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Abstract

In this thesis we study the cycle structure of permutation polynomials. They play
an important role in many applications of finite fields. Of particular note are com-
binatorial design theory, cryptography and coding theory.

An important application of permutation polynomials with known cycle structure
in coding theory is their use as parts of turbo codes. In this context we want the
permutations to be given as polynomials, because this reduces the implementation
cost. But we also want to know their cycle structures, because they give us important
algebraic and combinatorial properties of the permutations, which strongly influence
the performance of the final code.

Currently we know the cycle structure only for a few simple classes of permutation
polynomials. These are monomials, Dickson and linearized polynomials. We give
a survey of these results. None of these classes make full use of the structure of a
finite field and mainly depend on either the multiplicative or additive group of the
field.

We focus on permutation polynomials of shape Xt+γ Trqn/q(X
k) ∈ Fqn [X], where

γ ∈ Fqn and 1 ≤ t, k ≤ qn−1. In contrast to those classes, for which the cycle struc-
ture is already known, these depend on both the additive and multiplicative structure
of a finite field, but still have a nice algebraic form. Permutation polynomials of this
shape were first considered in 2008 by Charpin and Kyureghyan [5] for q = 2, where
a complete classification was given. We show, that polynomials of shape Xt+γf(X),
where f : Fqn → Fq, can only be permutations if gcd(t, qn − 1) = 1. In this case
Xt is also a permutation, so for classification purposes it suffices to consider t = 1.
In recent years Kyureghyan and Zieve [11], Ma and Ge [16] and Li, Qu, Chen, and
Li [13] have constructed 24 infinite families of permutation polynomials of shape
X + γ Trqn/q(X

k).

We give the number of fixed points for all of these permutations. Further we
show that permutation polynomials of shape X + γf(X), where f : Fqn → Fq, are
precisely those that also permute any line α+ γFq, α ∈ Fqn . We give a condition on
f , under which certain of these induced permutations on lines have the same cycle
structure.

All 17 of the 24 infinite families, where n is fixed to 2 or 3 satisfy this condition.
In particular, if n = 2, which holds for 15 of them, this allows us to ascertain the
cycle structure by determining it on γFq and any one other line α+ γFq. The cycle
structure on γFq can be found easily, but getting the cycle structure on one of the
other lines is still a very difficult problem. We solve it for two families completely
and for one family in a special case.
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For the other 7 families, where n is arbitrary, we need to use different techniques.
By combining results on linear translators [12] and algebraic curves [7, 19] we de-
termine the cycle structure of three of those families completely and of two more
partially. The same methods also give us the cycle structure for all permutation
polynomials of shape X + γ Tr2n/2(Xk), that is in the special case where q = 2.
We ascertain the cycle structure of the last two families by showing that their cycle
structure on any line α+γFq is the same as the cycle structure of a simple linearized
permutation polynomial over Fq with known cycle structure.

Additionally, we find the cycle structure of permutation polynomials of shape
Xq2+q+1 + Trq3/q(X), where q is odd, by explicitly computing their iterates. We get

these polynomials by composing one of the 24 infinite families, X+Trq3/q(X
(q2+1)/2),

with monomial permutations, Xq2+q+1.
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Zusammenfassung

In dieser Dissertation befassen wir uns mit der Zyklenstruktur von Permutation-
spolynomen. Diese spielen eine wichtige Rolle in vielen Anwendungen von endlichen
Körpern. Besonders zu beachten sind dabei kombinatorische Designs, Kryptogra-
phie und Kodierungstheorie.

Eine wichtige Anwendung von Permutationspolynomen mit bekannter Zyklen-
struktur in der Kodierungstheorie ist deren Verwendung als Teile von Turbo-Codes.
In diesem Zusammenhang möchten wir Permutationen in Polynomschreibweise vor-
liegen haben, denn dies reduziert die Implementationskosten. Zusätzlich möchten
wir aber auch ihre Zyklenstruktur wissen, denn aus dieser erhalten wir wichtige al-
gebraische und kombinatorische Eigenschaften der Permutationen, welche das Ver-
halten des fertigen Codes stark beeinflussen.

Momentan kennen wir nur die Zyklenstruktur einiger weniger Klassen von ein-
fachen Permutationspolynomen. Diese sind Monome, Dickson und linearisierte Poly-
nome. Wir geben eine Übersicht über diese Resultate. Keine dieser Klassen benutzt
die vollständige Struktur eines Endlichen Körpers, sondern basieren hauptsächlich
entweder auf der multiplikativen oder additiven Gruppe des Körpers.

Unserer Schwerpunkt sind Permutationspolynome der Form X + γ Trqn/q(X
k) ∈

Fqn [X], wobei γ ∈ Fqn und 1 ≤ t, k ≤ q − 1. Im Gegensatz zu den Klassen, deren
Zyklenstruktur uns bereits bekannt ist, basieren diese sowohl auf der additiven als
auch der multiplikativen Struktur eines endlichen Körpers, haben aber trotzdem im-
mer noch eine schöne Algebraische Form. Permutationspolynome dieser Art wurden
ursprünglich im Jahr 2008 von Charpin und Kyureghyan [5] für den Fall q = 2 betra-
chtet und vollständig klassifiziert. Wir zeigen, dass Polynome der Form Xt+γf(x),
wobei f : Fqn → Fq, nur dann Permutationen sein können, wenn ggT(t, qn − 1) = 1.
in diesem Fall ist Xt auch eine Permutation, sodass es für die Klassifikation genügt
den Fall t = 1 zu betrachten. In den letzten Jahren haben Kyureghyan und Zieve
[11], Ma und Ge [16] und Li, Qu, Chen und Li [13] insgesamt 24 unendliche Familien
von Permutationspolynomen der Form X + γ Trqn/q(X

k) konstruiert.
Wir bestimmen die Anzahl der Fixpunkte aller dieser Permutationen. Weiter

zeigen wir, dass die Permutationspolynome der Form X + γf(Xk), wobei f : Fqn →
Fq, genau diejenigen sind, die auch jede Gerade α+γFq, α ∈ Fqn , permutieren. Wir
zeigen: Wenn f eine besondere Eigenschaft erfüllt, dann haben bestimmte dieser
auf Geraden induzierten Permutationen die selbe Zyklenstruktur.

Die 17 der 24 Familien, für die n die feste Zahl 2 oder 3 ist, erfüllen diese Eigen-
schaft. Insbesondere für n = 2, was bei 15 dieser Familien der Fall ist, erlaubt
uns dies ihre Zyklenstruktur ermitteln indem wir sie auf γFq und einer beliebigen
anderen Geraden α+ γFq bestimmen. Auf γFq kann die Zyklenstruktur einfach ge-
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funden werden, aber die Zyklenstruktur auf einer der anderen Geraden zu erhalten
ist weiterhin ein sehr schwieriges Problem. Wir lösen es für zwei Familien vollständig
und für eine Familie in einem Spezialfall.

Für die restlichen 7 Familien, bei denen n beliebig ist, müssen wir andere Tech-
niken benutzen. Durch die Kombination von Resultaten für lineare Translatoren
[12] und algebraische Kurven [7, 19] bestimmen wir die Zyklenstruktur für drei
dieser Familien vollständig und für zwei weitere teilweise. Mit den gleichen Meth-
oden finden wir auch die Zyklenstruktur aller Permutationspolynome der Form
X+γ Tr2n/2(Xk), also im Spezialfall q = 2. Die Zyklenstruktur der letzten zwei Fam-
ilien bestimmen wir, indem wir zeigen, dass ihre Zyklenstruktur auf jeder Geraden
α + γFq die selbe ist wie die eines einfachen linearisierten Permutationspolynoms
über Fq, dessen Zyklenstruktur bekannt ist.

Zusätzlich ermitteln wir die Zyklenstruktur von Permutationspolynomen der Form
Xq2+q+1 + Trq3/q(X), wobei q ungerade ist, indem wir ihre Iterationen explizit
berechnen. Diese Polynome erhalten wir, indem wir eine der 24 Familien, X +
Trq3/q(X

(q2+1)/2), mit einem Permutationsmonom, Xq2+q+1, verknüpfen.
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Introduction

Any map of a finite field into itself can be represented by a polynomial. If the map
represented is a permutation, we call the polynomial a permutation polynomial. The
cycle structure of a permutation polynomial is defined as the cycle structure of its
associated permutation, which is a list of the cycle lengths and their multiplicities in
the cycle decomposition of that permutation. Formal definitions of these concepts
can be found in Chapter 1.

The cycle decomposition of a permutation contains information about its algebraic
and combinatorial properties, e. g. its order and parity. Much of that information
is retained in its cycle structure. A central challenge in the study of permutations
over finite fields is finding connections between its polynomial representation and
its combinatorial properties. Discovering the cycle structure of a permutation poly-
nomial gives insight into this problem. The cycle structure of a permutation also
uniquely determines to which conjugation class of the appropriate symmetric group
it belongs. In this way knowing the cycle structure of a permutation polynomial
over a finite field Fq is equivalent to knowing its conjugation class as an element of
the symmetric group over Fq. Finding the cycle structure of a class of permutation
polynomials is a highly nontrivial problem. At present it is only solved for a few
simple classes of permutation polynomials.

The first article giving the cycle structure of an infinite family of permutation
polynomials was published 50 years ago in 1969 by Ahmad [1]. In that article he
determines the cycle structure of monomial permutations. Then about 20 years
later, in 1988, Mullen and Vaughan [18] studied the cycle structure of linearized
polynomials. Soon after, in 1991, the cycle structure of certain Dickson polynomials
was ascertained by Lidl and Mullen [14]. For monomial, Dickson and linearized
polynomials a classification into permutation and non-permutation polynomials is
not difficult. None of these polynomials make use of the full structure of a finite
field. For monomials only the multiplicative structure of the field is relevant. Dickson
polynomials only use the ring structure of the field. Linearized polynomials depend
solely on the vector space property of a finite field over a subfield. Finally, in 2008,
Çeşmelioğlu, Meidl, and Topuzoğlu [4] studied a connection of the Carlitz rank and
the cycle structure of permutation polynomials.

One important application of permutation polynomials with known cycle structure
is in coding theory. There they can be used as interleavers, which are used in
certain coding schemes to permute the components of a vector. In particular they
are necessary for the construction of turbo codes. For this application we want
the permutations given as polynomials, because these are easy to implement. Only
the coefficients have to be stored. But we also have to know the cycle structure of
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Introduction

these permutations, because their combinatorial properties can drastically alter the
performance of the final code. For more on this see Sakzad, Sadeghi, and Panario
[23].

A class of permutation polynomials, whose properties need to be better understood
is the class of permutation polynomials of shape Xt + γ Trqn/q(X

k) over Fqn , where
γ ∈ F∗qn and 1 ≤ t, k ≤ qn − 1. These permutation polynomials are interesting,
because they make use of the full structure of a finite field by depending on both its
additive and multiplicative structure but still have a rather simple algebraic form.
We will determine the cycle structure of multiple infinite families of this shape,
thereby giving the first results on cycle structures of permutation polynomials using
the full structure of a finite field. Some of our results extend to a larger class of
polynomials, where instead of Trqn/q(X

k) any map f : Fqn → Fq can be used.

Chapter 1 contains fundamental definitions and facts concerning permutations,
cycle structure and permutation polynomials. Here we also state a well-known result,
which will be used many times throughout the whole thesis: Two permutations have
the same cycle structure precisely if they are conjugate.

In Chapter 2 we give a survey of previous results on the cycle structure of per-
mutation polynomials. These are the cycle structures of monomials [1], Dickson
polynomials Dk(X, a) with a = ±1 [14] and linearized polynomials with coefficients
in the subfield [17, 18, 20]. A connection between the Carlitz rank and the cycle
structure of a permutation polynomial is studied in [4].

The class of polynomials of shape Xt + γf(X), where f : Fqn → Fq, is considered
in the first part of Chapter 3. We show that if these polynomials are permutations,
then necessarily gcd(t, qn − 1) = 1. Since in this case Xt is also a permutation
polynomial Xt + γf(X) is a permutation if and only if X + γf(Xt−1

) is. This
shows, that for classification purposes we only have to study the case t = 1. By
carefully considering the proof of this result it can be generalized to be applicable
to many cases where we want to know if the sum of two maps is a permutation.
Then a list (Theorem 3.4) of all currently known infinite families of permutation
polynomials of shape X + γ Trqn/q(X

k) is given. It compiles the results of several
recent articles [11–13, 16]. This list contains 24 cases, which we label (F1) to (F24).
In Section 3.3 a result about linear translators [12] and a result on the number
of rational places of certain algebraic curves [7, 19] are presented. These will be
very useful to determine the cycle structure of a significant part of the permutation
polynomials given in Theorem 3.4. After that we consider the special case, where
q = 2, for which a complete classification into permutation polynomials and non-
permutation polynomials was given in [5]. Using the results presented in Section 3.3
we can get the cycle structure for all permutation polynomials in this special case.
At the end of the chapter the number of fixed points for all known infinite families
of permutation polynomials of shape X + γ Trqn/q(X

k) is given. For most of them
this can be done by computing the greatest common divisor of the exponent k and
qn − 1, which is the order of the multiplicative group of the finite field Fqn , but for
some it is necessary to use the results from [7, 19].
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Our general method to determine the cycle structure of one of the permutation
polynomials in Theorem 3.4 depends on the extension degree n of Fqn over Fq.
Therefore Chapter 4 is mainly about the cases, where this extension degree is 2 or
3 and Chapter 5 deals with the cases, where it is arbitrary.

In the first section of Chapter 4 the class X + γf(X), where f : Fqn → Fq
is again considered. We will see, that permutations of this shape are exactly those
permutations, that also permute any line of the Fq-vector space Fqn , which is parallel
to the line γFq. This will lead to a theorem, showing the following: If f is additionally
1-homogeneous, then the cycle structures of induced permutations on lines α+ γFq,
α /∈ Fq, parallel to γFq are the same, if they are contained in the same 2-dimensional
linear subspace of Fqn . All of the cases in Theorem 3.4 with n ∈ {2, 3} fulfil this
condition, which allows us to ascertain the cycle structure in cases with n = 2 by
determining the cycle structure on only 2 lines. One of those lines has to be γFq and
the second can be any other line parallel to it. Getting the cycle structure on γFq
is no problem, but determining the cycle structure on one of those other lines is a
challenge. We solve this for cases (F2) and (F12) completely and case (F9) partially.

Chapter 5 contains results on the cases of Theorem 3.4, where the extension degree
is arbitrary. A permutation polynomial in one of these cases always has one of two
properties. Either γ is a 0-linear translator of Trqn/q(X

k), which allows us to use
the results presented in Section 3.3 to find the cycle structure, or the cycle structure
is the same on any line parallel to γFq, including γFq, which is also the same as the
cycle structure of a linearized permutation polynomial on Fq. For most of the cases
with this property the cycle structure can then be determined using the results from
[17, 18, 20].

Finally Chapter 6 deals with a method we call shifting the exponent. A com-
position of two permutations is still a permutation. This allows one to consider
permutations Xt + γ Trqn/q(X) instead of permutations X + γ Trqn/q(X

k), where
t ≡ qmk−1 (mod qn − 1). This means we consider a permutation where the expo-
nent was shifted from the monomial inside of the trace-function to the monomial
outside of the trace-function. In case (F16) this leads to a permutation with an
interesting cycle structure, which can be determined by explicitly computing its
iterates.

Table A summarizes our current knowledge on the cycle structure of the 24 families
of permutation polynomials given in Theorem 3.4.
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Introduction

Table A: Overview of determined cycle structures and conjectures

Case Cycle Structure Reference

(F1) Conjecture Conjecture 4.4
(F2) Determined Completely Theorem 4.14
(F3) Conjecture Conjecture 4.4
(F4) open –
(F5) open –
(F6) open –
(F7) open –
(F8) open –
(F9) Determined Partially / Conjecture Theorem 4.25 / Conjecture 4.4
(F10) open –
(F11) open –
(F12) Determined Completely Theorem 4.20
(F13) open –
(F14) Conjecture Conjecture 4.4
(F15) Conjecture Conjecture 4.4
(F16) after Exponent Shifting Theorems 6.5, 6.6 and 6.8
(F17) open –
(F18) Determined Completely Theorem 5.3
(F19) Determined Completely Theorem 5.5
(F20) Determined Completely Theorem 5.7
(F21) Determined Partially Theorem 5.15
(F22) Determined Completely Theorem 5.11
(F23) Determined Completely Theorem 5.13
(F24) Determined Partially Theorem 5.18
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Chapter 1

Fundamental Definitions and Properties

This chapter contains some fundamental facts about permutations, cycle structure
and permutation polynomials. In the first part the definition for the cycle structure
of a permutation is given and notations for it are introduced. We will further see an
important criterion that allows us to tell if two permutations have the same cycle
structure without having to determine it. The second part contains the definition
of permutation polynomials and an example that shows some simple methods to
determine the cycle structure of one.

1.1 Permutations and Cycle Structure

It is well known that any permutation can be written uniquely (up to reordering)
as a product of disjoint cycles. This is called cycle decomposition.

Definition 1.1. The cycle structure of a permutation lists the multiplicity of each
cycle length in its cycle decomposition.

If a permutation has (i. e. its cycle decomposition contains) exactly n1 cycles of
length l1, n2 cycles of length l2, . . . and nr cycles of length lr where l1 < l2 < · · · < lr,
we write its cycle structure as ln1

1 ln2
2 . . . lnrr . Sometimes we will allow ni = 0, to

simplify notations. For an example of this, see the following definition.

Definition 1.2. Let π : A → A be a permutation of the set A that also permutes
a subset B of A. We will denote the cycle structure of π (on A) by CS(π) and the
cycle structure of π on B, i. e. π

∣∣
B

, by CSB(π).
We define an addition of cycle structures as follows. Let c1 = ln1

1 ln2
2 . . . lnrr and

c2 = lm1
1 lm2

2 . . . lmrr , where ni,mi = 0 is allowed. Then we write

c1 + c2 = ln1+m1
1 ln2+m2

2 . . . lnr+mrr .

Remark 1.1. Let A = B ∪ C, where B ∩ C = ∅. If the permutation π : A→ A also
permutes B and C then CS(π) = CSB(π) + CSC(π).

For a finite set A we denote the symmetric group defined over A by SA.

Definition 1.3. Let A and B be finite sets of the same size. The permutations
F ∈ SA and G ∈ SB are called conjugate if there exists a bijection ϕ : A→ B, such
that F = ϕ−1 ◦G ◦ ϕ.

5



Chapter 1 Fundamental Definitions and Properties

The next well known fact will be very useful later, because it allows us to find the
cycle structure of a permutation, by determining the cycle structure of a conjugate.

Proposition 1.1. Let A and B be finite sets of the same size. The permutations
F ∈ SA and G ∈ SB have the same cycle structure if and only if they are conjugate.

Remark 1.2. Let A be a finite set and F,G ∈ SA. Since F ◦ G = G−1 ◦ G ◦ F ◦ G,
we know that G ◦ F and F ◦G always have the same cycle structure. In particular
if we consider a finite field Fq and F ∈ SFq , then for a ∈ F∗q , b ∈ Fq the permutations
x 7→ F (ax+ b) and x 7→ aF (x) + b have the same cycle structure.

1.2 Permutation Polynomials

Let q be a prime power and Fq be the finite field with q elements. Given a univariate
polynomial F (X) ∈ Fq[X], its associated map F is defined by

F : Fq → Fq, x 7→ F (x).

The associated maps of polynomials F (X) and G(X) are equal on Fq if and only if
F (X) ≡ G(X) (mod Xq −X). In particular, the associated maps of two different
polynomials of degree less than q are different. The number of different maps of Fq
into itself is qq, which is also the number of different polynomials of degree less than
q in Fq[X].

This shows that any map g of Fq into itself is the associated map of a unique
polynomial over Fq of degree less than q, which is called the reduced polynomial of
g.

Using Lagrange interpolation we can give a formula for the reduced polynomial
g(X) of the map g:

g(X) =
∑
x∈Fq

g(x)(1− (X − x)q−1).

Definition 1.4. A polynomial over Fq is called a permutation polynomial of Fq if
it induces a permutation on Fq.

The cycle structure of a permutation polynomial is the cycle structure of its in-
duced permutation.

We will denote the cycle structure of a permutation polynomial F (X) as CS(F ).

Definition 1.5. Let a ∈ F∗q . The (multiplicative) order ord(a) of a is the smallest
positive integer m, such that am = 1.

Let us now take a look at an example, which clarifies the notation and contains
basic steps used to determine the cycle structure.

6



1.2 Permutation Polynomials

Example 1.1. Let p be the characteristic of Fq and F (X) = aX+b ∈ Fq(X), a 6= 0.
Then

CS(F ) =


1q, a = 1, b = 0,

pq/p, a = 1, b 6= 0,

11 ord(a)(q−1)/ ord(a), a 6= 1.

Proof. If a = 1, b = 0, then F is the identity map on Fq.
If a = 1, b 6= 0, then the n-th iterate of F (X) is Fn(X) = X + nb, so for any

x ∈ Fq, we see that Fn(x) = x if and only if p | n and all cycles are of length p.
If a 6= 1, then Fn(X) = anX + an−1

a−1 b. We see that F has one fixed point − b
a−1

and for all other x ∈ Fq, that Fn(x) = x if and only if ord(a) | n, so all other cycles
are of length ord(a).

Often it is easier to only consider monic polynomials or polynomials with no
constant term. So naturally the question arises, if it is enough to consider such
polynomials, when determining cycle structures. That is, we want to know the
following:

Let F (X) ∈ Fq[X] be a permutation polynomial and a ∈ F∗q . Is it sufficient to
know the cycle structure of F (X) if one wants to determine the cycle structure of
aF (X) or of a+ F (X)?

In general the answer is no. Consider for example the permutation polynomials
2X and 3X over F5. It is easy to see that CS(2X) = 1141 = CS(3X) but

CS(3 · (2X)) = CS(X) = 15 6= 1122 = CS(4X) = CS(3 · (3X)).

Similarly, if we consider X+2 and X+3 over F5, then CS(X+2) = 51 = CS(X+3)
but

CS(3 + (X + 2)) = CS(X) = 15 6= 51 = CS(X + 1) = CS(3 + (X + 3)).

In contrast the cycle structure of iterates is easily determined, if one knows the
cycle structure of the original permutation.

Proposition 1.2. Let F be permutation with CS(F ) = ln1
1 ln2

2 . . . lnrr , then the cycle
structure of its m-th iteration Fm = F ◦ · · · ◦ F︸ ︷︷ ︸

m

is

CS(Fm) =
r∑
j=1

(
lj

gcd(lj ,m)

)nj gcd(lj ,m)

.

Proof. Since the cycles in a cycle decomposition are disjunct, it suffices to consider
a single cycle (x1 x2 . . . xl). Now

(x1 x2 . . . xl)
m = (x1 xm+1 x2m+1 . . . x(k−1)m+1)(. . . ) . . . ,

where the indices are elements of the residue class ring Zl and k is the smallest inte-
ger, s. t. km+ 1 ≡ 1 (mod l). This means km = lcm(l,m) and so k = l/ gcd(l,m).
Since this holds similarly for every element of the cycle, (x1 x2 . . . xl)

m only has
cycles of length k. Then the number of these cycles has to be l/k = gcd(l,m).
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Chapter 2

Permutation Polynomials with Known
Cycle Structures

This chapter contains a survey of permutation polynomials whose cycle structure
has been determined. These are monomials, Dickson polynomials and linearized
polynomials. In all of these cases a simple condition exists to determine if a given
polynomial is a permutation polynomial or not. In Section 2.4 we take a look at a
paper that studies connections between the Carlitz rank and the cycle structure of
a permutation polynomial. This study was inspired by a result of Carlitz [2] from
1953, which states, that any permutation polynomial over a finite field Fq can be
written as a composition of polynomials αX + β and Xq−2, where α, β ∈ Fq, α 6= 0.

2.1 Monomials

In 1969 Ahmad [1] determined the cycle structure of monomial permutations. To
state his results we will use the following notation.

Notation 2.1. Let k and t be positive integers. We denote by ordt(k) the order of
k modulo t, i. e. the smallest positive integer m with km ≡ 1 (mod t).

The following proposition, which classifies monomials, is well known. It is derived
from the fact, that the multiplicative group of a finite field is cyclic and the image
set of the power map x 7→ xk on a cyclic group with n elements is the subgroup
with n/ gcd(k, n) elements. Proofs for these properties can be found in [15, pp. 7,
50, 351].

Proposition 2.1. The monomial Xk ∈ Fq[X] is a permutation polynomial if and
only if gcd(k, q − 1) = 1.

The following theorem gives the cycle structure for all monomial permutations.

Theorem 2.2. The permutation polynomial Xk , gcd(k, q − 1) = 1, has a cycle of
length m on F∗q if and only if m = ordt(k), where t | (q − 1). The number Nm of
those cycles satisfies

m ·Nm = gcd(km − 1, q − 1)−
∑

i|m,i 6=m

i ·Ni, N1 = gcd(k − 1, q − 1).

Remark 2.1. On Fq, Xk has the additional fixed point 0 and thus N1 +1 fixed points
in total.

9



Chapter 2 Permutation Polynomials with Known Cycle Structures

2.2 Dickson Polynomials

In 1991 Lidl and Mullen [14] determined the cycle structure of Dickson polynomials
Dk(X, a) with a = ±1. Since the Dickson polynomials Dk(X, 0) are monomials,
together with the previous section the cycle structure for all Dickson polynomials
Dk(X, a) with a ∈ {−1, 0, 1} is known. These are exactly the cases in which the
Dickson polynomials with a fixed a are a subgroup of the symmetric group. A
proof for this can be found in [15, pp. 359–360]. This means in these cases the
iterates of the permutation polynomials are again Dickson polynomials with the
same parameter a. So it is not surprising, that these are exactly the cases where
the cycle structure could be determined. For further information about these cycle
structures see also Rubio, Mullen, Corrada, and Castro [22].

Definition 2.2 (Dickson polynomial). Let a ∈ Fq. The polynomial

Dk(X, a) =

bk/2c∑
j=0

k

k − j

(
n− j
j

)
(−a)jXk−2j

over Fq is called Dickson polynomial (of the first kind) of degree k.

