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Zusammenfassung

Diese Arbeit analysiert das Versagensverhalten eines Eisenaluminium-Aluminium-Verbundes
in einem Temperaturbereich von 250 C bis 400 C. Dafür wird zuerst die benötigte Theorie
präsentiert und hergeleitet, und daraufhin die Identifizierung aller Materialparameter erklärt,
welche entweder direkt aus experimentellen Daten oder durch numerische Optimierung mittels
eines neuronalen Netzwerks bestimmt werden. Außerdem wird das, in dieser Arbeit benutzte
Modell, mit dem Schädigungsgradienten erweitert und eine Effizienzstudie zwischen unter-
schiedlichen Berechnungsmethoden durchgeführt.

Abstract

This thesis analyse the failure behaviour of an iron aluminide-aluminium-compound in the tem-
perature range of 250 C to 400 C. The whole theory of the derived model is presented. Further
on, the model is extended with the damage gradient and a comparative study is performed
to assess which model is computationally more efficient. Next to this, it is explained in de-
tail how all required material parameters are identified from experiments or through numerical
optimisation with a neural network.
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Preliminaries and Notation

Throughout the entire text, the direct tensor notation is preferred. Scalars are symbolised by
latin italic and greek letters (e.g. a, α), first-order tensors by latin italic lowercase bold let-
ters (e.g. a = ai ei), second-order tensors by latin italic uppercase bold letters (e.g. A =
Aij ei⊗ej), third-order tensors by latin italic lowercase bold calligraphic letters (e.g. a =
aijk ei⊗ej⊗ek) and fourth-order tensors by latin italic uppercase bold calligraphic letters (e.g.
AAAAA =Aijkl ei⊗ej⊗ek⊗el), where EINSTEIN’s summation convention is applied. Considering
a CARTESian coordinate system with an orthonormal basis, e.g. ei with i ∈ {1, 2, 3}, basic
operations for tensors used in this treatise are the scalar product of two first-order tensors

a · b = ai bj ei · ej = ai bi = c c ∈ R ,

the dyadic product

a⊗b = ai bj ei⊗ej = C ,

the composition of a second- and a first-order tensor

A ·a = Aij ak ei⊗ej · ek = Aik ak ei = bi ei = b ,

the composition of two second-order tensors

A ·B = Aij Bkl ei⊗ej · ek⊗el = Aij Bjl ei⊗el = Cil ei⊗el = C ,

the double scalar product between two second-order tensors

A :B = Aij Bkl ei⊗ej : ek⊗el = Aij Bij = b b ∈ R ,

and the double scalar product between a fourth- and a second-order tensor

AAAAA :B = AijklBmn ei⊗ej⊗ek⊗el : em⊗en = AijklBklei ⊗ej = Cij ei⊗ej = C

Up next, we introduce different transpositions of tensors which depend on the order of the
tensor. The transposed of second-order tensors is

A>= Aji ei⊗ej = Aij ej⊗ei .

The left or right transposition of third-order tensors are

aL = aijk ej⊗ei⊗ek = ajik ei⊗ej⊗ek ,

aR = aijk ei⊗ek⊗ej = aikj ei⊗ej⊗ek

and the transpositions of fourth-order tensors are

AAAAAL
= Aijkl ej⊗ei⊗ek⊗el = Ajikl ei⊗ej⊗ek⊗el ,

AAAAAR
= Aijkl ei⊗ej⊗el⊗ek = Aijlk ei⊗ej⊗ek⊗el ,

AAAAA>
= Aijkl el⊗ek⊗ei⊗ej = Aklij ei⊗ej⊗ek⊗el .
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Preliminaries and Notation

In the following equation, the KRONECKER delta δij is used to represent the second-order iden-
tity tensor

1 = δij ei⊗ej = ei⊗ei with δij =

{
1 if i = j

0 if i 6= j

and the identity tensor of fourth-order

IIIII = δikδjlei⊗ej⊗ek⊗el = ei⊗ej⊗ei⊗ej

and the transposer of fourth-order

TTTTT = δilδjkei⊗ej⊗ek⊗el = ej⊗ei⊗ei⊗ej .

The identity tensor of fourth-order maps every second-order tensor into itself

A = IIIII : A

and the transposer into the transposed second-order tensor

A> = TTTTT : A .

The relation between the fourth-order identity tensor and the transposer is

TTTTT = IIIII
L
.

The zero first-order tensor is represented as

o = o ei

and the zero second-order tensor as

0 = 0 ei⊗ej .

The norm of a first-order tensor is defined as

|a| =
√
a ·a =

√
aiaj ei · ej =

√
a2

1 + a2
2 + a2

3

and the norm of a second-order tensor as

||A|| =
√
A :A =

√
AijAkl ei⊗ej : ek⊗el =

√
A2

11 +A2
12 +A2

13 +A2
21 + · · ·+A2

33 .

Using the tensor notation, latin indices run through the values 1, 2, and 3, while greek indices
represent the two tangential and the normal directions of a local coordinate system {t1, t2,n}.
The vector valued nabla operator is defined as ∇= ei ∂/∂xi at three dimensions. � ·∇ is the
divergence, �×∇ is the rotation and �⊗∇ is the gradient of a tensor where � holds for all
first and second order tensors. An extended overview of tensor algebra and analysis is given
in basic textbooks on continuum mechanics featuring mathematical propaedeutics, e.g. in AL-
TENBACH [1], LAI, RUBIN & KREMPL [2], BERTRAM [3, 4], LEBEDEV, CLOUD & EREMEYEV [5]
or ITSKOV [6].

In some chapters it is necessary to use an alternative representation of the base of a second- or
fourth-order tensor to keep the notation short and compact. Therefore, we introduce following
representation for a second-order tensor

xii



Aij ei⊗ej =Aij |ij ,
and a fourth-order tensor

Aijkl ei⊗ej⊗ek⊗el =Aijkl|ijkl .

Also, this representation is used for writing down time integration algorithm.

��j+1 = ��j + ∆��j+1 ⇐⇒ ��|j+1 = ��|j + ∆��|j+1

�� stands for a variable with an index. For the numerical implementation of the model the
vector-matrix notation is used. Vectors are denoted as latin upright lowercase sans serif bold
letters (e.g. displacement vector u=[u1 u2 u3]>), matrices as latin upright uppercase sans serif
bold letters (e.g. stiffness matrix K), third-order matrices as latin lowercase bold frakture letters
(e.g. a) and fourth-order matrices as latin uppercase bold frakture letters (e.g. A).

In the following almost all letters, operators, symbols, indexes and abbreviations are presented
which are used in this treatise.

Latin Letters

a creep multiplicator
ad factor for heat production
A area
A interface material tangent matrix
A bulk material tangent matrix
b width
b B-operator matrix for displacements
B arbitrary body
B left CAUCHY-GREEN tensor
B B-operator matrix for temperature
c heat capacity
cvis damping factor
C arbitrary constant
Cp penalty stiffness for contact
C elasticity matrix
Ccap heat capacity matrix
Ccon heat conductivity matrix
C right CAUCHY-GREEN tensor
d damage
D damping matrix
e specific internal energy
ei global base vector
eα local base vector
E YOUNG’s modulus
Eint internal energy
Ekin kinetic energy
E3 EUCLIDIAN space
f arbitrary function
f force vector
fext external force vector
fint internal force vector

fvis artificial force vector
F force
Fij deformation gradient component
F deformation gradient
g separation
gcr length scale for cracking
gdel length scale for delamination
g separation vector
Gc fracture energy
Gs energy conductivity
h height of specimen
hext external heat vector
hint internal heat vector
H heat
Hext external heat
H int internal heat
H displacement gradient
I interface surface
J determinant of deformation gradient
J JACOBIAN matrix
kd exponent for heat production
K creep constant
K stiffness matrix
Kdyn dynamic stiffness matrix
l1 first length of specimen
l2 second length of specimen
lcrack length of crack
lele length of element
ltip length of crack tip
L velocity gradient
Lu relation matrix for displacements
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Lθ relation matrix for temperature
m mass
M bending moment
Mst steady-state bending moment
M mass matrix
Mvis artificial mass matrix
Md relation matrix for damage
Mu relation matrix for displacements
Mθ relation matrix for temperature
n normal vector
N creep exponent
Ninc number of increments
Nd damage shape function matrix
Nu displacement shape function matrix
Nθ temperature shape function matrix
p damage exponent
p total DOF vector
P arbitrary material point
Pmech mechanical power
Pnon non-mechanical power
qη entropy flux
q heat flux
q heat flux vector
Q arbitrary reference point
Q activation energy
Q rotation matrix of an element
r specific heat source
r residual vector
ru displacement residual vector
rθ temperature residual vector
R universal gas constant
R rotation matrix of one node
Rin inelastic residual matrix
s length scale parameter
Si0 normalisation for energy release rate
S material tangent matrix

t time
tCPU computational time
t stress or traction vector
t1 first tangential vector
t2 second tangential vector
T temperature (CELSIUS)
Tb0 normalisation for stress in bulk
Ti0 normalisation for traction in interface
Tij stress tensor component
TvM VON MISES equivalent stress
Tα traction vector component
T CAUCHY stress tensor
Td dissipative stress tensor
K

T KIRCHOFF stress tensor
1PK

T first PIOLA-KIRCHOFF stress tensor
u displacement
u displacement vector
vi eigenvector
V volume
w weight of integration point
W work
W dyn dynamical work
W ext external work
W int internal work
x coordinate of material point
x position vector
y local DOF vector
YE energy release rate
YE0 critical energy release rate
Y exponential map
zα vector of local coordinate system
Zd damage B-operator of interface
Zu displacement B-operator of interface
Zθ temperature B-operator of interface

Greek Letters

αi eigenvalue
β shear stiffness factor
γ radius
Γ curvature
Γnorm normalised curvature
Γst steady-state curvature
δ KRONECKER delta
η specific entropy
Hη entropy
θ absolute temperature (KELVIN)
θ temperature vector
Θ temperature jump

κ heat conduction coefficient
λ first LAME constant
µ second LAME constant
ν POISSON’s ratio
ξ natural element coordinate
ξ vector of natural element coordinates
ρ density
χ ratio of s and lele

Φ motion
ψ HELMHOLTZ free energy
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Operators & Indexes

�·� scalar product
�×� cross product
�0 quantity in the ref. configuration
�> transposition
�R right transposition
�L left transposition
�−1 inverse
∂� boundary
d� differential quantity
⊗ dyadic product
∇ nabla operator
∆� difference
δ� variation
�N quantity of the nodes
�b bulk
�i interface
�s substrate
�c coating

�in inelastic contribution
�el elastic contribution
�mech mechanical part
�therm thermal part
�exp experimental quantity
�max maximum value of quantity
�lin linear part of quantity
�nl non-linear part of quantity
�̇ first time derivative
�̈ second time derivative
�n quantity in normal direction
�t quantity in tangential direction
�e quantity refers to one element
�N nodal quantity
�+ plus side of interface
�− minus side of interface

Logical Operators

∈ element of
∀ for all
= equal
≈ approximately
6 less equal
> greater equal

6= unequal
∧ and
∨ or⋃

allocation

Abbreviations

exp exponential function
lim limit
ln natural logarithm
log logarithm with respect to base 10
det determinant of a matrix
tr trace operation
NE number of elements
DOF degree of freedom
4PBT Four Point Bend Test
DCB Double Cantilever Beam
FEM Finite Element Method
FE Finite Element
IP Integration Point
CZM Cohesive Zone Model

TSL Traction Separation Law
PFM Phase Field Method
CDM Continuum Damage Mechanics
PDE Partial Differential Equation
HVOF High Velocity Oxygen Fuel spraying
Fe iron
Al aluminium
Nb niobium
UMAT user defined material
UEL user defined element
wt.-% weight percentage
at.-% atom percentage
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1 Introduction

Since the very beginning of mankind it is the desire of humans to understand all aspects of
nature. This is transferable into engineering as well. An engineer tries to understand the cre-
ated part in all aspects too, thus, the created part fulfils all requirements to perfection, in the
end. Nowadays, this creation process is supported by a whole bunch of simulations to get a
deeper insight in the function and mechanisms of the part. This gets more important in the
21st century, because it is state of the art to call for a more sustainable and responsible usage
of resources and this call is getting louder every year. Due to this call the requirements onto
used materials increases, since the manufactured parts made of these materials get subjected
to higher loads - which can be of mechanical, thermal and/or chemical type - and at the same
time weight of the parts is reduced [7–9]. In the context of sustainability and responsibility to
save resources and money, as well as materials and CO2 and to follow the mentioned call in the
end [8]. A direct result is that traditional materials (e.g. concrete, steel, wood, etc.) reach their
limits, and new techniques as well as materials have to be developed. One technique could
be to combine two materials and create a composite, which combines the benefits of the base
materials (e.g. steel-enhanced concrete) or to coat a material with a thin ceramic to protect
the material against heat (thermal-barrier-coating, oxidation resistance) [10–12]. Another way
is to create a single-crystal-alloy, which has a higher strength compared to the same alloy with
many crystals [13]. Other examples are fibre-enhanced composites or high temperature ma-
terials based on refractory metals [14]. Further on, money- and time-savings can be achieved
by reducing the number of experiments (e.g. tensile or fatigue test) and replace them by sim-
ulations. Whereby, these experiments are usually performed until total failure of the specimen,
hence simulations have to be able to predict total failure of the specimen too. But this is not
straight forward as someone could expect.

The arising field is called fracture mechanics which is of enormous interest for the scientific
community. This field was founded by GRIFFITH in 1921 [15]. However, only simple models
can be analysed with GRIFFITH’s theory. To overcome this drawback, different models (Cohe-
sive Zone Model - CZM [16, 17], Continuum Damage Mechanics - CDM [18, 19], Phase Field
Method - PFM [20]) were introduced next to a complete new theory called "Peridynamics" [21].
Anyway, the simulation of failure is still very difficult and time-consuming. For this reasons
fracture mechanical problems are topics of many treatises [20, 22, 23], books [18, 19] and pa-
pers [24–28], as well as for this PhD thesis.

The foundations for this PhD thesis are the master thesis [29] and the article [30] by the au-
thor in which a metal compound made of aluminium (substrate) and iron aluminide (coating) is
analysed under isothermal conditions at 400 C in a Four Point Bend Test (4PBT) with the linear
beam theory of BERNOULLI & EULER, without usage of the Finite Element Method (FEM). Fur-
ther on, in these works methods are presented to identify all required material parameters from
4PBT measurements, thus, no further experiments are required. The motivation for this anal-
ysis was, as mentioned above, that increase and combination of loads and weight reduction
are contrary for durability and wear of engineering applications. Therefore, important parts get
coated, e.g. the combustion chamber in combustion engines or steam and gas turbines. How-
ever, the coating makes the designing process more difficult, thus, the aim of the works by the
author is to derive a simple model, which is able to describe the compound at complex loadings.
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1 Introduction

In this thesis we extend the model of [29, 30] to large deformations and non-isothermal condi-
tions, as well as to fracture mechanics and simulate failure of the mentioned compound. The
fracture mechanical model, that is used in this thesis, is the CZM. This model was developed
around 1960 through BARENBLATT [16] and DUGDALE [17]. Due to the fact that the compound
shows a strong inelastic material behaviour and the simulated time is long (ca. t = 2000 s) for
fracture mechanical analysis, the small time-step, that is required for such an analysis, is the
major drawback and produces in the end high calculation times, which are not desired. There-
fore, we investigate the size of the time-step in comparison to different simulation procedures
(quasi-static, dynamic) and extend the CZM with the damage gradient.

The structure of this thesis differs slightly from the structure of a common thesis. For the
reason of shortness of this thesis it is only referred to the literature when it is necessary to
present basic principles, that are required for this work. Therefore, this thesis is addressed to
advanced readers, which have a basic knowledge of continuum mechanics. At first, we present
the used materials, explain their specific properties and the experimental setup. This is done
because this knowledge is necessary to understand the assumptions, which are used later
on to formulate the model. In the next chapter the theory of the CZM is explained, as well
as the main part of every CZM the Traction Separation Law (TSL). Next to this, problems of
the CZM are explained, that arise due to the use of this model. These problems are present
in the numerical application, especially. We go on with presenting equations of balance for a
body with a zero-thickness interface, because equations of balance are not continuous, due to
the interface any more, thus, a jump in these equations arises. Up next the basic principles
of thermodynamics are applied to derive relations for constitutive models and upon these re-
lations constitutive models are formulated. To solve the arising system of Partial Differential
Equations (PDEs) the FEM is used. Therefore, derived models are discretised and Finite El-
ement (FE) formulations are derived in the next chapter. These formulations are implemented
in the FE software ABAQUS by using the UEL and UMAT subroutines, which one is used de-
pends on the performed analyses for this thesis and is later on explained in more detail. Last
step before using the derived models is to perform patch tests with the UEL and tests with the
UMAT subroutines. This is presented in the ongoing chapter. Then the determination of all
material parameters is explained, and an optimisation procedure is presented, which is used
to determine the interface parameters from 4PBT measurements as well. For this optimisa-
tion procedure the FE software ABAQUS is connected with the software package MATLAB
by using the tool ABAQUS2MATLAB [31]. In the ongoing chapter simulation results are pre-
sented and interpreted. Further on, a comparison between all used simulation procedures and
techniques is made. The quasi-static simulations with viscous regularisation are compared to
implicit dynamic simulations and the model with damage gradient extension is compared to a
quasi-static simulation with viscous regularisation as well. Although, a thermal model is de-
rived, whereby most presented simulations are isothermal. The last chapter summarises this
thesis and presents a conclusion and an outlook for future works.
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2 Material Science

This chapter presents the materials, which are used in this work and their specific properties.
This knowledge is necessary to understand some assumptions, that are made in this work, as
it is mentioned in Chapter 1. Further on, the 4PBT is presented and explained and how the
measured data are processed. However, we keep the explanations short and only give the
most important information. For more information we refer to [29, 30].

2.1 Aluminium - Substrate Material

The substrate material of the specimen, which is presented in the last section of this chap-
ter is the specific aluminium alloy AlSi10MgT6. This alloy consists of an amount of 9 wt.-% −
−11 wt.-% of silicon and an amount of 0.20 wt.-% − 0.45 wt.-% of magnesium. The silicon is
added to improve the casting properties and wear resistance (cf. [32]). Due to this high amount
of silicon, this alloy is eutectic, which results in a low melting point (ca. 585 C), as can be seen
in Fig. 2.1, left-hand side. The addition of magnesium improves the strength of the alloy. How-
ever, this addition is limited to 1 % because brittleness increases [7]. The last step is to perform
a T6 heat treatment with this alloy, to derive the final properties. For reasons of simplicity we
do not go into more detail and refer to the specific literature.

Usually, an aluminium crystal is anisotropic, which leads to a direction dependent YOUNG’s
modulus, that is presented in Fig. 2.1 on the right-hand side. Nevertheless, this dependence is
not high, and because an aluminium piece consists of many crystals the macroscopic behaviour
is approximately isotropic. Therefore, the anisotropic behaviour of the YOUNG’s modulus is not
taken into account and it is also assumed that the alloy is homogeneous. This is valid as can
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Figure 2.1: Section of the phase diagram of aluminium and silicon after [7] (left-hand side)
and anisotropic YOUNG’s modulus of aluminium (right-hand side) - values are taken
from [4] and the visualisation is done with the tool of [33]
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be seen on the micrograph in Fig. 2.3 on the right-hand side. Next to this fact the tempera-
ture range considered in this work needs to be discussed. The application temperature in this
treatise ranges from 250 C − 400 C, which corresponds to a homologous temperature of ca.
43 %−68 %. In this temperature regime metals show a strong creep behaviour, which is usually
divided into three parts; the primary, secondary and tertiary part. The first part is characterised
by a reduction of the creep rate, the second part by a constant (or minimum) creep rate and
the third part by an increase of the creep rate. In this work only the second part is considered,
since this part is of most concern in technical application, and to keep the model as simple as
possible, because the main concern of this thesis is the simulation of the fracture behaviour.
Hence, isotropy is assumed the creep deformations is isotropic as well. More informations
about the creep behaviour of metals can be found for example in [34, 35].

2.2 Iron Aluminide - Coating Material

The iron aluminides Fe3Al and FeAl are among the most widely studied intermetallics because
of their low cost, low density, good wear resistance, ease of fabrication and resistance to oxi-
dation and corrosion [38]. For technical applications the Al content is limited to ca. 50 at.-%. In
this work the used alloy Fe24Al0.6Nb consists of 40 at.-% of Al with a B2 crystal structure, as
can be seen in the phase diagram in Fig. 2.2 on the left-hand side. Nb is added to improve the
creep resistance of this alloy [38]. Commonly, an iron aluminide crystal is homogeneous and
only shows a strong anisotropic behaviour. This can be visualised by plotting the direction de-
pendent YOUNG’s modulus which ranges from 60 GPa− 300 GPa ,cf. Fig. 2.2 on the right-hand
side. Next to the anisotropic character of iron aluminide another problem is the manufacturing
process, which is High Velocity Oxygen Fuel (HVOF) spraying here. In this process the iron alu-
minde is used as a particle, which is molten in a combustion chamber by using gas, accelerated
in a nozzle and then sprayed onto the substrate material [39]. This is presented schematically
in Fig. 2.3 on the left-hand side. However, this process is used since it allows the production
of relatively thick coatings (here ca. 1 mm) economically and fast. Due to the HVOF spraying
technique, the coating consists in the end of oxides, pores and unmelted particles. This can be
seen in the micrograph in Fig. 2.3 on the right-hand side, as well as in the sketch of Fig. 2.3 on
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Figure 2.2: Section of the phase diagram of iron and aluminium after [36] (left-hand side) and
anisotropic YOUNG’s modulus of iron aluminide (right-hand side) - values are taken
from [37] and the visualisation is done with the tool of [33]
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Figure 2.3: Sketch of the HVOF process and the resulting coating after [40, 41] (left-hand side)
and micrograph of the real compound (right-hand side)

the left-hand side. Further on, the solidified iron aluminide drops can be seen. The amount of
porosity is ca. 7 %. Consequently, it is very rigorous and questionable to assume the coating as
homogeneous and isotropic. Nevertheless, it is done to keep the model as simple as possible,
because the main concern is the simulation of the failure behaviour. Relevant creep deforma-
tion of the used iron aluminide alloy is not occurring in the temperature range of 250 C−400 C,
which is investigated in this work.

2.3 Experiment - Setup and Data Processing

The 4PBT is a standard material test, similar to the tensile test. But in contrast to the tensile test
in the 4PBT, the stress state is not uniaxial, which makes the processing of the measured data
more complicated. However, for the determination of material parameters it is a benefit. This
test is often applied to brittle materials, who would fail in a tensile test too soon (e.g. ceramics).
The testing machine can be seen in Fig. 2.4 in the top, left-hand side picture. It consists of two
lower supports on which the specimen is placed and can move without friction. On the upper
two supports a load, or more precisely a displacement is applied. The distance between the
two lower supports is l2 = 40 mm, and the distance between the upper supports is l1 = 20 mm.
Between the lower supports three sensors are placed on equal distances from each other. The
two outer sensors are directly placed below the upper supports, and the third one is placed in
the middle of both of them. During the 4PBT four quantities are measured. These are

• the test force Fexp,

• the test time texp,

• the displacement of the upper supports uexp

• and the difference displacement measured between the three sensors ∆uexp.

All this informations are visualised in the sketch presented in Fig. 2.4 on the top, right-hand side
picture next to the dimensions of the specimen. Further on, it can be seen that the specimen
is only coated on one side, and the specimen is always placed in a 4PBT in the way that the
coating lies on the lower supports and is loaded with a tensile stress, consequently. Every
specimen is ca. 50 mm long, has a width b of ca. 3 mm and a total height h = hs + hc of ca.
4 mm. Whereby, the index �s stands for "substrate" and the index �c for "coating". The bottom,
left-hand side diagram of Fig. 2.4 presents one coated specimen, who was not tested until
failure of the coating occurred. Later on, the most important curve, resulting from the 4PBT, is
the Fexp vs. texp curve (cf. Fig. 2.5, left-hand side). However, for the determination of material
parameters (cf. Chap. 9) the Mexp vs. texp (cf. Fig. 2.5, right-hand side) and the Mexp vs. Γexp
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Figure 2.4: Experimental setup of the 4PBT (top, left-hand side), dimensions of the specimen
(top, right-hand side), deformed specimen (bottom, left-hand side) and curvature
calculation (bottom, right-hand side)

curve are required, respectively. These curves are derived from the measured data by applying
the linear beam theory of BERNOULLI & EULER. In this work we only give a brief overview.
More details on this procedure can be found in [29, 30]. The complete procedure is based on
the constant bending moment, which is present between the upper supports. It is determined
with the formula

Mexp =
Fexp

4
(l2 − l1) . (2.1)

Much more, it is possible to determine the radius γexp of the beam (cf. Fig 2.4 bottom, right-
hand side) from the difference displacement ∆uexp, at first. In the following, the curvature Γexp

is assumed to be constant along the cross section height. Since the difference displacement is
measured at the bottom of the specimen and whole beam theory is related to the neutral axis
of the beam, the radius is corrected with the distance from the bottom to the neutral axis. The
resulting expression for the curvature is

Γexp =
2

2γexp + 2hc + hs
with γexp =

l21 + ∆u2
exp

2∆u2
exp

. (2.2)

All the presented assumptions and equations are only valid for small deformations, which is a
very strong assumption. At first, it is necessary to check if the beam is lean. This is the case,
when the cross section dimensions are much smaller compared to the length of the beam.
Here, this is not exactly the case. The height h ≈ 4 mm < 50 mm but it is not much smaller and
the ratio is only 12.5. The situation is similar by comparing the width and the length, b ≈ 3 mm <
50 mm. This is smaller and the ratio is 16.6, but not much smaller. Further on, the applied final
displacement, which is uexp ≈ 1.5 mm, is approximately half of the height of the beam (cf.
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Figure 2.5: Calculation of the bending moment from experimental data - experimental data (left)
and calculated bending moment (right)

Fig. 2.4 bottom, right-hand side). Therefore, the assumption of small deformations is only valid
for the first 500 s, approximately. Then it is necessary to consider large deformations. Therefore,
the material parameters are determined from the measured data as soon as possible. An
interesting point is, although that material parameters are determined in the framework of small
deformations, it is possible to use them in a model, which considers large deformations. This
can be concluded by looking at the final results (cf. Fig. 10.4).
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3 Basics of the Cohesive Zone Model and the
Traction Separation Law

This section is divided into three subsections. In the first one we give a brief overview over
CZMs, mention important works in this field and present the main assumptions of these models.
The second subsection is dedicated to the different types of TSLs, who can be used in a CZM,
and in which situation a specific law is applied. In the third subsection numerical problems are
explained, which arise when CZMs are used.

3.1 Cohesive Zone Model

The theory of cohesive zones was initiated by BARENBLATT [16, 43] and DUGDALE [17] in
order to overcome limitations of the concept of linear elastic fracture mechanics, established
by GRIFFITH [15, 22]. Namely, the infinite stress at the crack tip and the existence of a pre-
crack. It is a phenomenological framework to model crack evolution and crack nucleation in
solid bodies. The crack is divided into two regions (inner and terminal region); "In the inner
region the opposite sides of the cracks are at a significant spacing so that interaction between
these sides does not occur." [16]. Further on, they are stress-free. "In the terminal region the
opposite sides of the crack come close to each other so that there are very large interaction
forces attracting one side of the crack to the other." [16]. These are the cohesive forces. The
three main assumptions of BARENBLATT are:

• the dimensions of the terminal region are small compared to the size of the crack (ltip �
lcrack),

• the behaviour of the terminal region depends only on local quantities and not on the
applied load,

• and both sides of the crack are smoothly joined at the end.

The last assumption leads to a finite stress at the end of a crack. Figure 3.1 presents the two
surfaces (I+ and I−), which are created due to cracking and schematic stress distributions in

I+

I−

T11(x)

x

T11(x)

x

ltipltip lcrack

DUGDALE BARENBLATT

Figure 3.1: Stress distribution at a crack in the sense of DUGDALE (left-hand side) and BAREN-
BLATT (right-hand side) after [42]
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3 Basics of the CZM and the TSL

the terminal region (crack tip) in the sense of DUGDALE (Fig. 3.1, left-hand side) and BAREN-
BLATT (Fig. 3.1, right-hand side). DUGDALE assumed that the stress at the crack tip is the
yield strength (T11(x) = Ty) and that this stress is constant to analyse the yielding of a steel
sheet containing slits. In contrast to that, BARENBLATT analysed crack evolution in a perfect
brittle solid. In general, prescription of stress is done with a TSL. This law defines the stress
or traction in the terminal region as a function of the distance between the surfaces I+ and
I− (separation), which is state of the art. This has the benefit, that no pre-crack has to exist.
However, BARENBLATT formulated his TSL as a function of the distance x from the end of the
crack to the end of the cohesive zone.

