

Institute of Membrane and Shell Technologies e. V. Anhalt University of Applied Sciences Dessau, Germany

Permanent Roof Cover For Traditional Restaurant in Koohsar Complex

Parisa Amirtash March 2013

Permanent Roof Cover For Traditional Restaurant in Koohsar Complex

Master-Thesis

A thesis submitted in partial fulfillment of the requirements for the degree of Master Membrane Structures submitted to

Anhalt University of Applied Sciences

Faculty of Architecture, Facility Management and Geo Information

Ьу

Parisa Amirtash 9th April 1985, TEHRAN, IRAN

Matrikel number: 4050238

Submission date: 15.03.2013

First Tutor: Prof. Dr. Ing. Robert Off Second Tutor: Ing . Kourosh Shirani

Statement

I hereby declare that the work presented in this Master thesis, entitled

Permanent Membrane Roof Cover For Traditional Restaurant in Koohsar Complex

is entirely my own and that I did not use any sources or auxiliary means other than those referenced.

Tehran, Iran, 07.03.2013

Parisa Amirtash

Chapter 1 : Architectural design 1–1 Preface 1-2. Mashhad 1–3. Geography and demographics 1-4. Tourism 1-5. Climate 1–6. Koohsar Complex 1-7. Persian Architecture 1-7-1 Geometry 1–7–2 Design 1-7-3 Achaemenid Architecture 1-8 Persian Nomads 1-8-1 Nomads Black Tents 1-8-2 Location for tent pitching 1-8-3 Black tents production and erection 1-8-4 Protection against Sun light, rain and wind 1-9 Alternatives 1-9-1 ALT01 1-9-2 ALT02 1-9-3 ALT03 1-9-4 ALT04 1–10 Final Design 1–10–1 Design Concept 1–10–2 Views and Walls 1–10–3 Fly–mast

1–11 Perspectives

Chapter 2: Structural design 2-1. structure Design Concept 2–1–1 Framework and trusses 2–2.Node Reactions 2-3 Materials 2-4. structure hand sketch 2-5.Steel Structure Design 2-5-1 Main Truss 2-5-2 Arches 2–5–3 Columns 2-5-4 Fly-mast 2-5-5 Pipes of reinforce 2-6. Components Arrangement 2-6-1 Base Plates 2-6-2 Columns 2-6-3 Bracing 2-6-4 Truss 2-6-5 Arch 2-6-6 Fly-mast 2-6-7 Membrane 2-7.Structure Details 2-8 Shop Drawing

Chapter 3: Fabric design

3–1 Fabric Type 3-2 Fabric Design 3-3 Form finding 3-4 Loads 3-4-1 Self Weight 3-4-2 Membrane Pretension (Pm) 3-4-3 Snow : 3-4-4 Wind 3–5 Load Combinations 3-6 Load Analysis 3-7 Corner Reactions 3-8 Patterning 3-8-1 Geodesic Lines 3-8-2 Primary Cuts 3-8-3 Star Reinforces 3-8-4 Compensation 3-8-5 Decompensation 3-8-6 Compensated Cut 3-8-7 Final Cuts 3-8-8 Plot 3-8-9 Nesting Panels on The Rolls 3-9 Membrane Details 3-10 Ring Cap Membrane

Chapter 4: Manufacturing

4-1. Plates CNC cut
4-2. Pipe Rolling
4-3. Pipe Cut
4-4 Structure Assembling
4-5 Structure Painting

Chapter 5: Project Management

5–1. Time Schedule 5–2. Cost Estimate

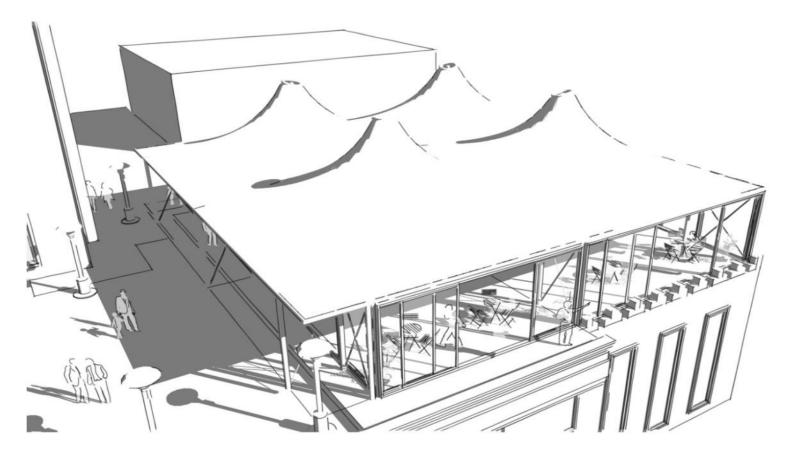
🏶 Image Index

Image 01 : IRAN Image 02 : Razavi Khorasan Province Image 03.04 : Mashhad City Image 05 : Koohsar Sport Complex And Cultural Tourism Image 06 : Mashhad Image 07 : Snow Map Image 08 : Membrane Structure Place On Building Terrace Image 09.10 : Building Elevations Image 11 : Koohsar Complex,3D View Image 12 ,13: Perspolice Image 14 : Nomadic Tents Image 15 : Nomadic Tent inside view Image 16 : Location for tent pitching Tent Image 17,18 : Nomadic Black Tents Image 19 : Nomadic Black Tents (Inside view) Image 20,21 : Alternative 01 Image 22,23 : Alternative 02 Image 24.25 : Alternative 03 Image 26,27 : Alternative 04 Image 28,29 : Final Design Image 30 : Koohsar Complex Image 31 : Perspective Image 32 : Glass Walls Diagram Image 33 : Site Views Image 34 : Perspective Image 35 : Columns Diagram Image 36.37.38 : Perspective Image 39 : Distribute loads uniformly Image 40 : Rigid Truss Frame Image 41 : Arched Beams Image 42 : Twin Columns With Bracing Image 43 : Node Numbers Image 44 : Structure Hand Sketch Image 45 : Structure Elements Image 46,47 : Main Truss Image 48 : Arched Beams Image 49 : Columns Image 50 : Fly Masts Image 51 : Secondary Beams

Image 52 : Base plates positions and types Image 53 : column types and positions Image 54 : columns bracing Image 55 : middle arches Image 56 : main trusses added on columns and arches Image 57 : steel structure Image 58 : Structure with membrane Image 59 : DT01 Column connection to the baseplate Image 60 : DT02 corner detail (Comp 07) Image 61 : DT03 Truss Flanges Image 62 : DT04 Column with Bracing Image 63 : DT05 component 03 connection to truss Image 64 : DT06 component 08 connection to column, truss Image 65 : DT07 Components 04,05,06 Connection Image 66 : DT08 Truss flange connection to column Image 67 : DT09 Column with hinge connection to the truss Image 68 : DT10 bottom of Fly-mast detail Image 69 : DT11 Top of Fly-mast and Ring detail Image 70 : Fabric Data Sheet Image 71 : Shape Factor Image 72 : Cp Value Image 73 : Membrane Stress SI-Warp (COMB 01) Image 74 : Membrane Stress SII-Weft (COMB 01) Image 75 : Membrane Stress SI-Warp (COMB 02) Image 76 : Membrane Stress SII-Weft (COMB 02) Image 77 : Membrane Deformation (COMB 02) Image 78 : Membrane Stress SI-Warp (COMB 03) Image 79 : Membrane Stress SII-Weft (COMB 03) Image 80 : Membrane Deformation (COMB 03) Image 81 : Membrane Stress SI-Warp (COMB 04) Image 82 : Membrane Stress SII-Weft (COMB 04) Image 83 : Membrane Deformation (COMB 04) Image 84 : Membrane Stress SI-Warp (COMB 05) Image 85 : Membrane Stress SII-Weft (COMB 05) Image 86 : Membrane Deformation (COMB 05) Image 87 : Membrane Stress SI-Warp (COMB 06) Image 88 : Membrane Stress SII-Weft (COMB 06) Image 89 : Membrane Deformation (COMB 06) Image 90 : Radial Division

Image 91 : Isometric shape Image 92,93 : Geodesic Lines Image 94,95 : Primary Cuts Image 96,97 : Star Reinforces Image 98 : Biaxial Test Image 99 : Compensated Cuts Image 100 : Pattern Key Plan Image 101 : Final Cuts Image 102 : Final Cuts (Pockets and Reinforcements) Image 103 : Plot Image 104 : Plot Assembly Image 105 : Factory, Cutting Fabric Image 106 : Sections Key Plan Image 107 : Ring Cap Membrane Image 108 : Ring Cap Plan View Image 109,110,111 : Plates Image 112,113,114 : Pipe Rolling Image 115,116 : Pipe Cut Image 117 : Truss Assembly Image 118 : Ring Assembling Image 119 : Trusses Image 120-123 : Structure Assembling Image 124 : Structure Painting and Covering Image 125 : Truss Painting Image 126 : Components 07,10 Image 127: Columns Covering Image 128 : Component 05 Image 129 : Fly-masts Covering Image 130 : Image 131 :

Chapter 1 : ARCHITECTURAL DESIGN



#1-1 Preface

Koohsar project is a permanent roof for an open air traditional restaurant in Koohsar complex balcony.

Koohsar complex is a sport and cultural complex contains Bowling and Billiard Clubs and various types of restaurants and halls

In This Presentation I try to give a complete description of designing , manufacturing and installation process of Koohsar project from first step to the last.

#1-2 Mashhad

Mashhad is the second largest city in Iran. It is located 850 kilometers (530 mi) east of Tehran, at the center of the Razavi Khorasan Province close to the of Afghanistan and Turkmenistan. Its population was 2,427,316 at the 2006 population census. It was a major oasis along the ancient Silk road connecting with Merv in the East.

In Arabic, the name Mashhad means the place of martyrdom the place where Imam Reza- the eighth Imam of Shia Muslims - was martyred and so his shrine was placed there.

Image 02 : Razavi Khorasan Province

lmage 01 : IRAN

#1-3 Geography and demographics

The city is located at 36.20° North latitude and 59.35° East longitude, in the valley of the Kashaf River near Turkmenistan, between the two mountain ranges of Binalood and Hezar-Masjed .The city benefits from the proximity of the mountains, having cool winters, pleasant springs, hot summers, and beautiful autumns.

The vast majority of the Mashhadi people are ethnic Persians who form over 95% of the city's population. Other ethnic groups include Kurdish and Turkmen people who have emigrated recently to the city from the North Khorasan province. The people of Mashhad who look like Asians are of Turkmen descent.

Mashhad is the hometown of some of the most significant Iranian literary figures and artists such as Mehdi_Akhavan-Sales, the famous contemporary poet and Mohamad Reza-Shajarian the traditional Iranian singer and composer. Mashhad is also known as the city of Ferdowsi, the Iranian poet of Shahname, which is considered to be the national epic of Iran.

Image 04 : Mashhad

Image 03 : Mashhad City

Image 05 : Koohsar Sport Complex And Cultural Tourism

🏶 1-4 Tourism

The second largest holy city in the world, Mashhad annually welcomes more than 32 million domestic pilgrims and more than a million pilgrims from abroad. Statistics shows that Since the holy temple of Imam Reza is located in Mashhad city, every Iranian visits Mashhad at least once in three years.

Apart from Imam Reza Shrine there is a number of large parks like Kooh Sangi park, Mellat Park , Koohestan Park-e-Shadi Complex within a Zoo. and the summer resorts at Torghabeh, Torogh, Zoshk, and Shandiz.

Mashhad also has some shopping malls that have modern attractions for tourists.

Some points of interest lie outside the city: the tomb of Khajeh Morad, along the road to Tehran; the tomb city where there are some inscriptions by the renowned Safavid calligrapher Reza Abbasi ; and the tomb of Khajeh Abasalt. Among the other sights are the tomb of the poet Ferdowsi in Tus.

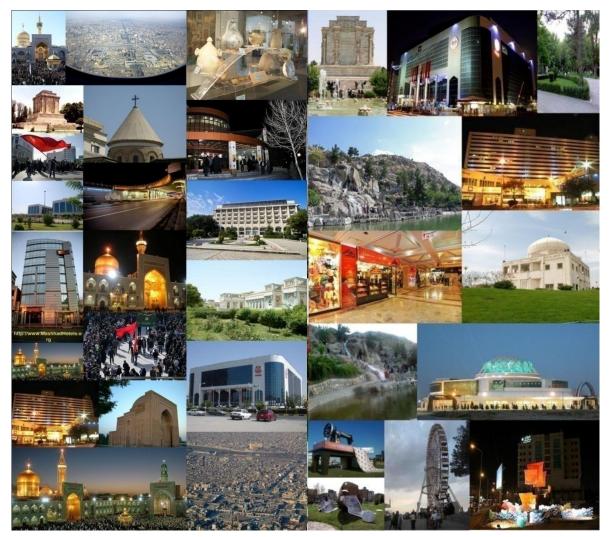


Image 06 : Mashhad

#1-5 Climate

Mashhad features a Steppe Climate with hot summers and cool winters. The city only sees about 250 mm of precipitation per year, some of which occasionally falls in the form of snow. Mashhad also has wetter and drier periods with the bulk of the annual precipitation falling between the months of December and May. Summers are typically hot and dry, with high temperatures sometimes exceeding 35 °C (95 °F). Winters are typically cool to cold and somewhat damper, with overnight lows routinely dropping below freezing. Mashhad enjoys on average just under 2900 hours of sunshine per year. Prevailing wind direction in Mashhad is from south-east to north-west and the maximum wind speed is 90 km/hr. Here below you can see the map of Iran shows the snow load Basis in all provinces, Considering the map of snow load basis in Iran, Mashhad is located in places with up to 150 dKN/Sqm snow load.

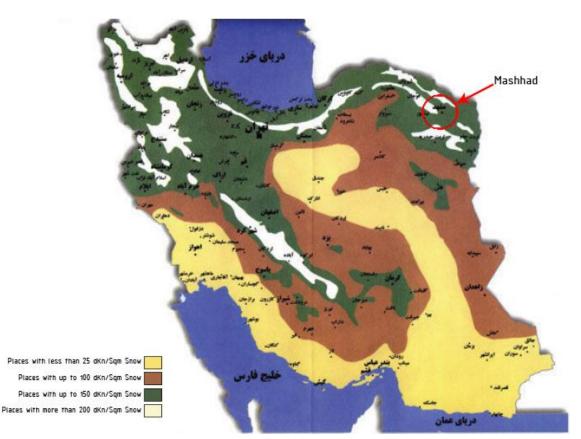


Image 07 : Snow Map

#1-6 Koohsar Complex:

Koohsar Complex is located in west part of Mashhad city on top of Vakilabad Hills, which are the most important tourist places of Mashhad.

Koohsar Complex is one of a few deluxe sport and cultural complexes in Mashhad city, this complex contains some types of restaurants and coffee shops, deluxe saloons, Bowling and Billiard clubs....

This building is designed inspired by ancient Achaemenid architecture and specifically Perspolice palace in Shiraz which is one of the magnificent samples of Persian Architecture before Islam.

the Architect tried to design each elements of building face like columns and decorative Lithograph using motifs of Perspolice palace.

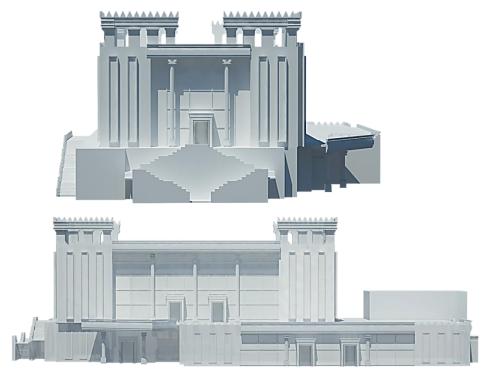


Image 09,10 : Building Elevations

Image 08 : Membrane Structure Place On Building Terrace

Image 11 : Koohsar Complex,3D View

#1-7 Persian Architecture :

Iranian architecture or Persian architecture has a continuous history from at least 5000 BCE to the present, with characteristic examples distributed over an area from Turkey and Iraq to Northern India and Tajikistan.

Iranian architecture is based on several fundamental characteristics. These are:

- structure
- homogeneous proportions
- anthropomorphism
- symmetry and anti-symmetry
- Introversion
- Minimalism

1-7-1 Geometry

Iranian architecture using pure forms such as circles and squares, and plans are based on often symmetrical layouts featuring rectangular courtyards and halls.

1-7-2 Design

Certain design elements of Persian architecture have persisted throughout the history of Iran. The most striking are a marked feeling for scale and a discerning use of simple and massive forms. The consistency of decorative preferences, the high-arched portal set within a recess, columns with bracket capitals, and recurrent types of plan and elevation can also be mentioned. Through the ages these elements have recurred in completely different types of buildings, constructed for various programs and under the patronage of a long succession of rulers.

1-7-3 Achaemenid Architecture

refers to the architectural achievements of the Achaemenid Persians manifesting in construction of spectacular cities used for governance and inhabitation (Perspolice, Susa, Ecbatana), temples made for worship and social gatherings ,and mausoleums erected in honor of fallen kings (such as the burial tomb of Cyrus the great). The quintessential feature of Persian architecture was its eclectic nature with elements of Median, Assyrian, and Asiatic Greek all incorporated. Achaemenid architecture is academically classified under Persian Architecture in terms of its style and design.

Achaemenid architectural heritage, beginning with the expansion of the empire around 550 B.C.E., was a period of artistic growth that left an extraordinary architectural legacy ranging from Cyrus the Great's solemn tomb in Pasargad to the splendid structures of the opulent city of Perspolice. With the advent of the second Persian empire, the Sassanid Dynasty(224–624 C.E.), revived Achaemenid tradition by construction of temples dedicated to fire, and monumental palaces.

Image 12 : Perspolice

Image 13 : Perspolice

1-8 Iranian Nomads:

Iran has one of the largest nomadic populations in the world, an estimated 1.5 million in a country of about 70 million.

The Bakhtiaris, who speak a Persian dialect known as Luri, are one of two main nomadic groups in Iran, along with the ethnic Turkic Qashqai group.

In April, when the desert heat begins to fire up, they will make the reverse trip to the cool, mountainous regions more than 100 miles to the north, crossing flood-swollen rivers and mountain passes to better grazing lands for their goats and sheep.

1-8-1 Nomads Black Tents :

The black tent is used by nomadic groups that live in Mauritania, Morocco, Algeria, Tunisia, Egypt (Aulad 'Ali), Arabic countries, Europe (Gypsies), Turkey (Yuruks, Kurds), Iran, Afghanistan, Pakistan (Baluch), ... Most of the area belongs to an arid belt, characterized by a hot arid or semiarid climate. Accordingly, the requirements of the black tent are provision of shade and protection against wind, sand, and dust.

- The tent cover consists of woven strips, which are sewn together.

- The existence of black tents depends on animals that supply a suitable fiber. Goat hair is preferred because it has the necessary length and strength. The black color comes from the natural color of animal hair. The dark color of the tent cover provides good shade, which is needed in the heat of the deserts of Iran. Tent squares woven of light wool might even be dyed dark.

- Because the tent cover is very heavy, strong animals such as camels, dromedaries, or yaks are needed for transportation.-

- The tent is a tensile form of construction. The tension and the heavy weight of the cloth are concentrated on a few vertical poles. The frame and cover are interdependent.

Image 14 : Nomadic Tents

Image 15 : Nomadic Tent inside view

Image 16 : Location for tent pitching

1-8-2 Location for tent pitching :

The factors that determine locations for tent pitching include tribal and administrative borders, governmental directives, protection against inclement weather, and the proximity of water. The tent is erected over the old fireplace, usually at the foot of a hill to provide shelter against wind, with the entrance facing down slope. If there is no suitable slope, the entrance of the tent is situated opposite the direction of the prevailing winds. The campground and hence the tent are likely to be located on a considerable incline. This helps prevent water from collecting inside the tent.

1-8-3 Black tents production and erection :

Nomads can produce all components of the tent themselves. In most regions of the arid belt, goat hair is used to weave the cover of the black tent. To obtain the optimal length, nomads comb or pluck the hair. Thereafter, it is spun into yarn. The loom, used by nomadic women, determines the width (23–30 cm) of the tent squares, and their maximum length of 10–12 m determines the length of the tent. The loom is well adapted to nomadic mobility. When packed together, the unfinished weaving is not removed but easily rolled up with the loom. The woven tent squares are sewn together tightly. Sewing (not only of tents) is generally men's work.

The tent cover consists of 2 symmetric halves. The halves are held together with loops and toggles made of wood over a ridge pole. The seams run parallel to the ridge pole or they run across the ridge pole.

Two wooden prop poles, and sometimes 3, support the wooden ridge pole. To support the tent cover from inside, poles are situated under the first tent fold in the 4 corners. Zigzag ropes are simultaneously fixed under the roof. If there are no internal poles, a zigzag rope is indispensable. Both these ropes and the tension ropes are woven from goat wool from under the animal's belly. they rarely consist of other materials.

