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Inhaltsangabe

Ein Massenspektrometer ist ein Gerät zum Messen von Biomarkern in biologischen
Gemeinschaften. Diese Biomarker können genutzt werden, um Biogasanlagen zu op-
timieren und Energieeffizienter zu machen oder auch Krankheiten zu diagnostizieren.
Die aktuellen Analysearbeitsabläufe eines Massenspektrometers sind sequenziell und
beinhaltet Stunden von Wartezeiten zwischen den einzelnen Arbeitsschritten. Diese
Situation ist nicht akzeptabel, besonders wenn es um klinische Diagnostik geht.
Zusätzlich ist die softwaregestützte Datenanalyse sehr komplex und braucht eine
stabile Hardwareinfrastruktur, welche mit hohen Kosten und Aufwand einhergeht.

In unserer Arbeit präsentieren wir einen konzeptionellen Beweis einer analytischen
Plattform für Echtzeitanalyse von Massenspektrometer-Experimenten. Wir im-
plementierten MStream, eine Cloudbasierte Plattform, welche auf der Fast-Data-
Architektur aufsetzt und eine skalierbare, streambasierte Protein Identifikation er-
möglicht. Wir diskutieren und lösen alle Herausforderungen, die für die Adaption
einzelner Schritte einer streambasierter Lösung auf einer Cloudarchitektur benötigt
waren. Die erste Herausforderung war die Konzepterstellung, die zweite Heraus-
forderung war das streamen der Daten während der Messung direkt von demMassen-
spektrometer. Die dritte Herausforderung war die Strukturierung der Daten für
einen schnellen Durchsatz und die letzte Herausforderung war die streambasierte
Validierung der Ergebnisse. Das Resultat ist MStream, eine prototypische Umset-
zung einer Cloudplattform zur Echtzeitverarbeitung von Massenspektrometerdaten.
Am Ende der Arbeit wird die Plattform evaluiert und die Ergebnisse zeigen eine
bessere Performance im Vergleich zu aktuellen Software-Alternativen.





Abstract

A mass spectrometer is a device which can measure biomarkers of biological environ-
ments such as sea, biogas plant, human gut or a just a blood. Using these biomarkers,
it is possible to optimize biogas plants in order to maximize the energy production or
to diagnose diseases of thousands of patients with only one mass spectrometer. Un-
fortunately, the mass spectrometry data analysis pipeline is sequentially including
hours of waiting time between the workflow steps. This situation is not applicable
especially for use cases such as clinical diagnostics. Additionally, the data analysis is
complex and needs a stable infrastructure, which involves very high costs and effort.

In our work, we present a proof of concept of an analytic platform for real-time anal-
ysis of mass spectrometry experiments. We implemented MStream, a cloud-based
platform on the fast data architecture for scalable streamlined protein identification.
We discuss and solve all challenges in the thesis for adapting the components to a
streaming cloud-based pipeline. First challenge is the concept of cloud-based archi-
tecture for streaming mass spectrometer data analysis pipeline. Next challenge is
the possibility to stream from a device during the measurement. The third challenge
is to structure and transform the data in the database systems and the last chal-
lenge is the streaming validation of the results. Finally, we implement MStream, a
prototype of real-time cloud platform for analyzing mass spectrometry data during
the measurement. Furthermore, our evaluation results show the performance gain
for the analysis process in comparison to the state-of-the-art software.
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1. Introduction

Mass spectrometers are devices to digitize real world samples, helping to solve puz-
zles of the humanity with growing success on the market1. The mass spectrometry
technology measures proteins to identify protein biomarkers of biological environ-
ments, such as oceans, humans and other microbial communities, which are used in
the research fields proteomics and metaproteomics [AM03, Ast, HKRB15, AA98].
These biomarkers are similar to a fingerprint and can be used to identify viruses,
bacteria or specific proteins in the sample [PF17, SAB+08]. The mass spectrom-
eter analysis results can be used for pharmacy research, security issues on an air-
port or research on energy industry [ZLY+15, HSS+19, PF17, AM03]. Additionally,
the mass spectrometer reveals the possibility to identify proteins of known diseases
such as cancer, Alzheimer’s disease, and even lupus. Hence, it is used for clini-
cal diagnostic [LQD14, NKH+17, PJW+14, PF17, ECL+12, BFWSS+15, XYF+17].
Since diagnostics are time critical, research is striving for an ever-increasing perfor-
mance [HSZ+17].

Due to the fast quality upgrades of the mass spectrometer, they produce ever-
increasing amounts of data, resulting in terabytes of output data by a single machine.
This data alone is useless and cannot diagnose anything without the analysis and
post-processing that bring insights into these samples. Due to the huge data sizes
and the complexity of the algorithms, the current sequential analysis takes hours to
complete [HSZ+17, HBS+93, MBR+13, PPCC99].

Current mass spectrometers need two hours for a measurement followed by a con-
version step of the data of up to one hour and an additional analysis step which
takes several hours to complete [HSZ+17, AM03, Cla19, Ast].

The state-of-the-art software that is used for the downstream analysis works with
file-based input data such as X!Tandem, Andromeda or Mascot [PPCC99, CNM+11,
RR03, Tab15]. Accordingly, the algorithms are specialized to process the data in
a bulk processing fashion. Nevertheless, the state-of-the-art data analysis (protein

1Mass spectrometry growth from 2016 - 2025 from 5.3$ billion dollar to 10.5$ billion [res17].
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identification) needs all the experimental data at once. As a consequence the analy-
sis step, which itself takes hours, is further delayed by another several hours because
it has to wait until all the measurement data is available. While these delays are tol-
erable in many research applications, in clinical diagnostics they are not. Therefore,
a real-time analysis is needed, so that the data can be processed during the mea-
surement. Among other benefits, a real-time analysis could be stopped if a specific
result is identified, which reduces the overall time of the analysis.

Goal of this Thesis

In the thesis, our goal is a new streaming workflow for processing mass spectrometry
data that analyses the data during the measurement of the mass spectrometer
on a cloud based fast data architecture. The research can be divided into two
levels — the feasibility and the performance:

Feasibility level: At this level, the goal is to identify the needed components of the
analysis pipeline and transform the input data from the complete experiment
file into one single dataset. This level answers the question: “Is a streaming
fast data architecture feasible for mass spectrometry analysis workflows?”

Performance Level: This level is the connection of all components in one system
in order to evaluate the performance of the whole system compared to the
state-of-the-art solution. This level answers the question: “Does a streaming
fast data architecture increase the performance of the workflow?”

In the following, both levels are explained in detail.

Level 1: Feasibility

During our research, we have found several challenges that have to be solved. The
first challenge is the streaming protein identification, the next one is the device-
streaming interface, the third challenge is the distributed data model and the fourth
is the validation2 of the results on streaming data.
Streaming Protein Identification: The first issue is to connect the protein iden-
tification algorithm to a per-spectrum data source instead to the current complete
file source. In addition, an adoption of the similarity-scoring function and its paral-
lelization can be used for an identification process as a pipeline. This goal leads to
the following research question.

RQ1: What are design choices that are essential for adopting the analysis pipeline
to a fast data architecture?

Device-Streaming Interface: The next challenge is to stream a mass spectrum
immediately when it is measured from the mass spectrometer. However, the inner
workings of each mass spectrometer are special for each manufacturer and highly
involved. Hence, the challenge will be to create a general, manufacturer independent
interface, which satisfies the needs of all users.

2The state of the art target-decoy approach cannot be applied on streaming data, a decoy-free
validation is needed, see Chapter 6
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RQ2: How to stream the data during the measurement without losing information
or functionality in the current or further processing steps?

Distributed Data Model: Since our system collects a huge amount of data asyn-
chronously, a horizontally scalable database management system is needed. The
storage should provide the experimental spectra and the protein data for the pro-
tein identification procedure.

RQ3: How to structure the data to increase the performance of the identification
process from a streaming mass spectrometer?

Decoy-Free False-Discovery-Rate calculation: The next challenge is the False-
Discovery-Rate (FDR) calculation. The FDR is the expected rate of false positives
in the result. The target-decoy method repeats searches of the whole sample data
again for the FDR calculation. This step produces target-result collection and a
decoy result collection3. Therefore, all experiment data is needed, to provide these
collections. In our parallel approach, we cannot provide all the information about all
the spectra from a sample, because the mass spectrometer streams each spectrum
separately. Hence, we need new methods for calculating the FDR without the decoy
process.

RQ4: How to avoid target decoy method without compromising the result quality
of the validation results?

Level 2: Performance

At this level, the main task is to implement a prototype and evaluate the performance
of the whole system. To this end, we will evaluate the process regarding performance
and scalability. Scalability will be measured from the user perspective (increasing
the number of devices) and from the data perspective (increasing the amount data
from the database).

RQ5: How does protein identification scale with an increasing number of connected
devices?

RQ6: How does protein identification scale with an increasing amount of protein
data?

With our result, we reveal a new direction of future development of mass spectrom-
etry data analysis and its application in medical environment or other areas. In
summary, we transform the mass spectrometry data analysis to a streaming cloud
architecture in two steps. Firstly, solving all biological and technical problems in
every single step of the analysis pipeline and secondly, evaluating the performance
of the complete system.

3Decoy collection contains wrong results and is used for validation of the target results.
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Structure of the Thesis

In order to present the research contributions of the thesis in understandable parts,
we divide the thesis into 10 chapters. In the following, we give a small overview of the
content chapters Chapter 2 to Chapter 7 as well as related work in Chapter 8. The
thesis is rounded up by a conclusion part in Chapter 9 and future work in Chapter 10.

Chapter 2 – Background

In Chapter 2, we present the basics that should be well understood before going
deeper into the topic of mass spectrometry analysis and fast data architectures.
Hence, we give biological basics about mass spectrometry, spectrum analysis and
metaproteomics. Furthermore, we review big data technologies and the fast data
architecture. This chapter is based on:

Robert Heyer, Kay Schallert, Roman Zoun, Beatrice Becher, Gunter
Saake, and Dirk Benndorf. Challenges and Perspectives of Metapro-
teomic Data Analysis. Journal of Biotechnology, Volume 261:24 – 36,
November 2017

Atin Janki, Roman Zoun, Kay Schallert, Rohith Ravindran, David
Broneske, Wolfram Fenske, Robert Heyer, Dirk Benndorf, and Gunter
Saake. Connecting X! Tandem to a Database Management System. In
GI-Workshop Grundlagen von Datenbanken, GvDB, pages 77–82, May
2018

Robert Heyer, Kay Schallert, Corina Siewert, Fabian Kohrs, Julia
Greve, Irena Maus, Johanna Klang, Michael Klocke, Monika Heier-
mann, Marcus Hoffmann, Sebastian Püttker, Magdalena Calusinska,
Roman Zoun, Gunter Saake, Dirk Benndorf, and Udo Reichl. Metapro-
teome Analysis Reveals that Syntrophy, Competition, and Phage-Host
Interaction Shape Microbial Communities in Biogas Plants. Micro-
biome, Volume 7(1):69, April 2019

Chapter 3 – Challenges of Streamlining the Mass Spectrometry Analysis

The Chapter 3 focuses on the feasibility goal of this thesis. In this chapter, we review
the idea of a streaming pipeline and extract the components of the mass spectrom-
etry analysis pipeline. Furthermore, we present a general streaming architecture for
the whole system and define the challenges of the single components. Additionally,
we propose a technology stack and finally present an interactive visualization of
mass spectrometer protein results. As a result, we present concepts for answering
RQ 1. This chapter is based on:
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Roman Zoun. Internet of Metaproteomics. In IEEE 34th International
Conference on Data Engineering, pages 1714–1718, April 2018

Roman Zoun, Gabriel C. Durand, Kay Schallert, Apoorva Patrikar,
David Broneske, Wolfram Fenske, Robert Heyer, Dirk Benndorf, and
Gunter Saake. Protein Identification as a Suitable Application for Fast
Data Architecture. In Database and Expert Systems Applications, pages
168 – 178. IEEE, September 2018

Roman Zoun, Kay Schallert, David Broneske, Robert Heyer, Dirk Ben-
ndorf, and Gunter Saake. Interactive Chord Visualization for Metapro-
teomics. In Database and Expert Systems Applications, pages 79–83,
August 2017

Chapter 4 – Streaming Mass Spectrometer

The Chapter 4 focuses on the mass spectrometer and how to stream the data during
the measurement. To reach the goal, we explain how we collaborate with a mass
spectrometry manufacturer. As a result, we present concepts for answering RQ 2.
This chapter is based on:

Roman Zoun, Kay Schallert, David Broneske, Wolfram Fenske, Marcus
Pinnecke, Robert Heyer, Sven Brehmer, Dirk Benndorf, and Gunter
Saake. MSDataStream - Connecting a Bruker Mass Spectrometer to
the Internet. In Datenbanksysteme für Business, Technologie und Web,
pages 507 – 510. Gesellschaft für Informatik, March 2019

Chapter 5 – Managing the Protein Sequence Data

The Chapter 5 focuses on the protein data for later use for the protein identifi-
cation. We discuss the data dependencies and show the data structure and index
structure for the data to improve the performance for later identification processes.
In addition, we show several ways to transform the protein data into that structure
evaluating the best method. As a result, we present concepts for answering RQ 3.
This chapter is based on:

Roman Zoun, Kay Schallert, David Broneske, Ivayla Trifonova, Xiao
Chen, Robert Heyer, Dirk Benndorf, and Gunter Saake. Efficient Trans-
formation of Protein Sequence Databases to Columnar Index Schema.
In Database and Expert Systems Applications, pages 67–72. Springer
International Publishing, August 2019

Chapter 6 – Validation of Streaming Peptide Spectrum Matches

The Chapter 6 focuses on the validation of an identified hit. We discuss why the
usual target-decoy approach is not feasible for streaming systems and present a
machine learning based solution for validation. As a result, we present concepts for
answering RQ 4. This chapter is based on:

Roman Zoun, Kay Schallert, Atin Janki, Rohith Ravindran, Gabriel C.
Durand, Wolfram Fenske, David Broneske, Robert Heyer, Dirk Ben-
ndorf, and Gunter Saake. Streaming FDR Calculation for Protein Iden-
tication. In Advances in Databases and Information Systems, pages 80
– 87, September 2018
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Chapter 7 – Analytic Platform for Near-Real-Time Mass Spectrometry
Data Analysis

The Chapter 7 focuses on the scoring function of the protein identification and the
connection of all system components. In this chapter, we evaluate the complete
throughput from the mass spectrometer to the identified data. As a result, we
present the proof of concept implementation MStream for answering RQ 5 and
RQ 6. This chapter is based on:

Roman Zoun, Kay Schallert, David Broneske, Sören Falkenberg, Robert
Heyer, Sabine Wehnert, Sven Brehmer, Dirk Benndorf, and Gunter
Saake. MStream: Proof of Concept of an Analytic Cloud Platform for
Near-Real-Time Diagnostics using Mass Spectrometry Data. Techni-
cal Report 002-2019, Otto-von-Guericke-University Magdeburg, August
2019

Chapter 8 – Related Work

In Chapter 8, we review the related work for this thesis. This related work includes
a description of different approaches for mass spectrometry analysis using modern
technologies.

Chapter 9 – Conclusion

In Chapter 9, we conclude each content chapter regarding the goals defined in the
introduction chapter. Finally, we conclude the overall results of the thesis.

Chapter 10 – Future Work

In Chapter 10, we show some possible future improvements. This future work con-
tains a description of different additional components to the mass spectrometry
analysis.



2. Background

The mass spectrometry data analysis is a growing topic not only in the research
community, but also in industry areas such as clinical diagnostic, security on airports
or energy industry [res17, Ast, HKRB15, PF17]. In this chapter, we describe the
basic biological knowledge for understanding the analysis pipeline as well as the
basics of cloud computing technologies.
In the following, we first review the typical analysis workflow of mass spectrome-
try analysis in metaproteomics/proteomics research area. Secondly, we introduce
the protein identification method and the validation of the identification process.
Thirdly, we describe the cloud architecture we will use for our implementation, as
well the technologies.
It is important to understand the necessary steps of the analytic pipeline in order to
follow the challenges on the new architecture. These parts explain the fundamental
knowledge to understand our design decisions in the later chapters and to contrast
our contribution from the others.

2.1 Mass Spectrometry Workflow
The mass spectrometry field deals with the analysis of protein biomarkers. The
workflow is sequential and the smallest parallelizable unit is the whole experiment
itself. In Figure 2.1, we show the experiment pipeline.
The sample could originate from a stool sample, a biogas plant sample or from an
ocean, so everything that could contain living organisms. After the sample is col-
lected, the proteins are extracted (Figure 2.1–1). This preparation is done in a labo-
ratory and is not the focus of this work [Ast, MRML07, AM03, BVJ+09, WAWH05].
For clinical sample preparation, these steps could be automated [PF17]. Further,
the prepared sample is measured in the mass spectrometer (Figure 2.1–2). The
digitized data is collected in a manufacturer specific RAW1 format. The dura-
tion of the measurement is between one and two hours and results in gigabytes

1Containing the raw signal data and need to be processed and aggregated to get usable infor-
mation from it.
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Figure 2.1: State-of-the-art workflow of mass spectrometry experiments with the
biological preparation (1), the measurement of the mass spectrometer (2) and the
data processing pipeline (3-5) [mur19, the19, kom19].

of data, containing thousands mass spectrometry datasets, so called mass spec-
tra [AM03, LBK+17, BM11, SBD+08]. In the next step, the RAW data is converted
into a standard file format2 (Figure 2.1–3). During the conversion, several pre-
processing steps, such as noise reduction and pre-filtering are executed in order to
increase the quality of the data for further analysis [AM03, LBK+17]. This step
takes up to 1 hour of the processing time. In the next step (Figure 2.1–4), the
data is compared to a sequence database such as UniProtKB or a user defined pro-
tein sequence database. The protein data in UniProtKB are manually annotated
and reviewed by scientists and can be assumed as high qualitative [ABW+04]. The
knowledge base is usually in a fasta3 file format [Nat02, Whi05]. The validation
of the hits is the last step of the process (Figure 2.1–5). Further analysis such as
visualizations, reasoning by a physicians or biological researchers is done based on
those identification results [HKRB15, MRML07, BW99, VRS+08, BVJ+09].

2Mascot Generic File (MGF), a lightweight text format or mzML, a XML-based structured text
format [Mat16, Deu12, MTS+04].

3Text file containing the protein sequences and meta information of proteins and is developed
as a exchange format for the software suite FASTA in 1985 [Nat02, Whi05].
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Figure 2.2: Visual model of amino acids, peptides and proteins. Each circle color
expresses a different amino acid. A collection of amino acids builds a peptide and a
collection of peptides builds a protein [col19].

The central component of the data processing pipeline is the protein identification
step shown in Figure 2.1–4. In our following discussions, we skip the laboratory
part, Figure 2.1–1, since this is not part of this work [HKRB15, HSS+19]. In the
next section, we explain briefly the measurement using a mass spectrometer.

2.2 Measuring the World with a Mass Spectrom-
eter

A mass spectrometer is a device to measure molecules such as proteins and digitize
a biological sample. Proteins are the building blocks of living organisms and to
understand how they function and interact with each other, the proteins need to be
analyzed. The method was proposed by Hunt et al. and describes the workflow in
for a mass spectrometer measurement [HYS+86]. Each organism can be specified as
a collection of amino acids [PF17, HKRB15, ZLY+15, res17, HSS+19].

In Figure 2.2, we show the connection between amino acids, peptides and proteins.
Amino acids are organic molecules with known properties and they represent the
building blocks of any organic structure. There exist about 500 occurring amino
acids [WM83] but in the term of biochemistry and mass spectrometry, we consider
only 22 different types of amino acids. This is enough, since proteins in living
organisms are always containing a combination of these 22 amino acids [HBS+93].
A collection of amino acids forms a peptide and a collection of peptides forms a
protein.

For mass spectrometry, the biological sample is purified and the proteins are cleaved4

into peptides. The goal of the mass spectrometer is to measure the mass of the amino
acids in these peptides. In the mass spectrometer, the sample is turned into their gas
phase and get ionized [AM03, RGSP07]. As next the ionized particles are separated
creating the first mass spectrum (MS1 spectrum) [AM03, KNR19, HSS+19].

4separated into sub-sequences, so called peptides
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Figure 2.3: Visual model of a tandem mass measurement [HYS+86].

Each measurement represents a peptide in this phase. For each MS1 spectrum, the
particles of it are fragmented into smaller ions using collisions. The measurement
of the fragments after the collisions results in a second spectrum (MS2 spectrum).
The MS2 spectrum represents the chain of amino acids of the peptide separated by
their differences between the fragment masses. In Figure 2.3, we show a sketch of
the tandem mass spectrometer measurement workflow [AM03, HYS+86].

For the thesis, it is important to know the connection between amino acids, peptides
and proteins and the results of the mass spectrometry measurement. In the next
Section, we explain the output data of the mass spectrometer.

2.2.1 Mass Spectrum Data

In this section, we explain the experimental output data from the mass spectrometer
device. The device measures the masses of the peptides (parts of a protein) and
their amino acids. The mass of the particles is represented by a mass spectrum, see
Figure 2.4. On the x-axis, the mass to charge ratio can be seen and on the y-axis the
intensity of the signal, measured by the device, is represented. The intensity signal
represents the collisions, which are detected by the digitizer of the mass spectrometer
device. The mass of a peptide is a list of peaks that can be represented in a textual
format or as a plot of the peaks.

Figure 2.4: A plot of a mass spectrum [BM11].
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In our work, we analyze the MS2 spectrum datasets. Each mass spectrometer man-
ufacturer has its own data format of the digital signal [LBK+17, ZSB+19b]. The
digital RAW data needs a conversion step, in which the data are pre-processed
due to noise reduction and pre-filtering. The digital signal is converted in one of
the textual file formats used as input data in further software tools of the analysis
pipeline [MTS+04].

Nowadays, the XML standard mzML5 and the Mascot Generic File6 (MGF) are
typically used for the experimental data of a mass spectrometer. The MGF format
are very famous to describe the mass spectrum data in a lightweight format [Deu12,
MTS+04, Mat16]. A mass spectrum contains the precursor mass (the total mass
of a peptide) and the fragment mass differences of the amino acids in the peaks.
Hence, the textual representation of a mass spectrum is a collection of the peaks of
the mass spectrum, the total mass of the peptide and some descriptive information.
One mass spectrometer produces hundred thousands of spectra every two hours,
resulting in up to 100GB files [HSZ+17, LBK+17].

1 BEGIN IONS
2 TITLE=Spectrum000101 AEFVEVTK +2 y− and b−series
3 PEPMASS=308.16757 2000000
4 CHARGE=3+
5 36.52588 456
6 74.06009 24
7 101.04717 3511
8 124.58392 342
9 174.11813 787

10 201.08703 3
11 224.11559 66
12 238.63943 2361
13 288.17363 74
14 338.17109 12
15 348.15544 785
16 388.69493 5361
17 447.22386 12
18 576.26645 106
19 675.33486 4976
20 END IONS

Listing 2.1: MGF format example

In Listing 2.1, we show the textual representation of a mass spectrum in MGF for-
mat. A typical MGF file contains thousands of such mass spectra. Each spectrum
is separated with the start word “BEGIN IONS” and the end word “END IONS”.
The properties of a mass spectrum are “TITLE”, “CHARGE”, “PEPMASS” and
the peak list. The “TITLE” names and identify the mass spectrum. The prop-
erty “PEPMASS” defines the MS1 peak and the summed mass of fragment mass
differences of the amino acids. The “CHARGE” is the charge value and finally

5XML based textual representation of mass spectrum data.
6Lightweight textual representation of mass spectrum data
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the peak list describes pairwise the peaks with mass-to-charge-ratio on X-axis and
intensity on Y-axis. Additional properties exist, but are not important for this
work [HSZ+17, HSS+19, Deu12, Mat16].