After introducing this theory to the scientific community nearly two decades no big interest
arose in this field, since the effort to solve the arising problem was too high. However, with the
advance of the numerical solution techniques, especially the FEM, it got possible to solve the
arising systems of PDEs. This led to a big interest in CZMs to describe cracking and crack evo-
lution in a solid. From our knowledge, one of the first users of this theory was HILLERBORG [44]
in 1976 to describe failure of concrete. The CZM is added to a FE mesh by introducing cohe-
sive or interface elements. After this, the cohesive zone framework attracted a lot of attention
due to contributions of NEEDLEMAN [45, 46], TVERGAARD & HUTCHINSON [47], ORTIZ & PAN-
DOLFI [48], XU & NEEDLEMAN [49], RICE & WANG [50], CAMACHO ET AL. [51] among others.
"In all the CZMs (except BARENBLATTs model, DUGDALEs model and CAMACHOs model), the
traction separation relations for the interfaces are such that with increasing interfacial sepa-
ration, the traction across the interface reaches a maximum, then decreases and eventually
vanishes permitting a complete decohesion." [28]. The traction separation relation or TSL is
the most important part of every CZM, therefore, we dedicate the whole next section to this
topic and do not go into more detail.

In general, the CZM can be applied to every interface in a continuum. Whereby, it should
be clear, that this model is rather suitable when the geometry of the interface is known a pri-
ori and not unknown. For this reason, it is very common to use CZMs to analyse e.g. failure
of fibre-matrix-composites [52], delamination of plies [53, 54] or coatings (this is the case in
this work), peeling tests [55] or indentation tests [56] (In all these simulations the interface is
known.). Examples for the usage of CZMs with an unknown interface are hard to find and
difficult to analyse, therefore, we exclude this topic in this work. Also, the need to know the
geometry of the interface (crack path) to apply CZMs to a problem can be interpreted as a
disadvantage. However, every model has advantages and disadvantages and this is not the
biggest disadvantage of this model. Further disadvantages are that stresses start to oscillate,
that a length scale is added to the model [57] and that the NEWTON-RAPHSON procedure is
destabilised due to a strong softening behaviour. However, the latter two disadvantages are a
result of every model considering fracture mechanical processes or an inelastic material be-
haviour. This will be discussed in Section 3.3. Advantages of CZMs are, that they are easily
applied to an existing model and no pre-crack is necessary. Especially, the latter reason is
important.

3.2 Traction Separation Laws

As mentioned in the foregoing section, the TSL is the key part of every CZM and it has a strong
influence on how the crack will open and propagate. Commonly, the TSL is formulated as a
phenomenological law without any thermodynamic background. However, influences like the
failure mechanism (e.g. brittle or ductile), the opening mode (Mode I, II, III), the material of the
solid and to which problem the TSL is applied, are always included in the TSL. Further on, the
TSL could depend on the separation velocity ti = f(ġ) [61, 62] instead of the separation ti =
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Figure 3.2: Types of TSLs for Mode I opening after: BAŽANT [58] (top, left-hand side); NEEDLE-
MAN [45, 46] blue - exponential TSL, red - polynomial TSL (top, centre); SCHEI-
DER [59] (top, right-hand side); HILLERBORG [44] (bottom, left-hand side); TVEER-
GARD & HUTCHINSON [47] (bottom, centre); ABAQUS [60] blue - linear softening,
red - exponential softening (bottom, right-hand side)

f(g), or it could exist a coupling between the different opening modes (mix mode behaviour).
All this information can have an influence on the crack and the crack propagation, therefore it
has to be considered when the TSL is formulated. For this reason a lot of different TSLs are
formulated by researchers to analyse their specific problems. Here, we can only present an
overview of frequently used TSLs. They are shown in Fig. 3.2 for pure Mode I opening. All
standard TSLs, next to the presented ones, have in common that they are characterised by
two independent parameters; the maximum traction and the maximum separation. The other
parameters which are used in the TSL usually depend or are formulated with a dependence
on these two parameters. Sometimes, the maximum traction is replaced by the fracture energy
Gc, which is the area under the TSL and it is calculated through integration.

Gc =

gmax∫

0

Tn dgn (3.1)

Brittle cracking can be modelled with simple linear TSLs, which were presented and used by
HILLERBORG or BAŽANT for example to model the cracking of concrete (Fig. 3.2 top, left and
bottom, left). Since it can be assumed for brittle failure that any inelastic deformation is material
separation, these TSLs have no elastic range [42]. However, the introduction of a small elastic
zone is useful for the numerical treatment. In contrast, smooth TSLs with an elastic range, a
long range on the level of maximum traction and a slow degradation are used to describe ductile
failure mechanisms. Some examples for these TSLs are presented in the diagrams in Fig. 3.2
top, centre and right position, and in Fig. 3.2 bottom, centre position. The bottom, right diagram
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3 Basics of the CZM and the TSL

in Fig. 3.2 presents schematic the two possible shapes of TSLs, which are implemented in the
commercial software tool ABAQUS. Both TSLs can be adjusted in order that it gets possible
to model brittle or ductile failure. However, application of these TSLs is limited due to their
simplicity. The foundations of both TSLs can be found in [63–65].

In the early stages of the TSLs these laws were formulated very simple, with no thermodynamic
background (as mentioned earlier) and for every direction separately (cf. HILLERBORG [44]).
Hence, someone can write traction and separation vector as follows.

ti = Tnen + Tt1et1 + Tt2et2 = Tαeα ∀ α ∈ {1, 2, 3} (3.2)
g = gnen + gt1et1 + gt2et2 = gαeα ∀ α ∈ {1, 2, 3} (3.3)

However, usually one fracture mode does not arise without another one and in general the
modes influence each other. Therefore, it is necessary to introduce a coupling between the
different modes, which leads to mix mode TSLs. Further on, it is required that the TSL fulfils
thermodynamic restrictions, similar to constitutive laws in standard continuum mechanics. This
demand leads to the procedure to derive the TSL from an energy potential, which depends on
the separation in some way (cf. GURTIN [66]). The most often used possibilities are to formulate
the potential as a function of the separate components

ψi = f(gn, gt1, gt2, β) (3.4)

or to introduce an effective separation (in-plane isotropy) and formulate the potential depending
on this scalar quantity.

ψi = f(geff , β) with geff =
√
g2

n + β
(
g2

t1 + g2
t2

)
(3.5)

The factor β describes the ratio between normal and tangential opening in Eqs. (3.4) and (3.5)
and is called shear stiffness factor [56, 67]. However, as will be illustrated subsequently, the
simulations are not very sensitive to the choice of β [67]. The required separation components
are determined with the scalar product between separation (Eq. (3.3)) and base vector gα =
g · eα ∀ α ∈ {1, 2, 3}. In this work we use Eq. (3.4) for one TSL (cf. Sect. 5.2.1) and formulate
another potential, which depends on the separation vector.

ψi = f(g) (3.6)

In Eq. (3.6) the mix mode behaviour is introduced due to the introduction of an inelastic sep-
aration portion (cf. Sect. 5.2.2). Finally, the traction components are derived through partial
derivatives of the potential.

Tα =
∂ψi

∂gα
∀ α ∈ {1, 2, 3} (3.7)

With this procedure it is possible to derive TSLs, who are physically motivated as done in
this work or presented in [27, 62] or phenomenological laws [50, 67]. The whole time a lo-
cal coordinate system is used for the TSL formulations which has the basis {en, et1, et2} and
not {e1, e2, e3}. The determination of the local coordinate system is done through directional
derivatives in the tangential directions of the interface, and performing the cross product be-
tween these vectors to determine the normal vector of the interface surface. Further informa-
tion can be found in the specific literature, we refer to [22, 23, 68].

Commonly, the TSL is prescribed (e.g. [27, 44, 47, 50, 62, 67]) and then the global behaviour
is analysed. The high number of authors mentioned makes clear, that this is the common pro-
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3.3 Problems arising through the Use of Cohesive Zone Models

cedure. Of course the inverse way is possible (e.g. NASE [69]), but then it is difficult to fulfil
thermodynamics, therefore, it is uncommon. Up to now, we explained the TSL and presented
some formulated TSLs. However, these models can only be used to model failure when loading
occurs. They are not able to model unloading, since some of them are reversible TSLs (e.g. [46,
47, 67]) without a damage variable. Hence, if someone wants to model fracture under cyclic
loading, an irreversible TSL (e.g. [27, 56]) and a contact condition must be applied to the TSL,
and maybe a friction formulation for the tangential direction, when required [70, 71].

For more detailed explanations concerning TSLs, for what problems they are used, and what
different TSLs exist, we refer to the book of SCHWALBE [42] or the reviews of CHANDRA [28]
and NEEDLEMAN [57].

3.3 Problems arising through the Use of Cohesive Zone Models

This section summarises important problems, which occur by applying CZMs to model fracture
and failure of a continuum with one or more zero-thickness interfaces. We begin with physical
and mathematical problems, who arise through the usage of CZMs and then go on with numer-
ical problems which are present when this model is used in a FE simulation. We begin with the
physical problem:

The physical problem is that a length scale is added to the model. "Because the material
constitutive relation is between stress and strain while the cohesive constitutive relation is be-
tween force and displacement, the overall response is size dependent." [57]. This length scale
can be addressed to the number of elements (NE) which are used to discretise the model when
a FE analysis is performed and a traction-separation relation is used. The other possibility is to
use a TSL with a fracture energy-separation relation, then the NE is replaced by the geometric
dimensions of the problem. In [57, 72] this is pointed out by analysing a one-dimensional bar
problem under small deformations, with HOOKE’s law and a bilinear TSL. Up to now, no solution
for this problem is known.

The mathematical problem is that the balance of linear momentum changes its properties in
the static and the dynamic case. "In the static case the elliptic character of the set of partial
differential equations is lost, while, on the other hand, in the dynamic case we typically observe
a change of a hyperbolic set into an elliptic set. In either case the rate boundary value problem
becomes ill-posed and numerical solutions suffer from spurious mesh sensitivity." [72]. This can
be addressed back to the fact that stress-strain relations are used, whereby, force-displacement
relations would be more suitable. This violates the stability criterion of the material [73, 74]. To
solve this problem higher order terms in the continuum description are necessary [72] or one
must take into account the viscosity of the material [72, 75]. This leads directly to one nu-
merical problem, which arises through the simulation of cracking and crack propagation along
a predefined path by using cohesive elements. Due to the fact that the problem becomes
ill-posed through the strong softening behaviour [75, 76], the numerical solution scheme, usu-
ally a NEWTON-RAPHSON procedure, is destabilised. One solution to solve this is to consider
higher order terms in the continuum description, as it is mentioned earlier, but this has some
disadvantages (e.g. increase of DOFs, unexplainable material parameters, needs C1-continuity,
etc.). The other and more simple possibility is to add a damping term to the constitutive law
or to the global residual vector. This additional term consumes the redundant energy due to
cracking and crack propagation. This principle is called viscous regularisation and is common
for many unstable analyses [76, 77]. The problem with viscous regularisation is, that the user
has to make an initial guess for the damping factor, since, if the damping factor is too high no
deformation will take place because all energy is consumed. In contrast to that, if the damping
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3 Basics of the CZM and the TSL

factor is too low the procedure will converge, but requires very small time steps what can lead
to convergence problems of the global solution scheme (e.g. NEWTON-RAPHSON). Hence, to
find a proper damping factor is a trial and error procedure.

Another possibility is to use other solution schemes like the RIKS method which is more ad-
equate for an ill-posed problem. But this scheme suffers from the problem, that it does not con-
verge quadratically and is more complex as the NEWTON-RAPHSON procedure, which leads in
the end to higher calculation times. The user has to decide, if it is worth it to use this scheme,
or to start a trial and error procedure to find a suitable damping factor. By studying the literature
most researchers prefer the NEWTON-RAPHSON procedure to obtain the solution.

A further, main problem for numerical solution schemes is that a CZM requires a high initial
stiffness to avoid an elastic opening of the interface before cracking occurs. Besides, this leads
to spurious traction oscillations near the crack [78–81]. The optimum would be to set the initial
stiffness to infinity. However, because of this spurious traction oscillations this is not possible.
Commonly, the initial stiffness is ten up to one hundred times higher than the stiffness of the
surrounding material. On the contrary, higher values can be achieved with stabilised CZMs,
as shown in [82]. Another possibility to reduce the occurrence of these oscillations is to use
non-standard integration schemes to calculate the cohesive element stiffness matrix. Usually,
full GAUSS integration is used to evaluate the stiffness matrix which results in a stiffness matrix
with the following structure in the local coordinate system for a four node plane element with
two displacement DOF . Ci represents the elasticity matrix of the TSL.

Ke
i,uu =

1

3




2Ci Ci −Ci −2Ci

Ci 2Ci −2Ci −Ci

−Ci −2Ci 2Ci Ci

−2Ci −Ci Ci 2Ci




Hence, this matrix is fully coupled. In contrast, it results the following stiffness matrix by using
NEWTON-COTES integration.

Ke
i,uu =




Ci 0 0 −Ci

0 Ci −Ci 0

0 −Ci Ci 0

−Ci 0 0 Ci




The difference in these two schemes is that, through the use of NEWTON-COTES integration
for the element, only nodes placed at opposite sides influences each other, and hence, the
oscillations are reduced. By using GAUSS integration all nodes of the element influences each
other. Therefore, it is recommended to use NEWTON-COTES integration for cohesive elements.
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4 Continuum Mechanics of an Arbitrary Body
with a zero-thickness Interface

In this chapter the basic equations of continuum mechanics for an arbitrary body B with a zero-
thickness interface I in the EUCLIDean space E3 are derived (cf. Fig. 4.1), which serves as the
foundation for the following chapters. Due to the fact that it is not the aim of this treatise to give
a full introduction to continuum mechanics and to keep this chapter short, only the necessary
aspects and concepts are introduced. For further information the interested reader is referred
to the specific literature, e.g. ALTENBACH [1], BERTRAM [3, 4], NAUMENKO & ALTENBACH [35],
HOLZAPFEL [83] or FAGERSTRÖM & LARSSON [84] and others, respectively. The explanations
given here are based on these books, as well. It is started with the introduction of the kine-
matic relation, followed by the kinetic relation, then the equations of balance followed by the
entropy inequality and then the CLAUSIUS [85]-DUHEM [86]- and the dissipation inequality are
presented. In this chapter no comment is given on constitutive laws, since this is done in Chap-
ter 5.

4.1 Kinematics

The first step in continuum mechanics is to describe the motion of an arbitrary body B with the
boundary ∂B in the EUCLIDean space E3. Thereby, the body consists of a continuous set of
material points P. For the spatial description of the motion of the body a cartesian coordinate
system xiei is employed. Furthermore, it is distinguished between two configurations. The
reference and the current configuration. The reference configuration describes the body in the
base state at time t = t0 with subsection of the body to thermal qb0 and mechanical tb0 load-
ings, boundary and initial conditions. Every quantity of this configuration is marked with the
index �0. In contrast, the current configuration describes the body at time t > t0 in which the
body is moved due to thermal and mechanical loadings.

Between these configurations a motion Φ(x0, t) can be introduced, which maps every posi-
tion vector x0 of a material point P0 of the reference configuration into the position vector x of

e1

e2

e3

qb0

tb0

θb0

θb

P0

P

x0 x

qbtb
u

Φ(x0, t)
reference configuration current configuration

B0

B

Figure 4.1: Arbitrary Body in EUCLIDean space E3 with a zero-thickness interface in reference
and current configuration subjected to mechanical and thermal loadings
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4 Continuum Mechanics of a Body with an Interface

the material point P in the current configuration.

x = Φ(x0, t) with x0 = Φ(x0, t0) (4.1)

With position vectors at hand the displacement vector is defined as

u = x− x0 . (4.2)

Figure 4.1 presents both configurations. Additionally, two different descriptions of the motion
are possible in continuum mechanics. The first possibility is to describe the motion with respect
to the reference configuration which is called material or LAGRANGEan description and the
second possibility is to describe the motion with respect to the current configuration. This is
called spatial or EULERian description. In this treatise the LAGRANGEan description is used,
which is the common description in solid mechanics. Whereas, the EULERian description is
preferred in fluid mechanics. Equation (4.1) represents the LAGRANGEan description of the
motion. The EULERian description is achieved with the inverse motion Φ−1.

x0 = Φ−1(x, t) (4.3)

"As an alternative, the motion can be interpreted as a time-dependent change of coordinates."
[3]. Therefore, a LAGRANGEan coordinate system x0iei and an EULERian coordinate system
xiei is introduced.

Next to the description of the motion it is necessary to describe the deformation of the body B.
Hence, the change of an infinitesimal line element dx0 at the point P0 from reference in current
configuration must be described. This change is given by

dx = Φ(x0 + dx0, t)− Φ(x0, t) (4.4)

in the LAGRANGEan description. Expanding the first term of Eq. (4.4) in a TAYLOR series
(cf. [87]) and assume that quadratic- and higher-order terms are negligible yields the common
expression for the deformation gradient

F =
∂x

∂x0
= 1 +

∂u

∂x0
(4.5)

which can be expressed with the LAGRANGEan nabla operator and the displacement gradient
H0, as well.

F = 1 + H0 = 1 + u⊗∇0 (4.6)

Consideration of higher-order terms in the TAYLOR series expansion would lead to strain gradi-
ent theories e.g. [88]. This tensor transforms a line element from the reference into the current
configuration. The deformation gradient F is a two-field-tensor, since the right index refers to
the reference and the left index to the current configuration. Further on, the determinant of this
tensor is positive definite (J = det(F ) > 0), thus, the deformation gradient is invertible. Yet this
tensor is not symmetric and contains rigid body motions what leads to some problems, which
are explained later in this chapter. The velocity of the deformation in a LAGRANGEan description
is

L = Ḟ ·F−1. (4.7)

Due to the fact that the materials considered in this work, show an inelastic material behaviour
and large deformations occur, it is necessary to perform the multiplicative split of the deforma-
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4.1 Kinematics

tion gradient into an elastic and an inelastic part (cf. LEE [89]).

F = Fel ·Fin (4.8)

The interpretation of the multiplicative split is presented in Figure 4.2. The inelastic deformation
gradient Fin can be interpreted as a transformation of the body B in an intermediate configu-
ration which lies between reference and current configuration and is stress-free. To determine
the inelastic deformation gradient it is necessary to formulate an evolution equation. This is
described in Chapter 5. For the formulation of constitutive laws (cf. Chap. 5) the elastic defor-
mation gradient Fel is required which transforms the body from the intermediate into the current
configuration.

Fel = F ·F−1
in (4.9)

Due the fact that the deformation gradient is not symmetric and contains rigid body motions
(translations and rotations) it is not possible to formulate constitutive laws with this tensor be-
cause the constitutive law would be not invariant (cf. [3]). To overcome this the right

C = F>·F Cel = F>el · Fel C in = F>in · Fin (4.10)

and the left

B = F ·F> Bel = Fel · F>el Bin = Fin · F>in (4.11)

CAUCHY-GREEN tensors are introduced. These tensors are positive definite, symmetric and
contain no rotations, any more. This can be seen by performing the spectral decomposition of
the deformation gradient, but this is out of the scope of this treatise and the reader is referred
to the specific literature. Further on, these tensors are called stretch tensors. By subtracting

reference configuration

B0

current configuration

B

intermediate configuration (stress-free)

B̂

e1

e2

e3

F−1

F

Fin

F−1
in

F−1
el

Fel

Figure 4.2: Multiplicative split of the deformation gradient
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4 Continuum Mechanics of a Body with an Interface

the identity tensor 1 from the left or right CAUCHY-GREEN tensor, respectively, stretch tensors
these tensors are transformed to strain tensors. However, this is not a strain tensor like the e.g.
GREEN-LAGRANGE strain tensor. No common strain tensors are introduced in this work since
they are not suitable for fracture mechanical analyses, as stated earlier. For this reason the
right and left CAUCHY-GREEN tensors are used to formulate the constitutive laws.

At last, the transformation of an infinitesimal volume or area element between reference and
current configuration is required. This is also done through the deformation gradient. The
infinitesimal volume is transformed with

dV = J dV0 (4.12)

and the infinitesimal area with

n∂B dA = JF−>· n∂B0 dA0 . (4.13)

4.2 Kinetics

The analysis of a body in continuum mechanics is usually done in the current configuration
by applying the cut principle. "The material body is separated from its environment, while the
ambient influences are represented by forces and moments." [90]. Figure 4.3 illustrates this
principle. Due to the cutting the body is separated into two parts, B+ and B−. For the interaction
of these two parts a surface force vector ∆f has to be introduced on each surface. Relating
this surface force vector to the surface area yields in the limiting case the stress vector, which
acts on the surface.

t = lim
∆A→ 0

∆f

∆A
(4.14)

The stress vectors acting on the body parts B+ and B− have the same magnitude but a reverse
orientation (actio = reactio), hence,

t+ + t− = o (4.15)

holds true. Further on, it is assumed that ∆f is a smooth function. Up next, a relation between
the stress vector and the surface orientation, characterised by the surface normal vector, is
required. CAUCHY proves (for some assumptions) a linear relationship between these two
quantities.

cutting plane

B

e1

e2

e3

n∂B+

t+dA

B+

n∂B−
t−

dA
B−

cut

Figure 4.3: Arbitrary body with cutting plane with resulting stress and normal vectors
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4.3 Balance Laws & Entropy Inequality

t = n∂B · T = T · n∂B ⇐⇒ t+/− = n∂B+/− · T = T · n∂B+/− (4.16)

In Eq. (4.16) T is the CAUCHY stress tensor which is a two-field-tensor with both indexes in the
current configuration, also, this stress tensor is sometimes called "true stress". From the bal-
ance of angular momentum results that this stress tensor is symmetric (cf. Chap. 4.3.3). Since
it is difficult to measure the actual area in an experiment another stress tensor is introduced
which relates the actual force to the reference area ∆A0.

t = lim
∆A0→ 0

∆f

∆A0
(4.17)

Referring to Eq. (4.16) it is possible to formulate a similar equation with the normal vector of
the reference configuration n∂B0 and the first PIOLA-KIRCHHOFF stress tensor.

t =
1PK

T · n∂B0 (4.18)

The first PIOLA-KIRCHHOFF stress tensor is a two-field-tensor like the deformation gradient.
One index refers to the current and the other to the reference configuration. This stress tensor
is called "engineering" or "nominal" stress tensor, as well. With Eq. (4.13) and the symmetry of
the CAUCHY stress tensor it is possible to derive a relation between the CAUCHY and the first
PIOLA-KIRCHHOFF stress tensor. This relation is

1PK

T = J T ·F−>. (4.19)

Last required stress measure for this work is the KIRCHHOFF stress which is the product of J
and the CAUCHY stress

K

T = J T . (4.20)

These measures are used independently for different FE equations.

4.3 Balance Laws & Entropy Inequality

In the foregoing sections the kinematic and kinetic relations are derived. These relations are
used in this section to formulate the equations of balance and the entropy inequality, which
provide the basic equations, relations and restrictions of a model of continuum mechanics. All
equations are formulated in the current configuration and for the whole body, whereby, it is pos-

B

∂B

B−

B+

I−

I+

I
P−

P+

e1

e2

e3

zoom

I+

t+ n+ q+

θ+u+

I−

t− n− q−

θ−

u−

gmidsurface

ti ni

qi
I

Figure 4.4: Partitioning of an arbitrary body with a zero-thickness interface and introduction of
the quantities acting on the interface
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4 Continuum Mechanics of a Body with an Interface

sible to localise them under the assumption that each material point shows the same behaviour
as the neighbouring points. This assumption is very crucial and questionable in the sense of
fracture mechanics (CZMs in this treatise), however, it is a common procedure in many fields,
e.g. CZM, PFM or CDM ([18, 20, 23]). Besides, a new theory was developed in the 1990th from
SILLING ([21]) to overcome this assumption, therefore, this will be discussed later. The body B
with a zero-thickness interface I, which is subjected to thermal qb and mechanical tb loadings,
is presented in Fig. 4.1, already. Now, the current configuration of the body is analysed in detail
for the formulation of the equations of balance. This is presented in Figure 4.4. Due to the
failure of the interface the body is separated in the parts B+ and B−, as well as the boundary
of the body (∂B+ and ∂B−) and the interface (I+ and I−). Further on, Fig. 4.4 presents a
detailed view on the interface, how the quantities act on the interface surfaces and how they
are oriented. For simplifications in the theory, a midsurface is introduced to which all quantities
are referred. Last assumption is that the body and the interface are homogeneous and isotropic.

At the beginning of separation the surfaces I+ and I− are in contact. However, evolving sep-
aration leads to failure of this connection and as result a crack starts to propagate along the
interface I. The connection between the interface surfaces I+ and I− is described by a TSL.
Feasible shapes of TSLs are presented in Fig. 3.2 for pure Mode I opening. This TSL is applied
to every point P which is placed on the interface to describe crack propagation.

4.3.1 Balance of Mass

It is assumed that the mass of the body B does not change during loading, thus, it holds true

m0 = m. (4.21)

Due to the fact that the interface is of zero-thickness, it has no density, which leads to the
conclusion that the interface has no mass and thus, it does not contribute to the overall mass
of the complete body. Equation (4.21) is rewritten with the density. It follows

∫

B0

ρ0 dV0 =

∫

B

ρ dV. (4.22)

Localisation of Eq. (4.22) and usage of Eq. (4.12) leads to

ρ0

ρ
= J. (4.23)

Hence, the change of density can be expressed through the determinant of the deformation
gradient.

4.3.2 Balance of linear Momentum

"The balance of linear momentum states that the rate of linear momentum of the body equals
the resulting force acting on the body." [4]. In integral form it is

∫

B

ρü dV =

∫

∂B

t∂B dA

︸ ︷︷ ︸
bulk

+

∫

I+

t+ dA+

∫

I−

t− dA

︸ ︷︷ ︸
interface

. (4.24)

Body forces are neglected and the last two terms of Eq. (4.24) represent the contributions
coming from the interface. With CAUCHY’s relation (Eq. (4.16)) and GAUSS divergence theorem
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it results
∫

B

ρü dV =

∫

B

T ·∇ dV +

∫

I+

t+ dA+

∫

I−

t− dA , (4.25)

and from the force equilibrium of the interface (cf. Fig. 4.4) follows
∫

I+

t+ dA+

∫

I−

t− dA = o . (4.26)

With Eq. (4.26) and localisation of Eq. (4.25) the final form of balance of linear momentum is

ρ ü = T ·∇ . (4.27)

Hence, a zero-thickness interface does not influence the balance of linear momentum, since it
vanishes for the whole body. This is axiomatic assumed through Eq. (4.26). However, to derive
FE equations it is preferable to use Equation (4.25), since this equation is already split up into
the different parts of the continuum.

4.3.3 Balance of angular Momentum

The balance of angular momentum states that the rate of angular momentum of the body, with
respect to a fixed point Q with the position vector xQ, equals the resulting moment of all forces
acting on the body [4].

∫

B

ρxQ × ü dV =

∫

∂B

xQ × t∂B dA

︸ ︷︷ ︸
bulk

+

∫

I+

xQ × t+ dA+

∫

I−

xQ × t− dA

︸ ︷︷ ︸
interface

(4.28)

Usage of Eq. (4.26) simplifies Eq. (4.28) to
∫

B

ρxQ × ü dV =

∫

∂B

xQ × t∂B dA . (4.29)

In the next step Eq. (4.27) is multiplied (cross product) with the position vector xQ and then
subtracted from Equation (4.28). It follows

∫

B

(xQ × T ) ·∇− xQ × (T ·∇) dV = o . (4.30)

This must hold for all bodies, therefore the integrand must be zero [4]. From the product rule
follows

xQ × T ·∇ = o . (4.31)

This holds true when the CAUCHY stress tensor T is symmetric.

T = T> (4.32)

More details can be found e.g. in BERTRAM [4]. For polar media a non-symmetric CAUCHY

stress tensor results from the balance of angular momentum. Falsely, sometimes this result is
called BOLTZMANN axiom. However, this is not correct because the symmetry of the CAUCHY
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4 Continuum Mechanics of a Body with an Interface

stress tensor is proven through Eq. (4.31) and not provided axiomatically.

4.3.4 Balance of Energy

The balance of energy or first law of thermodynamics is the fourth equation which is necessary
for the formulation of a model in continuum mechanics. It states that the rate of kinetic Ėkin and
internal energy Ėint is equal to the mechanical Pmech and non-mechanical power Pnon supplied
to a body

Ėkin + Ėint = Pmech + Pnon . (4.33)

Whereby, kinetic energy results only from the body because the interface is of zero-thickness.

Ekin =

∫

B

1

2
ρ u̇ ·u̇ dV (4.34)

The internal energy is assumed to be the sum of a bulk (index "b") and an interface part (index
"i") with the specific internal energy e, cf. [84].

Eint =

∫

B

ρ eb dV +

∫

I

ei dA (4.35)

Additionally, the split into a bulk and an interface part is used for the mechanical and non-
mechanical power.

