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1 Introduction 
In the analysis of statistical data it is important to know 

whether interdependences and interrelations exist among 
various characteristics. Sometimes we can be sure from 
theoretical consideration that such relationships exist. If 
these can be quantified then further consideration is 
unnecessary. If there is no such knowledge then another 
approach will have to be adopted in order to obtain 
qualitative and quantitative information. 

If studies are limited to two-dimensional numerical data, 
then the known correlation coefficients according to Bravais-
Pearson, Spearman. and Kendall (Reference 1) provide a 
measure of the linear relationship between the two charac-
teristics. On the use of correlation coefficients. it is essential 
to ensure that a logical relationship exists between the two 
characteristics of a series of observations; it is all too easy to 
calculate .. nonsense correlations" if this precaution is not 
observed (Reference I). It is also general knowledge that 
small (non-significant) correlation coefficients do not neces-
sarily mean the characteristics are independent since only 
linear correlations can be established with the above-
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mentioned coefficients (Reference 2). Drawing a scatter 
diagram can provide additional information in such cases 
(Figure I e). 

2 Covariance and Correlation Coefficients 
The correlation coefficient p(X,Y) of the random vari-

ables X and Y is defined as: 

p(X. Y) = - -C_o.:..v....:.(;.....;X.:.. . .:..Y.:....) _ 
'I/Var (X) · Var (Y) 

a(X. Y) = _ _:.__...:..__ 
a(X ) • a(Y) 

(I) 

~ince the covariance Cov(X,Y) for independent random 
vanables X and Y vanishes. the correlation coefficient of 
independent random variables is equal to zero. Such 
random variables are called uncorrelated. However. being 
uncorrelated does not mean that the random variables are 
independent. This follows from the form (Reference 3) of 
the covariance (Figure le): 

Cov(X.Y) = E(XY) - E(X)E(Y) (2) 
For random variables X and Y having a normal 

distribution the converse conclusion is admissible. i.e. if X 
and Y are normally distributed and p(X. Y) is zero. then X 
and Y are independent. 
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Figure 1 Correlation coefficients p(X, Y) and scatter diagrams. 
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The correlation coefficient defined by Equation is 
satisfied by the inequality: 

-I ~ p(X,Y) ~ I (3) 

The equal sign (p (X, Y) = I and p(X, Y) = -1) applies in 
the case of linear functional dependence of the random 
numbers (X = a Y + b, with a 7'= 0). Figure l shows scatter 
diagrams for various correlation coefficients. 

3 The Empirical Correlation Coefficient 
According to Bravais-Pearson 

If the characteristics (X,Y) to be linked are on an interval 
or ratio (cardinal) scale then the empirical correlation 
coefficient, according to Bravais-Pearson, given by: 

n 

~ Xi Yi - n x Y 
i = 1 

(4) 

affords an asymptotic unbiased estimator for p(X,Y). Here 
(Xi,Yi) are the i-th observation from a series of n measure-
ments and x and y are the arithmetic means of Xi and Yi, 
respectively. The numerator of Equation 4 is essentially the 
empirical covariance between X and Y defined as: 

n - 1 

= 
n - l 

± (xi - x) (Yi - Y) 
i = 1 

± xi Yi - n x y 
i = 1 

(5) 

Division by the empirical standard deviations sx and Sy 
affords the empirical correlation coefficient rxy which, like 
p(X,Y), can only assume values between -1 and +I. For a 
small sample n, rxy underestimates the parameter p(X,Y). 
An improved estimation of p(X,Y) with a smaller variance 
around the expected value is given (Reference 2) by: 

* - r r XY - XY [ 
I r

2 
] I + XY for n 2: 8 

2(n - 3) 
(6) 

If the random variables X and Y have a normal 
distribution then the empirical correlation coefficient allows 
a test for independence of X and Y. If the hypothesis: 

H0: p(X, Y) = 0 

is tested against the alternative: 

at a confidence level a, then: 

= 
rxyV n - 2 

V 1 - riy 
(7) 
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represents the realization of at-distributed random variable 
with n 2 degrees of freedom which is used as test criterion. 
The hypothesis H0 is rejected (Reference I) if: 

I ti >tn-2;1-t.12 (8) 

Listing I shows two versions of the functional subprogram 
for calculation of the empirical correlation coefficient 
according to Equation 4 requiring no further explanation. 