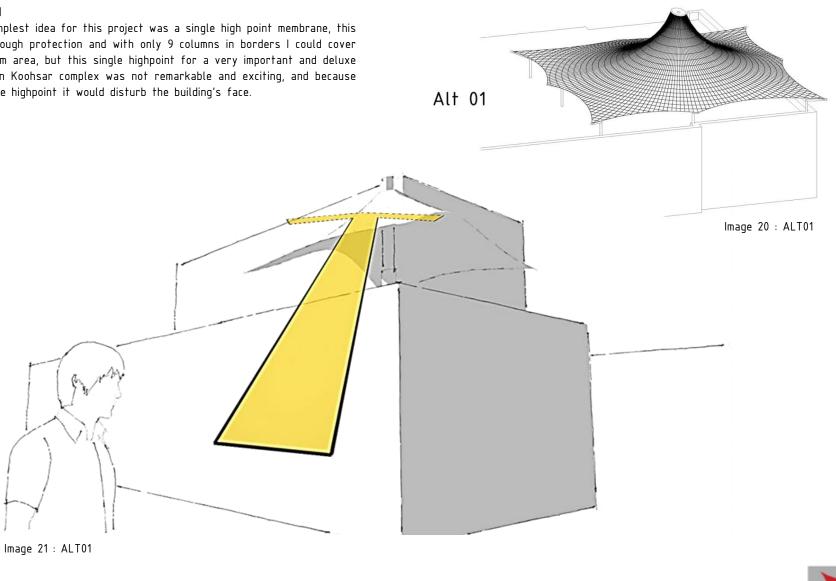
The tent cover hangs from tension ropes fixed at the first fold of the cover and supported by 2-m-high outer poles. They are pegged to the ground with wooden pins about 6 m away from the tent. There are 3-7 poles on each side and 1 or more at the back and the front .In addition, the tent is fixed downward from the second fold. If the second fold is higher than 1 m above ground, these tension ropes run above the poles as well. Otherwise, the ropes are pegged directly into the ground. The tent must be fixed firmly to the ground. During stormy weather, a family member often checks the pegging. The use of wood in tent construction is reduced to a minimum, and the prop poles are of great value. The tensile construction of the black tent is suitable for nomadic habitats above the tree line.

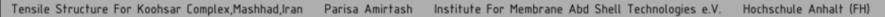
1-8-4 Protection against Sun light, rain and wind :

The weaving of the tent cover is so loose that it allows daylight to enter and smoke from the fireplace to escape. The cloth is "reasonably waterproof when new and becomes increasingly waterproofed with the oily cow-dung smoke soot. In addition, the natural lanolin content of the wool repels water. When the tent cover gets wet, the weave swells up, narrowing the meshes. However, if the rain lasts, the weave allows it to enter the tent. After the rain ceases, humidity evaporates quickly as a result of high insulation. One advantage of the loosely woven tent cloth is that it offers little susceptible surface to the heavy winds that frequently blow.

Image 17 : Nomadic Black Tents

Image 18 : Nomadic Black Tents

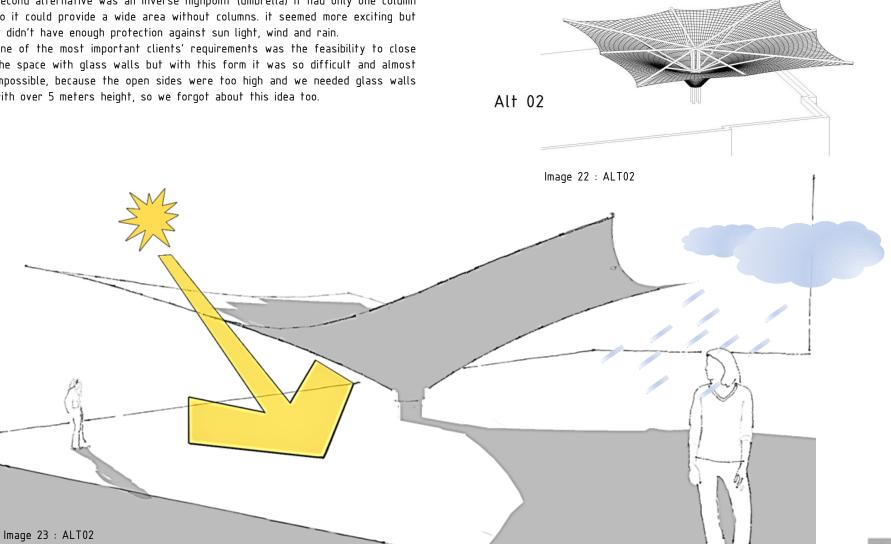

Image 19 : Nomadic Black Tents (Inside view)



1-9 Alternatives

1-9-1 ALT 01

First and simplest idea for this project was a single high point membrane, this form had enough protection and with only 9 columns in borders I could cover about 400sqm area, but this single highpoint for a very important and deluxe restaurant in Koohsar complex was not remarkable and exciting, and because it was a huge highpoint it would disturb the building's face.

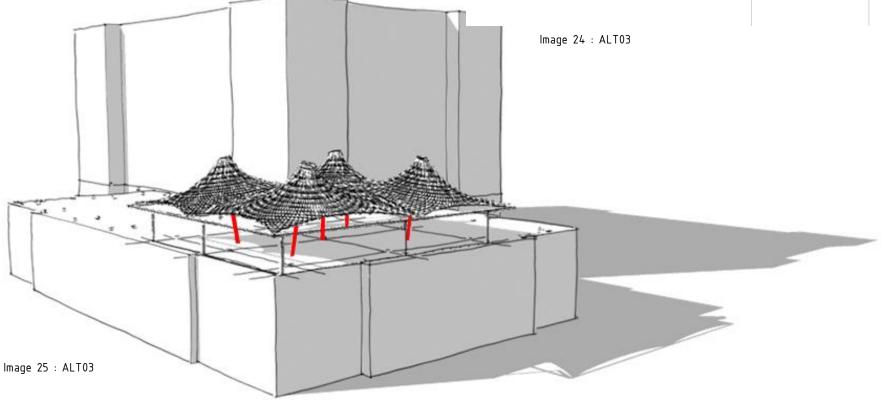


1-9 Alternatives

1-9-2 ALT 02

Second alternative was an inverse highpoint (umbrella) it had only one column so it could provide a wide area without columns. it seemed more exciting but it didn't have enough protection against sun light, wind and rain.

One of the most important clients' requirements was the feasibility to close the space with glass walls but with this form it was so difficult and almost impossible, because the open sides were too high and we needed glass walls with over 5 meters height, so we forgot about this idea too.

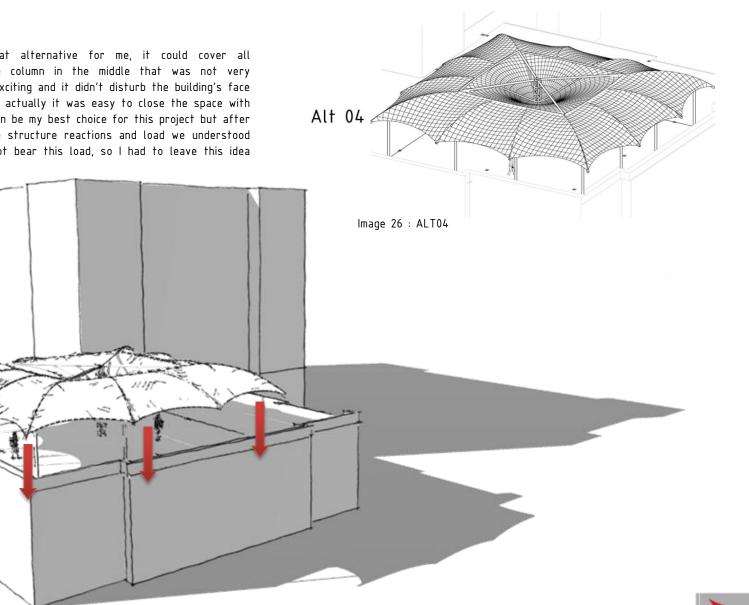


#1-9 Alternatives

1-9-3 ALT 03

Third alternative was very close to what I designed finally for this project, but it had some differences, it had curved edges that would reduce the coverage and it had 4 middle columns, in this way we had 13 columns that would interrupt the restaurant space in 4 places and also it had an important structural problems cause in those 4 points we didn't have any columns or beams in building structure and our columns should have lied on a 10cm thick concrete slab that seemed almost impossible. So I left this idea too.

Alt 03



1-9 Alternatives

1-9-4 ALT 04

Image 27 : ALT04

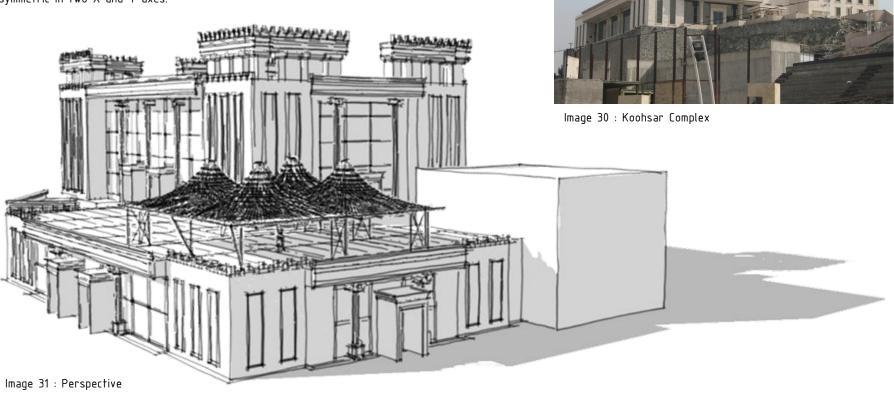
Forth alternative was a great alternative for me, it could cover all requirements, it had only one column in the middle that was not very important , it's shape seemed exciting and it didn't disturb the building's face because it had a low height, and actually it was easy to close the space with glass walls, I thought that it can be my best choice for this project but after we calculated and analyzed the structure reactions and load we understood and the existing building can not bear this load, so I had to leave this idea too and think about it again.

🏶 1–10 Final Design

Image 29 : Final Design

As I mentioned before the final alternative seems so close to the third one but it has some fundamental differences too, in this part I give an explanation about my ideas, design process and inspirations that finally lead to this form and shape of structure.

In primary steps there were some parameters to be considered. First of all was the function of the covered place as a traditional open air restaurant that must be active all year. Second parameter was the client's and his architectural consultant's requirements and taste, they determined dimensions of the coverage, location of it and they checked the relation between membrane structure and building's face. they wanted us to design the maximum coverage with minimum quantity of columns in middle space of restaurant to have as much integrated space as possible.



P

1-10-1 Design Concept

Regarding that the Koohsar complex building is designed inspired by Iranian ancient architecture of Achaemenid Dynasty, I preferred to follow this concept and design the membrane structure on the balcony of this building inspired by Nomadic black tents which are the Iranian and some other Asian countries Nomads habitation for thousands of years (I gave a short introduction of nomadic black tents in previous chapter).So I purposed to design a kind of high point structure and to make it more exciting and reduce the height of it, I designed a combination of 4 cones that their main masts are a little inclined (it helped me to make them look more like nomadic tents).these 4 cones are arranged symmetric in two X and Y axes.

1-10-2 Views and Walls

Koohsar complex is located on the highest hill in west part of Mashhad city (called Blvd Hashemieh) it has a very beautiful vision of the hole city and surrounded hills, in design process I considered not to disturb this beautiful vision, on the other hand I should have thought about structure air insulation, because in cold seasons we have to warp up the space with heaters and I decided to clamp the membrane and put glass walls in all 4 edges to be able to control the inside temperature in cold seasons, in this way i wouldn't disturb the beautiful vision of city in restaurant and I could keep the space warm.

Entrances of restaurant are located in north and west sides of structure along the balcony entrances in these two sides the glass walls are moved 1.85m inside the coverage to determine the entrance space, in east and south sides glass wall are placed on outer edge of structure to add spaces between columns to the restaurant.

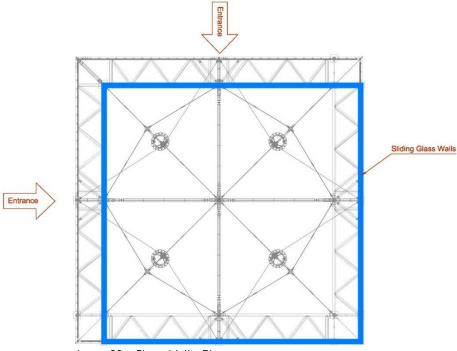
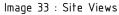



Image 32 : Glass Walls Diagram

1-10-3 Fly-mast

For some reasons I designed this structure as a combination of 4 fly-mast cones :

1. At the center of each cone that I should have a mast, there weren't any columns in building structure to bear the main masts load.

2. I had to have minimum number of columns in middle area of restaurant; I just could have columns in edges of structure and only one in center.

3. The final reason was the exciting and high-tech look of fly-mast, it gives a sense of fly to the audiences.

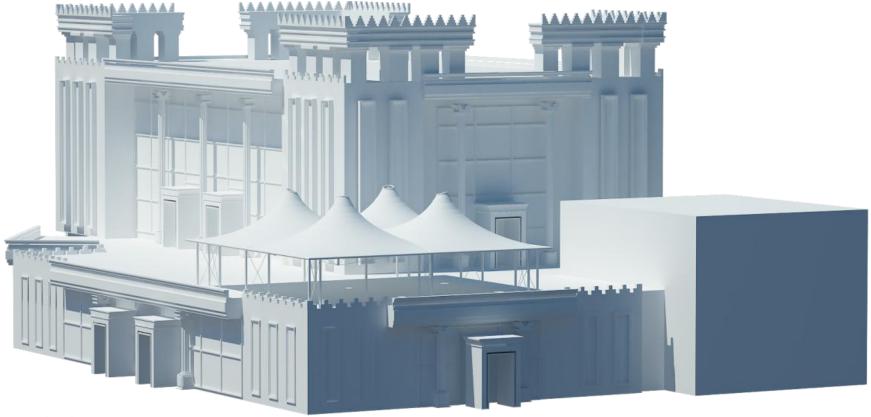


Image 36 : Perspective

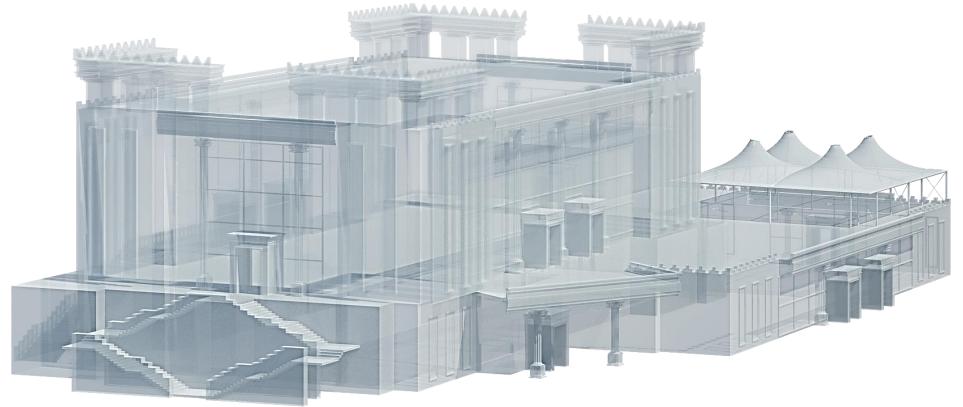


Image 37 : Perspective

Image 38 : Perspective

Chapter 2 : STRUCTURAL DESIGN

2-1 Structure -Design Concept:

In structural point of view, considered that the structure is placed on existing building that its beams and columns are designed and built before, we couldn't apply a huge load on them, so we should have designed a light weight structure and distribute the live and dead load uniformly on beams and columns to avoid centralizing the load. I Also designed a rigid truss frame, it is statically stable and I could apply fabric pretension and other live loads to this frame without imposing any tension or moment to building structure, so I should just have some columns (in this structure 20 columns) with rigid connection to the truss to transmit axial pressure forces to building structure.

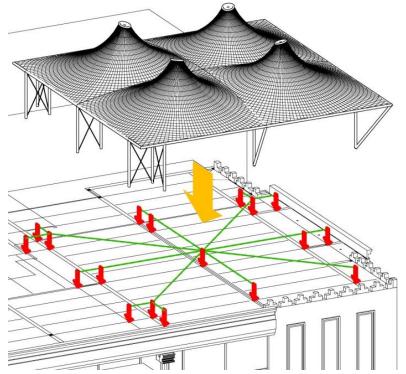
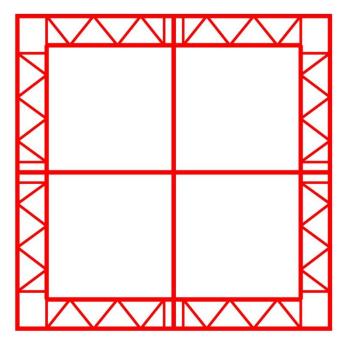
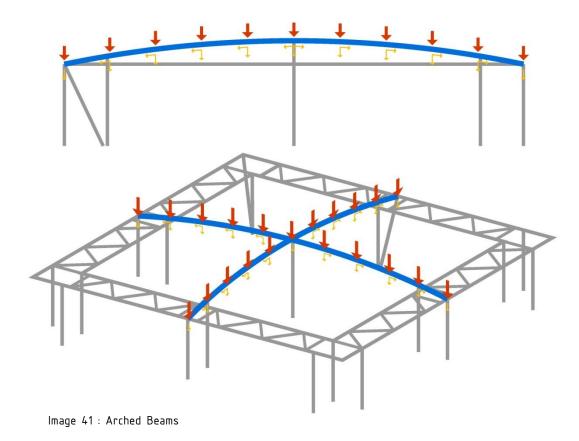
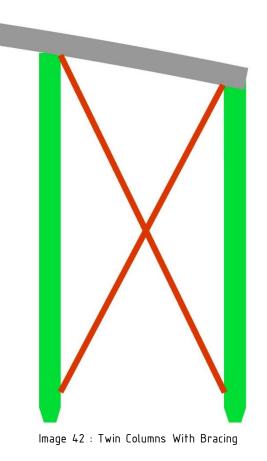


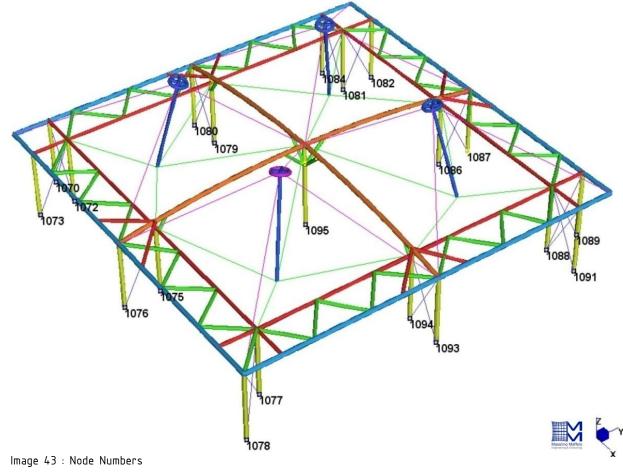
Image 39 : Distribute loads uniformly


Image 40 : Rigid Truss Frame

2-1-1 Frame and trusses

Columns are working in twin groups with a cross cable bracing, this bracing is made each twin group as a truss, it helps bearing lateral loads like wind or maybe earthquake and also I could divide load in 18 base-points instead of 9 base-points. I also have two cross arch beams to divide structure to four symmetric squares, having arched beams helped in static stability by counterbalancing part of pressure loads and to avoid appearing any flat areas and ponding problems in the middle part of membrane between four cones.