In the next section, we explain the protein data and how they are involved in the
mass spectrometry analysis pipeline. The proteins are the reference data for the
analysis pipeline and it is important to know how to compare the protein data with
the mass spectrometer results.

2.2.2 Protein Data
The protein sequence database is another involved data source, which is needed for
the analysis of mass spectrometry data [DAC10, Whi05]. This is usually in FASTA
format, including a textual representation of the protein sequences and their de-
scriptions [Nat02]. This data is the theoretical data and is created manually by
the research community or by algorithms. In Listing 2.2, two proteins are shown
with their unstructured text description (Listing 2.2 line 1) and their protein se-
quence (Listing 2.2 line 2 – 4). Each letter of the protein sequence represents one
of the 22 amino acids. Each protein contains a sequence of amino acids and a de-
scription. The uniqueness of a protein is given by the tuple of sequence and descrip-
tion. However, the proteins are used to perform comparison of the resulting data
of a mass spectrometer to them. Since the output data of the mass spectrometer
are peptides, the protein sequences need to perform the same separation (diges-
tion) [DAC10]. The protein digestion separates the protein sequence into smaller
peptides. Several enzymes exists to split the protein on specific positions. The most
popular is using “trypsin”. The enzyme interacts with specific proteins and cleaves
it. In Figure 2.5, we show the trypsin enzyme digestion rules and how the peptides
are created from a protein sequence [uni19, Ell98]. Trypsin cuts the protein sequence
at the amino acids lysine (K) and arginine (R) except when either is followed by
proline (P) [DAC10, AM03, uni19, RGSP07].

Figure 2.5: Trypsin digestion of a protein. The sequence is splitted on C-terminus
of the amino acid K or R but only if they are not followed by P [DAC10, AM03,
uni19, RGSP07].

Since the trypsin digestion rules are based on the reaction of an enzyme on a bio-
logical sample, the yield of cleavage is not 100%. Hence, the separation is not 100%
accurate in the real world. Consequentially, the digestion needs to consider missed
cleaves for the splitting algorithm. The so called missed cleavage describes that be-
havior [TLM+00, RGSP07]. Using missed cleavage value bigger than zero MCV > 0
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results in a possible peptides that are not splitted on every possible position. The
value MCV = 0 is following the trypsin rule from Figure 2.5. The value MCV = 1
follows the rule, but allows to skip one cleavage and hence, adds more possible pep-
tides. In Figure 2.6, we show an example of missed cleavage on tryptic digestion of
a protein sequence. In the example, the protein sequence “ACEDFHSAKDFQEAS-
DFPKQWFE” cleaves with MCV = 0 on position 8 and 18. Hence, the peptides
are “ACEDFHSAK”, “DFQEASDFPK” and “QWFE”. The value MCV = 1 al-
lows to skip a cleavage and adds another possible peptides. Accordingly, the pep-
tides are identical to MCV = 0 “ACEDFHSAK”, “DFQEASDFPK” and “QWFE”.
Additionally, we add peptides that skip one cleave in position 8 or position 18.
Consequently, the peptides “ACEDFHSAKDFQEASDFPK” and “DFQEASDFP-
KQWFE” are added. All the combination of cleavages are the result of the diges-
tion. The resulted peptides can be used to compare to the mass spectrometry output
data (mass spectra) to identify the sample [TLM+00, RGSP07, Whi05].

ACEDFHSAKDFQEASDFPKQWFE

ACEDFHSAK DFQEASDFPK QWFE

Missed Cleavage = 0

ACEDFHSAKDFQEASDFPKQWFE

ACEDFHSAK DFQEASDFPK QWFE

Missed Cleavage = 1

ACEDFHSAKDFQEASDFPK

DFQEASDFPKQWFE

Figure 2.6: Example of missed cleavage on tryptic digestion of a protein [RGSP07].

A popular protein sequence database is SwissProt from UniProtKB7 with 559,077
proteins. After the digestion, the SwissProt proteins are divided into 37,403,696
peptides (using missed cleavage value two). This digestion increases the amount of
data from 500MB proteins to over 2GB of peptides.

Since the peptides are amino acid chains and cannot be directly compared to a mass
spectrum, a theoretical spectrum needs to be generated. In the next section, we
explain the special properties of the theoretical spectrum.

7UniProtKB in January 2019 contains 559,077 reviewed and 139,694,261 unreviewed protein
entries (https://www.uniprot.org/)
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1 >sp|P31946|1433B_HUMAN 14−3−3 protein beta/alpha OS=Homo sapiens
GN=YWHAB PE=1 SV=3

2 MTMDKSELVQKAKLAEQAERYDDMAAAMKAVTEQGHELSNEERNLLSVAYKN
3 VVGARRSSWRVISSIEQKTERNEKKQQMGKEYREKIEAELQDICNDVLELLD
4 KYLIPNATQPESKVFYLKMKGDYFRYLSEVASGDNKQTTVSNSQQAYQEAFE
5 ISKKEMQPTHPIRLGLALNFSVFYYEILNSPEKACSLAKTAFDEAIAELDTL
6 NEESYKDSTLIMQLLRDNLTLWTSENQGDEGDAGEGEN
7
8
9 >sp|Q4R572|1433B_MACFA 14−3−3 protein beta/alpha OS=Macaca

fascicularis GN=YWHAB PE=2 SV=3
10 MTMDKSELVQKAKLAEQAERYDDMAAAMKAVTEQGHELSNEERNLLSVAYKN
11 VVGARRSSWRVISSIEQKTERNEKKQQMGKEYREKIEAELQDICNDVLELLD
12 KYLIPNATQPESKVFYLKMKGDYFRYLSEVASGDNKQTTVSNSQQAYQEAFE
13 ISKKEMQPTHPIRLGLALNFSVFYYEILNSPEKACSLAKTAFDEAIAELDTL
14 NEESYKDSTLIMQLLRDNLTLWTSENQGDEGDAGEGEN

Listing 2.2: Textual representation of one protein in a FASTA format

2.2.3 Theoretical Spectrum

A theoretical spectrum is the result of the reverse process of the mass spectrometry
measurement. After digestion of the proteins the peptides are transformed into a
spectrum. The fragment peaks are calculated from the known mass and sequence
of the amino acids. In Table 2.1, we show the list of amino acids and their masses.
Following the rules as published by Eng et al., it is easy to generate theoretical peak
lists [EMY94, RR03]. The difference to the experiment spectrum is the intensity.
Since in the real measurement the intensity is measured by the device, in a theoretical
spectrum the intensity is for each peak 100%. Additionally, the theoretical spectrum
does not contain any noises or false peaks in the spectrum [KNR19]. Some of the
amino acids have same mass and the identification gets more complex. Furthermore,
modifications change the mass, which can lead to same mass between the particles.
These problems are tackled during the protein identification process [MBR+13].

In Figure 2.7, we show a comparison of experimental spectrum on the upper side and
a theoretical spectrum on the lower side of the image. On the one hand, the exper-
imental spectrum has different intensity values and more peaks, which are false and
are measured due to noises. On the other hand, the theoretical spectrum contains
only optimal peaks with maximum intensity. Furthermore, the theoretical mass
spectra peaks are without noises. The comparison of these two datasets produces
very low similarity score and is prone to errors.

To conclude, we explained the mass spectrometry and the experimental as well as
the theoretical data involved in further analysis [ABW+04, Ast]. The comparison
of the data is very complex and results in low similarity score [MFT+13, MBR+13].
The theoretical mass spectra are reverse engineered from the protein data and the
experimental data is measured by a mass spectrometer [KNR19, Ast]. In the next
section, we will explain the main analysis step in the mass spectrometry analysis
pipeline, the so called protein identification.
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Amino acid Short Formula Mon. mass§ (Da) Avg. mass (Da)
Alanine A C3H5NO 71.03711 71.0779
Cysteine C C3H5NOS 103.00919 103.1429
Aspartic acid D C4H5NO3 115.02694 115.0874
Glutamic acid E C5H7NO3 129.04259 129.1140
Phenylalanine F C9H9NO 147.06841 147.1739
Glycine G C2H3NO 57.02146 57.0513
Histidine H C6H7N3O 137.05891 137.1393
Isoleucine I C6H11NO 113.08406 113.1576
Lysine K C6H12N2O 128.09496 128.1723
Leucine L C6H11NO 113.08406 113.1576
Methionine M C5H9NOS 131.04049 131.1961
Asparagine N C4H6N2O2 114.04293 114.1026
Pyrrolysine O C12H19N3O2 237.14773 237.2982
Proline P C5H7NO 97.05276 97.1152
Glutamine Q C5H8N2O2 128.05858 128.1292
Arginine R C6H12N4O 156.10111 156.1857
Serine S C3H5NO2 87.03203 87.0773
Threonine T C4H7NO2 101.04768 101.1039
Selenocysteine U C3H5NOSe 150.95364 150.0489
Valine V C5H9NO 99.06841 99.1311
Tryptophan W C11H10N2O 186.07931 186.2099
Tyrosine Y C9H9NO2 163.06333 163.1733

Table 2.1: Table of amino acids with short letter representation and their mass. The
mass is used to generate a peak in a theoretical mass spectrum.

Figure 2.7: The figure shows a comparison of experimental spectra, containing false
peaks or noises and a perfect theoretical spectrum of the same peptide [KNR19].
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2.3 Protein Identification
The data measured by a mass spectrometer is transformed into a digital signal,
containing masses of the particles. The next step is to map the masses to the real
world data, the experimental mass spectrometry data. This is the comparison of
the protein data and the experimental data [MFT+13].

For a better understanding, we will explain the procedure on an abstract example:
we assume that three persons from one department are working in our building
during the night. We want to know, who is working in the night in our office
building. The only information about the persons is the mass, so his or her weight.
To identify the hard working person, we can use the whole list of the employees for
the company with the masses (which is quite hard to get) and search for similar
weights. After searching, we can identify several possible persons, but excessively
much to identify the person. Therefore, as next step, we look that department of our
office building contains all three weights. Then, the combined masses of the persons
could identify a department. Hence, the employees. In this sample, the employees
are peptides and the departments are the proteins, while the whole building is a
living organism. On a microscopic level, the problem is much more complex.

The incoming experiment data is a digital signal from real world proteins. The data
is without any meaning and the data has to be identified compared to a protein
knowledge base. Therefore, the protein identification approach is used to identify
the measured spectra [MFT+13].

In the following, we first explain the general protein identification approach, followed
by a state-of-the-art implementation of the method.

2.3.1 Concept of Protein Identification
The protein identification compares the real world data, which is represented as
measured mass spectra from the mass spectrometer and the theoretical data from
the protein sequence database, which contains already known real world proteins
[MFT+13, DAC10, Whi05].

In Figure 2.8, we show on the upper side, the biological preparation of the sample.
After the purification of the sample from a patient, only proteins are left. Protein
data consists of a protein sequence and the meta information. The protein sequence
is split (digested by specific enzymes) into peptides. Then the mass spectrome-
ter measures the peptides and generates their digital signal, which represents the
experimental spectra.

The lower side in Figure 2.8 shows the same procedure for the known proteins.
The protein sequences from a protein sequence database are cleaved into peptides,
using same splitting rules and reconstructing each peptide into theoretical spectra.
This ensures the comparability of the data. The matching is then between each
peptide (theoretical spectrum) and each experimental spectrum (peptide from the
experimental sample), that results in a peptide-spectrum-match (PSM). Due to the
unsteady digital signal during the measurement and the noises, the experimental
spectrum can never be as good as the theoretical one, so the comparison ends up in
low similarity score. The matching is similar to the comparison of a photography
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Figure 2.8: A general peptide centric protein identification method, which compares
the experimental spectra and the theoretical ones [MFT+13].

and a clip-art, which is always ambiguous to some degree. In conclusion, the scoring
needs to be validated for true matches or false matches with the idea that wrong
hits have even lower score [MFT+13].

The protein sequence databases are growing regularly, containing millions of entries8.
For the protein identification, the proteins of the knowledge base are divided into
peptides, since the experimental data measures on peptide level. Hence, the split
of the proteins increases the amount of data. The complete annotated knowledge
base SwissProt includes over a half of a million protein entries, which results in
millions of peptides (23,934,321). For the mass spectrometry data analysis a scalable
architecture is needed, since a comparison against all known proteins consumes a
lot of computation resources [HSZ+17].

2.3.2 Protein Identification in X!Tandem

Currently, many protein identification software tools exist under proprietary and
free license, such as Mascot or X!Tandem [PPCC99, RR03]. Mascot is a propri-
etary software from the company matrix science and X!Tandem is an open source
software, which is popular in the research areas of proteomics and metaproteomics
community and provides very fast processing of the data. Both rely on the sequen-
tial data processing pipeline. In this section, we present the processing of the data in
X!Tandem, because we could analyze and measure the process in the free available
source code. Mascot is another very famous protein search engine, unfortunately
the source is not open and the software is commercial.

8UniProtKB in January 2019 contains 559,077 reviewed and 139,694,261 unreviewed protein
entries (https://www.uniprot.org/)
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Figure 2.9: General processing of the protein identification in X!Tandem protein
engine [RR03].

In Figure 2.9, we show the process of the comparison in X!Tandem. The protein data
comes from the hard disk, while the mass spectrometry data is in the main memory.
The software iterates once over the protein database and multiple times over the
spectra. The following steps are carried out: firstly, the software loads the experi-
mental data at once9, filtering out low quality data, based on user-defined parame-
ters. Secondly, the software processes data from files batchwise. Thirdly, X!Tandem
splits each protein in smaller peptides and fourthly, the algorithm compares them
with the experimental spectra. Lastly, the best peptide-spectrum-matches are stored
in the end of the process in an XML based result file [RR03].

The main difference to other tools is the scoring function and the pre-filtering
or output format. The procedure is parallelizable and can be applied to clus-
ter and cloud platforms to increase the performance through horizontal scalabil-
ity [BCC+08, Hai88]. Furthermore, we showed already the possibility to connect
the X!Tandem software to a database management system and created an inter-
face for the software [JZS+18]. Nevertheless, the identified PSMs need a validation
to ensure the quality of the results. The validation step is needed in all protein
identification software.

9MetaProteomeAnalyzer uses X!Tandem as protein identification engine and allows to split
experimental files [MBH+15].
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2.3.3 Protein Identification in Andromeda
Another software for protein identification is Andromeda, a probabilistic peptide
search engine. As known, the input data are the Mass spectrometer data and the
protein sequence data. The primary goal of Andromeda is to provide flexibility for
working with high fragment mass accuracy [CNM+11].

In contrast to X!Tandem, Andromeda starts with the construction of the protein
database. The data from a textual representation (FASTA file format) are trans-
formed into parts, which are indexed for easier access during the evaluation. An-
dromeda preprocesses the protein data before to start the identification process.
Firstly, the proteins are indexed and the index is used to skip comparisons with the
theoretical mass spectra. In X!Tandem, this is done during the comparison. Sec-
ondly, the sequences are digested into peptides. This step reduces the effort to split
the protein data during the runtime. Thirdly, the peptides are sorted by their mass,
including the modifications, which is beneficial, because only specific theoretical
masses are used for the comparison. Each of the measured experimental spectrum
is compared to the theoretical peptides. The comparison results in a PSM, which
need to be validated.

The method of Andromeda applies the behavior of a streaming environment, but
tackles the problems of non-distributed platform. Each of the three steps of An-
dromeda is synchronized for each experiment and a distributed architecture is aimed
with more suitable persistence [CNM+11]. In our work, we parallelize these steps
and include the validation to the processing pipeline.

2.4 Target Decoy Validation
The validation method processes each peptide-spectrum-match (PSM) and tests
whether the PSM is a true positive or false positive match. Since every experimental
data is individual and no general rule exists, the state-of-the-art validation uses a
target-decoy approach for each experiment [EG09]. The idea is to allow only a small
amount of wrong hits in the result using approximation of the false discovery rate
(FDR).

In this method, the identification of experimental spectra against the knowledge base
results in target PSMs. Additionally, a wrong knowledge base10 is created and then
used in an additional identification process for the experimental data to produce
decoy PSMs. Later, the target and the decoy PSMs get stored in a collection,
sorted by the similarity score in descending order. Afterwards, the bottom PSMs are
iteratively removed until the desired false discovery rate is reached, using the formula
from Figure 2.10 for the FDR calculation in every step. All removed target PSMs are
false positives, the rest of the target PSMs are valid hits [HSS+19, HSZ+17, EG09].

In Figure 2.10, we show a sample of a collection of target and decoy hits. The FDR
at the beginning of the method in this sample is 66% (two decoy hits divided by three
target hits). After removing the last element, only one decoy hit is left and changes
the FDR to 33% (one decoy hit divided by three target hits). Next bottom element

10Usually inverts the protein sequences to create wrong proteins [EG09].
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is a target hit and changes the FDR to 50% (one decoy hit divided by two target
hits). The next removed decoy element changes the FDR in this sample to 0% (zero
decoy hits divided by two target hits). In a real world scenario millions of elements
are in the collection and the method stops usually with an FDR of 1% and 10%, but
it depends on the sample and is chosen by a biologist [HSS+19, HSZ+17, EG09].

For repeating use cases such as diagnostics, the FDR is a static value, since the sam-
ple as well as the identification process is well known. However, for each experiment
the FDR need to be calculated, because in this approach, the method depends on
the experimental data. However, the drawback of this approach is that it needs the
complete experimental data at once and is not applicable to our prototype, which
requires real-time processing.

Figure 2.10: General target decoy validation [Bio19, EKT+12, EG09].

2.5 Machine Learning Classification
A machine learning classification is used to provide a decision on complex data. The
real world data needs a conversion into a vector. This vector with defined features
describes the data [Han07]. For supervised leaning, each of the vectors get a label
of the class. This information is used for the training. The training shapes a model
depends on the class labels. However, the model can predict the result for new
incoming data, based on the training data. The incoming data need the conversion
to a feature vector, too. Depends on the training, the class label for the new feature
vector gets predicted. In Case of protein identification results, the features are the
combined values of the comparison and properties of the experimental spectrum and
the theoretical peptide. Hence, the validation of PSMs can be defined as a binary
classification, because only true positive and false positives are the class labels. In
this section, we describe logistic regression, a machine learning approaches for binary
classification [MBY+16].
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Logistic Regression

There is a plethora of machine learning approaches that classify different datasets.
The goal is a function, which can predict the outcome, based on the training model.
For this work, we will not explain multi-label classifiers and explain only binary
classifiers because in the validation of the protein identification only two results
are possible. In Figure 2.11, we see the two possible labels 1 and 0 on the Y-axis
and the data points on X-axis. After an evaluation of different binary classifiers,
we determined logistic regression as a binary classifier for our work because this
method reached the best accuracy in our tests [Qui86, Bre01, KMF+17, RRK+90,
DP97, PLI02].

Figure 2.11: Plot of logistic regression, which predict a binary label [PLI02, tec19,
PW78].

The logistic regression technique contains dependent variables. The variables are
binary values, which means the outcome could only be true or false. Typical use is
to find the probability of a successful or failed event [PLI02, PW78].

Logistic regression uses logistic functions to identify the probability P of an event.
This event is affected by one or more variables [PLI02]. In Figure 2.11, we show a
plot of the classifier.
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We will use a binary classification, since a match can be true positive, or false
positive [Nas07]. Specifically, we train a logistic regression model on data with
known outcomes. This model is later applied in the production system to predict
whether a PSM is a true or a false positive [ZSJ+18, MBY+16].

2.6 Big Data Architecture
The huge amount of data generates a need for reliable, highly available and robust
systems. This leads to big data concept - unpredictable amounts of data are collected
and made ready for processing. In general, big data systems can be divided into
three components [Wam16, KKKG14, CML14, Cur16]. The first component is the
storage. The data needs to be stored to minimize transfer, growing capacity and
improve fault tolerance that is mostly realized using a database management system.
Second component is the computation, to process the stored data as fast as possible.
The last component is the controlling, which is needed for managing and monitoring
the tasks and the resources [Wam16, YHG+16, CML14].
Different network systems have different trade-offs. The CAP-theorem describes,
that network shared-data systems can guarantee two of the three properties of con-
sistency11, availability12 and partition tolerance13.
Hence, only two of the properties can be combined. A visualization of the CAP
theorem is shown in Figure 2.12 [Bre00].
Based on the CAP theorem, a system can be implemented as follows:

• Consistent and Partition Tolerant (CP) – banking, because the transactions
need to be consistent and the data should not get lost if some parts of the
system crash.

• Consistent and Available (CA) – relational database systems, because these
database systems are consistent and replicated. These systems are vertically
scalable and prone to crashes.

• Available and Partition Tolerant (AP) – cloud computing, because in this case
several servers are connected and the processes as well as the data is distributed
over the cloud. Some crashes would not disturb the availability but it takes
time to spread the data over all nodes.

In this work, we use a cloud computing architecture, which is placed in the area of
availability and partition tolerance (AP) in Figure 2.12. The databases in this area
are distributed NoSQL systems and follow the BASE criteria (Basically Available,
Soft state, Eventual Consistency). In contrast to the ACID14 principle of relational
database management systems, the BASE principle has more flexible consistency
that brings the benefits of horizontal scalability and parallel computing [Pri08].
In the following, we focus on streaming systems and explain first the architecture
for cloud systems and then some of the technologies that can be used.

11Every node in the network is consistent, and every user has same view on the data.
12Availability guarantee a response of the system in acceptable time.
13The system stays available if nodes crashes.
14Atomicity, Consistency, Isolation, Durability
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Figure 2.12: CAP theorem, which says that a network shared-data system can
guarantee only two components of consistency, availability and partition toler-
ance [Bre00].

Fast Data Architecture

Processing the data of multiple mass spectrometers is a task with unpredictable
amount of data and high availability is required. In addition, the data and the
processing needs to be horizontally scalable to effort the calculations on the one
hand and to distribute the data on the other hand. In this case, a highly consistent
system is not required. Hence, our work is a cloud system with the properties
“Availability” and “partition tolerance”.

In general, the following properties are required for the stream-based mass spec-
trometry analysis platform:

• BIG DATA: Distributed storage for unpredictable high amount of data from
multiple mass spectrometers, users and other sources

• AVAILABLE: High availability to allow processing of data in a fault-tolerant
way

• FAST PROCESSING: Scalable processing engines to calculate results in
real time and scale on demand

• MESSAGE QUEUE: Fault tolerant message service to queue the incoming
messages

• SCALABLE SYSTEM: Extensible cloud operating system to scale on
demand
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To transform the mass spectrometry workflow to a streaming asynchronous pipeline,
the fast data architecture seems to be applicable. The fast data architecture is a
technology pipeline to process possibly infinite data streams in near real time, using
state-of-the-art big data technologies [Wam16, Wam15, KPB+17, KPB+19, AÇ09,
Eva11]. A popular fast data implementation is the SMACK stack.

Figure 2.13: A general Fast Data streaming architecture [Wam16].