4 The Rank Correlation Coefficient 
According to Spearman 

The Pearson correlation coefficient should not be used to 
estimate the correlation between random numbers not 
having a normal distribution; instead the rank correlation 
coefficient, according to Spearman or Kendall (Section 5), 
can be applied. 

The term rank correlation coefficient already reveals that 
the correlation is estimated solely on the basis of the rank 
information, i.e. on the position of the value in the 
realization of the random quantities. As a rule, the smallest 
realization of the random quantities is given rank I, the next 
larger rank 2, and the largest rank n. The Spearman 
correlation coefficient r results in inserting the ranks R( Xi) 
and R(yi) in place of the realizations Xi and Yi into Equation 
4 for the Pearson correlation coefficient. After conversion 
we obtain: 

rs = l - n(n2 - I) (9) 

On occurrence of ties, i.e. when several realizations of a 
random variable are congruous, the arithmetic mean of the 
ranks in question is inserted. If numerous ties occur, then it 
may be advantageous to use the modified Spearman 
correlation coefficient (References 2,7): 

I - ~~~~~~~~~~ 
n(n2

- I) 

with: (IO) 

I) 

Here tx' and ty' are the numbers of ties in successive groups 
(of the same rank) of the x' and y' series. Thus we count how 
often the same value occurs in the groups and introduce the 
frequency tx' and ty' into the above equation to form the 
sums T x' and Ty'· 

The Spearman correlation coefficient is applicable not 
only to cardinally scaled but also to ordinally scaled 
characteristics. It affords useful information also for small 
samples and non-normal distributions. Moreover, the effect 
of outliers, which can have a pronounced influence on the 
magnitude of the Pearson correlation coefficient, is 
weakened.However, it only utilizes 91 % of the observations 
(Reference 2). 

To test the significance of r 8, i.e. to test the hypothesis: 



Ho: the series of measurements are independent. 

against the alternative: 

Hi: the series of measurements are not independent 

we have to take recourse to tabulated values for samples 
n < 30 (References 1,2). 
For n 2:: 30 Equations 7 and 8 can be used approximately 

also for rs and rs,B (Reference 2). 
Listing 2 shows a functional subprogram for calculation 

of the Spearman rank correlation coefficients. The measured 
values are stored in lines 250 and 260 and then sorted in 
increasing order. Then the rank values of X( *) are 
inserted into the vector D( *) in lines 320 to 420. Ties are 
considered by the REPEAT-UNTIL loop in lines 340 to 
370. The calculation of the rank values of Y(*) proceeds 
analogously and insertion of the difference in rank into the 
vector D( *) in line 510. The result according to Equations 9 
and IO is subsequently calculated in lines 570 to 580. 

5 The Rank Correlation Coefficient 
According to Kendall 

Less frequently encountered than the Spearman rank 
correlation coefficient rs is the correlation coefficient 
according to Kendall (Reference I). It is calculated from 
ranks assigned in exactly the same way as for Spearman 's rs. 
Corresponding pairs of rank numbers (R(xi), R(yi)) are 
calculated from the n natural pairs of observations (xi, 
Yi), ........ , (xn,Yn). The pairs of rank are then ordered 
according to R(xi). In this way the order of the rank 
numbers of the realization Yi, ..... , Yn of the random 
variable Y is determined. From this series the number qi of 
the rank numbers R(yj), which are less than or equal to R(yi) 
and come behind R(yi) in the series, is calculated for every 
rank number R(yi). The Kendall r value is then: 

n 

4 k qi 
r = I 

i = 1 

n(n -1) 
(l l) 

The test criterion for the independence of the two series of 
measurements is the value: 

n 

K = Yi n(n -1) r = Yi n(n -I) 2 k qi 
i = 1 

which is compared with the Kendall K statistic. 
The hypothesis: 

Ho: the series of measurements are independent 

is rejected in favor of the alternative: 

(12) 

Hi: the series of measurements are not independent 

at the confidence level a, if: 

I KI > Kn;l-a/2 (13) 

A table of the critical values Kn· 1-a12 is found, for 
example, in Reference I. For i~ e calculations the 
test quantity: 

K 
K* = (14) 

V n(n -I) (2n + 5)/ I 8 

can be used instead of the table, and the null hypothesis is 
rejected if: 