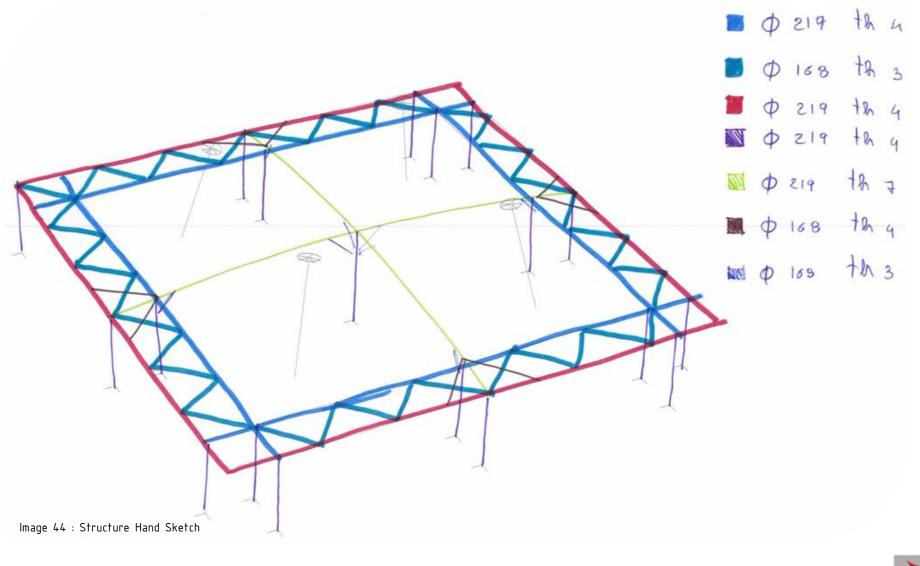


2-2 Node Reactions :

Here below it is possible to find the node numbers of reactions load:

On the table here below it is possible to find the node reactions:

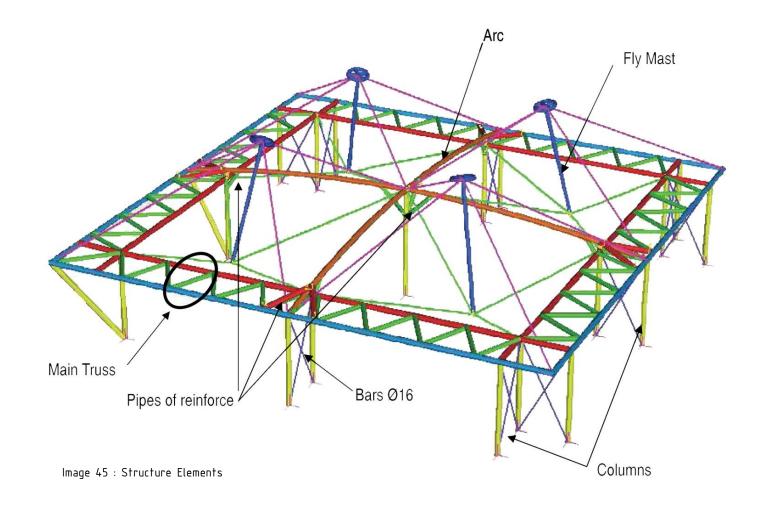
Node	Combination	FX	FY	FZ	Node	Combination	FX	FY	FZ	Node	Combination	FX	FY	FZ	Node	Combination	FX	FY	FZ
		(kgf)	(kgf)	(kgf)															
1070:	1	-43	25	96	1077:	1	-23	23	896	1082:	1	25	43	95	1089:	1	-25	43	95
1070:	2	-207	30	-71	1077:	2	9	-10	3780	1082:	2	30	181	-5	1089:	2	-30	199	-46
1070:	3	-203	31	-65	1077:	3	8	-8	3741	1082:	3	30	197	-42	1089:	3	-30	223	-99
1070:	4	-465	-66	-2149	1077:	4	-81	62	327	1082:	4	-86	83	-1315	1089:	4	53	31	-1168
1070:	5	-2	-71	-1069	1077:	5	1	42	799	1082:	5	-66	119	-1532	1089:	5	86	139	-1594
1070:	6	-107	-94	-1698	1077:	6	-150	-149	1752	1082:	6	-127	-34	-1806	1089:	6	125	-33	-1880
1070:	7	10	-154	-2150	1077:	7	-50	44	-1819	1082:	7	-134	-48	-1903	1089:	7	127	-50	-1931
1072:	1	39	38	775	1078:	1	45	-45	-17	1084:	1	-43	-25	96	1091:	1	44	-25	91
1072:	2	3	5	3797	1078:	2	172	-172	-78	1084:	2	-188	-29	-21	1091:	2	177	-27	-1
1072:	3	4	6	3752	1078:	3	161	-160	-57	1084:	3	-186	-28	-20	1091:	3	181	-25	-12
1072:	4	-50	-18	2644	1078:	4	111	-129	-1073	1084:	4	-389	65	-1956	1091:	4	-26	60	-849
1072:	5	32	-20	1618	1078:	5	383	-347	-1690	1084:	5	-32	70	-1161	1091:	5	272	68	-1683
1072:	6	14	-56	2619	1078:	6	242	-541	-1228	1084:	6	-134	63	-1475	1091:	6	103	59	-1377
1072:	7	62	-48	216	1078:	7	394	-403	-2589	1084:	7	-80	121	-2519	1091:	7	13	113	-2268
1073:	1	25	-44	91	1079:	1	10	1	919	1086:	1	-1	-10	925	1093:	1	54	-2	223
1073:	2	27	-179	4	1079:	2	-104	-3	4557	1086:	2	1	106	4552	1093:	2	183	-3	1568
1073:	3	28	-168	25	1079:	3	-29	-3	5892	1086:	3	2	32	5932	1093:	3	84	-1	1725
1073:	4	-93	-109	-1351	1079:	4	-237	-14	489	1086:	4	-8	216	-517	1093:	4	139	11	-142
1073:	5	-61	-122	-1516	1079:	5	-194	-12	-283	1086:	5	18	222	-407	1093:	5	558	23	-1096
1073:	6	14	-390	-451	1079:	6	-215	-25	-398	1086:	6	13	238	-1495	1093:	6	373	31	-1635
1073:	7	-130	-172	-2644	1079:	7	-334	-25	-4940	1086:	7	5	317	-5100	1093:	7	559	30	-3895
1075:	1	0	8	922	1080:	1	-52	1	205	1087:	1	0	53	205	1094:	1	-8	-1	920
1075:	2	-2	-107	4469	1080:	2	-190	2	1492	1087:	2	0	187	1487	1094:	2	105	3	4464
1075:	3	-1	-29	5777	1080:	3	-79	3	1668	1087:	3	0	99	1611	1094:	3	31	5	5816
1075:	4	-32	-224	-235	1080:	4	-704	0	-1188	1087:	4	-16	342	-1071	1094:	4	134	12	-590
1075:	5	-1	-218	-411	1080:	5	-273	1	-399	1087:	5	11	414	-1427	1094:	5	222	22	306
1075:	6	18	-312	-542	1080:	6	-400	-17	-1408	1087:	6	1	275	-1877	1094:	6	212	24	-357
1075:	7	-25	-341	-4597	1080:	7	-567	-9	-3624	1087:	7	0	449	-3621	1094:	7	332	11	-4786
1076:	1	1	-54	224	1081:	1	39	-39	772	1088:	1	-38	-39	775	1095:	1	0	0	598
1076:	2	2	-189	1553	1081:	2	4	-5	3769	1088:	2	-5	-4	3779	1095:	2	-2	1	11977
1076:	3	3	-62	1752	1081:	3	5	-4	3785	1088:	3	-6	-2	3821	1095:	3	-1	2	15874
1076:	4	-47	-448	-1446	1081:	4	-42	18	2416	1088:	4	-107	-16	1197	1095:	4	-27	-7	-1979
1076:	5	-12	-377	-1516	1081:	5	0	22	1719	1088:	5	36	20	2288	1095:	5	12	2	-1986
1076:	6	24	-749	1054	1081:	6	-44	-126	1288	1088:	6	43	-114	1279	1095:	6	0	-14	-3407
1076:	7	-31	-651	-4158	1081:	7	-21	-159	-271	1088:	7	-42	-175	-494	1095:	7	0	-7	-16866


Steel Pipes and plates : Steel S235 / EN 10025

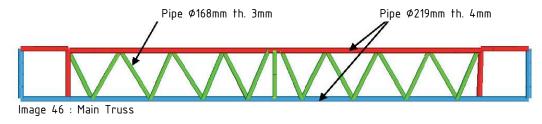
Yeild Tensile Strength	Fy = 2350 kg/cm²
Ultimate Tensile Strength	$Ft = 3600 \text{ kg/cm}^2$
Admissible Tensile strength	$Fu = 1600 \text{ kg/cm}^2$
Elastic Module	$E = 210000 \text{ N/mm}^2$

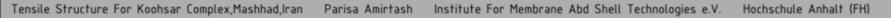
Bars-Bolts- Nuts-Washers : Steel Grade 8.8

Yeld tensile strength	fyk = 6400 daN/cm2; ·
Ultimate tensile strength	ftk = 8000 daN/cm2; ·
Admissible tensile strength:	sa = 3730 daN/cm2;

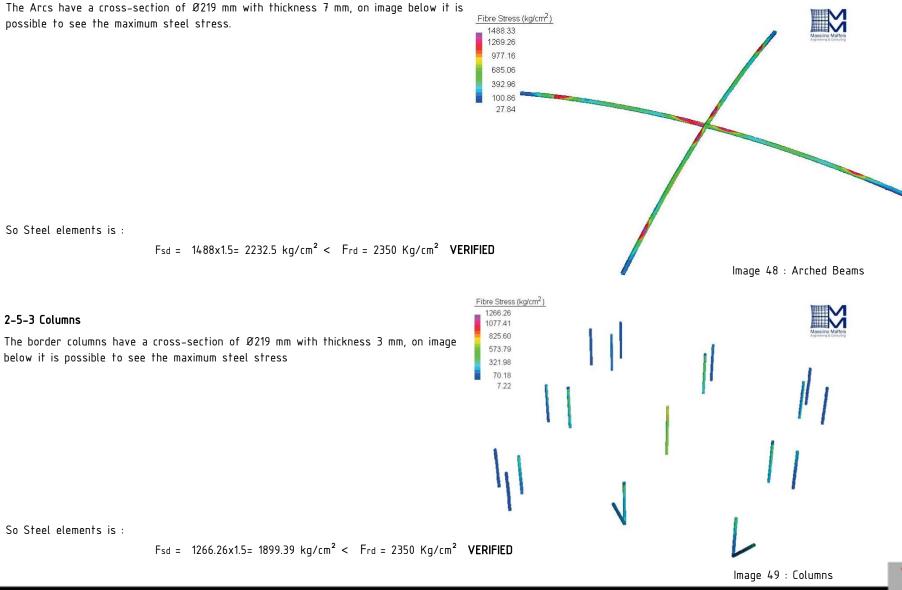


2-5 Steel Structure Design :

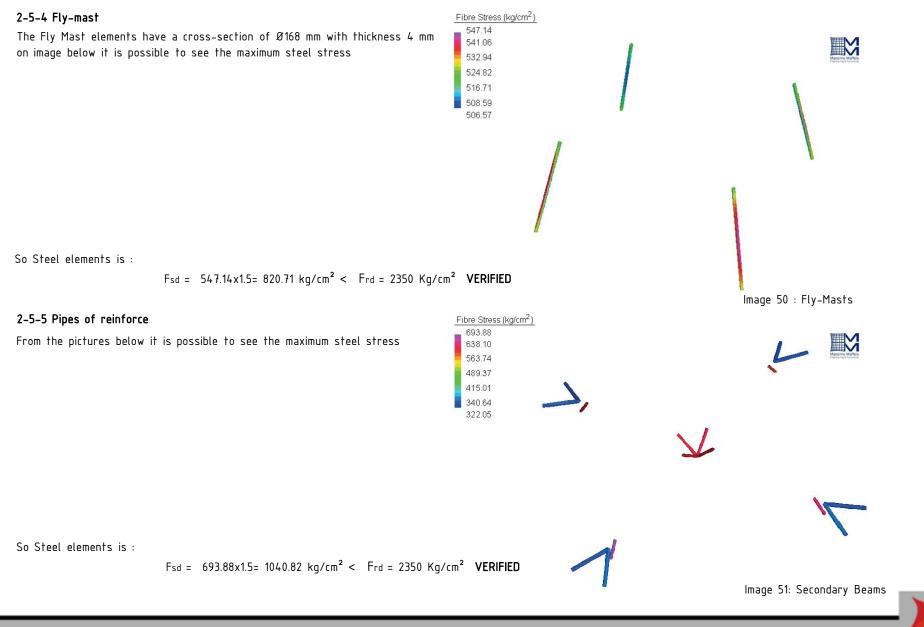

From the pictures below it is possible to see the main steel elements.


2-5-1 Main Truss

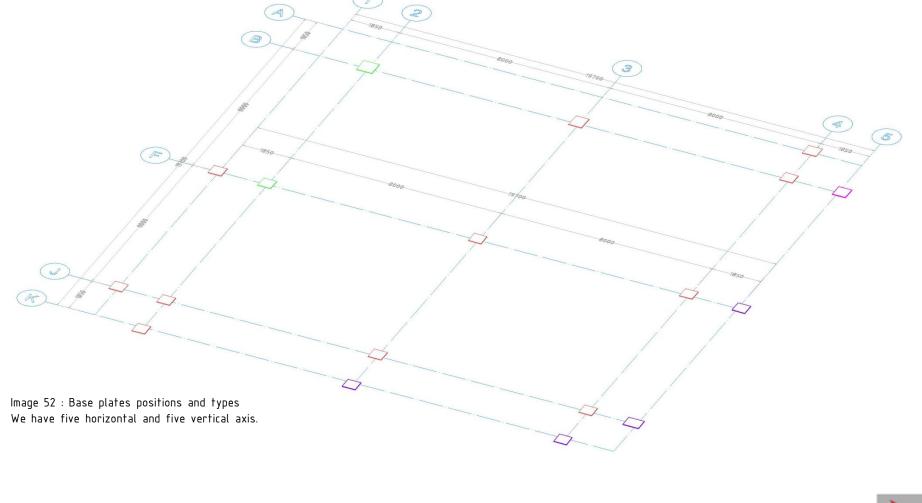
From the pictures below it is possible to see the pipes on the main truss of structure



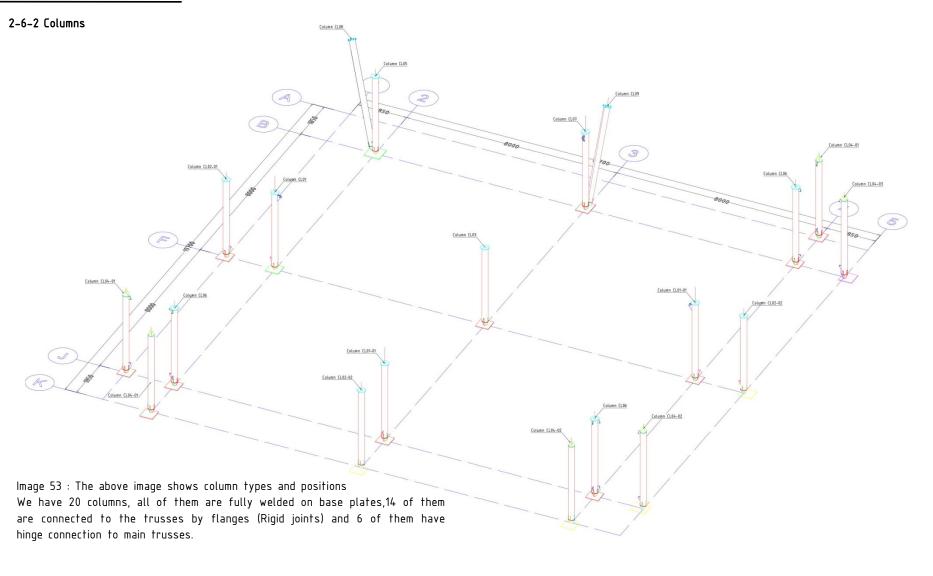
From the pictures below it is possible to see the maximum steel stress of the mast :



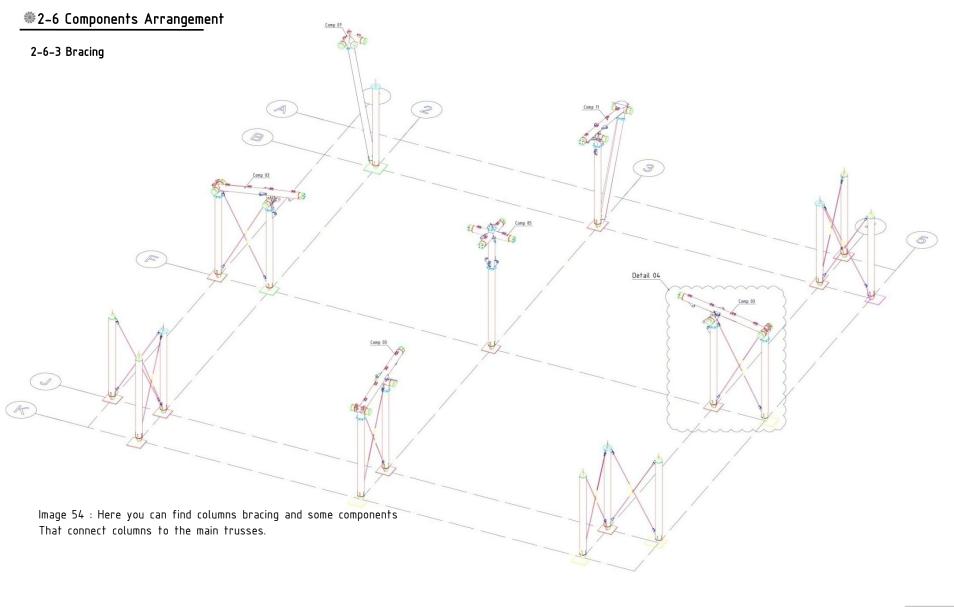
2-5-2 Arches



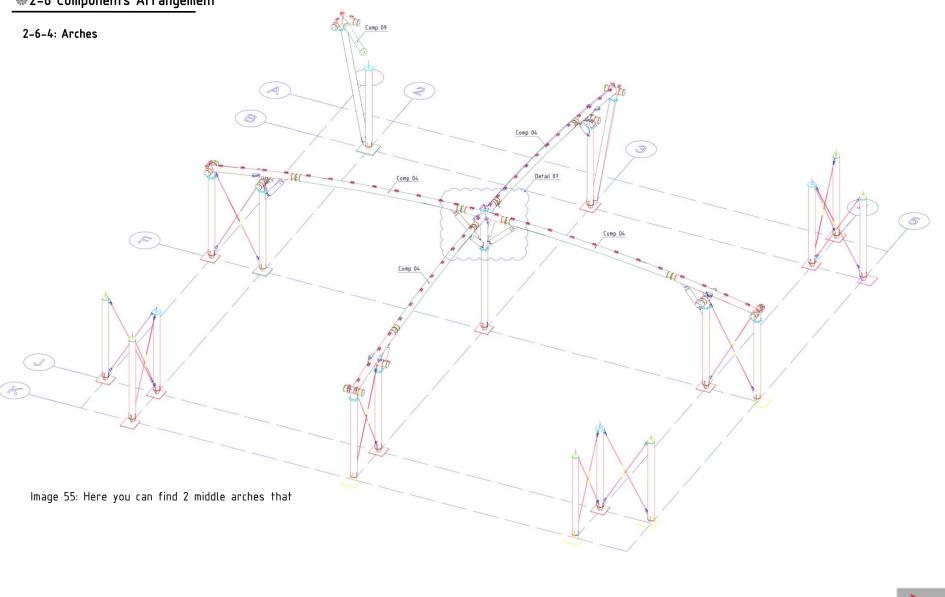
Tensile Structure For Koohsar Complex, Mashhad, Iran Parisa Amirtash Institute For Membrane Abd Shell Technologies e.V. Hochschule Anhalt (FH)

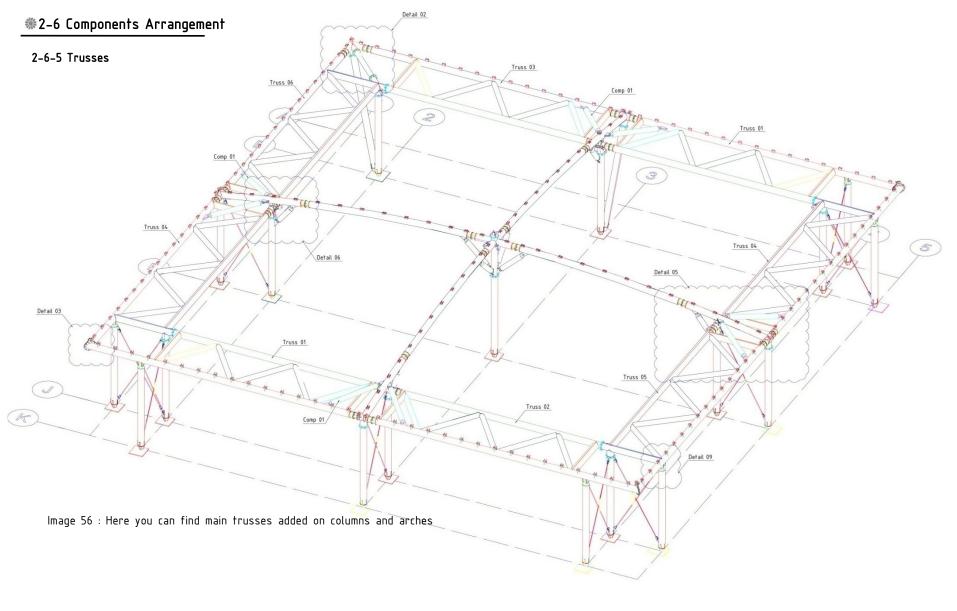

2-6 Components Arrangement

2-6-1 Base Plates

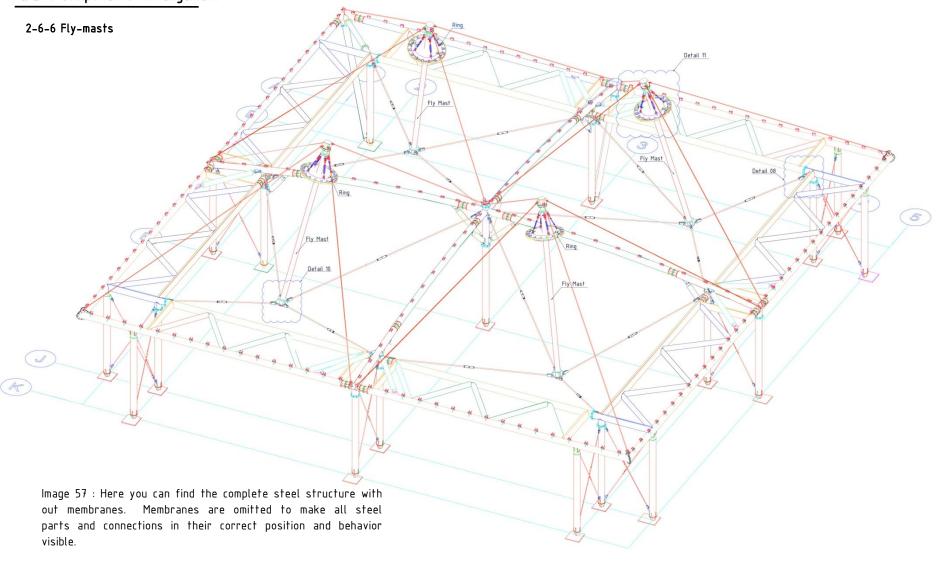


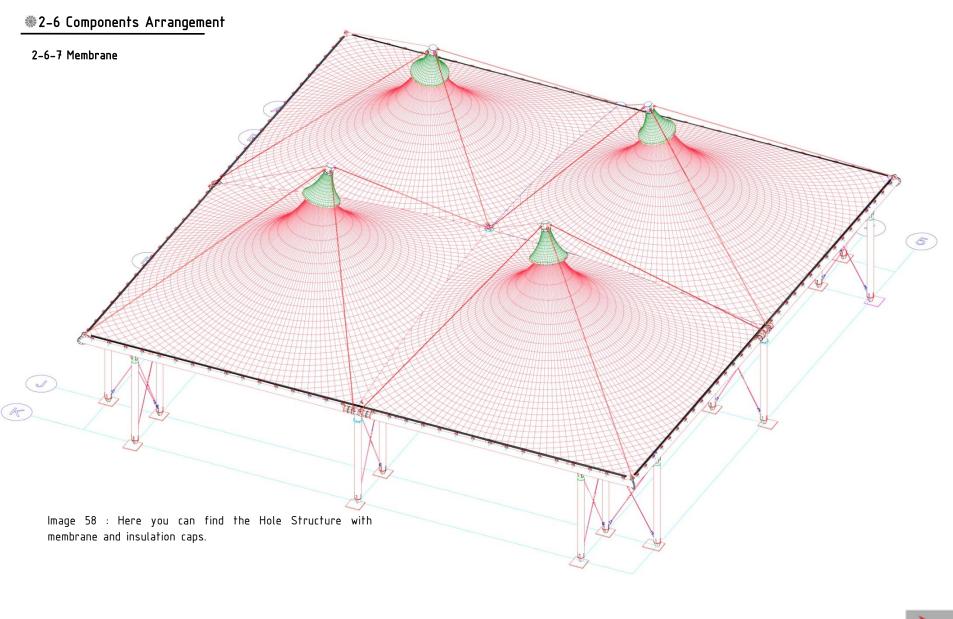
2-6 Components Arrangement





#2-6 Components Arrangement





#2-6 Components Arrangement

Detail 01

Detail 02

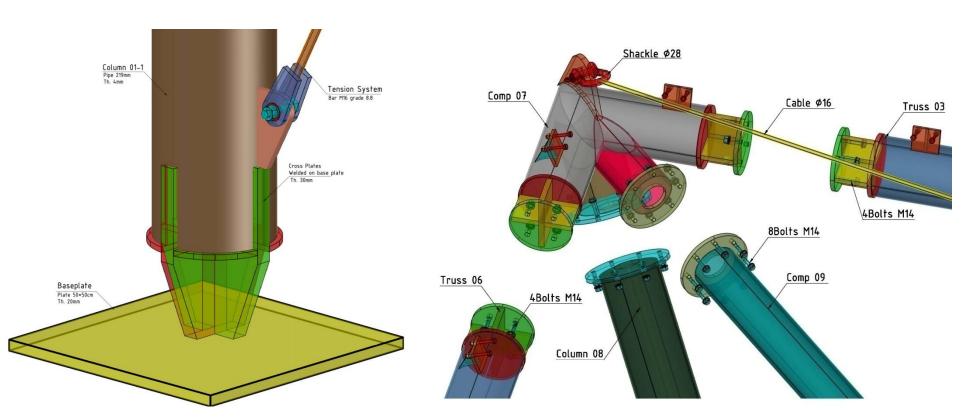


Image 59 : there is a cross plate for columns connection to the base plates ,that is welded inside the pipe grooves and it must be welded on base plates in bottom.

