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Summary
We propose to solve global optimal control problems with a new algorithm that is

based on Bock's direct multiple shooting method. We provide conditions and numer-

ical evidence for a significant overall runtime reduction compared to the standard

single shooting approach.
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1 INTRODUCTION

We are interested in globally optimal solutions of the control problem

Definition 1. (Basic control problem with linear objective and nonconvex dynamics)

min
q

cTx(t)
subject to

ẋ(t) = f (x(t), q), t ∈  ,
x(0) = s0,
x(t) ∈ (t), t ∈  ,
q ∈ ,

(1)

on a fixed time horizon  = [0, tf] with differential states x ∶  → Rnx , a finite number of controls q ∈  ⊆ R
nq , fixed initial

values s0 ∈ Rnx , a linear objective function cTx(tf) of Mayer type with nonnegative c ∈ R
nx
+ , and bounded convex feasible sets

 = [q, q] ⊆ R
nq for controls and (t) = [x(t), x(t)] ⊆ Rnx for states.

Assumption 2. (Smoothness of the control problem)
We assume that the function f ∶ R

nx×nq → Rnx is sufficiently smooth. Note that Lipschitz continuity guarantees the unique
existence of a solution x(·) of the differential equations for fixed q by virtue of the Picard-Lindelöf theorem. As we assume unique
sensitivities in the following, also the partial derivative functions 𝜕f

𝜕x
,
𝜕f
𝜕q
,
𝜕2f
𝜕x2

,
𝜕2f
𝜕q2

,
𝜕2f
𝜕x𝜕q

are assumed to be Lipschitz continuous.
Furthermore, we assume that there exists at least one feasible q∗ ∈  for Equation 1.

Remark 3. (Generality of the control problem)
Problem 1 is general in the sense that it allows arbitrary dynamics via f(·) and both control values and discretized control
functions via the finite-dimensional control vector q. Yet, in the interest of a simplified notation, we keep it as simple as possible.
With little to no effort, all of the following results do also apply to more general classes of control problems. We discuss these
extensions in Section 6 and concentrate first on the main issue, better relaxations of nonconvex dynamics.
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There are at least 4 basic classes of algorithms to find optimal solutions to problem 1: first, the global approach to solve
the Hamilton-Jacobi-Bellman equations, which corresponds to dynamic programing in a discrete setting; second, indirect
approaches that solve boundary value problems resulting from necessary conditions of optimality, ie, Pontryagin's maximum
principle; third, reformulation and relaxation of the control problem as a generalized moment problem, ie, a linear program
defined on a measure space; and fourth, direct approaches that discretize control functions u ∶  → Rnu to finite decision vectors
q ∈ R

nq , as already done for problem 1, and relax possible path constraints x(t) ∈ (t) to finitely many points x(ti) ∈  ⊆ Rnx ,
and then solve the resulting nonlinear optimization problem (NLP) numerically. In most cases, the NLPs are solved locally. The
aim of this paper is to develop a method that combines advantages of the direct methods with a certificate of global optimality.

Direct methods can be further distinguished on the basis of how the solution of the differential equations is included in the
optimization process. Direct single shooting (DSS) solves problems of type 1 via an outer loop on the optimization variables
q ∈ R

nq , where function and derivative evaluations are based on an integration of the differential equations on the time horizon
 . In this sense, the trajectories x(·) are merely dependent variables and can be seen as part of the objective and constraint
functions. Direct collocation methods discretize the differential equations and add variables and constraints to problem 1. This
leads to a large-scale, but highly structured, NLP.

Bock's direct multiple shooting method can be seen as a hybrid between the 2. Additional variables and constraints are added,
but adaptive external integrators can still be used to solve the differential equations on subintervals.

In the interest of comparison, we use the same time grid 0 = t0 < t1 < … < tnms
= tf for the evaluation of constraints in

single and multiple shooting. In our implementation, we use the same grid for the discretization of control functions u(·). For
our theoretic considerations and in the interest of a fair comparison, although, this is already implied by using a general control
vector q, compare Equation 1.

Definition 4. (Solution trajectories)
For given q ∈ R

nq , si ∈ Rnx , and 𝜏 ∈  , we denote by x(𝜏; q, si) the solution trajectory x(·) of the differential equation
ẋ(t) = f (x(t), q) with initial value x(ti) = si on the time interval [ti, 𝜏], evaluated at time 𝜏. In slight abuse of notation, we infer the
time ti from the index of the argument si. The argument 𝜏 in front of the semicolon refers to the evaluation time; the arguments
after the semicolon list implicit dependencies of x(·). We also write x(t; q, s0) with an implicit dependence on s0 ∈ Rnx , although
we assume s0 to be fixed, to highlight the difference between single and multiple shooting.

Definition 5. (Single and multiple shooting NLPs)
The single shooting NLP for problem 1 is defined as

min
q

cTxss(tf ; q, s0)
subject to

xss(ti; q, s0) ∈ i, i = 1, … , nms,
q ∈ .

(SS× )

The nmsnode multiple shooting NLP for problem 1 is defined as

min
s1,… ,snms

,q
cTsnms

subject to
si+1 = xms,i(ti+1; q, si), i = 0, … , nms − 1
si ∈ i, i = 1, … , nms,
q ∈ ,

(MS× )

where variables (s1, … , snms
) ∈ Rnmsnx and nmsnx matching constraints si+1 = xms,i(ti+1; q, si) have been added in comparison

to problem (SS× ). Note that the evaluation of xms,i(ti+1; q, si) implies that x(·) is evaluated independently on the time intervals
[ti, ti+1] with different initial values si. We write  = 1 × … × nms

⊆ Rnx
nms as the Cartesian product of all  .

We focus on complete and rigorous methods for global optimization.1 The survey2 gives a broad overview over the litera-
ture in global optimization in general. Underlying most deterministic global optimization algorithms are interval arithmetics,3 a
spatial Branch&Bound technique,4,5 and convex relaxations of the original problem, such as McCormick relaxations6,7 or poly-
hedral outer approximations.8 We use the 𝛼BB method.9-11 The convex relaxations used in the 𝛼BB algorithm are based on
the eigenvalues of interval Hessians that are the bounds on the second derivatives. The authors in Skjäl and Westerlund12 sur-
vey different methods to determine bounds on these eigenvalues. We use a method based on Gershgorin's circle theorem,13 as
suggested in Adjiman et al.11
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The novelty compared to previous approaches to globally optimize optimal control problems with the 𝛼BB method (see a
number of studies14-17) is that we work with the multiple shooting discretization (MS× ). The discretizations (SS× ) and
(MS× ) are obviously equivalent with respect to feasibility and optimality, but lead to different algorithmic behavior, both
in local and in global optimizations. We show that the multiple shooting approach (MS× ) has advantages compared to the
single shooting approach (SS× ) when used in a global optimization context. Advantages of course relate to computational
time, which itself depends on 2 numbers:

• The average computational time to solve a problem on a single node. The advantages of direct multiple shooting in compar-
ison to DSS have been discussed at length in a number of publications, eg, a few studies.18-21 The most important advantages
are the possibility to parallelize the evaluation of function and derivative evaluation, to provide initial values for the tra-
jectory, improved convergence due to a lifting effect22 and to high-rank updates,23 and improved stability. There are several
possibilities to exploit the sparsity of the Karush-Kuhn-Tucker matrix, such that the linear algebra is not significantly more
expensive than in the single shooting case.24 Note that the mentioned benefits arise in the context of global optimal control
on the level of the single nodes that are solved locally. For example, an initialization of the additional variables (s1, … , snms

)
can be performed automatically by initializing them close to a reference trajectory or using the trajectory of the father node.
We are not going to dwell further on these topics in this paper, but take it as one motivation to use the method also for
global optimization.