( 15) 

which is the quantile of the standard normal distribution. 
A functional subprogram for calculation of Kendall's r is 

shown in Listing 3. After intermediate storage of the vector 
Y ( *) in line 210 it is sorted in the next line. The rank values 
R(yi) of the vector Y _prime(*) are determined in the 
following REPEAT-UNTIL loop and inserted in the vector 
Y _prime_rank(*). Ties are considered by the LOOP 
construction in lines 260 to 300. This kind of rank 
calculation could also have been used in the Spearman 
functional subprogram (Listing 2) just as the algorithm 
(Listing 2) is also applicable here. 
The X values are now temporarily stored and sorted 

(lines 360 to 380). The index J for each rank I is first 
determined in lines 400 to 430. Then the corresponding 
index K of the Y vector is determined. The actual elements 
are then filled with an auxiliary value 9.999 999 999 99 x 
I 099 to preclude ties. This auxiliary value may not appear in 
the starting fields. The intermediate result (rank R(yi) with 
index I sorted according to increasing R(xi)) into fae vector 
Y_rank(*) n will be inserted in line 470. 
The final result is provided by lines 510 to 570. In accord 

with the procedure for calculating Kendall's r the sum of the 
number of the rank values in the sorted vectors Y_rank(*) 
which for an increasing r index are lower than or equal to 
the actual rank, is inserted into Q. The result according to 
Equation 11 is ultimately transferred to line 570. 

6 Partial Correlation 

A correlation between the characteristics X and Y 
frequently occurs only because the two characteristics are 
both correlated with a third characteristic Z. The correlation 
calculated between X and Y is then only an illusory 
correlation. Partial correlation ofX and Y with constant Z, 
according to: 

PXY -Pxz Pyz 
p(X,Y)/Z = --:=======2= 

V (I r\z) (I Pyz) 
(16) 

provides a means of "working out" such a third influence. 

7 The Empirical Partial Correlation Coefficient 

For a normal distribution of characteristics X,Y, and Z of 
the parent population, it is possible to estimate Poc.Y>tZ by 
estimating the correlation coefficients Pxy , Pxz , and Pyz 
with the aid of the empirical correlation coefficients 
according to Bravais-Pearson. The estimator for correlation 
between the characteristics X and Y on partialization of the 
characteristic Z thus results as: 

(17) 
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A test for partial independence of X and Y with Z at the 
confidence level a can be performed with the test criterion: 

t = r(X,Y)/Z ~ (18) 
2 
r (X,Y)/Z 

The hypothesis: 

Ho: Pcx,Y)/Z = 0 
is rejected by the test in favor of the alternative: 

Hi: P(X,Y)/Z ¥-0 

if: 

I t I > tn-3;1-a/2 (19) 

is the quantile of the t distribution with n  - 3 degrees of 
freedom (Reference I). 

8 The Partial Rank Correlation Coefficient 
According to Kendall 

Kendall's partial rank correlation coefficient is an es-
timator for the partial correlationp<X. Y>!l which is suitable for 
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characteristics X, Y, and Z, which are at least ordinally 
scaled, but is otherwise distribution free. It is calculated 
from the individual Kendall r's between the pairs of 
characteristics (X, Y), (X,Z), and (Y ,Z), designated Txy, Txz, 
and Tyz in a manner similar to Equation 17: 

T XY - T XZ 7 Yz 

T (X, Y)/Z = --======2 =======2== 
V (I 7xz) ( I-7yz) 

(20) 

is thus the estimator for the partial correlation between the 
characteristics X and Y with Z. No tests of significance are 
yet known for partial r (References I, 7). 

9  A Detailed Example 

The somewhat theoretically oriented subject matter 
presented so far will now be illustrated by an example from 
the laboratory. 
Modern equipment used for inverters incorporates semi-

conductor components as control elements. These semi-
conductor components (generally thyristors, less often 
diodes) are relatively sensitive to overloading. One of the 
decisive criteria in dimensioning these inverters is the 

. 9 .95 1. 05 

----> U -class/Uri T max 

Spearman's rank correlation coefficient without ties 
Spearman's rank correlation coefficient with ties 
empirical correlation coefficient according to Bravais-Pearson 

r S,B -0.891 
r::),B = -0.892 
r -0.842 

Remark: In this figure a empirical regression function of the kind of 
Q rr = a regr/(b regr+U T> is shown. The coefficients are calculated 
~ the m;thod of-least iquares. 