Image 60 : The above image shows a corner detail in north west part of structure, Comp 07 connects 4 other components (comp 08,09 and truss 03,04) to each other with flanges.

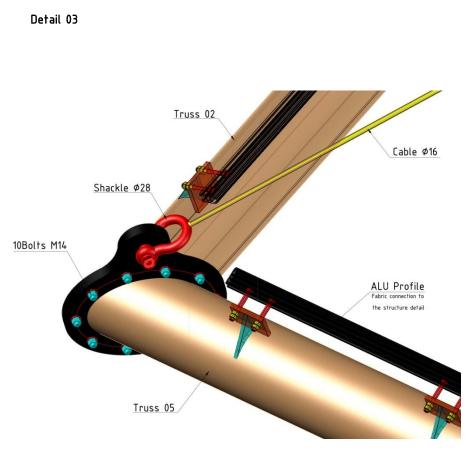


Image 61 : The above image shows the detail in 3 other corners of structure, Truss 02 and 05 connect to each other with flange.

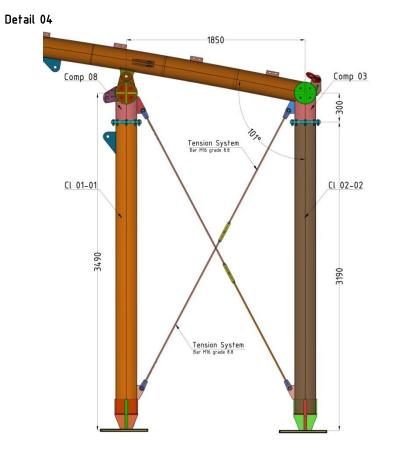


Image 62 : The above image shows the bracing detail for connecting columns to each other in bottom and top part and help them work as a single truss to prevent columns from torsion.

Detail 05

Detail 06

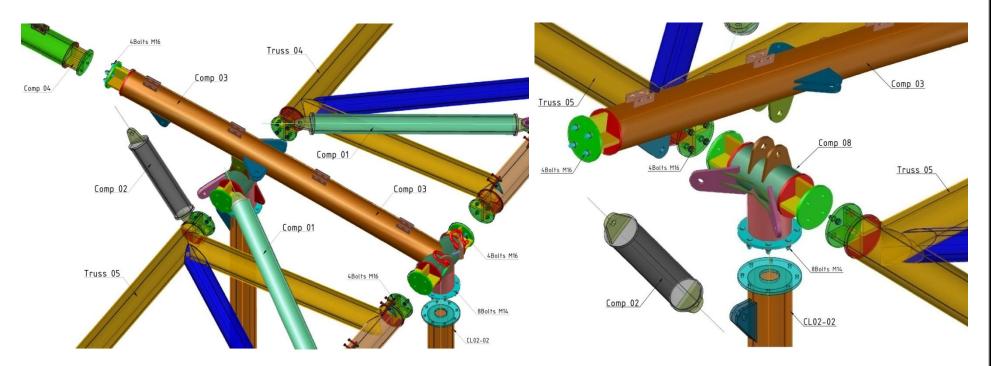


Image 63 : The above image shows how the component 03 in middle of each edge of structure connects to other components with flanges and hinge connections.

Image 64 : The above image shows comp 08 connection to column ,trusses and other components in middle parts of structure edges

Detail 07

Detail 08

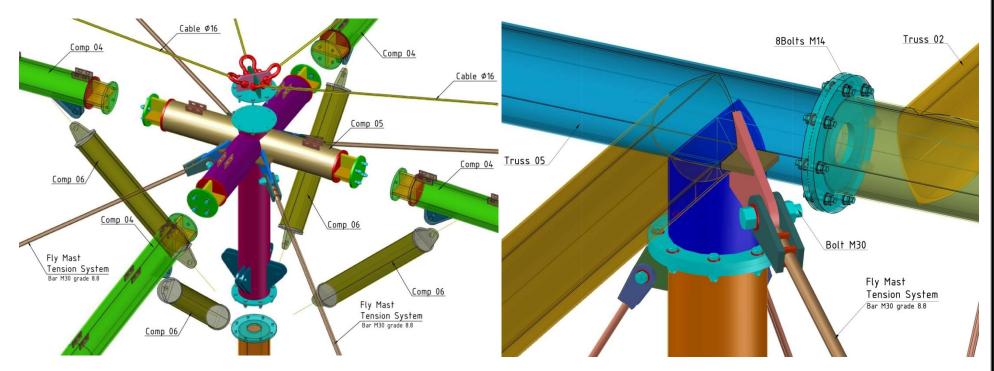


Image 65 : The above image shows the column detail and connection to the arches in center part of the structure, and also shows how fly mast tension systems and safety cables connect to the center column

Image 66 : The above image shows Truss flange connection to column

Detail 09

Detail 10 ALU Profile Fly Mast Tension System Bar M30 grade 8.8 the structure detail Fly Mast Fly Mast Tension System Bar M30 grade 8.8 Truss 04 Bolt M30 Bolt M30 Bolts M30 Fly Mast Tension System Bar M30 grade 8.8 Fly Mast <u>Tension System</u> Cl 04-03 Bar M30 grade 8.8 Tension System Bar M16 grade 8.8

Image 67 : The above image shows the corner columns .hinge connection to the main trusses

Image 68 : The above image shows the bottom detail of fly masts with tension systems.

Detail 11

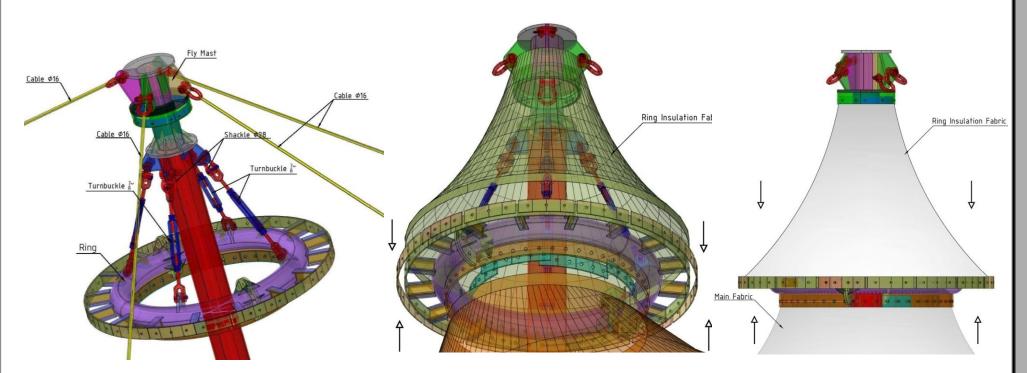
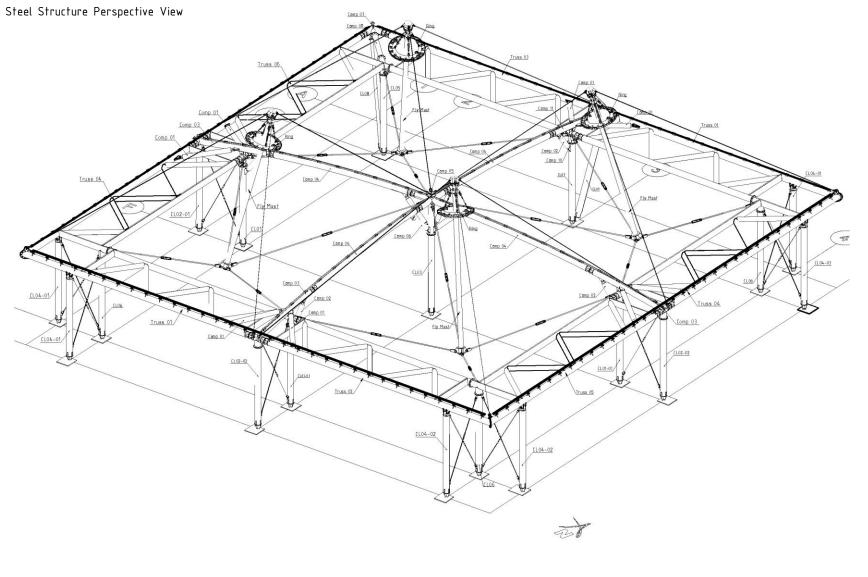
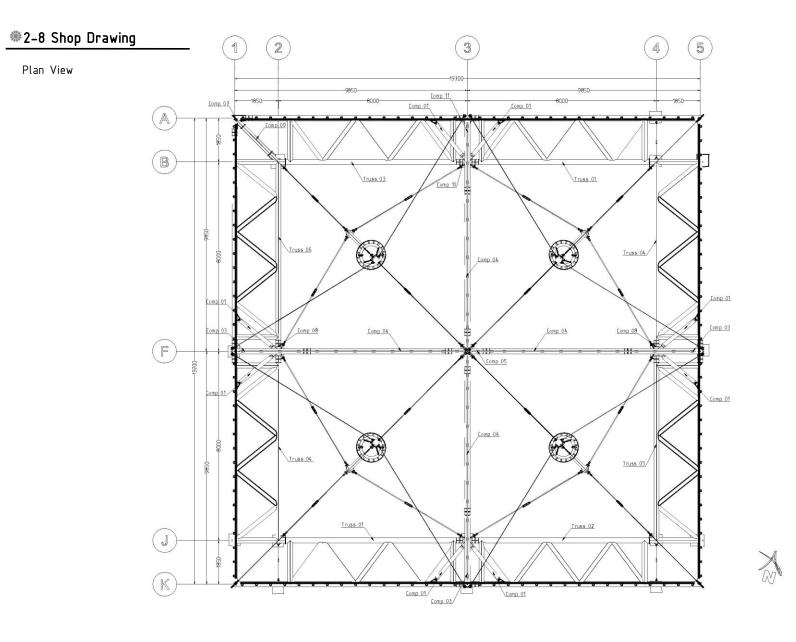
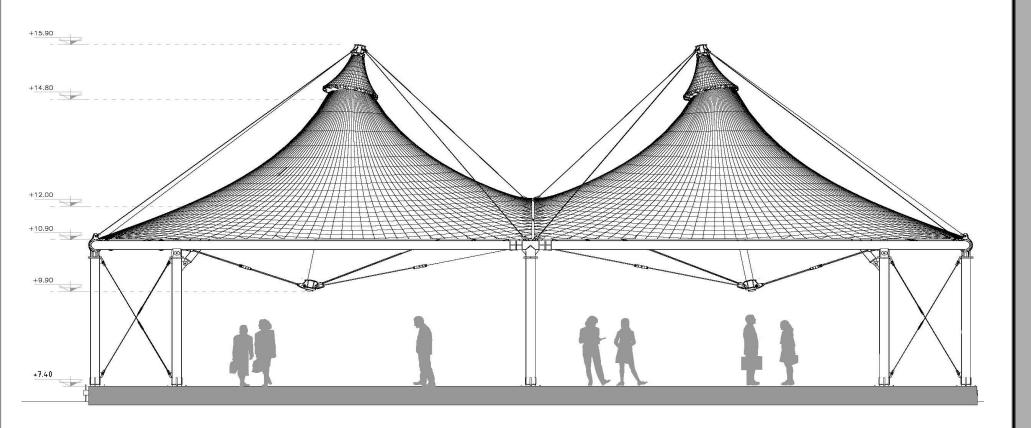
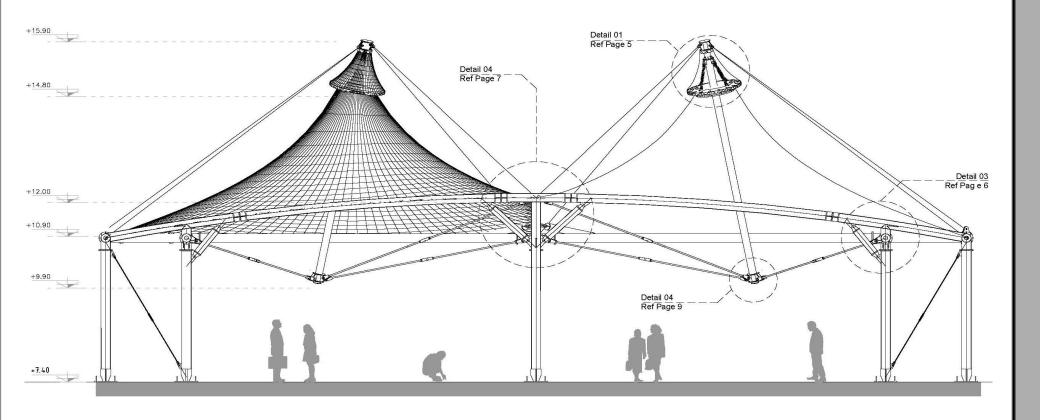
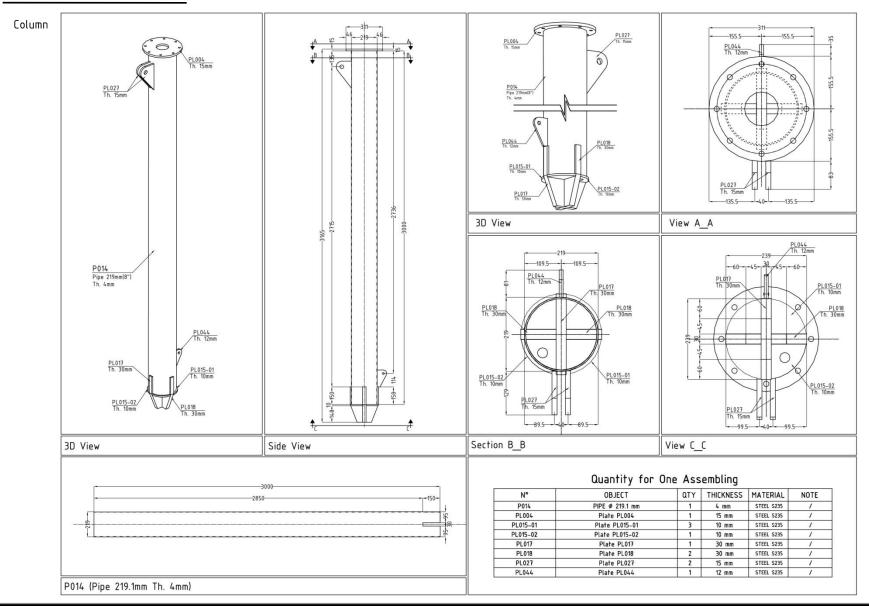




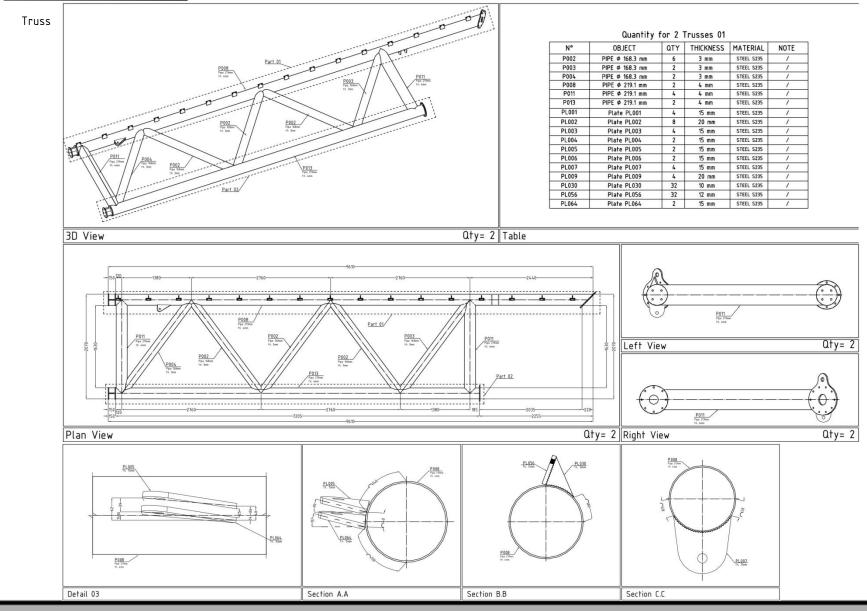
Image 69 : The above images show the top of fly masts and ring details ,also it shows the ring insulation fabric. In our design process we considered the air circulation from the top part of each highpoint fabric .it helped us to provide natural ventilation and to evacuate bad smell from inside the restaurant ,we have an opening between main fabric and insulation fabric at their connections to the rings,this opening is located under the insulation fabric so it won't let rain splash inside.