• The overall number of nodes in a spatial Branch&Bound tree. This number is a result of the number of variables we are
branching on and of the quality of the relaxations on a single node. We show in Corollary 14 that the right branching strategy
guarantees that there is no increase in the number of nodes. We show in Theorem 16 under which assumptions the quality
of the convex underestimations and concave overestimations, which can be expressed in terms of the relaxation factors 𝛼, is
strictly better. This surprising result is mainly due to the effect that the additional variables s reset the propagated bounds on
the values of states and sensitivities and hence avoid an exponential growth in time. From a different point of view, we want
to quantify the relation between the 𝛼BB relaxation of a composite function and the composition of several 𝛼BB relaxations,
which in general, do not commute. For the case of an additional end point that can be seen as a 2-point multiple shooting,
this was discussed in Little et al.5

Our approach is different from the so-called Branch-and-Lift algorithm of Houska and Chachuat,25 in which the control
parameterization is adaptively refined. Although we also lift to a higher dimension, our lifting concerns only the state variables.
A combination of both approaches should be possible and desirable, but is beyond the scope of this paper.

The paper is organized as follows. In Section 2, we survey mathematical preliminaries, in particular, a basic 𝛼BB algorithm and
second-order derivatives of trajectories. In Section 3, we formulate the specific relaxations for the single and multiple shooting
optimization problems (SS× ) and (MS× ). In Section 4, we prove the superiority of (MS× ) with respect to the tightness
of relaxations and the non-increase of the number of Branch&Bound nodes despite the increase of variables. In Section 5, we
show exemplarily the performance gain for a benchmark problem from the literature. In Section 6, we discuss applicability to
more general optimal control problems than Equation 1 and algorithmic extensions. We conclude in Section 7 with a summary.

2 PRELIMINARIES

For convenience of the reader, we shortly summarize useful notation, compare Table 1, and results from global optimization
and discuss the particular case of optimal control, where derivatives of the functions with respect to the controls involve the
dependent differential variables.

Every twice differentiable function 𝜙 ∶ [v, v] ⊂ Rnv → R can be underestimated by a convex function

𝜙cv(v) ∶= 𝜙(v) +
nv∑

k=1

𝛼cv,k(vk − vk)(vk − vk) , (2)

and overestimated by a concave function

𝜙cc(v) ∶= 𝜙(v) −
nv∑

k=1

𝛼cc,k(vk − vk)(vk − vk) , (3)

for any v in the bounded box [v, v], if only the 𝛼cv,k ∈ R+ and 𝛼cc,k ∈ R+ are chosen large enough. For notational convenience,
we write

𝜓(vk) ∶= (vk − vk)(vk − vk) (4)
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TABLE 1 The notation used in this paper

Notation Definition Explanation
General notation

 [v, v] Interval between lower and upper bounds v, v ∈ Rnv|| max(||v|| , ||v||) Absolute value of an interval

(s0, s1, … , sm) - Concatenated vector in Rn with n = ns0
+ … + nsm

sol(NLP) v* Optimal solution of (NLP)

val(NLP) 𝜙obj(v*) Optimal objective function value of (NLP)

𝜓(vk) See Equation 4 Convexification term (vk − vk)(vk − vk) for variable vk

Φ() val(NLP
cv) Lower bound on sol(NLP)

𝛿jl - Kronecker symbol, 𝛿jl = 1 if j = l, 𝛿jl = 0 if j ≠ l

Superscripts and subscripts

cv, cc See Equations 2 and 3 Convex underestimation/concave overestimation of a function

ss, ms Definition 5 Single shooting or multiple shooting

i - Time index, i = 0, … , nms

j - Differential state index, j = 1, … , nx

k, l - Indices of variables q ∈ Rnq or si ∈ Rnx , i = 1, … , nms

Exemplary trajectories and coefficients, similar for different superscripts and subscripts

xms,i(𝜏; q, si) Definition 4 Solution of ẋ(t) = f (x(t), q), x(ti) = si on [ti, 𝜏] at 𝜏.

xms,i
j,cv (t; q, si) See Equations 20 and 21 Underestimation and overestimation of trajectories xms,i

j (t; q, si)

ms,i,j
qk ,si l

(t;,i)
d2xms,i

j (t;,i)

dqkdsi l
Second-order sensitivity interval

𝛼
ms,i,j
cv,k See Equations 22-25 Relaxation factors

Abbreviation: NLP, nonlinear optimization problem.

in the following. As the Hessians of the new functions need to be positive semi-definite for convexity (negative semi-definite
for concavity), their eigenvalues need to be nonnegative (non-positive). Necessary conditions are hence

𝛼cv,k ≥ −1
2

min
(
0, 𝜆min(∇2𝜙(v))

)
, (5)

𝛼cc,k ≥ −1
2

min
(
0,−𝜆max(∇2𝜙(v))

)
. (6)

One cheap, yet successful, way12 to calculate sufficiently large 𝛼cv,k, 𝛼cc,k is based on Gershgorin's circle theorem,13 which
implies as follows: if a matrix is strictly diagonally dominant and all its diagonal elements are positive, then the real parts of its
eigenvalues are positive; if all its diagonal elements are negative, then the real parts of its eigenvalues are negative. Hence, if
for k = 1, … , nv and all v ∈ [v, v]

𝛼cv,k ≥ −1
2

min

(
0, (∇2𝜙(v))kk −

∑
l≠k

|||(∇2𝜙(v))kl
|||
)

, (7)

𝛼cc,k ≥ −1
2

min

(
0,−(∇2𝜙(v))kk −

∑
l≠k

|||(∇2𝜙(v))kl
|||
)
, (8)

then 𝜙cv is convex, and 𝜙cc is concave on [v, v]. We are interested in factors 𝛼 that yield positive semi-definite (negative
semi-definite) interval Hessians for all v ∈ [v, v].

Definition 6. (Interval arithmetics)
We denote closed intervals by calligraphic uppercase characters,

 ∶= [v, v] = {v ∈ R ∶ v ≤ v ≤ v} (9)

with lower bound v ∈ R and upper bound v ∈ R, indicated by underlined and overlined variables. The absolute value of an
interval  is || ∶= max(|v|, |v|), and the set of closed intervals is defined by [R] ∶=

{
[v, v] ∶ v ≤ v, v ∈ R, v ∈ R

}
. We use
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the straightforward extensions to higher dimensions, ie, to interval matrices A ∈ [R]m×n, and to functions Φ ∶ [R] → [R], as
an extension of 𝜙 ∶ R → R. All interval arithmetics are performed componentwise and result in interval components. We refer
to the textbook26 for an introduction to calculus with intervals.

Making use of the obvious relations

min
v∈[v,v]

(
(∇2𝜙(v))kk −

∑
l≠k

|||(∇2𝜙(v))kl
|||
)

≥ min
v∈[v,v]

(∇2𝜙(v))kk −
∑
l≠k

max
v∈[v,v]

|||(∇2𝜙(v))kl
|||

min
v∈[v,v]

(
−(∇2𝜙(v))kk −

∑
l≠k

|||(∇2𝜙(v))kl
|||
)

≥ − max
v∈[v,v]

(∇2𝜙(v))kk −
∑
l≠k

max
v∈[v,v]

|||(∇2𝜙(v))kl
|||

we overestimate Inequalities 7 and 8 further and get for  = [v, v] the factors

𝛼cv,k = −1
2

min

(
0, (∇2Φ())kk −

∑
l≠k

|||(∇2Φ())kl
|||
)

, (10)

𝛼cc,k = −1
2

min

(
0,−(∇2Φ())kk −

∑
l≠k

|||(∇2Φ())kl
|||
)

(11)

with the notation introduced in Definition 6, ie,

|||(∇2Φ())kl
||| = max

(|||(∇2Φ())kl
||| , |||(∇2Φ())kl

|||) .