Remark 2.2. A Dickson polynomial with a = 0 is a monomial, Dk(X, 0) = Xk.

The following well known result classifies Dickson polynomials. A proof can be
found in [15, p. 356].

Proposition 2.3. Let a ∈ F∗q. The Dickson polynomial Dk(X, a) ∈ Fq[X] is a
permutation polynomial if and only if gcd(k, q2 − 1) = 1.

The following theorem gives the cycle structure for Dickson permutation polyno-
mials Dk(X, 1).

Theorem 2.4. Let q = ps be a prime power. The permutation polynomial Dk(X, 1),
gcd(k, q2 − 1) = 1, has a cycle of length m on Fq if and only if m = ordt(k) or if m
is the smallest positive integer with km ≡ −1 (mod t), where t | q − 1 or t | q + 1.
The number Nm of those cycles satisfies

m ·Nm

=
gcd(q + 1, km + 1) + gcd(q − 1, km + 1) + gcd(q + 1, km − 1) + gcd(q − 1, km − 1)

2

− ε−
∑

i|m,i<m

i ·Ni

where

ε =

{
1, p = 2 or p odd and k even,

2, p odd and k odd.

To state the next theorem we need the following definition.

10



2.3 Linearized Polynomials

Definition 2.3. Let νp(m) denote the highest power of p dividing m. By convention
let νp(0) =∞.

The following theorem gives the cycle structure for Dickson permutation polyno-
mials Dk(X,−1).

Theorem 2.5. The permutation polynomial Dk(X,−1), gcd(k, q2 − 1) = 1, has a
cycle of length m on Fq if and only if m = ordt(k) or m is the smallest positive
integer with 2(km + 1) ≡ 0 (mod t), where t | q − 1 or t | q + 1. The number Nm of
those cycles satisfies

m ·Nm =
δ + gcd(q − 1, km − 1)

2
− ε−

∑
i|m,i 6=m

i ·Ni,

where

ε =

{
2, km ≡ 1 and q ≡ 1 (mod 4),

0, otherwise,

δ =


gcd(q − 1, km + 1), ν2(km + 1) < ν2(q + 1),

gcd(2(q + 1), km + 1), ν2(km + 1) = ν2(q + 1),

gcd(q + 1, (km − 1)/2), ν2(km + 1) > ν2(q + 1).

2.3 Linearized Polynomials

In 1988 Mullen and Vaughan [18] determined the cycle structure of q-linearized
permutation polynomials with coefficients in the subfield Fq. We use notations
similar to those of [15, pp. 107–124].

Definition 2.4. Let Fqn be the extension field of Fq with qn elements. A polynomial
of shape

L(X) =
m∑
j=0

αjX
qj ∈ Fqn [X]

is called a q-linearized polynomial or q-polynomial over Fqn .

Definition 2.5. A polynomial of the form A(X) = L(X) + α, where L(X) is a
q-polynomial over Fqn and α ∈ Fqn , is called a q-affine polynomial or affine q-
polynomial over Fqn .

Remark 2.3.

1. The associated map of a q-linearized polynomial L is an Fq-linear map of Fqn ,
i. e. a linear map of Fqn seen as an n-dimensional vector space over Fq.

2. The reduced polynomial of an Fq-linear map is a q-linearized polynomial with
m < n.

11
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Definition 2.6. The polynomials

Λ(X) =
m∑
j=0

αjX
j and L(X) =

m∑
j=0

αjX
qj

over Fqn are called q-associates of each other. More specifically, Λ(X) is the con-
ventional q-associate of L(X) and L(X) is the linearized q-associate of Λ(X).

If all coefficients of L(X) are elements of Fq, we consider Λ(X) to be in Fq[X].

The following proposition, classifying q-linearized polynomials with coefficients in
the subfield Fq, is well known. A proof can be found in [3].

Proposition 2.6. A q-linearized polynomial L(X) ∈ Fqn [X] with coefficients in Fq
is a permutation polynomial if and only if its conventional q-associate Λ(X) ∈ Fq[X]
and Xn − 1 are coprime.

The following example gives a family of linearized permutation polynomials.

Example 2.1. Let a be a primitive element of F4. Then X + aX4 ∈ F4n [X] is a
permutation polynomial if and only if 3 - n.

Proof. We want to show that gcd(Xn + 1, aX + 1) = 1 in F4[X], if and only if 3 - n.
Then the claim in the example follows from Proposition 2.6.

Because aX + 1 is irreducible, gcd(Xn + 1, aX + 1) = 1 holds if and only if
aX + 1 - Xn + 1. This is equivalent to X + a−1 - Xn + 1, which is the case precisely
if ord(a) - n. Since a is a primitive element of F4, we know ord(a) = 3 and therefore
that gcd(Xn + 1, aX + 1) = 1 if and only if 3 - n.

The following theorem, which summarizes the first part of [18], gives a method
to determine the cycle structure of q-linearized permutation polynomials with coef-
ficients in the subfield Fq. It is not easy to apply to specific families of linearized
permutation polynomials, e. g. Example 2.1, but can be used to efficiently compute
the cycle structure of a given linearized permutation polynomial using a computer al-
gebra system, e. g. SAGE or MAGMA. For a demonstration of this see Example 2.2,
Example 2.3 and Table 2.1.

Theorem 2.7. Let q be a power of the prime p and L(X) ∈ Fqn [X] be a q-linearized
permutation polynomial with coefficients in Fq. Let Λ(X) ∈ Fq[X] be the conven-
tional q-associate of L(X). Let n = ptn1, where gcd(n1, p) = 1. Let the factorization
of Xn − 1 ∈ Fq[X] be

Xn − 1 = (Xn1 − 1)p
t

=

l∏
i=1

Γi(X)p
t

where the Γi(X) are distinct monic irreducible polynomials over Fq. For any i, let
Gi(X) ∈ Fqn [X] be the linearized q-associate of Γi(X).

12



2.3 Linearized Polynomials

Let Wi = ker(Gi),W
(j)
i = ker(Gji ), then Fqn =

l⊕
i=1

W
(pt)
i and L also permutes any

subspace W
(j)
i .

The cycle structure of L can be determined in the following way:

1. If the cycle structures of L
∣∣
W

(pt)
i

are

CS
W

(pt)
i

(L) = smi1i1 smi2i2 . . . s
miri
iri

then the cycle structure of L is

CS(L) =
∑
k∈K

SMk
k

where

K = {1, . . . , r1} × {1, . . . , r2} × · · · × {1, . . . , rl}
Sk = lcm(s1k1 , s2k2 , . . . , slkl)

Mk =

∏l
i=1 sikimiki

Sk

2. Let 1 ≤ i ≤ l, Fqm be the splitting field of Γi(X), ω ∈ F∗qm a root of Γi(X),
j = ord(Λ(ω)) and s the largest positive integer such that Γi(X)s | Λ(X)j − 1.

Then for the cycle structure of L on W
(pt)
i the following holds:

a) If pt = 1 then

CS
W

(pt)
i

(L) = 11j(qm−1)/j .

b) If s ≥ pt > 1, then

CS
W

(pt)
i

(L) = 11j(qd−1)/j ,

where d = dim(W
(pt)
i ).

c) If s < pt let r be such that pr−1s < pt ≤ prs,

Ue =


{0}, e = −1,

W
(pes)
i , 0 ≤ e ≤ r − 1,

W
(pt)
i , e = r

and de = dim(Ue). Then

CS
W

(pt)
i

(L) = 11j(qd0−qd−1 )/j(pj)(qd1−qd0 )/(pj) . . . (prj)(qdr−qdr−1 )/(prj).

13



Chapter 2 Permutation Polynomials with Known Cycle Structures

The following two examples show how Theorem 2.7 can be used to determine the
cycle structure of a family of linearized permutation polynomials. Note that the
permutation polynomials considered in Example 2.2 are a small subset of the family
described in Example 2.1. Example 2.3 shows that this general description of the
cycle structure can not be easily extended to the whole family.

Example 2.2. Let a be a primitive element of F4. Then the cycle structure of the
permutation polynomial L(X) = X + aX4 ∈ F42t [X] is

CS(L) = 1131621220 . . . (2t · 3)(42t−42t−1
)/(2t·3).

Proof. With the notations of Theorem 2.7 we have p = 2, n = 2t, so n1 = 1 and
Λ(X) = aX + 1. Further Xn + 1 = (X + 1)2t , so we only have 1 factor. This means
we can determine the cycle structure using only part 2 of Theorem 2.7.

Now Γ1(X) = X + 1 and its splitting field is F4, ω = 1 is a root of Γ1, so

j = ord(Λ(1)) = ord(a+ 1) = 3.

Since Λ(X)j − 1 = X(X + 1)(X + a) we get s = 1. This means we are in case (c) of
part 2 of Theorem 2.7, i. e. s < 2t. Because 2t−1 · 1 < 2t ≤ 2t · 1, we get r = t. Now
U−1 = {0} and

Uk = W
(2k)
1 = ker(G2k

1 ) = ker(X4k +X) = F
42k for 0 ≤ k ≤ t.

Consequently d−1 = dim({0}) = 0 and dk = dim(F
42k ) = 2k, for 0 ≤ k ≤ t. Now by

Theorem 2.7 the cycle structure of L is

CS(L) = CS
W

(2t)
1

(L)

= 113(41−40)/3(2 · 3)(42−41)/(2·3)(4 · 3)(44−42)/(4·3) . . . (2t · 3)(42t−42t−1
)/(2t·3).

Example 2.3. Let a be a primitive element of F4 and L(X) = X + aX4 ∈ F45 [X].
Then the cycle structure of L is CS(L) = 1131531567.

Proof. With the notations of Theorem 2.7 we have p = 2, n = 5, so n1 = 5 and
Λ(X) = aX + 1. Further X5 + 1 = (X + 1)(X2 + aX + 1)(X2 + a2X + 1), so

Γ1(X) = X + 1 Γ2(X) = X2 + aX + 1 Γ2(X) = X2 + a2X + 1.

Since t = 0, we get pt=1 and are always in case (a) of part 2 of Theorem 2.7. This
means we only need to determine the respective splitting field of Γi to determine

the cycle structure on W
(2t)
i = Wi.

The splitting field of Γ1(X) = X + 1 is F41 , a root of Γi(X) is 1, so the number
j = ord(Λ(1)) = ord(a+ 1) = 3 and

CSW1(L) = 113(4−1)/3 = 1131.
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2.3 Linearized Polynomials

The splitting field of Γ2(X) = X2 + aX + 1 is F42 , let ω be a root of Γ2(X), then
j = ord(aω + 1) = 5 and

CSW2(L) = 115(42−1)/5 = 1153.

The splitting field of Γ3(X) = X2 +a2X+ 1 is F42 , let ω be a root of Γ3(X), then
j = ord(aω + 1) = 15 and

CSW3(L) = 1115(421)/15 = 11151.

Now we need to use part 1 of Theorem 2.7 to compute the cycle structure of L on
the whole field F45 . K = {1, 2} × {1, 2} × {1, 2},

s11 = s21 = s31 = 1, s12 = 3, s22 = 5, s23 = 15,

m11 = m21 = m21 = m31 = m32 = 1 and m22 = 3.

So

S(111) = lcm(1, 1, 1) = 1, M(111) = (1 · 1)(1 · 1)(1 · 1)/1 = 1,

S(112) = lcm(1, 1, 15) = 15, M(112) = (1 · 1)(1 · 1)(1 · 15)/15 = 1,

S(121) = lcm(1, 5, 1) = 5, M(121) = (1 · 1)(3 · 5)(1 · 1)/5 = 3,

S(122) = lcm(1, 5, 15) = 15, M(122) = (1 · 1)(3 · 5)(1 · 15)/15 = 15,

S(211) = lcm(3, 1, 1) = 3, M(211) = (1 · 3)(1 · 1)(1 · 1)/3 = 1,

S(212) = lcm(3, 1, 15) = 15, M(212) = (1 · 3)(1 · 1)(1 · 15)/15 = 3,

S(221) = lcm(3, 5, 1) = 15, M(221) = (1 · 3)(3 · 5)(1 · 1)/15 = 3,

S(222) = lcm(3, 5, 15) = 15, M(222) = (1 · 3)(3 · 5)(1 · 15)/15 = 45.

Thus

CS(L) = 11 + 151 + 53 + 1515 + 31 + 153 + 153 + 1545 = 1131531567.

Table 2.1 contains the cycle structures of specific linearized permutation polyno-
mials. These were computed in MAGMA using the method from Theorem 2.7.

In [20] Panario and Reis studied the functional graph of linearized polynomials.
For linearized permutation polynomials this is the same as determining the cycle
structure. To state their result we need to define an analogue of Euler’s totient
function for polynomials.
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Chapter 2 Permutation Polynomials with Known Cycle Structures

Table 2.1: The cycle structure of X + aX4 ∈ F4n [X].

n cycle structure

7 11 31 63260

11 11 31 10234100

14 11 31 62 63260 1262130310

19 11 31 291279437220

22 11 31 62 10234100 20468598329350

23 11 31 13981013 419430316777219

28 11 31 62 1220 63260 1262130310 252285942832418620

31 11 31 3413075 10234508001973046275

34 11 31 62 85771 17025264128 25567371779 510578721382662505990

35 11 31 53 1567 63260 31513260 81981920 4095288300762079936512

38 11 31 62 291279437220 582541297041640499183670

40 11 31 53 62 1024 1220 1567 203264 242720 3034910 40107372544 6018325175228

12010074381830112711400928

44 11 31 62 1220 10234100 20468598329350 409275631722830236431216700

46 11 31 62 13981013 27962026291456 419430316777219 8388606590295951096217075718

49 11 31 63260 439804651110372057594037944320

52 11 31 62 1220 4559 91018432 136549161 1820154656571392 27301649670162450

54603714727033635836197595726004

56 11 31 62 1220 242720 63260 1262130310 252285942832418620

50410302176306616721342208139466720

58 11 31 62 894784853 178956970402653184 2684354551073741827

536870910154742505487133288142209030

61 11 31 5490102402889747596845406386975146068

65 11 31 53 1567 455589968 58529367296 81981940 1365211157784529872

4095332388148396521087632041562718845948

68 11 31 62 1220 85771 17025264128 25567371779 34054255129615925248

510578721382662505990 102085404201893882594751284612601258720316

70 11 31 53 62 1024 1567 3034910 63260 1262130310 31513260

63027923670450 81981920 16382749450117120 4095288300762079936512

8190170182731979018796867497166776387510272

73 11 31 1379719923020 873813145740 262143340283665000104876216961250502942654460
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2.4 Rational Functions and Carlitz

Definition 2.7. Let F (X) ∈ Fq[X] be monic. Then Euler’s totient function for
polynomials is defined as

Φ(F ) =

∣∣∣∣(Fq[X]

〈F 〉

)∗∣∣∣∣ ,
where 〈F 〉 is the ideal generated by F (X) in Fq[X]. Equivalently Φ(F ) is the number
of G(X) ∈ Fq[X], with deg(G(X)) < deg(F (X)) and gcd(G(X), F (X)) = 1.

The following theorem gives a formula for the cycle structure of q-linearized per-
mutation polynomials with coefficients in Fq.

Theorem 2.8. Let Λ(X) ∈ Fq[X] be a polynomial with gcd(Λ(X), Xn− 1) = 1 and
L(X) ∈ Fqn [X] be its linearized q-associate. Let ordΓ(Λ) denote the multiplicative
order of Λ(X) modulo Γ(X) and Φ be Euler’s totient function for polynomials. Then
the cycle structure of L is

CS(L) =
∑

Γ(X)|Xn−1

ordΓ(Λ)
Φ(Γ)

ordΓ(Λ) .

Remark 2.4. Let L,Λ,Γ as before. The number of cycles of length ordΓ(Λ) in the
cycle decomposition of L is ∑

H∈HΦ(H)

ordΓ(Λ)
,

where H = {H ∈ Fq[X] : H | Xn − 1, ordH(Λ) = ordΓ(Λ)}.
For an application of Theorem 2.8 see Theorem 5.10.
For a survey of further results on functional graphs of permutation polynomials

see Martins, Panario, and Qureshi [17].

2.4 Rational Functions and Carlitz

Carlitz showed the following in [2].

Theorem 2.9. Every permutation polynomial of a finite field Fq can be written
as a composition of permutation polynomials αX + β,Xq−2 ∈ Fq[X], where the
coefficients α ∈ F∗q , β ∈ Fq.

He did this by first showing that the transposition (0 a), where a ∈ Fq, is the
associated map of the polynomial

−a2
((

(X − a)q−2 + a−1
)q−2 − a

)q−2
∈ Fq[X].

Remark 2.5. This means every permutation polynomial over Fq can be written as a

Pn(X) = (. . . ((a0X + a1)q−2 + a2)q−2 + · · ·+ an)q−2 + an+1, (2.1)

where n ≥ 1, ai 6= 0 for i ∈ {0, 2, 3, . . . , n}.
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Chapter 2 Permutation Polynomials with Known Cycle Structures

Çeşmelioğlu, Meidl, and Topuzoğlu determined the cycle structure of polynomials
P2 and P3 in [4] using the following generalisation of Chou’s result from [6], for
which they gave a new proof.

Definition 2.8. Let

R(X) =
ax+ b

cx+ d
∈ Fq(X), c 6= 0

be a nonconstant rational transformation. Its associated permutation of Fq is

E(x) =

{
R(x), x 6= −d

c ,
a
c , x = −d

c

.

The associated matrix of R(X) and E is

A =

(
a b
c d

)
.

The following theorem gives the cycle structure of the associated permutations of
rational transformations.

Theorem 2.10. Let q = ps, R(X) ∈ Fq(X), E be its associated permutation and
χ(X) ∈ Fq[X] be the characteristic polynomial of the associated matrix A of R(X)
and E. Let α, β ∈ Fq2 be the roots of χ(X) in its splitting field and k = ord(α/β).
Then the cycle structure of E satisfies the following.

1. If χ(X) is irreducible then 2 < k and k | q + 1. Let tk = q + 1. Then

CS(E) = (k − 1)1kt−1.

2. If α, β ∈ Fq and α 6= β then k | q − 1. Let tk = q − 1. Then

CS(E) = 12(k − 1)1kt−1.

3. If α = β ∈ F∗q then

CS(E) = 11(p− 1)1pp
s−1−1

By replacing the exponent q−2 by −1 and using continued fractions Çeşmelioğlu,
Meidl, and Topuzoğlu showed the following.

Definition 2.9. Let Pn be as in (2.1). Then

Rn(X) =
αn−1X + βn−1

αnX + βn
,

where αk = akαk−1 + αk−2 and βk = akβk−1 + βk−2 for k ≥ 2 and α0 = 0, α1 =
a0, β0 = 1, β1 = a1 is its corresponding rational function and

On =

{
xi : xi =

−βi
αi

, i = 1, . . . , n

}
⊂ P1(Fq) = Fq ∪ {∞}

is its set of poles.
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2.4 Rational Functions and Carlitz

Lemma 2.11. Let Pn be as in (2.1), Rn(X) be its corresponding rational function,
En the associated permutation of Rn(X) and On the set of poles. If ∞ /∈ On and
|On| = n then

Pn(xi) =

{
En(xi−1), 2 ≤ i ≤ n,
En(xn), i = 1.

So the permutation can be written as the composition

Pn(x) = (En(xn−1) . . . En(x1) En(xn)) ◦ En(x).

By determining how composition with a cycle of length two or three changes the
cycle structure of the associated permutation of a rational transformation, they were
then able to determine the cycle structure of P2 and P3. Sometimes the order of the
cycle structure will depend on the parameters. An unordered cycle structure will be
denoted by CS*.

Cycle structure of P2

Recall that
P2(X) = ((a0X + a1)q−2 + a2)q−2 + a3, a0a2 6= 0.

Its corresponding rational function is

R2(X) =
a0(a2a3 + 1)X + a1(a2a3 + 1) + a3

a0a2X + a1a2 + 1
.

The poles are

x1 = −a1

a0
, x2 = −a1a2 + 1

a0a2
.

The characteristic polynomial of the associated matrix is

χ(X) = X2 − (a0(a2a3 + 1) + a1a2 + 1)X + a0.

In the following we state Theorem 6 and 7 of [4].

Theorem 2.12. Suppose χ(X) has two distinct roots α, β ∈ Fq2. Let k = ord(α/β),
k > 2 and

kt =

{
q + 1, α, β /∈ Fq, i. e. χ(X) irreducible,

q − 1, α, β ∈ Fq, i. e. χ(X) reducible.

Let δ = (β − 1)/(α− 1) ∈ P1(Fq). Then the following holds.

1. If δk 6= 1 and χ(X) is irreducible, then

CS(P2) = kt−2(2k − 1)1.

In particular P2 is a full cycle if k = (q + 1)/2.
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Chapter 2 Permutation Polynomials with Known Cycle Structures

2. If δk 6= 1 and χ(X) is reducible, then

CS(P2) =

{
12kt−2(2k − 1)1, a3 6= −a1/a0,

11kt, a3 = −a1/a0.

3. If δk = 1 and χ(X) is irreducible, then

CS*(P2) = (k − n− 1)1n1kt−1,

where n is the smallest integer s. t. (α/β)n = δ.

4. If δk = 1 and χ(X) is reducible, then

CS*(P2) = 12(k − n− 1)1n1kt−1,

where n is the smallest integer s. t. (α/β)n = δ.

Theorem 2.13. Let q = ps. Suppose χ(X) has a double root α 6= 0. Then the
following holds.

1. If α = 1, then a0 = 1, a3 = −a1/a0 and

CS(P2) = pp
s−1
.

In particular if s = 1, then P2 is a full cycle of length q = p.

2. If α ∈ Fp \ {1}, then

CS*(P2) = 11(p− n− 1)1n1pp
s−1−1,

where n ≡ α/(1− α) (mod p).

3. If s > 1 and α ∈ Fq \ Fp, then

CS(P2) = 11pp
s−1−2(2p− 1)1.

Cycle structure of P3

The possible cycle structures of P3 do not change if we only consider those P3, where
a4 = 0, therefore and for simplicity Çeşmelioğlu, Meidl, and Topuzoğlu restrict
themselves to analysis of permutation polynomials of the form

P3(X) =
((

(a0X + a1)q−2 + a2

)q−2
+ a3

)q−2
, a0a2a3 6= 0.

The corresponding rational function is

R3(X) =
a0a2X + a1a2 + 1

a0(a2a3 + 1)X + a1(a2a3 + 1) + a3
.
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2.4 Rational Functions and Carlitz

The poles are

x1 = −a1

a0
, x2 = −a1a2 + 1

a0a2
, x3 = −a1(a2a3 + 1) + a3

a0(a2a3 + 1)
.

The characteristic polynomial of the associated matrix is

χ(X) = X2 − (a0a2 + a1(a2a3 + 1) + a3)X − a0.

In the following we state Theorems 11, 13 and 15 of [4], with added specification
of the parameters n and m based on the lemmas and remarks in Section 4 of the
same paper and necessary modifications based on this.

Remark 2.6. Here δ1 and δ2 correspond to γ1 and γ2 in [4], but δ3 corresponds to
1/γ3.

Theorem 2.14. Suppose χ(X) is irreducible with roots α, β ∈ Fq2. Let k = ord(α/β),
k > 2 and kt = q + 1. Let

δ1 =
β − a3

α− a3
, δ2 =

a2β + 1

a2α+ 1
, δ3 =

α− a1

β − a1
, δ1, δ2, δ3 ∈ P1(Fq)

and ni be the smallest integers s. t. (α/β)ni = δi for i = 1, 2, 3. Then the following
holds.

1. If δk1 = δk2 = 1 then

CS*(P3) =

{
(k − 1)1kt−1, n1 > n2,

(n2 − n1)1(k − n2 − 1)1n1
1k
t−1, n1 < n2.

In particular P3 is a full cycle if n1 > n2 and k = q + 1.

2. If δk1 6= 1 and δk2 = 1 then

CS(P3) = (k − n2 − 1)1kt−2(k + n2)1.

3. If δk1 , δ
k
2 , δ

k
3 6= 1 then

CS(P3) = kt−3(3k − 1)1.

In particular P3 is a full cycle if k = (q + 1)/3.

4. If δk1 , δ
k
2 6= 1 and δk3 = 1 then

CS(P3) = (k − n3)1kt−2(k + n3 − 1)1.

5. If δk1 = 1 and δk2 6= 1 then

CS(P3) = n1
1k
t−2(2k − n1 − 1)1.
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Theorem 2.15. Suppose χ(X) has two distinct roots α, β ∈ Fq. Let k = ord(α/β),
k ≥ 2 and kt = q − 1. Let

δ1 =
β − a3

α− a3
, δ2 =

a2β + 1

a2α+ 1
, δ3 =

α− a1

β − a1
, δ1, δ2, δ3 ∈ P1(Fq)

and ni be the smallest integers s. t. (α/β)ni = δi for i = 1, 2, 3. Then the following
holds.

1. If a3 6= −a0/a1, a2 6= −1/a1 and δk1 = δk2 = 1 then

CS*(P3) =

{
12(k − 1)1kt−1, n1 > n2,

12(n2 − n1)1(k − n2 − 1)1n1
1k
t−1, n1 < n2.

2. If a3 6= −a0/a1, a2 6= −1/a1, δk1 6= 1 and δk2 = 1 then

CS(P3) = 12(k − n2 − 1)1kt−2(k + n2)1.

3. If a3 6= −a0/a1, a2 6= −1/a1 and δk1 , δ
k
2 , δ

k
3 6= 1 then

CS(P3) = 12kt−3(3k − 1)1.

4. If a3 6= −a0/a1, a2 6= −1/a1, δk1 , δ
k
2 6= 1 and δk3 = 1 then

CS(P3) = 12(k − n3)1kt−2(k + n3 − 1)1.

5. If a3 6= −a0/a1, a2 6= −1/a1, δk1 = 1 and δk2 6= 1 then

CS(P3) = 12n1
1k
t−2(2k − n1 − 1)1.

6. If a3 = −a0/a1 and a2 = −1/a1, then

CS(P3) = kt−1(k + 1)1.

In particular P3 is a full cycle if k = q − 1.

7. If a3 = −a0/a1 and δk2 = 1 then

CS*(P3) = 11(k − n2)1n1
2k
t−1.

