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Acute lymphoblastic leukemia is the most common malignancy in childhood and requires prolonged oral
maintenance chemotherapy to prevent disease relapse after remission induction with intensive intravenous
chemotherapy. In maintenance therapy, drug doses of 6-mercaptopurine (6-MP) and methotrexate (MTX)
are adjusted to achieve sustained antileukemic activity without excessive myelosuppression. However,
uncertainty exists regarding timing and extent of drug dose responses and optimal dose adaptation
strategies. We propose a novel comprehensive mathematical model for 6-MP and MTX pharmacokinetics,
pharmacodynamics and myelosuppression in acute lymphoblastic maintenance therapy. We personalize
and cross-validate the mathematical model using clinical data and propose a real-time algorithm to predict
chemotherapy responses with a clinical decision support system as a potential future application.

Keywords: childhood acute lymphoblastic leukemia; chemotherapy; maintenance therapy; ordinary
differential equations; parameter estimation; real-time algorithm;.

1. Introduction

Acute lymphoblastic leukemia (ALL) is the most common cancer in children, comprising approximately
25% of all childhood malignancies. ALL is characterized by the overproduction and accumulation
of immature, abnormal white blood cells (WBCs; lymphoblasts) and consecutive displacement of
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472 T. T. T. LE ET AL.

normal haematopoiesis. Current treatment schedules for childhood ALL are based on combination
chemotherapy and achieve long-term survival in >90% of children (Hunger et al., 2015). With some
international variation, all major treatment protocols start with intensive, high-dose treatment for
approximately 6 months (so-called induction and consolidation therapy) followed by less-intensive,
low-dose treatment (so-called maintenance therapy) until 2–3 years after disease onset. While severe
therapy-induced myelosuppression and frequent associated hospitalizations are acceptable up to a
certain level during lymphoblast elimination in intensive treatment periods, maintenance therapy aims to
achieve sustained antileukemic activity against lymphoblasts below the limit of detection, with minimal
impact on quality of life due to adverse effects. The importance of maintenance therapy for patient
survival has been proven and non-adherence and reduced cumulative drug exposure during maintenance
therapy are associated with decreased survival (Schmiegelow et al., 2009).

The backbone of maintenance therapy includes daily oral 6-mercaptopurine (6-MP) and weekly oral
methotrexate (MTX) administration. Drug doses are adjusted at the discretion of the treating physicians
to achieve WBC suppression without unintended myelotoxicity according to treatment protocol-specific
target ranges (i.e. the treatment protocol AIEOP-BFM 2009 specifies a WBC target range of 1.5–3.0
× 103/μl and recommends dose reduction for WBC counts <1.5 × 103/μl, neutrophils <500/μl,
lymphocytes <300/μl and platelets <50 × 103/μl) (Balis et al., 1998; Schmiegelow et al., 2014).
To this end, peripheral blood sampling is performed regularly (most often weekly in the first months
of maintenance therapy) and drug doses are changed accordingly. However, considerable uncertainty
exists with respect to the exact drug dose response on myelosuppression and the timing of dose
adjustments and resulting changes in peripheral blood counts. Both 6-MPand MTX are regarded as
prodrugs which undergo intracellular metabolism after oral application (Schmiegelow et al., 1994,
2014). MTX is catalysed by the enzyme folylpolyglytamyl transferase to cytotoxic MTX polyglutamates
(MTXPGs). Likewise, 6-MP is converted to several metabolites before interfering with DNA synthesis
(Lennard et al., 1992). The metabolic pathway leading to active cytotoxic 6-thioguanine nucleotides
(6-TGNs) by the enzyme hypoxanthine-guanine phosphoribosyltransferase (HGPRT) results in the
antileukaemic effect desired in maintenance therapy (Schmiegelow et al., 1995). However, large
interpatient variability in bioavailability of 6-MP and MTX has been reported (Kearney et al., 1979;
Zimm et al., 1983; Arndt et al., 1988; Balis et al., 1998) and their major cytotoxic metabolite con-
centrations are associated with treatment outcomes (Lilleyman et al., 1994; Schmiegelow et al., 1995;
Ebbesen et al., 2017).