In Figure 2.13, we show the general fast data architecture. Incoming data en-
ters directly as messages via HTTP or socket (Figure 2.13–2), directly from a de-
vice (Figure 2.13–1), or microservice (Figure 2.13–3). A distributed cluster manages
the incoming data (Figure 2.13–4). The data stream is either directly stored (Fig-
ure 2.13–5) or analyzed by a cloud processing engine (Figure 2.13–6, 8). The pro-
cessing components communicate with the persistence layer (Figure 2.13–7, 9 and
10). The whole system runs on a cloud operating system in order to schedule the
components (Figure 2.13–11) [Wam16].

The Fast Data architecture is the so called “evolution” of Big Data, which proposes
an additional streaming component to the state-of-the-art cloud technologies. The
architecture proposes a real-time analysis of data streams, using horizontally scalable
applications on each step of the pipeline [Wam16, Wam15, Cur16, AÇ09, Eva11].

The SMACK stack is a popular implementation of the fast data architecture. The
technologies of the stack are Apache licensed, free and open source. The main goal
of the stack is to enable an extensible and horizontally scalable software solution
for tackling probably unlimited amount of data. An overview of how each of the
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Figure 2.14: SMACK (Apache Spark, Mesos, Akka, Cassandra and Kafka) stack
overview containing the roles and connections between the components [Est16].

technologies interacts with each other can be seen in Figure 2.14 [Est16, Wam15,
Wam16, ZWLS15].

Several producers send messages to the message broker, which is in this stack Apache
Kafka. The data producers can be HTTP15 messages, websocket streams or other
protocols from devices and sensors. Kafka queue all the messages in topics. Apache
Akka and Apache Spark consumes the messages from the Kafka topics and process
it. Processing the data includes database access or access to external data sources
as well as transformation or storage of the incoming data. To process the data
Apache Akka and Apache Spark is used in this stack. As database management
system, Apache Cassandra is used. Apache Mesos schedules all the services on the
platform. This stack is one possible technology pipeline and the components needs
to be chosen individually [Est16, Wam15, Wam16, LLP+12, BGM+17].

Hence, we meet all the required properties using the SMACK stack.

• BIG DATA: Apache Cassandra

• AVAILABLE: Apache Mesos, Docker

• FAST PROCESSING: Apache Spark

• MESSAGE QUEUE: Apache Kafka

• SCALABLE SYSTEM: Apache Mesos

Finally, all the technologies are replaceable if the required properties are fulfilled.
15Hypertext Transfer Protocol
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2.7 Big Data Technologies
The opportunity of technologies grows fast and results into the so-called big data
landscape. The big data landscape, which is shown in Figure 2.15, presents pos-
sible technologies that can be installed as different components in the big data
stack [Tur18, SÇZ05, BGM+17].

For each task and goal, there are many different configurations, which result in a
huge pool of possible technologies, represented with the help of the landscape model.
In the right bottom corner of Figure 2.15, a piece of the landscape has been zoomed
in to show how many technologies exist only for a special data structure graph.
Eight different databases can be chosen – Neo4J, Amazon Neptune, IBM Janus
Graph, Oracle Spatial and Graph, OrientDB, Apache Giraph, InfiniteGraph, Ob-
jectivity [Tur18]. This means, for implementing a pipeline, the technologies are not
important. The architectural technology decision is based on the data structure and
on the applicability for a specific use case, licenses and knowledge [Tur18, Wam16].

Figure 2.15: The big data landscape and shown graph database technologies [Tur18].

In our work, we analyze the protein identification process. Therefore, we use cloud
architecture to allow horizontal scalability. Firstly, a cloud operation system is
needed. Secondly, our system needs a column oriented database system to allow
range queries on the protein data. Thirdly, a distributed processing engine is needed
to perform the search and lastly, our system needs a message broker to manage the
incoming messages. A SMACK stack is a possible technology stack for our platform,
but other technologies with equal properties can be used for the components.

As the big data landscape has been shown, further in this section, we focus on the
significant technologies used in our work.
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2.7.1 Docker
In a cloud environment with many components it is hard to solve the “depen-
dency hell”. Every application has different dependencies and libraries in use. Docker
tries to solve such problems isolating the application together with all the needed
dependencies. A Docker container is like a small virtual machine containing one
complete application. For example, a java program needs PostgreSQL as a data
storage, Redis for caching and Apache as a Web server. Each of these components
has own libraries and dependencies that might conflict on one machine with other
components. By packaging everything in one container, each component and its
dependencies are isolated [Mer14, Neg15].
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Figure 2.16: Docker architecture runs the application in isolated containers instead
of running it in virtual machines with own operating system [Kra19, Mer14, Neg15].

In Figure 2.16, we show the isolated Docker containerized applications and the vir-
tual machine organization of applications. Main difference is, that Docker uses the
host operating system and minimize the size of each container and accelerate the
boot operations of the container. On the other side, a virtual machines has own op-
erating system, which is slow on startup and has a full copy of the operating system
taking gigabytes of storage. On Docker, each application contains all dependencies
that are needed to run. Docker is an additional layer that manages the contain-
ers. Each Application is in one virtual machine on the Docker environment. Hence,
multiple container applications share only one operating system kernel on a single
machine. Apache Mesos includes the Docker layer on each node, which allows to
manage micro services on the whole Mesos cluster. The service is reachable through
port forwarding from the host operating system to the virtual container network of
the application.

2.7.2 Mesos
Apache Mesos represents the operating system and abstraction layer over the avail-
able computer resources. It monitors hardware resources such as CPU, available
memory and storage allocation [HKZ+11]. It can operate on physical or virtual
machines. Apache Mesos manages available system resources and orchestrates con-
tainers and jobs on the distributed system [UAK18]. Mesos can be classified as
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Figure 2.17: Apache Mesos master node interacts and manages slave nodes [The19b,
HKZ+11].

cloud operating system and manages services among the nodes like tasks on a single
machine.
The architecture of Mesos is build on a master node, which handles multiple
slaves [The19b, HKZ+11]. The slaves manage service components, so called Mesos
frameworks and the master monitors and orchestrates them. The Mesos master
agent offers available resources to slave node in order to run services. It is recom-
mended to use more than one master node in cases of failure.

2.7.3 Spark
Apache Spark plays the role of the processing engine in the big data architecture.
The main task of Spark is to analyze data in real time and perform analytic work-
loads. Apache Hadoop or Apache Flink are alternative technologies to it. Apache
Spark promises to be 100 times faster than Hadoop on batch and streaming pro-
cesses [VMJ16, ZCD+12].
Apache Spark is available in Scala, Python, Java, R and SQL, which brings good
flexibility from developer perspective.
Spark provides the infrastructure and the running of the worker of a program. The
key property is the way of data handling in Spark. It loads the data into resilient
distributed data sets (RDDs), that allow fault tolerance, efficiency, speed and in-
memory data storage [ER16, ZCD+12, Pam16]. Furthermore, the RDDs enforce
immutability and have no negative effects from parallel running jobs that interfere.
When Spark is running on a cluster, a Spark driver program delegates the work as
jobs to its worker nodes (Figure 2.18). This enables horizontal scalability and is
perfect for working in the cloud environment. The master node of Apache Mesos
can be used as Spark driver and spreads the workers over the Mesos cluster. Hence,
on a SMACK stack, Mesos takes care for the resource management.
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Figure 2.18: Apache Spark cluster managing three worker nodes [Las19].

2.7.4 HDFS
Hadoop Distributed File System (HDFS) is a highly available file system for the
storage of a huge amount of data. The file system is distributed on multiple nodes
and, hence, their files are stored separated on multiple nodes. Therefore, HDFS
provide master and slave nodes [SKRC10, Whi09].

HDFS is mostly used to store files from different nodes and services in one environ-
ment. Additionally, the distributed file system can provide parallel access, which
depends on the amount of nodes used for the system. Most of the processes in
mass spectrometry analysis are file based. Hence, HDFS is a good way to store the
files and transform the data from the files into the structured database management
system such as Cassandra [SKRC10, Whi09, Has15].

2.7.5 Cassandra
Apache Cassandra is a column oriented, wide-column distributed database manage-
ment system [The19a, Nee15]. The NoSQL DBMS Cassandra distributes the data
over nodes in partitions and guarantees fault tolerance and horizontal scalability.
Similar technologies are HBase or Google Cloud Big Table [Gar14, SF13, CDG+08,
SSH10].

Apache Cassandra has no relation between the data and stores the data in a schema
free fashion. The architecture of the system is a ring hierarchy of nodes, where each
node can fulfill the same role [WLZZ14, LM10, Nee15]. In Figure 2.19, we show the
ring architecture of Cassandra database management system. In the ring, each node
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can be the coordinator for the client and the each row data is replicated through
the nodes. If a node is not reachable, the replicated data can be used.
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Figure 2.19: The ring architecture of Apache Cassandra database management sys-
tem [avd19, Nee15].

2.7.6 Kafka
Apache Kafka is a message broker providing a horizontally scalable cluster and
several APIs to interact with the cluster. A Kafka cluster, so called broker, stores
messages as a key-value message in topics. Topics are stored in partitions, which
are distributed and replicated on the brokers. The messages are queued in the
partitions. The producer sends messages to a specific topic and does not need an
answer. The consumer subscribes on a topic and gets the messages as they appear
in the topic [KNR11, NSP17, Gar13].

The Kafka message processing can be seen in Figure 2.20. Multiple producers send
messages to one or more topics. The messages in the topic are stored fault tolerant
on the hard disk. Consumers are subscribed to topics and react on messages as they
arrive. Additionally, consumers can be grouped, which allows more flexible event
processing in the system [ER16, KNR11, NSP17, Gar13].

2.8 Conclusion
In this chapter, we introduce the basic biological background for understanding
the state of the art processes of mass spectrometry analysis and possible software
technologies to implement the processes. We focus only on the processing pipeline of
mass spectrometry data, which is for protein identification on the biological side and
we introduced the fast data architecture and possible technologies of the architecture
that can be used for the implementation on the information technology side. We
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already propose the technology stack, which can be used for the implementation of
our work. In the next chapter, we introduce the challenges and requirements of the
work.

Figure 2.20: Apache Kafka architecture with sending producer, the brokers and the
consumers [wU19, ER16, KNR11, NSP17, Gar13].
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3. Challenges of Streamlining the
Mass Spectrometry Analysis

The growing quality of mass spectrometers and the growing amount of data reveal
new use cases of mass spectrometry. For instance, researchers show the applicability
of proteomics and metaproteomics research for clinical diagnostic [PF17, ECL+12,
BFWSS+15, XYF+17]. However, the amount of data and the performance of data
processing is an additional bottleneck for the applicability of such use cases [HSZ+17,
HBS+93, MBR+13, CNM+11, RR03, Tab15].

In this thesis, we implement a real-time highly scalable analytic platform for mass
spectrometer analyses showing the applicability for real-time use cases such as clin-
ical diagnostics [PF17, ECL+12, BFWSS+15, XYF+17]. Additionally, we leverage
the complete analytic platform to a cloud system.

As a first step, we describe the challenges and the research tasks of the thesis in
this chapter. Firstly, we clarify shortly the sequential state-of-the-art workflow and
the performance of the workflow. Secondly, we explain possible optimizations of
the workflow. Finally, we show possible analysis of the result data proposing the
complete pipeline [Zou18].

In Summary, we make the following contributions in order to answer research ques-
tion RQ1:

• Protein identification on fast data: Analyzing the applicability of protein iden-
tification process on a fast data architecture.

• Challenges: Analyzing the components and the challenges to apply the data
analysis pipeline to a fast data architecture.
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3.1 Sequential State of the Art Mass Spectrome-
ter Workflow

This section gives an overview of the typical mass spectrometry workflow in metapro-
teomics [HKRB15, EMY94]. The workflow consists of four steps, where an asyn-
chronous processing of the third and fourth step is the goal of the thesis. We show
the complete state-of-the-art metaproteomics workflow in Figure 3.1. In contrast to
Figure 2.1, we add the approximated duration of these steps. The duration is based
on the experience of scientists, who work with a mass spectrometer. Additionally, the
identification and validation is combined in the fourth step in Figure 3.1 [HKRB15].

The first step is the sample preparation in the laboratory and needs days to complete,
the second step is the measurement of the samples, which takes up to two hours per
measurement of one sample and the third step is the conversion of the digital signal
data into a readable standard format. The third step needs hours to write the data.
The last step is the identification step and analysis of the data. This step can take
days depending on the tools used for the analysis and data exploration [HKRB15,
AM03, LBK+17, Ast]. In the following, we explain each step in detail.

Figure 3.1: The summary of the current, sequential mass spectrometry workflow
with approximated processing time.

3.1.1 Bio-Sample Preparation

The input of a metaproteomics workflow is an experimental sample from a biological
environment, for example a sample from a biogas plant or human gut. In a labo-
ratory, the proteins are separated and cleaved (broken up) into smaller peptides,
which are the output of this step [HKRB15, AM03, LBK+17, Ast].
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Usually a metaproteomics experiment requires the preparation of approximately 50
samples. This includes replicas to increase the fault tolerance in the analysis of
biological data. This procedure takes one to five days of preparing the samples for
the mass spectrometer [HKRB15, AM03, LBK+17, Ast].

3.1.2 Mass Spectrometry
In proteomics, the technique of tandem mass spectrometry is commonly used. How-
ever, it measures the mass of the peptide (MS1) and of fragment mass differences
(MS2) [Ast], which are stored as a so-called spectrum in a file. The important
information are the MS2 experimental spectra and the connection between the pre-
cursor intensities (MS1) to it. The attributes mass-over-charge-ratio and intensity
pairwise, represent one peak of a mass spectrum [HKRB15, AM03, LBK+17, Ast].

A mass spectrometry analysis takes two to three hours per sample and the mea-
surement of the typical 50 samples would take about a week of mass spectrometry
measurements. Each experiment resulting from the sample measurement is written
to a RAW file. This RAW file is in manufacturer depending format and stores all
the data collected from the mass spectrometer. Hence, the RAW file contains all
the signal data, which includes many noises. Furthermore, depending on the mass
spectrometer device and the measurement method, the data needs to be aggregated
and filtered before data analysis can. Finally, it is not recommended to start the
analysis with the RAW files and furthermore, the most analysis tools start their
process with the standard format as input [HKRB15, AM03, LBK+17, Ast].

3.1.3 Conversion to Readable Format
The measured spectrum data are in a proprietary RAW format, which is not readily
usable for further processing. Each mass spectrometer device company has its own
RAW file format. This is the reason why the workflow needs to convert it into a
standard exchange format. As each company has its own RAW structure, different
types of tools are used to convert the data, leading also to different output formats.
The most-commonly used data formats for tandem mass spectrometry data are the
Mascot Generic File or mzML [MTS+04, Deu10]. The conversion step takes up to
one hour per sample. During the conversion, the data gets filtered and thus the
quality is increased [LBK+17, Deu12, The17, Mat16, HSZ+17].

3.1.4 Protein Identification and Validation
Protein identification is a method to relate the measured experimental MS2 data
to the peptides forming a protein with a certain similarity. Since our database (a
FASTA1 file of already identified proteins) contains the amino acids of the proteins,
i.e., not peptides, we have to transform them to theoretical mass spectra that can
be compared with our sample mass spectra [HSZ+17, HBS+93, MBR+13, CNM+11,
RR03, Tab15].

A big overhead is produced because the measured spectra do not exactly map
to a theoretical spectrum due to noise. Hence, an N-M similarity comparison is

1Text file that contains amino acid sequences as char arrays



36 3. Challenges of Streamlining the Mass Spectrometry Analysis

needed and a final ranking of similarity scores will produce the resulting identified
protein [DAC10, MFT+13]. The result of this step is a set of identified spectra,
which relate to a protein in the FASTA file. This identification process is the
foundation of further analysis and has to be adapted to the new fast data archi-
tecture [HSZ+17, HBS+93, MBR+13, CNM+11, RR03, Tab15].
The general approach of the protein identification is implemented by several groups
and companies such as Mascot, Andromeda, Sequest and X!Tandem [RR03, EMY94,
PPCC99, CNM+11].
Because of the measurement errors and artifacts, the false discovery rate (FDR) of
the result of the identification is needed to assess the quality of the current identifi-
cation. Briefly, our identified proteins are compared to nonexistent proteins (decoy
proteins) which are retrieved by inverting the protein sequence of the FASTA file. A
drawback of this is that the protein identification process runs twice, thus, doubling
the runtime of this step [EKT+12, MFT+13]. Furthermore, decoy FDR calcula-
tion needs the whole sample data at once and does not work for single spectrum
data [HSZ+17, MBR+13].
The identified spectra are the results that can be analyzed by the scientists. Es-
pecially the interactivity of visualizations have a positive effect for the workflow
exploration by a researcher [ZSB+17, CCL+16].

3.1.5 Optimization of the Mass Spectrometry Analysis
Workflow

After an overview of the typical state-of-the-art workflow of mass spectrometry anal-
ysis, we introduce our idea of the new parallel mass spectrometry analysis workflow.
In our concept, the mass spectrometer writes each measured spectrum to the file
during the measurement. If we stream the measured experiment spectra to the cloud
during the second step of the workflow, we can parallelize the whole procedure after
the second step. Hence, the further processing could run for each single spectrum
independently after the mass spectrometer measurement (Figure 3.2). This is a typ-
ical behavior of Internet of Things (IoT) technology. IoT describes a method, where
devices are connected to a cloud system and send their sensor data to the central
system [GBMP13]. Since the further calculation should run fast on a streamed in-
put we decided to use the Fast Data architecture [Wam15, KPB+17]. The goal is to
overlap calculations with the mass spectrometry measurement time. The best case
would be a near real-time processing and the results are being finalized when the
measurement is finished [Zou18].
To this end, our concept needs a local service running on the mass spectrometer side.
Our platform would collect the converted spectra instead of writing the measured
spectrum into the RAW file. The device converts the RAW data into a readable
format using existing scripts of the manufacturer and sends the data to a local
service, which streams the spectrum as a structured MS1 spectrum into the cloud
system. The MS1 spectrum contains several precursors of MS2 spectra. In this way,
we can connect a mass spectrometer to the new infrastructure, without changing
the existing system. However, procedures have to be adapted to the Fast Data
architecture, which is a major challenge for us [HKRB15, AM03, LBK+17, Ast,
ZSB+19b, Zou18].
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Figure 3.2: The parallel workflow of the metaproteomics procedure. Each spectrum
will be processed one by one on a scalable cloud-based system.

3.2 Challenges of a Parallel Metaproteomics
Workflow

During our research, we have found several challenges that have to be solved. In
this Section, we explain each of the challenges in detail.

3.2.1 Device Streaming Interface
The first challenge is to stream a mass spectrum immediately when it is output from
the mass spectrometer. However, the inner workings of each mass spectrometer are
special for each manufacturer and highly involved. Hence, the challenge will be to
create a general, manufacturer-independent interface, which satisfies the needs of all
users [ZSB+19b].

3.2.2 Distributed Data Model
Since our system collects a huge amount of data asynchronously, a horizontally
scalable database management system is needed. The storage should provide the
experimental spectra and the protein data for the protein identification procedure.
Additionally, we evolve the system to a central system with several devices and users
connected to it. Therefore, a NoSQL system, which can store such data amounts,
is needed [ZSB+19].

3.2.3 Streaming Protein Identification
The next issue is to connect the protein identification algorithm to a per-spectrum
data source compared to the current batched file source. In addition, an adoption
of the similarity-scoring function and their parallelization can be used for an identi-
fication process as a pipeline. To increase the scalability and the performance of the
algorithms, we use modern distributed cloud computing techniques [Zou18, ZDS+18,
ZSB+19a, MBR+13].
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3.2.4 Decoy-Free FDR Calculation
The next challenge is the FDR calculation. As mentioned in Section 2.4, the decoy
method needs to search the whole sample data again for the FDR calculation. In our
parallel approach, we cannot provide all the information about all the spectra from
a sample, because the mass spectrometer streams each spectrum separately. Hence,
we need new methods for calculating the FDR without the decoy process. This
also halves the run time, due to the skipped decoy search. A decoy free approach
using machine learning seems to be promising, but is only used in the Mascot search
engine [GSV+15]. We aim to use a cloud-based machine learning system to decide
whether the identification is true or not, based on the idea of the decoy free method.
First we implement a feature extractor for the results of X!Tandem search engine.
Then we generate training data using the state-of-the-art decoy FDR method and
evaluate the results using different classificators [ZSJ+18].

3.3 One Stack to SMACK Them All
A streaming fast data architecture evolves the field of big data and shall show a
high performance and scalability on streaming data scenarios [Wam15, KPB+17,
KPB+19].

All the requirements we have generated from the challenges and the optimization
analysis can be fulfilled with the so-called SMACK stack, an implementation of the
fast data architecture [Est16, ER16, KPB+17, KPB+19]. The SMACK stack is one
implementation of the fast data architecture and the components can be replaced.

DEVICE STREAM

Stream
Producer

PUBLIC
NODE

PRIVATE
NODES

Protein
Identification

FASTA
digestion

Figure 3.3: New fast data architecture using a SMACK stack with active services
for a protein identification task. Green marks the infrastructure, blue marks the
technology and yellow marks the applications.

The idea is to combine cloud technologies for creating a highly scalable pipeline for
mass spectrometry analysis (see Figure 3.3). In the following, we match each used
technology with the challenges that they should address.
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Since the data is streamed per MS1 spectrum, which is a collection of MS2 mass
spectra, a batch processing cloud engine is needed (see Section 4.2.1). However,
Apache Spark seems promising for this component, since the Spark Streaming library
processes incoming batch data faster than other engines [Las19, KPB+17, KPB+19,
MBY+16].

Consequently, the device streaming needs a collaboration with a manufacturer, be-
cause the conversion needs data insights of the measured signal data. Therefore, a
collaboration with Bruker Daltonik GmbH is needed, because they are the manu-
facturer of the in-house mass spectrometer. Since our platform should work with
many connected devices, the Apache Kafka server seems very well suited for the
communication [NSP17].

The Apache Spark is chosen for our prototype, Apache Mesos is a good choice,
because the Mesos master node can be used as spark master node to acquire the
maximum resources of the cluster for the processing engine [HKZ+11].

Accordingly, the protein identification processes spectrum-wise, we need to query all
possible peptides from the database. Therefore a column-oriented index is needed,
which provides wide tables for the data. In this case, the Apache Cassandra database
management system fulfills all the requirements for the task [LM10].

Finally, all additional services can be implemented using Apache Akka, software
toolkit, which implements the actor model or other microservice frameworks [ER16].

Of course each of technology can be replaced by similar tools. Finding the best
combination, however, is one of the future tasks, since we use the standard stack of
the fast data architecture for our prototype.

3.4 Interactive Web-based Analysis of
Metaproteomics Results

The proposed cloud architecture provides benefits for data processing. However,
for full cloud based solution, the researchers need also the capability to analyze
the results. Especially explorative analysis needs interactive visualizations. In this
section, we focus on complex metaproteomics results and show how to increase the
quality of the explorative analysis of the data using web-based interactive visualiza-
tion [ZSB+17].

A key challenge of metaproteomics is the discovery of major relationships between
microbial taxonomies and biological functions. Proteins detected by metaproteomics
experiments can provide a quantitative relationship between functions and tax-
onomies [HKRB15]. A typical question is which family of gut bacteria (taxonomy)
is linked to a biochemical process that is associated with a disease (function). In
a study that finds over 10,000 proteins, a comprehensive visualization of the rela-
tionships would improve the analysis process, because this currently involves sifting
through extensive lists of proteins [PF17, ECL+12, BFWSS+15, XYF+17].