Pmech =

∫

B

T : L dV +

∫

I

ti · ġ dA (4.36)

Pnon =

∫

B

ρ rb −∇· qb dV +

∫

I

ri + qi dA , qi = q− = −q+ = −ni · qi (4.37)

In these equations ti, qi and ni are the traction, heat flux and normal vector of the interface
which act on the midsurface (cf. Fig. 4.4) and r is a scalar heat supply which is split up, as well.
Further on, the heat resulting from each interface surface is defined as:

q+ = −n+ · q+

q− = −n− · q−

Hence, a heat flux pointing from the interface into the bulk increases the energy of the bulk.
The separation and the temperature jump of the interface are defined as:

g = u+−u− (4.38)
Θ = θ+ − θ− (4.39)

Inserting Eqs. (4.34)–(4.37) into Eq. (4.33) and rearrange the terms, final form is derived with
one contribution for the bulk material and another one for the interface.

∫

B

ρ u̇ ·ü + ρ ėb − T : L− ρ rb +∇· qb dV

︸ ︷︷ ︸
bulk

+

∫

I

ėi − ti · ġ − ri − qi dA

︸ ︷︷ ︸
interface

= 0 (4.40)

Equation (4.40) is the basis to simulate heat conduction (e.g. ABAQUS [60]). Here, it is as-
sumed that the mechanical response will not influence the thermal response and that the bulk
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4.4 CLAUSIUS-DUHEM- and Dissipation Inequality

has no internal heat production rb = 0. Heat is only produced due to cracking of the interface
which is taken into account by the internal heat production of the interface ri. For this reasons
Eq. (4.40) simplifies to

∫

B

ρ ėb +∇· qb dV +

∫

I

ėi − ri − qi dA = 0 . (4.41)

Equation (4.41) is split up into a bulk and an interface portion and then localisation is performed.

ρ ėb +∇· qb = 0

ėi − ri − qi = 0
(4.42)

4.3.5 Entropy Inequality

In this section the entropy inequality or second law of thermodynamics is derived. This in-
equality states that entropy production of a process is non-negative. This statement leads to

0 6 Ḣη −
qη
θ

with

qη
θ

=

∫

B

ρ
rb

θ
dV −

∫

∂B

n∂B ·
(qb

θ

)
dA+

∫

I

ri

θ
dA+

∫

I

qi

θ
dA .

(4.43)

In this equation Hη is the entropy and
qη
θ

is the entropy flux. The entropy is divided into a bulk
and an interface part, similar as it is done for the internal energy, with η as the specific entropy

Hη =

∫

B

ρ ηb dV +

∫

I

ηi dA . (4.44)

By using GAUSS’ divergence theorem, the final form is obtained, which is divided into a bulk
and an interface part as well.

∫

B

ρ η̇b − ρ
rb

θ
+∇·

(qb

θ

)
dV

︸ ︷︷ ︸
bulk

+

∫

I

η̇i −
ri

θ
− qi

θ
dA

︸ ︷︷ ︸
interface

> 0 (4.45)

Both integrals can be considered independently and then localisation is performed. It follows

ρ η̇b − ρ
rb

θ
+∇·

(qb

θ

)
> 0 ,

η̇i −
ri

θ
− qi

θ
> 0 .

(4.46)

4.4 CLAUSIUS-DUHEM- and Dissipation Inequality

In Sects. 4.3.4 and 4.3.5 the balance of energy and the entropy inequality are derived. Now,
these equations are used to derive the CLAUSIUS-DUHEM- and the dissipation inequality. From
these the basic relations and restrictions for the constitutive laws for the bulk and the interface
material are distilled. Further details of deriving these equations are presented in Appendix A.
As a first step, HELMHOLTZ free energy [91] for the bulk and the interface is introduced.
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4 Continuum Mechanics of a Body with an Interface

ψb/i = eb/i − θηb/i (4.47)

The time derivative of this variable yields

ψ̇b/i = ėb/i − θ̇ηb/i − θη̇b/i . (4.48)

Combining Eqs. (4.40) and (4.45), as well as replacing specific internal energy by HELMHOLTZ

free energy and use of the product rule yields the global form of CLAUSIUS-DUHEM inequality
∫

B

T :L− ρ ψ̇b − ρ ηbθ̇ −
1

θ
qb · (∇θ) dV

︸ ︷︷ ︸
bulk

+

∫

I

ti · ġ − ψ̇i − ηiθ̇ dA

︸ ︷︷ ︸
interface

> 0 (4.49)

for the bulk and the interface. However, acceleration effects are not considered. The name
of Eq. (4.49) was introduced by TRUESDELL [92, 93]. Also, this equation can be localised,
and is then split up into the bulk and the interface portion to derive the basic relations for the
constitutive laws.

0 6 T :L− ρ ψ̇b − ρ ηbθ̇ −
1

θ
qb · (∇θ) (4.50)

0 6 ti · ġ − ψ̇i − ηiθ̇ (4.51)

The CLAUSIUS-DUHEM inequality must be fulfilled for any arbitrary process, hence, this equa-
tion is the origin of a thermodynamic consistent constitutive model. The next step requires
to formulate the dependencies of the HELMHOLTZ free energy. In this work the bulk material
depends on the elastic deformation gradient and the temperature

ψb = f(Fel, θ) , (4.52)

and the interface on an elastic separation, a scalar damage variable and the temperature

ψi = fnew (gel, d, θ) (4.53)

on the one hand and separation and temperature

ψi = fNEEDLE(g, θ) (4.54)

on the other hand. The elastic separation in Eq. (4.53) is determined through the additive split
of the separation vector g.

g = gel + gin (4.55)

This accounts for a viscous behaviour of the interface, because the bulk material shows a
strong creep behaviour which influences the cohesive zone too. "In general, the overall rate
dependence can arise as a consequence of rate dependence of the bulk material’s behaviour,
of the interface response itself, or of both." [94]. Next to that the experiment shows a relaxation
behaviour during the delamination process (cf. Chap. 6), which is captured by the inelastic
part. Further more, the additive decomposition is valid, although large deformations are con-
sidered because metals are investigated. Hence, the deformations at the crack tip and the
crack itself keep small. Moreover, the split of separation into elastic and inelastic part acts like
a viscous regularisation (cf. [76, 95]) for the numerical solution scheme, later on.Depending on
the requirements, it is common to assume that the HELMHOLTZ free energy depends on more
quantities, what leads to the concept of internal state variables (cf. COLEMAN & GURTIN [96]).
The time derivatives of Eqs. (4.52)–(4.54) are
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4.4 CLAUSIUS-DUHEM- and Dissipation Inequality

ψ̇b =
∂ψb

∂Fel
: Ḟel +

∂ψb

∂θ
θ̇ , (4.56)

ψ̇i =
∂ψi

∂gel

· ġel +
∂ψi

∂d
ḋ +

∂ψi

∂θ
θ̇ , (4.57)

ψ̇i =
∂ψi

∂g
· ġ +

∂ψi

∂θ
θ̇ . (4.58)

Equation (4.56) is inserted in Eq. (4.50) and Eqs. (4.57) and (4.58) in Equation (4.51). After
some manipulations and rearranging of terms following forms are derived.

0 6
[
T ·F−>el − ρ

∂ψb

∂Fel

]
: Ḟel − ρ

[
ηb +

∂ψb

∂θ

]
θ̇ + Td : Lin −

1

θ
qb · (∇θ) (4.59)

0 6
[
ti −

∂ψi

∂gel

]
· ġel −

[
ηi +

∂ψi

∂θ

]
θ̇ + ti · ġin −

∂ψi

∂d
ḋ (4.60)

0 6
[
ti −

∂ψi

∂g

]
· ġ −

[
ηi +

∂ψi

∂θ

]
θ̇ (4.61)

Equations (4.59)–(4.61) are the final forms with the dissipative stress tensor Td and the inelastic
velocity gradient Lin defined as:

Td = F>el · T · F−>el (4.62)

Lin = Ḟin · F−1
in (4.63)

Equations (4.59)–(4.61) must be fulfilled for any arbitrary process, thus, it follows directly the
relation for the stress tensor and the traction vector (Eq. (4.65) for the novel TSL of Sect. 5.2.2
and Eq. (4.66) for the TSL of Sect. 5.2.1)

T = ρ
∂ψb

∂Fel
·F>el , (4.64)

ti =
∂ψi

∂gel

, (4.65)

ti =
∂ψi

∂g
(4.66)

plus the relations for the specific entropies

ηb = − ∂ψb

∂θ
, (4.67)

ηi = − ∂ψi

∂θ
(4.68)

of the bulk and the interface portion. Further on, these results are a consequence of the rate
independence of Eqs. (4.52)–(4.54). For further informations it is referred to [35]. What remains
is the dissipation inequality of the bulk

0 6 Td : Lin −
1

θ
qb · (∇θ) , (4.69)

and the interface portion

0 6 ti · ġin −
∂ψi

∂d
ḋ . (4.70)

Equations (4.64)–(4.70) are the basis to formulate constitutive laws and evolution equations for
all variables. This is explained in the following chapter.
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5 Constitutive Laws

This chapter presents the basics how constitutive laws are derived and what constitutive laws
are used in this work, as it is mentioned in Chapter 3. The starting points are Eqs. (4.64)–(4.70).
At first, derivation of constitutive laws of the bulk material is explained and then the derivation
of the interface constitutive laws.

5.1 Bulk Constitutive Laws

In this work the bulk material consists of two different materials. This is explained in detail in
Chapter 2. However, one of these materials behaves purely elastic and the other one shows an
inelastic behaviour. Further on, both materials are compressible, assumed to be homogeneous
and isotropic, and the material properties differ only slight. Therefore, the same constituive law
is applied, once without and once with an inelastic portion. To consider large deformations it is
directly worked with the deformation gradient (Eq. (4.5)) and the multiplicative split of this one
(Eq. (4.8)). The explanation for consideration of large deformations is given in Chap. 2 as well.
It is begun with Eq. (4.52) which is additively split up into a mechanical and a thermal part,

ψb = ψmech
b (Fel) + ψtherm

b (θ) (5.1)

whereby the mechanical part still depends on the temperature, because of the elastic proper-
ties. However, this will not influence the thermal response (as it is assumed in the balance of
energy (cf. Sect. 4.3.4) and vice versa). Inserting Eq. (5.1) into Eq. (4.64) leads to

T = ρ
∂ψmech

b

∂Fel
·F>el (5.2)

for the stress and insertion into Eq. (4.67) to

ηb = −∂ψ
therm
b

∂θ
(5.3)

for the entropy. At first, the mechanical part of HELMHOLTZ free energy is defined and later on
the thermal part. For the formulation of a constitutive law it is necessary to satisfy four principles
according to BERTRAM [3] or TRUESDELL & NOLL [97]. These are:

1. Principle of determinism for thermo-mechanical materials
"The state of a material point is determined from the present and the past but not from
the future."

2. Principle of local action for simple thermo-mechanical materials
"The state of a material point depends only on the infinitesimal neighbourhood."

3. Principle of material objectivity for thermo-mechanical materials
"The total dissipation of all materials is invariant under EUKLIDian transformations."

4. Principle of invariance under superimposed rigid body motions for thermo-mechanical
simple materials
"The state of a material is not changing under rigid body transformations."
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5 Constitutive Laws

Since the elastic deformation gradient contains rigid body rotations, it is necessary to reformu-
late Eq. (5.2) to fulfil the fourth principle. With the use of Eq. (4.23) it follows

T =
2

J

∂ρ0ψb

∂Bel
·Bel . (5.4)

The transformation of the density with the determinant of the deformation gradient is possible
because the inelastic deformation should be isochoric (Jin = 1). This leads to

J = Jel . (5.5)

A detailed explanation how Eq. (5.4) is derived is given in Appendix A. As a consequence of
these four principles and the aforementioned assumptions the CIARLET-GEYMONAT [98] strain
energy potential is chosen which is based on the left CAUCHY-GREEN tensor. Another reason is
the unbounded poly-convexity of this potential, as long as POISSON’s ratio ν > 0 holds true [99].
The potential is formulated with respect to the first and third invariant of the left CAUCHY-GREEN

tensor, and with LAMÉ’s constants λ and µ. Due to the usage of the left CAUCHY-GREEN tensor
the second invariant vanishes in the potential. The LAMÉ’s constants are defined as

λ =
Eν

(1− 2ν) (1 + ν)
and µ =

E

2 (1 + ν)
(5.6)

wherein, E represents the YOUNG’s modulus. Moreover, the potential is transformed to the
elastic part of the left CAUCHY-GREEN tensor Bel. It is

ρ0ψ
mech
b =

λ

4
[IIIBel

− ln(IIIBel
)− 1] +

µ

2
[IBel
− ln(IIIBel

)− 3] . (5.7)

Hence, it results the formulation for the CAUCHY stress tensor from Eq. (5.4)

T =
1

J

[
λ

2

(
J2 − 1

)
1 + µ (Bel − 1)

]
, (5.8)

the dissipative stress tensor from Eq. (4.62)

Td =
1

J

[
λ

2

(
J2 − 1

)
1 + µ (Cel − 1)

]
, (5.9)

the first PIOLA-KIRCHHOFF stress tensor from Eq. (4.19)

1PK

T =
λ

2

(
J2 − 1

)
F−> + µ

(
F · C−1

in − F−>
)
, (5.10)

and the KIRCHHOFF stress tensor from Eq. (4.20)

K

T =
λ

2

(
J2 − 1

)
1 + µ

(
F · C−1

in ·F
> − 1

)
. (5.11)

The constitutive law for a pure elastic material can be derived from Eqs. (5.10) and (5.11) with
the assumption that no inelastic deformation occurs Fin = 1. Up next, Eq. (4.69) (dissipation
inequality) is used to derive an evolution equation for the inelastic deformation gradient and
an equation for the heat flux vector. At first, the inelastic evolution equation is derived. One
assumption is that the evolution equation can be multiplicative split up into one part depending
on the stress tensor and another part accounting for the temperature dependence. Further
on, the inelastic deformation should be isochoric (Jin = 1), which is a common assumption for
creep deformations of metals (cf. ODQVIST [34]). The time derivative of the determinant of the
inelastic deformation gradient yields
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5.1 Bulk Constitutive Laws

∂Jin

∂t
= tr(Lin) = 0 . (5.12)

Hence, the inelastic velocity gradient should be a tensor of deviatoric type. However, a de-
pendence onto the hydrostatic part of the stress tensor is still possible and not omitted through
Eq. (5.12). An example for a theory, that uses an inelastic deformation based on the hydrostatic
part of the stress tensor is non-associated plastic flow based on MOHR-COULOMB yielding. Due
to the fact that metals are investigated this is not required, thus, the inelastic velocity gradient
depends only on the deviatoric part of the dissipative stress tensor. Much more, we perform the
multiplicative split of the inelastic velocity gradient into a stress and a temperature dependent
function (cf. [35]). It results

Lin = fT

(
Td

)
fθ(θ) . (5.13)

Further more, the first function should be of power-law type and the second is the ARRHENIUS

function with the activation energy Q and the universal gas constant R, which was redefined
in 2019 and has the value R = 8.31446261815324 J/K mol [100]. Other dependencies are possi-
ble as well (cf. [101]), but this assumption is sufficient to model the inelastic behaviour of the
material, which is used in this work (cf. Chap. 9). It results

Lin = ab

[
TvM

Tb0

]Nb Td

TvM
exp

(
− Q

Rθ

)
. (5.14)

Also, this equation implies that the exponent Nb does not depend on the temperature. This is
a suitable assumption for metals (cf. [34]). Keep in mind that this evolution equation is not valid
when an extreme BAUSCHINGER effect occurs which leads to a flow against the stress [102].
The plastic dissipation gets negative in this case. From Eq. (4.63) the final form is obtained.

Ḟ in = Lin · F in (5.15)

In contrast to other authors, e.g. [18, 35], no dissipative potential is defined and used to derive
the evolution equation. This often applied procedure is omitted because we simply adopt NOR-
TON’s law (cf. ODQVIST [34]) and extend it only to large deformations. The deviatoric part of the
dissipative stress tensor follows from the additive split

Td =

(

T d + Td , (5.16)

wherein, volumetric and deviatoric part are defined as

(

T d =
tr(Td)

3
1 and Td = Td −

tr(Td)

3
1 , (5.17)

and the equivalent stress in Eq. (5.14) is the VON MISES stress, which is defined as

TvM =

√
3

2
Td : Td . (5.18)

The symmetric dissipative stress tensor leads to a symmetric inelastic velocity gradient. With
this at hand, the mechanical part is completely determined and the first term of Eq. (4.69) is
fulfilled. Up next the second term of Eq. (4.69) has to be fulfilled too. This is possible by using
FOURIER’s law ([103]).

qb = −κb (∇θ) (5.19)

Hence, the dissipation inequality is fulfilled and the thermal part can be specified. In this work
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5 Constitutive Laws

the thermal part is chosen in that way, that heat capacity cb is a linear function of temperature
(cb = Cb1θ + Cb2). This is done due to the fact that for metals thermal material parameters
(heat capacity, thermal expansion, density, etc.) depend linear on the temperature in the range
from room to near melting temperature, approximately [104, 105]. By integrating this function
with the relation

cb = − θ ∂
2ψtherm

b

∂θ2
(5.20)

one gets following thermal part of HELMHOLTZ free energy

ψtherm
b = Cb2 (θ − θ0)− Cb1

2

(
θ2 + θ2

0

)
+ Cb1θ θ0 − Cb2θ ln

(
θ

θ0

)
. (5.21)

Herein, θ0 is the reference temperature. Equation (5.20) can be derived when the internal
energy in Eq. (4.42) is replaced by Equation (4.48). This is not presented here, because the
balance of energy is used in the form of Equation (4.42). The entropy follows from Eq. (5.3)
and with Eq. (5.21) to

ηb = Cb1(θ − θ0) + Cb2 ln

(
θ

θ0

)
. (5.22)

The internal energy results from Eq. (4.47) as

eb =
Cb1

2

(
θ2 − θ2

0

)
+ Cb2(θ − θ0) , (5.23)

and this leads to the linear dependence of heat capacity with the relation

cb =
∂eb

∂θ
, (5.24)

also.

5.2 Interface Constitutive Laws

The interface constitutive laws are derived differently. For the cracking of the coating a common
TSL is used without the additive split of the separation vector (Eq. (4.55)). In contrast, the
TSL to describe the delamination of the coating from the substrate is derived according to the
procedure of the foregoing section. However, in both cases the HELMHOLTZ free energy is
additive split up into a mechanical and a thermal part.

ψi = ψmech
i (gel, d) + ψtherm

i (θ) ∨ ψi = ψmech
i (g) + ψtherm

i (θ) (5.25)

Inserting Eq. (5.25) into Eq. (4.65) or Eq. (4.66) leads to

ti =
∂ψmech

i

∂gel

∨ ti =
∂ψmech

i

∂g
(5.26)

for the traction. The derivation for the thermal quantities differs slightly from the procedure for
the bulk part. First of all, the thermal quantities entropy, internal energy and heat capacity
depend on the temperature jump (cf. Eq. (4.39)) and second, the parameters of the interface
(maximum separation, maximum traction, etc.) do not depend on the temperature directly. They
depend on the interface temperature which is determined as the mean value of the tempera-
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5.2 Interface Constitutive Laws

tures of the interface surfaces.

θi =
1

2
(θ++ θ−) . (5.27)

Due to the heat supply and the change of heat conductivity in the interface caused by cracking,
the temperature on the interface surfaces changes. This is shown in Figure 5.1. The thermal
potential is defined in that fashion, that the heat conduction of the body is not influenced or
disturbed by the interface, as long as, the interface is not damaged or no temperature jump
exists. However, heat capacity of the interface should be a constant function (ci = Ci1). This
is assumed, because it is not possible to split up the interface contribution of the balance of
energy into two parts when the weak form of this equation is derived, otherwise. More details
are given in Section 6.2. Therefore, the following potential is chosen.

ψtherm
i = (Ci1 − Ci2)Θ− Ci1Θ ln(Θ) (5.28)

Further on, the derived relations for the thermal properties are all transformed to the tempera-
ture jump. From Eq. (4.68) results

ηi = −∂ψ
therm
i

∂θ
= −∂ψ

therm
i

∂Θ
(5.29)

for the entropy and

ci = −θ ∂
2ψtherm

i

∂θ2
= −Θ

∂2ψtherm
i

∂Θ2
(5.30)

for the heat capacity. As well, heat capacity can be determined from the internal energy with

ci =
∂ei

∂θ
=
∂ei

∂Θ
. (5.31)

Using Eq. (5.28) and Eq. (5.29) leads to

ηi = Ci1ln(Θ) + Ci2 (5.32)

for the entropy and from Eq. (4.47) results the function for the internal energy.

ei = Ci1Θ (5.33)

By utilising Eq. (5.30) or Eq. (5.31) it can be proven that a constant heat capacity is achieved
from the thermal potential, defined in Equation (5.28).For heat conduction through the inter-

θb

qb

B I+

I−

e1

e2

e3

zoom

I− I+

θiΘ

I

θ
[K

]

Figure 5.1: Temperature jump across a zero-thickness interface
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5 Constitutive Laws

face a simple model is defined, which is similar to the model used in [84]. The heat, con-
ducted through the interface surfaces qi, is based on a scalar thermal conductivity (isotropy
is assumed) and the temperature jump. Moreover, heat conduction in the normal direction
dominates the conduction process through the interface, compared to the tangential direction
(cf. [106]). With these assumptions following scalar equation for heat conduction through the
interface is defined.

qi =
κi

gcon
(θ+− θ−) =

κi

gcon
Θ (5.34)

The length scale gcon in Eq. (5.34) is set to the value of gcr or gdel. The choice depends on the
TSL. This formulation guarantees that heat conduction through the body is not influenced by
the interface without a temperature jump. The same assumption as for the thermal potential.
Further on, the interface conductivity is based on the scalar damage variable of the interface.

κi = dκair + (1− d)κb (5.35)

As long as the interface is undamaged, the interface behaves like the bulk to conduct heat.
However, up to the onset of failure of the interface the heat conductivity starts to change from
the value of the bulk to the value of the surrounding medium (which is air in this work). Although,
the conductivity of air compared to that one of metals is negligibly κair = 0. The length scale
gcon is introduced for dimension purposes, because without this factor qi would be of dimension
W/mm, however, the dimension of qi is W/mm2. A similar correction has to be applied to heat
capacity for dimension purposes, as well.

The heat supply (of the interface) in the balance of energy results from the failure of the in-
terface. For this reason it is assumed that the heat supply ri depends on the damage variable,
only. As long as, the damage growth the heat supply increases exponentially, however, for total
failure of the interface (d = 1) the heat supply is zero. This correlation is expressed through the
function

ri = ad (1− d)2 [ exp(kdd)− 1 ] (5.36)

with the two parameters ad and kd. The function is based on the measurements of [107]. In
this work the heat production around a crack tip is measured. Parameter ad influences only
the maximum of the function and is therefore of no concern, for now. In contrast, parameter kd

influences the shape of the function. Figure 5.2 on the left-hand-side presents the shape of the
heat supply function ri for different values of kd and ad = 1W/mm2. To compare the introduced
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Figure 5.2: Plot of heat supply function of the interface for different values of kd (left-hand-side)
and evolution of heat supply at a crack tip (right-hand-side)
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5.2 Interface Constitutive Laws

function to the work of [107] we perform a theoretical experiment. Think of an undamaged
material in which a crack starts to evolve and consequently, propagates through the material.
The crack is described by a coordinate x, which starts at the crack tip (x = 0mm). Now,
damage evolves and the crack propagates. The resulting distribution of the heat supply around
the crack tip is visualised in Fig. 5.2 on the right-hand-side. To conclude, the defined function
gives a suitable approximation of the heat supply in the vicinity of a crack tip.

5.2.1 Cohesive Zone Model for Cracking of the Coating

The first interface constitutive law or TSL which is used is the polynomial TSL of NEEDLE-
MAN [67], but it is used in the form of SCHEIDER [108], because the orientation of the traction
vector in this work is vice versa to the orientation defined in [67]. Originally, this law is defined
to describe the failure of plastically deforming solids, including structural metals and compos-
ites through void nucleation [67]. Here, this potential is used because it allows to simulate the
increasing of the test force after the coating of the specimen has failed (cf. Fig. 2.5). Further de-
tails concerning this topic can be found in [109]. The potential from which the traction relations
are derived takes the form

ψmech
i =

27

4
Tmax gcr

[
1

2

(
gn

gcr

)2
(

1− 4

3

gn

gcr
+

1

2

(
gn

gcr

)2
)

+
β

2

(
gt1

gcr

)2
(

1− 2
gn

gcr
+

(
gn

gcr

)2
)

+
β

2

(
gt2

gcr

)2
(

1− 2
gn

gcr
+

(
gn

gcr

)2
)]

(5.37)

with gn as the normal, gt1 as the first and gt2 as the second tangential separation. gcr is the
maximum separation and the parameter β is the shear stiffness, although, the influence of this
parameter onto the shape of the TSL is only slight and can be chosen arbitrary. However, it
has to be greater than zero, otherwise, the material tangent matrix for the FE implementation is
singular. Figure 5.3 presents the TSL for different values of β and maximum separation gcr for
the two dimensional case (gt2 = 0). From Fig. 5.3 can be clearly seen that the chosen potential
has a very dominant tangential (shear) behaviour, which is necessary for the correct simulation
of the fracture process. The normal and tangential directions are determined as follows

gn = g · ni ,

gt1 = g · t1 ,

gt2 = g · t2 .

(5.38)

Equation (5.37) is valid for arbitrary values of gn. Nevertheless, we restrict the usage of Equa-
tion (5.37) to cases were gn > 0 holds, hence, no contact occurs. The tractions follow as the
derivatives of Eq. (5.37) with respect to normal and tangential separations.

Tn =
27

4
Tmax

[
gn

gcr

(
1− 2

gn

gcr
+

(
gn

gcr

)2
)

+ β

(
gn

gcr
− 1

)((
gt1

gcr

)2

+

(
gt2

gcr

)2
)]

(5.39)

Tt1 =
27

4
Tmax β

gt1

gcr

(
1− 2

gn

gcr
+

(
gn

gcr

)2
)

(5.40)

Tt2 =
27

4
Tmax β

gt2

gcr

(
1− 2

gn

gcr
+

(
gn

gcr

)2
)

(5.41)
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Figure 5.3: Plot of polynomial TSL from NEEDLEMAN for different values of β: pure normal
separation with β = 0 for different values of maximum separation (top, left-hand
side), shape of TSL for gcr = 1 mm and β = 0.25 (top, right-hand side), β = 0.50
(bottom, left-hand side) and β = 0.75 (bottom, right-hand side)

Under the condition gn 6 0 contact occurs, which is captured through a linear dependence with
a penalised contact stiffness.

ti = Cp g (5.42)

The big disadvantage of this model is that it is not able to model unloading of the interface, be-
cause it exists no damage variable, which could save the actual damage state before unloading
occurs. However, this model is chosen because it has other advantages (e.g. material tangent
matrix is smooth, increase in the test force can be simulated, etc.) as figured out in [109] and a
damage variable is introduced for the thermal model through the comparison of actual traction
value and maximum traction in the softening regime.

5.2.2 Novel Cohesive Zone Model for Delamination of the Coating

As stated in Sect. 4.4 the rate dependent behaviour of the substrate material will influence the
fracture process. For this reason the delamination process in this work is not simulated with
a common CZM as presented in Fig. 3.2 of Section 3.2. A novel CZM is formulated which is
based on the deformation mechanisms of the substrate (creep deformation) and according to
the basic principles of continuum mechanics (concept of internal state variables). Besides, this
choice is influenced by the works of SONG [61] and MUSTO [94], which had great success by
formulating rate dependent CZMs suitable for their specific problems. Further on, only two new
parameters are introduced compared to a rate independent CZM, which have to be identified
through experiments. Since, all other parameters are set equal one or can be identified from the
material parameters of the substrate or of the coating. The mechanical part of HELMHOLTZ free
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energy is specified first. This part is formulated as a quadratic function of elastic separation in
combination with a degradation function fd, which is introduced with the effective stress concept
(cf. LEMAITRE [19] or KACHANOV [110]).

ψmech
i =

1

2

fd(d)

gdel
gel · C i ·gel with fd(d) = (1− d)p (5.43)

Dependence of degradation function fd to parameter p leads to a finite value for the thermody-
namic driving YE force, when p > 1 and d = 1 [26]. In this work the parameter is chosen as
p = 2, thus, the thermodynamic driving force is defined as

YE = −∂ψi

∂d
=

(1− d)

gdel
gel · C i · gel , (5.44)

and the traction relation follows from Eq. (5.26) and Eq. (5.43) to

ti =
(1− d)2

gdel
C i · gel . (5.45)

Therein, the parameter gdel is used to normalise the separation, thus, the cohesive zone elastic-
ity C i is of dimension MPa (cf. ABAQUS [60]). Last part of the interface model are the evolution
equations for the inelastic separation and the damage. To derive these equations Eq. (4.70),
the dissipation inequality,

0 6 ti · ġin + YE ḋ (5.46)

is used, since this equation must be fulfilled at every time. For inelastic separation a power-law
type is defined with extension to damage [111, 112], hence, secondary and tertiary stages of
inelastic separation can be described.