Being able to underestimate and overestimate functions allows to relax optimization problems. The optimal objective function
value of a general nonconvex NLP of the form

min
v

𝜙obj(v)
subject to

0 ≥ 𝜙ineq(v),
0 = 𝜙eq(v),
v ∈  = [v, v]

(NLP )

is underestimated by the optimal objective function value of the convex NLP

min
v

𝜙
obj
cv (v)

subject to
0 ≥ 𝜙

ineq
cv (v),

0 ≥ 𝜙
eq
cv(v),

0 ≥ −𝜙eq
cc(v),

v ∈  = [v, v],

(NLP
cv)

where the subscripts cv and cc refer to the 𝛼BB relaxations (Equations 2 and (3)), assumed that for all functions, the
corresponding values 𝛼 ∈ R

nv
+ have been calculated via Equations 10 and 11 and are hence sufficiently large.

Definition 7. (Optimal solutions)
We define sol(NLP) ∶= v* as a (not necessarily unique and existent) locally optimal solution of a given (NLP). In addition, we
define val(NLP) ∶= 𝜙obj(v*) to be the corresponding optimal objective function value (possibly infinity).

The objective function value is underestimated, while the feasible region is overestimated, resulting in the desired lower bound
on the optimal objective function value:

val(NLP
cv) ≤ val(NLP ).
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Branch&Bound methods are described in detail in Scholz.27 For an early application in global optimization, we refer to Falk
and Soland,28 whereas our implementation is based on Horst and Tuy.29,30 The extension to nonconvex constraints is discussed
in Stein et al.31 A basic 𝛼BB algorithm for a nonconvex (NLP ) is given in Algorithm 1.

To construct the convex relaxations (NLPik
cv ) for the special cases of single and multiple shooting, compare Section 3, we

need the relaxation factors 𝛼. To calculate them for the discretized control problems (SS× ) and (MS× ), we need the second
derivatives of the occurring functions with respect to the decision variables, compare Equation 11, in particular, of the control
trajectories x(·) with respect to q for (SS× ) and with respect to (q, s) for (MS× ).
Definition 8. (Second-order sensitivities)
Let j ∈ {1, … , nx} be fix and a bounded box  ⊆ R

nq be given. We define the single shooting second-order sensitivity interval
of the trajectory xss

j (·) with respect to q ∈ R
nq , scaled by the linear objective function vector c ∈ Rnx , as

ss,j
qk ,ql

(t;, s0) ∶= cj
d2xss

j (t;, s0)

dqkdql
⊆ R, k, l ∈ {1, … , nq}. (12)

Let in addition i ∈ {1, … , nms} and a bounded box i ⊆ i ⊆ Rnx be given. We define the multiple shooting second-order
sensitivity interval of the trajectory xms,i

j (·) with respect to q ∈  and si ∈ i for t ∈ [ti, ti+1], scaled by the linear objective
function vector c ∈ Rnx , as

ms,i,j
qk ,ql

(t;,i) ∶= cj
d2xms,i

j (t;,i)

dqkdql
⊆ R, k, l ∈ {1, … , nq} (13)

ms,i,j
sik ,sil

(t;,i) ∶= cj
d2xms,i

j (t;,i)

dsikdsil
⊆ R, k, l ∈ {1, … , nx} (14)
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ms,i,j
qk ,sil

(t;,i) ∶= cj
d2xms,i

j (t;,i)

dqkdsil
⊆ R, k ∈ {1, … , nq},

l ∈ {1, … , nx}.
(15)

We obtain the functions h·,j
·,·(·; q, si) and their interval counterparts  ·,j

·,· (·;,i) as solution trajectories of a system of
differential equations. See Lemma 19 in the Appendix.

3 CONVEX RELAXATIONS OF SHOOTING PROBLEMS

In this section, we formulate relaxed, convex versions of (SS× ) and (MS× ) in the spirit of (NLP
cv) and show how

Algorithm 1 can be applied.

3.1 Single shooting
Definition 9. (Convexification of single shooting NLP)
For given data from problem (SS× ) as a discretization of problem 1, the convexified single shooting NLP is defined as

min
q

cTxss
cv(t; q, s0,)

subject to
xss

cv(ti; q, s0,) ≤ xi, i = 1, … , nms,
xss

cc(ti; q, s0,) ≥ xi, i = 1, … , nms,

q ∈ .
(SS×

cv )

The functions xss
cv(ti; q, s0,) and xss

cc(ti; q, s0,) are given as in Equations 2 and 3, more precisely for the only independent
variables q ∈  and for all entries j = 1, … , nx as

xss
j,cv(ti; q, s0,) ∶= xss

j (ti; q, s0) +
nq∑

k=1

𝛼
ss,i,j
cv,k 𝜓(qk) , (16)

xss
j,cc(ti; q, s0,) ∶= xss

j (ti; q, s0) −
nq∑

k=1

𝛼
ss,i,j
cc,k 𝜓(qk) , (17)

where xss(·; q, s0) is the solution trajectory of ẋ(t) = f (x(t), q) with x(0) = s0 on [0, tf]. The relaxation factors 𝛼ss
cv, 𝛼

ss
cc ∈ R

nmsnxnq

are determined on the basis of Equations 10 and 11 and Definition 8 as

𝛼
ss,i,j
cv,k =−1

2
min

(
0,ss,j

qk ,qk
(ti;, s0))−

∑
l≠k

|||ss,j
qk ,ql

(ti;, s0))
|||
)
, (18)

𝛼
ss,i,j
cc,k =−1

2
min

(
0,−ss,j

qk ,qk
(ti;, s0))+

∑
l≠k

|||ss,j
qk ,ql

(ti;, s0))
|||
)
, (19)

for k = 1, … , nq as functions of the box .

Lemma 10. (Convex single shooting relaxation)
Problem (SS×

cv ) is a convex relaxation of problem (SS× ), and for q* = sol(SS×
cv ), we have

val(SS×
cv ) = cTxss(ti; q∗, s0) +

nx∑
j=1

nq∑
k=1

cj𝛼
ss,i,j
cv,k (qk − q∗

k )(qk
− q∗

k ).

Proof. Constraints and objective function of problem (SS×
cv ) are convex by construction. Assume q̂ ∈ R

nq is feasible for
problem (SS× ). Because of

xss
cc(ti; q̂, s0,) ≥ xss(ti; q̂, s0) ≥ xi and

xss
cv(ti; q̂, s0,) ≤ xss(ti; q̂, s0) ≤ xi,

it is also feasible for (SS×
cv ).



456 DIEDAM AND SAGER

The objective function cTx is assumed to be linear and is hence convex. Using the convex underestimation for the trajectory,
and c ∈ R

nx
+ nonnegative, we obtain

cTxss
cv(tf ; q̂, s0,) ≤ cTxss(tf ; q̂, s0)

for all feasible q̂ ∈ R
nq . Thus, problem (SS×

cv ) is a convex relaxation of problem (SS× ).
The objective function value is bounded because of the boundedness of  and exists because of Assumption 2. It can be

calculated as
val(SS×

cv )
= cTxss

cv(tf ; q∗, s0,)
=

nx∑
j=1

cj

(
xss

j (ti; q∗, s0) +
nq∑

k=1

𝛼
ss,i,j
cv,k (qk − q∗

k )(qk
− q∗

k )

)
,

which concludes the proof.

We apply Algorithm 1 to (SS× ) by taking  =  and NLP = (SS× ). The construction of the convex relaxation is
described in Algorithm 2.

With Update bounds, we refer to taking the minimum of available upper bounds (maximum of lower bounds). For single
shooting, there are 2 qualitatively different kinds of bounds xi and xi. First, there may be a priori bounds xi, xi specified in the

original problem formulation (MS× ) or passed on from a father node in a Branch&Bound tree (thus the recursive use). Second,
the bounds xi, xi may result from a forward propagation of the set  = [q, q], ie, xij = xss

j (ti;, s0) or xij = xss
j (ti;, s0). There

are different ways to calculate xss
j (ti;, s0) and xss

j (ti;, s0), and it is well known that a priori bounds of the first type can be used

to strengthen bounds of the second type, eg, Scott et al.7 We use Taylor integration as a special case of validated integrators,
see a number of studies.32-35 We use it to calculate both, propagated states xss

j (t;, s0) and propagated second-order sensitivities

ss,j
qk ,ql

(t;, s0). Therefore, there are no additional costs involved, as the propagated states are required for the sensitivities,
anyways. Using bounds of the second type is not strictly necessary, but it may significantly speed up the solution process.