Metaproteomics experiments yield mass spectra, which identify the proteins. These
proteins are associated with multiple functions and a single taxonomy (see Fig-
ure 3.4). Protein functions are represented by keywords, which are grouped into
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Figure 3.4: The relation between mass spectra, proteins, taxonomy and biological
function, which is represented by the crossmaps.

categories. Taxonomies are arranged in a directed acyclic graph and are categorized
into ranks. Approximately 1.5 million taxonomies are currently stored in the NCBI
protein database2 alone. An intersection matrix that represents the relation between
taxonomies and functions has to be created from the protein data. This intersection
matrix as visualized by the crossmap in Figure 3.5 has been established previously
using the MetaProteomeAnalyzer software [MBH+15].

The crossmap plots taxonomies of a certain taxonomic rank against functions of a
certain category. This visualization approach has several drawbacks for the metapro-
teomics use case. First, the vast majority of theoretically possible relationships is not
present in typical experiments, but will still be drawn in a crossmap and dilute the
actual information. Second, a crossmap will visualize absolute quantification, but
the use case would typically require a relative quantification (i.e. how much percent
does each taxonomy contribute to a certain function). This problem worsens, as ex-
perimental data can span several orders of magnitude. Finally, the amount of data
poses a problem for crossmap visualization. A large experiment can quickly produce
a relationship-matrix with size 200x200 of which most entries would be empty. In

2National Center for Biotechnology Information
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Figure 3.5: A snippet of a crossmap generated from metaproteomics data using the
MetaProteomeAnalyzer software [MBH+15]. The highlighted red intersection marks
the function-taxonomy relation with the highest amount of spectra. The intersection
matrix contains mostly empty entries.

conclusion, a new approach is desired, to deal with the challenges of big data and
present large amounts of data in a condensed human-readable format [MY04].

Different methods are used to visually present relational data. One visualization
technique is a chord visualization approach of related objects, which is based on
the hierarchical edge bundles plots. These plots show a network of entities in a
circle diagram [Hol06]. Another approach is the crossmap method, which is used
for cross relationships between objects. Two entities of two different entity groups
are cross-plotted, to show the impact of their relationship on the intersection point
(Figure 3.5) [MY04].

There are different tools to visualize relational data based on both crossmaps and
chord diagrams. Circos is a chord visualization tool, used for the identification and
analysis of the results of genome comparison [KSB+09]. This kind of visualization
becomes more and more popular and new frameworks and tools are being created.
One of them is the BioCircosJS framework [CCL+16]. This API is built based on the
d3 visualization framework and is used for creating Circos plots of biological data.
The primary use of this framework is to plot genome data and explore it. These
tools focus on genome analysis and are difficult to use for other data. Furthermore,
the Circos tools cannot generate interactive visualization. In addition, both tools
require programming skills and are not user-friendly. The crossmap visualization can
become confusing with increasing amount of relations to be displayed. For our work,
we used the d3-chord library for the d3 framework, that provides tools for creating
different kinds of chord diagrams [Bos16], unrelated to the domain of biology.
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3.4.1 Transformation from CSV to Chord Diagram
In this section, we describe the format of the input data and how we compute
the matrix for the visualization. We also show how the user can choose the color
spectrum of the diagram.

3.4.1.1 Data Model

The first step of the transformation is to create a suitable data model. The relational
data between functions and taxonomies needs to be comparable and therefore only
taxonomies of a specific rank and protein functions of a specific category are used.
In our approach, we use an intersection matrix as the input format for the chord
diagram as described by Holten et al. and Krzywinski et al. [Hol06, KSB+09].
However, most of the entries in this matrix are zeroes making it unreadable for the
user. Furthermore, the creation of this matrix can be complex depending on the
data stock. To counter these drawbacks we use a relational CSV storage that only
stores data of related entries. This concept is similar to the relational storage in
data warehouse cubes [Col96]. In Figure 3.6 we show an example of our data model.

Object 1 and Object 2 are related. Impact 1 is the value, which describes how often
object 1 occurs in object 2 (number of spectra). Impact 2 describes exactly the
opposite: how often object 2 occurs in object 1. Both values are real numbers bigger
than zero. In our tool the value of impact 1 and impact 2 are equal. Nevertheless, we
let the possibility to control the visualization with the second value for the future.
The benefit of our simple data model is its human-readable format and its general
applicability.

3.4.1.2 Transformation Computation

The next step of the transformation is the client side computation of the chord
matrix, which is done similarly to the code by delimited.io [Del14]. Regarding the
relational input format from the section before, we need to transform it to the
intersection matrix described in [Bos16]. The object pairs are built together and
the impact value is used as their cross product. During this step, the local filter is
installed. This filter contains all objects and controls their visibility in the chord
visualization. The client side development makes the connection between different
data sources possible (cloud storage, web service). With a GET request, we can
import CSV strings and files using the general CSV format defined above.

3.4.1.3 Dynamic Color Range

The last step of the transformation is to define the dynamic color variety of the
chord visualization, which allows the user to create an individual representation of
the data. The colors are interpolated using an RGB interpolation function. The
interpolation function assigns a color to an element in the chord visualization. The
example in Figure 3.7 shows the interpolation between red and blue. Thereby,
adjacent elements are assigned different colors to better distinguish them.

The definition of the color spectrum is done with different blocks, which we call two-
color-gradient blocks and the offset to pick the colors. As shown in the figure, the
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Figure 3.6: Transformation of the input data to the visualization

color picker iterates through all blocks and picks an interpolated color for an element
in the chord visualization. The color picker starts back from the beginning after the
last block. The user can define the different two-color-blocks and determine their
colors. Additionally, the user also defines the offset for the color picker. The color
schema is represented by a JSON array and can be used as an exchange format.

3.4.2 Features of the Interactive Chord Diagram
The usage of interactive diagrams has many advantages compared to non-interactive
ones. For example, interactive diagrams are better for analysis of big data and for
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Figure 3.7: Concept of the color spectra for the chord visualization

cognition [SH15]. The following features of interactive chord diagrams prove their
better application in different situations: highlighting, animations, tooltips, filter
search and exclusion search.

3.4.2.1 Analyzing with Highlighting

Highlighting allows an interactive analysis of the visualization. To highlight a path
in the diagram, the user can hover with the mouse over the path to get more informa-
tion. With the help of this interaction, the relation between different objects can be
easily found. It is also possible to highlight a complete group to find out fast which
objects are related to each other. For example, the highlighting of one taxonomy re-
veals all its functions. The user can clearly recognize the relationships and evaluate
the data. In our function-taxonomy use case, a user can for instance recognize the
third largest function “Purine biosynthesis” and bring all related taxonomies into
the foreground by a simple mouse over.

3.4.2.2 Local filtering for Better Understanding

The next feature of interactive chord diagrams is the local filtering, which ensures
better clarity of the data. We control the visibility of the elements with the filter
object. An initial filter (top 50 impact values), which was applied to the data at the
startup of our application, creates a clear starting point from which the data can
be explored. The filter functionality is accessible through an interactive clicking of
the text in the diagram or through the filter list. The filter list shows every object
of the diagram. In this way, elements can be added and removed freely by the user
without changing the original data. Finally, the filter object can also be used as an
exchange format (Figure 3.8). A biologist may select the functions “ATP synthesis”
and “Glycolysis” to be displayed and easily determine the taxonomies related to
them.
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Figure 3.8: Demonstration of group highlighting: all relationship are visualized for
a single object.

3.4.2.3 Search Functions for Specific Results

In addition to the interactive features, we implemented specific functions for im-
proved data exploration. One function is a search that finds a specific object. The
visualization will show all objects related to this specific one. Another function
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finds an object excluding another object (exclusion search). For example, searching
for object A excluding object B means that the visualization will show all objects
related to A, but not related to B. Both of the search functions have an individual
filter to cut off the lowest values with a threshold (Figure 3.8). The search functions
are crucial to explore the function-taxonomy data. Taxonomies with smaller impact,
such as Methanococcaceae, can be singled out and displayed alone.

3.4.3 Animations
The last feature of interactive chord diagrams are the animations. They are used
to make changes in data easily understandable. It has been proven that animated
graphics make the user feel involved in the content. Animations are especially useful
to better visualize data in diagrams [HR07]. In our chord visualization, every change
is animated. For example, when applying a filter, the object is excluded from the
visualization and the other segments will be enlarged due to new rations between
the remaining segments. This reorganization is animated by slowly enlarging all
remaining segments.

3.4.4 Performance Evaluation
We begin with the evaluation of the start performance by measuring the time needed
to load the visualization. We also analyze the dependency of the input data size
and the time. In the next part, we will show the performance of the interaction in
the visualization. We finish the performance evaluation chapter with the analysis of
the results.

3.4.4.1 Performance for the Initial Loading of the Input Data

The input data is a table with five columns as described in the section Section 3.4.1.1,
which contains the relationship between taxonomy and function. The initial loading
time of the visualization with 10 sets of input data, which was 118 ms. Loading
3000 sets of data took 27,500 ms. To load the complete test input data required
75,700 ms. Figure 3.9 shows the result of the measurement for the initial loading.
The diagram shows the average measurements and the correlation between data size
and performance, which appears to be linear.

3.4.4.2 Performance for the Interaction Functions

In order to evaluate the performance of the interactions and the search functions
we measured their individual calculation time. The best performance was measured
for highlighting the path and the slowest one for searching for a specific element. A
sixfold increase in the amount of data effected performance minimally as shown in
Figure 3.10. Furthermore, as all calculation times are below 250 ms, latency time
experienced by the user is negligible.

3.4.4.3 Results

The input data for the visualization is in a human readable CSV format. The trans-
formation time of this format into the intersection matrix for the chord visualization
correlates with the amount of data. This loading process is time consuming, but
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Figure 3.9: Performance of initial loading time dependent on the size of the input
data set.
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Figure 3.10: Evaluation of the calculation time required for interaction functions.

might only rise linearly with larger data sets. To achieve better loading speed the
initial matrix calculation should be moved to the server side. The interactions and
functions of the visualization are processed almost instantly. Once loaded, other
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aspects of the client interface already perform in real time. An approach to decrease
the loading time is a server-sided implementation of the transformation.

3.4.5 Empirical Evaluation

We conducted an empirical user study to test the effectiveness of the visualization
prototype in comparison to the previously employed approach using a spreadsheet.
Initially, we intended to provide a crossmap created by the MetaProteomeAnalyzer
software for comparison, but preliminary tests showed, that the tasks cannot be
solved using the crossmap. A typical big data set from a metaproteomics study,
generated over the course of 150 days, was prepared resulting in an intersection
matrix with 338 taxonomic families and their relations to 232 biological functions.

3.4.5.1 User Study

Participants from the local work group were given a six tasks, that reflect typical
use cases for biologist. Test subjects were familiar with metaproteomics data and
proficient in the use of spreadsheets. The first task was designed to familiarize the
test subjects to the visualization and the underlying problem. Tasks two to five re-
quired the user to answer increasingly complex questions autonomously using either
the spreadsheet or the chord-visualization. Solving all tasks required approximately
45 min per test subject.

3.4.5.2 Results

The time to answer individual tasks was measured and the boxplot shows the re-
sults, where green refers to spreadsheets and orange refers to chord visualization
(Figure 3.11). As the boxplots show, task two and six were significantly easier to
solve with the chord visualization, while task three and four were comparable in
difficulty and task five was solved easier using the spreadsheet. Another observa-
tion is that the range and standard deviation for time to solve the tasks with the
spreadsheet is significantly larger then for the chord visualization.

Test users rated the tool generally positive and preferred it over the use of a spread-
sheet for all tasks except task four, which required the users to perform arithmetic
operations. The time for solving the tasks with the spreadsheet varied more between
testers, which can be explained by different skill levels of testers using spreadsheet
software. In contrast, testers performed similar using the chord visualization, re-
flecting the fact that they used this method for the first time. The study showed,
that the most important aspect of the chord visualization is the inclusion of several
filter and search functions. Initial filtering allowed the users to start from a clear
overview. Through the filter tools, users could add and remove any element to ex-
plore the data set. Through the implementation of specialized search functions such
as the example of the exclusion search, entire workflows can be mapped onto a single
interaction to increase the user experience. Some aspects of the user interface, such
as the placement of certain user interface elements, were criticized by test users for
not being intuitive.
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Figure 3.11: Boxplot showing the time required for individual tasks. Orange refers to
tasks solved via chord visualization and green refers to tasks solved via spreadsheet.

3.5 Conclusion
The mass spectrometry data analysis can be separated into four steps. The first
step is the biological sample preparation, the second one is the mass spectrometry,
the third one is the conversion to an exchange format and the last one is the identi-
fication. This thesis provides research of the optimization of the mass spectrometry
protein search workflow [HKRB15, Ast, Zou18]. Instead of optimizing each step on
its own, we want to parallelize the last three steps, using an approach that combines
fast data with protein search engines. We expect to gain performance from these
improvements. However, the parallel workflow brings some challenges that we have
to solve [Zou18, HSZ+17].

After the processing, the analysis and the interpretation of the data needs to be
interactive using visualizations.

To analyze the results is in some cases very complex and an explorative analysis
is needed. Therefore, we propose an interactive visualization such as the chord
diagram [ZSB+17].

The prototype presented in this section was shown to improve the ability of users to
solve metaproteomics use cases. Our chord visualization can be applied to other use
cases through an easy exchange format. Regarding performance, the loading time
still requires optimization. Search and filtering functions were received positively by
users and constitute the starting point for the data exploration.
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In the future, more attention should be focused on ready-to-use functions to in-
crease the user experience. Additionally, support for numerical evaluation of the
data should be implemented. Users should have the option to easily associate vi-
sualization elements with exact values. Tests with the prototype also revealed that
improvements of the user interface are necessary. Finally, research can be expanded
to other visualizations using larger test groups. This visualization need to applied
to the platform visualize the results from the database in real-time. Hence, the
interactive visualization is still a challenge.

In general, the goal of this thesis is to revise and improve the current workflow,
revolutionizing the mass spectrometry procedures and developing a prototype of
MStream, a real-time analytic platform for analyzing mass spectrometry data. We
focus on the data processing and only store the result data for further explorative or
autonomous analyses in the system. The interpretation of the data is part as well
as the interactive visualizations are challenges of future work.
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Since the goal of this thesis is to enable near-real-time mass spectrometry analy-
sis, it is required that the main task of protein identification can be processed as
a streaming task. This work will focus on the real-time processing of the data and
not analyzing the results. Hence, we need a producer to stream the mass spectrom-
etry data from the device during the measurement [ZDS+18, ZSB+19b, Zou18]. In
this chapter, we analyze the current state-of-the-art protein identification software,
showing the limitations of the local solution and propose a new architecture of the
software using a fast data architecture. Finally, we show our software MSDataS-
tream. This software is implemented in collaboration with Bruker Daltonik GmbH
and connects a mass spectrometer with the cloud. Our tool MSDataStream allows
streaming of the experimental data during the measurement.

In Summary, we make the following contributions in order to answer research ques-
tion RQ2:

• Streaming Protein Identification: Proposal of a fast data architecture for the
protein identification task.

• Stream producer: Streaming mass spectrometry experiment data during the
measurement to the cloud.

4.1 Streamlined Spectrum Centric Protein Iden-
tification

In the metaproteomics workflow, the prepared biological sample is measured using
a mass spectrometer. It measures the mass of the molecules of the biological input
sample. The identification can be done with so-called protein identification engines.
These are software tools, which compare the measured mass spectra with in silico
calculated fragment mass spectra based on the amino acid sequence from a database
and create a similarity score for each comparison. Possible protein search engines are
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X!Tandem, OMSSA, Andromeda and Mascot as mentioned in Chapter 2 [HSZ+17,
HBS+93, MBR+13, CNM+11, RR03, Ast, HKRB15].

The standard algorithms use a file of the experimental spectra data and a textual
representation of protein databases to generate a result file of identified spectra data.
Since the mass spectrometry devices are constantly upgraded, the size of the mea-
sured data has increased from Megabytes to Gigabytes, which leads to an increased
number of comparisons [LBK+17, HSZ+17, MBR+13]. For example, the database of
known proteins of a human in UniProt TrEMBL1 contains around 140 thousand pro-
teins, whereas it is approximated that the number of entries for all organisms exceeds
100 million – more than 700 times as much (around 40GB) [ABW+04]. Additionally
protein databases with known proteins grow because sequence data expand. Hence,
the performance of locally executed protein identification in a processing workflow
reaches its limits. Furthermore, the possible future use cases of especially metapro-
teomics in the clinical environment for patient diagnostics need near-real-time pro-
cessing [LQD14, NKH+17, PJW+14, PF17, ECL+12, BFWSS+15, XYF+17].

The current protein identification software X!Tandem needs several hours for one
search and uses main memory to store all the experimental spectra data at once.
Since the spectra can reach several gigabytes per experiment with modern mass
spectrometer devices, protein searches, where each experimental spectra is scored
against possible thousands of similar matches (thus increasing significantly the mem-
ory footprint), take a lot of time for calculation on a local system. Additionally, the
resulting identifications are stored during the runtime in main memory, which in-
creases the RAM usage a lot [HSZ+17, MBR+13, RR03].

Pratt et al. tackle the performance problem of X!Tandem and implement paral-
lel X!Tandem using Hadoop and show, that big data technologies improve perfor-
mance [PHTN12]. However, the parallel approach needs a preparation time for
partitioning the data and uploading it to the system.

An alternative approach to process incoming data, which promises real time analysis
of sensor data constitutes the fast data architecture [Wam15, KPB+17, KPB+19,
Est16]. In this section we take a closer look at the X!Tandem protein identification
tool and analyze the feasibility of the X!Tandem scoring algorithm on a Fast Data
Architecture (see Section 2.6).

We found, that X!Tandem already exhibits streaming behavior for the proteins and
streams the theoretical spectra for the scoring. For a central fast data architecture,
the data processing step has to change to streaming experimental spectra data.
Since the spectra data is user dependent and the protein database is static data,
that is used by several users, we recommend an X!Tandem fast data architecture
with streaming experimental spectra data and a persistent protein database. The
new suitable data processing pipeline does not change the logic of the software,
only the way of pairwise processing. Besides performance, this method brings some
positive effects such as removing redundant peptides and enabling further analyses
of measured spectra to the pipeline [ZDS+18, Zou18].

1The mission of UniProt is to provide the scientific community with a comprehensive, high-
quality and freely accessible resource of protein sequences and functional information [ABW+04].
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4.1.1 Improvable Components of X!Tandem
As described before, X!Tandem consists of a component to load and digest the
proteins, a spectra component to load and loop through the spectra data and the
scorer, which calculates the score and the expectation value of the proteins. The
first step is to load all spectra. We ran X!Tandem 100 times with a protein database
(6,158,917 entries) and spectra data (33,227 entries) on our system2 to evaluate the
current state. The spectrum loader component needs on average 219.6 milliseconds
to load one spectrum into the memory. The proteins are loaded batch wise (default
1,000 proteins per batch) and for each experimental spectrum X!Tandem consumes
the batch and calculates the score. The protein and the spectrum loader map the
textual representation to a programmatic object and prefilter them to reduce the
amount of comparisons. The protein loader needs on average 0.0026 ms to load
one protein and each scoring takes on average 644.3 ms. The whole search took
on average 5.6 hours. The current generation of mass spectrometers can produce
more than 300 thousands spectra for one experiment and, as mentioned before, a
big protein database has more than 100 million entries. Searches on this data would
take over 24 hours. Additionally, the results, which are stored in an XML format,
are not usable for analytical queries or further analysis [RR03, ZDS+18].

Overall, the current X!Tandem approach loads the spectra data into memory and
“stream” batch wise the proteins and calculates the scores pairwise, using mapping
and filter functions at runtime. This reveals following improvable components:

RAM Usage: The complete experimental data need to be loaded in memory, which
is not necessary.

Protein Data Reiteration: The protein data is iterated for every experiment,
which multiply the effort.

Uniform Result: The result data is in a specific XML format and it is not com-
parable to other search software result file formats.

Distributed Architecture: The whole process is single node application and is
not horizontally scalable. Hence, it is limited by the machine performance it
runs.

4.1.2 Streamification of X!Tandem
The integration of X!Tandem in the fast data streaming architecture would bring
benefits for usability, performance, efficient storage and for further processing of the
data.

The fast data architecture brings a central cloud solution with a central database
management system (DBMS). We observed that the protein data is static and should
be stored centrally and accessible for all users. This extends collaboration be-
tween biologists and allows reuse and non-redundant storage of protein data [Nat02,
Whi05, RGSP07]. The ingesting streaming data will be the experimental spectra

2CPU 48x Intel Xeon E5-2650 v4; 512GB RAM
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instead of the proteins. Streaming these data gives a possibility of further calcu-
lation with the experimental spectrum during the protein search such as DeNovo
or clustering [KCS+17, SZBL10, GPRL+16]. A better option would be to digest
the proteins, and store the distinct peptide information only once. Making diges-
tion results persistent in this way would create a non-redundant peptide database
and reduce the amount of comparisons [ZDS+18, Zou18, CNM+11]. The measured
spectra are independent from each other and there is no need to load all of them
into main memory. Processing of the data needs a stream processing engine for
prefiltering, mapping and scoring functions.

The integration of X!Tandem into a fast data architecture would bring an application
that streams spectra batch wise and loops them through all proteins in the database
(Figure 4.1). The spectra can be streamed from a user using a file upload stream
(Figure 4.1 – B) or a directly connected mass spectrometer (Figure 4.1 – A). The
spectra are collected in a message queue (Figure 4.1 – C). The stream processing
engine consumes the messages, maps the spectra into programmatic objects and
prefilters them (Figure 4.1 – D). In the next step, the consumed batch loops through
all the peptide sequences from the database (Figure 4.1 – E) and the calculated
score and the expectation value are stored in the database (Figure 4.1 – 5). All the
components are managed by a cloud operating system (Figure 4.1 – F) [ZDS+18,
Zou18, RR03, MBR+13].

Stream Processing Engine 

Cloud Operating System

REST

Socket

A

B

C

D

E

F

Figure 4.1: The general fast data architecture for X!Tandem algorithm.
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However, on a theoretical basis, our architecture shown in Figure 4.1 should remove
X!Tandem’s deficiencies due to the following design choices. Overall, the integration
brings following improvements to the components:

RAM Usage: Only a small time window of the experimental data needs to be
loaded in RAM.

Protein Data Reiteration: Once the protein data is transformed in the database,
only needed peptides are selected.

Uniform Result: The result data is in a general data structure in a database and it
is comparable to other search software integrated in the system. Furthermore,
it enables further analysis and comparisons.

Distributed Architecture: The whole process is horizontally scalable and is not
limited by the machine it runs.

4.2 Mass Spectrometer as Stream Producer
Currently, the smallest parallelizable unit for the mass spectrometry data analysis
pipeline is a whole experiment file. Since the mass spectrometer measurement and
digitalization duration (approx. 2 hours) cannot be avoided, we shrink the smallest
unit to a single spectrum instead of a whole experiment. This means, we connect
a mass spectrometer to the cloud for outsourcing the calculation and overlap mass
spectrometer processing with data processing by using a streaming-based architec-
ture, i.e., a fast data architecture [Wam16, Wam15].