ġin =
ai gdel

(1− d)

[ |ti|
Ti0

]Ni ti

|ti|
if |ti| > 0 (5.47)

Therein, evolution of inelastic separation starts when the EUCLIDian norm of the traction vector
ti is bigger as zero. This equation fulfils Eq. (5.47) because the term ti · ġin is always positive
or zero.

Damage evolution equation follows from dissipation inequality with the assumption that the
damage rate is always positive (ḋ > 0), hence, healing effects of the material are excluded.
Next to that damage can only evolve from zero to one. A suitable damage evolution equation
which fulfils these criteria and the inequality is

ḋ = (1− d)

(
YE − YE0

Si0

)∣∣ġin

∣∣
gdel

. (5.48)

This form is similar to an evolution equation used by BOUVARD [27]. Damage evolves when the
normal separation is positive (no contact), material is under loading, elastic energy release rate
is bigger as the threshold YE0, and an inelastic evolution takes place.

gn > 0 , YE > YE0 , ẎE > 0, ġin 6= 0

With Eq. (5.47) and Eq. (5.48) each term of the dissipation inequality is fulfilled at every time and
consequently the complete dissipation inequality is fulfilled. Under contact (gn 6 0) Eq. (5.42)
is applied as well. Figure 5.4 presents the influence of the most important parameters on the
shape of the novel TSL. These parameters are ai, Ni, Si0 and YE0. For these investigations the
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Table 5.1: Initial values of cohesive parameters for parametric study

parameter
gdel Cp ai Ni Ti0 Si0 YE0

[mm] [MPa]
[
s−1
]

[−] [MPa]
[

N
mm

] [
N

mm

]

value 1.0 1.0 1.0 2.0 1.0 1 · 10−3 0

initial values of the parameters are chosen arbitrary and they are summarised in Table 5.1.
Then they are varied one by one under pure Mode I opening. The top, left-hand side diagram
of Fig. 5.4 shows the change of shape of the TSL under a variation of the creep factor ai. An
increase of this factor leads to a reduction of the maximum traction of the TSL and a further
onset of the damage evolution. However, the influence of ai is less compared to the influence
of Ni, which reduces the maximum traction more drastically if it is increased. This can be seen
by comparing range of the axis of top, left-hand side and bottom, right-hand side diagram of
Figure 5.4. If the creep parameters are constant and the damage parameter Si0 is reduced,
the whole TSL reduces, because the damage evolves much faster. But the slope of the TSL is
not changed, see Fig. 5.4 the bottom, left-hand side diagram. Due to an increase of the energy
release rate threshold, the complete shape of the TSL is changed, as can be seen in Fig. 5.4
on the top, right-hand side diagram.
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Figure 5.4: Influence of cohesive parameters on the shape of the novel TSL: variation of creep
factor (top, left-hand side), variation of elastic energy release rate threshold (top,
right-hand side), variation of damage divisor (bottom, left-hand side) and variation
of creep exponent (bottom, right-hand side)
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5.3 Plane-Strain-State

5.3 Plane-Strain-State

Commonly, the aim of continuum mechanics is to describe the motion and deformation of an
arbitrary body B in the three-dimensional EUCLIDean space E3 under given loading and tem-
perature (cf. Chap. 4). However, in general it is not possible to solve the arising system of
PDEs without the help of numerical solution schemes like the FEM. But it is more important,
that it is not always necessary to solve the full system of PDEs. Often, it is possible to re-
duce the problem size, because in one or two directions no gradients occur, for example due
to the specific boundary conditions or when the extension in this direction is small compared to
the other two directions. Examples for such simplifications are the plain-stress-state (PT) and
the plain-strain-state (PE). "Since the "plane case" brings great simplifications of calculation
as compared to the general three-dimensional problem and since the plane problems are of a
particular interest from the practical and technical standpoints, AIRY’s [113] initial results were
followed in the last hundred years by extremely numerous works in which a great variety of
mathematical methods were used." [114]. Here, we restrict ourselves to the PE which yields
the deformation gradient

F = Fij ei⊗ej + e3⊗e3 ∀ i, j ∈ {1, 2} ⇐⇒ [Fij ] =



F11 F12 0
F21 F22 0
0 0 1


,

and the CAUCHY stress tensor

T = Tij ei⊗ej + T33 e3⊗e3 ∀ i, j ∈ {1, 2} ⇐⇒ [Tij ] =



T11 T12 0
T21 T22 0
0 0 T33


.

in case of isotropy. In this state it is assumed that in the third direction (e3) no deformation
occurs and a stress remains, only. For a PT it is vice versa. The stress T33 or deformation F33

is calculated afterwards from the constitutive law and not from the balance of linear momen-
tum. Further on, from these results follows that the direction vector of the third direction is the
normal vector of the remaining plane problem (n = e3). Due to the fact that both states are
used in continuum mechanics, frequently, and it is not referred to the scientist who introduced
these states first, we want to mention some of them to honour their research. The assumptions
can be addressed to the works of AIRY [113], MAXWELL [115], LÉVY [116], FLAMANT [117]
and GOLOVIN [118] among others (e.g. MICHELL [119], CAROTHERS [120], LOVE [121]). For a
deeper insight in the history of the PT and PE the interested reader is referred to the review of
P. P. TEODORESCU [114] from 1964.

In this work it is possible to assume a PE, because a 4PBT is analysed. The setup of this
experiment is presented in Chapter 2. Since the stress state in the middle of the specimen is
analysed, no loading in the direction of e3 occurs, nor a boundary in this direction exists and
the specimen is symmetric with respect to the e1−e2 plane, which leads to a symmetric defor-
mation in e3 and consequently, no deformation in the middle of the specimen. Therefore, a PE
is assumed for the analyses in this work.

Next to these assumptions a PE has one advantage compared to the PT which is explained
in detail in [122]. Due to the change from the EUCLIDean space E3 to a reduced EUCLIDean
space E2, when using a PT or PE, it is necessary to determine the reduced elasticity tetrad.
However, in numerics constitutive laws are used in the displacement controlled form, which
requires the correction of the elasticity tetrad in a PT, but not in a PE. To conclude, under a PE
Eqs. (5.10) and (5.11) can be used without any correction.
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6 Finite Element Method

In general, the solution of Eq. (4.25) and Eq. (4.41) is determined through the use of numer-
ical solution schemes because an exact solution is determinable only for special geometries
or loadings. Especially, when the mechanical and the thermal problem are coupled. Com-
monly, in continuum mechanics the FEM is used to solve the arising system of PDEs. In this
chapter the basic FE equations, that have to be solved, are derived, the used element types
are explained and features, which are necessary for the solution of the FE equations, in the
framework of interface or cohesive elements are explained. For more informations about the
presented statements it is referred to ALLIX & CORIGLIANO [63], PARK [68], HOLZAPFEL [83],
SCHEIDER [108], WRIGGERS [123] and DHONDT [124]. In this work a thermo-mechanical prob-
lem is solved, therefore, two independent variables exist: the displacement u and the absolute
temperature θ. At first, the weak forms of balance of linear momentum and energy are derived
and the solution scheme is presented. Then it is necessary to discretise the solution domain.
In this section the tensor notation is abandoned and the vector-matrix notation is introduced, as
it is common for the FEM. However, it must be remarked that the vector-matrix notation is used
without the transformation of second- and fourth-order tensors into six dimensional vectors and
matrices, respectively. For example, a fourth-order tensors is transformed into a fourth-order
matrix.

6.1 Weak Form of Balance of Linear Momentum

The starting point to derive the weak form of balance of linear momentum is to multiply Eq. (4.25)
with the test function δu, which is arbitrary, but zero on an area where DIRICHLET boundary
conditions are prescribed. In this work the test function is a virtual displacement, another test
function would be a virtual velocity δu̇. The former test function leads to the principle of virtual
work and latter test function to the principle of virtual power in the sense of [4]. Any way, in the
literature the principle of virtual power is labelled as principle of virtual work, also (cf. WRIG-
GERS [123]). Although, in a physical sense the product between force and velocity is power
and not work. It follows

∫

B

ρ δu ·ü dV =

∫

B

δu · (T ·∇) dV +

∫

I+

δu+ · t+ dA+

∫

I−

δu− · t− dA . (6.1)

Wherein, the test function must be split up on the interface. The product rule of the divergence
yields

(δu ·T ) ·∇ = T : (δu⊗∇) + δu · (T ·∇)

and with Eq. (4.26) it is possible to rearrange Eq. (6.1) as follows
∫

B

ρ δu ·ü dV +

∫

B

T : (δu⊗∇) dV +

∫

I

(δu− − δu+) · t+ dA =

∫

B

(δu ·T ) ·∇ dV. (6.2)

The right-hand side of Eq. (6.2) can be transformed with GAUSS divergence theorem, the inter-
face traction vector ti is introduced (cf. Fig. 4.4) and the symmetry of the CAUCHY stress tensor
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6 Finite Element Method

is used. It results
∫

B

ρ δu ·ü dV +

∫

B

(δu⊗∇) : T dV +

∫

I

(δu+ − δu−) · ti dA =

∫

∂B

δu · tb dA . (6.3)

Introducing the separation vector g and perform the pull-back of the two volume integrals with
the determinant of the deformation gradient J leads to the formulation of ABAQUS [60].

∫

B0

ρ0 δu ·ü dV0 +

∫

B0

J (δu⊗∇) : T dV0 +

∫

I

δg · ti dA =

∫

∂B0

δu · tb0 dA0 (6.4)

In this work two different formulations of Eq. (6.4) are used. For the UMAT subroutine of
ABAQUS Eq. (6.4) is formulated with the KIRCHHOFF stress tensor

∫

B0

ρ0 δu ·ü dV0 +

∫

B0

(δu⊗∇) :
K

T dV0 +

∫

I

δg · ti dA =

∫

∂B0

δu · tb0 dA0 (6.5)

and for the UEL subroutine Eq. (6.4) is formulated with the first PIOLA-KIRCHHOFF stress tensor.
∫

B0

ρ0 δu ·ü dV0 +

∫

B0

(δu⊗∇0) :
1PK

T dV0 +

∫

I

δg · ti dA =

∫

∂B0

δu · tb0 dA0 (6.6)

The required manipulations for the second integrand of Eq. (6.6) can be seen only in index
notation and are presented in App. A, therefore. Further on, the relation between the nabla
operators∇0 =∇· F is required. A general expression of Eqs. (6.4)–(6.6), which is more clear
and precise, can be achieved by rewriting the integrands of these equations as virtual works.
This leads to

δW dyn + δW int = δW ext with δW int = δW int
b + δW int

i . (6.7)

Wherein, it is not distinguished between different stress measures for reason of simplicity.

6.2 Weak Form of Balance of Energy

The weak form of the balance of energy is achieved through multiplication of Eq. (4.41) with a
virtual temperature δθ as the test function and split up the interface contribution into two parts.

∫

B

δθ(ρ ėb +∇· qb) dV +

∫

I+

δθ+(ė+− r+− q+) dA+

∫

I−

δθ−(ė−− r−− q−) dA = 0 (6.8)

Again, the product rule of the divergence is used to reformulate the second term of the first
integrand.

∇· (qbδθ) = qb · (∇δθ) + δθ (∇· qb)

With the heat of the midsurface qi, GAUSS divergence theorem and assuming that internal
energy and heat supply of the two interface parts depend on each other, as stated, (this is
based on the balance of interface forces and guarantees that the interface does not exist for
the global problem).

ėi = ė− = −ė+

ri = r− = −r+
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Eq. (6.8) leads to
∫

B

ρ δθ ėb − qb · (∇δθ) dV +

∫

I

(δθ+ − δθ−) (ri + qi − ėi) dA = −
∫

∂B

δθn∂B · qb dA . (6.9)

Interestingly, the internal energy rate of the interface is negative, which seems realistic because
due to failure of the interface the internal energy will reduce until total failure of the interface
occurs. Vice versa, an increasing of the internal energy of the interface during failure is unre-
alistic. And with Eqs. (5.19), (5.24) and (5.33), the chain rule for the internal energies and the
heat relation qb = −n∂B · qb Eq. (6.9) yields

∫

B

ρ cb δθ θ̇ + κb (∇δθ) · (∇θ) dV +

∫

I

δΘ ri + δΘ qi − ci δΘ Θ̇ dA =

∫

∂B

δθ qb dA . (6.10)

Wherein, δΘ is the virtual temperature jump. Since it is assumed that heat conduction is de-
coupled from the mechanical problem (cf. Sect. 4.3.4) the integrals in Eq. (6.10) refer to the
reference configuration and no pull-back is required. It results

∫

B0

ρ0 cb δθ θ̇ + κb (∇δθ) · (∇θ) dV0 +

∫

I

δΘ ri + δΘ qi − ci δΘ Θ̇ dA =

∫

∂B0

δθ qb0 dA0 (6.11)

which is equal to the formulation of ABAQUS [60], if no interface would be considered. For later
use it is more convenient to rewrite Eq. (6.11) as

δH int = δHext with δH int = δH int
b + δH int

i . (6.12)

6.3 Discretisation of the Thermo-Mechancial Problem

This section explains shortly how the two systems of PDEs (Eq. (6.7) and Eq. (6.12)) are
discretised to solve them in space and time with the FEM. The given statements are addressed
to the advanced reader, for basic informations it is referred to the textbooks presented at the
beginning of this chapter and it is limited to the plane case. Equation (6.7) and Eq. (6.12)
cannot be solved on the complete body B at a specific time point due to the arbitrary shape of
the body, in general. To overcome this deficiency the body B is separated into a finite number of
elements (NE) (cf. Fig. 6.1) and then all elements are assembled to approximate the complete
body. However, it remains only an approximation of the body B̃ and not the exact body B.

B ≈ B̃ =

NE⋃

i=1

Bei (6.13)

Generally, it is not possible to approximate the behaviour the body exactly. Equation (6.7) and
Eq. (6.12) are discretised, as well.

δW ext
e = δW int

e + δW dyn
e

δHext
e = δH int

e

(6.14)

Summation of all element contributions gives the comparative weak forms

NE∑

i=1

δW ext
i =

NE∑

i=1

δW int
i +

NE∑

i=1

δW dyn
i ,
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6 Finite Element Method

NE∑

i=1

δHext
i =

NE∑

i=1

δH int
i .

Within the finite element methodology, interpolation functions have to be chosen in order to
approximate the primary field variables [123]. In this work this primary variables are the dis-
placements u and the temperature θ (Remark: Later on, the damage variable d is used as a
primary variable, also. But this is then explained). Henceforth, the tensor notation is replaced
by the vector-matrix notation, as it is common in computational mechanics. The displacement
vector and temperature of an element are approximated by shape functions N and a discrete
degree of freedom (DOF ) vector uN and θN of the element.

ue = Nu ·uN (6.15)
θe = Nθ ·θN (6.16)

This can be expressed through the introduction of a total DOF vector of the element pe, as well.

pe =
[
u>e θe

]> (6.17)

Every node has two displacement DOFs (u1, u2) and one temperature DOF (θ), cf. Fig. 6.2
or Fig. 6.4. In this work the standard isoparametric concept is used, hence, the geometry is
approximated by the same shape functions. On the one hand the geometry is approximated in
the reference (Eq. (6.18)) and on the other hand in the current configuration (Eq. (6.19)).

x0e = Nu ·x0N (6.18)
xe = Nu ·xN (6.19)

Bei

B
B̃

∂B

∂B̃

Figure 6.1: Discretisation of an arbitrary body B with FEs, as well as, the boundary ∂B based
on [123]
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6.4 Quadratic Plane Strain Element

Therein, xe denotes the element position and ue the element displacement vector and θe the
element temperature. Whereas, the vectors xN, uN and θN are comprised of all nodal coordi-
nates, displacements and temperatures for one element.

xN =
[
x1

N x2
N . . . xNNN

]>
, xiN =

[
xi1 xi2

]> ∀ i ∈{1, 2, . . . , NN} (6.20)

uN =
[
u1

N u2
N . . . uNNN

]>
, uiN =

[
ui1 ui2

]> ∀ i ∈{1, 2, . . . , NN} (6.21)

θN =
[
θ1

N θ2
N . . . θNNN

]> (6.22)

In Eqs. (6.20)–(6.22) �i is the node index, and NN denotes the number of nodes per element.
Both fields are represented by the same shape functions. The matrix Nu/θ includes all shape
functions:

Nu/θ =
[
N1

u/θ N2
u/θ . . . NNN

u/θ

]
(6.23)

where Ni
u/θ stands for the matrix of the shape functions with respect to the ith node [90]:

Ni
u=N i

b 1i ∀ i ∈{1, 2, . . . , NN} (6.24)

Ni
θ=N i

b ∀ i ∈{1, 2, . . . , NN} (6.25)

Due to the formulation of shape functions with so-called natural coordinates ξ (cf. Figs. 6.2
and 6.4), a transformation between physical and natural coordinates is required. This transfor-
mation is performed with the JACOBIan matrix J.

∂

∂ξ
=
∂ xe

∂ξ
· ∂
∂ xe

= J · ∂
∂ xe

⇐⇒ ∂

∂ xe
= J−1· ∂

∂ξ
(6.26)

At last, the determinant of the JACOBIAN det(J) is introduced to relate the infinitesimal volume
in physical coordinates into natural coordinates (In this work the plane case is analysed, hence,
the direction e3 is replaced by a constant width b).

dV = bdx1dx2 = bdet(J) dξ1dξ2 (6.27)

For sure, the transformations of Eqs. (6.26) and (6.27) can be done with respect to the refer-
ence configuration by using the position vector of the reference configuration x0e . For further
discretisation of the problem it is necessary to introduce FEs. In this work the bulk part is
discretised with an 8-node, quadratic plain strain SERENDIPITY element (cf. Fig. 6.2) and the
interface part is discretised with a 4-node, linear and a 6-node, quadratic cohesive element (cf.
Fig. 6.4), respectively. These elements are presented in the following two sections. Thereby,
only the contributions resulting from one element are analysed.

6.4 Quadratic Plane Strain Element

Figure 6.2 presents the SERENDIPITY element, that is used to discretise the bulk part of
Eqs. (6.7) and (6.12). The node ordering is according to ABAQUS [60] and every node has
three DOFs. A displacement in the direction of e1 and e2 plus a scalar temperature. Through
the inversion of the JACOBIan matrix the displacement gradient of Eq. (6.5) or Eq. (6.6) (The
displacement gradient is rewritten in vector-matrix notation.), and the temperature gradient of
Eq. (6.11) are approximated as follows:

He = ue ·∇>=
∂Nu

∂ξ
· uN · J−1 =

∂Nu,ik

∂ξl
uk

∂ξl
∂xe,j

, (6.28)
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Γe =∇θe=
∂Nθ

∂ξ
· θN · J−1 =

∂Nθ,k

∂ξj
θk

∂ξj
∂xe,i

. (6.29)

Nevertheless, in contrast to the standard procedure in computational mechanics no VOIGT or
MANDEL notation is introduced to rewrite the stress and displacement gradient matrix. Due to
this circumstance a third-order b-operator and a second-order B-operator matrix are introduced
to derive an alternative expression for the displacement and temperature gradient.

He = bR
e · uN = bijkuk with bikj =

∂Nu,ik

∂ξl

∂ξl
∂xe,j

(6.30)

Γe = B>e · θN = Bikθk with Bki =
∂Nθ,k

∂ξj

∂ξj
∂xe,i

(6.31)

In Eq. (6.28) and (6.30) the indices i, j, l ∈ {1, 2} and the index k ∈ {1, 2, . . . , 2NN}. For
Eq. (6.29) and (6.31) the indices i, j ∈ {1, 2} and the index k ∈ {1, 2, . . . , NN}. With this at
hand all bulk parts of Eqs. (6.7) and (6.12) are discretised. The weak form of balance of linear
momentum yields

δW dyn
e = b

1∫

−1

1∫

−1

ρ0 δu>N · N>u · Nu · üN det(J0) dξ1dξ2 = δu>N · Me · üN , (6.32)

δW int
b,e = b

1∫

−1

1∫

−1

δu>N · b
L
e :

K

Te det(J0) dξ1dξ2 = δu>N · f int
b,e , (6.33)

δW int
b,e = b

1∫

−1

1∫

−1

δu>N · b
L
0e :

1PK

Te det(J0) dξ1dξ2 = δu>N · f int
b,e , (6.34)

δW ext
e =

1∫

−1

1∫

−1

δu>N · N>u · tb0,e det(J0) dξ1dξ2 = δu>N · f ext
e . (6.35)

Again, it is not distinguished between different stress measures in the internal force vector for
reason of simplicity. Eq. (6.33) is used for the UMAT subroutine and Eq. (6.34) for the UEL
subroutine.
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ξi
N =

[
ξi1 ξi2

]> {
ξij ∈ R| −1 6 ξij 6 1

}
∀ j ∈{1, 2}

nodal degrees of freedom

pi
N =

[
ui1 ui2 θi

]> ∀ i ∈{1, . . . , 8}

shape functions for 8-node plane, continuum element (CPE8R)

N i
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1

4

(
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)(
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)(
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b(ξ) =

1

2

(
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)(
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(
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)(
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)
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Figure 6.2: Geometry, nodes and shape functions (after [125]) for a 8-node, quadratic plain
strain element; figure is based on [90]
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6.5 Linear and Quadratic Plane Cohesive Element

Table 6.1: Positions and weights of reduced GAUSS integration for a plane element with
quadratic shape functions

integration point IP1 IP2 IP3 IP4

positions
(
ξi1, ξ

j
2

) (
− 1√

3
,− 1√

3

) (
1√
3
,− 1√

3

) (
− 1√

3
, 1√

3

) (
1√
3
, 1√

3

)

weights (wi, wj) (1, 1) (1, 1) (1, 1) (1, 1)

From the weak form of balance of energy follows

δH int
b,e = b

1∫

−1

1∫

−1

δθ>N ·
[
ρ0 cb N>θ · Nθ · θ̇N + κb Be · B>e · θN

]
det(J0) dξ1dξ2

= b

1∫

−1

1∫

−1

δθ>N ·
[
Ccap

b,e · θ̇N + Ccon
b,e · θN

]
det(J0) dξ1dξ2 = δθ>N · hint

b,e , (6.36)

δHext
e =

1∫

−1

1∫

−1

δθ>N · N>θ qb0 det(J0) dξ1dξ2 = δθ>N · hext
e . (6.37)

The heat capacity and heat conductivity matrix of Eq. (6.36) are defined as follows.

Ccap
b,e = ρ0 cb N>θ · Nθ

Ccon
b,e = κb Be · B>e

In the last step the integrals of Eqs. (6.32)–(6.37) have to be solved. In this work the integration
is performed with the standard reduced GAUSS integration to avoid locking of the element. The
drawback of reduced integration is, that zero-energy modes (deformations) can occur. This is
called hour-glassing. For a quadratic plane strain element with reduced integration only one
zero-energy mode remains , however, this mode is never calculated [126–128]. Further on, this
integration scheme suits well to the chosen, polynomial shape functions [129]. The integration
points can be seen in Fig. 6.2, as well. All integrals of Eqs. (6.32)–(6.37) are functions of the
natural coordinates of the element and can also be written as a function of these coordinates
fe(ξ1, ξ2). The integrals are approximated through a sum over integration points.

1∫

−1

1∫

−1

fe(ξ1, ξ2) dξ1dξ2 ≈
2∑

i=1

2∑

j=1

wiwjfe

(
ξi1, ξ

j
2

)
(6.38)

For the presented plane element with reduced integration and quadratic shape functions, the
positions and weights of the four integration points are given in Table 6.1.

6.5 Linear and Quadratic Plane Cohesive Element

In this section the formulation of a linear and a quadratic plane cohesive element is explained.
This formulation differs slightly from the procedure of defining continuum elements because
all quantities refer to a midsurface (cf. Fig. 4.4). Therefore, the position of this midsurface is
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6 Finite Element Method

required, first. This is determined as the mean position of the interface surfaces I+ and I−.

xe =
1

2
(x++ x−) (6.39)

Further on, the local coordinate system is required. In this work the plane case is analysed,
only. Because of this it exits just one tangential and one normal direction. The second tan-
gential direction is the base vector e3, which is required to determine the normal vector. The
tangential direction is determined through derivative with respect to the curvilinear coordinate
in this direction, because the element is small, the natural element coordiante ξ1 coincides with
the curvilinear coordinate (cf. GOYAL [23]). It results

z1e =
∂xe

∂ξ1
. (6.40)

With the cross product between this vector and the base vector e3 it results the normal direction

z2e = e3 × z1e . (6.41)

Finally, this set of vectors is normalised to form the base of the local coordinate system. Re-
member, that the index "α" stands for the different directions of the local coordinate system.

eαe =
zαe

|zαe |
∀ α ∈ {1, 2} (6.42)

In contrast to continuum elements the transformation between physical and natural coordinates
is not done with a common JACOBIan matrix. For this kind of elements the JACOBIan matrix is
represented by the length of the normal vector in the current configuration. Hence, for a plane
cohesive element this leads to

dA = b |z2e | dξ1 . (6.43)

TSLs for a cohesive element are formulated in the local coordinate system. Due to this fact, it
is necessary to transform all global quantities of the problem into the local coordinate system.
This transformation is done by an orthogonal rotation matrix, defined as

Re =

[
e>1e
e>2e

]
⇐⇒ Re =

1

|z2e |

[
z>1e
z>2e

]
(6.44)

I−

I+

1 2

3
4

et

en

e3

(u11, u12) (u21, u22)

(u31, u32)
(u41, u42)

midsurface

global coordinates

et

en

e3 g2,n

g2,t

g1,n

g1,t

1 2

3
4

local coordinates

e2

e1e3

Figure 6.3: Transformation between global and local coordinates for a linear, plane interface
element through rotation matrix Q based on [68]
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6.5 Linear and Quadratic Plane Cohesive Element

for one node. Hence, a cohesive element uses three coordinate systems. The global reference
system, a local system for the TSL, and a natural one for the element formulation and integra-
tion. The usage of the right formulation of Eq. (6.44) has the advantage that the transformation
between physical and natural coordinates reduces to

dA = bdξ1 .

Up next, the continues variables displacement, node coordinates and temperature are approxi-
mated by discrete nodal values through the use of shape functions. However, this is not straight-
forward for this type of element. It is started with the separation vector g. To determine this
quantity the nodal displacementDOFs have to be rotated into the local coordinate system with a
rotation matrix Qe, that is based on rotation matrix Re. The matrix Re rotates only the quantities
of one node and Qe rotates the quantities of all nodes.

Qe =




Re . . . 0
...

. . .
...

0 . . . Re


 (6.45)

Further on, a separation-displacement-relation matrix Lu is introduced. This matrix subtracts
the displacement values of nodes, which are placed on opposite surfaces from each other,
and therefore calculates the separation between both surfaces. It follows the approximated
separation vector of the element as

ge = Nu · Lu · Qe · uN = Zlin
u,e · uN with Zlin

u,e = Nu · Lu · Qe . (6.46)

This is presented in Figure 6.3. Similar, the temperature jump is calculated

Θe = Nθ · Lθ · θN = Zθ,e · θN with Zθ,e = Nθ · Lθ . (6.47)

In contrast to Eq. (6.46) no rotation matrix is required, because the temperature is a scalar
quantity and cannot be rotated. The approximated midsurface is determined through the intro-
duction of a second relation matrix Mu, which relates the current position vectors of the interface
surface to each other, according to Equation (6.39). It results

xe =
1

2
Nu · Mu · xN (6.48)

and the derivative of this equation yields the approximated tangential vector of the local coordi-
nate system.

z1e =
1

2

∂ Nu

∂ξ1
· Mu · xN (6.49)

All required relation matrices are presented in App. A, their size and structure depends on the
NN of the element and the ordering of the DOF vector. Here, they are presented for a 4-node
and a 6-node plane cohesive element, according to Figure 6.4. In contrast to Sect. 6.4 the
shape function matrices Nu/θ include only the shape functions of one interface surface

Nu/θ =
[
N1

u/θ . . . N
NN/2
u/θ

]
, (6.50)

where Ni
u/θ stands for the matrix of the shape functions with respect to the ith node of one

surface.

Ni
u=N i

i 1 ∀ i ∈{1, . . . ,NN/2} (6.51)
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6 Finite Element Method

Table 6.2: Positions and weights of NEWTON-COTES integration for a plane cohesive element
with linear and quadratic shape functions

linear quadratic

integration point IP1 IP2 IP1 IP2 IP3

positions
(
ξi1
)

(−1) (1) (−1) (0) (1)

weights (wi) (1) (1)
(

1
3

) (
4
3

) (
1
3

)

Ni
θ=N i

i ∀ i ∈{1, . . . ,NN/2} (6.52)

The shape functions and further informations for the element are presented in Figure 6.4. With
this at hand we can analyse the variation of separation and temperature jump.

