pro-

pose a novel interaction method based on an AR application. The idea is to exploit a visual AR

interface to provide a powerful feedback about the interaction process to the human. Thus, the

feedback is not restricted to the limited mobile robot’s feedback capabilities. In order to realize an

AR application, we choose a RGB-D Google Tango tablet as user interface. In contrast to common

tablets, a RGB-D tablet can perceive depth information of a scene additional to color information.

We prefer a tablet solution to other AR devices, such as glasses or headsets, because we assume our

intended users to be familiar with common consumer products, such as tablets or smartphones.

Therefore, the use of a tablet should benefit a human and should positively affect requirements,

e.g. concerning interaction time or learnability. Moreover, tablets and smartphones are widely used

leading to a high number of potential users. In addition, such an AR device is not only suitable to

provide feedback about the interaction process, but also allows the transfer of 2D spatial informa-

tion, which is the other property of a user interface for our problem. Since an AR device combines

both properties, it can be employed in a robot-independent interaction method.

AR Device Localization

In order to realize this behavior, i.e. allowing the transfer of spatial information and provide vi-

sual feedback, the AR device Tang o needs to be related to the map coordinate frame M . Thus,

a transformation M TTang o needs to be established. As opposed to the mobile robot’s pose, which

comprises three degrees of freedom (DoF), the pose of the AR device consists of six components (3D

position and 3D orientation). Thus, it is harder to localize the 6-DoF AR device with respect to the

2D OGM of the environment M . Therefore, the AR device initially constructs a 3D map of the envi-

ronment and stores it internally for localization in the environment8. The origin of this 3D map is

the ADF (Area Description File) coordinate frame. To transform points between this 3D map ADF

and the 2D OGM M , these coordinate frames need to be manually registered to each other. This

manual registration has to be performed only once because both coordinate frames are static, i.e.

they do not change over time. Hence, the AR device only needs to be localized with respect to the

3D map ADF . To this end, an auxiliary coordinate frame SoS (Start of Service) is introduced, which

8The construction of a 3D map of the environment and the localization of the AR device inside this map are performed
internally by the device. There are no details of the manufacturer how this is exactly accomplished, and hence it is
outside the scope of this thesis.
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Figure 3.6: Relevant coordinate frames for the augmented reality interaction method.

marks the current pose of the AR device when starting the AR application. While moving in the envi-

ronment, the AR device uses its accurate on-board visual-inertial odometry to keep track of its cur-

rent pose Tang o with respect to SoS. Moreover, the sensor measurements are used to (re-)localize

the AR device in the 3D environment, which leads to the transformation ADF TSoS . This localization

process, i.e. the determination of the transformation ADF TTang o , is internally performed by the AR

device and influences the accuracy of the user-defined virtual borders.

All relevant coordinate frames, which all belong to SE(3), are related to each other enabling trans-

formations of points between the coordinate frames. Figure 3.6 illustrates the relevant coordinate

frames and their transformations. In addition to the coordinate frames M , R and C known from the

problem setting in Section 3.1, there are three additional coordinate frames that are established by

the localization process of the AR device. In summary, this leads to two requirements for the AR

interaction method:

1. 3D map construction: A 3D map of the environment ADF needs to be initially constructed

using the AR device. For this purpose, it is sufficient to move the AR device through the envi-

ronment.

2. Coordinate frame registration: After constructing a 3D map of the environment ADF , this

coordinate frame needs to be manually related to the 2D OGM of the environment M . For

this purpose, the transformation M TADF needs to be established.

Both requirements only need to be addressed once during an installation period and do not affect

the performance of humans in an interaction process.
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Spatial Information Transfer

When both maps are related to each other, i.e. 3D internal map of the AR device ADF and 2D

OGM of the environment M , it is possible to transform points, that are specified with respect to the

Tang o coordinate frame, to the map coordinate frame M . Thus, these points can be used to specify

virtual borders for the mobile robot. In order to specify the three components of a virtual border, we

propose an AR application for the interaction as depicted in Figure 3.7. For this purpose, a human

moves around in the environment with the AR device and selects virtual border points P by point-

ing the center of the device towards the desired points on the ground plane. A green software button

at the bottom right of the screen adds a new virtual border point, whose 3D position is determined

employing the depth sensor of the tablet similar to the procedure in Subsection 3.3.1. The center

and pointing direction is marked with a small cross at the center of the tablet’s screen. The seed

point s is selected analogously by touching the orange software button. Optionally, a human can

remove certain (or all) points by pointing the tablet’s center towards the desired position and touch-

ing the red software button at the bottom left of the tablet’s screen. This button can also be used to

cancel the interaction process and remove all points at the same time. The third component of a

virtual border, i.e. the occupancy probability δ, is set to occupied by default. Thus, the seed point s

indicates the restriction area. However, we also add a simple menu, that pops up by pressing the

orange software button for a longer period, to change the occupancy probability δ. This enables a

human to delete virtual borders, that were already integrated into the OGM of the environment, by

setting the occupancy probability δ= 0. Moreover, this can be used to model levels of restriction in

the future, e.g. an occupancy value of δ= 0.75 could mean that a mobile robot should avoid this area

unless it is necessary. Finally, if all components of a virtual border are defined, a blue software but-

ton appears at the top right of the tablet’s screen, which integrates the virtual border into the OGM

of the environment, i.e. performing the map integration algorithm introduced in Subsection 3.2.2.

Feedback

The AR application is not only used to transfer spatial information but also to provide immediate

visual feedback to the human. To this end, the tablet’s screen shows an augmented live video stream

of the tablet’s camera. For example, the OGM of the environment is overlaid on the video stream

and visualizes the workspace of the mobile robot. This includes physical but also virtual borders

as a result of a successful interaction process. This makes it easy for the human to understand

the workspace of the mobile robot. Moreover, the spatial components of a virtual border, i.e. virtual

border pointsP and seed point s, are displayed on the tablet’s screen to provide feedback during the

interaction process. Finally, the mobile robot’s path to a navigation goal is augmented if the robot is

in autonomous mode. This visualizes the change of the mobile robot’s navigational behavior.
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Figure 3.7: Row-wise from top left to bottom right (a-f): (a)-(e) show consecutive screenshots of an
interaction process using an augmented reality application running on a RGB-D tablet to specify a
carpet as restriction area. (f) shows the interaction process from the human’s perspective.

In addition to this visual feedback, the AR application also includes a haptic feedback to support

the human during the interaction process. For example, if the human wants to specify a closed

polygonal chain as boundaryP of a virtual border, i.e. the first and last point are the same, the tablet

vibrates when pointing close to a previously defined point. Furthermore, a vibration indicates that

a previously defined point can be selected for removal.

3.4 Evaluation

After introducing the interaction methods employing two alternative user interfaces for the restric-

tion of a mobile robot’s workspace, we evaluate their performance with respect to the requirements

presented in Section 1.3. To this end, we conduct four different experiments, that are described in

detail in the following subsections. This experimental evaluation is inspired by the USUS frame-

work, that provides a methodological framework for evaluating aspects of a system involving the

interaction of human and robot (WEISS et al., 2009).

3.4.1 Baseline Method

Since it is the objective to improve the state of the art and there is no evaluation concerning the

requirements in related works, we perform our experimental evaluation in comparison to a state-

of-the-art solution, which was identified in the literature review in Subsection 2.2.2. This baseline

method is based on a graphical user interface (GUI) shown on a common tablet, which is used to
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Figure 3.8: Consecutive images of the baseline interaction method using a graphical user interface
displaying an occupancy grid map to specify a carpet as restriction area.

sketch virtual borders on an OGM of the environment9. A human holds the tablet and can freely

move in the environment. In order to specify a virtual border, the human directly sketches the de-

sired virtual border points P in the OGM of the environment shown on the tablet. For this purpose,

the human can use the fingers to sketch a polygonal chain in the map. Additionally, a flood filling

tool is available to indicate the seed point s and fill the corresponding area. The occupancy prob-

ability δ is defined by the selected filling color, which is typically black for an occupied area. As

a feedback of the interaction method, the GUI directly visualizes the resulting OGM including the

user-defined virtual border. Since the GUI is responsible for the spatial information transfer and

feedback, this is a robot-independent interaction method, which does not require a mobile robot

for perception or interaction with the human. Examples images of an interaction process employing

this user interface are depicted in Figure 3.8.

3.4.2 Mobile Robot Platform

To evaluate the interaction methods, especially the robot-dependent one, a mobile robot according

to the scope of this thesis is necessary. For this purpose, we use a TurtleBot v210 equipped with a

laser scanner for localization and a front-mounted RGB-D camera C in the experiments. The cam-

era’s color images IRGB are captured with a resolution of 640 × 480 pixels, and the depth images IZ

have a resolution of 160 × 120 pixels with a frame rate of approximately 25 frames/s. Additionally, the

robot has a colored on-board LED, three push buttons and a non-speech audio speaker for inter-

action and feedback. The robot’s base has differential-drive wheels allowing rotations around the

vertical axis, which is similar to a typical vacuum cleaning robot used in home environments. To

ensure a safe and smooth motion of the robot, its velocity is restricted to 0.2 m/s. The mobile robot’s

odometry data, that are needed to estimate its egomotion, are provided through motor encoders

and a gyroscope. In addition to the hardware, the mobile robot can create a 2D OGM of the envi-

ronment M with a resolution of 2.5 cm/cell. For this purpose, a common simultaneous localization

9Since there is no open-source implementation for this baseline method available, we employ a simple graphics editor
to realize the functionality for evaluation.

10https://www.turtlebot.com/turtlebot2 [Accessed: 26.03.2020]
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and mapping (SLAM) algorithm running on the mobile robot is employed (GRISETTI et al., 2007).

Moreover, an adaptive Monte Carlo localization approach is used to localize the mobile robot R

with respect to the environment’s map M (FOX, 2003). For navigation purposes, a navigation func-

tion computed with Dijkstra’s algorithm is used as global planner and a dynamic window approach

is chosen for local planning (FOX et al., 1997). Hence, this is a typical mobile robot platform with

capabilities described in the scope of this thesis in Section 1.2.

3.4.3 Software Implementation

To allow the communication between different components of the system, e.g. tablet or mobile

robot, our implementation of the interaction methods is based on the robot operating system (ROS),

which is the de facto standard for robot applications (QUIGLEY et al., 2009). It is a modular middle-

ware architecture that allows communication between several components of a system, that are

called nodes. These can be organized in packages to allow the easy distribution of the implementa-

tion. Therefore, we implemented all components of the interaction methods as ROS nodes. More-

over, ROS provides a large set of tools to accelerate prototyping and error diagnosis, which are used

for the evaluation.

3.4.4 Experiment 1: Learnability and User Experience

The first experiment aims to evaluate our two proposed interaction methods and test hypotheses

concerning learnability and user experience. It involves a typical scenario for a restriction area and

multiple participants in a traditional home environment.

Independent Variables

We manipulate a single independent variable in this experiment, i.e. the interaction method, to

compare the performance of the interaction methods with each other. Therefore, this variable can

have one of the three values11:

1. GUI: This is the baseline interaction method based on sketching restriction areas on an OGM

shown on a GUI. This method was described in detail in Subsection 3.4.1. In the experiment,

we use an Asus Nexus 7 tablet with a display size of 7 inches for this interaction method.

11In the original experiment, there was also another interaction method based on visual markers as user interface. This
was initially used to show the applicability of the robot guidance framework. However, since the focus of this interac-
tion method was not on the improvement concerning the requirements of an interaction process, it is not considered
in this experiment. For results of this interaction method, we refer the reader to (SPRUTE et al., 2019b)
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2. Pointer: This is the first proposed interaction method based on a laser pointer as user inter-

face, that was described in detail in Subsection 3.3.1. In the experiment, we use a common

(green or red) laser pointer for this interaction method.

3. Augmented Reality (AR): This is the second proposed interaction method based on AR and a

RGB-D tablet as user interface, that was described in detail in Subsection 3.3.2. In the experi-

ment, we use a 7-inch Google Tango tablet for this interaction method.

Hypotheses

The objective of this experimental evaluation is the test of the following hypotheses concerning

learnability and user experience as defined in Section 1.3. These hypotheses are derived from Ob-

jective 1:

• Hypothesis 1: At least one of the proposed interaction methods achieves (1.1) a better learn-

ability than the current state-of-the-art solution based on sketching restriction areas on a GUI

and (1.2) an acceptable learnability for our problem.

• Hypothesis 2: At least one of the proposed interaction methods achieves (2.1) a better user

experience than the current state-of-the-art solution based on sketching restriction areas on

a GUI and (2.2) an acceptable user experience for our problem.

Setup

To test our hypotheses, we perform the experiment in a 6.1 × 4.0 m lab environment, that serves as

indoor home environment. It comprises free space, walls, tables and chairs and is inspired by the

exemplary home environments depicted in Figure 1.1. In addition, a 2.00 × 1.25 m carpet is placed

on the ground to act as evaluation scenario. This is a typical example for a restriction area intro-

duced in Section 1.1. Since the focus of this experiment is on subjective ratings of participants and

not on usability criteria that could be affected by different evaluation scenarios, a single typical re-

striction area is sufficient. As mobile robot platform, we employ the mobile robot and its capabilities

described in Subsection 3.4.2.

Procedure

Each participant of the experiment enters the lab environment and is briefly introduced to the topic

by an experimenter, i.e. describing the problem and explaining restriction areas. In particular, the

participant’s task in the experiment is introduced, i.e. the exclusion of a carpet area from the mobile

robot’s workspace. For this purpose, one of the three interaction methods is randomly selected, and

the experimenter explains how to use the interaction method for the given task. The explanation

59



CHAPTER 3. VIRTUAL BORDERS AND INTERACTION METHODS

includes a short introduction to the different states of the system, how to switch between the states

and how to employ the user interface to specify a virtual border. Afterwards, a participant gets some

time to get familiar with the user interface, e.g. handling the tablet or guiding the mobile robot,

which takes a maximum of five minutes. Subsequently, a participant is asked to specify a virtual

border around the fixed-placed carpet on the ground. This procedure is repeated for each inter-

action method. Hence, this within-subject design allows every participant to compare the different

interaction methods and user interfaces. After practically evaluating the interaction methods, a par-

ticipant is asked to fill a post-study questionnaire concerning the learnability and user experience.

The whole experiment including the practical application of the interaction methods and answering

of the questionnaire takes between 20 and 25 minutes per participant.

Participants

This experimental procedure described above is conducted by a total of 25 participants (18 male,

7 female) with a mean age of M = 31.92 years and a standard deviation of SD = 11.54 years. The

age group ranges from 16 to 56 years (16-29 years: 13 participants, 30-39 years: 6 participants, 40-

49 years: 2 participants, 50-59 years: 4 participants). All participants are recruited from the local

environment by word of mouth. They rate their experience with robots on an 11-point Likert item

with a mean of M = 3.44 and a standard deviation of SD = 3.20. The item ranges from no experi-

ence (0) to highly experienced (10). Thus, the participants represent humans with minimal to mod-

erate experience with robots and comprise some users that own a mobile robot, such as a vacuum

cleaning robot. However, these robots are only deployed in their home environments according to

the manual without knowledge of how they internally work. Hence, the participants are judged as

good representatives for humans in the scope of this thesis.

Measurement Instruments

To measure the learnability and user experience in this experiment, the participants of the experi-

ment are asked to fill a post-study questionnaire12. In addition to general information, such as age,

gender and experience with robots, the questionnaire comprises different statements concerning

learnability and user experience. Each statement can be rated on a 5-point Likert item with numer-

ical response format (LIKERT, 1932). Such an item is a bipolar scaling method expressing positive

or negative response to a statement. A neutral response on a 5-point Likert item is indicated by the

central value (3). Thus, this instrument is appropriate to measure a negative or positive attitude

concerning a statement as defined in Section 1.3. The design of the questionnaire is inspired by the

questionnaire of ROUANET et al. (2013), who used a similar questionnaire to measure the usability

12Although a continuous improvement with respect to certain usability requirements is necessary to prove a good learn-
ability, we only measure the subjective attitude in this chapter due to practical reasons. However, this is sufficient
since Objective 1 requires an acceptable learnability, which is provable with this instrument.
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and user experience of different human-robot interfaces for learning visual objects. Our question-

naire consists of the following statements (translated from German)13:

1. It was easy to learn the handling of the user interface (1 = hard, 5 = easy).

2. I had problems to define the virtual borders (1 = big problems, 5 = no problems).

3. It was intuitive to define the virtual borders (1 = not intuitive, 5 = intuitive).

4. It was comfortable to define the virtual borders (1 = uncomfortable, 5 = comfortable).

5. I liked the feedback of the user interface (1 = bad/no feedback, 5 = good feedback).

6. Overall, it was pleasant to use the user interface (1 = unpleasant, 5 = pleasant).

The first item (S1) corresponds to the learnability, while the other items (S2-S6) are associated with

the user experience. This is composed of multiple items to cover different aspects as mentioned

in Section 1.3. Additionally, a participant is asked which interaction method he or she prefers for

the given task, which is another indicator for both aspects. The participant can give multiple re-

sponses allowing the selection of none, one or multiple user interfaces. Finally, a participant has

the possibility to give comments or reasons for a rating.

Analysis & Results

The answers to the questionnaire are presented in Figure 3.9a showing the mean ratings and stan-

dard deviations per statement. All interaction methods achieve a good value for the learnability (S1),

while only the AR interaction method achieves a good level on all aspects of the user experience (S2-

S6). The laser pointer approach achieves acceptable values on all aspects of the user experience,

except of S3 dealing with the intuitiveness, where it reaches a good level (M = 4.20, SD = 0.96). The

baseline is in most cases acceptable, except of an unacceptable value (M = 2.92, SD = 1.57) for the

feedback (S5).

To evaluate the performance of the proposed interaction methods compared to the baseline, we

test for statistical differences between the interaction methods14. For this purpose, we perform a

repeated measures analysis of variance (ANOVA) on the statements S1-S6. We choose this statis-

tical method because it allows the comparison of group means on data acquired in studies with

a within-subject design. This is the case with this experiment, as one participant evaluates each

13For reasons of clarity, we changed the position of the first item in the following enumeration to better separate the
aspects of learnability and user experience. In the questionnaire handed out to the participants, this item was at the
fourth position.

14If we report results of statistical tests in the experiments, we always consider a significance level of α= 0.05. Moreover,
we refer the reader to the following website for an overview of statistical tests and their characteristics: https://www.
methodenberatung.uzh.ch/de.html [Accessed: 26.03.2020]
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(a) (b)

Figure 3.9: (a) Results (mean and standard deviation) of the answers to the questionnaire on a 5-
point Likert item per statement. The background colors indicate the quality levels ranging from
unacceptable (red) to acceptable (yellow) and good (green). (b) Overall preferences of the partici-
pants for an interaction method.

interaction method. The ANOVA is a parametric method that assumes no outliers, a normal distri-

bution of the data and sphericity under ideal conditions. Interpreting corresponding boxplots, our

data only contain a few outliers (1.5× interquartile range). However, we do not exclude them from

further processing because these are no measurement errors but instead real outliers, i.e. partici-

pants really rated the interaction method in this way. Thus, it is a legitimate reason to not exclude

them from further processing. Moreover, due to the discrete nature of Likert-item data, they violate

the assumption of normality. Nonetheless, this can be neglected if there are at least 25 participants

involved in the experiment, which is the case for this experiment15. Finally, we perform Mauchly’s

sphericity tests to check for the last assumption of an ANOVA. In case of a violation of sphericity, we

perform a Greenhouse-Geisser adjustment to correct the violation. This applies to statements S1,

S2 and S6.

The results of the statistical analysis are summarized in Table 3.1 where F (d f1,d f2) denotes the F -

distribution with its two parameters d f1 and d f2 that depend on the number of interaction methods

and participants. The results show that there is no significant difference for the learnability (S1) but

for all aspects of the user experience (S2-S6). However, the results only reveal that there is a differ-

ence between the interaction methods but not which interaction methods. Therefore, we perform

Bonferroni-adjusted post-hoc tests on the significant results. Regarding statement S2, participants

have significantly less problems (p < 0.001) when employing the AR interaction method (M = 4.84,

SD = 0.37) compared to the baseline (M = 3.48, SD = 1.19), but there is no difference between

the laser pointer (M = 3.60, SD = 0.96) and GUI interaction method16. Similarly, participants rate

15https://www.methodenberatung.uzh.ch/de/datenanalyse_spss/unterschiede/zentral/evarianzmessw.
html [Accessed: 26.03.2020]

16For reasons of readability, we mean statistically significant differences when we report a difference with a p-value.
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the intuitiveness higher (p = 0.003) when using the AR (M = 4.84, SD = 0.47) compared to the

GUI (M = 3.84, SD = 1.18) interaction method, but no improvement with respect to the base-

line is identified when using the laser pointer (M = 4.20, SD = 0.96). Additionally, the interaction

method with the AR tablet features the highest comfort (M = 4.88, SD = 0.33) with a significant

difference (p = 0.002) compared to the baseline (M = 3.96, SD = 1.21). However, there is no dif-

ference between laser pointer (M = 3.76, SD = 1.01) and baseline interaction method. The AR ap-

plication on the Tango tablet also achieves the highest rating for the feedback system (M = 4.52,

SD = 0.96), which is significantly better (p < 0.001) than the GUI (M = 2.92, SD = 1.58) approach.