In this section, we present one important cornerstone of our architecture, our tool
MSDataStream. The tool is responsible for grabbing the single spectrum data from
the mass spectrometer as it arrives, converting it into a readable format and stream-
ing the data to the cloud for processing [ZSB+19b, NSP17].

The software MSDataStream combines as a local tool the possibility to upload batch-
wise an already completed experiment file or stream the data during the measure-
ment. Hence, this component tackles the tasks in Figure 4.1 – A and Figure 4.1 – B.

4.2.1 Producer Architecture
The system architecture is shown in Figure 4.2. In the following, we describe the
architecture in detail based on the background information described in Chapter 2.

For our development, we collaborate with Bruker Daltonik GmbH, a mass spec-
trometer company from Bremen, Germany. Each of their devices are connected via
a digitizer to a computer. The digital signal is collected in a proprietary RAW file
format [LBK+17, Ast]. Additionally, the measurement software provides structure
and meta data to index spectrum data that belongs together. Since each manufac-
turer uses their own RAW file format, Bruker provided us with a library (DLL file)
to access the digital spectrum data. The index data is stored in an SQlite database
and provides the location of spectrum data in the RAW file. The index structure
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Figure 4.2: The flow of the mass spectrometer data through the MSDataStream
software

consists of 16 tables that describe meta-information and the spectrum location for
each single spectrum. MSDataStream reads the meta-information for a single spec-
trum from the SQlite index and extracts the spectrum data from the RAW file via
the DLL [Mat16, Gar13, ZSB+19b].

The data of the mass spectrometer is grouped by MS1 data. In order to send
complete MS2 datasets as a batch, it is necessary to collect all MS2 mass spectra
that belong to a specific MS1 mass spectrum. During the measurement, it is possible
to collect MS2 data. In our software, we implemented a waiting queue until the MS1
signal changes. The change notifies the next dataset and all collected MS2 data can
be forwarded [Mat16, Deu12, MTS+04, Ast].

The collection of the batch happens before the conversion step while reading out
the data from RAW files and the SQlite database. After the batch is completed, the
collection of the MS2 datasets, each mass spectrum is converted into MGF format.
MGF is chosen since it fits to the current pipeline. It can be further extended by
other conversion formats in future work [Mat16, Deu12, MTS+04, Ast].

Then, several preprocessing methods increase the quality of the spectrum data. The
preprocessing step would have increased performance if the signal data is directly
used before converting the data into a readable format, but for future use with
different devices, it is decided to perform the preprocessing after the conversion.
Otherwise, the adapters for different devices need more functionality than the con-
version. Hence, in the application with multiple devices, the processing of the data
should be completely outsourced to the cloud [ZCD+12, Wam16, KPB+17].

Finally, MSDataStream sends the data to the cloud via Kafka broker for further
processing or to write the data into a file. Summarized, MSDataStream checks
periodically (e.g. every 2 seconds) for new measured data, collects it and produces
messages [Gar13].

Our MSDataStream software requires several parameters for the execution. We
implemented a JavaFX interface, which queries MSDataStream tasks and helps the
user to configure the parameters. After sending the first data messages, the user
waits until the results are generated from the fast data system and are shown in a
live updated visualization [ZSB+17].
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Figure 4.3: User interface of MSDataStream. The control elements are on the top
and the experiment queue management is in center of the user interface.

In Figure 4.3, we show the user interface (UI) implemented in JavaFX. The UI sup-
ports user management and queue management of experiment streams and uploads.
Two toggle buttons control the properties “stream” and “direction”. The “stream”
attribute decides whether to stream the data during an experiment or upload an
already completed experiment. The “direction” attribute decides to save the data
into a file or send the experiment data to the internet. Hence, our tool can be
used as a standalone client software producing MGF files from mass spectrometer
measurements.

Since the conversion happens locally to a MGF format, it is possible to add complete
experiments in that file format. Finally, a complete measured experiment in Bruker
RAW format is compatible, too.

4.2.2 Integration of MSDataStream

Integrating the MSDataStream software, the producer for the experimental data
changes the general architecture regarding the clients. The connection happens over
the Apache Kafka broker installed on the cloud platform. In Figure 4.4, we show
the upgraded architecture. MSDataStream Software is a part of the streamlined
analytic pipeline.
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Figure 4.4: The general architecture including MSDataStream.

4.3 Related Work
In this section, we explore related work regarding improvement of the protein iden-
tification software X!Tandem. We begin with a distributed solution following by the
implementation using modern hardware.

Pratt et al. implemented parallel X!Tandem using Hadoop MapReduce on Amazon
Web Services, which is the first parallel implementation of X!Tandem to exploit
the scalability and fault tolerance of Hadoop to create large on-demand compute
clusters on commodity hardware [PHTN12].

Another work implemented the algorithm using GPUs to increase the performance
and parallelize the comparisons [BSL+11]. In our work, we propose to implement the
X!Tandem protein search on a mini service in the fast Data streaming architecture.

Regarding the streaming data, Zhanlin et al. presented in his work a cloud based IoT
platform for car parking [JGO+14]. In the work, the authors describe how to stream
the data via Apache Kafka and analyze them. The streamed data in the work is
not complex, because only orientation, positions and information of the vehicle are
the data from the clients.

Finally, we could not find related work for the stream producer during the mea-
surement. All converters work file based and need all the data at once. Hence,
even the conversion software from the company Bruker Daltonik GmbH is file
based [LBK+17].

The related work of the overall MStream platform is described in Chapter 8.
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4.4 Conclusion
We show in this section pros and cons of the current file-based version of X!Tandem.
In addition, we show that the current workflow of the algorithm already has a stream-
ing behavior and we make the case that performance benefits could be achieved by
using modern fast data technologies [RR03, MBR+13]. We point out that an integra-
tion on a fast data architecture increases not only performance but also usability and
enables further analyses besides protein identification. The state of the art of fast
data shows clearly the benefits of streaming near-real-time applications [ZSB+19b].

Additionally, we show the streaming producer MSDataStream. The software is
installed on the machine, which is connected to the mass spectrometer. Using man-
ufacturer specific scripts, the data is read out during the measurement. Each dataset
is converted directly into the MGF text format that we use as general interface for
preprocessing and further streaming into the cloud [ZSB+19b].
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5. Managing the Protein Sequence
Data

The state-of-the-art protein identification approach uses, from the algorithmic per-
spective, a peptide-centric approach comparing the experimental data (mass spec-
tra) with a protein sequence database. For this purpose, the proteins are divided
into peptides, which results in billions of data sets [HKRB15, AM03, LBK+17, Ast].
Each peptide is compared to every spectrum to find the highest similarity. All
those comparisons take several hours to complete and as long as the measurement
data is not written, the protein identification cannot start. This leads to a fur-
ther delay of the protein identification. A method which identifies experimental
data individually allows to analyze each single spectrum during the measurement
as this one needs to be compared to all possible candidates [HSZ+17, HBS+93,
MBR+13, CNM+11, RR03, Tab15]. Hence, an index schema is needed to query
only suitable candidates of the sequence data and reduce the search area to a mini-
mum [ZDS+18, ZSB+19b, LM10, ZSB+19].

In Figure 5.1, we marked the component that is concerned in this chapter. In this
chapter, we present an index schema for the sequence data of a protein sequence
database, using a column-based index in a distributed database management sys-
tem (DBMS) that allows streamlining of the analysis step. This leads to the problem
of how to transform the protein sequence data from the current state-of-the-art for-
mat to the indexed schema in the DBMS. The transformation involves separation of
the sequence data, deduplication of the sequence data and many mass calculation
steps, which have to be calculated before inserting the sequence data into the DBMS.
To be applicable in a real-world scenario, the data preparation has to be efficient re-
garding their memory consumption and runtime [ZSB+19, Nat02, Whi05, RGSP07].

After presenting the transformation process, we describe four methods to aggregate
the data into the index structure. The first one is the naive in-memory approach,
the second one is the structured hard disk approach, the third method uses DBMS
queries and the last one is the radix-trie-based method. At the end, we evaluate
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Figure 5.1: Marked database management system component in the architecture of
the mass spectrometry analytic platform.

those methods and show that a trie structure is very efficient for the storage of
sequence data and has the best overall performance among all approaches.

In Summary, we make the following contributions in order to answer research ques-
tion RQ3:

• Index schema: Proposing a suitable index schema for protein sequence data

• Protein data transformation: Evaluate the best method to transform the protein
sequence data

5.1 Data Preparation for Real-Time Protein
Identification

To perform near-real-time processing, an index structure is needed to reduce the
search space of suitable candidates for each spectrum. Using an index on the data,
the software can query the needed data instead of performing a linear search. Hence,
the search space is minimized. In this section, we explain first the schema followed
by the transformation methods into the indexed schema [ZSB+19, Nat02].

5.1.1 Indexed Masses of Peptides
To enable fast access to suitable candidates without losing all the information from
the protein sequence database, we introduce our data structure. Our schema for the
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prot_id | FILE_1 | FILE_2 | prot_seq
−−−−−−−−−−−+−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−+−−−−−−−−−−−
PROTEIN_1 | nu l l | [ ’ { json−data } ’ ] | TEMRTEQAFY
PROTEIN_2 | [ ’ { json−data } ’ ] | [ ’ { json−data } ’ ] | TEMRTEMQG

Listing 5.1: Sample data of a protein table.

protein data consists of three tables – the protein table, the peptide table and the
pepmass table and the relations between them (Figure 5.2). This table schema is
needed in the database and used in the analysis platform [Nat02, RGSP07, ZSB+19].

Protein
PK: UUID

Protein Sequence

Protein Data 1

...

Protein Data n

Peptide
PK: Peptide Sequence

Protein Set 1

...

Protein Set n

Pepmass
PK: FASTA-UUID

Charge

Pepmass

Peptide List

Figure 5.2: General schema of preprocessed protein data in the mass spectrometry
analytic cloud system.

5.1.1.1 Protein Table

The protein table uses the protein sequence as a unique id and contains a list of
description texts, such as species or functions of the proteins, in each row, since one
sequence can define more than one protein description or can be mapped to more
than one protein description (see, Chapter 2). The UUID is created like a hash
from the protein sequence. Hence, the unique protein sequence is reduced and can
be used as identifier for the protein data. The primary key is the “UUID” column
in the protein table. Each protein sequence database appends a new column in
the protein table, which results in a wide table. This fact leads to the necessity to
have an individual column for each FASTA file, since the protein identification step
is only processed against a single database. The protein table consists of minimum
two columns – “UUID” and “Protein Sequence”. For each uploaded protein sequence
database, a new column “Protein Data” is added to the table, which contains the
description from the FASTA file. Hence, uploading new data brings new descriptions
but not necessarily new protein sequences. Therefore, we can save storage in the
DBMS since the sequence data is much bigger than the description data (Figure 5.2).
In Listing 5.1, we show a sample data of a protein table. Two files are loaded into
the table, which creates two columns “FILE_1” and “FILE_2”. For each protein in
the files, a row is added with generated UUID in column “prot_id” and the sequence
in column “prot_seq”.
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pep_seq | FILE_1 | FILE_2
−−−−−−−−−−+−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−
TEMR | [PROTEIN_2] | [PROTEIN_1, PROTEIN_2]
TEQAFY | nu l l | [PROTEIN_1]
TEMQG | [PROTEIN_2] | [PROTEIN_2]

Listing 5.2: Sample data of a peptide table.

5.1.1.2 Peptide Table

The peptide table consists of the peptide sequence as a primary key and has a
set of protein UUIDs, which relates to the protein table. Similar to the protein
table, each protein sequence database is stored in an additional column. Hence,
the peptide table consists of minimum one column – “Peptide Sequence”. Each
uploaded protein sequence database appends a new column – “Protein Set”, to
the peptide table, which contains a non-redundant collection of protein UUIDs.
The UUIDs describe where the peptide comes from. This relational information is
needed for further analysis of the data. Using the relation information, the tool can
reconstruct the proteins from the identified peptides (Figure 5.2). In Listing 5.2, we
show the sample data of the peptide table regarding the sample data from protein
table (see Listing 5.1).

5.1.1.3 Pepmass Table

The pepmass table is the table, which groups the peptides with the proposed pa-
rameters “FASTA-UUID”, “Charge” and “Pepmass”. All data of one FASTA should
be on one partition. This is the reason why we use this value as a partition key
in the pepmass table. For the peptides, we store all possible charges (we consider
charges one, two and three, higher charges are untypical for the measurement re-
sults.) and calculate the mass of the peptides. Because of the possible modifications
of the peptide, the total mass can be different. Modifications are possible changes
of ions in the peptides, which change the mass of the ion and therefore the total
mass of the peptide. For example, oxidation during the preparation process could
modify the experimental data and should be considered during the identification
process. Hence, each modification is similar to an additional letter in the sequence
and increases the amount of peptide sequences drastically. In our work, we calcu-
late the masses for two typical modifications. The precalulated charges and all the
precalulated modified and unmodified masses generate a huge amount of peptides
in the pepmass table. For example, Swissprot contains 23,934,321 peptides, which
produce 14,579,004 non-redundant peptides after deduplication of the peptide se-
quences. The grouping and calculation of all possible masses results in 111,183,434
peptides in 4,814,243 rows of the pepmass table. Hence, the grouping transforms
500MB protein sequence database into 2GB of precalculated data in our schema.
The peptides are stored as a list of strings in the column “Peptide List”.

In Listing 5.3, we show the sample data of the pepmass table regarding the sample
data from protein table and peptide table (see Listing 5.1 and Listing 5.2).
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f a s t a | charge | pepmass | p ep t i d e_ l i s t
−−−−−−−−+−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−−
FILE_1 | 1 | 536 | [ ’TEMR’ ]
FILE_1 | 1 | 565 | [ ’TEMQG’ ]
FILE_2 | 1 | 536 | [ ’TEMR’ ]
FILE_2 | 1 | 768 | [ ’TEQAFY’ ]
FILE_2 | 1 | 565 | [ ’TEMQG’ ]

Listing 5.3: Sample data of a peptide table.

In Table 5.1, we show a set of real world example data from the pepmass table. One
query over all possible candidates takes in average 19 millisecond.

FASTA charge pepmass Peptide List
UUID_1 1 489.2415 [’GGGGGGK’]
UUID_1 1 503.2572 [’AGGGGGK’, ’GGGGGAK’]
UUID_1 1 504.2412 [’SGAGAAA’, ’TGAAAGG’, ’SAAGGAA’]
UUID_1 1 514.2619 [’AGAAPAG’]
UUID_1 1 517.2728 [’GAGGGAK’, ’AAGGGGK’]

Table 5.1: Example data from the pepmass table.

5.1.2 Data Transformation
Our proposed schema increases the query performance to get the suitable candidates
for each spectrum in a few milliseconds, which leads to increased storage because of
the precalculations of all masses. As mentioned, we have to consider more than one
protein sequence database. Hence, an efficient technique is needed, which allows
to upload new databases and to transform their data into our schema [ZSB+19].
In Figure 5.3, we show the four steps to transform the data from the FASTA format
into our schema.

The first step is to deduplicate the protein sequences and merge the descriptions of
the entries with a similar protein sequence (Step 1 in Figure 5.3). The next step is
the protein digestion, which splits the protein sequence into smaller peptides. Equal
peptide sequences can be extracted from different proteins, which leads to a many-
to-many relationship between proteins and peptides. Due to the high number of
those relationships, the protein digestion is conducted with a list of protein id’s in
the table (Step 2 in Figure 5.3). The next step is the deduplication of the peptides
during which only the unique peptides are left within the relation to the proteins
that they come from (Step 2 in Figure 5.3). For each of those peptides, the mass
needs to be calculated with all the possible modifications and charges. Afterwards
all the data is stored into the DBMS [ZSB+19].

For the data transformation, we evaluate a map structure in memory and on disk
and the radix tree structure. As next, we explain the steps in detail, because it
should be clear to follow the evaluation.
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Figure 5.3: Transformation steps from FASTA format to our indexed schema.

1 UPDATE protein SET prot_seq=’proteinSequence’, "fastaID"= "fastaID
" + [’proteinData’] WHERE prot_id = prot_uuid;

Listing 5.4: Query for protein deduplication in the DBMS.

5.1.2.1 Protein Deduplication

The goal of this step is to map all descriptions to a unique protein sequence. The
naive approach is to create a map with the protein sequence as a key and a collection
of descriptions as a value. In this case, a map would only consider the currently
loaded protein sequence database. However, since we want to persist the results
in the database, this deduplication step needs to be executed on the DBMS side.
Hence, we have to use update queries to append data to an existing protein sequence
or insert the protein sequence if the data set does not exist. A sample query is shown
in Listing 5.4. The name of the new column is “fastaID” and the query inserts a
new entry or updates the list in the new column by a new description of the protein.
In Cassandra query language, an UPDATE statement can INSERT datasets if the
data not exists.

5.1.2.2 Protein Digestion

After the deduplication of the protein sequences, the peptides need to be extracted,
using the digestion method. Hence, the sequences are divided on specific letters of
the sequence. This method simulates the digestion from a laboratory on the digital
sequence. Additionally, we have to consider missed cleavages (MC) that define the
possibility of missed cutouts in the sequence. As an example, let us consider a
protein sequence with a length of 300 would be split into 23 peptide when defining
MC to zero. Defining MC to the value of one would generate 56 peptides. The
missed cleavage parameter increases the amount of peptides linearly [MFT+13]. In
our work, we define this parameter with the value of two, which is enough for most
of the mass spectrometer experiments [RGSP07, TLM+00, Nat02, Whi05].
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5.1.2.3 Peptide Deduplication and Mass Calculation
The peptide deduplication is conducted only for the currently used protein sequence
database file and does not depend on the data from the other columns. During this
step, each peptide has to be deduplicated without losing the information about the
protein that the peptide comes from. The protein sequences are already mapped to
an identifier in our DBMS. Hence, there are four possible approaches to deduplicate
peptides: The naive approach is to create a map with the peptide sequence as a
key and a collection of the protein identifiers as a value. The map approach can be
divided into (1) an in-memory map approach and (2) a file-based map approach.
(3) The next approach is to update the list of protein identifiers in the DBMS and
(4) the last approach is to use a radix tree for the sequences with relations to the
protein identifiers on each end node.
Afterwards, the peptide masses need to be calculated. For each unique peptide se-
quence, the mass for all combinations of possible modifications and for all charges
has to be calculated and stored in the DBMS. Therefore, the sequences of the pep-
tides have to be mapped to the precalculated masses. Since each peptide generates
many different masses, this peptide is stored multiple times in the pepmass table.
In the last step, all the grouped and precalulated data needs to be inserted into the
DBMS.
Due to the fast data architecture and the need of fast accessing of the protein data, it
is required to implement an efficient service for uploading protein sequence databases
into our system. In order to achieve this, the transformation has been implemented
using different approaches. Firstly, we implemented the naive approach using in-
memory hash maps. Secondly, we implemented the steps, using a structured storage
on the hard disk. In the third approach, we implemented the steps using DBMS
queries and in the last one, we implemented an extended radix tree as an in-memory
data structure.
In summary, the four steps of the transformation process can be implemented in
different ways, see Table 5.2. The first and the last step are done with the database
engine method. An evaluation is needed, to find the best method to transform the
data.

Method Protein
Deduplication

Protein
Digestion

Peptide
Deduplication

Commit

In-Memory
Map

No Yes Yes No

HDD Map No Yes Yes No
Database
Engine

Yes Yes Yes Yes

Radix Tree No Yes Yes No

Table 5.2: An overview of protein data transformation approaches.

5.2 Implementation
We implemented the transformation of a protein sequence database as a cloud ser-
vice, using Java Jetty application server and Cassandra DBMS on an Apache Mesos
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1 UPDATE peptide SET "fastaID" = "fastaID" + ["protID"] where
pep_sequence=’pep_seq’;

2 UPDATE pepmass SET "peptide_list" = "peptide_list" + {’
peptideSequence’} where "fasta"=fastaID AND "charge"=charge AND
"pepmass"=totalMass;

Listing 5.5: Queries to transform protein data from FASTA format into the table
schema using DBMS.

system. Additionally, SQlite is used as a storage for the local structured data. The
in-memory approach, the file system approach (SQlite) and the DBMS query ap-
proach use standard methods (CQL1 queries) and data structures (hash maps and
sets) for the deduplication and other transformation steps. In this section, we give
a brief description of the implementation of the naive approaches and a detailed
explanation of the extended radix tree approach [ZSB+19].

5.2.1 Transformation using a Map Structure
This approach uses a map and a key value structure for the peptide deduplication
and the protein relationship. The first approach is the implementation of the map in-
memory and the second implementation uses an SQLite table as key value storage.
We implemented the approach using the peptide sequence as a key and a set of
protein identifiers as value [ZSB+19].

5.2.2 Transformation using DBMS Queries
Since the result data needs to be inserted into the database management sys-
tem (DBMS), we implemented queries to transform the data directly in the DBMS.
We use UPDATE queries, which add a new row if the key does not exist or otherwise,
append a value to the list in the column. The deduplication of proteins is already
implemented, using UPDATE queries on the protein table. In this approach, we
implemented additional UPDATE queries for the peptide table and for the pepmass
table. In Listing 5.5, we present the UPDATE queries used in this method for the
pepmass table and for the peptide table [ZSB+19].

5.2.3 Transformation using Extended Radix Tree Structure
In contrast, the ideas behind using a radix tree are more complex and, hence, we
give a detailed explanation on the relational radix tree approach in the follow-
ing [SOAA97, LKN13, DLB59, ZSB+19].

In Figure 5.4, we show the approach on an example and in Listing 5.6, we show
the algorithm of the transformation. At the beginning, a new column is added to
the protein table and to the peptide table (Listing 5.6 line 2). For each pro-
tein, an identifier is generated and the protein descriptions in the protein table get
updated (Listing 5.6 line 6,7). Next, the proteins are divided and we generate a

1Cassandra Query Language
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Step 4

Step 3

Step 2

Step 1
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MASS: 

ROOT

MASS: 

+ "TEMR"

TEMR <1>
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ROOT
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+ "TEMR"

TE

ROOT

MR <1,2> QAFY <1>

MASS: 536 758

TE

ROOT

M QAFY <1>

MASS: 536 758

R <1,2> QG <2>

565

+ "TEMQG"

PROTEIN 1: "TEMRTEQAFY"
PROTEIN 2: "TEMRTEMQG"

PEPTIDE 1: "TEMR"     MASS: 536 Da
PEPTIDE 2: "TEQAFY" MASS: 758 Da

PEPTIDE 3: "TEMR"     MASS: 536 Da
PEPTIDE 4: "TEMQG"  MASS: 565 Da

Figure 5.4: Sample of a radix tree as peptide storage in the data transformation
process.

list of peptides for each protein (Listing 5.6 line 8). Hence, the two sample pro-
teins “TEMRTEQAFY” and “TEMRTEMQG” are divided into peptides. The first
protein generates the peptide list: “TEMR”, “TEQAFY”, and the second protein
generates the peptide list: “TEMR”, “TEMQG”. For the ease of explanation, we
choose this fictional separation, which does not necessarily reflect real world diges-
tion but consider the trypsin separation rules. Each of the peptides is inserted into
the trie with the additional parameter of the protein identifier (Listing 5.6 line 10).