Figure 2 UT-Qrr scatter diagram of 180 thyristors T 2200 N 3600 ... 4400 (AEG). 
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Figure 3 Relation between electrical and thermal parameters [UT - R scatter diagram] of 32 thyristors 
T2200N3600 ... 4400 (AEG). th.TC 
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Figure 4 Scatter diagram of the steady state thermal behavior of 11 AEG heat sinks (diam. 100 mm) in combination with 
thyristors T 2200 N 3600 ... 4400 (AEG) (diam. 100 mm). 
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temperature at the junction of the thyristors. In steady state 
operation this temperature is influenced essentially by three 
parameters. On one hand the power loss in the semi-
conductor component and on the other hand the thermal 
resistance of the thyristor heat sink determines the tempera-
ture difference between the junction and the cooling 
medium. The temperature of the cooling medium must 
generally be regarded as a given quantity not subject to our 
influence. Neither the power loss nor the thermal resistances 
are constant quantities, but subject to considerable statisti-
cal variation. A knowledge of the statistical parameters of 
these quantities is a prerequisite for optimum dimensioning 
of inverters. 

10 Thyristors 
The power loss resulting in a thyristor at a given 

operating current is determined primarily by its forward 
voltage drop. It was demonstrated in Reference 4 that the 
three-parameter logarithmic normal distribution is an 
appropriate model for the distribution of the forward 
voltage drop of thyristors. A further parameter influencing 
the operational behavior of inverters is the recovered charge 
of the thyristor. As seen in Figure 2, both these quantities 
show a high degree of negative correlation. Since neither 
characteristic has a normal distribution, Spearman's rank 
correlation coefficient is used to test for independence. 
According to Equation 7 the test quantity is t = -26.3 and, 
as expected from this figure, confirms the interdependence 
at a significance level of I%: 

I t I = 26.3 > ti?s:0.95 = 2.605 

Figure 3 shows the scatter diagram of forward voltage 
drop-internal thermal resistance of 32 thyristors. As ex-
pected, no correlation is discernible between these quantities 
(Table I). The rank correlation coefficient between UT and 
RthJC is already remarkably low; however, the criterion for 
testing of the hypothesis: 

Ho : Qrr and RthJC are independent 

against the alternative 

H1 : Qrr and RthJC are correlated 

which turns out to bet = I .06, gives no grounds for rejecting 
Ho in comparison with the critical value t3o:o.95 = 1.697 at a 
significance level of I 0%. 

11 

The steady-state properties of the water-cooled heat sinks 
under investigation here are determined by four thermal 
resistances RncA, Ri2cA, R21CA, and R22CA and the behavior 
of the coolant circulation. We shall not consider these 
points in greater detail here; the reader is referred instead to 
Reference 5. In order to determine the characteristics, the 
four thermal resistances and the pressure drop Ll p are 
measured for a given volume flow of coolant V. The results 
obtained are shown with the resulting thermal resistance of 
the overall set-up RthJA in Figure 4. Here an asterisk 
corresponds to a pair of values RthJA RncA, a plus sign to 
a pair of values RncA - R22CA, and a multiplication sign to a 
pair of values RthJA - R22CA· The first point to notice is that 
three pairs of values which all belong to the same heat sink 
differ from the rest of the spectrum (the three values at top 

120 INTELLIGENT INSTRUMENTS & COMPUTERS May/June 1987 

right). The Grubbs outlier test (Reference I) confirms this at 
a significance level of a < I%. 

In the following treatment, the values for these heat sinks 
are left out of consideration. Figure 5 shows a graphical 
representation of the empirical distribution function of the 
thermal resistances. The null hypothesis that thermal 
resistances have a normal distribution with respect to the 
empirically determined parameters x ands is not rejected by 
the Lilliefors modification of the Kolmogorov fitness test at 
a level of a > 5%. 

One cannot speak of a normal distribution in connection 
with the pressure drop. Figure 6 shows the density curve 
taken from Table 2 for the pressure drop of 363 heat sinks, 
which displays a negative skewness. It suggests that a test for 
a logarithmic normal distribution might not be pointless. 
However, the rough class assignment of Table 2 precludes a 
reasonable further statistical evaluation of these data. 
Further investigations were undertaken on the basis of 
more accuate pressure drop measurements, performed on 
only nine heat sinks. Figure 7 depicts the pressure drop 
distribution with empirical parameters of the three-
parameters logarithmic normal distribution which were 
estimated by the maximum-likelihood method (Reference 
4) and not rejected at a level of a> 20% (Kolmogorov 
fitness test). 