The use of a laser pointer (M = 3.56, SD = 1.19) does not improve the feedback compared to the

baseline. Finally, satisfaction is also leaded by the AR tablet (M = 4.88, SD = 0.33) followed by the

laser pointer (M = 3.72, SD = 0.94) and GUI (M = 3.44, SD = 1.16). This results in a significant

difference between the AR and GUI interaction method (p < 0.001).

Table 3.1: Statistical results of the answers to the questionnaire. A * indicates a significant result.

Statement Aspect F -statistic p-value

S1 Learnability F (1.46,35.12) = 3.43 p = 0.057
S2 Problems F (1.49,35.64) = 14.90 p < 0.001*
S3 Intuitiveness F (2,48) = 7.24 p = 0.002*
S4 Comfort F (2,48) = 11.03 p < 0.001*
S5 Feedback F (2,48) = 10.58 p < 0.001*
S6 Satisfaction F (1.60,38.47) = 20.07 p < 0.001*

These results are consistent with the user preferences for an interaction method as shown in Fig-

ure 3.9b. All participants prefer the AR interaction method for the given task followed by the laser

pointer approach (9 out of 25). The baseline approach was only selected by three participants.

Discussion

Regarding the learnability (S1), the results show that there is no significant difference between the

interaction methods, but that all interaction methods feature at least an acceptable learnability, i.e.

a positive personal attitude (> 3 (50%)). Thus, we conclude that the results support Hypothesis 1.2

but not Hypothesis 1.1. A reason for this result could be that all user interfaces are familiar to the

participants, i.e. tablets and laser pointer. Hence, humans typically know how to interact with these

devices, which leads to the good ratings (> 4 (75%)) for all interaction methods. Therefore, there

is only minimal room for improvement, so that there are no significant differences between the

approaches.

In case of the user experience (S2-S6), the interaction method based on AR is best rated on all as-

pects. There is always a significant improvement of the AR interaction method with respect to the
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baseline. Moreover, the ratings are always above 4 (75%) indicating a good user experience. In con-

trast to this, the baseline’s ratings mostly show an acceptable user experience (> 3 (50%)) except of

the statement concerning the feedback (S5) where an unacceptable rating is achieved (M = 2.92,

SD = 1.58). A reason for this could be that participants do not have the possibility with this in-

teraction method to see if their user-defined virtual border is at the position where they want it to

be. This is caused by a correspondence problem between points on the OGM and in the physical

environment. Using the AR interaction method, a participant does not have this correspondence

problem and thus no lack of feedback. This correspondence problem also has a negative effect on

other aspects, such as problems (S2) or satisfaction (S6).

Focusing on the other proposed interaction method based on a laser pointer, this achieves at least

acceptable ratings on all user experience aspects, but there are no significant differences compared

to the baseline. However, the positive ratings show that the idea using a laser pointer for a gesture-

based interaction is positively accepted by the participants. Nonetheless, two major drawbacks of

this interaction method are revealed during the experiment, which negatively affect the user expe-

rience. (1) Since the interaction requires a direct line of sight between human and robot to transfer

spatial information and due to the mobile robot’s limited field of view, the mobile robot has to move

to follow the laser spot on the ground. As opposed to the robot-independent interaction methods,

this takes additional time, which negatively affects the user experience. (2) Moreover, the limited

mobile robot’s on-board feedback capabilities have a negative effect on the feedback (S5). Nonethe-

less, the acceptable rating on this aspect underlines the appropriateness of the feedback provided

using the laser pointer and the robot’s on-board capabilities. In summary, we conclude that Hy-

pothesis 2.1 and 2.2 are supported by the results of the experiment since both proposed interaction

methods feature an at least acceptable user experience and the AR approach is significantly better

rated than the baseline method.

3.4.5 Experiment 2: Usability

After evaluating the learnability and user experience, this experiment is intended to evaluate the

usability criteria, i.e. completeness, accuracy and interaction time. For this purpose, we conduct

another experiment with multiple participants, but also with multiple evaluation scenarios. Com-

pared to Experiment 1, this experiment involves less participants but an increased number and

complexity of evaluation scenarios.

Independent Variables

We manipulate the same independent variable as in the previous experiment, i.e. the interaction

method. Thus, the value of this variable can be one of the three interaction methods.
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Hypotheses

The objective of this experimental evaluation is the test of the following hypotheses concerning

usability criteria defined in Section 1.3. These hypotheses are derived from Objective 1:

• Hypothesis 1: At least one of the proposed interaction methods achieves (1.1) a better com-

pleteness than the current state-of-the-art solution based on sketching restriction areas on a

GUI and (1.2) an acceptable completeness for our problem.

• Hypothesis 2: At least one of the proposed interaction methods achieves (2.1) a better accu-

racy than the current state-of-the-art solution based on sketching restriction areas on a GUI

and (2.2) an acceptable accuracy for our problem.

• Hypothesis 3: At least one of the proposed interaction methods achieves (3.1) a better inter-

action time than the current state-of-the-art solution based on sketching restriction areas on

a GUI and (3.2) an acceptable interaction time for our problem.

Setup

To test the three hypotheses, we extend our experimental setup compared to the previous experi-

ment to cover more scenarios for restriction areas and a larger environment. This is necessary be-

cause the usability criteria can change with different complexities of the evaluation scenarios, e.g.

length and shape of the virtual border. Therefore, we perform the experiment in our 10 × 8 m lab

environment, which is furnished like a realistic indoor home environment including components,

such as free space, walls, plants, sofas, tables and chairs. The choice of restriction areas is motivated

by the examples introduced in Section 1.1, i.e. (1) privacy zones, (2) carpets and (3) dirty areas.

These scenarios cover different complexities of a restriction area. To simulate different rooms for a

privacy zone, we integrate adjustable walls with a height of 0.5 m. These walls are high enough so

that the robot cannot overlook them. Besides, we place a carpet on the ground and some dirt (paper

snippets) in one area of the environment as basis for the evaluation scenarios. An image and a 3D

sketch of a part of the environment covering the restriction areas are depicted in Figure 3.10. As mo-

bile robot platform, we employ the mobile robot and its capabilities described in Subsection 3.4.2.

Procedure

After setting up the experimental environment, each participant of the experiment is introduced

to the following three evaluation scenarios. They cover both types of virtual borders, i.e. closed

and simple polygonal chains, and are good representatives for restriction areas in the scope of this

thesis:
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(a) (b)

Figure 3.10: (a) Image and (b) 3D sketch of a part of the lab environment. The three evaluation
scenarios are numbered, and the mobile robot’s initial pose is depicted in the bottom right of the
sketch.

1. Room exclusion: A human wants the mobile robot to not enter a certain room due to privacy

concerns. For this purpose, the human has to specify a virtual border separating the room

from the rest of the environment. The length of the (simple) polygonal chain P is 0.70 m, and

the restriction area has a size of approximately 8.00 m2. Due to this simplicity, we consider it

as a simple restriction area.

2. Carpet exclusion: A human wants the mobile robot to circumvent a carpet (2.00 × 1.25 m)

while working, which is similar to the setup in Experiment 1. To this end, the participant has

to specify a polygon with at least four corner points around the carpet and has to define the

inner area as restriction area. Due to the length and shape of the virtual border, this restriction

area is more complex compared to the previous restriction area.

3. Spot cleaning: A human wants his or her vacuum cleaning robot to perform a spot cleaning

in a corner of a room. Hence, he or she specifies a polygonal chain around the area and as-

signs the rest of the room as restriction area. This dirty area is indicated by paper snippets on

the ground. The polygonal chain has a length of 3.60 m and encompasses an area of 3.20 m2.

Since this is a restriction area with moderate length that can be specified with a simple polyg-

onal chain, this restriction area has a moderate complexity.

After introducing a participant to the three evaluation scenarios, an interaction method is randomly

selected and explained by an experimenter. The explanation includes a short introduction to the

different states of the system, how to switch between states and how to employ the user interface

for the given evaluation scenarios. Afterwards, a participant has approximately five minutes to get

familiar with the interaction method, e.g. handling the user interface or guiding the mobile robot.

Following this introductory phase, a participant performs a run for each scenario, i.e. specifying a

virtual border for each scenario. The order of the scenarios is randomized. At the beginning of each
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run, the mobile robot’s initial pose is set to a predefined pose to allow the comparison between the

results, especially in case of the robot-dependent interaction method. The shortest paths from the

initial pose to the restriction areas in the three scenarios are between 2.50 and 5.40 m (Scenario 1:

5.40 m, Scenario 2: 2.50 m and Scenario 3: 3.00 m). This experimental procedure is performed for

all interaction methods. Afterwards, general information about a participant is collected including

age, gender and experience with robots and tablets. An experiment with a single participant takes

between 15 and 20 minutes in total.

Participants

This experimental procedure is performed by two different user groups. The first user group per-

forms the experiment employing the robot-independent interaction methods, i.e. GUI and AR,

while the second user group performs the experiment with two robot-dependent interaction meth-

ods using a laser pointer17. This distinction between the user groups is made because there were

originally two different experiments with the same setup and procedure performed, and we want to

compare their results with each other. Both user groups represent humans with a moderate experi-

ence with robots (M = 2.87 and M = 3.20) rated on a 5-point Likert item, and the participants’ ages

match the intended age of users in the scope of this thesis. In case of the first user group evaluating

the robot-independent methods, participants additionally rate their experience with tablets on a

5-point Likert item with M = 3.93. Thus, they have an extended knowledge indicating a familiarity

with this common consumer device. In summary, both user groups represent humans in the scope

of this thesis as described in Section 1.2 and are thus comparable to each other. The characteristics

of both user groups are summarized in Table 3.2.

Table 3.2: Characteristics of the experiment’s user groups.

User group 1 User group 2

Evaluated methods Robot-independent Robot-dependent
Number 15 15
Gender 10 male, 5 female 11 male, 4 female
Age M = 30.33, SD = 11.24, 19-59 years M = 28.80, SD = 11.44, 17-55 years
Robot experience M = 2.87, SD = 1.19 M = 3.20, SD = 1.37
Tablet experience M = 3.93, SD = 0.59 -

17Here we only report the results of the interaction method based on a laser pointer as described in Subsection 3.3.1. The
results of the other laser pointer-based interaction method (incorporating a smart home environment) are presented
in the next chapter.
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Measurement Instruments

The hypotheses of this experimental evaluation deal with the completeness, accuracy and interac-

tion time. Thus, these criteria have to be quantified. Regarding the completeness, an experimenter

documents during the experiment if a participant can successfully specify a virtual border for an

evaluation scenario. An interaction process is successful if a participant can correctly specify the

virtual border points P (independent of the accuracy) and a seed point s for a restriction area. The

number of successful runs is used to assess the completeness of an interaction method. To this end,

we calculate the ratio between the number of successful runs and the total number of runs for each

interaction method and scenario.

While the completeness indicates how successful an interaction process is accomplished, the accu-

racy additionally measures how accurate a virtual border is defined. For this purpose, we consider

the overlap between a user-defined U D ⊂ Ω(M) and a ground truth GT ⊂ Ω(M) virtual border18.

A user-defined virtual border U D results from an interaction process and contains all cells of the

map M that have been modified during the interaction process. In contrast to this, a ground truth

virtual border GT is manually created before the interaction process and contains all cells of the

map M that should be modified by a human in the interaction process. To determine the overlap,

we calculate the Jaccard similarity index (JSI) between two virtual borders GT and U D . This calcu-

lates the ratio between the intersection and union of both virtual borders:

JSI (GT,U D) = |GT ∩U D|
|GT ∪U D| ∈ [0,1] (3.10)

The third criterion to be evaluated is the interaction time, which is the time needed to restrict a

mobile robot’s workspace. The time measurement starts with a sign of the experimenter and ends

with the integration of the virtual border into the prior map of the environment M .

Analysis & Results

Completeness The results of the completeness are summarized in Table 3.3. All interaction meth-

ods achieve an at least acceptable completeness on average, i.e. completeness > 90%. While the

laser pointer method features the same completeness as the baseline (91.1%), the proposed AR

method even achieves a good value of 97.8%. Moreover, the completeness is worst in Scenario 3

for all interaction methods, whereas there is no difference between Scenarios 1 and 2.

18In the context of the accuracy evaluation, we consider a virtual border V as a set of cells in the domain of the environ-
ment’s map V ⊂Ω(M) instead of a triple V = (P ,s,δ).
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Table 3.3: Results of the completeness of the interaction methods.

Method Scenario 1 Scenario 2 Scenario 3 Mean

GUI 93.3% 93.3% 86.7% 91.1%
Pointer 93.3% 93.3% 86.7% 91.1%
AR 100.0% 100.0% 93.3% 97.8%

Accuracy The accuracy results of the experiment are visualized in Figure 3.11a as colored box-

plots. The AR method achieves a good accuracy in Scenario 1 (M = 98.2%, SD = 1.4%) and Sce-

nario 3 (M = 86.8%, SD = 6.9%) and an acceptable accuracy in Scenario 2 (M = 73.7%, SD = 5.1%).

The same applies for the laser pointer approach (Scenario 1: M = 97.1%, SD = 0.9%, Scenario 2:

M = 77.3%, SD = 3.0% and Scenario 3: M = 88.8%, SD = 8.5%). Moreover, the accuracy decreases

for all interaction methods with an increase of the complexity of the restriction areas. Especially, the

baseline’s accuracy drops to an unacceptable level in Scenario 2 (M = 57.3%, SD = 16.9%). Further-

more, the proposed interaction methods feature a smaller deviation compared to the baseline.

Figure 3.12 visualizes some qualitative accuracy results for the different interaction methods and

evaluation scenarios. The first row depicts the three different ground truth virtual borders GT col-

ored in yellow, while the physical environment remains in black, white and gray. A red arrow in-

dicates the mobile robot’s initial pose during each run of the experiment. The other rows show the

overlapping of ground truth GT and user-defined U D virtual borders for the three interaction meth-

ods. Red and green cells visualize virtual borders specified by a human in an interaction process U D .

The intersection of ground truth and user-defined areas GT ∩U D is colored in green. Thus, these

areas are correctly specified by the human. In contrast to these, red areas indicate user-defined ar-

eas that are not part of the ground truth virtual border U D \GT , and yellow areas are ground truth

areas not covered by the human in the interaction process GT \U D . Hence, these are missed by the

human in the interaction process. The union area GT ∪U D is enclosed by a blue contour. Thus, the

JSI can be visually interpreted as the ratio between the green area and the area enclosed by the blue

contour.

In order to identify statistical differences between the proposed interaction methods and the base-

line, we first visually inspect the boxplots for outliers, which is an assumption of parametric statisti-

cal tests. Since there is at most a single outlier per scenario and interaction method, this assumption

is met. Afterwards, we perform Shapiro–Wilk tests to check for normality of the data. Due to sig-

nificant results of the tests, except of Scenario 2, the data violate this assumption. Therefore, we

prefer non-parametric statistical tests to compare the interaction methods since these do not as-

sume normality of the data. However, since we have two different user groups and only one user

group evaluates the baseline method, we perform a Wilcoxon signed-rank test to compare the AR

with the baseline method and a Mann-Whitney U test to compare the laser pointer with the base-
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(a) (b)

Figure 3.11: Results of the (a) accuracy and (b) interaction time of the interaction methods. The
background colors indicate the quality levels ranging from unacceptable (red) to acceptable (yellow)
and good (green).

line method. Both tests differ in the assumption concerning the design of the data acquisition,

i.e. within-subject or between-subject design. The statistical results of the tests are summarized

in Table 3.4. There is a significant improvement in accuracy when using the proposed interaction

methods compared to the baseline, except for the laser pointer approach in Scenario 1.

Table 3.4: Statistical results concerning the accuracy of a method compared to the baseline. A *
indicates a significant result.

Scenario 1 Scenario 2 Scenario 3

Method Statistic p-value Statistic p-value Statistic p-value

Pointer U = 56 p = 0.056 U = 16 p < 0.001* U = 13 p < 0.001*
AR Z =−2.67 p = 0.005* Z =−2.42 p = 0.013* Z =−3.30 p < 0.001*

Interaction Time In case of the interaction time, Figure 3.11b depicts the results of the experiment.

Both robot-independent interaction methods, i.e. GUI and AR, feature a good interaction time with

a small deviation in all scenarios, whereas the proposed laser pointer method only achieves an un-

acceptable performance in all scenarios.

To statistically verify this difference between the interaction methods and select an appropriate sta-

tistical test, we check the data for outliers by visual inspection of the boxplots and for normality

running Shapiro–Wilk tests. There is at most a single outlier per scenario and interaction method,

and the Shapiro–Wilk tests do not become significant. Therefore, we choose paired t-tests for the
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Figure 3.12: Visualization of the accuracy results. The first row shows the three different ground
truth maps of the evaluation scenarios, while the following rows visualize the overlap between the
ground truth and user-defined virtual borders depending on the interaction method. The maps are
only colored due to visualization purposes.

comparison between the AR and baseline method and unpaired t-tests for the comparison between

the laser pointer and baseline method. The distinction between paired and unpaired t-test is neces-

sary due to the different user groups. Finally, an unpaired t-test assumes homogeneity of variances.

Thus, a Levene’s test is performed to compare the variances of the data. If these differ and the test

becomes significant, a Welch’s t-test is performed instead of an unpaired t-test, which is similar but

adjusts the degrees of freedom of the t-distribution. This is the case for Scenarios 2 and 3 when

comparing with the laser pointer method.

The results of the statistical tests are summarized in Table 3.5. As already observed in the boxplots,

the statistical tests become significant for all scenarios when employing the laser pointer interac-
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tion method. While the interaction time of the laser pointer method is longer than the baseline’s

interaction time in all scenarios, the AR performs better than the GUI method in Scenario 1 and

worse in Scenario 2. The paired t-test does not become significant for Scenario 3. Thus, there is no

difference between GUI and AR approach in this case.

Table 3.5: Statistical results concerning the interaction time of a method compared to the baseline.
A * indicates a significant result.

Scenario 1 Scenario 2 Scenario 3

Method Statistic p-value Statistic p-value Statistic p-value

Pointer t (28) =−16.24 p < 0.001* t (17.30) =−17.46 p < 0.001* t (17.71) =−8.57 p < 0.001*
AR t (14) = 3.08 p = 0.008* t (14) =−2.78 p = 0.015* t (14) =−0.37 p = 0.714

Discussion

The results of the completeness show that all three interaction methods feature an at least accept-

able completeness. Moreover, the AR approach achieves a good value on average and outperforms

the other methods in each scenario. Thus, the results support Hypothesis 1.1 and 1.2 of this experi-

ment. The incorrect runs were mainly caused by a wrong definition of the seed point s, especially in

Scenario 3 where participants placed the seed point s inside the spot cleaning area. As opposed to

the other scenarios, this is incorrect since the mobile robot should work inside the area. However,

most of the participants noticed the mistake on their own after performing the experiment. In addi-

tion, there was a single participant who was not able to correctly specify the virtual border points P
with the GUI approach due to a lack of orientation in the environment and the OGM displayed on

the tablet’s GUI.

Regarding the accuracy, both proposed interaction methods feature a good accuracy in two of the

three evaluation scenarios and an acceptable level in one scenario, which leads to a good accuracy

on average. Furthermore, they are significantly more accurate than the baseline method, that does

not achieve an acceptable accuracy in all scenarios. Moreover, a small deviation for both proposed

interaction methods indicates a constant high accuracy independent of a participant. In summary,

we conclude that the results support Hypothesis 2.1 and 2.2. Additionally, the results suggest that

the accuracy decreases when the scenarios become more complex, i.e. longer polygonal chain P or

more complex shape.

In case of the interaction time, the robot-independent interaction methods achieve a good perfor-

mance, whereas the laser pointer method is unacceptable with respect to this criterion. It does not

fall below the threshold of 60 seconds for an acceptable interaction time. This is due to the fact that

the interaction method depends on the velocity of the mobile robot and its field of view. Thus, a
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human first has to guide the mobile robot to the restriction area and then has to specify the virtual

border by guiding the robot along the virtual border polygon P . This takes additional time, that

is not necessary for the robot-independent interaction methods. Therefore, the longer the virtual

border polygonP and the larger the distance between the mobile robot’s initial pose and the restric-

tion area, the longer the interaction takes between human and robot. However, since the AR method

achieves a good interaction time, but not significantly better than the baseline, we conclude that the

results support Hypothesis 3.2, but not Hypothesis 3.1.