3.2 Multiple shooting
Definition 11. (Convexification of multiple shooting NLPs)
For given data from problem (MS× ) as a discretization of problem 1, the convexified nms node multiple shooting NLP is
defined as

min
s1,… ,snms

,q
cTsnms

subject to
si ≥ xms,i−1

cv (ti; q, si−1,,i−1), i = 1, … , nms

si ≤ xms,i−1
cc (ti; q, si−1,,i−1), i = 1, … , nms

si ∈ i ∶= [xi, xi], i = 1, … , nms,

q ∈ ,

(MS×
cv )
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with 0 = {s0} for ease of notation. The trajectories xms,i
cv (·; q, si,,i) and xms,i

cc (·; q, si,,i) are again given as in Equations 2
and 3, now for the independent variables q ∈  and the shooting variables si ∈ i, i = 1, … , nms. For all entries j = 1, … , nx
and i = 0, … , nms − 1, we define

xms,i
j,cv (ti+1; q, si,,i) ∶= xms,i

j (ti+1; q, si) +
nq∑

k=1

𝛼
ms,i,j
cv,k 𝜓(qk) +

nx∑
l=1

𝛼
ms,i,j
cv,nq+l 𝜓(sil) , (20)

xms,i
j,cc (ti+1; q, si,,i) ∶= xms,i

j (ti+1; q, si) −
nq∑

k=1

𝛼
ms,i,j
cc,k 𝜓(qk) −

nx∑
l=1

𝛼
ms,i,j
cc,nq+l 𝜓(sil) , (21)

where xms,i(·; q, s0) is the solution trajectory of ẋ = f (x(t), q) with x(ti) = si on [ti, ti+1]. The relaxation factors 𝛼
ms,i
cv , 𝛼

ms,i
cc ∈

R
nx(nq+nx) are determined for i = 1, … , nms − 1 on the basis of Equations 10 and 11 and Definition 8. Note that they are

functions of  and i, but not of q and si. This follows from the dependencies of the second-order sensitivities ms,i,j
·,· (ti+1)) ∶=

ms,i,j
·,· (ti+1;,i)), although we omit this important implicit dependency on (,i) for a more compact notation:

𝛼
ms,i,j
cv,k ∶= −1

2
min

(
0,ms,i,j

qk ,qk
(ti+1)) −

∑
l≠k

|||ms,i,j
qk ,ql

(ti+1))
||| −

nx∑
l=1

|||ms,i,j
qk ,sil

(ti+1))
|||
)

, (22)

𝛼
ms,i,j
cc,k ∶= −1

2
min

(
0,−ms,i,j

qk ,qk
(ti+1)) +

∑
l≠k

|||ms,i,j
qk ,ql

(ti+1))
||| +

nx∑
l=1

|||ms,i,j
qk ,sil

(ti+1))
|||
)

(23)

for k = 1, … , nq and

𝛼
ms,i,j
cv,nq+l ∶= −1

2
min

(
0,ms,i,j

si l,sil
(ti+1)) −

nq∑
k=1

|||ms,i,j
qk ,sil

(ti+1))
||| −

nx∑
k≠l

|||ms,i,j
sik ,sil

(ti+1))
|||
)

, (24)

𝛼
ms,i,j
cc,nq+l ∶= −1

2
min

(
0,−ms,i,j

si l,sil
(ti+1)) +

nq∑
k=1

|||ms,i,j
qk ,sil

(ti+1))
||| +

nx∑
k≠l

|||ms,i,j
sik ,sil

(ti+1))
|||
)

(25)

for l = 1, … , nx. We have 𝛼ms,i,j
cv,nq+l = 𝛼

ms,i,j
cc,nq+l = 0 for the special case i = 0, because s0 is assumed to be fixed and not a variable.

Note that for the variable snms
, no relaxation is defined, as it only enters linearly into the problem (it is not an initial value).

Figure 1 gives a 1-dimensional illustration of the relaxation concept. We show that in general, we obtain a convex relaxation.

Lemma 12. (Convex multiple shooting relaxation)
Problem (MS×

cv ) is a convex relaxation of problem (MS× ).

FIGURE 1 One-dimensional illustration of the relaxed matching conditions in problem (MS×
cv ). The multiple shooting variable si does not

need to be equal to xms,i−1(ti; q, si−1), but to be within [si, si]. Note that for the nonlinear optimization problem, we only needed to define the

underestimations and overestimations pointwise in time, but that a generalization to the visualized dashed trajectories is straightforward. They

correspond to an evaluation of the values of 𝛼 (and hence of the second-order sensitivities) at times t ∈ [ti, ti+1]. By construction, the trajectory

xms,i
cv (t; q, si,,i) gives a pointwise lower bound on xms,i(t; q, si) for all times t ∈ [ti, ti+1], but is itself not necessarily monotone with respect to t

[Colour figure can be viewed at wileyonlinelibrary.com]

wileyonlinelibrary.com
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Proof. Convexity of problem (MS×
cv ) follows from the constructed convexity of the functions in the objective and in the lesser

equal inequalities. Note that the equality constraint in (MS× ) is formulated as 2 inequalities in (MS×
cv ).

However, a closer comparison between the specific relaxation Equations 20 and 21 and the general approach Equations 2
and 3 reveals that all terms involving the variables sm with m = 1, … , nms, m ≠ i are missing, which needs justification: The
trajectories xms,i

j (·; q, si) do not depend on sm (only the constraint depends lineary on si+1), and hence, also the second-order
derivatives are zero, which carries over to the corresponding 𝛼 values.

It is left to show that the convex problem (MS×
cv ) is a relaxation of (MS× ). Assume (q̂, ŝ) ∈ R

nq+nmsnx is a feasible solution
of (MS× ). Because of

xms,i
cv (ti+1; q̂, ŝi,,i) ≤ xms,i(ti+1; q̂, ŝi) = ŝi+1,

xms,i
cc (ti+1; q̂, ŝi,,i) ≥ xms,i(ti+1; q̂, ŝi) = ŝi+1,

it is also feasible for (MS×
cv ). The objective function cT ŝnms

is not affected by the convexification because of the assumed
linearity.

To apply Algorithm 1 to (MS× ), we set  =  ×  and NLP = (MS× ). The construction of the convex relaxation in
Algorithm 3 is similar to Algorithm 2, but the evaluations are performed per interval, and the bounds x, x on the multiple shooting
variables s can potentially be additionally tightened by making use of the 𝛼BB relaxations. Whereas the first 2 arguments of
the upper bound minimization are identical to the single shooting case (a priori bounds from the original formulation or the
father node, and set propagation), the third argument (use of 𝛼BB relaxations) comes as an additional possible tightening. This
definition makes the 2 inequalities in problem (MS×

cv ) redundant. We keep them anyhow as this facilitates the upcoming
analysis.

4 THEORETICAL RESULTS

It may seem at first sight that the introduction of additional variables in the multiple shooting approach is not a good idea, as
it might increase the number of nodes in Algorithm 1. We give a counterargument to this misconception. Let us first look at
the limit case of branching on . Assume that we have q = q = q̂ for some q̂ ∈ R

nq . With the fixed initial value, we have

s0 = s0 = s0. Therefore,

xms
j,cv(t1; q̂, s0, [q, q], [s0, s0]) = xms

j,cc(t1; q̂, s0, [q, q], [s0, s0])

for all j = 1, … , nx. Updating the bounds x1, x1 in Algorithm 3 yields

s1 = s1 = xms
j,cv(t1; q̂, s0, [q, q], [s0, s0]),
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and the argument can be repeated for all si, i = 2, … , nms. With this limit case and the monotonicity of interval arithmetics,
the standard convergence discussion for Algorithm 1 with respect to q, compare Papamichail and Adjiman,17 carries over to
convergence with respect to (q, s). The convergence rate of the bound tightening can be estimated using the following theorem.