In clinical practice, adjustment of maintenance therapy drug doses to desired WBC suppression
levels (i.e. 1.5–3.0 ×103/μl WBCs) is challenging. The complex pharmacokinetics (PKs) and phar-
macodynamics (PDs) of 6-MP and MTX and their interplay with a child’s bone marrow recovering
from ALL induction and consolidation therapy are insufficiently represented with current treatment
recommendations (i.e. reduce dose if WBCs <1.5×103/μl and increase dose if WBCs >3×103/μl). We
believe that personalized mathematical modelling has huge potential benefits in this context. This may
lead to a better understanding of drug response (i.e. to the nonintuitive dynamics of children’s individual
haematopoiesis and immune systems). Eventually, this may lead to improved therapy schedules and
clinical decision support systems. However, cross-validated mathematical models with a high predictive
accuracy have not yet been implemented.

Various aspects of ALL treatment during maintenance therapy have been studied in the literature.
PKs and PDs of 6-MP, MTX and their interaction were investigated in Balis et al. (1987, 1998);
Innocenti et al. (1996); Giverhaug et al. (1999); Dervieux et al. (2002). Physiologically-based
pharmacokinetic modelling of 6-MP and MTX was introduced in detail in Ogungbenro et al. (2014a,b).
However, this approach leads to high-dimensional and over-parameterized models. Multi-compartment

D
ow

nloaded from
 https://academ

ic.oup.com
/im

am
m

b/article/36/4/471/5136501 by M
edizinische Zentralbibliothek / U

niversitaet M
agdeburg user on 06 N

ovem
ber 2020



MODELLING WBC DYNAMICS OF CHILDHOOD ALL 473

models describing the PK of 6-MP, MTX and their metabolism were presented in Jayachandran et al.
(2014) and Panetta et al. (2002, 2010). The gold standard compartment model of Friberg et al.
(2002) has been used widely to describe chemotherapy-induced leukopenia for different types of
diseases (Sandstrom et al., 2005; Jayachandran et al., 2014; Rinke et al., 2016). To our knowl-
edge, the only attempt to model the dynamics of WBCs during ALL maintenance therapy was
conducted in Jayachandran et al. (2014). They investigated chemotherapy toxicity due to 6-MP in a
virtual dataset.

In this paper, we introduce a PK/PD model of chemotherapy-induced leukopenia during maintenance
therapy of childhood ALL. In particular, we consider the PK effect of the standard treatment with
combined 6-MP and MTX. Clinical data to personalize and cross-validate mathematical models were
provided by the Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen,
Germany and the Department of Pediatric Hematology and Oncology, University Hospital Dresden,
Germany. We show that the proposed model is able to predict the time course of WBC counts following
chemotherapy using a moving horizon/iterative parameter estimation (PE) algorithm.

2. Methods

2.1 Data description

We used retrospective patient data from children diagnosed with de novo ALL at the University
Hospitals in Erlangen and Dresden and treated according to the AIEOP-BFM 2000 and 2009 protocols.
Patients were eligible if they were diagnosed with precursor B-cell or T-cell ALL, negative for the BCR-
ABL- and MLL-AF4-translocations and did start maintenance therapy (i.e. did not relapse before the
end of consolidation therapy and did not undergo stem cell transplantation). During AIEOP-BFM 2000
and 2009 maintenance therapy, patients received oral chemotherapy with daily 6-MP and once-weekly
MTX until 2 years after ALL diagnosis. Timing and dosage of chemotherapy were adjusted by the
treating physicians to keep WBC counts within a protocol-specified target range of 1.5–3.0 × 103/μl.
Dosage was reduced when cell counts fell below lower limits (WBC count <1.5 × 103/μl, neutrophils
<500/μl, lymphocytes <300/μl and platelets <50 × 103/μl) or liver toxicity was suspected. For each
patient included in the analysis, the following variables were recorded: prescribed 6-MP and MTX
dosage (absolute and per body surface area), WBC count, platelet count, lymphocyte and neutrophil
counts and therapy interruptions.

After exclusion of patients with complications due to infections and irregular and/or missing
measurements, a subset of nine patients (five boys, age range 2–9) was selected using visual inspection
(Table 1). Figure 1 shows the corresponding WBC counts, the target range and chemotherapy schedules.