8. If a2 = −1/a1 and δk1 = 1 then

CS*(P3) = 11(k − n1)1n1
1k
t−1.

9. If a3 = −a0/a1, a2 6= −1/a1 and δk2 6= 1 or a3 6= −a0/a1, a2 = −1/a1 and δk1 6= 1
then

CS(P3) = 11kt−2(2k)1.
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Theorem 2.16. Suppose χ(X) has a double root α ∈ F∗q = F∗ps. Define

n1 :=
α

a3 − α
, n2 := − a2α

a2α+ 1
, n3 :=

α

α− a1
.

If n1, n2, n3 ∈ Fp, we consider them as integers 0 ≤ n1, n2, n3 ≤ p − 1. Then the
following holds.

1. If α/a3 ∈ Fp \ {1} and −a2α ∈ Fp \ {1} then

CS*(P3) =

{
11(p− 1)1pp

s−1−1, n1 > n2,

11(n2 − n1)1(p− n2 − 1)1n1
1p
ps−1−1, n1 < n2.

2. If α = −1/a2 and α/a3 ∈ Fp \ {1} then

CS(P3) = (p− n1)1n1
1p
ps−1−1.

3. If α = a3 and −a2α ∈ Fp \ {1} then

CS(P3) = (p− n2)1n1
2p
ps−1−1.

4. If s ≥ 2, α/a3 ∈ Fp \ {1} and −a2α ∈ Fq \ Fp, then

CS(P3) = 11n1
1p
ps−1−2(2p− n1 − 1)1.

5. If s ≥ 2, α/a3 ∈ Fq \ Fp and −a2α ∈ Fp \ {1}, then

CS(P3) = 11(p− n2 − 1)1pp
s−1−2(p+ n2)1

6. If s ≥ 2, and α = a3 and −a2α ∈ Fq \ Fp, or α/a3 ∈ Fq \ Fp and α = −1/a2,
then

CS(P3) = pp
s−1−2(2p)1.

7. If s ≥ 2, −a2α ∈ Fq \ Fp and α/a1 ∈ Fp \ {1} or a1 = 0, then

CS*(P3) = 11(p− n3)1(p+ n3 − 1)1pp
s−1−2.

8. If s ≥ 2, α/a3 ∈ Fq \ Fp, −a2α ∈ Fq \ Fp, α/a1 ∈ Fq \ Fp and a1 6= 0, then

CS(P3) = 11pp
s−1−3(3p− 1)1.
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The special case x3 =∞

Finally we need to consider the special case a2a3 + 1 = 0. In this case x3 =∞ and

P3(X) =

((
(a0X + a1)q−2 + a2

)q−2 − 1

a2

)q−2

. (2.2)

Then R3 reduces to the linear polynomial

R3(X) = −a0a
2
2X − (a1a

2
2 + a2),

E3(x) = R3(x), x ∈ Fq and P3 = (−a2 0) ◦ E3.
This case was not explicitly computed in [4]. We derive it in Theorem 2.18 based

on Lemma 2.17, which is Lemma 4 in [4].

Notation 2.10. Let E be a permutation of Fq and x ∈ Fq. By C(E, x) denote the
cycle of E containing x and by `(E, x) the length of that cycle.

Lemma 2.17 describes the behaviour of the cycle structure of the composition of
a transposition with an arbitrary permutation.

Lemma 2.17. Let E be a permutation of Fq, u, v ∈ Fq and P = (u v) ◦ E.

(a) If u = En(v) and `(E, v) = l, then u /∈ C(P, v), `(P, v) = n and `(P, u) = l−n.

(b) If u /∈ C(E, v), `(E, u) = k and `(E, v) = l, then u ∈ C(P, v) and `(P, v) = k+l.

Theorem 2.18. Let q = ps, P3 be as in (2.2), k = ord(−a0a
2
2), kt = q − 1 and

δ :=
a1a2−a0a2

2
a1a2+1 . Then the following holds.

1. If −a0a
2
2 = 1 and a1a

2
2 + a2 = 0, then

CS(P3) = 1q−221.

2. If −a0a
2
2 = 1 and a1a

2
2 + a2 6= 0, then

a) for a1a2 ∈ Fp \ {−1}, we have

CS*(P3) = (p− n)1n1pp
s−1−1,

where n ≡ 1/(a1a2 + 1) (mod p), and

b) for a1a2 ∈ Fq \ Fp, we have

CS(P3) = pp
s−1−2(2p)1.

3. If −a0a
2
2 6= 1 and a1 = −1/a2 or a1 = a0a2, then

CS(P3) = kt−1(k + 1)1.

In particular P3 is a full cycle if k = q − 1.

24
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4. If If −a0a
2
2 6= 1 and a1 6= −1/a2 and a1 6= a0a2, then

a) for δk = 1, we have

CS*(P3) = 11(k − n)1n1kt−1,

where n is the smallest positive integer s. t. (−a0a
2
2)n = δ, and

b) for δk 6= 1, we have
CS(P3) = 11kt−2(2k)1.

Proof. Recall that for x ∈ Fq the permutation satisfies P3(x) = ((−a2 0) ◦ E3)(x),
where E3(x) = −a0a

2
2x− (a1a

2
2 + a2).

Consider Case 1, −a0a
2
2 = 1 and a1a

2
2 + a2 = 0. In this case E3(x) = x and thus

P3(x) = (−a2 0)(x) and
CS(P3) = 1q−221.

Consider Case 2, −a0a
2
2 = 1 and a1a

2
2 + a2 6= 0. In this case

CS(E3) = pp
s−1
.

Now we have to determine if 0 and −a2 are contained in the same cycle of E3, i. e.
if there exists an integer n with En3 (0) = −a2. We have

En3 (0) = −n(a1a
2
2 + a2), so

−a2 = En3 (0), if and only if

−a2 = −n(a1a
2
2 + a2), i. e.

n =
a2

a1a2
2 + a2

=
1

a1a2 + 1
.

An n with this property exists if and only if a1a2 + 1 ∈ Fp \ {0}, or equivalently
a1a2 ∈ Fp \ {−1}.

Therefore if a1a2 ∈ Fp \ {−1}, consider n = 1
a1a2+1 ∈ Fp as an integer with

0 < n < p. Then −a2 = En3 (0), `(E3, 0) = p and using Lemma 2.17 we see
−a2 /∈ C(P3, 0), `(P3, 0) = n and `(P3,−a2) = p − n. The cycle structure of P3 is
then

CS*(P3) = (p− n)1n1pp
s−1−1.

If otherwise a1a2 ∈ Fq \Fp, then −a2 /∈ C(E3, 0), `(E3, 0) = `(E3,−a2) = p. Using
Lemma 2.17 we see −a2 ∈ C(P3, 0) and `(P3, 0) = 2p. The cycle structure of P3 is
then

CS(P3) = pp
s−1−2(2p)1.

Consider Case 3 and Case 4, −a0a
2
2 6= 1. In these cases

CS(E3) = 11kt,

where −(a1a
2
2 + a2)/(1 + a0a

2
2) is the fixed point.
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We are in Case 3 if this fixed point is −a2 or 0, i. e. a1 = −1/a2 or a1 = a0a2. In
this case −a2 /∈ C(E3, 0) and `(E3, 0) + `(E3,−a2) = k + 1, so Lemma 2.17 shows
that −a2 ∈ C(P3, 0) and `(P3, 0) = k + 1. The cycle structure is

CS(P3) = kt−1(k + 1)1.

If this is not the case, we get Case 4 and have to determine if 0 and −a2 are
contained in the same cycle of E3, i. e. if there exists an integer n with En3 (0) = −a2.
We have

En3 (0) =
(−a0a

2
2)n − 1

−a0a2
2 − 1

(−(a1a
2
2 + a2)), so

−a2 = En3 (0), if and only if

−a2 =
(−a0a

2
2)n − 1

−a0a2
2 − 1

(−(a1a
2
2 + a2)), i. e.

1 =
(−a0a

2
2)n − 1

−a0a2
2 − 1

(a1a2 + 1), or

−(a0a
2
2)n =

a1a2 − a0a
2
2

a1a2 + 1
= δ.

This is exactly the case if δ ∈
〈
−a0a

2
2

〉
, i. e. if δk = 1.

Therefore if δk = 1, let n be the smallest positive integer s. t. (−a0a
2
2)n = δ.

Then −a2 = En3 (0), `(E3, 0) = k and using Lemma 2.17 we see −a2 /∈ C(P3, 0),
`(P3, 0) = n and `(P3,−a2) = k − n. The cycle structure of P3 is then

CS*(P3) = 11(k − n)1n1kt−1.

If otherwise δk 6= 1, then −a2 /∈ C(E3, 0), `(E3, 0) = `(E3,−a2) = k. By
Lemma 2.17 we see −a2 ∈ C(P3, 0) and `(P3, 0) = 2k. The cycle structure of P3 is
then

CS(P3) = 11kt−2(2k)1.
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Chapter 3

Polynomials of Shape Xt + γf(X)

In this chapter we consider polynomials of shape F (X) = Xt+γf(X), where the map
f : Fqn → Fq. The next section gives a necessary condition for F to be a permutation.
We see that this can be extended to a more general class of polynomials without
having to significantly alter the proof. After that we give an overview of the currently
known infinite families of permutation polynomials of shape X + γ Trqn/q(X

k). The
section after that contains results on linear translators and algebraic curves that will
be crucial to determine the cycle structure of some of those infinite families. In the
special case q = 2 all permutation polynomials of shape X+γ Tr2n/2(Xk) are known.
In Section 3.4 the cycle structures of these permutations are determined. Finally
we see, that the number of fixed points can be determined for all permutation
polynomials of shape X + γ Trqn/q(X

k), that belong to one of the known infinite
families.

3.1 A Necessary Condition

This section is based on work published in [10].

Theorem 3.1. Let n ≥ 1, 1 ≤ t ≤ qn− 1, γ ∈ Fqn and f : Fqn → Fq be an arbitrary
map. If the map F (x) = xt+γf(x) is a permutation of Fqn, then gcd(t, qn−1) = 1.

Proof. Let α be a fixed nonzero element in Fqn with Trqn/q(αγ) = 0. Consider the
map g : Fqn → Fq defined by

g(x) = Trqn/q(αF (x)) = Trqn/q(α(xt + γf(x)))

Since F is a permutation of Fqn , every y ∈ Fq has qn−1 preimages in Fqn under g,
i. e.

∣∣g−1(y)
∣∣ = qn−1. Further observe that

g(x) = Trqn/q(α(xt + γf(x))) = Trqn/q(αx
t) + f(x) Trqn/q(αγ) = Trqn/q(αx

t),

due to the choice of α. Let d = gcd(t, qn− 1). Then the power map x 7→ xt is d-to-1
on F∗qn . This shows that d must divide

∣∣g−1(y)
∣∣ = qn−1 if y 6= 0, completing the

proof.

The above proof works for a larger class of maps on Fqn . Recall that f : Fqn → Fq
is called balanced if for every y ∈ Fq, the cardinality of {x ∈ Fqn : f(x) = y} is qn−1.
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Theorem 3.2. Let G,H : Fqn → Fqn. Suppose there exists an element α ∈ F∗qn
such that the map h(x) = Trqn/q(αH(x)) is constant on Fqn and the map g(x) =
Trqn/q(αG(x)) is not balanced. Then the sum G+H is not a permutation of Fqn.

Proof. The proof follows from the observation, that if G + H is a permutation of
Fqn , then necessarily the map Trqn/q(α(G(x)+H(x))) = g(x)+h(x) is balanced.

Observe that Trqn/q(αH(x)) is constant on Fqn if and only if the image set of
H is contained in a coset of the hyperplane Hα = {x ∈ Fqn : Trqn/q(αx) = 0}.
In particular such an α exists if H(X) is an affine q-polynomial with a nontrivial
kernel.

The next result demonstrates a specific application of Theorem 3.2.

Corollary 3.3. Let L : Fqn → Fqn be a q-linear map with an image set contained in
Hα for some α ∈ F∗qn. Furthermore, let t be a positive integer with gcd(t, qn−1) > 1,
P : Fqn → Fqn a permutation and K : Fqn → Fqn arbitrary. Then P (x)t + L(K(x))
is not a permutation on Fqn.

Remark 3.1. Arguments similar to ours in the proofs of Theorem 3.1 and Theo-
rem 3.2 are used in [21], where permutation polynomials Xt + L(X) are studied,
where L(X) is a linearized polynomial.

3.2 Known Permutation Polynomials of Shape
Xt + γ Tr(Xk)

By Theorem 3.1, any permutation polynomial F (X) = Xt + γ Trqn/q(X
k) satisfies

gcd(t, qn − 1) = 1. Let t−1 be the inverse of t modulo qn − 1. Then F (Xt−1
) =

X + γ Trqn/q(X
kt−1

) is a permutation polynomial as well. Hence to characterize all

permutation polynomials of shape Xt+γ Trqn/q(X
k) it suffices to consider those with

t = 1. Note that the polynomials X + γ Trqn/q(X
k) and X + γ Trqn/q(X

qk) have the

same associated map, because Trqn/q(x
k) = Trqn/q(x

qk), for x ∈ Fqn . Consequently
if one of them is a permutation polynomial so is the other. The next theorem lists
the currently known permutation polynomials of type X+γ Trqn/q(X

k). Case (F24)
can be obtained by using results on permutations constructed via linear translators
from [12]. Cases (F1) to (F5) for odd q, case (F6) and cases (F16) to (F18) are from
[11]. Cases (F1) to (F5) for even q, cases (F7) to (F14) and cases (F19) to (F23) are
from [13]. Case (F15) is from [16].

Theorem 3.4. Let q = ps, where p is prime and s ≥ 1. Then

F (X) = X + γ Trqn/q(X
k) ∈ Fqn [X]

is a permutation polynomial in each of the following cases.

(F1) n = 2, q ≡ 1 (mod 3), γ = −1/3, k = 2q − 1,
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(F2) n = 2, q ≡ −1 (mod 3), γ3 = −1/27, k = 2q − 1,

(F3) n = 2, q ≡ 1 (mod 3), γ = 1, k = (q2 + q + 1)/3,

(F4) n = 2, q = Q2, γ = −1, k = Q3 −Q+ 1,

(F5) n = 2, q = Q2, γ = −1, k = Q3 +Q2 −Q,

(F6) n = 2, q ≡ 1 (mod 4), (2γ)(q+1)/2 = 1, k = (q + 1)2/4,

(F7) n = 2, q = 2s, s even, γ3 = 1, k = (3q − 2)(q2 + q + 1)/3,

(F8) n = 2, q = 2s, s odd, γ3 = 1, k = (3q2 − 2)(q + 4)/5,

(F9) n = 2, q = 2s, γ ∈ Fq, s. t. X3 +X + γ−1 has no root in Fq,
k = 22s−2 + 3 · 2s−2,

(F10) n = 2, q = 2s, s ≡ 1 (mod 3), γ = 1, k = (2q2 − 1)(q + 6)/7,

(F11) n = 2, q = 2s, s ≡ 2 (mod 3), γ = 1, k = −(q2 − 2)(q + 6)/7,

(F12) n = 2, q = 2s, s odd, γ(q+1)/3 = 1, k = (22s−1 + 3 · 2s−1 + 1)/3,

(F13) n = 2, q = 2s, s even, γ = 1, k = (q2 − 2q + 4)/3,

(F14) n = 2, q = 2s, s = 2t, γ ∈ F∗2t, k = 24t−1 − 23t−1 + 22t−1 + 2t−1,

(F15) n = 2, q = 3s, s ≥ 2, γ(q−1)/2 = (γ − 1)(q−1)/2, k = 32s−1 + 3s − 3s−1,

(F16) n = 3, q odd, γ = 1, k = (q2 + 1)/2,

(F17) n = 3, q odd, γ = −1/2, k = q2 − q + 1,

(F18) n = 2lr, q arbitrary, γq
2l−1 = −1, k = ql+1, where l, r are positive integers,

(F19) n = 2m, q = 2s, γ ∈ F∗q2, k = 2i(q + 1), where m, i are positive integers,

(F20) n = 2m, q = 2s, γ ∈ F∗q, k = q2 + 1, where m is a positive integer,

(F21) n = 2m, q = 2s, γ ∈ F∗q2, k = 2i(q2+1), where m, i are positive integers and

either m is even or m is odd and (γ2i+1
+ γ2i+1q)(q−1)/ gcd(2i+1−1,2s−1) 6= 1,

(F22) n = 2m+ 1, q = 2s, s ≡ ±2 (mod 6), γ ∈ F∗q, γ(q−1)/3 6= 1, k = 2qi + 2qj,
where m, i, j are positive integers and i 6= j,

(F23) n = 2m + 1, q = 2s, γ ∈ Fq \ {0, 1}, k = (q2 + q)/2, where m is a positive
integer,

(F24) n ≥ 2, q = ps, (−Trqn/q(γ))(q−1)/(pd−1) 6= 1, k = pi, where 1 ≤ i ≤ s and
d = gcd(i, s).
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Proof of case (F24). By Theorem 6 of [12], the mapping F0(x) = x + γ Trqn/q(x
pi)

permutes Fqn if and only if g(u) = u + Trqn/q(γ)up
i

permutes Fq. By Theorem 7.9
of [15] this is the case precisely if g(u) = 0 has no solution u ∈ F∗q . Let u 6= 0, then

u+ Trqn/q(γ) = 0 is equivalent to

−Trqn/q(γ) = vp
d−1, where v = (1/u)p

i/d−1

This equation has no solution in F∗q if and only if (−Trqn/q(γ))(q−1)/(pd−1) 6= 1.

Remark 3.2. (a) In Case (F18) if q is odd, then in particular γ ∈ Fq4l , so 4l | n.

(b) It can be easily checked that k = 2q − 1 satisfies gcd(k, q2 − 1) = 1 if q ≡ 1
(mod 3) and gcd(k, q2−1) = 3 if q ≡ −1 (mod 3). This observation concerning
(F1) shows that in contrast to t the exponent k need not be coprime with qn−1
if Xt + γ Trqn/q(X

k) is a permutation polynomial.

3.3 Tools to Help Determine Cycle Structures

This section collects two results, which we use as tools to determine the cycle struc-
ture of some of the infinite families listed in Theorem 3.4.

Linear translators

These are results from [12] by Kyureghyan.

Definition 3.1. Let α ∈ Fqn and f : Fqn → Fq. If there exists an a ∈ Fq, s. t.
f(x+ uα)− f(x) = ua for any x ∈ Fqn , u ∈ Fq, then we call α an a-linear translator
for f .

The following is based on Theorem 9 from [12]. Recall that by C(E, x) we denote
the cycle of E containing x.

Theorem 3.5. Let q = ps, γ ∈ Fqn be a b-linear translator of f : Fqn → Fq and
b 6= −1. Consider the permutation polynomial F (X) = X + γf(X). Let N0 be the
number of fixed points of F , i. e. the number of roots of f(X). Then the following
holds.

1. If b = 0, then

CS(F ) = 1N0p
qn−N0

p .

Moreover for any u ∈ Fqn , f(u) 6= 0 the cycle C(F, u) = (u0 u1 . . . up−1),
where uj = u+ jγf(u).

2. If b 6= 0, then

CS(F ) = 1N0`
qn−N0

` ,

where ` is the order of (b+ 1) in F∗q. Moreover for any u ∈ Fqn , f(u) 6= 0 the

cycle C(F, u) = (u0 u1 . . . u`−1), where uj = u+ (b+1)j−1
b γf(u).
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3.3 Tools to Help Determine Cycle Structures

A useful result on algebraic curves

The following two theorems are special cases of Theorems 2, 5 and 6 by Coşgun,
Özbudak, and Saygı in [7]. Theorems 5 and 6 were originally published in [19] by
Özbudak and Saygı.

Theorem 3.6. Let q = 2s, n = 2uwn1, h = 2vwh1, where gcd(n1, h1) = 1 and
gcd(2, wn1h1) = 1, and κ = 2v+1w. Then the number of solutions N of the equation

yq − y = xq
h+1, where x, y ∈ Fqn, satisfies the following.

N =


qn, u < v + 1,

qn + q
n+κ

2 (q − 1), u = v + 1,

qn − q
n+κ

2 (q − 1), u > v + 1.

Theorem 3.7. Let p 6= 2 be a prime, q = ps, n = 2uwn1, h = 2vwh1, where
gcd(n1, h1) = gcd(2, wn1h1) = 1, and κ = 2v+1w. Then the number of solutions N

of the equation yq − y = xq
h+1, where x, y ∈ Fqn, satisfies the following.

N =


qn, u < v + 1, n odd,

qn + (q − 1)qn/2, u < v + 1, q ≡ 3 (mod 4) and 4 | n,
qn − (q − 1)q

n+κ
2 , u > v + 1,

qn − (q − 1)qn/2, else.

These theorems allow us to determine the number of roots of Trqn/q(X
qh+1) by

the following theorem from [15, p. 56]. The second part follows from the proof given
there.

Theorem 3.8. Let α ∈ Fqn, then Trqn/q(α) = 0 if and only if α = βq − β for some
β ∈ Fqn. Furthermore, for any α ∈ Fqn with Trqn/q(α) = 0 the equation α = βq − β
has exactly q solutions β ∈ Fqn.

Corollary 3.9. Let g(X) ∈ Fqn [X] and denote by N the number of solutions of the
equation g(x) = yq − y. Then Trqn/q(g(X)) has N0 = N/q roots.

Using Corollary 3.9 we can translate Theorem 3.6 and Theorem 3.7 into the fol-
lowing two theorems.

Theorem 3.10. Let q = 2s, n = 2uwn1, h = 2vwh1, where gcd(n1, h1) = 1 and
gcd(2, wn1h1) = 1, and κ = 2v+1w. Then the number of roots N0 of the polynomial

Trqn/q(X
qh+1) ∈ Fqn [X] satisfies the following.

N0 =


qn−1, u < v + 1,

qn−1 + q
n+κ−2

2 (q − 1), u = v + 1,

qn−1 − q
n+κ−2

2 (q − 1), u > v + 1.
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Theorem 3.11. Let p be an odd prime q = ps, n = 2uwn1, h = 2vwh1, where
gcd(n1, h1) = gcd(2, wn1h1) = 1, and κ = 2v+1w. Then the number of roots N0 of

Trqn/q(X
qh+1) ∈ Fqn [X] satisfies the following.

N0 =


qn−1, u < v + 1, n odd,

qn−1 + (q − 1)q
n−2

2 , u < v + 1, q ≡ 3 (mod 4) and 4 | n,
qn−1 − (q − 1)q

n+κ−2
2 , u > v + 1,

qn−1 − (q − 1)q
n−2

2 , else.

3.4 The Special Case q = 2

Charpin and Kyureghyan give a complete characterization of permutation polyno-
mials of shape X + γ Tr2n/2(Xk), i. e. for q = 2, in [5]. The following two theorems
summarize their findings in this special case.

Theorem 3.12. Let γ ∈ F2n. The polynomial X + γ Tr2n/2(X2i) ∈ F2n [X], i ∈ N,
is a permutation polynomial if and only if Tr2n/2(γ) = 0. Its associated mapping is
x 7→ x+ γ Tr2n/2(x).

Theorem 3.13. Let γ ∈ F∗2n and 3 ≤ k ≤ 2n−2 be no power of 2, with the property,
that x 7→ Tr2n/2(xk) is not the zero function. Then X + γ Tr2n/2(Xk) ∈ F2n [X] is

a permutation polynomial precisely if n is even, k = 2i + 2j, Tr2n/2(γ2h+1) = 0 and

γ22h−1 = 1, where h = |j − i|. Its associated mapping is x 7→ x+ γ Tr2n/2(x2h+1).

Using the results of the previous section the cycle structure of these permutation
polynomials can be determined.

Theorem 3.14. Let γ 6= 0 and F (X) = X + γ Tr2n/2(X2i) ∈ F2n [X], where γ ∈
F2n ,Tr2n/2(γ) = 0 and i ∈ N. Then its cycle structure is

CS(F ) = 12n−1
22n−2

.

Proof. Let x ∈ F2n , u ∈ F2, then

Tr2n/2(x+ uγ)− Tr2n/2(x) = uTr2n/2(γ) = 0,

i. e. γ is a 0-linear translator for Tr2n/2(x). Additionally Tr2n/2(X) has 2n−1 roots.
The theorem now follows from Theorem 3.5, 1.

Theorem 3.15. Let F (X) = X + γ Tr2n/2(X2i+2j ) ∈ F2n [X], where n = 2m is

even, Tr2n/2(γ2h+1) = 0, γ22h−1 = 1 and h = |j − i|. Let n = 2uwn1, h = 2vwh1,
where gcd(n1, h1) = gcd(2, wn1h1) = 1. Let λ = m+ gcd(h,m). Then the following
holds.

CS(F ) =


12n−1

22n−2
, u < v + 1,

12n−1+2λ−1
22n−2−2λ−2

, u = v + 1,

12n−1−2λ−1
22n−2+2λ−2

, u > v + 1.
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Proof. According to [5] γ is a 0-linear translator for Tr2n/2(x2i+2j ). The associated

map of F (X) is given by F (x) = x+γ Tr2n/2(x2h+1). Let N0 be the number of fixed

points of F , i. e. the number of roots of Tr2n/2(X2h+1). Then by Theorem 3.5 the
cycle structure of F is

CS(F ) = 1N02
2n−N0

2 .

To determine N0 we need Theorem 3.10. Let now κ = 2v+1w, then κ = 2 gcd(h,m)
if u ≥ v + 1.

Let u < v + 1, then

N0 = 2n−1 and
2n −N0

2
=

2n − 2n−1

2
= 2n−2.

Let u = v + 1, then

N0 = 2n−1 + 2
n+κ−2

2 (2− 1) = 2n−1 + 2
2m+2 gcd(h,m)−2

2 = 2n−1 + 2λ−1 and

2n −N0

2
=

2n − (2n−1 + 2λ−1)

2
= 2n−2 − 2λ−2.

Let u > v + 1, then

N0 = 2n−1 − 2
n+κ−2

2 (2− 1) = 2n−1 − 2
2m+2 gcd(h,m)−2

2 = 2n−1 − 2λ−1 and

2n −N0

2
=

2n − (2n−1 − 2λ−1)

2
= 2n−2 + 2λ−2.