Theorem 13. (Fourth-order convergence)
There exists a constant C ∈ R+ such that for all feasible solutions (q, s) of (MS×

cv ) with given bounds q, q, x, x, to which
Algorithm 3 is applied to calculate values of 𝛼 and updated bounds s, s,

0 ≥
nx∑

j=1

𝜓(sij) ≥ −1
4
‖‖‖ si − si

‖‖‖2 ≥ −
(‖‖‖ q − q ‖‖‖4

)
(26)

for all i = 1, … , nms.

Proof. We will use
𝜙(v) = (v − v)(v − v) ≥ −1

4
(v − v)2,

the update in Algorithm 3 that gives bounds on si and si, the definitions (Equations 20 and (21)), and the fact that all 𝛼 are
continuous functions of the bounds q, q, s, s, and hence have a maximum on this bounded set. We derive for arbitrary i =
1, … , nms,

0 ≥
nx∑

j=1

(sij − sij)(sij
− sij) ≥ −

nx∑
j=1

1
4
(sij − sij

)2

≥ −1
4

nx∑
j=1

(
xms

j,cc(ti; q, si−1,,i−1) − xms
j,cv(ti; q, si−1,,i−1)

)2

= −1
4

nx∑
j=1

( nq∑
k=1

(𝛼ms,i−1,j
cc,k + 𝛼

ms,i−1,j
cv,k ) 𝜓(qk) +

nx∑
l=1

(𝛼ms,i−1,j
cc,nq+l + 𝛼

ms,i−1,j
cv,nq+l ) 𝜓(si−1l)

)2

≥ −C

( nq∑
k=1

(qk − qk)2 +
nx∑

l=1

𝜓(si−1l)

)2

We can use this for the induction base case (i = 1), as from the fixed initial values s0 = s0 = s0 follows 𝜓(s0l) = 0 and thus the
claim with the constant C = 1

4
nx max{𝛼ms,0,j

cc,k + 𝛼
ms,0,j
cv,k }, where the maximum is taken over the whole domain [q, q] and for all

j = 1, … , nx, k = 1, … , nq.
We can also use it for the inductive step by replacing

∑nx
l=1 𝜓(si−1l) using Equation 26, which yields only more and more

additional higher order terms as i increases.

Corollary 14. (No need to branch on s)
Algorithm 1, using Algorithm 3 and branching exclusively on the set  of  =  ×  , converges under the usual assumptions
of the 𝛼BB method.

This implies that no additional nodes in the Branch&Bound tree need to be considered because of the increased number of
variables, if we only branch on q. It is an open question if it can even be beneficial to branch on the variables s.

We now look at the question whether the quality of relaxations on a specific node is different between the single shooting
and multiple shooting approach. We proceed as follows: we extract the main difficulty into the following assumption and then
prove the main theorem of the paper in a rather straightforward way. Afterwards, we will discuss the following Assumption 15
that is conceptually visualized in Figure 2 in detail.

Assumption 15. (Basic assumption on dynamics and shooting grid)
Let (q*, s*) be an optimal solution for problem (MS×

cv ). Assume that for all 0 ≤ m < nms it holds

xms,m+1
cv (tm+2; q∗, s∗m+1,,m+1) ≥ xms,m

cv (tm+2; q∗, s∗m,,m), (27)

xms,m+1
cc (tm+2; q∗, s∗m+1,,m+1) ≤ xms,m

cc (tm+2; q∗, s∗m,,m). (28)
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FIGURE 2 One-dimensional illustration of Assumption 15 [Colour figure can be viewed at wileyonlinelibrary.com]

Theorem 16. (Multiple shooting gives better relaxations)
Let a control problem be given as in Definition 1 that obeys the smoothness Assumption 2, with convex single shooting and
multiple shooting relaxations as in Definitions 9 and 11. Let for the multiple shooting grid, and for all subgrids that are obtained
by removing an arbitrary number of points and thus reducing nms, Assumption 15 holds. Then multiple shooting provides a
tighter relaxation, ie,

val(MS×
cv ) ≥ val(SS×

cv ).

Proof. The proof is by induction over the number of multiple shooting nodes.
We consider first the case nms = 1. Let (q∗, s∗1) be the optimal solution of (MS×

cv ). Because of

xss
cv(t1; q∗, s0,) = xms,0

cv (t1; q∗, s0,) ≤ s∗1 ≤ s1 = x1 (29)

xss
cc(t1; q∗, s0,) = xms,0

cc (t1; q∗, s0,) ≥ s∗1 ≥ s1 = x1, (30)

q* is a feasible solution of (SS×
cv ). The variable s1 enters the linear objective with c ∈ R

nx
+ and is hence chosen componentwise

as small as possible in an optimum, s∗1 = xms,0
cv (t1; q∗, s0,). Therefore,

val(MS×
cv ) = cTs∗1 = cTxss

cv(t1; q∗, s0,) = val(SS×
cv ).

Let now nms ≥ 2 and assume that the claim is true for all multiple shooting grids with nms −1 shooting nodes, where the node
at time tm+1, 0 ≤ m ≤ nms − 1 has been removed. We denote

s′ ∶= (s1, … , sm, sm+2, … , snms
) ∈ R

nx(nms−1),

 ′ ∶= 1 × … × m × m+2 × … × nms

and define the corresponding convexified nms − 1 node multiple shooting NLP as

min
q,s′

cTsnms

subject to
si ≥ xms,i−1

cv (ti; q, si−1,,i−1), i = 1, … ,m,m + 3, … , nms

sm+2 ≥ xms,m
cv (tm+2; q, sm,,m),

si ≤ xms,i−1
cc (ti; q, si−1,,i−1), i = 1, … ,m,m + 3, … , nms

sm+2 ≤ xms,m
cc (tm+2; q, sm,,m),

si ∈ i ∶= [xi, xi], i = 1, … ,m,m + 2, … , nms,

q ∈ .

(MS× ′

cv )

This is obviously again a multiple shooting formulation like in Definition 11 and hence a convex relaxation of (MS× ′ ). To
finish the proof, we have to show that val(MS× ′

cv ) ≤ val(MS×
cv ), ie, that the underestimation of the objective function value

is better (larger, we are minimizing) with an additional shooting node. Let (q*, s*) be a solution of (MS×
cv ). Then (q∗, s∗′) is a

feasible solution of (MS× ′

cv ), if

xms,m+1
cv (tm+2; q∗, s∗m+1,,m+1) ≥ xms,m

cv (tm+2; q∗, s∗m,,m), (31)

wileyonlinelibrary.com
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xms,m+1
cc (tm+2; q∗, s∗m+1,,m+1) ≤ xms,m

cc (tm+2; q∗, s∗m,,m), (32)

because this implies a larger feasible region m+2 = [sm+2, sm+2] for the variable sm+2 in (MS× ′

cv ) when compared to (MS×
cv ),

and by means of monotonicity of interval arithmetics and validated integration also for all subsequent i, i = m+3, ..., nms. The
inequalities (Equations 31 and (32)) follow from Equations 27 and 28 in Assumption 15, concluding the proof.

We now have a closer look at the crucial Assumption 15. We focus on the underestimation (Equation (27)). Making use of
the definition (Equation (20)) of convex underestimation, the assumed inequalities are for triplets (tm, tm+1, tm+2) of neighboring
points

xms,m+1
j (tm+2; q∗, s∗m+1)+

nq∑
k=1

𝛼
ms,m+1,j
cv,k 𝜓(q∗

k )+
nx∑

l=1

𝛼
ms,m+1,j
cv,nq+l 𝜓(s∗m+1l

)

≥ xms,m
j (tm+2; q∗, s∗m) +

nq∑
k=1

𝛼
ms,m,j
cv,k 𝜓(q∗

k ) +
nx∑

l=1

𝛼
ms,m,j
cv,nq+l 𝜓(s∗ml)

(33)

for all j = 1, … , nx with solution trajectories on the time horizons [tm+1, tm+2] with initial value sm+1 and on [tm, tm+2] with
initial value sm, respectively.