2.2 Development of mathematical models

In this section, the PK models of 6-MP, MTX and their corresponding cytotoxic metabolites 6-TGNs
and MTXPGs and the resulting PK/PD model of chemotherapy-induced leukopenia are introduced. The
models comprise systems of ordinary differential equations (ODEs) together with initial conditions. The
concentrations of 6-TGNs and MTXPGs used to represent their cytotoxic effect are fully incorporated
into the PK/PD model. We tested several different mathematical models, varying initial values and
penalizing deviations of parameter values from reference values. Numerical results were evaluated
on small-time horizons with respect to visual assessment of solutions. The chosen model, which we
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474 T. T. T. LE ET AL.

Fig. 1. Underlying clinical data with treatment days on the x-axis [days]. Rows 1, 3 and 5 show measured WBC counts in
[×103/μl] with the therapeutic target range of 1.5–3.0 ×103/μl in grey. Rows 2, 4 and 6 show the corresponding absolute drug
doses of 6MP (·) and MTX (+) in [mg]. A high variability of WBC counts and a considerable proportion of WBC counts outside
the target range are observed.
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MODELLING WBC DYNAMICS OF CHILDHOOD ALL 475

Fig. 2. Schematic 6-MP and 6-TGN model.

describe in the following, performed best and was eventually cross-validated with a moving horizon
approach over the full-time horizon.

2.2.1 6-MP and 6-TGN model. A simplified version of the compartment model in Jayachandran et al.
(2014) is used to describe PK of 6-MP and 6-TGNs. A diagram of the model is depicted in Fig. 2. In
particular, 6-MP is absorbed at the rate ka into plasma after oral intake to the gastrointestinal (GI) tract.
From plasma, it is partly excreted at the rate ke and gets into red blood cells (RBCs). Here, it undergoes
intracellular metabolism. 6-MP is metabolized by HGPRT and other enzymes at the rates kpt and kpm,
respectively. Finally, 6-TGNs is assumed to be eliminated from RBC at the rate kte. Since the 6-MP
concentration in RBCs is negligible (Hawwa et al., 2008), we assumed that it is metabolized as soon as it
enters RBC. Moreover, only the metabolic pathway leading to 6-TGNs by HGPRT is modelled in detail
since 6-TGNs are the primary mediators of the cytotoxic effect of 6-MP through their incorporation as
false nucleotides into DNA (Schmiegelow et al., 1995). The mathematical model is

ẋ1 = −kax1 + αFD6MP(t)

Tdur
,

ẋ2 = kax1 − kex2 − kpt(1 − erel)x2

Kt + x2
− kpmerelx2

Km + x2
,

ẋ3 = vptkpt(1 − erel)x2

Kt + x2
− ktex3

(2.1)

with initial values

x1(0) = x2(0) = x3(0) = 0. (2.2)
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476 T. T. T. LE ET AL.

The 6-MP control function D6MP(t) is defined as

D6MP(t) =
{

Di, t ∈ [ti, ti + Tdur] if an amount of 6-MP dose Di was taken at time ti,

otherwise 0.

Notice that vpt is used only for unit consistency. Since our clinical data does not contain concentration
measurements of 6-MP and 6-TGNs, most values of parameters appearing in the 6-MP and 6-TGNs
model (2.1) are taken from Jayachandran et al. (2014) and are used for all patients. Simulations show
that Tdur does not have a strong effect on the concentration of 6-TGNs in RBCs. Moreover, due to
large interpatient variability in bioavailability of 6-MP (see Zimm et al., 1983; Arndt et al., 1988; Balis
et al., 1998), F and Tdur are assigned to values of 0.45 and 1/24, respectively. These values will be
used for MTX as well for the same reason. All state variables and parameters of (2.1) are described and
summarized in Tables 2 and 3.

2.2.2 MTX and MTXPG model. The mathematical model describing PK of MTX and its metabolites
MTXPGi (i = 1, . . . , 7 is the number of glutamates attached to each MTX molecule) is based on the
previous work of Panetta et al. (2002, 2010), where its detailed description and assumption can be
found. A schematic illustration of the model is displayed in Fig. 3. The extracellular PK of MTX after
oral intake to the GI tract were presented by a two-compartment model in Panetta et al. (2002, 2010),
but were not fully described. In this work, it is simplified and encompassed by a one-compartment
model with first-order absorption, see the upper part of Fig. 3 or the first two equations in (2.3). The
simplification is explained in Remark 2.1. The mathematical model is the system of ODEs

ẋ4 = −kax4 + βFDMTX(t)