δge =
∂ge

∂uN
· δuN (6.53)

δΘe =
∂Θe

∂θN
· δθN (6.54)

Inserting Eqs. (6.46) and (6.47) into Eqs. (6.53) and (6.54) leads to

δge =
(

Zlin
u,e + Znl

u,e · uN

)
· δuN with Znl

u,e = Nu · Lu ·
∂Qe

∂uN
, (6.55)

δΘe = Zθ,e · δθN . (6.56)

For a shorter notation of the separation another Z matrix is introduced.

Zu,e = Zlin
u,e + Znl

u,e · uN (6.57)

The dependence of the rotation matrix Qe onto the nodal displacements is usually benign [23,
130]. However, we want to present the full formulation of the principle of virtual work for a
cohesive element. Although, we neglect the mentioned dependence as well (Znl

u,e = 0). Hence,

1

4 3

2

ξ1

IP1 IP2

COH2D4natural coordiantes of nodes
ξi
N =

[
ξi1
]> {

ξi1 ∈ R| −1 6 ξi1 6 1
}

nodal degrees of freedom
pi
N =

[
ui1 ui2 θi

]> ∀ i ∈{1, . . . , 4} ∨ {1, . . . , 6}

shape functions for 4-node plane, cohesive element (COH2D4)

N i
i (ξ) =

1

2

(
1 + ξi1ξ1

)
∀ i ∈{1, . . . , 4}

1

4 3

2
5

6

ξ1

IP1 IP2IP3

COH2D6

shape functions for 6-node plane, cohesive element (COH2D6)

N i
i (ξ) =

1

2

(
ξ21 + ξi1ξ1

)
∀ i ∈{1, . . . , 4}

N i
i (ξ) = 1− ξ21 ∀ i ∈{5, 6}

Figure 6.4: Geometry, nodes and shape functions for a 4-node linear, and a 6-node quadratic
plane cohesive element; figure is based on [90]
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6.6 Solution of the Thermo-Mechanicial Problem

the separation is approximated as

ge = Zu,e · uN with Zu,e = Zlin
u,e , (6.58)

and the variation of the separation as

δge = Zu,e · δuN with Zu,e = Zlin
u,e . (6.59)

The interface quantity of balance of linear momentum (Eq. (6.5) or (6.6)) leads with Eq. (6.59)
to

δW int
i,e = b

1∫

−1

δu>N · Z>u,e · ti,e |z2e |dξ1 = δu>N · f int
i,e , (6.60)

and for the interface portion of the balance of energy (Eq. (6.11)) results

δH int
i,e = b

1∫

−1

δθ>N ·
[
Z>θ,e ri + κi Z>θ,e · Zθ,e · θN − ci Z>θ,e · Zθ,e · θ̇N

]
|z2e | dξ1

= b

1∫

−1

δθ>N ·
[
Z>θ,e ri + Ccon

i,e · θN − Ccap
i,e · θ̇N

]
|z2e | dξ1 = δθ>N · hint

i,e . (6.61)

with Eqs. (6.47) and (6.56). The heat capacity and heat conductivity of Eq. (6.61) are defined
similar as for the bulk material.

Ccap
i,e = ci Z>θ,e · Zθ,e

Ccon
i,e = κi Z>θ,e · Zθ,e

Finally, an integration scheme is required for Eqs. (6.60) and (6.61). In this work the NEWTON-
COTES integration scheme is used. The reason to use this integration scheme is already dis-
cussed in Chap. 2 and therefore, not mentioned again. For both cohesive elements the full
NEWTON-COTES integration is used. For the 4-node element two integration points are re-
quired and for the 6-node element three integration points, cf. Figure. 6.4. Again, the integrals
can be written as a function of the natural coordinate fe(ξ1) and then the integral is approxi-
mated by the summation over a defined number of integration points at which the integral is
evaluated.

1∫

−1

fe(ξ1) dξ1 ≈





2∑

i=1

wife

(
ξi1
)

linear

3∑

i=1

wife

(
ξi1
)

quadratic

(6.62)

The position of the integration points and their weights are summed up in Table 6.2.

6.6 Solution of the Thermo-Mechanicial Problem

Sections 6.4 and 6.5 present the discretisation of Eqs. (6.7) and (6.12) for one element. To get
to the discretised form of the whole problem the element contributions need to be assembled.
This is written with the operator

⋃
. It results:
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6 Finite Element Method

δW dyn =
NE⋃

1

δW dyn
e δW int

b =
NE⋃

1

δW int
b,e δW int

i =
NE⋃

1

δW int
i,e

δW ext =
NE⋃

1

δW ext
e (6.63)

δH int
b =

NE⋃

1

δH int
b,e δH int

i =
NE⋃

1

δH int
i,e δHext =

NE⋃

1

δHext
e

Arranging the global quantities in residual form gives

δu>· ru = δu>·
[

M · ü + f int
b + f int

i − f ext
]
= 0 ,

δθ>· rθ = δθ>·
[

h int
b + h int

i − hext
]
= 0 .

Wherein, all quantities have no index �N or �e, any more. This states that these are the
global quantities which are used to solve the problem. With the introduction of a total internal
force vector, that is defined as f int = f int

b + f int
i , and a total internal heat vector defined as

h int = h int
b + h int

i , and the statement that the virtual displacement and temperature are arbitrary
the final equations, which have to be solved, are derived.

ru = M · ü + f int − f ext = o (6.64)

rθ = h int− hext = o (6.65)

The solution in time and space is obtained from Eqs. (6.64) and (6.65) through an implicit
solution scheme with the standard backward EULER operator which is defined as

�j+1 = �j + ∆t �̇j+1 with � ∈ {u, u̇, θ} . (6.66)

The backward EULER operator is used, because of its absolute stability and simplicity. Higher
order integration schemes lead to more complex equations, and more quantities must be saved
in every time step. An explicit integration scheme is not used, because the definition of a
criterion for the stable time increment is very difficult. Usually, for a dynamic analysis the
NEWMARK or HILBER-HUGHES-TAYLOR procedure is used [131]. In this work, the backward
EULER operator is used because of his high numerical damping [60]. The reason for this is
that the fracture process is actually a quasi-static process. However, in the case of crack onset
and crack propagation an acceleration occurs, which leads to problems in a common quasi-
static analysis (This is discussed in Sect. 6.7 in more detail). Therefore, dynamic and quasi-
static analyses are carried out and compared to each other. The weakly coupled problem of
Eqs. (6.64) and (6.65) is solved for the quasi-static case. The dynamic analysis is done for the
isothermal case. Thus, it remains Equation (6.64).

6.6.1 Quasi-Static Analysis

In the quasi-static case no acceleration effects are considered, hence, the system of equations
which needs to be solved is

ru = f int − f ext = o , (6.67)

rθ = h int− hext = o . (6.68)

The Eqs. (6.67) and (6.68) have to be solved for the unknown displacements uj+1 and tem-
peratures θj+1 at the next time step. Therefore, the residual vectors and the unknown vectors
are aligned in new vectors
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6.6 Solution of the Thermo-Mechanicial Problem

rj+1 =
[
ru
j+1 rθj+1

]>
, pj+1 =

[
uj+1 θj+1

]>

and then is the residual vector extended in a TAYLOR series, which is aborted after the linear
term. Therein, the index "j" is the index of the actual time increment and the index "k" is the
counter for the necessary iterations in one time increment.

r
(

pk+1
j+1

)
= r
(

pkj+1

)
+
∂r
(

pkj+1

)

∂ pkj+1

· ∆pk+1
j+1 with ∆pk+1

j+1 = pk+1
j+1 − pkj+1 (6.69)

This procedure leads to the common NEWTON-RAPHSON procedure, that was published by
CAUCHY [132] in 1847, first. The iteration is performed for every time increment until the resid-
ual vector is approximately zero. The standard ABAQUS tolerances and criteria are used. For
further informations it is referred to [60, 133]. The derivative ∂r/∂p is called stiffness matrix K
in the sense of the FEM. Because of displacement and temperature DOFs, the stiffness matrix
can be divided into four sub-matrices, and every sub-matrix can be divided into a bulk and an
interface contribution. Hence, eight sub-matrices can be identified. Further on, the external
force and heat vector do not depend on the unknown vector [123, 133]. From now on, the
indices "j+1", "k" and "k+1" are omitted for reasons of clarity. The eight contributions are:

Kuu
b =

∂fint
b

∂u
Kuθ

b =
∂fint

b

∂θ
Kθu

b =
∂hint

b

∂u
Kθθ

b =
∂hint

b

∂θ

Kuu
i =

∂fint
i

∂u
Kuθ

i =
∂fint

i

∂θ
Kθu

i =
∂hint

i

∂u
Kθθ

i =
∂hint

i

∂θ

The contributions Kuu
b and Kuu

i represent the pure mechanical problem, and Kθθ
b and Kθθ

i rep-
resent the pure thermal problem. The other contributions are the coupling matrices between
both problems (fields). They are arranged in the stiffness matrix as

K =

[
Kuu

b Kuθ
b

Kθu
b Kθθ

b

]
+

[
Kuu

i Kuθ
i

Kθu
i Kθθ

i

]

In Chapt. 3 we assumed that the mechanical and thermal problem are not coupled. Hence, all
coupling matrices are zero

Kuθ
b = Kθu

b = Kuθ
i = Kθu

i = 0 ,

and it remains

K =

[
Kuu

b 0

0 Kθθ
b

]
+

[
Kuu

i 0

0 Kθθ
i

]
(6.70)

for the stiffness matrix. Usually, the problems are not coupled. This is not the case here,
because the damage evolution has a slight influence on the temperature distribution around
the interface, and the material parameters depend on the temperature. Indeed, it is possible
to decouple the problems. But the solution has to be obtained simultaneously, and it is not
possible to perform the thermal simulation first and the mechanical simulation afterwards. The
four remaining contributions of the stiffness matrix are derived through the assembly of all
element stiffness matrices of the problem.

Kuu
b =

NE⋃

i=1

Kuu
b,ei

Kθθ
b =

NE⋃

i=1

Kθθ
b,ei

Kuu
i =

NE⋃

i=1

Kuu
i,ei

Kθθ
i =

NE⋃

i=1

Kθθ
i,ei
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Wherein the element contributions are derived from Eqs. (6.33) or (6.34), (6.36), (6.60) and
(6.61). The temperature rate is approximated by the backward EULER operator, the derivative of
the rotation matrix of the interface with respect to the displacement vector is neglected (because
it is neglected for the internal virtual work too), and the influence of the temperature derivatives
of heat capacity and heat conduction matrix are usually benign, and are neglected due to this
fact [124]. With these assumptions it results:

Kuu
b,e = b

1∫

−1

1∫

−1

bL
e :

K

Ae : b
R
e det(J0) dξ1dξ2 ∨ b

1∫

−1

1∫

−1

bL
0e :

1PK

Ae : b
R
0e det(J0) dξ1dξ2

Kθθ
b,e = b

1∫

−1

1∫

−1

[
Ccon

b,e +
1

∆t
Ccap

b,e

]
det(J0) dξ1dξ2

Kuu
i,e = b

1∫

−1

Z>u,e· Ai,e · Zu,e |z2e |dξ1 (6.71)

Kθθ
i,e = b

1∫

−1

[
Ccon

i,e −
1

∆t
Ccap

i,e

]
|z2e |dξ1

In the displacement part of the bulk and interface contribution for one element, a derivative of
the stress matrix with respect to the deformation gradient, and a derivative of the traction vector
with respect to the separation vector is required. These are the material tangent matrix of the
bulk and interface contribution, respectively. They are determined in Section 6.8. Through
inversion of the stiffness matrix the solution for one step in a time increment is obtained

∆p = −K−1 · r (6.72)

which is followed by the update of the unknown vector

pk+1
j+1 = pkj+1 + ∆pk+1

j+1 (6.73)

for the next iteration. This is repeated until a defined user tolerance is reached. Again, the
standard tolerances and criteria of ABAQUS are used.

6.6.2 Implicit Dynamic Analysis

The variable time increment for the dynamic analysis between two time steps is defined as

∆t = tj+1 − tj (6.74)

With the backward EULER operator (Eq. (6.66)) and Eq. (6.74) the acceleration and velocity are
approximated.

u̇j+1=
1

∆t
(uj+1 − uj) (6.75)

üj+1=
1

(∆t)2 (uj+1 − uj)−
1

∆t
u̇j (6.76)

The velocity of the actual time step u̇j is known, hence, replacing the acceleration in Eq. (6.64)
with Eq. (6.76) leads to an equation, that depends on the unknown displacement for the new
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time step uj+1, only. Linearisation of this residual (cf. Sect. 6.6.1)

ru
(

uk+1
j+1

)
= ru

(
ukj+1

)
+
∂ru
(

ukj+1

)

∂ ukj+1

· ∆uk+1
j+1 with ∆uk+1

j+1 = uk+1
j+1 − ukj+1 (6.77)

and using Eqs. (6.75) and (6.76) yields the stiffness matrix for an implicit dynamic procedure.

Kdyn =
1

(∆t)2 M +
1

∆t
D + K with D =

∂fint

∂u̇
and K =

∂fint

∂u
(6.78)

Therein, D represents the damping matrix of the problem, which has to be introduced after-
wards and K is the stiffness matrix of the quasi-static problem (cf. Sect. 6.6.1). As well, both
matrices can be divided into a bulk and an interface contribution. (However, this is not pre-
sented.) The damping matrix could be introduced through RAYLEIGH damping [134, 135], as it
is common in dynamics or through other viscous effects, that exist in the model and have to be
considered. Again, through inversion the displacement increment is determined

∆uk+1
j+1 = −

[
Kdyn,k
j+1

]−1
· ru,k
j+1 , (6.79)

and in the following the update of the displacement is performed.

uk+1
j+1 = ukj+1 + ∆uk+1

j+1 (6.80)

Finally, with the updated displacement and Eqs. (6.75) and (6.76) the velocity and acceleration
can be updated and then the next time step can be evaluated.

6.7 Viscous Regularisation

In Sects. 6.6.1 and 6.6.2 the main equations which have to be solved are derived. Any way,
due to the fracture process the stiffness matrix loses its positiv-definiteness and consequently
leads to a destabilisation of the NEWTON-RAPHSON procedure (cf. e.g. YU ET AL. [77] or
HAMITOUCHE ET AL. [136]), which is a consequence of the negative material tangent matrix
of the interface due to onset of damage. A further problem which arises due to the fracture
process, and which is very important is that the solution of the initial boundary value problem
is not unique, any more [75]. To overcome these problems we use the viscous regularisation
technique, that leads to a positiv-definit stiffness matrix for sufficient small time-steps. Therein,
we use the technique of ABAQUS [60]. An alternative would be to use the scheme of e.g.
GAO & BOWER [76] or NEEDLEMAN [95]. In contrast to ABAQUS these schemes act on the
material tangent matrix and not the stiffness matrix of the problem. The choice of the viscous
regularisation scheme depends on the physical problem. In case that the deformation rate of a
process is too fast, damping should be considered through a regularisation of the constitutive
law. However, when the process is not really quasi-static then a regularisation on the stiffness
matrix is necessary. This is the case here, due to the onset of cracking.

We begin with a simple experiment to explain the problem in more detail. Whereby, this ex-
periment has no background and is only for illustrative purposes. Think of a body with a zero-
thickness interface which is subjected to a mechanical load and boundary conditions. The body
is fixed in e1 direction and at the bottom in e2 direction at the edges, and a load is applied at
the top in e2 direction. As it can be seen in Fig. 6.5 in the top, left-hand side picture. The top,
right-hand side diagram of Fig. 6.5 presents the corresponding TSL, which is calculated in the
point P1. Applying the NEWTON-RAPHSON procedure to solve the problem under quasi-static
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(Eq. (6.67)) or dynamical (Eq. (6.79)) assumptions leads to a displacement history in the point
P2, as it can be seen in Fig. 6.5 in the bottom, left-hand side diagram (solid blue line). The
corresponding velocity history is presented in Fig. 6.5 in the bottom, right-hand side diagram
(solid line). Due to the jump in the displacement and velocity history, the NEWTON-RAPHSON

procedure fails to converge, usually and the simulation is aborted. This result occurs only, since
the change in the displacement increment is too large. To overcome this problem a dissipative
part in Eq. (6.67) or Eq. (6.79) is necessary. In ABAQUS this is done by adding a viscous force
fvis to the residual vector ru. This viscous force is defined as

fvis,e = cvis Mvis,e · u̇e (6.81)

for one element with cvis as a solution dependent damping parameter which must be greater as
zero. The artificial mass matrix is defined as

Mvis,e = b

1∫

−1

1∫

−1

N>u · Nu det(J0) dξ1dξ2 (6.82)

and the velocity vector results from the backward EULER scheme (cf. Eq. (6.75)). Assembling
element quantities leads the global ones, again. This step is omitted since it is presented,
already. The linearisation of the global residual vector yields a viscous part of the stiffness
matrix which is

∂fvis

∂u
=
∂fvis

∂u̇
· ∂u̇
∂u

=
cvis

∆t
Mvis (6.83)
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Figure 6.5: Experimental setup (top, left-hand side), TSL in point P1 (right, left-hand side), dis-
placement history (bottom, left-hand side) and velocity history (bottom, right-hand
side) of point P2 for different values of the damping parameter
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and because of the dependence of Eq. (6.83) on the time step this term gets large when the
time increment reduces during the fracture process which leads to a positive-definit stiffness
matrix in the end. The change of the displacement and velocity history is presented in Fig. 6.5
in the bottom, left- and right-hand side diagram with c2 > c1. A damping parameter greater
than zero yields a finite velocity and a lesser displacement jump and the NEWTON-RAPHSON

scheme converges. However, the damping parameter cvis must be chosen wisely, since the
solution is influenced. Consequently, a too high value for the damping parameter will lead to
no deformation at all because all energy is dissipated through the viscous term. Therefore, a
control algorithm is necessary which adjusts the damping parameter according to the solution
history. The control algorithm is based on the viscous and total energy of the problem. In all
time steps the viscous energy should be a small fraction of the total energy. This guarantees,
that the solution is not strongly influenced by the viscous regularisation scheme. If this holds
not true, and the viscous energy is of the same magnitude as the total energy, this solution must
be abandoned. The maximum allowed fraction in ABAQUS is 5 %, whereby, the user can adjust
this tolerance. To calculate the damping parameter in the first increment a second parameter
is defined. ABAQUS calls this parameter dissipated energy fraction. By default this parameter
is of value 2 · 10−4 and can be adjusted by the user, as well. Further informations concerning
this topic can be found in [60].

6.8 Discretisation of Constitutive Laws

This section presents the systematic derivation of discretised formulations of the constitutive
laws which are presented in Section 5. It is started with the bulk materials and then the CZMs
are discretised. In all cases the backward EULER operator is used because of absolute stability
of the implicit integration scheme.

6.8.1 Coating Constitutive Law

The coating material behaves linear elastic, therefore, the inelastic deformation gradient is

Fin = 1 ,

then the multiplicative split reduces to

F = Fel ,

and Eq. (4.10)3 yields the inelastic right CAUCHY-GREEN tensor with

C in = 1 .

With this at hand from Eqs. (5.10) and (5.11) follows the formulation for the first PIOLA-KIRCHHOFF

and the KIRCHHOFF stress tensor, respectively

1PK

Tc =
λc

2

(
J2 − 1

)
F−> + µc

(
F − F−>

)
,

K

Tc =
λc

2

(
J2 − 1

)
1 + µc

(
F ·F> − 1

) (6.84)

with the LAMÉ constants λc and µc of the coating material. For the numerical implementation
of this constitutive law in Chap. 5 the material tangent matrix is required. This derivative is very
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complex and can only be written down in index notation, wherein the element index is omitted.

1PK

AAAAA =
∂

1PK

Tc

∂F
=

1PK

A c,ijmn = λcJ
2F−1
ji F

−1
nm

∣∣∣∣
ijmn

−
[
λc

2

(
J2 − 1

)
− µc

]
F−1
ni F

−1
jm

∣∣∣∣
ijmn

+ µc δimδnj

∣∣∣∣
ijmn

(6.85)

K

AAAAA =
∂

K

Tc

∂F
=

K

Ac,ijmn = λcJ
2δ−1
ij F

−1
nm

∣∣∣∣
ijmn

+ µc [δimFjn + δjmFin]

∣∣∣∣
ijmn

A detailed explanation is presented in the Appendix A. In the last step Eqs. (6.84) and (6.85)
have to be transformed in vector-matrix notation and the backward EULER scheme is applied.
Since in this work third- and fourth-order operator matrices are used no MANDEL [137] notation
is introduced. Further on, this would be not necessary and not efficient because the deforma-
tion gradient is not symmetric. It results

1PK

Tc

∣∣∣
j+1

=
λc

2

(
J2 − 1

)
F−>

∣∣∣
j+1

+ µc

(
F− F−>

) ∣∣∣
j+1

K

Tc

∣∣∣
j+1

=
λc

2

(
J2 − 1

)
1
∣∣∣
j+1

+ µc

(
F · F> − 1

) ∣∣∣
j+1

(6.86)

for the stresses and

1PK

A c,iomn

∣∣∣∣
j+1

= λcJ
2F−1

oi F
−1
nm

∣∣∣∣
j+1

−
[
λc

2

(
J2 − 1

)
− µc

]
F−1
ni F

−1
om

∣∣∣∣
j+1

+ µc δimδno

K

Ac,iomn

∣∣∣∣
j+1

= λcJ
2δ−1
io F

−1
nm

∣∣∣∣
j+1

+ µc [δimFon + δomFin]

∣∣∣∣
j+1

(6.87)

for the material tangent matrices. In these equations an alternative notation for the time step
index j+1 is used to keep the equations short and clear.

6.8.2 Substrate Constitutive Law

The substrate material shows the presented inelastic material behaviour of Section 5.1. Hence,
Eq. (5.10), Eq. (5.11) and Eqs. (5.14)–(5.18) are used. At first, Eqs. (5.10) and (5.11) are
reformulated with the vector-matrix notation and ongoing both equations are discretised by
applying the backward EULER scheme.

1PK

Ts

∣∣∣
j+1

=
λs

2

(
J2 − 1

)
F−>

∣∣∣
j+1

+ µs

(
F · C−1

in − F−>
) ∣∣∣

j+1

K

Ts

∣∣∣
j+1

=
λs

2

(
J2 − 1

)
1
∣∣∣
j+1

+ µs

(
F · C−1

in · F
> − 1

) ∣∣∣
j+1

(6.88)

Like before, the next step is to derive the material tangent matrices.

1PK

A s,iomn

∣∣∣∣
j+1

= λsJ
2F−1

oi F
−1
nm

∣∣∣∣∣
j+1

−
[
λs

2

(
J2 − 1

)
− µs

]
F−1
ni F

−1
om

∣∣∣∣∣
j+1

+µs

[
δimC

−1
in,no + Fik

∂C−1
in,ko

∂Fmn

] ∣∣∣∣∣
j+1

(6.89)
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K

As,iomn

∣∣∣∣
j+1

= λsJ
2δ−1
io F

−1
nm

∣∣∣∣∣
j+1

+µs

[
δimC

−1
in,nlFol + Fik

∂C−1
in,kl

∂Fmn
Fol + δomFikC

−1
in,kn

] ∣∣∣∣∣
j+1

(6.90)

The derivative of the inelastic right CAUCHY-GREEN matrix is derived through numerical deriva-
tion with the forward difference quotient. This is done since it is only required to use informations
from the past and the presented time step. In index notation this derivative is written as

∂C−1
in,kl

∂Fmn

∣∣∣∣∣
j+1

=
C−1

in,kl(Fmn + ∆F )− C−1
in,kl(Fmn)

∆F

∣∣∣∣∣
j+1

. (6.91)

Wherein, the increment of the deformation gradient ∆F is chosen to be of magnitude, thus,
the floating point precision is not reduced. This leads to a value of ∆F = 7.5 · 10−7. Another
possibility is to determine this derivative from the total differential. However, this is too costly for
the slight influence of this term. Finally, the time integration of Eq. (5.15) is required. Applying
the backward EULER operator and reformulate the discretised equation in residual form yields

Rin

∣∣∣
j+1

=
[
1−∆tLin

]
· Fin

∣∣∣
j+1
− Fin

∣∣∣
j

= 0 . (6.92)

This equation is governed by the dissipative stress

Td

∣∣∣
j+1

=
1

J

[
λs

2

(
J2 − 1

)
1 + µs (Cel − 1)

] ∣∣∣∣
j+1

which results from the elastic deformation gradient

Fel

∣∣∣
j+1

= F · F−1
in

∣∣∣
j+1

and the linearisation leads to

Rin

∣∣∣
j+1
≈ Rin

∣∣∣
j+1

+
∂Rin

∂Fin
: ∆Fin

∣∣∣∣
j+1

= 0 . (6.93)

The fourth-order tangent matrix is determined with the forward difference scheme. This is done
in almost the same manner as in Eq. (6.91). A slight difference occurs due to the symmetry of
the inelastic deformation gradient. Therefore, we apply the MANDEL scheme [137] to transform
the residual matrix and the fourth-order tangent matrix into a vector and a matrix. After this
the NEWTON-RAPHSON procedure is used to solve the problem. Due to the integration scheme
(backward EULER) the assumed property that the inelastic deformation is isochoric gets lost. To
overcome this problem the exponential mapping technique is used [138, 139] which is the basis
for a time stepping algorithm, as well. This is explained in Section 6.9. After the exponential
mapping Eq. (6.92) is reformulated.

Rin

∣∣
j+1

= Y · Fin

∣∣
j+1
− Fin

∣∣
j

= 0 with Y
∣∣
j+1

= exp(−∆tLin)
∣∣
j+1

(6.94)

6.8.3 Cohesive-Zone-Model for Cracking

The discretisation of Eqs. (5.39) and (5.40) is simple. At the beginning of each time step the
separation vector for one element g (element index is omitted) is determined with Eq. (6.46) for
the next time step j+1. When this is done Eqs. (5.39) and (5.40) can be evaluated to get the
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tractions for the next time step. These are

Tn

∣∣
j+1

=
27

4
Tmax

[
gn

gcr

(
1− 2

gn

gcr
+

(
gn

gcr

)2
)

+ β

(
gt1

gcr

)2
(
gn

gcr
− 1

)]∣∣∣∣∣
j+1

(6.95)

Tt1

∣∣
j+1

=
27

4
Tmax β

gt1

gcr

(
1− 2

gn

gcr
+

(
gn

gcr

)2
)∣∣∣∣∣

j+1

(6.96)

in the case that gn > 0. In the contact case gn 6 0 Eq. (5.42) is evaluated to determine the
tractions.

Tn

∣∣
j+1

=Cp gn

∣∣
j+1

(6.97)

Tt1

∣∣
j+1

=Cp gt1

∣∣
j+1

(6.98)

The contact stiffness is ten times higher than the stiffness for the case of a positive normal
separation. Such a simple contact relation is chosen to reduce the numerical problems resulting
from a contact formulation. For example, when a LAGRANGE multiplier is used it could happen,
that the separation gets positive and then the TSL is used instead of the contact formulation.
Hence, the required number of iterations in one time step will drastically increase, and finally
the algorithm fails to converge. The material tangent matrix contains four components with the
following arrangement.