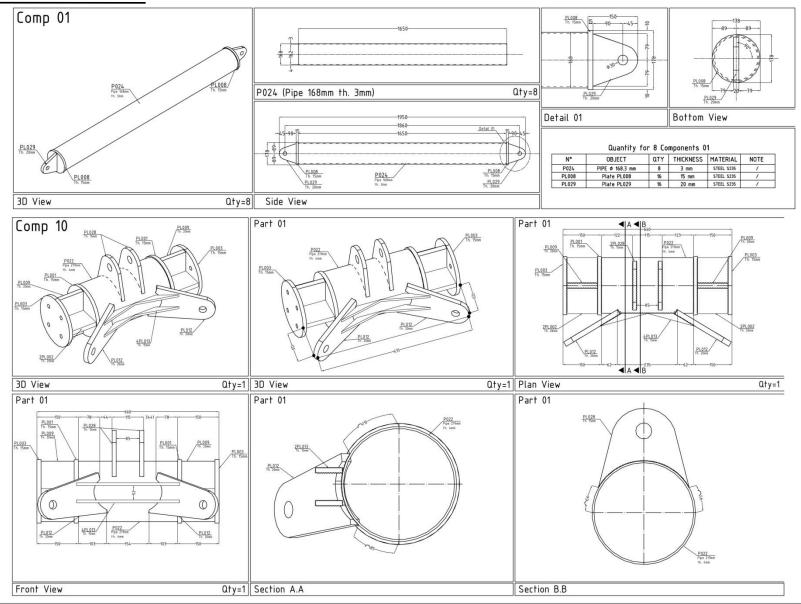


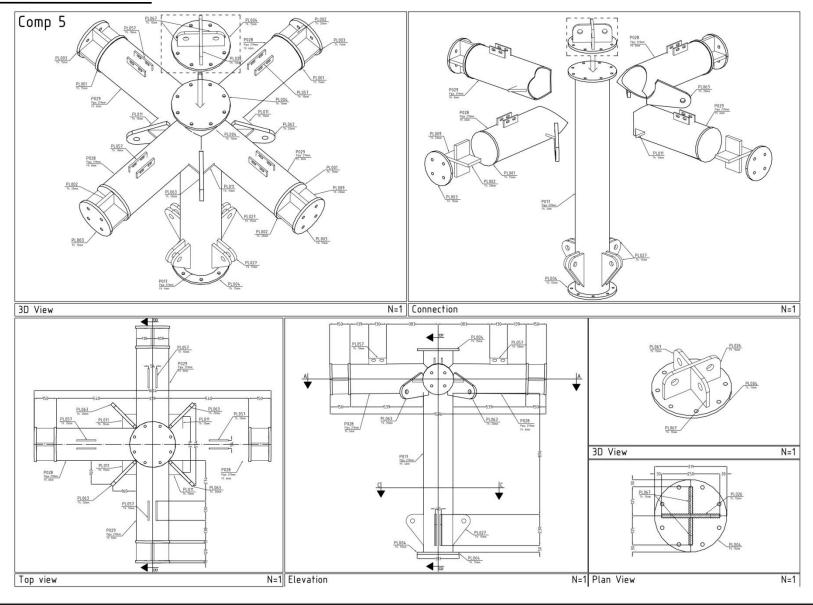
Front View

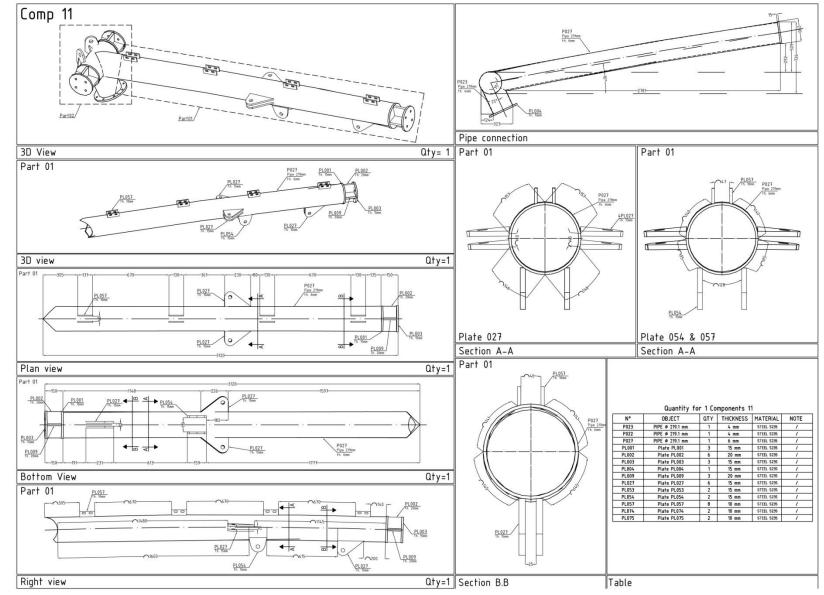

Section



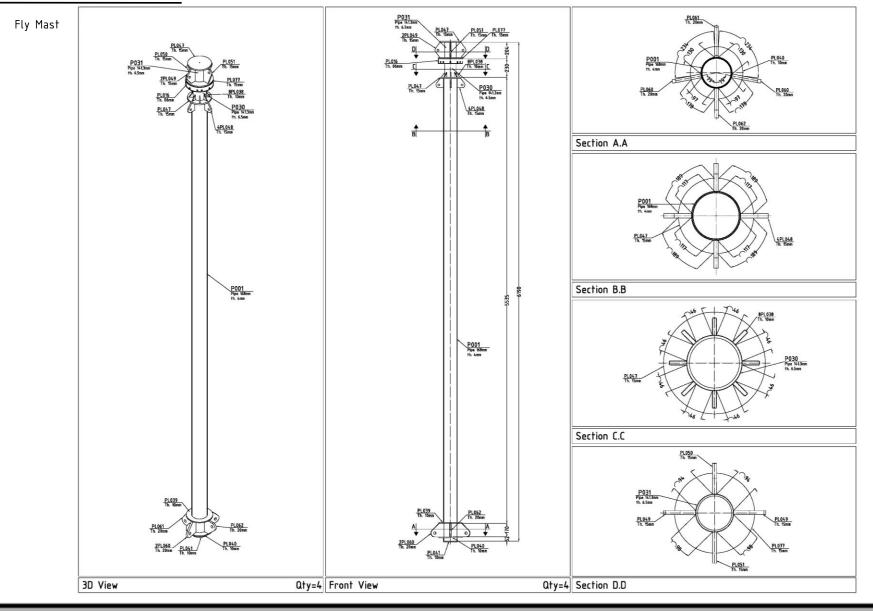
Plates :	PL006	TH=15		TH=15	PL008	TH=20	PL009	TH=20	PL010	TH=20
	N=6	CNC	N=12	CNC	N=36	CNC	N=52		N=4	CNC
	215 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		-94.5- 		+		23 25		225 2 2 2 2 2 2 2 2 3 3 3 3 3 2 25 4 4 4 4 4 4 4 4 5 4 5 4 5 4 5 4 5	
	PL056	TH=12	PL057	TH=15	PL058	TH=30	PL059	TH=30	PL060	TH=20
	N=134		N=4	CNC	N=1	CNC	N=2	CNC	N=8	CNC
	***	k 500 u 6 0 0 sk		a the second sec	11 - 12 - 14 - 12 - 14 - 12 - 14 - 14 -					
	PL061	TH=20	PL062	TH=20	PL063	TH=20	PL064	TH=15	PL065	TH=30
	N=4	CNC	N=4	CNC	N=4	CNC	N=8	CNC	N=1	CNC
	522 - 572 -	-12- -24- -48- 		a a a a a a a a a a a a a a a a a a a	41 40 40 40 40 40 40 40 40 40 40 40 40 40	222 242 242 242 242 242 242 242 242 242		455 		-235
	PL066	TH=30	PL067	TH=15	PL068	TH=30	PL069	TH=30	PL070	TH=30
	N=2	CNC	N=2	CNC	N=11	CNC	N=22	CNC	N=4	CNC
				-12 Lage		239			91 	-23

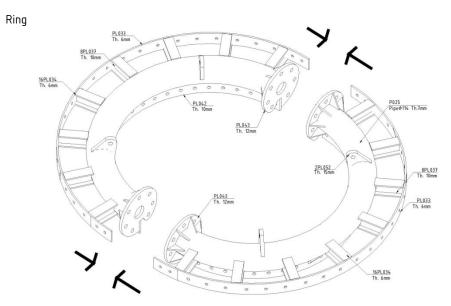


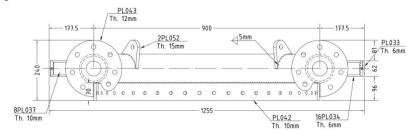


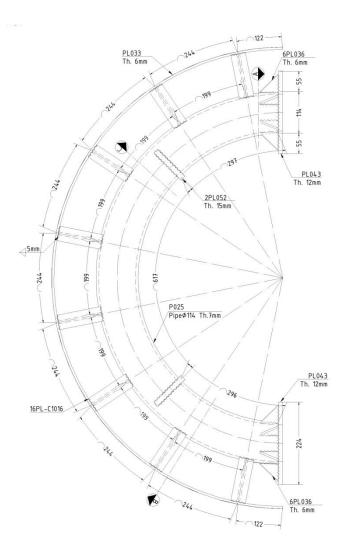


Tensile Structure For Koohsar Complex, Mashhad, Iran Parisa Amirtash Institute For Membrane Abd Shell Technologies e.V. Hochschule Anhalt (FH)




59





Right View

Chapter 3 : FABRIC DESIGN

Fabric Ferrari PRECONTRAINT 902S

Data Sheet

PRECONTRAINT[®] 9025

Technical properties	Precontraint [®] 902S	Standards		
Yam	1100 dtex PES HT	TERSUISSE		
Weight	950 g/m² 28 oz/sqyd	EN ISO 2286-2		
Width	267 cm - 105 inch	0/+2 mm		
Tensile strength (warp/weft)	420/400 daN/5 cm 440/435 Lbs	EN ISO 1421 FTMS 191 A Method 5102		
Tear resistance (warp/weft)	55/50 daN 60/56 Lbs	DIN 53.363 ASTM D 5733-95 Trapezoid		
Adhesion	12 daN/5 cm	NF EN ISO 2411		
Flame retardancy	M2 • B1	NFP 92.503 - DIN 4102		
Surface Treatment	Formula S: calibrated PVDF allo	у		
Product application	Temporary or permanent modular structures			
The technical data here above are average values with Additional informations				
Coating thickness at the top of the yarns	300 µ			
Total thickness	0,66 mm			
Light transmission	9%	NFP 38511		
White index	82%	CIE: International Light Commission		
Thermal values Transmission	ASHRAE 74 1988 Ts 7%	ISO EN 410 Ts 7%		
Reflexion Absorption Shading coefficient Visible reflexion	Rs 75% As 18% g 11,5%	Rs 80% As 13% g 10,5% TV 5% Rv 88%		
Reflexion Absorption Shading coefficient Visible transmission Visible reflexion	As 18%	Rs 80% As 13% g 10,5% Tv 5% Rv 88%		
Reflexion Absorption Shading coefficient Visible transmission	As 18% g 11,5%	Rs 80% As 13% g 10,5% Tv 5% Rv 88% Eppley Solar & Sky UV radiomete		
Reflexion Absorption Shading coefficient Visible transmission Visible reflexion Transmission UV	As 18% g 11,5% T-UV 0% Vertical position: U = 5,6W/sqn	Rs 80% As 13% g 10,5% Tv 5% Rv 88% Eppley Solar & Sky UV radiomete		
Reflexion Absorption Shading coefficient /Isible transmission /Isible reflexion Transmission UV Global thermal conductivity* Acoustical weakening index	As 18% g 11,5% T-UV 0% Vertical position: U = 5,6W/sqn Horizontal position: U = 6,4 W/	Rs 80% As 13% g 10,5% Tv 5% Rv 88% Eppley Solar & Sky UV radiomete n/°C sqm/°C		
Reflexion Absorption Shading coefficient Visible transmission Visible reflexion Transmission UV Global thermal conductivity*	As 18% g 11,5% T-UV 0% Vertical position: U = 5,6W/sqn Hortzontal position: U = 6,4 W/ 15 dBA	Rs 80% As 13% g 10,5% TV 5% Rv 88% Eppley Solar & Sky UV radiomete v/°C sqm/°C ISO 717		

* Those data are obtained by calculation through simulations of the average conditions of use, those values must be considered as approximation

The buyer of our products is fully responsible for their application or their transformation concerning any possible third party. The buyer of our products is fully responsible for their implementation and installation according to the standards, use and customs and safety rules of the countries where they are used. Concerning the contractival warranty, please refer to the text of our warranty. The values here above mentionmed are the results of test performation contominity with the use and customs in thems of tatules, they are given as an indication in order to allow our outcomes to make the best use of our products are subjects to exclusions due to technical progress, we remain entitled to modify the characteristics of our products at any time. The buyer of our products is responsible to check that the here above stata are still valid.

Image 70 : Fabric Data Sheet

3-2 Fabric Design

As European Design Guide for Tensile Structures shows by Testing Methods and Standards from Laboratory Blum the E module of the membrane has to be consider in Kg/m.

That because the thickness of the membrane is negligible, in fact all the values (E Module, Tensile strength and everything else) are related to the unitary thickness . When you look the pictures below, just think that the membrane has got 0.01m thickness and the values are Kg/m . The following images represent the tension inside the membrane for all the load combinations.

3-2 Fabric Design :

	h) A_Eactor	rs for the seams ·		
The membrane itself is verified in accordance with the Method of A-factor by	b) A-Factors for the seams : A0=1.20			
Minte (Dissertation, Aachen, Germany, 1981). The reduction Factors (A-Factors)	A1=1.60			
for the membrane material/seams/clamping are assumed as follows:	A2=1.20			
The allowable stress is defined as follow: $Fd = Ftk/YF$. YM . Ai = $Ftk/Ares$	A3=1.20 Ym= 1.5			
Membrane PVC Type II : Ftk= Warp 8400 kg/m				
Weft 8000 kg/m	*YF= 1.5			
² Where: Fd= allowable stress		a fack that the design will be done write our factored lands on		
Ftk= tensile strength	* Due to the fact that the design will be done using non-factored loads, an additional global safety-factor YF=1.5 is considered for the design. Permanent : Ares= YF x YM x A0 x A1 x A2 x A3 = 5.81/6.22(for seams) Snow : Ares= YM x YF x A0 x A1 x A2 = 4.84/5.18(for seams)			
YF = Load Factor				
YM = material safety coefficient for all approved materials				
Ym = 1.4 within the fabric surface and 1.5 for connections				
Ai = combination of reduction factors depending on load case.	Wind : Ares:	= YM x YF x A0 x A2 = 3.23/3.46(for seams)		
Ares= global safety factor defined as follow	Design Valu	es :		
A0: Reduction factor taking into account that the small width strip tensile test produces a higher value than the biaxial strength.	Warp Direction :			
A1: Reduction factor for long-term loads, with the connection factors very dependent on seam widths.	Permanent	Fd = Ftk/Ares = 8400/6.22 = 1350 kg/m		
A2: Reduction factor for pollution and degradation	Snow	Fd = Ftk/Ares = 8400/5.18 = 1622 kg/m		
A3: Reduction factor for high temperature load case	\. <i>!</i> != -			
a) A-Factors for the material:	Wind	Fd = Ftk/Ares = 8400/3.46 = 2428 kg/m		
A0=1.20	Weft Direction :			
A1=1.60 A2=1.20	Permanent	Fd = Ftk/Ares = 8000/6.22 = 1286 kg/m		
A3=1.20				
YM= 1.4	Snow	Fd = Ftk/Ares = 8000/5.18 = 1544 kg/m		
*YF= 1.5	Wind	Fd = Ftk/Ares = 8000/3.46 = 2312 kg/m		
2. European Design Guide For Tensile Surface Structure, Chapter 6,DIN 4134 and the dissertation of "Mechanical				
Behavior of Connections of Coated Fabrics, Page 181–183				

Tensile Structure For Koohsar Complex, Mashhad, Iran Institute For Membrane Abd Shell Technologies e.V. Hochschule Anhalt (FH) Parisa Amirtash

🏶 3-2 Fabric Design :

When the critical point needs an overlap of different layers of reinforce, the allowable stress will be calculated as following shown: fd n layers = fd . k

Where :

 $K = n - ((n-1)^2/10)$ (n = number of layers)

For 2 layers : $K = 2 - ((2-1)^2/10) = 1.9$

So the allowable resistance is :

fd 2 layers = fd . k = $1383 \times 1.9 = 2628$ kg/m for permanent load

fd 2 layers = fd . $k = 1660 \times 1.9 = 3154 \text{ kg/m}$ for snow load

fd 2 layers = fd . $k = 2486 \times 1.9 = 4723 \text{ kg/m}$ for wind load

For 3 layers : $K = 3 - ((3-1)^2/10) = 2.6$

So the allowable resistance is :

fd 3 layers = fd . $k = 1383 \times 2.6 = 3596 \text{ kg/m}$ for permanent load

fd 3 layers = fd . $k = 1660 \times 2.6 = 4316 \text{ kg/m}$ for snow load

fd 3 layers = fd . $k = 2486 \times 2.6 = 6464 \text{ kg/m}$ for wind load

3-3 Form finding

First I imported the boundary in the program and regenerate the formfinding. Form finding has been done by using Force Density Method. Different c-value for different materials has been applied.

Warp C Value : 200 kg/m Weft C Value : 300 kg/m

🏶 3-4 Loads

3-4-1 Self Weight :

This case takes into account the self weight of each element Self weight of fabric Valmex type II is 0.9 kg/sqm

3-4-2 Membrane Pretension (Pm) :

For make in tension a membrane we need to put inside a pretension, this value could be change, and depends from type of material and form of structure. Cable pretension it's considered inside to this factor.

3-4-3 Snow :

The characteristic snow load considered in Mashhad is 150 kg/m^2 and the shape factor for this structure $\mu\textsc{i}$

The snow load is calculated with the following equation:

Pr = Ps . Cs

Ps : Basic Snow Load in Mashhad (150kg/sqm) Cs : Roof Shape Factor

Shape Factor (Cs)

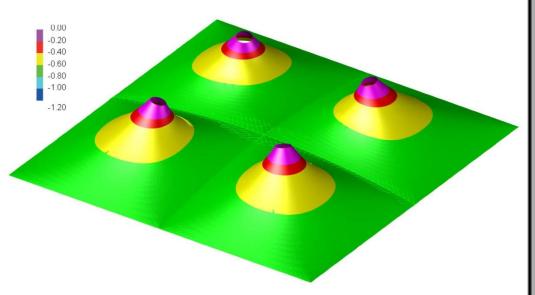
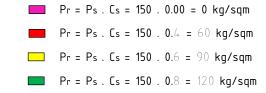



Image 71 : Shape Factor

3-4-4 Wind

The wind load is calculated by the following equation:

qp = qb.Ce(z).cp

Where:

qp [kg/m2]: Static wind pressure. Ce(z): Exposure factor. 2.0 qb [kg/m2]: Basic wind pressure. qb= 0.005 . V²= 40.5 V(wind speed considered)=90 km/h Zone A : $q_p = -0.15 \cdot 2 \cdot 40.5 = -12.15 \text{ kg/m2}$ Zone B : $q_p = -0.6 \cdot 2 \cdot 40.5 = -48.6 \text{ kg/m2}$ Zone C : $q_p = -1 \cdot 2 \cdot 40.5 = -81 \text{ kg/m2}$ Zone D : $q_p = +0.4 \cdot 2 \cdot 40.5 = 32.4 \text{ kg/m2}$ $q_p = -0.2 \cdot 2 \cdot 40.5 = -16.2 \text{ kg/m2}$

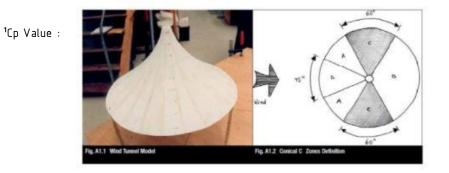


Figure 15 : Zones definition Conical shape - European Design Guide for Tensile Surface Structures

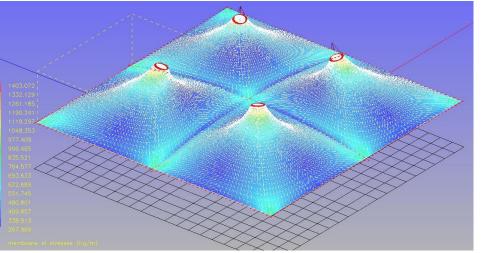
	EXTERNAL CP VALUES FOR CONICAL STRUCTURES			zones			
	Angle of slope of membrane to horizontal / deg.	A	В	с	D		
OPEN SIDED STUCTURE	40	-0.15	-0.6	-1.0	+0.4/-0.2		

Table 1 : External Cp Values for Conical Structures – European Design Guide for Tensile Surface Structures Image 72 : Cp Value

1. European Design Guide For Tensile Surface Structure, Appendix A1,Page 261

3-5 Load combinations

- COMB 1: Pretension + Self Weight
- COMB 2: Pretension + Self Weight + Snow
- COMB 3: Pretension + Self Weight + Wind +Y
- COMB 4: Pretension + Self Weight + Wind +X
- COMB 5: Pretension + Self Weight + Wind +Y + Snow
- COMB 6: Pretension + Self Weight + Wind +X + Snow



3-6 Load Analysis

The stress in the membrane for the different load combination are given below:

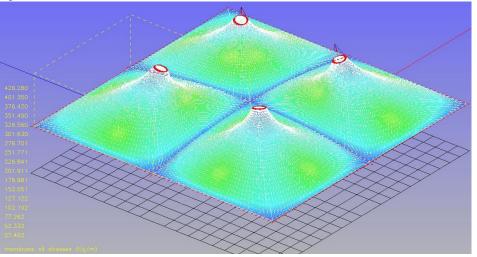
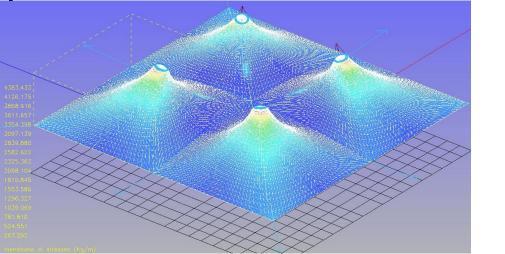

COMB 1: Pretension + Self Weight

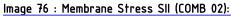
Image 73 : Membrane Stress SI-Warp (COMB 01)

The force on the zone with single layer is 640 Kg/m, lower than allowable force (fd=1350 kg/m) The force on the critical zones is 1403 kg/m, lower than allowable force for 2 layers (fd= 2628 kg/m)

Image 74 : Membrane Stress SII-Weft (COMB 01)



The force on the zone with single layer is 426 Kg/m, lower than allowable force (fd=1286 kg/m)



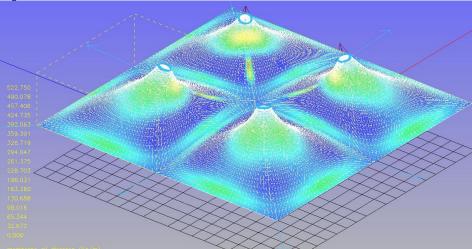

COMB 2: Pretension + Self Weight + Snow

Image 75 : Membrane Stress SI (COMB 02) :

The force on the zone with one single layer is 1553, lower than allowable force(fd=1622 kg/m) The force on the critical zones is almost 4300, lower than allowable force for 3 Layers(fd= 4316 kg/m)

The force on the zone with single layer is 522 Kg/m, lower than allowable force (fd=1544 $\,\rm kg/m)$