Tdur BSA
,

ẋ5 = kax4 − kex5,

ẋ6 = VmIx5/V

KmI + x5/V
+ kpx5

V
− Keff x6 − Vm−fpgsx6

Km−fpgs + x6
+ Kgghx7,

ẋ7 = Vm−fpgsx6

Km−fpgs + x6
− Kgghx7

(2.3)

with initial values

x4(0) = x5(0) = x6(0) = x7(0) = 0. (2.4)

The definition of the drug control function DMTX(t) is similar to that of D6MP(t) and following (Du Bois
et al., 1989), we calculate the body surface area as BSA = W0.425H0.72571.84 with a patient’s weight
W and height H. The last term in the first equation of (2.3) is divided by BSA for unit consistency.

As in the 6-MP case, measurements of MTX and MTXPG1−7 are not available. We set most model
parameters in (2.3) to values from the literature (Panetta et al., 2010, Table 2). The values of ka, ke
are obtained via PE based on measurements of MTX concentration reported in Pinkerton et al. (1980).
All state variables and parameters of (2.3) are summarized in Tables 4 and 5.

Remark 2.1 In this work, we investigated the two-comparment model for MTX from Panetta et al.
(2010) and its simplified (one-compartment) version. We concluded that the obtained results of the
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MODELLING WBC DYNAMICS OF CHILDHOOD ALL 477

Fig. 3. Schematic MTX and MTXPG model.

PK/PD model did not differ significantly between both PK models since MTX in plasma (only this
compartment has a direct effect on the intracellular compartments) was manipulated by the changes of
ka and ke, accordingly. The drug concentrations for the considered patients are not available. Moreover,
the focus of this paper is not on estimating MTX parameters, but on encompassing several models to
describe the treatment outcomes during ALL maintenance therapy. Therefore, we decided to use a one-
compartment model for simplicity. Regarding the estimation of ke and ka (based on the measurements
in Pinkerton et al., 1980), first the elimination half-life was fixed to a value from a range provided in
the literature, e.g. Bleyer (1978). Then, the area under curve (AUC) was computed by the trapezoid
rule (based on the provided measurements) and extrapolation to obtain AUC from the last known
concentration to infinity.

2.2.3 Model of chemotherapy-induced leukopenia. We present a mathematical model that is based on
the gold-standard myelosuppression model (Friberg et al., 2002) that has previously been successfully
applied in the context of chemotherapy treatment (Kloft et al., 2006; Netterberg et al., 2012; Quartino
et al., 2012; Pefani et al., 2013, 2014; Rinke et al., 2016). We use five compartments, see Fig. 4.
The proliferating compartment describes stem cells and progenitor cells which are sensitive to
chemotherapeutic agents and are able to self-renew at the rate kprol. The next three transit compartments
describe the maturation process of cells and are used to account for the delay time between observed
effect and drug administration. The transition rate between compartments is set to ktr. The last
compartment illustrates circulating or mature WBC, which die at the rate kcirc due to apoptosis. Cells

in the last four compartments are assumed to be drug insensitive. The feedback mechanism

(
Base

x12

)γ

manipulates the mitosis rate by taking the information about the number of circulating cells into account.
During ALL maintenance therapy, blood samples are commonly taken once per week or less frequently,
resulting in a sparse dataset. To improve the identifiability of model parameters, kcirc is assigned to
kcirc = 0.5346/day as in Jayachandran et al. (2014) since it is less sensitive in comparison with the
other parameters in (2.5). Furthermore, kprol = ktr at steady state, therefore kprol is set to ktr. The loss
of proliferating cells due to chemotherapy is included by a log-linear function Edrug. Since the active
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478 T. T. T. LE ET AL.

Fig. 4. Schematic model of chemotherapy-induced leukopenia.

intracellular metabolite concentrations of MTX (MTXPGs) and 6MP (6-TGNs) are associated with the
treatment outcome of ALL (Lilleyman et al., 1994; Schmiegelow et al., 1995; Ebbesen et al., 2017),
they are incorporated into the WBCs’ dynamics via Edrug instead of their direct drug concentrations in
plasma. Additionally, long-chain MTXPGs are known to be more likely to exert antileukemic effects
than MTX and short-chain MTXPGs (Masson et al., 1996). For a two-drug schedule, the contribution of
the component drugs to the total effects remains unclear. Thus, it is assumed to contribute equally in this
work. Therefore, Edrug = ln (slope ( p6MPx3+pMTXx7)/1000+1) is chosen with the constants p6MP = 1
and pMTX = 1 for unit consistency. The model can be written as (2.5). The detailed description of the
state variables and model parameters are listed in Tables 6 and 7.