3.5 Counting Fixed Points

The number of fixed points can be determined for any case of Theorem 3.4. For
some cases we will need the following lemmas.

Lemma 3.16. Let q be a prime power and k < q. If q is odd let k be odd. If q ≡ −1
(mod k), then Trq2/q(X

k) ∈ Fq2 [X] has exactly N0 = k(q − 1) + 1 roots.

Proof. Let x be a root:

0 = Trq2/q(x
k) = xk + xqk = xk(1 + xk(q−1)).

So we know that 0 is a root, let x 6= 0, then

−1 = xk(q−1).

Now we need to consider two cases.
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Case 1, q even: In this case −1 = 1 and x 6= 0 is a root of Trq2/q(X
k) if and only

if xk(q−1) = 1. Since k | (q + 1), we know k(q − 1) | (q2 − 1), so the subgroup
Uk = {x ∈ F∗q2 : xk(q−1) = 1} of F∗q2 exists, and |Uk| = k(q − 1). Therefore

N0 = |Uk|+ 1 = k(q − 1) + 1.

Case 2, q odd: In this case k is odd and x 6= 0 is a root of Trq2/q(X
k) if and only

if xk(q−1) = −1. Since k | (q + 1) and q and k are odd, we know 2k | (q + 1)
and 2k(q− 1) | (q2− 1), so the subgroup U2k = {x ∈ F∗q2 : x2k(q−1) = 1} of F∗q2

exists, and |U2k| = 2k(q − 1). Now consider the nonsquares Ŝ2k of U2k. We
know

Ŝ2k = {u ∈ U2k : @v ∈ U2k, s. t. v2 = u} = {u ∈ U2k : uk(q−1) = −1}
= {x ∈ F∗q2 : xk(q−1) = −1}

and |Ŝ2k| = |U2k| /2 = k(q − 1). Therefore N0 = |Ŝ2k|+ 1 = k(q − 1) + 1.

Lemma 3.17. Let q be a prime power, k a positive integer and d = gcd(k, qn − 1).
The polynomials Trqn/q(X

k) and Trqn/q(X
d) have the same number of roots in Fqn.

Proof. Let e = k/d, then gcd(e, qn − 1) = 1, so x 7→ xe is a permutation of Fqn .
Therefore ∣∣∣{x ∈ Fqn : Trqn/q(x

d) = 0}
∣∣∣ =

∣∣∣{x ∈ Fqn : Trqn/q((x
e)d) = 0}

∣∣∣
=
∣∣∣{x ∈ Fqn : Trqn/q(x

k) = 0}
∣∣∣

Theorem 3.18. Let q = ps, where p is prime and s ≥ 1. Let N0 be the number of
fixed points of

F (X) = X + γ Trqn/q(X
k) ∈ Fqn [X].

Then the following holds.

(F1), (F3), (F9), (F13), (F14) and (F15) If n = 2 and

(F1) q ≡ 1 (mod 3), γ = −1/3, k = 2q − 1,

(F3) q ≡ 1 (mod 3), γ = 1, k = (q2 + q + 1)/3,

(F9) q = 2s, γ ∈ Fq, s. t. X3 +X+γ−1 has no root in Fq, k = 22s−2 + 3 · 2s−2,

(F13) q = 2s, s even, γ = 1, k = (q2 − 2q + 4)/3,

(F14) q = 2s, s = 2t, γ ∈ F∗2t, k = 24t−1 − 23t−1 + 22t−1 + 2t−1 or

(F15) q = 3s, s ≥ 2, γ(q−1)/2 = (γ − 1)(q−1)/2, k = 32s−1 + 3s − 3s−1,

then
N0 = q.
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(F2) and (F8) If n = 2 and

(F2) q ≡ −1 (mod 3), γ3 = −1/27, k = 2q − 1 or

(F8) q = 2s, s odd, γ3 = 1, k = (3q2 − 2)(q + 4)/5,

then

N0 = 3(q − 1) + 1.

(F4) If n = 2, q = Q2, γ = −1, k = Q3 −Q+ 1, then

N0 =

{
5(q − 1) + 1, Q ≡ −2 (mod 5),

q, else.

(F5) If n = 2, q = Q2, γ = −1, k = Q3 +Q2 −Q, then

N0 =

{
5(q − 1) + 1, Q ≡ 2 (mod 5),

q, else.

(F6) If n = 2, q ≡ 1 (mod 4), (2γ)(q+1)/2 = 1, k = (q + 1)2/4, then

N0 =
q2 + 1

2
.

(F7), (F10) and (F11) If n = 2, q = 2s and

(F7) s even, γ3 = 1, k = (3q − 2)(q2 + q + 1)/3,

(F10) s ≡ 1 (mod 3), γ = 1, k = (2q2 − 1)(q + 6)/7 or

(F11) s ≡ 2 (mod 3), γ = 1, k = −(q2 − 2)(q + 6)/7,

then

N0 =

{
5(q − 1) + 1, q ≡ −1 (mod 5),

q, else.

(F12) If n = 2, q = 2s, s odd, γ(q+1)/3 = 1, k = (22s−1 + 3 · 2s−1 + 1)/3, then

N0 =
q2 + 2

3
.

(F16) and (F17) If n = 3, q odd and

(F16) γ = 1, k = (q2 + 1)/2 or

(F17) γ = −1/2, k = q2 − q + 1,

then

N0 = q2.
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(F18) If n = 2lr, q arbitrary, γq
2l−1 = −1, k = ql + 1, where l, r are positive

integers, then

N0 = ql(r+1)−1(ql(r−1) − (−1)r(q − 1)).

(F19) If n = 2m, q = 2s, γ ∈ F∗q2, k = 2i(q + 1), where m, i are positive integers,
then

N0 = qm(qm−1 − (−1)m(q − 1)).

(F20) and (F21) If n = 2m, q = 2s, where m is a positive integer, and

(F20) γ ∈ F∗q, k = q2 + 1 or

(F21) γ ∈ F∗q2, k = 2i(q2 + 1), where i is a positive integer and either m is even

or m is odd and (γ2i+1
+ γ2i+1q)(q−1)/ gcd(2i+1−1,2s−1) 6= 1,

then

N0 =

{
q2m−1, m odd,

qm+1(qm−2 − (−1)m/2(q − 1)), m even.

(F22) and (F23) If n = 2m+ 1, where m is a positive integer, and

(F22) n = 2m+1, q = 2s, s ≡ ±2 (mod 6), γ ∈ F∗q, γ(q−1)/3 6= 1, k = 2qi+2qj,
where i, j are positive integers with i 6= j or

(F23) n = 2m+ 1, q = 2s, γ ∈ Fq \ {0, 1}, k = (q2 + q)/2,

then

N0 = q2m.

(F24) If n ≥ 2, q = ps, (−Trqn/q(γ))(q−1)/(pd−1) 6= 1, k = pi, where 1 ≤ i ≤ s and
d = gcd(i, s), then

N0 = qn−1.

Proof. Since x+ γ Trqn/q(x
k) = x if and only if Trqn/q(x

k) = 0, the number of roots

of Trqn/q(X
k) is N0. In particular we do not have to care about γ. We will go

through all of the cases of Theorem 3.4 in order.

Case (F1) n = 2, q ≡ 1 (mod 3), k = 2q − 1.

Let d = gcd(k, q2 − 1), then

d = gcd(2q − 1, q2 − 1) = gcd(2(q − 1) + 1, (q − 1)(q + 1))

= gcd(2(q − 1) + 1, q + 1) = gcd(2(q + 1)− 3, q + 1) = gcd(3, q + 1).

Since q ≡ 1 (mod 3), we get d = 1 and Lemma 3.17 shows, that N0 is the number
of roots of Trq2/q(X), which is q.
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Case (F2) n = 2, q ≡ −1 (mod 3), k = 2q − 1.
Let d = gcd(k, q2 − 1), then

d = gcd(2q − 1, q2 − 1) = gcd(2(q − 1) + 1, (q − 1)(q + 1))

= gcd(2(q − 1) + 1, q + 1) = gcd(2(q + 1)− 3, q + 1) = gcd(3, q + 1).

Since q ≡ −1 (mod 3), we get d = 3 and Lemma 3.17 shows, that N0 is the
number of roots of Trq2/q(X

3), which is 3(q − 1) + 1, by Lemma 3.16.

Case (F3) n = 2, q ≡ 1 (mod 3), k = (q2 + q + 1)/3.
Let d = gcd(k, q2 − 1), then

3d = gcd(q2 + q + 1, 3(q2 − 1)) = gcd(q2 + q + 1, 3(q + 2))

= gcd

(
q2 + q + 1− q − 1

3
· 3(q + 2), 3(q + 2)

)
= gcd(3, 3(q + 2)) = 3.

So d = 1 and Lemma 3.17 shows, that N0 is the number of roots of Trq2/q(X), which
is q.

Case (F4) n = 2, q = Q2, k = Q3 −Q+ 1.
Let d = gcd(k, q2 − 1), then

d = gcd(Q3 −Q+ 1, Q4 − 1) = gcd(Q3 −Q+ 1, Q2 −Q− 1)

= gcd(Q2 + 1, Q2 −Q− 1) = gcd(Q2 + 1, Q+ 2) = gcd(2Q− 1, Q+ 2)

= gcd(5, Q+ 2).

So if Q ≡ −2 (mod 5), then d = 5 and Lemma 3.17 shows, that N0 is the number
of roots of Trq2/q(X

5), which is 5(q − 1) + 1, by Lemma 3.16.
Otherwise d = 1 and Lemma 3.17 shows, that N0 is the number of roots of

Trq2/q(X), which is q.

Case (F5) n = 2, q = Q2, k = Q3 +Q2 −Q.
Since

Trq2/q(x
Q3+Q2−Q) = Trq2/q(x

Q5+Q4−Q3
) = Trq2/q(x

Q4−Q3+Q)

for any x ∈ Fq2 , the number of roots of Trq2/q(X
k1), where k1 = Q4−Q3 +Q is also

N0. Let d = gcd(k1, q
2 − 1), then

d = gcd(Q4 −Q3 +Q,Q4 − 1) = gcd(Q3 −Q− 1, Q4 − 1)

= gcd(Q3 −Q− 1, Q2 +Q− 1) = gcd(Q2 + 1, Q2 +Q− 1) = gcd(Q2 + 1, Q− 2)

= gcd(2Q+ 1, Q− 2) = gcd(5, Q− 2).

So if Q ≡ 2 (mod 5), then d = 5 and Lemma 3.17 shows, that N0 is the number
of roots of Trq2/q(X

5), which is 5(q − 1) + 1, by Lemma 3.16.
Otherwise d = 1 and Lemma 3.17 shows, that N0 is the number of roots of

Trq2/q(X), which is q.
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Case (F6) n = 2, q ≡ 1 (mod 4), k = (q + 1)2/4.

This was already determined by Kyureghyan and Zieve in Remark 5.2 of [11]. The
following is a slight modification of their proof. Consider

k =
(q + 1)2

4
=
q2 + 2q + 1

4
=
q2 − 1

4
· q + 1

2
.

Also for any x ∈ Fq2 , we know x
q2−1

4 ∈ Fq, because(
x
q2−1

4

)q−1

=
(
x
q−1

4

)q2−1
= 1.

So any x ∈ Fq2 is a root of Trq2/q(X
k) if and only if it is a root of Trq2/q(X

k1),

where k1 = q+1
2 . Since q ≡ 1 (mod 4), we know k1 is odd and q ≡ −1 (mod k1).

By Lemma 3.16 the number N0 = k1(q − 1) + 1 = q+1
2 (q − 1) + 1 = q2+1

2 .

Case (F7) n = 2, q = 2s, s even, γ3 = 1, k = (3q − 2)(q2 + q + 1)/3.

Since s is even, let s = 2t, then q = 4t. Let d = gcd(k, q2 − 1), then

3d = gcd((3 · 4t − 2)(42t + 4t + 1), 42t − 1) = gcd((3 · 4t − 2)(4t + 2), 42t − 1)

= gcd(3 · 42t + 4t+1 − 4, 42t − 1) = gcd(4t+1 − 1, 42t − 1) = 4gcd(t+1,2t) − 1

= 4gcd(t+1,2) − 1

So if t is even, i. e. q = 4t ≡ 1 (mod 5), then 3d = 4−1, so d = 1 and Lemma 3.17
shows, that N0 is the number of roots of Trq2/q(X), which is q.

Otherwise, if t is odd, i. e. q = 4t ≡ −1 (mod 5), then 3d = 42 − 1, so d = 5
and Lemma 3.17 shows, that N0 is the number of roots of Trq2/q(X

5), which is
5(q − 1) + 1, by Lemma 3.16.

Case (F8) n = 2, q = 2s, s odd, k = (3q2 − 2)(q + 4)/5.

Since s is odd, let s = 2t + 1. Because gcd(5, q2 − 1) = 1, the map x 7→ x5

permutes Fq2 , so f : Fq2 → Fq, x 7→ Trq2/q(x
k) has the same number of roots as

x 7→ f(x5) = Trq2/q(x
q+4). Let d = gcd(q + 4, q2 − 1), then

d = gcd(q + 4, q + 1) gcd(q + 4, q − 1) = gcd(3, q + 1) gcd(5, q − 1) = 3,

because

q + 1 = 2s + 1 ≡ (−1)s + 1 ≡ −1 + 1 ≡ 0 (mod 3) and

gcd(5, q − 1) | gcd(5, q2 − 1) = 1.

Now Lemma 3.17 shows, that N0 is the number of roots of Trq2/q(X
3), which is

3(q − 1) + 1, by Lemma 3.16.
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Case (F9) n = 2, q = 2s, k = 22s−2 + 3 · 2s−2.
Because gcd(4, q2 − 1) = 1, the map x 7→ x4 permutes Fq2 , therefore f : Fq2 →

Fq, x 7→ Trq2/q(x
k) has the same number of roots as x 7→ f(x4) = Trq2/q(x

3q+1). Let
d = gcd(3q + 1, q2 − 1), then

d = gcd(3q + 1, q + 1) gcd(3q + 1, q − 1) = gcd(2, q + 1) gcd(4, q − 1) = 1

Now Lemma 3.17 shows, that N0 is the number of roots of Trq2/q(X), which is q.

Case (F10) n = 2, q = 2s, s ≡ 1 (mod 3), k = (2q2 − 1)(q + 6)/7.
Since s ≡ 1 (mod 3), let s = 3t+ 1. Because

q2 − 1 = 43t+1 − 1 ≡ 4(43)t − 1 ≡ 4− 1 ≡ 3 (mod 7),

we know gcd(7, q2−1) = 1 and x 7→ x7 permutes Fq2 , so f : Fq2 → Fq, x 7→ Trq2/q(x
k)

has the same number of roots as x 7→ f(x7) = Trq2/q(x
q+6). Let d = gcd(q+6, q2−1),

then

d = gcd(q + 6, q + 1) gcd(q + 6, q − 1) = gcd(5, q + 1) gcd(7, q − 1) = gcd(5, q + 1).

So if q ≡ −1 (mod 5), then d = 5 and Lemma 3.17 shows, that N0 is the number
of roots of Trq2/q(X

5), which is 5(q − 1) + 1, by Lemma 3.16.
Otherwise d = 1 and Lemma 3.17 shows, that N0 is the number of roots of

Trq2/q(X), which is q.

Case (F11) n = 2, q = 2s, s ≡ 2 (mod 3), k = −(q2 − 2)(q + 6)/7.
Because 2s ≡ 1 (mod 3), we know

gcd(7, q2 − 1) = gcd(23 − 1, 22s − 1) = 2gcd(3,2s) − 1 = 2− 1 = 1

and x 7→ x7 permutes Fq2 , so f : Fq2 → Fq, x 7→ Trq2/q(x
k) has the same number of

roots as x 7→ f(x7) = Trq2/q(x
q+6). Let d = gcd(q + 6, q2 − 1), then

d = gcd(q + 6, q + 1) gcd(q + 6, q − 1) = gcd(5, q + 1) gcd(7, q − 1) = gcd(5, q + 1).

So if q ≡ −1 (mod 5), then d = 5 and Lemma 3.17 shows, that N0 is the number
of roots of Trq2/q(X

5), which is 5(q − 1) + 1, by Lemma 3.16.
Otherwise d = 1 and Lemma 3.17 shows, that N0 is the number of roots of

Trq2/q(X), which is q.

Case (F12) n = 2, q = 2s, s odd, k = (22s−1 + 3 · 2s−1 + 1)/3.
Let d = gcd(k, q2 − 1), then

d = gcd

(
22s−1 + 3 · 2s−1 + 1

3
, 2s + 1

)
gcd

(
22s−1 + 3 · 2s−1 + 1

3
, 2s − 1

)
=

2s + 1

3
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because

3 gcd

(
22s−1 + 3 · 2s−1 + 1

3
, 2s + 1

)
= gcd(22s−1 + 3 · 2s−1 + 1, 3(2s + 1))

= gcd((2s−1 + 1)(2s + 1), 3(2s + 1))

= (2s + 1) gcd(2s−1 + 1, 3) = 2s + 1

and

gcd

(
22s−1 + 3 · 2s−1 + 1

3
, 2s − 1

)
= gcd

(
2s−1 + 2

3
(2s − 1) + 1, 2s − 1

)
= gcd(1, 2s − 1) = 1.

So Lemma 3.17 shows, that N0 is the number of roots of Trq2/q(X
(q+1)/3), which

is (q + 1)(q − 1)/3 + 1 = (q2 + 2)/3, by Lemma 3.16.

Case (F13) n = 2, q = 2s, s even, k = (q2 − 2q + 4)/3.
Since s is even, let s = 2t. Let d = gcd(k, q2 − 1), then

d = gcd

(
q2 − 2q + 4

3
, q + 1

)
gcd

(
q2 − 2q + 4

3
, q − 1

)
= 1

because

3 gcd

(
q2 − 2q + 4

3
, q + 1

)
= gcd(q2 − 2q + 4, 3(q + 1))

= gcd(q2 − 2q + 4, 3) gcd(q2 − 2q + 4, q + 1)

= gcd(q2 − 2q + 4, 3) gcd(7, q + 1) = 3, because

q2 − 2q + 4 = (q − 1)2 + 3 = (4t − 1)2 ≡ 0 (mod 3) and

q + 1 = 4t + 1 6≡ 0 (mod 7)

and

gcd

(
q2 − 2q + 4

3
, q − 1

)
= gcd

(
q − 1

3
(q − 1) + 1, q − 1

)
= gcd(1, q − 1) = 1.

So Lemma 3.17 shows, that N0 is the number of roots of Trq2/q(X), which is q.

Case (F14) n = 2, q = 2s, s = 2t, k = 24t−1 − 23t−1 + 22t−1 + 2t−1.
Let d = gcd(k, q2 − 1), then d = d1d2 = 1, where

d1 = gcd(24t−1 − 23t−1 + 22t−1 + 2t−1, 12t + 1)

= gcd((22t + 1)(22t−1 − 2t−1) + 2t, 22t+1)

= gcd(2t, 22t + 1) = 1 and

d2 = gcd(24t−1 − 23t−1 + 22t−1 + 2t−1, 12t − 1)

= gcd((22t − 1)(22t−1 − 2t−1 + 1) + 1, 22t+1)

= gcd(1, 22t + 1) = 1
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So Lemma 3.17 shows, that N0 is the number of roots of Trq2/q(X), which is q.

Case (F15) n = 2, q = 3s, s ≥ 2, k = 32s−1 + 3s − 3s−1.
Let d = gcd(k, q2 − 1), then

d = gcd(32s−1 + 3s − 3s−1, 3s+1 − 3s + 1)

= gcd

(
3s−1 + 1

2
(3s+1 − 3s + 1)− 3s + 1

2
, 3s+1 − 3s + 1

)
= gcd

(
3s + 1

2
, 2 · 3s + 1

)
= gcd

(
3s + 1

2
, 4 · 3s + 1

2
− 1

)
= gcd

(
3s + 1

2
, 1

)
= 1

So Lemma 3.17 shows, that N0 is the number of roots of Trq2/q(X), which is q.

Case (F16) n = 3, q odd, k = (q2 + 1)/2.
Let d = gcd(k, q3 − 1), then

2d = gcd(q2 + 1, 2(q3 − 1)) = gcd(q2 + 1, 2(q + 1))

= gcd

(
q2 + 1− q − 1

2
· 2(q + 1), 2(q + 1)

)
= gcd(2, 2(q + 1)) = 2

So d = 1 and Lemma 3.17 shows, that N0 is the number of roots of Trq2/q(X),
which is q2.

Case (F17) n = 3, q odd, k = q2 − q + 1.
Let d = gcd(k, q3 − 1), then

d = gcd(q2 − q + 1, q2 − q − 1) = gcd(2, q2 − q − 1) = 1

So d = 1 and Lemma 3.17 shows, that N0 is the number of roots of Trq2/q(X),
which is q2.

Case (F18) n = 2lr, q arbitrary, k = ql + 1, where l, r are positive integers.
Let 2lr = n = 2uwn1, l = h = 2vwh1, where gcd(n1, h1) = gcd(2, wn1h1) = 1,

and κ = 2v+1w.
We need to consider two cases.
Case 1 : q is odd. In this case 4l | n by Remark 3.2(a). Further u > v + 1 and

h1 = n1 = 1, because 4h | n. Consequently κ = 2l and (−1)r = 1. By Theorem 3.11
we get

N0 = qn−1 − (q − 1)q
n+κ−2

2 = q2lr−1 − (−1)r(q − 1)ql(r+1)−1.

Case 2 : q is even. In this case u ≥ v + 1 and h1 = n1 = 1, because 2h | n.
Consequently κ = 2l and

(−1)r =

{
−1, u = v + 1,

1, u > v + 1.
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By Theorem 3.10 we get

N0 = qn−1 − (−1)r(q − 1)q
n+κ−2

2 = q2lr−1 − (−1)r(q − 1)ql(r+1)−1.

In both cases we have

N0 = q2lr−1 − (−1)r(q − 1)ql(r+1)−1 = ql(r+1)−1(ql(r−1) − (−1)r(q − 1)).

Case (F19) n = 2m, q = 2s, k = 2i(q + 1), where m, i are positive integers.
Note that Trqn/q(x

2i(q+1)) = Trqn/q(x
q+1)2i . Consequently Trqn/q(x

2i(q+1)) = 0 if
and only if Trqn/q(x

q+1) = 0 and thus it suffices to determine the number of roots
of Trqn/q(X

q+1). Let 2m = n = 2uwn1, 1 = h = 2vwh1, where gcd(n1, h1) = 1 and
gcd(2, wn1h1) = 1, and κ = 2v+1w. Then u > 0, v = 0, w = 1 and κ = 2, because
2 | n and h = 1. Further note, that u = v + 1 = 1, if and only if m is odd, and
u > v + 1 = 1, if and only if m is even. Consequently

(−1)m =

{
−1, u = v + 1,

1, u > v + 1.

By Theorem 3.10 we get

N0 = qn−1 − (−1)m(q − 1)q
n+κ−2

2 = q2m−1 − (−1)m(q − 1)qm

= qm(qm−1 − (−1)m(q − 1)).

Case (F20) n = 2m, q = 2s, k = q2 + 1, where m is a positive integer.
Let 2m = n = 2uwn1, 2 = h = 2vwh1, where gcd(n1, h1) = gcd(2, wn1h1) = 1,

and κ = 2v+1w. Then v = 1, w = 1 and κ = 4, because h = 2.
If m is odd, then u = 1 < 2 = v + 1 and by Theorem 3.10 the number of roots

N0 = qn−1 = q2m−1.

If m is even, then note that m/2 is odd if and only if u = 2 = v + 1 and even if
and only if u > 2 = v + 1. Consequently

(−1)
m/2 =

{
−1, u = v + 1,

1, u > v + 1.

By Theorem 3.10 we get

N0 = qn−1 − (−1)
m/2(q − 1)q

n+κ−2
2 = q2m−1 − (−1)

m/2(q − 1)qm+1

= qm+1(qm−2 − (−1)
m/2(q − 1)).

Case (F21) n = 2m, q = 2s, k = 2i(q2 + 1), where m and i are positive integers.
Note that Trqn/q(x

2i(q2+1)) = Trqn/q(x
q2+1)2i . Consequently Trqn/q(x

2i(q2+1)) = 0

if and only if Trqn/q(x
q2+1) = 0 and N0 in this case behaves exactly like N0 in Case

(F20).
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Case (F22) n = 2m+ 1, q = 2s, s ≡ ±2 (mod 6), k = 2qi + 2qj , where m, i, j are
positive integers and i 6= j.

Note that Trqn/q(x
k) = 0 if and only if Trqn/q(x

qh+1) = 0, where h = |i− j|. Let
2m = n = 2uwn1, 2 = h = 2vwh1, where gcd(n1, h1) = gcd(2, wn1h1) = 1. Then
u = 0 < v + 1, because n is odd. Consequently, by Theorem 3.10, we get

N0 = qn−1 = q2m.

Case (F23) n = 2m+ 1, q = 2s, k = (q2 + q)/2, where m is a positive integer.
Let d = gcd(k, q3 − 1), then

d = gcd

(
q2 + q

2
, q2m+1 − 1

)
= gcd

(q
2

(q + 1), 22m+1 − 1
)

= gcd

(
q

2
(q + 1),

q

2
(q + 1)2

q2m − 1

q + 1
+ q − 1

)
= gcd

(q
2

(q + 1), q − 1
)

= gcd(q, q − 1) = 1.

So d = 1 and Lemma 3.17 shows, that N0 is the number of roots of Trqn/q(X),
which is qn−1 = q2m.

Case (F24) n ≥ 2, q = ps, k = pi, where 1 ≤ i ≤ s.
Note that Trqn/q(x

pi) = Trqn/q(x)p
i
. Therefore Trqn/q(x

pi) = 0 if and only if
Trqn/q(x) = 0, so N0 = qn−1.
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Chapter 4

Invariant Cycle Structure on Lines

This chapter (excluding Section 4.5) is based on work published in [9]. First we
take a look at polynomials of shape F (X) = X + γf(X), where f : Fqn → Fq,
and see, that certain lines of the Fq-vector space Fqn are invariant under F . A
consequence of this is, that permutation polynomials of this shape are always also
permutations of these lines. We further see, that, if f is 1-homogeneous, then the
induced permutations on affine lines, i. e. lines not containing the origin, contained
in certain 2-dimensional subspaces have the same cycle structure. This result is
especially useful if n = 2, because in this case Fqn = Fq2 is already 2-dimensional.
This allows us to determine the cycle structure of cases (F2) and (F12) completely
and of case (F9) in a special case.