Acr

∣∣
j+1

=




∂Tn

∂gn

∂Tn

∂gt1

∂Tt1

∂gn

∂Tt1

∂gt1



j+1

(6.99)

These components are derived from Eqs. (6.95) and (6.96) and Eqs. (6.97) and (6.98), respec-
tively. For no contact (gn > 0) results

∂Tn

∂gn

∣∣∣∣
j+1

=
27

4
Tmax

(
g2

cr − 4gcrgn + 3g2
n + βg2

t1

)

g3
cr

∣∣∣∣
j+1

, (6.100)

∂Tn

∂gt1

∣∣∣∣
j+1

= − 27

2
Tmaxβ gt1

(gcr − gn)

g3
cr

∣∣∣∣
j+1

, (6.101)

∂Tt1

∂gn

∣∣∣∣
j+1

= − 27

2
Tmaxβ gt1

(gcr − gn)

g3
cr

∣∣∣∣
j+1

, (6.102)

∂Tt1

∂gt1
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j+1

=
27

4
Tmaxβ

(gcr − gn)2

g3
cr

∣∣∣∣
j+1

, (6.103)

and for the case of contact (gn 6 0)

∂Tn

∂gn

∣∣∣∣
j+1

=Cp , (6.104)

∂Tn

∂gt1

∣∣∣∣
j+1

= 0 , (6.105)

∂Tt1

∂gn

∣∣∣∣
j+1

= 0 , (6.106)
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∂Tt1

∂gt1

∣∣∣∣
j+1

=Cp . (6.107)

6.8.4 Cohesive-Zone-Model for Delamination

The solution of the TSL is obtained by applying the backward EULER scheme to the equations
and obtain the solution through a NEWTON-RAPHSON procedure. At first, it is assumed that the
influence of the derivatives with respect to the temperature is slight and can by neglected. With
this the equations simplify to

ti =
(1− d)2

gdel
Ci · gel (6.108)

gel = g− gin (6.109)

ġin =
ai gdel

(1− d)

[ |ti|
Ti0

]Ni ti
|ti|

(6.110)

YE =
(1− d)

gdel
g>el · Ci · gel , (6.111)

ḋ =
(1− d)

gdel

(
YE − YE0

Si0

)∣∣ġin

∣∣ (6.112)

in vector-matrix form. Up next, the backward EULER scheme is applied to discretise the equa-
tions and then we arrange these equations in a residual vector. For a more compact notation
we introduce the following abbreviations and normalise the separation g with the parameter
gdel = 1 mm and get a strain which has the magnitude of the separation (cf. [60]).

c1

∣∣∣∣
j+1

= ai

[ |ti|
Ti0

]Ni
∣∣∣∣
j+1

c2

∣∣∣∣
j+1

=
YE − YE0

Si0

∣∣∣∣
j+1

c1

∣∣∣∣
j+1

= 2 gin

∣∣∣∣
j+1

− gin

∣∣∣∣
j

− g
∣∣∣∣
j+1

C1

∣∣∣∣
j+1

=
gdel

(1− d)2 C−1
i

∣∣∣∣
j+1

C2

∣∣∣∣
j+1

= 1 +
(Ni − 1)

|ti|2
ti · t>i

∣∣∣∣
j+1

Notice that through the matrix C2 a coupling between normal and tangential separation occurs,
hence, mix-mode occurs whenNi > 1. It is a result of the creep behaviour. This coupling can be
avoided by assuming that the interface has a linear dependence between inelastic separation
and traction (Ni = 1), see [62]. Consequently, the constitutive matrix of the cohesive zone Ci

(cf. App. A) has a diagonal structure only for the beginning, as long as no inelastic separation
occurs. The traction part of the residual vector is

rt

∣∣∣∣
j+1

= C1 · ti
∣∣∣∣
j+1

− g
∣∣∣∣
j+1

+ gin

∣∣∣∣
j

+ ∆t
gdel

(1− d)
c1

ti
|ti|

∣∣∣∣
j+1

= o , (6.113)

and the damage part yields
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rd

∣∣∣∣
j+1

= d

∣∣∣∣
j+1

− d
∣∣∣∣
j

−∆t c1c2

∣∣∣∣
j+1

= 0 . (6.114)

These parts form the residual vector rdel =
[
r>t rd

]> which is linearised

rdel ≈ rkdel +
∂rkdel

∂ykj+1

· ∆ykj+1 = rkdel + Skj+1 · ∆ykj+1 = o , (6.115)

and the resulting system of equations is solved by applying the common NEWTON-RAPHSON

procedure with iteration index k

∆ykj+1 = −
[
Skj+1

]−1
· rkdel . (6.116)

This is followed by the update of the unknown vector y for the next iteration until the residual
reaches a user specified tolerance (1 · 10−5).

yk+1
j+1 = ykj+1 + ∆ykj+1 (6.117)

The tangent matrix consists of four sub-matrices:
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∂rt

∂ti
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+
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= ∆t c1

[
1

(1− d)Si0
c>1 −

Ni c2

|ti|2
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j+1

S22 =
∂rd

∂d
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j+1

= 1 +
c1

(1− d)2 Si0

c1 · ti
∣∣∣∣
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They are arranged in the tangent matrix in the following fashion.

Skj+1 =

[
S11 S12

S21 S22

]

After the successful solution inelastic separation and elastic energy release rate for the next
time increment are recalculated.

gin

∣∣∣∣
j+1

= gin

∣∣∣∣
j

+ ∆t
c1 gdel

(1− d) |ti|
ti

∣∣∣∣
j+1

(6.118)

YE

∣∣∣∣
j+1

=
(1− d)

gdel
g>el · Ci · gel

∣∣∣∣
j+1

(6.119)

Since of this implementation of the TSL the material tangent matrix for the element stiffness
matrix follows from the inversion of S11 in every time step (cf. WRIGGERS [123] for more details).

Adel = S−1
11 (6.120)

This has the benefit that it is not necessary to calculate the material tangent matrix after the
solution of the constitutive law in a time step.
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6.9 Time Stepping Algorithm

As it is mentioned in Sect. 6.8.2, the integration algorithm is not able to ensure that the inelastic
deformation keeps isochoric for arbitrary time increments. This requirement founds the basis
for a time stepping algorithm and this algorithm ensures that the inelastic deformation keeps
isochoric for a sufficient small time step. Therefore, the exponential mapping is performed, and
for a more comprehensive formulation we skip the index j+1. The TAYLOR series expansion of
Y yields

Y =
∞∑

k=0

(−∆tLin)

k!
= 1−∆tLin +

1

2
(∆tLin)2 − 1

6
(∆tLin)3 + . . .

and for sufficient small time steps ∆t the quadratic, cubic and all higher terms can be neglected
in the TAYLOR series expansion. Under this condition only the constant and the linear term re-
main, which yields the same expression as through the application of the backward EULER

scheme (cf. Eq. (6.92)). Therefore, we can abort the series expansion in an analytical consid-
eration after the linear term, and use the quadratic term to control the time increment. Since it
holds true, if the time step is sufficient small, that

1

2
(∆tLin)2 = 0 . (6.121)

In a numerical sense this is not possible. To overcome this we define a tolerance and take the
norm of the inelastic velocity gradient. It follows

∆t2

2

∣∣∣∣L2
in

∣∣∣∣ 6 tol . (6.122)

If this holds true, the time step is increased for the next increment, and if this is not true, the
actual time increment is aborted, the time step is reduced and the calculation of the increment
starts again. The quadrature of the inelastic velocity matrix is performed through the spectral
decomposition of this one. Otherwise, the quadrature is not possible. The spectral decomposi-
tion for the inelastic velocity matrix leads to

Lin =
3∑

i=1

αi

|vi|2
vi · v>i ⇐⇒ L2

in =
3∑

i=1

α2
i

|vi|2
vi · v>i (6.123)

with the eigenvalues αi and corresponding eigenvectors vi. The formulas for determination of
eigenvalues and eigenvectors are summarised in Appendix A. This section is closed with the
words of SIMO: ". . . , the exponential mapping is the crucial tool in formulating time stepping
algorithms." [139].
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Zone Model

In contrast to their efficient application and implementation, CZMs cause some numerical prob-
lems. When the peak traction of TSL is reached, the numerical solution scheme gets unstable
due to e.g. snap-back effects, which occur because of the softening behaviour [76, 140] and the
solution starts to oscillate (depending on the discretisation) [75]. Usually, the solution scheme
is a NEWTON-RAPHSON procedure as in this work. Further on, the shape of TSL is dependent
on the mesh-size (spatial discretisation of the problem) because the continuum constitutive re-
lation is between stress and strain, while the cohesive constitutive relation is between force and
displacement, respectively traction and separation [57]. All this is mentioned in Chap. 3 in more
detail and is only mentioned again to found the basis for this chapter.

Nowadays, the Phase-Field-Method (PFM) is very popular for the simulation of problems in
fracture mechanics. In contrast to common continuum mechanics in which the balance laws are
the main equations that have to be solved, in the PFM the damage evolution equation is added
to the equations of balance of the problem through micro mechanical investigations. Hence,
the damage variable is treated as a DOF of the problem like displacements or the temperature
and is no longer an internal variable, any more. Further on, the gradient of the damage is
added to the problem, which accounts for non-local phenomena at the crack tip, like the growth
of cavities or coalescence of micro voids or cracks. Another reason is that this should produce
a smooth transition between the separated crack surfaces (smears the displacement jump in
case of cracking).

In this work we apply the principles of the PFM to the TSL of Sect. 5.2.2 to investigate the
influences and solve the size dependence of a CZMs through this extension, maybe. However,
for this investigation we neglect the inelastic component in the separation vector for reasons of
simplicity.

7.1 Damage Gradient Extension of the Novel Traction Separation
Law

The equations of balance which are presented in Chap. 4 are still valid as well as the CLAUSIUS-
DUHEM-inequality. However, Eq. (4.53) loses validity. For the damage gradient extension of
the TSL the free energy depends on the damage gradient next to separation, damage and
temperature.

ψi = f(g, d,∇d, θ) (7.1)

This can be split up into a mechanical and a thermal part, for sure. From Eq. (7.1) the common
expressions for the traction (Eq. (4.65)) without inelastic separation and the entropy (Eq. (4.68))
are derived. Up to this point no equation changed due to the damage gradient. Since the
dissipation inequality is the only equation, which is influenced by this extension. It changes to

−∂ψi

∂d
ḋ− ∂ψi

∂ (∇d)
·
(
∇ḋ
)
> 0 (7.2)
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by negligence of the temperature. These results follow from the rate independence of the
CLAUSIUS-DUHEM-inequality, again. Up next, the mechanical part of the free energy potential
is defined. It is additively decomposed into a local and a non-local part.

ψmech
i =

1

2

(1− d)2

gdel
g · C i · g

︸ ︷︷ ︸
local

+
Gs

2 s

[
d2 + s2 |∇d|2

]

︸ ︷︷ ︸
non-local

(7.3)

From this potential results the traction relation

t =
(1− d)2

gdel
C i · g , (7.4)

thermal part is neglected and the local term is known from Section 5.2. The non-local part is
formulated as a quadratic function too, with the energy conductivity Gs and length scale pa-
rameter s, similar, as in phase field modelling [141]. Contrary, in phase field modelling the
parameter Gs is the fracture energy of the surface Gc. Here, this interpretation is not possible
because a CZM is formulated on a surface, already. Hence, the dimension of Gs is N or mJ

mm and
not N

mm or mJ
mm2 . Therefore, we interpret the material parameter Gs as an energy conductivity in

the direction of the damage gradient.

Up next, we have to define an evolution equation. Therefore, it is necessary to integrate
Eq. (7.2) again which leads to

∫

I

−∂ψi

∂d
ḋ− ∂ψi

∂ (∇d)
·
(
∇ḋ
)

dA > 0 . (7.5)

The terms with the damage variable can be transformed by considering product rule, GAUSS’
divergence theorem and the requirement that scalar product between normal vector of the
interface and damage gradient is zero on the boundaries. The applied procedure is the same
as the one used in phase field modelling [25]. It results

∫

I

−
[
∂ψi

∂d
−∇· ∂ψi

∂ (∇d)

]

︸ ︷︷ ︸
YE

ḋ dA > 0 , (7.6)

which can be localised after the introduction of thermodynamic driving force or elastic energy
release rate YE. The final form reads

YE ḋ > 0 with YE = −
[
∂ψi

∂d
−∇· ∂ψi

∂ (∇d)

]
. (7.7)

This looks familiar, however, because of the damage gradient extension the relation for elastic
energy release rate has changed compared to Equation (5.44). To guarantee that the sec-
ond term of Eq. (7.7) is always positive, Eq. (5.48) is applied with negligence of the inelastic
separation velocity.

ḋ = (1− d)

(
YE − YE0

Si0

)
(7.8)

Further on, same restrictions hold for damage evolution as in the case of no gradient extension.

g · ni > 0 , YE > YE0 , ẎE > 0
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7.2 FE Implementation of the Traction Separation Law with Gradient Extension

Finally, from Eq. (7.7) the formulation of energy release rate is derived.

YE =
(1− d)

gdel
g · C i · g −

Gs

s

[
d− s2

(
∇·∇d

)]
(7.9)

7.2 Finite Element Implementation of the Traction Separation Law
with Damage Gradient Extension

FE implementation of the damage gradient extended TSL differs slightly from the implementa-
tion presented in Chapter 6. Further on, the implementation is only presented for the isothermal
case but the extension of the procedure to the non-isothermal case is straight forward. It is only
necessary to add the balance of energy to the system of PDEs, which needs to be solved
through the FEM. At first, we analyse the balance of linear momentum. It results the same
virtual work contribution for the interface which is already presented in Section 6.5. It is

δW int
i,e = b

1∫

−1

δu>N · Z>u,e · ti,e |z2e |dξ1 = δu>N · f int
i,e (7.10)

for one element and the separation for one element is determined after Equation (6.58). Now,
we begin with the discretisation of the damage evolution equation for one element. Since the
second derivative of the damage variable is required for the elastic energy release rate, it is
necessary to use quadratic shape functions to approximate the element quantities, at least.
This leads to a constant gradient of the damage gradient. For shape functions of lower order
the damage gradient vanishes from the discretised FE equations and an extension of the TSL
with damage gradient would not be necessary. The plane quadratic cohesive element, which
is used in this work and implemented into the commercial FE code ABAQUS using the UEL
subroutine is presented in Fig. 6.4. We begin with introducing the damage variable vector, that
contains the scalar damage variable of every node for one element.

dN =
[
d1

N d2
N . . . dNNN

]> (7.11)

This vector is used to approximate the damage variable and the variation of the damage variable
for one element through the multiplication of this one with the damage shape function matrix
Nd and a relation matrix Md.

de =
1

2
Nd · Md · dN = Zd,e · dN with Zd,e =

1

2
Nd · Md

δde =
1

2
Nd · Md · δdN = Zd,e · δdN

(7.12)

The presented determination is similar to the determination of the interface temperature θi. A
mean value is determined in Eq. (7.12) because a cohesive element has no integration points
in the normal direction, hence, damage cannot vary in the normal direction, which leads to the
problem that the maximum damage value is 2 in the case of total failure. To overcome this the
mean value is determined. Up next, Eq. (7.8) is discretised with the backward EULER operator
and the variation is performed. This leads to

δDi,e =

∫

I

δde

[
ḋe − (1− de)

(
YE − YE0

Si0

)]
dA = 0 , (7.13)
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7 Damage Gradient Extension of a Cohesive Zone Model

wherein the time step indices "j+1" and "j" are omitted for reasons of clarity, again. Inserting
Eq. (7.12) into Eq. (7.13) yields the approximated damage evolution equation for one element.

δDi,e = b

1∫

−1

δd>N · Z>d,e ·
[
Zd,e · ḋN − (1− Zd,e · dN)

(
YE − YE0

Si0

)]
|z2e | dξ1 = 0 (7.14)

A more practical formulation of Eq. (7.14) is

δDi,e = δd>N · rd
i,e . (7.15)

The allocation of all element quantities resulting from Eq. (7.14) or Eq. (7.15) yields the com-
plete approximation of the damage evolution equation.

δDi =
NE⋃

i=1

δDi,ei (7.16)

The solution of the system of PDEs resulting from Eqs. (6.67) and (7.16) is obtained only for
the quasi-static case through linearisation of the residual vectors and applying the NEWTON-
RAPHSON procedure. The required stiffness matrix can be divided into eight different contribu-
tions

Kuu
b =

∂fint
b

∂u
Kud

b =
∂fint

b

∂d
Kdu

b =
∂rd

b

∂u
Kdd

b =
∂rd

b

∂d

Kuu
i =

∂fint
i

∂u
Kud

i =
∂fint

i

∂d
Kdu

i =
∂rd

i

∂u
Kdd

i =
∂rd

i

∂d

which are arranged as follows

K =

[
Kuu

b Kud
b

Kdu
b Kdd

b

]
+

[
Kuu

i Kud
i

Kdu
i Kdd

i

]
.

The first index refers to the corresponding residual vector (ru or rd) and the second index refers
to the corresponding DOF vector (u or d). Before we go on and derive the explicit expression
for every component, it is necessary to approximate Equation (7.9). The first term of Eq. (7.9)
is approximated easily but the damage gradient term is difficult because it is necessary to
determine the second derivatives in the normal and tangential direction. For the reason that it
exists no element coordinate in the normal direction, it only remains the derivative in tangential
direction (z1). It follows with the chain rule:

∂de

∂z1e

=
1

2

∂Nd

∂ξ1

∂ξ1

∂z1e

· Md · dN =
1

2 |z2e |
∂Nd

∂ξ1
· Md · dN . (7.17)

Equation (7.17) is the approximation of the damage gradient, which is a linear function of the
natural element coordinate ξ1 because quadratic shape functions are used. Hence, the second
derivative exists and is constant. The expression is

∂2de

∂z2
1e

=
1

2 |z2e |2
∂2Nd

∂ξ2
1

· Md · dN . (7.18)

Wherein, we neglected the derivative of the normal vector with respect to the element coordi-
nate, with the assumption that the influence is only slight, as it is done for the internal virtual
work of the interface. Further on, this leads to great simplification. Insertion of Eq. (7.18) into
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7.2 FE Implementation of the Traction Separation Law with Gradient Extension

Eq. (7.9) yields the approximation of the elastic energy release rate.

YE,e =
(1− Zd,e · dN)

gdel
g> · Ci · g−

Gs

s

[
Zd,e · dN − s2∂

2de

∂z2
1e

]
(7.19)

Next to that, a dimensionless parameter χ is introduced, that describes the ratio of the length
scale parameter s and the element length lele. This parameter is defined as

χ =
s

lele
> 0 (7.20)

and must be larger than zero to guarantee convergence of the model (χ=0 results in a singular
JACOBIAN). However, a value of χ in the range of zero to one results in a very coarse approxi-
mation with unfeasible results. MIEHE [142] recommend choosing χ larger than two.

Now, all required quantities are known and the contributions of the stiffness matrix can be
determined. First, we analyse briefly the bulk part in which no damage evolves, hence, from
the statement ḋ = 0 results the following stiffness matrix Kdd

b,e for one element:

Kdd
b,e = b

1∫

−1

1∫

−1

1

∆t
N>d · Nd det(J0) dξ1dξ2 , (7.21)

which yields after allocation Kdd
b . The mixed contributions Kud

b = Kdu
b = 0 and the contribution

Kuu
b is determined from the allocation of Eq. (6.71)1. For the interface contributions Eqs. (6.60)

and (7.14) are used, and as usual, at first the equations are derived for one element and then
the global equations follow from the allocation of the element parts. The pure displacement part
Kuu

i,e is known from Sect. 6.5 and is not presented (cf. Eq. (6.71)3). The derivative of Eq. (6.60)
with respect to the damage vector yields

Kud
i,e = b

1∫

−1

Z>u,e ·
∂ti,e
∂d>N

|z2e | dξ1 (7.22)

for one element and through derivation of Eq. (7.14) with respect to the displacement vector
results

Kdu
i,e = − b

1∫

−1

(1− Zd,e · dN)

Si0
Z>d,e ·

∂YE,e

∂g>e
· Zu,e |z2e |dξ1 (7.23)

and through derivation of Eq. (7.14) with respect to the damage vector results

Kdd
i,e = b

1∫

−1

[(
1

∆t
+

(YE,e − YE0)

Si0

)
Z>d,e· Zd,e −

(1− Zd,e · dN)

Si0
Z>d,e·

∂YE,e

∂d>N

]
|z2e |dξ1 (7.24)

for one element, as well. Allocation of the element contributions leads to the four interface parts
for the global stiffness matrix K. The required derivatives in Eqs. (7.22)–(7.24) are

∂ti,e
∂d>N

= − 2 (1− Zd,e · dN)

gdel
Ci · g · Zd,e , (7.25)
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∂YE,e

∂g>e
=

2 (1− Zd,e · dN)

gdel
g>· Ci , (7.26)

∂YE,e

∂d>N
=−

[
1

gdel
g>· Ci · g +

Gs

s

]
Zd,e , (7.27)

wherein all quantities are evaluated at the new time step "j+1".

Note that in the stiffness parts Kdd
b,e and Kdd

i,e a term 1
∆t arises.This term gets large for suffi-

cient small time increments and causes the stiffness matrix to be positive definite in the case
of cracking and crack propagation. This is similar to viscous regularisation, whereby the gradi-
ent extension is physically motivated, which is an advantage. However, the gradient extension
leads to more DOFs, which is a big disadvantage next to other problems (e.g. new material
parameters which are not interpretable). The latter presented simulations will allow a more
reasonable discussion of the gradient extension.
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8 Verification of User Subroutines and
Numerical Models

Before we use the models of Chaps. 5 and 7, it is necessary to verify their correct implemen-
tation in the FEM. This is done with special Test-Setups, that produce predictable results. For
e.g. a user defined FE (UEL) has to pass the Patch-Test, hence, convergence of a simula-
tion, performed with this FE, is achieved. These tests lead to homogeneous stress states in
the investigated FE. More details concerning this topic can be found in BATHE [143]. Similar
investigations are necessary for user defined materials (UMAT). The structure of this chapter is
as follows. At first, the four performed Test-Setups are presented and explained. Then we go
on and present the results of the tests for the four UMAT subroutines, which is followed by the
results of the Patch-Tests for the UEL subroutines with the damage gradient extension. How-
ever, to keep this chapter short, only the results for one tensile direction (e2) are presented.
The other tensile direction and the two shear tests are not presented, but they are passed as
well. Finally, the FE model of the DCB (Double Cantilever Beam) and the 4PBT are presented
in this chapter.

8.1 Test-Setups

The first Test-Setups are shown in Fig. 8.1 on the left-hand side with one FE and on the right-
hand side for four arbitrary FEs. These are the setups for the tets of the bulk constitutive laws,
as well as the UEL subroutines. The boundary conditions are applied in that way, that only a de-
formation in e2-direction results. The dimensions of the square are 10mm× 10mm, which leads
with the applied displacement of 1 mm to a strain of 10% in the end. Hence, these tests are
performed under large deformations. Contrary to the Test-Setups for the bulk material Fig. 8.2
presents the two settings for the interface constitutive laws. On the left-hand side the setting
for pure Mode I opening is presented, whereas, on the right-hand side the setting for Mix Mode

u2 = 1mm

u1 = u2 = 0

u1 = 0 u1 = 0

e1

e2

e3

u2 = 1mm

u1 = u2 = 0

u1 = 0 u1 = 0

e1

e2

e3

Figure 8.1: Test-Setups for UMAT and UEL subroutines of the bulk material with one FE (left-
hand side) and four arbitrary elements (right-hand side) in e2-direction
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8 Verification of User Subroutines and Numerical Models

Table 8.1: Dummy material parameters for Test-Setups with i ∈ {b, i}
material

bulk interface

pa
ra

m
et

er

Ei [GPa] 100.0 1.0

ν [−] 0.25 −

ai
[
s−1
]

1 · 10−10 1 · 10−10

Ni [−] 3.0 3.0

Ti0 [MPa] 1.0 1.0

Tmax [MPa] − 100.0

gcr [mm] − 0.55

β [−] − 1.0

gdel [mm] − 0.55

Si0

[
mJ

mm2

]
− 5 · 10−3

YE0

[
mJ

mm2

]
− 1 · 10−4/ 200.0

Gs

[
mJ
mm

]
− 1 · 10−3

s [mm] − 25.0

opening is presented. This is done to test the damage evolution through the damage gradient
along non loaded areas of the interface. All tests are performed with a dummy material for the

interface

bulk

u2 = 1mm

u1 = u2 = 0

u1 = 0 u1 = 0

e1

e2

e3

interface

bulk

u2 = 1mm

u1 = u2 = 0

e1

e2

e3

u1 = 0
u2 = 0

Figure 8.2: Test-Setups for UMAT and UEL subroutines of the interface material with one rigid
bulk element and one (quadratic) or two (linear) interface elements (left-hand side)
and two rigid arbitrary bulk elements and two (quadratic) or four (linear) interface
elements (right-hand side)

70



8.2 Verification of UMAT Subroutines

bulk and the interface. The used material parameters are summed up in Table 8.1.

8.2 Verification of UMAT Subroutines

8.2.1 Bulk Constitutive Laws

At first, we verify the correct implementation of the bulk material with a pure elastic behaviour
and perform all tests. Figure 8.3 presents the results for the e2-direction with a constant dis-
placement load: on the left-hand side for one FE and on the right-hand side for four FEs. In
both cases a homogeneous stress state results for all stresses and it is always the same value

K

T22 [GPa]12.6 12.6 K

T22 [GPa]12.6 12.6

Figure 8.3: Results of Test-Setups for elastic UMAT subroutine for the bulk material in e2-
direction with one FE (left-hand side) and with four FEs (right-hand side)

K

T22(t=1 s) [GPa]7.1 7.1 K

T22(t=1 s) [GPa]7.1 7.1

Figure 8.4: Results of Test-Setups for inelastic UMAT subroutine for the bulk material in e2-
direction for one FE (left-hand side) and four FEs (right-hand side)
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8 Verification of User Subroutines and Numerical Models

calculated. Additionally, this test is performed with a prescribed stress instead a displacement.
This test is passed for both settings, as well as the shear tests. Further on, the solution is al-
ways obtained in one step and no further iterations are required. Hence, we can conclude that
the elastic material behaviour for the bulk material of Chap. 5 is correct implemented through
the UMAT subroutine.

Up next, we verify the implementation of the inelastic material behaviour of the bulk mate-
rial in the UMAT subroutine. Figure 8.4 presents the homogeneous stress states in e2-direction
of the final time step (t = 1 s): on the left-hand side for one element and on the right-hand side
for four elements. To verify the correct implementation of the inelastic evolution equation we
extract the stress and the displacement for one node on top, where the load is applied. The
results are presented in Figure 8.5, on the left-hand side the results are presented by using one
FE and on the right-hand side by using four FEs. The diagrams placed on top show the stress
relaxation under a constant displacement and the diagrams placed on bottom show linear in-
crease of the displacement under a constant stress. In both cases the tests are passed without
any problems. Further on, the defined tolerance of 7.5 · 10−7 for the time stepping algorithm (cf.
Sec. 6.9) is chosen correct because it results a homogeneous stress state in every iteration of
the step, which is not disturbed through a non-isochoric evolution of the inelastic deformation
gradient.
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Figure 8.5: Creep results of inelastic UMAT subroutine in e2-direction for one FE (left-hand side)
and four FEs (right-hand side); on top placed diagrams show the stress relaxation
under constant displacement and bottom placed diagrams show the linear increase
of the displacement under constant stress
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8.2 Verification of UMAT Subroutines

8.2.2 Interface Constitutive Laws

The verification of the two implemented TSLs is done by analysation of the TSLs, which re-
sults at one node after finishing the FE simulation. For Mode I opening Fig. 8.6 presents these
results. The TSL is presented (Tn vs. gn) and the reaction force is plotted versus the normal
separation. In both cases no oscillations or other problems are found, hence, it can be con-
cluded that the implementation is correct, up to now. The left-hand side of Fig. 8.6 presents
these relations for the polynomial TSL of NEEDLEMAN (cf. Sect. 5.2.1) and the right-hand side
for the developed novel TSL (cf. Sect. 5.2.2). In the next step we investigate the behaviour
of the two TSLs under Mix Mode conditions, which are simulated with the DCB experiment of
Fig. 8.2: on the right-hand side. The results are presented in Fig. 8.7 on the left-hand side for
the normal direction and on the right-hand side for the tangential direction. Again, the TSLs
are smooth and no oscillations occur. The only problem is that even for this small Mix Mode
experiment usage of a viscous regularisation scheme is required to obtain a solution because
without viscous regularisation no dissipative part exists in the model. However, this is common
in fracture mechanics, therefore, it can be concluded that implementation of the TSLs is fully
correct.
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Figure 8.6: Results of Test-Setups for the interface for pure Mode I opening; NEEDLEMAN (left-
hand side) and novel TSL (right-hand side)
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Figure 8.7: Results of Test-Setups for the interface for Mix Mode opening; Tn vs. gn (left-hand
side) and Tt vs. gt (right-hand side)
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8 Verification of User Subroutines and Numerical Models

8.3 Verification of UEL Subroutines

8.3.1 Bulk Constitutive Laws

As before, we start this section by verifying the UEL subroutine for the bulk material with the
elastic contribution. Figure 8.8 presents the results of the two Test-Setups in e2-direction, which
are presented in Sec. 8.1, on the left-hand side with on FE and on the right-hand side with four
FEs. In both cases results a homogeneous stress state which is achieved after one iteration,
therefore, we conclude that the implementation of the FE formulation of Chap. 6 into ABAQUS is
correct. Up next, the implementation of the UEL with the inelastic material behaviour is verified,
again with one FE and four FEs and for a constant applied displacement and a constant applied

1PK

T 22 [GPa]11.5 11.5 1PK

T 22 [GPa]11.5 11.5

Figure 8.8: Results of Test-Setups for elastic UEL subroutine for the bulk material in e2-direction
for one FE (left-hand side) and four FEs (right-hand side)

1PK

T 22(t=1 s) [GPa]8.2 8.2 1PK

T 22(t=1 s) [GPa]8.2 8.2

Figure 8.9: Results of Test-Setups for inelastic UEL subroutine for the bulk material in e2-
direction for one FE (left-hand side) and four FEs (right-hand side)
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Figure 8.10: Creep results of inelastic UEL subroutine in e2-direction for one FE (left-hand side)
and four FEs (right-hand side); on top placed diagrams show the stress relax-
ation under constant displacement and bottom placed diagrams show the linear
increase of the displacement under constant stress

stress. In Fig. 8.9 the resulting, homogeneous stress state in e2-direction is presented. The
left-hand side presents the result for one FE and the right-hand side for four FEs. In both
pictures no discontinuities are present and the same stress is calculated. Further on, the same
results are archived for all other stress components and the other tests. In the last step the
implementation of the inelastic evolution equation is verified. Therefore, the test with one FE
and four FEs are performed twice. Once with a constant applied displacement and then with
a constant applied stress. The results are summarised in Figure 8.10: on the left-hand side
the results with one FE and on the right-hand side the results calculated with four FEs are
presented. The diagrams on top show the stress relaxation under a constant stress and the
diagrams at the bottom show the linear increase of the displacement under a constant stress.
The results of Figs. 8.9 and 8.10 lead to the conclusion that the implementation of the FE with
an inelastic material behaviour of Chap. 6 into the software ABAQUS is correct.