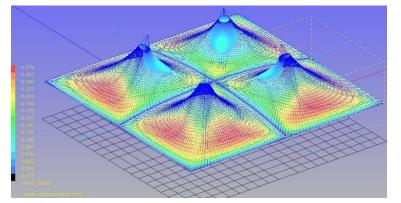
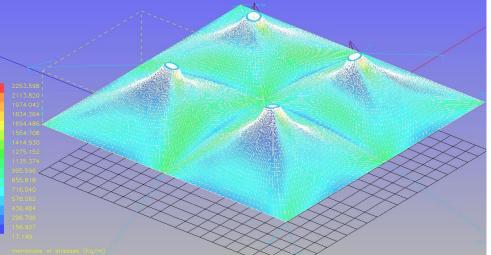



Image 77 : Membrane Deformation

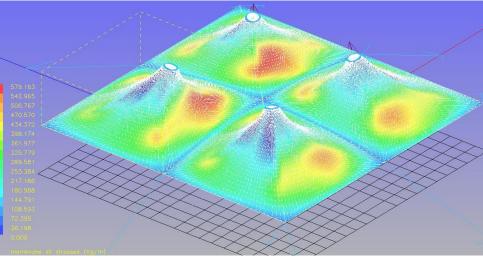

COMB 3: Pretension + Self Weight + Wind (+Y)

Image 78: Membrane Stress SI (COMB 03) :

The force on the zone with one single layer is 2253, lower than allowable force (fd=2428 kg/m)

Image 79 : Membrane Stress SII (COMB 03):

The force on the zone with single layer is $580~{\rm Kg/m},$ lower than allowable force (fd=2312 kg/m)

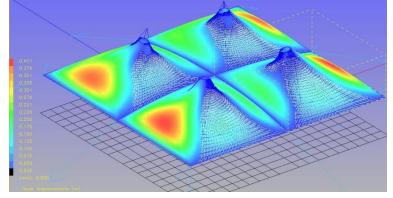
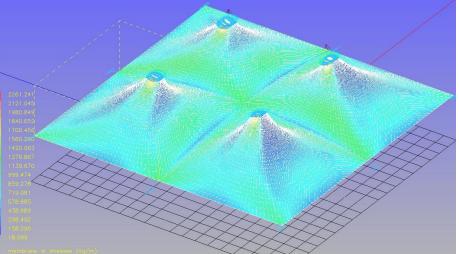



Image 80 : Membrane Deformation

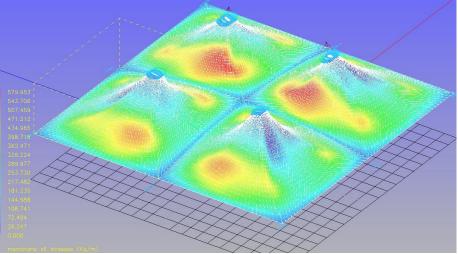

COMB 4: Pretension + Self Weight + Wind (+X)

image 81 : Membrane Stress SI (COMB 04) :

The force on the zone with one single layer is 2261, lower than allowable force (fd=2428 kg/m)

Image 82 : Membrane Stress SII (COMB 04):

The force on the zone with single layer is $580~{\rm Kg/m},$ lower than allowable force (fd=2312 kg/m)

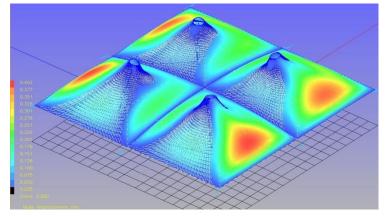
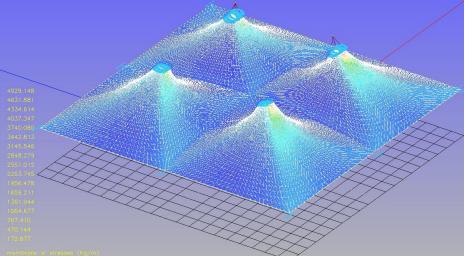
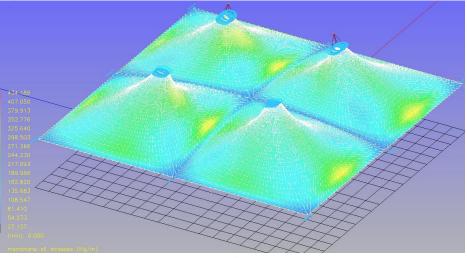
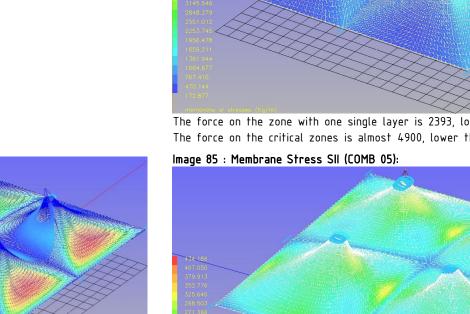



Image 83 : Membrane Deformation


3-6 Load Analysis

COMB 5 : Pretension + Self Weight + Wind (+Y) + Snow


Image 84 : Membrane Stress SI (COMB 05) :

The force on the zone with one single layer is 2393, lower than allowable force (fd=2428 kq/m) The force on the critical zones is almost 4900, lower than allowable force for 3 Layers(fd= 6464 kg/m)

The force on the zone with single layer is 434 Kg/m, lower than allowable force (fd=2312 kg/m)

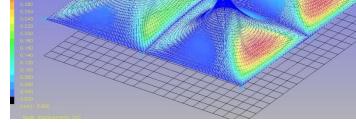
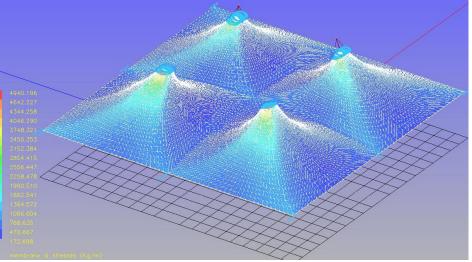
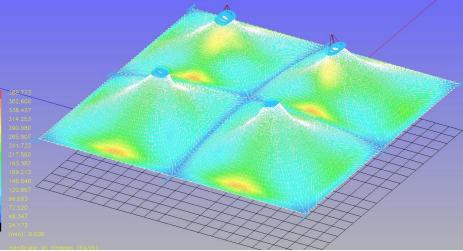



Image 86 : Membrane Deformation



COMB 6 : Pretension + Self Weight + Wind (+X) + Snow

Image 87: Membrane Stress SI (COMB 06) :

The force on the zone with one single layer is 2854, lower than allowable force (fd=2428 kg/m) The force on the critical zones is almost 4940, lower than allowable force for 3 Layers(fd= 6464 kg/m) Image 88: Membrane Stress SII (COMB 06):

The force on the zone with single layer is 386 Kg/m, lower than allowable force (fd=2312 kg/m)

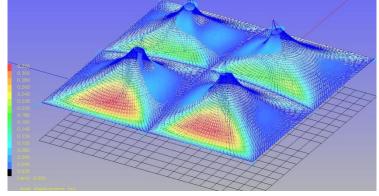


Image 89 : Membrane Deformation

COMB 01 : Pretension + Self Weight

worl	¢	F	retensi	on Read	ctions:R	eaction	S	s	at Feb 9	2013
N°	X m	Y m	Z m	Fx KN	Fy KN	Fz KN	Mx KN m	My KN m	Mz KN m	Fv KN
0	0.000	9.850	3.465	7.97e -08	-2.48 e+00	7.84e -01	0.00e +00	0.00e +00	0.00e +00	2.60e +00
58	9.850	0.000	3.465	-2.47 e+00	-2.92 e-07	7.84e -01	0.00e +00	0.00e +00	0.00e +00	2.60e +00
87	9.850	9.850	3.465	-1.25 e+00	-1.25 e+00	2.63e -01	0.00e +00	0.00e +00	0.00e +00	1.78e +00
260	0.000	-9.850	3.465	-8.45 e-08	2.48e +00	7.84e -01	0.00e +00	0.00e +00	0.00e +00	2.60e +00
289	9.850	-9.850	3.465	-1.25 e+00	1.25e +00	2.63e -01	0.00e +00	0.00e +00	0.00e +00	1.78e +00
462	-9.850	0.000	3.465	2.47e +00	-2.91 e-07	7.84e -01	0.00e +00	0.00e +00	0.00e +00	2.60e +00
491	-9.850	-9.850	3.465	1.25e +00	1.25e +00	2.63e -01	0.00e +00	0.00e +00	0.00e +00	1.78e +00
664	-9.850	9.850	3.465	1.25e +00	-1.25 e+00	2.63e -01	0.00e +00	0.00e +00	0.00e +00	1.78e +00

COMB 03 : Pretension + Self Weight + Wind +Y

work	ĸ			LC2:Re	actions			s	at Feb 9	9 2013
N°	X m	Y m	Z m	Fx KN	Fy KN	Fz KN	Mx KN m	My KN m	Mz KN m	Fv KN
0	0.000	9.850	3.465	3.86e -03	-8.95 e+01	3.38e +01	-8.95e +00	3.38e- 04	-3.92e -04	9.57e +01
58	9.850	0.000	3.465	-7.00 e+01	6.60e +00	2.95e +01	-1.04e +00	5.63e +00	-7.35e +00	7.63e +01
87	9.850	9.850	3.465	-1.53 e+01	-1.63 e+01	1.36e +01	-1.20e +01	9.86e +00	2.00e +00	2.62e +01
260	0.000	-9.850	3.465	1.15e -02	9.24e +01	2.57e +01	7.23e +00	3.33e- 04	-4.92e -04	9.59e +01
289	9.850	-9.850	3.465	-1.57 e+01	2.18e +01	1.02e +01	1.04e +01	6.30e +00	-1.35e +01	2.88e +01
462	-9.850	0.000	3.465	7.00e +01	6.60e +00	2.95e +01	-1.04e +00	-5.62e +00	7.35e +00	7.63e +01
491	-9.850	-9.850	3.465	1.57e +01	2.18e +01	1.02e +01	1.04e +01	-6.30e +00	1.35e +01	2.88e +01
664	-9.850	9.850	3.465	1.53e +01	-1.63 e+01	1.36e +01	-1.20e +01	-9.86e +00	-2.01e +00	2.62e +01

COMB 02 : Pretension + Self Weight + Snow

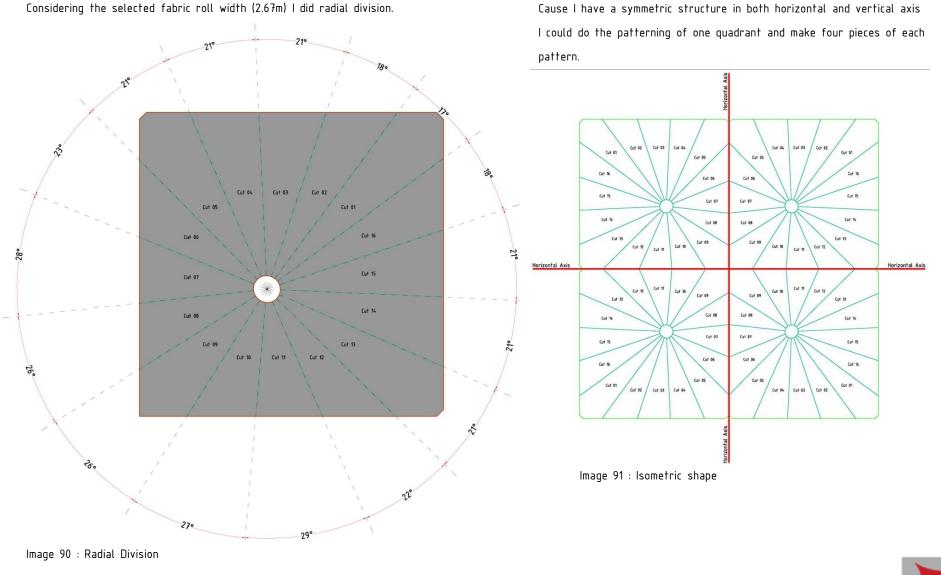
work	¢			LC1:Re	actions			s	Sat Feb 9	2013
N°	X m	Y m	Z m	Fx KN	Fy KN	Fz KN	Mx KN m	My KN m	Mz KN m	Fv KN
0	0.000	9.850	3.465	3.46e -03	-3.75 e+01	-1.77 e+00	3.03e +00	-1.05e -03	-2.01e -03	3.76e +01
58	9.850	0.000	3.465	-3.74 e+01	7.75e -04	-1.77 e+00	-7.81e -04	-3.02e +00	-1.64e -03	3.75e +01
87	9.850	9.850	3.465	-2.68 e+01	-2.69 e+01	5.85e -01	-1.20e +00	1.20e +00	3.83e- 02	3.80e +01
260	0.000	-9.850	3.465	1.17e -02	3.75e +01	-1.77 e+00	-3.03e +00	1.10e- 03	-1.93e -03	3.76e +01
289	9.850	-9.850	3.465	-2.69 e+01	2.69e +01	5.85e -01	1.20e +00	1.20e +00	-4.09e -02	3.80e +01
462	-9.850	0.000	3.465	3.74e +01	4.11e -04	-1.77 e+00	1.40e- 03	3.02e +00	-2.47e -03	3.75e +01
491	-9.850	-9.850	3.465	2.68e +01	2.69e +01	5.85e -01	1.20e +00	-1.20e +00	3.89e- 02	3.80e +01
664	-9.850	9.850	3.465	2.68e +01	-2.69 e+01	5.85e -01	-1.20e +00	-1.20e +00	-4.01e -02	3.80e +01

COMB 04 : Pretension + Self Weight + Wind +X

work	ς			LC3:Re	actions		S	at Feb 9	2013	
N°	X m	Y m	Z m	Fx KN	Fy KN	Fz KN	Mx KN m	My KN m	Mz KN m	Fv KN
0	0.000	9.850	3.465	6.62e +00	-7.00 e+01	2.95e +01	-5.61e +00	1.06e +00	7.39e +00	7.62e +01
58	9.850	0.000	3.465	-8.96 e+01	-4.29 e-06	3.38e +01	3.18e- 04	8.97e +00	-4.47e -04	9.57e +01
87	9.850	9.850	3.465	-1.63 e+01	-1.53 e+01	1.36e +01	-9.87e +00	1.20e +01	-2.01e +00	2.62e +01
260	0.000	-9.850	3.465	6.62e +00	7.00e +01	2.95e +01	5.62e +00	1.06e +00	-7.39e +00	7.62e +01
289	9.850	-9.850	3.465	-1.64 e+01	1.53e +01	1.36e +01	9.87e +00	1.20e +01	2.01e +00	2.62e +01
462	-9.850	0.000	3.465	9.25e +01	2.29e -04	2.57e +01	3.39e- 04	-7.23e +00	-4.88e -04	9.60e +01
491	-9.850	-9.850	3.465	2.18e +01	1.58e +01	1.02e +01	6.31e +00	-1.04e +01	-1.36e +01	2.88e +01
664	-9.850	9.850	3.465	2.18e +01	-1.58 e+01	1.02e +01	-6.31e +00	-1.04e +01	1.36e +01	2.88e +01

3-7 Corner Reactions :

COMB 05 : Pretension + Self Weight + Wind Y + Snow


work	¢			LC4:Re	actions			s	at Feb 9	2013
N°	X m	Y m	Z m	Fx KN	Fy KN	Fz KN	Mx KN m	My KN m	Mz KN m	Fv KN
0	0.000	9.850	3.465	3.91e -03	-3.71 e+01	6.11e +00	-3.77e -01	-3.18e -04	-2.70e -04	3.76e +01
58	9.850	0.000	3.465	-2.53 e+01	6.26e +00	3.87e +00	-1.60e +00	-1.86e +00	-8.63e +00	2.63e +01
87	9.850	9.850	3.465	-1.55 e+01	-1.81 e+01	3.75e +00	-3.58e +00	2.87e +00	6.54e +00	2.42e +01
260	0.000	-9.850	3.465	1.13e -02	5.15e +01	2.44e +00	-1.40e -01	1.13e- 03	-1.41e -03	5.15e +01
289	9.850	-9.850	3.465	-1.85 e+01	2.64e +01	1.94e +00	3.15e +00	6.87e- 01	-2.13e +01	3.23e +01
462	-9.850	0.000	3.465	2.52e +01	6.26e +00	3.87e +00	-1.60e +00	1.86e +00	8.63e +00	2.63e +01
491	-9.850	-9.850	3.465	1.85e +01	2.64e +01	1.94e +00	3.15e +00	-6.86e -01	2.13e +01	3.23e +01
664	-9.850	9.850	3.465	1.55e +01	-1.81 e+01	3.75e +00	-3.58e +00	-2.87e +00	-6.54e +00	2.42e +01

COMB 06 : Pretension +	Self Weight	+ Wind X + Snow
------------------------	-------------	-----------------

work				LC5:Re	actions			s	at Feb 9	2013
N°	X m	Y m	Z m	Fx KN	Fy KN	Fz KN	Mx KN m	My KN m	Mz KN m	Fv KN
0	0.000	9.850	3.465	6.29e +00	-2.53 e+01	3.86e +00	1.87e +00	1.61e +00	8.68e +00	2.63e +01
58	9.850	0.000	3.465	-3.71 e+01	4.26e -04	6.10e +00	1.30e- 04	3.78e- 01	2.99e- 04	3.76e +01
87	9.850	9.850	3.465	-1.81 e+01	-1.56 e+01	3.75e +00	-2.87e +00	3.58e +00	-6.50e +00	2.42e +01
260	0.000	-9.850	3.465	6.30e +00	2.53e +01	3.86e +00	-1.87e +00	1.61e +00	-8.68e +00	2.63e +01
289	9.850	-9.850	3.465	-1.81 e+01	1.56e +01	3.75e +00	2.87e +00	3.58e +00	6.50e +00	2.42e +01
462	-9.850	0.000	3.465	5.14e +01	8.92e -04	2.43e +00	1.39e- 03	1.43e- 01	-1.74e -03	5.15e +01
491	-9.850	-9.850	3.465	2.64e +01	1.85e +01	1.94e +00	6.88e- 01	-3.15e +00	-2.12e +01	3.23e +01
664	-9.850	9.850	3.465	2.64e +01	-1.85 e+01	1.94e +00	-6.87e -01	-3.15e +00	2.12e +01	3.23e +01

3-8 Patterning:

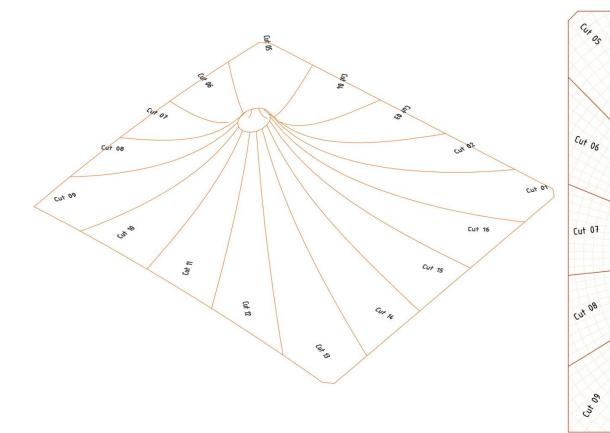


Image 92 : Geodetic Lines

Image 93 : Geodetic Lines

Cut 10

Cut 04

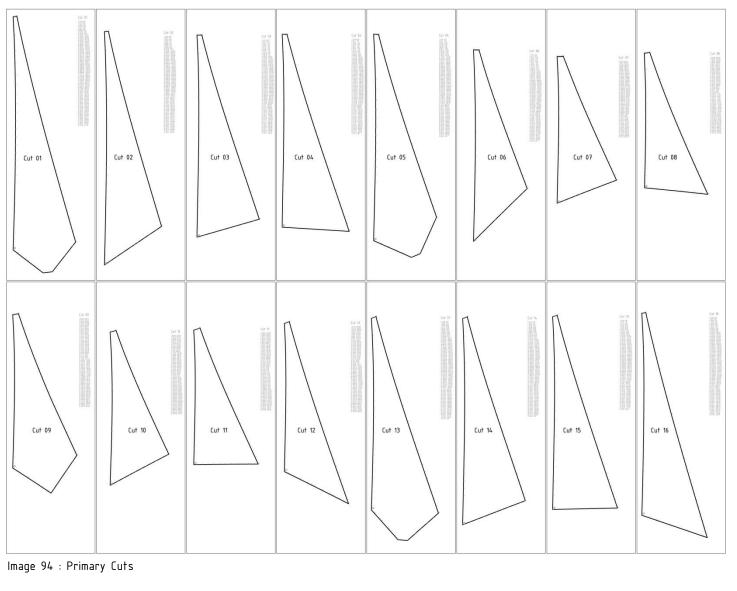
Cut 03

Cut 11

Cut 02

Cut 12

Cut of


Cut 16

Cut 15

Cut 14

Cut 13

3-8-2 Primary Cuts

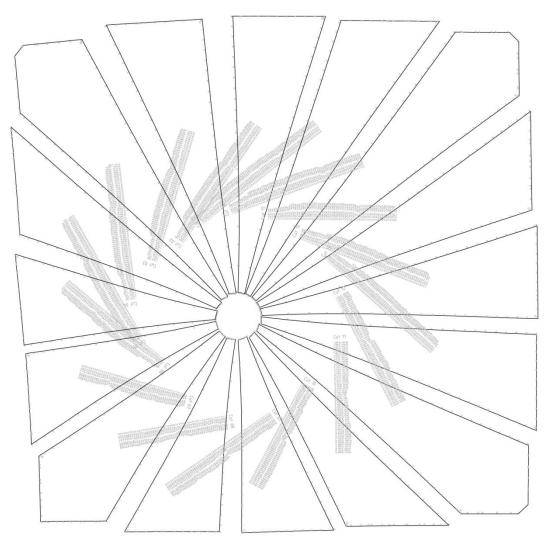
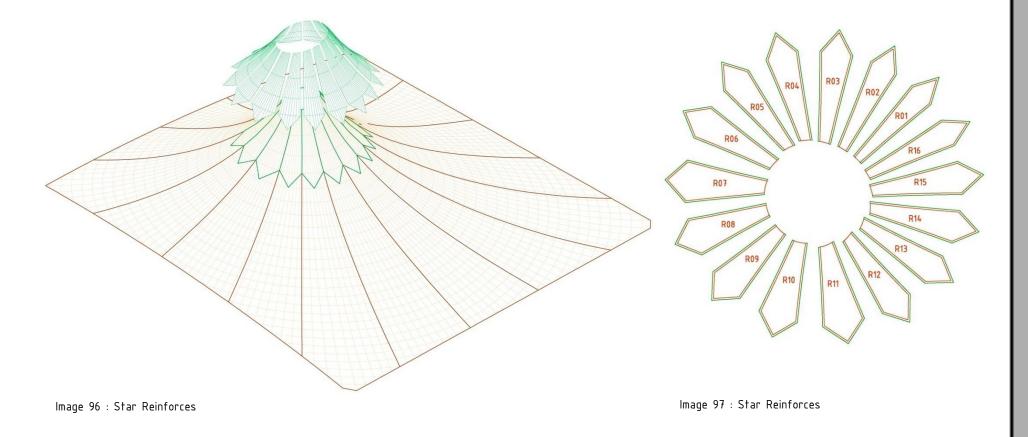
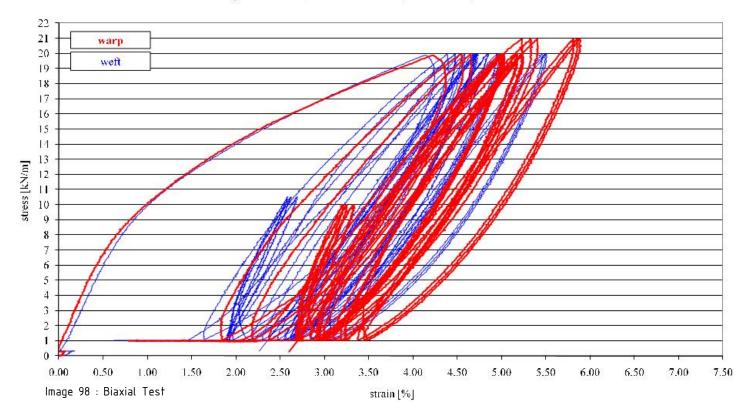