ẋ8 = kprol x8(1 − Edrug)

(
Base

x12

)γ

− ktr x8,

ẋ9 = ktr(x8 − x9),

˙x10 = ktr(x9 − x10),

˙x11 = ktr(x10 − x11),

˙x12 = ktrx11 − kcircx12.

(2.5)

We assume that the WBCs oscillate around the steady-state value. Therefore, the initial values of (2.5)
are commonly chosen as follows (Quartino et al., 2012):

x8(0) = x9(0) = x10(0) = x11(0) = Base ∗ kcirc

ktr
, x12(0) = Base. (2.6)

2.3 Parameter estimation

The dataset described in Section 2.1 contains patients’ physiological data and their WBC counts over
time. This allows us to estimate patient-specific parameters of (2.5) by fitting predicted WBC counts to
real-world measurements. A general mathematical formulation of a PE problem is typically stated as

min
θ

F(x, θ) s.t. ẋ(t) = f (x(t), θ), x(0) = x0, (2.7)

where θ is a vector of unknown model parameters which need to be estimated. The objective functional
F(x, θ) models deviations between model response and real-world measurements. Optimal model
parameters θ∗ are obtained as a solution of (2.7).
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MODELLING WBC DYNAMICS OF CHILDHOOD ALL 479

2.4 Adaptive PE approach

The clinical dataset contains weekly or bi-weekly WBC measurements. As soon as new measurements
arrive, they can be taken into consideration to update model parameters θ . We propose to use an adaptive
PE procedure to allow model parameters θ to slightly vary over time. This is meant to account for
systematic changes over time due to children’s physiological development with age and dynamics after
long-term chemotherapy. Practically, we only consider the most recent Nm measurements. Alternatively,
monotonically increasing scaling factors (in time) could be used. In every iteration k = 1, 2, . . ., we solve
a PE problem over the time horizon [tk

0, tk
f ]

min
θk

Nm∑
i=1

(
x12(t

k
i ; θk) − mk

i

σi

)2

+
4∑

i=1

εk
i

(
θk−1

i − θk
i

)2
s.t. (2.1, 2.3, 2.5), x

(
tk
0

) = xk
0. (2.8)

The first term in the objective models is the least squares error between Nm measured WBC counts mk
i

at times tk
i and the corresponding calculated model response x12(t

k
i ; θk). This model response depends

on the unknown personal model parameters θk = (slopek, kk
tr, Basek, γ k) in iteration k. The variances

are chosen as σi = σ = 0.04 M with i = 1, . . . , Nm and mean value M. To avoid unrealistically large
changes in the model parameters from one iteration to the next, we penalize deviations between θk−1

and θk with a second term in the objective. We use the zero vector as θ0 to favor parameters with small
values. Once the methodology has been established and applied to several patients, population-based
parameter values can be used to initialize θ0. The penalized vector is chosen as ε1 = (0.1, 0.1, 0.1, 0.1)

and εk = (20, 0.5, 0.5, 0.5) with k > 1 to produce a stable evolution of the estimated parameters. The
initial values of the state variables x in (2.1, 2.3, 2.5) are set to fixed values xk

0. For k = 1, the initial
values specified in (2.2, 2.4, 2.6) are used. For k > 1, they are set to the corresponding state values
xi(t

k−1
1 ; θk−1) of the previous iteration k − 1. Note that tk

0 = tk−1
1 .

The ODE system (2.1), (2.3) and (2.5) is discretized with a fourth-order Runge–Kutta scheme. The
resulting PE problem (2.8) should be solved with a Generalized Gauß–Newton method (Bock, 1987).
In our prototype implementation, we used the sequential quadratic programming method in Matlab’s
fmincon. The main steps of the adaptive PE algorithm are summarized in Algorithm 2.1.

Algorithm 2.1
FOR k = 1, 2, . . .

(a) Set up (2.8) with the measurement set MNm
= {mk

1, . . . , mk
Nm

} and calculate initial values x(tk0).