The inequalities depend on q*, on s*, on the bounds in , , on the choice of time points tm, tm+1, tm+2, and on the particular
dynamics that result in the trajectories x(·) and the second-order derivatives from which the 𝛼 values are calculated. This makes
it complicated to derive conditions for an optimal choice of a time grid, especially as it would probably be applied to several or
all problems in the Branch&Bound tree, ie, for varying q∗, s∗,, .

Still, the inequalities (Equation (33)) may give rise to automatic heuristic choices of efficient multiple shooting grids. Assum-
ing that the optimal solution (q*, s*) is known for a grid that has been created on the basis of trial and error, a simulation may
validate that the inequalities (Equation (33)) and their concave counterparts hold for all triples of neighboring time points in the
multiple shooting grid. This implies that the chosen grid provides better relaxations than all subgrids with less points, includ-
ing single shooting. As (q*, s*) is the result of Algorithm 1 and hence unknown and changing through the Branch&Bound tree,
heuristic choices such as the solution of the root node problem of the Branch&Bound tree can be chosen. It is also promising
to use different multiple shooting grids for different parts of the tree, using heuristic updates based on solutions of intermediate
problems. We have not yet implemented such an algorithm, although.

We continue by motivating why Equation 33 is plausible to hold for many nodes even for random and for equidistant mul-
tiple shooting grids. As derived in the proof of Theorem 13, we know that the bounds of the multiple shooting nodes have a
fourth-order convergence, ie,

𝜓(s∗m+1l
) ≥ −1

4

nx∑
j=1

( nq∑
k=1

(𝛼ms,m,j
cc,k + 𝛼

ms,m,j
cv,k ) 𝜓(q∗

k ) +
nx∑

l=1

(𝛼ms,m,j
cc,nq+l + 𝛼

ms,m,j
cv,nq+l) 𝜓(s∗ml)

)2

This implies that at some part in the tree, the bounds s, s are so tight that

sm+1 ≈ sm+1 ≈ sm+1 ≈ xms,m
j (tm+1; q∗, s∗m)

and therefore

xms,m+1
j (tm+2; q∗, sm+1) ≈ xms,m

j (tm+2; q∗, s∗m). (34)

With the same argument, the terms
nx∑

l=1

𝛼
ms,m+1,j
cv,nq+l 𝜓(sm+1l) and

nx∑
l=1

𝛼
ms,m,j
cv,nq+l 𝜓(s∗ml) (35)

will be dominated by the relaxation terms with respect to q. Thus, we may neglect the first and the third terms in Equation 33
as we approach tighter bounds around the optimal solution, where it is well known that most of the computational workload is
concentrated because of the clustering effect, compare a number of studies.36-38 Hence, the most important part of Equation 33
is the relation

nq∑
k=1

𝛼
ms,m+1,j
cv,k 𝜓(q∗

k ) ≥
nq∑

k=1

𝛼
ms,m,j
cv,k 𝜓(q∗

k ), (36)
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and a sufficient condition for the dominance of the lower bounds would be that

𝛼
ms,m+1,j
cv,k ≤ 𝛼

ms,m,j
cv,k (37)

for all k = 1, … , nq, j = 1, … , nx and the considered q∗, s∗,, , tm, tm+1. These values 𝛼ms,m+1,j
cv,k ∈ R are given by Equation 22

and Definition 8 as − 1

2
times the minimum between 0 and

cj
d2xms,m+1

j (tm+2)

dqkdqk
−

nq∑
l≠k

||||||cj
d2xms,m+1

j (tm+2)

dqkdql

||||||
−

nx∑
l=1

||||||cj
d2xms,m+1

j (tm+2)

dqkdsm+1l

|||||| .
(38)

Because of the dependence of Equation 38 on q∗, s∗,, , tm, tm+1 and on the particular dynamics, it is still difficult to make a
general statement on the cirumstances under which Equation 33 holds. However, we note that a reduction of the absolute values
of the second derivatives at time tm+2 is likely to result in Equation 37 that implies Equation 36 that makes Equation 33 very
likely, especially close to the optimal solution. The main advantage of multiple shooting with one additional node at time tm+1

results from the fact that the initial values for the second-order sensitivities at time tm+1 are zero, compare Lemma 19. Although
there may be counterexamples where this actually leads to an increase of the values in Equation 38, for most dynamics, a
beneficial effect can be expected. This is illustrated exemplarily in Figures 4 and 5.

5 NUMERICAL RESULTS

We illustrate our findings with numerical results for an established benchmark problem. It is commonly referred to as “singular
control problem” and considered for global optimal control in a number of studies.14,39-42 Using a reformulation of the Lagrange
term and of time as additional differential states x4 and x5, respectively, and tf = 1, the problem can be stated as

min
u(·)

x4(t)
subject to

ẋ1(t) = x2(t) t ∈ [0, tf]
ẋ2(t) = −x3(t)u(t) + 16x5(t) − 8 t ∈ [0, tf]
ẋ3(t) = u(t) t ∈ [0, tf]

ẋ4(t) = x1(t)2 + x2(t)2 + 5

104

(
x2(t) + 16x5(t) − 8 − x3(t)u(t)2

10

)2
t ∈ [0, tf]

ẋ5(t) = 1 t ∈ [0, tf]
x(0) = (0,−1,−

√
5, 0, 0)

u(t) ∈ [−4, 10] t ∈ [0, tf].

(39)

All numerical calculations have been performed on a i7-5820 K processor with 16 GB RAM under Ubuntu 14.04. We use
our C++ code GloOptCon43 for the numerical study. It is based on external code in submodules, such as CVODES from the
SUNDIALS software suite in version 2.6.044 for integration, VSPODE 1.434 for the validated integration for state bounds and the
sensitivity Hessian, Ipopt 3.12.345 for the solution of NLPs, and cppad46 for automatic differentiation. It is designed to allow
a fair comparison between the single and multiple shooting versions of Algorithm 1. We define some algorithmic choices.

Definition 17. (nq discretization of the control function)
We discretize the control function u ∶ [0, tf] → R via piecewise constant functions on an equidistant grid, depending on the
total number nq of intervals, ie,

u(t) = qk ∀ t ∈ [tk−1, tk), k = 1, … , nq. (40)

We consider optimal solutions for Equations 39 based on nq discretizations with nq = 1, … , 4. The optimal objective function
values and control values found by our algorithms are listed in Table 2. They coincide with the values from Lin and Stadtherr.42

We shall compare single and multiple shooting algorithms with respect to their performance to obtain the results from Table 2.
They all use an nq discretization of the control function.
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TABLE 2 Globally optimal (for 𝜀 = 10−3) objective

function value x∗4(1) of problem 39 for an increasing number

nq of equidistant control discretization points together with

the optimal controls q*

nq x∗4(1) q*

1 0.4965 ( 4.0709 )

2 0.2771 ( 5.5748, −4.0000 )

3 0.1475 ( 8.0015, −1.9438, 6.0420 )

4 0.1237 ( 9.7890, −1.1997, 1.2566, 6.3558 )

TABLE 3 Numerical results for different nq control discretizations of

problem 39 using the methods from Definition 18

nq Control DSS DMS1 DMSnq
Intervals Iter Time Iter Time Iter Time

1 1 0.44 0 0.08 0 0.49

2 62 61.87 59 66.6 63 121.6

3 1004 2702 966 2844 782 2196

4 13904 84161 13183 81937 5902 22650

Abbreviations: DMS, direct multiple shooting; DSS, direct single shooting; NLP,

nonlinear optimization problem.Shown are the number of Branch&Bound nodes

(Iter) and the CPU time in seconds. The CPU time is strongly dominated by the

calculation of the 𝛼 values (≈ factor 200 compared to NLP solutions).