3.4.6 Experiment 3: Advanced Usability

Since the results of the previous experiment suggest that there could be a relationship between the

virtual border length, i.e. the length of the virtual border polygon P , and the accuracy and inter-

action time, this experiment aims to further investigate this aspect. To this end, we conduct an

experiment with multiple virtual borders with different shapes and sizes. This advanced usabil-

ity evaluation is important to comprehensively assess these criteria and determine an appropriate

quality level.

Independent Variables

We manipulate the same independent variable as in the previous experiment, i.e. the interaction

method. Thus, the value of this variable can be one of the three interaction methods.

Hypotheses

The objective of this experimental evaluation is the test of the following hypotheses concerning the

accuracy and interaction time:

• Hypothesis 1: There is a relationship between the length of a virtual border and the accuracy.

• Hypothesis 2: There is a relationship between the length of a virtual border and the interac-

tion time.

Setup

To test both hypotheses, we perform the experiment in the same physical environment as described

in Experiment 1. However, we further increase the number of evaluation scenarios covering restric-

tion areas with different shapes and sizes. Therefore, we create a dataset containing ten different

ground truth maps of our lab environment with manually integrated virtual borders. The lengths of

the virtual borders range from 4 to 13 m, and their shapes are convex and non-convex. Thus, this
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dataset covers a large range of restriction areas with different sizes as described in the scope of this

thesis. The details of the dataset are summarized in Table 3.6. These evaluation scenarios are con-

veyed to the human in form of small markers placed on the ground to indicate the restriction areas.

For reasons of clarity, only a single restriction area is marked on the ground at the same time.

Table 3.6: Characteristics of the dataset. Length indicates the length of the virtual border polygon P
and the area indicates the size enclosed by the polygon. Corners indicate the minimal number of
points necessary to specify the polygon.

Scenario

1 2 3 4 5 6 7 8 9 10

Length [m] 4 5 6 7 8 9 10 11 12 13
Area [m2] 1.00 1.50 2.25 3.00 3.75 3.50 5.25 5.50 5.75 7.00
Corners 4 4 4 4 4 4 4 6 8 8

Procedure

After setting up the first of ten evaluation scenarios on the ground and an introductory phase in-

cluding an explanation of the experiment’s objective, a participant is asked to specify the restriction

area employing one of the three interaction methods. For each evaluation scenario, a participant

performs five runs to introduce some variation into the interaction process. Different starting po-

sitions of the mobile robot and the participant’s initial position are considered as variations. After

performing five runs for the first scenario, this procedure is performed for the other nine scenarios

resulting in 50 runs per interaction method. This procedure again is repeated for the other interac-

tion methods resulting in a total time of approximately 240 minutes per participant.

Participants

Due to the extreme expenditure of time for a participant, this experiment is only conducted by a

single participant. However, this is not crucial since we want to investigate the effect of the virtual

border length on the accuracy and interaction time. The relative strength of an effect could depend

on a participant, but the identification of a general effect is independent of a participant. Moreover,

the participant gains experience during the experiment, which compensates individual differences

between humans. Therefore, the experiment is conducted by a single participant, who is male and

26 years old. He rates his experience with robots and tablets with 4 on a 5-point Likert item. Thus,

the participant’s experience with robots is slightly above a typical participant in the previous ex-

periment, while the experience with tablets is similar. This corresponds to a human with extended

experience with robots and tablets, i.e. a human able to program parts of a robot and tablet.
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(a) (b)

Figure 3.13: Results of the (a) accuracy and (b) interaction time depending on the virtual border
length. The background colors indicate the quality levels ranging from unacceptable (red) to ac-
ceptable (yellow) and good (green).

Measurement Instruments

After conducting the experimental procedure, we quantify the accuracy of the resulting user-defined

with respect to the ground truth virtual borders. To this end, we calculate the JSI as described in

Experiment 2. Moreover, we measure the interaction time during each run of the experiment. How-

ever, as opposed to Experiment 2, we do not start the time measurement with a sign of an experi-

menter. Instead, we measure the time between the specification of the first point of the virtual bor-

der polygon P and the final integration of the virtual border into the OGM of the environment M .

Thus, we do not include the time needed to guide the mobile robot to the restriction area in case

of a robot-dependent interaction method. This time depends on the distance between the mobile

robot’s initial position and the restriction area and would thus corrupt measurements concerning

Hypothesis 2 of this experiment. With this change of the definition of the interaction time, we only

measure the actual time needed to specify a certain virtual border.

Analysis & Results

Accuracy The accuracy results of this experiment depending on the length of a virtual border

are visualized as bars in Figure 3.13a. A horizontal line indicates the overall mean per interaction

method. By visually inspecting the graphic, there seems to be an approximately constant relation-

ship between the accuracy and length of the virtual border. However, in case of the laser pointer ap-

proach, there is an increase of accuracy between virtual border lengths of 6 and 8 m. Besides, the ac-

curacies of the proposed interaction methods achieve a good level on average (Pointer: M = 84.6%,

AR: M = 85.3%), while the baseline approach reaches an acceptable level (M = 75.2%).
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To verify this visual observations, we calculate the Pearson correlation coefficient ρ ∈ [−1,1], which

measures the linear correlation between two variables, i.e. virtual border length and accuracy. Co-

efficients of ρ = −1 and ρ = 1 correspond to negative and positive linear correlations, while a co-

efficient of ρ = 0 indicates linearly uncorrelated data. In addition, a linear regression is performed

to calculate the linear slope of the data. The correlation coefficients and the linear slopes resulting

from the linear regression are summarized in Table 3.7. In case of the robot-independent interaction

methods, there is only a weak linear correlation (GUI: ρ = 0.158 and AR: ρ = 0.270), whereas a strong

positive linear correlation is identified for the laser pointer approach (ρ = 0.736)19. In conjunction

with the low linear slope (GUI: 0.39 %/m and AR: 0.40 %/m), we conclude that the robot-independent

interaction methods’ accuracy is constant and thus independent of the virtual border length. The

slightly higher linear slope of 1.77 %/m for the laser pointer approach is a result of the increase of

accuracy between short (< 6.5 m) and long (> 6.5 m) virtual borders.

Table 3.7: Results concerning the linear relationship between the accuracy and virtual border
length.

Method Pearson’s ρ Linear slope [%/m]

GUI 0.158 0.39
Pointer 0.736 1.77
AR 0.270 0.40

Interaction Time In addition to the accuracy, the results of the interaction time depending on the

length of a virtual border are depicted in Figure 3.13b. By visual inspection, a linear relationship is

revealed for the proposed interaction methods, while the GUI approach seems to be approximately

constant. Moreover, the interaction time of the laser pointer method is unacceptable, whereas the

interaction time of the robot-independent methods is on the borderline between an acceptable and

a good level.

These visual findings are verified when calculating the Pearson correlation coefficient and the linear

slope using linear regression. The results are presented in Table 3.8 and show a strong linear corre-

lation (Pointer: ρ = 0.952 and AR: ρ = 0.839) for the proposed interaction methods. The baseline’s

interaction time indicates linearly uncorrelated data (ρ = 0.057). In addition, the baseline’s linear

slope is extremely low (0.13 s/m) indicating a constant interaction time and independence of the vir-

tual border length. In contrast to this, the laser pointer and AR interaction methods feature a linear

slope of 9.22 s/m and 2.92 s/m. Thus, they are linearly dependent on the virtual border length.

19Although there are variations in the description of the strength of a coefficient, there is a general consent that 0 < ρ ≤ 0.3
is a weak, 0.3 < ρ ≤ 0.7 is a moderate and 0.7 < ρ ≤ 1.0 is a strong linear correlation (RATNER, 2009).
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Table 3.8: Results concerning the linear relationship between the interaction time and virtual border
length.

Method Pearson’s ρ Linear slope [s/m]

GUI 0.057 0.13
Pointer 0.952 9.22
AR 0.839 2.92

Discussion

The experimental results show that the accuracy is approximately constant and linearly indepen-

dent of the virtual border length. However, the accuracy of short virtual borders, i.e. with a length

up to 6.5 m, is below the accuracy of long virtual borders when considering the robot-dependent

interaction method employing a laser pointer. Inside these groups of different lengths, the accuracy

is also constant. The reason for this difference is that it is hard for a human to guide the mobile

robot on such a small area, which negatively affects the accuracy. This problem does not apply

to the robot-independent interaction methods and thus there is no difference between short and

long virtual borders. Therefore, we conclude that the accuracy is constant in general, which re-

jects Hypothesis 1. In the overall context, this supports the results of the previous experiment that

demonstrate a good accuracy for the proposed interaction methods and an acceptable accuracy for

the baseline approach.

In case of the interaction time, the results reveal a linear relationship with respect to the virtual

border length for both proposed interaction methods and an approximately constant interaction

time for the baseline, i.e. featuring a minimal linear slope. This constant interaction time is caused

by the fact that a human can easily sketch virtual borders on the tablet’s screen without moving in

the environment. Employing the AR interaction method, a human has to minimally move in the

environment to specify a virtual border. Hence, it is slightly slower than the baseline method. In

case of the laser pointer approach, a human has to guide the mobile robot, which is restricted by its

velocity constraints. Therefore, the interaction time of this method is relatively long compared to the

robot-independent methods. However, since a relationship could be identified, the results support

Hypothesis 2. In the overall context, these results show that the AR approach features an acceptable

to good interaction time up to 13-m-long virtual borders. Since virtual borders are typically no

more than approximately 10 m long as described in the scope of this thesis, the good interaction

time revealed in Experiment 2 is supported by the results. Similarly, the unacceptable interaction

time of the laser pointer approach is also confirmed in this experiment.
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3.4.7 Experiment 4: Correctness and Flexibility

This final experiment aims to assess the approaches concerning the remaining requirements, i.e.

flexibility and correctness. To this end, we demonstrate the flexibility by arguing from a design point

of view and by qualitatively assessing the resulting maps from the previous experiments. Moreover,

the correctness is shown in robot navigation scenarios before and after an interaction process.

Hypotheses

The objective of this evaluation is the test of the following hypotheses concerning the flexibility and

correctness as defined in Section 1.3:

• Hypothesis 1: At least one of the proposed interaction methods achieves an acceptable flexi-

bility for our problem.

• Hypothesis 2: At least one of the proposed interaction methods achieves an acceptable cor-

rectness for our problem.

Setup & Procedure

To test the first hypothesis, we assess the flexibility of an interaction method in two ways. (1) First,

we prove the flexibility of an interaction method by arguing from a design point of view, i.e. we

show that the design of a virtual border and the map integration algorithm inevitably lead to a flex-

ible interaction method. We consider an interaction method to be flexible if different and multiple

restriction areas can be specified employing the interaction methods. (2) Moreover, we qualitatively

assess the resulting map of an interaction process concerning the ability to specify arbitrary virtual

borders. For this purpose, we consider the resulting maps from the previous experiments as basis

for evaluation. Furthermore, these maps are used to demonstrate the correctness of the interaction

methods, i.e. the user-defined virtual borders are correctly integrated into the OGM of the envi-

ronment M . In addition to this correctness of the map integration algorithm, we show the change

of the mobile robot’s navigational behavior in simple navigation scenarios. Such a navigation task

is a typical subtask when the mobile robot is in autonomous mode and provides services to hu-

mans as described in the scope of this thesis. For this purpose, a resulting map of an interaction

process is passed to the global path planner of the human-aware navigation framework presented

in Figure 3.2. Subsequently, a starting and goal position for the mobile robot described in Subsec-

tion 3.4.2 are randomly chosen from the free cells in the OGM. The resulting path between starting

and goal position is then analyzed according to the compliance with the user-defined virtual bor-

ders. The same navigation scenario is also performed before an interaction process and thus before

integrating virtual borders to show the differences between both robot paths.
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(a) (b)

Figure 3.14: (a) Environment with three restriction areas and (b) occupancy grid map of the envi-
ronment after an interaction process. Numbers are only for visualization purposes.

Analysis & Results

First of all, we prove the flexibility of all interaction methods by considering the underlying data

structure of a restriction area, i.e. a virtual border consisting of three components as presented

in Subsection 3.2.1. The virtual border points P are organized as a simple or closed polygonal

chain without a restriction of shape or size. Moreover, the seed point s and occupancy probabil-

ity δ allow the modification of an area of the environment, e.g. exclusion from the mobile robot’s

workspace. Hence, the components of a virtual border allow the definition of virtual borders with

arbitrary shapes and sizes. In addition to this flexibility of a virtual border, the map integration al-

gorithm supports the iterative incorporation of multiple virtual borders into a map of the environ-

ment. Thus, multiple virtual borders with different shapes and sizes can be specified demonstrating

the flexibility of an interaction method which is based on these components.

In addition to this “flexibility by design”, a certain interaction method has to allow the definition

of the virtual border components. Since all interaction methods build on the same model of a re-

striction area, i.e. a virtual border, and employ the same map integration algorithm, there is no

difference in terms of flexibility between the interaction methods. Moreover, the qualitative anal-

ysis of the resulting maps of the previous experiments reveals that all interaction methods allow

the flexible definition of arbitrary virtual borders. An exemplary OGM as a result of an interaction

process and the corresponding restriction areas are depicted in Figure 3.14. It shows three virtual

borders with arbitrary shapes and sizes, that flexibly restrict the workspace of a mobile robot. Thus,

we conclude that the interaction methods are flexible.

The qualitative analysis of the resulting maps of the previous experiments not only demonstrates

the flexibility of the interaction methods, but also the correctness, i.e. the user-defined virtual bor-
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(a) (b)

Figure 3.15: Navigation scenario with corresponding costmaps (a) before and (b) after an interac-
tion process. The right costmap is based on the occupancy grid map shown in Figure 3.14b. A green
line indicates the mobile robot’s path to the given navigation goal G . Numbers and letters are only
for visualization purposes.

ders are all correctly integrated into the OGM of the environment M . Thus, only the correctness

of the employed global planner in the human-aware navigation framework has to be proven, i.e.

the mobile robot changes its navigational behavior. As described in Subsection 3.4.2, we employ a

navigation function computed with Dijkstra’s algorithm as global path planner, which is a typical

path planner in mobile robotics and is proven to generate correct paths. However, every other cor-

rect global path planner could be employed. An illustration of this correctness is visualized in the

costmaps of a navigation scenario shown in Figure 3.15. In contrast to the navigation path before

specifying virtual borders, the mobile robot changes its navigational behavior and circumvents the

user-defined virtual borders after a successful interaction process. This demonstrates the correct-

ness of the interaction methods.

Discussion

The results of this experiment demonstrate the flexibility and correctness of the interaction meth-

ods. Thus, we conclude that both hypotheses are supported by the results. Moreover, there is no

difference between the interaction methods in terms of flexibility because all interaction methods

are based on the flexible design of a virtual border and the map integration algorithm. Further-

more, the interaction methods are designed to allow the definition of all components of a virtual

border and thus they are all flexible. Similarly, since the map integration algorithm correctly in-

corporates virtual borders and well-established global path planners determine the mobile robot’s
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navigational behavior, all interaction methods feature an acceptable correctness. In summary, both

requirements depend on the overall design of the human-aware navigation framework, especially

the modelling of restriction areas and their integration into the environment’s map, and not on a

certain interaction method, which builds on this framework.

3.5 Summary

In this chapter, we addressed Research Question 1, i.e. how to employ alternative user interfaces to

restrict a mobile robot’s workspace in a traditional home environment. To this end, we first defined

the problem setting and introduced the data structure of a virtual border to model a restriction area.

Subsequently, we adapted a state-of-the-art human-aware robot navigation framework by incorpo-

rating a map integration algorithm. This algorithm integrates a virtual border into an OGM of the

environment and enables the change of the mobile robot’s navigational behavior. Afterwards, we

proposed two novel interaction methods to allow humans the definition of a virtual border and its

components. These interaction methods are based on (1) mediator-based pointing gestures with

a laser pointer and (2) an AR application running on a RGB-D tablet. In order to achieve Objec-

tive 1, we evaluated our proposed interaction methods with respect to the user requirements of an

interaction process in four experiments and in comparison with a baseline interaction method. The

experimental results showed that the learnability of all interaction methods is acceptable and does

not differ significantly between the approaches. Moreover, the user experience of the AR method

achieves a good value and is rated better than the baseline method. There is no difference in the

user experience between the laser pointer and the baseline method, which both reach an accept-

able quality level. In case of the completeness of an interaction process, all interaction methods

feature an acceptable (GUI and Pointer) or good quality level (AR). Furthermore, both proposed in-

teraction methods outperform the baseline in terms of accuracy by reaching a good level on average.

Regarding the interaction time, the AR and baseline method feature an equally good performance,

but the laser pointer approach is significantly slower. Finally, the results demonstrate that a virtual

border is a flexible data structure to model restriction areas and that virtual borders are correctly

integrated into the mobile robot’s navigation framework.

The results of this chapter concerning the user requirements are summarized in Table 3.9. Since

the AR interaction method performs with a good quality level on most of the requirements and

significantly better than the state-of-the-art interaction method on average, Objective 1 could be

achieved. However, the other proposed interaction method based on a laser pointer revealed two

drawbacks during the experiments: (1) a direct line of sight between human and mobile robot is

necessary to follow a laser spot on the ground. This leads to an increase of interaction time com-

pared to the robot-independent methods and negatively affects user experience aspects. (2) The

limited mobile robot’s on-board feedback capabilities only allow simple feedback, but no complex
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feedback including spatial information about the result of the interaction process. This has a nega-

tive effect on the user experience, especially in terms of the feedback aspect.

Table 3.9: Summary of the interaction methods’ performance regarding the user requirements. The
symbols indicate an unacceptable (−), acceptable (◦) and good (+) quality level. The ⊕ is used for
an acceptable quality level if there is no good quality level defined for a certain requirement. Arrows
indicate the change with respect to the baseline method.

Method Correctness Flexibility Completeness Accuracy Time User exp. Learnability

GUI ⊕ ⊕ ◦ ◦ + ◦ ◦
Pointer ⊕ (→) ⊕ (→) ◦ (→) + (↗) − (↘) ◦ (→) ◦ (→)
AR ⊕ (→) ⊕ (→) + (↗) + (↗) + (→) + (↗) ◦ (→)
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4
Workspace Restriction in a Smart Home

After presenting virtual borders to flexibly model restriction areas and two interaction methods al-

lowing humans to define virtual borders in a traditional home environment, this chapter deals with

the second research question, i.e. how can a smart home environment improve the interaction pro-

cess with respect to the requirements. To this end, we propose a novel interaction method based

on the laser pointer approach from the previous chapter, but we also incorporate additional sen-

sors and actuators of a smart home environment into the interaction method. For this purpose, we

first describe our smart home design, that is intended to support the interaction process in terms

of perceptual and interaction capabilities. Afterwards, we explain how we integrate the smart home

components into the interaction method and give details on a cooperative perception consisting

of multiple stationary and mobile cameras. This incorporation of smart home components aims

to improve the interaction time and user experience while not negatively affecting the other user

requirements. Therefore, we finally test these hypotheses in an experimental evaluation.

This chapter’s content (in similar or identical form) is mainly based on the publications below:

• SPRUTE, D., K. TÖNNIES, and M. KÖNIG (2019a). Interactive restriction of a mobile robot’s

workspace in a smart home environment. Journal of Ambient Intelligence and Smart Environ-

ments 11(6), 475–494

• KÖNIG, M. and D. SPRUTE (2019). Verfahren und Robotersystem zur Eingabe eines Arbeits-

bereichs. DPMA Patent DE102018125266B3

4.1 Interaction Method Leveraging a Smart Home

As already identified in Section 2.4, smart homes are certain smart environments, that feature ad-

ditional sensors and actuators integrated into a home environment and that are connected via a

network with each other. Thus, they add a perception and interaction component to a traditional

home environment, which we aim to leverage in one of the interaction methods proposed in the

previous chapter. We distinguish between robot-dependent, e.g. the laser pointer method, and
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robot-independent interaction methods, e.g. the augmented reality (AR) application running on a

tablet. While interaction methods of the latter category are typically based on powerful user inter-

faces capable of transferring spatial information and feedback, interaction methods of the former

category require the active participation of a mobile robot in the interaction process. For example,

the mobile robot’s sensors are used to perceive user interactions concerning the spatial informa-

tion transfer and the on-board actuators are employed to provide feedback about the status of the

interaction process. This dependence on the robot’s on-board capabilities comes with two major

limitations compared to the robot-independent methods as summarized in Section 3.5:

1. Direct line of sight: The interaction requires a direct line of sight between human and robot

when specifying a virtual border. Thus, due to the limited field of view of the mobile robot’s

camera, the robot has to move during interaction. However, the mobile robot’s velocity is

restricted to ensure a smooth and safe motion, which leads to a linear interaction time with

respect to the border length. This can entail an unacceptable interaction time for restriction

areas with typical lengths up to 10 m as described in Section 1.2.