(b) Solve (2.8) and obtain updated parameters θk.

(c) Predict future WBC dynamics.

There is a vast existing literature on the adaptive PE approach or in other words the moving horizon
approach. The readers can refer to Kühl et al. (2011) and references therein for more details.

2.5 Statistical methods

To assess how well the model (2.5) is able to capture the time course of WBC counts with the estimated
values of the patient-specific parameters obtained as a solution of (2.8), simulations over a prediction
horizon are conducted to produce the predicted WBC counts over time. The predictability of (2.5) is
evaluated by comparing model response with real-world measurements at the corresponding time points.
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480 T. T. T. LE ET AL.

In particular, the standard deviation (Sd) of the differences between the real-world measurements and the
predicted WBC counts is computed for each patient. Moreover, the paired two-sample t-test is carried
out to calculate p-values (see e.g. Jeremy et al., 2014). Model response and real-world measurements
are two paired samples. In this scenario, we want to test the assumption that the chemotherapy-induced
leukopenia model (2.5) is able to predict WBC count over a certain time horizon. Therefore, the null
hypothesis is that the differences between the paired samples were drawn from a normal distribution
with zero mean.

3. Numerical results

There are several types of uncertainty involved, when Algorithm 2.1 is applied to clinical data including
measurement errors, measurement frequency and modelling and algorithmic (numerical) errors. We
consider both virtual and clinical data to get a better understanding of their influence.

Fig. 5. Algorithm 2.1 applied to virtual data. Virtual WBC counts [×103/μl] and estimated state trajectories x12(t) for
measurement days on the x-axis (daily monitoring) are shown. Estimated (red line) and predicted (green line) trajectories
almost coincide with the true profile (black line). The left and right (zoomed-in) figures display the results after one and five
iterations, respectively. The adaptive PE approach remains stable over iterations and the uncertainty (shaded) region covers most
measurements. The x- and y-axes represent measurement schedule [days] and WBC count [×103/μl ], respectively.

Fig. 6. Residual errors (RSME) of PE (left) and prediction (right) for different measurement densities and errors that were added
to the simulated data. Model–data mismatch increases from retrospective estimation (left) toward predictive simulation (right) and
from daily monitoring toward weekly monitoring of WBC counts.
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MODELLING WBC DYNAMICS OF CHILDHOOD ALL 481

3.1 Virtual data

We generate a virtual dataset with the following procedure:

(i) Take a random patient from our real-world dataset.

(ii) Estimate parameters using Nm measurements within the first 100 days to obtain θtrue.

(iii) Simulate (2.1, 2.3 and 2.5) over 160 days with θtrue as the true parameters to generate the true
data.

(iv) Add normally distributed noise to this true data to obtain the virtual data.

With this virtual patient, it is expected that the estimated parameters remain almost unchanged against
time. Moreover, the more often measurements are drawn, the more robust the model parameters are
and the better the model (2.5) can predict the future. Figure 5 displays the performance of the adaptive
PE approach applied to the virtual data with daily monitoring frequency and the measurement error
ε ∈ N(0, 0.25). As illustrated, the estimated and predicted trajectories almost coincide with the true
profile (the solid black line). The approach remains stable over iterations and the uncertainty region
covers most of the measurements. The root mean square error (RMSE) behaviour of the adaptive PE
approach under different uncertainty levels and monitoring frequencies is depicted in Fig. 6. Observe
that the errors of PE and prediction increase with data uncertainty and less frequent monitoring.

Fig. 7. Values of model parameters θk during iterations k of Algorithm 2.1. Most of the parameters are either constant or show a
linear change over time. The steady-state baseline WBC value Base varies stronger than the other parameters. This may be related
to recovery of the bone marrow with time after the completion of induction therapy and/or age-dependent changes of normal
WBC ranges. The x- and y-axes represent time [days] and values of the estimated parameters ktr [1/day], γ , Base [×109/l],
slope [1/pmol], respectively.
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482 T. T. T. LE ET AL.

Fig. 8. Model predictions (red) and real-world measurements of WBC counts (black). The uncertainty tubes (the shaded regions)
are obtained from 100 simulations using parameters sampled from 95% of the normal distribution with the estimated parameters
and uncertainties as its means and Sds. The predictions were carried out over a prediction horizon of 10 days. The x- and y-axes
represent measurement schedule [days] and WBC count [×103/μl] respectively.