8.3.2 Interface Constitutive Law

The last tests are performed with the TSL of Chap. 7, which is extended with the damage gra-
dient. At first, a test with pure Mode I opening is performed. The calculation performed well
without any errors or warnings. For verification purposes the reaction force and the normal
traction are extracted from the result file and presented in Fig. 8.11 on the left-hand side. No
oscillations or jumps are detectable from the plot, this is a good indication for a correct im-
plementation. In the next step the Mix Mode behaviour is analysed and again reaction forces
and tractions at one node are extracted and used for the verification. On the right-hand side
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Figure 8.11: Results of Test-Setups for the interface UEL subroutine for pure Mode I opening
(left-hand side) and Mix Mode opening (right-hand side); solid line represents nor-
mal and dashed line tangential opening

of Fig. 8.11 the results for one node are presented. The dashed lines stands for the results in
the tangential direction and the solid lines represent the results in normal direction. Again, no
oscillations or jumps are visible in the plot, nor where errors or warnings a problem during the
execution. Hence, it is concluded that the implementation is correct.

8.4 Numerical Models

This section presents the FE models, that are used in this work. At first, a DCB test is presented
which is followed by a 4PBT model. The DCB model is used to compare the different simulation
procedures (static, dynamic) to each other and the 4PBT model is used to simulate the failure
of the compound, which is presented in Chapter 2.

8.4.1 Double Cantilever Beam Test

The DCB test is used to compare the different simulations procedures, which are investigated
in this work to each other. For these investigations the material parameters of Tab. 8.1 are
used for the bulk and interface materials. The model has a length of l = 100 mm and a height
of h = 10 mm. A plain strain state with a width of b = 1 mm is assumed. Due to symmetry
considerations, only one half of beam is modelled. The bulk part is discretised with 160, 640

e2

e1e3

u1 = u2 = 0

u1 = u2 = 0

u2 = u (t)

II

Figure 8.12: FE model of the DCB test with boundary conditions and interface area with 160
continuum and 40 interface elements
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and 2560 continuum elements with a aspect ratio of 1 and the interface is discretised with 40,
80 and 160 zero-thickness, quadratic interface elements. On the right side the DCB is fixed
in both direction and the lower part of the interface is fixed in both directions as well. This
is necessary to guarantee that no rigid body motions can occur in the model. Due to the
integration scheme of the cohesive element nodes placed on the same side of the element
are decoupled and without fixing both DOFs of the lower interface side rigid body motions are
possibly. The load of u2 = 2 mm is applied in the top, left corner of the DCB in 1 s (cf. Fig. 8.12).
The analysed time of t = 1 s is discretised in every simulation in the same way. The initial
increment is 0.01 s, the minimum increment is 1 · 10−10 s and the maximum increment is 0.1 s.
The time incrementation is controlled by the automatic time incrementation of ABAQUS [60].
This test is performed eighteen times: once as a static analysis with elastic and then with
inelastic bulk material, after this as an implicit dynamic analysis with elastic and inelastic bulk
material, and finally as a static analysis with a damage gradient extended constitutive law for the
interface with an elastic and then with an inelastic bulk material. All simulations are performed
for the three different discretisations. Results of every simulation are the required computational
time tCPU, and the number of increments Ninc and the shape of the reaction force 5 mm away
from the bottom, left corner of the DCB. The computational time is the time which ABAQUS
needs to solve the model, the time spend in the user subroutine is excluded. These results are
presented in Sect. 10.1 in Figs. 10.1 and 10.2. The used data are summarised in Appendix B
in Tabs. B.4, B.5 and B.6.

8.4.2 Four Point Bend Test

The 4PBT and the experimental setup is explained in Chap. 2 in detail, already. Here, we
explain how the FE model is derived from the real experiment. In the experiment the loading
is only applied in e2-direction, next to that the 4PBT is symmetric to the e2-e3-plane, thus, it is
only necessary to model one half of the beam, we chose the right half of the beam. Further
on, we are only interested in the stress state which arises in the middle of the beam, and
since the deformation in e3-direction is symmetric the stress state is analysed by assuming
a plane strain state. The geometric dimensions of the model are summarised in Tab. B.3 in
Appendix B. The distance from the middle of the beam to the middle of the upper support
is l1 = 10 mm and to the middle of the lower support is l2 = 20 mm. Overall length of the
model is 25 mm. For reasons of simplicity both supports are modelled as rigid bodies and
the connection between the specimen model and the supports is realised by assuming hard
contact without friction. The specimen is discretised with 2637 plaine strain elements. The
first interface I1 is discretised by 32 zero-thickness interface elements to simulate the cracking

e2

e1e3 u1 = u2 = 0

u1 = 0

u1 = 0, u2 = u (t)

I1I1
I2I2

contact

contact

RP

Figure 8.13: FE model of the 4PBT with rigid supports, applied boundary conditions, contact
and interface areas
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8 Verification of User Subroutines and Numerical Models

of the coating and the delamination is modelled with 11 zero-thickness interface elements.
These numbers of interface elements lead to a length of interface elements in crack propagation
direction of 38µm < lele < 69µm, which is a suitable length of interface elements according
to [42] (50µm < lele < 250µm is recommended.). However, this is only a rule of thumb and
we do not know if this is correct. However, in [144–146] it is shown that a too coarse mesh
leads only to an adjustment of the cohesive parameters. We will see that later on. Besides,
in [147] it is shown that less continuum elements as used in this model are able to approximate
the stress state in a 4PBT, accurately. The increase in the number of continuum elements is
only done to have a better approximation of the cracking and the delamination. Much more,
the second interface is not defined between all continuum elements of the substrate and the
coating, since we know from the experiment that this is not required. Whereas, it is more
important that this would lead to strong numerical problems because coating and substrate are
not sober connected, any more. As can be seen from Fig. 8.13 we try to use a high NE only in
the regions where it is required and not overall to keep the model as small as possible because
of the optimisation procedure. Boundary conditions are applied in the middle of the beam, at
the lower support and the linear increasing displacement is applied on the upper support (cf.
Fig. 8.13). The identification of the required material parameters is explained in Chapter 9. To
compare the simulation with the experiment the reaction force calculated at the reference point
(RP) is extracted after the simulation is finished (cf. Fig. 8.13). Since two interfaces are present
in the model it is very unstable, and especially in the case of cracking and delamination. For
stabilisation of the simulation the model is regularised with the viscous regularisation technique
of ABAQUS, and the damping parameter is automatic adjusted based on the solution history.
This is done to keep the influence onto the simulation as small as possible. The initial time
increment is 0.01 s, the minimum increment is 1 · 10−15 s and the maximum increment is 1.5 s.
The very small minimum time increment is required to be able to resolve the cracking and
delamination process, accurately. Next to this very small minimum time increment the allowed
number of NEWTON iterations per time increment is increased from five to twenty. This is done
to guarantee that the onset of cracking is found because the onset of cracking correlates with
a strong reduction of the time increment, which is not possible with five allowable iterations in
one increment.
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9 Identification of Material Parameters

In this chapter we explain briefly the identification of all required material parameters. Whereby,
these explanations are based on theories presented in [29, 30, 147]. However, in these works
the identification of material parameters is limited to the isothermal case, whereas this thesis
requires temperature dependent material parameters. Consequently, the extension of these
theories to the non-isothermal case is performed and explained, here and much more this is
the main concern of this chapter. In the end the identified values of material parameters are
compared to values reported in the literature. This is done to verify the extended identification
procedure. To keep this chapter as short as possible only necessary tables, diagrams, etc. are
presented here. All further information are given in the Appendix B.

9.1 YOUNG’s Modulus

9.1.1 Substrate

The YOUNG’s modulus of the substrate material under isothermal conditions is identified from
the linear elastic range of 4PBT measurements trough linear regression, as it is shown in
Fig. 9.1 for 400 C. For every temperature 4PBTs are performed at different test speeds, as
well. The measurements of 4PBTs for 250 C and 300 C are presented in App. B in Figs. B.1
and B.2, respectively. For this analysis beams are used without coating. The basis is following
equation

Es =
12Mexp

bh3
s Γexp

, (9.1)

which is derived from the linear beam theory of BERNOULLI & EULER. Required cross section
dimensions of the specimens are summarised in Tab. B.1 in App. B as well. Further on, this ta-
ble presents the YOUNG’s moduli determined through linear regression. The YOUNG’s modulus
ranges from 74.65 GPa at 20 C to 30.05 GPa at 400 C. Unfortunately, no comparable values for
this specific alloy are found in the literature for this temperature range. However, it is realistic
that a drastic reduction of the YOUNG’s modulus occurs by increasing the temperature from
20 C to 400 C, because 400 C is approximately 68% of the melting temperature AlSi10MgT6.
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Figure 9.1: Mexp vs. Γexp curves of the substrate for 400 C and different test speeds
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Figure 9.2: Temperature dependence of YOUNG’s modulus of the substrate

In [148], this is pointed out for a 6061 alloy with T6 heat treatment. For numerical simula-
tions discrete points are not suitable, therefore, we calculate from the determined experimental
YOUNG’s moduli values a smooth function, which describes the temperature dependence. We
decided to use an exponential function because such a function is often used in physics to
describe the temperature dependence of a quantity. The function is

Es = Es1 − Es2 exp(Es3θ) (9.2)

with the three constants

Es1 = 77.5285 GPa , Es2 = 0.2359 GPa and Es3 = 0.0078
1

K
,

that are calculated with the method of least squares. Figure 9.2 shows the temperature depen-
dence of the YOUNG’s modulus of the substrate material with the experimental values and the
determined function.

9.1.2 Coating

For the coating material the identification procedure is similar to the identification of the YOUNG’s
modulus of the substrate material. Again, the foundation is the linear beam theory with the
equation

Ec =
12Mexp

bh3
cΓexp

. (9.3)

However, the testing of a thin coating is very problematic, consequently, the number of success-
ful 4PBTs is limited. Here we have four successful measurements. Two for 20 C and two for
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side) and test speed vexp = 0.050mm

min

400 C. The results of these 4PBTs are presented in Fig. 9.3, on the left-hand side for 20 C and
on the right-hand side for 400 C. All required cross section dimensions, next to the identified
YOUNG’s moduli, are presented in Tab. B.2 in Appendix B. The identification is done through
linear regression. Compared to the literature the determined YOUNG’s moduli are much lower
than expected. This is due to the manufacturing process (HVOF sparying in this work), which
produces a high porosity that leads to a YOUNG’s modulus 2.5 times lower than expected (ca.
70 GPa compared to 170 GPa [36, 149]). For further information we refer to [29, 30, 147].

In the last step the temperature dependence needs to be determined. From the literature we
know that the YOUNG’s modulus of iron aluminide depends linear on it (cf. [36, 149]). There-
fore, four measurements are enough. Figure 9.4 presents the temperature dependence of the
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Figure 9.4: Temperature dependence of YOUNG’s modulus of the coating
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YOUNG’s modulus of the coating material with the function

Ec = Ec1 − Ec2θ (9.4)

and the two constants

Ec1 = 82.2797 GPa and Ec2 = 0.0404
GPa

K
.

9.2 Creep Parameters of the Substrate

This section explains in compact way the theory of identification of temperature dependent
creep parameters from 4PBT measurements. As mentioned in Chap. 2 only secondary creep
is considered, which can be described with power-law type functions (e.g. NORTON’s law).
Further on, we make the common assumption that the creep exponent is temperature indepen-
dent and that the inelastic evolution equation is multiplicative decomposed into a mechanical
and a temperature part [34, 35]. The temperature dependence is modelled with the ARRHENIUS

function (cf. Eq. (5.14)). Usually, creep or tensile tests are performed to determine creep pa-
rameters [34, 35, 150]. Here, we assign this procedure to 4PBTs by using beam theory, again.
As presented in [30], it is assumed that the stress rate is zero because of secondary creep,
which leads to the statement that the moment rate is zero (Ṁ = 0). From this the following
equation is derived

Mst = K

[
Γ̇st exp

(
Q

Rθ

)] 1
Ns

with K =
2bNsTs0

(1 + 2Ns)
a
− 1

Ns
s

(
hs

2

) 1+2Ns
Ns

(9.5)

800 1600 2400 3200

80

320

400

40000

Mst

texp [s]

M
e
x
p

[N
m

m
]

vexp = 0.025mm
min

vexp = 0.050mm
min

vexp = 0.075mm
min

800 1600 2400 3200

0.2

0.8

1.0

40000

∆u̇exp =
∆uexp

∆t

texp [s]

∆
u
e
x
p

[m
m

]

vexp = 0.025mm
min

vexp = 0.050mm
min

vexp = 0.075mm
min

Figure 9.5: Mexp vs. texp (top) and ∆uexp vs. texp (bottom) curves of the substrate for 400 C
and different test speeds
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Figure 9.6: Creep master curve of the substrate for the temperature range 200 C 6 T 6 400 C

and Ts0 = 1 MPa. This parameter is only introduced to normalise the stress in the power-law.
Further on, a so called normalised curvature is defined

Γ̇norm = Γ̇st exp

(
Q

Rθ

)
,

which is only required for the identification procedure and has no physical meaning. Equa-
tion (9.5) is highly non-linear, therefore, this equation is logarithmised and it results

log(Mst) = log(K) +
1

Ns
log
(

Γ̇norm

)
. (9.6)

The required steady-state moments and curvatures are determined from the performed 4PBTs
as it is presented in Fig. 9.5 for 400 C, on top for the steady-state moment and on the bot-
tom for the steady-state curvature. The other measurements are presented in Appendix B. We
search for the first time point where the moment curve starts to keep constant and then go to
the measured difference displacement curve, determine at the same time point the difference
displacement and from this the curvature according to Eq. (2.2), and finally the curvature veloc-
ity. This is done for all 4PBTs. The calculated values are presented in Tab. B.1 in Appendix B.
Up next, the steady-state moments are plotted versus the normalised curvatures for all temper-
atures on a logarithmic scale (creep master curve) and then the activation energy Q is adjusted
so that in the end all calculated points are placed on a line (cf. Fig. 9.6), approximately. The
determined value of the activation energy is Q = 156.715 kJ/mol, which fits to values other re-
searchers determined for the activation energy of aluminium [151, 152]. In the next step a linear
regression with Eq. (9.6) is performed to determine the creep exponent Ns and K. They have
the values:

K = 2.8097 Nmm
1+Nb
Nb s

1
Nb and Ns = 4.0317 .
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Figure 9.7: Verification of determined creep parameters at 400 C and for different test speeds

Subsequently, the creep factor can be calculated with the cross section dimensions of the
specimen (cf. Tab. B.1) and the creep exponent from the constant K. It results a creep factor
in the range of 1 · 10−14 s−1 6 as 6 1 · 10−10 s−1. This is a suitable size for the factor. Further on,
the value of the creep exponent leads to the conclusion that dislocation creep is the dominating
creep mechanism, which is reasonable as well. More details about this identification procedure
can be found in [90]. It can be concluded from Fig. 9.6 that the temperature range of 250 C 6
T 6 400 C can be described accurately with the determined parameters and the used power-
law. However, it is not possible to describe temperatures below 250 C because the deviation
between measurement and regression is too high. This is called power-law-breakdown. For
further discussion we refer to [90, 101]. Up next, the identified parameters are verified. For
this purpose, we use the theory presented in [29, 30]. Figure 9.7 shows the results of these
simulations (red) compared to the experimental results (blue) for 400 C and three different
test speeds. This comparison leads to the conclusion that power-law is able to describe the
creep behaviour of the substrate material accurately, and that it is possible to identify creep
parameters from 4PBTs. In App. B this verification is presented for 250 C in Fig. B.5 and for
300 C in Fig. B.6 as well. Only the beginning of the curve is not well described by the power-law
because hardening phenomena are not considered. Nevertheless, for the analysis carried out
in this work this approximation is sufficient.

9.3 Cohesive Parameters

The cohesive zone parameters are determined through numerical optimisation from 4PBTs.
Therefore, the numerical model of Chap. 8 is used and then the test force, that is measured in
the middle of the beam, is compared to the simulated force for every time step (F−t curve).
Another possibility would be to calculate the bending moment in the middle of the beam, how-
ever, this is too time-consuming. For the numerical optimisation the optimisation tool box of the
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Figure 9.8: Flowchart of the optimisation algorithm

software MATLAB and for the FE simulations the software ABAQUS is used. Both programmes
are connected with the tool ABAQUS2MATLAB [31], that allows us to use the benefits of both
programmes. In the first step all cohesive zone parameters are determined under isothermal
conditions and then after this step the temperature dependence is determined. Under isother-
mal conditions the optimisation algorithm of Fig. 9.8 is used. At the beginning it is necessary to
define initial sets of cohesive zone parameters for which FE simulations are performed. After
every simulation the F−t curve is read from the result file (.fil) and saved in MATLAB. When all
initial sets are evaluated and the F−t curves are saved in MATLAB the neural network is trained
with this data the first time to estimate a new set of parameters. Before the new simulation
starts with these parameters, it is checked if the estimated set is in the expected range, and
if every parameter is greater than zero. Otherwise, the set is forgotten and the training starts
again. When the set of parameters fulfills all requirements the new FE simulation is performed
and the F− t curve is calculated. The training algorithm is repeated until the change in the
parameters is less than 1% or the error of the F−t curve is less than a user specified tolerance
(here 0.25%). Finally, the algorithm gives as output the determined set of parameters and the
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Table 9.1: Determined cohesive zone parameters under isothermal conditions for 250 C, 300 C
and 400 C

T

[◦C]

I1 I2

Tmax gcr β gdel Si0 YE0

[MPa] [mm] [−] [mm]
[

mJ
mm2

] [
mJ

mm2

]

250 600.00 0.0050 0.95 1.00 0.50 · 10−3 0.05

300 425.00 0.0055 0.95 1.00 0.56 · 10−3 0.50

400 427.20 0.0055 0.97 1.00 6.02 · 10−3 1.30

belonging F−t curve. This process is time-consuming, therefore, it is necessary to keep the
model as simple as possible and use less FEs. The determined parameters are summed up in
Tab. 9.1 and the final simulations are presented in Chapter 10.

At the beginning of the optimisation procedure a range for every parameter must be speci-
fied in which the parameter is expected. This is only simple for the maximum cohesive strength
Tmax, that should be near the experimental determined strength of the coating (for 400 C it is
Tmax = 381 MPa [30]). For the other parameters a higher range is necessary because no ex-
perimental data or other informations are available. The temperature dependence is presented
in Appendix B.

9.4 Thermal Parameters of Substrate and Coating

Last required material parameters for numerical simulations are the heat capacity and con-
ductivity, density and the coefficient of thermal expansion. We begin with the heat capacity cs

and conductivity κs for the substrate material AlSi10MgT6. The temperature dependence of
these parameters can be seen in Fig. 9.9, heat capacity is presented on the left-hand side and
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Figure 9.9: Temperature dependence of heat capacity (left-hand side) and heat conductivity
(right-hand side) of the substrate
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heat conductivity on the right-hand side. For the heat capacity the experimental data is taken
from [104, 153, 154] and in the analysed temperature range it is possible to approximate heat
capacity with the function

cs = Cs1θ + Cs2 . (9.7)

The two constants have the values

Cs1 = 0.5290
J

kgK2
and Cs2 = 738.6337

J

kgK
.

Contrary to this the heat conductivity ranges only from 231 mW/mmK to 240 mW/mmK in the anal-
ysed temperature range and is approximated to be constant, therefore. Since, the error is only
of 3.4%, which is a slight drawback compared to the great benefits. It results

κs = 236.5
mW

mmK
. (9.8)

Up next, heat capacity and conductivity for the coating material Fe24Al0.6Nb are determined.
This is done with the experimental data of [36]. Now, both material parameters are linear
functions of the temperature. The experimental data and the linear functions are presented in
Fig. 9.10, on the left-hand side for heat capacity and on the right-hand side for heat conductivity.
For heat capacity results the function

cc = Cc1θ + Cc2 (9.9)

with the two constants

Cc1 = 0.2730
J

kgK2
and Cc2 = 518.8479

J

kgK
,

and for heat conductivity the function

κc = Kc1θ +Kc2 (9.10)
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Table 9.2: Temperature dependence of density of substrate and coating, values are taken
from [153, 155] and [36]

material
ρ25◦C ρ500◦C ρave error[ g

cm3

] [ g
cm3

] [ g
cm3

]
[%]

AlSi10MgT6 2.65 2.56 2.61 3.4

Fe24Al0.6Nb 6.04 5.86 5.95 3.0

is determined with the two constants

Kc1 = 0.0085
mW

mmK2
and Kc2 = 9.2656

mW

mmK
.

The two crucial thermal parameters are known for the substrate and coating material, now.
Hence, the next material parameter is analysed. This is the density. From Tab. 9.2 it can be
seen that only a slight temperature dependence of the density exists for both materials. For
this reason we take the mean value of the density and assume that the density is constant in
the considered temperature range. After this, the coefficient of thermal expansion is the last
missing thermal parameter. According to [153] the coefficient of thermal expansion is constant
between 20 C and 500 C and the value for AlSi10MgT6 is 25.31 · 10−6 1/K and for Fe24Al0.6Nb
it is 21.89 · 10−6 1/K. Due to the fact that the values are similar, no high thermal stresses arise,
thus, thermal expansion is not considered in the analyses.
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10 Simulation Results

In this chapter the results of all simulations are presented. We start with the comparison be-
tween the different simulation procedures, that are performed with the DCB test. The second
section contains the results of the isothermal 4PBT simulations at 250 C, 300 C and 400 C.
This chapter is closed with a non-isothermal simulation, which is presented in the last section.

10.1 Comparison Between Simulation Procedures

In this section the eighteen different DCB simulations are presented and compared to each
other. Performed are a static simulation with viscous regularisation with elastic and inelastic
material behaviour, an implicit dynamic simulation with damping (similar to viscous regularisa-
tion) and with elastic and inelastic material behaviour, and a static simulation with a damage
gradient extended interface and continuum element (cf. Chap. 7). As well, for an elastic and an
inelastic material behaviour. For the common static and dynamic simulation the TSL of Chap. 7
is used, whereby, the damage gradient extension is neglected. This investigation is done be-
cause, as mentioned earlier, it is well-known that the common quasi-static and dynamic, initial
boundary value problem becomes ill-posed in the case of fracture, due to the change of the
character of the system of PDEs. To solve this problem the model can be regularised with a
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Figure 10.1: Computational time (left-hand side) and number of increments (right-hand side)
to analyse a DCB test for different NE and different simulation procedures; with
elastic (top) and inelastic material behaviour (bottom)
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Figure 10.2: Reaction forces calculated at one node for a static, dynamic and a static simulation
with damage gradient extension and for a pure elastic material behaviour (left-hand
side) and an inelastic material behaviour (right-hand side)

gradient term or a viscosity is necessary [72, 156, 157]. However, which way is the most effi-
cient is still unknown to the author. Therefore, this investigation is performed.

The main results of these simulations are presented in Figure 10.1. The required computational
time tCPU and number of increments Ninc for different NE are compared. Diagrams placed on
top of Fig. 10.1 present the results for an elastic bulk material, and the diagrams placed at
bottom show the results for an inelastic bulk material. On the left-hand side the required com-
putational time and on the right-hand side the required number of increments is presented. It
can be seen from these results that a static and a dynamic simulation have nearly the same
numerical effort, if an elastic or inelastic material behaviour is used for the bulk. This holds
true for all discretisations of the DCB test. Compared to these results the static simulation with
damage gradient extension is drastically slower. For a coarse discretisation (NE = 720) the
simulation is approximately ten times slower. This ratio increases to almost one hundred for a
fine discretisation (NE = 2720). We relate this behaviour to the smaller required time step for a
model with damage gradient extension (Otherwise the gradient term can not be resolved.) and
to the higher number of DOFs. In the end we conclude that a simulation with damage gradient
extension is not preferable and for reasons of efficiency, a static analysis with viscous regu-
larisation or a dynamic analyses with damping should be performed. Whereby, a quasi-static
simulation with viscous regularisations is the most efficient way. To verify the correctness of the
solution the reaction forces versus the separation at one node are compared to each other (the
reaction force has the same shape as the TSL). This comparison is presented in Fig. 10.2, on
the left-hand side for an elastic and on the right-hand side for an inelastic bulk material. For ev-
ery discretisation the same shape of reaction force versus separation curve (TSL) is calculated
for all three simulation procedures. Due to a finer mesh the change of the curve is a result of
the mesh dependence of the model, which is well-known [57, 72]. Further on, it is not possible
to solve this mesh dependence by using a non-local TSL. In the end, we can conclude that
all three simulation procedures yield the same results. Moreover, the determination is correct
without the loss of elliptic or hyperbolic character of the governing equations since once the
model is equipped with a viscosity and the other time with a gradient term [72]. However, it is
recommended to use a quasi-static simulation with viscous regularisation.
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10.2 Isothermal Simulations

In this section the results of the isothermal failure simulations of the 4PBT at 250 C, 300 C
and 400 C are presented. The used material parameters for the bulk material are calculated
from the functions determined in Chap. 9 of this work and are summarised in Table 10.1. The
material parameters of the interfaces are summarised in Tab. 9.1 in Section 9.3 and required
dimensions of the specimens are presented in Tab. B.3 in Appendix B. The applied load is
adopted from the experimental data as well as the simulation time. Further on, all three sim-
ulations are performed with a velocity of vsim = 0.050mm

min of the upper support. Because the
performed simulations did not fit accurately (blue line with circles) to the experimental result,
and because the creep factor as is the most inexact material parameter, due to the deviation
of the activation energy, the creep factor is adjusted as well as the interface parameters. Ta-
ble 10.2 presents the new, optimised material parameters, that are used for simulations as
well. The results of both simulations are presented in the following for the temperatures 250 C,
300 C and 400 C.

Figure 10.3 presents the results of the isothermal 4PBT simulations at 250 C once with the
material parameters of Chap. 9 and with optimised material parameters (blue line with trian-
gles) as well. As can be seen, the simulation with the material parameters of Chap. 9 goes
above the measurement, which indicates that the creep deformation is underestimated. This
leads to the problem that it is not possible to determine the material parameters of the interfaces
accurately in the end. Therefore, the creep factor is adjusted. The simulation with optimised
creep factor and cohesive parameters is also presented in Fig. 10.3. The agreement with the
experiment is much better, even though, the creep factor has only changed slightly. Adjusting
the creep factor is based on the statement, that the identification of this parameter is the most
inaccurate one because this parameter depends on the activation energy, which has usually a

Table 10.1: Material parameters of substrate and coating for 250 C, 300 C and 400 C

T

[◦C]

coating substrate

Ec νc Es νs as Ns

[GPa] [−] [GPa] [−]
[
s−1
]

[−]

250 61.14 0.30 63.66 0.33 1.44 · 10−14 4.0317

300 59.12 0.30 57.06 0.33 2.61 · 10−13 4.0317

400 55.08 0.30 32.93 0.33 4.24 · 10−11 4.0317

Table 10.2: Optimised material parameters under isothermal conditions for 250 C, 300 C and
400 C

T

[◦C]

substrate I1 I2

as Tmax gcr β gdel Si0 YE0[
s−1
]

[MPa] [mm] [−] [mm]
[

mJ
mm2

] [
mJ

mm2

]

250 4.00 · 10−14 580.00 0.0050 0.95 1.00 1.20 · 10−2 1.00

300 5.52 · 10−13 445.64 0.0028 0.54 1.00 8.45 · 10−5 0.98

400 2.30 · 10−11 382.90 0.0093 1.03 1.00 5.03 · 10−3 0.54
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deviation of 10 kJ/mol and they are related by and exponential function. Thus, deviation of acti-
vation energy has a huge influence. The new results fit better to the measurement. However, a
deviation remains. Figure 10.4 presents similar results for a temperature of 300 C and Fig. 10.5
for 400 C. Again, the creep deformation is underestimated for 300 C and overestimated for
400 C but the onset of cracking is found in both cases. However, for a better approximation
the creep factor is adjusted, which leads to a better approximation of the experiment in the
end. Much more, the adjusting of the creep factor at all temperatures is a consequence of
the assumption that the creep exponent Ns is temperature independent, which is a strong sim-
plification and questionable, as mentioned in Chap. 9, but a crucial assumption for the used
identification procedure. However, when more experimental data is available this assumption
should be abandoned.