Definition 18. (Compared algorithms)
1. DSS uses Algorithms 1 and 2.
2. Direct multiple shooting with 1 shooting interval (DMS1) uses Algorithms 1 and 3 with a multiple shooting grid with

nms = 1 multiple shooting interval. This approach can also be seen as DSS with one extra variable vector stf for x(tf) and was
proposed in Papamichail and Adjiman.16

3. Direct multiple shooting (DMSnq) uses Algorithms 1 and 3 with a multiple shooting grid with nms = nq equidistant multiple
shooting intervals. In our comparison, the multiple shooting grid is chosen identical to the equidistant grid {t0, t1, … , tnq} of
the control discretization.

In the interest of a fair comparison, we do not use special branching rules or heuristics.

Table 3 shows computational results. The DSS and DMS1 show a similar behavior as can be expected, because the objective
is linear and there are no end point constraints. In comparison, the number of iterations of DMSnq is significantly better as the
numbers of control variables nq and multiple shooting intervals nms = nq increase. Note that the time difference between the
equivalent approaches DMS1 and DMSnq for nq = 1 is due to a technical issue (s0 is included as a degree of freedom although
it is fixed and causes thus computational overhead). The reduced number of iterations of multiple shooting compared to single
shooting is due to the tighter relaxations of the nonconvex dynamics. Figure 3 shows the development of the lower bounds,
highlighting the practical impact of Theorem 16.

To gain more insight, we compare the lower bounds for some selected choices of  in Table 4. Corresponding intervals i are
determined via the propagated updates in Algortihm 3. For the full domain [−4, 10]nq , DSS results in very weak lower bounds
for all choices of nq. This can be explained with the quadratic convergence behavior due to the 𝛼BB terms 𝜓(qi) ≥ − 1

4
(qi − qi)2.

It is remarkable, although, how the introduction of additional multiple shooting nodes improves the bounds. Also for tighter
domains, Table 4 reveals how much the multiple shooting approach DMSnq dominates single shooting in terms of the quality
of relaxations as nq = nms increases. It is especially encouraging that the bounds are significantly tighter close to the optimal
solution q* as prognosed in Section 4, because it is well known that the clustering effect causes many iterations in a neighborhood
of the optimum.

As motivated above, this dominance of lower bounds is guaranteed if Equation 33 holds, and is more likely, if the relaxation
factors are dominated for which the second-order sensitivities (Equation (38)) are decisive. The involved tensors are difficult to
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FIGURE 3 Evolution of lower bounds for the global optimum of problem 39 with 3 (left) and 4 (right) equidistant control discretizations between

DMS1 and DMSnq. It becomes obvious how the multiple shooting approach with larger nms dominates the case with only one shooting interval.

DMS indicates direct multiple shooting

TABLE 4 Lower bounds on the solution of problem 39 for specific

choices of 
nq [qi, qi] ∀i DSS DMS1 DMSnq

1 [−4, 10] −0.735976 0.496546 0.496546

[−4,−3.95] 128.981 128.981 128.981

[−9.95, 10] 138.949 138.949 138.949

q∗i + [−1; 1] 0.496545 0.496546 0.496546

q∗i + [−0.1; 0.1] 0.496545 0.496546 0.496546

q∗i + [−0.01; 0.01] 0.496545 0.496545 0.496545

3 [−4, 10] −906.238 −187.834 −187.834

[−4,−3.95] 128.981 128.981 128.981

[−9.95, 10] 138.949 138.949 138.949

q∗i + [−1; 1] −0.767086 −0.319456 −0.312031

q∗i + [−0.1; 0.1] 0.146103 0.146104 0.146709

q∗i + [−0.01; 0.01] 0.147468 0.147469 0.147474

6 [−4, 10] −993.86 −252.515 −169.889

[−4,−3.95] 128.981 128.981 128.981

[−9.95, 10] 138.949 138.949 138.949

q∗i + [−1; 1] −0.605863 −0.250872 −0.053446

q∗i + [−0.1; 0.1] 0.120369 0.12037 0.12185

q∗i + [−0.01; 0.01] 0.122361 0.122362 0.122381

Abbreviations: DMS, direct multiple shooting; DSS, direct single shooting.

visualize, obviously. In Figures 4 and 5, we show selected trajectories for the choice of DMSnq with nq = nms = 4 and for the
particular entry j = 4 of the state vector (because the right-hand side of x4(t) in problem 39 is the most interesting one).

In Figure 4, the shown trajectories for DMS1 and DMS4,

d2xss,i
j (t;)

ds0kds0l
and

d2xms,i
j (t;,i)

dsikdsil
for i = 0, … , nms − 1, (41)

illustrate exemplarily to what extent the “resetting” of the initial values

d2xms,i
j (ti;,i)

dsikdsil
= 0
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FIGURE 4 Comparison between DMS1 ( ) and DMS4 ( ). Plot of selected trajectories (Equation (41)) for j = 4, k = 3 and different

values l = 1 … 3 (from left to right). The single shooting trajectories grow exponentially over the whole time horizon, the multiple shooting

trajectories on smaller subintervals. DMS indicates direct multiple shooting

FIGURE 5 Comparison between DMS1 ( ) and DMS4 ( ) for selected second-order sensitivities (Equation (42)) for l = 1, … , 5 (left to

right) and of Equation 43 (bottom right), all for j = 4. Note that in each plot for both DMS1 and DMS4, 4 trajectories can be seen that correspond to

derivatives with respect to the discretized control function u(t) = qi∀t ∈ [ti, ti+1], with i = 0, … , nms − 1 = 3. This is different from Figure 4 where

only derivatives with respect to s0 occur in DMS1, but with respect to (s0, s1, s2, s3) in DMS4. DMS indicates direct multiple shooting

at the multiple shooting times ti reduces the amplitude of the decisive underestimations and overestimations at the end time tf,
compared to the exponentially growing single shooting sensitivities. In all plots, DMS1 corresponds to single shooting, DMS4
to multiple shooting.

In Figure 5, we have a look at one particular row of the tensor belonging to j = 4 and the control discretization q with
trajectories

d2xss,i
j (t;)

dqids0l
for i = 0, … , nms − 1 and

d2xms,i
j (t;,i)

dqidsil
for i = 0, … , nms − 1 (42)

on the off-diagonals and with

d2xss,i
j (t;)

dqidqi
for i = 0, … , nms − 1 and

d2xms,i
j (t;,i)

dqidqi
for i = 0, … , nms − 1 (43)

on the main diagonals.
Figure 5 reveals interesting properties. First and most important for the better performance, the magnitude of the second-order

sensitivities with respect to (q0, q1, q2) (not for q3, obviously!) is drastically reduced, as in Figure 4 for the pure state derivatives.
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FIGURE 6 Prototypical evolution of 𝛼 values within the 𝛼BB tree of DMS4. For different leave nodes (ie, nodes that have been pruned), the

averaged 𝛼 values are plotted for all parent nodes, starting with the root node with depth 0. Shown are 𝛼cv (positive) and 𝛼cc (negative) for the

different shooting intervals, 1 ( ), 2 ( ), 3 ( ), and 4 ( ). One observes that in this example, the 𝛼 values are monotonically dominated

by early time intervals. This monotonicity may be broken because of the branching, as in the rightmost plot. The behavior of the left plot is more

representative for most nodes in the tree, although. The 𝛼 values are “monotonically constant,” ie, they do not change if the value of the next

intervals does not change. This is due to the particular branching decision, because both i and i only affect time intervals j ≥ i

For the case l = 4, all trajectories are identical zero, as the artificial state x4(t) does not enter the function f(·). For l = 1 at
time t = 0.25, one sees that it is possible that the resetting of the initial value is outside of the bounds of the single shooting
approach, which may theoretically result in a worse value for 𝛼 even for quasi-monotone functions. One also observes that
the estimations for identical values of i differ, sometimes significantly. For example, for dq2dq2, single shooting shows poor
performance with respect to the lower bound. These deviations between DMS1 and DMS4 are related to the performance of the
validated integration, where wrapping effects and the impact of the system size on Taylor approximations play a crucial role. It
would be interesting to study such differences also in the context of other approaches, such as Chebyshev enclosures.47

Figure 6 shows how the 𝛼 values change within the Branch&Bound tree for DMS4. One sees prototypically the monotonic
decrease of the relaxation factors due to branching.