3.2 Clinical data

It is known that intraindividual variation in bioavailability or stress is significant, which results
in measurement data with uncontrollable noise. Therefore, the application of the adaptive PE
technique to our real-world data becomes more demanding than the ideal case considered in
Section 3.1.

The time profiles of the model parameters obtained via the approach in Section 2.4 for all patients in
our real-world dataset are displayed in Fig. 7. Most of the parameters are either constant or show a linear
change over time. The steady-state baseline WBC value, Base, varies stronger than the other parameters.
This may be related to not yet fully understood processes including long-term recovery of the bone
marrow after induction therapy on the one hand and a normal evolution of Base due to aging on the
other. With the parameter values as a solution of (2.8), we carry out simulations over a prediction horizon
(i.e. 10 days) to produce the predicted WBC counts. The results are shown in Fig. 8. The uncertainty
regions cover most of the measurements excluding outliers. The Sd of the differences between the
real-world measurements and the predicted WBC counts and p-value derived from the paired two
sample t-test (as described in Section 2.5) for each patient are depicted in Table 8. The p-values
obtained from the considered data did not support rejection of the null hypothesis, the predictabil-
ity of the model (2.5), at the significant level of 5%. More evidence and a more detailed study
with additional clinical data is needed to clarify the issue (see e.g. Jeremy et al., 2014). Since
blood samples were drawn at most weekly, the number of data points is not large enough to
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Fig. 9. Real-world measurements versus predicted WBC counts (×103/μl) of all patients. The shaded area shows the WBC
target range.

produce more intuitive scatter plots and rigorous justification, see e.g. Patients 7 and 8. Figure 9,
which was obtained by putting together the results of the nine patients, shows that the WBC
counts in the therapeutic target (shaded region) concentrate nicely around the diagonal in most
cases.

4. Discussion and summary

In this paper, we present a PK/PD model for chemotherapy-induced leukopenia of pediatric ALL
patients during maintenance therapy. The model comprises the PK of 6-MP, MTX and of their cytotoxic
metabolites 6-TGNs and MTXPGs, respectively. The drug effects of 6-MP and MTX are described as a
log-linear PD function which links the PK model with the myelosuppression model. To our knowledge,
this is the first time that both drugs are taken into consideration in a data-driven modelling approach.
Due to the lack of drug-related measurements, most parameters of (2.1) and (2.3) were fixed to literature
values. This may contribute to the variations of the estimated parameters in the model (2.5) since inter-
individual variation in drug dose-response is well established. Therefore, patient-specific measurements
are indispensable to develop and validate mathematical models for further purposes, although the
PD effects of orally taken drugs are more difficult to determine compared with those of intravenous
administrations.

The parameters of (2.5) were obtained by fitting the model response to real-world measurements of
each patient available in our dataset, which are therefore patient-specific. By means of the adaptive
PE approach, each iteration produced a set of model parameters, which remained stable over time
(equivalently updating of the measurement subset used for estimating the parameters) as expected.
Furthermore, the predictability of our model over a desired time duration was verified using a real
dataset by the suitable statistical methods in Section 2.5. This is especially important if the proposed
model is to be refined and extended to support clinical decisions regarding dose adjustments in childhood
ALL maintenance therapy. It is also important to point out that some parameters of (2.5) are kept fixed
to improve their identifiability due to the sparsity of our data. Therefore, optimal experiment design
(OED) should be considered to overcome this issue (Jost et al., 2017). OED is able to suggest the most
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informative measurement time points. Performing OED leads to reduction of parameter uncertainties
and optimization of sampling times, which results in better monitoring of patients.

In summary, we provide a comprehensive model-based procedure to describe chemotherapy-induced
leukopenia during childhood ALL maintenance therapy, which includes a combination of 6-MP and
MTX. The model predicts WBC counts surprisingly well given the large variation of individual response
patterns in the clinical data. We see the proposed mathematical model and algorithmic procedure
as important first steps on the way toward personalized clinical decision support in childhood ALL
maintenance therapy.
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Appendix