4.1 Induced Permutations on Lines and Subspaces

We consider Fqn as an Fq-vector space.

Notation 4.1. Let M and L be subspaces of Fqn . If L is a subspace of M we write
L ≤M . If additionally M 6= L we write L < M .

The following result is straightforward:

Lemma 4.1. Let F (x) = x + γf(x), where f : Fqn → Fq and γ ∈ Fqn. Then F
maps every line α+ γFq, α ∈ Fqn into itself.

Proof. Let α+ γu ∈ α+ γFq, then

F (α+ γu) = α+ γu+ γf(α+ γu) = α+ γ(u+ f(α+ γu)) ∈ α+ γFq.

So F maps α+ γFq into itself.

The next lemma shows that the converse of the above lemma is also true.

Lemma 4.2. Let γ ∈ F∗qn. If F : Fqn → Fqn maps every line α+ γFq, α ∈ Fqn into
itself, then F (x) = x+ γf(x) for an appropriate mapping f : Fqn → Fq.

Proof. By assumption, for any α ∈ Fqn there exists a mapping fα : Fq → Fq such
that

F (α+ γu) = α+ γ(u+ fα(u)) = α+ γu+ γfα(u)
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for u ∈ Fq. Let now A be a system of representatives for the cosets of the line γFq
in Fqn . Then every x ∈ Fqn can be uniquely written as α + γu with α ∈ A, u ∈ Fq.
For x = α+ γu with α ∈ A and u ∈ Fq we define f(x) = u+ fα(u). Then clearly

F (x) = F (α+ γu) = α+ γu+ γfα(u) = x+ γf(x),

where f : Fqn → Fq, with f(x) = u+ fα(u).

Remark 4.1. Let F (x) = x + γf(x), where f : Fqn → Fq and γ ∈ F∗qn . Further let
L be a subspace of Fqn containing γ. Then γFq ≤ L and L =

⋃
α∈L α + γFq. So

any of its cosets β + L =
⋃
α∈L(α+ β) + γFq. Since F maps any of those lines into

themselves it also maps any coset of L into itself.

As an immediate corollary of Lemma 4.1 we get the following result.

Theorem 4.3. Let F : Fqn → Fqn, F (x) = x + γf(x), where f : Fqn → Fq and
γ ∈ F∗qn. Then F permutes Fqn if and only if it permutes every line α + γFq with
α ∈ Fqn.

The next observation follows directly from Theorem 4.3.

Proposition 4.4. Let f : Fqn → Fq and γ ∈ F∗qn. If F (x) = x + γf(x) is a
permutation of Fqn, then every cycle in its cycle decomposition has a length not
exceeding q.

Definition 4.2. A mapping g : Fqn → Fq is called homogeneous of degree 1 or
1-homogeneous if g(ux) = ug(x) for any u ∈ Fq and x ∈ Fqn .

Next we consider a special class of permutations F (x) = x + γf(x), where f is
homogeneous of degree 1. The following theorem shows that the cycle structure of
such permutations has an interesting regularity.

Theorem 4.5. Let f : Fqn → Fq be 1-homogeneous and γ ∈ F∗qn. Further let L
and M be subspaces of Fqn such that γ ∈ L, L < M and dim(L) = dim(M)− 1. If
F (x) = x + γf(x) permutes Fqn, then F has the same cycle structure on all cosets
m+ L 6= L of L in M .

Proof. Let α ∈ M \ L be fixed. Then for any m ∈ M \ L, the coset m + L can be
represented as αt+L with t ∈ F∗q . By Remark 4.1, the mapping F is a permutation
on the coset tα+ L. Let now l ∈ L. Then for a fixed t, we get

F (tα+ l) = tα+ l + γf(tα+ l) = tα+Gt(l)

with Gt : L→ L, Gt(l) = l+ γf(tα+ l). Since Gt(l) = F (tα+ l)− tα = τ−1 ◦F ◦ τ ,
where τ : L → tα + L, with τ(l) = l + tα, Proposition 1.1 shows that Gt(l) is a
permutation of L that has the same cycle structure as F on tα+L. To complete the
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proof, it remains to show, that the cycle structure of Gt is independent of t. Since
f is homogeneous of degree 1, we have

t−1Gt(tl) = t−1(tl + γf(tα+ tl)) = t−1(tl + γf(t(α+ l))

= t−1(tl + tγf(α+ l)) = l + γf(α+ l) = G1(l).

This shows that Gt and G1 are conjugate permutations in the symmetric group SL
and consequently have the same cycle structure.

For the choice L = γFq and M any two dimensional subspace of Fqn containing γ,
Theorem 4.5 implies that the cycle structure of the permutation F (x) = x+γf(x) is
the same on all parallel linesm+γFq 6= γFq contained inM . This is a key observation
for understanding the cycle structure of permutations of shape x+ γf(x) which we
summarize in the following theorem.

Theorem 4.6. Let f : Fqn → Fq be 1-homogeneous and γ ∈ F∗qn. Suppose the map
F (x) = x+ γf(x) is a permutation on Fqn. Then the following properties hold:

(a) If M is a two dimensional subspace of Fqn containing γ, then the cycle structure
of F is the same on every line m+ γFq 6= γFq lying in M .

(b) There are at most 1+(qn−1−1)/(q−1) lines in Fqn such that the cycle structure
of F is pairwise different on them.

Proof. The statement follows from Theorem 4.5 with M of dimension 2 and the
observation that (qn−1−1)/(q−1) is the number of pairwise different two dimensional
subspaces containing γ. We need to consider the cycle structure of F on the line
γFq separately.

Remark 4.2. Example 4.1 shows that there are permutations x + γ Trqn/q(x
k), for

which there exist two dimensional subspaces M of Fqn , such that the cycle structure
of F is not the same on every line m+ γFq 6= γFq lying in M .

The following permutations are from [11], they do not belong to a known infinite
family.

Example 4.1. Let q = 9, n = 3, k ∈ {11, 19} and γ ∈ Fq, where γ4 = −1. Let
F (x) = x + γ Trq3/q(x

k). Then the cycle structure of F on γFq is 19. And for the
80 lines l ‖ γFq, l 6= γFq, it holds, that

on 8 the cycle structure of F is 33,

on 36 the cycle structure of F is 1142,

on 36 the cycle structure of F is 1181.

Since a two dimensional subspace of F93 , containing γF9, contains 8 further lines and
8 - 36, there exists a two dimensional subspace of F93 , containing γF9, that contains
at least two lines with different cycle structures.

47



Chapter 4 Invariant Cycle Structure on Lines

4.2 Consequences for the Cycle Structure of
X + γ Trqn/q(X

k)

In this section we consider Cases (F1) to (F17) of Theorem 3.4. That is f(x) =
Trqn/q(x

k), where n ∈ {2, 3}. We repeat these cases here for convenience.

Theorem 4.7 (Theorem 3.4, Cases (F1) to (F17)). Let q = ps, where p is prime
and s ≥ 1. Then

F (X) = X + γ Trqn/q(X
k) ∈ Fqn [X]

is a permutation polynomial in each of the following cases.

(F1) n = 2, q ≡ 1 (mod 3), γ = −1/3, k = 2q − 1,

(F2) n = 2, q ≡ −1 (mod 3), γ3 = −1/27, k = 2q − 1,

(F3) n = 2, q ≡ 1 (mod 3), γ = 1, k = (q2 + q + 1)/3,

(F4) n = 2, q = Q2, γ = −1, k = Q3 −Q+ 1,

(F5) n = 2, q = Q2, γ = −1, k = Q3 +Q2 −Q,

(F6) n = 2, q ≡ 1 (mod 4), (2γ)(q+1)/2 = 1, k = (q + 1)2/4,

(F7) n = 2, q = 2s, s even, γ3 = 1, k = (3q − 2)(q2 + q + 1)/3,

(F8) n = 2, q = 2s, s odd, γ3 = 1, k = (3q2 − 2)(q + 4)/5,

(F9) n = 2, q = 2s, γ ∈ Fq, s. t. X3 +X + γ−1 has no root in Fq,
k = 22s−2 + 3 · 2s−2,

(F10) n = 2, q = 2s, s ≡ 1 (mod 3), γ = 1, k = (2q2 − 1)(q + 6)/7,

(F11) n = 2, q = 2s, s ≡ 2 (mod 3), γ = 1, k = −(q2 − 2)(q + 6)/7,

(F12) n = 2, q = 2s, s odd, γ(q+1)/3 = 1, k = (22s−1 + 3 · 2s−1 + 1)/3,

(F13) n = 2, q = 2s, s even, γ = 1, k = (q2 − 2q + 4)/3,

(F14) n = 2, q = 2s, s = 2t, γ ∈ F∗2t, k = 24t−1 − 23t−1 + 22t−1 + 2t−1,

(F15) n = 2, q = 3s, s ≥ 2, γ(q−1)/2 = (γ − 1)(q−1)/2, k = 32s−1 + 3s − 3s−1,

(F16) n = 3, q odd, γ = 1, k = (q2 + 1)/2,

(F17) n = 3, q odd, γ = −1/2, k = q2 − q + 1.

It can be easily seen that in all cases of Theorem 4.7 the integer k satisfies k ≡ 1
(mod q − 1), implying the following.

Proposition 4.8. If q and k appear in one of the cases of Theorem 4.7, then xk = x
for any x ∈ Fq, and hence the function Trqn/q(x

k) is homogeneous of degree 1.
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Consequently every permutation listed in Theorem 4.7 fulfils the conditions of
Theorem 4.6. Thus to determine the cycle structure of these permutations, it is
enough to find the cycle structure of the induced permutations on lines parallel to
γFq. By Theorem 4.6(b), for n = 2 there are at most two lines with different cycle
structure, and for n = 3 there are at most q + 2 such lines. One of the lines for
which we need to compute the cycle structure is γFq.

Remark 4.3. Let F (X) = X + γ Trqn/q(X
k) be one of the cases appearing in Theo-

rem 4.7. Then the cycle structure of F on γFq is easy to determine. Indeed, for any
γu ∈ γFq it holds F (γu) = γ(1 + Trqn/q(γ

k))u, and hence the cycle containing γu

has length equal to the multiplicative order of (1 + Trqn/q(γ
k)) in Fq.

Note that in several of the cases listed in Theorem 4.7 there are multiple choices
for γ defining permutations. However in some of these cases the choice of γ does
not impact the cycle structure of the permutations.

Proposition 4.9. Let i ∈ {2, 6, 8, 12} be fixed and Fi,γ be a permutation of Fq2

described in case (Fi) of Theorem 4.7. Further let γ1, γ2 ∈ Fq2 be such, that Fi,γ1

and Fi,γ2 are permutations. Then Fi,γ1 and Fi,γ2 are conjugate in the symmetric
group over Fq2 and hence they have the same cycle structure. Further the cycle
structure of Fi,γ1 on γ1Fq is the same as the cycle structure of Fi,γ2 on γ2Fq and for
any α1 ∈ Fq2 \ γ1Fq, α2 ∈ Fq2 \ γ2Fq, the cycle structure of Fi,γ1 on α1 + γ1Fq is the
same as the cycle structure of Fi,γ2 on α2 + γ2Fq.

Proof.

Case (F2) F2,γ(x) = x+ γ Trq2/q(x
2q−1), where γ3 = − 1

27 . One possible choice for
γ is −1/3. Set

F ∗2 (x) = x− 1/3 Trq2/q(x
2q−1).

In the following we proceed similar to the proof of Theorem 3.2 from [11]: Let
ω2 := −3γ, then ω3

2 = 1 and consequently ω2q−1
2 = 1. Then

F2,γ(ω2x) = ω2x−
1

3
ω2 Trq2/q(ω

2q−1
2 x2q−1) = ω2(x− 1

3
Trq2/q(x

2q−1))

= ω2F
∗
2 (x).

(4.1)

This shows that F2,γ is a conjugate of F ∗2 for any γ with γ3 = − 1
27 , that is the cycle

structure of F2,γ is the same for every γ, such that F2,γ is a permutation.

Case (F6) F6,γ(x) = x + γ Trq2/q(x
(q+1)2/4), where (2γ)(q+1)/2 = 1. One possible

choice for γ is 1/2. Set

F ∗6 (x) = x+ 1/2 Trq2/q(x
(q+1)2/4).
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Let ω6 := 2γ, then ω
(q+1)/2
6 = 1 and consequently ω

(q+1)2/4
6 = 1. Then

F6,γ(ω6x) = ω2x+
1

2
ω6 Trq2/q(ω

(q+1)2/4
6 x(q+1)2/4) = ω6(x+

1

2
Trq2/q(x

(q+1)2/4))

= ω6F
∗
6 (x).

(4.2)
This shows that F6,γ is a conjugate of F ∗6 for any γ with (2γ)(q+1)/2 = 1, that is the
cycle structure of F6,γ is the same for every γ, such that F6,γ is a permutation.

Case (F8) F8,γ(x) = x+ γ Trq2/q(x
k8), where γ3 = 1 and k8 = (3q2 − 2)(q + 4)/5.

One possible choice for γ is 1. Set

F ∗8 (x) = x+ Trq2/q(x
k8).

Let ω8 := γ, then ω3
8 = 1 and consequently ωk8

8 = 1, because 3 | k8. Then

F8,γ(ω8x) = ω8x+ ω8 Trq2/q(ω
k8
8 x

k8) = ω8(x+ Trq2/q(x
k8))

= ω8F
∗
8 (x).

(4.3)

This shows that F8,γ is a conjugate of F ∗8 for any γ with γ3 = 1, that is the cycle
structure of F8,γ is the same for every γ, such that F8,γ is a permutation.

Case (F12) F12,γ(x) = x + γ Trq2/q(x
k12), where q = 2s, s odd, γ(q+1)/3 = 1 and

k12 = (22s−1 + 3 · 2s−1 + 1)/3. One possible choice for γ is 1. Set

F ∗12(x) = x+ Trq2/q(x
k12).

Let ω12 := γ, then ω
(q+1)/3
12 = 1 and consequently ωk12

12 = 1, because (q + 1)/3 is a
divisor of k12. Then

F12,γ(ω12x) = ω12x+ ω12 Trq2/q(ω
k12
12 x

k12) = ω12(x+ Trq2/q(x
k12))

= ω12F
∗
12(x).

(4.4)

This shows that F12,γ is a conjugate of F ∗12 for any γ with γ(q+1)/3 = 1, that is the
cycle structure of F12,γ is the same for every γ, such that F12,γ is a permutation.

Since for any i ∈ {2, 6, 8, 12}, the mapping ϕi : Fq → γFq, ϕi(x) = ωix is a
bijection, (4.1), (4.2), (4.3) and (4.4) also show, that the cycle structure of Fi,γ on
γFq is the same as the cycle structure of F ∗i on Fq.

Let β0 ∈ Fq2 \ Fq be fixed and for any i ∈ {2, 6, 8, 12} let βi = ωiβ0 ∈ Fq2 \ γFq.
Then ϕ′i : β0 + Fq → βi + γFq, ϕ′i(x) = ωix is a bijection. Consequently (4.1), (4.2),
(4.3) and (4.4) also show, that the cycle structure of Fi,γ on βi + γFq is the same
as the cycle structure of F ∗i on β0 + Fq. By Theorem 4.6 for any α ∈ Fq2 \ γFq,
the cycle structure of Fi,γ on α + γFq is the same as the cycle structure of Fi,γ on
βi + γFq.

These two facts together show that for any α ∈ Fq2 \ γFq, the cycle structure of
Fi,γ on α+ γFq is the same as the cycle structure of F ∗i on β0 + Fq.
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4.2 Consequences for the Cycle Structure of X + γ Trqn/q(X
k)

Table 4.1: Examples of cycle structure on lines for n = 2.

case q γ cycle structure on any line l ‖ γFq,l 6= γFq

(F1)
289 11422810

1024 418252014020

(F2)*
125 1321304

1103 131822822524

(F3)
289 11422810

1024 418252014020

(F4)
289 1141122142281622801

1024 4114018801

(F5)
289 15811945211481

1024 14140224015001

(F6)
289 114541285

2197 11099325231566

(F7)

1024
1 14112019204210

6= 1 1430270280226014001

4096
1 82726120614424406

6= 1 41612122302252136045614

(F8)
2048 12201122144166588511011322176119812421

8192 1277826639105256549116104141174130414321566208426013641

(F9) 1024

1 416017

a 21656211865

a99 1664 ∗ ∗

(F10)
1024 141022053546064001

8192 212625223902 101412574136661

(F11)
2048 21224552138111652

16384 1428340742255341141445722

(F12)*
2048 1682212262

32768 1109226130728

(F13)
1024 224530280132015401

16384 2214256117014308134024

(F14) 1024
1 411252063656051802

b 2564 ∗ ∗

(F15) 243
c 112421 ∗ ∗
c4 112161132262782

Here a is a root of X10 +X6 +X5 +X3 +X2 +X + 1 in F1024, b is a root of
X5 +X2 + 1 in F32 and c is a root of X5 −X + 1 in F243.

* We determine the cs for these cases completely in Theorem 4.14 and
Theorem 4.20.
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Chapter 4 Invariant Cycle Structure on Lines

Table 4.2: Examples of cycle structure on lines for n = 3. Here column A contains
the cycle structure on lines l ‖ γFq, l 6= γFq and B the number of planes
P > γFq with such lines.

case (F16)

q A B

23

12214153 3

4253 3

91141 3

21101111 6

12326191 9

81

316194123 1

112646114 3

1121315365152 6

112141101114201 12

112191111221361 12

113191271411 12

115391103351 12

113151141281301 24

125

1221324162123211421 9

2179101501 9

21111342441 9

21145531 9

5161183601 9

144691 9

324291183242 18

122132416191125361 27

1279102202 27

case (F17)

q A B

23

122351101 3

11518191 3

1261151 3

1181141 3

1291121 3

11221 3

2161151 3

4181111 3

81

316194123 1

132366123 3

4291322 6

1331417191221331 12

13316171271351 12

213171101141451 12

21361431 12

181631 12

191621 12

125

1122314281151861 9

1122317191131151201531 9

142251121291711 9

1122718191961 9

11314171181391531 9

125191461631 9

12811151 9

12111161301661 9

223281261811 9

223181481621 9

2251331831 9

6181441671 9

81411761 9

251261741 9
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4.2 Consequences for the Cycle Structure of X + γ Trqn/q(X
k)

Table 4.1 and Table 4.2 contain numerical results on the cycle structure on affine
lines l parallel to γFq and l 6= γFq for permutations obtained by Theorem 4.7.
Recall that mr1

1 m
r2
2 . . .mri

i denotes the cycle structure of a permutation with r1

cycles of length m1, r2 cycles of length m2, . . . and ri cycles of length mi, where
m1 < m2 < · · · < mi.

We computed the cycle structure for all cases with n = 2 in all finite fields with
q < 107. Unfortunately, in many of the cases we found no apparent pattern to these
cycle structures. A particularly strong example for this is (F8), see Table 4.3.

Table 4.3: Cycle Structures in case (F8)

q cycle structure on any line l ‖ γFq,l 6= γFq
2 12

23 12 61

25 12 52 201

27 12 142 282 421

29 12 61 92 123 182 276 454 721

211 12 2011 221 441 665 885 1101 1322 1761 1981 2421

213 12 778 266 3910 525 654 9116 10414 1174 1304 1432 1566 2084 2601 3641

215 12 58 61 103 1240 152 2013 2435 2815 3058 409 425 4615 5012 6036 6610 7021

725 809 9020 1106 11410 1208 1403 1506 1808 2045 2102 2403 2503 2603 3003

3302 3503 3603 3903 4501 4802 5701 6001 6601 7201 7501 11101

217 12 968 3217 341 3617 4417 5112 6835 8522 10255 11914 13613 15316 1701 18710

20434 22112 2388 2558 27221 28912 32316 3409 3572 3748 39110 40811 4256

4424 4592 4766 4932 5272 5442 5612 5956 6121 6632 6806 6976 7312 7487 7992

8163 8841 10032 10201 10882 11561 12924 15642 16321 17001 17683 19721

20402

219 12 1476 194 2076 3619 5619 572 7038 761 8019 8638 9238 954 11483 13019

1332 14419 15229 1714 19081 22841 26677 30440 34223 38037 41821 45634 49418

53215 57017 60813 6467 6848 7226 7607 7981 8365 87413 9128 9502 9885 102610

106421 11026 11407 11785 12169 12542 12927 13304 13686 14065 14445 14825

15204 15583 15963 16342 16722 17103 17489 17863 18622 19004 19381 19763

20142 20521 20901 21281 21663 22421 22801 23181 23943 24321 25461 26221

26602 27742 28881 30022 30781 31541 31921 32301 32682 33062 36481 36861

37241 40662 42561 44081 45221 52441

In contrast, the cycle structures marked with ∗∗ in Table 4.1 look particularly
simple and we believe that the following statements hold.

Conjecture 4.4. Permutations listed in Theorem 4.7 fulfill:

1. For fixed q, then the cycle structures of the permutations in case (F1) are the
same as the cycle structures of the permutations in case (F3).
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2. Let Fγ be as described in case (F9) and t be the largest integer, s. t. 2t ≤ s.
Then there exists an elment γ, such that Fγ has 2s−(t+1) cycles of length 2t+1

on any line α+ γFq, where α ∈ Fq2 \ γFq.

If 2t = s, then this is the case for γ = 1. For this case there is a proof in
Section 4.5.

3. Let Fγ be as described in case (F14). If 4 - s, then there exists an element γ,
such that Fγ has 4 cycles of length 2s−2 on any line α+γFq, where α ∈ Fq2\γFq.

4. Let Fγ be as described in case (F15). Then there exists an element γ, such
that Fγ has 1 fixed point and 1 cycle of length q−1 on any line α+γFq, where
α ∈ Fq2 \ γFq.

For the permutations considered in the previous conjecture, it is easy to describe
their cycle structure on the line γFq. We state this in the next proposition. Note
that in cases (F9), (F14) and (F15), γ ∈ Fq and thus γFq = Fq.

Proposition 4.10. Let ord(x) be the multiplicative order of x in Fq.

(a) In cases (F1) and (F3) the permutations have q fixed points on γFq, if q is
even, and 1 fixed point and (q− 1)/ ord(3) cycles of length ord(3) on γFq, if q
is odd.

(b) In cases (F9) and (F14) the permutation Fγ reduces to the identity mapping on
γFq and consequently has q fixed points on γFq.

(c) In case (F15) the permutation Fγ reduces to F (u) = (2γ+1)u on γFq and con-
sequently has one fixed point and (q−1)/ ord(2γ+1) cycles of length ord(2γ+1)
on γFq.

Recall that Theorem 4.6 shows that for n = 3, there are at most q+2 different kinds
of lines, where “different” means, that on those lines the considered permutation has
different cycle structures. One of those lines is γFq, which we do not consider in
the table. So the upper bound for different lines in the table is q + 1. Observe that
Table 4.2 shows in particular that in cases (F16) and (F17) this upper bound q+ 1 is
not achieved. Instead for q = 81 there are only 8 different lines in case (F16), and 9
different lines in case (F17); and for q = 125 there are 9 different lines in case (F16),
and 14 different lines in case (F17).

Remark 4.5. At present we have no explanation for the cycle structure of case (F16).
In Chapter 6 we describe it explicitly for the composition of this mapping with
xq

2+q−1, that is for xq
2+q−1 + Trq3/q(x). The possible cycle lengths are only 1, the

multiplicative order of 4 modulo p and twice the multiplicative order of 4 modulo p,
where p is the characteristic of Fq.
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Table 4.4: The cycle structure of F in case (F2) for different q.

q q − 1 cycle structure of F on any line α+ Fq 6= Fq
25 31 12301

29 7 · 73 12611242

211 23 · 89 121128823

215 7 · 31 · 151 1261307503150216

219 524287 125242861

53 22 · 31 1321304

55 22 · 11 · 71 13215410235447022

11 2 · 5 1342

113 2 · 5 · 7 · 19 1342621241843628

17 24 132342

173 24 · 307 13234234726836

257 28 13234282162322642

491 2 · 5 · 72 134262124422844

821 22 · 5 · 41 1321448100

1409 27 · 11 13234254821061622043224048041604

1613 22 · 13 · 31 132138643052

2351 2 · 52 · 47 13422022349244604

2939 2 · 13 · 113 133811223368

3257 23 · 11 · 37 13235410618169032

4637 22 · 19 · 61 132110241849048

5171 2 · 5 · 11 · 47 13425420423492411584608

5711 2 · 5 · 571 1342570211404

6359 2 · 11 · 172 1354162804272213604

7547 2 · 73 · 11 1354623044222104294214704

8513 26 · 7 · 13 132342688212416218562443628484722814428

8543 2 · 4271 1321354

9941 22 · 5 · 7 · 71 132244641283547021408210842016
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Chapter 4 Invariant Cycle Structure on Lines

4.3 Determining the Cycle Structure in Case (F2)

Numerical results (Table 4.4) for case (F2) show that the cycle structure of these
permutations on lines l ‖ γFq, l 6= γFq is always the same as the cycle structure of
X3 on Fq. The cycle structure of X3 on Fq is known by Theorem 2.2.

Let Tr(x) = Trq2/q(x) = x + xq be the trace map from Fq2 to Fq. We use this
notation for the remainder of the chapter. In this section we determine the cycle
structure of case (F2), which is F (x) = x + γ Tr(x2q−1) on Fq2 , where q ≡ −1
(mod 3) and γ3 = − 1

27 . We do this by showing, that indeed the cycle structure of
F (x) = x + γ Tr(x2q−1) on lines l ‖ γFq, l 6= γFq is the same as the cycle structure
of x3 on Fq.

By Proposition 4.9 for all admissible choices of γ the cycle structure of F as well
as its cycle structure on the lines parallel to γFq is the same. Hence we consider the
case γ = −1

3 , for which γFq = Fq holds, because in this case γ ∈ Fq.
First we determine the cycle structure of F on Fq.