6 EXTENSIONS

The applicability of the proposed multiple shooting approach is not restricted to the problem class 1, but can be further general-
ized. There are several straightforward extensions, ie, problem formulations to which our discussion of advantages of multiple
shooting can be applied as well, such as

• an explicit dependence of the function f(·) on time t thatcan be included via an artificial state xnx+1 as done for problem 39;
• model parameters p that are either fixed and can then be regarded as part of the functions or degrees of freedom and can be

included in the vector q;
• continuous control functions u ∶  → Rnu or integer control function v ∶  → {v1, … , vn𝜔}, see one study,48 which both

can be approximated arbitrarily close using the finite-dimensional control vector q and basis functions; and
• more general boundary conditions and free initial values s0, as well as multistage formulations.

An extension is also possible towards

• mixed path-control constraints g ∶ R
nx×nq → R

ng via g(x(t), q)) ≤ 0,
• bounded nonconvex sets  and  , and
• nonlinear objective functionals of Bolza type.

Here, further convexifications of the occurring sets and functions in the spirit of the relaxed problem (NLP
cv) are nec-

essary, eg, gcv(x(t), q) ≤ 0. Even if it is possible to obtain an equivalent formulation of type 1, eg, by introducing an
additional artificial state variable for the nonlinear Lagrange term, this should be done with special care, as function compo-
sition and relaxation do not commute. An important assumption for the applicability of our approach is the boundedness of 
and  .

In the interest of a clear presentation, we focused on the most important aspect of our novel approach, a multiple
shooting-based convex relaxation of the nonconvex dynamics. In the PhD thesis,43 further algorithmic extensions have been
studied that we list here for completeness. They comprehend

• more efficient ways to calculate 𝛼 on the basis of an adaptively scaled Gershgorin approach;
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• a motivation why it is beneficial to choose the multiple shooting time grid identical to the control discretization grid and
a more detailed analysis that takes the local influence of control function variables qi only on time intervals [ti, ti+1] into
account;

• a reduced space heuristic, which neglects the terms 𝛼
ms,i,j
·,nq+l 𝜓(sil) in Equations 20 and 21, motivated by the fourth-order

convergence shown in Theorem 13 (this heuristic found the global optimum for all studied examples in a runtime orders of
magnitude below the full space approaches);

• a fast bounds strategy, which keeps 𝛼 values constant for several iterations in the Branch&Bound tree: Updating 𝛼 based on
the second-order interval sensitivities is significantly more expensive in global optimal control compared to calculating an
interval Hessian in nondynamic global optimization. Therefore, it is even more tempting to speed up the runtime by infrequent
updates of 𝛼, relying on the fact that the underestimators and overestimators are still getting better in each iteration because
of the tightened variable bounds. We observed a considerable speed up of the overall runtime at the expense of the number
of iterations;

• pure constraint propagation for a lower bound and periodic local solution of the problem with the tightened bounds for an
upper bound, as suggested in one study42 as an alternative to 𝛼BB. The method has the advantage to avoid the costly validated
integration of second derivatives and the disadvantage of more iterations due to the weaker bounds. It is problem-dependent
when this approach is competitive to 𝛼BB (actually, it outperforms the 𝛼BB approach for problem 39 concerning runtime),
but obviously independent from our comparison of single vs multiple shooting.

For details, we refer to.43

7 SUMMARY

We presented a novel method to globally solve a general class of optimal control problems in a rigorous way. We showed that
no additional nodes occur despite the higher number of optimization variables, and under which conditions, the obtained lower
bounds are better than for the standard approach. The main building blocks are the fourth-order convergence of the bounds of
the introduced variables and a reset of the initial values on selected time points of the integration horizon. The superiority has
been illustrated with a benchmark problem from the literature.
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APPENDIX

The following result is well known and used in the context of dynamic optimization, eg, Bock.49

Lemma 19. (First- and second-order sensitivities)
Let Assumption 2 holds, indices i ∈ {0, … , nms − 1} and j ∈ {1, … , nx} be given, and let x(·; q, si) be the solution trajectory
to the differential equation

ẋ(t) = f (x(t), q), x(ti) = si

as specified in Definition 4. For k = 1, … , nq and l = 1, … , nx the trajectories dxj(·;q,si)
dqk

∶  → R and dxj(·;q,si)
dsil

∶  → R are
solutions of the differential equations

d
dt

dxj(t; q, si)
dqk

=
𝜕fj(x(t), q)

𝜕x
dx(t; q, si)

dqk

+
𝜕fj(x(t), q)

𝜕qk
,

dxj(ti; q, si)
dqk

= 0,

(A1)

d
dt

dxj(t; q, si)
dsil

=
𝜕fj(x(t), q)

𝜕x
dx(t; q, si)

dsil
,

dxj(ti; q, si)
dsil

= 𝛿jl, (A2)

respectively, and the trajectories hms,i,j
qk ,sil

(·; q, si) ∕ cj =
d2xj(·;q,si)

dqkdsil
∶  → R are solutions of

d
dt

d2xj(t; q, si)
dqkdsil

=
dx(t; q, si)

dqk

T 𝜕2fj(x(t), q)
𝜕x2

dx(t; q, si)
dsil

+
𝜕2fj(x(t), q)

𝜕qk𝜕x
dx(t; q, si)

dsil

+
𝜕fj(x(t), q)

𝜕x
d2x(ti; q, si)

dqkdsil
,

d2xj(t; q, si)
dqkdsil

= 0.

(A3)

For k, l = 1, … , nx the trajectories hms,i,j
sik ,sil

(·; q, si) ∕ cj =
d2xj(·;q,si)

dsikdsil
∶  → R are solutions of

d
dt

d2xj(t; q, si)
dsikdsil

=
dx(t; q, si)

dsik

T 𝜕2fj(x(t), q)
𝜕x2

dx(t; q, si)
dsil

+
𝜕fj(x(t), q)

𝜕x
d2x(ti; q, si)

dsikdsil
,

d2xj(t; q, si)
dsikdsil

= 0.

(A4)

For k, l = 1, … , nq the trajectories h·,jqk ,ql
(·; q, si) ∕ cj =

d2xj(·;q,si)
dqkdql

∶  → R are solutions of

d
dt

d2xj(t; q, si)
dqkdql

=
dx(t; q, si)

dqk

T 𝜕2fj(x(t), q)
𝜕x2

dx(t; q, si)
dql

+
𝜕2fj(x(t), q)
𝜕qk𝜕ql

+
𝜕2fj(x(t), q)

𝜕ql𝜕x
dx(t; q, si)

dqk

+
𝜕2fj(x(t), q)

𝜕qk𝜕x
dx(t; q, si)

dql

+
𝜕fj(x(t), q)

𝜕x
d2x(t; q, si)

dqkdql
,

d2xj(ti; q, si)
dqkdql

= 0.

(A5)
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Proof. Follows directly from derivatives of the trajectory

x(t; q, si) = si + ∫
t

ti
f (x(t), q) d𝜏

with respect to time and to (q, s) and from inserting t = ti in these expressions to determine the initial values.

Note that a numerical integration of the differential equations must be carefully implemented, eg, obeying the principle of
internal numerical differentiation.18,50
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