2. Limited feedback capabilities: Furthermore, only limited feedback about the current state

of the interaction process can be conveyed using simple on-board capabilities, such as LEDs

and non-speech audio sound. Thus, no complex feedback concerning the spatial information

of the specified virtual borders can be provided to the human using these communication

channels, which negatively affects the user experience.

Additionally, a minor drawback of robot-dependent approaches is the interaction to change be-

tween different states of the interaction method, e.g. specifying virtual border points P or the seed

point s. In case of the laser pointer approach, visual codes generated by the laser pointer or push

buttons on the mobile robot are provided. But visual codes can be error-prone due to changing light

conditions and interaction using buttons requires a human to be in the vicinity of the robot.

Hence, a solution to compensate these limitations of robot-dependent interaction methods could

leverage smart home components in the interaction process as they provide additional capabilities

for perception and interaction. In contrast to this, there is not directly a benefit of additional smart

home components for robot-independent interaction methods because these kinds of interaction

methods are based on powerful user interfaces, which already allow the transfer of spatial infor-

mation and feedback. Additional sensors and actuators of a smart environment could not support

the interaction process and could not increase the performance concerning the user requirements

significantly in our case. Therefore, we propose a robot-dependent interaction method, which in-

corporates components of a smart home environment. This interaction method is an extension of

the laser pointer method proposed in Subsection 3.3.1 and aims to improve the interaction time to

an acceptable level and the user experience to a good level. Moreover, the performance of the other

user requirements should remain on an at least acceptable quality level. Thus, turning the laser

pointer method from an unacceptable to an acceptable solution for our problem.
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4.1.1 Smart Environment Design

For this purpose, we first have to answer Research Question 2.1 dealing with the selection of appro-

priate sensors and actuators of a smart home environment, that can be used to benefit the inter-

action process and compensate the identified limitations. Our proposed smart home environment

is illustrated in Figure 4.1 and consists of three components, which are available in typical smart

home environments as highlighted in the literature review1:

1. Smart camera network: This component consisting of stationary RGB cameras is intended to

increase the perceptual capabilities in addition to the mobile robot’s on-board camera. Sta-

tionary cameras integrated into the environment (yellow and red fields of view) partially cover

certain areas of the environment with their fields of view, while a camera mounted on the mo-

bile robot (blue field of view) can observe areas that are not covered by the stationary cameras

due to their installation or occlusions, e.g. under the table. Hence, this combination allows

perception even if the stationary cameras’ fields of view do not cover all areas of the environ-

ment, which is typically the case in smart home environments as described in Section 1.2.

2. Smart display: This component is intended to provide expressive and complex feedback to

the human by visualizing the progress and result of the interaction process.

3. Smart speaker: This component allows the processing of voice commands and aims to fa-

cilitate the change of different states of the interaction method. To this end, an intelligent

personal assistant, such as Amazon’s Alexa2 or Google Assistant3, is employed in the back-

ground drawing on resources from a cloud infrastructure. We hypothesize that this alternative

communication channel facilitates the change of different states of the interaction method

because a human does not need to be in the vicinity of the mobile robot.

4.1.2 Human-Robot-Environment Interaction

After presenting the design of a smart home environment, this smart environment needs to be in-

tegrated into the laser pointer interaction method with the goal to support the interaction process.

For this purpose, we answer Research Question 2.2, which deals with the question of how to realize

a cooperation of human, robot and smart environment in the interaction process. In contrast to a

traditional home environment, a human now interacts with a network robot system (NRS) consist-

ing of a mobile robot and smart home environment and not exclusively with a mobile robot. Thus,

we denote this interaction method as NRS solution.

1In this context, the word “smart”, e.g. smart camera or smart display, often means that a component is connected via a
network with other components and/or that the component possesses some computational power to perform simple
algorithms. However, a component itself is not intelligent as in the human sense and cannot make complex decisions.

2https://developer.amazon.com/alexa [Accessed: 26.03.2020]
3https://assistant.google.com [Accessed: 26.03.2020]
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Figure 4.1: A human defines a restriction area in the environment using a laser pointer. The spot
is observed by stationary cameras in the environment (yellow and red field of view) and a mobile
camera on a robot (blue field of view). A smart display (top right) provides visual feedback of the
complex spatial information, and a smart speaker (not shown here) facilitates interaction to switch
between different states of the interaction method.

Spatial Information Transfer

As already pointed out in the introduction, the interaction process for the restriction of a mobile

robot’s workspace (1) has to allow a transfer of spatial information from human to NRS and (2) has

to provide feedback about the interaction process from NRS to human. We realize the first property

by allowing a human to specify a virtual border by “drawing” directly in the environment using a

common laser pointer similar to the proposed interaction method presented in Subsection 3.3.1.

However, instead of directly interacting with the mobile robot employing the laser pointer, a human

now interacts with the NRS to compensate the limitations of the initial laser pointer method. To

this end, a laser spot is not only perceived by the mobile robot’s on-board camera but also by the

stationary cameras integrated into the smart home environment. Therefore, we modify the states

of the robot guidance framework described in Subsection 3.3.1 to incorporate smart home compo-

nents. Thus, the robot guidance framework is no more limited to a traditional home environment

but can also exploit components of a smart home environment. The three states of the framework

are modified and defined as follows:

• Border: The NRS detects and localizes laser spots, that are used to specify virtual border

points P . If the stationary cameras perceive a human’s laser spot on the ground, the NRS

automatically sends the mobile robot to this area, i.e. sending a navigation goal to the mobile

robot. Thus, the mobile robot autonomously navigates to this area until it reaches the naviga-

tion goal or perceives a laser spot with its on-board camera. The robot can then act as mobile

camera if the stationary cameras lose track of the laser spot.
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• Seed: The NRS detects and localizes laser spots and calculates the seed point s. Similar to the

Border state, the mobile robot simultaneously moves to the laser spot position if a stationary

camera perceives a laser spot. The seed point s indicates the restriction area, i.e. δ= 1.

• Guide: A human can guide the mobile robot to a desired restriction area using the laser

pointer, which is identical to the Guide state of the initial robot guidance framework. This

state should be never reached if at least one of the stationary cameras’ fields of view covers

a part of the restriction area so that the mobile robot can be automatically sent to this area.

Nonetheless, we incorporate this state into our interaction method to ensure its functionality

in case of an absence of stationary cameras.

Especially, the modifications in the states Border and Seed are intended to significantly reduce the

interaction time compared to the laser pointer method. For example, if a human starts specifying

a virtual border in the field of view of at least one stationary camera, the NRS automatically sends

the mobile robot to this area. Thus, if the stationary cameras lose track of the laser spot, e.g. leaving

field of view or due to an occlusion, the mobile robot is already on its way to this area to act as

mobile camera. This behavior should minimize the time in the Guide state and thus reduce the

overall interaction time.

In addition to the modified states of the robot guidance framework, we also add new events to facil-

itate switching between the different states of the interaction method. Instead of only sequentially

switching between states using the events Next and Previous as described in Subsection 3.3.1, a hu-

man can now directly switch to certain states and perform certain actions as depicted in Figure 4.2.

The small number of events in the initial robot guidance framework was due to the restriction to

the mobile robot’s on-board capabilities. However, since the NRS provides additional interaction

capabilities, we extend the set of events to the following five events, that are mapped to speech

commands perceived by the smart speaker:

• Define border: This command is used to start the definition of virtual border points P , thus

switching to state Border.

• Define seed: This command is used to start the specification of a seed point s, thus switching

to state Seed.

• Guide robot: The interaction method’s internal state switches to the Guide state so that a

human can guide the mobile robot using the laser pointer without storing its positions.

• Save: This command is employed when a human wants to integrate and save the user-defined

virtual border into the map of the environment M , i.e. performing the map integration algo-

rithm. This command replaces the Timeout 1 in the initial robot guidance framework, which

triggers a transition to the Guide state.
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Figure 4.2: States and transitions of the adapted robot guidance framework.

• Cancel: If a human does not want to save the user-defined virtual border or wants to cancel

the interaction process, this event triggers a transition to the state Autonomous. This com-

mand replaces the Timeout 2 in the initial robot guidance framework.

Since these are only five commands, this should not mentally overload a human, who is able to

hold approximately seven commands in short-term memory (MILLER, 1956). Moreover, due to the

interaction employing speech commands, a human does not need to be in the vicinity of the mobile

robot, e.g. to press an on-board button or provide visual codes. Thus, this state change interaction

is intended to increase the user experience.

Feedback

In addition to the transfer of spatial information, we realize the second property of an interaction

process, i.e. a feedback channel from NRS to human, by extending the feedback system of the laser

pointer approach. This is based on mobile robot’s non-speech audio sound and colored light feed-

back to indicate internal state changes and the detection of a laser spot. Since these communication

channels cannot provide complex feedback, we additionally leverage the smart display integrated

in the environment to provide more complex feedback. This includes the visualization of the 2D

occupancy grid map (OGM) of the environment M , the mobile robot’s current pose in the envi-

ronment TR and the progress of the spatial information transfer. After successfully accomplishing

an interaction process, the mobile robot’s workspace containing the user-defined virtual borders is

also visualized on the display. We hypothesize that this extended feedback will support a human in

the interaction process leading to an increase of user experience.
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Figure 4.3: Architecture of the cooperative perception for specifying virtual borders based on mul-
tiple camera views.

4.1.3 Cooperative Perception

While the integration of the smart display and smart speaker in the interaction method is straight-

forward, the incorporation of the smart camera network, which is used to increase the perceptual

space, is more challenging. There are mainly two reasons: (1) multiple cameras, stationary and mo-

bile, have to be integrated into an architecture that supports the interaction process and (2) a single

virtual border has to be extracted from multiple camera observations including noisy data. Our so-

lution to these challenges is the answer to Research Question 2.3, i.e. how to cooperatively perceive

and combine multiple sensor observations to restrict the mobile robot’s workspace.

Architecture

Addressing the first challenge, we propose the architecture, that is illustrated in Figure 4.3. This ar-

chitecture consists of M stationary cameras integrated in the environment and N mobile cameras

on mobile robots4. Each camera independently performs laser point detection in image space re-

sulting in a 2D pointp ∈R2 for each detected laser spot. We apply the laser point detection algorithm

presented in Subsection 3.3.1, that is based on illumination and morphological properties of a laser

spot, i.e. circular shape, specific size and extreme brightness compared to its local environment.

In order to combine multiple camera observations, these have to be described with respect to the

same reference coordinate frame. For this purpose, the map coordinate frame M is optimal because

4Although we consider a single mobile robot in this work, we design the architecture with multiple mobile cameras due
to scalability options in the future. However, this requires additional effort in the field of multi-robot cooperation.
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it is also the reference coordinate frame for the mobile robot’s localization. Thus, each observation

of a point p is projected into 3D world space MP ∈ R3 using either a ground plane model in case of

the stationary cameras or a depth image in case of the mobile cameras. This makes the laser point

observations independent of the cameras, i.e. all laser spot positions are described with respect to

the same reference coordinate frame M . Since the resulting points are points on the ground plane,

they degenerate to 2D positions with respect to the map coordinate frame M . Finally, a polygo-

nal chain P or seed point s is extracted from this point set depending on the current state of the

interaction method.

To ensure transformations between the coordinate frames of the cameras and the map M , all cam-

era transformations with respect to the map coordinate frame M have to be determined. Since the

smart camera network only consists of stationary cameras, this extrinsic calibration only has to be

performed once during installation of the cameras. All transformations belong to the Special Eu-

clidean group SE(3) containing rigid motions in three dimensions. Thus, our initial problem setting

defined in Section 3.1 is extended by additional transformations between the stationary cameras

and the map coordinate frame M .

Virtual Border Extraction

While the extraction of the seed point s from a point set is not challenging, the extraction of the

polygonal chain P includes several challenges that need to be adequately addressed:

1. Irrelevant clusters: A cluster is a group of spatially nearby data points, and an irrelevant clus-

ter is characterized by certain expansion characteristics describing the spatial expansion of

the cluster. This is measured as Euclidean distance between the diagonal points of the clus-

ter’s minimum bounding box. Irrelevant clusters can occur in the point set due to the presence

of other areas in the environment, that have the same characteristics as a laser point.

2. Noise: The 2D point set acquired from multiple camera observations contains data points

of a single user-defined polygonal chain P but also noisy data points. These are data points

that do not belong to a cluster and that can occur due to errors in the laser point detection

algorithm.

3. Spatial redundancy: The data points can be spatially redundant because the points are ob-

tained from different cameras that may have an overlap of their fields of view, e.g. two over-

lapping stationary cameras of the environment or an overlap between a stationary camera

and the mobile robot’s camera.

4. Inaccuracies: Calibration inaccuracies of the cameras and localization errors of the mobile

robot can lead to inaccurate user-defined points.
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Figure 4.4: Processing stages extracting a polygonal chain from a point set including noise and ir-
relevant clusters. Each row corresponds to a user-defined point set.

5. Polygon generation: The generation of a polygonal chain P from the point set is challenging

because the polygonal chain can have an arbitrary shape and size.

We address these challenges with a novel multi-stage virtual border extraction algorithm, which is

illustrated in Figure 4.4. The figure depicts the stages of the algorithm with two exemplary polygonal

chains in the first and second row. The first column visualizes the input point set containing virtual

border points but also noise and irrelevant clusters. The points assigned to the virtual border cluster

are colored green in the second column. Thinning the virtual border cluster yields the red point

set in column three. This is used to generate a polygonal chain as shown in the last column. We

reference this figure throughout this subsection to explain the multi-stage algorithm.

Clustering The first stage of the extraction algorithm is the clustering stage as denoted in Algo-

rithm 4.1. The input is a 2D point set poi nt set In as shown in the first column of Figure 4.4, and

the data points belonging to the polygonal chain poi nt setOut are the result. This stage is designed

to address the first two challenges of the virtual border extraction step, i.e. extracting a cluster of

points belonging to the user-defined polygonal chain P and discarding noisy data points and irrele-

vant clusters. To this end, we first apply the DBSCAN algorithm (ESTER et al., 1996) for clustering the

data points (l. 3). This is a density-based clustering algorithm that can find clusters with different
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shapes and sizes. It is parameterized by eps to define a distance threshold for a neighboring point

and mi nP t s to define a core point. This is a point that has at least mi nP t s points within its dis-

tance eps. The result of the DBSCAN algorithm is a set of cluster s where each point of poi nt set In

is assigned to a cluster. Noisy data points, that do not belong to a cluster, are discarded. Afterwards,

the algorithm selects the largest cluster with certain expansion characteristics defined by mi nE xp

and maxE xp. To this end, we order the clusters by their sizes (number of points) in descending

order (l. 4) to iterate over the clusters beginning with the largest cluster (l. 5ff.). The additional pa-

rameter mi nSi ze is a lower threshold for the size of a cluster to exclude small clusters due to noise.

In each iteration, it is checked if the expansion of the current cluster c lies within the expansion

thresholds mi nE xp and maxE xp to ignore irrelevant clusters (l. 6). The first cluster, that fulfills

this condition, is returned as cluster of the polygonal chain. The result is visualized in the second

column of Figure 4.4 as green points. The black points are either noise or irrelevant clusters.

Algorithm 4.1: Clustering stage of the virtual border extraction algorithm.

Input: pointsetIn
Output: pointsetOut
Params: eps, minPts, minExp, maxExp, minSize

1 Function clustering(Input, Output, Params)
2 pointsetOut = ;;
3 clusters = DBSCAN (pointsetIn, eps, minPts);
4 clusters = orderClustersBySizeDesc (clusters, minSize);
5 foreach c in clusters do
6 if minExp < expansion (c) < maxExp then
7 pointsetOut = c;
8 break;

9 return pointsetOut;

Thinning The second stage of the algorithm is the thinning stage (Algorithm 4.2), that reduces the

number of points in the cluster resulting from the previous stage. This algorithm is designed to

remove spatially redundant data points and to smooth data points due to localization errors and

calibration inaccuracies. Thus, it addresses the third and fourth challenge of the virtual border ex-

traction step. For this purpose, the thinning algorithm identifies spatially nearby data points and

replaces them by their mean value. To this end, a point p with most neighbors within a distance

maxNei g hbor Di st is selected (l. 4) and its neighboring points n are determined (l. 5). If there is

at least one neighboring point (l. 6), the mean point is calculated for these points p ∪n (l. 7). Af-

terwards, these points are removed from the initial poi nt set In (l. 8) and the mean point is added

to poi nt setOut (l. 9). In case that no data point has at least one neighboring point (l. 10), the it-

erative procedure terminates. Finally, all remaining points contained in poi nt set In, i.e. points
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without neighbors, are added to poi nt setOut (l. 12), i.e. the set containing the thinned points.

Thus, the thinned cluster includes the initial points, that do not have neighboring points, and mean

points representing subsets of the initial points. The result is shown in the third column of Fig-

ure 4.4. Compared to the second column containing the cluster of the polygonal chain, there are

fewer points due to the reduction of data points.

Algorithm 4.2: Thinning stage of the virtual border extraction algorithm.

Input: pointsetIn
Output: pointsetOut
Parameters: maxNeighborDist

1 Function thinning(Input, Output, Params)
2 pointsetOut = ;;
3 while true do
4 p = getPointWithMostNeighbors (pointsetIn, maxNeighborDist);
5 n = getNeighbors (p, maxNeighborDist);
6 if n 6= ; then
7 mean = getMean (p ∪ n);
8 pointsetIn = pointsetIn \ {p ∪ n};
9 pointsetOut = pointsetOut ∪ mean;

10 else
11 break;

12 pointsetOut = pointsetOut ∪ pointsetIn;
13 return pointsetOut;

Polygon Generation Finally, the thinned point set is the input poi nt set In for the last stage, in

which the polygonal chain pol y g on is generated (Algorithm 4.3). This algorithm consists of two

phases, i.e. forward and backward, and addresses the fifth challenge of the virtual border extraction

step. Since a polygonal chain has a starting and ending point, we first select an arbitrary point of

poi nt set In as starting point and collect neighboring points in one direction. If there is no more

neighboring point available, we again select the starting point and collect neighboring points in the

other direction. Afterwards, the selected points are concatenated. In this context, direction corre-

sponds to the sequence of the points of the polygonal chain. For example, considering an arbitrary

point of a polygonal chain, which is not the starting or ending point, there are two directions from

this point, i.e. the direction to the starting and ending point. To realize this behavior, we first ini-

tialize two empty polygonal chains di r 1 and di r 2 for each direction (l. 2), and we set the variable

f or w ar d , that indicates the phase of the algorithm (l. 3). We then select an arbitrary point p (here

at index 0) of poi nt set In, mark it and append it to di r 1 (l. 4ff.). Afterwards, the nearest neigh-

boring point n within a distance maxNei g hbor Di st , that it not already marked, is selected (l. 8). If
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there is a neighboring point n available (l. 9), we append n to one of the temporary polygonal chains

depending on the variable f or w ar d , mark n and select n as the current point p (l. 10ff.). This pro-

cedure is repeated until there is no neighboring point n available for the current point p (l. 16), i.e.

the neighboring points for the first direction are collected. In this case, we select our initial point

again as current point p and switch the variable f or w ar d to collect neighboring points along the

other direction (l. 17ff.). Subsequently, the same procedure is performed until there is again no

neighboring point n available (l. 21) or all points of poi nt set In are marked (l. 7). As a last step, the

order of the temporary polygonal chain di r 1 is reversed (l. 22), and di r 2 is appended resulting in

the final polygonal chain (l. 23). This reversal of the order is necessary to create a single polygonal

chain with a single direction. The result of this stage is visualized in the last column of Figure 4.4.

Algorithm 4.3: Polygon generation stage of the virtual border extraction algorithm.

Input: pointsetIn
Output: polygon
Parameters: maxNeighborDist

1 Function generatePoly(Input, Output, Params)
2 dir1, dir2 = ;;
3 forward = true;
4 p = pointsetIn(0);
5 setMarked (p);
6 dir1 = concat (dir1, p);
7 while not allMarked (pointsetIn) do
8 n = getNearestUnmarkedNeighbor (p, maxNeighborDist);
9 if n 6= ; then

10 if forward then
11 dir1 = concat (dir1, n);

12 else
13 dir2 = concat (dir2, n);

14 setMarked (n);
15 p = n;

16 else
17 if forward then
18 p = pointsetIn(0);
19 forward = false;

20 else
21 break;

22 reverse (dir1);
23 polygon = concat (dir1, dir2);
24 return polygon;
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We use the parameter values reported in Table 4.1 for the algorithms. These were determined exper-

imentally and are independent of the environment allowing an easy portability of the algorithms.

While the parameters of the clustering and polygon generation stage are essential for the correct

extraction of a polygonal chain P , the parameter of the thinning stage affects the accuracy of the in-

teraction method. Therefore, we choose a small value of 0.1 m, which is derived from the maximal

localization and calibration error we assume for the mobile robot and the stationary cameras.

Table 4.1: Parameter values for the virtual border extraction algorithm.