Following steps are shown in the sample in Figure 5.4. In step 0, the tree is empty
as well as the set of masses. In step 1, we add the peptide “TEMR” to the tree,
the end-node get a relation to the protein it comes from and a pointer points to
the set of masses. In step 2, we add the peptide “TEQAFY” to the tree. Because
both peptides share the prefix “TE”, the first node is splitted and two end-nodes
are created. Because the mass is different to other values in the set of masses, a new
entry in the set of masses is created. In step 3, we add the peptide “TEMR” to the
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1 Foreach Protein sequence database, FASTA
2 Add column to protein−table and peptide−table
3 TRIE <− null
4 massMap <− null
5 for each protein in FASTA
6 UUID <− fromString(protein.sequence)
7 UPDATE protein−table where protein.uuid = UUID
8 peptides <− digest(protein.sequence)
9 for each pep in peptides

10 TRIE.insert(pep.sequence, UUID)
11 for each Node in TRIE
12 if Node.proteins not empty
13 INSERT ∗ INTO peptide−table
14 massMap.put(mass,Node)
15 for each entry in massMap
16 INSERT ∗ INTO pepmass−table

Listing 5.6: Transformation algorithm to transform protein data from FASTA format
into the table schema using the radix-trie-data structure.

tree. The complete sequence is already available and only a new relation to another
protein is created in the last node. In the last step, we add the peptide “TEMQG”
to the tree. All the shared prefixes create an additional node, and only the suffix
nodes are left with the relation to the protein the peptide comes from and a pointer
to the unique mass value [ZSB+19]..

However, the difference to the original radix tree is that we are not indexing the
peptides, we link protein relationship to the peptides. To adapt the radix tree to
our use case of peptide deduplication, we extend the usual radix tree, using a set
of protein identifiers in each node. Hence, the trie contains at this moment all
information for the peptide table (Listing 5.6 line 13). The link to the proteins is
needed to identify the proteins, based on the peptide identification. The peptide
sequences are automatically deduplicated.

The next step is to calculate masses for each peptide. Hence, an additional map
with the mass as key and a list of pointer to the end nodes in the radix tree as value
is needed. For each of the end nodes, several masses are calculated (Listing 5.6 line
14). First, the different masses regarding the modifications and second for each of
those masses three charges. This ends up in a high growth of the peptides from
the trie. For each mass, the peptide sequences are calculated from the end node
recursively. Beginning with the end node, which represents the end of a peptide
sequence, it is needed to traverse over all nodes to the top of the trie to get the
sequence completely. The last step is to insert the data from the map with masses
and the peptide sequences into the pepmass table (Listing 5.6 line 16) [ZSB+19]..

As we show in the example in Figure 5.4, the trie needs only few nodes to store mul-
tiple peptide sequences, while the map approach gets a new entry for each different
sequence. Especially, if only one letter is different, it will be only one additional node
in the trie structure which is more compressed than a complete additional entry in
the map. Hence, the trie structure is very promising for peptide sequence data.
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5.3 Evaluation
For the evaluation, we use two different protein sequence databases - Homo sapiens
and SwissProt. In Table 5.3, we show the characteristics of the data sets. Homo
sapiens is a small data set with 4794 proteins and a storage size of 2.88 MB. The
Homo sapiens data contains 484,479 overall peptides and 248,996 unique peptides.
Finally, these peptides result in a trie structure with 295,602 nodes. SwissProt
has the usual size of the productively used protein sequence databases with 255 MB
storage size and 556,196 proteins and 37,403,696 peptides. After deduplication, only
23,254,068 peptides are left using 28,481,207 nodes in the radix tree.

Homo sapiens SwissProt
Size in MB 2,88 255

Number of proteins 4794 556,196
Number of peptides 484,479 37,403,696

Number of unique peptides 248,996 23,254,068
Number of radix nodes 295,602 28,481,207

Table 5.3: Statistical data about our two datasets for the evaluation.

The goal of the evaluation is to find the best approach regarding the applicability
as an online service in the peptide deduplication step, which has the most impact
on the overall transformation time. Hence, we evaluate the resource consumption
and the calculation time in our evaluation in order to compare all approaches.

5.3.1 Time Evaluation
For the time measurement, we measure the overall time of the approaches. In Fig-
ure 5.5, we present the average results of 50 runs on both data sets and explain their
difference on the two datasets in the following.

5.3.1.1 Homo sapiens Data Set

Regarding the Homo sapiens data set, the naive in-memory approach is 5 seconds
faster than the radix tree method. Furthermore, we can see that the SQlite and the
DBMS approach are very slow and need hours of calculation time. The runtime is
explainable by of the amount of writes on the slow hard disk.

5.3.1.2 SwissProt Data Set

The Naive approach needs 60 seconds for the Homo sapiens data set and 58 minutes
for the SwissProt data set. The tree method takes 65 seconds for the smaller data set
and 60 minutes for the SwissProt data set. The differences come from the calculation
of the sequence recursively from the end node. In the trie structure, the mass is
calculated traversing over the nodes while in the naive approach the whole sequence
is accessible. This is not needed in the naive approach. The SQlite and the DBMS
approach took days on the SwissProt data and is not comparable for such sizes of
protein sequence databases. Hence, the naive in-memory approach and the radix
tree approach seem to be promising. The in-memory approach is a few seconds
faster than the radix tree approach.
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Figure 5.5: Evaluation of the runtime of the transformation process on the data sets
Homo sapiens and SwissProt.

5.3.2 Memory Consumption
In the memory consumption evaluation, we only consider the in-memory approach
and the radix tree method. The other two methods failed due to their bad per-
formance. In Figure 5.6, we show the results of the memory evaluation. For both
data sets, the radix tree needs less memory to store all the peptide information with
the relation to the proteins and their masses compared to the naive in-memory ap-
proach. The in-memory approach needs around one gigabyte for the Homo sapiens
data set and over 100 gigabytes for the SwissProt data set. For the same data, a
radix tree approach needs less then 300 megabytes for the Homo sapiens data set
and around 14 gigabytes for the SwissProt data set. Moreover, the memory con-
sumption of the radix tree increases between the data sets by factor 50, while the
naive in-memory approach has a factor of 92. Overall, the radix tree is very benefi-
cial for the peptide sequence data due to its inherent duplicate compression. Hence,
the radix tree method combines in-memory speed and efficient data compression for
sequence data.

5.3.3 Result
The evaluation shows the benefits of the radix tree for peptide sequence data and for
its transformation in our system. Using this tree structure for the peptide sequences
revealed three benefits. Firstly, most of the differences of peptides are in the first
levels and, hence, in higher levels of the tree the sequences end up in an end node.
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Figure 5.6: Evaluation of the memory consumption during the transformation pro-
cess on the data sets Homo sapiens and SwissProt.

Due to this fact, the tree consumes less memory. Secondly, many of the differences
are only due to one letter. Representing such a difference results in only one node
in the tree compared to two separate peptide sequences being stored in the naive
approach. Thirdly, insertion of new data automatically resolves redundancy, which
is needed for further processing. We extend the attribute of the end node by a set of
relations to the proteins. Due to its minimized memory consumption, it is possible
to process the data completely in RAM, reaching acceptable performance.

5.4 Related Work
In this section, we present related work - the protein data indexing approach of
Andromeda and the use case of the radix tree structure as a storage structure for
sequence data.

The protein search engine Andromeda, part of MaxQuant Software suite, uses an
indexing method on peptide masses to reduce the search space during the identi-
fication. This approach points to proteins in the protein sequence database files
[CNM+11]. Nevertheless, the data is still in a FASTA file, while we structure and
transform it completely. Furthermore, we remove redundancies over all the protein
databases uploaded into our system.

The software MetaProteomeAnalyzer propose a relational structure to store the
results in a relational database management system [MBH+15]. To process the
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data, the whole data was loaded in a map structure into the memory, which took
many resources of the system and corresponds our in-memory map approach.

Enrico Siragusa proposed in his thesis the radix tree as a structure to store DNA
sequences as a preprocessing step [Sir15], which is similar to our approach. In our
work, however, we use the radix tree firstly to store the peptide sequences and
secondly to extend the end nodes with the relationship to the proteins.

The related work of the overall MStream platform is described in Chapter 8.

5.5 Conclusion
Mass spectrometry analytic platform is a future application of mass spectrome-
try data analysis [Ast, HKRB15]. To achieve high performance a combination of
scalable cloud algorithms and fast access to the data are needed [HSZ+17]. The
goal of this chapter is to analyze transformations to index protein data. The in-
dex schema brings benefits for the performance of the overall mass spectrometry
analysis pipeline [SSH10]. Therefore, an efficient transformation of the protein se-
quence database into the index schema is needed. In our work, we investigate how
to transform the protein sequence databases into the final index schema. Therefore,
we show the overall transformation and different implementation approaches of this
transformation. After the evaluation of the four different methods, we conclude that
an extended radix tree is the best structure for the peptide sequence data in order
to transform the protein data into the index schema. The radix tree for peptide
sequences combines nearly the best performance and minimal memory consump-
tion. Hence, it proves to be beneficial for our use case of peptide deduplication. We
visualize the best method of the transformation in Table 5.4. The best choices of
methods are bold in the table.

Stream Processing Engine 

Cloud Operating System

Digitizer

MSDataStream

File

Apache Kafka

Protein File
(FASTA)

Extended RadixTree
Transformation

Figure 5.7: Integrated transformation service in the analytic platform.
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Method Protein
Deduplication

Protein
Digestion

Peptide
Deduplication

Commit

In-Memory
Map

No Yes Yes No

HDD Map No Yes Yes No
Database
Engine

Yes Yes Yes Yes

Radix Tree No Yes Yes No

Table 5.4: An overview of protein data transformation approaches with the best
method in bold.

In future, it is possible to use the radix tree as a storage system for protein databases
and build a query engine on it. Consequently, we assume that we can speed up the
current processes based on the FASTA file by using this tree structure [Nat02].

The transformation is a cloud service and the protein data need to be uploaded
before the later identification process can start. In Figure 5.7, we show the in-
tegrated transformation component. The Data need to be uploaded and the radix
tree us used to perform the transformation in acceptable time and efficient hardware
consumption [ZSB+19].
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6. Validation of Streaming Peptide
Spectrum Matches

Protein identification software tools compare the measured mass spectra with al-
ready known proteins from a database and create a similarity score for each compar-
ison. Possible protein search engines are X!Tandem, Sequest, and Mascot [PPCC99,
DAC10, EMY94, RR03, MBR+13]. Protein identification is a pairwise comparison
and statistically it contains false positive peptide-spectrum matches (PSM) due to
measurement errors and artifacts. A common approach to remove the false pos-
itive matches is the target-decoy approach [EG09]. In this approach, a complete
search runs on the experimental spectra and a protein database, which is called
target search. Additionally, a second search is conducted on the same experimen-
tal spectra but this time against a decoy protein database (generated by reversing,
shuffling or randomizing the original protein sequences [EG09]), called decoy search.
A collection of these two search results is used to approximate the false discovery
rate (FDR) for the experiment under the assumption that all hits of the decoy search
are false positives.

Protein identification using the target-decoy FDR approximation is inflexible and
hardly parallelizable, because the workflow needs the whole experiment data as
input and incurs two searches. Flexibility and parallelism are needed to improve
the state of the art performance and enable protein identification for highly parallel
and horizontally scalable cloud infrastructures. Since the mass spectrometer device
produces experiment data continuously, a fast data streaming architecture seems
promising for the metaproteomics use case. On a fast data environment involving
a huge amount of independent streaming experiment data, a target-decoy approach
is no longer feasible. Therefore, we need an approach without decoy search that is
still able to identify false positive matches [EG09, HSZ+17].

Gonnelli et al. show a possible usage of logistic regression on specific proteomics (only
a single species) data using ranked PSMs of the Mascot search engine for the train-
ing [GSV+15]. Their decoy-free approach for specific single-species data results in
99% accuracy. However, the question arises whether similar accuracies are possible
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for metaproteomics data, which contain multiple species. Addressing this question,
we create a pipeline with four components for the decoy-free approach. Using our
decoy-free pipeline, we developed a general classifier for metaproteomics that takes
as input data from any arbitrary protein identification engine [ZSJ+18].

Identification  

Cloud Operating System

Digitizer

MSDataStream

File

Apache Kafka

Protein File
(FASTA)

Extended RadixTree
Transformation

Validation

Stream processing Engine

Figure 6.1: Target architecture of a classifier, which decides in real-time if a result
is valid or not valid.

In Figure 6.1, we show the aimed architecture and mark the component for the
validation. The validation is part of the stream processing engine and runs after the
identification. Every experimental spectrum that arrives in our system is compared
against the protein database. This results in a comparison between a theoretical
and an experimental spectrum. The best result is classified and the valid hit can be
stored in the database [ZSJ+18, RGSP07, EG09, HSZ+17].

Such classifier consists of four components. The first component is the feature
extractor. To this end, we created a list of features that we need from the results of
the protein search engine. Based on the feature list, we created an X!Tandem feature
extractor. The next component is the CSV exchange format of the features. The
third component is the trainer with the exchange format as input and a classifier
as the result [PW78, PLI02]. This classifier is the last component and is used for
productive systems. Using the Apache Spark library, the classifier is usable in a fast
data architecture, such as the SMACK stack1 [Est16, Wam15, MBY+16].

In this chapter, we implement a feature detector for X!Tandem results and extend the
X!Tandem code to get ranked information in the result file. We use the X!Tandem
results as training sets for our decoy-free classifier, which can be produced using the
target-decoy method or ranked method. Furthermore, we evaluate the streaming
decoy-free pipeline on different metaproteomics data. Additionally, we evaluate the
process using ranked PSMs training and the target-decoy training method. We show

1Spark, Mesos, Akka, Cassandra and Kafka as streaming pipeline for real time data process-
ing [Est16, Wam15]



6.1. The Requirement of Streaming Protein Identification 79

that our approach can reach over 95% accuracy for general metaproteomics while
raising horizontal scalability and effectively doubling the processing speed, since no
decoy search is needed after the trained classifier.

In Summary, we make the following contributions in order to answer research ques-
tion RQ4:

• Decoy-free validation: Evaluation of a decoy-free validation approach.

• Decoy-free pipeline: Software pipeline to create decoy-free models.

• Applying decoy-free to multi-species data: Generating data from microbial
bacteria.

6.1 The Requirement of Streaming Protein Iden-
tification

Since protein identification needs a pairwise comparison and already uses the stream-
ing implementation patterns, such as batch-wise processing, a fast data architecture
seems plausible, which promises real time analysis of sensor data [Ast, MBR+13,
Wam15, KPB+17, KPB+19, Est16]. For the case of metaproteomics, the mass
spectrometer device produces the sensor data and streams it to the cloud sys-
tem. The identification of the incoming spectra data produces peptide-spectrum
matches (PSMs). The system must then decide whether the match is below the
false discovery rate or not (see Figure 6.2). The goal of this chapter is to cre-
ate a general classifier to decide whether the PSM is a true or a false positive for
metaproteomics data.

Mass
Spectrometer Cloud

streams creates

Peptide
Spectrum

Match

decides

True positive match 
or

False positive match

Figure 6.2: General fast data streaming architecture for protein identification with
decoy-free classification of the matches.

Unfortunately, the common target-decoy FDR calculation needs the whole exper-
iment data and makes the protein search as a streaming application unfeasible.
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Hence, a decoy-free FDR estimation is necessary. Furthermore, the decoy-free ap-
proach should work generally for all proteomics and metaproteomics mass spec-
trometry data and with all protein search engines. To this end, we introduce four
components of our decoy-free systems [HSZ+17, GSV+15, ZSJ+18].

The first component is the “Feature Extractor”, the second component is the “Fea-
ture List”, the third component is the “Trainer” and last component is the “Classi-
fier”.

Feature Extractor: The first component is the feature extractor, which extracts
the numeric features of the matches from the results of a protein search engine.
In our work we focus on the results of the X!Tandem protein search engine.

Feature List: We defined a CSV formatted feature list, which is the next compo-
nent. These features represent information from the spectrum and from the
peptide. In addition, it includes identification results.

Trainer: The next part of the system is the trainer. The input for the trainer
component is a labeled feature list in CSV format and results in a trained
model.

Classifier: The last component is the classifier, that takes the feature data and
predicts whether the match is true positive or false positive according to the
trained model.

Overall, the first component, the feature extractor, can be replaced, so our approach
works for different search engines. The last component is the one which can be used
in the productive system and classifies in O(1). The architecture with the four
components is shown in Figure 6.3.

Individual
Feature

Extractor

Feature
List 

extracts labels 

Trainer 

provides 

Classifier 

Figure 6.3: General decoy-free approach with the provided four components.

6.1.1 Individual Feature Extractor and the Feature List
The goal of these two components is to read the features that describe one peptide-
spectrum-match and transform them into our defined format. The list of the selected
features with their descriptions are shown in Section 6.1.1. The features are mostly
not provided directly in the results, but can be calculated with the given values.
The chosen features are from the decoy-free approach [GSV+15].
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Computing the values for each feature is the task of the individual feature extractor.
This component depends on the protein search engine. The goal is to read or
calculate the features from the result data of a match. In this work we concentrate on
the protein search engine X!Tandem. Hence we implemented an X!Tandem feature
extractor. X!Tandem provides the results in XML format based on BIOML [Fen99,
Deu12]. We mark in the type column of Section 6.1.1 if the features are directly
contained in the result data (direct) or if we could calculate them (derived).
The feature list provides these features in a CSV format with 30 columns. In our
exchange format, we use the first two columns for user-specific data of the PSM. In
these two values we store the id’s provided by X!Tandem. The last column is for
labeling the PSM with TRUE or FALSE. All columns in between are the features
shown in Section 6.1.1. Each row in the CSV file represents one PSM [MBY+16,
PLI02].

6.1.2 The Trainer
The third component uses the labeled PSM feature list to train a classifier. We
implement two different ways for the training. The first way is the ranked PSM
training. In this case, for each spectrum a ranked list of matches is provided in
the results. The first match is labeled as TRUE and the second rank is labeled as
FALSE (see Figure 6.4). In X!Tandem, the results contained only the first rank, so
we had to implement the ranked output into the X!Tandem code [ZSJ+18, PLI02].
In this method, no target-decoy-approach is required to train the model. Neverthe-
less, the top hits are assumed as true hits, which is also not correct. In the next
approach, we take the FDR approach as ground truth.

1 Rank
PSM 

2 Rank
PSM 

Target Search
Results

Figure 6.4: The method ranked labeling method.

The second way is the target-decoy training. For the target-decoy training, we need
to extract features from the target result and from the decoy result. Using these
feature lists, a target-decoy approach decides if a PSM of the target result is TRUE
or FALSE. This method is independent of the protein searches and uses only the first-
ranked results (see Figure 6.5). The target and decoy search results are transformed
to our CSV format and are used as input for the labeling [ZSJ+18, PLI02].

6.1.3 The Classifier
The last component is the classifier, which relies on a trained logistic regression
model to estimate the quality of the PSM, see Section 2.5. The classifier is the
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Figure 6.5: The ranked labeling method.

component which is integrated into the platform and validates the identification
results as it arrives. This is the resulted service, which is used in the analytic
platform. The other three components “Feature Extractor”, “Feature List” and
“Trainer” are not part of the productive analysis pipeline. The parts are needed
for the creation of the classifier. Several classifiers can be stored in the system and
loaded dynamically depending on the used data [ZSJ+18, PLI02, Wam16].

6.2 Evaluation
Evaluation of the decoy-free streaming pipeline was done using two different sets of
training data and a modified version of the search engine X!Tandem. The training
steps are only done once resulting in a classifier. Only the classifier is part of the
production system, with negligible influence on overall performance.

To evaluate the decoy-free approach for the streaming metaproteomics workflow,
we generated data from different experimental datasets using X!Tandem. We used
three experiment datasets of a biogas plant and three experiment datasets from a
human gut

In Table 6.2, we show the datasets. The biogas plant datasets have more PSMs than
the human datasets.

In our evaluation, we tested the accuracy of the decoy-free approach on metapro-
teomics data. We evaluate our two training methods: the ranked PSM method and
the target-decoy PSM method. In the evaluation, we test the accuracy and compare
the two training methods to find the best decoy-free classifier for metaproteomics
data.

6.2.1 Accuracy Evaluation

The accuracy reported corresponds to the average value of 50 runs. We combined
the data to evaluate the metaproteomics use case for the general purpose. To this
end, we trained the classifier using only biogas or human gut data and additionally,
we mixed the datasets to show different training scenarios.
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The results using the ranked training method is presented in Table 6.3. The best
accuracy is 96% and the worst result is 93%. The average accuracy using the ranked
training method is 95%.

The results using the target-decoy training method is presented in Table 6.4. The
best accuracy is 95% and the worst is 93%. The average accuracy using the target-
decoy training method is 94%.

6.2.2 Performance Evaluation
The next experiment is to measure the performance of the different approaches.
In Figure 6.6, we show the performance evaluation of the approaches. The target-
decoy approach needs two searches to perform the classification and needs overall
approximately 1.8 times more runtime. Overall, after the training of a model, the
performance is better, due to the unnecessary second decoy search.

Figure 6.6: Runtime in seconds of the target-decoy classification and the decoy-free
classification on different samples..

6.2.3 Evaluation Results
Our evaluation shows, both training methods bring good accuracy results to ex-
plore the experimental data. The accuracy of 95% can be considered good, because
it matches the statistical uncertainty typical for metaproteomics experiments. For
general purposes, the target-decoy training can be implemented for any protein iden-
tification engine, while the ranked approach has to be implemented in the software
itself. For instance, Mascot provides ranked results, but X!Tandem does not. Hence,
we had to add this feature in the code of the search engine. The classifier decides
fast and works on independent streaming data. Using our general pipeline, we cre-
ated a general metaproteomics classifier that is highly parallelizable and suitable
for a streaming architecture. Since the accuracy in all scenarios is comparable, we
propose to use the target-decoy method for training data generation, as it is the
easiest method to apply to other search engines.
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6.3 Related Work
The work done by Elias et al. on the target-decoy search strategy for providing a
reasonable estimation of false discovery rate in the peptide-to-spectrum matches is
a widely used approach in metaproteomics [EG09]. Another model was proposed
by Gonnelli et al. for the Mascot Search Engine. This model allows fast yet reliable
decoy-free separation of correct from incorrect peptide-to-spectrum matches (PSMs)
when compared to the traditional decoy database paradigm, using a binary classifi-
cation algorithm [GSV+15].

Granholm et al. presents a cross validation scheme for proteomics results [GNK12].
In the work, the authors present a validation of PSMs using different machine learn-
ing classificators, based on training of target-decoy-approximation.

In this chapter, we created a generalized pipeline to create a decoy-free classifier
for complex mass-spectrometry data on all protein search engines. Furthermore,
we used the stream processing library Apache Spark that allows integrating the
classification in a fast data cloud system. To this end, we implemented an X!Tandem
connector to our pipeline and evaluate the classifier using two training methods on
the complex metaproteomics use case [ZSJ+18].

The related work of the overall MStream platform is described in Chapter 8.

6.4 Conclusion
The identification is a required step in the protein identification, that needs a val-
idation of the results [MBR+13, EMY94, RR03]. To improve the performance, a
fast data streaming architecture seems promising but the currently used target-
decoy validation is not parallelizable because it needs all the experiment data at
once [ZSJ+18, ZSB+19b, EG09].