Further on, the discontinuities in the calculated curves (especially at 400 C) are a result of the
viscous regularisation scheme and not, as someone could expect, a consequence of the con-
tact conditions between beam and supports. At every discontinuity the used time step needs to
be reduced because of arising destabilisations, that are a result of the used interface elements
and also (slightly) by the inelastic deformation. However, the influence of these discontinuities
is only large near the onset of cracking. Before and afterwards the influence is small. Finally,
Fig. 10.6 presents the change of the stress distribution along the beam during the whole sim-
ulation at 400 C, and how the stress distribution changes due to the onset of cracking and
crack propagation. Initially (t = 0 s), the beam is stress-free, then, an usual stress distribution
arises (t = 300 s), whereby, in the coating a much higher stress is present as compared to the
substrate. Due to further loading and creep deformation of the substrate, a reallocation of the
stress takes place, which leads to the situation that the substrate is approximately stress-free
and the coating carries the whole load (t = 1000 s). This situation is enhanced with further load-
ing and it results a stress concentration at the left, lower corner of the coating, that leads to the
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Figure 10.6: Change of the stress distribution of
K

T 11 in the beam during the simulation at 400 C

onset of cracking (t = 1670 s). With further loading the crack propagates through the coating,
which leads to a rotation of this one and the remaining stress reallocates from the middle of
the beam to the upper support (t = 1773 s). After failure of the whole coating a new stress con-
centration arises at the connection between coating and substrate. Although, because a high
inelastic deformation (creep) is present and the stress reallocates, the delamination process of
the coating starts not directly. There is a small break between these two processes. However,
this process is not exactly reproducible with the model, as can be seen in Fig. 10.5. Finally, it
results a delamination of a few µm (t = 2100 s). However, for such complicated simulations the
achieved results and agreements with the experiments are good.

10.3 Non-Isothermal Simulation

This chapter presents the capabilities of the coupled thermo-mechanical problem, that is for-
mulated in this work and solved with the FEM. The solution procedure is briefly explained in
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Section 6.6.1. Even though, the arising numerical problems are outstanding and finding a so-
lution without the viscous regularisation technique is impossible for large, non-linear models.
Here, the biggest problem is that the time step has a strong contrary behaviour. This is repre-
sented by the equation

∆tmin >
ρb cb

6κb
l2ele , (10.1)

which describes a temperature and element size dependence of the minimal time step, that
can be used in the thermo-mechanical analysis before the heat conduction equation starts os-
cillating [60]. However, the minimal usable time step resulting from this inequality is too large
compared to the required minimal time step, which is necessary in the onset of cracking. This
time step is in the range of 10−15s < tmin < 10−10s. The dependence of the time step on the
material parameters is approximately constant. Also, this is confirmed by Fig. 10.7, which rep-
resents the temperature dependence of the minimal time step for the coating (left-hand side)
and substrate material (right-hand side) for the smallest and largest used element sizes. Hence,
reduction of the element size is the only possibility to decrease the minimal usable time step.
However, by adjusting the element size another problem occurs. The element size is chosen
in relation to the length scale of the cohesive zone, that is in general unknown and chosen
after rules of thumb [42]. This is the case here too. Further on, the cohesive zone parameters
depend on the length scale as well. Hence, a change of the element length changes the length
scale and finally the cohesive zone parameters. It results an infinite loop, which can only be
exited by performing a very costly and time-consuming optimisation procedure with a complex
problem (of a high calculation time itself) or fixing one quantity (element length, length scale,
etc.). This is the economical way and is done in this work. All identified parameters depend on
this fixed element size, and therefore the time step is limited by Eq. (10.1).

For this reason oscillations and a destabilisation of the NEWTON-RAPHSON procedure are
expected and the viscous regularisation scheme is used to stabilise the solution procedure,
similar, as it is done for the isothermal case. However, with justifiable effort (less than a month)
it is not possible to determine a suitable set of viscous regularisation parameters to start the
simulation of the 4PBT under non-isothermal conditions. Whereby, this guarantees not that the
simulation will complete successfully, and the problem is already decoupled. Therefore, a sim-
pler problem is presented for which a suitable set of tolerances is found, and the simulation is
successfully completed. This procedure allows at least to present the capabilities of the derived
thermo-mechanical model.
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Figure 10.7: Temperature dependence of the minimal time step for the smallest and largest
element length used in the 4PBT simulation on the left-hand side for the coating
and on the right-hand side for the substrate material
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The analysed model is presented in Fig. 10.8 on the left-hand side. It is a square with a length of
0.2 mm, that is discretised with sixteen plane continuum elements of linear material behaviour.
Additionally, the square consists of a zero-thickness interface, which is discretised by four inter-
face elements. To solve the mechanical problem DIRICHLET boundary conditions are applied
at the edges at bottom, on the right side and on top of the square. For the thermal problem
temperature boundary conditions are applied at the edges at bottom and on top of the problem.
Initially, the temperature in the solution area is everywhere 573.15 K. At top the temperature
increases from 573.15 K to 673.15 K in 10 s. This is shown in Fig. 10.8 on the right-hand side.
Hence, a temperature gradient of 100 K exists in the model. The results of this simulation are
presented in Figs. 10.9 and 10.10. Figure 10.9 shows the temperature change calculated at
points P1 (left-hand side) and P2 (right-hand side) versus time. The red curve represents the
temperature at top and the blue line at bottom of the interface. From these diagrams it can be
seen that the temperature is on both sides of the interface the same up to t ≈ 5 s. Then, due
to the onset of cracking, the heat conduction of the interface changes and the bottom of the
interface cools down and the top keeps getting warmer. Next to that, Fig. 10.9 shows the influ-
ence of the factor ad, which is the heat production due to cracking. An increase of this factor
from zero to a specific value changes only the slope of the temperature curves. Whereby, a too
high value of ad leads to oscillations in the temperature because the integration algorithm fails.
Figure 10.10 confirms these statements and shows next to that the temperature distribution in
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Figure 10.9: Temperature change at point P1 (left-hand side) and P2 (right-hand side) over time;
ad changes the sloop of the curve in the transition area

96



10.3 Non-Isothermal Simulation

t = 0 s t = 1 s t = 3 s

t = 5 s t = 6 s t = 10 s

e1

e2

e3
e1

e2

e3
e1

e2

e3

e1

e2

e3
e1

e2

e3
e1

e2

e3

Figure 10.10: Temperature distribution in the model at different time points; red - high tempera-
ture, blue - low temperature

the whole solution area at different time points. Initially (t = 0 s), the interface has no influence
on the temperature distribution and in the whole model results a temperature of θ = 573.15 K.
From t = 1 s to t = 5 s the temperature is approximately linear distributed from top to bottom,
however, a slight influence of the interface onto the temperature distribution exists due to the
length scale. Then the crack starts to propagate through the interface (t = 6 s), what leads
to a strong change of the temperature distribution. The top side of the interface keeps getting
warmer and in contrast to that the bottom side cools down. On the right side of the model (no
interface) the temperature distribution is still approximately linear. The picture at t = 10 s shows
the final temperature distribution in the model.
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This thesis deals with modelling the failure behaviour of a compound made of iron aluminide
(Fe24Al0.6Nb) and aluminium (AlSi10MgT6) subjected to mechanical and thermal loads. Nowa-
days, fracture mechanics is a field of increasing interest due to the fact that the computational
power increases from year to year. Without this increasing computational power it is not pos-
sible to solve the resulting mathematical problem. In the literature different possibilities exist to
model the failure behaviour of a material. The CZM is used in this work. Therefore, this work
begins with an introduction about the used materials and goes on with the basic principles of
continuum mechanics and how the CZM is added to these principles. In the ongoing chapter
constitutive laws are formulated and then it is explained how these laws are implemented into
the FEM. For this work the software package ABAQUS is used. Next to this, the identification
of all required, temperature dependent material parameters is explained in detail in this work.
Further on, neural network optimisation is used to identify the cohesive zone parameters be-
cause not enough experimental data is available.

All fracture mechanical models have in common that they share the same basic problem and
this is the change of the type of PDE in the case of damage evolution. Some call this phe-
nomenon "loss of ellipticity" [75]. An identical problem occurs due to a strong inelastic material
behaviour. To solve this problem it is necessary to regularise the model through the addition
of a viscous term or use an explicit or implicit gradient theory or perform a dynamic analy-
sis. The solution is always obtained by applying the full NEWTON-RAPHSON scheme to the
system of PDEs. Due to the existence of all these different solution possibilities in this work
three different procedures are compared: a quasi-static simulation with viscous regularisation,
a dynamic simulation with damping and a quasi-static simulation, that is regularised with the
damage gradient. This study is performed with a DCB example under mesh refinement and
in the end the computation time and the required number of increments is compared to each
other. This study is carried out to find the most efficient procedure for fracture mechanical
analysis. This is important if someone once to analyse fracture processes in larger structures
or constructions and to the author’s knowledge this comparison does not exist in the literature.
One result of this study is that it is far more efficient to perform a quasi-static simulation with
viscous regularisation as a gradient regularised quasi-static simulation. The simulation with
viscous regularisation is ten to one hundred times faster as the gradient regularised simula-
tion. This is in agreement with results of other researchers (e.g. [158, 159]), which have high
computation times due to a gradient regularised model as well. The dynamic simulation with
damping is only slightly slower as a quasi-static simulation with viscous regularisation. High
computation times due to many iterations in one time step which are necessary to resolve the
gradient term in the constitutive law and many elements (many DOFs) are the main problems
for the applicability of gradient regularised models, next to C1-continues elements, etc. There-
fore, it is recommended to use viscous regularisation schemes in complex simulations because
to the author’s knowledge these problems are not solved, up to now. Further on, a gradient reg-
ularised CZM depends still on its length (or mesh size). For this reason the 4PBT simulations
are performed under quasi-static conditions with viscous regularisation. Otherwise, the iden-
tification of cohesive zone parameters with neural network optimisation would be not possible
because the overall computation time for one temperature (250 C,300 C or 400 C) would have
increased to months (three to four) instead of a few weeks (one to two). However, this holds
only when the viscous regularisation tolerances are chosen correct.
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Nevertheless, this procedure worked well for the 4PBT simulations under isothermal condi-
tions, and the final simulations are in very good agreement with the experimental results (cf.
Sect. 10.2). Also, this good agreement is a result of the proposed novel, rate dependent TSL
which is formulated in this work and which suits well to the inelastic deformation processes
taking place in the substrate material. However, for a 4PBT under non-isothermal conditions
it was not possible to find a suitable set of viscous regularisation tolerances in an acceptable
time range for performing a successful simulation. This is addressed to the contrary behaviour
of heat conduction equation and balance of linear momentum in combination with fracture me-
chanical processes as discussed in detail in Section 10.3. For this reason an example simula-
tion is performed in this section to present at least the capabilities of the model.

Coming to the end of this thesis, from the author’s point of view the biggest challenge in the
analysis of fracture mechanical processes through simulations is the time integration because
time increments of a size are required that are unacceptable. This prevents the use of fracture
mechanics for the analysation of real structures. Therefore, future work could be done in the
following fields. The analysation of long time processes such as creep or low-cycle fatigue
need large time steps for the time integration. However, the fracture process needs time steps
in the size of µs, ns or even smaller. These are totally different requirements. Hence, it should
be investigated if it is possible to use time scale methods to decouple both problems, integrate
them independently and put them together in the end or decouple both problem in combination
with a LAGRANGE multiplier to ensure the constrains. Maybe this leads to a faster integration.
Another approach is to work directly on integration algorithms or improve viscous regularisation
schemes (e.g. with more damping factors), so that these schemes could be used without ap-
plying a trial and error procedure to determine the required tolerances. In the authors opinion
gradient theories should be avoided because more problems arise, besides the time integra-
tion. C1-continues elements are required, which is not straight forward for 2D and 3D continua,
and material parameters arise, that cannot be interpreted. Next to that, it is expected that the
simulation will still be slower as a simulation with viscous regularisation, thus, the applicability
is not guaranteed. The last point is to use GREEN & NAGHDI type II or type III theory for the
simulation of heat conduction since this PDE is of the same type as the balance of linear mo-
mentum (hyperbolic) [160]. Maybe, this is beneficial for the time integration of both equations,
and the contrary behaviour of the allowable time increment can be avoided.
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Appendix A

Chapter 4: Continuum Mechanics

In this section Eq. (4.59) of Chap. 3 is derived in detail. The starting point is Equation (4.50).

T :L− ρ ψ̇b − ρ ηbθ̇ −
1

θ
qb · (∇θ) > 0

The velocity gradient is replaced by Eq. (4.7), the multiplicative split is inserted (Eq. (4.8)) and
Eq. (4.56). It follows

T :
(
Ḟel · F−1

el + Fel · Ḟin · F−1
in · F

−1
el

)
− ρ ∂ψb

∂Fel
:Ḟel − ρ

∂ψb

∂θ
θ̇

−ρ ηbθ̇ −
1

θ
qb · (∇θ) > 0

which is rearranged as follows
[
T · F−>el − ρ

∂ψb

∂Fel

]
: Ḟel − ρ

[
ηb +

∂ψb

∂θ

]
θ̇

+F>el · T · F−>el : Lin −
1

θ
qb · (∇θ) > 0 , with Lin = Ḟin ·F−1

in

The required manipulations are presented below in index notation. At first, the transformation
of the elastic portion of the stress power is proven.

T :Ḟel ·F−1
el = T ·F−>el : Ḟel

Proof :

T :Ḟel ·F−1
el

= TijḞel,klF
−1
el,mnei⊗ej : ek⊗el · em⊗en

= TijḞel,klF
−1
el,mnδlmδjnδik

= TijḞel,imF
−1
el,mj

T ·F−>el : Ḟel

= TijF
−1
el,klḞel,mnei⊗ej · el⊗ek : em⊗en

= TijF
−1
el,klḞel,mnδjlδimδkn

= TijF
−1
el,njḞel,in

Then follows the transformation of the inelastic portion of the stress power.

T : Fel · Ḟin · F−1
in · F

−1
el = F>el · T ·F−>el : Ḟin · F−1

in
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Proof :

T : Fel · Ḟin · F−1
in · F

−1
el

= TijFel,klḞin,mnF
−1
in,opF

−1
el,qrei⊗ej : ek⊗el · em⊗en · eo⊗ep · eq⊗er

= TijFel,klḞin,mnF
−1
in,opF

−1
el,qrδikδjrδlmδnoδpq

= TijFel,imḞin,moF
−1
in,oqF

−1
el,qj

F>el · T · F−>el : Ḟin · F−1
in

= Fel,ijTklF
−1
el,mnḞin,opF

−1
in,qrej⊗ei · ek⊗el · en⊗em : eo⊗ep · eq⊗er

= Fel,ijTklF
−1
el,mnḞin,opF

−1
in,qrδikδlnδpqδjoδmr

= Fel,ijTinF
−1
el,mnḞin,jpF

−1
in,pm

Through the introduction of the dissipative stress

Td = F>el · T · F−>el

the final form is derived (Eq. (4.59)).
[
T ·F−>el − ρ

∂ψb

∂Fel

]
: Ḟel − ρ

[
ηb +

∂ψb

∂θ

]
θ̇ + Td : Lin −

1

θ
qb · (∇θ) > 0

Chapter 5: Constitutive Laws

Derivation of the CAUCHY stress tensor

T =
1

J

∂ρ0ψb

∂Bel
:
∂Bel

∂Fel
· F>el

The first derivative yields

∂ρ0ψb

∂Bel
=
∂ρ0ψb

∂IBel

∂IBel

∂Bel
+
∂ρ0ψb

∂IIIBel

∂IIIBel

∂Bel

=
µ

2
1 +


λ

4

[
1− 1

IIIBel

]
− µ

2IIIBel


IIIBel

B−>el

=
λ

4
(IIIBel

− 1)B−>el +
µ

2

(
1−B−>el

)

=
λ

4

(
J2 − 1

)
B−>el +

µ

2

(
1−B−>el

)

With the definition of the invariants of the left CAUCHY-GREEN tensor

IBel
= tr(Bel) IIIBel

= det(Bel)

the derivatives of them

∂IBel

∂Bel
= 1

∂IIIBel

∂Bel
= IIIBel

B−>el

the relation between the determinant of the deformation gradient and the third invariant
√
IIIBel

= det(Fel) = det(F ) = J ⇐⇒ IIIBel
= J2
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and the LAMÉ constants λ and µ. The second derivative follows to

∂Bel

∂Fel
=
∂Fel

∂Fel
· F>el + Fel ·

∂F>el

∂Fel

= IIIII · F>el + Fel ·TTTTT
= Fel ·TTTTT + Fel ·TTTTT
= 2Fel ·TTTTT

Now, we concatenate everything in index notation to show that Eq. (5.4) is the result.

T =
1

J

∂ρ0ψb

∂Bel
:
∂Bel

∂Fel
· F>el =

1

J
A :

∂Bel

∂Fel
· F>el

=
2

J
AijFel,klFel,op

(
ei⊗ej : ek⊗el · en⊗em⊗em⊗en · ep⊗eo

)

=
2

J
AijFel,klFel,opδnlδnpδikδjmem⊗eo

=
2

J
AijFel,inFel,onej⊗eo

=
2

J
A> · F el · F>el

=
2

J
A> · Bel

=
2

J
A · Bel

=
2

J

∂ρ0ψb

∂Bel
· Bel

This holds true because the left CAUCHY-GREEN tensor is symmetric and, hence, the tensor

A =
∂ρ0ψb

∂Bel
is symmetric, too.

Up next, the product of left CAUCHY-GREEN tensor and deformation gradient is derived.

Bel · F−> = Fel · F>el · F−>el · F
−>
in = Fel · F−>in = F · C−1

in

Chapter 6: FEM

Manipulation of the internal work of Eq. (6.6)

δH :
1PK

T · F> = δH · F :
1PK

T

Proof :

δH :
1PK

T · F>

= δHij

1PK

TklFmnei⊗ej : ek⊗el · en⊗em

= δHij

1PK

TklFmnδlnδjmδik

= δHij

1PK

TinFjn
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δH · F :
1PK

T

= δHijFkl
1PK

Tmnei⊗ej · ek⊗el : em⊗en

= δHijFkl
1PK

Tmnδlnδimδjk

= δHijFjn
1PK

Tin

Arranging of displacement, position, damage and temperature vector for a 2D cohesive element

ue =
[
u1x u1y u2x · · · uny

]>
, n = NN

xe =
[
x1x x1y x2x · · · xny

]>
, n = NN

de =
[
d1 d2 · · · dn

]>
, n = NN

θe =
[
θ1 θ2 · · · θn

]>
, n = NN

Arranging of the displacement, damage and temperature mean value matrix for a linear and a
quadratic element

Mlin
u =




1 0 0 0 0 0 1 0
0 1 0 0 0 0 0 1
0 0 1 0 1 0 0 0
0 0 0 1 0 1 0 0




Mlin
d =

[
1 0 0 1
0 1 1 0

]

Mlin
θ =

[
1 0 0 1
0 1 1 0

]

Mquad
u =




1 0 0 0 0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 1 0 0 0 0
0 0 1 0 1 0 0 0 0 0 0 0
0 0 0 1 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 0 1 0 1




Mquad
d =




1 0 0 1 0 0
0 1 1 0 0 0
0 0 0 0 1 1




Mquad
θ =




1 0 0 1 0 0
0 1 1 0 0 0
0 0 0 0 1 1




Arranging of the displacement and temperature separation relation matrix. The ordering de-
pends on the node numbering scheme of the element.

Llin
u =




−1 0 0 0 0 0 1 0
0 −1 0 0 0 0 0 1
0 0 −1 0 1 0 0 0
0 0 0 −1 0 1 0 0




Llin
θ =

[
−1 0 0 1
0 −1 1 0

]
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Lquad
u =




−1 0 0 0 0 0 1 0 0 0 0 0
0 −1 0 0 0 0 0 1 0 0 0 0
0 0 −1 0 1 0 0 0 0 0 0 0
0 0 0 −1 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −1 0 1 0
0 0 0 0 0 0 0 0 0 −1 0 1




Lquad
θ =



−1 0 0 1 0 0
0 −1 1 0 0 0
0 0 0 0 −1 1




Arranging of the elasticity matrix

Ci =

[
En 0
0 Et

]

Deriving the material tangent matrix A for the bulk material

A =
∂T1PK

∂F
=

∂

∂F

[
λ

2

(
J2 − 1

)
F−> + µ

(
F ·C−1

in − F−>
)]

= λJ
∂J

∂Fmn
F−1
ji +

[
λ

2

(
J2 − 1

)
− µ

]
∂F−1

ji

∂Fmn
+ µ

[
∂Fik
∂Fmn

C−1
in,kj + Fik

∂C−1
in,kj

∂Fmn

]

∂J

∂Fmn
= JF−1

nm

∂Fik
∂Fmn

= δimδkn

The derivative of an inverse transposed matrix is derived through the relation A>· A = 1.

∂δil
∂Fmn

=
∂

∂Fmn

[
FjiF

−1
lj

]
ilmn

0ilmn =
[
δjmδinF

−1
lj

]
ilmn

+

[
Fji

∂F−1
lj

∂Fmn

]

ilmn[
Fji

∂F−1
lj

∂Fmn

]

ilmn

= −
[
δjmδinF

−1
lj

]
ilmn

[
δjo

∂F−1
lj

∂Fmn

]

olmn

= −
[
F−1
io δinF

−1
lm

]
olmn

[
∂F−1

lo

∂Fmn

]

olmn

= −
[
F−1
no F

−1
lm

]
olmn

[
∂F−1

ji

∂Fmn

]

ijmn

= −
[
F−1
ni F

−1
jm

]
ijmn

This leads to the final formulation of the material tangent matrix.

Aijmn = λJ2F−1
nmF

−1
ji −

[
λ

2

(
J2 − 1

)
− µ

]
F−1
ni F

−1
jm + µ

[
δimδknC

−1
in,kj + Fik

∂C−1
in,kj

∂Fmn

]

Inelastic velocity matrix for a PE

Lin =

[
LPE

in 0

o> Lin,33

]
with LPE

in =

[
Lin,11 Lin,12

Lin,12 Lin,22

]
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Eigenvalues of the inelastic velocity matrix

α1 =
tr
(
LPE

in

)

2
−

√
tr
(
LPE

in

)2

4
− det

(
LPE

in

)

α2 =
tr
(
LPE

in

)

2
+

√
tr
(
LPE

in

)2

4
− det

(
LPE

in

)

α2 = Lin,33

Eigenvectors of the inelastic velocity matrix

v1 =




−(α2−Lin,11)
2Lin,12

1

0


 v2 =




−(α1−Lin,11)
2Lin,12

1

0


 v3 =




0

0

1




These formulations of eigenvalues and eigenvectors is valid if following statement holds.

Lin,12 6= 0 and Lin,11 6= Lin,22 6= Lin,33

For the other cases the relations are not presented, but they are derived straight forward. Spec-
tral decomposition of inelastic velocity matrix

Lin =

3∑

i=1

αi

||vi||2
vi · v>i

VOIGT scheme of a symmetric second-order tensor A and a symmetric fourth-order tensor AAAAA
with i, j = 1, 2 (plane stress state). At first, the new "base vectors" are introduced.

EV1 = e1⊗e1 EV2 = e2⊗e2 EV3 =
1√
2

(e1⊗e2 + e2⊗e1)

This leads to following vector-matrix representation of the afore mentioned tensors.

a =




A11

A22√
2A12


 A =




A1111 A1122

√
2A1112

A1122 A2222

√
2A2212√

2A1112

√
2A2212 2A1212




A-6



Appendix B

Identification of Creep Parameters and YOUNG’s Modulus of the
Substrate

Table B.1: Cross section dimensions of all specimens made out of AlSi10MgT6, determined
YOUNG’s moduli, steady-state moments and curvatures for calculation of creep pa-
rameters

specimen
T vexp b hs Es Mst Γ̇st

[◦C]
[

mm
min

]
[mm] [mm] [GPa] [Nmm]

[
·10−6 1

mms

]

1 20 0.050 3.59 2.995 74.65 − −

2 200 0.050 3.59 3.01 67.28 2011.27 7.26

3
250

0.025 3.51 3.01 65.25 1067.03 3.67
4 0.050 3.53 3.01 62.34 1145.99 7.61
5 0.075 3.54 3.01 68.09 1292.61 11.79

6

300
0.025

3.50 2.99 53.95 431.70 3.56
7 3.50 2.99 53.95 431.70 3.56
8 0.050 3.60 3.00 58.21 493.72 7.26
9 0.075 3.54 2.99 58.39 547.24 11.03

10

400

0.0125 3.51 2.98 38.24 115.72 1.79
11 0.025 3.53 2.98 30.05 136.98 3.30
12 0.050 3.60 3.00 31.94 160.38 7.32
13 0.075 3.55 2.99 32.19 178.94 10.10
14

0.0875
3.50 3.00 34.33 177.01 12.17

15 3.54 2.89 31.28 142.58 12.42

Identification of YOUNG’s Modulus of the Coating

Table B.2: Cross section dimensions of all specimens made out of Fe24Al0.6Nb and deter-
mined YOUNG’s moduli

specimen
T vexp b hc Ec

[◦C]
[

mm
min

]
[mm] [mm] [GPa]

1
20 0.050

3.58 1.25 70.97
2 3.56 1.22 69.90

3
400 0.050

3.56 1.22 56.26
4 3.57 1.22 53.90
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Appendix B: Experimental Results

Cross Section Dimensions of the Compound Specimens

Table B.3: Cross section dimensions of all compound specimens

specimen
T vexp b hc hs h

[◦C]
[

mm
min

]
[mm] [mm] [mm] [mm]

1 250 0.050 3.435 1.240 3.480 4.720

2 300 0.050 3.450 1.240 2.960 4.200

3 400 0.050 3.485 1.240 3.015 4.255

Measurements to Determine YOUNG’s Modulus
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Figure B.1: Mexp vs. Γexp curves of the substrate for 250 C and different test speeds
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Figure B.2: Mexp vs. Γexp curves of the substrate for 300 C and different test speeds
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Measurements to Determine Creep Parameters
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Figure B.3: Mexp (top) and ∆uexp (bottom) vs. texp of the substrate for 250 C
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Figure B.4: Mexp (top) and ∆uexp (bottom) vs. texp of the substrate for 300 C
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Verification of Creep Parameters
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Figure B.5: Verification of determined creep parameters at 250 C and for different test speeds
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Figure B.6: Verification of determined creep parameters at 300 C and for different test speeds
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Simulation Procedures

Table B.4: Computational time tCPU and number of increments NInc for different simulation pro-
cedures and elastic and inelastic material behaviour of a DCB test with NE = 200

material behaviour

elastic inelastic

tCPU Ninc tCPU Ninc

[s] [−] [s] [−]

pr
oc

ed
ur

e static 0.5 15 4.7 113

dynamic 0.6 15 5.3 113

gradient 1.7 59 3.4 93

Table B.5: Computational time tCPU and number of increments NInc for different simulation pro-
cedures and elastic and inelastic material behaviour of a DCB test with NE = 720

material behaviour

elastic inelastic

tCPU Ninc tCPU Ninc

[s] [−] [s] [−]

pr
oc

ed
ur

e static 1.2 15 19.6 156

dynamic 1.5 15 24.6 170

gradient 55.6 581 349.9 2330

Table B.6: Computational time tCPU and number of increments NInc for different simulation pro-
cedures and elastic and inelastic material behaviour of a DCB test with NE = 2720

material behaviour

elastic inelastic

tCPU Ninc tCPU Ninc

[s] [−] [s] [−]

pr
oc

ed
ur

e static 3.7 15 83.0 214

dynamic 5.1 15 115.7 238

gradient 305.4 1049 1072.6 2383
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Appendix B: Experimental Results

Temperature Dependence of Cohesive Zone Parameters

The cohesive zone parameters are all interpolated by the quadratic function

� = q1θ
2 + q2θ + q3 (B.1)

This is done, thus, for an isothermal simulation the same parameters result which are calculated
with the numerical optimisation.

Table B.7: Temperature dependence of cohesive zone parameters and creep factor

� q1 q2 q3

as 1.4283 · 10−15 s−1

K2 −1.5556 · 10−12 s−1

K 4.2294 · 10−10 s−1

Tmax 0.01373 MPa
K2 −17.7416 MPa

K 6103.2629 MPa

gcr 7.2667 · 10−7 mm
K2 −8.4064 · 10−4 mm

K 0.2459 mm

β 8.7333 · 10−5 1
K2 −0.1039 1

K 31.4262

Si0 1.9184 · 10−6 mJ
mm2K2 −0.0023 mJ

mm2K
0.7119 mJ

mm2

YE0 −2.6667 · 10−5 mJ
mm2K2 0.0288 mJ

mm2K
−6.7866 mJ

mm2
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