Lemma 4.11. Let q ≡ −1 (mod 3) and p be the characteristic of Fq. Then

(a) If q is even, the permutation F (x) = x− 1/3 Tr(x2q−1) reduces to F (x) = x on
the line Fq. Consequently it has q fixed points on Fq.

(b) If q is odd, the permutation F (x) = x− 1/3 Tr(x2q−1) reduces to F (x) = 1/3 · x
on the line Fq. Consequently, it has one fixed point and (q− 1)/ ordp(3) cycles
of length ordp(3) on Fq.

Proof. If q is even and x ∈ Fq, then clearly F (x) = x. If otherwise q is odd and
x ∈ Fq, then

F (x) = x− 1

3
Tr(x2q−1) = x− 1

3
Tr(x) = x− 2

3
x =

1

3
x.

So x = 0 is a fixed point and the n-th iterate of F is (1/3)nx. Therefore if x 6= 0 it is
contained in the cycle

(
x, 1/3 · x, . . . , (1/3)k−1x

)
where k = ordp(1/3) = ordp(3).

To determine the cycle structure of F on the other lines parallel to Fq, by Theorem
4.6, we only need to pick one of them and find the cycle structure on it. The following
claim will be used for a suitable choice of this line.

Claim 4.12. If q ≡ 5 (mod 6), then −1/3 is a nonsquare of Fq.

Proof. Let q = ps with p prime. then p ≡ 5 (mod 6) and s is odd. −1/3 is a
nonsquare of Fq if and only if X2 + 1/3 is irreducible in Fq[x]. Since q = ps with odd
s, X2 + 1/3 is irreducible in Fq[X] if and only if it is irreducible in Fp[X]. X2 + 1/3
is irreducible in Fp[X] if and only if −1/3 is a nonsquare in Fp. Consequently it
suffices to show that −1/3 is a nonsquare of the prime field Fp, where p ≡ 5 (mod 6).
Obviously −1/3 is nonsquare if and only if −3 is nonsquare. So our goal is to show
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4.3 Determining the Cycle Structure in Case (F2)

that the Legendre symbol
(−3
p

)
= −1. This follows easily from the law of quadratic

reciprocity, stating that (
a

b

)
·
(
b

a

)
= (−1)

a−1
2
· b−1

2

for any two distinct odd primes a and b.

Clearly,

(
−3

p

)
=

(
−1

p

)(
3

p

)
.

For p ≡ 1 (mod 4), we have(
−1

p

)
= 1,

(
3

p

)
=

(
p

3

)
=

(
2

3

)
= −1, and thus

(
−3

p

)
= 1 · (−1) = −1.

For p ≡ 3 (mod 4), we have(
−1

p

)
= −1,

(
3

p

)
= −

(
p

3

)
= −

(
2

3

)
= 1 and thus

(
−3

p

)
= (−1) · 1 = −1.

Now we are ready to determine the rest of the cycle structure of F .

Theorem 4.13. Let q ≡ −1 (mod 3) and α ∈ Fq2 \ Fq. Then the permutation
F (x) = x− 1/3 Tr(x2q−1) has the same cycle structure on α+ Fq as the permutation
x3 on Fq.

Proof. According to Theorem 4.6 the cycle structure of F on the line α+Fq does not
depend on the choice of α ∈ Fq2 \ Fq. As in the proof of Theorem 4.5 for any α and
l ∈ Fq the following holds: F (α+ l) = α+Gα(l) and Gα(l) := l + γ Tr((α+ l)2q−1)
permutes Fq and has the same cycle structure as F on α + Fq. Next we show
that for a particular choice of α, and thus for any choice of α by Theorem 4.6, the
permutation Gα is a conjugate of m(x) = x3 in SFq .

If q is even, then γ = −1/3 = 1 ∈ F2. Let α ∈ F4 ≤ Fq2 , α /∈ F2. Since q = 2s,
with s odd, α /∈ F2s . This α satisfies

α2 = α+ 1, α3 = 1, Tr(α) = αq + α = α2 + α = 1,

Tr(α2) = Tr(α+ 1) = Tr(α) = 1, Tr(α3) = Tr(1) = 0

and

(α+ l)q+1 = (α+ l)(αq + l) = (α+ l)(α+1+ l) = α2 +α+αl+αl+ l+ l2 = l2 + l+1.
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Using the above equations we get

Gα(l) = l + Tr((α+ l)2q−1) = l + Tr

(
(αq + l)2

α+ l

)
= l +

(αq + l)2

α+ l
+

(α+ l)2

αq + l
= l +

(αq + l)3 + (α+ l)3

(α+ l)(αq + l)

= l +
Tr((α+ l)3)

(α+ l)q+1
= l +

2l3 + 3l2 Tr(α) + 3lTr(α2) + Tr(α3)

l2 + l + 1

= l +
l2 + l

l2 + l + 1
=
l3 + l2 + l + l2 + l

l2 + l + 1
=

l3

l2 + l + 1
.

Now we can show that Gα = ϕ−1 ◦m ◦ ϕ, or equivalently ϕ ◦ Gα = m ◦ ϕ for the
permutation

ϕ(l) := lq−2 + 1 =

{
1
l + 1, l 6= 0,

1, l = 0.

We have

(ϕ ◦Gα)(0) = f(0) = 1 = m(1) = (m ◦ ϕ)(0).

If l 6= 0 then

(ϕ ◦Gα)(l) =
l2 + l + 1

l3
+ 1 =

1

l3
+

1

l2
+

1

l
+ 1 =

(
1

l
+ 1

)3

= (m ◦ ϕ)(l).

This proves the theorem for even q.

If q is odd, then by Claim 4.12, −1
3 is a nonsquare of Fq, so there is α ∈ Fq2 \ Fq

with α2 = −1
3 . This α satisfies (αq)2 = (α2)q = α2 and thus

αq = −α, Tr(α) = Tr(−α) = 0, Tr(α2) = 2α2, Tr(α3) = α2 Tr(α) = 0.

Using these equations we obtain

Gα(l) = l − 1

3
Tr((α+ l)2q−1) = l − 1

3
(α+ l)2(q+1) Tr

(
1

(α+ l)3

)
= l − 1

3
[(αq + l)(α+ l)]2

(
1

(α+ l)3
+

1

(αq + l)3

)
= l − 1

3
(l2 − α2)2 · (α+ l)3 + (αq + l)3

(l2 − α2)3
= l − 1

3
· Tr((l + α)3)

l2 − α2

= l − 1

3
· 2l3 + 3l2 Tr(α) + 3lTr(α2) + Tr(α3)

l2 − α2

∗
= l − 1

3
· 2l3 + 6lα2

l2 − α2
= l − 1

3
· 2l3 − 2l

l2 + 1/3

= l − l(2l2 − 2)

3l2 + 1
=
l(3l2 + 1)− l(2l2 − 2)

3l2 + 1
=
l(l2 + 3)

3l2 + 1
,
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where * follows from α2 = −1/3. Next we show that Gα = ϕ−1◦m◦ϕ, or equivalently
ϕ ◦Gα = m ◦ ϕ for the permutation

ϕ(l) :=

(
1

2
l +

1

2

)q−2

− 1 =

{
1−l
1+l , l 6= −1,

−1, l = −1.

We have

(ϕ ◦Gα)(−1) = ϕ

(
−1(1 + 3)

3 + 1

)
= ϕ(−1) = −1 = m(−1) = (m ◦ ϕ)(−1).

If l 6= −1 then

(ϕ ◦Gα)(l) =
1− l(l2+3)

3l2+1

1 + l(l2+3)
3l2+1

=
1− 3l + 3l2 − l3

1 + 3l + 3l2 + l3
=

(
1− l
1 + l

)3

= (m ◦ ϕ)(l)

Consequently F has the same cycle structure on α+ Fq as x3 on Fq.

We summarize the results of this section by describing explicitly the cycle structure
of F in the general case.

Theorem 4.14. Let q ≡ −1 (mod 3), p be the characteristic of Fq and γ ∈ Fq2 with
γ3 = − 1

27 . Let Nt be defined by the following recursion.

N1 = gcd(2, q − 1) =

{
1, q even

2, q odd

and

t ·Nt = gcd(3t − 1, q − 1)−
∑
i|t,i 6=t

i ·Ni.

1. Let q be even. Then the permutation F (x) = x + γ Tr(x2q−1) of Fq2 has q
fixed points on γFq. Further, on any affine line α + γFq, α ∈ Fq2 \ γFq, the
permutation F (x) has N1 + 1 = 2 fixed points and Nt cycles of length t for
every t > 1, such that t = ordm(3) for a divisor m of q − 1.

2. Let q be odd. Then the permutation F (x) = x + γ Tr(x2q−1) of Fq2 has one

fixed point and q−1
ordp(3) cycles of length ordp(3) on γFq. Further, on any affine

line α+ γFq, α ∈ Fq2 \ γFq, the permutation F (x) has N1 + 1 = 3 fixed points
and Nt cycles of length t for every t > 1, such that t = ordm(3) for a divisor
m of q − 1.

Proof. The theorem follows from Lemma 4.11, Theorem 4.13 and Theorem 2.2.
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4.4 Determining the Cycle Structure in Case (F12)

In this section we determine the cycle structure of case (F12), which is F (x) =
x + γ Tr(x(22s−1+3·2s−1+1)/3) on Fq2 , where q = 2s, s odd and γ(q+1)/3 = 1. Recall,
that by Tr(x), we denote Trq2/q(x) = xq + x. By Proposition 4.9 for all admissible
choices of γ the cycle structure of F as well as its cycle structure on the lines parallel
to γFq is the same. Hence it is enough to consider γ = 1, for which γFq = Fq holds.

The next Lemma describes the cycle structure of F on the line Fq.

Lemma 4.15. Let q = 2s and s be odd. Then the permutation

F (x) = x+ Tr

(
x

22s−1+3·2s−1+1
3

)
reduces to the identity on the line Fq. Consequently it has q fixed points on Fq.

Proof. Clearly F (x) = x for x ∈ Fq.

Lemma 4.16. Let q = 2s and s be odd. Let α ∈ Fq2 \ Fq. Then the permutation

F (x) = x+ Tr

(
x

22s−1+3·2s−1+1
3

)
has 2s−2

3 fixed points on the line α+ Fq.

Proof. By Theorem 3.18, the permutation F has q2+2
3 fixed points and by Lemma 4.15

we know that q of them are on the line Fq. By Theorem 4.6, the permutation F has
the same number of fixed points on every line α+Fq, where α ∈ Fq2 \Fq. So on any
of those lines the number of fixed points is(

22s + 2

3
− 2s

)
/(2s − 1) =

2s − 2

3
.

To determine the cycle structure of F on the lines parallel but not equal to Fq,
by Theorem 4.6 it suffices to pick one of them and find the cycle structure on it.

Theorem 4.17. Let q = 2s and s be odd. Let α ∈ Fq2 \ Fq and β ∈ (F4 \ F2) ⊆

(Fq2 \ Fq). Then the permutation F (x) = x + Tr

(
x

22s−1+3·2s−1+1
3

)
has the same

cycle structure on α + Fq as the permutation Gβ(x) = x + Ps(x)(x2s−1
+ x + 1) on

Fq, where Ps(x) = Tr

(
s−1∏
k=0

(x2k + β)

)
. In particular Gβ(x) has 2s−2

3 fixed points.

Proof. By Theorem 4.6 the cycle structure of F on the line α+ Fq does not depend
on the choice of α ∈ Fq2 \ Fq. Here we choose α = β and as in Theorem 4.13
conclude, that the considered cycle structure is the same as that of

Gβ : Fq → Fq, Gβ(x) = x+ Tr

(
(x+ β)

22s−1+3·2s−1+1
3

)
.
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Since β ∈ F4 \ F2, we have that

β2 = β + 1, β3 = 1, β4 = β, βq = β2.

Note that

22s−1 + 3 · 2s−1 + 1

3
= 2s−1 + 4s−1 − 4s−1 − 1

3
= 2s−1 + 4s−1 −

s−2∑
k=0

4k,

and therefore

Gβ(x) = x+ Tr

(
(x+ β)2s−1

(x+ β)4s−1∏s−2
k=0(x4k + β)

)
.

Since for x ∈ Fq

s−1∏
k=0

(x4k + β) =

(s−1)/2∏
k=0

(x22k
+ β)

s−1∏
k=(s−1)/2+1

(x22k
+ β)

=

(s−1)/2∏
k=0

(x22k
+ β)

(s−1)/2∏
k=1

(x22k−1
+ β) =

s−1∏
k=0

(x2k + β),

we get
s−2∏
k=0

(x4k + β) =

∏s−1
k=0(x2k + β)

x4s−1 + β

and

Gβ(x) = x+ Tr

(
x2s−1

+ β2∏s−2
k=0(x2k + β)

)
= x+

x2s−1
+ β∏s−2

k=0(x2k + β2)
+

x2s−1
+ β2∏s−2

k=0(x2k + β)

= x+

∏s−1
k=0(x2k + β) +

∏s−1
k=0(x2k + β2)∏s−2

k=0(x2k + β2)(x2k + β)
= x+

Tr
(∏s−1

k=0(x2k + β)
)

∏s−2
k=0((x2 + x)2k + 1)

.

Further, note that

s−2∏
k=0

((x2 + x)2k + 1) =
2s−1−1∑
j=0

(x2 + x)j =
(x2 + x)2s−1

+ 1

x2 + x+ 1
=
x2s−1

+ x+ 1

x2 + x+ 1

and hence

Gβ(x) = x+
(x2 + x+ 1)Ps(x)

x2s−1 + x+ 1
= x+ Ps(x)(x2s−1

+ x+ 1),

where Ps(x) = Tr

(
s−1∏
k=0

(x2k + β)

)
.
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The following properties of Ps(x) will allow us to determine the cycle structure of
Gβ explicitly. Recall that for s = 3m · l, where 3 - l, we write ν3(s) = m.

Lemma 4.18. Let β ∈ F4 \ F2, x ∈ F2s and s be odd. Let t | s, u ∈ F2t and

Gβ(x) = x+ Ps(x)(x2s−1
+ x+ 1), where Ps(x) = Tr

(
s−1∏
k=0

(x2k + β)

)
. Then

(a) Ps(x) ∈ F2,

(b) Ps(u) =

{
0, 3 | (s/t)
Pt(u), 3 - (s/t)

(c) Gβ(x) = x if and only if Ps(x) = 0,

(d) |{x ∈ F2s | Ps(x) = 0}| = 2s−2
3 ,

(e) |{x ∈ F2s | Ps(x) = 1}| = 2s+1+2
3 ,

(f) |{u ∈ F2t |Ps(u) = 1}| =

{
0, ν3(t) < ν3(s),
2t+1+2

3 , ν3(t) = ν3(s).

Proof. The fact that(
s−1∏
k=0

(x2k + β)

)4

=
s−1∏
k=0

(x4·2k + β) =
s−1∏
k=0

(x2k + β), shows that
s−1∏
k=0

(x2k + β) ∈ F4.

Thus

Ps(x) = Tr22s/2s

(
s−1∏
k=0

(x2k + β)

)
= Tr4/2

(
s−1∏
k=0

(x2k + β)

)
∈ F2,

which is (a). Further note that u2k + β 6= 0 and

s−1∏
k=0

(u2k + β) =

(
t−1∏
k=0

(u2k + β)

)s/t

=


1, s/t ≡ 0 (mod 3)∏t−1
k=0(u2k + β), s/t ≡ 1 (mod 3)∏t−1
k=0(u2k + β2), s/t ≡ 2 (mod 3)

and, because βq = β2,

Trq2/q

(
t−1∏
k=0

(u2k + β2)

)
= Trq2/q

(
t−1∏
k=0

(u2k + β)

)
= Pt(u).

This shows (b). Since s is odd, X2s−1
+ X + 1 has no root in F2s , which im-

plies (c). By Theorem 4.17, Gβ has 2s−2
3 fixed points. With (c), we see that

|{x ∈ F2s | Ps(x) = 0}| = 2s−2
3 , which is (d). By (a), we know that Ps(x) ∈ F2,

so

|{x ∈ F2s | Ps(x) = 1}| = 2s − |{x ∈ F2s | Ps(x) = 0}| = 2s − 2s − 2

3
=

2s+1 + 2

3
.

62



4.4 Determining the Cycle Structure in Case (F12)

This is (e). With (b) we obtain

|{u ∈ F2t |Ps(u) = 1}| =

{
0, 3 | (s/t)
|{u ∈ F2t |Pt(u) = 1}| , 3 - (s/t)

=

{
0, 3 | (s/t)
2t+1+2

3 , 3 - (s/t)
.

Since 3 - (s/t) if and only if ν3(t) = ν3(s), (f) follows.

Now we are ready to determine the cycle structure of Gβ.

Theorem 4.19. Let q = 2s and s be odd. Let β ∈ F4 \ F2. Then the permutation

Gβ(x) = x + Ps(x)(x2s−1
+ x + 1) of Fq, where Ps(x) = Tr

(
s−1∏
k=0

(x2k + β)

)
, has

q−2
3 fixed points and Nt cycles of length 2t for every t | s, with ν3(t) = ν3(s). The

Numbers Nt are positive and satisfy

2tNt =
2t+1 + 2

3
−

∑
d|t,d<t,

ν3(d)=ν3(s)

2dNd and 2 · 3mN3m =
23m+1 + 2

3
, where m = ν3(s).

Proof. By Lemma 4.18(c), x ∈ Fq is a fixed point of Gβ if and only if Ps(x) = 0
and then Lemma 4.18(d) shows that Gβ has q−2

3 fixed points. Let Gnβ = G ◦ · · · ◦G︸ ︷︷ ︸
n

denote the n-th iterate of Gβ.
Consider now an x0 ∈ Fq that is not fixed by Gβ, i. e. an x0 ∈ Fq with Ps(x0) 6= 0.

Then Ps(x0) = 1 by Lemma 4.18(a). Consequently on the cycle containing x0 the
permutation Gβ reduces to

Gβ(x) = x+ x2s−1
+ x+ 1 = x2s−1

+ 1

and thus has its inverse given by

G−1
β (x) = x2 + 1.

As a result an even number of iterations of G−1
β yields

G−2t
β (x) = x22t

,

while an odd number of iterations gives

G
−(2t+1)
β (x) = x22t+1

+ 1.

Since s is odd, X22t+1
+X + 1 has no roots in Fq, so

x0 6= x22t+1

0 + 1 = G
−(2t+1)
β (x0), and thus G2t+1

β (x0) 6= x0.
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Chapter 4 Invariant Cycle Structure on Lines

Hence the cycle length is even, say 2t. Since t is minimal with x0 = G−2t
β (x0) =

(x2t
0 )2t, it must hold that x0 ∈ F2t . This forces t | s.
Suppose now t | s and Gβ has Nt cycles of length 2t. Then it must hold that

2tNt = |{u ∈ F2t | Ps(u) = 1 and u is not in a subfield of F2t}|

= |{u ∈ F2t | Ps(u) = 1}| −
∑
d|t
d<t

∣∣∣∣{u ∈ F2d

∣∣∣∣ Ps(u) = 1 and u is not
in a subfield of F2d

}∣∣∣∣ .
Combining this with Lemma 4.18(f), we get

2tNt =


0, ν3(t) < ν3(s)
2t+1+2

3 −
∑
d|t
d<t

2dNd, ν3(t) = ν3(s)

Note that 2dNd = 0 if d | s with ν3(d) < ν3(s). Finally observe that for any t | s
with ν3(t) = ν3(s), the number Nt is positive. Indeed by Lemma 4.18(e) there are
proper elements u of F2t with Ps(u) = 1. These numbers satisfy then

2tNt =
2t+1 + 2

3
−

∑
d|t,d<t,

ν3(d)=ν3(s)

2dNd.

For t = 3m with m = ν3(s), the sum is empty and thus 2 · 3mN3m = 23m+1+2
3 .

We summarize the results of this section by describing explicitly the cycle structure
of F in the general case.

Theorem 4.20. Let q = 2s and s be odd. Let γ ∈ Fq2 with γ(q+1)/3 = 1. For t | s,
with ν3(t) = ν3(s), let Nt be defined by the following recursion:

N3m =
23m+1 + 2

2 · 3m+1
, for m = ν3(s)

and

2tNt =
2t+1 + 2

3
−

∑
d|t,d<t,

ν3(d)=ν3(s)

2dNd.

Then the permutation F (x) = x+ γ Tr

(
x

22s−1+3·2s−1+1
3

)
of Fq2 has

1. q fixed points on γFq and

2. q−2
3 fixed points and Nt cycles of length 2t on every affine line α + γFq, α ∈

Fq2 \ γFq, where t is an arbitrary divisor of s satisfying ν3(t) = ν3(s).

Proof. Part 1 follows from Lemma 4.15 and part 2 follows from Theorem 4.17 and
Theorem 4.19.
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4.5 Properties of the Cycle Structure in Case (F9)

4.5 Properties of the Cycle Structure in Case (F9)

In this section we study the cycle structure of Fγ(x) = x + γ Trq2/q(x
22s−2+3·2s−2

),
where q = 2s and γ ∈ Fq, s. t. X3 + X + γ−1 has no root in Fq. Note γFq = Fq,
because γ ∈ Fq.

We can easily determine the cycle structure of F on the line Fq.

Lemma 4.21. Let q = 2s and γ ∈ Fq be s. t. X3 + X + γ−1 has no root in Fq.
Then the permutation Fγ(x) = x+ γ Trq2/q(x

22s−2+3·2s−2
) reduces to the identity on

the line Fq. Consequently it has q fixed points on Fq.

Proof. Clearly F (x) = x for x ∈ Fq.

Theorem 4.22. Let δ = β2 + β, where β ∈ Fq2 \ Fq, with Trq2/q(β) = 1. Then the
cycle structure of Fγ on any line α + Fq, where α ∈ Fq2 \ Fq is the same as that of

the permutation Gγ,δ(x) = x+ γ2x2s−1
+ γx2s−2

+ δ on Fq.

Proof. By Theorem 4.6 the cycle structure of Fγ on the line α+Fq does not depend
on the choice of α ∈ Fq2 \ Fq. Here we choose α = β and as in Theorem 4.13
conclude, that this cycle structure is the same as that of

G′γ,β(x) = x+ γ Trq2/q

(
(x+ β)22s−2+3·2s−2

)
on Fq.

Consider

(x+ β)22s−2+3·2s−2
=
(
(x+ β)2s+3

)2s−2

=
(
(x+ β2s)(x+ β)3

)2s−2

=
(
(x+ β2s)(x3 + x2β + xβ2 + β3)

)
=
(
x4 + (β2s + β)x3 + β(β2s + β)x2 + β2(β2s + β)x+ β2s+3

)2s−2

.

Recall that Trq2/q(β) = β2s + β = 1 and thus

Trq2/q(β
2) =

(
Trq2/q(β)

)2
= 1, δ2s = (β2 + β)2s = β2 + β = δ, i. e. δ ∈ Fq.

Consequently
Trq2/q(β

2s+3) = Trq2/q(β
2(β2 + β)) = β2 + β.

We get

Trq2/q

(
(x+ β)22s−2+3·2s−2

)
= (0 + 0 + x2 + x+ β2 + β)2s−2

So G′γ,β(x) = x + γx2s−1
+ γx2s−2

+ γ(β2 + β)2s−2
. Now by Proposition 1.1 the

cycle structure of G′γ,β on Fq is the same as of

Gγ,δ(x) =

G′γ,β
(
γx2s−2

)
γ

22

= x+ γ2x2s−1
+ γx2s−2

+ δ.
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Chapter 4 Invariant Cycle Structure on Lines

We can determine the cycle structure in the special case, where γ = 1 and s is a
power of 2.

Lemma 4.23. Let q = 2s, where s = 2t and t > 0. Let δ = β2+β, where β ∈ Fq2\Fq,
with Trq2/q(β) = 1 and Gδ(x) = x+ x22t−1

+ x22t−2
+ δ. Then, for m < t, the 2m-th

iterate of Gδ is

G2m

δ = x+ x22t−2m

+ x22t−2m+1

+

2(2m−1)∑
j=2m−2

δ22t−j
.

Proof. This lemma can be shown by induction.

Let m = 0 < t, then

G20

δ (x) = G1,δ(x) = x+ x22t−20

+ x22t−20+1

+

2(20−1)∑
j=20−1

δ22t−j

Let m+ 1 < t and

G2m

δ = x+ x22t−2m

+ x22t−2m+1

+

2(2m−1)∑
j=2m−2

δ22t−j
,

then

G2m+1

δ (x) = G2m

δ (G2m

δ (x))

= x + x22t−2m

+ x22t−2m+1

+

2(2m−1)∑
j=2m−2

δ22t−j

+ x22t−2m

+ x22t−2m+1

+ x22t−2m+1−2m

+

2(2m−1)∑
j=2m−1

δ22t−(j+2m)

+ x22t−2m+1

+ x22t−2m+1−2m

+ x22t−2m+2

+

2(2m−1)∑
j=2m−1

δ22t−(j+2m+1)

+

2(2m−1)∑
j=2m−2

δ22t−j
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and thus

G2m+1

δ (x) = x+ x22t−2m+1

+ x22t−2m+2

+

2(2m−1)∑
j=2m−1

δ22t−(j+2m)
+

2(2m−1)∑
j=2m−1

δ22t−(j+2m+1)

= x+ x22t−2m+1

+ x22t−2m+2

+

2(2m−1)+2m∑
j=2m−1+2m

δ22t−j
+

2(2m−1)+2m+1∑
j=2m−1+2m+1

δ22t−j

= x+ x22t−2m+1

+ x22t−2m+2

+

2m+1+2m−1∑
j=2m+1−1

δ22t−j
+

2(2m+1−1)∑
j=2m+1+2m−1

δ22t−j

= x+ x22t−2m+1

+ x22t−2m+2

+

2(2m+1−1)∑
j=2m+1−1

δ22t−j
.

Theorem 4.24. Let q = 2s, where s = 2t. Then for δ = β2 +β, where β ∈ Fq2 \Fq,
with Trq2/q(β) = 1 the permutation Gδ(x) = x+x22t−1

+x22t−2
+ δ has 2s−t−1 cycles

of length 2s = 2t+1.