The decisive question to be answered here is whether the 
measured thermal parameters RncA and R22CA of the heat 
sinks, which dominate the result, are mutually independent. 
Table 3 shows the various calculated correlation coefficients. 
Since there is no evidence against assumption of normal 
distribution of thermal resistances RncA and R22CA, the 
Bravais-Pearson correlation coefficient can be applied. 
Equation 7 with r* = 0.375 and n = IO affords the test 
criterion t = l.14. The critical value is ts;o.95 = l.86. Hence 
the test does not reject p(RncA; R22CA) = 0 at a level of I 0%. 
Neither of the rank correlation coefficients is significant 
(critical values at a = 10%; r8 = 0.4426 and Kio:o.95 = 19). 

The situation is different when the heat sinks omitted on 
the basis of the outlier test are considered after all. 
Correlation coefficients ofr* = 0.796, rs,B = 0.538, T = 0.382, 
and hence a value of K = 21, are then obtained. At a = 10% 
these values are indeed significant. Now it is generally 
advisable to regard the results of statistical tests with a 
certain amount of caution when different results are 
obtained after neglecting outliers. These results should 
therefore be investigated further. 

A physically positive correlation is known to exist 
between the pressure drop and the heat transfer coefficient 
in heat sinks (Reference 6). If the pressure drop is increased, 
e.g. by an (accidentally) greater roughness, then a lower 
thermal resistance is to be expected. This is confirmd by the 
significant (at the 5% level) rank correlation coefficient 
rs,B = 0.647 between R11i.JA and .6.p. It would appear 
reasonable to regard the suspected positive correlation 
between the thermal resistances RncA and R22CA as a 
spurious correlation because both of the thermal resistances 
are correlated with Llp. Table 3 confirms this hypothesis in 
so far as not only RthJA but also R22CA is significantly 
correlated with Llp (this correlation is not so pronounced in 
the case of RncA) and if the partial rank correlation 
coefficients calculated between RncA and with Llp, 
according to Kendall, then the significantly decreasing 
values are seen as an indication of the suspected spurious 
correlation. 
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Heidelberg, New York, Tokyo (1984). Unfortunately this sample is not very large, and very 
precise statements are therefore precluded. However, the 
hypothesis that the thermal resistances ~  and R22cA are 
normally distributed and independent cannot be rejected on 
the basis of the numerical data. Only a common relationship 
via ~  exists. 

(3) G. Bamberg, F. Baur, Statistik. R. Oldenbourg Verlag, 
Miinchen, Wien (1984). 
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Figure 7 Pressure drop of9 AEG heat sinks (dia JOO mm). 

Table I Correlation coefficients between the electrical and the thermal parameters of 32 thyristors T2200 N 3600 ... 4400 
(AEG). 

Rank corre lati o n c e i~i en  <with ties> between pa ra.meters : 

size of sa.mple 

c orrelatio n b etween U T a n d Q rr 
correl ation between U T and  R th JC 
correlation between Q rr a n d  R th JC 
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n 

r_S,B 
r _ S,B 
r _S,B 

= 3 2 

= - 0 .785 
= - 0.007 
= +0 .190 



Table 2 Measured values of the pressure drops of 363 AEG heat sinks. 
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Table 3 Correlation relations between the parameters of the AEG heat sinks. 

Relation between R th JA and A p: 
size of sample - - -
Spearman's rank correlation coefficient with ties 
Kendall's rank correlation coefficient 
test value for the significance of 

Relation between R_11_CA and R_22_CA: 
size of sample 
correlation coefficient by Bravais-Pearson 
improved correlation coefficient by Bravais-Pearson 
Spearman's rank correlation coefficient with ties 
Kendall's rank correlation coefficient 
test value for the significance of 

Relation between R 11 CA and A p: 
size of sample - - -
Spearman's rank correlation coefficient with ties 
Kendall's rank correlation coefficient 
test value for the significance of 

Relation between R 22 CA and A p: 
size of sample - - -
Spearman's rank correlation coefficient with ties 
Kendall's rank correlation coefficient 
test value for the significance of 