Stage Parameter Value

Clustering eps 0.5 m
minPts 1
minExp 0.3 m
maxExp +∞ m
minSize 10

Thinning maxNeighborDist 0.1 m

Polygon generation maxNeighborDist 0.5 m

4.2 Experimental Evaluation

The goal of the proposed interaction method based on a NRS is to improve the interaction time and

user experience compared to the laser pointer approach while not decreasing the performance of

the other user requirements. Since the interaction method builds on the flexibility of a virtual border

and the correctness of the map integration algorithm, we do not have to evaluate these requirements

as these have already been proven in Experiment 4 of the previous chapter. However, the other

user requirements could be affected by the design of the NRS interaction method. Thus, these are

evaluated in an experiment with three evaluation scenarios and multiple participants similar to

Experiment 1 and 2 of the previous chapter.

4.2.1 Independent Variables

In our experiment, we manipulate the interaction method as single independent variable, which

can have one of the two values:

1. Pointer: This is the laser pointer approach proposed in Subsection 3.3.1, that is not supported

by a smart home environment.
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2. Network Robot System (NRS): This is our proposed interaction method based on a NRS de-

scribed in Section 4.1. Additional to the mobile robot, the NRS features stationary cameras in

the environment as additional sensors to perceive laser points. A voice control allows switch-

ing between the interaction method’s states using voice commands. Among colored LEDs and

non-speech audio sound on board the mobile robot, a smart display integrated into the envi-

ronment acts as additional feedback device. Although this interaction method also employs a

laser pointer as user interface, we denote it as NRS approach to distinguish it from the other

laser pointer approach without smart home support.

4.2.2 Hypotheses

The objective of this experimental evaluation is the test of the following hypotheses:

• Hypothesis 1: The NRS interaction method achieves a better interaction time than the laser

pointer interaction method, which leads to an acceptable interaction time.

• Hypothesis 2: The NRS interaction method achieves a better user experience than the laser

pointer interaction method, which leads to a good user experience.

• Hypothesis 3: The learnability does not decrease when employing the NRS compared to the

laser pointer interaction method. Thus, the learnability should achieve an acceptable quality

level.

• Hypothesis 4: The completeness does not decrease when employing the NRS compared to

the laser pointer interaction method. Thus, the completeness should achieve an acceptable

quality level.

• Hypothesis 5: The accuracy does not decrease when employing the NRS compared to the

laser pointer interaction method. Thus, the accuracy should achieve a good quality level.

4.2.3 Setup

To test these hypotheses, we set up the same experimental environment and evaluation scenarios

as described in the previous chapter in Experiment 2, i.e. three different evaluation scenarios in our

10 × 8 m lab environment with typical restriction areas. Moreover, the same mobile robot platform

based on a TurtleBot v2 is deployed as described in detail in Subsection 3.4.2. However, to leverage a

smart home environment according to our approach, we extend the traditional home environment

as shown in Figure 4.5. For this purpose, we mount three RGB cameras with an image resolution of

1920×1080 pixels on the ceiling (2.95 m height, pitch angle of 90◦). Thus, they provide top views

of the environment. We denote these stationary cameras representing the smart camera network

as red, green and blue camera. Their fields of view partly overlap as illustrated in Figure 4.5b, but
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(a) (b)

Figure 4.5: (a) Image and (b) 3D sketch of a part of the lab environment. The three evaluation sce-
narios are numbered, and the three cameras’ fields of view are visualized as red, green and blue
rectangles. The position of the smart display for feedback is encircled in red, and the mobile robot’s
initial pose is depicted in the bottom right of the sketch.

they do not cover the entire environment. Hence, there is only a partial observation of the environ-

ment, which is typical for smart home environments. The restriction areas of the three evaluation

scenarios are covered by the stationary cameras as follows:

1. Room exclusion: This area is in the fields of view of the red and green camera.

2. Carpet exclusion: This area is in the fields of view of the green and blue camera.

3. Spot cleaning: This area is partly covered by the blue camera.

In addition to the camera view coverage of the restriction areas, it is possible that participants tem-

porarily occlude restriction areas with their bodies depending on their positions during interaction.

The initial pose of the mobile robot is not covered by a stationary camera’s field of view and is be-

tween 2.50 and 5.40 m (Scenario 1: 5.40 m, Scenario 2: 2.50 m and Scenario 3: 3.00 m) away from

the restriction areas. Moreover, all RGB cameras are calibrated, i.e. their intrinsic camera parame-

ters are known and their relative transformations with respect to the map coordinate frame M are

determined in advance. The interaction using speech commands relies on a Wizard-of-Oz method,

in which a human operator reacts on the speech commands of participants, i.e. switching between

interaction method’s states per remote control5. Furthermore, we place a 22-inch smart display

on a table near the restriction areas to provide visual feedback to the participants. This display is

network-connected to the NRS and shows the feedback about the interaction process, i.e. the OGM

of the environment M , the robot’s current pose TR and virtual borders if specified by a participant.

5We do not use a cloud-based intelligent personal assistant due to network restrictions in the university’s network. How-
ever, the implementation would be straightforward, and a state-of-the-art voice control would achieve a similar qual-
ity as a human operator. This method is not recognized by the participants and does not change the way in which a
participant interacts with the NRS.
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4.2.4 Procedure

We apply the same experimental procedure as described in Experiment 2 of the previous chapter.

This is a within-subject design where a participant performs the experimental procedure with both

interaction methods, i.e. with and without support of a smart home environment.

4.2.5 Participants

The participants of this experiment correspond to the second user group of Experiment 2 of the pre-

vious chapter. Thus, the experimental procedure is performed by a total of 15 participants (11 male,

4 female) with a mean age of M = 28.80 years and standard deviation of SD = 11.44 years. Their

ages range between 17 and 55 years, and they are recruited from the local environment by word of

mouth. Participants rate their experience with robots on a 5-point Likert item ranging from no ex-

perience (1) to highly experienced (5) with a mean of M = 3.20 and standard deviation of SD = 1.37.

This corresponds to a moderate experience with robots and comprises users owning a mobile robot

in their household, e.g. a vacuum cleaning robot. However, they only deploy the mobile robots

in their home environments according to the manual and do not know how they internally work.

Hence, we assume the participants to be good representatives for the intended users of the interac-

tion method.

4.2.6 Measurement Instruments

In order to measure the dependent variables of this experiment, we mainly apply the measurement

instruments employed in the experiments of the previous chapter. Hence, to assess the usability

criteria concerning completeness, accuracy and interaction time, we use the same instruments as

introduced in Subsection 3.4.5, i.e. success rate for the completeness, Jaccard similarity index (JSI)

for the accuracy, and duration between start and end of an interaction process for the interaction

time. In case of the learnability and user experience, we employ the following questionnaire con-

taining statements which can be rated on 5-point Likert items with numerical response format. The

questionnaire is similar to the questionnaire employed in Experiment 1 of the previous chapter, but

slightly improved in some formulations. The statements are as follows (translated from German):

1. It was easy to learn the handling of the interaction method (1 = hard, 5 = easy).

2. I had problems to define the virtual borders (1 = big problems, 5 = no problems).

3. It was intuitive to define the virtual borders (1 = not intuitive, 5 = intuitive).

4. It was physically or mentally demanding to define the virtual borders (1 = hard, 5 = easy).

5. I liked the feedback of the system (1 = bad/no feedback, 5 = good feedback).
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The first statement (S1) is used to measure the learnability, whereas the other statements (S2-S5)

measure different aspects of the user experience. Furthermore, the participants are asked if the

smart environment supports the interaction process. They can answer the question in a binary re-

sponse including yes or no. Although this is not directly related to a certain requirement, it is inter-

esting to gather participants’ opinions concerning the overall objective. Finally, the questionnaire

provides a field for free responses, e.g. to give feedback or reasons for a certain decision.

4.2.7 Analysis & Results

Interaction Time

Regarding the first hypothesis dealing with the interaction time, the results of the experimental eval-

uation are visualized in Figure 4.6a. Each bar comprises the measurements of all participants for

an interaction method and scenario. As already revealed in the previous chapter, the laser pointer

method without smart home support only achieves an unacceptable interaction time. In contrast

to this, the proposed NRS approach features a significantly reduced interaction time with an at least

acceptable level in all scenarios. Moreover, the results demonstrate that the NRS approach features

a shorter time in the interaction method’s states Border and Seed and no time in the state Guide.

To statistically verify this visual difference between both interaction methods, we first run Shapiro-

Wilk tests to test for normality of the data (differences in the interaction times between the two

interaction methods), which is an assumption of parametric statistical hypothesis tests, e.g. a paired

t-test. These tests only become significant for the third scenario (p = 0.016). Thus, we assume

the data of the first two scenarios to be approximately normally distributed, while the data of the

third scenario are not normally distributed. Moreover, we interpret the corresponding boxplots for

outliers (1.5× interquartile range). The boxplots reveal that there are some outliers in the data. Due

to the presence of outliers and the violation of normality in the third scenario, we perform a non-

parametric Wilcoxon signed-rank test to compare both interaction methods. The statistical results

shown in Table 4.2 reveal a significant difference between the interaction methods in all evaluation

scenarios. Hence, our proposed NRS approach is significantly faster compared to the laser pointer

approach. This results in speedups of 2.8, 2.2 and 2.2 for Scenarios 1, 2 and 3.

Table 4.2: Statistical results concerning the interaction time comparing both interaction methods.
A * indicates a significant result.

Scenario Statistic p-value

1. Room exclusion Z =−3.411 p < 0.001*
2. Carpet exclusion Z =−3.408 p < 0.001*
3. Spot cleaning Z =−3.409 p < 0.001*
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(a) (b)

Figure 4.6: Results of the (a) interaction time and (b) answers to the questionnaire (mean and stan-
dard deviation) for both interaction methods. The background colors indicate the quality levels
ranging from unacceptable (red) to acceptable (yellow) and good (green).

Learnability and User Experience

In order to test the second and third hypothesis dealing with the learnability and user experience,

we consider the participants’ answers of the questionnaire introduced in Subsection 4.2.6. These

are visualized in Figure 4.6b with their mean and standard deviation per statement and interaction

method. The results show that the NRS approach features a good quality level for the learnability

and all aspects of the user experience. Moreover, the NRS approach outperforms the laser pointer

approach, which reaches acceptable values on all statements.

We verify this visual observation by running Wilcoxon signed-rank tests on the statements. This

non-parametric statistical test is chosen because Likert-item data violate the assumption of nor-

mality and the number of participants does not exceed the value of 25, which would justify ne-

glecting this violation. The tests reveal statistically significant differences for all statements in the

questionnaire as summarized in Table 4.3.

Table 4.3: Statistical results of the answers to the questionnaire comparing both interaction meth-
ods. A * indicates a significant result.

Statement Aspect Statistic p-value

S1 Learnability Z =−2.373 p = 0.023*
S2 Problems Z =−3.051 p = 0.002*
S3 Intuitiveness Z =−2.830 p = 0.004*
S4 Effort Z =−3.126 p < 0.001*
S5 Feedback Z =−2.745 p = 0.005*
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Regarding the learnability (S1), there is a significant difference between the proposed NRS (M =
4.60, SD = 0.63) and the laser pointer (M = 3.87, SD = 0.83) method6. Furthermore, the NRS ap-

proach achieves a significantly better performance on all aspects of the user experience (S2-S5)

compared to the laser pointer approach. For example, participants have significantly less problems

defining the virtual borders with a NRS (M = 4.53, SD = 0.92) than without support of a smart envi-

ronment (M = 3.80, SD = 0.86). Participants also find the proposed approach (M = 4.60, SD = 0.63)

more intuitive than the interaction method without smart home support (M = 3.60, SD = 0.91). The

strongest effect is measured for S4 that shows that the NRS approach is less physically or mentally

demanding (M = 4.47, SD = 0.83) compared to the laser pointer approach (M = 3.13, SD = 0.92).

This is consistent with the results of the interaction time as reported in the previous paragraph. Fi-

nally, there is a significant difference for the feedback of the interaction method, i.e. NRS (M = 4.33,

SD = 0.62) and laser pointer (M = 3.07, SD = 1.03). In addition to the 5-point Likert item statements,

participants are asked if the smart environment supports the interaction process. A large majority

(14 out of 15 participants) agrees that the smart environment supports the interaction process.

Completeness

After presenting the results dealing with the first three hypotheses, the experimental results related

to Hypothesis 4 dealing with the completeness are summarized in Figure 4.7a. Both interaction

methods feature the same acceptable completeness, i.e. 91.1% on average. Furthermore, the com-

pleteness for the three scenarios is the same (93.3% for Scenario 1 and 2; 86.7% for Scenario 3).

There are nine participants who performed all their runs successfully, four participants who failed

for one of their six runs, and two participants incorrectly defined a virtual border in two of six runs.

Accuracy

Finally, the last hypothesis states that the accuracy does not decrease when employing the NRS

compared to the laser pointer interaction method. To verify this hypothesis, the JSI values of the

experimental evaluation are visualized in Figure 4.7b. The results demonstrate that the NRS method

reaches a good accuracy in all scenarios similar to the laser pointer method. However, the laser

pointer approach only achieves an acceptable accuracy in Scenario 2.

In order to statistically test the hypothesis, we again explore the data for normality and outliers using

Shapiro-Wilk tests and boxplot interpretation. The Shapiro-Wilk tests do not become significant for

6Although the median should be used to describe the central tendency in non-parametric tests, we report the mean
value in this work to better reveal the differences between the interaction methods. This is valid since we consider an
interval-level of measurement (HARPE, 2015). Moreover, since other studies often report mean values for Likert items,
we also want to make our results better comparable.
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(a) (b)

Figure 4.7: Results of the (a) completeness and (b) accuracy of both interaction methods. The back-
ground colors indicate the quality levels ranging from unacceptable (red) to acceptable (yellow) and
good (green).

any scenario indicating a normal distribution of the data. However, since the data for Scenario 2

and 3 contain some outliers, we prefer a Wilcoxon signed-rank test over a paired t-test to respond

to this violation of an assumption of a parametric statistical test. The statistical results are different

for the three scenarios as summarized in Table 4.4.

Table 4.4: Statistical results concerning the accuracy comparing both interaction methods. A * indi-
cates a significant result.

Scenario Statistic p-value

1. Room exclusion Z =−0.594 p = 0.588
2. Carpet exclusion Z =−3.110 p < 0.001*
3. Spot cleaning Z =−2.497 p = 0.010*

There is no significant difference for Scenario 1 where the NRS achieves a value of (M = 97.0%,

SD = 1.4%) and the laser pointer a value of (M = 97.1%, SD = 0.8%). Regarding Scenario 2, the

NRS (M = 85.4%, SD = 3.0%) performs significantly better than the laser pointer approach (M =
77.3%, SD = 2.9%). This difference is reversed in Scenario 3 where the laser pointer reaches an

accuracy of (M = 88.8%, SD = 8.2%), which is better than the NRS approach (M = 87.7%, SD =
2.1%). Although the result of the test is significant for Scenario 3, the difference between the means

is only 1.1%, which is not notable in practice and does not lead to a different quality level.
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4.2.8 Discussion

Interaction Time

The experimental results reveal a significant improvement of the interaction time between the NRS

and laser pointer approach. Moreover, the NRS approach achieves an acceptable interaction time

in all scenarios. Thus, the results support Hypothesis 1 of this experiment.

The reason for this significant difference is revealed by the decomposition of the time measure-

ments into the interaction method’s states. While the time for the laser pointer approach is com-

posed of all states of the interaction method, the NRS approach does not include the Guide state.

This is a consequence of the human-robot-environment interaction where the NRS automatically

sends the mobile robot to the intended restriction area when a laser spot is detected by a station-

ary camera. Therefore, a human does not have to manually guide the mobile robot to the intended

restriction area. Thus, the NRS approach can avoid the time in the Guide state.

Another reason for the time difference between the interaction methods is the time in the state

Border, which is linear with respect to the border length as demonstrated in Experiment 3 of the

previous chapter. Thus, if the user-defined virtual border is short, e.g. 0.70 m for Scenario 1, our

NRS approach is only slightly faster in this state, i.e. 4 seconds difference. But if we consider a

longer virtual border, e.g. the 6.50 m long border around the carpet (Scenario 2), the NRS approach

is even 26 seconds faster on average. The reason is the mobile robot’s velocity limitation (0.2 m/s)

to ensure a safe and smooth motion of the robot. By using the NRS approach, this speed limitation

can be compensated if the laser spot is in the field of view of one of the stationary cameras. Our

interaction method is then only limited by the frame rate of the cameras (25 frames/s). Hence, it also

features a linear interaction time but with a smaller gradient.

Another speedup is achieved when specifying the seed point s in state Seed because a human can

directly indicate the seed point s with laser points, which are detected by a stationary camera. In

case of the laser pointer approach, a human additionally has to rotate the mobile robot around its

vertical axis to adjust the camera’s field of view. This rotation takes additional interaction time.

Although achieving a significant speedup, there are two important aspects that affect the speedup

in the interaction time: (1) the stationary cameras’ coverage of the environment and (2) the distance

between the mobile robot’s initial pose and the restriction area. If we would decrease the number of

cameras in the environment and thus the camera coverage, this would result in a smaller reduction

of the interaction time. This would finally degenerate to the laser pointer approach without sup-

port of a smart environment. Moreover, the speedup strongly depends on the distance between the

mobile robot’s initial pose and the restriction area, which influences the performance of the laser

pointer approach. This is due to the fact that the laser pointer approach requires a direct line of
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sight between human and robot, and thus a human first has to guide the mobile robot to the re-

striction area. As described in the experimental setup, the distances in our scenarios range from

2.50 to 5.40 m. If the distances would be smaller, the time in the Guide state would also decrease

leading to a smaller speedup. For these reasons, it is not possible to report a specific speedup value.

Nonetheless, we chose a typical camera coverage in the evaluation scenarios, that allows the partial

observation of the environment. Moreover, we chose the distances to the restriction areas quite lib-

erally since much larger distances would be even realistic, e.g. in typical home environments with a

single charging station for the mobile robot. Hence, we conclude that the interaction time improves

with the support of a smart environment, but we cannot report a specific speedup value. Therefore,

the reported speedups in Subsection 4.2.7 are intended to give an estimate and are only valid for

this specific experimental evaluation.

Learnability and User Experience

The analysis of the answers to the questionnaire shows that the user experience of the NRS method

achieves a good quality level and outperforms the laser pointer approach, which reaches an accept-

able user experience. Hence, we conclude that Hypothesis 2 is supported by the results. A reason for

the difference could be that some participants had problems to rotate the mobile robot around its

vertical axis without smart home support, e.g. to specify the seed point s. In this case, they moved

the laser spot too fast so that the robot’s on-board camera could not follow the spot on the ground.

In contrast to this, the NRS approach avoids this problem by additionally perceiving the laser spot

through the stationary cameras in the environment. Furthermore, the speech commands provided

a more intuitive communication channel to change the interaction method’s internal state than

pushing on the mobile robot’s on-board buttons or generating visual codes. Since the feedback sys-

tem of the NRS is a superset of the laser pointer’s feedback system, a major reason for this difference

is the additional smart display that visualizes the OGM with the user-defined virtual borders. This

complex feedback is missing for the laser pointer approach, that only features simple non-speech

audio and colored LED feedback. However, a participant also wished an even stronger feedback sys-

tem after the experiment. The participant did not like the change of attention between specifying

the virtual border on the ground and the view on the smart display, which was positioned aside on

a table.

Regarding the learnability, the proposed method based on a NRS is better rated than the laser

pointer approach. Thus, the incorporation of a smart home does not negatively affect the learnabil-

ity. Therefore, Hypothesis 3 is supported by the results. Since both interaction methods are based

on a laser pointer as user interface, the handling of a laser pointer does not influence the learnabil-

ity. However, it could be easier to learn the speech commands than the assignments of the buttons

to change between states of the interaction method. Furthermore, the guiding of the mobile robot

could affect the rating.
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Completeness

Since both interaction methods feature an acceptable completeness, we consider Hypothesis 4 to

be supported by the results. The reason for the incorrect runs was always the definition of the seed

point s. While some participants were confused where to specify the seed point s, especially in Sce-

nario 3, other participants were unfocused and noticed their mistake on their own after performing

the experiment. There were no problems with the definition of the virtual border points P .

Accuracy

The experimental results demonstrate that the accuracy of the NRS is better in Scenario 2 and worse

(although not notable in practice) in Scenario 3 than the laser pointer approach. There is no differ-

ence between both interaction methods in Scenario 1. Since there is no general decrease in accu-

racy, we conclude that the accuracy does not decrease when employing the NRS method and that

Hypothesis 5 is supported by the results. A reason for the strong difference in Scenario 2 could

be that it is harder to specify the carpet’s corners when guiding the robot compared to the NRS

approach. The highest accuracy value is achieved in Scenario 1 because the restriction area’s com-

plexity is relatively simple, i.e. the length of the virtual border is relatively short (0.70 m) and can be

described by a simple polygonal chain. Thus, there is only minimal room for errors.