Proof. By Lemma 4.23 in particular

G2t−1

δ = x+ x22t−2t−1

+ x22t−2t

+
2t−2∑

j=2t−1−1

δ22t−j
= x22t−1

+
2t−2∑

j=2t−1−1

δ22t−j
,

so

G2t

δ (x) =

(
x22t−1

)22t−1

+

 2t−2∑
j=2t−1−1

δ22t−j

22t−1

+
2t−2∑

j=2t−1−1

δ22t−j

= x+
2t−2∑

j=2t−1−1

δ22t−(j−2t+1)
+

2t−2∑
j=2t−1−1

δ22t−j

= x+
2t−1−2∑
j=−1

δ22t−j
+

2t−2∑
j=2t−1−1

δ22t−j

= x+
2t−2∑
j=−1

δ22t−j
= x+ Tr22t/2(δ)

∗
= x+ 1,

(4.5)

where * follows from

Tr22t/2(δ) = Tr2s/2(β2 + β) =

s−1∑
i=0

(β2 + β)2i =

s−1∑
i=0

(β2i+1
+ β2i) = β + β2s

= Trq2/q(β) = 1.

67



Chapter 4 Invariant Cycle Structure on Lines

Further
G2t+1

δ (x) = x+ 1 + 1 = x. (4.6)

For an arbitrary x ∈ Fq, let C(Gδ, x) be the cycle of Gδ containing x and `(Gδ, x)
be its length, then (4.5) shows that `(Gδ, x) does not divide 2t and (4.6) shows
that `(Gδ, x) divides 2t+1, so `(Gδ, x) = 2t+1 = 2s. Since this holds for any x, the
permutation Gδ has only cycles of length 2s.

Now we can determine the cycle structure of Fγ for γ = 1 and s a power of 2.

Theorem 4.25. Let q = 2s and s = 2t.

Then the permutation F (x) = x+ Tr
(
x22s−2+3·2s−2

)
of Fq2 has

1. q fixed points on Fq and

2. 2s−t−1 cycles of length 2s = 2t+1 on every affine line α+ Fq.

Proof. Part 1 follows from Lemma 4.21 and part 2 follows from Theorem 4.22 and
Theorem 4.24.
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Linear Structure and High Extension
Degree

All cases of Theorem 3.4, where the extension degree n is arbitrary, exhibit one of
two special properties. For convenience these cases are repeated in the next theorem.

Theorem 5.1 (Theorem 3.4, Cases (F18) to (F24)). Let q = ps, where p is prime
and s ≥ 1. Then

F (X) = X + γ Trqn/q(X
k) ∈ Fqn [X]

is a permutation polynomial in each of the following cases.

(F18) n = 2lr, q arbitrary, γq
2l−1 = −1, k = ql+1, where l, r are positive integers,

(F19) n = 2m, q = 2s, γ ∈ F∗q2, k = 2i(q + 1), where m, i are positive integers,

(F20) n = 2m, q = 2s, γ ∈ F∗q, k = q2 + 1, where m is a positive integer,

(F21) n = 2m, q = 2s, γ ∈ F∗q2, k = 2i(q2+1), where m, i are positive integers and

either m is even or m is odd and (γ2i+1
+ γ2i+1q)(q−1)/ gcd(2i+1−1,2s−1) 6= 1,

(F22) n = 2m+ 1, q = 2s, s ≡ ±2 (mod 6), γ ∈ F∗q, γ(q−1)/3 6= 1, k = 2qi + 2qj,
where m, i, j are positive integers and i 6= j,

(F23) n = 2m + 1, q = 2s, γ ∈ Fq \ {0, 1}, k = (q2 + q)/2, where m is a positive
integer,

(F24) n ≥ 2, q = ps, (−Trqn/q(γ))(q−1)/(pd−1) 6= 1, k = pi, where 1 ≤ i ≤ s and
d = gcd(i, s).

Let F (X) be a permutation polynomial described in any one of these cases, then
it satisfies one of the following two properties

1. γ is a 0-linear translator for Trqn/q(x
k), in which case we can use Theorem 3.5

to determine the cycle structure of F .

2. The cycle structure of F is the same on any line parallel to γFq and equal to
the cycle structure of a linearized permutation of Fq. In some of these cases
we can use Theorem 2.8 and Remark 2.4 to determine the cycle structure of
F .
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We will see, that in cases (F18), (F19) and (F20) the permutation F always satisfies
1, in cases (F22) and (F23) the permutation F always satisfies 2 and that in cases
(F21) and (F24) this depends on the parameters γ and m.

5.1 Determining the Cycle Structure in Case (F18)

In this section we determine the cycle structure of F (X) = X + γ Trq2lr/q(X
ql+1) ∈

Fq2lr [X], where q is arbitrary, γq
2l−1 = −1 and l and r are positive integers.

Theorem 5.2. Let F (X) = X + γ Trq2lr/q(X
ql+1) ∈ Fq2lr [X], where q is arbitrary,

γq
2l−1 = −1 and l and r are positive integers. Then γ is a 0-linear translator for

Trq2lr/q(x
ql+1).

Proof. Remark 10.2 in [11] states, that this follows from the proof of Theorem 10.1
in [11]. We repeat the relevant parts of this proof here.

We want to show that for any x ∈ Fq2lr and u ∈ Fq:

Trq2lr/q((x+ uγ)q
l+1)− Trq2lr/q(x

ql+1) = 0. (5.1)

Let x ∈ Fq2lr and u ∈ Fq, then

(x+ uγ)q
l+1 = (xq

l
+ uγq

l
)(x+ uγ) = γq

l+1u2 + xγq
l
u+ xq

l
γu+ xq

l+1,

so

Trq2lr/q((x+ uγ)q
l+1) = Trq2lr/q(γ

ql+1)u2 + Trq2lr/q(xγ
ql + xq

l
γ)u+ Trq2lr/q(x

ql+1).

Recall that γq
2l−1 = −1, or equivalently γq

2l
+ γ = 0. We get

Trq2lr/q(γ
ql+1) = Trql/q

(
Trq2l/ql

(
Trq2lr/q2l(γq

l+1)
))

= Trql/q

(
Trq2lr/q2l(γq

l
γ) + Trq2lr/q2l(γq

l
γ)q

l
)

= Trql/q

(
Trq2lr/q2l(γq

2l
γq

l
+ γq

l
γ)
)

= Trql/q

(
Trq2lr/q2l

(
γq

l
(γq

2l
+ γ)

))
= Trql/q(Trq2lr/q2l(0)) = 0

and

Trq2lr/q(xγ
ql + xq

l
γ) = Trq2lr/q(xγ

ql) + Trq2lr/q(x
qlγ)

= Trq2lr/q(x
qlγq

2l
) + Trq2lr/q(x

qlγ) = Trq2lr/q(x
qlγq

2l
+ xq

l
γ)

= Trq2lr/q

(
xq

l
(γq

2l
+ γ)

)
= Trq2lr/q(0) = 0.

Therefore Trq2lr/q((x+ uγ)q
l+1) = Trq2lr/q(x

ql+1), which is (5.1).
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Knowing this, one can determine the cycle structure of F using Theorem 3.5.

Theorem 5.3. Let F (X) = X + γ Trq2lr/q(X
ql+1) ∈ Fq2lr [X], where q = ps for an

arbitrary prime p, γq
2l−1 = −1 and l and r are positive integers. Then the cycle

structure of F is
CS(F ) = 1N0pN1 ,

where

N0 = ql(r+1)−1
(
ql(r−1) − (−1)r(q − 1)

)
and

N1 = ps−1ql(r+1)−2
(
ql(r−1) + (−1)r

)
(q − 1).

Moreover for any x ∈ Fq2lr ,Trq2lr/q(X
ql+1) 6= 0 the cycle C(F, x) = (x0 x1 . . . xp−1),

where xj = x+ jγ Trq2lr/q(x
ql+1).

Proof. By Theorem 5.2 the permutation F satisfies the conditions of Theorem 3.5.
Theorem 3.18 then gives us the expression for N0 and thus also for the number
N1 = (q2lr −N0)/p.

5.2 Determining the Cycle Structure in Case (F19)

In this section we determine the cycle structure of the permutation polynomial
F (X) = X + γ Trq2m/q(X

2i(q+1)) ∈ Fq2m [X], where q = 2s, γ ∈ F∗q2 and m and i are
positive integers.

Theorem 5.4. Let F (X) = X + γ Trq2m/q(X
2i(q+1)) ∈ Fq2m [X], where q = 2s,

γ ∈ F∗q2 and m and i are positive integers. Then γ is a 0-linear translator for

Trq2m/q(x
2i(q+1)).

Proof. We want to show that for any x ∈ Fq2m and u ∈ Fq:

Trq2m/q((x+ uγ)2i(q+1))− Trq2m/q(x
2i(q+1)) = 0. (5.2)

Let x ∈ Fq2m and u ∈ Fq, then

(x+ uγ)q+1 = (xq + uγq)(x+ uγ) = γq+1u2 + γxqu+ γqxu+ xq+1

so

Trq2m/q((x+ uγ)q+1) = Trq2m/q(γ
q+1)u2 + Trq2m/q(xγ

q + xqγ)u+ Trq2m/q(x
q+1).

Recall that γ ∈ F∗q2 or equivalently γq
2

= γ. We get

Trq2m/q(γ
q+1) = Trq2/q

(
Trq2m/q2(γq+1)

)
= mTrq2/q(γ

q+1) = m(γq+1 + γq
2+q)

= m(γq+1 + γq+1) = 0
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and

Trq2m/q(γ
qx+ γxq) = Trq2m/q(γ

qx) + Trq2m/q(γx
q) = Trq2m/q(γ

q2
xq) + Trq2m/q(γx

q)

= Trq2m/q(γx
q) + Trq2m/q(γx

q) = 0.

Therefore

Trq2m/q((x+ uγ)2i(q+1)) = Trq2m/q((x+ uγ)q+1)2i = Trq2m/q(x
q+1)2i

= Trq2m/q(x
2i(q+1)),

which is (5.2).

Knowing this, one can determine the cycle structure of F using Theorem 3.5.

Theorem 5.5. Let F (X) = X + γ Trq2m/q(X
2i(q+1)) ∈ Fq2m [X], where q = 2s,

γ ∈ F∗q2 and m and i are positive integers. Then the cycle structure of F is

CS(F ) = 1N02N1 ,

where

N0 = qm
(
qm−1 − (−1)m(q − 1)

)
and

N1 = 2s−1qm−1
(
qm−1 + (−1)m

)
(q − 1).

Proof. By Theorem 5.4 the permutation F satisfies the conditions of Theorem 3.5.
Theorem 3.18 then gives us the expression for N0 and thus also for the number
N1 = (q2m −N0)/2.

Remark 5.1. Since F only has cycles of length 2 it is an involution.

5.3 Determining the Cycle Structure in Case (F20)

In this section we determine the cycle structure of the permutation polynomial
F (X) = X + γ Trq2m/q(X

q2+1) ∈ Fq2m [X], where q = 2s, γ ∈ F∗q and m is a positive
integer.

Theorem 5.6. Let F (X) = X + γ Trq2m/q(X
q2+1) ∈ Fq2m [X], where q = 2s, γ ∈ F∗q

and m is a positive integer. Then γ is a 0-linear translator for Trq2m/q(x
q2+1).

Proof. We want to show that for any x ∈ Fq2m and u ∈ Fq:

Trq2m/q((x+ uγ)q
2+1)− Trq2m/q(x

q2+1) = 0. (5.3)
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Let x ∈ Fq2m and u ∈ Fq, then

(x+ uγ)q
2+1 = (xq

2
+ uγ)(x+ uγ) = γ2u2 + γxq

2
u+ γxu+ xq

2+1

so

Trq2m/q((x+ uγ)q
2+1) = Trq2m/q(γ

2)u2 + Trq2m/q(xγ + xq
2
γ)u+ Trq2m/q(x

q2+1).

Now

Trq2m/q(γ
2) = 2mγ2 = 0

and

Trq2m/q(xγ + xq
2
γ) = γ Trq2m/q(x+ xq

2
) = γ

(
Trq2m/q(x) + Trq2m/q(x

q2
)
)

= γ
(

Trq2m/q(x) + Trq2m/q(x)
)

= 0.

Therefore

Trq2m/q((x+ uγ)q
2+1) = Trq2m/q(x

q2+1),

which is (5.3).

Knowing this, one can determine the cycle structure of F using Theorem 3.5.

Theorem 5.7. Let F (X) = X + γ Trq2m/q(X
q2+1) ∈ Fq2m [X], where q = 2s, γ ∈ F∗q

and m is a positive integer. Then the cycle structure of F is

CS(F ) = 1N02N1 ,

where the following holds:

1. If m is odd, then
N0 = q2m−1

and
N1 = 2s−1q2m−2(q − 1).

2. If m is even, then

N0 = qm+1
(
qm−2 − (−1)

m/2(q − 1)
)

and
N1 = 2s−1qm

(
qm−2 + (−1)

m/2
)

(q − 1).

Proof. By Theorem 5.6 the permutation F satisfies the conditions of Theorem 3.5.
Theorem 3.18 then gives us the expression for N0 and thus also for the number
N1 = (q2m −N0)/2.

Remark 5.2. Since F only has cycles of length 2 it is an involution.
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5.4 Determining the Cycle Structure in Case (F22)

In this section we determine the cycle structure of the permutation polynomial
F (X) = X + γ Trq2m+1/q(X

2qi+2qj ) ∈ Fq2m+1 [X], where q = 2s, s ≡ ±2 (mod 6),

γ ∈ F∗q , with γ(q−1)/3 6= 1, and m, i, j are positive integers with i 6= j. Note that
γFq = Fq.

Theorem 5.8. Let q = 2s, where s ≡ ±2 (mod 6) and α ∈ Fq2m+1. Then the

permutation F (x) = x+ γ Trq2m+1/q(x
2qi+2qj ), where γ ∈ F∗q, with γ(q−1)/3 6= 1, and

m, i, j are positive integers with i 6= j, has the same cycle structure on α+Fq as the
permutation L(x) = x+ γx4 on Fq.

Proof. We abbreviate Tr(x) = Trq2m+1/q(x). As in the proof of Theorem 4.5, we see
that the cycle structure of F on α+ Fq is the same as the cycle structure of

Lα : Fq → Fq, x 7→ x+ γ Tr((α+ x)2qi+2qj )

on Fq. Now for x ∈ Fq, we get

(α+ x)2qi+2qj = (α2qi + x2)(α2qj + x2) = x4 + α2qix2 + α2qjx2 + α2qi+2qj

so

Tr((α+ x)2qi+2qj ) = x4 +
(

Tr(α2qi) + Tr(α2qj )
)
x2 + Tr(α2qi+2qj )

and

Lα(x) = x+ γ
(
x4 + Tr(α2qi+2qj )

)
.

Note that L(x) := L0(x) = x + γx4 and it therefore suffices to show that for any
α ∈ Fq2m+1 , the permutation Lα has the same cycle structure as L0.

Let α ∈ Fq2m+1 . Since x 7→ x4 is a permutation of Fq, there exists a uα ∈ Fq
with u4

α = Tr(α2qi+2qj ). By Proposition 1.1, the permutation Lα has the same cycle
structure as

Lα(x− uα) + uα = x− uα + γ
(

(x− uα)4 + Tr(α2qi+2qj )
)

+ uα

= x+ γ
(
x4 + Tr(α2qi+2qj )− u4

α

)
= x+ γx4 = L0(x).

The permutation L is a 4-linearized polynomial. For γ ∈ F4, we can determine
the cycle structure of L using Theorem 2.8. The next theorem shows, that the cycle
structure of L is the same for any choice of γ. Since we can always choose a γ ∈ F4

this means, we can always determine the cycle structure of L.
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Theorem 5.9. Let q = 2s, where s ≡ ±2 (mod 6) and γ1, γ2 ∈ F∗q with γ
(q−1)/3
1 6=

1, γ
(q−1)/3
2 6= 1. Then the permutations Lγ1(x) = x + γ1x

4 and Lγ2(x) = x + γ2x
4

have the same cycle structure on Fq.

Proof. Let Lγ = x + γx4, where γ ∈ F∗q with γ(q−1)/3 6= 1. First we will show that

Lγ has the same cycle structure as Lδ for a δ ∈ F4 \F2. Note that γ(q−1)/3 ∈ F4 \F2.
Since q = 2s with s even and not divisible by 3, we can write q = 4t, where 2t = s
and t is not divisible by 3.

If t ≡ 1 (mod 3), then t = 3r + 1 for some r ∈ N and

q − 4 ≡ 4(43)r − 4 ≡ 4(1)r − 4 ≡ 0 (mod 9), so
q − 4

9
∈ Z.

Now we see

Lγ
(
xγ(q−4)/9

)
γ(q−4)/9

= x+ γ
(
γ(q−4)/9

)3
x4 = x+ γ

q−1
3 x4 = x+ δx4 = Lδ(x)

for some δ ∈ F4 \ F2. Proposition 1.1 shows, that Lγ has the same cycle structure
as Lδ.

If t ≡ −1 (mod 3), then t = 3r + 2 for some r ∈ N and

q + 2 ≡ 16(43)r + 2 ≡ 7(1)r + 2 ≡ 0 (mod 9), so − q + 2

9
∈ Z.

Now we see

Lγ
(
xγ−(q+2)/9

)
γ−(q+2)/9

= x+ γ
(
γ−(q+2)/9

)3
x4 = x+ γ−

q−1
3 x4 = x+ δx4 = Lδ(x)

for some δ ∈ F4 \ F2. Proposition 1.1 shows, that Lγ has the same cycle structure
as Lδ.

Let a be a primitive element of F4, then F4 \ F2 = {a, a2}. It remains to show,
that La has the same cycle structure as La2 . For that consider

La2(x2s−1
)2 =

(
x2s−1

+ a2(x4)2s−1
)2

= x+ a4x4 = x+ ax4 = La(x).

Proposition 1.1 shows, that La2 has the same cycle structure as La.

Now the cycle structure of L can be determined. Note that by Theorem 5.9
it is the same as that of the linearized polynomial La considered in the example
(Example 2.1, Example 2.2, Example 2.3 and Table 2.1) used in Section 2.3 of
Chapter 2.

Theorem 5.10. Let q = 2s, where s ≡ ±2 (mod 6) and γ ∈ F∗q with γ(q−1)/3 6= 1.
Let a be a primitive element of F4 and s = 2t. Let ordΓ(Λ) denote the multiplicative
order of Λ(X) modulo Γ(X) and Φ denote Euler’s totient function for polynomials.
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Then the cycle structure of the permutation polynomial L(X) = X + γX4 ∈ Fq[X]
is

CS(L) =
∑

Γ(X)|Xt−1

ordΓ(1 + aX)
Φ(Γ)

ordΓ(1+aX) ,

where Γ(X), 1 + aX ∈ F4[X]. Further the number of cycles of length ordΓ(1 + aX)
in the cycle structure of L is ∑

H∈HΦ(H)

ordΓ(1 + aX)
,

where H = {H ∈ F4[X] : H | Xt − 1, ordH(1 + aX) = ordΓ(1 + aX)}.

Proof. By Theorem 5.9 the cycle structure of L does not depend on γ, so we can
choose γ = a. The theorem then follows by Theorem 2.8 and Remark 2.4.

The next theorem summarizes the results of this section by stating the cycle
structure of F .

Theorem 5.11. Let q = 2s, where s ≡ ±2 (mod 6) and γ ∈ F∗q with γ(q−1)/3 6= 1.
Let a be a primitive element of F4 and s = 2t. Let ordΓ(Λ) denote the multiplicative
order of Λ(X) modulo Γ(X) and Φ denote Euler’s totient function for polynomials.
The cycle structure of the permutation F (x) = x + γ Trq2m+1/q(x

2qi+2qj ), where m,
i and j are positive integers with i 6= j, on any line α+ Fq is

CSα+Fq(F ) =
∑

Γ(X)|Xt−1

ordΓ(1 + aX)
Φ(Γ)

ordΓ(1+aX) ,

where Γ(X), 1 + aX ∈ F4[X]. Further the number of cycles of length ordΓ(1 + aX)
in the cycle decomposition of F on α+ Fq is∑

H∈HΦ(H)

ordΓ(1 + aX)
,

where H = {H ∈ F4[X] : H | Xt − 1, ordH(1 + aX) = ordΓ(1 + aX)}.

Proof. The theorem follows from Theorem 5.8 and Theorem 5.10.

Remark 5.3. Example 2.2 shows the following. If t = 2r then the cycle structure

CSα+Fq(F ) = CS(L) = 1131621220 . . . (2r · 3)(42r−42r−1
)/(2r·3).

5.5 Determining the Cycle Structure in Case (F23)

In this section we determine the cycle structure of the permutation polynomial
F (X) = X + γ Trq2m+1/q(X

(q2+q)/2) ∈ Fq2m+1 [X], where q = 2s, γ ∈ Fq \ {0, 1} and
m and s are positive integers. Note that γFq = Fq.
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Theorem 5.12. Let q = 2s, where s is a positive integer and α ∈ Fq2m+1. Then

the permutation F (x) = x + γ Trq2m+1/q(x
(q2+q)/2), where γ ∈ Fq \ {0, 1} and m

is a positive integer, has the same cycle structure on α + Fq as the permutation
L(x) = (γ + 1)x on Fq.

Proof. We abbreviate Tr(x) = Trq2m+1/q(x). Note that (q2 + q)/2 = 22s−1 + 2s−1.
As in the proof of Theorem 4.5, we see that the cycle structure of F on α + Fq is

the same as the cycle structure of Lα : Fq → Fq, x 7→ x+ γ Tr((α+ x)22s−1+2s−1
) on

Fq. Now for x ∈ Fq, we get

(α+ x)22s−1+2s−1
= (α22s−1

+ x2s−1
)(α2s−1

+ x2s−1
)

= x+ (α22s−1
+ α2s−1

)x2s−1
+ α22s−1+2s−1

so

Tr((α+ x)22s−1+2s−1
) = x+

(
Tr(α22s−1

) + Tr(α2s−1
)
)
x2s−1

+ Tr(α22s−1+2s−1
)

= x+ Tr(α22s−1+2s−1
)

and
Lα(x) = x+ γ

(
x+ Tr(α22s−1+2s−1

)
)
.

Note that L(x) = L0(x) = x + γx and it therefore suffices to show that for any
α ∈ Fq2m+1 , the permutation Lα has the same cycle structure as L0.

Let α ∈ Fq2m+1 and uα = Tr(α22s−1+2s−1
). By Proposition 1.1, the permutation

Lα has the same cycle structure as

Lα(x− uα) + uα = x− uα + γ(x− uα + Tr(α22s−1+2s−1
) + uα = x+ γx = L0(x).

Since the cycle structure of L is easy to determine, we can now immediately also
determine the cycle structure of F .

Theorem 5.13. Let q = 2s, where s is a positive integer and α ∈ Fq2m+1. The cycle

structure of the permutation F (x) = x+γ Trq2m+1/q(x
(q2+q)/2), where γ ∈ Fq \{0, 1}

and m is a positive integer, on any line α+ γFq is

CSα+γFq(F ) = 11 ord(γ + 1)q/ ord(γ+1).

5.6 Properties of the Cycle Structure in Case (F21)

In this section we study the cycle structure of F (X) = X + γ Trq2m/q(X
2i(q2+1)) ∈

Fq2m [X], where q = 2s, γ ∈ F∗q2 , m, s and i are positive integers, and either m is

even, or m is odd and (γ2i+1
+γ2i+1q)(q−1)/ gcd(2i+1−1,2s−1) 6= 1. For m even or γ ∈ Fq

the cycle structure can be determined explicitly.
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Theorem 5.14. Let F (X) = X+γ Trq2m/q(X
2i(q2+1)) ∈ Fq2m [X], where q = 2s and

γ ∈ F∗q2 and m, s and i are positive integers, and either m is even, or m is odd and

(γ2i+1
+γ2i+1q)(q−1)/ gcd(2i+1−1,2s−1) 6= 1. If m is even or γ ∈ Fq, then γ is a 0-linear

translator for Trq2m/q(x
2i(q2+1)).

Proof. Let m be even or γ ∈ Fq. We want to show that for any x ∈ Fq2m and u ∈ Fq:

Trq2m/q((x+ uγ)2i(q2+1))− Trq2m/q(x
2i(q2+1)) = 0. (5.4)

Let x ∈ Fq2m and u ∈ Fq, then

(x+ uγ)q
2+1 = (x+ uγ)q

2+1 = (xq
2

+ uγ)(x+ uγ)

= γ2u2 + γxq
2
u+ γxu+ xq

2+1

so

Trq2m/q((x+ uγ)q
2+1) = Trq2m/q(γ

2)u2 + Trq2m/q(xγ + xq
2
γ)u+ Trq2m/q(x

q2+1).

Now

Trq2m/q(xγ + xq
2
γ) = Trq2m/q(xγ) + Trq2m/q(x

q2
γ) = 0

and if m is even, then

Trq2m/q(γ
2) = Trq2/q

(
Trq2m/q2(γ2)

)
= mTrq2/q(γ

2) = 0,

if γ ∈ Fq, then

Trq2m/q(γ
2) = 2mγ2 = 0.

Therefore

Trq2m/q((x+ uγ)2i(q2+1)) = Trq2m/q((x+ uγ)q
2+1)2i = Trq2m/q(x

q2+1)2i

= Trq2m/q(x
2i(q2+1)),

which is (5.4).

Knowing this, one can determine the cycle structure of F for m even or γ ∈ Fq
using Theorem 3.5.

Theorem 5.15. Let F (X) = X + γ Trq2m/q(X
2i(q2+1)) ∈ Fq2m [X], where q = 2s

and γ ∈ F∗q2 and m, s and i are positive integers, and either m is even, or m is odd

and (γ2i+1
+ γ2i+1q)(q−1)/ gcd(2i+1−1,2s−1) 6= 1. If m is even or γ ∈ Fq, then the cycle

structure of F is

CS(F ) = 1N02N1 ,

where the following holds:
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1. If m is odd, then
N0 = q2m−1

and
N1 = 2s−1q2m−2(q − 1).

2. If m is even, then

N0 = qm+1
(
qm−2 − (−1)

m/2(q − 1)
)

and
N1 = 2s−1qm

(
qm−2 + (−1)

m/2
)

(q − 1).