Relation between R 11 CA and R 22 CA under A_p: 
size of sample - - - -
Kendall's rank correlation coefficient 
test value for the significance of 
Kendall's partial rank correlation coefficient 

n 
r_S,B 

K 

n 
r 
rx 
r_S,B 

n 
r_S,B 

K 

n 
r_S,B 

K 

n 

K 

= 9 
= - 0.647 
= - 0.556 
= - 20.00 

= 10 
= 0.353 
= 0.375 
= 0.383 
= 0.244 
= 11.00 

= 9 
= - 0.264 
= - 0.333 
= - 12.00 

= 9 
= 0.562 
= - 0.500 
= - 18.00 

= 9 
= 0.389 
= 14.00 
= 0.272 
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Listing 1 Two versions of functional subprograms for calculation of the correlation coefficients according to 
Bravais-Pearson. 
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DEF FNPearson<INTEGER N,REAL X(*),Y(*)) 

Functional subprogram for calculation of the 
empirical correlation coefficients r according to Bravais-Pearson 

(c) 1987 by Jurgen Schwarz 
f i 1 en.a.me: · eng 1 Rh 
language: HP-BASIC 

INTEGER I 
REAL X,Y,Xq,Yq,Xx,Yy,Xy 
IF N<2 THEN RETURN 2 
REDIM X<1:N>,Y<1:N> 
! 
Xq=Yq=Xx=Yy=Xy=0 
FOR I=l TO N 

X=X<I> 
Y=Y(!) 
Xq=Xq+X 
Yq=Yq+Y 
Xx=Xx+X*X 
Yy=Yy+Y*Y 
Xy=Xy+X*Y 

NEXT I 

version/date: 1. 1 / 07. 04. 87 
memory: cartridges 77/78 
computer: HP 9845 B with SP and AP ROM 

bad data check 

RETURN <Xy-Xq•Yq/N)/SQR(CXx-Xq*Xq/N)*(Yy-Yq•Yq/N)) 
FNEND 

empirical corre-
lation coefficient 

DEF FNBravais(INTEGER N,REAL X(*),Y(•)) 
! 

Functional subprogram for calculation of the 
empirical correlation coefficients r according to Bravais-Pearson 

<c> 1987 by Jurgen Schwarz 
filename: englRh 
language: HP-BASIC 

REAL Xq,Yq 
IF N<2 THEN RETURN 2 
REDIM X<l:N>,Y<l:N> 
! 

version/date: 1.0 / 23.03.87 
memory: cartridges 77/78 
computer: HP 9845 B with SP and AP ROM 

bad d at a c he c k 

>(q=SUM ( X) 
Yq=SUM<Y> 

SUM function returns the sum of all elements in an array 
SUM function returns the sum of a1J elements in an array 

! DOT function returns the inner (dot) product of two vectors 
RETURN <DOTCX,Y>-Xq•Yq/N)/SQR<<DOT<X,X)-Xq*Xq/N)•(DOT<Y,Y)-Yq*Yq/N)) 

FNEND 
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Listing 2 Functional subprogram for calculation of the rank correlation coefficients according to Spearman. 

10 
20 
30 
40 
50 
60 
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150 
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190 
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260 
270 
280 
290 
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310 
320 
330 
340 
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370 
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400 
410 
420 
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440 
450 
460 
470 
480 
490 
500 
510 
520 
530 
540 
550 
560 
570 
580 
590 

DEF FNSpearman<INTEGER N,Ties,REAL X<•>,YC•)) 
! 

Functional subprogram for calculation of the 
Spearman's rank correlation coefficient r S without 
and r_S,B with consideration of occured tTes 

Ties=0 ==> r ~ ==> without consideration of occured ties 
Ties<>0 ==> r=S,B ==> correction of the estimation 

Cc) 1984 by Jurgen Schwarz version/date: 1.0 / 25.06.84 
filename: eng1Rh 
language: HP-BASIC 

memory: cartridges 77/78 
computer: HP 9845 B with SP and AP ROM 

Refer enc : Lot. h ar Sac h s : 11 App 1 i e d St at i st i c • " 
Springer-Verlag, New York, Heidelberg, Berlin, Tokyo <1984). 