4.3 Summary

Motivated by Research Question 2 and the limitations of robot-dependent interaction methods re-

vealed in Chapter 3, we proposed a novel interaction method based on a laser pointer, that leverages

a smart home environment in the interaction process. This interaction method incorporates addi-

tional sensors and actuators of a smart home environment into the interaction process to compen-

sate the limitations of robot-dependent interaction methods. To this end, we selected appropriate

smart home components with the intention to support the interaction process by enhancing the

mobile robot’s perceptual and interaction capabilities. These smart home components, i.e. smart

camera network, smart display and smart speaker, were integrated into the interaction method by

modifying the previously developed robot guidance framework. A special challenge was the de-

velopment of a cooperative perception including stationary and mobile cameras to perceive laser

spots and an algorithm to extract virtual borders from multiple camera observations. The results of

an experimental evaluation supported our hypotheses that the proposed NRS interaction method

features a significantly shorter interaction time and a better user experience compared to the laser

pointer approach without support of a smart environment. This implies an acceptable interaction

time and good user experience. This improvement was also confirmed by the participants’ answers

to the question if the smart environment supports the interaction process. Moreover, the user study
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showed that the NRS interaction method does not negatively affect other user requirements con-

cerning learnability, completeness and accuracy. Therefore, we conclude that Objective 2 of this

thesis could be achieved.

Table 4.5 summarizes the experimental results of this chapter in comparison to the interaction

methods without smart home support. In addition to outperforming the laser pointer method, the

NRS also performs better in the overall evaluation than the state-of-the-art method employing a

graphical user interface (GUI). Nonetheless, the performance of the robot-independent interaction

method based on AR cannot be reached, especially in terms of completeness and interaction time.

Table 4.5: Summary of the performance of the network robot system regarding the user require-
ments. The symbols indicate an unacceptable (−), acceptable (◦) and good (+) quality level. The ⊕
is used for an acceptable quality level if there is no good quality level defined for a certain require-
ment. Arrows indicate the change with respect to the laser pointer method.

Method Correctness Flexibility Completeness Accuracy Time User exp. Learnability

GUI ⊕ ⊕ ◦ ◦ + ◦ ◦
Pointer ⊕ ⊕ ◦ + − ◦ ◦
AR ⊕ ⊕ + + + + ◦
NRS ⊕ (→) ⊕ (→) ◦ (→) + (→) ◦ (↗) + (↗) ◦ (→)
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5
Learning From User Interactions

After successfully incorporating additional sensors and actuators of a smart home environment into

an interaction method based on a network robot system (NRS), we address the third research ques-

tion of this thesis in this chapter, i.e. how can a NRS learn from user interactions and apply the

knowledge in future interaction processes. Thus, in addition to hardware components of a smart

environment, we also investigate learning capabilities of the NRS. To this end, we propose a novel

learning and support system (LSS), that learns from multiple user interactions and supports a hu-

man in future interaction processes through appropriate recommendations for interactions. This

aims to reduce the interaction time to a constant level while not negatively affecting the other user

requirements. To test these hypotheses, we close the chapter with an experimental evaluation com-

prising multiple scenarios and participants.

This chapter’s content (in similar or identical form) is mainly based on the publications below:

• SPRUTE, D., P. VIERTEL, K. TÖNNIES, and M. KÖNIG (2019). Learning virtual borders through

semantic scene understanding and augmented reality. In IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS), pp. 4607–4614

• KÖNIG, M., D. SPRUTE, and P. VIERTEL (2020). Verfahren und Robotersystem zur Eingabe

eines Arbeitsbereichs. DPMA Patent DE102019126903B3

5.1 Learning and Support System

All interaction methods available so far (state-of-the-art as well as proposed interaction methods)

are based on pure human-robot interaction (HRI), i.e. a human specifies a virtual border by explic-

itly defining all components of a virtual border. As already identified in Experiment 3 of Chapter 3,

this leads to a linear interaction time with respect to the virtual border length1. However, if we could

learn from user interactions, i.e. the execution of multiple interaction processes, and could support

1Although the baseline interaction method features an almost constant interaction time with a minimal slope, its inter-
action time is still linear.
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the human in subsequent interaction processes through appropriate recommendations for inter-

actions, a human would not need to explicitly define all virtual border components, especially the

virtual border points P . Instead, a human could only select a recommendation of the system with-

out the effort necessary to define all virtual border components explicitly. Thus, we hypothesize

that we can further reduce the interaction time to a constant level independent of the virtual border

length.

For this purpose, we first have to learn from user interactions, which leads to Research Question 3.1

of how to encode an interaction process for machine learning. These machine learning algorithms

require an input in form of a data vector, e.g. raw sensor data or a feature vector. Therefore, we need

to map an interaction process to such a data vector, that adequately represents the underlying inter-

action process. Since an interaction process deals with the restriction of a mobile robot’s workspace,

a restriction area represents the result of an interaction process. As described in the scope of this

thesis in Section 1.2, such a restriction area usually possesses a certain semantic, e.g. privacy zone,

dirty area or carpet. Therefore, the idea is to extract the semantic of a restriction area to encode an

interaction process. This semantic can be often derived from the visual appearance of the restric-

tion area when certain objects are covered, e.g. in case of carpets, pets’ water dishes or kids’ corners.

Hence, visual semantic scene understanding can be employed to extract the semantic of a restric-

tion area (GARCIA-GARCIA et al., 2018). However, due to the mobile robot’s limited perceptual and

computational limitations, we build on the camera network of the smart environment introduced

in the previous chapter for scene understanding. In particular, we focus on semantic segmentation

with a fine-grained accuracy to consider the accuracy requirement, i.e. algorithms assign a seman-

tic to each pixel of an image. Other forms of scene understanding, e.g. (sub-)image classification

or object detection, only extract a semantic with a coarse-grained accuracy, e.g. bounding boxes

around objects. This would be sufficient for extracting the semantic of a restriction area but not for

giving accurate recommendations for interactions.

After encoding an interaction process, Research Question 3.2 deals with the question of how to learn

from user interactions, that are encoded as semantics. The idea is that humans, who specify mul-

tiple restriction areas with a certain semantic, also want to specify other restriction areas with the

same semantic. For example, if a human specifies multiple carpets as restriction areas, other car-

pets in the environment could be suggested as restriction areas to the human2. This leads to the

task of frequent itemset mining as introduced in Subsection 2.4.3, which is an unsupervised learn-

ing technique dealing with the discovery of frequent itemsets in a database.

Once a frequent semantic is identified, this knowledge needs to be leveraged to support a human

in subsequent interaction processes, which is the content of Research Question 3.3. For this pur-

2Although learning does not play a major role in small home environments with only a limited set of restriction ar-
eas, a distributed system covering multiple households with multiple user groups could benefit from this approach.
However, we restrict our scope in this work to a single household, but the approach can be easily scaled to multiple
environments by maintaining a central database.
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pose, we first need to identify restriction areas with an identical semantic in the environment. To

this end, we again perform semantic scene understanding employing the smart cameras integrated

in the environment to localize the potential restriction areas. Based on these areas, the idea is to

create recommendations for potential restriction areas and to convey these recommendations to

the human using the feedback channel of the interaction method’s user interface. However, since a

recommendation comprises complex spatial information, the user interface should be able to pro-

vide complex feedback, i.e. conveying 2D spatial information. Thus, simple colored light feedback

or non-speech audio sound on board the mobile robot is not sufficient. Moreover, in order to allow

a human the selection of a recommendation, the user interface needs the ability to specify a 2D

position, which indicates a recommendation. Since this capability is a subset of the transfer of 2D

spatial information as described in the previous chapters, we can build on this capability. Hence, the

properties of an interaction method’s user interface do not need to be extended when incorporating

learning capabilities.

5.1.1 System Architecture

These ideas lead to the development of a learning and support system (LSS) as visualized in Fig-

ure 5.1, whose overall objective is the reduction of the interaction time to a constant level. It mainly

consists of two workflows, i.e. a standard and novel workflow depicted as red and green arrows. The

standard workflow is the augmented reality (AR) interaction method proposed in Subsection 3.3.2,

that is based on pure HRI without learning capabilities. A human interacts with the system through

an Augmented Reality module enabling the specification of virtual border components and trans-

mission of visual feedback concerning the interaction process. A user-defined virtual border V is

passed to the Virtual Border Integration module, which incorporates the virtual border into the

occupancy grid map (OGM) of the environment M , i.e. performing the map integration algorithm

presented in Subsection 3.2.2. This map M is used in the Human-Aware Navigation module as basis

for a global costmap. Since the resulting map contains physical as well as virtual borders, a mobile

robot respects the user-defined workspace and changes its navigational behavior.

This standard workflow is extended by a novel workflow, that incorporates learning capabilities. To

this end, a Scene Understanding module is integrated, that extracts semantic knowledge about the

scene. It depends on a Scene Perception module, that captures images of the environment from dif-

ferent viewpoints. For this purpose, we consider a set of RGB cameras C = {C1,C2, ...,Cm} integrated

in the environment as basis for scene perception. These cameras correspond to the smart cam-

era network presented in the previous chapter. In order to learn from user interactions and create

recommendations, a Learning and Support module, that combines the resulting map M of a pre-

vious interaction process and semantically segmented images ISem = {C1 ISem ,C2 ISem , ...,Cm ISem}, is

integrated into the workflow. This allows the system to semantically describe the areas defined by

the human and learn from these interactions. Furthermore, areas with certain semantics can be
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Figure 5.1: System architecture of the learning and support system consisting of several modules
and a standard (red arrows) and novel (green arrows) workflow.

identified in the environment. Based on this knowledge, the module can recommend potential vir-

tual borders R= {V1,V2, ...,Vn} and support the human in future interaction processes. To this end,

support is finally conveyed to the human through the AR interface. Since the learning capabilities

are independent of a user interface, we select the AR interface because it provides a more direct

feedback channel than the laser pointer in combination with the NRS as proposed in the previous

chapter. For example, to get feedback about the interaction process, visual feedback is directly aug-

mented into the video stream of the AR device, while a human has to look at a display integrated

into the environment when employing the NRS approach. However, all user interfaces allowing the

transfer of spatial information and providing complex visual feedback would be possible for this

task. Details of the relevant modules of the LSS are given in the following subsections.

5.1.2 Scene Understanding Module

The first module is the Scene Understanding module, which is employed to extract semantic infor-

mation about the scene from different camera views. Therefore, there is one instance of this module

for each camera Ci ∈ C integrated in the environment. The input of this module is a color image IRGB

provided by the Scene Perception module, and the output is a semantically segmented image ISem

assigning a semantic class to each pixel, e.g. plant, ground or wall. This research field of semantic

segmentation has made tremendous progress in recent years with the advent of deep learning tech-

niques. These employ deep network architectures incorporating multiple layers, which are trained

on huge databases with dedicated graphics processing units (GPUs). This was not possible before

2010 due to the lack of computational capacity and large annotated databases. A recent overview of

deep learning techniques applied to semantic segmentation is given by GARCIA-GARCIA et al. (2018).

Their article highlights important deep network architectures, such as AlexNet (KRIZHEVSKY et al.,

2012), VGG (SIMONYAN and ZISSERMAN, 2014), GoogLeNet (SZEGEDY et al., 2015) or ResNet (HE
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et al., 2016), and their performances in the important ImageNet Large Scale Visual Recognition

Challenge (ILSVRC) in the last years underlining the strong progress in this field (RUSSAKOVSKY et al.,

2015). Therefore, we build on an existing state-of-the-art deep network architecture in this module.

To this end, we employ an encoder-decoder architecture consisting of a ResNet101 (HE et al., 2016)

with dilated convolutions as encoder and a pyramid pooling module (ZHAO et al., 2017) as decoder.

The model is pre-trained on the MIT Scene Parsing Benchmark (SceneParse150), which is a standard

training and evaluation platform (20K/2K/3K images for training, validation and testing) based on

the ADE20K dataset (ZHOU et al., 2019). This dataset contains more than 20K scene-centric images

annotated with semantic categories on pixel-level. The benchmark comprises 150 semantic cate-

gories from outdoor as well as indoor scenes. We choose this dataset because it contains indoor

semantic categories, that are relevant for our scenarios. Furthermore, since the images are scene-

centric, they can be successfully applied to similar scenes. The deep network architecture is chosen

due to its state-of-the-art performance on the benchmark.

5.1.3 Learning and Support Module

This is the main module of the LSS, which is intended (1) to learn from user interactions, i.e. the

semantics of previously user-defined virtual borders, and (2) to support subsequent interaction

processes through the creation of appropriate recommendations for virtual borders R. For this

purpose, this module depends on the output of the Virtual Border Integration and Scene Under-

standing modules. The idea of learning is to identify frequent user interactions, e.g. a human often

specifies restriction areas of a certain semantic, and to create recommendations for virtual bor-

ders with an identical semantic. Therefore, we formulate the problem as a frequent itemset mining

task (FOURNIER-VIGER et al., 2017). In this context, we denote the set of all items as I = {i1, i2, · · · , im}

and a transaction T as a subset of the itemset I , thus T ⊆ I . The input for this task is a transactions

database D = {T1,T2, · · · ,Tn} consisting of n transactions. The support of an itemsetX is the number

of transactions in the database D containing the itemset X , i.e. suppor t (X ) = |{T |T ∈ D ∧X ⊆ T }|.
It is the objective of this task to determine frequent itemsets F with suppor t (F ) ≥ mi nSuppor t

where mi nSuppor t is a threshold parameter specifying a minimum support value. To adapt this

problem definition to our problem, we consider a semantic of a user-defined virtual border as an

item α ∈ I , and a transaction T is a session in which a human specifies multiple virtual borders.

Thus, frequent user interactions are identified by solving this task.

In order to seamlessly incorporate this problem formulation into this module, there are three main

steps necessary:

1. The extraction of a restriction area’s semantic from multiple camera views.

2. The identification of frequent user interactions, i.e. semantics.

3. The creation of appropriate recommendations for user interactions.
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Semantic Extraction

The goal of this first step is the extraction of a restriction area’s semantic from multiple camera

views. This step is performed whenever a new map Mt is generated by the Virtual Border Integration

module at index t , i.e. a human has specified a new virtual border. Algorithm 5.1 gives details on

the realization, that additionally depends on the images ISem of the Scene Understanding module.

These are always the most recent images of the cameras. At the beginning, a mask is created that

indicates map coordinates that belong to the last user-defined virtual border (l. 3). Subsequently,

for each point p ∈ mask, we determine the cameras whose field of view cover this position (l. 4f.).

If a field of view of a camera c covers the point p, this point is projected into the image space of

camera c and the corresponding semantic value s is extracted (l. 7f.). Afterwards, the corresponding

value in hi stog r am is incremented, which stores the number of occurrences per semantic (l. 9).

Hence, observations from multiple cameras are combined. After iterating over all points p ∈ mask,

the majority semantic α is determined and assigned to the last user-defined virtual border (l. 10).

Algorithm 5.1: Semantic extraction step of the learning and support module.

Input: Mt : map at timestamp t
Input: ISem : set of semantic images
Output: α: semantic

1 Function semanticExtraction(Input, Output)
2 histogram = ;;
3 mask = Mt - Mt−1;
4 foreach p in mask and p 6= 0 do
5 cams = getCorrespondingCameras (p);
6 foreach c in cams do
7 p’ = transformIntoImageSpace (p, c);
8 s = getSemantic (p’, c ISem);
9 histogram[s] = histogram[s] + 1;

10 α = getMajorityKey (histogram);
11 return α;

Frequent User Interaction Mining

The extracted semantic is subsequently added as an item α to a new transaction Tnew and stored

in the transactions database D . Additionally, we store some morphological characteristics of the vir-

tual border concerning its area and shape to validate recommendations according to their semantic-

specific characteristics later. If the database already contains a transaction in the same user session,
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i.e. within a certain time interval, the item α is added to an existing transaction Tol d . Hence, trans-

actions with a cardinality |T | > 1 emerge. If a user defines multiple virtual borders with the same

semantic α in a user session, we also insert multiple transactions into the database D . In order

to learn from the data and extract frequent itemsets, we apply the FP-Growth algorithm proposed

by HAN et al. (2000) on the transactions database D . It is an efficient method for mining the com-

plete set of frequent patterns by pattern fragment growth. As a result, we obtain frequent itemsets,

that we use to identify frequent semantics S .

Creation of Recommendations

Finally, the identified frequent semantics S are leveraged to create appropriate recommendations

for virtual borders R. For this purpose, restriction areas with the same semantics need to be lo-

calized in the environment employing the semantic images ISem of the Scene Understanding mod-

ule. This procedure is described in Algorithm 5.2, that is triggered whenever a new semantic im-

age Ci ISem of a camera Ci ∈ C is available. The output of the algorithm is a recommendation for a set

of virtual borders R= {V1,V2, ...,Vn}. Since multiple camera observations need to be combined and

virtual border recommendations need to be extracted, this task is similar to the cooperative percep-

tion in Subsection 4.1.3. Instead of combining observations of laser points, boundaries of potential

virtual borders are combined. Thus, we build on the multi-stage algorithm for virtual border ex-

traction introduced in the previous chapter. However, before combining boundaries of potential

virtual borders, these first need to be localized. To this end, the algorithm creates a binary mask

for each frequent semantic s as basis for blob detection, which extracts the contour of connected

pixels (l. 4f.). The separation concerning the frequent semantics enables the creation of hierarchical

recommendations, e.g. a water dish is placed on a carpet. Afterwards, the contour of each blob is

transformed into the map’s coordinate frame M and stored along with its semantic value and cor-

responding camera (l. 6f.). To combine this point set with observations of the other cameras, the

points from the other cameras are retrieved and added to the poi nt s (l. 8f.). Hence, we obtain a

set of potential virtual border points of a certain semantic s, which is independent of a camera. It

can contain multiple virtual borders with the same semantic, e.g. multiple carpets, but also noisy

points due to errors in the semantic segmentation. Furthermore, inaccurate data points can occur

due to inaccuracies in the extrinsic camera calibration and the segmentation results. Thus, at this

point we face the same challenges as in the virtual border extraction step in Subsection 4.1.3. There-

fore, we adapt our multi-stage algorithm from the previous chapter. To this end, we first perform a

density-based clustering as described in Algorithm 4.1 to extract clusters with certain characteris-

tics, e.g. appropriate size or expansion (l. 10). The validation concerning morphological character-

istics is aimed to reduce false recommendations. Afterwards, each cluster d is thinned to account

for inaccuracies employing Algorithm 4.2 (l. 12), and a virtual border V is extracted employing Algo-

rithm 4.3 (l. 13). This virtual border V is then added to the recommendations R if it does not already
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exist in the OGM (l. 14). These recommendations are subsequently sent to the Augmented Reality

module for visualization, which closes the human-centered interaction loop.

Algorithm 5.2: Recommendation step of the learning and support module.

Input: Ci ISem : semantic image of camera Ci ∈ C
Input: S : frequent semantics
Output: R: set of virtual borders for recommendation

1 Function createRecommendation(Input, Output)
2 R = ;;
3 foreach s in S do
4 mask = getMask (Ci ISem , s);
5 blobs = blobDetection (mask);
6 points = transformIntoMapSpace (blobs);
7 store (s, Ci , points);
8 foreach c in C do
9 points = points ∪ get (s, c);

10 clusters = clustering (points);
11 foreach d in clusters do
12 d = thinning (d);
13 V = extractBorder (d);
14 R = R ∪ V;

15 return R;

5.1.4 Augmented Reality Module

This module acts as bidirectional interface between the human and system. It is an extension of

the AR user interface proposed in Subsection 3.3.2, which allows a human to explicitly define vir-

tual borders using a RGB-D tablet. Our extension includes the support for recommended virtual

borders R, i.e. restriction areas that are suggested by the Learning and Support module. In or-

der to interact with the system, a human freely moves with the tablet in the environment while the

tablet’s screen shows an augmented video stream containing information, such as physical areas or

virtual borders as shown in Figure 5.2. The explicit definition of a virtual border V with its boundary

points P and seed point s is realized by pointing the tablet’s center towards the desired physical

locations in the environment and selecting these points using software buttons. The occupancy

probability δ can be changed in a pop-up menu. In addition to this interaction based on pure HRI,

recommendations for virtual borders R are visualized on the tablet’s screen if the Learning and

Support module identifies appropriate restriction areas (see Figure 5.2f). In this case, a human does

not need to explicitly define all virtual border components (P ,s,δ) explicitly, but can rather select
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Figure 5.2: Row-wise from top left to bottom right (a-h): a human defines virtual borders around
two different carpets by explicitly specifying all components of a virtual border (a-c and d-e). After
defining these virtual borders, the corresponding areas are visualized as occupied (black) areas (c
and e). Based on these user interactions, the system suggests a virtual border for another carpet
shown as yellow boundary (f). The human can simply select the recommendation without explicit
definition of corner points (g) and integrate the virtual border into the map (h).

the recommendation by pointing towards the corresponding boundary (see Figure 5.2g). Since a

recommendation already comprises all components of a virtual border, a recommendation can be

directly selected by the human and sent to the Virtual Border Integration module. This process aims

to avoid the linear interaction time with respect to the length of a virtual border, that goes along with

the explicit definition of the virtual border components employing the standard workflow. Thus, we

hypothesize that this novel workflow including learning capabilities can reduce the interaction time

compared to the standard workflow.