Proof. By Theorem 5.14 the permutation F satisfies the conditions of Theorem 3.5.
Theorem 3.18 then gives us the expression for N0 and thus also for the number
N1 = (q2m −N0)/2.

Remark 5.4. Since F only has cycles of length 2, if m is even or γ ∈ Fq, it is an
involution for this choice of parameters.

In the other case the following holds.

Theorem 5.16. Let F (X) = X + γ Trq2m/q(X
2i(q2+1)) ∈ Fq2m [X], where q = 2s

and γ ∈ F∗q2 and m, s and i are positive integers, and either m is even, or m

is odd and (γ2i+1
+ γ2i+1q)(q−1)/ gcd(2i+1−1,2s−1) 6= 1. Let α ∈ Fq2m. If m is odd

and γ /∈ Fq, then F has the same cycle structure on α + γFq as the permutation

L(x) = x+ Trq2/q(γ
2i+1)x2i+1

on Fq.

Proof. We abbreviate Tr(x) = Trq2m+1/q(x). Let m be odd and γ /∈ Fq. By Re-
mark 4.1, the mapping F is a permutation of the coset α + γFq. Let x ∈ Fq. Then
for a fixed α, we get

F (α+ γx) = α+ γx+ γ Tr
(

(α+ γx)2i(q2+1)
)

= α+ γLα(x)

with Lα : Fq → Fq, x 7→ x+ Tr
(

(α+ γx)2i(q2+1)
)

. Since

Lα(x) = (F (α+ γx)− α)/γ = τ−1 ◦ F ◦ τ,

where τ : Fq → α + γFq, with τ(x) = α + γx, Proposition 1.1 shows that Lα is a
permutation of Fq that has the same cycle structure as F on α+ γFq.

Now we see

(α+ γx)q
2+1 = (αq

2
+ γx)(α+ γx) = γ2x2 + (α+ αq

2
)γx+ αq

2+1

so

Tr((α+ γx)q
2+1) = Tr(γ2)x2 +

(
Tr(αγ) + Tr(αq

2
γ)
)
x+ Tr(αq

2+1)

= Tr(γ2)x2 + Tr(αq
2+1)
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and

Lα = x+
[
Tr(γ2)x2 + Tr(αq

2+1)
]2i

.

Note that L(x) = L0(x) = x + Trq2/q(γ
2i+1)x2i+1

and it therefore suffices to show
that for any α ∈ Fq2m , the permutation Lα has the same cycle structure as L0.

Let α ∈ Fq2m . Since x 7→ x2 is a permutation of Fq, there exists a uα ∈ Fq with

u2
α = Tr(αq

2+1)/Tr(γ2). By Proposition 1.1, the permutation Lα has the same cycle
structure as

Lα(x− uα) + uα = x− uα +

[
Tr(γ2)x2 − Tr(γ2)

Tr(αq
2+1)

Tr(γ2)
+ Tr(αq

2+1)

]2i

+ uα

= x+
[
Trq2/q(γ

2)x2
]2i

= x+ Trq2/q(γ
2i+1

)x2i+1
= L0(x).

Here L is a 2i+1-linearized permutation polynomial, but since we cannot assume,
that Trq2/q(γ

2i+1) ∈ F2i+1 , we cannot use Theorem 2.8 to determine the cycle struc-
ture of L in this case completely.

5.7 Properties of the Cycle Structure in Case (F24)

In this section we study the cycle structure of F (X) = X + γ Trqn/q(X
pi) ∈ Fqn [X],

where q = ps, γ ∈ F∗qn with (−Trqn/q(γ))(q−1)/(pd−1) 6= 1 and n, s, d and i are
positive integers with 1 ≤ i ≤ s and d = gcd(i, s). For Trqn/q(γ) = 0 the cycle
structure can be determined explicitly.

Theorem 5.17. Let F (X) = X + γ Trqn/q(X
pi) ∈ Fqn [X], where q = ps, γ ∈ F∗qn

with (−Trqn/q(γ))(q−1)/(pd−1) 6= 1 and n, s, d and i are positive integers with the
properties 1 ≤ i ≤ s and d = gcd(i, s). If Trqn/q(γ) = 0, then γ is a 0-linear

translator for Trqn/q(x
pi).

Proof. Let Trqn/q(γ) = 0. We want to show that for any x ∈ Fqn and u ∈ Fq:

Trqn/q((x+ uγ)p
i
)− Trqn/q(x

pi) = 0 (5.5)

Let x ∈ Fqn and u ∈ Fq, then

Trqn/q((x+ uγ)p
i
)− Trqn/q(x

pi) =
[
Trqn/q(x+ uγ)− Trqn/q(x)

]pi
= [uTrqn/q(γ)]p

i
= 0.
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Knowing this, one can determine the cycle structure of F for Trqn/q(γ) = 0 using
Theorem 3.5.

Theorem 5.18. Let F (X) = X + γ Trqn/q(X
pi) ∈ Fqn [X], where q = ps, γ ∈ F∗qn

with (−Trqn/q(γ))(q−1)/(pd−1) 6= 1 and n, s, d and i are positive integers with the
properties 1 ≤ i ≤ s and d = gcd(i, s). If Trqn/q(γ) = 0, then the cycle structure of
F is

CS(F ) = 1N0pN1 ,

where

N0 = qn−1

and

N1 = ps−1qn−2(q − 1).

Moreover for any x ∈ Fqn ,Trqn/q(x
pi) 6= 0 the cycle C(F, x) = (x0 x1 . . . xp−1),

where xj = x+ jγ Trqn/q(x
pi).

Proof. By Theorem 5.17 the permutation F satisfies the conditions of Theorem 3.5.
Theorem 3.18 then gives us the expression for N0 and thus also for the number
N1 = (qn −N0)/p.

In the other case the following holds.

Theorem 5.19. Let F (X) = X + γ Trqn/q(X
pi) ∈ Fqn [X], where q = ps, γ ∈ F∗qn

with (−Trqn/q(γ))(q−1)/(pd−1) 6= 1 and n, s, d and i are positive integers with the
properties 1 ≤ i ≤ s and d = gcd(i, s). If Trqn/q(γ) 6= 0, then F has the same cycle

structure on α+ γFq as the permutation L(x) = x+ Trqn/q(γ
pi)xp

i
on Fq.

Proof. We abbreviate Tr(x) = Trqn/q(x). Let Tr(γ) 6= 0. As in the proof of The-
orem 4.5, we see that the cycle structure of F on α + Fq is the same as the cycle

structure of Lα : Fq → Fq, x 7→ x+ Tr((α+ γx)p
i
) on Fq. Now for x ∈ Fq we get

Lα(x) = x+ Tr(α+ γx)p
i

= x+ Tr(γp
i
)xp

i
+ Tr(αp

i
).

Note that L(x) = L0(x) = x + Tr(γp
i
)xp

i
and it therefore suffices to show that for

any α ∈ Fqn , the permutation Lα has the same cycle structure as L0.
Let α ∈ Fqn and uα = Tr(α)/Tr(γ). By Proposition 1.1, the permutation Lα has

the same cycle structure as

Lα(x− uα) + uα = x− uα + Tr(γp
i
)xp

i − Tr(αp
i
)

Tr(γpi)
Tr(γp

i
) + Tr(αp

i
) + uα

= x+ Tr(γp
i
)xp

i
= L0(x).

Here L is a pi-linearized permutation polynomial, but since we cannot assume,
that Trqn/q(γ

pi) ∈ Fpi , we cannot use Theorem 2.8 to determine the cycle structure
of L in this case completely.
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Chapter 6

Shifting the Exponent

By composing one of the permutation polynomials in Theorem 3.4 with a suitable
monomial permutation one can get a permutation polynomial, which has the shape
Xt + γ Trqn/q(X). In one of these cases the cycle structure of the resulting permu-
tation can be determined explicitly by computing its iterates.

The next section is based on work published in [10].

6.1 The Permutation Polynomial Xq2+q−1 + Trq3/q(X)

In this section, we consider the reduced permutation polynomial F (X) on Fq3 asso-
ciated to the map given by

F (x) = (x+ Trq3/q(x
(q2+1)/2)) ◦ (xq

2+q−1),

which is obtained by composing the permutation described in case (F16) of Theo-
rem 3.4 with the permutation x 7→ xq

2+q−1. We describe explicitly the iterates of F
and then use this to determine its cycle structure and the polynomial representation
of its inverse map.

It is easy to check that

(q2 + q − 1) · q
2 + 1

2
=

(q3 − 1)(q + 1)

2
+ q ≡ q (mod q3 − 1)

and therefore
F (X) = Xq2+q−1 + Trq3/q(X).

Further, for x 6= 0, we have

F (x) =
xq

2+q + x(x+ xq + xq
2
)

x
= x+

Trq3/q(x
q+1)

x
,

and hence

F (x) =

{
x+

Trq3/q(x
q+1)

x , x ∈ F∗q3

0, x = 0.

In the remaining part of this section, we use the convention 0/0 = 0 and write

F (x) = x+
Trq3/q(x

q+1)

x
for all x ∈ Fq3 .
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Chapter 6 Shifting the Exponent

The following two lemmas describe computational connections in Fq3 , which are
fundamental for the results of this section.

Lemma 6.1. Any x ∈ Fq3 satisfies

x3 − Trq3/q(x)x2 + Trq3/q(x
q+1)x−Nq3/q(x) = 0, (6.1)

where Nq3/q(x) = x1+q+q2
is the norm of x over Fq.

Proof. Any x ∈ Fq clearly fulfils (6.1). Let hence x ∈ Fq3 \Fq and m(X) ∈ Fq[X] be

the minimal polynomial of x over Fq. Since m(X) = (X − x)(X − xq)(X − xq2
) in

Fq3 [X], we get

m(X) = X3 − Trq3/q(x)X2 + Trq3/q(x
q+1)X −Nq3/q(x),

implying the statement.

Lemma 6.2. Let x ∈ F∗q3. Then we have

(a) Trq3/q

(
1

x

)
=

Trq3/q(x
q+1)

Nq3/q(x)
;

(b) Trq3/q

(
1

xq+1

)
=

Trq3/q(x)

Nq3/q(x)
;

(c) Trq3/q

(
1

xq−1

)
+ Trq3/q(x

q−1) = Trq3/q(x
q+1) Trq3/q

(
1

xq+1

)
− 3.

Proof. Property (a) follows from

Trq3/q

(
1

x

)
=

1

x
+

1

xq
+

1

xq2 =
xq

2+q + xq
2+1 + xq+1

x1+q+q2 =
Trq3/q(x

q+1)

Nq3/q(x)
.

This also shows that

Trq3/q(x) =
Trq3/q

(
1

xq+1

)
Nq3/q

(
1
x

) = Trq3/q

(
1

xq+1

)
Nq3/q(x),

from which (b) follows. For (c), note that

Trq3/q(x
q+1) Trq3/q

(
1

xq+1

)
= Trq3/q

(
Trq3/q(x

q+1)

xq+1

)

= Trq3/q

(
xq+1 + xq

2+q + xq
3+q2

xq+1

)
= Trq3/q(1 + xq

2−1 + xq
2−q)

= 3 + Trq3/q

(
1

xq−1

)
+ Trq3/q(x

q−1).
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6.1 The Permutation Polynomial Xq2+q−1 + Trq3/q(X)

Theorem 6.3. Let
Fix(F ) = {x ∈ Fq3 : F (x) = x}

be the set of fixed points of F (x) = x+ (Trq3/q(x
q+1))/x. Then we have

Fix(F ) = {x ∈ Fq3 : Trq3/q(x
q+1) = 0} = {0} ∪ {x ∈ F∗q3 : Trq3/q(x

−1) = 0}.

In particular, |Fix(F )| = q2.

Proof. By definition of F , it is straightforward, that

Fix(F ) = {x ∈ Fq3 : Trq3/q(x
q+1) = 0}.

Lemma 6.2(a) completes the proof.

Claim. For an integer n ≥ 0, set

an =
4n + (−2)n − 2

9
,

bn =
(−2)n − 1

3
,

cn = an+1 − an =
4n − (−2)n

3
,

dn = bn+1 − bn = −(−2)n.

Then all these numbers are integers and they satisfy

b2n + 2an − bn = cn (6.2)

−(cnbn + dnan) = cn (6.3)

dnbn = −cn (6.4)

Proof. Equations (6.2)–(6.4) can be easily checked by the following direct calcula-
tions:

b2n + 2an − bn =
((−2)n − 1)2

9
+

2 · 4n + 2 · (−2)n − 4

9
− (−2)n − 1

3

=
4n − 2(−2)n + 1 + 2 · 4n + 2(−2)n − 4

9
− (−2)n − 1

3

=
4n − 1− ((−2)n − 1)

3
=

4n − (−2)n

3
;

−(cnbn + dnan) = −
(

4n − (−2)n

3
· (−2)n − 1

3
− (−2)n · 4n + (−2)n − 2

9

)
= −(4n − (−2)n)((−2)n − 1)− (−2)n(4n + (−2)n − 2)

9

= −4n(−2)n − 4n − 4n + (−2)n − 4n(−2)n − 4n + 2(−2)n

9

= −(−2)n − 4n

3
=

4n − (−2)n

3
;

dnbn = −(−2)n · (−2)n − 1

3
= −4n − (−2)n

3
.

85



Chapter 6 Shifting the Exponent

Note that

bn =

{
(2n − 1)/3, n even,

−(2n + 1)/3, n odd.

Recall that 3 = 22−1 divides 2n−1 if and only if n is even. Consequently, 3 divides
2n + 1 if and only if n is odd. These observations show, that bn is an integer. Since
cn = −dnbn and 2an = cn − b2n + bn, these numbers are also integers.

Remark 6.1. By abuse of notation, we use the same symbol a for an integer number
a and an element a mod p of a prime field Fp. In the remainder of this chapter, we
use a/3 to denote elements in Fp not only for p ≥ 5 but also in F3. In the latter case,
we assume that the integer a is divisible by 3 and the quotient a/3 is computed in
the ring of integers.

For an integer n ≥ 0, set

Fn(x) = (F ◦ F ◦ · · · ◦ F︸ ︷︷ ︸
n

)(x)

to denote the nth iterate of F .

Theorem 6.4. Let q be a power of an odd prime and

F (x) = x+
Trq3/q(x

q+1)

x

on Fq3. Then for n ≥ 0, we have

Fn(x) = an
Trq3/q(x

q+1)2

Nq3/q(x)
− bn

Trq3/q(x
q+1)

x
+ x, (6.5)

where an = (4n + (−2)n − 2)/9 and bn = ((−2)n − 1)/3.

Proof. For n ≥ 0, we put

cn = an+1 − an = (4n − (−2)n)/3 and dn = bn+1 − bn = −(−2)n

and define

Fn(x) = an
Trq3/q(x

q+1)2

Nq3/q(x)
− bn

Trq3/q(x
q+1)

x
+ x.

We aim to prove that Fn(x) = Fn(x).
First, consider x ∈ Fq. Then we have Trq3/q(x

q+1) = 3x2 and Nq3/q(x) = x3,
implying

F (x) = x+
3x2

x
= 4x,

and

Fn(x) = an
9x4

x3
− bn

3x2

x
+ x = (9an − 3bn + 1)x

= (4n + (−2)n − 2− (−2)n + 1 + 1)x = 4nx = Fn(x).
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6.1 The Permutation Polynomial Xq2+q−1 + Trq3/q(X)

The statement is obviously true also for x ∈ Fix(F ), since in this case we get
Trq3/q(x

q+1) = 0. We apply induction on n to prove the identity for the remaining
cases. Hence let x ∈ Fq3 \ Fq and Trq3/q(x

q+1) 6= 0. The statement is true for n = 0
and n = 1. Our goal is to show that

Fn+1(x) = Fn+1(x) = F (Fn(x)) = F (Fn(x)) = Fn(x) +
Trq3/q(Fn(x)q+1)

Fn(x)
,

or equivalently

(Fn+1(x)− Fn(x)) · Fn(x) = Trq3/q(Fn(x)q+1),

holds, if Fn(x) = Fn(x). In the rest of the proof, we use the following abbreviations:

L(x) = (Fn+1(x)− Fn(x)) · Fn(x)

R(x) = Trq3/q(Fn(x)q+1)

and Tr = Trq3/q, N = Nq3/q, u(x) = Trq3/q(x
q+1). Our goal is to show L(x) = R(x)

for all x ∈ Fq3 \Fq with u(x) 6= 0. First, observe that R(x) can be written as follows:

R(x) = Tr

[(
an
u(x)2

N(x)
− bn

u(x)

x
+ x

)q
·
(
an
u(x)2

N(x)
− bn

u(x)

x
+ x

)]
= Tr

[(
an
u(x)2

N(x)
− bn

u(x)

xq
+ xq

)
·
(
an
u(x)2

N(x)
− bn

u(x)

x
+ x

)]
= Tr

[
a2
n

u(x)4

N(x)2
+ b2n

u(x)2

xq+1
− anbn

u(x)3

N(x)

(
1

x
+

1

xq

)
+ an

u(x)2

N(x)
(x+ xq)

−bnu(x)

(
xq−1 +

1

xq−1

)
+ xq+1

]
= 3a2

n

u(x)4

N(x)2
+ b2nu(x)2 Tr

(
1

xq+1

)
− 2anbn

u(x)3

N(x)
Tr

(
1

x

)
+ 2an

u(x)2

N(x)
Tr(x)

− bnu(x)

(
Tr(xq−1) + Tr

(
1

xq−1

))
+ u(x).

Applying Lemma 6.2(a), (b) and (c) to the last expression, we get

R(x) = 3a2
n

u(x)4

N(x)2
+ b2nu(x)2 Tr(x)

N(x)
− 2anbn

u(x)3

N(x)
· u(x)

N(x)
+ 2an

u(x)2

N(x)
Tr(x)

− bnu(x)

(
u(x)

Tr(x)

N(x)
− 3

)
+ u(x).

= (3a2
n − 2anbn)

u(x)4

N(x)2
+ (b2n + 2an − bn)

u(x)2

N(x)
Tr(x) + (3bn + 1)u(x),

and hence

R(x)

u(x)
= (3a2

n − 2anbn)
u(x)3

N(x)2
+ (b2n + 2an − bn)

u(x)

N(x)
Tr(x) + 3bn + 1.
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Chapter 6 Shifting the Exponent

We compute now L(x)/u(x):

L(x)

u(x)
=

(
cn
u(x)

N(x)
− dn

1

x

)(
an
u(x)2

N(x)
− bn

u(x)

x
+ x

)
= cnan

u(x)3

N(x)2
− (cnbn + dnan)

u(x)2

N(x)x
+ dnbn

u(x)

x2
+ cn

u(x)x

N(x)
− dn.

Because

3a2
n − 2anbn = an(3an − 2bn) = an

4n + (−2)n − 2− 2(−2)n + 2

3
= ancn

and
3bn + 1 = (−2)n = −dn,

to prove R(x)/u(x) = L(x)/u(x) it is enough to show that

cn
u(x)x

N(x)
− (b2n + 2an − bn)

u(x)

N(x)
Tr(x)− (cnbn + dnan)

u(x)2

N(x)x
+ dnbn

u(x)

x2
= 0

Or equivalently, by multiplying with N(x)x2/u(x) 6= 0,

cnx
3 − (b2n + 2an − bn) Tr(x)x2 − (cnbn + dnan)u(x)x+ dnbn N(x) = 0. (6.6)

Using (6.2)–(6.4), we reduce (6.6) to

cnx
3 − cn Tr(x)x2 + cn Tr(xq+1)x− cn N(x) = 0,

for n ≥ 1, also cn ≥ 1 and we can further reduce to

x3 − Tr(x)x+ Tr(xq+1)x−N(x) = 0,

which is satisfied for any x ∈ Fq3 \ Fq by Lemma 6.1.

Remark 6.2. The iterate Fn(x) in (6.5) can be written in polynomial form

Fn(X) = an Trq3/q(X
q2+q−1) + (2an − bn) Trq3/q(X)− bnXq2+q−1 + (bn + 1)X,

using the following identities in Fq3 :

Trq3/q(x
q+1)2

Nq3/q(x)
= Trq3/q(x

q+1) Trq3/q

(
1

x

)
= Trq3/q

(
Trq3/q(x

q+1)

x

)

= Trq3/q

(
xq+1 + xq

2+q + xq
2+1

x

)
= Trq3/q(x

q) + Trq3/q(x
q2+q−1) + Trq3/q(x

q2
)

= Trq3/q(x
q2+q−1) + 2 Trq3/q(x)

and

F (x) =
Trq3/q(x

q+1)

x
+ x = xq

2+q−1 + Trq3/q(x).
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6.1 The Permutation Polynomial Xq2+q−1 + Trq3/q(X)

Theorem 6.5. Let q = ps where p ≥ 5 and m = ordp(4). Then the permutation F
on Fq3 defined by F (x) = x+ (Trq3/q(x

q+1))/x satisfies the following properties:

(a) If ordp(−2) = ordp(4), then the cycle structure of F is

CS(F ) = 1q
2
m(q3−q2)/m.

(b) If ordp(−2) = 2 · ordp(4), then the cycle structure of F is

CS(F ) = 1q
2
m(q−1)/m(2m)(q3−q2−q+1)/(2m).

The cycles of length m partition the set of nonzero elements of the subfield Fq,
i. e.

CSFq(F ) = 11m(q−1)/m.

(c) The permutation F has order ordp(−2) in the symmetric group of permutations
on Fq3.

Proof. Clearly, (c) is a direct consequence of (a) and (b). Let y ∈ Fq3 and y /∈ Fix(F ),
i. e. u(y) 6= 0. Let t ≥ 2 be the minimal integer with F t(y) = y, i. e. t = `(F, y),
the length of the cycle containing y in the cycle decomposition of F . Recall the
abbreviations Tr = Trq3/q, N = Nq3/q, u(y) = Trq3/q(y

q+1). Then

F t(y)− y = at
u(y)2

N(y)
− bt

u(y)

y
= 0,

implying

at · u(y) = bt ·
N(y)

y
= bt · yq

2+q. (6.7)

Then necessarily it holds

Tr(at · u(y)) = Tr(bt · yq
2+q),

or equivalently

3 · at · u(y) = bt · u(y),

and hence
4t + (−2)t − 2

3
= 3 · at = bt =

(−2)t − 1

3
,

which is equivalent to 4t = 1. This shows that t must be divisible by ordp(4), and
in particular

t ≥ ordp(4). (6.8)
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Chapter 6 Shifting the Exponent

Let r = ordp(−2). Then ar = br = 0 and, therefore

t ≤ ordp(−2). (6.9)

Hence if ordp(4) = ordp(−2), the statement in (a) follows from (6.8) and (6.9).
Suppose now r = 2 · ordp(4), then t ∈ {m, 2m} and we have to determine for which
y, the integer t = m. For t = m, the equation (6.7) reduces to

u(y) = 3 · yq2+q,

since in this case at = −2/9 and bt = −2/3. In particular, yq
2+q then belongs to the

subfield Fq, since u(y) does. This yields

yq
2+1 = (yq

2+q)q = yq
2+q,

which is equivalent to y ∈ Fq. This proves (b).

Theorem 6.6. Let q = ps, where p ≥ 5. The inverse map of

F (x) = x+
Trq3/q(x

q+1)

x
= xq

2+q−1 + Trq3/q(x)

on Fq3 is F k(x), where k = ordp(−2)− 1. More precisely, it holds

F−1(x) = −1

4
·

Trq3/q(x
q+1)2

Nq3/q(x)
+

1

2
·

Trq3/q(x
q+1)

x
+ x

= −1

4
· Trq3/q(x

q2+q−1) +
1

2
· xq2+q−1 +

1

2
x.

Proof. Theorem 6.5(c) yields F−1(x) = F k(x), where k = ordp(−2)− 1. It remains
to note that ak = −1/4 and bk = −1/2. The polynomial form is obtained using the
identities from Remark 6.2.

In [8] it is shown, that the inverse map of a permutation x+ γ Trqn/q(x
k) has the

form x + γg(x), with g : Fqn → Fq. In general, an explicit description of g is a

difficult problem. The inverse of the permutation F16(x) = x+ Trq3/q(x
(q2+1)/2) can

be determined using Theorem 6.6 and he fact that F (x) = F16(xq
2+q−1):

Corollary 6.7. Let q = ps, where p ≥ 5. The inverse map of the permutation
F16(x) = x+ Trq3/q(x

(q2+1)/2)) on Fq3 is given by

F−1
16 (x) =

(
−1

4
· Trq3/q(x

q2+q−1) +
1

2
· xq2+q−1 +

1

2
x

)q2+q−1

.

The next theorem presents results on F (x) in the case p = 3.

Theorem 6.8. Let q = 3s, with s ≥ 1, and F be the permutation on Fq3 given by
F (x) = x+ (Trq3/q(x

q+1))/x. Then F has the following properties:
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6.1 The Permutation Polynomial Xq2+q−1 + Trq3/q(X)

(a) The order of F is 3.

(b) The cycle structure of F is

CS(F ) = 1q
2
3(q3−q2)/3.

(c) The inverse map of F is given by

F−1(x) = 2 ·
Trq3/q(x

q+1)2

Nq3/q(x)
−

Trq3/q(x
q+1)

x
+ x

= −Trq3/q(x
q2+q−1)− xq2+q−1 − x.

Proof. Recall the abbreviations Tr = Trq3/q, N = Nq3/q, u(y) = Trq3/q(y
q+1). Let

idq3 be the identity function on Fq3 . Using formula (6.5) and computing a2 = 2,
b2 = 1, a3 = 0, b3 = 0, it is easy to see that F 2 6= idq3 , whereas F 3 = idq3 , proving
(a). To verify (b), note that by (a) the cycles of F have length at most 3. To show
that there are no cycles of length 2, we prove that if F 3(y) = y for y ∈ Fq3 , then
y ∈ Fix(F ). Indeed, if

F 2(y) = 2 · u(y)2

N(y)
− u(y)

y
+ y = y,

it follows that
2 · u(y) = yq

2+q,

and then
0 = Tr(2 · u(y)) = Tr(xq

2+q) = u(y),

i. e. y ∈ Fix(F ). Theorem 6.3 completes the proof. The statement in (c) follows
from (a), which implies that F−1(x) = F 2(x).
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