Identification  

Cloud Operating System

Digitizer

MSDataStream

File

Apache Kafka

Protein File
(FASTA)

Extended RadixTree
Transformation

Classifier

Stream processing Engine

Feature List

Individual 
Feature Extractor

Trainer

Figure 6.7: The streaming architecture including the decoy-free classifier.
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In this Chapter, we show that a decoy-free approach is feasible for general, multi-
species metaproteomics data with over 95% of accuracy, which can be considered
as good, because it matches the typical statistical uncertainty for metaproteomics
data. We created a system to build a machine learning classifier for every protein
search engine. Our approach proposes an individual entry point that relies on the
chosen protein search engine. We implemented one feature extractor for X!Tandem,
a popular protein search software. The features describe one peptide-spectrum-
match in the results of the search software. For the training, we used two different
methods: the target-decoy and the ranked training method. Our evaluation shows,
that both training methods have comparable accuracy and we recommend the target-
decoy training method, because most protein search engines do not provide a ranked
result. The final result is a classifier that removes false positive peptide-spectrum
matches (PSM) from measured metaproteomics data. To classify the data, no second
decoy search is needed cutting the runtime by half. The classification can be made
on only one PSM, which is important for the feasibility on streaming systems.

In Figure 6.7, we show the complete pipeline including the classifier. The blue part
on the right is the training that happens once. However, the resulting classifier is
integrated in the identification process for each PSM.

In the future, several quality improvements on the input data and on the system
itself are possible. Some of the attributes of one peptide-spectrum match (PSM)
are calculated using other features. Therefore, we plan to research different weights
and combinations of the PSM features. This can result in a higher accuracy or in a
reduction of the input data. Furthermore, we will implement feature extractors for
different protein search engines such as mascot and OMSSA [PPCC99, BLY+07].
Additionally, we will investigate whether a new classifier or a deep learning approach
is feasible and brings better results to the validation of proteomics and metapro-
teomics data [MBY+16].
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X! Tandem features Description Type
charge The parent ion charge from the

spectrum
Direct

sumI The log10 value of the sum of all
of the fragment ion intensities

Direct

highest peak intensity Intensity of the highest peak in
the spectrum

Direct

num of modifications Number of modified residues Direct
peptide length Number of amino acids in the

peptide sequence
Direct

modifications per peptide Ratio of number of modifications
to pep length

Derived

mh(group) The parent ion mass (plus a pro-
ton) from the spectrum

Direct

mh(domain) The calculated peptide mass + a
proton

Direct

uniqueDM (mh(domain) - mh(group)) with
isotope correction in Dalton

Derived

uniqueDMppm (mh(domain) - mh(group)) with
isotope correction in ppm

Derived

sum of matched intensities Sum of the intensities of all
matched fragment ions

Derived

log of sum of matched inten-
sities

Logarithm of sum of matched in-
tensities

Derived

fragmented ion sum of
match intensities

Sum of intensity of the matched
fragment ions for the following
ion series: y+,y++,b+ and b++

Derived

fragmented ion ratio Ratio of number of matched frag-
ment ions of each series to the to-
tal number of matched fragment
ions of the spectrum

Derived

ion series count Number of matched fragment
ions for each ion series

Derived

longest consec match in ion
series

Longest consecutive fragment ion
matches for each ion series, i.e.,for
(y1, y2, y3, y6) longest = 3 as (y1,
y2,y3)

Derived

median of matched frag ion
errors

Median value of all matched frag-
ment ion errors in Dalton

Derived

mean of matched frag ion
errors

Mean value of all matched frag-
ment ion errors in Dalton

Derived

iqr matched frag ion errors Interquartile range of all matched
fragment ion errors in Dalton

Derived

Table 6.1: The features of a peptide-spectrum-match and how to get them from
X!Tandem result file
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Dataset Amount of PSMs
BIOGAS 1 5984
BIOGAS 2 8367
BIOGAS 3 8921

HUMAN GUT 1 4819
HUMAN GUT 2 2317
HUMAN GUT 3 2685

Table 6.2: Three biogas datasets and the three human gut datasets with the amount
of identified PSMs.

Training Test Accuracy in %
BIOGAS12 BIOGAS3 96
GUT12 GUT3 94
BIOGAS123 GUT3 93
GUT123 BIOGAS3 95
BIOGAS123(80) BIOGAS123(20) 96
GUT123(80) GUT123(20) 93

BIOGAS12_GUT12 GUT3 94
BIOGAS12_GUT12 BIOGAS3 96
BIOGAS_GUT123(80) BIOGAS_GUT123(20) 96

Table 6.3: Evaluation Results for the ranked PSM training method.

Training Test Accuracy in %
BIOGAS12 BIOGAS3 94
GUT12 GUT3 94
BIOGAS123 GUT3 92
GUT123 BIOGAS3 93
BIOGAS123(80) BIOGAS123(20) 95
GUT123(80) GUT123(20) 94

BIOGAS12_GUT12 GUT3 95
BIOGAS12_GUT12 BIOGAS3 93
BIOGAS_GUT123(80) BIOGAS_GUT123(20) 94

Table 6.4: Evaluation Results for the target-decoy PSM training method.
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7. Analytic Platform for
Near-Real-Time Mass
Spectrometry Data Analysis

In this thesis, we present a new approach of processing mass spectrometry data on a
cloud system using a fast data environment [Est16, Wam16]. We described each com-
ponent of the pipeline and how to solve the challenges. In this Chapter, we combine
the components in order to create the MStream prototype – an analytic cloud-based
platform to process mass spectrometer data in near-real-time [ZSB+19a]. Espe-
cially in time critical use cases such as clinical diagnostics, a near-real-time pro-
cessing is necessary. The metaproteomics and proteomics research area can identify
marker proteins that belong to specific deceases [LQD14, NKH+17, PJW+14, PF17,
ECL+12, BFWSS+15, XYF+17]. These biomarkers are similar to a fingerprint.
Hence, this circumstance makes a mass spectrometer to a powerful diagnostician.
Because one analysis can identify multiple diseases, a near real time analysis plat-
form is very beneficial for this use case [PF17, NKH+17, PJW+14, LQD14, ECL+12,
BFWSS+15, XYF+17].

The Chapter begins with a brief explanation of the components and how the chal-
lenges are solved. Finally, we evaluate the whole platform and the mass spectrometer
analysis pipeline using MStream.

In Summary, we make the following contributions in order to answer the research
questions RQ5 and RQ6:

• MStream: Presenting the prototype MStream with all components

• Performance evaluation: Evaluation of MStream regarding performance and
scalability
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7.1 MStream: Cloud-based Mass Spectrometry
Data Analysis Platform

The mass spectrometry workflow consists of three main parts: the preparation of the
experiment (Step 1 in Figure 2.1), the measurement (Step 2 in Figure 2.1) and the
data processing (Steps 3, 4 and 5 in Figure 2.1). In our work, we focus on the data
processing pipeline, because it is the bottleneck of the sequential workflow. Our ap-
proach starts directly at the data digitization step and parallelizes the measurement
and the data processing steps, bringing the fast performance of cloud-based data
processing to a mass spectrometer. In this section, we describe the challenges of the
new MStream system and how we solved them [HKRB15, MBR+13, LBK+17, Ast].

7.1.1 Architecture of MStream
For a better visualization of the challenges, we show in Figure 7.1 the concept of our
system. Our MStream platform needs a stream producer (Figure 7.1–1, see Chap-
ter 4), horizontally scalable scorer (Figure 7.1–4, see Chapter 7), distributed struc-
tured protein knowledge base (Figure 7.1–3, see Chapter 5) and a smart validator
of peptide-spectrum-matches (Figure 7.1–2, see Chapter 6).
The challenge of the stream producer is to stream the mass spectrometry data during
the measurement without blocking the current measurement process and converting
the RAW data into a readable format. These steps process each spectrum individu-
ally before sending it to the cloud-based MStream system [ZSB+19b, Mat16, Eva11].
The scorer, in turn, has to scale out horizontally to perform near-real-time analysis
even with high throughput or future devices with higher resolution. For performance
reasons, it is impossible to traverse all peptides every time a spectrum arrives in the
system [ZCD+12, Wam16, RR03, ZSB+19a]. Therefore, a smart indexing and ag-
gregation technique is needed to reduce the search area of the peptides. We use
the criteria of current protein identification tools to define an index to the sequence
database [ZSB+19, Nat02, RGSP07]. Furthermore, the smart validation method
should allow the MStream system to validate every PSM individually without com-
promising the quality [EG09, GSV+15, ZSJ+18]. Finally, the personal data security
is very important especially for a remote cloud system.
The stream producer, the data structure and the validation were already presented
Chapter 4, Chapter 5 and Chapter 6. Hence, we will give only an overview of the
results. For clinical use cases, the security of patient data is crucial. For this case,
we assume the security as solved by mapping the experimental data in the stream
producer to a specific patient without revealing or sending any personal data to the
cloud. Hence, in this thesis no security aspects are tackled. The contribution of this
chapter is the scalable scorer and the overall evaluation of the MStream analytic plat-
form. In this section, we will describe our solution for the challenges beginning with
the validation, followed by the stream producer and the persistence layer. Finally,
we will describe the identification process and the MStream system [ZSB+19a].

7.1.2 Streaming Validation of Peptide Spectrum Matches
The validation is needed to trust the results but the state-of-the-art target-decoy
method is not applicable to streaming experiment data. For a streaming valida-
tion method, the goal is to classify a peptide-spectrum match as valid or non-valid
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Figure 7.1: Architecture of the MStream prototype, the analytic platform for real-
time diagnostic of mass spectrometry data [ZSB+19a].

directly as they are generated. We solved this classification problem using logistic
regression, a machine learning technique. In Chapter 6, we showed that our solution
can speed up the identification by a factor of 1.8. At the same time, we reach an ac-
curacy over 95%, which is enough for this most uses cases, see Chapter 6 [ZSJ+18].
Additionally, the classifier is independent from the experiment; it only has to be
trained once for a given device. As a result, our classifier helps us overcome the first
challenge towards a stream-based analysis workflow.

7.1.3 MSDataStream: Stream Producer for a Bruker Mass
Spectrometer

Since every manufacturer has its own file format to store the measured data, we
collaborated with the Bruker Daltonik GmbH to access the data. We adapted the
given API to read the data during the measurements in batches without blocking
the actual measurement. Furthermore, we added preprocessing steps to increase the
quality and reduce the noise of the data. While in the current pipeline, the conver-
sion to a readable format begins after the measurement, we added the conversion
into the stream producer to transform each data item, which we send to the cloud or
write to a file. The application runs locally on the mass spectrometer computer and
collects the data continuously. Further adapters for the manufacturers are planned
for future work and would need additional collaborations with the device companies,
see Chapter 4 [ZSB+19b].

7.1.4 Preparation of Protein Data
In order to implement the streaming identification process, we analyzed other tools
for protein identification. The first requirement is that all the data should be avail-
able at once and the second one is that the experimental data should be small and
fit into the main memory. In our system, the input data is not completely available
and we can access only a few spectra at the same time. Accordingly, in our system,
we iterate once over the mass spectrometry data and have to access the protein and
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peptide sequence data for each spectrum. Due to the data size of the protein knowl-
edge base, we reduce the searching area, using a sorted index on the total mass of
peptides, based on the work of Cox et al., see Chapter 5 [CNM+11].

In our system, we extend this indexing by the charge1 property of peptides and
additionally persist the peptide modifications2 in our system. Furthermore, we store
the meta information of each protein of the knowledge base in an additional column,
creating wide tables mapped to the sequence in a row.

As shown in Figure 7.2, the row key of the protein table is the protein sequence, while
the meta information of the proteins are stored in additional columns. Additional
information of a protein describe the functionality and the biological environment of
its origin. Each knowledge base has an own column for the meta information but is
mapped to the unique protein sequence in the protein table. This strategy removes
redundant protein sequences across multiple protein databases without losing the
meta information. In the peptide table, the meta information is the collection of
proteins, which contains the peptide. In the pepmass table, the data is clustered by
the protein knowledge base and indexed, using sorted charge value of the peptide,
and sorted by the total mass of the peptide. Since modifications of the peptides
change the mass, we store the modified peptide additionally in the pepmass table
as a redundant peptide sequence. The parts of the peptides (Amino acids) can have
a modification which changes the mass of the amino acid and hence, the total mass
of the peptide. As described in Chapter 5, we precalculate the modified masses in
beforehand and store the peptide with different masses redundantly. Accordingly,
no further calculation during the similarity function is needed.

While state-of-the-art software iterates through the protein data and applies those
operations during the processing, we use this indexing as a bottom-up filtering
method for the protein identification engines. For the search, the query collects the
data with the same charge and total mass with a tolerance defined by the user and
the mass spectrometer.

Our storage schema of the protein data is specialized to reduce the amount of com-
parisons for the diagnostic use case. The index structure is column-based such as
the one used by Apache Cassandra [LM10] or in Elf [BKSS17]. The preparation of
the data is not time critical, since every disease has one knowledge base, which is
used for every sample [ECL+12, BFWSS+15, XYF+17]. Of course, the schema of
MStream has additional components for user management, data management and
results. The complete schema is not part of this work, because it has no relevance
for the thesis topic.

7.1.5 Online Processing of Streaming Spectra

The core of the identification process is the scoring function. This scorer component
unites all other components of the system.

1Each spectrum has a charge that needs also to be applied on the theoretical spectrum of the
peptide for the comparison [MFT+13].

2Depending on the biological preparation and the properties of the samples, some parts of the
peptides are modified and changed the overall total mass [MFT+13].
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Figure 7.2: General structure of preprocessed protein data in the MStream system.

In the protein identification step of state-of-the-art tools, the experiment data is
processed in one bulk. Whereas in our architecture, the experimental spectra are
not available completely and arrive in our cloud system periodically. In the Scorer,
the following components are required: the stream producer (Chapter 4), the val-
idator (Chapter 6) and the storage (Chapter 5).

Since we have to serve multiple clients in parallel, we add user-dependent parameters
into each incoming message, in addition to the experimental data. In this way, we
separate each spectrum and use one message channel for the experimental data,
making the spectrum message the smallest parallelizable unit in the system. The
parameters define the protein data for the identification and the validation model.
Additionally, we provide the error mass tolerance in the spectrum message to define
the range of the corresponding peptides, which we query from the storage system.

In Listing 7.1, we describe the algorithm of one thread (worker service in the cloud).
First, the worker collects a batch of messages. Each message contains the textual
representation of the spectrum. Next, each spectrum of the batch is processed
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individually. For each spectrum, the algorithm selects all peptides that must be
considered for a comparison from a specific protein knowledge base. Hence, each
peptide in the knowledge base is compared to the spectrum and the match with
the best score is kept as a result. Using our logistic regression classifier, the best
peptide-spectrum match is validated. Finally, the PSM and the spectrum are stored
in our storage system.

The scoring function is based on the weighted dot product, which is adapted from
the X!Tandem protein engine. Other similarity functions can of course be applied
in our system as a part of future work.

1 . batch ← incoming messages
2 . f o r spectrum in batch do
3 . minMass ← spectrum . mass − e r r o r
4 . maxMass ← spectrum . mass + e r r o r
5 . pept ide s ← minMass < ? < maxMass
6 . maxPSM ← −∞
7 . f o r pept ide in pept ide s
8 . psm ← s co r e ( spectrum , pept ide )
9 . i f (psm . s co r e > maxPSM. s co r e )
10 . maxPSM ← psm
11 . end i f
12 . endfor
13 . v a l i d a t e (maxPSM)
14 . s t o r e ( spectrum )
15 . s t o r e (maxPSM)
16 . endfor

Listing 7.1: Algorithm of the MStream scoring worker [ZSB+19a].

7.1.6 Putting It All Together
The state-of-the-art technology needs the experimental data as a file and the protein
data as a file, while our system has additional requirements on the technical side and
on the infrastructure level. When the data processing starts, a protein knowledge
base must be already in our storage, see Section 7.1.4. Consequently, the protein
database must be uploaded and prepared for further processing in our system. Fur-
thermore, we need a trained model for the specific device that enables validation of
the experimental data, see Section 7.1.2. In the end, our stream producer must be
installed on the mass spectrometer side, see Section 7.1.3.

The system is deployed on the SMACK stack, as our implementation of the fast
data architecture, see Figure 7.1. Additionally, a lightweight web UI show us the
results of an experiment during the identification process.

In Figure 7.3, we show the communication between the components and how they
operate in a sequence diagram. The stream producer asks for new data periodically
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Figure 7.3: Sequence diagram of MStream components [ZSB+19a].

and starts to collect the data as the mass spectrometer begins with the measurement.
The producer processes and transforms every experimental spectrum and sends the
data to the message service. The MStream worker with the scoring task subscribes
to the message service and asks for new data periodically. The subscription time of
the scorer defines in which time periods the system asks for a new data batch from
the message service. For the protein identification, the scorer queries peptides from
the protein knowledge base and stores the results.

7.2 Evaluation
From a biological perspective, our system provides same results as other protein
search engines, since the similarity function and the pre-filtering are based on the
state-of-the-art approach. Hence, in this chapter, we focus on the evaluation of the
performance.

This section is structured as follows: firstly, we present the evaluation setup of the
prototype. Secondly, we describe the experiments. Finally, we present our results.

7.2.1 Evaluation Setup
In our work, we implemented the MStream system prototype3, which we use for
the evaluation. We used a de.NBI4 OpenStack system to run 15 virtual machines,
using Harshi Corp Terraform for fast management of the infrastructure. Overall,
our OpenStack project offers 160 virtual CPUs and 720GB RAM. We use Apache

3https://git.iti.cs.ovgu.de/zoun/mstream
4German Network for Bioinformatics Infrastructure. (www.denbi.de)
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Mesos as cloud operation system. On Mesos, we deployed all the services and
components of MStream, such as Apache Cassandra for the structured storage,
HDFS to store our trained validation models, Apache Spark for processing the data
and scoring and Apache Kafka as a message broker. For additional services, we used
the Spring framework and SparkJava on a Jetty application server. The stream
producer software is a JavaFX implementation and runs on the machine of the mass
spectrometer. The stream producer can currently only read Bruker experimental
data, but can be easily extended for further devices.

For the state-of-the-art tool, we used a local computer. As a local machine, we used
an ASUS UX360 with Intel I7-7500U/BGA with 2 cores and 16GB DDR3-RAM.

For the evaluation data we used PASEF experiments of Escherichia coli (E.coli)
bacteria with 57,758 spectra (5.37GB) to evaluate the scalability and to compare
to the state of the art. The data is generated by a PASEF TIMSTOF mass
spectrometer from Bruker Daltonik GmbH. As knowledge base of proteins, we
adopted the commonly used UniProt SwissProt knowledge base, containing 556,196
proteins, which results in 23,934,321 peptides. The chosen knowledge base con-
tains much more proteins than necessary for diagnostics of specific disease, because
we test the performance and the impact of the amount of proteins to the plat-
form [ECL+12, BFWSS+15, XYF+17, PF17]. In the next Section, we describe the
evaluation of our MStream platform.

7.2.2 Evaluation Experiments
The goal of the evaluation is to show the applicability for near-real-time identification
that is especially needed for medical diagnostics. MStream performs in near real
time if the overall processing rate in amount of spectra per second is the same as
the measurement rate of the mass spectrometer in amount of spectra per second.
Hence, we first analyze the persistence component (see Section 7.1.4) regarding the
data size that we create, using our index approach. Additionally, we analyze how
indexing reduces the search range and how fast our system queries the data from
the persistence layer.

As we propose a central system, we observe if our system can handle multiple devices
in the same time, providing real-time analysis. In this experiment, we analyze the
scoring time by measuring the performance of each scorer, each step in a scorer and
the scalability factor of the system.

Finally, we compare our system to the state-of-the-art protein identification software
X!Tandem to evaluate the competitiveness of MStream.

7.2.2.1 Evaluation 1: Structured Protein Knowledge Base

In this experiment, we present the results collected from the knowledge-base compo-
nent (see Section 7.1.4). After uploading the data, in this case the SwissProt data,
the amount of data changes because we remove duplicates on the protein level and on
the peptide level. This reduces the amount of peptides from 23,934,321 to 14,579,004
non-redundant peptides. Considering the precalculation of charge property and the
modifications for each peptide, the amount of the peptides in the pepmass table
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rises to 111,183,434. Hence, our system increases a protein sequence database from
original size of 500MB proteins to 2GB, but contains aggregated and ready to use
peptides in the pepmass table.
In Figure 7.4, we show the distribution of all the peptide sequences in our storage,
regarding the charge property and analyze the load balancing of the current system.
All of the 111,183,434 peptide sequences are stored in 4,814,243 rows, grouped by
charge and by the total mass. The amount of peptides with charge 3 (blue line) are
in the range of 170 and 1300 Dalton. The peptides with charge 2 are in the range
of 300 and 1950 Dalton, while data with charge 1 is between 600 and 3700 Dalton.
Grouping by the charge attribute, distributes the data across the rows. Nevertheless,
the amount of peptides is not equal which results in unbalanced query results. Of
course, the amount of data returned by the query for each spectrum has an influence
on the runtime. We analyze this influence as next.
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Figure 7.4: Histogram of peptide masses in the database of MStream.

We test the query time to select the data with different tolerances on their masses.
The error tolerance is calculated in parts per million (ppm) and depends on the
given device. The range of 100 ppm can be used for older devices, 20 ppm is for
current devices, 10 ppm is for current high class devices and 1 ppm is for future
devices with even higher precision.
In this experiment, the data input rate is 189.42 experimental spectra per second,
which describes the rate of six or seven mass spectrometers based on our experience
with the Bruker mass spectrometer (on average 27 spectra per second). In Fig-
ure 7.5, we show the query time on the left y-axis (orange bars) and the amount
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Figure 7.5: Query time and the query size regarding different error tolerances.

of the peptides on the right y-axis (blue line), selected when querying for different
tolerances. The evaluation is an average of multiple runs (50) and measures the
time for each spectrum. For 1 ppm, the query amount of rows that are selected is
12 on average, the amount of peptides is around 250 and the query is performed in
2 ms. Using 100 ppm, the query time increases to 19 ms, the amount of peptides
grows to 14,420 selected from 818 rows in average. For 10 ppm the query needs 4.5
ms in average and 2,337 peptides are selected, while for 20 ppm the query took 7
ms with 4569 peptides in average. While the scaling factor from 1 ppm to 100 ppm
is 100, the factor for the query time for these experiments is 9.9, and the factor for
the peptides is 57.7. The MStream platform scales linearly allowing more workers
work in parallel.

We show the influence of the tolerance to the query time and propose to optimize this
parameter for specific real world scenarios. Especially for repetitive measurements,
such as diagnostics of a disease, it is beneficial to use the minimum tolerance, based
on experience of the measurements [PF17, ECL+12, BFWSS+15, XYF+17]. This
will reduce the calculation time and the costs of the analysis.