5.2 Evaluation

After presenting details of the LSS, we experimentally evaluate the system concerning our objec-

tive of a reduction of interaction time. To this end, we conduct two different experiments covering

different requirements. While the first experiment validates the LSS concerning its recognition rate

and accuracy, the second experiment evaluates the user requirements concerning interaction time,

completeness, learnability and user experience. An evaluation concerning correctness and flexibil-

ity is not necessary because the LSS is an extension of the previous interaction methods, that have

already been proven to be correct and flexible in Subsection 3.4.7.

5.2.1 Experiment 1: Recognition Rate and Accuracy

The first experiment deals with the recognition rate of the LSS and the accuracy of the recommen-

dations for virtual borders. The recognition rate indicates if potential restriction areas in the envi-
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ronment are correctly recognized by the LSS, while the accuracy measures the overlap of the recom-

mendations with ground truth data. This is necessary to validate if the recommendations of the LSS

achieve acceptable recognition rates and if they preserve the high accuracy of the standard work-

flow based on pure HRI. Thus, this is a validation step that needs to be passed before evaluating the

other user requirements.

Independent Variables

While the evaluation of the recognition rate only applies to the LSS, the accuracy is also compared to

the standard workflow. Thus, we manipulate the interaction method as single independent variable,

which can have one of the two values below:

1. Augmented Reality (AR): This is the interaction method based on AR as presented in Subsec-

tion 3.3.2. It is based on pure HRI where a human explicitly defines all virtual border compo-

nents. Hence, this represents the standard workflow of the LSS without learning capabilities.

2. Learning and Support System (LSS): This is the proposed LSS, which extends the standard

by a novel workflow incorporating learning capabilities.

Hypotheses

The objective of the experimental evaluation is the test of the following hypotheses:

• Hypothesis 1: The recommendations of the LSS achieve acceptable recognition rates (≥ 85%)3.

• Hypothesis 2: The accuracy does not decrease when employing the LSS compared to the stan-

dard AR approach.

Setup & Procedure

To test both hypotheses, we first create typical restriction areas in the environment based on three

categories, i.e. (1) carpets, (2) pets’ water dishes and (3) kids’ corners indicated by toy blocks (boxes).

These categories are inspired by the scenarios mentioned in the introduction, and their semantics

can be visually derived from the appearance. While an area of the former category consists of a

single object, i.e. a carpet, the latter categories can be composed of multiple objects, e.g. a kids’

corner can be composed of multiple boxes. We also choose different object instances, e.g. dishes

with different colors and sizes, to make the scenes more realistic. In a learning phase, a human

defines multiple virtual borders for these restriction areas by explicit interaction through the AR

3We choose the value of 85% because it is a high value indicating a robust system while at the same time allowing a small
percentage of misclassifications.
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interface without recommendations. Thus, the semantics of the user-defined virtual borders are

stored in the transactions database D , but no recommendations R for the human are created. This

learning phase is performed to add items to the transactions database D .

Afterwards, we validate our system based on the current content of the transactions database D

in a supporting phase, i.e. the creation of recommendations for virtual borders. For this purpose,

we create a dataset containing images with a resolution of 1920 × 1080 pixels from five different

perspectives of a 10 × 8 m indoor environment. For each of these perspectives, we create a set of

20 different scenes inspired by typical home environments in the scope of this thesis. Each scene

is unique and contains one or multiple categories for restriction areas. We also vary the setting of

each scene by adding or removing additional furniture, e.g. chairs or tables, or by changing the

positions of the restriction areas or furniture. Some exemplary scenes for different perspectives are

depicted in Figure 5.3, and the characteristics of our dataset are summarized in Table 5.1. There

is an unbalanced number of objects in the dataset because a restriction area can be composed of

multiple objects in case of pets’ water dishes and kids’ corners. This is caused by the different sizes

of the objects, i.e. dishes and boxes are smaller than carpets.

Table 5.1: Characteristics of the dataset including number of objects in the dataset and number of
scenes containing at least one object of the category. The scenes are subdivided according to the
five perspectives.

Number of scenes containing object

Category Number of objects Persp. 1 Persp. 2 Persp. 3 Persp. 4 Persp. 5 Sum

Carpet 72 18 12 11 12 11 64
Water dishes 152 7 10 10 11 11 49
Kids’ corner 220 7 9 10 12 12 50

For each scene, we also create a ground truth OGM with a resolution of 2.5 cm/cell containing the

positions of the virtual borders. This is necessary to allow an assessment of the recommendations

concerning the recognition rate and accuracy. A special case is the ground truth annotation of small

objects, e.g. boxes or dishes, where even a small deviation of a few pixels would result in an unac-

ceptable accuracy. Therefore, we additionally add a tolerance area of 1-2 cells in the OGM (2.5-5 cm)

around small objects with a diameter smaller than 12 cells (30 cm)4. Furthermore, this tolerance

area is extended between objects of the same category if they are less than 30 cm away from each

other, e.g. in case of kids’ corners consisting of multiple boxes. Overall, we acquire a total of 100

unique scenes containing 4.4 objects of restriction areas on average. The minimum and maximum

number of restriction area objects per scene range between 1 and 14.

4According to RUSSAKOVSKY et al. (2015), the average human annotation error is 5 pixels on each dimension. Thus, this
is a legitimate procedure.
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Figure 5.3: First row shows exemplary RGB images from four different perspectives containing typ-
ical restriction areas. Second row visualizes inference results of the Scene Understanding module
where each color corresponds to a certain semantic. The last row contains maps with ground truth
areas (green and yellow) and recommendations of the system (green and red). Thus, green cells in-
dicate a correct overlap between ground truth and recommendation areas, while red areas indicate
false recommendations. A blue triangle indicates the position of a camera in the scene.

Measurement Instruments

In order to measure the accuracy of a recommendation, we consider the Jaccard similarity index

(JSI) between a recommended and ground truth area. However, to consider the tolerance area of an

object, we modify the definition of the JSI from the previous chapters as follows:

J (GT,GTT OL ,R) = |GTT OL ∩R|
|GT ∪R| ∈ [0,1] (5.1)

The area of a recommendation is defined as R and the ground truth area as GT . The tolerance area

of a restriction area, an area that can, but does not need to be covered by a recommendation, is

denoted as GTT OL ⊇GT .

Regarding the recognition rate, the number of restriction areas in the environment is considered

as T . The LSS can correctly recommend a restriction area, i.e. a true positive classification T P ,

or falsely recommend another area, which is not part of the restriction area, i.e. a false positive

classification F P . To distinguish between these outcomes, we consider a true positive T P if the

recommendation area intersects with the ground truth and its tolerance area by more than 50%, i.e.

the JSI between the areas exceeds a threshold of 50%, otherwise the recommendation is considered
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as false positive F P 5. If objects of a restriction area with the same category are spatially close to

each other, a single recommendation can cover multiple objects. For example, if a kids’ corner is

composed of multiple boxes, these can be covered by a single recommendation.

These definitions of the binary outcome of the LSS are used to define measures for the recognition

rate. The first measure is the recall, which gives information about the ratio between the true posi-

tive classifications T P and the total number of restriction areas T . It is defined in Equation 5.2:

Recal l = T P

T
(5.2)

Another measure is the precision, that indicates the number of true positive classifications T P with

respect to the total number of recommendations consisting of true positives T P and false posi-

tives F P . It is defined in Equation 5.3:

Pr eci si on = T P

T P +F P
(5.3)

Both measures can be combined as harmonic mean resulting in the F-score, which is defined in

Equation 5.4:

F − scor e = 2 · Pr eci si on ·Recal l

Pr eci si on +Recal l
(5.4)

This F-score is finally used as measure for the recognition rate.

Analysis & Results

Recognition Rate The results of the recognition rate are summarized in Table 5.2. In general, a

high recall is more important than a high precision in our case because the recall indicates the per-

centage of restriction areas, that are recognized in the environment. In contrast to this, the precision

indicates the percentage of correctly recognized restriction areas with respect to the total number

of recommendations. Thus, a low precision implies much false recommendations, i.e. false positive

classifications F P . However, since these are only recommendations of the system, these false rec-

ommendations do not need to be selected by a human in an interaction process and will thus not

be integrated into the OGM of the environment M . Overall, the LSS achieves a recall of 93.5% and a

precision of 89.7% resulting in an F-score of 91.5%. This shows that the LSS can correctly recognize

restriction areas and that there are only a few false recommendations. Additionally, the results also

reveal that some categories are better recognized than others, e.g. the F-score of carpets (97.2%) is

higher than the F-score of dishes (86.9%).

5The overlap of 50% is a typical threshold to distinguish between true positives T P and false positives F P , e.g. in
PASCAL VOC (EVERINGHAM et al., 2010) or ILSVRC (RUSSAKOVSKY et al., 2015).
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Figure 5.4: Boxplots showing the accuracy of the LSS compared to the standard AR approach. The
background colors indicate the quality levels ranging from unacceptable (red) to acceptable (yellow)
and good (green).

Some qualitative results of the recognition rate (and also accuracy) are depicted in the last row of

Figure 5.3. The corresponding inference results also reveal that a category of a restriction area can

encompass multiple different semantics. For example, a carpet is either recognized as carpet (red)

or grass (green), which is indicated by two different colors.

Table 5.2: Results of the recognition rate.

Category Recall Precision F-score

Carpet 0.958 0.986 0.972
Water dishes 0.875 0.864 0.869
Kids’ corner 0.968 0.891 0.928

Weighted average 0.935 0.897 0.915

Accuracy The results of the accuracy evaluation considering the recognized restriction areas are

visualized in Figure 5.4 as boxplots6. The LSS features a good accuracy on average (M = 83.2%),

which is slightly worse compared to the AR approach (M = 86.2%). Moreover, the interquartile range

of the AR approach (IQR = 21.1%) is almost twice the interquartile range of the LSS (IQR = 11.8%).

In addition, the distribution of the accuracy values strongly overlaps between the interaction meth-

ods indicating no difference in accuracy between both approaches.

To statistically verify this observation, we first explore the data concerning outliers and normal dis-

tribution, which are assumptions of an unpaired t-test. The visual inspection of the boxplots reveals

that there are only a few outliers in the data of the LSS and no outliers in the data of the AR approach.

However, Shapiro-Wilk tests become significant for the data indicating a non-normal distribution.

Due to this violation of normality, we prefer a non-parametric Mann-Whitney U test to an unpaired

6The accuracy results of the AR approach are taken from Experiment 2 of Chapter 3 comprising performances of 15
non-expert humans in three different scenarios.
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t-test to check if the accuracy between both interaction methods differs significantly. The result of

the Mann-Whitney U test suggests that there is no significant difference in the accuracy between

the LSS and the AR approach without learning capabilities (U = 3981.0, p = 0.062).

Moreover, since the interaction with the LSS focuses on the selection of recommendations by a hu-

man, it is also important that a recommendation achieves an at least acceptable accuracy to be

selected by a human. Table 5.3 shows the percentage of recommendations with a certain quality

level with respect to the number of recognized restriction areas. The results reveal that 89.8% and

68.1% of the recommendations feature an acceptable and good accuracy. Compared to the results

of the AR approach, these values are similar, which underlines that the accuracy of the LSS does not

differ significantly from the AR approach.

Table 5.3: Percentage of recommendations (and user interactions) with a certain quality level.

Method Acceptable Good

LSS 0.898 0.681
AR 0.933 0.622

Discussion

The experimental results of the recognition rate demonstrate that the LSS achieves an average F-

score of 91.5%. Since this value is higher than the threshold of 85% defining an acceptable recog-

nition rate for our problem, we conclude that Hypothesis 1 of this experiment is supported by the

results. Moreover, we observed that the recognition rates slightly differ between different categories

of restriction areas, e.g. the recognition rate of carpets is higher than the recognition rate of dishes.

This is due to the fact that small objects on the ground are often relatively small in image space com-

pared to the size of an image. Thus, they are harder to recognize by the smart cameras integrated

in the environment. Furthermore, a smaller precision is caused by false recommendations (F P ) be-

cause there are objects of this category in the scene, but they are not part of a restriction area, e.g.

dishes on a table. This case is extremely rare for carpets resulting in a higher precision.

Moreover, the inference results show that a restriction area’s category can comprise multiple seman-

tics, e.g. a carpet is recognized as carpet or grass. Nonetheless, our LSS can cope with this ambiguity

since frequent semantics, which are the basis for recommendations of the system, are determined

using frequent itemset mining. In case of an ambiguity, more user interactions would be necessary

to consider a restriction area’s category as frequent because each user interaction is encoded as a

single semantic. Hence, a restriction area’s category is divided among several semantics where each

semantic has to exceed the threshold parameter mi nSuppor t of the frequent itemset mining task.

Thus, the learning phase would take longer, but this does not affect the recognition rate.
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Concerning the accuracy, the statistical results reveal that there are no significant differences be-

tween the LSS and AR approach. Hence, the LSS performs at least as good as the AR approach,

which supports Hypothesis 2 of this experiment. In addition, a large majority of the recommen-

dations should be accepted by humans since 89.8% of the recognized restriction areas feature an at

least acceptable accuracy. Hence, only 10.2% of the recommendations are unacceptable and should

thus be rejected by a human. Moreover, the smaller interquartile range of the LSS is caused by the

automatic recognition of the restriction areas by the smart camera network. Therefore, there are no

inaccuracies introduced by different participants and their characteristics. Instead, the accuracy is

mainly affected by results of the semantic segmentation in the Scene Understanding module and

the calibration of the smart cameras to determine the 3D positions on the ground.

5.2.2 Experiment 2: Remaining User Requirements

After validating the LSS concerning an acceptable recognition rate and good accuracy without degra-

dation compared to the standard AR approach, we perform another experiment including multiple

participants, who evaluate the LSS in multiple scenarios in a lab experiment concerning the other

user requirements, i.e. interaction time, completeness, learnability and user experience7.

Independent Variables

The LSS serves as interaction method in this experiment. However, to compare the results with the

standard AR approach, we take the data from the experiments in Chapter 3. Thus, we manipulate

the same independent variable as in the previous experiment, i.e. the interaction method.

Hypotheses

The objective of this experiment is the test of the following hypotheses:

• Hypothesis 1: The LSS achieves a better interaction time than the standard AR approach.

• Hypothesis 2: The completeness does not decrease when employing the LSS compared to the

standard AR approach. Thus, the completeness should achieve a good quality level.

• Hypothesis 3: The learnability does not decrease when employing the LSS compared to the

standard AR approach. Moreover, the learnability should achieve a good quality level.

• Hypothesis 4: The user experience does not decrease when employing the LSS compared to

the standard AR approach. Thus, the user experience should achieve a good quality level.

7This experiment is an extension of the original experiment described in (SPRUTE et al., 2019). We increased the number
of participants with the goal to increase the fit between the characteristics of the experiment’s participants and the
intended user group of this work. Thus, the results slightly differ from the reported results of the original experiment.
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(a) (b)

Figure 5.5: Images of the experimental environment comprising three restriction areas: (1) a carpet,
(2) pets’ water dishes and (3) a kids’ corner.

Setup

These hypotheses are tested in an experimental evaluation, which takes place in the same 10 × 8 m

indoor environment as the previous experiment. Thus, the environment is composed of different

objects, such as tables, chairs, sofas, plants or displays as illustrated in Figure 5.5. This setup is in-

spired by typical home environments in the scope of this thesis. In addition, we set up a restriction

area of each category in the environment, i.e. (1) a carpet, (2) pets’ water dishes and (3) a kids’ corner

indicated by boxes. Due to the different categories, these restriction areas also have different border

lengths and shapes. To guarantee reproducibility of the experiment, we choose three images of the

dataset from the previous experiment as input for the Learning and Support module. Before con-

ducting the experimental evaluation, the LSS accomplishes the same learning phase as described

in the previous experiment. Hence, the LSS already identified frequent semantics S and can create

recommendations R for the three virtual border categories to support a participant.

Procedure

After setting up the experimental environment, each participant is introduced to the LSS by an ex-

perimenter, i.e. description of the scenarios and how to use the AR interface for the restriction of

the mobile robot’s workspace (with and without recommendations of the LSS). Afterwards, each

participant fills a form with general information, such as age, gender and experience with tablets.

Subsequently, a participant is asked to specify the three virtual borders employing the LSS and its

recommendations for virtual borders. The initial position of a participant in the environment is

randomly chosen. The interaction device is the same 7-inch Google Tango tablet as used in the ex-

periments of Chapter 3. A participant can choose the order of the restriction areas on his/her own,
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e.g. first a kids’ corner, then water dishes and finally a carpet area, to avoid order effects. This pro-

cedure is performed three times per participant to investigate improvements between consecutive

runs of the experiment, which is necessary to demonstrate a good learnability. After the practical

part, each participant fills a post-study questionnaire containing statements concerning learnabil-

ity and user experience. The experiment takes approximately 15 minutes per participant.

Participants

This procedure is conducted by a total of 20 participants (14 male, 6 female), who are recruited from

the local environment by word of mouth. Their ages range between 18 and 58 years with a mean age

of M = 30.90 years and standard deviation of SD = 11.58 years. Participants rate their experience

with tablets on a 5-point Likert item ranging from no experience (1) to highly experienced (5) with a

mean of M = 3.75 and standard deviation of SD = 1.25. Thus, participants have a moderate to good

confidence with tablets on average. Since we assume the intended user to be able to interact with

common consumer devices, such as tablets or smartphones, the participants fulfill this criterion.

Measurement Instruments

In order to test the hypotheses of this experiment, we need to measure the interaction time, learn-

ability, user experience and completeness. Since these criteria have already been evaluated in pre-

vious experiments of this work, we only summarize the measurement instruments in this section.

We define the interaction time as the time between the selection of a recommendation and the final

integration of the virtual border into the OGM of the environment, which corresponds to the defi-

nition in Experiment 3 of Chapter 3. We do not include the whole interaction process, i.e. starting

with a sign of an experimenter as in Experiment 2 of Chapter 3, because we want to avoid the lin-

ear interaction time with respect to the border length. Thus, the additional time needed to move

in the environment would corrupt the measurements. In case of the learnability and user experi-

ence, we apply a questionnaire similar to the previous ones dealing with aspects, such as problems,

intuitiveness, effort and feedback8. Additionally, participants are asked if they can realize a bene-

fit/advantage of the proposed system. This question is not directly related to a certain requirement

but gathers further insights into participants’ opinions about the system. Each aspect of the ques-

tionnaire can be rated on a 5-point Likert item with numerical response format. Moreover, the

questionnaire provides a possibility for free responses allowing additional comments of the partici-

pants. In addition to the questionnaire, we also check if a participant improves his/her performance

with respect to the completeness and interaction time during the repeated runs of the experiment9.

8The questionnaire also included other statements, which are irrelevant for this thesis.
9In this case, we include the whole interaction process in the time measurement starting with a sign of an experimenter.
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(a) (b)

Figure 5.6: Results of the interaction time depending on (a) the category and (b) the length of a
virtual border. The background colors indicate the quality levels ranging from acceptable (yellow)
to good (green).

This is necessary to claim a good learnability as defined in Section 1.3. Finally, the completeness is

assessed by the success rate of the performed runs of the experiment.

Analysis & Results

Interaction Time The time measurements per virtual border category are summarized as boxplots

in Figure 5.6a. Each participant contributes a single data point to each category by calculating the

mean value of his/her three performances. The results show that the interaction time is always on a

good quality level independent of the virtual border category. Moreover, by visually inspecting the

plots, there is no significant difference between the different categories of virtual borders.

To statistically verify this observation, we run a non-parametric Friedman test to identify differences

between the time measurements of the three virtual border categories. Although the data contain

only a few outliers, we prefer this test to a repeated measures analysis of variance (ANOVA) because

Shapiro-Wilk tests become significant indicating a non-normal distribution of the data. Further-

more, the number of participants does not exceed a value of 25, which would justify neglecting this

violation of assumption of a parametric statistical method. The result of the Friedman test does not

become significant for the measurements of the interaction time (χ2(2) = 3.313, p = 0.197), which

means that there is no difference between the different virtual border categories and that the in-

teraction time is independent of the virtual border category. Thus, since the evaluation scenarios

cover different virtual border lengths and sizes, the interaction time is also independent of the vir-

tual border length and size. Therefore, the LSS features a constant interaction time with a mean

of M = 2 seconds. This is the average time needed by a participant to select a recommendation

for a virtual border and to integrate it into the environment’s OGM M . In contrast to this, the AR
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(a) (b)

Figure 5.7: Results of (a) the answers to the questionnaire (mean and standard deviation) and (b) the
interaction time depending on the runs of the experiment. The background colors indicate the
quality levels ranging from unacceptable (red) to acceptable (yellow) and good (green).

approach features a linear interaction time with respect to the virtual border length as depicted in

Figure 5.6b. The visualized data of the AR method are based on linear regression on the data of the

experiment described in Subsection 3.4.6.