Table 1 Demographic data of nine patients

Patient Gender Age Risk group Outcome Treatment protocol

1 M 9 MR Remission AIEOP BFM 2000
2 F 2 SR Remission AIEOP BFM 2000
3 F 3 MR Remission AIEOP BFM 2000
4 F 5 HR Remission AIEOP BFM 2009
5 M 2 MR Remission AIEOP BFM 2000
6 F 2 MR Remission AIEOP BFM 2000
7 M 6 MR Remission AIEOP BFM 2009
8 M 3 SR Remission AIEOP BFM 2009
9 M 2 SR Remission AIEOP BFM 2000
SR: standard risk, MR: medium risk, HR: high risk

Table 2 State variables of the 6-MP and 6-TGN model

Variables Units Description

x1 pmol Amount of 6-MP in GI tract
x2 pmol Amount of 6-MP in plasma
x3 pmol/8 × 108 RBCs Concentration of 6-TGN in RBCs
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Table 3 Parameters of the 6-MP and 6-TGN model

Parameters Values Units Description

ka 4.8 1/day 6-MP absorption rate from GI tract
ke 5.0 1/day 6-MP elimination rate from plasma
kpt 29.8 pmol 6-MP/day 6-MP to 6-TGN conversion rate
kpm 655.8 pmol 6-MP/day 6-MP to MeMP Conversion Rate
Kt 4.04 × 105 pmol M-M constant for 6-TGN
kte 0.0714 1/day 6-TGN elimination rate from RBCs
erel 0.5 TPMT enzyme activity constant

vpt 1
pmol 6−TGN

pmol 6−MP/8 × 108 RBCs
6-TGN elimination rate from RBCs

F 0.45 Bioavailability factor
Tdur 1/24 day Time duration for drug absorption
D6MP(t) mg 6-MP control function
α 1012/152177 pmol/mg Unit consistency constant

MeMP: methyl-mercaptopurines, TPMT: thiopurine methyl-transferase

Table 4 State variables of the MTX and MTXPG model

Variables Units Description

x4 μmol/m2 Amount of MTX in GI tract
x5 μmol/m2 Amount of MTX in plasma
x6 pmol/109 cells Intracellular concentration of MTXPG1
x7 pmol/109 cells Intracellular concentration of MTXPG2−7

Table 5 Parameters of the MTX and MTXPG model

Parameters Values Units Description

ka 26.64 1/day MTX absorption rate from GI tract
ke 5.76 1/day MTX elimination rate from plasma
kp 9.6 1/day Passive influx rate
V 11.606 L/m2 Systematic volume
VmI 2.3895 × 104 pmol/109cells/day M-M parameter for active (RFC) influx
KmI 2.898 μM M-M parameter for active (RFC) influx
Keff 179.76 1/day first-order efflux parameter
Vm−fpgs 7.0119 × 103 pmol/109cells/day M-M parameter for FPGS activity
Km−fpgs 35.262 pmol/109cells M-M parameter for FPGS activity
Kggh 4.992 1/day First-order GGH activity
F 0.45 Bioavailability factor
Tdur 1/24 day Time duration for drug absorption
BSA m2 Body surface area
DMTX(t) mg MTX control function
β 106/454440 μmol/mg Unit consistency constant

RFC: reduced folate carrier, M–M: Michaelis–Menten
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Table 6 State variables of chemotherapy-induced leukopenia model

Variables Units Description

x8 � × 109/l Number of proliferating cells
x9, x10, x11 � × 109/l Number of maturating cells
x12 � × 109/l Number of circulating cells

Table 7 Parameters of the chemotherapy-induced leukopenia model

Parameters Values Units Description

kprol 1/day Proliferation rate
ktr 1/day Transition rate
kcirc 0.5346 1/day Apoptosis rate
γ Feedback factor
Base � × 109/l Baseline value of WBC count
slope l/pmol Drug effect coefficient
p6MP 1 8 × 108RBCs/l Constant for unit consistency
pMTX 1 109cells/l Constant for unit consistency

Table 8 The Sd of the differences between the real-world measurements and the predicted WBC
counts and p-value derived from the paired two sample t-test (as described in Section 2.5) for each
patient. The p-values show that the null hypothesis, the predictability of the model (2.5), cannot be
rejected at the 5% significance level for all considered patients

Patient 1 2 3 4 5 6 7 8 9

Sd 0.797 0.744 0.691 1.187 0.61 0.605 1.369 0.487 0.479
p-value 0.121 0.669 0.223 0.022 0.172 0.178 0.301 0.059 0.798
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