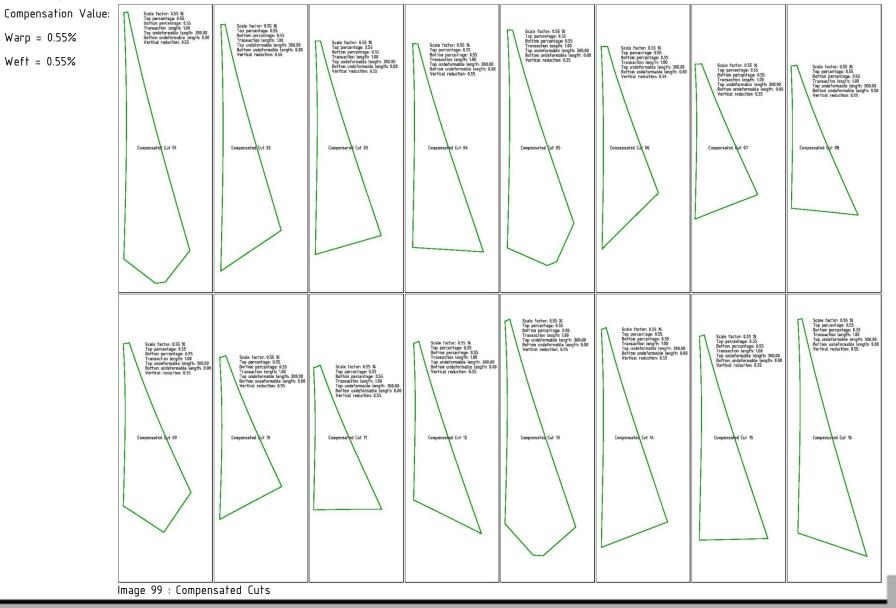
Image 95 : Primary Cuts

3-8-3 Star Reinforces :


Considering the load aggregation on top part of cones (that was shown in Forten analysis images) ,we needed to have 2 layers of reinforcement on those parts and for making reinforcements and their shadow under the membrane more beautiful we drawn them in a shape that after welding them together they seem like a star.

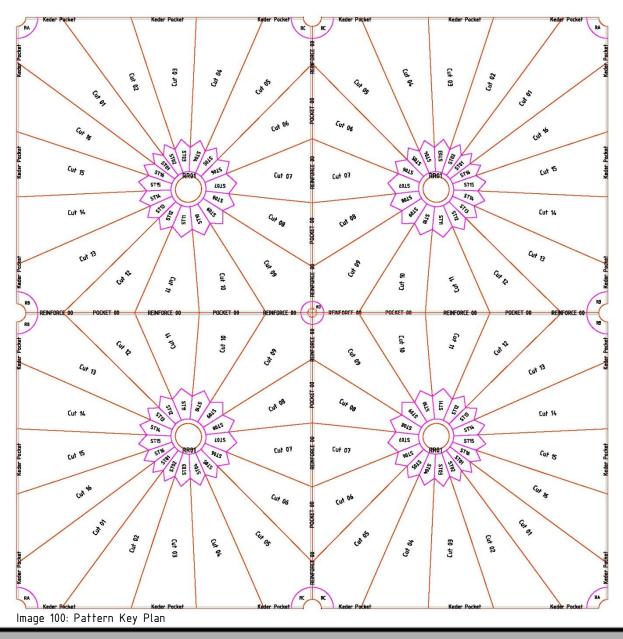
3-8-4 Compensation :

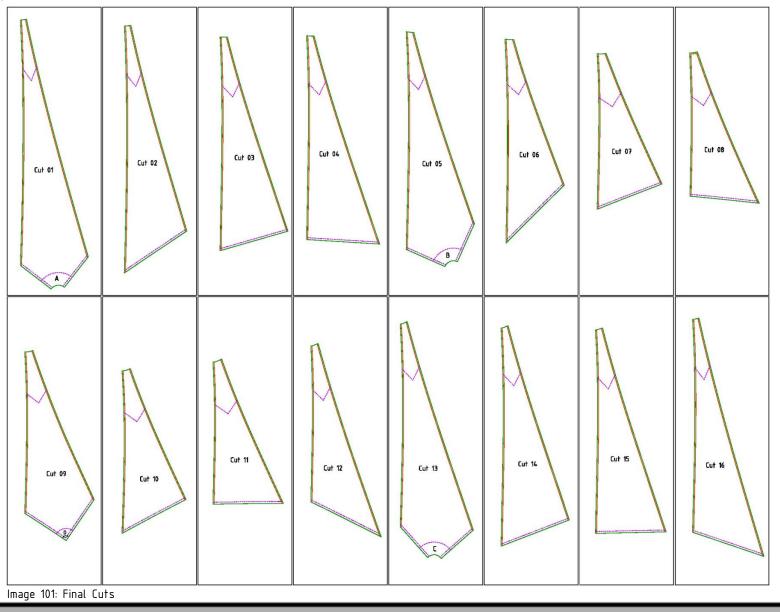
Looking at the bi-axial tests, and knowing that contrary to other types of fabrics, compensation values for both warp and wefts in Ferrari pre-contraint 902S are very similar. According to pretension value (640 kg/m) and considering the biaxial test table The compensation values are 0.55% in both warp and weft directions Pr 585-28: Ferrari Précontraint 902 S2 - GL


Sample: M11/091, Bain: 1000007011, Lot: 645985, UM 300000332707

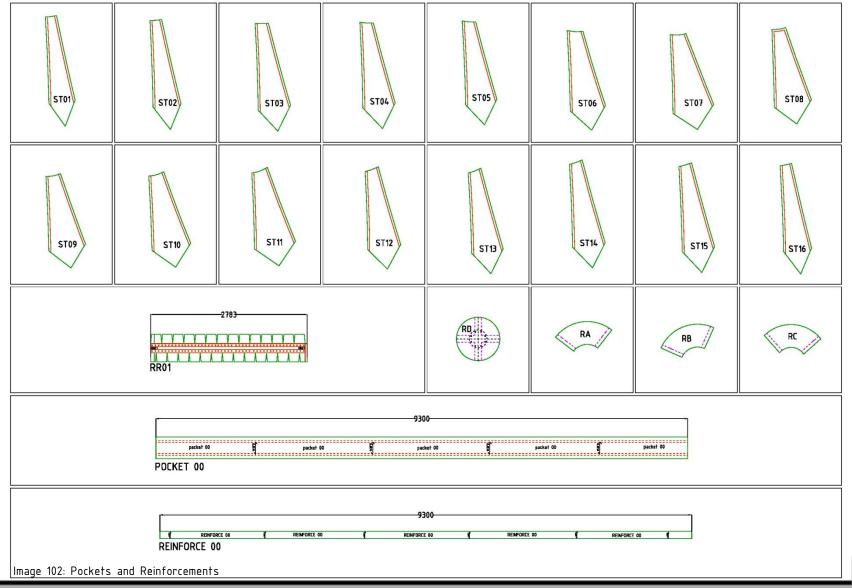
3-8-5 Decompensation :

We have fixed edges at the connection of fabrics to the rings ,so we have decompensation in top part of each highpoint.

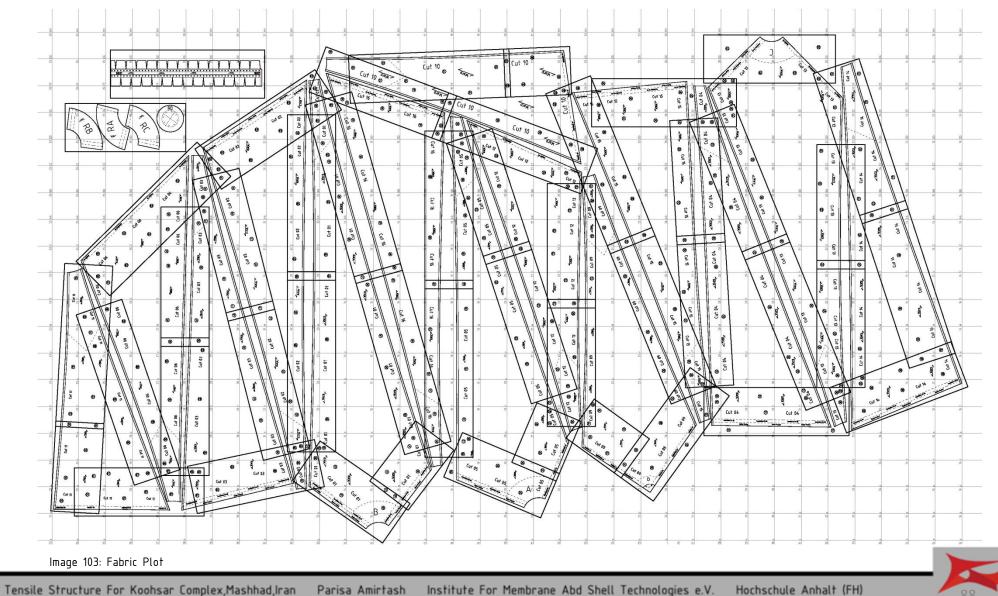

3-8-6 Compensated Cuts



Key Plan :



3-8-7 Final Cuts :


Reinforcement and Corners :

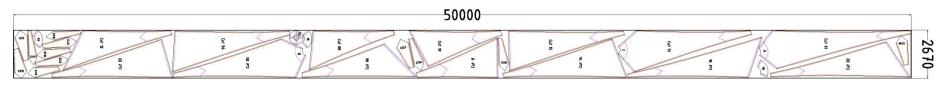
Tensile Structure For Koohsar Complex, Mashhad, Iran Parisa Amirtash Institute For Membrane Abd Shell Technologies e.V. Hochschule Anhalt (FH)

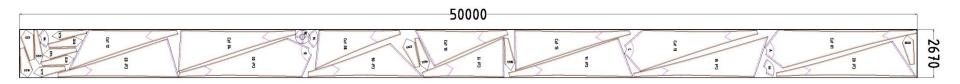
3-8-8 Plot

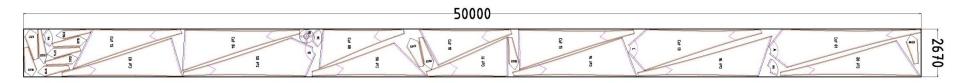
Cutting Patterns are .first plotted 1:1 on paper rolls with 900mm width and variable lengths.

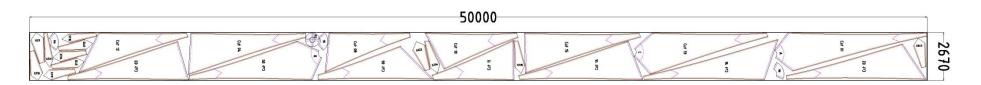
3-8-8 Plot

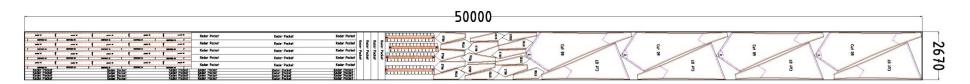
In next step we superimpose plots on fabric rolls and cut the fabric.

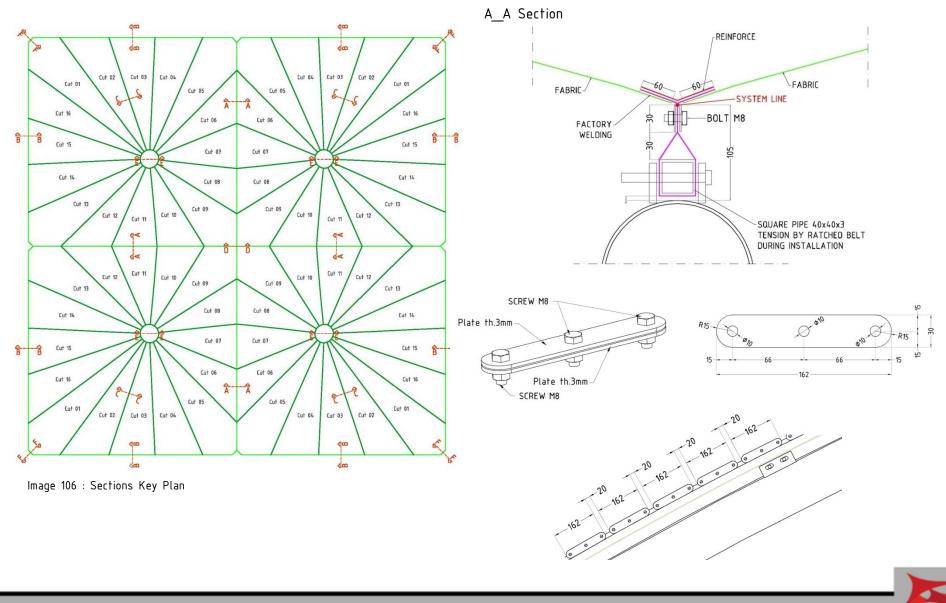

Image 104: Plot Assembly

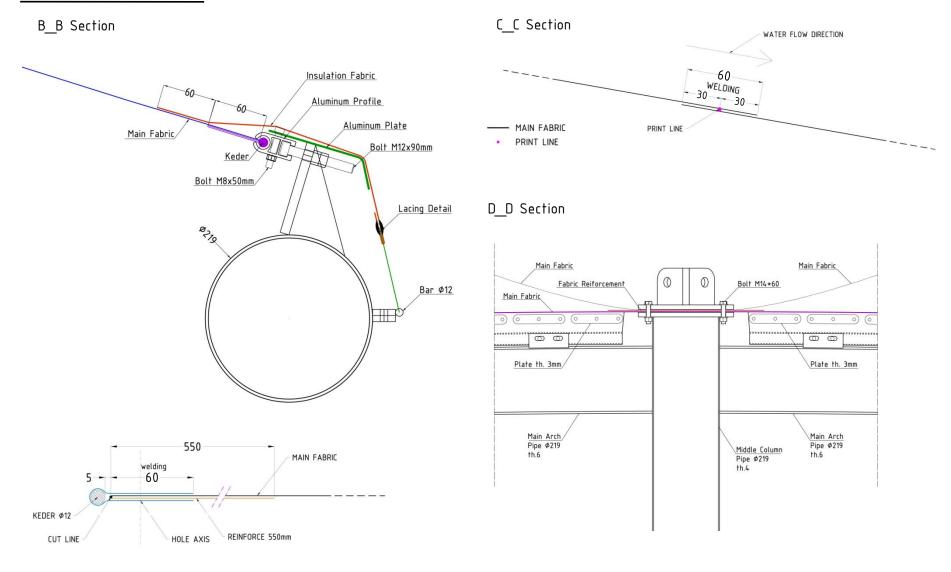

Image 105: Factory, Cutting Fabric

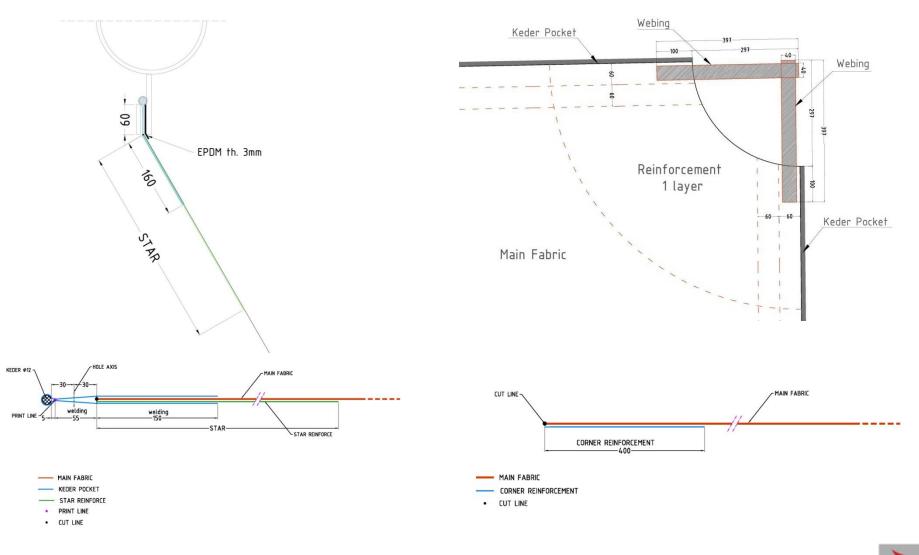


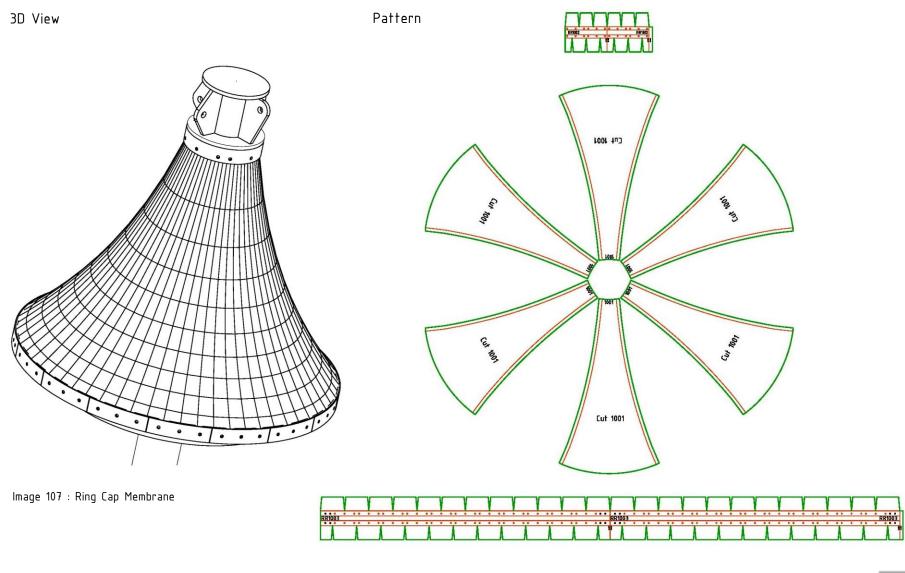

3-8-9 Nesting Panels on The Rolls


Nesting on the rolls are done in a way that the warp directions are correct and along the length of the roll. Pockets and reinforcements are placed on the residual spaces in the correct warp direction, in order to save as much material as possible.