7.2.2.2 Evaluation 2: The Scorer Performance

In this section, we evaluate the worker (the scorer) scalability and the performance of
the MStream system. Our goal is to analyze the possibility to operate with multiple
mass spectrometers and provide the results in near-real-time for every user.
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To this end, we increased the spectra input rate on the one hand, which will increase
the amount of spectra per batch and on the other hand, we increased the error
tolerance, which will increase the amount of peptides.
This experiment runs with the error tolerance of 20 ppm and a subscription time of
10 seconds.
In the first experiment of the scorer evaluation, we use different spectra input rates
to simulate multiple devices and users. For each run, we measure the time of each
step of the scorer. The first step is the query of the peptides (Listing 7.1, line 5),
the next step is the scoring of the spectrum and the peptides (Listing 7.1, line 7 to
12), the third step is the validation of the PSMs (Listing 7.1, line 13), followed by
the insert functions of the PSM (Listing 7.1, line 15) and the spectrum (Listing 7.1,
line 14).
All runs achieve real-time processing with the time deviation of the processing time
of the last mass spectrometry data, usually a few seconds. In this experiment,
we increase the input rate and simulate multiple devices sending data at the same
time. Our goal is to scale out the workers to serve each user’s device in real-time.
Therefore, we analyze how the system adapts to additional mass spectrometers,
which reflects the individual performance of the worker and the overall performance
of the system.
In Figure 7.6, we present the results of this experiment. The measured time is the
average value in ms per worker and per spectra. We evaluate our system with sim-
ulated input rates 41, 104, 196 and 727 spectra per second on average. Because one
mass spectrometer sends on average 27 spectra per second, which can be processed
by a single worker, the input rates are generated using already measured experiments
processing the data with the stream producer (see Section 7.1.3). We measured the
time for each part in the algorithm to analyze the differences between different input
rates. Additionally, we measure the minimum number of workers that are needed
to perform the analysis in near-real-time.
In the chart in Figure 7.6, we can observe that the input rate does not influence the
single processing steps of the worker, but influences the amount of workers. The
individual performance deviation is around 1 ms. We lead back this deviation to the
outscaled workers and the cloud latency. Additionally, we can observe that a worker
scales linearly with the input rate. The processing speed of one worker with the
parameters of these experiments (using tolerance with 20 ppm) processes around 45
spectra per second. Increasing the rate of incoming spectra, the amount of processing
workers scales linearly without influence on the individual worker performance. To
this end, the scorer spends most of its time in the pairwise comparison.
The different sections of the algorithm are summed up to show the overall time for
one spectrum. The growing input rate increases the amount of spectra in one batch,
thus, increasing the amount of comparisons of the worker but not the time of the
single spectrum analysis. This bottleneck is handled without scaling the workers.
Hence, the processing time of one batch is increased and leads to longer waiting
time of the last batch of the mass spectrometer.
In the next chart, we show the performance of one worker regarding the error toler-
ance. We ran this experiment with an input rate of around 200 spectra per second
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Figure 7.6: Average runtime in ms depending on the data input rate.

in each run and a subscription time of 10 milliseconds. The input rate simulates
high utilization, which usually needs around 5 workers to perform in real-time.
In Figure 7.7, we show the average performance of a single worker in relation to
the error tolerance. For 1 ppm the scorer is faster, since the amount of peptides is
decreased. Additionally, the scorer performs very fast with 335 spectra per second
for one worker. However, for 100 ppm, one worker processes 15 spectra per second
and one worker cannot perform in real-time anymore. Hence, the scorer scales out
up to 17 workers to reach near-real-time processing speed.

For the next chart in Figure 7.8, we analyze the influence of the tolerance of the single
steps on the scorer. Again, we ran the experiments with different error tolerances,
measuring the time and relating the scaling factors to the amount of peptides. We
can see that the time for insertion and validation does not change but the tolerance
influences the amount of peptides. Accordingly, the time for querying the peptides
and scoring increases. The scoring time scaling factor is 39 at 100 ppm. Hence, the
scoring scales slower than the error tolerance regarding the scaling factor, because
the input rate increases the amount of data comparisons more than the tolerance.
This experiment shows that the influence of the input rate is much higher with the
weight of 1 than of the error tolerance with weight 0.17 regarding the scaling factors5

of the worker.

5Scaling the spectra input rate by factor 18, increases the workers from 1 to 18, while scaling
the tolerance by factor 100 increases the workers from 1 to 17
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Figure 7.7: Average worker performance in spectra per second by increasing the
error tolerance for the peptide query in MStream.

In the end, we show that increasing the error tolerance or increasing the input rate
affect the runtime of the worker and the overall system. Additionally, we see that
the scaling factors are different and the amount of mass spectrometry data affects
the process more than the amount of peptides.

An evaluation of different subscription times is not necessary, since it changes the
amount of spectra in a batch, which leads to the same results as the evaluation of
the input rate.

7.2.2.3 Experiment 3: Comparison to X!Tandem

After evaluating the MStream platform, we now compare the runtime to the state-
of-the-art tool X!Tandem which runs on a local machine and uses one thread, to the
runtime of one worker of our system. X!Tandem needs all mass spectrometry data
as input at the beginning, while our worker can start processing a single spectrum.
Nevertheless, we compare only the identification time.

In Figure 7.9, we show the average performance of a mass spectrometer based on
the experience with a Bruker device (on average 27 spectra per second), compared
to the physical maximum of the device (100 spectra per second). Those rates reflect
the speed at which one device and possible future devices deliver spectrum data.

X!Tandem performs on average 18 spectra per second, using one thread and our
single worker performs 45 spectra per second. The search parameters were similar
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Figure 7.8: Average performance in ms by increasing the error tolerance for the
peptide query in MStream.

for both tools. Overall, our single worker performed better than single-threaded
X!Tandem software.
The comparison is not entirely fair, since X!Tandem runs on a single machine, using
one thread and our system runs on a cloud environment with at least 37 virtual
CPUs. Based on the scaling factors from this experiment, we can calculate, when
it is worth to change to our system regarding the CPU usage. In Figure 7.10, we
show that on 58 CPUs and 990 spectra per second our system performs faster.
Hence, our system performs better if the data amount comes from 30 or more mass
spectrometers.
The results showed that MStream has the capability to perform near-real-time anal-
ysis by fast querying of the peptide data and scales out if needed. We targeted out
the three parameters - error tolerance, input rate and subscription time, to optimize
the performance of the system. In the end, we examined the hardware consumption,
which is acceptable for a central cloud-based analytic platform that serves thousands
of mass spectrometers for emerging use cases such as clinical diagnostics.

7.3 Discussion
Regarding the goal of our MStream system to implement a central system for real-
time diagnostics of mass spectrometer data, we discuss the results of the evaluation.
In Section 7.2.2.1, we show that the amount of data for the preparation explodes
by factor 30 even if we use only two modifications, three charges and one kind
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Figure 7.9: Comparison of the performance of X!Tandem, MStream and a Mass
Spectrometer.

of splitting method. This shows that our data preparation greatly increases the
requirements on hard disk memory. However, given the low prices for hard disks, we
nevertheless argue that the speed-ups enabled by our data preparation step justify
the increase in memory requirements.

Hence, the data preparation needs to be deployed for each protein sequence database
that can be used for the analysis. For research, more flexible data preparation is
needed at the expense of performance. The distribution of the peptides in Figure 7.4
reveal the differences between the charges. Especially peptides with charge 3 have
a high number of peptides in a smaller range. Further research can optimize the
balancing of the data among the rows in the pepmass table.

Next, we examined the query performance and the query size regarding different
tolerances, see Figure 7.5. The scaling factor of the query time and size scales
linear and slower than the error tolerance. Since the error tolerance depends on the
precision of the mass spectrometer, this should be considered during the experiments
using the minimum tolerance.

In Section 7.2.2.2, the MStream system provides the results in near-real-time. In
this experiment, we analyze the weighted impact of the number of peptides and
spectra. First, we increased the input rate to analyze the out scaling and how
it influences a single worker. We examined in Figure 7.6 that the scaling factor
of the workers is linear and each worker delivers the same performance during the
processing. In Figure 7.7, we examined the influence of the peptide size to the worker
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Figure 7.10: The performance regarding the CPU consumption of MStream and
X!Tandem.

performance. In Figure 7.8, we show the influence on the single components in the
scorer. In the end, we showed that the amount of spectra has a weight of 1 while
the peptides influence with 0.17. We propose to adjust the prefiltering methods in
the stream producer (Section 7.1.3) for individual diagnostic scenarios to reduce the
calculation effort and costs on the cloud.

In our last experiment in Section 7.2.2.3, we compare our system to the state-of-
the-art software X!Tandem. In this experiment, we only compared the performance
of one MStream worker and ran X!Tandem in a single-thread mode. In this case,
our system could process on average 45 spectra per second, while X!Tandem only
processed 17. Furthermore, MStream outperforms X!Tandem upon the input rate of
990 spectra per second with respect to the CPU consumption which is produced by
36 parallel mass spectrometry measurements. Hence, as a central platform for real-
time diagnostic platform MStream outperforms the state-of-the-art tool X!Tandem.

7.4 Related Work
In this section, we want to present the related work — the cluster based protein
identification X!!Tandem and the indexing approach of Andromeda.

The protein identification software X!Tandem has a parallel cluster version, called
X!!Tandem. In X!!Tandem, data is partitioned on available nodes with each node
processing batches with the standard X!Tandem. In the end the results are added
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to a combined result file [BCC+08]. In contrast to that, our system scales with
the amount of data from the experimental side or from the knowledge base, while
X!!Tandem scales only from the experimental side.

The protein search engine Andromeda uses an index on masses to reduce the search
area during the identification. The index refer to the proteins in the protein knowl-
edge base files [CNM+11]. Nevertheless, the data is in a file, while we structure it
and remove redundancy over all the protein knowledge bases uploaded to our system.
Finally, we process each spectrum separately and allow the data processing during
the measurement whereas both X!!Tandem and Andromeda have to wait until the
measurement has completed.

Further related work of the overall platform is described in Chapter 8.

7.5 Conclusion
In this chapter, we combine all components to a platform and evaluated the through-
put and the scalability of the whole system.

This motivated us to evolve the data analysis of mass spectrometers to the cloud
and break through the standard sequential pipeline. We present a proof of concept
for a central mass spectrometry analytic platform MStream to process the data in
near-real-time on the SMACK stack.

As part of this evolution, we implemented in collaboration with Bruker Daltonik
GmbH an adapter to read the experimental data during the measurement of the
mass spectrometer. We further implemented a stream-based validation method
based on logistic regression. Additionally, we prepared the protein data and used
a column-based index structure to perform fast range queries on the protein data.
Finally, we connected the components in the MStream scorer and evaluated the
system.

We showed, that the platform analyses in real time the data from multiple mass
spectrometers during the experiment, which improves the performance of mass spec-
trometry analysis pipeline. Especially for use cases such as clinical diagnostics, the
real-time processing is desired.

In this chapter, we successfully implemented the proof of concept for a mass spec-
trometry analytic platform for mass spectrometry analysis use cases such as clinical
diagnostics on fast data architecture in near-real-time [ZSB+19a].
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8. Related Work

In this chapter, we will analyze related work on the overall solution and not only
related work for each component. The target is to analyze cloud solutions for mass
spectrometry analysis. Our literature research shows three related platforms to our
solution Chorus project, MS-PyCloud and Q-cloud. The criteria for the related work
analysis are “Stream”, “Horizontal Scalability”, “Structured Input” and “Structured
Output”.

The “Stream” property describes the ability of batch-wise processing of the incoming
experimental data, which is needed for real-time processing of the measurement.
The “Horizontal Scalability” property describes the ability to add new instances on
the cloud to increase the throughput. The “Structured Input” property describes a
structured storage of the experimental data. Hence, each single spectrum dataset
is accessible and not only the whole experiment file. The last “Structured Output”
property describes the storage of the result data. Results are the matches between
spectrum and peptide and additional information of the match.

8.1 Chorus
Chorus project is a software suite hosted on Amazon Web Services. It uses the
standalone software tools for analyzing the mass spectrometer files and allows shar-
ing files with other researchers. The strategy is different to MStream, since in the
Chorus project no adaptation of algorithms is done to perform better performance
on a cloud system, which means Chorus does not support streaming data during
the measurement. Additionally, the experimental data and protein data are stored
in files on the S3 file system and the user management on a relational database
management system. The storage of the files on S3 does not allow queries on the
data. Chorus provides an additional sharing system over the database, to share and
offer result files to other users in the research community. In contrast, MStream uses
structured data storage for the data to perform faster analysis on single datasets
and not on whole files and allows stream processing [cho19].
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8.2 MS-PyCloud
MS-PyCloud, similar to the Chorus project, is a collection of python tools to apply
mass spectrometry analysis. Same as in chorus, the data is on a file system and
no adaptation of algorithms is done [CZS+18]. MS-PyCloud differs a lot to our
MStream platform. In the MS-PyCloud streaming data is not supported and the
input is stored in file format, which means unstructured.

8.3 Q-Cloud
In Q-Cloud, the authors integrated OpenMS, a local command line interface tool
and transfer the result data into a MySQL database management system. The input
is still file based and needs to be uploaded to the system via FTP [COB+18]. In
contrast to MStream, no algorithms are adopted to the cloud environment and the
input data are complete files in a standard format.

8.4 Summary
We analyzed several systems on a cloud environment. We found out that the cloud is
not used properly, since other groups try not to achieve performance improvements
using modern techniques of the cloud computing area. Instead, the functionality
is in the foreground and the local tools are running on the cloud infrastructure
connected as a pipeline. Hence, the cloud platforms are file based and perform as
fast as a local machine with the difference of file upload. Hence, a new methodical
approach is not provided.

In Table 8.1, we provide a summary of the tools. On the top row, we specify the
properties stream, a horizontal scalability, structured input and structured output.
In the first column, we specify the different tools. In following, we explain the
properties.

Stream property means the ability to send the sample data in parts and not only
complete files. Only on MStream platform, the property exists, because other tools
use state-of-the-art software, which is not applied to single spectrum data.

Horizontal scalability property means the system can scale on demand over
machines in the cluster. Every tool does this, since every computation node can
be applied to a user. Only in MStream, the computation is dynamic using a cloud
processing engine such as spark.

Structured input property means the input files are separated into datasets and
single spectrum can be accessed. This is important for streaming, but also for later
analyses to analyze the relations. In MStream the data is stored in a database
management system. Each single spectrum can be referenced to the result. In other
tools, the incoming data is processed by a local tool, which does not provide this
feature.

Structured output property means the output files. In all tools the output is
in a database management system and structured, since further analytic is done on
the results.
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Stream Horizontal
Scalability

Structured
Input

Structured
Output

MStream 3 3 3 3

Chorus 7 3 7 3

MS-PyCloud 7 3 7 3

Q-Cloud 7 3 7 3

Table 8.1: Mass spectrometry analysis cloud platforms overview.

Overall, the main difference to related work is not an integration of tools on a cloud
infrastructure, but adopt algorithms and structures on modern cloud computing
technologies.



110 8. Related Work



9. Conclusion

In this chapter, we conclude our work. Hence, we summarize the contributions
and results of each chapter in detail and refer them to the goals presented in the
introduction.

9.1 Level 1: Feasibility
At this level, we identify the needed components of the mass spectrometry data
analysis pipeline and defined the challenges of adaptation of the components to a
new streaming cloud-based architecture. Overall, four components are identified
and each of the adaptation is a contribution on this level.

9.1.1 Identification

RQ1: What are design choices that are essential for adopting the analysis pipeline
to a fast data architecture?

To solve this research question, we analyzed the state-of-the-art protein identifica-
tion and identified the components to perform the algorithm. In Chapter 3, we
showed the applicability of protein search algorithms to a streaming platform by
changing the peptide centric search algorithm to a spectrum centric process and
apply the pipeline to the fast data architecture. Furthermore, we defined the dif-
ferent structures of the datasets to propose a technology to each component and
identify the challenges that need to be solved. Finally, we discussed possible result
visualization of complex samples.

9.1.2 Device Data Stream

RQ2: How to stream the data during the measurement without losing information
or functionality or functionality in further processing steps?
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We could provide an architecture for the analysis pipeline. The next question is how
to stream the data from a mass spectrometer. In collaboration with Bruker Daltonik
GmbH, a mass spectrometer manufacturer, we could provide a user friendly software
to read out the RAW file during the measurement. In Chapter 4, we present the tool,
called MSDataStream, which transforms the RAW data into a textual MGF repre-
sentation of the spectrum and sends the MS2 spectra text as a batch to the cloud.
Finally, we send an MGF textual representation of the mass spectrometry data.
Hence, other manufacturers can integrate their converting scripts in our MSDataS-
tream tool. To stream the data directly, firstly, a manufacturer dependent adapter
is needed, which collects all MS2 spectra that belongs to the currently measured
MS1 spectra. Secondly, filtering functions are needed to reduce the data amount on
the client side and increase the quality of the data in the cloud and thirdly, a user
friendly graphical interface is needed to raise the acceptance of the users.

9.1.3 Persistence Layer

RQ3: How to structure the data to increase the performance of the identification
process from a streaming mass spectrometer?

At this point, the mass spectrometry data arrives to the cloud, but the protein
sequence data needs to be uploaded to the cloud. To reach this goal, we firstly de-
fined a data structure for optimizing the search and secondly, we implement efficient
transformation services of the protein data. In Chapter 5, we evaluated the trans-
formation service and improved the service regarding the need of memory and CPU
consumption. The data structure is using a column-oriented index structure on the
mass and the charge to shrink the search area for each spectrum to a minimum.
This is why a column-oriented data structure for protein and peptide sequences is
chosen.

9.1.4 FDR calculation

RQ4: How to avoid target decoy method without compromising result quality of
the validation results?

The biggest challenge was the validation, since the target-decoy-approach is only
possible if the whole experiment data arrives at once. Hence, a binary classification
is needed to perform the validation on a single incoming spectrum. In Chapter 6,
we reach this goal by using logistic regression in the identification process, which
seems promising to evolve the state-of-the-art target-decoy validation. We provide
a workflow for creating training models to perform instant classification in our iden-
tification model, answering the RQ4.

9.1.5 Level 1 Summary

Level 1: Is a streaming fast data architecture feasible for mass spectrometry anal-
ysis workflow?
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As a result, we achieve the first goal of our thesis — we adopt each component to
a new streaming cloud-based pipeline and show the feasibility of a cloud stream
architecture on a mass spectrometry analysis pipeline. In summary, our contribu-
tions answer the first four research questions RQ1, RQ2, RQ3 and RQ4 concerning
the question — is a streaming fast data architecture feasible for mass spectrometry
analysis workflow?

9.2 Level 2: Performance
At this level, we evaluate the whole system and compare it to the current software.
In Chapter 7, all components are combined in our prototype MStream, hosted on
multiple machines.

9.2.1 Increasing Number of Devices

RQ5: How does protein identification scale with an increasing number of connected
devices?

To answer the question, we increased the number of incoming spectra and simulate
a throughput of up to 28 mass spectrometer devices simultaneously sending data to
the cloud. We evaluate different search parameters and conclude a linear scalability
regarding the data input. In average, one worker can process ~27 spectra per second
in our system.

9.2.2 Increasing Number of Protein Data

RQ6: How does protein identification scale with an increasing amount of protein
data?

We show the influence of the tolerance parameter to the overall query time and
recommend to optimize this parameter for specific use cases in real world. Espe-
cially for repetitive measurements, which are the usual case in clinical diagnostics
of a disease, it is beneficial to use the minimum tolerance. This parameter can be
defined based on experience of the measurements for a use case. Hence, the overall
performance is acceptable and linear scalability is approved.

9.2.3 Level 2 Summary

Level 2: Does a streaming fast data architecture increase the performance of the
workflow?

As a result, we achieve the second goal of our thesis – we evaluate the performance
and scalability of the MStream analytic platform for real-time mass spectrometry
data analysis. Furthermore, we compared the result with the state-of-the-art protein
engine X!Tandem, which performs not as good as MStream on a single machine
and X!Tandem is not applicable for a central cloud solution. Unfortunately, we
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have to admit, that MStream basic hardware consumption with all the services and
technologies is much greater than the local tool X!Tandem. MStream needs at least
30 virtual CPUs to run one worker, while X!tandem, as a local software, needs
one CPU. Hence, we evaluate when it makes sense to use MStream regarding CPU
consumption. MStream performs better if we scale the throughput over 30 devices,
which is reached easily nowadays.

In summary, our contributions answer the last two research questions RQ5 and
RQ6 concerning the question – Does a streaming fast data architecture increase the
performance of the workflow?

9.3 Thesis Conclusion
As an overall conclusion, the contribution of all chapters evolves the data analysis of
mass spectrometers to the cloud and break through the standard sequential pipeline.
We present a proof of concept for a central mass spectrometry analytic platform
MStream to process the data in near-real-time on the SMACK stack.

As part of this evolution, we implemented the software MSDataStream, which en-
ables the possibility to stream the data from the mass spectrometer during the
measurement and reveals new ways of data processing in that area. By preparing
the protein data on a column indexed distributed storage the whole system is capa-
ble to score the incoming spectrum in real-time. Furthermore, by integrating logistic
regression classifier to the validation process, the validation is not the bottleneck of
the pipeline. Finally, we implemented a proof of concept MStream, which combines
all the components in a cloud-based system. MStream shows the feasibility and the
performance improvement in comparison to state-of-the-art software engines.

Hence, the contribution of the thesis is an analytic cloud platform for mass spec-
trometry data analysis and the challenges that need to be solved to enable the
analysis pipeline in near real-time. The platform implements the foundation of
real-time mass spectrometry data analysis on a central cloud platform with a good
performance.



10. Future Work

In this chapter, we give an overview of open or newly arisen challenges and goals
that can be inferred from the results of the thesis. Of course, the future work for
this thesis spans across all levels that we worked on in the thesis. Hence, we first
review future work for the feasibility of the fast data version of mass spectrometry
data analysis pipeline and afterwards new ideas on extending our evaluation with
more scenarios. Overall, evaluation that is more technical is needed in order to
fine tune the software and hardware components. Although the thesis may give the
impression that there are only small optimizations left for improving the applicability
of MStream, however, based on our research, complete new applications are possible.

To provide an application for the future, our system will need some new components
and improvements. Firstly, the real-time processing enables to generate results, but
in the current version of MStream, a manual analysis is needed based on the PSMs
in the database. For the diagnostic use case, where it is clear what to search for,
a machine learning approach is needed to classify the disease. For example, to find
out which diseases are related to the stool sample, the incoming data is directly
classified to specific sickness.

Secondly, the current results are stored in a non-relational database, which seems
good for the signal data, but not for the relational result datasets. In the future,
a polyglot persistence solution needs to be considered to perform analysis on the
search results. We propose a graph structured DBMS for the future task, but
further experiments are needed. This new aggregation of data is needed to allow to
collaborate with other researchers on a visualization.

Thirdly, the explorative analysis of the result is in most cases in the area of research
and the researcher need a good interactive visualization of the data [ZSB+17]. We
propose one kind of interactive visualization, which improves the quality of the re-
search and further explorative methods are necessary, see Section 3.4. Furthermore,
an interface should provide data access to external sources and other tools as export
or query access to the data.
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Next, another scoring algorithms are needed, which can be applied as quality gate.
Since the peptides are queried on same way, a committee of scoring algorithms can
filter out bad matches. Nevertheless, since the validation is not 100% accurate,
the platform need another classifier for the validation to create another committee.
This two quality gates could improve the overall quality of the results and further
research is needed.

Further future works are about to implement interfaces to other exchange formats,
including different experiment data formats and protein data formats. Additionally,
a monitoring tool is important for the platform, to find bottlenecks, improve the
usability and quality of the platform or add new functionalities. Furthermore, for
production release, parameter tuning is needed and evaluation with other big data
technologies and services to find best possible technology stack for MStream.

Finally, the research for the pipeline is done, but a lot of improvement is still possible
which tackles new components and new challenges in the future.
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