Completeness The completeness indicates the success rate with which a participant successfully

performs an interaction process. In this experiment, all participants could successfully accomplish

all interaction processes resulting in a completeness of 100%. Since the participants of the exper-

iment described in Subsection 3.4.5 also achieved a good completeness on average with the AR

method (M = 97.8%), there is no significant difference between both interaction methods.

Learnability and User Experience Regarding the hypotheses concerning learnability and user ex-

perience, we consider the answers to the questionnaire, which are summarized in Figure 5.7a. The

data of the AR approach are taken from the experiment described in Subsection 3.4.4, where partici-

pants compared the AR approach to the interaction methods based on a laser pointer and graphical

user interface (GUI). The bar charts reveal that the LSS achieves a good quality level on all state-

ments, except of the second statement where the value slightly falls below the threshold of a good

quality level (M = 3.90, SD = 1.02). Besides, the mean values of the LSS do not reach the values of

the AR approach in terms of the user experience aspects (S2-S5).

These observations are confirmed when statistically testing for differences between both interaction

methods. Since Likert-item data violate the assumption of normality, we prefer non-parametric

Mann-Whitney U tests to unpaired t-tests for comparison. The results of the statistical tests are

reported in Table 5.4. There is no difference in case of the learnability statement (S1), where the
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LSS (M = 4.90, SD = 0.31) performs similarly to the AR approach (M = 4.88, SD = 0.33). Moreover,

the comfort/effort (S4) is similarly rated for both interaction methods (AR: M = 4.88, SD = 0.33

and LSS: M = 4.65, SD = 0.75). However, there are differences in case of problems, intuitiveness

and feedback where the AR approach outperforms the LSS. Nonetheless, participants realized the

benefit/advantage of the system well (M = 4.45, SD = 0.69), which is revealed by the answers to the

additional question of the questionnaire.

Table 5.4: Statistical results of the answers to the questionnaire comparing both interaction meth-
ods. A * indicates a significant result.

Statement Aspect Statistic p-value

S1 Learnability U = 245.0 p = 0.834
S2 Problems U = 94.5 p < 0.001*
S3 Intuitiveness U = 141.0 p = 0.002*
S4 Comfort/Effort U = 216.0 p = 0.242
S5 Feedback U = 153.0 p = 0.014*

In addition to the answers to the questionnaire, we also investigate the development of the partici-

pants’ performances in multiple runs of the experiment, which is necessary to demonstrate a good

learnability. Since the completeness already achieved a value of 100% in all runs, we analyze the

interaction time depending on the runs of the experiment. For this purpose, we consider the time

that a participant needs to specify all three restriction areas in a run of the experiment. Thus, a time

measurement comprises the specification of three virtual borders. The results are visualized in Fig-

ure 5.7b. The plot reveals a continuous improvement of the interaction time starting from a mean

time of M = 31 seconds for the first run, M = 24 seconds for the second run and finally M = 19 sec-

onds for the last run.

Discussion

The results of the interaction time reveal a significant reduction when employing the LSS compared

to the AR approach. The LSS achieves a constant interaction time, which is independent of the

length, shape or size of a virtual border. Thus, the experimental results support Hypothesis 1. This

time reduction is caused by the novel workflow of the LSS that allows a human to simply select

a recommendation for a virtual border instead of explicitly specifying all components of a virtual

border (as it is the case for the AR method).

Regarding the completeness, the experimental results confirm a good completeness of the LSS,

which is as good as the completeness of the AR interaction method. This is expectable since the

AR approach already achieved a good quality level and the LSS even simplifies the interaction by
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recommending virtual borders. Thus, there is even less potential for incorrect interactions. This

leads to the acceptance of Hypothesis 2.

In case of the learnability, the participants’ ratings are similar for both interaction methods. More-

over, we observed a continuous improvement of the interaction time when participants performed

multiple runs of the experiment. Hence, the LSS reaches a good learnability and does not have a

negative effect on the learnability of the AR approach. Therefore, we conclude that Hypothesis 3 is

supported by the results of this experiment.

Finally, the LSS is rated worse than the AR approach when considering the user experience aspects.

While the comfort/effort is on the same good level as the AR method, the LSS features worse ratings

on the aspects of problems, intuitiveness and feedback. In case of the aspects of problems and in-

tuitiveness, we identify reasons for this degradation in the free responses of the participants. There

are four participants who wish to select the area instead of the boundary of a virtual border to se-

lect a recommendation. Thus, this could have negatively affected both aspects. However, in case

of the feedback, the difference is hard to explain since both interaction methods feature the same

feedback system. A reason could be that the data of the AR approach are taken from an experiment

where participants also compared the method with other interaction methods. This could lead to

higher ratings if the methods differ significantly. This comparison was not possible for participants

evaluating the LSS. Nonetheless, the ratings for the LSS are still on a good quality level on average.

In summary, these results partly support Hypothesis 4 because the LSS is worse rated than the AR

approach but still on the same good quality level.

5.3 Summary

In this chapter, we dealt with Research Question 3, i.e. how can a network robot system learn from

user interactions and apply the knowledge in future interaction processes. To this end, we proposed

a LSS that learns from multiple user interactions and supports a human through appropriate rec-

ommendations for interactions. To encode an interaction process for machine learning algorithms,

the LSS encodes an interaction process through a semantic of a restriction area. This is extracted

using scene understanding, in particular semantic segmentation, performed on images acquired

from the smart camera network introduced in the previous chapter. The identification of frequent

semantics is accomplished using frequent itemset mining. Based on these frequent semantics, the

LSS creates recommendations for virtual borders with identical semantics, which are conveyed to

the human employing an AR device. This enables a human to simply select a recommendation in-

stead of explicitly specifying all virtual border components. This should reduce the interaction time

by avoiding the linear interaction time of the other interaction methods without learning capabili-

ties. To test this, we first validated the proposed LSS concerning its recognition rate and accuracy.

This was necessary to show that restriction areas can be robustly recognized by the system and
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that the recommendations feature an equally high accuracy as the standard AR approach (without

learning capabilities). Since the experimental results supported both hypotheses, we conducted a

second experiment that dealt with the other user requirements. These results revealed that the LSS

can reduce the interaction time to a constant level while preserving the performance of the other

user requirements. Thus, we conclude that Objective 3 of this thesis could be achieved with the

development of the LSS, which leads to a further improvement of the state of the art.

The results of this chapter in comparison to the other interaction methods are summarized in Ta-

ble 5.5. Although the LSS features a constant interaction time, this comes with two assumptions:

(1) The approach is limited to restriction areas whose semantic can be visually derived from the ap-

pearance, e.g. carpets or kids’ corners. It is not possible to create recommendations for restriction

areas where a semantic cannot be derived from the visual appearance, e.g. privacy zones without

certain visual characteristics. (2) Moreover, the restriction areas need to be covered by the fields

of view of the smart cameras in the environment. This is necessary to identify the semantic of a

user-defined restriction area and to identify potential restriction areas for recommendations. Thus,

our experiments were designed according to these assumptions to show the potential of the LSS.

However, in real-life scenarios, it will be typically a mix of the standard and novel workflow resulting

in a constant time in the best case and a linear time in the worst case. Nonetheless, the interaction

time will be on a good quality level.

Table 5.5: Summary of the performance of the learning and support system regarding the user re-
quirements. The symbols indicate an unacceptable (−), acceptable (◦) and good (+) quality level.
The ⊕ is used for an acceptable quality level if there is no good quality level defined for a certain
requirement. The ++ is used to indicate the constant interaction time of the learning and support
system. Arrows indicate the change with respect to the AR method.

Method Correctness Flexibility Completeness Accuracy Time User exp. Learnability10

GUI ⊕ ⊕ ◦ ◦ + ◦ ◦
Pointer ⊕ ⊕ ◦ + − ◦ ◦
AR ⊕ ⊕ + + + + ◦
NRS ⊕ ⊕ ◦ + ◦ + ◦
LSS ⊕ (→) ⊕ (→) + (→) + (→) ++ (↗) + (→) + (↗)

10The LSS features a good learnability and the other interaction methods an acceptable learnability. However, we have
not evaluated the other interaction methods concerning a good learnability. Thus, it is unfair to compare the LSS with
the other interaction methods concerning this requirement.
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6
Concluding Remarks

6.1 Conclusions

We addressed the problem of the interactive restriction of a mobile robot’s workspace in traditional

and smart home environments. This problem is especially relevant for non-expert humans living

in human-robot shared spaces, e.g. home environments with a mobile service robot. A solution

to this problem requires an interaction process between human and mobile robot, in which spatial

information about a restriction area is transferred from human to robot and feedback about the

interaction process is provided from robot to human. This is challenging due to the complexity

of spatial information and the limited mobile robot’s interaction capabilities. Moreover, ambitious

user requirements make the problem more challenging. Existing solutions to this problem do not

optimally fulfill these user requirements, e.g. concerning flexibility, accuracy or user experience.

Objective 1 Therefore, the first objective of this work was to develop alternative interaction meth-

ods for a traditional home environment, that perform better than the current state-of-the-art solu-

tion, i.e. sketching restriction areas on an occupancy grid map (OGM) displayed on a graphical user

interface (GUI), and that constitute an acceptable solution for our problem. To this end, we pro-

posed two alternative interaction methods based on a laser pointer and an augmented reality (AR)

user interface, which were identified as promising alternatives in a literature review. The first one

is a robot-dependent interaction method, that requires the active participation of the mobile robot

in the interaction process, while the latter one is a robot-independent interaction method where

the user interface is responsible for the whole interaction (without the need for a mobile robot’s

participation in the interaction process). Both interaction methods employ virtual borders, that

are incorporated into a human-aware navigation framework, to flexibly model restriction areas and

change the mobile robot’s navigational behavior. Experimental evaluations revealed that the AR

approach based on a RGB-D tablet achieves good quality levels on almost all user requirements.

Thus, this interaction method outperforms the state-of-the-art solution, which features mainly an

acceptable quality level on most of the user requirements. Hence, Objective 1 of this thesis could be
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achieved. The other alternative interaction method based on a laser pointer features a better accu-

racy than the baseline, but it does not outperform the state-of-the-art solution, in particular a linear

interaction time leads to an unacceptable solution. Moreover, the restricted mobile robot’s interac-

tion capabilities do not allow an improvement of the user experience with respect to the baseline.

Nonetheless, both proposed interaction methods were preferred to the baseline approach by the

participants of our experiment.

Objective 2 To address these limitations of the laser pointer method, Objective 2 dealt with the

investigation of the role of a smart home environment in the interaction process to improve the

interaction time to an acceptable and user experience to a good quality level. Therefore, we pro-

posed another interaction method which incorporates components of a smart home environment

in the interaction process. Thus, a human does no more directly interact with the mobile robot

but rather interacts with a network robot system (NRS) consisting of mobile robot and smart envi-

ronment. This idea seemed especially promising in case of robot-dependent interaction methods

due to additional sensors and actuators provided by a smart environment to extend the percep-

tual and interaction capabilities of the mobile robot. For this purpose, we incorporated a smart

camera network, a smart speaker and a smart display into the interaction process. In addition to

the selection of appropriate smart home components and the specification of the human-robot-

environment interaction, the cooperative perception of multiple stationary and mobile cameras

implied several challenges. These were adequately addressed by a multi-stage virtual border extrac-

tion algorithm, which extracts a virtual border from multiple camera observations. The proposed

interaction method was evaluated in an experiment that compared the NRS with the laser pointer

approach (without smart home support). The experimental results indicated that the NRS method

features a significantly shorter interaction time and a better user experience while maintaining the

quality levels of the other user requirements. Hence, the incorporation of a smart home into the

interaction process turned the initial laser pointer approach from an unacceptable to an acceptable

solution for our problem. Therefore, we conclude that Objective 2 of this thesis could be achieved.

Furthermore, this solution performed better in the overall evaluation than the baseline method em-

ploying a GUI. However, the quality level of the AR interaction method was not achieved, especially

in terms of completeness and interaction time.

Objective 3 Finally, the last objective of this thesis dealt with the investigation of learning capa-

bilities with the goal to reduce the interaction time. The main idea was to learn from multiple user

interactions and apply the knowledge in future interaction processes to support the human. To

this end, we proposed a learning and support system (LSS), which encodes an interaction process

employing semantic scene understanding and learns from multiple interaction processes through

frequent itemset mining. The extracted knowledge is then conveyed to the human through ap-

propriate recommendations for interactions using AR. Thus, a human does not have to explicitly
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specify all components of a virtual border, but can rather select a recommendation of the LSS. After

validating the LSS concerning its recognition rate and accuracy, experimental results showed that

this approach reduces the interaction time to a constant good level while preserving the quality

levels of the other user requirements. Thus, we conclude that the state of the art could be further

improved and that Objective 3 of this thesis could be achieved. However, it is noted that the LSS is

limited to restriction areas whose semantic can be visually derived from the appearance. Hence, the

camera network, which is the basis for semantic scene understanding, has to cover these areas.

6.2 Limitations

Although the objectives of this thesis could be achieved, this work also has some limitations. The

main limitation deals with the evaluation of the proposed solutions. The experimental evaluations

were thoroughly conducted with multiple participants and multiple evaluation scenarios. The ex-

perimental environments were best possibly set up according to real home environments and the

participants’ characteristics approximately corresponded to the intended user group of this thesis.

However, these experiments were performed in a lab environment under lab conditions, i.e. there

was an artificial and controlled environment. Thus, there was no evaluation in the field in real home

environments, which could support our conclusions.

Another point, that is not considered throughout this work, are the financial costs of a smart home.

This entails the question of how much does the added value of a smart home in the interaction pro-

cess cost and if it is worth to upgrade a traditional to a smart home environment. Such costs mainly

consist of acquisition and installation costs. Since we presented acceptable solutions for both types

of environments, a human is always able to interactively restrict the workspace of a mobile robot

with an at least acceptable performance. In addition, the performance of the AR interaction method

even achieves a good performance in most of the requirements, which makes it better than the cur-

rent the state of the art. Therefore, an upgrade to a smart home environment only makes sense if a

human wants to employ the laser pointer interface (as there is a significant improvement in inter-

action time and user experience) or if the interaction time should be further reduced to a constant

level (enabled by learning capabilities). Hence, while an upgrade does not always make sense, the

incorporation of smart home components in the interaction process is advantageous if the environ-

ment already includes smart components, e.g a new smart building. In this case, a human can take

advantage of an improved performance without additional costs of an upgrade.

6.3 Future Work

Motivated by the limitations, a first work for the future could be the extension of the experimental

evaluation. This could be a long-term study in the field comprising multiple real (smart) home
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environments with residents. In this case, the environment would not be artificial and controlled

but would rather constitute an everyday-life environment. Similar results of such a study could

support our conclusions. Moreover, when considering a larger number of participants in a study,

the evaluation of the interaction methods depending on age groups could bring further insights.

In addition to the extension of the experimental evaluation, the functionality of the interaction

methods could be extended in the future. For example, to specify temporary restriction areas, such

as dirty areas, a human currently has to add and later delete a virtual border, which results in two

interaction processes. An extension could model this time constraint as an additional component

of a virtual border, which could be then specified in an additional state of an interaction method,

e.g. the AR application could provide an additional input to specify a time constraint. Thus, a virtual

border could be automatically deleted when a user-defined time expires. This would facilitate the

definition of temporary restriction areas.

Another work for the future arises from the evaluation of the participants’ free responses in the

experiments. For example, a participant wished a stronger feedback channel of the smart home

environment. In this case, projectors integrated in the environment could be a promising solution.

For example, LEUTERT et al. (2013) use a stationary projector mounted on the ceiling and a mobile

projector on a robotic arm to visualize robotic data, and GANESAN et al. (2018) use a projector to

visualize cues in a human-robot collaboration scenario. However, these hardware devices are cur-

rently not widespread in smart homes, but progress in the deployment of smart environments could

mitigate this limitation in the future. An alternative would be the installation of a projector on the

mobile robot to give feedback to a human (CHADALAVADA et al., 2015)(SHRESTHA et al., 2018). This

would not only be applicable in smart homes but also in traditional home environments.

Furthermore, we evaluated our NRS interaction method with a single mobile robot, which is valid

for most households and the scope of this thesis. However, it would be interesting to incorporate

multiple robots into the interaction process to increase the number of mobile cameras. Our pro-

posed architecture already rudimentarily considers this aspect as depicted in Figure 4.3, but more

work on the cooperation between multiple mobile robots in such a scenario is needed to address

additional challenges arising from this setting.

Regarding the LSS, the user interaction focuses on the selection of recommendations by a human.

Although the recognition rate is high (F-score of 91.5%) and most of the recommendations (89.8%

of the recognized restriction areas) feature an at least acceptable accuracy and should thus be ac-

cepted by a human, future work could deal with the improvement of these values. For example,

false positive classifications F P could be reduced by considering additional depth data of a camera.

This could avoid recommendations of objects in a scene, that are not part of a restriction area, e.g.

dishes on a table or boxes on a shelf. Besides, progress in the field of semantic segmentation could

further increase the accuracy and thus the percentage of recommendations with an acceptable and

good quality level.
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Moreover, the functionality of the LSS could be extended. Currently, the semantic scene under-

standing is performed on images acquired from cameras integrated in the environment. Due to the

partial camera observation of the environment, the LSS is restricted to the observed areas. To ad-

dress this issue, future works could consider the AR device or the mobile robot as additional sensor

for scene understanding. This requires the re-training of a new deep neural network for seman-

tic segmentation from different viewpoints and the optimization of the algorithms for a hardware-

limited device, such as a tablet without graphics processing unit (GPU). Additionally, the LSS could

be extended by a “track-and-adapt”-behavior. This could allow the system to track virtual borders

and automatically adapt their locations in the OGM of the environment if they are moved.

Apart from these suggestions for future work, the commercialization of the contributions of this

work would be a next step. Currently, the interaction methods are implemented as prototypical sys-

tems, but the realization of a commercial product would take some additional steps. For example,

it would be necessary to develop an automatic registration method in case of the AR approach to

circumvent the requirement concerning a manual registration between the Map and ADF coordi-

nate frames as described in Subsection 3.3.2. Besides, the AR method requires special hardware, i.e.

a RGB-D tablet or smartphone, limiting the potential number of users. Nonetheless, major compa-

nies started to release AR toolkits (ARCore by Google1 and ARKit by Apple2) in the last years, that

work without specialized hardware. Thus, the AR method could be widely deployed on common

smartphones and tablets without additional costs for the user.

Finally, the scope of this thesis could be extended in future works, especially in case of the envi-

ronment. While this thesis dealt with traditional and smart home environments, the transfer of the

interaction methods to outdoor environments could be of interest. In particular, the example of a

robotic lawnmower operating in a garden is an insufficiently solved problem because wires need

to be buried in the garden to restrict the robot’s workspace. This is inflexible and involves addi-

tional costs and installation effort. Such an outdoor environment entails new challenges dealing

with uneven terrain, localization issues and uncontrolled light conditions, which could affect the

performance of the interaction methods.

1https://developers.google.com/ar [Accessed: 26.03.2020]
2https://developer.apple.com/augmented-reality [Accessed: 26.03.2020]
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Glossary

Interaction method An interaction method describes the way of how to employ a user interface in

an interaction process to achieve a goal, e.g. the restriction of a mobile robot’s workspace. . . .

Interaction process In the context of this thesis, an interaction process describes the interaction

between human and mobile robot or network robot system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Mobile robot A mobile robot is a robot with a locomotion system, i.e. it is able to move in the

environment using its actuators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Navigational behavior The navigational behavior describes the way how a mobile robot moves

from a starting to a goal pose. Thus, it is a synonym for the path between both poses. . . . . . . . .

Restriction area A restriction area is an area that is excluded from a mobile robot’s workspace.

Thus, a mobile robot does not enter this area. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

User interaction A user interaction refers to the execution of an interaction process. . . . . . . . . . . . . . . .

User interface A user interface gives an opportunity for interaction between a human and robot,

e.g. a tablet or laser pointer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Virtual border A virtual border is used to model a restriction area in terms of virtual border points,

a seed point and an occupancy probability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Workspace The workspace of a mobile robot is the space that can be reached by the robot using its

locomotion and path planning system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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CHA, E. and M. MATARIĆ (2016). Using nonverbal signals to request help during human-robot collaboration.
In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5070–5076.

CHA, E., T. TREHON, L. WATHIEU, C. WAGNER, A. SHUKLA, and M. J. MATARIĆ (2017). ModLight: Designing
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