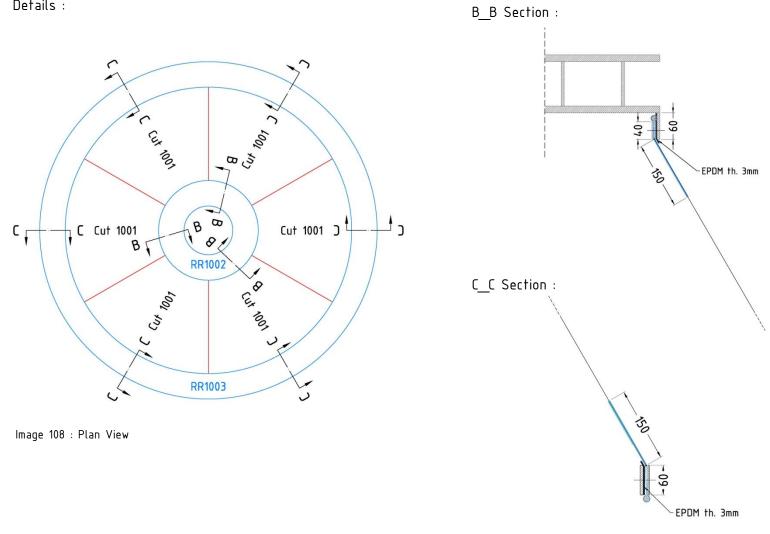



3-9 Membrane Details :


3-9 Membrane Details :

E_E Section

F_F Section (Corner Detail)


🏶 3–10 Ring Cap Membrane

🏶 3–10 Ring Cap Membrane

Details :

Chapter 4 : MANUFACTURING

#4-1 plates CNC Cut

After finalizing the design the first step of structure manufacturing is cutting plates, we draw all steel plate in 2D dwg format and arrange them with the exact quantity in steel plates 6x1.5m and send them to plasma workshop, and after receiving the plates we just have to check the quantity, dimensions and holes and then in our workshop we clean them and then we start assembly process.

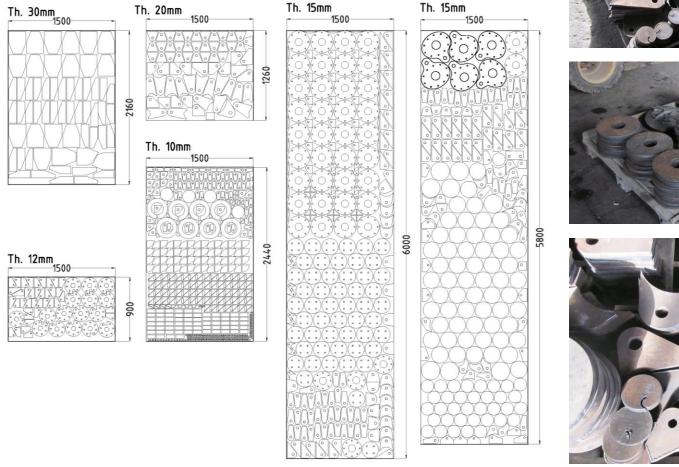


Image 109,110,111 : Plates

#4-2 Pipe Rolling :

Before starting the assembly process we send ring and arched beams pipes to pipe rolling workshop, they can roll pipes from 30mm to 323mm diameter and maximum 6m length, so if we need longer elements we should weld rolled pipes to each other to obtain the required length. we have 4 (900mm diameter) rings., so we need to roll pipes with 45cm radius and we also have two arched beams with given radius and length.

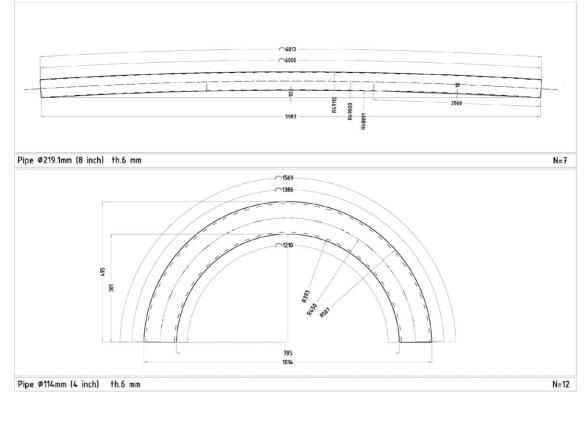


Image 112,113,114 : Pipe Rolling

₩4-3 Pipe Cut :

In our steel workshop first week cut pipes to their approximate length (given length+10-15mm) with saw and then we cut both ends of each element to its specified shape accurately ,in this step we produce a one to one unrolled plot of end shape of each pipe, roll the plot on pipe and draw the cut line on it and then with cut the pipe accurately following that line.

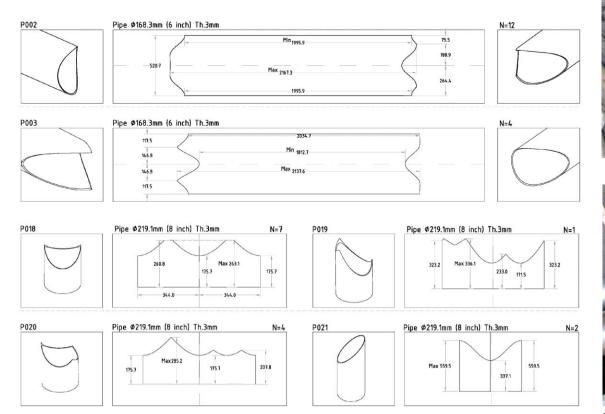


Image 115,116 : Pipe Cut

#4-4 Structure Assembling

Trusses

Here below you can see images of trusses manufacturing in our steel workshop, after cutting pipes and plates , we do the primary assembly and then survey team checks the trusses dimensions and signs the plates position on pipes with cameras , after all we fully weld each truss.

Image 119: Trusses

Image 117 : Truss Assembly

Image 118 : Ring Assembling

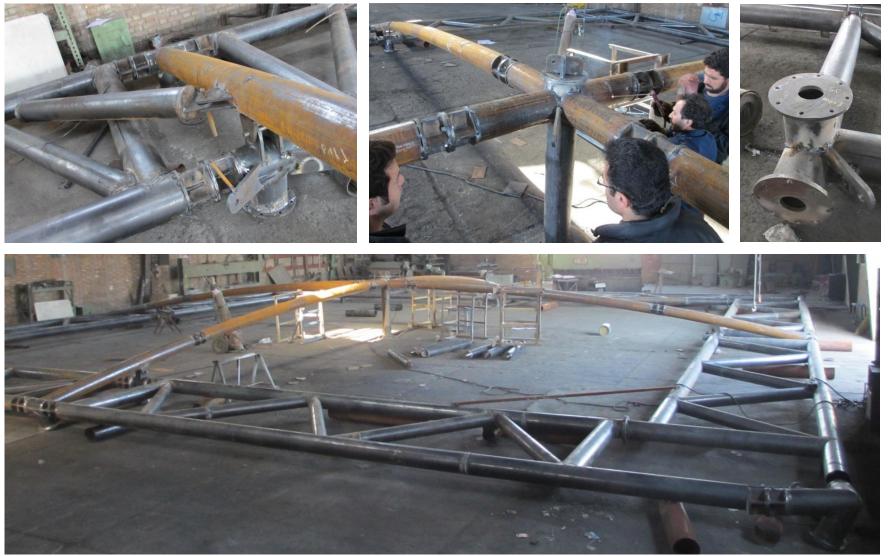


Image 120,121,122,123 : Structure Assembling

#4-5 Structure Painting and Covering

Image 124 : Structure Painting

Image 125 : Truss Painting

Image 126 : Components 07,10

Image 127 : Columns Covering

Image 128 : Component 05

Image 129 : Flymasts Covering

Chapter 5 :

PROJECT MANAGEMENT

5-1 Time Schedule

 11 v. v. seven veda 12 v. v. seven veda 13 v. v. seven veda 14 v. v. seven veda 15 v. v. seven veda 15 v. v. seven veda 15 v. v. seven veda 16 v. v. seven veda 17 v. seven veda 18 v. v. seven veda 19 v. seven veda	WBS Task Na	ame	Duration	Start	Finish	e July	Qtr 3, 2012 August	September	October	Qtr 4, 2012 November	December	January	Qtr 1, 2013 February	March	April
		ane Structure For Koohsar Complex	231 days	Sat 6/30/12	Mon 4/8/13	6/17 6/24 7/1 7/8 7/15 7/22 7/29	9 8/5 8/12 8/19 8	26 9/2 9/9 9/16 9	23 9/30 10/7 10/14 10/21 10/	/28 11/4 11/11 11/18 11/25 12/2 1	2/9 12/16 12/23 12/30	1/6 1/13 1/20 1/27	2/3 2/10 2/17 2/24	3/3 3/10 3/17 3/24	3/31 4/7 4/14
			1 day			- 100%									
						- 100%									
						100%									
						100%									
					Sat 8/18/12										
	1.4.1 ✓ Idea	ation and Preliminary design		Wed 7/4/12	Sun 7/8/12	100%									
	1.4.2 V Eval	luation of existing structure- Preliminary 3D model		Sun 7/8/12	Wed 7/11/12	- 100%									
	1.4.3 🗸 Deliv	ivery of first phase Architectural Drawings	5 days	Thu 8/2/12	Thu 8/9/12	*	100%								
	1.4.4 🗸 Con	nfirmation of Architectural Drawings by Clients	7 days	Thu 8/9/12	Thu 8/16/12		- 100%								
	1.5 Phase	02	53 days	Thu 8/16/12	Thu 10/18/12		*	1001	97%						
	1.5.1 ✓ Prep 1.5.2 Cont	paration of Node Reaction Report firmation of Node Reaction Report by Client	11 days												
								5 .	100%						
								-	- 100%						
	drav	wings													
	1.5.5 🗸 Cont	firmation of Foundation Drawings	1 day	Mon 10/1/12	Mon 10/1/12				100%						
	1.5.6 V Deliv	ivery of Foundation Drawings -First Part	13 days	Mon 10/1/12	Mon 10/15/12				100%						
	1.5.7 🗸 Delo	ivery of Foundation Drawings -Second Part	3 days	Tue 10/16/12	Thu 10/18/12				- 100%						
			48 days	Tue 10/16/12	Thu 12/13/12				-						
	1.6.1 ✓ Exec	cution of Foundation and Sub-structure by Client	35 days	Tue 10/16/12	Wed 11/28/12				*	100%					
	1.6.2 V Insp	pection of Foundation and Sub-structure Execution by	1 day	Tue 12/4/12	Tue 12/4/12					- 100	ç				
	Diba	a	60030 * V.												
	1.6.3 🗸 Prec	cise surveying of exeuted Foundation and Sub-structure	2 days	Tue 12/4/12	Wed 12/5/12					- 100	%				
											100%				
	1.6.4 ¥ Eval	luation of necessary changes to the 3D model	2 days	wed 12/5/12	Sat 12/8/12						100%				
	1.6.5 ✓ 3D n	model revision and applying necessary changes	4 days	Sat 12/8/12	Wed 12/12/12						- 100%				
				Sat 9/1/12	Thu 9/6/12										
	1.7.1 V Prep	paration of Phase 1 drawings for the structure	5 days	Sat 9/1/12	Wed 9/5/12			100%							
	1.7.2 V Cont	firmation of Phase 1 drawings for the structure by	1 day	Wed 9/5/12	Wed 9/5/12			100%							
	Clier	nt	Tony												
	1.8 🗸 Phase	05	87 days	Mon 9/24/12	Sun 1/6/13			-			~				
	1.8.1 🗸 Prep	paration of Precise 3D model- Fabric & Structure	27.5 days	Mon 9/24/12	Wed 10/24/12			-	100%	4					
	102 / 0	and the Device for Main Country	44.00 days		T., 12/25/02						100%				
	1.8.2 У Ртер	paration of shop brawings for Main structure	44.88 days	Inu 11/1/12	106 12/25/12						100 %				
	1.8.3 🗸 Prep	paration of Shop Drawings for the Fly- Mast	11.25 days	Sun 12/23/12	Sat 1/5/13						-	100%		1	
														1000	•
	1.9.1 🗸 Man	nufacturing of the Main Structure and Connections	45 days	Thu 12/20/12	Sat 3/2/13						•			100%	
	1.9.2 V Prep	paration of As Built drawings for the Manufactured	2 days	Tue 2/12/13	Wed 2/13/13								-100%		
	Stru	acture												1000032941	
	1.9.3 🗸 Pain	ating the Structure- Primer Paint		Wed 2/27/13	Wed 3/6/13								*		
	1.9.4 Tran	allation of the Structure		10u 3/7/13 Sat 3/0/52	Sat 3/9/13									¥ 0%	
	1.9.6 Pain	aliauton of the structure		Sat 3/16/13	Sat 3/30/13									*	0%
	1.10 V Phase	07	12 days	Wed 2/20/13	Tue 3/5/13										
	1.10.1 🗸 Fabr	ric Patterning	11 days	Wed 2/20/13	Tue 3/5/13								*		
	1.10.2 V Prep	paration of Fabric Connection Drawings	3 days	Wed 2/20/13	Sat 2/23/13								100%		
	1.11 Phase	08	22 days	Tue 3/5/13	Thu 4/4/13										_
	1.11.1 3 Man													······································	
	1.11.2 Insta	allation of Fabric and Connections	5 days	Sat 3/30/13										1	0%
	1.12 Phase		3 days												- 0%
200 FEGS etc. 0011 Tat. 0015 Tat. 00	1.12.1 Proj	ject Handout	3 days	Thu 4/4/13	Mon 4/8/13										0%
Deputition Task Backs Made & Page formery New backs Moved fail Moved fail Moved fail Moved fail Output formery V Cold fails trait Backs fail Backs fail<															
Otical Prozess Tax Prozess Davies O Summery Educations O Summery Educations O Summery Davies Solar Field-otic															
Vitaringita itaringita atasi v primi terrari v	Crit 2-map-910506-eev03-910824	Real Tauk				Project Burnnary mmmmmmmm Eternal Tasks			Marcel Summer	ary Deadine	¢				

ID	WBS		Task Name	Duration	Start	Finish
		0				
1	1		Membrane Structure For Koohsar Complex	231 days	Sat 6/30/12	Mon 4/8/13
2	1.1	~	Feasibility Study	1 day	Sat 6/30/12	Sat 6/30/12
3	1.2	\checkmark	Contract Award	1 day	Sun 7/1/12	Sun 7/1/12
4	1.3	\checkmark	Phase 0	1 day	Wed 7/4/12	Wed 7/4/12
5	1.3.1	\checkmark	Information gathering	1 day	Wed 7/4/12	Wed 7/4/12
6	1.3.2	~	Site Visit	1 day	Wed 7/4/12	Wed 7/4/12
7	1.4	~	Phase 01	38 days	Wed 7/4/12	Sat 8/18/12
8	1.4.1	\checkmark	Ideation and Preliminary design	3 days	Wed 7/4/12	Sun 7/8/12
9	1.4.2	~	Evaluation of existing structure- Preliminary 3D model	4 days	Sun 7/8/12	Wed 7/11/12
10	1.4.3	~	Delivery of first phase Architectural Drawings	5 days	Thu 8/2/12	Thu 8/9/12
11	1.4.4	~	Confirmation of Architectural Drawings by Clients	7 days	Thu 8/9/12	Thu 8/16/12
12	1.5		Phase 02	53 days	Thu 8/16/12	Thu 10/18/12
13	1.5.1	\checkmark	Preparation of Node Reaction Report	11 days	Thu 8/16/12	Thu 8/30/12
14	1.5.2		Confirmation of Node Reaction Report by Client	1 day	Thu 8/30/12	Sat 9/1/12
15	1.5.3	\checkmark	Precise surveying of existing structure	2 days	Sun 9/23/12	Mon 9/24/12
16	1.5.4	~	Foundation and Sub-structure design and preparing the drawings	5 days	Mon 9/24/12	Sat 9/29/12
17	1.5.5	~	Confirmation of Foundation Drawings	1 day	Mon 10/1/12	Mon 10/1/12
18	1.5.6	~	Delivery of Foundation Drawings -First Part	13 days	Mon 10/1/12	Mon 10/15/12
19	1.5.7	~	Delivery of Foundation Drawings -Second Part	3 days	Tue 10/16/12	Thu 10/18/12
20	1.6	~	Phase 03	48 days	Tue 10/16/12	Thu 12/13/12
21	1.6.1	~	Execution of Foundation and Sub-structure by Client	35 days	Tue 10/16/12	Wed 11/28/12
22	1.6.2	~	Inspection of Foundation and Sub-structure Execution by Diba	1 day	Tue 12/4/12	Tue 12/4/12
23	1.6.3	~	Precise surveying of exeuted Foundation and Sub-structure	2 days	Tue 12/4/12	Wed 12/5/12

5-1 Time Schedule

ID	WBS		Task Name	Duration	Start	Finish
		0				
24	1.6.4	~	Evaluation of necessary changes to the 3D model	2 days	Wed 12/5/12	Sat 12/8/12
25	1.6.5	~	3D model revision and applying necessary changes	4 days	Sat 12/8/12	Wed 12/12/12
26	1.7	~	Phase 04	6 days	Sat 9/1/12	Thu 9/6/12
27	1.7.1	~	Preparation of Phase 1 drawings for the structure	5 days	Sat 9/1/12	Wed 9/5/12
28	1.7.2	~	Confirmation of Phase 1 drawings for the structure by Client	1 day	Wed 9/5/12	Wed 9/5/12
29	1.8	\checkmark	Phase 05	87 days	Mon 9/24/12	Sun 1/6/13
30	1.8.1	~	Preparation of Precise 3D model- Fabric & Structure	27.5 days	Mon 9/24/12	Wed 10/24/12
31	1.8.2	~	Preparation of Shop Drawings for Main Structure	44.88 days	Thu 11/1/12	Tue 12/25/12
32	1.8.3	~	Preparation of Shop Drawings for the Fly- Mast	11.25 days	Sun 12/23/12	Sat 1/5/13
33	1.9		Phase 06	79 days	Thu 12/20/12	Sun 3/31/13
34	1.9.1	~	Manufacturing of the Main Structure and Connections	45 days	Thu 12/20/12	Sat 3/2/13
35	1.9.2	~	Preparation of As Built drawings for the Manufactured Structure	2 days	Tue 2/12/13	Wed 2/13/13
36	1.9.3	\checkmark	Painting the Structure- Primer Paint	7 days	Wed 2/27/13	Wed 3/6/13
37	1.9.4		Transportation of the Structure	1 day	Thu 3/7/13	Sat 3/9/13
38	1.9.5		Installation of the Structure	6 days	Sat 3/9/13	Sat 3/16/13
39	1.9.6		Painting the Structure	7 days	Sat 3/16/13	Sat 3/30/13
40	1.10	\checkmark	Phase 07	12 days	Wed 2/20/13	Tue 3/5/13
41	1.10.1	\checkmark	Fabric Patterning	11 days	Wed 2/20/13	Tue 3/5/13
42	1.10.2	~	Preparation of Fabric Connection Drawings	3 days	Wed 2/20/13	Sat 2/23/13
43	1.11		Phase 08	22 days	Tue 3/5/13	Thu 4/4/13
44	1.11.1		Manufacturing of the Fabric and the Connections	14 days	Tue 3/5/13	Tue 3/26/13
45	1.11.2		Installation of Fabric and Connections	5 days	Sat 3/30/13	Thu 4/4/13
46	1.12		Phase 09	3 days	Thu 4/4/13	Mon 4/8/13
47	1.12.1		Project Handout	3 days	Thu 4/4/13	Mon 4/8/13

			Cost Estir	mate				
		Subject	Quantity	Unit	Price/Unit	Price	Total Price	
z		Architectural Design				€ 3,000.00		
DESIGN	Design	Engineering				67.000.00	€ 10,000.00	
ä		Shop Drawing				€ 7,000.00		
		Steel pipes and plates(material)	10000	Kg	€1.00	€ 10,000.00		
	Structure	Production(Cutting+Assembly)	10000	Kg	€1.90	€ 19,000.00	€ 32,300.0	
		Painting/Galvanization	10000	Kg	€ 0.33	€ 3,300.00		
		Steel Connections	80	No.	€ 10.00	€ 1,503.12		
≥	Connections	PINS And Bolts	2068	No.	€0.34	€ 1,505.12	6 5 2 2 2 4 2	
SUPPLY	Connections	Aluminium profile	80	m	€ 4.00	€ 320.00	€ 5,223.12	
su		Rod	34	No.	€ 100.00	€ 3,400.00		
	C-H	Cable	120	m	€7.00	€ 840.00	C 1 000 00	
	Cables	Swaging/Pressing	16	No.	€ 10.00	€ 160.00	€ 1,000.00	
	Fabric	Fabric	735	m²	€ 19.00	€ 13,965.00	6 3 9 6 6 F 9	
	Fabric	Fabrication	670	m²	€ 10.00	€ 6,700.00	€ 20,665.00	
		Structure				€ 750.00	1	
5	Transportation	Fabric	3	Truck	€ 250.00		€750.00	
ati		Cable						
Installation	Crane	Crane	48	Hour	€ 14.00	€ 672.00	€ 672.00	
lns		Structure	400	m²	62.25	6.1.200.00	C 1 200 00	
	Installation	Fabric	400	m²	€3.25	€ 1,300.00	€ 1,300.00	
ي F	Test	Fabric		Fix		€ 0.00	€ 200.00	
ICE:	Test	Cables & Connections		Fix		€ 200.00	€200.00	
ADDITIONAL SERVICES	Maintonan	Fabric	1	Veer	6 2 000 00	62,000,00	£ 2 000 00	
AD S	Maintenance	Structure	1	Year	€ 3,000.00	€ 3,000.00	€ 3,000.00	
						Total	€ 75,110.12	

References

- 1. Wikipedia-Free encyclopedia-Nomadic Tents and Bakhtiari People
- 2. Wikipedia-Free encyclopedia- Persian Architecture
- 3. Dr. Ing. Massimo Maffeis Structural Report Documents
- 4. European Design Guide for Tensile surface structures
- 5. IRANIAN CODE NO. 6 : Loads on structures (Wind & Snow)
- 6. Membrane Construction, Connection Details, Bubner, Ewald, Edition 1997,1999
- 7. Construction Manual for Polymers+ Membranes, Knippers , Cremers , Gabler , Lienhard , Edition Detail 2011
- 8. Membrane Structures (Innovative Building with Film and Fabric, Edited by Klaus-Michael Koch, With Karl J. Haberman, 2004