INTEGER I, J, K 
REAL T x,T y 
REAL X=priie<1:N+1>,Y_prime<l:N+l),DCl:N) 
! 
IF N<2 THEN RETURN 2 
REDIM XCl:N>,Y<l:N>,X_prime<l:N),Y_prime<l:N) 
! 
T x=T y=0 
MAT X-prime=X 
MAT Y-prirne=Y 
MAT SORT X prime 
MAT SORT Y-prirne 
REDIM X prTme<l:N+l),Y prime<l:N+1) 
X_prime7N+l)=Y_prime<N;1)=9.99999999999E99 
! 
J=l 
REPEAT 

I=J 
REPEAT 

J=J+l 
UNTIL X prirne<J>>X prime(!) 
FOR K=l-TO N -

IF X<K>=X prime(!) THEN D<K>=.S•CI+J-1) 
NEXT K -
T x=T x+CJ-I>•<<J-I>•<J-I)-1) 

UNTIL <I=N) OR (J)N) 

J=l 
REPEAT 

I=J 
REPEAT 

J=J+l 
UNTIL Y prime<J>>Y prime<I> 
FOR K=l-TO N -

bad d at a c he c k 

sorting the vector X prime 
sorting the vector Y=prime 

ra.nk of X(K) 

IF Y<K>=Y prime(!) THEN D(K)=D<K>-.5*<I+J-1) 
NEXT K -

difference in rank 

T y=T y+<J-I>•<CJ-l)•CJ-1)-1) 
UNTIL <I=N) OR (J)N) 
! 
MAT !1=D.D ! calculation from D(i)=D<iH·D(i) 
IF Ties THEN RETURN 1-6*SUMCD)/(N*<N*N-1>-.5*<T x+T y)) 
IF NOT Ties THEN RETURN 1-6*SUM(D)/(N*<N*N-1)) - -

SUBEND 
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310 
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3 Functional subprogram for calculation of the rank correlation coefficients according to Kendall. 

DEF FNKenda 1 1 

Functional subprogram for calculation of the 
Kendall's correlation coefficient tau 

(c) 1984 by JQrgen Schwarz 1. 0 / 19. 07. 84 
filename: eng1Rh 
language: HP-BASIC 

memory: cartridges 77/78 
computer: HP 9845 B with SP and AP ROM 

Referenc: Maurice G. Kendall: 
11 Rank Correlation Methods." 
Charles Griffin & Company Limited, London <1970). 

INTEGER I,J K 
ross<l:N) REAL Q,X prime<l:N>, 

REAL Y_prime<l:N>, <l:N) Y rank(l:N) 
I 
IF N<2 THEN RETURN 2 
REDIM XC1:N>,Y<1:N> 

MAT i me=Y 
MAT i me 
J=0 
REPEAT 

I=J=J+l 
LOOP 
EXIT IF J=N 
EXIT IF Y_prime(J+l>>Y_prime(J) 

J=J+1 
END LOOP 
FOR K=I TO J 

(K)=. S·H I+J> 

X pr i me·=X 
SORT X_prime 

ross=X 

MAT 
MAT 
MAT 
FOR = TO N 

J=K=0 
REPEAT 

J=J+1 
UNTIL 
REPEAT 

ross(J) 

K=K+l 
UNTIL Y(J) 
Y_rank<I> 
X cross(J) 

NEXT I 

Q=0 
FOR I 1 TO N-

FOR J=I+1 TO N 

i me (I) 

(K) 

IF Y rank(J)<=Y_rank(I) THEN Q=Q+1 
NEXT J-

NEXT I 
RETURN 1-4*Q/(N*<N-1)) 

SUBEND 

bad d at a c he c k 

sorting the vector Y_prime 

sorting the vector X_prime 

II 

126 INTELLIGENT INSTRUMENTS & COMPUTERS May/June 1987 


	Correlation Coefficients According to Bravais-Pearson, Spearman, and Kendall
	1 Introduction
	2 Covariance and Correlation Coefficients
	3 The Empirical Correlation Coefficient According to Bravais-Pearson
	4 The Rank Correlation Coefficient According to Spearman
	5 The Rank Correlation Coefficient According to Kendall
	6 Partial Correlation
	7 The Empirical Partial Correlation Coefficient
	8 The Partial Rank Correlation Coefficient According to Kendall
	9 A Detailed Example
	10 Behavior of Thyristors
	11 Behavior of Cooling Elements
	References
	Table 1 Correlation coefficients between the electrical and the thermal parameters of 32 thyristors
	Table 2 Measured values of the pressure drops of 363 AEG heat sinks
	Table 3 Correlation relations between the parameters of the AEG heat sinks
	Listing 1 Two versions of functional subprograms for calculation of the correlation coefficients according to Bravais-Pearson
	Listing 2 Functional subprogram for calculation of the rank correlation coefficients according to Spearman
	Listing 3 Functional subprogramm for calculation of the rank correlation coefficients according to Kendall

